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Contexte

Un important déi dans l'ingénierie des logiciels et des systèmes est le développement et la maintenance de systèmes complexes, tels que les systèmes cyber-physiques ou l'Internet des objets. La conception de tels systèmes nécessite des experts de domaines divers et hétérogènes. Cette complexité compromet à la fois leur bon développement et leur bon fonctionnement, ce qui implique un véritable besoin de méthodes, méthodologies et outils appropriés [START_REF] Broy | The 'Grand Challenge' in Informatics: Engineering Software-Intensive Systems[END_REF].

L'ingénierie dirigée par les modèles (IDM) est un paradigme de développement qui vise à faire face avec la complexité des systèmes par la séparation des préoccupations à l'aide de modèles. Un modèle est une représentation d'un aspect particulier d'un système, et est déini en utilisant des abstractions spéciiques fournies par un langage de modélisation dédié (LMD) [START_REF] Douglas | Guest Editor's Introduction: Model-Driven Engineering[END_REF]. Au coeur de l'IDM se trouve l'idée de passer de modèles descriptifs représentant des systèmes existants, à des modèles productifs qui peuvent être utilisés pour construire le système cible [START_REF] Voelter | DSL Engineering[END_REF]. Ces dernières années, des études ont mis en évidence les nombreux avantages d'IDM pour le développement de systèmes complexes, tels que des améliorations de la productivité des développeurs ou de la qualité des systèmes produits [START_REF] Mohagheghi | Where is the proof? -A review of experiences from applying MDE in industry[END_REF][START_REF] Hutchinson | Empirical Assessment of MDE in Industry[END_REF]. Un facteur explicatif est l'utilisation de modèles ain d'efectuer la vériication et la validation au plus tôt (V&V) des systèmes (e.g., [START_REF] Bousse | Aligning SysML with the B method to provide V&V for systems engineering[END_REF]). En efet, la plupart des erreurs logicielles se produisent dans les premières phases du développement (i.e., exigences et conception), et sont plus coûteuses à retirer dans les étapes ultérieures [START_REF] Boehm | Software Defect Reduction Top 10 List[END_REF][START_REF] Boehm | Some experience with automated aids to the design of large-scale reliable software[END_REF].

Alors que de nombreux modèles ne représentent que les aspects structurels de systèmes, une grande quantité exprime des aspects comportementaux de ces mêmes systèmes. Dans ce cas, pour assurer qu'un modèle est correct vis à vis de son comportement prévu, des techniques dynamiques de V&V au plus tôt sont nécessaires, tels que le débogage omniscient [START_REF] Corley | Towards Eicient and Scalabale Omniscient Debugging for Model Transformations[END_REF], la diférenciation sémantique [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF] ou la vériication d'exécution [START_REF] Leucker | A brief account of runtime veriication[END_REF]. Ces techniques nécessitent que les modèles soient exécutables, ce qui est possible en déinissant la sémantique d'exécution des LMDs utilisés pour les décrire. xi Bien que, techniquement, seuls les modèles qui y sont conformes soient dits « exécutables », ces langages sont appelés LMDs exécutables (LMDx). En plus de permettre la V&V dynamique au plus tôt, l'exécutabilité au niveau modèle donne également la possibilité de directement déployer un modèle exécutable sur un système de production.

Énoncé du problème

Alors qu'un modèle exécutable exprime intrinsèquement un comportement en intention, les techniques dynamiques de V&V nécessitent une représentation en extension d'un comportement au il du temps. Une représentation courante du comportement d'un modèle est la trace d'exécution, qui est une séquence contenant toutes les informations pertinentes à propos d'une exécution au il du temps. Ces informations peuvent inclure les états atteint lors de l'exécution, les pas responsables de ces changements d'état, et les stimuli provenant de l'environnement d'exécution du système.

Toutes les approches de V&V mentionnées précédemment reposent sur des traces d'exécution : le débogage omniscient repose sur une trace d'exécution ain de revisiter un état précédent de l'exécution; la diférenciation sémantique consiste à comparer les traces d'exécution de deux modèles ain de comprendre les variations sémantiques entre eux; la vériication d'exécution consiste à vériier si une trace d'exécution est conforme à une propriété temporelle. En outre, les traces d'exécution sont au coeur de la vériication d'équivalence comportementale de LMDxs, comme la bisimulation [START_REF] Milner | Communication and Concurrency[END_REF], et peuvent être utilisées comme indices [START_REF] Dwyer | Unifying veriication and validation techniques: relating behavior and properties through partial evidence[END_REF] partagés entre diférentes approches de V&V combinées [START_REF] Bousse | Combining Veriication and Validation techniques[END_REF].

Par conséquent, il apparaît que fournir des dispositifs pour gérer des traces d'exécution est essentiel pour rendre possible la V&V dynamique pour les LMDxs. Cela inclut l'acquisition, le traitement et la visualisation des traces d'exécution provenant à la fois du test et du déploiement de modèles exécutables. Cependant, une condition préalable importante doit être satisfaite : la déinition d'une structure de données qui déinit le contenu et l'agencement des traces d'exécution de modèles conformes à un LMDx. Cette entreprise est pas triviale pour au moins deux raisons. Premièrement, la sémantique opérationnelle d'un LMDx peut être arbitrairement complexe, à la fois en ce qui concerne la déinition de l'état d'un modèle exécuté, et en ce qui concerne la déinition de la transformation de modèle qui change cet état. Structurer et adapter ces informations pour déinir une structure de données de trace d'exécution est donc diicile. Deuxièmement, une trace d'exécution a tendance à être un grand artefact : une courte exécution d'un programme Java simple de 20 classes et de 3 000 lignes de code peut mener à 150 000 appels de méthode à stocker dans une trace d'exécution [START_REF] Bas Cornelissen | Understanding execution traces using massive sequence and circular bundle views[END_REF]. Par conséquent, la structure de données utilisée doit être adaptée à une représentation et un traitement eicace de grandes traces.

En résumé, fournir des dispositifs pour gérer des traces d'exécution revient à faire face à trois principaux challenges étroitement liés [START_REF] Bousse | Towards Scalable Multidimensional Execution Traces for xDSMLs[END_REF] : dispersé dans les diférentes parties du modèle. Ainsi, en sachant quelles parties pourraient être modiiées, notre approche de clonage détermine ce qui peut être partagé entre les représentations en mémoire d'un modèle et de ses clones. Notre algorithme de clonage générique est paramétrable par trois stratégies diférentes, chacune reposant sur un compromis entre les gains en mémoire et la facilité d'utilisation des manipulations de clones. Nous proposons une mise en oeuvre de l'approche au sein de l'Eclipse Modeling Framework (EMF), ainsi qu'une évaluation de l'empreinte mémoire et de la performance de la manipulation des clones avec 100 modèles générés aléatoirement. Les résultats montrent une corrélation positive entre la proportion d'éléments partageables et les gain de mémoire, tandis que la mediane du surcoût de manipulation est de 9,5% lors de la manipulation des clones.

Ensuite, nous nous concentrons sur la structure des traces d'exécution qui contiennent de informations à la fois sur les états et les pas d'exécution d'un modèle. Alors que les traces d'exécution basées sur des clones montrent certains avantages, elles nécessitent une structure de données générique basée sur une unique séquence d'états. Cela a deux conséquences. Premièrement, il ya un écart sémantique entre les concepts de domaine du LMDx et la structure de données générique, ce qui compromet la facilité d'utilisation (Ch#1) dans le cas de manipulations de traces spéciiques à un domaine. Deuxièmement, les manipulations qui mettent l'accent sur une partie spéciique de l'état d'un modèle doivent malgré tout parcourir la trace d'exécution complète, même si cette partie a changé un petit nombre de fois. Cela compromet le passage à l'échelle dans le temps (Ch#3). Pour faire face à ces problèmes, nous proposons une approche générative pour déinir des métamodèles de traces d'exécution multidimensionnelles et spéciiques à un domaine [START_REF] Bousse | A Generative Approach to Deine Rich Domain-Speciic Trace Metamodels[END_REF]. Un métamodèle est une structure de données déinie par un modèle orienté objet qui déinit un domaine particulier. Pour améliorer la facilité d'utilisation, notre première idée est d'aller de métamodèles génériques vers une méta-approche générique pour déinir les métamodèles de traces d'exécution spéciiques à un domaine. Nous accomplissons cela à l'aide de la connaissance des parties d'un LMDx qui sont requises par les manipulations, en utilisant donc le même principe que la contribution précédente. Ensuite, pour améliorer le passage à l'échelle dans le temps des manipulation, notre deuxième idée est de créer des métamodèles de traces d'exécution multidimensionnelles, i.e., métamodèles qui fournissent de nombreux chemins de navigation pour explorer une trace. Plus précisément, ces chemins permettent de suivre l'évolution des diférents éléments du modèle, évitant ainsi de parcourir la trace complète pour analyser ces changements locaux. Par rapport à des traces d'exécutions basées sur des clones, les résultats montrent une simpliication de la déinition des manipulations de trace, un temps d'exécution plus faible, et une empreinte mémoire inférieure.

Applications

Comme nous l'avons mentionné précédemment, une grande quantité de techniques dynamiques de V&V reposent sur les traces d'exécution pour analyser les comportements de modèles exécutables. Par conséquent, après avoir étudié comment mieux construire xiv et manipuler des traces d'exécution, nous étudions comment mettre à proit nos contributions pour améliorer deux approches de V&V dynamiques existantes.

Nous considérons d'abord le domaine de l'évolution de modèles, dont le souci est d'analyser et de comprendre les modiications apportées à un modèle au il du temps. Dans le cas d'un modèle exécutable, puisque un changement dans son contenu peut avoir un impact sur son comportement, il est nécessaire de comparer les comportements d'un modèle avant et après un changement. Cela peut être fait en utilisant la différenciation sémantique de modèles, qui consiste à comparer les traces d'exécution de diférents modèles. Tout d'abord, des règles de diférenciation sémantique sont déinies pour un xDSML donné pour déinir quelles diférences entre les traces d'exécution constituent des diférences sémantiques entre les modèles. Ensuite, ces règles sont utilisées pour comparer les traces d'exécution des modèles considérés, ce qui permet par conséquent de comparer leurs comportements. Toutefois, la déinition de ces règles est une tâche diicile, surtout lorsque le métamodèle de traces d'exécution utilisé est générique, car il manque de facilité d'utilisation (Ch#1) pour un tel cas. De même le passage à l'échelle dans le temps (Ch#3) est un problème, car tous les états doivent être énumérés lorsque l'on compare des traces d'exécution ordinaires, même si les règles sont basées sur un sous-ensemble de l'information qu'elles contiennent. Pour surmonter ces problèmes, nous proposons une amélioration de la diférenciation sémantique par l'utilisation de métamodèles de traces d'exécution multidimensionnelles spéciiques à un domaine [START_REF] Bousse | A Generative Approach to Deine Rich Domain-Speciic Trace Metamodels[END_REF]. Pour valider cette intuition, nous générons d'abord un tel métamodèle de traces pour un LMDx concret, fUML 2 . Ensuite, nous déinissons une ensemble de règles de diférenciation sémantique pour fUML basées sur ce métamodèle généré. Finalement, nous utilisons ces règles pour comparer les traces d'un ensemble de modèles fUML du monde réel extraits d'une étude de cas existante. Les résultats montrent une amélioration signiicative des performances (Ch#3) et une simpliication des règles de diférenciation sémantique par rapport à des règles équivalentes basées sur un métamodèle de traces d'exécution générique reposant sur des clones (Ch#1).

Nous étudions ensuite le domaine du débogage interactif, qui consiste à contrôler (i.e., mettre en pause ou reprendre l'exécution) et observer une exécution ain de trouver la cause de certains comportements inattendus. Tandis que le débogage interactif permet communément d'aller seulement vers l'avant dans une exécution, le débogage omniscient est une technique prometteuse qui repose sur des traces d'exécution pour permettre le libre parcours des états atteints, ce qui inclut donc le retour en arrière dans l'exécution. Alors que certains langages généraux (e.g., Java) possèdent déjà des outils pour le débogage omniscient, développer un tel outil complexe pour tout LMDx reste une tâche diicile propice aux erreurs. Une solution à ce problème est de déinir un débogueur omniscient générique pour tout LMDx. Cependant, un support générique de tout LMDx compromet l'eicacité et la facilité d'utilisation d'une telle approche. Pour répondre à ces problèmes, nous proposons une approche de débogage omniscient avancée et eicace pour tout LMDx [START_REF] Bousse | Supporting Eicient and Advanced Omniscient Debugging for xDSMLs[END_REF]. Notre contribution consiste en un débogueur omniscient partiellement générique s'appuyant sur un dispositif de gestion de 2 Signiie foundational UML, qui est un sous-ensemble exécutable et standardisé de UML [START_REF]Semantics of a Foundational Subset for Executable UML Models (fUML)[END_REF].

xv traces généré et spéciique au LMDx considéré. Ce dispositif inclut un métamodèle de traces d'exécution spéciique au domaine généré à l'aide de notre seconde contribution. Étant spéciique au domaine, ce dispositif est optimisé pour le LMDx considéré pour une meilleure eicacité. La facilité d'utilisation est renforcée par la mise à disposition de services de débogage omniscient multidimensionnels, déinis à l'aide du métamodèle de traces d'exécution généré (Ch#1). Les résultats montrent que notre approche est en moyenne 3,0 fois plus eicace en mémoire (Ch#2) et 5,03 plus eicace dans le temps (Ch#3) par rapport à une solution générique qui clone le modèle exécuté à chaque étape.

Contexte de cette thèse

Cette thèse a été réalisée par le biais de plusieurs partenariats internationaux. D'abord, le travail sur les métamodèles de trace d'exécution multidimensionnels et spéciiques à un domaine [START_REF] Bousse | A Generative Approach to Deine Rich Domain-Speciic Trace Metamodels[END_REF] a été fait en collaboration avec le Business Informatics Group (BIG) de l'Université Technologique de Vienne (TU Wien), située en Autriche. Ensuite, le travail sur le débogage omniscient avancé et eicace [START_REF] Bousse | Supporting Eicient and Advanced Omniscient Debugging for xDSMLs[END_REF] a été fait en collaboration avec le Software Engineering Group de l'Université de l'Alabama (UA), située aux Etats-Unis.

Ces collaborations ont été réalisées dans le cadre de l'Initiative GEMOC, une coopération industrielle et universitaire qui vise à permettre l'utilisation coordonnée de LMDxs, aussi appelé la mondialisation des langages de modélisation [START_REF] Benoit Combemale | Globalizing modeling languages[END_REF]. Les membres de l'Initiative GEMOC rassemblent et partagent une expertise complémentaire dans divers domaines, tels que la modélisation de logiciels ou la vériication et validation de logiciels. En outre, les résultats de recherche sont en permanence matérialisés dans le GEMOC Studio [START_REF] Benoit Combemale | A Solution to the TTC'15 Model Execution Case Using the GEMOC Studio[END_REF], un atelier dans lequel on peut déinir des LMDxs, déinir des modèles, utiliser des techniques de V&V sur ces modèles, et enin les exécuter.

Par conséquent, nous avons intégré nos contributions dans le GEMOC Studio, ce qui nous a permis à la fois de bénéicier d'un cadre existant pour mettre en oeuvre notre approches, et de recueillir des commentaires des membres du projet. De plus, nos travaux sont rendus accessibles à tous les utilisateurs actuels et futurs du GEMOC Studio.

xvi Introduction

Context

A most important challenge in software and systems engineering is the development and maintenance of complex systems, such as cyber-physical systems or the internet of things. Designing such systems require experts of diverse and heterogeneous domains. Because of this complexity, there are many threats to their proper development and functioning, which implies a need for appropriate methods, methodologies and tools [START_REF] Broy | The 'Grand Challenge' in Informatics: Engineering Software-Intensive Systems[END_REF].

Model-Driven Engineering (MDE) is a development paradigm that aims at coping with the complexity of systems by separating concerns through the use of models. A model is a representation of a particular aspect of a system, and is deined using speciic abstractions provided by a Domain-Speciic Modeling Language (DSML) [START_REF] Douglas | Guest Editor's Introduction: Model-Driven Engineering[END_REF]. At the core of MDE is the idea of going from descriptive models representing existing systems to prescriptive models that can be used to construct the target system [START_REF] Voelter | DSL Engineering[END_REF]. In the past years, studies have shown evidence of the many beneits of MDE for the development of complex systems, such as improvements regarding the productivity of developers or regarding the quality of the systems [START_REF] Mohagheghi | Where is the proof? -A review of experiences from applying MDE in industry[END_REF][START_REF] Hutchinson | Empirical Assessment of MDE in Industry[END_REF]. One explanatory factor is the use of models to perform early veriication and validation (V&V) of systems (e.g., [START_REF] Bousse | Aligning SysML with the B method to provide V&V for systems engineering[END_REF]). Indeed, most software errors occur in the early phases of development (i.e., requirements and design), and are more expensive to remove in later stages [START_REF] Boehm | Software Defect Reduction Top 10 List[END_REF][START_REF] Boehm | Some experience with automated aids to the design of large-scale reliable software[END_REF].

While many models only represent structural aspects of systems, a large amount express behavioral aspects of the same systems. In this case, to ensure that a model is correct with regard to its intended behavior, early dynamic V&V techniques are required, such as omniscient debugging [START_REF] Corley | Towards Eicient and Scalabale Omniscient Debugging for Model Transformations[END_REF], semantic diferencing [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF] or runtime veriication [START_REF] Leucker | A brief account of runtime veriication[END_REF]. These techniques require models to be executable, which can be achieved by deining the execution semantics of DSMLs used to describe them. Although technically only conforming models are said executable, such languages are called executable DSMLs (xDSMLs). In addition to enabling early dynamic V&V, providing executability at the model level also gives the possibility to directly deploy an executable model to run on a production system.

Problem Statement

While an executable model by itself inherently expresses an intended behavior, dynamic V&V techniques need an extended representation of behavior over time. A most common representation of a model's behavior is the execution trace, which is a sequence containing all the relevant information about an execution over time. Such information may include the execution states reached during the execution, the execution steps that were responsible for these state changes, and the stimuli originating from the execution environment and the system.

All previously mentioned V&V approaches rely on execution traces: omniscient debugging relies on an execution trace to revisit a previous execution state; semantic diferencing consists in comparing execution traces of two models in order to understand the semantic variations between them; runtime veriication consists in checking whether or not an execution trace satisies a property. In addition, execution traces are at the core of behavioral equivalence checking of xDSMLs, such as bisimulation [START_REF] Milner | Communication and Concurrency[END_REF], and can be used as evidence [START_REF] Dwyer | Unifying veriication and validation techniques: relating behavior and properties through partial evidence[END_REF] shared among diferent combined V&V approaches [START_REF] Bousse | Combining Veriication and Validation techniques[END_REF].

Consequently, it appears that providing execution trace management facilities is an essential requirement to support dynamic V&V for xDSMLs. Such facilities include acquiring, processing and visualizing execution traces that result both from testing and deploying executable models. However, these facilities have an important prerequisite to satisfy: the deinition of a data structure to deine the content and the layout of the execution traces of an xDSML. Yet, this undertaking is not trivial for at least two reasons. First, the operational semantics of an xDSML can be arbitrarily complex, both regarding the deinition of the execution state and the deinition of the model transformation that changes it. As a result, structuring and adapting this information into an execution trace data structure is diicult. Second, execution traces tend to be very large artifacts: a short execution of a simple Java program of 20 classes and 3,000 lines of code can lead to 150 000 method calls to store in an execution trace [START_REF] Bas Cornelissen | Understanding execution traces using massive sequence and circular bundle views[END_REF]. Consequently, a data structure must be adapted for an eicient representation and processing of large traces.

All in all, providing execution trace management facilities can be summarized as three main inter-related challenges [START_REF] Bousse | Towards Scalable Multidimensional Execution Traces for xDSMLs[END_REF]:

Ch#1: The usability of an execution trace data structure must be ensured to cope with the complexity of data. More precisely, both generic manipulations (e.g., comparing the number of diferent states or the amount of steps) and domain-speciic manipulations (e.g., determining how many tokens traversed a Petri net place) must be taken into account.

Ch#2: Since executing even a simple model or program can lead to very large execution traces, scalability in memory of executions traces must be taken into account. Indeed, while database solutions for storing models1 (e.g., execution traces) are more and more eicient, loading models directly in memory remains more eicient for large models and heavyweight manipulations [START_REF] Benelallam | Neo4EMF, a Scalable Persistence Layer for EMF Models[END_REF].

Ch#3: Finally, also because of their large size, scalability in manipulation time of execution traces are of primary importance, and imply the need for eicient ways to browse a trace.

It can be observed that addressing these challenges for any executable model requires to take into account a large amount of existing and potential xDSMLs. This represents an additional key obstacle that we consider in this thesis, which naturally leads to either generic or generative solutions.

Contributions

To tackle the aforementioned challenges, we investigate two complementary directions. First, we focus on the representation of the execution state of an executed model in the context of clone-based execution traces. An execution trace containing all the states reached by an executed model can be obtained in a generic way by cloning the model after each execution step. Such way of doing brings advantages regarding usability (Ch#1), since the data structure of the execution trace is simple and appropriate for generic manipulations. Moreover, existing model transformations and queries speciic to the xDSML can directly be applied on execution states stored in a clone-based execution trace. Yet, at runtime, a model is represented by a set of elements stored in memory called the runtime representation of the model. Cloning is usually done by duplicating the complete runtime representation of a model, hence requiring an important amount of memory, compromising the need for scalability in memory (Ch#2). To cope with this problem, we propose a scalable model cloning approach [START_REF] Bousse | Scalable Armies of Model Clones through Data Sharing[END_REF] to create large amounts of model clones while sparing memory usage. Our approach is based on the observation that manipulations rarely modify a whole model. In the case of model execution, the only modiied part is the execution state, which may be scattered in the diferent parts of the model. Hence, knowing which parts might get modiied, our cloning approach determines what can be shared between the runtime representations of a model and its clones. Our generic cloning algorithm is parameterized with three strategies that establish a trade-of between memory savings and the usability of clone manipulations. We propose an implementation of the approach within the Eclipse Modeling Framework (EMF), along with our evaluation of memory footprints and computation overheads with 100 randomly generated models. Results show a positive correlation between the proportion of shareable elements and memory savings, while the worst median overhead is 9,5% when manipulating the clones.

Then, we focus on the structure of execution traces that contain information about both states and steps. While clone-based execution traces show some beneits, they are necessarily relying on a generic data structure based on a unique sequence of execution states. This has two consequences. First, there is a gap between the domain concepts of the xDSML and the generic data structure, which compromises usability (Ch#1) regarding domain-speciic trace manipulations. Second, execution trace manipulations that focus on a speciic part of the execution state has still to browse the complete trace even if this part changed a small number of times, hence compromising scalability in time (Ch#3). To cope with these problems, we propose a generative approach to deine multidimensional and domain-speciic execution trace metamodels [START_REF] Bousse | A Generative Approach to Deine Rich Domain-Speciic Trace Metamodels[END_REF]. A metamodel is a data structure deined by an object-oriented model deining a particular domain. To enhance usability, our irst idea is to go from generic trace metamodels to a generic meta-approach to deine domain-speciic execution trace metamodels. This is accomplished by knowing which parts of an xDSML is required by the manipulations, hence using the same principle as the previous contribution. Then, to enhance scalability in manipulation time, our second idea is to create multidimensional trace metamodels, i.e., metamodels that provide many navigation paths to explore a trace. More precisely, these paths make possible to follow the changes of individual elements of the model, thus avoiding to browse the complete trace to analyze these changes. As compared to regular clone-based execution traces, results show a simpliication of the trace manipulations deinitions, a lower execution time, and a lower memory footprint.

Applications

As we previously mentioned, a large amount of dynamic V&V techniques rely on execution traces to analyze the behaviors of executable models. Therefore, after investigating how to better construct and manipulate execution traces, we study how to take advantage of our contributions to improve two existing dynamic V&V approaches.

We irst consider the ield of model evolution, whose concern is to analyze and understand the changes made to a model over time. In the case of an executable model, since a change in its content may impact its behavior, taking a change into account requires comparing the behaviors of the model before and after the change. This can be achieved using semantic model diferencing, which consists in comparing execution traces from diferent models. First, semantic diferencing rules are deined for a given xDSML, the rules indicating which diferences among the execution traces constitute semantic diferences among the models. Second, these rules are used to compare the execution traces of the considered models, hence comparing their behaviors. However, deining semantic diferencing rules is a diicult task, especially when the used execution trace metamodel is generic, since it lacks usability (Ch#1). Likewise scalability in time (Ch#3) is an issue, since all states must be enumerated when comparing the execution traces, even if the rules are based on a subset of the information they contain. To overcome these problems, we propose an an enhancement of semantic diferencing using multidimensional domain-speciic execution trace metamodels [START_REF] Bousse | A Generative Approach to Deine Rich Domain-Speciic Trace Metamodels[END_REF]. We validate this intuition by generating such a metamodel for a real world xDSML, namely fUML 2 . Then, we deine a set of semantic diferencing rules for fUML based on this generated metamodel. Finally, we use these rules to compare traces of a set of real world fUML models extracted from an existing case study. Results show a signiicant performance improvement (Ch#3) and a simpliication of the semantic diferencing rules as compared to equivalent rules based on a generic execution trace metamodel (Ch#1).

Context of this Thesis

We then consider the ield of interactive debugging, whose concern is to control (i.e., pause or unpause) and observe an execution in order to ind the cause of some unintended behavior. While regular interactive debugging only allows to go forward in an execution, omniscient debugging is a promising technique that relies on execution traces to enable free traversal of the reached states, which includes going backward in the execution. While some General-Purpose Languages (GPLs) already have support for omniscient debugging, developing such a complex tool for any xDSML remains a challenging and error prone task. A solution to this problem is to deine a generic omniscient debugger for all xDSMLs. However, generically supporting any xDSML both compromises the eiciency and the usability of such an approach. To address these problems, we propose an advanced and eicient omniscient debugging approach for xDSMLs [START_REF] Bousse | Supporting Eicient and Advanced Omniscient Debugging for xDSMLs[END_REF]. Our contribution consists in a partly generic omniscient debugger supported by generated domain-speciic trace management facilities. These facilities include a multidimensional domain-speciic execution trace metamodel, obtained using our second contribution. Being domain-speciic, these facilities are tuned to the considered xDSML for better eiciency. Usability is strengthened by providing multidimensional omniscient debugging, which is achieved using our generated execution trace metamodel (Ch#1). Results show that our approach is on average 3.0 times more eicient in memory (Ch#2) and 5.03 more eicient in time (Ch#3) when compared to a generic solution that clones the model at each step.

Context of this Thesis

This thesis was done through several beneicial international partnerships. First, the work on multidimensional and domain-speciic execution trace metamodels [START_REF] Bousse | A Generative Approach to Deine Rich Domain-Speciic Trace Metamodels[END_REF] was done in collaboration with the Business Informatics Group (BIG) from the Vienna University of Technology (TU Wien), located in Austria. Second, the work on advanced and eicient omniscient debugging [START_REF] Bousse | Supporting Eicient and Advanced Omniscient Debugging for xDSMLs[END_REF] was done in collaboration with the Software Engineering Group from the University of Alabama (UA), located in the USA. These collaborations were done in the context of the GEMOC Initiative, an academic and industrial efort that aim at supporting the coordinated use of DSMLs, also called the globalization of modeling languages [START_REF] Benoit Combemale | Globalizing modeling languages[END_REF]. The members of the GEMOC Initiative gather and share complementary expertise from various domains, such as software modeling or software veriication and validation. In addition, research result are continuously materialized in the GEMOC Studio [START_REF] Benoit Combemale | A Solution to the TTC'15 Model Execution Case Using the GEMOC Studio[END_REF], a language and modeling workbench in which one can deine xDSMLs, deine models, use V&V techniques on these models, and inally execute them.

Consequently, we implemented and integrated our contributions within the GEMOC Studio, which allowed us both to beneit from an existing framework to implement our approaches, and to gather direct feedback from the project members. In addition, our work is made accessible to all present and future users of the GEMOC Studio. 
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Part II -Contributions

Chapter 3 is a foreword to both contributions. We present some observations regarding trace manipulations, a synthesis of the state of the art regarding execution trace data structures, and the proposal that led to our contributions.

Chapter 4 presents our irst contribution, which is a scalable model cloning approach through data sharing. We give a more detailed motivation regarding the diferent usages of model cloning, a description of the algorithm and of the cloning strategies, and an evaluation of memory gain using random metamodels.

Outline

Chapter 5 presents our second contribution, which is a generative approach to deine multidimensional domain-speciic execution trace metamodels for xDSMLs. We explain the advantages of a domain-speciic data structure as compared to a generic one, then explain our generation algorithm and discuss the beneits of the approach.

Part III -Applications and Tooling

Chapter 6 is a foreword to both applications. We explain why we rely on these applications to evaluate our second contribution, then we present an overview, and lastly we describe the fUML case study considered for both evaluations.

Chapter 7 shows our irst application, which is an enhancement of a semantic differencing approach based on execution traces. We irst the existing introduce semantic diferencing approach, then we explain how it is enhanced using the generation of a multidimensional domain-speciic trace metamodel, and lastly we evaluate our approach by deining and using semantic diferencing rules for fUML.

Chapter 8 shows our second application, which is an omniscient debugging approach for xDSMLs relying on multidimensional domain-speciic execution trace metamodels. We irst introduce the challenges in omniscient debugging, then explain our approach, and inally present its evaluation on fUML which further highlights the beneits of multidimensional domain-speciic execution trace metamodels.

Chapter 9 presents an overview of the software development that was achieved during this thesis, either to improve existing tools or to implement our approaches and applications. In particular, it explains the integration of our work within the GEMOC studio, which is a language and modeling workbench resulting from an academic and industrial project.

Part IV -Conclusion and Perspectives

Chapter 10 concludes the thesis by summarizing the advances that it brings to execution trace management for xDSMLs and to dynamic V&V of executable models. We end by discussing the perspectives of future research on the topic.

Part I

State of the Art

Chapter 2

State of the Art

In this chapter, we present the state of the art in the diferent domains covered by our contributions and applications. In Section 2.1, we irst introduce model-driven engineering through a number of fundamental concepts. Then in Section 2.2, we introduce object and model duplication , and we present existing work on the topic. Continuing, in Section 2.3, we focus more speciically on executable domain-speciic modeling languages (xDSMLs), and we introduce a running example of xDSML. The main purpose of xDSMLs is to enable the dynamic veriication and validation (V&V) of behavioral models, which requires the capture of execution traces describing their executions. Consequently, in Section 2.4, we deine what is an execution trace, and we review the literature regarding execution trace management and execution trace data structures. In Section 2.5 we irst explain what is interactive debugging of models and present existing work on model debugging, then we present omniscient debugging and diferent categories of omniscient debuggers.

Model-Driven Engineering

Model-driven engineering (MDE) is a development paradigm that aims at coping with the complexity of systems by separating concerns through the use of models. [START_REF] Douglas | Guest Editor's Introduction: Model-Driven Engineering[END_REF] While the term model is extensively used in many scientiic ields, France et al. [START_REF] France | Model-driven Development of Complex Software: A Research Roadmap[END_REF] give the following description in the context of MDE: "A model is an abstraction of some aspect of a system. The system described by a model may or may not exist at the time the model is created. Models are created to serve particular purposes, for example, to present a human understandable description of some aspect of a system or to present information in a form that can be mechanically analyzed" Proper expressiveness is necessary to create and use meaningful models, which is accomplished through the deinition of languages. We distinguish two main categories of languages. On the one hand, a general-purpose language (GPL) provides substantial expressiveness to be able to handle a large variety of concerns, and can thus be used for modeling many aspects of a system. On the other hand, a domain-speciic modeling language (DSML) deines speciic abstractions dedicated to a particular area of expertise [START_REF] Douglas | Guest Editor's Introduction: Model-Driven Engineering[END_REF][START_REF] Mernik | When and how to develop domain-speciic languages[END_REF]. The speciicities of a DSML can also be inluenced by the kind of usage (e.g., visualization or simulation) and the kind of information that must be modeled (e.g., architectural components or behaviors). In this thesis, we are mostly interested in the use of DSMLs to model the multiple aspects of a system.

As any other language, a DSML consists both of a syntax, deining what can be expressed, and semantics, deining the meaning of what can be expressed [START_REF] Harel | Meaningful Modeling: What's the Semantics of "Semantics[END_REF]. More precisely, the syntax is composed of both an abtract syntax, which deines the concepts of the DSML and the relationships between them, and a concrete syntax, which deines a human-readable representation to manipulate these concepts. Semantics are deined through both a semantic domain, and a mapping from concepts of the abstract syntax to the semantic domain. Note that the concrete syntax is not involved in the deinition of the semantics of a DSML. Therefore, since semantics are the primary concern of our work, we focus in this thesis on the abstract syntax of a DSML and we leave aside the deinition of the concrete syntax.

Metamodel

A most common way to deine the abstract syntax of a DSML is by deining a metamodel. There are many deinitions of this term in the literature : "a model deining a language" [START_REF] Jézéquel | Ingénierie Dirigée par les Modèles : des concepts à la pratique[END_REF], "a model to model modeling" [START_REF]Meta Object Facility (MOF) Core Speciication[END_REF] or "a model deining the structure and semantics of metadata" [START_REF] Egea | Formal executable semantics for conformance in the MDE framework[END_REF]. In this thesis, we consider a metamodel to be an object-oriented model, similarly to [START_REF] Bézivin | Towards a precise deinition of the OMG/MDA framework[END_REF][START_REF] Bézivin | Principles, standards and tools for model engineering[END_REF].

Therefore, a metamodel is essentially composed of classes, each being composed of properties. In addition, a metamodel possesses static semantics, which are additional structural constraints that must be satisied by conforming models.

Deinition 1 A metamodel is an object-oriented model deining a particular domain. It is thus composed of:

-A set of classes (also called metaclasses) that consist of properties.

• A property is either an attribute (typed by a datatype, e.g., integer) or a reference to another class.

• A class can be abstract, meaning it cannot be instantiated.

• A class can inherit from one or multiple classes, meaning it shares their properties.

-Static semantics, which are a set of constraints that must be satisied by conforming models (e.g., multiplicities, containment references, OCL rules). A widely used standard that matches this deinition of metamodel is the Essential Meta-Object Facility (EMOF) [START_REF]Meta Object Facility (MOF) Core Speciication[END_REF], introduced by the Object Management Group (OMG). It is supported by the Object Constraint Language (OCL) [START_REF]Object Constraint Language (OCL) Version 2.4[END_REF], also maintained by the OMG, for the deinition of complex static semantics rules. In practice, the tool-supported Ecore language from the Eclipse Modeling Framework (EMF) [START_REF] Merks | EMF: Eclipse Modeling Framework, 2nd Edition[END_REF] is considerably aligned with EMOF, and is therefore the de facto standard extensively used for deining metamodels.

Model

Based on the deinition of metamodel, we can deine more precisely what we call a model. In the class-based object-oriented paradigm, a class can be instantiated into an object. Since a metamodel is a set of classes, we consider a model as a set of objects that are instances of these classes, and that satisfy the static semantics of the metamodel. This is commonly referred as the conformity relationship between a model and its metamodel. Note that we can also say that a model conforms to a DSML, which is simply a shorter way to express that the model conforms to the metamodel of the DSML. Deinition 2 A model is a set of objects. Furthermore, a model conforms to a unique metamodel. Conformity implies that each object in the model is an instance of one class deined in the metamodel, and that the model satisies the static semantics of the metamodel. An object is composed of ields, each representing the object's values for one property of the corresponding class. For instance, the transition t1 has a ield name containing the string value "t1", a ield input containing a value reference to the Place p1, and a ield output containing a reference value to the Place p3.

