
HAL Id: tel-01237690
https://theses.hal.science/tel-01237690

Submitted on 3 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic synthesis of digital circuits from temporal
specifications

Fatemeh Negin Javaheri

To cite this version:
Fatemeh Negin Javaheri. Automatic synthesis of digital circuits from temporal specifications. Mi-
cro and nanotechnologies/Microelectronics. Université Grenoble Alpes, 2015. English. �NNT :
2015GREAT083�. �tel-01237690�

https://theses.hal.science/tel-01237690
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : Nanoélectronique et Nanotechnologies

Arrêté ministériel : 7 août 2006

Présentée par

Fatemeh (Negin) JAVAHERI

Thèse dirigée par Mme. Dominique BORRIONE
et codirigée par Mme. Katell MORIN-ALLORY

Préparée au sein du Laboratoire TIMA
Dans l’École Doctorale Electronique, Electrotechnique, Automatique &
Traitement du Signal (E.E.A.T.S)

Synthèse automatique de circuits
numériques à partir de spécifications
temporelles

Thèse soutenue publiquement le 1 octobre 2015,
devant le jury composé de :

M. Philippe COUSSY
Professeur, Université de Bretagne Sud, Président
M. Paolo PRINETTO
Professeur, Politecnico di Torino, Rapporteur
M. Rolf DRECHSLER
Professeur, Universität Bremen, Rapporteur
Mme. Dominique BORRIONE
Professeur, Université Joseph Fourier, Directrice de thèse
Mme. Katell MORIN-ALLORY
Maître de Conférences, Grenoble INP, Co-Directrice de thèse

Acknowledgments
Firstly, I would like to express my sincere gratitude to my supervisors Prof. Dominique

BORRIONE and Dr. Katell MORIN-ALLORY for their continuous support of my thesis

studies and research, for their patience, motivation, enthusiasm, and immense knowledge.

Their guidance helped me throughout the execution of this research, and the writing of

this thesis.

Besides my supervisors, I would like to thank the rest of my thesis committee: Prof.

Philip COUSSY for being the president, and Prof. Rolf DRECHSLER and Prof. Paolo

PRINETTO for accepting our invitation to evaluate and examine this thesis and their

useful suggestions and comments.

Also I thank the head of the VDS group, Prof. Laurence PIERRE, and administra-

tion team in the TIMA laboratory: Laurence BENTITO, Anne-Laure FOURNERET-

ITIE, Sophie MARTINEAU, Youness RAJAB, Frederic CHEVROT, Lucie TORELLA,

and Alexandre CHAGOYA for supporting and helping me kindly.

I would like to extend my appreciation to my colleagues and friends: Maryam BAH-

MANI, Alexandre PORCHER, Zeineb BELHADJ AMOR, Ladan AMINI, Hoda BARE-

NIA, Paria SALMANZADE, Leila GRAYELI, Ahmad BIJAR, Laila DAMRI, Hamed

SHEYBANI, and Sahar FOROUTAN for their kindness, support, and all the fun we have

had during the last three years.

I would like to acknowledge the help of Guillaume PLASSAN, Sebastian CORZO, and

Hugo ROYNETTE in collecting some experimental results.

I also thank my best friends Somayeh, Paria, Mona, Nastaran, and Marzieh for all

their supports from a very long distance.

I specially thank Prof. Zain NAVABI who taught me the research attitude. My

appreciation for his fatherly advises and supports cannot be expressed in words.

I would like to express my deepest gratitude to my parents, who support me spiritually

throughout my life, for all of the sacrifices that they have made on my behalf. Without

their encouragement and support, I would not have a chance to be here. All I have today

is because of their unconditional love and support. I thank my lovely sister Negar, and

my dear brother Ali for their love and encouragements. Although we were far apart, I felt

them every moment. I would also like to thank my mother, father and sister in-laws for

their kindness and support.

Last but not the least; I would also like to extend my appreciation to my beloved,

Sina NAKHJAVANI for his unconditional love, patience, kindness, and support. Without

his support and patience, I could not complete this journey. Words cannot express how

grateful I am to him.

Contents

1 Introduction 1
1.1 Preface . 1
1.2 Classical design flow . 2
1.3 The proposed design flow . 3
1.4 Overview of the thesis . 4

2 Assertion-based Verification 7
2.1 Introduction . 8
2.2 Review of verification technology . 9

2.2.1 Simulation-based verification . 9
2.2.2 Formal verification . 9

2.2.2.1 Terminology and notations 10
2.2.2.2 Regular Expression . 11
2.2.2.3 Temporal Logic . 12
2.2.2.4 Model checking . 13
2.2.2.5 Equivalence checking . 15
2.2.2.6 Theorem proving methods 16

2.3 Assertion languages . 16
2.3.1 Property Specification Language (PSL) 17

2.3.1.1 PSL Boolean layer . 18
2.3.1.2 PSL temporal layer . 18
2.3.1.3 PSL verification layer . 24
2.3.1.4 PSL Modeling layer . 24
2.3.1.5 PSL simple subset (PSLsimple) 25

2.3.2 System Verilog Assertion (SVA) . 25
2.3.2.1 Operators . 26
2.3.2.2 Verification directives . 26
2.3.2.3 Built-in functions . 26

2.4 Summary . 28

3 State of the art 29
3.1 Introduction . 30
3.2 Property synthesis as monitors . 30

3.2.1 The automaton-based approach . 30
3.2.2 The modular approach . 32

v

Table of Contents

3.3 Property synthesis as correct-by-construction circuits 34
3.3.1 The automaton-based approach . 35
3.3.2 The modular approach . 37
3.3.3 Synthesizing from Regular Expressions 38

3.4 Existing tools . 40
3.5 Summary . 41

4 Fast prototyping from assertions: the overall synthesis flow 43
4.1 Introduction . 44
4.2 Reactant synthesis . 44
4.3 Running Example: Generalized Buffer . 45

4.3.1 Presentation . 45
4.3.2 Communication with FIFO . 47
4.3.3 Communication with the senders 48

4.3.3.1 Formal FL specification 48
4.3.3.2 Formal SERE specification 49

4.3.4 Communication with the receivers 49
4.3.4.1 Formal FL specification 49
4.3.4.2 Formal SERE specification 53

5 Synthesizing FLs 55
5.1 Introduction . 56
5.2 Formalization of the annotation . 56

5.2.1 Dependency relation: definition and notations 56
5.2.2 Dependency relation between operands of FL operators 59

5.2.2.1 Always . 60
5.2.2.2 Eventually! . 60
5.2.2.3 Next family . 60
5.2.2.4 Until family . 61
5.2.2.5 Before family . 62
5.2.2.6 Next event family . 62

5.3 Dependency relation synthesis . 63
5.3.1 Principles of the primitive reactant construction 63

5.3.1.1 Boolean reactant . 64
5.3.2 Generic format of a FL operator . 65

5.3.2.1 Implementation of an operator of the “forall” group 66
5.3.2.2 Implementation of an operator of the “exists” group 69

5.4 Summary . 72

6 Synthesizing SEREs 73
6.1 Introduction . 74
6.2 Challenges and motivations . 74
6.3 Formalization of the annotation . 79

6.3.1 Dependency relation: definition and notations 80
6.3.2 Dependency relation between operands of SERE operators 80

6.3.2.1 Base cases . 81
6.3.2.2 Concatenation . 81
6.3.2.3 Fusion . 82

Table of Contents

6.3.2.4 Length-matching conjunction 82
6.3.2.5 Non length-matching conjunction 83
6.3.2.6 Disjunction . 84
6.3.2.7 Kleene closure . 85
6.3.2.8 Plus . 85

6.4 Dependency relation synthesis . 86
6.4.1 Principles of the primitive reactant construction 86

6.4.1.1 Simple SEREs . 88
6.4.1.2 Compound SEREs . 88
6.4.1.3 Unbounded SEREs . 89

6.4.2 Implementation of primitive reactants of SERE operators 89
6.4.2.1 Simple SEREs . 89
6.4.2.2 Compound SEREs . 91
6.4.2.3 Unbounded SEREs . 93

6.5 Summary . 96

7 Annotation of the signals 97
7.1 Introduction . 98
7.2 Problem definition and overall view . 98

7.2.1 Representation of the dependency relation 98
7.3 Construction of the property Abstract Syntax Tree (AST) 99
7.4 Construction of the Directed Abstract Syntax Tree (DAST) 101

7.4.1 DAST of simple FL operators . 102
7.4.2 DAST of extended next FL operators 103
7.4.3 DAST of FL logical operators . 103
7.4.4 DAST of compound FL operators 104
7.4.5 DAST of implication operators . 105
7.4.6 DAST of simple SERE operators 105
7.4.7 DAST of compound SERE operators 106
7.4.8 DAST of unbounded SERE operators 107
7.4.9 DAST of PSL directives and functions 108

7.4.9.1 Boolean layer directives 108
7.4.9.2 Verification layer directives 108
7.4.9.3 Modeling layer operators 108

7.4.10 The annotation algorithm . 109
7.5 Summary . 115

8 Complex Reactant 117
8.1 Introduction . 118
8.2 Intuitive construction of a property reactant 118

8.2.1 Intuitive construction of an FL reactant 118
8.2.2 Intuitive construction of a SERE reactant 119

8.2.2.1 Simple SERE . 119
8.2.2.2 Compound SERE . 122
8.2.2.3 Unbounded SERE . 122

8.3 Principles of the recursive construction . 123
8.3.1 The base case . 123
8.3.2 FL properties . 124

vii

Table of Contents

8.3.3 SERE properties . 125

8.3.3.1 Simple SEREs . 125

8.3.3.2 Compound SEREs . 126

8.3.3.3 Unbounded SEREs . 126

8.4 Summary . 128

9 Resolution of the signals 129

9.1 Introduction . 130

9.2 Constraints computed from directed DASTs 130

9.3 Constraints computed from semi-directed DASTs 132

9.4 Dependency Graph (DG) . 133

9.5 Dependency Graph construction . 135

9.6 The resolution function: solver . 136

9.6.1 Resolving duplicated signals: simple solver 136

9.6.2 Resolving unannotated signals: complex solver 137

9.6.2.1 Complex solver implementation 137

9.7 The final circuit . 139

9.7.1 Checking the consistency . 141

9.7.2 Checking the completeness . 142

9.8 Summary . 142

10 Practical Experiments and Results 145

10.1 Introduction . 146

10.2 Hardware prototyping and synthesis results 146

10.2.1 IBM Generalized Buffer (GenBuf) 147

10.2.1.1 Synthesis for FPGA implementation 148

10.2.1.2 Synthesis for ASIC implementation 149

10.2.2 AMBA arbiter . 151

10.2.2.1 Synthesis for FPGA implementation 151

10.2.2.2 Synthesis for ASIC implementation 153

10.2.3 Other examples . 154

10.2.4 Comparison between FLs and SEREs 154

10.2.4.1 GenBuf . 154

10.2.4.2 AMBA Arbiter . 156

10.2.4.3 HDLC . 156

10.3 Completeness and coherency consideration 157

10.4 Guidelines for obtaining smaller circuits 158

10.4.1 GenBuf: Multiple senders . 161

10.5 Summary . 161

11 Conclusion and future works 163

11.1 Contributions . 164

11.2 Future works . 164

A Symbols 167

Table of Contents

B Case study: High-level Data Link Controller 169
B.1 Transmitter . 170

B.1.1 Parallel to Serial converter . 172
B.1.2 CRC generation . 172
B.1.3 Zero insertion . 173
B.1.4 Flag generation . 173
B.1.5 Transmitter controller . 173

B.2 Receiver . 176
B.2.1 Flag and abort detection . 180
B.2.2 Zero detection . 180
B.2.3 CRC checker . 182
B.2.4 Serial to Parallel converter . 182
B.2.5 Receiver Controller . 182

C Case study: Advanced Microcontroller Bus Architecture 187

D The Annotation Results 191
D.1 IBM Generalized Buffer . 192

D.1.1 Communication with senders . 192
D.1.1.1 FL properties . 192
D.1.1.2 SERE properties . 193

D.1.2 Communication with receivers . 194
D.1.2.1 FL properties . 194
D.1.2.2 SERE properties . 195

D.1.3 Communication with FIFO . 196
D.2 HDLC . 197

D.2.1 Transmitter . 197
D.2.1.1 P2S . 198
D.2.1.2 CRC generation . 199
D.2.1.3 Zero insertion . 200
D.2.1.4 Flag/Abort generation . 200
D.2.1.5 Transmitter controller . 201

D.2.2 Receiver . 204
D.2.2.1 Flag/Abort detection . 204
D.2.2.2 Zero detection . 205
D.2.2.3 CRC checker . 206
D.2.2.4 S2P . 207
D.2.2.5 Receiver controller . 208

D.3 AMBA arbiter . 210

E SyntHorus2 213
E.1 Installation . 214
E.2 Execution . 214

E.2.1 Specification file . 214
E.2.2 Type file . 214

E.3 Options . 215
E.3.1 Command line options . 215
E.3.2 Pragma options . 216

ix

E.4 Output . 217

References 219

Acronym 229

Publications 233

List of Figures

1.1 Traditional design flow . 3
1.2 Our proposed design flow . 4

2.1 A VHDL assertion example . 17
2.2 PSL layers . 18
2.3 The trace for property SERE1 and SERE2 21
2.4 The difference between PSL weak and strong operators 23
2.5 Different layers of a PSL property . 25

4.1 Overall Synthesis Flow . 46
4.2 GenBuf circuit interface . 47
4.3 FL specification that guarantees the correct behavior of FIFO 47
4.4 An example timeline of a GenBuf to sender handshake 48
4.5 FL specification of GenBuf communication with senders in the case of two

senders . 50
4.6 SERE properties of GenBuf communication with senders in the case of two

senders . 51
4.7 An example timeline of a GenBuf to receiver handshake 52
4.8 FL specification of GenBuf communication with receivers, in the case of

two receivers . 52
4.9 SERE properties of GenBuf communication with receivers in the case of

two receivers . 54

5.1 An execution trace for P0_sender_0 . 57
5.2 Generic interface of a primitive reactant 63
5.3 Boolean reactant . 65
5.4 Illustration of function Ith(�F � true�wki) 66
5.5 Interface of the shift register . 67
5.6 Implementation of the “forall” expression 67
5.7 Implementation of ∀i ∈ [lb, ub] . 68
5.8 Implementation of next![i] . 69
5.9 Implementation of next event a![i to j](B)A 69
5.10 Implementation of A until!B . 70
5.11 Implementation of the “exists” expression 70
5.12 Implementation of ∃i ∈ [lb, ub] . 71

xi

Table of figures

5.13 Implementation of next e[i to j]A . 71

6.1 An example timeline for “a is asserted on every even cycle” 75
6.2 Using modeling layer to check “a is asserted on every even cycle” 75
6.3 Sample SERE properties of High-level Data Link Controller 76
6.4 FL version of HDLC_300 . 76
6.5 Timing diagram of P2, where b and c are generated (Example 4) 77
6.6 Timing diagram of P2, where b is generated, c is observed, and not c is

generated (Example 4) . 78
6.7 Timing diagram of P2, where b is generated, and {c, not c} is observed

(Example 4) . 78
6.8 Generic interface of a SERE operator . 86
6.9 Implementation of {b1; b2} (b1 and b2 are observed) 90
6.10 Implementation of {b1; b2} (b1 and b2 are generated) 90
6.11 Implementation of {q; b} (q and b are generated) 90
6.12 Timing diagram of {{b1; b2}; b} . 91
6.13 Implementation of {b; q} (b and q are generated) 91
6.14 Implementation of {b1}&{b2} . 92
6.15 Implementation of {q}&{b} (q and b are generated) 92
6.16 Timing diagram of {{b1; b2}&b} . 93
6.17 Implementation of {q1}&{q2} . 93
6.18 Implementation of b[+] . 94
6.19 Implementation of b1[∗]; b2 . 94
6.20 Implementation of q[∗]; b . 95
6.21 Timing diagram of {{b1; b2}[∗]; b} . 95

7.1 Monitoring the value of a Boolean expression 98
7.2 The representation of �A�B�w . 99
7.3 The representation of the �A�B�w dependency relation 99
7.4 The abstract syntax tree of P3_rec_0 . 100
7.5 The abstract syntax tree of HDLC_240 . 101
7.6 Propagation of ingoing and outgoing edges 102
7.7 Edges direction for next! . 103
7.8 Edges direction for next event! . 103
7.9 Edges direction for and . 104
7.10 Edges direction for or . 104
7.11 Edges direction for until! . 105
7.12 Edges direction for ‘–>’ . 105
7.13 Edges direction for ‘;’ . 106
7.14 Edges direction for ‘&&’ . 106
7.15 Edges direction for ‘|’ . 107
7.16 Edges direction for ‘∗’ . 107
7.17 Edges direction for prev . 108
7.18 Edges direction for ‘=’ . 109
7.19 The necessary data structures for Annotation 109
7.20 the pseudo code for the Annotate_in function 110
7.21 the pseudo code for the Annotate function 111
7.22 The directed abstract syntax tree of P3_rec_0 112

Table of figures

7.23 The directed abstract syntax tree of HDLC_240 113
7.24 Annotated FL specification of GenBuf communication with receiver in the

case of two receivers . 114

8.1 DAST of P5_rec . 119
8.2 Interconnection of the ‘–>’ primitive reactant (P5_rec) 119
8.3 Reactant for P0_rec . 120
8.4 The directed abstract syntax tree of HDLC_240 121
8.5 Simple SERE primitive reactant interconnection 121
8.6 Unbounded SERE primitive reactant interconnection 123
8.7 Base case: Boolean reactants . 124
8.8 Recursive construction of circuit Cn . 124
8.9 Implementation of Genbuf property P5_rec_0 125
8.10 Recursive construction of circuit Cn (Ωn ∈ {; , :}) 125
8.11 Recursive construction of circuit Cn (Ωn ∈ {&,&&, |}) 126
8.12 Recursive construction of circuit Cn (Ωn ∈ {∗,+}) 127
8.13 Implementation of HDLC property HDLC_240 127

9.1 DAST of P1_rec . 130
9.2 DAST of P3_rec . 131
9.3 DAST of P4_rec . 131
9.4 DAST of P0_rec . 133
9.5 DAST of P2_rec . 133
9.6 Dependency graph of GenBufRec . 134
9.7 The interface of simple solver for duplicated signals 136
9.8 The interface of complex solver for unannotated signals 137
9.9 The LUT of the complex solver of GenBufRec 139
9.10 The final circuit of GenBufRec . 140
9.11 Timing diagram of BtoR REQ(0) and corresponding trigger signals 141
9.12 Timing diagram of BtoR REQ(0) and corresponding trigger signals 142

10.1 HW generation time: GenBuf with multiple senders and two receivers . . . 147
10.2 HW generation: GenBuf with 2 senders, multiple receivers and with FIFO 148
10.3 Total number of gates: GenBuf with multiple senders and 2 receivers . . . 150
10.4 Total number of gates: GenBuf with multiple receivers and 2 senders . . . 151
10.5 HW generation time: AMBA arbiter . 152
10.6 Total number of gates: AMBA arbiter . 153
10.7 Total number of gates: GenBuf with multiple senders and 2 receivers (gen-

erated from FLs and SEREs) . 155
10.8 Total number of gates: GenBuf with multiple receivers and 2 senders (gen-

erated from FLs and SEREs) . 156
10.9 Some properties from GenBuf that generate BtoS ACK(0) 158
10.10The assertion for considering the mutual exclusion of BtoS ACK(0) triggers 158
10.11The wave form, without any failure . 159
10.12A modified property of GenBuf that generates BtoS ACK(0) 159
10.13The wave form, with assertion failure . 159
10.14Total number of gates for GenBuf with multiple senders: original and

rewritten specification . 161

xiii

B.1 HDLC controller block diagram . 171
B.2 Properties that describe P2S . 172
B.3 Properties that describe CRCGen (for 16-bit CRC) 174
B.4 FL properties that describe ZeroInsertion 175
B.5 Properties that describe FlagAbortGen . 175
B.6 Properties that describe transmitter controller 179
B.7 SERE properties that describe FlagAbortDet 180
B.8 SERE properties that describe FlagAbortDet 181
B.9 FL properties that describe ZeroDetection 181
B.10 SERE roperties that describe ZeroDetection 181
B.11 Properties that describe CRCCheck (for 16-bit CRC) 183
B.12 Properties that describe S2P . 184
B.13 Properties that describe RController . 186

C.1 The AMBA arbiter block diagram (the figure is taken from [AMB]) 187
C.2 Annotated FL specification of AMBA arbiter (for 2 masters and 2 slaves) . 189

D.1 Annotated FL specification of the sender side of GenBuf (2 senders) 192
D.2 Annotated SERE specification of the sender side of GenBuf (2 senders) . . 193
D.3 Annotated FL specification of the receiver side of GenBuf (2 receivers) . . 194
D.4 Annotated SERE specification of the receiver side of GenBuf (2 receivers) . 195
D.5 Annotated FL specification of the FIFO side of GenBuf 196
D.6 Annotated SERE specification of HDLC transmitter 197
D.7 Annotated FL specification of P2S . 198
D.8 Annotated FL specification of CRCGen . 199
D.9 Annotated FL specification of ZeroInsertion 200
D.10 Annotated FL specification of FlagAbortGen 200
D.11 Annotated FL specification of transmitter controller 203
D.12 Annotated FL specification of FlagAbortDet 204
D.13 Annotated SERE specification of FlagAbortDet 204
D.14 Annotated FL specification of ZeroDetection 205
D.15 Annotated SERE specification of ZeroDetection 205
D.16 Annotated FL specification of CRCCheck 206
D.17 Annotated FL specification of S2P . 207
D.18 Annotated FL specification of receiver controller 209
D.19 Annotated FL specification of AMBA arbiter (with 2 masters and 2 slaves) 211

List of Tables

2.1 Definition of the SERE operators . 20
2.2 Definition of the FL temporal operators (in VHDL flavor) 22
2.3 Definition of the SVA operators . 27

5.1 Values of parameters for forall (top) and exists (bottom) expressions . . . 66

10.1 ABS tools . 146
10.2 Quartus II synthesis result for GenBuf controller with multiple senders, and

2 receivers . 149
10.3 Quartus II synthesis result for GenBuf controller with FIFO, multiple re-

ceivers, and 2 senders . 149
10.4 Design Vision synthesis result for GenBuf controller with FIFO, multiple

senders, and two receivers . 150
10.5 Design Vision synthesis result for GenBuf controller with FIFO, multiple

receivers, and two senders . 151
10.6 Quartus II synthesis result for AMBA arbiter with 2 slaves and multiple

masters . 152
10.7 Design Vision synthesis results for AMBA arbiter 153
10.8 Design Vision synthesis results for HDLC, SDRAM, and CRC 154
10.9 Design Vision synthesis results for GenBuf with multiple senders (for SERE

properties) . 155
10.10Design Vision synthesis results for GenBuf with multiple receivers (for SERE

properties) . 156
10.11Design Vision synthesis results for AMBA arbiter (for SERE properties) . . 157
10.12Design Vision synthesis results for HDLC (for SERE properties) 157

A.1 Symbols . 167

xv

Chapter 1
Introduction

Contents
1.1 Preface . 1

1.2 Classical design flow . 2

1.3 The proposed design flow . 3

1.4 Overview of the thesis . 4

1.1 Preface

Day by day the influence of technical systems on our life increases. They have emerged in
all aspects of our life, ranging from entertainment to communication, business, transport,
and medicine, where they affect human life directly. Digital circuits, as processors or
controllers, are a crucial part of such systems. However, for justifying our dependence on
such systems we should be able to answer this question: “are these systems reliable and
safe?”. Circuit verification answers to this question.

Integrated circuit capacity follows Moore’s law. The Intel’s 4004 microprocessor in-
troduced in 1971 had 2300 transistors. Due to the advances in semiconductor technology,
today’s complex systems having a wide variety of functionalities are being integrated in
a single chip as system-on-a-chip (SoC), containing billions of transistors. For example,
Intel’s 15-core Xeon Ivy Bridge-EX is a commercially available CPU (in one chip) with
over 4.3 billion transistors on a single chip [TRA].

The circuits that used to be considered a system, now are just one core among hundreds
of components on a single chip. The increasing size and complexity of the designs, and
the time to market considerations, are creating new verification challenges; the verification
problem is getting very huge and it has become increasingly difficult to identify all the
design bugs in such a large and complex system before the chips are fabricated. Providing
the appropriate testbenches is another challenge.

Design error detection and correction in hardware is too expensive. Specially, if it
is after fabrication; all the malfunctioned chips should be collected and replaced by the
new ones. This situation occurred with the FDIV bug in the floating point unit of Intel’s
Pentium processor. The company had to spend about 475 million US dollars to replace the

1

Introduction

faulty processors [Kro99]. Therefore, design errors should be detected as soon as possible.
Earlier bug detection means shorter time to market, less cost, and more success.

However, obtaining first time right digital circuits is a hard to reach objective when
considering the current architectures. The verification problem of such systems is ad-
dressed by a combination of methods and technologies that include high-level simulation,
property checking, step by step refinement verification, prototyping, automatic synthe-
sis and equivalence checking. At some point in the design flow, the use of pre-designed
and fully verified modules allows to stop the refinement and verification process for these
modules. However, their interconnections should still be verified.

The work reported in this thesis proposes a method and a prototype tool to help the
verification of the control and communication protocols between modules. A drawback
of the formal verification methods is that they only can be used after the system is
designed. The main idea of this work is to propose methods for generating a system from
its specifications and verifying its correctness during the process of hardware generation,
correct-by-construction.

In this chapter, we briefly review the design process of SoCs, and discuss its limitations
that are the motivation of this work.

1.2 Classical design flow

Figure 1.1 shows a very abstract view of the traditional design flow. A typical design
process starts by considering the informal behavior of the system. This informal behavior
is generally given in a document written in a human language, for example in English.
Then, the design teams develop an implementation. It may be required to partition a
design into software and hardware, and implement them concurrently. In the next step,
the implementation should be verified to consider if it conforms to the given specifications.
To formally verify the design, the formal specifications should be extracted from the
informal behavior of the system. After verification, several refinements of the circuit may
be required due to the detected errors.

This refinement and debugging process is very time consuming for today’s extremely
large and complex circuits. Even if faults are detected prior to fabrication, the required
time for correcting bugs may be high, which can delay the time of introducing the product
to the market. Studies show that a delay of one week equals a revenue loss of at least tens
of millions of dollars [Kro99].

Consequently, a significant amount of time during the design process is spent for error
finding, usually by simulation or emulation. A recent study shows that the total project
time spent in verification in 2014 was 57% in average, while it was 46% in 2007. In
addition, the number of projects that spend more than 80% of their time in verification
has increased [Fos15].

Moreover, the flow of Fig. 1.1 assumes design and verification to be performed by
different teams, which brings added difficulties:

• Communication between design and verification engineers. Providing the formal
specifications for verification is difficult both for design engineers and verification
engineers. It is usually difficult for the designers to write temporal declarative asser-
tions. Conversely, it is difficult for a verification engineer to extract the designer’s
intent from a conventional Hardware Description Language (HDL) code.

Introduction

System behavior:
Informal specification

Hardware
verification

Formal
specification

Manual hardware
development

Hardware
refinement

Figure 1.1: Traditional design flow

• Testing environment. Providing a testbench for a complex exiting design is itself a
challenge. It is difficult to identify all the possible scenarios for a big and complex
design, by analyzing its HDL code. In addition, it is a formidable task to modify
the testbench after identifying a new bug and modification in the design. All the
previously examined scenarios should be verified again, and the testbench should be
revised to consider the possible new scenarios.

1.3 The proposed design flow

The above mentioned difficulties have brought us to the context of Assertion Based Syn-
thesis (ABS), i.e. the direct production of compliant (control and communication) modules
from a set of assertions. A property is seen as the specification of the module to be de-
signed. The objective is then to directly produce the synthesizable Register Transfer Level
(RTL) design from its assertions.

In ABS, properties about the behavior of a component (assertions) or its environment
(assumptions) specify the input-output functional characteristics of the modules and the
communications between system parts.

Generally, a design assertion (property) expresses the design’s intent. Assertions are
concise, declarative, expressive, and unambiguous specifications of desired system behav-
ior.

A complete set of assertions can unambiguously characterize how a module reacts to
signals sent to it, logically and temporally.

In the proposed design flow we start the design in a more abstract level, and incor-
porate the verification into the design process. The design behavior is expressed formally
using assertions (see Fig. 1.2). In this method, the design and verification tasks have
been unified; a correct-by-construction circuit is generated from the formal specifications
directly.

3

Introduction

System behavior:
Informal specification

Formal
specification

Automatic
correct-by-construction
hardware development SyntHorus2

Figure 1.2: Our proposed design flow

The generated circuit is called reactant: it reacts to waveforms on its inputs and pro-
duces waveforms on its outputs, in compliance with the assertions. Compiling assertions
into reactants, and checking the compliance of the reactant behavior with the design is
very efficient.

A reactant may be used to replace a non available module by a fast prototype of it,
to check a more comprehensive design; it may also replace the (complex) environment of
a designed module by a fast prototype of just the part of the environment that interacts
with it.

Our new proposed flow has the following steps:

• providing the formal specification of the circuit: It is the first step in the design
process, and it is a challenging task to generate the formal specifications from the
informal description of the circuit, and it is out of the scope of this thesis. In this
context, we assume that we have the formal specification of the circuits.

• deriving an implementation from the specification: this thesis proposes a method
for synthesizing a circuit from its formal specification. We have provided a tool,
SyntHorus2 to synthesize the circuits from specifications.

• correctness relation and proof: we should check if the properties are complete and
consistent, and also we should check if the implementation is equivalent to the
specification.

1.4 Overview of the thesis

The rest of this manuscript is organized as follow: Chapter 2 introduces the principles of
circuit verification. In addition, it addresses Property Specification Language (PSL), and
the subset of PSL that we deal with in this thesis.

The previous works that have been done in the context of assertion-based verification
and synthesis are summarized in Chapter 3.

Chapter 4 introduces our global synthesis flow and a running example, the IBM Gen-
eralized Buffer: this is the simplest example that exhibits all the problems to be solved.

Chapter 5 and Chapter 6 explain how to construct the correct-by-construction library
of primitive reactants for FL operators (Chapter 5) and SERE operators (Chapter 6).
The concept of dependency relation is introduced, and a dependency relation is defined

Introduction

for each FL and SERE operator. Then, for each operator, its hardware interpretation is
given in accordance with the trace semantics.

Using the dependency relations, Chapter 7 provides an annotation algorithm to decide
(annotate) the signal’s direction in a single property: the signal is an input to a property
(observed), or is an output of the property (constrained).

Having the library of primitive reactants, and also the signal directions on each prop-
erty, Chapter 8 explains how to generate a property reactant, i.e. a complex reactant. It
is the interconnection of primitive reactants.

Some signals may be constrained by several properties. Moreover, after annotation
some signals may still exist without any directions. The direction of such signals cannot
be determined by considering a property alone. Chapter 9 addresses how to identify the
value of such signals. The method extracts the dependency among all the properties that
include the signal, and then generates solver(s) to specify (resolve) the value of the signal.
Then, the final circuit is the interconnection of the complex reactants and the solvers.

Practical results and an analysis of the performance of the method are provided in
Chapter 10. Compared to other existing works, our proposed method is fast, scalable,
and produces reasonably small reactants.

Finally, Chapter 11 concludes the work, and addresses future research.

5

Introduction

Chapter 2
Assertion-based Verification

Contents
2.1 Introduction . 8

2.2 Review of verification technology 9

2.2.1 Simulation-based verification 9

2.2.2 Formal verification . 9

2.3 Assertion languages . 16

2.3.1 Property Specification Language (PSL) 17

2.3.2 System Verilog Assertion (SVA) 25

2.4 Summary . 28

7

Chapter 2 : Assertion-based Verification

2.1 Introduction

One of the challenges of SoC design is verification, and it is very important to reduce
the verification time. The need for an advanced verification methodology, with improved
observability of design behavior has increased significantly. This requires new design and
verification techniques. Here, we introduce an assertion-based methodology that enables
designers to deal with the complex and large circuits, and also meet the time-to-market
goals. This method takes advantage of both simulation-based and formal verification: for-
mal verification can check scenarios that are hard to cover in simulation, while simulation
can verify the designs that are too big for any formal verification methods. Hence, the
assertion-based verification can ensure higher design quality and faster time to market.

Generally, a design assertion (property) expresses the design’s intent, and refers to
the properties that should be verified. Assertions are concise, declarative, expressive,
and unambiguous specifications of desired system behavior, which are used to guide the
verification process.

Assertions can be checked both in simulation and formal verification. Thus, a common
environment should be provided for both. The belief that formal verification does not
need a testbench is a myth. This can be handled by using constraints. Constraints are
the required conditions for a verification. They are used in the testbenches to model the
environment of a DUV. Therefore, constraints are used in simulation as generators of
stimuli [YAP10]. Assertion are checked in simulation usually as monitors of simulation
traces.

In contrary to the black-box testing approach, assertion-based approach adds assertions
that monitor internal points within the DUV. This avoids missing an internal error for
a given stimulus; and increases the observability of the design. Using assertions, it is
possible to detect when and where bug occurs and isolating bugs closer to the actual
source. Therefore, design teams save debug time since an engineer does not have to
backtrack through large simulation trace files and multiple blocks of logic to identify the
exact location of the bug. Experiences demonstrate that assertions can save up to 50
percent of debug time [ABG+00, Fos08].

In addition, assertions facilitate reusing Intellectual Property (IP) components. If the
IP component comes with the assertions that describe its interface behavior, it is much
easier to use this component inside the design environment. Additionally, the support
effort required by the IP supplier company is reduced because assertions tell the users
when they are using the IP incorrectly.

Assertions that describe the system behavior can be verified using various formal
techniques in early stages of the design. Verifying the assertions, some design errors,
such as inconsistencies, may be captured early.

Another advantage of assertions is specifying correct behavior of the design unam-
biguously. Other engineers can review the assertions to understand the specifics of how
to interface with another block.

Furthermore, assertions formally document protocols, interfaces, and assumptions in
an unambiguous form that clarifies a designer’s interpretation of the specification and
design intent [FKL03].

Assertions can be expressed using a temporal property language. In the following
sections, we review the verification technology. Then, we consider the importance of the
assertion languages, and then, introduce two formal languages that are commonly used in

2.2 : Review of verification technology

assertion-based verification.

2.2 Review of verification technology

Functional verification approaches can be classified as being either dynamic (simulation)
or static (formal). Simulation is the first verification step, whereas static verification is
based on mathematical proofs and plays a complementary and also very important role.

2.2.1 Simulation-based verification

Simulation is the experimental process that mimics the dynamic behavior of a design
through time [Mil94]. Simulation-based verification is applied to a representative subset of
variable values and behaviors of a circuit, to check if an implementation behaves correctly
with regard to its specification [Kro99]. Actually, this approach is a testing approach:
the designer implements the circuit using HDLs, provides a testbench that instantiates
the design under verification (DUV), applies the input vectors (simulation stimuli) to the
DUV one by one, and compares the outputs to the expected behavior.

Using this method, some errors may be masked due to the stimuli; they may appear
using another stimulus, or by running the simulation for a few more cycles. However,
verifying all the possible stimuli and all the internal properties of a design is not possible,
because of the exponential number of stimuli with respect to the number of inputs and
states.

Symbolic simulation is a way to speed up the simulation. The key idea of symbolic
simulation is representing the arbitrary input values by symbols using the mathematical
techniques. In contrast to conventional simulation, the symbolic simulation propagates
symbols. Symbolic simulation differs from logic simulation since it builds Boolean expres-
sions instead of the scalar values, as a result of circuit simulation. In symbolic simulation,
the state space of a synchronous circuit is explored iteratively by means of symbolic expres-
sions. At each step of simulation a Boolean expression is assigned to each output signal
and present state signal. The simulation proceeds by deriving the appropriate Boolean
expression for each internal signal of the combinational part of the network, based on
the expressions at the inputs of each logic gate and the functionality of the gate. The
procedure is equivalent to propagating the symbolic expressions through a time-unrolled
version of the circuit, where the combinational part is duplicated as many times as there
are simulation steps.

Formal verification is an alternative solution that uses mathematical proof to show
that an implementation conforms to its specification for all time instances and all input
combinations. In the following, each verification method is explained briefly.

2.2.2 Formal verification

The goal of formal verification is considering formally if an implementation satisfies a
specification. The term implementation refers to the design description that is to be
verified, while the term specification refers to the design description or the property with
respect to which correctness is to be determined.

In formal verification, both specification and design descriptions are translated into
mathematical models. The degree of the confidence obtained by formal verification de-

9

Chapter 2 : Assertion-based Verification

pends on the power of the underlying modeling formalism and the accuracy of the speci-
fications [Mil94].

The mathematical model can be expressed in various ways: data flow graphs, process
algebras, finite state machines, temporal logic, and etc. A design can be modeled directly
using these formalisms, or these models can be extracted from the HDL description of a
design. Using the mathematical model of the circuit and its behavior, formal verification
should prove that the design satisfies the specification of its intended behavior through
mathematical proofs; it is verified if there is a relationship between the implementation
and the specifications. If there exists a design bug, formal verification techniques produce
a counter-example to facilitate the debugging process.

Almost all the formal verification techniques can be classified in one of two categories:
model-based or proof-theoretic.

The model-based techniques use a formalization based on propositional temporal logics
(see Section 2.2.2.3) or finite state machines (see Section 2.2.2.1) [Gup92, CBE+92]. The
algorithms are based on the brute-force exploration of the whole solution space. The
effective data structures for propositional logic are decision diagrams (BMD, BDD, ...).
Alternatively, the problem can be converted to a Boolean satisfiablility problem, and SAT
solvers can be used to determine if an interpretation of a system satisfies the given Boolean
formula. Model-based techniques can be categorized as checking the properties over the
design: model checking and checking if two implementations are equivalent: equivalence
checking.

The other family of formal verification techniques are proof-theoretic methods that
are based on abstractions and hierarchical methods to prove the correctness of a system.
This method uses theorem prover software to provide support in reasoning and deriving
proofs about the specifications and the developed model of a design.

Based on the above discussion, having a formalism is inevitable. Temporal logics and
regular expressions specify a set of behaviors in a rigorous formalism. Almost all the
design verification methods are essentially the process of deciding if the design behavior
conforms to the properties. Here, we first introduce some notations and terminologies that
are required in formal verification. Then, the concepts of regular expression and temporal
logic are reviewed. Finally, we review the various formal verification methods.

2.2.2.1 Terminology and notations

A proposition is a statement that can be either true or false. An Atomic Proposition (AP)
cannot be broken into simpler propositions. In a circuit, APs include all the signals in the
design. Propositional formulas are composed from APs with Boolean connectives such as
conjunction, disjunction, and negation. The truth value of a propositional formula can be
calculated from the truth values of the atomic propositions that it contains.

A way of expressing a sequential system mathematically is to represent it as a Finite
State Machine (FSM).

The FSM is modeled by means of APs. So, it is possible to process it with Boolean
operations. We assume that the set of alphabet is B = {0, 1}. A state machine M can be
formally described by a 7-tuple M = (S, s0, F, I, O, δ,λ) as follows [DB95]:

• S is a power of B, and represents the set of states of the machine.

• s0 ∈ S represents the initial state of M .

2.2 : Review of verification technology

• F is a subset of S, and represents the set of the final states of the machine. F is
partitioned into a set of accepting states and a set of rejecting states; F = Accept∪
Reject.

• I is a power of B, and represents the set of inputs of the machine.

• O is a power of B, and represents the set of outputs of the machine.

• δ : S × I → S, δ represents the next state function. δi : S × I → B is the transition
function of the state variable si.

• λ : S × I → O, λ represents the output function. λi : S × I → B is the output
function of the variable oi.

Any state of the machine is binary encoded into some valuation of the state variables
of the model. Two states are equal of they are represented by the same valuation.

A machine configuration is represented by a unique valuation c = (s, i, o) of the vari-
ables of the model, where s is the current state, and i is the input, such that o = λ(s, i).
If no ambiguity exists, an arbitrary configuration associated to the initial state can be
denoted by c0 = s0.

A machine state s� is a successor of a machine state s, if and only if: ∃i ∈ I, s� = δ(s, i).
This relation can be denoted with the Succ predicate: Succ(s, s�).

A state path is a possibly infinite sequence of machine states, (s0, s1, ..., sn, ...), such
that Succ(si, si+1). For a finite path (s0, ..., sn), the length of the path is n. Similarly, a
configuration path is a possibly infinite sequence of machine configurations (c0, c1, ..., cn, ...),
such that Succ(ci, ci+1).

A machine state sn is reachable if there is a finite path (s0, s1, ..., sn). In other words,
a reachable state is a state that is reachable for some input sequences from a given set of
possible initial states.

The set of the reachable states is defined inductively as follows:

R0 = s0 (2.1)

Rn+1 = Rn ∪ {s�|∃s, s ∈ Rn ∧ Succ(s, s�)} (2.2)

The machine has a finite number of states; therefore, there exists a k such that Rk+1 =
Rk. Rk is the set of reachable states. It is the smallest fixed point of (2.2).

2.2.2.2 Regular Expression

Here, the Regular Expressions (REs) are considered in the contexts of language theory,
and also system specification.

Language theory viewpoint. Regular expressions define formal languages as sets of
strings over a finite alphabet. An alphabet, Σ, is a finite set of symbols that form words in
a language. For example the set {0, 1} is an alphabet. A string (word) over Σ is several
number, or zero, elements of Σ that are placed in order. For example, w = ”001” is a
string over Σ = {0, 1}. The null string, denoted by �, is always a string over Σ (no matter
what Σ is). For an alphabet Σ, Σ∗ shows the set of all possible strings over Σ. A language
over Σ, L(Σ) ⊂ Σ∗, is a set of strings over Σ. New languages can be constructed from
existing ones by applying these three operations: union, concatenation, and closure.

11

Chapter 2 : Assertion-based Verification

Starting from the simplest possible languages, consisting a single string with length
1 or the � string, and then applying any combination of the above operators, regular
languages can be constructed. Regular languages can be recognized by FSMs. A string
w is accepted by state machine M inductively:

w = �, s1 = δ(s0, �), and s1 is an accepting state

w = �0�1 . . . �n−1, s1 = δ(s0, �0)

s2 = δ(s1, �1)

. . .

sn = δ(sn−1, �n−1), and sn is an accepting state

The language accepted or recognized by M , L(M), is the set of all strings w accepted
by M : for each string w there is a finite state path (s0, . . . , s|w|) such that s|w| ∈ Accept.
Regular languages can be described by formulas called Regular Expressions (REs).

Definition 1. RE. A regular expression over the alphabet Σ is defined as follow:

1 ∅ is a regular expression that corresponds to the empty language ∅.

2 � is a regular expression that corresponds to the language {�}.

3 For each symbol l ∈ Σ, l is a regular expression corresponding to the language {l}.

4 For any regular expressions p ∈ L(p) and q ∈ L(q) over Σ (L(p) and L(q) are the
corresponding languages to p and q), each of the following is a regular expression:

4-1 pq: corresponds to the language L(p)L(q), and gives the concatenations of the
strings in the L(p) and L(q).

4-2 p+ q: corresponds to L(p) ∪ L(q).

4-3 p∗: corresponds to the language L∗(p)

Interpretation in the context of circuit specification. Let P be a non-empty set
of atomic propositions. In practice it is the set of signal names in the specification. The
set of all possible valuations of P is denoted Σ = 2P. An element of � ∈ Σ is called“letter”,
it is a valuation of all the propositions in P. A “word” w is a sequence of “letters”: in
practice it stands for the succession over time of the signal values, i.e. an execution trace.
For a finite or infinite word w = �0�1�2... and integers i and j, wi = �i is the (i+1)th letter
of w; wi..j = �i�i+1 . . . �j is the finite word starting at �i and ending at �j; w

i... = �i�i+1 . . .
is the suffix of w starting at wi.

The semantics of a Boolean expression exp over P is the set of all the letters of Σ on
which exp takes value true. � � exp reads: “exp is true in �”, meaning that exp takes value
true if all its variables take their value as in �.

2.2.2.3 Temporal Logic

Temporal logic is a formal logic used to reason about sequences of events that describes
the design behaviors over time. Linear Temporal Logic (LTL) and Computational Tree
Logic (CTL) are the two types of temporal logics used in practice in circuit verification
(there are many more). In LTL, operators are provided for describing system behavior

2.2 : Review of verification technology

along a single computation path. LTL properties can be checked both in simulation and
formal verification. CTL models behavior as execution trees, which can be only checked in
formal verification. The building blocks of both logics are the atomic propositions. LTL
formulas are inductively defined as follows.

Definition 2. LTL. All APs are LTL formulas; if p and q are LTL formulas, the followings
are also LTL formulas:

• !p: is true iff p is false

• p ∧ q: is true iff p and q are both true

• p ∨ q: is true iff either p or q is true

• Xp: is true iff p is true in the next step

• pUq: is true iff p is true until q is true and q must be eventually true

• pWq: is true iff p is true as long as q is not true, and q does not have to be true in
the future

There are also shorthand ways of expressing commonly used formulas: Fq (q becomes
true eventually) stands for trueUq, and Gp (p is always true) stands for !F !q.

CTL was first proposed by Clark and Emerson as a branching-time temporal logic
[CE82]. CTL formulas are composed of path quantifiers and temporal operators. The
path quantifiers are used to describe the branching structure in the computation tree.
There are two path quantifiers:

• A:“for all” paths,

• E: there “exists” a path or for “some” paths

There are four basic temporal operators in CTL:

• X: next time

• F : eventually or in the future

• G: always or globally

• U : until

In CTL, every quantifier is followed by a temporal operator. Therefore, there are
eight basic CTL operators. Using the relations between the path quantifiers and temporal
operators, each of the eight basic CTL operators can be expressed in terms of only three
operators: EX, EG, and EU [LT10].

2.2.2.4 Model checking

The model checking technique was originally developed in 1981 by Clarke, Emerson, and
Sifakis [CE82, Sif82]. Model checking is an automatic technique for verifying finite-state
reactive systems, such as sequential circuit designs and communication protocols. The
requirements of model checking are a model of the system, a temporal logic framework,
and a model checking procedure. Briefly, model checking has the following steps:

13

Chapter 2 : Assertion-based Verification

1 Modeling the system as a state-transition graph, in which nodes are the states of the
system and the edges are the transitions of the system.

2 Expressing the system specification, which may initially be in a natural language,
in temporal logic

3 Verifying if the model satisfies the properties: the model checker will terminate with
the answer true, if the model satisfies the specification, or give a counterexample
that shows why the formula is not satisfied.

The properties are generally safety and liveness properties. Safety means that nothing
bad ever happens. In this case, the verification problem is a reachability problem: finding
a trace which violates the property. Liveness means a good thing eventually happens;
the verification problem is cycle detection: finding a run in which the “good thing” is
postponed indefinitely.

Model checking can be done explicitly where all the state space is enumerated. State
space describes all the possible behaviors of the model. Therefore, it is impossible to handle
very large examples because there is an exponential relationship between the number of the
states and the number of memory elements in a system. The complexity of the algorithms
grows exponentially with the number of memory elements in a system. This problem is
called the state space explosion problem.

Model checking can also be done implicitly, by representing the state space with spe-
cial symbolic data structures such as BDDs. Implicit (symbolic) model checking, is usu-
ally more powerful. Recently, by the application of propositional satisfiability (SAT)
[Cim08] solving techniques, model checking has been considerably enhanced. Bounded
Model Checking (BMC) is a model checking approach that uses SAT methods on a finite
number of cycles. In the rest of this section, various model checking methods are explained
briefly.

Enumerative model checking

The enumerative method uses an explicit representation of the states. To prove the
properties, first a global state machine that represents the combined behavior of all the
components of the system should be constructed. Then, through explicit state search and
checking one state at a time, model checkers search for a trace falsifying the specification.
If there is such trace, the property does not hold.

The model checking algorithms for LTL and CTL are different; the computational
complexity of CTL model checking is polynomial, while it is exponential for LTL. Let
|M| be the size of the system model in terms of state space and |ϕ| indicate the size
of the specification (the total number of propositions, logical connectives, and temporal
operators). Then the model checking algorithm for CTL runs in time O(|M||ϕ|) [CES86],
while for LTL it runs in time |M|·2O(ϕ) [OLP85]. This is because CTL is state-based (i.e.
reasoning over states in time), and this set of states is easily converted into an automaton,
whereas the path-based model of LTL (where many possible paths may pass through a
single state) must be expanded.

Symbolic model checking

Symbolic model checking is an alternative approach to enumerative model checking that
operates on sets of states instead of individual states [McM93]. In contrast to the enumer-

2.2 : Review of verification technology

ative model checking that considers one state in each step, this considers a set of states
(a symbol) in each step. Initially, Binary Decision Diagram (BDD) was the only method
used to realize symbolic model-checking systems, and symbolic model checking had been
synonymous with BDD-based model checking. The overall approach in BDD-based sym-
bolic model checking is to represent state sets and the transition relation of the FSM as
BDDs and realize the state traversal algorithms through suitable Boolean operations on
these BDDs [PH09]. The complexity of symbolic model checking is the complexity of
BDD operations, and its efficiency highly depends on the state space representation.

Bounded model checking

Bounded model checking was introduced by Biere et al. in [BCC+99]. It is based on
satisfiability (SAT) methods. The method is mainly used for design error detection instead
of an approach for a full correctness proof. The essential idea for verifying a property on
a finite transition system is to search for a counter examples in the space of all executions
of the system whose length is bounded by some integer k. There are two steps in bounded
model checking: 1) encoding the sequential behavior of a transition system over a finite
interval as a propositional formula, and 2) using a propositional decision procedure, i.e.
a satisfiability solver, to either obtain a satisfying assignment or to prove there is none.
Briefly, the transition relations are unrolled symbolically up to k times steps. Then, the
checking problem is reduced to show satisfiability of an expression using SAT solvers.

Bounded model checking has been implemented by many commercial tools; PROVER[Bor97],
SATO[Zha97], GRASP[MS95], EBMC[EBM], SATRennesPA[SAT],MiniSAT[MIN],MaxSAT[MJML14],
and Z3[MB08] are some examples of SAT solvers.

Language containment

Language containment treats the property and the design as two finite state automata.
Then, it is verified if the formal language of the property automaton contains the formal
language of the design automaton. In fact, model checking of properties in LTL is modeled
as a language containment problem.

2.2.2.5 Equivalence checking

Equivalence checking is a model-based method that checks if two descriptions of a design
specify the same behavior, which means that they produce identical output sequences for
all valid input sequences. These descriptions can be in different abstraction levels.

There are three basic approaches for combinational equivalence checking: structural,
functional, and random simulation. The structural methods look for a counter-example,
and they are usually implemented using SAT solvers. Similarly, random simulation looks
for a counter-example by random search. Functional methods are based on a canonical
function representation. BDDs are widely used for functional methods.

General methods for sequential equivalence require the reachable states of both designs
to be computed and their corresponding outputs compared at each equivalent pair of
states. It is required to explore the state space of the circuits. However, performing such
a traversal is computationally expensive, and has the state space explosion problem, the
main disadvantage of this method. However, the equivalence checking tools provide a high
degree of automation.

15

Chapter 2 : Assertion-based Verification

2.2.2.6 Theorem proving methods

Theorem proving approach is used where the verification problem is described as a theorem
in a formal theory: both the design and the properties are expressed as formulas using
mathematical logic. A formal theory consists of a language in which the formulas are
written, a set of axioms, and a set of inference rules, which are the transformation rules
for the formulas. These rules together with the axioms are used for proving the theories.
A property is proved if it can be derived from the design in a logical system of axioms
and a set of inference rules.

Theorem proving is a very strong verification method, since the formal theory can
support reasoning at all the levels of abstraction. In addition, it supports a powerful
proof technique such as induction, and allows the direct verification of parametric designs
without having to instantiate the parameters. However, the main disadvantage is that in
contrast to all the previously mentioned methods, the verification process is not totally
automatic. Theorem provers require detailed and explicit human guidance even for rela-
tively simple problems. Therefore, these methods need a deep understanding of the design
and formal proofs.

Although, this approach seems impractical, there are several successful real case studies
such as Motorola MC68020 microprocessor object code [BY96], the AMD K86’s division
algorithm [KMB97], and the SRT division algorithm [CGZ99].

Logic for Computable Functions (LCF) [Mil72], Higher-Order Logic (HOL) [Gor88],
Otter [McC03], Prototype Verification System (PVS) [ORS92], and ACL2 [KM96] are some
examples of theorem provers.

2.3 Assertion languages

As was discussed earlier in this chapter, all the formal methods, and also assertion-based
verification need a formal specification of the design. In addition, it is necessary to have an
approach in order to communicate with the designer and understand the design structure
and its functionality. There are various approaches to achieve these requirements. For in-
stances, schematics have been used to specify the structure, programming languages have
been used to specify the behavior, and timing diagrams involving waveforms have been
used to specify timing information. In all of these types of specifications, the natural lan-
guage is used [Mil94]. However, describing the behavior informally is usually ambiguous,
incomplete, and hard to analyze. Moreover, there is always the risk that some scenarios
and properties are not covered or considered.

A formal specification is a concise and abstract description of the behavior and prop-
erties of a system written in a mathematically based-language, stating what a system is
supposed to do. So, specifications are written in a language with a well-defined semantics
that supports formal deduction.

Our focus is on assertions, which state properties that can be used both in simulation
and formal verification. Some of the requirements for the assertion languages are the
following [Mil94]:

• The ability to represent the structure

• The ability to represent the concurrent and sequential behaviors

• Supporting hierarchical design

2.3 : Assertion languages

• The ability of presenting a design in different abstraction levels

• The ability of mixing the design description of different abstraction levels

• Supporting the simulation and verification techniques by the presence of an under-
lying formal system giving a semantics and the language syntax

Not long ago most verification activities were performed using Hardware Description
Languages (HDLs). HDLs include constructs that support assertion specification. For
instance, VHDL includes a keyword“assert”that enables designers to embed some checkers
to model description code. This language construct expresses that the associated user-
specified condition should evaluate to true. Figure 2.1 shows a VHDL assertion that fires
when (not req and gnt) evaluates to true.

assert not (not req and gnt) report ”Grant r e c e i v ed without any reque s t ”
severity f a i l u r e ;

Figure 2.1: A VHDL assertion example

However, HDLs are not appropriate specification formalism for the formal verifica-
tion techniques. As the verification problem began to grow, High Level Verification
(HLV) languages emerged. Multiple verification oriented languages such as IBM Sugar
[BBDE+01], Motorola CBV [AAH+03], Intel ForSpec [AFF+02], Synopsys Open Vera
Assertion (OVA) [OVA], Open Verification Library (OVL) [OVL], System Verilog As-
sertion (SVA) [SMB+05], and Property Specification Language (PSL) [FG05] have been
developed.

Here, we review the PSL and SVA assertion languages, particularly useful for their
deep embedding in the VHDL and SystemVerilog HDLs.

2.3.1 Property Specification Language (PSL)

Property Specification Language (PSL) [FG05] is the standardization by Accelera, then
by IEEE, of the Sugar property language originally developed by IBM [BBDE+01]. Like
Sugar, it includes and extends with more concise operators, both LTL and CTL.

A specification written in PSL is both easy to read and mathematically precise, which
makes it ideal for both documentation and verification. PSL can be used both in sim-
ulation and formal verification. Unlike the SystemVerilog assertion construct, which are
used predominantly during RTL implementation, the PSL property language is suited for
specifying architectural properties before and during RTL implementation.

PSL comes in four flavors, one for each of the hardware description languages Sys-
temVerilog, Verilog, VHDL, and GDL. The syntax of each flavor conforms to the syntax
of the corresponding HDL.

The properties that are expressed using PSL are generally safety and liveness prop-
erties. For example, the property “whenever signal req is asserted, signal gnt is asserted
within 4 cycles” is a safety property; and, the property “whenever signal req is asserted,
signal gnt is asserted sometime in the future” is a liveness property.

A PSL property consists of four layers: Boolean, temporal, verification, and modeling
(see Fig. 2.2). Here, each layer is introduced briefly.

17

Chapter 2 : Assertion-based Verification

Boolean layer

Temporal layer

SERE FL

LTL-based

OBE

CTL-based

Verification layer

Modeling layer

Figure 2.2: PSL layers

2.3.1.1 PSL Boolean layer

This layer specifies propositions, or expressions over design and auxiliary signals that
evaluate to true or false in a single evaluation cycle. The expressions are written in the
HDL that describes the design. This is equivalent to a condition being evaluated within
an if statement in Verilog or VHDL. Additionally, PSL provides a number of predefined
functions. There are two classes of built-in functions: the first group including prev,
next(), stable(), rose(), and fell() deal with the value of the expression over time. The
second group including isunknown(), countones(), and onehot() deals with the values of
bits in a vector at a given instant. For example, prev takes an expression of any type as
argument and returns a previous value of that expression. As another example of the first
group, consider rose(): it takes a Bit expression as argument and produces a Boolean
result that is true if the argument’s value is 1 at the current cycle and 0 at the previous
cycle. As an example of the second group, the countones() function takes a BitVector as
argument. It returns a count of the number of bits in the argument that have the value 1.

2.3.1.2 PSL temporal layer

The temporal layer is the heart of PSL. The temporal layer is used to define properties
that describe the behavior of the design or environment over time. It is used to describe
the temporal behaviors built up with Boolean layer propositions and temporal operators.
This layer consists of both properties that use linear semantics (LTL-based) as well as
those that use branching semantics (CTL-based). The LTL-based subset includes the
Foundation Language (FL) and Sequential Extended Regular Expression (SERE), while
the CTL-based subset includes the Operational Branching Extension (OBE) (see Fig. 2.2).
FL and OBE cannot be mixed in one property.

Properties with linear semantics reason about computation paths in a design and can
be checked in simulation, as well as in formal verification. Properties with branching
semantics reason about computation trees and can be checked only in formal verification.
Here, we just consider the properties with linear semantics.

2.3 : Assertion languages

Sequential Extended Regular Expressions (SEREs)

Sequential Extended Regular Expression (SERE) is an extension to RE introduced in
Section 2.2.2.2. SEREs describe single- or multi-cycle behavior built from a series of
Boolean expressions. The most basic SERE is a Boolean expression. A SERE enclosed in
braces is another form of a sequence. A SERE is not a property on its own; it is a building
block of a property; properties are built from temporal operators applied to SEREs and
Boolean expressions. Table 2.1 gives the description of the SERE operators. In this table,
s represents a sequence, and b represents a Boolean.

The SERE operators can be categorized as follow:

1 Simple SERE: represent a single thread of subordinate behaviors, occurring in suc-
cessive cycles. This subset of SEREs consists of the ‘;’ and ‘:’ operators.

2 Compound SERE: represent a set of one or more threads of subordinate behaviors,
starting from the same cycle, and occurring in parallel. This subset of SEREs
consists of the ‘|’, ‘&’, “&&”, and within operators.

Here, we introduce some terms that relate to SEREs:

• hold tightly : Satisfaction of a SERE on a finite path requires an exact match, and
is referred to as the SERE holds tightly on the finite path. For example, SERE1 (see
Fig 2.3) holds tightly on a path iff the path is of length six, where req is true in the
first cycle, busy is true in cycles �2, �3, �4, �5, and gnt is true in cycle �6.

• hold : A weak sequence holds on a path iff the corresponding SERE holds tightly on
an extension or on a prefix of the path. A strong sequence holds on a path iff the
corresponding SERE holds tightly on a prefix of the path [FKL03]. For example,
SERE1 holds if req holds on the one-cycle path. SERE2 is the strong form of SERE1.
SERE2 does not hold in the one-cycle path. SERE2 holds, if req is followed by 4
repetitions of busy, which is followed by gnt.

• start : A sequential expression starts at the first cycle of any behavior for which it
holds. In addition, a sequential expression starts at the first cycle of any behavior
that is the prefix of a behavior for which it holds. For example, if req holds at cycle
�1 and busy holds from cycle �2 to cycle �5, and gnt holds at cycle �6, then the
sequential expression SERE1 starts at cycle �1.

• completes : A sequential expression completes at the last cycle of any design behavior
on which it holds tightly. For example, SERE1 completes at cycle �6 (see Fig. 2.3).

For finding out more about the formal syntax and semantics, refer to IEEE manual of
PSL [FG05].

Foundation Language (FL)

The Foundation Language (FL) of PSL is LTL that is extended with SERE [FG05]. A
PSL FL property can be compiled down to a LTL formula, possibly with some auxiliary
HDL code. FL properties, describe single- or multi-cycle behavior built from Boolean ex-
pressions, sequential expressions, and subordinate properties. The most basic FL property
is a Boolean expression. An FL Property enclosed in parentheses is also an FL property.

19

Chapter 2 : Assertion-based Verification

Table 2.1: Definition of the SERE operators
SERE operator Name Description

s1; s2 concatenation s2 starts one cycle after s1 com-
pletes

s1 : s2 fusion s2 starts in the cycle that s1 com-
pletes

[∗n] count consecutive rep-
etition

skips n cycles

[∗] consecutive repetition skips 0 or more cycles
[+] consecutive repetition skips 1 or more cycles
s[∗n] count consecutive rep-

etition
s repeats n times consecutively (n
concatenations of s)

s[∗] consecutive repetition s repeats 0 or more times consec-
utively

s[+] consecutive repetition s repeats 1 or more times consec-
utively

s[∗m to n] consecutive repetition s repeats between m and n times
consecutively

b[= n] nonconsecutive repeti-
tion

b repeats n times, not necessarily
consecutively

b[= m to n] nonconsecutive repeti-
tion

b repeats between m and n times

b[–>n] Goto repetition b repeats n times, the last b oc-
curs at the end of the path

b[–>m to n] Goto repetition Boolean repeats betweenm and n
times, the last b occurs at the end
of the path

s1 | s2 or holds if either s1 or s2 holds
s1 & s2 non-length-matching

and
s1 and s2 hold at the point of
observation, they have the same
starting point, and may complete
in different cycles

s1 && s2 length-matching and s1 and s2 hold at the point of
observation, they have the same
starting point, and should com-
plete in the same cycles

s1 within s2 s2 contains s1, s2 holds at the
point of observation, s1 starts at
or after the cycle in which s2

starts; s1 completes at or before
the cycle in which s2 completes

s1 |–>s2 suffix implication s2 starts at the ending cycle of s1
s1 |=>s2 suffix next implication s2 starts the cycle after the end-

ing cycle of s1

2.3 : Assertion languages

0 1 2 3 4 5 6 7

hold
start

hold
hold

com
plete

SERE1: {req}| => {busy[∗4]; gnt}

clock

req

busy

gnt

0 1 2 3 4 5 6 7

hold
start

pending

pending

pending

pending

com
plete

SERE2: {req}| => {busy[∗4]; gnt}!

clock

req

busy

gnt

Figure 2.3: The trace for property SERE1 and SERE2

21

Chapter 2 : Assertion-based Verification

FL properties can be connected using the logical unary (not), binary (or and and), and
implication operators and generate more complex FL formulas. In addition to the logical
operators, more complex FL properties are built from Boolean expressions, sequential ex-
pressions, and subordinate properties using various temporal operators. These operators,
consistent to the VHDL flavor of PSL, are shown in Table 2.2. In this table, p represents
an FL property, and b represents a Boolean.

Table 2.2: Definition of the FL temporal operators (in VHDL flavor)
FL operator Description

eventually! p p holds eventually (it holds some time in the
future)

always p p must hold at all times
p abort b p holds unless b evaluates to true first
never p p must never hold
next(p) p holds in the next cycle
next[n](p) p holds n cycles later
next a[m to n](p) p holds in all the cycles in the range
next e[m to n](p) p holds in at least one cycle in the range
next event(b)[n](p) p holds at the nth occurrence of b
next event a(b)[m to n](p) p holds in all the cycles in the specified range

of occurrences of b
next event e(b)[m to n](p) p holds in at least once in range of occur-

rences of b
p1 until p2 p2 holds up to the cycle p2 holds (exclusive)
p1 until p2 p1 holds up to and including the cycle p2

holds (inclusive)
p1 before p2 p1 holds before p2 holds (exclusive)
p1 before p2 p1 holds before and at the same cycle as p2

holds (inclusive)

In this table, eventually! and abort are strong operators, and all the other operators
are weak operators. Strong operators require the ending condition to eventually occur,
while the weak operators do not. Each of the weak operators that are listed in Table 2.2,
except for always has a strong version with the indicator ‘!’ appended to its keyword.

