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Chapter 0

Introduction

0.1 Multiscale description of the laser-plasma interaction

Interaction of laser beams with plasmas entails a wide range of physical processes, from heating
and acceleration of charged particles to excitation of plasma waves, generation and saturation
of laser-plasma instabilities. Understanding of the laser-plasma coupling as a whole involves
various physical fields, including the description of the plasma’s electromagnetic response, the
theory of wave-particle interaction and instabilities, and the theory of linear and nonlinear plasma
waves. Although numerous wave-plasma couplings have been observed in experiments, many
arduous problems that remain to be understood arise from the variety of interaction processes
at play. Indeed, a rich combination of coupling processes occur in the underdense plasma, that
depend on the laser intensity and quality, local plasma parameters such as the temperature
and gradient scale length, and the plasma composition. In turn, the plasma parameters depend
on the coupling processes. In addition, these couplings interact with each other, thus creating
additional competition or feedback processes. Understanding this nonlinear and coupled problem
is the motivation for numerous theoretical, numerical and experimental works and collaborations.
Notable examples are: the identification of density profile steepening [1, 2|, measurements
of intense laser light absorption [3, 4, 5, 6, 7, 8], experimental evidence of heated electrons
characterized by at least two temperatures [9, 10, 11, 12], identification of the Brillouin [13,
14, 15, 16] and Raman [17, 18, 19, 20, 21| parametric instabilities, and the evaluation of the
wavelength-scaling of coupling processes [22, 23, 24, 25]. The development of modern numerical
tools allows for more comprehensive theoretical studies of these processes, and as such, better
interpretation of experiments and the investigation of various physical fields. As we will see, the
main motivation of this work lies in the description of these nonlinear and coupled processes at

the scales of the target’s dynamics.

We consider Laser-Plasma Interactions (LPIs) using laser pulses of durations of the order
of [0.1,10] ns, and for which the so-called interaction parameter IX? is in the range [1013-10'7]
Wum? /em? (I is the laser vacuum intensity and Az, its vacuum wavelength). Such laser parameters
are commonly realized in High Energy Density Physics experiments, notably in applications to
Laboratory Astrophysics and Inertial Confinement Fusion (ICF) science. The dynamics of targets

subject to such pulse durations and intensities occur on spatial and temporal scales of the order
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Spatial scales (m) Temporal scales (s)

1073 - coronal plasma
Hydrodynamics 107? - in-flight shell
10~7 - hydrodynamic shocks

10~ - focal spot 1078 - pulse duration
Laser 107° - laser inhomogeneities 10712 - smoothing (SSD)
10-7/104 10715 /10712
Hydro. resolution Lagrangian method numerical stability condition
— variable step — variable step
1078/107 10716
Maxwell’s Eqgs. in plasma  Debye length /wavelength é/laser period
— in all plasmas — in all plasmas

Table 1 — Spatial and temporal scales involved in the hydrodynamic description of laser-target
processes for the laser intensities of interest to this study.

of a millimeter and of several nanoseconds. On the one hand, theoretical descriptions of plasma
flows on the entirety of these scales rely on fluid approaches, using so-called hydrodynamic models
which allow to study large plasma volumes on long durations. On the other hand, nonlinear
laser-plasma interactions are appropriately studied at the microscopic and mesoscopic scales,
typically using kinetic (particle-in-cell and Fokker-Planck) and parazial electromagnetic models.
The range of scales that arises from the necessity to describe the whole target evolution including

fine scale LPI processes is illustrated in Tab. 1.

The state-of-the-art description of laser propagation on large scales relies on reduced approaches
compatible with the performances of modern computers. The most common one is the Ray-
Tracing model [26], that describes laser beams by bundles of needle-like rays following the
Geometrical Optics (GO) propagation laws and characterized by a power density. In situations
where collective effects and nonlinear couplings are unimportant (IA\2 <5 x 101 Wum? /em?),
GO-based models are sufficiently precise and computationally efficient. They describe the laser
refraction and plasma heating due to collisional energy absorption. Conversely, LPI modeling at
higher interaction parameters requires knowledge of quantities such as the electric field amplitude
and direction of the wavefront, which are not readily described by GO. Note that although the
notion of GO ray direction exists, that of wavefront direction does not. The physics of linear and
nonlinear LPIs at these scales is usually addressed by using limitations of the maximum electron
thermal flux or by adjusting the energy deposition of laser beams so as to reproduce experimental
results. Such approaches hinder the understanding of the physical processes at play and limit the
predictive capability of existing numerical tools. From these assessments, recent efforts have been
made in describing nonlinear LPIs at hydrodynamic scales, notably in the case of inline solvers
for the energy exchange between crossed laser beams [27, 28]. Those have notably allowed to
better interpret and design ICF experiments [29] and can be applied to assess more complicated
laser-target configurations such as the Polar Direct Drive scheme [30]. Similarly, the effects of

high energy electrons generated by nonlinear LPIs on the plasma dynamics are of particular
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0.2. The laser-plasma interaction in the framework of Inertial Confinement Fusion

importance for ICF studies |31, 32|, Double Ablation Front experiments at high intensities, or for
the design and interpretation of ns-scale laser target experiments in general [33].

Considering the large variety of laser-target configurations involving these processes, there
is an evident need for a multiscale model that can account for linear and nonlinear LPIs in
hydrodynamic codes, as well as the interwoven couplings between the laser propagation in plasmas,
Hot Electron (HE) sources created by nonlinear LPIs, HE beams propagation and plasma dynamics.
Modeling nonlinear LPIs and the laser-plasma-electron coupling on hydrodynamic scales poses
severe difficulties related to (i) the accurate description of the laser intensity in plasmas, (ii) the
consistent description of HE sources from the laser propagation model and (iii) the transport of
HE beams in plasma. The first two limitations are related to the standard use of geometrical
optics, which does not allow for robust evaluations of laser intensity in plasmas [34] while the
third is related to the scarcity of accurate and CPU-efficient HE propagation models coupled
to hydrocodes. The object of this work is to address these difficulties in order to formulate a
multiscale model that describes the hydrodynamic laser-plasma interaction, including its coupling
with the generation of high energy electron populations.

Applications of this novel formulation are conducted in the framework of Inertial Confinement
Fusion. More precisely, the Shock Ignition scheme is thought to be particularly vulnerable to
LPIs, as it involves a ~500 ps duration high intensity laser pulse. We present in the following
section the context of ICF, and the position of nonlinear LPIs on its operating framework. This

provides the basis for the formulation of goals and objectives of this thesis.

0.2 The laser-plasma interaction in the framework of Inertial

Confinement Fusion

0.2.0.1 Thermonuclear Fusion

Achieving a fusion reaction consists in bringing two positively charged light nuclei sufficiently
close to each other for them to bind through the attractive strong force, which typical range is of
the order of a few fermi, i.e. a few 10~ m. Approaching the nuclei to such distances requires to
overcome the long-range Coulomb repulsion of the charged nuclei. Although the corresponding
kinetic energies are of the order of 300 keV (for Deuterium-Tritium reactions), quantum tunneling
effects [35] make these reactions possible at lower energies. The cross-sections o of fusion reactions
for various nuclei are shown in Fig. 0-1 [left]. The ‘easiest’ (i.e. most probable) fusion reaction
at low temperature is that of D-T fusion, which cross-section at 10 keV is up to two orders of

magnitude higher than for other reactants. This particular reaction reads:
D +3T — jHe + 1+ 17.6 MeV | (1)

where the 17.6 MeV of kinetic energy liberated in the fusion process is shared between the «
particle (3.56 MeV) and the neutron (14.03 MeV).

In the so-called Gamow region below ~ 100 keV, the D-T fusion reaction cross-section increases
monotonously with the kinetic energy of the projectiles. At such temperatures, the fuel becomes

a plasma of electrons and two species of ions. Considering a plasma at thermal equilibrium
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Figure 0-1 — [left] fusion reaction cross-sections (in barns, i.e. 1072%m?) as a function of
the relative mean kinetic energy between nucleons in keV, and [right] thermal reactivity
for the fusion reactions (in m3/s) as a function of the kinetic temperature in keV.
Figures from http://www.kayelaby.npl.co.uk.

and characterized by a Maxwellian distribution function of mean temperature T' ~ 10 keV, the
ions in the high-energy tail of the distribution function lie close to the maximum of the fusion
cross-section. Integrating over the Maxwellian distribution, one can compute the average thermal
reactivity (ov) of a fusion plasma as a function of its average temperature T', as shown in Fig.
0-1 [right]. Heating of the plasma allows to compensate for the energy losses in elastic ion-ion
collisions, which have a much higher cross-section. This approach where fusion reactions are
obtained through the high energy ions in the tail of the distribution function of a hot plasma is

termed thermonuclear fusion. It is the approach of choice for producing large amounts of nuclear

fusion energy.

0.2.0.2 Burning of the D-T fuel

At the aforementioned temperature of 10 keV, the plasma cannot be contained in any solid
container; the latter would be quickly deteriorated, thus polluting and cooling the fuel. As such,
these plasmas must be confined in a vacuum. However, because high temperatures also imply
high pressures, the plasma will naturally tend to expand and cool down. In effect, the plasma
must be confined in a given volume for a sufficiently long time so that most of the D-T fuel

has time to burn. For an initially equimolar mix of D-T and assuming a constant temperature
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throughout the confinement, the fraction of burnt fuel Fpr reads [36, 37]:

Fop — : (ov)noT/2 @)

ov)net/2+ 1"’

where 7 is the confinement time and ng the initial ion number density. This simple formula
highlights the two main parameters in thermonuclear fusion ; the temperature T' (contained in
(ov)) and the product ng7r. In order to burn half of the fuel, Eq. (2) shows that nyT must be
of the order of 2{cv)~!. Given the difficulty to simultaneously maximize ng and 7, the fusion
problem can be approached by using short confinement times and high density plasmas, or large
confinement times and low density plasmas (the latter being the case of the Magnetic Confinement

Fusion approach).

0.2.1 Inertial Confinement Fusion

With invention of the laser, the possibility to focus high amounts of energy in small volumes was
considered as a mean to ignite the fusion reactions. Early experiments suggested that the optimal
configuration was to irradiate a solid spherical target, thus heating it to high temperatures while
confining the plasma on very short timescales by its own inertia, which gave birth to the term of
Inertial Confinement Fusion (ICF) [38].

0.2.1.1 Hot-Spot ignition of the fuel

By considering a sphere uniformly irradiated by laser beams, it can be shown that the burnt fuel

fraction reads [36, 37]:
ICF _

pr
Fpp = )
DT pr + (8vmprvksT)/{(ov)

with v the heat capacity ratio, kg the Boltzmann constant, mpr the average mass of D and

(3)

T nuclei and pr the areal density of the fuel, related to the previously defined ng7r product by
pr = 4y/mpryksTnor. This equation highlights that obtaining high burnt fractions requires to
increase the areal density of a spherical target. Given that the areal density of a sphere of a mass
M and a radius R scales as pR = (3/(47))"/3M/3p?/3 one concludes that (i) any attempt to
increase the areal density at a constant mass requires an increase in the density p above the solid
density, and (ii) for a given areal density (i.e. for a fixed burnt fraction), increasing the density
implies that a smaller fuel mass is required, and thus less laser energy is needed to heat it to the
desired temperature.

The current approaches to ICF consider bringing a small mass of combustible at high densities
with the desired thermodynamic properties, while maintaining the symmetry of compression and
using low enough laser energies so that the overall fusion energy far exceeds the invested energy
for compression and heating of the combustible. Toward this objective, heating the entire mass
of a D-T sphere is inefficient because the required invested energy is too large. The historical
and standard approach to ICF is that of hot-spot ignition, where only a small mass of the target
is brought to the required conditions for the initiation of nuclear reactions. In this framework,
targets are constituted of a spherical D-T shell containing a low density D-T gas. Once fusion

reaction are ignited in the hot-spot, the generated o particles deposit their energy in the dense
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cold shell surrounding the hot-spot and ignite it. The hotspot heating is achieved by the PdV
work communicated from a dense imploding shell. Obtaining the required hotspot parameters for
the ignition of fusion reactions and of the target shell requires to compress the target to very

high densities, i.e. to obtain high convergence ratios of the order of 30-40.

0.2.1.2 Target compression using lasers

The capsule acceleration and compression originate from the expulsion of shell material ablated
by the laser at the outer target surface.The laser ablation produces a pressure P that scales like,

in the absence of anomalous laser absorption processes:

Pa = 57("7abs1157w/cm2/>\L,,um)2/3 Mbar ) (4)

where 1,15 is the laser energy absorption fraction, 115,w Jem? is the vacuum laser intensity in
units of 10! W/cm?, and A L,um is the laser vacuum wavelength in gum. The ablation pressure is
approximately equal to the pressure at the critical density p., where the laser light is reflected
and the flow velocity equals the acoustic velocity cs, so that Pa = 1hgcs ~ pec? o (I/AL)2/3,
where m, is the ablated mass rate. These estimates show that increasing the ablation pressure

and the ablated mass rate require an increase in the laser intensity.

The velocity of the shell during its free-flight (so-called implosion velocity) can be related to
the ablation mass rate by Uimp = 114.A/p, where A is the shell in flight aspect ratio (radius over
thickness of the shell R/AR) and p is the in-flight shell density. Finally, the convergence ratio

can be expressed as:
L q1/2
Uimp maA /

P AR AN P adn) )

where « is the adiabat of the shell, defined as the ratio of its pressure over the Fermi pressure

PR = App§/3 = 2.16/)?/3 Mbar. From Eq. (5), one readily sees that for a given initial target

C

density, obtaining high convergence ratios requires (i) high implosion velocities, obtained through
a high ablation mass rate, that is, a high ablation pressure and a high laser intensity (Eq. (4)), (ii)
a low shell adiabat, that is, the shell must remain cold during the implosion, i.e. the compression
must be as isentropic as possible, and (iii) a high aspect ratio. The fulfillment of these points
as a mean to achieve high convergence ratios is not necessarily straightforward. Firstly, high
laser intensities are detrimental to the capsule implosion because of the development of nonlinear
laser plasma interactions that can lead to the shell preheat (raising «) or to asymmetries in the
irradiation field. Secondly, the implosion of the capsule is sensitive to hydrodynamic instabilities
(such as the Rayleigh Taylor instability (RTI)), which growth is related to the acceleration of the
ablation front, and is seeded by capsule non-uniformities or irradiation asymmetries. The RTI
modulates the density profile, which may cause a rupture of the shell for deformation wavelengths
larger than the capsule thickness. As a result, the RTI limits the maximum shell acceleration and
thus puts a higher limit on the implosion velocity. Additionally, increasing the aspect ratio leads
to a capsule that is susceptible to a larger range of deformation wavelengths, and thus is more
fragile from the standpoint of the RTI. In order to lower the sensitivity of the capsule implosion

to hydrodynamic instabilities and to increase the energy gain, alternative ignition schemes have
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been developed.

