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contre a été déterminante, car elle m’a permis de mettre de côté un modèle de
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Chapter 1

Introduction

Contents

1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Medical Image Analysis: from a clinical perspective . . . . . 1

1.1.2 Medical Image Synthesis: the importance of annotated data . 2

1.1.3 A patch at the intersection of analysis and synthesis . . . . . 3

1.2 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . 4

This thesis introduces methods for the analysis and the synthesis of medical

images of pathological cases. The focus is on Magnetic Resonance Images (MRI)

acquired for tumor-bearing human brains, with a particular interest in the appear-

ance of glioblastomas in MRI. In this thesis, the analysis of medical images refers to

segmentation, i.e. the task of contouring and annotating regions based on the obser-

vation of medical image acquisitions. The synthesis of medical images refers to the

numerical simulation of medical images, given a patient-specific virtual anatomy. A

model which would unify analysis and synthesis is our objective, since such a model

would allow a better understanding of the two most fundamental bricks in medical

imaging, namely: what is it that we see on these given images of pathological cases?

And what would an image acquisition of this given pathological case look like?

1.1 Context and motivation

1.1.1 Medical Image Analysis: from a clinical perspective

Gliomas are brain tumors which arise from glial cells. According to the World

Health Organization, there are four grades of malignancy [Louis 2007], with glioblas-

tomas being both the most common and the most aggressive kind of gliomas (grade

IV). From a clinical perspective, the monitoring of the tumor growth is key for the

management of the patient therapy [Mandonnet 2013], and for adequate decision-

making in case of a transition from one grade to another. For this purpose, the most

reliable monitoring technique consists in periodic acquisitions of multiple Magnetic

Resonance (MR) channels (typically contrast-enhanced T1-weighted, T2-weighted

and T2-FLAIR MR images), and the subsequent segmentation of the tumor vol-

umes to estimate the velocity of tumor diameter expansion [Mandonnet 2013].

Glioblastoma segmentation typically consists in the delineation of three

mutually-inclusive tumor regions [Menze 2014]:
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• the enhancing tumor core, or proliferative rim, is positively correlated with an-

giogenesis induced by high-grade gliomas. This region appears hyper-intense

on contrast-enhanced T1-weighted images due to blood-brain barrier leakage.

Indeed, extremely proliferative tumor cells induce angiogenesis, the devel-

opment of chaotic vessels starting from nearby blood vessels up to the tu-

mor. The newly formed vessels are badly formed and the environment is acid.

This results in a blood-brain barrier leakage, which appears hyper-intense on

contrast-enhanced T1-weighted images.

• the tumor core consists in tumor cells, either proliferative or necrotic. This

region includes the proliferative rim and it is defined based on T2-weighted

and contrast-enhanced T1-images. For most high-grade cases, the contrast-

enhanced T1-image helps to detect the tumor core. For low-grade cases and

for some high-grade cases, T2-weighted images are required to determine the

fuzzier borders of the tumor core.

• the complete tumor consists of the tumor core and the surrounding edema.

This region usually appears hyper-intense in T2-weighted and T2-FLAIR MR

images.

As could be expected, the manual segmentation of these three tumor regions is te-

dious and time-consuming, and therefore is the ideal candidate for the development

of automatic segmentation algorithms.

1.1.2 Medical Image Synthesis: the importance of annotated data

Many automatic approaches for medical image analysis rely on the learning of

model parameters directly from the data, e.g. with statistical learning or generative

probabilistic models. Intuitively, these approaches should benefit from training on

more data, and be able to leverage large databases of annotated pathological cases

to learn models which improve on the state-of-the-art for automatic segmentation.

However, the catch is that the learning is done in a supervised way, which means

databases should be large and annotated. Such databases are expensive to build and

there are only a few attempts at sharing them, for instance the MICCAI Multimodal

Brain Tumor Image Segmentation benchmark challenge [Menze 2014].

An original approach consists in building these annotated databases of im-

ages from the ground with virtual patients, i.e. atlases completely generated by

a numerical biophysical model. This approach was successfully applied in the

past: [Geremia 2013] trained random forest on a large dataset consisting of several

hundreds of synthetic cases [Prastawa 2009] and showed good automatic segmenta-

tion results on a few real cases. [van Tulder 2015] reported two explanations to the

benefits of having synthetic medical images for segmentation: i) a simple segmenta-

tion model builds on the synthesis model, and therefore becomes more complex, and

ii), a complex segmentation model benefits from having more training data. This

kind of approach has lead to an on-going interest in the medical imaging field for
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Figure 1.1: Concept of local search window. Left: T1-weighted image in the MNI
space [Mazziotta 2001], with a patch in red. Middle: local search window in green
around the patch location. Right: Similar patches, in blue, found in other cases via
a search constrained to the local search window location.

more realistic image synthesis algorithms [Ye 2013, Iglesias 2013,Cardoso 2015,van

Tulder 2015].

1.1.3 A patch at the intersection of analysis and synthesis

Multi-atlas methods aim at transferring knowledge from multiple annotated tem-

plates, known as atlases, to a target case. These approaches can build upon

small databases of annotated cases to segment healthy brain structures [Hecke-

mann 2006,Aljabar 2009, Iglesias 2015]. Regarding an application to the analysis

of MRI of tumor-bearing brains, [Asman 2012] use a multi-atlas approach to de-

tect outliers on MRI: the target case presents a brain tumor, atlases are images of

healthy brains, so the tumor should be identified as an outlier region. One limita-

tion of the original multi-atlas approaches is the expensive computational cost of

warping the atlases to the target with deformable registration.

Multi-atlas patch-based methods make use of local intensity patterns, repre-

sented by blocks of voxels known as patches. Recently, multi-atlas patch-based

methods have been successfully applied for the segmentation of healthy brain struc-

tures [Rousseau 2011,Coupé 2011]. The core assumption is that the central voxels

of similar patches should have a similar label. To segment healthy structures of the

brain, the concept of local search window is introduced: it is sufficient to compare

a test patch to annotated patches positioned in a neighbourhood of the position of

the test patch, as shown in Figure 1.1. This allows multi-atlas patch-based methods

to be computationally efficient.

Even more recently, multi-atlas patch-based methods have been adapted for the
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synthesis of an image modality based on another one, known as Modality Propaga-

tion [Ye 2013]. Therefore, the patch lies at the intersection of analysis and synthesis,

which is of particular interest for this thesis.

However, the application of patch-based methods to pathological cases requires

avoiding to rely on local search windows. Prior works [Wang 2013b,Wang 2014,

Wang 2013a] expressed a similar interest and suggested different methods.

[Wang 2013b] perform patch-based multi-label segmentation without registra-

tion for the segmentation of bones and cartilage on knee MRI. Bones appear hypo-

intense on knee MRI, while cartilage appears hyperintense and is located at the

extremities of the bones. To compensate for the absence of registration, patch

features are augmented with spatial context, the distance to the center of the im-

age. Similarly, in [Wang 2014], features are augmented with spatial context using

geodesic distances.

[Wang 2013a] perform label transfer without registration for brain tumor seg-

mentation. The approach is a hierarchical patch-based technique relying on an

initial over-segmentation into small homogeneous regions, known as super-voxels.

The coarsest scale is described with super-voxels, while the finest scale is described

with patches. Given a test super-voxel, similar super-voxels are found in the at-

lases. Then, a patch-based technique restricted to the matched super-voxels is

performed. Super-voxels are surrogate for non-local search windows to constrain

the patch match and allow short computation time.

1.2 Thesis overview

With this thesis, our motivation is to apply multi-atlas patch-based methods to

the analysis and simulation of pathological cases, therefore without relying on the

concept of local search window. Several questions are considered:

• Can multi-atlas patch-based methods be adapted to the segmentation of

pathological cases? Which concept should help replace the assumption of

local search? How does the proposed method fit in the probabilistic frame-

work for multi-atlas segmentation? Can state-of-the-art results be achieved

for glioma segmentation? Can the computational cost and running time be

kept reasonable?

• Is the proposed patch-based segmentation method subject to overfit? How

critical are down-sampling, pre-processing and post-processing? What is the

effect of a change of definition for patch similarity, or a change of definition

for the decay parameter in the patch-based vote? Are there subtle effects due

to feature augmentation?

• If the generative probabilistic model for segmentation achieves state-of-the-

art results, can the mirrored generative model be used for image synthesis

of pathological cases? Can realistic images be synthesized if a label map is

the only input? If so, what is the optimal encoding of input label maps to
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perform patch matching? Is spatial consistency of synthetic images a given,

or should an iterative strategy be introduced? Can uncertainty of the image

synthesis model be estimated? How realistic are synthetic images? How does

the proposed method compare to state-of-the-art in terms of image synthesis

and modularity?

Chapter 2 introduces a patch-based approach for the segmentation of patholo-

gies on multi-channel MRI. A generative probabilistic model is detailed, and the

approach consists in a smart approximation of the cost function so that the com-

putations become tractable. Several improvements are proposed to obtain segmen-

tation results in competitive time, including atlas and patch pre-selection criteria.

The method is validated on a publicly available benchmark dataset and achieves

state-of-the-art results. This chapter is based on [Cordier 2013,Cordier 201X].

Chapter 3 questions the validation framework, generalization, and implicit

choices regarding the method described in Chapter 2. Several meta-experiments

were conducted. Results and conclusions are discussed.

Chapter 4 introduces a patch-based approach for the synthesis of multi-channel

MRI exhibiting a pathology. A novel generative probabilistic model, which mirrors

the model presented in Chapter 2, is detailed, and a heuristic optimization proce-

dure is proposed to estimate the maximum a posteriori. Experiments are conducted

to assess the quality of the synthetic images with respect to real MRI, to compare

to the state-of-the-art method, and to illustrate the modularity of our approach.

This Chapter is based on [Cordier 201Y].

Chapter 5 concludes the thesis with a discussion of the main contributions, and

finally suggests future research directions.

Appendix A showcases segmentation results obtained with the method described

in Chapter 2.

Appendix B showcases synthetic MRI obtained with the patch-based method

described in Chapter 4.

Appendix C presents Student distributions of multi-modal image intensity fitted

in Chapter 2 and mentioned in Chapter 4.
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Abstract

In this chapter, we describe a novel and generic approach to address fully-automatic

segmentation of brain tumors by using multi-atlas patch-based voting techniques.

In addition to avoiding the local search window assumption, the conventional patch-

based framework is enhanced through several simple procedures: an improvement

of the training dataset in terms of both label purity and intensity statistics, aug-

mented features to implicitly guide the nearest-neighbor-search, multi-scale patches,

invariance to cube isometries, stratification of the votes with respect to cases and

labels. A probabilistic model automatically delineates regions of interest enclos-

ing high-probability tumor volumes, which allows the algorithm to achieve highly

competitive running time despite minimal processing power and resources. This

method was evaluated on Multimodal Brain Tumor Image Segmentation challenge

datasets. State-of-the-art results are achieved, with a limited learning stage thus

restricting the risk of overfit. Moreover, segmentation smoothness does not involve

any post-processing.
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Figure 2.1: MR channels (top row) ; whole brain segmentation and mutually-
inclusive pathological regions (bottom row).

2.1 Introduction

2.1.1 Motivation

Glioblastoma is the most severe case of brain tumors. Clinical guidelines such as

RECIST [Eisenhauer 2009] or RANO [Wen 2010] are limited to 1D or 2D anal-

ysis (maximal diameter and possibly second diameter) of the lesions. However,

from tumor growth monitoring to radiotherapy planning, 3D analysis is crucial

in the clinical pipeline [Angelini 2007,Mandonnet 2013]. Glioblastoma segmenta-

tion consists in a 3D delineation of the pathological compartments [Menze 2014]

shown in Figure 2.1. Manual segmentation is usually complex, subjective and time-

consuming. First, glioblastoma exhibit high tumor shape variability. Second, the

border between compartments can appear fuzzy, which can lead to a debatable seg-

mentation: inter-rater variability of manual segmentations is in the range 74-85%

(Dice overlap) [Menze 2014]. Third, the segmentation task requires the simulta-

neous screening of 3D images acquired with multiple Magnetic Resonance (MR)

sequences (Figure 2.1). This explains the ongoing interest for automatic segmenta-

tion algorithms, notably within the Multimodal Brain Tumor Image Segmentation

(BraTS) benchmark challenge [Menze 2014].



12

Chapter 2. A Patch-Based Approach for the Segmentation of

Pathologies

2.1.2 Related work

2.1.2.1 Glioma segmentation

Most of the automatic glioma segmentation approaches learn offline a discrimina-

tive model [Menze 2014, Zikic 2012, Tustison 2014]: image intensity features are

computed, then a machine learning algorithm is trained offline. Most computation

time is spent during the learning stage, which should be run again if newly ac-

quired data is annotated. Moreover, results are highly dependent on the choice of

features [Tustison 2014], and feature extraction has to be performed at test time.

For instance, [Tustison 2014] introduce a cascade of random forest classifiers based

on a set of intensity, geometry and asymmetry features. The segmentation is refined

using Markov random field regularization. Feature extraction takes about 90 min-

utes (single-thread implementation) [Menze 2014], mostly due to the computation

of the most relevant features (asymmetry) [Tustison 2014].

The generative approach builds a probabilistic model of observed image inten-

sity given the tissue type. The latent variable is the spatial distribution of healthy

tissues and tumor compartments. Prior knowledge includes the location and spatial

extent of healthy tissues in an atlas. [Menze 2010] introduce a generative model for

channel-specific pathology segmentation: the appearance of healthy tissues is mod-

elled as a multivariate distribution for all channels simultaneously, while tumor ap-

pearance is channel-specific. Tumor location is a latent variable shared between MR

channels, which results in tumor segmentations consistent across channels. Since

tumor compartments are not explicitly modelled in [Menze 2010], a discriminative

classifier is learnt to transform channel-specific abnormality probability maps into

tumor compartment delineations [Menze 2014]. To reach state-of-the-art results, a

strong post-processing is required to deal with the high number of false positives.

Running time is 20 minutes [Menze 2014].

Recently, Kwon [Kwon 2014] achieved top rank among the BraTS benchmark

competitors with a semi-automatic framework. First, an expert inputs multiple

seed points and radii, and samples one point from each tissue class. A tumor shape

prior is generated from the seed points via random walk. A pathological atlas is

synthesized by growing tumors from the seed points and combining the result with

a normal atlas. Average running time is less than 10 minutes for the user inputs,

plus 85 minutes for the remaining automatic pipeline on a machine with 8 cores.

2.1.2.2 Multi-atlas segmentation

When applied to glioma segmentation, machine learning techniques are confronted

with two major problems. First, the amount of training data is usually small: for

instance, there are only 20 high-grade training cases for the 2013 BraTS bench-

mark [Menze 2014]. Second, most algorithms require a computationally intensive

offline learning stage, which can be subject to overfit. Multi-atlas segmentation

methods are appealing as they can cope with a small training dataset, and are per-

formed online, which allows a seamless integration of new cases into the training
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dataset.

Atlas-guided segmentation consists in encoding the relationship between im-

age intensities and labels through the use of an atlas, an expert-annotated im-

age [Iglesias 2015]. The segmentation of a test case relies on label propagation, the

deformable registration of the atlas to the test case. Recently, multi-atlas segmenta-

tion [Rohlfing 2003], which uses several atlases to best capture anatomical variabil-

ity, has proven successful for the segmentation of healthy brain structures [Hecke-

mann 2006,Aljabar 2009,Cardoso 2013,Iglesias 2015]. However, limitations include

i) the high computational cost of non-linear registration, and ii) the assumption

that a one-to-one mapping exists between atlas and patient.

The development of patch-based segmentation alleviates these two limitations

by performing only affine registration and by introducing the concept of local search

window to take into account registration errors: since brain structures should be

located around the same position after registration, it is sufficient to compare a

test patch to annotated patches positioned in a spatial neighbourhood. Patch-

based methods have achieved state-of-the-art results for the segmentation of brain

structures [Rousseau 2011,Coupé 2011,Romero 2015]. However, local search cannot

be used for the segmentation of pathologies: tumor patches may not be located in

the same region of the human body.

