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The international context of modern society focuses the strategy of research in direction of the 

elaboration of materials with high properties, as illustrated in Figure I.1. The actual demand on 

technological materials is considerable and exacerbate by a competitive market. The creation of 

high performance materials became possible with the emergence of nanotechnology. This area 

which is the fruit of a transversality between physical and chemical sciences aims to control the 

design of structural entities at nanoscale level. Furthermore, this control allows to induce specific 

properties by tailoring the matter at different scales: the multi-functional materials are born.  

The macromolecular science plays a key role in the design and elaboration of multi-functional 

materials which possess combined properties such as semi-conduction, gases adsorption or fire 

resistance and high mechanical properties. These materials can be found in common applications 

such as plastic bottles, batteries, adhesives, materials for transport or energy for instance.  

 
Figure I.1. Omnipresence of polymers in our society in sectors of transport, energy, packaging, 

electronic, textile etc. 
 

Today the petroleum hegemony in the conception of the advanced materials is quasi-total. 

However, the rarefaction of this resource, which is not renewable at human scale, impacts 

directly the world economy. Furthermore, the immoderate usage of petroleum by-products leads 

to important environmental damages. For all of these economic, environmental and geostrategic 

reasons, more and more countries are engaged into a transition towards a bio-economy as 

depicted in the Figure I.2. 



Chapter I: General introduction 

18 

This awareness is concretely materialised by common agreements such as the ratification of 

Kyoto protocol in 1997 which involved the signatory countries to a regulation of anthropic 

greenhouses gases. In the frame of the European Union, the REACH (Registration, Evaluation, 

and Authorization of Chemicals) directive has been ratified which drastically increased the 

legislation in terms of safety and chemicals management, according to the principle of Green 

Chemistry which supposes the utilization of eco-friendly chemicals and processes.1 

 

Figure I.2. “3-pillars” model of a bio-economy2 

As seen on the Figure I.2, the bio-economy is based on the biogenous raw materials. Two of 

bio-resources recognized to have a higher potential to substitute petroleum building blocks are 

the biological oils and the ligno-cellulosic biomass. As a first example, we can notice the 

association Fimalin created in 2009 that promotes the utilization of linseed fibers and linseed oil 

to design performant bio-materials in term of matrix or fibers for composites elaboration. 

Another example is the Avantium Chemicals industry which develops news chemicals and 

platform building blocks and polymers from the ligno-cellulosic conversion. Avantium operates 

a pilot plant (24/7 since 2011) to convert carbohydrates into Alkoxymethylfurfural (RMF) 

compounds, further processed to a new class of furanic building blocks based on FDCA denoted 

as YXY. FDCA resembles the bulk chemical terephthalic acid and can be used as building 

blocks of polymers. 

Due to their high potentials and availabilities, linseed oil and furfuryl alcohol raw materials have 

been chosen as precursors for the elaboration of bio-based materials in this thesis work.  

                                                           
1
  Anastas, P. T.; Warner, J. C., Green chemistry: theory and practice. Oxford university press: 2000. 

2
  Kamm, B.; Kamm, M.; Gruber, P. R.; Kromus, S., Biorefinery Systems – An Overview. In Biorefineries-Industrial 

Processes and Products, Wiley-VCH Verlag GmbH: 2008; pp 1-40. 
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This thesis work has been co-financed by Provence-Alpes-Côte d’Azur (PACA) region and 

Sicomin Composites company that work on epoxy formulations since more than twenty years for 

diverse sectors such as energy or transport. This financing has been concretely supported by the 

Region-APO BIOECOMAT project. In agreement with the international context of transition 

from the actual petroleum-based economy to the bio-economy presented above, this project aims 

to develop new bio-based materials for eco-building or eco-transport for instance.  

The purpose of BIOECOMAT project has been extended to the European project called 

“BIOpolymers and BIOfuels from FURan” (BIOFUR) in the frame of “Marie Curie Industry-

Academia Partnerships and Pathways” (IAPP) (FP7-PEOPLE-2012-IAPP). This project was 

conducted by Avantium Chemicals Company, in collaboration with CNRS Laboratory in Nice 

France for the polymer part, and with University of Messina Italia for the catalysis part. 

The principal work of this manuscript related to BIOFUR project studied the possibilities of the 

valorization of “humins” which are side-stream products issued from the biomass conversion 

during the formation of bio-based building blocks destined to generate biopolymers and biofuels. 

This work has been essentially conducted in Avantium Chemicals society, in Amsterdam 

Netherland, under the supervising of Dr. Ed De Jong, Dr. Jan C. Van der Wall and Dr. Nathanaël 

Guigo, during my secondment of four months from 22 July 2013 to 15 November 2013.  

In agreement with BIOECOMAT and BIOFUR projects, three objectives have been defined for 

these doctoral investigations:  

(1) Upgrade the knowledge on monomers behavior as precursors for the elaboration of 

thermosets in terms of polymerization and structure-properties correlation Chapter IV, 

VI, VIII 

(2) Elaboration of performant (fully) bio-based materials. Chapter IV, V, VI 

(3) Proposes original strategies to improve classical thermosets properties or to develop new 

ones. Chapter V, VII, VIII 

Thus, in conformity with these objectives, this thesis manuscript has been organized in 9 

chapters, with 5 chapters of results; Chapters IV, V, VI for biomass concern and Chapters VII 

and VIII for advanced materials investigations: 

♦ Chapter I: is an introductive part, highlighting the main objectives of this thesis work in 

the actual international context. The strategy of research of this study is presented.  

♦ Chapter II: the bibliographic part, this chapter aims to present the major concepts which 

will be discussed in the following chapters. Herein, the first paragraph presents the 

thermosets science, through the chemical and physical phenomenon involved during the 
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cross-linking process, reliable to the creation of tridimensional architectures. Then the 

chemistry developed from biomass conversion is briefly exposed, putting in light the 

epoxidized linseed oil (ELO), the furfuryl alcohol (FA) and the humins as preferential 

precursors to elaborate sustainable thermosets. The last paragraph presents fundamental 

approaches in order to develop bio-inspired hierarchically organized materials. These 

approaches concern the conception of nanocomposites with the elaboration of inorganic-

hybrids of sepiolite and of magnetite, then their combination. Finally, the work treats 

about the self-organization of mesogenic monomers into liquid-crystalline polymers.  

♦ Chapter III: describes the different techniques, apparatus and methods which have 

been used during this work thesis, linked to each chapter. 

♦ Chapter IV: focuses on the elaboration of epoxidized linseed oil (ELO) thermosets, 

through a comparative study between mono- and di-anhydrides as crosslinkers. Firstly, 

the polymerization parameters were optimized (by DSC, rheometry, kinetics analysis) in 

order to generate a fully cured thermoset network. Secondly, the thermomechanical 

properties (DMA, TGA) have been discussed highlighting the relationship between 

reactivity and polymer architecture i.e. the influence of secondary reactions like 

homopolymerization and etherification. 

♦ Chapter V: the principal objective of this chapter is to find a new application for humins, 

recalcitrant side-stream product. For this purpose, a fully “furanic” strategy has been 

tested with humins as functional blend for polyfurfuryl alcohol (PFA) resins. Humins 

cellulosic composites have been elaborated to test their ability to impregnate wood or 

textiles. Tensile test analysis on impregnated cellulose composites permitted to evaluate 

and to compare humins resins (at different weight ratios) in regard to pure PFA resin and 

lignin resin.     

♦ Chapter VI:   reports the elaboration of fully bio-based thermosets through the 

combination of epoxidized linseed oil (ELO) and furfuryl alcohol (FA) monomers, with 

the principal aim to tailor the polymer’s mechanical properties in function of monomers 

ratio. The cationic polymerization has been explored by FT-IR, 2D-NMR and the 

mechanical properties have been investigated by DMA and tensile tests.   

♦ Chapter VII: proposes a strategy for the anisotropic reinforcement of an epoxy resin 

through the creation of an original hybrid of sepiolite grafted magnetite orientable under 

a magnetic field. The first part presents the nanofiller elaboration by a double 

functionalization of sepiolite and magnetite, followed by the curing of epoxy (DGEBA) 

nanocomposite under magnetic field. The second part focuses on the influence of 

composite nanofiller orientation (parallel, anti-parallel, and isotrope) in regard to 
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mechanical solicitation (DMA). This work has been done in collaboration with Dr. Jessica 

Alves Marins, Dr. Françoise Giulieri and Dr. Georges Bossis. 

 

♦ Chapter VIII: is focused on the possibility to develop epoxy resins having multi-scales 

organization. For this purpose a preliminary work has been done with the design and 

study of a new class of epoxy monomer which possesses a star geometry and a mesogenic 

character capable to induce a self-organization into mesophase during the polymerization. 

Thus after the synthesis and characterization of this star-epoxy mesogen, its proclivity to 

generate cross-linked thermosets has been explored. Firstly, in combination with anhydride 

through the analysis of the influence of supramolecular interactions on the 

polymerization kinetics; and secondly with a di-amine as cross-linker for investigations 

on network morphology by fractal development (X-ray) in relationship with thermo-

mechanical properties (TGA and DMA). 

♦ Chapter IX: presents the general conclusion of this thesis work, and open the discussion 

to perspectives. 
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II.  From petro-based to bio-based thermosets: a state of art 

 

II.1. Thermosets engineering  

Polymers can be classified considering various criteria, such as their origins, structures, 

stereochemistry, number of implied monomers, their connectivity manner, properties or fields 

of applications for instance. However a common way to discriminate the organic polymers is to 

make a distinction of their particular response in regard to the temperature.1 Thus, polymeric 

materials can be classified in two categories: thermoplastics and thermosets. Thermoplastics are 

generally semi-crystalline polymers which possess amorphous and crystalline phases that mean 

they have characteristic temperatures of melting/crystallization and of glass transition. These 

thermoplastics are constituted by linear or ramified polymer chains and are known to be re-

mouldable and recyclables. Thermoset materials are covalent cross-linked polymers generating 

a tridimensional network (this is also the case for elastomeric materials with a lower number of 

covalent bridges). Due to this dense cross-linked architecture, a thermoset is classically 

infusible, insoluble and unrecyclable, but possess very high thermo-mechanical properties that 

cannot generally be reached by a thermoplastic material. As exposed in the introductive part, 

this thesis work will focus only on thermoset polymers and composites.     

This part is an introduction into the thermoset aspects referred in this thesis, taking into account 

the major progress and understanding of this discipline. After a brief enumeration of the most 

important thermoset families, the first paragraph focuses on the epoxy thermoset chemistry, 

from the synthesis of epoxy monomer to the polymerization mechanism. The second paragraph 

centers on the physico-chemistry of polymerization, from liquid to solid state, highlighting the 

physical events which occur during the creation of a tridimensional network, and conclude with 

the applications of these versatile materials. 

 

II.1.1.  A petrosourced-polymer design hegemony 

Since the discovery of Goodyear and Hancock for the vulcanization of natural rubber in 1839, 

the innovation and commercialization of thermoset resins have been in a constant progression 

as depicted on Table II.1 As principal thermoset examples, we can cite phenolic, urea-

formaldehydes, polyurethanes, epoxy or polyimides resins. Each of these formulations has 

preferential domain fields such as plywood adhesive for phenolic resin, or polyurethanes foams 
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for construction. But epoxy resins have the particularity, due to their monomeric versatility, to 

cover an important range of application fields.  

Table II.1. Evolution of thermoset science and industry2 

 

 

II.1.1.1. Epoxies monomers chemistry: DGEBA synthesis 

This section aims to present the mains strategies of epoxidation to generate epoxy “resins”. 

Focus will be done on the epoxidation way by epichlorohydrin because it is the most employed 

strategy to produce DGEBA (DiGlycidyl Ether of Bisphenol A) which is the most popular 

epoxy resin.   

♦ Epoxidation by epichlorohydrin (ECH): this strategy consists on the reaction between a 

hydroxyl function (mostly a phenol group) and 1-chloroprene-2-oxide called 

epichlorohydrin (ECH).  In the Figure II.3 is illustrated the epoxidation of the bisphenol 

A. Concerning the synthesis protocol, as presented in the literature, ECH is generally used 

in large excess or also as solvent. Then, the sodium hydroxide is usually added in aqueous 

or alcoholic solution.3 This reaction can also be catalyzed by several salts as 

tetrabutylammonium bromide or zinc chloride for instance.4,5,6,7 In general the involved 

mechanism is described as two competitive reactions between a phenate ion (Ar-O-) and 

ECH. The first one is a one-step nucleophilic substitution mechanism (SN2) with the 
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cleavage of C-Cl bond; the second one is a two-step mechanism associated with a ring 

opening of ECH by phenate ion, followed by an intramolecular cyclization (SNi) of the 

generated alcoholate and accompanied by the release of a chlorate anion.   

 

HO OH
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NaOH

O O O

OH

O

OO

n

NaCl

 

Figure II.3. Epoxidation reaction between bisphenol A and epichlorohydrin to generate 
DGEBA monomeric resin. 

The advantage of this epoxidation strategy is the possibility of tailoring pre-polymer’s length 

and molecular weight. As a result, DGEBA pre-polymer (or resin) characteristics are 

essentially depending on the molar ratios between epiclorohydrine / bisphenol A. Typically, the 

pre-polymer of DGEBA (Figure II.3) possess n monomeric units in the range of 0.03 < n < 10. 

At room temperature, this DGEBA monomer is in a crystalline solid state for n close to 0, it is 

liquid for n ≈ 0.5 and vitreous for superior values of n ( in this case Tg ~ 40-80 °C).8 In general, 

the DGEBA low molecular weight (Mw around 370 g.mol-1) is used as adhesive, for 

encapsulation, plywood etc., while the high molecular weight (around 1420 g.mol-1) is 

preferred for surface coatings.9  

♦ Epoxidation by double bond oxidation: this epoxidation pathway concerns the 

peroxidation of C-C double bonds. The protocol can differ depending on the electronic 

effects implying the double bond. Indeed, in the simple case of an alkyl olefin, the simple 

utilization of hydrogen peroxide (H2O2) is enough to generate the oxiran ring. In the 

presence of electroattractor groups like oxygen in β-position of the double bond requires a 

stronger oxidative reagent such as m-chloroperbenzoic acid. The complexity of purification 

of epoxy monomer limits the industrial development of this way.8,10,11
  

♦ Epoxidation via glycidyl (meth)acrylate: this epoxidation consists on the reaction of a 

glycidyl (meth)acrylate with another co-monomer containing a vinyl or (meth)acrylic 

group by free radical polymerization.8 

After this brief presentation of epoxidation strategy, in following subchapter will be presented 

the associated co-monomer molecules that can be used to generate cross-linked polymers. 
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II.1.1.2. Polymerization process: cross-linkers and functionalities  

Chemical species capable to generate, in reaction with epoxy monomer/resin, thermoset 

materials are numerous. These species are called cross-linkers, curing agents, or also 

“hardeners” and are in liquid or solid state. The possible pathways to generate epoxy thermoset 

networks are summarized below:  

♦ Step growth or polyaddition/polycondensation:  this polymerization concerns the reaction 

of epoxy groups with different functions such as amine, alcohol, mercaptan, isocyanate or 

carboxylic acid in certain conditions. Amines, in particular, are one of the most used curing 

agents for epoxies and thus are a perfect example of polyaddition. The reactivity of amine 

increase with its nucleophilic character: aliphatic > cycloaliphatic > aromatic. The reaction 

between epoxy and amine is depicted in Figure II.4 and consists on the oxiran opening 

ring by primary amine nucleophilic attack, accompanied with the generation of an 

hydroxyl group and a secondary amine which reacts with another oxiran; these two 

reactions are in competition. As shown by Schechter et al.12 and developed by Gough, 13 

Smith, 14 Tanaka et al.15 the generation of hydroxyl functions induces a catalytic effect on 

epoxy-amine reaction by the formation of a trimolecular complex which facilities the 

epoxy ring opening.16 Furthermore, in the case of an excess of epoxy, a secondary reaction, 

called etherification, could occur by the addition of the hydroxyl group to the oxiran in 

excess.   
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Figure II.4. Epoxy/amine reactions accompanying the polymerization. 

Another original reaction is that between epoxy and isocyanate groups which leads to generate 

also 3D networks through several competitive reactions such as trimerization forming 

isocyanurate rings or epoxy addition catalyzed by a nucleophilic agent forming oxazolidone 

ring.17   

The functionality is an essential information on the proclivity of epoxy and cross-linker groups 

to generate covalent bonds.18 These functionalities are necessary for calculating the optimal 

ratio of epoxy in regard to the curing agent to ensure that all the chemicals groups react. In the 

case of polycondensation, the functionality of epoxy function is always equal to 1. It is the 

same case for alcohol or mercaptan. For primary amine function, the functionality is equal to 2 

in regard with the previously described reactivity; it is important to take into account both the 

attack of the primary and of the secondary amine.3,19  

 

♦ Chain-growth polymerizations: 

o  Homopolymerization: Self-reaction of epoxy group can also be induced by thermal or by 

catalytic inductions of either nucleophilic or electrophilic species as illustrated in Figure 

II.5. The commonly used initiator, also called “catalytic” curing agent, include imidazoles, 

tertiary amines, or ammonium salts for anionic chain polymerization. The active species 

which provokes the propagation is then an alkoxide. Lewis acids like boron trifluoride 

complexes, complexes aromatic salts of triarylsulfonium, etc. are generally used for 

cationic chain polymerizations. In this case the active species is an ozonium. This latent 

catalysis is initiated by decomposition reaction of Lewis acid which can be operated by 

thermal or UV treatment.20,21 These catalyzed chain propagations lead to relative low 

molecular mass value, due to several chain transfer and complex termination steps.21    
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Figure II.5. Catalysed anionic and cationic epoxy homopolymerization.  

 

o Copolymerization: besides polyadditions, epoxy group can polymerize via chain 

copolymerizations with cyclic anhydride or carboxylic acid catalyzed by Lewis bases. The 

case of carboxylic acids is particular because it can undergo polyaddition or 

copolymerization, depending of the utilization of a Lewis base as catalyst or not. Notice that 

reaction with carboxylic acid is always accompanied by several secondary reactions.22 The 

mechanism of chain copolymerization has been explored and discussed by Matéjka et al.23 

and Leukel et al.24 highlighting a strictly alternant mechanism called “living anionic 

copolymerization” in analogy with biological system. Indeed, this kind of polymerization 

should avoid all chain transfer and termination reactions. However the question that flows 

about the catalyst regeneration is still under debate.25 The mechanism presented in Figure 

II.6 consists on an initiation step with the formation of a zwitterion that contains an 

ammonium and an alkoxide anion. This generated alkoxide reacts immediately with an 

anhydride group leading to the formation of a carboxylate anion as described in Figure II.6 

(b). Then, the resulting carboxylate active center can react with another oxiran ring, 

generating a new alkoxide as active center and thus connecting epoxy and anhydride in a 

strictly alternate manner.23
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Figure II.6. Epoxy/anhydride mechanism catalysed by a tertiary amine: living anionic 
copolymerization. 
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In regard with the presented mechanism of epoxy/anhydride reaction, the functionality of each 

epoxy and mono-anhydride groups are equal to 2. This presentation is not exhaustive due to the 

large variety of cross-linkers and catalysis so each mechanism related to specific formulation 

will be presented directly in the concerned chapter. 

 

II.1.2. The creation of a 3D architecture 

The formation of a 3D polymer network requires at least a global functionality larger than 2 for 

the starting components. This is a necessary condition but often not sufficient to reach the 

creation of a tridimensional skeleton.26 Knowing that, the below section aims to focus on the 

general criteria for obtaining a tridimensional architecture, and on the definition of critical 

transformations that can occur during the formation of an epoxy network i.e. gelation and 

vitrification.  

 

II.1.2.1. Gelation phenomenon (sol-gel transition) 

♦ General features of network formation: 

The overall cross-linking process should be schematized as follows: initially a combination of 

monomeric precursors react together, in function of their functionalities and reactivies, 

generating macromolecular units. This group of molecules having a particular distribution of 

molecular weights are constitutive of the “sol” that means the soluble part of the system 

undergoing crosslinking. At a higher extent of crosslinking conversion, with the continuous 

growing of “sol” molecular weight and polydispersity, the connections between units increase 

until the formation of an infinite path of bonds allowing the formation of an unique giant 

macromolecular structure that percolates the reaction medium. According to Flory’s27 theory, 

this phenomenon is function of a given system, occurring at a definite conversion, and called 

“gelation”. This insoluble macromolecule, characterized by its immiscibility, is called “gel” 

and can be conceptually divided in several substructures which can be active and react with the 

free monomeric/sol units achieving the crosslinking.26   

As depicted in Figure II.7 the macromolecular gel could be described as a combination of 

following substructures: 

o Dangling Chains (DC): correspond to a substructure which is singly bonded to the main 

chain skeleton. DC proportion cannot be directly determined, but their influence and size 

can be correlated with dynamic mechanical properties. Indeed, their relaxations 
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distributions are different in comparison with those of EANCs or sol molecule: they don’t 

participate to the network cohesion.28,29 

o Elastically Active Network Chains (EANC): correspond to linear branched chain 

composed by monomeric/precursor units localized between two elastic active crosslink. 

According to the Flory-Erman theory,26,30 the quantity of EANC in a polymer network 

can be associated to an equilibrium modulus, and thus should be measured, due to the 

retractive force generated by EANC in response to an external stretching force. 

o Elastically Active Crosslinks (EAC): are the branch points which determine the skeleton 

network shape. They are composed by three or more bonds,26 and define the limit of 

EANC molecular weight Mc (without DC consideration) which can be calculated for 

instance by branching theories described by Krakovsky et al.31 

 

 

Figure II.7. Sol and gel substructure of a cross-linked network beyond gelation.32 

 

In comparison with the linear polymers, less experimental techniques are available for cross-

linked networks, thus is the reason of development of theoretical methods concerning network 

formation. These theories permit a better understanding and correlation between precursors 

structure and chemistry, and are able to predict the network evolution and the corresponding 

properties. 

♦ Theoretical description of cross-linking and network formation: the methods usually 

used to describe network growing could be discriminated in three groups, taking into account 

the possible intra or inter-reactivities:   

o Statistical methods: are based on the probability of distribution of 

monomeric/precursors associations and growing as function of their intrinsic 

functionalities and reactivities. 32,33,34,35 
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o Kinetic methods: are based on the kinetic equations for describing the distribution 

evolution of molecules during the polymerization.36 The apparent activation energy could 

be resumed as a set of differential equations taking into account the size, reactivities, steric 

hindrance and diffusivity of molecules groups.26 

o Simulation and modelling in finite 3D space: these methods take into account the main 

interactions such as chemical reactivities and molecular physical interactions in space. 

However, the integration of molecular structure dynamics into the simulation algorithm is 

still the major problem. Thus, these simulations does not reflect the real polymerization 

dynamics, because generated bonds are fixed in the space between lattice sites during the 

entire crosslinking process.37,38,39,40 

 

The principal characteristics of the network formation can be summarized in five points:32 

♦ The evolution of the molecular weight before gelation 

♦ The critical time and conversion until the formation of infinite structure i.e. the gel, that 

can be determinated theoretically or with the help of rheology (section III.2.4.) 

♦ The degree of transformation of finite (soluble) part of the system, commonly called 

“sol”, into the infinite structure called “gel” 

♦ The evolution of the molecular weight of the sol 

♦ The evolution of the viscoelastic properties of the medium during the cross-linking.   

The evolution of viscosity is very important because it is reliable to another physical 

phenomenon called “vitrification” which has a strong influence on the reactivity during latter 

stages of reaction.   

 

 

II.1.2.2. Glass transition and vitrification phenomena 

 

The glass transition temperature (Tg) is an important characteristic of polymeric materials, 

reliable to a drastic variation of heat capacity (Cp) and of mechanical properties of the material. 

The Tg is defined as a temperature domain of transition from glassy to viscoelastic state during 

heating the material. The knowledge of this critical temperature is important for applications, 

because it conditions the mechanical properties of the material at a given temperature, and also 
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is essential for the elaboration of the tridimensional network. Indeed, during the process of 

thermoset crosslinking, a phenomenon called “vitrification” may occur if the Tg is equal or 

becomes higher than the reaction temperature. This phenomenon corresponds to a transition 

from a liquid to a glassy state and provokes a decrease of molecular motions. It can be observed 

for isothermal or non-isothermal curing processes and can occur before or after gelation. 

Indeed, it is important to notice that gelation and vitrification are considered as independent 

events. In term of processability, the knowledge of vitrification temperature is very important 

because the polymerization kinetic decreases drastically in the glassy state. This effect is 

considered as very relevant with an increase of the difference between glass transition 

temperature and reaction temperature (Tg – T). When this difference reaches 20-30°C, the 

reaction is considered as stopped.19 Concerning the Tg evolution during polymerization, its 

value increases with conversion because of the increase of molar mass in the pre-gel state and 

of the crosslink density in the post-gel state.  

In order to summarize all the concepts presented above, the Time-Temperature-

Transformations (TTT) diagram developed for thermosetting systems by Gillham41 presents the 

transitions between the different states and phenomena taking place during the crosslinking, 

(Figure II.8). This diagram represents also three critical temperatures of glass transition noted 

Tg0, Tg gel and Tg∞ that are associated with the glass transition of precursors, the temperature of 

coincidence between gelation and vitrification and finally the glass transition of the fully cross-

linked network.  

 

 

Figure II.8. Time-Temperature-Transformations (TTT) diagram41 



Chapter II: State of Art 

36 

 

II.1.3. Outstanding properties and application fields of epoxy thermosets 

The resulting cross-linked epoxy networks exhibit outstanding properties which can be reliable 

to numerous applications such as adhesives, coatings, insulating materials, matrix for advanced 

composites, etc. A wide variety of industries is associated to these applications such as 

aerospace, defence, construction, energy or transport. These myriad of applications are linked 

with the versatility of epoxy resins. Indeed, industrials are able to elaborate tailored 

formulations for targeted properties. The main advantages of epoxy, explaining their success, 

are summarized below:19  

♦ No emission of volatile compounds during the polymerization. 

♦ Flexibility in term of selection of monomer/co-monomer allowing to obtain variety of 

polymers from rubbers, low Tg, to high Tg materials. 

♦ Versatility in terms of utilization and combinations of different polymerization chemistry 

in order to respond to the processability demand. 

♦ Low coefficient of expansion during crosslinking. 

♦ High adhesivity due to the polar groups generally present in the network. 

♦ Possibility to introduce different modifiers in the epoxy matrix, in order to promote 

targeted properties like toughness or to generate new one, like optical anisotropy by 

addition of liquid-crystal droplet as an example. 

Today the physico-chemistry of cross-linked networks is confronted to new challenges as the 

design of thermosets issued from bio-based synthons with equivalent properties and 

profitability as petro-based homologues in accordance with the European REACH directives, as 

presented in the introduction part. 

 

II.2. From biomass to bio-based thermosets 

The term biomass is associated with several definitions, however, according to an US strategy 

program of development42,43, we can define the term “biomass” as: “any organic matter that is 

available on a renewable or recurring basis (excluding old-growth timber), including dedicated 

energy crops and trees, agricultural food and feed crop residues, aquatic plants, wood and wood 

residues, animal wastes and other waste materials.” In the present investigation on bio-based 

thermosets, we are interested in two different feedstocks: the first category concerns the lipids, 
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especially the vegetable oils and the second category is reliable to the lignocellulosic feedstock, 

more particularly on carbohydrates conversion into furanic compounds. 

 

II.2.1.  An historic renewable feedstock: the triglycerides oils 
II.2.1.1. Composition and chemistry of vegetable oils 

These recent years have been the theatre of the renewal of biological oils utilization because of 

the growing interest of industry for sustainable resources, inspired by the political awareness 

about the transition to a “green” economy. Biological oils, composed by a mix of triglycerides, 

are known to be one of the best candidates as renewable raw materials to design chemicals and 

bio-polymers as illustrated in Figure II.9. That is explained by its competitive cost due to their 

abundance and availability renewing at human scale; but also due to its biodegradability and 

low toxicity.44,45  

 

 

Figure II.9. Chemical ways associated with the production of valuable products from fats and 
oils.46 
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Triglycerides lipids are liquids at room temperature and are constituted by glycerol and fatty 

acids revealing a three-arms structure of tri-esters (Figure II.10). The most common 

triglycerides constitutive fatty acids are describe on Table II.2, and represent 94 to 96% of the 

triglycerides oils moieties in weight.47 Table II.3 summarizes the chemical structures and 

properties of the principal vegetable oils. The average number of double bonds per triglyceride 

and the iodine value (amount of iodine that reacts with the double bonds for 100g of vegetable 

oil) is an indication of vegetable oils reactivity. 

