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Résumé

Dans cette thèse nous appliquons le calcul de Malliavin afin d’obtenir la propriété de normalité
asymptotique locale (LAN) à partir d’observations discrètes de certains processus de diffusion
uniformément elliptique avec sauts. Dans le Chapitre 2 nous révisons la preuve de la propriété de
normalité mixte asymptotique locale (LAMN) pour des processus de diffusion avec sauts à partir
d’observations continues, et comme conséquence nous obtenons la propriété LAN en supposant
l’ergodicité du processus. Dans le Chapitre 3 nous établissons la propriété LAN pour un processus
de Lévy simple dont les paramètres de dérive et de diffusion ainsi que l’intensité sont inconnus.
Dans le Chapitre 4, à l’aide du calcul de Malliavin et des estimées de densité de transition, nous
démontrons que la propriété LAN est vérifiée pour un processus de diffusion à sauts dont le
coefficient de dérive dépends d’un paramètre inconnu. Finalement, dans la même direction nous
obtenons dans le Chapitre 5 la propriété LAN pour un processus de diffusion à sauts où les deux
paramètres inconnus interviennent dans les coefficients de dérive et de diffusion.

Mots-clés: Calcul de Malliavin ; Estimateur asymptotiquement efficace ; Estimation paramé-
trique ; Normalité asymptotique locale ; Normalité mixte asymptotique locale ; Processus de
Lévy ; Processus de diffusion avec sauts

Abstract

In this thesis we apply the Malliavin calculus in order to obtain the local asymptotic
normality (LAN) property from discrete observations for certain uniformly elliptic diffusion pro-
cesses with jumps. In Chapter 2 we review the proof of the local asymptotic mixed normality
(LAMN) property for diffusion processes with jumps from continuous observations, and as a con-
sequence, we derive the LAN property when supposing the ergodicity of the process. In Chapter
3 we establish the LAN property for a simple Lévy process whose drift and diffusion parameters
as well as its intensity are unknown. In Chapter 4, using techniques of the Malliavin calculus
and the estimates of the transition density, we prove that the LAN property is satisfied for a
jump-diffusion process whose drift coefficient depends on an unknown parameter. Finally, in the
same direction we obtain in Chapter 5 the LAN property for a jump-diffusion process where two
unknown parameters determine the drift and diffusion coefficients of the jump-diffusion process.

Keywords:Malliavin calculus ; Asymptotically efficient estimator ; Parametric estimation ; Local
asymptotic normality ; Local asymptotic mixed normality ; Lévy process ; Diffusion process with
jumps
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Chapitre 1

Introduction

This thesis is concerned with the application of the Malliavin calculus to the study of the
local asymptotic normality (LAN) property from discrete observations for a class of uniformly
elliptic diffusion processes with jumps. We will also go over the proof of the local asymptotic
mixed normality (LAMN) property from continuous observations for jump-diffusion processes.
The importance of such property in parametric estimation is characterized by the convolution
theorem allowing us to define the asymptotically efficient estimators, and the minimax theorem
giving the lower bound for the asymptotic variance of estimators.

The aim of this introduction is to recall several concepts on asymptotic statistical inference,
to provide some motivation for the study of such property, to give the main results contained in
the thesis, and to explain in detail the main techniques used to obtain such results.

1.1 Some basics on parametric statistical inference

Consider an Rn-valued random vector Xn = (X1, . . . , Xn) defined on a probability space
(Ω,F ,P), whose structure will be described later, such that the probability law of Xn depends
on a parameter θ = (θ1, . . . , θk) ∈ Θ, where the parameter space Θ is an open subset of Rk.
We are interested in the case where Xn corresponds to the discrete observations of a stochastic
process Xθ = (Xθ

t )t≥0 defined on (Ω,F ,P) and adapted to a filtration (Ft)t≥0, which satisfies a
stochastic differential equation with jumps having a Brownian component. We then denote by Pθ

the probability law of Xθ on the Skohorod space (D(R+,R),B(R+,R)), where D(R+,R) denotes
the space of càdlàg functions from R to R, and B(R+,R) its associated Borel σ-algebra, and

by Eθ and E the expectation with respect to Pθ and P, respectively. Let Pθ−→ and
L(Pθ)−→ denote

the convergence in Pθ-probability and in Pθ-law, respectively. Similarly, P−→ and
L(P)−→ denote the

convergence in P-probability and in P-law, respectively.
Let Xn be the sample space containing all the possible values of Xn, and B(Xn) the Bo-

rel σ-algebra of observable events. Let (Pθn)θ∈Θ be the family of probability laws defined on
(Xn,B(Xn)), and induced by Xn : Ω→ Xn ⊂ Rn. The triplet (D(R+,R),B(Xn), (Pθn)θ∈Θ) is cal-
led a parametric statistical model, which we denote by (Pθn)θ∈Θ. The parametric statistical model
(D(R+,R),B(R+,R), (Pθ)θ∈Θ) is defined similarly, which we denote by (Pθ)θ∈Θ. We denote by
Eθn the expectation with respect to Pθn.

Our objective is to estimate the parameter θ on the basis of the observations Xn. For this,
let us introduce the following concepts.

A statistic is any measurable function T : Xn → Rm, which does not depend on θ. Moreover,
any statistic T : Xn → Θ is called an estimator of the parameter θ ∈ Θ.

The bias of an estimator T (Xn) is defined as bθ(T (Xn)) = Eθ[T (Xn)] − θ. An estimator
T (Xn) of θ is said to be unbiased if bθ(T (Xn)) = 0. The asymptotic bias of an estimator T (Xn)
is defined as limn→∞ bθ(T (Xn)). Moreover, if limn→∞ bθ(T (Xn)) = 0, the estimator T (Xn) is
said to be asymptotically unbiased.

1



2 Chapitre 1. Introduction

The definition of the Fisher information matrix depends on the notion of the score function
which plays a central role in parametric statistical inference. In order for this notion to be well-
defined, it is necessary to impose certain conditions on the Radon-Nikodym density pn(x; θ),
x ∈ Xn of Pθn with respect to a dominating measure µn. We shall utilize the following definition.

Definition 1.1.1. The parametric statistical model (Pθn)θ∈Θ is regular if
i) There exists a σ-finite positive measure µn on (Xn,B(Xn)) such that for all θ ∈ Θ, the pro-
bability measures Pθn are absolutely continuous with respect to µn, and the Radon-Nikodym
density

pn(x; θ) =
dPθn
dµn

(x)

is continuous on Θ for µn-almost all x ∈ Xn.
ii) The function

√
pn(x; θ) is differentiable in θ in L2(µn) for all θ ∈ Θ.

iii) The L2(µn)-derivative of
√
pn(x; θ) is continuous in L2(µn).

Note that the regularity of the parametric statistical model (Pθ)θ∈Θ is defined similarly.

Definition 1.1.2. Let (Pθn)θ∈Θ be a regular parametric statistical model. The likelihood function
and log-likelihood function based on Xn are defined as random functions of θ as follows

Ln(θ) = pn(Xn; θ), and `n(θ) = log pn(Xn; θ).

The score function is given by the gradient ∇θ`n(θ) = ∇θ log pn(Xn; θ).

Let us now give some consequences of this regularity condition (see Lemmas 7.1 and 7.2 of
[28, Chapter I]).

Lemma 1.1.1. Let (Pθn)θ∈Θ be a regular parametric statistical model.
1. The Fisher information matrix of the model, defined as

In(θ) = Eθn

[
∇θ`n(θ)∇θ`n(θ)T

]
= Eθn

[
∇θ log pn(Xn; θ)∇θ log pn(Xn; θ)T

]
exists and is continuous on Θ.

2. Let T : Xn → Rm be a statistic such that Eθn[|T (Xn)|2] is bounded in a neighborhood of
θ ∈ Θ. Then, the function Eθn[T (Xn)] is continuously differentiable in this neighborhood,
and

∇θEθn [T (Xn)] = ∇θ
∫
Xn
T (x)pn(x; θ)µn(dx) =

∫
Xn
T (x)∇θpn(x; θ)µn(dx).

Taking T (Xn) = 1 in 2., we obtain that Eθn[∇θ`n(θ)] = 0. Therefore, In(θ) = Varθn (∇θ`n(θ)).
Furthermore, if the second order derivative ∇2

θ`n(θ) exists, then In(θ) = −Eθn[∇2
θ`n(θ)].

Let (Pθ)θ∈Θ be a regular parametric statistical model, and let ν be the measure on the space
(D(R+,R),B(R+,R)) from Definition 1.1.1 such that for all θ ∈ Θ,

p(x; θ) =
dPθ

dν
(x).

The likelihood function and log-likelihood function based on X are defined as random functions
of θ as follows

L(θ) = p(X; θ), and `(θ) = log p(X; θ).

The score function is given by the gradient ∇θ`(θ) = ∇θ log p(X; θ). The Fisher information
matrix of this model is defined as

I(θ) = Eθ
[
∇θ`(θ)∇θ`(θ)T

]
= Eθ

[
∇θ log p(X; θ)∇θ log p(X; θ)T

]
=

∫
D(R+,R)

∇θ log p(x; θ)∇θ log p(x; θ)Tp(x; θ)ν(dx).



1.1. Some basics on parametric statistical inference 3

We are now interested in using the Malliavin calculus in order to write the score function as
a conditional expectation involving the Skorohod integral (see [13, Theorem 3.3] for k = 1). We
refer to Nualart [57] for a detailed exposition of the classical Malliavin calculus on the Wiener
space. We now recall briefly the Malliavin calculus for Lévy processes developed by León et al.
in [50] and Petrou in [61], which will be applied in the thesis.

In all what follows, the observed process is defined by Xθ = (Xθ
t )t≥0, which is driven by a

Brownian motion B and a compensated Poisson random measure Ñ . In Chapters 3-5, to avoid
confusion with the observed process Xθ, we introduce an independent copy of Xθ, denoted by
Y θ which is driven by a Brownian motion W and a compensated Poisson random measure M̃ ,
where the Malliavin calculus with respect to W will be applied. Therefore, Y θ can be considered
as the theoretical process.

Definition 1.1.3. Let us define a Brownian motion B = (Bt)t≥0 on the canonical probabi-
lity space (Ω1,F1,P1) with its natural filtration {F1

t }t≥0, a Poisson random measure N(dt, dz)
on the canonical probability space (Ω2,F2,P2) with intensity measure ν(dz)dt and its natural
filtration {F2

t }t≥0, another Brownian motion W = (Wt)t≥0 on the canonical probability space
(Ω3,F3,P3) with its natural filtration {F3

t }t≥0, and another Poisson random measure M(dt, dz)
on the canonical probability space (Ω4,F4,P4) with intensity measure π(dz)dt and its natural
filtration {F4

t }t≥0. Then, (Ω,F ,P) is defined as the canonical product probability space, where
Ω = Ω1×Ω2×Ω3×Ω4, F = F1⊗F2⊗F3⊗F4, P = P1⊗P2⊗P3⊗P4, and Ft = F1

t ⊗F2
t ⊗F3

t ⊗F4
t .

Therefore on this space the canonical process represents (B,N,W,M) which are therefore mu-
tually independent.

We denote by Ω̂ = Ω1 × Ω2, F̂ = F1 ⊗ F2, P̂ = P1 ⊗ P2, F̂t = F1
t ⊗ F2

t , and Ω̃ = Ω3 × Ω4,
F̃ = F3⊗F4, P̃ = P3⊗P4, F̃t = F3

t ⊗F4
t . We denote by E, Ê and Ẽ the expectation with respect

to P, P̂ and P̃, respectively. Observe that Ω = Ω̂ × Ω̃, F = F̂ ⊗ F̃ , P = P̂ ⊗ P̃, Ft = F̂t ⊗ F̃t,
and E = Ê⊗ Ẽ.

On the filtered probability space (Ω,F , {Ft}t∈[0,T ],P), consider a two-dimensional centered
square integrable Lévy process Z = (Z1, Z2) = (Zt)t∈[0,T ] given by

Z1
t = σ1Bt +

∫ t

0

∫
R0

z (N(dt, dz)− ν(dz)dt) ,

Z2
t = σ2Wt +

∫ t

0

∫
R0

z (M(dt, dz)− π(dz)dt) ,

where σ1, σ2 > 0 are constant, R0 := R \ {0}. The compensated Poisson random measures are
denoted by Ñ(dt, dz) := N(dt, dz) − ν(dz)dt, and M̃(dt, dz) := M(dt, dz) − π(dz)dt. Here, the
intensity measures satisfy that

∫
R0

(1∧ |z|2)ν(dz) <∞ and
∫
R0

(1∧ |z|2)π(dz) <∞. Remark that
the filtration {Ft}t∈[0,T ] is the same as the one generated by the Lévy process Z. The main idea
of León et al. in [50] is to represent random variables on (Ω,F ,P) via iterated integrals, from
which a Mallivin calculus can be defined as in the Gaussian setting in Nualart [57].

To simplify the exposition, we introduce the following unified notation for the Brownian
motions and the Poisson random measures

U1 = U2 = [0, T ], and U3 = U4 = [0, T ]× R0,

dQ1(·) = dB·, dQ2(·) = dW·, and Q3(·, ∗) = Ñ(·, ∗), Q4(·, ∗) = M̃(·, ∗),
d 〈Q1〉· = d 〈Q2〉· = d·, and d 〈Q3〉· = d · ×dν(∗), d 〈Q4〉· = d · ×dπ(∗),

and for the variables tk ∈ [0, T ] and z ∈ R0,

u`k :=

{
tk , ` = 1, 2,

(tk, z) , ` = 3, 4.



4 Chapitre 1. Introduction

Set Sn = {1, 2, 3, 4}n. For (j1, . . . , jn) ∈ Sn, define an expanded simplex of the form

Gj1,...,jn =
{

(uj11 , . . . , u
jn
n ) ∈ Πn

i=1 Uji : 0 < t1 < · · · < tn < T
}
.

We next define the iterated integral of the form

J (j1,...,jn)
n (gj1,...,jn) =

∫
Gj1,...,jn

gj1,...,jn(uj11 , . . . , u
jn
n )Qj1(duj11 ) · · ·Qjn(dujnn ),

where gj1,...,jn is a deterministic function in L2(Gj1,...,jn) = L2(Gj1,...,jn ,⊗ni=1d 〈Qji〉).

Theorem 1.1.1. For every random variable F ∈ L2(Ω,FT ,P), there exists a unique sequence of
deterministic functions {gj1,...,jn}∞n=0, (j1, . . . , jn) ∈ Sn, where gj1,...,jn ∈ L2(Gj1,...,jn) such that

F = E[F ] +
∞∑
n=1

∑
(j1,...,jn)∈Sn

J (j1,...,jn)
n (gj1,...,jn),

and we have the isometry

‖F‖2L2(P) = EF 2 +

∞∑
n=1

∑
(j1,...,jn)∈Sn

‖J (j1,...,jn)
n (gj1,...,jn)‖2L2(Gj1,...,jn ).

Using this chaotic representation property, the directional derivatives can be defined with
respect to Brownian motion and Poisson random measure. For this, denote

Gkj1,...,jn(t) =

{
(uj11 , . . . , u

jk−1

k−1 , û
jk
k , u

jk+1

k+1 , . . . , u
jn
n ) ∈ Gj1,...,jk−1,jk+1,...,jn :

0 < t1 < · · · < tk−1 < t < tk+1 < · · · < tn < T

}
,

where û means that we omit the u element.

Definition 1.1.4. Let gj1,...,jn ∈ L2(Gj1,...,jn) and ` ∈ {1, 2, 3, 4}. Then

D
(`)

u`
J (j1,...,jn)
n (gj1,...,jn) =

n∑
i=1

1{ji=`}J
(j1,...,ji−1,ĵi,ji+1,...,jn)
n−1

(
gj1,...,jn(. . . , u`, . . .)1Gij1,...,jn (t)

)
is called the derivative of J (j1,...,jn)

n (gj1,...,jn) in the `-th direction.

Definition 1.1.5. Let D(`) be the space of the random variables in L2(Ω) that are differentiable
in the `-th direction, then

D(`) =

{
F ∈ L2(Ω), F = E[F ] +

∞∑
n=1

∑
(j1,...,jn)∈Sn

J (j1,...,jn)
n (gj1,...,jn) :

∞∑
n=1

∑
(j1,...,jn)∈Sn

n∑
i=1

1{ji=`}

∫
Uji

∥∥∥gj1,...,jn(. . . , u`, . . .)
∥∥∥2

L2(Gij1,...,jn
)
d 〈Q`〉 (u`) <∞

}
.

Definition 1.1.6. Let F ∈ D(`). Then the derivative in the `-th direction is defined as

D
(`)

u`
F =

∞∑
n=1

∑
(j1,...,jn)∈Sn

n∑
i=1

1{ji=`}J
(j1,...,ĵi,...,jn)
n−1

(
gj1,...,jn(. . . , u`, . . .)1Gij1,...,jn (t)

)
.
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On the space D(1) ∩ D(2), the directional derivatives (D(1), D(2)) with respect to the 2-
dimensional Brownian motion (B,W ) are equivalent to the classical Malliavin derivative on
the Wiener space.

Moreover, the properties like the chain rule, the integration by parts formula, the Skorohod
integral and duality relation of the directional derivatives (D(1), D(2)) are preserved as for the
classical Malliavin calculus.

Notice that the solution Y θ to a stochastic differential equation with jumps driven by the
Brownian motion W and the compensated Poisson random measure M̃ can be differentiable
with respect to W and M̃ (see [61]). In Chapters 3-5, we are only concerned with the Malliavin
derivative in the 2-th direction, i.e., with respect to W , and let us denote D ≡ D(2), D1,2 ≡ D(2)

and H = L2([0, T ],R).

Definition 1.1.7. The divergence operator δ (called the Skorohod integral) is the adjoint of the
directional derivative D. That is, δ is an unbounded operator from L2([0, T ] × Ω,R) to L2(Ω)
such that

(i) The domain of δ, Dom δ, is the set of random variables u ∈ L2([0, T ]× Ω,R) such that

|E [〈DF, u〉H]| ≤ cu ‖F‖L2(Ω) ,

for all F ∈ D1,2, where cu is some positive constant depending on u.
(ii) If u ∈ Dom δ then δ(u) is the element of L2(Ω) characterized by the following duality
relation

E [Fδ(u)] = E [〈DF, u〉H] ,

for any F ∈ D1,2.

Similarly, Xθ can be differentiable with respect to B and Ñ . Let Dom δ(1) denote the domain
of the Skorohod integral δ(1), the adjoint operator of the Malliavin derivative D(1) with respect
to B, in L2([0, T ]× Ω,R).

Proposition 1.1.1. Let (Pθn)θ∈Θ be a regular parametric statistical model. Assume that the
random variables Xi ∈ D(1), for all i ∈ {1, . . . , n}, and let U = (U1, . . . , Uk) be a k-dimensional
stochastic process satisfying that U j ∈ Dom δ(1), for all j ∈ {1, . . . , k} such that for all i ∈
{1, . . . , n}, 〈

D(1)Xi, U
〉
H

= ∇θXi, (1.1)

where ∇θXi = (∂θ1Xi, . . . , ∂θkXi), and〈
D(1)Xi, U

〉
H

=
(〈
D(1)Xi, U

1
〉
H
, . . . ,

〈
D(1)Xi, U

k
〉
H

)
=

(∫ T

0
D

(1)
t XiU

1(t)dt, . . . ,

∫ T

0
D

(1)
t XiU

k(t)dt

)
.

Moreover, assume that for any θ ∈ Θ, there is a neighborhood of θ where |∇θXi| ≤ G with
E[G] <∞. Then for all θ ∈ Θ,

∇θ log pn(x; θ) = E
[
δ(1)(U)|Xn = x

]
,

for almost all x ∈ Xn and for all θ ∈ Θ, where we denote δ(1)(U) := (δ(1)(U1), . . . , δ(1)(Uk)).

Proof. Let ϕ be a C∞b (Rn) function with compact support. Then, hypothesis (1.1), the chain rule
and the duality relation of the Malliavin calculus imply that

∇θE [ϕ(Xn)] =
n∑
i=1

E [∂xiϕ(Xn)∇θXi] =
n∑
i=1

E
[
∂xiϕ(Xn)

〈
D(1)Xi, U

〉
H

]
= E

[〈
D(1)(ϕ(Xn)), U

〉
H

]
= E

[
ϕ(Xn)δ(1)(U)

]
.
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On the other hand, by Lemma 1.1.1,

∇θE [ϕ(Xn)] =

∫
Xn
ϕ(x)∇θpn(x; θ)µ(dx) = E [ϕ(Xn)∇θ log pn(Xn; θ)] .

Thus, the result follows.

As a consequence, the Fisher information matrix and the Cramér-Rao lower bound can be
obtained without requiring the explicit expression of the density pn(·; θ) (see Proposition 1.1.2
below). Observe that by Proposition 1.1.1,

In(θ) = Var
(

E
[
δ(1)(U)|Xn

])
.

Let us now give the classical Cramér-Rao’s inequality (see Theorem 7.3 of [28, Chapter I]).

Proposition 1.1.2. Let (Pθn)θ∈Θ be a regular parametric statistical model, and T be a statistic
such that Eθn[|T (Xn)|2] is bounded in a neighborhood of θ ∈ Θ. Assume that In(θ) is invertible
for all θ ∈ Θ. Let g(θ) = Eθn [T (Xn)]. Then g is continuously differentiable in this neighborhood,
and

Varθn (T (Xn)) ≥ ∇θg(θ)In(θ)−1∇θg(θ)T.

In this case, ∇θg(θ)In(θ)−1∇θg(θ)T is called the Cramér-Rao lower bound for estimating g(θ).
In particular, if T (Xn) is an unbiased estimator of θ, then

Varθn (T (Xn)) ≥ In(θ)−1.

In this case, In(θ)−1 is called the Cramér-Rao lower bound for estimating θ.

We remark that if (Pθ)θ∈Θ is a regular parametric statistical model, then the Cramér-Rao
lower bound for an unbiased estimator T (Xθ) of θ holds with I(θ)−1.

The Cramér-Rao lower bound suggests the following definition.

Definition 1.1.8. Suppose that (Pθn)θ∈Θ is a regular parametric statistical model. An unbiased
estimator T (Xn) of θ is called efficient if its covariance matrix achieves the Cramér-Rao lower
bound. That is,

Varθn(T (Xn)) = In(θ)−1.

Moreover, suppose that the parametric statistical model (Pθ)θ∈Θ is regular. An estimator T (Xn)
of θ is called asymptotically efficient in the Cramér-Rao sense if it is asymptotically normal, and
its covariance matrix achieves asymptotically the Cramér-Rao lower bound. That is, there exists
a k × k non-random diagonal matrix ϕn(θ) whose entries are strictly positive and tend to zero
as n→∞ such that as n→∞,

ϕ−1
n (θ) (T (Xn)− θ) L(Pθ)−→ N

(
0, I(θ)−1

)
, (1.2)

where N (0, I(θ)−1) denotes a centered Rk-valued Gaussian random variable with covariance ma-
trix I(θ)−1, and ϕ−1

n (θ) is the rate of convergence of I(θ)−1. Here, I(θ) is the Fisher information
matrix of the model (Pθ)θ∈Θ.

Example 1.1.1. Consider the following diffusion process Xθ = (Xθ
t )t∈[0,1]

dXθ
t = b(θ, t)dt+ dBt,

where Xθ
0 = x0, θ ∈ Θ ⊂ R, and b(θ, ·) is a continuously differentiable function on L2(0, 1).

Let (Pθ)θ∈Θ be the law of the continuous observation Xθ on the canonical space (C[0, 1],B[0, 1]),
where C[0, 1] denotes the space of continuous functions from [0, 1] to R, and B[0, 1] its associated
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Borel σ-algebra. Let ν be the probability law of (x0 + Bt)t∈[0,1] on (C[0, 1],B[0, 1]). Then by
Girsanov’s Theorem,

dPθ

dν
= exp

{∫ 1

0
b(θ, t)dXθ

t −
1

2

∫ 1

0
b2(θ, t)dt

}
= p(Xθ, θ).

It can be checked that the parametric statistical model (Pθ)θ∈Θ is regular (see Example 7.3 of
[28, Chapter I]). Moreover, the Fisher information matrix is given by

I(θ) =

∫ 1

0
(∂θb(θ, t))

2 dt.

An estimator T (Xn) of the parameter θ is said to be consistent if it converges in Pθ-probability
to θ as n → ∞. When comparing two consistent estimators of the parameter θ, it is natural to
compare their rates of convergence and the asymptotic variances of their respective asymptotic
distributions, which are in general the normal distribution or mixed normal distribution.

Definition 1.1.9. A sequence of estimators (T (Xn))n≥1 of the parameter θ is called asympto-
tically mixed normal if for any θ ∈ Θ, there exists a k × k non-random diagonal matrix ϕn(θ)
whose entries are strictly positive and tend to zero as n → ∞, and a k × k positive definite
random matrix Γ(θ), such that as n→∞,

ϕ−1
n (θ) (T (Xn)− θ) L(Pθ)−→ Γ(θ)−1/2N (0, Ik),

where N (0, Ik) denotes a centered Rk-valued Gaussian random variable independent of Γ(θ) with
identity covariance matrix Ik.

When the matrix Γ(θ) is deterministic, the sequence (T (Xn))n≥1 is asymptotically normal.

When the estimators are asymptotically mixed normal, another important issue is whether
these estimators are asymptotically efficient in the sense that they achieve a minimal asymptotic
variance. We have given in Definition 1.1.8 the notion of asymptotic efficiency of the estimators
in terms of deterministic Cramér-Rao lower bound. Another approach to define the asymptotic
efficiency of the estimators is to study the lower bound for asymptotic variances of the estimators
via a convolution theorem. This problem is related to a fundamental concept in asymptotic
theory of statistics called the local asymptotic normality (LAN) property, which was introduced
by Le Cam [48], developed by Hájek [26, 27] and extended by Jeganathan [34], [35] to the local
asymptotic mixed normality (LAMN) property. We refer to the monographs by Ibragimov and
Has’minskii [28], Kutoyants [47], Le Cam and Lo Yang [49], Van Der Vaart [73] for more detailed
expositions of this topic.

Note that solving the issue on the regularity of a parametric statistical model and on the
asymptotic mixed normality of the estimators is an interesting topic. However, the purpose of
this thesis is to focus on addressing the problem of asymptotic efficiency of the estimators in
the latter sense, and more precisely, studying the LAN property for a class of diffusion processes
with jumps.

Definition 1.1.10. The score function is said to be asymptotically mixed normal if for any
θ ∈ Θ, there exists a k× k non-random diagonal matrix ϕn(θ) whose entries are strictly positive
and tend to zero as n → ∞, and a k × k positive definite random matrix Γ(θ), such that as
n→∞,

ϕn(θ)∇θ`n(θ)
L(Pθ)−→ Γ(θ)1/2N (0, Ik) , (1.3)

where Γ(θ) and N (0, Ik) are independent. In this case, the matrix Γ(θ) is called the asymptotic
Fisher information matrix of the model. When the matrix Γ(θ) is deterministic, we say that the
score function is asymptotically normal.
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Definition 1.1.11. The sequence (Pθn)θ∈Θ is said to have the LAMN property if for any θ ∈ Θ
and u ∈ Rk, as n→∞,

log
dP

θ+ϕn(θ)u
n

dPθn
(Xn)

L(Pθ)−→ uTΓ(θ)1/2N (0, Ik)−
1

2
uTΓ(θ)u, (1.4)

where N (0, Ik), ϕ−1
n (θ), and Γ(θ) are as in (1.3). In this case, we say that the LAMN property

holds with rate of convergence ϕ−1
n (θ) and asymptotic Fisher information matrix Γ(θ). When the

matrix Γ(θ) is deterministic, the LAN property holds.

Observe that (1.4) is equivalent to

log
dP

θ+ϕn(θ)u
n

dPθn
(Xn) = `n (θ + ϕn(θ)u)− `n(θ)

= uTϕn(θ)∇θ`n(θ)− 1

2
uTΓ(θ)u+ oPθ(1),

(1.5)

where ϕn(θ)∇θ`n(θ) converges in Pθ-law to Γ(θ)1/2N (0, Ik) as n→∞.
Two fundamental consequences of the LAMN property are the conditional convolution theo-

rem and the minimax theorem.

Definition 1.1.12. A sequence of estimators (T (Xn))n≥1 of the parameter θ is called regular at
θ if for any u ∈ Rk, as n→∞,

ϕ−1
n (θ) (T (Xn)− (θ + ϕn(θ)u))

L(Pθ+ϕn(θ)u)−→ V (θ),

for some Rk-valued random variable V (θ), independent of u.

Note that taking u = 0, this implies that as n→∞,

ϕ−1
n (θ) (T (Xn)− θ) L(Pθ)−→ V (θ).

The conditional convolution theorem says that when the LAMN property holds, then the
asymptotic distribution of any regular sequence of estimators of the parameter θ is characterized
by a conditional convolution between a Gaussian law and some others laws. More precisely,

Theorem 1.1.2 (Conditional convolution theorem). [34, Corollary 1] Suppose that the sequence
(Pθn)θ∈Θ satisfies the LAMN property at a point θ. Let (T (Xn))n≥1 be a regular sequence of
estimators of the parameter θ. Then the law of V (θ) conditionally on Γ(θ) is a convolution
between the Gaussian law N (0,Γ(θ)−1) and some other law GΓ(θ) on Rk, that is,

L (V (θ)|Γ(θ)) = N
(
0,Γ(θ)−1

)
? GΓ(θ).

Hence, the random variable V (θ) can be written as a sum of two independent random variables

V (θ)
law
= Γ(θ)−1/2N (0, Ik) +R,

where R is a random variable with distribution GΓ(θ), independent of N (0, Ik). This implies that,
under the conditions of Theorem 1.1.2, as n→∞,

ϕ−1
n (θ) (T (Xn)− θ) L(Pθ)−→ Γ(θ)−1/2N (0, Ik) +R.

This theorem suggests the notion of asymptotically efficient estimators in terms of minimal
asymptotic variance, when R = 0. That is,
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Definition 1.1.13. Assume that the sequence (Pθn)θ∈Θ satisfies the LAMN property at a point
θ. A sequence of estimators (T (Xn))n≥1 of the parameter θ is called asymptotically efficient at θ
in the sense of Hájek-Le Cam convolution theorem if as n→∞,

ϕ−1
n (θ) (T (Xn)− θ) L(Pθ)−→ Γ(θ)−1/2N (0, Ik),

where Γ(θ) and N (0, Ik) are independent.

In particular, when Γ(θ) is deterministic, a sequence of estimators which is asymptotically
efficient in the sense of Hájek-Le Cam convolution theorem achieves asymptotically the Cramér-
Rao lower bound in (1.2) for the estimation variance, that is, Γ(θ) = I(θ).

Moreover, as a consequence of the LAMN property, an asymptotic lower bound for risk
functions of estimators can be obtained via minimax theorem. More precisely,

Theorem 1.1.3 (Minimax theorem). [34, Proposition 2] Suppose that the sequence (Pθn)θ∈Θ

satisfies the LAMN property at a point θ ∈ Θ. Let (T (Xn))n≥1 be a sequence of estimators of
the parameter θ and l : Rk → [0,+∞) be a loss function of the form l(0) = 0, l(x) = l(|x|) and
l(|x|) ≤ l(|y|) if |x| ≤ |y|. Then

lim inf
n→∞

Eθ
[
l
(
ϕ−1
n (θ) (T (Xn)− θ)

)]
≥ E

[
l
(

Γ(θ)−1/2N (0, Ik)
)]
.

In particular, when we take the quadratic loss function l(u) = |u|2, the above inequality gives
an asymptotic lower bound for the covariance matrix of any sequence of unbiased estimators,
which is given by Γ(θ)−1.

As indicated above, we are concerned with a discrete observation Xn = (X0, X∆n , . . . , Xn∆n)
at equidistant times tk = k∆n, k ∈ {0, . . . , n} of a stochastic process Xθ = (Xθ

t )t≥0 defined on
(Ω,F ,P). Here n is the observation frequency, and ∆n is the corresponding time step size.

When the time step size is ∆n = ∆, where ∆ is a positive constant independent of n, the
scheme of observation is called low frequency observation. When ∆n → 0 as n→∞, it is called
high frequency observation.

On the other hand, the case of high frequency observation can be divided into two cases
depending on tn = n∆n. That is, when n∆n is finite and fixed, we have a discrete observation
Xn on a finite fixed interval. When n∆n →∞ as n→∞, we have a discrete observation Xn on
an increasing interval.

The parametric estimation for discrete observations at high frequency has been developed
by, for instance, Florens-Zmirou and Dacunha-Castelle [15], Florens-Zmirou [19], Donhal [17],
Yoshida [76], Genon-Catalot and Jacod [21, 22], Kessler [40], Gobet [24, 25] for continuous
diffusion processes, and by Aït-Sahalia and Jacod [1, 2], Shimizu and Yoshida [69], Shimizu [67],
Ogihara and Yoshida [59], Masuda [55], Kawai [38], Kawai and Masuda [39], Clément, Delattre
and Gloter [10, 11] for jump-diffusion processes.

In the other direction, the statistical inference for stochastic processes with continuous-time
observations has been widely developed during the last forty years. Several important contri-
bution on this subject can be found in the books and articles of Basawa and Prakasa Rao [6]
for stochastic processes, Basawa and Scott [7] for non-ergodic models, Kutoyants [44, 46, 47] for
diffusion processes, Sørensen [71] for diffusions with jumps, Barndorff-Nielsen and Sørensen [5]
for stochastic processes, and Prakasa Rao [63] for semimartingales.

1.2 Motivation and model setting

In practice, the observations are rather discrete than continuous. The case of discrete-time
observations is an interesting subject which has been extensively studied in recent years. However,
most of obtained results in the literature are related to the continuous diffusion processes. For
the Ornstein-Uhlenbeck process, which possesses an explicit Gaussian law, it has been shown
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that the LAN and LAMN properties hold true in the ergodic and non-ergodic case, respectively
(see [13], [30] and [68]). The LAMN property for one-dimensional diffusion processes was studied
by Donhal in [17], where the proof is derived by expanding the transition density with respect to
the time and the parameters up to an appropriate order. Later, Genon-Catalot and Jacod [22]
showed that the LAMN property can be obtained for a class of diffusion processes by assuming
some specific estimates on the transition densities and their derivatives.

Recently, techniques of Malliavin calculus have proved to be a powerful tool for the stochastic
analysis of the log-likelihood ratio, which, to our knowledge, was initiated by Gobet in [24].
Concretely, he obtained in this paper the LAMN property from discrete observations at high
frequency on the interval [0, 1] for multidimensional elliptic diffusion (Xθ

t )t∈[0,1] defined by

Xθ
t = x+

∫ t

0
b(θ, s,Xθ

s )ds+

∫ t

0
S(θ, s,Xθ

s )dBs,

which generalizes the preceding result obtained by Donhal [17]. For this purpose, the integration
by parts formula of the Malliavin calculus on the Gaussian space is applied in order to derive
an expansion of the log-likelihood ratio in terms of a sum of conditional expectations involving
Skorohod integrals. On the other hand, the upper and lower Gaussian type bounds of the transi-
tion density are essentially employed in the analysis of the convergence of the sum of conditional
expectations appearing in this expansion. Following the same approach as in [24], the LAN pro-
perty was next established in [25] from discrete observations at high frequency on an increasing
interval for multidimensional ergodic diffusions (Xα,β

t )t≥0 defined by

Xα,β
t = x0 +

∫ t

0
b(α, s,Xα,β

s )ds+

∫ t

0
S(β, s,Xα,β

s )dBs.

Later on, in the same direction Gobet and Gloter [23] showed that the LAMN property is satisfied
for integrated diffusions.

In the presence of the jump component, several special cases have been studied. Precisely, the
LAN property is established for some Lévy processes whose transition density can be expressed
in an explict form, for instance, stable processes and normal inverse Gaussian Lévy processes
(see [75, 39]). In addition, Aït-Sahalia and Jacod in [1] established the LAN property for a class
of Lévy processes. Recently, Kawai in [38] deals with the particular case of the ergodic Ornstein-
Uhlenbeck (O-U) process with jumps whose solution and its respective transition density can be
written in semi-explicit form. This implies that a Taylor expansion of the log-density with respect
to the parameters can be obtained, therefore reducing the proof to the proof of a classical central
limit theorem with independent increments and a residual term. This residual term depends
strongly on estimates of the first and second derivatives of the logarithm of the density of the O-U
process which are dealt with using the integration by parts formula of Malliavin calculus based
on the Brownian motion. However, [38] studies only the case where the unknown parameters
determine the drift and diffusion coefficients, but where the jump component does not depend
on the parameter.

More recently, using tools of Malliavin calculus as in [24], Clément et al. [10] have established
the LAMN property for a stochastic process with jumps (Xλ

t )t∈[0,1] driven by a compound Poisson
process

Xλ
t = x0 +

∫ t

0
b(s,Xλ

s )ds+

∫ t

0
a(s,Xλ

s )dWs +
K∑
k=1

c(Xλ
Tk−, λk)1t≥Tk ,

where the parameter λ = (λ1, . . . , λK) ∈ RK determines the jump amplitudes, the jump times
are given by 0 < T1 < · · · < TK < 1 and the number of jumps K on [0, 1] is deterministic.

Moreover, using the Malliavin calculus for jump processes developed by Bichteler, Gravereaux
and Jacod [9], Clément and Gloter [11] prove that the LAMN property holds true for the process
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solution (Xθ
t )t∈[0,1] defined by

Xθ
t = x0 +

∫ t

0
b(Xθ

s , θ)ds+ Lt,

where (Lt)t∈[0,1] is a pure jump Lévy process whose Lévy measure an α-stable Lévy measure near
zero with α ∈ (1, 2).

However, it can be seen that the validity of the LAN property for general stochastic differential
equations with jumps having a Brownian component has never been addressed in the literature.
One of the reasons could be that the behaviour of the transition density changes strongly due to
the presence of jumps in this context. In fact, one expects that the upper bound for the density of
such stochastic differential equations with jumps will be controlled by the exponential behaviour
of the jump process and that the lower bound will be controlled by the Gaussian behaviour of
the Wiener process. For instance, consider a one-dimensional Lévy process (Xx

t )t≥0 starting from
x ∈ R defined by

Xx
t = x+Bt +

Nt∑
i=1

Yi, (1.6)

where B = (Bt)t≥0 is a standard Brownian motion, N = (Nt)t≥0 is a Poisson process with
intensity λ > 0 independent of B, and (Yi)i≥0 are i.i.d. random variables independent of B and
N with probability density ϕ

λ . Here, ϕ(z) is the Lévy density of the Lévy process. When ϕ is
Gaussian, it can be shown that there exist constants C1, c1, C, c > 0 such that for 0 < t ≤ 1 and
|y − x| sufficiently large, the upper and lower bounds of the density p(t, x, y) of Xx

t satisfy

C1e
−λt exp

(
−c1|y − x|

√∣∣∣∣ln |y − x|t

∣∣∣∣
)
≤ p(t, x, y) ≤ C√

t
exp

(
−c|y − x|

√∣∣∣∣ln |y − x|t

∣∣∣∣
)
, (1.7)

and when ϕ is exponential,

C1e
−λte−c1|y−x| ≤ p(t, x, y) ≤ C√

t
e−c|y−x|. (1.8)

This shows that the upper and lower bounds of the density are of different characteristic making
impossible to implement the argument in Gobet [25].

To resolve the open issue which aims to extend the result obtained by Gobet [25] in the
one-dimensional setting, this thesis will deal with independently but connectedly three different
cases of jump-diffusion processes by following the Malliavin calculus approach developed by
Gobet [24, 25]. In fact in order to be able to determine the strategy and the structure in the
study of more general cases, it is essential to first well understand, on the one hand how this
Malliavin calculus approach works, and on the other hand how the Gaussian-type estimate for
the transition density conditioned on the jump structure is derived and employed for a simple
Lévy process defined by

Xθ,σ,λ
t = x0 + θt+ σBt +Nt − λt, (1.9)

where B = (Bt)t≥0 is a standard Brownian motion, N = (Nt)t≥0 is a Poisson process with
intensity λ > 0 independent of B, and the parameters θ, σ, and λ are unknown.

We next generalise the aforementioned model by considering the following non-linear case

dXθ
t = b(θ,Xθ

t )dt+ σ(Xθ
t )dBt +

∫
R0

c(Xθ
t−, z) (N(dt, dz)− ν(dz)dt) , (1.10)

where N(dt, dz) is a Poisson random measure associated with a centered pure-jump Lévy process
Ẑ = (Ẑt)t≥0 independent of B, with intensity measure ν(dz)dt, and finite Lévy measure λ =∫
R0
ν(dz) <∞. Here, θ is unknown parameter to be estimated.
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Moreover, in the same direction we finally study the following non-linear case

dXθ,β
t = b(θ,Xθ,β

t )dt+ σ(β,Xθ,β
t )dBt +

∫
R0

z (N(dt, dz)− ν(dz)dt) , (1.11)

where N(dt, dz) is a Poisson random measure associated with a compensated compound Poisson
process Ẑ = (Ẑt)t≥0 independent of B, with intensity measure ν(dz)dt. The random variable
that describes the jump sizes of Ẑ takes discrete values. Here, θ and β are unknown parameters
to be estimated.

1.3 Goal of the thesis and its main results

The goal of this thesis is to define situations where the jump process will not "deform" the
Gaussian nature of the statistical experiment. As commented before, this cannot be achieved by
simply obtaining upper and lower bounds of the transition density. Instead, we will condition
on the jump structure and use large deviation results that will guarantee that the Gaussian
nature of the statistical experiment will remain unchanged. Clearly, this is just a first effort
towards a much more general problem where one may have that the Lévy nature of the statistical
experiment remains unchanged by the Wiener noise. Even more difficult is to determine the
boundary situations. We leave as future research the study of this open problem.

In this thesis we deal with some uniformly elliptic diffusion processes with jumps and study
the LAN property from discrete observations of their solution processes. For our objective, we
think it is essential to first understand the proof of this property in the continuously observed
case. As a result, excluding this introductory chapter, this thesis consists of four self-contained
chapters each of which deals with a different jump-diffusion process. Note that the following
chapters are independent of each other and the utilized notations are provided inside every
chapter. The global bibliography is given at the end of this thesis.

We will next describe the content of each of the chapters in detail.

1.3.1 LAMN property for continuous observations of jump-diffusion pro-
cesses

In Chapter 2, we consider a d-dimensional process Xθ = (Xt)t≥0 solution to the following
stochastic differential equation with jumps

dXt = a(θ,Xt)dt+ σ(Xt)dBt +

∫
Rd0
c(θ,Xt−, z)(p(dt, dz)− νθ(dz)dt), (1.12)

where Rd0 = Rd \ {0}, the unknown parameter θ belongs to an open subset Θ of Rk, k ≥ 1, B =
(Bt)t≥0 is a d-dimensional standard Brownian motion, and p(dt, dz) is a Poisson random measure
on R+ × Rd0, independent of B with intensity measure νθ(dz)dt = f(θ, z)dzdt. Here, νθ(dz) is a
Lévy measure on Rd0 such that

∫
Rd0

(1∧ |z|2)νθ(dz) <∞, for all θ ∈ Θ, and f : Θ×Rd → R+ is a
Borel function strictly positive on Rd0 with f(θ, 0) = 0.

We give sufficient conditions and follow Luschgy’s [52] proof in order to derive the LAMN
property (Theorem 2.2.4) when the process is observed continuously in a time interval [0, T ] as
T → +∞. We give a Girsanov’s theorem and apply the Central Limit theorem for multivariate
martingales developed by Crimaldi and Pratelli [14]. Recall that Luschgy’s paper shows the
LAMN property for general semimartingales using the Girsanov’s theorem for semimartingales
obtained in Jacod and Shiryaev [33], and the Central Limit theorem for martingales established by
Sørensen [71] and Feigin [18]. Here we rewrite the proof of these results without using this abstract
semimartingale theory but integral equations with respect to random measures associated with
the jumps of the process. Moreover, as a consequence of Theorem 2.2.4, we derive the LAN
property in the ergodic case (Theorem 2.4.2).
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1.3.2 LAN property for a simple Lévy process

The focus of Chapter 3 is on a simple Lévy process Xθ,σ,λ = (Xθ,σ,λ
t )t≥0 in R defined by

Xθ,σ,λ
t = x0 + θt+ σBt +Nt − λt, (1.13)

where B = (Bt)t≥0 is a standard Brownian motion, N = (Nt)t≥0 is a Poisson process with
intensity λ > 0 independent of B. The parameters (θ, σ, λ) ∈ Θ× Σ× Λ are unknown and Θ,Σ
and Λ are closed intervals of R,R∗+ and R∗+. In finance this is called the Merton jump-diffusion
(MJD) model. The MJD model is one of the first beyond Black-Scholes model in the sense that
it tries to capture the negative skewness and excess kurtosis of the log stock price density.

The aim of this chapter is to prove the LAN property under high-frequency observation
condition of Xθ,σ,λ (Theorem 3.1.1). For this, Malliavin calculus and Girsanov’s theorem are
applied in order to write the log-likelihood ratio in terms of sums of conditional expectations, for
which a central limit theorem for triangular arrays can be applied. The techniques used to obtain
this result will be discussed in detail in the next subsection, and note that they can be generalized
to the case of stochastic differential equations with finite number of jumps and random jump size
(Chapters 4-5). With the help of a large deviation principle by conditioning on the number of
jumps, our main contribution here is that we find a closed form expression for the corresponding
large deviation estimate (Lemma 3.2.6), thereby allowing us to control the jump components in
the negligible contribution of the limit (Lemmas 3.3.1, 3.3.2 and 3.3.3).

Since we are dealing with a simple Lévy process with finite jumps, the explicit expression of
the density could be used in order to derive the LAN property, as for e.g. in [2]. However, the
main purpose of this chapter is to understand and present the methodology for this simple case,
which will be next used to prove the LAN property in the non-linear cases where the density
function cannot be explicitly written.

1.3.3 LAN property for a jump-diffusion process : drift parameter

In Chapter 4 we address the validity of the LAN property for a jump-diffusion process Xθ =
(Xθ

t )t≥0 solution to

dXθ
t = b(θ,Xθ

t )dt+ σ(Xθ
t )dBt +

∫
R0

c(Xθ
t−, z) (N(dt, dz)− ν(dz)dt) , (1.14)

where Xθ
0 = x0 ∈ R, R0 := R\{0}, B = (Bt)t≥0 is a standard Brownian motion, and N(dt, dz) is

a Poisson random measure in (R+×R0,B(R+×R0)) associated with a centered pure-jump Lévy
process Ẑ = (Ẑt)t≥0 independent of B, with intensity measure ν(dz)dt, and finite Lévy measure
λ =

∫
R0
ν(dz) <∞. The unknown parameter θ belongs to Θ which is a closed interval of R.

Supposing that the process is observed discretely at high frequency, we then give a set of
sufficient conditions (A1)-(A8) (see page 66) on the regularity of the coefficients, the ergodicity
and the behaviour of the Lévy measure in order to obtain the LAN property for Xθ (Theorem
4.1.1). The proof of this result is essentially based on the Malliavin calculus, the Girsanov’s
theorem and the large deviation principle developed from the aforementioned case.

Notice that the condition on the jump coefficient c in (A1) and (A3) is needed in order to
control the behaviour of the jump amplitudes of Xθ, which can be seen in the discussion in the
proof of Lemma 4.2.8.

Several examples of ergodic diffusion processes with jumps are given in [53], [54], and [67].
Moreover, results on ergodicity and exponential ergodicity for diffusion processes with jumps
have been established by Masuda in [53, 54]. In addition, Kulik in [43] provides a set of sufficient
conditions for the exponential ergodicity of diffusion processes with jumps without Gaussian part
and gives some examples. More recently, Qiao in [64] has addressed the exponential ergodicity
for stochastic differential equations with jumps and non-Lipschitz coefficients. However, in these
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papers ergodicity and exponentially ergodicity are understood in the sense of [56], which are
both stronger than the ergodicity in the sense (A6).

Note that condition (A7) involving the behaviour of the jumps is imposed to ensure that
the jump component is "dominated" over by the Gaussian component. Indeed this condition
expresses the fact that the small and large jumps do not interfere with the Gaussian behaviour of
the transition density. Therefore, the main behaviour in the contribution is given by the Gaussian
and drift components of the equation. As a consequence, the asymptotic Fisher information is
identical to the one for ergodic diffusion processes without jumps obtained by Gobet [25].

Hypothesis (A7) is a sufficient condition that implies that the probability that the jump
amplitudes of Ẑ is bounded below by ρ1∆υ

n and above by ρ2∆−γn on an interval [0, tn] converges
to 0 as n → ∞ (see the computations of page 82). This allows to use this event (see Remark
4.1.3 and page 80), and this is the main trick for the proof of the LAN property. Hypothesis
(A7) restricts the jump component of the process to have small and large jumps that decay
exponentially. For example, a Gaussian amplitude of jumps, with an exponential decay for small
jumps. In order to get rid of this hypothesis maybe a convergence argument could be used.

Finally, in order to include the case of unbounded drift coefficient, the squared exponential
moment condition (A8) is needed. Recall that the problem of the boundedness of the squared
exponential moment (A8) already appeared in the proof of the LAN property for continuous
ergodic diffusion processes (see [25, Proposition 1.1]). In the case of jump-diffusion processes,
Masuda gives sufficient conditions on the infinitesimal generator in order to obtain the bounded-
ness of the moments of certain class of unbounded functions (see [53, Theorem 2.2]). Moreover,
he establishes in [54, Theorem 1.2] the boundedness of the exponential moments for a class of
jump-diffusion processes with finite jump intensity. It is possible that a similar result should be
available for hypothesis (A8). We will not discuss this part here in general. For example, (A8)
is satisfied for the Ornstein-Uhlenbeck process under certain condition on the Lévy measure.

In Chapter 3 we estimate the drift and diffusion parameters and the jump intensity of a
simple Lévy process. Therefore, Theorem 4.1.1 is a non-linear extension of the result in Chapter
3 when the unknown parameter is in the drift coefficient.

However, we also remark that condition (A7) is not optimal and the condition on the small
jumps could be weakened. Indeed, using a convergence argument around the small jumps, a
condition λn

√
∆n → 0 as n→∞ may be needed, where

λn =

∫
{∆υ

n≤|z|≤ρ∆−γn }
ν(dz).

This is done in our work in progress where the Lévy measure is assumed to be infinite.

1.3.4 LAN property for a jump-diffusion process : drift and diffusion para-
meters

In Chapter 5 we consider the process Xθ,β = (Xθ,β
t )t≥0 solution to

dXθ,β
t = b(θ,Xθ,β

t )dt+ σ(β,Xθ,β
t )dBt +

∫
R0

z (N(dt, dz)− ν(dz)dt) , (1.15)

where Xθ,β
0 = x0 ∈ R, B = (Bt)t≥0 is a standard Brownian motion, and N(dt, dz) is a Poisson

random measure in (R+ × R0,B(R+ × R0)) associated with a compensated compound Poisson
process Ẑ = (Ẑt)t≥0 independent of B, with intensity measure ν(dz)dt. Assume that the random
variable that describes the jump sizes of Ẑ takes discrete values. The unknown parameters (θ, β)
belong to Θ× Σ which is an open rectangle of R2.

Supposing that the process is observed discretely at high frequency, we then give a set of
sufficient conditions (A1)-(A8) (see pages 96 and 97) on the regularity of the coefficients, the
ergodicity, the behaviour of the Lévy measure and the identification of jumps in order to obtain
the LAN property for Xθ,β (Theorem 5.1.1). Generally, the proof of this result is essentially based
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on the Malliavin calculus, the Girsanov’s theorem and the large deviation principle developed
from the aforementioned case.

The fact that the jump sizes of Ẑ take discrete values and the drift coefficient is bounded
is restrictive. Indeed this is just a first step towards treating a much more general parametric
model. As explained before, all the problematic of this thesis concerns the argument in the article
of Gobet [25] which is based on the fact that the transition densities satisfy the Gaussian type
upper and lower bounds. Initially, we had the tendency to believe that "good" upper and lower
estimates of the density should essentially solve the problem. Therefore, we started this thesis by
studying the type behaviour of the upper and lower bounds of the transition densities for some
jump-diffusion processes, for instance (1.6). The obtained estimates (1.7) and (1.8) show that
Gobet’s argument cannot be implemented. However, the trick of this chapter is to re-employ the
"argument of Gaussian-type estimate" which enables to solve the problem as in Gobet [25]. For
this, we are restricting ourselves to assuming that the jump sizes of Ẑ take discrete values in
order to obtain the Gaussian-type estimate for the conditioned transition density (see Lemma
5.2.5).

We recall that Gobet in [25] deals with the multidimensional ergodic diffusion processes whose
diffusion coefficient is assumed to be uniformly strictly elliptic and whose drift coefficient can
be bounded or unbounded. The ergodicity result in the case of bounded drift coefficient was
addressed in Proposition 5.1 of this article. In this chapter, we are first interested in studying
the case of uniformly elliptic diffusion coefficient and bounded drift coefficient expressed by
hypothesis (A2). Let us also mention that the result on ergodicity and exponential ergodicity
for this class of diffusion processes with jumps was established by Masuda in [54, Theorem 1.2].

Notice that hypotheses (A5) and (A6) are the same as (A6) and (A7) in Chapter 4, which
were explained in Chapter 4.

As in Chapter 4, in order to deal with the parameter θ in the drift coefficient, we condition
on the number of jumps occured in each time interval [tk, tk+1]. As a consequence, the large
deviation estimate (Lemma 5.2.14) is obtained. Here, in order to deal with the parameter β in
the Brownian component, we will condition on all the possible jump sizes which are assumed
to be a countable set A. Therefore, hypotheses (A7) and (A8) on the behaviour of jumps are
added in order to obtain a large deviation principle (Lemma 5.2.15) for the parameter in the
Brownian coefficient. In fact, the first condition in (A7) is related to the identification of jumps,
that is, any two sums of jumps on a small interval for different ω ∈ Ω are either equal or their
difference is lower bounded by a value depending on ∆n. This is used in the computations in
pages 117 and 118. Furthermore, the second condition in (A7) is used in order to condition on
the sum of jumps. Finally, hypothesis (A8) on the jump distributions is needed in order for the
expression in Remark 5.1.2 to be finite, which ensures the convergence to zero of the negligible
contributions. This is because the proof is based on the conditioning on the number of jumps
and on the amplitudes of jumps.

Our contribution here is to derive an expression for the derivatives of the log-likelihood
function conditioned on the number and the amplitudes of jumps in terms of a conditional
expectation by adapting Gobet’s Malliavin calculus approach (Lemma 5.2.7).

In Chapter 3 we estimate the drift and diffusion parameters and the jump intensity of a
simple Lévy process. Therefore, Theorem 5.1.1 is a non-linear extension of the result in Chapter
3 when the unknown parameters are in the drift and diffusion coefficients.

There are two extensions of the results of this chapter that we should think about in our future
research. The first one is to consider an unbounded drift coefficient and to add a non-linear jump
coefficient in front of the compound Poisson process (as in equation (1.14)), and the second one
is to consider a more general jump size distribution. The main ideas used in this chapter should
be enough in order to deal with these two extensions, but of course the computations would be
much more difficult, and conditions (A6)-(A8) need to be adjusted. This is the reason why we
have restricted ourselves to these two particular cases, but we do not think that it is a restriction
of our methodology.
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The remainder of this introductory chapter is devoted to explaining the common techniques
used to solve Chapters 3-5.

