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Nomenclature

{xi} Configuration of the xi, {xi} = {x1, x2, x3, . . . , xn}
α Parameter characterizing the Helium fraction in the Hydrogen-

Helium plasma α = ρα

ρα+ρp

β Inverse temperature β = 1/kBT

ρ Total number density

γ Generally used for an unspecified particle species

c Speed of sound

Nγ Particle number of species γ

ργ Number density of species γ

µγ Chemical potential of species γ

zγ Fugacity zγ = eβµγ of species γ

z(L) Fugacity of a loop (defined in equation (3.14) on page 24)

z̃γ z̃γ =
(2σγ+1)zγ
(2πλ2

γ)
3/2

eγ Charge of species γ

mγ Mass of species γ

λγ Thermal wavelength of species γ

κ Debye screening constant

ξ Shape of a one-particle path

σ Spin

L Loop, a loop contains a specific number of particles (with com-

mon spin) and has loop shape η

η Shape of a loop

q Number of particles forming a loop

D(L) Measure of functional integration of loops

f(·, ·) The Mayer bond

P The pressure (throughout this thesis give expressions for βP

measured in atomic units a−3
0 )

a0 The Bohr radius

S Symmetry factor of a diagram

Z Partition function

C{γ} Cluster function of a certain configuration of particle species
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Nomenclature

F Free energy functional

F Thermodynamic free energy

Ω Grand canonical potential

Ξ Grand canonical partition function

δ(s1, s2) Delta-function

δs1,s2 Kronecker-Delta

δ̃(s1, s2) Dirac-comb δ̃(s1, s2) =
∑∞

i=−∞ δ(s1 − s2 + i)

V Coulomb potential

Node with fugacity factor z

Node with fugacity factor z
(
eIR − 1

)

Node for which no summation over inner degrees of freedom is

carried out. This node occurs when the derivative zγ
∂
∂zγ

acts

on a black node.

Node to be superposed with other gray nodes and blackened

after diagram is constructed

1 2
Coulomb interaction of loops −βV (L1,L2)

1 2
Screened interaction of loops −βφ(L1,L2)

1 2
e−βφ(L1,L2) − 1 + βφ(L1,L2)

1 2
T e−βφ(L1,L2) − 1 + βφ(L1,L2)− (βφ(L1,L2))

2

2

1
= 1

2

1
2

∫
D(L2)φ(L1,L2)V (L2,L1)z(L2)

1 2
e−βV (L1,L2) − 1
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Chapter 1

Introduction

Since the earliest times in human history, men were fascinated by the stars lighting up the nightly sky.

The understanding of these objects was out of reach for most of our ancestors, so that for centuries

astronomical objects were mystified and venerated. The rise of modern physics was primarily initiated

by mankind’s understanding of the motion of the planets, which led also philosophically to a change

of paradigm. The relation of physics and astronomy was eventually clarified by Newton [1], who used

mathematical equations to describe his famous laws. A very important insight was that the same physical

laws that govern very large distant objects such as stars and planets, are also responsible for the motion

of objects on our scale, such as apples falling from a tree.

In modern physics the astronomical observations have been of immense importance not only for

the understanding of “their” physics, but they also open the possibility to verify our current physical

models in different domains. A prominent example is, of course, the verification of Einstein’s theory of

general relativity from the observation of bended trajectories of light rays in the presence of large mass

concentrations [2].

Astronomical observations, especially those of our nearest star, the Sun, have ever since stimulated

development and the understanding of our theoretical models. In recent years, for example, the so-called

solar neutrino problem led to an important controversy among scientist and its resolution had even impact

on the “Standard Model” of particle physics. At the time, observation of neutrino particles stemming

from the Sun, where they are created by fusion were incompatible with contemporary solar models, in

particular concerning the core temperature [3]. Helioseismic observations, on the other hand, confirmed

the standard solar models. The discrepancy between “direct” observation of the core temperature and

the indirect prediction interfered from helioseismic observation of the surface of the Sun, led finally to the

conclusion that the neutrinos are not massless, unlike assumed before1. The first theoretical hypothesis

of the neutrino oscillations was given in Reference [4] and the first experimental evidence dates back to

the Super-Kamiokande Experiment (see [5] for a review of its experimental results).

Besides these important fundamental experiments and theoretical developments, astronomical objects

are important to study systems at, for human experience, extreme conditions and at the same time ideal

conditions, from the physics perspective. Again, the Sun is a prominent example: Its sheer size makes

it ideal in the physical sense, but incomprehensible on the level of human length scales. The large scale

differences of atomic, gravitational and dynamical length scales make it possible to consider each volume

element of the Sun to be in thermodynamic equilibrium in a very good approximation. Its composition

1Even more important the flavor eigenstates of the neutrinos are not equal to the mass eigenstates.
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Introduction

Figure 1.1: The spectrum of sunlight2; Left: Discrete lines for which no light is emitted by the Sun
can be clearly seen. Right: The intensity of the spectrum is in good approximation given by the one of
a black body.

can be considered to be ideal as well, as its total mass is mainly composed of Hydrogen (74%) and

Helium (24%). Heavier elements make up only a very small fraction of the particles present in the Sun,

but nevertheless have an important impact on its opacity, for example. The extreme temperatures of the

different layers of the Sun are in strong contrast to the temperatures humans are used to, but make it

possible probe this almost ideal Hydrogen-Helium mixture at exactly these temperatures, which are for

the system “natural” temperatures.

Spectroscopic experiments with sunlight were of major importance for the understanding of the atomic

physics, which eventually led to Quantum mechanics, one of the most successful physical theories ever

formulated. The young quantum theory was completely compatible with the spectrum of solar light,

which shows discrete and continuous features (see figure 1.1) at the same time: For specific wavelengths

no light is emitted by the Sun, which is in accordance with the discrete nature of the absorption spectrum

of atoms, predicted by Quantum mechanics. Moreover, the continuous part of the spectrum is the one

of a black body, an idealized object in thermodynamical equilibrium that emits all radiation it absorbs

after having thermalized it. Again, the actual form of the intensity of the spectrum, given by Planck’s

law, is one of the breakthrough confirmations of Quantum mechanics.

These two aspects of the spectrum of sunlight have immediate impact on the model of the Hydrogen-

Helium mixture studied in this thesis, as they confirm that the Sun is indeed at thermodynamical equi-

librium (at least its outer layers), which is manifest in the continuous part of the spectrum. The discrete

part of the spectrum, on the other hand, confirms that the notion of composite chemical objects, such as

atoms, makes sense under solar conditions. Due to the high temperatures present in stellar objects, the

atoms, held together by the Coulomb force, are not the sole constituents of the matter. In contrast to our

daily experience, elementary particles, such as electrons, protons and α-particles, are also present in their

unrecombined form, due to the extreme conditions found in astronomical objects. We call such a mixture

of atoms and their fundamental constituents a partially ionized gas, or equivalently a partially recombined

plasma. The physics of this plasma in thermodynamic equilibrium is governed by the interaction between

its fundamental particles, the Coulomb interaction. The fact the constituents are partly forming more

2Source left: Nigel Sharp, National Optical Astronomical Observatories/National Solar Observatory at Kitt
Peak/Association of Universities for Research in Astronomy, and the National Science Foundation; Source right: Robert A.
Rohde / Global Warming Art
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complex entities such as Hydrogen or Helium atoms, suggests that a Quantum mechanical treatment of

the system is indispensable, due to the fact that only Quantum mechanics ensures the stability of these

atoms [6].

In the early 20th century, first theories tried to describe the partially recombined plasma as an ideal

mixture of Hydrogen atoms, free protons and free electrons. The chemical equilibrium between these

three constituents

e + p ⇆ H (1.1)

provides the famous Saha-equation [7, 8]. This simple model, which disregards all non-ideal effects such

as charge-charge interactions and treats the atom as if it would only exhibit one state, the ground state,

was a fundamental contribution to the understanding of the partially ionized Hydrogen gas. Already

such a largely simplified model was able to predict the general pressure profile found in the Sun, and as

it globally captures the physical process of recombination present in the plasma, more advanced theories

can only aim to give corrections to its predictions.

The Equation of state of the partially ionized Hydrogen-Helium mixture, which is essentially the

pressure P (ρ, T ) as a function of the density ρ and the temperature T , is an important ingredient for

the solar models. To test these models, helioseismic observations are of great value, and their current

accuracy makes it possible to precisely quantify the difference between model predictions and physical

reality. A precise equation of state is, therefore, the first step to a complete understanding of our Sun.

Besides the application to our home star, the equation of state of a partially ionized gas is a basic

ingredient for modeling star formation, or the understanding of interstellar nebulae. Due to the timescales

on which a star is formed, even slight differences in the used equation of state can lead to important

differences in the stellar evolution and eventually in the prediction of properties such as its age or structure.

From a theoretical point of view the equation of state of such a mixture is of interest on its own. Due

to the long-range Coulomb interaction even the notion of an atom is non-trivial, as a naively defined

partition function describing the thermodynamics of an atom is divergent [9]. As we stated before,

recombination immediately suggests that a quantum mechanical treatment of the system is necessary if

we want to describe it based on first principles. The operator-structure of Quantum mechanics turns this

analysis, besides the many-body effects related to the long-ranged Coulomb potential, into a complicated

fundamental problem.

The field has developed enormously since the early studies by Saha and generated many important

physical insights. Fundamental questions, as for example, concerning the stability of such a charged

partially recombined plasma have been answered [10, 11]. Several different approaches to describe the

system quantitatively have been proposed, most prominently the chemical and the physical picture.

The chemical picture is fundamentally based on the notion of chemical species and, therefore, strongly

influenced by Saha-theory. The physical picture uses basic thermodynamic principles as well as the bare

Coulomb interaction between the fundamental particles, as a starting point. Both theories have led to

important improvements of our understanding of the thermodynamics of partially ionized gases.

In this thesis, we will study the equation of state of a Hydrogen-Helium mixture based on first

principles. We are, thus, going to work within the physical picture and, therefore, describe the system

as a gas of electrons, protons and α-particles which interact by the Coulomb potential. The presence of

recombined objects such as atoms is merely a consequence of the strong interactions of these particles.

Due to the long-ranged Coulomb potential, many-particle effects have a crucial effect on the equation of

state. Exact reorganizations of the partition function of the system allow us to take these many-body

11



Introduction

effects into account in a systematic and coherent way. The validity of many of the assumptions made

in the chemical picture can be quantified and are motivated by the physical picture, which makes it a

fruitful subject from the fundamental theoretical perspective.

This thesis is structured as follows: First, we will give a very brief overview of the history of the

theoretical treatment of the physics of partially ionized gases. In particular, we will shortly describe the

two main frameworks, the chemical and the physical picture.

The third chapter reviews the diagrammatic methods useful to study the physical picture, where we,

by a slight modification of already existing formalisms, are able to “modularize” the physical picture.

This is an important development since the modular structure of the chemical picture is often perceived as

one of its major advantages over the physical picture. Moreover, after performing partial resummations of

diagrams present in the diagrammatic series for the pressure, an integrable screened interaction between

the basic constituents emerges. The diagrammatic description makes it possible to reduce the equation

of state to a series of diagrams where a fixed number of particles is interacting, the so-called clusters.

Chapter 4 is concerned with the basic physical as well as methodical consequences of the diagrammatic

described in chapter 3. Most importantly, we will answer the question of how the many-body effects

influence the energy states of the present atoms. This question is not only of fundamental relevance for

our calculations but also for the chemical picture as it relies on effective partition functions. Thereafter a

brief analysis of the resummed screened potential is presented, which builds the basis of our subsequent

numerical analysis of the particle clusters.

In chapter 5, we will describe the algorithm we developed to calculate the cluster functions, the basic

objects appearing in the series of the pressure, applying numerical path integral techniques. To do so,

we had to overcome two main difficulties: The singularity of the Coulomb potential at its origin and the

formation of bound states at low temperatures. In this context we propose a new adaptive discretization

of the numerical path integral that enables us to capture the features of the few-body Coulomb system

very accurately [12]. The introduction of a physically motivated Importance sampling function extends

the applicability of numerical path integral calculations, which are typically efficient for high temperatures

only, to far lower temperatures. Knowledge of the behavior of the cluster functions was limited to low

and high temperature regimes, and a first goal of the present work was precisely to extend this knowledge

to the intermediate temperature regime.

In chapter 6 we study the partially ionized Hydrogen gas in the so-called scaled-low-temperature

(SLT) limit, a mutual low-temperature low-density-limit. First, the theory valid in this limit will be briefly

described. Afterwards we use our numerically calculated vacuum cluster functions to improve the existing

models of three-particle partition functions, which account for (screened) atom-charge interactions as well

as the formation of atom He and molecular ions H+
2 and H− in the plasma. We compare the predictions of

the SLT expansion to the well accepted OPAL-tables along the solar adiabat, not only for the pressure [13]

and internal energy [14], but also for the sound speed. In a second part of this chapter a simple analytical

model inspired by the SLT analysis is introduced and its predictions are analyzed briefly. The SLT

expansion itself as well as the simple model of the pressure, motivated by it, enjoy complete transparency

and can be easily implemented, which makes them ideal equations of state for on-line use.

In chapter 7 we finally use the results of our numerical algorithm for the computation of screened

cluster functions to its full extent. First, we again study the partially ionized Hydrogen gas using the

screening dependent cluster functions incorporating all clusters with up to three particles. The differences

between the OPAL, the SLT and these models are analyzed extensively and the effect of the finite density

cluster functions is examined. In a second part of chapter 7 we extend this initial test analysis to the
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Hydrogen-Helium case, where again all effects up to third order in the number of interacting particles

are taken into account. It is shown how we account for the screening provided by charged clusters, in

particular the one related to the presence of the charged He+ ion. We close the chapter by showing our

predictions of the pressure profile along the solar adiabat, for which we find excellent agreement with the

currently well-established OPAL-tables.

In the final chapter we summarize our results and give ideas for further research.
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Chapter 2

Review: The partially recombined

plasma

In the past decades, various approaches to the equation of state of a charged plasma have been investigated

with great success. These approaches can be separated into two classes, namely the chemical picture and

the physical picture, according to the framework they are working with. These two pictures fundamentally

differ in the way they describe the plasma.

The chemical picture assumes that the free energy potential of the whole plasma can be split

into several phenomenological free energies, which describe the different chemical species present in the

system [15, 16]. In the case of a partially ionized Hydrogen-Helium mixture, the corresponding particles

are not only electrons, protons and α-particles, but also Hydrogen atoms, Helium atoms, He+, H− and

further chemical species that may form. The phenomenological free energy of the whole system is then

given by

F = Fe + Fp + Fα + FH + FH− + FH+
2
+ FHe + FHe+ + . . . . (2.1)

In equation (2.1), Fs is the ideal free energy of species s = {e, p, α,H,H−,He+,He, . . .} for Ns particles.

Further terms in equation (2.1) would involve ideal contributions of, for example, H2 molecules as well

as the interactions between the several species. The free energy of species s is given by

βFs = Ns

[

1− ln
(

(2πλ2s)
3/2Ns/Λ

)

− lnZ int
s

]

, (2.2)

where the first term is the free energy of an ideal Maxwell-Boltzmann gas of Ns particles with mass

ms (λ2s = β~2/ms), while the second term Z int
s is the internal partition function of “particle” species

s. For elementary particles, such as electrons (σe = 1/2), protons (σp = 1/2) and α-particles (σα = 0),

this internal partition function merely reduces to the spin degeneracy (2σs + 1). The choice for the

internal partition functions of composite particles, on the other hand, is non-trivial and is subject of

debate. Historically, composite entities were, for instance, modeled by the famous Plank-Larkin-Brillouin

partition function [17]. Another very simple approximation amounts to retain only the ground state

contribution Z int
s = gσse

−βE0
s of these composite objects. We stress that the inclusion of interactions

between the different chemical species in the free energy functional (2.1) is also non-trivial.

At equilibrium the potential F is minimal with respect to the particle numbers Ns, i.e. the chem-

ical composition of the system. This minimization has to be carried out with respect to the chemical

15



Review: The partially recombined plasma

composition only and, therefore, the total number of electrons, protons and α-particles, the volume Λ as

well as the temperature T are fixed. We notice that the total number of electron is, for example, given

by N total
e = Ne +NH + 2NH− +NH+

2
+ 2NHe +NHe+ , if we do not consider more complex species than

explicitly given in equation (2.1). We can either add Lagrange-multipliers to the free-energy function

in order to enforce these constraints directly on the level of the functional or treat these constraints

separately. The famous Saha-ionization equation for pure Hydrogen can, for example, be derived by

the simple model

βFSaha =Ne

[

1− ln
(

(2πλ2e)
3/2Ne/Λ

)

− ln(2)
]

(2.3)

+Np

[

1− ln
(

(2πλ2p)
3/2Np/Λ

)

− ln(2)
]

(2.4)

+NH

[

1− ln
(

(2πλ2H)
3/2NH/Λ

)

− ln(4e−βEH)
]

(2.5)

where EH is the Hydrogen ground state energy. The particle number conservation and the charge neu-

trality lead to the introduction of the variable x determining the fraction of ionized particles

Ne = N x

Np = N x

NH = N (1− x). (2.6)

In these new variables N and x the constraints on the particle numbers of the fundamental species

are trivially fulfilled. Minimization of the free energy functional with respect to the fraction of ionized

particles

∂βF(x,N, V, T )

∂x
= 0 (2.7)

gives rise to the equilibrium energy βF (xmin, N, V, T ) subject to the imposed conditions. Once the

equilibrium free energy βF is found all thermodynamic quantities can be deduced from it by the usual

identities. The pressure of the system can be calculated by the fundamental thermodynamic identity

∂F

∂V

∣
∣
∣
∣
N,T

= −P. (2.8)

Introducing the number density ρ = N/Λ, the usual form of the Saha-ionization equation of state for the

pressure P (ρ, β) is found

βP = ρ+
1

2
ρ∗
(√

1 + 4ρ/ρ∗ − 1
)

with ρ∗ = (2πλ2H)
−3/2eβEH . (2.9)

The here described approach is, of course, only the simplest variant of an actual implementation. Refine-

ments of this rather crude approximation have been successfully adopted, the most prominent being the

occupation number formalism1 [18]. Interactions between the chemical species can be modeled by addi-

tional terms in the free energy functional [19, 20]. These additional interaction terms can be modeled by

the experimentally measured potentials (e.g. H2-H2), or they can be determined by ab initio-calculations.

Additional contributions arising from the Fermi-statistics of the fundamental particles as well as those

1This approach takes into account excited states by assigning additional variables determining the number of particles
occupying a certain state in the internal partition function ZI .
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related to the famous Debye term, describing screening effects of the Coulomb interaction, have been

implemented. Nevertheless, the approach remains phenomenological since it is based on the assumption

that the actual free energy separates into a sum of independent parts Fs. One can easily imagine that in

the case of a plasma interacting by the long-ranged Coulomb potential this assumption is questionable.

Further problems arise already by observing that the internal partition function of the Hydrogen atom

is divergent by itself [9, 21]. This means that there is no natural choice for the model of the internal

partition functions in the chemical picture.

The physical picture describes the plasma in terms of its elementary charged particles, namely

electrons, protons and α-particles. This description is in sharp contrast to the chemical picture where

the chemical species are introduced by assuming the separability of the free energy. These elementary

particles interact with the bare Coulomb potential, unlike in the chemical picture, where often effective

ad-hoc expressions for the interspecies potentials are assumed. The central quantity for the analysis of

the system in the physical picture is the Grand canonical partition function [22, 23]

Ξ(β, {µγ}, V ) = Tr
[

e−β(H{γ}−
∑

γ µγNγ)
]

(2.10)

where Nγ is the particle number of species γ and µγ are the related chemical potentials. The Hamiltonian

of this N -particle system is given by2

H{Nγ} = −
N∑

i=1

~
2

2mγi

∆i +
1

2

N∑

i 6=j

eγieγj

|xi − xj|
. (2.11)

We stress that no chemical species are introduced a priori. The thermodynamic quantities are derived

from the Grand canonical potential

−βΩ = βPΛ = − ln(Ξ). (2.12)

Different exact asymptotic expansions of the Grand canonical potential have been studied in the last

century. These expansions cover different physical parameter regimes, where , for example, the system is

almost fully ionized in its elementary charged particles, i.e. the electrons and the nuclei. The asymptotic

expansion in this particular regime corresponds to the famous virial expansion, for which the Grand

canonical partition function is developed in powers of the density ρ at fixed temperature T . First steps

in this direction were taken by Ebeling [24] (order ρ2), and higher order terms were later calculated

by several authors [25, 26, 27, 28, 29]. Interestingly, these calculations were performed using different

techniques, such as the effective potential method [30], the path integral representation as well as effective

field theory. All these different approaches agree up to order ρ5/2 [29] included.

To study the system at finite densities ρ, Rogers introduced the so-called ACTivity EXpansion

(ACTEX) formalism which takes recombination effects into account. In this approach, the composite

particles are identified as associated with the short-range contributions in the usual fugacity expansion of

the Grand canonical potential, for which Quantum mechanics has a crucial role. Long-range contributions,

which a priori diverge are treated classically by replacing the Coulomb potential with the Debye potential.

This provides the pressure as an explicit, approximate, function of the fugacities, from which the equation

of state can be derived through the standard thermodynamic identities. The ACTEX method was used

to built the widely employed OPAL-tables, which presents the most prominent incarnation of a physical

2N =
∑

γ Nγ
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picture calculation [31]. These tables are freely available on the Internet, and a large community of

scientists in various fields employs them as an ingredient for their numerical calculations. As already

stated in the Introduction, the equation of state of either a pure Hydrogen system or of the Hydrogen-

Helium mixture is of fundamental importance for the modeling of stars as well as the formation of

galaxies or the fluid dynamics of interstellar nebulae. One major downside of these tables is that the

code used to generate them is not freely available and, therefore, we can only speculate about the actual

implementation of the physical processes, which are said to be considered [32]. Even though the physical

processes, taken into account in the OPAL-tables are described, no explicit formulas are given. This led

even to a thesis dedicated to emulate these tables in order to quantitatively understand the ingredients

and physical assumptions of this model [33].

A systematic account for recombination and simultaneously for screening within the plasma has been

achieved in Ref. [34]. The authors used the path integral representation of the quantum plasma as

basic tool, which leads to the notion of loops, i.e. extended objects take the place of the zero-dimensional

elementary particles. Using such a representation the quantum plasma of elementary particles is described

as a classical gas of loops. In this new formulation, standard Mayer diagrammatics [35] can then be

applied and chain resummations, which give rise to the Debye potential in the classical case, can be

performed to remove the long-range divergencies. After this resummation, the particle densities are given

by a diagrammatic series build with this new screened loop-loop potential, and particle clusters can be

associated with chemical species. Such a formalism can be viewed as the proper mathematical formulation

of the ideas underlying the ACTEX method.

The so-formulated Screened-Cluster-Representation (SCR) has been used to derive exact asymp-

totic expansions around Saha theory for pure Hydrogen. In fact, Saha theory has been proven to become

exact in a double low-temperature low-density limit [10, 11, 36]. The SCR can be used to study this

Scaled-Low-Temperature-limit (SLT) and provides the proper tool to collect all non-ideal corrections

to the Saha equation [13]. Corrections related to charge-charge and charge-atom interactions, to the

formation of more complex entities such as H+
2 and H− ions as well as H2 molecules, are accounted for.

The authors used phenomenological models, from ground state approximations to more sophisticated

models3, to approximate the higher order partition functions [37, 14]. We will numerically evaluate the

explicit expressions of the cluster functions in terms of path integrals, given in Ref. [13], to make this

phenomenological modeling unnecessary [12]. Compared to the virial expansion, the SLT expansion has

a wider range of validity in the phase diagram since it also includes the partially ionized regime.