The FL operators can be categorized as the following groups:

1 Simple FL properties include the always, never, eventually!, and next! operators.

2 Extended next FL properties include the next a, next e, next event, next event a,
and next event e operators.

3 Compound FL properties include the abort, before family, and until family op-
erators.

4 Sequence-based FL properties include the suffix implication and suffix next impli-
cation operators.

5 Logical FL properties include the logical implication, logical iff, and, or, and not

operators.

2.3 : Assertion languages

0 1 2 3 4 5

hold
pending

pending

pending

fail

P1: always(req –> next a![1 to 4](busy))

clock

req

busy

0 1 2 3 4 5

hold
pending

pending

pending

pending

P2: always(req –> next a[1 to 4](busy))

clock

req

busy

Figure 2.4: The difference between PSL weak and strong operators

6 LTL operators

PSL defines four levels of satisfaction of a property [FG05]

• holds strongly : 1) no bad states have been seen, 2) all future obligations have been
met, and 3) the property will hold on any extensions of the path

• holds : 1) no bad states have been seen, 2) all future obligations have been met, and
3) the property may or may not hold on any given extensions of the path

• pending : 1) no bad states have been seen, 2) future obligations have not been met,
and 3) the property may or may not hold on any extensions of the path

• fails : 1) a bad state has been seen, 2) future obligations may or may not have been
met, and 3) the property will not hold on any extensions of the path

A property that is defined with a weak operator holds if the computation path is
truncated inappropriately before the expected cycles or events can happen. For example,
consider property P2 and its simulation trace in Fig. 2.4. If the simulation stops at cycle
�4, the property holds, but not strongly. If the simulation continues and busy remains
high, P2 holds strongly at cycle �6.

The strong operators demand that the property holds unconditionally. As an example,
property P1 (see Fig. 2.4) fails if the simulation stops at cycle �4.

In this work we focus on the temporal layer of PSL. At the end of this section, we
will introduce a simple subset of PSL, PSLsimple, that we can deal with in our synthesis
method.

23

Chapter 2 : Assertion-based Verification

2.3.1.3 PSL verification layer

The verification layer tells the verification tools what to do with the properties described
by the temporal layer. In addition, the verification layer provides constructs that group
related directives and other PSL statements.

Verification directives

There are seven verification directives: assert, assume, assume guarantee, restrict,
restrict guarantee, cover, and fairness. Here, some verification directives are ex-
plained.

• The assert directive: tells the verification tool to verify that a property holds.

• The assume directive: tells the verification tool to constrain the verification (e.g.,
the behavior of the input signals) so that a property holds. Assumptions are often
used to specify the operating conditions of a property by constraining the behavior
of the design inputs.

• The cover directive: tells the tool to indicate if a property has been exercised by
the test inputs or given constraints.

The other directives are meaningful in the context of formal verification only, and are not
recalled here.

Verification units

PSL statements can be used individually in the code, or they can be grouped into the
verification units. There are three types of verification units: vprop, vmode, and vunit.
vprop groups assertions to be verified. vmode groups the constraints with the assume/
restrict directives. Finally, vunit combines the two, which enables grouping assertions
and assumptions together. Verification units may also contain modeling layer constructs
that are used by the assertions or constraints. In addition, a verification unit can inherit
other verification unit by using the inherit statement [EF06].

2.3.1.4 PSL Modeling layer

The modeling layer makes it possible to model the behavior of design inputs, and to
declare and give behavior to auxiliary signals and variables. The modeling layer enables
writing some extra code from the underlying language to model auxiliary combinational
signals, state machines etc. that are not part of the actual design but are required to
express the property concisely. For example, the modeling layer could be used to provide
an input. The Verilog (VHDL) flavor of the modeling layer consists of the synthesizable
subset of Verilog (VHDL) [FG05].

Figure 2.5 shows the four layers of a PSL property that have been discussed.

2.3 : Assertion languages

wire req;
req = req0 or req1;
assert always (req -> next_a[1 to 4](busy and not gnt))

Modeling layer
Verification layer
Temporal layer

Boolean layer

{

Figure 2.5: Different layers of a PSL property

2.3.1.5 PSL simple subset (PSLsimple)

PSL can express properties that cannot be evaluated in simulation, where time advances
monotonically along a single path, although such properties can be addressed by formal
verification methods. The simple subset of PSL, PSLsimple, is a subset that conforms to
the notion of monotonic advancement of time, left to right through the property, which
ensures that properties within the subset can be simulated easily. Any FL property in the
simple subset should meet all of the following conditions [FG05]:

• The operand of a negation operator is a Boolean.

• The operand of a never operator is a Boolean or a sequence.

• The operand of an eventually! operator is a Boolean or a sequence.

• The left-hand side operand of a logical and operator is a Boolean.

• The left-hand side operand of a logical or operator is a Boolean.

• The left-hand side operand of a logical implication (–>) operator is a Boolean.

• Both operands of a logical iff (<–>) operator are Boolean.

• The right-hand side operand of a non-overlapping until operator (until and until!)
is a Boolean.

• Both operands of an overlapping until operator (until and until !) are Boolean.

• Both operands of the before family operators are Boolean.

All other operators not mentioned above are supported in the simple subset without re-
striction. In particular, all of the next event operators and all forms of suffix implication
are supported in the simple subset.

2.3.2 System Verilog Assertion (SVA)

SystemVerilog [SMB+05] has integrated a set of constructs that helps to specify a system
behavior using assertions. SystemVerilog assertions are part of the language, which means
that they can be used inline with other language constructs. SVA was defined at the same
time as PSL, also based on the concepts and semantics of Sugar, restricted to SEREs.
With a different syntax, it shares most of its basic primitives with PSL.

25

Chapter 2 : Assertion-based Verification

SystemVerilog assertions are either immediate or concurrent.

Immediate assertions follow simulation event semantics for their execution. They de-
scribe a design behavior at an instant of time. An immediate assertion is evaluated
whenever the value of a variable in the expression changes. These assertions are executed
like a statement in a procedural block. Immediate assertions are an easy way to create an
assertion and are generally used with simulation.

Concurrent assertions are based on clock semantics and use sampled values of variables.
They specify a design behavior over a period of time. Concurrent assertions are associated
with clock edges. A concurrent assertion is evaluated right before the clock edge, and any
timing or event behavior between clock edges is ignored. A concurrent assertion can occur
within a procedural block or within a module.

This section provides an overview of SystemVerilog Assertion (SVA).

2.3.2.1 Operators

Table 2.3 shows the SystemVerilog operators and their descriptions. The SystemVerilog
operators are available for relating Boolean and vector expressions within sequence and
property definition [FKL03]. A SystemVerilog sequence is often described using regu-
lar expressions. The sequence operators that are defined for SystemVerilog allow us to
compose expressions into temporal sequences. These sequences are the building blocks of
properties and concurrent assertions [FKL03].

As is shown in Table 2.3, the repetition counts and temporal delay can be specified as
either a range or a single constant expression.

2.3.2.2 Verification directives

Property directives define how to use properties (and sequences) for specific works. SVA
has three verification directives: assert, assume, and cover. These directives are similar
to the assert, assume, and cover verification directives of PSL (see Section 2.3.1.3).

2.3.2.3 Built-in functions

Assertions are commonly used to evaluate certain specific characteristics of a design imple-
mentation, such as whether a particular signal is onehot. The following system functions
are included to facilitate this common assertion functionality:

• $onehot(): returns true when exactly one bit of a multi-bit expression is one.

• $onehot0(): returns true when zero or one bit of a multi-bit expression is one.

• $stable(): returns true when the previous value of the expression is the same as
the current value of the expression.

• $rose(): returns true when an expression was previously zero and the current value
is one.

• $fell(): returns true when an expression was previously one and the current value
is zero.

2.3 : Assertion languages

Table 2.3: Definition of the SVA operators
SVA operator Name Description

s1[∗m : n] consecutive repetition repetition of s1 n times, or be-
tween n to m times

s1[= m : n] nonconsecutive repeti-
tion

s1 repeats betweenm and n times

s1[–>m : n] Goto repetition s1 repeats between m and n
times, the last cycle of s1 occurs
at the end of the path

s1##[m : n] s2 temporal delay concatenation of s1 and s2 with
a delay between m and n

not p1 logical not inverts the result of the evaluation
of p1

s1 and s2 and is similar to the non-length-
matching and of PSL

s1 intersect s2 intersection is similar to the length-matching
and of PSL

s1 or s2 or Either s1 or s2 occurs
if (exp) p1 else p2 condition based on the evaluation of expr,

evaluates property p1 or p2
b throughout s1 Boolean until b must be true until sequence s1

completes
s1 within s2 within s2 contains s1, s1 and s2 must

occur, the length of s1 should be
less than or equal than/to the size
of s2, and s1 may start later than
s2

s1.ended ended is true if sequence s1 completes
at this time

s1.matched matched (from differ-
ent clock domains)

is true is sequence s1 (on another
clock) completes at this time

first matched(s1) first match is true in the first completion of
s1

s1|–> p1 overlapping implica-
tion

if s1 occurs, p1 must occur start-
ing at the ending cycle of s1

s1|=> p1 non-overlapping
implication

if s1 occurs, p1 must occur start-
ing the cycle after the ending cy-
cle of s1

27

Chapter 2 : Assertion-based Verification

2.4 Summary

In this chapter, the importance of the verification and its role in today’s design process
is discussed. The dynamic and static verification techniques are introduced. Although
dynamic verification is often the first step of verifying a circuit, it is not exhaustive. Static
verification is an alternative approach to verify all the possible scenarios of a system and
prove its correctness using mathematical proofs. Generally, formal methods are either
based on theorem proving or based on the model of the system (model-based techniques).
A design methodology that is becoming popular is assertion-based verification that ben-
efits of both dynamic and static methods. It uses assertions that can be simulated and
also provide a path to formal verification. An assertion language is required to specify the
system behavior concisely and unambiguously. In this chapter two assertion languages
are introduced: PSL and SVA. The core of both languages is temporal logic. However
they are different in some aspects. PSL is divided into the FL and OBE. SVA is a linear
temporal logic that can be compared to the FL of PSL, while SVA does not have most of
the FL operators. In the rest of the document, only PSL will be used as input specification
language. Yet the methods developed in the thesis are applicable to SVA as well.

Chapter 3
State of the art

Contents
3.1 Introduction . 30

3.2 Property synthesis as monitors 30

3.2.1 The automaton-based approach 30

3.2.2 The modular approach . 32

3.3 Property synthesis as correct-by-construction circuits 34

3.3.1 The automaton-based approach 35

3.3.2 The modular approach . 37

3.3.3 Synthesizing from Regular Expressions 38

3.4 Existing tools . 40

3.5 Summary . 41

29

Chapter 3 : State of the art

3.1 Introduction

In this chapter we review some works in the area of assertion-based verification and design.

In Section 3.2 the existing methods, modular and automaton-based, for synthesizing
checkers are considered. Section 3.3 reviews the related works in synthesizing a design, a
correct-by-construction circuit, from its formal specification.

Finally, the existing tools for automatically generating the checkers or synthesizing a
design from its specifications are introduced in Section 3.4.

3.2 Property synthesis as monitors

A monitor surveys the state of the design during simulation. It observes the signals that
are operands in a property, and outputs the status of the property. Therefore, all the
operand variables are inputs of the monitor. Monitors are generated either in a modular
way or from automata. Here, each of these methods is explained.

3.2.1 The automaton-based approach

In this method all the simulation traces are considered as the words of a language built
over the alphabet Σ of all the possible combinations of values of the design variables
(each valuation is a letter of Σ). Monitors are finite state machines that accept or reject
certain simulation traces. Some states in the monitor are initial states, some of them are
accepting states, and some of them are rejecting states. A simulation trace that drives
the monitor into an accepting state exhibits a good behavior. In the automaton-based
method, monitors use the “language-theoretic” concept to analyze the formal languages.
The automaton’s transitions are labeled with letters from the alphabet. A state may have
several outgoing transitions labeled with the same letter. A word runs over the automaton
by starting from all initial states, following the transitions that correspond to the sequence
of letters in the word. Since each state may have several outgoing transitions labeled with
the same letter, there may be several paths for a word. In the case of Regular Expression
(RE), if the final state on any of the paths is an accepting state, then the word is accepted.
For Linear Temporal Logic (LTL), a word is accepted if it has an accepting state. If a
word is not accepted, then it is rejected. However, it is hard to trace multiple paths, and
testing the automaton accepting the condition for LTL is very difficult. To solve these
problems, the automaton needs to be deterministic which means having one initial state,
and each state has just one successor state for any letter.

The construction of language-recognizing automata for REs and LTL has a long history.
Early RE to automata translations were given in [MY60] and [Tho68]. LTL to automata
translation was considered in [WVS83]. The method is a tableau-based approach, in
which the satisfaction of a temporal formula is decomposed both logically (across Boolean
connectives) and temporally (obligations in the next time). However the tableau-based
approach has some limitations. As an example, consider the negation of an RE. To
negate an RE, its Non-deterministic Finite Automaton (NFA) should be constructed and
should be converted to a Deterministic Finite Automaton (DFA). The negated RE is
then constructed by complementing the DFA. Therefore, tableau-based approaches are
not suitable for constructing the DFA of a negated RE.

3.2 : Property synthesis as monitors

Sidhu and Prasanna presented a hardware implementation of RE matchers for FPGA
[SP01]. This approach uses the method of McNaughton-Yamada [MY60] for constructing
NFAs from REs. In the proposed method, the actual NFA construction can be performed
in hardware. Moreover, the Self-Reconfigurable Gate Array (SRGA) can be reconfigured
automatically in real time to match the pattern of a new expression.

Floyd and Ullman worked on synthesizing REs into integrated circuit for hardware
RE matching [FU82]. A regular expression can be converted into a NFA. Instead of
converting the NFA to a DFA, two methods are proposed for direct implementation of
the NFA. One approach is based on producing a Programmable Logic Array (PLA).
The PLA has approximately n rows and 2n columns, where n is the number of RE’s
operands. The states of the NFA are represented by the columns. Another approach is
using McNaughton-Yamada algorithm to produce automata from REs. The hierarchical
structure of these automata can guide the layout structure of the circuit. The experimental
results show that the area of the generated circuit grows linearly with the size of the regular
expression.

Both works in [FU82] and [SP01] implement NFAs in hardware to perform RE match-
ing. However, the intersection and complementation operators in REs are not supported.

Since the standardization of Property Specification Language (PSL), several works
have been done to convert PSL to automata [GHS03, GG05, BFH05, CRST06]. Some of
them propose a two-step conversion: 1) encoding the PSL property into an Alternating
Büchi Automaton (ABA)1; 2) converting the ABA into a Non-deterministic Büchi Au-
tomaton (NBA) with variants of Miyano-Hayashi’s construction [MY60]. In practice, such
approaches are inefficient because of the conversion time.

Gordon et al. have modeled PSL in higher order logic for the HOL theorem prover
[GHS03]. HOL can also be used to produce a DFA from a PSL expression. The DFA can
be used to process a simulation trace in HOL to evaluate if a finite trace satisfies a PSL
formula. In another application that is mentioned in [GHS03], a DFA can be converted
to HDL to produce an assertion checker.

The “PROSYD” project has published methodologies for the use of PSL, and reports
on the tools that are developed in the project [BCE+04]. The PSL algorithms are intro-
duced in the context of generating checkers for simulation. The conversion of an NFA to
a Discrete Transition System (DTS) is presented as a central result. A DTS is a symbolic
program that represents an NFA, and is used during simulation for performing the asser-
tion monitoring. For the conversion of PSL assertions to NFAs it is referred to [BdFR04],
in which the automata are developed for model checking. However, in [BCE+04] it is not
mentioned how these automata are adapted to be used in checkers. In [BdFR04], which
is the basis for PSL to NFA in PROSYD, length-matching intersection of Sequential Ex-
tended Regular Expressions (SEREs) is not supported.

Gascard in [Gas05] proposes a method for transforming SEREs to DFAs. The work
is based on derivatives of REs introduced by Brzozowski in [Brz64]. The derivative of
a RE is a way of removing a given prefix in the language that is described by the RE.
This technique can be used to create a DFA from a RE. Then, monitors are generated
from DFAs. In most cases, monitors do not take sequence overlapping into account. In
addition, no results have been provided, neither the construction time, nor the synthesis

1A Büchi automaton extends a finite automaton to infinite inputs. It accepts an infinite input sequence
if there exists a run of the automaton that visits (at least) one of the final states infinitely often. It
recognizes the ω-regular languages, the infinite word version of regular languages.

31

Chapter 3 : State of the art

metrics.

The work presented in [GG05] deals with the translation of a subset of PSL SEREs
into monitors. For each operator of this subset, a function is implemented that builds
the corresponding non-deterministic automaton. The monitors can be generated in E and
Verilog. This method is faster than the conversion method based on HOL [GHS03], but
is slower than FoCs [ABG+00].

In [CRST06] Cimatti et al. propose an effective method to transform a PSL property
into a normal form that separates the LTL and the SERE components. Then, each of them
is processed separately to generate the corresponding NBA of the original PSL property.
The aim of this approach is principally automata construction for model-checking, but it is
also possible to build monitors. This approach reduces the construction time of the NBA,
as well as the overall verification time. In addition, the correctness of the transformation
is proved.

To the best of our knowledge, the most effective approach in synthesizing monitors
from PSL SEREs is done by Boule and Zilic [BZ07, BZ08b, BZ08c]. In this work, the
SERE base cases are introduced. Then, the automata algorithms are developed for these
cases. In addition, a complete set of rewrite rules has been proposed in [MABBZ08] and
applied for all other operators, to rewrite them using the base cases. The automaton for
a complex property is obtained by combining primitive automata. Using this method,
the automata are constructed for the left and right hand side of an implication. Then,
they are connected to represent the property by a single automaton. It is shown that the
generated monitors are resource efficient. The approach also enhances debug capability.

The authors in [EFP09] introduce the SynPSL tool, and also a method similar to
the method of Marc Boule for generating synthesizable HDL code from PSL assertions.
However, it does not support general Boolean layer expressions, it can just consider simple
Boolean expressions. The method does not support unbounded repetition in SEREs. In
addition, it can just be applied to the std logic type.

Despite all the attempts that have been put in this area, the automaton-based approach
is still too expensive. Although there are approaches [SP01] for constructing NFAs using
hardware, NFA is still inappropriate for hardware implementation, because of the large
number of concurrent transitions required by NFA. In addition, transforming NFA to DFA
is costly; it is exponential in the number of non-deterministic decision states.

Additionally, the automaton-based approaches generally indicate the status of the
property at the end of the simulation, and cannot be used for debugging purposes. It
would be more useful if the method could provide a dynamic trace of the assertion and
indicate each assertion failure. This goal can be reached through the modular method.

3.2.2 The modular approach

In [Ray96], Raymond proposed a modular method for building a Boolean dataflow net-
work (sequential circuit) to recognize the language described by a regular expression. A
safety property that is expressed using regular expression constructs is translated into a
synchronous program, such as Boolean network. A tool, reglo, has been designed that
translates a set of REs into an equivalent Boolean dataflow network that is expressed in
the Lustre language. The construction time, and the size of the resulting network are
linear with respect to the size of the regular expression.

Oliviera and Hu worked on generating interface monitors for verifying the intercon-

3.2 : Property synthesis as monitors

nection protocols between design modules [OH02]. The goal is providing an easy way to
generate monitors for common interface protocols. This work demonstrates that although
regular expressions work well for specifying simple IP interface monitors, they cannot be
easily used to specify complex interfaces. To overcome this problem, two new extensions
to REs have been proposed: defining storage variables, and a pipe-lining operator. Using
these concepts, a specification style has been created that can easily specify the full be-
havior of complex IP interface monitors. This style is called PREMiS (Pipelined Regular
Expression Monitor Specification). Then, algorithms are proposed, and a prototype tool
is developed to translate these specification into Verilog/VHDL monitor circuits. The
method is modular and works by passing the token from one sub-circuit to the next one.
The usefulness of the method has been shown by applying it to ARM AMBA AHB bus
protocol, and Open Core Protocol (OCP). However, neither the construction time nor the
combinational synthesis metric have been reported.

Pellauer et al. worked on the implementation of System Verilog Assertion (SVA)
assertion checkers [PLN05]. The ”first-match” operator is used as a basis to implement
sequences in the right-hand side of suffix implications. Checkers are produced in the Blue-
Spec SystemVerilog language. It is an unclocked language; its models are subsequently
translated into sequential hardware. The implementation is not fully modular. The SERE
matching is performed using FSMs; a single FSM is used to implement the left-hand side
of a suffix implication, and multiple FSMs are used in the right-hand side. To process
the matches that are triggered by a left-hand side sequence, a finite number of FSMs in
the right-hand side are used. Therefore, unbounded repetition is not allowed in the left
hand-side sequence, since it needs an infinite number of FSMs of the right-hand side. A
case study on a cache controller is presented.

Checker generation for SVA is performed by Das et al. in [SMDC06]. The idea is
breaking the sequence expressions as a sequence of expressions concatenated with the
corresponding time range expressions. Then, for each of the smaller sequence expressions
a sub-module is generated. These modules are interconnected in a way to determine a
match or fail of the actual sequence expression; every generated checker has the start
input that triggers the start of checking, and the match output that shows the match of
an expression. RE operators are classified into subsets, and a different synthesis approach
is proposed for each subset. The method cannot deal with some unbounded repetitions of
a sequence since there are cases where the expressions cannot be synthesized into a finite
amount of hardware resources. For detecting the “not” of a sequence, if the sequence fails,
separate rules are given for each operator. However, there is no proof or evidence showing
that the rules are correct. In this work, assertions for the AMBA AHB bus are used, and
the corresponding checkers have been generated. The results have been compared with
the results from Synopsys OVA checker. Synopsys VCS simulator is used for simulating
the generated checkers and OVA checkers; the generated checkers are simulated faster
than the OVA checkers. In addition, the checkers are synthesized, and the area overhead
is reported.

Implementing PSL SEREs using the modular approach was performed by Morin-Allory
et al. in [MAGB07] for online fault detection. In contrast to the other reviewed modu-
lar methods, the proposed approach covers properties with both finite and infinite state
sequences over time. In addition, the method supports both weak and strong operators.
In this method, a library is provided that consists of the synthesizable VHDL module
for each SERE operator, which is called SERE connector. A property sequence is built

33

Chapter 3 : State of the art

recursively by interconnecting the SERE connectors, based on the abstract syntax tree of
the SERE. Both the library and the construction of complex monitors are proven correct
with respect to the trace semantics of SEREs. The connectors have a common interface.
They are synchronized by a clock signal, and initialized by reset. They take one or two
tokens as input, and output a token. Tokens are passed from one connector module to
the next one. A monitor is triggered each time a token is transmitted to its input. The
presence of a token on the output of a monitor means that the sequence starting at the
cycle when the monitor was triggered has been recognized. Two types of token have been
introduced in [MAGB07]: monochrome and polychrome. The polychrome tokens are used
for dealing with several simultaneous evaluations of a sequence. Each color corresponds
to one evaluation of the sequence. However, the drawback is when multiple concurrent
matches happen, a large number of colors should be supported in a token, which affects
the hardware overhead significantly.

The modular approach introduced by Morin-Allory and Borrione in [KAB06] gener-
ates checkers for PSL temporal properties. In this method, the simple subset of PSL is
considered. Each PSL operator in this subset is implemented as a synthesizable VHDL
module, with a generic interface. A PSL property is generated by interconnecting the
operators’ sub-modules based on the abstract syntax tree of the property. A prototype
tool, HORUS, was developed for the automatic construction of a test environment for the
design [OMAB08, Odd09]. In these works, monitors can be triggered several times, and
are able to trace concurrently the evolution of the property for the successive triggers:
when a property succeeds or fails, the particular starting point for this particular result
is known. Therefore, this method is useful in debugging. The method was then improved
by Oddos et al. in [OMAB07] to prototype generators for on-line test vector generation.

3.3 Property synthesis as correct-by-construction cir-

cuits

Contrary to the previous section where properties are verified over an existing design
model, in this section a property is seen as the specification of the module to be designed.
The objective is then producing the synthesizable RTL design from its assertions directly.
In contrast to the monitors, some operand variables are inputs to the module and others
are outputs.

The synthesis of control-type sequential circuits from formal formulas is not new. The
functional specification of controller circuit involves describing sequences of events and
their interactions. The studies on automatic synthesis of a circuit from its specifications
started more than 50 years ago, with the following question raised by Church [Chu57,
Chu62]:

“Given a requirement which a circuit is to satisfy, we may suppose the requirement
expressed in some suitable logistic system which is an extension of restricted recursive
arithmetic. The synthesis problem is then to find recursion equivalences representing a
circuit that satisfies the given requirement (or alternatively, to determine that there is no
such circuit).”

Almost all the solutions to this problem are automaton-based. However, the synthesis
method of our work is modular. Here, some of the related works of each groups are
reviewed.

3.3 : Property synthesis as correct-by-construction circuits

3.3.1 The automaton-based approach

In this method, an automaton is defined as a set of states and transitions between them
that is specified by a given specification. The goal is the construction of a finite-state
procedure that transforms any input sequence into an output sequence such that a given
specification is satisfied. The underlying formalization of the specifications (regular ex-
pressions or temporal logic formulas) that specify sequences of events is based on either
language theory (grammar-based) [SB94, Öbe99] or automata theory [FKTMo86, PR89,
ABBSV00, SM02, BGJ+07a, FJR09, BJP+12, EKH12]. The grammar-based specifications
do not have the limitations of the procedural specification style, that is the dependency
of the specification implementation on time and also dependency to the size of input and
output signals.

Church’s problem was first addressed by Büchi [BL69], and then by Rabin [Rab72].
These approaches build automata of the properties, and reduce the synthesis problem
to the emptiness problem of automata. If a non-empty automaton can be found for the
specifications, its corresponding circuit is produced.

Pnueli and Rosner reconsidered the synthesis problem from LTL specifications in
[PR89]. The proposed method starts constructing a Büchi automaton for a given LTL
specification and then converts it into a deterministic Rabin automaton. The complexity
of the synthesis algorithm is double exponential in the length of the given specification.

It is the origin of “synthesis of reactive systems”, with the algorithmic theory of two or
multi-player games. Some of the works use this approach, and formalize the synthesis as a
two-player game between the environment (that provides the inputs) and the system that
responds on its outputs [FJR09, BJP+12, EKH12, BCG+10, BGJ+07a]. The specifications
are realizable if the system can always win the game. In this case, the corresponding circuit
is extracted. Some recent works [Gre04] [BEK+14] use SAT-based method for constructing
the final circuit.

The Clairvoyant tool was developed by Seawright and Brewer [SB94] to automatically
synthesize HDL RT level descriptions from a specification written in Production Based
Specification (PBS). PBS is a language that is similar to REs in many points. In a
PBS, the control part of the design is specified as a hierarchical set of productions. Each
production is viewed as a non-deterministic automaton. The idea is to transform the
specification into BDD, then synthesize this BDD to RTL. Experimental results are good
for simple circuits. In Clairvoyant, a design entity with a single process and a well defined
boundary and interface is specified. All interactions with inputs and outputs are described
at clock cycle level.

Öberg synthesized data communication protocols that are expressed using Backus-
Naur Form (BNF) 2 grammars [Öbe99]. To do this, he developed a language, ProGram,
and its compiler. The ProGram language is based on a regular LL(1) grammar and uses
a BNF-like notation to code both input and output sequences, targeted for specifica-
tion of data communication protocols. The language supports a description style that
is independent of the port sizes. The implementation is generated so that sizes are a
generic parameter that is fixed in a subsequent step. The ProGram Compiler takes the
ProGram description as its input. It then parses the language and produces a RT-level
VHDL implementation of the interface protocol, by partitioning the input sequences into

2BNF is a formal notation for the specification and documentation of programming language syntax.
Many programming languages, communication protocols or formats have a BNF description in their
specification.

35

Chapter 3 : State of the art

a sequence of tokens, and output sequences into a sequence of output assignments. The
method uses a Directed Acyclic Graph (DAG) and explores the state space to analyze all
possible behaviors of the circuit. Some experiments have been done to evaluate the design
space exploration strategy of the ProGram compiler; a ProGram description of a reduced
F4 OAM protocol is implemented to generate different designs by various port-size con-
straints of the inputs and outputs. To evaluate the quality of the produced designs, a set
of designs are coded in ProGram, High Level Synthesis (HLS) style VHDL code and RTL
styleVHDL code. Then, the code sizes are compared. The results show that ProGram
generates more compact designs. The same set of designs is synthesized using a commer-
cial HLS tool and the ProGram compiler followed by standard logic synthesis. The results
show that ProGram generates smaller circuits.

Heymans uses Answer Set Programming (ASP) to synthesize synchronization skele-
ton programs [HNV05]. In contrast to most of the methods, the method uses CTL for
expressing properties of concurrent programs. First, a model of the CTL specification is
built using ASP. Next, a coherency analysis is performed and the synchronization skeleton
is extracted.

Aziz et al. [ABBSV00] describe how to synthesize sequential circuits from S1S logical
formulas. S1S is a second order logic that allows effectively describing the sequential
systems. The formula is transformed into a single finite automaton, to be synthesized
into a gate-level hardware. The proposed method is automatic. It provides a systematic
way to reduce the problem of optimizing interacting FSMs to optimizing a single FSM.
Additionally, the approach can be easily extended to different interconnection topologies.
Moreover, the approach generalizes to the synthesis of safety and liveness properties.
Any specification provided in S1S owns a Büchi automaton that can be synthesized into
a netlist. The method suffers from high complexity due to the use of negations and
determinizations (if necessary) in Büchi automata. Although some optimizations have
been applied to reduce the algorithmic complexity, these automaton-based approaches
cannot process complex designs.

Kukula and Shiple describe in [KS00] how to effectively synthesize the mathematical
relations in combinational circuit. The approach transforms the equation that specifies
the relation between inputs and outputs into a FBDD (Free-BDD). Then, the final circuit
is extracted from FBDD. The circuit size is proportional to the FBDD.

Müller and Siegmund [SM02] also worked on the synthesis of communication interfaces
from protocols. They used a SystemC extension formalism, SV, for protocol specification.
SV allows writing the communication protocol between the components in high level. The
communication is done through abstract channels, through read/write actions. The idea
is to start with a description of the communication protocol between two SV components.
The description is then synthesized into a SystemC description. The SV part is analyzed
and the Protocol Flow Graph (PFG) is built. The PFG provides the definition of the
communication protocol. The SystemC synthesizable descriptions are obtained by trans-
forming the PFG into two FSMs, one for each interface. They used automaton-based
methods to build the final design.

Although automatic synthesis from the specifications is not so new, it has recently been
applicable to real circuits, through the development of prototype tools [PPS06, BGJ+07a,
RAT, FJR11, EKH12].

Bloem et al. defined a subset of LTL named “GR(1)” from which properties are trans-
lated to automata [BGJ+07a, BGJ+07b]. They use the two-player game method. The

3.3 : Property synthesis as correct-by-construction circuits

game theory algorithms compute all the correct behaviors of the design under all admis-
sible interactions with the environment. It is shown how to build a winning strategy and
extract a system from it. The method is polynomial in N3, where N is the sequential
complexity of the specification. In [BGJ+07a] the method is applied to the Generalized
Buffer (GenBuf) from IBM [IBM] and the AMBA AHB Bus arbiter. The PSL proper-
ties of these examples are presented in [BGJ+07a], and the synthesis results are shown.
Increasing the number of senders/receivers in GenBuf, or the number of masters/slaves
in the AMBA AHB arbiter, increases the synthesis time and the size of the generated
hardware. In addition, the generated gate-level circuit is very complicated and cannot
be changed manually. The work is later extended and improved in [BJP+12], to obtain
smaller circuits.

Ehlers et al. present a game approach for synthesizing circuits from their formal
specifications [EKH12]. A general strategy is introduced as the characterization of the
set of moves that lead the system player wins the game. There may be more than one
solution for the system player to win the game. The goal is selecting a good circuit for
this strategy among the several possible extracted circuits.

These methods have been implemented and some prototype tools have been provided
for property synthesis. Briefly, Lily and Anzu were implemented based on the researches
in [JB06, PPS06], and then improved to Ratsy. In addition, Unbeast was developed based
on the works of [Ehl11, EKH12] (see Section 3.4).

All the related works that have been reviewed so far extract the final circuits from
various forms of BDDs. Some other works propose a SAT-based method for synthesizing
the circuit.

In the approach that is proposed by Greaves in [Gre04], the small components are
synthesized using SAT-based methods. The specification is provided as input. A SAT
solver is used to generate the programming bit-stream on a pseudo-FPGA architecture to
comply with the formal specifications of the system. This method is taking advantage of
the fact that the basic component of the FPGA is the LUT. LUTs are defined as functions,
having some free variables (the input signals) and some variables whose values should be
determined by SAT solvers (the intermediate or some output signals). In addition, the
design is expressed using some logical rules that consider the value of a signal in various
cycles. Both the FPGA program and the design specifications are expanded into CNF
form. Then, a SAT solver is used to find an appropriate solution. The properties are in
the form of A → next(B). A few experiments have been tried to show the feasibility of
this method. However, the approach is not automatic.

In [BEK+14] Bloem et. al uses a SAT-based method for synthesizing circuits from
safety specifications. The proposed SAT-based learning method combines quantifier elim-
ination with computational learning. The method generates smaller circuits in shorter
time in comparison to BDD-based methods. The basic algorithms that are used in this
work are not new, but new optimizations have been presented for safety specification. It is
shown how the idea of interpolation for circuit extraction can be combined with learning
to compute the interpolants more efficiently.

3.3.2 The modular approach

Some other works have been done to synthesize the temporal properties of PSL or SVA
based on completely different principles [SNBE07, EFP09].

37

Chapter 3 : State of the art

Eveking et al. introduce “Cando-Objects”, and address how they can be incorporated
in synthesizing modules from PSL properties [SNBE07]. Cando-Objects can do anything
allowed by their property, i.e. can show all the possible behaviors of the properties from
which they were generated. The properties are rewritten in a normalized form. The
normalization procedure identifies the potential inconsistencies between properties and
disjoints them so that only one property specifies a signals’ value in a specific state. Then,
the VHDL description of the Cando-Object is generated. The original models can then
be replaced by the corresponding Cando-Objects. In order to allow all possible behaviors,
additional signals are used to generate signal values for the cases when a signal value is
not defined. If the specification is logically non-determined, e.g. A or B, free inputs are
used. Non deterministic behaviors are admitted, and translated into the addition of more
input signals connected to random sources. The Cando-Objects are a fault-conserving
abstraction of the original modules; therefore, if the full design including the replacements
can be verified, the design is correct. Also, it proves that the set of module properties is
complete with respect to the architectural properties. The approach is limited to bounded
time properties. The method has been applied to AMBA AHB master, PCL Local Bus
and a MIPS core, and the generation time has been reported. However, there is no result
on hardware metrics.

The subject was reconsidered by Oddos et al. in [OMAB09], and a preliminary solution
was proposed to synthesize the control circuits from PSL temporal properties [Odd09].
The method is modular, each property is turned into a component combining monitor
and generator features: the extended-generator. A synthesizable VHDL sub-module is
provided for each operator in PSLsimple. These operator sub-modules are proven to be
correct. Each property is the interconnection of its operators’ sub-modules. The final
design is the interconnection of the property modules, and it is correct-by-construction.
The approach synthesizes circuits specified by hundreds of temporal properties in a few
seconds. The idea extended HORUS, which was used for synthesizing checkers, to Syn-
tHorus. It could synthesize the circuits from FL temporal properties in PSLsimple. The
method supports both strong and weak operators. It does not imply any limitations to
the PSLsimple FL operators. It is not necessary for a designer to specify the assumptions.
In addition, the method enhanced the debugging capability of the design. However, the
method was not totally automatic. The designer should have annotated the properties,
which means in each property, the designer should have made the decision about the sig-
nal directions. Then, the input of SyntHorus was the annotated properties. Moreover, the
solution did not support duplicated signals; it was limited to the cases in which a signal
is constrained just by a single property. In addition, it was not possible to consider the
consistency and completeness of the properties. Moreover, it did not support SEREs.

These shortcomings have been resolved in this thesis. The signals in the properties are
automatically annotated, and the duplicated signals are resolved automatically. In addi-
tion, some complementary properties are generated that can be used both in simulation
and formal verification tools to verify the consistency and completeness of the set of the
properties.

3.3.3 Synthesizing from Regular Expressions

All of the above reviewed methods, both automaton-based and modular, synthesize the
temporal properties and not the sequences. There are just a few works in synthesizing

3.3 : Property synthesis as correct-by-construction circuits

REs, some of them are very old and go back to more than 40 years ago [BP63, Brz65,
Cur68, LJ88, BL88].

Brzozowski presents a method in [BP63] for modular synthesis of REs over the Boolean
alphabet. The described designs should be synchronous, deterministic, and finite. For
each basic operator, a sub-module is constructed that implements the operator. Then,
the final circuit is constructed recursively by interconnecting the sub-modules. The paper
introduces the notion of recursive realization, and proves that the construction is valid if
proper assumptions are considered. He then introduces the Linear Sequential Circuits in
[Brz65], and addresses how to obtain the REs that are accepted by such circuits directly.
In addition, he gives a method for interpreting the REs to construct a word description
of the circuit behavior. The method supports unbounded repetition. However, neither a
tool has been provided to implement the method nor any experimental results are given.

Curtis in [Cur68] considers how to obtain directly the realizations of synchronous
finite automata from their specification that are expressed in REs. He defines a polylinear
sequential circuit3 realization, and proves that every synchronous finite automaton has
such a realization. A finite automaton is realized by a polylinear sequential circuit if its
next state variables and output have the polylinear property; i.e. they can be expressed
as a linear function of the present state variables for each of the inputs. In this method
the polylinear sequential circuit realizations do not require special initial circuitry. In
contrast to the indirect methods that need some combinational logics to obtain the next
state and output equations after state minimization, in this method these equations are
being generated automatically. The drawback is the size of the generated circuits.

Luk and Jones present an approach to derive regular synchronous circuits from their
RE specification [LJ88]. In this method, some common structures are defined. In the
first step, the specification should be rewritten based on the predefined structures. From
this, a draft architecture is obtained. Then algebraic theorems are used for optimizing
the draft architecture. The method is applied to a “rank evaluation circuit” taken as case
study. First, a preliminary architecture is obtained. Then, it is optimized in several ways,
each has its own trade-off, and may affect the latency, frequency or area of the obtained
architecture.

Brown and Leeser propose a method in [BL88] for synthesizing a correct sequential
circuit from its specification. The approach is developing a circuit as a program. After
verifying the program, it is compiled to a sequential machine description. The program
specifies the assignment statements of the data-path, the data-path branching conditions,
and also the structure of the controller that implements this. This program can be rep-
resented using a state transition system. Then, the states and transitions are partitioned
into a controller and data-path. Each program’s statement is labeled uniquely. The states
of the transition system consists of an assignment of values to program variables, and a
program label that specifies the control part. The focus of this paper is on generating the
controller. The data-path can then be implemented automatically or manually. It has
been proven that the generated circuits are correct. The method is demonstrated on the
design of a multiplier.

In this thesis, we revisit this old problem, and propose an approach for synthesizing
PSL SEREs. To the best of our knowledge, it is the only work that addresses synthesizing
a design from SEREs, and none of the previously developed tool support SEREs; they

3In a polylinear sequential circuit the next state variables are linear functions of the present state
variables for each of the inputs.

39

Chapter 3 : State of the art

just consider the temporal operators.

3.4 Existing tools

In this section, we briefly review some of the existing tools in the area of ABV, and
compare these tools.

There are a large variety of tools for formal verification. Based on the tool being used,
the properties can be expressed as PSL, LTL, or CTL. OneSpin [ONE], Mentor Graphics
0-In, Cadence Incisive [CAD], and RuleBased from IBM [HIL04] are some of the most well-
known tools that can be used for formal verification. We exercised RuleBased, 0-In, and
OneSpin, and selected OneSpin for formally verifying the generated circuits.

For compiling assertions into monitors some industrial tools exist. The first industrial
tool for construction checkers of PSL properties is IBM FoCs [ABG+00]. The details
have not been published for commercial reasons. FoCs uses automata to generate HDL
checkers from PSL assertions. An “end-of-simulation” signal should be provided by the
user to mark the end of time when strong properties are used. This signal is used by
the checkers to report any unfulfilled obligations as errors when the cycles are truncated
(there exists no further cycles). FoCs does not support all the operators, and supports
very few strong operators.

Another tool that has recently been developed by Atrenta is BugScope [BUG]. It
uses design and testbench information, and automatically generates assertions and func-
tional coverage properties. BugScope takes an RTL design and also its testbench; then,
it synthesizes automatically the high assertions that capture key design constraints and
specifications. In addition, it generates functional coverage properties. The coverage prop-
erties are functional and are independent of the syntax of the RTL. BugScope has sufficient
capacity to support assertion synthesis for full SoC designs, with run-time performance
scaling linearly with respect to design complexity. It can generate the assertions in IEEE
standard formats such as SVA, PSL or synthesizable Verilog.

Dolphin integration also provides a tool, SLED SDG (Synthesizable Detector Genera-
tor), for synthesizing assertions as checkers [SDG]. It generates RTL checkers (Verilog or
VHDL) from PSL assertions. It also integrates RTL synthesizable hardware checkers into
circuits for real-time verification.

In addition to the mentioned industrial tools, there are academic tools for compiling
assertions as checkers. MBAC is an academic tool that has been developed by Boule
[BZ08a] in McGill university. It uses an automaton-based approach to generate assertions
from PSL properties. The MBAC checker generator produces assertion-monitoring circuits
from PSL statements and augments these checkers with debug-assist circuitry. Other
forms of debug information, such as signal dependencies, can also be sent to the front-end
applications. Boule compares the checkers produced by MBAC to the checkers that are
produced by FoCs. The comparison involves generating checkers for a suite of assertions,
and then synthesizing the checkers using FPGA implementation tools. The circuit size
of the checkers are compared using the number of flip-flops and also combinational logic.
The results in [BZ08a] shows that the MBAC checker generator outperforms FoCs.

Horus [OMAB08] is another academic tool that has been developed in the VDS group
of TIMA Lab. It uses the modular method to generate monitors from PSL FL properties.
It can also be used for the automatic generation of a test environment. This tools is the
basis of SyntHorus and SyntHorus2.

3.5 : Summary

In the scope of correct-by-construction, there are just a few tools.
Acacia+ [ACA] is based on the works in [FJR09, FJR11]. It inputs LTL specifications,

and outputs a design in dot format. The tool is based on the two-player game approach.
It provides several options, for example: backward or forward state traversal; the circuit
player or the environment player has the initial move. However, the problem is that it
can only synthesize very small, and non realistic, circuits.

Unbeast [UNB] is based on the works in [EKH12]. It inputs LTL specifications in
XML syntax and produces an intermediate NuSMV file that is turned to an aig format
by AIGER. ABC [ABC] is used to translate aig into Verilog. The tool can be applied to
small examples, and it times out for complex or large circuits.

Ratsy (Requirements Analysis Tool with Synthesis) [RAT, BCG+10], is an update of
Rat that is developed by Bloem et al. in the University of Gratz. It contains the Lily [JB06]
and Anzu [PPS06] previous tools of the same research group. A graphical user interface
has been provided for Ratsy. Ratsy inputs GR(1) PSL properties. The properties must
be partitioned into a guarantee and an assume part. It produces a Verilog design. The
tool can also take a Büchi automaton as its input. In this system the environment player
moves first. Ratsy performs an on-the-fly verification of the properties.

SyntHorus is the extended version of Horus that is developed in TIMA Lab [Odd09].
In contrast to other existing methods, the tool is based on the modular approach, and
could synthesize PSLsimple FL properties to VHDL. However, it had some limitations.
It could just support scalar signals of type std logic. In addition, it could not deal with
the modeling layer of PSL. Moreover, the process was not totally automatic. In addition,
there were some difficulties for specifying the value of the signals that are being generated
in several properties. However, the synthesis results and hardware generation time are
better than Ratsy.

In this thesis, SyntHorus has been improved to SyntHorus2. This new version inputs
PSL properties and generates the synthesizable VHDL circuit automatically. It supports
FL properties, and also partially supports SEREs. The tool can automatically decide
about the signal directions in each property (see Chapter 7). Moreover, it can resolve the
value of the signals that are generated in several properties (see Chapter 9). Additionally,
SyntHorus2 supports std logic vector signals. Additionally, it partially supports the mod-
eling layer. Finally, it generates complementary properties to verify if the properties are
consistent and complete.

3.5 Summary

In this chapter we briefly reviewed the related works in assertion-based verification and
design. We considered both the automaton-based and modular approaches.

In the area of synthesizing assertion checkers for REs, the modular methods have some
limitations. Assertion checkers should be able to handle multiple simultaneous sequences
of events that can overlap temporally. In general, the modular methods indicate difficulties
for implementing all SERE operators, especially intersection and unbounded repetition
[SMDC06, PLN05, MAGB07, BZ05], while the automaton-based methods overcome these
difficulties [BZ08b].

Most of the works in designing correct-by-construction circuits are based on automa-
ton. Such methods are expensive. In addition, almost all the proposed methods only deal
with the temporal properties, not the sequences.

41

Chapter 3 : State of the art

Our synthesis approach is modular for temporal operators of PSLsimple. For synthe-
sizing SEREs, to avoid the shortcomings of the modular method, a hybrid method is
introduced. Using this method, the left-hand side of a property sequence is generated
using the automaton-based method, while the modular method is used for synthesizing
the right-hand side of the suffix implication.

Finally, some of the tools in the area of assertion-based verification and design are
introduced in this chapter. In Chapter 10 the synthesis results of our tool, SyntHorus2
are compared to the results of Ratsy.

Chapter 4
Fast prototyping from assertions: the overall
synthesis flow

Contents
4.1 Introduction . 44

4.2 Reactant synthesis . 44

4.3 Running Example: Generalized Buffer 45

4.3.1 Presentation . 45

4.3.2 Communication with FIFO . 47

4.3.3 Communication with the senders 48

4.3.4 Communication with the receivers 49

43

Chapter 4 : Fast prototyping from assertions: the overall synthesis flow

4.1 Introduction

In this chapter, the overall synthesis flow is introduced. The details of each step of this flow
will be explained in the following chapters. In addition, a running example is introduced
and used in the following chapters to show the applicability of the proposed synthesis
method.

4.2 Reactant synthesis

In this work a correct-by-construction method is proposed to directly produce the synthe-
sizable RTL design from its assertions.

The method is modular; i.e. the reactant of each property is the interconnection of its
operators’ modules. Therefore, operators’ modules are the building blocks of a property,
and are called primitive reactants, since they do not consist other reactant modules. Then,
the final circuit is the interconnection of the properties’ reactants.

Fig. 4.1 shows the overall synthesis flow that produces a circuit from a set of properties.
The initial step is providing a library of primitive reactants for FL1 and SERE2 oper-

ators. It is done by considering the formal semantics of the operators, and interpreting
these mathematical semantics to hardware (see Chapter 5 and Chapter 6). The library of
primitive reactants for FL operators has been already implemented by Morin-Allory et al.
in [OMAB09]. During this thesis, the library of primitive reactants for SERE operators
has been provided.

At the beginning, properties are processed one by one. A conventional front-end
produces the Abstract Syntax Tree (AST) from the source text of each property. The
implementation of the subsequent processing steps makes use of no further compilation
tool.

For each property it should be identified which signal occurrences are read (monitored),
and which ones are constrained (generated) by the property. We refer to this step as
annotation. To annotate the signals we use the dependency relations of the temporal
operators (see Section 5.2 of Chapter 5, and Section 6.3 of Chapter 6). Based on these
dependencies, an algorithm is proposed for annotation (see Chapter 7): a direction is
given to the edges of each AST, and the Directed Abstract Syntax Tree (DAST) of each
property is generated.

Then, using the library of primitive reactants for the operators, a complex reactant
is built for each fully annotated DAST, by applying the principles that are explained in
Chapter 8, Sections 8.3.2 (for FLs) and 8.3.3 (for SEREs).

Considering the DASTs, a signal may be constrained by several properties. In addition,
there may be cases that a signal’s direction cannot be decided just by considering a
property alone. Therefore, we need to consider all the properties together to identify
the dependency among properties. To this goal, a graph that reflects a global view of
the signals in the circuit is constructed from all the DASTs (See Dependency Graph in
Chapter 9). The following information can be extracted from this graph:

1 identifying which properties constrain a specific signal, duplicated signal. Using this
information we generate a simple solver that specifies the value of the signal.

1Foundation Language
2Sequential Extended Regular Expression

4.3 : Running Example: Generalized Buffer

2 identifying the signals whose direction has not been specified in a property, unan-
notated signals, and identifying the dependency of these signals on other signals.
Using this information, we generate a component, complex solver, that specifies the
value of an unannotated signal based on the value of the other signals that affect it.

We refer to this procedure as resolution (see Chapter 9). The final circuit is constructed
as the interconnection of the reactants for all the properties, together with solvers (see
Chapter 9, Section 9.7).

This is a register transfer level model that is input to a conventional industrial synthesis
tool to obtain the final implementation, either on FPGA or on an ASIC.

From the information provided by the dependency graph, a set of complementary
properties can be generated, which can be used by an industrial verification tool, to verify
if the set of the properties are complete and consistent.

We have provided a prototype tool, SyntHorus2 that implements the above synthesis
process: it takes a set of PSL properties as its input, and generates the final circuit in
VHDL. It also generates some complementary properties to verify the completeness and
coherency of the set of the specification (see Fig. 4.1). The proposed method is applicable
to the controller parts of a design.

4.3 Running Example: Generalized Buffer

Here, we introduce IBM Generalized Buffer [IBM] (GenBuf) as our running example.

4.3.1 Presentation

The generalized buffer GenBuf is an arbiter that sequentializes requests coming from
nbsend senders, and transmits them one at a time to nbrec receivers (nbsend and nbrec
are generic parameters). Each sender has its own bus, and the receivers share the same
bus. A FIFO (with the length of four 32 bit data) stores the incoming data waiting to be
sent to the receivers.

A controller communicates with all the modules and the FIFO: it enforces a round-
robin selection policy on the receivers side, it blocks the senders when the FIFO is full,
and blocks the receivers when the FIFO is empty. Figure 4.2 displays the architecture of
the system and the interface control signals that are used for the communication.

• From each sender Si, GenBuf receives a request input StoB REQ(i) and replies with
an acknowledge output BtoS ACK(i).

• To each receiver Rj, GenBuf outputs a request BtoR REQ(j) and gets an acknowledge
RtoB ACK(j).

• GenBuf gets the FULL and EMPTY signals from the FIFO and provides the ENQ

and DEQ signals for writing (reading) appropriate data to (from) the FIFO.

The set of FL properties that specify the GenBuf controller are taken from [BGJ+07a].
These properties have been rewritten and completed in order to be used by our prototype
tool, SyntHorus2. In addition, the properties have been rewritten as SEREs, using the
rewriting rules that are introduced in [MABBZ08]. In the following sections, the commu-
nication between the controller, the senders, the receivers, and the FIFO, together with
the corresponding properties are explained in details.

45

Chapter 4 : Fast prototyping from assertions: the overall synthesis flow

Figure 4.1: Overall Synthesis Flow

4.3 : Running Example: Generalized Buffer

GenBuf
Controller
(Automatically
generated
by SyntHorus2)

sender#0 receiver#0

FIFO

StoB_REQ(0)

BtoR_REQ(0)BtoS_ACK(0)

RtoB_ACK(0)

E
N

Q

D
E
Q

E
M

P
T
Y

FU
LL

sender#i

StoB_REQ(i)

BtoS_ACK(i) receiver#jBtoR_REQ(j)

RtoB_ACK(j)

Figure 4.2: GenBuf circuit interface

4.3.2 Communication with FIFO

Data are read/written from/to the FIFO buffer by activating the DEQ/ENQ signals. The
EMPTY and FULL signals show the status of the FIFO. The properties that are shown
in Fig 4.3 guarantee that the FIFO works correctly. The properties have the following
meaning:

• P0_FIFO: When the FIFO is full and no data is read from the FIFO, no data can be
written into the FIFO.

• P1_FIFO: When the FIFO is empty, no data can be read from it.

vunit genbuf FIFO
{

P0 FIFO :
always (FULL and not DEQ −> not ENQ) ;

P1 FIFO :
always (EMPTY −> not DEQ) ;

}

Figure 4.3: FL specification that guarantees the correct behavior of FIFO

The FIFO should be selected, and the data should be put into it, whenever the GenBuf
controller sends an acknowledgment to the corresponding sender (see properties under
“FIFO interface” in Fig. 4.5). The FIFO cannot be selected and get the data before being
sure that the request from the sender is acknowledged by the buffer. So, the ENQ and
SLC signals follow the behavior of the acknowledgment signals to the senders.

The data should be read from the buffer after completion of the transfer. Hence, after
getting the acknowledgment from a receiver, the DEQ signal becomes high (see properties
under “FIFO interface” in Fig. 4.8).

47

Chapter 4 : Fast prototyping from assertions: the overall synthesis flow

4.3.3 Communication with the senders

The interface between the senders and GenBuf is a 4-phase handshaking protocol. Let Si

be any one of the senders.

• Si asserts StoB REQ(i), then puts data on the next cycle

• GenBuf asserts BtoS ACK(i) after reading the data

• In the next cycle, the sender deasserts StoB REQ(i)

• GenBuf specifies the end of the transaction by deasserting BtoS ACK(i)

We assume that signals take a default value 0, GenBuf maintains FIFO order, and senders
are never starved. Figure 4.4 shows an example timeline of a GenBuf to sender handshake.

0 1 2 3 4

clock

StoB REQ(i)

BtoS ACK(i)

ENQ

Figure 4.4: An example timeline of a GenBuf to sender handshake

4.3.3.1 Formal FL specification

Figure 4.5 shows the FL properties that describe the communication between the GenBuf
controller, the senders, and the FIFO (the properties are shown for two senders).

The properties have the following meaning:

• P0_sender_i: Once low, the acknowledge to Si remains low as long as Si sends no
request.

• P1_sender_i: The acknowledge to Si remains high as long as Si keeps its request
high.

• P2_sender_i: A new request may be raised by Si only if its acknowledge signal is
low.

• P3_sender: The senders may send simultaneous requests to GenBuf, but at most
one acknowledge signal is high.

• P4_FIFO_sender: Either ENQ is 0, or one of the acknowledge signals is 1.

• P5_FIFO_sender: If signal ENQ is low, none of the acknowledge signals has just been
raised. To generate signals, SyntHorus2 requires that all properties be temporally
aligned from present to future. Property P5_FIFO_sender has to be rewritten as:

4.3 : Running Example: Generalized Buffer

P5 sere FIFO sender 0 :
always (not BtoS ACK(0) −> next ! (ENQ or not BtoS ACK(0))) ;

P5 sere FIFO sender 1 :
always (not BtoS ACK(1) −> next ! (ENQ or not BtoS ACK(1))) ;

• P6_FIFO_sender: If there is a request from the senders and the FIFO is not full
and signal ENQ is low, ENQ must be high in the next cycle and go back to low in
the following cycle.

• P7_FIFO_sender_i: If there is an acknowledgment to Si, then the ith data is pushed
into the FIFO (SLC = i).

4.3.3.2 Formal SERE specification

The set of SERE properties that specify the communication between the GenBuf con-
troller, the senders and the FIFO are shown in Fig. 4.6 (for 2 senders). Here, only two
properties are explained as examples.

• P1_sere_sender_i: The acknowledge to Si remains high as far as Si keeps its
request high, and it is deasserted one cycle after deactivation of the request signal.

• P6_sere_FIFO_sender: If there is a request from the senders and the FIFO is not
full and signal ENQ is low, ENQ must be high in the next cycle, and then, it will be
deasserted in the following cycle.

4.3.4 Communication with the receivers

GenBuf interacts with the receivers through a 4-phase handshake protocol. The arbitra-
tion mechanism that is used by GenBuf is round-robin: GenBuf does not request the same
receiver consecutively. In addition, it does not request both receivers at the same time.

A request signal from GenBuf remains active, until receiving the acknowledgement.
One cycle after asserting the acknowledge signal, the request will be deasserted and

cannot be asserted again until one cycle after deactivation of the acknowledge signal.
Figure 4.7 shows an example timeline of a GenBuf to receiver handshake.

4.3.4.1 Formal FL specification

The set of FL properties that specify the communication between the GenBuf controller,
the receivers, and the FIFO are shown in Fig. 4.8 (for 2 receivers).

The properties have the following meaning:

• P0_rec: When the FIFO is not empty, GenBuf should send a request to one of the
receivers; which receiver should be requested is not specified.

• P1_rec: When the FIFO is empty, none of the receivers should be requested.

• P2_rec: Two receivers cannot be requested at the same time.

49

Chapter 4 : Fast prototyping from assertions: the overall synthesis flow

vunit genbuf sender
{

P0 sender 0 :
always ((not BtoS ACK(0)) and (not StoB REQ(0)) −> next ! (not BtoS ACK

(0))) ;

P0 sender 1 :
always ((not BtoS ACK(1)) and (not StoB REQ(1)) −> next ! (not BtoS ACK

(1))) ;

P1 sender 0 :
always ((BtoS ACK(0) and StoB REQ(0)) −> next ! (BtoS ACK(0))) ;

P1 sender 1 :
always ((BtoS ACK(1) and StoB REQ(1)) −> next ! (BtoS ACK(1))) ;

P2 sender 0 :
always (rose (StoB REQ(0)) −> not BtoS ACK(0)) ;

P2 sender 1 :
always (rose (StoB REQ(1)) −> not BtoS ACK(1)) ;

P3 sender :
always (not BtoS ACK(0) or not BtoS ACK(1)) ;

−−−−−−−−− FIFO i n t e r f a c e
P4 FIFO sender :

always (not ENQ or BtoS ACK(0) or BtoS ACK(1)) ;

P5 FIFO sender :
always (not ENQ −> not rose (BtoS ACK(0)) and not rose (BtoS ACK(1))) ;

P6 FIFO sender :
always ((StoB REQ(0) or StoB REQ(1)) and (not FULL) and (not ENQ) −>

next ! (ENQ) and next ! [2] (not ENQ)) ;

P7 FIFO sender 0 :
always (rose (BtoS ACK(0)) −> SLC = 0) ;

P7 FIFO sender 1 :
always (rose (BtoS ACK(1)) −> SLC = 1) ;

}

Figure 4.5: FL specification of GenBuf communication with senders in the case of two
senders

4.3 : Running Example: Generalized Buffer

vunit g enbu f s ende r s e r e
{

P0 se r e s ende r 0 :
always ({not BtoS ACK(0) and not StoB REQ(0) } |=> {not BtoS ACK(0) } !) ;

P0 se r e s ende r 1 :
always ({not BtoS ACK(1) and not StoB REQ(1) } |=> {not BtoS ACK(1) } !) ;

P1 se r e s ende r 0 :
always ({ (BtoS ACK(0) and StoB REQ(0)) } |=> {(BtoS ACK(0)) } !) ;

P1 se r e s ende r 1 :
always ({ (BtoS ACK(1) and StoB REQ(1)) } |=> {(BtoS ACK(1)) } !) ;

P2 se r e s ende r 0 :
always ({not StoB REQ(0) ; StoB REQ(0) } |−> {not BtoS ACK(0) }) ;

P2 se r e s ende r 1 :
always ({not StoB REQ(1) ; StoB REQ(1) } |−> {not BtoS ACK(1) }) ;

P3 se r e s ender :
always (not BtoS ACK(0) or not BtoS ACK(1)) ;

−−−−−−−−− FIFO i n t e r f a c e
P4 sere FIFO sender :

always (BtoS ACK(0) or BtoS ACK(1) or not ENQ) ;

P5 sere FIFO sender 0 :
always ({not BtoS ACK(0) } |=> {ENQ or not BtoS ACK(0) } !) ;

P5 sere FIFO sender 1 :
always ({not BtoS ACK(1) } |=> {ENQ or not BtoS ACK(1) } !) ;

P6 sere FIFO sender :
always ({ (StoB REQ(0) or StoB REQ(1)) and not FULL and not ENQ} |=> {

ENQ; not ENQ} !) ;

P7 sere FIFO sender 0 :
always ({not BtoS ACK(0) ; BtoS ACK(0) } −> SLC = 0) ;

P7 sere FIFO sender 1 :
always ({not BtoS ACK(1) ; BtoS ACK(1) } −> SLC = 1) ;

}

Figure 4.6: SERE properties of GenBuf communication with senders in the case of two
senders

51

Chapter 4 : Fast prototyping from assertions: the overall synthesis flow

0 1 2 3 4 5 6 7 8

clock

EMPTY

BtoR REQ(j)

RtoB ACK(j)

DEQ

Figure 4.7: An example timeline of a GenBuf to receiver handshake

vunit g enbu f r e c e i v e r
{
−−−−− r e c e i v e r s i d e

P0 rec :
always (not EMPTY −> next ! (BtoR REQ(0) or (BtoR REQ(1)))) ;

P1 rec :
always (EMPTY −> next ! (not BtoR REQ(0) and (not BtoR REQ(1)))) ;

P2 rec :
always (not BtoR REQ(0) or not BtoR REQ(1)) ;

P3 rec 0 :
always (rose (BtoR REQ(0)) −> next ! (next event ! (prev (not BtoR REQ(0)

)) (not BtoR REQ(0) unti l (BtoR REQ(1))))) ;

P3 rec 1 :
always (rose (BtoR REQ(1)) −> next ! (next event ! (prev (not BtoR REQ(1)

)) (not BtoR REQ(1) unti l (BtoR REQ(0))))) ;

P4 rec 0 :
always ((BtoR REQ(0)) and (not RtoB ACK(0))−> next ! (BtoR REQ(0))) ;

P4 rec 1 :
always ((BtoR REQ(1)) and (not RtoB ACK(1))−> next ! (BtoR REQ(1))) ;

P5 rec 0 :
always ((RtoB ACK(0)) −> (next ! (not BtoR REQ(0)))) ;

P5 rec 1 :
always ((RtoB ACK(1)) −> (next ! (not BtoR REQ(1)))) ;

−−−−−−−−− FIFO i n t e r f a c e
P6 FIFO rec :

always ((f e l l (RtoB ACK(0)) or (f e l l (RtoB ACK(1))) and not EMPTY) −> (
DEQ)) ;

P7 FIFO rec :
always (not f e l l (RtoB ACK(0)) and not f e l l (RtoB ACK(1)) −> (not DEQ)) ;

}

Figure 4.8: FL specification of GenBuf communication with receivers, in the case of two
receivers

4.3 : Running Example: Generalized Buffer

• P3_rec_0: Describes the round-robin scheme on the receiver side. Once receiver R0

has been requested, it cannot be requested again before receiver R1 is requested.

• P4_rec_j: The request to Rj remains high as long as the acknowledgment from Rj

is not received.

• P5_rec_j: The request to Rj is deasserted one cycle after RtoB ACK(j) is set by Rj.

• P6_FIFO_rec: If there is an acknowledgment from one of the receivers, and the
buffer is not empty, then a data is read from FIFO (DEQ becomes high) in the
falling edge of the acknowledgment signal.

• P7_FIFO_rec: No data is read from the FIFO as long as none of the acknowledg-
ments has not been deasserted.

4.3.4.2 Formal SERE specification

The set of SERE properties that specify the communication between the GenBuf con-
troller, the receivers, and the FIFO are shown in Fig. 4.9.

Here, a property is explained as an example.

• P3_sere_rec_0: Describes the round-robin scheme on the receiver side. Once re-
ceiver R0 has been requested, we wait until deassertion of the request signal. Then,
this request signal remains low until requesting R1.

