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Chapter 0

Introduction

0.1 Multiscale description of the laser-plasma interaction

Interaction of laser beams with plasmas entails a wide range of physical processes, from heating
and acceleration of charged particles to excitation of plasma waves, generation and saturation
of laser-plasma instabilities. Understanding of the laser-plasma coupling as a whole involves
various physical fields, including the description of the plasma’s electromagnetic response, the
theory of wave-particle interaction and instabilities, and the theory of linear and nonlinear plasma
waves. Although numerous wave-plasma couplings have been observed in experiments, many
arduous problems that remain to be understood arise from the variety of interaction processes
at play. Indeed, a rich combination of coupling processes occur in the underdense plasma, that
depend on the laser intensity and quality, local plasma parameters such as the temperature
and gradient scale length, and the plasma composition. In turn, the plasma parameters depend
on the coupling processes. In addition, these couplings interact with each other, thus creating
additional competition or feedback processes. Understanding this nonlinear and coupled problem
is the motivation for numerous theoretical, numerical and experimental works and collaborations.
Notable examples are: the identification of density profile steepening [1, 2], measurements
of intense laser light absorption [3, 4, 5, 6, 7, 8], experimental evidence of heated electrons
characterized by at least two temperatures [9, 10, 11, 12], identification of the Brillouin [13,
14, 15, 16] and Raman [17, 18, 19, 20, 21] parametric instabilities, and the evaluation of the
wavelength-scaling of coupling processes [22, 23, 24, 25]. The development of modern numerical
tools allows for more comprehensive theoretical studies of these processes, and as such, better
interpretation of experiments and the investigation of various physical fields. As we will see, the
main motivation of this work lies in the description of these nonlinear and coupled processes at
the scales of the target’s dynamics.

We consider Laser-Plasma Interactions (LPIs) using laser pulses of durations of the order
of [0.1, 10] ns, and for which the so-called interaction parameter Iλ2

L
is in the range [10

13-1017]
Wµm2/cm2 (I is the laser vacuum intensity and λL its vacuum wavelength). Such laser parameters
are commonly realized in High Energy Density Physics experiments, notably in applications to
Laboratory Astrophysics and Inertial Confinement Fusion (ICF) science. The dynamics of targets
subject to such pulse durations and intensities occur on spatial and temporal scales of the order
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Spatial scales (m) Temporal scales (s)

Hydrodynamics
10

−3 - coronal plasma
10

−5 - in-flight shell
10

−7 - hydrodynamic shocks

Laser
10

−4 - focal spot 10
−8 - pulse duration

10
−6 - laser inhomogeneities 10

−12 - smoothing (SSD)

Hydro. resolution
10

−7/10−4
10

−15/10−12

Lagrangian method numerical stability condition
→ variable step → variable step

Maxwell’s Eqs. in plasma
10

−8/10−7
10

−16

Debye length/wavelength 1
ω/laser period

→ in all plasmas → in all plasmas

Table 1 – Spatial and temporal scales involved in the hydrodynamic description of laser-target
processes for the laser intensities of interest to this study.

of a millimeter and of several nanoseconds. On the one hand, theoretical descriptions of plasma
flows on the entirety of these scales rely on fluid approaches, using so-called hydrodynamic models
which allow to study large plasma volumes on long durations. On the other hand, nonlinear
laser-plasma interactions are appropriately studied at the microscopic and mesoscopic scales,
typically using kinetic (particle-in-cell and Fokker-Planck) and paraxial electromagnetic models.
The range of scales that arises from the necessity to describe the whole target evolution including
fine scale LPI processes is illustrated in Tab. 1.

The state-of-the-art description of laser propagation on large scales relies on reduced approaches
compatible with the performances of modern computers. The most common one is the Ray-
Tracing model [26], that describes laser beams by bundles of needle-like rays following the
Geometrical Optics (GO) propagation laws and characterized by a power density. In situations
where collective effects and nonlinear couplings are unimportant (Iλ2

L
� 5× 10

13 Wµm2/cm2),
GO-based models are sufficiently precise and computationally efficient. They describe the laser
refraction and plasma heating due to collisional energy absorption. Conversely, LPI modeling at
higher interaction parameters requires knowledge of quantities such as the electric field amplitude
and direction of the wavefront, which are not readily described by GO. Note that although the
notion of GO ray direction exists, that of wavefront direction does not. The physics of linear and
nonlinear LPIs at these scales is usually addressed by using limitations of the maximum electron
thermal flux or by adjusting the energy deposition of laser beams so as to reproduce experimental
results. Such approaches hinder the understanding of the physical processes at play and limit the
predictive capability of existing numerical tools. From these assessments, recent efforts have been
made in describing nonlinear LPIs at hydrodynamic scales, notably in the case of inline solvers
for the energy exchange between crossed laser beams [27, 28]. Those have notably allowed to
better interpret and design ICF experiments [29] and can be applied to assess more complicated
laser-target configurations such as the Polar Direct Drive scheme [30]. Similarly, the effects of
high energy electrons generated by nonlinear LPIs on the plasma dynamics are of particular
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importance for ICF studies [31, 32], Double Ablation Front experiments at high intensities, or for
the design and interpretation of ns-scale laser target experiments in general [33].

Considering the large variety of laser-target configurations involving these processes, there
is an evident need for a multiscale model that can account for linear and nonlinear LPIs in
hydrodynamic codes, as well as the interwoven couplings between the laser propagation in plasmas,
Hot Electron (HE) sources created by nonlinear LPIs, HE beams propagation and plasma dynamics.
Modeling nonlinear LPIs and the laser-plasma-electron coupling on hydrodynamic scales poses
severe difficulties related to (i) the accurate description of the laser intensity in plasmas, (ii) the
consistent description of HE sources from the laser propagation model and (iii) the transport of
HE beams in plasma. The first two limitations are related to the standard use of geometrical
optics, which does not allow for robust evaluations of laser intensity in plasmas [34] while the
third is related to the scarcity of accurate and CPU-efficient HE propagation models coupled
to hydrocodes. The object of this work is to address these difficulties in order to formulate a
multiscale model that describes the hydrodynamic laser-plasma interaction, including its coupling
with the generation of high energy electron populations.

Applications of this novel formulation are conducted in the framework of Inertial Confinement
Fusion. More precisely, the Shock Ignition scheme is thought to be particularly vulnerable to
LPIs, as it involves a ∼500 ps duration high intensity laser pulse. We present in the following
section the context of ICF, and the position of nonlinear LPIs on its operating framework. This
provides the basis for the formulation of goals and objectives of this thesis.

0.2 The laser-plasma interaction in the framework of Inertial
Confinement Fusion

0.2.0.1 Thermonuclear Fusion

Achieving a fusion reaction consists in bringing two positively charged light nuclei sufficiently
close to each other for them to bind through the attractive strong force, which typical range is of
the order of a few fermi, i.e. a few 10

−15m. Approaching the nuclei to such distances requires to
overcome the long-range Coulomb repulsion of the charged nuclei. Although the corresponding
kinetic energies are of the order of 300 keV (for Deuterium-Tritium reactions), quantum tunneling
effects [35] make these reactions possible at lower energies. The cross-sections σ of fusion reactions
for various nuclei are shown in Fig. 0-1 [left]. The ‘easiest’ (i.e. most probable) fusion reaction
at low temperature is that of D-T fusion, which cross-section at 10 keV is up to two orders of
magnitude higher than for other reactants. This particular reaction reads:

2
1D+

3
1T → 4

2He + n + 17.6 MeV , (1)

where the 17.6 MeV of kinetic energy liberated in the fusion process is shared between the α

particle (3.56 MeV) and the neutron (14.03 MeV).
In the so-called Gamow region below ∼ 100 keV, the D-T fusion reaction cross-section increases

monotonously with the kinetic energy of the projectiles. At such temperatures, the fuel becomes
a plasma of electrons and two species of ions. Considering a plasma at thermal equilibrium
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Figure 0-1 – [left] fusion reaction cross-sections (in barns, i.e. 10
−28m2) as a function of

the relative mean kinetic energy between nucleons in keV, and [right] thermal reactivity
for the fusion reactions (in m3/s) as a function of the kinetic temperature in keV.
Figures from http://www.kayelaby.npl.co.uk.

and characterized by a Maxwellian distribution function of mean temperature T � 10 keV, the
ions in the high-energy tail of the distribution function lie close to the maximum of the fusion
cross-section. Integrating over the Maxwellian distribution, one can compute the average thermal
reactivity �σv� of a fusion plasma as a function of its average temperature T , as shown in Fig.
0-1 [right]. Heating of the plasma allows to compensate for the energy losses in elastic ion-ion
collisions, which have a much higher cross-section. This approach where fusion reactions are
obtained through the high energy ions in the tail of the distribution function of a hot plasma is
termed thermonuclear fusion. It is the approach of choice for producing large amounts of nuclear
fusion energy.

0.2.0.2 Burning of the D-T fuel

At the aforementioned temperature of 10 keV, the plasma cannot be contained in any solid
container; the latter would be quickly deteriorated, thus polluting and cooling the fuel. As such,
these plasmas must be confined in a vacuum. However, because high temperatures also imply
high pressures, the plasma will naturally tend to expand and cool down. In effect, the plasma
must be confined in a given volume for a sufficiently long time so that most of the D-T fuel
has time to burn. For an initially equimolar mix of D-T and assuming a constant temperature
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throughout the confinement, the fraction of burnt fuel FDT reads [36, 37]:

FDT =
�σv�n0τ/2

�σv�n0τ/2 + 1
, (2)

where τ is the confinement time and n0 the initial ion number density. This simple formula
highlights the two main parameters in thermonuclear fusion ; the temperature T (contained in
�σv�) and the product n0τ . In order to burn half of the fuel, Eq. (2) shows that n0τ must be
of the order of 2�σv�−1. Given the difficulty to simultaneously maximize n0 and τ , the fusion
problem can be approached by using short confinement times and high density plasmas, or large
confinement times and low density plasmas (the latter being the case of the Magnetic Confinement
Fusion approach).

0.2.1 Inertial Confinement Fusion

With invention of the laser, the possibility to focus high amounts of energy in small volumes was
considered as a mean to ignite the fusion reactions. Early experiments suggested that the optimal
configuration was to irradiate a solid spherical target, thus heating it to high temperatures while
confining the plasma on very short timescales by its own inertia, which gave birth to the term of
Inertial Confinement Fusion (ICF) [38].

0.2.1.1 Hot-Spot ignition of the fuel

By considering a sphere uniformly irradiated by laser beams, it can be shown that the burnt fuel
fraction reads [36, 37]:

F ICF
DT =

ρr

ρr + (8
√
mDTγkBT )/�σv�

, (3)

with γ the heat capacity ratio, kB the Boltzmann constant, mDT the average mass of D and
T nuclei and ρr the areal density of the fuel, related to the previously defined n0τ product by
ρr = 4

√
mDTγkBTn0τ . This equation highlights that obtaining high burnt fractions requires to

increase the areal density of a spherical target. Given that the areal density of a sphere of a mass
M and a radius R scales as ρR = (3/(4π))1/3M1/3ρ2/3, one concludes that (i) any attempt to
increase the areal density at a constant mass requires an increase in the density ρ above the solid
density, and (ii) for a given areal density (i.e. for a fixed burnt fraction), increasing the density
implies that a smaller fuel mass is required, and thus less laser energy is needed to heat it to the
desired temperature.

The current approaches to ICF consider bringing a small mass of combustible at high densities
with the desired thermodynamic properties, while maintaining the symmetry of compression and
using low enough laser energies so that the overall fusion energy far exceeds the invested energy
for compression and heating of the combustible. Toward this objective, heating the entire mass
of a D-T sphere is inefficient because the required invested energy is too large. The historical
and standard approach to ICF is that of hot-spot ignition, where only a small mass of the target
is brought to the required conditions for the initiation of nuclear reactions. In this framework,
targets are constituted of a spherical D-T shell containing a low density D-T gas. Once fusion
reaction are ignited in the hot-spot, the generated α particles deposit their energy in the dense
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cold shell surrounding the hot-spot and ignite it. The hotspot heating is achieved by the PdV

work communicated from a dense imploding shell. Obtaining the required hotspot parameters for
the ignition of fusion reactions and of the target shell requires to compress the target to very
high densities, i.e. to obtain high convergence ratios of the order of 30-40.

0.2.1.2 Target compression using lasers

The capsule acceleration and compression originate from the expulsion of shell material ablated
by the laser at the outer target surface.The laser ablation produces a pressure PA that scales like,
in the absence of anomalous laser absorption processes:

PA = 57(ηabsI15,W/cm2/λL,µm)
2/3

Mbar , (4)

where ηabs is the laser energy absorption fraction, I15,W/cm2 is the vacuum laser intensity in
units of 1015 W/cm2, and λL,µm is the laser vacuum wavelength in µm. The ablation pressure is
approximately equal to the pressure at the critical density ρc, where the laser light is reflected
and the flow velocity equals the acoustic velocity cs, so that PA ≈ ṁacs ≈ ρcc2s ∝ (I/λL)

2/3,
where ṁa is the ablated mass rate. These estimates show that increasing the ablation pressure
and the ablated mass rate require an increase in the laser intensity.

The velocity of the shell during its free-flight (so-called implosion velocity) can be related to
the ablation mass rate by Uimp ≈ ṁaA/ρ, where A is the shell in flight aspect ratio (radius over
thickness of the shell R/∆R) and ρ is the in-flight shell density. Finally, the convergence ratio
can be expressed as:

C =
Uimp

ρ1/3(αAFA)1/2
=

ṁaA
1/2

ρ4/3(αAF )
1/2

, (5)

where α is the adiabat of the shell, defined as the ratio of its pressure over the Fermi pressure
pF = AFρ

5/3
s = 2.16ρ5/3s Mbar. From Eq. (5), one readily sees that for a given initial target

density, obtaining high convergence ratios requires (i) high implosion velocities, obtained through
a high ablation mass rate, that is, a high ablation pressure and a high laser intensity (Eq. (4)), (ii)
a low shell adiabat, that is, the shell must remain cold during the implosion, i.e. the compression
must be as isentropic as possible, and (iii) a high aspect ratio. The fulfillment of these points
as a mean to achieve high convergence ratios is not necessarily straightforward. Firstly, high
laser intensities are detrimental to the capsule implosion because of the development of nonlinear
laser plasma interactions that can lead to the shell preheat (raising α) or to asymmetries in the
irradiation field. Secondly, the implosion of the capsule is sensitive to hydrodynamic instabilities
(such as the Rayleigh Taylor instability (RTI)), which growth is related to the acceleration of the
ablation front, and is seeded by capsule non-uniformities or irradiation asymmetries. The RTI
modulates the density profile, which may cause a rupture of the shell for deformation wavelengths
larger than the capsule thickness. As a result, the RTI limits the maximum shell acceleration and
thus puts a higher limit on the implosion velocity. Additionally, increasing the aspect ratio leads
to a capsule that is susceptible to a larger range of deformation wavelengths, and thus is more
fragile from the standpoint of the RTI. In order to lower the sensitivity of the capsule implosion
to hydrodynamic instabilities and to increase the energy gain, alternative ignition schemes have
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been developed.

0.2.1.3 Alternative Ignition schemes

Hotspot ignition relies on the subsequent assembly of the fuel and ignition of the hotspot, solely
through the target’s compression with one shaped laser pulse. For low adiabat implosions (α
being of the order of 2), the energy required for the compression of the shell is of the same order
as the energy required for the heating of the hotspot. The working principle of various alternative
ignition schemes is to separate the implosion and ignition phases, that is, (i) use a dedicated
low energy laser pulse for the compression of the shell only, in which case the slower PdV work
communicated to the target center is not sufficient anymore to bring the fuel to its ignition
temperature and (ii) communicate the additional energy required for the ignition of the hotspot
by a different laser pulse. The main idea behind these schemes is to reduce the laser energy and
to increase the target robustness, through a better control of each phase of the whole process.

In the Fast Ignition [39, 40, 41] scheme, the additional energy is brought in the form of a high
energy electron or ion beam created by the interaction of a high power high energy laser beam
with a specially prepared target. Given the inherent technical complexity of fast ignition, other
alternatives were developed, and notably the Shock Ignition [42, 31] scheme. The latter consists in
using a high intensity laser spike near the end of the compression phase to launch a strong shock
into the target, thus raising the hotspot pressure and temperature above the ignition threshold
when the cold shell is assembled. The attractiveness of this ignition scheme notably relies on
its effective simplicity: the required pulse shapes being available on the current generation of
high power laser facilities and the required targets being of the same order of complexity than
direct-drive hotspot scheme targets [43]. By decoupling the compression and the heating phase,
much lower laser energies are required (of the order of 500 kJ) for the obtention of similar target
gains, thus making it potentially easier to implement. However, using an intense laser spike raises
new physical issues related to the generation and amplification of strong shocks and fluxes of
energetic electrons.

0.2.2 Interaction regime

It is traditionally considered that the optimal laser-plasma interaction regime for ICF is that of
collisional absorption, where the electrons oscillating in the laser field heat the plasma through
collisions with the ions. This mechanism is preferred because (i) it allows to transfer the laser
energy to the thermal population of plasma and (ii) it does not involve so-called anomalous
absorption processes that may be detrimental to the compression efficiency (those are detailed
below). The fraction of laser energy transmitted to the plasma by collisional absorption is a
function of the electron-ion collision frequency, dependent on the average charge state of the ions
Z and on the density ne. Considering that high-Z materials have a low hydrodynamic efficiency
(they require higher energies to ionize and tend to re-emit X-rays which preheat the target), the
optimal interaction domain for ICF is that of medium-Z ablator, typically plastic, carbon or
beryllium. The energy from the collisional absorption of the laser is mostly deposited at a critical
density nc ∝ λ−2

L
that defines the location of the electromagnetic wave reflection. In order to
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maximize the coupling to the solid target, the critical density must be as close as possible to the
solid density.

Considering the importance of (i) coupling the laser energy from collisional absorption as
efficiently as possible to the solid target and (ii) the issues raised by nonlinear LPIs, which
thresholds scale in Iλ2

L
, the technology of choice for ICF is that of short wavelength (and high

power) lasers. The lasers used in fusion science are based on Neodymium-doped glass (Nd:Glass)
amplifiers at the fundamental wavelength of 1054 nm (for phosphate glasses). The laser light
is frequency tripled prior to its interaction with the target, to a wavelength of 351 nm. The
frequency tripling process allows to increase the critical density by a factor of 9 and increase the
absorption efficiency, the ablation pressure (4) and the intensity threshold for nonlinear LPIs.
However, the overall laser efficiency is rather poor, of the order of a few %.

When the interaction parameter Iλ2
L

crosses the threshold of ∼ 10
14 Wµm2/cm2, the laser

plasma interaction becomes prone to numerous couplings between electromagnetic and plasma
waves [20, 44, 45]. Most of these additional processes, summarized in Fig. 0-2, have nonlinear
behaviors and are in general nefarious to the implosion [46, 47]. The most prominent mechanisms
are the coupling of the laser light to local plasma modes, the Electron Plasma Waves (EPW)
(processes of Stimulated Raman Scattering (SRS) and Two-Plasmon Decay (TPD)) and Ion
Acoustic Waves (IAW) (process of Stimulated Brillouin Scattering (SBS)). Considering the laser
intensities used in ICF, the non-linear LPIs can be categorized according to their potentially
detrimental effects for the capsule implosion:

• Symmetry breaking hazards;

– The overlap of laser beams in plasma produces ion acoustic waves (IAW) due to the
ponderomotive force that can lead to energy exchange between the beams through the
diffraction process. This particular case of the three-wave interaction is also referred
to as Cross-Beam Energy Transfer (CBET). Early theoretical work [48] showed that
resonantly excited IAWs can be driven in the framework of the baseline National
Ignition Facility (NIF) configuration [49], and indeed CBET is now used to tune the
symmetry irradiation in indirect drive ICF [29]. Direct-drive configurations have also
been found to be prone to the CBET instability [27, 50], affecting both the symmetry
of the implosion and the laser-target coupling.

– Similarly, any instability that induces some degree of scattered light may lead to
variations in the irradiation symmetry. Notably, the SBS and SRS instabilities can
scatter large portions of laser light. Considering that an irradiation uniformity of the
order of 1% must be kept in order to reach the required compression factors of hotspot
ignition, these processes are significant.

• Pre-heat hazards;

– Any LPI that drives electron plasma waves to sufficiently high phase velocities may
accelerate electrons to high energies. Most notably, the SRS and TPD instabilities
can drive electrons to energies of up to several hundred of keV, which may raise the
adiabat of the shell and decrease the hydrodynamic efficiency of the implosion.
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– In addition to the shell preheat, high energy electron populations generated by nonlinear
LPIs directly affect the plasma dynamics [31, 32] by altering the shock propagation
and strength. This is of particular importance for the Shock Ignition scheme, for which
the effect of hot electrons is uncertain [51].

• Coupling losses;

– In addition to the geometry breaking effects, the parametric instabilities amplify
the scattered waves thus deteriorating the coupling losses. Notably, in direct-drive
configurations, CBET shifts energy from incoming beams to outgoing beams and
thus, laser energy is taken away from the critical density, which in turns decreases the
laser-target coupling.

– More generally, large volumes of an underdense plasma lead to significant amounts of
backscattered light thus decreasing the laser-target coupling.

• Other;

– Laser filamentation, which results from the laser beam refraction in local density
inhomogeneities amplified thermally and ponderomotively by the focused beam, leads
to strong and localized electric fields and density modulations that may amplify other
instabilities.

– Resonant Absorption (RA), that is the absorption of laser light due to the resonant
excitation of the electron plasma wave at the critical density. It can lead to significant
absorption fractions in the early stages of the interaction when the density profile is
sufficiently steep. However, it is commonly considered that hot electrons accelerated
by EPWs driven by the resonantly excited electric field are in general too cold to cause
a significant preheat [36].

The development of nonlinear processes is controlled on some degree by the use of temporal
and spatial beam smoothing techniques, which work by altering the intensity fluctuations and
coherence properties of laser beams in their focal plane. These optical methods are crucial to
the reduction of nonlinear LPI growth and the mitigation of hydrodynamic instabilities. More
generally, optical smoothing techniques are widely used in high power laser systems in order to
control the properties of laser beams. As such, these are an integral part of the description of the
laser-plasma interaction.

Considering the vacuum laser wavelength of λL = 351nm, the typical laser intensity is
∼ 5× 10

14 W/cm2 during the compression phase of shock ignition and ∼ 5× 10
15 W/cm2 during

the spike. Both stages are prone to nonlinear LPIs, although in different regimes. While the
compression phase is less sensible to HE preheat and symmetry breaking issues than the standard
hotspot scheme because of a lower laser intensity, the laser spike employed for the generation of the
strong shock lies in a strongly nonlinear interaction regime. Considering typical spike durations
of ∼ 500 ps at peak intensity, nonlinear LPIs have ample time to develop and (i) drive copious
amounts of high energy supra-thermal electrons, and (ii) significantly reduce the laser-target
coupling for the strong shock generation through CBET. Although the shock ignition scheme
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Figure 0-2 – (color) Schematic diagram of some of the LPI processes involved in Inertial
Confinement Fusion, as a function of the coronal plasma density profile along the normal
of the target. The color code indicates linear LPI processes in yellow and nonlinear
processes in red. Black curly lines indicate the excitation of Electron Plasma Waves.

promises higher gains and better robustness than the conventional hotspot ignition scheme, the
physics of the laser-plasma interaction must be carefully investigated, especially during the laser
spike.

0.3 Objective of this work

The subject of this work is: Multiscale Description of the Laser-Plasma Interaction, Application
to the Physics of Shock Ignition in Inertial Confinement Fusion. It is separated in two parts. The
first part is dedicated to the description of the LPI coupling processes at the scales of a target’s
hydrodynamics. Such a description is motivated by the interpretation and design of laser-based
HEDP experiments in general, be it of Laboratory Astrophysics or Inertial Confinement Fusion.
The second part of this work is dedicated to the study on large hydrodynamic scales of the typical
highly nonlinear LPIs representative of the final phase of shock ignition ICF. The objectives of
the thesis are formulated as follows.

• Given the scale discrepancy that arises from the description of both; the target dynamics
and the rich variety of processes at play in the Laser-Plasma-Interaction, we wish to propose
a suitable laser model that can describe the laser propagation as well as linear and nonlinear
processes at hydrodynamic scales. This laser model must: (i) be well adapted for the
computation of nonlinear LPIs, (ii) be CPU-efficient at the large-scales at play and (iii)
reproduce the main characteristics of laser beams used in high power laser systems, including
the effects of smoothing techniques.
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• Given the interaction regime of Iλ2
L

∈ [10
13-1017] Wµm2/cm2, the description of the

nonlinear LPIs must account for: (i) acceleration and transport of high energy electrons by
parametric instabilities and resonant absorption, (ii) scattering of laser energy by nonlinear
processes, particularly by Cross-Beam Energy Transfer and (iii) competition between LPI
processes. With the aim of an implementation in a hydrodynamic code, this model must be
implemented in an inline-approach, i.e. fully-coupled to the hydrodynamics.

• Given two of the main issues related to nonlinear-LPIs in Shock Ignition ICF, that are the
irradiation field symmetry-breaking from CBET, and the target pre-heating from parametric
instabilities, the study of the SI scheme is conducted in two steps: (i) the study of the
CBET and how it affects the hydrodynamics of an imploding spherical target and (ii) the
study of the effect of high-energy electron beams on shock dynamics, and how they affect
the ignition conditions of the target.

0.4 Organization of the manuscript

The description of the multiscale laser-plasma interaction model and its application to LPI and
ICF problems is divided in 6 Chapters.

Chapter I We present in Ch. 1 the linear theory of Electromagnetic (EM) wave propagation in
plasmas. We derive the monochromatic wave equation, base framework of the description of
laser beams in plasmas, from Maxwell’s equations. The basic theory of the electromagnetic
response of the plasma, used throughout this work, is introduced. In order to assess
the physical behavior of EM waves propagation in plasmas, we describe various standard
solutions of the wave equation, relevant to various sections of this document. Particularly,
we define the framework of the scalar wave equation, that is the starting point of most
reduced laser propagation models used at hydrodynamic scales.

Chapter II The most widespread approach to the modeling of the laser propagation at hydro-
dynamic scales, that is the GO-based Ray-Tracing method, is introduced in Ch. 2. After
an assessment of the limits of the RT model for the purpose of describing nonlinear LPIs,
we propose an adaptation to collisional plasmas and to the framework of a Lagrangian
hydrodynamic code of Ray-based Paraxial Complex Geometrical Optics [52] (PCGO).
PCGO is an alternate method for describing scalar wavefields that replaces the needle-like
rays of GO by Gaussian optical beamlets. We illustrate its usefulness in modeling nonlinear
LPIs in the case of the ponderomotive self-focusing instability.

Chapter III The PCGO framework, usually limited to the description of Gaussian beams, is
expanded further in Ch. 3. High-power laser beams employ Phase Plates (PP), optical
elements used to control the spatial shape of their intensity profile. Making use of the
properties of PP-smoothed beams, we present a method that can be employed to reproduce
realistic beams using PCGO beamlets. Additional reduced models are presented, that allow
to account for various smoothing techniques within the PCGO framework.
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Chapter IV Building on the technique of Gaussian optical beamlets, we treat separately two
branches of nonlinear LPI problems. First, we propose in Ch. 4 an inline PCGO-based
approach to the modeling of CBET in large-scale hydrocodes. The latter model is validated
against theoretical works, cross-validated with a paraxial wave solver, and compared to
experimental data. It is used in an academic study of direct-drive ICF subject to CBET.

Chapter V An inline model to treat the laser/plasma/hot-electron coupling is presented in Ch
5. We propose a supra-thermal electron transport model, and present its validation against
a reference solution. Various reduced models are then proposed in order to relate the RA,
SRS and TPD mechanisms to HE fluxes and temperatures. The resulting multiscale model
fully couples the description of laser propagation, the definition of HE sources, and the
propagation of HE beams.

Chapter VI Finally, we present in Ch. 6 a validation of the LPI-HE model against several
experiments in various geometries. Given a good agreement observed with the experimental
data, the physics of coupling LPI-generated HEs to the target dynamics is investigated.
It is notably found that LPI-generated HEs significantly affect the properties of shock
propagating in the target. Lastly, the multiscale LPI-HE model is applied to a Shock
Ignition configuration, in order to assess the influence of LPIs generated during the final
laser spike onto the implosion dynamics.

Conclusions of this work are presented in Ch 7.
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Chapter 1

Linear theory of electromagnetic waves
in plasmas

We present in this chapter the linear theory of electromagnetic wave propagation and interaction
with plasmas. Starting from the microscopic Maxwell’s equations in Sec. 1.1, we derive the
monochromatic wave equation in an inhomogeneous plasma, base framework of the description
of laser-plasma interactions. This notably requires to examine the microscopic structure of
the plasma to determine its electromagnetic response, from kinetic theory. Solutions of the
wave equation for a homogeneous plasma are used to illustrate the base properties of transverse
electromagnetic wave propagation and collisional absorption, in Sec. 1.2. The framework of light
wave propagation is extended to inhomogeneous plasmas in Sec. 1.3, using various standard
approaches and highlighting the particular processes of collisional and resonant absorption.
The scalar wave equation, basis of the large-scale description of wave-fields, is also derived.
Longitudinal plasma waves, which constitute eigenmodes of the plasma, are briefly described
in Sec. 1.4. Finally, parametric instabilities are presented in Sec. 1.5 with the objective of
highlighting the most unstable configurations encountered in inhomogeneous plasmas.

1.1 Maxwell’s equations in plasmas

1.1.1 Macroscopic Maxwell’s equations

The description of the temporal and spatial evolution of magnetic and electric fields, as well as
their interaction with each other and with local charges and currents, was first proposed by J. C.
Maxwell [53]. It consisted of a set of 20 equations with 20 variables, that were put together
in a more "modern" form by O. Heaviside [54] in 1891 (concurrently with J. W. Gibbs and
H. Hertz) in 4 equations of 4 variables in vector notations. The latter Hertz-Heaviside and
Maxwell-Hertz restatement of the original equations is referred to as the Maxwell’s equations in
the modern literature, and reads:

Gauss � law ; ∇.E =
ρ

�0
,

Gauss � law for magnetism ; ∇.B = 0 ,
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Chapter 1. Linear theory of electromagnetic waves in plasmas

Maxwell -Faraday ; ∇×E = −∂B

∂t
,

Maxwell -Ampere ; ∇×B = µ0J + µ0�0
∂E

∂t
, (1.1)

where E and B are the electric and magnetic fields, �0 and µ0 are the vacuum electric and
magnetic permittivities, J is the electric current density and ρ is the charge density. The charge
and current densities are related by the continuity equation:

∂ρ

∂t
+∇.J = 0 , (1.2)

and the current density is related to the electric field by the conductivity tensor, which contains
all the information on the dielectric properties of the medium. The set of Eqs. (1.1) constitute the
basis of the classical theory of ElectroMagnetic (EM) fields. In this form, it describes the evolution
of EM fields with respect to punctual charges and currents. Applying Maxwell’s equations to
continuous media requires the introduction of additional fields that include the macroscopic
properties of the medium.

Considering a large-scale environment composed of n microscopic sources of currents and
charges, the microscopic fields e and b created by the n microscopic sources are solutions of n
systems of Eqs. (1.1). Considering (i) a very large number n, that for solid matter is of the order
of 1023 per cubic centimeter, and (ii) that the dynamics of the microscopic sources is by definition
governed by quantum effects, an averaged description of the field on classical length scales is
required. As such, we define averaged magnetic and electric fields E = �e� and B = �b�, which
obey the Maxwell’s and continuity equations with the averaged current and charge densities
�J� and �ρ�. The averaging process for the sources requires to account for the detailed atomic
structure of the medium, thus allowing to formulate the Maxwell’s equation for continuous media.

The average charge density �ρ(r, t)� as a function of the spatial and temporal coordinates r

and t can be estimated by [55]:

�ρ(r, t)� � ρ(r, t)−∇.P (r, t) , (1.3)

with ρ the net average charge density and P the polarization density, defined by:

ρ(r, t) =

�
�

m

qmδ(r− rm(t)) + qe
�

i

δ(r− ri(t))

�
, (1.4)

P =

�
�

m

δ(r− rm(t))dm(t))

�
, (1.5)

where qm and dm(t) are the total charge and dipole moment of the m-th molecular component
located at position rm(t), ri(t) is the position of the i-th free conduction electron of charge qe.
The polarization density P is a measure of the density of the dipole moments carried by the
molecules in the system. In general, a finite polarization P comes from the presence of an electric
field E. This field-induced polarization results from (i) the displacement of electronic clouds in
the electric field and (ii) changes in spatial alignments of molecules that carry an intrinsic dipole
moment. The other term in Eq. (1.3), that is the net average charge density ρ, is in general zero
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1.1. Maxwell’s equations in plasmas

unless external charges ρext are present in the system.

In a similar fashion, the averaged current density can be estimated by [55]:

�J(r, t)� � J(r, t) +
∂P

∂t
+∇×M , (1.6)

with J the net average current and M the magnetization, defined by:

J(r, t) =

�
qe

�

i

∂ri
∂t

δ(r− ri)

�
+

�
�

m

qm
∂rm
∂t

δ(r− rm)

�
. (1.7)

The net average current density J is the current carried by free charge carriers and molecules
in the system, while the magnetization M represents the average density of magnetic dipole
moments in the system. The magnetization fields are created by externally imposed macroscopic
current distributions, so that M depends on H. Similarly to ρ, the net average current density
J is in general zero unless external currents Jext are present.

The form of the field equations obtained by substituting the average charge and current
densities (1.3) and (1.6) into the Maxwell’s equation suggests the introduction of auxiliary fields
D and H, defined as:

D = �0E + P ,

H =
1

µ0
B −M , (1.8)

where D is called the electric displacement field and H the magnetizing field. Given that P is a
function of E, and that M is a function of H , the polarization and magnetization densities are
usually approximated by linear functionals, with the following general form:

P (r, t) =

�
d
3r�

�
t

−∞
dt�χe(r− r�, t− t�)�0E(r�, t�) , (1.9)

M(r, t) =

�
d
3r�

�
t

−∞
dt�χm(r− r�, t− t�)H(r�, t�) , (1.10)

where χe and χm are the dielectric susceptibility and magnetic susceptibility, respectively. These
expressions may also be written as a tensorial convolution product in order to account for
anisotropic responses of the material, and the dielectric and magnetic susceptibilities may also
depend on the fields E and H in the case of nonlinear materials. In the present form, we see
that the medium can exhibit the property of spatial and temporal dispersion. The auxiliary fields
obey the equations:

∇.D = ρ , (1.11)

∇×H = J +
∂D

∂t
, (1.12)

where the ∂D/∂t term, also noted Jpol, has a meaning of the current density induced by the
wave. In the linear electromagnetic theory, the materials are characterized on macroscopic scales
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by the constitutive relations :

D = �̂E , (1.13)

H =
1

µ̂
B , (1.14)

where �̂ and µ̂ are the dielectric permittivity and magnetic permittivity, that depend on the
physical characteristics of the medium. Those may represent anisotropic materials (i.e. (�̂, µ̂) are
tensors), inhomogenous materials (i.e. (�̂, µ̂) vary in space) and absorptive or dispersive materials
(i.e. (�̂, µ̂) are frequency dependent and complex).

Finally, the macroscopic Maxwell’s equations read:

∇.D = ρext , (1.15)

∇.B = 0 , (1.16)

∇×E = −∂B

∂t
, (1.17)

∇×H = Jext +
∂D

∂t
, (1.18)

where we have assumed that the non zero contributions to the net average charge and currents
originate from the external sources. In this form, the macroscopic behavior of the material is
factorized into the auxiliary fields through the constitutive relations. This set of equations, which
is more convenient for the macroscopic description of light wave propagation in materials, is also
referred to as Maxwell’s equations in matter.

1.1.2 Electromagnetic response of plasma: kinetic theory

Plasmas are gases constituted of charged particles, electrons and ions, which interact collectively
through electromagnetic forces. In order to resolve Maxwell’s equations in plasma, we must
determine the form of constitutive relations (1.13) and (1.14), which are, in general, non-stationary
and nonlocal. First, we restrict the constitutive relations to the framework of interest to this
work and then use kinetic theory to determine the electromagnetic response of the plasma.

1.1.2.1 Constitutive relations

From now on and in the rest of this work, we consider the case of monochromatic waves of
frequency ω, such that the fields are proportional to exp [−ıωt]. Furthermore, we assume that
there are no external charges or currents in the system, so that ρext = 0 and Jext = 0. Finally, we
consider plasmas with weak magnetic fields, which implies M = 0. This is a good approximation
for typical ICF plasmas, where the electron gyration frequency around magnetic field lines is
much smaller than the typical collision frequency.

Assuming the plasma is a linear material (i.e. � does not depend on E and B), the constitutive
relations read, in the Fourier space:

D = �E = �0E + P = �0(1 + χe)E , (1.19)

H = B/µ0 , (1.20)
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where the dielectric susceptibility χe remains to be expressed. The Maxwell-Ampere equation
(1.18) now reads ∇×B = µ0Jpol = −µ0ıωD = −ıc2(1 + χe)E, so that χe can be determined
by relating the current in the plasma to the electric field. This relation also defines the plasma
conductivity σ, with Jpol = σE.

1.1.2.2 Vlasov-Fokker-Planck equation

The most accurate classical microscopic description of a plasma consists in characterizing each
particle by its position r and momentum p as a function of time. The forces acting on the
particles can be decomposed in two components; the external forces applied to the plasma, and
the internal forces arising from the mutual interactions between particles. The internal force is
responsible for the collective behavior of the system. This force fluctuates rapidly in both space
and time, whereas global external forces applied to the plasma vary on a macroscopic scale. It is
advantageous to consider a description of the plasma that is averaged on small elementary volumes
in order to obtain a continuous-like description. This procedure requires the hypothesis of weak
correlations between particles: their separation must be large enough so that their trajectories
are mainly determined by average forces (internal or external), i.e. the microscopic fluctuations
created by the local influence of other particles are relatively small. In this framework, the ion
and electron distribution functions fi and fe (noted fα), averaged over microscopic volumes, obey
the kinetic equation:

∂fα
∂t

+ v.∇rfα + Fα.∇pfα = 0 , (1.21)

where v = p/(mαγ) is the velocity variable, γ is the particle relativistic factor and Fα is the
self-consistent force. In the case of a plasma, Fα is the Lorentz force arising from the self-consistent
electric and magnetic fields E and B: Fα = (qα/mα)(E + v×B) with qα the particle charge. In
that case, the kinetic equation is called Vlasov equation. This formalism is valid for length scales
larger than or comparable to the Debye length, Eq. (1.34). This corresponds to the collisionless
limit.

The correlations between particle motion are taken into account with a collision integral: an
additional term on the right hand side of Eq. (1.21). Considering perturbations of up to the
order 2 in the correlation term between particles, the Vlasov-Fokker-Planck equation reads:

∂fα
∂t

+ v.∇rfα + Fα.∇pfα =

�

β

Cαβ , (1.22)

where
�

β Cαβ is the collision integral, describing the binary collisions of charged particles due to
their Coulomb interaction in a plasma.

1.1.2.3 Collision integral

In the general case of a collisional plasma, the current density can be estimated from the Vlasov-
Fokker-Planck equation (1.22) with a simplified collision term, the Krook operator, that represents
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a relaxation towards a local thermal equilibrium:

�

β

Cαβ = −
�

β

ναβ(fα − fM

αβ) , (1.23)

where fα is the distribution function of species α and fM

αβ is a Maxwellian distribution function
that depends on mean temperatures Tαβ and velocities uαβ defined by the conservation of density,
momentum and energy in the binary interaction of the α and β species:

fM

αβ =

�
mα

2πkBTαβ

�3/2

exp

�
−
mα(v − uαβ)

2

2kBTαβ

�
, (1.24)

nα =

�
fαd

3v , (1.25)

(nαmα + nβmβ)uαβ =

�
v(mαfα +mβfβ)d

3v , (1.26)

3

2
(nα + nβ)kBTαβ =

1

2

�
(v − uαβ)

2
(mαfα +mβfβ)d

3v . (1.27)

We now consider that the species are close to Maxwellian distributions fM
α , such that fα = fM

α +f1
α

with f1
α a small perturbation. The Maxwellian distribution fM

α is characterized by a temperature
Tα and reads:

fM

α =

�
mα

2πkBTα

�3/2

n0
α exp

�
− mαv2

2kBTα

�
. (1.28)

In order to linearize the Krook operator, we develop fM

αβ in series around uαβ = 0 and Tαβ = Tα:

fM

αβ = fM

α + δuαβ .

�
∂fM

αβ

∂v

�

uαβ=0,Tαβ=Tα

+ δTαβ

�
∂fM

αβ

∂Tαβ

�

uαβ=0,Tαβ=Tα

, (1.29)

where

(n0
αmα + n0

βmβ)δuαβ =

�
v(mαf

1
α +mβf

1
β)d

3v , (1.30)

3

2
(n0

α + n0
β)kBδTαβ =

1

2

�
(v)2(mαf

1
α +mβf

1
β)d

3v , (1.31)

n0
α =

�
f0
αd

3v , (1.32)

so that the linearized Krook operator using fM

αβ finally reads:

�

β

Cαβ = −
�

β

ναβ

�
f1
α −

mαv.δuαβ

kBTα
fM

α

�
, (1.33)

where we have simplified the expression by considering that temperature variations are of second
order compared to velocity variations. The linearized Krook operator involves various collision
frequencies that must be explicitly defined in order to estimate the plasma conductivity.
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1.1. Maxwell’s equations in plasmas

1.1.2.4 Collision frequencies

The momentum transfer between two colliding charged particles can be described by a collision
cross-section that presents the particularity of (i) diverging for long-range interactions, because of
the infinite range of the Coulomb potential, and (ii) involving quantum effects for interactions at a
distance less than the De Broglie length. In plasmas, electrons quickly react to any excess positive
charge and move to compensate it. This process acts to shield the electrostatic potential created
by charge carriers, so that the collision cross-section remains finite for long-range interactions.
The electrostatic potential decreases exponentially over a characteristic length scale, called the
Debye length:

λD =




�

j=e,i

q2
j
nj

�0kBTj




−1/2

. (1.34)

Considering a particle of species α, with a velocity vα, colliding with a distribution of particles
β of number density nβ , the average collision frequency reads [36]:

ναβ = 4π

�
nβ(qαqβ)2

(4π�0)2µ2v3α
lnΛ

�
, (1.35)

where µ = mαmβ/(mα +mβ), qi is the charge of particle i, and lnΛ is the Coulomb logarithm
that accounts for the short-range and long-range processes at play in the collision. The average in
(1.35) is taken over the velocity distributions of particles α and β. Assuming that the Coulomb
logarithm vary weakly with the velocity, and considering the distribution functions of the particles
to be Maxwellian, the average collision frequency reads [56]:

ναβ =
4

3

√
2π�nβ�

�qαqβ�2

(4π�0)2µ2 (�v2α�/3)
3/2

lnΛ . (1.36)

Applying this formula to electron-electron collisions (µ = me/2), electron-ion collisions (µ ≈ me)
and ion-ion collisions (µ = mi/2), we obtain:

νee =
1

6
√
2π3/2

√
2nee4 lnΛee

�20m
2
ev

3
T,e

, (1.37)

νei =
1

6
√
2π3/2

�Z2�
�Z�

nee4 lnΛei

�20m
2
ev

3
T,e

, (1.38)

νii =
1

6
√
2π3/2

�Z4�
�Z�

√
2nee4 lnΛii

�20m
2
i
v3
T,i

. (1.39)

In the case of multiple ion species, more collision frequencies could be introduced. A simplified
description is often considered where all ion species are represented by a single average ion. Then,
the expression for νei motivates the definition of an effective charge state Zeff = �Z2�/�Z�, where
the average is taken over the ion species concentration. In a non-magnetized plasma, each free
plasma mode (longitudinal and transverse waves, see Secs. 1.2 and 1.4) is damped according
to these collisional rates, and eventually with additional Landau damping terms. Note that in
general, the electron-electron coefficient can be neglected compared to the electron-ion coefficient

35



Chapter 1. Linear theory of electromagnetic waves in plasmas

for Z ≥ 4.

1.1.2.5 Dielectric susceptibility of the plasma

We now consider the case of electrons accelerated in a homogeneous electric field oscillating at
a frequency ω. The ions of a charge Z are supposed to be at a thermal equilibrium, described
by a Maxwellian distribution fM

i
(and f1

i
= 0). We define the electron distribution function

fe = fM
e + f1

e with f1
e a small perturbation. Assuming that the phase velocity of the wave is

much larger than the electron thermal velocity, the linearized kinetic equation reads [36]:

∂f1
e

∂t
− e

me

E.∇pf
M

e = −
�

β∈{e,i}

νeβ

�
f1
e −

mev.δueβ

kBTe

fM

e

�
, (1.40)

where the right hand side is the linearized Krook operator and we have used the time independence
of the equilibrium function fM

e . Because of momentum conservation, the electron-electron
collisions do not contribute to the damping of the wave and we can neglect the terms ∝ νee.
Furthermore, considering the low electron to ion mass ratio, the term proportional to the mean
velocity perturbation δuei can be neglected compared to f1

e . Finally, Eq. (1.40) reads, in Fourier
space:

− ıωf1
e +

e

kBTe

E.vfM

e = −νeif
1
e , (1.41)

where we have used the property of the Maxwellian distribution ∇pfM
e = −vfM

e /(kBTe). Mul-
tiplying both sides in Eq. (1.41) by −ev and integrating in momentum space, we obtain the
current density Jpol induced by the oscillating electric field:

− ıωJpol −
e2

me

n0
eE = −νeiJpol , (1.42)

where we have used:
Jpol = e

�
vf1

e d
3v . (1.43)

Recalling that the current is related to the polarization density by Jpol = ıωP and using
P = �0χeE we obtain an expression for the conductivity σ:

Jpol = σE = −ıω�0χeE = − n0
ee

2

me(ıω − νei)
E . (1.44)

The imaginary part of the polarization current implies that electrons accelerated in the electric
field of the laser decelerate through electron-ion collisions, thus transferring energy from the
wave to plasma. This process of collisional absorption is called the inverse Bremsstrahlung. A
more detailed analysis accounting for ion density fluctuations [57, 36] yields a formulation of the
current with a modified Coulomb logarithm νIB = νei lnΛIB/ lnΛei. The latter is termed inverse
Bremsstrahlung collision frequency and involves a Coulomb logarithm ΛIB that is dependent on
the wave frequency ω. Additional corrections are usually made to ΛIB, accounting for quantum
mechanical effects related to multi-photon and electron-photon interactions [58, 59, 60]. The
expressions for the Coulomb logarithms used in this work are given in App. A.5.
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Finally, the dielectric susceptibility χe (1.9) and relative permittivity � (1.13) read:

χe(ω) = −
ω2
pe

ω(ω + ıνIB)
,

�(ω) = 1−
ω2
pe

ω(ω + ıνIB)
, (1.45)

where ωpe is the electron plasma frequency, ωpe =
�

nee2/(me�0).
The relative permittivity �(ω) can be decomposed into a real and an imaginary part as

� = �� + ı���:

�� = 1− (ωpe/ω)2

1 + (νIB/ω)2
≈ 1−

�ωpe

ω

�2
, (1.46)

��� =
νIB
ω

(ωpe/ω)2

1 + (νIB/ω)2
≈ νIB

ω

�ωpe

ω

�2
, (1.47)

where we have assumed νIB � ω in the right-hand-side of the equations and only retained the
term linear on νIB. The frequency dependence of the dielectric permittivity is a consequence of
the dispersive property of plasmas. Having determined �, we can now apply the macroscopic
Maxwell’s equations to plasmas.

1.2 Base properties of light wave propagation in plasmas

1.2.1 Wave equation

We consider the case of a monochromatic electromagnetic wave propagating in a inhomogeneous,
isotropic, dispersive and non-magnetic material. In that framework, fields are proportional to
exp [−ıωt] and the dielectric and magnetic permittivities read �̂ = �(ω, r) and µ̂ = µ0, so that the
macroscopic Maxwell’s equations read, in the frequency domain:

∇.E = −(1/�)∇�.E ,

∇.B = 0 ,

∇×E = ıωB ,

∇×B = −ıωc2�E , (1.48)

which can be expressed as:

∇×E − ıωB = 0 ,

∇×B + ı(ω/c2)�(ω, r)E = 0 , (1.49)

where �(ω, r) is the complex-valued, inhomogeneous and scalar (i.e. isotropic) dielectric permit-
tivity.

Taking the curl of the first equation in (1.49) and eliminating for B yields:

�E +∇(∇ ln �.E) + (ω/c)2�(ω, r)E = 0 , (1.50)
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Chapter 1. Linear theory of electromagnetic waves in plasmas

where we have used the vector identity ∇×∇×A = ∇(∇.A)−�A. We refer to this equation as
the wave equation for the electric field. The expression for the magnetic field is derived similarly,
by taking the curl of the second equation in (1.49) and eliminating for E:

∇(∇.B)−�B + ı(ω/c)∇× (�(ω, r)E) = 0 . (1.51)

Since ∇× (�(ω, r)E) = �(ω, r)∇×E +∇�(ω, r)×E, we get the wave equation for the magnetic
field:

�B + (ω/c)2�(ω, r)B +
1

�(ω, r)
∇�(ω, r)×∇×B = 0 , (1.52)

where we have used ∇.B = 0.

1.2.2 Dispersion relation

The propagation of light waves in homogeneous plasmas of uniform density is now considered. In
that case, ∇�(ω, r) = 0 and ∇.E = 0, so that Eqs. (1.50) and (1.52) become identical and read:

�E +
ω2

c2
�(ω)E = 0 , (1.53)

�B +
ω2

c2
�(ω)B = 0 . (1.54)

The various components of the electric and magnetic fields in these equations are uncoupled,
e.g. the evolution of Ex does not depend on the evolution of Ey. Consequently, their resolution
reduces to a set of scalar wave equations in the form of homogeneous scalar Helmholtz equations :

�u(ω, r) +
ω2

c2
�(ω)u(ω, r) = 0 , (1.55)

where u(ω, r) is the scalar wave amplitude, written in the frequency domain, that represents any
component of the electric or magnetic field. Assuming u is of the form u0 exp[−ık.r] and taking
the spatial Fourier transform of this equation, we obtain the dispersion relation for the EM waves:

− k2 +
ω2

c2
�(ω) = 0 . (1.56)

It is worth mentioning that this form of the dispersion relation also holds for inhomogeneous
plasmas as long as the ∇(∇ ln �.E) term can be neglected compared to the other terms in Eq.
(1.50). As it is discussed further in Secs. (1.3.2) and (1.3.4), this depends on the wave polarization.

1.2.3 Wave reflection: the critical density

Considering a collisionless media, with � = ��, the dispersion relation (1.56) becomes:

k2c2 = ω2 − ω2
pe . (1.57)

This equation implies that wave propagation can occur only for ω > ωpe, in which case the
wavevector k is real. For ω < ωpe, the plasma electrons react instantaneously to the electric field
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1.2. Base properties of light wave propagation in plasmas

modulations of frequency ω, thus shielding the field of the light wave. Note that in vacuum,
ωpe = 0 so that the free-space wavenumber of the EM wave is kFS = ω/c. The equality ω = ωpe

defines the critical density beyond which a light wave does not propagate:

nc =
�0ω2me

e2
, (1.58)

where �0 is the vacuum dielectric permittivity and e the electron charge. Plasma regions where
the electron density ne > nc are called over-dense or super-critical regions, and regions where
ne < nc are called under-dense or sub-critical regions.

1.2.4 Wave velocity and refraction

The group velocity characterizes the rate at which the energy of the wave propagates in space.
It is defined as vg = ∂ω/∂k. Taking the derivative of Eq. (1.57) with respect to k yields
2kc2 = 2ω∂ω/∂k, thus:

vg(ω) = c

�

1−
ω2
pe

ω2
= c

�
1− ne

nc(ω)
, (1.59)

where vg = |vg|. This relation indicates that the group velocity of the wave is c in vacuum, and
less than c in the plasma. The phase velocity, rate at which the phase of the wave propagates in
space, is defined as vph = ωk/k2. Noting that kc2 = ωvg, the phase velocity reads:

vph(ω) =
c�

1− ω2
pe/ω

2
=

c�
1− ne/nc(ω)

, (1.60)

and we have vgvph = c. The difference between the phase and group velocities indicates that
plasmas are dispersive materials, the light wave refracts at a different rate depending on the
frequency. The refractive index n�

= c/vph describes how light is refracted by the medium:

n�
(ω) =

�
1− ne

nc(ω)
=

�
��(ω) , (1.61)

which is less than 1 in under-dense plasmas. It is interesting to note that this is contrary to light
wave propagation in solid materials (such as glass), where the index of refraction is ≥ 1. More
generally, the refractive index in optical components increases with the density of the glass, so
that light waves tend to bend toward higher densities. On the contrary, the refractive index of
plasmas decreases for higher densities, so that light waves tend to bend toward lower densities.
Note that the above definitions for the group velocity and phase velocity are unchanged in the
case of a dissipative media, whereas the index of refraction acquires an imaginary part and is
defined as:

n2
= � = �� + ı��� . (1.62)

1.2.5 Effects of a complex dielectric permittivity

We now extend the previous analysis to the case of a dissipative media characterized by � = ��+ı���.
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Chapter 1. Linear theory of electromagnetic waves in plasmas

1.2.5.1 Wave energy

In the general case of a collisional plasma and for a transverse wave (where E, B and k form an
orthonormal set), the averaged energy density of the electric field W̄E, magnetic field W̄B and
averaged energy flux S̄ = �E ×H� (so-called Poynting vector) read:

W̄E =
�0
4

∂

∂ω
(ω�(�))|E|

2
=

�0
4

�
1 +

ω2
pe

ω2

�
|E|

2 , (1.63)

W̄B =
�(k×E)

2�
2µ0ω2

=
�0
4

�
1−

ω2
pe

ω2

�
|E|

2 , (1.64)

S̄ =
1

2
�0
kc2

ω
|E|

2
=

1

2
�0
k

k
cn�

|E|
2 . (1.65)

It follows from these equations that S̄ = vgW̄ , with W̄ = W̄E + W̄B. The latter relation shows
that despite the dissipation of electromagnetic energy into the medium, the group velocity can still
be interpreted as the rate of wave energy propagation in space. Consequently, the electromagnetic
energy density propagating at the group velocity of the wave per unit area reads:

I = |vgW̄ | = cn��0E
2
0/2 . (1.66)

This quantity is the wave intensity, a key definition used in the description of laser-plasma
interactions.

1.2.5.2 Complex refractive index

Assuming a complex dielectric permittivity, the refractive index can be decomposed in a real part
and imaginary part n = n�

+ n��
=

√
� and n2

= n�2 − n��2
+ 2ın�n��. Far from the critical density

surface, n� � n�� so that n�2 ≈ ��, as in the collisionless case. Using the full formulation for �, Eq.
(1.45), n�

= �(
√
�) and n��

= �(
√
�) read:

n�
=

1

√
2

�
1 + (ν2IB/ω

2)

�
N2

+
ν2IB
ω2

+

��
1 +

ν2IB
ω2

��
N4

+
ν2IB
ω2

��1/2�1/2

, (1.67)

n��
=

(ω2
peνIB/ω

3
)

√
2

�
1 + (ν2IB/ω

2)

�
N2

+
ν2IB
ω2

+

��
1 +

ν2IB
ω2

��
N4

+
ν2IB
ω2

��1/2�−1/2

, (1.68)

where N is the refractive index in collisionless plasmas N =
�
1− ne/nc. Taylor expanding at

the lowest order in νIB/ω around 0 yields:

n�
νIB�ω = N +O

�
ν2IB
ω2

�
, (1.69)

n��
νIB�ω =

(ω2
peνIB/ω

3
)

2N
+O

�
ν2IB
ω2

�
. (1.70)

In practice, the expression (1.69) is used for n� for the computation of electromagnetic wave
refraction in plasmas. However it only holds at high temperatures where the collision frequency
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1.2. Base properties of light wave propagation in plasmas

is small compared to the light wave frequency (see the discussion in Sec. 1.2.6).

1.2.5.3 Collisional absorption

Starting from the dispersion relation, we relate the imaginary part of the wavevector to the wave
damping due to collisions. The dispersion relation (1.56) in a collisional media reads:

k2c2 = ω2 −
ω2
peω

ω + ıνIB
≈ ω2 − ω2

pe

�
1− ıνIB

ω

�
= ω2

�
N2 − ı

ωpeνIB
ω3

�
, (1.71)

where it was assumed in the right hand side that νIB � ω. Similarly to the refractive index, we
can express k = k� + ık�� , so that k2 = k�2 − k��2 + 2ık�k��. Assuming νIB � ω we obtain:

k�νIB�ω =
ω

c

�
1−

�ωpe

ω

�2
=

ω

c
N , (1.72)

k��νIB�ω =
ω2
peνIB

2ωc
�
ω2 − ω2

pe

=
ω2
peνIB

2ω2cN
. (1.73)

Considering a plane wave propagating in the z direction, its electric field E = Eex can be
expressed as E = E0e

ı(kz−ωt)
= E0e

ık
�
z
e
−ıωt

e
−k

��
z which gives |E| = |E0|e

−k
��
z, i.e. the light

wave is damped due to the electron-ion collisions. The energy conservation of the wave can be
expressed as:

∂W̄

∂t
+∇.S̄ = −Us , (1.74)

where the right-hand-side Us represents the energy sink due to collisions. The rate of energy loss
can be estimated in steady-state from the energy conservation equation (1.74):

− ∇.S̄

W̄
=

Us

W̄
= νEM = 2k��vg , (1.75)

where we have defined the damping rate νEM. As such, νEMW̄ represents the power density
transferred from the wave to the medium due to the dissipation of the polarization current by
the electron-ion collisions. Assuming a homogeneous media and using the complete expression of
k�� = �(

√
k2) = n��kFS, the electromagnetic wave damping rate reads:

νEM =

√
2N(ω2

peνIB/ω
2
)

�
1 + (ν2IB/ω

2)



N2
+

ν2IB
ω2

+

��
1 +

ν2IB
ω2

��
N4 +

ν2IB
ω2

�


−1/2

. (1.76)

Taylor-expanding this expression at the order 1 in series of (νIB/ω) gives:

νEMνIB�ω = νIB
ω2
pe

ω2
= νIB

ne

nc

. (1.77)

This expression is the standard definition used for the computation of electromagnetic wave
absorption in plasmas. As for the refractive index, it only holds at high temperatures and high
frequencies (see the discussion in Sec. 1.2.6), whereas the expression given in Eq. (1.76) is also
valid when νIB ≥ ω.
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1.2.6 Common assumptions

Several assumptions have been introduced in this section, namely νei � ω and ��� � ��. We briefly
discuss their validity domain.

The first assumption can be assessed in the framework of typical laser-plasma interaction
regimes considered in this work. Given that νIB ∝ neT

−3/2
e lnΛIBZeff and neglecting a weak

dependence of lnΛIB on the temperature, the assumption νei � ω holds along the trajectory of
EM wave propagation if it holds at the critical density. Using typical values of lnΛIB = 8, Zeff = 5

(that corresponds to a medium Z ablator), λL = 351 nm and ne = nc, the temperatures above
which νIB > ω/10 and νIB > ω/100 are Te ∼ 160 eV and Te ∼ 720 eV, respectively. Hence, early
in the interaction when the laser intensity is low and the plasma is cold, the above assumption
may not hold. Rapidly, as the coronal plasma heats up, it enters its validity domain and holds
for the rest of the interaction duration.

The second assumption, ��� � ��, is commonly used in hydrodynamic codes because it is
necessary to the validity of the Ray-Tracing approach (see Sec. 2.2). It is worth mentioning that
this assumption is more restrictive than νIB � ω, the latter authorizing ��� ≥ �� near the critical
density (where ω → ωpe). Similarly, the complete expression for �� given in Eq. (1.46) allows to
consider plasmas at the critical density (for ω = ωpe), which is also of importance for the validity
of the reduced models presented in the following chapter. For these reasons, when possible, the
assumption of νei � ω should be preferred over that of ��� � ��.

1.3 Electromagnetic wave propagation in inhomogeneous plas-
mas

We now consider the wave propagation in inhomogeneous plasmas, where the density depends of
the spatial coordinates. Several approaches to resolving the wave equation are presented, with the
aim of highlighting the main properties of the light wave linear interaction with inhomogeneous
plasmas, and of assessing the validity domain of typical approaches.

1.3.1 The WKB approximation for collisionless plasma

Assuming that the density inhomogeneity is in the same direction as the wave propagation
direction (e.g. the z direction), the electric field is of the form E = Ex(z)ex +Ey(z)ey +Ez(z)ez

and the wave equation (1.50) reads, in Cartesian coordinates:

d
2Ex,y

dz2
+

ω2

c2
�Ex,y = 0 ,

ω2

c2
�Ez = 0 , (1.78)

which yields Ez = 0, for the transverse wave, and the equation for Ex and Ey are in the form of
the scalar wave equation (1.55). In the framework of the WKB approximation (after the name of
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1.3. Electromagnetic wave propagation in inhomogeneous plasmas

the physicists who developed it; Wentzel-Kramers-Brillouin), we seek for solutions of the form:

Ex(z) = Ex,0(z) exp

�
ıkFS

�
z

0
Ψ(z�)dz�

�
, (1.79)

where the Ex,0 and Ψ functions are written in the Slowly Varying Envelope Approximation (SVEA),
e.g. it is assumed that they vary slowly on a wavelength scale:

����
d
2Ex,0(z)

dz2

���� �
����kFSΨ(z)

dEx,0(z)

dz

���� , (1.80)
����
d
2Ψ(z)

dz2

���� �
����kFSΨ(z)

dΨ(z)

dz

���� , (1.81)

where we have used k(z) = kFSΨ(z) (that can be noted from Eq. (1.79)). Substituting for Ex(z)

(1.79) in the scalar wave equation (1.55) yields:

E��
x,0 + 2ıkFSE

�
x,0Ψ+ ıkFSEx,0Ψ

� − k2FSEx,0Ψ
2
+ k2FS�(ω, z)Ex,0 = 0 , (1.82)

where the prime notation designates a derivative with respect to z. At the order 0 in d/dz, we
get:

Ψ =

�
�(ω, z) . (1.83)

By taking the terms in Eq. (1.82) at the order 1 in d/dz, we obtain:

2E�
x,0Ψ+ Ex,0Ψ

�
= 0 . (1.84)

This differential equation admits a solution:

Ex,0 = C/
√
Ψ , (1.85)

where C is a constant factor. The second order term in Eq. (1.82) is neglected according to the
SVEA hypothesis. Injecting Eqs. (1.83) and (1.85) in (1.79) yields:

Ex(z) = (EFS/�(ω, z)
1/4

) exp

�
ıkFS

�
z

0

�
�(ω, z�)dz�

�
, (1.86)

where the constant factor C has been set to the free space electric field EFS. This result highlights
that the amplitude of the electric field increases as EFS�−1/4 as the wave propagates toward the
critical density. Simultaneously, by conservation of the electromagnetic energy, the magnetic field
amplitude decreases as BFS�1/4.

It was assumed in the derivation of Eq. (1.86) that E��
x,0 � 2ıkFSE�

x,0Ψ + ıkFSEx,0Ψ�. A
sufficient condition for this assumption to be valid can be written as:

��E�
x,0

�� � |k(z)Ex,0| . (1.87)

43



Chapter 1. Linear theory of electromagnetic waves in plasmas

Substituting the solution for Ex,0 yields:

1

�

����
d�

dz

���� �
8π

λ(z)
, (1.88)

that is, the fractional change in the plasma dielectric function must be small on the scale of the
local wavelength. This condition shows that the WKB approximation breaks down for steep
density gradients and near the critical density, where � → 0 and λ → ∞, i.e. it is only valid for a
weakly inhomogeneous plasma and sufficiently far from the critical density.

1.3.2 Laser absorption in inhomogeneous plasmas

We now consider the case of collisional absorption of a light wave propagating in the (y, z)

plane and incident at an initial angle θ on a plasma with a linear density profile such that
N2

(z) = 1− z/L = 1− ne(z)/nc. Depending on the polarization of the wave, two cases must be
distinguished. If its electric field lies out the plane of incidence, i.e. E = Ex(y, z)ex, the wave
is termed s-polarized. Conversely, if the electric field of the wave lies in the plane of incidence,
i.e. E = Ey(y, z)ey + Ez(y, z)ez, the wave is termed p-polarized. Depending on the polarization,
the wave equation takes a different form and an additional absorption process appears, that is
the Resonant Absorption. We present the collisional laser absorption fraction in inhomogeneous
plasmas in the case of s-polarized wave, and describe the mechanism of resonant absorption in
the p-polarized case.

1.3.2.1 Absorption fraction of s-polarized waves

We consider a s-polarized wave with an electric field E = Ex(y, z)ex. The wave equation reads:

∂2Ex

∂y2
+

∂2Ex

∂z2
+ k2FS�(z)Ex = 0 . (1.89)

Because � only depends on z, ky is a constant and equal to its value at z = 0. Geometrically, we
have kz=0

y = (ω/c) sin θ and kz=0
z = (ω/c) cos θ. Assuming a plane-wave solution with a spatial

dependence for E of the form exp(ık.r):

Ex(y, z) = E(z) exp(ıkyy) = E(z) exp(ı(ω/c) sin θy) . (1.90)

Substituting this expression for Ex in Eq. (1.89) yields:

E(z)
ω2

c2
�
�(z)− sin

2 θ
�
+

d
2E(z)

dz
2 = 0 . (1.91)

Using the WKB approximation in this case:

Ex(y, z) ∝ exp

�
ıkFS sin θy

�
z

0
kz(z

�
)dz�

�
, (1.92)

we find:
k2z(z) = k2FS(�− sin

2 θ) . (1.93)
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Consequently, the wave propagation zone is limited to � > sin
2 θ. Reflection of the light wave

occurs for �(z) = sin
2 θ. Substituting � by the definition given in Eq. (1.45) yields:

k2z(z) = k2FS

�
cos

2 θ −
ω2
pe

ω(ω + ıνIB)

�
. (1.94)

As a representative example, let us consider an isothermal plasma with a linear density profile
ne = ncz/L. Considering lnΛIB a constant we have νIB(z) ≈ ν�IBne(z)/nc = ν�IBz/L with ν�IB the
inverse Bremsstrahlung collision frequency at the critical density, so that:

k2zc
2
= ω2

�
cos

2 θ − z/L

1 + ı(ν�IB/ω)(z/L)

�
. (1.95)

The fractional energy loss can then be obtained from the squared modulus of the field:

|Ex(y, z)|
2
= |Ex(y, 0)|

2
exp

�
−2

�
z

0
�(kz(z�))dz�

�
. (1.96)

Substituting kz by its expression in Eq. (1.95), assuming νIB � ω and considering a wave
that propagates up to the turning point zT = L cos

2 θ and back to the vacuum, the fractional
absorption f col

A
reads:

f col
A = 1− exp

�
−4

�
L cos2 θ

0
�(kz(z�))dz�

�
= 1− exp

�
−32ν�IB

15c
L cos

5 θ

�
, (1.97)

which shows that in order to maximize collisional absorption, normal laser incidence (i.e. θ � 0)
and long scale-length plasmas are preferred. The angle dependence is a consequence of the
wave traveling less deep into the plasma and thus encountering less plasma, in regions further
from the maximum value of νIB. Typical plasma profiles in ICF are rather exponential than
linear. Considering a profile of the form �(z) = 1− exp(z/L), the turning point of the wave is
now zT = L ln(cos

2 θ). Substituting the (z/L) terms in Eq. (1.95) by exp(z/L), the fractional
absorption reads [61]:

f col
A = 1− exp

�
−4

�
L ln(cos2 θ)

−∞
�(kz(z�))dz�

�
= 1− exp

�
−8ν�IB

3c
L cos

3 θ

�
, (1.98)

which is a lower absorption fraction than in the linear case for any incidence angle.

1.3.2.2 Resonant Absorption of p-polarized waves

For a p-polarized wave, the electric field reads E(y, z) = Ey(y, z)ey +Ez(y, z)ez. It is convenient
here to work with the magnetic field of the wave B(y, z) = Bx(y, z)ex. Similarly to Eq. (1.89),
the magnetic field wave equation for an EM wave in a plasma (1.52) projected on ex reads:

∂2Bx

∂y2
+

∂2Bx

∂z2
+

ω2

c2
�(z)Bx =

∂Bx

∂z

∂ ln �

∂z
. (1.99)
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Similarly to Eq. (1.90), Bx(y, z) is expressed as:

Bx(y, z) = B(z) exp(ıkyy) = B(z) exp(ıω/c sin θy) . (1.100)

Substituting this expression for Bx in the ez component of Ampere’s law yields:

− ∂Bx(y, z)

∂y
= −ı

ω

c
�(z)Ez(y, z) . (1.101)

After differentiation and assuming Ez(y, z) = Ez(z) exp(ıω/c sin θy) , an expression for Ez(z) is
obtained:

Ez(z) = sin θBx(z)/�(z) . (1.102)

Recalling that �(z) is minimum for ne = nc, where it is proportional to ıνIB/ω (that is in general
� 1), this equation illustrates that the component of the electric field parallel to the density
gradient can reach very large values at the critical density. The resonantly excited field is damped
by electron-ion collisions and leads to an additional absorption fraction, derived in App. C.1, that
is most prominent for plasmas with strong density gradients. Additionally, the resonantly excited
field can drive EPWs parallel to the density gradient direction, which in turn may accelerate
electrons (see Sec. 1.4.1).

1.3.3 Paraxial Wave Equation

The Paraxial Wave Equation (PWE), first invented in [62, 63], is a class of solutions that relies
on the existence of a principal propagation direction for the wave. To illustrate its principle, we
consider a monochromatic wave of the form E = E0 exp[−ıωt+ ık.r] propagating in a plasma
where ne/nc � 1 and νei � ω. Under such conditions, the wave is transverse and obeys the
scalar Helmholtz equation for its field E0. The wave equation written in the time domain reads:

�
∂2

∂t2
+ ω2

pe + νEMνIB�ω
∂

∂t
− c2�

�
E0 = 0 , (1.103)

where it was assumed that the density field is homogeneous. Considering that the plasma density
n is perturbed around an equilibrium value n0, Eq. (1.103) takes the form:

�
∂2

∂t2
+ ω2

pe,0 + νEMνIB�ω
∂

∂t
− c2�

�
E0 = −ω2

nc

(n− n0)E0 , (1.104)

where the left-hand-side contains the damping term ν∂t, and the remaining terms are called a
propagator. The right-hand-side accounts for the refraction of the wave on density inhomogeneities.
This equation is very costly to resolve on spatial and temporal scales large compared to the
wavelength and period. Therefore, it is commonly simplified by making additional assumptions,
that are (i) the temporal slowly varying envelope approximation:

����
∂2E0

∂t2

���� �
����2ω

∂E0

∂t

���� , (1.105)
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1.3. Electromagnetic wave propagation in inhomogeneous plasmas

(ii) the wavenumber k satisfies the dispersion relation (1.56) for the non-perturbed density n0,
and (iii) k is a privileged propagation direction (z-axis, without loss of generality), so that:

|��E0| �
����2kFS

∂E0

∂z

���� , |�⊥E0| , (1.106)

where �⊥ =
∂2

∂x2 +
∂2

∂y2 and �� =
∂2

∂z2 designate the transverse and parallel components of the
Laplace operator, respectively. Using assumptions (1.105) and (1.106), Eq. (1.104) now reads:

�
∂

∂t
+ vg.∇+ 2νEMνIB�ω − ı

c2

2ω
�⊥

�
E0 = −ı

ω

2nc

δnE0 , (1.107)

where δn = n− n0 represents the long-wavelength density modifications around the equilibrium
density n0, and the group velocity vg = kc2/ω is defined according to the dispersion relation
(1.56). This type of paraxial wave equation is widely used for nonlinear LPI modeling. It is
further discussed in Secs. 3.3.1 and 4.3. The term proportional to vg accounts for the wave
propagation, whereas the term in �⊥ accounts for its transverse diffraction.

The validity domain of PWE (1.106) depends on the deviation of the wave with respect
to the paraxial direction (z), that arises e.g. from the refraction. The error arising from the
refraction process can be evaluated by considering a plasma with a linear density profile of the
form ne/nc = z/L, as in Sec. 1.3.2. In that case, the wave amplitude can be described in a WKB
approximation:

E(x, y, z) = E0(x, y, z) exp

�
ı

�
z

0
kz(z

�
)dz� + ıkFS sin θy − ıωt

�
. (1.108)

Injecting this form into the Helmholtz equation (1.55) gives:

�E0 + 2ı

�
kz

∂E0

∂z
+ kFS sin θ

∂E0

∂y

�
− ık2FS

E0

2kzL
= 0 , (1.109)

where we have used the dispersion relation (1.93) and supposed a stationary propagation. In
order to neglect the parallel component of the Laplace operator and describe this wave-field in
the paraxial approximation, the assumptions equivalent to Eqs. (1.106) that must be met read:

����
∂2E0

∂z2

���� �
����2(kz − kFS sin θ)

∂E0

∂z

���� ,

����
∂2E0

∂y2

���� ,

����
∂2E0

∂x2

���� , (1.110)

where we have used ∇.E = 0, that is valid far from the critical density (see Sec. 1.3.4) or
for a s-polarized wave. We can estimate the validity of the first inequality by assuming that
∂2E0/∂z2 = O(E0k2) and ∂E0/∂z = O(E0k), with the local wavenumber k(z) = kFS

�
�(z), so

that it now reads:

1 � 4π

�
cos2 θ − z/L− sin θ�

1− z/L
. (1.111)

Evaluating the coordinate z at which the right-hand-side of Eq. (1.111) is equal to 10 (for θ �= 0),
and injecting this value into the expression for the local wave angle at z with respect to the z-axis;
ϕ(z) = arctan(ky/kz(z)), we find that the paraxial approximation breaks down when the wave

47



Chapter 1. Linear theory of electromagnetic waves in plasmas

propagates at an angle of ∼ 10
◦ with respect to the paraxial axis. Even though formulations that

extend the validity domain of the PWE exist (such as the wide-angle PWE [64, 65]), its use is
usually limited to maximum wave angles of ∼ 30

◦. Such angles are bound to occur in plasmas
with linear (or exponential) density profiles obtained when considering laser interactions with solid
targets. Furthermore, the paraxial wave equation remains numerically costly when considering
large plasma volumes and long temporal duration. Consequently, the paraxial approximation is
not the method of choice for the description of laser beam propagation at hydrodynamic scales1.

1.3.4 The scalar wave equation in inhomogeneous and collisional plasma

In the general case of wave propagation in a collisional plasma, at any angle with density
inhomogeneities, and up to the critical density, the approaches presented in the previous sections
are not always valid. Specifically, the wave equation involves an additional term (∇(∇ ln �.E))
that couples the various components of the vector field. The latter is often neglected or omitted,
thus reducing the problem to a scalar wave equation, because (i) this additional term is difficult to
treat and (ii) the literature is rich with methods and solutions for dealing with scalar waves. As an
example, the homogeneous scalar Helmholtz equation is the basis of the widespread Geometrical
Optics method, and also of Complex Geometrical Optics (these are presented in the following
Chapter).

Assuming that the typical length scale variation of the electric field is λ, we can write
�E = O(E/λ2

), k2FS�E = O((2π)2E/λ2
) and ∇(∇ ln �.E) = O((E/λ)(∇�/�)). The ∇(∇ ln �.E)

term can be neglected compared to the others if the dielectric permittivity of the medium vary
slowly compared to the length over which the electric field vary in space. A necessary (but not
sufficient) condition can be expressed as:

����
∇�

�

���� �
8π

λ
, (1.112)

which is similar to the restriction used in the WKB approximation (1.88). Considering a medium
with a linear density variation, as presented in Sec. 1.3.2 and assuming νIB � ω, it can be shown
that this assumption is valid at the turning point of the wave, but not close to the critical density
(in cases where θ = 0).

In the framework of the Paraxial Complex Geometrical Optics method presented in the
following Chapter, the plasma parameters are considered to depend on the (y, z) coordinates,
and to be invariant in the x-direction. An explicit form of the ∇(∇ ln �.E) term in the Cartesian
coordinates reads:

∇(∇ ln �.E) =
∂

∂x

��
Ex

∂

∂x
+ Ey

∂

∂y
+ Ez

∂

∂z

�
ln �

�

+
∂

∂y

��
Ex

∂

∂x
+ Ey

∂

∂y
+ Ez

∂

∂z

�
ln �

�

+
∂

∂z

��
Ex

∂

∂x
+ Ey

∂

∂y
+ Ez

∂

∂z

�
ln �

�
. (1.113)

1A notable exception is the modeling of the LPI in indirect-drive geometries, where the laser beams are
co-propagating at the laser entrance hole. The use of modern super-computers allows to model such interactions
with a PWE approach.
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Considering a dielectric function depending on 2 coordinates �(y, z), an electromagnetic wave
incident on the plasma with no k-vector component in the x direction stays confined in the (y, z)

plane. Assuming that the wave is s-polarized, i.e. its electric field reads E = Ex(y, z)ex, and
substituting for E and the dielectric function in Eq. (1.113), it is straightforward to see that
∇(∇ ln �.E) = 0. Consequently, the wave equation for the electric field can be reduced to a scalar
Helmholtz equation. In that context, the scalar wave approximation is valid anywhere in the
plasma (for ne ≤ nc). Note that in the case of p-polarized waves, the condition for validity of the
scalar wave equation is more complex, related to necessary conditions such as Eq. (1.112) that
break down near the critical density. As such, reduced propagation models based on the Hemholtz
equation are unable to describe p-polarized waves. In the framework of PCGO, presented in Ch.
2, this shortcoming is addressed by using a dedicated resonant absorption model described in Sec.
5.3 and validated in Sec. 6.1.

1.4 Longitudinal waves in plasmas

The presence of free charge carriers in the plasma allows the existence and propagation of so-called
longitudinal waves; electrostatic perturbations that only involve the electric field component
longitudinal to their propagation direction. These waves exclusively exist inside the plasma and
are either excited from instabilities or from their coupling with external electromagnetic waves. In
general, the associated longitudinal dielectric permittivity depends on the contribution from the
species α in the plasma; �L = 1 +

�
α δ�L,α [66], and according to (1.78), the dispersion relation

of the wave reads �L = 0. We briefly detail in this section the characteristics of Electron Plasma
Waves (EPWs) and Ion Acoustic Waves (IAWs), plasma eigenmodes involved in parametric
instabilities.