In this chapter, we address the automatic segmentation of brain tumors by using

multi-atlas patch-based techniques, without any assumption of local search, so that

i) minimal learning is required, which decreases the risk of overfit, especially on a

small training dataset, ii) minimal post-processing is required, since segmentation

is robust, and spatially consistent labelling is guaranteed by patch overlap, iii)

competitive running times are achieved using a single core, and the algorithm could

benefit from a computer grid as it is embarrassingly parallel. To obtain a reliable

patch-based method which does not rely on the concept of local search window, we

combine several methodological advances: feature augmentation based on spatial

prior and robust intensity likelihood, selection of training dataset based on label

purity and intensity statistics, and a stratification of the votes with respect to cases

and labels. In the following, an enhanced patch-based segmentation framework is

introduced to accommodate with the presence of a pathology (Section 2.2). Then

the algorithm is evaluated on publicly available MR images, and its performance

is benchmarked against state-of-the-art methods (Section 2.3). Finally, results and

perspectives are discussed (Section 2.4).
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Figure 2.2: Patch-based glioma segmentation. Our contributions are mentioned in
blue. Green disks mark known tumor locations.

2.2 Patch-based glioma segmentation

Conventional patch-based segmentation without any search window constraint is

illustrated in Figure 2.2, along with our contributions. The fundamental assumption

is that central voxels of similar patches should have similar labels. Consequently,

the label of a test patch could be inferred by finding similar patches in a subset of

the training cases and performing a weighted vote: each patch votes for its label

with a weight depending on its similarity to the target patch.

A probabilistic model is first described to automatically define a region-of-

interest (ROI) within the target image. Then three improvements to the con-

ventional framework are proposed: feature augmentation and invariance, training

patch selection, and stratification of votes.

2.2.1 Notations

Patch-based segmentation relies on a set of training cases {In, Ln}n where In denotes

multi-channel MRI and Ln is a label map. A label l is assigned to a test patch

S (J, x) based on comparisons with a database of annotated patches {S (In, y)}(n, y),

where y indexes every spatial position in the reference space Ω. Conventionally, a

mono-channel patch S (I, x) is a cube of edge length 2r + 1, centered at spatial

position x ∈ R
3, consisting of image intensity values taken from a mono-channel

MR image I. The distance d (S(I, x), S(J, y)) between 3D mono-channel patches

of identical edge length is the canonical L2-norm on R
(2r+1)3 . A multi-channel

patch is the concatenation of mono-channel patches. The squared distance between

multi-channel patches is the sum of the squared distances between mono-channel

patches.
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2.2.2 Patch selection: a probabilistic model for glioma detection

2.2.2.1 Motivation: segmentation speed-up

The automatic definition of ROI, enclosing high-probability tumor regions, allows

patch-based segmentation to achieve competitive running time, thanks to patch

selection ahead of time. Indeed, patches outside of the target ROI in the target

case are directly discarded, which cuts down on time for both patch extraction and

patch match. Moreover, patches outside of the training ROI in the training case

are similarly discarded since they are unlikely to be relevant matches. In practice,

target patch selection has close to no influence on segmentation results: discarded

target patches are unlikely to trigger any alarm during segmentation, since the

features used for detection (average intensity over a patch) are less specific than the

patches used for segmentation.

2.2.2.2 Definition of a probabilistic model

The idea is to perform a robust clustering of patches into 7 clusters based on average

patch intensity. Clusters include cerebrospinal fluid (CSF), grey matter (GM), white

matter (WM), necrotic core (Nec.), edema, non-enhancing tumor core (NETC),

and enhancing core (EC). Robustness to outliers arising from imaging artefacts,

bias field or ground truth mislabelling, is achieved through the use of multivariate

Student distributions to model the heavy-tailed distribution of multi-channel inten-

sity1. The proposed model is a mixture of Student distributions [Svensén 2005],

with fixed and spatially-varying mixing coefficients, similar to [Shiee 2011]. Each

Student distribution is parametrized by θl = (µl,Σl, νl), where µl is the mean, Σl

the covariance matrix, and νl the number of degrees of freedom. The graphical

model for glioma detection consists of a directed graph with 3 nodes: X→ L→ J,

as presented in Figure 2.3. The joint probability is:

p(J,L,X) = p(J | L)p(L | X)p(X)

where X indexes the coordinates of the brain in the MNI space Ω. The label map

L is assumed to be sampled independently for each position x from a generalized

Bernoulli distribution with parameters {πx (l)}l, our prior regarding the spatial

extent of tissue classes. Given a class L(x) = l, the multimodal image intensity

J(x) ∈ R
4 is sampled independently from a Student distribution with parameters

θl.

1A Student distribution is chosen as it generalizes Gaussian distribution with the ability of
cope with heavy tail distributions. This translates into a more robust estimation in the presence
of outliers. We have tried to fit Gaussian distributions first, but distribution statistics (mean,
covariance) would be very poorly captured. Overall, Student distributions have this extra-flexibility
to fit our data.
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Figure 2.3: Graphical model for glioma detection: mixture of Student distributions
with fixed and spatially varying mixing coefficients. The label L(x) is sampled from
a generalized Bernoulli distribution at position x in the MNI space Ω indexed by X.
The observed intensity J(x) is sampled from a multivariate Student distribution S
parametrized by θl = (µl,Σl, νl).

2.2.2.3 Estimation of the spatial probabilistic prior

To build atlases of label spatial distribution, every training case is affinely regis-

tered to a reference space [Mazziotta 2001], then, for each label, an atlas of spatial

distribution is defined as the voxel-wise average of warped label maps. Atlases

are finally symmetrized with respect to the mid-sagittal plane and smoothed by a

Gaussian convolution (see examples in Figure 2.4). For this task, 314 ground truth

segmentations from BraTS are used, and the standard deviation of the smoothing

Gaussian kernel is 10 mm.

2.2.2.4 Estimation of the parameters of Student distributions

Multi-channel patch information is summarized by the average intensity of mono-

channel patches. Multivariate Student distributions are fitted using Expectation-

Maximization [Liu 1995] on 6 × 6 × 6 mm3 pure patches, i.e. for which all voxels

belong to the same class. Pure patches are only considered because depending

on the quality of the training segmentation, pre-processing (registration, interpola-

tion), patches at the border between labels could be mislabelled. By restricting the

number of patches, we make this estimation more tractable in terms of memory size.

Given the optimal parameters θ∗l , class conditional Student intensity likelihood can

be computed in closed form for any patch (see Figures 2.4 and 2.5).
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Figure 2.4: Feature augmentation. A feature vector is composed of i) intensity
patches extracted from 4 MR channels, ii) scalar values from 7 atlases of label spatial
distribution (weight α), and iii) scalar values from 7 class conditional Student
intensity likelihoods (weight β).

Figure 2.5: 2D projections of Student distributions fitted to average intensity of pure
patches, with 60% quantiles overlayed. Appendix C presents other projections.
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2.2.2.5 Estimation of the posterior probabilities

The posterior probability of observing label L is given by Bayes’ rule and the con-

ditional dependence given by the factorization from the graphical model:

p(L | J,X) ∝ p(J | L)p(L | X)

Indeed, Bayes’ rule gives:

p(L|J,X)p(J|X) = p(J|L,X)p(L|X)

And the conditional dependence given by the factorization from the graphical

model gives:

p(J|L,X) = p(J|L)

which results in:

argmax
L

p(L|J,X) = argmax
L

p(L|J,X)p(J|X)

= argmax
L

p(J|L,X)p(L|X)

= argmax
L

p(J|L)p(L|X)

2.2.2.6 Automatic glioma detection

To cope with the lack of specificity of detection features, the maximal posterior

map is post-processed by thresholding signed Euclidean distance maps, as shown

in Figure 2.6. The goal is to discard thin layers of tumor-detected voxels which are

adjacent to healthy-detected tissues, e.g. false positives at the outline of ventricles.

Three distance thresholds are used: i) 3 mm from each healthy tissue (CSF, GM,

WM), ii) 6 mm from the intersection of the binary masks obtained in step i, and

iii) 6 mm from the detected tumor binary mask obtained in step ii.

2.2.3 Atlas selection: segmentation scaling to large data sets

Atlas selection, i.e. the pre-selection of a fixed number of training cases similar to

the target case, is one solution to scale to large datasets. Higher priority is given to

training cases with the same grade as the target. To sort training cases of identical

grade, the distance between target case J and training case In is the arithmetic

mean, for every label l, of the class-specific Hellinger distances between histograms

(p (L = l | J,X = x))x∈Ω and (p (L = l | In,X = x))x∈Ω. For this purpose, the pos-

terior probabilities detailed in Section 2.2.2.5 are used. This is a very simple and

efficient procedure. The intuition is that similar cases should have equivalent vol-

umes for each label, no matter the spatial configuration.
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Figure 2.6: Glioma detection post-processing. Euclidean distances from each
healthy tissue are thresholded and intersected to determine the tumor bulk. The
ROI is the result of a dilatation of the tumor mask using two additional distance
maps.

2.2.4 Feature augmentation for a guided patch match

Patch match consists in finding the most similar patches to a target patch. An

augmentation of patch features with additional contextual features can implicitly

guide patch match. Three feature augmentations and one feature invariance are

proposed.

2.2.4.1 Multi-scale patches

Conventional patches constrain our vision of structures to the scale of the patch.

However, gliomas exhibit structures at scales varying from case to case: i) the edema

often has the largest extent for high-grade cases, but can be very small compared

to the tumor core for low-grade cases ; ii) the distinction between necrotic core and

enhancing core may be challenging due to complex borders.

As explained in Figure 2.7, we have adopted inherently multi-scale

patches [Wachinger 2014a] with two scales: 6 mm (3x3x3 patch) and 18 mm (9x9x9

patch). The central part of the patch is described precisely, while the peripheral

part is described by average intensity values over smaller patches, by analogy with

the foveal vision. This idea allows to capture longer-range image information since

it is computationally efficient: conventional 3x3x3 and multi-scale 9x9x9 patches

have a similar memory footprint.

More precisely, conventional mono-channel patches are represented as vectors

of the voxel-wise intensity values, e.g. Ln scalar values for an n-D patch of length

L. However, for 3D multi-scale mono-channel patches: i) from a given voxel, we

consider its 26 neighbouring voxels making a 3x3x3 image patch (this represents

27 scalar values) ; ii) we then consider all the 26 neighbouring conventional 3x3x3
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Figure 2.7: Multi-scale patch as described in [Wachinger 2014a]. In red: central
voxel. In blue: intensity described at the same scale as the central voxel. In yellow:
intensity described at a coarser scale, typically average intensity over the coarser
area.

patches and compute the average intensity for all these neighbouring patches, thus

providing 26 additional scalar values. In the end, the feature vector corresponding to

a 3D multi-scale and mono-channel patch is composed of 53 scalar intensity values.

We illustrate the concept of 3D multi-scale mono-channel patches in Figure 2.8.

This process is repeated for each MR channel to process 3D multi-scale and multi-

channel patches.

2.2.4.2 Atlases of label spatial distribution

One aspect to study glioma pathogenesis is the analysis of the distribution of gliomas

by anatomic locations [Larjavaara 2007,Duffau 2004,Parisot 2011]. Based on 331

cases among which 47% were glioblastomas, [Larjavaara 2007] report the majority

of gliomas in the frontal and temporal lobes, with 29% and 14% occurrences re-

spectively. Similarly, based on 314 cases among which 82% are glioblastomas, most

gliomas in the BraTS benchmark dataset are found in the temporal lobe, as illus-

trated with the atlas in Figure 2.9. We augment patch features with the atlases of

spatial distribution for each of the 7 labels, in order to implicitly encode patch po-

sition in the reference space. The additional feature is a vector in R
7, which is first

normalized so that its sum is equal to the average intensity value reported in Sec-

tion 2.3.2, then weighted by a coefficient α ≥ 0. The distance between augmented

features is the L2-norm on concatenation of patch values and weighted additional

features.

2.2.4.3 Multivariate Student intensity likelihoods

Our suggestion is to augment patch features with robust Student intensity likeli-

hoods, which encode the relative global intensity distance of a patch, with respect

to each class taken as a whole. The fit of Student distributions is illustrated in Fig-

ure 2.5. Exactly as in Section 2.2.4.2, the additional feature is a vector in R
7, which

is first normalized (unit normalization, followed by the multiplication by a scalar

value so that the L1 norm is the average intensity value reported in Section 2.3.2)

and then weighted by a coefficient β ≥ 0.
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Figure 2.8: Definition of a 3D multi-scale patch. In red: central voxel. In blue:
intensity described at the same scale as the central voxel. In yellow: intensity
described at a coarser scale, by taking the average intensity over the coarser area.
Each square in the bottom row corresponds to one of the 53 scalar values found in
the patch feature vector.

Axial Coronal Sagittal

Figure 2.9: Atlas of spatial distribution of complete tumor superimposed on a
template. Colormap: percentage of occurrences.
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2.2.4.4 Invariance to cube isometries

The canonical L2 distance is sensitive to rotation or symmetry of the patches.

This sensitivity is justified for healthy brain structures since rotated patches can

be unrealistic. However, since the brain is roughly symmetric with respect to the

mid-saggital plane, the application of sagittal plane symmetry to healthy training

patches results in plausible healthy patches. For pathological training patches, it

is desirable that the similarity measure is insensitive to rotation and symmetry:

gliomas do not seem to exhibit any general trend in terms of texture anisotropy.

Moreover, the training dataset is small, so plausible configuration of pathological

patches are missing. Cube isometries consist of certain rotations under which the

cube is invariant, plus their composition with central symmetry. The application of

the 48 cube isometries to pathological training patches allows to generate additional

plausible configurations, which leads to an invariant patch distance.

2.2.5 Training patch selection for a robust patch match

Manual segmentations are prone to errors due to tumor complex appearance and

shape. Training patch selection consists in trimming the training data, so as to

increase its robustness to mislabelled patches.

2.2.5.1 Data pruning based on class conditional Student intensity like-

lihood

The most representative patches lie near their class centroid, so patches whose

Student likelihood lie outside of a 60%-quantile could be discarded as dubiously

labelled or least representative (Figure 2.5).

2.2.5.2 Data pruning based on patch label purity

Patch label purity is defined as the percentage of voxels sharing the same label as

the central voxel in a patch. The fundamental assumption of patch-based methods

may not hold for patches of low purity. Different purity thresholds are tested in

Section 2.3.6.4.

2.2.6 Vote stratification for a robust vote aggregation

2.2.6.1 Conventional model for patch-based segmentation

Conventional patch-based segmentation is a variation of local weighted vot-

ing [Bai 2013, Iglesias 2015] within Bayesian modeling of multi-atlas segmenta-

tion [Sabuncu 2010], as recalled in Figure 2.10. The target image is the result

of sampling patches from atlases (In, Ln) at different positions y in the reference

space Ω. The membership index M encodes, for every position x ∈ Ω, both the

atlas index n and the position y to sample from: M(x) = (n, y). If M were known,
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Figure 2.10: Graphical model for patch-based segmentation. A membership variable
M : Ω → {1, . . . , N} × Ω is sampled at every position x in the MNI space
Ω to encode the training case n to sample from, and the spatial offset y. The
observed intensity J(x) results from the sampling of a patch S(J, x) from a Gaussian
distribution with S(In, y) for mean and isotropic scaling σ2

n(x) for variance. The
label L at position x is the central label Ln(y).

the target segmentation L would be given by labels Ln(y) at central voxels of sam-

pled patches. However, since M is not observed, the inference has to be performed

by marginalizing over M [Sabuncu 2010]. The exact marginalization consists in a

weighted vote involving patches at every position y in every atlas n, with weights

proportional to both the probability that the training patch belongs to class Ln(y),

and the intensity likelihood of the training patch.