53

Chapter 4 : Fast prototyping from assertions: the overall synthesis flow

vunit g e nbu f r e c e i v e r s e r e
{

P0 se r e r e c :
always ({not EMPTY} |=> {BtoR REQ(0) or BtoR REQ(1) } !) ;

P1 s e r e r e c :
always ({EMPTY} |=> {not BtoR REQ(0) and not BtoR REQ(1) } !) ;

P2 s e r e r e c :
always (not BtoR REQ(0) or not BtoR REQ(1)) ;

P3 s e r e r e c 0 :
always ({not BtoR REQ(0) ; BtoR REQ(0) ; {BtoR REQ(0) [∗] ; not BtoR REQ

(0) }} |=> {(not BtoR REQ(0)) [∗] ; (prev (BtoR REQ(1))) } !) ;

P3 s e r e r e c 1 :
always ({not BtoR REQ(1) ; BtoR REQ(1) ; {BtoR REQ(1) [∗] ; not BtoR REQ

(1) }} |=> {(not BtoR REQ(1)) [∗] ; (prev (BtoR REQ(0))) } !) ;

P4 s e r e r e c 0 :
always ({BtoR REQ(0) and (not RtoB ACK(0)) } |=> {BtoR REQ(0) } !) ;

P4 s e r e r e c 1 :
always ({BtoR REQ(1) and (not RtoB ACK(1)) } |=> {BtoR REQ(1) } !) ;

P5 s e r e r e c 0 :
always ({RtoB ACK(0) } |=> {not BtoR REQ(0) } !) ;

P5 s e r e r e c 1 :
always ({RtoB ACK(1) } |=> {not BtoR REQ(1) } !) ;

P6 sere FIFO rec :
always ((f e l l (RtoB ACK(0)) or (f e l l (RtoB ACK(1))) and not EMPTY) −> (

DEQ)) ;

P7 sere FIFO rec :
always (not f e l l (RtoB ACK(0)) and not f e l l (RtoB ACK(1)) −> (not DEQ)) ;

}

Figure 4.9: SERE properties of GenBuf communication with receivers in the case of two
receivers

Chapter 5
Synthesizing FLs

Contents
5.1 Introduction . 56

5.2 Formalization of the annotation 56

5.2.1 Dependency relation: definition and notations 56

5.2.2 Dependency relation between operands of FL operators 59

5.3 Dependency relation synthesis 63

5.3.1 Principles of the primitive reactant construction 63

5.3.2 Generic format of a FL operator 65

5.4 Summary . 72

55

Chapter 5 : Synthesizing FLs

5.1 Introduction

In this chapter, we address how to synthesize an FL temporal operator, and provide a
library of primitive reactants for FL operators. First, the dependency relation concept is
introduced. Then, for each operator, the dependency relation between its operands are
considered, and formalized. Based on the dependency relations and the formal semantics
of the operators, a generic format is proposed for FL operators. Then, it is shown how each
of the FL temporal operators can be mapped into this generic format, and be synthesized.

5.2 Formalization of the annotation

The purpose of this section is to formally define the notion of dependency between
operands of a PSL operator, in order to have a synthezisable VHDL description of each op-
erator and to mark signals. To this aim, we define a dependency relation which character-
izes the conditions under which an argument of a temporal operator is free or constrained
to a value, based on the value of the other argument.

The materials of this section are originally provided by Katell Morin-Allory and are
published in [MAJB15]. Since they are the underlying formalism of the annotation, they
have been brought here. Later, in Chapter 7 it is shown how these dependency relations
can be used to annotate the signals in a property.

5.2.1 Dependency relation: definition and notations

For proving the dependency relations, we use the PSL semantic definitions in Appendix
B of the IEEE Standard [FG05]. The essential concepts and notations have been already
introduced in Chapter 2. Here, we review some of the required notations that were
introduced in Chapter 2, Section 2.2.2.2.

• P: a non-empty set of atomic propositions, in practice the set of signal names in a
property

• Σ = 2P: the set of all possible valuations of P

• letter: a letter, � ∈ Σ, is a valuation of all the propositions in P.

• word: a word, w, is a sequence of letters (w = �0�1�2...), and it stands for the
succession over time of the signal values, i.e. an execution trace. If i and j are
integers, wi = �i is the (i + 1)th letter of w; wi..j = �i�i+1 . . . �j is the finite word
starting at �i and ending at �j; and wi... = �i�i+1 . . . is the suffix of w starting at wi.

• The semantics of a Boolean expression exp over P is the set of all the letters of Σ
on which exp takes value true.

• � � exp (exp is true in �): means that exp takes value true if all its variables take
their value as in �.

• w |= property (“property” is true on word w): is the extended semantics by
structural induction over FL properties to words.

Example 1. Notations.

5.2 : Formalization of the annotation

Consider property P0_sender_0 from GenBuf sender.

P0 sender 0 :
always (not BtoS ACK(0) and (not StoB REQ(0)) −> next ! (not BtoS ACK(0))) ;

The set of atomic propositions isP = {StoB REQ(0), BtoS ACK(0)}. Then, Σ = {<
0, 0 >,< 0, 1 >,< 1, 0 >,< 1, 1 >}, which is the set of all possible valuations of P. Each
element of Σ, ex.< 1, 1 >, denotes a letter, �. w = (< 1, 0 >,< 1, 1 >,< 0, 1 >,< 0, 0 >)
is an execution trace, which is the sequence of letters. Property P0_sender_0 holds on
trace w, since the � � exp implication holds on each letter of w (see Fig.5.1).

0 1 2 3 4

clock

StoB REQ(i)

BtoS ACK(i)

Figure 5.1: An execution trace for P0_sender_0

Definition 1. Let w be a trace, A and B two FL formulas. The dependency relation
between A and B is defined as follows:

�A�B�w ⇐⇒ w |= B ⇒ w |= A

When ∀w, �A�B�w we can write: A�B.

The relation �A�B�w reads: on a trace w, the value of A depends on the value of B.
For a trace w, if B is satisfied on w, A must be satisfied on w.

Based on this definition, we express some properties that are useful in proving the
dependency relations in Section 5.2.2.

Property 1. �A�B�w ∧ �A�C�w ⇔ �A�(B orC)�w

Proof.

⇔ (w |= B ⇒ w |= A) ∧ (w |= C ⇒ w |= A)

⇔ (w |= ¬B ∨ w |= A) ∧ (w |= ¬C|w |= A)

⇔ w |= A ∨ (w |= ¬B ∧ w |= ¬C)

⇔ w |= A ∨ (w |= (¬B or¬C))

⇔ w |= A ∨ (w |= ¬(B orC))

⇔ w |= (B ∨ C) ⇒ w |= A

⇔ �A�(B orC)�w

�

Property 2. �A�B�w ∨ �A�C�w ⇔ �A�(B andC)�w

57

Chapter 5 : Synthesizing FLs

Proof.

⇔ (w |= B ⇒ w |= A) ∨ (w |= C ⇒ w |= A)

⇔ (w |= ¬B ∨ w |= A) ∨ (w |= ¬C|w |= A)

⇔ w |= A ∨ (w |= ¬B ∨ w |= ¬C)

⇔ w |= A ∨ (w |= (¬B or¬C))

⇔ w |= A ∨ (w |= ¬(B andC))

⇔ w |= (B andC) ⇒ w |= A

⇔ �A�(B andC)�w
�

Property 3. �(A andB)�C�w ⇔ �A�C�w ∧ �B�C�w

Proof.

⇔ w |= C ⇒ (w |= A andB)

⇔ w |= C ⇒ (w |= A ∧ w |= B)

⇔ w |= ¬C ∨ (w |= A ∧ w |= B)

⇔ (w |= ¬C ∨ w |= A) ∧ (w |= ¬C ∨ w |= B)

⇔ (w |= C ⇒ w |= A) ∧ (w |= C ⇒ w |= B)

⇔ �A�C�w ∧ �B�C�w
�

Property 4. �(A orB)�C�w ⇔ �A�(C ∧ ¬B)�w

Proof.

⇔ w |= C ⇒ (w |= A orB)

⇔ w |= C ⇒ (w |= A ∨ w |= B)

⇔ w |= ¬C ∨ (w |= A ∨ w |= B)

⇔ w |= (¬C orB) ∨ w |= A

⇔ w |= ¬(C ∧ ¬B) ∨ w |= A

⇔ (w |= (C ∧ ¬B) ⇒ w |= A

⇔ �A�(C ∧ ¬B)�w
�

Property 5. �A�B�w ⇔ �¬B�¬A�w

Proof.

⇔ w |= B ⇒ w |= A

⇔ w |= ¬B ∨ w |= A

⇔ w |= ¬A ⇒ w |= ¬B
⇔ �¬B�¬A�w

5.2 : Formalization of the annotation

�
Definition 2. Let ϕ be a FL formula. A and B are two operands of ϕ. Let w be a trace.
A depends on B in ϕ if: ∀w, �ϕ� true�w ⇔ �A�B�w.

Property 6. For any trace w, ���w is a partial order

Proof.

Reflexivity: A�A

∀w, |w| > 0, (w |= A ⇒ w |= A)

This is evidently true.

No Symmetry: �A�B�w �⇒ �B�A�w
∀w,(w |= B ⇒ w |= A)

⇒(w |= A ⇒ w |= B)?

We replace w |= A with a and w |= B with b. Then, we should prove: (b ⇒ a) ⇒
(a ⇒ b)
This statement is not a tautology. Therefore, ���w is not symmetric.

Antisymmetry: �A�B�w ∧ �B�A�w ⇒ A ⇔ B

∀w,(w |= B ⇒ w |= A) ∧ (w |= A ⇒ w |= B)

⇒ (A ⇔ B)?

By changing the variables as a = w |= A and b = w |= B, we should prove: (b ⇒
a) ∧ (a ⇒ b) ⇔ (a ⇔ b)
This statement is a tautology.

Transitivity: �A�B�w ∧ �B�C�w ⇒ �A�C�w
∀w,(w |= B ⇒ w |= A) ∧ (w |= C ⇒ w |= B)

⇒ (w |= C ⇒ w |= A)?

With the same variable changes as above, we need to prove:

(b ⇒ a) ∧ (c ⇒ b) ⇒ (c ⇒ a)

This formula is a tautology; ���w is transitive. The relation ���w is thus a partial order
for any trace w. �

5.2.2 Dependency relation between operands of FL operators

For an FL formula the dependency between its operands is stated using the general ���w
relation.

In the following, the dependency relation for each FL operator is presented.

59

Chapter 5 : Synthesizing FLs

5.2.2.1 Always

Dependency Rule 1. Always
Let ϕ = alwaysA, then
�ϕ� true�w iff ∀i < |w|, �A� true�wi...

Proof. We replace always by its semantic definition (see Appendix B of [FG05]).

∀w,�ϕ� true�w
⇔ w |= true ⇒ w |= alwaysA

⇔ w |= true ⇒ ∀i ∈ N, |w| > i, wi... |= A

⇔ ∀i < |w|, �A� true�wi...

�

5.2.2.2 Eventually!

Dependency Rule 2. Eventually!
Let ϕ = eventually!A, then
�ϕ� true�w iff ∃i < |w|, �A� true�wi...

Proof. In the second line, we replace eventually! by its semantic definition.

∀w,�ϕ� true�w
⇔ w |= true ⇒ w |= eventually!A

⇔ w |= true ⇒ ∃k < |w|, wk... |= A ∧ ∀i < k, wi... |= true

⇔ w |= true ⇒ ∃k < |w|, wk... |= A

⇔ ∃i < |w|, �A� true�wi...

�

5.2.2.3 Next family

Dependency Rule 3. Next![k]
Let ϕ = next![k]A, then
�ϕ� true�w iff �A� true�wk...

Proof. In the second line, next! is replaced by its semantic definition.

∀w,�ϕ� true�w
⇔ w |= true ⇒ w |= next![k]A

⇔ w |= true ⇒ |w| > k ∧ wk... |= A

⇔ �A� true�wk...

�

5.2 : Formalization of the annotation

Dependency Rule 4. Next a!
Let ϕ = next a![i to j]A, then
�ϕ� true�w iff ∀k ∈ [i..j], �A� true�wk...

Proof. next a![i to j]A can be rewritten as:

(next![i]A) ∧ (next![i+ 1]A) ∧ ∧ (next![j]A)

Using the Dependency Rule 3, and substituting each next! operator, the dependency
relations is proved easily. �
Dependency Rule 5. Next e!
Let ϕ = next e![i to j]A, then
�ϕ� true�w iff ∃k ∈ [i..j], �A� true�wk...

Proof. next e![i to j]A can be rewritten as:

(next![i]A) ∨ (next![i+ 1]A) ∨ ∨ (next![j]A)

The proof is done simply by mathematical rewriting of the above formula. �

5.2.2.4 Until family

Dependency Rule 6. Until!
Let ϕ = A until! B, then
�ϕ� true�w iff ∃k < |w|, �B� true�wk... ∧ ∀i < k, �A�¬B�wi...

Proof.

∀w�ϕ� true�w
⇔ w |= true ⇒ w |= A until! B

⇔ w |= true ⇒ ∃k < |w|, wk... |= B ∧ ∀i < k, wi... |= A

⇔ w |= true ⇒ ∃k < |w|, wk... |= B ∧ ∀i < k, wi... |= A or(B and¬B)

⇔ w |= true ⇒ ∃k < |w|, wk... |= B ∧ ∀i < k, (wi... |= A ∨ wi... |= B)

∧ (wi... |= A ∨ wi... |= ¬B)

⇔ w |= true ⇒ ∃k < |w|, wk... |= B ∧ ∀i < k, wi... |= ¬B ⇒ wi... |= A

∧ (wi... |= A ∨ wi... |= ¬B)

⇔ w |= true ⇒ ∃k < |w|, �B� true�wk... ∧ ∀i < k, �A�¬B�wi...

∧ (wi... |= A ∨ wi... |= ¬B)

In the last equivalence, if we assume that k is the least integer such that w |= B,
(wi... |= A∨wi... |= ¬B) can be simplified to true. Then, the last equivalence is simplified
to:

⇔ w |= true ⇒ ∃k < |w|, �B� true�wk... ∧ ∀i < k, �A�¬B�wi...

⇔ ∃k < |w|, �B� true�wk... ∧ ∀i < k, �A�¬B�wi...

61

Chapter 5 : Synthesizing FLs

�
In this dependency relation, if A and B are both Boolean, the dependency relation

�A�¬B�wi... can be reversed (see Property 5).

Dependency Rule 7. Until
Let ϕ = A until B, then

∀w,
� ∃k < |w|, �B� true�wk... ∧ ∀i < k, �A�¬B�wi...

or
∀i < |w|, �A� true�wi...

Proof. The first dependency is like the dependency rule of the until! operator. Since
until is a weak operator, B may never occur, and ∀i < |w|, �A� true�wi... .
�

5.2.2.5 Before family

Dependency Rule 8. Before!
Let ϕ = A before! B, then
�ϕ� true�w iff ∃k < |w|, �¬B andA� true�wk... ∧ ∀i < k, �¬B� true�wi...

Proof. before! can be rewritten using the until! operator.

∀w�ϕ� true�w
⇔ w |= true ⇒ w |= (¬ B) until! (A and¬B)

Using the Dependency Rule 6 for until! we have:

∀w�ϕ� true�w
⇔ w |= true ⇒ ∃k < |w|, �A and¬B� true�wk... ∧ ∀i < k, �¬B�¬A orB�wi...

The above statement can be rewritten using Property 1, as follows:

⇔ w |= true ⇒ ∃k < |w|, �A and¬B� true�wk... ∧ ∀i < k, �¬B or(¬B andA)� true�wi...

⇔ w |= true ⇒ ∃k < |w|, �A and¬B� true�wk... ∧ ∀i < k, �¬B� true�wi...

⇔ ∃k < |w|, �¬B andA� true�wk... ∧ ∀i < k, �¬B� true�wi...

�

5.2.2.6 Next event family

Dependency Rule 9. Next event!
Let ϕ = next event!(B)A, then �ϕ� true�w iff
∃k < |w|, �B � true�wk... ∧ ∀i ≤ k, �A�B�wi...

Proof. We rewrite next event! using the until! operator, as follows:

∀w�ϕ� true�w
⇔ w |= true ⇒ w |= (¬ B) until! (A andB)

5.3 : Dependency relation synthesis

Using the Dependency Rule 6 for until! we have:

∀w�ϕ� true�w
⇔ w |= true ⇒ ∃k < |w|, �A and B� true�wk... ∧ ∀i < k, �¬B�¬A or¬B�wi...

The above statement can be rewritten using Property 3, and Property 1, as follows:

⇔ w |= true ⇒ ∃k < |w|, �A� true�wk... ∧ �B� true�wk... ∧ ∀i < k, �¬B�¬B�wi...

∧ �¬B�¬A�wi...

⇔ w |= true ⇒ ∃k < |w|, �A� true�wk... ∧ �B� true�wk... ∧ ∀i < k, �¬B�¬A�wi...

Using Property 5, we have:

⇔ w |= true ⇒ ∃k < |w|, �B� true�wk... ∧ ∀i ≤ k, �A�B�wi...

�
All the other FL operators are defined as expressions involving the operators above.

Their dependency rules are derived from the rewrite rules provided by the PSL standard[FG05].

5.3 Dependency relation synthesis

Each operator is a primitive reactant. In order to synthesize PSLsimple properties into
circuits, a library of FL primitive reactants is provided. To this goal, we give a hardware
interpretation of the dependency relation �ϕ� true�w, where ϕ stands for a call to any of
the FL operators, and Ω stands for the FL temporal operator (dependency Rules 1 to 9
above). For example if ϕ = A until!B , Ω is the operator until!.

Here, we address how to implement the FL primitive reactants. The complex reactants
are constructed recursively from these primitives (see Chapter 8).

5.3.1 Principles of the primitive reactant construction

The primitive reactants have a general interface: they take clock and reset as the syn-
chronization signals. Each primitive reactant has a start signal for its activation (see
Fig.5.2).

observed

Figure 5.2: Generic interface of a primitive reactant

The operands of an FL operator, Ω, are observed or constrained by the primitive
reactant of Ω during its activity. Thus, the output of a reactant is not the value of a

63

Chapter 5 : Synthesizing FLs

signal, but the trigger that will start the primitive hardware component in charge of the
signal value generation or observation (see Fig. 5.2).

In particular, for a Boolean signal S, triggering S = 0 and S = 1 is done by two
distinct signals TrigS and Trig¬S. In the following, without loss of generality, we shall
only consider the positive case S = 1. TrigS is set to 1 by the reactant at all cycles when
the dependency �S� true�w holds.

Let P be the set of the signal names in ϕ; i.e. the operands of Ω. The operands may be
observed or constrained. Therefore, we split P in two sets Pin and Pout (P = Pin∪Pout),
that contain observed and constrained operands respectively.

Circuit C is the circuit that implements a primitive reactant.
The setPC of atomic propositions for the circuit C is given byPC = Pin∪{reset, start}∪

{TrigS,Trig¬S | S ∈ Pout}. We denote ΣC the alphabet built on PC.
Let wC be a trace built on ΣC and wϕ (or w) a trace built on Σ.

Definition 3. wC is equivalent to w on Pin, denoted wC ≡|Pin
w iff ∃j such that

• wj
C � start and ∃k < j such that wk−1

C � reset and ∀l, k < l ≤ j, wl
C � ¬reset and

wl
C � ¬start

• ∀i, wj+i
C |Pin

= wi|Pin

Circuit C is activated after being reset, when the start signal becomes 1. It means that
there is a time point in the trace (wj

C) where start becomes 1. Before this point, C has
been reset and it is not active. After this point, wC and w1 should have identical values
for the atomic propositions in Pin; i.e. circuit trace wC is equivalent to w on Pin. For the
sake of simplicity, we assume that j = 0.

Definition 4. wC is equivalent to w, denoted wC ≡ w, iff

• wC ≡|Pin
w

• ∀S ∈ Pout, ∀i, wi
C � TrigS =⇒ wi � S

• ∀S ∈ Pout, ∀i, wi
C � Trig¬S =⇒ wi � ¬S

A trace wC is equivalent to w, if they are equivalent on inputs. Additionally, for each
output signal if its trigger takes value true in wi

C, the signal takes value true in wi.

Definition 5. A circuit C implements the dependency �ϕ�True�w iff wC ≡ w
and ∀i, wi

C � start → �ϕ� true�wi...

Definition 6. A circuit C is a primitive reactant circuit that implements the temporal
formula ϕ, iff C implements the dependency �ϕ� true�w for all traces w, and we write:
C�ϕ.

In this chapter, we address how to synthesize C for FL primitive reactants.

5.3.1.1 Boolean reactant

The simplest primitive reactant implements Boolean expressions. A Boolean expression
can be written as one of the following: a constant in {0,1}, a signal or the negation of a

5.3 : Dependency relation synthesis

Figure 5.3: Boolean reactant

signal, the conjunction or disjunction of two Boolean expressions. Fig. 5.3 shows the four
different implementations for a Boolean reactant.

In the case of a disjunction, when the reactant is started, if all the signals of one
operand are in Pin (exp2 in Fig. 5.3), the operand is observed: in that case, there is no
constraint on the other operand if exp2 is known to be 1. Due to the commutativity of OR,
the roles of exp1 and exp2 can be exchanged. It may happen that deciding which operand
is observed cannot be decided locally to a property: this is discussed in Chapter 9.

5.3.2 Generic format of a FL operator

We proposed a generic format for all FL operators [MAJB15]. This format is based on
the operator semantics definition. It is shown that all primitive reactants for the temporal
operators can be built from a few number of elements that are the circuit counterpart of
the constituting elements of the operator semantic definition.

Considering the dependency rule of the temporal operator shows that each dependency
is a special case of one of two following generalized expressions

1 the“forall” family includes: always, until, next!, next a, next event, next event a.

2 the “exists” family includes: eventually!, before, next e, next event e.

The “forall” and “exists” generalized expressions have the following format:

∀i ∈ [kmin , kmax], �exp� cond�wki (5.1)

∃i ∈ [kmin , kmax], �exp� cond�wki (5.2)

In the above formulas, exp and cond are two Booleans, and min and max are two
naturals such that max ≥ min. kmin and kmax are computed using a counting function,
Ith. The Ith function returns the number of times that its operand, a formula F computed
on trace w, has been true on w0..k. We are interested in the first time point for each
number of occurrences of formula F = true. This consists in numbering the time points
of trace w that satisfy:

Ith(�F � true�wki) = i ∧ �F � true�wki , ∀i ∈ N

65

Chapter 5 : Synthesizing FLs

The sequence {k0, k1, ..., ki...} is the set of these time points (see Fig. 5.4).

0 1 2 3 4 5 6 7 8 9

k1 k2 k3

clock

F

Ith(. . .) 0 1 2 3

Figure 5.4: Illustration of function Ith(�F � true�wki)

The values of min,max , exp, cond and F depend on the temporal operator. Table 5.1
gives their value for each PSL FL operator. Column F specifies what is counted by
function Ith. When F = true, Ith counts clock cycles. Otherwise, it counts each time
point k in the trace where a dependency relation holds. The two columns opt. and opt.
!, indicate if the operator can have overlap/non overlap and strong/weak options. As was
mentioned earlier, based on the dependency rules, operators Until and Before have two
versions, depending on whether their left operand A is observed or generated.

Temporal Operator F min max cond exp opt. opt. !

alwaysA true 0 | w | true A no no
A untilB (1) B 0 1 ¬B A yes yes
A beforeB (1) ¬B 0 1 ¬A ¬B yes yes

next![i]A true i i true A no yes
next a[i to j]A true i j true A no yes

next event[i](B)A B i i B A no yes
next event a[i to j](B)A B i j B A no yes

eventually!A A 0 1 true A no no
A untilB (2) B 0 1 ¬A B no yes
A before B (2) ¬B 0 1 B A no yes
next e[i to j]A true i j true A no yes

next event e[i to j](B)A B i j true A no yes

Table 5.1: Values of parameters for forall (top) and exists (bottom) expressions

In the following, the implementation of the I th function is explained. Then, the im-
plementation of the “forall” and “exists” expressions will be discussed.

Implementation of function Ith. The counting function is implemented as a generic
shift register, instantiated with a parameterized number of cells (Fig. 5.5). The shift
register reads data one bit at a time on input s in. The content of the register can be
read serially on output s out , and in parallel on output p out . The shift input control
signal shifts the register. The other input control signal, clear , clears the register. By
default, shift is 1 (it shifts at all cycles) and clear is 0 (the input value is propagated).

Since PSL operators are re-entering, the shift register may count events simultaneously
starting from several distinct start times.

5.3.2.1 Implementation of an operator of the “forall” group

Fig. 5.6 illustrates the implementation of the “forall” expression. It is based on the in-
terconnection of 4 components: Min, Max, ForAll, and Dep. In the following, in case of
ambiguity, we prefix a signal name with the component name when we do not mean the
global module interface signal.

5.3 : Dependency relation synthesis

Figure 5.5: Interface of the shift register

ForAll
Dep

Figure 5.6: Implementation of the “forall” expression

67

Chapter 5 : Synthesizing FLs

• Component Dep (for the dependency �) is a mere AND gate that implements the
expression �exp� cond�wk . It triggers the evaluation of exp depending on the value
of cond .

• Component ForAll implements the ∀i ∈ �kmin, kmax� expression. It is used to trigger
the evaluation of the dependency relation at all times between the two bounds kmin

and kmax that are connected to its inputs lb and ub. The signal ForAll.trig is asserted
at all times between lb and ub. Depending on whether the operator is overlapping
or not, two versions are used (see Fig. 5.7).

(a) non overlapping (b) overlapping

Figure 5.7: Implementation of ∀i ∈ [lb, ub]

• Component Min(Max) takes start and cond as its inputs. The start signal initiates
counting of the occurrences of F on its input Min.cond (Max.cond). The Min and
Max components embed a shift register of size min for Min, of size max −min for
Max. If min is 0, the shift register is just a wire. If max is unbounded, component
max is the ground. (see columns min and max of Table 5.1 for finding the value
of min and max for each operator). The reach output signal takes value 1 when
the min (max) value is found. The Min.pending (Max.pending) output signal is
the output of the embedded shift register in Min(Max), and is 1 as long as the min
(max) value is not found. The global output pending is the OR of Min.pending and
Max.pending, and is 1 between the min-th and the max-th occurrences of F after
start = 1.

All the FL operators of this group observe F , which can be an operand of an operator
(e.g. B in next event(B)A), and constrain exp (ex. A in next event(B)A).

Example 2. Implementation of operator next![i].

ϕ = next![i]A is a special case of the “forall” expression (see Dependency Rule 3):

∀i ∈ [kmin , kmax], �exp� cond�wki

In the above expression, [min = max = i], and formula F = B = true (see Table 5.1).
Therefore, the shift register of Min has i cells, and component Max is a wire, and Min
counts clock cycles. Fig. 5.8 shows the implementation of ϕ.

5.3 : Dependency relation synthesis

ForAll
Dep

Figure 5.8: Implementation of next![i]

Example 3. Implementation of next event a![i to j](B)A.

ϕ = next event a![i to j](B)A corresponds to the general “forall” expression, where
[min = i,max = j], and F = B. Therefore, two full Min and Max components are used
(see Fig. 5.9).

ForAll
Dep

Figure 5.9: Implementation of next event a![i to j](B)A

Example 4. Implementation of A until!B.

ϕ = A until!B corresponds to the general “forall” expression, where [min = 0,max =
1], and F = B. Thus, the Max component is 1-bit register. Once B is observed, the Dep
component is activated, and implements the �A�¬B� dependency relation (see Fig. 5.10).
So, the operator constrains A.

5.3.2.2 Implementation of an operator of the “exists” group

The implementation of the “exists” expression is shown in Fig. 5.11. Component Min and
Max observe the formula F , and count the numbers of its occurrence in the [kmin, kmax]
interval.

69

Chapter 5 : Synthesizing FLs

ForAll
Dep

Figure 5.10: Implementation of A until!B

Figure 5.11: Implementation of the “exists” expression

5.3 : Dependency relation synthesis

The Exists component inputs exp, lb, and ub (see Fig. 5.12). If exp = 1 has not been
met in the [kmin, kmax] interval, Exists triggers the evaluation of the dependency relation
at time kmax (Exists.trig = 1). Otherwise, if exp is 0 in this interval, the Exists component
has no external effect, and Exists.f ind = 0. Output Exists.f ind is connected to the clear
input of component Max to stop the counting when exp = 1 has been met.

Simultaneous executions of an “exists” expression that has been started several times
may be cleared by a single occurrence of exp = 1.

Figure 5.12: Implementation of ∃i ∈ [lb, ub]

Example 5. Implementation of operator next e[i to j].

ϕ = next e[i to j]A is a simple case of the “exists” expression. Since F = B = true,
the clock cycles should be counted between min = i and max = j, while exp = A = 0.
Whenever A becomes 1, Exists.trig is set to 1. Since the cond input of the Dep component
is is 1, the rightmost AND gate is eliminated, and trig = Exists.Trig (see Fig. 5.13)

Figure 5.13: Implementation of next e[i to j]A

Remark.
It should be mentioned that this implementation of the temporal operators is not optimal.
However, it facilitates the proof of correctness of their compliance with the formal trace
semantics that is provided in the PSL standard document [FG05]. In the library of our

71

Chapter 5 : Synthesizing FLs

prototype system, all the operators have been simplified, and their optimized version
proven equivalent to the one presented here.

5.4 Summary

In this chapter, we addressed how to provide a correct-by-construction library of primitive
reactants for FL temporal operators of PSLsimple. First, the concept of the dependency
relation ���w is introduced. For each FL temporal operator of PSLsimple, the relation
between its operands are defined formally based on the formal trace semantics of the oper-
ator. Based on these semantics, a generic format is proposed for the operators. All the FL
temporal operators of PSLsimple are special cases of a general dependency expression, ei-
ther universally (“forall”expression) or existentially (“exists”expression) quantified. Then,
some elements are introduced for constructing the quantifiers, and “forall” and “exists” ex-
pressions. Based on these constructions, a hardware interpretation for the mathematical
formulas of the temporal FL operators’ dependency relations is given. The presented de-
pendency relations are the underlying formalism of the annotation (see Chapter 7). Later
in Chapter 8, we show how these primitive reactants are used to construct the complex
reactant of a property.

Chapter 6
Synthesizing SEREs

Contents
6.1 Introduction . 74

6.2 Challenges and motivations . 74

6.3 Formalization of the annotation 79

6.3.1 Dependency relation: definition and notations 80

6.3.2 Dependency relation between operands of SERE operators . . 80

6.4 Dependency relation synthesis 86

6.4.1 Principles of the primitive reactant construction 86

6.4.2 Implementation of primitive reactants of SERE operators . . . 89

6.5 Summary . 96

73

Chapter 6 : Synthesizing SEREs

6.1 Introduction

In this chapter we discuss the synthesis principles of SEREs1. SEREs are very similar to
the sequences in SVA2. SEREs are a convenient way to express the signals’ waveforms, by
writing simple properties of the form:

{observe} |=> {observe}
or

{observe} |=> {generate}
These properties can represent the environment behavior or a communication protocol.
First, using some examples we demonstrate some of the difficulties and challenges that

we should deal with in considering SEREs.
Then, we address how to provide a library of primitive reactants for SERE operators.

We start by formalizing the relationships between the operands of a SERE operator based
on its trace semantics. Then, we categorize SERE operators, and show with some examples
how a SERE operator of each category can be implemented.

Later in Chapter 8 we show how these primitive reactants are used to construct the
complex reactant of a SERE property.

Finally, we introduce a synthesizeable subset of SEREs.

6.2 Challenges and motivations

We can rewrite some SEREs as FLs3 (see the rewriting rules in [MABBZ08]). In this case,
we do not need to synthesize SEREs, and the provided library of FLs is sufficient. However,
SEREs cannot be always translated to FLs. Properties that involve some special form of
counting cannot be expressed in PSL without using SEREs. If we want to rewrite such
properties in FLs, we may need to define auxiliary variables and properties. Moreover,
some behaviors or English specification can be expressed using SEREs more easily, and
in a more compact way.

Example 1. FL or SERE?

Assume that we want to write a property that states: “signal a is asserted on every
even cycle”4. The assertion may be written as assertion_FL:

as s e r t i on FL :
assert (a and always (a −> next [2] (a))) ;

This assertion expresses that a should be asserted in cycle �0, and then, whenever a is
1, it should be asserted 2 cycles later. Now, consider the trace shown in Fig. 6.1. a is 1
in cycle �5. Based on assertion_FL, a should be 1 in cycle �7. Since it is 0 in cycle �7,
assertion_FL fails. However, in the English property, we did not say anything about a
in odd cycles. Therefore, assertion_FL is checking a condition that is not intended to
be checked. Briefly, the trace shown in Fig. 6.1 is correct based on the English property,
however, it is not correct based on assertion_FL.

1Sequential Extended Regular Expression
2System Verilog Assertion
3Foundation Language
4The example is taken from [EF06]

6.2 : Challenges and motivations

0 1 2 3 4 5 6 7 8 9 10 11

clock

a

Figure 6.1: An example timeline for “a is asserted on every even cycle”

We can fix this problem by defining an auxiliary variable and writing a code in the
modeling layer (see Fig. 6.2). Signal even becomes 1 in every even cycle, and signal a
should be asserted whenever even is 1.

vunit check even {
signal even : s t d l o g i c := ’1 ’ ;
process (c lk ’ event and c l k = ’1 ’)
begin

even <= not even ;
end process ;

assert always (even −> a) ;
}

Figure 6.2: Using modeling layer to check “a is asserted on every even cycle”

However, this property can be easily written using SEREs:

assertion SERE :
assert { [∗ 1] ; { [∗ 2] } [∗] } |−> {a } ;

Additionally, rewriting a SERE property as FL may cause that it does not fit in
PSLsimple anymore.

Example 2. Rewriting SEREs as FLs.

Consider HDLC_200 from Fig. 6.35. It states the behavior of the controller in the case
of having an abort command. In this situation, 7 consecutive 1’s should be put on the
output, followed with one or more flags, which is “01111110”. It can be easily written
as a SERE. Conversely, property HDLC_200 reflects this behavior easily: once an abort
command is received, i.e. TxSendAbort changes from 0 to 1, while the transmitter is enabled
the output TxDout becomes 1 for at least 7 consecutive cycles, and finally it is followed
by one or more flags.

As another example consider HDLC_300. It can be easily converted to an FL property;
however, it is not in PSLsimple(see Fig. 6.4), since the left-hand side of the implication
operator is not Boolean.

Since all the SEREs cannot be expressed using FLs, in the rest of this chapter we
propose a method for synthesizing SEREs. Before going to the synthesis method, here we
bring some examples that reveal the difficulties and challenges that we should consider.
These difficulties impose some limitations to the subset of SEREs that we are able to
synthesize.

5The properties describe High-level Data Link Controller (HDLC), and are taken from [PPSQ13]

75

Chapter 6 : Synthesizing SEREs

HDLC 200 :
always ({not TxSendAbort and TxEnable ; TxSendAbort and TxEnable}

|−> {TxDout [∗ 7] ; TxDout [∗] ; {not TxDout ; TxDout [∗ 6] ; not TxDout
} [+]}) ;

HDLC 300 :
always ({not BuffEmpty and TxEnable ; (BufEmpty and not TxDataWr and

TxEnable) ; (not TxDataWr and TxEnable) [∗ 7] }
|−> next (TxUnderRun)) ;

Figure 6.3: Sample SERE properties of High-level Data Link Controller

HDLC 300 FL :
always (not BuffEmpty and TxEnable and next ((BuffEmpty and not not

TxDataWr and TxEnable) and next a [2 to 8] (not TxDataWr and TxEnable))
−> next [9] (TxUnderRun)) ;

Figure 6.4: FL version of HDLC_300

It should be mentioned that when we constrain a signal, we assign a specific value to
that signal. Generating a signal means constraining the signal value. When a signal is
not constrained, its value is don’t care. However, in the following examples we consider
value 0 for unconstrained signals.

Example 3.

Consider property P1, where a, b, and c are Boolean:

P1 : always {a} |=> {b [∗] ; c}

Assume that a is observed and we generate b and c. Then, the question is: “when should
we stop constraining b to 1, and start constraining c to 1”? If we want to generate c, the
property is not deterministic since c can be constrained to 1 in any cycle after a = 1. If
we observe b and generate c, when should c be constrained to 1? It may depend on other
properties.

If we observe c and generate b, b is no longer constrained as soon as c becomes 1.

Example 4.

In this example, we assume value 0 for unnamed signals. Consider property P2, where
a, b, and c are Boolean:

P2 : always {a} |=> {b [+] ; c ; not c}

Assume that a is observed, and b and c are generated. Some questions may arise: “when
should we stop constraining b to 1?”, “If a is 1 in two consecutive cycles, how should we
constrain b and c to avoid an inconsistency?”

Figure 6.5 shows two possible traces. Sequence 1 starts at cycle �0. b is constrained
to 1 for three cycles. In cycle �4, c is constrained to 1, and it is constrained to 0 in cycle
�5, and sequence 1 completes in this cycle.

Assume a is 1 in two consecutive cycles �6 and �7. Sequence 2 starts when a is asserted
in cycle �6. Then, b is constrained to 1 in cycles �7 and �8, c is constrained to 1 at cycle
�9 and it is constrained to 0 at cycle �10. Sequence 2 completes in cycle �10. Sequence 3

6.2 : Challenges and motivations

1

1 completes

2

2 completes

3

3 completes

4

4 completes

5

contradiction

0 1 2 3 4 5 6 7 8 9 10

clock

a

b

c

a

b

c

Figure 6.5: Timing diagram of P2, where b and c are generated (Example 4)

starts when a is asserted in cycle �7. Then, b is constrained to 1 in cycle �8, c is constrained
to 1 at cycle �9 and it is constrained to 0 at cycle �10. Sequence 3 completes in cycle �10.

Now, consider the bottom trace of Fig. 6.5. Sequence 4 starts in cycle �6. Then, b is
constrained to 1 in cycle �7, c is constrained to 1 at cycle �8 and it is constrained to 0 at
cycle �9; hence, sequence 4 completes in this cycle. Sequence 5 starts in cycle �7. Then,
b is constrained to 1 in cycle �8. If we stop constraining b to 1 at this cycle and want to
constrain c to 1 at cycle �9, there is a contradiction with the value that is being generated
at the same cycle for c by sequence 4. This example shows that when we should stop
generating b, for each run of the property is an issue.

Assume that b is generated. We observe c, and constrain b to 1 while c is 0. Whenever c
is asserted, in the following cycle, we constrain c to 0. In brief, we generate b, we observe c,
and we generate not c. It implies that other properties should constrain c. Our prototype
tool, SyntHorus2, can identify if the signal is constrained by any property. However,
constraining c by other properties may cause inconsistency. As it will be explained in
Chapter 9, SyntHorus2 generates some complementary properties to identify if there are
any inconsistencies. Figure 6.6 shows a possible trace. Sequence 1 starts in cycle �0, and
completes in cycle �3. Sequence 2 starts in cycle �1. This sequence cannot be completed,
since c is 1 in cycle �2, and hence, b cannot be constrained to 1.

Sequence 3 starts in cycle �5. c is 0 in cycles �6, �7, and �8. Therefore, b is constrained
to 1 in these cycles. In cycle �9, c is asserted. Consequently, we should stop constraining b
to 1 at cycle �9, and we should constrain c to 0 in cycle �10. However, c is constrained to
1 by other properties, and there is an inconsistency. If we keep constraining b to 1 in cycle
�9, there would be no contradiction, and the property holds. So, we may conclude that we
should monitor {c; not c} instead of observing c and generating not c. In the following,
we explain why it is not a good solution.

Now, assume that we generate b, and observe {c; not c}. We should stop constraining
b to 1 as soon as {c; not c} occurs. However, it is not possible. The limitation is shown
in Fig. 6.7. In this figure, signal ended indicates the completeness of {c; not c}. Signal b
is constrained to 1 as far as ended is 0. The sequence starts in cycle �0. In cycles �1, �2,
�3, and �4 the ended signal is 0; i.e. {c; not c} has not been observed, so b is constrained
to 1. In cycle �5, {c; not c} completes, and we stop constraining b to 1. However, it is
not correct and P2 does not hold. Because the last occurrence of b should be followed
by {c; not c}, which is not the signals’ behavior here (remember our assumption that the

77

Chapter 6 : Synthesizing SEREs

1

1 completes

2

2 completes but not hold

3

contradiction

0 1 2 3 4 5 6 7 8 9 10

clock

a

c

b

Figure 6.6: Timing diagram of P2, where b is generated, c is observed, and not c is
generated (Example 4)

1

contradiction

0 1 2 3 4 5 6

clock

a

c

ended

b

Figure 6.7: Timing diagram of P2, where b is generated, and {c, not c} is observed
(Example 4)

default value of the signals are 0 when they are not constrained). The problem is that
we cannot have the length of the sequence that should be observed, and we cannot move
backward and correct the value of the generated signal.

To solve this problem, we have to put a limitation: each unbounded repetition should
be followed by a Boolean signal that is observed and is the stopping condition for the
constraint.

Example 5.

Consider property P3, where a, b, and c are Boolean:

P3 : always {a ; b } [∗ 3] |=> {c } ;

In this property, we observe the left-hand side of the implication, and constrain c.
Assume that there is a signal start that starts the evaluation of P3, and a signal ended
that shows when {{a; b}[∗3]} completes in order to constrain c. To compute when ended
becomes 1, we should count the number of times that {a; b} occurs, therefore we need a
counter. If start is 1 in 2 consecutive cycles, we need 2 counters. Generally, re-entering
the property is a challenge. We need several instances of the input and output tokens.
We can solve this problem by rewriting {{a; b}[∗3]} as three concatenations of {a; b}.
Example 6.

Consider property P4, where a, b, and c are Boolean:

P4 : always {a} |=> {b} | {c } ;

First, assume that a is observed, and we want to generate the right-hand side of the
property. If both b and c are output signals, we cannot constrain them in this property.

6.3 : Formalization of the annotation

The solution of this problem is explained in Chapter 9. Now, suppose that b is an input.
Therefore, we observe b, and constrain c whenever b is 0, i.e. the value of c depends on
¬b.
Example 7.

Consider property P5, where a, b, and c are Boolean:

P5 : always {a} |=> {b ; not b} | {c } ;

First, assume that a, b and c are observed. We start observing {b;not b} and {c} at the
same time. P5 holds and completes when either {b;not b} or {c} completes.

Now assume that a is observed, and we want to generate the right-hand side of the
implication. If both b and c are output signals, we cannot constrain them in this property.
In addition, the left operand, {b;not b}, is a sequence. In this case we cannot synthesize
the property.

If c is the input, and b is the output, we observe c and if it is 0, we generate {b;not b}.
However, if b is input and c is the output, we are not able to constrain c, since we should

wait for the completeness of {b;not b}, and then constrain c based on that. However, this
is not possible, since two sequences {c} and {b;not b} should start at the same time.

Based on the last two examples, we put a limitation that we can only synthesize
the hardware of disjunction if: 1) both operands are observed, or 2) both operands are
generated and are Boolean, or 3) one operand is generated, and the other one is observed
and is Boolean.

Example 8.

Consider property P6, where a, b, c, and d are Boolean:

P6 : always {a ; b ; c} & {{b ; c } [∗2]} |=> {d } ;

In this property, we should observe a, b, and c. The sequences {a; b; c} and {{b; c}[∗2]}
should start at the same time. There may be also an re-entering condition, i.e. the start
signal remains 1 for more than a cycle (it is permanently 1 after always). In this case,
we need to use polychrome tokens [MAGB07], or an automata-based method [BZ08c] for
observing the sequence. This problem does not exist in the generation mode, since we
start generating {a; b; c} and {{b; c}[∗2]} at the same time when start = 1.

These difficulties show that some restrictions may apply in order to produce deter-
ministic hardware. It may also be necessary to perform some sanity checks using a model
checker to make sure that a set of properties is consistent to lead to meaningful hardware.
SyntHorus2 generates complementary properties for consistency checking.

6.3 Formalization of the annotation

The purpose of this section is to formally define the notion of dependency between the
operands of a SERE operator, in order to have a synthezisable VHDL description of each
operator. To this aim, two dependency relations are introduced for each SERE operator:
a dependency relation for expressing when a sequence holds, and a dependency relation
for expressing when the sequence completes.

79

Chapter 6 : Synthesizing SEREs

In FLs (see Chapter 5) we do not need to determine the end of a temporal operator
trace. Because, in PSLsimple a FL property can just be dependent on a Boolean, not on
another FL. However, in SEREs, a sequence can depend on another sequence.

Example 9.

Assume ϕ1 = {b1; b2}, where b1 and b2 are Boolean. We assume that b1 is 1 at cycle
�0, therefore, ϕ1 starts at this cycle. In the following cycle, if b2 is 1, ϕ1 completes.
Now, assume that ϕ2 = {ϕ1; b3}. ϕ2 starts when ϕ1 starts. To complete ϕ2, ϕ1 should
complete, and in the following cycle b3 should occur. Therefore, we need to identify when
ϕ1 completes.

In this section, first some terminology and notations are introduced. Then, the depen-
dency relations for each operator are defined.

6.3.1 Dependency relation: definition and notations

Here, we use the SERE semantic definitions in Appendix B of the IEEE Standard [FG05],
and also the same notations and definitions as Chapter 5. We only introduce one notation
here, necessary for SEREs.

• w |≡ property: is the extended semantics by structural induction over SERE prop-
erties to words, and means “property” holds tightly on word w (w models tightly
property).

For defining the dependency relation, we use Definition 1 given in Chapter 5.
Briefly, the dependency relation �A�B�w means that on a trace w, the value of A

depends on the value of B. Semantically, for a trace w, if B is satisfied on w, A must be
satisfied on w. Let ϕ be a sequence that is composed of sub-sequences A and B using a
SERE operator Ω, and w be a trace. Then, A depends on B in ϕ if

∀w, �ϕ� true�w ⇔ �A�B�w.
Definition 1. Let ϕ be a SERE, and Endedϕ be a Boolean that becomes 1 when ϕ
completes. w is a trace, and � is the jth letter of w (� = wj), so that � � Endedϕ. Then,
for each sequence ϕ we can say:

∀w, �ϕ� true�wi...j ⇔ �Endedϕ � true�wj

We refer to the dependency relation �Endedϕ � true�wj as EϕRelation.

Here, the rules that were discussed for FLs in Chapter 5, are applicable (see properties
1 to 5 of Chapter 5).

6.3.2 Dependency relation between operands of SERE operators

In this section, two dependency relations are given for each SERE operator. The first de-
pendency relation is referred to as“ϕRelation”, and expresses the dependency between sub-
sequences of ϕ in order that ϕ holds. This dependency between operands is stated using
the general ���w relation. The second dependency relation is referred to as “EϕRelation”
and expresses the dependency between the sub-sequences of ϕ at the cycle that ϕ com-
pletes. This dependency is stated using ���wi (See Definition 1).

6.3 : Formalization of the annotation

In the following, ϕ represents a sequence, A and B are the left and right operands
(sub-sequences). A and B are assumed to be not empty (they do not satisfy the empty
sequence). Endedϕ, EndedA and EndedB are the Boolean variables that specify the end of
ϕ, A, and B sequences respectively.

6.3.2.1 Base cases

Let exp be a Boolean expression, and A be a SERE:

�exp� true�w ⇔�exp� true�w0 ∧ �Endedexp � true�w0

�{A}� true�w ⇔�A� true�w

These relations are the direct rewriting of the semantic definitions.

6.3.2.2 Concatenation

Dependency Rule 1. ϕRelation for concatenation
Let ϕ = A;B , then:
�ϕ� true�w iff ∃i < |w|, �EndedA � true�wi ∧ �B � true�wi+1...

Proof. We replace concatenation by its semantic definition.

∀w,w |≡ true ⇒ w |≡A;B

⇔ ∃w1, w2, w = w1w2, w1 |≡A ∧ w2 |≡B

⇔ ∃i < |w|, w1 = w0 . . . wi, w2 = wi+1 . . . w|w|−1, w1 |≡A ∧ w2 |≡B

⇔ ∃i < |w|, w1 = w0 . . . wi, w2 = wi+1 . . . w|w|−1, �EndedA � true�wi ∧ �B � true�w2

The proof is immediate by replacing w1 and w2. �

Dependency Rule 2. EϕRelation for concatenation
Let ϕ = A;B , then:
∃j < |w|, �Endedϕ � true�wj iff ∃k < j, �EndedA � true�wk ∧ �EndedB � true�wj

Proof. The proof is immediate, by considering the ϕRelation:

∃i < |w|, �EndedA � true�wi ∧ �B � true�wi+1...

We expect that the evaluation of B completes at some point in the trace, which means:

⇔ ∃i < j < |w|, �EndedB � true�wj

⇔ ∃j < |w|, �Endedϕ � true�wj

�
In a special case where B is a Boolean, then j = k + 1.

81

Chapter 6 : Synthesizing SEREs

6.3.2.3 Fusion

Dependency Rule 3. ϕRelation for fusion
Let ϕ = A : B , then:
�ϕ� true�w iff ∃i < |w|, �EndedA � true�wi ∧ �B � true�wi...

Proof. In the second line of the rule, we replace fusion by its semantic definition.

∀w,w |≡ true ⇒ w |≡A : B

⇔ ∃w1, w2, l, w = w1lw2, w1l |≡A ∧ lw2 |≡B

⇔ ∃w1, w2, l, w = w1lw2, �EndedA � true�l ∧ �B � true�lw2

Let i = |w1|, we can write:

∃i < |w|, w1l = w0...i−1l = w0...i ∧ lw2 = lwi+1... = wi...

So, by replacing l and w2 in the proof, we have:

⇔ ∃i < |w|, �EndedA � true�wi ∧ �B � true�wi...

�
Dependency Rule 4. EϕRelation for fusion
Let ϕ = A : B , then
∃j < |w|, �Endedϕ � true�wj iff ∃k ≤ j, �EndedA � true�wk ∧ �EndedB � true�wj

Proof. Considering the ϕRelation, we have:

∃i < |w|, �EndedA � true�wi ∧ �B � true�wi...

B starts to be evaluated in the last cycle of A, and its evaluation should complete, which
means:

⇔ ∃j ≥ k, �EndedB � true�wj

�
In the case where B is a Boolean, j = k.

6.3.2.4 Length-matching conjunction

Dependency Rule 5. ϕRelation for length-matching conjunction
Let ϕ = A && B , then
�ϕ� true�w iff �A� true�w ∧ �B � true�w

Proof. The proof is straightforward, just by replacing length-matching conjunction
with its semantic definition.

∀w,w |≡ true ⇒ w |≡A && B

⇔ ∀w,w |≡A ∧ w |≡B

⇔ ∀w, �A� true�w ∧ �B � true�w
�

6.3 : Formalization of the annotation

Dependency Rule 6. EϕRelation for length-matching conjunction
Let ϕ = A && B , then
∃j < |w|, �Endedϕ � true�wj iff �EndedA ∧ EndedB � true�wj

Proof. Considering the ϕRelation, we have:

⇔ ∀w, �A� true�w ∧ �B � true�w

Therefore, we expect at some points in the trace, the evaluation of A and B completes,
which means:

⇔ ∃j < |w|, �EndedA � true�wj ∧ ∃k < |w|, �EndedB � true�wk

In length-matching conjunction the sequences start at the same time and should complete
at the same time. Therefore, k = j. Using Property 3 from Chapter 5 we have:

⇔ ∃j < |w|, �EndedA ∧ EndedB � true�wj

�

6.3.2.5 Non length-matching conjunction

Dependency Rule 7. ϕRelation for non length-matching conjunction
Let ϕ = A & B , then
�ϕ� true�w iff ∃i < |w|, (�A� true�w ∧ �B � true�w0...i) ∨ (�A� true�w0...i ∧ �B � true�w)

Proof. The proof is straightforward, just by replacing non length-matching conjunction
with its semantic definition.

∀w,w |≡ true ⇒ w |≡A & B

⇔ ∀w,w |≡ true ⇒ w |≡{A && {B ; true[∗]}} | {{A; true[∗]} && B}
⇔ ∀w, (�A� true�w ∧ �{B ; true[∗]}� true�w)

∨ (�B � true�w ∧ �{A; true[∗]}� true�w)
⇔ ∀w, (�A� true�w ∧ ∃i < |w|, �B � true�w0...i)

∨ (�B � true�w ∧ ∃i < |w|, �A� true�w0...i)

⇔ ∃i < |w|, (�A� true�w ∧ �B � true�w0...i) ∨ (�B � true�w∧, �A� true�w0...i)

�
Dependency Rule 8. EϕRelation for non length-matching conjunction
Let ϕ = A & B , then
∃j < |w|, �Endedϕ � true�wj iff

(�EndedA � true�wj ∧ ∃k < j, �EndedB � true�wk)∨
(�EndedB � true�wj ∧ ∃k < j, �EndedA � true�wk)

Proof. Considering the ϕRelation, we have:

∃i < |w|, (�A� true�w ∧ �B � true�w0...i) ∨ (�A� true�w0...i ∧ �B � true�w)

83

Chapter 6 : Synthesizing SEREs

Therefore, we expect at some point in the trace, the evaluation of A and B completes.
Since the sequences may not have the same length, we consider two cases: 1) A is longer,
2) B is longer, then:

⇔ 1) ∃j < |w|, �EndedA � true�wj ∧ ∃k < j, �EndedB � true�wk

∨
2) ∃j < |w|, �EndedB � true�wj ∧ ∃k < j, �EndedA � true�wk

�

6.3.2.6 Disjunction

Dependency Rule 9. ϕRelation for disjunction
Let ϕ = A | B , then
�ϕ� true�w iff �A�¬B�w ∨ �B �¬A�w

Proof. The proof is straightforward, just by replacing star with its semantic definition.

∀w,w |≡ true ⇒ w |≡A | B
⇔ ∀w,w |≡A ∨ w |≡B

⇔ ∀w, �A� true�w ∨ �B � true�w

By rewriting using Property 4 from Chapter 5 (�(A or B)�C�w ⇔ �A�(C ∧¬B)�w) we
have:

�A�¬B�w ∨ �B �¬A�w

�

Dependency Rule 10. EϕRelation for disjunction
Let ϕ = A | B , then
∃j < |w|, �Endedϕ � true�wj iff �EndedA � true�wj ∨ �EndedB � true�wj

Proof. Considering the ϕRelation, we have:

⇔ ∀w, �A� true�w ∨ �B � true�w

Therefore, we expect at some point in the trace, the evaluation of A and B completes,
which means:

⇔ ∃i < |w|, �EndedA � true�wi ∧ ∃k < |w|, �EndedB � true�wk

Let j = min(i, k). Then:

⇔ ∃j < |w|, �EndedA � true�wj ∨ �EndedB � true�wj

�

6.3 : Formalization of the annotation

6.3.2.7 Kleene closure

Dependency Rule 11. ϕRelation for star
Let ϕ = A[∗0], then
�ϕ� true�w iff |w| = 0
Let ϕ = A[∗], then
�ϕ� true�w iff |w| = 0 ∨ ∃i < |w|, �EndedA � true�wi ∧ �ϕ� true�wi+1...

Proof. The star operator is replaced with its semantic definition.

∀w,w |≡ true ⇒ w |≡A[∗]
⇔ w |≡[∗0] ∨ ∃w1, w2, |w1| > 0, w = w1w2, w1 |≡A ∧ w2 |≡A[∗]

Let w1 = w0...i. We can write:

⇔ |w| = 0 ∨ ∃i < |w|, �EndedA � true�wi ∧ �ϕ� true�wi+1...

�

6.3.2.8 Plus

Dependency Rule 12. ϕRelation for plus
Let ϕ = A[+], then
�ϕ� true�w iff ∃i < |w|, �EndedA � true�wi ∧ �A[∗]� true�wi+1...

Proof. The plus operator is replaced with its semantic definition.

∀w,w |≡ true ⇒ w |≡A[+]

⇔ ∃w1, w2, w1 �= �, w = w1w2, w1 |≡A ∧ w2 |≡A[∗]

�

Dependency Rule 13. EϕRelation for plus
Let ϕ = A[+], then
∃j < |w|, �Endedϕ � true�wj iff �EndedA � true�wj

We assume that each time A completes, Endedϕ becomes 1, not only the last time.

Proof. Considering the ϕRelation, we have:

∃i < |w|, �EndedA � true�wi ∧ �A[∗]� true�wi+1...

The proof is immediate; A occurs at least once, and then its evaluation completes
every j = |A| cycles:

⇔ ∃j, 0 ≤ j < |w|, �EndedA � true�wj

�

85

Chapter 6 : Synthesizing SEREs

6.4 Dependency relation synthesis

In order to construct a library of primitive reactants for SERE operators, we give a
hardware interpretation of the two dependency relations ϕRelation (�ϕ� true�w), and
EϕRelation (�Endedϕ � true�wi).

6.4.1 Principles of the primitive reactant construction

The primitive reactants have a general interface: they take clock and reset as the syn-
chronization signals. Each primitive reactant has a start signal for its activation. The
corresponding circuit of each SERE operator is the interconnection of the circuits of the
ϕRelation and EϕRelation dependency relations. This interconnection is shown in Fig. 6.8.

Figure 6.8: Generic interface of a SERE operator

The operands of a SERE operator, Ω, are observed or constrained by the primitive
reactant of Ω during its activity. Thus, the output of a primitive reactant is not the
value of a signal, but the trigger that will start the primitive hardware component in
charge of the signal value generation or observation. In particular, for a Boolean signal
S, triggering S = 1 and S = 0 is done by two distinct signals TrigS and Trig¬S. In the
following, without loss of generality, we shall only consider the positive case S = 1. TrigS
is set to 1 by the reactant at all cycles when the dependency �S� true�w holds.

The left circuit in Fig. 6.8, C1 implements ϕRelation and based on this dependency it
generates two trigger signals: trig l and trig r. These signals start the primitive hardware
components that are in charge of generating or observing left or right sub-sequences. For
example, if S is the left sub-sequence, then trig l = TrigS means that trig l constrains S
to 1.

Then, the right circuit C2, which implements EϕRelation, generates a signal that
indicates if ϕ completes. We call the output of this module ended . It is equivalent to the
Endedϕ Boolean that has already been introduced (see Definition 1).

Here, we define C1 and C2 that implement ϕRelation and EϕRelation respectively.
Let P be the set of the signal names in ϕ. The signals may be observed or be con-

strained. Therefore, we split P in two sets Pin and Pout (P = Pin ∪ Pout), that contain
observed and constrained signals in the sub-sequences respectively.

Circuit C is the circuit that implements a primitive reactant, and is the interconnection
of C1 and C2.

6.4 : Dependency relation synthesis

The sets PC1 and PC2 of atomic propositions for the circuits C1 and C2 are given by
PC1 = Pin∪{reset, start}∪{trig l, trig r}, and PC2 = {start}∪{trig l, trig r}∪{ended}.
Then, PC = PC1 ∪PC2.

We denote ΣC the alphabet built on PC. In a similar way , we denote ΣC1 and ΣC2 the
alphabets built on PC1 and PC2.

Let wC1 be a trace built on ΣC1 and wϕ (or w1) a trace built on Σ. Similarly, let wC2
be a trace built on ΣC2 and wEndedϕ (or w2) a trace built on Σ.

Definition 2. wC1 is equivalent to w1 on Pin, denoted wC1 ≡|Pin
w1 iff ∃j such that

• wj
C1 � start and ∃k < j such that wk−1

C1 � reset and ∀l, k < l ≤ j, wl
C1 � ¬reset and

wl
C1 � ¬start

• ∀i, wj+i
C1 |Pin

= wi|Pin

This definition is very similar to Definition 3 of Chapter 5. Briefly, it means that there
is a time point in the trace (wj

C1) where start becomes 1. Before this point, C1 has been
reset and it is not active. After this point, wC1 and w1 should have identical values for
the atomic propositions in Pin. For the sake of simplicity, we assume that j = 0.

Definition 3. Let ϕ = AΩB, where A and B are the left and right sub-sequences:

• wC1 is equivalent to w1, denoted wC1 ≡ w1, iff

– wC1 ≡|Pin
w

– ∀i, wi
C1 � trig l =⇒ w1i � A

– ∀i, wi
C1 � trig r =⇒ w1i � B

• wC2 is equivalent to w2, denoted wC2 ≡ w2, iff

– ∃m ≥ j such that wm
C2 � C2.start

– ∀i, wi
C2 � ended =⇒ w2i � Endedϕ

Briefly, wC1 is equivalent to w1 if they are equivalent on inputs, and for the left and
right operands of Ω, if they take value true in w1, their corresponding trigger should take
value true in wC1. Additionally, wC2 is equivalent to w2, if C2 starts with or after C1,
and if ended takes true in wC2, Endedϕ takes true in w2. The value of m in the above
definition depends on the SERE operator, that is discussed later in this section.

Definition 4. A circuit C implements the ϕRelation and EϕRelation dependencies; it is
the interconnection of two sub-circuits C1 and C2 as in Fig. 6.8, and:

• Circuit C1 implements the dependency �ϕ� true�w1 (C1�ϕ) iff wC1 ≡ w1 for all
traces w1 and ∀i, wi

C1 � start → �ϕ� true�w1i... .

• Circuit C2 implements the dependency �Endedϕ �True�w2n (C2�Endedϕ) iff wC2 ≡
w2 for all traces w2 and ∀m ≥ i, wm

C2 � C2.start → ∃n ≥ m, �Endedϕ � true�w2n

Simply, C1 implements ϕRelation if wC1 is equivalent to w1 on Pin, and also after
starting the circuit at wi

C1, the �ϕ� true�w1i... dependency holds. Additionally, C2 im-
plements EϕRelation if it starts after C1, and zero or more cycles later, Endedϕ becomes
true.

87

Chapter 6 : Synthesizing SEREs

In this chapter, we explain how to synthesize C for SERE primitive reactants.
Based on the syntactic abstract tree of the operators and also the dependency relation

between the operands, we have categorized SERE operators into three groups: simple
SEREs, compound SEREs, and unbounded SEREs.

Here, we first explain each SERE category briefly, and then discuss how to build their
corresponding hardware intuitively.

6.4.1.1 Simple SEREs

A simple SERE operator is a binary operator, whose left sub-sequence should complete,
and then, the right sub-sequence starts. The sequence completes when the right sub-
sequence completes. The set of simple SERE operators is denoted by SimSERE = {; , :}.
For a simple SERE operator we have the following dependency relations:

∃i < |w|, �EndedA � true�wi ∧ �B � true�wi+1... for ‘;’

∃i < |w|, �EndedA � true�wi ∧ �B � true�wi... for ‘:’

Limitations and remarks. The following remarks should be considered:

1 The count repetition operator, [∗n], can be categorized as a simple SERE operator,
since we can rewrite it as n concatenations of its operand.

2 If the left sub-sequence is an unbounded repetition (e.g. ϕ = A[∗]; b), the concate-
nation operator belongs to SimSERE , however, a new limitation is added: the right
sub-sequence should be a Boolean expression.

6.4.1.2 Compound SEREs

A compound SERE operator is a binary operator, whose left and right sub-sequences start
at the same time. The completeness of the sequence depends on the operator. The set
of compound SERE operators is denoted by CompSERE = {&&,&, |}. For compound
SERE operators we have the following dependency relations:

�A� true�w ∧ �B � true�w for ‘&&’

∃i < |w|, (�A� true�w ∧ �B � true�w0...i) ∨ (�A� true�w0...i ∧ �B � true�w) for ‘&’

�A�¬B�w ∨ �B �¬A�w for ‘|’

Limitations and remarks. Based on the operator and also the direction and type of
the operands, some limitations may apply to observe or constrain a compound SERE.

1 The left and right sub-sequences are not an unbounded repetition.

2 If all the signals of both operands are in Pout, both operands should be constrained.
In this case, Ω cannot be the && operator. If Ω = |, deciding which operand is
observed cannot be made locally to a property. This will be explained in Chapter 9.
In addition, if Ω = |, both operands should be Boolean expressions, possibly within
curly brackets, i.e. SEREs of length 1.

6.4 : Dependency relation synthesis

4 If all the signals of operand A are in Pin, A is observed. If some of the signals
of the other operand, B , are in Pout, B should be constrained, based on the value
of the observed operand. In this case, the observed operand should be a Boolean
expression (see Example 7). Due to the commutativity of &, &&, and |, the roles of
A and B can be exchanged. In this case, if Ω ∈ {|,&&}, both operands should be
Boolean.

6.4.1.3 Unbounded SEREs

An unbounded SERE operator is a unary operator. The set of unbounded SEREs is
defined as UnbSERE = {∗,+}.

Limitations and remarks. Assume that ϕ = A[Ω], Ω ∈ {+, ∗}. Based on the type
of the operands and their signal directions some limitations may apply to observe or
constrain an unbounded SERE.