1.4.1 Electron Plasma Waves

EPWs, also called Langmuir waves, correspond to the high frequency response of the plasma to
the longitudinal field. Considering that ions respond slowly to high frequency modulations of
the electric field, due to their high mass, their contribution to the local charge density can be
neglected and the ions are considered as a stationary and homogeneous fluid. Formally, the high
frequency assumption allows to define mi → ∞, so that δ�L,i = 0, and to assume that the phase
velocity of the wave ω/k is much larger than the electron thermal velocity vT,e (where as usual, ω
is the frequency of the wave and k = |k| its wavenumber). According to Eq. (1.78) this wave has
a longitudinal polarization and its electrostatic field obeys the Gauss law for the charge density:

∇.E = − e

�0

�
f1
e d

3v , (1.114)

where f1
e is a perturbation to the Maxwellian distribution function, as defined in Sec. 1.1.2.

Assuming that the plasma is close to thermal equilibrium, �L can be estimated in Fourier space
from Eq. (1.114) and from the linearized Vlasov-Fokker-Planck equation [66]:

�L(k,ω) = 1 +
e2

k2�0

�
1 + ı

νei
ω

��
k.∇pfM

e

ω + ıνei − k.v
dp . (1.115)
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Expanding this expression in Taylor series around kvT,e/ω � 1 and νei/ω � 1, we obtain:

�L(k,ω) = 1 + δ�L,e = 1−
ω2
pe

ω2

�
1 + 3

k2v2
T,e

ω2
− ı

νei
ω

�
. (1.116)

The dependence on k of �L implies that the plasma is spatially dispersive for the EPWs. Noting
that this dependence vanishes for a cold fluid with vT,e = 0, we see that this is a purely kinetic
effect arising from the thermal motion of electrons. The dispersion relation is then obtained by
solving �L = 0, which gives:

ωEPW(k) = ±ωpe

�
1 +

3

2
k2λ2

De

�
− ı

2
νei , (1.117)

with λDe = vT,e/ωpe is the electron Debye length and the ± sign corresponds to two waves
propagating along ±k. The EPWs are damped due to the electron-ion collisions with a rate
νEPW,c = νei/2. In addition, wave damping also occurs in collisionless media with a damping
rate [36]:

νEPW,L

�(ωEPW)
= −

√
π
�(ωEPW)

3

k3

�
me

2kBTe

�3/2

exp

�
−�(ωEPW)

2me

2k2kBTe

�
, (1.118)

that is the so-called Landau damping, that arises from a wave interaction with the resonant
particles of velocity close to the phase velocity of the wave. The Landau damping dominates
for waves with a relatively small phase velocity ω/k ∼ (3-5)vT,e, while the collisional damping
dominates for ω/k ≥ 10vT,e. Additionally, the Landau damping prevents the waves to exist for
ω/k ≤ vT,e.

As the phase velocity of the plasma waves is smaller than c, electrons can be trapped in the
EPW and be accelerated. They acquire an energy that roughly corresponds to the kinetic energy
associated with the wave’s phase velocity, mαv2ph/2. Considering the condition for the existence
of EPWs, that is ω/k > vT,e, trapped particles can reach energies much higher than the plasma
temperature. As such, these electrons are termed supra-thermal. In certain conditions, the EPW
can cease to exist due to so-called wave-breaking processes, thus liberating in the plasma the
supra-thermal electrons. For that reason, any LPI process that excites EPWs can potentially drive
supra-thermal electrons in the plasma and is considered as a pre-heat concern in ICF, typical
supra-thermal energies ranging from the keV to a few hundred keVs.

1.4.2 Ion Acoustic Waves

Contrary to EPWs, IAWs are low frequency waves with ω � ωpe. In general, these waves exist
in the interval of phase velocities vT,e � ω/k � vT,i, so that both the ion and the electron
susceptibilities contribute in the expression of the dielectric permittivity. The ion contribution to
the dielectric permittivity, δ�i,L, can be computed similarly to δ�L,e in the case of EPWs because
ω/k � vT,i. The latter thus reads:

δ�L,i = −
ω2
pi

ω2

�
1 + 3

k2v2
T,i

ω2

�
, (1.119)
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where ωpi =

�
Z2e2n0

i
/mi�0 is the ion plasma frequency. Given that ω/k � vT,e, the dependence

on ω can be neglected in the expression for δ�L,e and Eq. (1.115) gives:

δ�L,e ≈
mee2

k2kBTe�0

�
fM

e d
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1

k2λ2
De

, (1.120)

so that the dispersion relation �L = 0 for the IAWs reads:

1 +
1

k2λ2
De

−
ω2
pi

ω2

�
1 + 3

k2v2
T,i

ω2

�
= 0 , (1.121)

for which a solution is:
ω2
IAW(k) =

k2c2s
1 + k2λ2

De

+ 3k2v2T,i , (1.122)

with cs =

�
ZkBTe/mi the ion acoustic velocity. This dispersion relation behaves differently

depending on the value of k2λ2
De

. For k2λ2
De

� 1, the dispersion of the IAW is weak and the phase
velocity of the wave is close to its group velocity ω/k ≈ cs. The IAW in this limit corresponds
to quasi-neutral oscillations of the plasma density, associated with a weak electric field. These
waves can only exist in a plasma where ZTe � 3Ti. For kλDe � 1, the waves are termed Ion
Plasma Waves and correspond to charge oscillations associated to the ions.

The damping of IAWs originates from ion-ion collisions νIAW,c and from Landau damping
νIAW,L on electrons and ions. When the ion-ion collision frequency is small, i.e. νii � ωIAW, the
damping rates read:

νIAW,c =
v2
T,i

νii

2c2s
, (1.123)
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π
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�
ωpi

ωpe
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exp[−v2s/2v
2
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�
, (1.124)

where vs =
�

c2s + 3v2
T,i

and the Landau damping is constituted of contributions from the electrons
and the ions. For ZTe/3Ti < 10, one must also consider the electron-ion collisions in the expression
for the collisional damping rate (in the case where Te � Ti, the wave is simply a neutral accoustic
wave and not an IAW). Note that considering the domain of existence of the IAWs, that is
vT,e � ω/k � vT,i, the latter cannot accelerate electrons to supra-thermal velocities and as such,
parametric instabilities that couples exclusively with IAWs (such as SBS) do not constitute a
preheat concern in ICF.

1.5 Parametric Instabilities in plasmas

The theory of electromagnetic waves in plasmas presented in Secs. 1.2 and 1.2 is focused on
the linear phenomena of wave propagation and collisional absorption. As mentioned in the
introduction, nonlinear wave-plasma couplings appear at high values of the interaction parameter
Iλ2, most prominently the so-called parametric instabilities.

In classical mechanics, parametric instabilities designate a class of instabilities provoked by

51



Chapter 1. Linear theory of electromagnetic waves in plasmas

the periodic perturbation in time of the parameters defining the eigenmodes of a stable system
that is described around its equilibrium state in the approximation of small perturbations. In
plasmas, the parameters of the system depend not only on the time but also on the space, which
leads to the existence of two main classes of parametric instabilities; decay parametric instabilities
and modulation parametric instabilities. The former is a resonant instability where a wave decays
into two eigenmodes of the system, while the latter is a non-resonant instability that couples two
waves through plasma density modulations.

In the context of laser plasma interactions, the decay parametric instabilities notably include
the processes of Stimulated Raman Scattering (SRS), Stimulated Brillouin Scattering (SBS) and
Two Plasmon Decay (TPD), while modulation parametric instabilities are at the origin of the
filamentation and self-focusing instabilities. In the shock-ignition ICF scheme, as well as in ICF
in general, SRS, SBS and TPD are primary sources of disruption of the implosion. Notably, SRS
and TPD are potential pre-heat concerns, while SBS affects the laser drive symmetry. We describe
in this section the basic principles of parametric systems in continuous media, restricted to the
decay parametric instabilities, with the aim of giving some hints about the principal regimes
under which SRS, SBS and TPD operate in ICF. Those principles are applied to the derivation
and validation of PCGO-based CBET in Secs. 4.2 and 4.1, and to the definition of hot electron
sources from SRS and TPD instabilities in Sec. 5.4.

1.5.1 Generalities on decay parametric instabilities

Decay parametric instabilities are a class of parametric instabilities that resonantly couple three
waves through the wavenumber and frequency matching conditions:

ω0 = ω1 + ω2 ,

k0 = k1 + k2 , (1.125)

where ω is a frequency and k a wavenumber, the 0 subscript indicates the mother wave and the 1
and 2 subscripts the daughter waves. In addition, each wave α satisfies its own dispersion relation
Dα(ωα,kα) = 0. Here D = �L in the case of longitudinal plasma waves and D = k2 − ω2�/c2 in
the case of transverse electromagnetic waves. It can be shown that a necessary condition for the
three-wave coupling to produce unstable solutions is �ω1,2 > 0, which implies that ω0 > ω1,2.
That is the frequency of a mother wave is higher than the frequencies of daughter waves. In
general, the mother wave corresponds to an electromagnetic wave, and the daughter waves are
either electromagnetic or plasma waves. The waves are assumed to be of the form:

Aα(r, t) = aα(r, t) exp (ıkα.r− ıω�
α(k0)t) + c.c. , (1.126)

where ω�
α designates the real part of the solution in ω of Dα(ω,kα) = 0, and the aα amplitudes

are described in the Slowly Varying Envelope Approximation in time and space. The evolution
equation for the slowly varying amplitudes read [36]:

�
∂

∂t
+Vg0.∇+ ν0

�
a0(r, t) = −γ0a1a2 ,
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�
∂

∂t
+Vg1.∇+ ν1

�
a1(r, t) = γ0a0a

�
2 ,

�
∂

∂t
+Vg2.∇+ ν2

�
a2(r, t) = γ0a0a

�
1 , (1.127)

where Vgα and να are the group velocity and linear damping rate of wave α, and γ0 is the coupling
contant. In this system of equations, the daughter waves describe the eigenmodes of the plasma
when no mother wave is present, while the mother wave modulates the plasma parameters.

The temporal SVEA can be expressed as:
����
1

aα

∂aα
∂t

���� � min(ω1,ω2) . (1.128)

It is satisfied if γ0 � min(ω1,ω2). Moreover, much less stringent conditions can be obtained when
the group velocity of one of the daughter waves is very small, e.g. |Vg1| � |Vg2|. The regime of
parametric instability where the SVEA is valid is called the weak coupling regime, while it is
otherwise referred to as the strong coupling regime. For simplicity, we limit ourselves to the weak
coupling regime.

The solutions described by the system of equations (1.127) can be regrouped in three categories
depending on their stability.

• (I) The system is unstable if it possesses at least one unstable eigenmode (i.e. with a
positive imaginary part), in which case the initial plasma perturbations grow exponentially
in time as ≈ exp γt (with γ being a temporal growth rate). This is the absolute regime of
the instability.

• (II) The system is stable in the sense that it does not possess any unstable eigenmode.
However, the initial perturbations can grow along their propagation direction, in which case
the system is said to present spatial amplification and the daughter waves amplitudes grow
as ≈ expKx (with K being a spatial growth rate). This is the convective regime of the
instability.

• (III) The system does not present any unstable eigenmode and does not have the property
of spatial amplification, in which case it is stable.

Depending on the strength of the coupling constant γ0, there are several sets of conditions
for the parametric system to respect in order to present convective or absolute instability, which
principally stem from (i) inhomogeneity of the medium, (ii) finite length of the interaction
zone and (iii) laser incoherence. We first discuss the convective and absolute instabilities in an
infinite homogeneous plasma, and then adress the first two conditions. The mathematical results
presented in the subsequent sections are described in more details in [67, 68, 69, 70, 71, 72, 73,
74].

In both cases of convective and absolute instabilities, the exponential growth of the instability
(in time or in space) can be limited by nonlinear saturation mechanisms which act to stop the
growth of the daughter waves amplitudes. Amongst these saturation mechanisms we note: (i) the
pump depletion, that is simply a decrease of the mother wave amplitude as it communicates its
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energy to the daughter waves and (ii) kinetic effects that increase nonlinearly the damping rates
να or destroy the resonance conditions (1.125). These saturation mechanisms are subject of the
nonlinear theory of parametric instabilities. The aim of this section being to give an introduction
to parametric instabilities, we limit our description to the linear theory and to phenomena of
wave de-phasing.

1.5.1.1 Interaction in a homogeneous medium

The analysis of instabilities in a homogeneous medium was done by Bers and Briggs [75], who
derived a general criteria for an instability. The parametric instabilities in the convective or
absolute regimes are described in Refs. [36, 67, 68, 76, 77, 78, 79, 80]. The principal results are:

• In an infinite medium, the system is stable in the sense of (III) if it satisfies the inequality:

γ0 < γth =
√
ν1ν2 . (1.129)

• The system is unstable in the absolute sense if:

Vg1Vg2 < 0 , (1.130)

γ0 > γabsth =

�
|Vg1Vg2|

2

�
ν1

|Vg1|
+

ν2
|Vg2|

�
, (1.131)

where in this 1D analysis (along the x axis), the group velocities are defined by Vg,i = Vg,i.ex.
These conditions define the weak damping limit.

• In the γth < γ0 < γabsth domain with Vg1Vg2 < 0, the instability is in the convective regime.
These inequalities define the strong damping limit. Furthermore, for parametric systems
with Vg1Vg2 > 0 and γth < γ0 the instability is in the convective regime in the entire domain.

1.5.1.2 Interaction in an inhomogeneous medium

The resonance conditions for a given pair of daughter waves can be fulfilled in one point, in which
case the instability is localized in space. This can notably occur when the plasma parameters
(density, temperature...) vary in space, so that the resonance conditions (1.125) may be satisfied
only on a fraction of the system length (keeping in mind that in that case the local dispersion
relations Dα(ωα, kα(x)) also depend on the spatial variable).

It is convenient to write the amplitudes (in 1D):

aα = âα exp

�
ı

�
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kα(x
�
)dx�

�
, (1.132)

so that the parametric system reads:
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â0(x, t) = −γ0â1â2 exp
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where the phase matching parameter ∆k(x) = k0(x)− k1(x)− k2(x) and it was assumed that the
resonance point ∆k(xr) = 0 is at xr = 0. The phase matching parameter can be expanded as a
power series around the resonance point xr = 0:

∆k(x) =
�

n=1

xn

n!

�
∂(n)∆k(x)

∂x(n)

�

x=0

. (1.134)

Two typical types of phase matching profiles are considered: a linear profile where this expansion
is kept at the order 1, and a parabolic profile, where the expansion is kept at the order 2 and the
first order term ∆k� is zero. Main ideas of parametric instabilities in linear and parabolic profiles
were first formulated by M. N. Rosenbluth [76] based on preliminary works from Refs. [81, 82].

Assuming that the coupling equations can be satisfied onto the resonance width ∆kr, the
condition |∆k(x)| ≤ ∆kr defines a length Linh on which the coupling relations are satisfied. It
can be shown, through a temporal Laplace transform of the system of equations (1.133) that in
the weak and strong damping limits, respectively:

∆kabsr � 2γ0�
|Vg1Vg2|

, (1.135)

∆kconvr � max

�
νi

|Vgi|

�
, (1.136)

where it was assumed in ∆kconvr that the system is far from the convective threshold, γabsth �
γ0 < γabsth . Using these expressions, it can be shown that the length onto which the resonance is
satisfied reads (for a linear phase matching profile):

Labs
inh,lin � 4γ0�

|Vg1Vg2|
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,
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. (1.137)

In this regime, there is not absolute parametric instability for any value of γ0 and any sign of Vg1Vg2.
In contrast, the spatial amplification is allowed for γ0 > γth. In the weak damping limit, the
spatial growth rate is |Kmax| = γ0/

�
|Vg1Vg2| over a length scale Labs

inh,lin. In the strong damping
limit and far from the threshold, the spatial growth rate is |Kmax| = γ20/|Vg1Vg2max(νi/|Vgi|)|

over a length scale Lconv
inh,lin.

1.5.1.3 Finite length interaction in an inhomogeneous medium

Combining the effects of inhomogeneities to a finite length of the interaction L, it can be shown
that [83]:

• (I) The absolute instability can exist only if (i) Vg1Vg2 < 0 and γ0 > γabsth , and (ii)
Labs
eff = min(L,Labs

inh) > π
�

|Vg1Vg2|/(2γ0), where it is assumed that the phase matching
profile exhibits a local extremum.
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J! ∝ !ne/ne E0 

Transverse scattered
 wave Es 

Ponderomotive beating
∇E0 Es*

Figure 1-1 – Nonlinear couplings at the origin of the SBS (for the IAW) and SRS (for the
EPW) instabilities.

• (II) The parametric system presents a spatial growth when it is not unstable with respect to
(I), and γ0 > γth. The amplitude of the daughter waves grow in expG with G � |Kmax|Leff .
In the convective regime in the weak damping limit (γ0 > γabsth and Vg1Vg2 > 0):

Kmax = γ0/
�
|Vg1Vg2| , (1.138)

Leff = Labs
eff , (1.139)

and in the convective regime in the strong damping limit and far from the threshold
(γabsth > γ0 � γth):

Kmax =
γ20

|Vg1Vg2|max(νi/|Vgi|)
, (1.140)

Leff = Lconv
eff = min(L,Lconv

inh ) . (1.141)

1.5.2 Most unstable modes of the principal instabilities

1.5.2.1 Stimulated Raman Scattering

The Stimulated Raman Scattering (SRS) is a parametric instability resulting from a resonant
coupling of a high amplitude light wave with an Electron Plasma Wave (EPW) and a scattered
light wave. The coupling relations (1.125) read:

ω0 = ω1 + ωEPW , (1.142)

k0 = k1 + kEPW , (1.143)

where the 1 subscript indicates the scattered light wave. Given that the minimum frequency of an
EM wave in a plasma is ωpe (1.57), it is straightforward to see that Eq. (1.142) implies ω0 ≥ 2ωpe,
that is ne ≤ nc/4: the SRS instability can only occur below (or at) the quarter critical density.

The physical mechanism of the SRS instability coupling is summarized in Fig. 1-1. A
high amplitude transverse EM wave propagating in a plasma where there is an electron density
perturbation δn/n0 originating from an EPW produces a non linear current Jδ. This effect can
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be seen by considering a density of the form ne = n0(1 + δn/n0) when expressing the plasma
dielectric susceptibility, through the computation of the polarization current, Eq. (1.44). Adding
this non linear current as a source term in the Maxwell’s equations produces a transverse electric
field E1 at the shift frequency ω1 = ω0 − ωpe. The beating of the two EM waves E0 and E1

contributes to the local ponderomotive force, proportional to ∇E0E�
1 , which expels electrons from

regions of high intensity gradients. The ponderomotive beating of the mother wave and the
daughter wave oscillates at the plasma frequency and reinforces the initial density perturbation
δn/n0 if the coupling relations (1.142) and (1.143) are satisfied.

The scattered wave may be excited in any directions with respect to the mother wave,
although the sidescattering modes quickly escape from the interaction zone in inhomogeneous
media. Considering the most unstable configuration, with the polarization vector of the incident
wave orthogonal to the plane (k0,kEPW) and ne � nc, the coupling coefficients for the forward
and backward scattering modes read [36]:

γforward0,SRS ≈ ω0

2

�
ne

nc

�3/4 �vosc
c

�
, (1.144)

γbackward0,SRS ≈ ω0

�
ne

nc

�1/4 �vosc
c

�
, (1.145)

where vosc is the quiver velocity of the electrons in the mother wave electric field, written in the
Fourier convention (with our notations: vosc = eE0/(2meω0)). According to these relations, the
backward SRS can be anticipated to be faster growing than the forward SRS, as the former has a
higher coupling constant.

The damping of the scattered wave depends on electron-ion collisions, and is related to
the collisional absorption coefficient derived in Sec. 1.2.5 by 2ν1 = νEM1 ≈ νIBω2

pe/ω
2
1, where

the frequency of the scattered wave depends on the resonance density and is given by ω2
1 =

ω2
0(1−

�
ne/nc)

2. As detailed in Sec. 1.4.1, the damping rate of the EPW νEPW is the sum of a
contribution from collisional damping νEPW,c = νei/2 and a contribution from Landau damping
νEPW,L. For densities and temperatures of the order of ne/nc � 1/10, Te � 1 keV, the EPW
wave number is k2λD < 0.25 and the collisional damping is larger than the Landau damping.
This corresponds to the collisional regime. Using these expressions and the above values of the
coupling constant, we can obtain the intensity thresholds for the most unstable configuration for
the convective forward and backward SRS instability in the collisional regime and for ne � nc

[36]:

(I14,W/cm2λ2
0,µm)

forward
th,SRS = 1.61× 10

−4

�
ne

nc

�3/2
�
1− ne/nc lnΛIB lnΛeiZeff

λ0,µmT 3
e,keV

, (1.146)

(I14,W/cm2λ2
0,µm)

backward
th,SRS = 4.1× 10

−5

�
ne

nc

�5/2
�
1− ne/nc lnΛIB lnΛeiZ2

eff

λ2
0,µmT 3

e,keV(1−
�
ne/nc)

2
. (1.147)

For moderate Z plasmas, 351 nm wavelength lasers, and for densities well below the quarter
critical density, the threshold for backward scattering is lower than that for forward scattering.

The above intensity thresholds are given for a homogeneous plasma and are valid well below
the quarter-critical density, point at which the SVEA breaks down as the scattered wave is
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excited close to its own critical density. Consequently, the effect of the inhomogeneity was studied
separately in the two subdomains of ne < nc/4 and in the vicinity of the quarter critical density.

• (i) Assuming the density profile in the region below the quarter critical density is monotonous
(as is the case in ICF), we have seen in Sec. 1.5.1.2 that the absolute SRS instability cannot
exist. However, a coupling between forward and backward SRS through a common EPW
can lead to the existence of an absolute instability (for both modes) [84, 85].

• (ii) In the vicinity of the quarter critical density, the absolute threshold for the SRS
instability is [86, 87, 88]:

vosc
c

>
1

2
(k0Lnc/4)

−2/3 . (1.148)

It can be presented in terms of the local laser intensity as:

(IPW/cm2)
inh,nc/4
abs,SRS =

�
10

−7Nnc/4�0c
5m2

e(2π)
2/3

2e2

�
(λ0,µmL2

nc/4,µm)
2/3

� 102(λ0,µmL2
nc/4,µm)

−2/3 , (1.149)

with the gradient scale length defined as Lnc/4,µm = [(1/n)dn/dx]n=nc/4. The inhomoge-
neous threshold for the absolute SRS instability at the quarter critical density for typical
laser plasma interaction parameters is 2.6× 10

14W/cm2, considering a typical gradient scale
length of 150 µm and λ0=351 nm.

Comparing the thresholds for the convective SRS sidescattering below nc/4, the absolute SRS
below nc/4 and absolute SRS at the quarter critical density, it can be shown that for long scale
length plasmas (that corresponds to the case of ICF) it is the latter that possesses the lower
threshold [69, 89]. Furthermore, experimental studies of the angular distribution of the scattered
wave have shown that it is mainly the backward SRS that dominates over the other scattering
directions [90, 91, 92], in accordance with the theory.

1.5.2.2 Stimulated Brillouin Scattering

The Stimulated Brillouin Scattering (SBS) instability is conceptually similar to the SRS instability,
but the coupling of the incident and scattered light waves operates through an Ion Accoustic
Wave (IAW) instead of an EPW. The coupling relations (Eqs. (1.125)) read:

ω0 = ω1 + ωIAW , (1.150)

k0 = k1 + kIAW . (1.151)

The light waves are still coupled to an electron density fluctuations, although the latter corresponds
to a low frequency IAW. Contrary to the SRS instability, since the frequency of the IAW ω � ω0,
SBS can occur at any point below the critical density. This also implies that the scattered light
frequency is very close to the incident light wave frequency.

The coupling of the incident and scattered EM waves is most strong when their electric
fields are parallel and orthogonal to the scattering plane (k0,kIAW). The group velocities of the
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daughter waves are given by:

Vg1 = k1c
2/ω1 � Vg0 = N0c , (1.152)

Vg2 =
3v2

T,i
+ (λ2

D
ω2
pi
/(1 + k2IAWλ2

De
)
2
)

�
3v2

T,i
+ (λ2

D
ω2
pi
/(1 + k2IAWλ2

De
))

≈
�
(ZTe + 3Ti)/mi , (1.153)

where we assumed kIAWλDe � 1 in the right-hand-side of Eq. (1.153), N0 is the plasma index of
refraction N seen by the mother wave, kIAW = |k0 − k1| � 2k0 sin θ with θ the angle between
k0 and k1, and vT,i is the ion thermal velocity. In the limit |k2λD| � 1, Vg2 is close to the ion
acoustic velocity cs =

�
(ZTe + 3Ti)/mi.

Finally, the coupling constant for the SBS instability in the most unstable case and for
|k2λD| � 1 reads [93, 94, 78, 69, 88, 95, 79, 96]:

γ20,SBS = ω2
pi

Vg0

2cs

�vosc
c

�2
. (1.154)

The damping rate of the daughter EM wave is related to the collisional absorption coefficient
derived in Sec. 1.2.5; 2ν1 = νIB. As is detailed in Sec. 1.4.2, the damping rate of the daughter
IAW is the sum of contributions from the collisional and Landau damping. Considering the
variety of damping regimes, it is useful to describe the results as a function of the normalized
damping ν̂IAW = νIAW/ωIAW, this quantity being of the order of 10−2 for a cold plasma and 10

−1

for a typical coronal plasma.
Recalling that the convective threshold is given by γ20 > ν1ν2, a criterion can be derived on

the interaction parameter I14λ2, that yield in practical units:

(I14,W/cm2λ2
0,µm)th,SBS = 1.17× 10

−2
�
1− ne/nc

ne

nc

lnΛIBZeff ν̂IAW
λ0,µm

�
Te,keV

�
1 +

3Ti

ZTe

�
. (1.155)

For a Te = ZTi = 1 keV coronal plasma with Z = 6, ne = 0.1nc, ν̂IAW = 0.1 and lnΛIB = 10,
the threshold is of 1.9 × 10

13 W/cm2 for λ0 = 351 nm, which is rather low for current laser
standards. Experiments at 351 nm in 1 ns pulses at 1×10

15 W/cm2 have demonstrated integrated
backscattered levels from SBS of the order of 5− 10% [97, 98]. These relatively low values are
explained by the role of nonlinear saturation mechanisms, and competition with other instabilities.

Although the SBS instability is rather insensitive to inhomogeneities of the plasma density and
temperature [36], it is not the case for velocity gradients. The plasma flow shifts the frequencies
of the mother and daughter EM waves by the Doppler effect. The particular case of SBS in
presence of a constant velocity gradient (in the framework of CBET) is studied in Sec. 4.2.

1.5.2.3 Two Plasmon Decay

The Two Plasmon Decay (TPD) instability results from the coupling of an incident transverse
wave with two EPWs (or plasmons). The coupling relations (Eqs. (1.125)) read:

ω0 = ωEPW,1 + ωEPW,2 , (1.156)

k0 = kEPW,1 + kEPW,2 , (1.157)

59



Chapter 1. Linear theory of electromagnetic waves in plasmas

which notably implies ω0 � 2ωpe, i.e. the instability is localized in the vicinity of the quarter
critical density. The coupling constant for the TPD can be obtained by linearizing the dispersion
relations in the vicinity of their resonance:

γ20 =
(kEPW,2.e0)2

4

�
k2EPW,1 − k2EPW,2

kEPW,1kEPW,2

�2

v2osc , (1.158)

where e0 is the polarization vector of the transverse mother wave. It can be shown that the most
favorable configuration is that in which k1 and k2 lie in the (e0,k0) plane. In that configuration,
the most unstable geometry (assuming |kEPW| � |k0|) is that where kEPW,1 is at an angle of π/4
with respect to k0 and kEPW,2 at an angle of 3π/4 with respect to k0. In that case the coupling
constant reads [99, 100, 77]:

γ20,TPD =

√
3ω0

4

vosc
c

. (1.159)

Using the Landau and collisional EPW damping rates νIAW,L and νIAW,c expressed in Eqs. (1.117)
and (1.118), the convective threshold for the TPD reads:

(I14,W/cm2λ2
0,µm)th,TPD = 1.212× 10

−5



 lnΛeiZeff

λ0,µmT 3/2
e,keV




2�

1 +
νIAW,1L

νIAW,1c

��
1 +

νIAW,2L

νIAW,2c

�
.

(1.160)
In the collisional regime, and for typical ICF conditions (Z = 6, lnΛei = 10, λ0 = 351 nm, Te = 1

keV), the threshold is 3× 10
14 W/cm2, which can be easily exceeded with current laser systems.

The TPD takes place at nc/4, region at which the plasma density is rarely homogeneous
in laser-solid interactions, and thus the effects of inhomogeneities must be accounted for. A
relatively accurate value for the inhomogeneous and absolute threshold reads [77]:

�
vosc
vT,e

�2

k0Lnc/4 > 3 . (1.161)

In terms of the local laser intensity the TPD threshold reads:

(IPW/cm2)
inh
th,TPD =

�
10

−4
12πNmec3�0

e

�
Te,keV

λ0,µmLnc/4,µm

� 4.43
Te,keV

λ0,µmLnc/4,µm
. (1.162)

It was shown in [77, 101] that the exact threshold depends also on the parameter β = 1.41NTe

/(I14,W/cm2λ2
0,µm), the former being lower for β < 1 and higher for β > 1. Considering the

typical laser systems employed in ICF, the parameter β is typically ∼ 3-4, that corresponds to
the right-hand-side in Eq. (1.161) close to the asymptotic value of 4.1. In that case, the intensity
threshold in the so-called high β regime becomes:

(IPW/cm2)
inh
th,TPD � 6.05

Te,keV

λ0,µmLnc/4,µm
. (1.163)

Considering the above laser and plasma parameters, the intensity threshold is of 1.2×10
14W/cm2,
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which is rather similar to the absolute SRS threshold at the quarter critical density.

1.5.2.4 Competition between nonlinear LPI processes

Given various spatial locations where the processes presented above occur, there is a geometrical
competition for the mother wave energy between parametric instabilities. As such, because
SRS can grow convectively before nc/4, it reduces the mother wave energy before the latter can
couple to EPWs at the quarter-critical density and drive the TPD instability. Consequently, for
a light wave incident on a plasma and initially above the TPD threshold, the SRS below the
quarter-critical density can prevent TPD from occurring altogether. Similarly, SBS can occur at
various locations in the plasma depending on local phase matching conditions, and may decrease
the strength of the mother wave needed for excitation of other instabilities. This is also valid
in the case of laser light absorbed by Resonant Absorption, which is geometrically affected by
nonlinear couplings occurring prior to the wave’s turning point.

1.5.2.5 Role of optical smoothing on parametric instabilities

The light intensity profiles produced by high power laser systems are deformed wavefront aber-
rations and nonlinear processes in amplifiers that cause statistical variations of the intensity in
the laser’s focal plane. These intensity fluctuations may exceed up to ∼ 5 times the mean laser
intensity. As such, parametric instabilities can develop in these regions even though the mean
beam intensity may be below their thresholds. Furthermore these laser intensity fluctuations
are not reproducible from shot to shot, partly because they are caused by the thermal noise in
laser amplifiers. Naturally, these intensity fluctuations are also detrimental for the symmetry
of target irradiation, seeding perturbations of the ablation front that may be amplified by the
ablative Rayleigh-Taylor instability during the acceleration and deceleration phases of the capsule
implosion [102, 103, 104, 105, 106, 107, 108], and reducing the yield of fusion reactions [109, 110,
46].

The occurrence of parametric instabilities in these high intensity regions can be amplified by
additional processes of laser self-focusing and filamentation. In the interaction regime of interest
here, self-focusing arises from a nonlinear modification of the local refractive index of the plasma
due to thermal and ponderomotive effects. As an example, the collisional absorption, proportional
to the laser intensity, heats the plasma on the beam axis more rapidly than on its low intensity
wings, thus increasing the on-axis plasma pressure and creating a local density depletion. The
beam then focuses on this axis as it would in a lens, thus increasing the local laser intensity and
hence the collisional absorption, and so on. When local self-focusing structures appear along the
propagation of a beam, stemming e.g. from local density inhomogeneities or from laser intensity
fluctuations, the beam undergoes the so-called filamentation process.

Considering the problematic of nonlinear LPI reduction and control of the focal spot intensity
profile, dedicated optical smoothing techniques have been developed. They aim at reducing the
size of characteristic intensity fluctuations (speckles) and moving them across the focal spot.
Controlling the vacuum intensity fluctuations is commonly achieved using Phase Plates [111] and
Polarization smoothing. These techniques allow to decrease the occurrence of high intensity spikes
by spatially de-phasing portions of the laser field in the focusing volume, thus creating small-scale

61



Chapter 1. Linear theory of electromagnetic waves in plasmas

interference patterns in the focal plane, and by superposing de-correlated interference patterns.
The resulting small-scale intensity statistics, termed speckle pattern, is well controlled and its
average intensity envelope is reproducible from shot to shot. Decreasing the growth rate of the
filamentation process and increasing the smoothness of the average intensity profile is achieved
by temporal smoothing techniques such as the temporal Smoothing by Spectral Dispersion and
Longitudinal Smoothing, which allow to move the speckle pattern in time. These techniques,
detailed in Sec. 3.1, decrease the growth rate of nonlinear LPIs by reducing and shifting in time
the high intensity regions of the beam, thus preventing these processes to reach a steady state.
Notably, the effect of SSD on the production of supra-thermal electrons by parametric instabilities
has been demonstrated in experiments presented in Refs. [112, 113]. This problem is studied in
Sec. 6.3.

1.6 Conclusions

We have presented the linear theory of electromagnetic waves in plasmas, highlighting the main
mechanisms of the linear laser-plasma interaction and using the kinetic theory to estimate the
plasma response. Several widespread methods for resolving the wave equation in inhomogeneous
plasmas were introduced, considering in particular the processes of collisional and resonant
absorption. The framework of the scalar Helmholtz equation has been introduced. The latter
is valid for arbitrary plasma configurations in the case of s-polarized waves. Considering its
relative simplicity compared to the full wave equation, it constitutes the starting point for reduced
propagation models used in large-scale hydrodynamic codes. Finally, we have presented the
longitudinal plasma modes and nonlinear couplings leading to parametric instabilities. Notably, we
introduced the most unstable modes of SRS, SBS and TPD using both theoretical considerations
and experimental observations.
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Chapter 2

Laser-plasma interaction modeling in
radiative hydrocodes

The description of laser beam propagation in a plasma in large-scale hydrodynamic codes relies on
reduced models compatible with the scales at play. This chapter is dedicated to the description
of such models and their implementation into the radiative hydrodynamic code Chic developed
at Celia. After recalling the governing equations resolved in radiative hydrodynamic codes and
briefly detailing the Chic code in Sec. 2.1, the derivation of the Geometrical Optics equations,
which constitute the background of the widespread Ray-Tracing (RT) method, is presented in Sec.
2.2. Given the inherent difficulties in estimating nonlinear LPIs using GOs, evoked in Sec. 2.2.4,
we present in Sec. 2.3 an adaptation to collisional plasmas and to a Lagrangian framework of a
beam-tracing method based on the Paraxial Complex Geometrical Optics (PCGO) equations.
The latter readily describes the intensity of Gaussian wave-fields and is employed throughout this
work. The PCGO and RT approaches are compared for the modeling of a nonlinear LPI, the
ponderomotive self-focusing, in Sec. 2.3.5.3.

2.1 Hydrodynamic description of plasmas

2.1.1 From kinetic theory to the fluid approximation

The kinetic theory of plasmas introduced in Sec. 1.1.2 allows to describe fine-scale phenomena
with a sufficient accuracy and is rather complete. However, it is costly in terms of numerical
computation. In general, it is only used for small plasma volumes and assuming a reduced
number of dimensions (in space and velocity). The complexity of the problem can be reduced
by considering situations where the mean free path of particles λmfp is much smaller than the
characteristic length scales of the plasma Lch, and the time between subsequent collisions ν−1 is
small compared to the characteristic time of the studied phenomena t−1. The kinetic timescale
ν−1 can be approached by the average electron-ion collision frequency νei presented in Sec. 1.1.2,
while the characteristic length scale depends on the electron mean free path λmfp,e = vT,e/νei.
These assumptions are valid for many processes at play in the physics of Inertial Confinement
Fusion, although there are specific cases where so-called non-local effects are important, notably
in terms of electron heat transport from the laser-plasma interaction and α-particle kinetics for
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the ignition and combustion of the hotspot fuel.
Under the conditions λmfp,e � Lch and ν−1

ei
� t, the plasma can be treated in a fluid

approach as a quasi-neutral gas. Although it is constituted of charged particles, the assumption of
quasi-neutrality is a good approximation because of the plasma screening effect presented in Sec.
1.1.2: for length scales longer than the Debye length and outside of boundary regions, plasmas
respond collectively to imposed electric fields or charge perturbations. This process is efficient
only if there are enough charges in the sphere of radius λD around the charge carrier. This can
be expressed as a condition on the number of electrons within the Debye sphere:

ND = ne

4

3
πλ3

D � 1 , (2.1)

where ND is called the plasma parameter. This will always be the case in the interaction conditions
considered here. Considering a gas of ions and electrons, the quasi-neutral assumption yields a
relation between the average ion and electron number densities:

Q = 0 = ne − Zni . (2.2)

The framework of hydrodynamic models applied to plasmas is that of scales λmfp,e � Lch and
ν−1
ei

� t, with ND � 1 and thus deviations from quasi-neutrality are small, i.e. δQ/ne � 1.
This allows to describe plasmas as a single fluid with two species of particles characterized by
Maxwellian distribution functions; electrons and ions, verifying the condition (2.2) but having
different temperatures.

2.1.2 Radiative Hydrodynamics

The single fluid, two temperature model is the basic framework for the study of ICF. It is
complemented with the radiative effects and laser-plasma coupling. Here we present the basic
elements of ICF radiative hydrodynamic codes by taking as an example the Chic code developed
at Celia. This code is used for the implementation of a new laser-plasma interaction model
presented in this thesis.

2.1.2.1 The Chic code

The plasma in the Chic code is treated as a quasi-neutral mixture of electrons and Ni ion species
obeying the fluid equations, and described by two different temperatures. The basic averaged
macroscopic quantities are defined as:

nimi =

Ni�

k=1

nkmk ,

ρm = neme + nimi ,

ρmum = nemeue + nimiui ,

ne = Zeffni ,

j = ene(ui − ue) ,
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Pm = Pe + Pi ,

�m = �e + �i ,

qm = qe + qi , (2.3)

where the i, e and m subscripts indicate ion species, electron species and mean species, respectively.
ρ is the mass density, u is the velocity, j is the current density, P is the plasma pressure, � is the
specific internal energy, q is the heat flux and it is assumed that |ui − ue| � c. The mean fluid
obeys the Euler equations, originating from the conditions of mass and momentum conservation:

∂ρm
∂t

+∇.(ρmum) = 0 , (2.4)

ρm

�
∂

∂t
+ um.∇

�
um = −∇Pm + Fext , (2.5)

where Fext represents external forces. Although the plasma is considered as a single fluid, ion and
electrons are treated separately in terms of energy balance, with separate temperatures Ti and
Te because the time of energy equilibration is comparable with the characteristic hydrodynamic
time of ICF conditions. In this two temperature approach, the equations expressing the energy
conservation read:

ρm

�
∂

∂t
+ um.∇

�
�e +∇.qe = −Pe∇.um − 2α

me

mi

CV,eνei(Te − Ti) + Wext ,

ρm

�
∂

∂t
+ um.∇

�
�i +∇.qi = −Pi∇.um + 2α

me

mi

CV,eνei(Te − Ti) , (2.6)

where CV,e = (3/2)nekB is the electron heat capacity, the latter species being treated as an ideal
gas, Wext represents the external electron power density source (or sink) term, and α ∈ [0; 1] is
a free parameter for the electron-ion coupling. The electron and ion heat fluxes qe and qi are
calculated from the Spitzer theory [114].

The external source term Wext and external force term Fext are computed by additional
packages that are specific to the processes meant to be studied. Radiative Hydrodynamic codes
resolve the fluid equations coupled with radiative transport modules. Those are completed with
Local Thermal Equilibrium (LTE) opacity tables and the hydrodynamic equations are closed
using tabulated Equation Of States (EOS) designed for various plasma regimes. In the particular
case of laser fusion studies, additional packages are often used, including the effects of magnetic
fields on electron thermal transport limitation or non-local models, thermonuclear burn and laser
propagation models. The structure of the Radiative Hydrodynamic code of the Celia laboratory,
Chic, is shown in Fig. 2-1.

These equations are resolved in a Lagrangian formalism, i.e. in a frame that is co-moving with
the fluid. In this description, collisional fluids are described by individual fluid parcels, which
spatial evolution is followed through time. Mathematically, this is equivalent to considering the
evolution of a field Q through its material derivative DQ/Dt, defined in an Eulerian formalism by
DQ/Dt = ∂Q/∂t+ (u.∇)Q. This approach simplifies the fluid equations and allows to correctly
describe flow discontinuities such as shocks, although it renders more complex the numerical
implementation of codes resolving these equations. Notably, in order to preserve the topology of
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Figure 2-1 – Main structure of the Chic code (adapted from [115]). The Ray-Tracing
package (purple) is the historical optical module implemented in the Chic code. The
green packages, related to the use of Complex Geometrical Optics, were added and
developed during the thesis work and are detailed in this document.

Lagrangian fluid meshes, the use of remapping and rezoning techniques are often required, such
as the Arbitrary Lagrangian Eulerian method, implemented in Chic. The mesh in the Chic code
is irregular and unstructured. The first term implies that neighborhood relations between cells are
not defined by storage arrangement in the computer memory (e.g. in vector or matrix form), but
defined by an irregular connectivity that requires the explicit storage of neighborhood information.
The second term means that the shape of mesh cells and the distance between neighbors change
with respect to time. It is important to note that in addition to the scale problems mentioned
earlier, the framework of unstructured and irregular meshes limits the description of the laser
propagation to the most basic formulations.

In radiative hydrodynamic codes, the external source term is usually decomposed between
various contributions:

Wext = Wrad + Wfus + WLPI , (2.7)

with Wrad the contribution from radiative transfer, Wfus the contribution from fusion reactions
and WLPI the source term from the laser-plasma interaction. The most widespread approach
to modeling the laser plasma interaction in hydrocodes is the Ray-Tracing model, based on
Geometrical Optics. The Ray-Tracing interfaces with the fluid equations via the collisional
absorption term Wcol such that WLPI = Wcol. The latter inverse Bremsstrahlung absorption term
modeled with Geometrical Optics is described in Sec. 2.2.2. The state of the modules implemented
in the Chic code at the beginning of this thesis is shown in Fig. 2-1, as red, yellow, blue and
purple insets. At this point, the external force term in Chic did not include any contributions, so
that Fext = 0, and the LPI module was a standard 3D Ray-Tracing package, indicated in purple
in Fig. 2-1. The latter describes the 3D laser propagation onto the 2D-axisymmetric or 2D-planar
mesh and includes the processes of refraction and inverse Bremsstrahlung.
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2.1.2.2 Addtional terms presented in this work

The work presented in this thesis concerns the addition of new physical LPI processes at the
hydrodynamic scale. As such, those are interfaced with the fluid equations through the source
terms WLPI and Fext = Fext,LPI. The various additional processes we present in this work are
decomposed as:

Fext,LPI = FPond , (2.8)

WLPI = Wcol + WRA + WHE , (2.9)

WHE = W TPD
HE + W SRS

HE + W RA
HE , (2.10)

where FPond is the ponderomotive force (see Sec. 2.4.1), Wcol is the inverse Bremsstrahlung laser
absorption (described here with the Paraxial Complex Geometrical Optics, as presented in 2.3.3.2)
and WRA is the contribution from the resonant absorption that does not accelerate hot electrons
(see Sec. 5.3). In addition to these processes, we account for the energy deposited by high energy
electron beams propagating in the plasma in WHE (see Sec. 5.1 for the propagation model). This
term is decomposed according to the laser-plasma interaction that generates the supra-thermal
electrons; W TPD

HE for the Two Plasmon Decay (see Sec. 5.4), W SRS
HE for the Stimulated Raman

Scattering (see also Sec. 5.4) and W RA
HE for the Resonant Absorption (see Sec. 5.3). It is important

to note that WLPI also contains information on instabilities that redistribute the laser energy.
This is notably the case of Cross Beam Energy Transfer and the backscattered energy flux from
SRS, that dynamically modify the intensity distribution. Those particular processes are presented
in Secs. 4.1 and 5.4.2, respectively. A summary of the physical processes we have added is given
in Fig. 2-1 as green insets.

2.2 Geometrical Optics-based Ray Tracing

2.2.1 Eikonal equation: the ray trajectory

The Ray-Tracing method relies on Geometrical Optics (GO) principles. The starting point of GO
is the Helmholtz equation written for a monochromatic laser wave and presented in Secs. 1.2.2
and 1.3.4:

�u(ω, r) + k2FS�(ω, r)u(ω, r) = 0 , (2.11)

where the wave dispersion and absorption are described via the frequency dependent relative
permittivity �(ω, r), composed of a real and imaginary part and modeled by:

�(ω, r) = ��(ω, r) + ı���(ω, r) ≈ 1− ne

nc

�
1 + ı

νIB
ω

�
, (2.12)

where nc is the critical density, ��(ω, r) is the real part and ���(ω, r) the imaginary part of the
relative permittivity, and the right-hand-side approximation was obtained by assuming νIB � ω.

In the most basic case of a homogeneous medium � = �(ω), the Helmholtz equation admits
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solutions in the form of a plane wave:

u(r) = A exp[ık.r] , (2.13)

where A is an amplitude. Building on this idea, the GO method relies on the description of
waves in smooth inhomogeneous media in the Slowly Varying Envelope Approximation (SVEA).
Assuming that the field amplitude varies slowly compared to the wave frequency, solutions to the
Helmholtz equation can be sought as almost-plane waves:

u(r) = A(r) exp[ıkFSψ
�
(r)] , (2.14)

where A(r) is an amplitude and ψ�
(r) is the eikonal, or optical path (with respect to the notations

employed in Sec. 1.3.1, we have ψ ≡
�
Ψdl). Because the Geometrical Optics deals with real-

valued fields and trajectories, it is intrinsically assumed that A and ψ� are real valued (hence
the notation for ψ�, to contrast with the case of the Complex Geometrical Optics developed in
Sec. 2.3.2.2 that involves an imaginary part ψ��). The validity of the SVEA requires that the
field amplitude A(r) and the eikonal ψ� vary slowly over the wavelength λL/(2πn�

) = c/ω. In the
framework of an almost-plane homogeneous wave, this is equivalent to:

|∇A| � kFS|A| , (2.15)

|∇kj | � kFS|kj | , (2.16)

|∇n| � kFS|n| , (2.17)

n�� � n� (2.18)

with kj the j-th component of the wavevector k = kFS∇ψ�, and the last assumption is equivalent
to considering weakly dissipative media in order to avoid rapid amplitude variations, as the field
attenuates in A ∝ A0 exp[−kFS

�
n��

dl] (see Secs. 1.2.5 and 1.3.2). Given the expressions for the
refractive indices in plasmas (Eqs. (1.67) and (1.68)), the assumption (2.18) does not hold in the
vicinity of the critical density surface, which is a strong handicap for the GO formulation.

In the general approach, the field amplitude A is expanded as a sum of Am field amplitudes
proportional to inverse powers of the dimensional parameter ıkFS. For the purpose of this
demonstration and following Sec. 1.3, we only keep the 0-th order term A0, noted A for simplicity.
Substituting the model of Eq. (2.14) into the Helmholtz equation yields an equation at various
orders in ıkFS:

A
�
(∇ψ)2 − ��

�
+

1

ıkFS

�
2∇ψ.∇A+A�ψ + kFS�

��A
�
+

1

(ıkFS)2
�A = 0 . (2.19)

By identifying the various terms in powers of (ıkFS)−1 we obtain three equations:

(∇ψ)2 = ��(r) , (2.20)

2∇ψ.∇A+A�ψ + kFS�
��A = 0 , (2.21)

�A = 0 , (2.22)
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Figure 2-2 – Geometrical Optics ray propagating in a plasma with a linear density profile
along the x direction, and constant density in the y direction.

where it was assumed that ��� � ��, in agreement with the SVEA. Equation (2.20) is called eikonal
equation and Eq. (2.21) is the zeroth-order transport equation. The eikonal equation (2.20) is
a nonlinear partial differential equation of the first order and belongs to the Hamilton-Jacobi
variety. Using the characteristics technique yields the Hamiltonian H of the system, consisting of
a particle of a unit mass moving in the potential 1

2�
�
(r):

H =
1

2

�
p
2 − c2��(r)

�
= 0 , (2.23)

where p = c∇ψ� is identified as the momentum of the ray. The characteristic system can be
written in a vector form in Cartesian coordinates:

dr

dτ �
=

∂H

∂(p)
,

d(p)

dτ �
= −∂H

∂r
, (2.24)

where τ � is the parametric variable of the system of a dimension of time. Using Eq. (2.23) yields
the ray equations in Hamiltonian form:

dr

dτ �
= p ,

dp

dτ �
=

c2

2
∇��(r) . (2.25)

The parametric ray coordinate τ � is related to the elementary arclength ds by dτ � = ds/(c
√
��),

where c
√
�� is the group velocity. This set of equations, that describes the trajectory of a ray,

constitutes the base framework of the RT method. Figure 2-2 illustrates the trajectory of a ray
propagating in a linear density gradient of the form �(x) = 1−x/L with a non-zero initial velocity
in the y direction. Injecting this form of � in the ray trajectory equation (2.25) and resolving for
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da
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Figure 2-3 – Illustration of the ray tube; a bundle of rays of infinitesimal initial cross-
section da0 that propagates from τ �0 to τ �, in a medium with a varying index from n�

0 to
n�.

the ray position rx and ry gives:

rx(τ) = − c2

4L
τ2 + vx0τ + rx0 , (2.26)

ry(τ) = vy0τ + ry0 , (2.27)

with rx0 and ry0 the initial ray position and vx0 and vy0 its initial velocity. This equation is a
parametric form of a parabola.

Finally, the phase of the ray reads:

ψ�
= ψ�

0 +

� τ �

τ �
0

�
��(r(τ̃ �))

� 1

2 dτ̃ � , (2.28)

where ψ�
0 is an initial phase and τ �0 is the initial parametric coordinate.

The numerical methods and algorithms employed for the resolution of the GOs equations in
the triangularized mesh cells of the Lagrangian hydrodynamic code Chic are detailed in App.
A.1.

2.2.2 Energy flux, ray tube and collisional damping

We have seen in the previous section that the trajectory of the ray is described by the eikonal
equation. Similarly, the evolution of the field amplitude is described by the zeroth-order transport
equation (2.21). It can be shown that the solution to this equation, expressed as a function of
the ray parametric coordinate τ �, reads [116]:

A(τ �) = A(τ �0)/
√
J exp

�
−kFS

2

� τ �

τ �
0

���dτ̃ �
�
, (2.29)

where the quantity J = n�
da/(n�

0da0) is the ray divergence. The geometrical meaning of the ray
divergence J is related to the change in cross-section da of an infinitely narrow bundle of rays,
from τ �0 to τ �. This narrow bundle of rays is termed a ray tube (see Fig. 2-3), its divergence being

70



2.2. Geometrical Optics-based Ray Tracing

caused by the refraction of the medium, so that J ultimately describes the decrease in intensity
due to the wave refraction. Although Eq. (2.29) describes the energy conservation inside of a ray
tube, it is important to note that it does not describe diffraction effects, nor does it define any
notion of ray width. We define the power P associated with the ray as:

P (τ �) =
1

2
c�0

�

S(τ �)
A2

(τ �)n�
(τ �)da , (2.30)

where S(τ �) is the cross-section of the ray tube at τ � (see Fig. 2-3). Integrating Eq. (2.29) over
da(τ �) and differentiating with respect to the ray parameter τ � yields the conservation of power
along the ray trajectory:

dP

dτ �
= −νEMνIB�ωP , (2.31)

where we have used ��� � �� and the EM wave damping rate is expressed by its formulation far
from the critical density (1.77). The right-hand-side term in the power conservation equation
represents the collisional absorption of laser beam energy by the process of inverse Bremsstrahlung
(IB). Note that this formulation of the damping is similar to what was derived in the WKB
approximation in Sec. 1.3.2. In order to model large aperture laser beams using Geometrical
Optics, bundles of rays are given an initial power distribution depending on the spatial power
profile that is aimed to be reproduced. The amount of energy absorbed by the plasma is the
integral of dP/dτ � over the trajectories of the rays in each mesh cell.

2.2.3 Summary of the Geometrical Optics framework

We have demonstrated several features of the Geometrical Optics formulation. Ray-Tracing
models implemented in hydrocodes are based on GO, and as such they possess the following
capabilities and limitations;

• they describe a refraction of the wave field,

• account for a weak collisional absorption by the inverse Bremsstrahlung,

• are limited to weakly absorptive media �� � ���, in order to (i) retain the validity of the
SVEA and (ii) keep the eikonal equation (2.20) real-valued,

• do not describe wave diffraction1,

• do not describe the evolution of the transverse amplitude profile, i.e. there is no notion of
the beam width,

• are not well suited to model temporal and spatial laser smoothing, because the needle-like
description cannot model realistic intensity distributions,

• the needle-like nature of RT rays is incompatible with the notion of ray intensity, as the
wavefront surface does not exist. Similarly, because the trajectory of different RT rays

1Although the diffraction process can be mimicked by spreading the initial conditions for the ray trajectories, as
is done in many hydrodynamic codes using the RT model, we show in Sec. 2.3.5.3 that this approach mis-estimates
the diffraction process in inhomogeneous media.
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are independent, estimating in plasma the local direction of the Poynting vector from
bundles of ray trajectories is not straightforward and requires potentially complex numerical
algorithms.

The RT method, without any notion of beam intensity, is relatively well suited for describing the
linear inverse Bremsstrahlung absorption at moderate laser intensity regimes and for interactions
with warm targets. This is not the case for other laser-plasma interactions, i.e. nonlinear LPIs,
for which knowledge of the laser intensity is the key factor.

2.2.4 Estimation of the intensity field

There are several ways of estimating the intensity field in the RT method, which are mainly:
(i) reconstructing a local beam width by considering the distance between adjacent rays, and
thus estimating an intensity from the ray power, and (ii) reconstructing the intensity from the
collisional absorption field, as is described below. Each of these methods pose severe challenges
and require numerous and cumbersome numerical procedures to yield physical estimates. As an
example, in the case of the first method, neighboring rays intersect close to the critical density so
that the reconstructed beam width reaches zero and the intensity diverges.

In order to provide a clear comparison of RT-based intensity estimates versus the intensity
described by the PCGO model (presented in Sec. 2.3.5.3), we describe here the intensity
reconstruction method. The intensity associated with a distribution of needle-like rays can be
expressed from the conservation equation for the laser energy (1.74):

∂W̄

∂t
+∇.S̄ = −νIB

ne

nc

W̄ . (2.32)

At a given hydrodynamic timestep, the laser propagation is stationary so that the first term can
be neglected. Integrating over a cell k by assuming a constant inverse Bremsstrahlung collision
frequency, a constant EM wave energy density, a constant plasma density and using the Stokes
formula, equation (2.32) reads:

��
dSk∇.S̄ =

�
S̄.dl = −∆P k

abs = −νIB
ne

nc

�0
2
|E|

2∆Sk , (2.33)

with ∆P k

abs being the total power absorbed in the cell k and ∆Sk the area of this cell. Rearranging,
the beam intensity in the triangle k reads:

Ik =
c
√
��∆P k

abs

∆SkνIBne/nc

. (2.34)

This formulation for the reconstructed intensity has four main limitations:

• it is inversely proportional to the density. As such, it diverges at low densities and the
intensity cannot be described in vacuum,

• it looses precision near the critical density, where the assumption made on ��� � �� of GO
does not hold,
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• it does not hold information on macroscopic beam quantities such as direction and width
(although the notion of ray direction exists), which are crucial for some LPI processes,
notably regarding the direction of light scattering and the Doppler shifts by plasma flows,

• the spatial resolution of the intensity field estimated by this method is entirely dependent
on the size of the hydrodynamic mesh and not on the location of intensity gradients. For
the process of plasma heating by IB absorption, this is unimportant because the thermal
conductivity of the plasma smoothes temperature gradients efficiently. However, finer
processes of LPI require a detailed knowledge of the intensity, especially because of their
nonlinear nature. This could be addressed by subgrid refinement of mesh cells with an
Adaptive Mesh Refinement (AMR) method based on IB absorption gradients, which is both
numerically complex and costly in terms of memory and CPU usage.

These points underline that in the present form, the Geometrical Optics based Ray-Tracing
models are not well suited for the description of intensity fields in plasmas and hence the
description of nonlinear LPIs. From this point on, we present an alternative description of the
wave-field at hydrodynamic scales, based on the Paraxial Complex Geometrical Optics. This
model has been developed in this thesis and is the base framework of all other processes described
in the following chapters.

2.3 Adaptation of Ray-Based Paraxial Complex Geometrical Op-
tics to collisional plasmas and to a Lagrangian Hydrodynamic
code

An alternative class of solutions to the Helmholtz equation, that considers thick-rays instead
of needle-like rays, is presented in this section. The so-called Paraxial Complex Geometrical
Optics method is a paraxial-eikonal based form of the Complex Geometrical Optics (CGO) [117],
that deals with the problem of Gaussian beam diffraction in inhomogeneous media [52, 118, 119,
120]. We present its formulation for collisional plasmas and a method of numerical resolution of
equations on an unstructured irregular mesh. This model, that we implemented in Chic, is used
throughout this work.

2.3.1 Motivation

As it was emphasized in Sec. 2.2.4, the key quantity for the modeling of nonlinear LPIs is the
intensity field. Given that in the most basic approach of GO, the ray power is known, it is sufficient
to describe the evolution of the beam width in order to compute its intensity. On the one hand, the
Geometrical Optics describes a field with the amplitude A(τ) only depending on the curvilinear
ray coordinate, i.e. there is no knowledge of the beam envelope and width. However, the GO
is an attractive method because it relies on the resolution of Ordinary Differential Equations.
On the other hand, the paraxial approximation presented in Sec. 1.3.3 describes the full wave
envelope A(x, y, z) along a privileged direction. The corresponding Paraxial Wave Equation, even
described within the Slowly Varying Envelope Approximation, is difficult to resolve because it
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belongs to Partial Differential Equations. Furthermore, we have seen that the validity condition
of the paraxial approximation is difficult to satisfy for typical plasmas created from laser-solid
interactions.

PCGO is built on both approaches, taking (i) the numerical efficiency of GO, which allows
to implement it in a hydrocode, and (ii) the notion of beam envelope described by the paraxial
approximation. The core principle of PCGO is to consider a particular class of wave-fields in the
paraxial approximation, that is the fundamental Gaussian mode. As such, it can be considered less
precise than the Paraxial Wave Equation, which is not limited to this particular field ansatz. In
the case of Gaussian beams, the equations of PCGO are reduced to a set of Ordinary Differential
Equations that describe the wavefront curvature of a Gaussian beam, including the effects of
diffraction, as was first shown in [121]. Consequently, while being a paraxial approach, PCGO
retains the CPU-efficiency of GO. We introduce in Sec. 2.3.2.1 the basics of Gaussian beam
optics, and notably show that the Gaussian wave-field described in the paraxial approximation is
characterized by a complex wavefront and curvature, as was first demonstrated by [118] and [122].
As such, there are two justifications for the use of the Complex Geometrical Optics over GO:
(i) the Gaussian mode being described by complex parameters, the operating framework must
be complex as well, and (ii) in the case of strongly absorptive media for which ��� ≥ ��, the GO
approach is not valid as the latter deals with real-valued rays. We present in Sec. 2.3.2.2 the idea
behind the Complex Geometrical Optics, and make the distinction between the eikonal-based
form of CGO, compared to the ray-based form.

As we will see, the wave front curvature equation of PCGO ultimately consists of a non-
linear Riccati-type equation that is conceptually similar to those obtained with other asymptotic
methods from various fields of physics, as it is illustrated in Fig. 2-4. As an example, while CGO
belongs to the field of optics and electrodynamics, the Dynamic Ray Tracing (DRT) method
[123] was proposed for the elastic wave theory (e.g. see Refs. [124, 125]). Its extension to the
complex plane (so-called complex-DRT) [126, 127] yields equations equivalent to that of PCGO.
Equivalent equations were also found in the study of the problem of Gaussian beam diffraction,
using WKB theory and the paraxial approximation, as was first demonstrated in [128]. More
generally, the problem of Gaussian beam diffraction in inhomogeneous media is of interest in
optics, geophysics, acoustics, radio physics and plasma physics (see [129, 130] for applications to
magnetized non-collisional plasmas).

2.3.2 Gaussian Beams and Complex GO

Paraxial Complex Geometrical Optics are a branch of the Complex Geometrical Optics that
considers Gaussian wave-fields described in the eikonal form with a paraxial approximation. In
order to clearly define the working principles of PCGO, we introduce in the following section the
basic properties of Gaussian beams, and give an introduction to the Complex Geometrical Optics.

2.3.2.1 Optics of Gaussian Beams

For simplicity, we derive the Gaussian beam equations in the case of a vacuum, i.e. for � = 1.
Considering solutions for the field of the form E(x, y, z) = E0(x, y, z) exp [−ıkz], with k =

√
��kFS,
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Figure 2-4 – The problem of Gaussian beam diffraction in inhomogeneous media from
various methods and physical fields (reproduced from [131]).

the Helmholtz equation (1.55) transforms into a Paraxial Wave Equation (1.107):

∂2E0

∂x2
+

∂2E0

∂y2
− 2ık

∂E0

∂z
= 0 , (2.35)

where the second order derivative in the axis of propagation z is neglected. We seek a solution
that depends on the propagation coordinate z and that is cylindrically symmetric around z:

E0(x, y, z) = A0 exp

�
−ı

�
ϕ(z) +

k

2q(z)
r2
��

, (2.36)

with r2 = x2+y2, ϕ(z) is a phase shift factor, A0 is a constant amplitude and q(z) is the so-called
beam parameter. Substituting (2.36) into (2.35) we obtain:

2k

�
dϕ

dz
+

ı

q(z)

�
+ r2

k2

q2(z)

�
1− dq

dz

�
= 0 . (2.37)

Given that this quadratic equation must hold for any value of r, the coefficients of the polynomial
must be zero and we get:

dq

dz
= 1 ,

dϕ

dz
= − ı

q(z)
. (2.38)
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Integrating these equations between 0 and z gives:

q(z) = q0 + z , (2.39)

ϕ(z) = −ı ln(1 + z/q0) , (2.40)

where q0 = q(0). The wave’s electric field now reads:

E(x, y, z) = A0 exp

�
− ln

�
1 +

z

q(z)− z

�
− ı

k

2q(z)
r2
�
exp [−ıkz] . (2.41)

We now identify the physical meaning of the beam parameter q. Setting 1/q = 1/q� − ı/q��, the
beam intensity reads:

EE�
=

A2
0

(1 + z/q0)2
exp

�
− kr2

q��(z)

�
. (2.42)

This equation shows that the transverse intensity profile is a Gaussian function, of a radius at
the half maximum w(z) =

�
2q��(z)/k, which defines q��(z) = πw2

(z)/λ (where λ = 2π/k is the
local wavelength). At the focal position z = 0, we have 1/q0 = −ıλ/(πw2

f
), where wf = w(0) is

called the beam waist. The real part of q defines the beam curvature radius R(z). Indeed, by
using (2.39) we obtain the relationship between z, q� and q��:

w2
(z) = w2

f



1 +
�

λz

πw2
f

�2


 , (2.43)

R(z) = q�(z) = z



1 +
�

zλ

πw2
f

�−2


 . (2.44)

The characteristic distance of beam divergence zR = πw2
f
/λ is called the Rayleigh length. Equation

(2.43) illustrates that the beam waist attains its minimum at the focal position. The surfaces of
constant phase in the field form of (2.41) read:

− kz −�
�
ln

�
1 +

z

q(z)− z

��
− kr2

2q�(z)
= constant . (2.45)

Using ln(a+ ıb) = (ln(a2 + b2))/2 + ı tan−1
(b/a), we get:

k

�
z +

r2

2q�(z)

�
+ tan

−1




1

1− z/q�(z)

zλ
πw2

f�
1 +

�
λz
πw2

f

��



 = constant . (2.46)

For z � πw2
f
/λ, and using Eq. (2.44), we see that the tan

−1 factor is constant. Re-arranging, we
obtain:

z =
constant

k
− r2

2q�(z)
. (2.47)
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This equation describes a parabola, that approaches a spherical surface of radius R(z) = q�(z) for
r2 � z2. For that reason, q�(z) is identified as the curvature radius of the wavefront and we have:

1

q(z)
=

1

R(z)
− ı

λ

πw2(z)
, (2.48)

where w(z) and R(z) obey Eqs. (2.43) and (2.44), respectively. Note that for z = 0, R → ∞,
so that the wavefront is flat at the waist of the beam. Finally, the electric field and the beam
intensity read:

E(r, z) = A0
wf

w(z)
exp

�
−ık

�
z − 1

2R(z)
− Φ

�
− r2

w2(z)

�
, (2.49)

I(r) = I0 exp

�
− 2r2

w2(z)

�
, (2.50)

where we have used ln[1 + z/q0] = ln[w/wf ] + ı tan−1
[λz/(πw2

f
)] and we have defined the phase

shift factor Φ = tan
−1

[λz/(πw2
f
)]. This field distribution is called the fundamental Gaussian

mode.

2.3.2.2 Complex Geometrical Optics

Complex Geometrical Optics is centered around the notion of complex rays, which are the
complex-equivalent of rays in GO. Gaussian beam diffraction aside, CGO is commonly used to
describe wave-fields in the vicinity of caustics, radio wave propagation through the ionosphere,
wave penetration into a caustic, space-time diffraction of Gaussian pulses in dispersive media,
and propagation of surface waves (see Ref. [116] for a review).

CGO deals with plane inhomogeneous waves, described by a complex wavevector:

k = k�
+ ık�� , (2.51)

so that the wave-field u = exp[ık.r] contains an oscillating component exp[ık�.r] and a decaying
factor exp[−k��.r]. In this formulation, the field modulus |E| ∝ exp[−k��.r] is not necessarily
constant on a surface of constant wavefront k�.r, that is why these waves are termed inhomogeneous
waves.

The SVEA in the framework of CGO translates in a slow variation of ��, A, k� and k
�� over

the scale of the vacuum wavelength λL. Contrary to the SVEA approximations of GO (2.18),
there is no related assumption on the variation of the field modulus |E| = |A| exp[−kFSψ��

] over
the wavelength scale, so that CGO is valid in strongly dispersive media, e.g. in the vicinity of the
critical density surface in the case of plasmas. This extended validity domain is related to the
description of inhomogeneous waves, which is consistent with the local wave field structure in
these regions.

Ray-based CGO The notion of complex ray was first introduced in [117], as the continuity in
6-dimensional complex space (x�, x��, y�, y��, z�, z��) of the GO ray equations. Introducing the GO
form of the wave (2.14) with a complex-valued eikonal ψ = ψ�

+ ıψ��, a complex-valued amplitude
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A = A�
+ ıA�� and for a complex media � = �� + ı���, the same equations are obtained for the

eikonal equation (2.20) (with a complex �), and the zero-th order transport equation (2.21) reads:

u(r) =
u(r0)

J
exp

�
ıkFS

� τ

τ0

�(r(τ))dτ̃

�
, (2.52)

where the ray parameter τ = ds/(c
√
�) is also complex-valued and r0 is the initial ray position.

Applying the characteristics technique once again yields the trajectory equation in so-called
Hamiltonian form or ray-based form, with complex-valued solutions for the ray position r and
momentum p.

The idea behind ray-based CGO is to reconstruct the field amplitude at a point r� in the
real-space by summation of the amplitudes of all rays passing by r�. This requires an iterative
method to find the distribution of initial positions (x�0, x

��
0, y

�
0, y

��
0 , z

�
0, z

��
0 ) for which ray trajectories

intersect with r�. This is a difficult procedure that requires heavy numerical algorithms. These
algorithms are similar to those used in GO-based Ray-Tracing methods (in real space) in the
field of computer graphics.

Eikonal-based CGO The eikonal-form of CGO deals with the resolution of the eikonal and
transport equation directly, where the unknown variables are ∇ψ� and ∇ψ��. The physical meaning
of these quantities is comparable to that in GO; the propagation direction of the wave in CGO
being given by ∇ψ�, while the direction of the Poynting vector gradient is given by ∇ψ�� [116].
Writing the eikonal equation (2.20) and identifying the real and imaginary parts we obtain:

(∇ψ�
)
2 − (∇ψ��

)
2
= �� , (2.53)

2∇ψ�.∇ψ��
= ��� , (2.54)

which implies that in lossy media, the direction of energy propagation and of Poynting vector
gradient are not orthogonal. Identifying the real and imaginary parts, the transport equations
(2.21) read:

2(∇ψ�.∇A� −∇ψ��.∇A��
) +A��ψ� −A���ψ��

= 0 , (2.55)

2(∇ψ��.∇A�
+∇ψ�.∇A��

) +A��ψ��
+A���ψ�

= 0 . (2.56)

Analytical solution of these equations is rather complex, even for homogeneous media. A numerical
resolution was proposed by [132] in the case of Gaussian beams in inhomogeneous media, notably
showing that these equations do model the physical process of beam diffraction. The PCGO
method presented below belongs to the eikonal-based form because it deals with the computation
of the eikonal ψ directly, instead of relying on a summation of infinitely narrow complex rays.
It also belongs to beam-tracing methods [129] because the central axis of the wave in PCGO is
described by a GO ray.
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2.3.3 Paraxial Complex Geometrical Optics in dissipative media

The physical idea of PCGO is to represent a Gaussian beamlet, which symmetry axis follows
the laws of Geometrical Optics. As such, the method consists in (i) projecting the eikonal and
transport equations of CGO along a GO ray trajectory, and (ii) formulating a phase model for ψ

that describes a Gaussian mode in the paraxial approximation. As mentioned earlier, this method
is qualified as Complex because it involves Gaussian beams, which are described by complex
parameters, and the medium dielectric permittivity which is also complex.

2.3.3.1 Eikonal and transport equations in the ray-centered coordinate system

As in CGO, PCGO is based on solutions of the Helmholtz equation (2.11) in the form of an
almost-plane inhomogeneous waves, that is:

u(r) = A(r) exp[ıkFSψ(r)] , (2.57)

where A(r) and ψ(r) are complex-valued. This model is paraxial because it describes a principal
propagation direction for the wave (given by the curvilinear trajectory ∇ψ�

(r)), and that deviations
from this main axis must be small (this results from the SVEA, detailed below). Substituting
this model into the Helmholtz equation, we retrieve the complex-valued eikonal and zeroth-order
transport equations of CGO (see Sec. 2.3.2.2).

The validity domain of these equations is related to the SVEA validity of CGO. Sufficient
conditions for PCGO are discussed in Sec. 2.3.3.3.

Let us project the eikonal and transport equations onto a GO ray trajectory. To this end, we
define a new coordinate system {q1, q2, τ}, where the vector q = {q1, q2} is orthogonal to the ray
and τ is tangent to it. In a 3D framework, this new coordinate system must account for torsion
and curvature of the ray in order to constitute a rotationless orthogonal basis, providing parallel
transport along the ray. This is not an issue in the 2D framework presented here so that we do
not consider this problem. Note that such a basis in 3D is proposed in Ref. [133] (and referred
to as Popov’s ray-centered coordinate system). The eikonal equation written in the central ray
coordinate system reads:

1

h2

�
∂ψ

c∂τ

�2

+

�
∂ψ

∂q1

�2

+

�
∂ψ

∂q2

�2

=

�(rc) + (q ·∇)�(rc) +
1

2
(q ·∇)

2�(rc) + . . . , (2.58)

where h =

�
�(rc, τ)− (q ·∇)

�
�(rc, τ) is the Lamé coefficient, rc refers to the central ray position

and the relative permittivity �(r) = �(rc+q) has been expanded in the Taylor series of q = r−rc.
The transport equation in the new coordinate system reads:

2

c2h2
∂ψ

∂τ

∂A

∂τ
+

�
1

ch

∂

∂τ

�
1

ch

∂ψ

∂τ
+

∂2ψ

∂q21
+

∂2ψ

∂q22

��
A = 0 , (2.59)

which expresses the conservation of EM energy along the ray propagation. Note that the imaginary
part of the dielectric permittivity ��� is not present in this equation because it is accounted for in
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the eikonal equation.

2.3.3.2 Formulation in absorptive media

Phase model for PCGO beamlets The phase of a PCGO ray contains informations on the
central ray trajectory and on phase deviations around the central ray. We decompose the phase
of the wave-field in two contributions on the ray and the envelop:

ψ(q1, q2, τ) =

Trajectory� �� �
ψc(τ) +

Envelop� �� �
ψ̃(q1, q2, τ) , (2.60)

where ψc = ψ�
c(τ) + ıψ��

c (τ) is a complex function. This model adds two terms to the central ray
phase ψ�

c. First, ψ̃(q1, q2, τ) is the phase of the wave around the central ray that we relate to its
thickness and curvature. As in the standard PCGO, it is assumed to vary in a quadratic way
with q:

ψ̃(q1, q2, τ) =
1

2
Bij(τ)qiqj . (2.61)

Secondly, ıψ��
c (τ) is a purely imaginary phase term that accounts for absorption or gain induced

by the medium where the wave propagates, for which no assumption on ���/�� is made.

Wave front curvature equation The wave front curvature of a PCGO ray is derived by
resolving the eikonal equation (as in Sec. 2.3.2.2) at various orders in the transverse coordinate q

and by separating the real and imaginary parts. For the sake of simplicity, it is now assumed
that the geometry is 2D planar, so that there is only one component in q and there is no torsion
on the central ray (see Fig. 2-5 for the central ray coordinate system). The following analysis can
be readily extended in 3D, as it is explained in the monograph [116] with more details on 3D
PCGO in general. Introducing equation (2.60) in the eikonal equation (2.58) yields:

1

c2h2

��
dψc

dτ

�2

+
dψc

dτ

dB

dτ
q2 +

�
1

2

dB

dτ
q2
�2

�

+(Bq)2 = ��c + ı���c + q
∂(��c + ı���c )

∂q
+

q2

2

∂2
(��c + ı���c )

∂q2
, (2.62)

where the notation �c = �(rc) was introduced and the Lamé parameter reads:

h2 = |h.h| = �c − (q ·∇)�c +
1

4�c
((q ·∇)�c)

2 . (2.63)

At the order 0 in q, Eq. (2.62) reads:
�
dψ�

c

dτ �
− n��

n�
dψ��

c

dτ �

�
+ ı

�
dψ��

c

dτ �
+

n��

n�
dψ�

c

dτ �

�
= c(��c + ı���c ) , (2.64)

where we have expressed the derivative as a function of the real-valued ray parameter using:

dτ �

dτ
= 1 + ı

n��

n� . (2.65)
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Figure 2-5 – Schematic illustration of the central ray coordinate system in 2D configuration.
The central GO ray is shown as a dashed black line, the (q,τ) coordinate system at a
given point of the trajectory as red and green vectors, respectively.

Equating the real and imaginary parts in (2.64) yields:

dψ�
c

dτ �
= c��c

�
1 +

n��

n�
���c
��c

��
1 +

�
n��

n�

�2
�−1

≈ c��c +O
�νIB

ω

�2
, (2.66)

dψ��
c

dτ �
= c���c

�
1− n��

n�
��c
���c

��
1 +

�
n��

n�

�2
�−1

=
c���c
2

, (2.67)

where the expression in the right-hand-side of Eq. (2.66) was obtained by a Taylor expansion in
series of νIB/ω, which is valid for νIB � ω. Equation (2.66) [right] is a standard equation for the
central ray phase in PCGO for weakly dissipative media, while Eq. (2.67) relates the complex
phase perturbation to the imaginary part of the relative permittivity, i.e. to the absorption or
gain of the medium.

Using Eqs. (2.66) and (2.67), one can show that the terms of order 1 in q in (2.62) are
cancelled. At the order 2 and using Eqs. (2.66) and (2.67), one obtains:

1

c

dB

dτ
+B2

= − 3

4�c

�
∂�c
∂q

�2

+
1

2

∂2�c
∂q2

. (2.68)

This is a nonlinear Riccati-type equation describing the wave front curvature. Re-arranging, we
obtain:

B2
+

1

c

dB

dτ
= α�(τ

�
) + ıα�(τ

�
) , (2.69)

α�(τ
�
) = − 3

4��c





�
∂��c
∂q

�2
+

∂���c
∂q

�
2���c
��c

∂��c
∂q − ∂���c

∂q

�

1 +
���2c
��2c



+
1

2

∂2��c
∂q2

≈ − 3

4��c

�
∂��c
∂q

�2

+
1

2

∂2��c
∂q2

, (2.70)

α�(τ
�
) = − 3���c

4��2c




−
�
∂��c
∂q

�2
+

∂���c
∂q

�
2��c
���c

∂��c
∂q +

∂���c
∂q

�

1 +
���2c
��2c



+
1

2

∂2���c
∂q2
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≈ − 3���c
4��2c

�
∂��c
∂q

�
∂���c
∂q

2��c
���c

− ∂��c
∂q

��
, (2.71)

where expressions in the right-hand-side of α� and α� have been obtained by assuming νIB � ω

and limiting the Taylor series at the order 1. The standard nonlinear Riccati-type equation of
PCGO is obtained by making the additional assumption of weakly dissipative media ��� � ��:

B2
+

1

c

dB

dτ �
= − 3

4��c

�
∂��c
∂q

�2

+
1

2

∂2��c
∂q2

, (2.72)

where it should be noted that the curvature matrix B is complex because of the initial condition
B(0). This can be seen by noting that B is related to the complex beam parameter of Gaussian
beams derived in Sec. 2.3.2.1.

The contribution from α� to the ray curvature and width has been assessed and is seen to be
rather small in general, except in regions close to the critical density surface, where the assumption
��� � �� breaks down. Even then, the contribution from α� is seen to be rather limited, so that
finally it is Eq. (2.72) that is used, where α is computed with �� = 1− (ωpe/ω)2/(1 + (νIB/ω)2).