Assuming the membership index M(x) is independent and identically uniformly

distributed p (M) = (N × |Ω|)−|Ω|, the marginalization over M [Sabuncu 2010] is

given voxel-wise by:

L̂(x) = argmax
l∈{1, ..., L}

N∑

n=1

∑

y∈Ω

pn (L (x) = l | Ln, y)× pn
(
S(J, x) | In, y, σ2

n(x)
)

where: i) since label maps of training cases are warped from patient space into a ref-

erence space, the ground truth can be represented as probabilistic label map L̃n (y),

or as a binary label map Ln (y) obtained by binarizing L̃n (y). The probability of

belonging to class Ln(y) is pn (L (x) = l | Ln, y), which is either the l-th component

of L̃n (y) (probabilistic label), or the indicator function 1Ln(y)=l (binarized label),

and ii) a multivariate Gaussian probability density function

pn
(
S(J, x) | In, y, σ2

n(x)
)
, with S(In, y) for mean and isotropic scaling σ2

n(x) for

variance, comprises the similarity between intensity patches:

pn
(
S(J, x) | In, y, σ2

n(x)
)
∝ exp

(
− 1

2σ2
n (x)

d2 (S(J, x), S(In, y))

)

with
√
2σn (x) = miny d (S(J, x), S(In, y))
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2.2.6.2 Vote stratification for an approximate marginalization

The exact marginalization over M would require a high number of comparisons be-

tween image patches, which would result in prohibitive computation time. Conven-

tional patch-based methods approximate the marginalization step with K-nearest-

neighbor patch match or local search window.

For pathology segmentation, we propose to use a stratified K-nearest neighbor

approach in order to improve the robustness of the approximate marginalization.

More precisely, the set of all patches from all training patients may be partitioned

into Q sets of patches which match a number of criteria such as the patient Id, and

label type. Given a test patch, the final vote for its label combines the contributions

of the K closest patches within each of the Q sets leading to K × Q votes. Vote

stratification can be seen as a way to normalize the vote to limit bias in the training

dataset2. For this application, we chose to stratify the sets according to patient Id

and label type such that Q = N × L and K = 1. Indeed, this allows to cope

with the variability in tumor size between patients, and the unbalanced number of

patches between labels. Moreover, this approximation sounds reasonable since, in

practice, we verified that taking into account strictly more than K = 1 neighbor

does not affect segmentation results. In the case of binary label maps, the proposed

approximate marginalization consists in:

L̂(x) = argmax
l∈{1, ..., L}

N∑

n=1

pn
(
S(J, x) | In, yn,1(l), σ2

n(x)
)

where yn,1(c) is the position in reference space of the closest patch of label c found

in the training case (In, Ln). An implementation of this stratification scheme is

given in Algorithm 1.

In the case of probabilistic label maps, the equation for an approximate

marginalization differs slightly due to the fact that pn (L (x) = l | Ln, y) is no longer

an indicator function:

L̂(x) = argmax
l∈{1, ..., L}

N∑

n=1

L∑

c=1

pn (L (x) = l | Ln, yn,1(c))×pn
(
S(J, x) | In, yn,1(c), σ2

n(x)
)

In practice, the only impact of considering probabilistic label maps L̃n lies in the

vote accumulation step in Algorithm 1. The update becomes a for-loop over classes

c ∈ {1, . . . , L}:

vx,j(c)← vx,j(c) + pj (L (x) = c | Lj, yj,k)× exp(− 1

2σ2
j (x)
||S(J, x)− S(Ij, yj,k)||22)

2Indeed, the summation over all the training cases ensures that the vote takes into account
patches from every training case. Otherwise, a case with a large tumor could provide more patch
matches than cases with smaller tumors, which would bias the vote towards the training cases with
larger tumors.
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Algorithm 1: Stratified patch-based segmentation. The blue dashed line
marks an embarassingly parallel for-loop.

pre-select N training cases similar to J

foreach voxel x ∈ Ω do
evaluate the features S(J, x)
foreach training case j do

initialize the vote vector vx,j = 0 ∈ R
L

foreach class l ∈ {1, . . . , L} do
pre-select K closest patches of label l in Ij
foreach annotated patch k ∈ {1, . . . , K} do

evaluate the features S(Ij, yj,k)
accumulate the vote:
vx,j(l)← vx,j(l) + exp(

−||S(J,x)−S(Ij,yj,k)||
2

2

2σ2

j
(x)

)

foreach class l ∈ {1, . . . , L} do
evaluate the probability px,j(l) =

vx,j(l)
Σlvx,j(l)

foreach class l ∈ {1, . . . , L} do
evaluate the probability px(l) =

1
N
Σjpx,j(l)

set the label: L̂(x) = argmax
l∈{1, ..., L}

px(l)

2.3 Results

2.3.1 Dataset and Evaluation

Four MR channels commonly acquired for glioma assessment are available in 1 mm

isotropic resolution for each case: pre-contrast T1-weighted image (T1), contrast-

enhanced T1-weighted (T1C), T2-weighted (T2), and T2-FLAIR MR images. Details

about MRI acquisition and processing, manual delineation protocol, and expert

consensus can be found in [Menze 2014].

The proposed glioma segmentation algorithm is evaluated on publicly available

MR images of high-grade (HG) and low-grade (LG) gliomas, made available for

training and testing in the 2013 and 2014 editions of the MICCAI BraTS bench-

mark [Menze 2014]. Ground truth is only publicly available for 2013 and 2014

Evaluation datasets. The 2014 Evaluation dataset is used for the construction of

atlases of label spatial extent and to fit Student distributions. Unless explicitly men-

tioned otherwise, the training dataset used for patch match in this chapter is the

2013 Evaluation dataset for a fair comparison to other competitors. For validation

on training cases, a comprehensive leave-one-out procedure is applied to exclude

the target image from the training dataset at every stage of the method, namely

i) for atlas of label spatial extent construction, ii) to fit Student distributions, iii)

during patch-match. This way, the target case cannot result in any overtraining

that would be due to a favourably-biased glioma detection, atlas selection, feature

augmentation, or patch match.
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Figure 2.11: Left: recall of glioma detection for the complete tumor, reported for
cases grouped by year and grade. Right: volume ratio of detected ROI over the
brain mask.

2.3.2 Pre-processing pipeline

Every image is affinely registered to an MNI atlas and warped to the same reference

space. A resampling to 2 mm isotropic resolution is performed to decrease compu-

tation time at little accuracy cost: most MR channels were not acquired in 1 mm

isotropic resolution, and interpolation artefacts are already visible on few MRI. A

robust image normalization ensures that inter-patient patch distance is meaning-

ful: non-zero intensity are clipped below 1% and above 99% quantiles, then mean

and standard deviation are set to the values reached by averaging over training

data, respectively 360 and 120. Image normalization is performed separately for

each MR channel, to allow an equal contribution of each channel in the patch

distance. Finally, for the training cases, only the segmentation of the tumor com-

partments is originally available, so healthy tissues are automatically segmented

using FSL FAST [Zhang 2001] to avoid under-segmentation by partitioning the

background [Wachinger 2014b].

2.3.3 Glioma detection benchmark

ROI are automatically defined by the glioma detection algorithm described in Sec-

tion 2.2.2. Recall, i.e. the proportion of tumor voxels which are successfully enclosed

in the ROI, is evaluated on the 2013 and 2014 training datasets. Considering all

cases, i) regions-of-interest occupy less than 17% of the brain masks, which effec-

tively results in lower computational burden, ii) recall is higher than 97% for every

tumor region. Individual results are summarized in Figure 2.11.

2.3.4 Post-processing pipeline for glioma segmentation

Segmentation results are smooth by design due to patch overlap, so post-processing

is limited. The pipeline consists in warping back the probabilistic label maps to the

1 mm isotropic patient space, and then keeping at most the two biggest connected
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components of the segmentation: if the volume of the second component is less than

3 cm3, only the first component is kept.

2.3.5 Segmentation benchmark

The proposed approach is benchmarked on the 2013 Challenge dataset against the

top-performing documented methods, according to the ranking found on the MIC-

CAI 2013 BraTS benchmark website [Menze 2014] on April 28, 2015: [Kwon 2014] is

the highest ranked semi-automatic method, with Dice overlap of 88%/83%/72% for

CT/TC/EC respectively ; [Tustison 2014] is the highest ranked automatic method,

with Dice overlap of 87%/78%/74%. Our automatic method achieves state-of-

the-art performance, with Dice overlap of 87%/77%/73%, in a shorter running

time. Fast approximate nearest-neighbour search, especially multiple randomized

k-d trees for high dimensional data [Muja 2014], allows a single-thread implemen-

tation of the proposed patch-based segmentation to achieve competitive running

times: i) 16 minutes on average for HG, and ii) about 1 minute for LG due to

fewer selected atlases, using a single core (2.66 GHz) and less than 6 GB of RAM.

Moreover, given access to a computer grid with at least as many cores as there are

selected atlases, the proposed stratification scheme allows to achieve running times

close to one minute. Segmentation results3 are shown in Figure 2.12, and box plots4

are displayed for HG in Figure 2.13 and Figure 2.14.

2.3.6 Parameter setting

The optimal set of parameters is determined, using leave-one-out on the 2013 train-

ing dataset of HG cases, by changing one parameter at a time and defining its

optimal value based on Dice overlap. No post-processing is applied. Moreover, bi-

nary label maps are used, which results in lower Dice overlap than with probabilistic

label maps.

2.3.6.1 Atlas selection: number of selected training cases

Given a target case, a number of similar training cases are selected to perform

patch-based segmentation. The selection first considers training cases of the same

grade as the target, and once the training dataset is exhausted, training cases of

a different grade start to be selected. The influence of atlas selection count, i.e.

the number of selected training cases, is studied in Figure 2.15. For HG target,

an optimum of Dice overlap is reached for 28 training cases if we only consider

the complete tumor, and for 24 training cases (20 HG, 4 LG) if we simultaneously

consider all the tumor regions. For LG target, Dice overlap is optimal once 3 LG

training cases are selected, and then tends to decrease, especially as HG cases are

selected: it is mostly detrimental to segment LG tumor core based on HG training

cases.

3All the segmentation results are shown in Appendix A for the 2013 validation dataset.
4A table with average assessment measures is given in Appendix A for all the datasets.
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Figure 2.12: Segmentation of 3 HG cases (coronal and axial views).
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Dice overlap

Hausdorff distance

Figure 2.13: Box plots of Dice overlap and Hausdorff distance for HG cases. The
test dataset consists of the 2013 (left) and 2014 (right) MICCAI BraTS benchmark
Evaluation datasets. In abscissa of each plot, 2013 indicates the year used for the
training atlases, here the 2013 Evaluation dataset ; CT/TC/EC denotes respectively
complete tumor, tumor core, and enhancing core.
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Precision

Recall

Figure 2.14: Box plots of Precision and Recall for HG cases. The test dataset
consists of the 2013 (left) and 2014 (right) MICCAI BraTS benchmark Evaluation
datasets. In abscissa of each plot, 2013 indicates the year used for the training at-
lases, here the 2013 Evaluation dataset ; CT/TC/EC denotes respectively complete
tumor, tumor core, and enhancing core.
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Figure 2.15: Influence of atlas selection count, in leave-one-out. Vertical lines mark
transitions between tumor grades of selected cases.

2.3.6.2 Feature: patch width, multi-scale patches, and invariance to

cube isometries or sagittal plane symmetry

Different patch widths were tested, as shown in Figure 2.16. In the left pane for

which features are not invariant to cube isometries or sagittal plane symmetry, the

optimal patch width is 3, which is the smallest tested width. The use of multi-scale

patches, including a 3-voxel-wide central patch, results in Dice overlaps similar

to these obtained with conventional 5-voxel-wide patches. In the right pane for

which features are invariant, the optimal patch width for conventional patches is 5.

Comparable yet slightly better results are obtained with multi-scale patches. In-

variance decreases Dice overlap for the smallest conventional patches, but increases

Dice overlap for larger conventional patches and for multi-scale patches. Intuitively,

matching larger patches is sufficiently constrained so that patch match actually ben-

efits from an augmentation of the training dataset via cube isometries or sagittal

plane symmetry. In the end, 9-voxel-wide multi-scale patches, with a 3-voxel-wide

central patch, are used along invariance to cube isometries for pathological training

patches, and invariance to sagittal plane symmetry for healthy training patches.

2.3.6.3 Feature augmentation weights α and β

With feature augmentation, a weighted L2-norm replaces patch distance, with

weights α and β respectively for atlases of label spatial distribution and for class

conditional Student intensity likelihoods. The influence of both weights is studied

in Figure 2.17. Increasing α leads to higher Dice overlap, with visually similar

segmentation results in the range [8, 14]. When α tends to infinity, the segmen-

tation is only driven by label spatial priors, and Dice overlap measures tend to 0.

Decreasing β leads to higher Dice overlap. Indeed, class conditional Student inten-

sity likelihoods do not allow to discriminate between classes in areas where clusters

overlap (Figure 2.5). When β tends to infinity, Dice overlap measures fall off to
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Figure 2.16: Influence of patch width, multi-scale enhancement, and invariance to
cube isometries on the average Dice overlap for HG target cases. The ”3*” index
corresponds to multi-scale patches with a central patch of indicated width. The
right part uses invariance to cube isometries (for pathological patches) and sagittal
plane symmetry (for healthy patches).

42%, 26% and 32% for complete tumor (CT), tumor core (TC), and enhancing core

(EC) respectively. In the end, α = 12 and β = 2 are chosen, since a low non-zero

value for β seems to result in slightly smoother segmentations.

2.3.6.4 Training patch selection: quantile of Student distributions and

minimal patch label purity

The effect of training patch selection is mostly visible if the pre-processing pipeline

accumulates approximations (interpolation of images, and binarization of warped

label maps). In our case, its influence on Dice overlap is marginal for conventional

or multi-scale patches. Dice overlap for enhancing core could benefit from a higher

Figure 2.17: Influence of feature augmentation weights (α, β) on the average Dice
overlap for HG target cases. Chosen parameter values (α, β) are circled in white.
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Figure 2.18: Comparison of stratification schemes A to D.

minimal patch label purity, but this would decrease Dice overlap for complete tumor

and tumor core. In the end, the quantile of Student distributions is equal to 60%,

and the minimal patch label purity is equal to 2/3, to ensure shorter running time

at the cost of a marginal Dice overlap decrease.

2.3.6.5 Vote aggregation: stratification scheme

The proposed stratification scheme is compared to simpler schemes, with the same

number of patch matches for a fair comparison. No atlas selection is performed:

the number of training cases is 29 due to leave-one-out. The four schemes are: A)

stratification with respect to training cases (29) and labels (7): 1 patch match, B)

stratification only with respect to labels (7): 29 patch matches, C) stratification

only with respect to training cases (29): 7 patch matches, D) no stratification: 203

patch matches.

Scheme C is comparable to our naive patch-based method [Cordier 2013], which

ranked 5th in 2013, and would rank 18th as of April 2015. The definition of σ2
n

was different, votes were heuristically scaled, and results required stronger post-

processing. On the 2013 training data in leave-one-out, Dice overlap measures were

similar to those reported for scheme C: 79%, 60% and 59% for CT, TC and EC

respectively.