1 When evaluating6 A, we need to know when the evaluation should be terminated
(see Example 3). Therefore, ϕ should be followed by a Boolean expression. Based
on this limitation, we assume that ϕ = {A[Ω]; b}, b is observed, and we have the
following dependency relation:

∃i < |w|, �b� true�wi... ∧ ∀j < i, �A�¬b�wj...

2 If Ω = +, we assume that �¬b� true�w0 . Because based on the semantic definition
of the plus operator, its operand should occur at least once (|w| > 0).

Considering the mentioned limitations, the synthesizable subset of SEREs, SynSERE ,
is defined as:
SynSERE = SimSERE ∪ CompSERE ∪ UnbSERE .

6.4.2 Implementation of primitive reactants of SERE operators

In this section we address how a SERE primitive reactant can be implemented intuitively
using a simple example for each SERE category.

6.4.2.1 Simple SEREs

Example 10. Implementation of ϕ = {b1; b2}

First, assume ϕ is observed; hence, b1 and b2 are observed. The hardware is shown in
Fig. 6.9. When circuit starts, start = 1, b1 should be observed. If it is 1, trig l becomes
1, and in the next cycle, we observe b2. If b2 is 1, trig r becomes 1, and the sequence
completes (trig = 1).

If ϕ is generated, we generate b1 when the circuit starts, and we generate b2 in the
next cycle (see Fig. 6.10). Therefore, trig l constrains b1 (Trigb1 = trig l), and in the
next cycle, trig r constrains b2 (Trigb2 = trig r), and the sequence completes.

6here evaluation means either observation or generation

89

Chapter 6 : Synthesizing SEREs

Figure 6.9: Implementation of {b1; b2} (b1 and b2 are observed)

Figure 6.10: Implementation of {b1; b2} (b1 and b2 are generated)

Example 11. Implementation of ϕ = {q; b}

Assume that we want to generate ϕ; therefore, we generate q and b. The circuit of
q is activated when the circuit of ϕ starts (start = 1). Then, we should wait for the
completeness of q. Simply, we should register the start signal to indicate a sequence has
been already started and is in progress. trig l becomes 1 when q completes and the
registered start signal is 1. In the next cycle, b is generated (trig r = 1), and the sequence
completes (ended = 1).

Circuit for q Wait for q
to complete

Figure 6.11: Implementation of {q; b} (q and b are generated)

For clarifying this discussion, assume that q = {b1; b2}. Figure 6.12 shows the corre-
sponding trace. If the circuit starts at cycle �0, then q takes two cycles to complete. In
this period, the circuit that is waiting for the completeness of q, registers the start signal
(see start reg in Fig. 6.12). In cycle �1, q completes, and start reg is 1, therefore, trig l
becomes 1 that shows the completeness of q. In the next cycle b is generated and the
sequence completes.

6.4 : Dependency relation synthesis

0 1 2 3 4

clock

start

start reg

b1

b2

trig l

b

trig r

ended

Figure 6.12: Timing diagram of {{b1; b2}; b}

Example 12. Implementation of ϕ = {b; q}

Assume that we want to generate ϕ. Therefore, we generate b and q. The implemen-
tation is shown in Fig. 6.13. When the circuit starts, trig l becomes 1 that constrains b.
In the next cycle, trig r starts the circuit of q. Then, we should wait for the completeness
of q; and ended becomes 1 when q completes.

Circuit for q
Wait for q

to complete

Figure 6.13: Implementation of {b; q} (b and q are generated)

As is shown in these examples, when the left sub-sequence is a SERE, we should wait
for its completion and register the start signal. The right sub-sequence starts when the
left sub-sequence completes. In order to identify when the sequence completes, we need
to implement a circuit to wait for completion of the right sub-sequence, while registering
the trig l signal.

The same discussion is valid for the fusion operator. The only difference is that the
right sub-sequence starts at the last cycle of the left sub-sequence. Therefore, it is not
necessary to have a flip-flop between trig l and the start of the right sub-sequence.

6.4.2.2 Compound SEREs

Example 13. Implementation of ϕ = {b1}&{b2}

91

Chapter 6 : Synthesizing SEREs

ϕ is implemented like a logical AND. Suppose that ϕ is observed; then b1 and b2 are
observed (see Fig. 6.14 (a)). In the case of generation, both operands should be generated
at the same time (see Fig. 6.14 (b)). Then, ended1 and ended2 constrain b1 and b2
respectively. ended becomes 1 if both operands are 1 (in the case of observation), or both
are generated (in the case of generation).

(a) ϕ is observed (b) ϕ is generated

Figure 6.14: Implementation of {b1}&{b2}

Example 14. Implementation of ϕ = {q}&{b}

Assume that we want to generate ϕ. Therefore, both sub-sequences should be gen-
erated, and they should start at the same time (trig l = trig r = start). The right
sub-sequence is a Boolean, it is constrained by ended2 when the circuit starts. The left
sub-sequence is a SERE. We should wait for its completeness. The ϕ sequence completes
(ended = 1), when q completes (ended1 = 1). Figure 6.15 shows the implementation.
For clarifying the discussion, suppose that q = {b1; b2}. The trace is shown in Fig. 6.16.

Circuit for q

Wait for q
to complete

Figure 6.15: Implementation of {q}&{b} (q and b are generated)

Both sub-sequences start in cycle �0. ended2 becomes 1 in cycle �0 and constrains b.
The circuit of q starts at the same cycle; it generates b1 in cycle �0. We should wait for
completeness of q, while registering ended2 (see ended2 reg in Fig. 6.16, it is the output
of a register inside the module that is waiting for the completeness of q). In cycle �1, b2
is generated, and q completes (ended1 = 1). Since ended1 and ended2 reg are 1 in cycle
�1, the sequence completes in cycle �1 (ended = 1).

6.4 : Dependency relation synthesis

0 1 2 3 4

clock

start

trig r

b

ended2

ended2 reg

trig l

b1

b2

ended1

ended

Figure 6.16: Timing diagram of {{b1; b2}&b}

Example 15. Implementation of ϕ = {q1}&{q2}

If we want to generate ϕ, we should generate both q1 and q2. Figure 6.17 shows the
implementation. Both circuits of q1 and q2 start at the same time (trig l = trig r =
start). The sequence ϕ holds if q1 and q2 hold, and completes when the longer sequence
completes. Therefore, we need to wait for the sub-sequences to complete (ended1 = 1 and
ended2 = 1), and specify the value of ended based on ended1 and ended2.

Circuit for q1

Circuit for q2

Wait for the
longer

sequence
to complete

Figure 6.17: Implementation of {q1}&{q2}

In the case of monitoring, we should monitor both q1 and q2. In this case, the hardware
is more complex and is not beneficial, since we need to implement an extra circuit to
guarantee if two sub-sequences start at the same time. At this point, we put a limitation
that ϕ = {q1}&{q2} can be just generated, not monitored. Later in this chapter, we
explain how we can overcome this limitation.

6.4.2.3 Unbounded SEREs

Example 16. Implementation of ϕ = b[+]

93

Chapter 6 : Synthesizing SEREs

Assume that b is generated. The implementation is shown in Fig. 6.18. In this figure
the trig l signal constrains b. The once more internal signal becomes 1, one cycle after
each occurrences of b. b should be generated for 1 (when start = 1) or more times (when
once more = 1). However, when should the generation of b be terminated? As was
discussed in Section 6.2, we put a limitation that each unbounded repetition should be
followed by a Boolean, which is the stopping condition.

Figure 6.18: Implementation of b[+]

Example 17. Implementation of ϕ = b1[∗]; b2

In this example, we observe b2, and stop generating b1 as soon as b2 becomes 1. Fig-
ure 6.19 shows the corresponding circuit. Therefore, in addition to considering start and
once more for generating b1, we should consider b2. The shaded AND gate implements
the dependency of b1 on b2: trig l, which constrains b1 becomes 1 if b2 is 0. As is shown in
Fig. 6.19 the completeness of the sequence is detected by the circuit of the concatenation.
If b2 is 1 in the first cycle, b1 does not occur, and the sequence completes.

Circuit for concat

Figure 6.19: Implementation of b1[∗]; b2

Example 18. Implementation of ϕ = q[∗]; b

Figure 6.20 shows the corresponding circuit. The only difference is that after the first
generation of q, if it is possible due the value of b, we should wait for its completeness
(wait until q.ended becomes 1), and then start generating the next q.

For clarifying the discussion assume that q = {b1; b2}. The trace is shown in Fig. 6.21.
start is 1 in cycle �0, and b is 0. Therefore, q.start becomes 1 to start generating the first

6.4 : Dependency relation synthesis

Circuit for concat

Circuit for q
Wait for q

to complete

Figure 6.20: Implementation of q[∗]; b

occurrence of {b1; b2}. {b1; b2} completes (q.ended = 1) in cycle �1, once more becomes
1 in the following cycle, and since b is 0, q.start becomes 1 to start the circuit of q.
q completes in cycle �3. In cycle �4, b is 1. Therefore, q.start = 0, and the sequence
completes (ended = 1).

Now, assume that the start signal becomes 1 again in cycle �6. We generate {b1; b2}; it
completes in cycle �7; therefore, once more becomes 1 in cycle �8, and since b is 0, q.start
becomes 1 to generate {b1; b2}. However, b becomes 1 in cycle �9, when {b1; b2} has not
been completed yet. At this point, the value of b is not taken into account until cycle �10,
i.e. the cycle after {b1; b2} completes.

0 1 2 3 4 5 6 7 8 9 10

clock

start

b

q.start

b1

b2

q.ended

once more

ended

Figure 6.21: Timing diagram of {{b1; b2}[∗]; b}

95

Chapter 6 : Synthesizing SEREs

6.5 Summary

The “synthesizable subset of SEREs” supported in this thesis are the SEREs in the fol-
lowing form:

SEREsynth =BoolExpr.

| {SEREsynth}
| SERE|–>SEREsynth

| SERE|=>SEREsynth

| SEREsynth;SEREsynth

| SEREsynth : SEREsynth

| SEREsynth&SEREsynth

| {BoolExpr} | {BoolExpr}
| SEREsynth[∗n]
| SEREsynth[∗];BoolExpr

| SEREsynth[+];BoolExpr

| [+];BoolExpr

| [∗];BoolExpr

Assume that ϕ is a SERE, A and B (if it exists) are its sub-sequences, and Ω is
any SERE operator defined above. Then ϕ can be synthesized if it meets the following
conditions:

1 If ϕ = A[Ω]:

1 If Ω ∈ {+, ∗}, then A[Ω] should be followed by a Boolean expression, which
is the stopping condition for evaluating A. Therefore, we should have: ϕ =
{A[Ω]; b}, where b is a Boolean expression and is observed.

2 If Ω = +, we assume that b is 0 when the sequence starts (A should occur at
least once).

2 If ϕ = AΩB , and Ω ∈ {; , :}, if the left sub-sequence is an unbounded repetition the
right sub-sequence should be a Boolean expression.

3 If ϕ = AΩB , and Ω ∈ {&, |}:

1 The left and right sub-sequences are not unbounded repetition.

2 If all the signals of both operands are in Pout and Ω = |, both operands should
be Boolean expressions.

3 If Ω = &, if all the signals of an operand, assume A, are in Pin, and some of the
signals of the other operand B are in Pout, A should be a Boolean expression.
Due to the commutativity of &, the roles of A and B can be exchanged.

Chapter 7
Annotation of the signals

Contents
7.1 Introduction . 98

7.2 Problem definition and overall view 98

7.2.1 Representation of the dependency relation 98

7.3 Construction of the property Abstract Syntax Tree (AST) . . 99

7.4 Construction of the Directed Abstract Syntax Tree (DAST) . 101

7.4.1 DAST of simple FL operators 102

7.4.2 DAST of extended next FL operators 103

7.4.3 DAST of FL logical operators 103

7.4.4 DAST of compound FL operators 104

7.4.5 DAST of implication operators 105

7.4.6 DAST of simple SERE operators 105

7.4.7 DAST of compound SERE operators 106

7.4.8 DAST of unbounded SERE operators 107

7.4.9 DAST of PSL directives and functions 108

7.4.10 The annotation algorithm . 109

7.5 Summary . 115

97

Chapter 7 : Annotation of the signals

7.1 Introduction

Each property written in a set of circuit specifications defines a piece of the circuit behav-
ior, for which some signals are considered inputs (they are observed or monitored), and
some signals are outputs (they are generated).

To synthesize a property, it is essential to specify the direction of the signals involved in
the property. We call this process annotation. This is the topic of this chapter, using the
formalism introduced in Chapters 5 and 6. The annotation of FL properties is illustrated
on the receiver side of GenBuf, which we call GenBufRec.

7.2 Problem definition and overall view

If we are interested in monitoring an existing design, the global property outputs trig
(in the case of FL) or trig l and trig r (in the case of SEREs) are used to monitor the
expected value of the operand. To do so, the property trigger (trig , trig l, or trig r) is
connected to the input trig of the multiplexer of Fig. 7.1. This constitutes the monitor
for the property: all the signals are inputs of the monitor.

Figure 7.1: Monitoring the value of a Boolean expression

If we are interested in synthesizing the design, the global property’s trigger output
(trig , trig r or trig l) is used to generate the value of one or more signals, depending on
the values of the monitored input signals.

Example 1. Property P3_rec_0.

Consider property P3_rec_0 from GenBufRec (see Chapter 4):

P3 rec 0 :
assert (always (rose (BtoR REQ(0)) −> next ! (next event ! (prev (not

BtoR REQ(0))) (not BtoR REQ(0) unti l (BtoR REQ(1)))))) ;

In this property, BtoR REQ(0) is both monitored and generated.
It is thus essential to determine, for each instance of a signal Sig in a property, if it is

monitored (and we annotate it Sig m) or generated (annotated as Sig g).

7.2.1 Representation of the dependency relation

The dependency �A�B� can be represented as is shown in Fig. 7.2. As this figure implies,
the value of B should be monitored, and A is generated based on the value of B .

In particular, assuming that ϕ = AΩB , and Ω is a binary FL or SERE operator, we
can represent the �A�B�w dependency among A and B as is demonstrated in Fig. 7.3(a).

7.3 : Construction of the property Abstract Syntax Tree (AST)

A B

Figure 7.2: The representation of �A�B�w

In this figure, we represent ϕ by its Abstract Syntax Tree (AST). The directions obtained
from the dependency relation directly implies that we should observe B , and based on
its value generate A. If A and B are Boolean, the dependency relation can be reversed
(Property 5 in Chapter 5): we observe A and generate B (see Fig. 7.3(b)).

A B

(a) A or B is FL

BA

(b) A and B are
Boolean

Figure 7.3: The representation of the �A�B�w dependency relation

Representing the dependency relations in this way enables us to specify the signals’
directions. Therefore, the idea is considering the properties one-by-one, and constructing
the Abstract Syntax Tree of each property. We use the dependency relations of the FL
and SERE operators, and interpret these relations into the edge directions of the abstract
syntax tree.

The remainder of this chapter explains the principles of annotating reactant operands.

7.3 Construction of the property Abstract Syntax

Tree (AST)

The Abstract Syntax Tree (AST) of a property is a classical binary non-directed tree. The
leaves are the design signals 1, that may be observed or generated; the other nodes are
the temporal and logical operators. We denote AST = (V,E), where:

• V is the set of nodes (or vertices) of the tree. L is the set of leaves (the operands of
the property), and N = V \ L is the set of internal nodes (the operators).

• E ⊂ V ×V is the set of edges of AST. (v1− v2) denotes an edge between two nodes
v1 and v2; v1 is the parent and v2 is a child.

Three partial functions are defined on V : P(v), Lch(v), Rch(v) return the parent, the
left child and the right child of node v.

1There are some exceptions, e.g. when having bounded repetition, the bounds of the repetition operator
are leaves of the tree. For instance, in [∗3 to 6], 3 and 6 are the leaves.

99

Chapter 7 : Annotation of the signals

Example 2. AST of P3_rec_0.

Figure 7.4 illustrates the AST of P3_rec_0 (see Chapter 4 for details).

always

rose

BtoR_REQ(0)

next!

next_event!

BtoR_REQ(1)

prev

not

BtoR_REQ(0)

until_

not

BtoR_REQ(0)

>

assert

Figure 7.4: The abstract syntax tree of P3_rec_0

Take as example, v = next!. Then we have:

P(v) = –>

Lch(v) = next event!

Rch(v) = NULL

Example 3. AST of HDLC_240.

Consider property HDLC_240 2.:

HDLC 240 :
assert always ({not TxLastBit and not TxDataWr ; TxLastBit and not

TxDataWr}
|−> { {not TxDout ; (TxDout) [∗ 6] ; not TxDout } ;

{TxDout } [∗] ; { {TxEnable and TxDataWr} | {TxDout and (not TxEnable
or not TxDataWr) } } }) abort not r e s e t n ;

Fig. 7.5 illustrates part of the AST of HDLC_240.

As an example, consider the leftmost repetition, v = REP. Then we have:

P(v) = ;

Lch(v) = TxDout

Rch(v) = ∗

2The complete set of properties describe High-level Data Link Controller (HDLC), and is taken from
[PPSQ13]

7.4 : Construction of the Directed Abstract Syntax Tree (DAST)

always

assert

|->

;

;

TxDout *

REP |

and

TxEnable TxDataWr

and

orTxDout

TxEnable TxDataWr

not not

;

not

TxDout

;

TxDout

REP

*

6

not

TxDout

Figure 7.5: The abstract syntax tree of HDLC_240

7.4 Construction of the Directed Abstract Syntax

Tree (DAST)

For each PSL operator, one or more dependency rules have been defined between its
operands, in accordance with the formal semantics of the operator (see Chapters 5 and
6).

In order to determine which variables are read by a property, and which are generated,
we translate the dependency relations to a directed graph, and build the Directed Abstract
Syntax Tree (DAST) of each AST. DAST = (V,E�) represents the dependency between
the signals of the property, going through its operators. It is built using:

• the input/output direction of the module interface signals,

• the implementation of the dependency rules as a direction between the node for an
operator and its children.

Each edge in E � is a directed edge of E. The direction of an edge is seen from the
parent node. Let v denote the sub-property extracted from node v in DAST and l denote
the Boolean expression of a leaf l.

• An outgoing edge from a parent to its child (P(v) → v) means that the value of v is
constrained to ‘1’; in other words, the signals in sub-property v must be constrained
to give value ‘1’ to v. It represents the dependency relation �v� true�. If v is a leaf,
it will be generated, otherwise this outgoing edge needs to be propagated to at least
one child of v (see Fig. 7.6 (a)).

• An ingoing edge to a parent from its child (P(v) ← v) means that the value of v is
not constrained. If v is a leaf it will be observed, otherwise this ingoing edge needs
to be propagated to v from all its children (see Fig. 7.6 (b)).

101

Chapter 7 : Annotation of the signals

• If there is a directed path between the two children of a node v, e.g. Lch(v) → v →
Rch(v), the value of the left child constrains the value of the right child (see Fig. 7.6
(c)). It represents the relation �Rch(v)�Lch(v)�

• A dependency relation may be reversed if both operands are Boolean (Property 5
of Chapter 5). Otherwise, the dependency relation may not be turned around, as
this would introduce a negated FL, which is not allowed in the PSL simple subset.
When two directions may hold (�Rch(v)�Lch(v)� or �¬Lch(v)�¬Rch(v)�), edges
are directed and marked unsettled (denoted with dash arrows). A node is unsettled
if the edges to both its children are unsettled. When a node is unsettled, all its
sub-trees are unsettled. Conversely, when a node is settled, the path from the node
to the root is settled.

vv or

(a) (P(v) → v)

v

(b) (P(v) ← v)

v

(c) Lch(v)→v→Rch(v)

Figure 7.6: Propagation of ingoing and outgoing edges

For each PSL and SERE operator, we have defined the direction of the parent and
children edges according to their dependency relation. Here, we explain how to build the
DAST of each category of FL and SERE operators based on their dependency relations.
When observing a node v, all its children are observed and the problem is solved. Here, we
focus on constraining a node. After constructing the DAST of each operator, we propose
an annotation algorithm that utilizes these DASTs for specifying the signal directions in
the AST of a property.

In the remainder of this chapter, we shall only consider DASTs in which the root node
edges are outgoing to its children.

7.4.1 DAST of simple FL operators

This category contains the always, never, eventually!, and next! (also its weak version)
operators. All these operators are annotated in the same way. Consider the next! operator,
and assume ϕ = next!(A); then:

�ϕ� true�w iff �A� true�w1...

From the dependency relation �A� true�w1... we can deduce that there will be an
outgoing edge from next! to A (Fig. 7.7).

7.4 : Construction of the Directed Abstract Syntax Tree (DAST)

next!

A

Figure 7.7: Edges direction for next!

7.4.2 DAST of extended next FL operators

This category contains the next a, next e, next event, next event a, and next event e

operator families. The annotation of the next a and next e families is the same as the
annotation of the next! operator. Here, we demonstrate the DAST of next event!. Other
operators of the next event family have a similar DAST.

Since next event! is an FL operator, its parent (if any) is an FL operator, and its
parent edge direction is outgoing and it is settled.

Dependency Rule 9 (Chapter 5) gives the dependency relation of ϕ = next event!(B)A:

�ϕ� true�w iff ∃k < |w|, �B � true�wk... ∧ ∀i ≤ k, �A�B�wi...

The left operand B needs to be asserted before the end of the simulation. Other
properties are expected to provide it. The dependency relation �B � true� is thus re-
moved. From the second dependency relation �A�B� we can deduce that there will be
an outgoing path from B to A (Fig. 7.8 (a)). If A is Boolean, the dependency direction
may be reversed, and the path is unsettled (Fig. 7.8 (b)).

next_
event

AB

(a) A is FL

next_
event

next_
event

B A B A

(b) A is Boolean

Figure 7.8: Edges direction for next event!

7.4.3 DAST of FL logical operators

For the Boolean operator and, Property 3 of Chapter 5 (�(A andB)�C�w ⇔ �A�C�w∧
�B�C�w) implies that either both operands are generated (Fig. 7.9 (a)) or they are both

103

Chapter 7 : Annotation of the signals

observed (Fig. 7.9 (b)). The directions may be settled or unsettled based on the edge
between “and” and its parent.

AND AND

(a) Generation

AND AND

(b) Observation

Figure 7.9: Edges direction for and

For the Boolean operator or, Property 4 of Chapter 5 (�(A orB)�C�w ⇔ �A�(C ∧
¬B)�w) implies that either both operands are observed (Fig. 7.10 (a)), or one of the
operands is generated based on the value of the other operand. We cannot annotate the
signals in the case of generation (Fig. 7.10 (b)), since we may have either dependency
�A�¬B�w or �B�¬A�w. In Chapter 9 we explain how this problem can be solved.

OR OR

(a) Observation

OR

A B

(b) Generation

Figure 7.10: Edges direction for or

7.4.4 DAST of compound FL operators

This category contains the abort, until, and before families of operators. Here, we
consider the annotation of the until! operator. Since until! is an FL operator, its parent
(if any) is an FL operator, and its parent edge direction is outgoing and it is settled.

Dependency Rule 6 (see Chapter. 5) gives the dependency relation of ϕ = A until! B:

�ϕ� true�w iff ∃k < |w|, �B� true�wk... ∧ ∀i < k, �A�¬B�wi...

The left operand B needs to be asserted before the end of the simulation. Other
properties are expected to provide it. The dependency relation �B � true�wk... is thus
removed. From the second dependency relation �A�¬B�wi... we can deduce that there
will be an outgoing path from B to A (Fig. 7.11 (a)). If A is Boolean, the dependency
direction may be reversed, and the path is unsettled (Fig. 7.11 (b)).

7.4 : Construction of the Directed Abstract Syntax Tree (DAST)

BA

until!

(a) A is FL

until!

BA BA

until!

(b) A is Boolean

Figure 7.11: Edges direction for until!

7.4.5 DAST of implication operators

The ‘–>’, ‘|–>’ and ‘|=>’ operators are annotated exactly the same. Here, we consider
DAST of the ‘–>’ operator. Since ‘–>’ is an FL operator, its parent (if any) is an FL
operator, and its parent edge direction is outgoing and it is settled. Let assume ϕ = A–>B.
The dependency relation is given as:

�ϕ� true�w iff �B�A�w

Dependency �B�A�w implies that there will be an outgoing path from A to B
(Fig. 7.12 (a)). Since we deal with PSLsimple A should be a Boolean. If B is also a
Boolean, the dependency direction may be reversed (Fig. 7.12 (b)).

BA

>

(a) B is FL

A B

>

(b) B is Boolean

Figure 7.12: Edges direction for ‘–>’

7.4.6 DAST of simple SERE operators

This category contains the ‘;’, ‘:’ and any bounded repetition operator (e.g. [∗n]). Here,
we consider the annotation of the ‘;’ operator as an example.

Since ‘;’ is a SERE operator, its parent (if any) is an FL or SERE operator, and its
parent edge direction is outgoing and it is settled.

105

Chapter 7 : Annotation of the signals

Dependency Rule 1 (see Chapter. 6) gives the dependency relation for ϕ = A;B :

�ϕ� true�w iff ∃i < |w|, �EndedA � true�wi ∧ �B � true�wi+1...

The dependency �EndedA � true�wi implies that A should have been already generated.
Therefore, there will be an outgoing edge from ‘;’ to its left child (see Fig. 7.13). The
second relation, �B � true�wi+1... , implies that there is an outgoing edge from ‘;’ to its
right child. These directions are settled.

;

BA

Figure 7.13: Edges direction for ‘;’

It should be mentioned that none of A and B are unbounded repetition. Otherwise,
the annotation differs (see Section 7.4.8).

7.4.7 DAST of compound SERE operators

This groups contains the ‘&&’, ‘&’, and ‘|’ operators. Here, we consider the DAST of
‘&&’ and ‘|’. The DAST of ‘&’ is the same as ‘&&’.

Assuming that ϕ = {A}&&{B}, we have the following dependency relation:

�ϕ� true�w iff �A� true�w ∧ �B � true�w

This dependency relation implies that either both operands are generated or both of
them are observed (Fig. 7.14).

&&

BA

(a) Generation

&&

BA

(b) Observation

Figure 7.14: Edges direction for ‘&&’

Assuming that ϕ = {A}|{B}, we have the following dependency relation:

�ϕ� true�w iff �A�¬B�w ∨ �B �¬A�w

7.4 : Construction of the Directed Abstract Syntax Tree (DAST)

This dependency relation implies that either both operands are observed, or one of
the operands is generated based on the value of the other operand. We cannot annotate
the signals in the case of generation (Fig. 7.15), since we may have either dependency
�A�¬B�w or �B�¬A�w. In Chapter 9 we explain how this problem can be solved.
However, we can solve the problem only if A and B are Boolean expressions.

A B

|

(a) Generation

BA

|

(b) Observation

Figure 7.15: Edges direction for ‘|’

7.4.8 DAST of unbounded SERE operators

This category contains the ‘∗’ and ‘+’ operators.
As was discussed in Chapter 6, each unbounded repetition should be followed by a

Boolean expression. Assume that ϕ = A[∗];B . We have this dependency relation:

�ϕ� true�w iff ∃i < |w|, �B � true�wi... ∧ ∀k < i, �A[∗]�¬B�wk...

Since ‘∗’ is a SERE operator, its parent is a SERE operator, and its parent edge
direction is outgoing and it is settled.

The dependency �B � true�wi... implies that B finally becomes true. From the de-
pendency �A[∗]�¬B�wk... we can conclude that there is an outgoing path from B to A
(Fig. 7.16).

A

;

BREP

*

Figure 7.16: Edges direction for ‘∗’

107

Chapter 7 : Annotation of the signals

7.4.9 DAST of PSL directives and functions

In addition to FL and SERE operators, we annotate the signals for some of the functions
of the Boolean and verification layers of PSL. Moreover, we annotate the operands of some
the operators of the PSL modeling layer (VHDL flavor).

7.4.9.1 Boolean layer directives

We annotate the functions rose, fell, and prev from the PSL Boolean layer. Let assume
ϕ = prev(A), where A is a Boolean expression. A is always annotated as monitored. In
addition, the direction is settled because it is based on the previous value of the operand,
which may not be changed at the current cycle (see Fig. 7.17).

prev

A

Figure 7.17: Edges direction for prev

7.4.9.2 Verification layer directives

We annotate the assume and assert directives. The operand of assert is always gener-
ated, while the operand of assume is always monitored 3.

7.4.9.3 Modeling layer operators

We consider the VHDL operators: Boolean, comparison and arithmetic operators. The
annotation of the Boolean operators are the same as FL logical operators. Here, we
consider the comparison and arithmetic operators.

Assume that ϕ = (A = B), where A and B are Boolean expressions. The edge
directions between ‘=’ and its children depend on the edge direction between ‘=’ and its
parent. Figure 7.18 shows two possible directions. If there is an ingoing edge to P(=)
from ‘=’, then it is observed, and both children are observed (Fig. 7.18(a)). Otherwise,
if the right child is observed, and A is a Boolean signal, then A = B is interpreted as an
assignment of B to A. Then there is an outgoing path from the right child to the left
child (Fig. 7.18(b)), and the left child is generated.

In the case of the arithmetic operators, the children are observed.

Example 4.

3Industrial users have requested this interpretation of the directives in the context of reactants syn-
thesis.

7.4 : Construction of the Directed Abstract Syntax Tree (DAST)

=

A B

(a) Observation

A B

=

(b) Generation

Figure 7.18: Edges direction for ‘=’

Consider the following property:

P: always (C −> A = prev (B)) ;

In this property, A is generated and B is observed, and prev(B) is assigned to A.

7.4.10 The annotation algorithm

The annotation process marks each signal instance in each property as either monitored
or generated by the property.

Before discussing the annotation algorithm, we introduce some data structures and
auxiliary functions that are used in the algorithms. We represent a DAST with the node
data structure (see Fig. 7.19).

// the s e t of edge d i r e c t i o n s
enum Di r e c t i on s {none , ingo ing , un s e t t l ed ingo ing , outgoing ,

un s e t t l ed ou tgo ing } ;

// the annotat ion type of a node : m: monitored , g : generated , u : unannotated
enum AnnotType{m, g , u} ;

// the s e t of a l l the PSL and SERE opera to r s
enum Types{always , next , ∗ , . . . } ;

s t r u c t node{
i n t id ; // unique name of the node in DASTs
Types type node ; // the type of the node

s t r u c t node ∗LCH; // the l e f t c h i l d of the node
s t r u c t node ∗RCH; // the r i g h t ch i l d of the node

// the d i r e c t i o n of edge between node n and i t s parent and ch i l d r en
D i r e c t i on s PDir ;
D i r e c t i on s LchDir ;
D i r e c t i on s RchDir ;

AnnotType type mark ; // the annotat ion type of a node
} ;

Figure 7.19: The necessary data structures for Annotation

109

Chapter 7 : Annotation of the signals

The following auxiliary functions are called:

• IsLeaf(node ∗ a): returns true if a is a leaf,

• IsInput(node ∗ a): returns true if the corresponding signal of a is an input signal,

• SetDir(node ∗ a, Directions LchDir, Directions RchDir, Directions PDir): as-
signs the directions specified in its arguments to the corresponding edges of a; if a
is a leaf, this function marks the corresponding signal as ‘m’ or ‘g, based on PDir.
If PDir = ingoing or PDir = unsettled ingoing, the signal is marked as ‘m’, if
PDir = outgoing or PDir = unsettled outgoing, the signal is marked as ‘g’.

• SettledEge(node ∗ a): This function considers the edge directions (a–>LchDir,
a–>RchDir, and a–>PDir) and tries to settle them. Based on the direction of the
edges of a and its operator, the new directions of the edges of a are computed, the
edge directions are updated by calling SetDir, which returns a with the updated
direction for its corresponding edges. For each operator, we have defined the set
of all the possible directions for its corresponding edges (see Section 7.4). For each
possible set of directions, we consider all the possible directions after being settled,
and store these directions in a file for each operator.

As an example, assume a is the until! operator, and:

a–>LchDir = none, a–>RchDir = none, a–>Pdir = settled outgoing

In this case, we can have the following directions:

– a–>LchDir = settled outgoing, a–>RchDir = settled ingoing

– a–>LchDir = unsettled outgoing, a–>RchDir = unsettled ingoing

– a–>LchDir = unsettled ingoing, a–>RchDir = unsettled outgoing

The last two directions are for the case that the operands are Boolean.

Initially, all the edges are undirected. The annotation process is performed in two
steps.

First, we start from the direction of the interface signals, and annotate all the input
signals as ‘m’, and give a direction to its corresponding edge (see recursive function An-

notate_in in Fig. 7.20). These directions are settled, and cannot be changed later due
to the directions of the operator’s edges.

1 node ∗ Annotate in (node ∗a) {
2 i f (I sLea f (a)) {
3 i f (I s Input (a))
4 SetDir (a , none , none , s e t t l e d i n g o i n g) ; // s e t s d i r e c t i o n (P(a)<−a)
5 return a ;
6 }
7 else {
8 Annotate in (a−>LCH) ; // i f (a−>LCH != NULL)
9 Annotate in (a−>RCH) ; // i f (a−>RCH != NULL)

10 }
11 }

Figure 7.20: the pseudo code for the Annotate_in function

7.4 : Construction of the Directed Abstract Syntax Tree (DAST)

Then, the recursive Annotate function (Fig. 7.21) takes as input a partially directed
DAST (a); it returns a more settled DAST. It starts from the root of the tree, and based
on its operator, gives the direction to the corresponding edges.

1 node∗ a Annotate (node ∗a) {
2 i f (I sLea f (a))
3 return a ;
4 else {
5 a = Sett ledEdge (a) ;
6 l e f t e d g e d i r = a−>LchDir ;
7 r i g h t e d g e d i r = a−>RchDir ;
8

9 Lch (a) = Annotate (Lch (a)) ;
10 Rch(a) = Annotate (Rch(a)) ;
11

12 i f (l e f t e d g e d i r == a−>LchDir) {
13 i f (r i g h t e d g e d i r == a−>RchDir) {
14 return (a) ;
15 else {
16 a = Sett ledEdge (a) ;
17 l e f t e d g e d i r = a−>LchDir ;
18 Lch (a) = Annotate (Lch (a)) ;
19 return a ;
20 }
21 }
22 else {
23 i f (r i g h t e d g e d i r == a−>RchDir) {
24 a = Sett ledEdge (a) ;
25 r i g h t e d g e d i r = a−>RchDir ;
26 Rch(a) = Annotate (Rch(a)) ;
27 return a ;
28 }
29 else {
30 a = Sett ledEdge (a) ;
31 l e f t e d g e d i r = a−>LchDir ;
32 r i g h t e d g e d i r = a−>RchDir ;
33

34 Lch (a) = Annotate (Lch (a)) ;
35 Rch(a) = Annotae (Rch(a)) ;
36

37 return a ;
38 }
39 }
40 }
41 }

Figure 7.21: the pseudo code for the Annotate function

If a is a leaf, it is returned unchanged. Otherwise, we call function SettledEdge on a.
SettledEdge computes a first direction for the left and right children edges (�6). Then, the
right and left edge directions are updated with the new edge directions (�7, 8). Annotate
is then called recursively on both children of a (�10, 11). The new edge directions are
compared to the ones obtained from function SettledEdge. If none of the children edges
changes, a is returned (�15). If one of the children edges changes, the change may impact

111

Chapter 7 : Annotation of the signals

the direction and type of the two other edges of node a (sibling and root edge). If only
the direction of the right edge is changed (�16), function SettledEdge is again called on
a (�17), the direction of the left edge is updated (�18), and the left child is re-annotated
(�19). Similarly, if the direction of the left edge is changed, the right child should be
re-annotated (�27). If both edges’ directions are changed (�30), both children should be
re-annotated (�35, 36). The algorithm stops when none of the edge directions of the DAST
changes after calling the Annotate function.

Example 5. DAST of P3_rec_0.

Figure 7.22 illustrates the DAST of property P3_rec_0. Next to each edge, the recur-
sion depth is written.

At step 0, the child edge of assert is outgoing and settled. At step 1, always is
outgoing and settled (see 7.4.1). At step 2, since –> has a FL operand, the two edges are
settled and there is an ingoing path from left child to right child. At step 3 (left child of
‘–>’) and according to Fig. 7.17, the edge must be settled and ingoing: signal BtoR REQ 0

is marked settled monitored. Step 4 (the child of next!) is similar to step 1, and the edge
is settled outgoing. At Step 5, first, the two edges are unsettled, then both DAST children
are annotated. The annotation of the left DAST (steps 6 and 7) returns a settled ingoing
edge to next event!. Step 8 is similar to step 5, the two edges are unsettled, but in this
case the annotation of their two sub-trees is not able to settle the edges.

Finally, we get that the first two occurrences of BtoR REQ 0 are marked settled moni-
tored, the third one is unsettled generated, and the occurrence of BtoR REQ 1 is unsettled
monitored.

2

0

5

3

8

7

1

86

4

>

assert

2

5

9

always

rose

BtoR_REQ(0)

next!

next_event!

BtoR_REQ(1)

prev

not

BtoR_REQ(0)

until_

not

BtoR_REQ(0)

Figure 7.22: The directed abstract syntax tree of P3_rec_0

Example 6. DAST of HDLC_240.

Figure 7.23 illustrates the DAST of property HDLC_240. As is shown in this figure, we
have an unbounded repetition: TxDout[∗]. It is followed by a Boolean expression:

7.4 : Construction of the Directed Abstract Syntax Tree (DAST)

{{TxEnable and TxDataWr} | {TxDout and (not TxEnable or not TxDataWr)}}

Therefore, this Boolean expression is marked as monitored, and all its signals should
be observed.

always

assert

|->

;

;

TxDout *

REP |

and

TxEnable TxDataWr

and

orTxDout

TxEnable TxDataWr

not not

;

not

TxDout

;

TxDout

REP

*

6

not

TxDout

Figure 7.23: The directed abstract syntax tree of HDLC_240

Example 7. Annotation of the properties of GenBufRec.

Figure 7.24 shows the properties of GenBufRec after annotation. We can observe that
some signals are both observed and generated. Consider BtoR REQ(0). Property P1_rec

constrains this signal to 0. Property P3_rec_0 observes this signal, and also constrains
it to 0. In addition, property P4_rec_0 constrains this signal to 1. BtoR REQ(0) is a
duplicated signal.

Moreover, we can see in Fig. 7.24 that some signals have not been annotated. As an
example see signals BtoR REQ(0) and BtoR REQ(1) in property P0_rec. This property
states that if GenBuf is not empty, a request should be sent to one of the receivers, but
does not state which receiver. This cannot be decided locally based on this property alone;
it depends on other properties that constrain BtoR REQ(0) and BtoR REQ(1). We call
such signals unannotated signals.

Example 8. Annotation of the properties of High-Level Data Link Controller
(HDLC) transmitter.

Figure D.6 of Appendix D shows several annotated SERE properties of the HDLC
transmitter4. All the signals in the set of properties have been annotated. However, there
are several duplicated signals generated by several properties, for instance TxDout.

4The original properties are taken from [PPSQ13].

113

Chapter 7 : Annotation of the signals

vunit g enbu f r e c e i v e r
{
−−−−− r e c e i v e r s i d e

P0 rec :
assert (always (not EMPTYm −> next ! (BtoR REQ(0) or (BtoR REQ(1))))) ;

P1 rec :
assert (always (EMPTYm −> next ! (not BtoR REQ g(0) and (not BtoR REQ g

(1))))) ;

P2 rec :
assert (always (not BtoR REQ(0) or not BtoR REQ(1))) ;

P3 rec 0 :
assert (always (rose (BtoR REQ m(0)) −> next ! (next event ! (prev (not

BtoR REQ m(0))) (not BtoR REQ g(0) unti l (BtoR REQ m(1)))))) ;

P3 rec 1 :
assert (always (rose (BtoR REQ m(1)) −> next ! (next event ! (prev (not

BtoR REQ m(1))) (not BtoR REQ g(1) unti l (BtoR REQ m(0)))))) ;

P4 rec 0 :
assert (always ((BtoR REQ m(0)) and (not RtoB ACK m(0))−> next ! (

BtoR REQ g(0)))) ;

P4 rec 1 :
assert (always ((BtoR REQ m(1)) and (not RtoB ACK m(1))−> next ! (

BtoR REQ g(1)))) ;

P5 rec 0 :
assert (always ((RtoB ACK m(0)) −> (next ! (not BtoR REQ g(0))))) ;

P5 rec 1 :
assert (always ((RtoB ACK m(1)) −> (next ! (not BtoR REQ g(1))))) ;

−−−−−−−−− FIFO i n t e r f a c e
P6 FIFO rec :

assert (always ((f e l l (RtoB ACK m(0)) or (f e l l (RtoB ACK m(1))) and not
EMPTYm) −> (DEQ g))) ;

P7 FIFO rec :
assert (always (not f e l l (RtoB ACK m(0)) and not f e l l (RtoB ACK m(1)) −>

(not DEQ g))) ;
}

Figure 7.24: Annotated FL specification of GenBuf communication with receiver in the
case of two receivers

7.5 : Summary

7.5 Summary

In this chapter we explained how to decide the direction of each signal involved in a
property. We started by representing each property using its Abstract Syntax Tree (AST).
We interpreted the dependency relation of each FL and SERE operator into a Directed
Abstract Syntax Tree (DAST). The annotation algorithm uses the DAST of each operator,
and builds recursively the DAST of the property.

As was shown in the above examples, two issues remain to be solved: duplicated and
unannotated signals. In Chapter 8 we explain how to find the duplicated and unannotated
signals using DASTs, and in Chapter 9 we explain how to resolve these signals.

115

Chapter 7 : Annotation of the signals

Chapter 8
Complex Reactant

Contents
8.1 Introduction . 118

8.2 Intuitive construction of a property reactant 118

8.2.1 Intuitive construction of an FL reactant 118

8.2.2 Intuitive construction of a SERE reactant 119

8.3 Principles of the recursive construction 123

8.3.1 The base case . 123

8.3.2 FL properties . 124

8.3.3 SERE properties . 125

8.4 Summary . 128

117

Chapter 8 : Complex Reactant

8.1 Introduction

In this chapter we explain how to construct the complex reactant of a property, hav-
ing the primitive reactants and signal directions. We use the Directed Abstract Syntax
Tree (DAST) of each property to interconnect the primitive reactants and construct the
complex reactant.

8.2 Intuitive construction of a property reactant

The DAST of each property is either fully directed, or may have some undirected sub-
trees. The reactant is built for the fully directed sub-tree of the DAST. Each non-terminal
node is replaced by an instance of the primitive reactant (i.e. hardware implementation
for a temporal operator) or logic gate (for a Boolean operator) interconnected to its
children. For a logic gate, the interconnection is obvious. For a primitive reactant, the
interconnection principles are discussed based on the operator.

8.2.1 Intuitive construction of an FL reactant

To interconnect the FL primitive reactants corresponding to each node v of a DAST we
should consider the direction of the corresponding edges of v.

• If the direction is (P(v) → v), the trig output of P(v) is connected to the start
input of v. If v is a leaf, the DAST whose root is v is assigned to the trig output;
trig constrains v.

• If the direction is (P(v) ← v), the observed signal (for a leaf) or the trig output of
v (for an internal node) is connected to the cond input of P(v).

Example 1. Reactant construction for P5_rec_0.

Consider the annotated property P5_rec_0 from GenBufRec:

P5 rec 0 :
always ((RtoB ACK m(0)) −> (next ! (not BtoR REQ g(0)))) ;

Figure 8.1 shows the DAST of this property. The DAST is fully directed; therefore,
the reactant is built for the DAST.

Consider the connection of the primitive reactant of ‘–>’ to its children. Therefore v
in the above discussion is any child of ‘–>’. On the right-hand side, v = next!. We have
(–> → next!); therefore, the trig of ‘–>’ should be connected to the start signal of next!
(Fig. 8.2). For the left child we have (–> ← RtoB ACK m(0)); therefore, RtoB ACK m(0)

should be connected to the cond port of the primitive reactant of ‘–>’.

Example 2. Reactant construction for P0_rec.

Consider the annotated property P0_rec from GenBufRec:

P0 rec :
always (not EMPTYm −> next ! (BtoR REQ(0) or BtoR REQ(1))) ;

8.2 : Intuitive construction of a property reactant

always

next!

not

BtoR_REQ(0)

>

RtoB_ACK(0)

Figure 8.1: DAST of P5_rec

RtoB_ACK(0)

next!

>

RtoB_ACK(0)

cond
trig

start
>

cond
trig

start
next!

Figure 8.2: Interconnection of the ‘–>’ primitive reactant (P5_rec)

Figure 8.3(a) shows the DAST of this property. The DAST is not fully directed (see
the sub-tree whose root is or); signals BtoR REQ(0) and BtoR REQ(1) are unannotated.
The reactant is built for the fully annotated sub-tree of this DAST.

The complex reactant for P0_rec is shown in Fig. 8.3(b). In this figure, the trig
output of the next! primitive reactant constrains a Boolean expression (BtoR REQ(0) or

BtoR REQ(1)), instead of constraining a signal value. We represent this expression with
Expr , and the trigger output of the reactant with Etrig . Actually, Etrig corresponds to
the unannotated sub-tree of the DAST. Component assert activates the circuit after
reset.

8.2.2 Intuitive construction of a SERE reactant

To interconnect the SERE primitive reactants, we should consider various categories of
SERE operators. Remember from Chapter 6 that the primitive reactant of a SERE
operator, has start , cond1, and cond2 inputs in addition to the synchronization signals.
It has also three outputs: trig l, trig r, and ended . The ended output becomes 1 when
the sequence completes.

8.2.2.1 Simple SERE

In a simple SERE sequence, e.g. ϕ = A;B , the primitive reactant of ‘;’ and its left sub-
sequence (A) start at the same time; therefore, they share the same start signal. Based
on the edge directions between the simple SERE operator and its children we have:

• If v is the left child (v = Lch(P(v))):

119

Chapter 8 : Complex Reactant

>

Etrig

always

not

BtoR_REQ(0)

next!

or

BtoR_REQ(1)

EMPTY

(a) DAST of P0_rec

not EMPTY

cond

trigstart
>

cond

trigstart
next!

cond

trigstart
always

clock

reset
trig

assert BtoR_REQ(0) or
BtoR_REQ(1)

Etrig

(b) The complex reactant for P0_rec

Figure 8.3: Reactant for P0_rec

– If v is an internal node:

∗ the start input of P(v) is connected to the start input of v.

∗ the ended output of v is connected to the cond1 input of P(v).

– If v is a leaf:

∗ If the direction is (P(v) ← v), v (the signal represented by v) is connected
to the cond1 input.

∗ If the direction is (P(v) → v), cond1 is connected to ‘1’, and trig l con-
strains v.

• If v is the right child (v = Rch(P(v))), the same rules as for the left child apply,
replacing:

– cond1 by cond2

– trig l by trig r

Here, we assumed that none of the left and right sub-sequences are an unbounded
repetition.

Example 3. Simple SERE reactant construction.

Consider the annotated property HDLC_240 from the HDLC transmitter:

HDLC 240 :
always ({not TxLastBit m and not TxDataWr m ; TxLastBit m and not

TxDataWr m}
|−> { {not TxDout g ; (TxDout g) [∗ 6] ; not TxDout g } ;

{TxDout g } [∗] ; { {TxEnable m and TxDataWr m} | {TxDout m and (not
TxEnable m or not TxDataWr m) } } }) ;

8.2 : Intuitive construction of a property reactant

always

|->

;

;

TxDout *

REP |

and

TxEnable TxDataWr

and

orTxDout

TxEnable TxDataWr

not not

;

not

TxDout

;

TxDout

REP

*

6

not

TxDout

depth = 7

depth = 6

depth = 3 depth = 2

depth = 2

depth = 1

depth = 1

Boolean
expr

Figure 8.4: The directed abstract syntax tree of HDLC_240

The DAST of this property is shown in Fig. 8.4. In this figure, the depth of each
sub-property, defined in Section 8.3.3, is written next to the root of its sub-tree.

Figure 8.5(a) shows a sub-tree of the DAST of property HDLC_240, corresponding to
(TxDout)[∗6]; notTxDout. The root of this sub-tree is operator ‘;’.

;

TxDout

REP

*

6

not

TxDout

trig_r

(a) Partial DAST of HDLC_240

cond1
endedstart

cond2
trig_l
trig_r

;
cond1

endedstart

cond2
trig_l
trig_r

REP
(*6)

start

'1''0'
'1'

(b) Interconnection of the ‘;’ primitive reactant (HDLC_240)

Figure 8.5: Simple SERE primitive reactant interconnection

We connect the primitive reactant of ‘;’ to the primitive reactants of its children. Node
v in the above discussion is any child of ‘;’. First assume that v = REP, left child of ‘;’.
We have (; → REP); therefore, the start signal of REP is connected to the start signal of
‘;’, and the ended signal of REP is connected to cond1 of ‘;’ (Fig. 8.5(b)).

121

Chapter 8 : Complex Reactant

For the right child we have (; → not). The right child is a Boolean expression; there-
fore, the cond2 input is connected to ‘1’ and trig r constrains TxDout to 0 (Fig. 8.5(b)).
The sub-tree of the partial DAST with root not is associated to the trig r. The ended
output of ‘;’ indicates that the sequence completes, with the emission of trig r.

8.2.2.2 Compound SERE

In a compound SERE sequence, both sub-sequences start at the same time.

• If v is the left child (v = Lch(P(v))):

– If v is an internal node:

∗ the trig l output of P(v) is connected to the start input of v.

∗ the ended output of v is connected to the cond1 input of P(v).

– If v is a leaf:

∗ If the direction is (P(v) ← v), v (the signal represented by v) is connected
to the cond1 input of P(v).

∗ If the direction is (P(v) → v), cond1 is connected to ‘1’, and trig l con-
strains v.

• If v is the right child (v = Rch(P(v))), the same rules as for the left child apply,
replacing:

– cond1 by cond2

– trig l by trig r

Here, we assumed that none of the left and right sub-sequences are unbounded repe-
tition.

8.2.2.3 Unbounded SERE

As was mentioned in Chapter 6, an unbounded repetition should be followed by a Boolean
expression (see the right-most sub-tree in Fig. 8.4, whose root is ‘;’). Let v be node REP,
the root of the unbounded repetition sub-tree.

• If Lch(v) is not a leaf:

– The trig l output of the ‘∗’ primitive reactant is connected to the start input
of Lch(v).

– The ended output of Lch(v) is connected to the cond1 input of the ‘∗’ primitive
reactant.

• If Lch(v) is a leaf:

– The trig l output of the ‘∗’ primitive reactant constrains the signal of Lch(v).

– The cond1 input of the ‘∗’ primitive reactant is connected to ‘1’.

• the Boolean expression associated to the sibling of v (Rch(P(v))) is connected to
the cond2 input of the ‘∗’ primitive reactant.

8.3 : Principles of the recursive construction

Example 4. Unbounded SERE reactant construction.

Figure 8.6(a) shows the simplified sub-tree of the unbounded repetition in Fig. 8.4.
Node v is REP. Its sibling is a Boolean expression that is connected to cond2 of the ‘∗’

primitive reactant. The trig l output of this reactant constrains TxDout (Fig. 8.6)(b).

;

TxDout

REP

*

Boolean
expr

trig_l

(a) Partial DAST of HDLC_240

cond1
endedstart

cond2
trig_l
trig_r

REP
(*)Boolean expr

'1'

(b) Interconnection of the ‘∗’ primitive reactant (HDLC_240)

Figure 8.6: Unbounded SERE primitive reactant interconnection

8.3 Principles of the recursive construction

In this section, we explain the principles of the recursive construction using the concepts
and formalism introduced in Chapters 5 and 6.

Informally, all the operands of ϕ stand for signals of the reactant, some of which are
observed, others are generated (see Chapter 7). All reactants have a reset and a clock
input signal. By default, we consider that all signal values are taken at the rising edge of
clock. An input signal start is used to set the reactant active, and the activity may take
one or more clock cycles.

During its activity, the reactant observes input signals and constrains the value of one
or more signals. We recall that the output of a reactant is not the value of a signal, but
the trigger that will start the primitive hardware component in charge of the signal value
generation or observation.

For each operator, circuit C implements its primitive reactant.
A complex reactant is built by interconnecting the primitive reactants; it is done

recursively according to the depth (number of nested FL or SERE operators) of property
ϕ, denoted | ϕ |.

We now show how, for all n ∈ N, for all properties ϕn of depth n, we construct a
reactant circuit that implements ϕn.

∀n ∈ N, ∀ϕn, n =| ϕn |, ∃Cn, Cn�ϕn

8.3.1 The base case

Let n = 0 be the depth of property ϕ0. In this case, ϕ0 is a Boolean expression, which is
implemented using a Boolean primitive reactant introduced in Chapter 5. Here, we just

123

Chapter 8 : Complex Reactant

bring again Fig. 8.7 as a reminder. The trigger output(s) of a primitive reactant constrains
its operand(s).

Figure 8.7: Base case: Boolean reactants

In the remaining of this chapter, we eliminate all the Boolean reactants from the figures
for the sake of simplicity.

8.3.2 FL properties

Let n > 0 be the depth of property ϕn. According to the abstract syntax tree of ϕn, there
exists a FL operator denoted Ωn, a subproperty ϕn−1 and a Boolean operand opn such
that ϕn = Ωn(ϕn−1, opn). The circuit Cn is the interconnection of the subcircuit Cn−1 and
a primitive reactant that implements Ωn (Fig. 8.8).

Circuit Cn takes the synchronization signal, start and some observed signals. The trig
output of Ωn connects to the start input of circuit Cn−1, if ϕn−1 is not Boolean; otherwise,
trig constrains ϕn−1.

Figure 8.8: Recursive construction of circuit Cn

Example 5. Reactant for property P5_rec_0.

The construction of the reactant for this property follows the principles just explained.
Property P5_rec_0 is a depth 3 property, with Ω3 = always, Ω2 = –>, and Ω1 =
next!. The complex reactant of this property is shown in Fig. 8.9. Signal BtoR REQ(0)

is constrained by the trig signal of the next! operator primitive reactant.

8.3 : Principles of the recursive construction

RtoB_ACK(0)

cond

trigstart
>

cond

trigstart
next!

cond

trigstart
always

clock

reset
trig

assert

Figure 8.9: Implementation of Genbuf property P5_rec_0

8.3.3 SERE properties

Here, we show how a complex reactant for a SERE property is constructed recursively,
based on the depth of the property, | ϕ |. The depth of a SERE property is defined as
n =| ϕL | + | ϕR | +1, where | ϕL | and | ϕR | are the total number of nested SERE
operators in ϕL and ϕR. As an example, see the DAST of property HDLC_240, shown in
Fig. 8.4. Here, we show how for each category of SERE operators, Cn is constructed using
the primitive reactant of the operators.

8.3.3.1 Simple SEREs

Let n > 0 be the depth of property ϕn, n
L ≥ 0 and nR ≥ 0 the depths of its left and right

children, ϕL
nL and ϕR

nR .
We assume that the left sub-sequence is not an unbounded repetition. Then, the

circuit Cn is the interconnection of the sub-circuit CL
nL , CR

nR and a primitive reactant that
implements Ωn ∈ {; , :}.

In the simple SEREs, the Cn and CL
nL sub-circuits start at the same time, after the

activation of the start signal (startLnL = startn). Ωn generates three signals:

1 The Ωn.trig l signal is directly connected to Ω.cond1. It constrains the left operand,
if it is a Boolean.

2 The Ωn.trig r signal starts the sub-circuit CR
nR , if ϕR

nR is not Boolean; otherwise, it
constrains ϕR

nR .

3 The Ωn.ended output indicates ϕ completes.

Figure. 8.10 illustrates the recursive construction.

Figure 8.10: Recursive construction of circuit Cn (Ωn ∈ {; , :})

125

Chapter 8 : Complex Reactant

8.3.3.2 Compound SEREs

Let n > 0 be the depth of property ϕn. According to the abstract syntax tree of ϕn, there
exists a SERE operator denoted Ωn, a left sub-sequence ϕL

nL and a right sub-sequence ϕR
nR .

As the right and left sub-sequences start at the start time of Cn (startLnL = startRnR =
startn). Ωn generates these signals:

1 The Ωn.trig l signal indicates the start of the reactant of ϕL
nL , if it is not Boolean.

Otherwise, it constrains the left operand.

2 The Ωn.trig r signal indicates the start of the reactant of ϕR
nR , if it is not Boolean.

Otherwise, it constrains the right operand.

3 The Ωn.ended signal indicates if ϕn completes.

Figure. 8.11 illustrates the recursive construction.

Figure 8.11: Recursive construction of circuit Cn (Ωn ∈ {&,&&, |})

8.3.3.3 Unbounded SEREs

Assume that ϕn = ϕn−1[∗]. Figure. 8.12 illustrates the recursive construction of ϕn−1[∗].
As was discussed before, an unbounded repetition is followed by a Boolean expression
(op0). The Boolean expression is connected to the cond2 input of the reactant of Ωn = ∗.
The primitive reactant of Ωn generates the following signals:

1 The Ωn.trig l signal that is connected to Cn−1.start , if ϕn−1 is not Boolean. Other-
wise, Ωn.trig l is the output of the reactant and constrains ϕn−1.

2 The Ωn.ended signal that indicates each time ϕn−1 occurs.

Example 6. Reactant for property HDLC_240 (from HDLC transmitter).

8.3 : Principles of the recursive construction

Figure 8.12: Recursive construction of circuit Cn (Ωn ∈ {∗,+})

The construction of the reactant for this property follows the principles just explained.
We show the reactant of the right-hand side of the implication operator. Figure 8.13 shows
the complex reactant of this sub-sequence.

cond1
start

cond2
trig_l

REP
(*)b

cond1
start

cond2
trig_l
trig_r

;
cond1
start

cond2
trig_l
trig_r

;cond

start
>

cond1
start

cond2
trig_l
trig_r

;
cond1
start

cond2
trig_lREP

(*6)

cond1

start
cond2 trig_l

trig_r
;'1'

'1'

step 1

step 2

step 3
step 4

step 5

step 6
trig ended

ended
ended

ended

endedended

Figure 8.13: Implementation of HDLC property HDLC_240

The steps for constructing this complex reactant are shown in the following. In each
step, the left and right sub-sequences are shown. In the first step, we instantiate the
primitive reactant for ‘;’. Then we connect it to the primitive reactant of ϕL

3 and ϕR
2 .

Therefore, we construct the reactant of these sub-sequences recursively.

127

Chapter 8 : Complex Reactant

step 1 :ϕ6 = {notTxDout; {TxDout[∗6]; notTxDout}}; {TxDout[∗];BoolExpr}
Ω6 =;

ϕL
3 = notTxDout; {TxDout[∗6]; notTxDout}

ϕR
2 = TxDout[∗];BoolExpr

step 2 :ϕ3 = notTxDout; {TxDout[∗6]; notTxDout}
Ω3 =;

ϕL
0 = notTxDout

ϕR
2 = TxDout[∗6]; notTxDout

step 3 :ϕ2 = TxDout[∗6]; notTxDout

Ω2 =;

ϕL
1 = TxDout[∗6]

ϕR
0 = notTxDout

step 4 :ϕ1 = TxDout[∗6]
Ω1 = [∗6]
ϕ0 = TxDout

step 5 :ϕ2 = TxDout[∗];BoolExpr

Ω2 =;

ϕL
1 = TxDout[∗]

ϕR
0 = BoolExpr

step 6 :Ω1 = [∗]
ϕ0 = TxDout

As is shown in Fig. 8.13, signal TxDout is constrained several times in the property. A
signal s is called duplicated if it is generated several times in a property, or is generated
by several properties.

8.4 Summary

In this chapter we discussed the principles of the recursive construction of a reactant. A
reactant is constructed for each property. The advantage of our construction method is
having access to the trigger of each primitive reactant module. It increases the observabil-
ity of the generated circuit, and makes it appropriate for debugging purposes. However,
two issues still remain to be solved: duplicated signals and unannotated signals. In the
next chapter, we solve these issues.

Chapter 9
Resolution of the signals

Contents
9.1 Introduction . 130

9.2 Constraints computed from directed DASTs 130

9.3 Constraints computed from semi-directed DASTs 132

9.4 Dependency Graph (DG) . 133

9.5 Dependency Graph construction 135

9.6 The resolution function: solver 136

9.6.1 Resolving duplicated signals: simple solver 136

9.6.2 Resolving unannotated signals: complex solver 137

9.7 The final circuit . 139

9.7.1 Checking the consistency . 141

9.7.2 Checking the completeness . 142

9.8 Summary . 142

129

Chapter 9 : Resolution of the signals

9.1 Introduction

In this chapter we explain how to resolve the value of the duplicated and unannotated
signals. We express the dependency among all properties using a Dependency Graph. To
this goal, we partition the Directed Abstract Syntax Trees (DASTs) of the properties into
directed and semi-directed. Then, we consider directed DASTs to extract the dependencies
for a duplicated signal, and analyze the semi-directed DASTs to extract the dependencies
for unannotated signals.

We construct two kind of solvers: 1) simple solvers for resolving the duplicated signals,
and 2) complex solvers for resolving the unannotated signals.

Additionally, from the dependency graph we extract the information for verifying if
the set of properties are complete and consistent.

9.2 Constraints computed from directed DASTs

In a directed DAST all the edges are directed, and hence, all the signals are annotated.
We start by an example.

Example 1. Directed DASTs of GenBufRec.

As was shown in Chapter 7, several properties of GenBufRec are fully annotated,
and there are several properties that constrain a signal. For example, consider the three
following properties:

P1 rec :
always (EMPTYm −> next ! (not BtoR REQ g(0) and (not BtoR REQ g(1)))) ;

P3 rec 0 :
always (rose (BtoR REQ m(0)) −> next ! (next event ! (prev (not BtoR REQ m

(0))) (not BtoR REQ g(0) unti l (BtoR REQ m(1))))) ;

P4 rec 0 :
always ((BtoR REQ m(0)) and (not RtoB ACK m(0))−> next ! (BtoR REQ g(0))) ;

The DASTs of these properties are shown in Fig. 9.1, Fig. 9.2, and Fig. 9.3.

>

not

always

not

BtoR_REQ(0)

next!

and

BtoR_REQ(1)

EMPTY

Figure 9.1: DAST of P1_rec

9.2 : Constraints computed from directed DASTs

>

always

rose

BtoR_REQ(0)

next!

next_event

BtoR_REQ(1)

prev

not

BtoR_REQ(0)

until_

not

BtoR_REQ(0)

Figure 9.2: DAST of P3_rec

>

notBtoR_REQ(0)

always

BtoR_REQ(0)

next!and

RtoB_ACK(0)

Figure 9.3: DAST of P4_rec

131

Chapter 9 : Resolution of the signals

All these DASTs are fully directed, and all the signals are annotated. As is shown in
these DASTs, BtoR REQ(0) is constrained to 0 by properties P1_rec and P3_rec_0, while
it is constrained to 1 by P4_rec_0.

Considering all the properties of GenBufRec (see Chapter 7, Fig. 7.24), the set of the
directed DASTs is:

DIRECTED = { P1_rec, P3_rec_0, P3_rec_1, P4_rec_0, P4_rec_1, P5_rec_0,
P5_rec_1, P6_FIFO_rec, P7_FIFO_rec }

As was discussed in Chapter 8, for each DAST of DIRECTED , the reactant is built,
and the trigger output, trig , constrains a signal to 0 or 1. For each signal z, there may be
several trigger signals that constrain z to 0 (Trig¬z) or to 1 (Trigz). We should find all
these trigger signals. Let Trig i¬z , 0 ≤ i ≤ nb0−1 be the nb0 triggers of the reactants that
constrain signal z to 0, and Trig jz , 0 ≤ j ≤ nb1 − 1 be the nb1 triggers that constrain z
to 1. Two vectors T 0 z and T 1 z are defined as:

T 0 z = (Trig0¬z,Trig
1
¬z, . . . ,Trig

nb0−1
¬z)

T 1 z = (Trig0z,Trig
1
z, . . . ,Trig

nb1−1
z)

For each signal z, signals T0 z and T1 z are defined as:

T0 z =
�

i

Trig i¬z , and T1 z =
�

j

Trig jz

Back to Example 1, for signal BtoR REQ(0) we have:

T 0BtoR REQ(0) = (Trig0¬BtoR REQ(0),Trig
1
¬BtoR REQ(0))

T 1BtoR REQ(0) = (Trig0BtoR REQ(0))

where, Trig0¬BtoR REQ(0) corresponds to property P1_rec, Trig1¬BtoR REQ(0) corresponds to

property P3_rec_0, and Trig0BtoR REQ(0) corresponds to property P4_rec_0 (see figures
9.1, 9.2, and 9.3). Consequently,

T0BtoR REQ(0) = Trig0¬BtoR REQ(0) ∨ Trig1¬BtoR REQ(0)

T1BtoR REQ(0) = Trig0BtoR REQ(0)

9.3 Constraints computed from semi-directed DASTs

As was shown in Chapter 7 several signals of properties remain unannotated. We start
by an example.