Form of the electric field The energy conservation equation for the amplitude (Eq. (2.59))
can be rewritten in terms of Ã(τ) = (��c(τ))

1/4A(τ), in the 2D planar geometry:

1

c

∂Ã

∂τ
+

1

2
B(τ)Ã = 0 , (2.73)

for which a straightforward solution is Ã = Ã(0) exp[−
�
cB(τ)dτ/2]. Taking the modulus of the

solution and assuming n�� � n� yields the energy flux conservation:

|Ã(τ �)| = |Ã(0)|

�
�(B)

�(B(0))

�1/4
, (2.74)

where we have used �(B) = −(1/2)d ln�(B)/dτ �, that can be obtained from the imaginary part
of the wave front equation (where the contribution from α� has been neglected). The full form of
the electric field given by the model is then:

u(q, τ �) =
Ã(τ �)

(��c(τ
�))1/4

× exp

�
ıkFS

�
�(B)

2
q2 −

� τ �

0
c��c(τ̃

�
)dτ̃ �

��

× exp

�
−kFS

�
�(B)

2
q2 +

� τ �

0

c���c (τ̃
�
)

2
dτ̃ �

��
. (2.75)

This equation highlights the decaying factor in the electric field modeled with the contribution of
���c . Identifying the real and imaginary part of the scalar curvature B with the expression for the
fundamental Gaussian mode (given by Eq. (2.49) in App. 2.3.2.1) yields the PCGO ray thickness

82



2.3. Adaptation of Ray-Based Paraxial Complex Geometrical Optics to collisional plasmas and to a
Lagrangian Hydrodynamic code

w and curvature radius R:

�(B) =

√
��

R
, (2.76)

�(B) =
2

w2kFS
, (2.77)

so that the field modulus finally reads:

|u(q, τ �)| =
|Ã(0)|

(��c(τ
�))1/4

�
w

w0
exp

�
−kFS

� τ �

0

c���c (τ̃
�
)

2
dτ̃ �

�
exp

�
−q2

w2

�
, (2.78)

where w0 is the initial Gaussian beam thickness. Note that compared to the formulation of Eq.
(2.49), the pre-factor in Eq. (2.78) vary as

�
w0/w. This is a consequence of the 2D-planar

description of the wave-field, compared to the cylindrically-symmetric form given in the Appendix.
The same difference can be noted in the derivation of the Gaussian beam ponderomotive self-
focusing distances in Sec. 2.4.2.1 and Eq. (2.97). Finally, the intensity of the PCGO ray
reads:

I(τ �) = I0(τ
�
) exp

�
−2q2

w2

�
, (2.79)

I0(τ
�
) =

c
�
��c�0
2

|u(0, τ �)|2 =
c�0
2
|Ã(0)|

2
�w0

w

�
exp

�
−kFS

� τ �

0
c���cdτ̃

�

�
, (2.80)

where I0 is the on-axis intensity. Alongside the intensity, width and radius of curvature transported
along a PCGO ray, the local beam frequency can be readily computed from the Doppler shift
induced by plasma velocities described by the hydrodynamic core. In this 2D planar framework,
the PCGO beamlet power P is defined by considering that the plasma is a slab of a unit height
in the direction of invariance, so that:

P (τ �) =

�
π

2
I0(τ

�
)w(τ �)h . (2.81)

In numerical simulations, we always set the beamlet power so as to reproduce the desired real
(i.e. 3D) laser intensity. For that reason, the beamlet power P is not representative of the real
laser power. This approach is consistent with the fact that computing linear and non-linear LPIs
relies on the knowledge of the intensity field.

The initial condition B(0) of the PCGO ray is given by the initial beam width w0 and its
initial curvature R(0):

B(0) =

√
��

R(0)
+ ı

2

w2
0kFS

, (2.82)

which is comparable to the complex beam parameter q−1 for Gaussian beams in vacuum, derived
in Sec. 2.3.2.1. The initial curvature radius of the beam can notably be set to a specific value in
order to control the location of the beamlet focus, as is used in Ch. 3 and shown in App. B.1.2.
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2.3.3.3 Validity domain

The PCGO framework relies on the validity of the SVEA for CGO and of a Taylor expansion
of the dielectric permittivity around the central ray. We describe sufficient conditions for the
validity of PCGO.

The first condition, common to all GO methods (and Complex GO), states that the wavelength
should be small compared to the characteristic scale Lch of the plasma density inhomogeneities:

λ

Lch
� 1 . (2.83)

For ICF applications, the typical wavelength is 0.35 µm and the characteristic scale of inhomo-
geneities ∼ 10 µm, so that this assumption generally holds in large scale hydrocodes. The second
condition relates to the small angle paraxial-wave approximation:

λ

w
� 1 . (2.84)

Typical ICF beams have a radius at the focal plane of � 500 µm, with imposed small scale
modulations ∼ 2− 3 µm, which are well over λ. Although it appears to be an easily respected
condition, it actually limits other parameters related to the reproducion of speckle patterns,
as is shown in Sec. 3.2. The third condition is the most restrictive one and is related to the
preservation of the Gaussian profile along the propagation:

w

Lch
� 1 . (2.85)

This assumption is incorrect for a large � 500 µm beam in a typical ICF plasma, however it is
satisfied if one considers the transverse radius of the small-scale intensity modulations. Although
this limitation forbids the modeling of a whole ICF beam by a single thick ray, one may think
to describe a whole laser beam as a composition of an ensemble of small beamlets with an
envelop representing a whole beam. The idea to combine several Gaussian beamlets to reproduce
super-Gaussian beams was first suggested in [134]. It was later shown in [135] that a superposition
of 3 Gaussian beams does reproduce the diffraction behavior of one super-Gaussian beam of
order 4, with an accuracy of 1 %. In our framework, superposing PCGO beamlets possesses the
advantage of enabling to describe randomized laser beams smoothed by Phase Plates, where the
whole beam is split in small beamlets with different phases. Thus, the PCGO method is providing
an opportunity for the description of realistic smoothed beams and their associated intensity
statistics. This approach is presented in details in Chapter 3.

The last assumption used in this model is ��� � �� in the derivation of the wavefront equation
(2.72). Contrary to GO, which formally breaks down when this assumption is not met, PCGO
remains operational but the beamlet curvature radius and width are misestimated. This short-
coming is partially addressed by considering the evanescent field of the wave at the critical density,
which allows to compute the absorption on the plasma skin depth for ne ≥ nc, as presented in
App. A.3.5.
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2.3.4 Numerical implementation

We have implemented the PCGO model derived here in the Chic code. In order to compute the
beamlet intensity field (2.80), the core equations resolved by the model are the GO equations
(2.25), the collisional absorption equation (2.67) and the wave front equation (2.72). Despite
its apparent simplicity, the implementation of PCGO in a Lagrangian hydrodynamic code is
highly challenging and requires innovative algorithms and methods. In particular, it poses major
difficulties related to;

• the width of the beamlets: because the PCGO ray has a thickness, it drives LPIs (such as
inverse Bremsstrahlung) at a distance from its central axis, whereas GO only interacts with
the plasma on its axis (because it has no width). Consequently, when the central ray is in
a given mesh cell, one must also compute the interaction of the beamlet in neighborhood
mesh cells (this neighborhood potentially constitutes the whole mesh). In general, the
envelope of the PCGO beamlet can be seen as a smooth Gaussian field with a curved axis
and decreasing maxima (due to absorption), as illustrated in Fig. 2-6. Difficulties related
to this projection problem are addressed in App. A, notably detailing:

– the definition of a selection criterion to find the intersection between the beam envelop
and the mesh (in App. A.3.1),

– the precise and efficient computation of integrals onto triangularized mesh cells of an
unstructured and irregular mesh grid (in App. A.3.2),

– the correction of projection algorithms to account for transverse plasma inhomogeneities
(in App. A.3.3),

– the definition of efficient search algorithms for finding cells in the neighborhood of a
central ray located at an arbitrary position (in App. A.3.4),

– the interaction of the beam envelop, defined from a central-ray in a sub-critical mesh
cell, with the critical density surface, thus defining the notion of electric field decay on
the skin depth (in App.A.3.5),

– the issue of energy conservation, that arises from the various methods used in the
field projection onto the Lagrangian mesh and that must account for the transverse
inhomogeneities and the presence of a critical density surface (in App. A.4),

• the integration of the wave front curvature equation: because of its non-linear nature (due
to the presence of the B2 term) and the sub-grid definition of the ray trajectory, it requires
various specific resolution methods that we detail in App. A, with notably:

– the insufficient precision of GO trajectories predicted with usual Runge Kutta algo-
rithms, which requires to couple analytical and numerical methods to reconstruct the
correct ray timings in mesh cells (in App. A.1),

– the reduction of the wave front equation to coupled linear Ordinary Differential
Equations, in A.2,
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Figure 2-6 – Illustration of arbitrary intensity fields predicted by PCGO: the central axis
of the beam envelope is curved and follows geometrical optics laws, while the thickness
and intensity of the beam changes with its propagation.

– the computation of the source term α�, which requires to compute continuous and
smooth first-order and second-order derivatives of the permittivity at arbitrary coordi-
nates in the plasma, from a discrete density field defined on an unstructured grid (also
in App. A.2),

– the numerical resolution of the nonlinear Riccati equation on a ray trajectory with a
different step than for the integration of the trajectory equations, and on sub-discretized
ray arcs in order to simplify the projection algorithms described above (in Apps. A.3.1
and A.3.2).

The PCGO model has been implemented in the Chic code. We discuss in what follows its
validation and various applications.

2.3.5 Academic validation

Straightforward validations of the PCGO model implemented in Chic against theoretical solutions
for Gaussian beams in vacuum and weakly dissipative constant density media have been conducted
(not shown here for conciseness). We show here the cases of beam propagation in a plasma with
a linear density profile and in a waveguide (the plasma is considered collisionless).

2.3.5.1 Propagation in a plasma with a linear density profile

The case of a thick ray incident at θ0 = 30
◦ with respect to the normal of a linear density ramp of

the form � = 1− z/L is considered. The beam is initially parallel, of initial thickness w0 = 10λL

and the gradient scale length is L = 1000πλL. The evolution of the beam thickness as a function
of the central ray coordinate is presented in Fig. 2-7 [left]. On the ascending trajectory, diffraction
competes against refraction, broadening the beam until refraction prevails before the turning
point. The beam starts focusing on the descending trajectory, reaching a beam waist smaller
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Figure 2-7 – [left] Radius of a thick ray incident at θ0 = 30
◦ on a linear density ramp,

as a function of the central ray coordinate. The thick-ray radius and τ coordinate are
normalized to 10

2/kFS and 10
3/(ckFS), respectively. Results from PCGO in Chic is

showed as a plain line, and numerical integration of the wave front equation using the
analytical form for α� is shown as crosses. [right] Radius of a thick ray propagating
along the axis of a waveguide as a function of the central ray coordinate, for different
values of the characteristic length L⊥. The thick-ray radius and τ coordinate are
normalized to 10

2/kFS and 10
3/(ckFS), respectively Theoretical solutions are shown as

symbols and results from the PCGO model in Chic as lines (see legend on Figure).

than the initial beam width. After the focus, the beam width starts increasing again. These
results are compared to a numerical integration of the wave front equation, using the analytical
expression for α�. The latter can be found by combining the expression of the ray trajectory in
the linear density profile (that is a parabola, see Sec. 2.2.1), with the expression of the dielectric
permittivity given above. The resulting expression for α� given by Eq. (2.70) reads:

α�(τ) = − 12 sin
2 θ0

((cτ)2 − 4cτL cos θ0 + 4L2)2
. (2.86)

PCGO is found to be in perfect agreement with the theoretical solution, thus validating the
computation of α� performed in the model. Similar tests were conducted for other laser beam
parameters confirming the validity of the PCGO model.

2.3.5.2 Propagation in a waveguide

For a beam with a plane initial wavefront, propagating along the axis of a waveguide medium
with a parabolic density profile � = �0 − z2/L2, one can solve analytically the wave front equation
(2.72) for B [116]:

BWG
th =

1

L⊥

ıL⊥
aR

− tan
cτ
L⊥

ıL⊥
aR

tan
cτ
L⊥

+ 1
, (2.87)

where L⊥ = L/�1/40 and aR is the Rayleigh length. We consider a beam of wavelength λL = 100µm

with an initial radius w0 = 10λL, so that the Rayleigh length is aR = 100πλL. Figure 2-7 [right]
shows the thickness of such a ray, as computed by our model in Chic. Simulations are conducted
for three values of the characteristic length L⊥, for which the beam width oscillates when L⊥ �= aR,
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or is constant when L⊥ = aR (i.e. diffraction is exactly compensated by the waveguide). PCGO
results from Chic are found to be in perfect agreement with the theoretical solution of the wave
front equation.

2.3.5.3 Diffraction modeling and collisional absorption: GO vs PCGO

As expected, comparisons of RT and PCGO in weakly dissipative constant density media yield a
similar beam profile and a similar total power deposited by the beam in a plasma at distances
smaller than the Rayleigh length. However, significant differences naturally arise between initially
parallel RT rays and a PCGO thick ray at larger propagation distances. The difference is larger
for beams that are narrow and have a small Rayleigh range with respect to the total simulation
domain size. RT models commonly compensate for this flaw by using a spread in the rays
initial k-vectors to locally model diffraction of the beam. Rays arranged in such a configuration
reproduce the global envelope of a beam as well as its intensity profile. Using this technique,
similar results for the spatial beam profile between PCGO and RT can be obtained. It is worth
mentioning that modeling diffraction of a Gaussian beam in RT codes requires a significant
number of rays (we have checked that in that case, about 5000 rays are necessary) whereas the
PCGO model only requires one thick ray. In general, ICF beams are large and so is their Rayleigh
length. However, nonlinear LPI effects crucially depend on diffraction modeling as a mechanism
that acts against or with refraction to change the beam width and intensity. It is important to
note that this method of reproducing diffraction using an initial condition on the k-vectors of the
rays is exact only for vacuum conditions (or a constant density plasma). Any departure from
these conditions will not be reflected with a change in diffraction strength for the beam modeled
with RT. Because rays are independent, RT-based diffraction remains that of the initial condition,
i.e. that of a beam in a vacuum. This difference is highlighted in what follows with an example
of an inhomogeneous plasma.

The energy deposited in a linear density ramp of the form ne/nc = 1− z/L where L = 0.5

mm is considered. The simulation domain is 100× 100 grid points in a box of 0.5 mm× 0.5 mm
for an incident beam at an angle θ0 = 0

◦ and 0.5 mm× 1.0 mm for θ0 = 50
◦. The beam initial

thickness is w0 = 21 µm. The RT model is initialized so as to reproduce the caustic of the beam,
with a focal length f = 4 m and diameter at lens of D = 12.7 cm. 10000 rays are used for the RT
model. The beam initial power is P0 = 1.209× 10

13
W/cm. According to results shown in Sec.

1.3.2, the power deposited in the plasma by a beam normal to the density gradient at θ0 = 0
◦

reads:
P th
abs = P0

�
1− exp

�
−32ν�IBL

15c

��
, (2.88)

where the electron-ion collision frequency for these conditions is ν�IB = νIB(nc) = 4.578× 10
11
s
−1

(the plasma is fully ionized Helium with Te = 5Ti = 2 keV, and λ0 = 1.05 µm). Using L = 500 µm

yields a theoretical absorption coefficient ηthabs = P th
abs/P0 = 80.4%.

The upper row in Fig. 2-8 shows the simulation results for θ0 = 0
◦. The total power

deposited with both models yields an absorption coefficient identical and conform to the theory,
i.e. ηabs = 80.4%. The discretized nature of the RT model [top-left] leads to a slightly sharper
energy deposition and underestimation of the spatial distribution of the beam. The PCGO ray
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Figure 2-8 – (Color) Power absorbed by Inverse Bremsstrahlung on a linear density ramp
ne/nc = 1− x/L with L = (0.5 mm). The initial beam width is w = 21µm with zero
curvature at the vacuum-plasma boundary. The beam is incident from the right on the
density ramp at θ0 = 0

◦ [top] (the beam travels up to the critical density) and θ0 = 50
◦

[bottom] (the beam travels up to ne/nc � 0.4) - see arrows for the beam direction.
Results shown on the [left] panels are from a standard Ray Tracing model and on the
[right] panels from the PCGO model.

thickness, corresponding to theoretical solutions, is shown in Fig. 2-9 [left]. Diffraction effects
broaden the beam and the spatial distribution of deposited power is larger for PCGO (Fig. 2-8
[top-right]).

The bottom row in Fig. 2-8 shows the simulation results for θ0 = 50
◦. The total absorption

coefficient with both codes is identical: ηabs = 16.4%. Results from the PCGO model [bottom-
right], conform to the theory (see Sec. 2.3.5.1), show a peak power offset from the maximum
density with PPCGO

max � 1.52 × 10
10 W/cm (see Fig. 2-9 [right]). This shift is the consequence

of modeling refraction and diffraction of a single Gaussian beam, compared to many needle-like
independent rays. In the RT model [bottom-left], all rays converge to a same x̂ coordinate,
leading to a beam waist at maximum ne/nc (minimum x̂). The RT model produces an artificial
beam waist following from the geometrical configuration of the rays and does not reproduce the
shifted waist of the beam. Peak deposited power in RT is overestimated, with PRT

max � 1.66× 10
10

W/cm, due to the discretized nature of the rays. Diffraction modeling in RT models is exact only
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Figure 2-9 – PCGO ray normalized radius (dotted lines) and normalized on-axis intensity
(dashed lines), normalization with respect to initial values), for the linear density ramp
with [left] θ0 = 0

◦ and [right] θ0 = 50
◦. Ray coordinate τ is normalized with respect to

the maximum τ , where the ray leaves the plasma. τ/τmax=0.5 corresponds respectively
to the reflection [left] and turning point [right] of the ray.

for a constant density media. Once variations appear in the density profile, because each ray
independently follows its trajectory, diffraction may be locally underestimated or overestimated.
Although the PCGO model corresponds to the exact solution in this specific case, the peak
deposited power between RT and PCGO is different by only 9%. From the energy deposition
standpoint only, the difference between RT and PCGO is relatively minor and likely to be
smoothed by other physical processes. The underlying intensity difference and the lack of exact
diffraction modeling more strongly impact nonlinear LPI modeling, as it is shown in the following
section.

2.4 Nonlinear LPI modeling: the ponderomotive self-focusing

Self-focusing is a nonlinear LPI process where spatial gradients of dielectric permittivity induced
by the wave-field lead to the beam refraction [136]. There are two contributions to self-focusing:
thermal and ponderomotive. Both processes stem from the laser intensity non-uniformities. In
thermal self-focusing, the enhanced laser energy deposition on the beam-axis leads to temperature
gradients between the beam center and its wings, creating a thermally-induced pressure gradient.
The plasma motion under the pressure gradient leads to the on-axis density depletion, which
causes a refractive index gradient and consequently the on-axis beam focusing. In ponderomotive
self-focusing, the on-axis density depletion is caused by the ponderomotive force expelling the
electrons radially and creating a similar gradient of the refraction index.

The case of ponderomotive self-focusing is studied with the RT and PCGO approaches. In
order to estimate the laser intensity in RT models, it is common to use the power absorbed by the
inverse Bremsstrahlung as a proxy, alongside the cells surface area (see Sec. 2.2.4). This technique
allows to evaluate the laser intensity distribution in plasma and is used in RT-based hydrocodes
which include nonlinear LPI effects. The RT intensity reconstruction method presented in Sec.
2.2.4 is implemented in Chic for a comparison with the PCGO model. This section presents the
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implementation of the ponderomotive force directly based on the electric field modeled by the
PCGO technique and a comparison to the ponderomotive force estimated from the RT intensity
reconstruction.

2.4.1 Ponderomotive potential

In an hydrodynamic approach, the ponderomotive force FP = −∇U acting on the electron fluid
can be expressed as a gradient of the ponderomotive potential U [80]:

U =
nee2

4meω2
|u|2 , (2.89)

with |E| the electric field modulus. In this form, the ponderomotive force can be modeled in
a hydrocode as an additional pressure term U in the plasma equation of motion. The mean
ponderomotive potential Uq in cell q is computed separately for each sub-cell, defined by a
triangularization of cell q. For a quadrangle q decomposed in two triangles:

�Uq� =
Sq1

�U�q1 + Sq2
�U�q2

Sq1
+ Sq2

, (2.90)

where �U�q1 and �U�q2 are mean values corresponding to each triangle in cell q. The ponderomotive
potential in the triangle i of cell q reads:

�U�qi =
nee2

4meω2

1

Sqi

��

Sqi

|E|
2
dS , (2.91)

where the integral over the triangle i is computed in the same way as for Eqs. (A.15) and (A.17)
(see App. A.3.2), and assuming ��� to be constant within a cell.

2.4.2 Gaussian beam self-focusing in a 2D geometry

The commonly used criteria for ponderomotive self-focusing are derived in a 3D or 2D-axisymetric
framework. For the particular case of 2D planar configurations, these criteria must be adapted
with the appropriate mathematical form for the electric field. In this subsection we derive the
equations describing the ponderomotive self-focusing of a Gaussian beam propagating in an
initially homogeneous plasma. Such a model was presented for Gaussian beams in cylindrical
coordinates (so-called 2D-axisymetric) in [137, 138, 139].

2.4.2.1 Beam width equation

Starting from the wave equation for the electric field as shown in [137], the electron density on
the beam axis is depleted according to:

n = n0 exp [−β|E|
2
] , (2.92)

where β = e2/(4meω2
(Te + Ti)), n0 is the initial electron density and |E| is the electric field

modulus. This formalism holds for length scales L such as L � λD and timescales long compared
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to L/cs, where λD is the Debye length and cs is the sound speed. For a plane wave and assuming
ne/nc � 1 so that absorption can be neglected, one can derive the following equation for the
complex field amplitude E in the paraxial approximation [138] (see Sec. 1.3.3):

− 2ıkFSc
2∂E

∂z
+ c2�⊥E − Γ2E + ω2

pe,0E(1− exp [−β|E|
2
]) = 0 , (2.93)

where ω2
pe,0 is the unperturbed plasma frequency, Γ2

= k2FSc
2−ω2

+ω2
pe,0 represents the nonlinear

wavenumber shift due to the density depression on the beam-axis caused by the ponderomotive
force and z is the propagation axis. E is written in term of amplitude A and eikonal ψ:

E = A(r, z) exp [ıkFSψ(r, z)] , (2.94)

where r is the transverse direction of the paraxial wave. Introducing Eq. (2.94) in (2.93) and
assuming a 2D geometry yields:

2

�
∂A

∂z
− ∂ψ

∂r

∂A

∂r

�
−A

∂2ψ

∂r2
= 0 , (2.95)

c2
∂2A

∂r2
− k2FSc

2A

�
−2

∂ψ

∂z
+

�
∂ψ

∂r

�2
�

− Γ2A+ ω2
pe,0A(1− exp [−βA2

]) = 0 , (2.96)

which is similar to Eqs. (7) and (8) in [138], except for the missing cylindrical components of
the Laplacian. We now assume a 2D Gaussian profile for the electric field amplitude E (see Sec.
2.3.2.1):

A(r, z) = (A0/
�
f) exp[−r2/w2

0f
2
] , (2.97)

ψ(r, z) = −r2

2

1

f

df

dz
− φ , (2.98)

where φ(z) is the phase and f(z) is the Gaussian beam shape factor, f(z) = w(z)/w0. Note
that for a cylindrically symmetric Gaussian beam,

√
f is replaced by f in the expression of A.

The consistency of this model can be verified by checking that Eqs. (2.97) and (2.98) always
satisfy (2.95). Substitution of these expressions for A and ψ in Eq. (2.96) yields, at the order 0
in r/(w0f):

f2
�
− 2c2k2FSφ

� − Γ2 − ω2
pe,0 exp[−βA2

0/f ] + ω2
pe,0

�
− 2c2

w2
0

= 0 . (2.99)

The next order in the expansion is the order 2 in r/(w0f):

f
�
(f

�
c2k2FS

�
2φ� − w2

0ff
���

+ Γ2 − ω2
pe,0

�
+ω2

pe,0 exp[−βA2
0/f ]

�
f − 2βA2

0

� �
+

6c2

w2
0

= 0 . (2.100)

Equation (2.99) describes the phase of the wave, similar to Eq. (12) in [138] to a factor 1/2 for
the first term in the right hand side:

φ�
= − 1

w2
0k

2
FSf

2
+

ω2
pe,0 − Γ2

2c2k2FS
−

ω2
pe,0 exp[−βA2

0/f ]

2c2k2FS
. (2.101)
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Injecting the above solution for the phase in Eq. (2.100) yields the shape factor equation:

f ��
=

4

w4
0k

2
FSf

3
−

2βA2
0ω

2
pe,0 exp[−βA2

0/f ]

w2
0c

2k2FSf
2

. (2.102)

Equation (2.102) differs from the cylindrically symmetric case by a factor f in the second term
of the right hand side and in the exponential term. These changes reflect the fact that the
total power of the beam in a 2-dimensional framework varies with 1/f and not 1/f2. This
equation can be solved numerically to find the self-focusing distance zsf of a 2D Gaussian beam
propagating in an initially constant density plasma, as well as the intensity amplification ratio
I0/I0(τ = 0) = 1/f(zsf ).

2.4.2.2 Critical power

An expression for the critical power above which a Gaussian beam propagating in an initially
constant density media will undergo self-focusing can be derived from Eq. (2.102). This threshold
corresponds to the power for which the diffraction of the beam is exactly compensated by the
refraction due to the density waveguide created by the ponderomotive expelling of electrons
from the wave-field. Such an equilibrium is obtained for f = 1 and df/dz = d2f/dz2 = 0. It is
straightforward to find the expression for the equilibrium radius wE using Eq. (2.102):

wE =

√
2

c

ωpe,0

exp [βA2
0/2]�

βA2
0

. (2.103)

A similar expression is obtained in [138] for a cylindrically symmetric Gaussian beam. Solutions
of this non-linear equation for A0 can be written in the form:

A0 = ±ı

����W

�
−2c2

w2
0ω

2
pe,0

�
/β ,

where W (z) is the real-valued Lambert W function, i.e. the real solution v such as v exp (v) = z.
Using A2

0 = 2I0/(c�0N), replacing β by its expression and solving for I0 yields the critical intensity
IC;w0

0 of a beam with an initially plane wavefront (e.g. at its focus) and width w0:

IC;w0

0 = −2cncN(Te + Ti)w0W

�
−2c2

w2
0ω

2
pe,0

�
. (2.104)

The total power carried by a Gaussian beam is P 3D
=

�∞
0 2πrI0 exp[−2r/w0] = (π/2)I0w2

0 in the
cylindrically symmetric case and P 2D

=
�∞
−∞ I0h exp[−2r/w0] =

�
π/2I0w0h in the case of a 2D

planar geometry and considering a unit length h = 1 cm in the direction of the third dimension.
The equivalent 3D critical power reads:

P 3D
C = −cncNπ(Te + Ti)w

2
0W

�
−2c2

w2
0ω

2
pe,0

�
. (2.105)
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Figure 2-10 – (Color) [Left] RT-based reconstructed maximum intensity, [right] PCGO
central ray intensity, as a function of the beam propagation direction z, after 200
ps of simulation for the 5 cases. Intensities are normalized to the initial central ray
intensity I0(τ = 0). Theoretical values for intensity amplification and self-focusing
distance are super-imposed as colored crosses.

Adaptations that can be made in order to use PCGO in axisymmetric geometries from the 2D
planar framework are presented in App. B.3.

2.4.3 Comparisons of GO and PCGO results for Gaussian beams

The ponderomotive self-focusing of a 2D planar Gaussian beam with a focal spot size w0 = 20λL

and λL = 1.05 µm in a hydrogen plasma is now considered. In such a configuration, the initial
diffraction of the beam is relatively weak, as it would be for an ICF beam. The hydrogen plasma
with Te = 10Ti = 5 keV and ne/nc = 0.1 is described by a 180 × 180 grid points in a box of
2 mm× 0.2 mm size. The simulation is run for 200 ps, time when the self-focusing has reached a
steady-state. Under these conditions, the critical power for a purely ponderomotive self-focusing
is PC = P 3D

C
= 445.3 MW. 5 cases are considered, where P/PC ∈ [1; 2; 3; 4; 5]. RT runs are

conducted with 10000 rays and diffraction modeling. Simulations yield similar results using 5000
rays, suggesting weak dependence on the number of rays above 5000.

2.4.3.1 Intensity profiles

Figure 2-10 [left] illustrates the RT maximum intensity in the transverse direction as a function
of propagation direction z, at t = 200 ps. Although there is no clear intensity peak, partial
self-focusing occurs for all cases. The self-focusing distance decreases when power increases for
simulations ranging from P/PC = 1 to P/PC = 3, and remains similar at higher powers. The
intensity amplification peak is also similar for all cases with P/PC ≥ 2. Theoretical values for
intensity amplification and self-focusing distance are super-imposed as colored crosses. Theoretical
values show a clear dependence the intensity amplification ratio and self-focusing distance on
the beam power that the RT-based model does not reproduce. The RT intensity reconstruction
requires a large number of rays per cell. Even when this condition is fulfilled, as each ray
propagates independently, rays tend to get trapped in density channels thus creating local
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waveguides. The thickness of these waveguides is determined by the mesh resolution. Although
this phenomenon resembles filamentation, RT is not expected to model that process and it is a
numerical artifact related to the discreteness of the mesh. Furthermore, once RT-filamentation
has started, rays tend to stay trapped because there is no more energy deposition outside of the
channels. Because of these limitations, the ponderomotive force from intensity reconstruction
presents spatial modulations and large inaccuracies, leading to the observed discrepancies in
self-focusing length and intensity amplification.

Results using PCGO are illustrated in Fig. 2-10 [right], showing normalized central ray
intensity I0/I00 as a function of propagation direction z at t = 200 ps. For P/PC = 1, the beam
intensity is constant, corresponding to an equilibrium between diffraction and refraction from the
waveguide created by the ponderomotive force. It is found that self-focusing distances are well
reproduced with thick rays, and intensity amplification ratios are under-estimated. Because the
ponderomotive force acts along the whole beam thickness, the width of the created waveguide
is of the same order. Consequently, the assumption of a small beam thickness compared to
plasma inhomogeneity (w � Lch) is less accurate. This leads to an underestimation of the
density curvature in the waveguide and of the refraction process. Although intensity amplification
is underestimated, it follows the same tendency of higher amplification for higher powers as
predicted by the theory. Furthermore, a departure from w � Lch due to the ponderomotive force
is unlikely for realistic ICF beams modeled with PCGO, as the latter contain spatial intensity
modulations and are constructed from smaller thick rays (see Sec. 3.2). It is worth mentioning
that in simulations using paraxial electromagnetic codes (see for ex. [140]) the beam structure
after focusing is strongly distorted, whereas the assumption in PCGO is made that beams always
remain of Gaussian shape. Nevertheless, the focusing length and the intensity amplification are
in agreement with our model.

2.4.3.2 Density channel

In the setup described above, the ionization state Z = 1 and the modulation length of transverse
acoustic waves is much greater than the Debye length, so that it is a regime of weak ion acoustic
wave damping. For a non isothermal plasma (Te � Ti) with a weak ion damping, one transverse
direction and no thermal effects, the paraxial wave equation possesses an analytical solution for
the density perturbation caused by the ponderomotive force [141]:

δn(t, x) =
1

2cncTe

�
−I(x) +

1

2
[I(x+ cst) + I(x− cst)]

�
,

where δn(t, x) = ne(t, x)/ne(0) − 1. Hence, the ponderomotive force causes a central channel
formation with a depletion factor of −0.5I0/(cncTe) and two positive density perturbations
propagating away from the beam axis with a factor 0.25I(x+ cst)/(cncTe). Figure 2-11 [right]
illustrates the density perturbation along the transverse direction of a PCGO ray for z = 0.3

mm, normalized to cncTe/I0. The density perturbation is in good agreement with the theory for
all cases. Figure 2-11 [left] shows corresponding results using the RT model. Although results
are similar to the theory for P/PC = 1, increasing beam power leads to the formation of local
waveguides modulated by the mesh size. Rays are trapped in the minima for δn and self-focusing
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Figure 2-11 – (Color) Density perturbation δn(t, x) = (ne(t, x)/nc − 0.1)/0.1 along the
transverse to the beam, normalized to cncTe/I0, at z = 0.3 mm, after 100 ps. Results
from the RT model [left] and PCGO model [right]. Density anomaly in the RT case
is normalized to the maximum intensity, as there is no central ray intensity. Initial
beam power with respect to PC ranges from 1 to 5.

does not occur at the beam scale.
Both the RT and PCGO models predict similar density depletions at a low power, but the

RT model quickly grows unstable with respect to the numerical self-focusing instability. Intensity
profiles modeled using PCGO are smooth and remain Gaussian, which allows for a better code
robustness. In this purely ponderomotive case, the spiked profile produced by the RT method
is a direct consequence of the spiked reconstructed intensity, which is the key quantity for LPI
modeling. Consequently, nonlinear LPI effects modeled with RT codes are potentially subject to
the same kind of instabilities and spatial modulations, which constitute a strong motivation for
the development of alternatives such as PCGO.

2.5 Conclusions

The Paraxial Complex Geometrical Optics method has been adapted to the description of laser
propagation in plasmas in two steps. First, the model has been extended to include the collisional
absorption by the process of Inverse Bremsstrahlung, in a framework that is valid up to and
at the critical density. Second, by neglecting the effect of the imaginary part of the dielectric
permittivity on the optical beam thickness, it is found that the wave front equation is unchanged
compared to the standard PCGO approach. Various specific algorithms and methods have been
developed for the implementation of PCGO in the Lagrangian hydrodynamic code Chic in a
2D planar framework (see App. A), most of which are compatible with the Eulerian formalism
of MHD codes, or with a 3D framework in general. This model allows to evaluate the beam
intensity, radius of curvature and thickness at all points in the plasma. It consistently takes into
account diffraction and absorption by the inverse Bremsstrahlung and is validated against several
comprehensive test cases.

Compared to PCGO and to the theoretical solution of Gaussian beam propagation in inhomo-
geneous plasmas, the RT model is found to under-estimate the spatial location of the peak energy
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transferred to the plasma by process of collisional absorption. This is notably a consequence of
the RT vacuum diffraction model being inconsistent with respect to density gradients. Moreover,
the knowledge of the wave electric field in PCGO allows to account for the laser absorption
on the skin depth, which is of importance for the interaction of lasers with solid targets or for
laser-target interactions in configurations at a quasi-normal incidence.

Application to the modeling of nonlinear LPIs is illustrated with the particular case of pon-
deromotive self-focusing, both in the RT and PCGO frameworks. A pressure term corresponding
to the ponderomotive potential is added in the hydrodynamic core, computed from the RT
reconstructed intensity or from the PCGO intensity field directly. It is found that PCGO yields
the correct ponderomotive self-focusing critical power, self-focusing distance, transverse density
depletion and approaches correctly the intensity amplification. Compared to the standard intensity
reconstruction techniques used in RT codes, the needle-like nature of RT rays leads to artificial
filamentation of the beam inside local waveguides with a size defined by the mesh discretization.
This prevents the correct modeling of self-focusing distances and beam intensity amplifications.
The vacuum diffraction modeled in the RT model breaks down for the non-constant refractive
index in the density waveguide and fails to compensate the ponderomotive self-focusing effect.
The difficulty to correctly estimate the laser beam intensity, direction and width is a major
obstacle to nonlinear LPI modeling using RT models.

The model, results and comparisons presented in this Chapter were conducted using a single
PCGO Gaussian beam. Given the stringent validity conditions of PCGO, and the fact that
realistic laser beams employed in high power laser systems are rarely Gaussian, this framework
must be extended to the modeling of non-Gaussian beams of arbitrary size and intensity profile.
This is the object of the following Chapter.
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Chapter 3

Realistic beam modeling using PCGO
beamlets

In the previous chapter, the standard RT model used for computing laser propagation and
collisional absorption in plasmas was presented. The PCGO model was introduced as an
alternative method that allows for finer descriptions of the intensity field of Gaussian beamlets,
when certain approximations on its width are met. In this Chapter, we describe how these
elementary beamlets can be used to accurately model typical beams encountered in high power
laser systems. Contrary to PCGO beamlets, the intensity field of such beams is not smooth, and
their profile is rarely Gaussian. Moreover, their width in the focal plane can vary from ∼ 1 cm to
a few tens of µm, thus lying outside of the assumptions made in Sec. 2.3.3.3.

In standard RT-based approaches, the envelope of laser beams is modeled by bundles of
needle-like rays, spatially arranged so as to reproduce the caustic of the beam by a spread in
the rays initial k-vectors and powers. This approach, although straightforward, models perfectly
smoothed beams which are not representative of realistic ones, notably regarding the rapidly
varying intensity fluctuations inherent to high-power laser systems. Contrary to the RT approach,
using a superposition of PCGO beamlets to reproduce a large beam does not lead to a smooth
intensity distribution because the width and intensity of each beamlet obeys its own refraction
and diffraction laws. As we will see, this property can be advantageously used to reproduce the
full intensity statistic of real laser beams.

The statistics of intensity fluctuations notably depend on the smoothing techniques used to
control laser beam characteristics. A precise modeling of nonlinear LPI requires, by definition of
its nonlinear nature, to take into account the beam intensity statistics arising from the speckle
pattern, and particularly the intensities higher than the average that are major contributions to
nonlinear effects. The most common and relevant (to our study) beam forming techniques are
presented in Sec. 3.1. Using the focal spot characteristics induced by those smoothing techniques,
we present in Sec. 3.2 a method for reproducing the far-field intensity envelope and statistics
of super-Gaussian beams smoothed by phase plates, using a superposition of PCGO beamlets.
The high-intensity statistics produced by this method is shown to be comparable to reference
calculations made with the paraxial electromagnetic code Miró in Sec. 3.3. Finally, we present
in Sec. 3.4 reduced models based on the PCGO description of beams, that account for direct
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effects of smoothing techniques on nonlinear LPIs.

3.1 Principal beam shaping techniques used in high power laser
systems

The reduction of Rayleigh-Taylor Instabilities and nonlinear LPI growth requires to produce
intensity profiles which envelop and intensity statistics are well defined and controlled. The
statistical distribution of intensity non-uniformities can be quantified through the contrast, defined
as:

C =

�
�I2� − �I�2

�I�2 , (3.1)

which quantifies the importance of speckles with respect to the global beam envelope. A contrast
of 0 % represents a perfectly smooth beam, while a contrast of 100 %, called a pure speckle
pattern, represents a beam constituted of speckles only. Temporal and spatial laser smoothing in
ICF aims at (i) controlling the intensity distribution in the focal plane P (I) and (ii) achieving
the lowest contrast possible C. This is achieved by various techniques which alter the phase
of the laser field before its focusing in the target chamber. The typical methods employed in
high-power laser systems can be summarized by decomposing the near-field (i.e. at the focusing
optic) electric field of the laser E(x, y, t) as:

E(x, y, t) = E0(x, y, t) exp[ıψPP(x, y)] exp[ıψSSD(x, y, t)]

exp[ıψB(x, y, t)](x+ y exp[ıψPS(y)]) , (3.2)

where x and y are coordinates along the x and y directions transverse to the beam propagation,
E0(x, y, t) is the electric field of the beam envelope, ψPP(x, y) is the static phase contribution
from Phase Plates, ψSSD(x, y, t) is the phase contribution from temporal smoothing (Smoothing
by Spectral Dispersion), ψB(x, y, t) is the phase contribution from the B-integral [142] and ψPS(y)

is the phase contribution from Polarization Smoothing (PS).
We present in this section the optical elements and techniques introduced in Eq. (3.2). Phase

Plates are presented in Sec. 3.1.1. The physical interpretation of the structure of PP-smoothed
beams allows to formulate the beam-splitting technique presented in Sec. 3.2. Polarization
Smoothing is presented in Sec. 3.1.2 and its effect is accounted for in the PCGO formalism in
Sec. 3.4.1. Finally, Smoothing by Spectral Dispersion is presented in Sec. 3.1.3 and its modeling
with PCGO is described in Sec. 3.4.2. The contribution ψB from the B-integral comes from
self-focusing in laser optical elements. It is in general neglected [143], and is not in the scope of
this work.

3.1.1 Phase Plates

Phase Plates (PP), in conjunction with focusing optics, are optical elements used to alter and
control the intensity distribution of laser beams in their focal plane. They are designed to
shape the focal spot into highly reproducible envelope profiles, for which the small-scale intensity
statistics is also well-defined. PPs work by altering the phase of a beam in the near field (at
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the focusing optics), thus producing the desired intensity profile in the far field (i.e. in the focal
plane). They are generally designed by the process of Iterative Fourier Transform Algorithms
(IFTA) (see the Gershberg-Saxton algorithm [144]): an input beam with a known input intensity
profile and a best-guess phase profile in the near-field is Fourier Transformed to the far-field. The
resulting focal-plane intensity is discarded and replaced by the desired intensity profile, while
the phase is kept. These are then Inverse Fourier Transformed back to the near-field, where the
intensity is discarded and replaced by the known input intensity, while the phase is kept for the
next iteration. Once convergence is obtained, the near-field phase profile is binarized and glass
slabs are engraved. Various technologies of PPs exist, depending on the manufacturing process.
Amongst the most common ones, Random Phase Plates (RPP) reproduce the phase profile using
discrete square elements that induce a 0 or π phase shift. More recent methods have allowed to
manufacture PPs with continuous phase-shifting profiles. These so-called Kinoform Phase Plates
(KPP) are widely used in high-power laser facilities, and especially in the ICF domain.

Although PPs generate reliable and reproducible beam profiles in their focal plane, those
present a highly contrasted intensity statistics (see Fig. 3-2 [right] in Sec. 3.3.2 for an example).
As an illustration, the probability density P (I) to find a hotspot with an intensity I for a beam
smoothed by a RPP follows an exponential law [145]:

P (I) ∝ 1

�I� exp
�
− I

�I�

�
. (3.3)

Note that the distribution caused by a KPP is somewhat similar and also involves an exponentially
decreasing factor [146]. The presence of small-scale intensity variations, or speckles, implies that
localized regions of the plasma are eventually exposed to intensities several times above the
average. For a purely RPP-smoothed speckle-pattern, according to Eq. (3.3), C = 100% (this
is also true of a KPP-smoothed speckle pattern). Reducing the contrast is achieved by other
smoothing techniques, including the simple overlap of laser beams.

3.1.2 Polarization smoothing

Reducing the instantaneous contrast of a beam can be achieved by means of Polarization Smoothing
(PS). PS consists in splitting a beam into two equally intense beams of opposite polarization
states before the focusing optics, e.g. by using birefringent wedges as is done on the Omega laser
system. The two beams are focused simultaneously in the plasma, thus overlapping two identical
but uncorrelated speckle patterns that combines trough their intensities instead of their electric
fields. This technique instantaneously reduces the contrast by a factor of

√
2 [147]. The phase

contribution from PS, that is typically effective in one transverse direction only, reads:

ψPS(y) = kFSy sin∆θPS , (3.4)

where kFS is the wavenumber at the birefringent wedge and ∆θPS is the angular separation of the
beams induced by the wedge. A typical value for the Omega laser system is ∆θPS = 47µrad.
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3.1.3 Temporal smoothing

The development of temporal smoothing techniques stems from the observation that: (i) inho-
mogeneities in the laser field drive hydrodynamic instabilities only if they are sustained for long
enough, and (ii) nonlinear LPIs efficiently grow in high intensity speckles only if those rest on the
same place longer than the instability growth rate. Temporal smoothing is achieved in conjunction
with PPs, by producing time-varying uncorrelated speckle patterns while keeping a controlled
beam envelope profile. Consequently, it is more relevant to define beam smoothness using the
notion of integrated contrast Ĉ (instead of C), computed from the time-integrated focal spot
intensity field. Integrated contrasts (over a few hundred ps) of the order of 1% must be achieved
in order to successfully drive a high-compression target in a direct drive ICF configuration [147].

Producing time-varying uncorrelated speckle patterns can be achieved by means of Smoothing
by Spectral Dispersion. The base idea is to use frequency modulators in conjunction with gratings
to add both a spatial and a temporal frequency variation to the beam. The most efficient SSD
techniques employed in high power laser systems are implemented in 2D [147, 148, 149, 143], that
is a different frequency modulation is imposed in the x and y directions in the plane perpendicular
to the beam propagation directions. Because the beam position in the focal plane depends on
the wavelength, the speckle pattern effectively moves and cycles with the frequency modulation
imposed by SSD. In practice, SSD induces a spatial phase variation across the beam width so that
a spectrum of frequencies is simultaneoulsy mixed in plasma. The number of times the same color
appears in the wavefront at the final focusing optic (at a given time) is called the number of colors
Nc. Many configurations of SSD exist, depending on the choice of Nc in each dimension, the
modulator technology and settings, or parameters from the laser system itself such as the beam
maximum angular spread and the nature of the final focusing optic. For simplicity, we restrict
ourselves to the SSD system in use at the Omega laser facility, that is 2D-SSD (in the transverse
directions of the beam) using sinusoidal modulators, with Nc = 1× 1. The PCGO-based SSD
model presented in Sec. 3.4.2 is based on the 2D-SSD technique, but is readily applicable to other
technologies such as the Longitudinal SSD [149, 150], which consists in displacing the speckle
pattern along the propagation axis of the beam. Longitudinal SSD will notably be implemented
on the Laser Mégajoule in France.

The near-field phase contribution of the 2D-SSD reads:

ψ2DSSD(x, y, t) = nδx sin(2πνx(t+ ξxx)) + nδy sin(2πνy(t+ ξyy)) , (3.5)

where n = 3 for a frequency-tripled beam (the modulator being located before the frequency
tripling crystals), νx and νy are the modulation frequencies along the respective x and y directions,
ξx and ξy are the phase variations induced by angular dispersion from the gratings and the
modulation depth δx and δy represent the amplitude of the phase modulation. For a laser beam
with an initial focal spot contrast C0, an asymptotic integrated contrast Ĉa, and smoothed by a
SSD system of bandwidth ∆ν = 2nδν, the time evolution of the integrated contrast reads [143]:

Ĉ(t) =

�
C2
0

1

1 +∆νt
+ Ĉ2

a . (3.6)
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More complete formulations for the time evolution of the contrast of 2D-SSD smoothed beam are
discussed in [151]. Typical 2D-SSD parameters used on the Omega laser facility are modulation
frequencies of νIRx = 10.3 GHz and νIRy = 3.3 GHz, and modulation depths of δx = 3.897 and
δy = 6.145 rad. The corresponding maximum wavelength shifts on target (in the UV) are of
δλx = 0.98Å and δλy = 0.5Å. This frequency broadening, although small, is of importance when
computing frequency detuning for the CBET process. As an example, identical frequency beams
crossing in a stationary plasma cannot exchange energy through CBET. However, a frequency
broadening as small as 1Å is sufficient to widen the resonance region to parts of the plasma of
zero velocity, thus potentially inducing CBET.

Cumulating the techniques of KPPs, 2D SSD with 1THz UV bandwidth and 1 ps coherence
time, PS, and beam overlap, asymptotic integrated contrasts of the order of 2% were reported on
Omega [152], thus creating focal spots which intensity envelope are well defined, and sufficiently
smooth with respect to hydrodynamic processes.

3.2 Modeling of realistic super-Gaussian beams using PCGO beam-
lets

In the framework of PCGO, each ray has a Gaussian intensity profile and its thickness must
be larger than a few wavelengths and smaller than characteristic plasma inhomogeneities [52]
(see Sec. 2.3.3.3). In order to ensure the validity of the aforementioned assumptions on the
Gaussian ray thickness, it is necessary to model a large beam by a combination of smaller beamlets.
Contrary to the analogous method used in the RT approach, overlapping PCGO beamlets leads
to perturbed intensity fields, because of their Gaussian intensity profiles. Doing so, there is an
additional degree of freedom, that is the focus location of each beamlet, which can be used to
control these perturbations. The idea is then to use bundles of thick-rays in order to reproduce
simultaneously the global beam characteristics and the overall intensity fluctuation statistics of
a larger PP-smoothed beam. Figure 3-1 provides a general illustration of the method, that is
detailed below. We note that the method presented here utilizes the framework of KPPs, and
can be applied in a similar way to the modeling of RPP-smoothed beams, which is not presented
here for conciseness.

3.2.1 Beam characteristics in the far field

The Rayleigh range of a Gaussian beam with a wavelength λL and a radius at the focal spot wf

is zR = πw2
f
/λL. The smaller beamlets that constitute a split beam have significantly shorter

Rayleigh ranges than the main beam. Such beamlets will rapidly focus and diverge, thus limiting
the applicability of PCGO-based beam-splitting to relatively small regions. To that extent, a
beam is subdivided in beamlets only in the far-field region, whereby far-field we mean close
to the target plasma, i.e. close to the region considered in hydrodynamic simulations. As is
illustrated in Fig. 3-1, we define a virtual circle in 2D (or virtual sphere in 3D) that encircles
the plasma at all times. It must be large enough to account for the plasma expansion during
the simulation. As an example, a circle of radius 0.8 cm centered on the capsule contains the
plasma expansion of a standard direct drive implosion. From an averaged focal spot intensity
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Figure 3-1 – Diagram of the virtual circle defined for an ICF direct drive configuration.
The capsule is represented as a grey-filled circle. Beam parameters are computed at a
virtual circle of 8 mm radius from the focal spot intensity profile (red), the KPP phase
plate and the focusing lens parameters. The overall intensity profile at the virtual circle
is combined from Gaussian beamlets (green) individually focused pseudo-randomly in a
region around the focal spot in which the speckle radius is stable (black dotted-lines box).
z and r denote the local coordinate system respectively in the direction of propagation
and transverse to the beam.

distribution, given e.g. by experimental measurements of the focal spot of the laser system
in vacuum, we compute the corresponding intensity profile at the virtual circle accounting for
the specific characteristics of speckled beam propagation (this is detailed below). The resulting
intensity profile at the virtual circle is split in a sum of elementary Gaussian PCGO beamlets.
At each hydrodynamic timestep, the beamlets are propagated in vacuum from the virtual circle
to the edge of the hydrodynamic mesh using the formulation for Gaussian beam propagation
presented in Sec. 2.3.2.1. The propagation of each beamlet and interaction in the plasma is then
resolved according to the standard hydrocode-based PCGO method presented in Ch. 2.

We consider an ICF beam equipped with a KPP phase plate. The beam is characterized
at the focal spot by a width rf and a correlation radius �f = λLf/φ (i.e. mean radius of the
speckles), where f is the focal length of the final focusing lens and φ is the beam diameter at the
focusing lens. The super-Gaussian beam envelope intensity If (r) reads:

If (r) = I0 exp(−|r/rf |
n
) , (3.7)

with I0 the central intensity at focal spot, r the transverse coordinate and n the order of the
Gaussian beam. The overall beam envelope intensity of a partially coherent order-n Gaussian
beam can be computed at a distance z using [153]:

I(z, r) =

�
I0e

−
����

r

r
f

����
n�

∗
�
π−3

�
z

z0

�−2

χB(0,πz/z0)

�
r

rf

��
, (3.8)

where z = 0 at the focal plane, z0 = kFS�frf is the equivalent Rayleigh length of the speckled
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beam, χB(a,b)(r) represents a Heavyside distribution centered on a and of radius b and the symbol
∗ is a convolution product. The left-hand-side of Eq. (3.8) is the focal spot intensity profile. It
is convoluted to a propagator on the right-hand-side of (3.8) in order to obtain the intensity
distribution at a distance z from the focal plane. The intensity distribution at the virtual circle
Iv(r) = I(z = df,v, r), with df,v the distance between the focus position and the virtual sphere
along the beam axis, is computed from Eq. (3.8) by means of the Fast Fourier Transform (FFT)
algorithm.

3.2.2 Beam-splitting

The beam envelope intensity at the virtual circle Iv must be divided in smaller beamlets in such
a way that the composition of the beamlets intensities reproduces that of the whole beam. In
practice, such a splitting is easier to implement for super-Gaussian beams, so that an order-n
super-Gaussian distribution function is fit to Iv using a nonlinear least squares method. The
resulting fitted intensity profile is characterized by a central intensity I0v, thickness rv and order
nv, defined at the virtual circle. Although Iv is not exactly of super-Gaussian shape, we note little
difference between the fit (about 2%) and the requested profile. Moreover, energy conservation is
ensured by renormalization so that the super-Gaussian beam carries the same power as the real
beam computed by resolution of Eq. (3.8). The splitting of a super-Gaussian distribution into a
finite sum of Gaussian distributions can be expressed as:

I0v exp

�
−
����
r

rv

����
nv
�
=

NB�

k=1

Ik0v exp

�
−2

�
r − µk

v

wk
v

�2
�

, (3.9)

where NB is the number of beamlets, k is the beamlet index and Ik0v, wk
v , µk

v are the central
beamlet intensity, beamlet width and offset from the main beam centroid, respectively. The
curvature radius and propagation vector of each beamlet are left off this expression, as these are
set separately so as to control the beamlets focal points (see Sec. 3.2.3). For NB beamlets, there
are 3NB degrees of freedom in Eq. (3.9). Although a nonlinear least square fit could provide these
3NB parameters, this procedure is delicate for large values of NB. The problem is simplified by
assuming that the beamlets defined at the virtual circle have the same width ŵv and are equally
spaced in µk. The values of Ik0v are then computed using an analytical formula described in
Appendix B.1 and by ensuring energy conservation. These values are functions of two parameters
only: R = ŵ0

v/�f and NB, where �f is the correlation radius of a real speckle pattern and ŵ0
v

is the beamlet radius at its focal spot. Both parameters control the pseudo-speckle pattern, as
described in the next section.

3.2.3 Beamlet focusing

The longitudinal large scale variation of a speckle pattern defined by a beam envelope radius rf
and a correlation radius �f is characterized by the length scale z0 = kFS�frf [153]. The speckle
radius of such a beam is approximately constant along the distance ζ0 = z0/π from the focal plane.
The transverse scale of the beam at the focal plane is determined by the radius rf , often available
from experimental data. The parameters ζ0 and rf define a box around the focal spot where the
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speckle pattern varies slowly. The NB beamlets defined at the virtual circle are randomly focused
in this box by setting accordingly their radii of curvature and k-vectors (see App. B.1.2). The
focal spots of the beamlets are scattered by assuming a binormal distribution centered on the
focal spot (zf ; rf ) of the beam. The corresponding probability density function F reads:

F =
1

2πσ1σ2
exp

�
−
(z − zf )2

2σ2
1

−
(r − rf )2

2σ2
2

�
χB(0,σ2)(r) , (3.10)

where we have chosen a diagonal covariance matrix and σ1 and σ2 are the standard deviations
along the z and r directions, where the z-coordinate is along the beam direction and the r-
coordinate is in the focal plane (see Fig. 3-1). The Heavyside distribution on the right of (3.10)
allows to discard unrealistic focal spot positions picked outside of the beam caustic in the r

direction. This implies that the 2D distribution is not strictly binormal. We define σ1 so that
99,7% of the focal points are located in the [−ζ0/2, ζ0/2] interval and 68% are located in the
[−ζ0/6, ζ0/6] interval, i.e. σ1 = ζ0/6. We define σ2 = 2rf .

3.2.4 Free parameters

The remaining degrees of freedom NB and R are set by comparing the intensity map produced
by the beamlets to the laser propagation code Miró in vacuum or in transparent materials [154,
155, 156]. The latter code is a paraxial wave solver that allows to model the effect of various
optical elements, including Phase Plates (see Sec. 3.3.1). As a rule of thumb, NB can be taken as
the ratio of the radius of the whole beam at the focal spot to the speckle radius. Considering
as an example the Omega experimental setup, for the super-Gaussian beam of the order 4
(SG4) at the wavelength of 351 nm equipped with KPP, �f � 2.33 µm and rf = 352 µm, giving
NB = 151. In practice, the size of the hydrodynamic grid is much larger than the speckle width
so that several speckles can be found in the same cells, which spatially smoothes the intensity
distribution and the corresponding coupling terms in the hydrodynamic equations. Consequently,
instead of reproducing the exact beam speckle pattern at the focal spot, large pseudo-speckles are
modeled, typically 3 to 10 times larger in radius than the real speckles. This is set through the R

parameter, which controls the beamlet radius at the virtual circle. Because the pseudo-speckles
are large, the number of beamlets NB can be chosen smaller, typically by a factor of 2. The
parameters NB and R indirectly control the contrast of the beam and the 2D pseudo-speckle
pattern. It is important to set these two parameters by comparing the generated 2D intensity
field to a reference solution, e.g. a numerical resolution of the paraxial wave equation for the
electric field in vacuum or in a homogeneous plasma.

3.3 Validation of the PP-smoothed PCGO beam model

The superposition of PCGO beamlets constructed according to the method presented in Sec. 3.2
produces a focal spot with a specific intensity envelope and statistics that aims to reproduce those
of realistic beams. The performance of the superposition algorithm is evaluated by comparison of
the intensity field with a reference solution obtained with Miró in a vacuum. The Miró code
is a paraxial electromagnetic solver that computes the propagation of an EM wave in the laser
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chain from the near-field, including the effect of focusing optics, Phase Plates, mirrors, and other
optical devices used in high power laser system, up to the far-field in the target chamber.

3.3.1 Numerical modeling of the propagation of a wavefield through focusing
optics: the Miró code

Similarly as in the assumptions of the PCGO model, we initialize the Miró code with a quasi-
plane wave of principal wavevector k. Contrary to PCGO, the wave is considered to be quasi-
monochromatic of central frequency ω and spectral width ∆ω, assuming that ∆k = ∆ω/c � |k|

and ∆ω � ω, where ∆k and ∆ω are the spatial and spectral dispersions, respectively. The
electric field created by the overlap of N monochromatic components takes the form:

E(x, y, z, t) =
NB�

l=1



 El(x, y, t)�
2

�
��(ωl)c�0

exp ı(ωlt− klz) + c.c.



 , (3.11)

where El is a complex vector, normalized so that the modulus of E is the intensity. In those
notations, the z component is the propagation direction and x and y are transverse directions. The
z component in El is small and has been neglected. The so-called Fresnel diffraction formulation
that models the propagation of the EM wave in optical elements reads:

− 2ıkl
∂El

∂z
+�⊥El = 0 , (3.12)

which is a standard Paraxial Wave Equation. In the derivation of this formulation, the dispersion
of the group velocity vg has been neglected, it was assumed that the waves do not interact with
each other, that the phase velocities and group velocities are collinear and that the group velocity
is the same for all harmonics. Phase Plates are modeled by multiplying E by a phase term
exp ıφ(x, y), where φ is a phase mask given by experimental data. The description of numerical
algorithms employed in the resolution of Eq. (3.12) can be found in [157].

3.3.2 Comparison of the envelope intensity, speckle and pseudo-speckle pat-
terns

We consider a setup similar to the Omega facility [158], where the laser beams at the wavelength
of 351 nm are equipped with the KPP plates and have at the focal spot a super-Gaussian
distribution (3.7) with nSG4

= 4.1 and rSG4
f

= 352 µm. The lens diameter is φSG4
= 0.27 m and

focal length is fSG4
= 1.80 m. The focal spot intensity computed by Miró is illustrated in Fig.

3-2 [left]. Figure 3-2 [right] shows a profile taken in the center of the focal spot, illustrating the
highly contrasted nature of the beam. Results for the 2D intensity field IMiró(x, z) as computed
by Miró using the same SG4 KPP phase plate data are shown in Fig. 3-3 [top-left]. In order to
compare Miró to PCGO in Chic in the same conditions, the results from Miró are convolved
with the hydrodynamic mesh resolution used for the simulations (see Fig. 3-3 [top-right]), using:

Ismoothed
Miró (x, z) =

1

dxdy
(IMiró ∗ χB{(0,dx),(0,dz)})(x, z) , (3.13)
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Figure 3-2 – [left] Vacuum focal spot intensity of a KPP-smoothed beam using the charac-
teristics of a beamline of the Omega laser facility, with the SG4 Phase Plate, computed
with Miró. [right] Corresponding intensity profile in the focal spot for y = 0. The
average intensity, that is the beam envelope, is shown as a red solid line.

where Ismoothed
Miró (x, z) is the smoothed Miró data, x and z are the transverse and longitudinal

directions (here y = 0, as in Fig. 3-2), and the convolution kernel is a bi-dimensional Heavyside
distribution of width dx and dz along the x and z directions, respectively, where dx and dz are the
size of the regular mesh grid used here, that is dx = 1.2/180 mm and dz = 4/180 mm. Figure 3-3
[bottom] shows the 2D intensity field obtained using the PCGO splitting algorithm for NB = 100

and R = 7, in a simulation domain of 180× 180 grid points in a box of 4 mm ×1.2 mm.

Although the realizations presented in Fig. 3-3 look different, the splitting algorithm described
in Sec. 3.2 reproduces accurately the intensity statistics for normalized intensities I/�I� > 0.09

(see Fig. 3-4 [top-left]), where �I� is the mean intensity. The statistics for lower intensity values
is less accurately reproduced, owing to a large width of the pseudo-speckles. This is acceptable
when studying nonlinear LPI, where it is the higher intensities that are of interest. Decreasing NB

at a constant R would effectively reduce this discrepancy but would degrade the contrast away
from the beam’s focal spot. Similarly, decreasing R at a constant NB would also increase the low
intensity statistics. However, low values of R lead to shorter Rayleigh ranges for the beamlets,
which limits the applicability of the splitting method to smaller plasmas. Comparing intensity
slices at the focal spot shows overall agreement (see Fig. 3-4 [top-right]). The fractional encircled
energy of the PCGO beam is rather close to the convolved Miró data (Fig. 3-4 [bottom]), with
a slightly steeper cutoff in the wings of the beam. This difference is acceptable in the case of
direct drive configurations where there is no laser entrance hole to fit in and the wing intensity
information will be lost as many beams overlap over the target in 2D or 3D configuration. Both
profiles have similar contrasts, with CPCGO � CMIRO = 0.66 (with CMIRO �= 1 because of the
convolution with the hydrodynamic mesh). We note that the contrast of the un-convolved Miró
data is C = 1, which is consistent with a pure speckle pattern.
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Figure 3-3 – 2D intensity field as computed by Miró for the Omega beam configuration
with SG4 KPP phase plate, with [top-right] and without [top-left] 2D convolution to
the mesh resolution used for the comparison with PCGO, i.e. dx=22 µm and dy=6.7
µm. [Bottom] corresponding results using the splitting algorithm and PCGO, projected
onto the hydrodynamic mesh. Intensity is normalized to the average intensity of the
un-convolved Miró data �I� = 1.87× 10

11 W/cm.

3.3.3 Hydrodynamic relevance of the pseudo-speckle pattern

The intensity statistics of the pseudo-speckle pattern produced by the method presented in Sec.
3.2 is accurate enough for the modeling of collisional absorption and nonlinear LPIs. However, it
can be argued that the hydrodynamic asymmetries created by pseudo speckles may not be correct
when compared to that of the real speckle pattern, thus introducing a bias in the simulations.
This remark can be adressed by a consideration on the typical mesh resolution employed in
simulations of full-scale ICF implosions. To fully appreciate the impact of discrete pseudo speckles
on the hydrodynamics, one would require a spatial resolution of about 5 points per pseudo speckle
width. For a pseudo speckle of 23 µm in diameter (R = 10 and beam parameters of an Omega
beamline with the SG4 KPPs), this represents a transverse resolution of 4.6 µm. Such resolutions
across the whole diameter of the beam(s) are costly. In general, simulations are conducted on
grids for which the finer (on the laser axis) transverse mesh resolution is of the order of 10-15
µm, so that the pseudo speckle pattern has little consequences on the hydrodynamics. This
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Figure 3-4 – [Top-left] histogram of the 2D intensity field illustrated in Fig. 3-3 for the
convolved Miró data in green (lighter grey) and for PCGO in blue (darker grey).
[Top-right] intensity profile at focal spot from convolved Miró data in red (grey) and
PCGO in black. Intensity is normalized to the average intensity of the convolved Miró
data �I� = 2.00× 10

11 W/cm. [Bottom] Fractional encircled energy as a function of
radius, in the focal plane, for the convolved Miró data in red (grey) and PCGO in
black.

means that in simulations with standard mesh resolutions, hydrodynamic processes driven by
collisional-absorption are not sensitive to small-scale laser inhomogeneities of high contrast beams.
Finally, considering the case of beams smoothed by PS and 2D-SSD, the contrast in the focal
spot reaches value below 5%, which greatly reduce any impact of the pseudo-speckle pattern on
the hydrodynamics, even for mesh resolutions below 5 µm.

3.4 Modeling of laser smoothing techniques relevant to nonlinear
LPIs with PCGO

Methods employed for laser smoothing can be of importance to the correct description of the
laser-plasma interaction. Particularly, SSD and PS have significant influence on nonlinear LPIs,
and those must be adequately described.
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3.4.1 Reduced PS model

As discussed in Sec. 3.1.2, Polarization Smoothing instantaneously reduces the contrast of laser
beams to 70.7% [147] when considering a PP smoothed beam. Modeling the contrast reduction
from PS with PCGO is not relevant, as the pseudo-speckle pattern generated by PCGO beamlets
overlap does not have a 100% contrast, for several reasons. Firstly, pseudo-speckles are at least 5
to 10 times larger than the real speckles, as a direct consequence of assumptions made in the
PCGO model (see Sec. 2.3.3.3). Secondly, as shown in Sec. 3.3.2, the low-intensity statistics is
not well reproduced by the beamlet overlap method, thus leading to a lower initial contrast. Both
these issues are due to the pseudo-speckles being larger and less numerous than real speckles,
and to the typical grid size of the mesh in hydrodynamic simulations that smoothes the intensity
field seen by the hydrodynamics (through collisional absorption). For the SG4 KPP presented
in Sec. 3.3.2, the instantaneous contrast of the beam is of about 66%, which is close to the
contrast achieved with PS. In a sense, the beamlet overlap method models beams as if those
were smoothed by PS. This is not an issue, as the typical mesh resolution employed in radiative
hydrocodes cannot resolve the hydrodynamic effects of a 100% contrast beam.

Among the nonlinear LPIs modeled in the following chapters, we consider the effect of PS on
the resonant absorption and CBET only. For the resonant absorption, only the p-polarized light
can tunnel to the critical density and resonantly excite an EPW. Hence, the absorption fraction
fA (see Sec. 5.3) from resonant absorption is multiplied by a factor ξP = Pp/(Pp +Ps) to account
for polarization mixing, where Pp and Ps are the partial powers of the corresponding polarizations.
For the CBET process, the ion acoustic wave is created by the beating of the EM waves, through
the ponderomotive force. The beat wave being created by the spatial interference of the two
electric fields, the polarization of the waves directly affects the amplitude of the ion acoustic wave.
We consider a linear approach, that is we linearly relate the difference in polarization angles χ

between the two waves to the CBET power transfer (see Sec. 4.1) by multiplying it by a factor
ξP = cosχ. In the case of PS, each beam is composed of mixed orthogonal polarizations, so that
there are as much interactions between waves of aligned polarization and waves of orthogonal
polarization. Statistically, this is equivalent to setting a value of ξP = 1/2 for all interactions
between the two beams smoothed with PS. This reduction of CBET gain by a factor of 2 with PS
was derived in [159] for cases where the CBET gain is small (i.e. there is no pump depletion) and
for intersections at small angles. When accounting for the numerous processes that can rotate
the polarizations of the beams in plasma, the actual polarization of laser light in plasma (with
PS) is uniformly distributed. In that case, the polarization factor reads ξP = (1 + cos

2 θ)/4 [160],
where here θ is the arbitrary angle between the intersecting beams.

3.4.2 Reduced SSD model

The framework of Complex Geometrical Optics does not account for the detailed phase shift
induced by temporal smoothing according to Eq. (3.5), notably because the electric field in
the PCGO model does not include the corresponding phase information and the characteristic
smoothing time is comparable to the hydrodynamic timestep. However, as for the case of KPP
smoothing, some effects of SSD on LPIs and laser beam intensity statistics can be approached. As
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Figure 3-5 – [Left] Time-integrated focal spot transverse intensity for the ∆ν = 1THz
case, illustrating the contrast reduction from the successive overlap of uncorrelated
pseudo-speckle patterns. [Right] Time evolution of the integrated contrast reproduced by
mimicking the SSD-induced speckle pattern variation (solid lines) for two bandwidth
values. The expected smoothing rate is shown as a dashed lines.

such, we only aim to reproduce the spatial speckle pattern variation and the increase in spectral
width.

For a SSD-smoothed beam with an effective (on-target) bandwidth of ∆ν, the coherence time
τc = 1/∆ν describes the lifetime of the speckle pattern. Statistically, speckle patterns generated
by SSD smoothed beams can be considered uncorrelated when separated by τc. This effect is
approached in the PCGO framework by generating a new pseudo-speckle pattern each τc, through
a random generation of new beamlet focal points (see Sec. 3.2.3). For a SSD system using a
sinusoidal random phase modulation with a modulator frequency ν and a modulation depth δ

(see Sec. 3.1.3), the contrast of the SSD-smoothed beam reaches its asymptotic value when many
independent speckle patterns have been cycled, for integration times longer than δ/ν � τc [151].
This is transcribed in our model by using a cyclic set of random focal points that is repeated
every δ/ν. The integrated intensity distribution produced by this method in the case of the
Omega SG4 beam is illustrated in Fig. 3-5 [left], for a SSD-smoothed beam with the modulator
frequency νx = 10.4GHz, modulator depth after frequency tripling δx,UV = 3δx = 42.9 and two
values of the bandwidth after frequency tripling; ∆νx,UV = 0.2 THz and ∆νx,UV = 1 THz. We
use 120 PCGO beamlets. This reduced SSD model based on PCGO reproduces correctly the
time dependence of the smoothed beam contrast, as indicated in Fig. 3-5 by a comparison with
theoretical estimates (Eq. (3.6)), which has been observed to agree with experimental data
[143] for 2D-SSD sinusoidal modulators. The asymptotic contrast reached in this case is around
Ĉa = 3%, in general agreement with theoretical values.

Spectral broadening is accounted for by changing the frequency of PCGO beamlets. For a
beam of central frequency ω, beamlet frequencies are randomly set in the [ω − δω/2;ω + δω/2]

interval using a uniform statistical distribution, where δω is the on-target spectral broadening.
Because δλL = (λL/ω)δω � λL/2 (typically a fraction of Å), it is considered that the frequency
of those beamlets is ω for the computation of nc and central ray trajectories.
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3.5 Conclusions

Laser beams employed in high-power laser systems are shaped using various optical elements,
producing beams with specific intensity statistics and often non-Gaussian transverse intensity
envelopes. Phase plates effectively split beams in beamlets by inducing spatial variations in the
phase of the beam in the near-field. Taking advantage of their use, we have presented adaptations
that can be made in order to use several PCGO beamlets to model one large speckled beam,
thus reproducing the intensity statistics and envelope induced by the use of a KPP or RPP. This
adaptation has been validated against results obtained with the paraxial electromagnetic solver
Miró in the case of the SG4 Phase Plates on the Omega laser facility. The method we have
presented allows to model the correct intensity statistics (for I > �I�/10), beam envelope profile
and caustic induced by the use of Phase Plates, as well as the integrated beam contrast from SSD
(with sinusoidal phase modulators) and the effects of Polarization Smoothing on the intensity
distribution in plasma. The reduced SSD model accounts for the effect of the beam spectral
broadening on CBET. Additionally, a reduced model that describes the effects of mixed beam
polarizations on CBET and resonant absorption has been proposed. These adaptations are key to
the use of PCGO in laser-target simulations and for the interpretation and design of experiments.
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Chapter 4

Modeling and study of the Cross Beam
Energy Transfer: the Eyebolt model

We present in this Chapter a model of energy transfer between crossed laser beams in plasmas
(CBET), based on the PCGO framework. In essence, modeling CBET requires to describe the
interaction of two electromagnetic waves through the ponderomotive excitation of an ion acoustic
wave, in an a-priori inhomogenous and expanding plasma. This is a complex nonlinear and
non-stationary process that has been studied in details by using theoretical approaches [161,
162, 163, 164] and paraxial electromagnetic codes at mesoscopic scales of a few tens of hundreds
microns [165, 166, 167, 168, 169, 170, 171, 172, 173, 174]. In hydrocodes, which involve scales
larger by at least an order of magnitude, the beam wavefields and plasma waves are not readily
described. Development of CBET models in this framework is challenging and relies on necessary
simplifying assumptions. Simplified CBET models require, in addition to the intensity field
and plasma parameters, quantities that are not readily described by RT models, such as the
beam width and propagation direction1, or being able to update the intensity filed downstream
of the interaction region. Despite those difficulties, inline RT-based CBET models have been
developed in the past, based on the method of intensity reconstruction [27, 175, 50] (see also Sec.
2.2.4). However, given the inherent difficulty of knowing the intensity distribution within the GO
approach, these models have proven to be difficult to implement. As such, they require significant
numerical developments in order to achieve convergence, including renormalization of the beams
energy or arbitrary limitation of the IAW amplitudes.

Taking advantage of the PCGO formalism, a steady-state model of CBET based on elementary
interactions between Gaussian beamlets is developed and presented in Sec. 4.1. The Eyebolt
model (for EnergY Exchange Between OpticaL Thick-rays) is validated against several known
cases. First, we derive analytical formulations for the rate of energy transfer between two laser
beams interacting in homogeneous and inhomogeneous plasmas, and compare it to results from
Eyebolt in Sec. 4.2. Second, the model is compared to a time-dependent paraxial solver for
EM waves, embedded in a nonlinear small-scale hydrodynamics model, in Sec. 4.3. Finally, we
present the numerical results and their interpretation concerning a reference experiment that was

1Although the notion of ray direction exists, the notion of beam direction does not because ray trajectories are
independent.
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conducted on the Nova laser facility [176] in Sec. 4.4. The Eyebolt model is then applied to
the academic case of a direct-drive capsule implosion in the Omega beam configuration [177], in
two-dimensional (2D) planar geometry and using the phase plates.

4.1 Eyebolt, an inline CBET model for large-scale hydrocodes
using PCGO beamlets

4.1.1 Elementary transfer formulation

4.1.1.1 General framework

We consider an energy exchange between two EM waves propagating in a plasma. The waves
exchange energy through diffraction on a commonly excited Ion Acoustic Wave-driven electron
density perturbation. The energy exchange is the most efficient in the resonant case where the
beat frequency of the two interacting waves is equal to the IAW frequency. This corresponds
to the process of Stimulated Brillouin Scattering, that was introduced in more details in Sec.
1.5.2.2. The two waves of wavevectors k1 and k2 and frequencies ω1 and ω2 intersect at an angle
θ and excite an ion acoustic wave of wavevector ks = k1 − k2 and frequency ωs. We define the
frequency shift Ω, that includes the effect of Doppler shift due to the plasma flow, as:

Ω = ω1 − ω2 − (k1 − k2).Vp , (4.1)

where Vp is the plasma velocity. The frequency detuning is then defined as Ω− ωs, that is zero
at resonance. Without loss of generality, we assume Ω > 0, i.e. the wave labelled as 1 is the
high frequency (pump) beam, the Doppler shift included. The wave 2 is called the probe beam.
Using these notations, the coupled equations describing the evolution of the wave intensities in
the slowly-varying envelope approximation read [36] (see also Sec. 1.5.2.2):

(∂t + 2ν1 +Vg1.∇)|a1|
2
= ω1

ne

nc

�
�
Γs

Ds

�
|a1|

2
|a2|

2 ,

(∂t +2ν2 +Vg2.∇)|a2|
2
= −ω2

ne

nc

�
�
Γs

Ds

�
|a1|

2
|a2|

2 , (4.2)

k1 = k1eξ ,

k2 = k2eη ,

where Γs ≡ (e/mevT,e)2k2sc
2
se/(1 + k2sλ

2
De

)
2 denotes the coupling coefficient (c2se = ZTe/mi is

the contribution of the electrons to the sound velocity), |ai|2 designates the squared transverse
amplitude of wave i, Vgi = c2ki/ωi is the group velocity of wave i, νi is the damping rate of
wave i, eξ and eη are the unit vectors for the wave directions in the (ξ, η) coordinate system
(illustrated in Fig. 4-1) and Ds = Ω2 − ω2

s + 2iωsνs is the resonance denominator, with νs being
the ion acoustic wave damping rate. Assuming steady-state, small detuning ω1 − ω2 � ω1,ω2,
and neglecting the transverse EM damping rates νi, Eqs. (4.2) reads, along the respective wave
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Figure 4-1 – Schematic representation of the CBET configuration considered. The high
frequency beam 1 propagates along the ξ axis and the low frequency beam 2 along the
η axis. The plasma parameters; density, temperature, velocity, are a-priori arbitrary
in the interaction region, and the upstream intensity profiles of the waves are also
arbitrary.

directions ξ and η:

∂ξI1 = −2β(ξ, η)I1I2 ,

∂ηI2 = 2β(ξ, η)I1I2 , (4.3)

where Ii = |ai|2/�|a1|2in� is the normalized intensity of beam i, �|a1|2in� is the initial mean intensity
of wave 1, and β is a coupling coefficient defined below. With our notations, the normalization
factor, corresponding to the input intensity of the first wave (pump beam) entering the interaction
region, �|a1|2in� reads:

�|a1|2in� =
c2sev

2
osc,1

c2seff(1 + k2sλ
2
D
)v2

T,e

≈
v2osc,1
v2
T,e

=
9.34× 10

−3

N1Te,keV

I1λ2
1

1014Wµm2/cm2
, (4.4)

where vosc,1 is the oscillation velocity of the electrons in the field of wave 1 written in the Fourrier
convention, N1 is the plasma refractive index seen by wave 1, λ1 the vacuum wavelength of wave
1, and c2seff/c

2
se = 1 + 3Ti(1 + k2sλ

2
D
)/(ZTe) is a correction factor close to unity. The expressions

in the right-hand-side were obtained by assuming that ksλD � 1 and ZTe � 3Ti.

To a factor of �|a1|2in�, the nonlinear coupling coefficient β in Eq. (4.3) is the imaginary part
of the ion-acoustic response to the ponderomotive force [164], and reads:

β(ξ, η) = �|a1|2in�
ω2
peω

2
sνsΩ

ω2Vg,2[(ω2
s − Ω2)2 + 4ν2sΩ

2]
, (4.5)

where ωs = Vgs|ks| is the ion-acoustic frequency at the beat wave wavenumber with Vgs the group
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velocity of the ion acoustic wave defined in Sec. 1.5.2.2 (with Vgs ≈ cs =
�
ZTe + 3Ti/mi for

kλDe � 1). The quantities involved in the coupling coefficient are functions of the local plasma
parameters {Te, ne,Vp} inside the interaction region, so that in general β is a function of the
spatial coordinates (ξ, η).

We define the fractional beam power P̂i(η, ξ) as:

P̂1(η, ξ) =

� η

−∞
I1(η

�, ξ)dη� ,

P̂2(η, ξ) =

� ξ

−∞
I2(η, ξ

�
)dξ� , (4.6)

so that Pout
i

= P̂i(∞,∞) is the total power downstream of the intersection for beam i, and
P in
1 = P̂1(−∞,∞) and P in

2 = P̂2(∞,−∞) are the total power upstream of the intersection for
beams 1 and 2, respectively. Note that with our notations, what we have termed beam power are
in units of m−1, because the intensities I are normalized. Summing the two equations in (4.3)
and integrating over the interaction region gives:

� ξ

−∞

� η

−∞
(∂�

ξI1 + ∂�
ηI2)dη

�
dξ� = P̂1(η, ξ)− P̂1(η,−∞) + P̂2(η, ξ)− P̂2(−∞, ξ) = 0 . (4.7)

Setting η → ∞ and ξ → ∞ we obtain the power transfer equation:

P
in
1 − P

out
1 = P

out
2 − P

in
2 = PT , (4.8)

where PT is the total power transfer (also in units of m−1). We now present the formulation of
PT for elementary energy transfers between PCGO beamlets.