Table II.2. Main fatty acids and their structures48 

Fatty acid Formula Structure 

Caprylic C8H16O2 COOH  
Capric C10H20O2 COOH  
Lauric C12H24O2 COOH  
Myristic C14H28O2 COOH  
Palmitic C16H32O2 COOH  
Palmitoleic C16H30O2 COOH  
Stearic C18H36O2 COOH  
Oleic C18H34O2 COOH  
Linoleic C18H32O2 COOH  
Linolenic C18H30O2 COOH  
α-Eleostearic C18H30O2 COOH  

Ricinoleic C18H34O3 
COOH

OH

 

Vernolic C18H32O3 COOH
O  

 

Table II.3. Chemical properties and fatty acids composition of common vegetable oils48 

   Fatty acid (%) 
Vegetable oil Double bonds Iodine value/mg per 100 g palmitic stearic oleic linoleic linolenic 
Palm 1.7 44-58 42.8 4.2 40.5 10.1 - 
Olive 2.8 75-94 13.7 2.5 71.1 10.0 0.6 
Groundnut 3.4 80-106 11.4 2.4 48.3 31.9 - 
Rapeseed 3.8 94-120 4.0 2.0 56.0 26.0 10.0 
Sesame 3.9 103-116 9.0 6.0 41.0 43.0 1.0 
Cottonseed 3.9 90-119 21.6 2.6 18.6 54.4 0.7 
Corn 4.5 102-130 10.9 2.0 25.4 59.6 1.2 
Soybean 4.6 117-143 11.0 4.0 23.4 53.3 7.8 
Sunflower 4.7 110-143 5.2 2.7 37.2 53.8 1.0 
Linseed 6.6 168-204 5.5 3.5 19.1 15.3 56.6 

 

The linseed oil particularly, presents an exceptional ability to polymerize because it contains 

the higher degree of double bonds due to its higher amount of linolenic acid. That makes a 
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natural good candidate to chemicals modifications on some reactive sites as C=C double bonds, 

ester groups, allylic positions or α-carbonyl position, as showed on Figure II.10. Indeed, in 

addition to glycerol and fatty acids, which separately are considered as high valuable 

molecules,46 triglyceride itself can be modified in many ways to obtain new chemicals and 

monomers.49  One of this modification is well known to generate very high valued molecules: 

the epoxidized oils.50 
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Figure II.10. Triglyceride molecule with their different positions for chemical modification: 
(a) the ester groups, (b) the double bonds, (c) the α-carbonyl positions, (d) the allylic 

positions.51  

 

II.2.1.2. Epoxidized linseed oil 

Due to the high reactivity and versatility of the epoxide groups, the epoxidation strategy has 

been explored through different pathways in order to generate functional triglyceride 

derivatives. The Figure II.11 describes 2 examples of epoxidation strategy:  

♦ The most employed strategy in industry is commonly called Prileshajev epoxidation52 and 

consists in the formation in situ of a peracid by the action of hydrogen peroxide on 

organic acid (acetic or formic) in presence of a strong Bronsted acid (H2SO4 typically).53 

The utilization of strong acids in the process presents several disadvantages associated 

with a poor selectivity, necessity of neutralization, and an equipment resistant to 

corrosion. This kind of catalysts can also provide side-reactions such as the opening of 

oxiran in presence of water leading to the formation of hydroxyl and then of the 

oligomers through ether linkages. However, the typical conversion of double bonds into 

epoxy groups reaches 90 % with a selectivity around 75-85 %.54 

♦ Greener epoxidation strategies have been investigated using lipase-catalyzed 

chemoenzymatic oxidation. An example of experimental conditions is given by the work 



Chapter II: State of Art 

40 

of Tellez et al.55 as illustrated in Figure II.11. This strategy presents several advantages 

in regard with Prileshajev process such as a neutral pH environment and the formation of 

stable hydroperoxides from fatty acid, i.e. without utilization of acetic acid or strong 

Bronsted acid catalysts. Enzymes employment contributes to a higher regio-, 

stereoselectivity and an important selectivity/conversion avoiding side-reactions.54 
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Figure II.11. Examples of strategies for vegetable oil epoxidation: a) Prileshajev method52,56 b) 
enzymatic way.55 

 

Epoxidized oils are considered as high potential intermediates for thermosets elaboration. In the 

same mode as olefin biological oils, epoxidized oils could play as platform molecules to 

develop new chemicals or monomers by ring opening with amines, alcohols, acids, CO2 etc.50,57 

These chemical transformations are reliable to a myriad of applications such as thermosets, 

polyurethane foams, coatings, adhesive resins, inks, matrix for composites, lubricants and so 

on.54,58 Concerning the epoxidized vegetable oils for the elaboration of thermosets, researches 

focused, in the last years, on the development of new polymers with low-toxicity and low 

migration plasticizers for a greener phthalate substitution.59,60  

Another important contribution relates with their capacity to scavenge acidic groups through 

catalytic degradation by the conversion of the formed cation radicals or excited diradicals into 

allylic structures that can start the growth of new polyene sequences in the conventional way.61 

These properties legitimate the utilization of epoxidized vegetable oils not only as co-

monomers but also as monomers. This purpose has been developed in few studies treating 

petro- and bio-based cross-linkers covering essentially topics which concern formulation or 

thermo-mechanical properties but not the polymerization physico-chemistry linked to the 

network morphology and properties.8 As an example, important progresses have been done by 

Boquillon et al.62 for anhydride formulations. This interesting screening study establish the 

effective catalysis of imidazole derivatives,63 and highlights the poor catalytic action of 
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classical tertiary amines such as N,N-dimethylbenzylamine. Several mono-anhydrides have 

been used as cross-linkers giving materials with good range of thermo-mechanical properties 

from Tg = 34.5 °C to 157 °C. The contribution of Carter et al.64 and Supanchaiyamat et al.65 can 

be noticed concerning the formulation with carboxylic di-acid hardeners.  

 

 

II.2.2.  A biosourced-polymer design issue from carbohydrate conversion 
II.2.2.1. From the biorefinery concept to platform molecules production 

 

Despite of fatty acid and lipids seen below in section II.2.1 biomass can be associated with 

lignocellulosic feedstock. The Figure II.12 describes the structure of plant cell walls which is 

mainly constituted by three biomacromolecules with specific functions and structures: lignin, 

cellulose and hemicellulose. These three biomacromolecules are self-assembled at different 

scales forming a hierarchized architecture which corresponds to the secondary wall of plant 

cells. Indeed, these secondary walls are organized by base units called “micelles” which are 

constituted by elementary fibers of cellulose coated by hemicellulose and glued together by 

lignin matrix. The self-assembly of these micelles forms microfibrils which are linked also 

together to give macrofibrils.66,67  
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Figure II.12. Structural representation of plant cell walls.68 

Concerning its chemical structure, the native lignin is an amorphous thermoset possessing a 

very complex structure69 constituted by mostly three principals units: p-coumaryl, coniferyl and 

sinapyl alcohol.70,71 The ratio between these units is variable, depending on the plant nature.72 

Cellulose has been discovered by the French chemist Anselme Payen in 1837 during his work 

on wood.73 Therefore, Payen found in wood glucose molecules by extraction,  the most 

plentiful organic compound on earth,74 as a decomposition product of a substance which is 

going to turn out to be cellulose as depicted in Figure II.12. Cellulose is a linear homopolymer 

constituted by D-glucopyranose units linked via β-bonds in 1,4-positions.75 This 

macromolecule that can contain until 3000 units of D-glucopyranose presents a fibrous 

structure provided by  hydrogen bondings self-assemblies. The association of elementary fibers 

(composed by around 30 linear chains) gives the “micelles” described above.  After cellulose, 

the hemicellulose is the most abundant polysaccharide on earth,76 but its structure is even more 

complex. Indeed, hemicellulose is a branched polymer constituted by a mix of units containing 

a plethora of C5 sugars like xylose or arabinose but also of C6 sugars such as glucose, mannose 

and so on, the ratio between these sugars depending on the plant variety.77,78 

Due to this diversity and structure complexity, the utilization of lignocellulosic biomass for 

applications as biofuels or for building-block chemicals generation requires the extraction and 

purification of these raw materials: this is the biorefinery domain. The separation of 

lignin/cellulose/hemicellulose biomacromolecules is a complex process, generally 

accomplished by hydrolysis. As an example, cellulose extraction is realized by enzymatic 

hydrolysis, giving glucose molecules while the extraction of lignin and/or hemicellulose is 

achieved by acidic or basic hydrolysis. Biomass constituents don’t possess the same stability in 

regard to the pH environment. This difference in stability allows to separate or directly to 

hydrolyze the native hemicellulose or lignin.79  

Herein, the resulting pentoses (xylose…) or hexoses (glucose, mannose…) sugars issued from 

hydrolyzed hemicellulose can undergo a cascade of reactions to generate a myriad of green 

platform molecules as seen in Figure II.13.46 Carbohydrates have been particularly focused 

because they are considered as the most important natural alternative resource of carbon in 

regard to oil and coal.80 The principal reactions involved in the process of sugars conversion are 

described below: 

♦ Fermentative conversion of carbohydrate into several acids like lactic, succinic, glutamic 

but also into ethanol, butanol, or CO2.
 46,81,82  
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♦ Hydrogenolysis reactions which result in the cleavage of C-C and C-O bonds of 

carbohydrates by hydrogen and allow direct access to valuable chemicals such as alkanes, 

alcohols and polyols like methanol, glycerol or erythritol83 

♦ Dehydration reactions of carbohydrates into a great variety of furan derivatives compounds 

such as 5-hydroxymethylfurfural (HMF) or furfural (FF) and levulinic acid.80 

 

 

Figure II.13. Potential production routes for biorefinery from lignocellulosic feedstock.84 

 

This last strategy of dehydration pathways has required much effort and attention these last 

decades, particularly in the case of furanic compounds considered to have a great potential for 

the design of fuels and chemicals. Indeed, a recent review of Bozell et al.85 revisits the famous 

classification of US Department of Energy86, describing the high potential of 5-

hydroxymethylfurfural (HMF) and furfural (FF) as the “Top10 +4” interesting compounds.   

♦ One of the principal versatile building block is the HMF which possess a high potential 

demand.46 Despite of its current cost, it is considered as “sleeping giant”87 because of this 

high proclivity to generate new green building block as illustrated in Figure II.14. As an 

example, in polymer domain, 2,5-furandicarboxylic acid (FDCA) is able to replace 
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terephthalic, isophthalic, or adipic acids in the design of polyamides, polyesters, and 

polyurethanes.88 
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Figure II.14. Building block molecules issued from 5-hydroxymethylfurfural (HMF) as 
chemical platform.80 

 

♦ The furfural (FF) represents also a very important building block issued from biorefinery 

being the precursor of several high potential molecules as seen in Figure II.15. It is 

obtained from pentose (mostly xylose) through a hydrolysis under acidic catalysis 

undergoing a triple dehydration.46   

 



Chapter II: State of Art 

45 

 

O
O

H

O

O

O

O

O

O

NH2

O

OH

O

H

HO

O

R

OH

Furfural

Furan

Furfuryl
 
amine

Furfuryl
 
alcohol

Furoic
 
acid

5
-
Hydroxymethylfurfural

Furylidene
 
ketones

 

Figure II.15. Primary products directly synthesized from furfural.46 

 

One of the most important building blocks generated by FF is the furfuryl alcohol (FA) because 

this compound has found a multitude of industrial applications presented in the next section. 

Industrially, FA is directly obtained by catalytic hydrogenation of furfural (FF) via two possible 

ways of reduction in vapour or in liquid phase. As the liquid phase way requires high pressures 

and temperatures, these drastic experimental conditions favour the generation of side-products. 

In vapour phase, the possibility to use a catalyst increases the selectivity. After 50 years of 

utilizations of Adkins catalysts (CuCr-based catalysts), today the utilization of Cu/MgO or 

Pt/TiO2/SiO2 for instance are preferred because of theirs low toxicity. Also, some alloys of Fe-

Ni-B, Mo-Co-B can be used for furfural hydrogenation. These two examples present a yield of 

100% for a temperature of 373 K and a pressure of 1 MPa.46 

 

II.2.2.2. From furfuryl alcohol to polyfurfuryl alcohol 

Besides its great potential as renewable “building block”, the furanic ring of furfuryl alcohol 

(FA) possess a very peculiar chemical behaviour, which is often different from their thiophene 

or pyrrole homologues. Indeed, its dienic character is more marked while furan heterocycle 

possess a lower aromaticity.89 Concerning FA stereochemistry, Barsberg et al.90 have shown 

the preponderance of two conformers on a total of five at room temperature. This assertion, has 

been completed by the work of Araujo-Andrade et al.91 who have fruitfully explored the energy 

barrier for FA conformational isomerization, highlighting in fine three stable conformations 

instead of five.  

In term of physical properties, we can notice: 
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 - Melting point = -29°C 
 - Boiling point = 170°C (1 atm) 
 - Density = 1.1285 (at 20°C) 
 - Dipole moment = 1.9 D 
 
Associated to the furan moieties the presence of hydroxymethyl increases the FA hydrophilicity 

which allows its miscibility in various organic solvents (ether, ketone), but also in water. As a 

result, FA is commonly used as wetting agent or as solvent89,92 and co-solvent.93 The FA has 

mostly a reactivity close to classical primary alcohols, which concern oxidation, esterification, 

etherification, etc.92 The FA furan ring reactivity has been exhaustively investigated for the 

design of new generations of ligno-cellulosic biofuels. Indeed, catalytic hydrogenation 

reactions lead to produce promising gasoline components as 2-methyl-furan (MF) and 2-

methyl-tetrahydrofuran (MTHF).94 

Concerning the FA behaviour into acido-basic media: it is relatively stable under basic 

environment, while it forms a highly reactive carbenium ion under acidic conditions. Indeed, in 

dilute acid media, the furanic ring opens and produces levulinic acid.95,96 This is a possible way 

to make the bridge towards the production of aliphatic green building-blocks like ethyl 

levulinate as preferential precursor for instance.97 Under strong acidic catalysts effect, FA 

polymerizes into PolyFurfuryl Alcohol (PFA). 

The polymerization of FA has been investigated under different conditions of catalysis:  

- Mineral acids: phosphoric acid98, sulphuric acid99 

- Organic acids: p-toluene sulfonic acid,100,101 maleic anhydride,98,102,103 trifluoroacetic 

acid104 

- Lewis acids: TiCl4,
105 SnCl4,

105 ZnCl2
106 and iodine107,108 

The FA polymerization proceeds via a complex mechanism which can be mostly discriminated 

in two steps.  

- The first step, under acid catalysis, consists in the condensation of a hydroxymethyl group 

on the C5 position to another FA ring associated with dehydration.92 In consequence of this 

condensation reaction, as illustrated by Figure II.16 (a), furan rings are connected by 

methylene linkages generating linear oligomers and prepolymers.109 We could mention that the 

formation of dimethylene ether link could also occur (by a head to head condensation). 

Nevertheless, this structure tends to revert to methylene links after the loss of formaldehyde.89 

As illustrated by Figure II.16 (b), chromophores with highly conjugated sequences are 

generated by successive releases of hydride and proton.89,105   

- Then, in the second step the linear oligomers will submit cross-linking via two possible 

pathways:  
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♦ Electrophilic substitutions of conjugated sequences illustrated in Figure II.16 (c) have 

been proposed by Maciel et al.110,111 and studied further by some authors.101,108 Montero 

et al.112 highlighted a preferential electrophilic attack on the C6 instead of C8 or C9 

positions. 

♦  Diels-Alder (DA) cycloadditions occur as proposed by Choura et al.105 between the furan 

rings (diene) and the dihydrofuranic cycles (dienophile) (Figure II.16 (d)); the authors 

argued this mechanism by a deep study based on model molecules. 

Overall FA cross-linking has been investigated by liquid chromatography (LC)107 or gel 

permeation chromatography (GPC)99, revealing a complex mechanism. However, these 

techniques are limited by the physico-chemical modifications inherent to crosslinking as seen 

in section II.1.2. The major associated problems are the decrease of the medium polarity and 

the high increase of the polymer viscosity during the polycondensation and specially during 

cross-linking.    

To overcome these problems, DSC has been used as an adapted technique, because the measure 

of heat flow variation give information correlated with the entire range of polymerization. 

Herein, the first investigations based on DSC data using classical kinetic methods have been 

done by Milkovic et al.100 in the 80s revealing a multi-step mechanism varying with both 

temperature and extend of cure. It is necessary to mention that in the case of complex 

mechanisms, the classical empirical kinetic methods based on a reaction model are not 

relevant. In order to have an overall understanding of polymerization process, Guigo et al.103 

have used advanced isoconversional methods giving access to the apparent activation energy 

calculated for each extend of conversion, without the need of a reaction model for the 

polymerization mechanism. This “model-free” method exposed on section III.1., associated to 

rheological data and applied to the PFA cross-linking, has been very powerful to discriminate 

each variation of apparent activation energy during entire polymerization process, and 

supplying another contribution on reactivity understanding of polycondensation and cross-

linking.  
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Figure II.16. Oligomerization and prepolymerization through acid catalyzed condensation (a); 
formation of conjugated sequences (b); cross-linking by electrophilic substitution (c); cross-

linking by Diels-Alder cycloadditions (d).113 

The elaboration of PFA represents today the principal industrial utilization of FA, the obtained 

resin having numerous applications: 

- For wood industry, as stabilizers114 and adhesives115,116  

- As binders117 for several applications like porous materials for methane storage118 

- For corrosion and fire resistant materials89,106,119 

- For sand consolidation to produce cores and moulds for foundries120,121  

The PFA is also considered as preferential precursor for the elaboration of advanced material 

like carbon electrodes,122 carbon nanospheres,123  membranes for gas separation124 or water 

desalination125 for instance. PFA can be also carbonized to generate nanocomposites or defined 

micro and nanostructures.126,127,128,129,130  

Finally in term of safety, while the FA monomer presents certain cytotoxicity131 and 

neurotoxicity132, the PFA pre-polymers and the fully condensed material present lower hazard. 

That legitimates why the physico-chemical knowledge of the polymerization, in terms of 

enthalpy, kinetics and their occurrence reveals a high significance for industrial production.    
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II.2.2.3. A side-product to valorize : the humins 

As previously mentioned in the section II.2.2.1, the production of green building blocks such 

as HMF, FF or levulinic acid (LA) is always accompanied by the generation of heterogeneous 

macromolecules, provided by carbohydrates dehydration and degradations, commonly called 

“humins” (Figure II.17).  

 

Figure II.17. Humins by-product formation from the lignocellulosic biomass conversion 

The management of this side-steam product is a current challenge of first priority for the 

economic viability of biorefinery. Indeed, Hoang et al.133 in a very recent paper, make an 

exhaustive summary of humins yields for the production of HMF/FF/LA from different bio-

derived (poly)saccharides. The yield range of humins conversion is generally found from 

around 4 % to 50 %. For all envisaged strategies until now, the production of humins has been 

reported. To illustrate this fact, two different examples have been taken from the literature:  

♦ From D-Glucose source, catalysis with both liquid or solid acids have been done in ionic 

liquids as solvents, giving humins ratio between 7 % to 21 %.134   

♦ From cellulose, catalysis with mineral sulfate acid in biphasic system H2O/THF gives 

humins yields from 7 % to 40 %.135   

These two recent examples show that whatever the sugar substrate, or the experimental 

conditions, (catalysis, solvent, or physico-chemicals parameters such as temperature and 

pressure) humins are always present on the final products. This established fact underlines the 
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increasing necessity to develop knowledge on the formation of humins and on their potential 

use as valuable product, to answer to the problematic of biorefinery efficiency.136  

 

♦ Humins-like materials: HydroThermalCarbon (HTC)  

Most of the knowledge of humins or humins-like materials comes from HydroThermal Carbon 

(HTC) which is prepared from carbohydrates, or biomass, under a hydrothermal treatment. The 

difference from the humins provided by the conversion of carbohydrates into HMF/FF/LA, 

HTC are generated without any acidic catalyst.136,137,138,139 HTC exhibits the morphology of 

spherical particles that could be generated by the putative mechanism of condensation between 

sugars and furanic moieties provided by cellulose dehydration. The resulting proposed 

architecture consists in a core-shell structure with an hydrophilic polyaromatic shell and a less 

dense core, according to Sevilla et al.137,138 and Yao et al.140 As an alternative suggestion, the 

group of Baccile et al.139 proposed through advanced 13C solid NMR investigations, a furan-

rich structure of HTC which is mostly linked on α or β positions by aliphatic linkages. This 

study on various pentose- and hexose-derived HTC highlights also the presence of LA, 

physically adsorbed and trapped between the polymer chains. The authors concluded that the 

HTC provided by C5 sugars contains more furanic moieties than theirs C6 sugars homologues. 

This result implies that different structure will be produced, according with the feedstock.141,142 

This important difference in terms of morphology and structure can be also reliable to the 

processing parameters. As an illustration, the amount of HTC increases with the temperature, 

the conversion and the concentration on (poly)saccharides.137,138 

♦ Humins definition and investigations  

In many aspects, the behavior and structure of humins issued from bio-refinery are close to 

HTC. Some studies highlight the variability in term of particles size and chemical structure, 

which strongly dependent on feedstock and processing parameters.136 First of all, we need to 

properly define the humins, which is not easy considering its structure variation with the 

feedstock source and with experimental conditions. Herein, the elemental analysis illustrated by 

van Krevelen diagram depict the oxygen/carbon atomic ratio in the range of 0.30 to 0.40 and 

that of hydrogen/carbon in the range of 0.65 to 0.80.136 Macroscopically humins have the 

aspect of shiny bitumen, with a high viscosity, depending on its degree of condensation (Figure 

II.18). 
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Figure II.18. Humins produced by Avantium company pilot plant. 

Two approaches have been explored in the literature to answer to the following major 

questions: how humins are formed? What are the structures of humins? And which are the 

parameters influencing their structures and growing?     

♦ The first approach, proposed by Patil et al.,143,144 concern the humins formation and 

their growing mechanism, with the help of FT-IR, HPLC and molecular modelling. For that 

purpose, they were interested on the conversion of HMF into levulinic acid (LA) and formic 

acid, which generate humins by parallel reactions. The resulting observations in term of 

selectivity suggest that humins are derived from HMF and not from LA or formic acid. This 

assertion is in good agreement with the mechanism proposed by Horvat et al.95 who 

explained the formation of humins from 2,5-dioxo-6-hydroxy-hexanal, which is itself 

provided by HMF. The humins FT-IR spectra confirm that humins furanic moieties are 

derived from HMF furan ring. Moreover, the authors confirm the presence in humins 

structure of the hydroxyl groups from HMF but interestingly are missing the associated 

carbonyl groups from HMF aldehyde functions. These results could be a proof of the 

postulated humins growing via aldol addition/condensation of HMF with 2,5-dioxo-6-

hydroxy-hexanal. Accompanied to this primary route of humins growing, another possible 

way could be associated to 1,2,4-trihydrobenzen (TB), which is a minor product formed 

during the conversion of HMF from carbohydrate dehydration.145 Indeed, the addition of TB 

during glucose acidic conversion provokes an increase on humins yield. This clearly exhibits 

the TB as a potential cause for humins growing and cross-linking.136 All of these 

assumptions underscore the complexity of the growing mechanism, including also the role 

of other side-products generated during the carbohydrate conversions and intervening on 

humins formation. 

♦ A second approach is based on structural elucidations through the work of van 

Zandvoort et al.136 using a deep investigation on elemental analysis, FT-IR, solid state 13C 

NMR, and TGA pyrolysis/GC-MS techniques. The obtained results confirm mostly a furanic 
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structure with alcohol, acid, ketone and aldehyde functional groups, as summarized in 

Figure II.19 by structure models proposed from glucose and xylose feedstock. The humins 

morphology observed by SEM could be described as an agglomerate of spherical particles of 

around 3-5 μm diameter. However, the humins obtained from xylose present more furanic 

groups, instead of aliphatic chains, leading to the formation of more condensed humins. That 

could be explained by the C5 free position of furfural which can be a direct source for the 

cross-linking on furan moieties. 

 

Figure II.19. Proposed structure of idealized humins provided by glucose (A) and xylose (B) 
conversion.136 

 

Humins should be considered as a “living” material, with an architecture which can be 

modulated by several experimental conditions, such as thermal treatment, as illustrated by the 

analysis of condensable volatile fractions issued from humins degradation (Figure II.20).133 

These volatile compounds can be classified in six families as depicted in Figure II.20. The 

main results is the formation of (poly)aromatics and phenols above 400 °C, thus revealing that 

a complex succession of reactions occur during heating. All these mechanisms need to be 

deeply understood to target specific structures in order to create new products with higher 

value. 
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Figure II.20. Representative compounds released during the volatilisation stage of idealized 
humins issued from glucose. Chemical structures embedded in frame are those identified in the 

1-step pyrolysis experiment from RT to 700 °C.133 
 

Indeed, one of the challenges for biorefineries future can be summarized in one question: What 

we can do with this humins? Nowadays, humins are mostly considered as a combustible to 

supply heat and power back into the sugar conversion process. Another approach to transform 

humins into higher value-added products has been investigated by Hoang et al.133,146 with the 

production of syngas and hydrogen by catalytic gasification.  

 

II.3. Hierarchical advanced materials: a Nature inspiration 

One of the first example of biomimetism concept materialisation has been investigated by 

Leonardo Da Vinci.147 This concept in the frame of a scientific approach could be envisaged 

gradually, in three steps. The first step is the observation of a natural phenomenon; the second 

is about its study, to understand the mechanisms that provoke and have an influence on it, in 

order to crystallize these collected information into fundamental knowledge. Finally, the third 

step is about the transposition of this knowledge to respond to a concrete needing. An 

illustration of this biomimetism concept is illustrated in Figure II.21. Leonardo Da Vinci 

begins by the observation of flying bird, then to study their moving in the sky and their 

anatomy and proportion in order to correlated physical morphology with their capacity to fly. 

In a last step, he transposed this knowledge to an higher scale with the creation of a macchina 

to make Human capable to fly.  



Chapter II: State of Art 

54 

 

Figure II.21. Extracts folios of Leonardo Da Vinci works from Codice sul volo degli uccelli 
a)148 and from Codex Atlanticus b)149. 

 

II.3.1. Bio-inspiration as strategy to design advanced materials 

Today the scientific community approach is similar to that proposed by Leonardo Da Vinci and 

still presents a great interest into natural structure and phenomenon as illustrated the recent 

scientific journal cover page in Figure II.22.  

 

Figure II.22. Cover page on nacre theme from Angewandtle Chemie International Edition 

journal,150 and on spider silk from Nature journal151 

The example of natural nacre as hierarchical structured material will be briefly described as 

bio-inspiration to design materials with outstanding properties. This example is illustrated in 

Figure II.23 with a scheme presenting the hierarchical assembling of nacre structure associated 

to SEM micrographs at each scale. 

 

a) b) 
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Figure II.23. Scheme of nacre hierarchical structure from chitin molecule for gastropods (top) 
and bivalves (bottom) a)152 and SEM investigation highlighting its hierarchical organization 

b)153 

 

Nacre structure could be schematically summarized as a “brick and mortar” layered 

architecture alternatively stacked with two dimensional aragonite calcium carbonate platelets: 

that corresponds to a material volume of 95%. The other 5% in volume corresponds to one-

dimensional assembling of nanofibrillar chitin and protein, and to the interaction between 

proteins and aragonite platelets.154 In term of mechanical properties, Jackson et al.155 study 

shows a Young’s modulus and a tensile strength of around 70 GPa and 170 MPa for dry 

samples, respectively. The work of fracture is about 350 - 1240 J/m2 in function of the degree 

of hydration. For the sake of comparison, the constitutive building block takes separately: 

monolithic CaCO3 exhibit a work of fracture which is 3000 times inferior in comparison to the 

hierarchized composite nacre material.156 Cheng et al.157 explain this fact in one resumed 

sentence: “The extraordinary properties of natural nacre are attributed to the synergistic 

toughening effects from the different building blocks and interface interactions.”  

The mimic design of this kind of architectures with simpler building block in order to reach 

these impressive properties is thus very attractive. This ambition was made possible by recent 

progress in all the fields of chemistry. Indeed, since the 19th century, organic chemistry 

investigations aim to develop a large panel of reactions which give access to the creation of an 

infinity of new building blocks. Then the assemblage of these building blocks into controlled 

architectures via physical recognition process, made the design of hierarchically ordered 

materials possible, this is the domain of the supramolecular chemistry.158  

 

a) b) 
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II.3.2.  Bottom-up approach: the chemical way 

As seen on Figure II.24 the exploration of “nanoworld” should be envisaged in two pathways. 

Historically, the first way has been explored by physicians who developed the concept of 

nanoscience. Firstly with the attractive conviction to observe new physical properties at 

nanoscale and secondly through the prism of micro-electronic evolution. Indeed, electronic 

science since its beginning follows a strong proclivity to the miniaturization. This evolution is 

empirically describes by the Moore law which plans a components performance multiplied by 

ten each two years. However, the law will be probably not verifying for the “nano-electronic” 

because of “nanoworld” should be assimilated as a frontier between two universes: a first one, 

macroscopic, described by classical mechanic laws, and a second one, atomic, governed by the 

quantum mechanics laws.  

Economic perspectives in this domain are considerable, which explain an important focus of 

the research on the miniaturization of microprocessor toward “nanoprocessor” by the 

extrapolation of microelectronic techniques: this is the domain of the mesoscopic physics. This 

research way has been baptized “top-down” because of its directional approach.159,160,161 

The second way consists on the symmetric directional approach called “bottom-up” which 

apprehend the nanoscale from atomic scale with the spontaneous recognition of building-blocks 

which possess the capacity to self-organization into more complex architectures. This definition 

is on the competence domains of chemistry and more particularly of supramolecular chemistry.  

The elaboration of nanomaterials starting from nanoparticles represents the final objective of 

the bottom-up way, with the main goal to discover news pathways for tailoring the matter in 

terms of properties.161,162 In the following sections, definitions and classifications relative to 

nano-objets (or nanoparticules) and nanomaterials will be clarify, then a specific example of 

supramolecular recognition process will be presented, when the liquid-crystalline state meet the 

macromolecular science. 
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Figure II.24. Comparison of self-assembly process by top-down and bottom-up ways.162 

 

II.3.3.  Nano-objects: their diversity and versatility  

Nanoparticles or nano-objects synthesis should be the first step in the nanomaterials 

conception. These nano-objects could be discriminate by several manners: in function of their 

organic or inorganic character or theirs properties for instance, or considering their nanometric 

dimensions as seen on Figure II.25. Thus nano-objects could have one nanometric dimension 

such as montmorillonite clay sheet (thickness), two nanometric dimensions such as carbon 

nanotube (diameter of the filament) or three such as macromolecules or clusters. In the 

following sections of II.3.3.1. and II.3.3.2., we will focus on the nano-objects that will be used 

in the manuscript. 

 

 

Figure II.25. Examples of nano-objects with one nanometric dimension: exfoliated 
montmorillonite clay a)163, two nanometric dimensions: nanofilament obtained after 

ceramization of polyacrylonitrile in Al precursor solution b)164, three nanometric dimensions: 
variety of C60

 fullerene used in solar cells c)165 

a) c) b) 
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II.3.3.1. 2D nano-objects: example of sepiolite clay as polyvalent nanofillers 

Sepiolite is a crystalline hydrated magnesium silicate natural clay presenting a needle-like 

aspect with length dimensions of 0.5-5 μm and a cross section of around 20-50 nm as seen on 

Figure II.26. This nanofiller structure is organized in continuous two-dimensional talc like 

tetrahedral sheets and discontinuous octahedral sheets, exhibiting a regular nanoporosity 

organized in rectangular-shape channels with a porous cross-section of 11.5 Å x 3.7 Å.166 This 

architecture is built from unit cells which present the ideal composition of  

Mg8Si12O30(OH)4(OH2)4.8H2O where 4 and 8 H2O are respectively associated to coordinated 

and zeolitic water molecules.166,167 

 

Figure II.26. Scheme representing sepiolite nanofiller.168,169 

These previously described physico-chemicals structural information can be reliable to 

numerous of very interesting properties such as adsorption, encapsulation168,170,171 (high 

specific surface area of around 300 m2.g-1) or flame retardant172 for instance. These properties 

associated to a modulus of E=180 GPa173 for a sepiolite fiber, to abundance and to a relative 

low cost make sepiolite nanofillers as attractive nanoparticles platform as blend for 

thermoplastic,174 elastomeric175 or thermoset176 polymers in order to design nanocomposites 

with higher and news properties. Furthermore, the silanol groups on sepiolite external surface 

present an easy way to functionalize this nanofiller using silane chemistry in particular. This 

strategy has been investigated in particularly to improve the compatibility between polymeric 

matrix and the nanofiller.177,178,179 

 

II.3.3.2. 3D nano-objects: example of magnetite as superparamagnetic 

nanoparticles  
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The literature describes several procedures for the synthesis of magnetite nanoparticles (Fe3O4) 

such as: the thermal decomposition of Fe(III) chelate in presence of hydrazine;180 the 

hydrolysed Fe(II) salt decomposition assisted by sonication and thermal treatment181 or 

Fe(acac)3 in presence of stabilizing amphiphilic molecules in high temperature organic liquid 

phase.182 In this manuscript the utilized method gives magnetite nanoparticles with a size 

diameter of around 12 nm. The resulting nanoparticles are obtained by the co-precipitation of 

ferrous and ferric entities in aqueous media, as exhibited the reaction (1) in Figure II.27.183 

Concomitantly to this principal reaction, several secondary reactions could occur in function of 

different experimental conditions.  