1.4 Main techniques

Although Chapters 3-5 seem to be different, they are all connected in the sense that the
same techniques are used to solve them. We set out here briefly our strategy of the proof whose
structure remains the same for each chapter and can be divided into three main steps as described
below.

1.4.1 Malliavin calculus approach

The goal of this subsection is to present an adaptation of Gobet’s Malliavin calculus approach
to our setting. The first step of the proof proceeds with the decomposition of the log-likelihood
ratio in terms of sums of transition densities due to the Markov property (see (3.3), (5.33)).
As in Gobet [24], with the help of the uniformly elliptic condition on the diffusion coefficient,
we can apply the integration by parts formula of the Malliavin calculus on the Wiener space
induced by the Brownian motion on each observation interval in order that the derivatives of
the log-likelihood function with respect to the parameters are expressed in terms of a conditio-
nal expectation involving Skorohod intergrals (Propositions 3.2.1, 4.2.1 and 5.2.1). For this, an
independent copy of the observed process needs to be introduced. Using tools of Malliavin cal-
culus, these Skorohod intergrals are decomposed into two parts (Lemmas 4.2.1, 5.2.1 and 5.2.2),
where the conditional expectation of the first part can be easily computed, which gives the main
contributions in the limit of the convergence of the log-likelihood ratio. More precisely, the main
behaviour here will be determined by the Gaussian and drift components of the equation. On
the other hand, the second part whose conditional expectation cannot be easily computed will
have no contribution in the limit, which causes difficulties in the control of the convergence that
we will explain in the next subsection. Consequently, the expansion of the log-likelihood ratio is
separated into the main and negligible contributions.

Moreover, adapting Gobet’s Malliavin calculus approach can be further expressed by Lemma
5.2.7 where we derive an expression for the derivatives of the log-likelihood function conditioned
on the number and the amplitudes of jumps in terms of a conditional expectation involving
Skorohod intergrals.

1.4.2 Large deviation principle and Girsanov’s theorem

The aim of this subsection is to present how to deal with negligible contributions of the log-
likelihood ratio. This is a crucial and technical part of the thesis. For this, we need two general
results on convergence in probability for triangular arrays of random variables in order to prove
the convergence of a sum of triangular arrays. For each n ∈ N, consider a sequence of random
variables (Zk,n)k≥1 defined on the filtered probability space (Ω,F , (Ft)t≥0,P), and we assume
that they are Ftk+1

-measurable, for all k.

Lemma 1.4.1. [21, Lemma 9] Assume that as n→∞,

(i)
n−1∑
k=0

E [Zk,n|Ftk ]
P−→ 0, and (ii)

n−1∑
k=0

E
[
Z2
k,n|Ftk

] P−→ 0.

Then as n→∞,
∑n−1

k=0 Zk,n
P−→ 0.

Lemma 1.4.2. [31, Lemma 4.1] Assume that as n→∞,

n−1∑
k=0

E [|Zk,n||Ftk ]
P−→ 0. (1.16)
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Then as n→∞,
∑n−1

k=0 Zk,n
P−→ 0.

We note that dealing with the negligible contributions in the presence of jumps is different
from that in the continuous diffusion case. The point is that in Gobet [24, 25] the upper and
lower Gaussian type bounds of the transition density are essentially used in order to control the
negligible contribution in the limit. However, in the presence of jumps, we cannot expect to find
such good Gaussian type estimates of the transition density due to the mixture of exponential
tails coming from the jump process together with the Gaussian tails of the Brownian motion. As
a result, a problem arises in dealing with the jump-diffusion processes.

In order to overcome this problem when treating the jump components in the negligible
contributions (Lemmas 3.3.1, 3.3.2, 3.3.3, 4.3.5, 5.3.5 and (5.45) of Lemma 5.3.8), one needs to
condition on the number of jumps or on the sum of jumps within the conditional expectation
which expresses the transition density and outside it. When these two conditionings relate to
different jumps or different sum of the jumps one may use a large deviation principle in the
estimate. When they are equal one uses the complementary set in order to apply the large
deviation principle. The main term can be handled directly. Within all these arguments the
Gaussian type upper and lower bounds of the density conditioned on the jumps are again strongly
used.

On the other hand, in order to obtain the expected large deviation estimates (see Lemmas
3.2.6, 4.2.8, 5.2.14 and 5.2.15), the condition on the behaviour of the jumps ensuring that the
jump component is dominated over by the Gaussian component is needed. In fact this condition
expresses the fact that the small and large jumps do not interfere with the Gaussian behaviour of
the transition density (see (A7) in Chapter 4 and (A6) in Chapter 5), which is again employed
in Lemmas 4.3.1, 5.3.1 and 5.3.6. Moreover, in Chapter 5 condition (A7) on the behaviour of the
sum of jumps on a small interval is needed. This condition, on the one hand, allows us to condition
on the sum of jumps on each interval. On the other hand, it is related to the identification of
jumps, that is, any two sums of jumps on a small interval for different ω ∈ Ω are either equal
or their difference is lower bounded by a value depending on ∆n, from which the large deviation
estimate Lemma 5.2.15 can be obtained.

Moreover, in Chapter 5 another difficulty comes from the fact that when applying Lemmas
1.4.1 and 1.4.2 the expectations outside and inside are under two different probability measures.
More precisely, the conditional expectation inside needs to be computed under Pθn,β(`), whereas
the convergence is considered with respect to Pθ0,β0 6= Pθn,β(`). To this end, when the two cor-
responding diffusion parameters are different, we need to condition on the number of jumps and
on the amplitudes of jumps in order that the change of measure can be done via the transition
density conditioned on the jumps (Lemma 5.2.10). As a consequence, the upper and lower Gaus-
sian type bounds of the transition density conditioned on the jumps in Lemma 5.2.5 are again
strongly used. In this case, condition (A8) on the jump distributions is needed. On the other
hand when two diffusion parameters are the same, which means that only the drift parameters
are different, the Girsanov’s theorem can be applied (see Lemmas 3.2.2, 4.2.4 and 5.2.11). Note
that the technical Lemmas 4.2.5 and 5.2.12 are given in order to measure the deviations of the
Girsanov change of measure when the drift parameter changes.

Moreover, in Proposition 3.2.2 of Chapter 3, the derivative of the log-likelihood w.r.t. the
intensity parameter λ is expressed in terms of a conditional expectation with the help of the
Girsanov’s theorem.

1.4.3 Central limit theorem for triangular arrays

To conclude the LAN property, the last step consists in dealing with the main contributions
of the log-likelihood ratio. For this, it suffices to apply the central limit theorem for triangular
arrays of random variables as indicated just below. For each n ∈ N, consider a sequence of
random variables (ζk,n)k≥1 defined on the filtered probability space (Ω,F , (Ft)t≥0,P), and we
assume that they are Ftk+1

-measurable, for all k.
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Lemma 1.4.3. [31, Lemma 4.3] Assume that there exist real numbers M and V > 0 such that
as n→∞,

n−1∑
k=0

E [ζk,n|Ftk ]
P−→M,

n−1∑
k=0

(
E
[
ζ2
k,n|Ftk

]
− (E [ζk,n|Ftk ])2

)
P−→ V, and

n−1∑
k=0

E
[
ζ4
k,n|Ftk

] P−→ 0.

Then as n→∞,
∑n−1

k=0 ζk,n
L(P)−→ N +M , where N is a centered Gaussian random variable with

variance V .

Generally, the meanM and the variance V can be obtained directly in the case of simple Lévy
process or by applying a discrete time ergodic theorem (Lemmas 4.2.9, 5.2.16) in the non-linear
cases. As a result, the ergodicity condition is needed in Chapters 4-5.



Chapitre 2

LAMN property for continuous
observations of diffusion processes with

jumps

In this chapter we consider a diffusion process with jumps whose drift and jump coefficient
depend on an unknown parameter. We follow Luschgy’s [52] proof of the local asymptotic mixed
normality (LAMN) property when the process is observed continuously in a time interval [0, T ]
as T → +∞, and derive, as a consequence, the local asymptotic normality (LAN) property in
the ergodic case. However, we give a Girsanov’s theorem and apply the Central Limit theorem
for multivariate martingales developed by Crimaldi and Pratelli [14]. Luschgy’s paper shows the
LAMN property for general semimartingales using the Girsanov’s theorem for semimartingales
obtained in Jacod and Shiryaev [33], and the Central Limit theorem for martingales established by
Sørensen [71] and Feigin [18]. Here we rewrite the proof of these results without using this abstract
semimartingale theory but integral equations with respect to random measures associated with
the jumps of the process.

2.1 Introduction

On a complete probability space (Ω,F ,P), we consider a d-dimensional process Xθ = (Xt)t≥0

solution to the following stochastic differential equation with jumps

dXt = a(θ,Xt)dt+ σ(Xt)dBt +

∫
Rd0
c(θ,Xt−, z) (p(dt, dz)− νθ(dz)dt) , (2.1)

where the initial condition X0 is a random variable with finite second moment, Rd0 = Rd\{0}, the
unknown parameter θ belongs to an open subset Θ of Rk, for some integer k ≥ 1, B = (Bt)t≥0

is a d-dimensional standard Brownian motion, and p(dt, dz) is a Poisson random measure on
R+×Rd0, independent of B with intensity measure νθ(dz)dt = f(θ, z)dzdt. Here, νθ(dz) is a Lévy
measure on Rd0 such that

∫
Rd0

(1∧ |z|2)νθ(dz) <∞, for all θ ∈ Θ, and f : Θ×Rd → R+ is a Borel
function strictly positive on Rd0 with f(θ, 0) = 0.

The coefficients a = (ai) and c = (ci) are Rd-valued Borel functions on Θ×Rd and Θ×Rd×Rd0,
respectively, and σ = (σij) is a d× d invertible Borel matrix on Rd.

We let {Ft}t≥0 denote the natural filtration generated by the Brownian motion and the
Poisson random measure. By definition, the solution to equation (2.1) is a càdlàg and {Ft}-
adapted d-dimensional stochastic process Xθ = (Xt)t≥0 defined on the filtered probability space
(Ω,F , {Ft}t≥0,P) such that

Xt = X0 +

∫ t

0
a(θ,Xs)ds+

∫ t

0
σ(Xs)dBs +

∫ t

0

∫
Rd0
c(θ,Xs−, z) (p(ds, dz)− νθ(dz)ds) . (2.2)
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For any θ ∈ Θ, we denote by Pθ the probability measure induced by the solution Xθ of (2.1)
on the canonical space (D(Rd),B(Rd)), where D(Rd) denotes the space of càdlàg functions from
Rd to Rd, and B(Rd) its associated Borel σ-algebra. Moreover, for any T ≥ 0, we let PTθ denote
the probability measure generated by the process XT = {Xt, 0 ≤ t ≤ T} solving equation (2.1)
under the parameter θ on the measurable space (D[0, T ],B[0, T ]). Therefore, PTθ is the restriction
of Pθ to FT . For any θ ∈ Θ, we denote by Eθ the expectation with respect to the probability law

Pθ, and
Pθ−→ and

L(Pθ)−→ denote the convergence in Pθ-probability and in Pθ-law, respectively.
In this chapter, we are interested in the statistical inference for θ ∈ Θ on the basis of

continuous-time observations of the process XT in the time interval [0, T ], as T tends to +∞.
Let us start by recalling the concepts on asymptotic statistical inference that we are interested
in for our continuously observed parametric model.

We define the log-likelihood function of the family of probability measures (PTθ )θ∈Θ as

`T (θ) = log
dPTθ

dP̃T
,

where P̃T is a probability measure on (D[0, T ],B[0, T ]), if it exists, satisfying that PTθ is absolutely
continuous with respect to P̃T , for all T ≥ 0 and θ ∈ Θ.

The score function, when it exists, is given by the gradient ∇θ`T (θ). We say that the score
function is asymptotically mixed normal if, for any θ ∈ Θ, there exists a k × k non-random
diagonal matrix ϕT (θ) whose entries are strictly positive and tend to zero as T →∞, and a k×k
positive definite random matrix Γ(θ), such that as T →∞,

ϕT (θ)∇θ`T (θ)
L(Pθ)−→ Γ(θ)1/2N (0, Ik) , (2.3)

where N (0, Ik) denotes a centered Rk-valued Gaussian random variable independent of Γ(θ)
with identity covariance matrix Ik. In this case, the matrix Γ(θ) is called the asymptotic Fisher
information matrix of the model. When the matrix Γ(θ) is deterministic, we say that the score
function is asymptotically normal.

The family of probability measures (PTθ )θ∈Θ is said to have the LAMN property if for any
θ ∈ Θ and u ∈ Rk, as T →∞,

log
dPTθ+ϕT (θ)u

dPTθ

L(Pθ)−→ uTΓ(θ)1/2N (0, Ik)−
1

2
uTΓ(θ)u, (2.4)

where N (0, Ik), ϕ−1
T (θ), and Γ(θ) are as in (2.3). In this case, we say that the LAMN property

holds with rate of convergence ϕ−1
T (θ) and asymptotic Fisher information matrix Γ(θ). When

the matrix Γ(θ) is deterministic, we say that the LAN property holds.
Observe that (2.4) is equivalent to

log
dPTθ+ϕT (θ)u

dPTθ
= `T (θ + ϕT (θ)u)− `T (θ)

= uTϕT (θ)∇θ`T (θ)− 1

2
uTΓ(θ)u+ oPθ(1),

(2.5)

where ϕT (θ)∇θ`T (θ) converges in Pθ-law to Γ(θ)1/2N (0, Ik) as T →∞.
The aim of this chapter is to revise sufficient conditions in order to have the asymptotic

mixed normality of the score function and the LAMN property for our diffusion model with
jumps (2.1). This problem was addressed by Luschgy for semimartingales in [52] by using the
Girsanov’s theorem for semimartingales established by Jacod and Shiryaev (see [33, Theorem
III.3.24 and III.5.19]), and the Central Limit theorem for multivariate martingales proved by Sø-
rensen (see [71, Theorem A.1]), as an extension of the Central Limit theorem for one-dimensional
martingales [18, Theorem 2] by Feigin. We remark that the stochastic process with jumps (2.2) is
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a semimartingale. Therefore, Luschgy’s theorem applies and one can derive sufficient conditions
on the coefficients in order to have the LAMN property. The aim of this chapter is to present
a proof of the LAMN property for the solution Xθ of (2.1) by following the proof of Luschgy
but applying the Central Limit theorem for multivariate martingales developed by Crimaldi and
Pratelli [14] without using the fact that we have a semimartingale, but using the integral equation
(2.2). We then deduce the LAN property with an explicit asymptotic Fisher information matrix
in the case where the process Xθ is ergodic. To obtain the desired results, the first step consists
in transforming equation (2.1) into a new stochastic differential equation with jumps driven by a
random measure associated with the jumps of Xθ. Notice that this approach was also employed
by Sørensen in [71]. One of the motivations of writing this chapter is that we are investigating in
further chapters the LAMN property for the stochastic differential equations with jumps (2.1)
with discrete observations in a time interval [0, T ] as T → ∞, which has never been addressed
in the literature. For this, we think it is essential to first understand the proof of this property
in the continuously observed case but without using the asbtract semimartingale theory, but
integral equations with respect to random measures.

This chapter is organized as follows. In Section 2, we provide sufficient conditions and prove
the asymptotic mixed normality of the score function as well as the LAMN property for the
stochastic differential equation with jumps (2.1). For this purpose, we recall the Central Limit
theorem for multivariate martingales developed by Crimaldi and Pratelli [14]. Furthermore, stu-
dying the LAMN property from continuous observations is based on the Girsanov’s theorem for
equivalent probability measures. Therefore, we will give this fundamental result in Section 3. The
proof of the LAN property in the ergodic case as a consequence of the LAMN property is given in
Section 4. Finally, Section 5 deals with the pure linear birth process and the Ornstein-Uhlenbeck
processes with jumps where the LAMN and LAN properties are satisfied and the maximum
likelihood estimator is asymptotically efficient in some particular cases.

2.2 LAMN property for jump-diffusion processes

The aim of this section is to give sufficient conditions in order to have the asymptotic mixed
normality of the score function and the LAMN property for our stochastic differential equation
with jumps (2.1). To this purpose, let us first recall the result on the existence and uniqueness
of the solution to our integral equation (2.2), that is,

Xt = X0 +

∫ t

0
a(θ,Xs)ds+

∫ t

0
σ(Xs)dBs +

∫ t

0

∫
Rd0
c(θ,Xs−, z) (p(ds, dz)− νθ(dz)ds) .

Consider the following Lipschitz continuity and linear growth conditions on the coefficients.
(A1) For any θ ∈ Θ, there exist a constant L > 0 and a function ζ : Rd0 → R+ satisfying that∫

Rd0
ζ2(z)νθ(dz) <∞, such that for any x, y ∈ Rd, z ∈ Rd0,

|a(θ, x)− a(θ, y)|+ |σ(x)− σ(y)| ≤ L|x− y|, |a(θ, x)| ≤ L(1 + |x|),
|c(θ, x, z)− c(θ, y, z)| ≤ ζ(z)|x− y|, |c(θ, x, z)| ≤ ζ(z)(1 + |x|).

Theorem 2.2.1. [33, Theorem III.2.32] Under condition (A1), there exists a unique càdlàg
and adapted process Xθ = (Xt)t≥0 solution to equation (2.1) on the filtered probability space
(Ω,F , {Ft}t≥0,P). Moreover, for any fixed p > 0 and T > 0, there exists a constant Cp,T > 0
such that for all t0 ∈ (0, T ] and t ∈ [t0, T ],

E

[
sup
t0≤s≤t

|Xs −Xt0 |p
]
≤ Cp,T (t− t0)

p
2
∧1E

[
(1 + |Xt0 |2)p/2

]
.

Let us now proceed as in [71] to transform our equation (2.1) into a new stochastic differential
equation with jumps driven by a new random measure associated with the jumps of Xθ via a
change of variables. To simplify the exposition we assume that Im(c) = Rd.
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For each (θ, x) ∈ Θ × Rd fixed, we assume that the mapping z ∈ Rd0 7→ y = c(θ, x, z) ∈ Rd0
has a continuous differentiable inverse y ∈ Rd0 7→ z = c−1(θ, x, y) ∈ Rd0 with Jacobian matrix
J(θ, x, y) such that det(J(θ, x, y)) 6= 0, for all y ∈ Rd0.

Set Ψ(θ, x, y) = f(θ, c−1(θ, x, y))|det(J(θ, x, y))|. Suppose that for any (θ, x) ∈ Θ × Rd,∫
Rd0
|c(θ, x, z)|νθ(dz) < +∞. Then by [33, Proposition II.1.28], equation (2.1) can be rewritten as

follows
dXt = b(θ,Xt)dt+ σ(Xt)dBt +

∫
Rd0
yN(dt, dy), (2.6)

where the function b : Θ× Rd → Rd is given by

b(θ, x) = a(θ, x)−
∫
Rd0
c(θ, x, z)νθ(dz) = a(θ, x)−

∫
Rd0
yµθ(x, dy),

and N(dt, dy) is the random measure on R+×Rd0 associated with the jumps of X with predictable
compensator µθ(Xt−, dy)dt = Ψ(θ,Xt−, y)dydt, defined by

N(ω; dt, dy) =
∑
s≥0

1{∆Xs(ω)6=0}δ(s,∆Xs(ω))(dt, dy),

(see [33, Proposition II.1.16]), where δa denotes the Dirac measure at point a. By [33, Theorem
II.1.8], the predictable compensator µθ(Xt−, dy)dt is the unique predictable random measure
satisfying that

E

[∫ ∞
0

∫
Rd0
ψ(t, y)N(dt, dy)

]
= E

[∫ ∞
0

∫
Rd0
ψ(t, y)µθ(Xt−, dy)dt

]
,

for every nonnegative predictable function ψ(t, y) on Ω× R+ × Rd0.
In order to obtain the asymptotic mixed normality of the score function and the LAMN

property, we assume that there exists a k×k non-random diagonal matrix ϕT (θ) whose diagonal
entries ϕi,T (θ) are strictly positive and tend to zero as T → ∞, and such that the following
conditions hold.

(A2) For any θ, θ0 ∈ Θ, and T ≥ 0,

Pθ̄

(∫ T

0
|σ−1(Xt) (b(θ0, Xt)− b(θ,Xt)) |2dt <∞

)
= 1, for θ̄ = θ, θ0.

(A3) For any θ, θ0 ∈ Θ, and T ≥ 0,

Pθ̄

(∫ T

0

∫
Rd0

∣∣∣∣(Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1

)
y

∣∣∣∣Ψ(θ,Xt−, y)dydt <∞

)
= 1,

Pθ̄

(∫ T

0

∫
Rd0

∣∣∣∣Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1

∣∣∣∣Ψ(θ,Xt−, y)dydt <∞

)
= 1,

and

Pθ̄

(∫ T

0

∫
Rd0

(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1

)2

Ψ(θ,Xt−, y)dydt <∞

)
= 1, for θ̄ ∈ {θ, θ0}.

(A4) The functions a(θ, x) and Ψ(θ, x, y) are differentiable with respect to θ, and the functions
Ψ(θ, x, y) and ∇θΨ(θ, x, y) are continuous in θ.
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Under conditions (A1)-(A3), by Girsanov’s Theorem 2.3.1, the log-likelihood function is
given by

`T (θ) = log
dPTθ
dPTθ0

=

∫ T

0
σ−1(Xt) (b(θ,Xt)− b(θ0, Xt)) · dBt −

1

2

∫ T

0
|σ−1(Xt) (b(θ,Xt)− b(θ0, Xt)) |2dt

+

∫ T

0

∫
Rd0

ln
Ψ(θ,Xt−, y)

Ψ(θ0, Xt−, y)
N(dt, dy)−

∫ T

0

∫
Rd0

(
Ψ(θ,Xt−, y)

Ψ(θ0, Xt−, y)
− 1

)
µθ0(Xt−, dy)dt,

for any θ0 ∈ Θ.
Therefore, by hypothesis (A4), the score function is given by

∇θ`T (θ) =

∫ T

0
σ−1(Xt)∇θb(θ,Xt) ·

(
dBt − σ−1(Xt) (b(θ,Xt)− b(θ0, Xt))

)
+

∫ T

0

∫
Rd0
∇θ ln (Ψ(θ,Xt−, y)) (N(dt, dy)− µθ(Xt−, dy)dt) .

(2.7)

Now, by the Girsanov’s Theorem, the process W = (Wt, 0 ≤ t ≤ T ) defined as

Wt = Bt −
∫ t

0
σ−1(Xs) (b(θ,Xs)− b(θ0, Xs)) ds

is an (Ft, 0 ≤ t ≤ T )-Brownian motion under Pθ. Therefore, under Pθ,

∇θ`T (θ) =

∫ T

0
σ−1(Xt)∇θb(θ,Xt) · dBt

+

∫ T

0

∫
Rd0
∇θ ln (Ψ(θ,Xt−, y)) (N(dt, dy)− µθ(Xt−, dy)dt) ,

which is a Rk-valued Pθ-local martingale whose quadratic variation is given by

[∇θ`(θ)]T =

∫ T

0
(∇θb(θ,Xt))

T(σ−1(Xt))
Tσ−1(Xt)∇θb(θ,Xt)dt

+

∫ T

0

∫
Rd0

(∇θ ln (Ψ(θ,Xt−, y)))T∇θ ln (Ψ(θ,Xt−, y))N(dt, dy).

(2.8)

(A5) As T →∞,

Eθ

[
sup

0≤t≤T
|ϕT (θ)∇θ ln(Ψ(θ,Xt−,∆Xt))|

]
→ 0,

where ∆Xt = Xt −Xt− denotes the jump size of Xt at time t.

(A6) There exists a k×k symmetric positive definite random matrix Γ(θ) such that as T →∞,

ϕT (θ) [∇θ`(θ)]T ϕT (θ)
Pθ−→ Γ(θ),

uniformly in θ ∈ Θ.

(A7) For all u ∈ Rk, as T →∞,∫ T

0

∣∣σ−1(Xt) (b(θ + ϕT (θ)u,Xt)− b(θ,Xt)−∇θb(θ,Xt)ϕT (θ)u)
∣∣2 dt Pθ−→ 0,

uniformly in θ ∈ Θ.
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(A8) For all u ∈ Rk, as T →∞,∫ T

0

∫
Rd0

(
Ψ(θ + ϕT (θ)u,Xt−, y)

Ψ(θ,Xt−, y)
− 1− uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)2

Ψ(θ,Xt−, y)dydt
Pθ−→ 0,

uniformly in θ ∈ Θ.

We next recall a general result on central limit theorem for multivariate martingales developed
by Crimaldi and Pratelli [14, Theorem 2.2], which will be important in the sequel. Several versions
of the central limit theorem for multivariate martingales were given in the literature. Recall that
a central limit theorem for multivariate martingales with a diagonal normalized matrix was
established by Sørensen in [71, Theorem A.1], as an extension of the central limit theorem for
one-dimensional martingales [18, Theorem 2] by Feigin. Later on, by applying again [18, Theorem
2], Küchler and Sørensen in [42, Theorem 2.1] established a central limit theorem for multivariate
martingales with a full normalized matrix, as an extended version of [71, Theorem A.1]. More
recently, Crimaldi and Pratelli in [14, Theorem 2.2] have presented a new general version of [42,
Theorem 2.1] by eliminating some superfluous hypotheses and replacing the weaker assumptions,
whose proof is based on a multidimensional version [14, Prop.3.1] of a convergence result for
martingale difference triangular arrays proved in [51].

Theorem 2.2.2. [14, Theorem 2.2] LetM = (Mt)t≥0 be a càdlàg and {Ft}-adapted k-dimensional
martingale defined on the filtered probability space (Ω,F , {Ft}t≥0,P), with quadratic variation
matrix [M ]. Let (ϕt)t≥0 be a family of k× k-matrices. Suppose that the following conditions hold
as t→∞,

(i) |ϕt| → 0, where | · | denotes the sum of the absolute values of the entries of the matrix.
(ii) E[sup0≤s≤t |ϕt∆Ms|]→ 0.

(iii) There exists a k × k positive definite random matrix U such that ϕt[M ]tϕt
P−→ U .

Then ϕtMt
L(P)−→ U1/2N (0, Ik) as t→∞, where N (0, Ik) is a centered Rk-valued Gaussian random

variable independent of U .

Remark 2.2.1. The convergence statement of the previous theorem is established for the stable
convergence, which is stronger than the convergence in law.

We first state the asymptotic mixed normality of the score function.

Theorem 2.2.3. Assume conditions (A1)-(A6). Then, the score function is asymptotically
mixed normal uniformly for all θ ∈ Θ with asymptotic Fisher information matrix Γ(θ). That is,
as T →∞,

ϕT (θ)∇θ`T (θ)
L(Pθ)−→ Γ(θ)1/2N (0, Ik) ,

uniformly in θ ∈ Θ, where N (0, Ik) is a centered Rk-valued Gaussian random variable inde-
pendent of Γ(θ).

Proof. Observe that for any t ∈ [0, T ],

∆∇θ`t(θ) = ∇θ`t(θ)−∇θ`t−(θ) = ∇θ ln (Ψ(θ,Xt−,∆Xt)) 1{∆Xt 6=0}.

Then, from the fact that |ϕT (θ)| → 0 as T → ∞ and hypotheses (A5)-(A6), the conditions of
Theorem 2.2.2 are satisfied for the local martingale ∇θ`T (θ). Thus, the result follows.

We next state the LAMN property for the jump-diffusion process solution to (2.1) on the
time interval [0, T ].
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Theorem 2.2.4. Assume conditions (A1)-(A8). Then, the LAMN property holds uniformly for
all θ ∈ Θ with rate of convergence ϕ−1

T (θ) and asymptotic Fisher information matrix Γ(θ). That
is, for all u ∈ Rk, as T →∞,

log
dPTθ+ϕT (θ)u

dPTθ

L(Pθ)−→ uTΓ(θ)1/2N (0, Ik)−
1

2
uTΓ(θ)u,

uniformly in θ ∈ Θ, where N (0, Ik) is a centered Rk-valued Gaussian random variable inde-
pendent of Γ(θ).

Remark 2.2.2. We observe that conditions (A6), (A7) and (A8) are the same as conditions
(L), (D.1) and (D.3) of Luschgy [52], respectively. Furthermore, notice here that condition
(A5) is weaker than (J.1) of Luschgy [52], and condition (R) of Luschgy [52] is not needed.
This is because we are applying the central limit theorem for multivariate martingales generalized
by Crimaldi and Pratelli [14, Theorem 2.2] as mentioned above.

Proof. Fix u ∈ Rk and θ ∈ Θ, and apply Girsanov’s Theorem 2.3.1 with θ0 = θ+ϕT (θ)u, to get
that

log
dPTθ0
dPTθ

= LcT + LdT ,

where the continuous part LcT and the discontinuous part LdT are respectively given by

LcT =

∫ T

0
σ−1(Xt) (b(θ0, Xt)− b(θ,Xt)) · dBt −

1

2

∫ T

0
|σ−1(Xt) (b(θ0, Xt)− b(θ,Xt)) |2dt,

LdT =

∫ T

0

∫
Rd0

ln
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
N(dt, dy)−

∫ T

0

∫
Rd0

(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1

)
µθ(Xt−, dy)dt.

Adding and substracting the vector ∇θb(θ,Xt)ϕT (θ)u in the continuous part LcT , and adding
and substracting the terms uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y)) and 1

2

(
uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)2 in
the discontinuous part LdT , we obtain the following expansion of the log-likelihood ratio

log
dPTθ0
dPTθ

= uTϕT (θ)∇θ`T (θ)− 1

2
uTϕT (θ) [∇θ`(θ)]T ϕT (θ)u

+

∫ T

0
σ−1(Xt) (b(θ0, Xt)− b(θ,Xt)−∇θb(θ,Xt)ϕT (θ)u) · dBt

− 1

2

∫ T

0
|σ−1(Xt) (b(θ0, Xt)− b(θ,Xt)−∇θb(θ,Xt)ϕT (θ)u) |2dt

−
∫ T

0
uTϕT (θ) (∇θb(θ,Xt))

T (σ−1(Xt))
Tσ−1(Xt) (b(θ0, Xt)− b(θ,Xt)−∇θb(θ,Xt)ϕT (θ)u) dt

+

∫ T

0

∫
Rd0

(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1− uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)
(N(dt, dy)− µθ(Xt−, dy)dt)

+

∫ T

0

∫
Rd0

(
ln

Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
+ 1 +

1

2

(
uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)2
)
N(dt, dy),

where the Pθ-local martingale ∇θ`T (θ) is the term that contributes to the limit. In fact, using
Theorem 2.2.3 and hypothesis (A6), we get that as T →∞,

uTϕT (θ)∇θ`T (θ)− 1

2
uTϕT (θ) [∇θ`(θ)]T ϕT (θ)u

L(Pθ)−→ uTΓ(θ)1/2N (0, Ik)−
1

2
uTΓ(θ)u.

We next treat the negligible contributions. By hypothesis (A7), the quadratic variation of
the local martingale∫ T

0
σ−1(Xt) (b(θ0, Xt)− b(θ,Xt)−∇θb(θ,Xt)ϕT (θ)u) · dBt
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tends to zero in Pθ-probability as T →∞ uniformly in θ ∈ Θ. Thus, so does the local martingale.
Using the Cauchy-Schwarz inequality and hypotheses (A6) and (A7), we get that as T →∞,∣∣∣∣∫ T

0
uTϕT (θ) (∇θb(θ,Xt))

T (σ−1(Xt))
Tσ−1(Xt) (b(θ0, Xt)− b(θ,Xt)− ∂θb(θ,Xt)ϕT (θ)u) dt

∣∣∣∣
≤
(∫ T

0
|σ−1(Xt)∇θb(θ,Xt)ϕT (θ)u|2dt

)1/2

×
(∫ T

0
|σ−1(Xt) (b(θ0, Xt)− b(θ,Xt)−∇θb(θ,Xt)ϕT (θ)u) |2dt

)1/2
Pθ−→ 0.

By hypothesis (A8), the quadratic characteristic of the local martingale∫ T

0

∫
Rd0

(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1− uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)
(N(dt, dy)− µθ(Xt−, dy)dt)

tends to zero in Pθ-probability as T →∞ uniformly in θ ∈ Θ. Thus, so does the local martingale.
Finally, appealing to Lemma 2.2.1 below, we conclude the desired proof.

Lemma 2.2.1. Assume that the function Ψ(θ, x, y) is differentiable with respect to θ and that
hypotheses (A1), (A5), (A6), and (A8) hold. Then, as T →∞,∫ T

0

∫
Rd0

(
ln

Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
+ 1 +

1

2

(
uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)2
)
N(dt, dy)

tends to zero in Pθ-probability uniformly in θ ∈ Θ.

Proof. Consider the function f(y − 1) = ln(y)− (y − 1) + 1
2(y − 1)2 defined for all y > 0. Then,

for all x,

ln(y)− y + 1 +
1

2
x2 = f(y − 1)− 1

2
((y − 1)2 − x2).

Therefore,∫ T

0

∫
Rd0

(
ln

Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
+ 1 +

1

2

(
uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)2
)
N(dt, dy)

=

∫ T

0

∫
Rd0
f

(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1

)
N(dt, dy)

− 1

2

∫ T

0

∫
Rd0

{(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1

)2

−
(
uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)2
}
N(dt, dy).

Now, from [33, Proposition II.1.14], for any T ≥ 0,

Eθ

[∣∣∣∣∣
∫ T

0

∫
Rd0

(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1− uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)2

N(dt, dy)

∣∣∣∣∣
]

= Eθ

[∫ T

0

∫
Rd0

(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1− uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)2

µθ(Xt−, dy)dt

]
.

Therefore, the process
∫ T

0

∫
Rd0

(Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1−uTϕT (θ)∇θ ln(Ψ(θ,Xt−, y))

)2
N(dt, dy) is

dominated in the sense of Lenglart by its compensator process∫ T

0

∫
Rd0

(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1− uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)2

µθ(Xt−, dy)dt,
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for any T ≥ 0. Thus, by Lenglart’s inequality [33, Lemma I.3.30 a)], we have that for all T ≥ 0
and ε, η > 0,

Pθ

(∣∣∣∣∣
∫ T

0

∫
Rd0

(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1− uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)2

N(dt, dy)

∣∣∣∣∣ ≥ ε
)

≤ η

ε
+ Pθ

(∫ T

0

∫
Rd0

(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1− uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)2

µθ(Xt−, dy)dt ≥ η

)
,

which, by hypothesis (A8), implies that for all u ∈ Rk, as T →∞,

∫ T

0

∫
Rd0

(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1− uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)2

N(dt, dy)
Pθ−→ 0, (2.9)

uniformly in θ ∈ Θ. Thus, from hypothesis (A6) and the equality a2− b2 = (a− b)2 + 2b(a− b),
we conclude that for all u ∈ Rk, as T →∞,

∫ T

0

∫
Rd0

{(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1

)2

−
(
uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)2
}
N(dt, dy)

Pθ−→ 0, (2.10)

uniformly in θ ∈ Θ.

We next show that for every ε > 0, as T →∞,

∫ T

0

∫
Rd0
f

(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1

)
1

∣∣∣∣∣∣
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
−1

∣∣∣∣∣∣>ε

N(dt, dy)

Pθ−→ 0, (2.11)

uniformly in θ ∈ Θ.

For all a > 0,


∣∣∣∣∣∣∣∣
∫ T

0

∫
Rd0
f

(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1

)
1

∣∣∣∣∣∣
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
−1

∣∣∣∣∣∣>ε

N(dt, dy)

∣∣∣∣∣∣∣∣ > a


⊂


∫ T

0

∫
Rd0

1
∣∣∣∣∣∣
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
−1

∣∣∣∣∣∣>ε

N(dt, dy) ≥ 1

 .

Therefore, in order to prove (2.11), it suffices to show that for every ε > 0, as T →∞,

∫ T

0

∫
Rd0

1
∣∣∣∣∣∣
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
−1

∣∣∣∣∣∣>ε

N(dt, dy)

Pθ−→ 0, (2.12)
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uniformly in θ ∈ Θ. For this, we write∫ T

0

∫
Rd0

1
∣∣∣∣∣∣
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
−1

∣∣∣∣∣∣>ε

N(dt, dy)

≤
∫ T

0

∫
Rd0

1{|uTϕT (θ)∇θ ln(Ψ(θ,Xt−,y))|> ε
2}N(dt, dy)

+

∫ T

0

∫
Rd0

1
∣∣∣∣∣∣
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
−1−uTϕT (θ)∇θ ln(Ψ(θ,Xt−,y))

∣∣∣∣∣∣> ε
2


N(dt, dy)

≤ 4

ε2

∫ T

0

∫
Rd0

(
uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)2
1{|uTϕT (θ)∇θ ln(Ψ(θ,Xt−,y))|> ε

2}N(dt, dy)

+
4

ε2

∫ T

0

∫
Rd0

(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1− uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)2

× 1
∣∣∣∣∣∣
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
−1−uTϕT (θ)∇θ ln(Ψ(θ,Xt−,y))

∣∣∣∣∣∣> ε
2


N(dt, dy).

Now observe that hypothesis (A5) implies that as T →∞,

sup
0≤t≤T

∣∣∣uTϕT (θ)∇θ ln(Ψ(θ,Xt−,∆Xt))
∣∣∣1{∆Xt 6=0}

Pθ−→ 0,

which is equivalent to for every ε > 0, as T →∞,∫ T

0

∫
Rd0

(
uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)2
1{|uTϕT (θ)∇θ ln(Ψ(θ,Xt−,y))|>ε}N(dt, dy)

Pθ−→ 0.

Here we have used the fact that for 0 < a < ε2,{∫ T

0

∫
Rd0

(
uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)2
1{|uTϕT (θ)∇θ ln(Ψ(θ,Xt−,y))|>ε}N(dt, dy) > a

}

=

{
sup

0≤t≤T

∣∣∣uTϕT (θ)∇θ ln(Ψ(θ,Xt−,∆Xt))
∣∣∣1{∆Xt 6=0} > ε

}
.

This, together with (2.9), gives (2.12), and hence (2.11).
Now, since |f(x)| ≤ 2|x|3 if |x| ≤ 1

2 , we have for every 0 < ε ≤ 1
2 ,∣∣∣∣ ∫ T

0

∫
Rd0
f

(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1

)
1

∣∣∣∣∣∣
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
−1

∣∣∣∣∣∣≤ε

N(dt, dy)

∣∣∣∣
≤ 2

∣∣∣∣ ∫ T

0

∫
Rd0

∣∣∣∣Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1

∣∣∣∣3 1
∣∣∣∣∣∣
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
−1

∣∣∣∣∣∣≤ε

N(dt, dy)

∣∣∣∣
≤ 2ε

∣∣∣∣ ∫ T

0

∫
Rd0

(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1

)2

N(dt, dy)

∣∣∣∣.
Thus, from hypothesis (A6) and (2.10), we conclude that for every ε > 0, as T →∞,∫ T

0

∫
Rd0
f

(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1

)
1

∣∣∣∣∣∣
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
−1

∣∣∣∣∣∣≤ε

N(dt, dy)

Pθ−→ 0,

uniformly in θ ∈ Θ, which finishes the desired proof.
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We end this section with an important consequence of the LAMN property, which is the
conditional convolution theorem.

First, recall that a family of estimators (θ̃T )T≥0 of the parameter θ is called regular at θ if
for any u ∈ Rk, as T →∞,

ϕ−1
T (θ)

(
θ̃T − (θ + ϕT (θ)u)

) L(Pθ+ϕT (θ)u)
−→ V (θ),

for some Rk-valued random variable V (θ), independent of u.
Note that taking u = 0, this implies that as T →∞,

ϕ−1
T (θ)

(
θ̃T − θ

) L(Pθ)−→ V (θ).

The conditional convolution theorem says that when the LAMN property holds, then the
asymptotic distribution of any regular family of estimators of the parameter θ is characterized
by a conditional convolution between a Gaussian law and some others laws. More precisely,

Theorem 2.2.5 (Conditional convolution theorem). [28, Theorem 9.1] Suppose that the family
of probability measures (PTθ )θ∈Θ satisfies the LAMN property at a point θ. Let (θ̃T )T≥0 be a
regular family of estimators of the parameter θ. Then the law of V (θ) conditionally on Γ(θ) is a
convolution between N

(
0,Γ(θ)−1

)
and some other law GΓ(θ) on Rk, that is,

L (V (θ)|Γ(θ)) = N
(
0,Γ(θ)−1

)
? GΓ(θ),

where GΓ(θ) is the limiting distribution law under Pθ of the difference

ϕ−1
T (θ)

(
θ̃T − θ

)
− Γ(θ)−1ϕT (θ)∇θ`T (θ),

as T →∞, that is,
GΓ(θ) = V (θ)−N

(
0,Γ(θ)−1

)
.

The proof of this theorem uses the change of measure θ0 = θ+ϕT (θ)u, which from the LAMN
property can be written as

Eθ0 [Z] = Eθ

[
Z
dPTθ0
dPTθ

]
= Eθ

[
Zeu

TϕT (θ)∇θ`T (θ)− 1
2
uTϕT (θ)[∇θ`(θ)]TϕT (θ)u+oPθ

(1)
]
,

for some random variable Z.
Moreover, the proof shows that the random variable V (θ) can be written as a sum of two

independent random variables

V (θ)
law
= Γ(θ)−1/2N (0, Ik) +R,

where R is a random variable with distribution GΓ(θ). This implies that, under the conditions of
Theorem 2.2.5, as T →∞,

ϕ−1
T (θ)

(
θ̃T − θ

) L(Pθ)−→ Γ(θ)−1/2N (0, Ik) +R.

This theorem suggests the notion of asymptotically efficient estimators, when R = 0. That
is, a family of estimators (θ̃T )T≥0 of the parameter θ is called asymptotically efficient at θ if as
T →∞,

ϕ−1
T (θ)

(
θ̃T − θ

) L(Pθ)−→ Γ(θ)−1/2N (0, Ik),

where Γ(θ) and N (0, Ik) are independent.
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2.3 Girsanov’s Theorem

This section is devoted to recall Girsanov’s theorem for the diffusion process with jumps
(2.1), which is needed in the proof of Theorem 2.2.4. Recall that in [71], Sørensen deals with
a more general diffusion process with jumps where the dimension of the space on which the
jumps of the Poisson random measure are defined can be different from that of the process.
The author gives sufficient conditions for the equivalence of all probability measures and then
derives a complicated expression of the Radon-Nikodym derivative (see [71, Theorem 2.1]). The
author applies Girsanov’s theorem for semimartingales proved by Jacod and Mémin (see [32,
Theorem 4.2 and 4.5(b)]). These results are based on the uniqueness of the representation of
semimartingales in terms of their local characteristics, and the uniqueness of the solution to
the martingale problem associated to this semimartingale. Recall that the diffusion process with
jumps Xθ solving (2.1) is a semimartingale, and a weak solution to (2.1) is a solution to the
martingale problem associated to Xθ. Furthermore, the set of all weak solutions to (2.1) is the
set of all solutions to the martingale problem on the canonical space associated to Xθ. In our
context, the proof of Girsanov’s theorem below can be based on the uniqueness of the weak
solution to equation (2.1).

Finally, Jacod and Shiryaev in [33, Theorem III.3.24 and III.5.19] extend Girsanov’s Jacod
and Mémin theorem to the multidimensional case. We also refer to [36], [37], [29], [66] for the Gir-
sanov’s theorem for semimartingales, multivariate point processes and discontinuous independent
increments processes.

Theorem 2.3.1 (Girsanov’s theorem). Assume conditions (A1)-(A3). Then for all θ, θ0 ∈ Θ,
the probability measures PTθ and PTθ0 are equivalent. Furthermore, their Radon-Nikodym derivative
is given by

dPTθ0
dPTθ

= exp

{∫ T

0
σ−1(Xt) (b(θ0, Xt)− b(θ,Xt)) · dBt −

1

2

∫ T

0
|σ−1(Xt) (b(θ0, Xt)− b(θ,Xt)) |2dt

+

∫ T

0

∫
Rd0

ln
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
N(dt, dy)−

∫ T

0

∫
Rd0

(
Ψ(θ0, Xt−, y)

Ψ(θ,Xt−, y)
− 1

)
µθ(Xt−, dy)dt

}
.

2.4 LAN property for ergodic diffusion processes with jumps

In this section, we seek sufficient conditions in order for the LAN property to hold when the
diffusion process with jumps Xθ (2.1) is ergodic, as a consequence of Theorem 2.2.4.

Let Xθ = (Xt)t≥0 be the solution to equation (2.1), that is,

Xt = X0 +

∫ t

0
a(θ,Xs)ds+

∫ t

0
σ(Xs)dBs +

∫ t

0

∫
Rd0
c(θ,Xs−, z) (p(ds, dz)− νθ(dz)ds) .

Recall that we have rewritten this equation as

Xt = X0 +

∫ t

0
b(θ,Xs)ds+

∫ t

0
σ(Xs)dBs +

∫ t

0

∫
Rd0
yN(dt, dy),

where b(θ,Xt) = a(θ,Xt)−
∫
Rd0
yµθ(Xt−, dy), and N(dt, dy) is a jump measure on R+×Rd0 with

predictable compensator µθ(Xt−, dy)dt = Ψ(θ,Xt−, y)dydt.
As is well-known, Xθ is a homogeneous Markov process (see [3, Theorem 6.4.6]). Let us

introduce the ergodic assumption.



2.4. LAN property for ergodic diffusion processes with jumps 31

(C1) The process Xθ is ergodic in the sense that there exists a unique probability measure
πθ(dx) such that as T →∞,

1

T

∫ T

0
g(Xθ

t )dt
Pθ−→
∫
Rd
g(x)πθ(dx),

for any πθ-integrable function g.
Several examples of ergodic diffusion processes with jumps are given in [53], [54], and [67].

Moreover, results on ergodicity and exponential ergodicity of diffusion processes with jumps
have been established by Masuda in [53, 54]. In addition, Kulik in [43] provides a set of sufficient
conditions for the exponential ergodicity of diffusion processes with jumps without Gaussian part
and gives some examples. More recently, Qiao in [64] has addressed the exponential ergodicity
for stochastic differential equations with jumps and non-Lipschitz coefficients. However, in these
papers ergodicity and exponentially ergodicity are understood in the sense of [56], which both
are stronger than the ergodicity in the sense (C1).

We next show that if a process satisfies the additional Lindeberg condition (A9), then the
quadratic characteristic and quadratic variation of the score function are asymptotically equiva-
lent at rate ϕT (θ).

(A9) For all ε > 0 and u ∈ Rk, as T →∞,∫ T

0

∫
Rd0

(
uTϕT (θ)∇θ ln (Ψ(θ,Xt−, y))

)2
1{|uTϕT (θ)∇θ ln(Ψ(θ,Xt−,y))|>ε}Ψ(θ,Xt−, y)dydt

Pθ−→ 0,

uniformly in θ ∈ Θ.

Lemma 2.4.1. Assume conditions (A1)-(A4) and (A9). Then, condition (A6) is equivalent
to the fact that there exists a k × k symmetric positive definite random matrix Γ(θ) such that as
T →∞,

ϕT (θ) 〈∇θ`(θ)〉T ϕT (θ)
Pθ−→ Γ(θ), (2.13)

uniformly in θ ∈ Θ, where 〈∇θ`(θ)〉T is the quadratic characteristic of the score function, that
is,

〈∇θ`(θ)〉T =

∫ T

0
(∇θb(θ,Xt))

T(σ−1(Xt))
Tσ−1(Xt)∇θb(θ,Xt)dt

+

∫ T

0

∫
Rd0

(∇θ ln (Ψ(θ,Xt−, y)))T∇θ ln (Ψ(θ,Xt−, y)) Ψ(θ,Xt−, y)dydt.

Next, observe that the ergodicity assumption implies the convergence of the quadratic cha-
racteristic of the score function at rate 1

T .

Lemma 2.4.2. Assume conditions (A1)-(A4) and (C1). Then, as T →∞,

1

T
〈∇θ`(θ)〉T

Pθ−→ Γ(θ), (2.14)

uniformly in θ ∈ Θ, where

Γ(θ) =

∫
Rd

(∇θb(θ, x))T (σ−1(x))Tσ−1(x)∇θb(θ, x)πθ(dx)

+

∫
Rd

∫
Rd0
∇θ ln Ψ(θ, x, y) (∇θ ln Ψ(θ, x, y))T Ψ(θ, x, y)dyπθ(dx).

Therefore, we have the following immediate consequence of Theorem 2.2.3.
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Theorem 2.4.1. Suppose that conditions (A1)-(A5), (A9), and (C1) are satisfied with ϕT (θ)
the diagonal matrix with entries equal to 1√

T
. Then the score function is asymptotically normal

uniformly for all θ ∈ Θ with asymptotic Fisher information matrix Γ(θ). That is, as T →∞,

1√
T
∇θ`T (θ)

L(Pθ)−→ N (0,Γ(θ)) ,

uniformly in θ ∈ Θ, where N (0,Γ(θ)) is a centered Rk-valued Gaussian random variable with
covariance matrix Γ(θ) .

We next derive the LAN property. For this, we need the following additional assumptions.
(C2) For all u ∈ Rk, as T →∞,∫

Rd

∣∣∣∣σ−1(x)

(
b

(
θ +

u√
T
, x

)
− b(θ, x)−∇θb(θ, x)

u√
T

)∣∣∣∣2 πθ(dx) = o

(
1

T

)
,

uniformly in θ ∈ Θ.

(C3) For all u ∈ Rk, as T →∞,

∫
Rd

∫
Rd0

(
Ψ(θ + u√

T
, x, y)

Ψ(θ, x, y)
− 1− uT√

T
∇θ ln (Ψ(θ, x, y))

)2

Ψ(θ, x, y)dyπθ(dx) = o

(
1

T

)
,

uniformly in θ ∈ Θ.
We next state the main result of this section.

Theorem 2.4.2. Suppose that conditions (A1)-(A5), (A9), and (C1)-(C3) are fulfilled with
ϕT (θ) the diagonal matrix with entries equal to 1√

T
. Then the LAN property holds for all θ ∈ Θ

with rate of convergence
√
T and asymptotic Fisher information matrix Γ(θ). That is, for all

u ∈ Rk, as T →∞,

log
dPTθ+ u√

T

dPTθ

L(Pθ)−→ uTN (0,Γ(θ))− 1

2
uTΓ(θ)u.

Proof. By ergodicity, as T →∞,

1

T

∫ T

0

∣∣∣∣σ−1(Xt)

(
b(θ +

u√
T
,Xt)− b(θ,Xt)−∇θb(θ,Xt)

u√
T

)∣∣∣∣2 dt
Pθ−→
∫
Rd

∣∣∣∣σ−1(x)

(
b(θ +

u√
T
, x)− b(θ, x)−∇θb(θ, x)

u√
T

)∣∣∣∣2 πθ(dx),

which, together with (C2) gives (A7).
Again by ergodicity, as T →∞,

1

T

∫ T

0

∫
Rd0

(
Ψ(θ + u√

T
, Xt−, y)

Ψ(θ,Xt−, y)
− 1− 1√

T
uT∇θ ln (Ψ(θ,Xt−, y))

)2

Ψ(θ,Xt−, y)dydt

Pθ−→
∫
Rd

∫
Rd0

(
Ψ(θ + u√

T
, x, y)

Ψ(θ, x, y)
− 1− 1√

T
uT∇θ ln (Ψ(θ, x, y))

)2

Ψ(θ, x, y)dyπθ(dx),

which, together with (C3) gives (A8).
Then, the desired LAN property follows from Lemma 2.4.2 and Theorem 2.2.4.

As a consequence of the LAN property, an asymptotic lower bound for the variance of any
family of unbiased estimators can be obtained. More precisely,
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Theorem 2.4.3 (Minimax theorem). [28, Theorem 12.1] Suppose that the family of probability
measures (PTθ )θ∈Θ satisfies the LAN property at a point θ. Let (θ̃T )T≥0 be a family of estimators
of the parameter θ and l : Rk → [0,+∞) be a loss function of the form l(0) = 0, l(x) = l(|x|) and
l(|x|) ≤ l(|y|) if |x| ≤ |y|. Then

lim
δ→0

lim inf
T→∞

sup
|θ′−θ|<δ

Eθ′
[
l
(
ϕ−1
T (θ)

(
θ̃T − θ′

))]
≥ Eθ [l (Z)] ,

where L(Z) = N (0,Γ(θ)−1).

In particular, when we take the quadratic loss function l(u) = |u|2, the above inequality gives
an asymptotic lower bound for the covariance matrix of any family of unbiased estimators, which
is given by Γ(θ)−1.

2.5 Examples

Under conditions (A1)-(A6), a family of estimators (θ̃T )T≥0 of θ satisfying

ϕ−1
T (θ)

(
θ̃T − θ

)
= ϕ−1

T (θ) [∇θ`(θ)]−1
T ∇θ`T (θ) + oPθ(1),

is asymptotically efficient at θ. Furthermore, assuming the additional conditions (A7)-(A8), this
family (θ̃T )T≥0 is regular at θ.

As a consequence, by Lemma 2.4.1, under conditions (A1)-(A5), (A9) and (2.13), a family
of estimators (θ̃T )T≥0 of θ satisfying

ϕ−1
T (θ)

(
θ̃T − θ

)
= ϕ−1

T (θ) 〈∇θ`(θ)〉−1
T ∇θ`T (θ) + oPθ(1),

is asymptotically efficient at θ. Furthermore, assuming the additional conditions (A7)-(A8), this
family (θ̃T )T≥0 is regular at θ.

We next present examples of the LAMN and LAN properties, both taken from [52].

2.5.1 Example 1

Recall that a pure birth process is a counting process (Xt)t≥0 = (Nt)t≥0 with predictable
intensity Ψ(θ,Nt−) = θNt−, where N0 = 1 and the birth rate θ ∈ Θ = (0,∞). The integral∫ t

0 Ns−ds is the total time lived in the population before time t.
Observe that in this simple example, the process Xt is already written in the form (2.6),

there is no dy-dependence, and thus the first condition in (A3) is not needed. The other two
conditions in (A3) and (A4) are trivially satisfied.

By (2.7), the score function based on the continuous observation {Nt, 0 ≤ t ≤ T} is given by

∇θ`T (θ) =

∫ T

0

∂θΨ

Ψ
(dNt − θNt−dt) =

NT − 1

θ
−
∫ T

0
Nt−dt.

It can be checked that the score function is a Pθ-martingale, and its quadratic variation and
quadratic characteristic are respectively given by

[∇θ`(θ)]T =
NT − 1

θ2
, and 〈∇θ`(θ)〉T =

1

θ

∫ T

0
Nt−dt.

It can be easily checked that as T →∞,

θ2e−θT [∇θ`(θ)]T = e−θT (NT − 1)
a.s.−→W,

where W is a random variable with exponential distribution with parameter 1.
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This shows that hypothesis (A6) holds with ϕT (θ) = θe−
θT
2 and asymptotic Fisher informa-

tion Γ(θ) = W . Finally, hypotheses (A5) and (A8) hold trivially. Thus, by Theorem 2.2.4 this
process satisfies the LAMN property.