Example 2. Semi-directed DASTs of GenBufRec.

Consider the two following properties of GenBufRec:

P0 rec :
always (not EMPTYm −> next ! (BtoR REQ(0) or (BtoR REQ(1)))) ;

P2 rec :
always (not BtoR REQ(0) or not BtoR REQ(1)) ;

9.4 : Dependency Graph (DG)

>

always

not

BtoR_REQ(0)

next!

or

BtoR_REQ(1)

EMPTY

Figure 9.4: DAST of P0_rec

not not

always

BtoR_REQ(0)

or

BtoR_REQ(1)

Figure 9.5: DAST of P2_rec

Figures 9.4 and 9.5 show the DASTs of properties P0_rec and P2_rec.
Both DASTs are semi-directed, since they have some unannotated signals: BtoR REQ(0)

and BtoR REQ(1). This is due to the fact that several dependency rules apply for operator
or. Intuitively, property P0_rec states that whenever the EMPTY signal is 0, there should
be a request to a receiver, but is does not say which receiver.

Considering these properties in isolation cannot suffice to decide which signal among
BtoR REQ(0) and BtoR REQ(1) must be generated. All the properties that affect these
signals must be considered together.

In the case of GenBufRec, the set of semi-directed DASTs is:
SEMIDIRECTED = { P0_rec, P2_rec }

For each DAST of SEMIDIRECTED , the semi-directed sub-trees are pruned away,
and the reactant is built for the directed sub-tree with the method explained in Chap-
ter 8. Let Etrig j be the output signal of such reactant, and Expr j the Boolean expres-
sion for the pruned sub-tree. The expressions E = (Expr 0, . . . ,Exprm) are triggered by
Etrig0, . . . ,Etrigm (see Fig. 9.4 and Fig. 9.5).

9.4 Dependency Graph (DG)
The Dependency Graph DG of a set of properties (P0, . . . , Pk−1) is a semi-directed and
labeled graph. We denote DG = (V,E), where:

• V = V 1 ∪ V 2 is the set of nodes:

– V 1 = L0∪· · ·∪Lk−1, where L0, . . . , Lk−1 are the set of leaves of DAST0, . . . ,DASTk−1

133

Chapter 9 : Resolution of the signals

– V 2 is the set of all the trig outputs of all the properties.

• E = E1 ∪ E2, where E1 is the set of the directed edges, and E2 is the set of
undirected edges, and:

– E1 ⊂ V 2× V 1, e.g. e = (Trig l → l)

– E2 ⊂ V 1× V 1, e.g. e = (l1–l2)

• Each edge e of the graph has a label w = (id, val, type), where:

– id: identifies the property that creates edge e; therefore, 0 ≤ id ≤ k − 1

– val: if e is directed, val specifies the value of the destination node, if the
value of the source node is 1. If e is undirected, val is set to -1. Therefore,
val ∈ {0, 1,−1}.

– type: specifies if the edge is directed; therefore, type ∈ {d, u}, where ‘d’ means
directed, and ‘u’ means undirected.

The dependency graph may have several strongly connected components, each one specifies
a set of interdependent generated signals Z = {z1, . . . zn} (see Fig. 9.6).

Example 3. Dependency graph of GenBufRec

DEQ
(6, 1, d) (7, 0, d)

BtoR_REQ(0) BtoR_REQ(1)

(0, -1, u)

(2, -1, u)

(1, 0, d)

(3, 0, d)

(5, 0, d)

(4, 1, d)

(1, 0, d)

(3, 0, d)

(5, 0, d)

(4, 1, d)

Figure 9.6: Dependency graph of GenBufRec

The dependency graph of GenBufRec has 2 strongly connected components. DG1 con-
sists in nodes BtoR REQ(0) and BtoR REQ(1) and all their corresponding related triggers;
Z1 = {BtoR REQ(0), BtoR REQ(1)}. Consider edge (BtoR REQ(0) – BtoR REQ(1)), with
label w = (0,−1, u). The label means that the edge is created due to DAST0, P0_rec;
and the edge is undirected. It means that BtoR REQ(0) and BtoR REQ(1) depend on each
other.

Now consider node v1 = BtoR REQ(0), and v2 = Trig0¬BtoR REQ(0). There is a directed
edge e = (v2 → v1). The label of this edge is w = (1, 0, d). The first element of the
label means that this edge is created due to DAST1, P1_rec. The second element means

9.5 : Dependency Graph construction

that if the value of Trig0¬BtoR REQ(0) is 1, then BtoR REQ(0) is constrained to 0. The third
element means that this edge is directed.

Component DG2 consists in signal DEQ and its two triggers; Z2 = {DEQ}. Since this
component has only one generated signal, the value of DEQ is independent from other
generated signals, it only depends on the value of its triggers (Trig0DEQ and Trig0¬DEQ).

9.5 Dependency Graph construction

The dependency graph is constructed in two steps from the DASTs of the properties.

1 For each directed DAST, DASTk:

1-1 For each generated leaf l of DASTk (i.e. (P(l) → l)):

1-1-1 Add l to the nodes of DG (if it is not in V)

1-1-2 Add the corresponding trigger (Trig il or Trig
j
¬l) to V

1-1-3 Create an edge e from the trigger node to the signal node, e = (Trig il → l)

1-1-4 If the corresponding signal of l is constrained to 0: create the label w =
(k, 0, d), otherwise w = (k, 1, d)

2 For each semi-directed DAST, DASTk:

2-1 Prune away the fully directed sub-tree, and keep the undirected sub-tree

2-2 Add all the leaves of the undirected sub-tree into V (if they are not in V)

2-3 For each pair of nodes l1 and l2 coming from DASTk:

2-3-1 Add an edge between l1 and l2
2-3-2 Create the label w = (k,−1, u)

Example 4. Dependency graph construction for GenBufRec

Using the principles explained above, we show how to construct the dependency graph
of GenBufRec (see Fig. 9.6). Here, the result of each construction step is shown for the
DAST of properties P0_rec and P1_rec:

1 For DAST1 (corresponds to P1_rec):

1-1 For leaf BtoR REQ(0):

1-1-1 BtoR REQ(0) is added to the nodes of DG
1-1-2 Trig0¬BtoR REQ(0) is added to V

1-1-3 e =(Trig0¬BtoR REQ(0) → BtoR REQ(0))

1-1-4 w = (1, 0, d)

1-2 The above steps are repeated for leaf BtoR REQ(1)

2 For DAST0 (corresponds to P0_rec):

2-1 keep the undirected sub-tree whose root is or

2-2 BtoR REQ(0) and BtoR REQ(1) already exist in V

2-3 For BtoR REQ(0) and BtoR REQ(1)

2-3-1 e =(BtoR REQ(0) – BtoR REQ(1)) is added to E

2-3-2 w = (0,−1, u)

135

Chapter 9 : Resolution of the signals

9.6 The resolution function: solver

Now we discuss how to use the dependency graph DG for generating the solvers. We
construct two types of solvers: simple and complex. The first one specifies the value of
the duplicated signals, while the second one specifies the value of the unannotated signals.

To extract the list of the duplicated and unannotated signals, we consider each strongly
connected sub-graph DGi (0 ≤ i ≤ k) of DG. For each DGi:

1 If it contains only one signal, z, the signal is annotated, and it is constrained only
by its triggers. If there is more than one trigger, the signal is duplicated. We need
a simple solver to specify its value based on its triggers.

2 If DGi contains a set of signals Z = {z1, . . . zn}, it means that the signals are not
annotated in all the properties, and their values depend not only on their triggers,
but also on the value of other signals in Z. In this case, we need a complex solver to
identify the signals’ values. Here, in addition to T 1 zj and T 0 zj for each signal zj, we
need to find TZ = (Etrig0, . . . ,Etrigm−1), where m is the number of the expressions
that relate the signals of Z.

9.6.1 Resolving duplicated signals: simple solver

In DGi we consider each edge e = (v → z). If label w = (i, 0, d) we add the trigger that
is represented by node v to T 0 z; if label w = (i, 1, d) we add the trigger to T 1 z. After
finding T 1 z and T 0 z, the value of z should be calculated.

Signals T0 z and T1 z are the inputs of the solver component. The output will be the
final value of signal z (see Fig. 9.7).

simple
solver

Figure 9.7: The interface of simple solver for duplicated signals

In our implementation, if none of T0 z and T1 z is active, the user has the choice to
select if signal z keeps its previous value or takes a default value. The solver function is
one of:

z =�0� when T0 z =
� 1� else z =�0� when T0 z =

� 1� else
�1� when T1 z =

� 1�; �1� when T1 z =
� 1� else

default value;

Example 5. Simple solver for GenBufRec.

For GenBufRec we have Z2 = {DEQ} (see Example 3). Considering DG2 of the
dependency graph, it is obvious that there are two edges whose destination node is DEQ.
Considering the label of each edge, we add Trig0DEQ to T 1DEQ and Trig0¬DEQ to T 0DEQ.

9.6 : The resolution function: solver

Then, a simple solver computes the value of DEQ :

DEQ =�0� when T0DEQ =� 1� else
�1� when T1DEQ =� 1� else
�0�;

Here, the default value is 0.

9.6.2 Resolving unannotated signals: complex solver

Assume that Z = (z1, . . . , zn), then, all the signals zi of this list are unannotated in
at least one property. These signals are interdependent through the list of expressions
E = (Expr 0, . . . ,Exprm−1), which are triggered by TZ = (Etrig0, . . . ,Etrigm−1). Generally,
we can say that signals zi, . . . , zn are the operands of the expressions Expr 0, . . . ,Exprm−1

triggered by Etrig0, . . . ,Etrigm−1.
At the first step, for each signal zi we find the list T 1 zi and T 0 zi using the principles

explained in Section 9.6.1.
Then, we should find TZ . We consider each edge e of DG. If e is undirected, we add the

corresponding trigger signal, Etrig j, to TZ , and add its corresponding expression Expr j
to E .

9.6.2.1 Complex solver implementation

A complex solver takes (Etrig0, . . . ,Etrigm−1), (T1 z1 , . . . ,T1 zn), and (T0 z1 , . . . ,T0 zn) as
inputs, and it outputs the values of (z1, . . . , zn).

simple
solver

simple
solver

FindMatch

ComplexSolver

Figure 9.8: The interface of complex solver for unannotated signals

The problem is to solve the following set of equations, i.e. the values of (z1, . . . , zn),
by considering (T1 z1 , . . . ,T1 zn) and (T0 z1 , . . . ,T0 zn).

...
Etrig j → Expr j(z1, . . . , zn) = 1
...

The brute force idea is to construct a Look Up Table (LUT) for the FindMatch sub-
module (Fig. 9.8) by enumerating all the values of Z for each value t of TZ (initially, the

137

Chapter 9 : Resolution of the signals

LUT has m+ n columns, and at most 2m+n rows). Then, we select an appropriate row of
this LUT. However, most of these combinations are impossible due to the properties and
some valuation of TZ may never happen.

We consider the 2m values of vector TZ = (Etrig0, . . . ,Etrigm−1). Each value t of
TZ corresponds to the set of triggers that are simultaneously active. We associate to
this set of active triggers the global Boolean expression that is the “and” of the Expr j
corresponding to Etrig j = 1.

Mathematically, we define a function F that associates to each set of active triggers
its Boolean expression:

F : 2m → ExprBooln

t �→
m�
j=1

Etrigj=1 in t

Expr j

ExprBooln is the set of Boolean functions of n variables.
F(t) is an expression of z1, . . . , zn. Any assignment of z1, . . . , zn satisfying F(t) (i.e.

verifying that F(t) = 1) is a combination of the signal values that is compatible with the
value t of TZ .

We denote S(t) = {Z = (z1, . . . , zn)|F(t)(Z) = 1}, and we add these valuations of TZ
and Z to the LUT (a m + n bit vector, the first m-bits represent value t of TZ , and the
next n-bits represent the valuation of Z ∈ S(t)).

After constructing the LUT, we should find an appropriate row of the LUT based on
the value of TZ , (T1 z1 , . . . ,T1 zn), and (T0 z1 , . . . ,T0 zn). This is done in two steps:

1 First, we use n instances of the simple solver. For each signal zi, if either T1 zi = 1 or
T0 zi = 1, the value of zi is obtained from its triggers: zi = T1 zi ∨¬T0 zi . Therefore,
we first fix the value of such signals (see Fig. 9.8). The value of the other signals
is don’t care. The output of this step is thus the vector as Z � = (z�1, . . . , z

�
n), where

some signal values have been fixed and the others are don’t care and should be
obtained from the LUT based on the signals that have fixed values and TZ .

2 We define a compatibility relation R between the values of TZ and the values of Z �:
t R z� means that the particular combination of signal values z� may hold when the
triggers have value t .

R : 2m × 2n → Bool
t R z� ⇔ F(t)(z�) = 1

⇔ z� ∈ S(t)

In Fig. 9.8, the FindMatch circuit implements relation R, and it returns the value
of Z, if relation R holds. This circuit first looks for the rows of the LUT that
correspond to value t of TZ . There may be several rows that match the value t .
These rows give various valuation of z� (S(t) has more than one member).

Among these rows, we select a row that matches with the signals that have fixed
values, and obtained in step 1. If there is just one such row, the value of the other
signals is obtained from this row. Otherwise, we have to choose one row (currently,
we take the first one).

9.7 : The final circuit

Example 6. Complex solver of GenBufRec.

For GenBufRec, Z1 =(BtoR REQ(0), BtoR REQ(1)). To construct the LUT, we need
TZ1 = (Etrig0, Etrig1) (see Fig. 9.4 and Fig. 9.5). First, we add all the possible valuation
of TZ1 into the LUT, and for each valuation enumerate all the values of Z1.

To this goal, we consider expressions Expr 0 and Expr 1:

Expr 0 = BtoR REQ(0) orBtoR REQ(1)

Expr 1 = notBtoR REQ(0) or notBtoR REQ(1)

For value “11” of TZ , where Etrig0 and Etrig1 are simultaneously active, we have:

ExprBool2 = Expr0 ∧ Expr1

Based on this expression, if TZ =“11”, then S(11) = {01, 10}. Therefore, we add lines
“1101” and “1110” to the LUT. Similarly, if TZ = “10”, then S(10) = {01, 10}, and we
add “1001” and “1010” to the LUT. Actually, this combination of Etrig0 and Etrig1 never
happens, since Etrig1 corresponds to the child of the always operator and it is always
1 (Fig. 9.5). To eliminate this row, we need to do model checking, to identify which
combinations of the Etrig signals never occur. If TZ = “01”, S(01) = {00, 01, 10}, and
“0100”, “0101”, and “0110” are added to the LUT. The LUT is shown in Fig. 9.9.

Etrig0 Etrig1 BtoR REQ(0) BtoR REQ(0)

1 1 0 1
1 1 1 0
1 0 0 1
1 0 1 0
0 1 0 0
0 1 0 1
0 1 1 0

Figure 9.9: The LUT of the complex solver of GenBufRec

Now assume that TZ = “01”, T1BtoR REQ(0) = 1, T0BtoR REQ(0) = 0, T1BtoR REQ(1) =
0, and T0BtoR REQ(1) = 0. First, we consider the trigger signals. For signal BtoR REQ(0)

we have T1BtoR REQ(0) ∨ T0BtoR REQ(0) = 1, therefore, the value of BtoR REQ(0) is ob-
tained from its trigger signals and it is 1. For signal BtoR REQ(1) both trigger signals
are 0. Therefore, the value of this signal should be obtained from the LUT. TZ = “01”,
therefore, the last three lines of the LUT are selected. The value of BtoR REQ(0) has
been already fixed to 1. Consequently, we should select the last line, and the value of
BtoR REQ(1) becomes 0.

9.7 The final circuit

The final circuit is the interconnection of the property reactants (see Chapter 8) and
solvers.

Example 7. The final circuit of GenBufRec.

Figure 9.10 shows the interconnection of all the property reactants with the solver
components for GenBufRec.

139

Chapter 9 : Resolution of the signals

clock reset

RtoB_ACK(0) RtoB_ACK(1)

BtoR_REQ(0)

DEQ

BtoR_REQ(1)

P7_FIFO_rec

P6_FIFO_rec

P0_rec

P1_rec

P2_rec

P3_rec_0

P3_rec_1

P4_rec_0

P4_rec_1

P5_rec_0

P5_rec_1

simple
solver

complex
solver

EMPTY

Figure 9.10: The final circuit of GenBufRec

9.7 : The final circuit

9.7.1 Checking the consistency

The definition of z is consistent iff in all the cycles:

T1 z ∧ T0 z = 0

For each signal we obtained T1 z and T0 z from the dependency graph. Therefore, we
can generate complementary properties automatically for verifying the above condition.
These properties, together with the generated circuit are the inputs of a formal verification
tool to prove the correctness of the generated circuit (see Chapter 4, Fig. 4.1).

Example 8. Consistency checking for the BtoR REQ(0) signal from GenBufRec

Considering all the properties of GenBufRec, for signal BtoR REQ(0) we have:

T0BtoR REQ(0) = Trig0¬BtoR REQ(0) ∨ Trig1¬BtoR REQ(0) ∨ Trig2¬BtoR REQ(0)

T1BtoR REQ(0) = Trig0BtoR REQ(0)

The corresponding timing diagram is shown in Fig. 9.11.

0 1 2 3 4 5 6 7 8 9

clock

EMPTY

BtoR REQ(1)

Trig0¬BtoR REQ(0)

Trig1¬BtoR REQ(0)

Trig2¬BtoR REQ(0)

T0BtoR REQ(0)

Trig0BtoR REQ(0)

T1BtoR REQ(0)

BtoR REQ(0)

RtoB ACK(0)

Figure 9.11: Timing diagram of BtoR REQ(0) and corresponding trigger signals

The PSL property that verifies if the set of properties constraining BtoR REQ(0) are
consistent is:

always (not T1 BtoR REQ 0 or not T0 BtoR REQ 0) ;

Now, assume that we change P5_rec_0 as follows:

P5 r e c 0 f a l s e :
assert (always ((not RtoB ACK m(0))−> next ! (not BtoR REQ g(0)))) ;

The new timing diagram is shown in Fig. 9.12. As is shown, the property fails in cycles
�2 to �5, since in these cycles both T1BtoR REQ(0) and T0BtoR REQ(0) are active.

141

Chapter 9 : Resolution of the signals

0 1 2 3 4 5 6 7 8 9

clock

EMPTY

BtoR REQ(1)

Trig0¬BtoR REQ(0)

Trig1¬BtoR REQ(0)

Trig2¬BtoR REQ(0)

T0BtoR REQ(0)

Trig0BtoR REQ(0)

T1BtoR REQ(0)

BtoR REQ(0)

RtoB ACK(0)

Figure 9.12: Timing diagram of BtoR REQ(0) and corresponding trigger signals

9.7.2 Checking the completeness

The definition of z is complete iff in all the cycles:

T1 z ∨ T0 z = 1

Again, we can generate complementary properties automatically for verifying the above
condition.

Example 9. Checking the completeness of the properties that constrain the
BtoR REQ(0) signal from GenBufRec

Considering T0BtoR REQ(0) and T1BtoR REQ(0), for signal BtoR REQ(0). The PSL prop-
erty that verifies if the set of properties constraining BtoR REQ(0) are complete is:

always (T1 BtoR REQ 0 or T0 BtoR REQ 0) ;

In the timing diagram of Fig. 9.12, in cycles �0 and �1 none of the T0BtoR REQ(0) and
T1BtoR REQ(0) signals are active; therefore, the annotated properties are not sufficient to
specify the BtoR REQ(0) signal completely.

SyntHorus2 generates the PSL properties and VHDL assertions for verifying the consis-
tency and completeness of the set of properties both in formal verification and simulation.

If the definition is consistent but not complete, one or more signal z may not have
been annotated and depends on other signals. In this case, its value should be specified by
a complex solver. Otherwise, the designer may wish to provide a default value for signal
z.

9.8 Summary

In this chapter we discussed how to resolve the value of unannotated and duplicated
signals. We explained how to express the dependency among all properties by constructing

9.8 : Summary

a dependency graph. Using this graph we identified the properties that constrain a signal,
and built a simple solver for resolving the value of such signals. Additionally, from the
dependency graph we obtained the unannotated signals, and their dependencies. We
constructed a complex solver for resolving the value of each set of unannotated signals.
The final circuit is the interconnection of properties’ reactants and solvers. Moreover, we
can generate complementary properties for verifying the consistency and completeness of
the specification.

143

Chapter 9 : Resolution of the signals

Chapter 10
Practical Experiments and Results

Contents
10.1 Introduction . 146

10.2 Hardware prototyping and synthesis results 146

10.2.1 IBM Generalized Buffer (GenBuf) 147

10.2.2 AMBA arbiter . 151

10.2.3 Other examples . 154

10.2.4 Comparison between FLs and SEREs 154

10.3 Completeness and coherency consideration 157

10.4 Guidelines for obtaining smaller circuits 158

10.4.1 GenBuf: Multiple senders . 161

10.5 Summary . 161

145

Chapter 10 : Practical Experiments and Results

10.1 Introduction

We applied our synthesis method to several case studies: GenBuf 1(see Chapter 4),
AMBA2 Arbiter (Appendix C), HDLC3 (Appendix B), CRC4, and SDRAM5. The gen-
erated circuits are synthesized both for FPGA6 and ASIC7 implementation. The results
are compared to the results of another tool, Ratsy. We show how our method considers
coherency and completeness of the properties. Finally, some guidelines are provided for
writing the properties so that the generated circuits are smaller.

10.2 Hardware prototyping and synthesis results

SyntHorus2 implements the ABS8 method disclosed in this thesis. It takes as input the
entity (interface) declaration of the specified module and a set of properties written in the
simple subset of PSL, and produces a RTL design in the synthesizable subset of VHDL
(see Appendix E for details about running SyntHorus2).

As discussed in Chapter 3, most of the other works that deal with ABS are automata
based, and are based on the “two players game”. Since our approach is so different, it is
of interest to evaluate how it compares on a set of benchmarks of increasing complexity.

Acacia [FJR09, ACA] inputs LTL specifications, and outputs a design in dot format.
We have written a dot to VHDL translator to enter the same logic synthesis tool for the
last processing phase. Several options may be selected (backward or forward state space
traversing; the circuit player or the environment player has the initial move), leading to
very different results. Whatever the option, we were not able to process a real example.

Unbeast [EKH12, UNB] inputs LTL specifications in XML syntax and produces an
intermediate NuSMV file that is turned to an aig format by AIGER. ABC is used to
translate aig into Verilog.

Ratsy [RAT] inputs GR(1) PSL properties through a graphical interface and produces
a Verilog design. Also based on game theory, in this system the environment player moves
first. Ratsy checks every input, and the properties must be partitioned into a guarantee
and an assume part.

Table 10.1 summarizes the characteristic of these tools: the input and output formats,
and the subset of PSL that each supports.

Table 10.1: ABS tools
Tool Input Output FL SERE

Acacia LTL dot � no
Unbeast LTL in XML format NuSMV � no
Ratsy LTL Verilog GR(1) subset of PSL no

SyntHorus2 PSL VHDL and PSL properties PSLsimple partially (see Chapter 6)

We have installed SyntHorus2, Acacia, Unbeast and Ratsy on a workstation with the

1IBM Generalized Buffer
2ARM Advanced Microcontroller Bus Architecture
3High-level Data Link Controller
4Cyclic Redundancy Check
5Single Data-rate Random Access Memory
6Field Programmable Gate Array
7Application Specific Integrated Circuit
8Assertion Based Synthesis

10.2 : Hardware prototyping and synthesis results

following characteristics: 64 bit Intel Core 2 Duo CPU E8400, clock rate 3.0GHz, RAM
size 2 giga bytes.

For each case study, we took the same specification for all the tools. We had to rewrite
our specifications between Ratsy and SyntHorus2, because the GR(1) PSL subset does
not accept operators rose, fell, and next event with a temporal expression operand
nor any weak PSL operators.

We executed Unbeast, Acacia, Ratsy, and SyntHorus2 for each example. We were able to
run Unbeast on the small examples provided with the software distribution, but we timed
out on GenBuf even without FIFO. So we shall not enter Unbeast in the comparison.
Acacia can also work just on very simple and small examples, e.g. it works for GenBuf,
with 2 senders and 2 and 3 receivers, without considering its FIFO; therefore, we excluded
the results from the tables.

After execution, the result of all tools has been synthesized with the same synthesis
tool to allow a fair comparison in terms of logic gates and area.

Here, we give the synthesis results for the case studied.

10.2.1 IBM Generalized Buffer (GenBuf)

We generate the hardware of GenBuf with multiple senders and 2 receivers, and 2 senders
and multiple receivers using SyntHorus2 and Ratsy. In each case, the hardware generation
time of the tools are compared, and the generated circuits are synthesized using Quartus
II and Design Vision.

Figure 10.1 compares the hardware generation time of SyntHorus2 and Ratsy for GenBuf
with multiple senders and 2 receivers.

Figure 10.1: HW generation time: GenBuf with multiple senders and two receivers

Figure 10.2 compares the hardware generation time of SyntHorus2 and Ratsy for GenBuf
with multiple receivers and 2 senders.

The circuit generation time is one to two orders of magnitude smaller for SyntHorus2
depending on the number of senders/receivers. The higher the number, the higher the

147

Chapter 10 : Practical Experiments and Results

Figure 10.2: HW generation: GenBuf with 2 senders, multiple receivers and with FIFO

order of magnitude. At this point, it is fair to say that SyntHorus2 does not perform verifi-
cation, while Ratsy has verification embedded in the generation process. Thus, comparing
the runtimes of the two tools is not relevant for who wants to perform verification.

Acacia timed out for GenBuf with multiple senders, and multiple receivers. It just
worked for GenBuf with 2 senders, and 2 and 3 receivers, without considering FIFO. For
other cases, it timed out after 24 hours, most probably due to memory explosion.

10.2.1.1 Synthesis for FPGA implementation

First, we synthesized the generated circuits of SyntHorus2 and Ratsy using Quartus II in
order to implement them on a FPGA board (device EP4CE30F23C6 from Cyclone IV
device family).

Multiple senders and two receivers

Table 10.2 gives the synthesis results of Quartus II for GenBuf with multiple senders
and two receivers running SyntHorus2 and Ratsy. In this table, the number of registers,
the total number of LUTs (2-input, 3-input, and 4-input LUTs), and the maximum clock
frequency are reported. The reported clock frequency is the maximum potential frequency
of the circuits. Based on the selected FPGA device, this frequency may be limited to the
maximum clock frequency of the selected FPGA device.

Multiple receivers and two senders, with FIFO

We synthesized GenBuf circuits with multiple receivers and two senders using Quartus II
on the same FPGA. Table 10.2 gives the synthesis results for SyntHorus2 and Ratsy.

SyntHorus2 generates faster circuits with less LUTs than Ratsy, but with more registers.

10.2 : Hardware prototyping and synthesis results

Table 10.2: Quartus II synthesis result for GenBuf controller with multiple
senders, and 2 receivers

SyntHorus2 Ratsy
F # # # F
sen. prop. reg. LUTs (MHz) prop. reg. LUTs (MHz)

1 20 25 57 726.8 41 16 158 251.5
2 25 34 89 701.8 49 21 961 158.2
3 29 33 97 806.4 59 25 2361 133.6
4 33 38 118 766.8 67 29 3417 124.1
5 37 43 132 782.5 76 33 2647 132.6
6 41 46 149 668.0 85 38 6007 104.5
7 45 49 172 659.6 99 42 7160 108.5
8 49 54 188 746.8 103 46 6524 99.9

Table 10.3: Quartus II synthesis result for GenBuf controller with FIFO, multiple
receivers, and 2 senders

SyntHorus2 Ratsy
F # # # F
rec prop. reg. LUTs (MHz) prop. reg. LUTs (MHz)

3 28 37 98 756.4 56 24 2092 130.4
4 31 45 119 781.2 63 27 2587 140.2
5 34 53 146 609.0 70 30 4251 121.6
6 37 61 166 745.7 77 34 10408 92.5
7 40 99 196 616.5 84 36 15191 89.8
8 46 77 215 647.7 91 40 18180 83.6

10.2.1.2 Synthesis for ASIC implementation

We synthesized all the circuits generated by SyntHorus2 and Ratsy with Design Vision
under the same conditions:

• considering the typical conditions of the C35 corelib library

• setting the clock period to 20 ns, to do static timing analysis, and computing the
approximate frequency of the circuit

• setting the “ungroup” compile option

• using the“Exact Map”option with the“medium”effort in mapping, area, and power

For each tool, we provide the number of properties used for the circuit synthesis, the
execution time, and the size and timing characteristics of the resulting circuit: number
of combinational and sequential cells, total area (including the interconnection area) and
approximate clock frequency. The Design Vision execution time is not reported, it is
negligible.

Multiple senders and two receivers

Table 10.4 gives the results of our experiments on Genbuf with a FIFO, for 1 to 8 senders
and 2 receivers, running SyntHorus2 and Ratsy.

As is shown in this table, SyntHorus2 generates more registers and less combinational
cells than Ratsy; and the generated circuits are smaller. For 1 to 5 senders, the clock
frequency is less dependent on the number of the inputs. The critical path is determined
by the round-robin properties in the receiver side (properties P3 rec 0 and P3 rec 1). By

149

Chapter 10 : Practical Experiments and Results

Table 10.4: Design Vision synthesis result for GenBuf controller with FIFO,
multiple senders, and two receivers

SyntHorus2 Ratsy
comb. # seq. Total F # #comb. # seq. Total F

send prop. cells cells area (MHz) prop. cells cells area (MHz)

1 20 231 63 33624 571 41 221 16 25034 222
2 25 335 83 46748 521 49 1322 21 127502 127
3 29 360 88 50054 571 59 2541 25 240411 90
4 33 467 101 60934 571 67 3818 29 358160 78
5 37 590 113 72594 521 76 3230 33 303860 77
6 41 643 124 80203 463 85 6954 38 648910 64
7 45 764 134 92016 442 99 8320 42 773090 69
8 49 879 147 105155 418 103 7471 46 695581 64

increasing number of the senders from 5 to 8, a property in the sender side determines
the critical path, which depends on the number of senders.

Figure 10.3 compares the total number of the gates for the circuits that are generated
by SyntHorus2 and Ratsy. For each circuit, the total number of gates is presented as the
number of the 2-input NAND gates, which is computed by dividing the total cell area
(not the total area reported in the table) by the area of a 2-input NAND gate obtained
from C35 corelib library. This number is not accurate, and is just for giving an evaluation
of the number of gates.

Figure 10.3: Total number of gates: GenBuf with multiple senders and 2 receivers

Multiple receivers and two Senders, with FIFO

Table 10.5 gives the results of our experiments on Genbuf with a FIFO, for 3 to 8 receivers
and 2 senders, running SyntHorus2 and Ratsy.

As is shown in this table, the clock frequency of the circuits generated by SyntHorus2
is less dependent on the number of receivers, than the circuits generated by Ratsy.

Figure 10.4 compares the total number of gates for the circuits that are generated by
SyntHorus2 and Ratsy. Again, the number of gates is the number of 2-input NAND gates

10.2 : Hardware prototyping and synthesis results

Table 10.5: Design Vision synthesis result for GenBuf controller with FIFO,
multiple receivers, and two senders

SyntHorus2 Ratsy
comb. # seq. Total F # #comb. # seq. Total F
rec prop. cells cells area (MHz) prop. cells cells area (MHz)

3 28 414 102 57876 568 56 2781 24 259796 96
4 31 467 118 66715 565 63 3285 27 306134 80
5 34 546 134 76961 555 70 5146 30 475880 67
6 37 624 150 87188 555 77 12970 34 1198182 57
7 40 714 175 100559 555 84 17934 36 1647189 56
8 46 860 191 114564 555 91 20828 40 1894378 65

and it is computed approximately.

Figure 10.4: Total number of gates: GenBuf with multiple receivers and 2 senders

10.2.2 AMBA arbiter

We have performed the same kind of experiments on the AMBA-AHB bus arbiter, a
popular benchmark. Figure 10.5 compares the HW generation time of SyntHorus2 and
Ratsy.

As is shown in this figure, SyntHorus2 generates the circuits faster than Ratsy. We
synthesized AMBA using Quartus II and Design Vision, with the same options as GenBuf.

10.2.2.1 Synthesis for FPGA implementation

Table 10.6 shows the synthesis results of Quartus II for AMBA arbiter.
As is shown in this table, the AMBA arbiter specification holds 2 to 3 times more

properties for Ratsy than for SyntHorus2. It should be noted that some complex properties
accepted by SyntHorus2 become 14 or 16 simple properties after rewriting to comply with
the Ratsy acceptable PSL subset. For example, the following property of AMBA arbiter
is rewritten into 14 simpler properties.

151

Chapter 10 : Practical Experiments and Results

Figure 10.5: HW generation time: AMBA arbiter

Table 10.6: Quartus II synthesis result for AMBA arbiter with 2 slaves and
multiple masters

SyntHorus2 Ratsy
F # # # F

masters prop. reg. LUTs (MHz) prop. reg. LUTs (MHz)

2 35 24 59 795.5 77 21 382 199.2
3 46 33 113 852.5 96 29 2941 131.1
4 56 42 119 923.4 114 29 6085 106.9
5 66 51 150 795.5 133 34 3091 130.45
6 77 60 181 758.1 151 37 4355 115.8

10.2 : Hardware prototyping and synthesis results

G3:
always ((HMASTLOCK and (HBURST = INCR4) and HREADY and (HTRANS = NON−SEQ)

) −> next ((HTRANS = SEQ) unti l [3] HREADY)) ;

In SyntHorus this property can be rewritten as two properties, using the next event

operator, which is not supported in Ratsy.

10.2.2.2 Synthesis for ASIC implementation

Table 10.7 gives our results for 2 slaves and different numbers of masters. The columns
have the same meaning as in Table 10.5. Again, we find that SyntHorus2 produces smaller
and faster circuits, but with more registers; in addition, the speed of the circuit is less
sensitive to the number of masters.

Table 10.7: Design Vision synthesis results for AMBA arbiter
SyntHorus2 Ratsy

comb. # seq. Total F # #comb. # seq. Total F
masters prop. cells cells area (MHz) prop. cells cells area (MHz)

2 33 303 90 45165 637 77 515 21 51985 164
3 46 513 132 71915 621 96 3867 29 362589 92
4 56 567 159 82522 606 114 7712 29 721363 67
5 66 725 194 102762 629 133 3920 34 370179 82
6 77 660 228 121855 625 151 5855 37 552310 62

Figure 10.6 compares the total number of gates (2-input NAND gates) of the circuits
that are generated by SyntHorus2 and Ratsy.

Figure 10.6: Total number of gates: AMBA arbiter

The following comments can be made on these experiments (GenBuf and AMBA
arbiter):

• The number of properties used to generate the design is higher for Ratsy than for
SyntHorus2. This is due to the underlying method: game-based methods need to
consider both the guarantee and the assume properties, while the modular method
of SyntHorus2 only takes the guarantee properties to produce the circuit design.

153

Chapter 10 : Practical Experiments and Results

• In both example, except for GenBuf with 1 sender, the size of the combinational
part and the total area of the generated circuit is smaller for SyntHorus2.

• SyntHorus2 generates more registers than Ratsy. This may be in relation with the fact
that the maximum clock frequency is higher for the circuits generated by SyntHorus2.
The difference is particularly significant for GenBuf with 2 senders and multiple
receivers. However, the total circuit size is smaller.

10.2.3 Other examples

Our final three benchmarks are reported in Table 10.8. To our knowledge, they have never
been published in the ABS context. The SDRAM controller is one of the test cases of the
OneSpin formal verification tools distribution. The CRC is a hardware implementation
of the cyclic redundancy check for error detection. The High-level Data Link Controller
(HDLC) is an ISO standard for point to point communication at the network data link
layer. We have complemented the assertions found in [PPSQ13] to fully specify the HDLC
controller. With 120 properties, it is the largest specification processed, and the largest
circuit generated. Yet the circuit generation time remains small (1.06 sec), and the clock
frequency high (429 MHz).

Table 10.8: Design Vision synthesis results for HDLC, SDRAM, and CRC
SyntHorus2

Circuit # Hw. gen. # comb. # seq. Total Total # F
prop. time (s) cells cells area of gates (MHz)

HDLC 120 1.06 2646 1433 600527 9588 429
SDRAM 9 0.2 1045 769 295107 4765 513
CRC 14 0.14 641 293 131122 2401 406

10.2.4 Comparison between FLs and SEREs

To show the applicability of our synthesis method to SEREs, the SERE properties are
provided for GenBuf, AMBA arbiter and HDLC, the corresponding VHDL designs are
generated using SyntHorus2, and are synthesized using Design Vision. The number of
properties, the hardware generation time, the number of combinational and sequential
cells, the total area, and the circuit frequency are given. For all benchmarks, the properties
processing time by SyntHorus2 is very small, a fraction of a second for the classical GenBuf
and AMBA bus, less than two seconds for the more complex HDLC.

10.2.4.1 GenBuf

The FL properties of GenBuf are translated into SEREs.

Multiple senders

Table 10.9 shows the synthesis results for GenBuf with multiple senders and two receivers.
The generated circuits have larger number of registers and combinational cells comparing
to the circuits generated from the FL properties. However, the total number of gates is
very close to the circuits obtained from FLs For all the cases, the clock frequency is 370
MHz, and is independent from the number of senders.

10.2 : Hardware prototyping and synthesis results

Table 10.9: Design Vision synthesis results for GenBuf with multiple senders
(for SERE properties)

HW gen. # comb. # seq. Total Total#
senders prop. time (s) cells cells area of gates

1 20 0.15 319 76 45196 701
2 25 0.16 417 94 56858 879
3 29 0.20 458 100 61644 951
4 33 0.23 550 115 72416 1114
5 37 0.28 634 125 81174 1243
6 41 0.27 721 138 91258 1392
7 45 1.52 836 148 102263 1558
8 49 0.81 941 162 115783 1752

Figure 10.7 compares the total number of gates for the circuits generated from FLs
and SEREs. In average, the circuits generated from SEREs have 20% more gates than
the circuits generated from FLs.

Figure 10.7: Total number of gates: GenBuf with multiple senders and 2 receivers
(generated from FLs and SEREs)

Multiple receivers

Table 10.10 shows the synthesis results for GenBuf with multiple receivers and two senders.
Compared to the circuits generated from FLs, the generated circuits from SEREs have
more gates, and are almost 2 times slower .

Figure 10.8 compares the total number of gates for the circuits generated from FLs
and SEREs. As is shown in this figure, the difference between the number of gates of the
two circuits generated from FLs and SEREs becomes more significant as the number of
receivers increases. With multiple senders and 2 receivers, this difference was almost the
same for all numbers of senders. It is due to the properties that specify the round-robin
policy in the receiver side. When rewriting these properties as SEREs, the property in-
volves the ‘∗’ unbounded repetition. The primitive reactant of ‘∗’ is the area and frequency
bottleneck. In the case of multiple senders and two receivers, we have two round-robin

155

Chapter 10 : Practical Experiments and Results

Table 10.10: Design Vision synthesis results for GenBuf with multiple receivers
(for SERE properties)

HW gen. # comb. # seq Total Total # Freq.
receivers prop. time (s) cells cells area of gates (MHz)

3 27 0.19 529 119 720701 1123 308
4 30 0.25 651 146 901106 1392 320
5 33 0.35 775 175 108083 1669 290
6 36 0.61 905 206 127124 1963 296
7 42 0.26 1052 248 150525 2325 296
8 45 0.29 1215 287 174253 2691 280

properties (one for each receiver, see properties P3_sere_rec_0 and P3_sere_rec_1 in
Fig. 4.9) whatever the number of senders. In the case of multiple receivers, the number
of round-robin properties increases with the number of receivers, and the area increases
more.

Figure 10.8: Total number of gates: GenBuf with multiple receivers and 2 senders
(generated from FLs and SEREs)

The interconnection area is larger for the circuits generated from SEREs than the
circuits generated from FLs.

10.2.4.2 AMBA Arbiter

For the AMBA bus arbiter, we wrote the SERE specification based on its protocol descrip-
tion in English and the FL properties. Table 10.11 summarizes the synthesis results for 2
slaves and 2-6 masters. Compared to the circuits resulting from FL properties, the circuits
generated from SEREs are 20-30% smaller (less combinational and sequential cells), and
significantly slower (up to half the speed).

10.2.4.3 HDLC

For HDLC, we provided two set of properties:

10.3 : Completeness and coherency consideration

Table 10.11: Design Vision synthesis results for AMBA arbiter (for SERE prop-
erties)

HW gen. # comb. # seq. Total Total # F
masters prop. time (s) cells cells area of gates (MHz)

2 28 0.14 223 62 33614 523 368
3 41 0.24 341 95 50146 777 324
4 52 0.32 429 120 63209 978 307
5 63 0.41 520 145 76471 1181 296
6 74 0.63 628 170 90546 1394 266

• SERE1: all the FL properties are translated to their equivalent SERE properties.

• SERE2: three modules, FlagDetection, ZeroDetection, and ZeroInsertion, are
directly expressed using SERE properties (see Appendix B). These SEREs are writ-
ten based on the protocol, and they have not been obtained by rewriting FLs.

Table 10.12 summarizes the synthesis result. In the SERE1 specification, 120 FL properties
are translated to 120 SERE properties. The SERE2 specification has 108 SERE properties.

The circuit obtained from SERE1 has more combinational and sequential cells compared
to the circuit generated from FLs, and it is almost 5 times slower.

The circuit obtained from SERE2 has more combinational cells and less sequential cells
compared to the circuit generated from FLs, and it is almost 6 times slower.

These results show that translating FLs to SEREs increases the circuit size and de-
creases the clock frequency; it is the case of GenBuf and HDLC obtained from SERE1. In
contrast, expressing the circuit behavior using SEREs may decrease the area, at the cost
of speed. It is the case of AMBA and HDLC obtained from SERE2.

Table 10.12: Design Vision synthesis results for HDLC (for SERE properties)
HW gen. # comb. # seq. Total Total # F

prop. time (s) cells cells area of gates (MHz)

SERE1 120 1.22 3238 1157 614507 9700 82
SERE2 108 1.51 3017 839 516363 8050 59

10.3 Completeness and coherency consideration

We used OneSpin for formally verifying if the generated circuits correspond to the speci-
fication.

Then, we verified if the set of specification is complete and consistent. As was dis-
cussed in Chapter 9, SyntHorus2 generates complementary properties for checking the
completeness and coherency of the properties. For all the circuits, we generated these
properties. We used the properties in ModelSim and also OneSpin. For all the case stud-
ies, these properties hold both in simulation and formal verification; i.e. the specification
is complete and consistent.

Example 1. Checking consistency

Consider the annotated properties that are shown in Fig. 10.9. These properties are
taken from GenBuf specification.

157

Chapter 10 : Practical Experiments and Results

P0 sender 0 :
always (not BtoS ACK m(0) and not StoB REQ m(0) −>next ! (not BtoS ACK g (0))

) ;

P1 sender 0 :
always (BtoS ACK m(0) and StoB REQ m(0) −>next ! (BtoS ACK g (0))) ;

P2 sender 0 :
always (rose (StoB REQ m(0)) −> not BtoS ACK g (0)) ;

Figure 10.9: Some properties from GenBuf that generate BtoS ACK(0)

The circuit is generated by SyntHorus2 and the complementary properties are generated
for checking the consistency. Figure 10.10 shows the VHDL assertion generated by Syn-
tHorus2 and considers the mutual exclusion of triggers that correspond to the BtoS ACK(0)

signal.

. . .

process (c l k) begin
i f (c l k = ’0 ’ and c lk ’ event) then
i f (r e s e t n = ’1 ’) then

ASSERT (((not (t r i g g e r 1)) or (not (t r i g g e r 0 or t r i g g e r 2))) =
’1 ’)

REPORT ”T0 (t r i g g e r 0 or t r i g g e r 2) and T1 (t r i g g e r 1) are not
mutually e x c l u s i v e ”

SEVERITY ERROR;
end i f ;

end i f ;
end process ;

. . .

Figure 10.10: The assertion for considering the mutual exclusion of BtoS ACK(0) triggers

The circuit is simulated usingModelSim along with the complementary properties. The
waveform obtained from ModelSim is shown in Fig. 10.11, in which the assertion passed
in all the cycles.

Now, suppose that P1_sender_0 is written incorrectly, as shown in Fig. 10.12, and the
circuit is generated for the incorrect properties.

The waveform is shown in Fig. 10.13, in which the assertion (see Fig. 10.10) fails at
t = 13200 ns, and we get the name of the triggers that are not consistent. Therefore, the
designer can debug the properties more easily.

10.4 Guidelines for obtaining smaller circuits

Here we give some guidelines for writing the properties in a way that generates the smaller
circuits.

10.4 : Guidelines for obtaining smaller circuits

Figure 10.11: The wave form, without any failure

P1 s ende r 0 f a l s e :
always (StoB REQ m(0) −> BtoS ACK g (0)) ;

Figure 10.12: A modified property of GenBuf that generates BtoS ACK(0)

Figure 10.13: The wave form, with assertion failure

159

Chapter 10 : Practical Experiments and Results

Since our method is modular, for each property it instantiates all the primitive reac-
tants of a property. Therefore, if we are able to merge several properties into one property,
we generate a smaller circuit.

Example 1. Merging properties.

Assume that we have the following properties:

P0 : always (A −> next ! (B)) ;
P1 : always (A −> C and next ! (D)) ;

In this case, we have two instances of the always, ‘–>’, and next! primitive reactants.
Since the left-hand side of both properties are the same, we can rewrite these properties
as follow:

P: always (A −> C and next ! (B and D)) ;

In this case, we have one instance of the always, ‘–>’, and next! primitive reactants.
Another factor that affects the size of the generated circuit significantly is the size of

the complex solvers.
Remember from Chapter 9, if we have Z = (z1, . . . zn) and TZ = (Etrig0, . . . ,Etrigm),

then the complex solver has a LUT that has m + n columns and at most 2m+n rows.
Either by reducing the number of the dependent signals (n) or by reducing the number
of the properties that affect these dependent signals (m) the size of the complex solvers
decreases.

Example 2. Reducing the size of the solver: reducing the number of Etrig
signals.

Assume that we have the following properties:

P0 : always (A −> next ! (B or C)) ;
P1 : always (D −> next ! (B or C)) ;

Here, we have two signals that are dependent: Z = (B,C), and two trigger signals:
TZ = (Etrig0,Etrig1). Therefore, the LUT has at most 16 rows. However, we can rewrite
the properties as follow:

P: always (A or D −> next ! (B or C)) ;

In this case, we have one trigger signal; therefore, the LUT has at most 8 rows.

Example 3. Reducing the size of the solver: reducing the number of dependent
signals.

As another example assume that we have the following properties, where A is an input.

P0 : always (A or B or C) ;
P1 : always (D −> next ! (B or C)) ;

Here, we have three signals that are dependent: Z = (A,B,C), and two trigger signals:
TZ = (Etrig0,Etrig1). Therefore, the LUT has at most 32 rows. However, we can rewrite
the properties as follow:

P0 modif ied : always (not A −> (B or C)) ;
P1 : always (D −> next ! (B or C)) ;

10.5 : Summary

In this case, we have two dependent signal and two trigger signals; therefore, the LUT
has at most 16 rows.

10.4.1 GenBuf: Multiple senders

For more complex properties, the way in which the properties are written has a significant
effect on the size of the generated circuit. To illustrate this fact, the properties of GenBuf
for multiple senders are modified: the properties in the form of A → B, where A and B
are Boolean, have been rewritten as :notA orB.

The generated circuit is synthesized using Design Vision. In the original specification,
signals BtoS ACK(0), BtoS ACK(1), and ENQ are dependent. In the rewritten specifica-
tion, BtoS ACK(0), BtoS ACK(1), ENQ, and DEQ are dependent; therefore, the area is
increased. Figure 10.14 compares the total number of gates for the two circuits generated
from the original and the rewritten specifications.

Figure 10.14: Total number of gates for GenBuf with multiple senders: original and
rewritten specification

10.5 Summary

In this chapter, we applied our method to several case studies, and compared our results
with other ABS tools. The experiments show that SyntHorus2 generates smaller and faster
circuits.

161

Chapter 10 : Practical Experiments and Results

Chapter 11
Conclusion and future works

Contents
11.1 Contributions . 164

11.2 Future works . 164

163

Chapter 11 : Conclusion and future works

In this thesis, we have presented a modular method to synthesize the controller part
of circuits, reactants not monitors, from their temporal properties written in PSL.

11.1 Contributions

Here, the main contributions of this work are summarized.

• Starting from the trace semantics of PSL, we formally defined a dependency relation
between the operands of the temporal SERE1 operators. Then, we gave a hardware
interpretation of the dependency relations, which constitutes the basis on which the
library of primitive reactants is built (see Chapter 6).

• These dependency relations, accompanied by the formal dependency relation of FLs,
are the formal model on which the annotation algorithm is written (see Chapter 7).

• Considering the dependency among all the properties, solver components have been
generated to resolve the value of the duplicated and unannotated signals (see Chap-
ter 9).

• We generate some complementary properties to check the coherency and complete-
ness of the set of the properties.

• The prototype tool SyntHorus2 has been implemented, based on the principles de-
scribed in this thesis. It is being adapted based on the requirements in industry.

• SyntHorus2 was exercised on a set of benchmarks, and also on real size circuits such
as the AMBA-AHB bus arbiter and the HDLC controller. Comparing SyntHorus2
with other ABS tools is difficult, since each tool requires its own subset of LTL or
PSL that should be adapted for each tool. Comparing to other tools, SyntHorus2
generates smaller and faster designs on the bigger examples.

Intermediate results of SyntHorus2 allow debugging a specification, and verify if it
is consistent and complete. Assertions that are generated automatically on the trigger
signals may be verified by a simulator, or model checked with a formal verification tool.
In addition, SyntHorus2 can provide an environment prototype that complies with the
specifications, for testing another circuit module.

11.2 Future works

Now, SyntHorus2 only processes scalar and vector Boolean signals in the properties. Future
works include the recognition of more complex data types, such as integers and enumerated
types.

SyntHorus2 supports partially the modeling layer of PSL. It supports arithmetic and
comparison operators. However, it does not support the definition of local signals. This
feature should be added to SyntHorus2.

As was explained in Chapter 6, our synthesizable subset of SEREs has some limitations.
For example, we cannot have non consecutive repetition. Therefore, the synthesizable
subset of SEREs should be extended and the limitations should be alleviated.

1Sequential Extended Regular Expression

11.2 : Future works

To overcome some of the limitations, e.g. observing ϕ = A&B where A and B are
sequences, we can take advantage of the automata-based method. We can combine the
automata-based and modular methods, then, use automata for the left-hand side of an
implication, which should be observed, and the modular method for the right-hand side
of an implication that should be generated.

Moreover, we should optimize the primitive reactants for SEREs. As was shown in
Chapter 10, if we rewrite an FL property into its equivalent SERE property, the circuit
obtained from the SERE is larger and slower. We should optimize both SERE primitive
reactants and their interconnections.

We have provided some guidelines on how to write properties to generate smaller
circuits; they should be enhanced. We can provide predefined sets of properties to ex-
press some behaviors of the signals, e.g. mutual exclusion, round-robin scheme, 4-phase
handshaking protocol, etc.

The implementation of the complex solvers can be enhanced to generate smaller solvers.
As was discussed in Chapter 9, some rows of the LUT may not be useful, because some
combinations of Etrig signals never happen. Such rows can be eliminated by model check-
ing on the properties. This has not been automated.

As was discussed in Chapter 9, to calculate the value of the unannotated signals, there
may be several choices obtained from the LUT. Now, we select the first row of the LUT
that matches our requirement. Other selection policies can be considered.

At this point, complex solvers are provided for scalar signals. They should be extended
to support vectors. In addition, complex solvers cannot be used in the cases that the
unannotated signals depend on the modeling layer operators and functions. We should
solve this problem.

Our method is modular; for each property it instantiates all the primitive reactants of
the property operators. This leads to redundant components. This is similar to the early
days of synthesis: each instance of an operator in the RTL design produced a distinct
hardware operator. An optimization step is needed to share primitive reactants in the
generated circuit.

165

Chapter 11 : Conclusion and future works

Appendix A
Symbols

Table A.1: Symbols
Symbol Definition Reference

P non-empty set of atomic propositions Chapter 2
Σ the set of all possible valuations of P (Σ =

2P)
Chapter 2

� “letter”: a valuation of all the propositions
in P

Chapter 2

w “word”: in practice, the succession over
time of the signal values, i.e. an execution
trace

Chapter 2

� � exp “exp is true in �”: exp takes value true if
all its variables take their value as in �

Chapter 2

w |= property “property” is true on word w: the ex-
tended semantics by structural induction
over FL properties to words

Chapter 5

�A�B�w A depends on B on w Chapter 5
Trigz a trigger signal that constrains z to 1 Chapter 5
Trig¬z a trigger signal that constrains z to 0 Chapter 5
C�ϕ C implements ϕ Chapter 5
w |≡ property “property” holds tightly on word w: the

extended semantics by structural induc-
tion over SERE properties to words

Chapter 6

AST Abstract Syntax Tree Chapter 7
DAST Directed Abstract Syntax Tree Chapter 7
ϕL
nL the left sub-sequence of ϕ, whose depth is

nL
Chapter 8

ϕR
nR the right sub-sequence of ϕ, whose depth

is nR
Chapter 8

DG the dependency graph Chapter 9

167

Chapter A : Symbols

Symbol Definition Reference

T 0 z = (Trig0¬z,Trig
1
¬z, . . . ,Trig

nb0−1
¬z) the vector of the trigger signals that con-

strain z to 0
Chapter 9

T 1 z = (Trig0z,Trig
1
z, . . . ,Trig

nb1−1
z) the vector of the trigger signals that con-

strain z to 1
Chapter 9

T0 z =
�
i
Trig i¬z the disjunction of the trigger signals that

constrain z to 0
Chapter 9

T1 z =
�
j
Trig jz the disjunction of the trigger signals that

constrain z to 1
Chapter 9

Z = (z1, . . . , zn) the vector of n dependent (unannotated)
signals

Chapter 9

Expr j the expression that represents the unan-
notated sub-tree of DASTj

Chapter 9

E = (Expr0, . . . ,Exprm) the vector made of Expr j signals Chapter 9

Etrigj the trigger signal that triggers Expr j Chapter 9

TZ = (Etrig0, . . . ,Etrigm) the vector made of Etrigj signals Chapter 9

Appendix B
Case study: High-level Data Link Controller

Contents
B.1 Transmitter . 170

B.1.1 Parallel to Serial converter . 172

B.1.2 CRC generation . 172

B.1.3 Zero insertion . 173

B.1.4 Flag generation . 173

B.1.5 Transmitter controller . 173

B.2 Receiver . 176

B.2.1 Flag and abort detection . 180

B.2.2 Zero detection . 180

B.2.3 CRC checker . 182

B.2.4 Serial to Parallel converter . 182

B.2.5 Receiver Controller . 182

169

Chapter B : Case study: High-level Data Link Controller

High-level Data Link Controller (HDLC) permits synchronous or start/stop, code-
transparent data transmission. The HDLC controller IP has a transmitter and receiver
for transmitting the frames with a specific format (see Fig. B.1). The HDLC controller
IP performs serialization/deserialization, CRC generation, transparency and abort gener-
ation/detection.

The transmitter receives its input data from an external device, and sends it with a
specific frame format to the receiver. Each frame is made of an open flag (the value is
“01111110”), the information (address, control, info), the CRC and the closing flag.

As is shown in Fig. B.1, the transmitter and receiver have several components. The
objective is generating each component from its properties using SyntHorus2.

First, we tried to generate the HDLC circuit from the properties given in [PPSQ13].
However, these properties are not complete. When we want to generate a hardware from
the properties, the set of properties should completely specify all signals behaviors. We
provided the FL properties for HDLC, based on its protocol. We used the SERE properties
of [PPSQ13] to verify if the circuit obtained from SyntHorus2 works correctly.

B.1 Transmitter

Figure B.1 (a) shows the block diagram of the HDLC transmitter. Before describing the
functional behavior of the system, the transmitter interface signals are introduced:

• Inputs

– TxClk : the actual clock of the transmitter

– TxRstn: the active-high reset signal

– TxEnable: if this signal is 1, the transmitter is enabled

– TxData: the transmitter parallel data bus

– TxDataWr : informs the transmitter that an external packet is ready to send

– TxSendAbort : informs the transmitter that sending the frame should be stopped
and an abort sequence should be sent

– TxCRCSel : sets the CRC size (no checksum, 8, 16, or 32 bits)

• Outputs

– UnderRun: indicates the underrun error. It is generated if no new valid data
is written within 8 cycles after BuffEmpty goes high.

– TxDout : provides the serial output data

– TxCRCValue: the CRC value

– TxLastBit : indicates the last bit of the last flag of the transmission has been
sent out

The transmitter is disable when TxEnable is 0. In this mode, idle mode, there is no
valid data on TxData (TxDataWr = 0), and consecutive 1s are transmitted. As soon as
the transmitter becomes enable, data transmission starts when the TxDataWr signal is
asserted. First, the transmitter sends an opening flag (by activating the FlagAbortGen

B.1 : Transmitter

(a) Transmitter

(b) Receiver

Figure B.1: HDLC controller block diagram

171

Chapter B : Case study: High-level Data Link Controller

component). After, the data will be sent. The CRC value is sent out after sending the
last byte of the data. Then, a closing flag is appended to mark the end of the frame.

The data transmission mechanism is transparent. It means that the transmitter should
prevent of occurring the flag pattern in the data (including CRC). Anytime a sequence of
five consecutive 1 occurs, a 0 should be inserted. It is done by ZeroInsertion component,
which is enabled by the transmitter controller.

When the TxSendAbort signal is asserted, the transmitter goes into the abort mode,
in which the transmitter should send 7 consecutive ones, without inserted zero.

The transmitter controller is responsible for enabling/disabling the P2S, CRCGen, Ze-
roInsertion and FlagAbortGen components.

In the following, each component is explained briefly, and the properties are shown.

B.1.1 Parallel to Serial converter

Figure B.2 shows the properties for P2S. In these properties, TxData, stall, and load are
inputs, and S Data is the output, and P Data is an internal signal. The P2S unit is active
if stall=0. In this mode, if there is no new data to be loaded (load=0), the data is shifted
out. If P2S is stalled, 0 is shifted out, and the P Data internal signal keeps its previous
value. The new data is loaded into P Data when P2S is active, and the load signal is 1.

vunit P2S
{

P0 in i t :
always (not T frame va l id −> ((P Data = ”00000000 ”) and S Data = ’0 ’) ;

P1 load :
always (T frame va l id and not s t a l l and load −> (P Data = TxData) and (

S Data = P Data (7))) ;

P2 s t a l l d a t a :
always (T frame va l id and s t a l l −> S Data = ’0 ’) ;

P3 no t sh i f t :
always (T frame va l id and not s t a l l and not load −> (S Data = P Data (7))

and (P Data (0) = ’0 ’) and (P Data (1 to 7) = prev (P Data (0 to 6)))) ;

P4 keep data :
always (T frame va l id and s t a l l and not load −> (P Data = prev (P Data))

) ;

}

Figure B.2: Properties that describe P2S

B.1.2 CRC generation

The CRCGen component calculates a CRC across the transmitted message whenever the
send crc signal is 1. Otherwise, it transfers the input data (S Data) to the output(crc data).
Two different polynomials can be selected by specifying the value of TxCRCSel in the idle
mode of the transmitter. The 16-bit CRC uses the polynomial x16 + x12 + x5 +1, and the

B.1 : Transmitter

32-bit CRC uses the polynomial x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 +
x5 + x4 + x2 + x+ 1. Figure B.3 shows the PSL properties for CRCGen (for 16-bit CRC).

In the specifications, poly16, send crc, and S Data are the inputs and crc busy, crc done,
and crc data are the outputs. R16 is an internal signal for storing and shifting the input
data. crc counter is used to calculate when the transfer is finished.

B.1.3 Zero insertion

Since the data transmission mechanism is transparent, anytime a sequence of five consecu-
tive 1 occurs, a 0 should be inserted. It is done by the ZeroInsertion component. Figure
B.4 shows the FL properties for ZeroInsertion. If the last 5 input data (crc data) are 1,
in the next cycle, the stall signal becomes 1 that halts the P2S and CRCGen modules. In
the following cycle, 0 is put on the output and the stall signal becomes 1, which informs
the transmitter controller that a 0 is inserted on the data sequence. If the input data does
not contain five consecutive 1s, the stall signal becomes 0 and the zero Data output signal
takes the value of input crc data.

B.1.4 Flag generation

The FlagAbortGen component is enabled by transmitter controller for sending an opening
and closing flag whenever the send flag signal is asserted. In addition, this component
should send eight consecutive 1s when TxSendAbort = 1. Moreover, this component sends
consecutive 1s when transmitter is idle (it is also possible to send flag or partial flag in
the idle mode, but here, we are sending consecutive 1s).

Figure B.5 shows the properties for FlagAbortGen. In these properties, zero Data,
idle, send flag, TxSendAbort, and TxDataWr are inputs. TxDout is the output signal,
and flag done, abort set, and idle set are internal signals.

B.1.5 Transmitter controller

The controller can be in the following states:

1 idle mode: when transmitter is enabled (TxEnable = 1), it is in idle mode. In this
mode the controller sets the idle signal to 1 (to send consecutive 1 to the output).
As soon as a valid data is available (TxDataWr = 1), idle becomes 0. If it is between
the frames, in the next cycle an opening flag should be sent (send flag = 1).