The magnetite nanoparticle is very sensible to oxidation and thus, in the presence of air, could 

form Fe(OH)3 or maghemite (γ-Fe2O3)
184 as respectively exposed in the reactions (2) and (3). 

The presence of O2 in water could also provokes the formation of Fe3+ species by oxidation of 

Fe2+ through the reaction (4), thus this enriched environment of Fe3+ leads to the generation of 

Fe(OH)3 and (γ-Fe2O3) through the pathways (5) and (6) respectively. Notice that Fe3+ could 

also generates, in certain pH condition, goethite (α-FeOOH) via reaction (7) and (8). Despite of 

these possible secondary reactions, the precise control of experimental conditions leads to form 

magnetite particles.185  

 

Figure II.27. Synthesis of magnetite nanoparticles in regard to the possible secondary 
reactions.185 

Concerning the magnetic properties, magnetite macroscopic material presents a ferromagnetic 

behavior. At microscale this magnetism is expressed through anisotropy reliable to the presence 

of a polydomain into the material. The local spontaneous magnetization of each of these called 

Weiss domains is different, respecting the conditions for that global magnetic moment of the 

material equal to zero.  



Chapter II: State of Art 

60 

At the scale of very small particles such as nanoparticles, Néel186,187 has shown a particular 

magnetic state, which will be called superparamagnetic behavior. Contrarily to the microscopic 

particle, the nanoparticle possesses only a monodomain at this dimension, which imply a 

possible spontaneous change in the magnetization in function of temperature. The average time 

between two changes of magnetization is called Néel time relaxation.  Without application of 

an external magnetic field, if the time used to measure the magnetization of these particles is 

much higher than the Néel relaxation time, the magnetization appears null. In this case, the 

particle is in a superparamagnetic state. In other words, in this state, an external magnetic field 

can magnetize the particles as it is the case for paramagnetic materials. However, the magnetic 

susceptibility (that means the proclivity of a material to be magnetized under the action of an 

external magnetic excitation) of superparamagnetics is much higher than classical paramagnetic 

materials.188 Experimentally, the magnetization of the material is commonly given by the 

saturation magnetization curve. 

Various and numerous of high potential applications of these magnetite, or functionalized 

magnetite nanoparticles could be found in the literature. We can cite a study which combines 

the aspect of magnetite nanoparticle as potential medicine co-vectors associated to 

hyperthermia treatment by magnetic excitation for the cancer therapy.189 Also for the 

elaboration of sensors,190 or as supports for heterogeneous catalysis etc...191,192,193 

 

II.3.4.  Hybrid organic-inorganic nanocomposites 

The impressive variety of nanomaterials/nanocomposites could be discriminate considering 

different factors such as the mode of nano-objects assembly in the matrix161 according to their 

organic or inorganic character, or by nature of interactions between the nanoparticle and the 

matrix. This last classification is very relevant because is directly reliable to properties. Thus, if 

the interactions between the matrix and the nanoparticle are “weak” (hydrogen, van der Waals, 

or ionic bonds), the nanomaterial will be constitutive of the class I, however if the connections 

are “strong” (covalent or iono-covalent bonds), the nanomaterial will be considerate as member 

of class II.194  

As seen on the section II.3.1. the performance of natural materials is associated with the 

synergy between each component of the architecture, often between organic and inorganic 

entities. Thus, hybrid organic-inorganic nanomaterials are good candidates for the elaboration 

of hierarchically organized structures, as depicted the Figure II.28, because its offer the 

diversity of the mineral chemistry, and the flexibility of organic chemistry.  
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Figure II.28. Scheme of the mains routes for the elaboration of organic-inorganic 
nanocomposites.194 

 

As an illustration, linked to the example provided by the Figure II.22 and Figure II.23, a 

synthetic nacre bio-mimetic material has been elaborated by Wang et al.195 This hybrid organic-

inorganic nanocomposite hydrogel consists on a system associating a poly(N-

isopropylacrylamide) (PNIPAM) and a nanoclay (Laponite XLG) in order to form hydrogel 

films. The details of N-isopropylacrylamide (NIPAM) polymerization initiated by 2,2’-

diethoxyacetophenone (DEOP) and the resulting architecture are illustrated in Figure II.29. 

The resulting nacre-like structure gels are capable to large deformations (740–1200%), 

associated to values of 1.54–43.2 MPa for Young modulus. These last results correspond to the 

highest values reported for polymeric hydrogels until now. They are comparable with that of 

natural hydrogels, such as biological cartilage196 or cornea for instance.197 These impressive 

results could be imputable to the hierarchically organized structure at nano- and microscale. In 

the same case like natural nacre, this class I nanocomposites (because of the hydrogen bonding 

between nanoclay and polymer), exhibits a synergic effect involved by the stiffness given by 

the nanoclay associated with the dissipative ability provided by PNIPAM. 
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Figure II.29. Process of NIPAM-clay nanocomposite film elaboration a);  assembled structure 
with precursors before polymerization b) resulting proposed model of layered assembly after 
polymerization c); macroscopic structure of the resulting film d); dry film morphology obtain 
from SEM e) TEM micrographs showing the stacking between nanoclay and polymer layer 

f)195 

 

II.3.5. From liquid-crystalline state to macromolecular chemistry  
II.3.5.1. Liquid-crystalline state: born from a molecular frustration 

Liquid-crystalline state introduced by Friedrich Reinitzer198, Otto Lehmann199 et al. during the 

19th century could appear in the case of certain pure molecules, supramolecules, or in 

multicomponent systems during their transitions from solid to liquid state.200,201 This also called 

“mesomorphic state” is now commonly admitted as a new state of matter that possesses an 

hybrid behavior between the solid (crystal) and the liquid state. That is translated by a 

molecular order at short and medium distances, with absence of order at long distances (the 

case for a crystal), and a capacity to flow as a liquid.202,203  

The liquid-crystalline state is born from a self-organization into mesophases of mesogen 

entities that possess a structural/chemical antagonism, leading to the segregations of the entities 

moieties which possess a similar character (such as hydrophilic). These mesophases are 

sensible to different stimuli like temperature (thermotrope), concentration in multicomponent 

system (lyotrope). Mesogen molecules possess the capacity of orientation in a preferential 

direction, under an external field like electric, magnetic, or a mechanical stress. Concerning the 

thermotropic mesogens, these entities can be structurally reliable to a “rigid” core linked by a 

flexible segment. Thus in term of chemistry the rigid core is generally obtain via C6 aromatic 

moieties and the flexible segments are provided by aliphatic moieties.204 The type of 

mesophase architectures is dependent on the mesogen core geometry. Herein, as schematically 
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depicted in Figure II.30, a rod-like (calamitic) or disc-like (discotic) geometry205,206,207 of the 

mesogen core lead to generate various kind of mesophases with different degree of order: only 

orientational for nematic mesophase, orientational and positional for smectic or columnar 

mesophase. We can also notice the cholesteric mesophase with chiral mesogen core,208,209 and 

the bent-core or “banana-shape” (curve rod-like shape) as mesogenic core which lead to form 

original mesophase.210  

 

Figure II.30. Self-organization of disc-like molecules (bottom) and rod-like molecules (top) in 
mesophase, with the abbreviations: Iso for isotropic liquid state; N for nematic mesophase; SmA 

for smectic A mesophase, SmC for smectic C tilted mesophase and Col columnar phase.211,212 

 

In addition to these conventional mesogens which are defined from a shape-anisotropic rigid 

core associated to flexible chains, the research focused these last years on the elaboration of 

non-conventional mesogens. These mesogens could present a multiarms structure as star-like, 

or dendritic-like for instance, and don’t only possess an anisotropic-shape of the core unit, but 

have also the capacity to self-assembly in liquid-crystalline phases through driving forces of 
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nanosegregation, chemically or physically induced.213,214,215,216  An example of supramolecular 

star-like design, is representing by the Hekate supramolecular family exposed in Figure II.31 

and highlighting the myriad of possibility of tailoring the final properties. This example can be 

enlarged in term of applications in materials science and biology fields as shown in Figure 

II.32.217 

 

            

Figure II.31. Hekate model structure a) tailored possibilities of mesogen supramolecule b).213 

 

 
 

Figure II.32. Liquid crystals classes reliable to their self-assembled structures and their 
applications in function of the molecular shape.218 

a) b) 
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II.3.5.2. Liquid-crystalline epoxy resin 

 

During an allocution in 1975 de Gennes219 suggested the possibility of cross-linking in 

mesomorphic phase, associate to the putative high potential of these anisotropic networks in 

term of discontinuity in the stress-strain in response to an external solicitation for instance.220 

Since this precursor theoretical work, a growing interest of the scientific community221,222,223 

was directed on this new science area which combined liquid-crystalline self-assembly and 

macromolecular engineering. This marriage permitted to create a new class of polymers: the 

liquid-crystalline thermoset (LCT).224  

 

As seen on section II.1. due to this various chemistry, versatility, and outstanding properties, 

epoxy resins are ideal candidates to generate an anisotropic cross-linked network. This way has 

been investigated at the beginning of nineties by Ober et al.,225,226 Carfagna et al.227,228,229, 

Jahromi et al.230 with the aim of understanding the behavior of polymerization reaction in 

liquid-crystalline state, and to discover new properties of the anisotropic networks. A new 

subclass of LCT is born, the Liquid Crystalline Epoxy Resins (LCERs).     

 

The first step of the creation of this kind of networks consists on the synthesis of an epoxy 

monomer, generally associated to the rigid mesogenic core moiety (section II.3.5.1.), which 

have a mesogenic or proto-mesogenic (being able to induce a mesomorphism by association 

with another component) character.  

 

The most common synthetic strategy employed was the creation of the rigid core by the 

reaction of a phenol derived and then the epoxidation of the resulting “core” of these two 

phenol moiety by epichlorohydrine as explained in section II.1.1.1. The Table II.4 shows 

some examples of the rod-like rigid cores which has been epoxidized and studied in the 

literature until now. 

 

In combination with the epoxy monomers, the choice of the cross-linkers is the key of the self-

assembly design, considering the functionality of both epoxide and cross-linker, which depends 
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on the polymerization reactivity reliable to the chemical functions such as carboxylic acid, 

anhydride acid, alcohol or amine for instance, as seen on section II.1.1.2. 

Table II.4. Examples of epoxy monomers mesogens studied in the literature224,231 

Epoxy monomer mesogen core References 

 

6,232,233,234,235,236 

 
6,233,237,238,239,240 

C N N C

 

228 

 

233 

 

229 

C

O

O

 

6,233,237,230 

C
H

N N C
H  

5,7,241,242 

 

The chemical structure of cross-linker is also very important, especially in the case of proto-

mesogenic monomers. Therefore, the length, the aromaticity or the hydrophobic/hydrophilic 

balance are to take into account for the design of network morphology.3,19 As an example, the 

classical rod-like anisotropic networks are tribute of supramolecular interactions, provided by 

π-π stacking, hydrogen bonding of secondary groups from polymerization or from designed 

cross-linkers.226,243 Some studies also highlighted the important contribution of alkyl moieties 

as entropic reservoir for mesophase design.244  

 

The cross-linking induce the formation of an anisotropic network which is characterized by the 

presence of polydomains (their size are reliable to the type of mesophase but are still at 

microscale order); each domain presents a different preferential directional orientation.236 

However, as seen above in the case of classical liquid-crystals, is possible to induce a 

preferential orientation in order to switch to a kind of monodomain with the application of an 

external electric245 or magnetic field246 during polymerization. The increase of order is also 

possible by application of a mechanical stress like a shear.241 The anisotropic networks have 

interesting applications because of their higher mechanical properties in regard to their 
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homologues, amorphous epoxy resins, or as materials for optic domain, in particular with the 

case of cholesteric “frozen” phase.231  
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III. Materials and methods 

III.1. Structural and morphological analysis 

 

III.1.1. FT-IR 

FT-IR technique has been used in this thesis work for characterization of products of synthesis 

and to investigate the evolution of polymeric structures before and after curing reactions. For this 

purpose, a Perkin Elmer Spectrum BX II spectrophotometer was employed in attenuated total 

reflectance (ATR) mode using a diamond crystal (Chapters IV, V, VI, VIII) and a Perkin-

Elmer Paragon 1000 spectrometer with a diffuse reflection infrared device (Eurolabo Minidiff 

plus diffuse reflectance device) (Chapter VII). 

 

III.1.2. Mono and multi-dimensional NMR 

1D and 2D liquid state NMR have been employed to follow the polymerization between ELO 

and FA (Chapter VI), and for the characterization of synthesized monomers (Chapter VIII). 

For that, 1H NMR and 13C NMR investigations were recorded in DMSO-d6 with a Bruker 

AVANCE I instrument with direct probe working at 500.23 MHz for 1H and 125.75 MHz for 
13C. The residual solvent signal at 2.50 ppm has been used as standard reference. 

In order to highlight the sepiolite functionalization (Chapter VII), solid-state nuclear magnetic 

resonance spectra (NMR29Si/MAS) of the samples were recorded on a VARIAN spectrometer, 

operating at 400 MHz, 7.05 T and 4.5l s. Spectrometer was employed with a rotation speed of 5 

kHz, 7 minutes of contact time and pulse interval 60 s. The chemical shifts were referenced to 

tetramethylsilane (TMS) as external standard, the spectrum being recorded after 1000 

accumulations during 18 hours. 

 

III.1.3. X-ray diffraction 

The wide angle X-ray scattering (WAXS) measurements (Chapter VIII) have been realized 

with the PANalytical X’PERT Pro diffractometer  using a standard copper anode source (λ = 

1,54060 Å).  

 

III.1.4.  Electronic and optical microscopy 

The fracture morphologies of polymer samples (Chapters V, VI and VIII) were investigated by 

scanning electron microscopy (SEM) using a JEOL 6700F microscope equipped with a field 
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emission gun. The electron beam voltage was fixed to 1 kV. The samples were mounted on the 

microscope studs using silver colloidal paste and sputter coated with gold palladium. 

Transmission electron microscopy (TEM) was carried out on a JEOL 1400 microscope, operated 

at an accelerating voltage of 100 kV. The TEM micrographs of the sepiolite fibers (Chapter 

VII) were recorded from a drop of a diluted suspension, which was deposited on a copper grid of 

300 mesh covered by amorphous carbon. In the case of the polymer composites, the samples 

were cut in sections of about 80 nm thickness, using a RMC power tome X ultramicrotome 

equipped with a diamond knife and the films were collected onto 300 mesh copper grids. 

The dispersions of m-SEP in epoxy resin without curing agent (Chapter VII), and the liquid-

crystalline birefringence of polymer (Chapter VIII) were observed by optical microscopy in 

polarized light using a ZEISS microscope with a heating regulated device.  

 

III.2. Thermal and mechanical analysis 

The picture in Figure III.33 exhibits a panoramic view of analysis laboratory, with DSC, Flash 

DSC, DMA, rheometer, TGA-GC/MS, optical microscope equipment and so on. Most of these 

apparatus will be presented on the following section, associated to the referenced chapters. 

 

Figure III.33. Presentation of the thermal analysis laboratory 

 

III.2.1. Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry (DSC) is a quantitative thermal analysis used since the 

beginning of 1960.1 DSC is a powerful device commonly used to appreciate the reactivity by the 

measure of released heat flow during chemical reaction or also to measure polymers physical 

properties for instance, such as melting, crystallisation, glass transition temperature, phase 
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transitions, purity, crystallinity etc. DSC principle is based on the measurement of heat flow 

difference between a reference pan and a sample pan. Two type of DSC exist: power 

compensation DSC2 where the sample and the reference are heated independently in two 

microfurnaces or heat flux DSC where both of pans are heated with the same temperature 

program. In this thesis work, we only used the heat flux DSC. Generally the two used crucibles 

are identical, thus the resulting heat flow corresponds to the response of the sample itself 

composed of both so called “latent” and “sensible” heat flow:  

Φ (�, �) =
���� = ���� + �∆r� ����  

Equation 1 

With m the sample mass, β the heating rate and Cp the specific heat capacity which is 

temperature dependant for a definite structure. ΔrH corresponds to the enthalpy of the considered 

thermal event and α, the extent of conversion. The first equation term (mCpβ) is associated to the 

sensible heat flow which is reliable to the heating rate, while the second term corresponds to the 

latent heat flow that depends on the kinetics of the physico-chemical process. 

DSC measurements were carried out on a Mettler-Toledo DSC 1 equipped with STAR© 

software. This apparatus has a very high sensitivity due to its heat-flux ceramic sensor FRS5 

(with 56 thermocouples Au-Au/Pd). Temperature and enthalpy calibrations were performed by 

using indium (Tm = 156.56 °C) and zinc (Tm = 419.52 °C) standards. Integrations of DSC peaks 

were done using a linear baseline. Samples of about 15 mg were placed in 40 µL aluminium 

crucibles (Chapters IV, VII, VIII) and in 30 µL stainless steel sealed pans to avoid evaporation 

(Chapters V and VI).  

 

III.2.2. Stochastic temperature modulated DSC (TOPEM) 

Advanced DSC techniques started with the temperature modulated DSC (TMDSC) in 1993.3,4 

This technique is based on a superimposition of a periodic modulated temperature on the 

classical DSC temperature program. The periodic modulation should be imposed by a step 

function (Stepscan DSC) or with the help of a sinusoidal function (MDSC). The resulting heat 

flow measured can be treated by a Fourier transform to obtain the average total heat flow (ftot) 

which can be decomposed in a “reversing” (frev) and “non-reversing” (fnon-rev) components. frev 

characterises reversible processes on the range of time and temperature of perturbation. That 

corresponds to transition of first or second order such as melting or glass transition (pseudo 
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second order transition). A contrario non-reversing processes on the range of time and 

temperature of perturbation such as cold crystallizations or chemical reactions for instance are 

characterized by fnon-rev. However TMDSC present several limitations reliable to experimental 

parameters that are linked to heat transfer (very low sample mass), the necessity to make blank, 

sample measurements, and the limitation to one frequency. In order to avoid these limitations 

Schawe et al.5 from Mettler-Toledo proposed a new method in DSC, called TOPEM®. In this 

technique, the superimposed program consists on a stochastic perturbation temperature program. 

Thus, the temperature program in function of time can be written as follow: � (�) = �� + ��� + ��(�) 

Equation 2 
Where δT (t) is the pulse amplitude which is alternately positive or negative and its application 

time can vary randomly in a fixed windows. Thus the heating rate derived from this stochastic 

temperature program is given by: � (�) = �� ��⁄ = �� + �(��(�)) ��⁄  
Equation 3 

The resulting signal is treated by a Laplace transform to obtain the three components ftot, frev, 

fnon-rev (notice that in this case, instead of sinusoidal TMDSC, fnon-rev is calculated independently 

and not deduced from the difference between ftot and frev). The stochastic perturbation give also 

access to the “quasi static” heat capacity obtained by extrapolation to zero-frequency. So, with 

only one TOPEM experiment, the complex part from the heat capacity is available for a range of 

frequency.   ��∗ = ��′ + ���"  

Equation 4 

The ��′  is the heat capacity in phase with the heating rate while ��"  corresponds to the out of 

phase counterpart. Herein, this technique is particularly interesting to study thermoset cross-

linking because of the possible dissociation of the heat flow into non-reversing component 

corresponding to the polymerization reaction and into reversing component attributed to 

vitrification/devitrification phenomenons.6,7,8 

TOPEM® measurements, investigated in the Chapter IV, were conducted at an underlying 

heating rate of 1 °C min–1 with a scanning temperature ranging from 0°C to 300°C. The 

amplitude was fixed at ± 0.25 °C for all the modulated experiments. The period of pulses were 

ranging from 15 to 30 s. To evaluate the heat flow response of each system in function of 

stochastic modulation temperature different calculation parameters were applied. For 

ELO/MHHPA curing system the parameters of calculation windows are: width about 360 s, shift 
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of calculation windows 10 s, and width of smoothing windows 140s. For ELO/BTDA these 

parameters are: 120 s, 10 s, 90 s.  

 

III.2.3. Thermogravimetric analysis (TGA) 

Thermogravimetric measurements were carried out on a TGA 851e from Mettler-Toledo. The 

microbalance has a precision of ± 0.1 µg (Figure III.34). Samples of about 10 mg were placed 

into 70 µL alumina pans. To characterize thermal stability of the thermosets the samples were 

heated at 10 °C.min–1 from 25°C to 900°C under nitrogen or air gas flow of 50 mL.min-1 

(Chapter IV, VI, VIII) and at 7 °C.min–1 under nitrogen flow of 50 mL.min-1 (Chapter VII).  

 

 

Figure III.34. TG microbalance from TGA 851e. 

 

III.2.4. Rheometric analysis 

As seen on section II.1.2., the formation of a tridimensional network is accompanied by high 

variations of viscosity (generally increase) from liquid to solid state. Rheometry is thus a 

preferential technique to study this kind of systems; the following section would to briefly 

introduce the apparatus and associated concepts. 

When a system exhibits an ideal viscous behaviour in response to an external solicitation 

(Newtonian liquid), it exists a linear relation between the viscosity and the shear stress. � = � .
����  

Equation 5 

Where τ is associated to the shear stress (Pa), η is the viscosity (Pa.s-1) and 
���� the shear rate (s-1). 

Low molecular weight liquids such as water, solvents or oils, demonstrate generally Newtonian 

behavior. Thus theirs viscosity are not dependent on the rate and duration of the shear load. 
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As the reverse, ideal elastic solid are described by the Hooke’s law: � = �. � 

Equation 6 
Where G corresponds to the shear modulus (Pa) that can be reliable to some structural 

information of the material such as network cohesion and rigidity. Indeed, higher is the rigidity 

and higher will be the shear modulus value. The particularity of viscoelastic materials such as 

thermoset is to present both viscous and elastic behaviour. These behaviours can be followed 

during the cross-linking by dynamic shear rheometry. In dynamic shear rheometry, the stress τ(t) 

imposed to the sample follows a sinusoidal variation, function of time: �(�) = ��. ��� (�. �) 

Equation 7 
Where τA corresponds to the stress amplitude and ω the oscillation frequency (rad.s-1). As result, 

the measured response (deformation) γ(t) can be described as follow: �(�) = ��. ���(�. � +  �) 
Equation 8 

Where δ is the shift angle (rad with 0 < δ < π/2). Thus the relation between τ and γ in function of 

time is given by: �∗(�) =
�(�)�(�)

= �′ + ��" 

Equation 9 
Where G*(ω) is the complex shear modulus and can be dissociated into two components: a real 

(G’) and an imaginary (G”) part. G’, commonly called storage modulus, defines the material 

elastic response and is associated to the deformation energy stored by the sample (is a reversible 

process). While G”, called loss modulus, reflects the viscous response and represent the 

deformation energy used by the sample (is an irreversible process). Thus the rapport between the 

elastic and viscous components is given by: ��� � =
�"�′ 

Equation 10 
Where tan δ is called damping factor or loss factor. This value, measured in function of time or 

temperature, gives substantial information relative to the network formation such as gelation or 

vitrification that may occur during cure or α-relaxation which could be related to the glass 

transition. Indeed, gelation point is commonly taken as the point where tan δ = 1 (i.e. when G” 

and G’ crossover).  

The chemorheological behavior of epoxy/anhydride curing mixtures (Chapter IV) was followed 

using a Bohlin C-VOR rheometer. Complex viscosity, storage modulus (G’) and loss modulus 
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(G”) were measured by oscillatory shear experiments. The measurements were operated on 

plate-plate geometries (25 mm diameter and 1 mm gap) with strain convection heating. The tests 

were carried out by heating the mixtures from 30 to 230°C with a rate of 1 °C min–1. The 

frequency was 1 Hz on auto stress mode with a deformation of 0.5%. For the Chapter V, an 

Anton Paar MCR 102 rheometer was used to measure the furanic resins viscosities in shear mode 

(0.1 to 10Hz) with parallel plate - plate geometries (15 mm diameter and 1 mm gap). 

 

III.2.5. Dynamic mechanical analysis (DMA) 

For the Chapters IV, VI, VIII, DMA measurements were conducted using a TT DMA Triton 

Technology apparatus (Figure III.35), in tensile mode on specimens having free dimensions of 

20x4x1.5 mm3. The tests were carried out by heating the samples from -150 to 300°C at 1°C 

min-1 with a 1Hz oscillating stress. Concerning the Chapter VII, experiments were performed 

on a dynamic mechanical thermal Analyzer DMTA (Q800 from TA Instruments Inc.) equipped 

with a Clamp Single Cantilever, at a fixed frequency of 1 Hz, strain = 0.1 %, with a heating rate 

of 3 °C/min from -100° C to 120° C. With the same equipment, experiments were performed at 

room temperature and range frequency 0.1-100 Hz to determine the flexural modulus.  In a 

similar way as presented in the above section for rheometry, the loss (E”), storage (E’) Young 

modulii and damping factor (tan δ= E”/E’) were determined. The Tα transition was assigned as 

the temperature of maximum of loss factor peak combined with the E’ drop and the peak of E”. 

 

Figure III.35. TT DMA Triton Technology apparatus 

 

III.2.6. Mechanical tests 

The testing machine allows studying the ultimate properties of a given material, putting in light, 

for instance, plasticity or elasticity characteristics until break. As an example, the Figure III.36 
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illustrates the strategy adopted in the Chapter V that links the mechanical behavior to the 

compatibility between resin and cellulose fibers.  

 

 
Figure III.36. Tensile test on cellulosic composites elaborated on Chapter V. 

 

In tensile test, the resulting modulus called Young modulus (E’) is obtained by the ratio between 

the stress (σ) on the deformation (ε) with: 

� =
��0

= 1 +
∆��0

 

Equation 11 � =
�� 

Equation 12 

Where S represents the sample section (width x thickness) and l the length. According to these 

equations, the samples need to be measured precisely. Then, after the correct sample positioning 

between clamps, testing machine can measures the strength (F) applied to the sample as a 

function of the sample elongation Δl. The stress-strain curves were recorded at room temperature 

on an Instron 5565 (Chapter V) and on a Testwell 112.10 kN (Chapter VI) with a crosshead 

speed of 2 mm.min-1. After curing and demolding ELO/PFA thermosets have been cut using a 

Charly Robot milling machine into rectangular specimens of around 80 x 11 x 2 (length x width 

x thickness) mm, while the impregnated cellulose composites were cut into strips of around 100 

x 10 x 0.25 (length x width x thickness) mm. The length between the clamps was fixed at 40 

mm. For each material, the average values and standard deviations of Young’s modulus and 

tensile strength were calculated from seven measurements.  

 

III.3. Thermo-kinetic analysis 
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The advanced isoconversional method proposed here allows to calculate the apparent activation 

energy Eα, based on thermoanalytical data, for each extent of conversion α, in a model “free” 

way. Indeed, this demarche is the reverse of classical investigation with kinetic models: in our 

case the resulting energy dependency evolution opens the discussion to determine which kind of 

mechanism could occur.   

III.3.1. Extent of conversion and apparent activation energy 

When a physico-chemical transition or a chemical reaction occurs under the effect of 

temperature, the extent of conversion at time ti, αi is defined as the ratio between the heat 

quantity ΔHi exchanged at time i and the total quantity of heat ΔHtot exchanged during the 

transition or the reaction. 

�i =
∆�i∆�tot

=
∫ (�� ��)i ��⁄ti

t1∫ (�� ��)i ��⁄t2

t1

 

 Equation 13 

In this expression, αi represents the extend of conversion value at the instant i, (dH / dt)i 

represents the heat flow measured at time ti, t1 and t2 are respectively associated to the first and 

second integration bounds of the thermal event. Thus, the heat flow rate is a function of time (dH 

/ dt) and proportional to the total heat (ΔHtot) exchanged at the reaction rate (dα / dt ):   ���� = ∆Htot

���� = ∆Htot  k (T ) � (α ) 

Equation 14 

With k(T) the rate constant, T the temperature and f (α) the mathematical function associated to 

the reaction mechanism. Then, the relation between the temperature and the rate constant is 

given by Arrhenius equation: � (�) = ��−� ��⁄  
Equation 15 

So, we can re-write Equation 2 as follow: ���� = ��−� ��⁄ �(α ) 

Equation 16 

With A the pre-exponential factor, E the activation energy, and R the molar gas constant. For 

non-isothermal measurements, the dependency in time should be substituted by the temperature, 

considering the constant heating rate β imposed to the sample: 
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���� =
�� �−� ��⁄ �(α ) 

Equation 17 
With β = dT / dt is the heating rate. 

 

III.3.2. Isoconversional principle and advanced kinetic methods 

The isoconversional principle stipulates that for a given extent of conversion α, the reaction rate 

is only function of temperature.9 Starting from this postulate, several methods have been 

developed to calculate an apparent activation energy Eα from thermoanalytical data (see section 

III.3.1). Several differential or integral isoconversional methods such as Friedman,10 Ozawa,11 

Flynn and Wall12 methods are commonly used. The advantage of these methods that use several 

(generally 3-5) experiments performed at different heating rates, is to give a value of Eα without 

any assumption on the reaction mechanism involved during the reaction (i.e. �(α) is not included 

in the calculus of Eα). However these techniques present diverse problems such as sensibility to 

noise, or approximation for equation solving. To overcome these drawbacks, Sbirrazzuoli and 

Vyazovkin13,14,15,16 have developed new methods based on a numerical integration described 

below. 

These methods are applicable for n experiments realized with either isothermal or non-

isothermal program Ti (t). For each α value, Eα is determined as the energy value which 

minimizes the following function: 

Φ (�α) = � � �[�α ,Ti (�α)]�[�α ,Tj (�α)]

�
�≠�

�
�=1  

Equation 18 

With : �[�α ,Ti (�α)] ≡ � exp � −�α��i (�)
��α

�α‐∆α �� 

Equation 19 

The value of J function descripted above is calculated by trapezoidal rule. For each value of α 

the minimization of �(Eα) is evaluated, thus the activation energy dependency can be 

determined on all the conversion process.17,18,19 The apparent activation energy calculated by this 

model “free” isoconversional method can be associated to both chemical reactions and physical 
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transitions such as curing, thermal degradation, crystallization, glass transition or vitrification for 

instance. This method is particularly interesting and powerful to describe multi-step processes 

such as cross-linking polymerization, highlighting the preponderant physico-chemical process 

(cf. section II.1.2.) at a defined extent of conversion. The objective is to be able to, in fine, 

associate apparent activation energy variation to a change on the rate limiting step during the 

polymerization. Indeed, because of the complexity inherent to the polymeric transformations 

from liquid to solid state classical chromatographic techniques are unfortunately most often not 

suitable.9,20,21,8   

Isoconversional methods can be applied to all type of data issue from thermal analysis such as 

DSC, TGA, DMA or rheometry for instance. Specialized softwares were developed to treat any 

kind of thermoanalytical data.22,23 The extent of conversion α can be calculated as a function of 

time or temperature T, and the resulting  apparent activation energy Eα as a function of T or α. 