On the other hand, the maximum likelihood estimator (MLE) of θ is given by

θ̂T =
NT − 1∫ T
0 Ns−ds

.

Therefore,
1

θ
e
θT
2

(
θ̂T − θ

)
= ϕ−1

T (θ) 〈∇θ`(θ)〉−1
T ∇θ`T (θ).

Observe that as T →∞,

θ2e−θT 〈∇θ`(θ)〉T = θe−θT
∫ T

0
Ns−ds

a.s.−→W,

thus, the quadratic characteristic and quadratic variation of the score function are asymptotically
equivalent at rate θe−

θT
2 . Hence, (A9) is not needed.

Then, θ̂T is a family of regular and asymptotically efficient estimators for all θ ∈ Θ.

2.5.2 Example 2

Recall that Jacod [30] and Dietz [16] studied the LAN and LAMN property for Ornstein-
Uhlenbeck processes without jumps. In this subsection we consider the Ornstein-Uhlenbeck pro-
cesses with jumps, a particular case of equation (2.2), defined by

Xt = X0 + θ1

∫ t

0
Xsds+ σBt +

∫ t

0

∫
R0

yN(ds, dy), (2.15)

where X0 is a random variable with finite second moment, σ ≥ 0, θ2 = (θ1
2, . . . , θ

k−1
2 ) ∈ Θ̃,

θ = (θ1, θ2) ∈ Θ = R× Θ̃, where Θ̃ is an open subset of Rk−1, for some integer k > 1, N(ds, dy)
is a Poisson random measure on R+×R0 with intensity measure µθ2(dy)dt = f(θ2, y)dydt, where
f : Θ × R → R+ is a Borel function such that

∫
R |y|

2f(θ2, y)dy < ∞ and f(θ2, 0) = 0, for all
θ2 ∈ Θ̃. We also assume that f ∈ C1 with respect to θ2.

Assume the following conditions on the Lévy density f .
(H1) For any θ2, θ2 ∈ Θ̃,∫

R0

∣∣∣∣(f(θ2, y)

f(θ2, y)
− 1

)
y

∣∣∣∣ f(θ2, y)dy +

∫
R0

(
f(θ2, y)

f(θ2, y)
− 1

)
f(θ2, y)dy

+

∫
R0

(
f(θ2, y)

f(θ2, y)
− 1

)2

f(θ2, y)dy <∞.

(H2) For any θ2 ∈ Θ̃, p > 2 and i ∈ {1, . . . , k − 1},
∫
R0

∣∣∣∂θi2 ln (f(θ2, y))
∣∣∣p f(θ2, y)dy <∞.

(H3) For any θ2 ∈ Θ̃,
∫
R0

(∇θ2 ln (f(θ2, y)))T∇θ2 ln (f(θ2, y)) f(θ2, y)dy is positive definite.

(H4) For all u ∈ Rk−1, as T →∞,

∫
R0

∣∣∣∣∣f(θ2 + u√
T
, y)

f(θ2, y)
− 1− 1√

T
uT∇θ2 ln (f(θ2, y))

∣∣∣∣∣
2

f(θ2, y)dy = o

(
1

T

)
,

uniformly in θ2 ∈ Θ̃.



2.5. Examples 35

Let us now consider the following cases :
Case 1 : σ ≥ 0, θ1 = 0. Assuming (H1) (which implies (A3)), the score function and its

quadratic characteristic are respectively given by

∇θ2`T (θ2) =

∫ T

0

∫
R0

∇θ2 ln (f(θ2, y)) (N(dt, dy)− µθ2(dy)dt) ,

〈∇θ2`(θ2)〉T = T

∫
R0

(∇θ2 ln (f(θ2, y)))T∇θ2 ln (f(θ2, y))µθ2(dy).

Taking ϕT (θ2) as the (k−1)× (k−1) diagonal matrix with entries equal to 1√
T
, then observe

that

Eθ

[
sup

0≤t≤T
|ϕT (θ2)∇θ2 ln(f(θ2,∆Xt))|

]
≤ 1√

T

k−1∑
i=1

Eθ

[
sup

0≤t≤T

∣∣∣∂θi2 ln(f(θ2,∆Xt))
∣∣∣]

≤ 1√
T

k−1∑
i=1

(
Eθ

[
sup

0≤t≤T

∣∣∣∂θi2 ln(f(θ2,∆Xt))
∣∣∣p]) 1

p

≤ 1√
T

k−1∑
i=1

Eθ

 ∑
0≤t≤T

∣∣∣∂θi2 ln(f(θ2,∆Xt))
∣∣∣p
 1

p

=
1√
T

k−1∑
i=1

(
Eθ

[∫ T

0

∫
R0

∣∣∣∂θi2 ln(f(θ2, y))
∣∣∣pN(dt, dy)

]) 1
p

=
1

T
1
2
− 1
p

k−1∑
i=1

(∫
R0

∣∣∣∂θi2 ln(f(θ2, y))
∣∣∣p f(θ2, y)dy

) 1
p

,

which, by hypothesis (H2), tends to zero as T →∞. Hence, condition (A5) is satisfied.
Condition (A9) is satisfied for all θ2 ∈ Θ̃ since for all ε > 0 and u ∈ Rk−1, as T →∞,∫

R0

(
uT∇θ2 ln (f(θ2, y))

)2
1{|uT∇θ2 ln(f(θ2,y))|>ε

√
T}f(θ2, y)dy = o(1),

uniformly in θ2 ∈ Θ̃. On the other hand, for all T > 0,

1

T
〈∇θ2`(θ2)〉T =

∫
R0

(∇θ2 ln (f(θ2, y)))T∇θ2 ln (f(θ2, y))µθ2(dy) =: Γ̃(θ2),

which is independent of T . Thus, by Lemma 2.4.1, hypothesis (A6) holds. Moreover, it is easy
to see that (A7) holds true. Finally, hypothesis (H4) implies (A8).

As a consequence of Theorem 2.2.4, under conditions (H1)-(H4), the LAN property is sa-
tisfied with rate of convergence

√
T and asymptotic Fisher information matrix Γ̃(θ2).

In particular, when X is a one-dimensional Poisson process with intensity λ(θ), the LAN
property holds with rate of convergence

√
T and asymptotic Fisher information Γ(θ) = (λ′(θ))2

λ(θ) .

Case 2 : σ > 0, θ1 > 0. Assuming (H1), the score function is given by

∇θ`T (θ) =

(∫ T

0

Xt

σ
dBt,

∫ T

0

∫
R0

∇θ2 ln (f(θ2, y)) (N(dt, dy)− µθ2(dy)dt)

)
,

and its quadratic variation and quadratic characteristic are respectively given by

[∇θ`(θ)]T =

 1

σ2

∫ T
0 X2

t dt 0

0
∫ T

0

∫
R0

(∇θ2 ln (f(θ2, y)))T∇θ2 ln (f(θ2, y))N(dt, dy)

 ,

〈∇θ`(θ)〉T =

( 1

σ2

∫ T
0 X2

t dt 0

0 T
∫
R0

(∇θ2 ln (f(θ2, y)))T∇θ2 ln (f(θ2, y))µθ2(dy)

)
.
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Taking the diagonal entries of the k×k diagonal matrix ϕT (θ) as ϕi,T (θ) = 1√
T
for i = 2, ..., k.

Suppose that ρ1 :=
∫
R0
yµθ2(dy) <∞ and ρ2 :=

∫
R0
y2µθ2(dy) <∞, for all θ2 ∈ Θ̃.

By Itô’s formula, the unique solution to equation (2.15) is given by

Xt = eθ1tX0 + ρ1

∫ t

0
eθ1(t−s)ds+ σ

∫ t

0
eθ1(t−s)dBs +

∫ t

0

∫
R0

eθ1(t−s)y (N(ds, dy)− µθ2(dy)ds) .

Now, consider the martingale

Mt = e−θ1tXt −X0 +
e−θ1t − 1

θ1
ρ1

= σ

∫ t

0
e−θ1sdBs +

∫ t

0

∫
R0

e−θ1sy (N(ds, dy)− µθ2(dy)ds) .

Observe that {Mt,Ft}t≥0 is a zero-mean square integrable martingale since for all t ≥ 0,

Eθ[M
2
t ] = −σ2 e

−2θ1t − 1

2θ1
− e−2θ1t − 1

2θ1
ρ2 ≤

σ2 + ρ2

2θ1
<∞.

Hence, applying the martingale convergence theorem, Mt converges almost surely as t → ∞ to
the random variable

M∞ = σ

∫ ∞
0

e−θ1sdBs +

∫ ∞
0

∫
R0

e−θ1sy (N(ds, dy)− µθ2(dy)ds) .

Thus, e−θ1tXt converges almost surely to X0 + ρ1

θ1
+M∞ as t→∞, which implies that e−2θ1tX2

t

converges almost surely to (X0 + ρ1

θ1
+M∞)2 as t→∞. Using the integral version of the Toeplitz

lemma, we get that as t→∞, ∫ t
0 X

2
sds∫ t

0 e
2θ1sds

a.s.−→
(
X0 +

ρ1

θ1
+M∞

)2

,

which yields that as t→∞

e−2θ1t

∫ t

0
X2
sds

a.s.−→ 1

2θ1

(
X0 +

ρ1

θ1
+M∞

)2

.

Hence, taking ϕ1,T (θ) = e−θ1T , that is, ϕT (θ) = diag(e−θ1T , 1√
T
, . . . , 1√

T
), together with

(H3), condition (A6) is satisfied with

Γ(θ) =

 1

2σ2θ1

(
X0 + ρ1

θ1
+M∞

)2
0

0 Γ̃(θ2)

 .

Assuming additionally conditions (H2) and (H4) and applying Theorem 2.2.4, the LAMN
property holds with ϕT (θ) = diag(e−θ1T , 1√

T
, . . . , 1√

T
) and asymptotic Fisher information matrix

Γ(θ).
Case 3 : σ > 0, θ1 < 0. Recall that if∫

|y|>2
log |y|µθ2(dy) <∞, (2.16)

for all θ2 ∈ Θ̃, X is ergodic with a unique invariant probability measure πθ(dx) which can be
calculated explicitly (see [65, Theorem 17.5 and Corollary 17.9] and [53, Theorem 2.6]). Therefore,
by ergodicity, as T →∞,

1

T

∫ T

0
X2
t dt

Pθ−→
∫
R
x2πθ(dx).
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In this case Xt converges almost surely as t→∞ to the random variable

X∞ = −ρ1

θ1
+ σ

∫ ∞
0

eθ1sdBs +

∫ ∞
0

∫
R0

eθ1sy (N(ds, dy)− µθ2(dy)ds) .

Again, by ergodicity, as T →∞,

1

T

∫ T

0
X2
t dt

Pθ−→ Eθ
[
X2
∞
]
.

By Itô’s formula,

X2
t = e2θ1tX2

0 + 2ρ1

∫ t

0
eθ1(t−s)Xsds+ 2σ

∫ t

0
eθ1(t−s)XsdBs +

(
σ2 + ρ2

) ∫ t

0
e2θ1(t−s)ds

+

∫ t

0

∫
R0

(
2eθ1(t−s)yXs + e2θ1(t−s)y2

)
(N(ds, dy)− µθ2(dy)ds) ,

together with Eθ[Xt] = eθ1t(E[X0] + ρ1

θ1
)− ρ1

θ1
, shows that

Eθ[X
2
t ] = e2θ1tE[X2

0 ] + 2ρ1

(
E[X0] +

ρ1

θ1

)
eθ1tt+

2ρ2
1

θ2
1

(
1− eθ1t

)
− σ2 + ρ2

2θ1

(
1− e2θ1t

)
.

Therefore,

Eθ
[
X2
∞
]

= lim
t→∞

Eθ
[
X2
t

]
=

2ρ2
1

θ2
1

− σ2 + ρ2

2θ1
,

which concludes that ∫
R
x2πθ(dx) =

2ρ2
1

θ2
1

− σ2 + ρ2

2θ1
.

As a consequence, assuming conditions (H1)-(H4) and applying Theorem 2.4.2, the LAN
property is satisfied with rate of convergence

√
T and asymptotic Fisher information matrix

Γ(θ) =

 1

σ2

(
2ρ2

1

θ2
1

− σ2 + ρ2

2θ1

)
0

0 Γ̃(θ2)

 .

Next, we are going to study the asymptotic properties of the MLE of the parameter θ for the
parametric model (2.15) in the case that σ > 0 and θ1 6= 0. In particular, we show that the MLE
of θ1 is asymptotically efficient.

Note that the MLE θ̂T = (θ̂1,T , θ̂2,T ) of θ satisfies

∇θ`T (θ) =

(∫ T

0

Xt

σ
dBt,

∫ T

0

∫
R0

∇θ2 ln (f(θ2, y)) (N(dt, dy)− µθ2(dy)dt)

)
= (0, . . . , 0).

First observe that the MLE θ̂1,T of the drift parameter θ1 satisfies the following equation

1

σ

∫ T

0
XtdBt =

1

σ2

∫ T

0
Xt

(
dXt − θ1Xtdt−

∫
R0

yN(dt, dy)

)
= 0,

which yields that under Pθ,

θ̂1,T =

∫ T
0 XtdXt −

∫ T
0

∫
R0
XtyN(dt, dy)∫ T

0 X2
t dt

= θ1 +
σ
∫ T

0 XtdBt∫ T
0 X2

t dt
.

When θ1 > 0, set Γ1,1(θ) := 1
2σ2θ1

(X0 + ρ1

θ1
+M∞)2. Then, as T →∞,

eθ1T
(
θ̂1,T − θ1

)
=
σe−θ1T

∫ T
0 XtdBt

e−2θ1T
∫ T

0 X2
t dt

L(Pθ)−→ Γ1,1(θ)−1/2N (0, 1) .
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When θ1 < 0, we assume (2.16) and set Γ1,1(θ) := 1
σ2 (

2ρ2
1

θ2
1
− σ2+ρ2

2θ1
). Then, as T →∞,

√
T
(
θ̂1,T − θ1

)
=
σ 1√

T

∫ T
0 XtdBt

1
T

∫ T
0 X2

t dt

L(Pθ)−→ N
(
0,Γ1,1(θ)−1

)
.

Consequently, we conclude that the MLE θ̂1,T of θ1 is asymptotically efficient for all θ1 6= 0.
Next, notice that the MLE θ̂2,T of θ2 satisfies the following equation∫ T

0

∫
R0

∇θ2 ln (f(θ2, y)) (N(dt, dy)− µθ2(dy)dt) = 0, (2.17)

which states that the solution θ̂2,T depends on the Lévy density f . We shall consider here the
following two particular cases.

When (
∫ t

0

∫
R0
yN(ds, dy))t≥0 is a Poisson process (Nt)t≥0 with intensity θ2 > 0. In this case,

the solution to equation (2.17) is given by

θ̂2,T =
NT

T
.

By the Central Limit theorem, as T →∞,

√
T
(
θ̂2,T − θ2

)
=
√
T

(
NT

T
− θ2

)
L(Pθ)−→ N (0, θ2) .

Thus, in this case, as T →∞, the MLE θ̂T satisfies

ϕ−1
T (θ)

(
θ̂T − θ

) L(Pθ)−→ Γ(θ)−1/2N (0, I2) ,

with

Γ(θ) =

(
Γ1,1(θ) 0

0 1
θ2

)
,

which implies that θ̂T is asymptotically efficient. Moreover, θ̂T is regular since for all θ ∈ R0× Θ̃,

ϕ−1
T (θ)

(
θ̂T − θ

)
= ϕ−1

T (θ) 〈∇θ`(θ)〉−1
T ∇θ`T (θ).

We next consider the case where the Lévy density f(θ2, y) takes the form
λ

α
e−y/α1(0,∞)(y)

with λ, α > 0 and θ2 = (λ, α). In this case, solving equation (2.17), we find that the MLE
θ̂2,T = (λ̂T , α̂T ) is given by

λ̂T =
NT

T
, and α̂T =

∫ T
0

∫
R0
yN(dt, dy)

NT
,

where Nt is a Poisson process with intensity λ. From the Central Limit theorem, we have that
as T →∞,

√
T
(
λ̂T − λ

) L(Pθ)−→ N (0, λ) .

Moreover, applying Theorem 2.2.2, we obtain that as T →∞,

√
T (α̂T − α) =

T

NT

1√
T

∫ T

0

∫
R0

(y − α)(N(dt, dy)− µθ2(dy)dt)
L(Pθ)−→ N

(
0,
α2

λ

)
.
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Hence, we conclude that as T →∞,

ϕ−1
T (θ)

(
θ̂T − θ

) L(Pθ)−→ Γ(θ)−1/2N (0, I3) ,

with

Γ(θ) =

Γ1,1(θ) 0 0
0 1

λ 0

0 0 λ
α2

 ,

which implies that θ̂T is asymptotically efficient. Moreover, θ̂T is regular since for all θ ∈ R0× Θ̃,

ϕ−1
T (θ)

(
θ̂T − θ

)
= ϕ−1

T (θ) 〈∇θ`(θ)〉−1
T ∇θ`T (θ) + oPθ(1).
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Chapitre 3

LAN property for a simple Lévy process

In this chapter, we consider a simple Lévy process given by a Brownian motion and a compen-
sated Poisson process, whose drift and diffusion parameters as well as its intensity are unknown.
Supposing that the process is observed discretely at high frequency we derive the local asympto-
tic normality (LAN) property. In order to obtain this result, Malliavin calculus and Girsanov’s
theorem are applied in order to write the log-likelihood ratio in terms of sums of conditional
expectations, for which a central limit theorem for triangular arrays can be applied.

3.1 Introduction and main result

On a complete probability space (Ωλ,Fλ,Pλ) defined in Definition 1.1.3, we consider the
following stochastic process Xθ,σ,λ = (Xθ,σ,λ

t )t≥0 in R defined by

Xθ,σ,λ
t = x0 + θt+ σBt +Nt − λt, (3.1)

where B = (Bt)t≥0 is a standard Brownian motion, N = (Nt)t≥0 is a Poisson process with
intensity λ > 0 independent of B, and we denote by (Ñλ

t )t≥0 the compensated Poisson process
Ñλ
t := Nt − λt. The parameters (θ, σ, λ) ∈ Θ × Σ × Λ are unknown and Θ,Σ and Λ are closed

intervals of R,R∗+ and R∗+, where R∗+ = R+ \ {0}. Let {F̂λt }t≥0 denote the natural filtration
generated by B and N . Note that {F̂λt }t≥0 is also the natural filtration generated by Xθ,σ,λ for
all (θ, σ, λ) ∈ Θ × Σ × Λ. We denote by Pθ,σ,λ the probability law induced by the F̂λ-adapted
càdlàg stochastic process Xθ,σ,λ, and by Eθ,σ,λ the expectation with respect to Pθ,σ,λ. Let Pθ,σ,λ−→
and

L(Pθ,σ,λ)−→ denote the convergence in Pθ,σ,λ-probability and in Pθ,σ,λ-law, respectively.
Recall that (Ω2,F2,P2) is the canonical probability space associated with the Poisson process

N with intensity λ. Therefore, we denote by (Ω2,λ,F2,λ,P2,λ) instead of (Ω2,F2,P2). The struc-
ture of the probability space is then given by Ω̂λ = Ω1×Ω2,λ, Ω̃λ = Ω3×Ω4,λ, F̂λ = F1⊗F2,λ,
F̃λ = F3⊗F4,λ, P̂λ = P1⊗P2,λ, P̃λ = P3⊗P4,λ, and Ωλ = Ω̂λ×Ω̃λ, Fλ = F̂λ⊗F̃λ, Pλ = P̂λ⊗P̃λ.
We denote by Eλ, Êλ, Ẽλ the expectation with respect to Pλ, P̂λ and P̃λ, respectively.

For fixed (θ0, σ0, λ0) ∈ Θ×Σ×Λ, we consider the probability space (Ω,F ,P), where Ω ≡ Ωλ0 ,
F ≡ Fλ0 ,P ≡ Pλ0 . Let us denote E ≡ Eλ0 , P̂ ≡ P̂λ0 = P1 ⊗ P2,λ0 , and P̃ ≡ P̃λ0 = P3 ⊗ P4,λ0 .
Consider an equidistant discrete observation of the process Xθ0,σ0,λ0 which is denoted by Xn =
(Xt0 , Xt1 , . . . , Xtn), where tk = k∆n for k ∈ {0, . . . , n}, and ∆n ≤ 1. We assume that the
high-frequency observation condition holds. That is,

n∆n →∞, and ∆n → 0, as n→∞. (3.2)

Given the process (Xθ,σ,λ
t )t≥0, we denote by p(·; (θ, σ, λ)) the density of the random vector

(Xθ,σ,λ
t0

, Xθ,σ,λ
t1

, . . . , Xθ,σ,λ
tn ). In particular, p(·; (θ0, σ0, λ0)) denotes the density of the observation

Xn. For (u, v, w) ∈ R3, set θn := θ0 +
u√
n∆n

, σn := σ0 +
v√
n
, λn := λ0 +

w√
n∆n

.

41
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The aim of this chapter is to prove the following LAN property.

Theorem 3.1.1. Assume condition (3.2). Then, the LAN property holds for the likelihood at
(θ0, σ0, λ0) with rate of convergence (

√
n∆n,

√
n,
√
n∆n) and asymptotic Fisher information ma-

trix Γ(θ0, σ0, λ0). That is, for all z = (u, v, w) ∈ R3, as n→∞,

log
p (Xn; (θn, σn, λn))

p (Xn; (θ0, σ0, λ0))

L(Pθ0,σ0,λ0 )−→ zTN (0,Γ(θ0, σ0, λ0))− 1

2
zTΓ(θ0, σ0, λ0)z,

where N (0,Γ(θ0, σ0, λ0)) is a centered R3-valued Gaussian vector with covariance matrix

Γ(θ0, σ0, λ0) =
1

σ2
0

 1 0 −1
0 2 0

−1 0 1 +
σ2

0
λ0

 .

Remark 3.1.1. The LAN property remains valid for the simple Lévy process driven by a Brow-
nian motion and a Poisson process N = (Nt)t≥0 with intensity λ > 0, i.e, Xθ,σ,λ

t = x0+θt+σBt+
Nt, for t ≥ 0, with the same rates of convergence. However, the asymptotic Fisher information
matrix changes in this case where there is no correlation between two components involving the
parameters θ and λ. Here, we use the compensated Poisson process because we will try to deal
with the infinite Lévy measure for more general cases.

Recall that Gobet in [25] deals with the multidimensional continuous elliptic diffusions. Some
extensions of Gobet’s work with the presence of jumps are given for e.g. in [10], [23], and [38].
In the present chapter, we estimate the drift and diffusion parameters and the jump intensity
at the same time. One way to proceed in order to prove Theorem 3.1.1 would be to use explicit
expression for the density. However, the main motivation for this chapter is to show some of the
important properties and arguments in order to prove the LAN property in the non-linear case
whose proof is non-trivial.

In fact, the LAN property is a local central limit theorem which is robust to local changes
in the values of the parameters to be estimated. The first problem in proving such a result for
a combination of drift, Brownian motion and jump process is the fact that the density function
cannot be explicitly written. This problem is aggravated in the case of stochastic equations driven
by these processes due to the respective non-linear coefficients.

In order to overcome this problem in the general case, one needs such estimates of the
derivatives of the log-density. This is quite a difficult problem, which in the Ornstein-Uhlenbeck
case [38] is solved due to semi-explicit form and the integration by parts formula with respect to
the Brownian motion.

In the present chapter, we present four important Lemmas (Lemmas 3.2.3, 3.2.4, 3.2.5 and
3.2.6) of independent interest which will be the key elements in dealing with the non-linear case.
We have preferred to present them in this simpler form as in the general case further arguments
need to be added.

We point out that in most cases one cannot expect to find good estimates of the derivatives of
the logarithm of the density of X due to the mixture of exponential tails coming from the jump
process together with the Gaussian tails of the Brownian motion. In fact, one cannot expect to
have upper and lower bounds for the log-density belonging to the same class as in the general
arguments of [24] and [25]. Our argument which that will be applicable to the general non-linear
case is as follows.

One needs to condition on the number of jumps within the conditional expectation which
expresses the transition density and outside it. When these two conditionings relate to different
jumps one may use a large deviation principle in the estimate. When they are equal one uses
the complementary set in order to apply the large deviation principle. The main term can be
handled directly. Within all these arguments the Gaussian type upper and lower bounds of the
density conditioned on the jumps are again strongly used.
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In fact, the lemmas mentioned previously, deal with this idea. Therefore the semi-explicit
Taylor expansion in [38] is replaced by a large deviation analysis within two expectations under
contiguous probability measures. This idea seems to have many other uses in the set-up of
stochastic differential equations driven by a Brownian motion and a jump process. We remark
here that a plain Itô-Taylor expansion would not solve the problem as higher moments of the
Poisson process do not become smaller as the expansion order increases.

A related idea to the one presented here appears in [10], where the case of a compound
Poisson process is treated. As we will show in forthcoming chapters, the present idea seems to
be important in order to obtain many properties for models where one considers a continuous
diffusion perturbed by a jump process.

In Section 3.2 we present the integration by parts formulas to be used with respect to the
Brownian motion and the Poisson process. We also give our main lemmas to be used for the
proof. The proof of the main result is given in Section 3.3. We close with conclusion and further
remarks towards the proof in the general non-linear case.

As usual, constants will be denoted by C or c and they will always be independent of time
and ∆n but may depend on bounds for the set Θ× Σ× Λ. They may change of value from one
line to the next.

3.2 Preliminaries

In this Section we introduce the preliminary results needed for the proof of Theorem 3.1.1. In
order to deal with the likelihood ratio in Theorem 3.1.1, we will use the following decomposition

log
p (Xn; (θn, σn, λn))

p (Xn; (θ0, σ0, λ0))
= log

p (Xn; (θn, σn, λn))

p (Xn; (θn, σ0, λn))
+ log

p (Xn; (θn, σ0, λn))

p (Xn; (θn, σ0, λ0))

+ log
p (Xn; (θn, σ0, λ0))

p (Xn; (θ0, σ0, λ0))
.

(3.3)

For each of the above terms we will use a mean value theorem on the parameter space and
then analyze each term, which will lead to the derivative of the density function. To analyze
this derivative, we will use as in Gobet [24] the integration by parts formula of the Malliavin
calculus on each interval [tk, tk+1] in order to obtain the following expressions for the derivatives
of the log-likelihood function w.r.t. θ and σ. For this reason, we introduce an extra probabilistic
representation of the process Xθ,σ,λ. That is, consider the flow Y θ,σ,λ(s, x) = (Y θ,σ,λ

t (s, x), t ≥ s),
x ∈ R on the time interval [s,∞) and with initial condition Y θ,σ,λ

s (s, x) = x satisfying

Y θ,σ,λ
t (s, x) = x+ θ(t− s) + σ(Wt −Ws) + M̃λ

t − M̃λ
s , (3.4)

where W = (Wt)t≥0 is a Brownian motion, M = (Mt)t≥0 is a Poisson process with intensity λ
independent of W , and we denote by (M̃λ

t )t≥0 the compensated Poisson process M̃λ
t := Mt−λt.

In particular, we write Y θ,σ,λ
t ≡ Y θ,σ,λ

t (0, x0), for all t ≥ 0. That is,

Y θ,σ,λ
t = x0 + θt+ σWt + M̃λ

t . (3.5)

For any t > s, we denote by pθ,σ,λ(t− s, x, y) the transition density of Y θ,σ,λ
t at y conditioned

on Y θ,σ,λ
s = x. Here, we consider the Malliavin calculus on the Wiener space induced by the

Brownian motion W , and we denote by D and δ the Malliavin derivative and the Skorohod
integral with respect to W on each interval [tk, tk+1], respectively (see the Definition 1.1.3 and
the discussion following it).

For all A ∈ F̃λ, let us denote P̃θ,σ,λx (A) = Ẽλ[1A|Y θ,σ,λ
tk

= x]. We denote by Ẽθ,σ,λx the
expectation with respect to P̃θ,σ,λx . That is, for all F̃λ-measurable random variable Z, we have
that Ẽθ,σ,λx [Z] = Ẽλ[Z|Y θ,σ,λ

tk
= x].
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Proposition 3.2.1. [24, Proposition 4.1] For all θ ∈ R, σ, λ ∈ R∗+, and k ∈ {0, ..., n− 1},

∂θp
θ,σ,λ

pθ,σ,λ
(∆n, x, y) =

1

σ
Ẽθ,σ,λx

[
Wtk+1

−Wtk

∣∣∣Y θ,σ,λ
tk+1

= y
]
,

∂σp
θ,σ,λ

pθ,σ,λ
(∆n, x, y) =

1

σ∆n
Ẽθ,σ,λx

[(
Wtk+1

−Wtk

)2 ∣∣∣Y θ,σ,λ
tk+1

= y
]
− 1

σ
.

Proof. Let f be a continuously differentiable function with compact support. The chain rule
of the Malliavin calculus implies that f ′(Y θ,σ,λ

tk+1
(tk, x)) = Dt(f(Y θ,σ,λ

tk+1
(tk, x)))U θ,σ,λt (tk, x), for all

(θ, σ, λ) ∈ Θ× Σ× Λ and t ∈ [tk, tk+1], where

U θ,σ,λt (tk, x) =
1

DtY
θ,σ,λ
tk+1

(tk, x)
.

.
Then, using the integration by parts formula of the Malliavin calculus on the interval [tk, tk+1],

we get that

∂θẼ
λ
[
f(Y θ,σ,λ

tk+1
(tk, x))

]
= Ẽλ

[
f ′(Y θ,σ,λ

tk+1
(tk, x))∂θY

θ,σ,λ
tk+1

(tk, x)
]

=
1

∆n
Ẽλ
[∫ tk+1

tk

f ′(Y θ,σ,λ
tk+1

(tk, x))∂θY
θ,σ,λ
tk+1

(tk, x)dt

]
=

1

∆n
Ẽλ
[∫ tk+1

tk

Dt(f(Y θ,σ,λ
tk+1

(tk, x)))U θ,σ,λt (tk, x)∂θY
θ,σ,λ
tk+1

(tk, x)dt

]
=

1

∆n
Ẽλ
[
f(Y θ,σ,λ

tk+1
(tk, x))δ

(
∂θY

θ,σ,λ
tk+1

(tk, x)U θ,σ,λ(tk, x)
)]
.

Note that here δ(V ) ≡ δ(V 1[tk,tk+1](·)) for any V ∈ Dom δ. On the other hand,

∂θẼ
λ
[
f(Y θ,σ,λ

tk+1
(tk, x))

]
=

∫
R
f(y)∂θp

θ,σ,λ(∆n, x, y)dy,

and

Ẽλ
[
f(Y θ,σ,λ

tk+1
(tk, x))δ

(
∂θY

θ,σ,λ
tk+1

(tk, x)U θ,σ,λ(tk, x)
)]

= Ẽλ
[
f(Y θ,σ,λ

tk+1
)δ
(
∂θY

θ,σ,λ
tk+1

(tk, x)U θ,σ,λ(tk, x)
) ∣∣∣Y θ,σ,λ

tk
= x

]
=

∫
R
f(y)Ẽλ

[
δ
(
∂θY

θ,σ,λ
tk+1

(tk, x)U θ,σ,λ(tk, x)
) ∣∣∣Y θ,σ,λ

tk+1
= y, Y θ,σ,λ

tk
= x

]
pθ,σ,λ(∆n, x, y)dy,

which concludes that

∂θp
θ,σ,λ

pθ,σ,λ
(∆n, x, y) =

1

∆n
Ẽλ
[
δ
(
∂θY

θ,σ,λ
tk+1

(tk, x)U θ,σ,λ(tk, x)
) ∣∣∣Y θ,σ,λ

tk+1
= y, Y θ,σ,λ

tk
= x

]
.

It can be checked that

∂θY
θ,σ,λ
tk+1

(tk, x) = ∆n, and U θ,σ,λt (tk, x) =
1

DtY
θ,σ,λ
tk+1

(tk, x)
=

1

σ
1[tk,tk+1](t).

Therefore,

δ
(
∂θY

θ,σ,λ
tk+1

(tk, x)U θ,σ,λ(tk, x)
)

=
∆n

σ

(
Wtk+1

−Wtk

)
,

which shows the first equality.



3.2. Preliminaries 45

Similarly,

∂σp
θ,σ,λ

pθ,σ,λ
(∆n, x, y) =

1

∆n
Ẽλ
[
δ
(
∂σY

θ,σ,λ
tk+1

(tk, x)U θ,σ,λ(tk, x)
) ∣∣∣Y θ,σ,λ

tk+1
= y, Y θ,σ,λ

tk
= x

]
,

where
∂σY

θ,σ,λ
tk+1

(tk, x) = Wtk+1
−Wtk .

Then,

δ
(
∂σY

θ,σ,λ
tk+1

(tk, x)U θ,σ,λ(tk, x)
)

= ∂σY
θ,σ,λ
tk+1

(tk, x)δ

(
1

σ
1[tk,tk+1](·)

)
−
∫ tk+1

tk

Ds

(
∂σY

θ,σ,λ
tk+1

(tk, x)
) 1

σ
1[tk,tk+1](s)ds

=
1

σ

(
Wtk+1

−Wtk

)2 − ∆n

σ
,

from where the second expression follows.

We next recall Girsanov’s theorem on each interval [tk, tk+1].

Lemma 3.2.1. For all θ, θ1 ∈ R, λ, λ1, σ ∈ R∗+ and k ∈ {0, ..., n−1}, define a measure Q̂θ1,λ1,θ,λ,σ
k

by

Q̂θ1,λ1,θ,λ,σ
k (A) = Êλ

[
1Ae

− θ−θ1−(λ−λ1)
σ (Btk+1

−Btk)+ 1
2

(
θ−θ1−(λ−λ1)

σ

)2
∆n−(Ntk+1

−Ntk) log λ
λ1

+(λ−λ1)∆n

]
,

for all A ∈ F̂λ. Then Q̂θ1,λ1,θ,λ,σ
k is a probability measure and under Q̂θ1,λ1,θ,λ,σ

k , the process

BQ̂k
t = Bt+

θ−θ1−(λ−λ1)
σ (t− tk) is a Brownian motion, and Nt is a Poisson process with intensity

λ1, for all t ∈ [tk, tk+1].

Lemma 3.2.2. For all θ, θ1 ∈ R, λ, λ1, σ ∈ R∗+ and k ∈ {0, ..., n−1}, define a measure Q̃θ1,λ1,θ,λ,σ
k

by

Q̃θ1,λ1,θ,λ,σ
k (A) = Ẽλ

[
1Ae

− θ−θ1−(λ−λ1)
σ (Wtk+1

−Wtk)+ 1
2

(
θ−θ1−(λ−λ1)

σ

)2
∆n−(Mtk+1

−Mtk) log λ
λ1

+(λ−λ1)∆n

]
,

for all A ∈ F̃λ. Then Q̃θ1,λ1,θ,λ,σ
k is a probability measure and under Q̃θ1,λ1,θ,λ,σ

k , the process

W Q̃k
t = Wt + θ−θ1−(λ−λ1)

σ (t − tk) is a Brownian motion, and Mt is a Poisson process with
intensity λ1, for all t ∈ [tk, tk+1].

As a consequence, we have the following expression for the derivative of the log-likelihood
w.r.t. λ.

Proposition 3.2.2. For all θ ∈ R, σ, λ ∈ R∗+, and k ∈ {0, ..., n− 1},

∂λp
θ,σ,λ

pθ,σ,λ
(∆n, x, y) = Ẽθ,σ,λx

[
−
Wtk+1

−Wtk

σ
+
M̃λ
tk+1
− M̃λ

tk

λ

∣∣∣∣Y θ,σ,λ
tk+1

= y

]
.

Proof. Let f be a continuously differentiable bounded function. Girsanov’s theorem yields

Ẽλ
[
f
(
Y θ,σ,λ
tk+1

(tk, x)
)]

= Ẽλ1

[
f
(
Y θ,σ,λ1
tk+1

(tk, x)
) dP̃λ

dQ̃θ,λ1,θ,λ,σ
k

]
.
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Taking the derivative with respect to λ in both hand sides of this equality and using Lemma
3.2.2, we get that

∂λẼλ
[
f
(
Y θ,σ,λ
tk+1

(tk, x)
)]

= Ẽλ1

[
f
(
Y θ,σ,λ1
tk+1

(tk, x)
)
∂λ

(
dP̃λ

dQ̃θ,λ1,θ,λ,σ
k

)]

= Ẽλ1

[
f
(
Y θ,σ,λ1
tk+1

(tk, x)
)(
−
Wtk+1

−Wtk

σ
− λ− λ1

σ2
∆n +

M̃λ
tk+1
− M̃λ

tk

λ

)
dP̃λ

dQ̃θ,λ1,θ,λ,σ
k

]

= Ẽλ

[
f
(
Y θ,σ,λ
tk+1

(tk, x)
)(
−
Wtk+1

−Wtk

σ
+
M̃λ
tk+1
− M̃λ

tk

λ

)]
.

On the other hand,

∂λẼλ
[
f
(
Y θ,σ,λ
tk+1

(tk, x)
)]

=

∫
R
f(y)∂λp

θ,σ,λ(∆n, x, y)dy,

and

Ẽλ

[
f
(
Y θ,σ,λ
tk+1

(tk, x)
)(
−
Wtk+1

−Wtk

σ
+
M̃λ
tk+1
− M̃λ

tk

λ

)]

= Ẽλ

[
f
(
Y θ,σ,λ
tk+1

)(
−
Wtk+1

−Wtk

σ
+
M̃λ
tk+1
− M̃λ

tk

λ

)∣∣∣∣Y θ,σ,λ
tk

= x

]

=

∫
R
f(y)Ẽλ

[
−
Wtk+1

−Wtk

σ
+
M̃λ
tk+1
− M̃λ

tk

λ

∣∣∣∣Y θ,σ,λ
tk+1

= y, Y θ,σ,λ
tk

= x

]
pθ,σ,λ(∆n, x, y)dy.

Therefore, the desired result follows.

The next four lemmas are the main technical core of the chapter. It explains the argument
given at the end of the Introduction.

Consider the events Ĵm,k := {Ntk+1
− Ntk = m} and J̃m,k := {Mtk+1

−Mtk = m}, for all
m ≥ 0 and k ∈ {0, ..., n− 1}.

Lemma 3.2.3. For all θ ∈ R, σ, λ ∈ R∗+, k ∈ {0, ..., n− 1}, and m ≥ 0,

P̃θ,σ,λx

(
J̃m,k

∣∣∣Y θ,σ,λ
tk+1

= y
)

=
e−(y−x−m−(θ−λ)∆n)2/(2σ2∆n) (λ∆n)m

m!∑∞
i=0 e

−(y−x−i−(θ−λ)∆n)2/(2σ2∆n) (λ∆n)i

i!

.

Proof. For all i ≥ 0 and t > s, we denote by qθ,σ,λ(i) (t − s, x, y) the transition density of Y θ,σ,λ
t

conditioned on Y θ,σ,λ
s = x and Mt −Ms = i. That is,

qθ,σ,λ(i) (t− s, x, y) =
1√

2πσ2(t− s)
e
− (y−x−i−(θ−λ)(t−s))2

2σ2(t−s) .

By the convolution formula for the sum of independent random variables, we obtain

pθ,σ,λ(t− s, x, y) =
∞∑
i=0

qθ,σ,λ(i) (t− s, x, y)e−λ(t−s) (λ(t− s))i

i!
.

Then, using Bayes’ formula, we get that

P̃θ,σ,λx

(
J̃m,k

∣∣∣Y θ,σ,λ
tk+1

= y
)

=
qθ,σ,λ(m) (∆n, x, y)P̃θ,σ,λx (J̃m,k)

pθ,σ,λ(∆n, x, y)
.

Hence, the desired result follows.
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For all j, p ≥ 0 and k ∈ {0, ..., n− 1}, we introduce the random variable

Spj := 1
Ĵj,k

Ẽθ,σ,λXtk

[(
Mtk+1

−Mtk

)p
1
J̃cj,k

∣∣∣Y θ,σ,λ
tk+1

= Xtk+1

]
.

Lemma 3.2.4. For all θ ∈ R, σ, λ ∈ R∗+, j, p ≥ 0 and k ∈ {0, ..., n− 1},

Spj = 1
Ĵj,k

∑∞
m=0:m6=jm

pe−(σ0(Btk+1
−Btk)+j−m+(θ0−θ−λ0+λ)∆n)

2
/(2σ2∆n) (λ∆n)m

m!∑∞
i=0 e

−(σ0(Btk+1
−Btk)+j−i+(θ0−θ−λ0+λ)∆n)

2
/(2σ2∆n) (λ∆n)i

i!

. (3.6)

Proof. Observe that J̃cj,k := ∪∞m=0:m6=j{Mtk+1
−Mtk = m}. Thus, appealing to Lemma 3.2.3 and

equation (3.1), we get

Spj = 1
Ĵj,k

∞∑
m=0:m6=j

mpẼθ,σ,λXtk

[
1
J̃m,k

∣∣∣Y θ,σ,λ
tk+1

= Xtk+1

]

= 1
Ĵj,k

∑∞
m=0:m6=jm

pe−(Xtk+1
−Xtk−m−(θ−λ)∆n)

2
/(2σ2∆n) (λ∆n)m

m!∑∞
i=0 e

−(Xtk+1
−Xtk−i−(θ−λ)∆n)

2
/(2σ2∆n) (λ∆n)i

i!

= 1
Ĵj,k

∑∞
m=0:m6=jm

pe−(σ0(Btk+1
−Btk)+j−m+(θ0−θ−λ0+λ)∆n)

2
/(2σ2∆n) (λ∆n)m

m!∑∞
i=0 e

−(σ0(Btk+1
−Btk)+j−i+(θ0−θ−λ0+λ)∆n)

2
/(2σ2∆n) (λ∆n)i

i!

,

which concludes the desired result.

We next fix α ∈ (0, 1
2), and split Spj in two separate terms as follows

Spj = Spj 1{|Btk+1
−Btk |≤∆α

n} + Spj 1{|Btk+1
−Btk |>∆α

n} =: Sp1,j + Sp2,j .

Furthermore, we write Sp1,j = Sp1,1,j + Sp1,2,j , and Sp2,j = Sp2,1,j + Sp2,2,j , where S
p
1,1,j and Sp2,1,j

contain the terms
∑

m<j , and S
p
1,2,j and S

p
2,2,j contain the terms

∑
m>j in (3.6).

We have the following estimates.

Lemma 3.2.5. Assume that |θ0 − θ| ≤ C√
n∆n

and |λ0 − λ| ≤ C√
n∆n

, for some constant C > 0.
Then for all σ ∈ R∗+, j, p ≥ 0, k ∈ {0, ..., n− 1}, and for n large enough,

Sp1,1,j ≤ 1
Ĵj,k

j!

(λ∆n)j

∑
m<j

mpe
− (j−m)2

4σ2∆n
(λ∆n)m

m!
, (3.7)

Sp1,2,j ≤ 1
Ĵj,k

e
− 1

4σ2∆n

∑
`>0

(`+ j)p
(λ∆n)`

`!
, (3.8)

Sp2,1,j ≤ j
p1
Ĵj,k

1{|Btk+1
−Btk |>∆α

n}, (3.9)

Sp2,2,j ≤ 1
Ĵj,k

1{|Btk+1
−Btk |>∆α

n}

∞∑
`=0

(`+ j + 1)p
(λ∆n)`

`!
, (3.10)

where (3.9) and (3.10) hold for all n ≥ 1.

Proof. By lower bounding the denominator by the term i = j, we obtain that

Sp1,1,j ≤ 1{|Btk+1
−Btk |≤∆α

n}1Ĵj,k

∑
m<jm

pe−(σ0(Btk+1
−Btk)+j−m+(θ0−θ−λ0+λ)∆n)

2
/(2σ2∆n) (λ∆n)m

m!

e−(σ0(Btk+1
−Btk)+(θ0−θ−λ0+λ)∆n)

2
/(2σ2∆n) (λ∆n)j

j!

= 1{|Btk+1
−Btk |≤∆α

n}1Ĵj,k
j!

(λ∆n)j

∑
m<j

mpe
− (j−m)2

2σ2∆n e
− 2(j−m)

2σ2∆n
(σ0(Btk+1

−Btk )+(θ0−θ−λ0+λ)∆n) (λ∆n)m

m!
.
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Conditionally on the event {|Btk+1
−Btk | ≤ ∆α

n} and choosing n large enough, we have that∣∣∣∣σ0(Btk+1
−Btk) + (θ0 − θ − λ0 + λ)∆n

∣∣∣∣ ≤ σ∆α
n + C

√
∆n√
n
≤ j −m

4
,

for some positive constant C. Thus, (3.7) holds true.
Now, observing that the function e−(σ0(Btk+1

−Btk )+j−m+(θ0−θ−λ0+λ)∆n)2/(2σ2∆n) is decreasing
w.r.t. m, we can upper bound each term by the term m = j + 1 in the sum

∑
m>j . Moreover,

lower bounding again the denominator by the term i = j, it follows that

Sp1,2,j ≤ 1{|Btk+1
−Btk |≤∆α

n}1Ĵj,k
e−(σ0(Btk+1

−Btk)−1+(θ0−θ−λ0+λ)∆n)
2
/(2σ2∆n)

e−(σ0(Btk+1
−Btk)+(θ0−θ−λ0+λ)∆n)

2
/(2σ2∆n)

×
∑
m>j

mp (λ∆n)m−j

(m− j)!
j!(m− j)!

m!

≤ 1{|Btk+1
−Btk |≤∆α

n}1Ĵj,ke
− 1

2σ2∆n
(1−2σ0(Btk+1

−Btk)−2(θ0−θ−λ0+λ)∆n)
∞∑
`=1

(`+ j)p
(λ∆n)`

`!
,

where we have used the fact that j!(m−j)!
m! ≤ 1.

Conditionally on the event {|Btk+1
−Btk | ≤ ∆α

n} and choosing n large enough, we get that∣∣∣∣σ0

(
Btk+1

−Btk
)

+ (θ0 − θ − λ0 + λ)∆n

∣∣∣∣ ≤ σ0∆α
n + C

√
∆n√
n
≤ 1

4
,

for some positive constant C, from where we deduce (3.8).
Inequality (3.9) follows easily bounding mp by jp. Thus, it remains to show (3.10), which

follows similarly as in (3.8) but choosing the term i = j + 1 to lower bound the denominator,
which yields

Sp2,2,j ≤ 1{|Btk+1
−Btk |>∆α

n}1Ĵj,k

e−(σ0(Btk+1
−Btk)−1+(θ0−θ−λ0+λ)∆n)

2
/(2σ2∆n)∑

m>jm
p (λ∆n)m

m!

e−(σ0(Btk+1
−Btk)−1+(θ0−θ−λ0+λ)∆n)

2
/(2σ2∆n) (λ∆n)j+1

(j+1)!

= 1{|Btk+1
−Btk |>∆α

n}1Ĵj,k

∞∑
`=0

(`+ j + 1)p
(λ∆n)`

`!

`!(j + 1)!

(`+ j + 1)!

≤ 1{|Btk+1
−Btk |>∆α

n}1Ĵj,k

∞∑
`=0

(`+ j + 1)p
(λ∆n)`

`!
,

where we have used the fact that `!(j+1)!
(`+j+1)! ≤ 1.

For all p ≥ 0 and k ∈ {0, ..., n− 1}, set

M θ,σ,λ
1,p : =

∞∑
j=0

jpE
[
1
Ĵj,k

Ẽθ,σ,λXtk

[
1
J̃cj,k

∣∣∣Y θ,σ,λ
tk+1

= Xtk+1

] ∣∣∣Xtk

]
,

M θ,σ,λ
2,p : =

∞∑
j=0

E
[
1
Ĵj,k

Ẽθ,σ,λXtk

[(
Mtk+1

−Mtk

)p
1
J̃cj,k

∣∣∣Y θ,σ,λ
tk+1

= Xtk+1

] ∣∣∣Xtk

]
.

Lemma 3.2.6. Assume that |θ0 − θ| ≤ C√
n∆n

and |λ0 − λ| ≤ C√
n∆n

, for some constant C > 0.
Then, for all σ ∈ Σ, p ≥ 0, and n large enough, there exist constants C1, C2 > 0 such that for
any α ∈ (0, 1

2), k ∈ {0, ..., n− 1},

M θ,σ,λ
1,p +M θ,σ,λ

2,p ≤ C1e
− 1

C2∆1−2α
n .
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Proof. We can write

M θ,σ,λ
1,p =

∞∑
j=0

jpE
[
S0
j |Xtk

]
=

∞∑
j=0

jpE
[
S0

1,1,j + S0
1,2,j + S0

2,1,j + S0
2,2,j

∣∣∣Xtk

]
.

Set aλ0 := 2σ2∆n log(λ0λ
−1) and appeal to (3.7) to get that

∞∑
j=0

jpE
[
S0

1,1,j |Xtk

]
≤
∞∑
j=0

jpE

1
Ĵj,k

j!

(λ∆n)j

∑
m<j

e
− (j−m)2

4σ2∆n
(λ∆n)m

m!

∣∣∣Xtk


=

∞∑
j=0

jpe−λ0∆n
(λ0∆n)j

j!

j!

(λ∆n)j

∑
m<j

e
− (j−m)2

4σ2∆n
(λ∆n)m

m!

= e(λ−λ0)∆n

∞∑
m=0

∞∑
j=m+1

jpe
− (j−m)2

4σ2∆n

(
λ0

λ

)j
e−λ∆n

(λ∆n)m

m!

= e(λ−λ0)∆n

∞∑
m=0

∞∑
j=m+1

jpe
−

(j−m−aλ0
)2

4σ2∆n e
2aλ0

m+a2
λ0

4σ2∆n e−λ∆n
(λ∆n)m

m!

≤ e(λ−λ0)∆n

∞∑
m=0

∫ ∞
m+1

xpe
−

(x−m−aλ0
)2

4σ2∆n dx e
2aλ0

m+a2
λ0

4σ2∆n e−λ∆n
(λ∆n)m

m!

u
√

2σ2∆n:=x−m−aλ0= e(λ−λ0)∆n
√

2σ2∆n

∞∑
m=0

∫ ∞
1−aλ0√
2σ2∆n

(u
√

2σ2∆n +m+ aλ0)pe−
u2

2 du

× e
2aλ0

m+a2
λ0

4σ2∆n e−λ∆n
(λ∆n)m

m!

≤ CΦ

(
− 1− aλ0√

2σ2∆n

)
≤ Ce−

1
c∆n ,

for some constants c, C > 0, where Φ(·) denotes the distribution function of the standard normal
distribution and we have used the fact that aλ0

∆n
= 2σ2 log(λ0λ

−1).
On the other hand, using (3.8),

∞∑
j=0

jpE
[
S0

1,2,j |Xtk

]
≤ e−

1
4σ2∆n

∑
`>0

(λ∆n)`

`!

∞∑
j=0

jpE
[
1
Ĵj,k

∣∣∣Xtk

]
≤ Ce−

1
c∆n ,

for some constants c, C > 0.
Moreover, using the independence between N and B and (3.9), we get

∞∑
j=0

jpE
[
S0

2,1,j |Xtk

]
≤
∞∑
j=0

jpE
[
1
Ĵj,k

1{|Btk+1
−Btk |>∆α

n}

∣∣∣Xtk

]
≤ CΦ

(
− ∆α

n√
∆n

)
≤ Ce

− 1

c∆1−2α
n ,

for some constants c, C > 0.
Finally, (3.10) yields

∞∑
j=0

jpE
[
S0

2,2,j |Xtk

]
≤
∞∑
`=0

(λ∆n)`

`!

∞∑
j=0

jpE
[
1
Ĵj,k

1{|Btk+1
−Btk |>∆α

n}

∣∣∣Xtk

]
≤ Ce

− 1

c∆1−2α
n ,

for some constants c, C > 0. This shows the estimate for M θ,σ,λ
1,p .
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We next treat M θ,σ,λ
2,p . Observe that

M θ,σ,λ
2,p =

∞∑
j=0

E
[
Spj |Xtk

]
=

∞∑
j=0

E
[
Sp1,1,j + Sp1,2,j + Sp2,1,j + Sp2,2,j

∣∣∣Xtk

]
.

Proceeding as for the term M θ,σ,λ
1,p , we conclude the desired result.

The next technical lemma will be used several times in the sequel.

Lemma 3.2.7. For all w ∈ R, and k ∈ {0, ..., n− 1},

E

[
Ẽ
θn,σ0,λ(`)
Xtk

[
M̃

λ(`)
tk+1
− M̃λ(`)

tk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
= − `w√

n∆n
∆n,

where λ(`) := λ0 +
`w√
n∆n

and ` ∈ [0, 1].

Proof. Using Lemma 3.2.1, we have

E

[
Ẽ
θn,σ0,λ(`)
Xtk

[
M̃

λ(`)
tk+1
− M̃λ(`)

tk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
= E

λ(`)

Q̂k

[(
M̃

λ(`)
tk+1
− M̃λ(`)

tk

) dP̂λ0

dQ̂
θn,λ(`),θ0,λ0,σ0

k

∣∣∣Xtk

]

= E
λ(`)

Q̂k

[(
M̃

λ(`)
tk+1
− M̃λ(`)

tk

)
e
−u+`w
σ
√
n∆n

(Btk+1
−Btk )− (−u+`w)2

2σ2n
+(Ntk+1

−Ntk ) log
λ0
λ(`)

+ `w∆n√
n∆n

∣∣∣Xtk

]
= E

[
M̃

λ(`)
tk+1
− M̃λ(`)

tk

]
E
λ(`)

Q̂k

[
e
−u+`w
σ
√
n∆n

(Btk+1
−Btk )− (−u+`w)2

2σ2n
+(Ntk+1

−Ntk ) log
λ0
λ(`)

+ `w∆n√
n∆n

]
= − `w√

n∆n
∆n,

where the second expectation equals 1 and Q̂k ≡ Q̂
θn,λ(`),θ0,λ0,σ0

k . Here we have used the inde-
pendence between Mtk+1

−Mtk , Ntk+1
−Ntk , Btk+1

−Btk , and Xtk . Thus, the result follows.

3.3 Proof of Theorem 3.1.1

In this section, the proof of Theorem 3.1.1 will be divided into several steps. Recall the
decomposition in (3.3). Then we begin deriving a stochastic expansion of the log-likelihood ratio
using Propositions 3.2.1 and 3.2.2. The second step is devoted to treat the negligible contributions
of this expansion. Finally, the last step concludes the LAN property by applying the central limit
theorem for triangular arrays.

3.3.1 Expansion of the log-likelihood ratio

For ` ∈ [0, 1], set θ(`) := θn(`, u) := θ0 +
`u√
n∆n

, σ(`) := σn(`, v) := σ0 +
`v√
n
, λ(`) :=

λn(`, w) := λ0 +
`w√
n∆n

. Then, from the Markov property and Proposition 3.2.1,

log
p (Xn; (θn, σ0, λ0))

p (Xn; (θ0, σ0, λ0))
=

n−1∑
k=0

log
pθn,σ0,λ0

pθ0,σ0,λ0

(
∆n, Xtk , Xtk+1

)
=

n−1∑
k=0

u√
n∆n

∫ 1

0

∂θp
θ(`),σ0,λ0

pθ(`),σ0,λ0

(
∆n, Xtk , Xtk+1

)
d`

=
n−1∑
k=0

u√
n∆n

1

σ0

∫ 1

0
Ẽ
θ(`),σ0,λ0

Xtk

[
Wtk+1

−Wtk

∣∣∣Y θ(`),σ0,λ0

tk+1
= Xtk+1

]
d`.