0.2.1.3 Alternative Ignition schemes

Hotspot ignition relies on the subsequent assembly of the fuel and ignition of the hotspot, solely
through the target’s compression with one shaped laser pulse. For low adiabat implosions («
being of the order of 2), the energy required for the compression of the shell is of the same order
as the energy required for the heating of the hotspot. The working principle of various alternative
ignition schemes is to separate the implosion and ignition phases, that is, (i) use a dedicated
low energy laser pulse for the compression of the shell only, in which case the slower PdV work
communicated to the target center is not sufficient anymore to bring the fuel to its ignition
temperature and (ii) communicate the additional energy required for the ignition of the hotspot
by a different laser pulse. The main idea behind these schemes is to reduce the laser energy and
to increase the target robustness, through a better control of each phase of the whole process.
In the Fast Ignition |39, 40, 41] scheme, the additional energy is brought in the form of a high
energy electron or ion beam created by the interaction of a high power high energy laser beam
with a specially prepared target. Given the inherent technical complexity of fast ignition, other
alternatives were developed, and notably the Shock Ignition |42, 31] scheme. The latter consists in
using a high intensity laser spike near the end of the compression phase to launch a strong shock
into the target, thus raising the hotspot pressure and temperature above the ignition threshold
when the cold shell is assembled. The attractiveness of this ignition scheme notably relies on
its effective simplicity: the required pulse shapes being available on the current generation of
high power laser facilities and the required targets being of the same order of complexity than
direct-drive hotspot scheme targets [43|. By decoupling the compression and the heating phase,
much lower laser energies are required (of the order of 500 kJ) for the obtention of similar target
gains, thus making it potentially easier to implement. However, using an intense laser spike raises
new physical issues related to the generation and amplification of strong shocks and fluxes of

energetic electrons.

0.2.2 Interaction regime

It is traditionally considered that the optimal laser-plasma interaction regime for ICF is that of
collisional absorption, where the electrons oscillating in the laser field heat the plasma through
collisions with the ions. This mechanism is preferred because (i) it allows to transfer the laser
energy to the thermal population of plasma and (ii) it does not involve so-called anomalous
absorption processes that may be detrimental to the compression efficiency (those are detailed
below). The fraction of laser energy transmitted to the plasma by collisional absorption is a
function of the electron-ion collision frequency, dependent on the average charge state of the ions
Z and on the density n.. Considering that high-Z materials have a low hydrodynamic efficiency
(they require higher energies to ionize and tend to re-emit X-rays which preheat the target), the
optimal interaction domain for ICF is that of medium-Z ablator, typically plastic, carbon or
beryllium. The energy from the collisional absorption of the laser is mostly deposited at a critical

density n, x )\22 that defines the location of the electromagnetic wave reflection. In order to
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maximize the coupling to the solid target, the critical density must be as close as possible to the
solid density.

Considering the importance of (i) coupling the laser energy from collisional absorption as
efficiently as possible to the solid target and (ii) the issues raised by nonlinear LPIs, which
thresholds scale in IA2 | the technology of choice for ICF is that of short wavelength (and high
power) lasers. The lasers used in fusion science are based on Neodymium-doped glass (Nd:Glass)
amplifiers at the fundamental wavelength of 1054 nm (for phosphate glasses). The laser light
is frequency tripled prior to its interaction with the target, to a wavelength of 351 nm. The
frequency tripling process allows to increase the critical density by a factor of 9 and increase the
absorption efficiency, the ablation pressure (4) and the intensity threshold for nonlinear LPIs.
However, the overall laser efficiency is rather poor, of the order of a few %.

When the interaction parameter IA\% crosses the threshold of ~ 10 Wpum?/cm?, the laser
plasma interaction becomes prone to numerous couplings between electromagnetic and plasma
waves [20, 44, 45]. Most of these additional processes, summarized in Fig. 0-2, have nonlinear
behaviors and are in general nefarious to the implosion [46, 47]. The most prominent mechanisms
are the coupling of the laser light to local plasma modes, the Electron Plasma Waves (EPW)
(processes of Stimulated Raman Scattering (SRS) and Two-Plasmon Decay (TPD)) and Ion
Acoustic Waves (IAW) (process of Stimulated Brillouin Scattering (SBS)). Considering the laser
intensities used in ICF, the non-linear LPIs can be categorized according to their potentially

detrimental effects for the capsule implosion:
e Symmetry breaking hazards;

— The overlap of laser beams in plasma produces ion acoustic waves (IAW) due to the
ponderomotive force that can lead to energy exchange between the beams through the
diffraction process. This particular case of the three-wave interaction is also referred
to as Cross-Beam Energy Transfer (CBET). Early theoretical work [48] showed that
resonantly excited IAWs can be driven in the framework of the baseline National
Ignition Facility (NIF) configuration [49], and indeed CBET is now used to tune the
symmetry irradiation in indirect drive ICF [29]. Direct-drive configurations have also
been found to be prone to the CBET instability [27, 50|, affecting both the symmetry

of the implosion and the laser-target coupling.

— Similarly, any instability that induces some degree of scattered light may lead to
variations in the irradiation symmetry. Notably, the SBS and SRS instabilities can
scatter large portions of laser light. Considering that an irradiation uniformity of the
order of 1% must be kept in order to reach the required compression factors of hotspot

ignition, these processes are significant.
e Pre-heat hazards;

— Any LPI that drives electron plasma waves to sufficiently high phase velocities may
accelerate electrons to high energies. Most notably, the SRS and TPD instabilities
can drive electrons to energies of up to several hundred of keV, which may raise the

adiabat of the shell and decrease the hydrodynamic efficiency of the implosion.
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— In addition to the shell preheat, high energy electron populations generated by nonlinear
LPIs directly affect the plasma dynamics |31, 32| by altering the shock propagation
and strength. This is of particular importance for the Shock Ignition scheme, for which

the effect of hot electrons is uncertain [51].
e Coupling losses;

— In addition to the geometry breaking effects, the parametric instabilities amplify
the scattered waves thus deteriorating the coupling losses. Notably, in direct-drive
configurations, CBET shifts energy from incoming beams to outgoing beams and
thus, laser energy is taken away from the critical density, which in turns decreases the

laser-target coupling.

— More generally, large volumes of an underdense plasma lead to significant amounts of

backscattered light thus decreasing the laser-target coupling.
e Other;

— Laser filamentation, which results from the laser beam refraction in local density
inhomogeneities amplified thermally and ponderomotively by the focused beam, leads
to strong and localized electric fields and density modulations that may amplify other
instabilities.

— Resonant Absorption (RA), that is the absorption of laser light due to the resonant
excitation of the electron plasma wave at the critical density. It can lead to significant
absorption fractions in the early stages of the interaction when the density profile is
sufficiently steep. However, it is commonly considered that hot electrons accelerated
by EPWs driven by the resonantly excited electric field are in general too cold to cause

a significant preheat [36].

The development of nonlinear processes is controlled on some degree by the use of temporal
and spatial beam smoothing techniques, which work by altering the intensity fluctuations and
coherence properties of laser beams in their focal plane. These optical methods are crucial to
the reduction of nonlinear LPI growth and the mitigation of hydrodynamic instabilities. More
generally, optical smoothing techniques are widely used in high power laser systems in order to
control the properties of laser beams. As such, these are an integral part of the description of the
laser-plasma interaction.

Considering the vacuum laser wavelength of A\ = 351nm, the typical laser intensity is
~ 5 x 10" W/cm? during the compression phase of shock ignition and ~ 5 x 10> W /ecm? during
the spike. Both stages are prone to nonlinear LPIs, although in different regimes. While the
compression phase is less sensible to HE preheat and symmetry breaking issues than the standard
hotspot scheme because of a lower laser intensity, the laser spike employed for the generation of the
strong shock lies in a strongly nonlinear interaction regime. Considering typical spike durations
of ~ 500 ps at peak intensity, nonlinear LPIs have ample time to develop and (i) drive copious
amounts of high energy supra-thermal electrons, and (ii) significantly reduce the laser-target

coupling for the strong shock generation through CBET. Although the shock ignition scheme
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Figure 0-2 — (color) Schematic diagram of some of the LPI processes involved in Inertial
Confinement Fusion, as a function of the coronal plasma density profile along the normal
of the target. The color code indicates linear LPI processes in yellow and nonlinear
processes in red. Black curly lines indicate the excitation of Electron Plasma Waves.

promises higher gains and better robustness than the conventional hotspot ignition scheme, the
physics of the laser-plasma interaction must be carefully investigated, especially during the laser

spike.

0.3 Objective of this work

The subject of this work is: Multiscale Description of the Laser-Plasma Interaction, Application
to the Physics of Shock Ignition in Inertial Confinement Fusion. It is separated in two parts. The
first part is dedicated to the description of the LPI coupling processes at the scales of a target’s
hydrodynamics. Such a description is motivated by the interpretation and design of laser-based
HEDP experiments in general, be it of Laboratory Astrophysics or Inertial Confinement Fusion.
The second part of this work is dedicated to the study on large hydrodynamic scales of the typical
highly nonlinear LPIs representative of the final phase of shock ignition ICF. The objectives of

the thesis are formulated as follows.

e Given the scale discrepancy that arises from the description of both; the target dynamics
and the rich variety of processes at play in the Laser-Plasma-Interaction, we wish to propose
a suitable laser model that can describe the laser propagation as well as linear and nonlinear
processes at hydrodynamic scales. This laser model must: (i) be well adapted for the
computation of nonlinear LPIs, (ii) be CPU-efficient at the large-scales at play and (iii)
reproduce the main characteristics of laser beams used in high power laser systems, including

the effects of smoothing techniques.
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e Given the interaction regime of A2 € [10'-10'"] Wum?/cm?, the description of the
nonlinear LPIs must account for: (i) acceleration and transport of high energy electrons by
parametric instabilities and resonant absorption, (ii) scattering of laser energy by nonlinear
processes, particularly by Cross-Beam Energy Transfer and (iii) competition between LPI
processes. With the aim of an implementation in a hydrodynamic code, this model must be

implemented in an inline-approach, i.e. fully-coupled to the hydrodynamics.

e Given two of the main issues related to nonlinear-LPIs in Shock Ignition ICF, that are the
irradiation field symmetry-breaking from CBET, and the target pre-heating from parametric
instabilities, the study of the SI scheme is conducted in two steps: (i) the study of the
CBET and how it affects the hydrodynamics of an imploding spherical target and (ii) the
study of the effect of high-energy electron beams on shock dynamics, and how they affect

the ignition conditions of the target.

0.4 Organization of the manuscript

The description of the multiscale laser-plasma interaction model and its application to LPI and
ICF problems is divided in 6 Chapters.

Chapter I We present in Ch. 1 the linear theory of Electromagnetic (EM) wave propagation in
plasmas. We derive the monochromatic wave equation, base framework of the description of
laser beams in plasmas, from Maxwell’s equations. The basic theory of the electromagnetic
response of the plasma, used throughout this work, is introduced. In order to assess
the physical behavior of EM waves propagation in plasmas, we describe various standard
solutions of the wave equation, relevant to various sections of this document. Particularly,
we define the framework of the scalar wave equation, that is the starting point of most

reduced laser propagation models used at hydrodynamic scales.

Chapter II The most widespread approach to the modeling of the laser propagation at hydro-
dynamic scales, that is the GO-based Ray-Tracing method, is introduced in Ch. 2. After
an assessment of the limits of the RT model for the purpose of describing nonlinear LPIs,
we propose an adaptation to collisional plasmas and to the framework of a Lagrangian
hydrodynamic code of Ray-based Paraxial Complex Geometrical Optics [52] (PCGO).
PCGO is an alternate method for describing scalar wavefields that replaces the needle-like
rays of GO by Gaussian optical beamlets. We illustrate its usefulness in modeling nonlinear

LPIs in the case of the ponderomotive self-focusing instability.

Chapter III The PCGO framework, usually limited to the description of Gaussian beams, is
expanded further in Ch. 3. High-power laser beams employ Phase Plates (PP), optical
elements used to control the spatial shape of their intensity profile. Making use of the
properties of PP-smoothed beams, we present a method that can be employed to reproduce
realistic beams using PCGO beamlets. Additional reduced models are presented, that allow

to account for various smoothing techniques within the PCGO framework.
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Chapter IV Building on the technique of Gaussian optical beamlets, we treat separately two
branches of nonlinear LPI problems. First, we propose in Ch. 4 an inline PCGO-based
approach to the modeling of CBET in large-scale hydrocodes. The latter model is validated
against theoretical works, cross-validated with a paraxial wave solver, and compared to

experimental data. It is used in an academic study of direct-drive ICF subject to CBET.

Chapter V An inline model to treat the laser/plasma/hot-electron coupling is presented in Ch
5. We propose a supra-thermal electron transport model, and present its validation against
a reference solution. Various reduced models are then proposed in order to relate the RA,
SRS and TPD mechanisms to HE fluxes and temperatures. The resulting multiscale model
fully couples the description of laser propagation, the definition of HE sources, and the

propagation of HE beams.

Chapter VI Finally, we present in Ch. 6 a validation of the LPI-HE model against several
experiments in various geometries. Given a good agreement observed with the experimental
data, the physics of coupling LPI-generated HEs to the target dynamics is investigated.
It is notably found that LPI-generated HEs significantly affect the properties of shock
propagating in the target. Lastly, the multiscale LPI-HE model is applied to a Shock
Ignition configuration, in order to assess the influence of LPIs generated during the final

laser spike onto the implosion dynamics.

Conclusions of this work are presented in Ch 7.
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Chapter 1

Linear theory of electromagnetic waves

in plasmas

We present in this chapter the linear theory of electromagnetic wave propagation and interaction
with plasmas. Starting from the microscopic Maxwell’s equations in Sec. 1.1, we derive the
monochromatic wave equation in an inhomogeneous plasma, base framework of the description
of laser-plasma interactions. This notably requires to examine the microscopic structure of
the plasma to determine its electromagnetic response, from kinetic theory. Solutions of the
wave equation for a homogeneous plasma are used to illustrate the base properties of transverse
electromagnetic wave propagation and collisional absorption, in Sec. 1.2. The framework of light
wave propagation is extended to inhomogeneous plasmas in Sec. 1.3, using various standard
approaches and highlighting the particular processes of collisional and resonant absorption.
The scalar wave equation, basis of the large-scale description of wave-fields, is also derived.
Longitudinal plasma waves, which constitute eigenmodes of the plasma, are briefly described
in Sec. 1.4. Finally, parametric instabilities are presented in Sec. 1.5 with the objective of

highlighting the most unstable configurations encountered in inhomogeneous plasmas.