2 sending a new frame: the first frame is sent when transmitter becomes enable, and
a valid data is available. The next frame can be sent immediately, or can be sent
several cycles after finishing the current frame (in this case, the transmitter is idle
between the frames).

i sending opening flag: the transmitter controller sets send flag to 1 to start send-
ing a new frame. It may happen after idle mode of the transmitter controller,
or just after the closing flag of the previous frame.

ii sending data: to send a new data, controller should set the load signal to 1. If it
is the first data of the frame, load becomes 1 after specific number of cycles after
send flag= 1. Then, load becomes 1 after specific number of cycles after the

173

Chapter B : Case study: High-level Data Link Controller

vunit CRCGen
{

P0 in i t da ta :
not crc busy and not crc done and (R16 = ”0000000000000000 ”) and (

c r c count e r = ”00000 ”) ;

P1 crc 16 data 2 ns :
always (not abo r t s e t and not s t a l l and not s end crc and not crc busy

and (TxCRCSel = ”01 ”) and R16(15) −> next ! (R16(15 downto 1) = (
poly16 (15 downto 1) XOR (prev (R16(14 downto 0))))) and next ! (R16
(0) = (poly16 (0) XOR prev (S Data)))) ;

P2 crc 16 data 1 ns :
always (not abo r t s e t and not s t a l l and not s end crc and not crc busy

and (TxCRCSel = ”01 ”) and not R16(15) −> next ! (R16(15 downto 1) =
prev (R16(14 downto 0))) and next ! (R16 (0) = prev (S Data))) ;

P3 c r c 16 data 1 s :
always (not abo r t s e t and s t a l l and not s end crc and not crc busy and (

TxCRCSel = ”01 ”) −> next ! (R16 = prev (R16))) ;

P4 CRC 16 send data :
always (not abo r t s e t and not crc busy and not s end crc and (

c r c count e r < ”01111 ”) and (TxCRCSel = ”01 ”) −> (c r c data = S Data))
;

P5 s end c r c 1 6 n s t a l l :
always (not abo r t s e t and not s t a l l and crc busy and (TxCRCSel = ”01 ”)

and (c r c count e r < ”01111 ”)−> next ! (c rc busy) and next ! (R16 (0) =
’0 ’) and next ! (c r c count e r = (prev (c r c count e r) + ”00001 ”)) and next
! (R16(15 downto 1) = prev (R16(14 downto 0))) and (c r c data = (R16
(15)))) ;

P6 s e nd c r c 1 6 s t a l l :
always (not abo r t s e t and s t a l l and crc busy and (TxCRCSel = ”01 ”) and

(c r c count e r < ”01111 ”)−> next ! (c rc busy) and next ! (c r c count e r =
prev (c r c count e r)) and (c r c data = ’0 ’) and next ! (R16 = prev (R16))) ;

P7 crc 16 :
always (not abo r t s e t and s end crc and (TxCRCSel = ”01 ”) −> crc busy

and (c r c count e r = ”00000 ”)) ;

P8 done crc 16 :
always (not abo r t s e t and crc busy and (TxCRCSel = ”01 ”) and (

c r c count e r = ”01111 ”)−> next ! (not crc busy and c r c count e r = (prev (
c r c count e r) + ”00001 ”)) and next ! (R16(15 downto 1) = prev (R16(14
downto 0))) and next ! (R16 (0) = ’0 ’) and (c r c data = (R16 (15)))) ;

P9 abort :
always (abo r t s e t −> next ! (not crc busy) and next ! (R16(15 downto 1) = ”

0000000000000000 ”) and next ! (c r c count e r = ”00000 ”)) ;

P10 crc done :
always (f e l l (c rc busy) −> crc done and next ! (not crc done) and next ! (

c r c count e r = ”00000 ”)) ;
}

Figure B.3: Properties that describe CRCGen (for 16-bit CRC)

B.1 : Transmitter

vunit Ze r o In s e r t i on
{

P0 in i t :
((s t a l l = ’ 0 ’) and (z e r o I n s e r t e d = ’0 ’) and (zero Data = ’0 ’)) ;

P1 Zero :
always (

prev (prev (prev (prev (crc Data)))) and prev (prev (prev (crc Data))) and
prev (prev (crc Data)) and prev (crc Data) and crc Data

−>
next ! (s t a l l and zero Data)
) ;

P2 noZero :
always (

not prev (prev (prev (prev (crc Data)))) or not prev (prev (prev (crc Data))
) or not prev (prev (crc Data)) or not prev (crc Data) or not
crc Data

−>
next ! (not s t a l l) and next ! (not z e r o I n s e r t e d) and next ! ((zero Data =

prev (crc Data)))
) ;

}

Figure B.4: FL properties that describe ZeroInsertion

vunit FlagAbortGen
{

P0 T FA init :
f l a g done and not abo r t s e t and not TxDout ;

P1 send f l ag :
always (rose (s e nd f l a g) −> not f l a g done and next a ! [1 to 7] (not

f l a g done) and not TxDout and next a ! [1 to 6] (TxDout) and next ! [7] (
not TxDout) and next ! [8] (not s e nd f l a g −> f l a g done)) ;

P2 send data :
always (f l a g done and not abo r t s e t and not s end f l a g and not i d l e−> (

TxDout = zero Data)) ;

p 3 i d l e :
always (i d l e and not s end f l a g and f l a g done −> TxDout) ;

P4 TxAbort :
always (TxSendAbort −> (TxDout and abo r t s e t) and next a ! [1 to 7] (

abo r t s e t and TxDout) and next ! [8] (not abo r t s e t)) ;
}

Figure B.5: Properties that describe FlagAbortGen

175

Chapter B : Case study: High-level Data Link Controller

previous load (the number of the cycles is 8 + no. of the stalls). Transmitter
specifies the last data of a frame by asserting TxEoF. After that, no new data
is loaded until there is a new frame.

iii sending CRC: after transmitting the last data of a frame, transmitter controller
sets the send crc signal to 1. Then, based on the value of TxCRCSel signal,
transmitter should wait for a specific number of cycles until crc done becomes
1.

iv sending closing flag: when crc done becomes 1, send flag is set to 1 to send the
closing flag.

3 abort command: if TxSendAbort = 1, data transmission is stopped immediately,
and after eight cycles, a closing flag should be sent (send flag = 1).

Figure B.6 shows the PSL properties for the transmitter controller.

B.2 Receiver

Figure B.1 (b) shows the block diagram of the HDLC receiver.
Before describing the functional behavior of the system, the transmitter interface sig-

nals have been introduced:

• Inputs

– RxClk: the actual clock of the receiver

– RxRstn: the active-hight reset signal

– RxEnable: Specifies if the receiver is enable

– RxCRCSel: Specifies if CRC is 8, 16, or 32 bits. The value of this signal is
specified by the user when the receiver is not enable.

• Outputs

– RxDataAvail: If this signal is 1 it means that the data of RxDout is valid. This
signal is set to 1 for a cycle whenever S2P finishes paralleling the data.

– RxStartOfFrame: This signal is set to 1 whenever an opening flag is detected,
and the first data of the frame is available.

– RxEndOfFrame: This signal specifies the received data is the last data of the
current frame.

– RxCRCValue: Shows the CRC value of the received data.

– RxCRCError: This output signal shows if the data has been transmitted cor-
rectly.

– RxAbortFound: This signal specifies if an abort sequence has been detected.

The receiver gets the serial HDLC frames continuously through the RxData port.
When an opening flag is recognized, the receiver indicates the beginning of the frame by
asserting StartOfFrame. Bytes will be passed to the user until a closing flag or abort
sequence is detected. At this point, the last byte will be passed and the EndOfFrame
signal is asserted. As is shown in Fig. B.1 (b), the receiver has several sub-modules:
FlagAbortDet, ZeroDet, CRCheck, S2P, and RController.

B.2 : Receiver

vunit T Contro l l e r
{

P0 T C reset :
not TxLastBit and not load and not s end f l a g and i d l e and (l oad counte r

= ”0000 ”) and not eo f and not s end crc and (TxCRCValue = ”
00000000000000000000000000000000 ”) and not TxCRCValAvail and (
data counter = ”000 ”) and not (TxUnderRun) and not T frame va l id ;

P1 T enab l e id l e :
always (rose (TxEnable) and not TxDataWr −> not s e nd f l a g and not eo f

and not s end crc) ;

P2 f r ame a f t e r i d l e :
always (i d l e and TxEnable and rose (TxDataWr) −> next ! (not i d l e and

s e nd f l a g)) ;

P 3 l o ad f i r s t d a t a :
always (rose (s e nd f l a g) and not prev (crc done) and not prev (abo r t s e t)

and TxDataWr and not TxShareFlag −> not load and (l oad counte r = ”
0000 ”) and next ! [7] (load) and next a ! [1 to 7] (l oad counte r = ”0000 ”)

and next ! [7] (TxEnable −> T frame va l id)) ;

P4 T frame val id :
always ((T frame va l id) and not TxSendAbort and not eo f and not i d l e and

TxEnable−> next ! (T frame va l id)) ;

P5 d i s ab l e m id f r :
always (T frame va l id and not TxSendAbort and not eo f and not i d l e and

not TxEnable and (l oad counte r < ”0111 ”)−> next ! (T frame va l id)) ;

P6 T frame not va l id :
always (s end crc or TxSendAbort or i d l e or (not TxEnable and (

l oad counte r = ”0111 ”)) −> next ! (not T frame va l id and not load)) ;

P7 l o ad da t a n s t a l l :
always (((l oad counte r < ”0111 ”) and (l oad counte r > ”0000 ”) and not

s t a l l and T frame va l id) and not TxSendAbort−> next ! (not TxSendAbort
−> (l oad counte r= (prev (l oad counte r)+”0001 ”))) and (not load)) ;

P8 l o ad da t a n s t a l l 2 :
always ((l oad counte r = ”0000 ”) and not s t a l l and T frame va l id and not

TxSendAbort−> next ! (l oad counte r= (prev (l oad counte r)+”0001 ”)) and (
TxDataWr −> load)) ;

P9 l oad data ws ta l l :
always (l oad counte r < ”0111 ” and (l oad counte r > ”0000 ”) and s t a l l and

not eo f and T frame val id−> next ! (T frame va l id −> l oad counte r =
(prev (l oad counte r))) and next ! (not load)) ;

P10 l oad data ws ta l l 2 :
always ((l oad counte r = ”0000 ”) and s t a l l and not eo f and T frame va l id

−> next ! (T frame va l id −> l oad counte r = (prev (l oad counte r))) and
(not load) and next ! (T frame va l id and TxDataWr −> load)) ;

177

Chapter B : Case study: High-level Data Link Controller

P11 load new data :
always ((l oad counte r = ”0111 ”) and TxDataWr and not eo f and

T frame va l id −> next ! (((l oad counte r = ”0000 ”)))) ;

P12 se t counte r no load :
always ((l oad counte r = ”0111 ”) and not T frame va l id −> next ! ((

l oad counte r = ”0000 ”) until ! (not rose (s e nd f l a g)))) ;

P13 end c r c c l o s e f l a g :
always (rose (crc done) −> next ! (s e nd f l a g and TxLastBit) and next a ! [1

to 7] ((not T frame va l id))) ;

P14 id l e between f rames :
always (rose (crc done) −> next a ! [1 to 8] (not i d l e) and next ! [9] ((not

TxDataWr −> i d l e))) ;

P15 new frame share f lag :
always (rose (crc done) and TxShareFlag −> next ! [6] (TxDataWr −>

T frame va l id)) ;

P16 new frame open f lag :
always (rose (crc done) and not TxShareFlag −> next ! (l oad counte r = ”

0000 ”) and next ! (TxCRCValue = ”00000000000000000000000000000000 ”)
and next ! [9] (next event (TxDataWr and not i d l e) (s e nd f l a g and not
load))) ;

P17 deaa s e r t s end f l ag :
always (s e nd f l a g −> next ! (not s e nd f l a g)) ;

P18 eof :
always (TxDataWr and TxEoF and load and T frame va l id −> next ! [3] (e o f)

and next ! [3] (data counter = ”000 ”)) ;

P19 k e ep eo f no s t a l l :
always (eo f and not s t a l l and (data counter < ”101 ”) and T frame val id

−> next ! (e o f) and next ! ((data counter = (prev (data counter) + ”001 ”)
))) ;

P20 k e ep eo f w i t h s t a l l :
always (eo f and s t a l l and (data counter < ”101 ”) and T frame val id−>

next ! ((e o f = ’1 ’)) and next ! ((data counter = prev (data counter)))) ;

P 2 1 e o f s t a r t c r c :
always (eo f and (data counter = ”101 ”) and T frame val id−> next ! (not

eo f and (data counter = ”000 ”)) and s end crc) ;

P 2 2 e o f s t a r t c r c n f :
always (eo f and (not T frame va l id)−> next ! (not eo f and (data counter

= ”000 ”)) and s end crc) ;

P23 deaase r t s end crc :
always (s end crc −> next ! (not s end crc and not TxCRCValAvail) and next

! ((l oad counte r = ”0000 ”))) ;

B.2 : Receiver

P24 abo r t c l o s e f l a g :
always (TxSendAbort −> next ! [8] (s e nd f l a g and TxLastBit) and next ! (

l oad counte r = ”0000 ”) and next a ! [1 to 16] (not i d l e) and next
! [1 7] ((i d l e)) and next a ! [1 to 17] (not T frame va l id) and next ! [9] (
next event (s e nd f l a g) [8] (T frame va l id))) ;

P25 crc va l 16 :
always (rose (s end crc) and (TxCRCSel = ”01 ”) −> (TxCRCValue(15 downto 0)

= R16) and (TxCRCValue(31 downto 16) = ”0000000000000000 ”) and
TxCRCValAvail) ;

P26 crc va l 32 :
always (rose (s end crc) and (TxCRCSel = ”10 ”) −> (TxCRCValue = R32) and

TxCRCValAvail) ;

P 2 7 c r c v a l i n i t :
always (rose (crc done) −> next ! (TxCRCValue = ”

00000000000000000000000000000000 ”)) ;

P28 l a s t b i t :
always (TxLastBit −> next ! (not TxLastBit)) ;

P29 T disbale :
always (T frame va l id and ((f e l l (TxEnable) and (l oad counte r /= ”0000 ”

)) or (f e l l (TxEnable) and (l oad counte r = ”0000 ”) and load)) −>
next ! (next event (l oad counte r = ”0111 ”) (eo f))) ;

P30 between data :
always ((l oad counte r > ”0111 ”) and (l oad counte r < ”1111 ”) and not

TxDataWr and not eo f and T frame va l id and TxEnable−> next ! (((
l oad counte r = prev (l oad counte r) + ”0001 ”)))) ;

P31 underrun :
always ((l oad counte r = ”1111 ”) and not TxDataWr and not eo f and

T frame va l id and TxEnable−> next ! (l oad counte r = ”0000 ”) and next ! (
TxUnderRun)) ;

P32 new data :
always ((l oad counte r > ”0111 ”) and (l oad counte r < ”1111 ”) and rose (

TxDataWr) and not eo f and T frame va l id and TxEnable−> next ! (
l oad counte r = ”0000 ”)) ;

P33 not underrun :
always (TxUnderRun −> next ! (not TxUnderRun)) ;

}

Figure B.6: Properties that describe transmitter controller

179

Chapter B : Case study: High-level Data Link Controller

B.2.1 Flag and abort detection

The receiver begins the operation by detecting the opening flag through the FlagAbortDet
module. Once an opening flag is detected, the receiver begins to receive the incoming
frame, while FlagAbortDet is monitoring the frame for a closing flag. Figure B.7 shows
the FL properties for the FlagAbortDet module. In these properties, RxEnable and
RxData are inputs. The serial data is put on the R S Data output port. The output
signals IsFlag, IsAbort, and AbortFound indicate if a flag or abort sequence is detected.
data seq is an internal signal that stores 8 consecutive bits of the incoming data.

vunit FlagAbortDet
{

P0 R FA init :
not R S Data and (data seq = ”00000000 ”) and not AbortFound ;

P1 R FA receive data :
always (RxEnable −> (R S Data = data seq (7))) ;

P2 R FA store data :
always (RxEnable −> next ! (data seq (0) = RxData) and next ! (data seq (7

downto 1) = prev (data seq (6 downto 0)))) ;

P3 R FA is abort :
always ((data seq = ”11111111 ”) −> IsAbort and (AbortFound until ! (f e l l

(I sF lag))) and (next event (f e l l (I sF lag)) (not AbortFound))) ;

P4 R FA is not abort :
always ((data seq /= ”11111111 ”) −> not IsAbort) ;

P5 R FA is f lag :
always ((data seq = ”01111110 ”) −> I sF lag and not IsAbort) ;

P6 R FA is not f lag :
always ((data seq /= ”01111110 ”) −> not I sF lag) ;

}

Figure B.7: SERE properties that describe FlagAbortDet

Figure. B.8 shows the SERE properties for FlagAbortDet.

B.2.2 Zero detection

The ZeroDetection module checks the incoming data from FlagAbortDet to verify if a
zero is inserted after five consecutive 1s. In this situation, the inserted 0 is deleted from
the incoming frame, and R zero Inserted is asserted. Figure B.9 shows the FL properties
for the ZeroDetection module. In this module, R S Data and RxEnable are inputs, and
R stall, R zero Inserted, and R zero Data are outputs. data seq is an internal signal to
buffer the 7 consecutive bits of the incoming data.

Figure B.10 shows the SERE properties for ZeroDetection.

B.2 : Receiver

vunit FlagAbortDet sere
{

P0 R FA init :
not R S Data and not AbortFound ;

P 1 i s f l a g :
always ({RxEnable and not R S Data ; R S Data [∗ 6] ; not R S Data} |−> {

I sF lag and not IsAbort }) ;

P2 i s abo r t :
always ({RxEnable and not R S Data ; R S Data [∗ 7] } |−> {{ IsAbort } & {

AbortFound [∗] ; f e l l (I sF lag) }}) ;
}

Figure B.8: SERE properties that describe FlagAbortDet

vunit ZeroDetect ion
{

P0 R Z init :
not R zero Data and not R s t a l l and not R zero In s e r t ed and (data seq =

”0000000 ”) ;

P1 R Z rece ive data : −− P1 send data :
always (RxEnable −> (R zero Data = R S Data)) ;

P2 R Z store data : −− P2 s tore da ta :
always (RxEnable −> next ! (data seq (0) = R S Data) and next ! (data seq (6

downto 1) = prev (data seq (5 downto 0)))) ;

P3 R Z zero inse r ted :
always ((data seq = ”0111110 ”) −> R zero In s e r t ed and R s t a l l) ;

P4 R Z zero not in se r t ed :
always ((data seq /= ”0111110 ”) −> not R zero In s e r t ed and not R s t a l l)

;
}

Figure B.9: FL properties that describe ZeroDetection

vunit Ze roDet e c t i on s e r e
{

P0 R Z init :
not R zero Data and not R s t a l l and not R zero In s e r t ed ;

P1 ze ro de t e c t i on :
always ({RxEnable and not R S Data ; R S Data [∗ 5] ; not R S Data} |−>

R zero In s e r t ed and R s t a l l) ;
}

Figure B.10: SERE roperties that describe ZeroDetection

181

Chapter B : Case study: High-level Data Link Controller

B.2.3 CRC checker

The CRCCheck module performs the same generator polynomial division as the transmitter
across the entire transmitted message, including the CRC field. The remainder is then
compared to the remainder of the CRCGen module. Figure B.11 shows the specification of
the CRC_Checkermodule (for 16-bit CRC). In these properties, RxCRCSel, poly16, R stall,
R zero Data, and R crc check are the inputs of CRCCheck. R crc data, R crc error, and
R R16 are the outputs of the module. An internal signal is also defined (crc buffer) for
storing the incoming serial data.

B.2.4 Serial to Parallel converter

Figure B.12 shows the PSL properties for the S2P module. In this module, s2p enable,
s2p disable, R stall, and R crc data are inputs, and RxDout and s2p done are outputs.
R load counter, s2p buffer, and frame valid are the internal signals.

B.2.5 Receiver Controller

Figure B.13 shows the properties for synthesizing receiver controller. When the receiver
is enable, the controller waits for receiving one of these signals: IsAbort or IsFlag.

If an abort sequence is not detected (IsAbort= 0), RxAbortFound is set to 0. Otherwise,
the receiver looks for a closing flag, and sets the RxAbortFound signal to 1, and this signal
remains 1 until receiving the closing flag.

If a flag is detected (IsFlag = 1), the receiver should specify if a detected flag is an
opening flag (a flag sequence that is followed by a non-flag sequence), or a closing flag. To
detect the opening and closing flags, an internal signal is defined: R flag counter. Initially,
this signal is set to 0. After receiving the first flag, this signal is set to 1, which indicates
a flag has already been detected. So, the next detected flag would be the closing flag.
When a closing flag is detected, R flag counter is again set to 0.

When an opening flag is detected, the CRCCheck module should become enable after 8
clock cycles. Then, receiver waits for the R crc error signal, and reads this signal in the
cycle in which the RxEndOfFrame is 1 to detect if an error exists in the received data.
Then, controller enables the StoP module, and wait for receiving s2p done that specifies
if the S2P module has finished paralleling 8 bits of data.

B.2 : Receiver

vunit CRCCheck
{

P0 R crc in i t da ta :
always (RxEnable and rose (R crc check) −> not R crc e r r o r and (R R16 =

”0000000000000000 ”) and (c r c b u f f e r = ”
00000000000000000000000000000000 ”)) ;

P1 R crc 16 data 2 ns :
always (RxEnable and not R s t a l l and R crc check and (RxCRCSel = ”01 ”)

and R R16 (15) −> next ! (R R16(15 downto 1) = (poly16 (15 downto 1) XOR
(prev (R R16(14 downto 0))))) and next ! (R R16 (0) = (poly16 (0) XOR
prev (c r c b u f f e r (15))))) ;

P2 R crc 16 data 2 s :
always (RxEnable and R s t a l l and R crc check and (RxCRCSel = ”01 ”) −>

next ! (R R16 = (prev (R R16)))) ;

P3 R crc 16 data 1 ns :
always (RxEnable and not R s t a l l and R crc check and (RxCRCSel = ”01 ”)

and not R R16 (15) −> next ! (R R16(15 downto 1) = prev (R R16(14 downto
0))) and next ! (R R16 (0) = prev (c r c b u f f e r (15)))) ;

P4 R c r c 16 sh i f t n s :
always (RxEnable and not R s t a l l and R crc check and (RxCRCSel = ”01 ”)

−> next ! (c r c b u f f e r (31 downto 1) = prev (c r c b u f f e r (30 downto 0)))
and next ! (c r c b u f f e r (0) = prev (R zero Data))) ;

P5 R c r c 16 sh i f t s :
always (RxEnable and R s t a l l and R crc check and (RxCRCSel = ”01 ”) −>

next ! (c r c b u f f e r (31 downto 1) = prev (c r c b u f f e r (31 downto 1))) and
next ! (c r c b u f f e r (0) = prev (c r c b u f f e r (0)))) ;

P6 R crc 16 send data :
always (RxEnable and R crc check and (RxCRCSel = ”01 ”) −> (R crc data =

R zero Data)) ;

P7 R crc 16 er ro r :
always (RxEnable and R crc check and (c r c b u f f e r (15 downto 0) /= R R16)

and (RxCRCSel = ”01 ”) −> R crc e r r o r) ;

P8 R cr c 16 no t c r c e r r :
always (RxEnable and R crc check and (c r c b u f f e r (15 downto 0) = R R16)

and (RxCRCSel = ”01 ”) −> not R crc e r r o r) ;

P9 R crc d i sab l e :
always (not RxEnable or not R crc check −> R crc data = ’0 ’) ;

}

Figure B.11: Properties that describe CRCCheck (for 16-bit CRC)

183

Chapter B : Case study: High-level Data Link Controller

vunit S2P
{

P0 R S2P init :
not f r ame va l id and not s2p done and (R load counter = ”0000 ”) and (

s 2p bu f f e r = ”00000000 ” and (RxDout = ”00000000 ”) ;

P1 R S2P frame :
always (rose (s2p enab le) −> (f r ame va l id until ! (s 2p d i s ab l e))) ;

P2 R S2P frame :
always (rose (s 2p d i s ab l e) −> (not f r ame va l id) until ! (s2p enab le)) ;

P3 R S2P shi ft :
always (not R s t a l l and (f r ame va l id) and (R load counter < ”1000 ”)−>

next ! (s 2p bu f f e r (7) = prev (R crc data)) and next ! (s 2p bu f f e r (6
downto 0) = prev (s 2p bu f f e r (7 downto 1))) and next ! ((R load counter
= prev (R load counter) + ”0001 ”))) ;

P4 R S2P no val id frame :
always (not (f r ame va l id) −> next ! (s 2p bu f f e r = ”00000000 ”) and next ! ((

R load counter = ”0000 ”))) ;

P5 R S2P sta l l :
always (R s t a l l and (f r ame va l id) and (R load counter < ”1000 ”)−> next

! (R load counter = prev (R load counter)) and next ! (s 2p bu f f e r = prev
(s 2p bu f f e r))) ;

P6 R S2P data ready ns :
always (not R s t a l l and (R load counter = ”1000 ”) −> next ! (

R load counter = ”0001 ”) and (RxDout = s2p bu f f e r) and s2p done and
next ! (RxDout = ”00000000 ”)) ;

P7 R S2P data ready s :
always ((R s t a l l) and (R load counter = ”1000 ”) −> next ! (R load counter

= ”0000 ”) and (RxDout = s2p bu f f e r) and s2p done and next ! (
s 2p bu f f e r = prev (s 2p bu f f e r))) ;

P8 R S2P not done :
always (rose (s2p done) −> next ! (not s2p done)) ;

}

Figure B.12: Properties that describe S2P

B.2 : Receiver

vunit RContro l l e r
{

P0 R Ctr in i t :
not R crc check and not R crc e r r o r and not s2p enab le and not

s 2p d i s ab l e and not RxDataAvail and (R f l ag counte r = ”00 ”) and not
RxEndOfFrame and not RxStartOfFrame and not RxAbortFound and (
RxCRCValue = ”00000000000000000000000000000000 ”) ;

P1 R Ctr s2p en :
always (rose (R crc check) −> (s2p enab le)) ;

P2 R Ctr s2p not en :
always (rose (s2p enab le) −> next ! (not s2p enab le)) ;

P3 R Ctr open f lag :
always (I sF lag and (R f l ag counte r = ”00 ”) −> next ! (R f l ag counte r = ”

01 ”) and next ! [8] (R crc check)) ;

P4 R Ctr c l o s e f l a g :
always (I sF lag and (R f l ag counte r = ”01 ”) −> next ! (s 2p d i s ab l e and not

R crc check) and next ! (R f l ag counte r = ”00 ”)) ;

P5 R Ctr s2p not d is :
always (rose (s 2p d i s ab l e) −> next ! (not s 2p d i s ab l e)) ;

P6 R Ctr data rdy :
always (s2p done −> RxDataAvail) ;

P7 R Ctr data not rdy :
always (rose (RxDataAvail) −> next ! (not RxDataAvail)) ;

P8 R Ctr SoF :
always (I sF lag and (R f l ag counte r = ”00 ”) −> next ! [8] (not IsAbort and

not AbortFound and not I sF lag −> next event (RxDataAvail) (
RxStartOfFrame))) ;

P9 R Ctr not SoF :
always (rose (RxStartOfFrame) −> next ! (not RxStartOfFrame)) ;

P10 R Ctr EoF n abort :
always (RxStartOfFrame and (R f l ag counte r = ”01 ”) and not RxAbortFound

−> next event (RxDataAvail and I sF lag) (RxEndOfFrame)) ;

P11 R Ctr EoF abort :
always (I sF lag and R f lag counte r = ”01 ” and RxAbortFound−>RxEndOfFrame

) ;

P12 R Ctr not EoF :
always (rose (RxEndOfFrame) −> next ! (not RxEndOfFrame)) ;

P13 R Ctr CRC Err :
always ((rose (RxEndOfFrame) and R crc e r r o r) −> (RxCRCError) and next !

(not RxCRCError)) ;

185

Chapter B : Case study: High-level Data Link Controller

P14 R Ctr not CRC Err :
always (rose (RxStartOfFrame) −> (not RxCRCError) until ! (RxEndOfFrame

and R crc e r r o r)) ;

P15 R Ctr CRC value :
always (RxEndOfFrame and (RxCRCSel = ”01 ”)−> (RxCRCValue(15 downto 0) =

R R16) and next ! (RxCRCValue = ”00000000000000000000000000000000 ”))
;

P16 R abort found :
always ((R f l ag counte r /= ”00 ”) −> (next ! (RxAbortFound = AbortFound))

) ;
}

Figure B.13: Properties that describe RController

Appendix C
Case study: Advanced Microcontroller Bus
Architecture

The Advanced Microcontroller Bus Architecture (AMBA) [AMB] is a chip communication
standard that has been developed to design high-performance embedded microcontrollers.
One category of AMBA bus is Advanced High-Performance Bus (AHB).

The AMBA AHB bus is used to interconnect and communicate high-clock frequency
modules, like high- performance processors or on-chip memories. A basic bus is composed
of 4 different modules: one or multiple masters, one or multiple slaves, an arbiter and a
decoder (see Fig. C.1).

Figure C.1: The AMBA arbiter block diagram (the figure is taken from [AMB])

The masters will send an address and some control signals to indicate which slave they
want to communicate with, and which type of transfer they are going to do. The master
is the element (for example a peripheral or the control unit of a processor) that can take
control of the bus and send or request information to other elements connected to the

187

Chapter C : Case study: Advanced Microcontroller Bus Architecture

bus. To obtain the control of the bus, the master must send a request to the arbiter and
wait until it is responded with a grant signal. The role of the arbiter is to decide which
master should take the control of the bus in a specific cycle, and depending on the type
of the transfer, arbiter should also decide for how long this master has the control of the
bus. The task of the decoder is to analyze the address given by the master and decide
which slave should be selected. Each slave has a set of memory spaces available to read
or write data, if the address sent by the master corresponds to one of these spaces the
slave is selected to make the transfer. The slave should also send an answer to the master
whenever a transfer is finished to see if it was successful or not.

Figure C.2 shows the FL properties that describe AMBA arbiter. The original proper-
ties are taken from [GCH], and have been rewritten to be used in SyntHorus2. In addition
to the input/output signals shown in Fig. C.1, some internal signals have been defined
and used in the properties:

• BUSREQ : becomes 1 whenever there is a request from one of the masters,

• DECIDE : indicates the cycle in which the arbiter decides who is the next master,

• GRANTED : is used for deciding the start of the new access to the bus,

• mast j : if this signal is 1, it implies that HMASTER = j.

vunit a r b i t e r {
P0 G1 1 m0 :

always (HBUSREQ 0 and mast 0 −> BUSREQ) ;
P1 G1 2 m0 :

always (not HBUSREQ 0 and mast 0 −> not BUSREQ) ;
P2 G1 1 m1 :

always (HBUSREQ 1 and mast 1 −> BUSREQ) ;
P3 G1 2 m1 :

always (not HBUSREQ 1 and mast 1 −> not BUSREQ) ;
P4 G4 m0 m1 :

always (DECIDE and (HBUSREQ 0 or HBUSREQ 1) −>next ! (GRANTED)) ;
P5 G5 1 :

always (GRANTED and HREADY −> next ! (not GRANTED)) ;
P6 G5 2 :

always (GRANTED and not HREADY −> next ! (GRANTED)) ;
P7 G6 1 m0 :

always (HREADY and HGRANT 0 −> next ! (mast 0)) ;
P8 G6 2 m0 :

always (HREADY and not HGRANT 0 −> next ! (not mast 0)) ;
P9 G6 1 m1 :

always (HREADY and HGRANT 1−> next ! (mast 1)) ;
P10 G6 2 m1 :

always (HREADY and not HGRANT 1−> next ! (not mast 1)) ;
P11 G7 m0 m1 :

always ((HREADY and ((HLOCK 0 and HGRANT 0) or (HLOCK 1 and HGRANT 1))
−> next ! (HMASTLOCK))) ;

P12 G8 1 1 m0 :
always ((not HREADY or not GRANTED) and mast 0 m−> next ! (mast 0)) ;

P13 G8 1 2 m0 :
always ((not HREADY or not GRANTED) and (not mast 0)−> next ! (not mast 0

)) ;
P14 G8 1 1 m1 :

always ((not HREADY or not GRANTED) and mast 1−> next ! (mast 1)) ;
P15 G8 1 2 m1 :

always ((not HREADY or not GRANTED) and (not mast 1)−> next ! (not mast 1
)) ;

P16 G8 2 1 m0 m1 :
always (not HREADY or not GRANTED and HMASTLOCK−> next ! (HMASTLOCK)) ;

P17 G8 2 2 m0 m1 :
always (not HREADY or not GRANTED and not HMASTLOCK−> next ! (not

HMASTLOCK)) ;
P18 G9 1 m0 :

always (not DECIDE and HGRANT 0−> next ! (HGRANT 0)) ;
P19 G9 2 m0 :

always (not DECIDE and not HGRANT 0−> next ! (not HGRANT 0)) ;
P20 G9 1 m1 :

always (not DECIDE and HGRANT 1−> next ! (HGRANT 1)) ;
P21 G9 2 m1 :

always (not DECIDE and not HGRANT 1−> next ! (not HGRANT 1)) ;
P22 G10 1 m1 :

always (not HGRANT 1 −> next ! ((not HGRANT 1) until ! HBUSREQ 1)) ;
P23 G10 2 :

always (DECIDE and (not HBUSREQ 0) and (not HBUSREQ 1) −> next ! (
HGRANT 0)) ;

P24 G12 :
DECIDE and HGRANT 0 and ((not HMASTER 0) and (not HMASTER 1) and (not

HMASTER 2) and (not HMASTER 3)) and not GRANTED and not HMASTLOCK
and not HGRANT 1;

P25 gen dec ide :
always (((HBUSREQ 0 or HBUSREQ 1) or (HLOCK 0 or HLOCK 1)) and HREADY

and (not (GRANTED) and not DECIDE)−> next ! (DECIDE)) ;
P26 gen not dec ide :

always (DECIDE −> next ! (not DECIDE)) ;
P27 grant0 :

always (((GRANTED) and (not prev (HGRANT 0)) and (not HLOCK 1)) or (
HLOCK 0 and prev (HGRANT 0))−> HGRANT 0) ;

P28 grant1 :
always (((GRANTED) and (not prev (HGRANT 1)) and (not HLOCK 0)) or (

HLOCK 1 and prev (HGRANT 1))−> HGRANT 1) ;
P29 not HMASTER1 :

always not HMASTER 1 and not HMASTER 2 and not HMASTER 3;
P30 mast 0 :

always mast 0−> not HMASTER 0;
P31 mast 1 :

always mast 1−> HMASTER 0;
P32 one grant :

always not HGRANT 0 or not HGRANT 1;
}

Figure C.2: Annotated FL specification of AMBA arbiter (for 2 masters and 2 slaves)

189

Chapter C : Case study: Advanced Microcontroller Bus Architecture

Appendix D
The Annotation Results

Contents
D.1 IBM Generalized Buffer . 192

D.1.1 Communication with senders 192

D.1.2 Communication with receivers 194

D.1.3 Communication with FIFO . 196

D.2 HDLC . 197

D.2.1 Transmitter . 197

D.2.2 Receiver . 204

D.3 AMBA arbiter . 210

191

Chapter D : The Annotation Results

D.1 IBM Generalized Buffer

D.1.1 Communication with senders

D.1.1.1 FL properties

vunit genbuf sender
{

P0 sender 0 :
always ((not BtoS ACK m(0)) and (not StoB REQ m(0)) −> next ! (not

BtoS ACK g (0))) ;

P0 sender 1 :
always ((not BtoS ACK m(1)) and (not StoB REQ m(1)) −> next ! (not

BtoS ACK g (1))) ;

P1 sender 0 :
always ((BtoS ACK m(0) and StoB REQ m(0)) −> next ! (BtoS ACK g (0))) ;

P1 sender 1 :
always ((BtoS ACK m(1) and StoB REQ m(1)) −> next ! (BtoS ACK g (1))) ;

P2 sender 0 :
always (rose (StoB REQ m(0)) −> not BtoS ACK g (0)) ;

P2 sender 1 :
always (rose (StoB REQ m(1)) −> not BtoS ACK g (1)) ;

P3 sender :
always (not BtoS ACK(0) or not BtoS ACK(1)) ;

−−−−−−−−− FIFO i n t e r f a c e
P4 FIFO sender :

always (not ENQ or BtoS ACK(0) or BtoS ACK(1)) ;

P5 sere FIFO sender 0 :
always (not BtoS ACK m(0)}−> next ! (ENQ or not BtoS ACK(0))) ;

P5 sere FIFO sender 1 :
always (not BtoS ACK m(1)}−> next ! (ENQ or not BtoS ACK(1))) ;

P6 FIFO sender :
always ((StoB REQ m(0) or StoB REQ m(1)) and (not FULL m) and (not

ENQ m) −> next ! (ENQ g) and next ! [2] (not ENQ g)) ;

P7 FIFO sender 0 :
always (rose (BtoS ACK m(0)) −> SLC g = 0) ;

P7 FIFO sender 1 :
always (rose (BtoS ACK m(1)) −> SLC g = 1) ;

}

Figure D.1: Annotated FL specification of the sender side of GenBuf (2 senders)

D.1 : IBM Generalized Buffer

D.1.1.2 SERE properties

vunit g enbu f s ende r s e r e
{

P0 se r e s ende r 0 :
always ({not BtoS ACK m(0) and not StoB REQ m(0) } |=> {not BtoS ACK g

(0) } !) ;

P0 se r e s ende r 1 :
always ({not BtoS ACK m(1) and not StoB REQ m(1) } |=> {not BtoS ACK g

(1) } !) ;

P1 se r e s ende r 0 :
always ({ (BtoS ACK m(0) and StoB REQ m(0)) } |=> {(BtoS ACK g (0)) } !) ;

P1 se r e s ende r 1 :
always ({ (BtoS ACK m(1) and StoB REQ m(1)) } |=> {(BtoS ACK g (1)) } !) ;

P2 se r e s ende r 0 :
always ({not StoB REQ m(0) ; StoB REQ m(0) } |−> {not BtoS ACK g (0) }) ;

P2 se r e s ende r 1 :
always ({not StoB REQ m(1) ; StoB REQ m(1) } |−> {not BtoS ACK g (1) }) ;

P3 se r e s ender :
always (not BtoS ACK(0) or not BtoS ACK(1)) ;

−−−−−−−−− FIFO i n t e r f a c e
P4 sere FIFO sender :

always (BtoS ACK(0) or BtoS ACK(1) or not ENQ) ;

P5 sere FIFO sender 0 :
always ({not BtoS ACK m(0) } |=> {ENQ or not BtoS ACK(0) } !) ;

P5 sere FIFO sender 1 :
always ({not BtoS ACK m(1) } |=> {ENQ or not BtoS ACK(1) } !) ;

P6 sere FIFO sender :
always ({ (StoB REQ m(0) or StoB REQ m(1)) and not FULL m and not ENQ m}

|=> {ENQ g ; not ENQ g} !) ;

P7 sere FIFO sender 0 :
always ({not BtoS ACK m(0) ; BtoS ACK m(0) } −> SLC g = 0) ;

P7 sere FIFO sender 1 :
always ({not BtoS ACK m(1) ; BtoS ACK m(1) } −> SLC g = 1) ;

}

Figure D.2: Annotated SERE specification of the sender side of GenBuf (2 senders)

193

Chapter D : The Annotation Results

D.1.2 Communication with receivers

D.1.2.1 FL properties

vunit g enbu f r e c e i v e r
{
−−−−− r e c e i v e r s i d e

P0 rec :
assert (always (not EMPTYm −> next ! (BtoR REQ(0) or (BtoR REQ(1))))) ;

P1 rec :
assert (always (EMPTYm −> next ! (not BtoR REQ g(0) and (not BtoR REQ g

(1))))) ;

P2 rec :
assert (always (not BtoR REQ(0) or not BtoR REQ(1))) ;

P3 rec 0 :
assert (always (rose (BtoR REQ m(0)) −> next ! (next event ! (prev (not

BtoR REQ m(0))) (not BtoR REQ g(0) unti l (BtoR REQ m(1)))))) ;

P3 rec 1 :
assert (always (rose (BtoR REQ m(1)) −> next ! (next event ! (prev (not

BtoR REQ m(1))) (not BtoR REQ g(1) unti l (BtoR REQ m(0)))))) ;

P4 rec 0 :
assert (always ((BtoR REQ m(0)) and (not RtoB ACK m(0))−> next ! (

BtoR REQ g(0)))) ;

P4 rec 1 :
assert (always ((BtoR REQ m(1)) and (not RtoB ACK m(1))−> next ! (

BtoR REQ g(1)))) ;

P5 rec 0 :
assert (always ((RtoB ACK m(0)) −> (next ! (not BtoR REQ g(0))))) ;

P5 rec 1 :
assert (always ((RtoB ACK m(1)) −> (next ! (not BtoR REQ g(1))))) ;

−−−−−−−−− FIFO i n t e r f a c e
P6 FIFO rec :

assert (always ((f e l l (RtoB ACK m(0)) or (f e l l (RtoB ACK m(1))) and not
EMPTYm) −> (DEQ g))) ;

P7 FIFO rec :
assert (always (not f e l l (RtoB ACK m(0)) and not f e l l (RtoB ACK m(1)) −>

(not DEQ g))) ;
}

Figure D.3: Annotated FL specification of the receiver side of GenBuf (2 receivers)

D.1 : IBM Generalized Buffer

D.1.2.2 SERE properties

vunit g e nbu f r e c e i v e r s e r e
{

P0 se r e r e c :
always ({not EMPTYm} |=> {BtoR REQ(0) or BtoR REQ(1) } !) ;

P1 s e r e r e c :
always ({EMPTYm} |=> {not BtoR REQ g(0) and not BtoR REQ g(1) } !) ;

P2 s e r e r e c :
always (not BtoR REQ(0) or not BtoR REQ(1)) ;

P3 s e r e r e c 0 :
always ({not BtoR REQ m(0) ; BtoR REQ m(0) ; {BtoR REQ m(0) [∗] ; not

BtoR REQ m(0) }} |=> {(not BtoR REQ g(0)) [∗] ; (prev (BtoR REQ m(1)))
} !) ;

P3 s e r e r e c 1 :
always ({not BtoR REQ m(1) ; BtoR REQ m(1) ; {BtoR REQ m(1) [∗] ; not

BtoR REQ m(1) }} |=> {(not BtoR REQ g(1)) [∗] ; (prev (BtoR REQ m(0)))
} !) ;

P4 s e r e r e c 0 :
always ({BtoR REQ m(0) and (not RtoB ACK m(0)) } |=> {BtoR REQ g(0) } !) ;

P4 s e r e r e c 1 :
always ({BtoR REQ m(1) and (not RtoB ACK m(1)) } |=> {BtoR REQ g(1) } !) ;

P5 s e r e r e c 0 :
always ({RtoB ACK m(0) } |=> {not BtoR REQ g(0) } !) ;

P5 s e r e r e c 1 :
always ({RtoB ACK m(1) } |=> {not BtoR REQ g(1) } !) ;

P6 sere FIFO rec :
always ((f e l l (RtoB ACK m(0)) or (f e l l (RtoB ACK m(1))) and not EMPTYm)

−> (DEQ g)) ;

P7 sere FIFO rec :
always (not f e l l (RtoB ACK m(0)) and not f e l l (RtoB ACK m(1)) −> (not

DEQ g)) ;

}

Figure D.4: Annotated SERE specification of the receiver side of GenBuf (2 receivers)

195

Chapter D : The Annotation Results

D.1.3 Communication with FIFO

vunit genbuf FIFO
{

P0 FIFO :
always (FULL m and not DEQ m −> not ENQ g) ;

P1 FIFO :
always (EMPTYm −> not DEQ g) ;

}

Figure D.5: Annotated FL specification of the FIFO side of GenBuf

D.2 : HDLC

D.2 HDLC

D.2.1 Transmitter

Figure. D.6 shows the annotated SERE specification of HDLC transmitter given in [PPSQ13].
We did not use these properties for generating the transmitter of HDLC, since they were
not complete.

vunit a s s e r t i on s Tran sm i t t e r (Transmitter (A Transmitter)) {
p160 a :

always ({not T frame val id m ; T frame val id m } |=>
((TxDout g = prev (crc Data m)) until ((s t a l l m) or not prev (

T frame val id m)))) ;
sequence START 160 m i s

{(not crc Data m and T frame val id m) or eof m } ;

sequence HOP 160 m i s
{ ((not eof m) and (TxSendAbort m or (not T frame val id m))) [∗] } ;

sequence REC 1 160 m i s
{ (not eof m and ((crc Data m and T frame val id m))) } ;

sequence REC 1 END 160 m i s
{ crc Data m and T frame val id m } ;

p160 b 1 :
always ({START 160 m ; {HOP 160 m ; REC 1 160 m } [∗ 4] ; HOP 160 m ;

REC 1 END 160 m } |=> { s t a l l g ; not TxDout g}) ;
p160 b 2 :

always ({START 160 m ; {HOP 160 m ; REC 1 160 m } [∗ 4] ; HOP 160 m ;
REC 1 END 160 m ; {HOP 160 m ; REC 1 160 m ; [∗ 1] ; {HOP 160 m ;
REC 1 160 m } [∗ 3] ; HOP 160 m ; REC 1 END 160 m } [+] } |=> { s t a l l g ; not
TxDout g}) ;

HDLC 300 :
always ({ ((load counter m = ”1001 ”) and (not TxDataWr m and TxEnable m)

= ’1 ’) ; (not TxDataWr m and TxEnable m) [∗ 7] }
|=> (TxUnderRun g)) ;

HDLC 250 1 :
always ({TxEnable m ; TxEnable m = ’0 ’ and TxCRCSel m = ”00 ” and

crc busy m = ’0 ’ and T frame val id m = ’1 ’}
|=> { [∗0 to 8] ; [∗ 8] ; not TxDout g ; TxDout g [∗ 6] ; not TxDout g }) ;

HDLC 200 :
always ({not TxSendAbort m and TxEnable m ; TxSendAbort m and TxEnable m}

|−> {TxDout g [∗ 7] ; {not TxDout g ; TxDout g [∗ 6] ; not TxDout g
} ; TxDout g [∗] }) ;

HDLC 240 :
always ({not TxLastBit m and not TxDataWr m ; TxLastBit m and not

TxDataWr m}
|−> { {not TxDout g ; (TxDout g) [∗ 6] ; not TxDout g } ;

{TxDout g } [∗] ; { {TxEnable m and TxDataWr m} | {TxDout m and (not
TxEnable m or not TxDataWr m) } } }) ;

}

Figure D.6: Annotated SERE specification of HDLC transmitter

197

Chapter D : The Annotation Results

D.2.1.1 P2S

vunit P2S
{

P0 in i t :
always (not T frame val id m −> ((P Data g = ”00000000 ”) and S Data g =

’0 ’) ;

P1 load :
always (T frame val id m and not s t a l l m and load m −> (P Data g =

TxData m) and (S Data g = P Data m (7))) ;

P2 s t a l l d a t a :
always (T frame val id m and s t a l l m −> S Data g = ’0 ’) ;

P3 no t sh i f t :
always (T frame val id m and not s t a l l m and not load m −> (S Data g =

P Data m (7)) and (P Data g (0) = ’0 ’) and (P Data g (1 to 7) = prev (
P Data m(0 to 6)))) ;

P4 keep data :
always (T frame val id m and s t a l l m and not load m −> (P Data g = prev (

P Data m))) ;

}

Figure D.7: Annotated FL specification of P2S

D.2 : HDLC

D.2.1.2 CRC generation

vunit CRCGen
{

P0 in i t da ta :
not c rc busy g and not crc done g and (R16 g = ”0000000000000000 ”) and

(c r c coun t e r g = ”00000 ”) ;
P1 crc 16 data 2 ns :

always (not abort set m and not s t a l l m and not send crc m and not
crc busy m and (TxCRCSel m = ”01 ”) and R16 m(15) −> next ! (R16 g (15
downto 1) = (poly16 m (15 downto 1) XOR (prev (R16 m(14 downto 0))))
) and next ! (R16 g (0) = (poly16 m (0) XOR prev (S Data m)))) ;

P2 crc 16 data 1 ns :
always (not abort set m and not s t a l l m and not send crc m and not

crc busy m and (TxCRCSel m = ”01 ”) and not R16 m(15) −> next ! (R16 g
(15 downto 1) = prev (R16 m(14 downto 0))) and next ! (R16 g (0) = prev (
S Data m))) ;

P3 c r c 16 data 1 s :
always (not abort set m and s t a l l m and not send crc m and not

crc busy m and (TxCRCSel m = ”01 ”) −> next ! (R16 g = prev (R16 m))) ;
P4 CRC 16 send data :

always (not abort set m and not crc busy m and not send crc m and (
crc counter m < ”01111 ”) and (TxCRCSel m = ”01 ”) −> (c r c da ta g =
S Data m)) ;

P5 s end c r c 1 6 n s t a l l :
always (not abort set m and not s t a l l m and crc busy m and (TxCRCSel m

= ”01 ”) and (crc counter m < ”01111 ”)−> next ! (c r c busy g) and next ! (
R16 g (0) = ’0 ’) and next ! (c r c coun t e r g = (prev (crc counter m) + ”
00001 ”)) and next ! (R16 g (15 downto 1) = prev (R16 m(14 downto 0)))
and (c r c da ta g = (R16 m(15)))) ;

P6 s e nd c r c 1 6 s t a l l :
always (not abort set m and s t a l l m and crc busy m and (TxCRCSel m = ”

01 ”) and (crc counter m < ”01111 ”)−> next ! (c r c busy g) and next ! (
c r c coun t e r g = prev (crc counter m)) and (c r c da ta g = ’0 ’) and
next ! (R16 g = prev (R16 m))) ;

P7 crc 16 :
always (not abort set m and send crc m and (TxCRCSel m = ”01 ”) −> (

c rc busy g) and (c r c coun t e r g = ”00000 ”)) ;
P8 done crc 16 :

always (not abort set m and crc busy m and (TxCRCSel m = ”01 ”) and (
crc counter m = ”01111 ”)−> next ! (not c rc busy g) and next ! (
c r c coun t e r g = (prev (crc counter m) + ”00001 ”)) and next ! (R16 g (15
downto 1) = prev (R16 m(14 downto 0))) and next ! (R16 g (0) = ’0 ’) and
(c r c da ta g = (R16 m(15)))) ;

P9 abort :
always (abort set m −> next ! (not c rc busy g) and next ! (R16 g (15 downto

1) = ”0000000000000000 ”) and next ! (c r c coun t e r g = ”00000 ”)) ;
P10 crc done : always (f e l l (crc busy m) −> crc done g and next ! (not

crc done g) and next ! (c r c coun t e r g = ”00000 ”)) ;
}

Figure D.8: Annotated FL specification of CRCGen

199

Chapter D : The Annotation Results

D.2.1.3 Zero insertion

vunit Ze r o In s e r t i on
{

P0 in i t :
((s t a l l g = ’0 ’) and (z e r o I n s e r t e d g = ’0 ’) and (zero Data g = ’0 ’)) ;

P1 Zero :
always (

prev (prev (prev (prev (crc Data m)))) and prev (prev (prev (crc Data m)))
and prev (prev (crc Data m)) and prev (crc Data m) and crc Data m

−>
next ! (s t a l l g and zero Data g)
) ;

P2 noZero :
always (

not prev (prev (prev (prev (crc Data m)))) or not prev (prev (prev (
crc Data m))) or not prev (prev (crc Data m)) or not prev (crc Data m
) or not crc Data m

−>
next ! (not s t a l l g) and next ! (not z e r o I n s e r t e d g) and next ! ((

zero Data g = prev (crc Data m)))
) ;

}

Figure D.9: Annotated FL specification of ZeroInsertion

D.2.1.4 Flag/Abort generation

vunit FlagAbortGen
{

P0 T FA init :
f l a g done g and not abo r t s e t g and not TxDout g ;

P1 send f l ag :
always (rose (send f lag m) −> not f l a g done g and next a ! [1 to 7] (not

f l a g done g) and not TxDout g and next a ! [1 to 6] (TxDout g) and next
! [7] (not TxDout g) and next ! [8] (not send f lag m −> f l a g done g)) ;

P2 send data :
always (f lag done m and not abort set m and not send f lag m and not

idle m−> (TxDout g = zero Data m)) ;

p 3 i d l e :
always (id le m and not send f lag m and f lag done m −> TxDout g) ;

P4 TxAbort :
always (TxAbort m −> (TxDout g and abo r t s e t g) and next a ! [1 to 7] (

abo r t s e t g and TxDout g) and next ! [8] (not abo r t s e t g)) ;
}

Figure D.10: Annotated FL specification of FlagAbortGen

D.2 : HDLC

D.2.1.5 Transmitter controller

vunit T Contro l l e r
{

P0 T C reset :
not TxLastBit g and not l oad g and not s e nd f l a g g and i d l e g and (

l oad counte r g = ”0000 ”) and not e o f g and not s end c r c g and (
TxCRCValue g = ”00000000000000000000000000000000 ”) and not
TxCRCValAvail g and (data counter g = ”000 ”) and not (TxUnderRun g)
and not T frame va l id g ;

P1 T enab l e id l e :
always (rose (TxEnable m) and not TxDataWr m −> not s e nd f l a g g and not

eo f g and not s end c r c g) ;

P2 f r ame a f t e r i d l e :
always (id le m and TxEnable m and rose (TxDataWr m) −> next ! (not i d l e g

and s e nd f l a g g)) ;

P 3 l o ad f i r s t d a t a :
always (rose (send f lag m) and not prev (crc done m) and not prev (

abort set m) and TxDataWr m and not TxShareFlag m −> not load and (
l oad counte r = ”0000 ”) and next ! [7] (load) and next a ! [1 to 7] (
l oad counte r = ”0000 ”) and next ! [7] (TxEnable m −> T frame va l id g))
;

P4 T frame val id :
always ((T frame val id m) and not TxSendAbort m and not eof m and not

id le m and TxEnable m−> next ! (T f rame va l id g)) ;

P5 d i s ab l e m id f r :
always (T frame val id m and not TxSendAbort m and not eof m and not

id le m and not TxEnable m and (load counter m < ”0111 ”)−> next ! (
T f rame va l id g)) ;

P6 T frame not va l id :
always (send crc m or TxSendAbort m or id le m or (not TxEnable m and (

load counter m = ”0111 ”)) −> next ! (not T frame va l id g and not
l oad g)) ;

P7 l o ad da t a n s t a l l :
always (((load counter m < ”0111 ”) and (load counter m > ”0000 ”) and not

s t a l l m and T frame val id m) and not TxSendAbort m−> next ! (not
TxSendAbort m −> (l oad counte r g= (prev (load counter m)+”0001 ”)))
and (not l oad g)) ;

P8 l o ad da t a n s t a l l 2 :
always ((load counter m = ”0000 ”) and not s t a l l m and T frame val id m

and not TxSendAbort m −> next ! (l oad counte r g= (prev (load counter m)
+”0001 ”)) and (TxDataWr m −> l oad g)) ;

P9 l oad data ws ta l l :
always (load counter m < ”0111 ” and (load counter m > ”0000 ”) and

s t a l l m and not eof m and T frame valid m−> next ! (T frame val id m
−> l oad counte r g = (prev (load counter m))) and next ! (not l oad g)) ;

201

Chapter D : The Annotation Results

P10 load data ws ta l l 2 :
always ((load counter m = ”0000 ”) and s t a l l m and not eof m and

T frame val id m −> next ! (T frame val id m −> l oad counte r g = (prev (
load counter m))) and (not l oad g) and next ! (T frame val id m and
TxDataWr m −> l oad g)) ;

P11 load new data :
always ((load counter m = ”0111 ”) and TxDataWr m and not eof m and

T frame val id m −> next ! (l oad counte r g = ”0000 ”)) ;

P12 se t counte r no load :
always ((load counter m = ”0111 ”) and not T frame val id m −> next ! ((

l oad counte r g = ”0000 ”) until ! (not rose (send f lag m)))) ;

P13 end c r c c l o s e f l a g :
always (rose (crc done m) −> next ! (s e nd f l a g g and TxLastBit g) and

next a ! [1 to 7] ((not T frame va l id g))) ;

P14 id l e between f rames :
always (rose (crc done m) −> next a ! [1 to 8] (not i d l e g) and next ! [9] ((

not TxDataWr m −> i d l e g))) ;

P15 new frame share f lag :
always (rose (crc done m) and TxShareFlag m −> next ! [6] (TxDataWr m −>

T frame va l id g)) ;

P16 new frame open f lag :
always (rose (crc done m) and not TxShareFlag m −> next ! (l oad counte r g

= ”0000 ”) and next ! (TxCRCValue g = ”00000000000000000000000000000000
”) and next ! [9] (next event (TxDataWr m and not id le m) (s end f l a g g
and not l oad g))) ;

P17 deaa s e r t s end f l ag :
always (send f lag m −> next ! (not s end f l a g)) ;

P18 eof :
always (TxDataWr m and TxEoF m and load m and T frame val id m −> next

! [3] (e o f g) and next ! [3] (data counter g = ”000 ”)) ;

P19 k e ep eo f no s t a l l :
always (eof m and not s t a l l m and (data counter m < ”101 ”) and

T frame valid m−> next ! (e o f g) and next ! ((data counter g = (prev (
data counter m) + ”001 ”)))) ;

P20 k e ep eo f w i t h s t a l l :
always (eof m and s t a l l m and (data counter m < ”101 ”) and

T frame valid m−> next ! ((e o f g = ’1 ’)) and next ! ((data counter g =
prev (data counter m)))) ;

P 2 1 e o f s t a r t c r c :
always (eof m and (data counter m = ”101 ”) and T frame valid m−> next ! (

not eo f g and (data counter g = ”000 ”)) and s end c r c g) ;

D.2 : HDLC

P22 e o f s t a r t c r c n f :
always (eof m and (not T frame val id m)−> next ! (not eo f g and (

data counter g = ”000 ”)) and s end c r c g) ;

P23 deaase r t s end crc :
always (send crc m −> next ! (not s end c r c g and not TxCRCValAvail g)

and next ! ((l oad counte r g = ”0000 ”))) ;

P24 abo r t c l o s e f l a g :
always (TxSendAbort m −> next ! [8] (s e nd f l a g g and TxLastBit g) and next

! (l oad counte r g = ”0000 ”) and next a ! [1 to 16] (not i d l e g) and next
! [1 7] (i d l e g) and next a ! [1 to 17] (not T frame va l id g) and next
! [9] (next event (send f lag m) [8] (T f rame va l id g))) ;

P25 crc va l 16 :
always (rose (send crc m) and (TxCRCSel m = ”01 ”) −> (TxCRCValue g(15

downto 0) = R16 m) and (TxCRCValue g(31 downto 16) = ”
0000000000000000 ”) and TxCRCValAvail g) ;

P26 crc va l 32 :
always (rose (send crc m) and (TxCRCSel m = ”10 ”) −> (TxCRCValue g =

R32 m) and TxCRCValAvail g) ;

P 2 7 c r c v a l i n i t :
always (rose (crc done m) −> next ! (TxCRCValue g = ”

00000000000000000000000000000000 ”)) ;

P28 l a s t b i t :
always (TxLastBit m −> next ! (not TxLastBit g)) ;

P29 T disbale :
always (T frame val id m and ((f e l l (TxEnable m) and (load counter m /=

”0000 ”)) or (f e l l (TxEnable m) and (load counter m = ”0000 ”) and
load m)) −> next ! (next event (load counter m = ”0111 ”) (e o f g))) ;

P30 between data :
always ((load counter m > ”0111 ”) and (load counter m < ”1111 ”) and not

TxDataWr m and not eof m and T frame val id m and TxEnable m−> next
! (((l oad counte r g = prev (load counter m) + ”0001 ”)))) ;

P31 underrun :
always ((load counter m = ”1111 ”) and not TxDataWr m and not eof m and

T frame val id m and TxEnable m−> next ! (l oad counte r g = ”0000 ”) and
next ! (TxUnderRun g)) ;

P32 new data :
always ((load counter m > ”0111 ”) and (load counter m < ”1111 ”) and

rose (TxDataWr m) and not eof m and T frame val id m and TxEnable m−>
next ! (l oad counte r g = ”0000 ”)) ;

P33 not underrun :
always (TxUnderRun m −> next ! (not TxUnderRun g)) ;

}

Figure D.11: Annotated FL specification of transmitter controller

203

Chapter D : The Annotation Results

D.2.2 Receiver

D.2.2.1 Flag/Abort detection

FL properties

vunit FlagAbortDet
{

P0 R FA init :
not R S Data g and (data seq g = ”00000000 ”) and not AbortFound g ;

P1 R FA receive data :
always (RxEnable m −> (R S Data g = data seq m (7))) ;

P2 R FA store data :
always (RxEnable m −> next ! (data seq g (0) = RxData m) and next ! (

data seq g (7 downto 1) = prev (data seq m (6 downto 0)))) ;

P3 R FA is abort :
always ((data seq m = ”11111111 ”) −> I sAbort g and (AbortFound g until !