Notice that each value of Eα is associated to an average temperature value computed over the i 

temperatures used in the calculation. 3-5 temperatures are generally used in isothermal mode or 

3-5 heating/cooling rates (or any temperature program) in nonisothermal mode.24 Thus, for a 

given α corresponds an average temperature ��α that makes possible to interpret the activation 

energy dependency with temperature  Eα = f (��α). 
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IV. From epoxidized linseed oil to bio-resins: an overall approach 

of epoxy/anhydride cross-linking 

IV.1. Epoxidized linseed oil cross-linking 

 

This work proposes an overall approach to elaborate biobased thermosets by deep correlations 

between the choice of copolymerization monomers (renewable sources, structure, reactivity) 

with the control of thermokinetic aspects of polymerization in order to obtain maximal 

conversions even during physical transitions such as gelation or vitrification. Then, this study 

aims to correlate the evolution of reactive functions with the viscoelastic properties during 

network formation until gelled or vitrified solid state, through a comparative study of 

epoxy/anhydride network. 

 

IV.1.1. Epoxy/anhydride reactivity investigations 

The final properties of epoxy thermoset networks depend on the nature and functionality of 

epoxy monomers and of their comonomers or curing agents. ELO is a very interesting monomer 

because of its low volatility, high resistance to solvents and low migration tendency.1  

 

IV.1.1.1. The choice of cross-linker: a good compromise 

To cure epoxies, amines and carboxylic acid anhydrides are the most commonly used hardeners. 

Comparing to epoxy/amines networks, epoxy/anhydride products have higher glass transition 

temperatures, low shrinkages and stresses. In this work we propose the analysis of triglyceride 

based epoxy/anhydrides systems as possible candidates to develop new formulations with 

optimized elaboration cycles through a global approach structures vs. properties. A first 

objective consisted in the selection of principal requirements applied to the curing agents. With 

the aim to avoid very toxic hardeners we have used anhydrides, which are less toxic than amines 

and which release cyanhydric acid by thermal decomposition. Also, the curing agents have to be 

compatible with the structure of ELO in terms of functionality, miscibility and melting point. 

Therefore, the chemical and structural aspects of ELO/hardener reagents generating the three 

dimensional matrix were rationalized with the purpose to design a more stable, compacted 

architecture with reinforced chains interactions. The hardener functionality was varied in order to 

study its influence on reactivity and on final properties. 

 

IV.1.2. Epoxy/anhydride cross-linking mechanism  
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Transformation of low molecular weight molecules into polymers is based on chemical 

interactions (cross-linking) between epoxy functions and hardening agents. Secondary reactions 

such as homopolymerization thermally or catalytically induced are to be considered. Acidic 

anhydrides are ones of the most employed epoxy curing agents.  

 

IV.1.2.1. Anionic living copolymerization mechanism 

Acid anhydrides are industrially employed as epoxy hardeners, in combination with an initiator. 

In these reactions both the epoxide and the anhydride ring are difunctional. Strong Lewis bases 

like tertiary amines or imidazoles are used as initiators for the anhydride/epoxy reactions. The 2-

methylimidazole (2MI) Lewis base conducts to best cured networks in epoxy/fatty diacid 

systems, in comparison with 1-methyl imidazole, triethylamine, 1,8- diazabicyclo [5.4.0]undec-

7-ene (DBU) or dimethylaminopyridine.2 

The acid anhydride/epoxy reaction progresses via a chain-wise polymerization,3,4  in comparison 

to the stepwise scenery of the amine/epoxy crosslinking (Figure IV.37). 

 

1/ Initiation 

 

 

 

 

2/ Anionic propagation 

 

Figure IV.37. Mechanism of epoxy/anhydride reactions initiated by 2-methylimidazole 

 

The 2MI initiates the reaction by opening the epoxy ring and generating a hydroxylated adduct.5 

This adduct gives the particularity and the force of initiation since, compared with the DGEBA, 
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in ELO/anhydride systems lack the -OH groups which initiate the opening of oxiranes ring. 

Then, a zwitterion is formed which contains a quaternary nitrogen cation and an active oxyanion. 

Besides, the formed oxyanion attacks quickly an anhydride ring. A new active site appears: a 

carboxylate anion, ester considered to be the initiator of the chain-wise polymerization. 

Propagation occurs through a strictly alternating copolymerization anionic mechanism according 

to Dusek et al.,6 as shown in Figure 2. The amount of Lewis base initiator determines the number 

of active sites. These initiating species react with epoxy rings, leading to alkoxide species, which 

again attacks the cyclic anhydride. The strictly alternating copolymerization forming polyesters 

has been confirmed by several studies.7   

 

IV.1.2.2. Homopolymerization and etherification as side reactions of cross-linking  

As illustrated in Figure IV.38, side-reactions, as homopolymerization and etherification have 

also to be considered in presence of imidazole initiator, at high temperatures. Attention must be 

paid to the living character of the epoxy/anhydride copolymerization, very sensible to the 

impurities. The literature8,9 proposes possible mechanisms of termination or chain transfer, also 

with reactions involving the regeneration of tertiary amine. The latter can initiate new chains.  

 

Side reactions: 

-Homopolymerization  

 
-Etherification 

R

OH
O

R

R

R

O

R

R

OHR
R

 

Figure IV.38. Side-reactions occurring during curing in excess of epoxy 

 

 

IV.2. Investigation of ELO/anhydride reactivity  

IV.2.1. Formulation of ELO/anhydride resins 

IV.2.1.1. Materials and systems presentation for a comparative study 

 

A commercially available biobased epoxy molecule was obtained from Akcros Chemicals Ltd. It 

is an epoxidized linseed oil (ELO) which is a viscous-liquid at room temperature having a 
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viscosity of about 1200 mPa.s. ELO has a molecular weight of about 980 g.mol-1 and contains 

about 5.5 epoxy groups, on average, per triglyceride. Methyl hexahydrophthalic anhydride 

(MHHPA) was selected for its reactivity, for being one of the most common anhydride used in 

industry, for the fact that it is liquid and miscible with ELO at room temperature and for its short 

chain rigid structure. Benzophenone 3, 3′, 4, 4′-tetracarboxylic dianhydride (BTDA) has been 

chosen because it can leads to thermosets with high thermal and mechanical properties. Both 

anhydrides have 96% purity, being obtained from Sigma-Aldrich. The activation of 

epoxy/anhydride reaction was produced using 2-methylimidazole (2MI) as initiator, with 99% 

purity, also supplied from Sigma-Aldrich. Formula of all reagents and their characteristics are 

summarized in Table IV.5. 

 

Table IV.5. Structural formula and characteristics of reactants 

Name Chemical Formula 
Molar 
mass 

(g.mol-1) 

Melting 
point  
(°C) 

Functionality 

Epoxidized linseed oil  
(ELO) 

 

950 - 
Matrix 

5.5 

Methylhexahydrophthalic 
anhydride  
(MHHPA) 

O

O

O  

168.19 - 
Hardener 

2 

Benzophenone-3, 3′, 4, 
4′-tetracarboxylic 

dianhydride  
(BTDA) 

O

OO

O

O

O

O  

322.23 220 
Hardener 

4 

2-Methylimidazole  
(2MI) 

NHN

 
82.1 142 Initiator 

 

IV.2.1.2. Elaboration of formulations: functionalities,  ratios and curing  

 

As seen in section II.1.1.2. epoxy and anhydride groups are bifunctional10 considering the 
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anionic copolymerization reactivity reported by Matejka et al.3 and Leukel et al.4 To prepare 

epoxy/anhydride reaction mixtures the stoichiometric ratio R can be defined as: 

    R= epoxy groups / anhydride groups 

 

Formulations were done considering R= 1/0.8 and also 1/0.5, so in epoxy excess in accord with 

the literature.11,12 A default of anhydride was required considering that copolymerization cannot 

be complete because of the steric hindrance and of the high increase in viscosity. Finally, ratios 

of 1/0.8 for ELO/MHHPA and 1/0.5 for ELO/BTDA systems were chosen. The 

epoxy/dianhydride ratio has been determined by mixtures processability, and also by the early 

gelation during the polymerization.12 In order to obtain homogeneous mixtures, curing samples 

were prepared by adding the hardener agent to ELO previously melted to 100°C. 2MI finely 

crushed grounded was introduced as initiator to this initial mixture, at 0.9% in weight, at room 

temperature. To highlight the importance of the side-reactions in ELO/BTDA system, two kinds 

of networks have been prepared: ELO/BTDA1 (crosslinking considering in majority the 

copolymerization temperature interval) and ELO/BTDA2 (post-cure reactions which suppose 

homopolymerization and etherification).  

 

Thermosets were obtained by applying a curing and post-curing temperature program, according 

to the following thermal analysis. Reactions have been conducted during 2h at 120°C then 2h at 

160°C for MHHPA and BTDA1, followed by a post-curing during 2h at 180°C for MHHPA and 

for 1h at 230°C for BTDA2. The infinite glass transition temperatures (Tg,∞) of these materials 

were determined by DMA measurements. The DSC heating of the cured samples did not show 

any residual heat release. 

 

IV.2.2. Investigation on epoxy/anhydride cross-linking by DSC 

 

DSC was applied to study the thermodynamic and kinetic aspects of the epoxy/anhydride 

polymerization. This technique offers rich information concerning thermal events accompanying 

epoxy thermo-curing. Figure IV.39 shows the evolution of heat flow in function of temperature 

through the polymerization of ELO with the mono- and di-anhydride, at different heating rates. 

As seen in this figure, mainly exothermal events are present, and were attributed to sign of 

epoxy/anhydride reactions.  

The principal mechanism is an alternating co-polyesterification by the reaction of an epoxy 

group with an anhydride group. Moreover the polyesterifications are accompanied at high 

temperatures by homopolymerization and etherification, which are known to be promoted in the 
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case of an anhydride default. However, it is not possible to fully separate from this DSC data the 

two reactions that are concomitants, especially at high temperature.  

 

In Figure IV.39 it can be seen that the thermoanalytical curves have distinct shapes for each 

ELO/anhydride system. In the case of ELO/MHHPA, heat flow follows a single exothermal 

peak, corresponding to the epoxy/anhydride copolymerization.  

 

A different, more complex, behavior emerges for the curing of ELO/BTDA: two exothermal 

peaks succeed. The first event occurs in the same range of temperature as the 

ELO/monoanhydride reaction and has a higher enthalpy of reaction than that of the second peak 

( 

 

Table IV.6). This event corresponds mainly to the alternating epoxy/anhydride 

copolymerization.  

 

At higher temperatures, side reactions such as homopolymerizations or etherifications are 

favoured for systems with an excess of epoxy. Thus, the second exotherm mainly results from 

side reactions implying the epoxy groups in presence of imidazole initiator and in default of 

anhydride.  
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Figure IV.39. Dynamic DSC thermoanalytical curves showing the heat release during reactions 
of ELO/MHHPA (dotted lines) and ELO/BTDA (solid lines). The heating rate of the 

experiments (in °C.min–1) is indicated on each curve 

 
 
 
 

 

Table IV.6. Reaction enthalpy (ΔrH), temperature interval of reaction and peak maximum 
temperature (Tpeak) as a function of heating rate (for ELO/MHHPA and ELO/BTDA curing 

systems) 

  
β /  

°C.min–1 

 
ΔrH / 
 J.g -1 

 

Tpeak / °C  
and reaction interval  

1st peak 2nd peak 1st peak 2nd peak 

MHHPA 0.5 297 ± 4 - 
131 ± 1 
(62-213) 

- 

 1 293 ± 4 - 
143 ± 1 
(69-220) 

- 

 1.5 301 ± 4 - 
149 ± 1 
(74-229) 

- 

BTDA 0.5 163 ± 2 84 ± 1 
127 ± 1 
(47-187) 

239 ± 1 
(192-260) 

 1 163 ± 2 91 ± 1 
137 ± 1 
(54-195) 

250 ± 1 
(198-273) 

 1.5 163 ± 2 95 ± 1 
143 ± 1 
(61-201) 

255 ± 1 
(202-280) 

 

As observed in Figure IV.39 and in  

 

Table IV.6 the thermokinetic parameters of cure are very different when ELO react with 

MHHPA or with BTDA. Besides, we can notice the presence of two exotherms during curing, 

the first one occurring at lower temperature demonstrating a lower reaction enthalpy for 

ELO/BTDA (about 163 J.g-1) than for ELO/MHHPA (about 293 J.g-1). It is important to notice 

that this value remains the same whatever the heating rate is. The small endothermic peak at 

about 221°C is attributed to the melting of a small amount of solid BTDA that still remains in the 

mixture (always presents, even at lower ratio of 0.4 or 0.3 in dianhydride). 

 

To investigate the second ELO/BTDA exotherm, TGA analysis has been perform (Figure 

IV.47). The results show that thermal degradation starts to become significant at T~280°C which 

is much higher than the temperature of the end of the second DSC exothermic peak observed in 

Figure IV.39 for ELO/BDTA system. This indicates that the second DSC peak is not linked to 
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thermal degradation. To confirm this hypothesis, DSC thermograms of ELO/MHHPA/2MI with 

a ratio of 0.5 in MHHPA and 0.9% in weight of 2MI were realized and illustrated in Figure 

IV.40. 
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Figure IV.40. DSC thermograms at 1°C.min-1. 

 

Two major thermals events are observed for this system at around 135 and 270°C. A 

measurement was also performed with the neat resin (ELO) and catalyst (2MI) alone without 

hardener. Two thermal events appear in this case in the same temperature range at around 170°C 

and 270°C in the thermogram of ELO/2MI.  

These results are in good agreement with a previous study on epoxy/amine systems were it was 

shown that etherifications start to play an important role above 220-230°C.13  These results 

confirm the hypothesis of side-reactions occurring at high temperature for ELO/MHHPA and for 

ELO/BTDA systems.  

 

 

IV.2.3. Investigation by FT-IR on  evolution of the structure during 

crosslinking  

 

A comparative structural study by FT-IR spectroscopy between initial monomers, their resin 

mixtures and the corresponding cured thermosets is presented in Figure IV.41. Infrared analyses 

reveal significant structural changes during crosslinking.  
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Characteristic of ELO structure is the absorption of ether peak due to internal oxiran rings at 818 

cm-1 which decrease in thermoset spectrum. A strong carbonyl stretch of triglyceride esters at 

1732 cm-1 exhibits a gradual increase in intensity and shifts to lower frequencies at 1728 cm-1 for 

ELO/MHHPA thermoset. News peaks appear at 1160 cm-1 usually associated with ester, 

respectively with C═O and C─O stretching vibrations from ester moieties provided by 

copolymerizations.  

The ELO/MHHPA (Figure IV.41 (a)) resin mixture exhibits intense axial deformation carbonyl 

C═O bands of MHHPA anhydride function at 1860 and 1780 cm-1. After crosslinking, in the 

spectrum of ELO/MHHPA cured thermoset these bands disappear completely, sign of 

consumption of anhydride MHHPA functions.  

Also, for ELO/MHHPA cured thermosets a broad band develops in intensity in interval 3200-

3600 cm-1 assigned with formation of –OH functions from carboxylic acid of inherent dangling 

mono-acid chains. 
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Figure IV.41. FT-IR spectra of (a) ELO/MHHPA system and (b) ELO/BTDA systems 

Proofs of evolution of structure in the ELO/BTDA system during copolymerization and 

complementary side-reactions are given in spectra of Figure IV.41 (b). BTDA spectrum 

presents characteristic carbonyl vibrations bands at 1852 cm-1 and 1777 cm-1 associated to the 

C═O of cyclic anhydride stretching vibration. The peak at 1700 cm-1 could correspond to the 

carbonyl stretch of the di-aromatic ketone. The peaks series around 1600 cm-1 and 1500 cm-1 are 

generally attributed to the benzoic C═C stretch and the C─O stretch of anhydride moieties at 

1225 cm-1.  FT-IR spectrum of ELO/BTDA1 cured resin shows the same profile as 

ELO/MHHPA thermoset: the ester characteristic peak at 1732 cm-1 due to the copolymer 
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polyester network. The decrease of the peak of oxiran ring stretch at 818 cm-1 confirms also the 

consumption of epoxy functions during ELO/BTDA copolymerization.  

Figure IV.41 (b) shows that ELO/BTDA1 and ELO/BTDA2 spectra are very similar, but some 

apparitions or variations of peaks intensity could be highlighted. The presence of C═O 

anhydride vibrations at 1852 cm-1 and 1777 cm-1 in the spectrum of ELO/BTDA2 cured 

thermoset could be assigned with the reformation of some anhydride groups since both 

mentioned specific carbonyl stretch anhydrides are present.  

News absorptions peaks at 1672 cm-1 and 1124 cm-1 appear in the ELO/BTDA1 and 

ELO/BTDA2 spectra, which is not present on ELO or BTDA spectra. It could correspond 

respectively to the stretch of some carboxylic acid and to the C─O stretching of aliphatic ether, 

generated by side-reactions, which is always concomitant with copolymerization. The increase of 

aliphatic ether vibration at 1124 cm-1 in ELO/BDTA2 spectrum, corroborated with the decrease 

of oxiran peak at 818 cm-1 could be a proof of occurrence of interepoxy side-reactions during the 

second heating.  

 

 

IV.3. Physico-chemical aspects of cross-linking 

 

A proper knowledge of all phenomena occurring during crosslinking is essential for the 

processing of thermosets. The increase of the molecular weight of the polymer with conversion 

provokes important evolution of viscosity, from a liquid to a solid state. Physical phenomena like 

gelation and vitrification contribute to the increase in viscosity to a high degree. The 

consequences are dramatic for the resulting material because all these transformations (especially 

vitrification) could block the ultimate conversions. The identification of these physical 

transitions is of great importance (section II.1.2.), because, at this stage, the reaction generally 

changes from a kinetically to a diffusion controlled regime.14  

 

IV.3.1. Heat capacity evolution during cross-linking: a TOPEM study 

In addition to regular DSC investigations, the reactions of ELO with the two anhydrides were 

studied by stochastically temperature modulated DSC (TOPEM®). The evaluation was made on 

the heat flow response to this modulation. TOPEM® technique gives access to the reversing and 

non-reversing components of the heat flow over the temperature modulation. For curing of 

thermosets, these components can generally be associated with reversible and non-reversible 

thermal events, such as vitrification and polymerization reaction. Stochastically modulated DSC 
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data allows getting information at different frequencies in a single experiment. Then, it is the 

sole DSC technique that makes possible to get quasi-static heat capacity Cp0 variation during 

cure. Examination of Figure IV.42 (a) shows that vitrification of ELO/MHHPA can be 

identified by a decrease on the Cp0
 curve near 145°C.15 During vitrification the molecular 

mobility of the chains decreases, the network matrix becoming more compact which results in a 

Cp decrease. When the reacting system is continuously heated, chemical reactions can be 

progressively reactivated because the curing temperature becomes higher than the vitrification 

temperature of the system. Thus at 160°C the Cp0 value starts to re-increase and devitrification 

can be estimated to occur near 180°C.  

For the ELO/BTDA system in Figure IV.42 (b), the vitrification appears close to the maximum 

of the reaction rate as a smaller sigmoidal variation of Cp0 at about 135°C. When the system 

vitrifies, the reaction rate drops dramatically. This suggests that at this stage the reaction is 

mainly controlled by the diffusion of polymer chains. At about 220°C an abrupt change in Cp0 is 

observed, in form of a first order transition. This sharp peak of heat capacity can be attributed to 

a melting of some unreacted BTDA, which confirms the assessment previously drawn with 

conventional DSC. Another thermal event is observed at ~256°C appearing by a sigmoidal 

increase of Cp0 that could be attributed to the devitrification.  
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Figure IV.42. Deconvoluted TOPEM® thermograms: total heat flow (dotted line) and Cp0 (solid 

line) during dynamic curing of (a) ELO/MHHPA and (b) ELO/BTDA systems 

IV.3.2. Chemorheological analysis and kinetic studies 

 

Chemorheological studies permit also to identify the physical phenomena that accompany 

network formation, i.e. gelation and vitrification. To obtain an overview of the overall 

reticulation process, thermokinetic studies are combined with rheometric data. Kinetic 

calculations were performed by using an advanced isoconversional method applied to the DSC 

non-isothermal data, already presented section III.1. 
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Figure IV.43. Evolution of Eα and complex viscosity with temperature by rheological data 
during dynamic cure of ELO/MHHPA (black symbols) and ELO/BTDA (green symbols) 
systems. In insert: DSC data for ELO/BTDA scanning at 1°C.min–1 and evolution of Eα vs 

temperature 

 

In Figure IV.43 are represented the associated results of the kinetic calculations and of the 

rheometric data to describe the evolution of the apparent activation energy and complex viscosity 

during ELO/anhydrides reticulations. 

It is not surprising to observe a complex evolution of apparent activation energy (Eα) vs. 

temperature for both systems under curing, which can be interpreted as the existence of multi-

step kinetics (mechanisms). Four stages describe the state of mixture during ELO/MHHPA 

curing. In the first stage (25-120°C) the mixture is in a liquid state with an initial low viscosity of 

about 1Pa.s-1. This stage may correspond to the formation of active species which will initiate the 

copolymerization, in agreement with Figure IV.37; it is also correlated with the beginning of 

copolymerization propagation. During this stage the molar mass of epoxy-anhydride copolyester 

increases, as a consequence viscosity of media reaches ~12.5 Pa.s-1.  

The second stage (120-140°C) corresponds to the gelation, at about 123°C, when Eα increases up 

to 85 kJ.mol-1. Then Eα decreases in the gelled state, due to the transition from a chemical control 

to a diffusion control (movement of long chains), in agreement with previous work obtained for 
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epoxy-amine cure.13,14  

At higher conversion (140-150°C), the increase of viscosity retards or inhibits the chemical 

reactions attributed to a restricted molecular mobility. Eα reaches a value of about 80 kJ.mol-1 

associated with the vitrification at 147°C observed by a plateau of viscosity. This value is also in 

good agreement with TOPEM® results that show the presence of a sigmoidal variation of Cp0 

near 145°C. In the latter stage (>150°C), due to heating, chemical reactions start again, mainly 

the homopolymerizations at high temperature and degree of conversions. In this stage Eα 

increases slightly from 80 to 87 kJ.mol-1. Indeed, for this system the side-reactions occur 

between chains situated in near proximity. This explains that the energetic barrier is low, in 

comparison with the values generally found for homopolymerizations or etherifications.16  

 

In comparison, the ELO/BTDA system shows a higher viscosity. BTDA is a solid product, so the 

mixture has an initial viscosity, around 40 Pa. s-1 until the reaction reaches 60°C. In the 60-90°C 

temperature interval the zwitterion species being formed start the copolymerization reactions; Eα 

decreases to from ~70 to 51 kJ.mol-1. Then, while the temperature increases from 90 to 115°C a 

continuous increase of viscosity and of apparent activation energy Eα is observed. This stage can 

be associated with the alternating copolymerization which produces a slightly increase of the 

viscosity during heating to 100°C (Figure IV.43). At this temperature a small plateau is reached 

with a viscosity about 3.7 kPa.s-1. 

In the next stage (115-140°C) the gelation phenomena occurs at about 117°C and finally the 

gelled state is reached with a viscosity of about 9.7 kPa.s-1. At about 140°C is reached the 

maximum of Eα at about 91 kJ.mol-1, in good connection with the maximum of reaction rate 

(curve not presented here).  

In the temperature interval 140-160°C a dramatic decrease of Eα occurs, from 91 to 38 kJ.mol-1 

due to the vitrification of the system (that appears in TOPEM® at about 135°C). The overall 

reaction rate decreases sharply; in the same interval viscosity reaches a plateau. Then, between 

200 to 220°C chemical reactions restart (insert in Figure IV.43: Eα ~170 kJ.mol-1) probably after 

a first devitrification near 160°C. In agreement with TOPEM® results, the activation energy 

dependency shows a very sharp increase of Eα at 220°C corresponding to the melting of still 

unreacted BTDA. In the temperature range between 200 and 275°C, Eα is quite constant to about 

≈150 kJ.mol-1. This high Eα value is generally associated with side-reaction as 

homopolymerization.13 In this temperature range, we observe a constant increase of complex 

viscosity from 2.5 to 3.5 MPa.s-1. Then, the viscosity starts to decrease near 250°C, in good 

agreement with TOPEM® exploitation that show a Cp0 decrease at 256°C that was attributed to a 

possible devitrification of the material. 



Chapter IV: An overall approach of epoxy/anhydride cross-linking 
 

112 

 

 

 

IV.4. Thermo-mechanical characterisations and structure-properties 

relationship 

 

Molecular dynamics in polymers are characterized by localized and cooperative chains motions 

that are reflected in DMA analysis by α, β or γ relaxations in the order of decreasing 

temperature. A consequence of these relaxations is the viscoelastic behavior, the material 

showing properties between an elastic solid and a viscous liquid. Depending on its structure and 

temperature some events can occur during mechanical solicitation like energy dissipation and 

mechanical transitions.  

 

 

IV.4.1. Glass and sub-glass transitions studies by dynamic mechanical 

analysis 

 

Few data are reported about the thermo-mechanical properties of biobased thermosets and fewer 

on ELO based thermosets.11 An example of the DMA curves obtained over the interval 

temperature range -150 to 300°C is given in Figure IV.44 and the main parameters are listed in 

Table IV.7. 
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Figure IV.44. DMA plot for ELO/MHHPA (a), ELO/BTDA1 (b) and ELO/BTDA2 (c) systems 
from -150 to 230°C and 280°C respectively, at 1°C min–1 and 1 Hz; o = loss factor (tan δ), * = 

storage modulus (E’),  loss modulus (E”) 

 
 
 
 
 

Table IV.7. Values of tan δ and temperatures of sub-glass transitions for ELO/MHHPA, 
ELO/BTDA1 and ELO/BTDA2 cured systems 

  

 

Tγ / 
°C 

Tβ / 
°C 

Tα / 
°C 

Peak height 
tan δmax 

 

Tα'  
/°C 

ELO / 
MHHPA 

-140 -50 134 0.27 - 

ELO / 
BTDA 1 

-140 -75 68 0.03 245  

ELO / 
BTDA 2 

-140 -75 127 0.01 240  
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The values of maximum of tan δ for all systems are assigned to the α relaxation (Tα) 

phenomenon related to cooperative chain motions and associated with the macroscopic Tg.  

By comparing the two anhydride systems, the ELO/MHHPA network shows a more symmetric 

Gaussian tan δ peak with a maximum centered at around 134°C (Tα). The ELO/MHHPA 

gaussian shape of tan δ peak is an indication of homogeneous distribution of relaxation times in 

polymers motions. The fact that this system has higher amplitude of damping, i.e. higher peak 

height (tanδmax) could be a proof of the ease of chain motions; MHHPA acts as a sort of 

plasticizer between triglyceride chains to increase the energy dissipation by internal frictions. In 

consequence, the impact strength increases because of better dissipation of vibrational energy 

during impact. 

 

In the case of ELO/BTDA1 system (partial crosslinked networks, reactions stopped after the first 

DSC peak) is important to note that homopolymerisation (intra-epoxy network still unfinished at 

this stage) occurs during the DMA heating experiment (Figure IV.44), leading to a decrease of 

the distance between the triglycerides of the network. Two α relaxations appear around 68°C (Tα) 

and 245°C (Tα’). A possible explanation of this behaviour could be the creation of a two phase 

copolymer due to a change in solubility of polymerization mixture during crosslinking. Similar 

with the core-shell systems, the network could contain two kinds of phase: a flexible, rubbery 

one belonging to triglyceride chains (improving the free space allocated to the chains movement) 

and a rigid one from BTDA anhydride inter-connections clusters.  

DMA results of ELO/BTDA2 tend to confirm this hypothesis, also two α relaxations could be 

observed if the curing was completed by a high stage reaction (i.e. for ELO/BTDA2 system): Tα 

~127°C and Tα’ ~240°C in Table 2.  

It seems that the post-cure of the system ELO/BTDA enhances the Tα values from 68 to 127°C, 

this increase being attributed to side-reactions that mainly occur during this post-cure stage. That 

means the formation of a reinforced network by epoxies inter-connections characterized also by 

high modulus values in the rubbery region. This could be explained by a very dense architecture 

due to a higher crosslink density also with the segregation between rigid phase and rubbery 

network.  
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Figure IV.45. DSC thermograms at 10°C.min-1 of ELO/MHHPA 1/0.5 and ELO/BTDA 1/0.5 
(curing protocols: ELO/BTDA : 2h at 120°C, 2h at 160°C and 1h at 230°C; ELO/MHHPA : 2h 

at 120°C, 2h at 160°C and 1h at 230°C) 
 

 

This assertion is corroborated with the comparison between Tg measured by DSC for 

ELO/MHHPA 0.5, which also shows the existence of two glass transitions at around 122°C and 

205°C (illustrated in Figure IV.45). An explanation of this result could be that the out of 

stoichiometry (epoxy excess) could favoured a phase separation. The higher Tg values obtained 

in the ELO/MHHPA system, relative to the ELO/BDTA system, could be explained by the 

cyclic structure of MHHPA, which contains a substituent methyl group that can inhibit the 

rotational movements and result in a higher Tg  value.  

 

 
Figure IV.46. Schematic view of ELO/BTDA 2 proposed architecture 

 
At temperatures below Tα, mechanical behavior from sub-glassy state to the glassy region is 

compared. As seen in Figure IV.44 and reported in Table IV.7, obtained thermosets are 

characterized by two secondary transitions in the glassy state (sub-glass transitions): β and γ 
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relaxations. In the glassy state, the physical behavior depends on cohesion and local molecular 

mobility. These relaxations appear due to residual segmental mobility at temperature below Tg. 

The localized motions related to these secondary transitions involve rotation, chair-chair 

isomerization in cycloaliphatic rings or crankshaft motions of short chains segments. The β 

relaxations can be correlated to fracture properties. Two categories of polymers can be described 

in function of position of Tβ value reported to ambient temperature. Polymers with Tβ values 

above ambient temperature are characterized by low intensity β dissipation peak, being more 

brittle. The second category is correlated to polymers with Tβ below the ambient temperature. 