1.1 Maxwell’s equations in plasmas

1.1.1 Macroscopic Maxwell’s equations

The description of the temporal and spatial evolution of magnetic and electric fields, as well as
their interaction with each other and with local charges and currents, was first proposed by J. C.
MAXWELL [53]. It consisted of a set of 20 equations with 20 variables, that were put together
in a more "modern" form by O. HEAVISIDE [54] in 1891 (concurrently with J. W. GIBBS and
H. HERTZ) in 4 equations of 4 variables in vector notations. The latter Hertz-Heaviside and
Mazwell-Hertz restatement of the original equations is referred to as the Mazwell’s equations in

the modern literature, and reads:

Gauss' law ; V.E = £ ,
€0

Gauss' law for magnetism ; V.B =0,
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Chapter 1. Linear theory of electromagnetic waves in plasmas

0B
Mazwell-Faraday ; V x E = ~
OF
Maxwell-Ampere ; V X B = ugd + poeg— (1.1)

ot

where E and B are the electric and magnetic fields, ¢y and pg are the vacuum electric and
magnetic permittivities, J is the electric current density and p is the charge density. The charge
and current densities are related by the continuity equation:

dp

— J = 1.2
T +V.T =0, (1.2)

and the current density is related to the electric field by the conductivity tensor, which contains
all the information on the dielectric properties of the medium. The set of Eqs. (1.1) constitute the
basis of the classical theory of ElectroMagnetic (EM) fields. In this form, it describes the evolution
of EM fields with respect to punctual charges and currents. Applying Maxwell’s equations to
continuous media requires the introduction of additional fields that include the macroscopic
properties of the medium.

Considering a large-scale environment composed of n microscopic sources of currents and
charges, the microscopic fields e and b created by the n microscopic sources are solutions of n
systems of Egs. (1.1). Considering (i) a very large number n, that for solid matter is of the order
of 10?3 per cubic centimeter, and (ii) that the dynamics of the microscopic sources is by definition
governed by quantum effects, an averaged description of the field on classical length scales is
required. As such, we define averaged magnetic and electric fields E = (e) and B = (b), which
obey the Maxwell’s and continuity equations with the averaged current and charge densities
(J) and (p). The averaging process for the sources requires to account for the detailed atomic
structure of the medium, thus allowing to formulate the Maxwell’s equation for continuous media.

The average charge density (p(r,t)) as a function of the spatial and temporal coordinates r
and t can be estimated by [55]:

(p(r,t)) >~ p(r,t) — V.P(r,t) , (1.3)

with p the net average charge density and P the polarization density, defined by:
p(r,t) = <qu5(r—rm<t>>+q625<r—ri(t>>> : (1.4)

P = <Z(5(r_rm(t))dm(t))> ) (1'5)

where ¢, and d,, () are the total charge and dipole moment of the m-th molecular component
located at position r,,(t), r;(t) is the position of the i-th free conduction electron of charge ge.
The polarization density P is a measure of the density of the dipole moments carried by the
molecules in the system. In general, a finite polarization P comes from the presence of an electric
field E. This field-induced polarization results from (i) the displacement of electronic clouds in
the electric field and (ii) changes in spatial alignments of molecules that carry an intrinsic dipole

moment. The other term in Eq. (1.3), that is the net average charge density p, is in general zero
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1.1. Maxwell’s equations in plasmas

unless external charges pext are present in the system.

In a similar fashion, the averaged current density can be estimated by [55]:

<J(r,t)):J(r,t)+%1;+V><M, (1.6)

with J the net average current and M the magnetization, defined by:

8r2~ 8rm
J(r,t) = <qe;8t5(r—ri)> + <;qmat5(r—rm) . (1.7)
The net average current density J is the current carried by free charge carriers and molecules
in the system, while the magnetization M represents the average density of magnetic dipole
moments in the system. The magnetization fields are created by externally imposed macroscopic
current distributions, so that M depends on H. Similarly to p, the net average current density

J is in general zero unless external currents Jex are present.

The form of the field equations obtained by substituting the average charge and current
densities (1.3) and (1.6) into the Maxwell’s equation suggests the introduction of auxiliary fields
D and H, defined as:

D=¢E+ P,
1

H=—B-M, (1.8)
Ho

where D is called the electric displacement field and H the magnetizing field. Given that P is a
function of FE, and that M is a function of H, the polarization and magnetization densities are

usually approximated by linear functionals, with the following general form:

t
P(r,t) = /d3r’/ dt'xe(r — 1/t — t)eo E(Y, 1) (1.9)
— 00
¢
M(r,t) = /d3r'/ dt' xm(r — ¢/, t —t)H(Z', 1), (1.10)

where y. and ., are the dielectric susceptibility and magnetic susceptibility, respectively. These
expressions may also be written as a tensorial convolution product in order to account for
anisotropic responses of the material, and the dielectric and magnetic susceptibilities may also
depend on the fields F and H in the case of nonlinear materials. In the present form, we see
that the medium can exhibit the property of spatial and temporal dispersion. The auxiliary fields

obey the equations:

V.D=p, (1.11)
oD

H=J+— 1.12

where the 0D /0t term, also noted J o1, has a meaning of the current density induced by the

wave. In the linear electromagnetic theory, the materials are characterized on macroscopic scales
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Chapter 1. Linear theory of electromagnetic waves in plasmas

by the constitutive relations:

D =¢E , (1.13)
1

H=-B, (1.14)
i

where € and [ are the dielectric permittivity and magnetic permittivity, that depend on the
physical characteristics of the medium. Those may represent anisotropic materials (i.e. (€, i) are
tensors), inhomogenous materials (i.e. (€, /1) vary in space) and absorptive or dispersive materials
(i.e. (€, f1) are frequency dependent and complex).

Finally, the macroscopic Maxwell’s equations read:

V.D = pey (1.15)
V.B=0, (1.16)
0B
E=-_-22 1.1
V x 5 (1.17)
VXH—JeXt—i-aa?, (1.18)

where we have assumed that the non zero contributions to the net average charge and currents
originate from the external sources. In this form, the macroscopic behavior of the material is
factorized into the auxiliary fields through the constitutive relations. This set of equations, which
is more convenient for the macroscopic description of light wave propagation in materials, is also

referred to as Mazwell’s equations in matter.

1.1.2 Electromagnetic response of plasma: kinetic theory

Plasmas are gases constituted of charged particles, electrons and ions, which interact collectively
through electromagnetic forces. In order to resolve Maxwell’s equations in plasma, we must
determine the form of constitutive relations (1.13) and (1.14), which are, in general, non-stationary
and nonlocal. First, we restrict the constitutive relations to the framework of interest to this

work and then use kinetic theory to determine the electromagnetic response of the plasma.

1.1.2.1 Constitutive relations

From now on and in the rest of this work, we consider the case of monochromatic waves of
frequency w, such that the fields are proportional to exp [—wwt]. Furthermore, we assume that
there are no external charges or currents in the system, so that pext = 0 and Jext = 0. Finally, we
consider plasmas with weak magnetic fields, which implies M = 0. This is a good approximation
for typical ICF plasmas, where the electron gyration frequency around magnetic field lines is
much smaller than the typical collision frequency.

Assuming the plasma is a linear material (i.e. € does not depend on E and B), the constitutive

relations read, in the Fourier space:

D=¢E=¢E+P=¢(l+x.)FE, (1.19)
H =B, (1.20)
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1.1. Maxwell’s equations in plasmas

where the dielectric susceptibility x. remains to be expressed. The Maxwell-Ampere equation
(1.18) now reads V x B = pigd po1 = —poiwD = —1c*(1 + x¢) E, so that x. can be determined
by relating the current in the plasma to the electric field. This relation also defines the plasma

conductivity o, with Jpo = o E.

1.1.2.2 Vlasov-Fokker-Planck equation

The most accurate classical microscopic description of a plasma consists in characterizing each
particle by its position r and momentum p as a function of time. The forces acting on the
particles can be decomposed in two components; the external forces applied to the plasma, and
the internal forces arising from the mutual interactions between particles. The internal force is
responsible for the collective behavior of the system. This force fluctuates rapidly in both space
and time, whereas global external forces applied to the plasma vary on a macroscopic scale. It is
advantageous to consider a description of the plasma that is averaged on small elementary volumes
in order to obtain a continuous-like description. This procedure requires the hypothesis of weak
correlations between particles: their separation must be large enough so that their trajectories
are mainly determined by average forces (internal or external), i.e. the microscopic fluctuations
created by the local influence of other particles are relatively small. In this framework, the ion
and electron distribution functions f; and fe (noted f,), averaged over microscopic volumes, obey
the kinetic equation:
dfa

W -+ V.vrfa + Fa.vp a — 0 y (121)

where v = p/(mg7) is the velocity variable, 7 is the particle relativistic factor and F,, is the
self-consistent force. In the case of a plasma, F, is the Lorentz force arising from the self-consistent
electric and magnetic fields E and B: Fy, = (¢qo/ma)(E + v X B) with ¢, the particle charge. In
that case, the kinetic equation is called Viasov equation. This formalism is valid for length scales
larger than or comparable to the Debye length, Eq. (1.34). This corresponds to the collisionless
limit.

The correlations between particle motion are taken into account with a collision integral: an
additional term on the right hand side of Eq. (1.21). Considering perturbations of up to the
order 2 in the correlation term between particles, the Viasov-Fokker-Planck equation reads:

dfa

S tV-Vefa+FaVpfo= Zﬁ: Cap (1.22)

where ) 5 Cap 1s the collision integral, describing the binary collisions of charged particles due to

their Coulomb interaction in a plasma.

1.1.2.3 Collision integral

In the general case of a collisional plasma, the current density can be estimated from the Vlasov-

Fokker-Planck equation (1.22) with a simplified collision term, the Krook operator, that represents
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a relaxation towards a local thermal equilibrium:
Y Cap==> vaplfa—f2h) (1.23)
B B

where f,, is the distribution function of species a and fo% is a Maxwellian distribution function
that depends on mean temperatures T;, 3 and velocities u,g defined by the conservation of density,

momentum and energy in the binary interaction of the a and [ species:

3/2 2
M Me, Ma(V — Uap)

_ _MalV — Yap)” 1.24
ob <2kaTa5> b [ 2nTog ] ’ (1-24)
Na = /fad?’v , (1.25)
(Rama +ngmg)uag = /v(mafa +mpfs)dv (1.26)

3 1 .
i(na +ng)kpTap = 3 /(V —Uop)* (Mo fo +mpfa)d®v . (1.27)

We now consider that the species are close to Maxwellian distributions fM such that f, = fM 4 f1
with f! a small perturbation. The Maxwellian distribution f is characterized by a temperature
T, and reads:

3/2 2
M Ma, 0 ma¥
= — ) 1.28
Ja (QWkBTa) Mo &P [ 2I<:BTa] (1.28)
In order to linearize the Krook operator, we develop £ ap 1D series around uag = 0 and T,,3 = T}:
_ oM ofM
M= M 4 Sugs. < 835> + 0T (8;5) : (1.29)
Uap=0,Tnp=Thx of U =0,Tnp=Tx
where
(ndmea + n%mg)éuaﬁ = /v(mafcly + mﬂfﬂl)d?’v , (1.30)
3 1
S8+ n)kndTos = / (V)2 (mafL + mafl)d®v (1.31)

= /faod3v , (1.32)

so that the linearized Krook operator using Kj‘/é finally reads:

> Ca Zvaa [fa mo‘v 5“‘3‘5 ——fa ] , (1.33)

B

where we have simplified the expression by considering that temperature variations are of second
order compared to velocity variations. The linearized Krook operator involves various collision

frequencies that must be explicitly defined in order to estimate the plasma conductivity.
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1.1. Maxwell’s equations in plasmas

1.1.2.4 Collision frequencies

The momentum transfer between two colliding charged particles can be described by a collision
cross-section that presents the particularity of (i) diverging for long-range interactions, because of
the infinite range of the Coulomb potential, and (ii) involving quantum effects for interactions at a
distance less than the De Broglie length. In plasmas, electrons quickly react to any excess positive
charge and move to compensate it. This process acts to shield the electrostatic potential created
by charge carriers, so that the collision cross-section remains finite for long-range interactions.
The electrostatic potential decreases exponentially over a characteristic length scale, called the

Debye length:
~1/2

2
‘1
w= | S A . (1.34)

Considering a particle of species «, with a velocity vy, colliding with a distribution of particles

$ of number density ng, the average collision frequency reads [36]:

n5(qaqp)?
=47 ( —————1nA 1.35

where p = mgmg/(ma +mg), g; is the charge of particle 7, and In A is the Coulomb logarithm
that accounts for the short-range and long-range processes at play in the collision. The average in
(1.35) is taken over the velocity distributions of particles « and 3. Assuming that the Coulomb
logarithm vary weakly with the velocity, and considering the distribution functions of the particles

to be Maxwellian, the average collision frequency reads [56]:

Vog = 4 m(n (4ad5)" n
i N Ty 139

Applying this formula to electron-electron collisions (@ = m./2), electron-ion collisions (u &= me)

and ion-ion collisions (u = m;/2), we obtain:

1 V2nee*In Aee

_ , 1.37
Vee 6\/57{'3/2 E%mgv%,e ( )
o 1 (Z%) neet In Ag; (1.38)
T 6v2r32 (Z) egmivi, '
1 74 V2n.e* In Ay
Vi (Z%) V2nee'In Ay (1.39)

B 6v/273/2 (Z) 6%771?11%’@-

In the case of multiple ion species, more collision frequencies could be introduced. A simplified
description is often considered where all ion species are represented by a single average ion. Then,
the expression for v,; motivates the definition of an effective charge state Zog = (Z*)/(Z), where
the average is taken over the ion species concentration. In a non-magnetized plasma, each free
plasma mode (longitudinal and transverse waves, see Secs. 1.2 and 1.4) is damped according
to these collisional rates, and eventually with additional Landau damping terms. Note that in

general, the electron-electron coefficient can be neglected compared to the electron-ion coefficient
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for Z > 4.