As shown in Figure 2.18, a stratification with respect to labels (scheme B)

decreases Dice overlap as compared to no stratification (scheme D). On the other

hand, a stratification with respect to training cases (scheme C) consistently leads

to higher Dice overlap. The situation regarding the tumor core on LG cases is

particular since the distinction between edema and tumor core for this grade is

especially debatable. Finally, for HG cases, a stratification with respect to both

labels and training cases (scheme A) leads to 1% and 2% higher Dice overlap for

CT and TC respectively, and 1% lower Dice overlap for EC. In the end, the chosen

scheme is A.
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2.4 Discussion

Overall running time is highly competitive, mostly due to resampling to 2 mm

isotropic resolution, target and training patch selection, and atlas selection. How-

ever, these methods show some limitations. First, image resampling leads to a loss

of the finer structures, which can be detrimental to the segmentation of the en-

hancing core. For instance, in the second row in Figure 2.12, the enhancing core

signal is subtle in T1C and only partially retrieved by our method. Second, target

patch selection depends on a few automatic post-processing steps which could fail

and hinder the segmentation process. Third, training patch selection leads to a

decrease of Dice overlap, although very marginal in our experiments. Fourth, atlas

selection could not be properly studied since the 2013 training dataset is small: the

optimal atlas selection count would differ with a larger training dataset.

Patch distance is ultimately the canonical L2-norm. Based on the mean and

covariance of the Student distributions, Mahalanobis patch distances have been

tested but resulted in a radical drop of performance. This might be due to an

inconsistent definition of the minimal patch distance σ2
n (x) in the case of class-

specific patch distances.

Patch matching heavily relies on fast approximate nearest neighbor search for

high-dimensional data. In our experiments, approximate search resulted in segmen-

tation performance indistinguishable from exact nearest neighbor search. However,

this might be due to the fact that our approach only considers distances between

patches to perform the segmentation. This could lead to drastically different results

for any application which would make use of the nearest-neighbor per-se.

Finally, the proposed approach has lead to state-of-the-art brain tumor segmen-

tation results on the BraTS benchmark, and appears to work fine on the clinical

data of our collaborators. However, a larger test dataset, with a reliable and hid-

den expert ground truth, would be necessary to be able to distinguish between

the performances of the top-ranked algorithms of the BraTS benchmark. More

importantly, given the amount of machine learning segmentation methods, it is es-

sential that test datasets are made available through third-parties as is the case with

the BraTS benchmark: it is not uncommon that learning-based procedures over-

fit, which makes irrelevant any comparison of segmentation results on the training

datasets.
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2.5 Summary and Conclusions

We presented a generic approach to adapt patch-based techniques to the segmenta-

tion of pathological cases. This approach has lead to state-of-the-art brain tumor

segmentation results in a fully automatic setting. The procedure requires very lim-

ited to no prior learning, which limits the risk of overfit and can take advantage of

a constantly growing database of annotated cases. Due to patch overlap, segmenta-

tion results only require minimal post-processing, which confirms the robustness of

the proposed segmentation approach. Patch extraction and matching benefits from

automatic patch selection ahead of time, and fast approximate nearest-neighbor

search, which results in a highly competitive overall running time. With strati-

fication, patch match is effectively embarrassingly parallel, which results in even

shorter running times (close to one minute) using a computer grid.

The possibility to automatically define precise regions of interest in a matter of

seconds, using a probabilistic model similar to the one proposed for glioma detec-

tion, with a spatially-varying prior learnt on the training data, could be of interest

to other medical imaging algorithms. The proposed approach could also be incor-

porated within the Modality Propagation framework [Ye 2013], therefore opening

new perspectives for the application of patch-based methods to the simulation of

medical images including brain pathologies.
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Abstract

In this chapter, we propose to question and analyze further a few choices and param-

eter settings regarding the glioma segmentation approach described in Chapter 2.

Some of these interrogations are tied to the validation framework and concern

the generalization of the method: how important is it to perform leave-one-out

validation at every possible stage of the method? Would we be able to retrieve

the optimal parameters and a good approximation of our Dice score, if we were to

perform leave-one-out in a less comprehensive manner1? How reliant is the method

with respect to pre-processing and post-processing of images? Images were down-

sampled to 2 mm resolution, how good are segmentation results with the original

1 mm resolution? How are the results affected by a change of the training dataset?

Other interrogations deal with implicit choices regarding the method in itself:

what happens if the similarity measure between patches is not the L2 norm? What

happens if the decay parameter σ2
n(x) is defined differently, for instance as σ2(x)?

What if the approximated marginalization were to take into account more patch

matches? How good is the glioma detection framework for segmentation, wouldn’t

it be enough to achieve state-of-the-art results? Finally, is the weight β which is

used for feature augmentation really necessary? We detail a subtle and somewhat

striking impact of feature augmentation on the optimal number of atlases.

1For instance, would it be sufficient to leave the target case out only during patch match?
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3.1 Questioning the validation framework and general-

ization of the proposed method

3.1.1 Importance of leave-one-out for parameter setting

In Chapter 2, parameters such as the optimal number of atlases are set through

a comprehensive leave-one-out validation framework. Indeed, the current target

case, which is to be segmented, is excluded from the set of training cases i) for

the construction of atlases of label spatial extent, ii) to fit Student distributions

(for glioma detection, atlas selection, and feature augmentation), iii) and during

patch-match. This can be a tedious procedure when evaluating hundreds of cases,

as with the 2014 Evaluation dataset, especially due to steps i and ii.

However, our intuition is that leave-one-out should mostly matter during patch

match. Indeed, the Student distributions and atlases of label distributions are built

based on the processing of 314 cases (and 313 with the leave-one-out), so they

should not be significantly influenced by the removal of a few images. To confirm

this intuition, we have conducted an experiment with comprehensive leave-one-out

and with leave-one-out only during patch match. As expected, this has led to

equivalent quantitative results. Moreover, the optimal number of atlases for a high-

grade target case is the same (24 atlases are selected), as shown in Figure 3.1, and

for a low-grade target case almost the same (3 atlases with comprehensive leave-

one-out, 2 atlases otherwise). When leave-one-out is performed comprehensively,

average Dice score is 1% lower for high-grade target cases and 3% lower for low-

grade target cases. In the end, we would retrieve the optimal parameters and a

good approximation of our Dice score, if we were to perform leave-one-out in a

less comprehensive manner. This experiment confirms that a simpler validation

framework, in which leave-one-out is only performed during patch match, could be

used to look for optimal parameters.

3.1.2 Pre-processing: image standardization

We do not provide any quantitative result regarding pre-processing. However, we

would like to stress out how important pre-processing and image standardization

are. As shown in Figure 3.2, image intensity can vary tremendously from one im-

age to another, even among cases from the same database. The combination of a

translation and a global scaling of image intensity is sufficient to make image inten-

sity distributions look more similar. More complex procedures can be detrimental,

since image standardization remains a structural problem for any segmentation al-

gorithm working with pathological cases imaged with Magnetic Resonance Images.

For instance, our pre-processing pipeline, recalled in Figure 3.3, does not attempt

to correct the bias field since it usually tends to smooth out the tumor signal, es-

pecially on T2-weighted and T2-FLAIR MR images. With a different dataset, bias

field correction of at least the T1-weighted images might me mandatory to achieve

acceptable results.
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Figure 3.1: Influence of a comprehensive leave-one-out on atlas selection count.
Leave-one-out is performed either only during patch match (left) or at every possible
stage of the method (right) Vertical lines mark transitions between tumor grades
of selected cases.

Figure 3.2: Effect of intensity normalization on histograms of image intensity for 10
cases of the MICCAI 2013 BRATS benchmark (Challenge dataset). Before (left)
and after (right) intensity normalization. From top to bottom, MR sequences: T1,
T1 with Gadolinium, T2, T2-FLAIR. After normalization, histograms have the same
robust mean and robust variance. The skewness is not corrected and mostly differs
from one MR sequence to another.
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Figure 3.3: Pre-processing pipeline. Images are warped to the MNI space, and
subsampled to 2 mm isotropic resolution. MR images are normalized so that robust
mean and robust variance are consistent inter-modality and inter-patient. The
ground truth consists of a hard label image of the tumor compartments in the
patient space. A fuzzy and a hard segmentation of the whole brain, including
healthy tissues and tumor compartments, are computed in the MNI space.
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3.1.3 Importance of post-processing

For post-processing, only the two biggest connected components are kept as a brain

tumor segmentation. Indeed, most tumors present in the BraTS datasets are mono-

focal, some are bi-focal, none present more than two focii. However, on a different

dataset, post-processing might be detrimental, so it is legitimate to question the

post-processing. We have evaluated our segmentation method with and without

post-processing. In the end, Dice scores would be about 0.5% higher (training data

in leave-one-out, but also test data) with post-processing. So the post-processing is

situational: it could be slightly beneficial for a given dataset, but never mandatory

to achieve good results with the proposed method.

A few other post-processing techniques were tried but were not kept since they

did not improve much the results. For instance, depending on the clinician’s ex-

pectation, the segmentation of the enhancing rim can be visually refined with a

heuristic procedure. Indeed, the proposed patch-based approach analyses 2 mm

images, thus finer regions of the enhancing rim, more clearly delineated on 1 mm

images, may appear smooth and coarsely segmented. To alleviate this problem, a

robust image intensity threshold can be defined based on the segmentation of the

tumor core compartments and the 1-mm isotropic contrast-enhanced T1-weighted

MR image: among the voxels assigned to the tumor core, any voxel with an intensity

above the threshold is specifically assigned to the enhancing tumor core, while any

voxel with an intensity below the threshold is assigned to the non-enhancing tumor

core. On average, Dice score for the enhancing rim is 1% higher, with a debatably

more appealing segmentation of the enhancing rim, as illustrated in Figure 3.4.

3.1.4 Down-sampling

The impact of down-sampling to 2 mm was quantified in recent experiments. Down-

sampling results in a significant decrease of the average Dice score for complete

tumor (CT) and enhancing core (EC), and almost an identical average Dice score

for tumor core (TC). More precisely, with 1 mm resolution, the optimal number of

atlases is lower for high-grade target cases (14 atlases are selected, instead of 24

atlases for 2 mm resolution) and identical for low-grade target cases (3 atlases are

selected), as shown in Figure 3.5. The average Dice score obtained with leave-one-

out on the training dataset is:

• for HG target cases: 1.4% higher for CT, 0.1% higher for TC, and 4.4% higher

for EC,

• for LG target cases: 0.6% lower for CT, 2% lower for TC.

In the end, the impact of down-sampling is important for the segmentation of the

enhancing tumor core for high-grade target cases. Qualitatively, segmentations

look similar, with slightly more precise borders for the enhancing tumor core, as

illustrated with the exampled in Figure 3.6. However, the running time is longer,

which defeats one of the purposes of our patch-based method.
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Figure 3.4: Effect of a heuristic post-processing procedure (automatic threshold-
ing). From left to right: i) 1-mm isotropic T1-weighted MRI with Gadolinium, ii)
our segmentation without any post-processing, iii) our segmentation after a heuris-
tic post-processing procedure, iv) ground truth, which is a consensus of four expert
manual segmentations. The original segmentation is smooth (ii). After the heuris-
tic automatic post-processing, the segmentation of the enhancing rim appears, in
this specific case, more precise. However, a lack of smoothness can make the seg-
mentation less appealing. Moreover, on average, assessment measures such as Dice
scores are almost not effected by this procedure.

Figure 3.5: Influence of atlas selection count, in leave-one-out. Dataset is processed
at a 1 mm isotropic resolution. Vertical lines mark transitions between tumor grades
of selected cases.
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Figure 3.6: Influence of the resolution at which the segmentation is performed,
observed on a high-grade case (HG-0001).

3.1.5 Changing the training dataset

Our approach is based on patches extracted from the 2013 training dataset, for

which the ground truth is obtained as a consensus of four manual expert segmen-

tations. The 2014 training dataset is only used for validation purpose, and for a

few learning stages: the creation of atlases of label spatial distribution, and the

fit of Student distributions to average patch intensity. As shown in Figure 3.7, we

tried to base our approach on patches extracted from the 2014 training dataset, but

segmentation results were less satisfactory: average Dice overlap was slightly lower

for 2013 target cases, and slightly higher for 2014, however Dice overlap variance

was higher for both years. One possible explanation is that the ground truth of

the 2014 training dataset, which was obtained as a consensus of randomly-selected

top-ranking algorithms, could be less reliable. Another explanation is that the two

types of delineations (BraTS 2013 and 2014) are based on slightly different assump-

tions. Nevertheless, segmentation results obtained on the 2 Challenge datasets are

consistent, and assessment measures are similar, irrespective of the choice of the

training dataset (Figure 3.7), which seems to indicate that the proposed method

does not suffer from overfitting.

3.2 Questioning implicit choices regarding the method

in itself

3.2.1 Mahalanobis distances for patch similarity

For feature augmentation, weights α and β were introduced. Similarly, for patch fea-

tures, each MR channel could be weighted differently, when a feature vector is built

from a multi-channel patch. Ideally, the weight assigned to each modality would
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Figure 3.7: Box plots of Dice overlap. In abscissa of each plot, 2013/2014 indicates
the year used for the training atlases, CT/Core/ET denotes respectively complete
tumor, tumor core, and enhancing tumor core. The test dataset consists of the
2013 (top row) and 2014 (bottom row) MICCAI BRATS benchmark Evaluation
datasets. Left column: high-grade cases ; right column: low-grade cases.
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Figure 3.8: Box plots of Hausdorff Distance. In abscissa of each plot, 2013/2014
indicates the year used for the training atlases, CT/Core/ET denotes respectively
complete tumor, tumor core, and enhancing tumor core. The test dataset consists of
the 2013 (top row) and 2014 (bottom row) MICCAI BRATS benchmark Evaluation
datasets. Left column: high-grade cases ; right column: low-grade cases.
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Figure 3.9: Influence of the definition of σ as σ(x) (left) or σn(x) (right) on the Dice
overlap. Results are presented for different atlas selection counts. Leave-one-out
is performed during patch match. Vertical lines mark transitions between tumor
grades of selected cases.

be learnt by using training images. However, the problem of optimizing weights for

each modality is computationally expensive. We tried a simpler approach instead:

we replaced the L2 norm used for patch distance with Mahalanobis norm taking

into account the relative variability of each modality. This can be achieved with

the means and covariance matrices of the fitted Student distributions. However,

this approach was not successful leading to numerous false positives and worse dis-

tinction between tumor compartments. Our belief is that the procedure to define

the decay σ(x) used for patch-based voting becomes more complex than expected

when patch similarity depends on the label assigned to the current training patch.

3.2.2 A different definition for sigma

σ is estimated on the fly for each target case as σn(x) such that:

√
2σn (x) = min

y
d (S(J, x), S(In, y))

where n indexes atlases and y spatial position in the MNI space. However, another

natural definition for σ could be σ(x) such that:

√
2σ (x) = min

n,y
d (S(J, x), S(In, y))

We tested both σ(x) and σn(x). The evaluation of the optimal number of atlases is

reported in Figure 3.9. The average Dice scores are identical except for the tumor

core for high-grade target cases: using σn(x) leads to a 3% increase of Dice score.
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Figure 3.10: Influence of the number K of matched patches on the average Dice
overlap for high-grade target cases. From left to right: complete tumor, tumor core,
enhancing tumor core. From left to right inside each plot: increasing number of
matched patches, from K = 1 to K = 5 closest patches per pair of training cases
and labels. Superimposed as disks are individual results obtained for every case of
the training dataset. The Dice overlap is stable.

3.2.3 Approximate marginalization: number K of closest patches

With vote stratification, each pair of training case and label results in K = 1

matched patch, and therefore one value in the approximate marginalization. To

study the sensitivity of the method to the number of matched patches, we tested

every value between K = 1 and K = 30 closest patches, for a number of training

cases equal to 10, 24 and 29: the average Dice score for the high-grade target cases is

the same for the complete tumor, and decreases by at most 1% for the other labels.

Figure 3.10 shows the results obtained for K = 1 to K = 5 matched patches. In

the end, it is sufficient to consider K = 1 matched patch per pair of training case

and label, as it is the case for the method described in Chapter 2.
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3.2.4 Using the glioma detection graphical model for segmentation

With the glioma detection graphical model, posterior probability estimates are ob-

tained for each label. A natural question would be: what is the average Dice score

when directly using these posterior probability estimates for segmentation? Actu-

ally, in this case, the Dice score is the limit when β tends to +∞, which is low (cf.