Besides these approaches the Path Integral Monte-Carlo (PIMC) method as well as the Density

Functional Theory(DFT), constitute numerical techniques to describe the physics of charged plas-

mas [38, 39, 40, 41]. Ab initio methods, well appropriate for high densities, have been applied to the

Hydrogen-Helium mixture with great success (Ref. [42] and references therein). These methods allow not

only to access the equation of state but also other quantities, as for example, the electrical or the thermal

conductivity. The name path integral Monte-Carlo originates from the identification of the fundamental

particles with paths, by virtue of the Feynman-Kac formula [43]. In this approach the fundamental parti-

cles do interact with the bare Coulomb potential, but for numerical reasons the pair-action approximation

is used in combination with exact two-particle actions, in practice [38]. The fermionic nature of the elec-

trons, gives rise to the so-called fermion sign problem4. For bosons this sign-problem is not present and,

thus, the PIMC-method has been applied extensively to study super-fluidity, for example [44, 45]. Due

3The two proton, one electron cluster describing the H+
2 -molecule is, for example, described by a rotator-vibrator model

4The fermion sign problem is directly related to the anti-symmetry of the overall fermion wave function and, therefore,
to the fact that the partition function of a fermion system is given by a Slater determinant.
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to poor statistics, the PIMC is not well suited at low densities, but it is appropriate to study the high

temperature moderate density regime5.

In the following chapter we will present the basics of the physical picture using the well-known Mayer-

diagram techniques in combination with the path integral formalism. This chapter will give us the tools

to analyze the equation of state of the Hydrogen-Helium mixture, as it is necessary to understand the

reasoning that led to the SLT expansion, as well.

5The importance of the fermion sign problem is determined by the ratio of the free wavelength λ of the electrons and
their mean distance.
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Chapter 3

The loop representation and

quantum Mayer diagrams

3.1 Introduction

The loop representation is a seemingly classic formulation of Quantum mechanics that enables us

to use standard classical many-body techniques in the context of the thermodynamics of a N-particle

quantum Coulomb system at equilibrium. Its basis is the Feynman-Kac formula leading to a change in

paradigm [43]. The complex operator and Hilbert space structure of the usual wave function picture

is replaced by functional integrals over paths between points in space. We will use this formalism to

rewrite the Grand canonical potential in terms of path integrals. Elements in the fugacity series are

called “quantum Mayer diagrams”, the quantum equivalents of the standard virial coefficients. These

objects made from loops of particles, which reflects the quantum nature of the particles. Due to the

long-range character of the Coulomb potential each individual Mayer diagram alone is divergent. It

is only after partial resummations of the diagrammatic series, which account for collective effects such

as screening, that its elements become finite and well defined. The basic interaction between particles

does alter after these resummations are considered, removing the large-distance divergence of the Mayer

diagrams. We devote a subsection to the properties of this “effective” potential since we will use it later

in our numerical calculations. Due to the importance of recombination effects in the partially ionized

plasma, the subject of this thesis, we cannot take the potential into account perturbatively. The loop-

formalism is well-suited to treat this non-perturbative problem. For a general overview of the variety of

applications of the loop-formalism see Ref. [27, 34, 13, 46].

In the following, we will develop and apply the quite general loop-formalism to the fugacity expansion

of the Grand canonical potential of a Coulombic system. The computational techniques necessary to

evaluate these cluster integrals numerically are presented in chapter 5.
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3.2 The loop representation

Two basic requirements have to be fulfilled by the description of the system. We want to be able to

consider the thermodynamic limit V → ∞ and we demand the system to be charge neutral

∑

γ

ργeγ = 0. (3.1)

Here ργ is the density of component γ with charge eγ . The first means that we should use a thermody-

namic potential where the volume V is a parameter. In the Canonical ensemble the particle number of

each species Nγ is fixed and a neutral system is only achieved for very specific configurations of those. As

shown by Lieb-Liebowitz [11], the neutrality of a system described by the Grand canonical ensemble is

automatically assured, which advocates the Grand canonical ensemble as an appropriate choice. We thus

assume our system to be coupled to a thermostat which fixes the temperature T of the system and to

a particle bath for each plasma component with fixed chemical potential µγ . These basic considerations

lead to the choice of the Grand canonical ensemble Ω(T, V, {µγ}) to describe the macroscopic physics of

the Coulomb mixture. The macroscopic description of the system by the Grand canonical ensemble is

related to its microscopic description by the Hamiltonian through the Grand canonical partition function

Ω (T, V, {µγ}) = −kBT ln Ξ (T, V, {µγ}) (3.2)

with

Ξ (T, V, {µγ}) = Tr
[

e−βH{Nγ}+β
∑

γ µγNγ

]

, (3.3)

where β = 1/kBT is the inverse temperature. The N-body Hamiltonian is given by

H{Nγ} = −
N∑

i=1

∇2
i

2mγ
+

N∑

i=1

i−1∑

j=1

V (xi,xj), (3.4)

where we are interested in the particular case where particles interact via the Coulomb potential

V (xi,xj) =
eγieγj

|xi − xj|
. (3.5)

Considering a classical ensemble, the trace would run over all classical inner degrees of freedom, the

positions of the particles x, their momenta and, since the system is coupled to a particle reservoir, the

number of particles Nγ for each species γ.

In Quantum mechanics, the Hamiltonian is not a function, but an operator and the trace is a sym-

metrized operator trace reflecting the statistics of the particle species. The operator trace in formula (3.3)

can be written as a sum of Slater determinants, built from one-body states |{σi,xi}〉 in the basis formed

by spin-space eigenstates. Since the particle number is not fixed in the Grand canonical ensemble, it also

invokes a summation over this internal degree of freedom of the system. The symmetrization introduced

by the Slater determinant, symmetrizes each particle species subspace independently (P = Pe ⊗Pp ⊗Pα

in the case of the Hydrogen-Helium mixture, for example). The Grand canonical partition (3.3) function
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is written explicitly

Ξ =

∞∑

{Nγ}=0

e
∑

γ βNγµγ
∑

P
ǫ(P)

∑

{σe,i},{σp,j},{σα,k}
〈σe,P(i)|σe,i〉 〈σp,P(j)|σp,j〉 〈σα,P(k)|σα,k〉 (3.6)

∏

i

∫

dxi〈x1,x2, . . . ,xN | exp
(
−βHNe,Np,Nα

)
|xP(1),xP(2), . . . ,xP(N)〉.

In the above formula ǫ(P) = ǫ(Pe)ǫ(Pp)ǫ(Pα) = ±1 is the signature of the permutation P. Using the

Feynman-Kac path integral formalism [43] the matrix element is expressed in terms of functional integrals

over all paths ǫi(s) between the root points xi and xP(i)

〈{xi}|e−βH{Nγ} |{xP(i)}〉 =
∏

i

exp
[

−∑i

(
xi − xP(i)

)2
/
(
2λ2γi

)]

(
2πλ2γi

)3/2

∫

D (ξi) exp

[

. . . (3.7)

−
∑

i 6=j

eγi
eγj
β

2

∫ 1

0

dsV
(
(1− s) (xi − xj) + s

(
xP(i) − xP(j)

)
+ λγi

ξi(s)− λγj
ξj(s)

)

]

where the potential V (r) = 1/|r| is the usual Coulomb potential (3.5) and the thermal wavelength of

species γ is defined as λγ =
√

~
2β/mγ . The paths ξi(s) are parametrized by a dimensionless fictitious time

variable s. The distribution of path shapes is given by the Wiener measure which is, being Gaussian,

completely defined by its covariance

∫

D(ξi)ξi(s)ξj(t) = ✶δi,j inf(s, t) (1− sup(s, t)) , (3.8)

together with the condition ξ(0) = ξ(1) = 0. The paths xi(s) = (1 − s)xi + sxP(i) + λξi(s) introduced

by the Feynman-Kac path integral description are either closed if P(i) = i or open otherwise. The cyclic

permutations of the root points xi,xP(i) can be exploited to collect open paths to form larger closed

paths involving several particles of the same species. The sum over these permutations (3.6) together

with the summation over the number of particles leads to the product of all possible combinations of

globally closed paths containing an arbitrary number of particles of the same species, the so-called loops.

We can, thus, exactly rewrite the Grand canonical partition function (3.3) in terms of these closed loops

L [47]

Ξ =
∑

N

1

N !

∏

i

∞∑

qi=1

∫

D(Li)z(Li) exp



−β
2

∑

i 6=j

V (Li,Lj)



 , (3.9)

where the Quantum loop-loop potential is given by

V (L1,L2) = eγ1
eγ2

∫ q1

0

ds1

∫ q2

0

ds2V (x1 − x2 + λγ1
η1(s1)− λγ2

η2(s2)) δ̃(s1 − s2). (3.10)

The Dirac comb δ̃ of period one defined by

δ̃(s) =

∞∑

n=−∞
δ(s+ n) (3.11)

enforces the interaction at same “times” with respect to the original open paths ξ(s). Suppressing the
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Dirac comb in formula (3.10) would lead to classical interaction of two charged wires and, thus, its

presence reflects the quantum nature of the particles. The inner degrees of freedom of a given loop

L are: its root point chosen arbitrarily among those of the particles forming the loop, the number of

particles q involved, the spin common to all exchanged particles and eventually the shape of the loop η(s)

with 0 < s < q. The loop shapes are distributed according to the Wiener-measure, which is completely

determined by its covariance

∫

D(η)ηi(s)ηj(t) = ✶δi,j inf(s/qi, t/qi) (1− sup(s/qi, t/qi)) . (3.12)

The shape-property of the loops implements the inherent quantum fluctuations of the particles in a

seemingly classical way. The complex structure of quantum mechanics (commutation relations) is hidden

in the functional integration of loop shapes. The integration-measure
∫
D(L) is explicitly given by

∫

D(L)F (L) =
∑

γ=e,p,α

∑

σ

∞∑

q=1

∫

dx

∫

D(η)F (x, γ, σ,η(s)) , (3.13)

in the Hydrogen-Helium case. The loop-fugacity introduced in equation (3.9) is the bare fugacity zqγ of

q particles of species γ, times additional factors containing the interactions of the particles in the loop

itself and combinatorial factors reflecting the collection of several open paths into one closed loop

z(L) = (−1)q−1
zqγ
q

exp (−βU(L))
(
2πqλ2γ

)3/2
with zγ = eβµγ . (3.14)

The interaction between the q particles inside the loop L defines the self-energy of the loop

U(L) =
e2γ
2

∫ q

0

ds1

∫ q

0

ds2V (|η(s1)− η(s2)|)
(
1− δ⌊s1⌋,⌊s2⌋

)
δ̃(s1 − s2), (3.15)

where the discrete δ-function avoids self-interaction of particles. The seemingly classic loop-representation

of the partition function (3.9) enables us to use the standard statistical mechanics technique of Mayer

diagrams to carry out an activity (fugacity) expansion on the level of loops.

3.3 Bare quantum Mayer diagrams

Assuming that the particle density is low the bare fugacities can be expected to be a small parameter

in which the Grand Canonical partition function Ξ can be expanded. Historically, this expansion and

its diagrammatic representation has been first introduced by Mayer [35, 48] for classical systems. The

partition function of the quantum loop gas is analogous to that of a classical system, where the usual

point particles are replaced by extended objects called “loops”. These loops are complex classical objects,

with shapes describing the quantum fluctuations of the underlying point particles and their statistics.

After this identification the quantum nature of the particles is hidden in the functional integration over

all loop shapes and the Mayer diagrammatic can be applied in a straight forward manner.

24



The loop representation and quantum Mayer diagrams

Figure 3.1: In the loop-picture of quantum statistical mechanics, paths are closed but can involve an
arbitrary number of particles.

The introduction of the so-called Mayer bond1

f(L1,L2) = exp (−βV (L1,L2))− 1 =
1 2

, (3.16)

in equation (3.9) leads to the separation of diagrams in two classes: those for which a path made with

f -bonds between all loops can be found and those where it cannot. Taking the logarithm of the so

rewritten series of diagrams suppresses all configurations where the loops are not connected by bonds of

the Mayer-type (3.16), so that the series for the Grand canonical ensemble can be written as follows:

−βΩ = log(Ξ) =
∑

N=1

1

N !

[
∏

i

∫

D(Li)z(Li)

]
N∏

i<j

(f(Li,Lj) + 1)

∣
∣
∣
∣
∣
∣
connected

. (3.17)

The product of bonds in equation (3.17) can be represented in a convenient manner using diagrams.

Each node in these Mayer diagrams is identified with a loop and, therefore, with a fugacity-factor in

equation (3.17), and the product of Mayer bonds
∏
(f + 1) is represented by links between the nodes

of the diagram. The integration over inner degrees of freedom is implicit if not indicated otherwise.

Example diagrams illustrating the class of disconnected and connected diagrams are shown in figure 3.2.

︸ ︷︷ ︸

connected
︸ ︷︷ ︸

disconnected

Figure 3.2: Connected and disconnected graphs. The dotted line represents an arbitrary bond.

It should be remembered that in this description the particle species of a loop is an internal degree of

1Several gray nodes can be superposed to form a diagram, and are afterwards colored black.
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︸︷︷︸

B1
1 2
︸ ︷︷ ︸

B2
1 2

3

1 2

3

1 2

3

1 2

3

︸ ︷︷ ︸

B3

Figure 3.3: The first three virial coefficients

freedom over which the sum is taken in each loop independently. By defining

BN ({(L}) = 1

N !

N∏

i<j

(f (Li,Lj) + 1)

∣
∣
∣
∣
∣
∣
connected

, (3.18)

we recover the standard expansion of the Grand canonical ensemble in terms of standard virial coefficients

(see figure 3.3)

−βΩ =
∑

N

∫
[
∏

i

D(Li)z(Li)

]

BN ({Li}) (3.19)

The virial coefficient BN is the sum of all connected diagrams containing N nodes using the bare Mayer

bond (3.16). In the Coulomb case these virial coefficients are divergent due to the long-range non-

integrability of the potential. This divergence calls for a resummation in order to be able to assign a

finite value to the diagrams, which is briefly presented in the following section. In contrast to the classical

virial coefficient the nodes do not represent solely particle positions but do have an additional loop shape

degree of freedom and contain an arbitrary number of particles of the same species with the same spin.

In addition, the fugacities have gained structure and depend on the loop shape and internal degrees of

freedom (see equations (3.14) and (3.15)), too. The number of particles is an inner degree of freedom of

each loop in the former formulation. We extract this degree of freedom and make it an explicit parameter

of the loop as well as the loop species

−βΩ =
∑

N

∫
[

N∏

i

∑

γi=e,p,α

∞∑

qi=0

D(Li,γi,qi)z (Li,γi,qi)

]

BN ({Li,γi,qi}). (3.20)

The first terms in the expansion in bare fugacities are, for example, given by

−βΩ =

one particle in one loop
︷ ︸︸ ︷
∑

γ1

∫

D(L1,γ1,1)z (L1,γ1,1) B1
︸︷︷︸
=1

+

two particles in one loop
︷ ︸︸ ︷
∑

γ1

∫

D(L1,γ1,2)z (L1,γ1,2) B1
︸︷︷︸
=1

(3.21)

+
∑

γ1

∑

γ2

∫

D(L1,γ1,1)

∫

D(L2,γ2,1)z (L1,γ1,1) z (L2,γ2,1)B2 (L1,γ1,1,L2,γ2,1)

︸ ︷︷ ︸

two particles in two connected loops

+ . . . ,

where we recall that the loop fugacity with a fixed number of particles q is proportional to z (Lγ,q) ∼ zqγ .
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If we write the first term in this expansion explicitly

∑

γ1

∫

D(L1,γ1,1)z (L1,γ1,1) =
∑

γ1

∫

dr

∫

D(ξ)

︸ ︷︷ ︸
1

∑

σγ

zγ
(
2πλ2γ

)3/2
∼
∫

dr
∑

σγ

zγ
(
2πλ2γ

)3/2
(3.22)

we see immediately that due to the translational invariance we get a result depending on the size of

the integration volume. By general thermodynamic considerations the Grand canonical ensemble for a

homogeneous (translational invariant) system is given by

Ω = −PV (3.23)

so that

−βΩ = βPV = series of Mayer-type diagrams. (3.24)

Having realized that all diagrams appearing in the series (3.20) are proportional to the volume of the

system we can divide it out and find for the pressure

βP =
1

V
series of Mayer-type diagrams. (3.25)

Dividing by the volume is equivalent to not integrating over one loop root point, so that we have to

integrate over relative distances of the loops, only.

3.3.1 Symmetry factors and topological structure of the Mayer diagrams

The formula (3.17) can be further manipulated to combine all diagrams that have the same topological

structure. The last three diagrams in figure 3.3, for instance, can be gathered into one single diagram to

which one associates a symmetry factor, due to the fact that they all have the same numerical value [49].

The resulting formula for the Grand canonical ensemble and thereby for the pressure has been derived

in Ref. [47, 27]

−βΩ =
∑

G

1

S(G)

[
∏

i

∫

D(Li)z(Li)

]
∏

i 6=j

(f(Li,Lj) + 1)

∣
∣
∣
∣
∣
∣
G

. (3.26)

The sum
∑

G runs over all topologically different graphs that are connected. The symmetry factor is given

by N ! divided by the number of topologically equivalent diagrams in the product
∏N

i<j (f(Li,Lj) + 1),

which have the same structure as GN . The symmetry factor of a diagram can be easily found by counting

the number of permutations of the bonds that leave the product of bonds invariant. To give an example

we deduce the symmetry factors of the three loop diagrams

1 2

3

S = 2

1 2

3

S = 6. (3.27)

In a diagrammatic formalism consisting of several bonds, these bond-types have to be taken into account

in the assignment of the symmetry factor to a diagram since only bonds of the same type can be permuted.
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Furthermore, if the symmetry of the nodes is broken, for example, by being made of different species or

a different number of internal particles the symmetry between the bonds is broken indirectly

1 2

3

S = 1

1 2

3

S = 2

1 2

3

e

e

p
S = 2. (3.28)

To summarize, the symmetry factor is defined as the number of permutations of the bonds that leave the

product of bonds invariant.

3.3.2 From pressure to density

Equation (3.21) provides a series expansion of the pressure in terms of fugacities. As we are interested

in the pressure as a function of the relative abundances and the density rather than fugacities, we also

need the relation for the particle densities ργ in terms of the fugacities zγ . The definition of the average

particle number of species γ in the Grand canonical ensemble is given by

Nγ = − ∂Ω

∂µγ
= − ∂Ω

∂zγ

∂zγ
∂µγ

= −zγ
∂βΩ

∂zγ
. (3.29)

The densities are, thus, expressible as the derivative of the pressure with respect to zγ

ργ = zγ
∂βP

∂zγ
= zγ

∂ series of Mayer diagrams

∂zγ
. (3.30)

On the level of diagrams, the rule for passing from the pressure to the density is that the derivative acting

on a node colors it white

zγ
∂

∂zγ γ
=

γ
. (3.31)

This way the rules for the symmetry factor are completely preserved with one slight modification owed

to the quantum statistics of the particles. For the nodes not containing single particles but loops, which

are made of q particles, a white point does carry an extra factor of q (from the derivative acting on the

bare fugacities of the loop particles z ∂zq

∂z = qzq).

In the following, we will first inspect the quantum equivalent of the Debye potential, indispensable

due to the long-range nature of the Coulomb potential. Afterwards, we will see how the neutrality of the

system is realized on the level of Mayer diagrams.

3.4 Screened quantum Mayer Diagrams

Due to the long-range of the Coulomb potential many-particle effects are of particular importance [34,

46] in the Coulomb gas. The non-integrability of the Coulomb potential at large distances makes it

necessary to consider resummations of Quantum-Mayer diagrams. The result is the loop equivalent of

the widely known RPA-resummation, which gives rise to the Debye potential. The classical Debye-Hückel
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theory leads to an integrable effective potential

βVDH = βeiej
e−κ|r|

|r| with κ =

√

4πβ
∑

γ

e2γ
zγ

(
2πλ2γ

)3/2
(3.32)

between particles. This potential can be diagrammatically interpreted as a result of the resummation

−βVDH(r, r
′) = (3.33)

= + + + . . .

of convolutions of the bare Coulomb bonds

−βV (r, r′) = . (3.34)

Since the quantum properties are hidden in inner degrees of freedom of the loops, it is tempting to

carry out the same type of resummation on the level of loops. The resummation on either classical or

quantum level induces double counting rules that prohibit some diagrams appearing in the original series

(3.17) and (3.20), which have to be taken into account to preserve consistency. The analysis is presented

in [50] in a very pedagogical manner. Therefore, we will present the steps of the calculation only very

briefly. Two points have to be examined: First, the influence of the resummation on the series (3.17) and

second, the structure of the resummed loop potential itself.

3.4.1 Resummed Mayer diagrams

Due to the long-range character of the Coulomb potential the resummation procedure is essential, since

it leads to a loop-loop potential which is integrable and, therefore, assures the finiteness of the quantum

virial coefficients. We sketch the ideas behind the resummation procedure and refer the interested reader

to Ref. [34] where it is carried out with complete rigorousness2. The Mayer bond (3.16), used in the

current series (3.26) for the pressure, can be decomposed into powers of the bare loop-loop potential V

f(L1,L2) = exp (−βV (L1,L2))− 1 =
1 2

(3.35)

=
∑

n=1

1

n!
(−βV (L1,L2))

n
=

1 2
+

1 2
+

1 2
+ . . . .

It is instructive to realize that this decomposition does not change the diagrammatic rules due to the

combinatorial factor 1/n! present in the expansion of the exponential (3.35) which exactly coincides with

the symmetry factor of each of the terms in the diagrammatic expansion. In this decomposed diagram-

matic we have to consider all diagrams made of the bond V where an arbitrary number of dashed bonds

can bridge between two nodes. The symmetry factors of these diagrams can be deduced by applying the

usual rule3. For each diagram in which no convolution of the bond V is present, there are topologically

equivalent diagrams where the bare bond is replaced by an arbitrary number of convolutions of bonds V

2In this paper resummations are performed for the diagrammatic series of the particle density. The presented resumma-
tion for the pressure involve the same combinatorics, except for the ring structures as noticed latter

3The symmetry factor is equal to the number of permutations that leave the product of labeled bonds unchanged.
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with intermediate black nodes. For example, the diagrams

, . . .

. . .

. . .

. (3.36)

belong to the same class and will be combined. All bridges between the two “end” points can be compactly

expressed by introducing the resummed potential

−βφ(L1,L2) = (3.37)

= + + + . . . .

The overall symmetry of the bridges between the two root nodes is restored and thereby the symmetry

factor of the resummed diagram is equal to the original bare one. For specific realizations of convolutions

the symmetry factor is actually not necessarily equivalent to the one of the original diagram. Only after

considering the sum of all realizations of convolutions the symmetry of the bonds and consequently the

symmetry factor is restored

︸ ︷︷ ︸

S=6

+ . . .

. . .