1.1.2.5 Dielectric susceptibility of the plasma

We now consider the case of electrons accelerated in a homogeneous electric field oscillating at
a frequency w. The ions of a charge Z are supposed to be at a thermal equilibrium, described
by a Maxwellian distribution flM (and fi1 = 0). We define the electron distribution function
fo = fM + fl with f! a small perturbation. Assuming that the phase velocity of the wave is

much larger than the electron thermal velocity, the linearized kinetic equation reads [36]:

of e
ot Me

MeV.0U,
BpfY == 3 v |11 ] (1.40)
Befe,i} ‘

where the right hand side is the linearized Krook operator and we have used the time independence
of the equilibrium function féw . Because of momentum conservation, the electron-electron
collisions do not contribute to the damping of the wave and we can neglect the terms o ve.
Furthermore, considering the low electron to ion mass ratio, the term proportional to the mean
velocity perturbation du.; can be neglected compared to f!. Finally, Eq. (1.40) reads, in Fourier

space:
e

kpTe

where we have used the property of the Maxwellian distribution V,fM = —v fM /(kgT.). Mul-
tiplying both sides in Eq. (1.41) by —ev and integrating in momentum space, we obtain the

—wfl + EvfM = _y,fl, (1.41)

current density Jpq induced by the oscillating electric field:

2
e
— wd pol — —ngE = —VeiJ pol , (1.42)
me
where we have used:
Am_e/vﬁ&v. (1.43)

Recalling that the current is related to the polarization density by Jp, = wP and using

P = ¢yxFE we obtain an expression for the conductivity o:

0,2
nge

Jpol = 0FE = —wegx B = — E . (1.44)

Me (1w — Vej)

The imaginary part of the polarization current implies that electrons accelerated in the electric
field of the laser decelerate through electron-ion collisions, thus transferring energy from the
wave to plasma. This process of collisional absorption is called the inverse Bremsstrahlung. A
more detailed analysis accounting for ion density fluctuations [57, 36] yields a formulation of the
current with a modified Coulomb logarithm vig = ve; In Ajg/In A¢;. The latter is termed inverse
Bremsstrahlung collision frequency and involves a Coulomb logarithm Ag that is dependent on
the wave frequency w. Additional corrections are usually made to Arg, accounting for quantum
mechanical effects related to multi-photon and electron-photon interactions [58, 59, 60|. The

expressions for the Coulomb logarithms used in this work are given in App. A.5.
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1.2. Base properties of light wave propagation in plasmas

Finally, the dielectric susceptibility x. (1.9) and relative permittivity € (1.13) read:

e
w(w+wp)
2
w
—rr (1.45)
w(w ~+ wiB)

where wp, is the electron plasma frequency, wpe = y/nce?/(Mme€o).

The relative permittivity €(w) can be decomposed into a real and an imaginary part as
e=¢ +1e:

2 2
o Wee/wW)T g (e 1.46
¢ 1+ (Z/IB/LU)2 ( w ) ’ ( )
n __ VIB (wpe/w)Q VIB [ Wpe 2
_ B ~ B 1.47
wl+ (p/w)?  w ( w ) ’ (1.47)

where we have assumed g < w in the right-hand-side of the equations and only retained the
term linear on vig. The frequency dependence of the dielectric permittivity is a consequence of
the dispersive property of plasmas. Having determined €, we can now apply the macroscopic
Maxwell’s equations to plasmas.

1.2 Base properties of light wave propagation in plasmas

1.2.1 Wave equation

We consider the case of a monochromatic electromagnetic wave propagating in a inhomogeneous,
isotropic, dispersive and non-magnetic material. In that framework, fields are proportional to
exp [—wt]| and the dielectric and magnetic permittivities read é = e(w,r) and i = o, so that the

macroscopic Maxwell’s equations read, in the frequency domain:

V.E=—(1/e)Ve.E ,

V.B=0,
VxE=wB,
V x B = —wdc*E , (1.48)

which can be expressed as:

VXE—wB=0,
V x B +1(w/c)e(w,r)E=0, (1.49)
where €(w, r) is the complex-valued, inhomogeneous and scalar (i.e. isotropic) dielectric permit-
tivity.

Taking the curl of the first equation in (1.49) and eliminating for B yields:

AE +V(VIne.E) + (w/c)?e(w,r)E =0, (1.50)
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where we have used the vector identity V x V x A = V(V.A) — AA. We refer to this equation as
the wave equation for the electric field. The expression for the magnetic field is derived similarly,

by taking the curl of the second equation in (1.49) and eliminating for E:
V(V.B) — AB +1(w/c)V x (¢(w,7)E) =0 . (1.51)

Since V X (e(w,T)E) = €(w,r)V x E+ Ve(w,r) X E, we get the wave equation for the magnetic
field:
AB + (w/c)’e(w,r)B +

1
B = 1.52
6((J‘jjr)Ve(w,T)xVx 0, (1.52)

where we have used V.B = 0.

1.2.2 Dispersion relation

The propagation of light waves in homogeneous plasmas of uniform density is now considered. In
that case, Ve(w,r) = 0 and V.E = 0, so that Egs. (1.50) and (1.52) become identical and read:

UJ2
AE + ge(w)E =0, (1.53)
w2

The various components of the electric and magnetic fields in these equations are uncoupled,
e.g. the evolution of E, does not depend on the evolution of E,. Consequently, their resolution
reduces to a set of scalar wave equations in the form of homogeneous scalar Helmholtz equations:

W2
Au(w,r) + —€e(w)u(w,r) =0, (1.55)

2
where u(w, r) is the scalar wave amplitude, written in the frequency domain, that represents any
component of the electric or magnetic field. Assuming w is of the form g exp[—:k.r| and taking
the spatial Fourier transform of this equation, we obtain the dispersion relation for the EM waves:

2

w
—k2+§e(w) =0. (1.56)

It is worth mentioning that this form of the dispersion relation also holds for inhomogeneous
plasmas as long as the V(VIne.E) term can be neglected compared to the other terms in Eq.
(1.50). As it is discussed further in Secs. (1.3.2) and (1.3.4), this depends on the wave polarization.

1.2.3 Wave reflection: the critical density

Considering a collisionless media, with € = €, the dispersion relation (1.56) becomes:

k2 = w? — wge : (1.57)

This equation implies that wave propagation can occur only for w > wpe, in which case the

wavevector k is real. For w < wpe, the plasma electrons react instantaneously to the electric field
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1.2. Base properties of light wave propagation in plasmas

modulations of frequency w, thus shielding the field of the light wave. Note that in vacuum,
wpe = 0 so that the free-space wavenumber of the EM wave is kps = w/c. The equality w = wpe
defines the critical density beyond which a light wave does not propagate:

eowzme

ne= "3, (1.58)

where ¢q is the vacuum dielectric permittivity and e the electron charge. Plasma regions where
the electron density n. > n. are called over-dense or super-critical regions, and regions where

ne < n, are called under-dense or sub-critical regions.

1.2.4 Wave velocity and refraction

The group velocity characterizes the rate at which the energy of the wave propagates in space.
It is defined as v, = Jw/0k. Taking the derivative of Eq. (1.57) with respect to k yields

2kc? = 2wdw/ Ok, thus:
wQ n
_ pe e
vg(w) =cy[1 - 2= 1- (@)’ (1.59)

where vy = |vg4|. This relation indicates that the group velocity of the wave is ¢ in vacuum, and

less than ¢ in the plasma. The phase velocity, rate at which the phase of the wave propagates in

space, is defined as vpp = wk/ k2. Noting that kc? = wvy, the phase velocity reads:

- ¢ : (1.60)

)= \/1 — wge/w2 \/1 — Ne/Ne(w)

Uph (w

and we have vyvp, = c. The difference between the phase and group velocities indicates that
plasmas are dispersive materials, the light wave refracts at a different rate depending on the

frequency. The refractive index n’ = ¢/vp describes how light is refracted by the medium:

n(w)=,/1- =€), (1.61)

which is less than 1 in under-dense plasmas. It is interesting to note that this is contrary to light
wave propagation in solid materials (such as glass), where the index of refraction is > 1. More
generally, the refractive index in optical components increases with the density of the glass, so
that light waves tend to bend toward higher densities. On the contrary, the refractive index of
plasmas decreases for higher densities, so that light waves tend to bend toward lower densities.
Note that the above definitions for the group velocity and phase velocity are unchanged in the

case of a dissipative media, whereas the index of refraction acquires an imaginary part and is

defined as:

n?=e=¢ 41" . (1.62)

1.2.5 Effects of a complex dielectric permittivity

We now extend the previous analysis to the case of a dissipative media characterized by € = € +1¢”.
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1.2.5.1 Wave energy

In the general case of a collisional plasma and for a transverse wave (where E, B and k form an
orthonormal set), the averaged energy density of the electric field W, magnetic field W and
averaged energy flux S = (E x H) (so-called Poynting vector) read:

2
= € 0 €0 Wie
Wg = Zaw(w&e(e))w? =7 (1 + wpz ) |E|?, (1.63)
o (kxE)?) e Whe | | 2
o 1 ke 1 k
S = 5607| |2 = §€0EC7’LI|E|2 . (165)

It follows from these equations that S = ng, with W = Wg + Wg. The latter relation shows
that despite the dissipation of electromagnetic energy into the medium, the group velocity can still
be interpreted as the rate of wave energy propagation in space. Consequently, the electromagnetic

energy density propagating at the group velocity of the wave per unit area reads:
I=|v,W|=cn'eE;/2 . (1.66)

This quantity is the wave intensity, a key definition used in the description of laser-plasma

interactions.

1.2.5.2 Complex refractive index

Assuming a complex dielectric permittivity, the refractive index can be decomposed in a real part

2

and imaginary part n = n’ +n” = \/e and n? = n"? — n? + 2m'n”. Far from the critical density

surface, n’ > n'" so that n/?> ~ ¢, as in the collisionless case. Using the full formulation for €, Eq.
(1.45), n’ = R(y/€) and n” = I(\/€) read:

1/2
2 VIQB VIQB 4 VIQB v
N+ B {1+33) (N8 , (1.67)
w w w
1/271-1/2
N2+%+ [<1+VI2§> <N4+VI2§’)]
w w w

, (1.68)
where N is the refractive index in collisionless plasmas N = /1 — n./n.. Taylor expanding at
the lowest order in vig/w around 0 yields:

. 1
V24/1+ (V3 /w?)

n

" (wpeviB/w?)

NN

1/2
N cw =N+ o(;?) : (1.69)
(w2 VIB/w3) V2
nll//IB<<UJ = IDQT =+ O % . (170)

In practice, the expression (1.69) is used for n’ for the computation of electromagnetic wave

refraction in plasmas. However it only holds at high temperatures where the collision frequency
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is small compared to the light wave frequency (see the discussion in Sec. 1.2.6).

1.2.5.3 Collisional absorption

Starting from the dispersion relation, we relate the imaginary part of the wavevector to the wave

damping due to collisions. The dispersion relation (1.56) in a collisional media reads:

2

Wi w 7 Wpel/

k‘202:w2—L%w2—wge (1—@):w2 [NQ—Z peng] , (1.71)
w i w w

where it was assumed in the right hand side that v < w. Similarly to the refractive index, we
can express k = k' +1k" | so that k? = k2 — k"? + 2:k’'k"”. Assuming vip < w we obtain:

, L w Wpe \ 2 W
kVIB<<W - E 1- (7) - EN 5 (1.72)
2 2
Koo YpelMB YpeliB (1.73)

ViB<Kw - 2 :
2 2 2w?cN
2wey Jw® — wi,

Considering a plane wave propagating in the z direction, its electric field E = Fe, can be
expressed as E = Fge'k#=wt) — Eyetkze~wte=k"2 which gives |E| = |Egle "%, i.e. the light
wave is damped due to the electron-ion collisions. The energy conservation of the wave can be
expressed as: -

aa—wt/ +V.S=-Us, (1.74)
where the right-hand-side U represents the energy sink due to collisions. The rate of energy loss

can be estimated in steady-state from the energy conservation equation (1.74):

VS _ U _

Sl EM = oy, | (1.75)

where we have defined the damping rate ™. As such, v®™MW represents the power density
transferred from the wave to the medium due to the dissipation of the polarization current by
the electron-ion collisions. Assuming a homogeneous media and using the complete expression of

kK" = S(Vk?) = n' kps, the electromagnetic wave damping rate reads:

—-1/2

V2N (w2 i /w? 2 V2 V2
2 /0,2 w w w
1+ (v /w?)
Taylor-expanding this expression at the order 1 in series of (vg/w) gives:
EM Whe e
Vupgw = VIB w2 = VIB; . (177)

C

This expression is the standard definition used for the computation of electromagnetic wave
absorption in plasmas. As for the refractive index, it only holds at high temperatures and high
frequencies (see the discussion in Sec. 1.2.6), whereas the expression given in Eq. (1.76) is also

valid when vig > w.
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Chapter 1. Linear theory of electromagnetic waves in plasmas

1.2.6 Common assumptions

Several assumptions have been introduced in this section, namely v,; < w and €’ < ¢/. We briefly

discuss their validity domain.

The first assumption can be assessed in the framework of typical laser-plasma interaction
regimes considered in this work. Given that g o« neTe_?’/ ’In ABZes and neglecting a weak
dependence of In Aig on the temperature, the assumption v.; < w holds along the trajectory of
EM wave propagation if it holds at the critical density. Using typical values of In A;jg = 8, Zeg = 5
(that corresponds to a medium Z ablator), A, = 351 nm and n. = n., the temperatures above
which v > w/10 and v > w/100 are T, ~ 160 eV and T, ~ 720 eV, respectively. Hence, early
in the interaction when the laser intensity is low and the plasma is cold, the above assumption
may not hold. Rapidly, as the coronal plasma heats up, it enters its validity domain and holds

for the rest of the interaction duration.

The second assumption, ¢/ < €, is commonly used in hydrodynamic codes because it is
necessary to the validity of the Ray-Tracing approach (see Sec. 2.2). It is worth mentioning that
this assumption is more restrictive than vp < w, the latter authorizing €’ > ¢’ near the critical
density (where w — wpe). Similarly, the complete expression for € given in Eq. (1.46) allows to
consider plasmas at the critical density (for w = wye), which is also of importance for the validity
of the reduced models presented in the following chapter. For these reasons, when possible, the

assumption of v,; < w should be preferred over that of ¢’ < €.

1.3 Electromagnetic wave propagation in inhomogeneous plas-

mas

We now consider the wave propagation in inhomogeneous plasmas, where the density depends of
the spatial coordinates. Several approaches to resolving the wave equation are presented, with the
aim of highlighting the main properties of the light wave linear interaction with inhomogeneous

plasmas, and of assessing the validity domain of typical approaches.