Section 2.3.6.3). This is due to the large amount of false positives. Moreover, the

false positive removal which is applied at the end of glioma detection is only relevant

for the definition of a ROI: if applied for segmentation purposes, the number of false

negatives would obviously increase by a large margin. This would not allow to use

the posterior probabilities obtained for glioma detection to perform state-of-the-art

glioma segmentation.

3.2.5 Influence of feature augmentation on atlas selection

When adding new atlases, average Dice score remarkably decreases for tumor core

of low-grade target cases, as recalled in Figure 3.11 (already shown in Chapter 2).

This is most likely due to the difficulty to distinguish between edema and tumor

core for low-grade cases, which do not show any enhancement on the enhanced

T1-weighted MRI, and could lead to an apparent inconsistency of the ground truth

segmentation in the training dataset.

Moreover, the decrease is stronger after we have used 9 atlases. This threshold of

9 atlases corresponds to using all low-grade atlases, so any number of atlases lower

than 9 means that only low-grade atlases are considered, whereas when more than

9 atlases are used, high-grade atlases are also included. Basically, the explanation

is that it is detrimental to try to segment the tumor core of low-grade target cases

with the knowledge given by the tumor core segmentations of high-grade atlases.

This is in agreement with the fact that the tumor core is not easy to define for

low-grade cases: it amounts to differentiating tumor core from edema in absence of

any visual clue of enhancing or necrotic tumor cores.

We do observe a very subtle yet similar phenomenon for the enhancing tumor

core (EC) of high-grade target cases. In Figure 3.12, average Dice score for EC

has a negative slope for a number of atlases between 25 and 29. If the weight β

is increased, and therefore patch features are more strongly augmented, this phe-

nomenon is less marked. In the end, the augmentation of features can lead to subtle

impacts such as allowing us to select slightly more atlases for the segmentation,

which ultimately can lead to better segmentation results.
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Approach

Figure 3.11: Influence of atlas selection count for the segmentation of low-grade
gliomas, in leave-one-out. Vertical lines mark transitions between tumor grades of
selected cases.

Figure 3.12: Influence of feature augmentation on atlas selection count. The weight
for class conditional Student intensity likelihoods is either β = 1 (left) or β = 2
(right). Leave-one-out is performed comprehensively. Vertical lines mark transitions
between tumor grades of selected cases.
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Abstract

This chapter describes a novel generative model for the synthesis, based on a single

label map, of multi-modal medical images of pathological cases. Our model builds

upon i) a generative model commonly used for label fusion and multi-atlas patch-

based segmentation of healthy anatomical structures, ii) the Modality Propagation

iterative strategy used for a spatially-coherent synthesis of subject-specific scans

of desired image modalities. The expression Extended Modality Propagation is

coined to refer to the extension of Modality Propagation to the synthesis of images

of pathological cases. Moreover, image synthesis uncertainty is estimated. An

application to Magnetic Resonance Imaging synthesis of glioma-bearing brains is i)

validated on the training dataset of a Multimodal Brain Tumor Image Segmentation

challenge, ii) compared to the state-of-the-art method in glioma image synthesis,

and iii) illustrated using the output of two different tumor growth models. Such a

generative model allows the generation of a large dataset of synthetic cases, which

could prove useful for the training, validation, or benchmarking of image processing

algorithms.
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4.1 Introduction

4.1.1 Motivation

The availability of public datasets [Jack 2008, Regan 2011,Menze 2014] of anno-

tated medical images is a determinant factor in the development of medical image

computing. For instance, the organization of the Multimodal Brain Tumor Image

Segmentation (BraTS) benchmark challenge [Menze 2014] has lead to an important

and fruitful research activity in glioma segmentation. However, the creation of a

benchmark dataset is costly for obvious reasons: i) a large number of cases is re-

quired in the training and testing datasets to capture the variability of structures or

pathologies, ii) images should be annotated by experts, which requires a complex

and time-consuming manual work, and can still lead to debatable results (e.g. inter-

rater variability in the range 74-85% for glioblastoma [Menze 2014], datasets can

contain incorrect segmentations [Wachinger 2015]), iii) the distribution of medical

images leads to ethical concerns, since the identification of patients may be possi-

ble despite anonymization steps such as skull-stripping [Wachinger 2015], iv) and

finally, ensuring the continued quality of a very large dataset of anonymized images

is complex, due to the presence of longitudinal data and duplicates [Toews 2015].

The development of image synthesis could allow i) the augmentation of a dataset

by including new realistic synthetic cases, and ii) the creation of large, annotated,

unbiased, anonymized, and easy-to-maintain datasets of synthetic medical images

of virtual patients (namely atlases completely generated by a numerical biophysical

model). The availability of a large dataset is especially important for patholo-

gies such as glioblastoma which exhibit a high variability of shape and appear-

ance. For reference, the 2013 BraTS challenge only consisted of 20 real high-grade

cases for training, and 10 real high-grade cases for benchmarking [Menze 2014]).

The 2014 BraTS challenge included about 250 additional cases obtained from The

Cancer Imaging Archive [Clark 2013], however other problems arose: the ground

truth was unavailable and had to be obtained through a consensus of automatic

glioma segmentation algorithms, which resulted in a ground truth of lower reliabil-

ity [Havaei 2015].

4.1.2 Related work

The problem which is tackled in this chapter is the synthesis of multi-modal medical

images of pathological cases, based on a single label map, as illustrated in Figure 4.1

for brain tumors imaged with Magnetic Resonance Imaging (MRI). In the following,

the focus is on related work regarding MRI synthesis of healthy and tumor-bearing

brains.

4.1.2.1 MRI synthesis of healthy brains

Original attempts at generating synthetic MRI of healthy brains relied on a nu-

merical simulation of MR acquisition physics. Given MR scanner parameters such
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Figure 4.1: The generative model aims at synthesizing subject-specific MRI, pro-
vided a label map of a pathological brain.

as echo time and relaxation time, a discrete-event simulation model [Kwan 1999,

Benoit-Cattin 2005,Glatard 2013] describes the dynamics of magnetization vectors,

at each spatial position, according to Bloch equations [Bloch 1946]. Such numerical

simulations are computationally expensive, except for specific cases for which there

exists a closed-form solution to Bloch equations, such as for spin-echo or gradient-

echo MR sequences [Kwan 1999,Maitra 2010, Iglesias 2010].

To describe the imaged object, two strategies are possible. The first strategy

consists in describing the geometry of the imaged tissues with tissue-specific tem-

plates, and providing the tissue-specific biophysical properties (spin density and

relaxation times). This allows the synthesis of MRI acquired on virtual geometri-

cal templates. However, it requires that tissue-specific biophysical properties are

precisely referenced in the literature [Kwan 1999], which is not the case for glioblas-

toma compartments. The second strategy does not rely on the definition of tissues:

biophysical properties are specified voxel-wise, after an estimation from several

MR scans obtained in a short time-frame with a very strict acquisition protocol

(quantitative MRI or relaxometry), or by optimization methods [Maitra 2010, Igle-

sias 2010]. This strategy does not allow to generate synthetic images on virtual

patients. Moreover, it cannot be applied to tumor scans when a proton density

map is not available.

Recently, an iterative patch-based heuristic [Ye 2013] was used for Modality

Propagation, i.e. the synthesis of a realistic subject-specific scan of one modal-

ity given a scan acquired with another modality. The core of the algorithm con-

sists in modelling the covariation of local intensity patterns across modalities, in

a fashion inspired by multi-atlas patch-based segmentation of healthy brain struc-

tures [Rousseau 2011, Coupé 2011]. Successful applications of Modality Propaga-

tion or related methods include synthesis of a patient-specific attenuation map for

hybrid MR-PET [Burgos 2014], more accurate registration [Iglesias 2013], super-

resolution [Roy 2013], and outlier detection [Ye 2013, Roy 2013, Cardoso 2015].

However, Modality Propagation shows two limitations for the synthesis of MRI for
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virtual pathological cases: i) the local search window framework is adopted, which

restricts the method to the image synthesis of healthy cases, ii) the input is a real

image, which is assumed not to be available for virtual cases.

4.1.2.2 MRI synthesis of tumor-bearing brains

Previous works regarding MRI synthesis of tumor-bearing brains [Rexilius 2004,

Prastawa 2005,Prastawa 2009] build upon tissue-specific templates, as in the frame-

work introduced by Brainweb [Kwan 1999]. Typically, a tumor seed is artificially

positioned in a healthy brain atlas, and then a tumor growth model simulates the

tumor extension over time and its mass effect, i.e. the displacement of neighboring

healthy tissues, which results in templates of healthy tissues and tumor compart-

ments. However, in contrast with Brainweb, tissue-specific biophysical properties

are not considered in favor of direct specifications of tissue-specific average MR in-

tensities [Rexilius 2004,Prastawa 2005]. In [Prastawa 2009], textures are learnt for

each healthy tissue and tumor compartment, which results in a set of 3D texture

images. The only difference between different synthetic MRI lies in the tissue-

specific templates: tissue-specific average MR intensities and 3D texture images are

therefore always identical.

This approach is applicable to a wide variety of cases, but also bears some lim-

itations: i) the complex distribution of image intensities for tumor compartments

is summarized by its expectation, which is oblivious of multi-modal intensity dis-

tributions, ii) the inter-patient MR normalization procedure is not specified, which

makes it difficult to standardize real MRI so that they look like synthetic MRI,

typically for the training of machine learning algorithms [Geremia 2013], iii) simu-

lated images do not show the variability of intensity of realistic MR scans, and the

addition of a very high Gaussian noise only limits this effect.

The simulator of synthetic pathological MRI1 described in [Prastawa 2009] has

been used in a number of research articles mostly for prototyping and validation,

in the context of glioma segmentation [Hamamci 2012,Geremia 2013,Menze 2014],

outlier detection algorithm [Galimzianova 2015], registration of a healthy brain at-

las to a tumor-bearing patient image [Bauer 2012], and construction of a brain

atlas [Liu 2015]. Other applications include the training of machine-learning algo-

rithms for glioma segmentation. [Geremia 2013] trained random forest on a large

dataset consisting of 740 synthetic cases and showed good segmentation results on

a few real cases for testing. [Galimzianova 2015] performed a thorough validation of

an outlier detection algorithm, based on 100 MR scans synthesized with different

tumor volumes to test the robustness of the algorithm to the amount of outliers.

Image synthesis could also be useful in the context of tumor growth modeling:

in [Gu 2012], PET images are synthesized for tumor-bearing brains, so as to allow

clinically relevant interpretations of tumor growth model outputs. Although the

applications of MRI synthesis of pathological cases are numerous, the competitors

1Freely available online at http://www.nitrc.org/projects/tumorsim
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in the BraTS benchmark challenge tend to completely ignore the provided synthetic

cases [Menze 2014], and we believe this is due to their lack of realism.

In this chapter, we address the image synthesis of pathological cases by using an

iterative multi-atlas patch-based algorithm, inspired by recent successful algorithms

in MRI synthesis of healthy brains. The expression Extended Modality Propagation

(EMP) is coined for two reasons: i) to refer to the extension of Modality Propa-

gation for the synthesis of images of pathological cases, ii) in contrast to Modality

Propagation, EMP can deal with label maps in addition to image intensity. The

synthesis process only requires a single label map, or the output of any tumor growth

model in terms of the usual tumor compartments. Realistic synthetic images are

obtained in the specific application of our algorithm to MRI synthesis of tumor-

bearing brains. Our contributions include a novel generative model, an heuristic

iterative algorithm to solve for the posterior distribution of multi-channel MR in-

tensities, the estimation of image synthesis uncertainty, an analysis of Modality

Propagation iterative feature augmentation, and the public availability of a large

dataset of annotated and realistic MRI exhibiting gliomas. In the following, the

generative model is described and solved for the maximum a posteriori and for un-

certainty estimation (Section 4.2). Then synthesized MRI are validated with real

MRI from the training dataset of BraTS benchmark challenge, compared to the

state-of-the-art method in glioma image synthesis, and illustrated using the output

of two different tumor growth models (Section 4.3). Finally, results and perspectives

are discussed (Sections 4.4 and 4.5).

4.2 Extended Modality Propagation

In the following, a label map describing the anatomy of a tumor-bearing brain is

assumed to be known. The goal of Extended Modality Propagation (EMP) is to

synthesize medical images corresponding to the same anatomy. To achieve this

goal, EMP relies on a set of training cases {Ln, In}n where Ln is a label map and

In denotes multi-channel MRI. In the case of label maps, label values could be

represented either as log-Odds [Sabuncu 2010], or as a vector of probabilistic labels

of length L = 7 (cerebrospinal fluid, grey matter, white matter, necrotic core,

edema, non-enhancing tumor core, and enhancing core). Conventionally, a patch

S (I, x) is a cube of edge length 2r+1, centered at spatial position x ∈ R
3, consisting

of image intensity values taken from an image I. The distance d (S(I, x), S(J, y))

between 3D patches of identical edge length is the canonical L2-norm on R
(2r+1)3 .

The EMP probabilistic generative model is first introduced to describe the syn-

thesis of images. Second, an approximation of the marginalization step is introduced

to estimate the maximum a posteriori and the image synthesis model uncertainty.

Finally, more consistent patch matching is obtained by enhancing the patch fea-

tures: i) Log-Odds are used to represent label maps, ii) multi-scale patches allow

to consider larger patches in a computationally efficient manner, and iii) a patch

similarity invariant to cube isometries allows to consider larger patches without
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Figure 4.2: Pipeline for Extended Modality Propagation (EMP). Green disks mark
known tumor locations. The fundamental assumption of EMP is that central voxels
of similar label patches should have similar multi-channel image intensity. During
the first iteration, multi-channel intensity j is assigned to a test patch S (L, x)
based on comparisons with a database of label patches {S (Ln, y)}(n, y), where y in-
dexes every spatial position in the reference space Ω. During subsequent iterations,
multi-channel intensity is updated based on comparisons between augmented fea-
tures, which are the concatenation of label patches and multi-channel image patches
synthesized during the previous iteration (feedback loop).
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ML J

{Ln} {In}

σ2 Σl

|Ω|

Figure 4.3: Graphical model for Extended Modality Propagation. A membership
variable M : Ω → {1, . . . , N} × Ω is sampled at every position x in the MNI
space Ω to encode the training case n to sample from, and the spatial offset y.
The observed probabilistic label L(x) results from the sampling of a patch S(L, x)
from a Gaussian distribution with S(Ln, y) for mean and isotropic scaling σ2(x)
for variance. The intensity J at position x is sampled from a Gaussian distribution
with the central value In(y) for mean and covariance matrix ΣL(x).

being impacted by a smaller sample size, and iv) as for Modality Propagation, an

iterative patch match procedure results in smoother and more consistent synthetic

images. The complete EMP pipeline is detailed in Figure 4.2.

4.2.1 Definition of a probabilistic generative model

The proposed generative model for Extended Modality Propagation builds

upon the Bayesian modeling of local weighted voting for multi-atlas segmen-

tation [Sabuncu 2010], which was then adapted for patch-based segmenta-

tion [Bai 2013, Iglesias 2015]. The proposed graphical model appears in Figure 4.3.

This model is a mirrored version of the graphical model described in Chapter 2 for

multi-atlas patch-based segmentation of pathological cases.

The target segmentation L is the result of sampling patches from atlases

(Ln, In) at different positions y in the reference space Ω. The membership index

M encodes, for every position x ∈ Ω, both the atlas index n and the position y to

sample from: M(x) = (n, y). If M were known, the target image J would be given

by labels In(y) at central voxels of sampled patches. However, since M is not ob-

served, the inference has to be performed by marginalizing over M [Sabuncu 2010].