This is the case of polymers with relatively low moduli (< 3 GPa) that can display a ductile or 

semiductile behavior.17 In these networks β relaxations are highly active. ELO/anhydrides form 

networks of the second category, β relaxations being depicted by a dissipation peak due to the 

crankshaft motions of the branching diester segment –CH2-CH(R)-O-CH(R)-O-.  It is 

particularly clear with the intensity of β relaxations for ELO/BDTA1 and ELO/BDTA2. In 

ELO/BDTA1, numerous triglyceride chains did not react, ergo the network was not totally cross-

linked and the aliphatic chains had greater degrees of freedom, and thus, intense β relaxations. 

On the other hand, the β relaxation was very weak for the full cured network on ELO/BDTA2.  

 

IV.4.2. Thermogravimetric analysis (TGA) 

Thermogravimetric analyses were carried out to measure the thermal stability of full cured 

materials under inert (N2) or oxidant (air) flows. Thermosets thermal degradations involve 

complex chemical or thermo-oxidative mechanisms.18 In spite of a great number of works 

regarding the study of the epoxy/amine systems, literature data on epoxy/anhydride thermosets is 

relatively reduced. 

Generally, the thermal stability of DGEBA/amines cured systems are around 300-370°C under 

air, being slightly superior under nitrogen. TG curves of proposed cured systems are reported in 

Figure IV.47. The temperature of degradation was considered at 10% of the weight loss, T10%. 

These thermograms curves reveal a high thermal stability of ELO/MHHPA and ELO/BTDA 

systems, under air and nitrogen. The degradation process is quite complex, with two or three 

stages of degradations which starts above temperatures of 333-337°C, superior to the degradation 

temperature of DGEBA/anhydride networks. The first degradation step shows a same shape in 

air and nitrogen atmosphere, and it is currently associated with the network degradation by 

scission of ester links. This result indicates that at this stage occur non-oxidative degradation 

reactions of thermolysis. 

Under oxidative conditions, three successive steps of degradation process occur for both 
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systems, more evident for system containing dianhydride. This degradation behavior could be 

attributed to decomposition of BTDA aromatic moieties that occurs at high temperature (590°C). 

This phenomenon was previously observed when aromatic anhydride has been used as curing 

agent.19  

For the thermogravimetric analysis conducted under non-oxidative atmosphere (N2) Figure 

IV.47 shows that ELO/MHHPA and ELO/BTDA networks have different weight-loss behaviors. 

The ELO/MHHPA networks decompose integrally, maybe due to a less thermoresistant 

cycloaliphatic MHHPA structure. In contrast, a residual weight of about 20% is observed in the 

case of ELO/BTDA decomposition. So the degradation process produces less organic volatiles in 

comparison with ELO/MHHPA that degrades completely. This behavior of ELO/BTDA network 

could be correlated with a more homogenous structure, also with the presence of increased 

thermal stability of aromatic moieties of BTDA structure. This observation is in good agreement 

with high Tα’ temperatures of ELO/BTDA networks. However, to obtain a scenario of thermal 

scissions of networks, a deeper study of mechanism of degradation is needed.  
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Figure IV.47. Thermogravimetric analysis of ELO/MHHPA (black symbols) and ELO/BTDA 

(green symbols) systems at 10 °C min–1 under N2 (triangles) or air (circles) flows: relative weight 
loss (a) and derivative weight loss (b) 

 

IV.5. Conclusions 

The epoxy/acid anhydrides curing systems are widely used in electronic applications as circuit 

boards, encapsulating material for integrated circuits, or insulators in power current components. 

This study brings some insights into vegetable oil based epoxy/anhydrides networks as excellent 

biosourced alternatives to elaborate green thermosets. In the selected ELO/anhydride thermosets 

the bio-renewable ratio was increased by over 60 % for ELO/MHHPA to 70% for ELO/BTDA 

systems. A deeper insight in the cure mechanism of ELO/anhydride reactions has been gained. 

The relationships between structure and properties of these emergent materials have been 
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highlighted. Firstly, the cure behavior is very different when the ELO is reacted with MHHPA or 

with BTDA. The DSC thermoanalytical curves show the presence of a single reaction exotherm 

for ELO/MHHPA systems, at about 150°C. In comparison, ELO/BTDA presents a 

supplementary exotherm, at about 250°C which could correspond to the completion of side-

reactions of polyetherification (homopolymerization). These results have been corroborated with 

TOPEM® and chemorheological analysis to quest more understanding by thermodynamic-

viscoelastic properties correlation. As the reaction become diffusion controlled at vitrification, 

the crosslinking process must be conduct at T > Tg∞ (Tg of the completely cured network).  

Concerning physico-chemical characteristics, the DMA measurements revealed important results 

that meant semi ductile networks with good impact strength were achieved. It seemed that phase 

separation occurred during crosslinking conduct to form a toughened network. Depending on the 

type of anhydride hardener and the curing program (i.e. considering or not side-reactions of 

polyetherification), different behaviors have been observed. Therefore, the β relaxations occur at 

negative temperatures (~ -75°C and -50°C, respectively) that is an important indication about the 

resistance of these materials to fracture dissipation. The obtained results translate a semi-ductile 

behaviour, very important property because one of the most embarrassing defects of epoxides is 

their brittleness. Then, α relaxation is active on a large range of temperatures for the two 

networks. This relaxation appears at about ~ 134°C for ELO/MHHPA network but ELO/BTDA 

manifests two α relaxations: about around ~ 127°C and ~ 240°C, respectively. This difference 

between α relaxations behavior of networks developed with mono- or di-anhydride could be a 

consequence of the stiffness and toughness of connections in the vicinity of crosslinking bridges. 

A comparison of the materials obtained after anionic copolymerization without side-reactions 

(i.e. using low cure temperature), lead to the conclusion that the crosslinking density is increased 

when BTDA hardener is used instead of MHHPA. This is consistent with the results of dynamic 

mechanical testing (higher Tα’ value) and should correspond to a decrease of macromolecular 

mobility. This decrease could be associated with an increase of other structural properties as for 

example the thermal stability. Thermogravimetric studies revealed high temperatures of 

degradations under air or nitrogen, at about 340°C. Correlated with other thermo-mechanical 

properties this reflects a good thermal stability of backbone structures for both ELO/MHHPA 

and ELO/BTDA networks. 
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V. Valorization of bio-refinery side-stream products: combination of 

humins with polyfurfuryl alcohol for composites elaboration  

V.1. Humins and furfuryl alcohol: the design of a furanic architecture 

 

V.1.1.  From humins structure to green furanic strategy 
 
This study proposes new applications domains for humins and aims to develop for the first time 

bio-based polymeric materials from which substantial parts are made on these recalcitrant by-

products. Van Zandvoort proposed that humins have mainly an aromatic character consisting of 

essentially furanic moieties.1 Intrinsically, this would suggest a good compatibility and peculiar 

chemical affinity with furanic compounds such as furfuryl alcohol. We therefore studied the 

inclusion of humins as macro-monomer into a polyfurfurylalcohol network as a good strategy to 

generate homogeneous and efficient materials. In this case, humins addition into a polyfuranic 

formulation can also reduce the resin cost price.  

 

The furfuryl alcohol (FA) is indirectly issued from lignocellulosic biomass conversion via 

hydrogenation of furfural, and its production has largely increased since the last 20 years.2 As 

depicted in Figure V.48, this furfural derivative has a high tendency to polymerize under acidic 

condition leading to the PolyFurfuryl Alcohol (PFA). This polymerization proceeds via a 

complex mechanism which can be mostly discriminated in two steps.3,4 The first one 

corresponds to acid-induced polycondensation leading to the formation of linear furanic 

oligomers. Then, tridimensional amorphous networks are generated subsequently by cross-

linking both via Mickael addition and Diels-Alder cycloadditions as illustrated in section 

II.2.2.2.5,6 Indeed the phenomenon of reticulation includes an important transition on the 

physical state of the reaction medium: from a liquid to a viscoelastic solid.7  

 

The PFA bio-based thermosetting resin is largely used in some applications such as foundry 

resins, composites, but also for wood adhesives8 and impregnation, in particular, with its strong 

efficiency in term of biological degradation resistance.9  The major drawback of the PFA 

network is its high brittleness so modification of thermomechanical properties are important 

issues that need to be addressed.  

Combination with bio-based compounds modifies advantageously the PFA thermomechanical 

behavior such as introduction of triglyceride flexible moieties (Chapter VI).10 Moreover, it has 
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been proven that the PFA can interact with heterogeneous macromolecular compounds such as 

tannin11 or lignins12,13 which are also well-known biorefinery by-products.14  

 

 
Figure V.48. Representative scheme of biorefinery key molecules for furanic based polymer 

 

According to the above mentioned features, the polyfurfuryl alcohol (PFA) was logically chosen 

for being combined with humins for three main reasons: (i) the PFA is a bio-based polyfuranic 

so combination with humins leads to fully bio-based furanic resins, (ii) The PFA network 

develops under acid-induced polycondensation which is also one of the postulated routes for the 

humins growth15,16, (iii) regarding composite applications, introduction of humins into the dense 

cross-linked PFA network could modify the thermomechanical properties. 

 
V.1.2.  Lignin organosolv as heterogeneous macromolecules of 
reference 

 

As specified in section II.2.2.1, the native lignin is strongly linked to cellulose and 

hemicellulose, which will explain the drastic solutions proposed to selectively isolate it. 
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Historically, the main feedstock of isolated lignin was associated to side-steam product issued 

from the pulp of paper industry. However, the growing interest and development of biofuels 

allow lignin to be recovered from bio-refinery processes.17 The principal raw material in 

papermaking industry is the chemical pulp obtained by the digestion of wood chips under 

various conditions of pH. This process has the particularity to remove lignin without degradation 

of polysaccharides, which is an important issue considering the necessity to preserve the 

hydrogen bondings between fibres, restricting the swelling and making them stiff, in order to 

produce high quality white paper.18  

 

As depicted in Figure V.49, the entire chemical pulping method can be divided into two 

processes: sulphur, and sulphur-free.19 Herein, organosolv process presents the double 

advantages to produce lignin without utilization of sulphur compounds. The resulting organosolv 

pulp has comparable properties in regard to alkaline Kraft pulp issued from a sulphur process. 

The organosolv technology consists in the treatment of wood chips under heat and pressure with 

liquor containing water and an organic solvent. The organic solvent is used as vector to promote 

plant tissues impregnation in order to release acetyl groups present on hemicellulose 

accompanied to the formation of acetic acid. These soft acidic conditions are enough to allow 

delignification and partial hemicellulose hydrolysis.20,21 However, an addition of formic or acetic 

acid can improve the delignification process.22  

 

 

Figure V.49. Different extraction processes to separate lignin from lignocellulosic biomass.19 

 
 

V.2. Resin formulation, composite elaboration and processability  

V.2.1. Materials 
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Furfuryl alcohol (FA) (purity: ≥ 98%) as monomer and maleic anhydride (MA) (purity: ≥ 99%) 

as polymerization catalyst, were purchased from Sigma-Aldrich and were used as received. 

Humins are directly produced by Avantium Chemicals at their Pilot Plant in Geleen, the 

Netherlands, by conversion of fructose in methanol. These humins were distilled under high 

vacuum to reach low 5-hydroxymethylfurfural (HMF) and 5-methoxymethylfurfural (MMF) 

content (< 5% by weight). The humins composition obtained by elemental analysis is 

approximately of 60 wt% C, 32 wt% O and 5 wt% H being in good correlation with other 

reported values.1,23 Their heating value is around 23 MJ/kg. Humins have the appearance of very 

viscous, shiny black bitumen. Organosolv Lignin was provided by ECN.24 A precise description 

of this lignin can be found in de Wild et al. paper.25 The brown solid was finely crushed and 

passed through a sieve in order to have a good dispersion into the FA monomer. 

PFA/humins/cellulose and also PFA/lignin/cellulose composites were made with filter papers 

Whatman 40 having a diameter of 110 mm and a weight of 900 mg. 

 
V.2.2.  Humins/FA reactivity investigation by DSC 

 
On the basis of DSC investigations, introduction of viscous condensed humins into the FA/MA 

system decreases the overall reactivity and shift the polycondensation peak to a higher 

temperature compared to the pure FA/MA mixtures. The thermograms of Figure V.50 show an 

exothermic event at 135°C for 40/55H/5, while the 40/58/2 formulation doesn’t show any major 

event at this temperature but at a higher one. This result explains the necessity of a higher 

catalyst amount. For the sake of comparison the exothermic peak of PFA cross-linking is 

exhibited in the insert of Figure V.50. 



Chapter V: Combination of humins with furfuryl alcohol 

128 

50 100 150 200 250
-0,2

0,0

0,2

0,4

0,6

0,8

1,0

50 100 150 200 250

0

1

2

3

4

5

6

 95/0/5

H
e
a
t 
F
lo

w
 /
 W

.g
-1

Temperature / °C

 40/55H/5
 40/58H/2

H
e
a
t 
F
lo

w
 /
 W

.g
-1

Temperature / °C

 
Figure V.50. DSC thermograms of reactivity studies for the two FA/Humins/MA formulations, 

and for the pure PFA (in insert). 

V.2.3.  Elaboration of humins/FA cellulosic composite 
 

Cellulose filter papers were impregnated with the different above-mentioned 

thermosetting resins, in order to achieve a 1:1 weight ratio between cellulose reinforcement and 

the cured thermosetting resin. In each case, the resin was spread homogeneously on the surface 

of cellulose filter. Then, these impregnated filters were protected by two sheets of kapton films 

and placed between two aluminium blocks to ensure uniform repartition of the resin during the 

curing. The system was placed into a ventilated oven and was cured at 160°C during 3 hours. 

This curing protocol was elaborated in good agreement with DSC investigation previously 

presented to reach a maximal conversion. All the process is described in Figure V.51. 
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Figure V.51. Composite elaboration protocol 

 

V.2.4.  Optimization parameters for resin and composite elaboration 
 
The optimization of parameters has been investigated for a representative medium ratio of 

40/55H/5. 

 
V.2.4.1. Effect of the pre-curing temperature 

A first optimization has been investigated on the resin pre-curing. Firstly a mixture of humins 

(55% by weight) and FA (40% by weight) was heated at 105°C during 20 min in order to obtain 

a homogeneous black mixture. Then, the maleic anhydride (MA) (5% by weight) has been added 

as catalyst in the mixture. After that, two pre-curing temperatures have been chosen to measure 

the influence on oligomerization i.e. resinification. As result, the 40/55H/5 mixture has been 

heated at 85°C and 105°C during 10 min. After resin cooling, it was impregnated on cellulose 

filters, as presented below in section V.2.3. The Figure V.52 shows the tensile test results for 

these two cellulosic composites after curing. 
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Figure V.52.  Pre-curing temperature influence: Young’s modulus (a), tensile strength (b). 
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A higher pre-curing temperature leads to generate composites with better mechanical properties: 

the Young modulus has double value (≈ 1.6 vs 3 GPa). This result basically explains a better 

stress transfer between the matrix and the cellulose fibres. Furthermore, if we compare these two 

pre-curing temperatures, at lower temperature the extent of polymerization is inferior to that 

obtained at higher pre-curing temperature. That means a shorter length of linear furanic chains, 

less potentially connections with humins, and more free FA. According to the DSC results and to 

our knowledge on FA polymerisation, a very high isothermal curing temperature, such as 160°C, 

favours the cross-linking instead of polycondensation and thus oligomerization.26 However, the 

first step of FA polymerization i.e. polycondensation is very important and determines Mickael 

and Diels-Alder reactions cross-linking. So, this established fact can be reliable to the network 

density and homogeneity. For the resin pre-cured at 85°C, the network is probably more 

heterogeneous, with shorter polymer chains, and thus less cross-linking. This result could explain 

the tensile test results. 

Herein, the solution to improve properties is to have a better resinification i.e. oligomerization. 

Concretely it means a longer isotherm or a higher pre-curing temperature. Unfortunately, a 

higher temperature cannot be reached because of the cross-linking and of the very quick 

gelation/vitrification process which is achieved at lower temperature due to the high 

concentration of catalyst (MA 5% by weight). The same problem occurs with a longer isotherm, 

even at lower temperature. For this reason, a catalyst addition strategy in two steps has been 

proposed. 

 

V.2.4.2. 1 step vs 2 steps strategy 

To confirm the above mentioned supposition that a better pre-curing leads to generate 

composites with higher properties, the introduction of maleic anhydride in two steps has been 

investigated. The protocol of pre-curing, after the initial mixing of FA and humins at 105°C 

during 20 min, consists on a first addition of MA (2.5% by weight), then a heating at 120°C 

during 30min and at 130°C during 30 min. After that the mixture was cooled to 85°C, and the 

other 2.5% by weight of MA has been added. Then, the mixture has been stirred during 5 min 

and cooled down to room temperature for impregnation. The resulting “2 steps” cured composite 

has been confronted to the “1 step”: the experimental data has been resumed on Figure V.53. 
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Figure V.53. 1 step vs 2 steps strategy: Young’s modulus (a) and tensile strength (b) results. 

 
As expected, the Young modulus of the “2 steps” procedure is higher, potentially due to the 

higher oligomerization. The tensile strength is slightly increased, but in the same range, which 

seems to impute that the tensile strength result mostly reflects the humins effect. Also, it shows a 

good stress transfer from cellulose to resin, and thus to humins. In the light of these results, the 

“2 steps” strategy has been adopted to develop the other resins for comparatives studies. 

 

V.2.4.3. Importance of resin viscosity for impregnation 

Resins formulations were designed in order to reach approximately the same viscosity for each 

sample so to achieve similar impregnation conditions. The weight ratio of the different 

formulations, the procedures of resinification and the final viscosities of each resin are 

summarized in Table V.8. Note that it was necessary to adapt the pre-curing time and 

temperatures for each composition, due to their different reactivities and viscosities. Four 

formulations were prepared: 

♦ The reference PFA resin consisted of 95% of FA and 5% of MA on weight. The catalyst 

quantity was chosen as optimal concentration, considering that potential interactions 

between MA and humins will consume a part of MA and thus will decrease the intrinsic 

FA reactivity. This assumption was confirmed by DSC studies, performed with the 

classical catalyst amount, i.e. 2% of MA (seen on section V.2.2).7 As seen in Table V.8, 

the acidic catalyst (MA) was added in two steps to allow formation of a homogeneous 

viscous PFA resin and to reach a higher pre-curing temperature in the first step. Then, the 

reactive mixture was cooled to 80°C and the second addition of 2.5% of MA was done. 

This reference resin is reported as 95/0/5. 

♦ Two formulations containing humins were prepared with FA/humins/MA weight ratios 

being respectively 40/55H/5 and 20/75H/5 (Table V.8). Prior to the addition of the acidic 

initiator, the FA (either 40 or 20% w/w) was mixed with the humins (either 55 or 75% 
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w/w) at 105°C for 20 min under mechanical stirring until a homogeneous, viscous black 

liquid was formed. Then, the maleic anhydride (5% w/w) was introduced in two equal 

steps of 2.5% w/w MA. The first pre-curing step was performed slightly longer and at a 

higher temperature range in the presence of humins (Table V.8). After cooling to 80°C, the 

last addition of 2.5% w/w MA was done. Subsequently, the mixture was stirred for another 

5 min and cooled down to room temperature. A homogeneous viscous shiny black resin 

was obtained in each case. The resins were stored in the fridge and no phase separation 

was observed after several weeks. 

♦ A resin was also prepared with an Organosolv lignin. The FA/lignin/MA weight ratio was 

40/55L/5. First, FA was mixed with 55% of the Organosolv lignin and heated to 105°C for 

20 min under mechanical stirring. Then the mixture was cooled to 80°C and 5% of MA 

was added. In this case MA was introduced in one single step. Otherwise, the viscosity 

which is already very high due to introduction of the lignin powder rose rapidly during the 

pre-polymerization (Table V.8).    

 

Table V.8. Conditions of two pre-curing steps  

Initial w/w ratios 
FA/Humins/MA 
FA/Lignin/MA 

1
st
 pre-curing step 2

nd
 pre-curing step 

Final resin viscosity at 
25°C (Pa.s) 

Final resin viscosity 
at 50°C (Pa.s) 

95/0/5 40min at 110°C 80°C for 5min 515 13 

40/55H/5 
30min at 120°C and 

30min at 130°C 
80°C for 5min 627 28 

40/55L/5 - 80°C for 5min 3900 530 

20/75H/5 30min at 120°C 80°C for 5min 2240 59 

 
 

V.3. Structural characterization by FT-IR 

The ATR-IR spectra of the neat FA monomer and of the raw humins are shown in Figure V.54 

together with the spectra of the 95/0/5 resins and the 40/55H/5 resins. The assignment of major 

bands, in good agreement with of literature,27,28 is also summarized in Table V.9. At first sight, 

the four spectra do not exhibit major differences which would indicates that similar functional 

groups are present in the different systems under study.  

 

Table V.9. Assignment of major bands on FT-IR spectra 

Assignment 
Wavenumber 

cm
-1

 
In spectrum of 

C-H wagging furan ring 728 FA 
C-H wagging furan ring 738 40/55H/5 
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C-H wagging 5-sub furan ring 790 95/0/5 
C-H wagging furan ring 798 40/55H/5 
C-H wagging furan ring 812 FA 
C-H wagging methylene group / C-O stretching D-A adduct 
C-C-C in-plane bending furan ring 

868 
886 

40/55H/5 
FA 

C-O stretching hydroxymethyl group 1000 FA 
C-O stretching 1020 humins 
C-O stretching furan ring and met C-H wagging and OH wagging 
C-C/C-O stretching furan ring / C-C stretching hydroxymethyl group  

1146 
1220 

FA 
FA 

C=C stretching furan ring 1505 FA 
C=C stretching HMF’s furan ring 1515 humins 
C=C stretching 2,5-sub furan ring 1559 95/0/5 
C=C stretching conjugated with C=O 1600 humins 
C=O stretching MMF/HMF’s aldehyde 1665 humins 
C=O stretching 1690 95/0/5 
C=O stretching conjugated with C=C 1712 humins 
C=O stretching 1714 40/55H/5 
C=O stretching 1720 95/0/5 
C=O stretching 1735 40/55H/5 

 

The spectrum of the FA monomer contains many peaks which can be assigned to vibrations 

respectively associated with the furan ring or with the hydroxymethyl group.27 The furan C=C 

stretching vibration appears at 1505 cm-1 while the peaks around 812 and 728 cm-1 can be 

assigned to the C-H out of plane deformation of the furan ring (Figure V.54). The strong peak 

around 1000 cm-1 corresponds to the C-O stretching of the hydroxymethyl group. The strong 

peak at 1146 cm-1 is commonly attributed to the C-O stretching of the furan ring collectively 

associated with C-H and OH wagging.27,28 Thus, this peak in association with two other FA 

characteristic peaks at 1220 and 884 cm-1 (assigned in Table V.9) can be an indication of the 

free FA in the pre-cured resin composition. Indeed, this peak is also visible in the 95/0/5 and in 

the 40/55H/5, in quite the same intensity that means that the pre-cured step has been conducted 

approximately in the same conditions. 

 

When the FA is prepolymerized into PFA, new bands are developing while others are shifting. 

The spectrum of 95/0/5 shows a new peak at 1559 cm-1 which is assigned to C=C stretching in a 

2,5-disubstituted furan ring. The red-shift of the C-H out of plane deformation from 812 to 

around 790 cm-1 is taken as another proof of the furan substitution in the C5 position. Moreover, 

the appearance of a composite peak between 1720 and 1690 cm-1 indicates that carbonyl 

moieties could have been created through hydrolytic opening reactions of the furan ring. These 

peaks could also correspond to Diels Alder cyclo-adducts which are thought to be formed during 

PFA crosslinking.5 All the above-mentioned features are consistent with previous IR studies on 

FA polymerization.7,28,29  

 

The fructose-based humins spectrum shown in Figure V.54 is consistent with previous FT-IR 

studies conducted on such complex poly-aromatic structures.1,15,16 The molecular structure of 
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humins is mainly derived from HMF and 5-methoxymethylfurfural (MMF). The peak at 1515 

cm-1 is assigned to C=C stretching in furan rings while the peak at 1020 corresponds to C-O 

stretching. As for the PFA, the composite peaks between 800 and 750 cm-1 are attributed to the 

out of plan C-H bending of the different substituted furans. According to Lund et al.15 the peak at 

1712 cm-1 together with the peak around 1600 cm-1 in humins are characteristic of carbonyl 

group conjugated to an alkene group. Finally, it should be mentioned that the feature at 1665 cm-

1 could arises from the C=O stretch of the MMF and HMF’s aldehyde group.  

 

The spectrum of the prepolymerized 40/55H/5 resin corresponds approximately to the 

superposition of the signals from the 95/0/5 PFA resin and those from the humins. However, 

some features can be attributed to specific interactions between the PFA network and the 

humins. A new band develops at 868 cm-1 which is neither visible in the spectrum of PFA resin 

or in the spectrum of humins. The peaks appearing within this wavenumber region are generally 

attributed either to C-H wagging of methylene linkages or C-O stretching from Diels-Alder 

cycloadducts.28 This might indicate that novel kinds of interactions were created between the 

side chain oxygen groups of the humins and the furanic rings from the PFA. Moreover, clear-cut 

shoulders appear at 1714 and 1735 cm-1 in the carbonyl stretching region. The chemical 

environment of the carbonyl groups present in the aliphatic parts of the humins has been 

modified probably due to new interactions with the polyfurfuryl alcohol network. It should also 

be mentioned that the C-H out of plane bending of the furan rings appears at 798 and 738 cm-1 

for the 40/55H/5 resin. These peaks are broader and slightly shifted to higher wavenumbers 

compared to the PFA resin. It denotes a more complex network of furan rings due to 

interconnections between the two systems. 

A putative chemical structure of the humins surface based on literature1,16 and FTIR 

measurements is proposed on Figure V.55 to highlight its possible covalent interactions with FA 

oligomers. 
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Figure V.54. IR spectra of FA monomer (green), humins (black), pre-cured resins 95/0/5 (blue) 
and 40/55H/5 (red). 

 
 
 

O

O

O

O

O

O

OH

O

O

O

O

OHO

O

O

O

O

HO

O

HO

O

O

O

O

O O
O

O

O

 
Figure V.55. Putative cross-links between humins structure taken from literature (black) and FA 

oligomers (green).1,16  
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V.4. Multi-comparative mechanical and morphological studies of 

cellulosic composite  

 

This section focus on a multi-comparative study between cellulosic composites, impregnated 

with different furanic resins, in term of mechanical properties and morphologies of fracture 

surfaces. In order to highlight the effect of humins on the impregnation quality, humins 

cellulosic composites will be compared with those of pure PFA and lignin composites. 

 

 

V.4.1. Mechanical characterization 
 

Figure V.56 shows the stress–strain curves of the non-impregnated cellulose paper together with 

those of the different cellulose/thermosets composites. The obtained curve for the cellulose paper 

sample reveals a succession of fractures which can be attributed to the progressive 

disentanglement of the fibers during the tensile test.30  As observed on the SEM micrographs 

(Figure V.56 E), the fracture surface of the cellulose paper confirms the loosening of fibers. In 

comparison with the stress-strain test, the behavior of the thermoset composites impregnated 

cellulose fibers are very different and can be characterized in first approximation to a straight 

line of the tensile strength which is characteristic of an elastic response, leading to a brittle 

fracture. Such behavior reveals an uniform impregnation with an adhesion between the cellulose 

fibers and the matrix. These results were corroborated with the SEM micrographs presented in 

Figure V.56. Compared with the cellulose filter, the impregnated composites present a sharper 

fracture surface.  

The Young modulus and tensile strength at failure obtained for the different composites are 

gathered in Figure V.57. As all the cellulose filters have similar mechanical behavior, the 

differences in the mechanical responses of the composites are only linked to the matrix and its 

abilities to generate a good adhesivity with the fibers reinforcement. When the PFA resin is used, 

the resulting composite exhibits a Young modulus of about 3.5 GPa, the tensile strength 

approaches 15 MPa while the strain at failure do not exceed 0.5% (Figure V.56). It denotes an 

extremely brittle behavior generated by the PFA network which is characteristic for this peculiar 

thermosetting resin.31 The incorporation of Organosolv lignin within the PFA matrix does not 

dramatically change the mechanical properties of the composite. Similar tensile modulus and 

strength compared to the PFA resin indicates that Organosolv lignin does not modify the 
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brittleness of the composite and interfacial adhesion between the furanic matrix and cellulose 

fibers. Like the PFA resin, the lignin also exhibits a rigid aromatic structure which is not able to 

sufficiently flexibilize the cross-linked network.  
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Figure V.56. Stress–strain curves and SEM fracture surface (A: 40/55L/5; B: 40/55H/5; C: 

20/75H/5; D: 95/0/5; E: filter paper) 
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Figure V.57. Young’s modulus (a) and tensile strength (b) histograms 

On the other hand, the incorporation of humins into the matrix leads to a significant 

improvement of the composite mechanical properties. When the 40/55H/5 resin is used as 

matrix, the Young modulus reaches ~ 4 GPa and the tensile strength (~ 28 MPa)  increases by a 

factor two compared to PFA based composite. Such behavior could result from better stress 

transfer between the matrix and the cellulose fibers. Moreover, the incorporation of humins 

unambiguously changes the mechanical behavior of the matrix itself which is likely to become 

more ductile and flexible compared to the rigid PFA network. This is particularly reflected in 

Figure V.56 which highlights a plastic contribution on stress-strain curve when the amount of 

humins in the matrix increases to 75 % w/w. Consequently, the composite prepared with the 

20/75H/5 resin has a tensile modulus of about 3 GPa which is lower compared to the other 

composites. However, it should be outlined here that the tensile strength of the 20/75H/5 

composite is reaching ~ 32 MPa which is significantly higher compared the values obtained with 

the PFA and the PFA/lignin resins. The higher ductility of the humins-based matrix allows 

reaching a higher level of strength without sacrificing interfacial bonding with the cellulose 

fibers.  

The humins micro-architecture can be schematically considered as a core-shell rubber. Several 

studies have demonstrated that the humins surface present a rigid aromatic structure while the 

ductile core is mostly constituted by non-aromatic moieties derived from degraded sugar.32,33 

Then, the incorporation of humins into the PFA matrix will induce higher flexibility. Such 

behavior is also observed when core-shell rubber microparticles are incorporated into a brittle 

matrix.34,35 

 
V.4.2. Morphological characterization 
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The SEM micrographs shown in Figure V.58 exhibit the fracture surface of the different 

composites. Each picture reveals, in good agreement with the stress-strain curves, a 

homogeneous resin impregnation which partly fills the empty spaces present between the 

cellulosic fibers of the filter paper. The fracture surface of the PFA composite (Figure V.58 D) 

highlights fibers that are embedded within the matrix but do not show fibers fracture or 

dislocation. The fracture seems to originate from the matrix itself. It corroborates the tensile 

measurements which denote the brittle behavior of the composite.  