Model Transformations

While a model by itself can be used as a relevant description of a system, and can be analyzed for static inconsistencies or defects, many situations require to change or create a model in an automated way. This is done through model transformations, which are central operations in MDE for numerous purposes [START_REF] Sendall | Model transformation: the heart and soul of model-driven software development[END_REF], such as the refactoring of a model, the generation of a new model based on an existing one, or model slicing [START_REF] Blouin | Kompren: modeling and generating model slicers[END_REF]. Model transformations have been widely studied as irst class artifacts [START_REF] Czarnecki | Feature-based survey of model transformation approaches[END_REF][START_REF] Di Ruscio | Model Transformations[END_REF][START_REF] Kessentini | Model Transformation as an Optimization Problem[END_REF] and can be deined using many paradigms, such as declarative programming (e.g., ATL [START_REF] Jouault | Transforming models with ATL[END_REF], VIATRA [START_REF] Csertan | VIATRA -visual automated transformations for formal veriication and validation of UML models[END_REF]), imperative programming (e.g., Xtend/EMF, Kermeta [START_REF] Jézéquel | Mashup of metalanguages and its implementation in the Kermeta language workbench[END_REF]) or triple graph grammars (e.g., [START_REF] Schürr | Speciication of graph translators with triple graph grammars[END_REF]). They are also fundamental regarding the deinition of semantics of DSMLs, e.g., to deine operational semantics [START_REF] Benoit Combemale | Essay on Semantics Deinition in MDE -An Instrumented Approach for Model Veriication[END_REF] (see Section 2.3).

Among others, a model transformation is composed of transformation rules. A rule deines a subset of the changes performed by a model transformation on the target model. Depending on the paradigm used to deine the execution transformation, a rule can take diferent forms:

-Using declarative model transformation languages, such as VIATRA [START_REF] Csertan | VIATRA -visual automated transformations for formal veriication and validation of UML models[END_REF][START_REF] Ráth | Live Model Transformations Driven by Incremental Pattern Matching[END_REF][START_REF] Ráth | Design-time simulation of domainspeciic models by incremental pattern matching[END_REF] or ATL [START_REF] Jouault | Transforming models with ATL[END_REF], a model transformation is declared as a set of rules, each rule begin composed of a source pattern and a target pattern. The source pattern identiies a subset of the source model, while the target pattern deines how it is transformed.

Executing such model transformation consists in a pattern matching loop that constantly tries to apply a transformation rule whose source pattern matches a part of the model.

-Using imperative model transformation languages, such as Kermeta [START_REF] Jézéquel | Mashup of metalanguages and its implementation in the Kermeta language workbench[END_REF] or xMOF [START_REF] Mayerhofer | xMOF: Executable DSMLs based on fUML[END_REF], a model transformation is deined as a sequence of statements organized in diferent transformation rules called operations. One of these operations is the entry point of the model transformation, and is the one that is called to start the transformation. An operation may call other operations, thereby deining the order in which transformation rules are applied. Note that only operations that may change the target model can be considered as transformation rules.

-In the context of the GEMOC project, Combemale et al. [START_REF] Benoit Combemale | Bridging the Chasm between Executable Metamodeling and Models of Computation[END_REF][START_REF] Benoit Combemale | Reifying Concurrency for Executable Metamodeling[END_REF] propose to deine the model of concurrency (i.e., a set of logical clocks and constraints between them) of an xDSML in a dedicated model. Then, an external component called a solver relies on this model to schedule the next model transformation rule (e.g., a Kermeta operation) to apply on the executed model. With this approach, a rule is here again a Kermeta operation, but the order in which they are called depends this time on the model of concurrency and the solver.

In addition, there are multiple sorts of model transformations [START_REF] Czarnecki | Feature-based survey of model transformation approaches[END_REF]. If both the source models and target models conform to the same metamodel, they are said endogenous. Otherwise, they are said exogenous. Finally, if a model transformation directly changes a source models without creating new target models, they are said to be in-place.

Deinition 3 A model transformation is an operation that applies on one or more source models and transforms them into one or more target models. In addition:

-A model transformation is composed of transformation rules, each responsible for a subset of the transformation, i.e., executing the model transformation implies the application of a sequence of rules.

-A model transformation is said endogenous if target models conform to the same metamodel as source models, and is said exogenous in the case of diferent metamodels.

-A model transformation is said in-place if models are efectively being modiied directly; such transformation is endogenous.

Listing 2.1 shows an example of transformation rule called fire that is part of an in-place model transformation deined using Kermeta. This transformation rule takes as an input a speciic Transition object called transition (line 1). It irst checks if input Place objects of transition are all enabled (line 4), i.e., if all its input Place objects have at least one token. If the condition is satisied, it removes token from each input Place object (lines 7-8), and adds a token to each output one (lines [START_REF] Benelallam | Neo4EMF, a Scalable Persistence Layer for EMF Models[END_REF][START_REF] Bézivin | Towards a precise deinition of the OMG/MDA framework[END_REF]. With an imperative language such as Kermeta, such operation must be explicitly called by some other operation, starting with the entry point operation. This can for organized using a design pattern such as visitor or interpreter [START_REF] Gamma | Design patterns: elements of reusable object-oriented software[END_REF].

Model Transformation Footprints

Given a model and a model transformation, an observation can be made: it is likely that only a subset of the elements of the model are involved in the model transformation. Jeanneret et al. [START_REF] Jeanneret | Estimating footprints of model operations[END_REF] deines such subset as the model footprint of the application of a model transformation to a model. More precisely, as shown in Figure 2.3, there are two sorts of model footprints: dynamic and static model footprints.

First, a dynamic model footprint is derived from the actual execution of a model transformation on a considered model. Concretely, all elements of the model that are accessed during the execution are part of the footprint. Among others methods, such information can be obtained by directly observing the modiication made to the model (e.g., using EMF notiications), or by instrumenting the model transformation, or by producing a detailed execution trace of the transformation (as shown in Figure 2.3). Deinition 4 (derived from [START_REF] Jeanneret | Estimating footprints of model operations[END_REF])

The dynamic model footprint of the application of a model transformation on a model is the set of elements of the model that are manipulated by the model transformation. Thus, the dynamic model footprint contains all elements that afect the outcome of the transformation, as long as this transformation is deterministic and does not use data other than those contained in the input model. Second, a static model footprint is derived by irst analyzing the deinition of a model transformation, then the considered model to transform. As shown in Figure 2.3, analyzing the deinition of the model transformation yields the static metamodel footprint of the model transformation, which is the set of elements of the metamodel that are required by the model transformation.

Deinition 5 (derived from [START_REF] Jeanneret | Estimating footprints of model operations[END_REF]) The static metamodel footprint of a model transformation is the set of metamodel elements involved in the deinition of the transformation.

For instance, the static metamodel footprint of the fire rule shown in Listing 2.1 is: {Transition, input, output, Place, tokens}.

From there, the static model footprint can be obtained by iltering the input model using the static metamodel footprint. This iltering consists in keeping only instances of elements of the static metamodel footprint. Deinition 6 (derived from [START_REF] Jeanneret | Estimating footprints of model operations[END_REF]) The static model footprint of the application of a model transformation on a model is the set of elements of the model that are instances of elements found in the static metamodel footprint of the model transformation.

For instance, the static model footprint of the fire rule shown in Listing 2.1 applied on the Transition object t1 from Figure 2.2 is: {t1, t1.input, t1.output, p1, p1.tokens, p2, p2.tokens, p3, p3.tokens, p4, p4.tokens}.

Object and Model Duplication

In this section, we irst present object duplication and its usages, then we discuss its multiple deinitions and names, and inally we present model duplication.

Object Duplication

Duplicating an object is the action of creating a new and independent object identical to an existing one. It is an important activity that have been widely studied in the objectoriented programming community [START_REF] Grogono | Copying and Comparing: Problems and Solutions[END_REF][START_REF] Li | Cloning in Ownership[END_REF][START_REF] Drossopoulou | Trust the clones[END_REF][START_REF] Grogono | Copying, Sharing, and Aliasing[END_REF][START_REF] Li | Sheep Cloning with Ownership Types[END_REF][START_REF] Goldberg | Smalltalk-80: the language and its implementation[END_REF]. Operators to duplicate objects can be found in many popular programming languages, such as the clone method of Java or the dup method of Ruby. Such operators are used in many situations: to avoid data sharing and aliasing problems, to duplicate data in a distributed environment, or simply to ease the construction of a complex object graph using an existing one. Most of these operators consist in taking a single input object as a parameter, and returning a single new object seemingly identical to the input one.

Smalltalk [START_REF] Goldberg | Smalltalk-80: the language and its implementation[END_REF] was one of the irst languages to provide object duplication operators, namely shallowCopy and deepCopy. Both operators gave their names to the two main ways to duplicate an object still today: shallow copying and deep copying. Shallow copying consists in creating an output object instance of the same class as the input object, and copying the exact same ield values of the input object inside the output object. Primitive values are hence copied along with reference values, which means that a shallow copy will have references pointing to the same objects as its origin. Deep copying, on the other hand, does not copy reference values. Instead, all objects transitively referenced by the input object are copied. Hence, a complete object graph is copied, and there is no data sharing between the input and output objects. While being more costly in memory, it is hence safer than shallow copying.

Examples Figure 2.4 shows two examples using small subsets of the Petri net model from Figure 2.2: irst when copying a Transition object, second when copying a Net object. Firstly, in Figure 2.4a, we start with the t1 and p1 objects at the center, in gray. We perform a shallow copy of t1 to the left which creates a second Transition object named t1_shallow. This new object has both the same name value, which is "t1", and the same input value, which is a reference to p1. Then, we perform a deep copy of t1 to the right, and we obtain a third Transition object called t1_deep, again with the same name value "t1". This time, however, a new Place object was created, called p1_deep, referenced by the input reference value of t1_deep.

Figure 2.4b shows very similar situations, but with one main diference: there is a link between two objects referenced by the Net object n1 that we want to copy. Indeed, t1 has a reference value to p1. While this has no impact on shallow copying, deep copying implies managing such situations and making sure that t1_deep has a reference value pointing to p1_deep, and not to p1. From an implementation point of view, this requires the storage of traceability links between the original object graph to its copy.

Vocabulary and deinitions

There is some heterogeneity among object duplication operators, both regarding their names and their deinitions. Table 2.1 illustrates this situation for a selection of programming languages. The irst two columns contain respectively the name of the language and of the duplication operator; column (a) states whether or not an output object is constructed; column (b) states whether or not the attribute ields of the input object are copied in the output one; column (c) states whether or not objects transitively referenced by the input object are copied along the output

Language Operator

(a) creates object (b) shallow (c) deep Smalltalk deepCopy � � � Smalltalk shallowCopy � � � Perl dclone � � � Java clone � � � Ruby clone � � � Ruby dup � a � � OCaml copy � � � Eifel copy � � � Eifel deep � � � Eifel twin (former clone) � � � Eifel deep_twin � � �
a Ruby modules are not copied, see http://ruby-doc.org/core-2.1.5/Object.html. object. First, we observe many diferent names for object duplication operators: copy, clone, dup(licate), twin. Second, there is no seeming consistency between names and deinitions. For instance, copying in Smalltalk can be either shallow or deep, while it is always shallow in Java and OCaml. Even more intricate is Eifel, whose copy operator does not even create an output object; instead, it copies the values of the input object inside some existing object, which is a second input to the operation. Eifel has however a twin operator, formely called clone, that performs a proper shallow copy by constructing an output object.

In this thesis, despite this variety of names and deinitions, we mostly use the term object copying for shallow object duplication (i.e., creating a single new object given a single input object), and model cloning for model duplication (i.e., , creating a single new model given a single input model, presented thereafter).

Model Duplication

Model duplication, or model cloning, is the action of creating a new and independent model identical to an existing one -this implies that cloning a model has only one possible output, which is the identical clone.

Many model-driven engineering activities rely on model cloning. Several works rely on evolutionary computation to optimize a model with respect to a given objective [START_REF] Kessentini | Model Transformation as an Optimization Problem[END_REF][START_REF] Goings | An ecology-based evolutionary algorithm to evolve solutions to complex problems[END_REF]. Optimization in this case, consists in generating model variants through cloning, mutation and crossover and selecting the most itted. Likewise, design space exploration [START_REF] Saxena | MDE-Based Approach for Generalizing Design Space Exploration[END_REF] is the exploration of design alternatives before an implementation, which requires the generation of the complete design space (i.e., set of variations, which are models). Last but not least, execution trace management can rely on model cloning to capture the states of the executed model (e.g., [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF]), which is discussed more thoroughly in Section 2.4.

Intricacies of Model Cloning

Implementing model cloning can be hazardous for multiple reasons. First, it is not possible to reuse object copying operators. Indeed, cloning a model implies copying multiple objects at once. Hence, while object deep copying is a good candidate for model cloning, the chosen input must be an object that transitively references all objects of the considered model, and such object may not exist.

Second, a model clone must be independent from the original model, which means that modifying one must have no impact on the other. This may not be trivial to guarantee depending on how the model and its clones are represented in memory. For instance, while deep cloning consists in duplicating the complete data in memory that represent the model (introduced as the runtime representation of a model in Chapter 4), partial cloning consists in copying only a chosen subset of the same data and to rely on data sharing to save memory. In such case, ensuring the independence of the clone requires either that the shared data will never change, or to simply forbid such changes.

Existing model cloning facilities

There are few languages or toolboxes providing model cloning facilities. A possible reason is that, provided some adjustments and precautions, object deep copying can be used to clone models.

The Eclipse Modeling Framework (EMF) provides facilities to implement model cloning with the Java class EcoreUtil.Copier. It provides operations to copy runtime objects that constitute the model in memory. First, the copy method must be called on each runtime object to copy, which will both create a copy of the object, and of all the objects transitively contained in this object (i.e., objects accessible through containment value references) 1 . Traceability links are kept between original objects and copied objects. To inish the cloning, the copyReferences method must be called, which will initialize all the reference values of the new objects based on the traceability links, e.g., similarly to deep copying in Figure 2.4b. In a nutshell, depending on the amount of chosen runtime objects that are copied, EcoreUtil.Copier makes possible to implement either partial or deep model cloning. However, in the case of partial cloning, there is no mechanism to ensure the independence of the clone.

Another cloning operator is the deepClone operation of Kermeta from Jézéquel et al. [START_REF] Jézéquel | Mashup of metalanguages and its implementation in the Kermeta language workbench[END_REF]. It is similar to an object deep copy operation, since it takes as an input a single object, and copies transitively some referenced objects. However, it only performs a deep copy of containment reference values (i.e., that imply ownership), and a shallow copy of normal reference values . The reason is that Kermeta was designed for a modeling context, which requires taking into account the static semantics of the considered metamodel, including containment references. Therefore, it can be considered as a partial cloning operator. In practice, it relies simply on the copy method of EcoreUtil.Copier, and likewise there is no mechanism to ensure the independence of the clone.

Finally, the Kevoree Modeling Framework (KMF) from Fouquet et al. [START_REF] Fouquet | An Eclipse Modeling Framework alternative to Meet the Models@Runtime Requirements[END_REF][START_REF] Fouquet | Kevoree Modeling Framework (KMF): Eicient modeling techniques for runtime use[END_REF] is an alternative of the EMF tuned for the Models@Runtime paradigm [START_REF] Blair | Models@ run.time[END_REF]. KMF provides a partial model cloning operator, along with facilities to declare objects as being immutable. When called, the cloning operator will clone an input model while sharing its immutable runtime objects with its clones. A runtime object tagged as immutable cannot be changed, which ensures the independence of the clone. However, the cloning operator only considers a single input object, similarly to Kermeta.

Executable Metamodeling

In the realm of modeling, while many models only represent structural aspects of systems, a large amount express behavioral aspects of the same systems. The idea behind executable metamodeling is simple: a model conforming to a DSML can express its intended behavior by being executed, which requires that the DSML provides execution semantics. Such semantics deine what is an execution state, and how this execution state changes during an execution. We call executable Domain-Speciic Modeling Languages (xDSMLs) such DSMLs that aim at supporting the execution of models, and we call executable model a model that conforms to an xDSML.

Model executability serves two main purposes. First, it enables the use of dynamic veriication and validation (V&V) techniques, such as omniscient debugging [START_REF] Corley | Towards Eicient and Scalabale Omniscient Debugging for Model Transformations[END_REF] or semantic diferencing [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF], to ensure that an executable model is correct with regard to its intended behavior. Such techniques analyze the evolution of the execution state of a model over time, which is typically done using execution traces, as discussed in Section 2.4. Second, model executability gives the possibility to directly deploy an executable model to run on a production system. Research projects involving both academic and industrial partners such as TopCased [START_REF] Benoit Combemale | Introducing Simulation and Model Animation in the MDE Topcased Toolkit[END_REF][START_REF] Crégut | Generative technologies for model animation in the TopCased platform[END_REF] or GEMOC [START_REF] Benoit Combemale | Globalizing modeling languages[END_REF] are good illustrations of the interest in providing executability to models.

Operational vs. Translational Semantics

There are two general approaches to deine execution semantics, namely translational and operational semantics. Figure 2.5 shows a comparison. In all subigures, at the top left corner, a model a conforming to the abstract syntax of an xDSML A is shown. We highlight in green all elements that are related to the xDSML A, for which execution semantics must be deined. The execution then difers depending on the approach:

-Operational semantics [START_REF] Gordon D Plotkin | A Structural Approach to Operational Semantics[END_REF][START_REF] Karsai | On the Use of Graph Transformation in the Formal Speciication of Model Interpreters[END_REF][START_REF] Bendraou | Combining Aspect and Model-Driven Engineering Approaches for Software Process Modeling and Execution[END_REF] -Translational semantics [START_REF] Lepore | Translational Semantics[END_REF][START_REF] Fredlund | An implementation of a translational semantics for an imperative language[END_REF] consist in relying on the execution semantics of some target executable language to deine the execution semantics of an xDSML. Figure 2.5b illustrates the process with a target xDSML B which was deined using operational semantics. First, a is translated in a model b that conforms to the abstract syntax of an xDSML B. Then, b is initialized into b exe that conforms to the execution metamodel of B. Finally, the operational semantics of B are used to execute b exe . While such semantics only require the deinition of a translation from A to B, it makes the V&V of a more diicult. Indeed, the domain of B may have nothing in common with the domain of A, making diicult to interpret the execution from the perspective of A.

-To overcome the last mentioned issue, it is possible to augment the translational semantics with back-annotation [START_REF] Hegedüs | Back-annotation of Simulation Traces with Change-Driven Model Transformations[END_REF], in order to translate back the results of the execution (e.g., the execution states) in the source domain [START_REF] Benoit Combemale | Essay on Semantics Deinition in MDE -An Instrumented Approach for Model Veriication[END_REF]. Figure 2.5c illustrates the augmented process. First, like the previous case, a is translated into b, which is initialized into b exe , which is executed through a series of B steps. This time however, b exe is translated back into a exe each time an A step has been performed. Note that this means that a single A step can require multiple B steps, which is shown on the igure with "• • • ". Determining and detecting when to translate back to A is a non-trivial task. Nonetheless, this allows to observe the execution state of a exe similarly to operational semantics, enabling runtime veriication or the capture of an execution trace.

Regarding the implementation of xDSMLs, translational semantics would result in a compiler while operational semantics would result in an interpreter. Back-annotation results in a mechanism similar to debug symbols used by interactive debuggers (presented in Section 2.5) to visualize a current instruction or a stack from the perspective of a source model (e.g., Java code) while a target model is being executed (e.g., Java bytecode) 2 .

In the remainder of thesis, we only consider operational semantics for the deinition of the execution semantics of xDSMLs. More precisely, thereafter, the term xDSML only refers to xDSMLs deined using operational semantics. However, note that our work can be directly adapted to translational semantics as long as a back-annotation mechanism is provided.

Deinition

Executable DSMLs have been widely studied under various names: dynamic metamodeling [START_REF] Engels | Dynamic Meta-Modeling: A Graphical Approach to the Operational Semantics of Behavioral Diagrams in UML[END_REF]6], dynamic modeling languages [START_REF] Hegedüs | Back-annotation of Simulation Traces with Change-Driven Model Transformations[END_REF], model execution [START_REF] Soden | Towards a model execution framework for Eclipse[END_REF][START_REF] Tatibouët | Formalizing Execution Semantics of UML Proiles with fUML Models[END_REF] or simply xDSMLs [START_REF] Combemale | A Design Pattern to Build Executable DSMLs and associated V&V tools[END_REF][START_REF] Mayerhofer | xMOF: Executable DSMLs based on fUML[END_REF]. Though they do not share terminology, all these approaches consider about the same design pattern to design an xDSML.

Similarly to a regular DSML, the core element of an xDSML is the abstract syntax, which is the metamodel deining the domain of interest. In addition, providing executability requires the deinition of execution semantics. As we explained in the previous section, we focus in this thesis on operational semantics. Such semantics include both the deinition of the execution state3 of an executed model, and of a model transformation that changes such state.

Deinition 7 An xDSML is deined by:

-An abstract syntax, that is a metamodel.

-Operational semantics, composed of:

• An execution metamodel, that deines the execution state of executed models by extending the abstract syntax with new properties and classes using package merge, or any similar mechanism.

• An initialization transformation, an exogenous model transformation that given a model conforming to the abstract syntax, returns a model conforming to the execution metamodel.

• An execution transformation, an in-place model transformation that modiies a model conforming to the execution metamodel. The subset of transformation rules that are considered observable are called step rules.

We explain and discuss the diferent parts of this deinition in the following sections.

Execution State Deinition

The irst part of the operational semantics of an xDSML is the deinition of the execution state of a model conforming to the xDSML. In theory, this can be accomplished using an arbitrarily complex data structure (e.g., a stack, registers or a tape), which can be completely independent from the abstract syntax of the designed xDSML. However, in practice, the deinition of an execution state is intuitively coupled with the abstract syntax. For instance, if an xDSML contains the concept of variable, it is very likely that an execution state contains the values of the diferent variables of a conforming model.

In such case, it seems convenient to directly link the concept of value from the execution state to the concept of variable of the abstract syntax. Following this idea, many existing approaches deine the execution state of an xDSML by extending the abstract syntax with execution-only constructs:

-Hegedüs et al. [START_REF] Hegedüs | Back-annotation of Simulation Traces with Change-Driven Model Transformations[END_REF][START_REF] Hegedüs | Replaying Execution Trace Models for Dynamic Modeling Languages[END_REF] extends the abstract syntax by deining additional classes in a dynamic metamodel that may contain references to classes from the abstract syntax. Bandener et al. [6] and Soden et al. [START_REF] Soden | Towards a model execution framework for Eclipse[END_REF] do the same within a runtime metamodel.

Exe -Mayerhofer et al. [START_REF] Mayerhofer | xMOF: Executable DSMLs based on fUML[END_REF] proposes with the xMOF language to deine coniguration classes to extend the abstract syntax. A coniguration class is a subclass of a class from the abstract syntax that introduces new properties speciic to the execution state. Additional regular classes can be deined along these coniguration classes to introduce execution-only concepts.

-Jézéquel et al. [START_REF] Jézéquel | Mashup of metalanguages and its implementation in the Kermeta language workbench[END_REF] provides similar facilities with the Kermeta language using aspect weaving. In particular, an aspect can be deined to extend a class of the abstract syntax with new properties speciic to the execution state. Additional classes can also be deined for execution-only concepts.

In essence, all these approaches propose to deine the execution state by adding new properties and/or new classes to the abstract syntax. We call execution metamodel the metamodel resulting from this extension. These approaches are very similar to an existing and well-known relationship between two metamodels called package merge. This relationship was introduced in the Uniied Modeling Language (UML) [START_REF]Uniied Modeling Language (UML) Version 2.5[END_REF], and is also part of the Meta-Object Facility (MOF) [START_REF]Meta Object Facility (MOF) Core Speciication[END_REF]. A merge relationship between two metamodels declares the intent of merging classes of one metamodel into the other. Simply put, the result of a merge is the set of all classes from both metamodels; if two classes have the same name, then they are combined in a class containing the properties from both originating classes. Package merge is conceptually very similar to the inheritance relationship between two classes, but as the metamodel level. Figure 2.6 shows an example of package merge usage to deine the execution state for a Petri net xDSML. At the left, the abstract syntax is a metamodel almost identical to the one from Figure 2.1, with one important diference: the tokens property of Place was renamed initialTokens. The reason for this change is to make explicit that this information does not represent the execution state of a Petri net, but simply the static initial marking before the execution. At the right, a metamodel called the execution metamodel has a merge relationship with the abstract syntax. The purpose of this new metamodel is to be an extended version of the abstract syntax, in which execution-only constructs are added. The merge means that the execution metamodel contains all the concepts of the abstract syntax (i.e., Net, Place and Transition) while extending it with the new constructs it declares. Here, a single property tokens is declared in the existing Place class. This means that the Place class of the execution metamodel not only contains name and initialTokens that were "inherited" from the abstract syntax, but also tokens which deines the current amount of tokens of a Place during an execution.

Listing 2.2 shows how the exact same extension is done using Kermeta through the deinition of an aspect for the Place class. Line 1 states that the aspect is for the Place class, and line 7 declares the tokens property.

Initialization Transformation

With the deinition of the execution state, we obtain two distinct metamodels: the abstract syntax representing the domain of the xDSML, and the execution metamodel that extends the abstract syntax with new constructs representing the execution state. However, the model that we want to execute originally conforms to the abstract syntax, and not to the execution metamodel. This is true for all executable languages, including programming languages: a .java ile doesn't contain a stack or a symbol table, but simply a set of Java instructions. Hence, it is necessary to initialize the execution by transforming the model to execute into a model conforming to the execution metamodel. We call such transformation an initialization transformation.

Figure 2.7 shows an example of initialization. At the top is depicted a model very similar to the one from 2.2, but with additional tokens ields to conform to the new abstract syntax. At the right, the two metamodels are shown along with the initialization transformation for Petri net. This function creates identical Net and Transition objects, and creates Place objects whose tokens ield contains the same value as the initialTokens ield. Note that for complex xDSMLs, an initialization transformation can have to create an arbitrarily complex set of data depending on the constructs introduced in the execution metamodel. Such initialization is speciic to the xDSML and its semantics. At the bottom of the igure is shown the result of the initialization, which is a Petri net model conforming to the execution metamodel, with tokens ields initialized to the values of initialTokens.

In practice, such initialization can be partly handled generically. With Kermeta [START_REF] Jézéquel | Mashup of metalanguages and its implementation in the Kermeta language workbench[END_REF], any model can be generically loaded and transformed in a model conforming to the execution metamodel, with all execution-only ields set to default values. Likewise, xMOF [START_REF] Mayerhofer | xMOF: Executable DSMLs based on fUML[END_REF] can generically transform each object of the input model in an instance of corresponding coniguration class with all execution-only ields set to default values. In both cases, from there, a simple xDSML-speciic model transformation can be used to initialize the ields (e.g., visiting all Place objects to set tokens to initialTokens).

Execution Transformation

We have seen how to deine the execution state and the initialization transformation of an xDSML. The next step is the deinition of how the execution state of a model changes over time, i.e., what happens during an execution. This is accomplished by the deinition of an endogenous transformation whose input and output is a model conforming to the execution metamodel. We call it the execution transformation4 of the xDSML. To avoid having to duplicate most of the model for the execution, we consider this transformation to be in-place (i.e., the executed model is directly modiied). Besides, observing the modiications made to a single model is a common pattern when deining tools for xDSMLs (e.g., graphical animation).

Because one of the purpose of xDSMLs is to analyze the behaviors of models, an important concern is to be able to follow the evolution of the execution state during the execution. However, by deinition, it is only guaranteed that the executed model conforms to the execution metamodel before and after the transformation, and not during the execution transformation. Therefore, to be observable, such transformation must be speciically designed to preserve both consistency and conformity at speciic instants of the execution. In this thesis, we consider that this is accomplished through step rules, which are designed rules of the execution transformation that guarantee both conformity and consistency before and after their application. These rules represent relevant changes in the model from the domain point of view; for instance, a step rule may express the iring of a Petri net transition. As a comparison, an example of non-step rule would be a simple adding of a single token to a Petri net place, since it is a small intermediate change that leads the model into an inconsistent state, as the resulting Petri net marking should never be observed.

We call execution step the application of a step rule. More precisely, some approaches draw a distinction between a small step5 and a big step 6 [83, 38, 57, 40], the latter being composed of multiple execution steps.

Deinition 8 An execution step is the application of a step rule. An execution step that is not composed of other steps is called a small step, while an execution step composed of multiple steps is called a big step.

Listing 2.3 shows the execution transformation for the Petri net xDSML using Kermeta aspects. It relies on the aspect deining the execution metamodel, previously shown in Listing 2.2. The irst aspect (lines 1-21) deines two operations for the Transition class: isEnabled is a query to know if a transition is enabled, and fire is transformation rule already introduced in Listing 2.1 that ires a transition. The annotation @Step7 deines that this operation is a step transformation rule, i.e., we want to be able to observe the changes made by this operation (e.g., in a trace, in a debugger, etc.). The second aspect (lines 23-36) deines one transformation rule called run for the Net class, also annotated with @Step. This operation calls fire while there are transitions that are enabled, and is used as the entry point of the overall entry point of the transformation. Therefore, a call to run yields a big step composed of small steps, each being the consequence of a call to fire.

Interacting with the Environment

Depending on its boundaries, its interfaces and its components, a system may interact with its environment, i.e., to react to inputs and to produce outputs. Such systems are called reactive systems [START_REF] Harel | On the development of reactive systems[END_REF]. Consequently, either for analysis or production purposes, an executable model that represents a behavioral aspect of a reactive system should be interactive as well. Finite state machines [START_REF] Brand | On Communicating Finite-State Machines[END_REF] or state charts [START_REF] Harel | STATEMATE: a working environment for the development of complex reactive systems[END_REF] are example of modeling languages designed to represent reactive systems.

From an xDSML point of view, this implies that an execution transformation may require or be inluenced by input data during its application. Such data can be arbitrarily complex, from a boolean provided by the user to a complex model describing the environment state. Since a model transformation is an arbitrarily complex piece of executable software that manipulates models, handling external input can be accomplished by any existing input mechanism provided by model transformation languages (e.g., stdin, socket, ile, graphical interface, etc.). Interaction possibilities can also be reiied into an interface to send events to the running execution. For instance, Combemale et al. [START_REF] Benoit Combemale | Reifying Concurrency for Executable Metamodeling[END_REF] propose the deinition of domain-speciic events that can represent input from the environment. Lastly, regarding output data, it can be considered as part of the execution state of the model, provided that the latter is observable.

Nonetheless, in the scope of this thesis, we do not explicitly take into account the possible interactions of a model with its environment during its execution.

Model Execution Tracing

Model executability make possible to express behaviors with models, and therefore to verify that these behaviors are correct early in the design process using dynamic V&V approaches. However, while an executable model inherently expresses an intended behavior, dynamic V&V techniques need an extended representation of behavior over time. A most common representation of a model's behavior is the execution trace which is an artifact representing what happened during an execution.

A large proportion of dynamic V&V approaches use execution traces. Omniscient debugging [START_REF] Corley | Towards Eicient and Scalabale Omniscient Debugging for Model Transformations[END_REF][START_REF] Lienhard | Practical Object-Oriented Back-in-Time Debugging[END_REF][START_REF] Khoo | Expositor: Scriptable time-travel debugging with irst-class traces[END_REF] (see Section 2.6) consists in exploring previous states of a past or current execution, and relies on an execution trace to reconstruct previous states in the executed model. Semantic diferencing [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF][START_REF] Maoz | ADDif: Semantic Differencing for Activity Diagrams[END_REF] aims at comparing models not only syntactically, but also semantically through execution traces comparison. Runtime veriication [START_REF] Leucker | A brief account of runtime veriication[END_REF] consists in checking whether or not an execution trace satisies a temporal property, which can be done either online (i.e., during an execution using a monitor) or oline Basin et al. [8] (i.e., after an execution by analyzing a stored trace). Traces can also be manually manipulated to investigate the cause of a failure, using operators such as ilter, slice, or merge to create relevant projections [START_REF] Khoo | Expositor: Scriptable time-travel debugging with irst-class traces[END_REF].

Execution Traces

Even though an execution trace is always a sequence containing information on the execution of a model, it appears that there is a large number of kinds of execution traces. In the context of state-based model checking, Baier et al. [5] deines an execution as an alternating sequence of states and actions, and a trace as a sequence of sets of valid atomic propositions -each set corresponding to a given state. This formal deinition hence considers that a trace only contains a subset of the information that deines an execution. This is also what we observe in practice: some approaches capture all complete execution states reached by the model (e.g., [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF][START_REF] Gogolla | From Application Models to Filmstrip Models: An Approach to Automatic Validation of Model Dynamic[END_REF][START_REF] Hilken | Transformation of UML and OCL models into ilmstrip models[END_REF][START_REF] Meyers | ProMoBox: A Framework for Generating Domain-Speciic Property Languages[END_REF]), other focus and the changes made to elements of the model (e.g., [START_REF] Corley | Towards Eicient and Scalabale Omniscient Debugging for Model Transformations[END_REF]), and many are mostly concerned with events occuring during the execution (e.g., [START_REF] Desnoyers | Common Trace Format (CTF) Speciication (v1.8.2)[END_REF][START_REF] Mayerhofer | A runtime model for fUML[END_REF][START_REF] Deantoni | RT-simex: retro-analysis of execution traces[END_REF][START_REF]Meta Object Facility (MOF) Core Speciication[END_REF]).

In this chapter, we simply consider an execution trace to be a sequence containing information about the execution of a model, which include all aforementioned approaches. Deinition 9 An execution trace, is a sequence containing relevant information about a particular execution over time. Such information may include:

execution states reached during the execution; -changes made to the execution state of the executed model (e.g., the change in a value of a ield, or the creation of an object); -event occurrences, including: • input data originating from the execution environment;

• execution steps that changed the execution state, which includes both small steps and big steps. 2.2b using the operational semantics shown in Listing 2.3. At the bottom, three execution states are depicted using the concrete syntax representation of the xDSML. At the top, two small steps are recorded: irst the application of fire on the transition t1, then on t2. Both are part of the big step that is the application of run. This execution trace gives us all the required information to understand and analyze this execution: we know how the marking of the Petri net evolved, and we know which transitions were ired and in which order.

Diferences With Logging Logging consists in using print statements (e.g., printf or System.out.println) in some executable program or model in order to understand, monitor, or analyse its behavior. Some approaches are dedicated to the analysis of log iles, such as [START_REF] Yuan | SherLog: error diagnosis by connecting clues from run-time logs[END_REF]. However, in the literature, the diferences with tracing can be subtle, if not non-existant. Sauter et al. [START_REF] Sauter | TinyLTS: Eicient network-wide Logging and Tracing System for TinyOS[END_REF] distinguishes both terms in the following way: logging consists in printing messages, while tracing consists in capturing the events issued from speciic constructs (e.g., a method) in a systematic manner, including by logging the events. Following this idea, we consider that logging can be used to print any sorts of messages, which includes the possibility to print an execution trace as pure ASCII (e.g., by following a trace format, see Section 2.4. 3). Yet, a set of log messages doesn't necessarily constitute an execution trace.

Clone-based Execution Traces

An execution trace containing all the states reached by an executed model can be obtained in a generic way by cloning the model after each execution step. We name such traces clone-based execution traces. This way of doing brings several advantages. First, the execution trace data structure is simple and appropriate for generic execution trace manipulations. Second, existing model transformations and queries speciic to the xDSML can directly be applied on execution states stored in a clone-based execution trace. However, an important drawback is that each clone contains much more information than the execution state itself, i.e., the elements only deined by the abstract syntax of the xDSML. We present some clone-based execution trace data structures in Section 2.4.3.

Execution Trace Management

All the aforementioned dynamic V&V approaches need to be able to construct and manipulate execution traces. We name execution trace management the set of activities that includes:

1. Acquiring and constructing execution traces of model executions. This can be done through instrumentation of either a model (if its xDSML provides concepts to construct a trace, e.g., print) or of the operational semantics of its xDSML.

2. Manipulating (or processing) execution traces, in order to analyze and understand them. This includes browsing, iltering or splitting an execution trace.