4.1.1.2 Elementary energy exchange between beamlets

Each elementary energy transfer between PCGO beamlet is based on the formulation presented
above, with an additional layer of simplifying assumptions. In order to integrate the coupled
equations for the waves intensities (4.3), we simplify the formulation for the coupling parameter
β by assuming that the plasma parameters, namely the density, temperature and flow velocity
direction and amplitude, are constant in the interaction region. These quantities are set to the
plasma parameters at the coordinate of the intersection between the centroids of the beamlets,
interpolated from the mesh grid of the hydrodynamic code. The resulting constant coupling
coefficient is noted β and with respect to the definition of Eq. (4.5) we have β = β(0, 0). When
not specified otherwise, the damping coefficient νs/ωs is computed using empirical formulas such
as those presented in Ref. [178], that account for both the collisional and the Landau damping.
For a constant β, Eq. (4.3) can be integrated for arbitrary upstream intensity profiles Ji by
defining the normalized beam widths [179]:

ŵ1(η) = 2β

� η

−∞
J1(η

�
)dη� ,

ŵ2(ξ) = 2β

� ξ

−∞
J2(ξ

�
)dξ� . (4.9)
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In that framework, integration of Eq. (4.3) yields the intensity of the beams in the intersection
region:

I1(η, ξ) = J1(η)
exp [−ŵ1(η)]

exp [ŵ2(ξ)]− 1 + exp [−ŵ1(η)]
,

I2(η, ξ) = J2(ξ)
exp [ŵ2(ξ)]

exp [ŵ2(ξ)]− 1 + exp [−ŵ1(η)]
. (4.10)

In PCGO, beamlets are defined with a transverse intensity profile (see Sec. 2.3.3.2):

Ii = I0,i exp

�
−2

�
ri
w0,i

�2
�

, (4.11)

where ri is the transverse coordinate to beamlet i, I0,i is its on-axis intensity and w0,i its width.
In this framework, the normalized upstream intensity profiles J in the (η, ξ) coordinate system
read:

J1(η) = exp[−2(η sin θ/w0,1)
2
] ; J2(ξ) = RI exp[−2(ξ sin θ/w0,2)

2
] , (4.12)

where RI = I0,2/I0,1 is the upstream probe-to-pump on-axis intensity ratio. We compute the
associated power transfer PT between the higher-frequency wave 1 and lower-frequency beam 2
by combining and integrating Eqs. (4.6), (4.10) and (4.12):

PT =
RIξP
2β

log [exp(−ŵ2(∞)) + exp(ŵ1(∞))(1− exp(−ŵ2(∞)))] , (4.13)

where we have introduced the polarization coefficient ξP defined in Sec. 3.4.1. The normalized
beam width downstream of the interaction region and for the Gaussian intensity profiles read:

ŵ1(∞) = (2π)1/2βw0,1/| sin θ| ,

ŵ2(∞) = (2π)1/2RIβw0,2/| sin θ| . (4.14)

Note that these formulations diverge for sin θ = 0. In that configuration, the two beams share
one centroid, thus creating an infinite interaction region, leading to maximum gain, i.e. pump
depletion. In practice, intersection of beamlet centroids at θ = 0

◦ or θ = 180
◦ are excluded in our

simulations. Finally, the probe-beam amplification, defined as Tprobe = (P in
2 + PT )/P in

2 , reads:

Tprobe = 1 + ξP

�
1

RIG2
log [1 + exp(G1) (exp(RIG2)− 1)]− 1

�
, (4.15)

where we have defined the gain values G1 = ŵ1(∞) and G2 = G1(w0,2/w0,1).

Given two PCGO beamlets in the 2D planar framework, which parameters upstream of their
intersection are a power P in

i
=

�
π/2hw0,iI0,i with a width w0,i and on-axis intensity I0,i (h is a

unit height, see Sec. 2.3.3.2), their downstream power are computed as:

P out
1 = TpumpP

in
1 = (1−RP(Tprobe − 1))P in

1 ,

P out
2 = TprobeP

in
2 , (4.16)

119



Chapter 4. Modeling and study of the Cross Beam Energy Transfer: the Eyebolt model

where Tpump ≤ 1 is the pump depletion ratio and RP = (w0,2/w0,1)RI is the upstream power ratio
for the beamlets. The maximum power transfer occurs for Tpump = 0, that is Tprobe = (1+RP)/RP.

4.1.2 From elementary to large-scale energy transfers

Equation (4.15) describes an idealized case of a steady-state interaction between two Gaussian
beamlets. In order to extend the energy transfer between whole beams including many elementary
transfers between PCGO beamlets, a number of simplifying assumptions are made.

• The spatial configuration of the CBET causes the two beams to have different intensity
distributions after the transfer, i.e. they do not remain Gaussian [164] (this can also be
seen from Eqs. (4.10)). In general, the output intensity profile can exhibit more than one
intensity peak and be deviated (skewed). In order to fulfill the limitations of the thick-ray
model, we assume the intensity distribution of a beam after an energy transfer remains
Gaussian, with the same width as before the energy exchange. Consequently, the amount
of power transferred between beams is only impacted on their intensity. This assumption
is reasonable as for these deformations to be significant in terms of influence on the small
scale hydrodynamics, a high mesh resolution would be required. Moreover these deviations
from the Gaussian profile are observed only in the case of high energy transfer, while the
energy exchange between beamlets is kept at a low level because of small beamlet sizes.

• We neglect changes in centroids directions of the crossed beams [164]. This phase distortion
due to CBET is relatively small and is close to zero when the energy exchange is maximum
(i.e. when β is maximum). Although the PCGO model is well suited to take into account
this second order effect, it is not accounted for in the present version.

• We make the further approximation that the energy transfer region is point-like, i.e. we do
not project intensity variations inside the transfer region onto the hydrodynamic mesh and
beam parameters are modified at the point where the centroids cross each other. This is
reasonable considering the typical thickness of PCGO rays compared to the size of mesh
cells. Furthermore, given that many beamlets overlap in plasma, such effects are negligible.

• Finally, because the transfer regions are modeled as being point-like, we consider intersections
between only two thick-rays at a time, i.e. overlapping energy transfer regions are treated
separately and in a chronological order.

Once the energy transfer between two beams has been computed and their downstream
intensities are found, the beamlet propagation is recomputed from the point of crossing along
the central rays by re-integrating the wave front equations (2.72). Resolving the stack of CBET
intersections in a chronological and consistent order requires specific algorithms of intersection
sorting, ordering and identification of loops, which are described in App. B.2. Simplification of
this stack can be achieved by neglecting CBET interactions with small coupling coefficients. In
applications, we chose to neglect crossings with β < 5× 10

−4βmax. The cut-off value for β has
been chosen so as to consider the maximum number of beamlet intersections as possible. Lower
cut-off values do not yield different results.
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The power exchange being known analytically and all intersections being solved in a chronolog-
ical order, the energy is naturally conserved in the present CBET model, as it is conserved in each
elementary process according to Eq. (4.8). It is also worth mentioning that the beamlet-related
quantities required to compute an energy transfer (i.e. width and intensity) are always well
defined by PCGO, even for normally incident beamlets on the critical density and at turning
points. This property that the intensity and width of PCGO beamlets do not diverge near or at
the critical density (as shown in Sec. 2.3.5.3 and Fig. 2-9 [left]) is a strong motivation for its use
for CBET computations and nonlinear LPIs in general.

4.2 Theoretical validation of the CBET model: comparison to
academic cases

The theoretical validation of the Eyebolt model is based on two points.

• First, an assessment of the quadratic decomposition approach, e.g. the discretization of the
CBET between two large beams by (NB1 ×NB2) local CBETs between PCGO beamlets, is
conducted in Sec. 4.2.1. This comparison is conducted in the framework of steady-state
energy transfer at the resonance and in homogeneous media.

• Second, a comparison of CBET linear gains for beams crossing in an inhomogeneous plasma
is presented in Sec. 4.2.2, in the case of (i) large pump-to-probe intensity ratios, and (ii)
similar pump-to-probe intensity ratios.

Throughout this section and in the numerical comparison with the paraxial solver (in Sec. 4.3),
the plasma is considered to be non-collisional. Note that this is a good approximation at the low
densities considered here.

4.2.1 Quadratic decomposition approach

The Eyebolt model relies on the description of the CBET between whole beams by many
elementary energy transfers between Gaussian beamlets. Considering two lasers beams modeled
with PCGO with NB1 and NB2 beamlets, respectively, the global Cross-Beam Energy Transfer is
modeled by NB1 ×NB2 elementary energy exchanges, as illustrated in Fig. 4-2. The validity of
this approach can be assessed in the framework of a plasma of constant density, temperature and
flow velocity, as was presented in Sec. 4.1.1.2.

We consider the energy exchange between two nearly flat-top beams with aligned polarizations
(ξP = 1), which intensity profile upstream of the intersection region are:

J1(η) =
1

1 +RI
exp

�
−
����
η sin θ

D

����
8
�

; J2(ξ) =
RI

1 +RI
exp

�
−
����
ξ sin θ

D

����
8
�

, (4.17)

where D is the beam diameter, θ is the angle at which the waves intersect, and similarly to Sec.
4.1.1.2, RI is the upstream probe-to-pump intensity ratio of the two waves (here RI = RP. The
normalization used in this formulation is such that the overlapped intensity in the focal plane of
the wave is equal to �|a0|2in�. We designate by IΣFSλ

2
L

the overlapped vacuum interaction parameter
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Figure 4-2 – Illustration of the quadratic decomposition of [left] the CBET between two
beams by [right] NB1 × NB2 elementary energy exchanges between PCGO beamlets.
The flow velocity Vp is in the direction of −ks and |Vp| = cs. Note that −ks in this
schematic refers to the beat wavenumber of the waves shown on the [left] panel, i.e. the
whole laser beams. Given that PCGO beamlets are pseudo-randomly focused in our
model, as illustrated in the [right] panel (see also Sec. 3.2), each elementary energy
exchange sees a local ks that is not exactly collinear with the plasma velocity Vp.

inside the CBET region. This notation will also be used in the comparison with the paraxial
solver in Sec. 4.3.

The frequencies of the beams are identical, ω1 = ω2, and the plasma flow velocity is such that
Vp = −ks and |Vp| ≈ cs (here ksλD � 1), so that Ω = kscs = ωs, i.e. we are at resonance and β

is maximum. Similarly as in Sec. 4.1.1.2, integration of Eqs. (4.6) and (4.10) using the flat-top
upstream intensity profiles given by Eq. (4.17) gives the probe beam power amplification T flat

probe

downstream of the transfer region:

T flat
probe = (RIG)

−1
log

�
1 + expG(1 +RI)− expG

�
, (4.18)

G =
4Dβ(Ω = ωs)Γ[9/8]

(1 +RI)| sin θ|
, (4.19)

where Γ is the Euler Gamma function.
We consider beams with a vacuum wavelength λL = 1.05 µm, intersecting at an angle

θ ∈ {20◦, 60◦} in a fully ionized hydrogen plasma with Te = 3 keV, Ti � ZTe, ne = nc/10,
νs/ωs = 1/10 (that is a rather standard value for laser-ablator interaction in ICF). Using the
left-hand-side of Eq. (4.4), the relation between the vacuum interaction parameter IΣFSλ

2
L

(in
units of 1014 Wµm2/cm2) and �|a0|�2 is obtained, so that G reads:

G =
1.45(IΣFSλ

2
L
)(1 + 0.21 sin(θ/2)2)

| sin θ|(1 +RI)(1 + 0.003(1 + 0.21 sin(θ/2)2))
, (4.20)

where, considering that the plasma is non-collisional, we have used IΣFSλ
2
L
= IΣλ2

L
/N , with N

the refraction index and I the in-plasma intensity used in Eq. (4.4). This formulation for G is
injected in (4.18) to obtain the amplification T flat

probe(θ, I
Σ
FSλ

2
L
,RI). Note that for a fixed angle θ,

the term G(1 +RI) in Eq. (4.18) is proportional to IΣFSλ
2
L
.

This theoretical formulation is compared to simulations using 30 beamlets for each beam
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4.2. Theoretical validation of the CBET model: comparison to academic cases

(the beam splitting algorithm in that case does not allow to use less beamlets, see App. B.1.1).
Resulting probe beam amplifications are shown in Fig. 4-3 for θ = 20

◦. Considering a range
of parameters RI ∈ [10

−3, 102], IΣFSλ2
L
∈ [10

−3, 102] × 10
14 Wµm2/cm2 and θ ∈ {20◦, 60◦}, the

maximum relative error arising from the quadratic decomposition of the CBET region with PCGO
beamlet is 2.1%, across an interval for G ∈ [4× 10

−5
; 4× 10

2
]. Note that results are not sensitive

to the number of beamlets past the minimum of 30 we have used here. The error is maximum
in a region where 1 +R ≈ 1 and G ≈ 10. It can be seen from Eq. (4.18) that the system is
particularly stiff in this region, where the two exponential factor almost cancel out.

The low error observed across the wide range of parameters is a strong result of the quadratic
decomposition approach, especially when considering the nonlinear nature of CBET, illustrated by
the exponential factor in Eq. (4.18). It may be explained by the fact that for a beam i of intensity
Ii, modeled by NBi beamlets, the intensityIik of beamlet k is not Ii/NBi. In fact, following the
beam-splitting algorithm presented in Sec. 3.2.2, the beamlet intensity is of the same order of
magnitude as Ii/2, so that the PCGO-based CBET approach we have presented is not a linear
discretization of CBET in the sense of the factors IΣFSλ

2
L

and G. An analytical formulation of
the energy transfer of NB1 ×NB2 energy exchanges between Gaussian optical beamlets would
highlight the key parameters in minimizing the error from the quadratic decomposition. That
error is likely to arise from the free parameters of the beam splitting model exposed in Sec. 3.2.2
and App. B.1.1; elementary width of the beamlets compared to the speckle radius, elementary
intensity, number of beamlets used, etc...

These results are a validation of the approach considered in the Eyebolt model, of representing
the intersection between beams by many elementary intersections between beamlets. These results
are now extended to the case of CBET in an expanding plasma.

4.2.2 Steady-state CBET in an expanding plasma

4.2.3 Theoretical framework

We now consider the energy exchange between two EM waves propagating in a plasma with a
linear velocity profile, constant density and constant temperature. In the vicinity of the resonance,
point where Ω ≈ ωs, Ds can be approximated by:

Ds ≈ 2ωs(Ω− ωs + iνs) , (4.21)

where we have used Ω2−ω2
s ≈ 2ωs(Ω−ωs). In that case, the non-linear coupling coefficient given

in Eq. (4.5) reads:

β(ξ, η) =
β0

1 +

�
Ω−ωs

νs

�2 , (4.22)

where we have introduced β0 = β(Ω = ωs):

β0 = �|a1|2in�
ω2
peωs

4ω2Vg,2νs
=

γ20
νsVg,2

, (4.23)

which we have related to the SBS coupling constant γ0 introduced in Sec. 1.5.2.2.
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Figure 4-3 – Probe beam amplification downstream of the transfer region, [top-left]
results from the Eyebolt model TPCGO

probe , [top-right] theoretical formulation for
T flat
probe(θ, I0λ

2
L
,RI), and [bottom] relative error |T flat

probe − TPCGO
probe |/T flat

probe in percent.
The angle between the beams is θ = 20

◦, except for [bottom-right] for which θ = 60
◦.

Similar results are obtained for θ = 140
◦. The overlapped vacuum interaction parameter

is in units of 1014 Wµm2/cm2.

We consider a plasma with a linear velocity profile of the form Vp(y) = [Vp,0+ycs/L⊥]ey, with
y = ηey.eη+ ξey.eξ the coordinate in the direction of the velocity vector ey, cs is the sound speed
defined as c2s = (ZTe + 3Ti)/mi (with mi the ion mass), Vp,0 is the plasma velocity at the origin
of the (ξ, η) coordinate system, and L⊥ is the velocity gradient defined as: L⊥ = cs/dyV |y=0. We
denote as φ the angle between ks and Vp, so that ey.eξ = − sin(φ+θ/2) and ey.eη = − sin(φ−θ/2).
In that configuration, β(ξ, η) reads:

β(ξ, η) =

γ2

0

νsVg,1

1 +
k2sc

2
s

ν2s
[Q0 −Q(ξ, η)]2

, (4.24)

with

Q(ξ, η) =

����
Vp,0

cs
− η sin(φ− θ/2) + ξ sin(φ+ θ/2)

L⊥

���� cosφ ,
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Figure 4-4 – (color) Schematic representation of the CBET configuration. The high fre-
quency beam 1 propagates along the ξ axis and the low frequency beam 2 along the η
axis. The plasma flow velocity is in the y direction with value Vp,0 at the intersection
between the beams centroids. The line of constant Vp = cs is located at an arbitrary
location, indicated here with a dashed line.

Q0 =
ω1 − ω2

kscs
− cseff

cs
�
1 + k2sλ

2
D

≈ ω1 − ω2

kscs
− 1 , (4.25)

where we have assumed ksλD � 1 on the right-hand-side of Q0. Considering the energy transfer
between two beams of constant diameters D1 and D2 throughout the interaction region (see Fig.
4-4), we define the linear gain G of the energy transfer from the probe power amplification:

expG = Tprobe =

� ξc

−ξc

I
out
2 (ξ)dξ/

� ξc

−ξc

I
in
2 (ξ)dξ , (4.26)

where ξc = D1/(2 sin θ), Iout
2 (ξ) = I2(ξ, ηc), I in

2 (ξ) = I2(ξ,−ηc) and ηc = D2/(2 sin θ).

4.2.3.1 Theoretical gains and comparison with Eyebolt

Infinitesimal probe-to-pump intensity ratio We consider the case of a probe intensity I2

much lower than the pump intensity I1, i.e. I2 � I1. In that case, I1 can be considered constant
throughout the interaction region. We construct a spatial phase-matching variation between the
beams by considering a plasma with a constant velocity gradient (that is often the case in ICF
plasmas). Assuming an initially constant transverse profile for the beams, i.e. I in

1 (ξ) = I in
1 = 1

and I in
2 (η) = I in

2 = 1, it is straightforward to show that Eq. (4.3) yields:

I
out
2 (ξ) = I

in
2 exp

� ηc

−ηc

2β(ξ, η�)dη� , (4.27)
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so that Eq. (4.26) for the gain reads:

T I2�I1

probe ≡ expGI2�I1

inh =
1

2ξc

� ξc

−ξc

exp

�� ηc

−ηc

2β(ξ, η)dη

�
dξ . (4.28)

We note that analytical integration of β in this equation requires splitting the integral in two
separate sub-domains to account for the absolute value of the velocity in Eq. (4.25). These
domains are delimited by the line where the plasma velocity is zero, defined by η sin(φ− θ/2) +

ξ sin(φ + θ/2) = L⊥Vp,0/cs. The formulation for GI2�I1

inh in Eq. (4.28) accounts for the local
plasma parameters in the interaction region, along the directions ξ and η. As we have shown in
Sec. 1.5.1.3, for a finite-length interaction in an inhomogeneous medium, GI2�I1

inh can be estimated
by Gmax:

Gmax =
2γ20

νsVg,1
min {Lint, Linh} , (4.29)

where Linh is the characteristic scale of the inhomogeneity and Lint the characteristic scale of the
finite-length interaction. Note that the gain associated with Linh is the so-called Rosenbluth gain
[76], written for the intensity; Gros = (2γ20/(νsVg,1))Linh. Here, the characteristic scales read:

Lint =
D1

2 sin θ
, (4.30)

Linh = π
L⊥νs/ωs

cosφ sin(φ+ θ/2)
. (4.31)

The gain Gmax is an estimation of the gain that is a-priori a maximum value for the interaction,
so that Gmax ≥ GI2�I1

inh .

For the case presented here, we choose the following parameters for the plasma: νs/ωs = 1/10,
ne/nc = 1/10, Te = 3 keV, Z = 2.5, ZTe � Ti and A = 4.252 (where A is the mass number).
The beam parameters are the following; a free-space interaction parameter for the pump beam
IFS,1λ2

L
= 0.9 × 10

14 Wµm2/cm2, a probe-beam intensity I2 � I1, equal beam diameters
D1 = D2 = D = 600λ, the f-number f# = 7 and interaction at an angle θ = 20

◦. The beams
intersect in their focal plane and the initial flat-top transverse intensity profiles are approximated
by super-Gaussian profiles of an order 8. The latter are more comparable with the averaged
intensity profiles obtained when using Phase Plates and correspond to profiles that can be
reproduced with PCGO:

J1(η) = exp

�
−
����
η sin θ

D

����
8
�

; J2(ξ) = RI exp

�
−
����
ξ sin θ

D

����
8
�

, (4.32)

which are similar to Eq. (4.17) with RI → 0. Given those parameters, the beams widths can
be considered constant throughout the interaction region, in accordance with the assumptions
made in Sec. 4.2.2. A linear plasma velocity profile with L⊥ = 500λ, Vp,0 = cs and φ = π is
imposed. The resulting nonlinear coupling coefficient is illustrated in Fig. 4-5. The corresponding
theoretical gain GI2�I1

inh is computed by numerical integration of Eq. (4.26). We find a probe power
amplification T I2�I1

probe = 685, so that the gain is GI2�I1

inh = 6.53. Note that in this configuration
Gmax = 8.51.
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k1

k2

k1

k2
Figure 4-5 – Illustration of the resonance function considered here, normalized to its maxi-

mum value. The two waves are input on the upper-left and bottom-left boundaries of
the domain, indicated by arrows. Note that the ξ and η axis are shown to be orthogonal,
but these are in reality at an acute angle of θ = 20

◦.

This theoretical configuration is reproduced with PCGO, modeling each super-Gaussian beam
by NB = 100 PCGO Gaussian beamlets using the method described in Ch. 3.2 for beams
smoothed by Kinoform Phase Plates (KPP). In order to be consistent with the theory described
here, the EM wave absorption was turned off. The CBET gain GI2�I1

inh,PCGO is computed as a
discrete version of Eq. (4.26), where the summation spans over beamlets from the probe beam:

expGI2�I1

inh,PCGO =

NB�
k=1

Iout
k

wout
k

NB�
k=1

I in
k
wout
k

, (4.33)

where Ik and wk designate the intensity and width of a beamlet k, respectively. The Eyebolt
model yields GI2�I1

inh,PCGO = 6.55, corresponding to T ros
PCGO = 700. Simulation results are in excellent

agreement with the theory in that case and for various values of L⊥, θ, φ, ne/nc for which the
assumptions made in the theory presented in Sec. 4.2.2 are valid, the main constraint being the
validity of Eq. (4.21), which limits the range of L⊥ we can explore, depending on θ and φ.

For two beams modeled by NB = 100 beamlets each, the large-scale resonance function is
discretized by 10

4 beamlets intersections. Energy transfers between those pairs are resolved with
a constant value of β determined by the coordinates of their centroids intersection (defined as
(η, ξ) = (0, 0)). The accuracy of this method is naturally related to the width of each elementary
beamlet intersection region compared to the width of the resonance function. In practice, the
Gaussian beamlets used in PCGO are small compared to the characteristic inhomegeneities
encountered in typical CBET configurations. As an example, for a typical direct-drive ICF
configuration, CBET occurs near the resonance region (for which Vp,0 = cs), where the gradient
scale length of the density, temperature and velocity are much larger than the typical beamlet
width of 10-30 λL. In configurations in which this assumption would not be correct, we note
that the precision of the Eyebolt model may be enhanced by replacing β(0, 0) by the average
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Figure 4-6 – Map of the normalized intensity field I, for the [left] pump beam 1 and [right]
probe beam 2, for the particular case of RI = 1/8. The input directions of the waves
are indicated by arrows. Note that the ξ and η axis are shown to be orthogonal, but
these are in reality at an acute angle of θ = 20

◦.

value of the nonlinear coupling coefficient in the interaction zone
� �

β(ξ, η)dξdη/(4ξcηc), for
each elementary energy transfer between beamlets.

Interaction between beams of similar intensities We now consider the case where RI =

I in
2 /I in

1 is closer to unity. For inhomogeneous plasmas, the estimation of the gain in such cases
requires direct numerical resolution of Eq. (4.3). This numerical integration is most efficiently
achieved by taking the crossed derivatives in Eqs. (4.3):

∂η∂ξI1 = −2∂η(β(ξ, η)I1I2) ,

∂ξ∂ηI2 = 2∂ξ(β(ξ, η)I1I2) . (4.34)

This system is integrated using the Implicit Differential-Algebraic solver [180, 181, 182]. The
initial conditions are defined on the input boundaries of the interaction region for both beams, i.e.
there are four initial conditions to specify; I1(−ξc, η), I1(ξ,−ηc), I2(ξ,−ηc) and I2(−ξc, η). Two
of these are the initial intensity profiles of the beams, J1(η) = I1(−ξc, η) and J2 = I2(ξ,−ηc),
defined by:

J1(η) = exp

�
−
����
η sin θ

D

����
8
�

; J2(ξ) = RI exp

�
−
����
ξ sin θ

D

����
8
�

. (4.35)

The other two initial intensities are noted G1(ξ) = I1(ξ,−ηc) and G2(η) = I2(−ξc, η), and are
solutions of the partial differential equations (4.3) for the intersection region edges:

∂ξG1(ξ) = −2β(ξ,−ηc)G1(ξ)J2(ξ) ,

∂ηG2(η) = 2β(−ξc, η)G2(η)J1(η) , (4.36)

where the initial conditions for these equations are G1(−ξc) = J2(−ξc) = RI exp(−1) and
G2(−ηc) = J1(−ηc) = exp(−1).

We integrate Eqs. (4.34) and (4.36) for two values of RI ; RI = 1 and RI = 1/8. Other
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a-a+

a1
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Figure 4-7 – Illustration of the EM waves described in Harmony. The code is formulated
for the propagation and interaction of counter-propagating waves a− and a+. In our
case, the a− component is set to 0, and the a+ term is decomposed in two co-propagating
waves.

plasma and beam parameters are the same as in Sec. 4.2.3.1. The resulting intensity map in the
interaction region is illustrated in Fig. 4-6 for the case RI = 1/8. The theoretical gains computed
from the probe beam power amplification are, for the two cases, G1:8

inh = 2.061 and G1:1
inh = 0.692.

Simulations using the Eyebolt model and super-Gaussian of order 8 intensity profiles yield gain
values of G1:8

inh,PCGO = 2.056 and G1:1
inh,PCGO = 0.692, which are in excellent agreement with the

theory. Furthermore, a comparison of the output intensity profiles between the numerical solution
and PCGO also shows excellent agreement, PCGO being able to accurately reproduce the regions
of pump depletion and probe amplification. This is discussed further in Sec. 4.3.2.2 in the case of
the comparison with the paraxial solver.

4.3 Comparison to a paraxial solver

Results from the steady-state Eyebolt model are now compared to a time-dependent numerical
resolution of the CBET. For the interaction of two electromagnetic beams, a system of partial
differential equations using paraxial operators has to be solved with source terms for the coupling
between the different modes [169, 170, 173]. Instead of the system of equations for the wave
intensities (4.2), a system of equations for the corresponding complex-valued amplitudes is solved.
This comparison aims at assessing (i) the validity of a CBET model in which the phase information
has been discarded, and (ii) the assumption of steady-state CBET. A 2D planar geometry in
Cartesian coordinates is considered, the main propagation axis being taken along the x coordinate.

4.3.1 Formalism of the Harmony code

The code Harmony [169, 170, 173] describes the coupling between two electromagnetic waves
with amplitudes a+ and a− propagating in opposite directions (see Fig. 4-7). Coupling of these
two waves is mediated by IAW with the complex-valued amplitude as:

Lpar(a+) = −i(ω1/2nc,+) [asa− + δna+] ,

Lpar(a−) = −i(ω2/2nc,−) [a
∗
sa+ + δna−] , (4.37)

where the paraxial operator Lpar(a±) = [∂t + Vg,±∂x + ν± −i(c2/2ω±)�⊥]a±, Vg,+ and Vg,− ≡
−Vg,+ stand for the group velocity of the forward and backward propagating waves, respectively,
ν± denotes the damping of these waves (see Sec. 1.3.3), and δn = (n − neq) is the density
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perturbation with neq the equilibrium density. In this general formulation, the right-hand-side
terms in Eqs. (4.37) account for (i) the resonant 3-wave interaction of the incident wave a+ and
the backscattered wave a− with the fundamental IAW component as, and for (ii) the refraction
of the waves a+ and a− on the long-wavelength density modifications δn around the equilibrium
density neq. In this approach, short-wavelength IAWs generated by the coupling between two
laser beams with opposite wave vectors, 2|k+| ≥ |k+ − k−| > |k+|, are described by a nonlinear
ion acoustic equation which takes into account high harmonics generation via hydrodynamic
nonlinearity.

The ponderomotive modifications of the plasma density by each EM wave are described by a
system of (nonlinear) fluid equations:

∂tn+∇nv0 = 0 , (4.38)

∂t (nv0) +∇ (nv0v0) + c2seff∇n+ ν̂knv0 = −nc2se∇U0 , (4.39)

where ν̂k is a wavelength-dependent operator accounting for collisional and Landau damping.
These equations describe the IAW in the specific case of the interaction between co-propagating
EM waves. For an interaction between contra-propagating EM waves, an additional equation
would be necessary. The right-hand-side term in Eq. (4.39) accounts for the ponderomotive force
given by:

∇U0 = (V 2
osc/c

2
se)∇(|a+|

2
+ |a−|

2
) . (4.40)

The momentum transfer between the long- and short-wavelength IAWs is neglected [170], because
it is of minor importance in this case.

The case of crossed laser beams with angles < 45
◦ is considered, so that the generated IAWs

(i) propagate perpendicular to the axis in between the crossed beams, and (ii) are long-wavelength
waves, so that the coupling is described via the term ∼ δna+. In that case, the counter-propagating
field a− is set to zero and the field a+ used in Eqs. (4.37) is split in two components separated
by an angle θ (see Fig. 4-7) so that:

a+ ≡ a1e
ik1,⊥·y

+ a2e
ik2,⊥·y , (4.41)

a− ≡ 0 , (4.42)

with the propagation along the axis x and the common wave vector component k1,� = k2,� =

k1 cos θ/2, while k1,⊥ = −k2,⊥ = k1 sin θ/2. In this framework, the equation for the fields read:

Lpar(a+) = −i
ω1

2nc,+
δn(a1e

ik1,⊥·y
+ a2e

ik2,⊥·y
) . (4.43)

The EM field a+ is generated by considering two separate beam elements which do not overlap
in the near field, i.e. the width in ∆k of each beam is smaller than their separation 2k1 sinϑ/2.
Note that the ponderomotive force acting on the plasma fluid following Eqs. (4.39), ∝ ∇U0, takes
into account both the coupling between the components a1 and a2 of a+, namely (∇U0)CBET ∝
∇a1a∗2 exp(i2|k1|y sin θ/2), but also the square terms (∇U0)self ∝ ∇(|a1|2 + |a2|2), responsible for
self-focusing.
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4.3. Comparison to a paraxial solver

Figure 4-8 – (color) Initial plasma parameters of the simulations. The color background
indicates the plasma velocity Vp.ey in units of cs. Negative values mean that the flow
is directed along the unit vector −ey. Contours of constant density are shown in black
plain lines, for ne/nc ∈ {0.01, 0.05, 0.09, 0.095}, and contours of constant velocity are
shown in black dashed lines for Vp.ey = ±cs.

4.3.2 Comparison between PCGO and Harmony simulations

The steady-state Eyebolt approach and the time-dependent paraxial approach Harmony are
compared in several cases of various probe to pump intensity ratios RI and overlapped intensities
IΣFSλ

2
L
. The 2D simulation setup is a box of 4000 λL in length and 1800 λL in width in the (x̂, ŷ)

coordinate system (expressed in units of the vacuum wavelength λL). The chosen velocity and
density profiles mimic that of a thin-foil experiment; with a quadratic density profile and a linear
expansion velocity. For x̂ ∈ [1300, 4000], the velocity is along the ŷ direction and described by:

Vp(ŷ)/cs = (ŷ − 657)/200 , (4.44)

and the density is described by

ne(ŷ)/nc = 0.0995− [(ŷ − 900)/1580]2 , (4.45)

with ŷ ∈ [0, 1800]. Note that the line of Vp = 0 does not correspond to the density maximum, as
in a thin-foil experiment for which only one side of the foil is irradiated by laser beams. These
profiles are linearly extended to zero velocity and zero density in the x̂ ∈ [0, 1300] interval in
order to avoid spurious couplings of edge modes to plasma waves. The resulting initial plasma
conditions are illustrated in Fig. 4-8

The plasma is fully ionized hydrogen (i.e. Z = 1 and A = 1) and the damping rate is set to
νs/ωs = 1/10. With those parameters, the plasma velocity at the center of the interaction region
is Vp,0 = 1.2cs in the direction of increasing ŷ and the density is ne = nc/10. The position of the
resonance can be obtained by equating Q(η, ξ) and Q0 (Eq. (4.25)), which yields the optimal
plasma velocity Vp,opt = Q0/ cos(φ) = cs, i.e. at ŷ ≈ 860. The mean intensity profiles (envelop)
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Figure 4-9 – (color) Time history of the probe amplification from Harmony simulations.
Results at IΣFSλ2

L
= 0.9 × 10

14 Wµm2/cm2 for RI = 1/8 and RI = 1/1 are indicated
with red (grey) lines and black lines, respectively. The cases of RPP smoothed beams
(with speckles) are shown with plain lines and the cases of ‘regular’ beams (without
speckles) at equivalent average beam intensities are shown with dashed lines. In the
configuration considered here, 2cskFS,1t ∼ 30 corresponds to t ∼ 5 ps.

of the beams are as follow:

�J1(η)� =
1

1 +RI
exp

�
−
����
η sin θ

D

����
8
�

; �J2(ξ)� =
RI

1 +RI
exp

�
−
����
ξ sin θ

D

����
8
�

, (4.46)

with D = 600λ and the f-number f# = 7. The beams intersect in their focal plane in a region
centered near the resonance line, at x̂ = 2650 and ŷ = 900. The beam crossing geometry in our
simulations is simplified with respect to the scheme presented in Fig. 4-4, as the plasma flow
velocity is parallel to ks (i.e φ = 0 or φ = π).

The comparison relies on two sets of observables. First, a systematic study of the asymptotic
power transfer between the beams for different values of the beam intensity ratio RI = I in

2 /I in
1 ,

namely RI = {1, 1/8, 1/64}, measured in terms of Pout
2 /P in

2 =
�
Iout
2 dξ/

�
I in
2 dξ, as a function

of the interaction parameter IΣFSλ
2
L
. Second, a comparison of the spatial pattern of the CBET,

including; the location and amplitude of the IAWs excited by the interaction of both beams, the
intensity pattern of the beams in the simulation volume and the deviation of the beams after the
transfer region.

Two series of simulations with Harmony and PCGO have been carried out using two types
of beams, namely; (i) optically ‘smoothed’ beams generated by phase plates in the near field, thus
producing a speckle pattern for each beam in the interaction region (using Random Phase Plates
(RPP) for Harmony and Kinoform Phase Plates (KPP) for PCGO), and (ii) ‘regular’ beams of
the same width and the same intensity envelope as the ‘smoothed’ beam, but without speckles.
In both cases, the width in the interaction volume is controlled by applying a super-Gaussian
envelope to the beams. The smoothed beams simulations constitute realistic cases, while the
regular beams simulations are used to assess the spatial patterns arising in the transfer region.
Note that the fractional power transfer between simulations with regular and smoothed beams
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Figure 4-10 – (color) Probe amplification as a function of the interaction parameter IΣFSλ
2
L

in 10
14 Wµm2/cm2 for various values of the upstream intensity ratio RI. Results

obtained with the Eyebolt model are shown as solid lines and results from Harmony
as symbols. Results in both codes are based on a speckle pattern seed. The estimate
from Eq. (4.15) with the gain values given in Sec. 4.3.2.1 are shown as dashed lines.

are seen to be comparable, as illustrated in Fig. 4-9. The time of steady-state observed in the
simulations vary depending on the interaction parameters. The duration of the transient period,
defined as the time its takes for the power transfer to reach its final value (be it asymptotically
or with small oscillations around a mean value), is in general of the order of ∼ 30(2cskFS,1t), that
is t ∼ 5 ps here.

4.3.2.1 Asymptotic power transfer

The asymptotic power transfers obtained with both models are summarized in Fig. 4-10. PCGO
and Harmony produce results in good agreement, for a wide range of intensity ratios and
overlapped intensities. This is a strong result for the Eyebolt model, for which the computation
time is of the order of 1 s, while the paraxial approach requires several hours (note that the
latter must simulate ∼ 30 ps while Eyebolt only estimates the steady-state value). While the
agreement is best for IΣFSλ

2
L
≤ 0.45 × 10

14 Wµm2/cm2, the agreement between the results at
higher intensities decreases. The results shown here have been obtained for one set of simulations
using the same random speckle patterns. Averaged results over many simulations with different
random speckle patterns are presented in Fig. 4-11 [left] for Harmony. The averaged asymptotic
power transfers are similar to those presented above in Fig. 4-10. This statistical analysis is also
conducted by varying the random pseudo-speckle pattern in the PCGO model. The dispersion
of the results from Harmony and Eyebolt is shown in Fig. 4-11 [right] for the RI = 1/8

case. Accounting for the statistics, both models are in agreement up to IΣFSλ
2
L
≤ 0.9 × 10

14

Wµm2/cm2. A possible explanation for the discrepancy at higher intensities is highlighted in
Fig. 4-12: because the splitting algorithm employed in PCGO does not cover the wings of the
beams as much as in Harmony, the inverse transfer resonance region is much less covered in the
Eyebolt simulation, thus leading to an overestimation of the power transfer. Note that this is
not an issue inherent to the PCGO model but to its current implementation in Chic for KPP
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Figure 4-11 – Probe amplification in the RI = 1/8 case, accounting for the statistical
variance due to different random speckle patterns. [left] Time-history results from
Harmony. The central solid line represents the average value and the envelop is the
± 1 standard deviation region. [right] Results from Harmony in black and results
from Eyebolt in light green. The envelops and error bars correspond to ± 1 standard
deviation. The dashed green line corresponds to the estimate from Eq. (4.15). For
both codes, results at a given IΣFSλ

2
L

are averaged over 16 simulations. The interaction
parameters is in units of 1014 Wµm2/cm2.

smoothed beams (see Sec. 3.2.2 and App. B.1.1). Finally, it must be noted that Harmony
simulations at high intensities and for RI = 1 do not reach a steady-state regime: the power
transfer does not converge to the single value seen in the PCGO simulation (Pout

2 /P in
2 ∼ 1.66),

but oscillates between two values 1.1 < Pout
2 /P in

2 < 1.4. In this case, mutual exchange between
the beams occurs, due to the fact that the resonance zone of the inverse transfer is not too far.
Although no clear steady-state regime is attained, it could be expected that the steady state
power transfer predicted with Eyebolt be between the aforementioned values. This discrepancy
is also thought to be related to the modeling of the wings in PCGO.

In the region IΣFSλ
2
L
< 10

14 Wµm2/cm2, the curves and points from the simulations shown
in Fig. 4-10 are also in good agreement with the analytic expression for the fractional power
transfer derived for a homogeneous plasma (Eq. (4.15)). For an inhomogeneous plasma, as in
the cases we discuss here, under the condition that the resonant zone is well confined inside the
zone of the overlapping beams, one can take for G1 in good approximation the Rosenbluth gain
Gros given by Eq. (4.31) and for G2 the gain value associated with the beam width given by Eq.
(4.30). This simple model is not able to reproduce the transfer values predicted by Harmony for
IΣFSλ

2
L
> 10

14 Wµm2/cm2.

4.3.2.2 Spatial characterization

As evoked earlier, two resonance lines are present in the interaction region, defined here by
Vp.ey = ±cs. The asymptotic value of energy transferred between beams depends on the balance
between power transfer from the downward beam to the upward beam in the region where
Vp.ey > 0, and power transfer from the upward beam to the downward beam in the region
where Vp.ey < 0. Given the input velocity profiles, these lines are located at ŷcs,+ = 860 and
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4.3. Comparison to a paraxial solver

Figure 4-12 – (color) Illustration of the position of the resonance zones and their coverage
by the envelop of the beams. The direct resonance line that causes energy transfer from
the downward beam to the upward beam is shown in black. The inverse resonance line
that causes energy transfer from the upward beam to the downward beam is shown in
light grey. Both these resonance lines are located at Vp.ey = ±cs, as shown in Fig. 4-8.
The [left] panel illustrates the beam envelop covered in the PCGO approach. Taking
the beam 1 as an example, the upstream envelop intensity profile �J1(η)� given in Eq.
(4.46) is described in PCGO with η ∈ [−D,D]. On the contrary, in the Harmony
code, the wings of the beam are modeled on the whole domain, as illustrated on the
[right] panel. Consequently, the inverse transfer resonance zone, shown in light gray,
is more amply covered by the beams in Harmony than in the PCGO approach.

Figure 4-13 – (color) Amplitude of the density perturbations δn/n in Harmony [left] and
PCGO [right]. Each dot in the [bottom] figure represents the intersection between two
PCGO beamlets. Simulation results are obtained for RI = 1/1 and IΣFSλ

2
L
= 0.45×10

14

Wµm2/cm2.
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Figure 4-14 – (color) Snapshots of the intensity pattern in the region where both beams
overlap, for RI = 1/8 and for IΣFSλ

2
L
= 0.9× 10

14 Wµm2/cm2. Input intensity profiles
are PP-smoothed in the [left] panel, and flat-top (so-called ‘regular’ beams) in the
[middle] and [right] panels. Results shown are from Harmony [left,middle] and the
Eyebolt model [right].

ŷcs,− = 460. Those two locations are the expected regions of maximum IAW amplitude. The
relative density perturbation δn/neq (with neq the unperturbed density) is obtained in Harmony
from the resolution of the nonlinear fluid equations (4.39). In the Eyebolt model, this amplitude
can be estimated in the framework presented in Sec. 4.2.2 writing the evolution equation for the
ion density perturbation in steady-state. Before simplification, the latter reads:

[∂2
t + 2(νs − ıΩ)∂t − (Ω2 − ω2

s + 2ıνsΩ)]
δn

neq
= −ω2

sa1a
�
2 , (4.47)

where it was assumed that Vg,s � Vg,1, Vg,2. The steady-state density perturbation predicted by
Eyebolt is then:

δn

neq
=

����
ω2
sa1a

�
2

Ω2 − ω2
s + 2ıνsΩ

���� . (4.48)

This expression for the density perturbation is computed a-posteriori from the global intensity
field, accounting for the contribution of all beamlets to the a1a�2 term. The resulting density
perturbation map is compared to results from Harmony in Fig. 4-13. Both the average and
maximum values of the perturbations in the main resonance region (where V > 0, ŷ = 860) are
in good agreement between models, with (δn/neq)mean � 5× 10

−3 and (δn/neq)max � 1× 10
−2,

respectively. It is not surprising to see that the IAWs amplitude in the downward velocity
quadrant is slightly underestimated in PCGO, as the V < 0 resonance region covered by the
PCGO beamlets is underestimated. Finally, we note that the spatial location of maximum IAW
amplitudes for both models is in agreement with the theoretical values of ŷcs,+ and ŷcs,−.

The spatial pattern of the beams intensity inside the CBET region is now compared. Because
PPs produce random speckle patterns, this comparison has been performed for the simulations
with regular beams. The intensity field obtained inside the transfer region for RPP smoothed
beams (Fig. 4-14 [left]) is of the same order of magnitude as for regular beams (Fig. 4-14 [middle])
but much finer structured. The regions where the pump beam is depleted are also rather similar
between the smooth beam and the regular beam approaches. Figure 4-14 [right] illustrates the
corresponding intensity field obtained with PCGO for regular beams. The regions where the pump
beam has been depleted and where the probe beam has been preferentially amplified clearly cover
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Figure 4-15 – (color) Intensity profiles after the beam overlap region, taken at x̂ = 4000, for
[left] {RI = 1, IΣFSλ2

L
= 0.45} and [right] {RI = 1/8, IΣFSλ2

L
= 0.9×10

14 Wµm2/cm2}.
Results from Harmony are shown in red (grey) and from the Eyebolt model with
regular beams in black.

the same parts of the beams in both type of simulations. The small-scale structure seen inside
the interaction region in Fig. 4-14 [middle] arises from the spatial and temporal interference of
the beams and is not reproduced by PCGO, that can, by design, only model constructive spatial
interference between beamlets. However, the average value of the intensity in that region is well
reproduced by the PCGO model. The intensity profiles obtained after the CBET interaction, at
ŷ = 4000, are illustrated in Fig. 4-15 for two particular cases and show good agreement between
PCGO and Harmony. Note that the downstream intensities from Harmony shown in this
figure have been smoothed using a finite impulse response filter in order to retrieve the envelope
of the intensity field and remove the small-scale variations due to the beams interference.

It is interesting to extend this comparison of the global intensity field to that of the intensity
per beam, so as to assess the deviation induced by CBET on each beam separately. The upward
and downward EM waves modeled in Harmony (a1 and a2 in a+) are separated depending on
the direction of their k-vectors. The resulting upward and downward transmission profiles after
the intersection are compared between models in Fig. 4-16, showing good agreement for the
steady-state transmissions per beam. Particularly, PCGO is able to capture the pump beam
deviation caused by the interaction geometry, which causes a displacement of the barycenter of
its energy density. It is also able to reproduce the narrowing of the transmitted beams, that is a
consequence of the particular configuration of the beam with respect to the spatial profile of the
resonance region.

4.4 Experimental validation of the CBET model

We now consider experimental measurements of CBET gains for crossed laser beams in weakly
inhomogeneous plasmas, conducted on the Nova laser facility [176]. A spherical polyamide shell
of 1.3 mm radius containing 1 atmosphere of C5H12 gas is heated by eight beams of wavelength
λ = 351 nm with a 1 ns square pulse. Two additional beams intersect close to the plasma center,
at an angle θ = 53

◦ with each other. The frequency of the probe pulse is varied between shots, so
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Figure 4-16 – (color) Intensity profiles of the beams upstream and downstream of the
transfer region, as a function of the angle with the x̂ axis. The input beams are
centered at −170

◦ and +170
◦ and the output beams are centered at −10

◦ and +10
◦.

Results from Harmony are shown as black lines and results from PCGO with colored
lines. The blue (light grey) and red (dark grey) curves indicate the pump and the probe
beams, respectively. The results from Harmony are taken past the transient period.

as to explore the resonant exchange of energy between the probe and pump beams. The probe
pulse starts at the same time as the heater beams and lasts 2 ns, whereas the pump pulse starts
400 ps after the heater beams and lasts 1 ns. The pump beam average intensity is �Ip� = 10

15

W/cm2 while the probe beam intensity is varied from 0.06�Ip� to 0.32�Ip�, with a wavelength shift
∆λ of up to 7.3 Å. The probe beam amplification A is defined as the probe beam transmitted
energy divided by the same quantity in shots without the pump beam. Simulations of this
experiment are conducted using the Chic hydrocode [115], modeling the laser-plasma interaction
with the PCGO laser propagation and absorption model presented in previous chapters and using
the Eyebolt model.

During the 1 ns when the interacting beams are on, the hydrodynamic simulation predicts a
relatively constant plasma density in the interaction region (∼ ne/nc = 0.1), with an electron
temperature Te varying between 1 and 2.5 keV. The mean ionization state �Z� of the plasma,
computed using a Thomas-Fermi model [183, 184], varies between 0 and 2.5. The plasma expansion
is rather symmetric and plasma flows in the interaction region are of the order of 0.01cs. Such
low values are explained by the symmetry of the irradiation geometry, the close proximity (400
µm) of the interaction region to the center of the target and the early timing of the pump beam
compared to the plasma expansion. The probe-beam transmission without pump beams is of
∼ 50%, similar to results presented in [176].

The only free parameter in the Eyebolt model is the damping coefficient νs/ωs. According to
Ref. [185], the damping rate in CH plasmas depends on the parameters µ = ksλD and τ = Ti/Te.
The hydrodynamic simulations show these parameters in the interaction region vary from 0.13
to 0.235 and 0.145 to 0.58, respectively. We resolve numerically the kinetic dispersion relation
given in [185] for a C5H12 plasma in this range of parameters. An additional margin of 30%
is added to this range, in order to account for an eventual spatial dispersion of [µ, τ ] in the
vicinity of the interaction region. There are two ion modes corresponding to two ion species. We
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Figure 4-17 – Slow mode IAW damping rate for C5H12 as a function of ksλD and Ti/Te for
a range of parameters relevant to the experiment, computed from the kinetic dispersion
relation.

consider here only the slow mode, which has a smaller damping. Figure 4-17 shows the resulting
slow mode damping rate as a function of [µ, τ ]. This surface is fit to a 6th order polynomial for
µ ∈ [0.10; 0.31] and τ ∈ [0.1, 0.8]:

νs
ωs

= 0.31 + 0.038µ+ 0.85τ − 0.23µτ − 0.16µ2 − 9.69τ2+

0.25µτ2 + 0.26τµ2
+ 30.12τ3 − 44.26τ4 + 31.98τ5 − 9.17τ6 . (4.49)

This approximation is accurate to within 0.2% in average, with a maximum error of 0.9%.
Subsequent simulations using the Eyebolt model are conducted using the polynomial fit for
νs/ωs.

Simulation results are compared to experimental data in Fig. 4-18. Far from resonance, the
probe beam amplification is rather well reproduced by the model. Energy transfer at ∆λ = 0

is low in the simulation, in agreement with the weak plasma flows in the interaction region.
Experimental probe amplification for ∆λ = 0 is slightly higher and may indicate that those
plasma flows are underestimated, although the extent of the error bar does not allow to affirm it
from this measurement only. Energy transfer for ∆λ > 0.55 are also well reproduced within error
bars. Simulation results in the ∆λ ∈ [0.3; 0.52] range yield a larger probe amplifications than in
the experimental data. The Eyebolt model predicts CBET linear gains2 of the order of 1-1.3,
while the maximum experimental gain is of the order of 1. Although the gains are overestimated,
the order of magnitude is correct. These results consist a significant improvement over other
prediction of linear gains for this experiment, of ∼ 20 in Ref. [176], of ∼ 7 in Ref. [48] and of
∼3-4 (in unpublished Ref. [17] of [176]). Our results are consistent with results from the Paraxial
solver Kolibri of ∼1-1.3, presented in Ref. [186]. The overestimate of the energy transfer gains
may be indicative of some form of backscattering in the experiment, that could have reduced the
local intensity in the interaction region.

The most important discrepancy is found in the position of the resonance peak, located around
2We recall that here the linear gain is defined from the ratio of the probe beam transmitted power without and

with the pump beam turned on, i.e. lnA
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Figure 4-18 – (color) Probe amplifications as a function of frequency detuning, for various
probe to pump intensity ratios of 0.32 (triangles), 0.13 (squares) and 0.06 (circles).
The probe beam transmission being reproducible to ±15% [176], the error in the energy
ratio between experiments is estimated at ±30%. Simulation results are superimposed
as empty symbols.

∆λpeak
sim ∼ 0.48 nm (for RI = 0.13) in the simulations and ∆λpeak

exp ∼ 0.6 nm (for RI = 0.13) in the
experiment. This discrepancy is discussed further in what follows, alongside with the width of
the resonance.

The experimental results are now analyzed in the theoretical framework derived in Sec. 4.2.2.
In order to analyze the dependence with ∆λ of the results shown in Fig. 4-18, the following
assumptions are made; the plasma parameters are (i) constant across the interaction region, (ii)
constant during the beams interaction, (iii) constant for shots with different values of ∆λ, (iv)
constant for shots without the pump beam and (v) that the lasers upstream intensity is stable
from shot to shot. Then the probe beam amplification A can be assimilated to the linear gain
exp(G) and its dependence with the frequency detuning between the beams can be estimated
from Eq. (4.24):

G(∆λ) ∝ G0

�
1 +

�
ωp

(νs(1 + λp/(∆λ−∆λpeak))

�2�−1

, (4.50)

where G0 is the maximum gain obtained at resonance for ∆λ = ∆λpeak. The experimental
data and simulation results (for RI = 0.13) are fit to the gain function defined above using
nonlinear least squares. Although this approach is qualitative, it allows to compare estimates for
the width of the resonance, function of the temporally- and spatially-averaged damping rate ν̄s,
and to discuss the position of the resonance. As illustrated in Fig. 4-19, the averaged damping
rates are similar in the simulation and in the experiment, with ν̄sexp = 1.93 × 10

12 s−1 and
ν̄ssim = 2.67× 10

12 s−1. Accounting for temporal and spatial variations of the sound speed and
of νs/ωs, the damping rate in the simulations νs ∈ [9.7× 10

11
; 5.3× 10

12
] s−1, which brackets the

value estimated from the gain curves.

The difference between the positions of resonance peaks observed in experiments and in
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Figure 4-19 – (color) Linear gain curves as a function of the frequency detuning between
the beams. Simulation results are presented as black open symbols and experimental
data points as green squares. For simulation results, squares indicate Sesame EOS
and hexagons Ideal Gas law. Diamonds correspond to simulation results where a
broad frequency spectrum of ∆λspread = 2.5Å was assumed for the laser beams. The
corresponding fits to a Lorentzian gain function are presented as solid lines.

simulations is of 1.2 Å. The resonance peak position uniquely depend on the Doppler shift, which
in turn is a function of the local sound speed velocity and of the irradiation symmetry. We
assess the various contributions that may explain the observed difference in resonance position.
In order to estimate the uncertainty on the sound velocity, several simulations were conducted
using Ideal Gas law instead of Sesame Equation of States (see Fig. 4-19), without significant
difference on the result. Assuming that the plasma flow is aligned with ks, the plasma velocity
required to shift the resonance by 1.2 Å is of ∼ 0.25cs. The simulations predict that the velocity
vector is directed outward from the center of target, so that φ ∼ 98

◦. Considering that angle,
the plasma flow velocity needed to Doppler shift the resonance is ∼ 1.2cs, a significant and
unlikely value for the central region of a gas bag target. This indicates that if velocity fluctuations
shifted the resonance, those probably did not arise purely from the plasma expansion but from
hydrodynamic asymmetries that shifted the velocity vector in the ks direction. Considering the
angle and the intensity of the probe beam, a sufficiently strong ponderomotive force could shift
the velocity vector in the right direction. However, simulations using the ponderomotive force
module based on PCGO (see Sec. 2.4.1) suggest that this effect is not significant here. Another
possibility that is investigated is the effect of the laser spectral spread on the energy transfer.
Assuming a wavelength spread ∆λspread of the laser around its central wavelength λ (and around
the central wavelength of the probe beam λ+∆λ), the width of the resonance region is expected
to increase. It is assumed that the plasma parameters are characterized by a constant gradient in
the interaction region. In that case, the plasma parameters are non symmetric with respect to
the center of the interaction region and a uniform spectral broadening may shift the optimum
resonance position. This is illustrated in Fig. 4-19. Assuming ∆λspread = 2.5Å, the spectral
broadening displaces the resonance peak by +0.25Å. Although the resonance width with spectral
broadening appears wider than in the experiment, a lower value of the gain G0 obtained in the
simulation agrees with all experimental points and error bars.
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Figure 4-20 – (color) Diagram of the capsule and beam configuration: 18 beams separated
by intervals of 20◦, focused on the exterior surface of the ablator and following the SG4
phase plate configuration of nSG4

= 4.1, rSG4
0 = 352 µm, λL = 0.354 µm, φSG4

= 0.27
m and F SG4

= 1.80 m. Beam centroids are represented as numbered lines (beamlets
are not shown). Dashed grey lines represent beams that do not interact through CBET.
Red (dark grey) plain lines represent beams that can interact with each other by groups
of 4, as detailed in Tab. 4.1

4.5 Study of CBET in direct-drive implosions with various abla-
tor materials

The CBET is of particular importance for the implosion symmetry of ICF targets. In both direct-
drive and indirect-drive configurations, this nonlinear LPI effect causes dynamic modifications of
the irradiation field that may lead to drive asymmetries and capsule deformations. We assess in
this section the influence of CBET in a simplified direct-drive configuration that is relevant to
the beam configuration of the Omega laser facility.

4.5.1 Numerical setup

4.5.1.1 The Omega chamber geometry and its transcription to a 2D CBET config-
uration

The Omega laser facility at the Laboratory for Laser Energetics, Rochester University, can use
up to 8 rings of beams arranged at constant latitudes, for a total of 60 beams. The Eyebolt
model being 2D, we look for configurations where beams are co-planar in a plane passing by
the capsule center. The latter planes can be visualized in an azimuth/elevation diagram, where
these angles are defined in Fig. 4-21 [left]. Figure 4-21 [right] illustrates the beam positions with
respect to their azimuthal angle and elevation angle. At a given azimuthal angle, beams are
co-planar and the corresponding plane passes through the capsule center. These planes can be
used as 2D simulation configuration for the PCGO model. At a given longitude (or azimuth),
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Case Interacting Beams CBET main angles
Ref. Case None None
A 2 ; 3 ; 11 ; 12 20◦ ; 160◦ ; 180◦
B 2 ; 4 ; 11 ; 13 40◦ ; 140◦ ; 180◦

Table 4.1 – Three simulated cases, summarizing the interacting beam numbers and CBET
angles of the beams centroids. Each case is conducted twice, with a DT and a CH ablator.
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Figure 4-21 – [left] Definition of the azimuthal angle γ and elevation angle ψ. The entire
sphere can be characterized with γ ∈ [0; 180]

◦ and ψ ∈ [0; 360]
◦. In this example,

beams 1 and 2 are on the same azimuthal plane and at different elevation angles ψ1

and ψ2. [right] Configuration of the 60 Omega beam ports in azimuthal/elevation
angular coordinates. At a fixed γ, adjacent beams are separated by 20◦ or 40◦. By
considering adjacent γ planes, we could consider 2D interactions between beams with
higher angular separations.

beams are co-planar by bundles of 4, with two beams separated by angles of at least 20◦ or 40◦

and the other two beams in symmetric positions with respect to the capsule.

We consider a direct-drive capsule implosion in a 2D planar geometry. In order to reflect the
20◦ angular separation of the Omega beams in a given constant azimuth plane, the capsule is
irradiated using equally spaced beams separated by 20◦, i.e. 18 beams (see Fig. 4-20). Each
beam is split in beamlets with R = 10 and NB=60, focused randomly so as to reproduce a
pseudo-speckle pattern consistent with the intensity statistics of the KPP SG4 phase plate near
the focal plane, smoothed with the hydrodynamic mesh resolution. Each beam has a different
set of random generator seeds, so each of them produces a different pseudo-speckle pattern with
a similar statistics, leading to a non-symmetric laser irradiation. Consequently, the simulation
domain englobes the 360◦ of the cylinder, without assuming any hydrodynamic symmetries.
Although it is numerically costly, this approach of a full cylinder modeling possesses the advantage
of not cutting out any modes in the irradiation profile. An additional simulation without CBET
is conducted, hereafter referred to as reference case, in order to provide a baseline for the capsule
compression. Note that these simulations were not conducted with the SSD model presented in
Sec. 3.4.2 (it was not implemented at the time), so that the global irradiation symmetry is not
entirely uniform and some deformations are expected in the reference simulation. The interaction
conditions are shown in Tab. 4.1.
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We consider two CBET cases where the energy transfer is allowed only between 4 sets of
beams, in order to model co-planar intersections of the real 3D Omega configuration (See Tab.
4.1). The remaining beams that do not interact via CBET provide the global irradiation symmetry
needed to implode the target. For simplicity, beamlets from the same beams are not allowed to
interact with each other: their intersection angle being small enough implies small gains. CBET
computations are enabled after 100 ps of simulation so that a coronal plasma in which the beams
interact is properly formed. All cases are conducted with the same random seeds so that the set
of 18 random pseudo-speckle pattern is the same from one simulation to the other. The damping
rate of the IAWs νs/ωs is computed using empirical formulas based on Ref. [178], that account
for Landau and collisional damping.

4.5.1.2 Cryogenic target and laser pulse profile definition

The beam splitting parameters NB = 60 and R = 10 are set by comparing the near-field intensity
constructed by PCGO to Miró outputs using the Omega SG4 KPP phase plate data. We use a
typical Omega 1 ns square pulse profile with 200 ps of rise time and a peak power around 25
TW, comprising a total energy of ESG4

tot = 25.7 kJ. The total energy used in our 2D planar cases
is scaled by κ in order to match the drive intensity of the 3D spherical case. The ratio κ of the
average on-target intensity on the 2D cylinder �I2D� to that of the average intensity on the 3D
spherical capsule �I3D� is:

κ =
�I2D�
�I3D� = h/(2ra) , (4.51)

where h = 1 cm and ra is the capsule outer radius. For the capsule configuration presented in
Fig. 4-20, κ = 11.481. The target is composed of a 66 µm-thick cryogenic DT shell and is filled
with a gaseous DT at 6.5 × 10

−4g/cm3. Two sets of simulations are conducted with different
ablators, using a 10 µm-thick plastic (CH) ablator or a 10 µm-thick cryogenic DT ablator. The
Lagrangian mesh is initially cylindrical, organized with 140 cells in the radial direction and 200
in the angular direction, with a radial refinement in the ablator and shell regions. The intensity
gradients imposed by the pseudo-speckle patterns require the use of ALE rezoning and remapping
at each hydrodynamic timestep.

4.5.2 Results and analysis

4.5.2.1 Modification of collisional absorption by the CBET instability

Figure 4-22 illustrates the volumic power absorbed in plasma by the inverse Bremsstrahlung for
cases A and B and different ablators. The absorption is naturally higher in targets with a CH
ablator, owing to a higher ionization Z of the species.

We distinguish two main regions of beamlet overlap in the configurations A and B (see Tab.
4.1 and Fig. 4-22). The first region covers adjacent interacting beams (for example beams 11
and 12) and can extend from the median angle between them up to slightly beyond the edge
of each beam. The second region is constituted by the overlap of nearly opposed beams (for
example 2 and 11). The latter interaction regions are not visible in Fig. 4-22 and only occur late
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Figure 4-22 – (color) Volumic power absorbed in plasma by the inverse Bremsstrahlung at
about half of the laser pulse duration, i.e. after 600 ps of simulation, on a logarithmic
scale. Volumic values are computed assuming a unit height of 1cm. Figures on the
[top] lines are from cases A and on the [bottom] line from cases B. Figures on the [left]
column present results using a CH ablator and on the [right] column with a DT ablator.
Beamlet centroids for beams 2 and 11 are shown in solid black lines for all cases.
Beamlets centroids for beams 3 and 12 for [top] figures and 4 and 13 for [bottom]
figures are shown in dashed black lines (see Fig. 4-20 for beam numbering). Valid ray
intersections for which CBET has been computed are indicated with grey-shaded dots,
ranging from a probe gain of 1.5 in white to a probe gain of 1.01 in black.

in the capsule implosion, when the plasma is sufficiently expanded to facilitate the intersection
of beamlets from opposed beams. These regions are far from the critical density and between
beamlets leaving the plasma, at similar angles with respect to the plasma flow so that there is little
difference in the beams’ Doppler shifts. In the geometry considered here, these intersections have
negligible coupling efficiency β and have little or no influence on the laser irradiation symmetry.

In the setup presented in Fig. 4-22, beamlets intersections occur up to the critical density in
extended regions where the plasma velocity extends from Mach 4.5 down to Mach 1 in the DT
ablator case and Mach 0.5 in the CH ablator case. For a plasma flow at a velocity Vp, the CBET
phase matching condition for beams of the same frequency reads:

|k2 − k1|cs + (k2 − k1).Vp = 0 . (4.52)
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Figure 4-23 – (color) Schematic illustration of the core and edge transfers for the case B.
Beams 11 and 13 are shown as green (grey) and red (dark grey) lines, respectively.
Increased absorption regions are shown in light red (large light grey zones) and decreased
absorption regions in light blue (small light grey zones).

Depending on the spatial configuration and propagation of the rays in plasma, there are many
possible couples of Doppler-shifted k-vectors and plasma velocities that yield non-negligible CBET
gains. In general, the larger the angle between the plasma flow and the vector k2 − k1 is, the
higher the plasma flow velocity must be in order to satisfy the phase-matching. This condition
on the Mach number is relaxed since energy transfers between non-zero values of the frequency
detuning parameter δ = Ω− ωs are taken into account (see Eq. (4.5)). The spread in plasma flow
velocities that can yield significant energy exchanges is only limited by the spatial configurations
of the beamlet k-vectors. We identify several patterns to the energy exchanges that we refer to as
the edge transfer and the core transfer (see Fig. 4-23). In both cases, we consider a given couple
of adjacent interacting beams, i.e. separated by 20◦ for case A or 40◦ for case B.

The core transfer refers to the CBETs taking place near and in-between the beams’ centroids,
as illustrated in Fig. 4-23. These exchanges occur between beamlets that are incoming on the
capsule at angles with the plasma flow that are slightly different. In that region, (k2 − k1).Vp is
small so that small frequency detuning can only occur for large values of the Mach number, i.e.
away from the critical density. However, the CBET gain decreases for lower values of the plasma
density and electron temperature. Consequently, there is an optimum spatial location, so-called
high-gain core region, in which the density, temperature and Mach number are not too low for
higher CBET energy exchanges to occur. This region is identified by larger probe gains in Fig.
4-22 at about 500 µm and 300 µm from the critical density for cases A and B respectively. CBET
in this region is numerous and peaks at probe gains of 1.2, without privileged direction, thus
creating a noisy absorption pattern of one to two shadow regions organized around the median
angle between the adjacent beams.

In the edge transfer, the left edge of the leftmost beam is intercepted by the left edge of the
rightmost beam. Conversely, the right edge of the rightmost beam is intercepted by the right edge
of the leftmost beam. We distinguish two types of energy exchanges: intersections between ingoing
beamlets and intersections between outgoing and ingoing beamlets. The Doppler-shift dictates
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Figure 4-24 – (color) Close-up of the density field near stagnation, represented in the r-θ
plane, with θ = 0 for beam 1 (see Fig. 4-20). [Top] figures are from the reference case
and correspond to deformations purely arising from the pseudo-speckle pattern of the
lasers. [Middle] figures are from case A and [bottom] are from case B. Figures on the
[left] column are obtained using a CH ablator and on the [right] column using a DT
ablator. The internal shell interface, reported in Fig. 4-27, is the transition between
the target interior (white field, below the mean shell position) and the imploding shell.
Note that for a given ablator, the y-axis and color scales are the same.
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Figure 4-25 – (color) Power absorbed by the plasma by inverse Bremsstrahlung as a function
of time as blue (grey) lines for the reference case, as green (light grey) lines for case
A and as red (lighter grey) lines for case B. Results are shown as plain lines for CH
ablator simulations and as dashed lines for DT ablator simulations. The drive pulse
is shown as a black plain line. 2D power is scaled by κ (see Sec. 4.5.1.2).
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Compression ratios CH ablator DT ablator
Ref. Case 3.54 5.57
A 3.17 4.55
B 3.04 4.2

Table 4.2 – Convergence ratios at stagnation for all cases simulated, taking the initial outer
shell radius as a reference.

the energy exchange configuration. In the first case, the energy transfer occurs from the beamlet
with a narrower angle to the beamlet with a broader angle (with respect to the plasma flow). In
the second case, the outgoing beamlet is always amplified by the ingoing beamlet. Most power
transfers observed in cases A and B completely deplete the pump beamlets. This is a consequence
of the probe beamlets being amplified along their path prior to these CBETs. Most probe gain
values in the edge transfer are less than 1.5 (see Fig. 4-22). Amplified probe beamlets create large
scale modulations in the absorption field, thus decreasing the irradiation symmetry. Moreover,
interactions between outgoing and ingoing beamlets lead to a direct decrease of the coupling
between the laser beam and the capsule. Laser-plasma coupling losses are a geometrical feature
that are more prominent for higher convergence ratios and in the 40 ◦ cases, as is illustrated
in Fig. 4-25. Although the net loss in total absorption induced by CBET appears moderate,
edge transfer also displaces absorbed power away from the critical density, thus reducing the
laser-capsule coupling further. The coupling loss is in agreement with the decreased capsule
convergence in the cases with CBET enabled, as can be observed by the mean position of the
shell in Fig. 4-24.

4.5.2.2 Degradation of the shell profile at stagnation

The laser pulse driving the cylindrical capsule ends at t = 1.28 ns. Stagnation of the capsule
occurs around t = 1.31 ns for the CH ablator case and around t = 1.33 ns for the DT ablator.
At that point, modulations in the capsule density profile constitute a time and space-integrated
proxy of the laser illumination modulations arising from the pseudo-speckle pattern and CBET.
Simulations are analyzed at stagnation, i.e. around t = 1.31 ns.

Figure 4-24 shows the shell density profile in the r-θ plane for the reference case [top], case A
[middle] and case B [bottom]. Because these simulations were not conducted with the SSD model
presented in Sec. 3.4.2, the contrast of the individual beams is rather high, of the order of 10
%. More importantly, the overlap of the 18 beams does not produce a symmetrical irradiation
pattern, which is the reason for the hydrodynamic instabilities that can be observed in the density
profiles without CBET enabled [top]. Each simulation is conducted with the same irradiation
profile, so that this bias is effectively removed when comparing the relative difference between
results with and without CBET. The DT ablator targets [right] achieve higher convergence ratios
than the CH ablator ones [left], straight consequence of them being lighter and subject to the
same laser intensity. 2D convergence ratios computed from the target’s initial radius of the outer
shell, i.e. rs = 425 µm, are shown in Table 4.2. CBET decreases the convergence ratio with
respect to the reference case, by up to 14% for the CH ablator target and 25% for the DT ablator
target. As evoked above, the edge transfers between outgoing and ingoing portions of the beams
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Figure 4-26 – (color) Relative power density histograms of the inner shell interface Fourier
modes, for the CH ablator case [left] and the DT ablator case [right], near stagnation.
Relative power densities p̂ are computed as p̂ = (pref − p)/pref where pref and p are
modes power densities of the reference case and corresponding case, respectively. Case
A is shown in light green (light grey) and case B in dark green (dark grey). The mode
0 is not shown.
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Figure 4-27 – (color) Internal interface of the capsule near stagnation for the CH ablator
case [left] and the DT ablator case [right]. Reference simulations are shown as blue
lines (grey), case A simulations as green lines (light grey) and case B simulations as
red lines (lighter grey).

take energy away from the capsule, thus decreasing the laser-capsule coupling efficiency and
consequently, the convergence ratio. This is consistent with the decrease in integrated absorption
noted in Fig. 4-25. The convergence of the DT ablator target is more severely reduced as a result
of the highly deformed shell that implodes with a lesser hydrodynamic efficiency, in addition to
the decrease in laser-target energy transfer.

In order to conduct a Fourier decomposition of the shell modes, we identify the internal (resp.
external) interfaces at a given angular coordinate θ as the positive (resp. negative) maximum of
the derivative of the density in the r direction. Assuming that at least 6 points in θ are needed
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in order to correctly describe a Fourier mode, the higher mode that can be characterized in
our simulations with 200 angular points is mode 33. Internal and external interface profiles are
smoothed using a finite impulse response filter of 6 points in length and fit using least squares to
Fourier modes up to order 33. The resulting internal interface modes amplitudes with respect to
the reference are shown in Fig. 4-26 (mode 0 is not shown).

The CH ablator target in the reference case (Fig. 4-24 [top-left]) presents small scale
modulations on the external interface, corresponding to lumps of high density regions resembling
fingers. Because the simulations are 2D planar and the convergence ratios rather low, the high
amplitude of the deformations and the lumps of matter do not lead to the shell breakdown. High
frequency modulations are smoothed out when reaching the internal interface, greatly reducing
the power density of Fourier modes higher than 5. Significant long wavelength deformations are
present at the internal interface, corresponding to modes 1, 3 and 4. The highest deformation
present in the internal interface is of about 10% relative amplitude, measured as a half peak-
to-peak amplitude (see Fig. 4-27). These modulations can be seen as the imprint of the beam
configuration, including the effect of the pseudo-speckle pattern. In order to dissociate the effects
of CBET to that of the pseudo-speckle pattern, the Fourier modes are compared to the reference
case.

The Fourier analysis of the internal interface shows that CBET amplifies low modes 2 and 8
(CH ablator case). This can be seen in Fig. 4-27 as an oblate deformation of the inner interface
of the shell, reaching a relative amplitude of about 13.5% for case A and 15% for case B. The
dominant presence of mode 2 is a consequence of the higher absorption regions from the amplified
edges of the beams, regions which are nearly symmetric with respect to those of the opposed
beams. Although these could also lead to mode 4 deformations, the use of non-interacting beams
to provide the cylindrical ablation pressure effectively smoothes those modes (e.g. beams 6, 7, 16,
17), which would not be the case in a 3D configuration.

The DT ablator targets (Fig. 4-24 [right]) also feature patterns of lumps of density arranged
in fingers, but to a point where there is almost no more shell mass between those, and the capsule
can be considered as punctured or broken. Cases A and B show a significant shell deformation of
low modes 2 and 8. This case being more sensitive to energy exchanges due to a lower Z of the
plasma, the effects of CBET are exacerbated and the mode 2 is highly prominent. The inner
interface of the target reaches a maximum deformation of a relative amplitude of 24% in the
reference case, 34% in case A and 31% in case B. Modes 6 and 8 present in DT and CH ablator
cases are created by the 6 or 8 shadow regions from the edge and core transfer, this number
depending on the CBET geometries created by the core transfer.

4.5.2.3 3D reconstruction of the shell deformation modes

The Omega chamber beam ports configuration can be decomposed in 8 adjacent constant
azimuth planes, between which the co-planar interacting beams median angle is offset by an
elevation of 20◦ to 80◦ depending on the azimuthal angle. It is thus expected that the mode 2
deformation imposed by CBET in the planar configuration creates higher order modes in a full 3D
configuration. This can be estimated by making a linear combination of planar simulation results
so as to reproduce the 3D Omega sphere configuration. Simulation results for the internal shell
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Figure 4-28 – (color) [left] 3D internal shell surface perturbation near the stagnation for
the CBET case, constructed as a linear combination of several 2D planar simulations.
Simulation results are shown as blue (light grey) dots and the corresponding spherical
harmonics fit is superimposed as a colored (greyscale) surface. [right] Relative mode
amplitude difference âl = |aref

l
− al|/arefl

, where aref
l

and al are l-modes amplitudes for
the reference case and CBET case, respectively. al modes are computed by taking the
L2 norm over the corresponding m−modes. Mode 0 is not represented.

interface at stagnation are combined using one set of results per discrete azimuthal increment
(see Omega beam configuration in Fig. 4-21 [right]), which corresponds to either the 20 or 40◦

CBET case, shifted by the corresponding elevation angle value. The combined dataset reproduces
a spherical capsule from a linear combination of 2D planar simulations. We decompose this
shell in the spherical harmonics Y m

l
up to l = 14 for all values of m. This is done using the

simulation results with and without CBET. The difference in mode amplitudes is shown in Fig.
4-28, alongside with the combined dataset for the CBET case and its spherical harmonics fit.
This linear analysis shows that CBET amplifies the spherical mode l = 2 similarly as in the
planar case because of a combination of Y −2

2 and Y 0
2 . Although even and odd modes are equally

present in the intensity distribution on the capsule, only even modes are amplified by CBET,
while the odd modes remain unchanged. Mode l = 4, which was not excited by CBET in the 2D
simulations, contributes more significantly to the overall 3D shell deformation, mainly through Y 3

4 .
We retrieve excitation of modes l = 6 and l = 8, as well as higher order even modes. Although
this linear combination of results does not include any interaction between azimuthal planes, it
provides a rough estimate of potentially excited modes by CBET, arising only from the beam
port configuration.

4.6 Conclusions

We have proposed a model to compute the macroscopic steady-state CBET between laser beams
using many local power transfers between Gaussian beamlets described by Paraxial Complex
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Geometrical Optics. It is shown to reproduce the linear gains and beam deviations given by the
theory of steady-state energy transfer in inhomogeneous media. Furthermore, the comparison to
the time-dependent paraxial solver Harmony confirmed that the PCGO-based approach is able
to reproduce correct linear gains on a large range of parameters RI and Iλ2

L
, past a transient

phase and in conditions where a steady-state regime exists. In the latter situations, it is seen that
(i) the PCGO-based model reproduces a correct spatial repartition of the intensity field inside the
CBET region and provides a correct estimation of the beams deviations, and (ii) can be used to
estimate the location and value of the amplitude of IAWs excited by beating of electromagnetic
interacting waves. In situations where a steady-state does not exist, the PCGO-based model
yields estimates of the linear CBET gain that lie close to the reference solution. We note that the
non-stationary situations reported here, caused by the presence of two resonance regions in the
interaction volume with opposite energy transfer directions, are a priori unlikely to be encountered
in ICF configurations. Finally, a good agreement with the experiment was found, with linear
gains slightly overestimated and close to the measured ones, in a significantly better agreement
than previous estimates conducted for this experiment. The model was not able to reproduce the
location of the resonance that was observed in the experiment. The possible explanations of that
fact include; (i) it is unlikely that this discrepancy originated from a Doppler shift effect, unless a
major source of velocity asymmetries was present in every shot, and (ii) assuming the linear gain
given by the PCGO-based model were indeed overestimated, accounting for the spectral width of
the laser gives a gain function that could agree with all of the experimental error-bars. In that
case, the observed maximum gain location in the experiment would not be that of the resonance,
but results from statistical fluctuations of the shots in the experiment.