3.3. Proof of Theorem 3.1.1 51

Equation (3.5) yields that

σ0(Wtk+1
−Wtk) = Y

θ(`),σ0,λ0

tk+1
− Y θ(`),σ0,λ0

tk
− θ(`)∆n −

(
M̃λ0
tk+1
− M̃λ0

tk

)
, (3.11)

which gives

log
p (Xn; (θn, σ0, λ0))

p (Xn; (θ0, σ0, λ0))
=

n−1∑
k=0

(ξk,n +Hk,n),

where

ξk,n :=
u√
n∆n

1

σ2
0

(
σ0

(
Btk+1

−Btk
)
− u∆n

2
√
n∆n

)
,

Hk,n :=
u√
n∆n

1

σ2
0

(
Ñλ0
tk+1
− Ñλ0

tk
−
∫ 1

0
Ẽ
θ(`),σ0,λ0

Xtk

[
M̃λ0
tk+1
− M̃λ0

tk

∣∣∣Y θ(`),σ0,λ0

tk+1
= Xtk+1

]
d`

)
.

Again the Markov property and Proposition 3.2.1 give

log
p (Xn; (θn, σn, λn))

p (Xn; (θn, σ0, λn))
=

n−1∑
k=0

v√
n

∫ 1

0

∂σp
θn,σ(`),λn

pθn,σ(`),λn

(
∆n, Xtk , Xtk+1

)
d`

=
n−1∑
k=0

v√
n

∫ 1

0

(
1

σ(`)∆n
Ẽ
θn,σ(`),λn
Xtk

[(
Wtk+1

−Wtk

)2 ∣∣∣Y θn,σ(`),λn
tk+1

= Xtk+1

]
− 1

σ(`)

)
d`.

Then, using (3.11) with (θn, σ(`), λn) instead of (θ(`), σ0, λ0), we get that

log
p (Xn; (θn, σn, λn))

p (Xn; (θn, σ0, λn))
=

n−1∑
k=0

(ηk,n +Mk,n),

where

ηk,n :=
v√
n

∫ 1

0

1

∆n

(
σ2

0

σ(`)3

(
Btk+1

−Btk
)2 − ∆n

σ(`)

)
d`,

Mk,n :=
v√
n

∫ 1

0

1

∆n

1

σ(`)3

{(
θ0∆n + Ñλ0

tk+1
− Ñλ0

tk

)2
+ 2σ0

(
Btk+1

−Btk
) (
θ0∆n + Ñλ0

tk+1
− Ñλ0

tk

)
− Ẽ

θn,σ(`),λn
Xtk

[(
θn∆n + M̃λn

tk+1
− M̃λn

tk

)2

+ 2σ(`)
(
Wtk+1

−Wtk

) (
θn∆n + M̃λn

tk+1
− M̃λn

tk

) ∣∣∣∣Y θn,σ(`),λn
tk+1

= Xtk+1

]}
d`.

Finally, using the Markov property and Proposition 3.2.2,

log
p (Xn; (θn, σ0, λn))

p (Xn; (θn, σ0, λ0))
=

n−1∑
k=0

w√
n∆n

∫ 1

0

∂λp
θn,σ0,λ(`)

pθn,σ0,λ(`)

(
∆n, Xtk , Xtk+1

)
d`

=
n−1∑
k=0

w√
n∆n

∫ 1

0
Ẽ
θn,σ0,λ(`)
Xtk

−Wtk+1
−Wtk

σ0
+
M̃

λ(`)
tk+1
− M̃λ(`)

tk

λ(`)

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

 d`.
Now, from (3.11) with (θn, σ0, λ(`)) instead of (θ(`), σ0, λ0), we deduce that

log
p (Xn; (θn, σ, λn))

p (Xn; (θn, σ, λ))
=

n−1∑
k=0

(βk,n −Rk,n),
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where

βk,n := − w√
n∆n

1

σ2
0

(
σ0

(
Btk+1

−Btk
)

+
w∆n

2
√
n∆n

− u∆n√
n∆n

)

+
w√
n∆n

∫ 1

0
Ẽ
θn,σ0,λ(`)
Xtk

M̃λ(`)
tk+1
− M̃λ(`)

tk

λ(`)

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

 d`, (3.12)

Rk,n :=
w√
n∆n

1

σ2
0

∫ 1

0

(
Ntk+1

−Ntk − Ẽ
θn,σ0,λ(`)
Xtk

[
Mtk+1

−Mtk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

])
d`.

Therefore, we have obtained the following expansion of the log-likelihood ratio

log
p (Xn; (θn, σn, λn))

p (Xn; (θ0, σ0, λ0))
=

n−1∑
k=0

(ξk,n + ηk,n + βk,n +Hk,n +Mk,n −Rk,n) ,

where, as we will see in the next subsections, the random variables ξk,n, ηk,n, βk,n are the terms
that contribute to the limit in Theorem 3.1.1, and Hk,n,Mk,n and Rk,n are the negligible contri-
butions.

3.3.2 Negligible contributions

Lemma 3.3.1. Assume condition (3.2). Then, as n→∞,
∑n−1

k=0 Hk,n
Pθ0,σ0,λ0−→ 0.

Proof. Since the Hk,n are F̂tk+1
-measurable it suffices to show that conditions (i) and (ii) of

Lemma 1.4.1 hold for the sequence (Hk,n)k≥1 under the measure Pθ0,σ0,λ0 .

First, using the fact that E[Ñλ0
tk+1
− Ñλ0

tk
|Xtk ] = 0, and Lemma 3.2.1, we get that

n−1∑
k=0

Eθ0,σ0,λ0

[
Hk,n|F̂tk

]
=

n−1∑
k=0

E [Hk,n|Xtk ]

= − u√
n∆n

1

σ2
0

n−1∑
k=0

∫ 1

0
E
[
Ẽ
θ(`),σ0,λ0

Xtk

[
M̃λ0
tk+1
− M̃λ0

tk

∣∣∣Y θ(`),σ0,λ0

tk+1
= Xtk+1

] ∣∣∣Xtk

]
d`

= − u√
n∆n

1

σ2
0

n−1∑
k=0

∫ 1

0
E
Q̂k

[(
M̃λ0
tk+1
− M̃λ0

tk

) dP̂λ0

dQ̂
θ(`),λ0,θ0,λ0,σ0

k

∣∣∣Xtk

]
d`

= − u√
n∆n

1

σ2
0

n−1∑
k=0

∫ 1

0
E
Q̂k

[(
M̃λ0
tk+1
− M̃λ0

tk

)
e
− `u
σ
√
n∆n

(Btk+1
−Btk)− `2u2

2σ2n

∣∣∣Xtk

]
d`,

where Q̂k ≡ Q̂
θ(`),λ0,θ0,λ0,σ0

k . Thus, using the independence between Mtk+1
−Mtk , Btk+1

− Btk ,
and Xtk , together with E

Q̂k
[M̃λ0

tk+1
− M̃λ0

tk
] = E[M̃λ0

tk+1
− M̃λ0

tk
] = 0, we conclude that the term (i)

of Lemma 1.4.1 is actually equal to 0 for all n ≥ 1.

We next show that (ii) of Lemma 1.4.1 holds. By Cauchy-Schwarz’s and Jensen’s inequalities,
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together with Lemma 3.2.6, for all α ∈ (0, 1
2) and j1

J̃j,k
= j − j1

J̃cj,k
, we get that

n−1∑
k=0

Eθ0,σ0,λ0

[
H2
k,n|F̂tk

]
≤

n−1∑
k=0

u2

n∆n

1

σ4
0

∫ 1

0
E

[(
Ntk+1

−Ntk − Ẽ
θ(`),σ0,λ0

Xtk

[
Mtk+1

−Mtk

∣∣∣∣Y θ(`),σ0,λ0

tk+1
= Xtk+1

])2 ∣∣∣Xtk

]
d`

=
n−1∑
k=0

u2

n∆n

1

σ4
0

∫ 1

0

×
∞∑
j=0

E

[
1
Ĵj,k

(
j − Ẽ

θ(`),σ0,λ0

Xtk

[(
Mtk+1

−Mtk

) (
1
J̃j,k

+ 1
J̃cj,k

) ∣∣∣∣Y θ(`),σ0,λ0

tk+1
= Xtk+1

])2 ∣∣∣Xtk

]
d`

≤
n−1∑
k=0

u2

n∆n

2

σ4
0

∫ 1

0

(
M

θ(`),σ0,λ0

1,2 +M
θ(`),σ0,λ0

2,2

)
d`

≤ C1
u2

∆n
e
− 1

C2∆1−2α
n ,

for some constants C1, C2 > 0. This concludes the desired result.

Lemma 3.3.2. Assume condition (3.2). Then, as n→∞,
∑n−1

k=0 Rk,n
Pθ0,σ0,λ0−→ 0.

Proof. Since the Rk,n are F̂tk+1
-measurable, it suffices to show that conditions (i) and (ii) of

Lemma 1.4.1 under the measure Pθ0,σ0,λ0 hold true for the sequence (Rk,n)k≥1. We start showing
(i). Using the fact that E[Ntk+1

−Ntk |Xtk ] = λ0∆n, and Mtk+1
−Mtk = M̃

λ(`)
tk+1
−M̃λ(`)

tk
+λ(`)∆n,

together with Lemma 3.2.7, we get that

n−1∑
k=0

Eθ0,σ0,λ0

[
Rk,n|F̂tk

]
=

n−1∑
k=0

E [Rk,n|Xtk ]

=
w

σ2
0

√
n∆n

n−1∑
k=0

∫ 1

0

(
λ0∆n − E

[
Ẽ
θn,σ0,λ(`)
Xtk

[
Mtk+1

−Mtk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

])
d`

=
w

σ2
0

√
n∆n

n−1∑
k=0

∫ 1

0
(λ0∆n − λ0∆n) d`

= 0.

Hence, we conclude that the term (i) of Lemma 1.4.1 is actually equal to 0 for all n ≥ 1.
Next, we show condition Lemma 1.4.1(ii). Proceeding as in Lemma 3.3.1, for all α ∈ (0, 1

2),
we have that
n−1∑
k=0

Eθ0,σ0,λ0

[
R2
k,n|F̂tk

]
≤

n−1∑
k=0

w2

n∆n

1

σ4
0

∫ 1

0
E

[(
Ntk+1

−Ntk − Ẽ
θn,σ0,λ(`)
Xtk

[
Mtk+1

−Mtk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

])2 ∣∣∣Xtk

]
d`

≤
n−1∑
k=0

w2

n∆n

2

σ4
0

∫ 1

0

(
M

θn,σ0,λ(`)
1,2 +M

θn,σ0,λ(`)
2,2

)
d`

≤ C1
w2

∆n
e
− 1

C2∆1−2α
n ,

for some constants C1, C2 > 0. Thus, the result follows.
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Lemma 3.3.3. Assume condition (3.2). Then, as n→∞,
∑n−1

k=0 Mk,n
Pθ0,σ0,λ0−→ 0.

Proof. Since the Mk,n are F̂tk+1
-measurable, it suffices to show that conditions (i) and (ii) of

Lemma 1.4.1 under the measure Pθ0,σ0,λ0 hold for the sequence (Mk,n)k≥1. We start proving (i).
We have (

θ0∆n + Ñλ0
tk+1
− Ñλ0

tk

)2
+ 2σ0

(
Btk+1

−Btk
) (
θ0∆n + Ñλ0

tk+1
− Ñλ0

tk

)
= 2(θ0 − λ0)∆n(Xtk+1

−Xtk)− (θ0 − λ0)2∆2
n − (Ntk+1

−Ntk)2

+ 2(Xtk+1
−Xtk)(Ntk+1

−Ntk)− 2(θ0 − λ0)∆n(Ntk+1
−Ntk),

and (
θn∆n + M̃λn

tk+1
− M̃λn

tk

)2
+ 2σ(`)

(
Wtk+1

−Wtk

) (
θn∆n + M̃λn

tk+1
− M̃λn

tk

)
= 2

(
Y
θn,σ(`),λn
tk+1

− Y θn,σ(`),λn
tk

)
(θn∆n +Mtk+1

−Mtk − λn∆n)

− (θn∆n +Mtk+1
−Mtk − λn∆n)2.

This implies that

n−1∑
k=0

Eθ0,σ0,λ0

[
Mk,n|F̂tk

]
=

n−1∑
k=0

v√
n

∫ 1

0

1

∆n

1

σ(`)3
(T1 + T2 − T3 + T4 − T5) d`,

where

T1 = 2
w − u√
n∆n

∆nE
[
Xtk+1

−Xtk |Xtk

]
= 2θ0

w − u√
n∆n

∆2
n,

T2 = −(θ0 − λ0)2∆2
n + (θn − λn)2∆2

n + 2λ0
w − u√
n∆n

∆2
n,

T3 = E
[
(Ntk+1

−Ntk)2 − Ẽ
θn,σ(`),λn
Xtk

[
(Mtk+1

−Mtk)2
∣∣∣Y θn,σ(`),λn
tk+1

= Xtk+1

] ∣∣∣Xtk

]
,

T4 = 2E
[
(Xtk+1

−Xtk)
(
Ntk+1

−Ntk − Ẽ
θn,σ(`),λn
Xtk

[
Mtk+1

−Mtk

∣∣∣Y θn,σ(`),λn
tk+1

= Xtk+1

]) ∣∣∣Xtk

]
,

T5 = 2∆n(θn − λn)E
[
Ntk+1

−Ntk − Ẽ
θn,σ(`),λn
Xtk

[
Mtk+1

−Mtk

∣∣∣Y θn,σ(`),λn
tk+1

= Xtk+1

] ∣∣∣Xtk

]
.

Clearly, ∣∣∣∣∣
n−1∑
k=0

v√
n

∫ 1

0

1

∆n

1

σ(`)3
(T1 + T2) d`

∣∣∣∣∣ ≤ C1

√
∆n +

C2√
n
,

for some constants C1, C2 > 0.
Moreover,

T3 =
∞∑
j=0

E
[
1
Ĵj,k

(
j2 − Ẽ

θn,σ(`),λn
Xtk

[
(Mtk+1

−Mtk)2
(
1
J̃j,k

+ 1
J̃cj,k

) ∣∣∣Y θn,σ(`),λn
tk+1

= Xtk+1

]) ∣∣∣Xtk

]
= M

θn,σ(`),λn
1,2 −M θn,σ(`),λn

2,2 ,

which, together with Lemma 3.2.6, implies that, for all α ∈ (0, 1
2),∣∣∣∣∣

n−1∑
k=0

v√
n

∫ 1

0

1

∆n

1

σ(`)3
T3d`

∣∣∣∣∣ =

∣∣∣∣∣
n−1∑
k=0

v√
n

∫ 1

0

1

∆n

1

σ(`)3

(
M

θn,σ(`),λn
1,2 −M θn,σ(`),λn

2,2

)
d`

∣∣∣∣∣
≤ C1

√
n

∆n
e
− 1

C2∆1−2α
n ,

for some constants C1, C2 > 0.
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In order to treat T5, we proceed as for the term T3 to get that, for all α ∈ (0, 1
2),∣∣∣∣∣

n−1∑
k=0

v√
n

∫ 1

0

1

∆n

1

σ(`)3
T5d`

∣∣∣∣∣ ≤ C1

√
n

∆n
e
− 1

C2∆1−2α
n ,

for some constants C1, C2 > 0.
Using Cauchy-Schwarz’s and Jensen’s inequalities, and proceeding as in Lemma 3.3.1, toge-

ther with Lemma 3.2.6, we get that, for all α ∈ (0, 1
2),∣∣∣∣∣

n−1∑
k=0

v√
n

∫ 1

0

1

∆n

1

σ(`)3
T4d`

∣∣∣∣∣ ≤
n−1∑
k=0

2|v|√
n∆n

∫ 1

0

1

|σ(`)|3

×
(

E

[(
Ntk+1

−Ntk − Ẽ
θn,σ(`),λn
Xtk

[
Mtk+1

−Mtk

∣∣∣Y θn,σ(`),λn
tk+1

= Xtk+1

])2 ∣∣∣Xtk

])1/2

d`

≤
n−1∑
k=0

2
√

2|v|√
n∆n

∫ 1

0

1

|σ(`)|3
(
M

θn,σ(`),λn
1,2 +M

θn,σ(`),λn
2,2

)1/2
d`

≤ C1

√
n√

∆n
e
− 1

C2∆1−2α
n ,

for some constants C1, C2 > 0. Consequently, condition (i) of Lemma 1.4.1 holds. We next show
(ii). Applying Hölder’s inequality, and the same decomposition as for T3, we get that

n−1∑
k=0

Eθ0,σ0,λ0

[
M2
k,n|F̂tk

]
≤ v2

n∆2
n

n−1∑
k=0

∫ 1

0

1

σ(`)6
E

[{
Hθ0,λ0 − Ẽ

θn,σ(`),λn
Xtk

[
H̄θn,λn

∣∣∣∣Y θn,σ(`),λn
tk+1

= Xtk+1

]}2 ∣∣∣Xtk

]
d`

≤ v2

n∆2
n

n−1∑
k=0

∫ 1

0

2

σ(`)6
(V1 + V2) d`,

where

V1 : =
∞∑
j=0

E

[
1
Ĵj,k

{
Hθ0,λ0 − Ẽ

θn,σ(`),λn
Xtk

[
1
J̃j,k

H̄θn,λn

∣∣∣∣Y θn,σ(`),λn
tk+1

= Xtk+1

]}2 ∣∣∣Xtk

]
,

V2 : =
∞∑
j=0

E

[
1
Ĵj,k

{
Ẽ
θn,σ(`),λn
Xtk

[
1
J̃cj,k

H̄θn,λn

∣∣∣∣Y θn,σ(`),λn
tk+1

= Xtk+1

]}2 ∣∣∣Xtk

]
,

and

Hθ0,λ0 :=
(
θ0∆n + Ñλ0

tk+1
− Ñλ0

tk

)2
+ 2σ0

(
Btk+1

−Btk
) (
θ0∆n + Ñλ0

tk+1
− Ñλ0

tk

)
.

H̄θn,λn := 2
(
Y
θn,σ(`),λn
tk+1

− Y θn,σ(`),λn
tk

)
(θn∆n +Mtk+1

−Mtk − λn∆n)

− (θn∆n +Mtk+1
−Mtk − λn∆n)2.

Using equation (3.1) and Jensen’s inequality, adding and substracting one term, we get

V1 =

∞∑
j=0

E

[
1
Ĵj,k

{
(θ0∆n + j − λ0∆n)2 + 2σ0

(
Btk+1

−Btk
)

(θ0∆n + j − λ0∆n)

−
(

(θn∆n + j − λn∆n)2 + 2

(
σ0(Btk+1

−Btk) +
(w − u)∆n√

n∆n

)
(θn∆n + j − λn∆n)

)
× Ẽ

θn,σ(`),λn
Xtk

[
1
J̃j,k

∣∣∣∣Y θn,σ(`),λn
tk+1

= Xtk+1

]}2∣∣∣Xtk

]
≤ 2 (V1,1 + V1,2) ,
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where

V1,1 =
∞∑
j=0

E

[
1
Ĵj,k

{
(θ0∆n + j − λ0∆n)2 + 2σ0

(
Btk+1

−Btk
)

(θ0∆n + j − λ0∆n)

−
(

(θn∆n + j − λn∆n)2 + 2

(
σ0(Btk+1

−Btk) +
(w − u)∆n√

n∆n

)
(θn∆n + j − λn∆n)

)}2∣∣∣Xtk

]
,

V1,2 =

∞∑
j=0

E

[
1
Ĵj,k

Ẽ
θn,σ(`),λn
Xtk

[
1
J̃cj,k

∣∣∣∣Y θn,σ(`),λn
tk+1

= Xtk+1

]

×
(

(θn∆n + j − λn∆n)2 + 2

(
σ0(Btk+1

−Btk) +
(w − u)∆n√

n∆n

)
(θn∆n + j − λn∆n)

)2 ∣∣∣Xtk

]
.

Basic computations yield that∣∣∣∣ v2

n∆2
n

n−1∑
k=0

∫ 1

0

1

σ(`)6
V1,1d`

∣∣∣∣ ≤ C

n
.

Now, we treat V1,2. In order to deal with the terms that contain the increments of the
Brownian motion, we multiply those increments by 1{|Btk+1

−Btk |≤∆α
n} + 1{|Btk+1

−Btk |>∆α
n}, for

α ∈ (0, 1
2). Then, for the terms involving 1{|Btk+1

−Btk |>∆α
n}, we bound the conditional expectation

by one, use the independence between B and N , and Cauchy-Schwarz inequality, to ultimately
conclude that these terms can be bounded by

C1∆n

(
E
[
(Btk+1

−Btk)4|Xtk

])1/4 (
P
(
|Btk+1

−Btk | > ∆α
n|Xtk

))1/2 ≤ C1∆2
ne
− 1

C2∆1−2α
n .

On the other hand, the term involving 1{|Btk+1
−Btk |≤∆α

n} can be bounded by M
θn,σ(`),λn
1,0 .

The other terms that do not involve the increment of the Brownian motion can be bounded by
M

θn,σ(`),λn
1,p for p ∈ {0, . . . , 4}. Thus, using Lemma 3.2.6, we obtain that, for all α ∈ (0, 1

2),

v2

n∆2
n

n−1∑
k=0

∫ 1

0

1

σ(`)6
V1,2d` ≤ C1

1

∆2
n

e
− 1

C2∆1−2α
n ,

for some constants C1, C2 > 0. Thus, V1
Pθ0,σ0,λ0−→ 0 as n→∞.

Applying Jensen’s inequality and equation (3.1), we obtain that

V2 ≤
∞∑
j=0

E

[
1
Ĵj,k

Ẽ
θn,σ(`),λn
Xtk

[
1
J̃cj,k

H̄2
θn,λn

∣∣∣∣Y θn,σ(`),λn
tk+1

= Xtk+1

] ∣∣∣Xtk

]

=

∞∑
j=0

E

1
Ĵj,k

∞∑
m=0:m6=j

Ẽ
θn,σ(`),λn
Xtk

[
1
J̃m,k

H̄2
θn,λn

∣∣∣∣Y θn,σ(`),λn
tk+1

= Xtk+1

] ∣∣∣Xtk


=

∞∑
j=0

E

[
1
Ĵj,k

∞∑
m=0:m6=j

Ẽ
θn,σ(`),λn
Xtk

[
1
J̃m,k

∣∣∣∣Y θn,σ(`),λn
tk+1

= Xtk+1

](
(θn∆n +m− λn∆n)2

+ 2

(
σ0(Btk+1

−Btk) + j −m+
(w − u)∆n√

n∆n

)
(θn∆n +m− λn∆n)

)2∣∣∣Xtk

]
.

Observe that V2 can be upper bounded by a sum of the terms M θn,σ(`),λn
1,p , for p ∈ {0, 1, 2} and

M
θn,σ(`),λn
2,p , for p ∈ {0, . . . , 4}. Then, from Lemma 3.2.6, we get that, for all α ∈ (0, 1

2),

v2

n∆2
n

n−1∑
k=0

∫ 1

0

1

σ(`)6
V2d` ≤ C1

1

∆2
n

e
− 1

C2∆1−2α
n ,

for some constants C1, C2 > 0. This concludes the desired result.
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3.3.3 Main contribution : LAN property

Proof. Applying Lemma 1.4.3 to ζk,n = ξk,n+ηk,n+βk,n, we need to consider Eθ0,σ0,λ0 [(ξk,n+ηk,n+

βk,n)r|F̂tk ] for r = 1, 2 and 4 but this conditional expectation equals E[(ξk,n + ηk,n + βk,n)r|F̂tk ].
Therefore, it suffices to show that as n→∞ :

n−1∑
k=0

E
[
ξk,n|F̂tk

]
Pθ0,σ0,λ0−→ − u2

2σ2
0

, (3.13)

n−1∑
k=0

E
[
ηk,n|F̂tk

]
Pθ0,σ0,λ0−→ −v

2

2

2

σ2
0

, (3.14)

n−1∑
k=0

E
[
βk,n|F̂tk

]
Pθ0,σ0,λ0−→ − w2

2σ2
0

(
1 +

σ2
0

λ0

)
+
uw

σ2
0

, (3.15)

n−1∑
k=0

(
E
[
ξ2
k,n|F̂tk

]
−
(

E
[
ξk,n|F̂tk

])2
)

Pθ0,σ0,λ0−→ u2

σ2
0

, (3.16)

n−1∑
k=0

(
E
[
η2
k,n|F̂tk

]
−
(

E
[
ηk,n|F̂tk

])2
)

Pθ0,σ0,λ0−→ v2 2

σ2
0

, (3.17)

n−1∑
k=0

(
E
[
β2
k,n|F̂tk

]
−
(

E
[
βk,n|F̂tk

])2
)

Pθ0,σ0,λ0−→ w2

σ2
0

(
1 +

σ2
0

λ0

)
, (3.18)

n−1∑
k=0

(
E
[
ξk,nηk,n|F̂tk

]
− E

[
ξk,n|F̂tk

]
E
[
ηk,n|F̂tk

])
Pθ0,σ0,λ0−→ 0, (3.19)

n−1∑
k=0

(
E
[
ξk,nβk,n|F̂tk

]
− E

[
ξk,n|F̂tk

]
E
[
βk,n|F̂tk

])
Pθ0,σ0,λ0−→ −uw

σ2
0

, (3.20)

n−1∑
k=0

(
E
[
ηk,nβk,n|F̂tk

]
− E

[
ηk,n|F̂tk

]
E
[
βk,n|F̂tk

])
Pθ0,σ0,λ0−→ 0, (3.21)

n−1∑
k=0

E
[
ξ4
k,n|F̂tk

]
Pθ0,σ0,λ0−→ 0, (3.22)

n−1∑
k=0

E
[
η4
k,n|F̂tk

]
Pθ0,σ0,λ0−→ 0, (3.23)

n−1∑
k=0

E
[
β4
k,n|F̂tk

]
Pθ0,σ0,λ0−→ 0. (3.24)

The validity of (3.13), (3.16), (3.22), (3.14), and (3.19) is easily checked by using moment
properties of the Brownian motion and the definitions of ξk,n and ηk,n.

Proof of (3.17). First, we observe that

n−1∑
k=0

(
E
[
ηk,n|F̂tk

])2
=
v2

n

n−1∑
k=0

(∫ 1

0

σ2
0 − σ(`)2

σ(`)3
d`

)2

≤ C

n
,

for some constant C > 0.
On the other hand, since E[(Btk+1

− Btk)2|F̂tk ] = ∆n and E[(Btk+1
− Btk)4|F̂tk ] = 3∆2

n, we
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deduce that as n→∞,
n−1∑
k=0

E
[
η2
k,n|F̂tk

]
=

v2

n∆2
n

n−1∑
k=0

{(∫ 1

0

σ2
0

σ(`)3
d`

)2

E
[(
Btk+1

−Btk
)4 |F̂tk]+

(∫ 1

0

∆n

σ(`)
d`

)2

− 2

∫ 1

0

∆n

σ(`)
d`

∫ 1

0

σ2
0

σ(`)3
d`E

[(
Btk+1

−Btk
)2 |F̂tk]}

→ v2 2

σ2
0

,

which completes the proof of (3.17).
Proof of (3.23). It is easy to see that

n−1∑
k=0

E
[
η4
k,n|F̂tk

]
≤ C

n
,

for some constant C > 0.
Proof of (3.15). Using (3.12) in page 50 and Lemma 3.2.7, we get that as n→∞,

n−1∑
k=0

E
[
βk,n|F̂tk

]
= − w2

2σ2
0

+
uw

σ2
0

+
n−1∑
k=0

w√
n∆n

∫ 1

0

1

λ(`)
E

[
Ẽ
θn,σ0,λ(`)
Xtk

[
M̃

λ(`)
tk+1
− M̃λ(`)

tk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
d`

= − w2

2σ2
0

+
uw

σ2
0

−
n−1∑
k=0

w√
n∆n

∫ 1

0

1

λ(`)

`w√
n∆n

∆nd`

Pθ0,σ0,λ0−→ − w2

2σ2
0

+
uw

σ2
0

− w2

2λ0
,

which concludes (3.15).
Proof of (3.18). First, Lemma 3.2.7 yields that as n→∞,

n−1∑
k=0

(
E
[
βk,n|F̂tk

])2
=

n−1∑
k=0

(
− w2

2σ2
0n

+
uw

σ2
0n

+
w√
n∆n

∫ 1

0

1

λ(`)
E

[
Ẽ
θn,σ0,λ(`)
Xtk

[
M̃

λ(`)
tk+1
− M̃λ(`)

tk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
d`

)2

Pθ0,σ0,λ0−→ 0.

Next, we write
n−1∑
k=0

E
[
β2
k,n|F̂tk

]
= Sn,1 + Sn,2 − 2Sn,3,

where

Sn,1 :=
n−1∑
k=0

w2

n∆n

1

σ4
0

E

[(
σ0

(
Btk+1

−Btk
)

+
w∆n

2
√
n∆n

− u∆n√
n∆n

)2 ∣∣∣Xtk

]
,

Sn,2 :=

n−1∑
k=0

w2

n∆n
E

[(∫ 1

0

1

λ(`)
Ẽ
θn,σ0,λ(`)
Xtk

[
M̃

λ(`)
tk+1
− M̃λ(`)

tk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

]
d`

)2 ∣∣∣Xtk

]
,

Sn,3 :=

n−1∑
k=0

w2

n∆n

1

σ2
0

E

[(
σ0

(
Btk+1

−Btk
)

+
w∆n

2
√
n∆n

− u∆n√
n∆n

)
×
∫ 1

0

1

λ(`)
Ẽ
θn,σ0,λ(`)
Xtk

[
M̃

λ(`)
tk+1
− M̃λ(`)

tk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

]
d`
∣∣∣Xtk

]
.
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Using moment properties of Brownian motion, we get that as n→∞,

Sn,1
Pθ0,σ0,λ0−→ w2

σ2
0

.

Since M̃λ(`)
tk+1
−M̃λ(`)

tk
= Mtk+1

−Mtk −λ(`)∆n, we write Sn,2 = Sn,2,1−2Sn,2,2 +w2∆n, where

Sn,2,1 :=
n−1∑
k=0

w2

n∆n
E

[(∫ 1

0

1

λ(`)
Ẽ
θn,σ0,λ(`)
Xtk

[
Mtk+1

−Mtk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

]
d`

)2 ∣∣∣Xtk

]
,

Sn,2,2 :=

n−1∑
k=0

w2

n

∫ 1

0

1

λ(`)
E

[
Ẽ
θn,σ0,λ(`)
Xtk

[
Mtk+1

−Mtk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
d`.

Observe that Lemma 3.2.7 yields Sn,2,2
Pθ0,σ0,λ0−→ 0 as n→∞. Moreover, adding and substrac-

ting the term Ntk+1
−Ntk , we write Sn,2,1 = Sn,2,1,1 + Sn,2,1,2 − 2Sn,2,1,3, where

Sn,2,1,1 :=

n−1∑
k=0

w2

n∆n
E

[(∫ 1

0

1
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(
Ntk+1

−Ntk

)
d`

)2 ∣∣∣Xtk

]
,

Sn,2,1,2 :=
n−1∑
k=0

w2

n∆n

× E
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0

1
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(
Ntk+1

−Ntk − Ẽ
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Xtk

[
Mtk+1

−Mtk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1
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d`

)2 ∣∣∣Xtk

]
,

Sn,2,1,3 :=
n−1∑
k=0

w2

n∆n
E

[ ∫ 1

0

1
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(
Ntk+1

−Ntk

)
d`

×
∫ 1

0

1

λ(`)

(
Ntk+1

−Ntk − Ẽ
θn,σ0,λ(`)
Xtk

[
Mtk+1

−Mtk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

])
d`
∣∣∣Xtk

]
.

Proceeding as in the proof of Lemma 3.3.1, one can easily show that Sn,2,1,2 and Sn,2,1,3
converge to zero in Pθ0,σ0,λ0-probability as n → ∞. Moreover, since E[(Ntk+1

− Ntk)2|Xtk ] =
λ0∆n + (λ0∆n)2, we deduce that as n→∞,

Sn,2,1,1
Pθ0,σ0,λ0−→ w2

λ0
,

which implies that as n→∞,

Sn,2
Pθ0,σ0,λ0−→ w2

λ0
.

Next, we show that n → ∞, Sn,3
Pθ0,σ0,λ0−→ 0. Using Lemma 3.2.7, it suffices to show that as

n→∞,

Sn,3,1 =

n−1∑
k=0

w2

n∆n

1

σ0

∫ 1

0

1

λ(`)

× E

[(
Btk+1

−Btk
)

Ẽ
θn,σ0,λ(`)
Xtk

[
M̃

λ(`)
tk+1
− M̃λ(`)

tk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
d`

Pθ0,σ0,λ0−→ 0.

Using the independence between B and N , we have that

Sn,3,1 := −
n−1∑
k=0

w2

n∆n

1

σ0

∫ 1

0

1

λ(`)
E

[ (
Btk+1

−Btk
)

×
(
Ntk+1

−Ntk − Ẽ
θn,σ0,λ(`)
Xtk

[
Mtk+1

−Mtk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

]) ∣∣∣Xtk

]
d`.
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Now, using Cauchy-Schwarz inequality, we get that

|Sn,3,1| ≤
n−1∑
k=0

w2

n
√

∆n

1

σ0

∫ 1

0

1

|λ(`)|

×

(
E

[(
Ntk+1

−Ntk − Ẽ
θn,σ0,λ(`)
Xtk

[
Mtk+1

−Mtk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

])2 ∣∣∣Xtk

])1/2

d`,

which converges to zero in Pθ0,σ0,λ0-probability as n→∞ by proceeding as in Lemma 3.3.1.
Consequently, the proof of (3.18) is now completed.
Proof of (3.24). Applying Jensen’s inequality, we get that

n−1∑
k=0

E
[
β4
k,n|F̂tk

]
≤ 8

n−1∑
k=0

w4

n2∆2
nσ

8
0

E

[(
σ0

(
Btk+1

−Btk
)

+
w∆n

2
√
n∆n

− u∆n√
n∆n

)4 ∣∣∣Xtk

]

+ 8

n−1∑
k=0

w4

n2∆2
n

∫ 1

0

1

(λ(`))4
E

[
Ẽ
θn,σ0,λ(`)
Xtk

[(
M̃

λ(`)
tk+1
− M̃λ(`)

tk

)4
∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
d`,

which converges to zero in Pθ0,σ0,λ0-probability as n → ∞, since E[(Btk+1
− Btk)4|Xtk ] = 3∆2

n

and for n large enough,∣∣∣∣E [Ẽθn,σ0,λ(`)
Xtk

[(
M̃

λ(`)
tk+1
− M̃λ(`)

tk

)4
∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

] ∣∣∣∣ ≤ C∆n,

for some constant C > 0, by using the same arguments as in the proof of Lemma 3.2.7.
Proof of (3.20). Using again Lemma 3.2.7, we get that as n→∞,

n−1∑
k=0

E
[
ξk,n|F̂tk

]
E
[
βk,n|F̂tk

]
= − u2

2σ2
0n

n−1∑
k=0

(
− w2

2σ2
0n

+
uw

σ2
0n

+
w√
n∆n

∫ 1

0

1

λ(`)
E

[
Ẽ
θn,σ0,λ(`)
Xtk

[
M̃

λ(`)
tk+1
− M̃λ(`)

tk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
d`

)
Pθ0,σ0,λ0−→ 0.

Moreover, basic computations yield that as n→∞,

n−1∑
k=0

E
[
ξk,nβk,n|F̂tk

]
= −uw

σ2
0

+
u2w

4nσ2
0

(w − 2u)

−
n−1∑
k=0

u2w∆n

2σ2
0n∆n

√
n∆n

∫ 1

0

1

λ(`)
E

[
Ẽ
θn,σ0,λ(`)
Xtk

[
M̃

λ(`)
tk+1
− M̃λ(`)

tk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
d`

+

n−1∑
k=0

uw

n∆n

1

σ0

∫ 1

0

1

λ(`)
E

[(
Btk+1

−Btk
)

Ẽ
θn,σ0,λ(`)
Xtk

[
M̃

λ(`)
tk+1
− M̃λ(`)

tk

∣∣∣∣Y θn,σ0,λ(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
d`,

Pθ0,σ0,λ0−→ −uw
σ2

0

,

where we have used again Lemma 3.2.7 and proceeded as for the term Sn,3,1.
Similarly, we can show (3.21) and the proof of Theorem 3.1.1 is now completed.

3.4 Conclusion and Final Comments

As we explained in the Introduction, the argument given here can be extended to more general
cases with further arguments. We try to explain here in few words the strategy in the general
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case. In fact, Lemma 3.2.3 can be generalized to the case of stochastic differential equations with
finite number of jumps and random jump size. Looking at the structure of the definition of Spj
just before Lemma 3.2.4 one can see that the structure belongs to a large deviation principle for
the process X. In fact, Spj describes a conditional expectation under J̃cj,k while the observation
process satisfies Ĵj,k. The corresponding large deviation estimates are obtained in Lemmas 3.2.5
and 3.2.6. Finally one has to take limits in the above argument to obtain the aforementioned
result for general jump driving processes.

3.5 Maximum likelihood estimator

By the Markov property, the log-likelihood function based on Xn can be written as follows

`n(θ0, σ0, λ0) = log p(Xn; (θ0, σ0, λ0))

=

n−1∑
k=0

log pθ0,σ0,λ0(∆n, Xtk , Xtk+1
).

(3.25)

The maximum likelihood estimator (θ̂n, σ̂n, λ̂n) of (θ0, σ0, λ0) is defined as the solution to the
system of equations 

∂θ`n(θ0, σ0, λ0) = 0

∂σ`n(θ0, σ0, λ0) = 0

∂λ`n(θ0, σ0, λ0) = 0.

(3.26)

Theorem 3.5.1. Assume condition (3.2). Then, the maximum likelihood estimators (θ̂n, σ̂n, λ̂n)
of (θ0, σ0, λ0) are consistent and asymptotically efficient. That is, as n→∞,

(θ̂n, σ̂n, λ̂n)
Pθ0,σ0,λ0−→ (θ0, σ0, λ0),

and (√
n∆n(θ̂n − θ0),

√
n(σ̂n − σ0),

√
n∆n(λ̂n − λ0)

) L(Pθ0,σ0,λ0 )−→ N
(
0,Γ(θ0, σ0, λ0)−1

)
,

where N (0,Γ(θ0, σ0, λ0)−1) is a centered R3-valued Gaussian vector with covariance matrix

Γ(θ0, σ0, λ0)−1 =

λ0 + σ2
0 0 λ0

0
σ2

0
2 0

λ0 0 λ0

 .

Proof. Using (3.25) and Propositions 3.2.1 and 3.2.2, (3.26) is equivalent to

∑n−1
k=0

1

σ0
Ẽθ0,σ0,λ0

Xtk

[
Wtk+1

−Wtk

∣∣∣Y θ0,σ0,λ0
tk+1

= Xtk+1

]
= 0∑n−1

k=0

(
1

σ0∆n
Ẽθ0,σ0,λ0

Xtk

[(
Wtk+1

−Wtk

)2 ∣∣∣Y θ0,σ0,λ0
tk+1

= Xtk+1

]
− 1

σ0

)
= 0

∑n−1
k=0 Ẽθ0,σ0,λ0

Xtk

[
−
Wtk+1

−Wtk

σ0
+
M̃λ0
tk+1
− M̃λ0

tk

λ0

∣∣∣∣Y θ0,σ0,λ0
tk+1

= Xtk+1

]
= 0.

Using (3.11) with (θ0, σ0, λ0) instead of (θ(`), σ0, λ0) and taking the conditional expectation,
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we obtain that

θ̂n = θ0 +
1

n∆n

n−1∑
k=0

(
σ0

(
Btk+1

−Btk
)

+ Ñλ0
tk+1
− Ñλ0

tk

)
+ λ̂n −

1

n∆n

n−1∑
k=0

Ẽθ0,σ0,λ0

Xtk

[
Mtk+1

−Mtk

∣∣∣∣Y θ0,σ0,λ0
tk+1

= Xtk+1

]
,

σ̂2
n =

σ2
0

n∆n

n−1∑
k=0

(
Btk+1

−Btk
)2

+
1

n∆n

n−1∑
k=0

{(
θ0∆n + Ñλ0

tk+1
− Ñλ0

tk

)2
+ 2σ0

(
Btk+1

−Btk
)

×
(
θ0∆n + Ñλ0

tk+1
− Ñλ0

tk

)
− Ẽθ0,σ0,λ0

Xtk

[(
θ0∆n + M̃λ0

tk+1
− M̃λ0

tk

)2

+ 2σ0

(
Wtk+1

−Wtk

) (
θ0∆n + M̃λ0

tk+1
− M̃λ0

tk

) ∣∣∣∣Y θ0,σ0,λ0
tk+1

= Xtk+1

]}
,

λ̂n =

1
n∆n

∑n−1
k=0 Ẽθ0,σ0,λ0

Xtk

[
Mtk+1

−Mtk

∣∣∣∣Y θ0,σ0,λ0
tk+1

= Xtk+1

]
1

σ0n∆n

∑n−1
k=0 Ẽθ0,σ0,λ0

Xtk

[
Wtk+1

−Wtk

∣∣∣∣Y θ0,σ0,λ0
tk+1

= Xtk+1

]
+ 1

.

Next, using the fact that as n→∞,

1

n∆n

n−1∑
k=0

(
σ0

(
Btk+1

−Btk
)

+ Ñλ0
tk+1
− Ñλ0

tk

)
Pθ0,σ0,λ0−→ 0,

1

n∆n

n−1∑
k=0

Ẽθ0,σ0,λ0

Xtk

[
Mtk+1

−Mtk

∣∣∣∣Y θ0,σ0,λ0
tk+1

= Xtk+1

]
Pθ0,σ0,λ0−→ λ0,

1

n∆n

n−1∑
k=0

(
Btk+1

−Btk
)2 Pθ0,σ0,λ0−→ 1,

1

n∆n

n−1∑
k=0

Ẽθ0,σ0,λ0

Xtk

[
Wtk+1

−Wtk

∣∣∣∣Y θ0,σ0,λ0
tk+1

= Xtk+1

]
Pθ0,σ0,λ0−→ 0,

and, by proceeding as for the term Mk,n,

1

n∆n

n−1∑
k=0

{(
θ0∆n + Ñλ0

tk+1
− Ñλ0

tk

)2
+ 2σ0

(
Btk+1

−Btk
) (
θ0∆n + Ñλ0

tk+1
− Ñλ0

tk

)
− Ẽθ0,σ0,λ0

Xtk

[(
θ0∆n + M̃λ0

tk+1
− M̃λ0

tk

)2

+ 2σ0

(
Wtk+1

−Wtk

) (
θ0∆n + M̃λ0

tk+1
− M̃λ0

tk

) ∣∣∣∣Y θ0,σ0,λ0
tk+1

= Xtk+1

]}
Pθ0,σ0,λ0−→ 0,

we conclude that as n→∞,

(θ̂n, σ̂n, λ̂n)
Pθ0,σ0,λ0−→ (θ0, σ0, λ0).

On the other hand, we can write√
n∆n(θ̂n − θ0) =

n−1∑
k=0

ζk,n,1 +
n−1∑
k=0

Rk,n,1,

√
n(σ̂2

n − σ2
0) =

n−1∑
k=0

ζk,n,2 +

n−1∑
k=0

Rk,n,2,

√
n∆n(λ̂n − λ0) =

n−1∑
k=0

ζk,n,3 −
n−1∑
k=0

Rk,n,3,
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where

ζk,n,1 =
1√
n∆n

(
σ0

(
Btk+1

−Btk
)

+ Ñλ0
tk+1
− Ñλ0

tk

)
,

ζk,n,2 =
σ2

0√
n∆n

((
Btk+1

−Btk
)2 −∆n

)
,

ζk,n,3 =
1√
n∆n

(
Ñλ0
tk+1
− Ñλ0

tk

)
,

and

Rk,n,1 =
√
n∆n

(
λ̂n −

1

n∆n

n−1∑
k=0

Ẽθ0,σ0,λ0

Xtk

[
Mtk+1

−Mtk

∣∣∣∣Y θ0,σ0,λ0
tk+1

= Xtk+1

])
,

Rk,n,2 =
1√
n∆n

n−1∑
k=0

{(
θ0∆n + Ñλ0

tk+1
− Ñλ0

tk

)2
+ 2σ0

(
Btk+1

−Btk
) (
θ0∆n + Ñλ0

tk+1
− Ñλ0

tk

)
− Ẽθ0,σ0,λ0

Xtk

[(
θ0∆n + M̃λ0

tk+1
− M̃λ0

tk

)2

+ 2σ0

(
Wtk+1

−Wtk

) (
θ0∆n + M̃λ0

tk+1
− M̃λ0

tk

) ∣∣∣∣Y θ0,σ0,λ0
tk+1

= Xtk+1

]}
,

Rk,n,3 =
1√
n∆n

n−1∑
k=0

(
Ntk+1

−Ntk − Ẽθ0,σ0,λ0

Xtk

[
Mtk+1

−Mtk

∣∣∣∣Y θ0,σ0,λ0
tk+1

= Xtk+1

])

+
1√
n∆n

n−1∑
k=0

Ẽθ0,σ0,λ0

Xtk

[
Mtk+1

−Mtk

∣∣∣∣Y θ0,σ0,λ0
tk+1

= Xtk+1

]

×

1
σ0n∆n

∑n−1
k=0 Ẽθ0,σ0,λ0

Xtk

[
Wtk+1

−Wtk

∣∣∣∣Y θ0,σ0,λ0
tk+1

= Xtk+1

]
1

σ0n∆n

∑n−1
k=0 Ẽθ0,σ0,λ0

Xtk

[
Wtk+1

−Wtk

∣∣∣∣Y θ0,σ0,λ0
tk+1

= Xtk+1

]
+ 1

.

Notice that the random variables ζk,n,1, ζk,n,2, ζk,n,3 are the terms that contribute to the limit
in Theorem 3.5.1. On the other hand, it can be checked that the random variables Rk,n,1, Rk,n,2
and Rk,n,3 are the negligible terms. Then, applying the central limit theorem for triangular arrays,
we obtain that as n→∞,(√

n∆n(θ̂n − θ0),
√
n(σ̂2

n − σ2
0),
√
n∆n(λ̂n − λ0)

) L(Pθ0,σ0,λ0 )−→ N (0, I(θ0, σ0, λ0)) ,

where

I(θ0, σ0, λ0) =

λ0 + σ2
0 0 λ0

0 2σ4
0 0

λ0 0 λ0

 .

This, together with the fact that σ̂n
Pθ0,σ0,λ0−→ σ0 as n→∞, yields(√

n∆n(θ̂n − θ0),
√
n(σ̂n − σ0),

√
n∆n(λ̂n − λ0)

) L(Pθ0,σ0,λ0 )−→ N
(
0,Γ(θ0, σ0, λ0)−1

)
,

which finishes the proof of Theorem 3.5.1.
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Chapitre 4

LAN property for a jump-diffusion
process : drift parameter

In this chapter, we consider an ergodic diffusion process with jumps driven by a Brownian
motion and a Poisson random measure associated with a centered pure-jump Lévy process with
finite Lévy measure, whose drift coefficient depends on an unknown parameter. Supposing that
the process is observed discretely at high frequency, we derive the local asymptotic normality
(LAN) property. In order to obtain this result, Malliavin calculus and Girsanov’s theorem are
applied in order to write the log-likelihood ratio in terms of sums of conditional expectations,
for which a central limit theorem for triangular arrays can be applied.

4.1 Introduction and main result

On a complete probability space (Ω,F ,P) defined in Definition 1.1.3, we consider the process
Xθ = (Xθ

t )t≥0 solution to the following stochastic differential equation with jumps

dXθ
t = b(θ,Xθ

t )dt+ σ(Xθ
t )dBt +

∫
R0

c(Xθ
t−, z) (N(dt, dz)− ν(dz)dt) , (4.1)

where Xθ
0 = x0 ∈ R, R0 := R\{0}, B = (Bt)t≥0 is a standard Brownian motion, and N(dt, dz) is

a Poisson random measure in (R+ ×R0,B(R+ ×R0)) independent of B, with intensity measure
ν(dz)dt, and finite Lévy measure λ =

∫
R0
ν(dz) <∞. The compensated Poisson random measure

is denoted by Ñ(dt, dz) := N(dt, dz)− ν(dz)dt. Let Ẑ = (Ẑt)t≥0 be a centered pure-jump Lévy
process associated with N(dt, dz), i.e., Ẑt =

∫ t
0

∫
R0
z(N(ds, dz)−ν(dz)ds), for t ≥ 0. Let {F̂t}t≥0

denote the natural filtration generated by B and N . The unknown parameter θ belongs to Θ
which is a closed interval of R. The coefficients b : Θ×R→ R, σ : R→ R and c : R×R0 → R are
measurable functions satisfying condition (A1) below under which equation (4.1) has a unique
F̂t-adapted càdlàg solution Xθ. We denote by Pθ the probability law induced by Xθ, and by Eθ

the expectation with respect to Pθ. Let Pθ−→ and
L(Pθ)−→ denote the convergence in Pθ-probability

and in Pθ-law, respectively.
Recall that the structure of the probability space is given by Ω̂ = Ω1 × Ω2, Ω̃ = Ω3 × Ω4,

F̂ = F1⊗F2, F̃ = F3⊗F4, P̂ = P1⊗P2, P̃ = P3⊗P4, and Ω = Ω̂× Ω̃, F = F̂ ⊗ F̃ , P = P̂⊗ P̃.
We denote by E, Ê, Ẽ the expectation with respect to P, P̂ and P̃, respectively.

For fixed θ0 ∈ Θ and n ≥ 1, we consider a discrete observation scheme at equidistant
times tk = k∆n, k ∈ {0, ..., n} of the diffusion process Xθ0 , which is denoted by Xn =
(Xt0 , Xt1 , ..., Xtn), where ∆n ≤ 1. We assume that the sequence of time-step sizes ∆n satis-
fies the high-frequency observation condition

n∆n →∞, and ∆n → 0, as n→∞.

We consider the following hypotheses on equation (4.1).

65
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(A1) For any θ ∈ Θ, there exists a constant C > 0 such that for all x, y ∈ R, z, z1, z2 ∈ R0,

|b(θ, x)− b(θ, y)|+ |σ(x)− σ(y)| ≤ C|x− y|, |b(θ, x)| ≤ C (1 + |x|) ,
|c(x, z)− c(y, z)| ≤ C|x− y||z|, |c(x, z)| ≤ C(1 + |x|)|z|,
|c(x, z1)− c(x, z2)| ≤ C (1 + |x|) |z1 − z2|.

(A2) There exists a constant c ≥ 1 such that for all x ∈ R,

1

c
≤ |σ(x)| ≤ c.

(A3) For all (x, z) ∈ R × R0, c(x, z) 6= 0, and c(x, 0) = 0. Moreover, there exists a constant
C > 0 such that for all z ∈ R0,

inf
x∈R
|c(x, z)| ≥ C|z|.

(A4) The functions b, σ and c are of class C1 w.r.t. θ and x. Each partial derivative ∂θb,
∂xb, ∂xσ and ∂xc is of class C1 w.r.t. x. Moreover, there exist positive constants C, q, ε, η,
independent of (θ, θ1, θ2, x, y, z) ∈ Θ3 × R2 × R0 such that

(a) |∂xb(θ, x)|+ |∂xσ(x)|+ |∂xc(x, z)| ≤ C;

(b) |h(·, x)| ≤ C (1 + |x|q) for h(·, x) = ∂θb(θ, x), ∂2
xb(θ, x), ∂2

x,θb(θ, x) or ∂2
xσ(x);

(c) |∂θb(θ1, x)− ∂θb(θ2, x)| ≤ C|θ1 − θ2|ε (1 + |x|q) ;

(d) |∂θb(θ, x)− ∂θb(θ, y)| ≤ C|x− y|;
(e) |∂2

xc(x, z)| ≤ C|z| (1 + |x|) and |1 + ∂xc(x, z)| ≥ η.

(A5) For any p ≥ 2,
∫
R0
|z|pν(dz) <∞.

(A6) The process Xθ0 is ergodic in the sense that there exists a unique probability measure
πθ0(dx) such that as T →∞,

1

T

∫ T

0
g(Xθ0

t )dt
Pθ0−→

∫
R
g(x)πθ0(dx),

for any πθ0-integrable function g : R→ R.

(A7) There exist constants ε > 0, q > 1, ρ1, ρ2 > 0 and 0 < υ, γ < 1
2 such that as n→∞,

√
n

∆ε
n

(
n∆n

(∫
{|z|≥ρ2∆−γn }

ν(dz) +

∫
{|z|≤ρ1∆υ

n}
ν(dz)

)) 1
q

→ 0.

(A8) There exist constants n0 ≥ 1 and C > 0 such that

sup
n≥n0

max
k∈{0,...,n}

E
[
e
C∆1−2γ

n X2
tk

]
<∞,

where γ is as in (A7).

Remark 4.1.1. In the case where the jump coefficient c is lower bounded, then (A8) implies
that

∫
R e

Cz2
ν(dz) <∞ for some C > 0, which in particular implies (A5).
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A detailed explanation on the hypotheses is given in the subsection 1.3.3 of the introductory
chapter.

Conditions (A1)-(A2) imply that the law of the discrete observation (Xθ
t0 , X

θ
t1 , . . . , X

θ
tn)

of the process (Xθ
t )t≥0 has a density in Rn+1 that we denote by p(·; θ). In particular, p(·; θ0)

denotes the density of the random vector Xn. The main result of this chapter is the following
LAN property.

Theorem 4.1.1. Assume conditions (A1)-(A8). Then, the LAN property holds for the likelihood
at θ0 with rate of convergence

√
n∆n and asymptotic Fisher information Γ(θ0). That is, for all

u ∈ R, as n→∞,

log
p(Xn; θn)

p(Xn; θ0)

L(Pθ0 )−→ uN (0,Γ(θ0))− u2

2
Γ (θ0) ,

where θn = θ0 + u√
n∆n

, and N (0,Γ(θ0)) is a centered Gaussian random variable with variance

Γ (θ0) =

∫
R

(
∂θb(θ0, x)

σ(x)

)2

πθ0(dx).

Remark 4.1.2. In the case where the drift coefficient is bounded, condition (A8) is not needed.

Remark 4.1.3. We remark that Γ(θ0) is identical to the asymptotic Fisher information for
ergodic diffusion processes without jumps (see [25, Theorem 4.1]). This is due to the fact that
the jump component is dominated over by the Gaussian component, which will be seen in the
discussion of the subsection 4.3.1.