3. Visualizing (or exploring) execution traces, to be able to embrace and understand the important amount of data they contain. This includes the deinition of eicient graphical representations for execution traces, which relies on trace manipulations (see previous item).

Below, we review some existing work and tools for execution trace management. 

Execution Trace Exploration Tools

Model Transformation Traceability

Model transformation traceability is a research ield that focuses on managing links between the source and the target models of a model transformation, for purposes of V&V or engineering. Such links are usually provided as a set (e.g., ATL [START_REF] Jouault | Loosely coupled traceability for ATL[END_REF]) and not as a sequence, hence it is important not to confuse traceability with execution traces. Yet, the work of Falleri et al. [START_REF] Falleri | Towards a Traceability Framework for Model Transformations in Kermeta[END_REF] for Kermeta is an exception to this statement, since they propose to store traceability links as a sequence of actions performed by a model transformation. In such case, traceability links represent a way to store changes in the execution state within an execution trace.

Model Execution Trace Management

In the realm of model execution, several approaches propose diferent kinds of execution trace management facilities. The xMOF language [START_REF] Mayerhofer | xMOF: Executable DSMLs based on fUML[END_REF] provides facilities to capture an execution trace from the application of the execution transformation of an xDSML. Yet, this is a trace of the transformation itself (e.g., which xMOF activities from the execution transformation were called and in which order) rather than of the model being executed (e.g., the sequence of transitions ired by a Petri net). Therefore, the purpose is more to analyze the operational semantics than the model itself, although it can be used to analyze the model if the modeler has a good understanding of the operational semantics.

Timesquare [START_REF] Deantoni | TimeSquare: Treat your Models with Logical Time[END_REF] is a model-based environment for the speciication, analysis and veriication of causal and temporal constraints deined using the CCSL language. While its purpose is not to execute model, it can be combined with other facilities to drive model executions [START_REF] Benoit Combemale | Reifying Concurrency for Executable Metamodeling[END_REF]. Timesquare can capture execution traces obtained from executing CCSL models, both for visualization and veriication purpose. Further work from Garces et al. [START_REF] Garces | A Model-Based Approach for Reconciliation of Polychronous Execution Traces[END_REF] focused on reconciling Timesquare execution traces from diferent independent sources with synchronization instants.

Hegedüs et al. [START_REF] Hegedüs | Back-annotation framework for Simulation Traces of Discrete Event-based Languages[END_REF] propose a rather complete execution trace management approach based on the Viatra model transformation language. It consists in deining a domainspeciic execution trace metamodel for an xDSML, and to use Viatra live transformation rules (i.e., rules ired whenever models are changed) to construct traces. The approach also includes trace replay and a back-annotation mechanism to derive a domain trace from a formal analysis tool trace.

The TopCased toolkit [START_REF] Benoit Combemale | Introducing Simulation and Model Animation in the MDE Topcased Toolkit[END_REF] provides facilities to construct traces containing both external events (i.e., originating from the environment) and internal events (i.e., originating from the executed model). A trace that only contains external events deines a scenario, which can be used to drive an execution for testing or simulation. Traces must conform to a domain-speciic trace metamodel speciic to the xDSML, as developed in [START_REF] Combemale | A Design Pattern to Build Executable DSMLs and associated V&V tools[END_REF].

Some approaches focus especially on trace exploration. Maoz et al. [START_REF] Maoz | Model-based traces[END_REF][START_REF] Maoz | On tracing reactive systems[END_REF] give an approach to generate an execution trace of a scenario model (e.g., a UML interaction diagram) according to the execution a system that should follow this scenario. The goal is to provide traces at the scenario model level for executions at the system level, and to explore these traces through a dedicated tool called Tracer. Another approach is the one of Aboussoror et al. [1], which relies on the creation of analytical abstraction models from execution traces for visualization purposes.

Finally, some approaches provide facilities to generate domain-speciic execution trace metamodels, but without any trace management facilities to acquire the trace of an execution or to visualize the trace. This includes the PromoBox framework [START_REF] Meyers | ProMoBox: A Framework for Generating Domain-Speciic Property Languages[END_REF], that provides facilities to generate a set of metamodels for a given input xDSML, including an execution trace metamodel, and the work of Gogolla et al. [START_REF] Gogolla | From Application Models to Filmstrip Models: An Approach to Automatic Validation of Model Dynamic[END_REF] and Hilken et al. [START_REF] Hilken | Transformation of UML and OCL models into ilmstrip models[END_REF] on ilmstrip models. W e discuss such approaches more thoroughly in the next section.

A Look at Execution Trace Data Structures

To enable execution trace management, a most important requirement relies in the deinition or choice of an execution trace data structure. Indeed, it deines the content of traces, and hence impacts both their construction and their manipulations. For instance, investigating race conditions of a multithreaded program requires information speciic to parallelism. Likewise, storing only a list of execution steps may require the reconstruction of the reached execution states to perform an analysis based on the latter. In addition, a prominent requirement is the compatibility of the data structure with existing popular tools, such as the aforementioned ones.

Table 2.2a shows a comparison of some existing data structures for execution traces, and some approaches to design such structures. Figure 2.2b describes the content of each column. The table is split in four parts. The irst contains execution trace data structures with speciic concerns (e.g., a speciic xDSML). The second part contains generic trace formats that can be used for any xDSML. The third part contains so-called self-deining trace formats, which provide facilities to deine custom types for elements of the trace. Finally, the last part does not contain data structures, but approaches to deine execution trace metamodels. We review each part in the following paragraphs.

Structures with Speciic Concerns

Because originally execution traces were made to debug and understand programs conforming to GPLs, such as Java, C or C++, a large proportion of existing execution trace data structures are focused on concepts and concerns typically found in such languages. A most famous one is the Open Trace Format 2 (OTF2) [START_REF] Eschweiler | Open Trace Format 2: The Next Generation of Scalable Trace Formats and Support Libraries[END_REF], which is a format designed for execution traces of parallel software. OTF2 traces hence contain concepts such as "thread", "lock", "fork", or "MPI" (Message Passing Interface). The format is understood by many trace-analysis tools, such as Vampir. Another example is the Compact Trace Format [START_REF] Hamou | A metamodel for the compact but lossless exchange of execution traces[END_REF], which is a metamodel relying on ordered directed acyclic graph to compress call trees. It is designed for tracing object-oriented software, with concepts such as "class", "method", "object" or "thread". Some other execution trace data structures include also include platform concerns. For instance, KPTrace [START_REF]KPTrace Speciication[END_REF] was designed by ST Microelectronics for the STLinux system. Its scope is therefore the operating system, with concepts such as "system call", "memory allocation" or "interrupt". Another example is CUBE4 [START_REF] Geimer | The Scalasca performance toolset architecture[END_REF], which is is concerned with distributed systems, e.g., a massively parallel software running in a data center. It includes concepts such as "topology", "call path" or "system resources".

Finally, an execution trace metamodel can be speciic to an xDSML, and hence only deines execution traces for models conforming to this xDSML. This can imply a

Name Type Ev./St. Concerns

Open Trace Format 2 [START_REF] Eschweiler | Open Trace Format 2: The Next Generation of Scalable Trace Formats and Support Libraries[END_REF] ASCII format Both a Parallel software MPI Trace Format [START_REF] Alawneh | MTF: A scalable exchange format for traces of high performance computing systems[END_REF] Metamodel Events HPC b Compact Trace Format [START_REF] Hamou | A metamodel for the compact but lossless exchange of execution traces[END_REF] Metamodel Events Software KPTrace [START_REF]KPTrace Speciication[END_REF] ASCII format Events Operating systems CUBE4 [START_REF] Geimer | The Scalasca performance toolset architecture[END_REF] Binary format Both c Distributed software UML Testing Proile [START_REF]UML Testing Proile (UTP)[END_REF] Metamodel Events Software (UML) fUML [START_REF] Mayerhofer | A runtime model for fUML[END_REF] Metamodel Events fUML Scenario-Based Traces [START_REF] Maoz | On tracing reactive systems[END_REF] ASCII format Events Sequence charts Timesquare [START_REF] Deantoni | RT-simex: retro-analysis of execution traces[END_REF] Metamodel Events Time, Timesquare Gen. Sem. Dif. [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF] Metamodel Both Generic KMF Versioning [START_REF] Hartmann | A Native Versioning Concept to Support Historized Models at Runtime[END_REF] Other States Generic Pablo SDDF [4] ASCII/Binary Both Self-deining Pajé [START_REF] Lucas M Schnorr | Paje trace ile format[END_REF] ASCII format Both Self-deining SOC-Trace project [START_REF] Pagano | Trace Management and Analysis for Embedded Systems[END_REF] Metamodel Events Self-deining Common Trace Format [START_REF] Desnoyers | Common Trace Format (CTF) Speciication (v1.8.2)[END_REF] ASCII/Binary Events Self-deining

TopCased [START_REF] Benoit Combemale | Introducing Simulation and Model Animation in the MDE Topcased Toolkit[END_REF][START_REF] Crégut | Generative technologies for model animation in the TopCased platform[END_REF] Approach Events Domain-speciic Hegedüs et al. [START_REF] Hegedüs | Back-annotation framework for Simulation Traces of Discrete Event-based Languages[END_REF] Approach Both Domain-speciic Promobox [START_REF] Meyers | ProMoBox: A Framework for Generating Domain-Speciic Property Languages[END_REF] Generative App. Both Domain-speciic Filmstrip models [START_REF] Gogolla | From Application Models to Filmstrip Models: An Approach to Automatic Validation of Model Dynamic[END_REF][START_REF] Hilken | Transformation of UML and OCL models into ilmstrip models[END_REF] Generative App.

Both Domain-speciic (a) Comparison table (columns description below).

a External snapshots can be referenced from an OTF2 execution trace (e.g., a Java heap dump) b High Performance Computing c Measures can be made at each operation call, which can be considered as a form of state Name: name of the approach, format or author Type: how the data structure is deined; one of the following:

ASCII format: a textual syntax (e.g., a grammar)

Binary format: a binary syntax (e.g., the IP packet format)

Metamodel: a metamodel (including UML proiles)

Approach: an approach to deine an execution trace metamodel Generative approach: an generative approach to deine an execution trace metamodel, e.g., by deriving it from an input xDSML Ev./St.: whether events and/or states are represented Concerns: the concerns taken into account by the data structure, e.g., the application domain(s) or the kind of information Table 2.2: Comparison of a selection of execution trace data structures direct dependency from the execution trace metamodel to the abstract syntax or the execution metamodel of the xDSML. While this may appear as a limitation, the beneits of narrowing the scope of a language to a domain are well known [START_REF] Hutchinson | Empirical Assessment of MDE in Industry[END_REF][START_REF] Whittle | The State of Practice in Model-Driven Engineering[END_REF]. In the case of trace metamodels, scoping a trace metamodel to an xDSML means focusing on concepts of the xDSML itself, thereby providing proper expressiveness to capture information on conforming models. For instance, Mayerhofer et al. [START_REF] Mayerhofer | A runtime model for fUML[END_REF] deined an execution trace metamodel for fUML [START_REF]Semantics of a Foundational Subset for Executable UML Models (fUML)[END_REF], an executable subset of UML. An fUML model consists of Activity objects, each being composed of ActivityNode objects. Consequently, the execution trace metamodel deines an fUML trace as a sequence of ActivityExecution objects, each of these executions being a sequence of ActivityNodeExecution objects. Most classes of the metamodel reference classes of the fUML abstract syntax; for instance, ActivityExecution has a reference to the corresponding Activity class of fUML. Another example is the execution trace metamodel of Timesquare [START_REF] Deantoni | RT-simex: retro-analysis of execution traces[END_REF], which deines execution traces of CCSL models. To that efect, it has references to the CCSL metamodel, and considers a distinction between logical time and physical time in order to represent both logical clocks values and chronometric timestamps from real-world sources. In summary, each of these execution trace data structures is relevant for speciic executable languages. Consequently, it is noteworthy that they are unlikely to be convenient to deine the execution traces of a given arbitrary xDSML. For instance, a "system call" or an "fUML activity execution" are concepts that are not relevant when constructing an execution trace for a Petri net model.

Generic Data Structures

To our knowledge, very few data structures are completely generic and independent from an xDSML or from speciic usages. Langer et al. [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF] proposed a generic semantic diferencing approach, which relies on generic clone-based execution trace metamodel. It deines a Trace object as a sequence of State objects, each consisting of Object objects (i.e., any objects from any model conforming to any metamodel). Such State contains a clone of the executed model. In addition, there is a Transition object in between two following State objects, labeled by an Event.

Another generic approach is the runtime model versioning feature of the Kevoree Modeling Framework (KMF) [START_REF] Fouquet | An Eclipse Modeling Framework alternative to Meet the Models@Runtime Requirements[END_REF][START_REF] Fouquet | Kevoree Modeling Framework (KMF): Eicient modeling techniques for runtime use[END_REF], proposed by Hartmann et al. [START_REF] Hartmann | A Native Versioning Concept to Support Historized Models at Runtime[END_REF]. While being closer to a memento design pattern [START_REF] Gamma | Design patterns: elements of reusable object-oriented software[END_REF] than to a trace data structure, it provides facilities to manipulate the objects of a model not only in space (e.g., navigate from one object to another), but also in time. For instance, it is possible to set an object to a speciic version, or to reference a speciic version of a object. In the end, all the states of the objects are captured during their lifetime, which can efectively capture an execution trace of the model. Multiple backends are available to store the elements, from a memory cache to a NoSQL database.

Self-deining Trace Formats

An interesting sort of data structure for execution traces are so-called self-deining trace formats, or meta-formats. These formats deine that a trace contains metadata describing the format of the trace itself. This can be compared with any language that make both possible the deinition of new types (e.g., a Java class or a C struct) and the instantiation of such types. Thereby, an execution trace constructed using a self-deining trace format can be adapted to a speciic usage or context through the deinition of appropriate types as metadata. Examples of such trace formats include Pablo SDDF [4], Pajé [START_REF] Lucas M Schnorr | Paje trace ile format[END_REF] and the trace metamodel of the SOC-Trace project [START_REF] Pagano | Trace Management and Analysis for Embedded Systems[END_REF].

For embedded systems or operating systems tracing, a well known self-deining trace format is the Common Trace Format (CTF) [START_REF] Desnoyers | Common Trace Format (CTF) Speciication (v1.8.2)[END_REF]. A CTF trace is composed of an ASCII header written using a declarative language called the Trace Stream Description Language (TSDL), and of data in a binary format. Among other things, the header deines diferent kinds of events, each event kind having a set of ields, that can each be typed by a wide range of types. CTF speciies for all possible elements of a trace how they are represented in binary format. Because of the compact design of CTF execution traces, they can be constructed with little overhead and with little memory, hence making them very popular for tracing systems with limited resources.

However, because these formats are meta-formats, it means that each of them in fact deines a wide range of potential formats. Thus, given a self-deined trace, it is either diicult or impossible to analyze its arbitrarily complex content, which would require speciic tooling. A good illustration of this situation is the following description that can be found on the homepage of the Trace Compass tool (introduced in Section 2.4.2):

"Trace Compass currently supports many trace formats natively (no thirdparty libraries needed), such as:

-Common Trace Format (CTF), including but not limited to:

• Linux LTTng kernel traces • Linux LTTng-UST userspace traces • Linux Perf traces (using the out-of-tree patchset to convert to CTF) • Bare metal traces" This description implies that Trace Compass does not support CTF in general, but only supports about four diferent formats deined using CTF. In other words, it is necessary to deine speciic tooling for each format deined using a meta-format.

Domain-Speciic Trace Metamodel Deinition Approaches

Lastly, some approaches that we already presented in Section 2.4.2 propose frameworks or methodologies to deine domain-speciic execution trace metamodels. A domain-speciic trace metamodel is speciic to an xDSML, such as the trace metamodel for fUML [START_REF] Mayerhofer | A runtime model for fUML[END_REF] that we presented above. The idea is similar to self-deining trace formats (i.e., to deine a format relevant for a given tracing activity), with a number of technical diferences. First, a model-and hence a trace model-rarely contains its metamodel, while a self-deined trace contains its format. Second, using the same language (e.g., MOF) to deine both the trace metamodel and the abstract syntax of the xDSML makes possible to deine proper references from one metamodel to another, while self-deined trace formats are in a diferent technological space than metamodels. And third, self-deined trace formats do not provide a methodology regarding how to deine a format for a speciic usage, e.g., an xDSML.

In the context of the TopCased project [START_REF] Benoit Combemale | Introducing Simulation and Model Animation in the MDE Topcased Toolkit[END_REF][START_REF] Crégut | Generative technologies for model animation in the TopCased platform[END_REF], Combemale et al. [START_REF] Combemale | A Design Pattern to Build Executable DSMLs and associated V&V tools[END_REF] propose the deinition of a trace management metamodel speciic to the model of computation of an xDSML. More precisely, they propose a simpliied trace metamodel dedicated to discreteevents system modeling, which deines a Trace object as a sequence of RuntimeEvent objects. The RuntimeEvent class is abstract and must be manually inherited by all classes deining the events speciic to the xDSML.

Hegedüs et al. [START_REF] Hegedüs | Back-annotation framework for Simulation Traces of Discrete Event-based Languages[END_REF] propose a generic execution trace metamodel that must be manually extended into a domain-speciic trace metamodel using inheritance relationships. The provided generic trace metamodel deines a Trace object as a sequence of Step objects. A Step can either be a SimpleStep or a CompoundStep. A CompoundStep object is composed of multiple Step objects. There are multiple kinds of SimpleStep: a Snapshot is the new value of an element of the model; a Change contains both the old and the new value of an element; a Trigger is the event that triggered a state change. All step classes can be extended into domain-speciic classes, e.g., to deine a speciic sort of Change relevant for a given domain. Note that a SimpleStep doesn't match what we call a small step, since it represents a very ine-grained change (e.g., a change in a ield), whereas we name small step a relevant set of changes that leads to a consistent state. However, CompoundStep can match both small steps and big steps, since it can be composed of changes.

Few approaches propose the automatic generation of a domain-speciic execution trace metamodel. The PromoBox framework [START_REF] Meyers | ProMoBox: A Framework for Generating Domain-Speciic Property Languages[END_REF] provides facilities to generate a set of metamodels for a given input xDSML, including an execution trace metamodel. More precisely, they provide a clone-based generic execution trace metamodel that is extended into a domain-speciic metamodel by their generative approach. They deine a Trace object as a sequence of State objects, each containing a set of OrderedElement objects. After generation, OrderedElement becomes the supertype of all classes of the execution metamodel of the xDSML, so that all objects of an executed model can be stored in the trace. Lastly, State objects are linked by Transition objects, each referencing the transformation rule that was applied for this state change. Gogolla et al. [START_REF] Gogolla | From Application Models to Filmstrip Models: An Approach to Automatic Validation of Model Dynamic[END_REF] propose a similar approach to generate so-called ilmstrip models, which can be considered as domain-speciic execution trace metamodels. A ilmstrip model is composed of a Snapshot class, and by a generated class per class of the xDSML execution metamodel. Such generated class is identical to the xDSML class, with the addition of a succ and a pref references, so that it becomes possible to browse a trace according to the diferent versions of a speciic instance of this class. However, a new object is created after a step even if it didn't change. Therefore, aside from the changes made to the classes, the obtained metamodels are similar to clone-based trace metamodels.

Navigation Paths

An execution trace is a sequence of information about an execution. Hence, to analyze the behavior of a system, processing an execution trace essentially consists in reading this information sequentially from the start. However, the processing task may only require to focus on the evolution of speciic elements of the executed models, or on speciic executions step. In this thesis, we call navigation path a facility to browse a subset of an execution trace. Such paths aim at avoiding to process a complete execution trace for better scalability in time (Ch#3). Among the data structures we presented, only a few provides alternate navigation paths in addition to the possibility to iterate over all the elements of the trace.

The Open Trace Format 2 [START_REF] Eschweiler | Open Trace Format 2: The Next Generation of Scalable Trace Formats and Support Libraries[END_REF] focuses on parallel software executions, therefore the format stores separately the information for each thread or process running in parallel. This provides a diferent navigation path for the events of a speciic process.

As explained previously, the execution trace metamodel from TimeSquare [START_REF] Deantoni | RT-simex: retro-analysis of execution traces[END_REF] distinguishes logical steps from physical steps, physical steps being split in diferent physical bases. A physical base can for instance express the evolution of chronometric time according to some speciic hardware clock, while logical steps express the overall evolution of the system. A single logical step is referenced by possibly multiple physical steps from diferent physical bases. This structure makes it possible to browse a trace according to a speciic physical base, avoiding to enumerate all logical steps.

We presented above the approach from Gogolla et al. [START_REF] Gogolla | From Application Models to Filmstrip Models: An Approach to Automatic Validation of Model Dynamic[END_REF] to generate ilmstrip models. Their structure makes possible to follow the evolution of a single object of a model through the provided references succ and a pref, which facilitates the analysis of speciic elements. Yet, because exactly one object snapshot is stored per state of the entire model (i.e., even if the object did not change), following such navigation path requires as many iterations as browsing the complete execution trace of the model.

Lastly, KMF runtime versioning [START_REF] Hartmann | A Native Versioning Concept to Support Historized Models at Runtime[END_REF] stores the versions of each object of a model separately, allowing to enumerate the states of a speciic object of the executed model.

Interactive Debugging of Executable Models

Debugging was originally deined as the activity "to remove a malfunction from a computer or an error from a routine" [START_REF] Kidwell | Stalking the Elusive Computer Bug[END_REF]. More recently, Zeller [START_REF] Zeller | Why Program Fail -1st Edition[END_REF] deines debugging as "Relating a failure or an infection to a defect […] and subsequent ixing of the defect". Continuing, he deines a debugger as "a tool to facilitate debugging". In other words, while the general goal of dynamic V&V is to check that the behavior of a system fulills its intended purpose, debugging is more speciically concerned with both inding the cause of some identiied unintended behavior (i.e., a failure), and removing the defect responsible for this behavior using debuggers.

Finding the cause of a problem requires the analysis of the faulty behavior of a system, which can be accomplished using many kinds of dynamic V&V techniques. In particular, the term debugging is often associated with interactive debugging 15 , which is a dynamic V&V approach that consists in both controlling and observing some execution with the help of an interactive debugger. Controlling an execution means being able to pause and unpause an execution in between execution steps, in order to observe the diferent execution states. Pausing is usually done either through the deinition of breakpoints, which are conditions upon which the execution must pause (e.g., reach a speciic instruction), or through simply by step-wise execution (i.e., pausing after a step has been performed). Applied to model execution, we deine interactive debugging as follows:

Deinition 10 Interactive debugging of an executable model consists both in controlling the execution of the model through pausing and unpausing in between steps, and in observing the content of the current execution state of the model during pauses.

In the remainder of this thesis, if not stated otherwise, debugging always refers to interactive debugging, and debugger always refers to interactive debugger.

Enabling Interactive Debugging

Debugging requires both to be able to control some execution, and to be able to observe the execution state of the model throughout this execution. Figure 2.9 shows the typical architecture used for interactive debugging. As presented in Section 2.3.2, the core element of the operational semantics of an xDSML is a model transformation that modiies the execution state of an executed model. While control over the execution could be provided by the model itself -given an xDSML expressive enough -, it is common for the operational semantics to expose an interface to pause and observe an execution. Indeed, this allows both to capitalize this interface for all models conforming to an xDSML, and to prevent from handling such concern in a model whose only purpose is to represent an aspect of a system. This interface can then be used to develop a debugger.

In the following paragraphs, we briely discuss the two main scenarios using examples: irst the case of process virtual machines (i.e., software operational semantics), then the case of CPUs (i.e., hardware operational semantics).

Process Virtual Machine

A process virtual machine [START_REF] Smith | The architecture of virtual machines[END_REF] is a software program that includes the operational semantics of a language. Except for languages that are compiled in native code (discussed thereafter), all languages rely directly or indirectly on process virtual machines for execution. This includes a wide range intermediate representations of GPLs, such as Java bytecode or Python bytecode, but also many xDSMLs (e.g., [9,[START_REF] Krasnogolowy | Flexible Debugging of Behavior Models[END_REF][START_REF] Laurent | Executing and debugging UML models: an fUML extension[END_REF]). As explained above, to make debugging possible, a virtual machine must expose an interface to control the executions it performs, such as a client-server architecture or callback mechanisms. Thereby, this interface can be used to implement a debugger with a relevant user interface (e.g., a GUI). Such debugger is generally external to the operational semantics for better separation of concerns.

A well-known virtual machine is the Java Virtual Machine (JVM), which contains operational semantics for Java bytecode. The JVM provides the Java Platform Debugger Architecture (JPDA) 16 , which is a set of interfaces to deine both a unique backend and diferent frontends for the JVM. The backend is part of the JVM itself, and can both control an execution and inspect the current execution state. A frontend is an external component that can communicate with a backend (e.g., using a network socket) to give orders (e.g., set a breakpoint) or to ask for information (e.g., the value of a variable). A JVM must run in debug mode to allow frontends to communicate with the backend. The most known JPDA frontend is the Java Debugger (jdb) 17 , which can control a JVM to debug Java programs. Note that since a Java program is translated into executable bytecode, this is a case of translational semantics. As we have previously explained in Section 2.3.1, this requires some back-annotation mechanism to be able to follow the execution from the perspective of the source program. To that efect, jdb relies on debug symbols written during the compilation to bytecode. For instance, these symbols indicate which line of the Java program corresponds to a set of bytecode instructions, or which Java variable corresponds to a bytecode variable.

CPU A central processing unit (CPU) is a piece of hardware that includes the operational semantics of a speciic kind of executable language called an instruction set. Controlling an execution performed by a CPU is a rather complex task. In a nutshell, for a x86 CPU, this is accomplished using several mechanisms. Data is directly read from registers and memory to observe the execution state. A speciic lag of the CPU can be set to enable stepwise execution. Instructions of the debugged program can be replaced by interrupts to deine breakpoints, which requires that the debugger registers itself as an interrupt handler of the debugged program to handle these breakpoints.

In practice, all these facilities are abstracted by an API provided by the operating system (e.g., ptrace on Linux). As an example, the GNU Debugger (GDB) 18 makes use of these mechanisms to debug compiled C or C++ programs. Here again, as for Java and jdb, debug symbols must be written in the compiled binary in order to follow the execution from the perspective of the source program.

Model Interactive Debugging

In this thesis, we are mostly concerned with the debugging of models conforming to xDSMLs, and thus on how to provide debuggers to xDSMLs. We present thereafter some existing interactive debugging approaches for xDSMLs: domain-speciic debuggers, generic debuggers, and approaches to deine domain-speciic debuggers. The presented approaches are considering operational semantics if not indicated otherwise. Lastly, we briely discuss the use of models in model-based debugging of systems.

Domain-Speciic Debuggers

Many approaches provide debuggers that are domainspeciic, i.e., speciic to an xDSML. For instance, in the last decade, a large amount of work has been done to provide debugging for several parts of the UML [START_REF] Riehle | The architecture of a UML virtual machine[END_REF][START_REF] Kirshin | A UML Simulator Based on a Generic Model Execution Engine[END_REF][START_REF] Dotan | Debugging and testing behavioral UML models[END_REF][START_REF] Crane | Towards a UML Virtual Machine: Implementing an Interpreter for UML 2 Actions and Activities[END_REF][START_REF] Fuentes | Execution and simulation of (proiled) UML models using pópulo[END_REF]. We present below some recent xDSML-speciic approaches.

Krasnogolowy et al. [START_REF] Krasnogolowy | Flexible Debugging of Behavior Models[END_REF] manually mapped GPL debugging concepts (e.g., step, instruction, variable, stack, scope) to a story diagram xDSML, and proposed a debugger following this mapping. In addition to breakpoints and step-wise execution, the resulting debugger provides advanced facilities such as, control low visualization, variable modiication, remote debugging and omniscient debugging (discussed in Section 2.6).

Mierlo et al. [START_REF] Van Mierlo | Explicit Modeling of a Parallel DEVS Experimentation Environment[END_REF] deined a debugger for the Parallel DEVS xDSML, which is an extension to DEVS, a formalism for modeling complex dynamic systems using a discreteevent abstraction. They developed a speciic interpreter using Statechart models, in which they deined debugging-speciic operations such as pausing, breakpoints, and state manipulation. The resulting debugger is integrated within the AToMPM environment, which provides both visualization and animation of the model being executed.

Mayerhofer et al. [START_REF] Mayerhofer | A runtime model for fUML[END_REF] extended the standard fUML operational semantics in order to support debugging of fUML models. This includes the deinition of a control API to pause or execute single steps, and an observer pattern to follow model changes. They validate their extension through the implementation of a debugger, which provides facilities such as breakpoints and stepwise execution.

In a very similar fashion, Laurent et al. [START_REF] Laurent | Executing and debugging UML models: an fUML extension[END_REF] also extended the standard fUML operational semantics in order to support debugging of fUML models. They observed that the standard fUML operational semantics deine an execution as a single execution step, with no intermediate steps nor facilities to stop or observe executions states. Hence, they proposed an extension to fUML operational semantics to make debugging possible, which includes the deinition of a controller that centrally manages all model modiica-tions as steps. This controller is extended to implement a debugger, with facilities such as breakpoints, stepwise execution and back stepping (see Section 2.6).

Generic Debuggers A model transformation is deined using a language that can manipulate models, such as Java (using the EMF), Kermeta [START_REF] Jézéquel | Mashup of metalanguages and its implementation in the Kermeta language workbench[END_REF], or ATL [START_REF] Jouault | Transforming models with ATL[END_REF]. Since executing a model is the application of a model transformation, a irst idea for model debugging would be the use of the existing debuggers of model transformation languages, such as the debugger provided by ATL. However, doing so would make possible to pause the execution in the middle of an execution step of the considered xDSML, which contradicts Deinition 10. Moreover, the visualized execution state would be the one of the model transformation, and not of the executed model.

Combemale et al. [START_REF] Benoit Combemale | Introducing Simulation and Model Animation in the MDE Topcased Toolkit[END_REF] propose a model simulator in the TopCased toolkit. This simulator can execute models, and provides a GUI for interactive simulation that can be considered as a debugger. The execution can be paused in between steps, and visualization of the execution state is provided by the graphical editor used to edit models. While the presented approach is generic, the presented prototype is speciic to an ad-hoc simulation engine for UML state machines.

Ráth et al. [START_REF] Ráth | Design-time simulation of domainspeciic models by incremental pattern matching[END_REF] propose an approach based on the Viatra language to execute and debug models conforming to xDSMLs. The execution can be paused in between steps, and the model can be edited on-the-ly during pauses (similarly to "hot code replace" proposed by some GPLs debuggers). An even more advanced feature is the possibility to add new transformation rules to the semantics during a pause. Visualization of the execution state is provided by the graphical editor used to edit models.

Bandener et al. [6] propose a tool called the Dynamic Meta Modeling (DMM) Player, which can drive the execution of the transformation rules that comprise the operational semantics of an xDSML. A debugger is provided as part of the tool on top of the execution engine responsible for executing the model transformation. Visualization of the execution state is provided by the graphical editor used to edit models, in which the concrete syntax representation of the model is constantly updated during the execution. The authors consider that only a subset of the transformation rules should be considered as visual steps that update the concrete syntax representation of the models. Therefore, they provide to the language designer a way to specify which rules are visual steps. When debugging, the execution can be paused before or after the application of any transformation rule, hence in between execution steps. In addition, watchpoints can be deined to pause the execution after a speciic value change in the model.

Domain-Speciic Debugger Deinition Approaches Several approaches have been proposed regarding how to deine a domain-speciic debugger for an xDSML.

Wu et al. [START_REF] Wu | Grammar-driven generation of domainspeciic language debuggers[END_REF] propose a generative approach for grammar-based xDSMLs with translational semantics whose target language is already supported by a debugger (e.g., a GPL such as Java). The approach requires traceability links between the executed model and the target model. Debugging components are generated to implement the debugging interface of the Eclipse IDE. Using these traceability links, debugging actions at the xDSML level (e.g., step forward) are translated into orders for the target language debugger (e.g., set a breakpoint and continue). Similarly to what we already explained with Figure 2.5c, it is necessary to provide a mapping between the deinition of a step of the xDSML and the one of the target language, in order to perform the right amount of steps in the target language for a given step of the xDSML. Likewise, a mapping between the execution state deinition of the target language to the one of the xDSML is necessary to update the execution state of the executed model.

Lindeman et al. [START_REF] Ricky T Lindeman | Declaratively Deining Domain-Speciic Language Debuggers[END_REF] present a generative approach for grammar-based xDSMLs targeting both translational and operational semantics. A language called the debugger speciication language is used to specify when should debugging events be sent during the execution of the model. Such speciication is used to automatically instrument the executable model with elements that send such events to an external component. This requires the xDSML to be expressive enough to make such event sending possible. At runtime, these events are handled to pause the execution when required.

More recently, Chiş et al. [START_REF] Chiş | The Moldable Debugger: a Framework for Developing Domain-Speciic Debuggers[END_REF][START_REF] Chiş | Practical domain-speciic debuggers using the Moldable Debugger framework[END_REF] proposed the Moldable Debugger framework for developing domain-speciic debuggers. The authors claim that generative approaches can only generate debuggers with generic debugging facilities (e.g., step, step into, stack visualization, etc.), while domain-speciic facilities should be deined for the application domain of the xDSML. They provide a framework to develop domain-speciic extensions, each being composed of a set of domain-speciic debugging operations and a domainspeciic debugging view. One example is a domain-speciic extension for PetitParser, an xDSML for parsing source code. The domain-speciic views include dynamic representations of the produced structure and of the stream obtained from the input ile (i.e., the parsing progress). The domain-speciic debugging operations include stepping until the stream position changes or reaches a speciic position (e.g., stepping until a speciic line is being parsed). [START_REF] Reiter | A theory of diagnosis from irst principles[END_REF][START_REF] Riedesel | Diagnosing Multiple Faults in SSM/PMAD[END_REF] in concerned with the veriication of concrete systems through the use of models that represent them. More precisely, observations made of a running system are analyzed and compared with the expected behavior derived from the models. Applied to both non-interactive and interactive debugging, model-based debugging of systems [START_REF] Stumptner | Debugging functional programs[END_REF][START_REF] Wotawa | On the relationship between model-based debugging and program slicing[END_REF] consists in using models to more eiciently ind the cause of a failure of a concrete system. Since we are concerned in this thesis with early V&V using executable models, model-based debugging is out the scope of our work.

Model-Based Debugging of Systems A dynamic V&V approach called model-based diagnosis

Model Omniscient Debugging

In an empirical study of debugging stories, Eisenstadt [START_REF] Eisenstadt | My Hairiest Bug War Stories[END_REF] discovered that bugs are diicult to track down mostly because of the large temporal or spatial gap between the cause and the actual symptom of a bug. However, as Pothier et al. [START_REF] Pothier | Back to the future: Omniscient debugging[END_REF] disclaim: "Unfortunately, most [interactive] debuggers provide very limited assistance for temporal navigation, so programmers frequently have to resort to mental simulation of program execution." Indeed, interactive debuggers have the following limitation: if a modeler notices a faulty behavior during a debugging session, he needs to restart the execution from the beginning to give a second look to the state of interest. The main reason is that, except for bidirectional model transformations [START_REF] Czarnecki | Bidirectional Transformations: A Cross-Discipline Perspective[END_REF][START_REF] Kerboeuf | A DSML for reversible transformations[END_REF] (e.g., triple graph grammars [START_REF] Schürr | Speciication of graph translators with triple graph grammars[END_REF]), a model transformation cannot be trivially undone. Hence, restarting a virtual machine and executing the model a second time to revisit the state of interest can be costly in time. In addition, if the operational semantics are non-deterministic, then the initial faulty behavior might not show up at all.