(f e l l (IsFlag m))) and (next event (f e l l (IsFlag m)) (not AbortFound g
))) ;

P4 R FA is not abort :
always ((data seq m /= ”11111111 ”) −> not I sAbort g) ;

P5 R FA is f lag :
always ((data seq m = ”01111110 ”) −> I sF lag g and not I sAbort g) ;

P6 R FA is not f lag :
always ((data seq m /= ”01111110 ”) −> not I sF l ag g) ;

}

Figure D.12: Annotated FL specification of FlagAbortDet

SERE properties

vunit FlagAbortDet sere
{

P0 R FA init :
not R S Data g and not AbortFound g ;

P 1 i s f l a g :
always ({RxEnable m and not R S Data m ; R S Data m [∗ 6] ; not R S Data m}

|−> { I sF l ag g and not I sAbort g }) ;

P2 i s abo r t :
always ({RxEnable m and not R S Data m ; R S Data m [∗ 7] } |−> {{ I sAbort g

} & {AbortFound g [∗] ; f e l l (IsFlag m) }}) ;
}

Figure D.13: Annotated SERE specification of FlagAbortDet

D.2 : HDLC

D.2.2.2 Zero detection

FL properties

vunit ZeroDetect ion
{

P0 R Z init :
not R zero Data g and not R s t a l l g and not R ze ro In s e r t ed g and (

data seq g = ”0000000 ”) ;

P1 R Z rece ive data :
always (RxEnable m −> (R zero Data g = R S Data m)) ;

P2 R Z store data :
always (RxEnable m −> next ! (data seq g (0) = R S Data m) and next ! (

data seq g (6 downto 1) = prev (data seq m (5 downto 0)))) ;

P3 R Z zero inse r ted :
always ((data seq m = ”0111110 ”) −> R ze ro In s e r t ed g and R s t a l l g) ;

P4 R Z zero not in se r t ed :
always ((data seq m /= ”0111110 ”) −> not R ze ro In s e r t ed g and not

R s t a l l g) ;
}

Figure D.14: Annotated FL specification of ZeroDetection

SERE properties

vunit Ze roDet e c t i on s e r e
{

P0 R Z init :
not R zero Data g and not R s t a l l g and not R ze ro In s e r t ed g ;

P1 ze ro de t e c t i on :
always ({RxEnable m and not R S Data m ; R S Data m [∗ 5] ; not R S Data m}

|−> {R ze ro In s e r t ed g and R s t a l l g }) ;
}

Figure D.15: Annotated SERE specification of ZeroDetection

205

Chapter D : The Annotation Results

D.2.2.3 CRC checker

vunit CRCCheck
{

P0 R crc in i t da ta :
always (RxEnable m and rose (R crc check m) −> not R cr c e r r o r g and (

R R16 g = ”0000000000000000 ”) and (c r c b u f f e r g = ”
00000000000000000000000000000000 ”)) ;

P1 R crc 16 data 2 ns :
always (RxEnable m and not R sta l l m and R crc check m and (RxCRCSel m

= ”01 ”) and R R16 m(15) −> next ! (R R16 g (15 downto 1) = (poly16 m (15
downto 1) XOR (prev (R R16 m(14 downto 0))))) and next ! (R R16 g
(0) = (poly16 m (0) XOR prev (c r c bu f f e r m (15))))) ;

P2 R crc 16 data 2 s :
always (RxEnable m and R sta l l m and R crc check m and (RxCRCSel m = ”

01 ”) −> next ! (R R16 g = (prev (R R16 m)))) ;

P3 R crc 16 data 1 ns :
always (RxEnable m and not R sta l l m and R crc check m and (RxCRCSel m

= ”01 ”) and not R R16 m(15) −> next ! (R R16 g (15 downto 1) = prev (
R R16 m(14 downto 0))) and next ! (R R16 g (0) = prev (c r c bu f f e r m (15)
))) ;

P4 R c r c 16 sh i f t n s :
always (RxEnable m and not R sta l l m and R crc check m and (RxCRCSel m

= ”01 ”) −> next ! (c r c b u f f e r g (31 downto 1) = prev (c r c bu f f e r m (30
downto 0))) and next ! (c r c b u f f e r g (0) = prev (R zero Data m))) ;

P5 R c r c 16 sh i f t s :
always (RxEnable m and R sta l l m and R crc check m and (RxCRCSel m = ”

01 ”) −> next ! (c r c b u f f e r g (31 downto 1) = prev (c r c bu f f e r m (31
downto 1))) and next ! (c r c b u f f e r g (0) = prev (c r c bu f f e r m (0)))) ;

P6 R crc 16 send data :
always (RxEnable m and R crc check m and (RxCRCSel m = ”01 ”) −> (

R crc data g = R zero Data m)) ;

P7 R crc 16 er ro r :
always (RxEnable m and R crc check m and (c r c bu f f e r m (15 downto 0) /=

R R16 m) and (RxCRCSel m = ”01 ”) −> R cr c e r r o r g) ;

P8 R cr c 16 no t c r c e r r :
always (RxEnable m and R crc check m and (c r c bu f f e r m (15 downto 0) =

R R16 m) and (RxCRCSel m = ”01 ”) −> not R cr c e r r o r g) ;

P9 R crc d i sab l e :
always (not RxEnable m or not R crc check m −> R crc data g = ’0 ’) ;

}

Figure D.16: Annotated FL specification of CRCCheck

D.2 : HDLC

D.2.2.4 S2P

vunit S2P
{

P0 R S2P init :
not f r ame va l i d g and not s2p done g and (R load counter g = ”0000 ”)

and (s 2p bu f f e r g = ”00000000 ” and (RxDout g = ”00000000 ”) ;

P1 R S2P frame :
always (rose (s2p enable m) −> (f r ame va l i d g until ! (s2p d i sab le m))) ;

P2 R S2P frame :
always (rose (s2p d i sab le m) −> (not f r ame va l i d g) until ! (s2p enable m

)) ;

P3 R S2P shi ft :
always (not R sta l l m and (f rame val id m) and (R load counter m < ”1000

”)−> next ! (s 2p bu f f e r (7) = prev (R crc data m)) and next ! (
s 2p bu f f e r g (6 downto 0) = prev (s2p buf fer m (7 downto 1))) and next
! ((R load counter g = prev m (R load counter) + ”0001 ”))) ;

P4 R S2P no val id frame :
always (not (f rame val id m) −> next ! (s 2p bu f f e r g = ”00000000 ”) and

next ! ((R load counter g = ”0000 ”))) ;

P5 R S2P sta l l :
always (R sta l l m and (f rame val id m) and (R load counter m < ”1000 ”)−>

next ! (R load counter g = prev (R load counter m)) and next ! (
s 2p bu f f e r g = prev (s2p buf fer m))) ;

P6 R S2P data ready ns :
always (not R sta l l m and (R load counter m = ”1000 ”) −> next ! (

R load counter g = ”0001 ”) and (RxDout g = s2p buf fer m) and
s2p done g and next ! (RxDout g = ”00000000 ”)) ;

P7 R S2P data ready s :
always ((R sta l l m) and (R load counter m = ”1000 ”) −> next ! (

R load counter g = ”0000 ”) and (RxDout g = s2p buf fer m) and
s2p done g and next ! (s 2p bu f f e r g = prev (s2p buf fer m))) ;

P8 R S2P not done :
always (rose (s2p done m) −> next ! (not s2p done g)) ;

}

Figure D.17: Annotated FL specification of S2P

207

Chapter D : The Annotation Results

D.2.2.5 Receiver controller

vunit RContro l l e r
{

P0 R Ctr in i t :
not R crc check g and not R cr c e r r o r g and not s2p enab l e g and not

s 2p d i s ab l e g and not RxDataAvail g and (R f l ag counte r g = ”00 ”)
and not RxEndOfFrame g and not RxStartOfFrame g and not
RxAbortFound g and (RxCRCValue g = ”00000000000000000000000000000000
”) ;

P1 R Ctr s2p en :
always (rose (R crc check m) −> (s2p enab l e g)) ;

P2 R Ctr s2p not en :
always (rose (s2p enable m) −> next ! (not s2p enab l e g)) ;

P3 R Ctr open f lag :
always (IsFlag m and (R f lag counter m = ”00 ”) −> next ! (

R f l ag counte r g = ”01 ”) and next ! [8] (R crc check g)) ;

P4 R Ctr c l o s e f l a g :
always (IsFlag m and (R f lag counter m = ”01 ”) −> next ! (s 2p d i s ab l e g

and not R crc check g) and next ! (R f l ag counte r g = ”00 ”)) ;

P5 R Ctr s2p not d is :
always (rose (s2p d i sab le m) −> next ! (not s 2p d i s ab l e g)) ;

P6 R Ctr data rdy :
always (s2p done m −> RxDataAvail g) ;

P7 R Ctr data not rdy :
always (rose (RxDataAvail m) −> next ! (not RxDataAvail g)) ;

P8 R Ctr SoF :
always (IsFlag m and (R f lag counter m = ”00 ”) −> next ! [8] (not

IsAbort m and not AbortFound m and not IsFlag m −> next event ! (
RxDataAvail) (RxStartOfFrame g))) ;

P9 R Ctr not SoF :
always (rose (RxStartOfFrame m) −> next ! (not RxStartOfFrame g)) ;

P10 R Ctr EoF n abort :
always (RxStartOfFrame m and (R f lag counter m = ”01 ”) and not

RxAbortFound m −> next event ! (RxDataAvail m and IsFlag m) (
RxEndOfFrame g)) ;

P11 R Ctr EoF abort :
always (IsFlag m and (R f lag counter m = ”01 ”) and RxAbortFound m−>

RxEndOfFrame g) ;

P12 R Ctr not EoF :
always (rose (RxEndOfFrame m) −> next ! (not RxEndOfFrame g)) ;

D.2 : HDLC

P13 R Ctr CRC Err :
always ((rose (RxEndOfFrame m) and R crc error m) −> (RxCRCError g) and

next ! (not RxCRCError g)) ;

P14 R Ctr not CRC Err :
always (rose (RxStartOfFrame m) −> (not RxCRCError g) until ! (

RxEndOfFrame m and R crc error m)) ;

P15 R Ctr CRC value :
always (RxEndOfFrame m and (RxCRCSel m = ”01 ”)−> (RxCRCValue g(15

downto 0) = R R16 m) and next ! (RxCRCValue g = ”
00000000000000000000000000000000 ”)) ;

P16 R abort found :
always ((R f lag counter m /= ”00 ”) −> (next ! (RxAbortFound g =

AbortFound m))) ;
}

Figure D.18: Annotated FL specification of receiver controller

209

Chapter D : The Annotation Results

D.3 AMBA arbiter

vunit a r b i t e r {
P0 G1 1 m0 :

always (HBUSREQ 0 m and mast 0 m −> BUSREQ g) ;
P1 G1 2 m0 :

always (not HBUSREQ 0 m and mast 0 m −> not BUSREQ g) ;
P2 G1 1 m1 :

always (HBUSREQ 1 m and mast 1 m −> BUSREQ g) ;
P3 G1 2 m1 :

always (not HBUSREQ 1 m and mast 1 m −> not BUSREQ g) ;
P4 G4 m0 m1 :

always (DECIDE m and (HBUSREQ 0 m or HBUSREQ 1 m) −>next ! (GRANTED g)) ;
P5 G5 1 :

always (GRANTEDm and HREADYm −> next ! (not GRANTED g)) ;
P6 G5 2 :

always (GRANTEDm and not HREADYm −> next ! (GRANTED g)) ;
P7 G6 1 m0 :

always (HREADYm and HGRANT 0 m −> next ! (mast 0 g)) ;
P8 G6 2 m0 :

always (HREADYm and not HGRANT 0 m −> next ! (not mast 0 g)) ;
P9 G6 1 m1 :

always (HREADYm and HGRANT 1 m −> next ! (mast 1 g)) ;
P10 G6 2 m1 :

always (HREADYm and not HGRANT 1 m −> next ! (not mast 1 g)) ;
P11 G7 m0 m1 :

always ((HREADYm and ((HLOCK 0 m and HGRANT 0 m) or (HLOCK 1 m and
HGRANT 1 m)) −> next ! (HMASTLOCK g))) ;

P12 G8 1 1 m0 :
always ((not HREADYm or not GRANTEDm) and mast 0 m−> next ! (mast 0 g))

;
P13 G8 1 2 m0 :

always ((not HREADYm or not GRANTEDm) and (not mast 0 m)−> next ! (not
mast 0 g)) ;

P14 G8 1 1 m1 :
always ((not HREADYm or not GRANTEDm) and mast 1 m −> next ! (mast 1 g)

) ;
P15 G8 1 2 m1 :

always ((not HREADYm or not GRANTEDm) and (not mast 1 m)−> next ! (not
mast 1 g)) ;

P16 G8 2 1 m0 m1 :
always (not HREADYm or not GRANTEDm and HMASTLOCKm −> next ! (

HMASTLOCK g)) ;
P17 G8 2 2 m0 m1 :

always (not HREADYm or not GRANTEDm and not HMASTLOCKm −> next ! (not
HMASTLOCK g)) ;

P18 G9 1 m0 :
always (not DECIDE m and HGRANT 0 m −> next ! (HGRANT 0 g)) ;

P19 G9 2 m0 :
always (not DECIDE m and not HGRANT 0 m −> next ! (not HGRANT 0 g)) ;

D.3 : AMBA arbiter

P20 G9 1 m1 :
always (not DECIDE m and HGRANT 1 m −> next ! (HGRANT 1 g)) ;

P21 G9 2 m1 :
always (not DECIDE m and not HGRANT 1 m −> next ! (not HGRANT 1 g)) ;

P22 G10 1 m1 :
always (not HGRANT 1 m −> next ! ((not HGRANT 1 g) until ! HBUSREQ 1 m)) ;

P23 G10 2 :
always (DECIDE m and (not HBUSREQ 0 m) and (not HBUSREQ 1 m) −> next ! (

HGRANT 0 g)) ;
P24 G12 :

DECIDE g and HGRANT 0 g and ((not HMASTER 0 g) and (not HMASTER 1 g)
and (not HMASTER 2 g) and (not HMASTER 3 g)) and not GRANTED g and
not HMASTLOCK g and not HGRANT 1 g ;

P25 gen dec ide :
always (((HBUSREQ 0 m or HBUSREQ 1 m) or (HLOCK 0 m or HLOCK 1 m)) and

HREADYm and (not (GRANTEDm) and not DECIDE m)−> next ! (DECIDE g)) ;
P26 gen not dec ide :

always (DECIDE m −> next ! (not DECIDE g)) ;
P27 grant0 :

always (((GRANTEDm) and (not prev (HGRANT 0 m)) and (not HLOCK 1 m)) or
(HLOCK 0 and prev (HGRANT 0 m))−> HGRANT 0 g) ;

P28 grant1 :
always (((GRANTEDm) and (not prev (HGRANT 1 m)) and (not HLOCK 0 m)) or

(HLOCK 1 and prev (HGRANT 1 m))−> HGRANT 1 g) ;
P29 not HMASTER1 :

always not HMASTER 1 g and not HMASTER 2 g and not HMASTER 3 g ;
P30 mast 0 :

always mast 0 m −> not HMASTER 0 g ;
P31 mast 1 :

always mast 1 m −> HMASTER 0 g ;
P32 one grant :

always not HGRANT 0 or not HGRANT 1;
}

Figure D.19: Annotated FL specification of AMBA arbiter (with 2 masters and 2 slaves)

211

Chapter D : The Annotation Results

Appendix E
SyntHorus2

Contents
E.1 Installation . 214

E.2 Execution . 214

E.2.1 Specification file . 214

E.2.2 Type file . 214

E.3 Options . 215

E.3.1 Command line options . 215

E.3.2 Pragma options . 216

E.4 Output . 217

213

Chapter E : SyntHorus2

In this appendix, our prototype tool, SyntHorus2 is introduced.

E.1 Installation

The script“install” is provided for installing SyntHorus2. It creates all the necessary folders
(for writing the intermediate and final results), compiles the source files, and creates the
executable file in “../test” directory. To run this script, the following command should be
executed in the root directory:

source i n s t a l l

For a basch terminal, the following command should be executed:

chmod +x i n s t a l l
source i n s t a l l

E.2 Execution

SyntHorus2 takes PSL properties and the interface definition of the circuit as its inputs,
and generates the VHDL files of the circuit by executing the following command (the
command should be executed in the “../test” directory):

. / Synthorus −f <s p e c f i l e > −t <t y p e f i l e > [op t ions]

In the above command, “-f <spec file>” specifies the specification file, “-t <type file>”
specifies the type file in which the interface signals have been defined. Then, based on the
requirements, options should be specified.

E.2.1 Specification file

The specification file has the following format:

vunit <entity name>{
[−− pragma SYNTHORUS : <family name> [<option>:<name>]]
<property name>: <property>
. . .

}

E.2.2 Type file

This file contains the definition of input and output signals. Now, the internal signals are
defined as outputs. However, we should enhance the tool to accept internal signals. For
each signal we should specify the followings:

• the signal name, which should be at least 2 characters

• the signal direction

• the signal type: std logic or std logic vector. It is specified by providing the direc-
tion (“to”, “downto”, or “nothing”)

E.3 : Options

• the signal range

• the default value: it can be 0, 1, or m (for memorizing)

For each signal, these information should be provided in the following format:

<I |O>:<name>:<type>:< low range>:<high range>:<de f au l t va lu e>

In the above format, <I|O> is replaced by I for an input signal, and by O for an
internal or output signal. <type> is replaced by 0 for std logic, 1 for std logic vector
with increasing index, and 2 for std logic vector with decreasing index. If type is 0,
<low range> and <high range> are replaced with 0. Otherwise, <low range> specifies
the low index and <high range> specifies the high index of the signal. <default value>
is replaced by 0, 1, or m.

E.3 Options

Two groups of options have been provided for SyntHorus2: 1) the options that are used in
the command line, while executing SyntHorus2, 2) the “pragma” options, that are added
to the input file of SyntHorus2, where the properties are given.

E.3.1 Command line options

Here are some of the most useful options of SyntHorus2, which are specified in the command
line:

• “-synth”: is used to synthesize the properties to reactants,

• “-mon”: is used to synthesize the properties to monitors,

• “-gen”: is used to synthesize the properties to reactants,

• “-l lib name”: specifies the name of the library of primitive reactants. We use“Horus”
as the library name.

• “-cons”: is used to write the complementary properties for consistency checking in
file “consistency.psl” (for use with the verification tools),

• “-comp”: is used to write the complementary properties for checking the complete-
ness in a file “completeness.psl” (for use with the verification tools),

• “-c level”: this option specifies if signals are sensitive to the pose-edge (“level = 1”)
or to the neg-edge of the clock (“level = 0”),

• “-r level”: this option specifies if the reset signal is active high (“level = 1”) or active
low (“level = 0”),

• “-a option”: this option specifies if the reset signal is asynchronous (“option = 1”)
or synchronous (“option = 0”),

215

Chapter E : SyntHorus2

• “-v option”: this option specifies how to deal with vectors. If“option = 1”, the vectors
are decomposed to bits. This is useful, when we are generating various ranges of
vector A in several properties, where these ranges overlap. As an example, assume
that A is a 8-bit vector, and A(0 to 5) is generated by property P1, and A(3 to 7)
is generated by P2. A(3 to 5) is generated by two properties. Therefore, we need to
decompose vector A to its bits.

• “-o <intermediate result file>”: this option specifies the file in which the interme-
diate results are written. These intermediate results include AST, DAST, DG, and
the trigger signals.

E.3.2 Pragma options

It is possible to define some characteristics of the circuit, e.g. the name of clock, re-
set, entity, architecture, and also enabling clock gating. It is done by using the options
“Pragma SYNTHORUS” in the <spec file> as follows1

−− pragma SYNTHORUS : <family name> [<option>:<name>]

<family name> corresponds to the type of the selection option. Now, it can be either
<DESIGN NAME> or <GATED CLOCK>.

1 <GATED CLOCK>: SyntHorus2 generates the primitive reactants that have a port
for the clock enable input.

– “clken signal name:<clken name>”: allows changing the name of the clock en-
able port. By default, this port is “clk en”.

– “clk signal name:<clk name>”: allows changing the name of the clock port.
By default, this port is “clk”.

2 <DESIGN NAME>: several options may exist:

– “top name:<new entity name>”: by default, the name of the top entity is
specified in <spec file>, in front of keyword “vunit”. Using this option allows
changing the name of the top entity to “new entity name”.

– “architecture:<arch name>”: this option specifies the name of the architecture.
Without this option, the name of the architecture is “top” by default.

– “reset name:<reset name>”: this option specifies the name of the reset signal.
Without this option, the name of the reset signal is “reset” by default.

For example, consider the following pragma option:

−− pragma SYNTHORUS : DESIGN NAME top name : GenBuf reset name : r s tn

It means that the entity name is “GenBuf”, and the name of the reset signal is “rstn”.

1These options have been provided based on the industrial demand.

E.4 : Output

E.4 Output

The outputs are generated, and placed in “../test/results” directory. The top module
is put in “../test/results/Top”, the properties are put in “../test/results/Property”, and
the solvers (if they exist) are put in “../test/results/Solver”. All the library elements
(synchronous, asynchronous, and with clock enable) are available at the root directory.

217

Chapter E : SyntHorus2

References

[AAH+03] M.S. Abadir, K.L. Albin, J. Havlicek, N. Krishnamurthy, and A.K. Martin.
Formal verification successes at Motorola. Formal Methods in System Design,
22(2):117–123, March 2003.

[ABBSV00] A. Aziz, F. Balarin, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. Se-
quential synthesis using S1S. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 19(10):1149–1162, 2000.

[ABC] ABC: A System for Sequential Synthesis and Verification,
http://www.eecs.berkeley.edu/˜alanmi/abc/, accessed 2015.

[ABG+00] Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. Wolfsthal. FoCs–
automatic generation of simulation checkers from formal specifications. In
Computer Aided Verification, pages 538–542. Springer, 2000.

[ACA] Acacia, http://lit2.ulb.ac.be/acaciaplus/, accessed 2015.

[AFF+02] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Land-
ver, S. Mador-haim, E. Singerman, A. Tiemeyer, M.Y. Vardi, and Y. Zbar.
The ForSpec Temporal Logic: A New Temporal Property-Specification Lan-
guage. In Tools and Algorithms for Construction and Analysis of Systems,
2002.

[AMB] AMBA Specification Rev 2.0 (1999), http://www-micro.deis.unibo.it/ mag-
agni/amba99.pdf, accessed 2015.

[BBDE+01] I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, Y. Rodeh, and
Yoav. The temporal logic Sugar. In Computer Aided Verification, pages
363–367. Springer, 2001.

[BCC+99] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using SAT procedures instead of BDDs. In Proc. of the 36th Annual
ACM/IEEE Design Automation Conference, (DAC’99), pages 317–320, New
York, NY, USA, 1999. ACM.

[BCE+04] R. Bloem, R. Cavada, C. Eisner, I. Pill, M. Roveri, and S. Semprini. Manual
for property simulation and assurance tool (deliverable 1.2/4-5). Technical
report, PROSYD Project, January 2004.

219

References

[BCG+10] R. Bloem, A. Cimatti, K. Greimel, R. Koenighofer, M. Roveri, V. Schuppan,
and R. Seeber. RATSY - a new requirements analysis tool with synthesis. In
Proc. of the 22nd International Conference on Computer Aided Verification
(CAV’2010), pages 425–429. Springer-Verlag, July 15-19 2010.

[BdFR04] S. Ben-david, D. Fisman, and S. Ruah. Automata construction for regular
expressions in model checking. In IBM research report H-0229, 2004.

[BEK+14] R. Bloem, U. Egly, P. Klampfl, R. Könighofer, and F. Lonsing. SAT-based
methods for circuit synthesis. In Proc. of the 14th Conference on Formal
Methods in Computer-Aided Design, pages 31–34. FMCAD Inc, 2014.

[BFH05] D. Bustan, D. Fisman, and J. Havlicek. Automata construction for PSL. In
https://www.research.ibm.com/haifa/projects/verification/RB Homepage/ps/
automta construction TR.pdf, 2005.

[BGJ+07a] R. Bloem, S. Galler, B. Jobstman, N. Piterman, A. Pnueli, and M. Wei-
glhofer. Specify, compile, run: Hardware from PSL. Electronic Notes in
Theoretical Computer Science (ENTCS), 190:3–16, 2007.

[BGJ+07b] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Wei-
glhofer. Automatic hardware synthesis from specifications: a case study.
In Proc. of the conference on Design, Automation and Test in Europe
(DATE’2007), pages 1188–1193, April 16-20 2007.

[BJP+12] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Saar. Synthesis of
reactive(1) designs. Journal of Computer and System Sciences, 78(3):911–
938, May 2012.

[BL69] J.R. Büchi and L.H. Landweber. Solving sequential conditions by finite-state
strategies. Trans. of the American Mathematical Society, 138:295–311, 1969.

[BL88] G. M. Brown and M. E. Leeser. Synthesizing correct sequential circuits. In
Proc. of the International Conference on Systolic Arrays, 1988.

[Bor97] Arne Borälv. The industrial success of verification tools based on Stalmarck’s
method. In Orna Grumberg, editor, Computer Aided Verification, volume
1254 of Lecture Notes in Computer Science, pages 7–10. Springer Berlin
Heidelberg, 1997.

[BP63] J.A. Brzozowski and J.F. Poage. On the construction of sequential ma-
chines from regular expressions. IEEE Trans. on Electronic Computers, EC-
12(4):402–403, August 1963.

[Brz64] J.A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11:481–494, 1964.

[Brz65] J.A. Brzozowski. Regular expressions for linear sequential circuits. IEEE
Trans. on Electronic Computers, EC-14(2):148–156, April 1965.

[BUG] BugScope, http://www.atrenta.com/pg/9/, accessed 2015.

References

[BY96] R.S. Boyer and Y. Yu. Automated proofs of object code for a widely used
microprocessor. Journal of the ACM, 43(1):166–192, January 1996.

[BZ05] M. Boulé and Z. Zilic. Incorporating efficient assertion checkers into hardware
emulation. In Proc. of IEEE International Conference on Computer Design:
VLSI in Computers and Processors (ICCD’2005), pages 221–228, October
2005.

[BZ07] M. Boulé and Z. Zilic. Efficient automata-based assertion-checker synthe-
sis of SEREs for hardware emulation. In Asia and South Pacific Design
Automation Conference (ASP-DAC’2007), pages 324–329, January 2007.

[BZ08a] M. Boulé and Z. Zilic. Assertion checkers - enablers of quality design. In
1st Microsystems and Nanoelectronics Research Conference (MNRC’2008),
pages 97–100, October 2008.

[BZ08b] M. Boulé and Z. Zilic. Automata-based assertion-checker synthesis of PSL
properties. ACM Trans. on Design Automation of Electronic Systems (ACM-
TODAES), 13(1):Article 4, January 2008.

[BZ08c] M. Boulé and Z. Zilic. Generating Hardware Assertion Checkers. Springer,
2008.

[CAD] Incisive Formal Verifier,
http://www.cadence.com/products/fv/formal verifier/Pages/default.aspx,
accessed 2015.

[CBE+92] L. Claesen, D. Borrione, H. Eveking, G. Milne, J.L. Paillet, and P. Prinetto.
Charme: towards formal design and verification for provably correct
VLSI hardware. In Correct-Hardware-Design-Methodologies.-Proc.-of-the-
Advanced-Research-Workshop., pages 3–25. North-Holland, Amsterdam,
Netherlands, 1992.

[CE82] E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization
Skeletons Using Branching Time Temporal Logic. Springer, 1982.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans.
on Programming Languages and Systems (TOPLAS), 8(2):244–263, 1986.

[CGZ99] E.M. Clarke, S.M. German, and X. Zhao. Verifying the SRT division algo-
rithm using theorem proving techniques. Formal Methods in System Design,
14(1):7–44, January 1999.

[Chu57] A. Church. Applications of recursive arithmetic to the problem of circuit
synthesis. Summaries of the Summer Institute of Symbolic Logic, 1:3–50,
1957.

[Chu62] A. Church. Logic, arithmetic and automata. In Proc. of International
Congress of Mathematicians, pages 23–25, 1962.

221

References

[Cim08] A. Cimatti. Beyond Boolean SAT: Satisfiability modulo theories. In Proc. of
the 9th International Workshop on Discrete Event Systems (WODES’2008),
pages 68–73, May 2008.

[CRST06] A. Cimatti, M. Roveri, S. Semprini, and S. Tonetta. From PSL to NBA: a
modular symbolic encoding. In Formal Methods in Computer Aided Design
(FMCAD’2006), pages 125–133, November 2006.

[Cur68] H.A. Curtis. Polylinear sequential circuit realizations of finite automata.
IEEE Trans. on Computers, C-17(3):251–259, March 1968.

[DB95] D. Déharbe and D. Borrione. Symbolic model checking with past and future
temporal modalities: Fundamentals and algorithms. In Bergé, Jean-Michel,
Levia, Oz, and Jacques Rouillard, editors, Model Generation in Electronic
Design, volume 1 of Current Issues in Electronic Modeling, pages 105–126.
Springer US, 1995.

[EBM] EBMC, http://www.cprover.org/ebmc/, accessed 2015.

[EF06] C. Eisner and D. Fishman. A Practical Introduction to PSL. Springer, 2006.

[EFP09] F. Eibensteiner, R. Findenig, and M. Pfaff. SynPSL: Behavioral synthesis of
PSL assertions. In R. Moreno-Diaz, F. Pichler, and A. Quesada-Arencibia,
editors, Computer Aided Systems Theory - EUROCAST 2009, volume 5717
of Lecture Notes in Computer Science, pages 69–74. Springer Berlin Heidel-
berg, 2009.

[Ehl11] R. Ehlers. Unbeast: Symbolic bounded synthesis. In P.A. Abdulla and K.R.
Leino, editors, Tools and Algorithms for the Construction and Analysis of
Systems, volume 6605 of Lecture Notes in Computer Science, pages 272–275.
Springer Berlin Heidelberg, 2011.

[EKH12] R. Ehlers, R. Könighofer, and G. Hofferek. Symbolically synthesizing small
circuits. In Proc. of Formal Methods in Computer Aided Design (FM-
CAD’2012), pages 91–100, October 22-25 2012.

[FG05] H. Foster and Working Group. IEEE standard for property specification
language (PSL). pub-IEEE-STD, 2005.

[FJR09] E. Filiot, N. Jin, and J.F. Raskin. An antichain algorithm for LTL realiz-
ability. In Proc. of the 21st International Conference on Computer Aided
Verification: (CAV’2009), pages 263–277, July 2009.

[FJR11] E. Filiot, N. Jin, and J.F. Raskin. Antichains and compositional algorithms
for LTL synthesis. Form. Methods Syst. Des., 39(3):261–296, December 2011.

[FKL03] H. Foster, A. Krolnik, and D. Lacey. Assertion-Based Design. Kluwer Aca-
demic Publishers, June 2003.

[FKTMo86] M. Fujita, S. Kono, H. Tanaka, and T. Moto-oka. Tokio: Logic programming
language based on temporal logic and its compilation to Prolog. In Proc.
of the 3rd International Conference on Logic Programming, volume Lecture
Notes in Computer Science 225, pages 695–709. Springer, 1986.

References

[Fos08] H. Foster. Applied assertion-based verification: An industry perspective.
Foundations and Trends in Electronic Design Automation, 3(1):1–95, 2008.

[Fos15] H.D. Foster. Trends in functional verification: A 2014 industry study. In
Proc. of the 52nd Annual Design Automation Conference (DAC’2015), pages
1–6, New York, NY, USA, 2015. ACM.

[FU82] R.W. Floyd and J. D. Ullman. The compilation of regular expressions into
integrated circuits. Journal of the ACM, 29(3):603–622, 1982.

[Gas05] E. Gascard. From sequential extended regular expressions to deterministic fi-
nite automata. In Enabling Technologies for the New Knowledge Society: ITI
3rd International Conference on Information and Communications Technol-
ogy, pages 145–157, December 2005.

[GCH] Y. Godhal, K. Chatterjee, and T.A. Henzinger. Synthesis of AMBA AHB
from formal specification: a case study. International Journal on Software
Tools for Technology Transfer.

[GG05] S.V Gheorghita and R. Grigore. Constructing checkers from PSL proper-
ties. In Proc. of the 15th International Conference on Control Systems and
Computer Science (CSCS’2015), volume 2, pages 757–762, 2005.

[GHS03] M. Gordon, J. Hurd, and K. Slind. Executing the formal semantics of the
Accellera property specification language by mechanised theorem proving.
In E. Tronci D. Geist, editor, Correct Hardware Design and Verification
Methods, volume 2860 of Lecture Notes in Computer Science, pages 200–
215. Springer Berlin Heidelberg, 2003.

[Gor88] M.J.C Gordon. HOL: A proof generating system for higher-order logic. In
G. Birtwistle and P.A. Subrahmanyam, editors, VLSI Specification, Ver-
ification and Synthesis, volume 35 of The Kluwer International Series in
Engineering and Computer Science, pages 73–128. Springer US, 1988.

[Gre04] D. Greaves. Automated hardware synthesis from formal specification using
SAT solvers. In Proc. of the 15th IEEE International Workshop on Rapid
System Prototyping (RSP’2004), pages 15–20, 2004.

[Gup92] A. Gupta. Formal hardware verification methods: A survey. Formal Methods
in System Design, 1(2-3):151–238, October 1992.

[HIL04] Haifa-IBM-Laboratories. RuleBase Parallel Edition. IBM, November 2004.

[HNV05] S. Heymans, D.V. Nieuwenborgh, and D. Vermeir. Synthesis from temporal
specifications using preferred answer set programming. 3701:280–294, 2005.

[IBM] IBM Generalized Buffer,
https://www.research.ibm.com/haifa/projects/verification/RB Homepage/
tutorial3/GenBuf english spec.htm, accessed 2015.

223

References

[JB06] B. Jobstman and R. Bloem. Optimizations for LTL synthesis. In Formal
Methods in Computer Aided Design (FMCAD’2006), pages 117–124, Novem-
ber 2006.

[KAB06] K.Morin-Allory and D. Borrione. Proven correct monitors from PSL speci-
fications. In Proc. of conference on Design, Automation and Test in Europe
(DATE’2006), pages 1–6, March 2006.

[KM96] M. Kaufmann and J.S. Moore. Acl2: an industrial strength version of Nqthm.
In Proc. of the 11th Annual Conference on Computer Assurance, Systems
Integrity, Software Safety, Process Security (COMPASS’1996), pages 23–34,
June 1996.

[KMB97] M. Kaufmann, J. S. Moore, and O. Boyer. An industrial strength theo-
rem prover for a logic based on common Lisp. IEEE Trans. on Software
Engineering, 23:203–213, 1997.

[Kro99] T. Kropf. Introduction to Formal Hardware Verification. Springer, 1999.

[KS00] J.H. Kukula and T.R. Shiple. Building circuits from relations. In E. Allen
Emerson and A. Prasad Sistla, editors, CAV, volume 1855 of Lecture Notes
in Computer Science, pages 113–123. Springer, 2000.

[LJ88] W. Luk and G. Jones. The derivation of regular synchronous circuits. In
Proc. of the International Conference on Systolic Arrays, pages 305–314,
May 1988.

[LT10] L. Li and M.A. Thornton. Digital System Verification: A Combined Formal
Methods and Simulation Framework. Morgan and Claypool, 2010.

[MABBZ08] K. Morin-Allory, M. Boulé, D. Borrione, and Z. Zilic. Proving and disproving
assertion rewrite rules by automated theorem proving. In IEEE International
High Level Design Validation and Test Workshop (HLDVT’2008), pages 56–
63, November 2008.

[MAGB07] K. Morin-Allory, E. Gascard, and D. Borrione. Synthesis of property moni-
tors for online fault detection. Journal of Circuits, Systems and Computers,
16(06):943–960, 2007.

[MAJB15] K. Morin-Allory, F.N. Javaheri, and D. Borrione. Efficient and correct by
construction assertion-based synthesis. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, DOI. 10.1109/TVLSI.2014.2386212:1–12,
2015.

[MB08] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver, volume
4963/2008 of Lecture Notes in Computer Science, pages 337–340. Springer
Berlin, April 2008.

[McC03] W. McCune. OTTER 3.3 reference manual. In http://www.cs.unm.edu/ mc-
cune/otter/Otter33.pdf, 2003.

References

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Norwell, MA, USA, 1993.

[Mil72] R. Milner. Logic for computable functions: Description of a machine imple-
mentation. Technical report, Stanford, CA, USA, 1972.

[Mil94] G. Milne. Formal Specification and Verification of Digital Systems. McGrow-
Hill, 1994.

[MIN] MiniSAT, http://minisat.se/Papers.html, accessed 2015.

[MJML14] Ruben Martins, Saurabh Joshi, Vasco Manquinho, and Inês Lynce. Incre-
mental cardinality constraints for MaxSAT. In Barry O’Sullivan, editor,
Principles and Practice of Constraint Programming, volume 8656 of Lecture
Notes in Computer Science, pages 531–548. Springer International Publish-
ing, 2014.

[MS95] Joao Marques-Silva. Search algorithms for satisfiability problems in combi-
national switching circuits. PhD thesis, University of Michigan, 1995.

[MY60] R. McNaughton and H. Yamada. Regular expressions and state graphs for
automata. In IEEE Trans Comput, volume C9, pages 39–47, March 1960.

[Öbe99] J. Öberg. ProGram : A Grammar-Based Method for Specification and Hard-
ware Synthesis of Communication Protocols. PhD thesis, KTH, Sweden,
1999.

[Odd09] Y. Oddos. Verification semi-formelle et synthèse automatique de circuits
a partir de specifications temporelles ecrites en PSL. PhD thesis, Univ. of
Grenoble, Nov 2009.

[OH02] M.T. Oliveira and A.J. Hu. High-level specification and automatic generation
of IP interface monitors. In Proc. of the 39th Design Automation Conference
(DAC’2002), pages 129–134, 2002.

[OLP85] Orna O. Lichtenstein and A. Pnueli. Checking that finite state concur-
rent programs satisfy their linear specification. In Proc. of the 12th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL’1985), pages 97–107, New York, NY, USA, 1985. ACM.

[OMAB07] Y. Oddos, K. Morin-Allory, and D. Borrione. Prototyping generators for on-
line test vector generation based on PSL properties. In Design and Diagnostic
of Electronic Circuits and Systems (DDECS’2007), pages 1–6, April 2007.

[OMAB08] Y. Oddos, K. Morin-Allory, and D. Borrione. Assertion-based design with
Horus. In 6th ACM-IEEE International Conference on Formal Methods and
Models for Codesign (MEMOCODE’2008), pages 75–76, June 2008.

[OMAB09] Y. Oddos, K. Morin-Allory, and D. Borrione. SyntHorus: Highly efficient
automatic synthesis from PSL to HDL. In Proc. of the 17th IFIP Interna-
tional Conference on Very Large Scale Integration (VLSI-SoC’2009), pages
83–88, October 2009.

225

References

[ONE] OneSpin360DV, http://www.onespin-solutions.com/index.php/assertion-
synthesis.html, accessed 2015.

[ORS92] S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype verification sys-
tem. In Automated Deduction—CADE-11, pages 748–752. Springer, 1992.

[OVA] OpenVera Assertion,
http://www.synopsys.com/Tools/Verification/Documents/ova wp.pdf,
March 2003.

[OVL] Accellera Standard OVL V2, https://eda-
playground.readthedocs.org/en/latest/ downloads/ovl lrm.pdf, March
2014.

[PH09] D.K. Pradhan and I.G. Harris. Practical Design Verification. Cambridge
University Press, 2009.

[PLN05] M. Pellauer, M. Lis, and R. Nikhil. Synthesis of synchronous assertions
with guarded atomic actions. In Proc. of the 3rd ACM and IEEE Interna-
tional Conference on Formal Methods and Models for Co-Design, (MEM-
OCODE’2005), pages 15–24, July 2005.

[PPS06] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs. In
E.A. Emerson and K. Namjoshi, editors, Verification, Model Checking, and
Abstract Interpretation, volume 3855 of Lecture Notes in Computer Science,
pages 364–380. Springer Berlin Heidelberg, 2006.

[PPSQ13] L. Pierre, F. Pancher, R. Suescun, and J. Quevremont. On the effectiveness
of assertion-based verification in an industrial context. In C. Pecheur and
M. Dierkes, editors, Formal Methods for Industrial Critical Systems, volume
8187 of Lecture Notes in Computer Science, pages 78–93. Springer Berlin
Heidelberg, 2013.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. of
the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL’1989), pages 179–190, New York, NY, USA, 1989. ACM.

[Rab72] M.S. Rabin. Automata on Infinite Objects and Church’s Problem. American
Mathematical Society, Boston, MA, USA, 1972.

[RAT] Rat, http://rat.fbk.eu/ratsy/, accessed 2015.

[Ray96] P. Raymond. Recognizing regular expressions by means of dataflow networks.
In Proc. of the 23rd International Colloquium on Automata, Languages, and
Programming, (ICALP’1996), pages 336–347. Springer Verlag, 1996.

[SAT] SATRennesPA, http://satrennespa.irisa.fr/WebContent/, accessed 2015.

[SB94] A. Seawright and F. Brewer. Clairvoyant: A synthesis system for production-
based specification. IEEE TVLSI, pages 172–185, June 1994.

References

[SDG] SLED SDG (Synthesizable Detector Generator),
http://www.dolphin.fr/index.php/eda solutions/applications/assertion based
verification, accessed 2015.

[Sif82] J. Sifakis. A unified approach for studying the properties of transition sys-
tems. Theoretical Computer Science, 18(3):227–258, 1982.

[SM02] R. Siegmund and D. Müller. Automatic synthesis of communication con-
troller hardware from protocol specifications. IEEE Design & Test of Com-
puters, 19(4):84–95, 2002.

[SMB+05] J. Srouji, S. Mehta, D. Brophy, K. Pieper, S. Sutherland, and Work Group.
IEEE Standard for SystemVerilog - Unified Hardware Design, Specification,
and Verification Language. pub-IEEE-STD, November 2005.

[SMDC06] S.Das, R. Mohanty, P. Dasgupta, and P.P Chakrabarti. Synthesis of system
verilog assertions. In Proc. of the conferance on Design, Automation and
Test in Europe (DATE’2006), volume 2, pages 1–6, March 2006.

[SNBE07] M. Schickel, V. Nimbler, M. Braun, and H. Eveking. An efficient synthe-
sis method for property based design in formal verification. In Advances in
Design and Specification Languages for Embedded Systems (Selected Contri-
butions from FDL’2006), pages 163–181. Kluwer, 2007.

[SP01] R. Sidhu and V.K. Prasanna. Fast regular expression matching using FPGAs.
In Proc. of the 9th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, FCCM’2001, pages 227–238, Washington, DC, USA,
2001. IEEE Computer Society.

[Tho68] K. Thompson. Programming techniques: Regular expression search algo-
rithm. Commun. ACM, 11(6):419–422, June 1968.

[TRA] Transistor count, http://en.wikipedia.org/wiki/Transistor count, accessed
2015.

[UNB] Unbeast, http://www.react.uni-saarland.de/tools/unbeast/, accessed 2015.

[WVS83] P. Wolper, M.Y. Vardi, and A.P Sistla. Reasoning about infinite computation
paths. In Proc. of the 24th Annual Symposium on Foundations of Computer
Science, pages 185–194, November 1983.

[YAP10] J. Yuan, A. Aziz, and C. Pixley. Constraint-Based Verification. Springer,
2010.

[Zha97] Hantao Zhang. SATO: An efficient prepositional prover. In William McCune,
editor, Automated Deduction—CADE-14, volume 1249 of Lecture Notes in
Computer Science, pages 272–275. Springer Berlin Heidelberg, 1997.

227

Acronym

Acronym

A
ABA Alternating Büchi Automaton
ABV Assertion Based Verification
ABS Assertion Based Design
AMBA Advanced Microcontroller Bus Architecture
AST Abstract Syntax Tree
ASIC Application Specific Integrated Circuit
ASP Answer Set Programming
AP Atomic Proposition
AIGER

B
BDD Binary Decision Diagram
BMC Bounded Model Checking
BNF Backus-Naur Form

C
CNF Conjunctive Normal Form
CRC Cyclic Redundancy Check
CTL Computational Tree Logic

D
DAG Directed Acyclic Graph
DAST Directed Abstract Syntax Tree
DES Data Encryption Standard
DFA Deterministic Finite Automaton
DG Dependency Graph
DI Delay Insensitive
DIMS Delay Insensitive Min-term Synthesis
DTS Discrete Transition System
DUV Design Under Verification

F
FIFO First In First Out
FPGA Field Programmable Gate Array
FSM Finite State Machine

229

Acronym

FL Foundation Language
FBDD Free Binary Decision Diagram
FPA Fast Prototyping From Assertions

G
GDL General Description Language
GenBuf Generalized Buffer

H
HDL Hardware Description Language
HDLC High-level Data Link Controller
HLS High Level Synthesis
HOL Higher Order Logic

I
IEEE Institute of Electrical and Electronics Engineers
IP Intellectual Property

L
LCF Logic for Computable Functions
LTL Linear Temporal Logic
LUT Look Up Table

N
NFA Non-deterministic Finite Automaton

O
OBE Optional Branching Extension
OCP Open Core Protocol
OVA Open Vera Assertion
OVL Open Verification Library

P
PFG Protocol Flow Graph
PLA Programmable Logic Array
PSL Property Specification Language
PSLsimple PSL Simple Subset
PVS Prototype Verification System

R
RAT Requirement Analysis Tool
RTL Register Transfer Level
RE Regular Expression

S
SERE Sequential Extended Regular Expression
SoC System on Chip
SVA SystemVerilog Assertions
SAT boolean SATisfiability problem
SRGA Self Reconfigurable Gate Array

Acronym

SDG Synthesizable Detector Generator

V
VHDL Very high speed integrated circuit Hardware Description Language

231

Acronym

Publications

Journal paper

• K. Morin-Allory, F.N. Javaheri, and D. Borrione, Efficient and correct by construc-
tion assertion-based synthesis. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, PP(99):1–1, 2015.

Publications in Refereed International Conference Pro-

ceedings

• K. Morin-Allory, F.N. Javaheri, and D. Borrione, Design Understanding with Fast
Prototyping from Assertions. 1st Workshop on Design Automation for Understand-
ing Hardware Designs (DUHDe 2014, Friday workshop at DATE 2014), Dresden,
Germany, Mar 2014.

• K. Morin-Allory, F.N. Javaheri, and D. Borrione, Fast Prototyping from Assertions:
a Pragmatic Approach. Proceeding of the 11th ACM-IEEE International Conference
on Formal Methods and Models for Codesign (Memocode’13), US, Oct 2013.

• K. Morin-Allory, F. Javaheri, and D. Borrione, SyntHorus-2: Automatic Prototyping
from PSL. Proceeding of the 21st IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC’13), Istanbul, Turkey, Oct 2013.

Posters

• F. Javaheri, K. Morin-Allory, and D. Borrione, Revisiting Regular Expressions in
SyntHorus2: from PSL SEREs to Hardware. submitted as work in progress in Forum
on specification & Design Languages (FDL), 2015.

• F. Javaheri, K. Morin-Allory, and D. Borrione, SyntHorus2: A Tool for Assertion-
based Synthesis. presented at the PhD Forum of 18th Design, Automation and Test
in Europe Conference (DATE’15), Grenoble, France, March 2015.

• F. Javaheri, K. Morin-Allory, and D. Borrione, Designing from Assertions: from
PSL Properties to a Compliant Hardware Prototype. presented at the PhD Forum

233

Publications

of 17th Design, Automation and Test in Europe Conference (DATE’14), Dresden,
Germany, March 2014.

• F. Javaheri, K. Morin-Allory, A. Porcher, and D. Borrione, Automatic Prototyping of
declarative properties on FPGA. presented by D. Borrione at the Electronic System
Level Synthesis Conference as invited presentation, Austin, US, June, 2013.

• F. Javaheri, K. Morin-Allory, A. Porcher, and D. Borrione, Synthorus-2: Automatic
Prototyping on FPGA from PSL. presented at the University Booth of 16th Design,
Automation and Test in Europe Conference, Grenoble, France, 2013.

Abstract– The work presented in this thesis aims at automatically prototype commu-
nication and control designs from declarative temporal specifications. From a set of PSL2

properties, we produce a synthesizable RTL design automatically. The proposed method
is modular, in contrast to previously published methods that were based on automata
theory. From each property, we produce a component that observes some operands and
generates waveforms for the other operands: the reactant.

First, a library of primitive reactants has been provided for FL3 and SERE4 operators.
To this goal, a dependency relation is defined for each operator that expresses the depen-
dency among its operands using the operator’s semantics. Then, the dependency relation
of each operator is interpreted as a hardware component that implements the operator:
the operator’s primitive reactant.

Using this formalization, a method is proposed to automatically decide which signals of
a property are observed and which are generated. In the cases when specifying the signal
direction is not possible, a solver is implemented to identify the signal value. In addition,
the way of identifying the value of the signal that is generated in several properties is
addressed.

The final circuit is the interconnection of the properties’ reactants and solvers.
A prototype tool SyntHorus2, which is an extension to HORUS, has been developed.

It takes PSL properties as its inputs, and generates the synthesizable VHDL code of the
circuit. In addition, it generates some complementary properties to verify if the set of
specification is coherent and complete.

The method is efficient, and synthesizes control circuits in a few seconds. Results
obtained on classical benchmarks show that our technique compiles properties more effi-
ciently than previous prototype tools.

Keywords. PSL, assertion-based design, reactant, automatic synthesis, dependency
graph, annotation, resolution, solver.

2Property Specification Language
3Foundation Language
4Sequential Extended Regular Expression

Résumé– Les travaux présentés dans cette thèse visent à produire automatiquement
des prototypes de circuits de communication et de contrôle à partir de spécifications
temporelles déclaratives. Partant d’un ensemble de propriétés écrites en langage PSL,
nous produisons un modèle RTL synthétisable automatiquement. La méthode proposée
est modulaire, contrairement aux méthodes publiées antérieurement qui étaient fondées
sur la théorie des automates. Pour chaque propriété, nous produisons un composant qui
observe certains opérandes et génère des chronogrammes pour les autres opérandes : le
module réactif.

Tout d’abord, une bibliothèque des modules réactifs primitifs a été développée pour les
opérateurs FL et SERE. Pour ce faire, une relation de dépendance a été définie pour chaque
opérateur : fondée sur la sémantique de l’opérateur, elle exprime la dépendance entre ses
opérandes. Ensuite, la relation de dépendance de chaque opérateur est interprétée comme
un composant matériel qui met en œuvre l’opérateur : c’est le module réactif primitif de
l’opérateur.

À l’aide de cette formalisation, nous proposons une méthode pour déterminer automa-
tiquement quels signaux d’une propriété sont observés et lesquels sont générés. Dans le
cas où il n’est pas possible de déterminer le sens du signal, un solveur est ajouté pour
identifier la valeur du signal. Le solveur sert aussi à déterminer la valeur d’un signal
généré par plusieurs propriétés. Le circuit final est l’interconnexion des modules réactifs
et des solveurs pour l’ensemble des propriétés.

Un outil prototype, SyntHorus2, qui est une extension d’HORUS, a été mis développé.
Il prend les propriétés PSL comme entrées et génère le code VHDL synthétisable du
circuit. En outre, il génère des propriétés complémentaires pour vérifier si l’ensemble des
spécifications est cohérent et complet.

La méthode est efficace et synthétise des circuits de commande en quelques secon-
des. Les résultats que nous avons obtenus sur des jeux d’essais classiques montrent que
notre technique compile les propriétés plus efficacement que les outils prototypes qui l’ont
précédée.

Mots-clés. PSL, conception basée sur les assertions, module réactif, synthèse automa-
tique, graphe de dépendance, annotation, résolution, solveur.

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : Nanoélectronique et Nanotechnologies

Arrêté ministériel : 7 août 2006

Présentée par

Fatemeh (Negin) JAVAHERI

Thèse dirigée par Mme. Dominique BORRIONE
et codirigée par Mme. Katell MORIN-ALLORY

Préparée au sein du Laboratoire TIMA
Dans l’École Doctorale Electronique, Electrotechnique, Automatique &
Traitement du Signal (E.E.A.T.S)

Synthèse automatique de circuits
numériques à partir de spécifications
temporelles

Thèse soutenue publiquement le 1 octobre 2015,
devant le jury composé de :

M. Philippe COUSSY
Professeur, Université de Bretagne Sud, Président
M. Paolo PRINETTO
Professeur, Politecnico di Torino, Rapporteur
M. Rolf DRECHSLER
Professeur, Universität Bremen, Rapporteur
Mme. Dominique BORRIONE
Professeur, Université Joseph Fourier, Directrice de thèse
Mme. Katell MORIN-ALLORY
Maître de Conférences, Grenoble INP, Co-Directrice de thèse

Table des matières

1 Introduction 1

1.1 Le flot de conception proposée . 2

2 La vérification à base d’assertions 3

2.1 Introduction . 3

2.2 Techniques de vérification . 3

2.2.1 Vérification par simulation . 3

2.2.2 La vérification formelle . 3

2.3 Langages d’Assertions . 4

2.3.1 Language de Spécification de Propriétés (PSL) 4

2.3.2 System Verilog Assertion (SVA) . 5

3 État de l’art 7

3.1 Synthèse de propriété sous forme de moniteurs 7

3.1.1 L’approche basée sur l’automate . 7

3.1.2 L’approche modulaire . 7

3.2 Synthèse de propriété comme circuits corrects par construction 8

3.2.1 L’approche basée sur l’automate . 8

3.2.2 L’approche modulaire . 8

3.3 Outils existants . 8

4 Prototypage rapide d’assertions : le flot global de synthèse 11

4.1 Synthèse de composants réactifs . 11

4.2 Exemple d’Exécution : le Generalized Buffer 11

4.2.1 Présentation . 11

4.2.2 Communication avec les récepteurs 13

5 Synthèse FLs 17

5.1 Formalisation de l’annotation . 17

5.1.1 Relation de dépendance : définition et notations 17

5.1.2 Relation de dépendance entre les opérandes de opérateurs FL . . . 18

5.2 La synthèse de la relation de dépendance 18

5.2.1 Principes de construction d’un composant réactif primitif 18

5.2.2 Format générique d’un opérateur FL 19

iii

Table de matières

6 Synthèse des SEREs 23

6.1 Introduction . 23

6.2 Défis et motivations . 23

6.3 Formalisation de l’annotation . 24

6.3.1 Relation de dépendance : définition et notations 24

6.3.2 Relation de dépendance entre les opérandes des opérateurs de SERE 24

6.4 La synthèse de la relation de dépendance 25

6.4.1 Principes de la construction des composants réactifs primitifs 25

6.4.2 Mise en œuvre des composants réactifs primitifs des opérateurs de
SERE . 26

6.5 Sous-ensemble synthétisable de SEREs . 29

7 Annotation des signaux 31

7.1 Construction de l’arbre syntaxique abstrait de la propriété (AST) 31

7.2 Construction de l’arbre syntaxique abstrait orienté (DAST) 31

7.2.1 DAST des opérateurs FL simples 32

7.2.2 DAST des opérateurs de SERE non bornés 32

7.2.3 DAST de directives et de fonctions PSL 33

7.2.4 L’algorithme d’annotation . 33

8 Réactif Complexe 35

8.1 Introduction . 35

8.2 Construction intuitive d’un composant réactif de la propriété 35

8.2.1 Construction intuitive d’un réactif FL 35

8.2.2 Construction intuitive d’un réactif SERE 35

9 Résolution des signaux 39

9.1 Introduction . 39

9.2 Contraintes calculées à partir de DASTs annotés 39

9.3 Constraintes calculées à partir de DASTs partiellement annotés 39

9.4 Graphe de dépendance (DG) . 40

9.5 Construction du graphe de dépendance . 41

9.6 Fonction de résolution : le composant derésolution 41

9.6.1 Résolution des signaux dupliqués : composant simple 41

9.6.2 Résolution de sigaux non annotés : les composants complexes . . . 42

9.7 Le circuit final . 43

9.7.1 Vérification de la cohérence . 43

9.7.2 Vérification de la complétude . 44

10 Les expériences et les résultats pratiques 45

10.1 Introduction . 45

10.2 Prototypage du matériel et les résultats de synthèse 45

10.2.1 Generalized Buffer (GenBuf)d’IBM 45

10.2.2 AMBA arbiter . 47

10.2.3 D’autres exemples . 49

10.2.4 Comparaison entre FLs et SEREs 49

11 Conclusion et travaux à venir 53
11.1 Contributions . 53
11.2 Travaux à venir . 54

Bibliographie 55

v

Chapitre 1
Introduction

Jour après jour, l’influence des systèmes électroniques sur nos vie augmente. Toutefois,
construire un circuit numérique correcte du premier coup est un objectif difficile lorsque
l’on considère les architectures actuelles.

Le travail présenté dans cette thèse propose une méthode et un outil prototype pour
aider à la vérification des protocoles de contrôle et de communication entre les modules.

Un inconvénient des méthodes de vérification formelle est qu’elles ne peuvent être uti-
lisées qu’après la conception du système. L’objectif principal de ce travail est de proposer
des méthodes pour générer un système à partir de ses spécifications et de vérifier son
exactitude au cours du processus de production de matérielcorrect par construction.

La figure 1.1 montre une vue très abstraite du flot de conception traditionnelle.
Un processus de conception typique commence par considérer le comportement infor-

mel du système. Ensuite, les équipes de conception développent une première implémenta-
tion. Lors de l’étape suivante, l’implémentation doit être vérifiée pour considérer si elle est
conforme aux spécifications. Après vérification, plusieurs améliorations du circuit peuvent
être nécessaires en raison des erreurs détectées.

Une quantité importante de temps au cours du processus de conception est dépensée
pour découvrir des erreurs, généralement par simulation ou émulation.

System behavior:
Informal specification

Hardware
verification

Formal
specification

Manual hardware
development

Hardware
refinement

Figure 1.1 – Flot de conception classique

1

Introduction

1.1 Le flot de conception proposée

Les difficultés du flot de conception classique nous ont amenés vers la synthèse à
partir d’assertions (Assertion Based Synthèse, ABS) : la production directe de modules
conformes (contrôle et communication) à un ensemble d’assertions. Chaque propriété est
considérée comme la spécification d’un module à concevoir. L’objectif est alors de concevoir
directement un code RTL synthétisable à partir de ses assertions.

En ABS, les propriétés sur le comportement d’un composant (assertions) ou de son
environnement (hypothèses) spécifient les caractéristiques fonctionnelles d’entrée-sortie des
modules et les communications entre les parties du système.

Dans le flot de conception proposée nous commençons la conception à partir d’un
niveau plus abstrait, et intégrons la vérification dans le processus de conception (voir
fig. 1.2). Dans cette méthode, les tâches de conception et de vérification ont été unifiées ; un
circuit correct par construction est généré directement à partir des spécifications formelles.

System behavior:
Informal specification

Formal
specification

Automatic
correct-by-construction
hardware development SyntHorus2

Figure 1.2 – Le flot de conception proposé

Le circuit généré est appelé composant reactif : il réagit aux stimuli sur ses entrées et
produit des stimuli sur ses sorties, conformes aux assertions.

Chapitre 2
La vérification à base d’assertions

2.1 Introduction

Généralement, une assertion (propriété) sur le circuit exprime le comportement du
circuit, et se réfère à des propriétés qui doivent être vérifiées.

Les assertions peuvent être vérifiées à la fois en simulation et en vérification formelle.
Les assertions peuvent être exprimées en utilisant un langage de propriétés temporelles.
Dans les sections suivantes, nous examinons les techniques de vérification.

2.2 Techniques de vérification

2.2.1 Vérification par simulation

La vérification par simulation est appliquée à un sous-ensemble représentatif des va-
leurs de signaux et des comportements d’un circuit, pour vérifier si l’implémentation se
comporte correctement par rapport à sa spécification [Kro99].

En utilisant ce procédé, des erreurs peuvent être masquées en raison des stimuli ; elles
peuvent apparâıtre en utilisant un autre stimulus, ou en exécutant la simulation pendant
plus de cycles.

2.2.2 La vérification formelle

L’objectif de la vérification formelle est de considérer formellement si une implémen-
tation satisfait la spécification.

Dans la vérification formelle, à la fois les spécifications et les implémentations sont
converties en modèles mathématiques.

En utilisant le modèle mathématique du circuit et son comportement, la vérification
formelle doit prouver mathématiquement que la conception satisfait la spécification de
son comportement, ou qu’une relation existe entre les deux. Si il existe un bug de concep-
tion, les techniques de vérification formelle produisent un contre-exemple pour faciliter le
processus de débogage.

3

Chapitre 2 : La vérification à base d’assertions

2.2.2.1 Model checking

La vérification de modèle (model checking) a été développée à l’origine en 1981 par
Clarke, Emerson et Sifakis [CE82, CES86, Sif82]. Le model checking est une technique
automatique pour la vérification des systèmes réactifs à états finis, tels que les circuits
séquentiels et les protocoles de communication. Le model checking consiste en un modèle
du système, une logique temporelle, et un algorithme de vérification.

Le model checking peut être explicite (tout l’espace d’état est énuméré) ou impli-
cite (l’espace d’état est modélisé avec des structures de données symboliques telles que
BDD).Le model checking implicite (symbolique) est généralement plus puissante.

Bounded model checking

Le model checking borné a été introduit par Biere et al. dans [BCC+99]. Il est basé
sur les méthodes de satisfiabilité (SAT) . L’idée essentielle pour vérifier une propriété sur
un système de transition fini est de rechercher des contre-exemples dans l’espace de toutes
les exécutions de longueur k du système.

2.2.2.2 Equivalence checking

La vérification d’équivalence (Equivalence checking) est un procédé basé sur un modèle
qui vérifie si deux descriptions d’une conception spécifient le même comportement, ce qui
signifie qu’ils produisent des séquences de sorties identiques pour toutes les séquences
d’entrée valides. Ces descriptions peuvent être dans différents niveaux d’abstraction.

2.3 Langages d’Assertions

Une spécification formelle est une description concise et abstraite du comportement et
des propriétés d’un système. Cette description est écrite dans un langage mathématique
et indique ce qu’un système est censé faire.

2.3.1 Language de Spécification de Propriétés (PSL)

Le language de spécification de propriétés PSL (Property Specification Language)
[FG05] est la normalisation par Accelera, puis par l’IEEE, du language “Sugar” développé
par IBM [BBDE+01].

Une propriété PSL se compose de quatre couches : Booléenne, temporelle, vérification
et modélisation (voir fig. 2.1).

Nous nous concentrons sur la couche temporelle PSL.

2.3.1.1 Couche temporelle de PSL

La couche temporelle est utilisée pour définir les propriétés qui décrivent le compor-
tement de la conception ou de l’environnement au cours du temps. Elle est utilisée pour
décrire les comportements temporels construits à partir d’expressions booléennes et d’opé-
rateurs temporels.

La figure 2.2 montre les quatre couches d’une propriété PSL.

2.3 : Langages d’Assertions

Boolean layer

Temporal layer

SERE FL

LTL-based

OBE

CTL-based

Verification layer

Modeling layer

Figure 2.1 – Les couches PSL

wire req;
req = req0 or req1;
assert always (req -> next_a[1 to 4](busy and not gnt))

Modeling layer
Verification layer
Temporal layer

Boolean layer

{

Figure 2.2 – Différentes couches d’une propriété PSL

2.3.1.2 Sous-ensembles simple de PSL (PSLsimple)

Le sous-ensemble simple de PSL, PSLsimple, est un sous-ensemble qui est conforme à
la notion de progression monotone de temps, de gauche à droite à travers la propriété. Les
propriétés situées dans le sous-ensemble peuvent être simulées facilement.

2.3.2 System Verilog Assertion (SVA)

Les assertions SystemVerilog [SMB+05] sont intégrées dans SystemVerilg, elles peuvent
être utilisées avec d’autres structures de langage. SVA a été défini en même temps que
PSL, également à partir de “Sugar”, mais est limité aux expressions régulières Seres. Il
partage la plupart des primitives de base de PSL, mais sa syntaxe est différente.

5

Chapitre 2 : La vérification à base d’assertions

Chapitre 3
État de l’art

3.1 Synthèse de propriété sous forme de moniteurs

Un moniteur observe les signaux qui sont des opérandes d’une propriété, et sort le
statut de la propriété. Par conséquent, tous les opérandes sont des entrées du moniteur.

Il existe deux méthodes pour synthétiser des moniteurs : soit à partir d’automates, soit
une méthode modulaire. Les deux méthodes prennent en charge les FLs et des expressions
régulières.

3.1.1 L’approche basée sur l’automate

Les moniteurs sont des machines à états finis qui acceptent ou rejettent certaines traces
de simulation.

Traduire des expressions régulières (RE) en automates a été fait dans [MY60] et
[Tho68]. La traduction de LTL vers les automates a été prise en compte dans [WVS83].

Sidhu et Prasanna ont présenté une implémentation matérielle d’adaptateurs de RE
pour les FPGA [SP01]. Cette approche utilise la méthode de McNaughton-Yamada [MY60]
pour construire des NFAs à partir de REs.

Gascard dans [Gas05] propose une méthode pour transformer les SEREs en DFA. Le
travail est basé sur les dérivées d’expressions régulières introduites par Brzozowski dans
[Brz64].

Le travail présenté dans [GG05] traite de la traduction d’un sous-ensemble de PSL
SEREs en moniteurs. Pour chaque opérateur de ce sous-ensemble, une fonction est implé-
mentée qui construit l’automate non-déterministe correspondante.

A notre connaissance, l’approche la plus efficace dans la synthèse de moniteurs de PSL
SEREs se fait par Boulé et Zilic [BZ07, BZ08b, BZ08c].

3.1.2 L’approche modulaire

L’implémentation PSL des Seres en utilisant l’approche modulaire a été effectuée par
Morin-Allory et al. dans [MAGB07] pour la détection de fautes en ligne.

L’approche modulaire introduite par Morin-Allory et Borrione dans [KAB06] génère
des moniteurs pour les propriétés temporelles PSL. Dans ce procédé, le sous-ensemble
simple de PSL est considéré. Chaque opérateur de PSL dans ce sous-ensemble est im-
plémenté en tant que module VHDL synthétisable, avec une interface générique. Une

7

Chapitre 3 : État de l’art

propriété PSL est généré par l’interconnexion des sous-modules des opérateurs en suivant
l’arbre syntaxique abstrait de la propriété. Un prototype d’outil, HORUS, a été déve-
loppé pour la construction automatique d’un environnement de test pour la conception
[OMAB08, Odd09].

3.2 Synthèse de propriété comme circuits corrects

par construction

Dans cette section, une propriété est considérée comme la spécification du module à
concevoir. L’objectif est alors de produire la conception RTL synthétisable de ses assertions
directement.

3.2.1 L’approche basée sur l’automate

Le problème a d’abord été traité par Büchi [BL69], puis par Rabin [Rab72]. Ces ap-
proches construisent les automates des propriétés, et réduisent le problème de la synthèse
au problème de la vacuité des automates. Si un automate non-vide peut être trouvé pour
les spécifications, son circuit correspondant est produit.

Bien sûr la synthèse automatique à partir des spécifications n’est pas une nouveauté,
elle a récemment été appliquée à des circuits réels, à travers le développement d’outils de
prototypes [PPS06, BGJ+07a, RAT, FJR11, EKH12].

Bloem et al. définissent un sous-ensemble de LTL (“Generalized Reactivity(1)”) dont les
propriétés sont converties en automates [BGJ+07a, BGJ+07b]. Ils utilisent la méthode de
jeu à deux joueurs. Les algorithmes de la théorie des jeux calculent tous les comportements
corrects du circuit pour toutes les interactions possibles avec l’environnement. Le travail
est plus tard étendu et amélioré dans [BJP+12], pour obtenir de plus petits circuits.

Ces méthodes ont été mises en œuvre et des outils de prototypes ont été fournis pour
la synthèse de la propriété. Brièvement, Lily et Anzu ont été mis en œuvre sur la base des
recherches dans [JB06, PPS06], puis amélioré pour ratsy.

3.2.2 L’approche modulaire

Le sujet a été examiné par Oddos et al. dans [OMAB09], et une solution provisoire a été
proposée pour synthétiser les circuits de contrôle de propriétés temporelles PSL [Odd09].
La méthode est modulaire, chaque propriété est transformée en un composant combinant
les caractéristiques des moniteurs et générateurs : le générateur étendu. Un sous-module
VHDL synthétisable est prévu pour chaque opérateur dans PSLsimple. Chaque propriété
est l’interconnexion des sous-modules de ses opérateurs. Le conception finale est l’inter-
connexion des modules de propriété, et il est correct par construction.

3.3 Outils existants

Il y a une grande variété d’outils de vérification formelle. Selon l’outil utilisé, les pro-
priétés peuvent être exprimées en PSL, LTL, ou CTL. OneSpin [one], Mentor Graphics
0-In, Cadence Incisive [cad] et RuleBased d’IBM [HIL04] sont parmi les outils les plus
connus qui peuvent être utilisés pour la vérification formelle.

3.3 : Outils existants

Pour la compilation des assertions en moniteurs, des outils industriels existent : IBM
FOCS [ABG+00], BugScope [Bug] développé par Atrenta, SLED SDG (synthesizable Detec-
tor Generator) développé par Dolphin Intégration. En plus des outils industriels mention-
nés, il existe des outils académiques pour compiler des assertions en moniteurs : MBAC
développé par Boulé [BZ08a] à l’université McGill, Horus [OMAB08] développé dans le
groupe VDS de TIMA Lab.