. . .
︸ ︷︷ ︸

S=dependent on specific realization

=
︸ ︷︷ ︸

S=6

. (3.38)

After the introduction of the new bond −βφ equation (3.38) the diagrammatic rules have to be changed

in order to prevent double counting of diagrams. The set of diagrams permitted is limited to those where

no convolutions of the resummed potential φ are present. This requirement excludes, for example, the

diagram

, (3.39)

which involves a convolution of φ and, therefore, double counts diagrams of the original V series4. After

resumming the diagrams in each class, two nodes can usually be connected by an arbitrary number of

bonds −βφ in parallel. An exception is the case that one node is connected to the rest of the diagram

by two bonds −βφ in parallel. The diagram

, (3.40)

for instance, does require special treatment due to the fact that it double counts diagrams in the original

decomposed series. To correct for this double counting we have to replace one of the two parallel bonds

4 represents an arbitrary bond.
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−βφ by the bare potential, giving rise to

= , (3.41)

where

=
1

2

∫

D(L2) (−βV (L1,L2)) (−βφ(L2,L1)) z(L2) = IR(L1), (3.42)

corresponds to all convolutions with at least one intermediate node. The classical estimate for those

attached rings is given by

IR(L) ≈
classic

e2βκ

2
. (3.43)

Having understood the subtleties arising from the resummation of chain diagrams we can invert the

decomposition and collect powers of −βφ in order to form a “Mayer-like” bond. As we have seen, powers

of −βφ higher than one are unproblematic when the nodes are not simply connected. We can write

=
∞∑

n=2

1

n!
(−βφ)n = e−βφ − 1 + βφ. (3.44)

If one node is attached to the rest of the diagram this bond has to be replaced by

T =

∞∑

n=3

1

n!
(−βφ)n = e−βφ − 1 + βφ− (−βφ)2

2
. (3.45)

to prevent double counting.

The former statements are true for almost all diagrams, but there is one set of diagrams in the whole

diagrammatic series of the pressure which is somehow special and needs separate treatment. Namely, it

is the set of “ring” diagrams giving rise to the Debye-correction

︸ ︷︷ ︸

S=2

+

︸ ︷︷ ︸

S=6

+

︸ ︷︷ ︸

S=8

+ . . . . (3.46)

In the former considerations we tacitly assumed that we could separate the nodes into two classes: the

“end” nodes and those which were intermediate nodes of the convolutions we resummed. This is clearly

not the case for the Debye-correction diagrams where an additional rotational symmetry is present leading

to a different symmetry factor for each of the diagrams in the set (S = 2n where n is the number of

nodes). When replacing the quantum loop potential by the classical Coulomb potential, the value of the
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Diagrammatic rules for the screened pressure diagrams

All simply connected diagrams made with the nodes and bonds:

︸ ︷︷ ︸

−βφ

,
︸ ︷︷ ︸

IR(L)

,
︸ ︷︷ ︸

e−βφ−1+βφ

, T
︸ ︷︷ ︸

e−βφ−1+βφ− (βφ)2

2

,

where after superposing the gray nodes to form a diagram all nodes are colored black. Moreover, the
following rules apply:

1. Convolutions of are forbidden.

2. An arbitrary number of rings (including none) can be attached to each node. A node with
attached rings is said to be dressed, one without is said to be bare.

3. A bare node cannot be attached to the rest of the diagram by a single bond . We must
use the special bond T which is reserved for this situation.

4. The “ring” diagram giving rise to the Debye correction has special weight given by equa-
tion (3.47), in the classical case.

Figure 3.4: Diagrammatic rules for the pressure series

sum of those diagrams is equal to5

PDebye =
1

(2π)3

∫

dk

∞∑

n=2

(−κ2
k2

)n
1

2n
=

κ3

12π
with κ =

√

4πβ
∑

i

zi
(2πλ2γ)

3/2
q2i . (3.47)

It is important to know that this class of diagrams has to be treated separately. The quantum equivalent

of equation (3.47) can be derived in a straightforward manner in Fourier space. However, we only have to

concern ourselves with the classical formula (3.47), since it is valid in the parameter regime we consider.

We can, thus, conclude that the series of diagrams can be rewritten in terms of the resummed potential

where four additional double counting rules have to be taken into account. The rules of the resummed

diagrammatic are summarized in figure 3.4.

The diagrammatic series for the densities are then deduced from the pressure diagrams using the

relation

ργ = zγ
∂βP

∂zγ
. (3.48)

If the bonds did not depend on the fugacities, as is the case for the original Mayer series, the density

series would be obtained by successively whitening the black points and keeping only diagrams which are

topologically inequivalent. Since the screened potential with which the diagrams are constructed in the

resummed pressure series figure 3.4 depends on the fugacities, derivatives acting on the bonds have to be

considered, too. The diagrammatic rules to pass from the pressure to the density series are summarized

5The complete here presented analysis can be carried out Quantum mechanically. We are, however, mainly concerned
with solar conditions, where the classical approximation of the Debye-diagrams is sufficient.
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Diagrammatic rules to pass from pressure to densities

Let the derivative act on nodes ∂
∂zγ

= γ and bonds of the diagram. The weight of a white

node is q · z(L) where q is the number of particles forming the loop. The replacement rules for the
derivatives which act on bonds are given by:

Bond Description Derivative

Replace the bond −βφ by a convolution of two bonds −βφ
with an intermediate white point

The ring is replaced by a self-convolution with an interme-
diate white point

Replace the bond by e−βφ − 1 and add a white point con-
nected to both ends by the bond −βφ +

T
Replace the bond by e−βφ − 1 + βφ and add a white point
connected to both ends by the bond −βφ

Whiten the black node =

Figure 3.5: Diagrammatic rules for constructing the density series by differentiation of the pressure
series

in figure 3.5. Using these rules we recover exactly the same diagrams with the same combinatorial

coefficients as Alastuey et al. [34], which confirms the correctness of our considerations. The pressure

series defines a model equation of state completely. For our numerical calculations it is advantageous to

work with the pressure series and to calculate the densities by taking derivatives.

COMMENT: A particular consequence of these diagrammatic rules is that the convolution of the

form

(3.49)

is allowed. Therefore, the chain resummation has not achieved that convolution diagrams are absent

in the series but it only assures the integrability of the appearing cluster coefficients. First we briefly

summarize the properties of the resummed potential first calculated by Ballenegger et al. [50].

3.4.2 The screened loop-loop potential

The calculation of the resummed loop-loop potential is presented in Ref. [50] in its full length. Since

the resummed potential is a convolution of terms we can Fourier transform the quantum equivalent of

equation (3.33). Quantum mechanics solely enters by considering the nodes to be made of loops and by re-

placing the classical Coulomb potential by the loop-loop potential equation (3.10). Convolutions become,
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as for classical interactions, simple multiplications of Fourier transformed potentials. The simultaneity

condition of the bare loop-loop potential can be represented by introducing its spectral decomposition

δ̃(s1 − s2) =
∑

n e
2πin(s1−s2). After a few manipulations using the time-translational invariance of the

Brownian bridges, terms with different n’s decouple. The resummation of all chains with fixed n can be

carried out and we can back transform from (k, s)-space to get

φ(r1, r2,η1,η2) = eγ1
eγ2

∫ q1

0

ds1

∫ q2

0

ds2

∫

dk eik(r1+λ1η1(s1)−r2−λ2η2(s2)) . . .

∞∑

n=0

4π

k2 + κ2(n, k)
e2πin(s1−s2) (3.50)

with κ2(k, n) = 4πβ
∑

γ={e,p,α}
e2γ

∞∑

q=0

q

∫ q

0

ds

∫

Dq(η)zγ (η) e
iλγkη(s)−2πisn. (3.51)

We would like to discuss the above equation to gain more insight into this fairly complicated formula

(This screened potential will be further studied in section ➜4.2). First, we can recover the classical Debye

potential by taking the limit λγ → 0 first for the particles in the chain

lim
λ→0

κ2(k, 0) = κ2 (3.52)

lim
λ→0

κ2(k, n 6= 0) = 0.

Using the above limits we derive the semi-classical approximation

φsc(r1, r2,η1,η2) ≈ eγ1
eγ2

∫ q1

0

ds1

∫ q2

0

ds2

[
e−κ|r1+λ1η1(s1)−r2−λ2η2(s2)|

|r1 + λ1η1(s1)− r2 − λ2η2(s2)|
(3.53)

− 1

|r1 + λ1η1(s1)− r2 − λ2η2(s2)|
+

1

|r1 + λ1η1(s1)− r2 − λ2η2(s2)|
δ̃(s1, s2)

︸ ︷︷ ︸

equal times

]

,

where all loops in the chains are classical (λ = 0) but the external loops do still have finite extensions.

Taking the outer loops to be classical too, by setting ξi = 0, the last two terms cancel each other and

the first term reduces to the standard formula, so that we recover the Debye potential. The last two

terms in equation (3.53) lead to an algebraic decay (∼ 1/r6) of the potential at large distances. If we

further expand the approximation equation (3.53) for short distances we do find that it reduces to the

bare Coulomb interaction shifted by κ

φ(r1, r2,η1,η2) ≈ eγ1
eγ2

∫ q1

0

ds1

∫ q2

0

ds2
1

|r1 + λ1η1(s1)− r2 − λ2η2(s2)|
δ̃(s1 − s2)− eγ1

eγ2
κ. (3.54)

It is this shift of κ which will generate the first order correction to the Ground state of a few-particle

cluster, due to collective effects. At short distances the quantum loop-loop potential reduces to the bare

loop-loop potential since

lim
|k|→∞

4π

k2 + κ(k, n)
≈ 4π

k2
(3.55)
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only the first order term in the resummed quantum potential (3.38), which represents the direct interaction

of the particles, survives

lim
k→∞

φ(r1, r2,η1,η2) ∼ eγ1
eγ2

∫ q1

0

ds1

∫ q2

0

ds2

∫

dk eik(r1+λ1η1(s1)−r2−λ2η2(s2))
4π

k2
δ̃(s1 − s2) (3.56)

= V (L1,L2). (3.57)

Since we want to use numerical methods to calculate the cluster integrals we need to have a potential

which is easy to be evaluated. In practice, double time integration is not feasible in numerical calculations

where the path discretization easily reaches 400 discretization points. We have, thus, decided to use a

further simplified loop-loop potential which meets all important limits, as discussed in the above text

φκ(r1, r2,η1,η2) = eγ1
eγ2

∫ q1

0

ds1

∫ q2

0

ds2
e−κ|r1+λ1η1(s1)−r2−λ2η2(s2)|

|r1 + λ1η1(s1)− r2 − λ2η2(s2)|
δ̃(s1, s2). (3.58)

For short distances we do recover the shift of κ together with the bare loop-loop potential. At large

distances the potential decays exponentially. By using the approximate potential (3.58) we neglect the

algebraic tails present in formula (3.53). These tail corrections of the potential will not have influence on

the Ground state terms, which are dominant at low temperatures, and thus we expect the approximation

to give good results. In chapter 4 we will more closely investigate the accuracy of this approximation to

the loop-loop potential, by comparing it to the calculation with full double-time dependence.

3.5 Neutrality and the truncated fugacity series

The charge neutrality is an essential aspect of the physical system at equilibrium. In absence of

an external field a plasma in thermal equilibrium does always fulfill the charge neutrality in the Grand

canonical ensemble

∑

γ

eγργ = 0, (3.59)

which is highly non-trivial and one of the highlights of the Lieb-Lebowitz theorem [11, 46]. When

selecting a certain set of diagrams neutrality is not automatically assured and, thus, we have to review

which selections of diagrams do fulfill the neutrality condition. In the following, we will see how this

translates down to the level of fugacities zγ and diagrams. For the ideal gas the neutrality condition

imposed on the level of densities is equivalent to imposing it on the level of fugacities

∑

γ

eγ z̃γ = 0 where z̃γ =
(2σγ + 1) zγ
(2πλ2γ)

3/2
, (3.60)
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since ργ = z̃γ applies when all interactions are neglected. In order to understand the mechanism yielding

a neutral system we imagine a charged particle cluster6 interacting with the surrounding free particles

PGdressed
= G

e e, p, α
. (3.61)

Diagrams of such a topology are naturally present in the series of Mayer diagrams for the pressure. If we

pass to the density series we have to color nodes white and attach a specific species. The contribution to

the densities ρe, ρp and ρα arising from the diagram G are7

ρGdressed,e = G
e e, p, α

+ G
e e

ρGdressed,p = G
e p

ρGdressed,α = G
e α

. (3.62)

The integration over the attached particle has the classical estimate

γ
= −βeγeiz̃γ

∫

dr
e−κr

r
= −4πβeγeiz̃γ

κ2
= −eγei

z̃γ
∑

j e
2
j z̃j

. (3.63)

This relation is also verified when using the quantum potential −βφ since the temporal structure of the

quantum potential is of no importance [50]8. We find that the contributions to the respective densities

are thus

ρGdressed,e = G
e

·
(

−
∑

γ

eγee
z̃γ

∑

j e
2
j z̃j

)

︸ ︷︷ ︸

=0 due to
∑

eγ z̃γ=0

+ G
e

·
(

−e2e
z̃e

∑

j e
2
j z̃j

)

ρGdressed,p = G
e

·
(

−epee
z̃p

∑

j e
2
j z̃j

)

ρGdressed,α = G
e

·
(

−eαee
z̃α

∑

j e
2
j z̃j

)

, (3.64)

6Here a particle cluster is an arbitrary diagram permitted by the diagrammatic rules for the pressure 3.4

7The diagrams originating from the derivative acting on the bond G

e γ e, p, α
do vanish after imposing

the pseudo-neutrality, equation (3.60).
8The fictitious time s for which the interaction between the particles takes place, can be taken s = 0 by time-rotational

symmetry of the attached loop. The result of the integration is shape-independent and hereby classical.
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so that the contribution to the charge density becomes

∑

γ

eγρGdressed,γ = G
e

·
∑

γ

eγ

(

−eγee
z̃γ

∑

j e
2
j z̃j

)

= −ee G
e

. (3.65)

This cancels exactly the contribution

eeρG,e = ee G
e

, (3.66)

of the bare diagram associated to the dressed diagram that appears in equation (3.61). Therefore, the

sum of the bare and the dressed diagrams in the pressure series

PG = G
e

+ G
e e, p, α

(3.67)

leads to particle densities fulfilling the neutrality condition.

Consequently, we conclude that each node zγ in a diagram has to be dressed with a neutrality bond

in order to guarantee neutrality. Since the screened cluster functions do depend on κ and thereby on

the fugacities zγ , also those should be dressed in order to assure neutrality. It is important to recognize

that the second diagram in equation (3.67) is actually zero when applying the neutrality in the pressure

series. Nevertheless, the dressed diagrams generate important contributions in the density series, assuring

neutrality of the system. The selection of diagrams being neutral for all choices of the fugacities allows

us to impose the pseudo-neutrality condition

∑

γ

eγ
(2σγ + 1)zγ
(2πλ2γ)

3/2
= 0, (3.68)

without loss of generality. Due to the interdependence of the fugacities (3.68) the number of degrees

of freedom zγ that have to be considered is reduced by one, in agreement with the Lieb-Lebowitz theo-

rem [11]. We have thus seen that, when starting from the pressure series, we should take the neutrality

condition into account only after we have first dressed all fugacity factors by the neutrality bond and

afterwards deduced the related density series.

3.6 Definition of the κ dependent cluster functions

The resummation procedure led to two changes in the diagrammatic series for the pressure: the

replacement of the bare Coulomb potential by an integrable loop-loop potential and the need to introduce

double counting rules suppressing convolutions of the new resummed bond. The two particle cluster
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function (the equivalent of the second virial coefficient) is, therefore, given by

G2 =
1

2
1 2

T . (3.69)

The truncation (3.69) arises completely naturally and, thus, this object is exactly the one appearing in

the resummed pressure series. At large distances the cluster behaves as 1/r3 giving rise to a logarithmic

dependence on κ. In the case that the two particle system develops a bound state, this logarithmic

dependence on κ will become invisible for sufficiently low temperatures, for the value of the integral

being dominated by this bound state. The three-particle cluster function is given by

G3 =
1

6









1 2

3

+

1 2

3

T

T +

1 2

3

T

T +

1 2

3

TT

+

1 2

3

+

1 2

3

+

1 2

3








. (3.70)

In formula (3.70) no convolutions of −βφ are present due to the diagrammatic rules listed in figure 3.4.

Analyzing the large-distance behavior of the three particle cluster function as given in equation (3.70)

we recognize that the diagrams of the form

(3.71)

will result in a contribution proportional to β5/κ. This is numerically not desirable, since the integration

routine would spend too much effort sampling paths at large distances and will not concentrate on the

short distance bound states. In the case of a symmetric plasma as, for example, the pure Hydrogen plasma,

contributions coming from different particle clusters will cancel out, so that the overall contribution to

the equation of state of this diagram is zero. Therefore, we have decided to subtract these diagrams

from the three particle cluster (3.70). It is important to remark that the subtracted diagrams (3.71) do

not contain any exponential terms and, thus, do not alter the low-temperature asymptotic of the cluster

function. In this way the large-distance behavior of the three particle cluster function gives only rise to

logarithmic, numerically treatable, corrections as for the two particle cluster. In the two particle case

these logarithmic corrections are assessable easily, whereas in the three particle case the situation is more

involved as also atom-charge interactions are involved.

The dressing with attached loops gives an important contribution because it compensates the first

order correction in κ of the ground state energy, in the case of a neutral cluster (see chapter 4). All
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particles present in the cluster functions are thus automatically “dressed” if not indicated otherwise

dressing7−−−−−→ +

︷ ︸︸ ︷

+ + + . . .

= · eIR (3.72)

which using the classical approximation is a simple multiplication with the factor exp(IR) ≈ exp(βe2γκ/2).

The shorthand notation = z
(
eIR − 1

)
represents the sum of all diagrams for which at least one ring

is attached to the node.
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Chapter 4

Physical implications of the screened

potential

4.1 Physical effects of the resummation

The resummation of RPA-like chains has led to two main changes in the diagrammatic series. The

most obvious effect is the replacement of the bare Coulomb potential containing a temporal delta function

by the screened potential (3.50) which shows a non-trivial time dependence. The second effect, which

seems less important at first glance, is the appearance of the dressing of fugacity factors by the additional

bonds

=
1

2

∫

D(L2) (−βe1e2V (L1,L2)) (−βe1e2φ(L2,L1)) z(L2) = IR(L1) ≈
e2βκ

2
. (4.1)

Due to the theoretical rigorousness of the physical picture and the related diagrammatic expansion, we will

see that we are able to answer the question of how the screened potential influences the cluster functions

and, even more importantly, how it affects the ground state energies. To be more precise we will answer

the question which weight (ground state energy) of the particle clusters should be taken in either the

chemical picture or in a fugacity expansion method when the particle clusters are approximated by their

ground state energies. In Ref. [51] it is argued, for example, that the ground state energies appearing in

the free energy F should be the bare ones. The main argument is that in order for the potential between

two particles to be screened, the density of particles in-between them should be significant, so that they

are able to react dynamically and polarize according to the motion of the two particles. This reasoning is

insufficient in the sense that the Coulomb potential is long-ranged. It is not only the density in-between

but also the density around them which statistically counteracts the motion of the two basic constituents.

In the following, we argue that the ground state energies are changed by polarization effects imple-

mented in the resummed potential, while at the same time the diagrammatic double counting rules lead

to a compensation of these energy corrections for neutral-particle clusters. This is physically intuitive

since the ground state wave function of a few-particle cluster lives on a length scale ∼ a0. A charged

particle in the plasma induces a oppositely charged cloud of particles around it, whose size is given by

the length scale ∼ κ. If the screening length κ−1 > a0 is larger than the length scale of the cluster, thus

it appears to the surrounding medium to have an effective charge
∑

i qi. If this effective charge is zero,
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we expect no static effect of the plasma on the few particle cluster, so that the first corrections (the shift

of the ground state energies) are zero. On the other hand, in the case of a charged cluster the static

corrections are of importance as the plasma reacts to this overall charge. We will first present a precise

estimation of this compensation in the case of the Hydrogen cluster function and afterwards prove the

statement that neutral cluster weights are unaffected by the screening effects.

Weight of the Hydrogen cluster in a particle bath

In several articles (see for example Ref. [22]) it is stated that the low-lying bound states are unaffected

when replacing the bare Coulomb potential by a statically screened one. By inspecting the resummed

diagrammatic we find on the contrary, that the correction of the ground state energy is essential and that

it is only thanks to cancellations of terms that the statement holds at leading order. For the Hydrogen

cluster the correction of the ground state is given at leading order in κ, by

∆E0 =

∫

dr|ψ0(r)|2
(
e1e2e

−κr

r
− e1e2

r

)

≈ −e1e2κ, (4.2)

so that the partition function at low temperatures can be approximated by

ZH =
e p

T ≈ e−β(E0+∆E0) = e−β(E0+e2βκ). (4.3)

The additional diagrams where rings are attached to the basic cluster

T

e p
T

e p e p e p
... . (4.4)

are as well present in the diagrammatic series and have same weight, which is given by (4.3) at low

temperatures, besides a multiplicative factor arising from the attached rings. Since an infinite number of

rings can be attached to each of the two cluster particles, these rings contribute a multiplicative factor of

( ∞∑

n=0

InR
n!

)2

= exp (IR)
2 ≈ exp

(
e2βκ

2

)

, (4.5)

where the factor n! accounts for the indistinguishableness of the n rings, which can be attached to each

node. Thus, the sum of the former diagrams cancel exactly the first order perturbative correction to the

ground state energy and the approximate low-temperature cluster function becomes

CH ≈ e−β(EH+e2βκ) ·ee2βκ
︸ ︷︷ ︸

attached rings

= eβEH , (4.6)

confirming the above statement that low-lying states are effectively unaffected. It is important to keep

this cancellation in mind when selecting diagrams since it would be incorrect to take the attached rings

into account while using a κ-independent cluster function. We note that κ-independent cluster functions

are used in the SLT-expansion of the equation of state, but this cancellation has been accounted for in

Alastuey and Ballenegger [13] as all contributions at given order in the low-temperature low-density limit

have been collected consistently. The latter analysis shows that the first order correction of the ground

state of Hydrogen induced by κ gets effectively canceled. It is relevant to state that this cancellation is
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incomplete for non-neutral cluster functions. The former analysis can be generalized to show that, at

leading order, neutral cluster weights are unaffected by the surrounding plasma.

Weight of an arbitrary few-particle cluster

The first order perturbation of the ground state energy of an arbitrary cluster C of N particles has the

form

δE =

∫

d{r}|ψ({r})|2
∑

i<j

(
φ(ri, rj)− V (ri, rj)

)
=

O(κ)
−
∑

i<j

eiejκ. (4.7)

where we assume a scale separation a0 ≪ κ−1, so that after developing the difference of the potentials

the integration over the wave function yields unity. The attached rings on each of the particles, on the

other hand, give a factor

exp

(

β
∑

i

e2iκ

2

)

, (4.8)

so that the effective cluster weight, where all fugacity factors are dressed by attached rings, becomes

ZN = exp









−βE0 + β
∑

i<j

eiejκ

︸ ︷︷ ︸

GS correction

+ β
∑

i

e2iκ

2
︸ ︷︷ ︸

attached rings









. (4.9)

The two sums can be easily manipulated to show that neutral clusters
∑

i ei = 0 are unaffected by the

static first order correction

1

2

∑

i

e2i +
∑

i<j

eiej =
1

2

∑

i

e2i +
1

2

∑

i 6=j

eiej =
1

2

∑

i,j

eiej =
1

2

(
∑

i

ei

)2

. (4.10)

In the case of a neutral cluster the first order correction cancels out, whereas for non-neutral con-

stituents the screening has the expected effect on the cluster weight. Interestingly, the effective correction

exp
(

βκ
2 (
∑

i ei)
2
)

has the form of a ring attached to an effective particle with charge
∑

i ei, which con-

firms our physical intuition. The above statements hold also in the case of the full resummed potential

(and not only for its Debye version) due to the staticness of the first order correction. To see this, we

remember that the integral related to the attached rings can be rewritten

β2

2

∫

drV (0L, rL)φ(0L, r,L)z(L) = −β
2
lim
r→0

(φ(0L, rL)− V (0L, rL)) . (4.11)

This makes the similarity with equation (4.7) clear and, thus, confirms that the former statements also

hold in the case of the full resummed potential (3.50). It is important to emphasize that the former

analysis does only hold for the first order correction of the ground state energy. The κ-dependence of the

cluster function as a whole will be of major relevance at high temperatures where the cluster function

cannot be approximated by its ground state contribution, as the scale separation a0 < κ−1 is of less

importance in this case. As former considerations are based on the scale separation a0 < κ−1 they loose

their validity if this condition is not fulfilled. This is the case for a many-body cluster having a spatially
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extended ground state for which the inherent length scale is larger the screening length κ−1. Since we

are mainly interested in the application of the theory for fairly low densities these special cases are of

no concern. Furthermore, we will use the full numerically calculated cluster function and not its ground

state approximation in our calculation of the equation of state, so that even if those effects would be

present they would be taken into account naturally.