The Eyebolt model being validated, we conducted full 360◦ simulations of a capsule implosion
in which certain beams were allowed to interact through CBET, following the relevant co-planar
beam angles of 20◦, 40◦, 140◦ and 160◦, characteristic of the Omega chamber. The influence of
the ablator material is assessed by repeating these simulations in a CH and a DT ablator case.
The influence of modeling a pseudo-speckle pattern on the power deposition field and capsule
implosion symmetry is studied as a reference case for comparisons with simulations with the same
pseudo-speckle patterns but with CBET enabled. In the reference case without CBET, the power
deposition profile exhibits a pseudo-speckle pattern being relatively smoothed out by the overlap
of the beams. The internal shell interface is deformed by low amplitude long wavelength Fourier
modes from 1 to 4. A variety of high frequency modes up to mode 33 are observed and greatly
smoothed out when reaching the internal shell interface. Simulations with main CBET angles
at 20◦ and 40◦ show that in those configurations CBET tend to create a pattern of high and
low absorption regions through specific regimes of core and edge power transfers, significantly
amplifying modes 2, 6 and 8 of the internal shell interface. A reconstruction of the shell based on
a linear combination of planar results suggests that mode 4 is also likely to be excited by CBET
in a full 3D configuration. Because the linear reconstruction does not account for CBET between
non-coplanar beams, it is suspected that the mode 2 is here over-estimated. The choice of the
ablator material is seen to be critical in terms of CBET, with lower Z materials presenting more
efficient energy exchanges and thus higher shell deformations. We observe relative deformations
of the inner shell interface at stagnation of up to 15% in the CH ablator case and 34% in the
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DT ablator case. CBET is also seen to have an effect on the global laser-plasma coupling, by
reducing the total amount of energy transferred to the plasma. 2D convergence ratios are lower
when enabling CBET by up to 14% for the CH ablator case and 25% for the DT ablator case.

The results presented in this Chapter provide a solid validation of the PCGO-based approach
as a mean to model CBET at large scales, and highlight the importance of modeling CBET in
large scale hydrocodes for the design of laser-target experiments in ICF.
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Chapter 5

Multiscale model for coupled laser
propagation and hot electron
generation and propagation: the
Thetis model

The effect of high energy electron beams on the plasma dynamics is of particular importance for
Shock Ignition (SI) studies [31, 187], laboratory astrophysics, double ablation front experiments
[188] at high intensity, or for the design and interpretation of ns-scale laser target experiments
[33]. In these conditions, only a multiscale model can resolve, at hydrodynamic scales, the
interwoven couplings between the laser propagation in plasma, Hot Electron (HE) sources created
by parametric instabilities, HE beams propagation and plasma dynamics.

The modeling of laser-plasma-electron couplings at hydrodynamic scales poses several diffi-
culties, related to (i) an accurate description of the laser intensity in plasmas, (ii) a consistent
characterization of HE sources using the laser propagation model and (iii) a description of HE
beam propagation and energy deposition. While the first problem was addressed in Chs. 2 and 3,
the other two are the object of this Chapter. Note that HE transport models are often included
in large-scale hydrocodes, usually using Monte Carlo approaches, but they rely on ad-hoc electron
sources.

We present in this chapter a reduced HE transport model based on the Angular Scattering
Approximation (ASA) [189], adapted to 2D, transversally Gaussian, multigroup HE beams. Its
derivation is presented in Sec. 5.1 and its validation in Sec. 5.2. Secondly, the coupling of
PCGO beamlets to HE sources is presented in Secs. 5.3 and 5.4 for the cases of Resonant
Absorption, Stimulated Raman Scattering and Two-Plasmon Decay. This model for hot electron
generation from LPI processes calculated from Gaussian optical beamlets, beamlet-based hot
electron propagation and energy deposition is referred to as the Two-dimensional Hot Electron
Transport and emIssion Sources Thetis model. Similarly as for the PCGO model, the Thetis
model can be adapted to particular 2D-axisymmetric configurations, as presented in App. B.3.
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5.1 Reduced model for electron beam transport and plasma heat-
ing

5.1.1 1D and 2D models

5.1.1.1 Continuous Slowing Down Approximation

A simple and widespread description of electron propagation in matter is that of the Continuous
Slowing Down Approximation (CSDA). Here, the energy ε of a mono-energetic and mono-
directional electron beam continuously decreases due to collisions with plasma particles (ions
and/or electrons):

dε

dz
= −S(ε, z) , (5.1)

where S(ε, z) is a stopping power that may include various contributions and correction factors.
This 1D equation for the electron energy is similar to the laser beam energy loss used in
hydrodynamic codes relying on the Ray-Tracing model. This discrete, ray-based formulation is
easy to transfer from GO algorithms to electron beams. The spatial profile of hot electron sources
can be reproduced by using spatial distributions of discrete electron rays. This approach is similar
to the way GO rays are used in the RT model to reproduce spatial power profiles of laser sources.
Although the CSDA model is simple to implement and numerically robust, it does not account
for angular scattering on electrons and ions of the plasma, which is a severe approximation in the
regimes of ICF [189].

5.1.1.2 Angular Scattering Approximation

The effect of angular scattering on the HE propagation is described by the kinetic Vlasov-Fokker-
Planck equation by considering the electron-ion and electron-electron collisions. Because of
the small value of the electron to ion mass ratio, it is assumed that ions conserve their energy
throughout the collision. As such, the ion distribution function is approximated by a Dirac delta
function and the electron-ion collision integral reduces to a diffusion operator. The resulting
diffusion equation, written in terms of the electron energy ε and curvilinear coordinate s = vdt,
reads:

∂f

∂s
+Ω.∇f = ni

�
[f(ε,Ω�, s)− f(ε,Ω, s)]

dσ

dΩ
(|Ω−Ω�

|)dΩ� , (5.2)

where f is the Electron Distribution Function, ni is the ion density, Ω = p/p is the direction
of electron propagation and dσ

dΩ is the differential angular cross-section given by the Rutherford
formula [66]. Solutions of Eq. (5.2) are sought in cylindrical coordinates by assuming that ni

varies only along the propagation direction of the beam s and that the diffusion cross-section has
an azimuthal symmetry. f is decomposed on the basis of spherical harmonics Ylm and Eq. (5.2)
is integrated over Ω� and s to obtain the angular distribution f(θ, s) [190, 191]:

f(θ, s) =
1

4π

∞�

l=0

(2l + 1)Pl(cos θ) exp

�
−
�

s

0
kl(s

�
)ds�

�
, (5.3)
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where the Pl(cos θ) are the Legendre polynomials and kl is the l-th moment of the differential
angular cross section. Limiting the angular momentum expansion at the order 1 (in l), f reads:

f(θ, s) =
1

4π
P0 +

3

4π
P1(cos θ) exp

�
−
�

s

0
k1ds

�
, (5.4)

where the first moment of the differential angular cross section reads:

k1 = 2π

� π

0

dσ

dΩ
sin θ�[1− P1(cos θ

�
)]dθ� . (5.5)

Using Rutherford’s formula, k1 reads:

k1 = 4πb20 lnΛei , (5.6)

where b0 is the impact parameter and lnΛei the electron-ion collision Coulomb logarithm. Both
quantities are defined in App. A.5. Note that the Coulomb logarithm accounts for the Debye
screening [66], quantum effects [189, 192, 193] and non-ideal plasma conditions [194]. The mean
diffusion angle is obtained by projecting the l = 1 component of f using the orthogonality of the
Legendre polynomials:

�cos θ�(s) =
� 2π

0

� π

0
f(θ, s)P1(cos(θ)) sin θdθdψ = exp

�
−
�

s

0
k1(s)ds

�
. (5.7)

Assuming that the particles in the beam propagate along straight lines in the z direction, the
energy loss rate reads:

dε

dz
= − 1

�cos θ�(s)Se(ε) , (5.8)

where Se is the electron stopping power. Compared to the CSDA formulation, additional energy
loss is accounted for by the angular diffusion in the transverse direction to the beam propagation.
This transverse energy diffusion can be viewed as the divergence of a beam, which thickness ∆

relates to the mean diffusion angle:

d∆

dz
= 2�tan θ�(s) = 2

�
1− �cos θ�2(s)
�cos θ�(s) . (5.9)

The stopping power in Eq. (5.8) is defined as the energy loss per unit length:

Se(ε) = −ni

� ε

0
ε�
dσ

dε�
dε� . (5.10)

It is supposed in this formula, that the particle has a sufficiently high energy so that it cannot
gain more energy through collisions with the plasma particles. Because of the small electron to
ion mass ratio, hot electrons propagating in a plasma are mainly slowed down by other electrons
(this can be seen in Fig. 5 of [189]). The stopping power of the fast electron beam is decomposed
in three contributions [195, 196]: bound electrons, free electrons and plasmons [189, 193, 194].
The expressions used for these stopping powers are presented in [197] and are identical to those
currently implemented in the M1 electron transport model [197, 198] used to validate this work
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in Sec. 5.2.
The 2D formalism of Eqs. (5.8) and (5.9) will now be referred to as the Angular Scattering

Approximation (2D-ASA, or ASA). One can use Eq. (5.8) alone in a 1D approach (called 1D-
ASA), then the HE beam energy decrease due to the angular scattering is accounted for via the
< cos θ >−1 term only. The 1D-ASA is as straightforward to implement as the CSDA, because it
is still ray-based and interfaces well with the GO-based algorithms. On the contrary, 2D models
using the ASA must account for the lateral energy spread described by Eq. (5.9). This adaptation
to 2D was done in Ref. [197] by considering electron beamlets with infinitesimal initial thickness
∆(0) and with flat transverse intensity profiles (so-called pencil beams). In this reference, the
dose from the HE beams is computed on separate Eulerian grids and the results projected back
to the original hydrodynamic Lagrangian grid. However, this approach is numerically inefficient
when considering multiple electron beams or inline solvers.

We now present an adaptation of the 2D-ASA to a thick-ray-based formalism, in a multigroup
framework, for HE beams of a Gaussian transverse intensity profile and HE sources of any angular
distribution.

5.1.2 Implementation in the framework of thick-rays

In our approach, HE sources are computed from the parameters of Gaussian optical beamlets (the
source terms are presented in Secs. 5.3 and 5.4). Therefore, we deal with hot electron sources and
beams which transverse intensity profiles are also Gaussian. Consequently, instead of splitting a
HE beam in many pencil beams, we can directly model a Gaussian HE beam, and make use of
the efficient projection algorithms developed for PCGO beamlets. This approach considerably
reduces the CPU time required for HE beam propagation and projection onto the Lagrangian
mesh. We present here the implementation of this CSD formalism to 2D, transversally Gaussian
hot electron beams, in a multigroup approach and considering arbitrary angular distributions.

5.1.2.1 Elementary Gaussian beamlet

The evolution equation for the Gaussian electron beam thickness w is similar to Eq. (5.9) and
reads:

dw

dz
= �tan θ�(s) =

�
1− �cos θ�2(s)
�cos θ�(s) . (5.11)

The electron beam axis trajectory is computed along the Lagrangian mesh using the algorithms
developed for the RT method and assuming a straight ray. This is achieved by artificially setting
the relative permittivity to � = 1. The stopping power and mean diffusion angle are computed
from the hydrodynamic quantities Te, Ti and ρ, which are interpolated continuously from the
Lagrangian mesh along the ray trajectory using the same algorithms as those described in App.
A.1.1.

The integration of the electron beam transport into the PCGO projection algorithm requires
the definition of a beam intensity, in addition to its thickness w. As for PCGO rays (see Eq.
(2.79)), we assume a Gaussian intensity profile for the electron beam energy flux q:

q(s, r) = q0(s) exp

�
−2

� r

w

�2
�

, (5.12)
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Figure 5-1 – (color) [left] 2D and 3D Maxwellian distribution functions for the averaged
energy �E� = 50 keV. Both functions are normalized so as to contain the same energy
flux. [right] Cumulative 2D and 3D Maxwellian distribution functions, i.e. energy
flux comprised in the [0; ε] interval as a function of the energy ε. Both functions
converge to the same asymptotic value because they contain the same energy flux. The
2D distribution function is shown as a red (grey) line and the 3D distribution function
as a black line.

where q0 is the beam on-axis intensity, r is the radial coordinate and s is the curvilinear coordinate.
The computation of q0 depends on the distribution function fE for the electron beamlet. For an
idealized mono-energetic beamlet, q0 = nhε0v0, with ε0 being the initial energy of the beam, nh

being the number of electrons and v0 being their initial velocity. This approach corresponds to
the framework of the ASA (5.8), which describes mono-energetic beamlets.

5.1.2.2 Multi-group electron beams

Conversely, for the study of multigroup hot electrons beams, we define the energy distribution
function:

fE(ε) = exp

�
− ε

kBTh

�
, (5.13)

where Th is the so-called supra-thermal electron temperature. This form of the distribution
function corresponds to a Maxwellian distribution defined with two degrees of freedom in the
momentum space. Note that for a 1D distribution, fE(ε) ∝ 1/

√
ε exp [−ε/kBTh], and for a 3D

distribution ∝
√
ε exp [−ε/kBTh]. The difference between the 2D and 3D distributions is relatively

small, as it is illustrated in Fig. 5-1. For the same average energy flux, the 2D distribution
function is slightly shifted toward the lower energies when compared to the 3D distribution
function. The choice of the 2D function is motivated by the 2D planar framework, in which the
model is implemented.

In practice, the fE function (5.13) is approached by a discrete logarithmically-binned energy
distribution function f̂0

E
(ε), composed of superposed beamlets of mono-energetic distribution

function fk

E
:

f̂0
E(ε) =

N
E
g −1�

k=0

fk

E =

N
E
g −1�

k=0

Akδ(ε− Ek) , (5.14)
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logEk = logEmin + k

�
logEmax − logEmin

NE
g − 1

�
,

where Emin and Emax are the energy boundaries and the Ak are normalization factors. Typically1,
Emin � kBTh/5 and Emax � 8kBTh. The discretized energy distribution resembles a Dirac comb
with logarithmic steps and converges toward fE for NE

g → ∞. The Ak factors are obtained by
imposing the power conservation per bin at t = 0:

Ak =

� Ek+1/2

Ek−1/2

εve(ε)fE(ε)dε
�∞
0 εve(ε)δ(ε− Ek)dε

=

� Ek+1/2

Ek−1/2

εve(ε)fE(ε)dε

Ekve(Ek)
, (5.15)

where ve(ε) = c
�
1− 1/γe(ε)2 is the electron velocity and γe is the Lorentz factor. Given an

initial beam power P e

0 , width w and height h, the beam electron density nbe reads:

nbe =
P e

0�
π/2wh

�
Emax

Emin

εfE(ε)v(ε)dε
, (5.16)

where nbeAk is the initial number density of electrons for beam k. The initial intensity for beamlet
k reads:

qk0 = nbeAk

�
Ek+1/2

Ek−1/2

εδ(ε− Ek)v(ε)dε = nbe

�
Ek+1/2

Ek−1/2

εve(ε)fE(ε)dε . (5.17)

5.1.2.3 Beam aperture

The mono- and multigroup HE beams described above are initialized with < cos θ >= 1, i.e.
each beamlet is initially collimated. In general, LPI processes at the origin of HE beams may
accelerate electrons in different directions. Considering a HE source i with an aperture Θ (defined
in Fig. 5-2), a HE beam i of principal axis eiHE is described by NS

g multigroup sources:

qi(w,Θ)eiHE =

N
S
g�

j=1

µijqij(w)eijHE , (5.18)

where µij are constant factors that define the angular distribution, and the axis of the group j

eijHE is defined as:

eiHE.e
ij

HE = cos(θj) = cos

�
−Θ/2 +

(j − 1)Θ

NS
g − 1

�
, (5.19)

with θj the angle between the group j and the axis of the HE source eiHE, defined such as
�N

S
g

j=1 e
ij

HE/|
�N

S
g

j=1 e
ij

HE| = eiHE, for any NS
g . For simplicity, the initial width of each group j is

taken to be equal to that of the source. The desired angular distribution can be obtained by
varying the µij factors. For an isotropic distribution in the [−Θ/2;+Θ/2] cone, these factors
simply read:

µij
= 1/NS

g . (5.20)

1For the energy boundaries considered here, the use of logarithmically-spaced bins increases the convergence
rate with NE

g of the variance of the power repartition per bin compared to linearly-spaced bins. Neither of these
approaches are optimal. It might be improved by using bins with the same power per bin, i.e. a zero variance for
any number of energy groups.

160



5.1. Reduced model for electron beam transport and plasma heating

!r
ϴ

eHE!r
ϴ

kHE
e j

e 1

eNg
S

"j

Figure 5-2 – Definition of the angular parameters of a multigroup HE beam with a non-zero
initial aperture. The HE source spatial parameter are represented in black and the
discretization with initially anisotropic sources is shown in green.

For a HE source with NE
g energy group and NS

g angular groups, NE
g × NS

g mono-energetic
beamlets are required, so that this approach can be relatively costly. An assessment of the number
of spatial and energy groups to properly describe a HE source of initial aperture Θ = π/4 is
conducted in Sec. 5.2.2.

5.1.2.4 Power deposition

Equations (5.7), (5.8) and (5.11) are integrated along a central ray trajectory between two mesh
cells using a Runge Kutta algorithm of order 4 with an adaptative step size, in order to correctly
resolve the singular behavior of w and dε/dz as �cos θ� goes to zero. Considering the integration
of these equations between z and z + dz, the power lost by the beamlet can be expressed as:

P z+dz

lost
= P z −Aknbe(w

0/wz+dz
))

�
π

2
hwz+dz

�
Ek+1/2

Ek−1/2

εδ(ε− Ez+dz

k
)ve(ε)dε

= P z − w0

�
π

2
hqk

z+dz
. (5.21)

This power loss (the deposited dose) is projected onto the Lagrangian mesh by considering linear
variations of w and q between the entry and exit points of the central ray in the cell and using the
PCGO algorithm for the Gaussian field projection. Comparisons with the reduced kinetic code
M1 available at Celia [199] for mono-energetic and multigroup (5.13) HE beams are presented
in the following section.

5.1.2.5 Straggling and blooming

The base framework of the ASA model is that of mono-energetic HE beamlets that widen through
angular diffusion in the coordinate space and slow down through both collisions and angular
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Case ρ0 (g/cc) Te (eV) Ti (eV) Ee (keV) Pe (PW) ∆x (µm) ∆y (µm) Nx Ny

Mono1 10 1000 1000 100 1.458 80 240 80 100
Mono2 300 1 1 2500 1.492 80 240 80 100
Multi1 10 1000 1000 30 1.433 30 240 60 60
Multi2 10 1000 1000 100 1.433 30 240 60 60

Table 5.1 – Plasma and simulation parameters for the comparisons between M1 and ASA
in the constant density cases. Ee is either the HE beam energy (for a mono-energetic
beam) or the HE temperature (for a multigroup beam), Pe is the HE beam power, ∆x and
∆y are the plasma dimensions along the x (propagation) and y (transverse) directions,
Nx and Ny are the number of mesh cells in each direction.

diffusion in the momentum space. This beam widening in the momentum space is called blooming.
Moreover the electron slowing down is also associated with the energy spread in the direction of
the beam axis (so-called straggling) [192]. These two effects can be included in the ASA model
by considering higher orders in the distribution function for the beam, which involves the second
moment of the differential angular cross section [192, 197]. 2D comparisons with the M1 model
in the case of a mono-energetic electron beam have shown a significant benefit of taking into
account beam straggling and blooming, which smooth the sharp cutoff behavior characteristic of
the SDA equation (5.8). However, it was shown in Ref. [197] that this significant difference in
the case of a mono-energetic electron beam is greatly reduced when considering HE beams with a
broad energy distribution. This is also illustrated in the following section.

5.2 Validation

The ASA model and the M1 code are now compared in several cases relevant to ICF conditions, for
mono-energetic and multigroup HE beams. The electronic M1 [199, 198, 200] model is an angular
moment approximation of the Vlasov-Fokker-Planck equation, based on entropy maximization
principles, that is implemented in the Chic code. Note that the present Thetis model is not
interfaced with the M1 model. The reason being that although the numerical cost of M1 is much
lower than that of kinetic models, it is usually limited to one beam. This is not sufficient for
a direct-drive like configuration with many laser beams, where each of them may be a source
of multiple hot electron beams generated by nonlinear LPIs. As such, the M1 approach is not
adequate as it is still a rather time consuming method when considering multiple electron beams.

We consider a stationary regime for M1 and study the dependence of the dose deposition
on the number of electron groups and the size of transverse inhomogeneities. Note that for
simple plasma conditions, results obtained from the non-stationary M1 model converge toward
the stationary solution. For simplicity, the plasma equation of state of all cases is that of a perfect
gas and the plasma is always considered to be fully ionized.

5.2.1 Constant density plasma

5.2.1.1 Mono-energetic case

We consider two cases of a DT plasma with densities of 10 and 300 g/cc, and electron beams
of the energy 100 keV and 2.5 MeV. These choices are relevant to the plasma densities and HE
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Figure 5-3 – Spatial energy deposition field from the HE beam (erg.s−1.g−1): results from
the ASA model [left] and the M1 model [right] for the 2.5 MeV case.

energies encountered in the Shock Ignition and Fast Ignition frameworks, respectively. Plasma
and simulation parameters are summarized in Tab. 5.1 (cases Mono1 and Mono2).

The predicted dose rate (power absorbed per unit mass) for the 2.5 MeV case is presented
in Fig. 5-3 and illustrates the major flaw of the ASA model in its current formulation without
straggling and blooming, that is a rapid divergence of the beam at the end of its trajectory. This
is quite different from the M1 results. The difference is due to the longitudinal diffusion taken
into account in M1, but not in the ASA model. Consequently, the overall energy deposition field
predicted by M1 presents the morphology of a droplet, whereas the ASA model produces peaked
profiles. Figure 5-4 represents the dose integrated along the transverse direction y as a function
of the propagation direction x. For both electron energies, the ASA model produces a sharp
cutoff with a maximum of energy deposition that is overestimated in value and underestimated
in depth. That is particularly the case for the 100 keV beam, the difference being much less
visible for the 2500 keV beam due to a smaller angular diffusion of relativistic electrons. The
total energy deposited in both cases is the same for both models, while the dose distributions are
different. Although there is a rather large difference in that morphology, mono-energetic beams
with such sharp energy distributions are not physical and only multigroup distribution functions
are considered in physical applications of the ASA model in Thetis.

We note also that our ASA model is much more computationally efficient. The computation
times for the cases Mono1 and Mono2 are 600 s and 1200 s with M1 while our implementation of
the ASA model takes 0.2 s for both cases. Typical computation times for such cases with the
standard ASA model reported in Ref. [197] (based on pencil beams and dedicated Eulerian grids)
are of the order of 5 s.

5.2.1.2 Multi-group case

We now consider two cases of a DT plasma with a density 10 g/cc and exponential electron
distributions (5.13) with Th = 30 and 100 keV. These parameters are relevant to the Shock
Ignition conditions, where the HEs generated from the SRS and TPD instabilities emitted close

163



Chapter 5. Multiscale model for coupled laser propagation and hot electron generation and propagation:
the Thetis model

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Propagation direction x (mm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

In
te
gr
at
ed

d
os
e
al
on

g
tr
an

sv
er
se

d
ir
ec
ti
on

y
(e
rg
.m

m
/s
/g
)

×1018

M1

ASA

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Propagation direction x (mm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

In
te
gr
at
ed

d
os
e
al
on

g
tr
an

sv
er
se

d
ir
ec
ti
on

y
(e
rg
.m

m
/s
/g
)

×1016

M1

ASA

Figure 5-4 – (color) Integrated dose along the transverse direction as a function of the
propagation distance in erg.mm.s−1.g−1 for the 100 keV [left] and 2.5 MeV [right] cases.
Results from the M1 model are presented with a thick black line and results from the
ASA model with an orange (light grey) line.

to the quarter critical density can reach these typical energies. Plasma and simulation parameters
are summarized in Tab. 5.1 (cases Multi1 and Multi2).

The calculated doses for the multigroup cases are presented in Fig. 5-5. Contrary to the
mono-energetic case, M1 and ASA produce rather similar results. There is an overall good
agreement in the morphology of the energy deposition field and the sharp features of the ASA
model are smoothed by the beamlet overlaps. This smoothing is dependent on the number of
beamlets chosen for ASA, as is illustrated in Fig. 5-6, which represents the dose integrated in
the perpendicular direction for different number of beamlets NE

g . For NE
g > 50, the ASA model

correctly predicts the dose and penetration depth of the HE beam, even at the energies in the
range of tens of keV considered here, which showed a significant difference in the mono-energetic
case. The sharp features of the ASA model are prominent for NE

g = 10 and they progressively
disappear converging to the predicted dose when increasing NE

g . The computation times for cases
Multi1 and Multi2 are of 680 s and 3400 s with M1 and about 2 s with ASA using NE

g = 500.
We note that typical computation times for such cases with the standard ASA model presented
in Ref. [197] are of the order of 15 s.

5.2.2 ICF-like density profile

We now consider more complicated plasma profiles, taken from the hydrodynamic simulation of
an ICF implosion (in the HiPER baseline DT configuration [201]), at a time corresponding to the
beginning of the main drive pulse. Density and temperature conditions are shown in Fig. 5-7.
These profiles define the initial plasma condition along the x direction and are invariant along
the y direction. We study two cases of propagation of a 60 keV multigroup HE beam ; parallel to
and with an angle with respect to a density gradient, from a density close to the quarter critical
density. The beam is given an initial divergence of Θ = 10

◦ in order to mimic a source with a
moderate angular spread.
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Figure 5-5 – (color) Spatial energy deposition field from the HE beam (erg.s−1.g−1): results
from the ASA model [left] and the M1 model [right] for the 30 keV [top] and 100 keV
[bottom] cases.
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Figure 5-6 – (color) Dose integrated along the transverse beam direction as a function of
the propagation direction for the electron beams having an exponential distributions
with the temperatures 30 keV [left] and 100 keV [right]. Results from the M1 model
are presented with a thick black line and results from the ASA model with colored
(grey-shaded) lines for different number of groups NE

g .
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Figure 5-7 – (color) Initial profiles for the electron temperature (blue), ion temperature
(green) and density (red) along the x direction. Temperatures are expressed in keV and
density in g/cc. The HE source is located at x = 0 where ne/nc = 0.25. Note that the
density upstream of the shock (left side of the figure) has been artificially raised to 10
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g/cc in order to speed up computation times with M1.
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Figure 5-8 – (color) Dose deposited by the hot electron beam along its axis in the inhomo-
geneous density and temperature profile. Results from the M1 model are shown in black
and results from the ASA in red.

5.2.2.1 HE beam propagation parallel to the density gradient

Typical hot electron sources in ICF are located at the quarter critical density or at the critical
density. We consider such a source at the quarter critical density, with hot electrons emitted in
the direction of the density gradient. This test case provides insight on the capabilities of the
ASA model in predicting the dose at the peak density and behind a shock. We compare the
on-axis dose in Fig. 5-8. The energy absorbed by the plasma is similar in both models, including
behind the shock. The difference in dose deposition in the first 50 µm is thought to be due to a
difference in the definition of the initial conditions between the models.
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ρ̄ = 1 ρ̄ = 10 ρ̄ = 100 ρ̄ = 1000

Figure 5-9 – Dose deposited by a HE beam incident at 45◦ on a shock profile with an initial
aperture Θ = 10

◦ (described with NS
g = 5), for various values of NE

g ∈ [10, 50, 100, 1000]
(top to bottom) and for ρ̄ ∈ [1, 10, 100, 1000] (left to right). x and y axis are in µm.

5.2.2.2 HE beam propagation at an angle with the density gradient

It was noted in [197] that strong anisotropies of the density in the transverse direction to the
HE beam propagation direction are a source of error in the ASA model. Assuming that at a
constant temperature, the stopping power varies linearly with the density, the energy deposition
is corrected in the orthogonal direction by the density ratio ρ̄ = ρ(r)/ρ(0) where ρ(0) is the
on-axis density and ρ(r) is the density at the considered point. It is suggested in Ref. [197] to set
a maximum density ratio of ρ̄max = 4, in order to avoid overestimated transverse doses. To assess
the contribution of this parameter, the case of a beamlet propagating from the quarter critical
density at an angle of 45◦ with the density gradient is now considered. We explore in Fig. 5-9 a
range of parameters NE

g ∈ [10, 50, 100, 1000] and ρ̄ ∈ [1, 10, 100, 1000] with the ASA approach,
and compare the results from the M1 model, shown 5-10 [left].

Compared to the M1 results, it is found that NE
g ≥ 50 with the ASA is sufficient to reproduce

a smooth dose deposition field. It is also found that the ρ̄ parameter must not be set to a too
large value, in order to avoid large precision losses in the high density region. In particular,
for ρ̄ ≥ 100, the ASA is not able to reproduce the cropped-beam behavior observed in the M1
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Figure 5-10 – Dose deposited by the HE beam, results from [left] the M1 model and from
[right] PCGO+Thetis, with ρ̄ = 10 and NE

g = 50.
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Figure 5-11 – (color) Dose deposited by the HE beam at various depths in the y direction
(see Fig. 5-10), for y ∈ {50, 100, 200, 300} µm. Results from the M1 model are
indicated in black solid lines and results from the ASA in red (grey) solid lines, for
ρ̄ = 10 and NE

g = 50.

simulation. On the other hand, for ρ̄ = 1, the dose field with the ASA model appears deviated
due to the presence of the strong transverse inhomogeneity. The value ρ̄ = 10 is found to be
a good compromise, retaining the cropped-beam features observed in the M1 results and the
HE beam directionality. In practice, we choose NE

g = 50 and ρ̄ = 10 in our simulations. This
particular combination is highlighted in Figs. 5-10 and 5-11. With the exception of the wings
(discussed below), the ASA and M1 models are in overall good agreement. The morphology of
the dose is comparable and the regions of high plasma heating are well reproduced.

Finally, we point out that the wings of the HE beam downstream of the shock (left-hand-side
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of the figure) are not well reproduced by the ASA model. This is thought to be a consequence
of the initial angular distribution of the HE source, that probably differs between the M1 and
ASA approach. Notably, in the ASA model the HE source intensity as a function of the angle
is constant in the [−Θ/2;Θ/2] interval, while it decreases smoothly in the M1 approach, in an
interval larger than for the ASA initialization. This can notably be seen in Fig. 5-10 at the point
of HE emission, where the whole x = 0 region is covered by electrons in M1.

5.3 A Resonant Absorption model based on the thick-rays de-
scription of laser beams

Resonant Absorption occurs when an EM wave interacts with a density gradient in such a way
that the wave’s electric field at its turning point has a component parallel to the density gradient.
This component of the electric field tunnels from the turning point to the critical density, where
it is resonantly excited, thus driving an electron plasma wave and causing an additional laser
absorption. Hot electrons may be accelerated by this process depending on the strength of the
resonant field and the distance between the wave’s turning point and the critical density. Resonant
Absorption at the critical density may influence the velocity of shocks in the target, while the HE
it generates are rarely a concern for the target preheat, except at very high laser intensities.

We describe below the spatial and energetic properties of hot electrons accelerated by Resonant
Absorption, that serve as source parameters for the HE propagation model described in Sec. 5.1.

5.3.1 Laser energy conversion fraction

For a p-polarized electromagnetic wave incident at an angle ϕ (defined at the plasma-vacuum
boundary) on a linear density profile of scale length L, the fraction of beam energy fA absorbed
at the critical density can be expressed as fA = Φ2

(ηc)/2 [61], with ηc = (ωL/c)2/3 sin2 ϕ and Φ

being a resonance function. Based on Ref. [80], we have derived a resonance function where the
decay factor of the electric field is estimated by a different interpolation function:

Φ(ηc) � 1.866η1/2c exp(−2η3/2c /3)/(ηc + 0.435)1/4 . (5.22)

The derivation of the resonance function is rather technical and is presented separately in App.
C.1, alongside comparisons to the resonance function presented in Ref. [80]. Note that compared
to numerical solutions of the wave equation in a plasma with a linear density profile and PIC
simulations [95], this formula captures the absorption fraction to within an error of 10% (that is
corrected by re-normalization), and yields an optimal angle of ηc = 0.51 that is bracketed by the
reference simulation values (ηc ∈ [0.47; 0.53]).

When a p-polarized PCGO beamlet propagates orthogonally to the density gradient direction,
a HE beam is initialized at the critical density, parallel to the gradient direction (see Fig. 5-12).
If the temperature Th,RA of these HEs, computed with (5.23) and (5.24), is less or equal to the
plasma temperature at the critical density Te,nc, this energy is deposited at the critical density.
When Th,RA > Te,nc, we consider that 100 % of the absorption fraction fA is converted into HEs.
In any case, the power fraction fA absorbed at the critical density or given to the electron source
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is removed from the PCGO beamlet at its turning point. The wave front equation (2.72) is
re-integrated from the turning point to update the downstream intensity, curvature radius and
width of the PCGO beamlet. The detailed numerical implementation of Resonant Absorption
into the PCGO model is presented in App. C.2.

5.3.2 Spatial parameters of the hot electron source

Resonant Absorption originates from the component of the electric field that is parallel to the
density gradient. Consequently, electrons accelerated in an EPW at the critical density from this
component of the electric field are ejected in the direction of the density gradient. As such, the
electrons from Resonant Absorption form a parallel beam in the direction of the density gradient.

The thickness of the HE beam source is taken to be equal to the interpolated thickness of the
thick ray at the turning point wT . Results with our model are not sensitive to this approximation,
as the overlap of many electron sources from many thick rays creates a rather uniform field in the
transverse direction with respect to the density gradient.

5.3.3 Hot electron temperature from Resonant Absorption

Numerous experiments [36, 202, 9, 3, 203, 204, 22] have highlighted the scaling between the
temperature of hot electrons produced by Resonant Absorption and the interaction parameter
Iλ2

L
. In the intensity regime of ICF and planar target experiments with nanosecond lasers,

Iλ2
L
∈ [10

13
; 10

15
] Wµm2/cm2. In that regime, the hot electron temperature T (1)

h,RA approximately
scales as:

T (1)
h,RA = 9.369× 10

−10
(IW/cm2λ2

µm)
0.664

keV . (5.23)

We include the scaling of Th at higher temperatures using the experimental law valid for Iλ2
L
∈

[10
15
; 10

17
] Wµm2/cm2:

T (2)
h,RA = 1.577× 10

−3
(IW/cm2λ2

µm)
0.247

keV . (5.24)

The numerical values where obtained from fits to experimental data points [202] of the suprathermal
electron distribution function temperature obtained from measurements of X-ray spectra at 1.06

µm and 10.6 µm, and from measurements of ion data at 10.6 µm. These data points and fits are
shown in Fig. 5-13 [left] as black symbols and black lines, respectively.

The value of the intensity used in the determination of the hot electron temperature is taken
to be that of the interpolated intensity of the beam at the turning point IT , thus accounting for
collisional losses prior to the wave reaching the turning point and for refraction and diffraction
processes in the density profile. Note that when Th is less than the electron temperature Te at the
critical density, no electron source is created and the Resonant Absorption energy is considered
to be absorbed directly at the critical density. The scaling laws defined from the experimental
data are function of the vacuum intensity of the laser in the focal plane. In order to verify the
consistency of our implementation of Resonant Absorption, simulation results at various values of
the interaction parameter Iλ2

L
are compared to the mean hot electron temperature predicted by

the experimental data, as demonstrated in the following example.
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Figure 5-12 – (color) Illustration of the numerical implementation of the laser-plasma-
electron coupling in the case of Resonant Absorption, within a hydrodynamic timestep.
The propagation of the PCGO beamlet is computed onto the hydrodynamic mesh. HE
sources from RA are computed at the turning point of the wave, and initialized at the
critical density surface. The power transferred to the HE beam is removed from the
PCGO beamlet at its turning point, and the downstream phase parameters (intensity,
thickness) are updated by re-integration of the wave front equation. Finally, the inverse
Bremsstrahlung absorption is computed on the Lagrangian mesh, and the HE beam
propagation and absorption in the plasma is computed with the ASA model.

The simulation setup is similar to the picket pulse in shock ignition experiments that is used
to set the adiabat of the shell [32]. A spherical plastic target of 470 µm radius is symmetrically
irradiated by laser beams in a 100-ps Gaussian picket pulse at 351 nm wavelength. Simulations
only vary by the power of the beams so that the interaction parameters IFSλ2

L
∈ [3.85× 10

13
; 1×

10
14
; 2× 10

14
; 5× 10

14
] Wµm2/cm2 correspond to peak intensities IFS ∈ [3.1× 10

14
; 4.5× 10

15
]

W/cm2. Realistic equation of states are used, radiative transfer computations are enabled and
the inverse Bremsstrahlung absorption is included. The flux limiter is set to its usual value for
these intensities in Chic, that is a sharp cutoff at fL = 0.04. We measure in our simulation the
hot electron temperature at the maximum of the pulse intensity, as a weighted mean:

�Th� =

NS�
i=1

T i

hP
i
e

NS�
i=1

P i
e

, (5.25)

where T i

h and P i
e are the hot electron temperature and HE beam power of the source i, and the

number of sources NS is at most equal to the number of thick rays. For these simulations, we
use 18 beams irradiating the target cylinder uniformly, with each beam being composed of 80
thick rays so that there is in the order of 1000 sources per timestep. We assume our beams to
be identical to the setup at Omega when using the SG4 phaseplates at 3ω, as described in Sec.
3.3.2. The Results for the suprathermal electron temperature as a function of the interaction
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Figure 5-13 – (color) [left] Scaling of the suprathermal electron distribution temperature
Th for the process of Resonant Absorption as a function of the interaction parameter.
Black symbols are experimental data points [95] from experiments at λ = 1.06 µm and
λ = 10.6 µm. Red crosses are suprathermal temperatures computed in the simulations.
The two black lines are the fits for the two interaction regimes. [right] Example of an
electron distribution for HEs accelerated by resonant absorption. Results are from the
simulation with IFSλ2

L
= 5×10

14 Wµm2/cm2, at the time of maximum laser intensity.
The flux-weighted average temperature (5.25) is �Th,RA� = 3.5 keV.

parameter are illustrated in Fig. 5-13 [left]. We find a good agreement between the predicted
temperature �Th� from the model as a whole compared to the experiments, thus validating our
approach to the computation of Th for the local HE sources. A typical energy distribution of HEs
generated by Resonant Absorption as modeled in our approach is given in Fig. 5-13 [right].

5.4 Reduced HE source models from parametric instabilities

The nonlinear processes associated with parametric instabilities, described in Sec. 1.5, cannot
be readily modeled at the scales of radiative hydrodynamic simulations. The mechanisms that
accelerate electrons to supra-thermal energies are complex and require the use of microscopic-scale
kinetic codes. Much as in the case of CBET, a reduced model of parametric instabilities (in the
case of TPD and SRS) is needed. Ultimately, for the study of the couplings between plasma
dynamics and hot electron dynamics, the quantities of interest are: (i) the amount of energy
transferred from the laser beam to forward-propagating energetic electrons (noted FE), (ii) their
characteristic energy Th, (iii) their direction eHE and angular distribution Gθ with respect to the
laser drive, and eventually (iv) the amount of backscattered power RB. Additional constraints
must be considered for the consistency of the model, that are: (1) these quantities must be known
at the point of emission of the HE population (usually around the nc/4 region for SRS and TPD),
(2) energy transferred from the EM wave to electrons or backscattered light must be accounted
for consistently with respect to collisional absorption and Resonant Absorption downstream of
the point of HE creation.

We present in this section an approach that yields the desired quantities while satisfying those
criteria. Note that the HE source are always created from PCGO beamlets, as those carry the
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information on the direction of the wavefield, and defining HE sources from PCGO beamlets
allows to update the downstream intensity of the beamlets, thus obtaining a consistent coupling.

5.4.1 TPD-generated hot electrons

The Two-Plasmon Decay instability results from the coupling near the quarter-critical density
of an incident transverse wave with two Electron Plasma Waves (see App. 1.5.2.3). The latter
can accelerate electrons to rather high energies, although at moderate fluxes. Given an EPW
of wavenumber kEPW, the kinetic energy of the trapped electrons is mev2ph,EPW(k)/2, where
vph,EPW is the phase velocity of the Langmuir wave. The supra-thermal temperature Th of
electrons accelerated by EPWs is often approached by this kinetic energy. However, reduced
PIC simulations have shown that this is incorrect in the case of TPD, where Th,TPD is seen
to be weakly correlated with vEPWph , while scaling linearly with the laser intensity [205]. This
was explained in Ref. [206] to be the result of a staged acceleration: thermal electrons are first
trapped by Langmuir waves with a small phase velocity in lower density regions and are then
accelerated by higher phase velocity waves in higher density regions. The overall picture of HE
acceleration by TPD is made even more complex by considering the competition between SRS
and TPD, saturation mechanisms such as pump depletion, and by other nonlinear interactions
with the plasma such as cavitation. Furthermore, various experiments conducted on Omega
[160] have shown the importance of Common Wave (CW) driven TPD on the intensity threshold
and fraction of accelerated hot electrons (using 2 to 60 laser beams). They notably found that in
most cases, the intensity threshold for beams with polarization smoothing was not dependent
on the geometry of the beams. The resulting threshold is close to the one commonly used for a
single pump wave (given by Eq. (1.163)):

I inh,CW
th,TPD = 8.2Te/(Lnc/4,µmλL,µm) PW.cm−2 , (5.26)

where Te is the electron temperature in keV, Lnc/4,µm = n/(∂n/∂x)|n=nc/4 is the density gradient
scale length in µm and λL,µm the laser wavelength in µm.

Given the variety of processes at play in HE acceleration by the TPD instability, we choose
to model TPD-HE sources by simple phenomenological laws, with the aim of obtaining realistic
hot electron temperatures, conversion fractions and spatial source parameters. The first two
are determined from detailed PIC simulations conducted in plasma and laser regimes of interest
to HEDP experiments, that are, plasma temperatures of the order of 1 keV and interaction
parameters of the order of 1014 Wµm2/cm2. Such simulations are presented in Ref. [205], in the
framework of TPD driven by a common wave excited by two beams of overlapped intensities
ranging from ηTPD

= IΣ/I
inh,CW
th,TPD = 1.02 to ηTPD

= 4 (at λL = 351 nm). Furthermore, we only
consider the steady state stage of the interaction, which was reached in their simulation after the
time τstd of the order of 10 to 20 ps. This assumption of stationarity is reasonable when considering
laser pulses on timescales t � τstd, which correspond to the experimental configurations studied
in the next chapter. More specifically, the ignitor pulse used in Shock Ignition is about 200
ps long at peak intensity, i.e. one order of magnitude larger than τstd. Including the temporal
dependence of the HE generation in the model requires additional developments, which are left
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as future work. For conditions of overlapped laser intensity IΣ of the order of 1015 W/cm2 and
temperatures of the order of the 1 keV, the asymptotic formulations of the forward supra-thermal
energy flux and temperature as a function of the drive strength read [205]:

FTPD
E (η) = 2.6× 10

−2IΣ(1− exp(−
�

η − 1)) W/cm2 , (5.27)

Th,TPD(η) = 15.31 + 17.71η keV , (5.28)

which can be evaluated at η = ηTPD to obtain FE and Th. A typical energy distribution of HEs
generated by TPD as modeled in our approach is given in Fig. 5-15.

It is important to note that these formulations are defined with respect to the total intensity
field of the overlapped beamlets IΣ. For that reason, these functions are labelled as macroscopic
drive functions. Because the direction of emission of LPI-generated HEs must be related to
the beamlets, that bear the notion of wave k-vector, the macroscopic source functions must be
translated in terms of beamlet-based HE sources. This is described in details in App. C.3.

The linear theory for the TPD instability predicts that the most favorable configuration, i.e.
that maximizes the coupling constant γ0 (see Eq. (1.158)), corresponds to the EPWs propagating
at π/4 and 3π/4 with respect to the pump wave. Considering the two possible configurations
({+π/4;−3π/4} and {+3π/4;−π/4}), the EPWs are mainly generated at ±45

◦ from the pump
wave, both forward and backward. Consequently, the most probable emission lobes for the hot
electrons are at ±45

◦ with respect to the laser k-vector, forward and backward of the interaction
region. In direct-drive ICF, as many beams compress the target and overlap, several laser beams
can share a common-wave, resulting in a more complex emission profile [174]. As an example, for
two beams incident at ±23

◦ with respect to the density gradient, the main hot electron emissions
lobes are at ±0

◦ forward and backward, with some components still present at ±45
◦ forward

and backward. From these observations, the spatial pattern of the HE emission is simplified as
follows.

• Considering that the backward HE component propagates away from the target and in a
low density plasma, backward HEs are neglected.

• Given that TPD simultaneously excite forward and backward EPWs, it is assumed that
there is an equal amount of electrons accelerated in the forward and backward directions.
Consequently, for a TPD-HE source i of initial power P i

TPD, the power lost by the beamlet
through TPD is 2P i

TPD.

• Given the variety of emission lobes induces by shared pump-wave processes, TPD-generated
HEs are emitted with an initial aperture Θ = π/2 (i.e. GTPD

θ = G TPD
θ (ηTPD

) = χB(−π/4,π/4))
and in the direction of the beamlet k-vector.

Moreover, because TPD does not involve backscattered light, RTPD
B

= RTPD
B

(ηTPD
) = 0.

5.4.2 SRS-generated hot electrons

The definition of the SRS-HE source is more delicate than for TPD. As is shown in Sec. 1.5.2.1,
SRS can occur below the quarter-critical density, where the SRS instability is most likely in a
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Figure 5-14 – Schematic representation of the implementation of a hot electron source
from a PCGO thick ray (case of the TPD-HE reduced model). Black circles are points
where the interpolated density encloses the emission density, represented as a red
circle. The initial electron source is represented as grey emission lobes. Only the
forward component is propagated with the ASA model.
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Figure 5-15 – Example of an electron distribution for HEs accelerated by TPD. Here, the
flux-weighted average temperature (5.25) is �Th,TPD� = 60 keV.
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convective regime, and near the quarter critical density, where it is in the absolute regime. In an
inhomogeneous plasma, although it appears logical to give precedence to the absolute instability,
which intensity threshold is lower, we must note that (i) SRS can become absolute below nc/4 by
several mechanisms, e.g. by coupling of the forward EM wave with backscattered light at nc/4

[84, 85] or by local homogenization of the density profile, and (ii) experimental observations show
that significant amounts of backward SRS do occur in a extended area below the quarter-critical
density.

Characterization of the plasma density where the SRS is generated is usually made using the
density dependence of the Raman emission [36]:

λSRS = λL

�
1−

�
ne

nc

(1 + 3k2λ2
D
)

�−1

. (5.29)

In most experiments, two cutoffs are observed in the Raman spectra; a small wavelength cutoff
attributed to the Landau damping of the EPWs in a low density plasma, and a long wavelength
cutoff corresponding to suppression of SRS in the density range between nc/5 and nc/4. This so-
called Raman gap [10, 20, 207, 90, 91, 208] may be attributed to a local density profile steepening
due to the ponderomotive force (although this effect may be overestimated, as suggested by
recent 2D simulations [209, 210]), associated with strong EPWs from the TPD process, or to the
coupling with IAWs from the SBS instability.

We can summarize the main features that a local reduced SRS model must account for.

• (I) SRS is taking place before the TPD instability (in a spatial sense) as the pump wave
propagates in the plasma. Consequently, it takes precedence in the conversion of laser
energy to HEs.

• (II) The SRS-HE emission being delocalized below (and up to) the quarter-critical density,
the modeled HE temperature must be conservative, i.e. representative of the highest-energy
HEs that can be emitted.

• (III) Regardless of micro-scale mechanisms that cannot be modeled, such as density steepen-
ing or the transition from the convective to the absolute instability below nc/4, the intensity
threshold must account for the most unstable configuration.

• (IV) The main direction of the scattered wave propagation observed in experiments corre-
sponds to the backward SRS [90, 91, 92]. It is much larger compared to sidescattering [11]
and forward scattering [19, 211, 212, 91].

Given these constraints, and underlining the fact that we are seeking a simple reduced model
(which may be elaborated further), we propose the following approach:

• (i) The HEs are assumed to be emitted from the plasma density of nc/5. This satisfies the
conditions (I) and (II), and is consistent with observations of the SRS cutoff at nc/5 in
experiments conducted for inhomogeneous plasma that include the quarter-critical density
[208]. Note that laser energy converted to SRS-HE sources depletes the beamlet and reduces
the subsequent drive strength for the TPD at nc/4.
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• (ii) The intensity threshold for SRS is chosen to be that of the absolute instability at nc/4

for the backward SRS, with the gradient scale length taken at nc/5. Although this yields an
artificial threshold, this hypothesis satisfies the conditions (III) and (IV), and is consistent
with (i).

• (iii) The supra-thermal temperature is estimated from the phase velocity of the EPWs
vph,EPW at nc/5. Assuming that there is a gap in HE generation in the 0.2− 0.25 interval,
and considering that vph,EPW for backward SRS is an increasing function of ne/nc, this
satisfies the conditions (II) and (IV). Furthermore, this is consistent with theoretical works
[213] pointing out that the energy of SRS-induced HE is indeed correlated with the phase
velocity of the EPW and not with the drive intensity ηSRS. The absence of relation between
the HE energy and the drive intensity was also observed in experiments [19, 214, 215]. Note
that the working hypothesis of a SRS-HE emission at nc/5 is not generic with respect to
the large variety of existing LPI regimes.

• (iv) Only backscattering SRS is considered, so that HEs are emitted forward, and scattered
light backward, in agreement with the condition (IV). Given the typical temperatures of
SRS-HE in the interaction parameters considered here (> 30 keV), those can be considered
to be emitted in the principal direction of the pump wave with Θ = 0 in agreement with
experimental measurements [214].

Additionally to the aforementioned points, we must choose a flux function that relates the
drive strength ηSRS to the supra-thermal electron flux. Note that the increase in number of hot
electrons as a function of ηSRS was highlighted in theoretical works [213]. Considering a flux
function of the same form as for the TPD model (5.27), we must choose an asymptotic HE value
for ηSRS → ∞ and a shape for the function. The asymptotic HE flux is set to 12.5% of the pump
intensity, that is the maximum number of forward hot electrons that SRS can drive in a steady
state [216]. This can be explained by the fact that (i) a maximum of 50 % of the pump beamlet
power can be scattered, (ii) 50 % of the scattered power goes into the scattered EM wave and 50
% into the plasma wave, and (iii) 50 % of the EPW energy can be transferred to the electrons.
The shape of the flux function Fe is chosen to be similar to that of TPD, and re-arranged to
correspond to experimental measurements [112, 33]:

F SRS
E (η) = 12.5× 10

−2IΣ(1− exp[−(η1/3 − 1)]) W/cm2 , (5.30)

where the power 1/3 was estimated from experimental data [20, 217]. As mentioned above,
the relative intensity ηSRS is defined with respect to the absolute instability threshold in an
inhomogeneous plasma and at the quarter critical density (see Sec. 1.5.2.1) [86, 87, 88]:

(IPW/cm2)
inh
abs,SRS = 102/(L2

µmλµm)
2/3

PW/cm2 , (5.31)

where the characteristic density scale length Lµm = n/∇n is computed at nc/5. Under the
assumptions exposed above, the HE temperature is expressed as:

Th,SRS = mev
2
ph,EPW/2 , (5.32)
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Figure 5-16 – Example of an electron distribution for HEs accelerated by SRS. Here, the
flux-weighted average temperature (5.25) is �Th,SRS� = 40 keV.

with the EPW phase velocity vph,EPW = vT,e
�
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Given that the HE emission is fixed at ne/nc = 0.2, we obtain a simple law for the SRS-HE
temperature:

Th,SRS = 34.37 + 1.5Te,keV , (5.34)

which gives SRS-HE temperatures in the range of [35; 42] keV for the typical plasma temperatures
considered in this work, that is consistent with experimental observations [215, 113]. A typical
energy distribution of HEs generated by SRS as modeled in our approach is given in Fig. 5-16.
For a SRS-HE source i of initial power P i

SRS, a forward HE beam is initialized in the direction of
the pump wave with no initial angular spread. Moreover, it is considered that an equal amount
of power is backscattered (i.e. RTPD

B
= P i

SRS), so that the power loss by SRS for the pump wave
is 2P i

SRS. This linear dependence between the laser power fraction converted into HEs F SRS
e

and the backscattered laser power fraction was observed in experiments, across three orders of
magnitudes for [11]. Note that we have assumed for simplicity that RTPD

B
≡ P i

SRS, while it is
shown in the experiment that RTPD

B
≈ 1.25P i

SRS.

5.5 Conclusions

We have presented a novel formulation of the Laser-Plasma Interaction model at hydrodynamic
scales, that couples the plasma dynamics with linear and nonlinear LPI processes, including
the creation and propagation of high-energy electrons excited by parametric instabilities and
collective effects. This formulation accounts for laser beam refraction and diffraction, energy
absorption due to collisional and resonant processes and hot electron generation due to the
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Stimulated Raman Scattering, Two-Plasmon Decay and Resonant Absorption processes. Hot
electron transport and absorption by the plasma are described within the Angular Scattering
Approximation, adapted to two-dimensional, transversally Gaussian, multigroup Hot Electron
beams of arbitrary angular distribution. The HE transport model is compared against reference
simulations using the M1 code. The ASA model is validated for multigroup HE propagation and
interaction with homogeneous and inhomogeneous plasmas, in the framework of steady-state and
without accounting for quasi-static electric and magnetic fields.

We have proposed three simplified models for computing forward HE fluxes and temperatures
from PCGO beamlets for the TPD, SRS and RA processes. This coupled LPI-HE model has
been implemented in the Chic Lagrangian radiative hydrodynamic code, and is resolved inline,
i.e. within hydrodynamic timesteps. It fully couples the characteristics of the wavefield predicted
by the PCGO approach to the LPIs and the plasma dynamics. Because the energy transferred to
non-collisional LPIs is substracted from the optical beamlets at their point of occurrence, the
coupling between the diverse LPIs, including collisional absorption, is consistent and conserves
energy.

Validation and application of the Thetis model to various experimental configurations is
presented in the following Chapter, alongside an application to the Shock Ignition scheme.
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Chapter 6

Physics of high-intensity laser target
interactions in Shock Ignition

The PCGO and Thetis models implemented in the radiative hydrodynamic code Chic are
used to reproduce and interpret experimental measurements conducted on various laser systems
and in various interaction geometries. The emphasis is put on the analysis of coupling between
Hot Electron beams generated by nonlinear LPIs and the dynamics of the strongest shock that
propagates into the target. The model is first validated in the case of energy absorption of short
laser pulses in a solid target in Sec. 6.1. It is then tested against experimental results in the
planar interaction geometry. We compare the shock timings, HE fluxes and temperatures, and
reflectivity measurements in Sec. 6.2. This particular experiment is analyzed in details in order
to assess the influence of LPI-generated HEs on the shock dynamics. A similar shock-timing
experiment is considered in Sec. 6.3, although in a spherical geometry. The results are compared
to the conclusion drawn in the case of the planar target experiment.

The comparisons to experimental data validate the model and provide insights on the role of
HE generated by strong laser pulses onto the shock dynamics. Because the HE beams in Thetis
are computed from both the optical PCGO model and the hydrodynamics of interaction, this
approach is self-consistent and the model can be used predictively. Consequently, we consider in
Sec. 6.4 two designs of a Shock Ignition target, and estimate the influence of the LPI-generated
HEs on its dynamics.

6.1 Short-pulse absorption experiment on Omega

The Thetis model is tested in the case of laser absorption in plasmas, that is the most basic
quantity that must be reproduced in hydrodynamic codes. Amongst others, laser absorption
defines shock timings, which are crucial for ICF and especially for the SI scheme. Experimental
measurements of laser absorption in those intensity regimes are available from experiments
conducted on the Omega laser facility [218], where a 940 µm diameter spherical plastic target
is irradiated by s and p polarized beams in two picket pulses (∼ 100 ps) of 12 J and 18 J per
beam, respectively (peak intensity on target ≈ 5× 10

14 W/cm2). The laser absorption fractions
measured in the experiment, reproduced in Fig. 6-1 [left], are a laser energy conversion fraction of
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52±1.5% for the first picket and 72±1.5% for the second one coming 400 ps later. Hydrodynamic
computations reported in Ref. [218] showed that the standard GO approach does not reproduce
the correct absorption in both picket pulses simultaneously when considering a constant value of
the electron thermal flux limiter fL [219]. Notably, the absolute errors in absorption fractions
are of the order of 13%. The laser absorption in the first picket pulse is underestimated when
using the baseline flux limitation value of fL = 0.06. Increasing the flux limiter to fL = 0.1

allows to compensate this effect but it leads to over-estimation of the absorption fraction in the
second picket pulse. Such discrepancies can be resolved by using time-varying flux limitation,
that is tuned to the specific interaction conditions meant to be modeled. Unfortunately, such an
approach masks the physical processes at play and thus hinders the predictive capability of these
tools.

In that particular experiment, the LPI features two interaction regimes: the first pulse interacts
with a cold target that presents steep density gradients, while the second one interacts with a
warm coronal plasma surrounding the target, where density gradients are weaker. The interaction
conditions of the first picket pulse are particularly prone to Resonant Absorption, as the steepness
of the density gradients makes the wave tunneling to the critical density more likely. Note that the
theory derived in App. C.1 for Resonant Absorption shows that plane-waves normally incident
onto density gradients are not prone to RA. However, realistic beams as those modeled with
PCGO and the splitting method of Sec. 3.2.2, possess wavefield components incident with an
angle with respect to the density gradient (see Fig. 3-3 [top-right] for an example of a realistic
beam envelope), so that RA can occur. Furthermore, the interaction with the solid target during
the first picket pulse makes the description of plasma skin depth important. Both these processes
are not readily described by GO methods, but are implemented in the present PCGO and Thetis
models.

Hydrodynamic simulations are conducted with the HE transport and sources model (Thetis)
and a unique flux limiter value, set to fL = 0.04. Within the error bars, the correct laser
absorption is reproduced for both picket pulses simultaneously: 53.5% in the first pulse (including
5% of resonant absorption) and 71.7% in the second pulse (including 1.8% of resonant absorption),
as is shown in Fig. 6-1 [right]. We note that the corresponding simulations without Thetis
but with PCGO only give the laser absorptions of 48.5% and 69.9%. Several conclusions can be
drawn from these results:

• The Thetis model is well suited to describe the laser energy absorption and transport due
to HE generation, in the case of short and relatively intense laser pulses interacting with
both cold and warm plastic targets.

• Resonant Absorption may play a non-negligible role in the interaction of short pulses with
steep density profiles, a common situation in laser-target experiments or in SI designs that
use adiabat shaping [32]. Notably, the issues of shock timing for the shock ignition scheme
may be sensitive to the Resonant Absorption.

• Even without Resonant Absorption, the PCGO model provides better results for the first
picket pulse than when using GO rays. This improvement lies in the computation of
the plasma skin-depth in the PCGO model and in the consistent treatment of the laser
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Figure 6-1 – (color) [left] Measured absorption fraction in the experiment, for the two picket
pulses separately. Values reproduced by the 1D code LILAC are shown for various values
of the electron flux limiter. Figure reproduced from [218]. [right] Power absorption
curves for the absorption experiment, reproduced with the LPI-HE model Thetis. The
incident power is shown as a green line, the total absorbed power as a black line and
the contribution from RA-generated hot electrons as a red line.

diffraction.

Although the global value of the laser absorption in plasma is well reproduced in this simulation,
the detailed value of the energy repartition between collisional and resonant absorption was
not measured in the experiment. Therefore, the comparison is not fully conclusive and other
conclusions are possible. We now present a more recent experiment which includes measurements
of Hot Electron fluxes and temperatures. As such, in addition to the interpretation of the
experiment, the validation of the Thetis model can be extended more precisely.

6.2 Planar Shock-timing experiment on Pals

Laser plasma configurations prone to parametric instabilities are now considered. Experimental
studies of HE coupling to plasmas in ICF regimes were performed on the Prague Asterix Laser
System (Pals) [33], throughout three experimental campaigns. Hydrodynamic shocks subject
to LPI-generated HE fluxes were studied by combining measurements of shock breakout timing,
laser absorption and HE fluxes with radiative hydrodynamic simulations. The shock timings
are obtained with the Streak Optical Pyrometry diagnostic (SOP), that measures the thermal
self-emission at the backside of the target (See Fig. 6-2 for the diagnostics configuration of the
SOP).

As reported in Ref. [33], early 2D hydrodynamic simulations of the first two experimental
campaigns (CHAl and CHCuAl targets, see below) were performed with the codes Multi2D
[220, 221], Dued [222, 223] and Chic (using the RT model). Good agreement was found for the
spatial density and temperature measured in the experiment. However, these codes were not
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Figure 6-2 – Schematic of the diagnostics configuration for the campaign on the CHCuAl
targets.

able to reproduce the measured shock timings, unless the laser intensity in the simulations was
reduced by 50%, or by a slightly lower number if all experimental uncertainties were stretched
to extreme values of 10% (e.g. focal spot size, laser energy, pulse duration...). Even with this
intensity reduction, the shock chronometry at high intensities was still underestimated by up to a
factor 1.8. Note that in those cases where no phase plates were used, the uncertainties on the
focal spot parameters were probably high. The SBS signal in these experiments was estimated to
be of a few %, and increased by a factor of 2 without phase plates. Such low reflectivities cannot
account for the observed timing discrepancies.

Ultimately, the 2D hydrodynamic simulations with downscaled intensities were used to infer
the ablation pressure scaling with the laser intensity, although (i) there were no convincing
explanations for the significant discrepancy observed between simulations and experimental
results and (ii) the effects of HEs generated by LPIs (which were present and measured) on the
plasma dynamics were not accounted for. Although the HE flux estimated in the experiment
from the Kα photon flux was found to be less than 1% of the incident laser energy, its impact on
the plasma dynamics is not necessarily negligible. Indeed, the role of HEs on the target dynamics
was evaluated in [224] using the M1 model for HE transport in 1D geometry, with a single HE
beam of fixed flux and temperature. It was found that such HE fluxes may initiate a backside
target expansion, thus delaying the shock breakout time.

The three hydrocodes evoked above all rely on Ray-Tracing models to compute the laser
propagation and collisional absorption in plasma. We present in this section experimental and
simulation results for the SI campaigns on Pals, with particular emphasis on the latest campaign
with the CHTiCu targets.

6.2.1 Experimental setup

The experiment has been conducted by an international team led by D. Batani, with the
collaboration of PhD L. Antonelli and the authors of Refs. [225, 226]. The experimental setup,
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Figure 6-3 – Simplified schematic illustration of the experimental setup for the three target
types.

that is globally unchanged across the various campaigns, involves a sequence of two laser pulses
of approximately 300 ps FWHM duration: a pre-heating low intensity auxiliary beam at 1ω (λ
=1315 nm, θ = 30

◦) and a normally-incident high intensity main beam at 3ω (IFS � 4× 10
15 -

3× 10
16 W/cm2). Various configurations of heater and interaction beams were investigated, with

various multi-layered targets (See Fig. 6-3). We detail here the targets and beam configurations
employed in the experiments.

6.2.1.1 Target configuration

A large variety of targets were used across the three SI campaigns on Pals. They all involved an
external plastic layer, used to mimic typical ablators used in ICF targets, and various high-Z
tracer layers used to measure the hot electron fluxes and temperatures through the Kα emission
(See Fig. 6-2 for the diagnostics configuration of Kα diagnostics). In the experiments, three
plastic thicknesses were considered (5, 10 and 25 µm) in order to estimate precisely the hot
electron parameters as a function of overcoat thickness. Only the cases of the 25 µm ablator
targets are considered in the simulations, as the experimental data for these targets are the most
abundant. Only one target of each campaign is retained, namely; the CHAl targets, the CHCuAl
targets and the CHTiCu targets (in chronological order). In all cases, the plastic is composed
of C8H7Cl, with the Cl dopant added to allow for x-ray spectroscopy (note that the average
ionization state of the warm plastic, as predicted by a Thomas-Fermi model [184, 183], is of
�Z� � 4.5). The tracer thicknesses are, as shown in Fig. 6-3, 25 µm Al (CHAl targets), 5 µm Cu
and 20 µm Al (CHCuAl targets) and 10 µm Ti and 10 µm Cu (CHTiCu targets). Considering
the target manufacturing process, the uncertainties on tracer thicknesses is considered to be of 2
%, that is negligible in terms of shock timing uncertainty.
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Figure 6-4 – Temporal profile of the laser pulse (shot #46107), extracted from a slice of the
fiducial data on the streak camera, as a function of time (ns) and arbitrary intensity.

6.2.1.2 Beam configuration

Pals is a kilo-joule Iodine laser composed of two beams: a main beam capable of delivering up to
500 J of energy at the fundamental wavelength of 1315 nm and 250 J at 3ω, and an auxiliary beam
that delivers up to 60 J at 1ω, both in ∼ 250−300 ps pulses. A large intensity range was considered
throughout the experiments, depending on the targets. The main pulse was fired in the preformed
plasma with delays ∆t with respect to the auxiliary beam; ∆t ∈ [0, 150, 300, 500, 600, 1200] ps. It
was observed in the experiment that the shock breakout time, measured with respect to the main
beam, is independent of this delay. This is also observed in our simulations, so that only the
cases of a 300 ps delay are presented. We note that the low change in shock breakout timing and
HE flux generation with the delays may notably be related to several points : (i) the 1ω pre-pulse
is not very intense, so that the pre-plasma is rather cold and under-dense, (ii) the auxiliary beam
duration and the delay between the beams are rather short, and (iii) the interaction beam being
at 3ω, it penetrates much deeper into the target and the coronal plasma is less dense with respect
to the main beam critical density.

The experimental pulse data used for the CHTiCu target are obtained by picking up a part
of laser light from the main beam using a beam splitter, and bringing it to the streak camera as
a fiducial. Because the auxiliary beam and the main beam originate from the same oscillator, it
is assumed that the measured main beam pulse shape is identical to that of the auxiliary beam.
The raw data from shot #46107 is shown in Fig. 6-4. Considering that this is a typical pulse for
Pals, this temporal pulse shape is used for all targets and simulations. It is converted to a power
(and intensity) profile using the energy and focal spot data for each target type. Note that in all
cases, it is considered that 20% of this energy is lost in the wings of the beam, which extend much
farther than what is defined as the "focal spot". This assumption is widely used in experiments
across various laser platforms. It was notably quantified on the Lil (Ligne d’intégration Laser)
and on Omega, where the vacuum intensity profiles are well characterized.

In all cases, the auxiliary beam is focused through a lens of focal length F = 100 cm and
diameter D = 15 cm (F# = 6.67), and the main beam through a lens with F = 60 cm and
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Figure 6-5 – (color) Auxiliary and main beam pulse profiles, in [left] power (in GW), and
[right] vacuum intensity in the focal plane (in W/cm2), as a function of time (ns).
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Figure 6-6 – (color) Auxiliary and main beam pulse profiles considered for the CHAl and
CHCuAl targets. [left] power profiles (in GW) and [right] vacuum intensity in the focal
plane (in W/cm2), as a function of time (ns). The auxiliary beam intensity is off scale,
at 2× 10

13W/cm2.

D = 29 cm (F# = 2.07). Depending on the targets, different phase plates have been used.

CHAl and CHCuAl targets The auxiliary beam was smoothed by a RPP producing a
top-hat spot of 900 µm diameter, so as to produce a quasi-1D plasma expansion with respect to
the main beam. For low intensity shots (< 1× 10

16W/cm2), the main beam was equipped with
phase plates producing a Gaussian focal spot of 100 µm FWHM (r0 = 58.5 µm radius at 1/e).
For high intensity shots, the phase plate was removed, thus creating a highly peaked laser profile
(with intense hot spots), that is approximated by a Gaussian profile of 60 µm FWHM (r0 = 35.1

µm radius at 1/e). More details about the beam parameters for these targets can be found in
[225]. The detailed energy and pulse profile for each shot being unknown, we use a similar shape
as shot #46107 with a 300 ps total duration (instead of 300 ps FWHM), so that ∼ 300 J of
energy at 3ω gives close to 9 × 10

15W/cm2 peak intensity with the phase plates and close to
3 × 10

16W/cm2 peak intensity without the phase plates (as communicated in [225, 33]). We
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Figure 6-7 – Schematic illustration of the definition of the shock breakout chronometry, in
the convention adopted in [33] (CHAl and CHCuAl targets) and for the latest campaign
(CHTiCu targets). The bottom schematic illustrates how this definition relates to the
simulation framework.

choose to study 4 different intensities; 7.06× 10
15 W/cm2 (CHCuAl targets, with phase plate),

1.92 × 10
16 W/cm2 (CHCuAl targets, no phase plate), 2.86 × 10

16 W/cm2 (CHAl targets, no
phase plate) and 4.17× 10

15 W/cm2 (CHTiCu targets, with phase plate). The resulting pulse
shapes are shown in Fig. 6-6.

The reference time t = 0 is defined with respect to the reference frame used for measurements
of shock breakout chronometry, the latter being defined as the delay between the main pulse
maximum intensity and half maximum on the SOP signal. In the simulations, it is directly the
breakout time that is measured, i.e. what corresponds to the foot of the SOP signal. It was
found in the SOP data that there is a 100 ps delay between the foot and the half maximum of
the signal, across experiments. The time delay between the foot and the main pulse maximum is
here of 130 ps. These timing considerations are illustrated in Fig. 6-7. For these targets, the
resulting delay between the foot of the auxiliary pulse and the reference time is of 330 ps.

CHTiCu targets The case of the CHTiCu targets is more constrained, as the experimental
data were available directly from the experimental team, and hence it is the one we discuss in
most details. The auxiliary beam is smoothed by a RPP producing a top-hat spot of 350 µm
diameter, that is smaller than in the previous experiments. The aim of the spot size reduction,
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and hence intensity increase of the heater beam, is to create a coronal plasma with a larger
gradient scale length comparable to SI conditions. The main beam is equipped with phase plates
producing a Gaussian focal spot of 100 µm FWHM (r0 = 58.5 µm radius at 1/e). The measured
total energies for the main and auxiliary beams, averaged over the experiments for these targets,
are of 193.6± 7.1 J and 52.0± 3.2 J, respectively.

Removing the background noise from the raw data, smoothing the temporal profile and
normalizing the data so that the pulse contains the same energy as experimentally measured
yields the power temporal profile of the main and auxiliary pulses, as shown in Fig. 6-5 [left].
Using the focal spot information given above, the vacuum focal plane intensity profiles are
also obtained, as shown in Fig. 6-5 [right]. Contrary to the other targets, the shock breakout
chronometry in these experiments is defined as the delay between the time of half maximum (rise
side) of the main pulse and the time of half maximum on the SOP signal. For the pulse shape
presented here, the half maximum rise time is of 100 ps, which is the same as the time of half
maximum for the SOP signal. Consequently, for those targets, the shock breakout time can be
measured between the foot of the main pulse and the foot of the SOP signal. The time axis used
in the simulations (Fig. 6-5) is defined with respect to the foot of the main pulse. For these
targets, the delay between the foot of the auxiliary pulse and the reference time is of 300 ps.

6.2.2 Experimental and simulation results

6.2.2.1 Additional diagnostics

The latest experimental campaign on Pals, on the CHTiCu targets, was completed by the
measurements of the integrated laser reflectivity using arrays of mini calorimeters (on the 4π of
the target chamber). This additional diagnostic improves the data concerning the laser absorption
and better constrains hydrodynamic simulations. Reflectivity measurements were performed in
separate shots, giving an averaged value of R = 25± 10%. This value includes the reflected laser
energy and the scattered SBS and SRS light. Note that the backscattered energy from the SRS is
estimated to be 0.1 % in the lens cone. Furthermore, the HE population was estimated more
precisely in this campaign, by reproducing the measured Kα emission from the high-Z tracers
using Monte Carlo (MC) simulations of electrons propagating in a stationary target [227], with
the Geant4 and Penelope codes [228, 229]. For the CHTiCu target, the experimental data are
reproduced with HE temperatures of 25.3± 7.6 keV and energy fluxes carrying 0.7± 0.4 % of the
laser energy. These are in good agreement with other data, e.g [226] (Pals, Th ≈ 50± 10 keV,
CHCuAl targets), [215] (Omega, Th ≈ 30 keV), and [230] (PIC calculations, Th = 20− 40 keV).

6.2.2.2 Simulation results

Simulations of the experiments for the three multilayer targets are conducted with the Chic code
using the multiscale Thetis model and compared to GO-based models, systematically using
nominal experimental parameters: measured laser energy, focal spot and temporal pulse shape,
and nominal target configuration. The flux limiter value was set to fL = 0.04, in agreement with
the absorption results obtained in Sec. 6.1. Of particular interest to this study are (i) the shock
strength S = Pd/Pu, that is the ratio of the downstream pressure Pd to the upstream pressure
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Figure 6-8 – (color) Shock breakout times for various targets, as a function of laser inten-
sity. Open symbols are experimental points. Colored symbols are from hydrodynamic
simulations: with GO in blue [51], with the present Thetis model in red and with
PCGO only in green. The standard scaling obtained when considering that Pshock ∝ I2/3

and vshock ∝ P 1/2 is shown as dashed blue lines. CHAl and CHCuAl targets are similar,
thus following a comparable scaling.

Pu, (ii) the plasma pressure downstream of the shock Pd and (iii) the ablation pressure PA. The
ablation pressure is defined as the product of the ablated mass rate and the ablation velocity.
It can also be compared to the plasma pressure where the material velocity in the laboratory
frame is zero. We use the latter definition for simplicity, for which we consider only the plasma
parameters in the vicinity of the main beam axis.

A comparison of experimental and simulation results for the shock chronometry is presented
in Fig. 6-8. The x-axis corresponds to the intensity used in numerical simulations. Simulations
with laser absorption modeled with the standard GO package predict a shock breakout time
much shorter than the experimental timings, by up to a factor of 2.5 depending on the targets
and intensities. Results from the Thetis model are significantly closer to the experimental
data for all intensities and targets. This is explained by the modified target dynamics from HE
preheat and by a more precise collisional absorption modeling. We discuss the processes at play
by detailing the case of the CHTiCu targets, where the temporal pulse profile and laser energy
are well characterized, and the experimental data contain the most precise measurements of the
laser reflectivity, HE temperature and HE fluxes. The information concerning the HE fluxes and
temperatures from RA, SRS and TPD, predicted by the simulation is given in Fig. 6-9.
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Figure 6-9 – (color) Parameters of the HE beams predicted by Thetis in the simulation
of the CHTiCu target. [left] Total HE fluxes for beams originating from RA, SRS and
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[right] Suprathermal temperatures of the HE sources from RA, SRS and TPD, averaged
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lines are simulations results without hot electrons and red lines with hot electrons.
Negative velocities indicate that the shock is propagating toward the target’s backside.

Resonant Absorption The earliest HEs originate from the Resonant Absorption, which is seen
to accelerate electrons throughout the auxiliary and main pulses, with a burst of electrons when
the main beam is turned on. These low temperature HEs (a few keV at maximum) contribute
at the early stage of the main pulse interaction: the resonantly absorbed energy at the critical
surface increases the shock pressure and velocity, and advances the shock breakout time by 30 ps
when compared to a simulation with HEs but without RA. This velocity increase can be seen in
the shock velocity profiles in Fig. 6-10 [left], before the time when the SRS and TPD-HE are
generated, i.e. before 0.1 ns. Furthermore, even though the shock is not far from the critical
density at this time, the low-temperature RA-HE barely preheat the material in front of the
shock (see Fig. 6-12), and there is no visible decrease in the shock strength, as illustrated in Fig.
6-10 [right] (in the [0; 0.1] ns interval). Overall, the RA-HE fluxes are rather low (compared to
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Figure 6-11 – [left] Flux-weighed average (same formalism as in Eq. (5.25)) over the
NHE HE sources of the gradient scale length �Ln� =

�
NHE

i=1 P i
eL

i
n (solid lines) and

thermal electron temperature �Te� =
�

NHE

i=1 P i
eT

i
e (dashed lines) at the point of HE

source creation. [right] Flux-weighed average over the HE sources of the local intensity
thresholds for the SRS and TPD instabilities.

typical RA-HE fluxes), that is a consequence of the main interaction beam being incident on the
target at normal incidence. As in Sec. 6.1, RA can only occur from oblique rays, which are not
orthogonal to the target. But the contribution of such rays is relatively low.

SRS and TPD Starting around the main pulse half maximum rise time, SRS- and TPD-HEs
are generated, with higher fluxes for SRS and higher temperatures for TPD (see Fig. 6-9).
Although the coronal plasma created by the auxiliary beam has a rather moderate temperature
(Te ∼ 1−2 keV), the main beam rapidly heats it, reaching 2.5 keV when SRS and TPD thresholds
are crossed and reaching a maximum of 3.5 keV around the peak of the main pulse (see the
averaged plasma temperature at the point of HE emission in Fig. 6-11 [left]). We recall that the
SRS and TPD thresholds for an inhomogeneous media (Eqs (5.31) and (5.26)) notably depend on
the gradient scale length, and also, for the TPD threshold, on the temperature. Considering the
temperatures here and considering that the gradient scale length is longer for the SRS threshold
(defined at nc/5) than for the TPD one (at nc/4, as illustrated in Fig. 6-11 [left]), the SRS
threshold is below the TPD threshold throughout the main pulse interaction, as is detailed in
Fig. 6-11 [right].

These hot electron beams gradually pre-heat the bulk of the target both in front and behind
of the shock to a few tens of eV, as illustrated in Fig. 6-12. The integrated average temperatures
and fluxes of SRS and TPD-generated HE beams are of 40.7 keV and 1.65% of the laser energy.
These values are slightly above the data modeled by the Monte-Carlo calculations, although
the tracers in the target may not be sensitive enough to electron populations of higher energies:
higher Z tracers such as Platinum would be required to properly assess the contribution from
∼ 50 keV electrons. Given the high supra-thermal temperature, a non-negligible flux of HEs
reaches the rear target interface. These HEs heat the backside to several eV, thus initiating a
slow plasma expansion that delays the shock breakout (see the rear target interface in Fig. 6-12).
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Figure 6-12 – Log-scaled electron temperature (eV) of the CHCuAl target, as a function of
time and depth in the target (along the laser axis), [left] without HEs and [right] with
HEs. Similar pre-heating behaviors are observed for all targets. The solid blue line
indicates the target’s rear interface and the solid black line is the location of the shock.
The solid green and red lines show the locations of the Cu/Ti and Ti/CHCl interfaces,
respectively. Fields are averaged along the laser axis on a thickness of ∼ 20 µm (check
that)

For that reason, simulations with PCGO and without HE fortuitously reproduce similar shock
timings: the lower shock velocity is compensated by the absence of backside target expansion.

Shock dynamics The impact of target bulk preheat on the shock propagation can be evaluated
from the Rankine-Hugoniot relations. For an ideal gas, the latter relate the hydrodynamic
quantities across the shock:

S =
Pd

Pu

=
(γ + 1)ρd − (γ − 1)ρu
(γ + 1)ρu − (γ − 1)ρd

, (6.1)

where the subscripts u and d indicate quantities upstream and downstream of the shock, respec-
tively. Considering a strong shock (Pd � Pu) one can obtain the well-known relation:

ρd
ρu

=
γ + 1

γ − 1
, (6.2)

where γ is the adiabatic constant. Using the mass flux conservation across the shock, the shock
velocity can be related to the pressures and densities upstream and downstream of the shock:

ρ2uu
2
s =

(Pd − Pu)ρdρu
ρd − ρu

, (6.3)

where us is the shock velocity. In the limit of a strong shock, the shock velocity reads:

us =

�
Pd(1 + γ)

2ρu
. (6.4)

The HE preheat in the dense tracers is slow enough that it occurs at nearly constant density,
although it raises the plasma pressure. Assuming constant shock strength with and without HEs,
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Eq. (6.4) shows that this pressure increase implies an increase in shock velocity. This velocity
increase is observed in the simulations, which also implies that any shock strength decrease due to
HEs is compensated by an increase in the post-shock pressure Pd. Note that for a homogeneous
material, ρd > ρu so that a mono-energetic HE beam preheats more the downstream material than
the upstream material and the pressure increase du to the HEs ∆Pd > ∆Pu, so that according to
(6.3) the shock velocity increases whatever the shock strength is.