Example 4.1.1. 1) Consider the Ornstein-Uhlenbeck process with jumps defined as

Xθ
t = x0 − θ

∫ t

0
Xθ
sds+ σBt +

∫ t

0

∫
R0

zÑ(ds, dz),

where θ > 0, σ ∈ R0 and the Lévy measure satisfies (A5), (A7), and is finite. Then Xθ is ergodic
in the sense of (A6), and the invariant probability measure πθ(dx) can be calculated explicitly
(see [65, Theorem 17.5 and Corollary 17.9] and [53, Theorem 2.6]). In particular,

Γ(θ) :=

∫
R

x2

σ2
πθ(dx) =

1

2θ

(
1 +

1

σ2

∫
R0

z2ν(dz)

)
.

In addition, assume that there exists a constant C > 0 such that
∫
R0
eCz

2
ν(dz) < ∞. Then, the

infinitesimal generator of Xθ satisfies that AeCx2 ≤ −c1e
Cx2

+ c2, for some constants c1, c2 > 0.
Then, by [53, Theorem 2.2], condition (A8) is satisfied.

As a consequence of Theorem 4.1.1, the LAN property holds with rate of convergence
√
n∆n

and asymptotic Fisher information Γ(θ0).
2) Consider the process

Xθ
t = x0 + θt+ σBt +

∫ t

0

∫
R0

zÑ(ds, dz),

where θ ∈ R and σ ∈ R0, and the Lévy measure is finite. Under conditions (A5) and (A7)-
(A8), the LAN property holds with rate of convergence

√
n∆n and asymptotic Fisher information

Γ(θ0) = 1
σ2 . In this case condition (A6) fails.

3) Assume that ν(dz) has compact support on {c ≤ |z| ≤ C}, for some constants c, C > 0.
In this case, condition (A7) holds.
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4) Assume that ν(dz) = ϕ(z)1{|z|≥1}dz, where ϕ is the standard Gaussian density. Then, for
n sufficiently large,

√
n

∆ε
n

(
n∆n

(∫
{|z|≥ρ2∆−γn }

ν(dz) +

∫
{|z|≤ρ1∆υ

n}
ν(dz)

)) 1
q

=

√
n

∆ε
n

(
n∆n

∫
{|z|≥ρ2∆−γn }

ν(dz)

) 1
q

≤ cq
√
n

∆ε
n

(n∆n)
1
q e−cq∆

−2γ
n ,

which tends to zero as n→∞ for all ε > 0, q > 1, ρ1, ρ2 > 0 and 0 < υ, γ < 1
2 , and thus (A7)

holds.

As usual, constants will be denoted by C or c and they will always be independent of time
and ∆n but may depend on bounds for the set Θ. They may change of value from one line to
the next.

4.2 Preliminaries

In this section we introduce some preliminary results needed for the proof of Theorem 4.1.1.
We start as in Gobet [24] applying the integration by parts formula of the Malliavin calculus

on the Wiener space to analyze the log-likelihood function. In order to avoid confusion with
the observed process Xθ, we introduce an extra probabilistic representation of Xθ where the
Malliavin calculus will be applied. That is, consider the flow Y θ(s, x) = (Y θ

t (s, x), t ≥ s), x ∈ R
on the time interval [s,∞) and with initial condition Y θ

s (s, x) = x satisfying

Y θ
t (s, x) = x+

∫ t

s
b(θ, Y θ

u (s, x))du+

∫ t

s
σ(Y θ

u (s, x))dWu

+

∫ t

s

∫
R0

c(Y θ
u−(s, x), z) (M(du, dz)− ν(dz)du) ,

(4.2)

whereW = (Wt)t≥0 is a Brownian motion,M(dt, dz) is a Poisson random measure with intensity
measure ν(dz)dt associated with a centered pure-jump Lévy process Z̃ = (Z̃t)t≥0 independent
of W , and we denote by M̃(dt, dz) := M(dt, dz) − ν(dz)dt the compensated Poisson random
measure. In particular, we write Y θ

t ≡ Y θ
t (0, x0), for all t ≥ 0. That is,

Y θ
t = x0 +

∫ t

0
b(θ, Y θ

u )du+

∫ t

0
σ(Y θ

u )dWu +

∫ t

0

∫
R0

c(Y θ
u−, z) (M(du, dz)− ν(dz)du) . (4.3)

Here, we consider the Malliavin calculus on the Wiener space induced by the Brownian
motion W , and we denote by D and δ the Malliavin derivative and the Skorohod integral with
respect to W on each interval [tk, tk+1], respectively (see the Definition 1.1.3 and the discussion
following it). For all A ∈ F̃ , let us denote P̃θx(A) = Ẽ[1A|Y θ

tk
= x]. We denote by Ẽθx the

expectation with respect to P̃θx. That is, for all F̃-measurable random variable V , we have that
Ẽθx[V ] = Ẽ[V |Y θ

tk
= x].

Under conditions (A1)-(A4), for any t > s the law of Y θ
t conditioned on Y θ

s = x admits a
positive transition density pθ(t− s, x, y), which is differentiable w.r.t. θ. As a consequence of [24,
Proposition 4.1], we have the following expression for the derivative of the log-likelihood function
w.r.t. θ in terms of a conditional expectation, although one can also follow the same steps as in
the proof of Proposition 3.2.1.

Proposition 4.2.1. Assume conditions (A1)-(A4). Then for all k ∈ {0, ..., n− 1} and θ ∈ Θ,

∂θp
θ

pθ
(∆n, x, y) =

1

∆n
Ẽθx

[
δ
(
∂θY

θ
tk+1

(tk, x)U θ(tk, x)
) ∣∣∣Y θ

tk+1
= y
]
,
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where U θt (tk, x) = (DtY
θ
tk+1

(tk, x))−1 = (∂xY
θ
tk+1

(tk, x))−1∂xY
θ
t (tk, x)σ−1(Y θ

t (tk, x)) for all t ∈
[tk, tk+1], and the processes (∂θY

θ
t (tk, x), t ∈ [tk, tk+1]) and (∂xY

θ
t (tk, x), t ∈ [tk, tk+1]) denote the

solutions to linear equations

∂θY
θ
t (tk, x) =

∫ t

tk

(
∂θb(θ, Y

θ
s (tk, x)) + ∂xb(θ, Y

θ
s (tk, x))∂θY

θ
s (tk, x)

)
ds

+

∫ t

tk

∂xσ(Y θ
s (tk, x))∂θY

θ
s (tk, x)dWs +

∫ t

tk

∫
R0

∂xc(Y
θ
s−(tk, x), z)∂θY

θ
s (tk, x)M̃(ds, dz),

∂xY
θ
t (tk, x) = 1 +

∫ t

tk

∂xb(θ, Y
θ
s (tk, x))∂xY

θ
s (tk, x)ds+

∫ t

tk

∂xσ(Y θ
s (tk, x))∂xY

θ
s (tk, x)dWs

+

∫ t

tk

∫
R0

∂xc(Y
θ
s−(tk, x), z)∂xY

θ
s (tk, x)M̃(ds, dz).

We have the following decomposition of the Skorohod integral appearing in the conditional
expectation of Proposition 4.2.1.

Lemma 4.2.1. Under conditions (A1)-(A4), for all θ ∈ Θ and k ∈ {0, ..., n− 1},

δ
(
∂θY

θ
tk+1

(tk, x)U θ(tk, x)
)

= ∆n∂θb(θ, Y
θ
tk

)σ−2(Y θ
tk

)
(
Y θ
tk+1
− Y θ

tk
− b(θ, Y θ

tk
)∆n

)
+Rθ,k1 +Rθ,k2 +Rθ,k3 −R

θ,k
4 −R

θ,k
5 −R

θ,k
6 ,

where

Rθ,k1 : = −
∫ tk+1

tk

Ds

(
∂θY

θ
tk+1

(tk, x)

∂xY θ
tk+1

(tk, x)

)
∂xY

θ
s (tk, x)

σ(Y θ
s (tk, x))

ds,

Rθ,k2 : =

∫ tk+1

tk

∂θb(θ, Y
θ
s (tk, x))

∂xY θ
s (tk, x)

ds

∫ tk+1

tk

(
∂xY

θ
s (tk, x)

σ(Y θ
s (tk, x))

−
∂xY

θ
tk

(tk, x)

σ(Y θ
tk

(tk, x))

)
dWs,

Rθ,k3 : =

∫ tk+1

tk

(
∂θb(θ, Y

θ
s (tk, x))

∂xY θ
s (tk, x)

−
∂θb(θ, Y

θ
tk

(tk, x))

∂xY θ
tk

(tk, x)

)
ds

∫ tk+1

tk

∂xY
θ
tk

(tk, x)

σ(Y θ
tk

(tk, x))
dWs,

Rθ,k4 : = ∆n∂θb(θ, Y
θ
tk

)σ−2(Y θ
tk

)

∫ tk+1

tk

(
b(θ, Y θ

s )− b(θ, Y θ
tk

)
)
ds,

Rθ,k5 : = ∆n∂θb(θ, Y
θ
tk

)σ−2(Y θ
tk

)

∫ tk+1

tk

(
σ(Y θ

s )− σ(Y θ
tk

)
)
dWs,

Rθ,k6 : = ∆n∂θb(θ, Y
θ
tk

)σ−2(Y θ
tk

)

∫ tk+1

tk

∫
R0

c(Y θ
s−, z)M̃(ds, dz),

and

Ds

(
∂θY

θ
tk+1

(tk, x)

∂xY θ
tk+1

(tk, x)

)
=

∫ tk+1

s

(
− ∂θb(θ, Y

θ
u (tk, x))

(∂xY θ
u (tk, x))2

Ds(∂xY
θ
u (tk, x))

+ ∂2
x,θb(θ, Y

θ
u (tk, x))

DsY
θ
u (tk, x)

∂xY θ
u (tk, x)

)
du.

Proof. By Itô’s formula,

1

∂xY θ
t (tk, x)

= 1−
∫ t

tk

∂xb(θ, Y
θ
s (tk, x))−

(
∂xσ(Y θ

s (tk, x))
)2

∂xY θ
s (tk, x)

ds−
∫ t

tk

∂xσ(Y θ
s (tk, x))

∂xY θ
s (tk, x)

dWs

+

∫ t

tk

∫
R0

(
∂xc(Y

θ
s−(tk, x), z)

)2(
1 + ∂xc(Y θ

s−(tk, x), z)
)
∂xY θ

s (tk, x)
ν(dz)ds

−
∫ t

tk

∫
R0

∂xc(Y
θ
s−(tk, x), z)(

1 + ∂xc(Y θ
s−(tk, x), z)

)
∂xY θ

s (tk, x)
M̃(ds, dz),
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which implies that
∂θY

θ
tk+1

(tk, x)

∂xY θ
tk+1

(tk, x)
=

∫ tk+1

tk

∂θb(θ, Y
θ
s (tk, x))

∂xY θ
s (tk, x)

ds.

Then, using the product rule [57, (1.48)], we obtain that

δ
(
∂θY

θ
tk+1

(tk, x)U θ(tk, x)
)

=

∫ tk+1

tk

∂θb(θ, Y
θ
s (tk, x))

∂xY θ
s (tk, x)

ds

∫ tk+1

tk

∂xY
θ
s (tk, x)

σ(Y θ
s (tk, x))

dWs

−
∫ tk+1

tk

Ds

(
∂θY

θ
tk+1

(tk, x)

∂xY θ
tk+1

(tk, x)

)
∂xY

θ
s (tk, x)

σ(Y θ
s (tk, x))

ds.

We next add and substract the term
∂xY θtk

(tk,x)

σ(Y θtk
(tk,x))

in the second integral above, and next we add

and substract the term
∂θb(θ,Y

θ
tk

(tk,x))

∂xY θtk
(tk,x)

in the first one. This, together the fact that Y θ
tk

(tk, x) =

Y θ
tk

= x, yields

δ
(
∂θY

θ
tk+1

(tk, x)U θ(tk, x)
)

= ∆n∂θb(θ, Y
θ
tk

)σ−1(Y θ
tk

)
(
Wtk+1

−Wtk

)
+Rθ,k1 +Rθ,k2 +Rθ,k3 . (4.4)

On the other hand, by equation (4.3) we have that

Wtk+1
−Wtk = σ−1(Y θ

tk
)

(
Y θ
tk+1
− Y θ

tk
− b(θ, Y θ

tk
)∆n −

∫ tk+1

tk

(
b(θ, Y θ

s )− b(θ, Y θ
tk

)
)
ds

−
∫ tk+1

tk

(
σ(Y θ

s )− σ(Y θ
tk

)
)
dWs −

∫ tk+1

tk

∫
R0

c(Y θ
s−, z)M̃(ds, dz)

)
,

which concludes the desired result.

We will use the following estimates for the solution to (4.2).

Lemma 4.2.2. Assume conditions (A1) and (A5).
(i) For any p ≥ 2 and θ ∈ Θ, there exists a constant Cp > 0 such that for all k ∈ {0, ..., n−1}
and t ∈ [tk, tk+1],

E
[∣∣∣Y θ

t (tk, x)− Y θ
tk

(tk, x)
∣∣∣p ∣∣Y θ

tk
(tk, x) = x

]
≤ Cp |t− tk|

p
2
∧1 (1 + |x|p) .

(ii) For any function g : Θ× R → R with polynomial growth in x uniformly in θ ∈ Θ, there
exist constants C, q > 0 such that for all k ∈ {0, ..., n− 1} and t ∈ [tk, tk+1],

E
[∣∣∣g(θ, Y θ

t (tk, x))
∣∣∣ ∣∣Y θ

tk
(tk, x) = x

]
≤ C (1 + |x|q) .

Moreover, all these statements remain valid for Xθ.

Under conditions (A1), (A2) and (A4), for any k ∈ {0, ..., n − 1} and t ≥ tk, the random
variables Y θ

t (tk, x), ∂xY θ
t (tk, x), (∂xY

θ
t (tk, x))−1 and ∂θY θ

t (tk, x) belong to D1,2 (see [61, Theorem
3]).

Assuming conditions (A1)-(A5) and using Gronwall’s inequality, one can easily check that
for any θ ∈ Θ and p ≥ 2, there exist constants Cp, q > 0 such that for all k ∈ {0, ..., n− 1} and
t ∈ [tk, tk+1],

E

[∣∣∣∂xY θ
t (tk, x))

∣∣∣p +
1∣∣∂xY θ

t (tk, x))
∣∣p ∣∣∣Y θ

tk
(tk, x) = x

]
+ sup
s∈[tk,tk+1]

E
[∣∣∣DsY

θ
t (tk, x)

∣∣∣p ∣∣∣Y θ
tk

(tk, x) = x
]
≤ Cp, and

sup
s∈[tk,tk+1]

E
[∣∣∣Ds

(
∂xY

θ
t (tk, x)

)∣∣∣p ∣∣∣Y θ
tk

(tk, x) = x
]
≤ Cp (1 + |x|q).
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As a consequence, we have the following estimates, which follow easily from (4.4), Lemma 4.2.2
and properties of the moments of the Brownian motion.

Lemma 4.2.3. Under conditions (A1)-(A5), for any θ ∈ Θ and p ≥ 2, there exist constants
Cp, q > 0 such that for all k ∈ {0, ..., n− 1},

E
[
Rθ,k1 +Rθ,k2 +Rθ,k3 −R

θ,k
5

∣∣Y θ
tk

(tk, x) = x
]

= 0, (4.5)

E
[∣∣∣Rθ,k1 +Rθ,k2 +Rθ,k3 −R

θ,k
5

∣∣∣p ∣∣Y θ
tk

(tk, x) = x
]
≤ Cp∆

3p+1
2

n (1 + |x|q) , (4.6)

E
[∣∣∣δ (∂θY θ

tk+1
(tk, x)U θ(tk, x)

)∣∣∣p ∣∣Y θ
tk

(tk, x) = x
]
≤ Cp∆

3p
2
n (1 + |x|q) . (4.7)

We next recall Girsanov’s theorem on each interval [tk, tk+1].

Lemma 4.2.4. Under conditions (A1) and (A2), for all θ, θ1 ∈ Θ, and k ∈ {0, ..., n−1}, define
a measure

Q̂θ1,θk = Ê

[
1Ae

−
∫ tk+1
tk

b(θ,Xt)−b(θ1,Xt)
σ(Xt)

dBt+
1
2

∫ tk+1
tk

(
b(θ,Xt)−b(θ1,Xt)

σ(Xt)

)2
dt
]
,

for all A ∈ F̂ . Then Q̂θ1,θk is a probability measure and under Q̂θ1,θk , the process BQ̂
θ1,θ
k

t = Bt +∫ tk+1

tk

b(θ,Xt)−b(θ1,Xt)
σ(Xt)

dt is a Brownian motion, for all t ∈ [tk, tk+1].

Lemma 4.2.5. Assume conditions (A1), (A2), and (A4)(b). Let θ, θ1 ∈ Θ such that |θ−θ1| ≤
C√
n∆n

, for some constant C > 0. Then there exist constants C, q > 0 such that for any random
variable V , and k ∈ {0, ..., n− 1},∣∣∣∣∣EQ̂θ1,θk

[
V

(
dP̂

dQ̂θ1,θk

− 1

)∣∣∣Xθ
tk

]∣∣∣∣∣ ≤ C√
n

(
1 + |Xθ

tk
|q
)∫ 1

0

(
E

P̂α

[
V 2
∣∣∣Xθ

tk

])1/2
dα,

where E
P̂α

denotes the expectation under the probability measure P̂α defined as

dP̂α

dQ̂θ1,θk

:= e
α
∫ tk+1
tk

b(θ,Xt)−b(θ1,Xt)
σ(Xt)

dBt−α
2

2

∫ tk+1
tk

(
b(θ,Xt)−b(θ1,Xt)

σ(Xt)

)2
dt
,

for all α ∈ [0, 1].

Proof. Observe that

dP̂

dQ̂θ1,θk

− 1 =

∫ 1

0

∫ tk+1

tk

b(θ,Xt)− b(θ1, Xt)

σ(Xt)

(
dBt − α

b(θ,Xt)− b(θ1, Xt)

σ(Xt)
dt

)
dP̂α

dQ̂θ1,θk

dα.

Consider the process W = (Wt)t∈[tk,tk+1] defined by

Wt := Bt − α
∫ t

tk

b(θ,Xs)− b(θ1, Xs)

σ(Xs)
ds.

By Girsanov’s theorem, W is a Brownian motion under P̂α.
Then, using Girsanov’s theorem, Cauchy-Schwarz inequality, and hypotheses (A2), (A4)(b),

together with Lemma 4.2.2 (ii), we get that∣∣∣∣∣EQ̂θ1,θk

[
V

(
dP̂

dQ̂θ1,θk

− 1

)∣∣∣Xθ
tk

]∣∣∣∣∣ =

∣∣∣∣∫ 1

0
E

P̂α

[
V

∫ tk+1

tk

b(θ,Xt)− b(θ0, Xt)

σ(Xt)
dWt

∣∣∣Xθ
tk

]
dα

∣∣∣∣
≤
∫ 1

0

(
E

P̂α

[
V 2
∣∣∣Xθ

tk

])1/2
(

E
P̂α

[∣∣∣∣∫ tk+1

tk

b(θ,Xt)− b(θ0, Xt)

σ(Xt)
dWt

∣∣∣∣2 ∣∣∣Xθ
tk

])1/2

dα

≤ C√
n

(
1 + |Xθ

tk
|q
)∫ 1

0

(
E

P̂α

[
V 2
∣∣∣Xθ

tk

])1/2
dα,

for some constants C, q > 0. Thus, the result follows.
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For any t > s and i ≥ 0, we denote by qθ(i)(t−s, x, y) the transition density of Y θ
t conditioned

on Y θ
s = x and Mt −Ms = i, where Mt = M([0, t]× R). That is,

pθ(t− s, x, y) =
∞∑
i=0

qθ(i)(t− s, x, y)e−λ(t−s) (λ(t− s))i

i!
. (4.8)

From [25, Proposition 1.2], for any θ ∈ Θ there exist constants c, C > 1 such that for all
0 < t ≤ 1, and x, y ∈ R,

1

C
√
t
e−c

(y−x)2

t e−ctx
2 ≤ qθ(0)(t, x, y) ≤ C√

t
e−

(y−x)2

ct ectx
2
. (4.9)

For any t > s and i ≥ 1, we denote by qθ(i)(t − s, x, y; a1, . . . , ai) the transition density of

Y θ
t conditioned on Y θ

s = x,Mt −Ms = i and Λ̃[s,t] = {a1, . . . , ai}, where Λ̃[s,t] are the jump
amplitudes of Z̃ on the interval [s, t], i.e, Λ̃[s,t] := {∆Z̃u; s ≤ u ≤ t}.

Lemma 4.2.6. Under conditions (A1)-(A4), for all θ ∈ Θ and n large enough, there exist
constants C1, C2, C3 > 0 such that for all a, x, y ∈ R,

qθ(1)(∆n, x, y; a) ≤ C1e
C2∆n(x2+(1+x2)a2) 1√

∆n
e
− (y−x−c(x,a))2

C3∆n .

Proof. Using the Chapman-Kolmogorov equation in terms of transition density and the fact that
the distribution of the jump time conditioned on Mtk+1

−Mtk = 1 is a uniform distribution on
[tk, tk+1], together with (4.9), we get that

qθ(1)(∆n, x, y; a) =
1

∆n

∫ tk+1

tk

∫
R
qθ(0)(t− tk, x, z)q

θ
(0)(tk+1 − t, z + c(z, a), y)dzdt

≤ C

∆n

∫ tk+1

tk

∫
R

1√
t− tk

e
− (z−x)2

c(t−tk) ec(t−tk)x2 1√
tk+1 − t

e
− (y−z−c(z,a))2

c(tk+1−t) ec(tk+1−t)(z+c(z,a))2
dzdt,

for some constants c, C > 1.
We next use the change of variables u := ϕ(z) := z + c(z, a) − x − c(x, a). Observe that

ϕ(x) = 0. Moreover, from hypotheses (A4)(a) and (e),

η ≤ |ϕ′(z)| = |1 + ∂zc(z, a)| ≤ β,

for some constants β, η > 0. Therefore, the mapping z → ϕ(z) admits an inverse function ϕ−1.
Thus, for any u ∈ R, there exists ξ ∈ (0, u) or ξ ∈ (u, 0) such that

|u|
β
≤ |ϕ−1(u)− ϕ−1(0)| = |u|

|ϕ′(ϕ−1(ξ))|
≤ |u|

η
,

which yields

qθ(1)(∆n, x, y; a) ≤ C

∆n

∫ tk+1

tk

∫
R

1√
t− tk

e
−(ϕ−1(u)−ϕ−1(0))

2

c(t−tk)
1√

tk+1 − t
e
− (y−u−x−c(x,a))2

c(tk+1−t)

× ec(t−tk)x2
ec(tk+1−t)(u+x+c(x,a))2

dudt

≤ C

∆n

∫ tk+1

tk

∫
R

1√
t− tk

e
− u2

cβ2(t−tk)
1√

tk+1 − t
e
− (y−u−x−c(x,a))2

c(tk+1−t)

× e2c(tk+1−t)u2
ec∆nx2

e2c∆n(x+c(x,a))2
dudt.

We next use the fact that

e
− u2

cβ2(t−tk)
+2c(tk+1−t)u2

= e
−

1−2c2β2(t−tk)(tk+1−t)
cβ2(t−tk)

u2

≤ e−
(1−c2β2∆2

n)u2

cβ2(t−tk) ,
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to get that for n large enough, there exists C > 0 such that

qθ(1)(∆n, x, y; a) ≤ e5c∆nx2
e4c∆nc2(x,a) C

∆n

∫ tk+1

tk

∫
R

1√
β2

1−c2β2∆2
n

(t− tk)
e
− (1−c2β2∆2

n)u2

cβ2(t−tk)

× 1√
tk+1 − t

e
− (y−u−x−c(x,a))2

c(tk+1−t) dudt

= e5c∆nx2
e4c∆nc2(x,a) C

∆n

∫ tk+1

tk

1√
β2

1−c2β2∆2
n

(t− tk) + tk+1 − t)
e

− (y−x−c(x,a))2

c

(
β2

1−c2β2∆2
n

(t−tk)+tk+1−t
)
dt.

Next, observe that for n large enough there exist constants β1, β2 > 0 such that

β1∆n ≤
β2

1− 1
2c

2β2∆2
n

(t− tk) + tk+1 − t ≤ β2∆n,

from where we deduce that

qθ(1)(∆n, x, y; a) ≤ Ce5c∆nx2
e4c∆nc2(x,a) 1√

∆n
e−

(y−x−c(x,a))2

c∆n .

Finally, hypothesis (A1) implies the desired result.

Consider the events Ĵi,k = {Ntk+1
−Ntk = i} and J̃i,k = {Mtk+1

−Mtk = i}, for i = 0, 1 and
k ∈ {0, ..., n − 1}, where Nt = N([0, t] × R). We denote by Λ̂[s,t] the jump amplitudes of Ẑ on
the interval [s, t], i.e, Λ̂[s,t] := {∆Ẑu; s ≤ u ≤ t}, and by µ(dz) = ν(dz)

λ the jump size distribution
of Ẑ. As in Lemma 3.2.4, we have the following expressions for the conditional expectations in
terms of the transition densities.

Lemma 4.2.7. Under conditions (A1)-(A4), for all k ∈ {0, ..., n− 1} and θ ∈ Θ,

E
Q̂
θ,θ0
k

[
1
Ĵ0,k

(
ẼθXtk

[
1
J̃1,k

∫ tk+1

tk

∫
R0

c(Y θ
tk
, z)M(ds, dz)

∣∣∣∣Y θ
tk+1

= Xtk+1

])2∣∣∣Xtk

]

=

∫
R

(∫
R0
qθ(1)(∆n, Xtk , y; a)c (Xtk , a)µ(da)e−λ∆nλ∆n

pθ(∆n, Xtk , y)

)2

qθ(0)(∆n, Xtk , y)e−λ∆ndy,

(4.10)

E
Q̂
θ,θ0
k

[
1
Ĵ1,k

(∫ tk+1

tk

∫
R0

c(Xtk , z)N(ds, dz)ẼθXtk

[
1
J̃0,k

∣∣∣∣Y θ
tk+1

= Xtk+1

])2 ∣∣∣Xtk

]

=

∫
R0

∫
R

(
qθ(0)(∆n, Xtk , y)e−λ∆n

pθ(∆n, Xtk , y)

)2

qθ(1)(∆n, Xtk , y; a)e−λ∆nλ∆nc
2(Xtk , a)dyµ(da),

(4.11)

and

E
Q̂
θ,θ0
k

[
1
Ĵ1,k

(∫ tk+1

tk

∫
R0

c(Xtk , z)N(ds, dz)ẼθXtk

[
1
J̃1,k

∣∣∣∣Y θ
tk+1

= Xtk+1

]
− ẼθXtk

[
1
J̃1,k

∫ tk+1

tk

∫
R0

c(Y θ
tk
, z)M(ds, dz)

∣∣∣∣Y θ
tk+1

= Xtk+1

])2∣∣∣Xtk

]

=

∫
R0

∫
R

(∫
R0

(c(Xtk , z)− c(Xtk , a)) qθ(1)(∆n, Xtk , y; a)µ(da)e−λ∆nλ∆n

pθ(∆n, Xtk , y)

)2

× qθ(1)(∆n, Xtk , y; z)e−λ∆nλ∆ndyµ(dz).

(4.12)
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Proof. Using Bayes’ formula, we get that

ẼθXtk

[
1
J̃1,k

∫ tk+1

tk

∫
R0

c(Y θ
tk
, z)M(ds, dz)

∣∣∣∣Y θ
tk+1

= Xtk+1

]

=

ẼθXtk

[
c(Y θ

tk
, Λ̃[tk,tk+1])1{Y θtk+1

=Xtk+1
}

∣∣∣J̃1,k

]
P̃θXtk

(
J̃1,k

)
pθ(∆n, Xtk , Xtk+1

)

=

∫
R0
qθ(1)(∆n, Xtk , Xtk+1

; a)c (Xtk , a)µ(da)e−λ∆nλ∆n

pθ(∆n, Xtk , Xtk+1
)

.

This, together with Bayes’ formula again, implies that

E
Q̂
θ,θ0
k

[
1
Ĵ0,k

(
ẼθXtk

[
1
J̃1,k

∫ tk+1

tk

∫
R0

c(Y θ
tk
, z)M(ds, dz)

∣∣∣∣Y θ
tk+1

= Xtk+1

])2∣∣∣Xtk

]

= Q̂θ,θ0k

(
Ĵ0,k

∣∣Xtk

)
E
Q̂
θ,θ0
k

(∫R0
qθ(1)(∆n, Xtk , Xtk+1

; a)c (Xtk , a)µ(da)e−λ∆nλ∆n

pθ(∆n, Xtk , Xtk+1
)

)2 ∣∣∣Ĵ0,k, Xtk

 ,
which implies (4.10). Similarly,

E
Q̂
θ,θ0
k

[
1
Ĵ1,k

(∫ tk+1

tk

∫
R0

c(Xtk , z)N(ds, dz)ẼθXtk

[
1
J̃0,k

∣∣∣∣Y θ
tk+1

= Xtk+1

])2 ∣∣∣Xtk

]

= E
Q̂
θ,θ0
k

1
Ĵ1,k

(
c
(
Xtk , Λ̂[tk,tk+1]

))2
(
qθ(0)(∆n, Xtk , Xtk+1

)e−λ∆n

pθ(∆n, Xtk , Xtk+1
)

)2 ∣∣∣Xtk


=

∫
R0

E
Q̂
θ,θ0
k

(qθ(0)(∆n, Xtk , Xtk+1
)e−λ∆n

pθ(∆n, Xtk , Xtk+1
)

)2 ∣∣∣Ĵ1,k, Λ̂[tk,tk+1] = {a}, Xtk

 c2(Xtk , a)

× Q̂θ,θ0k

(
Λ̂[tk,tk+1] ∈ da, Ĵ1,k

∣∣∣Xtk

)
=

∫
R0

∫
R

(
qθ(0)(∆n, Xtk , y)e−λ∆n

pθ(∆n, Xtk , y)

)2

qθ(1)(∆n, Xtk , y; a)e−λ∆nλ∆nc
2(Xtk , a)dyµ(da),

which shows (4.11). The proof of (4.12) follows along the same lines and is therefore omitted.

By abuse of notation, consider the events Ĵ2,k = {Ntk+1
−Ntk ≥ 2} and J̃2,k = {Mtk+1

−Mtk ≥
2}. Set I = {ρ1∆υ

n ≤ |a| ≤ ρ2∆−γn } and λn =
∫
I ν(da), where ρ1, ρ2 > 0 and 0 < υ, γ < 1

2 are
from hypothesis (A7). For i = 0, 1, 2, set

M θ
i = E

Q̂
θ,θ0
k

[
1
Ĵi,k

(∫ tk+1

tk

∫
I
c(Xtk , z)N(ds, dz)

− ẼθXtk

[∫ tk+1

tk

∫
I
c(Y θ

tk
, z)M(ds, dz)

∣∣∣∣Y θ
tk+1

= Xtk+1

])2∣∣∣Xtk

]
.

Recall that for the simple Lévy process (3.1), we used a large deviation principle by condi-
tioning on the number of jumps within the conditional expectation in order to obtain the large
deviation estimates (see Lemma 3.2.6). For the non-linear model (4.1), now we will obtain the
parallel of Lemma 3.2.6 in our case.
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Lemma 4.2.8. Under conditions (A1)-(A5), for any θ ∈ Θ and n large enough, there exist
constants C,C0, C1 > 0, such that for all α ∈ (υ, 1

2), α0 ∈ (1
4 ,

1
2), and k ∈ {0, ..., n− 1},

M θ
0 ≤ Ce

C1∆1−2γ
n X2

tk

(
1 + |Xtk |

2
) (
λn∆3/2

n + ∆−2γ
n e−C0∆2α−1

n

)
, (4.13)

M θ
1 ≤ Ce

C1∆1−2γ
n X2

tk

(
1 + |Xtk |

3
)(

λn∆3/2
n + ∆

− 1
2
−3γ

n e−C0∆
2(α∨α0)−1
n

)
, (4.14)

M θ
2 ≤ Cλn∆3/2

n (1 + |Xtk |
2). (4.15)

In particular, (4.15) holds for all n ≥ 1.

Proof. We start showing (4.13). Multiplying the random variable inside the conditional expec-
tation of M θ

0 by (1
J̃0,k

+ 1
J̃1,k

+ 1
J̃2,k

), we get that M θ
0 ≤ 2(M θ

0,1 +M θ
0,2), where for i = 1, 2,

M θ
0,i = E

Q̂
θ,θ0
k

[
1
Ĵ0,k

(
ẼθXtk

[
1
J̃i,k

∫ tk+1

tk

∫
I
c(Y θ

tk
, z)M(ds, dz)

∣∣∣∣Y θ
tk+1

= Xtk+1

])2 ∣∣∣Xtk

]
.

By (4.10), we have that

M θ
0,1 =

∫
R

(∫
I q

θ
(1)(∆n, Xtk , y; a)c (Xtk , a)µ(da)e−λn∆nλn∆n

pθ(∆n, Xtk , y)

)2

qθ(0)(∆n, Xtk , y)e−λn∆ndy.

We next divide the integral inM θ
0,1 into the subdomains {y : |y−Xtk | > ∆α

n} and {y : |y−Xtk | ≤
∆α
n}, where α ∈ (υ, 1

2), and call each integralM θ
0,1,1 andM θ

0,1,2. Therefore, the estimation ofM θ
0,1

will be divided into two parts. One will use large deviation for the continuous process in the first
part. The other will use the fact that the jump parts are significantly bigger than the continuous
parts. This fact will be obtained under condition (A3).

We start bounding M θ
0,1,1. By (4.8),

pθ(∆n, Xtk , y) ≥
∫
I
qθ(1)(∆n, Xtk , y; a)µ(da)e−λn∆nλn∆n. (4.16)

Then, using the fact that by (A1), on I, |c(Xtk , a)| ≤ C∆−γn (1+ |Xtk |) for some constant C > 0,
and (4.9), we get that

M θ
0,1,1 ≤ C∆−2γ

n

(
1 + |Xtk |

2
) ∫
{|y−Xtk |>∆α

n}
qθ(0)(∆n, Xtk , y)dy

≤ C∆−2γ
n

(
1 + |Xtk |

2
) ∫
{|y−Xtk |>∆α

n}

1√
∆n

e−
(y−Xtk )2

c∆n e
c∆nX2

tkdy

≤ C∆−2γ
n

(
1 + |Xtk |

2
)
e
c∆nX2

tk e−C1∆2α−1
n ,

for some constants C,C1 > 0 and c > 1. We next treat M θ
0,1,2. Observe that (4.8) yields

(
pθ(∆n, Xtk , y)

)2
≥ qθ(0)(∆n, Xtk , y)e−λn∆n

∫
I
qθ(1)(∆n, Xtk , y; a)µ(da)e−λn∆nλn∆n. (4.17)



76 Chapitre 4. LAN property for a jump-diffusion process : drift parameter

Therefore, using hypothesis (A1) and Lemma 4.2.6, we get that for n large enough

M θ
0,1,2 ≤ C∆−2γ

n

(
1 + |Xtk |

2
)
e−λn∆nλn∆n

∫
{|y−Xtk |≤∆α

n}

∫
I
qθ(1)(∆n, Xtk , y; a)µ(da)dy

≤ C∆−2γ
n

(
1 + |Xtk |

2
)
e
C2∆1−2γ

n X2
tk

∫
I

∫
{|y−Xtk |≤∆α

n}
1√
∆n

e
−

(y−Xtk−c(Xtk ,a))2

C3∆n dyµ(da)

≤ C∆−2γ
n

(
1 + |Xtk |

2
)
e
C2∆1−2γ

n X2
tk

∫
I

{∫ ∆αn−Cρ1∆υn√
C3∆n

−∞
e−w

2
dw1{c(Xtk ,a)≥Cρ1∆υ

n}

+

∫ +∞

−∆αn+Cρ1∆υn√
C3∆n

e−w
2
dw1{c(Xtk ,a)≤−Cρ1∆υ

n}

}
µ(da)

≤ C∆−2γ
n

(
1 + |Xtk |

2
)
e
C2∆1−2γ

n X2
tk e−C0∆2υ−1

n ,

for some constants C,C0, C2, C3 > 0, where we have applied Fubini’s theorem, the change of
variables w =

y−Xtk−c(Xtk ,a)√
C3∆n

, and the fact that by (A3), on I, |c(Xtk , a)| ≥ C|a| ≥ Cρ1∆υ
n for

some constant C > 0, together with e−λn∆nλn∆n ≤ λ. This shows that for n large enough and
α ∈ (υ, 1

2),

M θ
0,1 ≤ C∆−2γ

n

(
1 + |Xtk |

2
)
e
C1∆1−2γ

n X2
tk e−C0∆2α−1

n , (4.18)

for some constants C,C0, C1 > 0.
In order to treat M θ

0,2, observe that by Jensen and Cauchy-Schwarz inequalities, and hypo-
theses (A1) and (A5), it holds that

M θ
0,2 ≤ E

[
1
J̃2,k

(∫ tk+1

tk

∫
I
c(Y θ

tk
, z)M(ds, dz)

)2 ∣∣∣Y θ
tk

= Xtk

]
≤ Cλn∆3/2

n

(
1 + |Xtk |

2
)
.

This shows (4.13).
We next show (4.14). As for the term M θ

0 , we have that M θ
1 ≤ 2(M θ

1,1 +M θ
1,2), where

M θ
1,1 = E

Q̂
θ,θ0
k

[
1
Ĵ1,k

(∫ tk+1

tk

∫
I
c(Xtk , z)N(ds, dz)

− ẼθXtk

[
1
J̃1,k

∫ tk+1

tk

∫
I
c(Y θ

tk
, z)M(ds, dz)

∣∣∣∣Y θ
tk+1

= Xtk+1

])2∣∣∣Xtk

]
,

M θ
1,2 = E

Q̂
θ,θ0
k

[
1
Ĵ1,k

(
ẼθXtk

[
1
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tk

∫
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c(Y θ

tk
, z)M(ds, dz)

∣∣∣∣Y θ
tk+1

= Xtk+1

])2 ∣∣∣Xtk

]
.

We start bounding M θ
1,1. Adding and substracting the term∫ tk+1

tk

∫
I
c(Xtk , z)N(ds, dz)ẼθXtk

[
1
J̃1,k
|Y θ
tk+1

= Xtk+1

]
inside the square, we get that M θ

1,1 ≤ 2(M θ
1,1,1 +M θ

1,1,2), where

M θ
1,1,1 = E

Q̂
θ,θ0
k
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1
Ĵ1,k

(∫ tk+1
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∫
I
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−
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∫
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1
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∣∣∣∣Y θ
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])2∣∣∣Xtk

]
,

M θ
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θ,θ0
k
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1
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∣∣∣∣Y θ
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− ẼθXtk

[
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tk
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∣∣∣∣Y θ
tk+1
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]
.
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Observe that M θ
1,1,1 ≤ 2(M θ

1,1,1,0 +M θ
1,1,1,2), where for i = 0, 2,

M θ
1,1,1,i = E

Q̂
θ,θ0
k

[
1
Ĵ1,k

(∫ tk+1

tk

∫
I
c(Xtk , z)N(ds, dz)ẼθXtk

[
1
J̃i,k

∣∣∣∣Y θ
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= Xtk+1

])2 ∣∣∣Xtk

]
.

By (4.11),

M θ
1,1,1,0 =

∫
I

∫
R

(
qθ(0)(∆n, Xtk , y)e−λn∆n

pθ(∆n, Xtk , y)

)2

qθ(1)(∆n, Xtk , y; a)e−λn∆nλn∆nc
2(Xtk , a)dyµ(da).

Again we divide the dy integral into the subdomains {y : |y−Xtk | > ∆α
n} and {y : |y−Xtk | ≤

∆α
n}, where α ∈ (υ, 1

2), and call the terms M θ
1,1,1,0,1 and M θ

1,1,1,0,2. In the same way the term
M θ

0,1,1 was treated, we use (4.17) and hypothesis (A1), we obtain that

M θ
1,1,1,0,1 ≤ C∆−2γ

n

(
1 + |Xtk |

2
) ∫
{|y−Xtk |>∆α

n}
qθ(0)(∆n, Xtk , y)dy

≤ C∆−2γ
n

(
1 + |Xtk |

2
)
e
c∆nX2

tk e−C1∆2α−1
n ,

for some constants C,C1 > 0 and c > 1. Next, (4.8) yields

pθ(∆n, Xtk , y) ≥ qθ(0)(∆n, Xtk , y)e−λn∆n . (4.19)

Then, as for the term M θ
0,1,2, using hypothesis (A1) and Lemma 4.2.6, we get that for n large

enough

M θ
1,1,1,0,2 ≤ C∆−2γ

n

(
1 + |Xtk |

2
)
e−λn∆nλn∆n

∫
I

∫
{|y−Xtk |≤∆α

n}
qθ(1)(∆n, Xtk , y; a)dyµ(da)

≤ C∆−2γ
n

(
1 + |Xtk |

2
)
e
C2∆1−2γ

n X2
tk e−C0∆2υ−1

n ,

for some constants C,C0, C2 > 0. Therefore, the term M θ
1,1,1,0 satisfies (4.18).

As for the term M θ
0,2, we have that M θ

1,1,1,2 ≤ Cλn∆
3/2
n (1 + |Xtk |2) for some constant C > 0.

Therefore, the term M θ
1,1,1 satisfies (4.13).

We next treat M θ
1,1,2. Using (4.12), we have that

M θ
1,1,2 =

∫
I

∫
R

(∫
I (c(Xtk , z)− c(Xtk , a)) qθ(1)(∆n, Xtk , y; a)µ(da)e−λn∆nλn∆n

pθ(∆n, Xtk , y)

)2

× qθ(1)(∆n, Xtk , y; z)e−λn∆nλn∆ndyµ(dz).

We next fix α0 and ε such that 1
4 < ε < α0 <

1
2 , and consider the set

Ekz = {a ∈ I : |c(Xtk , z)− c(Xtk , a)| ≤ ∆ε
n, for all z ∈ I} .

We next split the integral inside the square of M θ
1,1,2 over the sets 1Ekz and 1(Ekz )c and call both

terms M θ
1,1,2,1 and M θ

1,1,2,2. First, (4.16) and Lemma 4.2.6 yield that

M θ
1,1,2,1 ≤ Ce−λn∆nλn∆1+2ε

n

∫
I

∫
R
qθ(1)(∆n, Xtk , y; z)dyµ(dz) ≤ Cλn∆1+2ε

n e
C1∆1−2γ

n X2
tk , (4.20)

for some constants C,C1 > 0.
Next, we treat M θ

1,1,2,2 by dividing the domain of the dy integral into the subdomains I1 :=
{y : |y−Xtk − c(Xtk , z)| > ∆α0

n } and I2 := {y : |y−Xtk − c(Xtk , z)| ≤ ∆α0
n }, and call both terms
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M θ
1,1,2,2,1 and M θ

1,1,2,2,2. Then, using hypothesis (A1), together with (4.16) and Lemma 4.2.6, we
get that

M θ
1,1,2,2,1 ≤ C∆−2γ

n

(
1 + |Xtk |

2
)
e−λn∆nλn∆n

∫
I

∫
I1

qθ(1)(∆n, Xtk , y; z)dyµ(dz)

≤ C∆−2γ
n

(
1 + |Xtk |

2
)
e
C2∆1−2γ

n X2
tk

∫
I

∫
I1

1√
∆n

e
−

(y−Xtk−c(Xtk ,z))
2

C3∆n dyµ(dz)

≤ C∆−2γ
n

(
1 + |Xtk |

2
)
e
C2∆1−2γ

n X2
tk e−C0∆

2α0−1
n ,

for some constants C,C0, C2, C3 > 0.

Next, (4.8) yields

(
pθ(∆n, Xtk , y)

)2
≥ pθ(∆n, Xtk , y)

∫
I
qθ(1)(∆n, Xtk , y; a)µ(da)e−λn∆nλn∆n.

Then, using hypothesis (A1) and Lemma 4.2.6, we obtain that

M θ
1,1,2,2,2 ≤ C∆−2γ

n

(
1 + |Xtk |

2
)
e−λn∆nλn∆n

×
∫
I

∫
I2

∫
I
1(Ekz )cq

θ
(1)(∆n, Xtk , y; a)µ(da)

qθ(1)(∆n, Xtk , y; z)e−λn∆nλn∆n

pθ(∆n, Xtk , y)
dyµ(dz)

≤ C∆−2γ
n

(
1 + |Xtk |

2
)
e
C2∆1−2γ

n X2
tk

∫
I

∫
I2

∫
I
1(Ekz )c

1√
∆n

e
−(y−Xtk−c(Xtk ,a))

2

C3∆n µ(da)

×
qθ(1)(∆n, Xtk , y; z)e−λn∆nλn∆n

pθ(∆n, Xtk , y)
dyµ(dz)

≤ C∆−2γ
n

(
1 + |Xtk |

2
)
e
C2∆1−2γ

n X2
tk

∫
I

∫
I

∫
{|h|≤∆

α0
n }

1(Ekz )c
1√
∆n

e
−(h+c(Xtk

,z)−c(Xtk ,a))
2

C3∆n

×
qθ(1)(∆n, Xtk , h+Xtk + c(Xtk , z); z)e

−λn∆nλn∆n

pθ(∆n, Xtk , h+Xtk + c(Xtk , z))
dhµ(da)µ(dz),

for some constants C,C2, C3 > 0, where we have used the change of variable h := y − Xtk −
c(Xtk , z).

Since |h| ≤ ∆α0
n and |c(Xtk , z)− c(Xtk , a)| > ∆ε

n on (Ekz )c, for n large enough there exists a
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constant C4 ∈ (0, 1) such that |h+ c(Xtk , z)− c(Xtk , a)| ≥ C4∆ε
n. Then, we deduce that

M θ
1,1,2,2,2 ≤ C∆

− 1
2
−2γ

n e
−C

2
4∆2ε−1

n
C3

(
1 + |Xtk |

2
)
e
C2∆1−2γ

n X2
tk

×
∫
I

∫
{|h|≤∆

α0
n }

qθ(1)(∆n, Xtk , h+Xtk + c(Xtk , z); z)e
−λn∆nλn∆n

pθ(∆n, Xtk , h+Xtk + c(Xtk , z))
dhµ(dz)

= C∆
− 1

2
−2γ

n e
−C

2
4∆2ε−1

n
C3

(
1 + |Xtk |

2
)
e
C2∆1−2γ

n X2
tk

×
∫
I

∫
{|y−Xtk−c(Xtk ,z)|≤∆

α0
n }

qθ(1)(∆n, Xtk , y; z)e−λn∆nλn∆n

pθ(∆n, Xtk , y)
dyµ(dz)

≤ C∆
− 1

2
−2γ

n e
−C

2
4∆2ε−1

n
C3

(
1 + |Xtk |

2
)
e
C2∆1−2γ

n X2
tk

×
∫
{|y−Xtk |≤∆

α0
n +C∆−γn (1+|Xtk |)}

∫
I q

θ
(1)(∆n, Xtk , y; z)µ(dz)e−λn∆nλn∆n

pθ(∆n, Xtk , y)
dy

= C∆
− 1

2
−2γ+α0

n e
−C

2
4∆2ε−1

n
C3

(
1 + |Xtk |

2
)
e
C2∆1−2γ

n X2
tk

+ C∆
− 1

2
−3γ

n e
−C

2
4∆2ε−1

n
C3

(
1 + |Xtk |

3
)
e
C2∆1−2γ

n X2
tk

≤ C∆
− 1

2
−3γ

n e
−C

2
4∆2ε−1

n
C3

(
1 + |Xtk |

3
)
e
C2∆1−2γ

n X2
tk ,

where we have used the change of variable y := h+Xtk + c(Xtk , z), the linear growth condition
on c, together with (4.16).

Therefore, we have shown that for n large enough and α0 ∈ (ε, 1
2),

M θ
1,1,2,2 ≤ C∆

− 1
2
−3γ

n

(
1 + |Xtk |

3
)
e
C1∆1−2γ

n X2
tk e−C0∆

2α0−1
n ,

for some constants C,C0, C1 > 0, which together with (4.20) gives

M θ
1,1,2 ≤ Ce

C1∆1−2γ
n X2

tk

(
1 + |Xtk |

3
)(

λn∆1+2ε
n + ∆

− 1
2
−3γ

n e−C0∆
2α0−1
n

)
.

Finally, as for the term M θ
0,2, we obtain that M θ

1,2 + M θ
2 ≤ Cλn∆

3/2
n (1 + |Xtk |2), which

concludes the proof of (4.14) and (4.15).

Finally, we recall a discrete ergodic theorem.

Lemma 4.2.9. [40, Lemma 8] Assume conditions (A1) and (A6). Consider a differentiable
function g : R→ R, whose derivatives have polynomial growth in x. Then, as n→∞,

1

n

n−1∑
k=0

g(Xtk)
Pθ0−→

∫
R
g(x)πθ0(dx).

4.3 Proof of Theorem 4.1.1

In this section, the proof of Theorem 4.1.1 will be divided into several steps. We begin deriving
a stochastic expansion of the log-likelihood ratio using Proposition 4.2.1 and Lemma 4.2.1. The
second step is devoted to treat the negligible contributions of this expansion. Finally, the last
step concludes the LAN property by applying the central limit theorem for triangular arrays.



80 Chapitre 4. LAN property for a jump-diffusion process : drift parameter

4.3.1 Expansion of the log-likelihood ratio

By the Markov property and Proposition 4.2.1,

log
p(Xn; θn)

p(Xn; θ0)
=

n−1∑
k=0

log
pθn

pθ0
(∆n, Xtk , Xtk+1

)

=

n−1∑
k=0

u√
n∆n

∫ 1

0

∂θp
θ(`)

pθ(`)
(∆n, Xtk , Xtk+1

)d`

=
n−1∑
k=0

u√
n∆n

∫ 1

0

1

∆n
Ẽ
θ(`)
Xtk

[
δ
(
∂θY

θ(`)
tk+1

(tk, Xtk)U θ(`)(tk, Xtk)
) ∣∣∣Y θ(`)

tk+1
= Xtk+1

]
d`,

where θ(`) := θn(`, u) := θ0 + `u√
n∆n

.
We next consider the stopping time

τ̂ := inf
{
s ≥ 0 : |∆Ẑs| < ρ1∆υ

n or |∆Ẑs| > ρ2∆−γn

}
, (4.21)

and
τ̃ := inf

{
s ≥ 0 : |∆Z̃s| < ρ1∆υ

n or |∆Z̃s| > ρ2∆−γn

}
, (4.22)

where ρ1, ρ2 > 0 and 0 < υ, γ < 1
2 are from hypothesis (A7).

Observe that on the event {τ̂ > n∆n}, all the jumps of Ẑ in the interval [0, n∆n] are in the
interval [ρ1∆υ

n, ρ2∆−γn ]. Hence, for all ω ∈ {τ̂ > n∆n}, Xθ satisfies

Xθ
t = x0 +

∫ t

0
b(θ,Xθ

s )ds+

∫ t

0
σ(Xθ

s )dBs +

∫ t

0

∫
I
c(Xθ

s−, z) (N(ds, dz)− ν(dz)ds) , (4.23)

for all t ∈ [0, n∆n], where recall that I = {z ∈ R0 : ρ1∆υ
n ≤ |z| ≤ ρ2∆−γn }. A similar statement

is true for Y θ.
Then, multiplying by 1{τ̃>n∆n} + 1{τ̃≤n∆n} inside and 1{τ̂>n∆n} + 1{τ̂≤n∆n} outside the

conditional expectation above, we get that

log
p(Xn; θn)

p(Xn; θ0)
=

u√
n∆3

n

n−1∑
k=0

∫ 1

0

(
Z1,`
k,n + Z2,`

k,n + Z3,`
k,n

)
d`,

where

Z1,`
k,n = Ẽ

θ(`)
Xtk

[
δ
(
∂θY

θ(`)
tk+1

(tk, Xtk)U θ(`)(tk, Xtk)
) ∣∣∣Y θ(`)

tk+1
= Xtk+1

]
1{τ̂≤n∆n},

Z2,`
k,n = Ẽ

θ(`)
Xtk

[
δ
(
∂θY

θ(`)
tk+1

(tk, Xtk)U θ(`)(tk, Xtk)
)

1{τ̃≤n∆n}

∣∣∣Y θ(`)
tk+1

= Xtk+1

]
1{τ̂>n∆n},

Z3,`
k,n = Ẽ

θ(`)
Xtk

[
δ
(
∂θY

θ(`)
tk+1

(tk, Xtk)U θ(`)(tk, Xtk)
)

1{τ̃>n∆n}

∣∣∣Y θ(`)
tk+1

= Xtk+1

]
1{τ̂>n∆n}.

We will later see that the terms concerning Z1,`
k,n and Z2,`

k,n are negligible (Lemma 4.3.1). The
main contribution in the asymptotics will be given by Z3,`

k,n, which expresses the fact that the
small and large jumps do not interfere with the Gaussian behaviour of the transition density. In
fact to see this, applying Lemma 4.2.1 to Z3,`

k,n, and using equation (4.1) for the term Xtk+1
−Xtk

coming from the term Y
θ(`)
tk+1
− Y θ(`)

tk
in Lemma 4.2.1, we obtain the following expansion of the

log-likehood ratio

log
p(Xn; θn)

p(Xn; θ0)
=

n−1∑
k=0

ξk,n +
u√
n∆3

n

n−1∑
k=0

∫ 1

0

{
Z1,`
k,n + Z2,`

k,n

+
(
Z4,`
k,n + Z5,`

k,n + Z6,`
k,n

)
Ẽ
θ(`)
Xtk

[
1{τ̃>n∆n}

∣∣∣Y θ(`)
tk+1

= Xtk+1

]
1{τ̂>n∆n}

+ Ẽ
θ(`)
Xtk

[(
Rθ(`),k −Rθ(`),k4 −Rθ(`),k6

)
1{τ̃>n∆n}

∣∣∣Y θ(`)
tk+1

= Xtk+1

]
1{τ̂>n∆n}

}
d`,
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where

ξk,n =
u√
n∆n

∫ 1

0

∂θb(θ(`), Xtk)

σ2(Xtk)

(
σ(Xtk)

(
Btk+1

−Btk
)

+ (b(θ0, Xtk)− b(θ(`), Xtk)) ∆n

)
× Ẽ

θ(`)
Xtk

[
1{τ̃>n∆n}

∣∣∣Y θ(`)
tk+1

= Xtk+1

]
1{τ̂>n∆n}d`,

Z4,`
k,n = ∆n∂θb(θ(`), Xtk)σ−2(Xtk)

∫ tk+1

tk

(
b(θ0, X

θ0
s )− b(θ0, Xtk)

)
ds,

Z5,`
k,n = ∆n∂θb(θ(`), Xtk)σ−2(Xtk)

∫ tk+1

tk

(
σ(Xθ0

s )− σ(Xtk)
)
dBs,

Z6,`
k,n = ∆n∂θb(θ(`), Xtk)σ−2(Xtk)

∫ tk+1

tk

∫
R0

c(Xθ0
s−, z)Ñ(ds, dz),

Rθ(`),k = R
θ(`),k
1 +R

θ(`),k
2 +R

θ(`),k
3 −Rθ(`),k5 .

In the next subsections we will show that ξk,n is the only term that contributes to the limit
in Theorem 4.1.1, and all the others are negligible contributions. Therefore again, the main
behaviour is given by the Gaussian and drift components of the equation (4.1).