4.2 Numerical calculation of the resummed potential

In order to verify that the effective potential we are using for the computation of the Cluster functions

is adequate we numerically calculate the exact resummed potential and compare with our approximation.

The resummed potential φ is given in terms of a Fourier-series in both, the reciprocal space k and an

auxiliary variable n which is the conjugate variable of the time s (see equation (3.50) on page 34 and

Ref. [50]). This formulation is not appropriate for numerical evaluation and, thus, we have to find a

description that allows for numerical evaluation. Much in the spirit of the RPA-resummation, giving rise

to the Debye potential in Condensed matter physics, we write down a self-consistency equation, which

is fulfilled by the resummed time-dependent loop-loop potential. Beyond doubt we can assume that

exchange effects in the intermediate loops will be of minor importance and, thus, we fix the number of

particles in the loops to q = 1. Graphically the self-consistency equation can be visualized as

s1 s2

φ
=

s1 s2

V
+

s1
s3

V
s4

Ts3,s4
s2

φ
, (4.12)

or written in mathematical terms1

φ (L1,L2, s1, s2) = V (L1,L2, s1, s2)−
κ2

4π

∫

D(L3)

∫

ds3

∫

ds4V (L1,L3, s1, s3)φ (L3,L2, s4, s2) .

(4.13)

The Fourier-transformation of this expression reads more compactly

φ(k, s1, s2) = V (k)δs1,s2 −
κ2

4π

∫

D(L3)

∫

ds3

∫

ds4V (k)δs1,s3φ(k, s4, s2)e
iλk(ξ3(s3)−ξ3(s4)) (4.14)

φ(k, s1, s2) = V (k)δs1,s2 −
κ2

4π

∫

ds4V (k)φ(k, s4, s2) e
−k2λ2(gs1,s1

+gs4,s4
−2gs1,s4

)
︸ ︷︷ ︸

T (k,s1,s4)

, (4.15)

where gs,t = min(s, t)(1−max(s, t)) is the Greens function of the operator ∂2

∂s2

∂2

∂s2
gs,t = δs,t (4.16)

with the Dirichlet boundary conditions g0,0 = g1,1 = 0.

As the term V Tφ is of convolution type in the time variables, we could Fourier transform to find the

result given in Ref. [50] The above equation completely determines the function φ(k, s1, s2) and can be

1Numerical prefactors of eγ1eγ2 are absorbed in the definitions of the potentials in this section, to lighten the nomen-
clature.
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Direct interaction

s1

s2
V

Outer loops
Shape information is directly
transmitted between nodes

Interaction via intermediate particle

s1
s3

s4

V

s2
V

Intermediate loop λ = 0
Temporal resolution of the paths is lost
due to the integration over s3 and s4

Screening of the shape information
is not efficient → algebraic tails!

Figure 4.1: The algebraic tail are directly related to the shape of the outer particle paths. Due to
the intermediate particles in the chains, this shape information is lost in higher order diagrams (chains
involving at least one intermediate particle). The screening is not effective, since the contribution of the
direct interaction diagram cannot be compensated by the higher order diagrams. Only the monopole
part of the loop-loop interaction, i.e. the shape independent modes n = 0 in formula (3.50), are screened
exponentially.

solved numerically. To do so, we discretize the integral equation and solve the related matrix-equation

for each k numerically (we have N − 1 summation terms since φs,t = φs,t+1 = φs+1,t and the boundary

terms of the discretized integral are appearing with a prefactor of 1
2 (Trapezoidal rule)):

φs1,s2(k) = V (k)δs1,s2 − κ2V (k)
1

N + 1

N−1∑

t=0

T s1,t(k)φt,s2(k) (4.17)

Due to the time rotational symmetry we can further simplify to

φs(k) = V (k)

(

δs,0 −
κ2

4π

1

N + 1

N−1∑

t=0

T s,t(k)φt(k)

)

. (4.18)

This matrix-equation can be solved numerically for each |k| yielding the resummed potential. We could

also iterate the matrix-equation, which turns out to converge only if κ2/k2 < 1 since the related series is

geometric. It is well known that

y =

∞∑

n=0

c(−cx)n =
c

1 + cx
solves y = c− cxy (4.19)

even though the series converges only for |cx| < 1. The same happens when trying to iterate the matrix

equation: The series does not converge even though a solution of the self-consistency equation exists. For

λ→ 0 the transition matrix becomes independent of the times and we obtain:

φsc(k, s1, s2) = V (k)δs1,s2 −
κ2

4π
V (k)

∫

dt φsc(k, t, s2). (4.20)
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We can actually show that this equation is solved by the potential:

φsc(k, s1, s2) =
4π

k2
δs1,s2 −

κ2

k2
4π

k2 + κ2
(4.21)

which re-transformed to ξ, r-space

φsc(r1, ξ1, r2, ξ2, s1, s2) =
exp (−κ |r1 + λξ(s1)− r2 − λξ(s2)|)− 1

|r1 + λξ(s1)− r2 − λξ(s2)|
+

1

|r1 + λξ(s1)− r2 − λξ(s2)|
δs1,s2

(4.22)

yields the term dominant, in the limit κ → 0 [50]. The semi-classical approximation (4.22) shows a

special feature of the full quantum resummation, which, in contrast to the usual exponential decay of

the Debye-potential, are the algebraic tails of the potential. These algebraic corrections to the Debye

potential are related to the fact that by the additional time dimension2 of the intermediate loops the

shape information of the two interacting loops is smeared out, leading to less effective screening (see

figure 4.1). The approximation used in the current implementation is

φκ(k, s1, s2) =
4π

k2 + κ2
δs1,s2 (4.23)

whose Fourier-transform is equal to

φκ(r1, ξ1, s1, r2, ξ2, s2) =
exp (−κ |r1 + λξ(s1)− r2 − λξ(s2)|)

|r1 + λξ(s1)− r2 − λξ(s2)|
δs1,s2 . (4.24)

To check whether the approximation used for the numerical computation of the cluster functions is

good, we compare the exact solution of the discretized integral equation with the semi-classical approxi-

mation. For this purpose we calculate

ǫ(|k|, s) = φnum(|k|, s)−
(
4π

k2
δs,0 −

1

∆s

4π

k2
κ2

k2 + κ2

)

︸ ︷︷ ︸

φsc

(4.25)

the difference of φnum(s), the numerically calculated solution of the integral equation (4.18), and the

semi-classical approximation (see equation (4.21))3. The difference of the numerical result and the semi-

classical approximation should be compared to the bare Coulomb potential, thus we plot ǫ(s)
4π/k2 .

In this way the curves shown in figure 4.2 can be interpreted as the strength of these correction terms

with respect to the Coulomb potential. We can see that the magnitude of those terms is negligible in the

range of parameters realized in the Sun (κa0 < 10−1). Only if λκ is large the diffraction effects are not

negligible, even at large distances (k → 0). Based on these considerations the use of the approximation

φκ for the calculation of the cluster functions is justified, at least when considering solar conditions.

Since the low density approximation still involves an integration over two times, which is numerically

expensive, we want to go even one step further. The difference of the two potentials φκ and φsc can easily

be seen to be controlled by dimensionless parameter λκ when considering their Fourier transformations

(equations (4.24) and (4.22)). By symmetry the first order corrections do vanish when integrating over

the shapes of the external loops if no further correlations are involved, so that the first corrective terms

2The extension of the path is not necessary since the algebraic tails survive the λ→ 0 limit
3The factor 1/∆s has to be introduced due to the discrete nature of the φnum (ds becomes 1

∆s
when discretizing an

integral)
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Figure 4.2: The quantity ǫ(s)
4π/k2 for different choices of λ and κ. The magnitude can be identified with

the strength of those correction terms with respect to the Coulomb potential. Therefore, we conclude
that for the adiabate of the Sun these λ-dependent corrections are negligible.

will be proportional to 1/r6 at large distances [52, 53, 27, 50], and thus very small. At small distances

both approximations become the unscreened Coulomb potential and the first corrective term is equal to

κ.

Hence, we conclude that the use of the approximation (4.24) is justified for our purposes and the

correction terms ought to be completely negligible in comparison to other many-particle effects like

bound states, which are dominant at low temperatures.
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Chapter 5

Numerical computation of the

Cluster-functions

5.1 Introduction

In chapter 3 we have seen that the series of thermodynamic functions, such as pressure and density,

are given in terms of Quantum virial coefficients. The two-body quantum virial coefficients are known

analytically since the pioneering work of Ebeling [24, 54, 55]. The behavior of Quantum cluster functions

which involve more than two particles is currently known only at temperatures for which these clusters

are dominated by their ground state contribution Z{Nγ}(β) ∼ e−βE0,{Nγ} .

Our primary objective is to calculate these functions numerically for temperatures where the ground

state approximation is not valid, and to connect our numerical results to the analytic low-temperature

behavior. To achieve this we need to be able to calculate the cluster functions with high accuracy in a

fairly large temperature regime.

The Quantum virial coefficients are expressed by functional integrals which correspond to infinite di-

mensional ordinary integrals. Numerically these infinite dimensional integrals are approximated by finite

dimensional versions (discretized path integrals). The challenge is, therefore, to calculate high dimen-

sional integrals where the integrand is the quantum equivalent of the virial coefficients (see section ➜3.6

and figure 3.3). The approximation of the continuous path integral by a finite dimensional version has

been a major subject of research [38, 56, 57, 58] as it is crucial for convergence and consistency. Having

discretized the continuous path integral the remaining problem is its actual evaluation. A technique, that

has been used to a great extent, is the Metropolis-algorithm which enables to calculate expectation values

over a probability distribution such as, for example, the mean energy [59]. Since we need to calculate

virial coefficients, which are “pseudo” partition functions and not expectation values, we cannot apply the

Metropolis-Hastings algorithm in a straight forward manner. The thermodynamic integration approach,

applied to the integrand in question, runs into complications, as well. The integrand is not a pure expo-

nential but a product of truncated exponentials and as such not positive defined, so that we cannot relate

a probability density to it. Thus, we have chosen to calculate these high dimensional integrals by direct

sampling, which poses a difficult problem in the temperature regime where partial ionization occurs.

For deterministic methods such as the rectangle-rule, the error of the estimator of the integral depends

exponentially on the dimensionality of the integrand. The general idea of Monte-Carlo integration is
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to evaluate the integrand at points chosen in a certain random fashion and to identify the value of the

integral with the mean value of these function evaluations. It can be shown that the standard-deviation

of the ensemble of function evaluations, which in this stochastic context is the equivalent of the error for

deterministic methods decreases as ∼ σ0√
N
, where N is the number of function evaluations. This way the

error of the integral (the standard deviation) does not depend on the dimensionality of the integrand,

which makes Monte-Carlo techniques suitable for high-dimensional integrands. The prefactor σ0, on the

contrary, heavily depends on the specific integrand and on the fashion the points are chosen, where the

function is evaluated. To have a precise estimation of the integral we can either evaluate the function at

a large number of points N or choose the evaluation points in such a manner that σ0 is small.

In the following, we will explain in more depth how Monte-Carlo integration is implemented and

what its relation to the Metropolis-Hastings algorithm is. After these introductory sections we are going

to focus on the specific ideas used in our calculation of the cluster functions (see section ➜3.6 for their

definitions). We will introduce a physically motivated choice of the Importance sampling function and

the adaptive path sampling scheme which both turn out to be numerically efficient for our application

to few particle Coulomb cluster functions. After the publication of Ref. [12], we became aware of the

later work Ref. [60]. In this work, essentially the same Importance sampling approach is proposed in

the context of quantum simulations in real time and in one dimension, but not in the imaginary-time

domain in which we are working. The second part of this chapter is meant to be an introduction and

an overview of the paper [12], where a more detailed discussion of the algorithm and of our numerical

results is given. The cluster functions shown in Ref. [12] are truncated according to the SLT-expansion.

For historical reasons, we first calculated these cluster functions to improve the SLT-equation of state.

The numerical results for the κ-dependent cluster functions, which enjoy the “natural” truncation, are

given in section ➜5.4.

5.2 A few reminders concerning Monte-Carlo integration

The main idea of Monte-Carlo integration is to replace the deterministic method of choosing the inte-

gration points by a non-deterministic procedure. For deterministic methods the error of the integration

procedure does in general scale as cD, whereD is the number of dimensions of the integration. This is very

unfavorable in the case of high-dimensional integrals, and Monte-Carlo integration, which is a stochastic

approach, is able to push this boundary. The advantages of the random choice of integration points can

be visualized by imagining a two-dimensional function f(x1, x2) (for example a Gaussian) which cannot

be written as f(x1, x2) = f1(x1)f2(x2). In such a case the deterministic discretization along the axis

x1, x2 is not natural in view of the correlation between x1 and x2 which is present in f(x1, x2). Thence,

the integration procedure will require a large discretization1 in order for the algorithm to capture the

features of the function. On the other hand, the non-deterministic choice of integration points in the

integration region does not have any preferred axis and is thus in some respect more generic2. Neverthe-

1For each additional discretization in one direction, one additional discretization is needed in the other in the case of
perfect (anti)-correlation

2The entropy of a state where points are distributed on an “implicit” grid is very low, since it is a very special ordered
state. At the same time the number of functions, that this certain choice of integration points integrates exactly, is confined
to a certain class of functions (sharing the same symmetries as the grid). In this sense one can expect the randomly
distributed points (higher entropy, less symmetries, more probable macrostate) to present a better integration scheme than
the “implicit” deterministic grid for a larger class of functions than those accurately integrated by the grid. In simple words:
It is more probable to encounter an integrand which is better sampled by randomly distributed points than by a grid, than
the other way around. This reasoning is, of course, hand waving but the author thinks that intuition may confirm it.
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less, an efficient deterministic procedure is able to “find the contribution” of the integral and puts more

effort where the integrand is varying rapidly. We will see that similar adaptive techniques can also be

implemented in the context of Monte-Carlo integration.

To introduce the basic concepts we confine ourselves to a one-dimensional example knowing that

the generalization to an arbitrary number of dimensions is straight forward. If we would integrate the

function F (x) within the boundaries [a, b]

I =

∫ b

a

dx F (x), (5.1)

a numerical approximation, with a fixed number M of equally spaced discretization points xi, would be

written

IM =
b− a

M
︸ ︷︷ ︸

∆x

M∑

i=1

f(xi). (5.2)

If we would choose the points xi at random, the spacing ∆x 6= b−a
M would be irregular but in the limit of

a large number of points the spacing would be 〈∆x〉 = b−a
M on average. Based on these premises the value

of the integral can be identified with an average of the function f over a probability density P which is

the uniform density

P (x) =
1

b− a
Θ(x− a)Θ(b− x) =

1

NP
Θ(x− a)Θ(b− x), (5.3)

where NP is the normalization of the function. The Monte-Carlo estimation of the integral becomes

simply the mean of the integration points (so-called “sampling points” in the Monte-Carlo context)

〈I〉 = 1

M
NP

M∑

i=1

F (xi)

∣
∣
∣
∣
∣
xi∈P

= 〈NPF (x)〉x∈P . (5.4)

Since we have identified the value of the integral with the mean of a function over a probability distribu-

tion, we can use all techniques developed in the context of probability theory and calculate, for example,

the variance of this expectation value, the equivalent of the error in deterministic numerical integration

σ2
I =

〈

(NPF (x))
2
〉

x∈P
− 〈I〉2 . (5.5)

It can be seen from this expression that the variance constant σI can be larger than the value of the

estimator 〈I〉 itself. This would lead to a poorly defined value of the integral, and the need of a large

number of evaluation points N in order to give it meaning.3 Over the past decades, several techniques

have been developed in order to reduce the variance of the estimator of an integral depending on the

specific position of the problem. We will mainly focus on the so-called “Importance sampling” since we

have decided to use this technique for our numerical calculations.

3Remember that the standard deviation of the mean is decaying like ∼ σI
√

N
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5.2.1 Importance sampling

One possibility to reduce the variance σI of the expectation value of the integral is to apply a coordi-

nate transformation that flattens the integrand. This coordinate transformation has the same effect as

sampling the integration points from a changed probability density. This can be formally achieved by

introducing a so-called Importance sampling function P (x) by virtue of the trivial identity

I =

∫

dxF (x) =

∫

dx
P (x)

P (x)
F (x), (5.6)

where P (x) is a probability density. In the Monte-Carlo sense this integral can be interpreted as an

expectation value of the function F (x)
P (x) where the points of evaluation are chosen from the distribution

P (x)

〈I〉 =
〈
F (x)

P (x)

〉

x∈P

. (5.7)

The variance constant of such an estimator is equal to

σ2
I =

〈(
F (x)

P (x)

)2
〉

x∈P

− 〈I〉2 , (5.8)

so that the variance constant becomes zero when the probability density is chosen to mimic the function

exactly upon a multiplicative constant (which is the value of the integral itself). A reduction of variance

can be achieved by choosing the Importance sampling in such a manner that the function F
P is flatter

than the original function F itself.

In summary, we would like to choose the probability density P (x) from which we sample, so that it

resembles the integrand F (x). One has to be careful to avoid encountering the case where the function
F (x)
P (x) becomes very large for points with a small probability of sampling. Therefore, the Importance

sampling function does not necessarily result in a variance decrease and, thus, it has to be chosen carefully

to meet the demands.

5.2.2 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm enables to calculate expectation values over probability distributions

and, thus, integrals of the form

〈O〉F =

∫
dx O(x) F (x)
∫
dxF (x)

. (5.9)

Using the function F (x) (which does not have to be normalized) as an Importance sampling function we

can write

〈O〉F =

∫

dx O(x)
F (x)

NF
(5.10)

where F (x)
NF

automatically is a probability density (given that F (x) is positive definite), from which we

can sample. The main difference between an ordinary integral and an expectation value is that the

latter is evaluated over a probability distribution, whereas for an ordinary integral the integrand does

not necessarily contain a normalized probability density. The Metropolis-Hastings algorithm makes use
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of this fact and samples directly from any normalized distribution function F (x)
NF

. In this sense, the

Metropolis-Hastings algorithm is an Importance sampling algorithm where the Importance sampling

function is chosen to be F (x)
NF

. In a physical context the function F (x), for example, would be the

Boltzmann distribution F ({x}) = e−βH({x}). Keeping this in mind we do see immediately that by using

the Boltzmann factor e−βH({x}) as Importance sampling function, the variance reduction is enormous

since F is exponential, whereas O is only polynomial in H. The Metropolis-Hastings algorithm, which

will be described next, enables sampling from a positive defined function, where the normalization does

not need to be known.

The Metropolis-Hastings algorithm constructs a Markov-chain whose distribution of sampled points

xi converges to the distribution F (x) in the limit of a large number of iterations. A Markov-chain is a

transition amplitude model where the transition amplitude only depends on the current state and not

on previous realizations. The rules for the construction of the Metropolis-Hastings Markov-chain are

as follows: The algorithm is initiated by choosing an arbitrary point x0 and evaluating the function at

that point F (x0) (i = 0). An new random point xi+1 is generated around the point xi in a certain

way, known as the Metropolis-Hastings step, and the function is evaluated F (xi+1). Next, the ratio

r = F (xi+1)
F (xi)

is calculated and the new point is accepted (xi+1 → xi+1) with a probability min(r, 1) and

rejected otherwise (xi+1 → xi). The manner how the new points xi+1 are generated fulfills the detailed

balance condition F (x)T (x→ x′) = F (x′)T (x′ → x). For a large number of iterations of this algorithm,

the distribution of the successively chosen points xi converges to F (x). The most important step in this

algorithm is the choice of the Metropolis-Hastings step, the way how proposal points are generated. The

simplest approach would be to sample the proposal point from xi+1 = xi + ǫ where ǫ is an arbitrary

translation of maximum amplitude λ. If λ is smaller than the variation of the function to sample from

the acceptance ratio is very large, but the phase space is explored only slowly. If, on the other hand, λ is

chosen too large, the acceptance ratio drops to a small value and, again, the exploration of phase space is

insufficient. The literature argues for a target acceptance ratio of around 1/2, which can be achieved by

tuning λ adaptively. Since the Metropolis-Hastings algorithm can be used to sample from an arbitrary

positive definite function we use such a Markov-chain to sample from the Importance sampling function.

5.3 Calculation of cluster functions in vacuum:

overview of the article

The cluster functions, which are necessary to derive the equation of state in the activity expansion,

and which as well appear in the SLT-expansion, are given in terms of function integrals in path integral

language. A numerical approach to calculate these objects must overcome two major difficulties: The

divergence of the Coulomb-potential at the origin and the high-dimensionality of the integrand leading

in general to poor sampling. A third difficulty, the long-range divergence is naturally taken care of by

the use of the screened potential as described in chapter 3.

First, we will present the physical insight that has historically led to the introduction of the physically

motivated choice of the Importance sampling function addressing the problem of undersampling, which

manifests itself by a large variance of the path integral estimator. Afterwards we will present the idea

that has led to the adaptive sampling procedure by briefly reminding the reader of the derivation of

the path-integral formulation of matrix elements [43, 61]. Here we focus our attention on the case of a

potential that has integrable singularities. These two subjects are major concerns of Ref. [12], together
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with the numerical results concluding the chapter. The numerical results presented in this paper are the

calculations of the truncated cluster functions appearing naturally at low-temperatures and low densities,

the so-called “scaled-low-temperature” limit (see chapter 6). Nevertheless, the approach is independent

of the specific form of the integrand and can, therefore, be easily applied to the full κ-dependent cluster

functions, too. Again, further information can be found in Ref. [12], where the approach is explained in

detail.

5.3.1 The Importance sampling of the paths

To address the first problem, the high-dimensionality of the discretized functional integral and the related

poor exploration of phase space, especially when using free particle sampling at low temperatures, we

introduced an Importance sampling function. This Importance sampling function is chosen in such a

manner that the sampling is focused on the contributing regions of phase space (bound state paths

for low temperatures). The insufficiency of free particle sampling can be seen in figure 5.1, where the

numerical results for the truncated density matrix4

ρTλe,p
(r, r, β) =

〈
r
∣
∣e−βHe,p − 1− . . .

∣
∣ r
〉

=

∫

D(ξ)

[

ee
2β

∫ 1
0
V (r+λe,pξ(s)) − 1− e2β

∫ 1

0

V (r + λe,pξ(s))− . . .

]

(5.11)

of the e− p-cluster are shown. The different values of M correspond to different discrete approximations

of the continuous path integral (formula (28) of Ref. [12]). The spatial integral of this function gives

the value of the truncated cluster function, which we aim to calculate. To generate this plot we used a

standard approach called free particle sampling, where the paths are generated by a Levy-construction

using the free-particle (Gaussian) part of the integrand [62]. For the potential Veff evaluated along

the path, we have chosen the so-called “cumulant” or “effective” potential [38, 57](see equation 33 of

Ref. [12]). At high temperatures the so calculated numerical density matrix converges to the analytical

result when increasing the (uniform) discretization M of the path integral. For low temperatures, on the

other hand, large fluctuations due to undersampling, make its consistent numerical evaluation impossible.