The presence of scattered resin fragments at the surface of the PFA/lignin-based composite 

(Figure V.58 A) also confirms the brittleness of this type of resin. The matrix appears in the 

form of fragmented and brittle mortar. A pulled-out single fiber can be clearly seen which would 

be the consequence of moderate interfacial bonding between the PFA/lignin matrix and the 

cellulosic fibers.  

 

Interestingly, the fracture surface of the composites containing humins in the matrix reveals 

more fibers dislocation or rupture (Figure V.58 B and C). It would attest for higher interfacial 

bonding and more efficient stress transfer between the matrix and the fibers. Moreover, the 

matrix appears more ductile with fewer striations compared to the neat PFA and the PFA/lignin 

resins. These observations are correlating well with the higher tensile strength obtained for the 

PFA/humins-based composites. The pictures in Figure V.59 are obtained for the composite 

processed with the 40/55H/5 based-resin and focus on the fibers/matrix interface. At higher 

magnitude, the formation of a homogeneous resin coating is distinctly highlighted at the surface 

of the fibers. No voids or cracks were observed which indicative of a good interfacial bonding. 

These observations confirm that the humins plays a positive role on the resin ductility and on the 

cellulose/matrix interface. These additional features underline the great potential to use the 

humins as raw component into the PFA resins.  
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Figure V.58. SEM micrographs on fractures composites after tensile test (x600) A: 40/55L/5; B: 
40/55H/5; C: 20/75H/5; D: 95/0/5) 

 

 

 

Figure V.59. SEM micrographs focused on fiber/matrix interfaces on PFA/lignin (A) or 
PFA/humins (B) composites 

 
 

V.5. An opening toward industry 

 

V.5.1. Reduction of polymerization temperature 

A B 

C D 

B 

A 
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The temperature of resin curing is a key issue for industrial assumption. Herein, a work on co-

catalysis with a strong acid has been developed to reduce the temperature of curing. This 

investigation is particularly adapted for the “2 steps” strategy. Indeed, after the first introduction 

of 2.5% by weight of MA and the pre-heating, the resin was cooled down and then the co-

catalyst was added at room temperature.  

 

The quantity of sulfuric acid has been fixed for this first experience to 1 % by weight in an 

aqueous solution at 20 % (w/w). The quantity of sulfuric acid should be tailored in function of 

the reached curing temperature. The final composite after impregnation and curing at 160°C for 

3h has been compared to the pure PFA and 40/55H/5 as reference in Figure V.60. 
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Figure V.60. Mechanical test results when using sulfuric acid as co-catalyst for curing: Young’s 
modulus (a), tensile strength (b). 

 
The composite obtained with the resin 40/55H/2.5/1 (H2SO4) exhibits an average mechanical 

behaviour between the two references of pure PFA and humins resins. The Young modulus is 

very close to the 40/55H/5 composite which confirms the very important first pre-curing step 

with the 2.5% of MA. The tensile strength is quite lower at around 24 MPa. The final result is 

better than pure PFA, and thus good omen for several applications. Furthermore, some 

qualitative tests with a higher content of sulphuric acid have been realized and reveal a good 

potential for curing for these kinds of resins, at room temperature. 

 

 

V.5.2.  Application fields 
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As proof-of-concept, this precursory work open gates to further develop reactive PFA/humins-

based resins both for wood adhesion (plywood, fiberboards) and for wood durability as an 

example. Indeed, another advantage of cellulosic composite is that it is a good model study for 

textile and wood impregnation.36 After several impregnation tests as depicted on Figure V.61 

(A), PFA/humins resin has proven to be efficient to elaborate textile composite and then design 

objet like the presented hat in Figure V.61 (B) elaborated by NPSP company in Netherland. The 

success of these impregnation works has been the based for the elaboration of a patent by the 

Avantium Company presented in Annexe section.  

 
 

 

Figure V.61. Impregnation tests on textile fibers and wood (A) and hat made by NPSP Company 
in PFA/humins impregnated fibers (B). 

 
V.6. Conclusions 

 

 This study shows that large quantities of humins (either 55 or 75% w/w) can be 

successfully included into a polyfuranic thermosetting network which is a good solution to 

obtain lower cost price resins. Homogeneous systems comprising polyfurfuryl alcohol (PFA) and 

humins have been prepared via acid-induced polymerizations. FT-IR measurements confirm that 

potential interactions have been developed between the PFA and the humins network. The 

PFA/humins resins exhibit reasonably low viscosities for being impregnated onto cellulose filter 

and lead to cross-linked composites after final curing. The tensile strength of the PFA/humins 

based composites is two times higher than those obtained either with the neat PFA composites or 

the PFA/lignin composites. Incorporation of humins allows to decrease the brittleness of the 

furanic matrix and to increase the interfacial bonding with cellulose fibers. In agreement with the 

tensile test data, the SEM observations reveal that the PFA/humins composites present more 

fibers fractures than the other composites. It confirms that incorporation of humins impacts 

positively the mechanical properties of the thermosetting composites. This study demonstrates 

A B 
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that humins can be valorized as an active component into PFA and in the meantime decreases its 

brittleness which is one major drawback of the pure polyfurfuryl alcohol bio-based thermoset.  
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VI. Combination of epoxidized linseed oil and furfuryl alcohol to 

design tailored fully bio-based material  

VI.1. Epoxidized linseed oil and furfuryl alcohol: a green cationic 

marriage 

 

The aim of this study, illustrated in the Figure VI.62, is to generate a new type of green 

thermosets, with a maximum content of renewable carbon, by the combination of epoxies based 

on vegetable oils and furfuryl alcohol as biomass derivatives. The copolymer obtained by the 

strategic association of these two monomers might combine the advantages of both structures, 

i.e. the flexibility of triglyceride and the mechanical properties also with the high thermal 

stability of polyfurfuryl chains. The literature reports the work of Vilela et al.1 who have 

successfully synthesized monomers that combine fatty acids and furanic derivatives. 

 

Figure VI.62. Scheme of biomass derivatives to design ELO/FA polymers  
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VI.1.1. A cationic copolymerization strategy 
 

Our purpose in the present work is to use a way which requires the utilization of minimum steps 

and/or chemicals. Thus, copolymerization between ELO and FA has been done in presence of a 

small amount of cationic initiator, without other chemicals or solvent. It is important to notice 

the good compatibility between ELO and FA in term of miscibility. In order to promote covalent 

interactions between these two comonomers, a cationic copolymerization has been investigated, 

with the utilization of a latent Lewis acid as catalyst, the boron trifluoride ethylamine complex 

(BF3NHEt). The main starting hypothesis of this work is that the FA hydroxyl could open the 

ELO oxiran ring as suggested in the literature2,3,4 (Figure VI.63 (a)). Several secondary reactions 

could theoretically occur as: the catalyzed/uncatalysed (thermally induced) homopolymerization 

of ELO (Figure VI.63 (b)); the transesterification of glycerol moieties by FA; the epoxy opening 

ring or glycerol moieties hydrolysis with the water released by FA polycondensation and also, 

the ELO inter-cross-linking etherification by reaction of hydroxyl derived from an ELO opened 

ring and another  oxiran ring. 
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Figure VI.63. Epoxy/alcohol (a) and epoxy homopolymerization (b) cationic mechanism 
catalyzed by boron trifluoride ethylamine complex.2 

 

To highlight the principal reactivities, after an initial investigation by differential scanning 

calorimetry (DSC), complementary studies by FT-IR and 1D/2D NMR were realized carefully. 

The thermoset homogeneity and mechanical properties have been discussed through the prism of 

dynamic mechanical analysis (DMA), tensile test and scanning electronic microscopy (SEM) 

results. Finally the thermal resistance of these materials has been evaluated by thermogravimetric 

analysis (TGA). 
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VI.2. Investigation on ELO/FA copolymerization reactivities 

 

VI.2.1. Materials 
 
Epoxidized linseed oil (ELO) was obtained from Akcros Chemicals Ltd. It is a viscous-liquid at 

room temperature with a viscosity of about 1,200 Pa.s. ELO has a molecular weight of about 980 

g.mol-1 and contains on average 5.5 epoxy groups per molecule. Furfuryl alcohol (FA) (purity: ≥ 

98%) as monomer and boron trifluoride ethylamine complex as polymerization catalyst, were 

purchased from Sigma-Aldrich. 

VI.2.2. Investigation of reactivities by DSC  
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Figure VI.64. Nonisothermal DSC data at 6 °C.min-1 

 
DSC investigations were conducted to study the thermally induced ELO/FA cationic 

polymerizations. Figure VI.64 gathers all the DSC curves. Figure VI.64 a) aims to present the 

DSC measurements corresponding to cationic homopolymerizations of ELO and of FA alone  in 

comparison with ELO and of FA mixtures (ELO50/FA50 50:50, w:w ratio) copolymerization 

(each of these three formulations contains a ratio of 1% in weight of catalyst). For FA/BF3 

system, we could notice a strong exothermic peak (≈ 500 J.g-1) with two overlapped thermal 

events attributed to the condensation of furanic rings accompanied with water release5, followed 

by the cross-linking via Diels-Alder reactions.6,7 In comparison, polymerization of ELO/BF3 is 

less exothermic (96 J.g-1) with a slower reaction rate as shown by the lower slope of the peak. 

However, we can distinguish two exothermic peaks (at 150°C and 265°C) that can be 

respectively attributed to the catalyzed homopolymerization reaction of ELO (96 J.g-1), and to 

the uncatalysed one which generally occurs at high temperature range (81 J.g-1).8 

Copolymerization of ELO with FA seems to have an intermediary trend, with a higher reaction 

enthalpy (≈ 360 J.g-1) in comparison of that of ELO homopolymerization. The peak of 

ELO50/FA50 reaction is slightly shifted to higher temperature compared to those of neat ELO or 

FA homopolymerizations. The comparison of these 3 systems leads to the conclusion that the 

first thermal event occurs at higher temperature when both FA and ELO are present.  
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Figure VI.64 b) represents the reactivity of different ELO/FA ratios for a same concentration of 

catalyst (1%). Table VI.10 gives the functionalities between the reactive groups of ELO (epoxy) 

and FA (alcohol) for each ELO/FA ratio that has been investigated. These ratios have been 

determinate in order to have a functionality of one site epoxy to one alcohol function, in 

concordance with the literature on epoxy/alcohol reactivity.9,2 The increasing of ELO ratio shifts 

the polymerization to higher temperature and progressively decreases its enthalpy. This is in 

good agreement with the previously formulated hypothesis that addition of ELO decreases the 

reactivity of the system. This effect could be explained by a steric hindrance of the triglyceride 

chains that hinder the furanic polycondensation. The ELO/FA ratio of 75/25 presents a deficit on 

FA (Table VI.10), so consequently favors side reactions of epoxies in excess, like 

homopolymerization/etherification, as described above. It could correspond to exothermic peaks 

at around 240-260°C with ∆rH ~41 J.g-1. Thus, in the following studies, the polymerization 

reactivity will be investigated for an ELO/FA ratio 50/50 in order to obtain a deeper 

understanding of reaction mechanism occurring between these two monomers.  

The Figure VI.64 c) highlights the influence of the catalyst concentration on ELO/FA reactivity. 

Surprisingly, the increase of catalyst amount shifts the peak maximum temperature to higher 

values. Indeed, the FA polycondensation is initiated after the catalyst decomplexation with the 

release of NHEt. As results, the pH increases, and in consequence the cationic intrinsic 

polycondensation of FA is shifted to higher temperature. The reaction enthalpies for 1, 1.5 and 

2% catalyst content have similar values, around 360 J.g-1, indicating that 1% is sufficient to 

catalyze the reaction. Herein, the system with 1% of catalyst has been retained in the following 

studies.     

 

Table VI.10.  Functionality and ELO/FA molecules ratios with 1% of initiator 

Matrix ratio (w/w) 
Functionality ratio 

Epoxy/alcool 
Molecules ratio 

ELO/FA 25/75 1:5.28 1:29.1 
ELO/FA 50/50 1:1.76 1:9.7 
ELO/FA 75/25 1:0.59 1:3.2 

 
VI.2.3. FT-IR analysis of structural evolution during copolymerization  

 
The 50/50 ELO/FA w/w ratio has been chosen to investigate the reactivity between these two 

comonomers. For this purpose, a mixture of ELO50/FA50/BF3NHEt1% was heated to 120°C for 

90 min on an opened system. Samples were taken every 15 min and immediately quenched, 

leading to a total of seven samples at a time from t=0 to t=90 min. The spectrum of air was 
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recorded as background. A total of 120 scans with a resolution of 1cm-1 were accumulated for 

each sample. 

 
VI.2.3.1. Monomers and ELO50/FA50 unreacted mixture 

To highlight the copolymerization of ELO with FA, FTIR spectra of neat FA and ELO were first 

recorded and compared to the spectrum of ELO50/FA50 at t = 0. Peaks assignation has been 

summarized in Table VI.11 and the corresponding spectra are presented in Figure VI.65. The 

peak at 1503 cm-1 is currently associated to C=C furan stretching, while the peak at 884 cm-1 

corresponds to the C-C bending of the furan ring. The C-H out of plane vibrations of furan ring 

peaks are generally assigned at 812 and 728 cm-1. The peak at 1220 cm-1 and the intense band at 

1446 cm-1 are also characteristic from neat FA, with for the last one, a collective vibration 

between C-O stretching of furan ring associated with C-H and OH wagging. These bands are in 

good agreement with the IR data reported in the literature for furanic rings and hydroxymethyl 

groups.10,11,12  

The IR peaks characteristics for ELO are less intense in ELO50/FA50 spectrum because of the 

ratio corresponding to ELO molecules into ELO/FA mixture is around 1/9.7 (Table VI.10). 

Anyway, principals ELO peaks could be assigned according to the literature.13,14,15 The intense 

peak at 1736 cm-1 corresponds to the C=O stretching of the triglyceride ester groups, while the 

large band at 1152 cm-1 is generally associated to its C-O stretching from glycerol moiety. The 

ether C-O stretching in α-position of the ester group could be associated to the peaks at around 

1116/1096 cm-1. The epoxy functions are revealed by the bands at 1245 cm-1 and 820 cm-1 which 

respectively correspond to the C-O-C stretching and the C-H wagging from oxiran ring. 
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Figure VI.65. FTIR spectra of neat monomers and the mix ELO50/FA50 at t = 0 

 

VI.2.3.2. Structural evolution during ELO50/FA50 copolymerization 
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Figure VI.66 shows the evolution of IR bands of formed structures during the copolymerization 

of ELO50/FA50. The IR spectra were recorded on isothermal polymerized samples at 120°C 

from t = 0 to t = 90 min. The insert shows the isothermal DSC thermogram associated with its 

corresponding conversion curve. It is important to notice that this isothermal program reaches 

the same maximal extent of conversion in regard to the value of measured enthalpy (Figure 

VI.64). 
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Figure VI.66. FT-IR evolution of ELO50/FA50 pre-cured resins coupled with the extent of 
conversion obtained from isothermal DSC at 120 °C.  

0 < α < 0.48: the spectra at t = 0 and t = 15 min are approximately similar, with differences in the 

diminution and small shifts of peaks from free FA such as 1503, 1220, 1004, 884, 812 and 728 

cm-1, that highlight the occurring of condensation reactions and the apparition of a new chemical 

environment. The major modifications are the increase of some bands between 1125 and 1040 

cm-1. Barsberg et al.11 observed into these ranges peaks associated with neat FA and PFA at 1076 

cm-1 and 1057 cm-1. The increasing absorbance in the interval from 1122 to 1086 cm-1 (Figure 

VI.66) could be attributed to the stretching of linear ether C-O-C bonding of oxiran opened by 

the alcohol function of FA/FA oligomer.13 Indeed, there are no characteristic bands in this 

wavenumber range for the PFA thermoset.6,11 As we discussed above, some peaks of C-O 

stretching from glycerol part of ELO are present here, however these bands should be invariant 

with the polymerization.  

In order to assess the credibility of our hypothesis, a theoretical investigation inspired by the 

work of Barsberg et al.11 has been realized. The choice of the structure fragment model has been 

associated to the main concern of statistical oligomer predominance that means the utilization of 
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the most accessible oxiran of the linolenic moieties of ELO, opened by FA monomer. The 

computed spectrum presented in Figure VI.67 exhibits a major band vibration at 1127 cm-1 

corresponding to the C-O-C stretching which connect FA to ELO. This result is in a good 

accordance with the monitored infrared data. Obviously, several approximations have been 

considered: for instance the fragment models considering only one epoxy and one furan 

monomer, without presence of oligomers, under vacuum medium. This approach gives 

substantial results which could be considerate in corroboration with the proposed ELO/FA 

connectivity. 

0.48 < α < 0.99: this conversion range presents major modifications associated with oligomer 

chains growing. However, the same peak evolution of the spectrum of t = 15 min is noticed. It is 

particularly the case with the peak at around 1730 cm-1 which usually corresponds to the 

stretching of C=O bonding. Its increase could be explained by the presence of ketones, probably 

due to some opened furan rings.6 The shifted peaks of the neat FA also give information about a 

new furanic environment. For instance, the shift from 1004 cm-1 to 1009 cm-1 could correspond 

to hydroxylated furanic oligomer; also the peak at 911 cm-1 usually associated to collective 

motions of neat FA, appears shifted to 916 cm-1. News peaks appeared, linked to the formation of 

PFA network, in agreement with the bands prediction for furanic dimers and trimers as shown by 

Barsberg et al.11 Herein, the constant increase of the band at 1559 cm-1 could be associated with 

the C=C stretching of two 2,5-substitued furan rings linked by a methylene. This information has 

been visually confirmed by the dark coloration of the mixture during heating, sign of 

chromophores apparition.5 Bands around 1318 cm-1 are commonly associated with the C-H 

wagging of methyne link between furanic dimers or trimers. The band at 974 cm-1 corresponds to 

the 2,5-substitued furan pattern, more precisely to the C-C-C bending associated to the C-O 

stretching. The new band at 936 cm-1 could correspond to the C-O stretching associated with the 

C-C bending and C-H in plane wagging of the terminal 2-substitued furan dimer or trimer.  

Some evidences of Diels-Alder (DA) cross-linking have been highlighted by the apparition of  

news peaks at 1352 cm-1, 1314 cm-1 and shoulders at 1235 cm-1 (assignations summarized in 

Table VI.11).  

 

The cross-linking between FA oligomers and ELO is confirmed by the increase of absorbance in 

interval between 1122 and 1086 cm-1 associated to C-O stretching provided by different 

environments issued from epoxy ring opening. Interesting peak evolution is observed in 775 cm-1 

to 840 cm-1 range. A decrease of peaks at 820 cm-1 and 812 cm-1 reveals the consumption of neat 

FA and ELO epoxy ring. Indeed, the decrease of the epoxy ring wagging is correlated with the 
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decrease of the 1245 cm-1 peak. It would indicate that the epoxy groups have been opened 

through covalent interaction with hydroxyl group of FA/FA oligomer. 

Finally, the apparition of peaks at 807 cm-1 and 792 cm-1 could respectively be associated with 

the C-H wagging of 2- and 2,5-substituted furan rings oligomers.  

 

 

Table VI.11. Assignment of major bands of ELO/FA on FT-IR spectra 

Assignement 
Wavenumber 

cm
-1

 
Corresponded 

entities 

C-H wagging furan ring 
C-H wagging 2,5-sub furan ring 
C-H wagging 2-sub furan ring 

728 
792 
807 

FA 
PFA 
PFA 

C-H wagging furan ring 
C-H wagging oxiran ring 
C-C-C in-plane bending furan ring 
C-O stretching C-C-C bending CH in plane wagging deloc + 2-sub furan ring 
C-C-C bending and C-O stretching 2,5-sub furan ring 

812 
820 
884 
936 
974 

FA 
ELO 
FA 

PFA 
PFA 

C-O stretching hydroxymethyl group 
C-O stretching in α-position of ester group 
C-O-C stretching ELO ether 

1004 
1116/1096 
1122-1086 

FA 
ELO 

ELO/FA 
C-O stretching furan ring and met C-H wagging and OH wagging 
C-O stretching ester group 
C-C/C-O stretching furan ring / C-C stretching hydroxymethyl group 
C-H wagging  
C-O-C stretching oxiran ring 
C-H wagging C-C stretching : DA link 
C-H wagging linkage dimer/trimer furan ring 
C-H wagging C-C stretching + CH2 segment : DA link 

1146 
1152 
1220 
1235 
1245 
1314 
1318 
1352 

FA 
ELO 
FA 

PFA 
ELO 
PFA 
PFA 
PFA 

C=C stretching furan ring 
C=C stretching 2,5-sub furan ring  
C=O stretching ester group 

1503 
1559 
1736 

FA 
PFA 
ELO 

 

 

Figure VI.67. Theoretical IR spectrum of linolenic fragment, obtained at the B3LYP//6-
311++G(d,p) level of theory. Maximum of intensity appears clearly at 1127 cm-1,  the vibration 
associated with the connection between ELO and FA monomer (modelling chemical structure 

inserted) 
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VI.2.4. Structural polymerization investigation by multi-dimensional 
NMR 

 

The NMR investigations are presented in two parts. In the first part, the aim is to characterize the 

monomers (ELO, FA) and the initial mix of ELO50/FA50 at t=0. The second part focuses on the 

covalent interconnections developed between the triglyceride and the furanic network. For this 

purpose, multi-comparative studies between ELO50/FA50, PFA and ELO homopolymer at t=60 

min have been done. Samples preparation was proceed by heating at 120 °C under stirring during 

60 min. The NMR assignations are presented on Table VI.12.  

Table VI.12. Molecules assignations correlated with NMR spectra 
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Figure 7, 8, 9, 15 

Furanic branched 
chain of polyfurfuryl 
alcohol 
(PFA) 

O CH2
OCH2

O

5'

4' 3'
2'

5

4 3

2

 
Figure 10, 13, 14, 16 

Cross-links between 
epoxy of ELO and FA 
oligomers 
ELO/FA connection 

O OH

O

6
7

8 9
10

11

    

HO O

O

11

10'8'9'
7'6'

 

Figure 13, 16, 17 

   

 
 

VI.2.4.1. Study of ELO50/FA50 system at t=0 in regard with comonomers signals 
 

The 1H NMR and 13C NMR spectra of ELO, FA and ELO50/FA50 at t=0 are given in Figure 

VI.68 and Figure VI.69, respectively. The signals of ELO50/FA50 system at t=0 corresponds 

only to the contribution of FA and ELO shifts. No other signal was detected in the initial 

ELO/FA mixture which indicates that no interaction occurs before polymerization. Characteristic 

NMR signals of FA5 are associated with 7.58 ppm (Hε); 6.39 ppm (Hδ); 6.29 ppm (Hγ); 4.40 ppm 

(Hα) for 1H shifts and 155.8 ppm (Cβ); 142.4 ppm (Cε); 110.6 ppm (Cγ); 107.2 ppm (Cδ);  56.0 
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ppm (Cα) for the 13C shifts. The assignations of NMR signals of ELO molecule is in agreement 

with those reported for vegetable epoxidized oils13,14,16: the methyne proton at δ= 5.2 ppm (Hk) 

and the methylene proton at δ= 4.0-4.3 ppm (Hj) were associated with glycerol moiety. Epoxy 

ring proton signals are between δ= 3.1 and 2.8 ppm (Hg); the methylene protons in α-position of 

the ester carbonyl have a signal at δ= 2.3 ppm (Hf) and in β-position at around 1.7 ppm (He). The 

methylene bridge between two epoxy rings has a signal at around δ= 1.8 ppm (Hh), while the 

methylene protons next to oxiran ring present signals at around δ= 1.5 ppm (Hd). The methylene 

protons corresponding to alkyl backbones of triglycerides have signals around δ =1.2 and 1.4 

ppm (Hc). The terminal methyl groups have signals around δ= 1 ppm for the linolenic methyl in 

β-position of the oxiran ring (Hb), and 0.86 ppm for the methyl from alkyl chain (Ha). For the 

ELO characterization by 13C NMR, the assignation of peaks signals at 172.5 ppm (Ci) 

corresponds to the carbon of the carbonyl from ester moieties. Resonances at 69.1 ppm (Ck) and 

62.1 ppm (Cj) correspond respectively to carbons of the methyne and methylene from glycerol 

moieties. The carbons from oxiran rings (Cg) could be found between 53.6 and 57.5 ppm. 

 
Figure VI.68. 1H NMR of ELO, FA and the ELO50/FA50 mixture at t=0 
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Figure VI.69. 13C NMR of ELO, FA and the ELO50/FA50 mix at t=0 

 

VI.2.4.2. Study of ELO50/FA50 system at t=60 min in regard with homopolymers 

signals 

 

Chemical structures resulting from the ELO/FA reaction after 60 min at 120°C was investigated 

by multidimensional NMR techniques. First, 1
JCH correlations were investigated by HSQC NMR 

experiment as shown in Figure VI.74. The 1H sub-spectrum of the ELO/FA mix at t=60 min is 

illustrated on the x-axis of the HSQC spectrum. To assign these protons to the corresponding 

carbons, a DEPT-135 sequence was used, presented on the y-axis of the spectrum.  

 

 

Figure VI.70. HSQC NMR of ELO50/FA50 at t = 0. 
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Figure VI.71. HSQC NMR of PFA at t = 60 min. 

 

The HSQC spectra of ELO/FA mix at t=0 (Figure VI.70) and t=60 min have been confronted in 

first time. A first notable difference is the complete disappearance of -CH- from oxiran signal 

(cross-peak at 53-58 ppm (Cg)), which is the sign of oxiran ring opening (rounded dot line on 

HSQC t= 60 min). Cross-peaks from the HSQC t= 60 min in Figure VI.74 could be exploited 

as a multi-comparative interpretation confronted with the HSQC spectra of neat ELO (in green), 

neat FA (in pink), PFA oligomers (in red) and ELO homopolymer oligomers (rounded dot line 

in black). Herein, Figure VI.72 shows the 1H NMR of ELO monomer and ELO homopolymer, 

the first observation is the strong similarity of these two spectra, however the represented signals 

are less thin and defined, which is related to the increase of the molecular weight during the 

formation of ELO oligomers.  

The Figure VI.73 exhibits the HSQC NMR of ELO homopolymer. Cross-peaks at around 1H, 

2.8 ppm /13C, 55ppm correspond to the methyne in oxygen α-position. These peaks group should 

correspond to the methyne reliable to epoxy groups from unreacted ELO, but also reliable to the 

methyne issued from ELO homopolymer as illustrated in the scheme Figure VI.73. Indeed, 

these methynes groups have respectively the same atomic environment and thus present quite the 

same chemical shift. Now if we confront these results with ELO50/FA50 HSQC in Figure 

VI.74, we observe the total disappearance of cross-peaks associated to ELO oxiran methyne, and 

don’t noticed the appearance of cross-peaks at the same chemical shift of around 1H, 2.8 ppm 

/13C, 55 ppm for ELO homopolymer: that suggests the non-occurrence of ELO 

homopolymerization. 
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Figure VI.72. 1H NMR of ELO and ELO homopolymer at t = 60 min. 

 

  

Figure VI.73. HSQC NMR of ELO homopolymer at t = 60 min with associated methyne groups 
from ELO and ELO polymer fragment structure of linolenic moieties. 

 
13C spectrum (Figure VI.75) and cross-peaks from HSQC for PFA (Figure VI.71) are present 

also in ELO50/FA50 copolymer signifying the presence of FA oligomer chains in the copolymer 

network. The characteristic peaks of PFA network have been assigned in agreement with the 

literature.17,18 The 13C spectra reveal essentially two quaternary carbons due to the new 

environment of the furanic oligomer chains: the peak at 151.7 ppm (C2’), correlated with the 

terminal substituted furan ring, and the signal at around 150.6 ppm (C2/C5) attributed to the 2,5-
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oligomer: 142.2 ppm (C5’); 110.1 ppm (C4’); around 107.6 ppm (C4/C3) and 106.8 ppm (C3’). 

Cross-peaks at 63.2 ppm could correspond to the methylene of (fu-CH2-O-CH2-fu), and the 

signal at 27.1 ppm attributed to the CH2 bridge between two furan rings. The main evolution of 

signal has been accompanied with the apparition of methynes cross-peaks detectable within the 

black square on ELO50/FA50 HSQC (Figure VI.74): between 70.5 and 84.4 ppm for 135 DEPT 
13C signals correlated with the 1H spectrum signals between 3.1 and 4.6 ppm. The shifts of these 

signals are generally associated with methyne ether. A methylene cross-peak signal at 63.8 ppm 

for the 13C and 4.45 ppm for 1H are also new and is missing on PFA spectra. This can be 

associated with the furan methylene (C11) cross-linked to ELO by an ether link: fu-CH2-O-CH-

ELO, (Figure VI.74 small black square). This correlation confirmed by the weak intensity of 
13C signal suggests the presence of linkage between the furanic methylene and ELO moieties.    

 

 
Figure VI.74. HSQC NMR of ELO50/FA50 at t = 60 min with cross-peaks attributed to ELO 
(green), FA (pink), PFA (red), ELO/FA interaction (black) and disappearance of ELO epoxies 

signals (dash black) 

 

 
Figure VI.75. 13C NMR of PFA at t = 60 min. 
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Figure VI.76. HMBC NMR of ELO50/FA50 at t=0. 

 

To confirm the connectivity between FA and ELO, the different bonds linkage correlated with 

the JCH has been established by HMBC NMR experiments. The HMBC spectrum of 

ELO50/FA50 t= 60 min is illustrated in Figure VI.77 (purple zone) and shows that no 

transesterification occurs between FA and the tri-ester part of ELO, at this polymerization stage. 

The cross-peaks of ester quaternary carbon presents the same environment in ELO50/FA50 

HMBC at t=0 (Figure VI.76) and at t= 60 min suggesting the non-alteration of glycerol moieties 

from triglyceride (hydrolysis could be avoid or at least not significant at this extent of 

conversion). Indeed, in agreement with the molecule model investigated by Choura et al.5, the 

methylene proton (fu-CH2-O-CO-CH3) having a signal at 4.5 ppm, is not present here (Figure 

VI.77), also in correlation with 13C ester signal. Moreover, furanic quaternary carbon could be 

found in a range of 150-160 ppm, not present in the PFA 13C (Figure VI.75), confirming the 

new environment of FA oligomer provided by the covalent bonding with ELO moieties. It is also 

important to notice the low probability of epoxy ring-opening by the water generated by the FA 

polycondensation, because of its volatilization in the opened system during isotherm cross-

linking at 120°C. 
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Figure VI.77. HMBC NMR of ELO50/FA50 at t = 60 min (black zone) (purple zone of glycerol 

quaternary carbon) 

The Figure VI.78 emphasizes the HMBC spectrum in the range of interest that could correspond 

to the chemical interactions between ELO and FA. Figure VI.78 (1) highlights the environment 

of methyne carbon in ELO/FA network between 70 and 85 ppm, essentially correlated to 3
JCH. 