1.3.1 The WKB approximation for collisionless plasma

Assuming that the density inhomogeneity is in the same direction as the wave propagation
direction (e.g. the z direction), the electric field is of the form E = E,(z)e, + Ey(2)e, + E.(2)e,

and the wave equation (1.50) reads, in Cartesian coordinates:

d’E,, w?

dz? + CTEEx’y =0,
2
Y B, =0, (1.78)
c

which yields E, = 0, for the transverse wave, and the equation for F, and E, are in the form of

the scalar wave equation (1.55). In the framework of the WKB approximation (after the name of
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1.3. Electromagnetic wave propagation in inhomogeneous plasmas

the physicists who developed it; Wentzel-Kramers-Brillouin), we seek for solutions of the form:

E.(2) = Ezo(2) exp [zkzps /OZ ‘P(z')dz’] , (1.79)

where the I, o and ¥ functions are written in the Slowly Varying Envelope Approzimation (SVEA),

e.g. it is assumed that they vary slowly on a wavelength scale:

d2Ex0(Z) dExo(Z)
— L WY(z)———= 1.
1.2 < |kps¥(2) P , (1.80)
d?¥(z) d¥(z)
7 ‘<< kes¥(2)— | (1.81)

where we have used k(z) = kps¥(z) (that can be noted from Eq. (1.79)). Substituting for E,(z)
(1.79) in the scalar wave equation (1.55) yields:

El o+ 2ukps EL 0¥ + tkps Ep o' — kg By o¥? + kfge(w, 2)Ego =0 (1.82)

Z,

where the prime notation designates a derivative with respect to z. At the order 0 in d/dz, we
get:
Y= \ew,z). (1.83)

By taking the terms in Eq. (1.82) at the order 1 in d/dz, we obtain:
2EL oW+ B, oW = 0. (1.84)
This differential equation admits a solution:
E.o=C/VV, (1.85)

where C' is a constant factor. The second order term in Eq. (1.82) is neglected according to the
SVEA hypothesis. Injecting Egs. (1.83) and (1.85) in (1.79) yields:

E.(2) = (Epg/e(w, 2)"*) exp I:’LkFS /OZ \/e(w,z’)dz’] , (1.86)

where the constant factor C' has been set to the free space electric field Erg. This result highlights
that the amplitude of the electric field increases as Epge™ 1/ as the wave propagates toward the
critical density. Simultaneously, by conservation of the electromagnetic energy, the magnetic field

amplitude decreases as Bpge'/4.

It was assumed in the derivation of Eq. (1.86) that E;”O < QZszE;7O‘P + tkpsEg oV A

sufficient condition for this assumption to be valid can be written as:

| B o] < |k(2)Exol - (1.87)
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Chapter 1. Linear theory of electromagnetic waves in plasmas

Substituting the solution for E, o yields:

1

€

de) <
dz

S
AGz)

that is, the fractional change in the plasma dielectric function must be small on the scale of the

(1.88)

local wavelength. This condition shows that the WKB approximation breaks down for steep
density gradients and near the critical density, where ¢ — 0 and A — oo, i.e. it is only valid for a

weakly inhomogeneous plasma and sufficiently far from the critical density.

1.3.2 Laser absorption in inhomogeneous plasmas

We now consider the case of collisional absorption of a light wave propagating in the (y, z)
plane and incident at an initial angle # on a plasma with a linear density profile such that
N2(z) =1—2/L =1 —n.(2)/n.. Depending on the polarization of the wave, two cases must be
distinguished. If its electric field lies out the plane of incidence, i.e. E = E,(y, z)e,, the wave
is termed s-polarized. Conversely, if the electric field of the wave lies in the plane of incidence,
ie. E = Ey(y,z)e, + E.(y, z)e., the wave is termed p-polarized. Depending on the polarization,
the wave equation takes a different form and an additional absorption process appears, that is
the Resonant Absorption. We present the collisional laser absorption fraction in inhomogeneous
plasmas in the case of s-polarized wave, and describe the mechanism of resonant absorption in

the p-polarized case.

1.3.2.1 Absorption fraction of s-polarized waves

We consider a s-polarized wave with an electric field E = E,(y, z)e,. The wave equation reads:

P?E, O*E,

Because € only depends on z, ky is a constant and equal to its value at z = 0. Geometrically, we
have k:ZZO = (w/c)sinf and k=Y = (w/c) cos . Assuming a plane-wave solution with a spatial

dependence for E of the form exp(:k.r):
E.(y,z) = E(z) exp(tkyy) = E(z) exp(1(w/c)sinby) . (1.90)

Substituting this expression for E, in Eq. (1.89) yields:

w? d’E(z)

E(z)= — sin” 0 =0. 1.91
(2) 2 (e(z) —sin®0) + 2 0 (1.91)

Using the WKB approximation in this case:
E.(y,z) x exp [zkzps sin Hy/ k:z(z’)dz’] , (1.92)

0
we find:

k2(2) = kig(e —sin?6) . (1.93)
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1.3. Electromagnetic wave propagation in inhomogeneous plasmas

Consequently, the wave propagation zone is limited to € > sin? . Reflection of the light wave

occurs for €(z) = sin? . Substituting € by the definition given in Eq. (1.45) yields:

(w + ZZ/IB)

w2
E2(2) = kg | cos? — ——2—— | . (1.94)
w

As a representative example, let us consider an isothermal plasma with a linear density profile
ne = nez/L. Considering In Ajg a constant we have vig(2) = vfne(z)/ne = v{yz/L with vy the

inverse Bremsstrahlung collision frequency at the critical density, so that:

262 = w? [ cos? 0 — #/L
Fe= < ’ 1+z<v1*B/w><z/L>> | (1.95)

The fractional energy loss can then be obtained from the squared modulus of the field:

)2 = 2exp | — Z%Zz’ 2. )
Ea(y.2)? = |Eu(y,0)] p{ 2 [ S0k ] (1.96)

Substituting k, by its expression in Eq. (1.95), assuming vjp < w and considering a wave

that propagates up to the turning point zr = Lcos? 6 and back to the vacuum, the fractional

absorption ffj{’l reads:

Lcos? 0 39%
ol =1—exp —4/0 Sk, (2)de' | =1 —exp [— 15ICBLCOS5 9] , (1.97)

which shows that in order to maximize collisional absorption, normal laser incidence (i.e. 6 ~ 0)
and long scale-length plasmas are preferred. The angle dependence is a consequence of the
wave traveling less deep into the plasma and thus encountering less plasma, in regions further
from the maximum value of vig. Typical plasma profiles in ICF are rather exponential than
linear. Considering a profile of the form e(z) =1 — exp(z/L), the turning point of the wave is
now zt = LIn(cos? ). Substituting the (z/L) terms in Eq. (1.95) by exp(z/L), the fractional
absorption reads [61]:

—00

L1n(cos? 6) Su*
' =1—exp —4/ S(ko(2)de'| =1 —exp {—SIBL cos® 0} , (1.98)
c

which is a lower absorption fraction than in the linear case for any incidence angle.

1.3.2.2 Resonant Absorption of p-polarized waves

For a p-polarized wave, the electric field reads E(y, z) = Ey(y, 2)e, + E.(y, z)e.. It is convenient
here to work with the magnetic field of the wave B(y, z) = By (y, z)e,. Similarly to Eq. (1.89),

the magnetic field wave equation for an EM wave in a plasma (1.52) projected on e, reads:

0°B, 0°B, w? _ 0B;0lne

oy? 022 +076(Z)Bm 0z 0z (1.99)
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Chapter 1. Linear theory of electromagnetic waves in plasmas

Similarly to Eq. (1.90), B, (y, z) is expressed as:
By (y, 2) = B(z) exp(1kyy) = B(2) exp(w/csinfy) . (1.100)

Substituting this expression for B, in the e, component of Ampere’s law yields:

0By(y,z) = w
- T = —ZEE(Z)EZ(%Z) ‘ (1.101)

After differentiation and assuming F.(y, z) = E.(z) exp(w/csinfy) , an expression for F,(z) is
obtained:

E.(z) =sin0By(z)/e(2) . (1.102)

Recalling that €(z) is minimum for n, = n., where it is proportional to wig/w (that is in general
< 1), this equation illustrates that the component of the electric field parallel to the density
gradient can reach very large values at the critical density. The resonantly excited field is damped
by electron-ion collisions and leads to an additional absorption fraction, derived in App. C.1, that
is most prominent for plasmas with strong density gradients. Additionally, the resonantly excited
field can drive EPWs parallel to the density gradient direction, which in turn may accelerate

electrons (see Sec. 1.4.1).

1.3.3 Paraxial Wave Equation

The Paraxial Wave Equation (PWE), first invented in [62, 63|, is a class of solutions that relies
on the existence of a principal propagation direction for the wave. To illustrate its principle, we
consider a monochromatic wave of the form F = Ejexp[—wt + ik.r] propagating in a plasma
where n./n. < 1 and v,; < w. Under such conditions, the wave is transverse and obeys the
scalar Helmholtz equation for its field Ey. The wave equation written in the time domain reads:

0 2 eMm 0 2 A _

@—I—wpe%—l@m«w&—c Ey=0, (1.103)
where it was assumed that the density field is homogeneous. Considering that the plasma density

n is perturbed around an equilibrium value ng, Eq. (1.103) takes the form:

0 2 EM O 2 w?
@+wp€70+UVIB<<wa —c“A| Ey = _T(R_nO)EO , (1.104)
where the left-hand-side contains the damping term v0;, and the remaining terms are called a
propagator. The right-hand-side accounts for the refraction of the wave on density inhomogeneities.
This equation is very costly to resolve on spatial and temporal scales large compared to the
wavelength and period. Therefore, it is commonly simplified by making additional assumptions,
that are (i) the temporal slowly varying envelope approximation:

OFy

27
<<’w6t

2
‘a Eo : (1.105)

ot?
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1.3. Electromagnetic wave propagation in inhomogeneous plasmas

(i) the wavenumber k satisfies the dispersion relation (1.56) for the non-perturbed density no,

and (iii) k is a privileged propagation direction (z-axis, without loss of generality), so that:

OF
‘A”Eo‘ <K ’2]{1:582:0 , ’AJ_EO‘ , (1.106)

where A | = 88722 + 50—;2 and A = 59722 designate the transverse and parallel components of the

Laplace operator, respectively. Using assumptions (1.105) and (1.106), Eq. (1.104) now reads:
w

8 EM CZ
a +vg.V + 2VVIB<<W — Z%AL EO = —22

onEy , (1.107)
(&

where dn = n — ng represents the long-wavelength density modifications around the equilibrium
density ng, and the group velocity v, = kc?/w is defined according to the dispersion relation
(1.56). This type of paraxial wave equation is widely used for nonlinear LPI modeling. It is
further discussed in Secs. 3.3.1 and 4.3. The term proportional to v, accounts for the wave

propagation, whereas the term in A | accounts for its transverse diffraction.

The validity domain of PWE (1.106) depends on the deviation of the wave with respect
to the paraxial direction (z), that arises e.g. from the refraction. The error arising from the
refraction process can be evaluated by considering a plasma with a linear density profile of the
form n./n. = z/L, as in Sec. 1.3.2. In that case, the wave amplitude can be described in a WKB

approximation:
z
E(z,y,z) = Ey(z,y, z) exp [z/ k.(2')dz" + 1kpg sin Oy — wt| . (1.108)
0

Injecting this form into the Helmholtz equation (1.55) gives:

8E0 . 8E0 2 EO
ANEg+ 21 | k,— + k 0—— ) —1kfg—= =0 1.109
0+ Z(Zaz + kpg sin 8y> lFS2kZL , ( )
where we have used the dispersion relation (1.93) and supposed a stationary propagation. In
order to neglect the parallel component of the Laplace operator and describe this wave-field in
the paraxial approximation, the assumptions equivalent to Eqs. (1.106) that must be met read:

9%Ey

072

OFEy
0z

< ‘Z(kz — kpgsin 0)

0*E,
bl ayz

9?Ey
T Ox?

, (1.110)

where we have used V.E = 0, that is valid far from the critical density (see Sec. 1.3.4) or
for a s-polarized wave. We can estimate the validity of the first inequality by assuming that

0?Ey/02% = O(Epk?) and 0Fy/0z = O(Eyk), with the local wavenumber k(z) = krs+/€(z), so

that it now reads:
\/cos?2 0 — z/L — sinf ‘ (1111)
V1—-2/L
Evaluating the coordinate z at which the right-hand-side of Eq. (1.111) is equal to 10 (for 6 # 0),

and injecting this value into the expression for the local wave angle at z with respect to the z-axis;

14

¢(z) = arctan(ky,/k.(z)), we find that the paraxial approximation breaks down when the wave
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Chapter 1. Linear theory of electromagnetic waves in plasmas

propagates at an angle of ~ 10° with respect to the paraxial axis. Even though formulations that
extend the validity domain of the PWE exist (such as the wide-angle PWE [64, 65]), its use is
usually limited to maximum wave angles of ~ 30°. Such angles are bound to occur in plasmas
with linear (or exponential) density profiles obtained when considering laser interactions with solid
targets. Furthermore, the paraxial wave equation remains numerically costly when considering
large plasma volumes and long temporal duration. Consequently, the paraxial approximation is

not the method of choice for the description of laser beam propagation at hydrodynamic scales!.

1.3.4 The scalar wave equation in inhomogeneous and collisional plasma

In the general case of wave propagation in a collisional plasma, at any angle with density
inhomogeneities, and up to the critical density, the approaches presented in the previous sections
are not always valid. Specifically, the wave equation involves an additional term (V(VIne.E))
that couples the various components of the vector field. The latter is often neglected or omitted,
thus reducing the problem to a scalar wave equation, because (i) this additional term is difficult to
treat and (ii) the literature is rich with methods and solutions for dealing with scalar waves. As an
example, the homogeneous scalar Helmholtz equation is the basis of the widespread Geometrical
Optics method, and also of Complex Geometrical Optics (these are presented in the following
Chapter).

Assuming that the typical length scale variation of the electric field is A\, we can write
AE = O(E/N?), kigeE = O((2m)?E/A?) and V(VIne.E) = O((E/\)(Ve/e)). The V(VIne.E)
term can be neglected compared to the others if the dielectric permittivity of the medium vary
slowly compared to the length over which the electric field vary in space. A necessary (but not

sufficient) condition can be expressed as:

Ve

€

< 87" , (1.112)

which is similar to the restriction used in the WKB approximation (1.88). Considering a medium
with a linear density variation, as presented in Sec. 1.3.2 and assuming vigp < w, it can be shown
that this assumption is valid at the turning point of the wave, but not close to the critical density
(in cases where § = 0).

In the framework of the Paraxial Complex Geometrical Optics method presented in the
following Chapter, the plasma parameters are considered to depend on the (y, z) coordinates,
and to be invariant in the z-direction. An explicit form of the V(V Ine.E) term in the Cartesian

coordinates reads:

0 [(Exa 5,2 +Eza> lne] . (1.113)
A z

LA notable exception is the modeling of the LPI in indirect-drive geometries, where the laser beams are
co-propagating at the laser entrance hole. The use of modern super-computers allows to model such interactions
with a PWE approach.
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Considering a dielectric function depending on 2 coordinates €(y, z), an electromagnetic wave
incident on the plasma with no k-vector component in the x direction stays confined in the (y, 2)
plane. Assuming that the wave is s-polarized, i.e. its electric field reads E = E,(y, z)e;, and
substituting for E and the dielectric function in Eq. (1.113), it is straightforward to see that
V(VIne.E) = 0. Consequently, the wave equation for the electric field can be reduced to a scalar
Helmholtz equation. In that context, the scalar wave approximation is valid anywhere in the
plasma (for ne < n.). Note that in the case of p-polarized waves, the condition for validity of the
scalar wave equation is more complex, related to necessary conditions such as Eq. (1.112) that
break down near the critical density. As such, reduced propagation models based on the Hemholtz
equation are unable to describe p-polarized waves. In the framework of PCGO, presented in Ch.
2, this shortcoming is addressed by using a dedicated resonant absorption model described in Sec.
5.3 and validated in Sec. 6.1.