The problem can be understood by remembering that the average extension of a Brownian bridge path

4For the complete expression see equation (9) of Ref. [12]

Figure 5.1: The density matrix of the Hydrogen atom is calculated for two temperatures by free particle
sampling and using a fixed discretization M and 1 000 000 paths. Free particle sampling gives reliable
results for high temperatures (here T ≈ 600 000K). For lower temperature (here T ≈ 40 000K) the
increasing variance of the density matrix’s estimator, makes the proper estimation impossible.
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Figure 5.2: Left: At high temperatures free particle sampling works sufficiently well since the large
contribution of the potential gets compensated by the small probability to probe the region around the
proton. Right: For low temperatures most of the paths will disperse away from the contributing region
in space and, thus, the integrand is undersampled.

is proportional to λ ∼
√
β, the temperature-dependent wavelength, so that the free paths become very

extended for low temperatures.

The ground state which is “hidden” in the matrix element and which dominates the latter at low

temperatures, has a fixed extension of the Bohr-radius aB independent of the inverse temperature β.

Therefore, when using free-particle paths to sample the integrand, the contributing paths (ground state

paths) are rarely sampled and the integrand is undersampled as illustrated in figure 5.2. In the following,

we briefly present the general idea of the here proposed solution to this undersampling problem. A more

detailed discussion can be found in Ref. [12].

To find an adequate Importance sampling function we analyze the matrix element between two points

x1,x2 at a given discretization level L = log2(M), to be bisected

〈

x1

∣
∣
∣e

βH

2L−1

∣
∣
∣x2

〉

→
bisection

T ∗
x1,x2,L(r) =

〈

x1

∣
∣
∣e−βH/2L

∣
∣
∣ r
〉〈

r
∣
∣
∣e−βH/2L

∣
∣
∣x2

〉

. (5.12)

and ask the question how the point r has to be chosen so that the ground state, dominating the matrix

element, is correctly sampled. Inserting closure relations
∑

n |ψn〉〈ψn| and disregarding all states but the

ground state, we find that the bisection points should be distributed according to

T ∗
x1,x2,L(r) ∝ e−

βE0
2L−1 |Ψ0(r)|2, β → ∞. (5.13)

For high temperatures or equivalently a high discretization level L, the optimal sampling distribution is

the free particle distribution

T ∗
x1,x2,L(r) ∝ e

− (xm−r)2

λ2/(2L) , β → 0, (5.14)

where xm = (x1 + x2)/2 is the “center of mass”. With this knowledge we can construct an Importance

sampling distribution which captures both limits and whose normalization can be calculated analytically

T ∗ ≈ Tx1,x2,L(r) =
1

N
e
− (xm−r)2

λ2/(2L)

(

1 + e−
βE0
2L−1 |Ψ0(r)|2

)

. (5.15)

For high temperatures, high discretization level L or large mean distances xm, the first term is dominant

and we mainly sample from the free particle distribution. In the case of low temperature, on the other

hand, the free particle distribution does not constrain the r-dependence and the dominant term is the

ground state wave function, so that points are generated mainly according to it. Since the Importance
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Figure 5.3: The density matrix of Hydrogen calculated using the Importance sampling function

Tx1,x2,L(r) = 1
N e

− (xm−r)2

λ2/(2L) e−
βE0
2L−1 |Ψ0(r)|2 for different discretization depth M for a temperature of

T ≈ 40 000K. As can be seen in comparison with figure 5.1, the variance of the integrand is reduced by
the use of the Importance sampling function.

sampling function mimics by construction the bisected matrix element (the exact pair action) it will

achieve an important variance reduction by guiding the generated path to the most contributing regions.

The effect of this Importance sampling function can be seen in figure 5.3. The Importance sampling

of the paths leads to a dramatic decrease of the fluctuations of the numerical density matrix, which

is achieved by directing the paths to the contributing region in phase space5. In the former plots the

discretization level is a parameter of the calculation and its choice has a substantial impact on the actual

estimate of the integral. The answer to the question how discretization level has to be chosen to assure

a correctly converged result is one aspect of the adaptive discretization scheme, which will be described

in the following subsection.

5.3.2 Adaptive discretization of path integrals

There are several reasons why an adaptive discretization procedure is advantageous and even necessary.

Firstly, the discretization has to be chosen sufficiently fine for the discrete path integral to be converged

to its continuous version (see figure 5.3). Furthermore, the Coulomb singularity which is present in the

discretized path integral signals that special care is required, when passing from the continuous to the

discrete path integral. Eventually, an adaptive discretization directs the numerical effort to where it

is really needed, to regions in phase space for which correlations of the paths have to be considered,

and, therefore, it is numerically desirable. In the following, we will retrace the derivation of the relation

between the matrix element and the path integral, which is given by the Feynmann-Kac formula. Since

the firm mathematical formulation of the path integral is still a subject of active research, we restrict

ourselves to a physicist way of reasoning and do not claim mathematical rigorousness.

We want to calculate matrix elements for a certain Hamiltonian H = −D2 + V , where −D2 is the

5For historical reasons the Importance sampling function used to generate the plot 5.3 differs from the currently used
one (5.15). The difference lies in the absence of the free part (the 1 + . . . in formula equation (5.15)). When taking this
free term into account, fluctuations diminish further, since only then the Importance sampling function reduces to the free
particle sampling for high discretization levels. We include this “antique” plot nevertheless, as it shows the genuine impact
of the physically motivated choice of paths.
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kinetic part and V the potential. We make use of the Trotter-formula which is valid in the limit M → ∞

〈x1|e−βH |x2〉 = 〈x1|eβ(D
2−V )|x2〉 = lim

M→∞
〈x1|

(

e
β
M D2

e−
β
M V
)M

|x2〉. (5.16)

In order to arrive at the Feynman-Kac formula, closure relations in between the M -terms of the product

in equation (5.16) are inserted, and afterwards the limit M → ∞ is considered

〈x1|e−βH |x2〉 =
∫

D(ξ)e−β
∫ 1
0
dsV ((1−s)x1+sx2+λξ(s)). (5.17)

The measure
∫
D(ξ) is called the Wiener measure and is defined by its covariance

∫

D(ξ)ξ(s1)ξ(s2) = ✶min(s1, s2) (1−max(s1, s2)) . (5.18)

To make use of the path integral numerically, which is based on the equivalence (5.17), the path integral

is usually evaluated at finite discretization depth M

〈x1|e−βH |x2〉 ≈
∫

Ddisc(ξ)e
− β

M

∑N
i=1 V ((1−si)x1+six2+λξ(si)). (5.19)

Hence, the “time” interval s ∈ [0, 1) is discretized in M slices. This is the crucial transition from

an infinite dimensional integral (5.17) to a numerically evaluable finite dimensional one (5.19). The

discretized Wiener measure has the same covariance as its continuous version with the times restricted

to its discrete values. The explicit formula for the discretized measure is

∫

Ddisc(ξ) =

M∏

i=1

∫

dξi exp

(

−M
2

M∑

i=0

(
ξi − ξi+1

)2

)

with ξ0 = ξM+1 = 0. (5.20)

In the case of a regular potential this discretized version is not problematic, whereas in the case of a

potential V that has a singularity, this discretized path integral is infinite for every finite value of M ,

even though its continuous equivalent has a finite value. In the discretized version the Coulomb potential

is exponentiated e
β

M|x(si)| , giving rise to a non-integrable singularity at the origin of the potential. Usually

this non-integrability problem is solved by either the use of the exact pair-action, which is finite at the

origin, or by the use of the cumulant potential, a bound, partially averaged version of the original Coulomb

potential [38, 58]. Our insights on the rediscretization procedure will give rise to a new approach, that

treats the Coulomb singularity like it is suggested by the continuous path integral. This way the infinities

related to the Coulomb singularity present in equation (5.19) are avoided from the start. To understand

this subtlety we have to go back to the Trotter formula (5.16) and keep in mind that it only holds in the

limit m→ ∞. Since only linear terms will survive the limit M → ∞, we may also write

〈
x1

∣
∣e−βH

∣
∣x2

〉
=
〈

x1

∣
∣
∣eβ(D

2−V )
∣
∣
∣x2

〉

=

〈

x1

∣
∣
∣
∣
∣
lim

M→∞

(

e
β
M D2

(

1− β

M
V

))M
∣
∣
∣
∣
∣
x2

〉

. (5.21)

Inserting closure relations we derive the corresponding discretized path integral formula

〈
x1

∣
∣e−βH

∣
∣x2

〉
=

∫

Ddisc(ξ)
M∏

i=1

[

1− β

M
Vcum (x(si) + λξ (si) ,x(si) + λξ(si + 1), λM )

]

. (5.22)
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with x(s) = (1− s)x1 + sx2, λM = λ/
√
M and the so-called cumulant potential

Vcum(x1,x2, λ) =

∫

D(ξ)

∫

dsV ((1− s)x1 + sx2 + λξ) . (5.23)

The above formula converges to the continuous path integral in the limit M → ∞. In fact, the above

given discretized path integral (5.22) is the natural choice of discretization if the original continuous path

integral is interpreted as a product integral [63]. The main advantage of the formula (5.22) is that it

takes finite value for a fixed discretization depth M , even if we would replace the cumulant potential

by the bare Coulomb potential. Furthermore, we learn from the product integral interpretation of the

discretized path integral (5.22) how the collapse of the path can be avoided in the case of the Coulomb

potential, even when using equation (5.19): We should make sure that a path is discretized in such a

manner that the artificial terms V (x(si) + λξ(si),x(si) + λξ(si+1))
n
with n > 1 for a given time s are

not present. This is the essence of the adaptive discretization proposed in Ref. [12], which bisects a path

until the action for each sub-path element is small

| β
M
V (x(si),x(si+1))| < ǫ < 1 (5.24)

compared to a tuning parameter ǫ. In this way terms beyond the linear one in the expansion of eβV are

suppressed for each submatrix element. If the breakup condition is fulfilled for each time slice separately,

equation (5.19) enjoys the same convergence properties as equation (5.22) and thereby, establishes the

approximate equivalence between the two discretized path integral formula equations (5.19) and (5.22).

The algorithm is strongly influenced by the discussion of Kleinert [61] of how the collapse of the path

is prevented by the entropy associated with highly discretized paths. In the two-particle case this dis-

cretization scheme is, of course, superseded by the use of the analytically known exact action Sγ1,γ2 which

can be deduced from the solution of the two-particle Coulomb problem [64, 38, 65]

e−βSγ1,γ2
(x1,x2) =

〈
x1

∣
∣e−βHγ1,γ2

∣
∣x2

〉

=

∫

D(ξ)eβ
∫ 1
0
d sV ((1−s)x1+sξ2+λγ1,γ2

ξ(s)). (5.25)

In the references [38, 66, 67, 68] efficient numerical algorithms for the computation of these exact two-

body Coulomb density matrices are given. In the many-body case, on the other hand, paths have to be

finely discretized to capture the correlations between the particles, even when relying on the pair exact

action and the advantages of its use are lost.

This is illustrated in figure 5.4, which shows that paths contained in the exact actions of the electron-

proton (in red) and electron-electron (in blue) exact pair actions show opposite behavior. The electron

paths contained in the electron-proton pair-action are mainly concentrated around the proton, so that

the electrons come close to each other. The electron-electron pair action, on the contrary, mostly contains

paths where the electrons disperse away from each other. Thus, the correlations between the paths present

in the exact three-body action are not properly accounted for when using the pair-product approximation

(unless the effective temperature of the “time”-slice is high)6. Mathematically this reasoning can be based

on the non-commutativity of the different pair action Hamiltonians, present in the few-body case. In

the case of three particles, for each submatrix element, its pair-product action approximation using the

6In operator language the Hamiltonians related to the different exact pair-actions do not commute.
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Figure 5.4: The path contained in the exact actions of e-e and e-p pairs are incompatible and demand
for a high discretization (or equivalently high effective temperature of the “time”-slice) in order to capture
their correlations adequately.

exact pair action, leads to sub-matrix elements that are not equivalent to the matrix element of the three

particle Hamiltonian

e−
β

2L
(Sγ1,γ2 (~x1,~x2)+Sγ1,γ3 (~x1,~x2)+Sγ2,γ3 (~x1,~x2))

=
〈

~x1

∣
∣
∣e

− β

2L
Hγ1,γ2

∣
∣
∣ ~x2

〉

·
〈

~x1

∣
∣
∣e

− β

2L
Hγ1,γ3

∣
∣
∣ ~x2

〉

·
〈

~x1

∣
∣
∣e

− β

2L
Hγ2,γ3

∣
∣
∣ ~x2

〉

(5.26)

6=
〈

~x1

∣
∣
∣e

− β

2L
Hγ1,γ2 e−

β

2L
Hγ1,γ3 e−

β

2L
Hγ2,γ3

∣
∣
∣ ~x2

〉

(5.27)

6=
〈

~x1

∣
∣
∣e

− β

2L
Hγ1,γ2,γ3

∣
∣
∣ ~x2

〉

(5.28)

Here ~x = {r1, r2,R3} is the combined vector of particle positions. The Hamiltonians describing different

pair actions do not commute, and additional terms would occur when trying to combine the different

exponentiated Hamiltonians. These additional terms would be related to those of the Baker-Hausdorff

formula, but they would not be equivalent since even equation (5.26) and equation (5.27) are not equal.

The fact that the Hamiltonians do not commute and cannot be separated is directly related to the fact

that the paths contained in each exact two-body action are uncorrelated with respect to each other and

can in general not be reconciled. When using the pair-action approximation with the exact pair action

the error is, therefore, proportional to the commutator of the Hamiltonians
[

β
2L
Hγ1,γ2 ,

β
2L
Hγ1,γ3

]
7. This

commutator becomes small in the limit of a large discretization of the particle paths (L → ∞), where

the exact action becomes the cumulant action (5.23). Due to the harmonicity of the Coulomb potential

the cumulant action turns out to have same convergence properties as the straight line action defined by

taking the limit λ→ 0 of the cumulant potential (5.23)

Vline(x1,x2) =

∫

dsV ((1− s)x1 + sx2) , (5.29)

as shown in TABLE I of Ref. [12]. In the calculations of the few-body cluster functions we are using this

semi-classical line action to evaluate the action of a given path as well as to check for each line segment

if the breakup condition (5.24) is fulfilled. The main advantage of the adaptive discretization scheme is

that the computational effort is concentrated on configurations where a high discretization is necessary to

7The kinetic terms
[

D2
γ1,γ2

, D2
γ1,γ3

]

as well as the potentials [Vγ1,γ2 , Vγ1,γ3 ], commute and only the cross term survives.
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capture the correlations between the paths correctly. Furthermore, the Coulomb divergence which is not

present in the continuous path integral version, is effectively eradicated even when using an unbounded

approximation of the effective potential, such as the straight line action.

5.3.3 Results

The adaptive discretization together with the Importance sampling has been used to calculate the two

and three-body cluster functions of which we have made accurate tabulations [12]. One advantage of

the adaptive discretization scheme is that the numerical effort is directed towards portions of the paths

which have to be discretized finely to capture correlations (regions where the potential is strong). This

can be seen by tracing the average discretization as a function of the distance. In FIG.4 of the article

we show that, as expected, the numerical effort is concentrated on configurations where the electron

and the proton are close. By using the lowest discretization of paths possible, that still captures their

correlations, the dimensionality of the integral is effectively minimized and, together with it, the variance

of the estimator. In this way the adaptive discretization outperforms the uniform discretization especially

for low temperatures, which can be seen in TABLE I of Ref. [12].

The main goal of this paper was to calculate the truncated cluster functions which appear as co-

efficients in the series for thermodynamic quantities at low temperatures. For low temperatures these

functions are dominated by the ground state contribution of the particular particle cluster Z{Nγ} ∼
e−βE0,{Nγ}8. The ground state energy can be determined by fitting an exponential to the cluster func-

tion for low temperatures9. In the case of the H+
2 molecule our results are compatible with the Stancil

partition function [69], where a Density functional analysis was used to determine the first bound states

of the system. We have been able to do this for the four considered cluster functions with good accuracy

(error on the ground state energy δE0 < 1%). Even though the calculation of the cluster functions at

temperatures so low that only the ground state remains was not the primary aim, it is comforting and

shows the numerical accuracy and reliability of our numerical algorithm.

We can conclude that the aim to extend the known low-temperature asymptotes to higher temper-

atures has been achieved. The uncertainties on the three particle cluster functions 2e-p and e-2p at

low temperatures will be, by hindsight, of no importance since these clusters do only contribute in the

high/intermediate temperature regime where the path integration gives precise results. One important

insight gained from the calculation of the truncated cluster functions of three particles is that, in the

low and intermediate temperature regime, the ground state approximation is not valid at all. For the

Hydrogen atom cluster, the ground state approximation breaks down for inverse temperatures smaller

than β = 10Ha−1. From the plots in FIG.6 of Ref. [12] or from figure 5.7 we see that even for inverse

temperatures as large as β = 40Ha−1 the ground state approximation for the 2e-1p cluster is not valid.

8In the case of H+
2 the cluster function has a more complex structure due to the small energy separation of vibrational

and rotational modes [69]
9There is only one free parameter E0, the prefactor is fixed
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5.4 κ-dependent Cluster functions

The cluster functions appearing in the SLT-approach do not depend on the screening parameter κ

and, thus, their use is restrained to the low-density and low-temperature regime by definition. In order

to lift this limitation we calculate the genuine κ-dependent cluster functions defined in section ➜3.6. In

contrast to the SLT-cluster functions the κ-dependent cluster functions enjoy the “natural” truncation;

the truncation arising naturally from the resummation procedure and the associated double counting

rules. We have already seen in the paper [12] that for the non-neutral H+
2 and H− cluster functions

the truncation has an important impact even on the low-temperature behavior. In the following, we will

present to the reader a few selected examples of κ-dependent cluster functions, which can be divided

in three separate classes: neutral, charged and exchange clusters. The cluster functions have been

calculated for 50 values of κ exponentially spaced in the range κ a0 ∈ [1, 10−7] and values linearly spaced

in
√
βE0 = λ/a0 ∈ [0.25, 7.25]. The shown functions have been interpolated on this κ,

√
β grid and,

therefore, we do not provide error bars. From the results presented in Ref. [12] we have seen that the

error bars are negligibly small in the high and intermediate temperature regime.

The explicit formulas for these two and three loop cluster functions in diagrammatic language are

given by (see section ➜3.6)

Cγ1,γ2 =
γ1 γ2

T · exp

(

(
∑

i e
2
γi
)βκ

2

)

︸ ︷︷ ︸

dressing factor

(5.30)

and

Cγ1,γ2,γ3
=

1

6
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+
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γ1 γ2
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γ1 γ2
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· exp

(

(
∑

i e
2
γi
)βκ

2

)

In both cases we multiply by the respective dressing factors which cancel out the first order correction in

κ (see discussion in section ➜4.1) These diagrams are used for all two and three loop clusters respectively.

The diagrammatic expressions for the different particle clusters differ only by dressing factors related to

the attached rings.
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5.4.1 Neutral cluster functions: H and He

In figure 5.5 we plot the Hydrogen cluster function10 together with the direct term of the Helium cluster

function11 for different values of the screening constant κ. In both cases the numerical cluster function is

divided by the respective ground state partition function. The ground state energy of the Helium cluster

is taken to be the experimental value E0 = 2.9034Ha.

The fact that the Hydrogen cluster function grows faster than the ground state partition function

when κa0 < 10−1, can be understood as follows: The attached loops provide a multiplicative factor eβκ

which usually cancels the first order correction of the ground state energy. For large values of κ this

multiplicative factor then simply grows faster than the ground state energy diminishes. This effect is

an indicator that, for these parameters the classical approximation of the attached loops breaks down

since κλ > 1 and, secondly that the classical approximation of the used loop-loop potential is not valid,

neither. In order to make precise predictions for such conditions, all quantum effects present in the full

loop-loop potential should be taken into account, so that our calculations are insufficient here.

Since our numerical calculation, even though accurate, are afflicted with numerical errors, especially

at very low temperatures, we use the analytically known low-temperature asymptote from a certain point

on (as marked in the plots). To understand the numerical precision achieved by using the Importance
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Figure 5.5: The numerical results for the Hydrogen and the Helium cluster functions. For low tem-
peratures our numerical calculations are recovering the ground state partition functions. In the high-
temperature regime the κ-dependent parts of the cluster function are dominant and give important
contributions. We choose a certain temperature from which on we use the ground state partition func-
tion in our further calculations. For screening constant larger than κ a0 > 10−1, the result can not be
trusted for the reason explained in the main text.

sampling together with the adaptive discretization, we plot the Helium Cluster function but not divided

by the partition function computed with the experimental value of the energy but with E′
0 = 2.9000Ha

instead (see figure 5.6). The offset at the continuation point is clearly visible, showing that our approach

leads to very reasonable results. It could be objected that in the case of the Hydrogen cluster the

numerical precision is built in as we are using part of the analytical solution, namely the ground state

wave function, for the Importance sampling of the paths. In the case of the Helium cluster function this

concern is certainly not tenable, since the electron-electron repulsion plays a major role.

10Remember that each particle in the cluster is dressed.
11Due to the quantum statistics of the fundamental particles an exchange cluster function appears in the diagrammatic

series, too. The respective exchange cluster function is discussed later and shown in figure 5.11
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Figure 5.6: The way the cluster functions are plotted makes it possible to see even small deviations of
the ground state energy. For this plot we used EHe = 2.9Ha.

5.4.2 Charged cluster functions

The three-body cluster functions shown in Ref. [12] were calculated using the SLT truncation. We found

that the truncation plays a major role even for low temperatures. It was not adequate to separate the

full truncated cluster function, in an atom cluster function (explicitly called Z2e,p, Ze,2p in [12]) and

atom-charge interactions W as it has been suggested in [13]. These two contributions cancel each other

to a great extend, which suggests that in order to obtain an accurate result for the third order virial the

natural truncation should be used, since only this truncation is completely unambiguous12 In figure 5.7

the cluster functions of the H− and H+
2 Clusters10 (normalized by the Hydrogen ground state) are shown

for several values of κ. The κ-dependent cluster functions are negative for a large range of temperatures.

In the case of the H+
2 the cluster function is even negative in the whole temperature regime shown

here. When comparing these two cluster functions as shown for κ = 10−5a−1
0 in figure 5.8, we recognize

their similarity, which is caused by the fact that both are dominated by atom-charge interactions for

these temperatures. Figure 5.8 shows the low-temperature behavior of the H− cluster function, where

this time we divided by the Boltzmann factor using the experimental value of the ground state energy

EH−

0 = 0.527Ha. This leads to the conclusion that even for temperatures as low as β = 40Ha−1 the

12The SLT-truncation is also unambiguous but it is only of significance in the SLT-limit, thus at low temperatures.
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Figure 5.7: The H− and H+
2 cluster functions for different values of κ.
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Figure 5.8: Left: The H− and H+
2 cluster functions shown in comparison for a small value of κ. Both

functions are negative in almost the whole regime here shown and are not dominated by their ground
state contribution. This indicates that charge-charge and atom-charge interaction are dominant. Right:
Zooming into the low-temperature regime we see clear deviations of the cluster function and the ground
state asymptotic value of 1. When comparing to the SLT-cluster function we have to remember that the
truncation is different.

ground state approximation of the cluster function is not valid. At the same time, the cluster function

shows no evidence for a κ-dependence anymore, which reflects the fact that their value is determined by

short-distance interactions. The H− cluster function using the SLT-truncation, is shown for comparison

and develops the same very slow crossover to the ground state approximation for low temperatures. We

have to admit that we are, at the moment, not able to make precise predictions for temperatures lower

than β = 40Ha−1 13. We do not deem this problematic, since the SLT analysis has shown [13] that

the contribution to the equation of state of the three-particle cluster functions is limited to intermediate

temperatures.

Our results show that the H+
2 and H− cluster function are dominated by diffusive states for interme-

diate temperatures.