To cope with this limitation, an interesting and convenient dynamic V&V approach that can be used is omniscient debugging 19 [START_REF] Lewis | Debugging backwards in time[END_REF][START_REF] Lienhard | Practical Object-Oriented Back-in-Time Debugging[END_REF][START_REF] Pothier | Back to the future: Omniscient debugging[END_REF][START_REF] Engblom | A review of reverse debugging[END_REF]. From a modeler point of view, the idea is simple: in addition to being able to explore a series of execution states by going forward (i.e., regular interactive debugging), additional facilities are provided to revisit states by going backwards. In other words, omniscient debugging makes possible to "go back in time" during a debugging session. The technique was inspired by several dynamic V&V approaches allowing to analyze execution states of a speciic execution, such as log analysis [START_REF] Yuan | SherLog: error diagnosis by connecting clues from run-time logs[END_REF], runtime veriication [START_REF] Leucker | A brief account of runtime veriication[END_REF] or record-and-replay [START_REF] Gomez | RERAN: Timing-and touch-sensitive record and replay for Android[END_REF] (i.e., to reexecute a program in a deterministic way using a record of all its interactions with its execution environment).

Omniscient Debugging Deinition

Through a synthesis of aforementioned work [START_REF] Lewis | Debugging backwards in time[END_REF][START_REF] Lienhard | Practical Object-Oriented Back-in-Time Debugging[END_REF][START_REF] Engblom | A review of reverse debugging[END_REF][START_REF] Khoo | Expositor: Scriptable time-travel debugging with irst-class traces[END_REF], we deine omniscient debugging as follows Deinition 11 Omniscient debugging is an extension of interactive debugging adding facilities to step backwards in the execution, i.e., to revisit previous execution states. This can include setting a breakpoint in the past and "executing backwards" until this breakpoint is reached, or simply jumping to a chosen past execution state.

Figure 2.10 schematizes the diferences between regular interactive debugging and omniscient debugging for re-observing a failure in a non-deterministic situation. Using interactive debugging (Figure 2.10a), a series of reruns must be done, which is commonly known as cyclic debugging. (1) The irst run yields the irst encounter with the failure. Now the modeler hypothetically wants to re-observe the failure to better understand its cause. (2) If there is a source of non-determinism due to the operational semantics (e.g., declarative model transformation with diferent source patterns valid at the same time) or due to the execution environment, the initially observed bug might always not occur during reruns. Hence, multiple reruns may be required. (3) For the same reason, other bugs might occur during these reruns. The modeler may confuse them with the initial one. (4) Eventually, the initial bug occurs again and can be observed a second time. By contrast, using omniscient debugging (Figure 2.10b), a single attempt has to be [START_REF] Engblom | A review of reverse debugging[END_REF]. made: once the failure is observed, the modeler can go back in a previous state instantly to re-observe it, and if needed can then continue the execution of the model. Some user studies have shown the superiority of omniscient debugging to ind the cause of defects, as compared to regular interactive debugging. For instance, Lewis [START_REF] Lewis | Debugging backwards in time[END_REF] showed that while a bug was found in over an hour by the original programmer using "conventional tools", all subjects of the study were able to identify the source of the problem within ifteen minutes.

Omniscient Debugging Methods

Omniscient debugging can be accomplished in multiple ways. Engblom [START_REF] Engblom | A review of reverse debugging[END_REF] reviewed existing techniques and established two main categories: trace-based and reconstructionbased. We present the two main methods of omniscient debugging thereafter using this example.

Trace-based omniscient debugging consists in recording in an execution trace all the necessary information to go into previous states. Therefore, this approach is independent from the operational semantics to step backwards, though it requires large execution traces. Such traces can for instance contain a list containing execution states, or reversible atomic changes made by each execution step. Figure 2.11a shows a scenario with a trace that contains all execution states reached by the executed model. For the irst action (1), the debugger simply relies on the operational semantics to go forward. For the second action (2), the debugger reads the corresponding state stored in the trace, and injects it into the executed model. For the third action (3), to ensure an identical and deterministic replay, the debugger restores twice in a row a state from the trace (a) Trace-based omniscient debugging scenario, with a trace containing all states.

(1) Forward execution from 0 to 5

(3) Forward execution from 3 to 7 with re-observation of the failure until 5 is reached (which at this point is the last state stored in the trace), then relies on the operational semantics again.

Reconstruction-based omniscient debugging also consists in recording an execution trace, but only containing partial information that is not suicient to directly go back to a previous state. This includes a selection of execution states called checkpoints, and information to reexecute the operational semantics deterministically 20 (e.g., input from the environment, similarly to record-and-replay approaches). From there, going backwards is accomplished by irst jumping to a checkpoint that happened before the target state, and then using the operational semantics deterministically to go forward until the target state is reached. Figure 2.11a shows an example with the same scenario.

There is no diference with for the irst action, which is simply the execution of the operational semantics. For the second action (2), the debugger irst restores the closest checkpoint before the target state, which is 2, then uses the operational semantics to perform one step, thereby reaching the target state. For the third action (3), the debugger uses the operational semantics again until 7 is reached.

In this thesis, we focus on the capture of complete execution traces with both all execution states and all execution steps. Consequently, we only consider trace-based omniscient debugging.

Omniscient Debugging for xDSMLs

In the last decades, a lot of work has been done to provide omniscient debuggers for GPLs, such as for C/C++ [START_REF] Boothe | Eicient algorithms for bidirectional debugging[END_REF], Java [START_REF] Lewis | Debugging backwards in time[END_REF][START_REF] Georges | JaRec: a portable record/replay environment for multi-threaded Java applications[END_REF][START_REF] Pothier | Back to the future: Omniscient debugging[END_REF] or Smalltalk [START_REF] Lienhard | Practical Object-Oriented Back-in-Time Debugging[END_REF]. A recent example is the work of Barr et al. [7] on the TARDIS debugger which provides reconstructionbased omniscient debugging for C#. They claim to be "the irst afordable time-traveling debugger for managed languages", with a slowdown of only 14% when executing and recording information for omniscient debugging.

While most research on omniscient debugging is being done for GPLs, little work has been done to provide omniscient debugging for xDSMLs. In the following paragraphs, we present some domain-speciic omniscient debuggers for xDSMLs, and we discuss generic omniscient debugging for xDSMLs.

Domain-speciic Omniscient Debuggers

As we already mentioned in Section 2.5.2, Krasnogolowy et al. [START_REF] Krasnogolowy | Flexible Debugging of Behavior Models[END_REF] proposed a debugger for a story diagram xDSML. This debugger provides back-stepping by creating an execution trace containing all the changes made to the execution state, hence making possible to undo these changes. It can therefore be considered as a trace-based omniscient debugger. Interestingly, the execution state of the execution transformation itself is also reset when stepping backward, which is in theory only necessary for a reconstruction-based omniscient debugger.

Also mentionned in Section 2.5.2, Laurent et al. [START_REF] Laurent | Executing and debugging UML models: an fUML extension[END_REF] presented a debugger for the fUML xDSML, which required extending the standard operational semantics of fUML in order to be able to perform execution steps one by one. Among many features, they provide the possibility to roll-back the execution by relying on an execution trace containing the previous positions and contents of all the fUML tokens. It can therefore also be considered as a trace-based omniscient debugger. For better memory-eiciency, they only store new values when there are changes in the model.

We reviewed some trace management approaches in Section 2.4.2, such as the work of Maoz et al. [START_REF] Maoz | Model-based traces[END_REF][START_REF] Maoz | On tracing reactive systems[END_REF] on exploration of execution traces of scenario models. Since such approaches allow to explore previous states of an executed model, they are very similar to omniscient debugging. Yet, this accomplished oline and not during an execution, therefore this cannot technically be considered as interactive or omniscient debugging.

Generic Omniscient Debuggers for xDSMLs

Unlike interactive debugging, few approaches aim at providing omniscient debugging to any xDSML. [START_REF] Corley | Towards Eicient and Scalabale Omniscient Debugging for Model Transformations[END_REF] propose omniscient debugging facilities for the cloud-based modeling solution AToMPM, in order to step both forward and backward in model transformations executed in an AToMPM runtime. AToMPM supports two model transformation languages, namely T-Core [START_REF] Syriani | T-Core: a framework for custom-built model transformation engines[END_REF] and MoTif [START_REF] Syriani | A modular timed graph transformation language for simulation-based design[END_REF]. However, similarly to what we discussed in Section 2.5.2 with interactive debuggers of model transformation languages, using such an omniscient debugger would make possible to pause the execution in the middle of an execution step of the xDSML, which contradicts Deinition 10. Also, the visualized state would be the one of the execution transformation instead of the one of the executed model.

Hegedüs et al. [START_REF] Hegedüs | Back-annotation framework for Simulation Traces of Discrete Event-based Languages[END_REF] propose a execution trace management approach for xDSMLs. In addition to an extensible execution trace metamodel (presented in Section 2.4.2), the approach includes model transformation rules to replay execution traces obtained from previous executions or from counter-examples generated of a model-checker. While being able to step forward and backward according an execution trace is very similar to omniscient debugging, trace replay is only oline and it is not possible to step backwards during a model execution.

Part II

Contributions

Chapter 3

Foreword to the Contributions

In this thesis, we are concerned with the management of execution traces of executable models. In other words, we aim at answering this question: given an arbitrary xDSML (e.g., Petri nets), how to represent and manipulate traces of its conforming models, while taking into account a number of challenges? We introduced these challenges in Chapter 1 as usability (Ch#1), scalability in memory (Ch#2), and scalability in time

(Ch#3).
This short chapter is an introduction to the contributions presented in two following chapters, Chapter 4 and Chapter 5, which both aim at meeting the aforementioned challenges, but for two distinct uses: generic and domain-speciic trace manipulations. In Section 3.1, we explain these uses and we synthesize the corresponding state of the art subset presented in Chapter 2. Then in Section 3.2, given these observations, we explain the reasoning and the scope of both our contributions.

Observations

In the following, we present observations irst regarding the diferences between generic and domain-speciic trace manipulations, then regarding the state of the art regarding execution trace data structures.

Generic vs. Domain-Speciic Trace Manipulations

We make the following observation: execution trace manipulations can either be generic (e.g., comparing the number of diferent states or the amount of steps, visualizing the values of all mutable properties of a state), or domain-speciic (e.g., determining how many tokens traversed a Petri net place). In the former case, manipulations are simple and the structure or content of the trace has little inluence on the complexity of the analysis task. Moreover, they only have to be deined once, and can then be used for any xDSML. However, in the latter case, manipulations handle domain-speciic data that can be arbitrarily complex depending on the considered xDSML. Hence, in such cases, deining the right analysis can be error-prone and diicult, and accessing to relevant execution data of the domain becomes a critical requirement. In other words, the kind of manipulation is an important factor regarding the usability of execution trace data structures (Ch#1), and it is likely for a structure to only be adapted to a speciic kind of manipulation.

Limitations of Existing Execution Trace Data Structures

In the previous chapter, more speciically in Section 2.4.3, we have seen diferent data structures to represent traces of executable models. As a synthesis, we make the following observation: a large number of existing execution trace data structures are speciic to a selection of concerns, such as parallel software [START_REF] Eschweiler | Open Trace Format 2: The Next Generation of Scalable Trace Formats and Support Libraries[END_REF], operating systems [START_REF]KPTrace Speciication[END_REF], or xDSMLs [START_REF] Mayerhofer | A runtime model for fUML[END_REF]. Hence, each of these execution trace data structures is relevant for speciic xDSMLs, and are consequently unlikely to be convenient to deine the execution traces of a given arbitrary xDSML. For instance, a "system call" (from [START_REF]KPTrace Speciication[END_REF]) or an "fUML activity execution" (from [START_REF] Mayerhofer | A runtime model for fUML[END_REF]) are concepts that are not relevant when constructing an execution trace for a Petri net model, which hinders usability (Ch#1).

A irst possible solution relies in generic execution trace data structures, such as [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF] or [START_REF] Hartmann | A Native Versioning Concept to Support Historized Models at Runtime[END_REF]. These solutions allow the capture and the manipulation of traces for any kind of execution. In particular, clone-based execution traces can be captured using a simple metamodel [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF]. In this case, each execution state is stored in the form of a clone. Among other advantages, existing model transformations and queries speciic to the xDSML can directly be applied on execution states stored in a clone-based execution trace. Moreover, generic trace manipulations can be deined for such metamodels using relexivity. However, domain-speciic trace manipulations are not facilitated, since relevant concepts of the execution (i.e., deined in the execution metamodel) are not directly accessible.

A second possible solution relies the deinition of an ad-hoc execution trace data structure that is appropriate for the considered xDSML. This can be accomplished using self-deined trace formats (or meta-formats) [START_REF] Desnoyers | Common Trace Format (CTF) Speciication (v1.8.2)[END_REF]4] allowing to both deine the possible content of a trace and the trace itself in the same model. Additionally, some approaches provide a base structure along with some guidelines or examples for the deinition of the execution trace data structure of an xDSML [START_REF] Hegedüs | Back-annotation framework for Simulation Traces of Discrete Event-based Languages[END_REF][START_REF] Benoit Combemale | Introducing Simulation and Model Animation in the MDE Topcased Toolkit[END_REF]. Yet, there are two main problems with these approaches. First, a trace data structure speciic to an xDSML requires the development of dedicated tooling, which is expensive. Second, even with appropriate meta-formats or approaches, manually deining a trace data structure is likely to be a diicult task [START_REF] Kelly | Worst Practices for Domain-Speciic Modeling[END_REF], and only few approaches propose the automatic generation of a trace metamodel [START_REF] Meyers | ProMoBox: A Framework for Generating Domain-Speciic Property Languages[END_REF].

In parallel, another limitation of most execution trace data structures relies in the lack of alternate navigation paths to process execution traces, which is only possible with very few structures [START_REF] Eschweiler | Open Trace Format 2: The Next Generation of Scalable Trace Formats and Support Libraries[END_REF][START_REF] Fouquet | Kevoree Modeling Framework (KMF): Eicient modeling techniques for runtime use[END_REF]. Yet, being able to browse an execution trace eiciently by focusing on speciic elements it contains appears as an interesting way to improve scalability in time (Ch#3).

Overview of the Contributions

In summary, we observe that both generic and domain-speciic execution trace manipulations must be taken into account for any xDSML. Yet, it appears that there is no silver bullet to achieve this goal: some data structures are more appropriate for speciic tasks than others, including regarding generic or domain-speciic execution trace manipulations. Both categories of manipulations are independent cases that must be taken into account, and challenges stated in Chapter 1 are of importance for both categories. Consequently, we propose the following two contributions.

For generic trace manipulations, we propose in Chapter 4 a scalable and generic approach to construct clone-based execution traces. Our technique relies on data sharing among runtime representations of model clones to save memory. Beyond generic execution traces, this approach is an improvement of model cloning in general, which can hence beneit other ields such as design space exploration [START_REF] Saxena | MDE-Based Approach for Generalizing Design Space Exploration[END_REF] or evolutionary computation [START_REF] Goings | An ecology-based evolutionary algorithm to evolve solutions to complex problems[END_REF]. Chapter 4 is self-contained: it contains both the contribution itself, and its evaluation which relies on a custom cloning benchmarking tool based on randomly generated metamodels and models. Although the evaluation doesn't directly focus on execution traces and dynamic V&V, it is application-neutral and therefore also relevant for other applications (e.g., design space exploration [START_REF] Saxena | MDE-Based Approach for Generalizing Design Space Exploration[END_REF]). This work led to a publication in the proceedings of the MODELS'14 conference [START_REF] Bousse | Scalable Armies of Model Clones through Data Sharing[END_REF].

For domain speciic trace manipulations, we propose in Chapter 5 a generative meta-approach to construct a domain-speciic execution trace metamodel of an xDSML. Thereby, concepts from the domain of the xDSML are explicitly available to construct and manipulate execution traces, hence facilitating the deinition of domain-speciic manipulations. The generation being completely automatic, appropriate tooling can be generated along the trace metamodel. Because the envisioned direction of this thesis was the deinition of trace management facilities speciic to an xDSML, this research direction was more thoroughly studied than clone-based execution traces. Hence, contrary to Chapter 4, Chapter 5 only contains the contribution itself, while the evaluation was made through two applications to dynamic V&V, namely semantic diferencing and omniscient debugging. We refer to Chapter 6 for an introduction and an overview of these applications. This work led to a publication in the proceedings of the ECMFA'15 conference [START_REF] Bousse | A Generative Approach to Deine Rich Domain-Speciic Trace Metamodels[END_REF].

Chapter 4 Scalable Armies of Model Clones through Data Sharing

In this chapter, we present our irst contribution, which is an approach for scalable model cloning through data sharing [START_REF] Bousse | Scalable Armies of Model Clones through Data Sharing[END_REF]. In Section 4. Then, Section 4.4 presents the main contribution of this chapter: a new approach for eicient model cloning through data sharing. Section 4.5 describes our evaluation, which was done using a custom benchmarking tool suite that relies on random metamodel and model generation. Finally, Section 4.6 concludes on the observed gain regarding memory consumption.

Introduction

When executing a model using an in-place model transformation, an execution trace can be captured by cloning the model after each execution step. Such clone-based execution trace contains all the reached execution states as a sequence of clones, which provides good usability for generic trace manipulations (Ch#1). Moreover, existing model transformations and queries speciic to the xDSML can directly be applied on execution states stored in a clone-based execution trace.

Technically, cloning a model consists in obtaining a new and independent model identical to the original one. This operation can be implemented using the EcoreUtil.Copier class of the Eclipse Modeling Framework (EMF) [START_REF] Merks | EMF: Eclipse Modeling Framework, 2nd Edition[END_REF], which consists in irst creating a copy of the runtime representation of a model (i.e., the set of Java objects that represent the model) and then resolving all the references between these objects. Such an implementation is also known as deep cloning. This implementation is efective to produce valid, independent clones. However it has very poor memory performances for opera-tions that require manipulating large quantities of clones, such as genetic algorithms [START_REF] Kessentini | Model Transformation as an Optimization Problem[END_REF] or design space exploration [START_REF] Saxena | MDE-Based Approach for Generalizing Design Space Exploration[END_REF]. Most importantly, in the context of this thesis, this directly opposes the need for scalability in memory when capturing traces (Ch#2).

We address the performance limitations of current cloning operations by leveraging the following observation: given a metamodel and an operation deined for this metamodel, the operation usually changes elements conforming to only a subset of this metamodel. That means that it is possible to identify the footprint of the write accesses of these operations on a metamodel. This footprint is the set of mutable parts of the metamodel, i.e., elements that can be modiied by an operation. We call it the mutable subset of a metamodel. The counterpart of these elements, the immutable elements, are deinitively stated at the creation of objects. For instance, the immutable elements of an xDSML are deined by its abstract syntax, and the mutable subset by the set of properties introduced by the execution metamodel. Our intuition is the following: knowing the immutable elements, data could be shared between the runtime representation of a given model and its clones, saving memory when generating the clone.

In this chapter, we propose a new model cloning algorithm, which implements different strategies to share immutable data between clones. This contribution relies on a speciic runtime representation of the model and its clones in order to share the data and still provide an interface that supports the manipulation of the clones independently from each other. We articulate our proposal around the following questions:

-Considering that we know which parts of a metamodel are mutable, how can we avoid duplicating immutable runtime data among cloned models?

-Can it efectively save some memory at runtime when creating a high number of clones as compared to EMF cloning implementation ?

Our goal is both to give a solution that can be implemented in various existing execution environments, and to provide concrete evidence of the eiciency of such an approach on a widely used tool set: the Eclipse Modeling Framework (EMF) [START_REF] Merks | EMF: Eclipse Modeling Framework, 2nd Edition[END_REF].

Our main contribution is a new approach for eicient model cloning. The idea is to determine which parts of a metamodel can be shared, and to rely on this information to share data between runtime representations of a model and its clones. We provide a generic algorithm that can be parameterized into three cloning operators (in addition to the reference deep cloning one): the irst one only shares objects, the second only shares ields, and the third shares as much data as possible.

We evaluated our approach using a custom benchmarking tool suite that relies on random metamodel and model generation. Our dataset is made of a hundred randomly generated metamodels and models, and results show that our approach can save memory as soon as there are immutable properties in metamodels.

Cloning Requirements and Proposal

In this section we give requirements for cloning operators, and we explain how our idea is related to existing approaches

Requirements for Cloning

New activities have emerged in the model-driven engineering community in recent years, which all rely on the automatic production of large quantities of models and variations of models. A clone-based execution trace consists of a sequence of clones of the executed model, each created after an execution step. These clones are all variants of the initial executed model, with only the execution state changing. Several works rely on evolutionnary computation to optimize a model with respect to a given objective [START_REF] Kessentini | Model Transformation as an Optimization Problem[END_REF][START_REF] Goings | An ecology-based evolutionary algorithm to evolve solutions to complex problems[END_REF]. Optimization in this case, consists in generating large quantities of model variants through cloning, mutation and crossover and selecting the most itted. Design space exploration [START_REF] Saxena | MDE-Based Approach for Generalizing Design Space Exploration[END_REF] is the exploration of design alternatives before an implementation, which requires the generation of the complete design space (i.e., set of variations, which are models).

All these new MDE techniques produce large sets of models that originate from few models. From a model manipulation point of view, all these techniques require the ability to clone-possibly many times-an original model, and to query and modify the clones as models that conform to the same metamodel as the original. More precisely, we identify ive requirements for model manipulation in these contexts. We state these requirements in the form of research question for the deinition of new cloning operators: Our work deines novel cloning operators that reduce the memory footprint of clones, while trying to comply with the aforementioned requirements.

Existing Cloning Approaches and Intuition

As we already explained in Section 2.2, object copying has existed since the beginning of object-oriented programming languages [START_REF] Goldberg | Smalltalk-80: the language and its implementation[END_REF] with the deep and shallow copy operators.

While the second operator cannot take a whole model into account and is thus not of interest, the irst is at the basis of deep model cloning. Concerning models, the EMF provides a class named EcoreUtil.Copier with operations for copying sets of objects, which can be used to implement either a deep or a partial model cloning operator. Yet, as stated previously, such deep cloning operator is not memory eicient (RQ#4.1), and the partial cloning one ofers no guarantees regarding clone independence (RQ#4.5). Not surprisingly, the same observations can be made for the deepClone operation of the Kermeta language [START_REF] Jézéquel | Mashup of metalanguages and its implementation in the Kermeta language workbench[END_REF], since it is directly based on EcoreUtil.Copier. Finally, the partial cloning operator of the Kevoree Modeling Framework (KMF) from Fouquet et al. [START_REF] Fouquet | An Eclipse Modeling Framework alternative to Meet the Models@Runtime Requirements[END_REF][START_REF] Fouquet | Kevoree Modeling Framework (KMF): Eicient modeling techniques for runtime use[END_REF] does comply with the requirements stated above. Independence of clones is ensured thanks to the possibility to tag which parts of a model are immutable (RQ#4.5), and sharing immutable Java objects among runtime representations allows memory savings (RQ#4.1). However, it has some limitations. First, the input of this operator is a single root object, and not a set of objects (i.e., a model). Second, each model must be manually decorated with immutable tags, which hinders usability. Third, data sharing is only done at the object level.

In terms of memory management, copy-on-write (a.k.a. lazy copy) is a widespread way to reduce memory consumption. The idea is the following: when a copy is made, nothing is concretely copied in memory and a link to the original element is created. At this point, both elements are identical, and accordingly reading the copy would in fact read the origin directly. But when writing operations are made on the copy, modiied elements are efectively copied so that the copy keeps its own state and appears like a regular and independent element. Applied to model cloning, the runtime object coniguration of a clone obtained using this technique would eventually only contain written mutable elements of the original model, which meets our need to reduce memory footprint (RQ#4.1). However, it adds a considerable amount of control low at runtime in order to detect when copies must be done, and such copies can happen unpredictably depending on the manipulations; this contradicts the need for eicient clones (RQ#4.2). More importantly, depending on the programming language used, this technique can be very diicult to implement; for instance, Java is pass-by-value, making it impossible to dynamically change the value of a variable from a diferent context (i.e., updating all references to an object that was just efectively copied), which is required to dynamically copy a model progressively and transparently.

Our intuition is that while deep cloning is easy to implement but memory expensive, and copy-on-write is memory-eicient but complicated and with manipulation overhead, it is possible to provide safe partial cloning operators in between these two extremes. Similarly to the way copy-on-write discovers dynamically which parts of a model are mutable when copying written elements, our idea is to statically determine which elements have to be copied at runtime. Such elements are opposed to the ones that can be referenced by both the original runtime representation and its clone. We present an approach based on this idea in the next sections.

On Model Cloning

The purpose of this section is to clarify what we mean by the runtime representation of a model and to precisely deine what we call a clone in this work.

Mutable Subset of a Metamodel

We already deined what is a metamodel (see Deinition 1 page [START_REF] Bézivin | Towards a precise deinition of the OMG/MDA framework[END_REF] and what is a model (see Deinition 2 page 13). Likewise, we deined the notion of metamodel footprint (see Deinition 5 page 17), which is the set of elements of a metamodel that are used by a model operation. Inspired by this notion, our idea for this work is to focus on a subset of the metamodel footprint only concerned by modiications at the model level.

During its lifecycle, a model can change in two possible ways: by creating/deleting objects or by changing values of ields of objects. We designate as mutable elements both the elements of a model that may change over time and the metamodel parts that deine these elements. Our approach considers a given object coniguration in order to produce a clone, and is thus not inluenced by the creation of deletion of objects.

Deinition 12 A property of a class of a metamodel is mutable if, in each object instance of this class, the value of the ield corresponding to this property can change after the construction of the object. The set of all mutable properties of a metamodel is called the mutable subset of a metamodel. Dually, a property is said to be immutable if its value cannot change after construction. In the case of an xDSML, the mutable subset of an execution metamodel is generally deined by the elements that it adds to the abstract syntax. Indeed, a Java program cannot change its instructions at runtime, and a Petri net model cannot create new transitions: such concepts are immutable. However, the current instruction of a Java program or the amount of tokens of a Petri net are mutable, since the whole purpose of an execution is to change them.

Implementation of Metamodels and Models

Speciic execution environments are necessary to use metamodels and models. The Eclipse Modeling Framework (EMF) is one of the most popular. It generates Java interfaces and classes that implement a given metamodel, providing concrete mechanisms to create runtime representations of models that conform to the metamodel. We deine a runtime representation as follows: 

Deinition 13

The runtime representation of a model is the set of runtime data that is suicient to relect the model data structure. It must be manipulated through an interface that is consistent with the corresponding metamodel.

Top right of Fig. 4.1 shows the API (Java interfaces and classes) generated by the EMF generator. Interfaces A and B deine services corresponding to the data structure of the original metamodel AB, while Java classes AImpl and BImpl implement these interfaces. These elements support the instantiation and manipulation of runtime representations-here, Java object conigurations-of models that conform to the metamodel. The bottom right of the igure shows a runtime representation of m.

Note that a runtime representation that is eventually obtained using the EMF is structurally very similar to the original model: each object is represented by a Java object; each reference is represented by a Java reference; and each attribute is represented by a Java ield. Yet runtime representations could theoretically take any form, as long as they are manipulated through an API that relect the metamodel. One could imagine "empty" objects that get data from a centralized data storage component, or the use of a prototype-based programming language to create consistent runtime representations without deining classes. 

Cloning

Cloning is at the intersection of two main ideas: the duplication of elements and the independence of the obtained clone. Applied to models, a clone is therefore an independent duplication of some existing model. While we already introduced the notion in Section 2.2.2, we deine a clone as follows: Deinition 14 A clone is a model that is, when created, identical to an existing model called the origin. Both models conform to the same metamodel and are independent from one to another Cloning a model is a deterministic procedure that has a unique possible output (i.e., a model identical to the original model). However there are multiple ways to implement this procedure for a given runtime environment. For instance, as long as independence is ensured, objects may be shared between a model and its clones. We therefore introduce the idea of cloning operator as follows:

Deinition 15 A cloning operator is an operator that takes the runtime representation of a model as input and returns the runtime representation of the clone of the model. since it is an independent model that can completely diverge from its origin; on this example, abb_clone already changed and has a diferent j value.

At the bottom right of Fig. 4.2, the runtime representation of abb_clone was obtained using the deep cloning operator. However, as stated in the previous section, runtime representations of models can virtually take any form, as long as it can be manipulated through an API consistent with the metamodel. This is what we investigate in the next section, where we present our main contribution: cloning operators that reduce the memory footprint of runtime representations of clones through data sharing.

Memory Eicient Cloning Operators

In this section we present our main contribution: an approach for memory eicient cloning through data sharing among runtime representations. For this work, we consider that input runtime representations were obtained using the EMF, i.e., each input runtime representation is identical to its model. Moreover, for our clones to be compliant with EMF, we ensure that each object of a clone is implemented by exactly one runtime object.

Data Sharing Strategies

When using the deep cloning operator, each object of a runtime representation is duplicated, which means twice as many objects and ields in memory. Our intuition is that since we know which parts of a metamodel are immutable, it must be possible to avoid duplicating some runtime objects and ields by safely (RQ#4.5) using them for both the runtime representations of a model and its clones. Given a model conforming to a metamodel, we call shareable both the elements that can be shared between the runtime representations of the model and its clones, and the parts of the metamodel that deine these elements.

In Section 4.2, we deined RQ#4.2 (eicient manipulation of clones) and RQ#4.4 (ability to deine generic operations). However, sharing objects and ields between runtime representations necessarily breaks one or both of these requirements. First, if the same runtime object is shared between two runtime representations, it is supposed to represent two distinct objects-one per model. Therefore, it is possible for each of these objects to have a diferent container, since both objects are conceptually separate. The problem is that the MOF Relection package states that each object must provide a container() operation that returns the unique container of an object, which is implemented in an operation of EMF EObject called eContainer(). Unfortunately, when a shared EMF runtime object is used, there is no way to know in which context (i.e., model) this manipulation occurs, and this operation thus cannot always return a unique container as expected. Therefore, generic operations that rely on this operation cannot be used on clones, which contradicts our RQ#4.4. Second, we rely on a proxy design pattern to share the ields of runtime objects: a runtime object with a shareable ield can be copied into a new runtime object without this ield, but with a reference pointing to the original runtime object to provide access to this ield. However, there is an overhead when accessing shared data through these proxy objects, which can be an issue with respect to RQ#4.2.

Data sharing is essential to reduce the memory footprint of clones, which is our primary objective. Consequently, we designed several strategies that establish trade-ofs between memory savings and satisfaction of RQ#4.2 and RQ#4.4. Modelers can then decide how to tune the cloning algorithm with respect to their speciic needs. Since only immutable data is shared, independence of clones is guaranteed (RQ#4.5). We provide four strategies that implement diferent interpretations of shareable metamodel elements:

DeepCloning Nothing is shareable.

ShareFieldsOnly Only immutable attributes are shareable.

ShareAll Shareable elements are immutable attributes, classes whose properties are all shareable, and immutable references pointing to shareable classes.

ShareObjOnly Same shareable classes as ShareAll, while properties are not.

If implementing the DeepCloning and ShareFieldsOnly strategies is quite straightforward, ShareAll and ShareObjOnly are more complicated because of a double recursion: shareable properties depend on shareable classes, and conversely. This can be solved using a ixed-point algorithm, or using the Tarjan algorithm [START_REF] Tarjan | Depth-First Search and Linear Graph Algorithms[END_REF] to compute strongly connected components of a metamodel seen as a graph. We choose Tarjan in our implementation. Our approach to memory management through data sharing is quite close to the lyweight design pattern from Gamma et al. [START_REF] Gamma | Design patterns: elements of reusable object-oriented software[END_REF], which consists in identifying mostly immutable objects in order to share them between multiple objects. The main diference is that this pattern speciies that the mutable part of shared objects must be a parameter of all the operations of the objects, which contradicts our irst requirement since the API of the clones hence difers from the one of the original model.

Generic Cloning Algorithm

Before deining our algorithms for model cloning, we introduce data structures and primitive functions on which the algorithms rely. We use pseudo-code inspired from prototype-based object-oriented programming [START_REF] Lieberman | Using prototypical objects to implement shared behavior in objectoriented systems[END_REF], i.e., creating and manipulating objects without deining classes. The goal is to deine the algorithms independently from any API that may be generated by a particular modeling framework. We consider the following structures and operations: a runtime object o is created completely empty (i.e., no ields) using the createEmp-tyObject() operation. Fields can be added using addField(name,value), and can be retrieved using getFields().

Objects a map is a data structure that contains a set of ⟨key,value⟩ pairs. It can be created with createEmptyMap() and be illed with addKeyValue(key, value). resolveReferences (map) is an operation that, given a map whose keys and values are runtime objects, will create references in the values based on the references of the keys. This is equivalent to the operation copyReferences of EMF EcoreUtil.Copier.

The operation copyObjectProxy(o,strategy) is presented as Algorithm 1. It is parameterized by a strategy and an original object o, and it copies in a new object all the ields of o, except those considered shareable by the strategy. The last line of the operation creates a link to the original object in order to keep a way to access to the shareable data. Fig. 4.3 illustrates this operation with a simple object o that has two ields x and y: x is not copied in p, but can still be accessed using the reference originObj.

The second operation is cloning(rr, strategy), the cloning algorithm itself, presented as Algorithm 2. It takes a runtime representation rr as input and a considered strategy, and returns a runtime representation rr clone of a clone of the model of rr. Depending on the strategy outputs, each object is processed diferently. If the object o is shareable, it is simply added in rr clone , and is thus shared between rr and rr clone . If o is partially shareable (not shareable but with shareable ields), a proxy copy of o is added to rr clone . Finally, if o is not shareable at all, a regular copy is put in rr clone . 

Family of Cloning Operators

From our single cloning algorithm, we eventually obtain four cloning operators depending on the strategy used. We sum up the possibilities in Table 4. In section 4.4.1, we listed ive research questions to evaluate our cloning operators. Without proper benchmarking, we cannot answer the memory consumption (RQ#4.1) question yet. Concerning the eiciency when manipulating clones (RQ#4.2), we do not expect ShareFieldsOnly and ShareAll to comply because of proxy objects. As they rely on of object sharing, ShareObjOnly and ShareAll are not compatible with generic operators that use the MOF container() relective operation (RQ#4.4). However, our clones perfectly comply with the need to be manipulable by operations deined for the metamodel of the original model (RQ#4.3). This is illustrated by our implementation, which allows each clone to be manipulated using the EMF Java API generated for the metamodel. Likewise, since only immutable data is shared, the independence of the clones is ensured (RQ#4.5).

EMF-Based Implementation

We implemented our approach in Java with as much EMF compatibility as possible, which required us to face two main challenges. First, we had to extend EMF libraries -including implementations of EObject and Resource -to ensure that containment references are handled consistently in each model. Second, our approach relies on proxy objects, which are easy to create dynamically using a prototype-based object oriented language. However, with a class-based object oriented language such as Java, the ields of an object are determined by its class at design-time. We thus have to generate appropriate classes beforehand, which we do with a java-to-java transformation using EMF and MoDisco [START_REF] Bruneliere | MoDisco: A Generic And Extensible Framework For Model Driven Reverse Engineering[END_REF] to remove non-shareable properties of generated EMF implementations. More details about the implementation can be found in Section 9.1 of Chapter 9.

Evaluation and Results

This section presents our evaluation. First we describe our dataset, then what we measure and the metrics considered for our metamodels, and inally the obtained results and how they relate to the requirements stated in Section 4.2. Figure 4.5 depicts the complete evaluation process, that we describe throughout the section.

Dataset

To evaluate this work, we need both various metamodels and models that conform to these metamodels. For the metamodels part, we developed a random Ecore model generator, shown as (1) in Figure 4.5. We parameterized it the following way: a maximum number of 100 classes per metamodel, 250 properties per class and 50 mutable properties (which are properties with a _m suix) per class. We use weighted randomness to create diferent kinds of properties, with the following weights: 30% of integers, 30% of booleans, 30% of strings, and 10% of references. For the models part, we generate for each metamodel a single model in a deterministic way that covers the whole metamodel. It starts from the roots, navigates through each composition and creates a maximum of two objects per encountered class. Then, all attributes are initialized with random values and references with random objects. We could have generated more models per metamodel, but our goal was to illustrate how our operators behave with varying metamodels, each with diferent shareable parts.