Dans le cadre dela synthèse correcte par construction, il y a peu d’outils.
Acacia+ [ACA] est basé sur les travaux dans [FJR09, FJR11]. Il saisit les spécifications

de LTL, et émet un design dans le format dot .
Unbeast [UNB] est basé sur les travaux dans [EKH12]. Il saisit les spécifications de LTL

dans une syntaxe XML et produit un fichier intermédiaire NuSMV qui est transformé en
un format AIG par AIGER.

Ratsy (Requirements Analysis Tool with Synthesis) [RAT, BCG+10] est une mise à
jour de Rat qui est développé par Bloem et al. à l’Université de Gratz. Ratsy entre les
propriétés en GR (1) PSLsimple. Les propriétés doivent être partitionnées en un ensemble
d’assertions (garantee) et un ensemble d’hypothèses (assume). Il produit une conception
Verilog.

SyntHorus est la version étendue de Horus qui est développée dans le laboratoire
TIMA[Odd09]. Au contraire d’autres méthodes existantes, l’outil est basé sur l’approche
modulaire, et pourrait synthétiser des propriétés FL PSLsimpleen VHDL.

Dans cette thèse, SyntHorus a été amélioré pour SyntHorus2. Cette nouvelle version
prend des propriétés PSL et génère automatiquement le circuit de VHDL synthétisable.
Il supporte les propriétés FLs, et prend également en charge partiellement les SEREs.

9

Chapitre 3 : État de l’art

Chapitre 4
Prototypage rapide d’assertions : le flot global
de synthèse

Dans ce chapitre, notre flot de synthèse global est expliqué, et un exemple de fonction-
nement est introduit.

4.1 Synthèse de composants réactifs

Dans ce travail, une méthode correcte par construction est proposée pour produire
directement une conception RTL synthétisable à partir de ses assertions. La méthode est
modulaire ; i.e. le composant réactif de chaque propriété est l’interconnexion des modules
de ses opérateurs. Par conséquent, les modules des opérateurs sont appelés composants
réactifs primitifs.

Ensuite, le circuit final est l’interconnexion des composants réactifs des propriétés.
La fig. 4.1 montre le flot de synthèse globale qui produit un circuit à partir d’un

ensemble de propriétés.
Nous avons fourni un prototype d’outil, SyntHorus2 qui met en œuvre le processus

de synthèse ci-dessus : il faut un ensemble de propriétés PSL en entrée, et il génère le
circuit final en VHDL. Il génère également des propriétés complémentaires afin de vérifier
si l’ensemble des propriétés est complet et cohérent (voir fig. 4.1). La méthode proposée
est applicable aux parties contrôles d’une conception.

4.2 Exemple d’Exécution : le Generalized Buffer

Ici, nous introduisons le Generalized Buffer d’IBM [IBM] (GenBuf).

4.2.1 Présentation

GenBuf est un arbitre qui séquentialise les demandes provenant de nbsend émetteurs,
et les transmet à un moment à nbrec récepteurs (nbsend et nbrec sont des paramètres
génériques). Chaque émetteur a son propre bus, et les récepteurs partagent le même bus.
Une FIFO (de profondeur 4 sur 32 bits de données) stocke les données entrantes en attente
d’envoi vers les récepteurs.

11

Chapitre 4 : Prototypage rapide d’assertions : le flot global de synthèse

Figure 4.1 – Flot global de synthèse

4.2 : Exemple d’Exécution : le Generalized Buffer

Un contrôleur communique avec tous les modules et la FIFO : il applique une politique
de sélection par tourniquet du côté des récepteurs, il bloque les émetteurs lorsque la
FIFO est pleine, et bloque les récepteurs lorsque la FIFO est vide. La figure 4.2 affiche
l’architecture du système et les signaux de commande d’interface qui sont utilisés pour la
communication.

GenBuf
Controller
(Automatically
generated
by SyntHorusII)

sender#0 receiver#0

FIFO

StoB_REQ(0)

BtoR_REQ(0)BtoS_ACK(0)

RtoB_ACK(0)

E
N

Q

D
E
Q

E
M

P
T
Y

FU
LL

sender#i

StoB_REQ(i)

BtoS_ACK(i) receiver#jBtoR_REQ(j)

RtoB_ACK(j)

Figure 4.2 – Interface de circuit GenBuf

4.2.2 Communication avec les récepteurs

Le GenBuf interagit avec les récepteurs à travers un protocole 4 phases. Le mécanisme
d’arbitrage qui est utilisé par GenBuf est le tourniquet : GenBuf ne demande pas le même
récepteur deux fois consécutives. La figure 4.3 montre un chronograme par poignée de
main entre le récepteur et le GenBuf.

0 1 2 3 4 5 6 7 8

clock

EMPTY

BtoR REQ(i)

RtoB ACK(i)

DEQ

Figure 4.3 – Un exemple de chronogramme pour le récepteur

4.2.2.1 Spécification formelle FL

L’ensemble des propriétés FL qui spécifient la communication entre le contrôleur Gen-
Buf, les récepteurs et la FIFO sont présentées figure 4.4 (pour 2 récepteurs).

13

Chapitre 4 : Prototypage rapide d’assertions : le flot global de synthèse

vunit g enbu f r e c e i v e r
{
−−−−− r e c e i v e r s i d e

P0 rec :
always (not EMPTY −> next ! (BtoR REQ(0) or (BtoR REQ(1)))) ;

P1 rec :
always (EMPTY −> next ! (not BtoR REQ(0) and (not BtoR REQ(1)))) ;

P2 rec :
always (not BtoR REQ(0) or not BtoR REQ(1)) ;

P3 rec 0 :
always (rose (BtoR REQ(0)) −> next ! (next event ! (prev (not BtoR REQ(0)

)) (not BtoR REQ(0) unti l (BtoR REQ(1))))) ;

P3 rec 1 :
always (rose (BtoR REQ(1)) −> next ! (next event ! (prev (not BtoR REQ(1)

)) (not BtoR REQ(1) unti l (BtoR REQ(0))))) ;

P4 rec 0 :
always ((BtoR REQ(0)) and (not RtoB ACK(0))−> next ! (BtoR REQ(0))) ;

P4 rec 1 :
always ((BtoR REQ(1)) and (not RtoB ACK(1))−> next ! (BtoR REQ(1))) ;

P5 rec 0 :
always ((RtoB ACK(0)) −> (next ! (not BtoR REQ(0)))) ;

P5 rec 1 :
always ((RtoB ACK(1)) −> (next ! (not BtoR REQ(1)))) ;

−−−−−−−−− FIFO i n t e r f a c e
P6 FIFO rec :

always ((f e l l (RtoB ACK(0)) or (f e l l (RtoB ACK(1))) and not EMPTY) −> (
DEQ)) ;

P7 FIFO rec :
always (not f e l l (RtoB ACK(0)) and not f e l l (RtoB ACK(1)) −> (not DEQ)) ;

}

Figure 4.4 – Spécification FL de la communication GenBuf avec des récepteurs, dans le
cas de deux récepteurs

4.2 : Exemple d’Exécution : le Generalized Buffer

4.2.2.2 Spécification formelle SERE

L’ensemble des propriétés en expressions régulières qui spécifient la communication
entre le contrôleur GenBuf, les récepteurs et la FIFO sont présentées dans la fig. 4.5.

vunit g e nbu f r e c e i v e r s e r e
{

P0 se r e r e c :
always ({not EMPTY} |=> {BtoR REQ(0) or BtoR REQ(1) } !) ;

P1 s e r e r e c :
always ({EMPTY} |=> {not BtoR REQ(0) and not BtoR REQ(1) } !) ;

P2 s e r e r e c :
always (not BtoR REQ(0) or not BtoR REQ(1)) ;

P3 s e r e r e c 0 :
always ({not BtoR REQ(0) ; BtoR REQ(0) ; {BtoR REQ(0) [∗] ; not BtoR REQ

(0) }} |=> {(not BtoR REQ(0)) [∗] ; (prev (BtoR REQ(1))) } !) ;

P3 s e r e r e c 1 :
always ({not BtoR REQ(1) ; BtoR REQ(1) ; {BtoR REQ(1) [∗] ; not BtoR REQ

(1) }} |=> {(not BtoR REQ(1)) [∗] ; (prev (BtoR REQ(0))) } !) ;

P4 s e r e r e c 0 :
always ({BtoR REQ(0) and (not RtoB ACK(0)) } |=> {BtoR REQ(0) } !) ;

P4 s e r e r e c 1 :
always ({BtoR REQ(1) and (not RtoB ACK(1)) } |=> {BtoR REQ(1) } !) ;

P5 s e r e r e c 0 :
always ({RtoB ACK(0) } |=> {not BtoR REQ(0) } !) ;

P5 s e r e r e c 1 :
always ({RtoB ACK(1) } |=> {not BtoR REQ(1) } !) ;

P6 sere FIFO rec :
always ((f e l l (RtoB ACK(0)) or (f e l l (RtoB ACK(1))) and not EMPTY) −> (

DEQ)) ;

P7 sere FIFO rec :
always (not f e l l (RtoB ACK(0)) and not f e l l (RtoB ACK(1)) −> (not DEQ)) ;

}

Figure 4.5 – Spécification SERE de la communication GenBuf avec des récepteurs, dans
le cas de deux récepteurs

15

Chapitre 4 : Prototypage rapide d’assertions : le flot global de synthèse

Chapitre 5
Synthèse FLs

Dans ce chapitre, nous expliquons comment synthétiser un opérateur temporel FL, et
nous fournissons une bibliothèque de composants réactifs primitives pour les opérateurs
FL.

5.1 Formalisation de l’annotation

5.1.1 Relation de dépendance : définition et notations

Pour prouver les relations de dépendance, nous utilisons les définitions sémantiques de
PSL dans l’annexe B de la norme IEEE [FG05].

— w |= property (“property” est vrai sur le mot w) : la sémantique des propriétés
FL est définie par induction structurelle.

Définition 1. Soit w une trace, A et B deux formules FL. La relation de dépendance
entre A et B est définie comme suit :

�A�B�w ⇐⇒ w |= B ⇒ w |= A

Lorsque ∀w, �A�B�w on peut écrire : A�B.

Propriété 1. �A�B�w ∧ �A�C�w ⇔ �A�(B orC)�w

Propriété 2. �A�B�w ∨ �A�C�w ⇔ �A�(B andC)�w

Propriété 3. �(A andB)�C�w ⇔ �A�C�w ∧ �B�C�w

Propriété 4. �(A orB)�C�w ⇔ �A�(C ∧ ¬B)�w

Propriété 5. �A�B�w ⇔ �¬B�¬A�w

Définition 2. Soit ϕ une formule FL. A et B sont deux opérandes de ϕ. Soit w une trace.
A dépend de B dans ϕ si : ∀w, �ϕ� true�w ⇔ �A�B�w.

17

Chapitre 5 : Synthèse FLs

5.1.2 Relation de dépendance entre les opérandes de opérateurs
FL

5.1.2.1 Always

Règle de dépendance 1. Always
ϕ = alwaysA, puis
�ϕ� true�w iff ∀i < |w|, �A� true�wi...

5.1.2.2 Famille Next

Règle de dépendance 2. Next ![k]
ϕ = next![k]A, puis
�ϕ� true�w iff �A� true�wk...

Règle de dépendance 3. Next a !
ϕ = next a![i to j]A, puis
�ϕ� true�w iff ∀k ∈ [i..j], �A� true�wk...

5.1.2.3 Famille Until

Règle de dépendance 4. Until !
ϕ = A until! B, puis
�ϕ� true�w iff ∃k < |w|, �B� true�wk... ∧ ∀i < k, �A�¬B�wi...

Dans cette relation de dépendance, si A et B sont booléens, la relation de dépendance
�A�¬B�wi... peut être inversée (voir la propriété 5).

Règle de dépendance 5. Until
ϕ = A until B, puis

∀w,
� ∃k < |w|, �B� true�wk... ∧ ∀i < k, �A�¬B�wi...

or
∀i < |w|, �A� true�wi...

5.2 La synthèse de la relation de dépendance

Nous donnons une interprétation matérielle de la relation de dépendance �ϕ� true�w,
où ϕ signifie un appel à l’un des opérateurs de FL, et Ω représente l’opérateur temporel
FL.

5.2.1 Principes de construction d’un composant réactif primitif

Les composant réactifs primitifs ont une interface générique : ils prennent clock et
reset comme signaux de synchronisation. Chaque composant réactif primitif a un signal
de start pour son activation (voir fig. 5.1).

La sortie d’un composant réactif n’est pas la valeur d’un signal, mais le trigger qui sert
à commencer le composant matériel primitif en charge de la génération ou de l’observation
de la valeur du signal (voir fig. 5.1).

5.2 : La synthèse de la relation de dépendance

observed

Figure 5.1 – Interface générique d’un composant réactif primitif

Le circuit C est le circuit qui met en oeuvre un composant réactif primitif. Dans ce
chapitre, nous examinons comment synthétiser C pour des composant réactifs primitifs
FL.

5.2.1.1 Composant Réactif Booléen

La figure 5.2 montre les quatre mises en oeuvre différentes pour un composant réactif
booléen.

Figure 5.2 – Composant Réactif Booléen

5.2.2 Format générique d’un opérateur FL

Nous avons proposé un format générique pour tous les opérateurs de FL [MAJB15].
Ce format est basé sur la définition de la sémantique de l’opérateur.

Chaque dépendance est un cas particulier de l’un des deux expressions suivantes gé-
néralisées :

1 la famille“forall”comprend : : always, until, next!, next a, next event, next event a.
2 la famille “exists” comprend : : eventually!, before, next e, next event e.

Les expressions “forall” et “exists” généralisées ont le format suivant :

∀i ∈ [kmin , kmax], �exp� cond�wki (5.1)

∃i ∈ [kmin , kmax], �exp� cond�wki (5.2)

19

Chapitre 5 : Synthèse FLs

Dans les formules ci-dessus, exp et cond sont deux booléens, et min et max sont deux
naturels tels que max ≥ min. Kmin et Kmax sont calculés en utilisant une fonction de
comptage, Ith. Le fonction Ith renvoie le nombre de fois que son opérande, une formule F
calculée sur la trace w, a été true sur w0..k.

Ith(�F � true�wki) = i ∧ �F � true�wki , ∀i ∈ N

La séquence {k0, k1, ..., ki...} est l’ensemble de ces points dans le temps (voir fig. 5.3).

0 1 2 3 4 5 6 7 8 9

k1 k2 k3

clock

F

Ith(. . .) 0 1 2 3

Figure 5.3 – Illustration de la fonction Ith(�F � true�wki)

Les valeurs de min,max , exp, cond et F dépendent de l’opérateur temporel. Le ta-
bleau 5.1 donne leur valeur pour chaque opérateur PSL FL.

Temporal Operator F min max cond exp opt. opt. !

alwaysA true 0 | w | true A no no
A untilB (1) B 0 1 ¬B A yes yes
A beforeB (1) ¬B 0 1 ¬A ¬B yes yes

next![i]A true i i true A no yes
next a[i to j]A true i j true A no yes

next event[i](B)A B i i B A no yes
next event a[i to j](B)A B i j B A no yes

eventually!A A 0 1 true A no no
A untilB (2) B 0 1 ¬A B no yes
A before B (2) ¬B 0 1 B A no yes
next e[i to j]A true i j true A no yes

next event e[i to j](B)A B i j true A no yes

Table 5.1 – Valeurs des paramètres pour forall (en haut) et existe (en bas) expressions

5.2.2.1 Mise en œuvre d’un opérateur du groupe “forall”

La figure 5.4 illustre la mise en oeuvre de l’expression de “forall”.

— Le composant Dep (pour la dépendance �) est une simple porte “AND” qui implé-
mente l’expression �exp� cond�Wk . Il déclenche l’évaluation de exp en fonction de
la valeur de cond .

— Le composant ForAll implémente l’expression ∀i ∈ �Kmin, Kmax�. Le signal ForAll.Trig
est actif en tout temps entre lb et ub. Selon que l’opérateur chevauche ou non, deux
versions sont utilisées (voir fig. 5.5).

— Le composant Min(Max) prend start et cond en entrée. Le signaux de start lance
le comptage des occurrences de F sur son entrée Min.cond (Max.cond).

5.2 : La synthèse de la relation de dépendance

ForAll
Dep

Figure 5.4 – La mise en oeuvre de l’expression de “forall”

(a) non overlapping (b) overlapping

Figure 5.5 – La mise en oeuvre de ∀i ∈ [lb, ub]

21

Chapitre 5 : Synthèse FLs

5.2.2.2 Mise en œuvre d’un opérateur du groupe “exist”

La figure 5.6 illustre la mise en oeuvre de l’expression de “exist”. Les composants
Min et Max observent la formule F , et comptent le nombre d’occcurence dans l’interval
[Kmin, Kmax].

Figure 5.6 – La mise en oeuvre de l’expression de “exist”

Figure 5.7 – La mise en oeuvre de ∃i ∈ [lb, ub]

Chapitre 6
Synthèse des SEREs

6.1 Introduction

Dans ce chapitre, nous examinons les principes de synthèse de SEREs. Les SEREs
sont très similaires aux séquences dans SVA. Les SEREs sont une façon commode d’ex-
primer les formes d’ondes de signaux, en écrivant de simples propriétés de la forme :

{observe} |=> {observe}
ou

{observe} |=> {generate}

Ces propriétés peuvent représenter le comportement de l’environnement ou d’un pro-
tocole de communication.

6.2 Défis et motivations

Les SEREs ne peuvent pas toujours être traduites en FLs. En outre, certains com-
portements ou specifications en langue naturelle peuvent être exprimés plus facilement en
utilisant des SEREs, et de manière plus compacte.

Exemple 1.

Considérez la propriété P1, où a, b, et c sont booléens :

P1 : always {a} |=> {b [∗] ; c}

Supposons que a est observé et nous générons b et c. Alors, la question est : “quand
devrions-nous arrêter de contraindre b à 1, et commencer à contraindre c à 1 ”? Si nous
voulons générer c, la propriété n’est pas déterministe puisque c peut être contraint à 1
dans un cycle après a = 1. Si nous observons b et générons c, quand c doit il être contraint
à 1 ? Cela peut dépendre d’autres propriétés.

Si nous observons c et générons b, b n’est plus contraint dès que c devient 1.

23

Chapitre 6 : Synthèse des SEREs

6.3 Formalisation de l’annotation

Deux relations de dépendance sont introduites pour chaque opérateur de SERE : une
relation de dépendance pour exprimer quand une séquence est active, et une relation de
dépendance pour exprimer lorsque la séquence est satisfaite.

6.3.1 Relation de dépendance : définition et notations

Définition 1. Soit ϕ une SERE, et Endedϕ un booléen qui devient 1 lorsque ϕ est
satisfaite. w est une trace, et � est la jth lettre de w (� = wj), telle que � � Endedϕ.
Ensuite, pour chaque séquence ϕ, nous pouvons dire :

∀w, �ϕ� true�wi...j ⇔ �Endedϕ � true�wj

La relation �Endedϕ � true�wj est ce qu’on appelle EϕRelation.

6.3.2 Relation de dépendance entre les opérandes des opéra-
teurs de SERE

Dans cette section, deux relations de dépendance sont données pour chaque opéra-
teur SERE. La première relation de dépendance est appelée “ϕRelation”, et exprime la
dépendance entre sous-séquences de ϕ afin que ϕ soit satisfaite. La deuxième relation de
dépendance est appelée “EϕRelation” et exprime la dépendance entre les sous-séquences
de ϕ au cycle qui ϕ complète. Cette dépendance est définie en utilisant ���wi (voir la
définition 1).

6.3.2.1 Les cas de base

exp est une expression booléenne, et A est une SERE :

�exp� true�w ⇔�exp� true�w0 ∧ �Endedexp � true�w0

�{A}� true�w ⇔�A� true�w

6.3.2.2 Concaténation

Règle de dépendance 1. ϕRelation pour la concaténation
ϕ = A;B , puis :
�ϕ� true�w iff ∃i < |w|, �EndedA � true�wi ∧ �B � true�wi+1...

Règle de dépendance 2. EϕRelation pour la concaténation
ϕ = A;B , puis :
∃j < |w|, �Endedϕ � true�wj iff ∃k < j, �EndedA � true�wk ∧ �EndedB � true�wj

Dans le cas particulier où B est un booléen, alors j = k + 1.

6.4 : La synthèse de la relation de dépendance

6.3.2.3 conjonction de deux séquences de même longueur

Règle de dépendance 3. ϕRelation pour la conjonction de même longueur
ϕ = A && B , puis
�ϕ� true�w iff �A� true�w ∧ �B � true�w

Règle de dépendance 4. EϕRelation pour la conjonction de même longueur
ϕ = A && B , puis
∃j < |w|, �Endedϕ � true�wj iff �EndedA ∧ EndedB � true�wj

6.3.2.4 Clôture de Kleene

Règle de dépendance 5. ϕRelation pour l’étoile
ϕ = A[∗0], puis
�ϕ� true�w iff |w| = 0
ϕ = A[∗], puis
�ϕ� true�w iff |w| = 0 ∨ ∃i < |w|, �EndedA � true�wi ∧ �ϕ� true�wi+1...

6.3.2.5 Plus

Règle de dépendance 6. ϕRelation pour le plus
ϕ = A[+], puis
�ϕ� true�w iff ∃i < |w|, �EndedA � true�wi ∧ �A[∗]� true�wi+1...

Règle de dépendance 7. EϕRelation pour le plus
ϕ = A[+], puis
∃j < |w|, �Endedϕ � true�wj iff �EndedA � true�wj

6.4 La synthèse de la relation de dépendance

Afin de construire une bibliothèque de composants réactifs primitifs pour les opérateurs
SERE, nous donnons une interprétation matérielle des deux relations de dépendance
ϕRelation (�ϕ� true�w), et EϕRelation (�Endedϕ � true�wi).

6.4.1 Principes de la construction des composants réactifs pri-
mitifs

Les composants réactifs primitifs ont une interface générique. Le circuit correspondant
pour chaque opérateur de SERE est l’interconnexion des circuits des relations ϕRelation
et EϕRelation dépendance. Cette interconnexion est représentée sur la fig. 6.1.

Le circuit à gauche sur la fig. 6.1, C1, implémente la ϕRelation.

Ensuite, le circuit droit C2, qui met en œuvre EϕRelation, génère un signal qui indique
si ϕ est satisfaite.

Le circuit C est le circuit qui met en oeuvre un composant réactif primitif, et l’inter-
connexion de C1 et C2.

Ici, nous expliquons chaque catégorie de SERE brièvement, puis nous discutons de la
façon de construire leur matériel correspondant intuitivement.

25

Chapitre 6 : Synthèse des SEREs

Figure 6.1 – Interface générique d’un opérateur de SERE

6.4.1.1 SEREs simple

L’ensemble des opérateurs de SERE simples est noté SimSERE = {; , :}. Pour un
opérateur de SERE simple, nous avons les relations de dépendances suivantes :

∃i < |w|, �EndedA � true�wi ∧ �B � true�wi+1... for ‘ ;’

∃i < |w|, �EndedA � true�wi ∧ �B � true�wi... for ‘ :’

6.4.1.2 SEREs composées

Un opérateur composé SERE est un opérateur binaire, dont les sous-séquences gauches
et droites démarrent en même temps. L’intégralité de la séquence dépend de l’opérateur.
L’ensemble des opérateurs de SERE composées est noté CompSERE = {&&,&, |}. Pour
les opérateurs de SERE composées, nous avons les relations de dépendance suivantes :

�A� true�w ∧ �B � true�w for ‘&&’

∃i < |w|, (�A� true�w ∧ �B � true�w0...i) ∨ (�A� true�w0...i ∧ �B � true�w) for ‘&’

�A�¬B�w ∨ �B �¬A�w for ‘|’

6.4.1.3 SEREs illimitées

Un opérateur de SERE illimitée est un opérateur unaire. L’ensemble des Seres illimitées
est défini comme UnbSERE = {∗,+}.

6.4.2 Mise en œuvre des composants réactifs primitifs des opé-
rateurs de SERE

Dans cette section, nous expliquons comment un composant réactif SERE primitif
peut être mis en œuvre de manière intuitive à l’aide d’un exemple simple pour chaque
catégorie SERE.

6.4.2.1 SEREs simples

Exemple 2. Implémentation de ϕ = {b1; b2}

6.4 : La synthèse de la relation de dépendance

Si ϕ est généré (voir fig. 6.2), trig l contraint b1 (Trigb1 = trig l), et dans le cycle
suivant, trig r constraint b2 (Trigb2 = trig r), et la séquence se termine.

Figure 6.2 – Implémentation de {b1; b2} (b1 et b2 sont générés)

Exemple 3. Implémentation de ϕ = {q; b}

Supposons que nous voulons générer ϕ ; par conséquent, nous générons q et b.

Circuit for q Wait for q
to complete

Figure 6.3 – Implémentation de {q; b} (q et b sont générés)

On suppose que q = {b1; b2}. La figure 6.4 montre la trace correspondante.

6.4.2.2 SEREs composées

Exemple 4. Implémentation de ϕ = {q}&{b}

Nous voulons générer ϕ, par conséquent, les deux sous-séquences devraient être géné-
rées, et elles devraient commencer en même temps (trig l = trig r = start). La figure 6.5
montre l’implémentation.

Exemple 5. Implémentation de ϕ = {q1}&{q2}

Si on souhaite générer ϕ, nous devrions générer à la fois q1 et q2. La figure 6.6 montre
l’implémentation.

6.4.2.3 SEREs non bornées

Exemple 6. Implémentation de ϕ = b[+]

27

Chapitre 6 : Synthèse des SEREs

0 1 2 3 4

clock

start

start reg

b1

b2

trig l

b

trig r

ended

Figure 6.4 – Chronogramme de {{b1; b2}; b}

Circuit for q

Wait for q
to complete

Figure 6.5 – Implémentation de {q}&{b} (q et b sont générés)

Circuit for q1

Circuit for q2

Wait for the
longer

sequence
to complete

Figure 6.6 – Implémentation de {q1}&{q2}

6.5 : Sous-ensemble synthétisable de SEREs

On suppose que b est généré. L’implémentation est représentée dans la fig. 6.7. Dans
cette figure, le trig l contraint b. Le signal interne once more devient 1, un cycle après
chaque occurrences de b. b doit être généré une (quand start = 1) ou plusieurs fois (quand
once more = 1).

Figure 6.7 – Implémentation de b[+]

Exemple 7. Implémentation de ϕ = b1[∗]; b2

Dans cet exemple, nous observons b2, et arrêtons de générer b1 lorsque b2 devient 1.
La figure 6.8 montre le circuit correspondant.

Circuit for concat

Figure 6.8 – Implémentation de b1[∗]; b2

Exemple 8. Implémentation de ϕ = q[∗]; b

La figure 6.9 montre le circuit correspondant.

6.5 Sous-ensemble synthétisable de SEREs

Le “sous-ensemble synthétisable de SEREs” pris en charge dans cette thèse sont les
SEREs sous la forme suivante :

29

Chapitre 6 : Synthèse des SEREs

Circuit for concat

Circuit for q
Wait for q

to complete

Figure 6.9 – Implémentation de q[∗]; b

SEREsynth =BoolExpr.

| {SEREsynth}
| SERE|–>SEREsynth

| SERE|=>SEREsynth

| SEREsynth;SEREsynth

| SEREsynth : SEREsynth

| SEREsynth&SEREsynth

| {BoolExpr} | {BoolExpr}
| SEREsynth[∗n]
| SEREsynth[∗];BoolExpr

| SEREsynth[+];BoolExpr

| [+];BoolExpr

| [∗];BoolExpr

Chapitre 7
Annotation des signaux

7.1 Construction de l’arbre syntaxique abstrait de la

propriété (AST)

Pour synthétiser une propriété, il est essentiel de préciser le sens des signaux impliqués
dans la propriété. Ce processus est appelé annotation.

La dépendance �A�B� peut être représentée comme le montre la fig. 7.1. Comme le
montre cette figure, la valeur de B devrait être observée et A est généré basé en fonction
de la valeur de B .

A B

Figure 7.1 – La représentation de �A�B�w

L’arbre syntaxique abstrait (AST) d’une propriété est un arbre binaire non orienté
classique. Les feuilles sont les signaux de conception qui peuvent être observés ou générés ;
les autres nœuds sont les opérateurs temporels et logiques. On note AST = (V,E), où :

— V est l’ensemble des nœuds (ou sommets) de l’arbre. L est l’ensemble des feuilles
(les opérandes de la propriété), et N = V \L est l’ensemble des nœuds internes (les
opérateurs).

— E ⊂ V ×V est l’ensemble des arrêtes de AST. (v1− v2) représente une arrête entre
deux nœuds v1 et v2 ; v1 est le parent et v2 est un enfant.

Trois fonctions partielles sont définies sur V : P(v), Lch(v), Rch(v) retournent le
parent, l’enfant gauche et l’enfant droit du nœud v.

7.2 Construction de l’arbre syntaxique abstrait orienté

(DAST)

Pour chaque opérateur PSL, une ou plusieurs règles de dépendance ont été définies
entre ses opérandes, conformément à la sémantique formelle de l’opérateur (voir les cha-
pitres 5 et 6).

Afin de déterminer les variables qui sont lues par une propriété, et qui sont générées,
nous traduisons les relations de dépendance en un graphe orienté, et construisons l’ arbre

31

Chapitre 7 : Annotation des signaux

syntaxique abstrait orienté (DAST) de chaque AST. DAST = (V,E�) représente la dépen-
dance entre les signaux de la propriété, en passant par ses opérateurs. Il est construit en
utilisant :

— la direction d’entrée/sortie des signaux de l’interface du module,
— l’implémentation des règles de dépendance comme une direction entre le nœud d’un

opérateur et de ses enfants.
Chaque arc dans E � est une arrête orientée de E. La direction d’une arrête est consi-

dérée à partir du nœud parent, elle est dite entrante ou sortante. Pour chaque opérateur
PSL et SERE, nous avons défini la direction des arrêtes du parent et les enfants basée sur
leur relation de dépendance. Ici, nous montrons que deux exemples.

7.2.1 DAST des opérateurs FL simples

Cette catégorie contient les opérateurs always, never, eventually!, et next! (ainsi que
leurs versions faibles). Tous ces opérateurs sont annotés de la même manière. Considérez
l’opérateur next!, et supposons que ϕ = next!(A) ; puis :

�ϕ� true�w iff �A� true�w1...

De la relation de dépendance �A� true�w1... , nous pouvons en déduire qu’il y aura une
arrête sortante de next! à A (fig. 7.2).

next!

A

Figure 7.2 – La direction des arrêtes pour next!

7.2.2 DAST des opérateurs de SERE non bornés

Cette catégorie contient les opérateurs ‘∗’ et ’+’.
Comme on l’a vu au chapitre 6, chaque répétition non bornée devrait être suivie par

une expression booléenne. On suppose que ϕ = A[∗];B . Nous avons cette relation de
dépendance :

�ϕ� true�w iff ∃i < |w|, �B � true�wi... ∧ ∀k < i, �A[∗]�¬B�wk...

La dépendance �B � true�wi... implique que B devient enfin true. De la dépendance
�A[∗]�¬B�wk... , nous pouvons conclure qu’il y a un chemin sortant à partir de B à A
(fig. 7.3).

7.2 : Construction de l’arbre syntaxique abstrait orienté (DAST)

A

;

BREP

*

Figure 7.3 – La direction des arrêtes pour ‘∗’

7.2.3 DAST de directives et de fonctions PSL

Outre les opérateurs FL et SERE, nous annotons les signaux de certaines des fonctions
de l’opérateur booléen et des couches de vérification de PSL. En outre, nous annotons les
opérandes de certains opérateurs de la couche de modélisation de PSL (VHDL).

7.2.4 L’algorithme d’annotation

Le processus d’annotation marque chaque instance de signal dans chaque propriété en
observé ou généré.

Initialement, tous les arrêtes ne sont pas orientées. Le processus d’annotation est ef-
fectué en deux étapes.

Tout d’abord, nous partons de la direction des signaux d’interface, et annotons tous
les signaux d’entrée ‘m’, et donnons une direction à son arrête correspondante.

Ensuite, le fonction récursive Annotation prend en entrée un DAST partiellement
orienté ; il retourne un DAST avec plus d’arrêtes orientées. Il commence à partir de la
racine de l’arbre, et basé sur son opérateur, donne la direction aux arrêtes correspondantes.

33

Chapitre 7 : Annotation des signaux

Chapitre 8
Réactif Complexe

8.1 Introduction

Dans ce chapitre, nous expliquons comment construire le composant réactif complexe
d’une propriété,en ayant les composants réactifs primitifs et les directions des signaux.
Nous utilisons l’arbre syntaxique abstrait (DAST) de chaque propriété pour interconnecter
les composants réactifs primitifs et construire le composant réactif complexe.

8.2 Construction intuitive d’un composant réactif de

la propriété

Le DAST de chaque propriété est soit entièrement orienté, soit peut avoir quelques
sous-arbres non orientés. Le composant réactif est construit pour le sous-arbre entière-
ment orienté du DAST. Chaque nœud non terminal est remplacé par une instance du
composant primitif réactif (i.e. mise en œuvre du matériel pour un opérateur temporel)
ou une porte logique (pour un opérateur booléen) interconnectée à ses enfants. Pour une
porte logique, l’interconnexion est évidente. Pour un composant réactif primitif, les prin-
cipes d’interconnexion sont examinés selon l’opérateur.

8.2.1 Construction intuitive d’un réactif FL

Pour interconnecter les composants réactifs primitifs FL correspondant à chaque nœud
v d’un DAST nous devrions considérer la direction des arrêtes correspondantes de v.

— Si la direction est (P(v) → v), la sortie trig de P(v) est reliée à l’entrée start de
v. Si v est une feuille, le DAST dont la racine est v est affecté à la sortie trig ; trig
contraint v.

— Si la direction est (P(v) ← v), le signal observé (pour une feuille) ou le sortie trig
de v (pour un nœud interne) est connecté à l’entrée cond de P(v).

8.2.2 Construction intuitive d’un réactif SERE

Pour interconnecter les composants SERE réactifs primitifs, nous devrions envisager
différentes catégories d’opérateurs de SERE. D’après le chapitre 6, le composant réactif

35

Chapitre 8 : Réactif Complexe

primitif d’un opérateur de SERE a les entrées start , cond1, et cond2 en plus des signaux
de synchronisation. Il dispose également de trois sorties : trig l, trig r, et ended . La sortie
de ended devient 1 lorsque la séquence est satisfaite.

8.2.2.1 SERE simple

Dans une séquence de SERE simple, par exemple ϕ = A;B , le composant réactif
primitif de ‘ ;’ et sa sous-séquence gauche (A) démarre en même temps ; par conséquent,
ils partagent le même signal de start . Basé sur les directions des arrêtes entre l’opérateur
de SERE simple et ses enfants, nous avons :

— Si v est l’enfant de gauche (v = Lch(P(v))) :
— Si v est un nœud interne :

— l’entrée start de P(v) est reliée à l’entrée start de v.
— la sortie ended de v est reliée à l’entrée cond1 de P(v).

— Si v est une feuille :
— Si la direction est (P(v) ← v), v est relié à l’entrée cond1.
— Si la direction est (P(v) → v), cond1 est relié ‘1’, et trig l contraint v.

— Si v est l’enfant droit (v = Rch(P(v))), les mêmes règles que pour l’enfant de
gauche s’appliquent, en remplaçant :
— cond1 par cond2
— trig l par trig r

8.2.2.2 SEREs composées

Dans une séquence composée, les deux sous-séquences commencent en même temps.
— Si v est l’enfant de gauche (v = Lch(P(v))) :

— Si v est un nœud interne :
— la sortie ended de v est reliée à l’entrée cond1 de P(v).
— la sortie trig l de P(v) est reliée à l’entrée start de v.

— Si v est une feuille :
— Si la direction est (P(v) ← v), v est relié à l’entrée cond1 de P(v).
— Si la direction est (P(v) → v), cond1 est relié ‘1’, et trig l contraint v.

— Si v est l’enfant droit (v = Rch(P(v))), les mêmes règles que pour l’enfant de
gauche s’appliquent, en remplaçant :
— cond1 par cond2
— trig l par trig r

8.2.2.3 Unbounded SERE

Comme il a été mentionné dans le chapitre 6, une répétition illimitée devrait être suivie
par une expression booléenne. Soit v un nœud et REP la racine du sous-arbre de répétition
non-bornée.

— Si Lch(v) n’est pas une feuille :
— La sortie trig l du composant réactif primitif de ‘∗’ est connectée à l’entrée start

de Lch(v).
— La sortie ended de Lch(v) est connectée à l’entrée cond1 du composant réactif

primitif de ‘∗’.
— Si Lch(v) est une feuille :

8.2 : Construction intuitive d’un composant réactif de la propriété

— La sortie trig l de ‘∗’ contraint le signal de Lch(v).
— L’entrée cond1 de ‘∗’ est connectée à ‘1’.

— l’expression booléenne associée au frère de v (Rch(P(v))) est connectée à l’entrée
cond2 de ‘∗’.

37

Chapitre 8 : Réactif Complexe

Chapitre 9
Résolution des signaux

9.1 Introduction

Dans ce chapitre, nous expliquons comment résoudre la valeur des signaux dupliqués
et non annotés. Nous exprimons la dépendance parmi toutes les propriétés en utilisant
un Graphe de Dépendance. Pour cela, nous partionons le DAST des propriétés en sous
arbre complètement annotéorienté et non annoté semi-orienté. Ensuite, nous considérons
le DAST orienté pour extraire les dépendances pour un signal dupliqué, et nous analysons
les DAST semi-orientés pour extraire les dépendances pour les signaux non annotés.

9.2 Contraintes calculées à partir de DASTs annotés

Soient Trig i¬z , 0 ≤ i ≤ nb0 − 1 les nb0 signaux triggers des composants réactifs qui
contraignent le signal z à 0, et soient Trig jz , 0 ≤ j ≤ nb1 − 1 les nb1 signaux triggers qui
contraignent z à 1. Alors :

T 0 z = (Trig0¬z,Trig
1
¬z, . . . ,Trig

nb0−1
¬z)

T 1 z = (Trig0z,Trig
1
z, . . . ,Trig

nb1−1
z)

Pour chaque signal z, les signaux T0 z et T1 z sont définis par :

T0 z =
�

i

Trig i¬z , and T1 z =
�

j

Trig jz

9.3 Constraintes calculées à partir de DASTs partiel-

lement annotés

Comme vu dans le chapitre 7, de nombreux signaux de l’arbre sont non annotés.
Commençons par un exemple :

Pour chaque DAST de l’ensemble SEMIDIRECTED , les sous-arbres semi-orientés sont
élagués, et un composant réactif est construit pour les sous-arbres orientés en utilisant la
méthode vue chapitre 8.

39

Chapitre 9 : Résolution des signaux

Soit Etrig j le signal de sortie d’un tel composant réactif, et Expr j les expressions boo-
léenes élaguées. Les expressions E = (Expr 0, . . . ,Exprm) sont conditionnées par Etrig0, . . . ,Etrigm.

9.4 Graphe de dépendance (DG)
Le graphe de dépendance DG d’un ensemble de propriétés (P0, . . . , Pk−1) est un graphe

étiqueté semi-orienté. Notons DG = (V,E), avec :

— V = V 1 ∪ V 2 est l’ensembre des nœuds :
— V 1 = L0∪· · ·∪Lk−1, où L0, . . . , Lk−1 sont les ensembles de feuilles de DAST0, . . . ,DASTk−1

— V 2 est l’ensemble de toutes les sorties trig de toutes les propriétés.
— E = E1 ∪E2, où E1 est l’ensemble des arrêtes orientées, et E2 est l’ensemble des

arrêtes non orientées, et :
— E1 ⊂ V 2× V 1, e.g. e = (Trig l → l)
— E2 ⊂ V 1× V 1, e.g. e = (l1–l2)

— Chaque arrête e du graphe a une arrête w = (id, val, type), où :
— id identifie la propriété qui crée l’arrête e ; ainsi 0 ≤ id ≤ k − 1
— val : si e est orienté, val spécifie la valeur du nœud de destination, si la valeur du

nœud source est 1. Si e n’est pas orientée, val vaut -1. Ainsi, val ∈ {0, 1,−1}.
— type spécifie si une arrête est orientée ; ainsi, type ∈ {d, u}, où‘d’ signifie orienté,

et ‘u’ non-orienté.

Le graphe de dépendance peut avoir plusieurs composantes fortement connexes, cha-
cun représentant un ensemble de signaux générés interdépendants Z = {z1, . . . zn} (voir
fig. 9.1).

Exemple 1. Graphe de dépendance du GenBufRec

DEQ
(6, 1, d) (7, 0, d)

BtoR_REQ(0) BtoR_REQ(1)

(0, -1, u)

(2, -1, u)

(1, 0, d)

(3, 0, d)

(5, 0, d)

(4, 1, d)

(1, 0, d)

(3, 0, d)

(5, 0, d)

(4, 1, d)

Figure 9.1 – Graphe de dépendance de GenBufRec

9.5 : Construction du graphe de dépendance

9.5 Construction du graphe de dépendance

Le graphe de dépendance se construit en deux étapes à partir des DASTs des proprié-
tés.

1 Pour chaque DAST orienté, DASTk :
1-1 Pour chaque feuille générée l of DASTk (i.e. (P(l) → l)) :

1-1-1 Ajouter l aux nœuds de DG (si elle n’est pas dans V)
1-1-2 Ajouter le signal trigger correspondant (Trig il ou Trig j¬l) à V
1-1-3 Créer une arrête e du nœud trigger node jusqu’au nœud signal, e =

(Trig il → l)
1-1-4 Si le signal correspondant à l est contraint à 0 : ajouter l’étiquette w =

(k, 0, d), sinon w = (k, 1, d)
2 Pour chaque DAST semi-orienté, DASTk :
2-1 Elaguer le sous-arbre complètement orienté, et garder uniquement les sous-

arbres non-orientés.
2-2 Ajouter toutes les feuilles des sous-arbres non orientés dans V (si elles ne sont

pas dans V)
2-3 Pour chaque pair de nœuds l1 et l2 partant de DASTk :

2-3-1 Ajouter une arrête entre l1 et l2
2-3-2 Créér l’étiquette w = (k,−1, u)

9.6 Fonction de résolution : le composant derésolution

Maintenant nous discutons comment utiliser le graphe de dépendance DG pour générer
des composants de résolution. Nous construisons deux types de composants de résolution :
les composants simples et les complexes. Le premier spécifie la valeur des signaux dupliqués,
le second spécifie la valeur des signaux non annotés.

9.6.1 Résolution des signaux dupliqués : composant simple

Dans DGi, nous considérons chaque arrête e = (v → z). Si l’étiquette w = (i, 0, d),
nous ajoutons le signal trigger qui est représenté par le nœud v à T 0 z ; si l’étiquette
w = (i, 1, d), nous ajoutons le signal trigger à T 1 z. Après avoir trouvé T 1 z et T 0 z, la
valeur de z doit être calculé.

Les signaux T0 z et T1 z sont les entrées du composant de résolution. La sortie sera la
valeur finale de z (voir fig. 9.2).

simple
solver

Figure 9.2 – Interface d’un composant de résolution simple pour des signaux dupliqués

Dans notre implémentation, si ni T0 z ni T1 z ne sont actifs, l’utilisateur peut choisir
de décider si z garde sa valeur précédente ou prend une valeur par défaut. La fonction de

41

Chapitre 9 : Résolution des signaux

résolution est l’une des :

z =�0� when T0 z =
� 1� else z =�0� when T0 z =

� 1� else
�1� when T1 z =

� 1�; �1� when T1 z =
� 1� else

default value;

9.6.2 Résolution de sigaux non annotés : les composants com-
plexes

Supposons que Z = (z1, . . . , zn), alors tous les signaux zi sont non annotés dans au
moins une propriété. Nous pouvons dire que les signaux zi, . . . , zn sont les opérandes des
expressions Expr 0, . . . ,Exprm−1 activées par Etrig0, . . . ,Etrigm−1.

9.6.2.1 Implémentation des composants de résolution complexes

Un composant complexe prend (Etrig0, . . . ,Etrigm−1), (T1 z1 , . . . ,T1 zn), et (T0 z1 , . . . ,T0 zn)
comme entrées, et il ressort les valeurs de (z1, . . . , zn).

simple
solver

simple
solver

FindMatch

ComplexSolver

Figure 9.3 – Interface des composants de résolution complexes pour des signaux non
annotés

Le problème est de résoudre l’ensembre des équations suivantes :

...
Etrig j → Expr j(z1, . . . , zn) = 1
...

L’idée brutale est de construire une Look Up Table (LUT) pour le sous-module Find-
Match (fig. 9.3) en énumérant toutes les valeurs de Z pour chaque valeur t de TZ . Alors,
nous sélectionnons la ligne appropriée de cette LUT.

Nous considérons les 2m valeurs de ce vecteur TZ = (Etrig0, . . . ,Etrigm−1). Chaque
valeur t of TZ correspond à l’ensembre des triggers qui sont actifs simultanément. Nous
associons à cet ensemble de signaux trigger actifs, l’expression booléene qui est la conjonc-
tion des Expr j correspondant aux Etrig j = 1.

9.7 : Le circuit final

9.7 Le circuit final

Le circuit final est l’interconnexion des composants réactifs des propriétés (voir Cha-
pitre 8) et des composants de résolution.

Exemple 2. Le circuit final de GenBufRec.

La figure 9.4 montre l’interconnexion de tous les composants réactifs avec les compo-
sants de résolution GenBufRec.

clock reset

R2B_ACK(0) RtoB_ACK(1)

BtoR_REQ(0)

DEQ

BtoR_REQ(1)

P7_FIFO_rec

P6_FIFO_rec

P0_rec

P1_rec

P2_rec

P3_rec_0

P3_rec_1

P4_rec_0

P4_rec_1

P5_rec_0

P5_rec_1

simple
solver

complex
solver

EMPTY

Figure 9.4 – Circuit final de GenBufRec

9.7.1 Vérification de la cohérence

La définition de z est cohérente ssi dans tous les cycles :

T1 z ∧ T0 z = 0

43

Chapitre 9 : Résolution des signaux

9.7.2 Vérification de la complétude

La définitionde z est complète ssi dans tous les cycles :

T1 z ∨ T0 z = 1

Nous pouvons bien sûr générer toutes ses propriétés complémentaires automatiquement
pour vérifier les conditions ci dessus.

Chapitre 10
Les expériences et les résultats pratiques

10.1 Introduction

Nous avons appliqué notre méthode de synthèse à plusieurs études de cas : GenBuf 1,
AMBA 2 Arbiter, HDLC 3, CRC 4, et SDRAM 5. Les circuits générés sont synthétisés à la
fois pour un circuit FPGA 6 et un circuit ASIC 7. Les résultats sont comparés aux résultats
d’un autre outil, Ratsy.

10.2 Prototypage du matériel et les résultats de syn-

thèse

La table 10.1 résume les caractéristiques des outils de ABS existants : les formats
d’entrée et de sortie, et le sous-ensemble de PSL que chacun d’eux accepte.

Table 10.1 – Outils d’ABS
Tool Input Output FL SERE

Acacia LTL dot � no
Unbeast LTL in XML format NuSMV � no
Ratsy LTL Verilog GR(1) subset of PSL no

SyntHorus2 PSL VHDL and PSL properties PSLsimple partially (see Chapter 6)

Unbeast et Acacia peuvent travailler seulement sur des exemples très simples et petits ;
Par conséquent, nous avons exclu les résultats des tableaux.

Ici, nous donnons les résultats de synthèse pour le cas étudié.

10.2.1 Generalized Buffer (GenBuf)d’IBM

La figure 10.1 compare le temps de génération de matériel pour SyntHorus2 et pour
Ratsy pour le GenBuf (avec plusieurs récepteurs et 2 émetteurs).

1. IBM Generalized Buffer
2. ARM Advanced Microcontroller Bus Architecture
3. High-level Data Link Controller
4. Cyclic Redundancy Check
5. Single Data-rate Random Access Memory
6. Field Programmable Gate Array
7. Application Specific Integrated Circuit

45

Chapitre 10 : Les expériences et les résultats pratiques

Figure 10.1 – Le temps de génération HW : GenBuf avec 2 émetteurs, plusieurs récepteurs
et FIFO

Il est important de préciser que SyntHorus2 n’effectue pas la vérification, tandis que
Ratsy intègre la vérification dans le processus de génération. Ainsi, la comparaison des
temps d’exécution des deux outils n’est pas pertinente si l’on souhaite effectuer une véri-
fication.

10.2.1.1 Synthèse de circuits sur FPGA

Tout d’abord, nous avons synthétisé les circuits générés par SyntHorus2 et par Ratsy
en utilisant Quartus II afin de les mettre en œuvre sur une carte FPGA (EP4CE30F23C6
de l’appareil de la famille de l’appareil Cyclone IV).

Plusieurs récepteurs et deux émetteurs, avec FIFO

La table 10.2 donne les résultats de synthèse pour SyntHorus2 et Ratsy.

Table 10.2 – Quartus II : résultat de synthèse pour le contrôleur GenBuf avec FIFO,
plusieurs récepteurs, et 2 émetteurs

SyntHorus2 Ratsy
F # # # F
rec prop. reg. LUTs (MHz) prop. reg. LUTs (MHz)

3 28 37 98 756.4 56 24 2092 130.4
4 31 45 119 781.2 63 27 2587 140.2
5 34 53 146 609.0 70 30 4251 121.6
6 37 61 166 745.7 77 34 10408 92.5
7 40 99 196 616.5 84 36 15191 89.8
8 46 77 215 647.7 91 40 18180 83.6

SyntHorus2 génère des circuits plus rapides avec moins de LUT que Ratsy, mais avec
plusieurs registres.

10.2 : Prototypage du matériel et les résultats de synthèse

10.2.1.2 Synthèse pour la mise en oeuvre sur ASIC

Nous avons synthétisé l’ensemble des circuits générés par SyntHorus2 et Ratsy avec
Design Vision selon les mêmes conditions.

Plusieurs récepteurs et deux émetteurs, avec FIFO

Table 10.3 donne les résultats de nos expériences sur Genbuf avec une FIFO, pour 3 à
8 récepteurs et 2 expéditeurs, exécutant SyntHorus2 et Ratsy.

Table 10.3 – Design Vision résultat de synthèse pour le contrôleur GenBuf avec FIFO,
plusieurs récepteurs, et deux expéditeurs

SyntHorus2 Ratsy
comb. # seq. Total F # #comb. # seq. Total F
rec prop. cells cells area (MHz) prop. cells cells area (MHz)

3 28 414 102 57876 568 56 2781 24 259796 96
4 31 467 118 66715 565 63 3285 27 306134 80
5 34 546 134 76961 555 70 5146 30 475880 67
6 37 624 150 87188 555 77 12970 34 1198182 57
7 40 714 175 100559 555 84 17934 36 1647189 56
8 46 860 191 114564 555 91 20828 40 1894378 65

Figure 10.2 compare le nombre total de portes pour les circuits qui sont générés par
SyntHorus2 et Ratsy.

Figure 10.2 – Le nombre total de portes : GenBuf avec plusieurs récepteurs et 2 expédi-
teurs

10.2.2 AMBA arbiter

La figure 10.3 compare le temps de génération de matériel par SyntHorus2 et par Ratsy.

10.2.2.1 Synthèse de mise en œuvre sur FPGA

La table 10.4 montre les résultats de synthèse par Quartus II pour AMBA arbitre.

47

Chapitre 10 : Les expériences et les résultats pratiques

Figure 10.3 – Temps de génération HW : AMBA arbitre

Table 10.4 – Quartus II résultat de synthèse pour AMBA arbitre avec 2 esclaves et
plusieurs mâıtres

SyntHorus2 Ratsy
F # # # F

masters prop. reg. LUTs (MHz) prop. reg. LUTs (MHz)

2 35 24 59 795.5 77 21 382 199.2
3 46 33 113 852.5 96 29 2941 131.1
4 56 42 119 923.4 114 29 6085 106.9
5 66 51 150 795.5 133 34 3091 130.45
6 77 60 181 758.1 151 37 4355 115.8

10.2 : Prototypage du matériel et les résultats de synthèse

10.2.2.2 Synthèse pour la mise en oeuvre ASIC

La table 10.5 donne nos résultats pour 2 esclaves et des nombres différents de mâıtres.

Table 10.5 – Design Vision résultats de la synthèse pour AMBA arbitre
SyntHorus2 Ratsy

comb. # seq. Total F # #comb. # seq. Total F
masters prop. cells cells area (MHz) prop. cells cells area (MHz)

2 33 303 90 45165 637 77 515 21 51985 164
3 46 513 132 71915 621 96 3867 29 362589 92
4 56 567 159 82522 606 114 7712 29 721363 67
5 66 725 194 102762 629 133 3920 34 370179 82
6 77 660 228 121855 625 151 5855 37 552310 62

Figure 10.4 compare le nombre total de portes des circuits qui sont générés par Syn-
tHorus2 et Ratsy.

Figure 10.4 – Le nombre total de portes : AMBA arbitre

10.2.3 D’autres exemples

Nos trois derniers exemples sont présentés dans la table 10.6.

Table 10.6 – Design Vision les résultats de la synthèse pour HDLC, SDRAM, et CRC
SyntHorus2

Circuit # Hw. gen. # comb. # seq. Total Total # F
prop. time (s) cells cells area of gates (MHz)

HDLC 120 1.06 2646 1433 600527 9588 429
SDRAM 9 0.2 1045 769 295107 4765 513
CRC 14 0.14 641 293 131122 2401 406

10.2.4 Comparaison entre FLs et SEREs

Pour montrer l’applicabilité de notre méthode de synthèse en Seres, les propriétés
SERE sont fournies pour GenBuf, l’ arbitre AMBA et le HDLC, les conceptions VHDL

49

Chapitre 10 : Les expériences et les résultats pratiques

correspondantes sont générées en utilisant SyntHorus2, et sont synthétisées en utilisant
Design Vision.

10.2.4.1 GenBuf : plusieurs récepteurs

Les propriétés FLs de GenBuf sont converties en SEREs. La table 10.7 montre les
résultats de synthèse pour le GenBuf avec plusieurs récepteurs et deux émetteurs.

Table 10.7 – Design Vision : les résultats de la synthèse pour GenBuf avec multiples
récepteurs (pour les propriétés de SERE)

HW gen. # comb. # seq Total Total # Freq.
receivers prop. time (s) cells cells area of gates (MHz)

3 27 0.19 529 119 720701 1123 308
4 30 0.25 651 146 901106 1392 320
5 33 0.35 775 175 108083 1669 290
6 36 0.61 905 206 127124 1963 296
7 42 0.26 1052 248 150525 2325 296
8 45 0.29 1215 287 174253 2691 280

La figure 10.5 compare le nombre total de portes pour les circuits générés à partir de
FLs et SEREs.

Figure 10.5 – Le nombre total de portes : GenBuf avec plusieurs récepteurs et 2 émetteurs
(générés à partir de FLs et SEREs)

10.2.4.2 AMBA Arbiter

Pour l’arbitre de bus AMBA, nous avons écrit la spécification en SERE basée sur sa
description de protocole en anglais et les propriétés FL. La table 10.8 résume les résultats
de synthèse pour 2 esclaves et de 2 à 6 mâıtres.

10.2 : Prototypage du matériel et les résultats de synthèse

Table 10.8 – Design Vision résultats de la synthèse pour AMBA arbitre (pour les pro-
priétés SERE)

HW gen. # comb. # seq. Total Total # F
masters prop. time (s) cells cells area of gates (MHz)

2 28 0.14 223 62 33614 523 368
3 41 0.24 341 95 50146 777 324
4 52 0.32 429 120 63209 978 307
5 63 0.41 520 145 76471 1181 296
6 74 0.63 628 170 90546 1394 266

10.2.4.3 HDLC

Pour le HDLC, nous avons fourni deux ensemble de propriétés :
— SERE1 : toutes les propriétés FL sont converties sous forme de propriétés SERE

équivalentes.
— SERE2 : trois modules, FlagDetection, ZeroDetection et ZeroInsertion, sont

directement exprimés en utilisant les propriétés SERE. Ces SEREs sont écrites
depuis le protocole, elles n’ont pas été obtenues par la réécriture FLs.

La table 10.9 résume le résultat de la synthèse.

Table 10.9 – Design Vision résultats de la synthèse pour HDLC (pour les propriétés
SERE)

HW gen. # comb. # seq. Total Total # F
prop. time (s) cells cells area of gates (MHz)

SERE1 120 1.22 3238 1157 614507 9700 82
SERE2 108 1.51 3017 839 516363 8050 59

51

Chapitre 10 : Les expériences et les résultats pratiques

Chapitre 11
Conclusion et travaux à venir

Dans cette thèse, nous avons présenté une méthode modulaire pour synthétiser la
partie contrôleur des circuits, en composants réactifs et non en moniteurs, à partir de
leurs propriétés temporelles écrites en PSL.

11.1 Contributions

Les principales contributions de ce travail sont résumées ci-après :

— A partir de la sémantique de traces de PSL, nous avons défini formellement une
relation de dépendance entre les opérandes des opérateurs temporels de SERE 1. En-
suite, nous avons donné une interprétation matérielle des relations de dépendance,
ce qui constitue la base sur laquelle est construite la bibliothèque des composants
réactifs primitifs (voir chapitre 6).

— Ces relations de dépendance, accompagnées de la relation de dépendance formelle
des FLs, sont le modèle formel sur lequel l’algorithme d’annotation est écrit(voir
chapitre 7).

— Si l’on considère la dépendance entre toutes les propriétés, les composants de réso-
lution ont été générés pour résoudre la valeur des signaux dupliqués et non-annotés
(voir chapitre 9).

— Nous générons des propriétés complémentaires pour vérifier la cohérence et la com-
plétude de l’ensemble des propriétés.

— L’outil prototype SyntHorus2 a été mis en œuvre, basé sur les principes décrits dans
cette thèse. Il est en cours d’adaptation, sur la base des exigences de l’industrie.

— SyntHorus2 a été testé sur un ensemble de jeux d’essai, et également sur des circuits
grandeur nature comme l’arbitre de bus AMBA-AHB et le contrôleur HDLC. Com-
parer SyntHorus2 avec d’autres outils ABS est difficile, car chaque outil requiert son
propre sous-ensemble de LTL ou de PSL qui doit être adapté pour chaque outil.
Comparé à d’autres outils, SyntHorus2 génère des conceptions plus petites et plus
rapides sur les exemples les plus gros.

Les résultats intermédiaires de SyntHorus2 permettent de déboguer une spécification,
et de vérifier si elle est cohérente et complète. Les assertions générées automatiquement
sur les signaux de“trigger”peuvent être vérifiées par un simulateur, ou par model checking

1. Sequential Extended Regular Expression

53

Chapitre 11 : Conclusion et travaux à venir

à l’aide d’un outil de vérification formelle. De plus, SyntHorus2 peut fournir un prototype
d’environnement conforme aux spécifications, afin de tester un autre module de circuit.

11.2 Travaux à venir

A présent, SyntHorus2 ne traite que des signaux scalaires et des vecteurs booléens
dans les propriétés. Les travaux à venir incluent la reconnaissance de types de données
plus complexes, comme les types énumérés et entiers.

SyntHorus2 supporte partiellement la couche modélisation de PSL. Il supporte les opé-
rateurs de comparaison et arithmétiques. Cependant, il ne supporte pas la définition de
signaux locaux. Cette capacité devrait être ajoutée à SyntHorus2.

Comme expliqué au Chapitre 6, notre sous-ensemble synthétisable de SEREs connâıt
des limitations. Par exemple, nous ne pouvons pas avoir de répétition non-consécutive. Par
conséquent, le sous-ensemble synthétisable de SEREs devrait être étendu et les limitations
devraient être allégées. Pour surmonter quelques une des limitations, par exemple en
observant ϕ = A&B où A et B sont des séquences, nous pouvons profiter des méthodes
basées sur les automates. Nous pouvons combiner les méthodes basées sur les automates
et les modulaires, puis utiliser la méthode basée sur les automates pour la partie gauche
d’une implication, qui devrait être observée, et la méthode modulaire pour la partie droite
d’une implication qui devrait être générée.

De plus, nous devrions optimiser les modules réactifs primitifs pour les SEREs. Comme
démontré dans le Chapitre 10, si nous réécrivons une propriété FL dans son équivalent
de propriété SERE, le circuit obtenu depuis une SERE est plus gros et plus lent. Nous
devrions optimiser à la fois les modules réactifs des SEREs et leurs interconnections.

Nous avons fourni des lignes directrices sur comment écrire des propriétés afin de
générer des circuits plus petits : ils devraient être améliorés. Nous pouvons fournir des sous-
ensembles prédéfinis de propriétés pour exprimer certains comportements des signaux, par
exemple l’exclusion mutuelle, le tourniquet, le protocole poignée de main à 4 phases, etc. . .

La mise en œuvre des composants de résolutions complexes peut être améliorée pour
générer des composants plus petits. Comme discuté au Chapitre 9, certaines lignes de LUT
ne devraient pas être utiles, car certaines combinaisons de signaux Etrig n’apparaissent
jamais. Ces lignes peuvent être éliminées par la vérification de modèle sur les propriétés.
Cela n’a pas été automatisé.

Comme discuté au Chapitre 9 , afin de calculer la valeur des signaux non-annotés, il
pourrait y avoir plusieurs choix obtenus à partir de LUT. A présent, nous sélectionnons
la première ligne de LUT qui satisfait notre exigence. D’autres politiques de sélection
peuvent être envisagées.

A ce stade, des composants de résolutions complexes sont fournis pour les signaux
scalaires. Ils devraient être étendus aux vecteurs. De plus, des composants complexes ne
peuvent pas être utilisés dans les cas où les signaux non-annotés dépendent d’opérateurs
et fonctions du niveau modélisation. Nous devrions pouvoir résoudre ce problème.

Notre méthode est modulaire ; pour chaque propriété, elle instancie tous les modules
réactifs primitifs des opérateurs de la propriété. Cela conduit à des composants redondants.
Cela ressemble aux débuts de la synthèse : chaque instance d’un opérateur dans le design
RTL produisait un opérateur matériel distinct. Une étape d’optimisation est nécessaire
pour partager des modules réactifs primitifs dans le circuit généré.

Résumé– Les travaux présentés dans cette thèse visent à produire automatiquement
des prototypes de circuits de communication et de contrôle à partir de spécifications
temporelles déclaratives. Partant d’un ensemble de propriétés écrites en langage PSL,
nous produisons un modèle RTL synthétisable automatiquement. La méthode proposée
est modulaire, contrairement aux méthodes publiées antérieurement qui étaient fondées
sur la théorie des automates. Pour chaque propriété, nous produisons un composant qui
observe certains opérandes et génère des chronogrammes pour les autres opérandes : le
module réactif.

Tout d’abord, une bibliothèque des modules réactifs primitifs a été développée pour les
opérateurs FL et SERE. Pour ce faire, une relation de dépendance a été définie pour chaque
opérateur : fondée sur la sémantique de l’opérateur, elle exprime la dépendance entre ses
opérandes. Ensuite, la relation de dépendance de chaque opérateur est interprétée comme
un composant matériel qui met en œuvre l’opérateur : c’est le module réactif primitif de
l’opérateur.

À l’aide de cette formalisation, nous proposons une méthode pour déterminer automa-
tiquement quels signaux d’une propriété sont observés et lesquels sont générés. Dans le
cas où il n’est pas possible de déterminer le sens du signal, un solveur est ajouté pour
identifier la valeur du signal. Le solveur sert aussi à déterminer la valeur d’un signal
généré par plusieurs propriétés. Le circuit final est l’interconnexion des modules réactifs
et des solveurs pour l’ensemble des propriétés.

Un outil prototype, SyntHorus2, qui est une extension d’HORUS, a été mis développé.
Il prend les propriétés PSL comme entrées et génère le code VHDL synthétisable du
circuit. En outre, il génère des propriétés complémentaires pour vérifier si l’ensemble des
spécifications est cohérent et complet.

La méthode est efficace et synthétise des circuits de commande en quelques secon-
des. Les résultats que nous avons obtenus sur des jeux d’essais classiques montrent que
notre technique compile les propriétés plus efficacement que les outils prototypes qui l’ont
précédée.

Mots-clés. PSL, conception basée sur les assertions, module réactif, synthèse automa-
tique, graphe de dépendance, annotation, résolution, solveur.