The postulated ELO / FA linking are emphasized with the structure presented in Table VI.12. 

Indeed, the 3
JCH correlation of methyne cross-peaks (C8) at around 81,8 ppm with the proton 

from the methylene H11 at 4.45 ppm is a proof that the CH2-OH of FA opens the oxiran ring of 

ELO. This information, reliable with the literature13, explains the shift of the methyne link of 

furanic ether moieties (between 79 and 85 ppm), and those corresponding to the shift range of 

methyne link of the hydroxyl part (between 70 and 75 ppm), respectively, represented in zone B 

and A in HSQC spectrum in Figure VI.78 (2). The zones (A1 et B1) on Figure VI.78 (1) could 

correspond to the methyl cross-peaks of linolenic epoxidized moiety, highly present on the 

linseed oil (in average 56.6 %)19. In the A1 zone, only one cross-peak is observed at 73.5 ppm 

(C9’) and could be related with the hydroxy-methyne associated in 3JCH to the methyl at 0.86 ppm 

(H6’). Meanwhile, we can observe several cross-peaks in B1 zone, corresponding to the 3
JCH 

correlation between furanic methyne-ether and the linolenic methyl group. The presences of 

these peaks could be explained by different environments, probably providing by oligomers from 

FA polycondensation. The methylene cross-peaks located in the A2 and B2 zone are also 

correlated in 3JCH to the hydroxy-methyne and ether methyne, respectively. The concerned atoms 

are mostly associated with isomers H7/H7’ and H10/H10’ (Table VI.12), with generally a more 

important shielding for H10/H10’. 
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Figure VI.78.  Zoom of HMBC (1) and HSQC (2) NMR ELO50/FA50 t= 60 min (black square 

in figure 72 and 75) 
 

In the light of FT-IR and NMR studies, the Figure VI.79 proposes a structural model for the 

ELO50/FA50 network where the principal reaction of copolymerization between ELO and 

FA/FA-oligomer also with FA polycondensation and Diels Alder reactions are highlighted. 
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Figure VI.79. Putative structure for ELO50/FA50 copolymer fragment network in agreement 
with the structural investigations (in black chains from ELO and in green from FA) 

 

VI.3. Thermo-mechanical study of ELO50/FA50 thermoset material 

 

VI.3.1. Elaboration of resin bulk for mechanical analysis 
Thermoset bulk preparation for tensile tests and dynamic mechanical analysis (DMA) occured in 

two steps. The first one consists in a pre-curing as oligomerization/prepolymerization, and the 

second is the resin curing into a mold. The PFA used as reference material is elaborated with a 

mix of FA and BF3:NHEt as Lewis acidic initiator with respectively a ratio of 100/1 in weight. 

This solution was stirred and heated to 120°C during 80 min to reach a high viscosity (gel state). 

Then, the pre-polymer has been transferred into a mold of 80 x 25 x 30 mm (length x width x 

thickness) and heated at T=160 °C during 120 min under a pressure at 10 bars to avoid any 

eventual ununiformities of the material due to water releases during the FA polycondensation. 

Then the sample has been heated to 180°C for 180 min in an oven, to ensure cure completion. To 

measure the influence of the ELO co-monomer in the PFA network, a resin of ELO/FA/BF3 has 

been elaborated with a ratio of (50/50/1). This copolymer was prepared in the same condition as 

PFA following a temperature program of 130°C for 120 min, 160°C for 120 min under 10 bars 

and finaly at 180°C for 120 min.  Experimental details are described on section III.2.6. 

 

VI.3.2. ELO/FA bio-based thermoset characterization by dynamic 
mechanical analysis (DMA)  

 
Amorphous polymers comport different molecular motions which depend on the time-

temperature scale and can be easily discriminated by DMA. At low temperatures (or short time), 
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the so-called secondary relaxations are associated with local motions such as rotation of lateral 

groups (referred as γ relaxation) or motions of main chain segment (β relaxation). At higher 

temperatures (or longer time), the so-called α relaxation corresponds to the cooperative motions 

of main chains. This α relaxation is expressed in DMA as tan δ and causes very large changes in 

the mechanical properties of the material being known as the glass transition.20 The Figure 

VI.80 shows the evolution of storage modulus (E’) and tan δ for the neat PFA and the 

ELO50/FA50 network.  

 

The PFA presents a main relaxation peak at Tα ≈ 145°C which is typical for highly cross-linked 

thermosets. Nevertheless, the very small amplitude of the tan δ peak attests a very low damping 

capacity of the material and thus indicates that PFA is a brittle thermoset. Moreover the range of 

the α relaxation peak is very broad (≈150°C) indicating a large distribution of relaxation times. 

This can be associated with an heterogeneity of cross-linking within the neat PFA. The insert 

graphic in Figure VI.80 helps to highlight a very small relaxation peak at Tβ ≈ -75°C which 

could correspond to very local motions of few furanic entities.   

 

The DMA results for ELO50/FA50 thermoset are very different in comparison with the PFA 

reference network. It presents a major peak relaxation at around 20°C which could be associated 

with the main α relaxation process of the copolymer network. Compared to the neat PFA, a 

relaxation at such low temperature is the consequence of a much more flexible network due to 

the triglyceride aliphatic contribution. The α relaxation process exhibits higher intensity that 

indicates higher damping capacity through energy dissipation for this flexibilized network. 

Above 100°C, a second and rather small relaxation shoulder (i.e. short decrease in E’) is 

observed and could correspond to the cooperative motions of furanic entities that aren’t 

flexibilized by ELO frame. Indeed, the relaxation occurs within the same temperature range of 

neat PFA. At lowest temperatures (from -150°C to -25°C), the tan δ peak exhibits complex 

variations and shoulders which could attest for local motions of the copolymer. Thus, in contrast 

with the PFA, the ELO50/FA50 thermoset presents a small γ relaxation at around Tγ ≈ -140°C 

which could be associated with the rotation of methyl or hydroxyl groups, mostly generated by 

the epoxy-alcohol opening reaction2, and the sub-motion of methylene groups from ELO alkyl 

part.21 At Tβ1 ≈ -75°C and Tβ2 ≈ -40°C other relaxations are observed which could correspond to 

local motions of copolymer. The free moving dangling of alkyl chains present in the network 

after cross-linking as well as the local breathing of furanic entities could be the origin and are 

related with these relaxations. More precisely, the β1 relaxation is in the same temperature range 

as β relaxation exhibited in neat PFA, and thus could be mostly attributed to motion issued from 
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furanic moieties. The β2 relaxation is on the same range temperature of that observed for 

ELO/anhydride thermoset network (see Chapter IV), and thus potentially associated with the 

alkyl chain motions from ELO. 
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Figure VI.80. Storage modulus (E’) and tan δ evolutions of ELO/FA thermoset (black) 

compared with PFA network (green); the insert represent a zoom of PFA curve. 

 

VI.3.3. Tensile test experiments and fracture analysis by SEM 
 

Figure VI.81 shows the tensile tests results on stress-strain curves of PFA and ELO50/FA50 

thermosets. For ELO/FA the ELO contribution of 50% in weight in the PFA matrix gives a 

copolymer with a very different mechanical response. The PFA curve is characteristic to a brittle 

and fragile material, with mostly an elastic response and a small deformation of about 5%. In 

comparison, the ELO50/PFA50 curve exhibits a more ductile behavior with a higher deformation 

of about 40%. In agreement with the DMA results, the ELO50/FA50 copolymer thermoset 

presents higher flexibility which gives as outcomes a lower Tα and a higher ductility. The values 

of Young’s modulus and the tensile strength at break are summarized in Table VI.13. The 

mechanical properties of the PFA material are in agreement with those found by Pranger et al.22 

Thus, a modulus of around 1 GPa has been obtained for the PFA and around 44 MPa for 

ELO50/FA50 copolymer. For the tensile strength values at break, the PFA value is around 40 

MPa vs. 7 MPa for ELO50/FA50. These differences could be explained by different viscoelastic 

states. In good agreement with the DMA experiment, at the tensile test experiment temperature 

(≈20°C), the PFA is in the glassy state, while ELO50/FA50 is in the leathery region. The SEM 

micrographs on Figure VI.81 exhibit the fracture surface of PFA and ELO50/FA50 thermosets. 

The difference between these two materials is highlighted by the surface morphology. In good 
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agreement with stress-strain curves, the Figure VI.81 (A) for the PFA, shows a surface with a lot 

of asperities, characteristic of a brittle material.23 In contrast as shown in Figure VI.81 (B), 

ELO50/FA50 fracture reveals a sharp cutting and a very homogeneous and smooth surface: no 

phase separation was observed. This last result is very important for ELO50/FA50 

characterization and corroborates with the precedent structural investigations and with the 

thermo-mechanical results as consequences of the presence of covalent linkages between FA/FA 

oligomers and ELO on building the frame of ELO/FA copolymer network. 

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40
0

2

4

6

8

 ELO50/FA50

T
e
n
si

le
 s

tr
e
n
g
th

 /
 M

P
a

Tensile strain / %

 PFA
 ELO50/FA50

T
e
n
si

le
 s

tr
e
n
g
th

 /
 M

P
a

Tensile strain / %  

  

  

Figure VI.81. Stress–strain curves and SEM fracture surface (A: PFA; B: ELO50/FA50) 
 

Table VI.13. Young’s modulus and tensile strength at break for cured thermosets 
 Young’s modulus (MPa) Tensile strength at break (MPa) 

ELO50/FA50 44.34 ± 4.45 7.33 ± 0.93 

A 

B 
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PFA 934 ± 39 38.9 ± 4.5 

 

VI.3.4. Thermogravimetric analysis (TGA) 
 

The thermal stabilities of PFA and ELO/FA thermosets have been studied with the help of 

thermogravimetric analyses. As shown in TGA curves presented in Figure VI.82, below 300°C 

no mass loss is observed on the two materials. This observation indicates that the materials 

didn’t exhibit significant volatilization of unreacted monomers or oligomers, thus we could 

conclude to an optimal cross-linking. The TGA result for PFA network presents a remarkable 

thermal resistance, Td,10% =402°C while that of the ELO50/FA50 has an inferior temperature of 

decomposition Td,10% =364°C. These thermal decomposition temperatures are comparable with 

that of conventional thermosets such as epoxy resins.24 ELO50/FA50 copolymer also exhibits a 

higher degradation rate in a smaller temperature range (typically 300 to 600°C) compared to 

PFA.  

 

The complex degradation mechanism of ELO50/FA50 network can be divided in three main 

steps (centered at 400, 450 and 550°C) according to the peaks of derivative weight loss. Thus the 

first step of degradation could probably be attributed to the breaking of C-O ether issued from 

ELO/FA linkage, i.e. the connection of ELO with furanic moieties, followed by the thermolysis 

of ester part from glycerol moieties. The third step is due to final carbonization and oxidation. 

Neat PFA network shows a slower degradation rate between 300 and 550°C followed by a more 

complex degradation from 550 to 900°C. As stated in a previous study,25 the chain scissions 

occur first on methylene and methyne extra-ring linkages and then on furanic rings.      
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Figure VI.82. TGA of cured bio-resins under air flow (50 mL.min-1) at 10°C.min-1. 
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VI.4. Conclusions 

 

This study reveals a successful combination of two bio-based monomers, ELO and FA, to design 

fully biobased material through a cationic copolymerization. This cationic reactivity has been 

fruitfully investigated by IR and NMR spectroscopies with the relevant proof that covalent bonds 

were created between alcohol functions of neat FA/FA oligomers and epoxy functions of ELO. 

The DMA and SEM observations confirm the macroscopic homogeneity of the bulk cross-linked 

materials. The mechanical properties of ELO50/FA50 exhibit a semi-ductile behavior with a 

strain of about 40 %, while the PFA presents a strain of about 5%, characteristic to brittle 

materials. Herein, this study tackles out the main issues regarding the development of furanic 

thermosets which are limited by their brittleness. Smart incorporation of triglyceride networks 

through the dense furanic counterpart disturbs the cross-linking density of PFA. The combined 

material is more flexible without sacrificing the thermal performance, which could expand the 

range of potential applications as semi-ductile biobased thermosets.   
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VII.  Anisotropic Reinforcement of Epoxy-Based Nanocomposites 

with Aligned Magnetite-Sepiolite Hybrid NanofillerOrientation of 

hybrid magnetic nanofiller into the epoxy thermoset 

 

The mechanical reinforcement of epoxy matrices is usually enhanced by using anisotropic 

nanoparticles such as nanotubes or nanofibers-like fillers because of their high aspect ratio and 

high surface area1. This morphology makes them susceptible to orientation, thus imparting 

additional improvement of the mechanical performance of the corresponding epoxy 

nanocomposite2. This approach has been employed for the development of carbon nanotubes3 

and graphite-based epoxy nanocomposites4 with increased mechanical and electrical as well as 

with anisotropic properties. This work proposes an original way by orientation of functionalized 

sepiolite fibers into the epoxy matrix to reach an enhancement of mechanical properties. 

 

VII.1.1. Strategy of hybrid nanofiller preparation and elaboration of 
nanocomposite. 

 

Sepiolite as presented in the section II.3.3.1. 5 possess an acicular morphology which makes this 

natural clay mineral as very promising reinforcing nanofiller for epoxy systems. As sepiolite 

does not present any magnetic or electric properties which could help its alignment by applying 

an external magnetic or electric field, it must be previously functionalized with magnetic 

nanoparticles. As seen in the bibliographic part (section II.3.3.), very few studies focus on 

highly oriented polymer/nanoclay systems. If the fibers are made by a ferromagnetic material 

they could be oriented by the application of a magnetic field before and during the curing 

process. Actually, a class of these materials called magnetorheological elastomers (MRE) are 

made by ferromagnetic particles aligned in a matrix before curing and present the particularity to 

change their mechanical or electrical properties by application of a magnetic field.6 The increase 

of modulus in this way is usually of the order of 1MPa, so it can represent 100% of increase in 

an elastomeric matrix, but no more than 10-3 if the matrix is a fully cross-linked polymer of 

modulus in the range of 1GPa. The aim of this work is to show that it is possible to improve the 

mechanical properties of an epoxy resin by aligning sepiolite fibers inside the matrix with the 

help of a magnetic field. 

 

More in details, the present study describes a new method to incorporate magnetite onto sepiolite 

surface, based on the reaction between sepiolite and magnetite previously functionalized with [3-

(2-aminoethylamino) propyl] trimethoxysilane (DAPTMS) and 3-glycidoxypropyl-
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trimethoxysilane (GLYMO), respectively. The functionalization of both fibers and particles were 

performed by the known hydrolysis/condensation reactions between the organo-silanes and the 

hydroxyl groups located on both sepiolite and magnetite surfaces. Then, the amine and epoxy 

groups of the functionalized sepiolite/magnetite could react promoting a strong covalent 

anchorage (chemical grafting). The general scheme for the preparation of the m-SEP fibers is 

illustrated in Figure VII.83. Then, the mechanical properties of epoxy-based nanocomposites 

have been investigated by dynamic mechanical analysis (DMA) for aligned and non-aligned 

materials to appreciate the efficiency of the alignment on the reinforcing of the epoxy matrix 

containing different amounts of magnetic grafted sepiolite. 

 

Figure VII.83. Procedure for grafting the magnetite particles onto the sepiolite fibers (A) 
scheme and optical microscopy for the non-oriented and two magnetically aligned m-SEP/epoxy 

composites (B) 

 
VII.2. Elaboration and characterization of the sepiolite hybrid nanofiller 

VII.2.1. Materials 
 
Ferric chloride (FeCl3.6H2O; Aldrich, 97%), ferrous sulfate (FeSO4.7H2O; Aldrich, 99%), [3-(2-

Aminoethylamino) propyl] trimethoxysilane (DAPTMS; Aldrich, ≥ 80%), 3-glycidoxypropyl-

trimethoxysilane (GLYMO; Aldrich, ≥ 98%), ammonium hydroxide aqueous solution (Aldrich,  

≥ 25% NH3 in H2O) glacial acetic acid  (Aldrich, ≥ 99.85%) and sulfuric acid (Aldrich, 95-98 

%), were used as received without further purification. Poly (propylene glycol) bis (2-

aminopropyl ether) samples, with molar mass of 230 (PPGA230) and 2000 (PPGA2000) g/mol 

were also supplied by Sigma Aldrich and used as the hardener for the epoxy resin. Diglycidyl 

ether of bisphenol A (DGEBA) – based epoxy prepolymer (EPON 828, EEW= 185-192 g/eq, 

ρ=1.16 g/cm3) was purchased by Shell Chemicals - Brazil. Sepiolite Pangel (S9 grade, Tolsa) 
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was used without purification (ρ = 2.362 g/cm3). De-ionized water (18.2MΩ) was used in all 

synthesis. 

 
VII.2.2. Synthesis of amino-modified sepiolite 

 
VII.2.2.1. Synthesis of SEP/DAPTMS 

 

Sepiolite was firstly ultrasonicated for 20 min in water using a high power ultrasound wave – 

BIOBLOCK (20 kHz and 750 W) working at 180 W (24% amplitude), to disaggregate the 

bundles and to obtain isolated sepiolite fibers. Then, the isolated fibers were dried at 100 °C for 

12 hours before used, as suggested in the literature.7 The dried sepiolite fibers were silanized 

according to the literature 7b. In a typical procedure, 5 g of sepiolite fibers were dispersed into 

100 mL of ethanol using an ultrasound tip for 20 minutes. Then, 5g of DAPTMS were added and 

the medium was heated under reflux at 60°C using mechanical stirring at 600 rpm for 3 hours. 

The functionalized sepiolite fibers were centrifuged, washed with ethanol and dried under 

reduced pressure, at 80 °C for 8 h. (Figure VII.83 (A) - Step 1). 

 

VII.2.2.2. Characterization by FT-IR, TGA and solid-NMR 

 

Sepiolite modified with DAPTMS has been characterized by FT-IR, TGA and NMR29 

Si/MAS solid-state nuclear magnetic resonance spectroscopy. Figure VII.84 (A) compares the 

FT-IR spectra of sepiolite (Fig. 2(a)), DAPTMS (Fig. 2(b)) and SEP/DAPTMS (Fig. 2(c)). The 

spectra of DAPTMS and the SEP/DAPTMS present the characteristic absorption bands at 2933 

and 1476 cm-1 which are respectively ascribed to -CH2 stretching vibration and CH bending 

vibration. The modified sepiolite fiber presents the absorption band at 1569 cm-1, attributed to 

the bending vibration of the –NH2 group. These bands are not present in the spectrum of the pure 

sepiolite, confirming the grafting reaction of the amino-silane onto the sepiolite surface. Notice 

that the band at 1012 cm-1 in the spectra of sepiolite and SEP/DAPTMS fiber is attributed to the 

Si-O-Si network. The NMR spectrum of the sepiolite in the Figure VII.84 (B) presents the 

characteristics peaks at -85.25, -92.42, -94.76 and -98.5 ppm refer to Si-OH, Si near edge, Si 

center and edge, respectively.8 The peak at 85 ppm disappears in the spectrum of the modified 

sepiolite, which is an indication of the condensation of amino-silane on the sepiolite surface. 

These results are in good agreement with the FT-IR spectrum. Thermogravimetric analysis was 

applied to SEP and SEP/DAPTMS systems in order to determine the amount of DAPTMS 

grafted onto the sepiolite fibers (Figure VII.84 (C)). The first decomposition step of both 

samples, occurs between 25 and 150°C and corresponds to the physical desorption of water 
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molecules on the sepiolite surface.7b, 8b Pure sepiolite also presents three well defined 

degradation steps, from 200 to 900°C, attributed to the structural water, dehydroxylation of 

silanol and magnesium hydroxide present in the clay mineral. These three steps are not well 

defined in the case of modified sepiolite (SEP/DAPTMS) because of the superposition of the 

amino-silane degradation which occurs during this range of temperature.8b From the values of 

mass loss observed for functionalized and non-functionalized sepiolite, it is possible to determine 

the amount of DAPTMS grafted onto the sepiolite fiber as around 6 wt%. 

 

 

Figure VII.84. Characterization of sepiolite and SEP/DAPTMS grafted sample: (A) FT-IR 
patterns of sepiolite (a), sepiolite/DAPTMS (b) and DAPTMS(c). (B) NMR29Si/MAS spectra 

and (C) TGA curves of sepiolite and SEP/DAPTMS 

 

 
VII.2.3. Synthesis and structural characterization of glymo-modified 
magnetite particles 
 

VII.2.3.1. Synthesis of MAG/GLYMO 

 

For the synthesis of the magnetite particles, 4.250 g of FeCl3 and 2.675 g of FeSO4 were 

dissolved into 100 mL of water, under mechanical stirring at 70°C and 600 rpm ; then 10.5 mL 
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of NH4OH aqueous solution (25vol%) were added and the stirring was kept for 5 min until the 

suspension became black. These formed magnetic particles were washed with distilled water to 

completely remove the NH4OH, and with ethanol, five times, and finally kept in the ethanol 

medium (the pH of the medium was adjusted to 4 with glacial acetic acid). For the magnetic 

particles functionalization, 1.2 g of GLYMO was added to the ethanolic dispersion containing 

the magnetic particles and kept under mechanical stirring for 3 hours at 70° C. The unreacted 

GLYMO was removed from the medium by washing four times with ethanol. (Figure VII.83 

(A) - Step 2). 

 
 

VII.2.3.2. Characterization by FT-IR and TGA 

 

Magnetite, functionalized with GLYMO (MAG/GLYMO), was characterized by FT-IR and 

TGA analysis. Figure VII.85 (A) compares the FT-IR spectra of magnetite, MAG/GLYMO and 

GLYMO. The absorption bands at 2921 and 2849 cm-1, correspond to C-H stretching, while the 

band at 1449 cm-1 can be assigned to the CH2 bending, present in both GLYMO and 

MAG/GLYMO spectra confirming the grafting assumption of silane precursor on the magnetite 

surface.9 The MAG/GLYMO hybrid particle exhibits several absorption bands at 619, 581 and 

459 cm-1, which is usually associated to the Fe-O bond of magnetite nanoparticles, therefore this 

is a confirmation of the presence of magnetite in the hybrid particle. 

 

The thermal decompositions of magnetite and MAG/GLYMO are illustrated in the Figure 

VII.85 (B). Magnetite presents two main degradation events. A first one in the range of 200 – 

450°C, related to the transformation of ferro-ferric oxide (magnetite) in ferric oxide 

(maghemite).10 Then, a second one in the range of 600-800°C, assigned to the transformation of 

magnetite and maghemite in hematite (α-Fe2O3).
11 MAG/GLYMO hybrid particle presents a 

mass loss at 25-150°C, attributed to the evaporation of water and probably ethanol releases 

during the condensation process of GLYMO. The two other degradation steps are similar to pure 

magnetite previously described.  

 

The third degradation step starts at around 500°C and could include the decomposition of the 

silane moiety. From the values of mass loss observed for functionalized and non-functionalized 

magnetite it is possible to determine the amount of GLYMO grafted onto the magnetite particles 

as around 5 wt%. 
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Figure VII.85. FT-IR patterns of magnetite and magnetite/GLYMO particles (A) and TGA 
curves of magnetite and MAG/GLYMO (B) 

 

VII.2.4. Preparation and characterization  of magnetite-sepiolite hybrid 
nanofiller 

 
VII.2.4.1. Preparation of m-SEP 

 

A dispersion of 5 g of SEP/DAPTMS in 100 mL of ethanol was mixed with an ethanolic 

dispersion containing 2 g of MAG/GLYMO. Then, 15 mL of an aqueous solution of sulfuric acid 

(0.228M) was added as catalyst of epoxy-amine e reaction to form the β- hydroxyamino 

linkages. The resulting dispersion was kept under reflux and mechanical stirring at 70°C and 600 

rpm for 3 hours. The dispersion containing m-SEP fibers (hybrid fibers) was washed with 

ethanol and kept in ethanol solution (Figure VII.83 (A) - step 3).  

 

VII.2.4.2. Characterization by AAS, DSC, TEM and magnetization 

 

The theoretical density of the magnetic sepiolite fiber was equal to 2.64 g/cm3 and the volume 

fraction of magnetite in sepiolite of around 0.106 has been determined by atomic absorption 

spectrometry. To confirm the presumed reaction between the epoxy and amine groups, dry 

mixtures of SEP/DAPTMS and MAG/GLYMO have been prepared at the same conditions used 

for hybrid synthesis but without catalyst. This mixture was analyzed by DSC (Figure VII.86 

(A)): the first run corresponds to the temperature program from 25°C to 250°C at 10 °C.min-1. 

An exothermic peak is present between 100°C and 150 °C (ΔH ≈ 8.62 J/g), which is in general 
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the epoxy/amine temperature range of reaction. The second run did not show any exothermic 

peak, which means that all possible reactions at this temperature range were already completed. 

Herein, this experiment highlights the creation of covalent bonding between sepiolite and 

magnetite nanoparticles. Moreover, the transmission electron microscopy (TEM) image in 

Figure VII.86 (B) reveals a good anchorage of nanoparticle onto sepiolite surface. Similar 

results have been described in literature by González-Alforo et al.12 for the preparation of dry 

ferrofluids. Their purpose was to immobilize the nanoparticles on the sepiolite surface by 

physical interactions with hydroxyl groups. They have shown that this immobilization is possible 

by thermal treatment at around 500°C in air flux, allowing a partial oxidation of magnetite to 

maghemite. 

 
 

 
 

Figure VII.86. DSC curves for the reactions of a dry mixture of sepiolite with DAPTMS (run1) 
and MAG/GLYMO (run2) (A) and resulting TEM micrographs of hybrid directly obtained after 

reaction (B). 

 

The saturation magnetization curves of the magnetite, the MAG/GLYMO and of the m-SEP 

hybrid in a powder form are illustrated in Figure VII.87. The saturation magnetization, Ms, of 

pure magnetite was found to be around 449 kA/m, which is comparable with the values reported 

in the literature.13 The MAG/GLYMO and m-SEP hybrid fibers present superparamagnetic 

properties with Ms(MAG/GLYMO) = 395 kA/m and Ms(m-SEP) = 53 kA/m, respectively. The volume 

fraction, φm, of magnetite in mixture can be obtained by the relationship φm = Ms(m-SEP)/ Ms; 
14 

thus φm= 0.118 which is close to the value of 0.106 that was determined by AAS. Also the 

organosilane volume fraction, φos, in the magnetite is φos= 1- Ms(MAG/GLYMO)/Ms = 0.12. 
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Figure VII.87. Magnetic curves at room temperature of pure magnetite (a), MAG/GLYMO (b) 
and m-SEP (c) 

 
VII.3. Thermomechanical anisotropy of epoxy nanocomposite 

 

VII.3.1. Preparation of m-sepiolite oriented fibers epoxy nanocomposite 
 

The m-SEP fibers in ethanol solution were dispersed into the DGEBA matrix with the help 

of a sonication using a Branson Sonifier S-450D digital ultrasound apparatus operating at 40 

W for 20 min. Separately, the polyetheramines (PEA230 and PEA2000), in a proportion of 90:10 

wt%, were mechanically mixed at room temperature for 5 min, and a stoichiometric amount of 

this mixture (related to the epoxy resin) was added to the epoxy m-SEP fibers dispersion. The 

system was then degassed under reduced pressure and transferred into silicone molds. Samples 

of 25x11.5x3.2 mm3 were cured using a temperature program, which consisted of heating at 

80°C for 2 hours then at 125°C for 3 hours. For the aligned composites, the samples were put 

between two permanent magnets with lateral dimensions corresponding to 35x8 mm2, under a 

magnetic field of around H= 0.13 Tesla, and polymerized using the same curing protocol. The 

magnetic field was applied in two different positions, longitudinal and orthogonal, as shown in 

Figure VII.83 (B). 

 
VII.3.2. Morphologies alignment of m-sepiolite into the epoxy matrix 

 
The morphologies of m-SEP/epoxy resin hybrid were investigated by optical microscopy 

and TEM. Figure VII.88 illustrates the morphology of the dispersion without (non-oriented) and 

with (oriented) the application of a magnetic field. 
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Figure VII.88. Optical microscopies of the m-SEP /epoxy resin dispersion: non-oriented and 
oriented particles (A). TEM micrographs of the m-SEP/epoxy networks (10 wt%): without (N 

position) and under (Y position) the applied magnetic field (B) 

 

The optical microscopy in Figure VII.88 (A) clearly shows the alignment of the hybrid fibers 

under the magnetic field, establishing different macrostructures. Such alignment is not evident in 

TEM micrographs, shown in Figure VII.88 (B), probably because of the higher magnification 

and very small observation area employed by this technique. However, the TEM micrographs 

suggest a better dispersion state of the sepiolite fibers for the aligned system.  

 
 
 

VII.3.3. Anisotropic thermomechanical properties of hybrid 
nanocomposite 

 
The effect of the m-SEP alignment on the dynamic mechanical properties of the m-SEP/epoxy 

nanocomposites was evaluated isothermally (25°C) as a function of frequency or isochronally (1 

Hz) as a function of temperature.  
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VII.3.3.1. Nanocomposite mechanical properties as a function of frequency 
 

For the aligned samples, the test in bending mode was applied in the parallel (X position) and 

perpendicular (Y position) directions of m-SEP alignment. Figure VII.89 displays the variation 

of flexural modulus with frequency for the m-SEP/epoxy nanocomposites, as a function of the 

amount of nanofiller and alignment. Table VII.14 also summarizes the flexural modulus values 

at 1 Hz and the glass transition temperature.  

 
 

 
 

Figure VII.89. Dependence of flexural modulus with frequency taken at 25 °C, for m-
SEP/epoxy nanocomposites as a function of the amount of nanofiller and alignment. 

 

Table VII.14. Tα and flexural modulus of epoxy and nanocomposites N: non-oriented fibers, X: 
oriented perpendicular to the long axis of the sample; Y:oriented parallel to the long axis: Eth is 

the prediction of the Halpin-Tsai model 

Sample Tα (°C)a E (GPa)b Eth(GPa) 

cEpoxy 67.2 0.93 ± 0.01 --- 

4% N 64.4 1.43 ± 0.03 1.22 

4% X 64.4 1.48 ± 0.05 0.98 

4% Y 63.6 1.56 ± 0.04 1.62 

10% N 54.3 1.48 ± 0.02 1.69 

10% X 58.2 1.32 ± 0.04 1.06 

10% Y 64.1 1.71 ± 0.03 2.14 

 
The presence of non-oriented and oriented m-SEP provoke an increase of flexural modulus in all 

frequency range studied, confirming the reinforcing effect of the magnetic sepiolite nanofibers. 

The alignment in the X position results in a slightly increase of modulus for sample containing 
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4wt% of m-SEP and a decrease of this property for sample containing 10wt% of m-SEP. On the 

other hand, the alignment in Y position reveals an important increase of the modulus, being the 

highest value observed for the sample containing 10wt% of m-SEP fibers. These results are 

reliable to an anisotropic material in terms of mechanical properties.  