We show the 3e and 3p functions in figure 5.9. These cluster functions are again normalized by

the Hydrogen ground state partition function to facilitate comparison. They show the same “bump” in

the high-temperature regime, which will compensate for the negative parts of the H− and H+
2 cluster

functions. Figure 5.10 shows the combination of these cluster functions as it appears in the equation of

state of a pure Hydrogen system

B3 =
1

6




 3e + 3p + 3 2e, 1p + 3 1e, 2p




 (5.32)

for different values of κ. At first glance we recognize that a large compensation between the contributions

of the different cluster functions has taken place. An important basic information we gather from this

plot is that the direct part of the three particle cluster functions is expected to result in a decrease of the

pressure, since the combination appearing in the pressure series is positive.

13The large discretization level necessary to capture the path correlations makes the numerical calculations very slow
and at the same time systematic discretization errors accumulate even when using the exact pair action making the path
integral approach unfeasible.
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5.4.3 Exchange functions

In path integral language the Fermi-statistic of the fundamental constituents leads to diagrams, where

several particles of the same species are forming one loop. We call diagrams where nodes are not made

of single particles but of loops with more than one particle, exchange diagrams. Particles in a loop

interact repulsively as given by the loop fugacity factor ((3.14) and (3.15)). Due to this repulsion and

the fact that particles in a loop are, on average, separated by a distance λγ , it follows that proton and α

exchange diagrams are entirely negligible, so that we only have to consider electron exchange diagrams.

The Helium atom, for example, contains two electrons and, thus, in addition to the so-called direct cluster

function (see figure 5.5) an exchange diagram is present in the quantum Mayer series for the pressure.

This diagram will ensure the correct counting factors for the Helium ground state, in r-space symmetric

and anti-symmetric in spin-space.

The diagram which represents the Helium exchange cluster function is given by

α, e2 = T

α e2

+ T + T + . . . , (5.33)

where we indicate by e2 that the two electrons form one loop, so that (5.33) is a two-loop diagram. Fur-

thermore, the loops are dressed multiplied with the factor provided by attached “rings”. The interaction

between these loops is given by formula (3.69). The numeric evaluation of these exchange diagrams is

straightforward since we only have to specify the correct start end end points for the paths of the two

exchanging electrons. After this initialization we can use the same Importance sampling function together

with the adaptive discretization scheme as for the direct cluster functions.

Our results for the Helium exchange function are presented in figure 5.11. At low temperatures, the

exchange cluster function is determined by the Helium ground state, which ensures the correct multiplicity

of the ground wave function in the Mayer series for the pressure. For lower temperatures we use the ground

state approximation. Figure 5.11 shows our results for the Helium exchange functions alongside with the

H− exchange function. We see a “bump” in the high-temperature regime and, as for the direct H− cluster

function, the slow crossover to the ground state partition function. In figure 5.11 we have normalized the

cluster function by the ground state partition function using the experimental value of the ground state

energy E = 0.5277Ha.

To make the reader aware of the accuracy one needs in order to be able to make precise predictions in

the crossover regime, we plotted the H− cluster function divided by the ground state partition function

using the value EH−

0 = 0.52Ha for the energy (see figure 5.13). The very small energy difference ∆E =

0.0277Ha between the Hydrogen and the H− ground state makes it very difficult to achieve accurate

numerical results. In fact, the two additional interactions present in the H− cluster, with respect to the

Hydrogen cluster function, cause only a small difference in energy ∆E. For most of the sampled paths

these two additional interactions cancel to a large extend, so that numerical errors are amplified. This is

also the reason why it is easier to make accurate predictions for the Helium atom: The electron-electron

interaction is twice smaller than the electron-α interaction, so that this cancellation is incomplete and

numerical errors of the path integral relative to the ground state energy are smaller. Even though we are

not able to achieve the desired high accuracy in the case of the H+
2 and H− ions, these clusters will not

contribute to any sizable amount to the equation of state for the considered low-density conditions since

they are suppressed by one additional fugacity factor with respect to the Hydrogen cluster function.
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Figure 5.11: Our numerical results for the Helium and the H− exchange functions for several screening
constants κ. These cluster functions ensure the correct multiplicity of the ground state and are of purely
Quantum mechanical origin.
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Figure 5.12: Left: The three electron exchange function. Right: For high temperatures the three
electron exchange function and the H− exchange function are of the same order and compensate each
other to a large amount.
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Figure 5.13: The H− exchange function, where we used a reference ground state partition function with
the energy E = 0.52Ha.
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Chapter 6

Thermodynamics of pure Hydrogen

at low densities and low

temperatures

6.1 Scaled-low-temperature limit

In this chapter we will use the numerically calculated truncated cluster functions to ameliorate the

so-called SLT-equation of state of a pure Hydrogen system by taking into account three body interactions

between the basic constituents (e, p).

The equations for the pressure in terms of the density are based on the work in Ref. [13], which

contains a profound analysis of corrective terms to the widely known Saha-equation of state. Historically,

the Saha-equation has been derived from a chemical picture. As it has been stated before, in the physical

picture a model equation of state is completely described by the pressure in terms of the fugacities and

the temperature P (β, {zγ}). We are able to find a pressure model in the physical picture that results in

the Saha-equation, which enables us to quantify its basic assumptions. In earlier works by the authors

of [34, 13], corrective terms to the Saha-equation of state in the scaled low-temperature limit (SLT) have

been investigated.

The SLT-equation of state describes the physics of a partially ionized gas at low temperatures and

densities. A neutral plasma of charged particles recombines when the temperature is lowered sufficiently

for a fixed density. When, on the other hand, the temperature is held fixed and the density is lowered

the recombined entities dissociate for entropic reasons. In order to describe a partially recombined

phase, these two antagonistic processes have to be in an equilibrium. It is highly non-trivial that the

system is thermodynamically stable in the SLT-limit, which has been first proven by Fefferman [10].

The presented results are based on this SLT-analysis presented in full length in Ref. [13]. We use our

numerical calculations of the cluster functions to implement corrections due to the clusters H+
2 and H−.

For several thermodynamic quantities such as the pressure, the sound velocity and the inner energy, we

are comparing our results to the OPAL-tables along the solar adiabat.
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6.1.1 The Saha-equation

In the physical picture the Saha-equation is derived from the following expression for the pressure:

βPSaha = z̃e + z̃p + z̃ez̃p
(
2πλ2ep

)3/2
e−βEH (6.1)

with z̃γ =
(2σγ + 1)
(
2πλ2γ

)3/2
zγ and λep =

√

~2β

mep
,

where mep is the reduced mass of the electron-proton system. The first two terms correspond to the

non-interacting electron/proton gas pressure, whereas the third term contains the recombination effects.

We recognize that no κ-dependency whatsoever is present in this description, meaning that the long-

range effects of the Coulomb potential are completely absent. The Saha-model neglects all interactions

of the basic constituents e and p, apart from the possibility to form a Hydrogen atom in its ground state.

We, therefore, cannot expect to deduce reliable results at high temperatures where either charge-charge

interactions or excited states of the Hydrogen atom are present. The corresponding densities are derived

from the thermodynamic relation ρi = z̃i
∂P
∂z̃i

. The neutrality implies that z̃e(ρ, β) = z̃p(ρ, β) = z̃(ρ, β)

and we can solve the equation of either the electron or the proton density

ρe = ρp = ρ = z̃
︸︷︷︸
ρe,free

+ z̃2 (2πλe,p)
3/2

e−βEH

︸ ︷︷ ︸
ρH

(6.2)

for the fugacity z̃. In this way the Saha-equation is derived

βPSaha = ρ+
1

2
ρ∗
(√

1 + 4ρ/ρ∗ − 1
)

with ρ∗ = (2πλ2e,p)
−3/2eβEH (6.3)

and we do exactly see which kind of approximation of the full diagrammatic series this equation represents.

The Saha-equation is valid if all contributions beyond the Hydrogen ground state are negligible. These

conditions are fulfilled in a mutual limit ρ → 0, T → 0 with fixed ratio ρ/ρ∗ = const, the so-called

scaled-low-temperature limit (SLT), where the desired finite fraction of recombined particles is present.

When comparing the two terms in equation (6.2) we see that partial recombination is achieved if

z̃ = γ
(
2πλ2e,p

)−3/2
eβEH = γρ∗, (6.4)

where γ is a free parameter which determines the fraction of recombined particles ρH = γρe,free.

6.1.2 The SLT-limit and corrections to the Saha-equation

Since the Saha-equation contains the main process of recombination and is valid in the scaled-low tem-

perature limit [36, 10], it is expected to be a good reference point for a subsequent expansion of the dia-

grammatic series. The SLT-expansion is exactly such a perturbative expansion of the full diagrammatic

series around the Saha-equation. In a first step, the diagrams taken into account in the SLT-expansion

are chosen carefully depending on their weight along the line of constant ionization. In a second step, the

so derived series of diagrams is inverted perturbatively around the Saha solution to access the fugacities

ze(ρ, β) for which the pressure is evaluated.

The precise procedure and the selection of diagrams are extensively described in Ref. [34]. During

the derivation of the Saha-equation we have supposed that the e, p-cluster can be approximated by its

ground state contribution. In general the virial coefficients (see equations (3.69) and (3.70)) depend on
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Figure 6.1: The phase diagram of a pure Hydrogen system. In the mutual limit ρ→ 0, T → 0 with fixed
ρe/ρ

∗ a finite fraction of particles stays recombined and the Saha-equation becomes exact. Corrections to
the Saha-equation are derived in the scaled-low-temperature limit. Taking higher order terms in the SLT-
expansion into account enables to move along the arrow in the direction of higher temperatures/densities,
thus, extending the validity of the so derived equation of state.

the temperature as well as on the fugacities (∼ densities). The fugacity dependence is inherited from the

long-range nature of the Coulomb potential which necessitates a RPA-type resummation. The cluster

function can be split into a part, known as the truncated cluster function, which stays finite even if the

limit κD → 0 is considered and a part which diverges. The truncated cluster functions are dominated

by their respective ground state contribution in the low-temperature limit. The terms of the genuine

cluster function which diverge in the limit κ → 0 are related to the long-range nature of the Coulomb

potential. The truncation of the cluster functions, thus, arises naturally when extracting the contribution

from a cluster function that dominates in the SLT-limit. We will dedicate the following subsection to

clarify this reasoning. The SLT-expansion is an ordering of higher order processes with respect to their

importance in the scaled-low-temperature limit. Most importantly, it provides exact expressions for the

first corrections to the “ideal” Saha-equation in the SLT-limit.

6.1.3 Truncation of Cluster due to screening

In order to see, which corrections to the Saha-equation arise in the low-temperature low-density limit,

we use the simple example of a two particle diagram

e p
T = e−βφ − 1 + βφ− 1

2
(βφ)2, (6.5)

which accounts for the interactions between electron and proton and, thereby, the formation of Hydrogen

atoms. In the derivation of the Saha-equation we assumed that we can represent this cluster by its ground

state partition function. The additional truncation present in the diagram e−βφ − 1 + βφ − 1/2(βφ)2 in

comparison to the usual virial coefficient e−βV −1 appears naturally due to the chain resummation giving

rise to the potential φ. The only non-integrable term in the expansion of the above expression is the term
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1/6(−βφ)3. In the function

BT
2 = T − = e−βφ − 1 + βφ− 1

2
(βφ)

2
+

1

6
(βφ)

3
(6.6)

we can, therefore, safely take the limit κ → 0. The value of the related integral is dominated by the

ground state contribution e−βEH at low temperatures. The term (−βφ)3 has to be treated separately

since it remains fugacity-dependent. It provides a contribution roughly given by

z̃2
∫ ∞

0

dr
e−3rκ

|r + λ|3 r
2 ∼ z̃2 log(κ(z)λ). (6.7)

Even though this integral, as a function of κ, becomes divergent in the limit κ → 0, its contribution to

the equation of state remains finite due to fugacity prefactors which tend to zero. In the above example of

the term (−βφ)3, we should compare its weight to the ground state contribution of the Hydrogen cluster

z̃2 log(κ(z̃)λ)
︸ ︷︷ ︸

φ3-Diagram

to z̃2e−βEH

︸ ︷︷ ︸

ground state contribution

(6.8)

where κ ∼
√
βz̃ and z̃ ∼ eβEH (see equation (6.4)), so that the term (−βφ)3 is sub-dominant in the SLT

regime according to

e2βEHβEH ≪ eβEH , (6.9)

i.e. it is exponentially smaller than the ground state contribution by a factor eβEH . The current version

of the SLT-expansion contains terms up to the order O(eβEH), so that this term examined for pedagogical

reasons, is actually taken into account. Apart from these estimations, the fact that the plasma is neutral

leads to large compensations of these (−βφ)3 interactions between the several species

e e e p p e p p
, (6.10)

which means that the overall contribution of these diagrams is even smaller than estimated above1.

In summary, the truncated cluster coefficients are the parts of the cluster coefficients which stay finite,

even if the screened potential is replaced by the bare Coulomb potential (κ→ 0). The so-called counter-

terms (the opposite of the subtracted terms, here 1/6(−βφ)3), where the limit κ → 0 cannot be directly

taken, are related to the long-range nature of the Coulomb potential. In general, the terms beyond

Debye-type (maximum divergence in terms of κ allowed by the diagrammatic rules) are expected to be

small. The same arguments to select the diagrams which give the first corrections to the Saha-equation in

the SLT-limit have been applied in a more general context [34, 13]. The expression for the three particle

cluster functions in the SLT are explicitly given in the Ref. [12], where these functions are also calculated

numerically.

In the following, we will use these results in combination with the numerical calculation of the trun-

cated three particle cluster coefficients [12] to evaluate the SLT-equation of state explicitly in the case of

the Sun’s adiabat.

1In equation (6.10) all logarithmic divergent terms cancel out in the limit κ → 0, due to the charge symmetry of the
Hydrogen plasma, and the final contribution is of order e2βEH
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6.2 Application of the SLT-expansion to the solar adiabat

The second quantum virial coefficient, which is closely related to the truncated two particle cluster

coefficients, was first analytically calculated by Ebeling [55]. Higher order coefficients have not been

calculated before, although they are needed to have a more precise description. These three particle

diagrams account, in particular, for the contributions of the ions H+
2 and H−. We have calculated these

functions numerically using the path integral formalism (see chapter 3). The prefactors arising from

the expansion around the iso-ionization line in (ρ, T ) space and the precise estimation and selection of

diagrams to be taken into account are given in Ref. [13]. Using the numerically calculated truncated

cluster function as well as the formulas given in Ref. [13], we trace the equation of state along the adiabat

of the sun. Previous applications of the SLT-expansion [14] used approximations of the few-particle cluster

functions and were, therefore, limited to low temperatures, preventing us from applying the theory to the

Sun. The new tabulations of these cluster functions lift this restriction. The equation of the SLT-pressure

is given by

PSLT = PSaha + P1 + P2 + P3 + P4 + P5 + o
(
eβEH

)
. (6.11)

The explicit expressions for the partial pressures Pi(β, ρ) can be found in Ref. [14]. The ordering of the

successive corrections to the Saha equation result from the competition of exponentially growing factors

associated with the bound states of recombined entities beyond the Hydrogen ground state on one hand,

and exponentially decaying factors arising from the fugacities on the other hand.

We content ourselves with stating the physical processes from which the corrections P1 . . . P5 originate:

❼ P1: Debye plasma polarization

❼ P2: arises from 4 particle diagrams, in particular H2 molecules

❼ P3: implements thermal excitations of the Hydrogen cluster and charge-charge interactions T

❼ P4: accounts for the ions H+
2 , H

− and atom charge interactions

❼ P5: Debye plasma polarization beyond P1 arising from

When we compare our data to the OPAL tables, which is shown in figure 6.2, we recognize a good

accordance of the SLT and the OPAL-prediction (relative deviations are at most 3 · 10−3). It can be seen

very clearly how the SLT interpolates between the Saha-equation, which is valid for low temperatures, and

the virial-expansion, valid in the high-temperature regime. Plotting the different corrections predicted

by the SLT-equation of state Pi, we see that the main corrections to the Saha-equation are caused by

classical Debye-diagrams (P1, P5). The contributions of H+
2 and H− (P4) are confined to a very small

region and are in magnitude almost negligible. The speed of sound c, which is essentially given by the

adiabatic coefficient Γ, is a key quantity in helioseismology and, thus, it is interesting to compare the SLT

and the OPAL prediction for Γ. Using standard thermodynamic relations, we can deduce the internal

energy per particle

u =
∂

∂β

(

2βµ− βP

ρ

)∣
∣
∣
∣
ρ

(6.12)

where µ(β, γ) = EH + β−1
(

ln(γ) + ln (me/me,p)
3/4

/4
)

, see equation (6.4). In this manner the formula
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Figure 6.2: Left: The pressure along the adiabat of the Sun. The SLT-expansion interpolates between
the Saha-equation and the virial-expansion. Right: The different corrections P1-P5 to the Saha-equation
predicted by the SLT-expansion along the adiabat of the Sun. We find a almost perfect accordance with
the OPAL-predictions.

for the internal energy

u =

(

2− βP

ρ

)

EH +
3P

ρ
+ 2

∂ ln(γ)

∂β
− ρ∗

ρ

∂βP/ρ

∂β
(6.13)

is derived, which can be evaluated for given ρ, for each correction Pi separately, yielding the related

corrections of the internal energy ui [14]. We have performed a similar analysis based on fundamental

thermodynamic relations to compute the adiabatic exponent Γ from the knowledge of the function P (ρ, T )

and u(ρ, T ) via

Γ =
ρ

P

∂P

∂ρ

∣
∣
∣
∣
s

︸ ︷︷ ︸

c2

=
ρ

P




∂P

∂ρ

∣
∣
∣
∣
T

+
T

ρ2cV

(

∂P

∂T

∣
∣
∣
∣
ρ

)2


 (6.14)

with

cV = T
∂S/N

∂T

∣
∣
∣
∣
V

=
∂u

∂T

∣
∣
∣
∣
ρ

. (6.15)

The adiabatic coefficient and the internal energy per particle are shown in figure 6.4. We see that the

corrections u1, u5 and u3 are dominant as it has been found for the pressure. We, again, remark an almost

perfect agreement with the OPAL-table data in the whole temperature regime for both, the adiabatic

coefficient Γ and the inner energy u.
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6.3 A simple approximation inspired by the SLT-expansion

The derivation of the SLT-expansion starts with a development of the particle densities in terms

of fugacities, which afterwards is inverted perturbatively around the Saha-equation. This leads to the

SLT-expansion (6.11) of the pressure in terms of the densities. Here, we propose a simple approximation

scheme within the diagrammatic series of the pressure in terms of the fugacities, directly inspired by the

SLT considerations, but which avoids the perturbative inversion to access the equation of state. The

model pressure is given by

βP SLTinv = z̃e + z̃p + z̃ez̃pCe,p +
1

2
z̃2eC2p +

1

2
z̃2eC2e +

κ3D
12π
︸︷︷︸

∼(z̃e+z̃p)3/2

+ e2β
κ4D
32π

︸ ︷︷ ︸

∼(z̃e+z̃p)2

+
1

4
z̃2e z̃

2
pZH2 . (6.16)

In this simple model, three particle terms have been neglected since their contributions are expected to be

small according to the above analysis, in particular in comparison with the Debye-type corrections. The

term βκ4D originates from the diagram . The two-body functions occurring in the SLT-pressure

(6.16) are given in terms of Ebeling’s functions Q and E [24]. The explicit formulas for the two particle

cluster functions in the SLT-limit, are given by

Cep(β) =
(
2πλ2ep

)3/2
[

Q
(

−
√

2mep/meEHβ
)]

+
4πe6β3

12
ln(mep/m0) (6.17)

Cee(β) =
(
2πλ2ee

)3/2
[

Q
(

−
√

2mee/meEHβ
)

− 1

2
E(−

√

2mee/meEHβ)

]

−4πe6β3

12
ln(mee/m0) (6.18)

Cpp(β) =
(
2πλ2pp

)3/2
[

Q
(

−
√

2mpp/meEHβ
)

− 1

2
E
(

−
√

2mpp/meEHβ
)]

−4πe6β3

12
ln(mpp/m0). (6.19)

The last term is related to the divergent integrals (see equation (6.10)) representing “counter-terms” to

the truncation2. The massm0 can be chosen arbitrarily since it cancels out when the proper combination,

leading to a neutral plasma, of those β3 log(mγ/m0) terms is considered3. To model the presence of the

H2 in the plasma, we have included a phenomenological partition function

ZH2
(β) =

(
2πλ2e

)3
(

2πλH2
2

)3/2

e−βEH2
1

1− e−βEvib

∞∑

l=0

(2l + 1)e−l(l+1)βErot , (6.20)

given by a simple rotator-vibrator model [14]4. The density corresponding to the SLTs pressure model is

given by5

ρSLTinv
e = z̃ +

1

2
z̃2 (Cee + 2Cep + Cpp) +

κ3

8π
+
e2βκ4

32π
+

1

2
z̃2e z̃

2
pZH2 . (6.21)

Now, we will invert the equation (6.21) in a non-perturbative manner, i.e. we numerically compute z(ρ, β).

Once this inversion is performed, we evaluate the model pressure for the resulting fugacity z(ρ, β), which

2The third order term contained in the function Q does not give any contribution due to cancellations in the occurring
combination 2Qep −Qee −Qpp

3This exact cancellation is only present in the case of a symmetric plasma (e, p). When allowing for the α-particles the
cancellation will not hold, and the result will be m0, κ dependent.

4The reduced mass of the four particle system is given by 1

mH2
= 2

me
+ 2

mp
.

5We remember that the fugacities are dressed by neutrality bond before the densities are derived by differentiation and
the pseudo-neutrality (z̃ = z̃e = z̃p) is invoked.
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confirm the accuracy of the SLT-expansion. The deviation from the SAHA-pressure is mainly determined
by classical Debye-corrections P1 and P5.

provides the equation of state P (ρ, β). It is surely beneficial to exactly solve the equations for the densities

without the perturbative inversion around the Saha-equation. When doing so, less approximations are

made in contrast to the perturbative inversion around the Saha-equation. This procedure will also enable

us to quantify the accuracy of the perturbative inversion around the Saha-equation. Another advantage of

this approach is that we can also include terms, which lead to the formation of H2. Using the perturbative

inversion, this is not immediately achievable due to the fact that for low temperature the recombination

to H2 leads to a large deviation from the Saha equation and, therefore, we would have to include a large

number of terms. This approach, i.e. direct inversion of the density equations to find the fugacities, will

also be used in chapter 7.

Results

The result of the exact inversion is illustrated in figure 6.5, and shows a very good accordance with the

SLT-expansion prediction, where three particle effects have been neglected P = P1 + P3 + P5. As input

data we use the GONG solar model [70], where we assume that only Hydrogen is present. The difference

of these two curves can then be attributed to the contribution of higher order terms in the perturbative

expansion around the Saha-equation. The accordance with the OPAL-equation of state is, as already

expected, striking. The main deviations of the three curves are confined to the intermediate temperature

regime where the actual recombination is taking place. In figure 6.6 we plot the equation of state for

several isochores for the exact inversion of the SLT-model and the OPAL-tables.

At large densities and high temperatures, on the other hand, the OPAL-equation of state predicts

a larger pressure than the Saha-equation of state. For two selected densities we provide the plot of

differential pressure (see figure 6.7), to make the reader sensitive to the similarity of the OPAL and the

SLT-model. The same accordance is seen in the adiabatic coefficient (see figure 6.8), which essentially
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determines the speed of sound

c2 =
∂P

∂ρ

∣
∣
∣
∣
S/ρ

=
P

ρ
Γ. (6.22)

For low temperatures the recombination of two atoms to a Hydrogen molecule reduces the pressure and

has a large impact on the adiabatic coefficient.