Measures

To verify that we reached our main objective, we must measure the memory consumption of the runtime representations of the clones, and more precisely the memory gain compared at the DeepCloning operator. For precise memory measures, we create a heap dump at the end of each evaluation run, and we analyze it using the Eclipse Memory Analyzer (MAT) 1 . The second measure we make is the read-access performance of the runtime representations of clones, compared to the one of the original model. We expect to see some performance decrease when proxy runtime objects are involved. We proceed by measuring the amount of time required to navigate 10 000 times through each object of a model while accessing each of their properties.

Since our implementation requires a design-time step to generate required proxy and copier classes (see Section 9.1 of Chapter 9), measures are made in two steps. As shown in Figure 4.5, we irst generate an OSGI bundle (2) with everything required for the evaluation (EMF generated code, cloners, models, etc.). Then we provide this bundle to our benchmark tool to actually run the evaluation (3) with the right parameters (cloning strategies to use, number of clones, etc.)

Metrics

To embrace the variety of metamodels, we consider two metrics: the proportion of shareable classes when using either the ShareObjOnly or the ShareAll strategy, and the density of shareable properties within partially shareable classes when using the ShareFieldsOnly strategy. The irst metric most likely correlates with the memory gain for operators that share objects, and the second for the operator that only shares ields.

Results

Each measure was done by creating the model of the metamodel, cloning it 1000 times with the chosen operator, and measuring both the memory footprint and the eiciency of one of the clones. As shown in Figure 4.5, raw numbers are obtained by running the benchmark tool (3), and plots are automatically obtained through an R script (4). Fig. 4.6a shows the memory gain of the ShareObjOnly and ShareAll operators over the DeepCloning operator with varying proportion of shareable classes. We can see that the more shareable classes there are, the more memory gain there is. This relation appears linear for ShareObjOnly, and less regular for ShareAll. This is quite normal since the irst operator only relies on object sharing, while the second is also inluenced by the amount of shareable properties that can be shared through proxies. We also observe that ShareAll is always better that ShareObjOnly, which was expected since it shares ields in addition to objects. Some points may look surprising at position 0%, however they are simply caused by metamodels with very few classes and a high amount of shareable properties. Thus, sharing ields of such metamodels quickly gives very high gains. Fig. 4.6b shows the memory gain of the ShareFieldsOnly operator over the Deep-Cloning operator with varying density of shareable properties within partially shareable classes. We observe a correlation between gain and the metric, and the gain raises up to approximately 40%. This operator gives overall worse results than the ShareObjOnly and ShareAll operators, but can give better results in some situations (e.g., metamodels with mostly partially shareable classes).

Finally, Fig. 4.7 presents the model manipulation eiciency gain over the runtime representation of the model originally cloned. We observe that, as expected because of the proxy design pattern, the operators ShareFieldsOnly and ShareAll both sufer from a little performance decrease. The median overhead is -9,5% for ShareFieldsOnly and -5.9% for ShareAll.

Overall, the results match our expectations. On the one hand, memory gain measures show that our operators are as good as DeepCloning when no parts are shareable, and are better and better as the quantity of shareable parts raises. Therefore, all our operators satisfy the need to reduce the memory footprint of clones (RQ#4.1). On the other hand, manipulation eiciency measures show that there is a little overhead when manipulating clones obtained by our operators ShareFieldsOnly and ShareAll. Thus, as we foresaw, these operators do not comply with the eiciency requirement (RQ#4.2).

Threats to Validity

We identiied two main threats to our evaluation. First, using random metamodels, we hope to cover as many situations as possible in terms of metamodel design. Yet, have no way to be sure that our dataset contains enough "realistic" designs, as we have no metric for this criterion. Second, we use only one model per metamodel, which even if it covers the whole metamodel and is thus appropriate to evaluate our approach regarding metamodels characteristics, may overshadow some situations. For instance, if the objects of the model are mostly instances of non-shareable classes despite the fact that most classes are shareable, memory gain would not correlate with this metric as much as we observe.

Conclusion

Model cloning is an operation to duplicate an existing model that can be used in many kinds of applications. In particular, clone-based execution traces are a convenient way to capture information about a model execution. We identiied ive requirements for cloning operators: to be able to apply domain operators on clones, to have some memory gain over deep cloning, to ensure that clones are independent from the original model, to be able to apply generic operators on clones, and to be able to manipulate clones as eiciently as their original model, and to ensure the independence of the clones. Our goal was to provide cloning operators compliant with the irst three requirements while satisfying the last two if possible.

The approach we presented consists in sharing both runtime objects and ields between runtime representations of a model and its clones. We give four possible strategies to determine which parts of a metamodel are shareable, and we use these strategies to parameterize a generic cloning algorithm. We obtain four cloning operators, each being more appropriate for a speciic situation. Table 4.2 summarizes the diferent characteristics of the operators with respect to the research questions. DeepCloning is the most basic operator with no memory footprint reduction, but that can be used in all situations where memory consumption is not an issue. ShareFieldsOnly shares ields of immutable attributes, which reduces the memory footprint of the clones but also introduces an overhead when manipulating them. ShareObjOnly shares objects to reduce signiicantly the memory footprint, but produced clones are not compatible with generic operations that rely on the container() speciied in the MOF Relection package. Finally, Share-All shares both objects and remaining shareable ields, which saves even more memory, but with the weaknesses of the two previous operators. All our operators can be used when the generated API of the considered metamodel is used (RQ#4.3), and all guarantee that clones are independent (RQ#4.5). Our evaluation was done using a hundred randomly generated metamodels, and results show both memory gain over DeepCloning for all three other operators, and a loss of manipulation eiciency for ShareObjOnly and ShareAll operators.

RQ#4.1 RQ#4.2 RQ#4.3 RQ#4.4 RQ#4.5 (mem.) (eic.) (API manip.) (relect. manip.) (indep.) DeepCloning � � � � � ShareFieldsOnly + -- � � � ShareObjOnly ++ � � � � ShareAll +++ - � � �
Regarding trace management, our approach provides facilities to generically capture clone-based execution traces while addressing the scalability in memory challenge (Ch#2). It can be used to reduce memory consumption of existing approaches relying on clone-based execution traces [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF][START_REF] Meyers | ProMoBox: A Framework for Generating Domain-Speciic Property Languages[END_REF], and is convenient for generic execution trace manipulations. The following chapter present our second approach, which consists in generating of multidimensional domain-speciic trace metamodels that are both convenient and eicient for domain-speciic trace manipulations. Chapter 

A Generative Approach to Deine Multidimensional Domain-Speciic Execution Trace Metamodels

In this chapter, we present our second contribution [START_REF] Bousse | A Generative Approach to Deine Rich Domain-Speciic Trace Metamodels[END_REF], which is a generative approach to deine multidimensional domain-speciic execution trace metamodels. Section 5.1 introduces the context and the main idea of the contribution. Section 5.2 motivates the problem domain and present our proposal. Section 5.3 reines some required concepts that we previously introduced, such as the mutable subset of a metamodel and execution traces. Continuing, Section 5.4 presents our contribution, which is an approach to generate rich domain-speciic trace metamodels. Finally, Section 5.5 discusses related work and Section 5.6 concludes the chapter. The work presented in this chapter is the result of a collaboration with Tanja Mayerhofer from TU Wien.

Introduction

As shown in Section 2.4.3 of Chapter 2, considerable efort has been made to design execution trace data structures to represent traces of programs or models. However, most of these data structures cannot take the domain-speciic concepts of an xDSML explicitly into account, which makes the development of domain-speciic analyses of execution traces more diicult (Ch#1). Moreover, redundancy of both immutable data and mutable data (e.g., such as with clone-based execution traces), induced by some data structures, yields poor scalability in memory (Ch#2). Finally, most existing trace data structures only ofer to explore a trace by enumerating all states and steps one by one, which can only scale linearly at best (Ch#3). To cope with that, a domainspeciic trace metamodel that is speciic to the considered xDSML can be deined [START_REF] Mayerhofer | A runtime model for fUML[END_REF], and alternate navigation paths can be provided to browse an execution trace [START_REF] Hartmann | A Native Versioning Concept to Support Historized Models at Runtime[END_REF]. Yet, designing such a domain-speciic metamodel is a time consuming and error-prone task [START_REF] Kelly | Worst Practices for Domain-Speciic Modeling[END_REF], and providing alternate navigation paths is non-trivial.

In this chapter, we propose a new way to deine domain-speciic trace metamodels for xDSMLs through two contributions: (1) a generic approach to automatically derive a domain-speciic trace metamodel for a given xDSML by analyzing its deinitions of execution states and steps; (2) facilities to navigate eiciently within a trace conforming to such a generated metamodel by providing a variety of navigation paths.

We evaluated this work through two applications to existing dynamic V&V techniques: semantic diferencing presented in Chapter 7, and omniscient debugging presenter in Chapter 8. The results show a simpliication of the deinition of domain-speciic trace manipulations (e.g., semantic diferencing rules), and large improvements both in scalability in time and scalability in memory as compared to the usage of a clone-based generic trace metamodel1 .

Motivation and Proposal

As we presented in Section 2.4.3, there is a large number of execution trace data structures to represent traces of models. However, while they may have interesting characteristics (modeling of logical time [START_REF] Deantoni | TimeSquare: Treat your Models with Logical Time[END_REF], handling of distributed systems [START_REF] Eschweiler | Open Trace Format 2: The Next Generation of Scalable Trace Formats and Support Libraries[END_REF], etc.), and may be compatible with existing trace analysis tools, most of them do not answer to the challenges stated in Chapter 1. First, there is necessarily a gap between the concepts deined in an existing trace data structure and the domain concepts of a particular xDSML. Indeed, existing formats are either generic [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF], or focus on speciic concerns [START_REF] Eschweiler | Open Trace Format 2: The Next Generation of Scalable Trace Formats and Support Libraries[END_REF][START_REF]KPTrace Speciication[END_REF] or languages [START_REF] Mayerhofer | A runtime model for fUML[END_REF][START_REF] Maoz | On tracing reactive systems[END_REF]. Consequently, the concepts they consider are unlikely to be adequate for an arbitrary xDSML (e.g., Petri nets), especially for deining domainspeciic trace manipulations. This semantic gap has a signiicant impact on usability (Ch#1). Second, redundancy of both immutable data and mutable data (e.g., such as with clone-based execution traces), induced by some data structures, yields poor scalability in memory (Ch#2). Third, as discussed in Section 2.4.4, most do not provide facilities to process traces eiciently: the only way to navigate in a trace is by enumerating each captured execution state one by one (Ch#3). Moreover, most of these formats only capture events that occurred (see Table 2.2 page 36), such as steps, and lack a representation of the execution state, such as the values of the variables of a program. This is due to the large size of traces, which leads to limiting the amount of information stored in them. Yet, we focus in this chapter on execution traces containing both states and steps, since traces containing only steps need to be replayed in order to reconstruct the states, whereas traces containing states allow direct analyses.

The irst underlying intuition of the approach we propose is the following: considering that the beneits of narrowing the scope of a language to a domain are well known [START_REF] Hutchinson | Empirical Assessment of MDE in Industry[END_REF][START_REF] Whittle | The State of Practice in Model-Driven Engineering[END_REF], deining a trace metamodel speciic to a language should bring similar advantages. In particular, by providing concepts of the xDSML directy in the trace metamodel, the usability of the trace should be improved. Mayerhofer et al. [START_REF] Mayerhofer | A runtime model for fUML[END_REF], followed this idea by deining manually a complete trace metamodel for fUML, which shows many beneits for analyzing past executions of fUML models. Yet, deining such metamodel can be tedious and error-prone [START_REF] Kelly | Worst Practices for Domain-Speciic Modeling[END_REF], and we observe redundancies between the trace metamodel and the concepts deined in fUML. These redundancies are simply explained: the deinition of an xDSML speciies what the state of a model is during its execution as part of the xDSML's semantics, and a trace metamodel directly requires such a notion of state. Hence, a irst diiculty is the deinition of a domain-speciic trace metamodel, which can possibly be mitigated by analyzing how the execution state is deined in the xDSML. A second diiculty is that while existing trace data structures can beneit from existing trace analysis and visualization tools, domain-speciic ones require speciic tooling. Therefore, our irst idea is to go from generic trace metamodels to a generic meta-approach to deine domain-speciic trace metamodels. More precisely, we propose to automatically derive a complete domain-speciic trace metamodel using the deinitions of execution state and steps of an xDSML. Such a generic generative approach would allow both to avoid the diiculty of deining domain-speciic trace metamodels, and to automatically provide suitable tools for manipulating domain-speciic traces.

The second intuition is that while a trace is generally only seen as a sequence of states and steps, there are in fact many imaginable ways to browse a trace. Having more navigation paths at disposal could be a great way to browse traces more eiciently. An example is inding the next value change of a given model element regardless of any other state changes in the model. Such query can be done easily by traversing the complete trace, yet reiing it as a navigation path dedicated to the investigated model element would avoid browsing the whole trace. Henceforth, our second idea is to create multidimensional trace metamodels, i.e., metamodels that provide many navigation paths to explore a trace.

In a nutshell, our proposal is an approach to automatically generate multidimensional and domain-speciic trace metamodels for an existing xDSML.

From Executable Metamodeling to Execution Traces

We already presented and deined what is an xDSML in Section 2.3 of Chapter 2. In the following paragraphs, we deine additionally what is the mutable subset of an xDSML, and what sort of execution traces we consider.

Mutable Subset of an xDSML

In Section 2.1.3 of Chapter 2, we deined the concept of metamodel footprint of a model operation, which is the set of concepts of a metamodel that are manipulated by a model operation. Then, in Section 4.3.1 of Chapter 4, we deined the mutable subset of a metamodel as the set of concepts that can be changed at the model level through model transformations.

In this chapter, we consider that the only part of an executed model that can change during an execution is its execution state. In other words, we consider that the mutable subset of the execution metamodel of an xDSML is the set of concepts it adds on top

Generating Multidimensional Domain-Speciic Trace Metamodels

We propose a generative approach to deine multidimensional and domain-speciic trace metamodels that provide facilities for eiciently processing traces. In this section, we present this approach by irst presenting the challenges we had to overcome, second explaining our generation procedure based on the introduced Petri net xDSML, third discussing the resulting beneits of the approach, and fourth providing details on our implementation.

Observations and Technical Challenges

There are many possible ways to generate a domain-speciic trace metamodel for an xDSML. Regarding the execution states, a simple yet working idea is to reuse the complete execution metamodel of the xDSML in the trace metamodel. As the executed model conforms to the execution metamodel, we can clone it at each execution step and store it as a state in the trace. We introduced such traces as clone-based execution traces in Section 2.4 of Chapter 2. However, this solution has multiple drawbacks. First, by duplicating the whole model to store each execution state, we create redundancies between the states for both immutable ields (as they never change) and mutable ields (as they may not change in each step). This impacts both usability (Ch#1) and memory consumption (Ch#2), although the scalable model cloning approach that we presented in Chapter 4 would mitigate this issue by sharing immutable data among clones. Second, the mutable ields we are interested in are scattered among the immutable ields, which may require complex queries to access them within a state. These issues compromise usability regarding domain-speciic trace manipulation (Ch#1). Lastly, such a trace metamodel does not provide any eicient way to browse a trace, since the only possibility is to enumerate each state one by one. Thus it would be, for instance, tedious and ineicient to look for the next value of a given mutable ield, compromising both scalability in time (Ch#3) and usability (Ch#1). From these observations, we identiied three technical challenges (TC):

(TC#1) Narrowing the concepts introduced in a trace metamodel, e.g., by focusing on the mutable properties of the execution metamodel.

(TC#2) Avoiding redundancy in traces, e.g., by not storing the same value twice consecutively for a given mutable ield.

(TC#3) Providing alternative navigation paths, e.g., among the sequence of values of a speciic mutable ield. the algorithm is simpliied for illustration purposes, meaning that some parts are reduced to functions, and that special cases, such as abstract classes, are not considered. The inputs of the procedure are the abstract syntax (mm as ), the execution metamodel (mm exe ) and the operational semantics (os) of an xDSML. The procedure is independent from executable models, since the obtained metamodel is valid for any execution trace of any model of the considered xDSML. Note that the classes Trace, ExecutionState, Step, SmallStep and BigStep (shown in green color in Figure 5.2) are always created (lines 2-3). In the following paragraphs, we explain the generation procedure based on the Petri net xDSML, starting with trace concepts for capturing the smallest unit of an execution state, i.e., an object's ield values, up to the concepts for capturing the complete execution state of a model. The trace metamodel generated for the Petri net xDSML is shown in Figure 5.2.

Trace Metamodel Generation

Capturing the Values of Fields (lines 11-14 of Algorithm 3). At any given point

in time, all mutable ields of an object of the executed model have a value. To represent such a value in a trace, we create one class per mutable property of the execution metamodel, and we copy this mutable property into this new class (lines [START_REF] Bézivin | Towards a precise deinition of the OMG/MDA framework[END_REF][START_REF] Bézivin | Principles, standards and tools for model engineering[END_REF][START_REF] Blair | Models@ run.time[END_REF]. This enables us to capture each value of a mutable ield as an instance of this generated class. For Petri nets this means creating one class called TokensValue for the property tokens. Thereby, we precisely narrow the trace metamodel to the mutable part of the execution metamodel (TC#1).

Capturing the States of Objects (lines 4-10, 15-16 of Algorithm 3).

The state of an object of the executed model at any point in time is deined by the values of all its mutable ields. To represent all states reached by an object, we create one class for each class of the execution metamodel containing at least one mutable property (lines 4-5). In addition, we make all instances of these generated classes accessible through a single instance of the class Trace. For Petri nets this means creating a class TracedPlace for the class Place, and a reference tracedPlaces from the class Trace.

An instance of such a generated class shall contain all values reached by all mutable ields of an object of the considered type in chronological order. This is achieved by creating an ordered unbounded reference to each corresponding generated value class discussed previously (line 15). For Petri nets this means generating a reference tokens-Sequence for the class TracedPlace to the class TokensValue. When creating an execution trace, one TracedPlace object will be created per Place object, each storing a sequence tokensSequence of all the values reached by the tokens ield of the respective Place object. A irst beneit of this structure is that we avoid redundancy by creating a single object per value change of a mutable ield (TC#2). A second beneit is that such sequences provide additional navigation paths in the trace, making it possible to directly access all changes of one speciic mutable ield (TC#3).

The last concern for capturing the state of an object is that the object may also contain immutable ields, which remain an important piece of information. Since the corresponding immutable properties are all deined in a class introduced in the abstract syntax, our solution is to create a reference to this class (lines 8-10). For Petri nets this means adding a reference originalObject for the traced class TracedPlace to the class Place of the abstract syntax. A TracedPlace object is thus linked to the Place object whose states it captures.

Capturing the State of the Model (lines 17-18 of Algorithm 3

). An execution state can be seen as the n-tuple of the values of all mutable ields in an executed model at a given point in time. However, n is not xDSML-speciic, but model-speciic, as the number of mutable ields depends on the number of objects in the executed model. For instance, in our Petri net xDSML, n equals the number of tokens ields of one given model, i.e., the number of Place objects.

In addition, n can change during the execution, as new objects can be created for classes introduced in the execution metamodel. To represent this n-tuple, we create a bidirectional reference between each generated value class and the class Execution-State, which represents one execution state of a model. By that means, an execution state references an unbounded set of values of mutable ields. For Petri nets this means introducing the references tokensValue and states between the classes ExecutionState and TokensValue.

Capturing Steps (lines 19-21 of Algorithm 3, and whole Algorithm 4).

A step may occur between two execution states if its step transformation rule was responsible for the respective state change. More precisely, multiple steps can start or end at an A step can be part of a big step, which is represented by the derived references parentStep and subSteps. More precisely, a big step is the root of a tree whose nodes are steps and whose leaves are small steps. To match the operational semantics as precisely as possible (TC#1), we restrict the steps contained into a big step to the ones that may occur within its corresponding model transformation through the creation of a dedicated abstract class (lines 12-13 of Algorithm 4). In addition, we rely on containment references to enforce the tree structure that are induced by big steps (lines 14-15 of Algorithm 4). For Petri nets, this means creating a class RunSubStep representing all sorts of steps that may occur during a RunStep step, and two references subSteps and runParentStep.

Then, step classes of all called step rules are created through a recursive call of the step class creation procedure (Algorithm 4), and through the use of a map that associate each rule to its step class (lines 16-19 of Algorithm 4). The irst line of the algorithm is the stopping criterion to handle the recursion: we only create once the class corresponding to a rule. For Petri nets, this means that the class FireStep is deined as a subclass of RunSubStep, since this is the only operation called by run.

Another problem is that it is possible for the run operation to be responsible of other model changes in between the calls to fire. Figure 5.3 depicts such situation through a simpliied and hypothetical run step rule: before and after calling fire, the code of run might be responsible for model changes, annotated (1) and (2). Even though such changes are not explicitly isolated within dedicated transformation rules, they must be considered as implicit small steps nonetheless, which is done by creating a dedicated class (lines 20-23 of Algorithm 4). For Petri nets, this means having a class RunImplicit-Step inheriting both from SmallStep and RunSubStep. Note that such generation could be avoided provided an analysis of the run operation that would verify that no changes are made to the model apart from the calls to fire. We represent this analysis by a procedure called containsImplicitSteps (line 20 of Algorithm 4). Yet, to better illustrate the algorithm, we consider that we don't have such an analysis for Petri nets operational semantics, and thus that this procedure returns true.

Finally, in the same manner as for values, all steps are stored chronologically within the unique Trace object (line 24). For Petri nets this means having an ordered reference fireSequence in the Trace class to the class FireStep, and a similar reference run-Sequence to the class Run. This gives direct access to all steps of a speciic transformation rule in chronological order, which is an interesting additional navigation path for a trace (TC#3).

Replacing References to the Execution Metamodel (line 22).

When mutable properties and step classes were copied in the trace metamodel, this included copying references to classes of the execution metamodel. Yet, such classes may contain mutable properties that were already copied in the trace metamodel. To avoid having twice the same concept in the trace metamodel (TC#1) or twice the same value stored in a trace (TC#2), our solution is to replace all references to the execution metamodel by references either to the abstract syntax or to classes representing the states of objects (e.g., Traced-Place). This is indicated by the function replaceReferencesToExeMM (line 22). Example Trace. Figure 5.4 shows a multidimensional domain-speciic trace of a Petri net model. Note that to construct such a trace, one must instrument the semantics of an xDSML, which is out of the scope of this contribution. In the upper part, we use the concrete syntax of Petri nets to show the execution. In the lower part, we use an object diagram to show the content of the executed model and of the trace at the end of the execution. In the example model, the transitions t1 and t2 are ired, leading to a trace with three states, two small steps, and one big step. To represent the states, three ExecutionState objects are linked to a set of TokensValue objects, which represent the marking of the Petri net. They are linked to FireStep objects, which represent the iring of t1 and t2, some are linked to the RunStep object that represents the complete Petri net run. There is one tokensSequence list per tokens ield: (1, 0) for p1 and p2 , (0, 1, 0) for p3 and (0, 2) for p4 (not shown). These sequences constitute alternative navigation paths that facilitate queries, e.g., we can ind the maximum number of tokens reached by p1 by reading only two values. Moreover, we can go from one such sequence back to the complete trace, e.g., to ind all states in which p4 had at least two tokens. Regarding steps, we have access to the list of the ired transitions by browsing the ireSequence list, e.g., to ind states following directly a iring of t2. Likewise, we have access to the list of runned nets with runSequence.

Note that this example does not illustrate the creation or deletion of objects within an execution. Such case is handled with the help of the variable number of references from a ExecutionState element to values. Hence, an object created just before a state means that this state and the following ones have references to the values of this object. Likewise, an object deleted just before a state means that this state and the following ones have no references to its values.

Resulting Beneits

Among all the concepts we create in a trace metamodel, some are generic (e.g., Trace), but the others are speciic to the xDSML (e.g., TokensValue). Also, we make sure not to have any redundancy of concepts. In other words, we precisely deine the structure of execution traces of models conforming to an xDSML. Thereby, domain-speciic analyses of traces have direct access to these concepts, and do not have to rely on complex queries or introspection to use domain-speciic data. We aim by that means to provide good usability (Ch#1).

In addition, we provide several navigation paths for browsing traces. Indeed, we create for each mutable property (e.g., tokens) and each step deinition (e.g., FireStep) of an xDSML a dedicated navigation path (e.g., tokensSequence and fireSequence). This allows to enumerate each value of a particular ield, or each step deinition of a particular step, without having to enumerate all the states of the trace. Moreover, all values and steps are connected through execution states, allowing to go from one navigation path to another. These navigation facilities ofer better usability and scalability in time (Ch#3 and Ch#1)

EMF Implementation

We implemented our approach for the Eclipse Modeling Framework (EMF). The resulting execution trace metamodel generator is written using EMF and Xtend. It is deined in two components: one to extract information from the operational semantics, and a second to generate the execution trace metamodel using this information. While the irst component is speciic to the considered model transformation language (e.g., xMOF, Kermeta), the second is completely generic. Along the trace metamodel, the generator also produces a trace manager with basic operations to construct and manipulate traces. More details about the implementation can be found in Section 9.4 of Chapter 9.

Related Work

In Section 2.4.3 of Chapter 2, we reviewed a number of existing work on the topic of model execution trace data structures. In the following, we look back at approaches we had presented that are related to our solution, and we discuss the diferences we observe. We irst focus on methods for deining domain-speciic trace metamodels, then we look at existing work on multidimensional trace data structures and inally we examine how self-deining trace formats can be related to our work.

Domain-Speciic Trace Data Structures

Hegedüs et al. [START_REF] Hegedüs | Back-annotation framework for Simulation Traces of Discrete Event-based Languages[END_REF] propose a generic execution trace metamodel that must be manually extended into a domain-speciic trace metamodel using inheritance relationships. They consider a trace to be a sequence of both changes and snapshots of objects of the model, with no representation of the complete execution state. We can summarize three main diferences with our approach. First, the structure is diferent from ours, both because we take into account the complete execution states of the model, and because we only consider high-level changes (i.e., steps) corresponding to relevant subsets of the execution model transformation. Second, their approach consists in extending a generic execution trace metamodel using inheritance, while we generate a complete metamodel with customized classes and properties for the considered xDSML. Thereby, we aim to avoid both type checks and casting, and to be closer to the considered domain. Lastly, their approach is manual, while ours is generative and automatized.

In the context of the TopCased project [START_REF] Benoit Combemale | Introducing Simulation and Model Animation in the MDE Topcased Toolkit[END_REF][START_REF] Crégut | Generative technologies for model animation in the TopCased platform[END_REF], Combemale et al. [START_REF] Combemale | A Design Pattern to Build Executable DSMLs and associated V&V tools[END_REF] propose the deinition of a trace management metamodel speciic to the model of computation of an xDSML. Such trace metamodel is only concerned with events occurrences, while our approach considers execution states. In addition, like Hegedüs et al. [START_REF] Hegedüs | Back-annotation framework for Simulation Traces of Discrete Event-based Languages[END_REF], their approach is manual while ours is generative and automatized.

Gogolla et al. [START_REF] Gogolla | From Application Models to Filmstrip Models: An Approach to Automatic Validation of Model Dynamic[END_REF] generate ilmstrip models from UML class diagrams. Such ilmstrip models consist of UML classes, and match what we call domain-speciic trace metamodels. However, the generated classes are almost identical to the ones from the input metamodel, hence leading to a trace metamodel equivalent to a clone-based one. This induces the same limitations as the ones we identiied in Section 5.4.1, which included redundancy, poor usability and and poor eiciency.

Meyers et al. [START_REF] Meyers | ProMoBox: A Framework for Generating Domain-Speciic Property Languages[END_REF] introduced the ProMoBox framework , which generates a set of metamodels from an annotated xDSML, including a property metamodel and a trace metamodel. More precisely, they provide a clone-bases generic execution trace metamodel that is extended into a domain-speciic metamodel by their generative approach. While being generative like ours, their approach difers on multiple aspects. First, they consider an abstract syntax whose properties are annotated either as runtime or event to identify mutable elements and event-related elements, while we consider the abstract syntax and the execution metamodel to be separated. Indeed, such separation makes possible a better separation of concerns and interchangeability of semantics. Second, the obtained trace metamodel is clone-based, since each state is a complete snapshot of the execution metamodel, with the same limitations as Gogolla et al. [START_REF] Gogolla | From Application Models to Filmstrip Models: An Approach to Automatic Validation of Model Dynamic[END_REF]. Finally, similarly to Hegedüs et al. [START_REF] Hegedüs | Back-annotation framework for Simulation Traces of Discrete Event-based Languages[END_REF], they use inheritance links to extend a base trace metamodel, while we generate new classes to avoid having to rely on introspection and casting when manipulating traces.

Multidimensional Trace Data Structures

As we presented in Section 2.4.4 of Chapter 2, few approaches propose multidimensional facilities to follow the evolution of speciic model elements within an execution trace. Two approaches show signiicantly related to ours.

Filmstrip models from Gogolla et al. [START_REF] Gogolla | From Application Models to Filmstrip Models: An Approach to Automatic Validation of Model Dynamic[END_REF]-mentioned above for their domain-speciic aspect-provide a structure that makes possible to follow the evolution of a single object of a model through added references, which facilitates the analysis of speciic elements. This is very similar to the dimensions we propose in our approach. However, because a new snapshot of an object is created at each execution step, following such navigation path requires as many iterations as browsing the complete execution trace of the model. Moreover, we consider a dimension to be at the level of a ield, while they consider the level of an object.

KMF runtime versioning [START_REF] Hartmann | A Native Versioning Concept to Support Historized Models at Runtime[END_REF] stores the versions of each object of a model separately, allowing to enumerate the states of a speciic object of the executed model. Their approach does allow to navigate among the states of a model from the perspective of a speciic element of the model, hence with much fewer iterations. However, their approach is generic and does not capture a domain-speciic execution trace metamodel. Moreover, similarly to Gogolla et al. [START_REF] Gogolla | From Application Models to Filmstrip Models: An Approach to Automatic Validation of Model Dynamic[END_REF], they consider changes at the level of an object.

Self-deining Trace Formats

Lastly, we also presented in the Section 2.4.3 of Chapter 2 self-deining trace formats, which are formats allowing to deine the data structure of the trace within metadata stored within the trace itself. This can be compared to a model that would embed its own metamodel. While a self-deining trace format cannot directly be used to construct the traces of an xDSML, it could potentially be an interesting alternative to MOF for the deinition of trace metamodels. For instance, adapting our approach to generate domain-speciic metadata for the Common Trace Format (CTF) [START_REF] Desnoyers | Common Trace Format (CTF) Speciication (v1.8.2)[END_REF] would make possible to beneit from a very memory eicient binary format. However, since we consider xDSMLs to be deined using metamodels deined with MOF, using such meta-formats for execution traces would make diicult the proper deinition of links with the executable model, both at the metamodel and at the model level. Moreover, to our knowledge, self-deining trace formats do not provide multidimensional navigation facilities.

Conclusion

Dynamic V&V of models requires the ability to model executions traces. We identiied two important requirements regarding the deinition of a trace metamodel for an xDSML: it must provide good scalability in time when manipulating traces, and good usability to analyze traces containing domain-speciic data and steps. Generic trace metamodels are not adequate because of their distance to the domain of an xDSML and because of their lack of alternative trace exploration means. The approach we presented consists in generating a multidimensional and domain-speciic trace metamodel of an xDSML, using its deinition of what the execution state of a model is, and which steps may occur during an execution. We reify the mutable properties of the execution metamodel into classes, allowing both to reduce redundancy and to narrow the trace metamodel. We also provide navigation paths both to follow the evolution of each mutable ield of the model over time, and to follow the steps of each step deinition. This allows an eicient navigation of traces, i.e., an exploration without visiting each state of the trace.

The following chapters present and evaluate two applications of our generative approach to two existing dynamic V&V techniques, namely semantic diferencing, and omniscient debugging.

Chapter 6

Foreword to the Applications to Dynamic V&V

In the previous chapter, we presented our second contribution, which is a generative approach to deine multidimensional execution trace metamodels. The current chapter is a short introduction to the two applications of this contribution to existing dynamic V&V approaches, namely semantic diferencing (Chapter 7) and omniscient debugging (Chapter 8). Section 6.1 explains the incentive and objectives of these applications. Section 6.2 gives an overview of these applications. Finally, Section 6.3 introduces the considered xDSML for the evaluation of both applications, namely fUML.

Objectives

As we mentioned in Chapter 3, we aim in this thesis at providing trace management facilities for both generic and domain-speciic trace manipulations. Yet, in the context of early dynamic V&V, the main focus of this thesis is the deinition of trace management facilities speciic to an xDSML. This eventually led to our second contribution: generating multidimensional domain-speciic execution trace metamodels (Chapter 5). Consequently, in the following chapters, we focus on illustrating the concrete beneits of this solution in particular. To this end, we apply it to two existing dynamic V&V approaches, namely semantic diferencing and omniscient debugging. Doing so has two main advantages. (1) Because our contribution is a meta-approach, it is diicult to evaluate while taking into account all the impacts at the application level. Therefore, having multiple concrete applications shows that the approach is working and relevant in diferent contexts. In addition, evaluating these applications allows us to indirectly evaluate our the meta-approach, e.g., to illustrate the beneits in scalability. (2) Applying our meta-approach is beneicial to existing V&V techniques. Hence, it leads to contributions to the ield of dynamic V&V itself, such as advanced and eicient omniscient debugging of executable models [START_REF] Bousse | Supporting Eicient and Advanced Omniscient Debugging for xDSMLs[END_REF].

Overview

To illustrate and evaluate our second contribution (Chapter 5), we applied it in two diferent contexts: one that requires the manual deinition of trace manipulations (i.e., manually written code), and the other that relies on the automatic generation of trace manipulations (i.e., generated code).

We present in Chapter 7 an application to semantic model diferencing, which is a dynamic V&V activity that consists in analyzing the semantic diferences among different versions of an executable model being developed. More precisely, we enhance an existing approach that relies on the comparison of execution traces [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF] by adding a preliminary step to generate a multidimensional domain-speciic execution trace metamodel of the considered xDSML. This approach requires the deinition of semantic diferencing rules, which deine when the traces of two models conforming to the same xDSML are equivalent. In other words, these rules are manually deined trace manipulations that are speciic to the considered xDSML. Studying the complexity of these rules gives the possibility to evaluate the usability (Ch#1) of the generated trace metamodel for domain-speciic trace manipulations. Moreover, these manipulations can beneit from the additional navigation paths, which gives the possibility to evaluate the gain in execution time due to the multidimensional structure (Ch#3). This work is an extension of the evaluation presented in our ECMFA'15 publication [START_REF] Bousse | A Generative Approach to Deine Rich Domain-Speciic Trace Metamodels[END_REF].

We then present in Chapter 8 an application to model omniscient debugging, which is a dynamic V&V activity that consists in controlling and observing the execution of a model in order to ind the cause of a defect. We propose an approach to deine a partly generic advanced omniscient debugger relying on generated domain-speciic trace management facilities. The generic part includes the debugger logic. The generated part includes a multidimensional domain-speciic trace metamodel for the considered xDSML, but also a state manager and a trace constructor. The latter two components consist of trace manipulations deined for the generated trace metamodel. Since these manipulations are generated and not manually deined, the usability of the trace metamodel cannot be evaluated in this case. However, execution time (Ch#3) and memory consumption (Ch#2) can be measured. This work led to a publication in the proceedings of the SLE'15 conference [START_REF] Bousse | Supporting Eicient and Advanced Omniscient Debugging for xDSMLs[END_REF].

We evaluate both these applications using the same real-world xDSML, namely fUML. In addition, both evaluations rely on the same dataset of real-world models from the case study of Maoz et al. [START_REF] Maoz | ADDif: Semantic Differencing for Activity Diagrams[END_REF]. We present thereafter both the xDSML and the dataset.