The density jump across the shock r = ρd/ρu = us/ud can be related to the upstream plasma
parameters from the equation of energy conservation across the shock, which yields:

r =
(γ + 1)ρuu2s

(2γPu + (γ − 1)ρuu2s)
. (6.5)

Injecting this expression into Eq. (6.1) gives:

S =
2ρuu2s − (γ − 1)Pu

(γ + 1)Pu

. (6.6)

To a first order, the local density decrease due to HE preheat is rather low (∼ 10%, see Fig. 6-13
[top]) while the upstream pressure increases significantly (up to a factor 20 in the Aluminum, as
illustrated in Fig. 6-13 [bottom]). Considering that the shock velocity, of the order of 60 km/s, is
increased by 5% with HEs, the corresponding shock strength is reduced by a factor 5 from the
preheating effect. This is the order of magnitude of what is measured in the simulation for the
CHTiCu target (see Fig. 6-10 [right], in the region labelled as "most pre-heated zone"). As was
noted above, the shock strength decrease and the velocity increase imply that the post-shock
pressure is higher. Indeed, it is seen in the simulations that the shocked plastic pressure is about
20 Mbar higher with HEs than without, reaching up to 125 MBar.

Energy balance The integrated reflectivity found in the simulation is 28%, in good agreement
with the experimental measurements of 25±10%. Those results using the Thetis model exhibit a
significant improvement over standard GO-based approaches, simultaneously matching data from
hydrodynamics, hot electrons and reflectivity measurements. Thus the model fits all constrains at
the same time: the global laser absorption, the hydrodynamics of the shock and the HE preheat.

Ablation pressure The ablation pressure, shown in Fig. 6-14, reaches up to 65 MBar and
does not change significantly with or without HEs. This is not surprising in this case, given that
(i) the HE flux is rather low and (ii) those HE have a sufficiently high temperature to go through
the ablation front, and hence contribute weakly to the ablation pressure. Furthermore, both
simulations with and without HEs predict similar amounts of collisional absorption (absorption
fractions are summarized in Tab. 6.1). The ablation pressure is discussed further in the following
paragraphs.

Intensity scaling of the shock velocity and strength The results of all simulations (and
all targets) for the laser absorption and averaged HE source parameters are reported in Tabs. 6.1
and 6.2. As expected, the LPI-HE fluxes increase with the laser intensity, the collisional absorption
contribution decreases, averaged HE temperatures from TPD-HE increase and averaged SRS-HE
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Figure 6-13 – Log-scaled [top] density (g/cc) and [bottom] pressure (MBar) in the CHTiCu
target, as a function of time and depth in the target (along the laser axis), [left] without
HEs and [right] with HEs. The dashed line on the bottom figures indicate the position
where the material velocity in the laboratory frame is zero, that is the point where we
define the ablation pressure. Fields are averaged along the laser axis on a thickness of
∼ 20 µm. Each dot indicates the position of a Lagrangian mesh cell.
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Figure 6-14 – Ablation pressure (MBar) as a function of time (ns) for the CHTiCu target.
The red solid line indicate a simulation with HEs and the black solid line a reference
simulation with PCGO but without HEs.
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Target Ipeak,W/cm2 FRA FTPD FSRS FHE
col RHE FREF

col RREF

CHTiCu 4.17× 10
15 1.26 % 0.21 % 0.96 % 50.1 % 27.2 % 50.5 % 29.5 %

CHCuAl 7.05× 10
15 1.34 % 0.37 % 1.62 % 33.1 % 43.2 % 35.0 % 45.0 %

CHCuAl 1.92× 10
16 1.82 % 0.73 % 3.27 % 23.9 % 49.6 % 25.2 % 54.8 %

CHAl 2.86× 10
16 1.09 % 0.95 % 4.01 % 19.4 % 53.6 % 21.5 % 58.5 %

Table 6.1 – Repartition of the laser energy between processes, for the four intensities
considered. Note that because 20% of the laser energy is counted in the wings of the
beams and that the backward HE beams are not counted in the total reflectivity, the
total on one line adds up to (80%− FTPD), to the rounding error. Results [left] of the
separator are for simulations with HEs, and [right] of the separator are for simulations
without HEs. The various contributions are ; the laser energy converted into forward
HEs (those detected by the Kα diagnostics) by processes of RA, TPD and SRS (FRA,
FTPD and FSRS), the laser energy converted into collisional absorption (FHE

col ), and the
reflected light, which includes a contribution from backward SRS equal to FSRS. The
total laser energy reads RHE

+ 2FTPD + FSRS + FRA + FHE
col + Fwings = 1.

Target Ipeak,W/cm2 �Th,RA� �Th,TPD� �Th,SRS�

CHTiCu 4.17× 10
15 1.2 keV 47.6 keV 39.2 keV

CHCuAl 7.05× 10
15 1.6 keV 53.3 keV 39.7 keV

CHCuAl 1.92× 10
16 2.0 keV 64.2 keV 41.0 keV

CHAl 2.86× 10
16 2.6 keV 69.8 keV 41.8 keV

Table 6.2 – Averaged supra-thermal temperatures of the forward HE beams, for the
four intensities considered. The contribution of each process is detailed, with HE
generated from RA, TPD and SRS (�Th,RA�, �Th,TPD�, and �Th,SRS�). The brack-
ets denote a time average of a flux-weighted average on the HE sources: �Th� =�

Tpulse

0

�N(t)
i=1 P i

h(t)T
i

h(t)dt/
�
Tpulse

0

�N(t)
i=1 P i

h(t)dt, where P i

h(t) and T i

h(t) denote the power
and mean energy of HE source i at time t, respectively.

temperatures are relatively unchanged. Extending the conclusions drawn from the CHTiCu
target, it is expected that the higher the HE flux and temperature, the more the shock strength
will decrease and the more the shock velocity will increase. This is observed in the simulation as
illustrated in Figs. 6-15 [left] and [right]. In the highest intensity case, the shock velocity in the
plastic increases by up to a factor 1.4, solely from the presence of LPI-generated HEs. Similarly,
the shock strength is reduced by up to a factor of 22 in the plastic. This drastic shock strength
reduction is mainly caused by a significant increase of the target preheat by the SRS-HEs, that
are roughly at the same temperature as in the lower intensity cases, but which flux is greatly
increased.

Intensity scaling of the ablation pressure Standard ablation pressure scaling laws are
usually established for steady-state regimes dominated by the inverse Bremsstrahlung absorption.
Because the laser pulses used here are rather short, these laws could be out of their validity
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Figure 6-15 – Modification of the shock parameters due to the presence of LPI-generated
HEs. [left] Shock velocity amplification factor uHE

s /uREF
s and [right] shock strength

reduction factor SREF/SHE, as a function of the shock depth into the target, for all
targets and intensities. Plain lines and dashed lines indicate the approximate regions
where the shock is in the CH and in the tracers, respectively. The colored circles
indicate the approximate location of the CH/tracer or tracer/tracer interfaces.

Target Ipeak,W/cm2 ηHE
abs,A Iabs,Apeak,W/cm2 ηREF

abs,A Iabs,Apeak,W/cm2

CHTiCu 4.17× 10
15 51.7 % 2.16× 10

15 50.5 % 2.11× 10
15

CHCuAl 7.05× 10
15 34.9 % 2.46× 10

15 35.0 % 2.46× 10
15

CHCuAl 1.92× 10
16 26.7 % 5.12× 10

15 25.2 % 4.85× 10
15

CHAl 2.86× 10
16 21.7 % 6.21× 10

15 21.5 % 6.14× 10
15

Table 6.3 – Peak absorbed intensities for all simulated targets. The absorption fraction
that is considered to participate in the ablation pressure is estimated by ηabs,A = FRA +

Fcol+0.25(FSRS+FTPD). Results left of the separator are from simulations with PCGO
and without HEs.

domain. However, it can reasonably be assumed that the ablation pressure scaling remains
proportional to the factor (ηabs,AI15) to a certain power, where ηabs,A is a laser absorption fraction.
Considering that only the laser energy deposited in the vicinity of the critical density contributes
to the ablation pressure, ηabs,A includes the contributions from the collisional and Resonant
Absorption, as well as the SRS and TPD absorption fractions (that is the energy deposited by
SRS- and TPD-HE beams in the vicinity of the critical density and up to the ablation front).
The resulting peak absorbed intensities are summarized in Tab. 6.3. The presence of LPI-HEs is
expected to have a minor effect on the ablation pressure, as the ηabs,A factors are rather similar
between simulations with and without HEs. The ablation pressure and their amplification due to
HEs are shown in Fig. 6-16, for all target types. As expected, the ablation pressure increases
with the laser intensity, and the effect of HEs is rather limited. Note that the presence of tracers
in the target hinders the analysis of the target dynamics, so that these conclusions are drawn for
times when the shock is still in the plastic (so that no reflected shock from the plastic/tracer
interface affects the ablation pressure).
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Figure 6-16 – (color) [left] Ablation pressure across the various targets and intensi-
ties (MBar) for the cases with HEs. [right] Ablation pressure amplification factor
PHE
A

/PREF
A

induced by the presence of LPI-generated HEs. Both figures show results
as a function of shock depth into the target. Plain lines and dashed lines indicate
the approximate regions where the shock is in the CH and in the tracers, respectively.
The colored circles indicate the approximate location of the CH/tracer or tracer/tracer
interfaces.

6.2.2.3 Summary of interpretation of the SI experiments on Pals

The Shock Ignition campaigns on Pals have allowed to measure experimentally ; shock timings,
laser absorption fractions, HEs fluxes and temperatures. Detailed numerical simulation with the
Thetis model have shown that the latter is able to reproduce simultaneously all experimental
observables. This is a significant improvement over the capabilities of standard GO-based
hydrocodes, that allows to constrain the simulation in a consistent way.

The interpretation of the experiment using the Thetis model has highlighted the role of
LPI-generated HEs for short and intense laser pulses interacting with a planar target. Limiting
our analysis to the plastic ablator, it is found that these HEs greatly reduce the shock strength
while increasing its velocity. Both effects are a consequence of a bulk target pre-heat, that
increases the upstream target pressure and temperature at almost constant density. Overall, the
material pressure downstream of the shock remains higher with HEs than without, the low shock
strength being compensated by the increased upstream target pressure. Because the targets
considered in the experiments are short, these are almost entirely preheated. Considering an
infinite CH bulk, the low strength high pressure shock would eventually reach the low pressure
cold material, and acquire a much higher shock strength than without HEs. In the framework of
Shock Ignition, the increase in shock velocity is not expected to be an issue, as shock timings can
be experimentally determined by trial and error. However, issues of shock strength and shock
pressure are crucial to the scheme. Before we can assess these effects, the Thetis model must be
validated in a spherical configuration. That is the object of the following section.
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6.3 Spherical Shock-timing experiment on Omega

6.3.1 Experimental setup

The PCGO+Thetis model is now applied for interpretation of the recent Spherical Strong-Shock
(SSS) campaign realized on the Omega laser system in a spherical geometry [112, 113]. 60
frequency tripled beams (λL = 351 nm) are uniformly focused onto a spherical target of Ti-doped
plastic covered by a plastic ablator. The peak overlapped intensity in the experiment reached
values up to ∼ 6× 10

15 W/cm2. The laser pulse constituted of a 1 ns low intensity foot, followed
by a 1 ns high intensity plateau. The parametric instabilities develop when the main laser pulse
interacts with a warm coronal plasma, generating Hot Electrons into the target. The plasma
ablation drives a strong shock, which is propagating inside the sphere and is modified by hot
electrons. The shock strength was evaluated from the time of x-ray flash generated in the moment
of shock collapse in the target center. Indeed, the shock converging in the target center heats
a small volume of radius < 10 µm up to several hundred eV, causing the Titanium tracer to
emit a short burst of x-rays. These were detected by x-ray framing cameras (XRFC) [231] and
streaked x-ray spectrometers (SXS) [232]. The laser light backscattered from the target was
analyzed by FABS (Full Aperture Backscatter Station), which gives time-resolved spectra in the
wavelength ranges corresponding to SBS, SRS and TPD. In addition to the FABS measurements,
scatter calorimeters and near-backscatter imagers were used to infer the overall energy absorption.
The Hot Electron generation was characterized by the hard x-ray emission in the 10-700 keV
energy range. Diagnostics for the time-resolved x-ray emission were quickly saturated at high
intensities, so that only time-integrated x-ray fluxes and temperatures can reliably be inferred,
using time-integrated image plate diagnostics.

Several target sizes were used, from 410 µm to 600 µm diameter. Series of shots were conducted
with and without Smoothing by Spectral Dispersion. The shots without laser temporal smoothing
demonstrated a significant increase of measured HE fluxes (up to a factor of 5), and a moderate
increase in measured HE temperatures. As evoked in Sec. 3.1, the stationary speckles in shots
without SSD are more prone to the growth of nonlinear LPIs.

Hydrodynamic simulations presented in Ref. [112] have been conducted using a CSD model
to simulate HE propagation. The HEs were emitted from a plasma corona in a 2π cone with a
time-varying flux and temperature prescribed from the experimental data. These parameters
were not related to the laser absorption model. The simulations presented in Ref. [112] show that
generation of HEs increases the shock velocity. The ablation pressure was found in the simulation
by matching the shock collapse timing. It was obtained in runs without hot electrons by changing
the value of the flux limiter, disregarding the detail of where the energy that drives the shock
comes from. This is a severe approximation. The HEs may preheat the target both behind and
beyond the shock front, and contribute to the shock dynamics in a different way than collisional
laser absorption does. In particular, the previous section dedicated to the Pals experiment shows
that LPI-generated HEs have a sufficient energy to propagate beyond the shock in the plastic,
and that these HEs do not contribute significantly to the ablation pressure but accelerate the
shock by preheating the upstream plasma. We note that the Pals and Omega experiments
are comparable, as (i) the laser intensities are similar, and (ii) the total areal densities ρr of
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Figure 6-17 – (color) [left] Laser pulse data and [right] XRFC data for shot #71597,
showing the convergence time at 1.98 ns. [[113], W. Theobald].

the targets are also comparable, with ρr ∼ 16 mg/cm2 for the CHTiCu target on Pals and
∼26 mg/cm2 for a whole radius of the spherical targets considered here. For these reasons, the
conclusions presented in Ref. [112] that HEs increase the ablation pressure is disputable. We
present simulation results for the SSS campaign using the Thetis model in Chic, which suggest
an alternative interpretation of the collected data.

6.3.2 Simulation framework

The Spherical Strong Shock experimental campaign demonstrated the effect of SSD on the
HE generation and the shock dynamics. As we have presented in Sec. 3.4, the PCGO model
implemented in Chic allows to reproduce the dynamic pattern of the SSD speckles. However,
the Thetis model does not account for the transient phase in the determination of fluxes and
temperatures of HE sources. Therefore, our Chic simulations with the reduced SSD model and
Thetis reproduce the hydrodynamic smoothing and the beam contrast of the experiment, but
do not reproduce the HE flux reduction from the non-stationarity of speckles. In the present
simulations, the shots without SSD were assimilated to runs with HEs and the shots with SSD to
runs without HEs.

As the intensity pattern on the spherical target surface was fairly uniform, and the beams
were focused to the target center, the laser-plasma interaction is modeled in 2D mono-mode
pseudo-cylindrical geometry, whereby mono-mode we mean that only radial displacements are
considered. The full configuration is that of a sphere irradiated by 60 beams with a total power
P . The equivalent 2D planar configuration, only relevant to the laser module, is that of a cylinder
with the mass of the sphere, irradiated by 18 beams separated by 20

◦ (the smallest angular
separation between coplanar beams on Omega) of individual intensities equal to that of one
Omega beam. This approach ensures that the incident laser intensity per unit of mass is well
reproduced between the 2D planar and 2D cylindrical configurations. The hydrodynamic and
radiative computations are conducted in 2D-axisymmetric configuration in order to account for
the convergence effects of the target density and of the shock. Note that only a 40

◦ slice of the
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e− collisional total shock
transport <- HE -> absorption absorption collapse time

case FRA FTPD FSRS Fcol Fabs tc

GO fL = 0.03 - - - 42 % 42 % 2.39 ns
GO fL = 0.04 - - - 45 % 45 % 2.26 ns
GO fL = 0.05 - - - 49 % 49 % 2.16 ns
GO fL = 0.06 - - - 57 % 57 % 2.07 ns

PCGO fL = 0.04 - - - 51.8 % 51.8 % 2.225 ns
PCGO fL = 0.05 - - - 56.7 % 56.7 % 2.19 ns
PCGO non-local - - - 69.5 % 69. % 1.95 ns
PCGO+Thetis fL = 0.04 1.37 % 0.78 % 5.33 % 48.43 % 55.91 % 1.98 ns
PCGO+Thetis non-local 0.92 % 0.94 % 5.46 % 48.97 % 56.29 % 1.9 ns

Table 6.4 – Laser energy absorption fractions obtained in various simulations. [Top] results
are from simulations with the GO-based Ray Tracing model [233] and [bottom] results
from the PCGO and PCGO+Thetis model. The absorbed energy fraction is defined as
Fabs

= FTPD + FSRS + FRA + FHE
col . The total energy in the laser pulse is of 24.9 kJ.

The measured experimental values are tc = 1.98 ns and Fabs = 55± 5 %.

cylinder is simulated, that is sufficient for computing the 2D interaction processes with PCGO
and Thetis, while the rest of the sphere is reconstructed using the symmetry considerations. The
details related to the pseudo-cylindrical formulation of PCGO and Thetis are given in App. B.3.

6.3.3 Experimental and simulation results

The experimental data are compared to numerical simulations. Two main constrains were imposed:
reproducing the correct absorption fraction and shock collapse timing. Such simulations allow us
to infer the pressure of the shock, similarly as in the Pals experiment Sec. 6.2. Early simulations
with the Chic code using the standard GO-based Ray Tracing [PhD A. Vallet [233]] have shown
that it is not possible to reproduce simultaneously the absorption fraction and the shock timing
without HEs, as illustrated in Tab. 6.4 [top].

The particular case of shot #71597, that is amongst the highest intensity, is studied [113].
The target is 430 µm in diameter and the plateau intensity is ∼ 5 × 10

15 W/cm2 (the pulse
data is shown in Fig. 6-17 [left]). Results from the XRFC diagnostic, shown in Fig. 6-17 [right],
show that the shock reaches the target center at tc = 1.98 ns. The measured integrated laser
absorption is Fexp = 55± 5%, with a HE energy fraction estimated at ∼ 8% in the 50− 100 keV
range (these values are averaged over all shots [113]).

We conduct various axisymmetric simulations using the target and laser pulse data with and
without the LPI-HE model. The results are also compared to simulations using Geometrical
Optics. The results for shock convergence timings and absorption fractions are summarized in
Tab. 6.4. The simulation using the LPI-HE model yields tc = 1.98 ns, with 6.11% of the laser
energy converted into HEs at an average temperature of 54 keV for the TPD-HEs (varying from
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Figure 6-18 – (color) Log-scaled [top-left] ion temperature (eV), [top-right] pressure (MBar),
[bottom-left] SRS-HE dose (erg/s/g) and [right] TPD-HE dose (erg/s/g), as a function
of time and target radius (the simulation being monomode, the fields presented here
are identical for any cylindrical angle θ). The solid black line indicates the position of
the strongest pressure discontinuity. The solid blue line indicates the position of the
CH/CHTi interface. The dashed line on the [top-right] figure indicates the position
where the material velocity in the laboratory frame is zero. Each dot indicates the
position of a Lagrangian mesh cell.

40 to 80 keV), 41 keV for the SRS-HEs, and an additional 1.4% of HEs produced by resonant
absorption at 0.7 keV. The overall laser absorption in the simulation is of FHE = 55.9%, with
48.4% of collisional absorption. Shock collapse timing, overall absorption, laser to hot electron
conversion and supra-thermal temperatures simultaneously match the experimental data within
the error bars. Results are compared to a simulation without HEs, with the flux limiter adjusted
so that absorption matches the experimental data. Results using PCGO and without HEs yield
an absorption fraction of FnoHE = 56.7% with a flux limiter fL = 0.05. The corresponding
convergence time is tc = 2.19 ns. Note that the simulation with Thetis was conducted with
fL = 0.04, in agreement with the results from both the absorption experiment on Omega (Sec.
6.1) and the planar target experiment on Pals (Sec. 6.2). As can be seen in Tab. 6.4, only the
simulation with PCGO and HEs matches successfully the measured shock convergence timing
tc and absorption fraction. The correct shock timing may eventually be reproduced with GO
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Figure 6-19 – (color) [left] Shock strength and [right] downstream shock pressure, as a
function of depth into the target (µm). The rightmost value on the abscissa corresponds
to the target center (the target is 215 µm in radius). [Bottom] ablation pressure (MBar)
as a function of time (ns). The plain lines are simulations with a similar absorbed
energy fraction Fabs that matches the experimental measurements. The black lines are
simulation results without HEs (but with PCGO) and the red lines indicate simulation
results with HEs. The dashed lines indicate simulation results without HEs with the
same flux limiter fL = 0.04 as the simulation with HEs.

by increasing the flux limitation above 6 %, although the absorption fraction is likely out of the
experimental measurements. Simulations using PCGO without electrons and with a nonlocal
flux transport model do not match the observed absorption fraction. However, simulations with
PCGO and with HEs with nonlocal flux transport do reproduce a correct absorption fraction,
albeit with a earlier shock timing. The use of a nonlocal transport model with a dedicated
package for the very high energy electron transport (i.e. Thetis) is conceptually interesting.
Furthermore, the use of nonlocal flux model is attractive as it removes the free parameter fL from
the hydrodynamic simulation. More studies on the coupling of Thetis and the nonlocal model
are warranted. We now detail the results from the PCGO+Thetis simulation with fL = 4%.

Similar to the Pals campaign, it is found that the LPI-generated HEs have a sufficient
temperature to heat the target upstream of the main shock, thus raising the temperature and
pressure of the bulk of the material, as illustrated in Fig. 6-18. The resulting shock strength
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and downstream pressure as a function of depth into the target are given in Fig. 6-19 [left] and
[right]. It is found that the shock strength is significantly lower in the simulation with HEs, by a
factor ∼ 5-10. This is easily explained considering that the preheat of the plastic can raise the
temperature from < 1 to 10 eV, thus increasing the pressure tenfold and decreasing the shock
strength accordingly. As in the Pals campaign results, the pressure downstream of the shock is
larger, here by a factor ∼ 1.5.

The time-evolution of the ablation pressure, defined (as in the Pals analysis) as the plasma
pressure where the material velocity in the laboratory frame is zero, is illustrated in Fig. 6-19
[bottom] for all cases. At constant flux limitation, the ablation pressure is rather similar with
and without HEs. Conversely, at constant energy absorbed Fabs, the ablation pressure is higher
without HEs, owing to the increased laser absorption in the vicinity of the critical density whereas
HEs from Parametric Instabilities deposit their energy both in front and behind the ablation
front. In that case, the peak ablation pressure with HEs is lower by about 20 %. This result
contradicts the conclusions drawn in Ref. [112], where the contribution from HE was assumed to
be confined before the ablation front.

Given the satisfying agreement obtained between the experimental data and simulation results
in both the Pals and SSS campaigns, we now apply our model to the study of the highly
nonlinear phase of the ignitor pulse used in Shock Ignition.

6.4 Effects of LPI-generated HEs on the ignition threshold for
Shock Ignition

6.4.1 Context of the study

The Shock Ignition scheme in ICF is an alternative ignition scheme where the compression and
ignition phases are separated: the target compression is conducted at a low velocity using lasers
of moderate energy and the ignition is achieved at the end of the compression phase with a
dedicated intense laser pulse [42, 31, 234], so-called spike pulse. This scheme requires overall
less laser energy than hotspot ignition and is more robust to hydrodynamic instabilities. In
order to obtain the required temperatures for ignition in a hotspot of ∼ 50 µm radius, a shock
pressure of the order of 30 GBar is required. Considering the ablation pressures of the order of
150 MBar estimated in Secs. 6.2 and 6.3, the shock converging in the shell must be amplified
by a factor ∼ 200 [235, 236]. The amplification of the shock pressure depends on (i) spherical
convergence effects and (ii) the precise timing of the shock collision with the diverging shock
from the laser pulse used for the compression [233]. Hydrodynamic estimates and simulations
without taking into account hot electrons predict that the amplification factors of the order of
100-200 can be achieved, albeit in a narrow timing window and using laser intensities for the
spike pulse of the order of 5× 10

15 - 1016 W/cm2. Such laser intensities in high temperature and
long scale-length plasmas are associated with strong nonlinear laser-plasma interactions, where
SRS and TPD excite EPWs that drive copious amounts of Hot Electrons into the target [213,
112]. The high intensity spike is launched at a time when the imploding shell may be sufficiently
dense to stop the LPI-generated HEs. In that case, it is expected that the additional energy from
the HEs increases the ablation pressure. We have seen in the interpretation of the strong shock
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Figure 6-20 – Schematic of the two targets considered in the study. [left] Pure-DT target
from the baseline HiPER project. [right] SI target recently designed at Celia, with
high yield and high safety margins with respect to the hydrodynamic instabilities.

experiments conducted on the Pals and Omega laser systems that the HEs may actually be
detrimental to both the ablation pressure and the shock strength, while reinforcing the shock
pressure and velocity.

Although each of the processes involved in the compression of an ICF target or in the coupling
of shock characteristics with HEs fluxes can be studied separately [237, 238, 213, 233, 51], the
simultaneous study requires an integrated tool such as the one we have developed in this work.
We propose in this section a preliminary study of the sensitivity of the Shock Ignition scheme to
LPI-generated HEs.

6.4.2 Simulation framework

6.4.2.1 Targets and geometry

Two targets are considered: (i) the baseline pure-DT target proposed in the original HiPER project
in Ref. [239] and (ii) an advanced design with increased gains and robustness to hydrodynamic
instabilities, recently designed in the Celia laboratory. The latter target is more up-to-date with
the current paradigms in direct-drive target design. Notably, it is imploded at a lower velocity
and features a plastic ablator for the reduction of hydrodynamic instabilities and optimization of
laser-target coupling. The higher-Z ablator is also expected to respond differently to the HE flux
than the DT ablator. The targets are detailed in Fig. 6-20.

Each target is studied with two series of simulations, with and without the LPI-HE coupling
(Thetis model). Simulations are conducted in spherical configuration in order to account for the
spherical convergence effects on shock amplification and shell areal densities. The laser propagation
and interaction with plasma is computed in pseudo-cylindrical monomode configuration, as detailed
in Sec. B.3. All simulations are conducted with the radiative transfer enabled and the Sesame
Equation of States.

6.4.2.2 Laser configuration

The laser beams are in a configuration mimicking a large-scale laser facility. We have assumed
lasers of wavelength λL = 351nm and a uniform irradiation field on the targets, with beams
incident at an angle θ = 0. The focusing parameters of the beams are summarized in Tab. 6.5.
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Target φF F r0 n0

pure-DT 67.5 cm 10 m 1044 µm 4
CH-DT 88 cm 5 m 876 µm 2.66

Table 6.5 – Focusing parameters for the two targets. φF is the radius of the focusing optics,
F its focal length, and the beam vacuum envelop intensity profile in its focal plane is
defined as �I� = �I�0 exp [−|r/r0|n0 ].
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Figure 6-21 – Total pulse power used in the baseline designs of the [left] pure-DT and
[right] CH-DT targets. For simplicity, it is considered that the irradiation is symmetric
on the capsule and that each beam follows the same pulse shape, with the same focusing
parameters.

Because the targets were designed in separated studies, the focusing parameters are different for
the two target cases. This is not an issue for the comparison because the aim of this study is not
to compare the nominal performances of the baseline and advanced target designs, but rather to
assess their respective robustness to HEs. In both cases, the beams are assumed to be equipped
with KPPs and the pseudo-speckle pattern is modeled with PCGO with 100 beamlets per beam.

The baseline pulse shapes for both targets are shown in Fig. 6-21. We denote by ts the time
when the ignitor pulse is launched and by Ps the peak spike power. In the pure-DT target case,
the pulse rise time is 200 ps, followed by a 300 ps high intensity plateau and a 200 ps fall time.
In the baseline configuration, the 200 TW ignitor pulse is launched around ts = 10 ns and the
ignition occurs around 11 ns, for a total invested energy of ∼ 320 kJ and a yield of ∼ 24 MJ. In
the CH-DT target case, the heavier capsule is imploded at lower velocities using a longer pulse
shape. The 200 TW ignitor pulse is launched later, around ts = 13.5 ns, with a 300 ps rise time,
600 ps plateau and 300 ps fall time. The ignition occurs around 14.6 ns, with a total invested
energy of the order of ∼ 530 kJ and a yield of ∼ 45 MJ.

6.4.3 Pure-DT target

6.4.3.1 Ignition windows

The shock ignition scheme is particularly sensitive to the timing of the strong shock launch with
respect to the capsule compression, and to the timing of the shock collision inside the converging
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Figure 6-22 – (color) Target gain (MJ) as a function of the spike launch time ts and spike
power Ps. Small circles indicate the points where the simulations with PCGO and
without HEs were conducted. The large crossed circles represent equivalent simulations
conducted with PCGO and the LPI-HE model Thetis, where no target ignition is
attained.

shell. These processes are particularly intricate and require extensive analysis using 1D models.
In order to assess the global picture of the implosion, it is convenient to explore numerically a
range of shock timings ts and spike powers Ps around their baseline design point. Computing the
target yield for each case yields the ignition window, it provides an information on the robustness
of the target design. Given the significant modifications to shock dynamics induced by LPI-HEs,
as shown in Secs. 6.3 and 6.2, it is instructive to compute these ignition windows with and
without LPI-HEs.

We conduct a set of reference simulations using PCGO and without HEs, for ts ∈ {9.4, 9.6, 9.8,
10, 10.2, 10.4} ns and Ps varying in the [60; 320] TW interval. These simulations are conducted
with the flux limiter value of fL = 0.04 used in the previous sections. The resulting ignition
window is shown in Fig. 6-22. The spike launch times and target yields are in good agreement
with computations realized with the RT model [234, 235]. The higher spike power obtained in
our simulations (compared to what is presented in the literature) is related to the choice of a
rather low flux limiter value.

Four simulations are conducted with PCGO and the LPI-generated HEs using Thetis.
Anticipating that the presence of HEs should increase the shock velocity, we have chosen ts =

{9.8, 9.9} ns, that is later than the optimal timing ts,opt = 9.8 ns. We consider two values for the
spike power: Ps = {280, 320} TW. Neither of these 4 simulations with HEs predicts the target
ignition, as indicated in Fig. 6-22 by large crossed circles. We discuss the processes at play in
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Figure 6-23 – (color) Flow diagrams (logarithmic pressure gradient, shown in log-scale)
of the targets as a function of time and radial coordinate, for the case [left] without
LPI-HEs, and [right] with the LPI-HEs. The position of the strongest shock is indicated
as a black line, and the position of the initial DT-ice/DT-gas interface as a blue line.
Oscillations in the shock position after the shock collapse are due to the difficulty
in detecting numerically the shock position. Each dot indicates the position of a
Lagrangian mesh cell.

these implosions by comparing the particular case of ts = 9.8 ns and Ps = 320 TW, with and
without LPI-generated HEs.

The global target dynamics is illustrated in Fig. 6-23, which shows the logarithmic pressure
gradient as a function of the target radius and time. Several observations can be readily made
from this diagram: (i) the target with LPI-HEs does not ignite, (ii) the in-flight thickness of the
imploding shell increases in the case with LPI-HEs, (iii) the final convergence ratio is lower with
HEs, (iv) the ignitor shock reaches the target center earlier in the case with HEs and (v) the
shock strength appears higher without HEs than with HEs. We now detail these effects more
precisely.

6.4.3.2 Shell preheat

In the simulations, the SRS, TPD and RA processes emit copious amounts of electrons at averaged
temperatures of ∼ 41 keV, 100 keV and 2.7 keV, respectively, with the total energies of ∼ 1.38 %,
0.97 % and 0.33 % of the total laser energy, respectively. The time-history of the instantaneous
HE fluxes (normalized to the incident laser intensity) are shown in Fig. 6-24, alongside with the
corresponding HE spectra and the shell areal density (ρR)HE seen by the LPI-HEs, at various
times. The latter is defined as:

(ρR)HE(r) =

�
rnc/4

r

ρ(r�)dr� (6.7)

where rnc/4 is the coordinate of the quarter critical density and r is the radial coordinate. The
areal density required to stop a mono-energetic electron beam of a given energy propagating
in a constant density DT plasma is shown in Fig. 6-24 [bottom-right]. This panel provides an
estimate of the HE energies that can be stopped by the shell. Given the HE energies involved
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Figure 6-24 – (color) [top-left] Flux-weighted averages (same formalism as in Eq. (5.25))
of the laser to HE instantaneous energy conversion fractions. The spectra of HEs
accelerated in plasma are shown in the [top-right] panel, considering the beginning of
the laser spike in orange (light grey), the plateau of the spike in red (grey) and the
end of the laser spike in black. [bottom-left] Areal density (ρR)HE seen by the HE
beams emitted at nc/4, as a function of the target radius. The position of the quarter
critical density is indicated by a circle. [bottom-right] Areal density required to stop a
mono-energetic electron beam of a given energy propagating in a homogeneous DT
plasma [240].

here, and the shell areal densities reported in Fig. 6-24 [bottom-left], we see that the shell is not
dense enough to stop the higher energies of the HE spectrum. Notably, at the begining of the
spike plateau, the in-flight shell can be integrally heated by the electrons with the energies above
120 keV. Nearing the end of the plateau, the electrons with energies above 170 keV still preheat
the shell. Considering the significant amount of high-energy electrons generated by the SRS and
TPD, the shell is preheated in the bulk, as is shown in Fig. 6-25.

In the spherical SSS experiment, analyzed in Sec. (6.3), the target preheat occurred in a
target of a quasi-uniform solid density. In the case of a SI target, the preheat occurs in a shell
surrounded by lower density regions on either sides. Consequently, the pressure increase induced
by the HE preheat no longer occurs at a constant density. The preheat causes an expansion of
the shell, its thickness and temperature increase in-flight while its density decreases. This is
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Figure 6-25 – (color) Log-scaled dose deposited by the HE beams in plasma (erg/s/g), as a
function of the target radius and time. [left] HE generated by the TPD and [right] by
the SRS (the simulation being monomode, the fields presented here are identical for
any cylindrical angle θ). Each dot indicates the position of a Lagrangian mesh cell.
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Figure 6-26 – (color) Slices of plasma density ρ (in g/cc) indicated by plain lines, and ion
temperature Ti (in keV) indicated by dashed lines, as a function of the target radii and
for various times indicated on the upper-right corner of each subplot. Results from
the simulation without HEs are shown in black and with HEs in red (grey).
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Figure 6-27 – (color) Slices of the adiabat parameter α, as a function of the target radii
and for various times indicated on the upper-right corner of each subplot. Results
from the simulation without HEs are shown in black and with HEs in red (grey).

illustrated in Fig. 6-26. The increase of the shell pressure raises its adiabat α1 while it converges
to the center, as shown in Fig. 6-27. The increase of α leads to the lower convergence ratios seen
in Fig. 6-23, from CR ≈ 833/24.1 = 34.6 without HEs to CR ≈ 833/30.4 = 27.4 with HEs. It can
also be noted from Fig. 6-26 that the expansion of the shell inner boundary due to the preheat
can be considered as a mix of the cold shell fuel with the hot spot material. It effectively causes
an increase in the density of the target center. This HE-induced hotspot mix is also discussed
later in this section while considering the thermodynamic path of the hotspot.

6.4.3.3 Shock characteristics

The shock created by the high intensity ignitor pulse propagates through the preheated material
while its temperate and pressure increases and its density decreases (see Fig. 6-26). The resulting
pressure and temperature downstream of the shock are shown in Fig. 6-28 [top] alongside its
position. We see that for a same launching time ts, (i) the shock is faster with HEs, (ii) it
reaches the hotspot with a pressure of 20 GBar for the case with HEs and 7.5 GBar for the case
without HEs, and (iii) the post-shock temperature at this time is rather similar, with 5.6 keV
and 5 keV for the cases with HEs and without HEs, respectively. As in the Pals and Omega
experiment, the HEs significantly increase the shock pressure. This increase is not due to an
increased ablation pressure, the latter being relatively equal with and without HEs as shown
in Fig. 6-28 [bottom-left], but to the plasma preheat upstream of the shock. Finally, the shock
strength is smaller with HEs, as shown in Fig. 6-28 [bottom-right] and in agreement with our

1As defined in the introduction, the shell adiabat is the ratio of its pressure to the Fermi pressure. It is a
measure of the thermal agitation in the shell and of the hydrodynamic efficiency of the compression.
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Figure 6-28 – (color) [top-left] Position of the strongest shock in the material. The bump
observed around 10 ns is due to the detection algorithm that is sensitive to the strongest
pressure discontinuity. In panels showing the properties of the shock, the results shown
before the time of the bump do not indicate the ignitor shock properties. [top-right]
Temperature (keV) and pressure (GBar) of the shocked plasma. The plain line indicates
the downstream shock pressure and the dashed lines the downstream shock temperature.
For each curve, the first circle represents the time when the shock enters the hotspot,
and the second circle indicates the time when the shock reaches the target center.
[bottom-row] Time histories of [bottom-left] the ablation pressure and [bottom-right]
the ignitor shock strength, from the time of ignitor spike launch ts. For all panels, black
and red (grey) curves indicate simulation results without and with HEs, respectively.

previous conclusions on the strong shock experiments.

6.4.3.4 Hotspot thermodynamic path

We have seen that the ignitor shock is propagating with a larger post-shock pressure, a lower
strength and a higher velocity when considering the LPI-HEs. We now assess the characteristics of
the hotspot in order to determine how the shock deposits its energy and why the target does not
reach the ignition. The evolution of the hotspot characteristics is assessed in a (ρR,T ) diagram.
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Figure 6-29 – (color) Thermodynamic path of the hotspot, for the case without LPI-
generated HEs in black and with the Thetis model in red (grey). The isobaric ignition
curve is shown as a dashed line [234]. Arrows indicate the direction of the time-
dependent evolution of the hotspot. For each curve, the first dot indicates the time
when the ignitor shock enters the hotspot, the second indicates the time of shock
rebound on the target center and the third is the time when the shock collides with the
shell. Further shocks rebounds and collisions with the shell are not indicated.

The hotspot averaged areal density �ρr�H and averaged temperature �TH� are defined as:

�ρr�H =

�
RH

0
ρ(r)dr , (6.8)

�TH� = 3

�
RH

0
r2Ti(r)dr/R

3
H , (6.9)

where RH is the hotspot radius, defined as the radial coordinate r where Ti(r) = Ti(0)/10, with
Ti(0) being the ion temperature in the target center. Note that the angular coordinate does not
appear here: the simulation being monomode the plasma parameters only depend on the radial
position. The thermodynamic path of the hotspot for the case with and without HEs is shown in
Fig. 6-29. As evoked earlier, the simulation without HEs reaches the ignition boundary (shown
with a dashed line), while the simulation with HEs does not. The most notable difference is the
areal density in the case with HEs that is significantly higher when the shock reaches the hotspot.
This increase in hotspot density is a consequence of the effective mix with the dense shell material
preheated by the HEs, as was shown in Fig. 6-26. The slight increase in temperature at this time
is due to the smaller hotspot radius. For clarity, the properties of the hotspot at the time of
shock entry and shock rebound are given in Tab. 6.6.
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case �ρr�H �TH� �ρH� RH �TH,e�

no HE 0.016 g/cm2 2.5 keV 4.63 g/cc 48.7 µm 2.05 keV
LPI-HE 0.048 g/cm2 2.7 keV 16.93 g/cc 40.2 µm 2.53 keV

no HE 0.063 g/cm2 3.95 keV 22.17 g/cc 30.52 µm 3.52 keV
LPI-HE 0.14 g/cm2 2.88 keV 65.9 g/cc 33.63 µm 2.75 keV

Table 6.6 – Summary of the properties of the hotspot when [top] the ignitor shock enters
the hotspot and [bottom] the ignitor shock reaches the target center. �ρH� is the averaged
hotspot density and �TH,e� is the averaged hotspot electron temperature. Both quantities
are computed using the same averaging process as for the ion temperature (6.9). Note
that because of these definitions, �ρH�RH �= �ρr�H .

Hotspot mass The hotspot mass Mh can be expressed as:

Mh =
4

3
π
(ρhRh)

3

ρ2
h

≈ 4

3
π
�ρr�3

H

�ρH�2 . (6.10)

Although the hotspot areal density is higher with HEs (as shown in Fig. 6-29) it also has a higher
density (as seen in Fig. 6-26), so that the overall hotspot mass Mh is higher in the simulations
with HEs. The time evolution of the hotspot mass is shown in Fig. 6-30, alongside the shock
position and the radius of the hotspot. At the time when the shock reaches the target center,
its mass is of 2.65 µg and 10.7 µg for the cases without and with HEs, respectively. The energy
Eh required to bring a DT sample of mass Mf to a temperature Th can be estimated from the
expression for its internal energy [46]:

Eh ≈ 110MfTh MJ , (6.11)

where Mf is expressed in g and Th in keV. This equation shows that in order to heat the DT fuel
to a given temperature (typically ∼ 7 keV is required to ignite a hotspot of areal density of 0.2
g/cm2), the increase in hotspot mass translates into an increase in required energy. Although we
have seen that the shock downstream pressure is higher with HEs, it is not sufficient to ignite
the hotspot of significantly increased mass (as seen in the thermodynamic diagram). Indeed, the
temperature of the hotspot barely increases between the time when the shock propagates from
the hotspot radius r = Rh to the target center r = 0.

Hotspot power balance By the time the shock rebounds and reaches the shell again, the hot
spot temperature has decreased. This is indicative of intense hotspot cooling, i.e. power losses are
higher than the power brought in by the ignitor shock. We now assess the importance of these
cooling processes. The hotspot can loose its energy either by the electron thermal conduction or
by the radiative losses from the Bremsstrahlung process (with photon energies in the x-ray range).
The hotspot power density We lost through electron thermal conduction can be estimated by [46]:

We = 1.71κ0
T 7/2
h

R2
h

, (6.12)
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Figure 6-30 – (color) Mass of the hotspot as a function of time, indicated as plain lines.
The hotspot radius is shown as dashed lines and the shock position as dotted dashed
lines. The times when the shock enters the hotspot and reaches the target center are
indicated by colored circles. Data from the simulation without HEs and with HEs are
shown in black and red (grey), respectively.

where the constant value κ0 = 3× 10
12 W/cm/keV7/2 corresponds to the Spitzer-Härm thermal

conductivity, Rh is expressed in cm and Th in keV. At the time when the shock enters the hotspot
and using the values given in Tab. 6.6, we find that hot electrons increase the electron conductivity
losses by a factor of three, We,HE ≈ 3We,ref . Similarly, the hotspot power density WB lost through
the radiative process can be estimated by [46]:

WB =
CBρ2hT

1/2
h

m2
i

, (6.13)

where CB = 5.3510−31 W/cm3/keV1/2 is a constant, mi is the average ion mass, Th is expressed
in keV and ρh in g. At the time when the shock enters the hotspot and using the values given in
Tab. 6.6, we find that the radiation losses increase by a factor of 15, WB,HE ≈ 15WB,ref . We can
estimate the total power loss W = VhW using the hotspot volume Vh = (4/3)πR3

h
. We compare

in Tab. 6.7 the power losses at the time when the shock enters the hotspot and reaches the target
center.

The hotspot mix induced by the HE preheat of the shell and its inner side ablation leads
to an increase in radiative losses by an order of magnitude. Using the value for WB,HE at the
time of shock rebound and assuming a constant power loss for 30 ps, we find that the plasma
looses ∼ 1 kJ of energy. Assuming a hotspot mass of 20 µg, we see from Eq. (6.11) that this
corresponds to a temperature decrease of 0.5 keV. Even though the ignitor shock produces an
enhanced downstream pressure in the case with HEs, the latter is unable to compensate for the
(i) ten-fold increase in radiation losses and (ii) the additional hotspot mass that must be heated.

These conclusions explain the failure of shock ignition of the reference target and provide a
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case WB (TW) We (TW) WB (TW) We (TW)

Ref 0.45 0.13 3.36 0.54
with HEs 3.8 0.229 35.1 0.25

Table 6.7 – Power lost by the hotspot from the processes of Bremsstrahlung x-ray emission
and electron thermal conduction. Values are given for the time when [left] the ignitor
shock enters the hotspot and [right] the ignitor shock reaches the target center.

basis for the analysis of the case of the CH-DT target.

6.4.4 CH-DT target

6.4.4.1 Ignition window

We compare the CH-DT target dynamics with and without LPI-generated HEs. The simulations
without HEs are made for various spike launch times in ts ∈ [13; 13.6] ns and Ps varying in the
[20; 220] TW interval. This target was originally designed with a flux limitation fL of 7 %. For
consistency with the original design point, we now set the fL = 0.07. This more “generous” flux
limitation is expected to increase the laser absorption and decrease the required spike powers.
Note that the spike power in the baseline design point of the CH-DT target is the same as for
the pure-DT target. Given the similar target initial radii of ∼ 1000 µm, the nominal intensities
between the two targets are also similar, and hence the laser-plasma interaction proceeds in a
comparable regime.

The reference ignition window (without HEs) is shown in Fig. 6-31 [left]. It is in reasonable
agreement with the baseline computations realized in the 1D spherical geometry with the Ray-
Tracing model in Chic [Personal communication, E. Lebel, X. Ribeyre]. Minor differences are
noted in terms of spike timings and powers, which are attributed to a difference in incidence

Figure 6-31 – (color) Target gain (MJ) as a function of the spike launch time ts and spike
power Ps. Circles indicate the spike parameters where the simulations were conducted.
Simulation results [left] with PCGO and [right] with PCGO and LPI-generated HEs
(notice the different colorbar values).
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case Ps FRA FSRS FTPD �Th,RA� �Th,SRS� �Th,TPD�

nominal 200 TW 0.12 % 1.2 % 0.94 % 1.4 keV 43 keV 98 keV
high power 300 TW 0.18 % 1.37 % 1.1 % 1.93 keV 44.5 keV 99 keV
delayed HEs 200 TW 0.11 % 1.05 % 0.84 1.5 keV 43.4 keV 98.9 keV

Table 6.8 – Averaged parameters of the hot electrons accelerated into the target. The fluxes
F are expressed in percent of the total incoming laser energy. At a given time, the fluxes
F and average temperature of the HE distribution Th are spatially averaged on all the
HE sources defined by the Thetis model (same formalism as in Eq. (5.25)). The fluxes
are then integrated over the simulation duration, and the temperatures are averaged using
a mean weighted with the fluxes.

angles chosen for the beams2. Simulations conducted with LPI-generated HEs using the Thetis
model are presented in Fig. 6-31 [right]. As in the pure-DT case, the targets do not reach ignition.
However, the yields are higher by a few orders of magnitude up to a fraction of MJ, meaning that
higher amounts of fusion reaction occur despite the presence of the LPI-HEs.

In order to analyze the target dynamics, we focus on simulations conducted at the most
robust shock launching time of ts,opt = 13.30 ps, that lies in the middle of the reference ignition
window. For this spike timing, the spike power required to reach the ignition without HEs is
of 80 TW. We study the effects of HEs by considering the particular design point of Ps = 200

TW. We consider three simulations with LPI-HEs and the spike launching time ts = 13.30 ns:
(i) a nominal case with Ps = 200 TW, (ii) a high-power case with Ps = 300 TW, and (iii) a
non-stationary case where we consider that the nonlinear LPIs require 200 ps in order to reach a
steady state, so that the 200 TW spike is launched at ts = 13.30 ns and the HEs are launched
at tHE = ts +∆tHE = 13.50 ps (this particular simulation is not indicated in Fig. 6-31 [right]).
The latter case may not be realistic: although a transient phase where the SRS and TPD did
not accelerate HEs was observed in the SSS experiment (presented in Sec. 6.3), this delay was
explained by a small overall energy and small target size, leading to steep density gradients and
relatively high SRS/TPD thresholds. The scales of plasma considered here and the ignition
targets are much larger, and hence much more prone to the SRS and TPD instabilities.

6.4.4.2 Hot Electron fluxes and target preheat

In the nominal simulation with Ps = 200 TW, the SRS, TPD and RA processes emit high energy
electrons at averaged temperatures of ∼ 43 keV, 98 keV and 1.4 keV, respectively, with total
energies of ∼ 1.2 %, 0.94 % and 0.12 % of the total laser energy, respectively. These values do
not change significantly for the other cases, as reported in Tab. 6.8. The time-history of the
instantaneous HE fluxes are shown in Fig. 6-32, alongside with the corresponding HE spectra
and the shell areal density at various times.

The instantaneous fluxes and spectra are similar to those predicted in the pure-DT case.
Compared to the latter, the shell areal density is approximately twice higher in the DT-ice,

2The CH-DT target was designed using the LMJ and NIF target configurations in the Polar Direct Drive
geometry.
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Figure 6-32 – (color) [top-left] Flux-weighted averages (same formalism as in Eq. (5.25))
of the laser to HE energy conversion fractions. The spectra of HEs accelerated in
plasma are shown in the [top-right] panel, considering the beginning of the laser spike
in orange (light grey), the plateau of the spike in bright red and dark red (grey) and
the end of the laser spike in black. [bottom-left] Areal density seen by the HE beams
emitted at nc/4, as a function of the target radius. The position of the quarter critical
density is indicated by a circle. The position of the DT-ice/CH interface is indicated
by a square. [bottom-right] Areal density required to stop a mono-energetic electron
beam of a given energy propagating in a homogeneous CH plasma [240].

because of the enhanced DT convergence. Although the plastic has a higher capacity to stop
high energy electrons because of its higher Z (The range of mono-energetic electrons in CH is
given in Fig. 6-32 [bottom-right]), the low areal density of the ablator makes it unable to stop
HEs of energies larger than 50-70 keV. However, the ablator still stops a significant amount of
the low energy electrons, thus partially protecting the in-flight shell. The electrons of higher
energies propagate in the compressed DT-ice, which reaches areal densities of 40-100 mg/cm2

during the laser spike plateau. This represents a capacity to stop electrons of energies lower than
170 keV at the beginning of the spike plateau. As such, this target is significantly more resistive
to the LPI-generated HEs in general. The bulk of the DT-ice shell is still preheated by the higher
energy electrons, but at lower fluxes: a more significant portion of the spectrum is stopped in the
plastic and in the outer region of the in-flight DT shell. Note that when launching the HEs 200
ps later than the pulse start, the shell has increased in areal density by ∼ 20 %.
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Figure 6-33 – (color) [top] Slices of plasma density ρ (in g/cc) indicated by plain lines,
and ion temperature Ti (in keV) indicated by dashed lines, and [bottom] slices of the
adiabat parameter α as a function of the target radii and for various times indicated
on the upper-right corner of each subplot. Results from the simulation without HEs
are shown in black and with HEs as colored lines; red for the Ps = 200 TW case,
green for the Ps = 300 TW case and yellow for the case with Ps = 200 TW with HE
generation delayed by 200 ps.
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The magnitude of the DT-ice bulk preheat can be assessed in the temperature, density and
adiabat parameter profiles shown in Fig. 6-33. The target dynamics in the two 200 TW cases
with HEs are rather similar. In the 200 ps delay case, the target is thinner than in the non-delayed
case. The hotspot mix with the dense shell material, that can be seen in Fig. 6-33 [top], is the
least severe for the delayed HE case, then for the nominal case, and is the most severe for the
high power case (this is most easily seen at t = 14.20 and 14.40 ns). Compared to the pure-DT
target, the shell conserves a more cohesive structure, i.e. is closer to the reference case without
HEs. This is correlated with a lower shell preheat in general than in the pure-DT case. This can
notably be seen in the profiles of the adiabat parameter α shown in Fig. 6-33 [bottom]. The
adiabat parameter is close to 2 at the peak convergence, lower for the delayed HE case and higher
for the high power case. Even for the latter configuration, the parameter α reaches the value of
2.3, that is smaller than the value of 3 observed in the pure-DT case with HEs, which confirms
that the plastic ablator did stop a significant portion of the LPI-HE spectrum.

6.4.4.3 Hotspot properties
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Figure 6-34 – (color) Thermodynamic path of the hotspot, for the case without LPI-
generated HEs in black and with the Thetis model as colored lines; red for the
Ps = 200 TW case, green for the Ps = 300 TW case and yellow for the case with
Ps = 200 TW with HE generation delayed by 200 ps. The isobaric ignition curve is
shown as a dashed line [234]. Arrows indicate the direction of the time-dependent
evolution of the hotspot. For each curve, the first dot indicates the time when the
ignitor shock enters the hotspot and the second indicates the time of shock rebounds
on the target center. Further shocks rebounds and collisions with the shell are not
indicated.
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6.5. Conclusions

The thermodynamic path of the hotspot is shown in Fig. 6-34 for the reference case and the
three cases with LPI-HEs at ts = 13.30 ns. As expected from the analysis of the shell preheat, it
is the case with the least hotspot mix that obtains the highest yields. Indeed, the case with 200
TW spike power and ∆tHE = 200 ps reaches ignition, as can be clearly seen from the vertical
segment of the hotspot thermodynamic trajectory. The yield in this case is of ∼ 1 MJ. This is an
important result, that highlights the role of the non-stationary phase of the HE generation on the
target performance. Similarly, the high power case almost reaches ignition, as can be seen by
the small loop in the thermodynamic path of the hotspot (the yield in that case is of ∼ 0.1 MJ).
This was expected given the results obtained in the pure-DT case: the shell mix causing a rapid
increase in the hotspot density and mass prior to the shock convergence can be compensated by
a more powerful shock arriving earlier at the target center. If the shock downstream pressure is
strong enough, the mass increase is compensated (6.11), and because the shock arrives earlier it
has time to rebound several times between the target center and the shell. However, the density
increase still causes significant radiative losses, which are not compensated by a moderate α

particle production here.

6.5 Conclusions

The Thetis model has been compared with experimental measurements in the planar and
spherical geometries. The approach proposed in Ch. 5, to describe HE sources from simplified
macroscopic flux functions computed from the wavefield parameters given by PCGO, gives
satisfying results in terms of HE fluxes and temperatures generated by nonlinear LPIs. Moreover,
a successful reproduction of shock breakout timings in the Pals and Omega experiments suggests
that the angular distribution of HE beams, conditioning the dose deposited in the targets and
hence the shock dynamics, is also consistent. Compared to GO-based hydrocodes, the level of
agreement between experimental observables and simulation results is greatly enhanced, thus
constraining the numerical simulations convincingly and allowing more precise predictions using
the hydrodynamic code.

It is shown that HEs generated in the LPI regimes of interest to this study have a significant
effect on the shock dynamics. Considering targets made of plastic or plastic ablator, it is notably
found that typical HE beams have sufficiently high temperatures to penetrate through the dense
shocked plastic and propagate in the target bulk. The HE fluxes in the considered interaction
geometries are sufficient to preheat the target to the temperatures of the order of 1-10 eV, leading
to a strong reduction of the shock strength. Because the target pre-heat occurs in the bulk, it has
a small effect on the upstream target density. In agreement with experimental data, it is found
that these shocks propagate more rapidly in the preheated material. Although the shock strength
is much lower than in cases without HEs, the post-shock pressure is higher. This dynamics is
of particular interest to the Shock Ignition scheme, which relies on a strong shock generated by
an intense laser spike to ignite the target’s hotspot. Similarly, estimating the amount of HEs
generated by LPIs that reaches the target center is critical to the design of SI targets.

The model is applied to the Shock Ignition ICF scheme. We have considered a pure-DT
baseline HiPER target and a more elaborate CH-DT target. Simulations of the ignition window
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were conducted with the PCGO model without LPI-HEs, and with the PCGO+Thetis model.
In both cases, the LPI-generated HEs are found to be detrimental to the target implosion.
Although the shock downstream pressure is significantly increased with HEs, the latter have
the adverse effect of causing hotspot pollution by material from the expanding preheated shell.
This HE-induced hotspot mix significantly increases the hotspot mass and density before the
ignitor shock reaches the hotspot. Consequently: (i) the energy required to ignite the hotspot
and (ii) the radiative losses are considerably increased. We have shown that the CH-DT target
is more resilient to HEs, as the plastic ablator partially shields the imploding DT from the low
energy part of the HE spectrum. Using this more resilient target, it was found that the increased
hotspot mass due to the preheat could be compensated by a higher spike power. In that case,
the hotspot reached the border of the ignition domain. The effects of the transient phase of the
HE generation from the LPI was also shown to be important. When launching the HEs 200 ps
after the start of the laser spike, it was found that the shell preheat and hotspot mix were lower.
Combining this effect with the increased target resilience to HEs, the ignition was reached with
HEs, albeit with a modest yield of 1 MJ.

This preliminary Shock Ignition study indicates that the effects of the LPI-generated HEs on
the target dynamic are significant. Considering conventional designs, the HEs may be responsible
for failed target ignitions. As such, it appears necessary to include the effects of LPI-generated
HEs in any realistic SI target design. Here we have highlighted the importance of the transient
phase of the HE generation and their effect on the shell preheat. However, we note that the
LPI-HEs may also play a role on the collision of the return shock with the ignitor shock, which
was not studied here.
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Conclusions

This PhD thesis had several objectives.

A novel laser propagation model. Formulate a CPU-efficient and accurate laser propagation
model intended for the hydrodynamic scales and suitable for the description of: (a) nonlinear
LPIs, including parametric instabilities and resonant laser light absorption, (b) propagation
of laser beams smoothed by optical components, and (c) linear collisional absorption by the
process of inverse Bremsstrahlung.

Description of nonlinear LPIs. Develop inline models coupled to the optical module for: (a)
the scattering of laser light, with emphasis on the process of Cross-Beam Energy Transfer,
(b) generation and propagation of supra-thermal electrons from EPWs excited by nonlinear
LPIs, and (c) which account for competition between the linear and nonlinear LPI processes.

Physics of Shock Ignition. Study of the nonlinear laser-plasma interaction in the framework of
Shock Ignition, including (a) the effects of CBET on the implosion symmetry of direct-drive
ICF targets and (b) the coupling between LPI-generated high energy electrons and shock
dynamics.

We present here the conclusions of this work.

7.1 A novel laser propagation model

The description of nonlinear LPIs relies on the knowledge of the laser intensity in plasma. The
standard approach to laser modeling at hydrodynamic scales is the Ray-Tracing model, based on
a Geometrical Optics description of the wave field. In this approach, laser beams are modeled by
needle-like rays damped by collisions along their propagation. This formulation describes the ray
power without notion of ray intensity. Although the intensity distribution can be reconstructed
based on the collisional absorption of the wavefield, the Geometrical Optics is, by design, not
suited to describe the wave intensity. Therefore, we have focused our efforts on formulating a
novel laser propagation model with the objective of describing more naturally the laser intensity
distribution in plasma. This has been accomplished in two steps.
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Paraxial Complex Geometrical Optics

We have adapted the method of Paraxial Complex Geometrical Optics to the case of plasmas.
The resulting wave front equation includes information on the radius and intensity of a wave field
described as a fundamental Gaussian mode in the paraxial approximation, which propagation
axis is a Geometrical Optics ray. Our formulation includes the effects of collisional absorption
in the underdense corona and at the critical density on the skin-depth length. This model was
specially formulated for the framework of a Lagrangian hydrodynamic code, with an unstructured
and irregular mesh.

The ability of GO and PCGO to model the nonlinear ponderomotive self-focusing of a laser
beam was investigated. A pressure term corresponding to the ponderomotive potential was
added in the hydrodynamic core, computed from the RT reconstructed intensity or from the
PCGO intensity field directly. On the one hand, it was found that PCGO yields the correct
ponderomotive self-focusing critical power, self-focusing distance, transverse density depletion and
approaches correctly the intensity amplification. On the other hand, the RT method is unable to
reproduce these quantities, as the needle-like nature of RT rays leads to artificial filamentation of
the beam inside local waveguides with a size defined by the hydrodynamic mesh discretization.
The vacuum diffraction modeled in the RT model by spreading the initial k-vectors of GO rays is
not able to compensate the self-focusing effect, because this approach to diffraction modeling
breaks down for a time-varying refractive index.

Modeling of optically smoothed beams

Second, the description of Gaussian PCGO rays was adapted to the non-Gaussian laser beams.
By taking advantage of the use of Phase Plates in high-power laser systems, which effectively split
laser beams in smaller beamlets, we have proposed a method for modeling large beams with many
smaller PCGO beamlets pseudo-randomly focused in a region of the beam focus where the speckle
radius varies slowly. This method reproduces the main features of the intensity distribution of a
large beam transformed by a Phase Plate. The splitting method was compared with results from
the laser propagation code Miró, in the case of the Omega SG4 beam configuration. The overlap
of PCGO beamlets creates a pattern of large speckles, producing an intensity distributions and
laser contrast similar to the results from Miró simulation convolved with the hydrodynamical
mesh. The resulting beam contrast is similar to that of laser beams smoothed by Polarization
Smoothing. Temporal-smoothing techniques have also been implemented, in the case of Smoothing
by Spectral Dispersion. Comparison with theoretical estimates has demonstrated the ability of
the model to reproduce the time-dependent integrated contrast of SSD-smoothed laser beams.

This model was implemented in the hydrocode Chic of the Celia laboratory. Its base
formulation for 2D planar geometry has been extended to 3D geometries for specific axisymmetric
configurations where spherical targets are irradiated by laser beams which focal points intersect
with the rotational symmetry axis.
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7.2 Description of nonlinear LPIs

Building on the novel formulation for the laser propagation, we have proposed several models
to account for the nonlinear Laser-Plasma Interaction, separated in two categories: (i) the
nonlinear energy transfer between crossed laser beams, arising from the light diffraction on density
fluctuations excited by the ponderomotive beating of the waves, and (ii) the nonlinear coupling
of the wavefield with EPWs that generate hot electron populations.

Cross-Beam Energy Transfer

Our formulation of Cross-Beam Energy Transfer relies on the discretization of the interaction
region by many elementary energy exchanges between Gaussian PCGO rays, which are supposed to
locally occur within a plasma of constant parameters. The ensemble of elementary energy transfer
is resolved chronologically in order to be consistent. This inline model, named Eyebolt for
ElementarY Exchange Between OpticaL Thick-rays, has been validated against several frameworks.
First, the modeling of CBET between two large beams by local energy exchanges between many
beamlets has been validated in the case of a constant density, temperature and velocity plasma.
Second, the Eyebolt model has been compared to a numerical resolution of the coupled equations
for the intensity of two overlapped wavefields in media presenting a linear velocity profile. Excellent
agreement is found for various probe-to-pump upstream intensity ratios. Third, the Eyebolt
model has been compared to a time-dependent solution computed with the paraxial solver
Harmony, that resolves the coupled equations for the complex amplitudes of the waves. An
excellent agreement of the steady-state probe beam amplification factor, beam deviation and
density perturbation amplitude was found, for various probe-to-pump intensity ratios, and for
intensities Iλ2 ≤ 10

14 Wµm2/cm2. It was proposed that the discrepancy observed at higher
intensity arose from the difference in the modeling of the wings of the wavefield, the latter being
more extended in Harmony and covering an inverse transfer resonance region. Fourth, results
from the Eyebolt model were compared to measurements of CBET gains obtained on the Nova
laser facility. A much better agreement was found compared to previous estimates obtained with
analytical or paraxial models. These theoretical, numerical and experimental comparisons have
provided a solid validation of our implementation of CBET based on PCGO.

Hot Electrons generated by nonlinear Laser-Plasma Interactions

The description of electrons heated to supra-thermal temperatures by nonlinear LPIs has been
included into the PCGO framework. This inline model, name Thetis for Two-dimensional Hot
Electron Transport and emIssion Sources, has two components. First, it describes the transport
and energy deposition of high energy electrons in the plasma. Electron beams are modeled in the
Angular Scattering Approximation, derived from the kinetic Vlasov-Fokker-Planck equation by
considering the diffusion of electrons on a background of electrons and ions. Our formulation is
adapted to two-dimensional, transversally Gaussian, multi-group HE beams of arbitrary angular
distribution. Secondly, this transport model is interfaced with HE sources computed from the laser
optical module (PCGO). Considering the case of Hot Electrons accelerated by EPWs excited by
Resonant Absorption, Stimulated Raman Scattering and Two Plasmon Decay, we propose various
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formulations for computing the hot electron fluxes, temperatures and angular distribution with
respect to the pump wave. These formulations are based on theoretical models and analysis of the
most unstable modes, experimental observation of the scattering angles and competition between
processes, experimental scaling laws and Particle-In-Cell simulations. Additionally, backward
propagating electrons from the TPD and backward scattered light from SRS are accounted for
in the energy balance. Given the difficulty to precisely characterize LPI-generated HE fluxes in
experiment, it is difficult to validate this inline coupled model with experimental data. However,
the results obtained with Thetis are in good agreement with various experimental results
presented in this work, in different interaction geometries and across different intensity regimes.

These inline models, also implemented in the Chic code, are consistent in terms of energy
conservation. Energy transferred by CBET or to HE sources is consistently removed from the
PCGO beamlet where the LPI takes place, thus affecting any further LPI process occurring
downstream of the CBET or LPI-HE energy transfer. This approach naturally accounts for the
competition between processes that arises from the geometrical configuration of the laser-plasma
interaction.

7.3 Physics of Shock Ignition

Applications of our new integrated model were conducted in the framework of Shock Ignition
ICF. We studied separately the effects of CBET and LPI-generated HEs on plasma dynamics.

Influence of CBET on direct-drive target dynamics

We applied the PCGO+Eyebolt models to the study of CBET, in the case of the laser
configuration of the Omega laser facility. The beams are modeled by considering the use of the
SG4 Kinoform Phase Plates, in a 2D planar geometry. We conducted full 360◦ simulations of
a capsule implosion in which certain beams are allowed to interact through CBET, following
the co-planar beam angles of the Omega chamber, of 20◦, 40 ◦, 140◦ and 160◦. It was found
that (i) Deuterium-Tritium ablators are more prone to CBET-induced deformations than plastic
ablators, (ii) the CBET decreases the laser-target coupling by displacing intensity maxima away
from the critical density, thus decreasing the target convergence ratio by up to 25 %, (iii) under
the beam configuration considered here, the CBET causes deformations of the target, which
relative amplitude on the inner interface reaches up to 35 % for the mode 2. Conclusions on the
capsule deformation were drawn for a 2D irradiation pattern. A 3D linear reconstruction of the
irradiation mode shows that the mode 4 is also excited, while the excitation of the mode 2 is
probably over-estimated because the CBET between non-coplanar beams is not accounted for.

Study of the LPI-generated Hot Electrons on shock dynamics

The study of HE/laser/plasma coupling was conducted with the PCGO+Thetis model. We
considered several comparisons with various experiments.

• The computation of laser absorption was validated against an absorption experiment on
Omega, using the PCGO+Thetis model. The experiment consisted in the consecutive
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irradiation of a target with two short pulses. The first one interacts with a cold target and
steep density profiles, and the second one with a warm coronal plasma and longer density
profiles. Contrary to the RT-based model that must use a time-varying flux-limitation
in order to reproduce the correct absorption, it was shown that our model matches the
experimental data for both pulses with a fixed flux limitation. Notably, the resonant
absorption contributes to the first pulse absorption, and moderately to that of the second
pulse.

• The model was applied to the interpretation of a shock timing experiment conducted on
the Pals laser facility. A high intensity laser beam interacts with a planar target. The
ablation of the plastic layer creates a shock wave that propagates through the target and
which breakout on the rear surface is measured by using a Streak Optical Pyrometry
diagnostic. The HE population was inferred from the Kα emission generated by supra-
thermal electrons in high-Z tracers. To a reasonable agreement, our model simultaneously
matches the measurements of integrated laser reflectivity, supra-thermal electron fluxes and
temperatures, and shock timings. This is a significant improvement compared to results
from RT-based hydrocodes, which underestimate the shock breakout times by up to a
factor of 2. It was found that the LPI-generated HEs are sufficiently energetic to penetrate
through the shock and preheat the material upstream of it. Because the pre-heat occurs in
the bulk of the target, it is almost isochoric. The pressure increase causes a significant shock
velocity increase while also increasing the downstream pressure of the shock. Conversely,
it was found that the strength of the shock, i.e. its downstream to upstream pressure
ratio, is greatly reduced. Because the laser energy transferred to supra-thermal electrons
is deposited both downstream and upstream of the ablation front, it was found that the
ablation pressure is decreased when considering the LPI-HE processes.

• The PCGO+Thetis model was applied to a shock timing experiment in spherical geometry,
conducted on Omega. A spherical target was uniformly irradiated by laser beams and
the timing of shock convergence at the target center was measured. The experiment was
conducted with and without Smoothing by Spectral Dispersion. In the absence of the latter,
the measured HE fluxes were increased by up to a factor of 5. The LPI model with HEs was
able to reproduce the shock timing measurements in the experiment without SSD. Within
the error bars, the correct values for the HE flux and temperatures, laser reflectivities and
shock timings were obtained. In contrast, simulations using the RT model alone in Chic
were not able to reproduce the measured shock timing. As in the Pals experiment, it was
found that LPI-generated HE reduce the shock strength and the ablation pressure, while
increasing the downstream shock pressure and its velocity.

Influence of LPI-generated Hot Electrons on Shock Ignition target dynamics

Given the good agreement found with the new LPI model and the experimental data for interaction
of intense laser pulses with planar and spherical targets, we applied the PCGO+Thetis model
for the analysis of a Shock Ignition target implosion. First, we used the baseline DT-target as
a starting point. Using PCGO only, we reproduced ignition curves comparable to what can be
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obtained using RT-based models. Simulations using the Thetis model suggest that the HEs
generated during the laser spike sufficiently preheat the bulk of the imploding shell to cause its
expansion and the pollution of the hotspot with the dense shell material, before the time of shock
convergence. The hotspot areal density quickly rises and the shock launched by the final laser
spike is not strong enough to ignite the fusion reactions. Furthermore, the early increase in the
hotspot density causes significant energy losses by the Bremsstrahlung X-ray radiation, thus
rapidly cooling the hotspot. Second, we used a more advanced target design developed at the
Celia laboratory, of a DT-target with a DT shell, CH ablator and Al coating. The ignition curve
of simulations without HEs was compared to that of simulations with HEs. Although the targets
did not reach ignition when considering the effects of LPI-HEs, the presence of the CH ablator
was shown to increase the target resistance to the DT shell preheat, resulting in a decreased
hotspot mix. Simulations using higher laser spike intensities suggest that the capsule could
still be ignited, albeit by compensating the hotspot pollution by a shock with a much stronger
downstream pressure. The timing of the LPI-HE generation also appeared to be important: a
200 ps delay in the HE generation with respect to the spike launch time was sufficient for the
target to reach the ignition, although with a yield of 1 MJ only. This underlines the necessity to
account for the transient period of the parametric instabilities growth.

These results have shown the importance of taking into account nonlinear processes in the
design of an efficient shock ignition target. The potential applications of this model are not limited
to fusion studies, and are expected to be of use for laser-target experiments in the interaction
regime relevant to the instabilities considered here.

7.4 Perspectives

The perspectives of this work are numerous. We enumerate them by order of increasing complexity.

• The model in its current implementation can be used for many experimental studies. We give a
few examples; (i) we presented the experimental results obtained on Pals at the wavelength of
3ω, however open questions remain for the interpretation of the data obtained at 1ω, where the
results could not be reproduced with RT models, (ii) the interpretation of the spherical strong
shock experiment on Omega can be extended to a recent campaign were unexpected behavior
was observed when changing the ablator material, (iii) the design of Double Ablation Front
experiments for Laboratory Astrophysics relies on the radiative preheating of a sample material
by shocks propagating on surrounding ablators, and could be vulnerable to HE preheat, (iv)
the design of a planar target experiment on the LMJ facility, that aims at measuring the effects
of LPI-generated HEs on shock characteristics (the laser configuration may also be prone to
CBET).

• The results presented on the Shock Ignition target design using the PCGO+Thetis model
are preliminary. This subject requires a dedicated study, as it is expected that the coupling
processes between the LPI-generated HEs and the shock dynamics is highly nonlinear. Notably,
the details of how the HEs affect the timing of reflected shocks and their collision with the
main shock remains to be explored.
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• The current implementation of the parametric instabilities in Thetis is rather simple. The
numerical framework being now set, there is an opportunity for adding more details to the
reduced models for the parametric instabilities. Notably: (i) adding a density dependence on
the SRS in order to generate a broader spectrum of HEs, (ii) implementing models for the
transient phase of the instabilities, that is of particular interest for the studies related to the
use of SSD and (iii) implementing a SBS reduced model. Similarly, the HE transport model
based on the ASA has short-comings. Notably, it requires a significant number of energy groups
in order to produce smooth energy deposition fields. This number increases even more when
considering beams with an angular aperture, where the number of beamlets is multiplied by the
number of spatial groups. Increased numerical efficiency could be obtained by implementing
some form of straggling and blooming in the ASA model, so that less energy group would be
required to achieve the same results.

• The models for electron generation and CBET are currently disjoint. There is a priori no
restriction for their simultaneous use. To that end, numerical development are required.
Notably, the Eyebolt model relies on a chronological ordering of the intersection stack that
constantly modifies the downstream beamlet parameters. This update of the parameters must
be coupled to the computation of the nonlinear LPIs in order to obtain a consistent description.
This work would be considerably facilitated by tying the central-ray propagation algorithm,
the energy projection algorithm, and the nonlinear LPI models directly with the resolution of
the wave front equation.

• Studies of CBET in more realistic and more general laser-target configurations require to
account for the energy transfer between all overlapped beams. In its current formulation, the
Eyebolt model is suited for studies were an equivalent 2D planar configuration can be found.
This is rarely the case, and it appears crucial to account for the CBET between non-coplanar
beams. Contrary to the case of PCGO and Thetis, such calculations cannot be made in
pseudo-cylindrical configurations. A 3D PCGO-based CBET model would require (i) a fully
3D implementation of PCGO and (ii) specific criteria for the crossing of PCGO rays, which
will intersect in 3D through their envelop and not their centroid. Finally, the modeling of the
wings of the laser beams has been shown to be of importance, and should be considered.

• In the most general laser-target configuration, the "ultimate" PCGO model based on this work
would (i) be based on a 3D implementation of PCGO, preferentially in a 3D hydrodynamic
code in the Cartesian coordinates, (ii) include PCGO-based CBET between the envelop of the
3D PCGO beamlets, and (iii) couple the LPI-HE generation with the CBET model.
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Appendix A

PCGO implementation in a Lagrangian
Hydrodynamic code

This appendix describes some of the numerical procedures devised for the implementation of
PCGO in the framework of an arbitrary unstructured mesh. Note that throughout the appendix,
the central ray parameter τ � is noted τ . We describe in App. A.1 the implementation of the
Geometrical Optics equation, with two approaches concurrently used for the central ray in PCGO.
We then detail in App. A.2 the methods employed to resolve the wave front equation for the
curvature matrix of the PCGO ray. The projection of the beamlet envelope onto the mesh is
described in App. A.3. It notably includes ; (i) the algorithms utilized for the efficient projection
of the Gaussian electric field of PCGO beamlets onto the unstructured mesh, (ii) the neighborhood
search algorithm employed to find the intersection between the mesh and the beam envelope, and
(iii) the interaction of the beamlet envelope with critical density surfaces, including the description
of collision absorption past the critical density on the skin depth. Integration of the wave front
equation along a ray trajectory necessitates particular care to the precision of the trajectory, as
discussed in App. A.1.3. Considering the assumptions made in the diverse algorithms employed
here, error control on the energy conservation is ensured by a specific method, presented in App.
A.4. Finally, for completeness, we give in App. A.5 the formulations of the Coulomb logarithms
used throughout this work.

A.1 Geometrical Optics

The Ray-Tracing equations (Eqs. (2.25)) are Ordinary Differential Equations (ODEs) which
are rather straightforward to resolve. The main difficulty lies in their efficient integration on
the unstructured meshes employed in Lagrangian-hydrodynamic codes. We present two main
approaches to their resolution, which are both used simultaneously in the current implementation
of PCGO (as shown in Apps. A.2 and A.1.3).

A.1.1 Numerical resolution

Considering the real-valued GO trajectory equations (i.e. which only depend on the real part
of the permittivity ��), the ray trajectory and momentum only depend on the plasma density
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ne/nc. In Lagrangian hydrodynamic codes, the density is defined at the center of mass of the
cells. For the sake of generality, it is assumed that these cells are polygons constituted of an
arbitrary number of vertices. The size of mesh cells being dictated by hydrodynamic processes
only, it is not possible to directly integrate Eqs. (2.25) on the discrete Lagrangian mesh; the
spatial resolution being in general insufficient. Instead, the RT equations are integrated along
the continuous ray trajectory from smooth interpolations of the density field. This is achieved in
several steps. First, the density field is interpolated from the center of mass of mesh cells to the
nodes of the mesh. For that purpose, a widespread method is to divide a 2D linear interpolation
of the squared density field to that of a 2D linear interpolation of the density field. Secondly, the
mesh is triangularized, i.e. decomposed in elementary triangles, e.g. using Delaunay algorithms.
Third, assuming that the density gradient per triangle is constant, the density at any point inside
triangle i can be computed from density values known at the vertices of triangle i, {ne,i1, ne,i2,
ne,i3}, using (in 2D Cartesian geometry):

ne,i(x, y) = aix∇xne + biy∇yne + ci , (A.1)

with ai, bi, ci constants in triangle i that can be uniquely determined from the densities and
coordinates of the 3 triangle vertices. The RT equations are integrated in triangle i by Eq. (A.1)
along the ray trajecotry. This interpolation is continuous both inside a given triangle and between
consecutive triangles, although it is not smooth at their junction. Typical numerical methods used
for the integration of the GO equations are Runge Kutta (RK) algorithms, usually of order 4, with
adaptive steps. Although RK algorithms are CPU-efficient, they loose precision for trajectories
nearing the critical density. This is not an issue for simple RT-based laser propagation codes
because the trajectory error is not detrimental to the precision of the collisional absorption model
(presented in Sec. 2.2.2). However, this precision loss is a major issue for the integration of the
wave front equation for PCGO (see Sec. 2.3.3.2). It is addressed in App. A.1.3.