We have to admit that for high densities (as for example ρ = 10−2a−3
0 ) the screening constant κ is too

large for our low-density for low-temperature expansion to make reliable predictions. The applicability

of the equation of state proposed here is based on the assumption of a small value of κ. This assumption

is fulfilled in the high temperature regime κ ∼
√
β as well as in the low temperature regime where the

screening constant is small due to a large fraction of recombined particles. The problematic region is,

therefore, the intermediate temperature regime, where the screening constant is neither suppressed by

the temperature nor by a low number of free particles.

6.4 Conclusions

The SLT-expansion provides reliable easy-to-use expressions for the equation of state of a pure Hydro-

gen plasma for reasonably low densities. In this context, the numerically calculated three-body cluster

functions have been used to improve the SLT-equation of state. We have not only compared pressure and

inner-energy but also the adiabatic coefficient predicted by these models. With the help of the simple

model, inspired by the SLT-expansion, where we inverted the density equations numerically, we have

verified that the SLT-expansion is reliable for solar conditions. This direct inversion of the SLT-density

equation enabled us to probe also the low temperature regime, where the Saha-equation loses its validity
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We recognize that the difference of these two models is generally of the order of 1❻.
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The models are in good overall accordance.
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due to the fact that Hydrogen atoms recombine to form H2
6. The numerical inversion of the density

equations can be implemented very easily and is numerically not demanding, so that this equation of

state is very appropriate for on-line use. The direct calculation of the equation of state has the advantage

that grid errors due to the discretization of the OPAL-tables are avoided. Furthermore, the accordance

of the equation of state, inspired by the SLT considerations, and the OPAL-tables enables us to better

quantify the ingredients used to generate these tables. In the following chapter we will use the numerically

calculated κ-dependent cluster functions instead of its vacuum counterparts, arising naturally in the SLT

limit, in order to improve our description of the intermediate-temperature regime.

6In this regime, the basic assumption of the SLT expansion, namely that we can perturb around the Saha-equation of
state, is not valid.
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Chapter 7

Equation of State of the

Hydrogen-Helium Mixture

In this chapter we will use the numerically calculated cluster functions (see chapter 5) to derive the

equation of state in the context of the diagrammatic expansion introduced in chapter 3. In the first part

of this chapter we investigate the impact of these numerical cluster functions in the case of a Hydrogen

plasma by comparing to the SLT and the OPAL-predictions. The main difference of the approach,

extensively discussed in this chapter, and the SLT-expansion is that we do not restrain ourselves to the low-

temperature low-density regime. In particular, we will neither consider a low-density limit κ→ 0 for the

cluster functions nor will we invert the fugacity expansion around the ideal Saha-equation perturbatively.

Furthermore, we exactly invert the density equations, so that no small parameter is needed1. The direct

inversion of the density equations is purely of technical nature, whereas the κ-dependence of the cluster

functions gives rise to new physical effects. Since the SLT-equation is expected to hold in a large regime,

namely when the density and the temperature are sufficiently low, we expect the changes, related to the

screened cluster functions, to occur at rather high densities and temperatures.

After first tests on the pure Hydrogen gas we add the α-particles to our system, allowing for the

formation of He and He+. The inclusion of the α-particles in our equations opens two important additional

recombination channels (e + α→ He+, e + He+ → He) and, thus, the equation of state of the Hydrogen-

Helium mixture will have more features than the pure Hydrogen equation of state. As a reference model

in the Hydrogen-Helium case, we introduce a generalization of the Saha equation, which also accounts

for the ideal recombination to He and He+, in addition to the ideal recombination to Hydrogen.

In the following, we will gradually improve the equation of state starting from a very simple model.

For each introduced correction, we plot the new equation of state along several isochores and the adiabat

of the Sun, our primary system of application. We will compare each of these successively introduced

models with the OPAL-tables which are widely accepted in the literature. There have been several papers

studying the differences of the OPAL-tables and other equations of state, in particular those using the

free energy approach (chemical picture). For this reason, and also because the OPAL-equation of state is

regarded as the most accurate for solar-like conditions [71], we deliberately compare our results only with

the OPAL-tables. We will see that the Sun is an almost ideal system and that the differences between

our models and the OPAL-tables along the adiabat of the Sun are small. When increasing the density,

non-ideal behavior occurs as the κ-dependence of the cluster functions becomes more important.

1For the perturbative inversion used in the SLT-expansion the small parameter is the deviation from the Saha-equation.
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The fugacity expansion proposed here is thermodynamically consistent in the sense that we can deduce

all thermodynamic quantities by their usual thermodynamic identities from the diagrammatic series of

the pressure. Consequently, all terms in the pressure series do have their counterpart in the diagrammatic

series of such quantities. Due to the usual thermodynamic relations (ρi = zi∂βP/∂zi for example), a model

is completely specified by its pressure series. We will, therefore, in general only give the diagrammatic

series of the pressure.

First, we will explain how this procedure, that uses the κ-dependent cluster functions, can be imple-

mented in practice. Afterwards we present our actual results for several successive approximations of the

full pressure series in comparison to the OPAL-tables.

7.1 The implementation of the fugacity expansion

As mentioned before, in the physical picture an equation of state is completely determined by the

series for the pressure. In practice, the full pressure series (equation (3.20)) is truncated, and only a finite

number of diagrams is taken into consideration. The cluster functions appearing in the pressure series

depend through κ on the fugacities. Given a pressure model, the densities are deduced by applying the

operator ρi = zi∂βP/∂zi.

Having calculated the cluster functions by our path-integral Monte-Carlo code (section ➜5.4 on

page 61), we use Mathematica to construct a two-dimensional interpolating function of κ and β. Using

these interpolating functions we can generate the function P ({z}, β) within Mathematica. This function

provides the densities via the usual relation. Internally, Mathematica directly evaluates the derivatives

and constructs the densities as linear combinations of interpolating functions. Derivatives acting on bonds

in the diagrammatic language, will be present through the κ-dependence of the cluster functions.

The interpolation of an exponentially growing function by a polynomial is problematic. Therefore, we

divide the raw numerical data representing the cluster function by its exponential asymptote before we

interpolate and remultiply the interpolating function by the same exponential afterwards. This procedure

leads to easily polynomially interpolable functions and ensures numerical accuracy.

In the next step, the equations for the densities ρ({z}, β), which have been deduced from the expression

for the pressure of a given model, are inverted for a given configuration of densities in order to find the

related fugacities. With the help of these fugacities, we can evaluate the original pressure expression and

thereby obtain the equation of state in its usual form P (ρ, β).

The advantage of this approach is that thermodynamic consistency is trivially fulfilled. Furthermore,

all thermodynamic series beyond the pressure are automatically calculated by Mathematica, which min-

imizes sources of errors (wrong prefactors, missing terms...) in the rather involved expressions. Once

their relation to the pressure is given, expressions for other thermodynamic quantities, such as the sound

velocity or the entropy2, can be derived in a similar manner. One of the main advantages of this strategy

is that the physical picture, which is often considered complicated and inflexible, becomes modular and

easily examinable. Once the code implementing the relations between the thermodynamic quantities

(P → ρ, P → Γ, . . .) and the inversion of the density equations is written, different models can be easily

examined, by solely changing the expression for the pressure.

2We recall that in the Grand canonical ensemble, the pressure is essentially the Grand canonical potential.
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7.2 The selection of diagrams

The full diagrammatic series of the pressure involves an infinite number of diagrams from which we

have to choose a finite set. We are going to select the diagrams according to the number of particles

they contain, where the particles hidden in the resummed potential are not counted. The two and three

particle clusters, we defined in section ➜3.6 and calculated in chapter 5, present only a subset of diagrams

made with two or three particles respectively.

The one-body diagrams we have to consider are given by

G1 = +
︸ ︷︷ ︸

Debye diagram

+ + + . . . (7.1)

= z̃

(

e
e2γβκ

2 −
e2γβκ

2
+
e2γβκ

3

)

.

For our numerical calculations of the cluster functions, we have used the approximation that the inter-

mediate particles of the chain resummation (see equation (3.38)) are classical (λγ = 0). To preserve

consistency, we have, therefore, to consider the particles in the attached rings to be classical as well.

The attached classical rings generally dress the bare fugacities by a factor of ee
2
γβκ/2. An exception is the

Debye diagram, indicated in equation (7.1), which has a special weight of κ3

12π (see equation (3.46) and

equation (3.47) on page 32). In the following, we will refer to the diagrams which are not contained in

the definition of the cluster function we calculated numerically, as the Screened Long Range diagrams

(SLR). This class of diagrams strongly depends on the screening constant κ. The diagram which provides

the Debye-correction is already contained in the class of diagrams SLR1 (see equation (7.1)).

According to the above definition of the particle number of a diagram, all two particle diagrams are

given by

G2 = G2 + + + + . . .

+ + + + . . .

= G2 + + , (7.2)

where we remind the reader that all fugacity factors of the cluster functions are dressed by attached rings

as well. The diagram vanishes due to the pseudo-neutrality condition. The second diagram which

is absent in the above series of diagrams, , is suppressed by the demand that no bare node can be

part of a convolution. We remind the reader of shorthand notation

= + + + + . . . (7.3)

= z̃

(

e
e2γβκ

2 − 1

)

,
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which is very useful in the three body case. The formula for the SLR2 diagrams is explicitly given by

βPSLR2 = βPSLR1 +
1

2
z̃γ1

(

e
e2γ1

βκ

2 − 1

)

z̃γ2

(

e
e2γ2

βκ

2 − 1

) (

4πeγ1
eγ2

β

κ2
+
πe2γ1

e2γ2
β2

κ

)

. (7.4)

The three particle clusters are defined by the diagrams

G3 = G3 + + +

+ + +

+ + (7.5)

+ +

︸ ︷︷ ︸

Dressing of fugacities in bonds

. (7.6)

The three particle diagrams shown in equation (7.6) respect the diagrammatic rules given in figure 3.4.

The attached rings provide only a multiplicative factor depending on the actual species they are attached

to. We can carry out the analysis of the SLR diagrams and find

βPSLR3 = βPSLR1 + βPSLR2

+
1

6
z̃γ1

(

e
e2γ1

βκ

2 − 1

)

z̃γ2

(

e
e2γ2

βκ

2 − 1

)

z̃γ3

(

e
e2γ3

βκ

2 − 1

)

(

3π2e2γ1
e2γ2

e4γ3
β4

κ2
+

8π2e2γ1
e3γ2

e3γ3
β4

3κ2
−

4π2e2γ1
e2γ2

e2γ3
β3

κ3
−

2π2e1γ1
e2γ2

e3γ3
β3

κ3

)

+
1

6
z̃γ1

(

e
e2γ1

βκ

2 − 1

)

z̃γ2

(

e
e2γ2

βκ

2 − 1

)

z̃γ3

(

3π2e2γ1
e2γ2

e4γ3
β4

κ2
−

2π2e1γ1
e2γ2

e3γ3
β3

κ3

)

+
1

6
z̃γ1

(

e
e2γ1

βκ

2 − 1

)

z̃γ2
z̃γ3

8π2e2γ1
e3γ2

e3γ3
β4

3κ2
(7.7)

Last two diagrams in equation (7.6) are allowed since the convolution point is not a bare node. The value

of the diagrams can be conveniently inferred by the κ-dependence of the numerically calculated cluster

functions

+ = z̃γ1
z̃γ2

e
(e2γ1

+e2γ2
)βκ

2

∑

γ

z̃γ

(

e
e2γβκ

2 − 1

)
∂

∂z̃γ 1 2
T . (7.8)

We will use these definitions of particle clusters throughout the following analysis. The SLR dia-

grams do not contain any exchange loops for the reason that these exchange terms are suppressed by an

additional fugacity factor.
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7.3 The equation of state of the pure Hydrogen system

The equation of state of a plasma for conditions, for example, found in the Sun is of major importance.

We will gradually develop the model equation of state incorporating the Debye, two particle and three

particle corrections to the Saha-equation. The present approach is tested and validated by comparing

its predictions to those of the OPAL and of the SLT equations of state. The quantities are shown in

the following figures as deviation P − PSaha from the Saha-prediction, due to the fact these corrections

remain small.

In the SLT-approach, the full cluster function was split into two parts: one integrable in the limit

κ → 0 and one where the this limit cannot be taken. The non-zero screening constant κ has only been

considered for the parts of the cluster functions which are not integrable. This approximation is avoided

when using the κ-dependent cluster functions. These functions are numerically calculated for several

temperatures and simultaneously for appropriate values of the screening constant κ. Once these objects

are known, the equation of state is a linear combination of them where the combinatorial prefactors

are those deduced with the help of our Quantum-Mayer formalism (see equation (3.20) on page 26 and

figure 3.4 on page 32).

The two particle equation of state for pure Hydrogen

In these terms the pressure involving all two-body clusters is given by the diagrams

βPSCH2 = 1e + 1p + 1p, 1e + 2e + 2p + e2 . (7.9)

This equation of the pressure defines the Screened-Cluster-Hydrogen two-body model (SCH2). This

dressing of the “internal” particles of a cluster is necessary to assure the correct compensation of first

order corrections of the cluster ground state (see discussion in section ➜4.1). Notice that in these diagrams

containing two electrons, exchange contributions are taken into account via the introduction of loops made

with two particles (q = 2 in the last diagram in equation (7.9)).

The three particle equation of state of pure Hydrogen

With the above definition of the screened cluster functions, the inclusion of the three particle cluster

functions in the equation of state model is straightforward. The Screened-Cluster-Hydrogen three-body

(SCH3) approximation for the pressure is given by

βPSCH3 = 1e + 1p + 1p, 1e + 2e + 2p

+ e2 + 2p, 1e + 1p, 2e + 1p, e2

+ 3e + 1e, e2 + e3 + 3p . (7.10)

This model includes all three body effects, and all exchange effects, which crucially intervene in recombined

entities like H−.
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Figure 7.1: The results of the two models SCH2 and SCH3 in comparison with the SLT and the OPAL
predictions for several isochores. For low densities the four models are indistinguishable apart from the
low-temperature regime (H2 is currently not modeled in our approaches). For higher densities the effects
of the κ-dependence of the cluster functions is clearly visible.

Results

We examine the predictions of the above defined models (SCH2 and SCH3) along several isochores and

along the adiabat of the Sun. After the deduction of the densities by differentiation3, we numerically

invert the resulting equations to find the fugacities and together with them the pressure as a function of

the density. We remind the reader that the value of κ is determined by the densities of the free particles

ργ,free = z̃γ . In this way, the screening constant is consistent with the diminishing fraction of free particles

when bound entities are formed.

The results of this procedure for our two models are shown in figure 7.1 for several isochores 10−2 ≥
ρa30 ≥ 10−6. For comparison the OPAL and the SLT-prediction for the pressure is shown alongside. For

low densities the deviation of the pressure with respect to either the SLT or the OPAL prediction is small.

Only in the intermediate-temperature regime, where the particles are neither forming Hydrogen atoms

nor the temperature is so high that the free terms are dominating, deviations from the SLT-equation of

state are visible. The OPAL-model also contains contributions of H2 molecules, which is indicated by the

descent of the pressure at low temperatures. Since the models studied here do not contain contributions

of four-particle clusters, we can only compare with the OPAL-tables in regions where the H2 abundances

are negligible.

For low-density isochores the impact of the κ-dependence of the cluster functions is almost negligible

3In practice the derivatives are taken internally by Mathematica, which returns an interpolating function representing
this derivative and thereby the density. The diagrammatic rules corresponding to the differentiation are summarized in
figure 3.5 and we could use these rules to determine the density series, too. We have deliberately chosen not to do so due
to the sheer complexity of the diagrammatic density series.
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and, thus, the accordance of either the SCH2 or the SCH3-model with the SLT prediction is very good.

When increasing the density, on the other hand, the κ-dependence of the cluster functions give important

corrections (see for example ρ = 10−3a−3
0 in figure 7.1). As expected, the effect of the three-body terms is

attractive most of the time, as the combination of cluster function appearing in the third virial coefficient

is positive in most cases (see figure 5.10 on page 65). This can be seen best by comparing the SLT-

prediction and the SCH2-model since the models take the same particle clusters into account, apart from

the SLR-diagrams4.

We have seen that we were not able to calculate the three particle cluster function very reliably for low

temperatures. Retrospectively, this does not pose a problem since the three particle terms are only giving

vanishingly small contributions for these temperatures. The difference between the two models SCH2

and SCH3 becomes smaller with decreasing density, due to the suppression of the three-body diagrams

by fugacity factors. The strength of coupling between ionized charges is determined by the quantity e2βκ

which is shown alongside.
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Figure 7.2: The predictions of the different pure Hydrogen models along the adiabat of the Sun. As
input data we used the GONG solar model [70], where we assumed that only Hydrogen is present. To
give the reader an impression of the parameter range, alongside the temperature-density profile as well
as the screening constant κ and the Debye-parameter e2βκ is shown.

In figure 7.2 the results along the adiabat of the Sun are shown [70], where we assumed that the whole

density is made up of Hydrogen and no α-particles are present. The differences between the reference

models and our predictions are very small, and again deviations are only found in the intermediate-

temperature regime. This can be attributed to the fact that the plasma under solar condition is a

relatively diluted and an almost ideal mixture of free particles and Hydrogen atoms. Alongside the

temperature-density profile of the adiabat, screening parameter κa0, controlling the importance of the

κ-dependence of the cluster functions, and the “Debye”-parameter e2βκ are shown. The fact that κa0 is

small along the adiabat leads to the accordance of the SLT-expansion, which is valid in the limit κ→ 0,

and our models.

4We have verified that the source of the deviation is not the difference of the SLR-diagrams these models take into
account.
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In conclusion, by using the κ-dependent cluster functions, we were first of all able to reproduce the

results of the SLT-expansion and the OPAL-tables in the low-density regime. In this regime the equation

of state of the plasma can very accurately be described by an ideal mixture e, p and Hydrogen atoms,

where the only non-ideality present are the SLR-diagrams (essentially the Debye-correction). For higher

densities we have seen what kind of effects the κ-dependence of the cluster functions on the equation

of state have. The contribution of some clusters can be negligible in the low-temperature regime, due

to the lack of bound states (for example the 3e-cluster), but it can be essential at higher temperatures.

In the intermediate-temperature regime our models predict in general a smaller pressure than the two

references.

There has been a long debate of how to implement pressure ionization in the equation of state (see

Ref. [20] for example). It is usually assumed that the pressure of the system increases when the ground

state is destroyed due to the screening process. The Saha equation of state neglects the screening process

completely and, therefore, assumes that the atomic ground state is unaffected by the screening constant.

Thus, pressure ionization would manifest itself in a larger pressure than the “ideal” Saha pressure. For

the here studied conditions where the screening length can be as large as κ−1 ∼ 6a0, we do not see such an

effect. It is remarkable that even for high densities (ρ = 10−2a−3
0 ) the pressure predicted by our models is

smaller than the “ideal” Saha pressure. When their fugacity factors are not dressed by attached “rings”,

the κ-dependent cluster functions are actually tending to zero with increasing screening parameter κ.

These attached rings compensate for the decrease of the bare cluster functions and, therefore, the overall

contribution of a certain particle cluster to the equation of state remains stable. We conclude that, even

though states of the particle clusters are destroyed by a large screening constant κ, the contribution to

the pressure of the cluster functions is only slightly affected and, for our parameter regime, no pressure

ionization is found. To make more precise statements we would need to probe the equation of state at

even higher densities, for which higher few-body clusters would have a crucial importance. Furthermore,

we used a semi-classical approximation for the inter-particle potential (see equation (4.24) on page 46)

in our calculations of the cluster functions. This approximation is questionable in the regime where κλ

is not a small quantity, so that we cannot draw definite conclusions.

After this first study involving the κ-dependent cluster functions we will in the following apply the

same approach to the Hydrogen-Helium mixture.

7.4 The equation of state of the Hydrogen-Helium mixture

7.4.1 General considerations

The presence of the α-particles breaks the symmetry of the charges. Cancellations between diagrams

involving different species will be less efficient and the equation of state will show more features than

in the pure Hydrogen case. In particular, the equation of state will be influenced by the two additional

recombination channels, e + α → He+ and e + He+ → He. It is useful to consider a generalization

of the Saha-equation, which allows for the formation of these bound states, as a reference model. This

generalization of the Saha-pressure is given by

βPSaha = z̃e + z̃p + z̃α + z̃ez̃p
(
2πλ2H

)3/2
e−βEH (7.11)

+ z̃ez̃α
(
2πλ2He+

)3/2
e−βEHe+ +

1

4
z̃2e z̃α

(
2πλ2e

)3/2 (
2πλ2He

)3/2
e−βEHe .
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The first terms represent the ionized charges e, p and α, whereas the following terms allow for the ideal

recombination to Hydrogen, He+ and Helium. The symmetry factor of the Mayer-diagram representing

Helium is given by 1/2, but due to the anti-symmetry of the ground state in spin-space an additional

factor of 1/2 is present, yielding a prefactor of 1/45. We will refer to this model in the following still as the

Saha-equation of state as for the pure Hydrogen case, due to their similarity. As the usual Saha-equation

only the ideal recombination processes are modeled.

The neutrality of the plasma imposes a condition on the densities of the different species

ρe − ρp − 2ρα = 0. (7.12)

In the pure Hydrogen case the neutrality of the system implied that both, the electron density ρe and the

proton density ρp, are equal. For the Hydrogen-Helium mixture, the neutrality of the system together with

the total density ρ is not sufficient to determine the number densities of the three elementary particles.

Therefore, the Hydrogen-Helium mixture needs to be characterized by an additional parameter, which

can be chosen freely. We have chosen the parameters

ρ = 2ρp + 3ρα (7.13)

α =
ρα

ρα + ρp
. (7.14)

where ργ is the number density of species γ measured in units of the Bohr radius a0 (ργ [a
−3
0 ]) and ρ is

the total particle number density ρ = ρe + ρp + ρα.

In figure 7.3 we show the prediction for the pressure of the “Saha”-equation for α = 1/2 (same number

of protons and α-particles) and ρ = 10−6a−3
0 together with the “generalized” abundances6

ρC{γ}
= z̃e

∂βPC{γ}

∂z̃e
+ z̃p

∂βPC{γ}

∂z̃p
+ z̃α

∂βPC{γ}

∂z̃α
. (7.15)

This quantity can be seen as the overall density created by the presence of the particle cluster C{γ} in

the pressure model. It is in sharp contrast to the usual abundances which are directly related to the

number density of a certain chemical species. The reason why we called the abundances “generalized” is

indicated by the red question mark. At first glance it seems that at temperatures of around β ∼ 5Ha−1,

the beforehand fixed number of free protons increases. This is a consequence of the dressing of each of the

diagrams with the neutrality bond (see equation (3.67) on page 37) to be able to impose the neutrality

of the system on the level of fugacities. The neutrality bonds lead, for example, to the appearance of the

He+ cluster in the equation of the proton density ρp, even though the He+ cluster contains no proton

(it there appears with a minus sign). We assure the reader that the number density ργ of each of the

fundamental species is constant.

In figure 7.3 the three recombination stages can be clearly identified: First the α-particles recombine

with a free electron to form He+. At lower temperatures these He+ particles attract another electron and

recombine to He. At last, the free protons recombine with the remaining free electrons to form Hydrogen

atoms.