The exact marginalization consists in a weighted vote involving patches at every

position y in every atlas n, with weights proportional to both the probability that

the target label patch S(L, x) is sampled from S(Ln, y), controlled by σ2(x), and

the intensity likelihood of the target image patch, controlled by ΣL(x).

4.2.2 Estimation of the posterior distribution

Variance parameters {Σl}l∈{1, ..., L} and σ2(x) are first estimated ; then the problem

of estimating J is stated by marginalizing over M ; finally a strategy to determine

the arg-max of the posterior distribution is proposed.
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Figure 4.4: 2D projections of Student distributions fitted to average intensity of pure
patches, with 60% quantiles overlayed. Appendix C presents other projections.

4.2.2.1 Estimation of the variance parameters

For each label l ∈ {1, . . . , L}, a multivariate Student distribution is fitted using

Expectation-Maximization [Liu 1995] to average intensity of pure patches, i.e. for

which all voxels belong to the same class, as described in Chapter 2. Robustness

to outliers is achieved with Student distributions to model the heavy-tailed distri-

butions of multi-channel image intensity. Figure 4.4 and Appendix C present 2D

projections of obtained Student distributions. Appendix C also compares Student

distributions obtained when fitting average intensity of pure patches, and when

directly fitting voxel-wise image intensity {In(y)}(n,y) labelled as l.

As with patch-based segmentation, the variance σ2(x) for label patch is spatially

varying. In contrast to Chapter 2, σ2(x) is defined such that:

√
2σ (x) = min

n,y
d (S(L, x), S(Ln, y))

4.2.2.2 Exact and approximate marginalizations

Assuming the membership index M(x) is independent and identically uniformly

distributed p (M) = (N × |Ω|)−|Ω|, the marginalization over M [Sabuncu 2010] is

given voxel-wise by:

Ĵ(x) = argmax
j

N∑

n=1

∑

y∈Ω

pn
(
S(L, x) | Ln, y, σ2(x)

)
× pn

(
j | In, y, ΣLn(y)

)
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where: i) pn
(
S(L, x) | Ln, y, σ2(x)

)
, which comprises the similarity between label

patches, is the probability that the target label patch S(L, x) is sampled from a

multivariate Gaussian probability density function, with S(Ln, y) for mean and

isotropic scaling σ2(x) for variance:

pn
(
S(L, x) | Ln, y, σ2(x)

)
∝ exp

(
− 1

2σ2 (x)
d2 (S(L, x), S(Ln, y))

)

and ii) pn (j | In, y, Σl) is the probability that the target intensity j is sampled

from a multivariate Gaussian probability density function, with In(y) for mean and

ΣLn(y) for covariance matrix:

pn
(
j | In, y, ΣLn(y)

)
∝ exp

(
− (j − In(y))

T Σ−1
Ln(y)

(j − In(y))
)

or in the case of a multivariate Student probability density function with ν =

νLn(y) degrees of freedom:

pn
(
j | In, y, ΣLn(y)

)
∝

(
1 +

1

ν
(j − In(y))

T Σ−1
Ln(y)

(j − In(y))

)− ν+4

2

The exact marginalization over M would require a high number of comparisons

between patches, which is infeasible in practice. However, the marginalization step

could be approximated, in a similar fashion as in Chapter 2, or as conventional

patch-based methods do with K-nearest-neighbor patch match or local search win-

dow. Let yn(l) be the position in reference space of the closest patch of central label

l found in the atlas (Ln, In). For image synthesis of pathological cases, we propose

to marginalize over only N patches, where N is the number of atlases: given a tar-

get label patch of central label L(x), the approximate marginalization only includes

patches found at the spatial position yn(L(x)) in atlas n, which results in:

Ĵ(x) = argmax
j

N∑

n=1

pn
(
S(L, x) | Ln, yn(L(x)), σ2(x)

)
× pn

(
j | In, yn(L(x)), ΣL(x)

)

4.2.2.3 Arg-max of the posterior distribution

With the approximate marginalization, our original belief was that Ĵ(x) could be

efficiently computed thanks to Banach Fixed Point Theorem. Indeed, a necessary

condition for j∗ to be an optimal solution is given by gradient cancelling. Let

F : R4 7→ R given by:

F (j) =
N∑

n=1

wn × pn
(
j | In, yn(L(x)), ΣL(x)

)
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where:

wn = pn
(
S(L, x) | Ln, yn(L(x)), σ2(x)

)
> 0

Then the gradient of f with respect to j ∈ R
4 is given by:

~∇F (j) =

N∑

n=1

wn × pn
(
j | In, yn(L(x)), ΣL(x)

)

× Σ−1
L(x) (In (yn(L(x)))− j)

Gradient cancelling gives the necessary condition that j∗ is a fixed point of a

function T :

j∗ = T (j∗)

where the function T : R4 7→ R
4 is given by:

T (j) =

N∑

n=1

λn(j)× µn

where:

µn = In (yn(L(x)))

λn(j) =
wn × pn

(
j | In, yn(L(x)), ΣL(x)

)
∑N

n=1wn × pn
(
j | In, yn(L(x)), ΣL(x)

)

∀n, λn(j) ≥ 0

N∑

n=1

λn(j) = 1

With Gaussian density functions for pn
(
j | In, y, ΣL(x)

)
, it can be shown that

the Lipschitz constant of T is less than or equal to:

max
n=1,...,N

||µn|| max
k=1,...,N

||Σ−1
L(x) (µn − µk) ||

By applying Banach Fixed Point Theorem, we are certain that, for voxels x

for which T is a contraction mapping, j∗ is unique, and that for any initialization

j0 ∈ R
4, any sequence (jk)k∈N such that jk+1 = T (jk) converges to the fixed point

j∗ with a geometric rate. An implementation of the EMP algorithm is given in
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Figure 4.5: Visual representation of the bound which we reported for the Lipschitz
constant of T . For most voxels, we could not prove that T is a contraction mapping.
The synthetic FLAIR image (middle) appears noisy because it was obtained after
a single iteration (no feedback loop).

Algorithm 2. Unfortunately, in our experiments, for most voxels x, the bound of

the Lipschitz constant of T , which is reported above, is not strictly less than 1,

as illustrated in Figure 4.5. Therefore, we could not prove that T is a contraction

mapping. However, for all our test cases, the algorithm still does converge in roughly

40 iterations for 99.9% of the voxels of the brain mask.

4.2.2.4 Estimation of the image synthesis uncertainty

With the Fixed Point procedure, the estimation of the arg-max of the posterior

image intensity distribution involves the iterative estimation of j∗ as a weighted

average of intensities µn found in the atlases. Therefore, the uncertainty of the

image synthesis process can be similarly estimated as the weighted sample variance

σ̂2, thanks to the optimal weights λ∗
n. Uncertainty estimation allows to pin-point

regions with unlikely image intensity based on the proposed generative model. This

is illustrated in Figure 4.6. Uncertainty estimation allows to detect outliers in

the images without having to identify outliers with the pathology as is the case

in [Ye 2013,Cardoso 2015].

4.2.3 Consistent patch match

Patch match can be more consistent by relying on enhanced features and by adopt-

ing an iterative feature augmentation strategy.
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Figure 4.6: Illustration of image synthesis uncertainty. Along with the model pre-
diction Ĵ(x) (synthesis mean), the knowledge of the model uncertainty σ̂2 (synthesis

variance) allows to compute the t-value
√
n̂
(
J(x)− Ĵ(x)

)
/ σ̂, with the sample size

n̂ being the number of atlases.
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Algorithm 2: Extended Modality Propagation.

pre-select N training cases similar to L

foreach voxel x ∈ Ω do
evaluate the features S(L, x)
let l = L(x) be the central label in S(L, x)
foreach training case n do

find the closest patch of central label l in Ln

let yn(l) be the spatial position of this patch
evaluate the features S(Ln, yn(l))
evaluate the intensity In (yn(l))

set the variance σ2(x) based on the features

set the intensity Ĵ(x) by applying a Fixed Point procedure as if T were a
contraction mapping:

j0 =

∑N

n=1 wn × µn∑N

n=1 wn

∈ R
4

∀k ∈ N, jk+1 = T (jk)

Ĵ(x) = lim
k→+∞

jk

4.2.3.1 Log-Odds

During the fist iteration of image synthesis, patch match only relies on a label map

as input. It is crucial to choose the best representation for this single input. A

label map could be described as a set of probabilistic tissue templates: for each

voxel, a vector contains the probability of belonging to each tissue. However, this

representation is identical for patches completely enclosed in a single tissue. A bet-

ter strategy, as recommended in [Sabuncu 2010], consists in replacing binary labels

with Log-Odds, so as to take into account the distance to borders between tissues

and to be able to distinguish different patches among patches completely enclosed

in a tissue. Log-Odds distances are defined as proportional to exp
(
ρD̃l (L, x)

)
,

where ρ > 0 is the slope constant (in our experiments, ρ = 1 as in [Sabuncu 2010]),

and D̃l (L, x) is the signed distance transform of label l for label map L at spatial

position x, which is positive inside structures labelled as l.

4.2.3.2 Multi-scale patches

As shown in Chapter 2, multi-scale patches are computationally efficient represen-

tations for large patches, which allows more effective patch match. The central

part of the patch is described voxel-wise, while the peripheral part is described by

average intensity values over neighboring patches, by analogy with the foveal vision.

Similar ideas regarding foveation and non-uniform sampling are detailed in [Cire-

san 2012]. In the following, we have chosen two scales: 6 mm (3x3x3 patch at the

center) and 18 mm (the volume described by the multi-scale patch corresponds to

a 9x9x9 conventional patch), with only twice the memory footprint of conventional
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3x3x3 patches.

4.2.3.3 Patch match with invariance properties

Every atlas is affinely registered the MNI space [Mazziotta 2001] so that patch ex-

traction is invariant to the pose of the subject. Moreover, the canonical L2 distance

used for patch matching is sensitive to rotation or symmetry of the patches. As

shown in Chapter 2, the combination of multi-scale patches and invariance to cube

isometries yields better segmentation results, and thus could be beneficial for patch-

based image synthesis as well. The 48 cube isometries consist of certain rotations

under which the cube is invariant, plus their composition with central symmetry.

For healthy brain structures, rotated patches can be unrealistic, only sagittal plane

symmetry is considered. For pathological patches, the similarity measure should

be insensitive to rotation and symmetry: the number of atlases is small, and using

multi-scale patches further decreases the sample size. Therefore, the addition of

plausible configurations of pathological patches generated by applying all the cube

isometries to observed pathological patches is relevant, and ultimately leads to an

invariant patch distance.

4.2.3.4 Iterative feature augmentation

As with Modality Propagation [Ye 2013], an iterative procedure guarantees a more

coherent patch match, which results in an overall more coherent image synthesis.

As shown in 4.2, during the first iteration t = 1, multi-channel intensity is assigned

to a test patch based on comparisons with a database of label patches. During

subsequent iterations t > 1, multi-channel intensity is updated based on compar-

isons between augmented features, which are the concatenation of i) label patches,

weighted with 1 − αt, and ii) multi-channel image patches synthesized during the

previous iteration t− 1, weighted with αt. As in [Ye 2013], the feedback weight αt

increases with the number of iterations, starting with α1 = 0 for iteration t = 1.

There are different possible definitions for weight αt. Unless mentioned, we choose

a maximal number of iterations tmax = 3, and let αt = (t− 1) /tmax, so that the

weight of label patches is never zero and decreases linearly with the number of

iterations. The effect of iterations is illustrated in Figure 4.7.

4.3 Results

Our goal is to synthesize four MR channels commonly acquired for glioma assess-

ment: pre-contrast T1-weighted image (T1), contrast-enhanced T1-weighted (T1C),

T2-weighted (T2), and T2-FLAIR MR images. Fast approximate nearest-neighbour

search are used for patch match, more precisely multiple randomized k-d trees for

high dimensional data [Muja 2014].
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Figure 4.7: From left to right: input label map, synthetic contrast-enhanced T1-
weighted MRI after iterations t = 1, 2, 3, and ground truth (real MRI). The image
parts at the border of the brain are better synthesize due to the iterative feedback
of previously-synthesized images.

4.3.1 Pre-processing pipeline

Every image is affinely registered to an MNI atlas and warped to the same reference

space. For experiments which require strictly more than 3 iterations, a resampling

to 2 mm isotropic resolution is performed to decrease computation time, otherwise

we keep the original 1 mm isotropic resolution. A resampling to 2 mm resolution

was used by the top-performing glioma segmentation method at the 2012 BraTS

challenge, which indicates that the generation of a synthetic dataset of 2 mm reso-

lution images could already be of interest for applications other than medical image

synthesis. Atlas images In are standardized with a global affine intensity transform,

applied to each modality independently: non-zero intensity are clipped below 1%

and above 99% quantiles, then mean and standard deviation are set to the values

reached by averaging over training data, respectively 360 and 120. Except for the

clipping, all the proposed pre-processing operations can be reverted, which eases

the adaptation of such a synthetic dataset for the analysis of another real dataset.

4.3.2 Validation: an experiment using real cases

4.3.2.1 Dataset and Evaluation

The dataset consists of MRI of 20 high-grade (HG) and 10 low-grade (LG) cases,

made publicly available as training dataset in the 2013 edition of the MICCAI

BraTS benchmark [Menze 2014]. A leave-one-out procedure is always applied to

exclude the target image from the training dataset. There is no atlas pre-selection

and all the training cases, remaining after leave-one-out, are used as atlases for

the synthesis of MRI of cases of the same grade. Only the segmentation of the

tumor compartments is originally available [Menze 2014], so healthy tissues are

automatically segmented by applying FSL FAST [Zhang 2001] to the T1C image,

which consistently has the highest resolution among the different MR channels.

The validation of the experiment consists in comparing real MRI with synthetic

MRI generated solely based on a segmentation of the brain and the tumor. Quan-
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titative assessment include Peak Signal to Noise Ratio (PNSR) to quantify the

quality of the synthesis, Mean-Absolute-Error (MAE) to quantify bias, Hellinger

distances between tissue-specific intensity distributions to quantify how well the

model captures the variability of real image intensity, mean Structural Similarity

(SSIM) [Wang 2004] (with default values) as an additional image reconstruction

criterion, and finally bias with respect to the mean image intensity, i.e. difference

of mean image intensity for the real and the synthetic image, and the bias with re-

spect to the variance of image intensity. All these measures are classically used for

assessment of image reconstruction or synthesis [Manjón 2010,Konukoglu 2013,Car-

doso 2015,Gómez 2015]. Whenever an average is computed, only the voxels which

belong to a region-of-interest (ROI) are considered: the ROI is the whole brain

mask as defined by the input label map (segmentation of healthy and pathological

tissues).

4.3.2.2 Results of the first experiment

A visual inspection of image synthesis results can be performed in axial views for

a high-grade glioma in Figure 4.8 and for a low-grade glioma in Figure 4.9. Axial,

coronal and sagittal views are also presented in smaller displays in Figure 4.10

and in Appendix B. The model does not replicate artifacts or croppings present on

some real cases, as shown in Figure 4.11. This is expected, since the image synthesis

model is based on a label map, which was created from a high-resolution T1C image

of a whole brain.

The influence of the feedback weight αt is studied in Figure 4.12. The protocol

is the following: different values are chosen for feedback weights, then Extended

Modality Propagation is run for 10 iterations with α1 = 0 and subsequent αt fixed

at the chosen value. The highest PSNR (18.6) and highest mean-SSIM (0.63) are

obtained for the smallest non-zero feedback weight (19). The variance of the PSNR

is lower when a non-zero feedback weight is chosen, however the median PNSR

is nearly the same for all feedback weight values. MAE increases when the weight

increases. Other measures do not seem to show any remarkable phenomenon. In the

end, either the range of chosen weight values is too narrow and biases our analysis,

or any small non-zero feedback weight is reasonable for image synthesis.

The influence of the number of iterations of EMP is studied in Figure 4.13.