4.3.2 Negligible contributions

Lemma 4.3.1. Under conditions (A1)-(A5) and (A7), as n→∞,

u√
n∆3

n

n−1∑
k=0

∫ 1

0

(
Z1,`
k,n + Z2,`

k,n

)
d`

Pθ0−→ 0.

Proof. It suffices to show that condition (1.16) of Lemma 1.4.2 holds for each sequence (Zi,`k,n)k≥1

under the measure Pθ0 .
First, applying Hölder’s and Jensen’s inequalities, Girsanov’s theorem, Lemma 4.2.5, and

(4.7), we obtain that for some constants C, q0 > 0,

|u|√
n∆3

n

n−1∑
k=0

E

[∣∣∣∣∫ 1

0
Z1,`
k,nd`

∣∣∣∣ ∣∣∣F̂tk]

≤ |u|√
n∆3

n

n−1∑
k=0

∫ 1

0

(
E
[
Ẽ
θ(`)
Xtk

[∣∣∣δ (∂θY θ(`)
tk+1

(tk, Xtk)U θ(`)(tk, Xtk)
)∣∣∣p ∣∣∣Y θ(`)

tk+1
= Xtk+1

] ∣∣∣Xtk

]) 1
p

× (P (τ̂ ≤ n∆n|Xtk))
1
q d`

≤ |u|√
n∆3

n

n−1∑
k=0

∫ 1

0

(
E
Q̂
θ(`),θ0
k

[∣∣∣δ (∂θY θ(`)
tk+1

(tk, Xtk)U θ(`)(tk, Xtk)
)∣∣∣p( dP̂

dQ̂
θ(`),θ0
k

− 1

)∣∣∣Xtk

]

+ E
Q̂
θ(`),θ0
k

[∣∣∣δ (∂θY θ(`)
tk+1

(tk, Xtk)U θ(`)(tk, Xtk)
)∣∣∣p ∣∣∣Xtk

]) 1
p

(P (τ̂ ≤ n∆n|Xtk))
1
q d`

≤ C|u|√
n

n−1∑
k=0

(1 + |Xtk |
q0) (P (τ̂ ≤ n∆n|Xtk))

1
q ,
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where p, q > 1 and 1
p + 1

q = 1. On the other hand,

P(τ̂ > n∆n|Xtk) = P(∀s ∈ [0, n∆n], ρ1∆υ
n ≤ |∆Ẑs| ≤ ρ2∆−γn |Xtk)

= P(∀s ∈ [0, k∆n], ρ1∆υ
n ≤ |∆Ẑs| ≤ ρ2∆−γn |Xtk)

×
∞∑
j=0

P({∀s ∈ [k∆n, n∆n], ρ1∆υ
n ≤ |∆Ẑs| ≤ ρ2∆−γn } ∩ {Nn∆n −Nk∆n = j})

≤
∞∑
j=0

e−λn(n−k)∆n
(λn(n− k)∆n)j

j!
P(ρ1∆υ

n ≤ |Λ̂| ≤ ρ2∆−γn )j

= e−λn(n−k)∆n(1−P(ρ1∆υ
n≤|Λ̂|≤ρ2∆−γn )),

where Λ̂ is a random variable with distribution ν
λ . Therefore, we obtain that

|u|√
n∆3

n

n−1∑
k=0

E

[∣∣∣∣∫ 1

0
Z1,`
k,nd`

∣∣∣∣ ∣∣∣F̂tk]

≤ C|u|√
n

n−1∑
k=0

(1 + |Xtk |
q0)
(

1− e−λn(n−k)∆n(1−P(ρ1∆υ
n≤|Λ̂|≤ρ2∆−γn ))

) 1
q

≤
(

1− e−λnn∆n(1−P(ρ1∆υ
n≤|Λ̂|≤ρ2∆−γn ))

) 1
q C|u|√

n

n−1∑
k=0

(1 + |Xtk |
q0) .

Then, using the fact that 1− e−x ≤ x, for all x ≥ 0, and that λn ≤ λ, we get that

(
1− e−λnn∆n(1−P(ρ1∆υ

n≤|Λ̂|≤ρ2∆−γn ))
) 1
q

≤
(
λn∆n

(
1− P

(
ρ1∆υ

n ≤ |Λ̂| ≤ ρ2∆−γn

))) 1
q

≤ cq
{(

λn∆nP
(
|Λ̂| ≥ ρ2∆−γn

)) 1
q

+
(
λn∆nP

(
ρ1∆υ

n ≥ |Λ̂|
)) 1

q

}

= cq


(
n∆n

∫
{|z|≥ρ2∆−γn }

ν(dz)

) 1
q

+

(
n∆n

∫
{|z|≤ρ1∆υ

n}
ν(dz)

) 1
q

 .

Therefore, by (A7) we conclude that (1.16) holds true, and by Lemma 1.4.2, as n→∞,

u√
n∆3

n

n−1∑
k=0

∫ 1

0
Z1,`
k,nd`

Pθ0−→ 0.

Next, as for the term Z1,`
k,n, applying Girsanov’s theorem, Lemma 4.2.5, and (4.7), we obtain
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that for some constants C, q0 > 0,

|u|√
n∆3

n

n−1∑
k=0

E

[∣∣∣∣∫ 1

0
Z2,`
k,nd`

∣∣∣∣ ∣∣∣F̂tk]

≤ |u|√
n∆3

n

n−1∑
k=0

∫ 1

0
E
[
Ẽ
θ(`)
Xtk

[∣∣∣δ (∂θY θ(`)
tk+1

(tk, Xtk)U θ(`)(tk, Xtk)
)∣∣∣1{τ̃≤n∆n}

∣∣∣Y θ(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
d`

≤ |u|√
n∆3

n

n−1∑
k=0

∫ 1

0

( ∣∣∣∣∣EQ̂θ(`),θ0k

[∣∣∣δ (∂θY θ(`)
tk+1

(tk, Xtk)U θ(`)(tk, Xtk)
)∣∣∣1{τ̃≤n∆n}

(
dP̂

dQ̂
θ(`),θ0
k

− 1

)∣∣∣Xtk

]∣∣∣∣∣
+ E

Q̂
θ(`),θ0
k

[∣∣∣δ (∂θY θ(`)
tk+1

(tk, Xtk)U θ(`)(tk, Xtk)
)∣∣∣1{τ̃≤n∆n}

∣∣∣Xtk

])
d`

≤ C|u|√
n

n−1∑
k=0

(1 + |Xtk |
q0) (P (τ̃ ≤ n∆n|Xtk))

1
q ,

where we have used Hölder’s inequality with p > 1 and q > 1 conjugate. On the other hand,

P(τ̃ > n∆n|Xtk) = P(τ̃ > n∆n) = P(∀s ∈ [0, n∆n], ρ1∆υ
n ≤ |∆Z̃s| ≤ ρ2∆−γn )

=
∞∑
j=0

P({∀s ∈ [0, n∆n], ρ1∆υ
n ≤ |∆Z̃s| ≤ ρ2∆−γn } ∩ {Mn∆n −M0 = j})

=

∞∑
j=0

e−λnn∆n
(λnn∆n)j

j!
P(ρ1∆υ

n ≤ |Λ̃| ≤ ρ2∆−γn )j

= e−λnn∆n(1−P(ρ1∆υ
n≤|Λ̃|≤ρ2∆−γn )),

where Λ̃ is a random variable with distribution ν
λ . Therefore, we obtain that

|u|√
n∆3

n

n−1∑
k=0

E

[∣∣∣∣∫ 1

0
Z2,`
k,nd`

∣∣∣∣ ∣∣∣F̂tk]

≤ |u|√
n

n−1∑
k=0

(1 + |Xtk |
q0)
(

1− e−λnn∆n(1−P(ρ1∆υ
n≤|Λ̃|≤ρ2∆−γn ))

) 1
q

≤ cq


(
n∆n

∫
{|z|≥ρ2∆−γn }

ν(dz)

) 1
q

+

(
n∆n

∫
{|z|≤ρ1∆υ

n}
ν(dz)

) 1
q

 |u|√n
n−1∑
k=0

(1 + |Xtk |
q0) .

Therefore, by (A7) we conclude that (1.16) holds true, and by Lemma 1.4.2, as n→∞,

u√
n∆3

n

n−1∑
k=0

∫ 1

0
Z2,`
k,nd`

Pθ0−→ 0.

Thus, the result follows.

Lemma 4.3.2. Under conditions (A1)-(A5) and (A7), as n→∞,

n−1∑
k=0

u√
n∆3

n

∫ 1

0
Ẽ
θ(`)
Xtk

[
Rθ(`),k1{τ̃>n∆n}

∣∣∣Y θ(`)
tk+1

= Xtk+1

]
1{τ̂>n∆n}d`

Pθ0−→ 0.
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Proof. Using the fact that 1{τ̂>n∆n} = 1−1{τ̂≤n∆n} and 1{τ̃>n∆n} = 1−1{τ̃≤n∆n}, it suffices to
show that as n→∞,
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]
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Pθ0−→ 0, (4.24)
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]
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Pθ0−→ 0, (4.25)
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Pθ0−→ 0. (4.26)

The convergences (4.24) and (4.25) are treated similarly as for the terms Z1,`
k,n and Z2,`

k,n.
To treat (4.26), it suffices to show that conditions (i) and (ii) of Lemma 1.4.1 hold under the
measure Pθ0 . We start showing (i). Applying Girsanov’s theorem, Lemma 4.2.5, (4.5), and (4.6)
with p = 2, we get that∣∣∣∣∣
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k=0

u√
n∆3

n

∫ 1

0
E
[
Ẽ
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q) ,

for some constants C, q > 0. Observe that (4.6) and (4.7) remain valid under the measure P̂α

defined in Lemma 4.2.5. This shows Lemma 1.4.1(i). Similarly, applying Jensen’s inequality,
Girsanov’s theorem, Lemma 4.2.5, and (4.6) with p ∈ {2, 4}, we obtain that
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which concludes the desired result.

Lemma 4.3.3. Under conditions (A1)-(A2), (A4)-(A5) and (A7), as n→∞,
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= Xtk+1

]
1{τ̂>n∆n}d`

Pθ0−→ 0.

Proof. Using the fact that 1{τ̂>n∆n} = 1−1{τ̂≤n∆n} and 1{τ̃>n∆n} = 1−1{τ̃≤n∆n}, it suffices to
show that as n→∞,
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Pθ0−→ 0, (4.27)
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The convergences (4.27) and (4.28) are treated similarly as for the terms Z1,`
k,n and Z2,`
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treat (4.29). Clearly, for all n ≥ 1,
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q) ,

for some constants C, q > 0. Thus, Lemma 1.4.1 concludes the desired result.

Lemma 4.3.4. Assume conditions (A1)-(A2), (A4)-(A5) and (A7). Then as n→∞,
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)
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Pθ0−→ 0.

Proof. Using the fact that 1{τ̂>n∆n} = 1−1{τ̂≤n∆n} and 1{τ̃>n∆n} = 1−1{τ̃≤n∆n}, it suffices to
show that as n→∞,
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Pθ0−→ 0, (4.30)
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Pθ0−→ 0, (4.31)
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n−1∑
k=0

u√
n∆3

n

∫ 1

0

(
Z4,`
k,n − Ẽ
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The convergences (4.30), (4.31), (4.32) and (4.33) are treated similarly as for the terms Z1,`
k,n

and Z2,`
k,n. We next treat (4.34). By the mean value theorem,
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for some w ∈ (0, 1).
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Using Lemma 4.2.2(i), we get that
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for some constants C, q > 0. Therefore, by Lemma 1.4.2, we conclude that as n→∞,
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for some constants C, q > 0, which shows Lemma 1.4.1(i).

Finally, proceeding as in the proof of Lemma 4.3.2, we get that condition (ii) of Lemma 1.4.1
holds. Thus, the result follows.

Lemma 4.3.5. Assume conditions (A1)-(A2), (A4)-(A5) and (A7). Then as n→∞,
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Proof. Using the fact that 1{τ̂>n∆n} = 1−1{τ̂≤n∆n} and 1{τ̃>n∆n} = 1−1{τ̃≤n∆n}, it suffices to
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show that as n→∞,
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The convergences (4.35)-(4.38) are treated similarly as for the terms Z1,`
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Using Burkhölder’s inequality, the Lipschitz property of c and Lemma 4.2.2(i), together with
hypotheses (A1)-(A2) and (A4)-(A5), we get that for some constants C, q > 0,
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q) ,

for some constants C, q > 0.
Next, hypotheses (A2) and (A4)(b) yield that

D3,2 ≤
Cu2

n∆n

n−1∑
k=0

(1 + |Xtk |
q)

∫ 1

0
E
Q̂
θ(`),θ0
k

[(∫ tk+1

tk

∫
I
c(Xtk , z)N(ds, dz)

− Ẽ
θ(`)
Xtk

[∫ tk+1

tk

∫
I
c(Y

θ(`)
tk

, z)M(ds, dz)

∣∣∣∣Y θ(`)
tk+1

= Xtk+1

])2∣∣∣Xtk

]
d`,

for some constants C, q > 0.
Multiplying the random variable inside the expectation by

(
1
Ĵ0,k

+ 1
Ĵ1,k

+ 1
Ĵ2,k

)
and ap-

plying Lemma 4.2.8, we get that for any α ∈ (υ, 1
2) and α0 ∈ (1

4 ,
1
2),

D3,2 ≤
Cu2

n∆n

n−1∑
k=0

(1 + |Xtk |
q)

∫ 1

0

(
M

θ(`)
0 +M

θ(`)
1 +M

θ(`)
2

)
d`

≤ C
(
λn
√

∆n + ∆
− 3

2
−3γ

n e−C0∆
2(α∨α0)−1
n

)
u2

n

n−1∑
k=0

(1 + |Xtk |
q) e

c0∆1−2γ
n X2

tk ,

for some constants c0, C0, C, q > 0. By hypothesis (A8), D3,2 converges to zero in Pθ0-probability
as n→∞. The desired proof is now finished.
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4.3.3 Main contributions : LAN property

Proof. We write ξk,n = ξk,n,1 − ξk,n,2 − ξk,n,3, where

ξk,n,1 =
u√
n∆n

∫ 1

0

∂θb(θ(`), Xtk)

σ2(Xtk)

(
σ(Xtk)

(
Btk+1

−Btk
)

+ (b(θ0, Xtk)− b(θ(`), Xtk)) ∆n

)
d`,

ξk,n,2 =
u√
n∆n

∫ 1

0

∂θb(θ(`), Xtk)

σ2(Xtk)

(
σ(Xtk)

(
Btk+1

−Btk
)

+ (b(θ0, Xtk)− b(θ(`), Xtk)) ∆n

)
× Ẽ

θ(`)
Xtk

[
1{τ̃>n∆n}

∣∣∣Y θ(`)
tk+1

= Xtk+1

]
1{τ̂≤n∆n}d`,

ξk,n,3 =
u√
n∆n

∫ 1

0

∂θb(θ(`), Xtk)

σ2(Xtk)

(
σ(Xtk)

(
Btk+1

−Btk
)

+ (b(θ0, Xtk)− b(θ(`), Xtk)) ∆n

)
× Ẽ

θ(`)
Xtk

[
1{τ̃≤n∆n}

∣∣∣Y θ(`)
tk+1

= Xtk+1

]
d`.

First, proceeding as for the terms Z1,`
k,n and Z2,`

k,n, we get that as n→∞,

n−1∑
k=0

(ξk,n,2 + ξk,n,3)
Pθ0−→ 0.

Next, applying Lemma 1.4.3 to ξk,n,1, we need to consider Eθ0 [ξrk,n,1|F̂tk ] for r = 1, 2 and 4 but
this conditional expectation equals E[ξrk,n,1|F̂tk ]. Therefore, it suffices to show that as n→∞ :

n−1∑
k=0

E
[
ξk,n,1|F̂tk

]
Pθ0−→ −u

2

2
Γ(θ0), (4.41)

n−1∑
k=0

(
E
[
ξ2
k,n,1|F̂tk

]
−
(

E
[
ξk,n,1|F̂tk

])2
)

Pθ0−→ u2Γ(θ0), (4.42)

n−1∑
k=0

E
[
ξ4
k,n,1|F̂tk

]
Pθ0−→ 0, (4.43)

where

Γ(θ0) =

∫
R

(
∂θb(θ0, x)

σ(x)

)2

πθ0(dx).

Proof of (4.41). Since E[Btk+1
−Btk |F̂tk ] = 0, we get that

n−1∑
k=0

E
[
ξk,n,1|F̂tk

]
= −u

2

n

n−1∑
k=0

∫ 1

0
`
∂θb(θ(`), Xtk)

σ2(Xtk)
∂θb(θ0 +

`uv√
n∆n

, Xtk)d`

= −u
2

2n

n−1∑
k=0

(
∂θb(θ0, Xtk)

σ(Xtk)

)2

−H1 −H2,

where v ∈ (0, 1), H1 =
∑n−1

k=0 Hk,n, and

Hk,n :=
u2

n

∫ 1

0
`
∂θb(θ(`), Xtk)

σ2(Xtk)

(
∂θb(θ0 +

`uv√
n∆n

, Xtk)− ∂θb(θ0, Xtk)

)
d`,

H2 :=
u2

n

n−1∑
k=0

∫ 1

0
`
∂θb(θ0, Xtk)

σ2(Xtk)
(∂θb(θ(`), Xtk)− ∂θb(θ0, Xtk)) d`.

Using hypotheses (A2) and (A4)(b), (c), we have that for some constants C, ε, q > 0,
n−1∑
k=0

E
[
|Hk,n||F̂tk

]
≤ C|u|ε+2|v|ε

(
√
n∆n)ε

1

n

n−1∑
k=0

(1 + |Xtk |
q) ,
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which, by Lemma 1.4.2, implies that H1
Pθ0−→ 0 as n → ∞. Thus, so does H2 by using the same

argument. On the other hand, applying Lemma 4.2.9, we obtain that as n→∞,

1

n

n−1∑
k=0

(
∂θb(θ0, Xtk)

σ(Xtk)

)2
Pθ0−→ Γ(θ0), (4.44)

which gives (4.41).

Proof of (4.42). First, from the previous computations, we have that

n−1∑
k=0

(
E
[
ξk,n,1|F̂tk

])2
=
u4

n2

n−1∑
k=0

(∫ 1

0
`
∂θb(θ(`), Xtk)

σ2(Xtk)
∂θb(θ0 +

`uv√
n∆n

, Xtk)d`

)2

≤ Cu4

n2

n−1∑
k=0

(1 + |Xtk |
q) ,

for some constants C, q > 0, which converges to zero in Pθ0-probability as n→∞.
Next, using properties of the moments of the Brownian motion, we can write

n−1∑
k=0

E
[
ξ2
k,n,1|F̂tk

]
=
u2

n

n−1∑
k=0

(
∂θb(θ0, Xtk)

σ(Xtk)

)2

+H3 +H4 +H5,

where

H3 :=
2u2

n

n−1∑
k=0

∂θb(θ0, Xtk)

σ(Xtk)

∫ 1

0

∂θb(θ(`), Xtk)− ∂θb(θ0, Xtk)

σ(Xtk)
d`,

H4 :=
u2

n

n−1∑
k=0

(∫ 1

0

∂θb(θ(`), Xtk)− ∂θb(θ0, Xtk)

σ(Xtk)
d`

)2

,

H5 :=
u2∆n

n

n−1∑
k=0

(∫ 1

0

∂θb(θ(`), Xtk)

σ2(Xtk)
(b(θ0, Xtk)− b(θ(`), Xtk)) d`

)2

.

As for the term H1, using hypotheses (A2) and (A4)(b), (c), we get that H3, H4, H5 converge
to zero in Pθ0-probability as n→∞. Moreover, using again (4.44), we conclude (4.42).

Proof of (4.43). Basic computation yields

n−1∑
k=0

E
[
ξ4
k,n,1|F̂tk

]
≤ Cu4

n2

n−1∑
k=0

(1 + |Xtk |
q) ,

for some constants C, q > 0. The proof of Theorem 4.1.1 is now completed.

4.4 Maximum likelihood estimator for Ornstein-Uhlenbeck pro-
cess with jumps

Consider the Ornstein-Uhlenbeck process with jumps defined in Example 4.1.1 1)

Xθ
t = x0 − θ

∫ t

0
Xθ
sds+ σBt +

∫ t

0

∫
R0

zÑ(ds, dz), (4.45)

where θ > 0, σ ∈ R0 and the Lévy measure satisfies (A5), (A7), and is finite. Assume that
there exists a constant C > 0 such that

∫
R0
eCz

2
ν(dz) <∞.
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By the Markov property, the log-likelihood function based on Xn can be written as follows

`n(θ0) = log p(Xn; θ0) =
n−1∑
k=0

log pθ0(∆n, Xtk , Xtk+1
). (4.46)

The maximum likelihood estimator θ̂n of θ0 is defined as the solution to the likelihood equation
∂θ`n(θ0) = 0.

Theorem 4.4.1. Assume conditions (A5) and (A7). Then, the maximum likelihood estimators
θ̂n of θ0 are consistent and asymptotically efficient. That is, as n→∞,

θ̂n
Pθ0−→ θ0,

and √
n∆n(θ̂n − θ0)

L(Pθ0 )−→ N
(
0,Γ(θ0)−1

)
,

where

Γ(θ0) =
1

2θ0

(
1 +

1

σ2

∫
R0

z2ν(dz)

)
.

Proof. Using (4.46) and Proposition 4.2.1, the likelihood equation is equivalent to

n−1∑
k=0

1

∆n
Ẽθ0Xtk

[
δ
(
∂θY

θ0
tk+1

(tk, Xtk)U θ0(tk, Xtk)
) ∣∣∣Y θ0

tk+1
= Xtk+1

]
= 0, (4.47)

where

Y θ
t (s, x) = x− θ

∫ t

s
Y θ
u (s, x)du+ σ

∫ t

s
dWu +

∫ t

s

∫
R0

zM̃(ds, dz),

Y θ
t = x0 − θ

∫ t

0
Y θ
u du+ σWt +

∫ t

0

∫
R0

zM̃(ds, dz).

From Lemma 4.2.1,

δ
(
∂θY

θ0
tk+1

(tk, Xtk)U θ0(tk, Xtk)
)

= −∆nY
θ0
tk
σ−2

(
Y θ0
tk+1
− Y θ0

tk
+ θ0Y

θ0
tk

∆n

)
+Rθ0,k1 +Rθ0,k2 +Rθ0,k3 −Rθ0,k4 −Rθ0,k6 ,

(4.48)

where

Rθ0,k1 : = −σ−1

∫ tk+1

tk

Ds

(
∂θY

θ0
tk+1

(tk, Xtk)

∂xY
θ0
tk+1

(tk, Xtk)

)
∂xY

θ0
s (tk, Xtk)ds,

Rθ0,k2 : = −σ−1

∫ tk+1

tk

Y θ0
s (tk, Xtk)

∂xY
θ0
s (tk, Xtk)

ds

∫ tk+1

tk

(
∂xY

θ0
s (tk, Xtk)− ∂xY θ0

tk
(tk, Xtk)

)
dWs,

Rθ0,k3 : = −σ−1

∫ tk+1

tk

(
Y θ0
s (tk, Xtk)

∂xY
θ0
s (tk, Xtk)

−
Y θ0
tk

(tk, Xtk)

∂xY
θ0
tk

(tk, Xtk)

)
ds

∫ tk+1

tk

∂xY
θ0
tk

(tk, Xtk)dWs,

Rθ0,k4 : = ∆nY
θ0
tk
σ−2θ0

∫ tk+1

tk

(
Y θ0
s − Y

θ0
tk

)
ds,

Rθ0,k6 : = −∆nY
θ0
tk
σ−2

∫ tk+1

tk

∫
R0

zM̃(ds, dz).
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Plugging (4.48) into (4.47), taking the conditional expectation, and using equation (4.45), we
obtain that

θ̂n =

∑n−1
k=0

(
−Xtk

(
Xtk+1

−Xtk

)
+ σ2

∆n
Ẽθ0Xtk

[
Rθ0,k1 +Rθ0,k2 +Rθ0,k3 −Rθ0,k4 −Rθ0,k6

∣∣∣Y θ0
tk+1

= Xtk+1

])
∆n
∑n−1

k=0 X
2
tk

= θ0 +
− 1
σn∆n

∑n−1
k=0 Xtk

(
Btk+1

−Btk
)

+ S1 + S2 − S3

1
σ2n

∑n−1
k=0 X

2
tk

,

where

S1 =
1

n∆2
n

n−1∑
k=0

Ẽθ0Xtk

[
Rθ0,k1 +Rθ0,k2 +Rθ0,k3

∣∣∣Y θ0
tk+1

= Xtk+1

]
,

S2 =
θ0

σ2n∆n

n−1∑
k=0

Xtk

(∫ tk+1

tk

(
Xθ0
s −X

θ0
tk

)
ds− Ẽθ0Xtk

[∫ tk+1

tk

(
Y θ0
s − Y

θ0
tk

)
ds
∣∣∣Y θ0
tk+1

= Xtk+1

])
,

S3 =
1

σ2n∆n

n−1∑
k=0

Xtk

(∫ tk+1

tk

∫
R0

zÑ(ds, dz)− Ẽθ0Xtk

[∫ tk+1

tk

∫
R0

zM̃(ds, dz)
∣∣∣Y θ0
tk+1

= Xtk+1

])
.

Using the ergodicity property and applying Lemma 4.2.9, we obtain that as n→∞,

1

σ2n

n−1∑
k=0

X2
tk

Pθ0−→ Γ(θ0), (4.49)

On the other hand, it can be checked that under conditions (A5) and (A7), S1, S2, S3
Pθ0−→ 0

as n→∞. Moreover, applying Lemma 1.4.1, we get that as n→∞,

1

σn∆n

n−1∑
k=0

Xtk

(
Btk+1

−Btk
) Pθ0−→ 0.

Therefore, we have shown that θ̂n
Pθ0−→ θ0 as n→∞.

Next, we can write

√
n∆n(θ̂n − θ0) =

− 1
σ
√
n∆n

∑n−1
k=0 Xtk

(
Btk+1

−Btk
)

+
√
n∆n (S1 + S2 − S3)

1
σ2n

∑n−1
k=0 X

2
tk

.

Then, using Lemma 1.4.3 and (4.49), we obtain that as n→∞,

1

σ
√
n∆n

n−1∑
k=0

Xtk

(
Btk+1

−Btk
) L(Pθ0 )−→ N (0,Γ(θ0)) .

This, together with (4.49) and the fact that under conditions (A5) and (A7) as n→∞,√
n∆n (S1 + S2 − S3)

Pθ0−→ 0,

concludes that n→∞, √
n∆n(θ̂n − θ0)

L(Pθ0 )−→ N
(
0,Γ(θ0)−1

)
.

The proof of Theorem 4.4.1 is now completed.
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Chapitre 5

LAN property for a jump-diffusion
process : drift and diffusion parameters

In this chapter, we consider an ergodic diffusion process with jumps driven by a Brownian
motion and a Poisson random measure associated with a compensated compound Poisson process,
whose drift and diffusion coefficients depend on unknown parameters. Supposing that the process
is observed discretely at high frequency, we derive the local asymptotic normality (LAN) property.
In order to obtain this result, Malliavin calculus and Girsanov’s theorem are applied in order to
write the log-likelihood ratio in terms of sums of conditional expectations, for which a central
limit theorem for triangular arrays can be applied.

5.1 Introduction and main result

On a complete probability space (Ω,F ,P) defined in Definition 1.1.3, we consider the process
Xθ,β = (Xθ,β

t )t≥0 solution to the following stochastic differential equation with jumps

dXθ,β
t = b(θ,Xθ,β

t )dt+ σ(β,Xθ,β
t )dBt +

∫
R0

z (N(dt, dz)− ν(dz)dt) , (5.1)

where Xθ,β
0 = x0 ∈ R, R0 := R \ {0}, B = (Bt)t≥0 is a standard Brownian motion, and N(dt, dz)

is a Poisson random measure in (R+×R0,B(R+×R0)) independent of B, with intensity measure
ν(dz)dt, and finite Lévy measure λ =

∫
R0
ν(dz) <∞. The compensated Poisson random measure

is denoted by Ñ(dt, dz) := N(dt, dz) − ν(dz)dt. Let Ẑ = (Ẑt)t≥0 be a compensated compound
Poisson process associated with N(dt, dz), i.e., Ẑt =

∫ t
0

∫
R0
z(N(ds, dz)−ν(dz)ds), for t ≥ 0. The

random variable Λ̂ that describes the jump sizes of Ẑ takes values in A = {ai, i ∈ N}, ai ∈ R0,
and has distribution µ(dz) = ν(dz)

λ =
∑∞

i=1 paiδai(dz), where 0 ≤ pai ≤ 1, and
∑∞

i=1 pai = 1.
Let {F̂t}t≥0 denote the natural filtration generated by B and N . The unknown parameters
(θ, β) belong to Θ × Σ which is an open rectangle of R2. The coefficients b : Θ × R → R and
σ : Σ× R→ R are measurable functions satisfying condition (A1) below under which equation
(5.1) has a unique F̂t-adapted càdlàg solution Xθ,β . We denote by Pθ,β the probability law

induced by Xθ,β, and by Eθ,β the expectation with respect to Pθ,β. Let Pθ,β−→ and
L(Pθ,β)−→ denote

the convergence in Pθ,β-probability and in Pθ,β-law, respectively.
Recall that the structure of the probability space is given by Ω̂ = Ω1 × Ω2, Ω̃ = Ω3 × Ω4,

F̂ = F1⊗F2, F̃ = F3⊗F4, P̂ = P1⊗P2, P̃ = P3⊗P4, and Ω = Ω̂× Ω̃, F = F̂ ⊗ F̃ , P = P̂⊗ P̃.
We denote by E, Ê, Ẽ the expectation with respect to P, P̂ and P̃, respectively.

For fixed (θ0, β0) ∈ Θ×Σ and n ≥ 1, we consider a discrete observation scheme at equidistant
times tk = k∆n, k ∈ {0, ..., n} of the diffusion process Xθ0,β0 , which is denoted by Xn =
(Xt0 , Xt1 , ..., Xtn), where ∆n ≤ 1. We assume that the sequence of time-step sizes ∆n satisfies

95
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the high-frequency observation condition

n∆n →∞, and ∆n → 0, as n→∞.

We consider the following hypotheses on equation (5.1).

(A1) For any (θ, β) ∈ Θ× Σ, there exists a constant C > 0 such that for all x, y ∈ R,

|b(θ, x)− b(θ, y)|+ |σ(β, x)− σ(β, y)| ≤ C|x− y|.

(A2) For any (θ, β) ∈ Θ× Σ, there exist constants C > 0 and c ≥ 1 such that for all x ∈ R,

|b(θ, x)| ≤ C, and
1

c
≤ |σ(β, x)| ≤ c.

(A3) The functions b and σ are of class C1 w.r.t. θ, β, and x. Each partial derivative ∂θb,
∂xb, ∂βσ and ∂xσ is of class C1 w.r.t. x. Moreover, there exist positive constants C, q, ε, η,
independent of (θ, θ1, θ2, β, β1, β2, x, y) ∈ Θ3 × Σ3 × R2 such that
(a) |∂xb(θ, x)|+ |∂xσ(β, x)| ≤ C;
(b) |h(·, x)| ≤ C (1 + |x|q) for h = ∂θb, ∂

2
xb, ∂

2
x,θb, ∂βσ, ∂

2
xσ or ∂2

x,βσ ;
(c) |∂θb(θ1, x)− ∂θb(θ2, x)| ≤ C|θ1 − θ2|ε (1 + |x|q) ;
(d) |∂βσ(β1, x)− ∂βσ(β2, x)| ≤ C|β1 − β2|ε (1 + |x|q) ;
(e) |∂θb(θ, x)− ∂θb(θ, y)|+ |∂βσ(β, x)− ∂βσ(β, y)| ≤ C|x− y|.

(A4) For any p ≥ 2,
∫
R0
|z|pν(dz) <∞.

(A5) The process Xθ0,β0 is ergodic in the sense that there exists a unique probability measure
πθ0,β0(dx) such that as T →∞,

1

T

∫ T

0
g(Xθ0,β0

t )dt
Pθ0,β0−→

∫
R
g(x)πθ0,β0(dx),

for any πθ0,β0-integrable function g : R→ R.
(A6) There exist constants ε > 0, q > 1, ρ1, ρ2 > 0 and 0 < υ, γ < 1

2 such that as n→∞,

√
n

∆ε
n

(
n∆n

(∫
{|z|≥ρ2∆−γn }

ν(dz) +

∫
{|z|≤ρ1∆υ

n}
ν(dz)

)) 1
q

→ 0.

(A7) For any ω, ω′ ∈ Ω, there exist constants C > 0 and n0 ≥ 1 such that for all n ≥ n0 and
k ∈ {0, . . . , n− 1},

∣∣∣(L̂tk+1
− L̂tk

)
(ω)−

(
L̂tk+1

− L̂tk
)

(ω′)
∣∣∣{= 0, or
≥ C∆υ

n,

where υ is as in (A6) and L̂t =
∫ t

0

∫
R0
zN(ds, dz) is defined to be the sum of the jumps of

Ẑ on the interval [0, t].
Furthermore, for all (θ, β) ∈ Θ× Σ, q > 1 and p ∈ {2, 4},

∑
r∈A

rp
(

P
(
L̂tk+1

− L̂tk = r
∣∣Xtk

)) 1
q
<∞,

∑
r∈A

(
P
(
L̂tk+1

− L̂tk = r
∣∣Xtk

)) 1
q
<∞,

where we denote A := {
∑j

i=1 ai, ai ∈ A, j ∈ N}.
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(A8) For any q > 1, ∑
ai∈A

p
1
q
ai <∞.

A detailed explanation on the hypotheses is given in the subsection 1.3.4 of the introductory
chapter.

Conditions (A1)-(A2) imply that the law of the discrete observation (Xθ
t0 , X

θ
t1 , . . . , X

θ
tn)

of the process (Xθ,β
t )t≥0 has a density in Rn+1 that we denote by p(·; (θ, β)). In particular,

p(·; (θ0, β0)) denotes the density of the random vector Xn. The main result of this chapter is the
following LAN property.

Theorem 5.1.1. Assume conditions (A1)-(A8). Then, the LAN property holds for the likelihood
at (θ0, β0) ∈ Θ × Σ with rate of convergence (

√
n∆n,

√
n) and asymptotic Fisher information

matrix Γ(θ0, β0). That is, for all w = (u, v) ∈ R2, as n→∞,

log
p(Xn; (θn, βn))

p(Xn; (θ0, β0))

L(Pθ0,β0 )−→ wTN (0,Γ(θ0, β0))− 1

2
wTΓ(θ0, β0)w,

where θn = θ0 + u√
n∆n

, βn = β0 + v√
n
, and N (0,Γ(θ0, β0)) is a centered R2-valued Gaussian

random variable with covariance matrix

Γ(θ0, β0) =


∫
R

(
∂θb(θ0, x)

σ(β0, x)

)2

πθ0,β0(dx) 0

0 2
∫
R

(
∂βσ(β0, x)

σ(β0, x)

)2

πθ0,β0(dx)

 .

Remark 5.1.1. Observe that as seen in Remark 4.1.3, we obtain the same asymptotic Fisher
information as in the continuous case (see [25, Theorem 4.1]).

Remark 5.1.2. Assume condition (A8). Then for all q ≥ 1, p > 0 and n ≥ 1,

∞∑
m=1

∑
(a1,...,am)∈A

(
pa1 . . . pam

(Cpλ∆n)m

m!

) 1
q

<∞,

where C > 1 is the constant in (5.13), since

∞∑
m=1

∑
(a1,...,am)∈A

(
pa1 . . . pam

(Cpλ∆n)m

m!

) 1
q

=

∞∑
m=1

{
(Cpλ∆n)

1
q

}m
(m!)

1
q

∑
(a1,...,am)∈A

p
1
q
a1 . . . p

1
q
am

=
∞∑
m=1

{
(Cpλ∆n)

1
q

}m
(m!)

1
q

∑
ai∈A

p
1
q
ai

m

=

∞∑
m=1

{
(Cpλ∆n)

1
q
∑

ai∈A p
1
q
ai

}m
(m!)

1
q

<∞.

Example 5.1.1. 1) Consider the process

Xθ
t = x0 + θt+ βBt +

∫ t

0

∫
R0

zÑ(ds, dz),
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where θ ∈ R, β ∈ R0, and the Lévy measure is finite and satifies (A4), (A6) and (A8). Assume
further condition (A7). Then, the LAN property holds with rate of convergence (

√
n∆n,

√
n) and

asymptotic Fisher information matrix

Γ(θ0, β0) =
1

β2
0

(
1 0
0 2

)
.

In this case condition (A5) fails.
2) Assume that there exist constants c, C > 0 such that c ≤ |ai| ≤ C, for all i ∈ {1, . . . ,∞}.

In this case, condition (A6) holds.
3) Assume that Λ̂ has distribution

∑∞
i=1

1
2i
δi(dz). Then, for n sufficiently large

√
n

∆ε
n

(
n∆n

(∫
{|z|≥ρ2∆−γn }

ν(dz) +

∫
{|z|≤ρ1∆υ

n}
ν(dz)

)) 1
q

=

√
n

∆ε
n

λ2n∆n

∑
{i:i≥ρ2∆−γn }

1

2i

 1
q

≤
√
n

∆ε
n

(
3λ2n∆n2−

ρ2
2

∆−γn
) 1
q → 0,

for all ε > 0, q > 1, ρ1, ρ2 > 0 and 0 < υ, γ < 1
2 , and thus, condition (A6) holds.

In this case, condition (A8) holds since for all q > 1,

∞∑
i=1

1

2
i
q

<∞.

4) Suppose that L̂t has the form L̂t =
∑Nt

i=1 Yi, where N = (Nt)t≥0 is a Poisson process
with intensity λ > 0, and (Yi)i∈N is a sequence of independent and identically distributed positive
random variables, independent of N , with distribution µ(dz) satisfying condition (A8). For any
k ∈ {0, . . . , n − 1}, let qj = P(Ntk+1

− Ntk = j), for j ∈ {0, . . . ,∞} and for all m ≥ 0 set
bm = P(Ntk+1

−Ntk > m) =
∑∞

j=m+1 qj.
Observe that for all m ≥ 0 and n sufficiently large,

bm+1

bm
=

∑∞
j=m+2 e

−λ∆n (λ∆n)j

j!∑∞
j=m+1 e

−λ∆n
(λ∆n)j

j!

=
(λ∆n)m+2

∑∞
i=0

(λ∆n)i

(i+m+2)!

(λ∆n)m+1
∑∞

i=0
(λ∆n)i

(i+m+1)!

< λ∆n <
1

2
.

Assume that there exists a constant c > 0 such that∫ ∞
0

eczµ(dz) ≤ 2.

Then by [74, Theorem 1], for any k ∈ {0, . . . , n− 1}, r ≥ 0 and n sufficiently large,

P
(
L̂tk+1

− L̂tk ≥ r
∣∣Xtk

)
≤ 2

(
1− e−λ∆n

)
e−cr ≤ 2e−cr,

which implies that the second statement of condition (A7) holds.

As usual, constants will be denoted by C or c and they will always be independent of time
and ∆n but may depend on bounds for the set Θ. They may change of value from one line to
the next.

5.2 Preliminaries

In this section we introduce some preliminary results needed for the proof of Theorem 5.1.1.
We start as in Gobet [24] applying the integration by parts formula of the Malliavin calculus

on the Wiener space to analyze the log-likelihood function. In order to avoid confusion with
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the observed process Xθ,β , we introduce an extra probabilistic representation of Xθ,β where the
Malliavin calculus will be applied. That is, consider the flow Y θ,β(s, x) = (Y θ,β

t (s, x), t ≥ s),
x ∈ R on the time interval [s,∞) and with initial condition Y θ,β

s (s, x) = x satisfying

Y θ,β
t (s, x) = x+

∫ t

s
b(θ, Y θ,β

u (s, x))du+

∫ t

s
σ(β, Y θ,β

u (s, x))dWu

+

∫ t

s

∫
R0

z (M(du, dz)− ν(dz)du) ,

(5.2)

whereW = (Wt)t≥0 is a Brownian motion,M(dt, dz) is a Poisson random measure with intensity
measure ν(dz)dt associated with a centered pure-jump Lévy process Z̃ = (Z̃t)t≥0 independent
of W , and we denote by M̃(dt, dz) := M(dt, dz) − ν(dz)dt the compensated Poisson random
measure. In particular, we write Y θ,β

t ≡ Y θ,β
t (0, x0), for all t ≥ 0. That is,

Y θ,β
t = x0 +

∫ t

0
b(θ, Y θ,β

u )du+

∫ t

0
σ(β, Y θ,β

u )dWu +

∫ t

0

∫
R0

z (M(du, dz)− ν(dz)du) . (5.3)

Here, we consider the Malliavin calculus on the Wiener space induced by the Brownian
motion W , and we denote by D and δ the Malliavin derivative and the Skorohod integral with
respect to W on each interval [tk, tk+1], respectively (see the Definition 1.1.3 and the discussion
following it). For all A ∈ F̃ , let us denote P̃θ,βx (A) = Ẽ[1A|Y θ,β

tk
= x]. We denote by Ẽθ,βx the

expectation with respect to P̃θ,βx . That is, for all F̃-measurable random variable V , we have that
Ẽθ,βx [V ] = Ẽ[V |Y θ,β

tk
= x].

Under conditions (A1)-(A3), for any t > s the law of Y θ,β
t conditioned on Y θ,β

s = x admits a
positive transition density pθ,β(t−s, x, y), which is differentiable w.r.t. θ and β. As a consequence
of [24, Proposition 4.1], we have the following expression for the derivatives of the log-likelihood
function w.r.t. θ and β in terms of a conditional expectation.

Proposition 5.2.1. Assume conditions (A1)-(A3). Then for all k ∈ {0, ..., n− 1} and (θ, β) ∈
Θ× Σ,

∂θp
θ,β

pθ,β
(∆n, x, y) =

1

∆n
Ẽθ,βx

[
δ
(
∂θY

θ,β
tk+1

(tk, x)U θ,β(tk, x)
) ∣∣∣Y θ,β

tk+1
= y
]
,

∂βp
θ,β

pθ,β
(∆n, x, y) =

1

∆n
Ẽθ,βx

[
δ
(
∂βY

θ,β
tk+1

(tk, x)U θ,β(tk, x)
) ∣∣∣Y θ,β

tk+1
= y
]
,

where U θ,βt (tk, x) = (DtY
θ,β
tk+1

(tk, x))−1 = (∂xY
θ,β
tk+1

(tk, x))−1∂xY
θ,β
t (tk, x)σ−1(Y θ,β

t (tk, x)) for all
t ∈ [tk, tk+1], and the processes (∂θY

θ,β
t (tk, x), t ∈ [tk, tk+1]), (∂βY

θ,β
t (tk, x), t ∈ [tk, tk+1]), and

(∂xY
θ,β
t (tk, x), t ∈ [tk, tk+1]) denote the solutions to linear equations

∂θY
θ,β
t (tk, x) =

∫ t

tk

(
∂θb(θ, Y

θ,β
s (tk, x)) + ∂xb(θ, Y

θ,β
s (tk, x))∂θY

θ,β
s (tk, x)

)
ds

+

∫ t

tk

∂xσ(β, Y θ,β
s (tk, x))∂θY

θ,β
s (tk, x)dWs,

∂βY
θ,β
t (tk, x) =

∫ t

tk

∂xb(θ, Y
θ,β
s (tk, x))∂βY

θ,β
s (tk, x)ds

+

∫ t

tk

(
∂βσ(β, Y θ,β

s (tk, x)) + ∂xσ(β, Y θ,β
s (tk, x))∂βY

θ,β
s (tk, x)

)
dWs,

∂xY
θ,β
t (tk, x) = 1 +

∫ t

tk

∂xb(θ, Y
θ,β
s (tk, x))∂xY

θ,β
s (tk, x)ds

+

∫ t

tk

∂xσ(β, Y θ,β
s (tk, x))∂xY

θ,β
s (tk, x)dWs.



100 Chapitre 5. LAN property for a jump-diffusion process : drift and diffusion parameters

We have the following decompositions of the Skorohod integral appearing in the conditional
expectations of Proposition 5.2.1.

Lemma 5.2.1. Under conditions (A1)-(A3), for all (θ, β) ∈ Θ× Σ and k ∈ {0, ..., n− 1},

δ
(
∂θY

θ,β
tk+1

(tk, x)U θ,β(tk, x)
)

= ∆n∂θb(θ, Y
θ,β
tk

)σ−2(β, Y θ,β
tk

)
(
Y θ,β
tk+1
− Y θ,β

tk
− b(θ, Y θ,β

tk
)∆n

)
+Rθ,β1 +Rθ,β2 +Rθ,β3 −Rθ,β4 −Rθ,β5 −Rθ,β6 ,

where

Rθ,β1 : = −
∫ tk+1

tk

Ds

(
∂θY

θ,β
tk+1

(tk, x)

∂xY
θ,β
tk+1

(tk, x)

)
∂xY

θ,β
s (tk, x)

σ(β, Y θ,β
s (tk, x))

ds,

Rθ,β2 : =

∫ tk+1

tk

∂θb(θ, Y
θ,β
s (tk, x))

∂xY
θ,β
s (tk, x)

ds

∫ tk+1

tk

(
∂xY

θ,β
s (tk, x)

σ(β, Y θ,β
s (tk, x))

−
∂xY

θ,β
tk

(tk, x)

σ(β, Y θ,β
tk

(tk, x))

)
dWs,

Rθ,β3 : =

∫ tk+1

tk

(
∂θb(θ, Y

θ,β
s (tk, x))

∂xY
θ,β
s (tk, x)

−
∂θb(θ, Y

θ,β
tk

(tk, x))

∂xY
θ,β
tk

(tk, x)

)
ds

∫ tk+1

tk

∂xY
θ,β
tk

(tk, x)

σ(β, Y θ,β
tk

(tk, x))
dWs,

Rθ,β4 : = ∆n∂θb(θ, Y
θ,β
tk

)σ−2(β, Y θ,β
tk

)

∫ tk+1

tk

(
b(θ, Y θ,β

s )− b(θ, Y θ,β
tk

)
)
ds,

Rθ,β5 : = ∆n∂θb(θ, Y
θ,β
tk

)σ−2(β, Y θ,β
tk

)

∫ tk+1

tk

(
σ(β, Y θ,β

s )− σ(β, Y θ,β
tk

)
)
dWs,

Rθ,β6 : = ∆n∂θb(θ, Y
θ,β
tk

)σ−2(β, Y θ,β
tk

)

∫ tk+1

tk

∫
R0

zM̃(ds, dz),

and

Ds

(
∂θY

θ,β
tk+1

(tk, x)

∂xY
θ,β
tk+1

(tk, x)

)
=

∫ tk+1

s

(
− ∂θb(θ, Y

θ,β
u (tk, x))

(∂xY
θ,β
u (tk, x))2

Ds(∂xY
θ,β
u (tk, x))

+ ∂2
x,θb(θ, Y

θ,β
u (tk, x))

DsY
θ,β
u (tk, x)

∂xY
θ,β
u (tk, x)

)
du.

Proof. By Itô’s formula,

1

∂xY
θ,β
t (tk, x)

= 1−
∫ t

tk

∂xb(θ, Y
θ,β
s (tk, x))−

(
∂xσ(β, Y θ,β

s (tk, x))
)2

∂xY
θ,β
s (tk, x)

ds

−
∫ t

tk

∂xσ(β, Y θ,β
s (tk, x))

∂xY
θ,β
s (tk, x)

dWs,

which implies that
∂θY

θ,β
tk+1

(tk, x)

∂xY
θ,β
tk+1

(tk, x)
=

∫ tk+1

tk

∂θb(θ, Y
θ,β
s (tk, x))

∂xY
θ,β
s (tk, x)

ds.

Then, using the product rule [57, (1.48)], we obtain that

δ
(
∂θY

θ,β
tk+1

(tk, x)U θ,β(tk, x)
)

=

∫ tk+1

tk

∂θb(θ, Y
θ,β
s (tk, x))

∂xY
θ,β
s (tk, x)

ds

∫ tk+1

tk

∂xY
θ,β
s (tk, x)

σ(β, Y θ,β
s (tk, x))

dWs

−
∫ tk+1

tk

Ds

(
∂θY

θ,β
tk+1

(tk, x)

∂xY
θ,β
tk+1

(tk, x)

)
∂xY

θ,β
s (tk, x)

σ(β, Y θ,β
s (tk, x))

ds.
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We next add and substract the term
∂xY

θ,β
tk

(tk,x)

σ(β,Y θ,βtk
(tk,x))

in the second integral above, and next

we add and substract the term
∂θb(θ,Y

θ,β
tk

(tk,x))

∂xY
θ,β
tk

(tk,x)
in the first one. This, together the fact that

Y θ,β
tk

(tk, x) = Y θ,β
tk

= x, yields

δ
(
∂θY

θ,β
tk+1

(tk, x)U θ,β(tk, x)
)

= ∆n∂θb(θ, Y
θ,β
tk

)σ−1(β, Y θ,β
tk

)
(
Wtk+1

−Wtk

)
+Rθ,β1 +Rθ,β2 +Rθ,β3 .

(5.4)
On the other hand, by equation (5.3) we have that

Wtk+1
−Wtk = σ−1(β, Y θ,β

tk
)

(
Y θ,β
tk+1
− Y θ,β

tk
− b(θ, Y θ,β

tk
)∆n −

∫ tk+1

tk

(
b(θ, Y θ,β

s )− b(θ, Y θ,β
tk

)
)
ds

−
∫ tk+1

tk

(
σ(β, Y θ,β

s )− σ(β, Y θ,β
tk

)
)
dWs −

∫ tk+1

tk

∫
R0

zM̃(ds, dz)

)
,

which concludes the desired result.

Lemma 5.2.2. Under conditions (A1)-(A3), for all (θ, β) ∈ Θ× Σ and k ∈ {0, ..., n− 1},

δ
(
∂βY

θ,β
tk+1

(tk, x)U θ,β(tk, x)
)

=
∂βσ

σ3
(β, Y θ,β

tk
)
(
Y θ,β
tk+1
− Y θ,β

tk

)2
−
∂βσ

σ
(β, Y θ,β

tk
)∆n

+Hθ,β
3 +Hθ,β

4 +Hθ,β
5 +Hθ,β

6 +Hθ,β
7 −

∂βσ

σ3
(β, Y θ,β

tk
)

{(
Hθ,β

8 +Hθ,β
9 +Hθ,β

10

)2

+ 2σ(β, Y θ,β
tk

)(Wtk+1
−Wtk)

(
Hθ,β

8 +Hθ,β
9 +Hθ,β

10

)}
,

where

Hθ,β
3 : = −

∫ tk+1

tk

∂xσ(β, Y θ,β
s (tk, x))∂βσ(β, Y θ,β

s (tk, x))

∂xY
θ,β
s (tk, x)

ds

∫ tk+1

tk

∂xY
θ,β
s (tk, x)

σ(β, Y θ,β
s (tk, x))

dWs,

Hθ,β
4 : = −

∫ tk+1

tk

(
Hθ,β

1 +Hθ,β
2

) ∂xY
θ,β
s (tk, x)

σ(β, Y θ,β
s (tk, x))

ds,

Hθ,β
5 : =

∫ tk+1

tk

(
∂βσ(β, Y θ,β

s (tk, x))

∂xY
θ,β
s (tk, x)

−
∂βσ(β, Y θ,β

tk
(tk, x))

∂xY
θ,β
tk

(tk, x)

)
dWs

∫ tk+1

tk

∂xY
θ,β
s (tk, x)

σ(β, Y θ,β
s (tk, x))

dWs,

Hθ,β
6 : =

∫ tk+1

tk

∂βσ(β, Y θ,β
tk

(tk, x))

∂xY
θ,β
tk

(tk, x)
dWs

∫ tk+1

tk

(
∂xY

θ,β
s (tk, x)

σ(β, Y θ,β
s (tk, x))

−
∂xY

θ,β
tk

(tk, x)

σ(β, Y θ,β
tk

(tk, x))

)
dWs,

Hθ,β
7 : = −

∫ tk+1

tk

(
∂βσ(β, Y θ,β

s (tk, x))

σ(β, Y θ,β
s (tk, x))

−
∂βσ(β, Y θ,β

tk
(tk, x))

σ(β, Y θ,β
tk

(tk, x))

)
ds, Hθ,β

8 :=

∫ tk+1

tk

b(θ, Y θ,β
s )ds,

Hθ,β
9 : =

∫ tk+1

tk

(
σ(β, Y θ,β

s )− σ(β, Y θ,β
tk

)
)
dWs, Hθ,β

10 :=

∫ tk+1

tk

∫
R0

zM̃(ds, dz),

and

Hθ,β
1 = −

∫ tk+1

s
Ds

(
∂xσ(β, Y θ,β

u (tk, x))∂βσ(β, Y θ,β
u (tk, x))

∂xY
θ,β
u (tk, x)

)
du,

Hθ,β
2 =

∫ tk+1

s
Ds

(
∂βσ(β, Y θ,β

u (tk, x))

∂xY
θ,β
u (tk, x)

)
dWu,
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where

Ds

(
∂xσ∂βσ(β, Y θ,β

u (tk, x))

∂xY
θ,β
u (tk, x)

)
= −

∂xσ∂βσ(β, Y θ,β
u (tk, x))

(∂xY
θ,β
u (tk, x))2

Ds(∂xY
θ,β
u (tk, x))

+
(
∂2
xσ∂βσ(β, Y θ,β

u (tk, x)) + ∂xσ∂
2
x,βσ(β, Y θ,β

u (tk, x))
) DsY

θ,β
u (tk, x)

∂xY
θ,β
u (tk, x)

,

Ds

(
∂βσ(β, Y θ,β

u )

∂xY
θ,β
u (tk, x)

)
= −

∂βσ(β, Y θ,β
u (tk, x))

(∂xY
θ,β
u (tk, x))2

Ds(∂xY
θ,β
u (tk, x)) + ∂2

x,βσ(β, Y θ,β
u (tk, x))

DsY
θ,β
u (tk, x)

∂xY
θ,β
u (tk, x)

.

Proof. By Itô’s formula,

∂βY
θ,β
tk+1

(tk, x)

∂xY
θ,β
tk+1

(tk, x)
= −

∫ tk+1

tk

∂xσ(β, Y θ,β
s (tk, x))∂βσ(β, Y θ,β

s (tk, x))

∂xY
θ,β
s (tk, x)

ds+

∫ tk+1

tk

∂βσ(β, Y θ,β
s (tk, x))

∂xY
θ,β
s (tk, x)

dWs.

Then, using again the product rule [57, (1.48)], we obtain that

δ
(
∂βY

θ,β
tk+1

(tk, x)U θ,β(tk, x)
)

=

(
−
∫ tk+1

tk

∂xσ∂βσ(β, Y θ,β
s (tk, x))

∂xY
θ,β
s (tk, x)

ds+

∫ tk+1

tk

∂βσ(β, Y θ,β
s (tk, x))

∂xY
θ,β
s (tk, x)

dWs

)

×
∫ tk+1

tk

∂xY
θ,β
s (tk, x)

σ(β, Y θ,β
s (tk, x))

dWs −
∫ tk+1

tk

{
∂βσ(β, Y θ,β

s (tk, x))

∂xY
θ,β
s (tk, x)

+

∫ tk+1

s
Ds

(
∂βσ(β, Y θ,β

u (tk, x))

∂xY
θ,β
u (tk, x)

)
dWu

−
∫ tk+1

s
Ds

(
∂xσ(β, Y θ,β

u (tk, x))∂βσ(β, Y θ,β
u (tk, x))

∂xY
θ,β
u (tk, x)

)
du

}
∂xY

θ,β
s (tk, x)

σ(β, Y θ,β
s (tk, x))

ds.