A.1.2 Analytical resolution

Analytical solutions of the GO equations are easily obtained in the same framework as in
Sec. A.1.1, that is for a triangularized mesh in which the density gradient is assumed to be
constant. Although these solutions can be derived in cylindrical geometry for applications to
2D-axisymmetric configurations, we limit ourselves to 2D Cartesian configuration for the sake
of simplicity. Starting from Eqs. (2.25) and assuming a density in triangle i of the form of Eq.
(A.1), it is straightforward to derive the ray position (x, y) and velocity (vx, vy):

x(τ) = ax(τ − τ0)
2
+ vx0(τ − τ0) + x0 ,

y(τ) = ay(τ − τ0)
2
+ vy0(τ − τ0) + y0 ,

vx(τ) = 2ax(τ − τ0) + vx0 ,

vy(τ) = 2ay(τ − τ0) + vy0 , (A.2)
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where velocities are normalized to c = 1, and ax and ay are characteristic gradients in the x and
y directions, defined by:

ax = − 1

4nc

∇xne ay = − 1

4nc

∇yne , (A.3)

and τ is the parametric parameter of the trajectory equations, with τ = τ0 at the entry point of
triangle i. As illustrated in Fig. 2-2, for a ray propagating in a density gradient such that ay = 0

and vy0 �= 0, the ray trajectory is a parabola.
Knowing the entry point (x0, y0) and entry velocity (vx0, vy0) of a ray in a given triangle, one

can find the time τ1 at which the ray exits the triangle by searching for the intersection of the
parametric curve (x(τ), y(τ)) with the triangle edges. Once τ1 is known, the ray exit position
and exit velocity can be found. This procedure requires to solve two second-order equations for
each edge, each equation having 0 to 2 solutions. Cases with multiple solutions are sorted by
considering that (x(τ1), y(τ1)) must be inside of the triangle and that τ1 �= τ0. Note that the
latter condition does not alway hold, as for a steep gradient aligned with the ray entry vector,
the ray turns back in the triangle with τ0 = τ1 to within the numerical precision. Accounting for
the 6 resolutions of second-order equations and the sorting of the 12 solutions, this method is
usually slower than direct integration using a RK scheme (Sec. A.1.1), although the analytical
solution obtained is more precise.

In general, for both the RT and PCGO methods, RK algorithms are used for the computation
of trajectories. The analytical formulations presented are used in the numerical algorithms
employed in the PCGO model for field projection and for the integration of the wave front
equation, as is detailed in Sec. 2.3. Furthermore, the analytical formulations are of use in the
correction of error committed by the RK integration of the ray trajectory, as presented below.

A.1.3 Trajectories and precision: modifications to Ray Tracing algorithms

Integration of the wave front equation in a given triangle requires the knowledge of the time spent
by the ray in that triangle, that is ∆τ = τ1− τ0. That time is found by inversion of the analytical
trajectory equations (Eqs. (A.2)), from the knowledge of the entry and exit position and velocities,
those being given by the trajectory computed by RK integration of the RT equations. When the
density gradient in the triangle is non-zero (i.e. ax �= 0, ay �= 0), the knowledge of the velocities is
sufficient and computing τ1 − τ0 is trivial. This timing can either be computed from the central
ray coordinates on the x or y axis. Any loss of precision in ray coordinates due to the RK scheme
will lead to inconsistent timings, i.e. different values of ∆τ when computed from the x and y axis.
This precision loss is higher near the critical density, and especially for rays that turn around in
a triangle. In those cases, the RK integration yields exit positions and velocities that are not
precise enough to compute correct values of ∆τ . In some cases, the resulting error may be large
enough so that the RK integration predicts an incorrect exit edge for a ray in a triangle.

RK integration errors must be monitored in order to avoid spurious numerical behaviors in
the integration of the wave front equation. For each trajectory arc computed by the RK scheme,
the ray timing ∆τ is computed from the x and y coordinates. When an inconsistency is detected,
the corresponding RK step is deleted and an analytical step is conducted instead (assuming
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constant density gradient, see section A.1.2). The analytical solution is then used as the next
initial condition for the RK solver. This method allows to retain the CPU-efficiency of the RK
scheme and obtain the numerical precision of an analytical method. The enhanced accuracy
resolves numerical stability issues commonly encountered when the plasma is still cold and mesh
cells are very thin in the vicinity of the critical density (∼ 10− 100 nm).

A.2 Integration of the nonlinear wave front equation

The wave front equation for the curvature matrix B, Eq. (2.72), is most efficiently resolved in
variations, i.e. by defining matrices P and Q such as B = P.Q−1, which yields:

dB

dτ
+B2 − α�(τ) =

dP

dτ
Q−1 − PQ−1dQ

dτ
Q−1

+ PQ−1PQ−1 − α�(τ) = 0 . (A.4)

It is straightforward to see that this equation is satisfied if matrices P and Q obey:

dP

dτ
= P ,

dQ

dτ
= α�(τ)Q . (A.5)

The elements of matrices P and Q have meaning of derivatives of the ray normal q coordinates
with respect to the ray coordinates, and derivative of the generalized momenta ∂ψ/∂q with
respect to the ray coordinates. These linear equations are integrated using an adaptative time-step
Runge-Kutta scheme of order 4. Considering a central ray trajectory in triangle i, the first and
second order derivatives of �� must be computed for any value of τ ∈ [τ0, τ1]. To that end, it is
assumed that the density field in the vicinity of vertex k of triangle i is of the form:

ne(x, y)
k
= ak + bkx

dne

dx
+ cky

dne

dy
+ dkx

2d
2ne

dx2
+ eky

2d
2ne

dy2
+ fkxy

d
2ne

dxdy
, (A.6)

in which the free parameters are (ak, bk, ck, dk, ek, fk). We note that these parameters could be
uniquely computed from the 6 neighbors of vertex k, although this approach leads to precision
losses for uneven mesh resolutions across the vertex. Consequently, the free parameters are
determined by method of Singular Value Decomposition by considering 36 neighboring points,
that is 3 series of neighbors around vertex k, as is illustrated in Fig. A-1. For more stability, each
point is given a weight that is the inverse of its distance to the central vertex k. Once the free
parameters are known, first order and second order derivatives of the density field are computed
for each vertex of triangle i using Eq. (A.6), and linearly interpolated from those 3 points to any
coordinate inside triangle i, as is done for the density in Sec. A.1.1. This ensure a continuous
and smooth interpolation of α�(τ) along the ray trajectory for any value of τ .

To ensure numerical stability, Eqs. (A.5) are integrated along the ray trajectory with a
variable step in τ that is not related to the RK integration of the trajectory equations. This
is achieved by storing, for a given ray in a given triangle, only the entry coordinates and entry
velocity of the ray, as well as the density gradient in the triangle. The analytical formulation for
the ray trajectory and velocity as a function of τ (Eqs. (A.2)) are then used for the determination
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A.3. Gaussian field projection onto an unstructured Lagrangian mesh

Figure A-1 – Illustration of the triangle vertices used in the determination of first-order and
second-order density gradients. The current vertex k of triangle i is shown in yellow,
the first, second and third neighbors are shown in red, green and purple, respectively.

of the density gradients transverse to the ray direction, so as to compute α�.

A.3 Gaussian field projection onto an unstructured Lagrangian
mesh

The use of PCGO rays coupled to hydrocodes poses the problem of efficient projection of the
Gaussian beam envelope onto an irregular mesh, which configuration is only determined by
hydrodynamic processes. It is convenient to describe the projection technique with the problem
of inverse Bremsstrahlung absorption.

Let us consider the case of a 2D planar geometry. The power P q

abs deposited in the plasma by
inverse Bremsstrahlung in a quadrangle q of area Aq can be written:

P q

abs = −
��

Aq

∇ · I =

��

Aq

νIB
ω2
p

ω2
0

�0
2
|u|2dA . (A.7)

Once again, we consider a triangularized mesh in which the density gradient is constant per
triangle. We now refer to triangle j as the triangle in which the central ray is in for τ ∈ [τ0, τ1],
coordinates at which it enters and leaves triangle j. We refer to triangle k as the triangle in
which we perform the projection (e.g. energy deposition). Note that the triangles concerned by
the projection can potentially represent the whole hydrodynamic grid, depending on the beam
configuration.

For efficient computations, we limit the beam parameters projection to triangles which
barycenter falls in the ±2w beam envelop. The interval [τ0, τ1] and the corresponding ±2w beam
envelope define a 2D surface Aj which intersects with the Lagrangian mesh. First, we present
the criterion used to determine which triangles are "covered" by the surface Aj .
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Appendix A. PCGO implementation in a Lagrangian Hydrodynamic code

A.3.1 Triangle selection

Fig. A-2 illustrates the selection criterion: a triangle k must be accounted for in the beam
parameter projection of surface Aj if there is a τ = τjk ∈ [τ0, τ1] at which the normal to the
central ray in triangle j intersects with the barycenter of triangle k.

The barycenter of triangle k (xb
k
, yb

k
) intersects with the central ray normal at τ = τjk when:

Tc(τ).

�
xk − x(τ)

yk − y(τ)

�
= 0 , (A.8)

where Tc(τ) is the tangent vector to the central ray at τ . Using the expressions for the analytical
ray trajectory given by Eqs. (A.2), this equation can be expressed as a third-order polynomial in
τ :

−2τ3
�
a2x + a2y

�
− 3τ2 (axvx0 + ayvy0)+

τ
�
2ax

�
xb
k
− x0

�
+ 2ay

�
yb
k
− y0

�
− v2x0 − v2y0

�
+

�
xb
k
− x0

�
vx0 +

�
yb
k
− y0

�
vy0 = 0 , (A.9)

where we have assumed τ0 = 0 for simplicity. The triangle k is considered to be covered by the
envelop of the beam if τjk ∈ [0, τ1] (see Fig. A-2). It is convenient to rewrite Eq. (A.9) as:

c3τ
3
+ c2τ

2
+ c1τ + c0 = 0 , (A.10)

where the {c0, c1, c2, c3} factors are readily identified from Eq. (A.9). Although this equation
is straightforward to solve analytically, a few details must be highlighted. When dealing with
a typical direct-drive target, mesh cells constituting the ablator and the shell are very thin.
Consequently, values for τ1, xbk − x0 and yb

k
− y0 are very small. Finding the exact solutions in

this case require the use of extended quadruple precision. Furthermore, this equation yields one
to three real solutions, which must be computed and examined one by one in order to determine
if they are in the [0, τ1] interval. Considering that this step, i.e. the detection of triangles for the
projection, is repeated a very large number of times per iteration, it must be particularly efficient.

We consider three particular cases for solving Eq. (A.10). If c3τ31 and c2τ21 are very small
compared to c1τ1, the ray trajectory is almost straight. This configuration corresponds to weak
(or absence of) density gradients in the cell. In that case, the general solution simply is:

τjk �
vx0(xbk − x0) + vy0(ybk − y0)

v2
x0 + v2

y0

. (A.11)

When c3τ31 is the only negligible term in Eq. (A.10), one must resolve a quadratic equation
and rule out the solutions outside of the [0, τ0] interval.

In the general case where no factor can be neglected, one must compute all three solutions to
Eq. (A.10) and rule out the incorrect solutions. This approach is in general too numerically costly,
due to the larger number of times this equation must be resolved and due to the requirement
of quadruple precision. Instead, we make the assumption that the ray’s parabolic trajectory is
sufficiently decomposed in elementary arcs so that for a given arc, there can only be one solution
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A.3. Gaussian field projection onto an unstructured Lagrangian mesh

Figure A-2 – Illustration of the selection process for a triangle k when the ray is in triangle
j. The ray is illustrated for τ ∈ [τ0, τ1] as a curved arrow. Other triangles of the
hydrodynamic grid are shown in grey. Dashed lines represent the ray normals at τ0
and τ1.

of Eq. (A.10) lying in the interval [0, τ1]. We make sure this assumption is correct by introducing
a splitting algorithm in the Ray Tracing step that sub-discretizes the ray trajectory as a function
of its curvature. With this assumption, we can write a simple criterion to determine if there is no
solution of Eq. (A.10) in [0, τ1]:

c0(c3τ
3
1 + c2τ

2
1 + c1τ1 + c0) < 0 , (A.12)

that is there must be a change of sign of the dot product (Eq. (A.8)) in the [0, τ1] interval. This
criterion filters the majority of cases, and the general solutions to Eq. (A.10) are only computed
when it is satisfied.

A neighborhood search algorithm (see section A.3.4) allows to perform this computation on
triangles neighboring j to improve performances. The distance rjk from the barycenter of triangle
k to the central ray in triangle j is then straigthforward to compute. The search and energy
deposition are considered complete when the triangles found in the intersection of the mesh with
A| are at distances rjk further than ±2w.

A.3.2 Integration over arbitrary triangles

The maximum power that can be deposited by the beam while the central ray is in triangle j

follows from the integration of the imaginary part of the relative permittivity along the path of
the central ray:

∆P j

abs = P j

1 − P j

0 =

�
π

2
(I1w1 − I0w0)

=

�
π

2
I0w0

�
exp

�
−2k0

� τ1

τ0

���c (τ)dτ

�
− 1

�
, (A.13)
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Figure A-3 – Illustration of a triangle configuration for the integration of PCGO variables
on the hydrodynamic mesh. The central ray is approximated by a straight line and
crosses triangle j between τ0 and τ1. Dashed lines correspond to normals to the central
ray at different values of τ . Distances D introduced in Eq. (A.15) are always taken
along the ray normal, as illustrated here with DBC(τ).

where I designates the on-axis intensity. Subscripts 0 and 1 stand for the entrance and exit of the
ray in triangle j. ∆P j

abs is the maximum power that can be deposited from the ray, independently
of the mesh configuration. Mesh boundaries or the presence of a critical density surface can
eventually crop the beam, resulting in a total power deposited in the mesh less than ∆P j

abs.
Considering a triangle k selected by the criterion defined in App. A.3.1, the power P k

abs deposited
by the beam reads:

P k

abs =

��

Ak

νjIB
ω2
p

ω2
0

�0
2
|u|2dA , (A.14)

where Ak designates the area of triangle k and we use the value of νIB from the central ray, i.e.
from the triangle j, and |u|2 = |u0(τ)|2e−2r2/w2(τ). Note that the sum of all P k

abs over selected
triangles always is less or equal to ∆P j

abs.
In order to integrate Eq. (A.14), we make the assumption that u, w and νIBne/nc vary

linearly in [τ0, τ1], between u0, w0, (νIBne/nc)0 and u1, w1, (νIBne/nc)1. This approximation
remains correct as long as high gradients of laser intensity occur in regions where the mesh is
reasonably refined. Once a triangle has been selected, the integration is performed over its entire
surface, even if parts of the triangle lie outside of the [τ0, τ1] range. This is illustrated on Fig.
A-3 alongside of the notations used.

Contrary to the triangle selection algorithm detailed in App. A.3.1, we assume for the
computation of P k

abs that the ray trajectory between τ0 and τ1 is straight. Note that in order to
avoid spurious behaviors related to this approximation near the critical density, where the ray
curvature is large, high-curvature ray trajectories are sub-discretized in smaller arcs on which the
straight line approximation is reasonable (as evoked in App. A.3.1). Given a triangle k defined
by points (A,B,C), we compute the coordinates (τA, τB, τC) at which the ray normal intersects
with the triangle points (see Fig. A-3). These values are linearly interpolated (or extrapolated)
from the given values of τ0 and τ1 and the coordinates of the ray. We now rename (A,B,C) so
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A.3. Gaussian field projection onto an unstructured Lagrangian mesh

that (τA, τB, τC) is in ascending order. In this framework, P k

abs reads:

P k

abs =
�0ω0

2

�� τB

τA

� DAC(τ)

DAB(τ)

�
��
j
(τ)���j |u|

2
dqdτ+

� τC

τB

� DAC(τ)

DBC(τ)

�
��
j
(τ)���j |u|

2
dqdτ

�
, (A.15)

where we have used νjIBω
2
p/ω

2
0 = ���

j
ω0 and DAB(τ) is the distance between the central ray at τ

and the segment AB along the normal of the ray (this notation stands for any segment in triangle
ABC). Distances D are linear expressions of τ by construction:

DAB(τ) = (DB −DA)(τ − τA)/(τB − τA) +DA ,

(A.16)

where DA is the distance between the central ray at τA and the coordinates of the point A, along
the ray normal. Eq. (A.15) can be simplified to:

P k

abs =
�0ω0

4

�
π

2

�

� τB

τA

�
��
j
(τ)���j (τ)|u0(τ)|

2w(τ)

�
Erf

�√
2DAC(τ)

w(τ)

�
− Erf

�√
2DAB(τ)

w(τ)

��
dτ+

� τC

τB

�
��
j
(τ)���j (τ)|u0(τ)|

2w(τ)

�
Erf

�√
2DAC(τ)

w(τ)

�
− Erf

�√
2DBC(τ)

w(τ)

��
dτ

�
, (A.17)

with:
F(τ) = (F(τ1)− F(τ0))(τ − τ0)/(τ1 − τ0) + F(τ0) , (A.18)

where F is either u0, w, ��
j

or ���
j
. This expression cannot be integrated analytically for linearly

varying parameters. P k

abs is computed using a numerical integrator based on Romberg’s method
which is of a higher order than the traditional Simpson’s rule [241, 242, 243].

Because the projection algorithm depends on a neighbor search algorithm, its performance
in terms of CPU time depends on the relative thickness of the beam compared to the mesh
resolution. In the worst case scenario (which should be avoided), the beam is as large as the entire
mesh, in which case the PCGO technique is of the order of RT models. Conversely, computation
of energy deposition for narrow beams (with respect to the simulation domain) is much faster
with PCGO than RT. The in-between performances depend on the number of RT rays used.

A.3.3 Density correction for transverse inhomogeneities

It is assumed in Eq. (A.15) that when computing the IB absorption in a triangle i from a thick
ray k propagating in triangle j, the coefficient

�
��
j
���
j

is that of triangle j. In order to account for

the effects of potentially strong transverse inhomogeneities in the plasma, a correction factor Cijk
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Appendix A. PCGO implementation in a Lagrangian Hydrodynamic code

Figure A-4 – (color) Basic topological elements of the Lagrangian mesh in Chic for
quadrangle cells. Node numbers are shown in red, mesh numbers in green and triangle
numbers in blue.

is added to P ijk

abs , for subcritical triangles:

C
ijk

=
ni
e

nj
e

�
1− ni

e/nc�
1− nj

e/nc

, (A.19)

for which the assumption remains that νjIB = νiIB.

A.3.4 Neighboorhood search algorithm

In order to compute the field projection from a beamlet k propagating in a triangle i, one must find
the set {∆proj

ki
} of triangles selected by the selection criterion (Sec. A.3.1). The straightforward

approach is to compute Eq. (A.12) on the whole m× n mesh. For a simulation with NB beams
constituted of NR beamlets each, and assuming each beamlet propagates through NT triangles,
this implies Nc = 2×m× n×NT ×NR ×NB computations of the numerical factors and of the
third degree equation. For a 200× 200 mesh with 10 beams of 100 rays each, propagating in a
straight line parallel to the mesh boundary (NT ≈ 400), this represents 3.2×10

10 computations of
Eq. (A.12) per hydrodynamic timesteps, which is not acceptable in terms of CPU costs, even with
parallel architectures. The only number that can be reduced here is m× n: it is not necessary to
search the whole mesh to find the suitable triangles for the projection. We describe below two
neighborhood search methods that can reduce this number of operation.

A.3.4.1 Topology based method for rectangular grid

We construct the set of triangles {∆o

i
} that is o quadrangles away from the quadrangle q in which

triangle i is, o = 1 meaning direct neighboors. Following the topological numbering of mesh
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quadrangles and triangles presented in Fig. A-4, {∆o

i
} reads:

{∆o

i } = {(q − oNpx) + ∪2o
m=1(o− 1)− (m− 1)}

∪ {(q − o)− ∪2o
m=1(o− 1)Npx + (m− 1)Npx}

∪ {(q + oNpx) + ∪2o
m=1(o− 1) + (m− 1)}

∪ {(q + o) + ∪2o
m=1(o− 1)Npx − (m− 1)Npx} , (A.20)

where Npx is the number of grid points in the x direction defined in Fig. A-4, and one must
then eliminate grid points outside of the mesh. The total set {∆T

i
} is defined as {∆T

i
} =

∪o=1,Max(m,n){∆
o

i
}. For increasing order o, the mesh cells are increasingly farther away from

the triangle i in which the beamlet centroid propagates. At any given order o, the set {∆o

ki
}

surrounds triangle i so that it is likely that Eq. (A.12) will have solutions. This is not a sufficient
condition, as the selection criterion is based on triangle barycenters, although this is not an issue.
When computing the field projection, the set {∆proj

ki
} is constructed by resolving Eq. (A.12) in

sets of triangles {∆o

ki
} of increasing order o, starting with o = 1. The search is stopped when

either (i) triangles at a distance ±2w along the beamlet normal have been found, or (ii) when
the minimum of absolute values of distances between triangle i and triangles in {∆o

ki
} is greater

than +2w. The {∆T

i
} ensembles must be computed for each triangles, that is 2×m× n arrays

of minimum size 2×m× n. Although this approach is memory intensive, the computation of the
neighbors is only done once. Using this method, the number of computation NT

c of the selection
criterion is at least equal to Nc, and at most reduced to Nc/(2 × m × n), depending on the
thickness of the beamlet with respect to the mesh resolution.

Independently of considerations on the beamlet thickness, this method is mostly efficient for
grids for which the size of the cells around the beamlet trajectory is balanced. This is rarely
the case in a Lagrangian code, where, at initialization, mesh refinement is higher in a privileged
direction (often perpendicular to the density gradients). It is then more advantageous to use an
other criterion to construct the neighbors set.

A.3.4.2 Distance based method for rectangular, cylindrical and arbitrary grid

Instead of constructing sets of triangles concentric to a triangle i and distant by o quadrangles,
we now construct the set {∆D

i
} of triangles ordered in ascending distance order from triangle

i (whereby distance we mean distance between barycenters). Each of the 2×m× n {∆D

i
} set

is sorted using a standard Quicksort algorithm. This procedure involves the computation of
(2m× n)2 L2 norms and 2m× n orderings of 2m× n size arrays, so that it is rather CPU and
memory intensive.

When searching through the {∆D

i
} set with the selection criterion, the same stopping criteria

are used as in the topology based method. Because the mesh is moving in time, this set could
be recomputed at each timestep. However, the efficiency of the projection algorithm using a
neighborhood based on the initial topology (that is computing {∆D

i
} at the initialization only)

has proven to be satisfactory. Overall, this method is more efficient than the topology based one,
and is also readily applicable to any grid cell configuration, that is quadrangle, cylindrical, or
polyhedral, regardless of the topological numbering of the mesh.
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A.3.5 Interaction of the thick ray’s envelope with the critical density: skin
depth and numerical tunneling

The computation of IB absorption for subcritical triangles is conducted (Eq. (A.14)) by assuming
a Gaussian profile of the field along the transverse propagation direction q. A PCGO beamlet
propagating near the critical density may have a theoretical beam width larger than the distance
from the central ray to the critical density, as illustrated in Fig. A-5 [left]. This situation is
very common, especially when beamlets are reflected at their turning point. In those cases, the
Gaussian intensity field profile is no longer correct beyond the critical density, where the field
should decay exponentially. When computing the IB absorption in the overcritical triangle k from
a beamlet propagation in triangle i, it is assumed that the electric field in Eq. (A.15) is of the
form |u|2 = |u0(τ)|2 exp (−|r − rc|/δ), where δ = ωpe/c is the skin-depth at the critical density
and rc is the position of the critical density surface. Eq. (A.17) now takes the form:

P k

abs =
δ�0ω0

4

�

� τB

τA

�
��
j
(τ)���j (τ)|u0(τ)|

2

�
exp

�
DAC(τ)− rc
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�
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�
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��
dτ+

� τC
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��
j
(τ)���j (τ)|u0(τ)|

2

�
exp

�
DAC(τ)− rc

δ

�
− exp

�
DBC(τ)− rc

δ

��
dτ

�
, (A.21)

with:
F(τ) = (F(τ1)− F(τ0))(τ − τ0)/(τ1 − τ0) + F(τ0) , (A.22)

where F is either u0, ��j or ���
j
.

The presence of a critical density surface in the vicinity of a thick-ray may lead to an undesired
effect of numerical tunneling when projecting the field, as is illustrated on Fig. A-5 [right]. This
effect is not physical and must be avoided. A simple method to prevent it consists in monitoring
the density of triangles in which IB deposition is computed, starting from the triangles in which
the central ray propagates and outward in both directions (that is left and right, transversally
from the central ray). Once a triangle which density is above the critical density has been
encountered, the power deposition in that direction is stopped. Moreover, it is crucial to forbid
the deposition of energy in triangles for which no vertex is subcritical. This prevents errors
related to the non-continuity of the triangles selected by a selection criterion based on triangle
barycenters. We note that in some very rare (and complex) cases, this control method can fail
and lead to small errors in the projection. For that reason, there is an option in the code’s inputs
to select mesh zones on which absorption must not be computed.

A.4 Energy conservation

The methods presented in this Appendix rely on a number of approximations, numerical methods
and algorithms that may not ensure preservation of the wave field energy through projection
onto the Lagrangian mesh. Although many particular cases that are sources of error have
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Figure A-5 – (color) Examples of a PCGO beamlet which ±2w envelope overlaps with a
critical density surface in the plasma. The color field illustrates a Gaussian intensity
profile and the grey slab is a plasma portion for which ne > nc.

been identified and addressed separately, is it virtually impossible to account for all ray/mesh
configurations that may arise and decrease the precision of the particular algorithms implemented
here. For that reason, a ray-based energy conservation safeguard is implemented, as described
below.

The total power absorbed in a triangle j from the field of a beamlet k which centroid is in
triangle i, computed from integration of Eq. (A.14), is a scalar denoted P ik

j
. The total absorbed

power from the contribution of beamlet k along its trajectory reads:

P̂ k

IB(m,n) =
�

i∈{∆traj

k
}

∪
j∈{∆proj

ki
}P

ik

j , (A.23)

where the quantity constructed by the union is a 2D field, and P̂ k

IB(m,n) is also a field, defined
on mesh numbers m and n. {∆traj

k
} is the set of triangles along the trajectory of the centroid of

beamlet k and {∆proj
ki

} is the set of triangles selected by the selection criterion (Sec. A.3.1) for
the field projection of beamlet k while its centroid is in triangle i.

The projected IB absorption field of beamlet k P̂ k

IB(m,n) is uniformly renormalized by a
constant factor αk so that the final IB absorption field reads P k

IB(m,n) = αkP̂ k

IB(m,n). The total
power absorbed along the trajectory of the central ray of beamlet k is known from the integration
of Eq. (2.31) (and not accounting for power variations from CBET or other nonlinear LPIs) by
P k
tot = P k

(τ=∞) −P k

(τ=0). This quantity represents an estimate of the maximum power that can be
projected from the beamlet onto the mesh, and is the power that would be deposited in the GO
framework along the set {∆traj

k
}. The most basic renormalization that can be used reads:

αk

GO =
P k
tot�

m

�
n
P̂ k

IB(m,n)
. (A.24)
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This renormalization is erroneous as it does not account for the plasma parameters in the set
{∆proj

ki
}, that is: (i) cropped PCGO beamlets (by plasma boundaries), (ii) density variations across

the beamlet normal direction (see Sec. A.3.3) and (iii) decay of the electric field at the critical
density surface. αk is computed by approaching the theoretical value of

�
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n
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j
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, (A.25)

where the quantities with a tilde ( ˜νiIB, ũ0ki, ω̃ki
p , w̃ki) are linearly interpolated at the midpoint of

the central ray trajectory k in triangle i. The transverse direction r is considered to be negative
on the "left" of the beamlet centroid and positive on the "right" of the centroid. The integration
boundaries read:

Rleft
= Max(Rleft

critical,−2w̃ki
) ,

Rright
= Min(Rright

critical, 2w̃
ki
) ,

Rleft
critical = Max(rkileftC,−2w̃ki

) ,

Rleft
critical = Min(rkirightC, 2w̃

ki
) , (A.26)

where rkileftC and rkirightC are the coordinates of the critical density along the normal of the central
ray k at the midpoint of its trajectory in i. The final expression for αk reads:

αk
=

�
i∈{∆traj

k
} α

ki

�
m

�
n
P̂ k

IB(m,n)
. (A.27)

This formulation ensures beamlet-based energy conservation by accounting for the plasma charac-
teristics covered by the beamlet envelope. Furthremore, because it does not depend on P k

(τ=∞),
it can be used even when the central ray power variation does not uniquely depend on inverse
Bremsstrahlung (that is the case when considering CBET, RAB, SRS and TPD).

A.5 Expressions for the Coulomb logarithms used in collision co-
efficients

For completeness, we give the expressions of the Coulomb logarithms used in the numerical codes
employed here. The Coulomb logarithm is expressed as the logarithmic ratio of the maximum to
minimum cutoffs of the impact parameter involved in binary elastic collisions between charged
particles.
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A.5. Expressions for the Coulomb logarithms used in collision coefficients

A.5.1 Electron-ion coefficient

The coulomb logarithm for electron-ion collisions reads:

logΛei = max

�
1

2
ln

�
1 +

�
max[λD, ri]

max[b0, λ̄th]

�2
�
, 2

�
, (A.28)

with:

ri =

�
3

4niπ

�1/3

,

b0 =
Ze2(me +mi)

memi|ve − vi|
2
≈ Ze2√

3mekBTe

,

λth =
�(me +mi)

memi|ve − vi|
≈ �√

3mekBTe

,

where b0 is the 90
◦ impact parameter, λD is the Debye length (given in Eq. (1.34)), ri is the

inter-atomic radius [244], λ̄th is the De Broglie length [245] and logΛei is taken to be at least equal
to 2 in order to avoid divergences with very low incident electron energies. The right-hand-side
expressions were obtained assuming |ve| � |vi| and mi � me, and the average velocity of the
electrons in the Maxwellian distribution function was taken to be �ve� =

�
3kBTe/me.

A.5.2 Inverse Bremsstrahlung coefficient

The coulomb logarithm for inverse Bremsstrahlung reads:

logΛIB = max



1

2
ln



1 +
�
min[dω,max[λ̃D, ri]]

max[b0, (1/2)λ̄th]

�2


− 5

4
, 2



 , (A.29)

with:

dω = vT,e/ω0 ,

λ̃D =

������0kBTe

nee2



1 + Z

�
T 2
F
+ T 2

e

Ti





−1

,

b0 =
Ze2(me +mi)

memi|ve − vi|
2
≈ Ze2√

2mekBTe

,

λth =
�(me +mi)

memi|ve − vi|
≈ �√

2mekBTe

,

where λ̃D is the modified Debye length [244], the linear factor of 5/4 is a correction used for high
Z plasmas [60], and the average velocity of the electrons in the Maxwellian distribution function
was taken to be �ve� =

�
2kBTe/me [246], and TF is the Fermi temperature:

TF =
�2

2mekB
(3π2ne)

2/3 . (A.30)
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Appendix B

PCGO-related algorithms

B.1 Realistic beam modeling: super-Gaussian splitting

B.1.1 Splitting method

The intensity distribution computed at the virtual circle IFFTv (see Sec. 3.2.2) is approximated
by a super-Gaussian intensity distribution Iv through a nonlinear least squares fit. The latter
intensity distribution reads:

Iv = I0v exp

�
−
����
y

rv

����
nv
�

. (B.1)

We assume that the Gaussian distributions (beamlets) have identical widths r̂v and are equally
spaced in the [−rv; rv] interval. The splitting problem then reads:

Iv =

N�

k=1

Ik0v exp



−2

�
y − rv(2

k−1
N−1 − 1)

wk
v

�2


 . (B.2)

We define an analytical expression for Ik0v:

Ik0v =
3R̂I0v
N − 1

CR̂ exp

�
−2

����2
(k − 1)

N − 1
− 1

����
nv
�

,

CR̂ = 0.53219− 3.80167× 10
−3

R̂
+

1.8226× 10
−1

R̂2
, (B.3)

where R̂ is the ratio of the beamlet radius at the virtual circle to the beam radius at the virtual
circle. R̂ is computed from R using the beamlets Rayleigh range. The coefficients in CR̂ were
obtained numerically by a least square fit. Defining Idivv as the intensity obtained by summing the
beamlets intensity profiles at the splitting coordinates, we write the mean squared error (MSE)
of the decomposition as:

MSE =
1

10rv

� 5rv

−5rv

(Idivv (r)− Iv(r))
2dr . (B.4)

The MSE (see Fig. B-1) is found to decrease with increasing R̂, with small values from R̂ = 3.
The error is small and rather independent of nv for values higher than 5, with the minimum
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Appendix B. PCGO-related algorithms

Figure B-1 – Mean Squared Error as a function of the super-Gaussian order nv and ratio
R, for N = 3R̂ beamlets. Red indicates higher MSE and blue lower MSE.

being below 5. The number of beamlets used to compute the error is N = 3R̂ and constitutes
an indication of the minimum number of beamlets to use. In practice, one will use much more
beamlets in order to obtain a correct beam contrast in the near-field (∼ 5N minimum, see Sec.
3.2.3). The value of R̂ that can be chosen has an upper limit determined by the size of the
pseudo-speckles at the focal plane, which must be larger than a few wavelengths in order to
satisfy the validity domain of PCGO.

B.1.2 Focusing of Gaussian beams

In this section, we detail the transformation of Gaussian beams by optical components. These
results are of use for the initialization of the implementation of PCGO presented in this Appendix,
in which individual Gaussian beamlets must be focused in the plasma and propagated from the
virtual circle to the mesh edge.

When a Gaussian beam goes through a lens, its radius of curvature is altered by the optical
component, whereas its width is unchanged, in the same way as it would for a spherical wave.
The input and output curvature radii of the wave Rin and Rout can be related to the focal length
f of the lens by:

R−1
out = R−1

in − f−1 , (B.5)
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B.2. Eyebolt algorithms

which can be written in terms of the beam parameters at the lens:

q−1
out = q−1

in − f−1 , (B.6)

where we have used win = wout = wL. Considering a parallel input beam at the lens that has an
infinite curvature radius and the width wL, we have q−1

in = −ıλ/(πwL) and the beam parameter
downstream of the lens reads:

q(z) = (qout + z) = (−ıλ/(πw2
L)− f−1

)
−1

+ z , (B.7)

which can be rearranged to give:

q(z)−1
=

(z − f) +
�

λf
πw2

L

�2
z − ı λf

2

πw2

L

(z − f)2 + f2

�
1 +

�
λz
πw2

L

�2
� . (B.8)

The location of the beam waist is found by searching the point where the wavefront is flat, that
is �(q(z)−1

) = 0:

zfoc =
f

1 +

�
λf
πw2

L

�2 ≈ f , (B.9)

where we have assumed λf/(πw2
L) � 1 for the last approximation. The radius of the beam at its

new waist is given by
�
−λ/(π�(q(zfoc)−1)):

wfoc =

λf
πwL�

1 +

�
λf
πw2

L

�2
�1/2 ≈ λf

πwL
. (B.10)

Equation (B.9) shows that in order to focus a PCGO beamlet defined at the virtual circle with
a radius ŵv (see Sec. 3.2.2 and App. B.1.1) an initially infinite curvature radius, one must set
its curvature radius to the desired focusing distance zfoc. The PCGO-related validity condition
(see Sec. 2.3.3.3) w � λ can then be verified at the initialization from Eq. (B.10). The beam
width and curvature radius at the mesh entry point are computed from the beam parameter at
the virtual circle using Eqs. (2.43) and (2.44).

B.2 Eyebolt algorithms

B.2.1 CBET: Intersection finding

In this section, we describe the algorithm used to find beams crossing points in the PCGO model.
Each laser beam is modeled by a bundle of PCGO rays. We then reduce the problem of beam
crossing to that of thick rays crossing. Two main assumptions are used in the model of intersection
finding described below. First, we do not consider crossings between rays belonging to the same
beam. A beam could theoretically exchange energy with itself through a particular configuration
of speckles and a sonic flow, but this situation is ill-described in PCGO due to the nature of our
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beam splitting technique (we do not model real-size speckles) and because we neglect interference.
Secondly, we do not consider envelop crossings, i.e. for rays to exchange energy, they have to
have their axis that intersect. In theory, beams that punctually share a part of their envelop in
a plasma could exchange energy but this is a small effect. This simplification makes sense in a
context where we use a large number of small rays per beam, each having a small width. When
their envelops intersect with each other, but not their centers, it is likely that these rays will
intersect further away, or that they are so large that their respective intensities are small.

These assumptions made, the problem of intersection finding can be reduced to two steps.
Firstly, we must identify when two rays are in the same cell. We start by propagating the
rays using the modified RT model. A multi-dimensional array of the cells in which rays have
propagated is constructed and inspected to find the common cells and their respective rays
numbers. Secondly, for each pair of rays identified in a same cell, we have to find whether they
indeed intersect. In a cell (triangle), each ray coordinates are dictated by the following parametric
equations (see equation (A.2)):

x1(t) = ax1t
2
+ vx01t+ x01 y1(t) = ay1t

2
+ vy01t+ y01 ,

x2(s) = ax2s
2
+ vx02s+ x02 y2(s) = ay2s

2
+ vy02s+ y02 , (B.11)

where the subscript 1, 2 refer to the ray numbers, and we have chosen the respective times s0 = 0

and t0 = 0 so that s ∈ [0, sf ] and t ∈ [0, tf ]. Two rays will exchange energy if their respective
frequencies as seen by the plasma are shifted by a precise amount, depending on the plasma
parameters. This can occur with rays having the same frequency if the plasma moves with a near
sonic velocity, or with rays of different frequencies. In the first case, ax1 = ax2 and ay1 = ay2,
and in the second case, we can assume this simplification is also correct because the frequency
difference between the rays is small. We then define ax = (ax1 + ax2)/2 and ay = (ay1 + ay2)/2.
Finding the intersection point reduces to finding si, ti such as:

axt
2
i + vx01ti + x01 = axs

2
i + vx02si + x02 ,

ayt
2
i + vy01ti + y01 = ays

2
i + vy02si + y02 ,

si ∈ [0, sf ], ti ∈ [0, tf ] . (B.12)

There are two couples of solutions si1, ti2 and si2, ti2 to this set of equations (not written here
for conciseness). For a significantly refined trajectory (see section A.1.3), at most one of these
two couples is in the correct interval. It is worth mentioning that, similarly to the solving of
equation (A.10), these solutions must be computed in extended quadruple precision in order to
avoid significant numerical errors and erroneous intersection coordinates.

Once a couple of solutions si, ti has been found, the intersection coordinates xc, yc can
be computed. These coordinates are used for the interpolation of plasma quantities in the
computation of the Doppler frequency shift, plasma parameters and the CBET gain.
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Figure B-2 – Beamlets incident on a linear density ramp from ne/nc = 0 to ne/nc = 1

with an angle of 10◦. All beamlets have the same wavelength and a Mach M = 0.9
flow is imposed at 45◦. [left] the 6 intersections on the left have a significant and
non-negligible coupling coefficient β. One can identify one 4-loop ({1;2;4;6}), two
5-loops ({1;2;3;4;6},{1;2;4;5;6}) and one 6-loop ({1;2;3;4;5;6}). The loops are analyzed
in increasing degrees of complexity and the lower β node is removed. CBET in the
simplified diagram [right] can now be computed by solving node 2 first and nodes 3 and
5 in any order. In that configuration, rays with upshifted frequencies in nodes 3 and 5
loses all their energy in the CBET.

B.2.2 CBET: Intersections ordering

At each hydrodynamic timestep, the intersections between central rays of the PCGO model are
identified. The resulting set of intersections is potentially large and usually reaches up to 10000
intersections in direct-drive target configurations. For the CBET model to be consistent, these
energy transfers must be resolved in a chronological order with respect to each ray’s propagation.
For an energy transfer to be computed at a given intersection, the two rays involved must not be
involved in a previous intersection, or only in previous intersections where energy transfer has
already been taken into account. Once an intersection has been computed, the beamlets’ energies
are updated (through their intensity) and are propagated once again from the intersection to the
next one by solving the wave front equations [34] in the plasma.

Considering CBET between two rays at a time, a given intersection i depends on at most two
direct downstream intersections (or childs) and two direct upstream intersections (or parents).
The ordering of the intersections (or nodes) starts by finding the nodes that have no parents.
We define those as being the level 0. We consider a node to be ordered if all of its parents are
ordered. By definition, level 0 nodes are ordered. During the solving process, we keep track of
nodes for which one of two parents is ordered. Those nodes are referred to as the temporary set.

From a given level i of nodes (starting from 0), we form a set from the union of the childs of
level i nodes and the temporary set. Across the nodes of this newly constructed set, we look for
ordered nodes to construct the level i + 1. Nodes in i + 1 that were in the temporary set are
removed. Childs of nodes in i that have not been resolved are added to the temporary set. The
operation is then repeated from level i+ 1 until the whole intersection tree has been ordered.
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B.2.3 CBET: Finding and resolving loops in the intersection tree

Before applying the above algorithm to a set of nodes, one must ensure that the set can be
ordered. In particular, loops in the intersection topology must be simplified for intersections to
be treated in a logical order. Identifying loops is simple in principle but can be computationally
challenging depending on the size of the loops and the total number of intersections. We define
an intersection i as being in a loop of order n if i is in the n-th generations of its own childs (see
Fig. B-2 for an example).

Loops are identified in ascending loop length order from 2 to 20. For each loop identified, the
intersection for which the CBET coupling coefficient is the lowest is removed. The intersection
tree is simplified before further loop-finding is applied by computing the energy exchange between
the beamlets and eventually eliminating intersections containing at least one depleted beamlet.

B.3 Spherical Geometry

The PCGO and Thetis models presented in Chs. 2, 3 and 5 are formulated for a 2D planar
geometry. Although a 3D spherical implosion can be approached by a 2D planar configuration
as was done in Sec. 4.5 (i.e. by modeling a cylinder instead of a sphere), this approach is only
suited for the study of the laser-plasma interaction in the coronal plasma. Because the mass of an
imploding cylinder varies in ∝ r while that of an imploding sphere in ∝ r2, this approach is not
adequate for studying the detailed shell properties at convergence. As an example, the effect of
shock amplification by spherical convergence in imploding ICF targets can only be reproduced by
considering 2D-axisymmetric geometries. Consequently, this approach is inadequate for the study
of couplings between LPI-generated HEs and shock dynamics in the spherical geometry, which is
of importance for the Shock Ignition scheme. In this section, we present a different approach to
the problem, that ultimately allows to model 2D-axisymmetric implosions with the 2D planar
PCGO and Thetis models.

We consider a sphere with the south-north axis oriented along the z axis, and assume that the
irradiation is symmetric with respect to the equatorial plane (x−y plane). Then, 2D-axisymmetric
simulations can be reduced to a plane P that contains the target center (see Fig. B-3), assuming
a rotational symmetry around z and a planar symmetry along the local r axis. Indeed, a
light ray that initially propagates in the P plane will stay in that plane, because the density
gradients transverse to P are symmetric by rotation around z. This means that a PCGO beamlet
with the centroid lying in P will stay in that plane. Because all PCGO-related quantities are
computed at the beamlet centroid coordinates, in that case we can describe the 2D-axisymmetric
Gaussian beamlet properties from the centroid propagation in the P plane, with the exception
of the off-plane component of the curvature matrix, which depends on the density gradients
in the transverse directions to P . In a 2D-axisymmetric framework, the transverse gradients
originate only from the rotational symmetry (they vary as 1/r), and do not carry any meaningful
information on 3D deformation modes of the shell. We simplify the problem by assuming that
the beamlet thickness along the off-plane axis w2 is equal to the in-plane thickness w1, i.e. the
Gaussian beam has a circular transverse profile (that is cylindrically symmetric with respect to
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Figure B-3 – Mesh configuration for axisymmetric simulations. The hydrodynamic equa-
tions are resolved in plane P . z is the rotation axis and x− y a symmetry plane.

the centroid). In that framework, the transport equation (Eqs. (2.59) and (2.74)) read:

|Ã0(τ)|
2
3D = |Ã0(0)|

2
�

w10w20

w1(τ)w2(τ)
,

⇐⇒ |Ã0(τ)|3D = |Ã0(0)|

�
w0

w(τ)
, (B.13)

which is the same expression as in the 2D framework.

According to these considerations, we consider a 2D planar laser propagation onto a target
with the hydrodynamic profile being a slice of a 3D sphere (see Fig. B-3). Recalling that in
hydrocodes the laser interacts with the plasma through the energy source term wext, the energy
computed onto a 2D cylinder must be transformed on a 3D sphere slice. This procedure is not
difficult to implement considering that in Chic, the advection equations (2.5) are resolved in
2D using the planar mass of the Lagrangian cells, while the energy diffusion equation (2.6) is
resolved in a 2D-axisymmetric framework (so-called cylindrical gemoetry) using the real (toroidal)
mass of the cells (see [115] for more details).

One caveat to this approach is the projection of PCGO beamlet properties onto the Lagrangian
mesh, such as the computation of inverse Bremsstrahlung power absorbed by the plasma. In a 2D
planar framework, the projection of the Gaussian field is computed onto slabs which cross-sections
are the mesh cells. In a 2D-axisymmetric framework, one should compute the projection of a
Gaussian field of elliptical section (or circular in our case) onto a torus which cross-sections are
also the mesh cells in the plane P . Calculation of such a volume integral represents a significant
numerical development, and the problem would be much more suited to a 3D implementation in
Cartesian coordinates than to the 2D-axisymmetric framework of cylindrical coordinates. The
projection procedure is greatly simplified as long as one of the transverse axes of the Gaussian
beamlet, q1 or q2, is orthogonal to the axis of rotational symmetry. Indeed, for a beamlet
propagating in P , because q1 is always in P and q2 always orthogonal to it, it is reasonable to
compute projections onto the 2D planar mesh and to correct for cylindrical mass equivalence.
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In Thetis, the direction of HE sources is determined from the direction of PCGO beamlets.
If the latter are confined to P , the former also lie in P , with the exception of TPD-HE which are
emitted in the full 45◦ forward cone, i.e. in planes that do not contain the target center. This
caveat is for now neglected, for lack of a fully 3D propagation model. With that hypothesis in
mind, it is straightforward to use Thetis in that configuration, because the module is tied into
the PCGO projection algorithm.

Finally, although the CBET module could also be used in this configuration, it is not a
consistent approach as it cannot account for energy transfers between beams propagating in
different P planes. In this case as well, a fully 3D propagation code would be required. Note
that CBET in 3D would create asymmetries in the external source term wext that could only be
investigated with a fully 3D hydrodynamic code in which the axial symmetry is not assumed.
Indeed, even though RT models in hydrocodes are usually 3D, their interaction with a 2D-
axisymmetric code is reduced to the geometries of toroidal cells, that is, no azimuthal asymmetries
can be accounted for.

In summary, the procedure proposed here consists in the following steps ;

• compute the laser plasma interaction with PCGO and Thetis in a 2D planar representation
of at most a quarter of a cylinder, that represents a quarter of a meridional circle of the
sphere,

• correct the source term in each cell i by the ratio of the planar mass M2Dplanar
i

to that of
the toroidal mass M2Daxi

i
so that w2Dcyl

ext,i = w2Dplanar
ext,i M2Dcyl

i
/M2Dplanar

i
,

• resolve the electron-ion coupling equations in the cylindrical geometry together with the
hydrodynamic and radiative equations,

• repeat that procedure at each hydrodynamic timestep.

This configuration is referred to as 2D pseudo-cylindrical geometry, and it is used in problems
presented in Secs. 6.3 and 6.4.
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Ray-based formulation of Hot Electron
sources

C.1 Absorption fraction model for Resonant Absorption

We derive in this section a simplified theoretical model of the Resonant Absorption that allows a
computation of the absorbed energy fraction from the knowledge of the density gradient length L,
initial angle of the wave with the gradient ϕ and the wave frequency ω. Two formulations for this
absorption fraction are presented and compared to numerical resolutions of the wave equation
and PIC simulations.

C.1.1 s-polarized case

We consider a plasma with a linear density profile; � = 1− ne/nc = 1− z/L, and an EM wave
propagating in the y − z plane, incident at an angle ϕ with respect to the density gradient (see
Fig. C-1). In that case, we have kx = 0 and ∂x = 0. For a s-polarized wave, E(y, z) = Ex(y, z)ex

ez

ey

ex

ne=nc

!
k0

L

Figure C-1 – Coordinate system and the thick ray trajectory in a plasma with a linear
density profile. The wave is represented as a contour field, in the y − z plane.
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and the electric field of the wave in the plasma (Eq. (1.50)) reads:

∂2Ex

∂y2
+

∂2Ex

∂z2
+

ω2

c2
�(z)Ex = 0 . (C.1)

Because � only depends on z, the y-dependence of the electric field is of the form ∝ exp[ıkyy]

where ky is constant and equal to its value at z = 0. Geometrically, we have ky = (ω/c) sinϕ.
Substituting for Ex(y, z) = E(z) exp(ı(ω/c) sinϕy) in Eq. (C.1) and dividing both sides by
exp(ıkyy) yields:

E(z)
ω2

c2
(�(z)− sin

2 ϕ) +
d
2E(z)

dz
2 = 0 . (C.2)

Using the WKB approach in this equation, E(z) ∝ exp[ı
�
kz(z)dz], we find that reflection of the

light wave occurs for �(z) = sin
2 ϕ. However, the WKB approximation is not valid at the turning

point. In order to estimate the field near the turning point and at the critical density (which will
be useful in deriving an approximation of the resonant field in the p-polarized case), we consider
an exact solution of Eq. (C.2). We define η = (ω2/c2L)1/3(z − L cos

2 ϕ) and substitute it for z

in Eq. (C.2):
d
2E

dη2
− ηE = 0 . (C.3)

Solutions of this equation are linear combinations of the Airy functions of the first kind Ai and
of the second kind Bi, E = C1Ai(η) + C2Bi(η). The constants C1 and C2 are defined from
asymptotic conditions. The field must decay towards zero for η → ∞ (that corresponds to opaque,
overdense plasma), which is not the case of the Bi functions. Therefore, a solution has the
form E(η) = C1Ai and the constant can be found using the boundary conditions at z = 0, i.e.
η0 = −(ωL/c)2/3 cos2 ϕ. Assuming |η0| � 1, which is satisfied for ωL/c � 1 and incidence angles
not too close to π/2, an asymptotic expression for Ai can be used:

Ai(η) =
1√

π(−η)1/4
cos

�
2

3
(−η)

3

2 − π

4

�
, (C.4)

which is valid for η � −1.3. Using Euler formula for the cosine, this field can be expressed as the
sum of a forward and a backward traveling wave:

E(z) = C1Ai(η) = C1
1

2
√
π(−η)1/4

�
exp ı

�
2

3
(−η)3/2 − π

4

�
+ exp−ı

�
2

3
(−η)3/2 − π

4

��
. (C.5)

The first term in the square brackets represents the incident wave in the WKB expression�
z

0 kzdz =
2
3

�
(−η)3/2 − (−η0)3/2

�
. Correspondingly, the second term represents the reflected field,

so that we can rearrange (C.5) to obtain:

E(z) = EFS

�
−η0
−η

�1/4�
exp ı

�
2

3
(−η)3/2 − 2

3
(−η0)

3/2

�
+R exp−ı

�
2

3
(−η)3/2 − 2

3
(−η0)

3/2

��
,

(C.6)
provided that:

C1 = 2
√
π(−η0)

1/4EFS exp

�
−2

3
ı
ωL

c
cos

3 ϕ+ ı
π

4

�
, (C.7)
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where EFS is the wave electric field at the plasma-vacuum boundary and R is the reflection
coefficient. The phase term (noted exp ıφ) in C1 is not important for the norm of the field. The
electric field then reads:

Ex = 2
√
π cosϕ(ωL/c)1/6EFSAi(η) exp

�
−2

3
ı
ωL

c
cos

3 ϕ+ ı
π

4
+ ı

ω

c
sinϕy

�
. (C.8)

The maximum value of Ex is achieved for η = −1 (corresponding to z = −(c2L/ω2
)
1/3

+

L cos
2 ϕ), Ex = 1.9

√
cosϕEFS(ωL/c)1/6. The field at the turning point, for η = 0, reaches

Ex = 1.26
√
cosϕEFS(ωL/c)1/6 and then decays exponentially in the non-transparent region. The

components of the magnetic field are obtained using the Faraday’s law (1.48):

∂Ex

∂z
= Byıω/c ,

−∂Ex

∂y
= Bzıω/c . (C.9)

Using the expression for Ex in Eq. (C.8), the magnetic field reads:

By(y, η) = −ı
� c

ωL

� 1

6

exp(ıω/c sinϕy)2
√
π cosϕEFSe

ıφdAi(η)

dη
,

Bz(y, η) = −2
√
π cosϕ(ωL/c)1/6EFSe

ıφAi(η) sinϕ exp(ıω/c sinϕy) . (C.10)

The norm of the magnetic field at the turning point, i.e. η = 0, is therefore:

|B(y, η = 0)| =

� c

ωL

� 1

6 2
√
π cosϕEFS

31/3Γ(13)

����
1 +

�
ωL

c

� 2

3 Γ(13)

31/3Γ(23)
sin

2 ϕ

� 0.92
� c

ωL

� 1

6

EFS cosϕ

�

1 + 1.88

�
ωL

c

� 2

3

sin
2 ϕ , (C.11)

where Γ is the Euler Gamma function. In particular, for a wave at a normal incidence with the
density gradient, we find the known expression for B at the turning point:

|B(η = 0)| � 0.92
� c

ωL

� 1

6

EFS . (C.12)

It exponentially decays beyond this point.

C.1.2 p-polarized case

For a p-polarized wave, the electric field reads E(y, z) = Ey(y, z)ey + Ez(y, z)ez. It is convenient
here to work with the magnetic field of the wave, which has only one component B(y, z) =

Bx(y, z)ex. The wave equation for the magnetic field (1.52) projected on ex reads:

∂2Bx

∂y2
+

∂2Bx

∂z2
+

ω2

c2
�(z)Bx =

∂Bx

∂z

d ln �

dz
. (C.13)
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Similarly to the electric field in the s-polarized case, Bx(y, z) is expressed as:

Bx(y, z) = B(z) exp(ıkyy) = B(z) exp(ıω/c sinϕy) . (C.14)

The solution for B(z) can be expressed through the Airy function similarly to Eq. (C.3) if the
term in the right-hand-side of Eq. (C.13) is neglected. Substituting this expression for Bx in the
ez component of Ampere’s law yields:

− ∂Bx(y, z)

∂y
= −ı

ω

c
�(z)Ez(y, z) . (C.15)

After differentiation and assuming Ez(y, z) = Ez(z) exp(ıω/c sinϕy), an expression for Ez(z) is
obtained:

Ez(z) = sinϕBx(z)/�(z) . (C.16)

Even though the critical point is beyond the turning point and the field Bx decays exponentially,
the value of � → 0 makes the electric field large. Consequently, the electric field near the critical
density reads Ez(z) = sinϕBx(L)/�(z). In order to simplify the problem, it is proposed in Ref.
[80] to estimate Bx(L) from the B-field |Bc0| at the turning point of the wave in the s polarized
case for ϕ = 0 (at this angle, the B-field is at the critical density, see Eq. (C.12)). For a non-zero
incidence angle, the decay of the wave from the turning point (z=L cos

2 ϕ) to the critical density
(z = L) is estimated by multiplying |Bc0| by an exponential factor exp−β, where:

β =

�
L

L cos2 ϕ

1

c

�
ω2
pe − ω2 cos2 ϕdz , (C.17)

which yields an estimated magnetic field at the critical density, noted Bc:

Bc � 0.92|EFS|

� c

ωL

�1/6
exp

�
−2ωL sin

3 ϕ

3c

�
, (C.18)

so that the driver field Ed = Bx(L) sinϕ at the critical density (ηc = (ωL/c)2/3 sin2 ϕ) reads:

Ed = sinϕBc �
|EFS|�
2πωL/c

Φ(ηc) ,

Φ(η) = 2.3η1/2 exp(−2η3/2

3
) , (C.19)

Computing the fraction of laser energy resonantly absorbed from the above formula for Φ yields
an overestimation by a factor of 1.7 [80]. We propose a different interpolation formula:

Ψ(η) � 1.759η1/2

(η + 0.435)1/4
exp

�
−2η3/2

3

�
, (C.20)

that we compare to ΦR = Φ/1.7 below. As expected, both resonance functions go to zero for
η → 0 because the component of the electric field along the gradient direction goes to zero for
normal incidence. Similarly, the resonance function goes to zero for η → ∞, as the incident wave
has to tunnel through a too large distance to reach the critical surface.
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Considering an EM damping rate νEM, the total absorbed energy flux Ω due to Ez can be
expressed from Eq. (1.75):

Ω =

� ∞

0
νEMW̄ =

� ∞

0

νEM�0|Ez|
2

2
=

� ∞

0
νEM�0

sin
2 ϕB(z)2

2|�(z)|2
dz , (C.21)

were it was assumed that ∂tW̄ = 0. Assuming νIB � ω, this equation reads:

1

|�(z)|2
=

1

(1− z

L
)2 +

�
zνIB
Lω

�2 � 1

(1− z

L
)2 +

�νIB
ω

�2 , (C.22)

where we have used νEMνIB�ω = νIBne/nc (Eq. (1.77)). The 1/|�|2 function reaches a maximum
for z = L proportional to ω/νIB, with a width proportional to νIB/ω. For νIB/ω � 1, the latter
function is highly peaked around the critical density. The contribution to the wave damping from
the Resonant Absorption (noted ΩRA) can be considered as a damping from the field resonantly
excited at the critical density. The width of the resonance being narrow around z = L, we
approximate sinϕB(z) by its value at the critical density Ed. ΩRA then reads:

ΩRA �
�0νIBE2

d

2

� ∞

0

dz

(1− z

L
)2 +

�νIB
ω

�2 =
νIB�0E2

d

2

L(π + 2arccot(νIB/ω))

2νIB/ω
, (C.23)

where it was assumed that Ed is constant over the width of the resonance. We develop this
expression in series using νIB/ω � 1 to get:

ΩRA �
π�0ωLE2

d

2
. (C.24)

Denoting the vacuum energy flux of the wave by W̄FS = c�0|EFS|
2/2, the absorbed energy fraction

fA = ΩRA/W̄FS reads:

fA =
πωL

c

E2
d

|EFS|
2
=

F (ηc)2

2
, (C.25)

where F (ηc) is a resonance function, i.e. ΦR for the one derived in Ref. [80] or Ψ for the one
we have proposed. Figure C-2 shows a comparison of the resonance functions obtained in these
simplified approaches to numerical simulations solving the wave equation in a density gradient
[95] for Te = 2.55 keV and Te = 51 keV. Results are also compared to PIC simulations of a wave
incident on a density gradient for k0L = 12.5 and Te = 625 eV. Comparison of the absorption
fractions fA shows a good agreement between the simple estimates ΦR and Ψ with the reference
simulations. The latter also shows that the optimal angle for Resonant Absorption is located
between ηc = 0.47 and ηc = 0.53. The resonance function we propose predicts is maximum at
ηΨc = 0.51, whereas the formulation from Ref. [80] yields a maximum absorption at ηΦc = 0.63.

C.2 Resonant Absorption model implementation in PCGO

The model derived in Sec. C.1 gives an estimate of the EM energy absorbed at the critical density,
assuming a linear density profile. In realistic simulations of planar targets or ICF implosions,
density profiles could be more complicated. Consequently, the initial angle ϕ of the wave with
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Figure C-2 – (color) Comparison of the different absorption fractions between PIC simula-
tions (yellow crosses, data from [95]), numerical resolution of the wave equation in
plasma for two electron temperatures (black and red crosses, data from [95]) and for
the two definitions of the resonance functions Φ in green and Ψ in blue.

respect to the density gradient direction is not sufficient to characterize the entire trajectory of
the wave. However, in usual implementations of GO (and PCGO), the density profile is still
approximated as linear per each triangular mesh cell. Consequently, the theory derived above is
adapted to the framework of a density profile that is linear by parts.

For a ray propagating in a given triangle i of density gradient length Li, we compute the
critical surface coordinate ηic = (ωLi/c)2/3 sin2 ϕi as if this ray had been propagating in a linear
density gradient of scale length Li from vacuum to its current position. To that end, we compute
the angle ϕi that the ray would have had with the density gradient at the vacuum-plasma interface
if it had been propagating in a linear density gradient of scale length Li. The ray trajectory
being analytically known per mesh triangle (see Eq. (A.2)), we can express ϕi from the x and y

component of the density gradient in triangle i, noted ax and ay, respectively. From the Cartesian
coordinate system (x, y) we define the (t, p) coordinate system with the unit vectors t tangent to
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the density gradient and p parallel to it and in the opposite direction, that is:

t =
1�

a2x + a2y




ay

−ax

0



 p =
−1�
a2x + a2y




ax

ay

0



 . (C.26)

In that coordinate system, at = 0 so that the ray velocity in the direction tangent to the density
gradient reads vt(τ) = vt(0) = sinϕ where ϕ is the initial angle of the ray with the density
gradient (see Eqs. (A.2)). In the (x, y) coordinate system, the tangential component of the
ray velocity is simply vt(τ) = v.t, so that the initial angle with the density gradient at the
vacuum-plasma interface is:

ϕi
=

������
arcsin



vx0ay − vy0ax�
a2x + a2y





������
, (C.27)

where vx0 and vy0 are defined at the ray entry point of triangle i. With our notation, the density
gradient scale length Li is defined so that ne/nc = z/Li, that is:

Li
=

nc

|∇ne|
=

1

4

�
a2x + a2y

, (C.28)

not to be mistaken for the usual definition of the scale length with ne/(dne/dx). Knowing ϕi

and Li we can compute the critical surface coordinate ηic = (ωLi/c)2/3 sin2 ϕi and the absorption
fraction using ΨR(ηic).

From a physical standpoint, the Resonant Absorption is mainly constituted from the contribu-
tion of the electric field at the turning point of the wave that decays to the critical density. From
a discrete, ray-based perspective, this means that Resonant Absorption occurs at the turning
point of the ray. In our model of Resonant Absorption, we choose to transfer energy from the
thick ray to the resonance only when the ray in a given triangle is reflected, i.e. turns back
with respect to the density gradient. This can be translated as a condition on the existence of
τ ∈ [τ0, τ1] in triangle i so that the component of the ray velocity parallel to the gradient vp(τ)

reaches zero and changes sign. This is equivalent to considering that τp0 < τp
T
< τp1 where τp0 and

τp1 are the ray parametric coordinates in the (t, p) coordinate system, corresponding to τ0 and
τ1, and τp

T
is the parametric coordinate of the ray at the turning point in the (t, p) coordinate

system. The component of the ray velocity parallel to the density gradient vp reads:

vp(τ) = (cosϕp − τ)/(2Li
) , (C.29)

so that τp0 and τp1 read:

τp0 = 2Li
(−v(τ0).p+ cosϕi

) ,

τp1 = 2Li
(−v(τ1).p+ cosϕi

) , (C.30)
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and τp
T

is found by setting vp(τ) = 0:

τp
T
= 2Li

cosϕi . (C.31)

This expression allows us to compute ηic = (ωLi/c)2/3(1 − (τp
T
/(2Li

))
2
). If fA(ηic) is non-zero,

there is Resonant Absorption. Energy is taken of the thick-ray by reducing its intensity at
constant width. In practice, PCGO quantities I and w are linearly interpolated from its values
at τ0 and τ1 to the turning point coordinate to get IT and wT . The intensity is reduced at the
turning point by 1− fA and the integration of the thick-ray parameters through the wave front
equation is continued.

C.3 Definition of PCGO-based HE sources from macroscopic drive
functions

Considering a Parametric Instability (PI) with an intensity threshold IPIth and an overlap of EM
waves creating an intensity field in the plasma IΣ, one can define a macroscopic drive strength in
cell i, ηPI

i
= IΣ,i/IPIth,i. The global intensity field in the triangle i, computed from N thick-rays

(that may not be in triangle i) reads:

IΣ,i =
c�0
2Ai

N�

k=1

��

Ai

�
��
k
|uik|

2
dAi , (C.32)

where it is assumed here that the triangle i is subcritical for all beamlets k. The computation of
this sum is not straightforward and can be achieved by means of the field projection algorithm
presented in App. A.3.2.

The definition of HE sources is explicit; HE source parameters at t+∆t are computed based
on the intensity field IΣ,i(t). For that reason, the |uik| term accounts for wave damping from
collisional absorption, as well as the reduced intensity due to the power transfer to SRS and TPD
electrons (computed at t), and the Resonant Absorption.

For ηPI
i

< 1, it is considered that the corresponding parametric instability is absent. For
ηPI
i

≥ 1, it is considered that the parametric instability develops and that it drives hot electrons.
For a given parametric instability, we define the macroscopic source functions Gθ(η), FE(η),
Thot(η) and RB(η) (the PI superscript was dropped for clarity). These functions are used to
characterize the source parameter of a given parametric instability:

Gθ,i = Gθ(ηi) ,

FE,i = FE(ηi) ,

Thot,i = Thot(ηi) ,

RB,i = RB(ηi) . (C.33)

Note that for a given beamlet, eHE is not detailed because the symmetry axis of the HE source is
always taken to be the direction of the beamlet at the point of HE emission. It is now assumed
that the macroscopic source functions are known (those are defined in the subsequent sections).
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One must define the beamlet-based HE source parameters {Gθ,ik, FE,ik, Thot,ik, RB,ik} (where k

is a beamlet number), computed from a beamlet drive strength η = ηik and from the macroscopic
source functions. This is a required step in order to ensure consistency and energy conservation,
as evoked above in the points (1) and (2).

There are several approaches to defining ηik. The most straightforward is to assume that each
beamlet contributes evenly to the acceleration of electrons:

ηik = ηi ,

FE,ik = FE(ηik)/NB,i ,

Thot,ik = Thot(ηik) ,

Gθ,ik = Gθ(ηik) ,

RB,ik = RB(ηik) , (C.34)

where NB,i is the number of beamlets which centroid is in cell i. This approach ensures that the
macroscopic HE flux is reproduced by the beamlets, that is

�
k
FE,ik(ηik) = FE,i(ηi). However,

it does not account for the beamlet intensity statistics with respect to the direction of the HE
emissions, and in certain situations FE,i(ηik)/NB,i may be larger than the beamlet local flux.

A second approach consists in mimicking the intensity statistics in the beamlet drive strength:

ηik = NB,iI
int
ik

/Ith,i ,

FE,ik = min(FE(ηik),FE(ηi)/(NB,i)
κ
) ,

Thot,ik = Thot(ηik) ,

Gθ,ik = Gθ(ηik) ,

RB,ik = RB(ηik) , (C.35)

where I int
ik

is the interpolated beamlet intensity at the point of HE source creation (e.g. nc/4)
and κ is a free parameter. Note that

�
k
I int
ik

�= IΣ,i. This approach ensures that the HE source
has a statistics of HE temperatures, backscattered light, etc... that is consistent with the laser
intensity statistics, and that beamlets cannot be depleted. For κ = 1, the second equation implies
�

k
FE,ik(ηik) ≤ FE,i(ηi), so that the amount of accelerated HEs is in general underestimated with

respect to the macroscopic drive function. This is compensated for by setting κ = 1/2, which is
seen to give

�
k
FE,ik(ηik) ≈ FE,i(ηi) in the simulations.

As for the Resonant Absorption model, any fraction of energy converted into hot electrons
is substracted from the PCGO beamlet power at the point of emission of the electron beam.
The updated PCGO beamlet parameters are re-integrated through the wave front and transport
equations in order to describe the interaction consistently. The position from which electron
beams is emitted is the result of an interpolation inside a mesh cell to locate the position of the
emission density (e.g. nc/4) along the curved ray trajectory. The ray direction defines the main
axis of the emission, and the electron beam is launched from this point with the desired angular
profile (see Fig. 5-14). The transverse width of the source, i.e. of each ASA beamlet, is chosen to
be equal to the transverse width of the PCGO beamlet at the emission point.
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Multiscale Description of the Laser-Plasma Interaction, Application to the Physics
of Shock Ignition in Inertial Confinement Fusion

Keywords: Laser-Plasma Interaction, Hydrodynamic code, nonlinear LPI processes, thick-rays, hot electrons, Cross-
Beam Energy Transfer, ICF.

This manuscript presents a novel formulation of the Laser-Plasma Interaction (LPI) at hydrodynamical scales, that
couples the plasma dynamics with linear and nonlinear LPI processes. The standard Ray Tracing model, based on Geometrical
Optics, is not well suited for that purpose because it does not readily describe the laser intensity distribution in plasma.
We propose an alternative model formulated for a Lagrangian hydrodynamic code. It is based on the ray-based Paraxial
Complex Geometrical Optics (PCGO) that describes Gaussian optical beamlets. A method for modeling non-Gaussian laser
beams smoothed by Phase Plates is presented, that allows to create intensity variations that reproduce the beam envelope,
contrast and high-intensity statistics predicted by paraxial laser propagation codes. We propose inline reduced models for
the non-linear laser-plasma interaction, in the case of the Cross-Beam Energy Transfer (CBET) and the generation of Hot
Electrons (HE). The inline CBET model is validated against a time-dependent conventional paraxial electromagnetic wave
propagation code, in a well-defined plasma configuration with density and velocity profiles corresponding to an inhomogeneous
plasma. Good agreement is found past a transient period on the picosecond time scale, notably for the spatial distribution
of density perturbations and laser intensities in the interaction region. Application of the model to a direct-drive Inertial
Confinement Fusion (ICF) configuration shows that CBET significantly degrades the irradiation symmetry by amplifying
low frequency modes and reducing the laser-capsule coupling efficiency, ultimately leading to large modulations of the shell
areal density and lower convergence ratios. The LPI/HE model predicts the HE fluxes, temperatures, angular dispersion and
direction from the laser intensity of PCGO beamlets from simplified expressions based on theoretical models and scaling laws
obtained in kinetic simulations. The HE beams propagation and energy deposition in plasma is described in the angular
scattering approximation, adapted to two-dimensional, transversally Gaussian, multigroup HE beams of arbitrary angular
distribution. This model accounts for (i) competition for the laser energy between the various instabilities and with the linear
collisional absorption, (ii) coupling between nonlinear LPIs and plasma dynamics via the high energy electron beams and
(iii) loss of coupling due to backscattered Raman light. Its performance is confirmed by comparison with measurements of
shock timing, laser absorption, HE fluxes and temperatures in experiments conducted on Omega and Pals laser facilities.
This multiscale inline LPI-HE model is used to interpret several Shock Ignition experiments. It is found that HEs from
parametric instabilities significantly increase the shock pressure and velocity in the target, while decreasing its strength and
the overall ablation pressure. Applications to the high-intensity regime of shock ignition ICF suggest that HEs generated by
the nonlinear LPI are nefarious to the capsule implosion in conventional target designs, as they lead to a dramatic increase in
the hotspot mass and losses by Bremsstrahlung radiation. This model is readily applicable to hydrodynamic description of
laser-target experiments of High Energy Density Physics, in the interaction regimes involving the above-mentioned non-linear
LPI processes.

Description Multi-Echelle de l’Interaction Laser-Plasma, Application à la Physique
de l’Allumage par Choc en Fusion par Confinement Inertiel

Mots-Clefs : Interaction Laser-Plasma, code Hydrodynamique, processus d’ILP non-linéaires, rayons épais, electrons
chauds, échange d’énergie entre faisceaux croisés, FCI.

Ce manuscrit présente une nouvelle formulation de l’Interaction Laser-Plasma (ILP) à l’échelle hydrodynamique, qui
couple la dynamique du plasma avec les processus d’ILP linéaires et non-linéaires. Le modèle standard du tracé de rayon
(Ray-Tracing), basé sur l’Optique Géométrique, est peu adapté pour modéliser l’ILP non-linéaire car la distribution de
l’intensité laser dans le plasma n’est pas directement disponible. Nous proposons un modèle alternatif spécifiquement formulé
pour un code hydrodynamique Lagrangien, basé sur l’Optique Géométrique Complexe Paraxiale qui décrit la propagation
de faisceaux Gaussiens. Cette méthode est ensuite adaptée à la description de faisceaux laser non Gaussiens, et permet de
reproduire la statistique d’intensité, l’enveloppe et le contraste de faisceaux lissés par une Lame de Phase. Nous proposons
des modèles en ligne pour décrire l’échange d’énergie entre faisceaux croisés (CBET) et la génération d’électrons rapides par
l’ILP non-linéaire, en utilisant PCGO. Le modèle en ligne de CBET est validé par comparaison avec un code de propagation
d’une onde électromagnétique paraxial conventionnel dans le cas d’un plasma inhomogène en vitesse. Un bon accord est
trouvé après une période transitoire de l’ordre de la picoseconde, notamment en ce qui concerne la distribution spatiale de
l’intensité laser et des perturbations de densité du plasma. Ce modèle appliqué à une configuration d’attaque directe de
Fusion par Confinement Inertiel (FCI) montre que le CBET réduit le couplage laser-cible, réduit le facteur de convergence,
et amplifie les modes basse fréquence de déformation de la capsule. Le modèle de génération d’électrons rapides par l’ILP
non-linéaire modélise les propriétés des faisceaux d’électrons rapides, i.e. leur flux, énergie moyenne, dispersions angulaire
et direction, à partir de l’intensité laser prédite par PCGO et à partir d’expressions simplifiées, basées sur des modèles
théoriques et des lois d’échelles obtenues à l’aide de simulations cinétiques. La propagation et le dépôt d’énergie par les
électrons rapides est décrite à partir d’une approximation de diffusion angulaire adaptée en deux dimensions, pour des
faisceaux de profil transverse d’intensité Gaussien, de distribution d’énergie exponentielle et d’ouverture angulaire arbitraire.
Ce modèle couplé rend compte de (i) la compétition pour l’énergie laser entre les différentes instabilités et avec l’absorption
collisionnelle, (ii) le couplage entre l’ILP non-linéaire et la dynamique du plasma à travers les faisceaux d’électrons rapides, et
(iii) la perte de couplage laser-plasma due à la diffusion Raman arrière. Les performances de ce modèle sont évaluées par
comparaisons avec des expériences d’allumage par choc conduites sur les installations laser Omega et Pals. Ce modèle
multi-échelle est ensuite utilisé pour interpréter plusieurs expériences. On trouve notamment que les électrons générés par
l’ILP non-linéaire augmentent la vitesse du choc et la pression en aval de ce dernier, tout en réduisant sa force et la pression
d’ablation. Une application à la phase fortement non-linéaire de l’allumage par choc en FCI suggère que ces électrons sont
néfastes pour l’implosion de la capsule en ce qui concerne les cibles conventionnelles : ceux-ci causent une augmentation
de la masse du point chaud et des pertes radiatives. Ce modèle peut être appliqué à la modélisation hydrodynamique des
expériences laser-cible de physique des hautes densités d’énergie pour les régimes d’interaction pertinents pour les instabilités
évoquées ci dessus.
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Chapitre 0

Introduction

0.1 Description multi-échelle de l’interaction laser-plasma

L’interaction de faisceaux laser avec les plasmas implique une large gamme de processus
physiques, de l’accélération de particules chargées à l’excitation d’ondes plasma, la génération et
la saturation d’instabilités laser-plasma. La compréhension du couplage laser-plasma dans son
entièreté requiert l’étude d’une grande variété de champs physiques, incluant la description de la
réponse électromagnétique du plasma, la théorie de l’interaction et des instabilités onde-particule
et la théorie des ondes plasma linéaires et non-linéaires. Bien que de nombreux processus de
couplage laser-plasma aient été observés dans les expériences, de nombreux problèmes difficiles
liés à la variétés des phénomènes mis en jeu restent à résoudre. Ceux-ci dépendent notamment de
l’intensité laser et des propriétés de lissage du faisceau, des paramètres plasma locaux comme la
température et les gradients de densités, et de la composition du plasma. Réciproquement, les
paramètres plasma dépendent de l’interaction laser-plasma. De plus, ces couplages interagissent
entre eux, ce qui donne lieu à des processus additionnels de compétition ou d’amplification. La
compréhension de ce problème couplé et non linéaire à motivé de nombreuse études théoriques,
numériques et expérimentales. Certains exemples notoires sont : l’identification du raidissement
du gradient de densité [1, 2], les mesures de l’absorption plasma pour les lasers intenses [3, 4, 5,
6, 7, 8], la mesure expérimentale de distributions électroniques caractérisées par au moins deux
températures [9, 10, 11, 12], l’identification des instabilités paramétriques de type Brillouin [13,
14, 15, 16] et Raman [17, 18, 19, 20, 21], et l’évaluation de la dépendance à la longueur d’onde
des processus de couplage [22, 23, 24, 25]. Le développement des outils numériques moderne
permet une étude plus complète de ces processus, et ainsi, d’investiguer divers champs physique
et d’améliorer l’interprétation des expériences.

On considère l’Interaction Laser-Plasma (ILP) dans le régime des durées d’impulsion de [0.1, 10]
ns et pour lesquelles le paramètre d’interaction Iλ2

L est dans l’intervale [1013-1017] Wµm2/cm2 (I
est l’intensité laser et λL la longueur d’onde associé, dans le vide). Ces paramètres lasers sont
courants dans les expériences de Physique des Hautes Densités d’Energies, avec notamment des
applications en Astrophysique de Laboratoire et en Fusion par Confinement Inertiel (FCI). La
dynamique des cibles sujettes à de telles intensités sur de telles durées d’impulsion à lieu sur des
échelles temporelles et spatiales de l’ordre de plusieurs nanosecondes et de plusieurs millimètres.
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Chapitre 0. Introduction

Echelles spatiales (m) Echelles temporelles (s)

Hydrodynamique
10−3 - plasma coronal
10−5 - coquille en vol

10−7 - chocs hydrodynamiques

Laser
10−4 - tâche focale 10−8 - durée d’impulsion

10−6 - inhomogénéités laser 10−12 - lissage (SSD)

Résolution hydro.
10−7/10−4 10−15/10−12

Méthodes Lagrangiennes condition de stabilité numérique
→ pas variable → pas variable

Eqs. de Maxwell
10−8/10−7 10−16

longueur de Debye/longueur d’onde 1
ω/période laser

→ dans tout le plasma → dans tout le plasma

Table 1 – Echelles temporelles et spatiales impliquées dans la description hydrodynamique
des processus laser-cible pour les intensités pertinentes à cette étude.