Here again, PSNR variance decreases as soon as a non-zero feedback weight is

introduced (second iteration). The highest PSNR (18.7) and highest mean SSIM

(0.64) are obtained at the end of the second iteration. MAE increases notably with

the number of iterations, although the bias with respect to mean image intensity

and variance is relatively constant. In the end, a small number of iterations should

be preferred, typically 2 or 3 iterations. The effect of the number of iterations is

more marked here due to a high constant feedback weight fixed at 2
3 . It is reasonable

to perform 2 to 3 iterations with a linearly increasing feedback weight αt.
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Figure 4.8: Qualitative evaluation of our synthesis method after 3 iterations on a
high-grade case (HG-0010). Axial view.
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Figure 4.9: Qualitative evaluation of our synthesis method after 3 iterations on a
low-grade case (LG-0006). Axial view.
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Figure 4.10: Qualitative evaluation of our synthesis method after 3 iterations on a
high-grade case (HG-0009). Top to bottom: sagittal, coronal and axial views, for
synthetic (ours) and real MRI on even and odd rows respectively.
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Figure 4.11: Focus on a low-grade case (LG-0008) with an artifact (sagittal view in
T1, best viewed by zooming on a computer screen) and cropping (axial and sagittal
views in FLAIR). Validation of our method after 3 iterations. Top to bottom:
sagittal, coronal and axial views, for synthetic (ours) and real MRI on even and
odd rows respectively.
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Figure 4.12: Influence of the feedback weight αt on assessment measures. Measures
are evaluated in leave-one-out on FLAIR images present in the 2013 MICCAI BraTS
benchmark Evaluation dataset. The weight is fixed and appears in abscissa of
the graphs. The number of iterations is 10 so that the influence of the weight is
emphasized. PSNR variance decreases with stronger feedback.
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Figure 4.13: Influence of the number of iterations on assessment measures. Measures
are evaluated in leave-one-out on FLAIR images present in the 2013 MICCAI BraTS
benchmark Evaluation dataset. The number of iterations appears in abscissa of the
graphs. The feedback weight is fixed at 2

3 . An optimum is quickly reached and then
it could be detrimental to iterate further.
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4.3.3 Comparison: an experiment using synthetic cases

4.3.3.1 Dataset and Evaluation

The dataset consists of the segmentations used in the previous experiment on real

cases (Section 4.3.2.2). Our image synthesis model is compared to the image syn-

thesis procedure given in [Prastawa 2009]. In contrast to the previous experiment,

the feedback weight increases linearly with the number of iterations.

For a fair comparison, synthetic MRI generated with [Prastawa 2009] are stan-

dardized as described in Section 4.3.1, so that the average image intensity and the

variance corresponds to the average and variance of the real image. We do not

perform this procedure on images which are synthesized with our method, since the

range of intensity of synthetic images is already comparable to the range of intensity

of the standardized real image. If we were to standardize images synthesized with

our method, the conclusion of the experiments would not change.

4.3.3.2 Results of the second experiment

For the sake of comparison, synthesized images based on [Prastawa 2009] are shown

in Figure 4.14 and Figure 4.15, using the same input label maps as for our method

in Figure 4.10 and Figure 4.11. Quantitative results are reported for each MR chan-

nel in Figure 4.16 (FLAIR), Figure 4.17 (T1C), Figure 4.18 (T1), and Figure 4.19

(T2). A summary of assessment measures is presented in Table 4.1. Since images

synthesized with [Prastawa 2009] were standardized, the bias with respect to mean

intensity and variance is always better for [Prastawa 2009]. However, PSNR, MAE,

mean SSIM and Hellinger distances are always higher for the proposed image syn-

thesis method. Moreover, with the linearly increasing feedback weight, most results

are improved with additional iterations.

4.3.4 Illustration: synthetic MRI using 2 tumor growth models

In this section, we use two different tumor growth models to generate probabilistic

label maps, based on which we create a hard label map. The proposed image

synthesis model is then used to generate synthetic MRI of these virtual patients.

In Figure 4.20, the first tumor growth model is a reaction-diffusion model with

mass-effect, as proposed in [Prastawa 2009]. The second tumor growth model is

a multi-population cell model driven by angiogenesis and vascularization, called

the Proliferation Invasion Hypoxia Necrosis Angiogenesis (PIHNA) model. The

PIHNA model is described in 1D in [Swanson 2011], and was implemented in 3D

by a colleague of mine to simulate tumor growth in an atlas of a healthy brain.

Synthetic MRI based on the PIHNAmodel are shown in Figure 4.21 and Figure 4.22,

respectively after one and two iterations of the proposed image synthesis algorithm.
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Figure 4.14: High-grade HG-0009. Top to bottom: sagittal, coronal and axial views,
for Prastawa’s synthetic and real MRI on even and odd rows respectively.
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Figure 4.15: Low-grade LG-0008. Top to bottom: sagittal, coronal and axial views,
for Prastawa’s synthetic and real MRI on even and odd rows respectively.
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Figure 4.16: Comparison of synthetic FLAIR MRI to ground truth MRI:
[Prastawa 2009] (left) and the three iterations of our method.
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Figure 4.17: Comparison of synthetic T1C MRI to ground truth MRI:
[Prastawa 2009] (left) and the three iterations of our method.
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Figure 4.18: Comparison of synthetic T1 MRI to ground truth MRI:
[Prastawa 2009] (left) and the three iterations of our method.
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Figure 4.19: Comparison of synthetic T2 MRI to ground truth MRI:
[Prastawa 2009] (left) and the three iterations of our method.
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Table 4.1: Average assessment measures for image synthesis, based on the 2013
BRATS Evaluation dataset.

FLAIR PSNR mean SSIM MAE Hellinger distance

[Prastawa 2009] 18.7 0.63 95.4 0.56
Ours (iteration 1) 19.3 0.66 78.2 0.12

Ours (iteration 2) 19.8 0.73 73.6 0.17
Ours (iteration 3) 19.9 0.75 73.1 0.19

T1C PSNR mean SSIM MAE Hellinger distance

[Prastawa 2009] 21.9 0.77 75.2 0.43
Ours (iteration 1) 22.0 0.76 70.1 0.07

Ours (iteration 2) 22.1 0.81 68.6 0.08
Ours (iteration 3) 22.2 0.82 68.0 0.08

T1 PSNR mean SSIM MAE Hellinger distance

[Prastawa 2009] 21.4 0.70 80.7 0.41
Ours (iteration 1) 22.5 0.76 65.6 0.07

Ours (iteration 2) 22.7 0.81 63.0 0.09
Ours (iteration 3) 22.8 0.82 62.6 0.10

T2 PSNR mean SSIM MAE Hellinger distance

[Prastawa 2009] 16.5 0.67 97.2 0.41
Ours (iteration 1) 18.5 0.69 76.0 0.09

Ours (iteration 2) 18.7 0.74 73.3 0.11
Ours (iteration 3) 18.8 0.75 73.0 0.11
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Figure 4.20: Illustration of the modularity of our image synthesis model. Synthetic
1 mm isotropic MRI based on a label map generated by a reaction-diffusion model
with mass effect [Prastawa 2009]. Top to bottom: sagittal, coronal and axial views,
for synthetic MRI, respectively our method on even rows and [Prastawa 2009] on odd
rows. The results of our method were obtained after two iterations (one feedback
loop). Please note that in this specific example, probabilistic label maps were used
as input for [Prastawa 2009], but not for our method.
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Figure 4.21: Illustration of the modularity of our image synthesis model. Synthetic
1 mm isotropic MRI based on a label map generated by the PIHNA tumor growth
3D model. Obtained after one iteration (no feedback).

Figure 4.22: Illustration of the modularity of our image synthesis model. Synthetic
1 mm isotropic MRI based on a label map generated by the PIHNA tumor growth
3D model. Obtained after three iterations. Results look more consistent due to the
feedback loop.
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4.4 Discussion

In the experiments presented in this chapter, the iterative nature of the proposed

image synthesis method allows to reach higher PSNR and synthesize qualitatively

more realistic images. The optimal number of iterations seems to be about 2 or

3. The conclusion regarding feedback weights is not straightforward: it seems a

small non-zero weight is to be preferred, and to this regard, the strategy, hinted

in [Ye 2013], which consists in progressively increasing the feedback weight with the

number of iterations seems relevant.

Several MR channels are simultaneously synthesized, which leads to a more

constrained patch match (for iterations t > 1), and ultimately to more consistent

synthetic MRI. Less consistent results could arise when trying to synthesize a single

image modality.

One limitation of the proposed method is the running time: with 20 atlases,

one iteration to simultaneously synthesize the 4 MR channels (for the whole brain)

requires about 2 days of computation (16 cores, 100 GB of RAM) for 1 mm isotropic

MRI, and about 3 hours of computation (3 cores, 20 GB of RAM) for 2 mm isotropic

MRI. A visual comparison of the synthesis of 1 mm and 2 mm MRI is presented in

Figure 4.23. Typically, sulci are less visible on 2 mm synthetic MRI. We have not

tried to decrease the number of atlases since this would require a strategy to pre-

select relevant atlases based on some similarity criterion between label maps. We

have not tried to specifically optimize the implementation of the algorithm, mostly

due to the prohibitive running time which renders any attempt at optimizing the

implementation tedious and susceptible of introducing bugs in the program.

Regarding running time in the perspective of generating a large database of

synthetic cases, a region-of-interest enclosing the tumor could be defined such that

the rest of the synthetic image is supplied by a template. Indeed, tumor growth

models are based on a healthy atlas in which a tumor seed is placed, and a T1

template is available for the healthy atlas [Mazziotta 2001]. In this case, image

intensity does not have to be optimized for voxels outside the ROI, since these

voxels are assumed not to present intensity abnormalities.

All the experiments were conducted with a label map as single input. Due to the

iterative process described in this chapter, it would be straightforward to provide as

input an MR channel on top of the label map. Typically, if a contrast-enhanced T1

MR image is available on top of the label map, we could synthesize MR channels

such as FLAIR or T2. Additional inputs are merely additional constraints for the

patch match.

4.5 Summary and Conclusions

We presented a generative model for the synthesis of multi-modal medical images

of pathological cases by using an iterative multi-atlas patch-based algorithm. The

method was illustrated on MRI synthesis of glioma-bearing brains. A single label

maps allows to synthesize realistic images, with clear improvements with regard to
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Figure 4.23: Influence of the resolution at which the image synthesis is performed,
observed on a high-grade case (HG-0010). Top to bottom: axial views for synthetic
2 mm, synthetic 1 mm and real MRI. Sulci are less visible on MRI synthesized at
2 mm resolution.
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the state-of-the-art method. The approach is flexible and can be applied i) either

to label maps of real cases to synthesize artifact-free MRI, ii) or to label maps

simulated by any tumor growth model. The standardization of images is made

transparent and reversible, so that synthetic data can be used for any applica-

tion with any other dataset, including intensity inhomogeneity or different levels

of Rician noise. Moreover, due to the strategy used to solve for the maximum a

posteriori, estimation of image synthesis uncertainty is straightforward.

Such a generative model would allow the availability of large, public and an-

notated datasets of synthetic medical images obtained with virtual patients, which

could prove useful for the validation or benchmarking of image processing algo-

rithms. Promising results have been obtained on real data after training machine

learning algorithms on synthetic data [Geremia 2013], which could be further im-

proved by using a more realistic synthetic dataset, generated with the proposed

image synthesis model. Finally, image synthesis of pathological cases bridges the

gap between outputs of tumor growth model and medical images, which are the

most clinically relevant observations. The development of image synthesis could

benefit to interpretability and personalization of tumor growth models.
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The main objective of this thesis was the development of unifying patch-based

methods for the analysis and the synthesis of medical images of pathological cases.

Two different generative probabilistic models have been proposed: i), a patch-based

model for the automatic segmentation of brain tumor regions from MRI, and ii) a

mirrored model for the synthesis of realistic MRI of pathological brains. For this

purpose, the proposed methods apply patch-based techniques without relying on

the concept of local search window.

5.1 Contributions

The first contribution of this thesis is a generic approach to perform fully-automatic

segmentation of pathologies on brain medical images by using multi-atlas patch-

based voting techniques, without relying on a local search window. Segmentation

results are accurate thanks to the combination of an efficient representation of

patches at multiple scales, the augmentation of the patch dataset by applying cube

isometries to the observed patches, and finally an augmentation of patch features

with intensity and location statistics to implicitly guide the patch match. The

algorithm is computationally efficient due several enhancements: the automatic de-

tection of a small region-of-interest enclosing high-probability tumor volumes based

on a spatially-varying prior, the pre-selection of patches based on label purity and

intensity statistics, and vote stratification with respect to cases and labels. More-

over, thanks to stratification, patch match is effectively embarrassingly parallel,

which results in even shorter running times using a computer grid.

This method has been applied for three consecutive years to the publicly avail-

able datasets of the MICCAI Multimodal Brain Tumor Image Segmentation bench-

mark challenge. State-of-the-art results are achieved in a fully automatic setting,

with very limited to no prior learning, which limits the risk of overfit. Moreover,

due to patch overlap, segmentation results only require minimal post-processing,

which confirms the robustness of the proposed segmentation approach. Numerous

experiments were conducted to help better understand the model and the impact

of method parameters.
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The second contribution of this thesis is a generative model for the synthesis,

based on a single label map, of realistic multi-modal medical images of pathological

cases. The model builds upon i) the generative model proposed for multi-atlas

patch-based segmentation, ii) the Modality Propagation iterative strategy for a

spatially-coherent synthesis. The approach is flexible and can be applied i) either

to label maps of real cases to synthesize artifact-free MRI, ii) or to label maps

simulated by any tumor growth model. Due to the strategy used to solve for the

maximum a posteriori, estimation of image synthesis uncertainty is straightforward.

Moreover, the standardization of images is made transparent and reversible, so that

synthetic data can be used for any application with any other dataset.

An application to Magnetic Resonance Imaging synthesis of glioma-bearing

brains was i) validated on the training dataset of the MICCAI Multimodal Brain

Tumor Image Segmentation challenge, ii) compared to the state-of-the-art method

in glioma image synthesis, and iii) illustrated using the output of two different tu-

mor growth models. Such a generative model would allow the generation of a large,

public and annotated dataset of synthetic medical images, which could prove useful

for the training, validation, or benchmarking of image processing algorithms.

A strength of the proposed models is their consistency: from a perspective, the

two generative models mirror one another, so the model for synthesis can benefit

from the experience that was gained when studying the model for segmentation.

5.2 Future work

In this thesis, we considered 4D signals, composed of 3D patches extracted from

multiple MR channels (T1, T1C, T2, FLAIR). The addition of a 5th dimension,

namely the temporal dimension, would allow to perform a consistent segmentation

of longitudinal data. Indeed, image datasets of tumor-bearing human brains include

time series of MRI acquisitions for patients who are periodically scanned for tumor

growth monitoring. It would also be of interest to include additional information

coming from MR spectroscopy on top of the four MR channels which we considered.

Glioblastoma exhibit a phenomenon known as mass effect: healthy brain tissues

are displaced due to the tumor growth. It would be relevant to take into account

the deformation of image patches due to mass effect. There are several directions

to do so: i) add cases with an important mass effect to the training dataset, ii)

consider a bio-mechanical model to cancel the mass effect, as pre-processing step,

and iii) augment patch features with features which reflect the mass effect, such as

symmetry features, e.g. symmetry with respect to the mid-sagittal plane.

The iterative strategy proposed for image synthesis resulted in quantitatively

more realistic synthetic images. Since the models for segmentation and synthesis

are mirrored, it could be of interest to perform a similar iterative strategy for

segmentation: features would be augmented with the probabilistic segmentation

obtained at the previous iteration. This is a process called auto-context [Tu 2010],

which could lead to better segmentation results.
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The proposed segmentation method could be applied to other pathologies, such

as pulmonary nodules for the lungs. We could build atlases of label spatial extent for

the lungs, as it was done in this thesis for the brain. We could also use augmented

features, e.g. an augmentation with the distance to the bronchial tree. Other

applications also include other brain pathologies, e.g. meningioma.