1.4 Longitudinal waves in plasmas

The presence of free charge carriers in the plasma allows the existence and propagation of so-called
longitudinal waves; electrostatic perturbations that only involve the electric field component
longitudinal to their propagation direction. These waves exclusively exist inside the plasma and
are either excited from instabilities or from their coupling with external electromagnetic waves. In
general, the associated longitudinal dielectric permittivity depends on the contribution from the
species « in the plasma; e, =1+ ) der o [66], and according to (1.78), the dispersion relation
of the wave reads e;, = 0. We briefly detail in this section the characteristics of Electron Plasma
Waves (EPWs) and Ion Acoustic Waves (IAWs), plasma eigenmodes involved in parametric

instabilities.

1.4.1 Electron Plasma Waves

EPWs, also called Langmuir waves, correspond to the high frequency response of the plasma to
the longitudinal field. Considering that ions respond slowly to high frequency modulations of
the electric field, due to their high mass, their contribution to the local charge density can be
neglected and the ions are considered as a stationary and homogeneous fluid. Formally, the high
frequency assumption allows to define m; — 0o, so that dez; = 0, and to assume that the phase
velocity of the wave w/k is much larger than the electron thermal velocity vy . (where as usual, w
is the frequency of the wave and k = |k| its wavenumber). According to Eq. (1.78) this wave has

a longitudinal polarization and its electrostatic field obeys the Gauss law for the charge density:
V.E = e/f;d% : (1.114)
€0

where f! is a perturbation to the Maxwellian distribution function, as defined in Sec. 1.1.2.
Assuming that the plasma is close to thermal equilibrium, €7, can be estimated in Fourier space
from Eq. (1.114) and from the linearized Vlasov-Fokker-Planck equation [66]:

2

€ Vej k.V fM
k =14+ ———|1 — — Pl dp. 1.11
cr(k,w) +]{7260< +Zw>/w—|—u/ei—k.v P (1.115)
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Expanding this expression in Taylor series around kv ./w < 1 and ve;/w < 1, we obtain:

2 2,2
w k“v :
er(k,w) =1+depe=1— % (1 43—Le z””) : (1.116)

The dependence on k of ¢, implies that the plasma is spatially dispersive for the EPWs. Noting
that this dependence vanishes for a cold fluid with vz, = 0, we see that this is a purely kinetic
effect arising from the thermal motion of electrons. The dispersion relation is then obtained by
solving €7, = 0, which gives:
3,99 1

prw(k) = j:wpe (1 + 5]{7 )‘De> - iyei y (1.117)
with Ape = vre/wpe is the electron Debye length and the £ sign corresponds to two waves
propagating along +k. The EPWs are damped due to the electron-ion collisions with a rate
VEPW,c = Vei /2. In addition, wave damping also occurs in collisionless media with a damping
rate [36]:

3/2
- () e P o
that is the so-called Landau damping, that arises from a wave interaction with the resonant
particles of velocity close to the phase velocity of the wave. The Landau damping dominates
for waves with a relatively small phase velocity w/k ~ (3-5)vr ., while the collisional damping
dominates for w/k > 10vr .. Additionally, the Landau damping prevents the waves to exist for
w/k < vpe.

As the phase velocity of the plasma waves is smaller than ¢, electrons can be trapped in the
EPW and be accelerated. They acquire an energy that roughly corresponds to the kinetic energy
associated with the wave’s phase velocity, mavgh /2. Considering the condition for the existence
of EPWs, that is w/k > v, trapped particles can reach energies much higher than the plasma
temperature. As such, these electrons are termed supra-thermal. In certain conditions, the EPW
can cease to exist due to so-called wave-breaking processes, thus liberating in the plasma the
supra-thermal electrons. For that reason, any LPI process that excites EPWs can potentially drive
supra-thermal electrons in the plasma and is considered as a pre-heat concern in ICF, typical

supra-thermal energies ranging from the keV to a few hundred keVs.

1.4.2 JTon Acoustic Waves

Contrary to EPWs, IAWs are low frequency waves with w < wpe. In general, these waves exist
in the interval of phase velocities vy > w/k > vr;, so that both the ion and the electron
susceptibilities contribute in the expression of the dielectric permittivity. The ion contribution to
the dielectric permittivity, de; ., can be computed similarly to dez, . in the case of EPWs because
w/k > vr;. The latter thus reads:

2 2.2

w=. kv5 .

o pi Ti
der; = ) (1+3 2 > ) (1.119)
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where wp; =4/ Z 26211? /mgeq is the ion plasma frequency. Given that w/k < v, the dependence
on w can be neglected in the expression for dey, . and Eq. (1.115) gives:

1
Sere / M3y , 1.120
Le k2kBT €0 T RN, (1.120)
so that the dispersion relation ey, = 0 for the IAWs reads:
2 2,2
1 W=, k“vz
I+ 2 (14+43—52]=0 1.121
+ k223, w? ( + w? ’ ( )
for which a solution is:
2 k*c 2,

with ¢g = \/m the ion acoustic velocity. This dispersion relation behaves differently
depending on the value of k:Q)\QDe. For k‘Q)\QDe & 1, the dispersion of the TAW is weak and the phase
velocity of the wave is close to its group velocity w/k & ¢5. The IAW in this limit corresponds
to quasi-neutral oscillations of the plasma density, associated with a weak electric field. These
waves can only exist in a plasma where ZT, > 37;. For kApe > 1, the waves are termed Ion
Plasma Waves and correspond to charge oscillations associated to the ions.

The damping of IAWs originates from ion-ion collisions viaw . and from Landau damping
viaw,r, on electrons and ions. When the ion-ion collision frequency is small, i.e. v;; < wiaw, the

damping rates read:

2
U Vi
2 )
2cz

) 3
VIAW,L = \/?kvs i (U5 ) exp[—v?/202,]] | (1.124)
8 Wpe UTi ’

where vg = (/c2 + 31)% ;, and the Landau damping is constituted of contributions from the electrons

VIAW ¢ = (1.123)

and the ions. For ZT,/3T; < 10, one must also consider the electron-ion collisions in the expression
for the collisional damping rate (in the case where T, ~ T;, the wave is simply a neutral accoustic
wave and not an TAW). Note that considering the domain of existence of the TAWs, that is
vre > w/k > vy, the latter cannot accelerate electrons to supra-thermal velocities and as such,
parametric instabilities that couples exclusively with IAWs (such as SBS) do not constitute a

preheat concern in ICF.

1.5 Parametric Instabilities in plasmas

The theory of electromagnetic waves in plasmas presented in Secs. 1.2 and 1.2 is focused on
the linear phenomena of wave propagation and collisional absorption. As mentioned in the
introduction, nonlinear wave-plasma couplings appear at high values of the interaction parameter
I)?, most prominently the so-called parametric instabilities.

In classical mechanics, parametric instabilities designate a class of instabilities provoked by
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the periodic perturbation in time of the parameters defining the eigenmodes of a stable system
that is described around its equilibrium state in the approximation of small perturbations. In
plasmas, the parameters of the system depend not only on the time but also on the space, which
leads to the existence of two main classes of parametric instabilities; decay parametric instabilities
and modulation parametric instabilities. The former is a resonant instability where a wave decays
into two eigenmodes of the system, while the latter is a non-resonant instability that couples two
waves through plasma density modulations.

In the context of laser plasma interactions, the decay parametric instabilities notably include
the processes of Stimulated Raman Scattering (SRS), Stimulated Brillouin Scattering (SBS) and
Two Plasmon Decay (TPD), while modulation parametric instabilities are at the origin of the
filamentation and self-focusing instabilities. In the shock-ignition ICF scheme, as well as in ICF
in general, SRS, SBS and TPD are primary sources of disruption of the implosion. Notably, SRS
and TPD are potential pre-heat concerns, while SBS affects the laser drive symmetry. We describe
in this section the basic principles of parametric systems in continuous media, restricted to the
decay parametric instabilities, with the aim of giving some hints about the principal regimes
under which SRS, SBS and TPD operate in ICF. Those principles are applied to the derivation
and validation of PCGO-based CBET in Secs. 4.2 and 4.1, and to the definition of hot electron
sources from SRS and TPD instabilities in Sec. 5.4.

1.5.1 Generalities on decay parametric instabilities

Decay parametric instabilities are a class of parametric instabilities that resonantly couple three

waves through the wavenumber and frequency matching conditions:

wo = w1 + w2,

ko = ki + ks, (1125)

where w is a frequency and k a wavenumber, the 0 subscript indicates the mother wave and the 1
and 2 subscripts the daughter waves. In addition, each wave « satisfies its own dispersion relation
D4y (wa, ko) = 0. Here D = ¢, in the case of longitudinal plasma waves and D = k2 — wze/ ¢ in
the case of transverse electromagnetic waves. It can be shown that a necessary condition for the
three-wave coupling to produce unstable solutions is Swi 2 > 0, which implies that wy > wy 2.
That is the frequency of a mother wave is higher than the frequencies of daughter waves. In
general, the mother wave corresponds to an electromagnetic wave, and the daughter waves are

either electromagnetic or plasma waves. The waves are assumed to be of the form:
Au(r,t) = aq(r,t) exp (1ky.r — wl, (ko)t) + c.c. | (1.126)

where w!, designates the real part of the solution in w of Dy (w,ks) = 0, and the a, amplitudes
are described in the Slowly Varying Envelope Approximation in time and space. The evolution

equation for the slowly varying amplitudes read [36]:

0
(875 + V4.V + Vo) ag(r,t) = —yoaiaz ,
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0 .
<c’9t +V,1.V+ V1> ay(r,t) = yoapas ,

0
((,% + Vgg.v + V2> ag(I‘, t) = *yoaoaf , (1.127)
where V4, and v, are the group velocity and linear damping rate of wave «, and 7 is the coupling
contant. In this system of equations, the daughter waves describe the eigenmodes of the plasma
when no mother wave is present, while the mother wave modulates the plasma parameters.

The temporal SVEA can be expressed as:

1 dag

aaﬁ <K min(wl,wg) . (1128)

It is satisfied if 79 < min(w;,ws). Moreover, much less stringent conditions can be obtained when
the group velocity of one of the daughter waves is very small, e.g. V1] < |Vg2|. The regime of
parametric instability where the SVEA is valid is called the weak coupling regime, while it is
otherwise referred to as the strong coupling regime. For simplicity, we limit ourselves to the weak
coupling regime.

The solutions described by the system of equations (1.127) can be regrouped in three categories

depending on their stability.

e (I) The system is unstable if it possesses at least one unstable eigenmode (i.e. with a
positive imaginary part), in which case the initial plasma perturbations grow exponentially
in time as ~ exp~yt (with v being a temporal growth rate). This is the absolute regime of
the instability.

e (II) The system is stable in the sense that it does not possess any unstable eigenmode.
However, the initial perturbations can grow along their propagation direction, in which case
the system is said to present spatial amplification and the daughter waves amplitudes grow
as ~ exp Kz (with K being a spatial growth rate). This is the convective regime of the

instability.

e (III) The system does not present any unstable eigenmode and does not have the property

of spatial amplification, in which case it is stable.

Depending on the strength of the coupling constant g, there are several sets of conditions
for the parametric system to respect in order to present convective or absolute instability, which
principally stem from (i) inhomogeneity of the medium, (ii) finite length of the interaction
zone and (iii) laser incoherence. We first discuss the convective and absolute instabilities in an
infinite homogeneous plasma, and then adress the first two conditions. The mathematical results
presented in the subsequent sections are described in more details in [67, 68, 69, 70, 71, 72, 73,
74].

In both cases of convective and absolute instabilities, the exponential growth of the instability
(in time or in space) can be limited by nonlinear saturation mechanisms which act to stop the
growth of the daughter waves amplitudes. Amongst these saturation mechanisms we note: (i) the

pump depletion, that is simply a decrease of the mother wave amplitude as it communicates its
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energy to the daughter waves and (ii) kinetic effects that increase nonlinearly the damping rates
Vo or destroy the resonance conditions (1.125). These saturation mechanisms are subject of the
nonlinear theory of parametric instabilities. The aim of this section being to give an introduction
to parametric instabilities, we limit our description to the linear theory and to phenomena of

wave de-phasing.

1.5.1.1 Interaction in a homogeneous medium

The analysis of instabilities in a homogeneous medium was done by Bers and Briggs [75], who
derived a general criteria for an instability. The parametric instabilities in the convective or
absolute regimes are described in Refs. [36, 67, 68, 76, 77, 78, 79, 80]. The principal results are:

e In an infinite medium, the system is stable in the sense of (III) if it satisfies the inequality:
Y0 < Yth = VP1V2 - (1.129)

e The system is unstable in the absolute sense if:

Vi1Vy2 <0, (1.130)
Vv,
AL ( R ) , (1.131)
2 Vorl — [Vea

where in this 1D analysis (along the x axis), the group velocities are defined by V, ; = V, ;.e;.

These conditions define the weak damping limit.

e In the v, <7 < ’yﬁfs domain with V1 Vo < 0, the instability is in the convective regime.
These inequalities define the strong damping limit. Furthermore, for parametric systems

with V1 Vg2 > 0 and 4, < 70 the instability is in the convective regime in the entire domain.

1.5.1.2 Interaction in an inhomogeneous medium

The resonance conditions for a given pair of daughter waves can be fulfilled in one point, in which
case the instability is localized in space. This can notably occur when the plasma parameters
(density, temperature...) vary in space, so that the resonance conditions (1.125) may be satisfied
only on a fraction of the system length (keeping in mind that in that case the local dispersion
relations D, (wa, ko (x)) also depend on the spatial variable).

It is convenient to write the amplitudes (in 1D):

(o = Qg €XP <z/ k:a(ac/)d:c') , (1.132)

so that the parametric system reads:

0 0 v
o e N PP . A / /
<8t + Vyo o + 1/0> agp(x,t) ~Yoa1a2 €Xp < 2/0 k(z )d:n) ,

a a ~ _ A Ak v / /
(875 + ‘/91% + V1> a1(x,t) = Y0aoas exp (Z/o Ak(x )d93> )
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(8 + Vgg2 + V2> ag(z,t) = ypapaj exp (z/ Ak(m’)dx’) , (1.133)
ot Ox 0

where the phase matching parameter Ak(x) = ko(z) — k1(z) — k2(x) and it was assumed that the
resonance point Ak(z,) = 0 is at x, = 0. The phase matching parameter can be expanded as a

power series around the resonance point x, = 0:

z" (n) T
Ak(z) = — <aaj(ff)()> . (1.134)
=0

n=1

Two typical types of phase matching profiles are considered: a linear profile where this expansion
is kept at the order 1, and a parabolic profile, where the expansion is kept at the order 2 and the
first order term Ak’ is zero. Main ideas of parametric instabilities in linear and parabolic profiles
were first formulated by M. N. ROSENBLUTH [76| based on preliminary works from Refs. [81, 82].