La description théorique de la dynamique des plasmas sur ces échelles repose sur des approches
fluides, utilisant des modèles hydrodynamiques qui permettent d’étudier de grands volumes de
plasma sur des longues durées. D’autre part, l’interaction laser-plasma non linéaire est étudiée
de manière appropriée aux échelles microscopiques et mésoscopiques à l’aide de code cinétiques
(particle-in-cell et Fokker-Planck) et de modèles électromagnétiques paraxiaux. La diversité des
échelles mises en jeu dans la description de l’évolution de la dynamique de la cible, en incluant
les processus à fine échelle de l’ILP, est illustrée sur le tableau 1.

L’état de l’art de la description de la propagation laser aux grandes échelles repose sur des
modèles réduits compatibles avec les performances des ordinateurs modernes. La plus commune
est celle du Tracé de Rayon (RT) [26], qui décrit le faisceau laser par des fagots de rayons
infiniment minces qui suivent les lois de propagation de l’Optique Géométrique (GO) et qui
sont caractérisés par une densité de puissance. Dans les situations où les effets collectifs et les
couplages non-linéaires sont peu importants (Iλ2

L � 5× 1013 Wµm2/cm2), les méthodes basées
sur l’optique géométrique sont suffisamment précises et numériquement efficaces. Elles décrivent
la réfraction du laser et le chauffage du plasma par l’absorption collisionnelle. Au contraire, la
modélisation de l’ILP à de plus grands paramètres d’interaction repose sur la connaissance de
l’amplitude du champ électrique et de la direction du front d’onde 1, quantités qui ne sont pas
directement décrites par l’optique géométrique. La physique de l’ILP linéaire et non-linéaire est
alors souvent modélisée par des modifications ad-hoc du flux thermique électronique maximum
ou en ajustant la balance de puissance des faisceaux lasers, de façon à reproduire les résultats
expérimentaux. Ces approchent limitent la compréhension des processus physiques mis en jeu
et la capacité prédictive de ces outils numériques. Afin de remédier à ces limitations, des efforts
récents ont été fait afin d’inclure l’ILP non-linéaire aux échelles hydrodynamiques, notamment
avec la mise au point de modèles en-ligne pour décrire l’échange d’énergie entre faisceaux croisés

1. On note que bien que la notion de direction individuelle d’un rayon existe, celle du front d’onde dans son

ensemble n’est pas décrite.
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(CBET) [27, 28]. Ces outils ont permis de mieux interpréter et concevoir les expériences de
FCI [29] et peuvent être appliqués pour évaluer des configurations d’éclairement laser-cible plus
complexes, telles que le schéma d’attaque directe polaire [30]. De la même façon, les effets sur la
dynamique du plasma des faisceaux d’électrons à haute énergie générés par l’ILP non-linéaire
est particulièrement importante pour les études de FCI [31, 32], les expériences de double front
d’ablation à haute intensité, ou pour la conception et l’interprétation des expériences laser-cible
dans le régime nanoseconde [33].

Etant donné la grande variété des configurations laser-cible qui mettent en jeu ces processus,
il y a un besoin évident pour un modèle multi-échelle qui pourrait rendre compte des couplages
laser-plasma linéaires et non-linéaires dans les codes hydrodynamiques, ainsi que des rétro-actions
entre la propagation laser dans le plasma, la génération d’électrons de haute énergie par l’ILP non-
linéaire, la propagation de ces faisceaux d’électrons et la dynamique du plasma. Cette modélisation
à de grandes échelles pose des problèmes sévères liés à (i) la description précise de l’intensité laser
dans le plasma, (ii) la description consistante des sources d’électrons rapides à partir du modèle
de propagation laser et (iii) le transport de ces faisceaux d’électrons dans le plasma. Les deux
premiers points sont liés à l’usage standard de l’optique géométrique, qui ne permet pas d’évaluer
de manière robuste l’intensité laser dans le plasma [34], et le dernier point demande un modèle de
propagation à l’échelle hydrodynamique qui soit à la fois robuste et rapide. L’objet de ce travail
est d’aborder ces difficultés afin de formuler un modèle multi-échelle qui décrive l’ILP à l’échelle
hydrodynamique, y compris son couplage avec la génération de population d’électrons rapides.

Les applications de cette formulation ont pour cadre la FCI, et plus précisément le schéma
d’allumage par choc, qui est particulièrement vulnérable à l’ILP non-linéaire lors du pic d’intensité
laser opérant sur une durée de ∼ 500 ps. Nous présentons dans la section suivante le contexte de
la FCI, et la position qu’occupe l’ILP linéaire et non-linéaire dans ce cadre. Cette section fournit
les bases de la formulation des objectifs de la thèse.

0.2 L’Interaction Laser-Plasma dans le cadre de la Fusion par
Confinement Inertiel

0.2.0.1 La Fusion Thermonucléaire

Les réactions de fusion s’obtiennent en rapprochant suffisamment deux noyaux chargés afin
qu’ils se lie à travers la force nucléaire forte, qui est attractive et dont la portée d’interaction
est de l’ordre de quelques fermi (quelques 10

−15m). Rapprocher les noyaux chargés à de telles
distances nécessite de vaincre la force de répulsion Coulombienne, qui intéragit sur de plus longues
portées que la force nucléaire forte. Bien que l’énergie cinétique nécéssaire à ce rapprochement
soit de l’ordre de 300 keV (pour des réactions de Deuterium-Tritium), l’effet quantique tunnel
permet d’obtenir ces réactions à de plus basses énergies [35]. La section efficace σ des réactions
de fusion pour divers noyaux est montrée sur la figure 0-1 [gauche]. La réaction la plus probable
à basse température est celle qui utilise le mélange D-T, pour lequel la section-efficace à 10
keV est jusqu’à deux ordres de grandeurs plus grande que pour d’autres réactifs. Cette réaction
particulière s’écrit :

2
1D+

3
1T → 4

2He + n + 17.6 MeV , (1)
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Figure 0-1 – [gauche] Sections efficaces des réactions de fusion (en barns, i.e. 10−28m2),
en fonction de l’énergie cinétique relative moyenne entre les nucléons en keV, et
[droite] réactivité des réactions de fusion (en m3/s) en fonction de la température
cinétique en keV. Figures de http://www.kayelaby.npl.co.uk.

où les 17.6 MeV d’énergie cinétique libérés par le processus de fusion sont partagés entre la
particule α (3.56 MeV) et le neutron (14.03 MeV).

Dans la région de Gamow, en dessous de ∼ 100 keV, la section efficace pour la fusion du
mélange D-T augmente de façon monotone avec l’énergie cinétique des particules projectile.
A ces températures, le combustible devient un plasma d’électrons et de deux espèces d’ions.
En considérant un plasma à l’équilibre thermodynamique et caractérisé par une fonction de
distribution Maxwellienne de température moyenne T � 10 keV, les ions dans la queue haute
énergie de la fonction de distribution sont proche du maximum de la section efficace de fusion. En
intégrant sur la fonction de distribution Maxwellienne, on calcul la réactivité thermique moyenne
�σv� d’un plasma de fusion en fonction de sa température moyenne T , comme montré en figure
0-1 [droite]. Le chauffage du plasma permet de compenser les pertes d’énergies dans les collisions
ion-ion élastiques, qui ont une section efficace bien plus grande. Cette approche où les réactions de
fusion sont obtenues dans la queue haute énergie de la fonction de distribution d’un plasma chaud
s’appelle fusion thermonucléaire. C’est l’approche de choix pour produire de grandes quantités
d’énergie de fusion.

0.2.0.2 Combustion du D-T

A la température de 10 keV mentionnée précédemment, le plasma ne peut pas être confiné
dans un conteneur solide ; ce dernier serait rapidement détérioré, polluant ainsi le combustible
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qui refroidirait rapidement. Ainsi, ces plasmas doivent être confinés dans le vide. Cependant,

les hautes températures mises en jeu impliquent aussi de hautes pressions : le plasma aura

alors naturellement tendance à s’étendre et refroidir. Or, le plasma doit être confiné dans un

volume donné pendant un temps suffisamment long afin d’avoir le temps de bruler la majorité du

combustible. Pour un mélange équimolaire de D-T et en supposant une température constante

pendant tout le confinement, la fraction de combustible brûlée FDT s’écrit [36, 37] :

FDT =
�σv�n0τ/2

�σv�n0τ/2 + 1
, (2)

où τ est le temps de confinement et n0 est la densité volumique initiale des ions. Cette formule

simple souligne les deux paramètres principaux de la fusion thermonucléaire ; la température

T (contenue dans �σv�) et le produit n0τ . Afin de bruler la moitié du combustible, l’équation

(2) montre que n0τ doit être de l’ordre de 2�σv�−1. Etant donné la difficulté de maximiser

simultanément n0 et τ , le problème de la fusion peut être abordé de deux angles différents : en

confinant un plasma de haute densité sur des temps courts, ou en confinant un plasma peu dense

sur des temps longs (ce dernier cas étant celui de la Fusion par Confinement Magnétique).

0.2.1 La Fusion par Confinement Inertiel

Avec l’invention du laser, la possibilité de focaliser de grandes quantités d’énergies dans des

petits volumes fut considérée comme un moyen d’initier les réactions de fusion. Les premières

expériences ont suggérées que la configuration optimale est celle de l’irradiation d’une cible solide

sphérique, la chauffant à de hautes températures tout en confinement le plasma par sa propre

inertie sur de courtes durées. Cette approche est celle de la Fusion par Confinement Inertiel (FCI)

[38].

0.2.1.1 Allumage par point chaud central

En considérant une sphère uniformément irradiée par des faisceaux lasers, on peut montrer

que la fraction brûlée de combustible s’écrit [36, 37] :

F ICF
DT =

ρr

ρr + (8
√
mDTγkBT )/�σv�

, (3)

avec γ l’indice adiabatique, kB la constante de Boltzmann, mDT la masse moyenne des noyaux D

et T et ρr la densité surfacique du combustible, reliée au produit n0τ défini précédemment par

ρr = 4
√
mDTγkBTn0τ .

Cette équation souligne que l’obtention de hautes fraction brûlées nécessite d’augmenter la

densité surfacique de la cible sphérique. Etant donné que la densité surfacique d’une sphère de

masse M et de rayon R varie en ρR = (3/(4π))1/3M1/3ρ2/3, on peut conclure que (i) augmenter

la densité surfacique à masse constante requiert une augmentation de la densité ρ au dessus de

celle du solide, et (ii) pour une densité surfacique donnée (i.e. pour une fraction brûlée donnée),

augmenter la densité implique qu’une plus faible masse de combustible est nécessaire, et donc

moins d’énergie laser doit être investie pour la chauffer à une température donnée.

L’approche actuelle de la FCI consiste à porter une faible masse de combustible à de hautes
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densités et avec les bonnes propriétés thermodynamiques, tout en maintenant la symétrie de la

compression et en utilisant de faibles énergies laser de façon à ce que l’énergie de fusion dépasse

grandement l’énergie investie pour la compression et le chauffage du combustible.

Afin d’atteindre cet objectif, chauffer la masse entière de la sphère de D-T est inefficace

car cela requiert une trop grande énergie. L’approche historique et standard de la FCI est celle

de l’allumage par point chaud central, où seulement une petite masse de la cible est portée

aux conditions nécessaires à l’initiation des réactions de fusion. Dans ce cadre, les cibles sont

constituées d’une coquille sphérique de D-T contenant un gaz de D-T à basse densité. Une fois que

les réactions de fusions sont démarrées dans le point chaud, les particules α générées déposent leur

énergie dans la coquille dense et froide autour du point chaud, ce qui conduit à son allumage. Le

chauffage du point chaud est obtenu par le travail PdV communiqué par la coquille en implosion.

Obtenir les paramètres nécessaires à l’allumage du point chaud et de la coquille requiert de

comprimer la cible à de très hautes densités, i.e. d’obtenir des facteurs de convergences de l’ordre

de 30-40.

0.2.1.2 Compression de la cible par laser

L’accélération et la compression de la cible provient de l’expulsion de matériaux de la coquille

ablatée par le laser à la surface externe de la cible. L’ablation laser produit une pression PA qui

varie, en l’absence de processus anormaux d’absorption, en :

PA = 57(ηabsI15,W/cm2/λL,µm)2/3 Mbar , (4)

où ηabs est la fraction d’énergie laser absorbée, I15,W/cm2 est l’intensité laser dans le vide en unité

de 1015 W/cm2, et λL,µm est la longueur du laser dans le vide en µm. La pression d’ablation est

approximativement égale à la pression à la densité critique ρc, où la lumière laser est réflechie et

la vitesse plasma est égale à la vitesse acoustique cs, de sorte que PA ≈ ṁacs ≈ ρcc2s ∝ (I/λL)2/3,

où ṁa est le taux de masse ablaté. Ces estimations montrent qu’augmenter la pression d’ablation

et le taux de masse ablaté requiert une augmentation de l’intensité laser.

La vitesse d’implosion de la coquille pendant son vol libre peut être reliée au taux de masse

ablaté par Uimp ≈ ṁaA/ρ, où A est le rapport d’aspect de la cible en vol (rayon sur épaisseur de

la coquille R/∆R) et ρ est la densité en vol de la coquille. Le rapport de convergence peut alors

être exprimé par :

C =
Uimp

ρ1/3(αAFA)1/2
=

ṁaA1/2

ρ4/3(αAF )1/2
, (5)

où α est l’adiabat de la coquille, défini comme le ratio de sa pression avec la pression de Fermi

pF = AFρ
5/3
s = 2.16ρ5/3s Mbar. A partir de l’équation (5), on peut voir que pour une densité

initiale de la cible, obtenir des facteurs de convergence importants nécessite (i) une grande

vitesse d’implosion, obtenue à travers un grand taux de masse ablaté, c’est à dire une haute

pression d’ablation et donc une haute intensité laser (Eq. (4)), (ii) un faible adiabat de la coquille,

c’est à dire une coquille qui reste froide durant l’implosion, i.e. la compression doit être la plus

isentropique possible, et (iii) un grand rapport d’aspect. Satisfaire ces points afin d’obtenir

un grand rapport de convergence n’est pas nécessairement évident. Premièrement, les hautes
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intensités lasers sont néfastes à l’implosion de la coquille à cause du développement d’instabilités

non-linéaires d’ILP qui peuvent conduire au préchauffage de la capsule (augmentant ainsi α)

ou à des asymétries du champ laser. Deuxièmement, l’implosion de la capsule est sensible aux

instabilités hydrodynamiques (comme l’Instabilité de Rayleigh Taylor (IRT)) qui naissent des

défauts de surface de la capsule ou des défauts dans la symétrie de l’éclairement laser. L’IRT

module le profile de densité de la capsule, ce qui peut causer sa rupture pour des déformations de

longueur d’onde plus grande que l’épaisseur de la capsule. Augmenter le rapport d’aspect est alors

néfaste pour la capsule, qui devient vulnérable vis à vis de l’IRT pour une plus grande plage de

longueurs d’onde. Afin de diminuer la sensibilité de la capsule aux instabilités hydrodynamiques

et d’augmenter le gain en énergie, des schémas d’allumage alternatifs ont été développés.

0.2.1.3 Schémas alternatifs d’allumage

L’allumage par point chaud central repose sur l’allumage du point chaud consécutif à l’assem-

blage de la coquille, uniquement à travers la compression de la cible par une impulsion laser de

forme adéquate. Pour des implosions à faible adiabat (α de l’ordre de 2), l’énergie requise pour la

compression de la cible est du même ordre de grandeur que l’énergie requise pour le chauffage du

point chaud. Le principe de fonctionnement de plusieurs schémas alternatifs d’allumage est de

séparer les phases de compressions et d’allumage, c’est à dire (i) d’utiliser une impulsion laser

basse énergie dédiée à la compression de la cible, auquel cas le travail PdV communiqué plus

lentement au centre de la cible n’est pas suffisant pour allumer le combustible, et (ii) utiliser une

impulsion laser séparée pour allumer le point chaud. L’idée principale derrière ces schémas est

de réduire l’énergie laser requise et d’augmenter la robustesse de la cible, à travers un meilleur

contrôle de chacune des étapes du processus entier.

Dans le schéma d’allumage rapide [39, 40, 41], l’énergie additionnelle est apportée par un

faisceau d’électrons ou d’ions de haute énergie, ce dernier étant créé par l’interaction d’un faisceau

laser à haute énergie et haute puissance avec une cible spéciale. Etant donné la difficulté technique

inhérente à l’allumage rapide, d’autres schémas alternatifs ont été développés, et notamment

l’allumage par choc [42, 31]. Ce dernier consiste à utiliser une impulsion laser de grande intensité

à la fin de la phase de compression afin de lancer un choc fort dans la cible, ainsi augmentant

la pression et la température du point chaud au dessus du seuil d’allumage au moment où la

coquille froide est assemblée. L’attractivité de ce schéma d’allumage repose notamment sur sa

simplicité effective : les impulsions lasers requises étant disponibles dans les installations de

lasers de puissance actuelles, et les cibles requises étant du même ordre de complexité que celles

utilisées actuellement pour l’allumage par point chaud central [43]. En découplant les étapes

de compression et de chauffage, de plus faibles énergies lasers sont nécessaires (de l’ordre de

500 kJ) pour l’obtention de gains similaires, ce qui rend l’implémentation du schéma plus facile.

Cependant, utiliser une impulsion laser intense soulève de nouveaux problèmes physiques liés à la

génération de flux d’électrons énergétiques et à l’amplification de chocs forts.

0.2.2 Régime d’interaction

On considère traditionnellement que le régime optimale de l’ILP pour la FCI est celui de

l’absorption collisionnelle, où l’oscillation des électrons dans le champ laser chauffe le plasma
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à travers leur collisions avec les ions. Ce mécanisme est préféré car (i) il permet de transférer
l’énergie laser à la population thermique du plasma et (ii) il ne met pas en jeu de processus
d’absorption anormaux qui peuvent être néfastes à l’efficacité de la compression (ceux-ci sont
détaillés plus loin). La fraction d’énergie laser transmise au plasma par absorption collisionnelle
dépends de la fréquence de collision électron-ion, qui elle même dépend de l’état de charge moyen
des ions Z et de la densité électronique ne. Compte tenu de la faible efficacité hydrodynamique
des matériaux à fort Z (ceux-ci nécessitent plus d’énergie laser pour les ioniser et ils ont tendance
à ré-émettre des rayons X qui peuvent préchauffer la cible), le régime d’interaction optimal pour la
FCI est celui d’ablateurs de Z moyen, typiquement du plastique, carbone ou beryllium. L’énergie
laser déposée par absorption collisionnelle est principalement localisée proche de la densité critique
nc ∝ λ−2

L qui définit la densité à laquelle l’onde électromagnétique est réfléchie. Afin de maximiser
le couplage du laser avec la cible solide, la densité critique doit être aussi proche que possible de
la densité du solide.

En considérant l’importance de (i) coupler l’énergie laser déposée par absorption collisionnelle
aussi efficacement que possible avec la cible solide et (ii) les problèmes soulevés par l’ILP non-
linéaire, dont les seuils varient en Iλ2

L, la technologie de choix pour la FCI est celle des lasers
de haute puissance et de courte longueur d’onde. Ainsi, les amplificateurs des lasers utilisés en
sciences de la fusion sont basés sur le verre dopé au Néodyme, ce qui produit une lumière laser
à la fréquence fondamentale de 1054 nm (pour les verres de phosphate). La lumière laser est
ensuite triplée en fréquence avant son interaction avec la cible, à la longueur d’onde de 351 nm. Le
triplement de fréquence permet d’augmenter la densité critique par un facteur 9 et de d’augmenter
l’efficacité de l’absorption, la pression d’ablation (4) et les seuils des ILPs non-linéaires. Cependant,
le rendement laser est relativement faible, de l’ordre de quelques %.

Lorsque le paramètre d’interaction Iλ2
L franchi le seuil de ∼ 1014 Wµm2/cm2, l’ILP devient

sensible à de nombreux processus de couplage entre les ondes électromagnétiques et les ondes
plasma [20, 44, 45]. La plupart de ces processus additionnels, résumés sur la figure 0-2, ont un
comportement non-linéaire et sont en général néfastes pour l’implosion [46, 47]. Les mécanismes
dominants sont le couplage de la lumière laser avec les modes locaux du plasma ; les ondes
plasma electroniques (EPW) (processus de diffusion Raman stimulée (SRS) et décomposition en
deux plasmons (TPD)) et les ondes acoustiques ioniques (IAW) (processus de diffusion Brillouin
stimulée (SBS)). En considérant les intensités lasers mises en jeu en FCI, les ILPs non-linéaires
peuvent être classées en fonction de leurs effets (en général néfastes) sur l’implosion de la cible :

— Rupture de symétrie d’irradiation ;

— Le recouvrement de faisceaux lasers dans le plasma produit des ondes acoustiques
ioniques via la force pondéromotrice. Ces dernières peuvent donner lieu à l’échange
d’énergie entre faisceaux à travers la diffraction des photons sur la perturbation de
densité. Ce cas particulier d’interaction à trois ondes est appelée échange d’énergie
entre faisceaux croisés (Cross-Beam Energy Transfer - CBET). Des travaux théoriques
[48] ont montrés que des IAWs excitées de manière résonante pouvaient apparaitre
dans le cadre de la configuration de la National Ignition Facility (NIF) [49], et en effet
le CBET est maintenant utilisé pour régler la symétrie d’implosion des capsules en
attaque indirecte sur le NIF [29]. La configuration d’attaque directe est aussi sensible
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à l’instabilité du CBET [27, 50], qui affecte à la fois la symétrie de l’implosion et
l’efficacité du couplage laser-plasma.

— De la même manière, toute instabilité qui induit un certain degré de lumière diffusée
peut conduire à des variations dans la symétrie de l’irradiation. Notamment, les
instabilités SBS et SRS peuvent diffuser une large portion de la lumière laser incidente.
Etant donné que l’uniformité d’irradiation requise afin d’obtenir de haut facteurs de
convergences des cibles de FCI est de l’ordre de 1%, ces processus sont importants.

— Préchauffage de la cible ;

— Toute ILP qui excite des ondes plasma électroniques à de grandes vitesses de phase peut
engendrer des populations d’électrons supra-thermiques. Notamment, les instabilités
de SRS et TPD peuvent conduire à la génération de faisceaux d’électrons d’énergie
moyenne allant jusqu’à la centaine de keV, ce qui peut augmenter l’adiabat de la
coquille et réduire le rendement hydrodynamique de l’implosion.

— En plus du préchauffage, les populations d’électrons de haute énergie générées par
l’ILP non-linéaire peuvent affecter la dynamique du plasma directement [31, 32] en
altérant la propagation et la force des chocs dans la cible. Ceci est particulièrement
important pour le schéma d’allumage par choc, pour lequel l’effet bénéfique ou néfaste
des électrons rapides sur le choc est incertain [51].

— Pertes de couplage ;

— En plus des effets de rupture de symétrie d’irradiation, les instabilités paramétriques
génèrent des ondes diffusées et donc diminuent le couplage laser-cible. Notamment, le
CBET redistribue l’énergie laser des faisceaux incidents vers les faisceaux sortants et
ainsi l’intensité laser est éloignée de la densité critique.

— Plus généralement, les grands volumes de plasma sous-dense conduisent à de grandes
quantités de lumière diffusée vers l’arrière, ce qui réduit le couplage laser-cible.

— Autres ;

— La filamentation du laser, qui résulte de la réfraction du faisceau dans des inhomo-
généités locales de densité amplifiées par le laser focalisé via les effets thermiques et
pondéromoteurs, conduit localement à de fort champs électriques et des perturbations
de densités qui peuvent amplifier les autres instabilités.

— L’Absorption Résonante (RA), qui résulte de l’absorption de la lumière laser via
l’excitation résonante d’une onde plasma électronique à la densité critique. L’absorption
résonante peut constituer une fraction significative de l’absorption laser début de
l’interaction lorsque le profile de densité est très raide. Cependant, les électrons
accélérés dans les EPWs générés par le champ résonant ne sont en général pas assez
énergétiques pour constituer une menace de préchauffage [36].

Le développement des processus non-linéaires d’interaction est contrôlé en partie par l’uti-
lisation de techniques de lissage spatial et temporel, qui altèrent les fluctuations d’intensité et
les propriétés de cohérences des faisceaux lasers dans leur plan focal. Ces méthodes de lissage
optique sont cruciales pour réduire le taux de croissances des couplages non-linéaires et pour
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Figure 0-2 – (couleur) Représentation schématique des processus d’ILP impliqués dans la
FCI, en fonction de la densité du plasma coronal et le long de la normale à la cible. Le
code couleur indique les processus linéaires en jaunes et les processus non-linéaires en
rouge. Les lignes noires incurvées indiquent l’excitation d’ondes plasmas électroniques.

mitiger les instabilités hydrodynamiques. Plus généralement, le lissage optique est très répandu
dans les installations de lasers de puissance afin de contrôler les propriétés des faisceaux. Ainsi,
elles constituent une partie intégrale de la description de l’ILP.

En considérant la longueur d’onde laser dans le vide de λL = 351 nm, l’intensité laser typique
est de ∼ 5× 1014 W/cm2 pendant la phase de compression de l’allumage par choc et ∼ 5× 1015

W/cm2 pendant le pic d’intensité. Ces deux étapes sont susceptibles au développement des
couplages non-linéaires, mais dans des régimes différents. Alors que la phase de compression
est moins sensible aux problématiques de préchauffage due aux électrons rapides et aux pertes
de symétrie que le schéma standard d’allumage par point chaud central, le pic d’intensité laser
utilisé pour la génération du choc d’allumage se situe dans un régime d’interaction fortement
non-linéaire. Pour des durées typiques de l’impulsion d’allumage de ∼ 500 ps, l’ILP non-linéaire à
suffisamment de temps pour se développer et (i) accélérer de grandes quantités d’électrons de
hautes énergie et (ii) réduire significativement le couplage laser-cible pour la génération du choc
d’allumage à travers le CBET. Bien que l’allumage par choc promesse de plus haut gains et une
meilleur robustesse comparé à l’allumage par point chaud central, la physique de l’interaction
laser-plasma doit être soigneusement étudiée, particulièrement pendant le pic d’intensité laser.

0.3 Objectifs de ce travail

Le sujet de ce travail est : Description Multi-Echelle de l’Interaction Laser-Plasma, Application
à la Physique de l’Allumage par Choc en Fusion par Confinement Inertiel. Il est structuré en
deux parties. La première est dédiée à la description des processus de couplage de l’ILP à l’échelle
hydrodynamique. Cette description est motivée par le besoin d’interpréter et de concevoir des
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expériences de physique des hautes densités d’énergie en général, que ce soit d’Astrophysique

de Laboratoire ou de FCI. La seconde partie de ce travail est dédiée à l’étude des conditions

d’interaction typiques de la phase fortement non-linéaire du schéma d’allumage par choc. Les

objectifs de la thèse sont formulés comme suit.

— Etant donné la différence d’échelle qui apparait en considérant la description de l’hydro-

dynamique de la cible et de la grande variété des processus d’interaction mis en jeu, nous

souhaitons proposer un modèle laser qui permette de décrire la propagation laser ainsi

que les couplages laser-plasma linéaires et non-linéaires aux échelles hydrodynamiques. Ce

modèle laser doit : (i) être adapté pour le calcul des interactions non-linéaires, (ii) être

efficace en terme de temps CPU aux grandes échelles mises en jeu et (iii) reproduire les

principales caractéristiques des faisceaux lasers utilisés dans les grandes installations, y

compris les techniques de lissage optique.

— Etant donné le régime d’interaction de Iλ2
L ∈ [1013-1017] Wµm2/cm2, la description de

l’interaction laser-plasma non-linéaire doit rendre compte de : (i) l’accélération et le transport

de faisceaux d’électrons de hautes énergies générés par les instabilités paramétriques et

l’absorption résonante, (ii) la diffusion de l’énergie laser par les processus non-linéaire, en

particulier l’échange d’énergie entre faisceaux croisés, et (iii) la compétition entre les différents

processus de l’ILP. Avec l’objectif d’une implémentation dans un code hydrodynamique, ce

modèle doit être formulée pour une approche en-ligne, c’est à dire complètement couplée

avec l’hydrodynamique.

— Etant donné les deux principaux problèmes liés à l’ILP non-linéaire pour l’allumage par choc,

qui sont la rupture de la symétrie d’irradiation de la cible par le CBET et le préchauffage

de la cible par les électrons générés par les instabilités paramétriques, l’étude du schéma de

l’allumage par choc est conduite en deux étapes : (i) l’étude du CBET et de ses effets sur

l’implosion d’une cible sphérique et (ii) l’étude des effets des faisceaux d’électrons de haute

énergie sur la dynamique des chocs, et comment ils affectent les conditions d’allumage d’une

cible.

0.4 Organisation du manuscrit

La description du modèle multi-échelle d’interaction laser-plasma et son application à l’allu-

mage par choc est divisée en 6 Chapitres.

Chapitre I On présente dans le Chapitre 1 la théorie linéaire de la propagation des ondes

électromagnétiques (EM) dans les plasmas. L’équation d’onde monochromatique, base de

la description des faisceaux lasers dans les plasmas, est dérivée à partir des équations de

Maxwell. La théorie de base de la réponse électromagnétique du plasma, utilisée au long de

ce travail, est introduite. Afin d’illustrer le comportement général des ondes EM dans les

plasmas, on présente plusieurs solutions standard de l’équation d’onde, pertinentes pour

différentes sections de ce document. En particulier, on définit le cadre de l’équation d’onde

scalaire, qui est le point de départ de la plupart des modèles réduits de propagation laser

utilisés pour les échelles hydrodynamiques.
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Chapitre 0. Introduction

Chapitre II L’approche la plus répandue pour la modélisation de la propagation laser aux

échelles hydrodynamique, la technique du Tracé de Rayon basé sur l’Optique Géométrie,

est introduite dans le Chapitre 2. Après une évaluation des limites du modèle RT pour

la modélisation de l’interaction laser-plasma non-linéaire, nous proposons une adaptation

aux plasma collisionnels et au cadre d’un code hydrodynamique Lagrangien de la méthode

de l’Optique Géométrique Complex Paraxial [52] (PCGO). PCGO est une alternative

permettant de décrire les champs de l’onde scalaire en remplaçant les rayons infiniment

fins de l’optique géométrique par des faisceaux optiques de profil d’intensité Gaussien.

Nous illustrons son utilité dans le cas de la modélisation de l’instabilité d’autofocalisation

pondéromotrice.

Chapitre III Le cadre de PCGO, normalement limité à la description de faisceaux Gaussiens, est

étendu dans le Chapitre 3. Les installations de lasers de haute puissance font usage Lames de

Phase (PP), éléments optiques qui controlent le profile spatial de la distribution d’intensité

des faisceaux. En prenant avantage de l’utilisation des lames de phase pour le lissage des

faisceaux, nous présentons une méthode qui permette de reproduire des faisceaux lasers

réalistes en utilisant des rayons PCGO. Nous présentons des modèles réduits additionnels

qui permettent de rendre compte de divers techniques de lissage en utilisant PCGO.

Chapitre IV En se basant sur la description des faisceaux laser par PCGO, on traite deux

branches de problèmes d’ILP non-linéaire. Premièrement, nous proposons dans le Chapitre

4 une modèle couplé basé sur PCGO pour modéliser le CBET aux grandes échelles hydro-

dynamiques. Ce modèle est validé par comparaison avec des travaux théoriques, un solveur

paraxial électromagnétique, et des données expérimentales. Ce modèle est ensuite utilisé

dans une étude d’une configuration typique de CBET pour la FCI en attaque directe.

Chapitre V Deuxièmement, on présente dans le Chapitre 5 un modèle couplé pour traiter

l’interaction laser/plasma/électron-rapide. Nous proposons un modèle de transport pour

ces électrons rapides, et présentons sa validation par comparaison avec une solution de

référence. Divers modèles réduis sont proposés afin de décrire les caractéristiques de flux

et d’énergie moyenne des sources d’électrons accélérés par RA, SRS et TPD. Ce modèle

multi-échelle couple entièrement la description de la propagation laser, la définition des

sources d’électrons rapides, et la propagation des faisceaux d’électrons rapides.

Chapitre VI Enfin, on présente dans le Chapitre 6 une validation de ce modèle par comparaison

avec plusieurs expériences conduites dans diverses géométries. Etant donné le bon accord

qui est observé avec les données expérimentales, la physique du couplage des électrons

rapides générés par l’ILP non-linéaire avec la dynamique de la cible est étudiée. On trouve

notamment que ces électrons affectent les propriétés des chocs qui se propagent dans la

cible. Enfin, on applique ce modèle multi-échelle à la configuration de l’allumage par choc,

afin d’estimer l’influence de ces électrons générés par l’impulsion laser d’allumage sur la

dynamique de l’implosion.

Les conclusions de ce travail sont présentées dans le Chapitre 7.
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Chapitre 1

Conclusions

Cette thèse avait plusieurs objectifs.

Un nouveau modèle de propagation laser. Formuler un modèle de propagation laser qui

soit à la fois numériquement efficace et adapté aux échelles hydrodynamiques, et qui permette

de décrire : (a) l’ILP non-linéaire, incluant notamment les instabilités paramétriques et

l’absorption résonante, (b) la propagation laser de faisceaux lissés par les méthodes optiques

standard des lasers de puissance, et (c) l’absorption collisionnelle par Bremsstrahlung

inverse.

Description de l’ILP non-linéaire Développer un modèle couplé à l’hydrodynamique qui

décrive : (a) la diffusion de la lumière laser, avec un accent sur l’échange d’énergie entre

faisceaux croisés, (b) la génération et la propagation d’électrons supra-thermiques émis par

les EPWs excités par l’ILP non-linéaire, et (c) la compétition pour l’énergie laser entre les

divers processus.

Physique de l’allumage par choc. Etudier la phase fortement non-linéaire de l’ILP dans le

cadre de l’allumage par choc, y compris (a) les effets du CBET sur la symétrie de l’implosion

de cible en attaque directe, et (b) le couplage entre les électrons supra-thermiques générés

par l’ILP non-linéaire avec la dynamique du choc d’allumage.

Nous présentons ici les conclusions de ce travail.

1.1 Un nouveau modèle de propagation laser

La description de l’ILP non-linéaire repose sur la connaissance de l’intensité laser dans le plasma.

L’approche standard pour la modélisation de la propagation laser à l’échelle hydrodynamique

repose sur le Tracé de Rayon, basé sur la théorie de l’Optique Géométrique pour décrire le champ

scalaire. Dans cette formulation, les faisceaux lasers sont modélisés par des fagots de rayons

lumineux infiniement fins, dont la densité de puissance est amortie au cours de leur propagation par

absorption collisionnelle. Cette approche permet de décrire la puissance d’un rayon sans recourir

à la notion d’intensité. Bien que la distribution d’intensité dans le plasma puisse être reconstruite

à partir de la connaissance de la puissance absorbée par le plasma, l’Optique Géométrique est

intrinsèquement peu adaptée pour décrire l’intensité laser. Par conséquent, nous avons focalisés

nos efforts sur la formulation d’un nouveau modèle de propagation avec pour objectif de décrire
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plus naturellement la distribution de l’intensité laser dans le plasma. Ceci à été accompli en deux

étapes.

Optique Géométrique Complexe Paraxiale

Nous avons adapté la méthode de l’Optique Géométrique Complexe Paraxiale au cas des

plasmas chauds. L’équation obtenue pour le front d’onde inclue les informations sur le rayon

et l’intensité du champ, décrit comme le mode fondamental Gaussien dans l’approximation

paraxiale, avec comme axe de propagation un rayon d’optique géométrique. Notre formulation

inclue les effets de l’absorption collisionnelle pour le plasma de couronne sous-dense et à la densité

critique sur l’épaisseur de peau. Ce modèle a été spécifiquement formulé pour le cadre d’un code

hydrodynamique Lagrangien, dont le maillage est non-régulier et non-structuré.

La capacité des méthodes GO et PCGO à modéliser l’effet non-linéaire d’autofocalisation

pondéromotrice d’un faisceau laser a été étudiée. Un terme de pression correspondant au potentiel

pondéromoteur à été ajouté dans le module hydrodynamique, soit à partir de l’intensité reconstruite

pour RT ou à partir du champ d’intensité directement pour PCGO. D’une part, nous avons

trouvé que PCGO permet d’obtenir la bonnes puissance critique, distance d’autofocalisation,

déplétion de densité transverse, et permet d’estimer correctement l’amplification de l’intensité.

D’autre part, le modèle RT n’a pas été capable de reproduire ces quantités. Notamment, la nature

discrète des rayons RT conduit à la filamentation artificielle du faisceau dans des guides d’onde

locaux dont l’échelle est uniquement déterminée par la résolution hydrodynamique. Le modèle de

diffraction du modèle RT, qui consiste à étaler les vecteurs d’ondes initiaux des rayons lumineux,

n’est pas capable de compenser l’autofocalisation : le modèle de diffraction n’est en effet valable

que dans le vide où dans un plasma de densité uniforme et constante dans le temps.

Modélisation des faisceaux lissés

Deuxièmement, la description des faisceaux Gaussiens PCGO a été adaptée aux faisceaux

lasers non Gaussiens. En prenant avantage de l’usage de Lames de Phase dans les lasers de

puissance, qui découpent les faisceaux lasers en de multiples sous-faisceaux de petite taille, nous

avons proposé une méthode pour modéliser de grands faisceaux laser en utilisant un grand nombre

de faisceaux PCGO focalisés pseudo-aléatoirement dans une région proche du plan focal où le

rayon des speckles varie lentement. Cette méthode reproduit les principales caractéristiques de la

distribution d’intensité d’un grand faisceau laser lissé par Lame de Phase KPP ou RPP. Cette

méthode de découpage a été comparée avec des résultats numériques du code de propagation

Miró, dans le cas de la configuration SG4 de l’installation Omega. La superposition des faisceaux

Gaussiens créé un motif de speckles larges, produisant une distribution d’intensité laser et un

contraste similaire aux résultats de la simulation Miró convolués avec le maillage hydrodynamique.

Le contraste laser ainsi modélisé est similaire à ceux des faisceaux lasers utilisant le Lissage par

Polarisation. Une méthode de lissage temporel a aussi été implémenté : le Lissage par Dispersion

Spectrale (SSD). Des comparaisons avec des estimations théoriques ont permis de démontrer la

capacité du modèle à reproduire la dépendance temporelle du contraste de faisceaux lasers lissés

par SSD.
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Ce modèle a été implémenté dans le code hydrodynamique radiatif Chic du laboratoire Celia.

Sa formulation de base en géométrie 2D plane a été étendue aux géométries 3D pour des cas

axi-symétriques spécifiques, où la cible sphérique est irradiée par des faisceaux dont les point

focaux croisent l’axe de symétrie par rotation.

1.2 Description de l’ILP non-linéaire

En se basant sur la nouvelle formulation de propagation laser, nous avons proposé différents

modèles qui permettent de prendre en compte l’interaction laser-plasma non-linéaire. Nous avons

séparé celle-ci en deux catégories : (i) le transfer d’énergie non-linéaire entre faisceaux croisés,

qui résulte de la diffraction de la lumière laser sur des fluctuations de densités excitées par le

battement pondéromoteur des ondes superposées, et (ii) le couplage non-linéaire du champ laser

avec les ondes plasma électroniques qui génèrent des populations d’électrons supra-thermiques.

Echange d’énergie entre faisceaux croisés

Notre formulation de l’échange d’énergie entre faisceaux croisés repose sur la discrétsation de

la zone d’interaction par de nombreux transferts d’énergie élémentaires entre faisceaux PCGO

Gaussiens, pour lesquels les paramètres plasma locaux sont supposés uniformes. L’ensemble des

échanges d’énergie est résolu chronologiquement afin de préserver la cohérence du modèle. Ce

modèle entièrement couplé à l’hydrodynamique, nommé Eyebolt pour ElementarY Exchange

Between OpticaL Thick-rays, a été validé à l’aide de plusieurs références. Premièrement, nous

avons évalué l’approche du modèle elle-même, qui consiste à modéliser l’échange d’énergie entre

deux grand faisceaux lasers par de multiples échanges d’énergie entre faisceaux élémentaires. Cette

approche a été validée dans le cadre d’un plasma de densité, température et vitesse uniforme.

Deuxièmement, le modèle Eyebolt a été comparé à une résolution numérique des équations

couplées qui décrivent l’intensité de deux faisceaux lasers croisés dans un plasma, dans le cas d’un

plasma présentant une variation linéaire de vitesse. Un excellent accord a été trouvé pour une

large gamme de rapports d’intensités pompe-sonde. Troisièmement, le modèle Eyebolt a été

comparé à une solution dépendante du temps calculée par le code paraxial Harmony, qui résout

les équations couplées pour les amplitudes complexes des ondes lasers. Un excellent accord a été

observé pour les facteurs d’amplifications de la sonde en régime stationnaire, la déviation des

faisceaux et les amplitudes des perturbations de densités, ceci pour une grande gamme de rapport

d’intensité pompe-sonde et pour des intensités Iλ2 ≤ 1014 Wµm2/cm2. Nous avons supposés que

le moins bon accord observé aux plus hautes intensités est une conséquence de la modélisation plus

restreinte des ailes des faisceaux dans PCGO que dans l’approche de Harmony. Dans ce dernier,

les ailes couvrent plus largement une région du plasma où la résonance est inverse pour le transfert

d’énergie. Quatrièmement, les résultats du modèle Eyebolt ont été comparés à des mesures

expérimentales de CBET obtenues sur l’installation laser Nova. L’accord observé constitue une

grande amélioration comparé aux estimations précédentes obtenues avec des modèles analytiques.

Ces comparaisons théoriques, numériques et expérimentales constituent une base solide pour la

validation de notre implémentation du CBET basé sur PCGO.
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Electrons rapides générés par les ILPs non-linéaires

La description des électrons chauffés à des températures supra-thermiques par les ILPs non-

linéaires a été incluse dans le cadre de PCGO. Ce modèle couplé à l’hydrodynamique, nommé

Thetis pour Two-dimensional Hot Electron Transport and emIssion Sources, possède deux

composantes. Premièrement, il décrit le transport et le dépôt d’énergie des faisceaux d’électrons

rapides dans le plasma. Les faisceaux d’électrons sont modélisés dans l’approximation de diffusion

angulaire, dérivée de l’équation cinétique de Vlasov-Fokker-Planck en considérant la diffusion des

électrons sur un plasma d’électrons et d’ions. Notre formulation est adaptée aux géométries 2D

planes, pour des faisceaux d’électrons de profil d’intensité transverse Gaussien, de distribution

d’énergie exponentielle et d’ouverture angulaire arbitraire. Deuxièmement, ce modèle de transport

est interfacé avec des sources d’électrons calculées par le modèle optique (PCGO). En considérant

les cas d’électrons rapides générés par l’Absorption Résonante, la Diffusion Raman Stimulée et

la Décomposition en Deux Plasmons, nous avons proposé des modèles réduits permettant de

calculer les flux des électrons rapides ainsi générés, ainsi que leur énergie moyenne et distribution

angulaire par rapport à l’onde de pompe. Ces formulations sont basées sur des modèles théoriques

et l’analyse des modes les plus instables, des observations expérimentales des angles de diffusion

et de la compétition entre les processus non-linéaires, des lois d’échelles expérimentales et des

simulations cinétiques de type PIC. De plus, l’émission des électrons vers l’arrière du TPD et

la diffusion vers l’arrière de la lumière par le SRS sont pris en compte dans le bilan d’énergie.

Etant donné la difficulté à caractériser précisément dans les expériences les flux d’électrons

générés par l’ILP non-linéaire, il est difficile de valider ce modèle couplé avec des données

expérimentales. Cependant, les résultats obtenus avec Thetis sont en bon accord avec divers

résultats expérimentaux présentés dans ce travail, dans des géométries et des régimes d’interaction

différents.

Ces modèles entièrement couplés à l’hydrodynamique, implémentés dans le code Chic, sont

cohérents en terme de conservation d’énergie. L’énergie transférée par le CBET ou aux sources

d’électrons rapides est systématiquement soustraite du rayon PCGO lorsque l’ILP a lieu, ce qui

affecte les autres processus d’ILP qui ont lieu en aval du CBET ou du transfert aux faisceaux

d’électrons. Cette approche prends naturellement en compte la compétition entre les processus,

qui découle de la configuration géométrique de l’interaction laser-plasma.

1.3 Physique de l’allumage par choc

Nous avons appliqué notre nouveau modèle dans le cadre de l’allumage par choc en FCI. Nous

avons étudié séparément les effets du CBET et des électrons rapides sur la dynamique du plasma.

Influence du CBET sur la dynamique d’une cible en attaque directe

Nous avons appliqué le modèle PCGO+Eyebolt à l’étude du CBET, dans le cas de la

configuration laser de la chambre d’expérience Omega. Les faisceaux sont modélisés en supposant

l’usage des Lames de Phase KPP SG4, dans une configuration 2D plane. Nous simulons l’implosion

d’une capsule (cylindre) sur les 360◦, en autorisant seulement certains faisceaux à échanger de

l’énergie à travers le CBET. Ces faisceaux sont identifiés en considérant les ports co-planaires
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de la chambre d’Omega, aux angles de 20◦, 40◦, 140◦ et 160◦. Nous avons trouvé que (i) les
cibles à ablateur de D-T sont plus sensibles aux déformations induites par le CBET que pour
les ablateurs C-H, (ii) le CBET décroit le facteur de convergence de la cible jusqu’à 25 % en
éloignant les maxima d’intensité laser de la densité critique et (iii) pour cette configuration, le
CBET provoque des déformations de la cible dont l’amplitude relative à l’interface interne de la
coquille atteint jusqu’à 35 % pour le mode 2. Ces conclusions sur les déformations de la cible ont
été étendues pour un cas 3D en effectuant une reconstruction linéaire des modes. Nous avons
trouvé que le mode 4 était aussi excité, et que le mode 2 est probablement sur-estimé dans notre
modèle car le CBET entre faisceau non-coplanaires n’est pas pris en compte.

Etude des électrons rapides générés par l’ILP non-linéaire sur la dynamique
des chocs

L’étude du couplage laser/plasma/électrons rapides a été effectué avec le modèle PCGO+Thetis.
Nous avons considéré plusieurs comparaisons avec diverses expériences.

— Le calcul de l’absorption laser a été validé avec une expérience d’absorption conduite sur
Omega, en utilisant le modèle PCGO+Thetis. L’expérience consistait à irradier une
cible par deux impulsions lasers successives. La première interagi avec une cible froide aux
gradients de densités très raides, et la seconde avec un plasma coronal plus chaud et des
gradients de densités plus longs. Contrairement aux modèles basé sur le RT, qui doivent
utiliser une variation temporelle de la limitation du flux thermique électronique maximale
afin de reproduire l’absorption laser correcte, nous avons montré que notre modèle reproduit
les données expérimentales pour les deux impulsions simultanément, avec une valeur fixe
de la limitation de flux. Notamment, l’absorption résonante contribue à l’absorption de la
première impulsion, et plus modérément à la seconde.

— La modèle a été appliqué à l’interprétation d’expériences de mesures de temps de débouchés
de choc conduites sur l’installation laser Pals. Un faisceau laser de haute intensité interagit
avec une cible plane. L’ablation de la couche de plastique créé une onde de choc qui se propage
dans la cible, et dont le temps de débouché à l’arrière est mesuré en utilisant une technique
de pyrométrie (Streak Optical Pyrometry). La population électronique supra-thermique
est déduite à partir de la mesure de l’émission Kα généré par les électrons rapides dans les
traceurs de haut Z. Un accord raisonnable est trouvé entre le modèle et les expériences, à la
fois pour la réflectivité laser intégrée, les flux et températures des électrons supra-thermiques,
et les temps de débouché de choc. Ceci constitue une amélioration significative comparé
aux résultats des modèles basés sur l’Optique Géométrique, qui sous-estiment les temps de
débouchés jusqu’à un facteur 2. Nous avons trouvé qu’une partie des électrons générés par
les ILPs non-linéaires sont suffisamment rapides pour passer à travers le choc et préchauffer
la cible en amont. Ce préchauffage est quasiment isochore car il a lieu en masse dans la cible.
L’augmentation de pression associée augmente significativement la vitesse et la pression
avale du choc. A l’inverse, la force du choc, c’est à dire le rapport de la pression aval sur
la pression amont, est grandement réduite. Etant donné que l’énergie laser transmise aux
électrons rapide est déposée à la fois en amont et en aval du front d’ablation, la pression
d’ablation résultante est plus faible qu’en ne considérant pas cette interaction non-linéaire.

21



Chapitre 1. Conclusions

— Le modèle PCGO+Thetis a été appliqué à une expérience de mesure de temps de conver-
gence de choc en géométrie sphérique, conduite sur Omega. Une cible sphérique est
uniformément irradié par des faisceaux laser et le temps convergence du choc au centre est
mesurée à travers le flash de rayons X associé. L’expérience a été conduite avec et sans
lissage par dispersion spectrale. En son absence, les flux d’électrons rapides ont augmentés
d’un facteur 5. Le modèle avec les électrons a reproduit avec succès les flux et températures
mesurées dans l’expérience, ainsi que la réflectivité laser et le temps de convergence du
choc. Comme dans l’expérience sur Pals, nous avons trouvé que les électrons générés par
l’ILP non-linéaire réduisent la force du choc et la pression d’ablation, tout en augmentant
la pression avale au choc et sa vitesse.

Influence des électrons rapides générés par les ILPs non-linéaires sur la dyna-
mique d’une cible d’allumage par choc

Au vu du bon accord observé entre notre modèle et les mesures expérimentales pour l’inter-
action de faisceaux lasers intenses avec les cibles planes et sphériques, nous avons appliqué le
modèle PCGO+Thetis à l’analyse d’implosion de cible pour l’allumage par choc. Premièrement,
nous avons utilisé la configuration de base de la cible tout-DT du projet HiPER. En utilisant
PCGO uniquement, nous reproduisons des fenêtres d’allumage comparables à celles obtenues
en utilisant les modèles RT en 1D. Les simulations avec le modèle Thetis suggèrent que les
électrons rapides générés durant le pic d’intensité laser préchauffent suffisamment la cible en vol
pour causer l’expansion de la coquille et la pollution du point chaud par du plasma de coquille
dense, avant la convergence finale de la cible. La densité surfacique du point chaud augmente
alors rapidement et le choc d’allumage n’est plus assez fort pour initier les réactions de fusion.
De plus, l’augmentation de la densité du point chaud tôt dans l’implosion augmente les pertes
radiative par rayonnement X, ce qui le refroidit rapidement. Deuxièmement, nous avons utilisé une
configuration de cible plus récente et développée au laboratoire Celia : une cible de DT avec un
ablateur CH et une couche d’Aluminium. Les fenêtres d’allumage de nos simulations avec PCGO
sont comparées avec et sans l’interaction non-linéaire. Les cas avec électrons rapides n’atteignent
pas l’allumage, bien que la présence de l’ablateur plastique renforce la tenue de la coquille au
flux d’électron rapide et réduise la pollution du point chaud. Des simulations avec une plus haute
intensité laser suggèrent que la capsule puisse être allumée, en compensant l’augmentation de
masse du point chaud par un choc d’allumage plus fort. L’importance du moment auquel les
électrons de l’ILP non linéaire sont générés a été soulignée : un délais de 200 ps entre le pic
d’intensité et la génération des électrons permettant à la cible CH-DT d’atteindre l’allumage,
bien qu’avec un gain de 1 MJ seulement. Il apparait donc comme important de bien étudier la
phase transitoire de la croissance des instabilités paramétriques, bien qu’elle soit ici probablement
plus courte que 200 ps au vu de la grande taille du plasma.

Ces résultats démontrent l’importance de prendre en compte les processus d’interaction non-
linéaire dans la conception d’une cible d’allumage par choc efficace et réaliste. Les applications
potentielles de ce modèle ne sont pas limitées aux études de fusion, et sont utiles à l’études des
expériences laser-cible dans les régimes d’interaction pertinents aux instabilités considérées ici.
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1.4 Perspectives

Les perspectives de ce travail sont nombreuses. On les énumère par ordre croissant de

complexité.

— L’implémentation actuelle du modèle peut être utilisée pour de nombreuses études expéri-

mentales. Nous donnons quelques exemples ; (i) nous avons présenté les résultats obtenus sur

Pals pour la fréquence sur cible de 3ω, cependant des questions ouvertes se posent pour

l’interprétation des résultats obtenus à 1ω, où les résultats ne sont pas reproduits par les

modèles RT, (ii) l’interprétation de l’expérience de temps de convergence de choc sur Omega

peut être étendue à une campagne récente où des comportements différents des cibles ont été

observés en fonction de l’ablateur utilisé, (iii) la conception des expériences d’astrophysique de

laboratoire par Double Front d’Ablation reposent sur le préchauffage radiatif d’un échantillon

de matière qui pourrait être vulnérable aux électrons rapides de l’ILP non-linéaire, ou encore

(iv) la conception d’expériences en configuration plane sur le LMJ, où on cherche à mesurer

les effets des électrons générés par l’ILP non-linéaire sur les caractéristiques des chocs (cette

configuration pourrait aussi être sujette au CBET).

— Les résultats présentés pour l’allumage par choc en utilisant le modèle PCGO+Thetis sont

préliminaires. Ce sujet requiert une étude dédiée, notamment en considérant que les processus

de couplage entre les électrons rapides des ILPs et la dynamique de la cible sont non-linéaires.

Les détails de l’influence des électrons sur la dynamique des réflections et collision des chocs

dans la coquille peuvent aussi être explorés.

— L’implémentation actuelle des instabilités paramétriques dans Thetis est relativement simple.

Le cadre numérique étant maintenant en place, il y a une opportunité pour ajouter plus de

détails aux modèles réduits pour ces instabilités. Notamment : (i) ajouter une dépendance

à la densité au SRS afin de générer un spectre plus large d’électrons, (ii) implémenter des

modèles pour la phase non-stationnaire des instabilités, ce qui est particulièrement intéressants

pour les études liées au lissage temporel, et (iii) implémenter un modèle réduit de SBS. De

façon similaire, le transport des électrons basé sur l’approximation de diffusion angulaire

possède certains défauts. Notamment, cette méthode demande un grand nombre de groupes

en énergie afin de produire des dépôts de dose satisfaisants. Ce nombre augmente encore plus

en considérant des faisceaux avec une ouverture angulaire, où le nombre de sous-faisceaux est

multiplié par le nombre de groupes en espace. Une efficacité numérique accrue pourrait être

obtenue en ajoutant les phénomènes de straggling et blooming au modèle, de façon à ce que

moins de groupes en énergie soient requis pour obtenir les mêmes résultats.

— Les modèles pour la génération d’électrons et le CBET sont actuellement disjoints. A priori, il

n’y a pas de restriction pour leur usage simultané. A cette fin, des développements numériques

additionels sont nécessaires. Notamment, le modèle Eyebolt repose sur un classement

chronologique des intersections qui permet de modifier les paramètres avals aux croisements.

Cette mise à jour des paramètres doit être couplée au calcul de l’ILP non-linéaire afin d’avoir

une description cohérente. Ce travail serait considérablement facilité en unissant les algorithmes

de propagation du rayon central, de dépôt d’énergie, et des modèles de l’ILP non-linéaire

directement dans la résolution de l’équation du front d’onde.
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Chapitre 1. Conclusions

— Les études du CBET dans des configurations d’interaction plus réalistes et plus générales

requierent de prendre en compte le transfert d’énergie entre tout les faisceaux. Dans sa

formulation actuelle, le modèle Eyebolt est adapté à des études où une configuration

équivalente 2D plane existe, ce qui est rarement le cas. Il apparait donc crucial de prendre

en compte le CBET entre faisceaux non coplanaires. Contrairement au modèle Thetis, ces

calculs ne peuvent pas être effectués en configuration pseudo-cylindrique. Une formulation

3D du CBET nécéssite : (i) une implémentation 3D de PCGO et (ii) des critères spécifiques

pour l’intersection des enveloppes des rayons PCGO en 3D. Enfin, la modélisation des ailes

des faisceaux laser à été démontrée comme étant importante pour le CBET, et doit être

considérée.

— Dans la configuration laser-cible la plus général, le modèle "ultime" basé sur PCGO et ce

travail (i) serait basé sur une implémentation 3D de PCGO, de préférence avec un code

hydrodynamique 3D en coordonnées cartésiennes, (ii) inclurait le transfert d’énergie entre

faisceaux PCGO se croisant seulement via leur enveloppe, et (iii) couplerait la génération

d’électrons avec le CBET.
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On considère l’Interaction Laser-Plasma (ILP) dans le régime des durées d’impulsion de [0.1, 10]
ns et pour lesquelles le paramètre d’interaction Iλ2

L est dans l’intervale [1013-1017] Wµm2/cm2 (I
est l’intensité laser et λL la longueur d’onde associé, dans le vide). Ces paramètres lasers sont
courants dans les expériences de Physique des Hautes Densités d’Energies, avec notamment des
applications en Astrophysique de Laboratoire et en Fusion par Confinement Inertiel (FCI). La
dynamique des cibles sujettes à de telles intensités sur de telles durées d’impulsion à lieu sur des
échelles temporelles et spatiales de l’ordre de plusieurs nanosecondes et de plusieurs millimètres.
La description théorique de la dynamique des plasmas sur ces échelles repose sur des approches
fluides, utilisant des modèles hydrodynamiques qui permettent d’étudier de grands volumes de
plasma sur des longues durées. D’autre part, l’interaction laser-plasma non linéaire est étudiée
de manière appropriée aux échelles microscopiques et mésoscopiques à l’aide de code cinétiques
(particle-in-cell et Fokker-Planck) et de modèles électromagnétiques paraxiaux.

L’état de l’art de la description de la propagation laser aux grandes échelles repose sur des
modèles réduits compatibles avec les performances des ordinateurs modernes. La plus commune
est celle du Tracé de Rayon (RT) [1], qui décrit le faisceau laser par des fagots de rayons infiniment
minces qui suivent les lois de propagation de l’Optique Géométrique (GO) et qui sont caractérisés
par une densité de puissance. Dans les situations où les effets collectifs et les couplages non-linéaires
sont peu importants (Iλ2

L � 5× 1013 Wµm2/cm2), les méthodes basées sur l’optique géométrique
sont suffisamment précises et numériquement efficaces. Elles décrivent la réfraction du laser et
le chauffage du plasma par l’absorption collisionnelle. Au contraire, la modélisation de l’ILP à
de plus grands paramètres d’interaction repose sur la connaissance de l’amplitude du champ
électrique et de la direction du front d’onde, quantités qui ne sont pas directement décrites par
l’optique géométrique. La physique de l’ILP linéaire et non-linéaire est alors souvent modélisée par
des modifications ad-hoc du flux thermique électronique maximum ou en ajustant la balance de
puissance des faisceaux lasers, de façon à reproduire les résultats expérimentaux. Ces approchent
limitent la compréhension des processus physiques mis en jeu et la capacité prédictive de ces outils
numériques. Afin de remédier à ces limitations, des efforts récents ont été fait afin d’inclure l’ILP
non-linéaire aux échelles hydrodynamiques, notamment avec la mise au point de modèles en-ligne
pour décrire l’échange d’énergie entre faisceaux croisés (CBET) [2, 3]. Ces outils ont permis de
mieux interpréter et concevoir les expériences de FCI [4] et peuvent être appliqués pour évaluer
des configurations d’éclairement laser-cible plus complexes, telles que le schéma d’attaque directe
polaire [5]. De la même façon, les effets sur la dynamique du plasma des faisceaux d’électrons à
haute énergie générés par l’ILP non-linéaire est particulièrement importante pour les études de
FCI [6, 7], les expériences de double front d’ablation à haute intensité, ou pour la conception et
l’interprétation des expériences laser-cible dans le régime nanoseconde [8].

Etant donné la grande variété des configurations laser-cible qui mettent en jeu ces processus,
il y a un besoin évident pour un modèle multi-échelle qui pourrait rendre compte des couplages
laser-plasma linéaires et non-linéaires dans les codes hydrodynamiques, ainsi que des rétro-actions
entre la propagation laser dans le plasma, la génération d’électrons de haute énergie par l’ILP non-
linéaire, la propagation de ces faisceaux d’électrons et la dynamique du plasma. Cette modélisation
à de grandes échelles pose des problèmes sévères liés à (i) la description précise de l’intensité laser
dans le plasma, (ii) la description consistante des sources d’électrons rapides à partir du modèle
de propagation laser et (iii) le transport de ces faisceaux d’électrons dans le plasma. Les deux
premiers points sont liés à l’usage standard de l’optique géométrique, qui ne permet pas d’évaluer
de manière robuste l’intensité laser dans le plasma [9], et le dernier point demande un modèle de
propagation à l’échelle hydrodynamique qui soit à la fois robuste et rapide. L’objet de ce travail
est d’aborder ces difficultés afin de formuler un modèle multi-échelle qui décrive l’ILP à l’échelle
hydrodynamique, y compris son couplage avec la génération de population d’électrons rapides. Les
applications de cette formulation ont pour cadre la FCI, et plus précisément le schéma d’allumage
par choc, qui est particulièrement vulnérable à l’ILP non-linéaire lors du pic d’intensité laser.
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Un nouveau modèle de propagation laser

La description de l’ILP non-linéaire repose sur la connaissance de l’intensité laser dans le plasma.

L’approche standard pour la modélisation de la propagation laser à l’échelle hydrodynamique

repose sur le Tracé de Rayon, basé sur la théorie de l’Optique Géométrique pour décrire le champ

scalaire. Dans cette formulation, les faisceaux lasers sont modélisés par des fagots de rayons

lumineux infiniement fins, dont la densité de puissance est amortie au cours de leur propagation par

absorption collisionnelle. Cette approche permet de décrire la puissance d’un rayon sans recourir

à la notion d’intensité. Bien que la distribution d’intensité dans le plasma puisse être reconstruite

à partir de la connaissance de la puissance absorbée par le plasma, l’Optique Géométrique est

intrinsèquement peu adaptée pour décrire l’intensité laser. Par conséquent, nous avons focalisés

nos efforts sur la formulation d’un nouveau modèle de propagation avec pour objectif de décrire

plus naturellement la distribution de l’intensité laser dans le plasma. Ceci à été accompli en deux

étapes.

Optique Géométrique Complexe Paraxiale

Nous avons adapté la méthode de l’Optique Géométrique Complexe Paraxiale au cas des

plasmas chauds. L’équation obtenue pour le front d’onde inclue les informations sur le rayon

et l’intensité du champ, décrit comme le mode fondamental Gaussien dans l’approximation

paraxiale, avec comme axe de propagation un rayon d’optique géométrique. Notre formulation

inclue les effets de l’absorption collisionnelle pour le plasma de couronne sous-dense et à la densité

critique sur l’épaisseur de peau. Ce modèle a été spécifiquement formulé pour le cadre d’un code

hydrodynamique Lagrangien, dont le maillage est non-régulier et non-structuré.

La capacité des méthodes GO et PCGO à modéliser l’effet non-linéaire d’autofocalisation

pondéromotrice d’un faisceau laser a été étudiée. Un terme de pression correspondant au potentiel

pondéromoteur à été ajouté dans le module hydrodynamique, soit à partir de l’intensité reconstruite

pour RT ou à partir du champ d’intensité directement pour PCGO. D’une part, nous avons

trouvé que PCGO permet d’obtenir la bonnes puissance critique, distance d’autofocalisation,

déplétion de densité transverse, et permet d’estimer correctement l’amplification de l’intensité.

D’autre part, le modèle RT n’a pas été capable de reproduire ces quantités. Notamment, la nature

discrète des rayons RT conduit à la filamentation artificielle du faisceau dans des guides d’onde

locaux dont l’échelle est uniquement déterminée par la résolution hydrodynamique. Le modèle de

diffraction du modèle RT, qui consiste à étaler les vecteurs d’ondes initiaux des rayons lumineux,

n’est pas capable de compenser l’autofocalisation : le modèle de diffraction n’est en effet valable

que dans le vide où dans un plasma de densité uniforme et constante dans le temps.

Modélisation des faisceaux lissés

Deuxièmement, la description des faisceaux Gaussiens PCGO a été adaptée aux faisceaux

lasers non Gaussiens. En prenant avantage de l’usage de Lames de Phase dans les lasers de

puissance, qui découpent les faisceaux lasers en de multiples sous-faisceaux de petite taille, nous

avons proposé une méthode pour modéliser de grands faisceaux laser en utilisant un grand nombre

de faisceaux PCGO focalisés pseudo-aléatoirement dans une région proche du plan focal où le

rayon des speckles varie lentement. Cette méthode reproduit les principales caractéristiques de la

distribution d’intensité d’un grand faisceau laser lissé par Lame de Phase KPP ou RPP. Cette

méthode de découpage a été comparée avec des résultats numériques du code de propagation

Miró, dans le cas de la configuration SG4 de l’installation Omega. La superposition des faisceaux

Gaussiens créé un motif de speckles larges, produisant une distribution d’intensité laser et un

contraste similaire aux résultats de la simulation Miró convolués avec le maillage hydrodynamique.

Le contraste laser ainsi modélisé est similaire à ceux des faisceaux lasers utilisant le Lissage par

Polarisation. Une méthode de lissage temporel a aussi été implémenté : le Lissage par Dispersion
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Spectrale (SSD). Des comparaisons avec des estimations théoriques ont permis de démontrer la

capacité du modèle à reproduire la dépendance temporelle du contraste de faisceaux lasers lissés

par SSD.

Ce modèle a été implémenté dans le code hydrodynamique radiatif Chic du laboratoire Celia.

Sa formulation de base en géométrie 2D plane a été étendue aux géométries 3D pour des cas

axi-symétriques spécifiques, où la cible sphérique est irradiée par des faisceaux dont les point

focaux croisent l’axe de symétrie par rotation.

Description de l’ILP non-linéaire

En se basant sur la nouvelle formulation de propagation laser, nous avons proposé différents

modèles qui permettent de prendre en compte l’interaction laser-plasma non-linéaire. Nous avons

séparé celle-ci en deux catégories : (i) le transfer d’énergie non-linéaire entre faisceaux croisés,

qui résulte de la diffraction de la lumière laser sur des fluctuations de densités excitées par le

battement pondéromoteur des ondes superposées, et (ii) le couplage non-linéaire du champ laser

avec les ondes plasma électroniques qui génèrent des populations d’électrons supra-thermiques.

Echange d’énergie entre faisceaux croisés

Notre formulation de l’échange d’énergie entre faisceaux croisés repose sur la discrétsation de

la zone d’interaction par de nombreux transferts d’énergie élémentaires entre faisceaux PCGO

Gaussiens, pour lesquels les paramètres plasma locaux sont supposés uniformes. L’ensemble des

échanges d’énergie est résolu chronologiquement afin de préserver la cohérence du modèle. Ce

modèle entièrement couplé à l’hydrodynamique, nommé Eyebolt pour ElementarY Exchange
Between OpticaL Thick-rays, a été validé à l’aide de plusieurs références. Premièrement, nous

avons évalué l’approche du modèle elle-même, qui consiste à modéliser l’échange d’énergie entre

deux grand faisceaux lasers par de multiples échanges d’énergie entre faisceaux élémentaires. Cette

approche a été validée dans le cadre d’un plasma de densité, température et vitesse uniforme.

Deuxièmement, le modèle Eyebolt a été comparé à une résolution numérique des équations

couplées qui décrivent l’intensité de deux faisceaux lasers croisés dans un plasma, dans le cas d’un

plasma présentant une variation linéaire de vitesse. Un excellent accord a été trouvé pour une

large gamme de rapports d’intensités pompe-sonde. Troisièmement, le modèle Eyebolt a été

comparé à une solution dépendante du temps calculée par le code paraxial Harmony, qui résout

les équations couplées pour les amplitudes complexes des ondes lasers. Un excellent accord a été

observé pour les facteurs d’amplifications de la sonde en régime stationnaire, la déviation des

faisceaux et les amplitudes des perturbations de densités, ceci pour une grande gamme de rapport

d’intensité pompe-sonde et pour des intensités Iλ2 ≤ 1014 Wµm2/cm2. Nous avons supposés que

le moins bon accord observé aux plus hautes intensités est une conséquence de la modélisation plus

restreinte des ailes des faisceaux dans PCGO que dans l’approche de Harmony. Dans ce dernier,

les ailes couvrent plus largement une région du plasma où la résonance est inverse pour le transfert

d’énergie. Quatrièmement, les résultats du modèle Eyebolt ont été comparés à des mesures

expérimentales de CBET obtenues sur l’installation laser Nova. L’accord observé constitue une

grande amélioration comparé aux estimations précédentes obtenues avec des modèles analytiques.

Ces comparaisons théoriques, numériques et expérimentales constituent une base solide pour la

validation de notre implémentation du CBET basé sur PCGO.

Electrons rapides générés par les ILPs non-linéaires

La description des électrons chauffés à des températures supra-thermiques par les ILPs non-

linéaires a été incluse dans le cadre de PCGO. Ce modèle couplé à l’hydrodynamique, nommé

Thetis pour Two-dimensional Hot Electron Transport and emIssion Sources, possède deux
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composantes. Premièrement, il décrit le transport et le dépôt d’énergie des faisceaux d’électrons
rapides dans le plasma. Les faisceaux d’électrons sont modélisés dans l’approximation de diffusion
angulaire, dérivée de l’équation cinétique de Vlasov-Fokker-Planck en considérant la diffusion des
électrons sur un plasma d’électrons et d’ions. Notre formulation est adaptée aux géométries 2D
planes, pour des faisceaux d’électrons de profil d’intensité transverse Gaussien, de distribution
d’énergie exponentielle et d’ouverture angulaire arbitraire. Deuxièmement, ce modèle de transport
est interfacé avec des sources d’électrons calculées par le modèle optique (PCGO). En considérant
les cas d’électrons rapides générés par l’Absorption Résonante, la Diffusion Raman Stimulée et
la Décomposition en Deux Plasmons, nous avons proposé des modèles réduits permettant de
calculer les flux des électrons rapides ainsi générés, ainsi que leur énergie moyenne et distribution
angulaire par rapport à l’onde de pompe. Ces formulations sont basées sur des modèles théoriques
et l’analyse des modes les plus instables, des observations expérimentales des angles de diffusion
et de la compétition entre les processus non-linéaires, des lois d’échelles expérimentales et des
simulations cinétiques de type PIC. De plus, l’émission des électrons vers l’arrière du TPD et
la diffusion vers l’arrière de la lumière par le SRS sont pris en compte dans le bilan d’énergie.
Etant donné la difficulté à caractériser précisément dans les expériences les flux d’électrons
générés par l’ILP non-linéaire, il est difficile de valider ce modèle couplé avec des données
expérimentales. Cependant, les résultats obtenus avec Thetis sont en bon accord avec divers
résultats expérimentaux présentés dans ce travail, dans des géométries et des régimes d’interaction
différents.

Ces modèles entièrement couplés à l’hydrodynamique, implémentés dans le code Chic, sont
cohérents en terme de conservation d’énergie. L’énergie transférée par le CBET ou aux sources
d’électrons rapides est systématiquement soustraite du rayon PCGO lorsque l’ILP a lieu, ce qui
affecte les autres processus d’ILP qui ont lieu en aval du CBET ou du transfert aux faisceaux
d’électrons. Cette approche prends naturellement en compte la compétition entre les processus,
qui découle de la configuration géométrique de l’interaction laser-plasma.

Physique de l’allumage par choc

Nous avons appliqué notre nouveau modèle dans le cadre de l’allumage par choc en FCI. Nous
avons étudié séparément les effets du CBET et des électrons rapides sur la dynamique du plasma.

Influence du CBET sur la dynamique d’une cible en attaque directe

Nous avons appliqué le modèle PCGO+Eyebolt à l’étude du CBET, dans le cas de la
configuration laser de la chambre d’expérience Omega. Les faisceaux sont modélisés en supposant
l’usage des Lames de Phase KPP SG4, dans une configuration 2D plane. Nous simulons l’implosion
d’une capsule (cylindre) sur les 360◦, en autorisant seulement certains faisceaux à échanger de
l’énergie à travers le CBET. Ces faisceaux sont identifiés en considérant les ports co-planaires
de la chambre d’Omega, aux angles de 20◦, 40◦, 140◦ et 160◦. Nous avons trouvé que (i) les
cibles à ablateur de D-T sont plus sensibles aux déformations induites par le CBET que pour
les ablateurs C-H, (ii) le CBET décroit le facteur de convergence de la cible jusqu’à 25 % en
éloignant les maxima d’intensité laser de la densité critique et (iii) pour cette configuration, le
CBET provoque des déformations de la cible dont l’amplitude relative à l’interface interne de la
coquille atteint jusqu’à 35 % pour le mode 2. Ces conclusions sur les déformations de la cible ont
été étendues pour un cas 3D en effectuant une reconstruction linéaire des modes. Nous avons
trouvé que le mode 4 était aussi excité, et que le mode 2 est probablement sur-estimé dans notre
modèle car le CBET entre faisceau non-coplanaires n’est pas pris en compte.
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Etude des électrons rapides générés par l’ILP non-linéaire sur la dynamique
des chocs

L’étude du couplage laser/plasma/électrons rapides a été effectué avec le modèle PCGO+Thetis.
Nous avons considéré plusieurs comparaisons avec diverses expériences.
— Le calcul de l’absorption laser a été validé avec une expérience d’absorption conduite sur
Omega, en utilisant le modèle PCGO+Thetis. L’expérience consistait à irradier une cible par
deux impulsions lasers successives. La première interagi avec une cible froide aux gradients de
densités très raides, et la seconde avec un plasma coronal plus chaud et des gradients de densités
plus longs. Contrairement aux modèles basé sur le RT, qui doivent utiliser une variation temporelle
de la limitation du flux thermique électronique maximale afin de reproduire l’absorption laser
correcte, nous avons montré que notre modèle reproduit les données expérimentales pour les deux
impulsions simultanément, avec une valeur fixe de la limitation de flux. Notamment, l’absorption
résonante contribue à l’absorption de la première impulsion, et plus modérément à la seconde.

— La modèle a été appliqué à l’interprétation d’expériences de mesures de temps de débouchés
de choc conduites sur l’installation laser Pals. Un faisceau laser de haute intensité interagit
avec une cible plane. L’ablation de la couche de plastique créé une onde de choc qui se propage
dans la cible, et dont le temps de débouché à l’arrière est mesuré en utilisant une technique de
pyrométrie (Streak Optical Pyrometry). La population électronique supra-thermique est déduite
à partir de la mesure de l’émission Kα généré par les électrons rapides dans les traceurs de
haut Z. Un accord raisonnable est trouvé entre le modèle et les expériences, à la fois pour la
réflectivité laser intégrée, les flux et températures des électrons supra-thermiques, et les temps
de débouché de choc. Ceci constitue une amélioration significative comparé aux résultats des
modèles basés sur l’Optique Géométrique, qui sous-estiment les temps de débouchés jusqu’à
un facteur 2. Nous avons trouvé qu’une partie des électrons générés par les ILPs non-linéaires
sont suffisamment rapides pour passer à travers le choc et préchauffer la cible en amont. Ce
préchauffage est quasiment isochore car il a lieu en masse dans la cible. L’augmentation de
pression associée augmente significativement la vitesse et la pression avale du choc. A l’inverse,
la force du choc, c’est à dire le rapport de la pression aval sur la pression amont, est grandement
réduite. Etant donné que l’énergie laser transmise aux électrons rapide est déposée à la fois en
amont et en aval du front d’ablation, la pression d’ablation résultante est plus faible qu’en ne
considérant pas cette interaction non-linéaire.

— Le modèle PCGO+Thetis a été appliqué à une expérience de mesure de temps de convergence
de choc en géométrie sphérique, conduite sur Omega. Une cible sphérique est uniformément
irradié par des faisceaux laser et le temps convergence du choc au centre est mesurée à travers
le flash de rayons X associé. L’expérience a été conduite avec et sans lissage par dispersion
spectrale. En son absence, les flux d’électrons rapides ont augmentés d’un facteur 5. Le modèle
avec les électrons a reproduit avec succès les flux et températures mesurées dans l’expérience,
ainsi que la réflectivité laser et le temps de convergence du choc. Comme dans l’expérience sur
Pals, nous avons trouvé que les électrons générés par l’ILP non-linéaire réduisent la force du
choc et la pression d’ablation, tout en augmentant la pression avale au choc et sa vitesse.

Influence des électrons rapides générés par les ILPs non-linéaires sur la dyna-
mique d’une cible d’allumage par choc

Au vu du bon accord observé entre notre modèle et les mesures expérimentales pour l’inter-
action de faisceaux lasers intenses avec les cibles planes et sphériques, nous avons appliqué le
modèle PCGO+Thetis à l’analyse d’implosion de cible pour l’allumage par choc. Premièrement,
nous avons utilisé la configuration de base de la cible tout-DT du projet HiPER. En utilisant
PCGO uniquement, nous reproduisons des fenêtres d’allumage comparables à celles obtenues
en utilisant les modèles RT en 1D. Les simulations avec le modèle Thetis suggèrent que les
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électrons rapides générés durant le pic d’intensité laser préchauffent suffisamment la cible en vol
pour causer l’expansion de la coquille et la pollution du point chaud par du plasma de coquille
dense, avant la convergence finale de la cible. La densité surfacique du point chaud augmente
alors rapidement et le choc d’allumage n’est plus assez fort pour initier les réactions de fusion.
De plus, l’augmentation de la densité du point chaud tôt dans l’implosion augmente les pertes
radiative par rayonnement X, ce qui le refroidit rapidement. Deuxièmement, nous avons utilisé une
configuration de cible plus récente et développée au laboratoire Celia : une cible de DT avec un
ablateur CH et une couche d’Aluminium. Les fenêtres d’allumage de nos simulations avec PCGO
sont comparées avec et sans l’interaction non-linéaire. Les cas avec électrons rapides n’atteignent
pas l’allumage, bien que la présence de l’ablateur plastique renforce la tenue de la coquille au
flux d’électron rapide et réduise la pollution du point chaud. Des simulations avec une plus haute
intensité laser suggèrent que la capsule puisse être allumée, en compensant l’augmentation de
masse du point chaud par un choc d’allumage plus fort. L’importance du moment auquel les
électrons de l’ILP non linéaire sont générés a été soulignée : un délais de 200 ps entre le pic
d’intensité et la génération des électrons permettant à la cible CH-DT d’atteindre l’allumage,
bien qu’avec un gain de 1 MJ seulement. Il apparait donc comme important de bien étudier la
phase transitoire de la croissance des instabilités paramétriques, bien qu’elle soit ici probablement
plus courte que 200 ps au vu de la grande taille du plasma.

Ces résultats démontrent l’importance de prendre en compte les processus d’interaction non-
linéaire dans la conception d’une cible d’allumage par choc efficace et réaliste. Les applications
potentielles de ce modèle ne sont pas limitées aux études de fusion, et sont utiles à l’études des
expériences laser-cible dans les régimes d’interaction pertinents aux instabilités considérées ici.
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