We next add and substract the term
∂βσ(β,Y θ,βtk

(tk,x))

∂xY
θ,β
tk

(tk,x)
in the second integral above, the term

∂xY
θ,β
tk

(tk,x)

σ(β,Y θ,βtk
(tk,x))

in the third one, and the term
∂βσ(β,Y θ,βtk

(tk,x))

σ(β,Y θ,βtk
(tk,x))

in the last one. This, together the

fact that Y θ,β
tk

(tk, x) = Y θ,β
tk

= x, yields

δ
(
∂βY

θ,β
tk+1

(tk, x)U θ,β(tk, x)
)

=
∂βσ

σ
(β, Y θ,β

tk
)
(
Wtk+1

−Wtk

)2 − ∂βσ

σ
(β, Y θ,β

tk
)∆n

+Hθ,β
3 +Hθ,β

4 +Hθ,β
5 +Hθ,β

6 +Hθ,β
7 .

(5.5)

On the other hand, by equation (5.3) we have that

Wtk+1
−Wtk = σ−1(β, Y θ,β

tk
)

(
Y θ,β
tk+1
− Y θ,β

tk
−
∫ tk+1

tk

b(θ, Y θ,β
s )ds

−
∫ tk+1

tk

(
σ(β, Y θ,β

s )− σ(β, Y θ,β
tk

)
)
dWs −

∫ tk+1

tk

∫
R0

zM̃(ds, dz)

)
,

which concludes the desired result.

We will use the following estimates for the solution to (5.2).

Lemma 5.2.3. Assume conditions (A1) and (A4).
(i) For any p ≥ 2 and (θ, β) ∈ Θ × Σ, there exists a constant Cp > 0 such that for all
k ∈ {0, ..., n− 1} and t ∈ [tk, tk+1],

E
[∣∣∣Y θ,β

t (tk, x)− Y θ,β
tk

(tk, x)
∣∣∣p ∣∣Y θ,β

tk
(tk, x) = x

]
≤ Cp |t− tk|

p
2
∧1 (1 + |x|)p .



5.2. Preliminaries 103

(ii) For any function g : Θ × Σ × R → R with polynomial growth in x uniformly in (θ, β) ∈
Θ× Σ, there exist constants C, q > 0 such that for all k ∈ {0, ..., n− 1} and t ∈ [tk, tk+1],

E
[∣∣∣g(θ, β, Y θ,β

t (tk, x))
∣∣∣ ∣∣Y θ,β

tk
(tk, x) = x

]
≤ C (1 + |x|q) .

Moreover, all these statements remain valid for Xθ,β.

Under conditions (A1)-(A3), for any k ∈ {0, ..., n − 1} and t ≥ tk, the random variables
Y θ,β
t (tk, x), ∂xY

θ,β
t (tk, x), (∂xY

θ,β
t (tk, x))−1, ∂θY

θ,β
t (tk, x) and ∂βY

θ,β
t (tk, x) belong to D1,2 (see

[61, Theorem 3]).
Assuming conditions (A1)-(A4) and using Gronwall’s inequality, one can easily check that

for any (θ, β) ∈ Θ×Σ and p ≥ 2, there exist constants Cp, q > 0 such that for all k ∈ {0, ..., n−1}
and t ∈ [tk, tk+1],

E

∣∣∣∂xY θ,β
t (tk, x))

∣∣∣p +
1∣∣∣∂xY θ,β

t (tk, x))
∣∣∣p
∣∣∣Y θ,β
tk

(tk, x) = x


+ sup
s∈[tk,tk+1]

E
[∣∣∣DsY

θ,β
t (tk, x)

∣∣∣p ∣∣∣Y θ,β
tk

(tk, x) = x
]
≤ Cp, and

sup
s∈[tk,tk+1]

E
[∣∣∣Ds

(
∂xY

θ,β
t (tk, x)

)∣∣∣p ∣∣∣Y θ,β
tk

(tk, x) = x
]
≤ Cp (1 + |x|q).

As a consequence, we have the following estimates, which follow easily from (5.4), (5.5), Lemma
5.2.3 and properties of the moments of the Brownian motion.

Lemma 5.2.4. Under conditions (A1)-(A4), for any (θ, β) ∈ Θ × Σ and p ≥ 2, there exist
constants Cp, q > 0 such that for all k ∈ {0, ..., n− 1},

E
[
Rθ,β1 +Rθ,β2 +Rθ,β3 −Rθ,β5

∣∣Y θ,β
tk

(tk, x) = x
]

= 0, (5.6)

E
[∣∣∣Rθ,β1 +Rθ,β2 +Rθ,β3 −Rθ,β5

∣∣∣p ∣∣Y θ,β
tk

(tk, x) = x
]
≤ Cp∆

3p+1
2

n (1 + |x|q) , (5.7)

E
[∣∣∣δ (∂θY θ,β

tk+1
(tk, x)U θ,β(tk, x)

)∣∣∣p ∣∣Y θ,β
tk

(tk, x) = x
]
≤ Cp∆

3p
2
n (1 + |x|q) , (5.8)

E
[
Hθ,β

3 +Hθ,β
4 +Hθ,β

5 +Hθ,β
6 +Hθ,β

7

∣∣Y θ,β
tk

(tk, x) = x
]

= 0, (5.9)

E
[∣∣∣Hθ,β

3 +Hθ,β
4 +Hθ,β

5 +Hθ,β
6 +Hθ,β

7

∣∣∣p ∣∣Y θ,β
tk

(tk, x) = x
]
≤ Cp∆

p+ 1
2

n (1 + |x|q) , (5.10)

E
[∣∣∣δ (∂βY θ,β

tk+1
(tk, x)U θ,β(tk, x)

)∣∣∣p ∣∣Y θ,β
tk

(tk, x) = x
]
≤ Cp∆p

n (1 + |x|q) . (5.11)

For any t > s and j ≥ 0, we denote by qθ,β(j) (t−s, x, y) the transition density of Y θ,β
t conditioned

on Y θ,β
s = x and Mt −Ms = j, where Mt = M([0, t]× R). That is,

pθ,β(t− s, x, y) =

∞∑
j=0

qθ,β(j) (t− s, x, y)e−λ(t−s) (λ(t− s))j

j!
. (5.12)

From [24, Proposition 5.1], for any (θ, β) ∈ Θ × Σ there exist constants c, C > 1 such that
for all 0 < t ≤ 1, and x, y ∈ R,

1

C
√
t
e−c

(y−x)2

t ≤ qθ,β(0) (t, x, y) ≤ C√
t
e−

(y−x)2

ct . (5.13)

For any t > s and j ≥ 1, we denote by qθ,β(j) (t − s, x, y; a1, . . . , aj) the transition density

of Y θ,β
t conditioned on Y θ,β

s = x,Mt −Ms = j and Λ̃[s,t] = {a1, . . . , ai}, where Λ̃[s,t] are the
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jump amplitudes of Z̃ on the interval [s, t], i.e, Λ̃[s,t] := {∆Z̃u; s ≤ u ≤ t}. Consider the events
Ĵj,k = {Ntk+1

− Ntk = j} and J̃j,k = {Mtk+1
−Mtk = j}, for j ≥ 0 and k ∈ {0, ..., n − 1},

where Nt = N([0, t] × R). We denote by Λ̂[s,t] the jump amplitudes of Ẑ on the interval [s, t],
i.e, Λ̂[s,t] := {∆Ẑu; s ≤ u ≤ t}, and by {Ĵj,k, a1, . . . , aj} := {Ntk+1

− Ntk = j} ∩ {Λ̂[tk,tk+1] =

{a1, . . . , aj}}, {J̃j,k, a1, . . . , aj} := {Mtk+1
−Mtk = j} ∩ {Λ̃[tk,tk+1] = {a1, . . . , aj}}, for any j ≥ 1

and a1, . . . , aj ∈ R0.
In what follows, by abuse of notation we will let Λ̃[s,t](ω) = a1 in the case that Mt(ω) −

Ms(ω) = 1, similarly for Λ̂.

Lemma 5.2.5. Under conditions (A1)-(A3), for all (θ, β) ∈ Θ × Σ, j ≥ 1, x, y ∈ R and
a1, . . . , aj ∈ R0,

1

Cj+1
√

∆n
e−c

(y−x−a)2

∆n ≤ qθ,β(j) (∆n, x, y; a1, . . . , aj) ≤
Cj+1

√
∆n

e−
(y−x−a)2

c∆n , (5.14)

where a = a1 + · · ·+ aj and C, c are the constants in (5.13).

Proof. Using (5.13) and the Chapman-Kolmogorov equation in terms of transition density re-
peatedly, we get that

qθ,β(j) (∆n, x, y; a1, . . . , aj) =
j!

∆j
n

∫ tk+1

tk

∫ sj

tk

∫ sj−1

tk

· · ·
∫ s2

tk

∫
Rj
qθ,β(0) (s1 − tk, x, z1)

× qθ,β(0) (s2 − s1, z1 + a1, z2) · · · qθ,β(0) (tk+1 − sj , zj + aj , y)dz1 · · · dzjds1 · · · dsj

≤ j!

∆j
n

∫ tk+1

tk

∫ sj

tk

∫ sj−1

tk

· · ·
∫ s2

tk

∫
Rj

C√
s1 − tk

e
− (z1−x)2

c(s1−tk)
C√

s2 − s1
e
− (z2−z1−a1)2

c(s2−s1)

× · · · × C
√
tk+1 − sj

e
−(y−zj−aj)

2

c(tk+1−sj) dz1 · · · dzjds1 · · · dsj

=
j!

∆j
n

∫ tk+1

tk

∫ sj

tk

∫ sj−1

tk

· · ·
∫ s2

tk

Cj+1

√
∆n

e−
(y−x−a1−···−aj)

2

c∆n ds1 · · · dsj ,

which concludes the upper bound of (5.14) using the fact that

j!

∆j
n

∫ tk+1

tk

∫ sj

tk

∫ sj−1

tk

· · ·
∫ s2

tk

ds1 · · · dsj = 1.

Similarly,

qθ,β(j) (∆n, x, y; a1, . . . , aj) ≥
j!

∆j
n

∫ tk+1

tk

∫ sj

tk

∫ sj−1

tk

· · ·
∫ s2

tk

∫
Rj

1

C
√
s1 − tk

e
−c (z1−x)2

s1−tk

× 1

C
√
s2 − s1

e
−c (z2−z1−a1)2

s2−s1 × · · · × 1

C
√
tk+1 − sj

e
−c(

y−zj−aj)
2

tk+1−sj dz1 · · · dzjds1 · · · dsj

=
j!

∆j
n

∫ tk+1

tk

∫ sj

tk

∫ sj−1

tk

· · ·
∫ s2

tk

1

Cj+1
√

∆n
e−c

(y−x−a1−···−aj)
2

∆n ds1 · · · dsj ,

which concludes the lower bound of (5.14), and finishes the desired proof.

Lemma 5.2.6. Assume conditions (A1)-(A3). Then for any (θ, β), (θ̄, β̄) ∈ Θ× Σ, and p > 1
close to 1, there exists a constant C0 > 0 such that for all a1, . . . , aj ∈ R0, k ∈ {0, ..., n− 1}, and
j ≥ 1,

E

1{Ĵj,k,a1,...,aj}

qθ̄,β̄(j)

qθ,β(j)

(∆n, X
θ,β
tk
, Xθ,β

tk+1
; a1, . . . , aj)

p ∣∣∣Xθ,β
tk

= x


≤ C0C

(2p−1)(j+1)pa1 · · · paje−λ∆n
(λ∆n)j

j!
,

(5.15)
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where C is as in (5.14), and

E

1
Ĵ0,k

qθ̄,β̄(0)

qθ,β(0)

(∆n, X
θ,β
tk
, Xθ,β

tk+1
)

p ∣∣∣Xθ,β
tk

= x

 ≤ C0. (5.16)

Moreover, all these statements remain valid for Y θ,β.

Proof. Applying the upper and lower bound of (5.14) to qθ̄,β̄(j) and qθ,β(j) , respectively, together with

the independence between N and Λ̂, we get that for all p > 1,

E

1{Ĵj,k,a1,...,aj}

qθ̄,β̄(j)

qθ,β(j)

(∆n, X
θ,β
tk
, Xθ,β

tk+1
; a1, . . . , aj)

p ∣∣∣Xθ,β
tk

= x


= pa1 · · · paje−λ∆n

(λ∆n)j

j!

∫
R
qθ̄,β̄(j) (∆n, x, y; a1, . . . , aj)

pqθ,β(j) (∆n, x, y; a1, . . . , aj)
1−pdy

≤ C(j+1)(2p−1)pa1 · · · paje−λ∆n
(λ∆n)j

j!

∫
R

1√
∆n

e(− p
c

+(p−1)c)
(y−x−a1−···−aj)

2

∆n dy.

If we choose p ∈ (1, c2

c2−1
), then −p

c + (p− 1)c < 0, and the integral above is finite and equal to
C0. This concludes (5.15). The proof of (5.16) can be done similarly by using (5.13).

As in [24, Proposition 4.1], we have the following expression for the derivatives of the log-
likelihood function conditioned on the number and the amplitudes of jumps w.r.t. θ and β in
terms of a conditional expectation.

Lemma 5.2.7. Assume conditions (A1)-(A3). Then for all (θ, β) ∈ Θ× Σ, k ∈ {0, ..., n− 1},
j ≥ 1, x, y ∈ R, and a1, . . . , aj ∈ R0,

∂θq
θ,β
(j)

qθ,β(j)

(∆n, x, y; a1, . . . , aj) =
1

∆n
Ẽθ,βx

[
δ
(
∂θY

θ,β
tk+1

(tk, x)U θ,β(tk, x)
) ∣∣∣Y θ,β

tk+1
= y, J̃j,k, a1, . . . , aj

]
,

∂βq
θ,β
(j)

qθ,β(j)

(∆n, x, y; a1, . . . , aj) =
1

∆n
Ẽθ,βx

[
δ
(
∂βY

θ,β
tk+1

(tk, x)U θ,β(tk, x)
) ∣∣∣Y θ,β

tk+1
= y, J̃j,k, a1, . . . , aj

]
,

∂θq
θ,β
(0)

qθ,β(0)

(∆n, x, y) =
1

∆n
Ẽθ,βx

[
δ
(
∂θY

θ,β
tk+1

(tk, x)U θ,β(tk, x)
) ∣∣∣Y θ,β

tk+1
= y, J̃0,k

]
,

∂βq
θ,β
(0)

qθ,β(0)

(∆n, x, y) =
1

∆n
Ẽθ,βx

[
δ
(
∂βY

θ,β
tk+1

(tk, x)U θ,β(tk, x)
) ∣∣∣Y θ,β

tk+1
= y, J̃0,k

]
,

where the process U θ,β = (U θ,βt , t ∈ [tk, tk+1]) is defined in Proposition 5.2.1.

Proof. Let f be a continuously differentiable function with compact support. The chain rule
of the Malliavin calculus implies that f ′(Y θ,β

tk+1
(tk, x)) = Dt(f(Y θ,β

tk+1
(tk, x)))U θ,βt (tk, x), for all

(θ, β) ∈ Θ× Σ and t ∈ [tk, tk+1], where

U θ,βt (tk, x) =
1

DtY
θ,β
tk+1

(tk, x)
.

Then, using the integration by parts formula of the Malliavin calculus on the interval [tk, tk+1]
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and the independence between W , Λ̃ and M , we get that

∂θẼ
[
1{J̃j,k,a1,...,aj}f(Y θ,β

tk+1
(tk, x))

]
= Ẽ

[
1{J̃j,k,a1,...,aj}f

′(Y θ,β
tk+1

(tk, x))∂θY
θ,β
tk+1

(tk, x)
]

=
1

∆n
Ẽ

[
1{J̃j,k,a1,...,aj}

∫ tk+1

tk

f ′(Y θ,β
tk+1

(tk, x))∂θY
θ,β
tk+1

(tk, x)dt

]
=

1

∆n
Ẽ

[∫ tk+1

tk

Dt(f(Y θ,β
tk+1

(tk, x)))U θ,βt (tk, x)∂θY
θ,β
tk+1

(tk, x)1{J̃j,k,a1,...,aj}dt

]
=

1

∆n
Ẽ
[
1{J̃j,k,a1,...,aj}f(Y θ,β

tk+1
(tk, x))δ

(
∂θY

θ,β
tk+1

(tk, x)U θ,β(tk, x)
)]
.

On the other hand,

∂θẼ
[
1{J̃j,k,a1,...,aj}f(Y θ,β

tk+1
(tk, x))

]
=

∫
R
f(y)∂θq

θ,β
(j) (∆n, x, y; a1, . . . , aj)pa1 · · · paje−λ∆n

(λ∆n)j

j!
dy,

and

Ẽ
[
1{J̃j,k,a1,...,aj}f(Y θ,β

tk+1
(tk, x))δ

(
∂θY

θ,β
tk+1

(tk, x)U θ,β(tk, x)
)]

= Ẽ
[
1{J̃j,k,a1,...,aj}f(Y θ,β

tk+1
)δ
(
∂θY

θ,β
tk+1

(tk, x)U θ,β(tk, x)
) ∣∣∣Y θ,β

tk
= x

]
=

∫
R
f(y)Ẽ

[
δ
(
∂θY

θ,β
tk+1

(tk, x)U θ,β(tk, x)
) ∣∣∣Y θ,β

tk+1
= y, Y θ,β

tk
= x, J̃j,k, a1, . . . , aj

]
× qθ,β(j) (∆n, x, y; a1, . . . , aj)pa1 · · · paje−λ∆n

(λ∆n)j

j!
dy.

This shows the first equality. The proof of the other equalities follow along the same lines and
are omitted.

As in [25, Proposition 1.2], we have the following estimates.

Lemma 5.2.8. Assume conditions (A1)-(A4). Then for any (θ, β), (θ̄, β̄) ∈ Θ × Σ, p > 1,
and p1 > 1 close to 1, there exist constants C0, q > 0 such that for all k ∈ {0, ..., n − 1},
a1, . . . , aj ∈ R0, and j ≥ 1,

E

1{Ĵj,k,a1,...,aj}

∂θqθ,β(j)

qθ,β(j)

(∆n, X
θ̄,β̄
tk
, X θ̄,β̄

tk+1
; a1, . . . , aj)

p ∣∣∣X θ̄,β̄
tk

= x


≤ C0∆

p
2
n

(
C(2p1−1)(j+1)pa1 · · · paje−λ∆n

(λ∆n)j

j!

) 1
p1

(1 + |x|q) ,

E

1{Ĵj,k,a1,...,aj}

∂βqθ,β(j)

qθ,β(j)

(∆n, X
θ̄,β̄
tk
, X θ̄,β̄

tk+1
; a1, . . . , aj)

p ∣∣∣X θ̄,β̄
tk

= x


≤ C0

(
C(2p1−1)(j+1)pa1 · · · paje−λ∆n

(λ∆n)j

j!

) 1
p1

(1 + |x|q) ,

where C is as in (5.14), and

E

1
Ĵ0,k

∂θqθ,β(0)

qθ,β(0)

(∆n, X
θ̄,β̄
tk
, X θ̄,β̄

tk+1
)

p ∣∣∣X θ̄,β̄
tk

= x

 ≤ C0∆
p
2
n (1 + |x|q) ,

E

1
Ĵ0,k

∂βqθ,β(0)

qθ,β(0)

(∆n, X
θ̄,β̄
tk
, X θ̄,β̄

tk+1
)

p ∣∣∣X θ̄,β̄
tk

= x

 ≤ C0 (1 + |x|q) .
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Proof. Applying Lemma 5.2.7 and Jensen’s inequality, for any j ≥ 1 and p > 1, we obtain that

E

1{Ĵj,k,a1,...,aj}

∂βqθ,β(j)

qθ,β(j)

(∆n, X
θ̄,β̄
tk
, X θ̄,β̄

tk+1
; a1, . . . , aj)

p ∣∣∣X θ̄,β̄
tk

= x

 = E

[
1{Ĵj,k,a1,...,aj}

×
(

1

∆n
Ẽθ,βx

[
δ
(
∂βY

θ,β
tk+1

(tk, x)U θ,β(tk, x)
) ∣∣∣Y θ,β

tk+1
= X θ̄,β̄

tk+1
, J̃j,k, a1, . . . , aj

])p ∣∣∣X θ̄,β̄
tk

= x

]
≤ 1

∆p
n

∫
R

Ẽθ,βx

[∣∣∣δ (∂βY θ,β
tk+1

(tk, x)U θ,β(tk, x)
)∣∣∣p ∣∣∣Y θ,β

tk+1
= y, J̃j,k, a1, . . . , aj

]
× qθ̄,β̄(j) (∆n, x, y; a1, . . . , aj)pa1 · · · paje−λ∆n

(λ∆n)j

j!
dy

=
1

∆p
n

Ẽθ,βx

∣∣∣δ (∂βY θ,β
tk+1

(tk, x)U θ,β(tk, x)
)∣∣∣p 1{J̃j,k,a1,...,aj}

qθ̄,β̄(j)

qθ,β(j)

(∆n, Y
θ,β
tk

, Y θ,β
tk+1

; a1, . . . , aj)

 .
Then, applying Hölder’s inequality with 1

p1
+ 1

p2
= 1, together with Lemma 5.2.6 and (5.11),

we get that if p1 is close to 1,

E

1{Ĵj,k,a1,...,aj}

∂βqθ,β(j)

qθ,β(j)

(∆n, X
θ̄,β̄
tk
, X θ̄,β̄

tk+1
; a1, . . . , aj)

p ∣∣∣X θ̄,β̄
tk

= x


≤ 1

∆p
n

(
Ẽθ,βx

[∣∣∣δ (∂βY θ,β
tk+1

(tk, x)U θ,β(tk, x)
)∣∣∣pp2

]) 1
p2

×

Ẽθ,βx

1{J̃j,k,a1,...,aj}

qθ̄,β̄(j)

qθ,β(j)

(∆n, Y
θ,β
tk

, Y θ,β
tk+1

; a1, . . . , aj)

p1


1
p1

≤ C0

(
C(2p1−1)(j+1)pa1 · · · paje−λ∆n

(λ∆n)j

j!

) 1
p1

(1 + |x|q) ,

for some constants C0, q > 0. This concludes the second inequality. The proof of the other
inequalities follow along the same lines and are omitted.

Lemma 5.2.9. Assume conditions (A1)-(A4). Then for any q1, q2, q3 > 1 conjugate, q3 close
to 1, and p1 > 1 close to 1, there exist constants C0, q > 0 such that for any random variable Y ,
k ∈ {0, ..., n− 1}, a1, . . . , aj ∈ R0, and j ≥ 1,∣∣∣∣∣∣E

Y 1{Ĵj,k,a1,...,aj}

 qθ0,β0

(j)

q
θn,β(`)
(j)

(∆n, X
θn,β(`)
tk

, X
θn,β(`)
tk+1

; a1, . . . , aj)− 1

∣∣∣Xθn,β(`)
tk

= x

∣∣∣∣∣∣
≤ C0√

n

(
E
[
|Y |q1

∣∣Xθn,β(`)
tk

= x
]) 1

q1

(
C(p1∨q3)(j+1)pa1 · · · paje−λ∆n

(λ∆n)j

j!

) 1
p1q2

+ 1
q3

(1 + |x|q) ,

where C is as in (5.14), and∣∣∣∣∣∣E
Y 1

Ĵ0,k

 qθ0,β0

(0)

q
θn,β(`)
(0)

(∆n, X
θn,β(`)
tk

, X
θn,β(`)
tk+1

)− 1

∣∣∣Xθn,β(`)
tk

= x

∣∣∣∣∣∣
≤ C0√

n

(
E
[
|Y |q1

∣∣Xθn,β(`)
tk

= x
]) 1

q1 (1 + |x|q) ,

where β(`) := β0 +
`v√
n
, and ` ∈ [0, 1].
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Proof. Observe that we can write

qθ0,β0

(j)

q
θn,β(`)
(j)

(∆n, X
θn,β(`)
tk

, X
θn,β(`)
tk+1

; a1, . . . , aj)− 1 =
qθ0,β0

(j) − qθ0,β(`)
(j) + q

θ0,β(`)
(j) − qθn,β(`)

(j)

q
θn,β(`)
(j)

= − `v√
n

∫ 1

0

∂βq
θ0,β0+ `vh√

n

(j)

q
θ0,β0+ `vh√

n

(j)

q
θ0,β0+ `vh√

n

(j)

q
θn,β(`)
(j)

dh− u√
n∆n

∫ 1

0

∂θq
θ0+ uh√

n∆n
,β(`)

(j)

q
θ0+ uh√

n∆n
,β(`)

(j)

q
θ0+ uh√

n∆n
,β(`)

(j)

q
θn,β(`)
(j)

dh.

Here, to simplify the exposition, let us write
q
θ0,β0
(j)

q
θn,β(`)
(j)

≡
q
θ0,β0
(j)

q
θn,β(`)
(j)

(∆n, X
θn,β(`)
tk

, X
θn,β(`)
tk+1

; a1, . . . , aj).

This implies that∣∣∣∣∣∣E
Y 1{Ĵj,k,a1,...,aj}

 qθ0,β0

(j)

q
θn,β(`)
(j)

− 1

∣∣∣Xθn,β(`)
tk

= x

∣∣∣∣∣∣ ≤ S1 + S2,

where

S1 =
|v|√
n

∫ 1

0

∣∣∣∣∣∣∣E
Y 1{Ĵj,k,a1,...,aj}

∂βq
θ0,β0+ `vh√

n

(j)

q
θ0,β0+ `vh√

n

(j)

q
θ0,β0+ `vh√

n

(j)

q
θn,β(`)
(j)

∣∣∣Xθn,β(`)
tk

= x


∣∣∣∣∣∣∣ dh,

S2 =
|u|√
n∆n

∫ 1

0

∣∣∣∣∣∣∣E
Y 1{Ĵj,k,a1,...,aj}

∂θq
θ0+ uh√

n∆n
,β(`)

(j)

q
θ0+ uh√

n∆n
,β(`)

(j)

q
θ0+ uh√

n∆n
,β(`)

(j)

q
θn,β(`)
(j)

∣∣∣Xθn,β(`)
tk

= x


∣∣∣∣∣∣∣ dh.

First, we treat S1. Using Hölder’s inequality with q1, q2, q3 > 1 conjugate, together with
Lemmas 5.2.6 and 5.2.8, we get that if q3 is close to 1, for any p1 > 1 close to 1,

S1 ≤
|v|√
n

∫ 1

0

(
E
[
|Y |q1 |Xθn,β(`)

tk
= x

]) 1
q1

E

1{Ĵj,k,a1,...,aj}

∂βqθ0,β0+ `vh√
n

(j)

q
θ0,β0+ `vh√

n

(j)


q2 ∣∣∣Xθn,β(`)

tk
= x




1
q2

×

E

1{Ĵj,k,a1,...,aj}

qθ0,β0+ `vh√
n

(j)

q
θn,β(`)
(j)


q3 ∣∣∣Xθn,β(`)

tk
= x




1
q3

dh

≤ C0
|v|√
n

(
E
[
|Y |q1 |Xθn,β(`)

tk
= x

]) 1
q1

(
C(2p1−1)(j+1)pa1 · · · paje−λ∆n

(λ∆n)j

j!

) 1
p1q2

×
(
C(2q3−1)(j+1)pa1 · · · paje−λ∆n

(λ∆n)j

j!

) 1
q3

(1 + |x|q) ,

for some constants C0, q > 0.
Similarly,

S2 ≤ C0
|u|√
n

(
E
[
|Y |q1 |Xθn,β(`)

tk
= x

]) 1
q1

(
C(2p1−1)(j+1)pa1 · · · paje−λ∆n

(λ∆n)j

j!

) 1
p1q2

×
(
C(2q3−1)(j+1)pa1 · · · paje−λ∆n

(λ∆n)j

j!

) 1
q3

(1 + |x|q) .

This concludes the first inequality. The second one can be done similarly. Thus, the result follows.
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Lemma 5.2.10. Assume conditions (A1)-(A3), and let f be any bounded function. Then for
any k ∈ {0, ..., n− 1}, and (θ, β) ∈ Θ× Σ,

E
[
f(Xtk+1

)|Xtk

]
= E

f(X
θn,β(`)
tk+1

)1
Ĵ0,k

qθ0,β0

(0)

q
θn,β(`)
(0)

(∆n, X
θn,β(`)
tk

, X
θn,β(`)
tk+1

)
∣∣∣Xθn,β(`)

tk
= Xtk


+
∞∑
j=1

∑
(a1,...,aj)∈A

E

f(X
θn,β(`)
tk+1

)1{Ĵj,k,a1,...,aj}

qθ0,β0

(j)

q
θn,β(`)
(j)

(∆n, X
θn,β(`)
tk

, X
θn,β(`)
tk+1

; a1, . . . , aj)
∣∣∣Xθn,β(`)

tk
= Xtk

 .
Proof. Observe that

E
[
f(Xtk+1

)|Xtk

]
= E

[
1
Ĵ0,k

f(Xtk+1
)|Xtk

]
+
∞∑
j=1

∑
(a1,...,aj)∈A

E
[
1{Ĵj,k,a1,...,aj}f(Xtk+1

)|Xtk

]
=

∫
R
f(y)qθ0,β0

(0) (∆n, Xtk , y)e−λ∆ndy

+
∞∑
j=1

∑
(a1,...,aj)∈A

∫
R
f(y)qθ0,β0

(j) (∆n, Xtk , y; a1, . . . , aj)pa1 · · · paje−λ∆n
(λ∆n)j

j!
dy

=

∫
R
f(y)

qθ0,β0

(0)

q
θn,β(`)
(0)

q
θn,β(`)
(0) (∆n, Xtk , y)e−λ∆ndy

+
∞∑
j=1

∑
(a1,...,aj)∈A

∫
R
f(y)

qθ0,β0

(j)

q
θn,β(`)
(j)

q
θn,β(`)
(j) (∆n, Xtk , y; a1, . . . , aj)pa1 · · · paje−λ∆n

(λ∆n)j

j!
dy,

which concludes the desired result.

We next recall Girsanov’s theorem on each interval [tk, tk+1].

Lemma 5.2.11. Under conditions (A1) and (A2), for all θ, θ1 ∈ Θ, β ∈ Σ, and k ∈ {0, ..., n−
1}, define a measure

Q̂θ1,θ,βk = Ê

[
1Ae

−
∫ tk+1
tk

b(θ,Xt)−b(θ1,Xt)
σ(β,Xt)

dBt+
1
2

∫ tk+1
tk

(
b(θ,Xt)−b(θ1,Xt)

σ(β,Xt)

)2
dt
]
,

for all A ∈ F̂ . Then Q̂θ1,θ,βk is a probability measure and under Q̂θ1,θ,βk , the process BQ̂
θ1,θ,β
k

t =

Bt +
∫ tk+1

tk

b(θ,Xt)−b(θ1,Xt)
σ(β,Xt)

dt is a Brownian motion, for all t ∈ [tk, tk+1].

Lemma 5.2.12. Assume conditions (A1), (A2), and (A3)(b). Let θ, θ1 ∈ Θ and β ∈ Σ such
that |θ − θ1| ≤ C√

n∆n
, for some constant C > 0. Then there exist constants C, q > 0 such that

for any random variable V , and k ∈ {0, ..., n− 1},∣∣∣∣∣EQ̂θ1,θ,βk

[
V

(
dP̂

dQ̂θ1,θ,βk

− 1

)∣∣∣Xθ,β
tk

]∣∣∣∣∣ ≤ C√
n

(
1 + |Xθ,β

tk
|q
)∫ 1

0

(
E

P̂α

[
V 2
∣∣∣Xθ,β

tk

])1/2
dα,

where E
P̂α

denotes the expectation under the probability measure P̂α defined as

dP̂α

dQ̂θ1,θ,βk

:= e
α
∫ tk+1
tk

b(θ,Xt)−b(θ1,Xt)
σ(β,Xt)

dBt−α
2

2

∫ tk+1
tk

(
b(θ,Xt)−b(θ1,Xt)

σ(β,Xt)

)2
dt
,

for all α ∈ [0, 1].
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Proof. Observe that

dP̂

dQ̂θ1,θ,βk

− 1 =

∫ 1

0

∫ tk+1

tk

b(θ,Xt)− b(θ1, Xt)

σ(β,Xt)

(
dBt − α

b(θ,Xt)− b(θ1, Xt)

σ(β,Xt)
dt

)
dP̂α

dQ̂θ1,θ,βk

dα.

Consider the process W = (Wt)t∈[tk,tk+1] defined by

Wt := Bt − α
∫ t

tk

b(θ,Xs)− b(θ1, Xs)

σ(β,Xs)
ds.

By Girsanov’s theorem, W is a Brownian motion under P̂α.
Then, using Girsanov’s theorem, Cauchy-Schwarz inequality, and hypotheses (A2), (A3)(b),

together with Lemma 4.2.2 (ii), we get that∣∣∣∣∣EQ̂θ1,θ,βk

[
V

(
dP̂

dQ̂θ1,θ,βk

− 1

)∣∣∣Xθ,β
tk

]∣∣∣∣∣ =

∣∣∣∣∫ 1

0
E

P̂α

[
V

∫ tk+1

tk

b(θ,Xt)− b(θ0, Xt)

σ(β,Xt)
dWt

∣∣∣Xθ,β
tk

]
dα

∣∣∣∣
≤
∫ 1

0

(
E

P̂α

[
V 2
∣∣∣Xθ,β

tk

])1/2
(

E
P̂α

[∣∣∣∣∫ tk+1

tk

b(θ,Xt)− b(θ0, Xt)

σ(β,Xt)
dWt

∣∣∣∣2 ∣∣∣Xθ,β
tk

])1/2

dα

≤ C√
n

(
1 + |Xθ,β

tk
|q
)∫ 1

0

(
E

P̂α

[
V 2
∣∣∣Xθ,β

tk

])1/2
dα,

for some constants C, q > 0. Thus, the result follows.

Lemma 5.2.13. Under conditions (A1)-(A3), for all k ∈ {0, ..., n− 1} and θ ∈ Θ,

E
Q̂
θ,θ0,β0
k

[
1
Ĵ0,k

(
Ẽθ,β0

Xtk

[
1
J̃1,k

∫ tk+1

tk

∫
R0

zM(ds, dz)

∣∣∣∣Y θ,β0
tk+1

= Xtk+1

])2∣∣∣Xtk

]

=

∫
R

∫R0
qθ,β0

(1) (∆n, Xtk , y; a)aµ(da)e−λ∆nλ∆n

pθ,β0(∆n, Xtk , y)

2

qθ,β0

(0) (∆n, Xtk , y)e−λ∆ndy,

(5.17)

E
Q̂
θ,θ0,β0
k

[
1
Ĵ1,k

(∫ tk+1

tk

∫
R0

zN(ds, dz)Ẽθ,β0

Xtk

[
1
J̃0,k

∣∣∣∣Y θ,β0
tk+1

= Xtk+1

])2 ∣∣∣Xtk

]

=

∫
R0

∫
R

qθ,β0

(0) (∆n, Xtk , y)e−λ∆n

pθ,β0(∆n, Xtk , y)

2

qθ,β0

(1) (∆n, Xtk , y; a)e−λ∆nλ∆na
2dyµ(da),

(5.18)

and

E
Q̂
θ,θ0,β0
k

[
1
Ĵ1,k

(∫ tk+1

tk

∫
R0

zN(ds, dz)Ẽθ,β0

Xtk

[
1
J̃1,k

∣∣∣∣Y θ,β0
tk+1

= Xtk+1

]
− Ẽθ,β0

Xtk

[
1
J̃1,k

∫ tk+1

tk

∫
R0

zM(ds, dz)

∣∣∣∣Y θ,β0
tk+1

= Xtk+1

])2∣∣∣Xtk

]

=

∫
R0

∫
R

∫R0
(z − a) qθ,β0

(1) (∆n, Xtk , y; a)µ(da)e−λ∆nλ∆n

pθ,β0(∆n, Xtk , y)

2

× qθ,β0

(1) (∆n, Xtk , y; z)e−λ∆nλ∆ndyµ(dz).

(5.19)
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Proof. Using Bayes’ formula, we get that

Ẽθ,β0

Xtk

[
1
J̃1,k

∫ tk+1

tk

∫
R0

zM(ds, dz)

∣∣∣∣Y θ,β0
tk+1

= Xtk+1

]

=

Ẽθ,β0

Xtk

[
Λ̃[tk,tk+1]1{Y θ,β0

tk+1
=Xtk+1

}

∣∣∣J̃1,k

]
P̃θ,β0

Xtk

(
J̃1,k

)
pθ,β0(∆n, Xtk , Xtk+1

)

=

∫
R0
qθ,β0

(1) (∆n, Xtk , Xtk+1
; a)aµ(da)e−λ∆nλ∆n

pθ,β0(∆n, Xtk , Xtk+1
)

.

This, together with Bayes’ formula again, implies that

E
Q̂
θ,θ0,β0
k

[
1
Ĵ0,k

(
Ẽθ,β0

Xtk

[
1
J̃1,k

∫ tk+1

tk

∫
R0

zM(ds, dz)

∣∣∣∣Y θ,β0
tk+1

= Xtk+1

])2∣∣∣Xtk

]

= Q̂θ,θ0,β0

k

(
Ĵ0,k

∣∣Xtk

)
E
Q̂
θ,θ0,β0
k

∫R0
qθ,β0

(1) (∆n, Xtk , Xtk+1
; a)aµ(da)e−λ∆nλ∆n

pθ,β0(∆n, Xtk , Xtk+1
)

2 ∣∣∣Ĵ0,k, Xtk

 ,
which implies (5.17). Similarly,

E
Q̂
θ,θ0,β0
k

[
1
Ĵ1,k

(∫ tk+1

tk

∫
R0

zN(ds, dz)Ẽθ,β0

Xtk

[
1
J̃0,k

∣∣∣∣Y θ,β0
tk+1

= Xtk+1

])2 ∣∣∣Xtk

]

= E
Q̂
θ,θ0,β0
k

1
Ĵ1,k

Λ̂2
[tk,tk+1]

qθ,β0

(0) (∆n, Xtk , Xtk+1
)e−λ∆n

pθ,β0(∆n, Xtk , Xtk+1
)

2 ∣∣∣Xtk


=

∫
R0

E
Q̂
θ,θ0,β0
k

qθ,β0

(0) (∆n, Xtk , Xtk+1
)e−λ∆n

pθ,β0(∆n, Xtk , Xtk+1
)

2 ∣∣∣Ĵ1,k, Λ̂[tk,tk+1] = {a}, Xtk

 a2

× Q̂θ,θ0,β0

k

(
Λ̂[tk,tk+1] ∈ da, Ĵ1,k

∣∣∣Xtk

)
=

∫
R0

∫
R

qθ,β0

(0) (∆n, Xtk , y)e−λ∆n

pθ,β0(∆n, Xtk , y)

2

qθ,β0

(1) (∆n, Xtk , y; a)e−λ∆nλ∆na
2dyµ(da),

which shows (5.18). The proof of (5.19) follows along the same lines and is therefore omitted.

By abuse of notation in this subsection relating to the term M θ,β0
i below, consider the events

Ĵ2,k = {Ntk+1
−Ntk ≥ 2} and J̃2,k = {Mtk+1

−Mtk ≥ 2}. Set I = {a ∈ A : ρ1∆υ
n ≤ |a| ≤ ρ2∆−γn }

and λn =
∫
I ν(da), where ρ1, ρ2 > 0 and 0 < υ, γ < 1

2 are from hypothesis (A6). For i = 0, 1, 2,
set

M θ,β0
i = E

Q̂
θ,θ0,β0
k

[
1
Ĵi,k

(∫ tk+1

tk

∫
I
zN(ds, dz)

− Ẽθ,β0

Xtk

[∫ tk+1

tk

∫
I
zM(ds, dz)

∣∣∣∣Y θ,β0
tk+1

= Xtk+1

])2∣∣∣Xtk

]
.

Recall that for the simple Lévy process (3.1), we used a large deviation principle by condi-
tioning on the number of jumps. For the non-linear model (5.1), we will obtain the parallel of
Lemma 3.2.6 in our case.
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Lemma 5.2.14. Under conditions (A1)-(A4), for any θ ∈ Θ and n large enough, there exist
constants C,C0 > 0, such that for all α ∈ (υ, 1

2), α0 ∈ (1
4 ,

1
2), and k ∈ {0, ..., n− 1},

M θ,β0
0 ≤ C

(
λn∆3/2

n + ∆−2γ
n e−C0∆2α−1

n

)
, (5.20)

M θ,β0
1 ≤ C

(
λn∆3/2

n + ∆
− 1

2
−3γ

n e−C0∆
2(α∨α0)−1
n

)
, (5.21)

M θ,β0
2 ≤ Cλn∆3/2

n . (5.22)

In particular, (5.22) holds for all n ≥ 1.

Proof. We start showing (5.20). Multiplying the random variable inside the conditional expec-
tation of M θ,β0

0 by (1
J̃0,k

+ 1
J̃1,k

+ 1
J̃2,k

), we get that M θ,β0
0 ≤ 2(M θ,β0

0,1 + M θ,β0
0,2 ), where for

i = 1, 2,

M θ,β0
0,i = E

Q̂
θ,θ0,β0
k

[
1
Ĵ0,k

(
Ẽθ,β0

Xtk

[
1
J̃i,k

∫ tk+1

tk

∫
I
zM(ds, dz)

∣∣∣∣Y θ,β0
tk+1

= Xtk+1

])2 ∣∣∣Xtk

]
.

By (5.17), we have that

M θ,β0
0,1 =

∫
R

∫I qθ,β0

(1) (∆n, Xtk , y; a)aµ(da)e−λn∆nλn∆n

pθ,β0(∆n, Xtk , y)

2

qθ,β0

(0) (∆n, Xtk , y)e−λn∆ndy,

We next divide the integral inM θ,β0
0,1 into the subdomains {y : |y−Xtk | > ∆α

n} and {y : |y−Xtk | ≤
∆α
n}, where α ∈ (υ, 1

2), and call each integral M θ,β0
0,1,1 and M θ,β0

0,1,2. We start bounding M θ,β0
0,1,1. By

(5.12),

pθ,β0(∆n, Xtk , y) ≥
∫
I
qθ,β0

(1) (∆n, Xtk , y; a)µ(da)e−λn∆nλn∆n. (5.23)

Then, using (5.13), we get that

M θ,β0
0,1,1 ≤ C∆−2γ

n

∫
{|y−Xtk |>∆α

n}
qθ,β0

(0) (∆n, Xtk , y)dy

≤ C∆−2γ
n

∫
{|y−Xtk |>∆α

n}

1√
∆n

e−
(y−Xtk )2

c∆n dy ≤ C∆−2γ
n e−C0∆2α−1

n ,

for some constants C,C0 > 0 and c ≥ 1. We next treat M θ,β0
0,1,2. Observe that (5.12) yields(

pθ,β0(∆n, Xtk , y)
)2
≥ qθ,β0

(0) (∆n, Xtk , y)e−λn∆n

∫
I
qθ,β0

(1) (∆n, Xtk , y; a)µ(da)e−λn∆nλn∆n. (5.24)

Therefore, using Lemma 5.2.5, we get that for n large enough

M θ,β0
0,1,2 ≤ C∆−2γ

n e−λn∆nλn∆n

∫
{|y−Xtk |≤∆α

n}

∫
I
qθ,β0

(1) (∆n, Xtk , y; a)µ(da)dy

≤ C∆−2γ
n

∫
I

∫
{|y−Xtk |≤∆α

n}
1√
∆n

e−
(y−Xtk−a)2

c∆n dyµ(da)

≤ C∆−2γ
n

∫
I

{∫ ∆αn−ρ1∆υn√
c∆n

−∞
e−w

2
dw1{a≥ρ1∆υ

n} +

∫ +∞

−∆αn+ρ1∆υn√
c∆n

e−w
2
dw1{a≤−ρ1∆υ

n}

}
µ(da)

≤ C∆−2γ
n e−C0∆2υ−1

n ,
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for some constants C,C0 > 0 and c ≥ 1, where we have applied Fubini’s theorem, the change
of variables w =

y−Xtk−a√
c∆n

, and the fact that on I, |a| ≥ ρ1∆υ
n, together with e−λn∆nλn∆n ≤ λ.

This shows that for n large enough and for α ∈ (υ, 1
2),

M θ,β0
0,1 ≤ C∆−2γ

n e−C0∆2α−1
n , (5.25)

for some constants C,C0 > 0.
In order to treat M θ,β0

0,2 , observe that by Jensen and Cauchy-Schwarz inequalities, and hypo-
thesis (A4), it holds that

M θ,β0
0,2 ≤ E

[
1
J̃2,k

(∫ tk+1

tk

∫
I
zM(ds, dz)

)2 ∣∣∣Y θ,β0
tk

= Xtk

]
≤ Cλn∆3/2

n .

This shows (5.20).
We next show (5.21). As for the term M θ,β0

0 , we have that M θ,β0
1 ≤ 2(M θ,β0

1,1 +M θ,β0
1,2 ), where

M θ,β0
1,1 = E

Q̂
θ,θ0,β0
k

[
1
Ĵ1,k

(∫ tk+1

tk

∫
I
zN(ds, dz)

− Ẽθ,β0

Xtk

[
1
J̃1,k

∫ tk+1

tk

∫
I
zM(ds, dz)

∣∣∣∣Y θ,β0
tk+1

= Xtk+1

])2∣∣∣Xtk

]
,

M θ,β0
1,2 = E

Q̂
θ,θ0,β0
k

[
1
Ĵ1,k

(
Ẽθ,β0

Xtk

[
1
J̃2,k

∫ tk+1

tk

∫
I
zM(ds, dz)

∣∣∣∣Y θ,β0
tk+1

= Xtk+1

])2 ∣∣∣Xtk

]
.

Adding and substracting the term
∫ tk+1

tk

∫
I zN(ds, dz)Ẽθ,β0

Xtk

[
1
J̃1,k
|Y θ,β0
tk+1

= Xtk+1

]
inside the

square to start bounding M θ,β0
1,1 , we get that M θ,β0

1,1 ≤ 2(M θ,β0
1,1,1 +M θ,β0

1,1,2), where

M θ,β0
1,1,1 = E

Q̂
θ,θ0,β0
k

[
1
Ĵ1,k

(∫ tk+1

tk

∫
I
zN(ds, dz)

−
∫ tk+1

tk

∫
I
zN(ds, dz)Ẽθ,β0

Xtk

[
1
J̃1,k
|Y θ,β0
tk+1

= Xtk+1

])2∣∣∣Xtk

]
,

M θ,β0
1,1,2 = E

Q̂
θ,θ0,β0
k

[
1
Ĵ1,k

(∫ tk+1

tk

∫
I
zN(ds, dz)Ẽθ,β0

Xtk

[
1
J̃1,k
|Y θ,β0
tk+1

= Xtk+1

]
− Ẽθ,β0

Xtk

[
1
J̃1,k

∫ tk+1

tk

∫
I
zM(ds, dz)

∣∣∣∣Y θ,β0
tk+1

= Xtk+1

])2∣∣∣Xtk

]
.

Observe that M θ,β0
1,1,1 ≤ 2(M θ,β0

1,1,1,0 +M θ,β0
1,1,1,2), where for i = 0, 2,

M θ,β0
1,1,1,i = E

Q̂
θ,θ0,β0
k

[
1
Ĵ1,k

(∫ tk+1

tk

∫
I
zN(ds, dz)Ẽθ,β0

Xtk

[
1
J̃i,k

∣∣∣∣Y θ,β0
tk+1

= Xtk+1

])2 ∣∣∣Xtk

]
.

By (5.18),

M θ,β0
1,1,1,0 =

∫
I

∫
R

qθ,β0

(0) (∆n, Xtk , y)e−λn∆n

pθ(∆n, Xtk , y)

2

qθ,β0

(1) (∆n, Xtk , y; a)e−λn∆nλn∆na
2dyµ(da).

Again we divide the dy integral into the subdomains {y : |y−Xtk | > ∆α
n} and {y : |y−Xtk | ≤

∆α
n}, where α ∈ (υ, 1

2), and call the terms M θ,β0
1,1,1,0,1 and M θ,β0

1,1,1,0,2. As for the term M θ,β0
0,1,1, using

(5.24), we obtain that

M θ,β0
1,1,1,0,1 ≤ C∆−2γ

n

∫
{|y−Xtk |>∆α

n}
qθ,β0

(0) (∆n, Xtk , y)dy ≤ C∆−2γ
n e−C0∆2α−1

n ,
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for some constants C,C0 > 0. Next, (5.12) yields

pθ,β0(∆n, Xtk , y) ≥ qθ,β0

(0) (∆n, Xtk , y)e−λn∆n . (5.26)

Then, as for the term M θ,β0
0,1,2, using Lemma 5.2.5, we get that for n large enough

M θ,β0
1,1,1,0,2 ≤ C∆−2γ

n e−λn∆nλn∆n

∫
I

∫
{|y−Xtk |≤∆α

n}
qθ,β0

(1) (∆n, Xtk , y; a)dyµ(da)

≤ C∆−2γ
n e−C0∆2υ−1

n ,

for some constants C,C0 > 0. Therefore, the term M θ,β0
1,1,1,0 satisfies (5.25).

As for the termM θ,β0
0,2 , we have thatM θ,β0

1,1,1,2 ≤ Cλn∆
3/2
n for some constant C > 0. Therefore,

the term M θ,β0
1,1,1 satisfies (5.20).

We next treat M θ,β0
1,1,2. Using (5.19), we have that

M θ,β0
1,1,2 =

∫
I

∫
R

∫I (z − a) qθ,β0

(1) (∆n, Xtk , y; a)µ(da)e−λn∆nλn∆n

pθ(∆n, Xtk , y)

2

× qθ,β0

(1) (∆n, Xtk , y; z)e−λn∆nλn∆ndyµ(dz).

We next fix α0 and ε such that 1
4 < ε < α0 <

1
2 , and consider the set

Ekz = {a ∈ I : |z − a| ≤ ∆ε
n, for all z ∈ I} .

We next split the integral inside the square of M θ,β0
1,1,2 over the sets 1Ekz and 1(Ekz )c and call both

terms M θ,β0
1,1,2,1 and M θ,β0

1,1,2,2. First, (5.23) and Lemma 5.2.5 yield that

M θ,β0
1,1,2,1 ≤ Ce

−λn∆nλn∆1+2ε
n

∫
I

∫
R
qθ,β0

(1) (∆n, Xtk , y; z)dyµ(dz) ≤ Cλn∆1+2ε
n , (5.27)

for some constant C > 0.
Next, we treat M θ,β0

1,1,2,2 by dividing the domain of the dy integral into the subdomains I1 :=

{y : |y−Xtk − z| > ∆α0
n } and I2 := {y : |y−Xtk − z| ≤ ∆α0

n }, and call both terms M θ,β0
1,1,2,2,1 and

M θ,β0
1,1,2,2,2. Then, using (5.23) and Lemma 5.2.5, we get that

M θ,β0
1,1,2,2,1 ≤ C∆−2γ

n e−λn∆nλn∆n

∫
I

∫
I1

qθ,β0

(1) (∆n, Xtk , y; z)dyµ(dz)

≤ C∆−2γ
n

∫
I

∫
I1

1√
∆n

e−
(y−Xtk−z)

2

c∆n dyµ(dz) ≤ C∆−2γ
n e−C0∆

2α0−1
n ,

for some constants C,C0 > 0 and c ≥ 1.
Next, (5.12) yields

(
pθ,β0(∆n, Xtk , y)

)2
≥ pθ,β0(∆n, Xtk , y)

∫
I
qθ,β0

(1) (∆n, Xtk , y; a)µ(da)e−λn∆nλn∆n.
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Then, using Lemma 5.2.5, we obtain that

M θ,β0
1,1,2,2,2 ≤ C∆−2γ

n e−λn∆nλn∆n

×
∫
I

∫
I2

∫
I
1(Ekz )cq

θ,β0

(1) (∆n, Xtk , y; a)µ(da)
qθ,β0

(1) (∆n, Xtk , y; z)e−λn∆nλn∆n

pθ,β0(∆n, Xtk , y)
dyµ(dz)

≤ C∆−2γ
n

∫
I

∫
I2

∫
I
1(Ekz )c

1√
∆n

e−
(y−Xtk−a)

2

c∆n µ(da)
qθ,β0

(1) (∆n, Xtk , y; z)e−λn∆nλn∆n

pθ,β0(∆n, Xtk , y)
dyµ(dz)

≤ C∆−2γ
n

∫
I

∫
I

∫
{|h|≤∆

α0
n }

1(Ekz )c
1√
∆n

e−
(h+z−a)2

c∆n

×
qθ,β0

(1) (∆n, Xtk , h+Xtk + z; z)e−λn∆nλn∆n

pθ,β0(∆n, Xtk , h+Xtk + z, z))
dhµ(da)µ(dz),

for some constants C > 0 and c ≥ 1, where we have used the change of variable h := y−Xtk − z.
Since |h| ≤ ∆α0

n and |z − a| > ∆ε
n on (Ekz )c, for n large enough there exists a constant

C1 ∈ (0, 1) such that |h+ z − a| ≥ C1∆ε
n. Then, we deduce that

M θ,β0
1,1,2,2,2 ≤ C∆

− 1
2
−2γ

n e−
C2

1∆2ε−1
n
c

∫
I

∫
{|h|≤∆

α0
n }

qθ,β0

(1) (∆n, Xtk , h+Xtk + z; z)e−λn∆nλn∆n

pθ,β0(∆n, Xtk , h+Xtk + z)
dhµ(dz)

= C∆
− 1

2
−2γ

n e−
C2

1∆2ε−1
n
c

∫
I

∫
{|y−Xtk−z|≤∆

α0
n }

qθ,β0

(1) (∆n, Xtk , y; z)e−λn∆nλn∆n

pθ,β0(∆n, Xtk , y)
dyµ(dz)

≤ C∆
− 1

2
−2γ

n e−
C2

1∆2ε−1
n
c

∫
{|y−Xtk |≤∆

α0
n +ρ2∆−γn }

∫
I q

θ,β0

(1) (∆n, Xtk , y; z)µ(dz)e−λn∆nλn∆n

pθ,β0(∆n, Xtk , y)
dy

= C∆
− 1

2
−2γ+α0

n e−
C2

1∆2ε−1
n
c + C∆

− 1
2
−3γ

n e−
C2

1∆2ε−1
n
c

≤ C∆
− 1

2
−3γ

n e−
C2

1∆2ε−1
n
c ,

where we have used the change of variable y := h+Xtk + z, and (5.23).
Therefore, we have shown that for n large enough and α0 ∈ (ε, 1

2),

M θ,β0
1,1,2,2 ≤ C∆

− 1
2
−3γ

n e−C0∆
2α0−1
n ,

for some constants C,C0 > 0, which together with (5.27) gives

M θ,β0
1,1,2 ≤ C

(
λn∆1+2ε

n + ∆
− 1

2
−3γ

n e−C0∆
2α0−1
n

)
.