Assuming that the coupling equations can be satisfied onto the resonance width Ak,., the
condition |Ak(x)| < Ak, defines a length Liy, on which the coupling relations are satisfied. It
can be shown, through a temporal Laplace transform of the system of equations (1.133) that in

the weak and strong damping limits, respectively:

Akbs ~ 200 (1.135)
VIV Vel
AEP™ ~ max <|‘7’> , (1.136)
gt

where it was assumed in AES°™ that the system is far from the convective threshold, Vﬁfs <

abs

Y < Ytn
satisfied reads (for a linear phase matching profile):

. Using these expressions, it can be shown that the length onto which the resonance is

Labs ~ 470 |:<8Ak($)> :| !
inh,lin — |qu1‘/92| ox 0 )
conv Vi OAk:(x) !
st =2 () [ (55,7) L] 137

In this regime, there is not absolute parametric instability for any value of 7o and any sign of V1 V.

In contrast, the spatial amplification is allowed for vg > tn. In the weak damping limit, the
spatial growth rate is [Kmax| = 70/v/|Vg1Vy2| over a length scale L?ﬁf lin- 10 the strong damping
limit and far from the threshold, the spatial growth rate is |Kmax| = 73/| Vg1 Va2 max(vi/|Vyil)|

conv

over a length scale L{OP. .

1.5.1.3 Finite length interaction in an inhomogeneous medium

Combining the effects of inhomogeneities to a finite length of the interaction L, it can be shown
that [83]:

e (I) The absolute instability can exist only if (i) V;1Vye < 0 and 79 > 43, and (ii)
Labs = min(L, L&) > 7,/[V;1Vya|/(270), where it is assumed that the phase matching

profile exhibits a local extremum.
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EPW or IAW

/ Bne/ne \

Ponderomotive beating
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Transverse scattered
wave E;

Figure 1-1 — Nonlinear couplings at the origin of the SBS (for the IAW) and SRS (for the
EPW) instabilities.

e (II) The parametric system presents a spatial growth when it is not unstable with respect to
(I), and 9 > Ytn. The amplitude of the daughter waves grow in exp G with G ~ | Kpax| Les-
In the convective regime in the weak damping limit (vy > 'y?l'fs and V1 Vg > 0):

Kmax = Y/1/ Vg1 Vg2l (1.138)
Leg = L2 (1.139)

and in the convective regime in the strong damping limit and far from the threshold
(Vi® > 70 > )

2

70
KmX: y 1.140
T Vo Vo max(v/ [Vl (1.140)
Leg = L™ = min(L, L) | (1.141)

1.5.2 Most unstable modes of the principal instabilities
1.5.2.1 Stimulated Raman Scattering

The Stimulated Raman Scattering (SRS) is a parametric instability resulting from a resonant
coupling of a high amplitude light wave with an Electron Plasma Wave (EPW) and a scattered
light wave. The coupling relations (1.125) read:

wo = W1 + WEPW (1.142)

ko = k1 + kgpw , (1143)

where the 1 subscript indicates the scattered light wave. Given that the minimum frequency of an
EM wave in a plasma is wpe (1.57), it is straightforward to see that Eq. (1.142) implies wg > 2wpe,
that is n. < n./4: the SRS instability can only occur below (or at) the quarter critical density.
The physical mechanism of the SRS instability coupling is summarized in Fig. 1-1. A
high amplitude transverse EM wave propagating in a plasma where there is an electron density

perturbation dn/ng originating from an EPW produces a non linear current Js. This effect can
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1.5. Parametric Instabilities in plasmas

be seen by considering a density of the form n. = ny(1 + 0n/ng) when expressing the plasma
dielectric susceptibility, through the computation of the polarization current, Eq. (1.44). Adding
this non linear current as a source term in the Maxwell’s equations produces a transverse electric
field E; at the shift frequency wi = wy — wpe. The beating of the two EM waves Ey and E;
contributes to the local ponderomotive force, proportional to VEyET, which expels electrons from
regions of high intensity gradients. The ponderomotive beating of the mother wave and the
daughter wave oscillates at the plasma frequency and reinforces the initial density perturbation
on/ng if the coupling relations (1.142) and (1.143) are satisfied.

The scattered wave may be excited in any directions with respect to the mother wave,
although the sidescattering modes quickly escape from the interaction zone in inhomogeneous
media. Considering the most unstable configuration, with the polarization vector of the incident
wave orthogonal to the plane (ko, kgpw) and ne < n, the coupling coefficients for the forward

and backward scattering modes read [36]:

3/4
forward ., “0 [ Te (UOSC) 1.144
Y0.9RS 5 <nc> - ) (1.144)
backward Ne 1/4 Vosc
ygrkard o () (=) . (1.145)
C

where vogc is the quiver velocity of the electrons in the mother wave electric field, written in the
Fourier convention (with our notations: vose = €Ep/(2mewp)). According to these relations, the
backward SRS can be anticipated to be faster growing than the forward SRS, as the former has a
higher coupling constant.

The damping of the scattered wave depends on electron-ion collisions, and is related to
the collisional absorption coefficient derived in Sec. 1.2.5 by 21 = vfM ~ UInge Jw?, where
the frequency of the scattered wave depends on the resonance density and is given by w? =
wg(l — \/m)2 As detailed in Sec. 1.4.1, the damping rate of the EPW vgpw is the sum of a
contribution from collisional damping vepw,c = Vei /2 and a contribution from Landau damping
vEpw,r. For densities and temperatures of the order of n./n. ~ 1/10, T, ~ 1 keV, the EPW
wave number is koAp < 0.25 and the collisional damping is larger than the Landau damping.
This corresponds to the collisional regime. Using these expressions and the above values of the
coupling constant, we can obtain the intensity thresholds for the most unstable configuration for
the convective forward and backward SRS instability in the collisional regime and for n, < n.

[36]:

3/2
(I )\2 )forward —1.61 % 10—4 Ne / 1- ne/nc In A InAgi Zegr (1 146)
14,W/cm?0,pm/th,SRS — +- h\ T3 , .
Ne 0,um e, keV
2 \backward _ —5 [ Me 2 1= ne/n.lnApIn Ao Z%
(114,W/cm2)‘0,um)th,SRS =4.1x10 5 3 Y (1.147)
Te )‘O,umTe,keV(l - \/m)

For moderate Z plasmas, 351 nm wavelength lasers, and for densities well below the quarter
critical density, the threshold for backward scattering is lower than that for forward scattering.
The above intensity thresholds are given for a homogeneous plasma and are valid well below

the quarter-critical density, point at which the SVEA breaks down as the scattered wave is
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excited close to its own critical density. Consequently, the effect of the inhomogeneity was studied

separately in the two subdomains of n. < n./4 and in the vicinity of the quarter critical density.

e (i) Assuming the density profile in the region below the quarter critical density is monotonous
(as is the case in ICF), we have seen in Sec. 1.5.1.2 that the absolute SRS instability cannot
exist. However, a coupling between forward and backward SRS through a common EPW

can lead to the existence of an absolute instability (for both modes) [84, 85].

e (ii) In the vicinity of the quarter critical density, the absolute threshold for the SRS
instability is [86, 87, 88|:

1
U"CSC > S(koLy, W) (1.148)

It can be presented in terms of the local laser intensity as:

~ N, a€0c®m2(2m)?/3
h,nc/4 —74Vnc/4¢0 2 2/3
(IPW/Cm2);I{)s,IisS = (10 2626 ()‘O,ManC/4,;Lm) /
~ 102(Noum L jam) "% (1.149)

with the gradient scale length defined as Ly, 4 ym = [(1/n)dn/dz],—p, /4. The inhomoge-
neous threshold for the absolute SRS instability at the quarter critical density for typical
laser plasma interaction parameters is 2.6 x 10'4W /cm?, considering a typical gradient scale
length of 150 pm and A\g=351 nm.

Comparing the thresholds for the convective SRS sidescattering below n./4, the absolute SRS
below n./4 and absolute SRS at the quarter critical density, it can be shown that for long scale
length plasmas (that corresponds to the case of ICF) it is the latter that possesses the lower
threshold [69, 89]. Furthermore, experimental studies of the angular distribution of the scattered
wave have shown that it is mainly the backward SRS that dominates over the other scattering

directions [90, 91, 92], in accordance with the theory.

1.5.2.2 Stimulated Brillouin Scattering

The Stimulated Brillouin Scattering (SBS) instability is conceptually similar to the SRS instability,
but the coupling of the incident and scattered light waves operates through an Ion Accoustic
Wave (IAW) instead of an EPW. The coupling relations (Eqgs. (1.125)) read:

wo = w1 + WIAW , (1.150)
ko = k1 + kjaw - (1.151)

The light waves are still coupled to an electron density fluctuations, although the latter corresponds
to a low frequency IAW. Contrary to the SRS instability, since the frequency of the IAW w < wy,
SBS can occur at any point below the critical density. This also implies that the scattered light
frequency is very close to the incident light wave frequency.

The coupling of the incident and scattered EM waves is most strong when their electric

fields are parallel and orthogonal to the scattering plane (kg, kiaw). The group velocities of the
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daughter waves are given by:
Vgl = k102/wl ~ g0 = NoC 5 (1152)
3vg,; + (Apwpi/ (1 + kfawADe)?)

92 —
\/3”:2r’,i + (Apwri/ (1 + kfawADe))

~\/(ZT. + 3T;)/m; , (1.153)

where we assumed kjawApe < 1 in the right-hand-side of Eq. (1.153), Ny is the plasma index of
refraction NV seen by the mother wave, kiaw = |ko — k1| =~ 2k sin with € the angle between
ko and ki, and vp; is the ion thermal velocity. In the limit |koAp| < 1, Vjo is close to the ion
acoustic velocity ¢ = \/(ZTe + 3T;)/m,.

Finally, the coupling constant for the SBS instability in the most unstable case and for
|kaAp| < 1 reads [93, 94, 78, 69, 88, 95, 79, 96]:

V. ) 2

p 2 Vg0

’Yo,SBs:wpiTz (%sc) : (1.154)
S

The damping rate of the daughter EM wave is related to the collisional absorption coefficient
derived in Sec. 1.2.5; 2v; = . As is detailed in Sec. 1.4.2, the damping rate of the daughter
IAW is the sum of contributions from the collisional and Landau damping. Considering the
variety of damping regimes, it is useful to describe the results as a function of the normalized
damping D1aw = viaw/wiaw, this quantity being of the order of 1072 for a cold plasma and 107!
for a typical coronal plasma.

Recalling that the convective threshold is given by 3 > v, a criterion can be derived on

the interaction parameter I;4\2, that yield in practical units:

_ In A1 Zegr 1aw 3T;
I A2 =117 x 1072y/1 — ng/no—c —IBZAVIAW () 4 . (1155
(£14,:W fem?2 A0 yum ) th,SBS e/ e Mo/ Ty 77, (1.155)
For a T, = ZT; = 1 keV coronal plasma with Z = 6, n, = 0.1n., Vjaw = 0.1 and In Ajg = 10,
the threshold is of 1.9 x 10® W/cm? for A\g = 351 nm, which is rather low for current laser
standards. Experiments at 351 nm in 1 ns pulses at 1 x 10'® W /cm? have demonstrated integrated
backscattered levels from SBS of the order of 5 — 10% [97, 98|. These relatively low values are

explained by the role of nonlinear saturation mechanisms, and competition with other instabilities.

Although the SBS instability is rather insensitive to inhomogeneities of the plasma density and
temperature [36], it is not the case for velocity gradients. The plasma flow shifts the frequencies
of the mother and daughter EM waves by the Doppler effect. The particular case of SBS in

presence of a constant velocity gradient (in the framework of CBET) is studied in Sec. 4.2.

1.5.2.3 Two Plasmon Decay

The Two Plasmon Decay (TPD) instability results from the coupling of an incident transverse

wave with two EPWs (or plasmons). The coupling relations (Egs. (1.125)) read:

Wo = WEPW,1 T WEPW,2 » (1.156)
ko = kgpw,1 + kepw 2 , (1.157)
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which notably implies wg ~ 2wy, i.e. the instability is localized in the vicinity of the quarter
critical density. The coupling constant for the TPD can be obtained by linearizing the dispersion

relations in the vicinity of their resonance:

2
k e)? | K — k2
2 = (kepw 2-€0)° | FEPW,1 — FEPW 2 o2 (1.158)
4 kepw,1kEPW 2

where e is the polarization vector of the transverse mother wave. It can be shown that the most
favorable configuration is that in which k; and ko lie in the (eg, ko) plane. In that configuration,
the most unstable geometry (assuming |kgpw| > |ko|) is that where kgpw 1 is at an angle of /4
with respect to ko and kgpw 2 at an angle of 37/4 with respect to ko. In that case the coupling

constant reads [99, 100, 77]:

72 B \/gw() Vosc
0,TPD 1 o

(1.159)

Using the Landau and collisional EPW damping rates viaw, 1, and viaw . expressed in Egs. (1.117)
and (1.118), the convective threshold for the TPD reads:

2
InAg; Z 1% 1Y
(114 W/cmz)‘g,um)th,TPD =1.212x107° % <1 T IAWJL) <1 + IAW@L) '
7 A0,um T ey VIAW,1c VIAW 2¢
(1.160)

In the collisional regime, and for typical ICF conditions (Z = 6, In A.; = 10, A\g = 351 nm, T, =1

keV), the threshold is 3 x 10'* W/cm?, which can be easily exceeded with current laser systems.

The TPD takes place at n./4, region at which the plasma density is rarely homogeneous
in laser-solid interactions, and thus the effects of inhomogeneities must be accounted for. A

relatively accurate value for the inhomogeneous and absolute threshold reads [77]:

2
(U"SC> koL, /s >3 . (1.161)
UT e

In terms of the local laser intensity the TPD threshold reads:

(I R [10—412wNmec3eo] Te xev
PW /cm?/th, TPD e Ao,m Lin, /4, 1m
T xev

~ 443 (1.162)

A0,m Lo j4,m ’
It was shown in |77, 101] that the exact threshold depends also on the parameter § = 1.41NT,
/<Il4,W/cm2)\(2),,um)’ the former being lower for 8 < 1 and higher for § > 1. Considering the
typical laser systems employed in ICF, the parameter 3 is typically ~ 3-4, that corresponds to
the right-hand-side in Eq. (1.161) close to the asymptotic value of 4.1. In that case, the intensity
threshold in the so-called high 8 regime becomes:

Te,keV

(Ipyy fem?)therpp = 6.05 (1.163)

)\D,uanC/4,um

Considering the above laser and plasma parameters, the intensity threshold is of 1.2 x 10'W /cm?,
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which is rather similar to the absolute SRS threshold at the quarter critical density.