A method to estimate the uncertainty within the patch-based image synthesis

framework was proposed in this thesis. An interesting development would be the

application of uncertainty estimates to image intensity outlier detection. Indeed,

in contrast to [Cardoso 2015], our approach does not assume that the pathology

corresponds to outliers, so outlier detection based on our approach would identify

regions of the image, irrespectively of their healthy or pathological state, which are

not well explained by the annotated image dataset. A straightforward implication

is that we could expand a training dataset in a wise manner, by focusing on previ-

ously unseen regions of interest, and by avoiding the addition of redundant image

information to the training dataset.

There are different methods to randomly sample synthetic images based on the

proposed synthesis framework. First, in this thesis, we always considered the whole

set of atlases when performing image synthesis. We could obtain different synthetic

images, based on the same input label map, by bootstrapping, i.e. randomly sam-

pling (with replacement) a subset of atlases and then performing image synthesis.

Second, with our synthesis model, we obtain a synthetic image as well as an esti-

mation of synthesis uncertainty. We could add a spatial constraint with a Markov

Random Field, and then sample spatially-consistent synthetic images based on both

intensity (given by our model) and regional constraints (given by the Markov prop-

erty).

The computational cost of the proposed iterative synthesis method is really

high. A future direction to solve this issue would be a coarse-to-fine approach, with

typically the scale getting finer with the number of iterations. This would allow to

obtain a high-resolution synthetic image with only the last iteration performed at

the finest scale.

Synthetic images tend to miss fine details such as some of the brain sulci. This

problem could be solved by considering fewer patch matches for the approximate

marginalization. This work direction is akin to selecting either globally or locally

the best atlases for the synthesis. This would result in sharper synthetic images,

while decreasing the computational cost of synthesis.

With patch-based methods, we assume that the function that we want to predict

(probabilistic labels for segmentation, multi-channel image intensity for synthesis)

could be inferred at the center of the target patch based on a measure of patch

similarity, therefore we ultimately perform a point-wise estimation, i.e. we only

estimate the value at the center of the target patch. Another estimation method

would consist in estimating values for the whole target patch, this is known as

multi-point estimation. According to [Rousseau 2011], multi-point estimators tend

to lead to better segmentation results. It would be of interest to compare point-

wise and multi-point estimation for image synthesis. Indeed, synthetic images could
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present more texture and finer details when using multi-point estimates. Moreover,

an intermediate estimate between point-wise and multi-point estimators could be

introduced, thanks to the multi-scale patches presented in this thesis: an estimation

could be performed for the whole conventional patch which lies at the center of the

multi-scale patch. This could lead to finer synthetic images, as the intuition with

patch-based methods is that the estimation is more accurate near the center of the

target patch.

Finally, in [Geremia 2013], promising results were obtained on real data after

training machine learning algorithms on synthetic data. The benefit for segmenta-

tion of the image synthesis of missing modalities is analyzed in [van Tulder 2015].

A straightforward future development of the work presented in this thesis would be

i) the generation of a synthetic dataset of realistic annotated cases, ii) an in-depth

analysis of the impact of using this realistic synthetic dataset for segmentation.

This would allow to understand better the intricacies between the proposed models

for segmentation and synthesis, and pave the way for an even more unified method-

ology.
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Appendix: segmentation of

2 mm isotropic MR Images

In this appendix, we present segmentation results obtained with the multi-atlas

patch-based approach presented in Chapter 2. The input consists of multi-modal

MR images (T1C, T1, T2, FLAIR), with a 2 mm isotropic resolution, provided

for the MICCAI 2013 Multimodal Brain Tumor Image Segmentation benchmark

challenge (BraTS).
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Figure A.1: Snapshot as of April 28, 2015 of the top-ranking methods on the
MICCAI 2013 BRATS benchmark website. Kwon’s submission (kwond1) is semi-
automatic, Tustison’s submission (tustn1) is automatic, other methods are un-
known. Our submission (anon2) is automatic and highlighted in blue. Specific
rankings appear in brackets for each measure.



97

Table A.1: Average assessment measures for BraTS 2013, 2014 & 2015 bench-
marks. The training dataset is always the 2013 Evaluation dataset. Tumor regions
are: complete tumor (CT), tumor core (TC), and enhancing core (EC). Average
symmetric surface distance (ASSD) and Hausdorff distance (HD) are expressed in
millimeters. Grade counts are indicated in the first column as (HG / LG). The
2014 Challenge dataset consists of 97 cases, presumably all HG. For other datasets,
tumor grades are known, as given by the benchmark organizers. The 2013 Leader-
board dataset is a compromised test dataset, since part of the ground truth was
mistakenly available online for the first few hours, which flaws comparisons with
other competitors on this dataset.

2013 Region Grade Dice Precision Recall ASSD HD

Challenge CT HG 0.87 0.85 0.89
(10 / 0) TC HG 0.77 0.80 0.76

EC HG 0.72 0.71 0.77

Leaderboard CT HG / LG 0.79 / 0.43 0.76 / 0.35 0.84 / 0.74
(21 / 4) TC HG / LG 0.59 / 0.31 0.60 / 0.25 0.64 / 0.73

EC HG 0.55 0.48 0.69

Evaluation CT HG / LG 0.84 / 0.83 0.87 / 0.82 0.82 / 0.87 2.9 / 4.5 25.8 / 27.9
(20 / 10) TC HG / LG 0.68 / 0.62 0.73 / 0.62 0.68 / 0.72 9.8 / 5.1 38.3 / 36.1

EC HG 0.65 0.69 0.66 9.7 33.8

2014 Region Grade Dice Precision Recall ASSD HD

Challenge CT HG 0.84 0.89 0.82
(97 / 0) TC HG 0.68 0.71 0.71

EC HG 0.67 0.62 0.81

Evaluation CT HG / LG 0.84 / 0.80 0.88 / 0.86 0.82 / 0.78 2.2 / 3.5 26.4 / 31.7
(257 / 57) TC HG / LG 0.70 / 0.53 0.68 / 0.53 0.76 / 0.66 3.9 / 4.4 33.9 / 35.9

EC HG 0.68 0.62 0.81 2.9 27.5

2015 Region Grade Dice Precision Recall ASSD HD

Evaluation CT HG / LG 0.74 / 0.63 0.87 / 0.80 0.67 / 0.54 5.2 / 9.3 35.3 / 55.0
(220 / 54) TC HG / LG 0.58 / 0.21 0.52 / 0.17 0.73 / 0.48 6.4 / 11.6 37.9 / 52.0

EC HG 0.62 0.59 0.71 5.7 32.0
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Figure A.2: Segmentation of HG-0001 (coronal and axial views) using 2 mm data.

Figure A.3: Segmentation of HG-0002 (coronal and axial views) using 2 mm data.

Figure A.4: Segmentation of HG-0003 (coronal and axial views) using 2 mm data.
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Figure A.5: Segmentation of HG-0004 (coronal and axial views) using 2 mm data.

Figure A.6: Segmentation of HG-0005 (coronal and axial views) using 2 mm data.

Figure A.7: Segmentation of HG-0006 (coronal and axial views) using 2 mm data.
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Figure A.8: Segmentation of HG-0007 (coronal and axial views) using 2 mm data.

Figure A.9: Segmentation of HG-0008 (coronal and axial views) using 2 mm data.

Figure A.10: Segmentation of HG-0009 (coronal and axial views) using 2 mm data.
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Figure A.11: Segmentation of HG-0010 (coronal and axial views) using 2 mm data.

Figure A.12: Segmentation of HG-0011 (coronal and axial views) using 2 mm data.

Figure A.13: Segmentation of HG-0012 (coronal and axial views) using 2 mm data.
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Figure A.14: Segmentation of HG-0013 (coronal and axial views) using 2 mm data.

Figure A.15: Segmentation of HG-0014 (coronal and axial views) using 2 mm data.

Figure A.16: Segmentation of HG-0015 (coronal and axial views) using 2 mm data.
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Figure A.17: Segmentation of HG-0022 (coronal and axial views) using 2 mm data.

Figure A.18: Segmentation of HG-0024 (coronal and axial views) using 2 mm data.

Figure A.19: Segmentation of HG-0025 (coronal and axial views) using 2 mm data.
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Figure A.20: Segmentation of HG-0026 (coronal and axial views) using 2 mm data.

Figure A.21: Segmentation of HG-0027 (coronal and axial views) using 2 mm data.

Figure A.22: Segmentation of LG-0001 (coronal and axial views) using 2 mm data.



105

Figure A.23: Segmentation of LG-0002 (coronal and axial views) using 2 mm data.

Figure A.24: Segmentation of LG-0004 (coronal and axial views) using 2 mm data.

Figure A.25: Segmentation of LG-0006 (coronal and axial views) using 2 mm data.
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Figure A.26: Segmentation of LG-0008 (coronal and axial views) using 2 mm data.

Figure A.27: Segmentation of LG-0011 (coronal and axial views) using 2 mm data.

Figure A.28: Segmentation of LG-0012 (coronal and axial views) using 2 mm data.
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Figure A.29: Segmentation of LG-0013 (coronal and axial views) using 2 mm data.

Figure A.30: Segmentation of LG-0014 (coronal and axial views) using 2 mm data.

Figure A.31: Segmentation of LG-0015 (coronal and axial views) using 2 mm data.





Appendix B

Appendix: synthesis of

1 mm isotropic MR Images

In this appendix, we present the 1 mm isotropic synthetic MRI obtained after 3

iterations of the image synthesis process described in Chapter 4. The feedback

weight αt increases linearly with the number of iterations: αt is equal to 0, 1
3 ,

2
3

respectively for the iterations t = 1, 2 and 3. The input of the program is a label map

obtained from the MICCAI 2013 Multimodal Brain Tumor Image Segmentation

benchmark challenge (BraTS). The output of the program is composed of four

synthetic MR sequences (T1C, T1, T2, FLAIR). For each of the cases on which we

test the algorithm, we provide the ground truth, i.e. MRI provided by the BraTS

Challenge organizers, for visual comparison.
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Figure B.1: High-grade HG-0001. Top to bottom: sagittal, coronal and axial views,
for synthetic and real MRI on even and odd rows respectively.
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Figure B.2: High-grade HG-0002. Top to bottom: sagittal, coronal and axial views,
for synthetic and real MRI on even and odd rows respectively.



112 Appendix B. Appendix: synthesis of 1 mm isotropic MR Images

Figure B.3: High-grade HG-0005. Top to bottom: sagittal, coronal and axial views,
for synthetic and real MRI on even and odd rows respectively.
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Figure B.4: High-grade HG-0010. Top to bottom: sagittal, coronal and axial views,
for synthetic and real MRI on even and odd rows respectively.
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Figure B.5: High-grade HG-0025. Top to bottom: sagittal, coronal and axial views,
for synthetic and real MRI on even and odd rows respectively.
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Figure B.6: Low-grade LG-0002. Top to bottom: sagittal, coronal and axial views,
for synthetic and real MRI on even and odd rows respectively.
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Figure B.7: Low-grade LG-0006. Top to bottom: sagittal, coronal and axial views,
for synthetic and real MRI on even and odd rows respectively.
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Figure B.8: Low-grade LG-0008. Top to bottom: sagittal, coronal and axial views,
for synthetic and real MRI on even and odd rows respectively.
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Figure B.9: Low-grade LG-0012. Top to bottom: sagittal, coronal and axial views,
for synthetic and real MRI on even and odd rows respectively.
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Figure B.10: Low-grade LG-0015. Top to bottom: sagittal, coronal and axial views,
for synthetic and real MRI on even and odd rows respectively.





Appendix C

Appendix: distributions of

multi-modal image intensity

In this appendix, we show 2D projections of Student distributions fitted to average

intensity of pure patches, as described in Chapter 2 and mentioned in Chapter 4.

For comparison, we also show 2D projections of Student distributions fitted to

voxel-wise image intensity as mentioned in Chapter 4. The use of average intensity

of pure patches seems to yield more discriminative Student fits than the use of

voxel-wise image intensity.
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Figure C.1: 2D projections of Student distributions fitted to average intensity of
pure patches, with 60% centiles overlayed.
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Figure C.2: 2D projections of Student distributions fitted to voxel-wise image in-
tensity, with 60% centiles overlayed.
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Multi-Atlas Patch-Based

Segmentation and Synthesis

of Brain Tumor MR Images

Abstract:

This thesis focuses on the development of automatic methods for the segmenta-

tion and synthesis of brain tumor Magnetic Resonance images. The main clinical

perspective of glioma segmentation is growth velocity monitoring for patient ther-

apy management.

To this end, the thesis builds on the formalization of multi-atlas patch-based seg-

mentation with probabilistic graphical models.

A probabilistic model first extends classical multi-atlas approaches used for the

segmentation of healthy brains structures to the automatic segmentation of patho-

logical cerebral regions. An approximation of the marginalization step replaces the

concept of local search windows with a stratification with respect to both atlases

and labels. A glioma detection model based on a spatially-varying prior and patch

pre-selection criteria are introduced to obtain competitive running times despite

patch matching being non local. This work is validated and compared to state-of-

the-art algorithms on publicly available datasets.

A second probabilistic model mirrors the segmentation model in order to synthesize

realistic MRI of pathological cases, based on a single label map. A heuristic method

allows to solve for the maximum a posteriori and to estimate uncertainty of the im-

age synthesis model. Iterating patch matching reinforces the spatial coherence of

synthetic images. The realism of our synthetic images is assessed against real MRI,

and against outputs of the state-of-the-art method. The junction of a tumor growth

model to the proposed synthesis approach allows to generate databases of annotated

synthetic cases.

Keywords: patch-based, multi-atlas, glioma, segmentation, probabilistic genera-

tive model, medical image simulation, modality synthesis.





Approches Multi-Atlas fondées sur l’Appariement

de Blocs de Voxels pour la Segmentation et la Synthèse

d’Images par Résonance Magnétique de Tumeurs Cérébrales

Résumé :

Cette thèse s’intéresse au développement de méthodes automatiques pour la seg-

mentation et la synthèse d’images par résonance magnétique de tumeurs cérébrales.

La principale perspective clinique de la segmentation des gliomes est le suivi de la

vitesse d’expansion diamétrique dans le but d’adapter les solutions thérapeutiques.

A cette fin, la thèse formalise au moyen de modèles graphiques probabilistes des

approches de segmentation multi-atlas fondées sur l’appariement de blocs de voxels.

Un premier modèle probabiliste prolonge à la segmentation automatique de régions

cérébrales pathologiques les approches multi-atlas classiques de segmentation de

structures anatomiques. Une approximation de l’étape de marginalisation rem-

place la notion de fenêtre de recherche locale par un tamisage par atlas et par

étiquette. Un modèle de détection de gliomes fondé sur un a priori spatial et des

critères de pré-sélection de blocs de voxels permettent d’obtenir des temps de calcul

compétitifs malgré un appariement non local. Ce travail est validé et comparé à

l’état de l’art sur des bases de données publiques.

Un second modèle probabiliste, symétrique au modèle de segmentation, simule

des images par résonance magnétique de cas pathologiques, à partir d’une unique

segmentation. Une heuristique permet d’estimer le maximum a posteriori et

l’incertitude du modèle de synthèse d’image. Un appariement itératif des blocs

de voxels renforce la cohérence spatiale des images simulées. Le réalisme des im-

ages simulées est évalué avec de vraies IRM et des simulations de l’état de l’art.

Le raccordement d’une modèle de croissance de tumeur permet de créer des bases

d’images annotées synthétiques.

Mots-clés : appariement de blocs de voxels, multi-atlas, gliome, segmentation,

modèle génératif probabiliste, simulation d’image médicale, synthèse de modalité.
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