Finally, as for the term M θ,β0
0,2 , we obtain that M θ,β0

1,2 + M θ,β0
2 ≤ Cλn∆

3/2
n , which concludes

the proof of (5.21) and (5.22).

For all k ∈ {0, . . . , n− 1} and p ∈ {2, 4}, set Âk,r = {L̂tk+1
− L̂tk = r}, Âck,r = {L̂tk+1

− L̂tk 6=
r}, Ãk,r = {L̃tk+1

− L̃tk = r}, Ãck,r = {L̃tk+1
− L̃tk 6= r}, where L̃t =

∫ t
0

∫
R0
zM(ds, dz) and

M
θn,β(`)
1,p =

∑
r∈A

rpE
[
1
Âk,r

Ẽ
θn,β(`)
Xtk

[
1
Ãck,r

∣∣∣Y θn,β(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
,

M
θn,β(`)
2,p =

∑
r∈A

E

[
1
Âk,r

Ẽ
θn,β(`)
Xtk

[
1
Ãck,r

(∫ tk+1

tk

∫
I
zM(ds, dz)

)p ∣∣∣Y θn,β(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
,

where A := {
∑j

i=1 ai, ai ∈ I, j ∈ N}
As in Lemma 3.2.6, we obtain the following large deviation estimates for the non-linear model

(5.1).
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Lemma 5.2.15. Under conditions (A1)-(A4) and (A7)-(A8), for n large enough, there exist
constants C0, C1 > 0, such that for all α ∈ (υ, 1

2), and k ∈ {0, ..., n− 1},

M
θn,β(`)
1,p +M

θn,β(`)
2,p ≤ C1e

−C0∆2α−1
n .

Proof. We start bounding M θn,β(`)
1,p . For this, we fix α ∈ (υ, 1

2), and write M θn,β(`)
1,p = M

θn,β(`)
1,p,1 +

M
θn,β(`)
1,p,2 , where

M
θn,β(`)
1,p,1 =

∑
r∈A

rpE

[
1{∣∣∣∫ tk+1

tk
σ(β,Xs)dBs

∣∣∣>∆α
n

}1
Âk,r

Ẽ
θn,β(`)
Xtk

[
1
Ãck,r

∣∣∣Y θn,β(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
,

M
θn,β(`)
1,p,2 =

∑
r∈A

rpE

[
1{∣∣∣∫ tk+1

tk
σ(β,Xs)dBs

∣∣∣≤∆α
n

}1
Âk,r

Ẽ
θn,β(`)
Xtk

[
1
Ãck,r

∣∣∣Y θn,β(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
.

Applying Cauchy-Schwarz and the exponential martingale inequalities, together with (A2),
(A4), we get that

M
θn,β(`)
1,p,1 ≤ E

[
1{∣∣∣∫ tk+1

tk
σ(β,Xs)dBs

∣∣∣>∆α
n

}(∫ tk+1

tk

∫
I
zN(ds, dz)

)p ∣∣∣Xtk

]

≤
(

P

(∣∣∣∣∫ tk+1

tk

σ(β,Xs)dBs

∣∣∣∣ > ∆α
n

∣∣∣Xtk

)) 1
2

(
E

[(∫ tk+1

tk

∫
I
zN(ds, dz)

)2p ∣∣∣Xtk

]) 1
2

≤
√

2∆ne
−∆2α−1

n
4c2 ,

since the quadratic variation of the continuous martingale
∫ tk+1

tk
σ(β,Xs)dBs is upper bounded

by c2∆n, where the constant c is as in (A2).
Next, applying Hölder’s and Jensen’s inequalities with q1, q2 conjugate, we get that

M
θn,β(`)
1,p,2 ≤

∑
r∈A

rp
(

P
(
Âk,r

∣∣Xtk

)) 1
q1

(
H
θn,β(`)
k,r

) 1
q2 , (5.28)

where

H
θn,β(`)
k,r = E

[
1{∣∣∣∫ tk+1

tk
σ(β,Xs)dBs

∣∣∣≤∆α
n

}1
Âk,r

Ẽ
θn,β(`)
Xtk

[
1
Ãck,r

∣∣∣Y θn,β(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
.

Since 1 = 1
Ĵ0,k

+
∑∞

j=1

∑
(a1,...,aj)∈I 1{Ĵj,k,a1,...,aj}, and set a := a1 + · · · + aj , we can write

H
θn,β(`)
k,r = H

θn,β(`)
k,r,1 +H

θn,β(`)
k,r,2 , where

H
θn,β(`)
k,r,1 = E

[
1{∣∣∣∫ tk+1

tk
σ(β,Xs)dBs

∣∣∣≤∆α
n

}1
Ĵ0,k

1{r=0}Ẽ
θn,β(`)
Xtk

[
1
Ãck,0

∣∣∣Y θn,β(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
,

H
θn,β(`)
k,r,2 =

∞∑
j=1

∑
(a1,...,aj)∈I

E

[
1{∣∣∣∫ tk+1

tk
σ(β,Xs)dBs

∣∣∣≤∆α
n

}1{Ĵj,k,a1,...,aj}1{r=a}

× Ẽ
θn,β(`)
Xtk

[
1
Ãck,a

∣∣∣Y θn,β(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
.
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We first treat Hθn,β(`)
k,r,1 . Using Bayes’s formula, (5.12), (5.13) and Lemma 5.2.5, we get that

1
Ĵ0,k

Ẽ
θn,β(`)
Xtk

[
1
Ãck,0

∣∣∣Y θn,β(`)
tk+1

= Xtk+1

]
= 1

Ĵ0,k

∞∑
m=1

∑
(z1,...,zm)∈I

Ẽ
θn,β(`)
Xtk

[
1{J̃m,k,z1,...,zm}1{z 6=0}

∣∣∣Y θn,β(`)
tk+1

= Xtk+1

]

= 1
Ĵ0,k

∑∞
m=1

∑
(z1,...,zm)∈I q

θn,β(`)
(m) (∆n, Xtk , Xtk+1

; z1, . . . , zm)1{z 6=0}pz1 . . . pzme
−λn∆n (λn∆n)m

m!

pθn,β(`)(∆n, Xtk , Xtk+1
)

= 1
Ĵ0,k

∑∞
m=1

∑
(z1,...,zm)∈I q

θn,β(`)
(m) (∆n, Xtk , Xtk+1

; z1, . . . , zm)1{z 6=0}pz1 . . . pzme
−λn∆n (λn∆n)m

m!∑∞
i=0 q

θn,β(`)
(i) (∆n, Xtk , Xtk+1

)e−λn∆n
(λn∆n)i

i!

≤ 1
Ĵ0,k

∑∞
m=1

∑
(z1,...,zm)∈I q

θn,β(`)
(m) (∆n, Xtk , Xtk+1

; z1, . . . , zm)1{z 6=0}pz1 . . . pzme
−λn∆n (λn∆n)m

m!

q
θn,β(`)
(0) (∆n, Xtk , Xtk+1

)e−λn∆n

≤ 1
Ĵ0,k

∑∞
m=1

∑
(z1,...,zm)∈I

Cm+1
√

∆n
e−

(Xtk+1
−Xtk−z)

2

c∆n 1{z 6=0}pz1 . . . pzme
−λn∆n (λn∆n)m

m!

1
C
√

∆n
e−c

(Xtk+1
−Xtk )2

∆n e−λn∆n

,

for some constants C > 0 and c ≥ 1, where z := z1 + · · ·+ zm, and we have lower bounded the
denominator by the term i = 0.

Conditioning on |
∫ tk+1

tk
σ(β,Xs)dBs| ≤ ∆α

n and Ĵ0,k, using equation (5.1), the boundedness
of b and the fact that |z| ≥ C∆υ

n for some constant C > 0, together with c > 1, we have that for
n sufficiently large,

e−
(Xtk+1

−Xtk−z)
2

c∆n
+c

(Xtk+1
−Xtk )2

∆n ≤ e(c−
1
c )

(C0∆n+∆αn+∆
1−γ
n λ)

2

∆n
+2
|z|(C0∆n+∆αn+∆

1−γ
n λ)

c∆n
− |z|

2

c∆n

≤ eC1∆2α−1
n − |z|

c∆n
(|z|−C2∆α

n) (1{|z|≤C2∆α
n} + 1{|z|>C2∆α

n}
)

≤ eC1∆2α−1
n

(
e−

C2
c

∆α−1
n (C∆υ

n−C2∆α
n)1{|z|≤C2∆α

n} + e−
C
c

∆υ−1
n (C∆υ

n−C2∆α
n)1{|z|>C2∆α

n}

)
≤ eC1∆2α−1

n

(
e−

C2
c
C∆υ+α−1

n +
C2

2
c

∆2α−1
n + e−

C2

c
∆2υ−1
n +C

c
C2∆α+υ−1

n

)
≤ e−C3∆υ+α−1

n + e−C4∆2υ−1
n ≤ C5e

−C6∆α+υ−1
n ,

(5.29)

for some constants C0, . . . , C6 > 0.
On the other hand,

∞∑
m=1

∑
(z1,...,zm)∈I

Cmpz1 . . . pzme
−λn∆n

(λn∆n)m

m!
<∞, (5.30)

which concludes that Hθn,β(`)
k,r,1 ≤ C1e

−C0∆α+υ−1
n , for some constants C0, C1 > 0.

Next, applying Hölder’s and Jensen’s inequalities with p1, p2 conjugate, we get that

H
θn,β(`)
k,r,2 ≤

∞∑
j=1

∑
(a1,...,aj)∈I

(
P
(
Ĵj,k, a1, . . . , aj

) ∣∣Xtk

) 1
p1

(
H
θn,β(`)
k,r,3

) 1
p2

=

∞∑
j=1

∑
(a1,...,aj)∈I

(
pa1 . . . paje

−λn∆n
(λn∆n)j

j!

) 1
p1
(
H
θn,β(`)
k,r,3

) 1
p2 ,

where

H
θn,β(`)
k,r,3 = E

[
1{∣∣∣∫ tk+1

tk
σ(β,Xs)dBs

∣∣∣≤∆α
n

}1{Ĵj,k,a1,...,aj}1{r=a}Ẽ
θn,β(`)
Xtk

[
1
Ãck,a

∣∣∣Y θn,β(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
.
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Using Bayes’s formula, (5.12), (5.13) and Lemma 5.2.5, we get that

Ẽ
θn,β(`)
Xtk

[
1
Ãck,a

∣∣∣Y θn,β(`)
tk+1

= Xtk+1

]
= Ẽ

θn,β(`)
Xtk

[
1
J̃0,k

1{a6=0}

∣∣∣Y θn,β(`)
tk+1

= Xtk+1

]
+
∞∑
m=1

∑
(z1,...,zm)∈I

Ẽ
θn,β(`)
Xtk

[
1{J̃m,k,z1,...,zm}1{a6=z}

∣∣∣Y θn,β(`)
tk+1

= Xtk+1

]

=
q
θn,β(`)
(0) (∆n, Xtk , Xtk+1

)1{a6=0}e
−λn∆n∑∞

i=0 q
θn,β(`)
(i) (∆n, Xtk , Xtk+1

)e−λn∆n
(λn∆n)i

i!

+

∑∞
m=1

∑
(z1,...,zm)∈I q

θn,β(`)
(m) (∆n, Xtk , Xtk+1

; z1, . . . , zm)1{a6=z}pz1 . . . pzme
−λn∆n (λn∆n)m

m!∑∞
i=0 q

θn,β(`)
(i) (∆n, Xtk , Xtk+1

)e−λn∆n
(λn∆n)i

i!

≤
q
θn,β(`)
(0) (∆n, Xtk , Xtk+1

)1{a6=0}e
−λn∆n

q
θn,β(`)
(j) (∆n, Xtk , Xtk+1

; a1, . . . , aj)pa1 . . . paje
−λn∆n

(λn∆n)j

j!

+

∑∞
m=1

∑
(z1,...,zm)∈I q

θn,β(`)
(m) (∆n, Xtk , Xtk+1

; z1, . . . , zm)1{a6=z}pz1 . . . pzme
−λn∆n (λn∆n)m

m!

q
θn,β(`)
(j) (∆n, Xtk , Xtk+1

; a1, . . . , aj)pa1 . . . paje
−λn∆n

(λn∆n)j

j!

≤
C√
∆n
e−

(Xtk+1
−Xtk )2

c∆n 1{a6=0}e
−λn∆n

1
Cj+1

√
∆n
e−

c(Xtk+1
−Xtk−a)2

∆n pa1 . . . paje
−λn∆n

(λn∆n)j

j!

+

∑∞
m=1

∑
(z1,...,zm)∈I

Cm+1
√

∆n
e−

(Xtk+1
−Xtk−z)

2

c∆n 1{a6=z}pz1 . . . pzme
−λn∆n (λn∆n)m

m!

1
Cj+1

√
∆n
e−

c(Xtk+1
−Xtk−a)2

∆n pa1 . . . paje
−λn∆n

(λn∆n)j

j!

,

for some constants C > 0 and c ≥ 1, where z := z1 + · · · + zm and we have lower bounded the
denominator by the term q

θn,β(`)
(j) (∆n, Xtk , Xtk+1

; a1, . . . , aj)pa1 . . . paje
−λn∆n (λn∆n)j

j! .

Conditioning on |
∫ tk+1

tk
σ(β,Xs)dBs| ≤ ∆α

n and {Ĵj,k, a1, . . . , aj}, using equation (5.1), the
boundedness of b and the fact that |a| ≥ C∆υ

n for some constant C > 0, we get that, by
proceeding as in (5.29), for n sufficiently large,

e−
(Xtk+1

−Xtk )2

c∆n
+c

(Xtk+1
−Xtk−a)2

∆n ≤ e(c−
1
c )

(C0∆n+∆αn+∆
1−γ
n λ)

2

∆n
+2
|a|(C0∆n+∆αn+∆

1−γ
n λ)

c∆n
− |a|

2

c∆n

≤ C5e
−C6∆α+υ−1

n ,

for some constants C5, C6 > 0.
Similarly, using the same above arguments, together with the fact that by hypothesis (A7),

|a−z| ≥ C∆υ
n for some constant C > 0, we get that, by proceeding as in (5.29), for n sufficiently

large,

e−
(Xtk+1

−Xtk−z)
2

c∆n
+c

(Xtk+1
−Xtk−a)2

∆n ≤ e(c−
1
c )

(C0∆n+∆αn+∆
1−γ
n λ)

2

∆n
+2
|a−z|(C0∆n+∆αn+∆

1−γ
n λ)

c∆n
− |a−z|

2

c∆n

≤ C5e
−C6∆α+υ−1

n ,

for some constants C5, C6 > 0.
Then using again (5.30), we conclude that Hθn,β(`)

k,r,3 ≤ C1C
j+1e−C0∆α+υ−1

n , which, together
with hypothesis (A8), implies that

H
θn,β(`)
k,r,2 ≤

∞∑
j=1

∑
(a1,...,aj)∈I

(
pa1 . . . paje

−λn∆n
(λn∆n)j

j!

) 1
p1
(
C1C

j+1e−C0∆α+υ−1
n

) 1
p2

≤ c1e
−c2∆α+υ−1

n ,
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for some constants c1, c2 > 0. Therefore, we have shown that

H
θn,β(`)
k,r ≤ C1e

−C0∆α+υ−1
n , (5.31)

for some constants C0, C1 > 0, which, together with hypothesis (A7) and (5.28), yields that

M
θn,β(`)
1,p,2 ≤ Ce−

C0
q2

∆α+υ−1
n . Thus, we have obtained that

M
θn,β(`)
1,p ≤ C1e

−C0∆2α−1
n , (5.32)

for some constants C0, C1 > 0.

We next bound M θn,β(`)
2,p . As for the term M

θn,β(`)
1,p , we write M θn,β(`)

2,p = M
θn,β(`)
2,p,1 +M

θn,β(`)
2,p,2 ,

where

M
θn,β(`)
2,p,1 =

∑
r∈A

E

[
1{∣∣∣∫ tk+1

tk
σ(β,Xs)dBs

∣∣∣>∆α
n

}

× 1
Âk,r

Ẽ
θn,β(`)
Xtk

[
1
Ãck,r

(∫ tk+1

tk

∫
I
zM(ds, dz)

)p ∣∣∣Y θn,β(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
,

M
θn,β(`)
2,p,2 =

∑
r∈A

Eθ,βXtk

[
1{∣∣∣∫ tk+1

tk
σ(β,Xs)dBs

∣∣∣≤∆α
n

}

× 1
Âk,r

Ẽ
θn,β(`)
Xtk

[
1
Ãck,r

(∫ tk+1

tk

∫
I
zM(ds, dz)

)p ∣∣∣Y θn,β(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
.

First, applying the exponential martingale, Cauchy-Schwarz and Jensen’s inequalities, we get
that

M
θn,β(`)
2,p,1 ≤ E

[
1{∣∣∣∫ tk+1

tk
σ(β,Xs)dBs

∣∣∣>∆α
n

}
× Ẽ

θn,β(`)
Xtk

[(∫ tk+1

tk

∫
I
zM(ds, dz)

)p ∣∣∣Y θn,β(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]

≤
(

P

(∣∣∣∣∫ tk+1

tk

σ(β,Xs)dBs

∣∣∣∣ > ∆α
n

∣∣∣Xtk

)) 1
2

(Tk,p)
1
2

≤
√

2e−
∆2α−1
n
4c2 (Tk,p)

1
2 ,

where the constant c is as in (A2) and

Tk,p = E

[
Ẽ
θn,β(`)
Xtk

[(∫ tk+1

tk

∫
I
zM(ds, dz)

)2p ∣∣∣Y θn,β(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]
.

Using Lemma 5.2.10 and Hölder’s inequality with q1, q2 conjugate, together with (A4), (A8),
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we get that

Tk,p = E

Ẽ
θn,β(`)
Xtk

[(∫ tk+1

tk

∫
I
zM(ds, dz)

)2p ∣∣∣Y θn,β(`)
tk+1

= X
θn,β(`)
tk+1

]
1
Ĵ0,k

qθ,β(0)

q
θn,β(`)
(0)

∣∣∣Xθn,β(`)
tk

= Xtk


+
∞∑
j=1

∑
(a1,...,aj)∈I

E

[
Ẽ
θn,β(`)
Xtk

[(∫ tk+1

tk

∫
I
zM(ds, dz)

)2p ∣∣∣Y θn,β(`)
tk+1

= X
θn,β(`)
tk+1

]

× 1{Ĵj,k,a1,...,aj}

qθ,β(j)

q
θn,β(`)
(j)

∣∣∣Xθn,β(`)
tk

= Xtk

]

≤

(
E

[(∫ tk+1

tk

∫
I
zM(ds, dz)

)2pq1 ∣∣∣Y θn,β(`)
tk

= Xtk

]) 1
q1

E

1
Ĵ0,k

 qθ,β(0)

q
θn,β(`)
(0)

q2 ∣∣∣Xθn,β(`)
tk

= Xtk


1
q2

+
∞∑
j=1

∑
(a1,...,aj)∈I

(
E

[(∫ tk+1

tk

∫
I
zM(ds, dz)

)2pq1 ∣∣∣Y θn,β(`)
tk

= Xtk

]) 1
q1

×

E

1{Ĵj,k,a1,...,aj}

 qθ,β(j)

q
θn,β(`)
(j)

q2 ∣∣∣Xθn,β(`)
tk

= Xtk


1
q2

≤ C∆
1
q1
n

1 +

∞∑
j=1

∑
(a1,...,aj)∈A

(
C(2q2−1)(j+1)pa1 · · · paje−λ∆n

(λ∆n)j

j!

) 1
q2


<∞.

We then deduce that M θn,β(`)
2,p,1 ≤ Ce−

∆2α−1
n
4c2 , for some constants C > 0 and c ≥ 1.

Next, applying Hölder’s and Jensen’s inequalities with q1, q2 conjugate, together with (5.31)
and (A7), we get that

M
θn,β(`)
2,p,2 ≤

∑
r∈A

(
P
(
Âk,r

∣∣Xtk

)) 1
q1

(
E

[
1{∣∣∣∫ tk+1

tk
σ(β,Xs)dBs

∣∣∣≤∆α
n

}1
Âk,r

× Ẽ
θn,β(`)
Xtk

[
1
Ãck,r

(∫ tk+1

tk

∫
I
zM(ds, dz)

)pq2 ∣∣∣Y θn,β(`)
tk+1

= Xtk+1

] ∣∣∣Xtk

]) 1
q2

≤
∑
r∈A

(
P
(
Âk,r

∣∣Xtk

)) 1
q1 (Hk,n)

1
2q2 (Tk,pq2)

1
2q2

≤ C1e
−C0∆α+υ−1

n ,

for some constants C0, C1 > 0. This shows that M θn,β(`)
2,p satisfies (5.32), thus the result follows.

Finally, we recall a discrete time ergodic theorem.

Lemma 5.2.16. [40, Lemma 8] Assume conditions (A1) and (A5). Consider a differentiable
function g : R→ R, whose derivatives have polynomial growth in x. Then, as n→∞,

1

n

n−1∑
k=0

g(Xtk)
Pθ0,β0−→

∫
R
g(x)πθ0,β0(dx).
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5.3 Proof of Theorem 5.1.1

In this section, the proof of Theorem 5.1.1 will be divided into several steps. We begin deriving
a stochastic expansion of the log-likelihood ratio using Proposition 5.2.1 and Lemmas 5.2.1, 5.2.2.
The second step is devoted to treat the negligible contributions of this expansion. Finally, the
last step concludes the LAN property by applying the central limit theorem for triangular arrays.

5.3.1 Expansion of the log-likelihood ratio

In order to deal with the log-likelihood ratio in Theorem 5.1.1, we will use the following
decomposition

log
p(Xn; (θn, βn))

p(Xn; (θ0, β0))
= log

p(Xn; (θn, β0))

p(Xn; (θ0, β0))
+ log

p(Xn; (θn, βn))

p(Xn; (θn, β0))
. (5.33)

For ` ∈ [0, 1], set θ(`) := θn(`, u) := θ0 +
`u√
n∆n

, β(`) := βn(`, v) := β0 +
`v√
n
. Then, from

the Markov property and Proposition 5.2.1,

log
p(Xn; (θn, β0))

p(Xn; (θ0, β0))
=

n−1∑
k=0

log
pθn,β0

pθ0,β0
(∆n, Xtk , Xtk+1

)

=
n−1∑
k=0

u√
n∆n

∫ 1

0

∂θp
θ(`),β0

pθ(`),β0
(∆n, Xtk , Xtk+1

)d`

=

n−1∑
k=0

u√
n∆n

∫ 1

0

1

∆n
Ẽ
θ(`),β0

Xtk

[
δ
(
∂θY

θ(`),β0

tk+1
(tk, Xtk)U θ(`),β0(tk, Xtk)

) ∣∣∣Y θ(`),β0

tk+1
= Xtk+1

]
d`.

We next consider the stopping time

τ̂ := inf
{
s ≥ 0 : |∆Ẑs| < ρ1∆υ

n or |∆Ẑs| > ρ2∆−γn

}
, (5.34)

and
τ̃ := inf

{
s ≥ 0 : |∆Z̃s| < ρ1∆υ

n or |∆Z̃s| > ρ2∆−γn

}
, (5.35)

where ρ1, ρ2 > 0 and 0 < υ, γ < 1
2 are from hypothesis (A6).

Observe that on the event {τ̂ > n∆n}, all the jumps of Ẑ in the interval [0, n∆n] are in the
interval [ρ1∆υ

n, ρ2∆−γn ]. Hence, for all ω ∈ {τ̂ > n∆n}, Xθ,β satisfies

Xθ,β
t = x0 +

∫ t

0
b(θ,Xθ,β

s )ds+

∫ t

0
σ(β,Xθ,β

s )dBs +

∫ t

0

∫
I
z (N(ds, dz)− ν(dz)ds) , (5.36)

for all t ∈ [0, n∆n], where recall that I = {z ∈ A : ρ1∆υ
n ≤ |z| ≤ ρ2∆−γn }. A similar statement is

true for Y θ,β.
Then, multiplying by 1{τ̃>n∆n} + 1{τ̃≤n∆n} inside and 1{τ̂>n∆n} + 1{τ̂≤n∆n} outside the

conditional expectation above, we get that

log
p(Xn; (θn, β0))

p(Xn; (θ0, β0))
=

u√
n∆3

n

n−1∑
k=0

∫ 1

0

(
Z1,`
k,n + Z2,`

k,n + Z3,`
k,n

)
d`,

where

Z1,`
k,n = Ẽ

θ(`),β0

Xtk

[
δ
(
∂θY

θ(`),β0

tk+1
(tk, Xtk)U θ(`),β0(tk, Xtk)

) ∣∣∣Y θ(`),β0

tk+1
= Xtk+1

]
1{τ̂≤n∆n},

Z2,`
k,n = Ẽ

θ(`),β0

Xtk

[
δ
(
∂θY

θ(`),β0

tk+1
(tk, Xtk)U θ(`),β0(tk, Xtk)

)
1{τ̃≤n∆n}

∣∣∣Y θ(`),β0

tk+1
= Xtk+1

]
1{τ̂>n∆n},

Z3,`
k,n = Ẽ

θ(`),β0

Xtk

[
δ
(
∂θY

θ(`),β0

tk+1
(tk, Xtk)U θ(`),β0(tk, Xtk)

)
1{τ̃>n∆n}

∣∣∣Y θ(`),β0

tk+1
= Xtk+1

]
1{τ̂>n∆n}.
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We will later see that the terms concerning Z1,`
k,n and Z2,`

k,n are negligible (Lemma 5.3.1). The
main contribution in the asymptotics will be given by Z3,`

k,n, which expresses the fact that the
small and large jumps do not interfere with the Gaussian behaviour of the transition density. In
fact to see this, applying Lemma 5.2.1 to Z3,`

k,n, and using equation (5.1) for the term Xtk+1
−Xtk

coming from the term Y
θ(`),β0

tk+1
− Y θ(`),β0

tk
in Lemma 5.2.1, we obtain the following expansion of

the log-likelihood ratio

log
p(Xn; (θn, β0))

p(Xn; (θ0, β0))
=

n−1∑
k=0

ξk,n +
u√
n∆3

n

n−1∑
k=0

∫ 1

0

{
Z1,`
k,n + Z2,`

k,n

+
(
Z4,`
k,n + Z5,`

k,n + Z6,`
k,n

)
Ẽ
θ(`),β0

Xtk

[
1{τ̃>n∆n}

∣∣∣Y θ(`),β0

tk+1
= Xtk+1

]
1{τ̂>n∆n}

+ Ẽ
θ(`),β0

Xtk

[(
Rθ(`),β0 −Rθ(`),β0

4 −Rθ(`),β0

6

)
1{τ̃>n∆n}

∣∣∣Y θ(`),β0

tk+1
= Xtk+1

]
1{τ̂>n∆n}

}
d`,

where

ξk,n =
u√
n∆n

∫ 1

0

∂θb(θ(`), Xtk)

σ2(β0, Xtk)

(
σ(β0, Xtk)

(
Btk+1

−Btk
)

+ (b(θ0, Xtk)− b(θ(`), Xtk)) ∆n

)
× Ẽ

θ(`),β0

Xtk

[
1{τ̃>n∆n}

∣∣∣Y θ(`),β0

tk+1
= Xtk+1

]
1{τ̂>n∆n}d`,

Z4,`
k,n = ∆n∂θb(θ(`), Xtk)σ−2(β0, Xtk)

∫ tk+1

tk

(
b(θ0, X

θ0,β0
s )− b(θ0, Xtk)

)
ds,

Z5,`
k,n = ∆n∂θb(θ(`), Xtk)σ−2(β0, Xtk)

∫ tk+1

tk

(
σ(β0, X

θ0,β0
s )− σ(β0, Xtk)

)
dBs,

Z6,`
k,n = ∆n∂θb(θ(`), Xtk)σ−2(β0, Xtk)

∫ tk+1

tk

∫
R0

zÑ(ds, dz),

Rθ(`),β0 = R
θ(`),β0

1 +R
θ(`),β0

2 +R
θ(`),β0

3 −Rθ(`),β0

5 .

Again the Markov property and Proposition 5.2.1 give

log
p (Xn; (θn, βn))

p (Xn; (θn, β0))
=

n−1∑
k=0

log
pθn,βn

pθn,β0

(
∆n, Xtk , Xtk+1

)
=

n−1∑
k=0

v√
n

∫ 1

0

∂βp
θn,β(`)

pθn,β(`)

(
∆n, Xtk , Xtk+1

)
d`

=
n−1∑
k=0

v√
n

∫ 1

0

1

∆n
Ẽ
θn,β(`)
Xtk

[
δ
(
∂βY

θn,β(`)
tk+1

(tk, Xtk)U θn,β(`)(tk, Xtk)
) ∣∣∣Y θn,β(`)

tk+1
= Xtk+1

]
d`.

Then, multiplying by 1{τ̃>n∆n} + 1{τ̃≤n∆n} inside and 1{τ̂>n∆n} + 1{τ̂≤n∆n} outside the
conditional expectation above, we get that

log
p (Xn; (θn, βn))

p (Xn; (θn, β0))
=

v√
n∆2

n

n−1∑
k=0

∫ 1

0

(
Q1,`
k,n +Q2,`

k,n +Q3,`
k,n

)
d`,

where

Q1,`
k,n = Ẽ

θn,β(`)
Xtk

[
δ
(
∂βY

θn,β(`)
tk+1

(tk, Xtk)U θn,β(`)(tk, Xtk)
) ∣∣∣Y θn,β(`)

tk+1
= Xtk+1

]
1{τ̂≤n∆n},

Q2,`
k,n = Ẽ

θn,β(`)
Xtk

[
δ
(
∂βY

θn,β(`)
tk+1

(tk, Xtk)U θn,β(`)(tk, Xtk)
)

1{τ̃≤n∆n}

∣∣∣Y θn,β(`)
tk+1

= Xtk+1

]
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Q3,`
k,n = Ẽ

θn,β(`)
Xtk
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δ
(
∂βY

θn,β(`)
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(tk, Xtk)U θn,β(`)(tk, Xtk)
)

1{τ̃>n∆n}

∣∣∣Y θn,β(`)
tk+1

= Xtk+1

]
1{τ̂>n∆n}.
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Similarly, the terms concerning Q1,`
k,n and Q2,`

k,n are negligible (Lemma 5.3.6), whereas the main
contribution in the asymptotics will be determined by Q3,`

k,n. In fact, applying Lemma 5.2.2 to

Q3,`
k,n, and using equation (5.1) for the term Xtk+1

−Xtk coming from the term Y
θn,β(`)
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−Y θn,β(`)
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in Lemma 5.2.2, we obtain the following expansion of the log-likelihood ratio
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where
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Therefore, we have obtained the following expansion of the log-likelihood ratio
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In the next subsections we will show that ξk,n and ηk,n are the terms that contribute to the
limit in Theorem 5.1.1, and all the others are negligible contributions. Therefore again, the main
behaviour is given by the Gaussian and drift components of the equation (5.1).

5.3.2 Negligible contributions

To simplify the exposition, let us denote U θ,β1 (tk, x) = ∂θY
θ,β
tk+1

(tk, x)U θ,β(tk, x) and U θ,β2 (tk, x) =

∂βY
θ,β
tk+1

(tk, x)U θ,β(tk, x).

Lemma 5.3.1. Under conditions (A1)-(A4) and (A6), as n→∞,
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Proof. It suffices to show that condition (1.16) of Lemma 1.4.2 holds for each sequence (Zi,`k,n)k≥1

under the measure Pθ0,β0 .
First, applying Hölder’s and Jensen’s inequalities, Girsanov’s theorem, Lemma 5.2.12, and

(5.8), we obtain that for some constants C, q0 > 0,
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where p, q > 1 and 1
p + 1

q = 1. On the other hand,

P(τ̂ > n∆n|Xtk) = P(∀s ∈ [0, n∆n], ρ1∆υ
n ≤ |∆Ẑs| ≤ ρ2∆−γn |Xtk)

= P(∀s ∈ [0, k∆n], ρ1∆υ
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n≤|Λ̂|≤ρ2∆−γn )),

(5.37)

where Λ̂ is a random variable with distribution ν
λ . Therefore, we obtain that
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n
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(1 + |Xtk |
q0) .
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Then, using the fact that 1− e−x ≤ x, for all x ≥ 0, and that λn ≤ λ, we get that(
1− e−λnn∆n(1−P(ρ1∆υ

n≤|Λ̂|≤ρ2∆−γn ))
) 1
q

≤
(
λn∆n
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 .

Therefore, by (A6) we conclude that (1.16) holds true, and by Lemma 1.4.2, as n→∞,
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Next, as for the term Z1,`
k,n, applying Girsanov’s theorem, Lemma 5.2.12, and (5.8), we obtain

that for some constants C, q0 > 0,
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where we have used Hölder’s inequality with p > 1 and q > 1 conjugate. On the other hand,

P(τ̃ > n∆n|Xtk) = P(τ̃ > n∆n) = P(∀s ∈ [0, n∆n], ρ1∆υ
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where Λ̃ is a random variable with distribution ν
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Therefore, by (A6) we conclude that (1.16) holds true, and by Lemma 1.4.2, as n→∞,
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Thus, the result follows.

Lemma 5.3.2. Under conditions (A1)-(A4) and (A6), as n→∞,
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Proof. Using the fact that 1{τ̂>n∆n} = 1−1{τ̂≤n∆n} and 1{τ̃>n∆n} = 1−1{τ̃≤n∆n}, it suffices to
show that as n→∞,
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Ẽ
θ(`),β0

Xtk

[
Rθ(`),β0

∣∣∣Y θ(`),β0

tk+1
= Xtk+1

]
d`

Pθ0,β0−→ 0. (5.40)

The convergences (5.38) and (5.39) are treated similarly as for the terms Z1,`
k,n and Z2,`

k,n. To
treat (5.40), it suffices to show that conditions (i) and (ii) of Lemma 1.4.1 hold under the measure
Pθ0,β0 . We start showing (i). Applying Girsanov’s theorem, Lemma 5.2.12, (5.6) and (5.7) with
p = 2, we get that∣∣∣∣∣
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for some constants C, q > 0. Observe that (5.7) and (5.8) remain valid under P̂α, the measure
defined in Lemma 5.2.12. This shows Lemma 1.4.1 (i). Similarly, applying Jensen’s inequality,
Girsanov’s theorem, Lemma 5.2.12 and (5.7) with p ∈ {2, 4}, we obtain that
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which concludes the desired result.
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Lemma 5.3.3. Under conditions (A1)-(A4) and (A6), as n→∞,
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θ(`),β0

Xtk

[
1{τ̃>n∆n}

∣∣∣Y θ(`),β0

tk+1
= Xtk+1

]
1{τ̂>n∆n}d`

Pθ0,β0−→ 0.

Proof. Using the fact that 1{τ̂>n∆n} = 1−1{τ̂≤n∆n} and 1{τ̃>n∆n} = 1−1{τ̃≤n∆n}, it suffices to
show that as n→∞,
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for some constant C, q > 0. Thus, Lemma 1.4.1 concludes the desired result.

Lemma 5.3.4. Assume conditions (A1)-(A4) and (A6). Then as n→∞,
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θ(`),β0

Xtk

[∫ tk+1

tk

(
b(θ(`), Y θ(`),β0

s )− b(θ(`), Y θ(`),β0

tk
)
)
ds
∣∣∣Y θ(`),β0

tk+1
= Xtk+1

])
,

for some w ∈ (0, 1).
Using Lemma 5.2.3(i), we get that
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for some constants C, q > 0. Therefore, by Lemma 1.4.2, we conclude that as n→∞,
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for some constants C, q > 0, which shows Lemma 1.4.1(i).
Next, proceeding as in the proof of Lemma 5.3.2 to show that condition (ii) of Lemma 1.4.1

holds. Thus, the result follows.

Lemma 5.3.5. Assume conditions (A1)-(A4) and (A6). Then as n→∞,
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Proof. Using the fact that 1{τ̂>n∆n} = 1−1{τ̂≤n∆n} and 1{τ̃>n∆n} = 1−1{τ̃≤n∆n}, it suffices to
show that as n→∞,
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First, by Girsanov’s theorem,

E

[∫ tk+1

tk

∫
I
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where we have used the independence between
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is actually equal to 0 for all n ≥ 1.



5.3. Proof of Theorem 5.1.1 129

We next show that condition (ii) of Lemma 1.4.1 holds. Cauchy-Schwarz inequality and
Girsanov’s theorem give
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Using Lemma 5.2.12 and hypotheses (A2)-(A4), we get that for some constants C, q > 0,
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Applying Lemma 4.2.5, Jensen’s inequality and (A2), (A4), we obtain that
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for some constants C, q > 0.
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Next, hypotheses (A2) and (A3)(b) yield that
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Multiplying the random variable inside the expectation by
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for some constants C0, C > 0. Thus, D2 converges to zero in Pθ0,β0-probability as n → ∞. The
desired proof is now finished.

Lemma 5.3.6. Under conditions (A1)-(A4), and (A6),(A8), as n→∞,
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∫ 1
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Proof. It suffices to show that (1.16) holds for each sequence (Qi,`k,n)k≥1 under the measure Pθ0,β0 .
First, as for the term Z1,`

k,n, applying Hölder’s and Jensen’s inequalities repeatedly, Lemmas 5.2.10,
5.2.6 and (5.11), together with (A8), we obtain that for any p, q > 1 conjugate, q1, q2 conjugate,
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with q2 close to 1, there exist constants C0, q0 > 0 such that
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where we have used (5.37), and the inequality 1−e−x ≤ x valid for all x ≥ 0. Then by hypothesis
(A6), we conclude that (1.16) holds true, and by Lemma 1.4.2, as n→∞,
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The term Q2,`
k,n is treated similarly. Thus, the result follows.

Lemma 5.3.7. Under conditions (A1)-(A4) and (A6), as n→∞,
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Proof. Using the fact that 1{τ̂>n∆n} = 1−1{τ̂≤n∆n} and 1{τ̃>n∆n} = 1−1{τ̃≤n∆n}, it suffices to
show that as n→∞,
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The covergences (5.41) and (5.42) are treated similarly as for the terms Q1,`
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k,n. To
treat (5.43), it suffices to show that conditions (i) and (ii) of Lemma 1.4.1 hold under the measure
Pθ0,β0 . We start showing (i). Using Lemma 5.2.10, (5.9), Lemma 5.2.9, Jensen’s inequality, and
(5.10), we get that
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By (A8), this converges to zero in Pθ0,β0-probability as n→∞, which shows Lemma 1.4.1 (i).

Next, applying Jensen’s and Hölder’s inequalities with q1, q2 conjugate, q2 close to 1, together
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with Lemmas 5.2.10, 5.2.6, and (5.10), we get that
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Ĵ0,k

qθ0,β0

(0)

q
θn,β(`)
(0)

∣∣∣Xθn,β(`)
tk

= Xtk


+
∞∑
j=1

∑
(a1,...,aj)∈I

E

Ẽ
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By hypothesis (A8), this converges to zero in Pθ0,β0-probability as n → ∞. Thus, the result
follows.

Lemma 5.3.8. Under conditions (A1)-(A4) and (A6)-(A8), as n→∞,
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Proof. Using the fact that 1{τ̂>n∆n} = 1−1{τ̂≤n∆n} and 1{τ̃>n∆n} = 1−1{τ̃≤n∆n}, it suffices to
show that as n→∞,
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For this, we split the term inside the conditional expectation as(
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Therefore, it suffices to show that as n→∞,
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(5.44)
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(5.45)

We first show (5.44), by proving that conditions (i) and (ii) of Lemma 1.4.1 hold under the
measure Pθ0,β0 . We start showing (i). Applying Lemma 5.2.10 to the conditional expectation, we
get that
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where
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By hypothesis (A8), this converges to zero in Pθ0,β0-probability as n→∞.
On the other hand, observe that
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By the mean value theorem, there exists r ∈ (0, 1) such that S2,1 = S2,1,1 − S2,1,2, where
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Using hypotheses (A1), (A3)(e) and Lemma 5.2.3, we get that for some constants C, q > 0,∣∣∣∣∣
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Next, using Lemma 5.2.10, we have that
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which, by hypothesis (A8), converges to zero in Pθ0,β0-probability as n→∞.
We next treat S2,2. By the mean value theorem, there exists r ∈ (0, 1) such that S2,2 =
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We next add and substract the term ∂θb(θ(r), Y
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which concludes that as n→∞,

n−1∑
k=0

v√
n∆2

n

∫ 1

0

∂βσ

σ3
(β(`), Xtk)S2d`

Pθ0,β0−→ 0.

This finishes the proof of Lemma 1.4.1 (i).

Next, applying Jensen’s and Hölder’s inequalities with q1, q2 conjugate, with q2 close to 1,
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together with Lemmas 5.2.10, 5.2.6, we get that
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By hypothesis (A8), this converges to zero in Pθ0,β0-probability as n → ∞. This finishes the
proof of (5.44).

Now it remains to treat (5.45). Using equation (5.1), it suffices to show that as n→∞,
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First, we treat (5.46) by showing that conditions (i) and (ii) of Lemma 1.4.1 hold under the
measure Pθ0,β0 . We start showing (i). Recall that the events Âk,r, Ãk,r and Ãck,r are introduced
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for some constants C,C0, q > 0. This shows Lemma 1.4.1 (i).
Next, Jensen’s inequality gives
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zN(ds, dz)

)2

− Ẽ
θn,β(`)
Xtk

[
(1
Ãk,r

+ 1
Ãck,r

)

(∫ tk+1

tk

∫
I
zM(ds, dz)

)2 ∣∣∣Y θn,β(`)
tk+1

= Xtk+1

])2∣∣∣F̂tk]
≤ 2

(
M

θn,β(`)
1,4 +M

θn,β(`)
2,4

)
,

which, together with Lemma 5.2.15 and hypotheses (A2), (A3)(b), implies that for any α ∈
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(υ, 1
2),

n−1∑
k=0

v2

n∆2
n

E

[(∫ 1

0

∂βσ

σ3
(β(`), Xtk)

((∫ tk+1

tk

∫
I
zN(ds, dz)

)2

− Ẽ
θn,β(`)
Xtk

[(∫ tk+1

tk

∫
I
zM(ds, dz)

)2 ∣∣∣Y θn,β(`)
tk+1

= Xtk+1

])
d`

)2∣∣∣F̂tk]

≤
n−1∑
k=0

2v2

n∆2
n

∫ 1

0

(
∂βσ

σ3

)2

(β(`), Xtk)
(
M

θn,β(`)
1,4 +M

θn,β(`)
2,4

)
d`

≤ C

∆2
n

e−C0∆2α−1
n

1

n

n−1∑
k=0

(1 + |Xtk |
q) ,

for some constants C,C0, q > 0. This finishes the proof of (5.46).
Finally, using Cauchy-Schwarz inequality and Lemma 5.2.3 (i), and proceeding as for (5.46),

we conclude (5.47). Thus, the desired result follows.

5.3.3 Main contributions : LAN property

Proof. Using the fact that 1{τ̂>n∆n} = 1 − 1{τ̂≤n∆n} and 1{τ̃>n∆n} = 1 − 1{τ̃≤n∆n}, we write
ξk,n = ξk,n,1 − ξk,n,2 − ξk,n,3, where

ξk,n,1 =
u√
n∆n

∫ 1

0

∂θb(θ(`), Xtk)

σ2(β0, Xtk)

(
σ(β0, Xtk)

(
Btk+1

−Btk
)

+ (b(θ0, Xtk)− b(θ(`), Xtk)) ∆n

)
d`,

ξk,n,2 =
u√
n∆n

∫ 1

0

∂θb(θ(`), Xtk)

σ2(β0, Xtk)

(
σ(β0, Xtk)

(
Btk+1

−Btk
)

+ (b(θ0, Xtk)− b(θ(`), Xtk)) ∆n

)
× Ẽ

θ(`),β0

Xtk

[
1{τ̃>n∆n}

∣∣∣Y θ(`),β0

tk+1
= Xtk+1

]
1{τ̂≤n∆n}d`,

ξk,n,3 =
u√
n∆n

∫ 1

0

∂θb(θ(`), Xtk)

σ2(β0, Xtk)

(
σ(β0, Xtk)

(
Btk+1

−Btk
)

+ (b(θ0, Xtk)− b(θ(`), Xtk)) ∆n

)
× Ẽ

θ(`),β0

Xtk

[
1{τ̃≤n∆n}

∣∣∣Y θ(`),β0

tk+1
= Xtk+1

]
d`.

Similarly, we write ηk,n = ηk,n,1 − ηk,n,2 − ηk,n,3, where

ηk,n,1 =
v√
n∆2

n

∫ 1

0

(
∂βσ

σ3
(β(`), Xtk)σ2(β0, Xtk)

(
Btk+1

−Btk
)2 − ∂βσ

σ
(β(`), Xtk) ∆n

)
d`,

ηk,n,2 =
v√
n∆2

n

∫ 1

0

(
∂βσ

σ3
(β(`), Xtk)σ2(β0, Xtk)

(
Btk+1

−Btk
)2 − ∂βσ

σ
(β(`), Xtk) ∆n

)
× Ẽ

θn,β(`)
Xtk

[
1{τ̃>n∆n}

∣∣∣Y θn,β(`)
tk+1

= Xtk+1

]
1{τ̂≤n∆n}d`,

ηk,n,3 =
v√
n∆2

n

∫ 1

0

(
∂βσ

σ3
(β(`), Xtk)σ2(β0, Xtk)

(
Btk+1

−Btk
)2 − ∂βσ

σ
(β(`), Xtk) ∆n

)
× Ẽ

θn,β(`)
Xtk

[
1{τ̃≤n∆n}

∣∣∣Y θn,β(`)
tk+1

= Xtk+1

]
d`.

Proceeding as for the terms Z1,`
k,n and Z2,`

k,n, we get that as n→∞,

n−1∑
k=0

(ξk,n,2 + ξk,n,3)
Pθ0,β0−→ 0.



5.3. Proof of Theorem 5.1.1 141

Proceeding as for the terms Q1,`
k,n and Q2,`

k,n, we get that as n→∞,

n−1∑
k=0

(ηk,n,2 + ηk,n,3)
Pθ0,β0−→ 0.

Next, applying Lemma 1.4.3 to ζk,n = ξk,n,1 + ηk,n,1, it suffices to show that as n→∞,

n−1∑
k=0

E
[
ξk,n,1|F̂tk

]
Pθ0,β0−→ −u

2

2
Γb(θ0, β0), (5.48)

n−1∑
k=0

E
[
ηk,n,1|F̂tk

]
Pθ0,β0−→ −v

2

2
Γσ(θ0, β0), (5.49)

n−1∑
k=0

(
E
[
ξ2
k,n,1|F̂tk

]
−
(

E
[
ξk,n,1|F̂tk

])2
)

Pθ0,β0−→ u2Γb(θ0, β0), (5.50)

n−1∑
k=0

(
E
[
η2
k,n,1|F̂tk

]
−
(

E
[
ηk,n,1|F̂tk

])2
)

Pθ0,β0−→ v2Γσ(θ0, β0), (5.51)

n−1∑
k=0

(
E
[
ξk,n,1ηk,n,1|F̂tk

]
− E

[
ξk,n,1|F̂tk

]
E
[
ηk,n,1|F̂tk

])
Pθ0,β0−→ 0, (5.52)

n−1∑
k=0

E
[
ξ4
k,n,1|F̂tk

]
Pθ0,β0−→ 0, (5.53)

n−1∑
k=0

E
[
η4
k,n,1|F̂tk

]
Pθ0,β0−→ 0, (5.54)

where

Γb(θ0, β0) =

∫
R

(
∂θb(θ0, x)

σ(β0, x)

)2

πθ0,β0(dx), and Γσ(θ0, β0) = 2

∫
R

(
∂βσ(β0, x)

σ(β0, x)

)2

πθ0,β0(dx).

Proof of (5.48). Using E[Btk+1
−Btk |F̂tk ] = 0, and the mean value theorem, we get

n−1∑
k=0

E
[
ξk,n,1|F̂tk

]
= −u

2

n

n−1∑
k=0

∫ 1

0
`
∂θb(θ(`), Xtk)

σ2(β0, Xtk)
∂θb(θ0 +

`ur√
n∆n

, Xtk)d`

= −u
2

2n

n−1∑
k=0

(
∂θb(θ0, Xtk)

σ(β0, Xtk)

)2

− T1 − T2,

for some r ∈ (0, 1), T1 =
∑n−1

k=0 Tk,n, and

Tk,n :=
u2

n

∫ 1

0
`
∂θb(θ(`), Xtk)

σ2(β0, Xtk)

(
∂θb(θ0 +

`ur√
n∆n

, Xtk)− ∂θb(θ0, Xtk)

)
d`,

T2 :=
u2

n

n−1∑
k=0

∫ 1

0
`
∂θb(θ0, Xtk)

σ2(β0, Xtk)
(∂θb(θ(`), Xtk)− ∂θb(θ0, Xtk)) d`.

Using hypotheses (A2) and (A3)(b), (c), we have that for some constants C, ε, q > 0,

n−1∑
k=0

E
[
|Tk,n||F̂tk

]
≤ C|u|ε+2|r|ε

(
√
n∆n)ε

1

n

n−1∑
k=0

(1 + |Xtk |
q) ,
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which, by Lemma 1.4.2, implies that T1
Pθ0,β0−→ 0 as n→∞. Thus, so does T2 by using the same

argument. On the other hand, applying Lemma 5.2.16, we obtain that as n→∞,

1

n

n−1∑
k=0

(
∂θb(θ0, Xtk)

σ(β0, Xtk)

)2
Pθ0,β0−→ Γb(θ0, β0), (5.55)

which gives (5.48).

Proof of (5.50). First, from the previous computations, we have that

n−1∑
k=0

(
E
[
ξk,n,1|F̂tk

])2
=
u4

n2

n−1∑
k=0

(∫ 1

0
`
∂θb(θ(`), Xtk)

σ2(β0, Xtk)
∂θb(θ0 +

`ur√
n∆n

, Xtk)d`

)2

≤ Cu4

n2

n−1∑
k=0

(1 + |Xtk |
q) ,

for some constants C, q > 0.
Next, using properties of the moments of the Brownian motion, we can write

n−1∑
k=0

E
[
ξ2
k,n,1|F̂tk

]
=
u2

n

n−1∑
k=0

(
∂θb(θ0, Xtk)

σ(β0, Xtk)

)2

+ T3 + T4 + T5,

where

T3 :=
2u2

n

n−1∑
k=0

∂θb(θ0, Xtk)

σ(β0, Xtk)

∫ 1

0

∂θb(θ(`), Xtk)− ∂θb(θ0, Xtk)

σ(β0, Xtk)
d`,

T4 :=
u2

n

n−1∑
k=0

(∫ 1

0

∂θb(θ(`), Xtk)− ∂θb(θ0, Xtk)

σ(β0, Xtk)
d`

)2

,

T5 :=
u2∆n

n

n−1∑
k=0

(∫ 1

0

∂θb(θ(`), Xtk)

σ2(β0, Xtk)
(b(θ0, Xtk)− b(θ(`), Xtk)) d`

)2

.

As for the term T1, using hypotheses (A2) and (A3)(b), (c), we get that T3, T4, T5 converge to
zero in Pθ0,β0-probability as n→∞. Moreover, using again (5.55), we conclude (5.50).

Proof of (5.53). Basic computation yields that

n−1∑
k=0

E
[
ξ4
k,n,1|F̂tk

]
≤ Cu4

n2

n−1∑
k=0

(1 + |Xtk |
q) ,

for some constants C, q > 0.

Proof of (5.49). Again, using properties of the moments of the Brownian motion and the
mean value theorem, we have

n−1∑
k=0

E
[
ηk,n,1|F̂tk

]
= −v

2

2

2

n

n−1∑
k=0

(
∂βσ(β0, Xtk)

σ(β0, Xtk)

)2

− T6 − T7 − T8,
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where, for some r ∈ (0, 1),

T6 =
2v2

n

n−1∑
k=0

∫ 1

0
`
∂βσ

σ3
(β(`), Xtk)σ(β0 +

`vr√
n
,Xtk)

(
∂βσ(β0 +

`vr√
n
,Xtk)− ∂βσ(β0, Xtk)

)
d`,

T7 =
2v2

n

n−1∑
k=0

∫ 1

0
`
∂βσ

σ3
(β(`), Xtk)

(
σ(β0 +

`vr√
n
,Xtk)− σ(β0, Xtk)

)
∂βσ(β0, Xtk)d`,

T8 =
2v2

n

n−1∑
k=0

∫ 1

0
`

(
∂βσ

σ3
(β(`), Xtk)−

∂βσ

σ3
(β0, Xtk)

)
σ(β0, Xtk)∂βσ(β0, Xtk)d`.

As for the term T1, using (A2) and (A3)(b), (d), together with Lemma 1.4.2, we conclude
that T6, T7, T8 converge to zero in Pθ0,β0-probability as n→∞. Again, applying Lemma 5.2.16,
we obtain that as n→∞,

2

n

n−1∑
k=0

(
∂βσ(β0, Xtk)

σ(β0, Xtk)

)2
Pθ0,β0−→ Γσ(θ0, β0), (5.56)

which gives (5.49).

Proof of (5.51). First, from the previous computations, we have that

n−1∑
k=0

(
E
[
ηk,n,1|F̂tk

])2
=

4v4

n2

n−1∑
k=0

(∫ 1

0
`
∂βσ

σ3
(β(`), Xtk)σ∂βσ(β0 +

`vr√
n
,Xtk)d`

)2

≤ Cv4

n2

n−1∑
k=0

(1 + |Xtk |
q) ,

for some constants C, q > 0.
Next, using the fact that E[(Btk+1

− Btk)2|F̂tk ] = ∆n and E[(Btk+1
− Btk)4|F̂tk ] = 3∆2

n, we
can write

n−1∑
k=0

E
[
η2
k,n,1|F̂tk

]
=

2v2

n

n−1∑
k=0

(
∂βσ(β0, Xtk)

σ(β0, Xtk)

)2

+
v2

n

n−1∑
k=0

Sk,n,

where for some constants C, q > 0,

v2

n

n−1∑
k=0

E
[
|Sk,n| |F̂tk

]
≤ Cv2

n
√
n

n−1∑
k=0

(1 + |Xtk |
q) ,

which, together with Lemma 1.4.2 and (5.56), concludes (5.51).

Proof of (5.52). Using properties of the moments of the Brownian motion, we get that∣∣∣∣∣
n−1∑
k=0

(
E
[
ξk,n,1ηk,n,1|F̂tk

]
− E

[
ξk,n,1|F̂tk

]
E
[
ηk,n,1|F̂tk

])∣∣∣∣∣ ≤ C

n2

n−1∑
k=0

(1 + |Xtk |
q) ,

for some constants C, q > 0.

Proof of (5.54). Basic computation yields that

n−1∑
k=0

E
[
η4
k,n,1|F̂tk

]
≤ Cv4

n2

n−1∑
k=0

(1 + |Xtk |
q) ,

for some constants C, q > 0. The proof of Theorem 5.1.1 is now completed.
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