Case Study: fUML

fUML (foundational UML) [START_REF]Semantics of a Foundational Subset for Executable UML Models (fUML)[END_REF] is a subset of UML [START_REF]Uniied Modeling Language (UML) Version 2.5[END_REF] for which precise and complete operational semantics are deined within a standard. The considered subset focuses on two well-known parts of UML: class diagrams to deine the structure, and activity diagrams to deine the behavior. The resulting xDSML is a modeling language very similar to object-oriented programming languages such as Java or C#. In addition, a reference implementation1 of the fUML operational semantics can be used to execute models.

Both the abstract syntax and the execution metamodel of fUML contain an important number of classes. For this case study, we only rely on the behavioral part of fUML, i.e., activities. In the following paragraphs, we summarize the parts from both the abstract syntax and the operational semantics that concern fUML activities. fUML objects and data can be manipulated within an activities: creating instances of classes, assigning values to variables, invoking other activities, etc. Control nodes deine the begining and the end of an activity, as well as conditionals or concurrency among nodes. To connect nodes, there are two types of edges deined by two classes: ControlFlow and ObjectFlow. Control low edges deine the low of control among nodes (i.e., in which order and under which conditions are nodes executed), and object low edges deine the low of data (e.g., to parameterize operation calls). Note that for this case study, we only focus on the control low of fUML activities, and we do not consider any concept related to the object low.

Abstract syntax

In addition, to be able to reuse models from the case study of Maoz et al. [START_REF] Maoz | ADDif: Semantic Differencing for Activity Diagrams[END_REF] (see Section 6.3.4), we extend fUML with one additional class borrowed from UML: OpaqueAction (depicted in green). Indeed, their case study originally does not rely on fUML, but on a variant of UML activity diagrams containing the OpaqueAction class. While in UML this class represents an unspeciied behavior, we consider in our case study that executing an OpaqueAction does not have any efect. Classes called semantic visitors are deined to decorate classes of the abstract syntax with execution data using references. They are deined as subclasses of the SemanticVisitor class, which has a property runtimeModelElement to refer to the element that is decorated. For instance, ActivityNodeActivation deines the state of an ActivityNode object. Among other things (not shown), it deines the tokens that are held by the node through the reference heldTokens. Token objects are contained within nodes, and drive both the control low (with the ControlToken subclass) and the data low (with the ObjectToken subclass). Hence, somewhat similarly to Petri nets, executing an activity consists in a low of tokens from the initial node to the inal node. Finally ActionActivation is a subclass of ActivityNodeActivation, and deines whether or not an action is being executed through the boolean firing.

Operational semantics

The complete execution state is contained in a single ExecutionEnvironment object, which contains a single Locus object, which among others contains the state of all Activity objects through ActivityExecution objects. Each ActivityExecution contains the states of all nodes of the corresponding activity using ActivityNodeActivation objects. [START_REF] Maoz | ADDif: Semantic Differencing for Activity Diagrams[END_REF] (presented thereafter). More precisely, Figure 6.3a shows the irst version of the model, and Figure 6.3b shows how it was modiied into a second version. All actions are opaque actions. The activity describes the process of managing a new employee in a company. At the bottom, the initial node is a control node indicating where the activity starts. A control edge links it to an action named register. Then a second control edge links it to a decision node, whose guard only relies on a single boolean parameter of the activity called internal. If this parameter is true, then the left part of the activity diagram is executed, starting with get welcome pack. If it is false, it directly goes to assign to project.

Example of Model

Continuing with the left part of the irst version (Figure 6.3a), a fork node starts three actions in parallel: assign to project, assign keys and add to website. Then, the three control lows meet in a join node that only continues the low when the three actions are inished. It then leads to the action manager interview, then manager report, and then to a merge node which merges the two possible control low originating from the decision node at the start. Finally, after a last action authorize payment, the inal node is reached, and the execution of the activity is over.

The second version of the model (Figure 6.3b) is almost identical to the irst version, except for the action assign to project which is moved after assign keys.

Considered Dataset

For evaluating our applications, we used real world models taken from the case study of Maoz et al. for evaluating their semantic diferencing operator ADDif [START_REF] Maoz | ADDif: Semantic Differencing for Activity Diagrams[END_REF]. More precisely, the study contains diferent sequences of models, each sequence containing diferent versions created from one original model. These models may be found at http://www.se-rwth.de/materials/semdiff/. Both models that we have shown in Figure 6.3 are part of this study.

The choice of this existing case study was made to help establish a benchmark, facilitate comparison with future work, and because the models were drawn from industrial sources. To constitute our dataset, we selected 40 models whose sizes range from 36 to 51 objects. This required the a manual conversion of the models so that they conform to the fUML metamodel instead of the UML metamodel. We plan to integrate larger models to the dataset for a future study, but are conident in the current ones to provide initial meaningful comparison.

Introduction

The ield of model evolution is concerned with analyzing and understanding the changes made to a model during its development. Most of the existing approaches compare two models syntactically [START_REF] Brun | Model Diferences in the Eclipse Modeling Framework[END_REF][START_REF] Lin | DSMDif: a diferentiation tool for domain-speciic models[END_REF], i.e., by computing correspondences and diferences among their model elements. Yet, in the case of an executable model, a change in its content may impact its behavior, thus requiring to compare the behaviors of the model before and after the change to properly take into account their diferences. This is the principle of semantic model diferencing. A particular way to perform semantic diferencing is to compare execution traces of the models of interest [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF]. First, semantic diferencing match rules are deined for a given xDSML, the rules indicating which diferences among the execution traces constitute semantic diferences among the models. The deinition of these rules directly depends on the considered execution trace metamodel. Second, these rules are used to compare the execution traces of the considered models, hence comparing their behaviors.

However, deining semantic diferencing match rules is a diicult task, especially when the execution trace metamodel is generic, since it lacks usability. Likewise scalability in time is an issue, since all states must be enumerated when comparing the execution traces, even if the rules are based on a subset of the information they contain. For instance, the approach of Langer et al. [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF] relies on a generic execution trace metamodel, and is hence afected by both these problems. To overcome these obstacles, we propose to enhance semantic diferencing by relying on multidimensional domain-speciic execution trace metamodels, as introduced in Chapter 5. To achieve this, we modify the approach from Langer et al. [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF] by adding a prior step to generate such an execution trace metamodel for the considered xDSML. The expected beneits are both a simpliication of the semantic match rules due to the fact that the trace metamodel is domain-speciic, and an improvement of the performance thanks to the multiple dimensions of the execution traces. We evaluate our approach according to the following research questions: RQ#7.1 Can a multidimensional domain-speciic trace metamodel provide better execution times for semantic model diferencing as compared to a generic clone-based trace metamodel 1 ? RQ#7.2 Can a multidimensional domain-speciic trace metamodel simplify the deinition of semantic match rules as compared to a generic trace clone-based metamodel?

To validate our approach, we generate a multidimensional domain-speciic trace metamodel for a real world xDSML, namely fUML. Then, we deine a set of semantic diferencing rules for fUML based on this generated metamodel. Finally, we use these rules to compare traces of a set of real world fUML models extracted from an existing case study. Results discussed in Section 7.4 show a signiicant performance improvement and a simpliication of the semantic diferencing rules as compared to equivalent rules based on a generic execution trace metamodel.

Semantic Model Diferencing

Existing Approach

As we explained in the introduction, semantic diferencing of models is concerned with identifying behavioral diferences among distinct versions of models. While some approaches are non-enumerative and synthesize an aggregate model representing the semantic diferences between two models [START_REF] Fahrenberg | Vision Paper: Make a Difference! (Semantically)[END_REF], some approaches are enumerative and produce a list of witnesses [START_REF] Maoz | ADDif: Semantic Differencing for Activity Diagrams[END_REF]. Each witness makes explicit one speciic semantic diference between two models. In particular, Langer et al. [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF] have proposed a generic enumerative semantic diferencing approach for xDSMLs that is based on the analysis of execution traces. In this approach, execution traces obtained from relevant executions of two models are compared according to diferent equivalence criteria. For instance, two Petri nets may be considered semantically equivalent if they continuously have the same marking throughout their executions. These criteria, which are speciic to the considered xDSML, are deined as match rules [START_REF] Kolovos | Diferent Models for Model Matching: An analysis of approaches to support model diferencing[END_REF] indicating which syntactic diferences among the traces constitute semantic diferences among the models.

Abstract Syntax

Clone-Based Generic Execution Trace Metamodel

Figure 7.1 shows an overview of their approach, which consists in three steps.

1. First, syntactic matching match rules are used to identify syntactic correspondences between two models. For instance, a transition of a irst Petri net model may match a transition in a second Petri net model if it has the same name.

2. Then, both models are executed using the execution semantics of the considered xDSML and using some relevant and identical input. Langer et al. [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF] propose in their approach to rely on symbolic execution to identify a set of relevant input values to cover most behaviors. Execution traces are produced through an observation of the execution (e.g., instrumented models or semantics).

3. Finally, semantic diferencing match rules are used to compare the obtained traces, which yield semantic diferences between the models.

This semantic diferencing approach utilizes a clone-based generic trace metamodel for capturing execution traces, which is depicted in Figure 7. this metamodel is a sequence of clones of the model, each stored in a State object created after a step causing a state change.

Application to fUML

We presented the fUML language in the previous chapter (see Section 6.3 of Chapter 6). To illustrate this approach, we consider an equivalence criterion for which two fUML activities are equivalent if all sequences of action executions possible in one activity are also possible in the other. More precisely, as we have seen in the execution metamodel, the start and the end of executing an action is captured in an object ActionActivation by a boolean mutable property called firing. This property is set to true when the execution starts and reset to false when the execution ends. Hence, checking the criteria consists in computing the order in which the actions of the activity diagrams are executed (i.e., when firing is set to true), and in comparing the resulting sequences with each other. Note that multiple actions may be executed in the same execution state, hence an element of a sequence is set of actions. Also, for this example, we focus on a single type of actions represented by the OpaqueAction class. Match rules are implemented using the Epsilon Comparison Language (ECL) 2 . Syntactic Match Rule Listing 7.1 shows the single syntactic match rule Match-OpaqueActions required for this fUML equivalence criterion. Since we are only interested in OpaqueAction objects, we deine that two of them are equivalent if they have the same name.

Semantic Match Rule Listings 7.2 and 7.3 show the semantic match rule Match-Traces deined for the generic clone-based trace metamodel shown previously. It is deined as a call to the helper function compareTraces (lines 1-6). The latter is deined as a comparison of the sequences of sets of executed actions (lines 8-12). These sequences are computed by the main helper function getFiringActionsSequence, which browses the whole sequence of State objects and extracts the actions of interest (lines 14-33).

when the input value is true. In such case, a diference is found starting at position 3, because assign to project is executed later in the second version.

Observations

As we have seen, the usage of a generic clone-based trace metamodel has two key implications on the trace analysis:

1. As a state is simply a collection of objects of any type, type checks and type casting are required to analyze the captured execution data. Moreover, it is necessary to navigate among the complete and potentially complex execution metamodel. This implies complex rules that are hard to read and comprehend. Listings 7.2 and 7.3 are a good illustration of this problem: two pages of code are required to implement a quite simple match rule.

2. Analyzing state changes of an executed model requires the traversal of all execution states captured in a trace. This implies an execution time that scales at best linearly to the number of captured states. Such iteration can be seen at line line 17 of Listing 7.2.

In the next section, we propose to enhance this approach by mitigating these issues through the use of generated multidimensional domain-speciic trace metamodels.

Eicient Semantic Model Diferencing

Enhancement of the Existing Approach

As proposed above, we have adapted the semantic model diferencing approach from Langer et al. [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF] so that it relies on execution traces conforming to a generated multidimensional and domain-speciic trace metamodels instead of a generic trace metamodel. By doing so, we expect to make semantic diferencing match rules easier to write by taking advantage of fact that execution traces arethe domain-speciic. In addition, we expect to improve scalability in time by taking advantage of the multiple dimensions of the execution traces.

Figure 7.3 shows an overview of our approach, which adds one step to the original approach shown in Figure 7.1. We have highlighted in green the parts that are changed, new, or afected by our enhancement. We explain the diferences below.

-A new prior step is added (labeled (0) in Figure 7.1), which is the generation of a multidimensional and domain-speciic execution trace metamodel, as proposed in Chapter 5. The obtained metamodel replaces the former clone-based execution trace metamodel.

-This of course afects the capture of the execution traces, since they must conform to the generated execution trace metamodel. ited from TracedSemanticVisitor, allowing to eventually reach the original OpaqueAction object that was executed.

Semantic Match Rule Listing 7.4 shows the semantic match rule deined for the generated multidimensional domain-speciic trace metamodel of fUML. The beginning is identical to the match rule from Listing 7.2, with the deinition of the rule itself and of the helper function compareTraces to compare the action orders (lines 1-12). Again, a helper function getFiringActionsSequence is deined to ind the action execution order of a given Trace object (lines 14-35). However, getFiringActionsSequence is speciic to the generated trace metamodel. Instead of enumerating all ExecutionState objects, the function relies on the firing-Sequence property (line 18), that stores the values taken by the firing attribute of each OpaqueActionActivation object. Thereby, only ExecutionState objects in which there were changes in firing ields are visited. The main intricacy relies on the fact that each firingSequence ield may contain the values of firing for arbitrary execution states, (e.g., the irst and the last one), depending on when the action was executed. Since these sequences are browsed one by one, it is therefore necessary to sort the gathered actions to match the correct global order of execution states. This is done by creating a map (line 15) whose keys are indexes of execution states, and whose values are sets of actions. Later, these keys are sorted (line 30) to reconstruct the correct execution order.

Finally, the last helper function getAction retrieves the OpaqueAction object corresponding to a TracedOpaqueActionActivation object (lines 37-47). To do so, it follows the runtimeModelElementTrace property-which always contains a single element, since it never changes despite the fact that it is introduced in the execution metamodel-and the originalObject property.

Evaluation

In the following, we present the results of the evaluation and discuss how they give answers to the research questions stated in Section 7.1.

Set-up

We presented in the previous chapter our case study based on fUML and on real world models taken from the case study of Maoz et al. (see Section 6.3 of Chapter 6). For this evaluation, we implemented the operational semantics of fUML using xMOF [START_REF] Mayerhofer | xMOF: Executable DSMLs based on fUML[END_REF], which required the extension of one class and the deinition of 57 new classes. Using these operational semantics, we generated a multidimensional domain-speciic execution trace metamodel for fUML.

Our evaluation relies on fUML using the same equivalence criterion as in our illustrations: two fUML activity diagrams are trace equivalent if all sequences of action executions possible in one activity diagram are also possible in the other. As we have previously explained, we developed two variants of match rules implementing this criterion: one for performing the analysis on trace models conforming to the generic trace metamodel (Listings 7.2 and 7.3), and one for performing the analysis on trace models conforming to the generated domain-speciic trace metamodel (Listing 7.4).

Complexity Reduction (RQ#7.2).

To assess the gain in usability, we estimate the complexity of the developed match rules through diferent metrics: the number of lines of code required, the number of statements, the number of operations, the number of operation calls, the number of loops, the number of type checks and the number of conditionals. Table 7 For all elements, we observe a signiicant reduction of the complexity of the semantic diferencing rules. This gain is mainly due to the structure of the generated multidimensional domain-speciic trace metamodel. In contrast to the generic trace metamodel, there is no need to traverse the complex data structure of the execution metamodel of fUML, but instead the actions and the evolution of their values can be directly accessed. Only three loops are required for traversing them as well as the trace of the property firing, and another loop is required for sorting the action executions chronologically. Other improvements are due to the fact that the trace metamodel is domain-speciic, such as type checks that become almost obsolete, since the trace structure precisely captures the concepts required in the trace. These results allow us to answer RQ#7.2 as follows: multidimensional domain-speciic trace metamodels seem to simplify the deinition of domain-speciic trace analyses.

Performance Improvement (RQ#7.1).

To assess the gain in performance, we measure the time required to execute both sets of semantic diferencing rules on the considered dataset of fUML activities (see Section 6.3.4 of Chapter 6). More precisely, given the sequences of model versions from the dataset, we applied the rules to pairs of models originating from the same model and whose version numbers follow one another. Figure 7.5 shows the execution times obtained for applying the rules on the traces of the considered example models. This experiment was performed on an Intel Core i7-4600U CPU, 2.10GHz, 2.69GHz, with 12GB RAM, running Windows 8.1 Pro. The X-axis of Figure 7.5 shows the number of states contained by the generic and domain-speciic traces. The Y-axis shows the measured execution time to perform a comparison of two execution traces, on a logarithmic scale. Each execution time was measured ten times and the arithmetic mean values are shown in the igure.

As can be seen from the measurements, the rules analyzing traces conforming to the domain-speciic trace metamodel outperform the match rules analyzing generic traces since they are between 170 and 400 times faster with an average of 250. As we had previously highlighted, the main reason for this result is the multidimensional structure of the domain-speciic trace metamodel allowing to eiciently explore the trace through dedicated navigation paths related to speciic model elements. Thereby, analyzing the trace does not require the enumeration of all execution states, and only requires to iterate as many times as the elements of interest changed during the execution. These results allow us to answer RQ#7.1 as follows: multidimensional domain-speciic trace metamodels seem to enable better execution times for trace manipulations as compared to a generic trace metamodel.

Conclusion

Developing executable models requires facilities to track the changes that are made to them, and to understand the impact of these changes. In particular, semantic model differencing consists in analyzing how changes made to models impact their behavior. This can be accomplished by comparing execution traces captured during the executions of diferent versions of a model. Such comparisons are based on equivalence criteria speciic to the considered xDSML, and can be accomplished by deining semantic diferencing match rules. These rules are domain-speciic trace manipulations that specify which diferences among execution traces constitute semantic diferences among the models.

A set of semantic diferencing rules must be deined according to a speciic execution trace metamodel. While a generic execution trace metamodel is simple to understand and can be used for any xDSML, it doesn't provide a direct access to the concepts of the xDSML, which hinders the complexity of semantic diferencing rules. In addition, it generally requires each execution state to be enumerated even when the rules are based on a subset of the information they contain. To cope with these limitations, we propose the use of multidimensional domain-speciic execution trace metamodels, as deined in our previous contribution presented in Chapter 5. Thereby, domain concepts are directly accessible, and execution traces can be explored through a variety of navigation paths. We evaluated our approach using a real-world xDSML, fUML, and a selection of realworld models. Results show that semantic diferencing rules are much less complex to deine, and that performance is improved by at least 170 times.

Chapter 8 Eicient and Advanced Omniscient Debugging

In this chapter, we present a second application of multidimensional domain-speciic execution trace metamodels (presented in Chapter 5) to omniscient debugging of executable models [START_REF] Bousse | Supporting Eicient and Advanced Omniscient Debugging for xDSMLs[END_REF]. Section 8.1 introduces the context and the objectives of this work. Then, Section 8.2 deines the considered scope of model execution and model debugging through a comparison of the features of interactive debugging approaches, and an enumeration of the services expected by a multidimensional omniscient debugger. Continuing, Section 8.3 presents our approach to provide generic multidimensional omniscient debugging to any xDSML, which relies on the generation of eicient domainspeciic trace management facilities. Section 9.5 briely presents a prototype supporting the technique in the GEMOC Studio. Section 8.4 discusses the evaluation of our approach. Finally, Section 8.6 concludes the chapter. The work presented in this chapter is the result of a collaboration with Jonathan Corley and Jef Gray from the University of Alabama.

Introduction

As we have seen in Section 2.3 of Chapter 2, many eforts aim at providing facilities to design executable Domain-Speciic Modeling Languages (xDSMLs) in order to analyze behavioral properties early in the development process. In particular, we introduced interactive debugging in Section 2.5 as a common dynamic facility to observe and control an execution in order to look for the cause of a defect. However, standard debugging only provides facilities to pause and step forward during an execution, hence requiring developers to restart from the beginning to give a second look at a state of interest. To cope with this issue, we presented omniscient debugging in Section 2.6, which is a promising technique that can rely on execution traces to enable free traversal of the states reached by a system, thereby allowing developers to "go back in time." While most general-purpose languages (GPLs) already have their own eicient standard debugger (e.g., Java1 ) or omniscient debugger (e.g., also Java [START_REF] Pothier | Back to the future: Omniscient debugging[END_REF]), developing such a complex tool for any xDSML remains a diicult and error prone task. Despite the speciicities of each xDSML, it is possible to identify a common set of debugging facilities for all xDSMLs. Thus, to avoid manual creation of each debugger, a possible solution is to deine a generic omniscient debugger that would work for any xDSML. However, handling any xDSML has two main consequences: (1) There is necessarily a trade-of between genericity and eiciency of the debugging operations, since supporting any xDSML requires the use of expensive introspection, conditionals, or type checks to support a wide variety of abstract syntax and runtime data structures. Moreover, since debugging is an interactive activity, responsiveness is of primary importance. Hence, a irst concern is the eiciency of a generic debugger. (2) The execution data structure deined in an xDSML can be arbitrarily complex (e.g., a large object-oriented structure), and therefore diicult to comprehend in a debugging session, especially if the execution leads to a large amount of states. Hence, a second concern is the usability of omniscient debugging for xDSMLs; i.e., speciic advanced facilities are required to manage the complexity and size of the executions. To summarize, the following are key objectives that drive the focus of the work presented in this chapter: O#1: Providing eicient omniscient debugging facilities, to ensure responsiveness of the debugger.

O#2:

Ofering advanced omniscient debugging facilities, to improve the usability.

To address O#1, we propose to go from a generic omniscient debugger to a generic meta-approach to deine omniscient debuggers. Such a generative approach can provide an eicient and inely tuned omniscient debugger for any xDSML. Yet, considering a generic set of debugging services for all xDSMLs, both the interface and some underlying logic of a debugger can remain generic without compromising eiciency. Hence, our contribution relies on a partially generic omniscient debugger supported by generated domain-speciic trace management facilities. The trace management facilities include a domain-speciic trace metamodel that precisely captures the execution state of a model conforming to the xDSML, and a domain-speciic trace manager providing all the required services to manipulate the execution trace generically. We rely on our contribution presented in Chapter 5 for the generation of execution trace metamodels. Because the trace manager is domain-speciic, it is inely tuned to the considered xDSML and to the generated trace metamodel, and hence more eicient than a generic one. To address O#2, our contribution provides multidimensional omniscient debugging services, which mix both omniscient debugging services, and advanced facilities to navigate among the values of speciic elements of the executed model.

We implemented our approach as part of the GEMOC Studio, a language and modeling workbench; and we conducted an empirical evaluation. To evaluate the eiciency of our solution, we assessed its quality with regard to both memory consumption and the time required to run omniscient debugging operations. We compared our approach with two generic omniscient debuggers: one that simulates omniscient debugging by resetting the execution engine and re-executing until the target state is reached, and one that copies the model at each execution step. Obtained results show that our approach is on average 3.0 times more eicient in memory when compared to the second debugger, and respectively 54.1 and 5.03 times more eicient in time when compared respectively to the irst and the second debugger.

Multidimensional Omniscient Debugging

We have already introduced executable Domain-Speciic Modeling Languages (xDSMLs) and model execution in Section 2.3 of Chapter 2. We then presented interactive debugging and omniscient debugging in Section 2.5 of the same chapter. In the following section, we irst deine the scope of our approach regarding the ield of omniscient debugging, then we enumerate the expected services of our approach as an extension of omniscient debugging, and inally we present an example scenario.

Comparison of Interactive Debugging Approaches

Interactive debugging of an executable model involves controlling the model's execution and observing the states traversed. Figure 8.1 shows four approaches to achieve this, with diferent levels of control over the execution. tics. Second, we call weak omniscient debugging the possibility to go backward in the exploration of the states through a restart of the model transformation until the target prior state is reached again. Note that as we explained in Section 2.6 of Chapter 2, this can be accomplished manually with any interactive debugger through cyclic debugging (see Figure 2.10a page 47). Moreover, no execution trace is required.

Third, omniscient debugging is an extension of interfactive debugging that relies on capturing an execution trace to by able to revert the executed model into a prior state. Such trace can be partial in the case of reconstructive omniscient debugging, or complete in the case of traced-based omniscient debugging. This makes the procedure deterministic (i.e., the exact same states are visited) even if the model or the operational semantics are non-deterministic.

Finally, our proposal relies on multidimensional omniscient debugging, which extends omniscient debugging with facilities to navigate among the values of mutable ields of the model.

Multidimensional Omniscient Debugging Services

While interactive and omniscient debugging can be broadly deined as facilities to control the execution of a model (see Deinition 10 page 41 and Deinition 11 page 46), precise common facilities are expected to be found in an interactive or omniscient debugger. In the following, we irst summarize such common facilities as sets of provided services, then we introduce the additional ones we propose for our approach. Note that all these services are only valid when the execution is paused; i.e., when the model transformation waits for instruction before continuing.

Standard Debugging

Most debuggers only provide interactive debugging, which includes the following forward exploration services:

breakpoint: pause the execution when a speciied condition is true (e.g., a transformation rule is reached).

-stepInto: resume execution and pauses after either executing a single small step or moving to the next step encountered in the following big step.

-stepOver: resume execution and pause when the next step is completed (including the contained steps, if this is a big step).

-stepOut: resume execution and pause when the irst step not contained within the current big step is reached.

play: resume execution.

visualization of the current state: display the values of relevant mutable elements.

Omniscient Debugging To provide exploration of previously visited states, omniscient debugging relies on the construction of an execution trace to extend standard debugging with the following services:

jump: revert the model to a speciied state.

-backInto: revert a single small step or moves to the last step encountered in a big step.

-backOver: revert the last encountered step (including the contained steps, if the last step is a big step).

-backOut: revert all the remaining steps within the current big step.

-playBackwards: continuously revert execution until the execution is paused or the initial state is reached.

visualization of the trace: display an interactive representation of the reached execution states and show which state is current.

Multidimensional Omniscient Debugging

With the ability to go both forward and backward, a developer can explore any state of a model's execution. Yet, large traces are diicult to navigate practically, and information stored within a state can be arbitrarily complex, compromising usability (O#2). To cope with this issue, we investigate multidimensional omniscient debugging; i.e., facilities to navigate among the values of the mutable ields of the model:

-jumpValue: jump to the irst state in which a given mutable ield has a given value.

-stepValue: given a mutable ield, jump to the next value of this ield.

-backValue: given a mutable ield, jump to the previous value of this ield.

visualization of the value sequences: display an interactive representation of the reached values of the mutable ields and show which values are the current ones.

Example Debugging Scenario

Consider a complete execution and debugging scenario with a Petri Net model conforming to the Petri net xDSML introduced in Section 2.3 of Chapter 2, and later summarized in Figure 5.1 of Chapter 5 (page 78). The initial state of the considered Petri Net model is depicted at the left of Figure 8.2 with the label A. First, we set a breakpoint in order to pause the execution right after it starts. Then we start the execution and reach the irst A state. From there, the next step is an application of run. We perform a irst stepInto (1), which does not change the current state, but presents us with a new next step, which is an application of fire on t1. We then use stepInto a second time (1), which applies the fire small step and brings us to the B state. From there, we use stepOut (2) to get out from the current big step (i.e., run ), which brings us to the D state. At this point, the trace is fully constructed, and no additional transformation rules will be applied. Then, similar to the beginning of the scenario, we apply twice backInto (3) to reach the C state. We then use backValue (4) to go back to the previous value reached by the tokens ield of the p4 Place object. While p4 has one token in the C state, its previous amount was zero, which started in the A state. Hence, we reach the A state again. Finally, this time we use stepOver (5) to directly follow the irst step (i.e., run) and we reach the D state again. Note that in this case, stepOver should not apply execute any part of the model transformation, but simply read information from the execution trace to directly revert the executed model into the stored D state.

Eicient and Advanced Omniscient Debugging for xDSMLs

We presented in the previous section the services that deine a multidimensional omniscient debugger. This section presents our approach that provides eicient and advanced omniscient debugging for xDSMLs using a partially generic, multidimensional omniscient debugger, supported by generated domain-speciic trace management facilities -including a trace metamodel obtained with approach from Chapter 5.

Overview of the Approach

Deining an xDSML implies the deinition of a number of domain-speciic facilities to edit or analyze a model conforming to the language. In particular, one method to provide a visual animation of a model execution is to observe the model and react to changes. Because such a pattern is common when deining tools for xDSMLs, our approach is designed to have a single instance of the executed model loaded at any given time that can be modiied throughout the execution and the debugging session. Figure 8.3 shows an overview of our approach. The idea is to obtain a complete trace-based omniscient debugger for a considered input xDSML. We consider that the initialization function of the xDSML was already applied to an input model, creating the executable model. The irst step of our approach relies on generators (a), which take the considered xDSML as input to produce two domain-speciic components: a trace metamodel (b) and a trace manager (c). The second step is the execution and the debugging of the model. The execution engine (d) applies the operational semantics to change the model and uses the trace constructor (e) from the trace manager to construct a domain-speciic trace. The generic multidimensional omniscient debugger (f) provides all the services described in Section 8.2 by controlling the execution engine and relying on the state manager (g) to revert the model into previous states. Additionally, the debugger relies on the generic trace metamodel interface (h) to manipulate the trace.

To illustrate a subset of the interactions between the components shown in Figure 8.3, Figure 8.4 shows a sequence diagram that sketches what happens when a small step must be computed and stored in the trace. Duration bars depicted in gray represent changes made in the afected element. First, the engine (d) determines the next rule to apply then notiies the trace constructor (e) that a small step will occur. As a result, the trace constructor reads the executed model, and updates the domain-speciic trace with new elements accordingly (e.g., add a new small step and, if the model was altered, a new state). Finally, the execution engine applies the rule and modiies the executed model accordingly.

We present all of these components in more detail in the remainder of this section. 

Execution Engine

First and foremost, an omniscient debugger must provide precise control over the execution of a model, such as the ability to pause during execution or traverse the trace in a controlled manner. As we explained in Section 2. Such component must adhere to certain speciications. The engine must be able to drive the execution of the model (i.e., initialization, start, stop), and to provide to the debugger some control over the execution. This includes the ability to pause the execution at a speciic state during execution, and the ability to resume the execution from a paused state. We assume that the engine provides at least the following services:

-pauseWhen: order to suspend the execution in between two steps as soon as a given predicate is true.

-isPaused: return true if the engine is paused.

resume: resume execution (i.e., cancel a pause).

As presented thereafter in Section 9.5 of Chapter 9, the implementation of our approach relies on the execution engine of the GEMOC Studio, which encompasses the aforementioned services.

Multidimensional Domain-Speciic Trace Metamodel

Our approach relies on the generation of a domain-speciic trace manager to create and manipulate execution traces. The irst and most central component of this manager is the multidimensional domain-speciic execution trace metamodel (b in Figure 8.3) of the input xDSML. To obtain this metamodel, we rely on the generation procedure we deined in Section 5.4.2 of Chapter 5.

In the context of omniscient debugging, relying on a multidimensional domainspeciic trace metamodel has multiple beneits. First, since it precisely captures the structure of the execution traces of the considered xDSML, it reduces the risk of creating an invalid trace. Second, traces can be stored and used for ulterior domain-speciic execution traces manipulations. Third, the multidimensional structure greatly facilitates the deinition of multidimensional debugging services in an eicient way.

Trace Constructor

To provide omniscient debugging, we must construct an execution trace during the execution of the model. We have deined the following set of operations to be provided by the trace constructor (e in Figure 8.3):

initialize: create the base elements of the trace.

-addState: add a new state in the trace if a mutable ield of the model changed, or if instances of classes introduced in the execution metamodel are created/deleted.

-addSmallStep: add a small step in the trace.

-bigStepStarted: notify that a big step has started.

-bigStepEnded: notify that a big step has ended.

As we explained in Section 2.3.5 of Chapter 2, the execution of a model consists of a sequence of execution steps, each step originating from the application of a subset of the execution transformation. To capture an execution state that matches a model conforming to the execution metamodel, the operation addState must be called just before or after a step.

Since a big step is simply a sequence of small steps, we only need to capture states before and after small steps. However, we also need to capture when steps occur, hence addSmallStep must be called at small step, while bigStepStarted and bigStepEnded must be called before and after a big step, respectively. In summary, all the calls required to construct the trace are as follows:

-Just before the irst small step: initialization -Just before a small step: addState, addSmallStep -Just before a big step: bigStepStarted -Just after a big step: bigStepEnded

Generic Trace Metamodel

Our approach relies on the generation of a domain-speciic trace metamodel for the considered xDSML. Since the debugger is generic, an interface must also be deined to manipulate traces in a generic way despite their various possible data structures. For this approach, we deined this structural interface as a generic trace metamodel (h in Figure 8.

3) specifying all the information that should be accessible within a domain-speciic trace. Thus, it has a similar structure to generated domain-speciic trace metamodels, except it contains less classes and properties. Figure 8.5 shows the generic trace metamodel interface. To summarize, we have the same base classes (Trace and ExecutionState) as generated domains speciic trace metamodels (e.g., the Petri net trace metamodel shown in Figure 5.2, page 81 of Chapter 5), and classes to represent both steps (ExecutionStep) and values (TracedObject, ValueSequence, Value). Primitive types that extend the Value class (e.g., IntegerValue) are not shown due to space limitations. We use references to elements of the execution metamodel, operational semantics, and executed model: appliedRule to specify which rule was applied, originalObject to specify which object of the original model is traced by a TracedObject, and tracedProperty to specify the property traced by a ValueSequence. Also note that derived properties are deined to facilitate the navigation among the trace, such as nextState. Finally, ExecutionStep objects are ordered either by starting time, or by ending time, hence the derived properties nextStarting and previousStarting for the starting time then nextEnding and previousEnding for the ending time.

In order to go back and forth through the execution states and steps, a Trace has a reference currentStepForward to the ExecutionStep object that represents the next forward execution step, and a similar reference currentStepBackward for the next backward step (e.g., to backOver the last step handled by the debugger). The current state is accessible with currentState, which is derived from currentStepForward. Similarly, the property currentValue of ValueSequence is indirectly derived from currentState.

To provide this interface, our solution relies on the generation of a one-way model transformation from the domain speciic trace metamodel to the generic trace metamodel. Thereby, we have a generic read-access to the trace. Regarding write-accesses, we store the debugging state (e.g., currentState) in a separate generic structure, hence avoiding the need to modify the domain-speciic trace.

State Manager

An omniscient debugger must be able to revisit a previous state by reverting the executed model into the state stored in the execution trace. The operation enabling a debugger to return to a past state is provided by the state manager (g in Figure 8.3), which we speciied with a single service:

-restoreModelToState: restore the executed model into a given execution state.

The idea is similar to the well-studied memento design pattern, albeit at the model level. The originator is the model being executed; the memento is an execution state of the trace; and the caretaker is both the trace and the trace manager.

Domain-Speciic Trace Manager

To implement both the trace constructor and the state manager and to generically expose as much information as stated in the generic trace metamodel, our approach relies on the generation of a domain-speciic trace manager (c in Figure 8.3). The reason for generating this component is eiciency (O#1), because trace manipulations can be tuned for both the considered xDSML and the generated domain-speciic trace metamodel (introduced in Section 8.3.3).

Consequently, the domain-speciic trace manager generation is coupled with the domain-speciic trace metamodel generation. Since all generated operations manipulate a trace conforming to this metamodel, a set of traceability links obtained from the generation of the domain-speciic trace metamodel is provided to the generator. From there, the main steps of the generation are as follows: 4. Finally, since the systematic shape of generated trace metamodels is known, a generic trace metamodel interface can be provided, as deined in Section 8.3.5.

Generic Multidimensional Omniscient Debugger

The last component to deine is the generic multidimensional omniscient debugger (f in Figure 8.3) that relies on the execution engine to control the current execution, on the state manager to restore previous states, and on the generic trace metamodel interface to manipulate traces. Tables 8.1 to 8.3 provides a precise deinition of each service required for multidimensional omniscient debugging using the services of the three aforementioned required components. These components are represented by three singletons: engine represents the execution engine, trace represents the root element of a model conforming to the generic trace metamodel, and manager represents the state manager. In the following paragraphs, we explain the deinitions of all the services provided by the debugger deined in the tables.