1.5.2.4 Competition between nonlinear LPI processes

Given various spatial locations where the processes presented above occur, there is a geometrical
competition for the mother wave energy between parametric instabilities. As such, because
SRS can grow convectively before n./4, it reduces the mother wave energy before the latter can
couple to EPWs at the quarter-critical density and drive the TPD instability. Consequently, for
a light wave incident on a plasma and initially above the TPD threshold, the SRS below the
quarter-critical density can prevent TPD from occurring altogether. Similarly, SBS can occur at
various locations in the plasma depending on local phase matching conditions, and may decrease
the strength of the mother wave needed for excitation of other instabilities. This is also valid
in the case of laser light absorbed by Resonant Absorption, which is geometrically affected by

nonlinear couplings occurring prior to the wave’s turning point.

1.5.2.5 Role of optical smoothing on parametric instabilities

The light intensity profiles produced by high power laser systems are deformed wavefront aber-
rations and nonlinear processes in amplifiers that cause statistical variations of the intensity in
the laser’s focal plane. These intensity fluctuations may exceed up to ~ 5 times the mean laser
intensity. As such, parametric instabilities can develop in these regions even though the mean
beam intensity may be below their thresholds. Furthermore these laser intensity fluctuations
are not reproducible from shot to shot, partly because they are caused by the thermal noise in
laser amplifiers. Naturally, these intensity fluctuations are also detrimental for the symmetry
of target irradiation, seeding perturbations of the ablation front that may be amplified by the
ablative Rayleigh-Taylor instability during the acceleration and deceleration phases of the capsule
implosion [102, 103, 104, 105, 106, 107, 108], and reducing the yield of fusion reactions [109, 110,
46].

The occurrence of parametric instabilities in these high intensity regions can be amplified by
additional processes of laser self-focusing and filamentation. In the interaction regime of interest
here, self-focusing arises from a nonlinear modification of the local refractive index of the plasma
due to thermal and ponderomotive effects. As an example, the collisional absorption, proportional
to the laser intensity, heats the plasma on the beam axis more rapidly than on its low intensity
wings, thus increasing the on-axis plasma pressure and creating a local density depletion. The
beam then focuses on this axis as it would in a lens, thus increasing the local laser intensity and
hence the collisional absorption, and so on. When local self-focusing structures appear along the
propagation of a beam, stemming e.g. from local density inhomogeneities or from laser intensity
fluctuations, the beam undergoes the so-called filamentation process.

Considering the problematic of nonlinear LPI reduction and control of the focal spot intensity
profile, dedicated optical smoothing techniques have been developed. They aim at reducing the
size of characteristic intensity fluctuations (speckles) and moving them across the focal spot.
Controlling the vacuum intensity fluctuations is commonly achieved using Phase Plates [111] and
Polarization smoothing. These techniques allow to decrease the occurrence of high intensity spikes

by spatially de-phasing portions of the laser field in the focusing volume, thus creating small-scale
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interference patterns in the focal plane, and by superposing de-correlated interference patterns.
The resulting small-scale intensity statistics, termed speckle pattern, is well controlled and its
average intensity envelope is reproducible from shot to shot. Decreasing the growth rate of the
filamentation process and increasing the smoothness of the average intensity profile is achieved
by temporal smoothing techniques such as the temporal Smoothing by Spectral Dispersion and
Longitudinal Smoothing, which allow to move the speckle pattern in time. These techniques,
detailed in Sec. 3.1, decrease the growth rate of nonlinear LPIs by reducing and shifting in time
the high intensity regions of the beam, thus preventing these processes to reach a steady state.
Notably, the effect of SSD on the production of supra-thermal electrons by parametric instabilities
has been demonstrated in experiments presented in Refs. [112, 113]|. This problem is studied in
Sec. 6.3.

1.6 Conclusions

We have presented the linear theory of electromagnetic waves in plasmas, highlighting the main
mechanisms of the linear laser-plasma interaction and using the kinetic theory to estimate the
plasma response. Several widespread methods for resolving the wave equation in inhomogeneous
plasmas were introduced, considering in particular the processes of collisional and resonant
absorption. The framework of the scalar Helmholtz equation has been introduced. The latter
is valid for arbitrary plasma configurations in the case of s-polarized waves. Considering its
relative simplicity compared to the full wave equation, it constitutes the starting point for reduced
propagation models used in large-scale hydrodynamic codes. Finally, we have presented the
longitudinal plasma modes and nonlinear couplings leading to parametric instabilities. Notably, we
introduced the most unstable modes of SRS, SBS and TPD using both theoretical considerations

and experimental observations.
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Chapter 2

Laser-plasma interaction modeling in

radiative hydrocodes

The description of laser beam propagation in a plasma in large-scale hydrodynamic codes relies on
reduced models compatible with the scales at play. This chapter is dedicated to the description
of such models and their implementation into the radiative hydrodynamic code CHIC developed
at CELIA. After recalling the governing equations resolved in radiative hydrodynamic codes and
briefly detailing the CHIC code in Sec. 2.1, the derivation of the Geometrical Optics equations,
which constitute the background of the widespread Ray-Tracing (RT) method, is presented in Sec.
2.2. Given the inherent difficulties in estimating nonlinear LPIs using GOs, evoked in Sec. 2.2.4,
we present in Sec. 2.3 an adaptation to collisional plasmas and to a Lagrangian framework of a
beam-tracing method based on the Paraxial Complex Geometrical Optics (PCGO) equations.
The latter readily describes the intensity of Gaussian wave-fields and is employed throughout this
work. The PCGO and RT approaches are compared for the modeling of a nonlinear LPI, the

ponderomotive self-focusing, in Sec. 2.3.5.3.

2.1 Hydrodynamic description of plasmas

2.1.1 From kinetic theory to the fluid approximation

The kinetic theory of plasmas introduced in Sec. 1.1.2 allows to describe fine-scale phenomena
with a sufficient accuracy and is rather complete. However, it is costly in terms of numerical
computation. In general, it is only used for small plasma volumes and assuming a reduced
number of dimensions (in space and velocity). The complexity of the problem can be reduced
by considering situations where the mean free path of particles Apf, is much smaller than the
characteristic length scales of the plasma Lg,, and the time between subsequent collisions v~ is
small compared to the characteristic time of the studied phenomena ¢t~!. The kinetic timescale
v~1 can be approached by the average electron-ion collision frequency v,; presented in Sec. 1.1.2,
while the characteristic length scale depends on the electron mean free path Amp e = v71e/Vei-
These assumptions are valid for many processes at play in the physics of Inertial Confinement
Fusion, although there are specific cases where so-called non-local effects are important, notably

in terms of electron heat transport from the laser-plasma interaction and a-particle kinetics for
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the ignition and combustion of the hotspot fuel.

Under the conditions Apfpe < Lo and Ve_il < t, the plasma can be treated in a fluid
approach as a quasi-neutral gas. Although it is constituted of charged particles, the assumption of
quasi-neutrality is a good approximation because of the plasma screening effect presented in Sec.
1.1.2: for length scales longer than the Debye length and outside of boundary regions, plasmas
respond collectively to imposed electric fields or charge perturbations. This process is efficient
only if there are enough charges in the sphere of radius A\p around the charge carrier. This can

be expressed as a condition on the number of electrons within the Debye sphere:
4 3
Np = negﬂ)\D >1, (2.1)

where Np is called the plasma parameter. This will always be the case in the interaction conditions
considered here. Considering a gas of ions and electrons, the quasi-neutral assumption yields a

relation between the average ion and electron number densities:
Q=0=n.—2n; . (2.2)

The framework of hydrodynamic models applied to plasmas is that of scales Appp e < Len and
Ve_il < t, with Np > 1 and thus deviations from quasi-neutrality are small, i.e. §Q/n. < 1.
This allows to describe plasmas as a single fluid with two species of particles characterized by
Maxwellian distribution functions; electrons and ions, verifying the condition (2.2) but having

different temperatures.

2.1.2 Radiative Hydrodynamics

The single fluid, two temperature model is the basic framework for the study of ICF. It is
complemented with the radiative effects and laser-plasma coupling. Here we present the basic
elements of ICF radiative hydrodynamic codes by taking as an example the CHIC code developed
at CELIA. This code is used for the implementation of a new laser-plasma interaction model

presented in this thesis.

2.1.2.1 The CHIC code

The plasma in the CHIC code is treated as a quasi-neutral mixture of electrons and N; ion species
obeying the fluid equations, and described by two different temperatures. The basic averaged

macroscopic quantities are defined as:

N;
niym; = g ngmg ,
k=1

Pm = NeMe + NyMm;
PmWUm = NeMele + NyMiU;
Ne = ZeffMy

j=ene(u; —ue) ,
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2.1. Hydrodynamic description of plasmas

Pm:Pe+Pia
€m:€e+€ia

dm =9c +qi , (2.3)

where the 7, e and m subscripts indicate ion species, electron species and mean species, respectively.
p is the mass density, u is the velocity, j is the current density, P is the plasma pressure, € is the
specific internal energy, q is the heat flux and it is assumed that |u; — u.| < ¢. The mean fluid

obeys the Euler equations, originating from the conditions of mass and momentum conservation:

Opm
—_ . = 2.4
ot +V (pmum> 0, ( )
0
Pm (8t + um.V> W, = —VP, + Foy , (2.5)

where Feoyt represents external forces. Although the plasma is considered as a single fluid, ion and
electrons are treated separately in terms of energy balance, with separate temperatures 7; and
T, because the time of energy equilibration is comparable with the characteristic hydrodynamic
time of ICF conditions. In this two temperature approach, the equations expressing the energy

conservation read:

0 m
Pm <8t + umv> €e + v-qe =—-FPV.u, - QQﬁCV,eVei(Te - Tz) + Wext, ,
i

0 e
Pm (at + um.V> € +V.q; = —-PV.au,+ 2Q%CV7€V&'(TC -1, (2.6)

where Cy. = (3/2)nckp is the electron heat capacity, the latter species being treated as an ideal
gas, Wext represents the external electron power density source (or sink) term, and « € [0;1] is
a free parameter for the electron-ion coupling. The electron and ion heat fluxes ¢. and ¢; are

calculated from the Spitzer theory [114].

The external source term W,y and external force term Fgy are computed by additional
packages that are specific to the processes meant to be studied. Radiative Hydrodynamic codes
resolve the fluid equations coupled with radiative transport modules. Those are completed with
Local Thermal Equilibrium (LTE) opacity tables and the hydrodynamic equations are closed
using tabulated Equation Of States (EOS) designed for various plasma regimes. In the particular
case of laser fusion studies, additional packages are often used, including the effects of magnetic
fields on electron thermal transport limitation or non-local models, thermonuclear burn and laser
propagation models. The structure of the Radiative Hydrodynamic code of the CELIA laboratory,
CHIC, is shown in Fig. 2-1.

These equations are resolved in a Lagrangian formalism, i.e. in a frame that is co-moving with
the fluid. In this description, collisional fluids are described by individual fluid parcels, which
spatial evolution is followed through time. Mathematically, this is equivalent to considering the
evolution of a field Q through its material derivative DQ/Dt, defined in an Eulerian formalism by
DQ/Dt = 0Q/dt + (u.V)Q. This approach simplifies the fluid equations and allows to correctly
describe flow discontinuities such as shocks, although it renders more complex the numerical

implementation of codes resolving these equations. Notably, in order to preserve the topology of
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Figure 2-1 — Main structure of the CHIC code (adapted from [115]). The Ray-Tracing
package (purple) is the historical optical module implemented in the CHIC code. The
green packages, related to the use of Compler Geometrical Optics, were added and
developed during the thesis work and are detailed in this document.

Lagrangian fluid meshes, the use of remapping and rezoning techniques are often required, such
as the Arbitrary Lagrangian Eulerian method, implemented in CHIC. The mesh in the CHIC code
is irregular and unstructured. The first term implies that neighborhood relations between cells are
not defined by storage arrangement in the computer memory (e.g. in vector or matrix form), but
defined by an irregular connectivity that requires the explicit storage of neighborhood information.
The second term means that the shape of mesh cells and the distance between neighbors change
with respect to time. It is important to note that in addition to the scale problems mentioned
earlier, the framework of unstructured and irregular meshes limits the description of the laser

propagation to the most basic formulations.

In radiative hydrodynamic codes, the external source term is usually decomposed between
various contributions:
Wext = Wrad + Whus + WLp1 ) (27)

with W,,q the contribution from radiative transfer, W, the contribution from fusion reactions
and W ,pr the source term from the laser-plasma interaction. The most widespread approach
to modeling the laser plasma interaction in hydrocodes is the Ray-Tracing model, based on
Geometrical Optics. The Ray-Tracing interfaces with the fluid equations via the collisional
absorption term W, such that W pr = W01 The latter inverse Bremsstrahlung absorption term
modeled with Geometrical Optics is described in Sec. 2.2.2. The state of the modules implemented
in the CHIC code at the beginning of this thesis is shown in Fig. 2-1, as red, yellow, blue and
purple insets. At this point, the external force term in CHIC did not include any contributions, so
that Fext = 0, and the LPI module was a standard 3D Ray-Tracing package, indicated in purple
in Fig. 2-1. The latter describes the 3D laser propagation onto the 2D-axisymmetric or 2D-planar

mesh and includes the processes of refraction and inverse Bremsstrahlung.
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2.2. Geometrical Optics-based Ray Tracing

2.1.2.2 Addtional terms presented in this work

The work presented in this thesis concerns the addition of new physical LPI processes at the
hydrodynamic scale. As such, those are interfaced with the fluid equations through the source
terms Wipr and Fexy = Fexe,p1. The various additional processes we present in this work are

decomposed as:

Fext,LPI = FPond , (28)
Wipr = Weol + WRA + WHE (2.9)
Whp = WiED + WEES 4 gt (2.10)

where Fponq is the ponderomotive force (see Sec. 2.4.1), Weo is the inverse Bremsstrahlung laser
absorption (described here with the Paraxial Complex Geometrical Optics, as presented in 2.3.3.2)
and MRa is the contribution from the resonant absorption that does not accelerate hot electrons
(see Sec. 5.3). In addition to these processes, we account for the energy deposited by high energy
electron beams propagating in the plasma in Wyg (see Sec. 5.1 for the propagation model). This
term is decomposed according to the laser-plasma interact