The here presented simple “Saha”-model contains only ideal recombination. Many-particle effects,

for example, present in the SLR-diagrams (essentially the famous Debye-correction) or the κ-dependent

5The Helium ground state is an anti-symmetric singlet in the electron spin space ψ0 ∼ 1
√

2
(| ↓↑〉 − | ↑↓〉) and, therefore,

the spins are not independent.
6Remember that all fugacities are dressed with neutrality bonds.
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Figure 7.3: The “generalized” abundances for the different clusters present in the Saha equation are
shown along with the equation of state for ρ = 10−6a0 and α = 1/2. The three recombination stages can
be clearly seen in the curve for the pressure as well as in the curves of the abundances. These abundances
cannot be interpreted as the actual number of chemical species but rather tell us the fraction of the
total densities created due to the presence of a certain chemical species. Since our system is neutral a
He+ particle cannot exist on its own but has to be accompanied by either an electron or a “negatively
counted” proton. This leads to the fact that the density related to the bare proton cluster increases in
the high-temperature region, even though the overall number of protons is fixed. A neutral cluster has
not to be accompanied by any other particle, and thus their abundances are the actual particle density
fractions. The origin of this peculiarity is the dressing of the fugacities by the neutrality bond.

cluster functions, are neglected. In the following, we will first present and then study our model, which

incorporates these effects, and compare its predictions to the OPAL-tables.

7.4.2 The Hydrogen-Helium model with three-body interactions

The Screened-cluster-Hydrogen-Helium-model is given by the pressure model

βPSCHHE = 1e + 1p + 1α + 1p, 1e + 1e, 1α + 1p, 1α

+ 2e + 2p + 2α + e2

+ 1p, 2e + 2p, 1e + 1α, 2e + 1α, 2p + 2α, 1e + 2α, 1p

+ e, p, α + 3e + 3p + 3α

+ 1p, e2 + 1α, e2 + e3 . (7.16)
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This approximation of the pressure takes all three-body cluster functions, but those related to the ex-

change of protons or α-particles, into account. As before, all fugacity factors of the cluster functions are

dressed by attached loops to account for the compensation of first order corrections in κ (see discussion

in chapter 4). The related equations for the densities ργ are again deduced by differentiation after each

fugacity factor has been dressed by the neutrality bond (see equation (3.67)). At this point, the reader

might understand why we have first of all decided only to give the expressions for the pressure of a model

and, secondly, why we use Mathematica to derive the density equations.

7.4.3 The reduced Hydrogen-Helium model

We compare our full-model, where all 21 numerically calculated cluster functions are taken into account,

with a minimal model, containing only a modest number of clusters. This will enable us to specify the

importance of non-ideal contributions and, due to the fact that we also include a phenomenological model

for the Hydrogen-molecule cluster, give insights in the content of the OPAL-tables. This reduced model

SCHHEred is given by the pressure:

βPSCHHEred
=

e
+

p
+

α

+ 1e, 1p + 1e, 1α + 2e, α + 2e, 2p + βPSLR3, (7.17)

where the H2-cluster function is approximated by a vibrator rotator model [14]. The essential Debye-

term is present in this model though the SLR3-diagrams. For the remaining cluster functions, we use the

ground state partition functions, which is indicated by the lighter color of the clusters. This will enable

us to examine the importance of the “non-ideal” behavior of the particle clusters. We will see that this

simple model captures already most of the corrections to the “Saha”-equation of state and is in good

accordance with the OPAL-tables.

7.4.4 Results

The results for α = 1/4, three times more protons than α-particles, are shown in figure 7.4 for several

total densities ρ.

The equation of state of the Hydrogen-Helium mixture shows three recombination stages (see figure 7.4

and figure 7.5): First, electrons and α-particles recombine to He+-particles, afterwards the Hydrogen

recombination process starts. The He+ particles attract part of the remaining free electrons to form

Helium atoms. The actual order of the two processes e + p → H and e + He+ → He depends on the

specific configuration of the plasma ρ, α. This cascade can be clearly seen in the plots of the pressure for

low densities, but is smeared out for large densities. With increasing density, the suppression of the Helium

diagram due to an additional fugacity factor becomes less severe, and, therefore, the Helium recombination

process can start already at relatively high temperatures. The He+ recombination process can also be

seen in the plot of the screening parameter κa0, where it leads to the “kink” at high temperatures. As

is shown by figure 7.5, the presence of other clusters than the ideal ones (zγ , He, He+, H and the Debye

terms) is only of importance for high densities.

For a better examination of the differences between the OPAL-equation of state and our results, the

difference with respect to the Saha pressure βδP is shown in figure 7.6. Both curves show in general

similar behavior, apart from the low-temperature region where the contribution of H2-molecules becomes
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Figure 7.4: Several isochores of the equation of state of the Hydrogen-Helium mixture for the models
SCHHE and SCHHEred in comparison with the Saha equation and the OPAL-prediction. In the plot of
the screening parameter κ a0, we can see a “kink” at about β = 5Ha−1, which is related to recombination
e + α →,He+.

relevant. In this regime the reduced model SCHHEred is in good accordance with the OPAL-prediction.

Two “kinks” are present in the high-temperature regime which mark the recombination stages.

For low densities and high temperatures both models are fairly equivalent (ρ < 10−4a−3
0 , β < 2Ha).

Due to the charge eα = 2e of the α-particles their contribution to the screening constant is important.

Nevertheless, the parameters κa0 and e2βκ are smaller than for a pure Hydrogen gas with the same

number density. This is a consequence of the free electrons recombining with the α-particles to form He+

already at high temperatures. A lower value of the screening constant κ does not necessarily mean a

larger pressure since the particles either recombine or contribute to a Debye diagram. For low densities

the three models predict globally the same deviations from the ideal Saha pressure. This deviation is

mostly given by the SLR-terms (Debye-terms): These clusters are absent in the Saha-equation and, as

can be seen in figure 7.5, a relatively large fraction of particles is counted in these “SLR-clusters“. At

high densities, on the other hand, deviations become large as the few-body clusters gain importance.

For high temperatures and high densities our model predicts a larger pressure than the OPAL-equation

of state and the reduced model. An exception is the ρ = 10−2a−3
0 , where the density is so large that the

Debye-parameter e2βκ≫ 1 is not small (see figure 7.6). For these densities the prediction of our models

are not reliable since they are based on an expansion in the particle number.

In summary, the difference of the cluster function-model and the OPAL-equation of state is never

larger than 2%, at least for reasonable densities ρ < 10−3a−3
0 .

Increasing the fraction of α-particles to ρα = ρp (α = 1/2), the contribution of He and He+ becomes

more important and the pressure decreases faster than for α = 1/4 (see figure 7.7). For these conditions

the recombination cascade is more pronounced. In figure 7.8 we examine again the differences of the

92



Equation of State of the Hydrogen-Helium Mixture

ρ=10
-3
a0

-3
 , α=1/4

Ze

Zp

Zα

ZH

ZHe
+

ZHe

Debye-terms
Other clusters

F
ra

ct
io

n
 o

f 
to

ta
l 

d
en

si
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

β [Ha
-1
]

0 10 20 30 40

ρ=10
-6
a0

-3
 , α=1/4

Ze

Zp

Zα

ZH

ZHe
+

ZHe

Debye-terms
Other clusters

F
ra

ct
io

n
 o

f 
to

ta
l 

d
en

si
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

β [Ha
-1
]

0 10 20 30 40

Figure 7.5: The “generalized” abundances for α = 1/4 along two adiabats. We recognize that three par-
ticle clusters beyond the explicitly shown are completely negligible at low densities. For higher densities
their contribution is only of importance for rather high temperatures. We remark again the “kink” due
to the He+ recombination process in the abundances of the Debye terms (SLR-diagrams). In general the
recombination processes are shifted to higher temperature when the density is increased.

three models with respect to the ideal Saha-pressure. For low densities and low temperatures where the

cluster functions are dominated by their ground states the results of the three models coincide. This is

also true for high temperatures as three particle clusters are for these conditions negligible as well. In the

intermediate-temperature regime our model equation of state predicts a larger pressure than the reduced

cluster function-model. This is an indicator for the importance of the three-body cluster functions beyond

Helium.

To conclude this section we present the results along the solar adiabat in figure 7.9. The OPAL and

the reduced model prediction of the pressure are in good accordance. The fact that the complete cluster

function model predicts a larger pressure can be traced back to the importance of three particle clusters.

In general the full cluster function predicts a larger pressure in the intermediate-temperature regime than

the reference models.

In the temperature regime where He+ recombines with free electrons to form Helium, our SCHHE

model has shown unnatural ”kinks“ in the plots of screening constant κ as well as in the Debye abundances

(see for example figures 7.4 and 7.5). This is a strong indicator that the screening provided by He+

particles is of importance in these parameter regimes. In the next subsection, therefore, we explain how

we can account for screening by the charged He+-particles and examine the so generated model.

7.4.5 Contribution of He+ ions to screening

One drawback of the SCHHE-model we explored in the previous section is that, even though He+ atoms

are charged and present at intermediate temperatures (see figure 7.5), we completely neglected their

contribution to screening. The He+ contribution to the screening constant can be accounted for during

the chain-resummation, which leads to the screened loop-loop potential (see section ➜3.4.1). In the long

wavelength limit the separation between the α-particle and the electron is negligible. The He+-particles,

therefore, can be identified with an effective particle to which we can assign a fugacity during the chain
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Figure 7.6: For better comparison of our results and the OPAL-predictions the difference with respect
to the Saha equation is shown. We recognize that differences of our models and the OPAL-tables are
confined to the intermediate-density regime, where the actual recombination processes take place. In this
regime, the models show in general the same features but with different intensity. We will see that for
low densities (ρ ≤ 10−4a−0 3) the differences of the SCHHE-model and the OPAL-tables can mainly be
attibuted to the fact that we have not taken He+ into account in the screening parameter κ. For higher
densities the three particle clusters and the κ-dependence of the cluster function become important.

ρ=10
-2
 a0

-3

Temperature [K]     

10
4

2×10
4

10
5

4×10
4

 β
 P

/ρ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ=10
-3
 a0

-3

Temperature [K]     

10
4

2×10
4

10
5

4×10
4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ=10
-4
 a0

-3

Temperature [K]     

10
4

2×10
4

10
5

4×10
4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 α=1/2

Saha

OPAL

SCHHE

SCHHE reduced

ρ=10
-5
 a0

-3

 β
 P

/ρ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β [ Ha
-1
]

0 10 20 30 40

ρ=10
-6
 a0

-3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β [ Ha
-1
]

0 10 20 30 40

 κ
 a

0

10
−3

0.01

0.1

1

β [ Ha
-1
]

0 10 20 30 40

ρ=10
-2
 a0

-3

ρ=10
-3
 a0

-3

ρ=10
-4
 a0

-3

ρ=10
-5
 a0

-3

ρ=10
-6
 a0

-3

Figure 7.7: The pressure along selected isochores for α = 1/2, an equal number of proton and α-particles.
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Figure 7.8: The differences with respect to the Saha equation are shown for the three equations of
state. For ρ = 10−6a−3

0 the OPAL-prediction shows a large variation around β = 8Ha−1. Since for low
densities long-range effect reduce essentially to the Debye correction and the κ-dependence of the cluster
functions is less important, we believe that, again the He+ contribution to screening can be responsible
for the deviation for β > 8Ha−1. The larger pressure predicted by the OPAL-table for β < 8Ha−1 cannot
be related to this He+ screening since it will lower the pressure. For reasonable densities the models are
indistinguishable in the low and high-temperature regime.
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Figure 7.9: Our prediction along the adiabat of the Sun. The differences of our full model SCHHE and
the OPAL-tables are always smaller than 0.1%. Only in the intermediate-temperature regime differences
of the three models can be found. We will see in the following chapter that part of the deviation is related
the the He+-contribution to the screening process.
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resummation process z̃He+ = z̃ez̃αCHe+(β, κ). The effective charge of this “particle” can be determined

by summing up all fundamental diagrams arising during the chain resummation

He+

e

α

︸ ︷︷ ︸

e2

+

He+

e

α

︸ ︷︷ ︸

−2e2

+

He+

e

α

︸ ︷︷ ︸

−2e2

+

He+

e

α

︸ ︷︷ ︸

4e2

, (7.18)

which leads to an effective charge eHe+ = 4e − 2e − 2e + 1e = 1e equal to the overall charge of He+, as

expected. The screening constant, therefore, fulfills through

κ =

√

4πβ
∑

γ={e,p,α,He+}
e2γzγ . (7.19)

a self-consistency equation due to the κ-dependence of the effective fugacity zHe+ = zezαCHe+(β, κ) of

the He+-cluster7 . The inclusion of the He+ cluster in the screening process gives also rise to changed

diagrammatic rules: The He+ cluster is treated like an additional fundamental particle and, thus, no

convolutions involving this cluster are present in the new diagrammatic.

We have decided not to solve the self-consistency equation (7.20), but to iterate it to first order in

zHe+

κ =

√
√
√
√
√4πβ




∑

γ={e,p,α}
e2γzγ



+ e2zezαCHe+(β, κ0), (7.20)

where κ0 =
√

4πβ(ze + zp + 4zα) is the screening constant for which the He+-cluster has not been taken

into account. This approximation is justified due to the weak dependence of the cluster functions on the

screening constant8.

The results of this model involving He+-screening are shown in figure 7.10 for α = 1/4. For comparison

we show again the OPAL-prediction as well as our results where the He+-cluster has not been taken into

account during the screening process. Alongside the difference of the charge-charge coupling e2β(κHe+ −
κ0) is shown. As expected the screening constant κHe+ became larger by taking the He+-particles into

consideration. By taking the He+ screening into account the accordance with the OPAL-tables is even

better, at least for low densities. The screening provided by the He+-particles slightly reduced the pressure

in the recombination domain β < 10Ha−1. To round up our study, we present our last plot where the

predictions of the SCHHEHe+ model for the pressure along the adiabat of the Sun are shown again.

The inclusion of the He+ particles in the screening process leads to a better accordance with the OPAL-

predictions and a small pressure decrease in the intermediate-temperature regime. All three models are

showing for about β = 2Ha−1 a change of behavior. The “unnatural” behavior of the SCHHE model

is partly cured when allowing for screening by He+-particles. For temperatures of about β = 7Ha−1

our SCHHEHe+ model recovers the OPAL prediction, whereas this happens only at about β = 8Ha−1

7The cluster function is given by CHe+ = e, α where the internal fugacity factors are dressed by attached rings.

8We have verified that the next order iteration of the self-consistency equation (equation (7.20)) does not change the
results for the equation of state for the parameter range of ρ, α we are interested in.
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Figure 7.10: The prediction of our He+ screening model in comparison to the one without He+ screening
and the OPAL-tables. Alongside the difference of the bare screening constant κ0 and the He+ version
κHe+ is shown. As expected the screening constant κHe+ > κ0 and thereby the weight of the Debye-type
SLR-diagrams has increased, which leads to a pressure decrease, so that our predictions become closer
the the OPAL-predictions. Again, for high densities the κ-dependence of the cluster functions gains
importance and we attribute the differences to this.
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Figure 7.11: Our predictions along the solar adiabat. The He+ screening leads to a small decrease
of the pressure (in the direction of the OPAL prediction) in the intermediate-temperature regime. For
higher or smaller temperatures the models are indistinguishable.
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for the SCHHE model. We insist on the fact that our SCHHEHe+ model consistently accounts for the

screening effects of the He+-particles, due to the fact that we derived the model by exact diagrammatic

considerations.

7.5 Conclusion

In this chapter we have in depth analyzed the pure Hydrogen system as well as the Hydrogen-Helium

mixture using our numerically calculated cluster functions. The accordance with the OPAL-tables is

striking for a very large parameter regime. Differences are confined to intermediate temperatures, where

the particles recombine as well as to high densities. For the considered densities (ρ−2a−3
0 < 10−2), we

found no sign of pressure ionization. Our numerically calculated cluster function indeed tend to zero if the

screening constant becomes large9. This decrease of the cluster function is, on the other hand, canceled

by the growing weight of the attached loops, so that the overall contribution of a certain particle cluster

even increases (see the plots of the κ-dependent cluster functions in section ➜5.4). Therefore, we argue

that even though the ground state of the particle cluster is destroyed for large densities, this does not

necessarily mean that the pressure increases. We remark that the here shown approach to the partially

ionized gas is in principle well suited to study the problem of pressure ionization, but such a study would

require the inclusion of far more terms in the diagrammatic series.

We have implemented the He+ screening process on the level of diagrams, where we assumed a

scale separation κ aHe+ < 1 of the screening length scale and the natural length scale aHe+ of the He+

cluster (for low temperatures aHe+ → aHe+

0 this scale becomes the scale of the ground state). Our models

predicted in most of the cases a larger pressure than the OPAL-tables. A conclusion of the here presented

analysis is that the Sun is an almost ideal system. For solar conditions, deviations from the Saha equation

are small and mostly given by the famous Debye term. Three particle clusters and the κ-dependence of

the cluster functions only lead to a small change of the pressure. Nevertheless, helioseismic observations

claim are said to be sensitive to such small deviations [72]. A comparison with experimental data would

be very interesting and could give further insights about the “physics” of the Sun.

9The cluster functions shown in section ➜5.4 were dressed by attached rings, the bare cluster functions tend to zero as κ
increases
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Chapter 8

Conclusions

In this thesis we have considered the Hydrogen-Helium mixture in the physical picture. Our results

confirm the predictions of the OPAL-tables for a large range of parameters and especially for the adiabat

of the Sun. Nevertheless, our precise formulation of the equation of state, where all approximations are

visible and controlled, is a major advance with respect to the phenomenological proprietary OPAL-code.

The high precision currently achievable by helioseismic measurements would presumably make it possible

to discriminate between these two models, but for the lack of time we were not able to carry out this

analysis. This comparison to experimental data is one of the first future prospects and important to

quantify the quality of our equation of state. Furthermore, for high densities 10−2 < ρa30 < 10−4 and

intermediate temperature T ∼ 4 · 104K deviations between the two models have actually an important

magnitude. These differences can be traced back to the dependence of the cluster functions on the

screening constant κ, a physical feature which is correctly taken into account within our formalism.

During the preparation of this thesis we tackled and overcame various numerical and analytical prob-

lems. On the analytical side, we first have shown that the Screened Cluster Representation (SCR) for the

particle densities [34] can be reformulated for the pressure. This new diagrammatic series for the pressure

recovers the SCR for the densities by applying standard thermodynamical identities, as it should. This

formulation simplifies the calculations and directly provides the equation of state. As quoted in Ref. [34]

the contributions of the chemical species can be naturally associated with diagrams involving particle

clusters. The new diagrammatic series for the pressure achieved a transparent, numerically exploitable,

“modularization” of the equation of state, a feature that is often attributed to the chemical picture. We

have used the new formulation in combination with the numerically calculated cluster functions to take

all chemical species with up to three particles into account in a consistent manner. Furthermore, this

work showed how the contribution of ions, in particular He+, can be implemented consistently on the

level of diagrams.

The central object in the resummed diagrammatic is the screened loop-loop potential, which turns

out to be a rather complicated object. At the pragmatic level, we derived a very simple semi-classical ap-

proximation of this potential, which is sufficiently accurate at low temperatures. This simplified screened

potential properly accounts for the collective effects in the internal partition functions of the particle

clusters. We stress that the ad-hoc inclusion of such effects within the chemical picture is plagued with

ambiguities and double-counting problems. Furthermore, we have opened up a way to take the full time

dependence of the resummed loop-loop potential into account. This can be achieved by solving a self-

consistency equation and will be of importance for the equation of state if the screening length becomes
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comparable to the thermal wavelength κλ ∼ 1. The self-consistency equation is easily exploitable nu-

merically and will, in contrast to our simple approximation, provide a more reliable inter-loop potential

for dense conditions.

As far as the numerical difficulties we were facing are concerned, two important obstacles have to

be mentioned: The singularity of the Coulomb potential at the origin and the formation of bound

states at low temperatures. The first point gave rise to an adaptive discretization algorithm that does

neither rely on the commonly used pair-action approximation nor on the exact two-body density matrix.

This approach takes all correlations between the paths into account in a coherent way, and enables us

to carry out “discretization independent” path integral calculations. The Importance sampling function

introduced to capture the formation of bound states at low temperature has proven to be very appropriate.

Usually such a direct sampling approach is not necessary. We have directly calculated partition functions

involving a complicated truncation originating from the resummation of chain-diagrams. The Metropolis-

Hastings algorithm was not applicable to this problem without major complications. After the preparation

of this thesis we became aware of the work of Ref. [60], which uses a very similar approach for the

calculation of real-time matrix elements. The Monte-Carlo techniques developed in this thesis should

enable us to calculate the internal partition function of four particle cluster, so that the way for a

coherent implementation of Hydrogen molecules in the equation of state of the Hydrogen-Helium mixture

is paved.

In retrospective, we believe that we have concentrated too much of our effort to low temperatures.

From almost all of our plots of the equation of state the reader will quickly recognize that the “physics”,

beyond the mixture of ideal gases, actually take place at about β < 15Ha−1 (T > 2 · 104K) and ρ a0 >

10−4. For these temperatures our algorithm gives very precise results and the incorporation of the time-

resolved loop-loop potential would have been in reach. It is also in this temperature regime that the three-

body cluster functions that we have calculated numerically gives at least some significant contribution.

We believe, therefore, that the study of this intermediate temperature-density regime will be most fruitful

for further research. In this region the partially ionized plasma is far from ideal and charge-charge, charge-

atom, and higher order clusters are of paramount importance, since the screening constant κ is not small

and the intermediate temperature β does neither favor free particles nor atoms.

We hope that the work presented in this thesis will stimulate further research in the various related

fields.
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[18] D. Mihalas, W. Däppen, and D. G. Hummer. The equation of state for stellar envelopes. II -

Algorithm and selected results. The Astrophysical Journal, 331:815–825, August 1988.

[19] Didier Saumon and Gilles Chabrier. Fluid hydrogen at high density: Pressure dissociation. Phys.

Rev. A, 44:5122–5141, Oct 1991.

[20] Didier Saumon and Gilles Chabrier. Fluid hydrogen at high density: Pressure ionization. Phys. Rev.

A, 46:2084–2100, Aug 1992.

[21] C. A. Rouse. Comments on the Planck-Larkin partition function. The Astrophysical Journal.

[22] F. J. Rogers. Equation of state of dense, partially degenerate, reacting plasmas. Phys. Rev. A,

24:1531–1543, Sep 1981.

[23] F. J. Rogers and A. Nayfonov. Updated and expanded opal equation-of-state tables: Implications

for helioseismology. The Astrophysical Journal, 576(2):1064, 2002.

[24] W. Ebeling. Statistische Thermodynamik der gebundenen Zustände in Plasmen. Ann. Phys., 19:104,

1967.

[25] A Alastuey and A Perez. Virial expansion of the equation of state of a quantum plasma. Europhys.

Lett., 20(1):19–24, 1992.

[26] Angel Alastuey, Francoise Cornu, and Asher Perez. Virial expansions for quantum plasmas: Dia-

grammatic resummations. Phys. Rev. E, 49:1077–1093, Feb 1994.

[27] A Alastuey and A Perez. Virial expansions for quantum plasmas: Fermi-Bose statistics. Phys. Rev.

E, 53(6, Part a):5714–5728, 1996.

[28] T. Kahlbaum. The quantum-diffraction term in the free energy for Coulomb plasma and the effective-

potential approach. J. Phys. IV, 10(P5):455–459, 2000. International Conference on Strongly Cou-

pled Coulomb Systems, ST MALO, FRANCE, SEP 04-10, 1999.

[29] Lowell S. Brown and Laurence G. Yaffe. Effective field theory for highly ionized plasmas. Physics

Reports, 340(12):1 – 164, 2001.

[30] T. Morita. Equation of state of high temperature plasma. Prog. Theor. Phys, 22:757, 1959.

[31] F. J. Rogers, F. J. Swenson, and C. A. Iglesias. OPAL Equation-of-State Tables for Astrophysical

Applications. The Astrophysical Journal, 456:902, January 1996.
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