Jump services Table 8.1 starts with the deinition of the most important omniscient debugging service, which is the ability to jump to a prior state. Jumping consists of going back to a chosen state in the execution trace, and is accomplished via the jumpToState service. First, it uses the restoreModelToState service from the state manager to modify the model, then updates the debugger state represented by currentForwardStep and currentBackwardStep. Additionally, we need to be able to jump back either right before or after an execution step, which is provided by the services jumpBeforeStep and jumpAfterStep.

Other omniscient debugging services Next, we deine the remaining omniscient debugging services. backInto, backOver and backOut directly rely on jumps to reach the correct state. The last service, playBackwards, is a loop backwards until either the initial state is reached or the engine is paused.

Standard debugging services Continuing, Table 8.2 deine the standard debugging services; i.e., breakpoints and forward stepping. toggleBreakpoint provides a generic way to deine a breakpoint through a predicate, that can be deined on the model state (e.g., watching for a speciic instruction to be reached) or on the trace (e.g., verifying a temporal property or watching for a speciic step to be applied). It is deined using the pauseWhen service that must be provided by the execution engine. The next services are the standard step operations: stepInto, stepOver, and stepOut. There are two cases to consider: (1) When the current step is at the end of the trace, we rely on pauseWhen and resume to apply the operational semantics up until the correct situation is reached (e.g., waiting for the current big step to be inished with stepOver). (2) When the execution state is at a past state (e.g., after a jump backwards), jump services are called (even though these step services are not speciic to omniscient debugging) while the engine remains paused.

Multidimensional omniscient debugging services Lastly, Table 8.3 deine the inal set of services providing multidimensional omniscient debugging facilities. The goal of these services is to provide the capacity to debug a model by following the sequences of values of speciic mutable ields, thereby improving the usability of omniscient debugging for xDSMLs (O#2). Implementing these services is simpliied by the structure of the trace metamodel providing access to each of the value sequences. Thus, jumpToValue is a use of jumpToState; and backValue directly uses jumpToValue; while stepValue is very similar to stepOver.

Implementation in the GEMOC Studio

We applied our approach to implement a proof-of-concept prototype of generic multidimensional omniscient debugger. More precisely, this prototype is part of the GEMOC Studio, an Eclipse package atop the Eclipse Modeling Framework (EMF) including both a language workbench to design and implement tool-supported xDSMLs as well as a modeling workbench where the xDSMLs are automatically deployed to allow system designers to edit, execute, simulate, and animate their models. Our debugger relies on the execution engine of the GEMOC Studio, and is implemented as a set of addons for the engine. A GEMOC engine addon receives information about the execution progress, allowing both to construct the trace and to trigger a pause when it is required. More details about the implementation can be found in Section 9.5 of Chapter 9.

Evaluation

In this section, we irst present the design and results of an empirical study providing an initial evaluation of the eiciency of our approach. Then, we discuss the beneits of multidimensional omniscient debugging.

Eiciency of the Approach

To evaluate the eiciency of our approach (O#1), we considered the following research questions: RQ#8.1 Is our approach more eicient in memory as compared to a clone-based omniscient debugger? RQ#8.2 Is our approach more eicient in time for omniscient debugging as compared to a weak omniscient debugger and to a clone-based omniscient debugger2 ? Thus, our evaluation of eiciency is the comparison of three omniscient debuggers as presented in Section 8.2 and in Figure 8.1. First, WeakDebugger is a weak generic omniscient debugger. Such a debugger is expected to be eicient in memory, because there is no trace to store; and ineicient in time, because the execution engine must be restarted at each jump backward. Second, CloneBasedDebugger is a clone-based generic omniscient debugger, that constructs a generic trace using deep cloning 2 and implements jumps using the model diferencing library EMF Compare3 . Because this debugger relies on an execution trace, it is expected to be less eicient in memory and more eicient in time than WeakDebugger. Finally, MultiDimDebugger is the prototype multidimensional omniscient debugger applying our approach. All three debuggers were implemented in the GEMOC Studio. Similarly to the evaluation of our semantic diferencing approach described in Chapter 7, we consider a subset of a real-world xDSML, namely fUML [START_REF]Semantics of a Foundational Subset for Executable UML Models (fUML)[END_REF]. We presented this case study in Section 6.3 of Chapter 6. This time, the xDSML was implemented with the GEMOC Studio using Ecore for the abstract syntax and Kermeta for the operational semantics. In addition, there also, we use models taken from the case study of Maoz et al. [START_REF] Maoz | ADDif: Semantic Differencing for Activity Diagrams[END_REF].

Data Collection and Analysis

To compare eiciency in memory, instead of observing the memory usage of the complete environment (e.g., execution engine and loaded model), we measured the memory used only by the debugger. More precisely, for each of the considered models, we collected the amount of memory required to store the execution trace at the end of its execution by making precise memory measurements using heap dumps and Eclipse MAT4 .

To compare eiciency in time, we focused on the main operation used by all omniscient debugging services: jumpToState. More precisely, for each of the considered models, we measured the average amount of time required to perform a jumpToState by jumping to each previously visited state once and in a random order. Measures were done using Java's operation System.nanoTime.

Data was collected in a reproducible way through a programmatic use of GEMOC Studio's engine. Each result is an average value computed from ive identical measurements made using an Intel i7-3720QM CPU with 8GB of RAM. RQ#8.1: Eiciency in memory Figure 8.7 shows the results obtained regarding the memory required to store an execution trace. The x-axis shows the number of elements in the trace, while the y-axis shows the amount of memory used in kB. First, WeakDebugger does not use memory, because it does not store a trace. Second, we observe that our approach is always more eicient in terms of memory usage than the CloneBasedDebugger debugger with 3.0 times improvement on average. We hypothesize this is due to the domain-speciic traces obtained with our approach that are designed to only contain the evolution of the mutable ields of the model with minimal redundancy, whereas cloning implies signiicant redundancy. In addition, we note that our approach has a gentler slope than CloneBasedDebugger, which suggests better scalability with large traces. To summarize and answer RQ#8.1, we observe that our approach is more eicient in memory than a clone-based approach.

RQ#8.2: Eiciency in time Figure 8.6 presents the results obtained regarding the average amount of time required to perform a jumpToState. The x-axis shows the identiier of the executed model, while the y-axis shows the amount of time in ms. First, we observe that trace-based debuggers are always better than WeakDebugger (right), with in particular MultiDimDebugger (left) being 54.1 times faster than WeakDebugger. This is explained by the time required to reset the execution engine. Second, we observe that MultiDimDebugger is more eicient than CloneBasedDebugger (center) with 5.03 times improvement on average. We hypothesize this is due to the generated trace manager, which contains code speciic and tuned to both the xDSML and the generated domainspeciic trace metamodel. To summarize and answer RQ#8.2, we observe our approach is more eicient in time than the traceless approach and clone-based approach.

Beneits of Multidimensional Facilities

To ensure the usability of omniscient debugging (O#2), our approach provides multidimensional omniscient debugging; i.e., facilities to navigate among values of mutable ields of an executed model. In essence, we believe that providing explicit visualization of the dimensions of a trace (see the result in the GEMOC Studio Figure 9.10, page 148 of Chapter 9) and means to traverse such trace according to speciic dimensions (e.g., step-Value), has a signiicant positive impact on usability (O#2). To completely validate O#2 requires user experiments to empirically assess the expected beneits of multidimensional facilities. We defer this task to future work.

Related Work

We presented existing work on model interactive and omniscient debugging in Section 2.5 of Chapter 2. In this section, we focus on approaches that are related to our solution, and we discuss both similarities and diferences with our technique.

Generic Omniscient Debugging in MDE

Hegedüs et al. [START_REF] Hegedüs | Back-annotation framework for Simulation Traces of Discrete Event-based Languages[END_REF] present generic trace exploration tools for executable models which contain similar facilities to an omniscient debugger. However, these techniques are deined for post-mortem analysis rather than use during live sessions, whereas our technique supports live debugging sessions. Corley et al. [START_REF] Corley | Towards Eicient and Scalabale Omniscient Debugging for Model Transformations[END_REF] propose omniscient debugging facilities for the cloud-based modeling solution AToMPM, in order to step both forward and backward in model transformations executed in an AToMPM runtime. Hence it is focused on debugging the languages supported by the runtime, which are T-Core [START_REF] Syriani | T-Core: a framework for custom-built model transformation engines[END_REF] and MoTif [START_REF] Syriani | A modular timed graph transformation language for simulation-based design[END_REF]. While such debugger can be used to debug the model transformation of an xDSML, it is not appropriate for debugging models conforming to this xDSML, since it make possible to pause the execution in the middle of an execution step. Moreover, the visualized state would be the one of the execution transformation instead of the one of the model.

Trace Visualization and Debugging in MDE

Existing work on trace visualization, such as MetaViz by Aboussoror et al. [1], or the work of Maoz et al. [START_REF] Maoz | Model-based traces[END_REF][START_REF] Maoz | On tracing reactive systems[END_REF], would be strongly complimentary with our approach. Indeed, while we focus on the backend concern of omniscient debugging, trace visualization is required for the frontend.

The work of Chiş et al. [START_REF] Chiş | The Moldable Debugger: a Framework for Developing Domain-Speciic Debuggers[END_REF][START_REF] Chiş | Practical domain-speciic debuggers using the Moldable Debugger framework[END_REF] on a Moldable Debugger can be interestingly compared to our work. Indeed, while we provide generic debugging operations supported by domain-speciic trace management facilities, they provide a framework to deine domainspeciic debugging operations and user interfaces. Also, our approach is completely automatic given a well-formed xDSML, whereas manual work is required to extend the Moldable Debugger to support an xDSML. Yet, both approaches tackle diferent and independent challenges, and provide very complementary results.

Conclusion

Omniscient debugging is a promising dynamic V&V approach for xDSMLS that enables free traversal of the execution of a system. While most GPLs already have eicient debuggers, bringing omnicient debugging to any xDSML is a tedious and error-prone task. A solution is to deine a purely generic debugger, but this requires managing both eiciency and usability issues that emerge. The approach we presented relies on generated domain-speciic trace management facilities for improved eiciency and provides multidimensional omniscient debugging facilities for improved usability. The debugger relies on an execution engine to control the execution and a generated domain-speciic trace manager to provide omniscient services. The states reached during an execution are stored in a trace conforming to a generated domain-speciic trace metamodel. We provide a prototype within GEMOC Studio, a language and modeling workbench, and an evaluation performed using the fUML language. We observed an improvement regarding both the memory consumption and the time to perform a jump, when compared to two generic omniscient debugger variants.

Chapter 9 Tool Support in the Context of GEMOC

In this chapter, we present the software development that was achieved during this thesis either to improve existing tools or to implement our approaches and applications. Each section presents a diferent realization. Section 9.1 explains the implementation of our scalable model cloning approach that we presented in Chapter 4. Section 9.2 describes the addition we made to the Kermeta language, which consists of facilities to manage step transformation rules.

Continuing, we present all the work that was integrated in the GEMOC Studio. Section 9.3 presents the studio and an architectural change that was achieved to manage diferent execution engines. Section 9.4 explains the implementation of our generative approach to deine domain-speciic multidimensional execution trace metamodels that we presented in Chapter 5. Lastly, Section 9.5 describes the implementation of our multidimensional omniscient debugging approach that we presented in Chapter 8.

Implementation of Scalable Model Cloning for EMF

This section presents the implementation of our scalable model cloning approach that we presented in Chapter 4. The resulting prototype is an extension to the Eclipse Modeling Framework (EMF) that both generates the required cloning material (i.e., Java classes) to create proxy objects, and provides the cloning operators themselves. Both the source code (EPL 1.0 licensed) and the Eclipse plugins can be found at the following webpage: http://moclodash.gforge.inria.fr/.

In the following sections, we irst present the challenges that must be faced for implementing this approach, then explain the extension we had to make for EMF, next we present the design-time part of the implementation, and inally we present the run-time part and we summarize the developped Eclipse plugins.

From Theory to Practice

Implementing our cloning approach within an existing modeling framework using a common object-oriented programming language presents three main challenges: extending the framework consistently, determining what are the shareable parts of the metamodel, and creating proxy objects. We explain these challenges in the following paragraphs:

Ensuring consistency Concerning objects creation and manipulation, the EMF considers that, at all time, there is exactly one unique runtime object per object of a model. This strong assumption is used by the framework to implement the behavior of containment references, which are themselves important for lots of other behaviors (storage in resources, serialization, etc.). We thus need to customize some parts of EMF libraries in order to make everything work correctly.

Determining shareable parts

We deined in Chapter 4 what are shareable properties and (partially) shareable classes of a metamodel. However, these deinitions are "mutually recursive", since a class is shareable depending on its properties, and references are shareable depending on the class they point to. We thus need either a ixed-point algorithm or well designed passes over the metamodel in order to compute the shareable parts, which is required for both ObjShare and NoObjShare strategies.

Creating proxy objects

In order to share ields of objects, our approach relies on proxy objects that only contain non-shareable ields and can access to the shareable ones using a reference. Using a prototype-based object oriented language such as JavaScript, as we did when presenting our approach (see Section 4.4.2, page 65 of Chapter 4), one can customize both the ields and the behavior of individual objects at runtime. However, with a class-based object oriented language, such as Java, the ields of an object are determined deinitively by its class at design-time. Since we ind ourselves in the second case, we need to generate before-hand the classes of the proxy objects.

Additionally, we found no EMF entity that directly matches the concept of runtime representation of a model (see Deinition 13, page 62 of Chapter 4). One possible candidate is the Resource class, which represents a set of model elements stored in a ile. Resource instances must then be gathered in a ResourceSet instance, which is a second candidate. Since it is likely to store a model into multiple iles, and that each ile yields a Resource, we consider that the runtime representation of a model is represented by a ResourceSet containing all the Resource elements containing all the rutime objects that constitute the runtime representation of a model.

Extending EMF Librairies

As we mentionned in the previous section, to make EMF work with our cloning approach, we need to make it possible for a runtime object to be implied in multiple Resource objects, which is also required for our approach to work.

Design-time: Analysis and Code Generation

In order to be able to create proxy objects as required by our cloning approach, we need to generate appropriate Java proxy classes beforehand. Figure 9.1 illustrates our design time process to accomplish this generation. At the beginning, at the top left corner, we have the metamodel of interest deined in one or more serialized Ecore models (.ecore iles), and an EMF generator model (.genmodel ile) that conigures the generation of the Java API corresponding to this metamodel. The .genmodel file must be conigured to generate implementation classes that all extend our custom AbstractShareableEObject class. From there, the steps of the process are the following (as annotated in Figure 9.1):

1. The EMF model code generator is called with the .genmodel file and the serialized metamodel, and generates the following artifacts: a) Java interfaces, which provide services to manipulate runtime representations of models that conform to the metamodel. b) Java classes, which implement the interfaces to enable the creation and manipulation of runtime representations.

2. Our cloning material generator is called. Its irst step is an analysis of the metamodel in order to determine which parts are shareable. In our prototype, mutable properties of the metamodel are speciied in the Ecore iles using a suix _m, but we plan in the future to externalize this knowledge out of the serialized metamodel. The "mutually recursive" shareable class/property problem mentionned previously is solved by seeing the metamodel as a graph (with classes as vertices and references as edges) and relying on the Tarjan algorithm [START_REF] Tarjan | Depth-First Search and Linear Graph Algorithms[END_REF] to compute Strongly Connected Components (SCC). From there, if a SCC contains a mutable property, it means that all its classes are at most partially shareable, and thus that none of its internal references are shareable. The remaining elements are then easily processed. The second step of the cloning material generator is the generation of the following artifacts: a) Since we computed which parts of the metamodel are shareable, and since this information is required at runtime, we store this information in a static way into Java classes. This eventually reduces the amount of computation required at runtime. b) Then, and most importantly, proxy classes are computed by implementing the interfaces previously generated by the EMF generator. Figure 9.2 shows the Java proxy classes that are generated given the same metamodel AB as the one considered in Chapter 4. A class AShareObjOnlyProxy is generated to create proxy A objects when using the ShareAll operator, while classes AShareFieldsOnlyProxy and BShareFieldsOnlyProxy do the same for the Share-FieldsOnly operator. Figure 9.3 shows a simpliied version of the Java code of these classes. Each class contains a property orig in order to point to the class containing the immutable properties. A getter that should return an immutable value (e.g., getI) is implemented with a call to the original object (e.g., orig.getI()). A setter of an immutable property is disabled, since the value should not change at runtime. c) To be able to produce proxy objects, we implement the equivalent of the copyObjectProxy operation from our approach (see Algorithm 1, page 67 of Chapter 4) in diferent dedicated copier classes that are able to instantiate proxy classes.

The proxy classes generation is implemented by a Java-to-Java transformation using EMF and the MoDisco toolbox [START_REF] Bruneliere | MoDisco: A Generic And Extensible Framework For Model Driven Reverse Engineering[END_REF]. More precisely, this generation takes as input the Java implementations generated by EMF, and produces modiied versions in which non-shareable properties are removed and replaced by a proxy call. 

Runtime: Cloning

We implemented the cloning algorithm itself (see Algorithm 2, page 67 of Chapter 4) within a dedicated class Cloner, which is completely generic and common to all metamodels. The cloning operation is parameterized by a CloningMaterial instance speciic to the considered metamodel and cloning strategy. This cloning material includes both the information on which classes and properties are shareable or partially shareable, and a reference to the copier to use for the metamodel and cloning strategy.

Resulting Plugins and Usage

In the end, our tool consists of two sets of eclipse plugins:

-one set for design-time, which includes:

• the cloning material (i.e., Java code) generator;

• the graphical interface for the generator, which is an Eclipse Run Coniguration (shown in Figure 9.4) ; 

Step Management Facilities for Kermeta

In this section, we present an addition that was made to Kermeta during this thesis in order to manage step transformation rules. We irst give a more technical description of the implementation of Kermeta, then we explain our extension in the form of a new annotation called @Step.

Kermeta: an Extension of Xtend

We already shortly presented Kermeta in Section 2.1.3 of Chapter 2 as a model transformation language. Then we used it in Section 2.3 to deine the operational of an xDSML, using aspects both to deine the execution metamodel and the execution transformation.

From a more technical point of view, Kermeta is a language designed as an extension of the Xtend language1 , which is part of the Eclipse project. Xtend is dialect of Java that compiles into readable Java source code. It provides new facilities such as type inference, template expressions or operator overloading. Xtend is extensible through so-called active annotations. An active annotation is an Xtend mechanism to allow developers to participate in the translation process of Xtend source code to Java code (e.g., to change create additional helper classes, to change the content of methods, etc.). It can also be used as metadata, similarly as Java annotations.

Kermeta consists of a set of Xtend active annotations. The most important annotation is probably @Aspect, which allows to reopen existing classes in order to weave additional properties and methods in them. Other annotations aim among others at aligning Kermeta with EMOF concepts, such as @Composite that allows to declare an Xtend property as a containment reference.

Adding Execution Steps Declaration and Management

We deined in Section 2.3.2 of Chapter 2 the notion of step transformation rule, which is an observable rule of the operational semantics of an xDSML. This notion is crucial both for the generation of a multidimensional domain-speciic trace metamodel (Chapter 5), and for properly deining stepwise omniscient degugging services (Chapter 8).

However, Kermeta has two main limitations. First, there there is no way to declare which transformation rules of a model transformation should be considered as step rules. Second, as we have shown in the deinition of our omniscient debugger in Section 8.3 of Chapter 8, it is necessary for some component (e.g., an execution engine) to be able to perform speciic actions in between execution steps. And likewise, Kermeta does not provide facilities to delegate such control to an external component.

Adding @

Step active annotation To cope with these issues, we developed an additional active annotation for Kermeta named @Step. While @Aspect is targeted at classes, @Step is targeted at methods, and allows a language engineer to choose which transformation rules of the operational semantics of an xDSML are step rules. This additional piece of metadata can be used by generative approaches as a source of information, such as for our execution trace metamodel generation procedure from Chapter 5.

Furthermore, since an active annotation allows to customize the translation process of Xtend source code to Java code, we introduced step management facilities to give the possibility to delegate the execution of a step rule to another software component (e.g., an execution engine). This is achieved using two design patterns: singleton to have a global registry of step managers, and command to encapsulate the content of the step method in order to entrust it to a step manager.

Listing 9.2 shows an example of Java code generation using our active annotation @Step. An input Kermeta aspect called FooAspect contains a simple method bar with the annotation @Step (1). The Java code generated for bar (2) irst creates a StepCommand tool-supported xDSMLs. This includes deining the abstract syntax (using Ecore), the operational semantics (using Kermeta and/or MoCCML3 ) and the concrete syntax (using Sirius Animator4 ) of an xDSML. In addition, the GEMOC Initiative aims at enabling the composition of xDSMLs by deining how conforming models are coordinated. As shown on the lower part, the modeling workbench is where the xDSMLs are automatically deployed to allow system designers to edit, execute, simulate, and animate their models. The modeling workbench includes an advanced execution engine that can be used to execute any model conforming to an xDSML deined within the language workbench. It is part of an execution framework, which also includes animation and addons facilities.

Execution Framework Figure 9.6 shows an overview of the underlying architecture of the execution framework. On the left, the xDSML designed in the language workbench is depicted. Among other things, it is composed of an abstract syntax, a concrete syntax and operational semantics. At the middle, the model being executed is shown. It conforms to the execution metamodel of the xDSML.

We present in diferent colors the diferent parts of the execution framework. At the bottom, in yellow, the animator relies on the concrete syntax to display the model to the user continuously. More precisely, the view is updated as soon as the model changes, such as a modiication of the user or an execution step. At the middle, in green, the execution engine applies the transformation rules of the operational semantics to modify the state of the executed model. In addition, it provides an interface to deine engine addons, which are mandatory or optional components that get notiied by the engine of the progress of the execution (e.g., beginning of the execution, start of a step, end of a step, etc.). Lastly, at the right, in red, addons can be deined to support the execution. By reacting the engine notiications, an addon may query the engine to ask for information, which can be used to provide a view that gets updated when it is necessary, or to log information, or can even control the execution of the model. In particular, because these notiications are synchronous, they make possible for addons to pause an execution when handling a notiication, and to modify the model in between execution steps (e.g., for implementing a debugger).

From One to Multiple Execution Engines

The GEMOC execution engine was originally designed for a speciic kind of execution transformations deined using two languages: Kermeta for the transformation rules, and MoCCML for model of concurrency. In a nutshell, to execute a model, this execution engine processes the MoCCML model using a solver called Timesquare [START_REF] Deantoni | TimeSquare: Treat your Models with Logical Time[END_REF] to compute the series of events that occur in the execution, and may call a speciic Kermeta transformation rule at each event occurrence to change the state of the model.

However, as we discussed in Section 2.1.3 of Chapter 2, there are many approaches to deine the execution transformation of an xDSML. Each one of these approaches have diferent characteristics, such as how to initialize and a model transformation programmatically, or how to control the transformation in between execution steps. In order to manage all these diferent situations, our solution was to enhance the GEMOC execution framework by replacing a unique approach-speciic execution engine with an API to de-ine execution engines. This API deines an engine as a component with two operations: initialize to load an xDSML and a mode, and to prepare the transformation; and execute to run the transformation. The component is responsible for sending notiications to the diferent addons during the execution. Using this API, we implemented two main execution engines:

-For operational semantics deined using Kermeta and MoCCML, the execute operation consists in a loop that continuously asks for the next event occurrence to the Timesquare solver, and calls the corresponding Kermeta operation when it is required. Notiications are sent to addons during this execution loop.

-For operational semantics that are entirely deined using Kermeta (e.g., the Petri net xDSML deined in Chapter 2), the execute operation simply consists in starting the entry point rule of the model transformation (i.e., similarly to a main operation). In addition, the engine relies on the Kermeta step management facilities introduced in Section 9.2 (i.e., the @Step annotation) in order to register itself as step manager. Thereby, the engine can manage the execution of each step, which makes possible for it to interweave notiications to addons in between execution steps.

Execution Trace Manager Generator in the GEMOC Studio

This section presents the implementation of the execution trace metamodel generation approach that we presented in Chapter 5. We implemented our generator for the Eclipse Modeling Framework (EMF) using the Xtend programming language. The source code (EPL 1.0 licensed) is available at the project web page: https://gforge.inria.fr/ projects/lastragen/ Figure 9.7 shows an overview of the process. The input is an xDSML deined using Ecore for the abstract syntax, and any supported transformation language for the operational semantics. We currently support Kermeta and xMOF. The output is an Eclipse plugin containing the execution trace metamodel deined using Ecore, and an execution trace manager written in Java. The manager can construct an execution trace and restore an executed model into a prior state. The generator is composed of two steps: one to extract generic information from operational semantics, and a second to generically generate the plugin. We present the two steps thereafter.

Extracting Data from the Operational Semantics

The irst step of our process consists in analyzing the considered xDSML in order to extract a intermediate representation containing both the mutable part of the execution metamodel, and the deinition of the step transformation rules. While we consider the abstract syntax to be deined using the de-facto standard Ecore, there is a large number of diferent model transformation languages that can be used to implement operational semantics. Hence, a speciic information extractor must be implemented for each considered model transformation language (e.g., an analyzer of Kermeta code). For illustration purposes, the considered transformation language is named L in Figure 9.7. The output of the extraction is composed of two models.

-The irst model is a generic representation of the mutable constructs introduced the execution metamodel of the xDSML. Figure 9.8 shows the metamodel that such representation must conform to. The root element is an MetamodelExtension object, which contains both ClassExtension objects to represent mutable properties added to existing classes of the abstract syntax, and EClass objects to represent new classes. For instance, in the case of Kermeta, deining an aspect on a class will yield a ClassExtension object. In the case of xMOF, coniguration class that extends a class of the abstract syntax will yield a ClassExtension object. For our implementation to manage a new language, only a new extractor must be provided.

-The second model is a generic representation of the step transformation rules deined in the execution transformation of the xDSML. In essence, it is a metamodel obtained by implementing and using most of Algorithm 4 (page 83 of Chapter 5), which deined how to generate the step classes of the trace metamodel. Similarly to the right part of the Petri net trace metamodel shown is 

Generic Generation of the Trace Metamodel and Manager

The second step of our process consists in generating the execution trace metamodel along with the execution trace manager speciic to this trace metamodel. The considered input is composed of the two models produced by the extraction step: the set of mutable properties added by the execution metamodel, and the almost complete step metamodel. In a nutshell, this generator implements Algorithm 3 (page 80 of Chapter 5), which is the procedure to generate a multidimensional domain-speciic execution trace metamodel.

In addition, it generates a set of Java classes implementing the trace manager, which is a set of operations that manipulate a model conforming to the generated execution trace metamodel. Among others, these operations include addState to add a new state in the execution trace given an executed model, and restoreState to restore an executed model in a state stored in the trace. Operations are also available to query the trace generically, e.g., to provide a visualization.

Integration in the GEMOC Studio

Our generator has been integrated into the GEMOC Studio, and was made available through a a graphical user interface to trigger the generation for a language deined in the studio. Figure 9.9 shows this interface, which is a context menu that can be triggered on the ile deining an xDSML in the language workbench. This ile references all the information required to start the generation, i.e., the location of the abstract syntax and the location of the operational semantics.

Omniscient Model Debugging in the GEMOC Studio

This section explains how we applied a subset the approach we presented in Chapter 8 (i.e., the generative part and a debugger with basic operations) to ofer a proof-of-concept prototype multidimensional omniscient debugger. The prototype is implemented and integrated in GEMOC Studio by relying on its execution engine, and by using the addon mechanism that we introduced in Section 9.3.1. In the following, we present the diferent components of our prototype: the trace engine addon generator, the generic omniscient debugging addon, and the generic omniscient debugging view addon.

Execution Trace Manager Addon Generator

The generative part of our approach takes the form of a trace engine addon generator that takes as input an xDSML and that produces a GEMOC engine addon. This generator irst relies on the plugin generator that we presented in Section 9.4 to create an Eclipse plugin containing a trace metamodel and a trace manager for the considered xDSML.

The trace manager plugin already provides all the services required to implement most of the parts speciied in our approach: the state manager, the generic trace interface, and the trace constructor (see Figure 8.3 page 119 of Chapter 8). However, for the trace constructor part to automatically construct a trace during an execution, it must be notiied of the execution progress. To that end, additional Java code in generated to conigure the trace manager plugin as an addon for the GEMOC execution engine. By handling the notiications sent by the engine, the resulting addon can construct the trace in between execution steps using the trace manager.

Generic Omniscient Debugging Addons

The generic part of our implementation consists of two generic GEMOC engine addons. The irst generic addon contains the debugging logic of the debugger, i.e., the implementation of services described in Tables 8.1 to 8.3 (pages 124 and 125 of Chapter 8). Our prototype provides toggleBreakpoint with only one kind of predicate (i.e., a model element is targeted by a step), stepInto, jumpToState, and jumpToValue. By handling notiications sent by the execution engine (e.g., "step started", "step ended"), this addon can decide to pause the execution in between execution steps if a breakpoints is reached or if a step service (e.g., step over) has inished. While paused, the addon can also perform a jump to a former execution state by relying on the trace manager. In addition, this addon is integrated with the Eclipse debug view, allowing to beneit from the diferent buttons to resume, stop, or step into/over/out. Moreover, a stack shows the steps that are being executed. Figure 9.10 is a screenshot showing the GEMOC Studio debugging an fUML activity. At the top-left, the user can visualize the stack of steps being executed while the executed is paused.

The second generic addon is an interactive graphical representation of the stored execution trace. The resulting graphical widget can be seen at the right of the screenshots shown in Figure 9.10. The irst line of circles represents the execution trace of the whole model, with each circle representing one execution state reached by the model. The yellow circle shows the current state, while the blue circles show the other states that can possibly be reached either by jumping or by stepping. Double clicking on a blue circle triggers a jump action using the generic addon that implements the debugger logic. For example, Figure 9.10a shows the activity diagram during its execution, which reached the state 20 in the trace, corresponding to the node get welcome pack. Then, Figure 9.10b shows the same execution, but after a jump made to the state 10, corresponding to the node register. In addition, when hovering the mouse cursor on a circle, a tooltip shows the all the current values in the state along with all the steps that inished or started in this state. This can also be observed in the variables view of Eclipse debug.

Continuing, all the other lines of circles represent the multiple dimensions of the execution trace. Each one of these lines is the sequence of values reached by a single mutable ield of the executed model (e.g., the collection of tokens within one activity node). Similarly to the model state line, a yellow circle represent the current value in time reached by the mutable ield. Double clicking on a blue circle of one of these lines triggers a jumpValue action, which is again accomplished using the generic addon that implements the debugger logic. Lastly, being an addon, the view is eiciently refreshed only when the engine notiies that a step either started or ended. 

Part IV

Conclusion and Perspectives

Conclusion

Early dynamic V&V requires models to be executable. To that efect, the execution semantics of the DSMLs used to describe them must be deined. The resulting languages are called executable DSMLS (xDSMLs). In addition, most dynamic V&V approach require the capture of execution traces from the execution of models. Consequently, providing execution trace management facilities is a major prerequisite to enable the use of dynamic V&V approaches for xDSMLs. Such facilities include the deinition of a data structure to represent execution traces, e.g., an execution trace metamodel.

We identiied three main challenges regarding execution trace data structures. First, because the execution state of a model can be arbitrarily complex, usability (Ch#1) must be taken into account in order to facilitate the deinition of execution trace analyses. Second, scalability in memory (Ch#2) is required because of the large size of execution traces. Third, scalability in time (Ch#3) must be considered for the same reason.

In parallel, we made a number of observations. First, there are diferent possible kinds of execution trace manipulations. In particular, execution traces can either be manipulated in a generic way, in order to deine analyses that are relevant for any xDSML, or in a domain-speciic way, in order to deine analyses speciic to an xDSML. Second, existing execution trace data structures or approaches are either generic or domain-speciic, each more appropriate for the corresponding sort of manipulation stated above. Yet, clone-based generic approaches sufer from poor scalability in memory, and the few existing approaches to create domain-speciic trace metamodels do not take into account usability or scalability.

In this thesis, we aimed at providing execution trace management facilities while addressing the identiied challenges and taking into account these observations. Hence, we made the following two contributions. First, to improve the scalability in memory of clone-based execution traces, we proposed a scalable model cloning approach, which relies on data sharing to reduce redundancy among runtime representations of clones. Furthermore, this contribution beneits to model cloning in general, and can thus be used in many other activities such as design space exploration. Second, to improve usability and scalability of domain-speciic execution traces, we proposed an approach to generate multidimensional execution trace metamodels. Generating a trace metamodel speciic to an xDSML reduces the semantic gap between the trace and the domain, hence improving usability. In addition, a precise capture of the concepts required for execution traces ensures that there is no redundancy nor irrelevant elements in a trace, hence improving scalability in space. Lastly, a multidimensional structure provides additional navigation paths to browse a trace, thereby improving scalability in time.

Next, to validate our second contribution in the context of dynamic V&V, we made two applications to existing V&V approaches and we evaluated them using the fUML language and real-world models from a case study of the literature. First, we enhanced an existing semantic diferencing approach in order to rely on a generated multidimensional domain-speciic trace metamodel instead of a generic clone-based one. Results show that semantic diferencing rules -which are manually written domain-speciic trace manipulations -are less complex, and that scalability in time is improved by taking advantage of the multidimensional structure. Second, we proposed a complete advanced omniscient debugging approach for xDSMLs, which relies on a partly generic debugger supported by generated trace management facilities. Such facilities include a multidimensional domain-speciic trace metamodel. Results show that the memory footprint is less important when using domain-speciic traces is than when using generic clone-based traces. In addition, generated domain-speciic trace management facilities are more eicient in time than generic facilities.

Overall, we addressed the challenges we considered in two diferent contexts, and our contributions improve the state of the art regarding execution trace management. In addition, our two applications not only illustrate the concrete beneits of our second contribution, but also constitute contributions to the ields of semantic diferencing and omnicient model debugging.

Perspectives

This work can be pursued in many diferent aspects. We present thereafter some direct perspectives in model cloning, execution trace metamodel generation, and model omniscient debugging.

Model Cloning

Helping with the Cloning Operation Choice In Chapter 4, we presented four diferent model cloning operators, each with diferent characteristics. A possible research direction is the automation of the choice of a cloning operator. For instance, it must be possible using static analysis of operations to determine whether the relexive layer is used or not, and more precisely to detect the use of EMF eContainer(). This would give the possibility to automatically disable cloning operators that forbid the use of this operation. Another possibility would be the deinition of a dynamic analysis to measure the amount of accesses made to shared elements, since these are the ones responsible for the loss of eiciency. This would provide feedback to the user for choosing the right operator.

Generation of Runtime Classes at Runtime

The implementation of our model cloning approach relies on the automatic generation at design time of all the required runtime classes for the operators that share the ields of objects. To improve the usability of our approach, this generation could be done on-the-ly at runtime when the cloning operation is called. Then, generated runtime classes could be compiled and loaded by the execution environment (e.g., using the JVM class loader). This would however have a signiicant impact on the execution time required by the cloning operation itself.

Execution Trace Metamodel Generation

Customized Domain-speciic Execution Trace Metamodels In Section 2.4 of Chapter 2, we showed diverse execution trace data structures, most of which being designed for speciic concerns and usages. Yet, the approach we presented in Chapter 5 generates a unique execution trace metamodel speciic to some input xDSML.

Although this trace metamodel is more appropriate for domain-speciic trace manipulations in general, it could be further customized for a speciic set of trace manipulations. For instance, if only a subset of the mutable properties of the xDSML required to deine a set of trace manipulations, then not only can execution traces be lightened by not capturing the values of these properties, but the execution trace metamodel itself can be reduced by removing the associated concepts. This would result in a smaller trace metamodel, thereby improving usability for deining the considered set of trace manipulations. Selecting which mutable properties must be considered in the trace metamodel could be accomplished manually, but also automatically by computing the static metamodel footprint [START_REF] Jeanneret | Estimating footprints of model operations[END_REF] of a set of existing trace manipulations.

Use of Domain-Speciic Property Languages Multidimensional Domain-speciic execution traces metamodels facilitate the deinition of domain-speciic execution trace manipulations. Yet, these manipulations must still be deined using a generic model transformation language, which is generally designed to be able to describe any kind of model manipulation for any modeling language. Moreover, taking advantage of the multiple dimensions may not always be straightforward.

To improve usability, Rumpe et al. [START_REF] Rumpe | A domain speciic transformation language[END_REF] proposed the deinition of domain-speciic transformation languages, each providing concepts to deine the transformation of a speciic DSML. In a similar fashion, but in the context of dynamic V&V, Meyers et al. [START_REF] Meyers | ProMoBox: A Framework for Generating Domain-Speciic Property Languages[END_REF] proposed the deinition of domain-speciic property languages, each designed for expressing temporal properties for models conforming to a speciic DSML. Temporal properties can be used for oline runtime veriication [START_REF] Leucker | A brief account of runtime veriication[END_REF], which is the activity of checking whether or not an execution trace satisies a temporal property. This can be accomplished by generating or deining an execution trace manipulation that browses all the states of the trace while continuously checking the compliance with the property.

To improve scalability in time of such manipulations, and to improve usability when implementing a temporal property as an execution trace manipulation, a possible research direction is the combination of domain-speciic property languages with multidimensional domain-speciic trace metamodels. More precisely, given a domain-speciic property, we could generate a trace manipulation taking advantage of a multidimensional domain-speciic execution trace metamodel. By detecting relevant pattern within temporal properties, the multiple dimensions of the execution traces could be used. Moreover, since both languages are domain-speciic, the semantic gap is considerably reduced, hence facilitating the deinition of the generation procedure.

Providing Generic Interface through Metamodel Subtyping Although deining a generic trace manipulation for a domain-speciic trace metamodel is possible, it is not possible to directly reuse it for another xDSML. In Chapter 8, to cope with this problem when deining the generic degugging logic, we relied on a generic multidimensional trace metamodel interface (see Figure 8.5 page 122). Deining such interface is straightforward because of the similar structure shared by all trace metamodels generated using our approach. However, using such interface in practice in order to manipulate domain-speciic traces is not trivial, and required manually written code speciic to our omniscient debugger. To generalize the use of this interface, a promising approach would be the deinition of a subtyping relationship between the generic and the generated domain-speciic trace metamodels [START_REF] Guy | On Model Subtyping[END_REF]. With such relationship, a domain-speciic trace could be typed as generic trace, and could then automatically beneit from generic trace manipulations deined for the generic trace metamodel.

Representing Interactions with the Environment As we explained in Section 2.3.6 of Chapter 2, in this thesis, we did not consider the possible interactions of a model with its execution environment. Yet, if the operational semantics of an xDSML explicitly deines the possible external stimuli that a conforming model can handle, this information could be taken into account in the corresponding domain-speciic execution trace metamodel. This would allow to capture even more precisely the possible information contained in the domain-speciic execution traces of a considered xDSML. For instance, a step triggered by some external stimulus could be labeled accordingly.

Branches and State Space

In many cases, executing a model multiple times yields diferent executions, and therefore diferent execution traces. This is dependent on the operational semantics of the xDSML used to describe the model. In particular, the semantics may handle input stimuli, or may contain a concurrency model [START_REF] Benoit Combemale | Reifying Concurrency for Executable Metamodeling[END_REF]. Yet, diferent executions may share a common preix before diverging. Consequently, a possibility would be to use a single execution trace to represent a set of executions sharing a common preix, instead of representing a single one. Storing only once the common preix of diferent executions in a single trace would result in a reduction of the memory footprint. This would require an appropriate trace metamodel allowing the construction of diferent branches, each starting from an execution state of another branch. Hence, a possible research direction is improving the multidimensional domain-speciic execution trace metamodel generation procedure to include the idea of branch.

In addition to reducing the memory footprint, branches could have concrete uses in diferent applications. A irst example is model omniscient debugging, for which it would make possible to go back in a previous state, and to decide to take another branch. By pushing the idea even further, a second example is state space exploration, which is the enumeration of the complete transition system corresponding to an executable model. In this case, however, the execution would not be a tree with branches, but a more general graph where nodes are execution states, and edges are execution steps.

Model Omniscient Debugging

Domain-Speciic Debugging Services In Chapter 8, we presented a model omniscient debugging approach based on generic services valid for any xDSML. While the notion of execution state and of execution step seem both universal and revelant whichever the considered domain, additional domain-speciic debugging services could be deined for an xDSML. To this end, Chiş et al. [START_REF] Chiş | The Moldable Debugger: a Framework for Developing Domain-Speciic Debuggers[END_REF][START_REF] Chiş | Practical domain-speciic debuggers using the Moldable Debugger framework[END_REF] proposed the Moldable Debugger framework, which provide facilities to deine domain-speciic debuggers. As we mentioned in Section 2.5 of Chapter 2, the authors claim that generative approaches can only generate debuggers with generic debugging facilities (e.g., step, step into, stack visualization, etc.), while domain-speciic facilities should be deined for the application domain of the xDSML. Hence, following this idea, a possible research direction is to rely on multidimensional domain-speciic execution trace metamodels to facilitate the deinition of domain-speciic omniscient debugging facilities. This would lead to model omniscient debugging facilities that would be domain-speciic both regarding its frontend (services), and regarding its backend (execution trace metamodel).

User Study to Evaluate Multidimensional Omniscient Debugging Our omniscient debugging approach proposes advanced facilities to explore an execution according to the multiple dimensions of the trace. We believe that providing explicit visualization of the dimensions of an execution trace and means to traverse such trace according to speciic dimensions, has a signiicant positive impact on usability. Yet, validating this hypothesis requires user experiments to empirically assess the expected beneits of multidimensional facilities, and a research direction is the realization of such user study.

Abstract

Model-Driven Engineering (MDE) is a development paradigm that aims at coping with the complexity of systems by separating concerns through the use of models, each being deined using speciic abstractions provided by a Domain-Speciic Modeling Language (DSML).

A subclass of DSMLs aim at supporting the execution of models, namely executable Domain-Speciic Modeling Languages (xDSMLs). An xDSML includes execution semantics that manipulate the concepts of the considered domain. To ensure that an executable model is correct with regard to its intended behavior, dynamic veriication and validation (V&V) techniques are required, such as omniscient debugging. Yet, to analyze an executable model, these techniques need an explicit representation of its behavior over time.

Among dynamic V&V techniques, a most common representation of a model's behavior is the execution trace, which is a sequence containing all the relevant information about an execution over time. However, the execution semantics of an xDSML can be arbitrarily complex, hence making both diicult the deinition of an appropriate data structure to construct execution traces, and the development of eicient and adapted tooling to manipulate them. First, the usability of an execution trace data structure must be ensured to cope with the complexity of data. Second, since executing even a simple model can lead to very large execution traces, both scalability in memory of executions traces and scalability in processing time of execution trace manipulations are of primary importance.

Therefore, to enable dynamic V&V of executable models of any possible xDSML, it is crucial to provide eicient facilities to construct and manipulate all kinds of execution traces. To that efect, we irst focused on the representation of the execution state of an executed model, and proposed a scalable model cloning approach to conveniently construct generic execution traces using model clones. We then focused on the structure of execution traces, and designed a generative approach to deine multidimensional and domain-speciic execution trace metamodels. Such a metamodel precisely captures the content of the execution traces of a speciic xDSML, while providing eicient navigation paths to follow the evolution of diferent mutable parts of a conforming model.

In addition, we made two applications of multidimensional domain-speciic execution trace metamodels to existing dynamic V&V techniques. First, we deined a set of semantic diferencing rules to analyze a set of fUML models. Second, we developed a complete advanced omniscient debugging approach for xDSMLs. Overall, we show that a domainspeciic structure provides good usability and scalability in memory, and that multiple dimensions enable good scalability in processing time while also enhancing usability.

Our contributions make possible both to construct and to eiciently manipulate execution traces of models conforming to any xDSML, including for dynamic V&V. All our work have been implemented and integrated within the GEMOC Studio, which is a language and modeling workbench resulting from an academic and industrial project. Many research directions are possible to pursue this work, such as taking into account the environment inluencing an execution or the explicit concurrency expressed in the execution semantics.

Figure 1 . 1 :

 11 Figure 1.1: Graphical representation of the outline of the thesis. Chapters in green contain the core of the scientiic contributions.
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 1 Figure 1.1 shows an overview of the structure of the thesis. Arrows deine the reading partial order. We present the diferent chapters thereafter. Part I -State of the Art Chapter 2 introduces the foundations and the state of the art of model-driven engineering, executable metamodeling, execution trace management, and model debugging.
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 21 Figure 2.1: Petri net abstract syntax.
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 2 Figure 2.1 shows an example of metamodel deining the domain of Petri nets. More precisely, we consider a common subclass of Petri nets whose arcs have a weight of one. It is composed of three classes: Net, Transition and Place. Each class, through its name and the properties it contains, expresses a concept of the domain. A Petri net is composed of places and transitions, hence the class Net has a containment reference places pointing to the class Place, and a containment reference transitions pointing to the class Transition. A transition has input and output places, hence the class Transition has two references input and output pointing to the class Place. A place has a number of tokens, hence the attribute tokens. Likewise, both places and transitions have names, hence the attributes name in the corresponding classes.A widely used standard that matches this deinition of metamodel is the Essential Meta-Object Facility (EMOF)[START_REF]Meta Object Facility (MOF) Core Speciication[END_REF], introduced by the Object Management Group (OMG). It is supported by the Object Constraint Language (OCL)[START_REF]Object Constraint Language (OCL) Version 2.4[END_REF], also maintained by the OMG, for the deinition of complex static semantics rules. In practice, the tool-supported Ecore language from the Eclipse Modeling Framework (EMF)[START_REF] Merks | EMF: Eclipse Modeling Framework, 2nd Edition[END_REF] is considerably aligned with EMOF, and is therefore the de facto standard extensively used for deining metamodels.

  Represented with concrete syntax.
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 22 Figure 2.2: Example of Petri net model.
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 2 Figure 2.2 shows an example of a Petri net model conforming to the metamodel shown in Figure 2.1. More precisely, Figure 2.2a shows the object diagram depicting all the objects of the model and their relationships, whereas 2.2b shows a concrete syntax representation of the model using the usual Petri net notation. The model is composed of one instance of the Net class, four instances of the Place class, and two instances of the Transition class. Each object has a set of ields based on the properties of its class. For instance, the transition t1 has a ield name containing the string value "t1", a ield input containing a value reference to the Place p1, and a ield output containing a reference value to the Place p3.
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 23 Figure 2.3: Dynamic and static model footprinting, from [87].

  For instance, the dynamic model footprint of the fire rule shown in Listing 2.1 applied on the Transition object t1 from Figure2.2 is: {t1, t1.input, t1.outputp1, p1.tokens, p3, p3.tokens}.

  Copying a Net object.
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 24 Figure 2.4: Illustrations of deep and shallow copying. In each case, grey elements depict the original object graph (i.e., before copying anything).
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 25 Figure 2.5: Translational and operational semantics for an xDSML A.
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 27 Figure 2.7: Illustration of an initialization transformation for Petri net.

1 @ 5 return 1 15 16 / 36 } 2 . 3 :

 151163623 _self.input.forall[place|place.tokens > 0] a token from each input place 13 for (Place input : _self.input) 14 input.tokens = input.tokens -/ Adds a token to each output place 17 for (Place output : _self.output) 18 output.tokens = output.tokens + 1 Listing Execution transformation for the Petri net xDSML, written in Kermeta.
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 28 Figure 2.8: Example of Petri net execution trace represented using concrete syntax.

Figure 2 .

 2 Figure 2.8 shows an example of execution trace obtained by executing the Petri net model shown in Figure2.2b using the operational semantics shown in Listing 2.3. At the bottom, three execution states are depicted using the concrete syntax representation of the xDSML. At the top, two small steps are recorded: irst the application of fire on the transition t1, then on t2. Both are part of the big step that is the application of run. This execution trace gives us all the required information to understand and analyze this execution: we know how the marking of the Petri net evolved, and we know which transitions were ired and in which order.

( b )

 b Description of the columns of the comparison table.

DebuggerFigure 2 . 9 :

 29 Figure 2.9: Typical architecture for interactive debugging.
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 210 Figure 2.10: Comparison of interactive debugging with omniscient debugging for reobserving a failure with non-determinism. Inspired by [54].
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 2 11 compares them with the following scenario. (1) Starting from a state 0, the user steps forward until 5 is reached. (2) Because he observed a failure in the previous state 4, he uses the debugger to jump back into the state 3. (3) Finally, the user steps forward again, re-observes the failure, and decides to continue the execution until 7 is reached. For each action, what the user wants is shown using a thick green arrow, and what the debugger actually does is shown below using thin orange arrows.

( 1 )0( 3 )

 13 Forward execution from 0 to 5 Forward execution from 3 to 7 with re-observation of the failure (2) Jump back to

  Reconstruction-based omniscient debugging scenario, with a trace containing half of the states. Reached execution state stored in a trace Reached execution state not stored in a trace Forward steps asked and seen by the user Jump asked and seen by the user Application of the operational semantics performed by the debugger State restore performed by the debugger
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 211 Figure 2.11: Comparison of omniscient debugging approaches. Inspired by [54].
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 4142434445 Do the new operators reduce the memory footprint of clones, compared to deep cloning? Can a clone be manipulated with the same eiciency as the original model? Can a clone be manipulated using the same generated API as the original model? Can a clone be manipulated using the relective layer (e.g., as stated in the MOF Relection package)? Is it impossible to compromise the independence of a clone, e.g., to modify data shared between the runtime representations of a model and its clones?

Fig. 4 .

 4 Fig.4.1 shows a metamodel named AB that is composed of two classes A and B. A has two attributes i and j and one reference b. j is mutable as speciied by (mut). B has a single attribute x. Below the metamodel, a model abb conforms to AB and is composed of one object instance of A and two objects instance of B.In the case of an xDSML, the mutable subset of an execution metamodel is generally deined by the elements that it adds to the abstract syntax. Indeed, a Java program cannot change its instructions at runtime, and a Petri net model cannot create new transitions: such concepts are immutable. However, the current instruction of a Java program or the amount of tokens of a Petri net are mutable, since the whole purpose of an execution is to change them.

Figure 4 . 1 :

 41 Figure 4.1: Example of modeling and EMF usage with a sample metamodel AB and a sample model abb.

  Runtime representation of "abb" Runtime representation of "abb_clone"

Figure 4 . 2 :

 42 Figure 4.2: Following Fig. 4.1, deep cloning of the model abb, which created a new model abb_clone along with a new runtime representation in memory. Then abb_clone diverged from abb by changing its j value.

Fig. 4 .

 4 Fig. 4.2 gives an example of cloning: the model abb_clone is a clone that was created at some point from the model abb. The moment the clone was created is important,

Figure 4 . 4 :

 44 Figure 4.4: Runtime representations of models abb and abb_clone of Fig. 4.2 obtained with the diferent cloning operators.

1 ,

 1 and we illustrate them with examples in Fig. 4.4. DeepCloning clones without any form of data sharing. ShareFieldsOnly clones using proxy objects to share as many ields as possible; Fig. 4.4a shows an example where each runtime object has a reference to the runtime object from which it originates. In the clone, the A runtime object contains a ield j because the corresponding property is mutable, and hence cannot be shared. ShareObjOnly clones with object sharing only; Fig. 4.4b shows an example where B runtime objects are referenced by both models. Finally, ShareAll clones with both objects and ields sharing; Fig. 4.4c shows an example where only j is kept by the A runtime object.
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 45 Figure 4.5: Evaluation process through random metamodel generation.
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 4647 Figure 4.6: Memory gain results obtained for 1000 clones.

Algorithm 3 Algorithm 3 :begin 2 c 5 c 7 c 8 if containsImmutableProperties(c exe ) then 9 c 10 c 12 c 14 c 15 c 16 c 17 cFigure 5 . 2 :

 332578910121415161752 Figure 5.2: Execution trace metamodel generated for the Petri net xDSML. Classes in green are always generated.

Algorithm 4 :

 4 createStepClass (simpliied) Input: r : the transformation rule to transform into a step class map steps : a map with the step class of each processed function mm trace : the trace metamodel in construction c trace : the trace class c smallStep : the small step abstract class c bigStep : the big step abstract class begin if r / ∈ dom(map steps ) then c step ← createClass() mm trace ← mm trace ∪ c step map steps ← map steps ∪ (r 7 → c step ) foreach p ∈ r.parameters do c step .properties ← copyProperty(p) if getStepRulesCalledBy(r) = ∅ then c step .superTypes ← c smallStep else c step .superTypes ← c bigStep c sub ← createClass() mm trace ← mm trace ∪ c sub c step .createReferenceTo(c sub , [0.. * ], ordered) c sub .createReferenceTo(c step , [1..1]) foreach called ∈ getStepRulesCalledBy(f ) do createStepClass(called, map steps , mm trace , c smallStep , c bigStep ) c called ← map steps (called) c called .superTypes ← c called .superTypes ∪ c sub if containsImplicitSteps(f ) then c ill ← createClass() mm trace ← mm trace ∪ c ill c ill .superTypes ← {c smallStep , c sub } c trace .createReferenceTo(c step , [0.. * ], ordered)
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 54 Figure 5.4: Example of Petri net model and multidimensional domain-speciic trace.
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 61 Figure 6.1: Excerpt of the extended fUML abstract syntax (focus on Activity).

Figure 6 .ActivityNodeActivationFigure 6 . 2 :

 662 Figure 6.1 shows an excerpt of the fUML abstract syntax focusing on activities. In most cases, an Activity object represents the implementation of an operation of a fUML Class object (not shown). It has a set of parameters through the property ownedParameters, and is composed both of ActivityNode objects, and ActitityEdge objects. There are two main types of nodes deined by two classes: Action, ControlNode. Actions deine how

Figure 6 .

 6 Figure 6.2 shows an excerpt of the fUML execution metamodel that we consider. It is mostly based on the operational semantics provided in the fUML speciication[START_REF]Semantics of a Foundational Subset for Executable UML Models (fUML)[END_REF].

(a) Version 1 (b) Version 2 Figure 6 . 3 :

 1263 Figure 6.3: Example of two diferent versions of a fUML activity. First version 1 was developed, then was modiied to obtain version 2. Figure taken from [112].

Figure 6 .

 6 Figure 6.3 depicts an example of a real world activity taken from the case study of Maoz et al.[START_REF] Maoz | ADDif: Semantic Differencing for Activity Diagrams[END_REF] (presented thereafter). More precisely, Figure6.3a shows the irst version of the model, and Figure6.3b shows how it was modiied into a second version. All actions are opaque actions. The activity describes the process of managing a new employee in a company. At the bottom, the initial node is a control node indicating where the activity starts. A control edge links it to an action named register. Then a second control edge links it to a decision node, whose guard only relies on a single boolean parameter of the activity called internal. If this parameter is true, then the left part of the activity diagram is executed, starting with get welcome pack. If it is false, it directly goes to assign to project.Continuing with the left part of the irst version (Figure6.3a), a fork node starts three actions in parallel: assign to project, assign keys and add to website. Then, the three control lows meet in a join node that only continues the low when the three actions are inished. It then leads to the action manager interview, then manager report, and then to a merge node which merges the two possible control low originating from the decision node at the start. Finally, after a last action authorize payment, the inal node is reached, and the execution of the activity is over.The second version of the model (Figure6.3b) is almost identical to the irst version, except for the action assign to project which is moved after assign keys.
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 71 Figure 7.1: Overview of the semantic diferencing approach from Langer et al. [99].
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 72 Figure 7.2: Generic clone-based execution trace metamodel, from Langer et al. [99].

  2. A trace conforming to rule MatchOpaqueActions match left : OpaqueAction with right : OpaqueAction { compare : compareActions(left, right) } operation compareActions(left : OpaqueAction, right : OpaqueAction) : Boolean { return (leftOpaqueAction.name = rightOpaqueAction.name); } Listing 7.1: Syntactic match rule for fUML OpaqueAction objects, written in ECL.
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 74 Figure 7.4: Excerpt of the multidimensional domain-speciic trace metamodel generated for fUML. Properties names have been simpliied for better readability. Classes shown are those used in the match rules from Listing 7.4
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 75 Figure 7.5: Execution time of the semantic diferencing rules of fUML for generic and multidimensional domain-speciic traces. Each point is a comparison of two execution traces of two versions of a model.

Figure 8 . 1 :

 81 Figure 8.1: Feature comparison of interactive debugging approaches.
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 82 Figure 8.2: Example of Petri Net execution trace annotated with the use of a selection of debugging services.
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 83 Figure 8.3: Overview of the advanced and eicient omniscient model debugging approach.

Figure 8 . 4 :

 84 Figure 8.4: Interactions when a small step is to be computed and added to the trace.

  5 of Chapter 2, this requires that the operational semantics of the considered xDSML provides a control interface. Because deining such interface and underlying control mechanism for each xDSML is a tedious and error prone task, we propose the deinition of a generic execution engine (d in Figure 8.3) valid for any xDSML and responsible for the application of transformation rules of the operational semantics.
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 85 Figure 8.5: Generic trace metamodel interface (simpliied).
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 86 Figure 8.6: Time required to perform a jumpToState.
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 87 Figure 8.7: Memory used by the execution trace.

  Output Java classes and interfaces.

Figure 9 . 2 :

 92 Figure 9.2: Example of implementation classes after calling both the EMF code generator and our cloning material generator on the metamodel AB.
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 94 Figure 9.4: Screenshot showing the Eclipse Run Coniguration to generate the cloning material of a given annotated metamodel.
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 95 Figure 9.5: Overview of the GEMOC Studio.
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 96 Figure 9.6: Overview of the GEMOC modeling workbench execution framework.
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 971444198 Figure 9.7: Overview of the execution trace management addon generation process.
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 5 2 (page 81 of Chapter 5), the result is composed of a set of classes, each representing a step transformation rule and the relationships it has with other rules.
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 99 Figure 9.9: Context menu in the GEMOC Studio to generate the domain-speciic trace plugin of an xDSML.

( a )

 a After multiple forward steps, state 20 is reached and the current node is get welcome pack.(b) After a jump to the state 10, the current node is back to register.
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 910 Figure 9.10: Screenshots showing the GEMOC Studio running an fUML activity with the Eclipse debug view and with the trace visualization addon.

Table 2 .

 2 

1: Comparison of a selection of object duplication operators.

  . Metamodel

		Abstract Syntax			
			Net		
		places *		transitions *		Place
		Place	input	Transition	merge	+tokens: int
		+name: string +initialTokens: int	1..* output 1..*	+name: string	
		Figure 2.6: Abstract syntax and execution metamodel of the Petri Net xDSML.
	1 2 3 4 5 6 7 8	@Aspect(className=Place) class PlaceAspect { /** * Current amount of tokens in a Place object. */ public int tokens; }	
	Listing 2.2: Deinition of the execution metamodel of Petri net through a Kermeta aspect.

  1, we introduce the context of our contribution and our proposal. In Section 4.2, we motivate our problem by presenting a list of requirements for cloning operators, and explaining the intuition of our idea regarding existing cloning techniques. Section 4.3 deines what we call model cloning and what are runtime representations of models.

Table 4 .

 4 1: Cloning operators obtained, one per strategy. returns true if, at the metamodel level, the class of the object that match this runtime object is shareable.

	not shared (RQ#4.4 ok) DeepCloning Fields shared (RQ#4.2 not ok) ShareFieldsOnly Fields not shared (RQ#4.2 ok)	Objects shared (RQ#4.4 not ok) ShareObjOnly ShareAll
	a strategy is an object that implements one of the strategies given Section 4.4.1 with three operations:
	isFieldShareable(f ) returns true if, at the metamodel level, there is a shareable property represented by f .
	isObjShareable(o)	

isObjPartShareable(o) does the same, but for partially shareable classes, i.e., nonshareable classes with shareable properties. copyObject(o) returns a copy of a runtime object o, i.e., a new object with the same ields and the same values. This is equivalent to the operation copy of EMF EcoreUtil.Copier a runtime representation is a set of runtime objects. It can be created empty with createEmptyRR(), and it can be illed with objects using addObject(o).

Table 4 .

 4 2: Summary of the characteristics of the cloning operators.

  Figure 5.3: Illustration of implicit steps with a simpliied run step rule. execution state: an unbounded number of big steps and at most a single small step. This is represented by the references startingState, startedSteps, endingState-State endedStepsStep between the classes ExecutionState and Step. In addition, each step transformation of the operational semantics is reiied into a class of the same name (lines 3-5 of Algorithm 4), in which all parameters of the rule are copied (lines 6-7 of Algorithm 4). The resulting class inherits either SmallStep if the rule doesn't call another step rule (line 8-9 of Algorithm 4), or BigStep otherwise (line 10-11 of Algorithm 4). For Petri nets, this means creating the classes FireStep inheriting from SmallStep, and RunStep inheriting from BigStep. By copying the parameters of the rules, each of these two classes is given a reference caller, to be able to point to the Net or Transition object concerned by the rule.

	1 2 3 4 5	def void run() { ... // code with model change (1) someTransition.fire() ... // code with model change (2) }	(1)	run() fire()	(2)

Table 7 .

 7 .3 shows the 3: Complexity of the semantic diferencing rules of fUML deined for the generic (G) and multidimensional domain-speciic (DS) trace metamodel.

	Elements	Generic Domain-speciic
	Lines of code Statements Operations Operation calls Loops Type checks Conditionals	90 35 8 35 5 4 11	44 16 3 24 4 1 3

  -After the last small step: addState

	Generic Trace Metamodel					
		currentStepBackward 0..1	Trace		tracedObjects *	TracedObject
	ExecutionStep currentStepForward endingSteps * /previous 0..1 Ending {ordered=true} Ending 0..1 /next 0..1	1 ExecutionState states {ordered=true} /currentState endingState 0..1 0..* /next 0..1	valueSequences * ValueSequence
	/next Starting /previous Starting 0..1 0..1	0..* /subSteps	startingSteps * {ordered=true} 0..1 /parentStep	startingState 1 {ordered=true} executionStates *	/previous 0..1	/current values * State	1 <<abstract>> values {ordered=true} * Value
								/next	/previous
								0..1	0..1
				Metamodeling Language	
			1	Operation	Property	tracedProperty
		appliedOperation				1
						Object	originalObject 0..1

Table 8 .

 8 1: Omniscient debugging services deinitions. state and new values if any change is detected. Likewise, revertModelToState can be generated, which relies on links from the trace to the model to restore values and re-create objects. 3. Since the operational semantics and the corresponding step classes in the trace metamodel are known, step creation can be generated. While addSmallStep is straightforward, bigStepStarted requires stacking big steps that are in progress, and to unstack them in bigStepEnded.

https://www.eclipse.org/cdo/

Stands for foundational UML, which is a standardized executable subset of UML[START_REF]Semantics of a Foundational Subset for Executable UML Models (fUML)[END_REF].

This is similar to ownership-based copying, e.g., as studied in[START_REF] Li | Sheep Cloning with Ownership Types[END_REF][START_REF] Drossopoulou | Trust the clones[END_REF].

Another related back-annotation activity is translating back results of an analysis performed on a target model (e.g., analyses of native code[START_REF] Schnerr | High-performance timing simulation of embedded software[END_REF] or counter-examples from a model checker[START_REF] Benoit Combemale | Essay on Semantics Deinition in MDE -An Instrumented Approach for Model Veriication[END_REF][START_REF] Hegedüs | Back-annotation of Simulation Traces with Change-Driven Model Transformations[END_REF]) into results relevant for the source model.

also called runtime data or dynamic data

It can be observed that the metamodel static footprint (see Section 2.1.3) of an execution transformation should include all classes and properties introduced in the execution metamodel.

Also called micro step[START_REF] Hegedüs | Back-annotation framework for Simulation Traces of Discrete Event-based Languages[END_REF][START_REF] Corley | Towards Eicient and Scalabale Omniscient Debugging for Model Transformations[END_REF].

Also called macro step[START_REF] Hegedüs | Back-annotation framework for Simulation Traces of Discrete Event-based Languages[END_REF][START_REF] Corley | Towards Eicient and Scalabale Omniscient Debugging for Model Transformations[END_REF], combo-step[START_REF] Esmaeilsabzali | Prescriptive semantics for big-step modeling languages[END_REF], or compound step[START_REF] Hegedüs | Back-annotation framework for Simulation Traces of Discrete Event-based Languages[END_REF].

The annotation @Step was added to the Kermeta in the context of this thesis, as we explain later in Section 9.2 of Chapter 9.

http://www.vi-hps.org/projects/score-p/

https://www.lttng.org/

http://www.st.com/web/en/catalog/tools/PF250516

https://software.intel.com/en-us/intel-vtune-amplifier-xe/

https://www.cs.uoregon.edu/research/tau/home.php

http://www.scalasca.org/

https://www.polarsys.org/eclipse/trace-compass

Also called breakpoint debugging[START_REF] Pothier | Back to the future: Omniscient debugging[END_REF] 

https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/index.html

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jdb.html

https://www.gnu.org/software/gdb/

Also called time-travel debugging[START_REF] Khoo | Expositor: Scriptable time-travel debugging with irst-class traces[END_REF], back-in-time debugging[START_REF] Lienhard | Practical Object-Oriented Back-in-Time Debugging[END_REF], reverse debugging[START_REF] Engblom | A review of reverse debugging[END_REF], bidirectional debugging[START_REF] Boothe | Eicient algorithms for bidirectional debugging[END_REF], or backtracking[2].

Note that cyclic debugging with an interactive debugger (as shown in Figure2.10a) can be considered as a weak form of reconstruction-based omniscient debugging with only one checkpoint (the initial state), and with no deterministic replay.

http://www.eclipse.org/mat/

without using our scalable cloning approach from Chapter 4

https://github.com/ModelDriven/fUML-Reference-Implementation

https://www.eclipse.org/epsilon/doc/ecl/

http://docs.oracle.com/javase/8/docs/technotes/tools/unix/jdb.html

without using our scalable cloning approach from Chapter 4

https://www.eclipse.org/emf/compare/

https://www.eclipse.org/mat/

https://www.eclipse.org/xtend/

http://gemoc.org/studio

MoCCML is a tool-supported meta-language dedicated to the speciication of a Model of Concurrency and Communication (MoCC) and its mapping to a speciic abstract syntax and associated execution functions of a modeling language.

 4 https://www.eclipse.org/sirius/

of the abstract syntax. Hence, a property introduced by the execution metamodel is mutable, and a property originally deined in the abstract syntax is immutable.

Deinition [START_REF] Boehm | Some experience with automated aids to the design of large-scale reliable software[END_REF] We call immutable a property introduced in the abstract syntax. At the model level, we also call immutable an object's ield based on an immutable property. We call mutable a property introduced in the execution metamodel. At the model level, we also call mutable an object's ield based on a mutable property.

We introduced an example of xDSML in Section 2.1.3 of Chapter 2, namely Petri net. We consider in this chapter the exact same xDSML as a running example. Figure 5.1 shows a reminder and a summary of all its components. On the top left corner, its abstract syntax is depicted with three classes Net, Place and Transition. Next to the abstract syntax, the execution metamodel is shown. It extends the class Place using package merge with a new mutable property tokens. At the bottom, the transformation rules deining the operational semantics are depicted. An application of run is a big step composed of small steps, each being an application of fire.

Execution Trace

We introduced a broad deinition of execution trace in Section 2.4 of Chapter 2 (Deinition 9 page 31). While execution traces can take various forms, we consider in the work presented in this chapter that an execution trace is a sequence of states and steps. Thereby, an execution state contains all the values of all the mutable ields of a model, i.e., the values of the ields deined by properties introduced in the execution metamodel. After each small step, the execution state of the model changes, and each step is recorded in the trace along states.

Deinition 17

An execution trace is a sequence of execution states and execution steps (both small steps and big steps) responsible for the state changes.

Part III

Applications and Tooling

Chapter 7

Eicient Semantic Model Diferencing

In this chapter, we present an application of multidimensional domain-speciic execution trace metamodels (presented in Chapter 5) to semantic diferencing of executable models. Section 7.1 introduces the context of model evolution, the problem of deining semantic match rules, and the research questions we consider. Section 7.2 presents an existing semantic diferencing approach based on execution traces, which relies on a generic clonebased execution trace metamodel. Continuing, Section 7.3 shows how we enhance this approach through the use of multidimensional domain-speciic trace metamodels. Section 7.4 presents our evaluation, which relies on the fUML case study presented in the previous chapter. Finally, Section 7.5 concludes.

The work presented in this chapter is an extension of the evaluation originally performed in [START_REF] Bousse | A Generative Approach to Deine Rich Domain-Speciic Trace Metamodels[END_REF], for the contribution described in Chapter 5. Likewise, it is the result of a collaboration with Tanja Mayerhofer from TU Wien, who was author of the semantic diferencing approach [START_REF] Langer | Semantic Model Diferencing Utilizing Behavioral Semantics Speciications[END_REF] that we consider and enhance. The remainder of the listings only consists of helper functions deined to reach the values of interest within the clone stored in a State object of the trace. In particular, we are interested in the firing ields of ActionActivation objects. The latter are stored within a ActivityExecution object, which is contained in a unique Locus object, which itself can be either found in a unique ExecutionEnvironment object or at the root of the clone depending on the situation. All this is handled by the remaining functions: getFiringActions, getActivityExecution, getExecutionEnvironment, get-Locus and getActivityExecution.

We can already observe that because of the complexity of the execution metamodel, deining this match rule requires a considerable of lines of code to navigate to the part of interest. In addition, the rule enumerates all State objects of the execution state, while the activation of actions only concerns a small subset of them. Usage Let us consider the two versions of the fUML activity shown in Figure 6.3. First, syntactic matching creates correspondances between all action nodes, e.g., register from version 1 is matched with register from version 2. Then, the models are executed with some identical input. In this case, the only parameter of the activity is the boolean internal, hence with two possibilities: true or false. Execution traces conforming to the generic clone-based execution trace metamodel are captured during the execution, and are then analyzed by the semantic match rule.

Table 7.1 shows a comparison of the action execution order of both versions when the input value is false. In this situation, both orders are the same, hence the semantic match rule considers both executions equivalent. Then, Table 7. -More importantly, semantic match rules must be adapted to analyze execution traces conforming to the generated multidimensional domain-speciic execution trace metamodel. Hence, rules can directly access to domain concepts reiied within this trace metamodel, and can iterate on the provided dimensions to avoid exploring the complete execution trace.

Application to fUML

Like for the original approach, we use illustrate our approach using fUML and the models from Figure 6.3. Note that since we consider the same xDSML, we use the same syntactic match rule (shown in Listing 7.1). Moreover, applying our approach yields the exact same results as the original approach, since the same match rule was implemented.

Generation of the Trace Metamodel

The irst step of our approach is the generation of a multidimensional domain-speciic trace metamodel for fUML by following the procedure that we previously described in Section 5.4.2 of Chapter 5. Because many concepts are reiied into classes and properties, the resulting execution trace metamodel is quite large, with 56 classes for mutable values and 58 classes for traced objects. Yet, we only need a very small subset of this metamodel for the deinition of the match rule. -one set for runtime, which includes:

• the API implemented by the generated code;

• EMF extensions (e.g., AbstractShareableEObject) used by the generated code;

• the generic Cloner class. containing the actual content of bar, then uses the StepManagerRegistry singleton to ind a IStepManager that is registered as being able to handle the object _self that called the method. If a manager was found, it is asked to execute the command. Otherwise, the command is executed, which means that the code still works even without any manager.

Enhanced GEMOC Studio Execution Framework

In this section, we present an architectural change that was made to the GEMOC Studio during this thesis in order to enable the deinition of multiple execution engines. In particular, this change lead to the deinition of an execution engine relying on the Kermeta step management facilities that we also developed (see previous section). First we ...

Presentation of the GEMOC Studio

The GEMOC Studio 2 is an Eclipse package atop the Eclipse Modeling Framework (EMF) [START_REF] Merks | EMF: Eclipse Modeling Framework, 2nd Edition[END_REF]. Figure 9.5 shows an overview of the two workbenches that composes it. As shown on the upper part, the language workbench is used to design and implement 
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