An estimation of the Young modulus (E) of the composite, for fibers with high aspect ratio, is 

given by the Halpin-Tsai model. For a disordered orientation, the modulus is given by:15 

L T

3 5
E E E

8 8
= + , where EL and ET are the moduli for fibers aligned parallel (X) or perpendicular (Y) 

to the direction of traction, respectively. The EL/Em ratio is defined by the equation: 
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 . We could use Ef=180 GPa for typical modulus of the sepiolite fiber16 and f=25 for 

the inferior estimation of the shape factor (based on aspect ratio - length of 1 μm and the 

diameter of 40 nm for sepiolite). Lowe et al.17 have found that a value of f=20 fit their results, 

but the shape factor depends on the sepiolite batch and on the disaggregation process. The 

modulus of the pure epoxy at the intermediate frequency of 20Hz is around Em=0.93GPa. For the 

weight fractions of 4% and 10% with the respective densities of the hybrid fibers (ρf=2.64g/cm3) 

and of the epoxy resin (ρm=1.16 g/cm3), we obtain respectively φ= 1.8% and φ= 4.65% for the 

volume fraction.  

 

The prediction for the ratio of the moduli for the three different orientations is compared to the 

experimental values in Table VII.14. We have the right order of magnitude, which is an 

indication that the fibers are well dispersed in the matrix and also that they are well linked with 

the epoxy matrix, but obviously the alignment effect is not so strong as predicted by the theory. 

For instance, for 10wt% fibers aligned along the main dimension of the sample, we have an 

increase of modulus of 84% instead of 200% predicted by the model. Also for fibers oriented 

perpendicular to the main axis and 10wt%, the modulus is well below the one for aligned fibers 

but too high compared to the prediction. It is still inferior at 4wt% where modulus of non-

oriented fibers is slightly lower to the one of the perpendicular alignment. An explanation could 

be, as observed in Figure VII.88 (B), that the alignment of fibers is quite imperfect. For non-
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oriented fibers, we observe that there is practically no increase of modulus between 4wt% and 

10wt%. Nevertheless, the increase of 84% observed for nanocomposite contained 10wt% of 

aligned fibers is quite successful, once in previous works using sepiolite, the maximum increase 

in modulus was around 20-30% at a weight fraction of 3-5%, which decreased at higher 

concentration.15a, 18 These are the first results obtained with permanent magnets (Figure VII.83 

(B)) and weak values of the field. In the future, we plan to use an electromagnet with higher field 

and a controlled ramp of magnetic field in order to get a better alignment of the fibers; also the 

magnetization of the fibers can be improved by increasing the magnetite proportion relatively to 

the one of sepiolite. 

 

VII.3.3.2. Nanocomposite mechanical properties as a function of temperature 

Concerning the α-relaxation temperature (Tα) presented in Figure VII.90 and summarized in 

Table VII.14, the addition of m-SEP decreased the Tα of the non-aligned nanocomposites. This 

result is more significant for the nanocomposites containing 10wt% of m-SEP fibers and could 

be attributed to the presence of free amino groups in the sepiolite surface, which also could react 

with the epoxy monomer, causing a perturbation of the stoichiometric balance. Furthermore, the 

presence of free volume in the filler-matrix interfaces, caused by the roughness of inorganic 

particles, may also contribute to the increase in mobility of the polymer chains and therefore to a 

reduction in Tα. Both effects are more important for systems containing 10% of m-SEP because 

of the greater amount of amino groups and higher free volume concentration caused by the 

higher filler-matrix interface. The alignment of composite with 10% m-SEP increases the Tα, 

which may be attributed to the increase in the interaction among the fibers. For nanocomposite 

containing 4wt% of m-SEP, the alignment does not influence the Tα probably because the system 

is more diluted so resulting in a lower interaction with the fibers.   

 

 
 

(A) (B) 
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Figure VII.90. Tan delta as a function of temperature for epoxy resin and the nanocomposites 
with 4 (A) and 10% wt (B) of the hybrid in different orientations 

 

 

VII.3.3.3. Thermal stability of  hybrid epoxy nanocomposites 

The thermal stability of the epoxy systems was evaluated by TGA in Figure VII.91. The 

presence of the m-SEP fibers produces a slight decrease of the onset and maximum degradation 

temperatures of the nanocomposites in comparison with those of the neat epoxy resin. Some 

authors also observed similar results, which were attributed to the catalytic action of sepiolite for 

the degradation process of epoxy resin, which is minimized by the surface functionalization.19 As 

expected, the percentage of final mass loss decreases with the amount of filler introduced in the 

nanocomposite.  

 

Figure VII.91. TGA of neat epoxy resin (green), m-Sep hybrid particles (red) and of the 
nanocomposites with 4 (black) and 10% wt (blue) of m-Sep hybrid particles. 

 

VII.4. Conclusions 

A new route for the chemical grafting of magnetite nanoparticles on sepiolite fibers has been 

successfully established by reacting epoxy-silylated magnetite particles with amino-silylated 

sepiolite fibers. The corresponding m-SEP hybrid contains 12 vol% of magnetite attached on 

sepiolite and present superparamagnetic behavior. The epoxy-based nanocomposites containing 

this hybrid were prepared in the presence of a magnetic field, displaying significant orientation 

along the field as observed by optical microscopy. The aligned nanocomposites in the 

longitudinal direction present superior flexural modulus, characterizing the anisotropic property 

of these nanocomposites. Finally, the results presented in this work highlight the importance of 

the chemical reaction between magnetite particles and sepiolite fibers to create strong covalent 
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bonds. This allows the development of aligned reinforcing epoxy network without magnetite 

separation during the application of an external magnetic field.   
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VIII. Star-epoxy mesogens to design multifunctional materials: 

polymerization kinetics and fractal self-assembly 

VIII.1. Investigations on a new family of epoxy monomers 

 

VIII.1.1.  Star-epoxy mesogens as potential platform monomers to design 
hierarchical materials 

 
Three-arms mesogens, also called star-shaped mesogens, with an idealized C3-symetry are 

fascinating platform for the exploration of self-assembly process permitting the design of 

complex hierarchical and functional soft materials.1 As exposed on section II.3.5.1., compared 

with the conventional core design mesogens such as rod-like2 or disc-like3 shapes, the multi-

arms mesogens extended to dendrons, dendrimers4 or supramolecular mesogens as metallo-

mesogens5, are driven by the nanosegregation of building blocks also by the proclivity to fill 

efficiently the space in condensed matter.6  

Star-mesogens can also be self-organized in nematic, lamellar, columnar or cubic phases.3,7 This 

study focuses on octopolar 1,3,5-triazine derivatives which are well known for the development 

of organic light emitting diodes (OLEDs)3, 8 and for its various biocide properties.9,10 Herein, the 

design of a star-epoxy monomer has been primarily investigated to explore its self-assembly 

ability to form a tridimensional architecture, starting from its three-armed macromonomers, at 

the pre-gel state, obtained during the first stages of polymerization, until the macromolecule and 

infinite network formation at the post-gel state.11,12,13  

This work emphasis on the elaboration of a liquid-crystalline thermoset (LCT)14,15 through an 

overall study from the influence of supramolecular interactions on the polymerization reactivity 

to the elaboration of the tridimensional architecture, in relationship with the thermomechanical 

properties. To explore all this aspects of cross-linking, after a section which presents the star-

epoxy monomer synthesis (1,3,5-triazine,2,4,6-tris[4-(2-oxiranylmethoxy)phenyl] called 

TriaEP), a first example of monomer cross-linking through an anionic living copolymerization 

will be presented, highlighting the influence of the liquid-crystalline phase fade-in/fade-out on 

the polymerization kinetics. The second example exhibits an uncommon A4B3 architecture, 

provided by the polymerization of TriEP with an aromatic di-amine cross-linker having a rod-

like geometry: 2,7-diaminofluorene (2,7-DAF). In this case, the discussion will be oriented 

around morphological aspects with the evidence of a nodular surface on the fully cured polymer, 

which could be associated to a fractal expansion during polymerization. 
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VIII.2. Synthesis and characterization of a star-epoxy mesogen monomer 

VIII.2.1. Materials 
Products were purchased from Sigma Aldrich: 4-cyanophenol 95%, trifluoromethanesulfonic 

acid ≥99%, (±)-epichlorohydrin ≥99%, benzyltrimethylammonium bromide 97%, 2,7-

diaminofluorene ≥97%, succinic anhydride ≥99% and 2-methylimidazole 99%. 

 
VIII.2.2.  Synthesis and characterization of a star-epoxy monomer with 
1,3,5-triazine core 

 
The Figure VIII.92 resumes the two steps synthesis strategy to obtain the star-epoxy monomer 

1,3,5-Triazine,2,4,6-tris[4-(2-oxiranylmethoxy)phenyl] called TriaEP that will be presented and 

characterized in details in the following sections.  

 

 

Figure VIII.92. Star-epoxy monomer synthesis yields: (1) TriaOH 91%, (2) TriaEP 95%. 

 
VIII.2.2.1. 2,4,6-Tris(p-hydroxyphenyl) triazine: TriaOH 

 
500 mg of 4-cyanophenol (4.197 mmol) were dissolved in 10mL of dry chloroform. The 

cyclotrimerization proceeds in triflic acid (CF3SO3H) media with the addition of 1.9 mL of acid 

(20.98 mmol) at 0°C. The mixture was stirred at 0°C for 10 min and then kept under nitrogen at 

room temperature during 12 h. Then, the reaction mixture was quenched with a dilute solution of 

ammonia until neutralization. The reaction mixture was filtered and washed with water. The 
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reaction product was recrystallized from acetone to obtain 455 mg of pure compound as a 

colorless solid, yield 91%. 

♦ NMR characterization : (Figure VIII.93) 1H NMR (500 MHz, DMSO-d6) δ 10.30 (s, 

3H, OH), 8.56 (d, J = 8.8 Hz, 6H, Ar-H), 6.98 (d, J = 8.8 Hz, 6H, Ar-H). 13C NMR (50 

MHz, DMSO-d6) δ 170.0 (C=N), 161.7 (Ar-C), 130.6 (Ar-C), 126.5 (Ar-C), 115.5 (Ar-

C). NMR analysis of this precursor is in good agreement with the literature16 confirming 

the synthesized structure. 

 

Figure VIII.93. TriaOH 1H NMR at 500 MHz in DMSO-d6 

 
VIII.2.2.2. 1,3,5-Triazine,2,4,6-tris[4-(2-oxiranylmethoxy)phenyl]: TriaEP 

 
1g on 2,4,6-tris(p-hydroxyphenyl) triazine (2.798 mmol), 20mL of epichlorohydrin and 0.05g of 

benzyltrimethylammonium bromide as catalyst were charged into a two-necked flask. The 

mixture was stirred and refluxed for 120 min. Then, 0.370g of sodium hydroxide (9.250 mmol) 

(more than stoichiometric 10 wt.-%) were added as 15 wt.-% of aqueous solution. After 

refluxing for another 60 min, the mixture was allowed to cool at room temperature. The 

epichlorohydrin was then removed under vacuum and the residue was water washed. Finally the 

product was recrystallized from toluene to give 1.34g of a white powder, yield 95%. 

♦ NMR characterization: (Figure VIII.94) 1H NMR (500 MHz, DMSO-d6) δ 8.65 (d, J = 

8.9 Hz, 6H, Ar-H), 7.19 (d, J = 8.9 Hz, 6H, Ar-H), 4.49 (dd, J = 11.4, 2.5 Hz, 3H, CH2 of 

glycidyl), 3.97 (dd, J = 11.4, 6.6 Hz, 3H, CH2 of glycidyl), 3.39 (m, 3H, CH of epoxy), 

2.89 (dd, 3H, CH2 of epoxy), 2.78 (dd, J = 5.0, 2.6 Hz, 3H, CH2 of epoxy). 13C NMR 

(50 MHz, DMSO-d6) δ 170.1 (C=N), 162.1 (Ar-C), 130.5 (Ar-C), 128.2 (Ar-C), 114.7 

(Ar-C), 69.2 (CH2 of glycidyl), 49.5 (CH of epoxy), 43.7 (CH2 of epoxy). The classical 

glycidyl NMR shifts are in good agreement with the literature.17 
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Figure VIII.94. TriaEP 1H NMR at 500 MHz, in DMSO-d6 

♦ MS analysis: as seen on Figure VIII.95 the TriaEP molecular mass and structure have 

been confirmed through fragmentation with: 

m/z 482: [M + H – 44]: loss of C2H4O : 

m/z 470: [M + H – 56]: loss of C3H4O :  

m/z 176: corresponds to the following substructure C10H10NO2
+ : 

 

 

 

Figure VIII.95. a) TriaEP spectrum of ESI-MS: [M + H]+ = 526.3g.mol-1 quasi molecular mass; 
enhanced resolution experiment (zoom scan) confirms isotropy; b) MS/MS experiment under 

CID condition (isolation width: 1.5 m/z; NCE: 40%). 
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VIII.2.3. Investigations on star-epoxy monomer’s mesogeneity  
 

The DSC thermogram of TriaEP monomer exhibits two endothermic peaks at around 130-140°C 

and close to 150°C as shown in Figure VIII.96 (a). These phenomena are respectively 

associated with the succession of transitions from a solid crystal to a liquid-crystal phase and 

then to an isotropic liquid phase.18 The liquid-crystalline phase stability, in agreement with the 

polarized light optical microscopy (POM) observations, corresponds to a temperature range from 

around 130 to 152°C. The TriaEP birefringence at 140°C visible by POM on Figure VIII.96 (b) 

reveals a dense texture, that could be a characteristic of a very ordered organization15, such as 

smectic or columnar mesophases which are currently observed in the case of mesogens built 

from 1,3,5-triazine core3 but deeper SAXS investigations would be necessary to confirm the 

mesophase type. In Figure VIII.96 (d) the WAXS profile shows the diffraction peak at around 

4.4 Å for TriaEP molecule at 140°C, in liquid-crystal state. This distance typically corresponds 

to the π-π stacking space between two TriaEP discs in this case. Furthermore, the POM 

birefringence patterns could also suggest a long range order that is not observable by the WAXS 

experiment.19 
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Figure VIII.96. TriaEP DSC at 5 °C.min-1 a), TriaEP mesophases textures obtained by POM at 
140 °C b) and 310 °C c), TriaEP WAXS pattern at 140 °C d), TG thermogram of TriaEP at 10 

°C.min-1 under air flow of 50 mL.min-1 e). 

 

The DSC thermogram exhibits also an exothermic peak ranging from 160 to 320°C (with a 

maximum at around 300°C) which can be associated with the thermally induced 

homopolymerization that can typically occur in this temperature range as seen on Chapter II. 

The resulting polymer is birefringent as seen in  Figure VIII.96 c), which confirms the 

formation of a liquid-crystalline thermoset (LCT) network (section II.3.5.). However, this 

a) 

b) 

c) 
10 20 30 40 50 60 70

0

500

1000
4.4 A

 TriaEP
in

te
n
si

ty
 /
 c

p
s

2θ

d) 

100 200 300 400 500 600 700

0

20

40

60

80

100

M
a
ss

 p
e
rc

e
n
ta

g
e
 /
 %

Temperature / °C

 TriaEP

e) 



Chapter VIII: Star-epoxy mesogens to design anisotropic networks 

203 

 

homopolymerization reaction occurs at high temperature and is concomitant with the beginning 

of the thermal degradation (Figure VIII.96 e)), thus several secondary reactions provided by 

formed radicals could also occur. Finally the thin endothermic peak at 330 °C has been assigned 

to the isotropization of the liquid-crystalline phase, according with POM observations. 

 
 

VIII.3. Influence of supramolecular interactions on the polymerization 

kinetic: an example of anionic living copolymerization 

 

This section is dedicated to the evaluation of the role of supramolecular interactions on the 

formation of a thermoset network. To reach this objective, the anionic living copolymerization 

between TriaEP and succinic anhydride (SA), in stoichiometric ratio in regard to functionalities, 

and catalyzed by 2-methylimidazole (2MI) (1% by weight) has been retained. Indeed, this kind 

of polymerization presents the advantage to have a unique and well-known mechanism of 

propagation, instead of epoxy/amine cross-linking that intrinsically exhibits a competition 

between primary and secondary amine (section II.1.1.2.). Furthermore, the reactivity of 

epoxy/SA monoanhydride system catalyzed by 2MI has been thoroughly investigated in an 

isotropic system case in the Chapter IV, and thus could be a base for comparison.   

 

 

VIII.3.1. An epoxy/anhydride anisotropic network  
 
The Figure VIII.97 a) exhibits the DSC heating thermogram of TriaEP/SA reaction system, 

catalyzed by 2MI. It is important to notice that this tri-component formulation has been prepared 

by grounding the monomers and catalyst mixture followed by a re-crystallization from acetone 

for a better homogeneity. A first observation allows to associate the endothermic peak that 

appears at 109 °C to the melting of reacting components, immediately followed by an 

exothermic peak at 145 °C, corresponding to the epoxy/anhydride polymerization, catalyzed by 

2MI: the mechanism has already been presented in section IV.1.2.1.  
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Figure VIII.97. DSC thermogram during heating the TriaEP/SA mixture at 10 °C.min-1 

 

Epoxy/anhydride cross-linking has been followed by FT-IR investigations, to highlight the 

structural variations of the epoxy group from TriaEP/SA uncured formulation with those of ester 

group from thermoset network (Figure VIII.98 a)). The major evolution concerns the 

consumption of anhydride and epoxy groups which can be respectively reliable to the 

disappearance of absorption peaks at 1860 and 1780 cm-1 (carbonyl axial deformation) and at 

916 cm-1 (internal oxiran ring stretching). We can also notice the apparition of a peak at 1730 cm-

1 that could be associated with the carbonyl stretching from the ester moieties provided by the 

anionic living copolymerization reaction.  

 

The resulting material exhibits structural and optical anisotropies as seen on WAXS pattern and 

POM micrographs (Figure VIII.98 b), c) and d)), characteristic of liquid-crystalline epoxy 

resins (LCER) as seen on section II.3.5.2. The attribution of the type of mesophase in this kind 

of polymers is difficult due to the amorphous matrix character and to the presence of 

polydomains. However certain indications could allow us to formulate hypothesis. Indeed, the 

micrographs on Figure VIII.98 c) and d) exhibit a Schlieren texture which is characteristic of all 

nematic phases (N, ND, NC) because they have the same symmetry with only an orientational 

order.3 On another hand, the micrographs c) and d) exhibit some texture differences with the 

apparition of strongly birefringent “droplet” at later stage of polymerization that could be 

potentially be associated with the apparition of a new kind of mesophase. A recent study of 

Harada et al.20 explains that in the case of LCER an incubation period, implying the achievement 

of certain critical nematic volume (α > 0.8), is necessary for a phase transition from nematic to 

smectic phase. The resulting volume of smectic phase depends on several parameters such as 

cross-linker nature. This observation could be generalized in the case of our system, considering 
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the phase transition from ND to NC mesophase. The WAXS pattern on Figure VIII.98 b) 

supplies some indications to support this hypothesis. A diffraction peak at 4.5 Å can be 

observed, similar to the distance found for TriaEP π-π stacking in its liquid-crystalline phase ( 

Figure VIII.96 d)). An unusual break in the diffraction peak slope is observable at 6.0 Å, 

highlighting a broad amorphous diffraction peak from around 6.0 to 17.0 Å. This distance 

interval could be associated with the inter-columnar distance of NC mesophase, with the minimal 

distance of around 6.0 Å that could be reliable to the short length of SA cross-linker between two 

inter-columnar TriaEP discs.  
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Figure VIII.98. FT-IR spectra of TriaEP/SA uncured mix (in red) and the resulting cured 
polymer (in blue) a), WAXS pattern of fully cured polymer  at 160°C (1h) and at 180 °C (1h) b), 
and the corresponding mesophases textures obtained by POM at 160°C after 30 min c) and after 

curing during 1h at 160°C and 1h at 180 °C d). 

 

After this evidence of anisotropic network formation, we will interest in details to how this 

network has been formed, from the reactive mixture to the generation of the tridimensional 

architecture. And also on how the occurrence and the supramolecular interactions can influence 

the cross-linking process. 

 

a) b) 

c) d) 
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VIII.3.2. Influence of supramolecular interactions on the polymerization 
kinetic 

 

To respond to this problematic, an advanced isoconversionnal method (seen section III.1) has 

been applied on the TriaEP/SA system using non-isothermal data (DSC thermograms at 8, 10, 12 

°C.min-1): the results are represented in Figure VIII.99 a). The computed apparent activation 

energy (Eα) superimposed to the DSC thermogram exhibits an unexpected complex behavior. In 

order to simplify and clarify the scientific approach, we have segmented the overall cross-linking 

process in four zones. The following discussion will focus on the variation of Eα reliable to our 

measurements and observations with that proposed in the literature. The summarized 

interpretations are available on Figure VIII.100. 

♦ Zone 1: As seen on DSC thermogram and POM micrograph, this zone is mostly 

associated with the melting of SA and the transition from crystal to liquid-crystalline state 

for TriaEP monomer as we seen on section VIII.2.3. 

 
♦ Zone 2: the thermogram exhibits a strong exothermy, reliable with the anionic living 

copolymerization, with the characteristic Eα ≈ 70 kJ.mol-1 generally associated with the 

chemical control on the early stage of polymerization during sol formation.21 Notice that in 

this zone the SA is on isotropic liquid state and TriaEP in liquid-crystalline state. 

 
♦ Zone 3: this zone is delimited by gelation and vitrification phenomena (section II.1.2.) 

highlighted by rheological measurement, respectively associated with the cross between 

G’/G” and the plateau of G’ modulus on Figure VIII.99 b). Notice that rheological 

measurements has been done at 4 °C.min-1, for technical reason, instead of kinetics data 

which are computed for a reaction rate average of 10 °C.min-1. Hence, the comparison is 

done by considering that these phenomena are shifted to higher temperature when a higher 

heating rate is used. Thus, gelation and vitrification phenomena can be superimposed to the 

Eα-dependency by taking into account this temperature shift. After gelation the viscosity of 

the medium increases dramatically which is reflected by a high decrease of the apparent 

activation energy Eα until the system vitrification. Indeed, at this stage of the 

epoxy/anhydride reaction, the diffusion of molecules into the media becomes rate-limiting, 

thus the Eα-dependency decrease can be attributed to a transition from chemical to diffusion 

control.22 This decrease is characteristic of a transition from chemical (Eα ∼ 70 kJ.mol-1 for 

pure chemical control) to diffusion (Eα ∼ 10 kJ.mol-1 for pure diffusion control) regimes and 
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has been reported for various epoxy systems under curing including epoxy-amine and 

epoxy-anhydride.21,23 In our case, Eα decreases reaching negative values of Eα (-70 kJ.mol-1). 

Such behavior has already been reported for crystallization of semi-crystalline polymers 

from the melt,24,25,26,27 but it is uncommon for a chemical reaction. These negative values of 

Eα are not to be considerate as negative energetic barrier, but as an anti-Arrhenian behavior 

which signifies that the reaction rate decreases with the increase of temperature, as observed 

for melt crystallization. This phenomenon can be related to TriaEP beginning of 

isotropization as seen on DSC thermogram  

 

♦ Figure VIII.96 a) and on POM micrograph in Figure VIII.100. Thus the anti-Arrhenian 

behavior could be associated to a global decrease of order with the extent of polymerization. 

In another term, we could consider that the propagation of anionic living copolymerization 

is favored in LC state, because of an higher number of effective collisions due to a lower 

distance between reactive entities. Thus, the TriaEP isotropization leads to a decrease of the 

polymerization reaction rate. This conclusion is in good agreement with the results reported 

by Nunez et al.28 who observed an anti-Arrhenius behavior for the isomerization reaction in 

LC solvent as a consequence of nematic-smectic A-reentrant nematic phase transitions. This 

was explained because the transition from smectic A to nematic phase is associated with a 

decrease of order. At T>150°C, Eα exhibits a sharp peak with an amplitude from around -70 

to 300 kJ.mol-1 which is the signature of a first order transition and could correspond to the 

transition of TriaEP from LC to isotropic phase 29 (as observed for BTDA melting in section 

IV.2.2.) 

 

♦ Zone 4: In this zone, the unreacted monomer and cross-linker are in isotropic liquid phase 

and the material is in the glassy state. As seen on section II.1.2.1., vitrification has the 

particularity to drastically decrease the reaction rate.21 Thus, the apparent activation energy 

reaches the positive low values (25 kJ.mol-1) characteristic of diffusion of unreacted 

monomers in the glassy state. Starting from negative values, another transition regime from 

anti-Arrhenian to Arrhenian behavior is thus observed (-70 to 25 kJ.mol-1). In this case, the 

global order of the system increases (micrograph in Figure VIII.100) and corresponds to the 

organization of the macromolecule in polydomains. The transition from anti-Arrhenian to 

Arrhenian behavior leads to the more common behavior characterized by an increase of the 

reaction rate when the temperature increases. 
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Figure VIII.99. TriaEP/SA apparent activation energy from DSC curves at 8, 10, 12 °C.min-1 vs 
DSC curve at 10 °C.min-1 with the corresponding 1/2/3/4 zones present on Figure VIII.100 a) 

and DSC vs G’/G” modulus at 4 °C.min-1 b). 

 

a) 

b) 
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Figure VIII.100. Recapitulative scheme of physico-chemical phenomena which occurs during 
TriaEP/SA polymerization in dynamic heating mode. 

 

 

VIII.4. Network morphological investigations correlated with 

thermomechanical properties: an example of A4B3 epoxy/amine 

architecture  

 

VIII.4.1. TriaEP/2,7-DAF system: generation of an A4B3 network  
 

The TriaEP/2,7-DAF polymer exhibits an A4B3 structure (Figure VIII.101), with a 

stoichiometric ratio in regard to monomer and cross-linker functionalities, that are three for the 

epoxy monomer and four for the diamine (section II.1.1.2.)11 These reactants, in the form of 

solid powders, have been finely crushed together and put in the DSC pan to measure the heat 

flow evolution in dynamic scanning temperature. An endothermic peak at around 123°C is 

initially observed and reliable to TriaEP/2,7-DAF mixture melting (Figure VIII.102). This 

phenomenon is immediately followed by an exothermal event corresponding to the epoxy-amine 

reaction.11 As soon as a part of components became more reactive by transition into liquid phase, 

the polymerization reaction starts. This appears as an exothermic peak ranging between 120 and 

200°C, with a maximum at around 150°C, with a very steep slope which is characteristic for 
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epoxy-amine cross-linking in a liquid-crystal media. As seen above for TriaEP/SA, we can 

highlight that the ordered state should favours the crosslinking reaction.14 This order could also 

have an influence on polymerization reactivity, with the secondary amine attack favoured than 

primary one, due to a proximity of electrophile site.30,31 In the present study the network 

anisotropy was confirmed by the birefringence of Schlieren texture observed by POM (Figure 

VIII.102). 

     

 

Figure VIII.101. Epoxy monomer and cross-linker to design A4B3 TriaEP/2,7-DAF polymer. 
Distances were calculated with Gaussian03 software32 with DFT method at the B3LYP/6-311G+ 

level of theory. 
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Figure VIII.102. TriaEP / 2,7-DAF DSC thermogram at 20 °C.min-1 and the corresponding 
thermoset texture observed by POM 
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The epoxy/amine reactivity has been confirmed by FT-IR investigations, presented in Figure 

VIII.103, with the decrease of the peak at 916 cm-1 sign of oxiran ring consumption and the peak 

apparition at 1217 cm-1 which could be attributed to the aromatic C-N stretching of tertiary 

amine groups. The shift at 1360 cm-1 could also be correlated with C-N stretching of the 

secondary amine groups.  

 

1600 1400 1200 1000 800 600

 

Figure VIII.103. FT-IR spectra of TriaEP monomer, 2,7 DAF cross-linker associated with the 
resulting polymer. 

 

 
VIII.4.2. Morphological and thermomechanical investigations of 
TriaEP/2,7 DAF 

 
VIII.4.2.1. TriaEP/2,7 DAF: a fractal polymerization 

As seen in Figure VIII.104 a), the polymer TriaEP/2,7-DAF cured during 1h at 170°C exhibits a 

major diffraction peak at 5.0 Å. This diffraction could be associated with the distance between 

two π-delocalized systems, including the 2,7-DAF cross-linker. The presence of a second peak at 

55.2 Å indicates a long range order which could be associated with the length of columnar 

mesophase and/or to the diameter of dendritic-like shape as fractal hyper-branched polymer 

colloids. This hypothesis could be reliable to the morphology of cryo-fracture of the fully cured 

polymer observed in SEM (Figure VIII.104 b)). The nodular surface structure is characteristic 

for fractal polymers (FPs) generally associated with a molecular structure of three-arms 

connector with rigid rod-like spacer15 which corresponds to the situation here with TriaEP and 
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2,7-DAF structures. Indeed, Aharoni et al.33 explained that primary structural unit of FPs is 

formed by dense colloidal particles of diameter of around 50 Å. To support this assumption, the 

dependence of intensity I(q) on q (Figure VIII.105) has been calculated from Equation (1), 

with the momentum transfer q, also called the scattering vector, defined as: 

 

      q = 4πsin (θ/2)λ                                                   (1) 

and characterized by the scattering angle θ and the wavelength λ of the scattered beam.34
 An 

exponent power between 3 and 4 is an indication of the fractal nature of the thermoset network 

(Equation (2))35,36,37  with the mass fractal dimension (Df) between 3 and 4 and the surface 

fractal dimension (Ds) between 2 and 3 (Equation (3)).  

  

                     �(�) ∝  �−Df ; 3 < Df ≤ 4                                              (2)  

With  

                                                  6 − Ds = Df ; 2 ≤ Ds < 3                                             (3) 

 

The results summarized on Table 1 confirm the supposition of a fractal growing nature of the 

mesomorphic epoxy-amine network with a high Ds value of 2.8. A Ds = 2 corresponds to a 

smooth surface, and Ds increases toward 3 for a corrugated surface34, which is in our case in 

good agreement with the tri-dimensional hyper-branched cross-linking assumption.38 The 

calculated dimensions of monomer and cross-linker, presented in Figure VIII.101, are also in 

good correlation with the colloid dimensions, taking into account the steric hindrance generated 

by the high functionality in balance with the proclivity of self-assembly into mesophase. This 

information is reliable to the unusual reactivity of epoxy/amine crosslinking in liquid-crystalline 

media, where the first stage of polymerization favour the 3D branching (promoted by secondary 

amine) compare to 2D linear growing (reaction with primary amine). 

 

From a geometrical point of view, a model of fractal growing based on the Voronoi tessellation 

concept39 has been already proposed to build two-dimensional networks, and could be extended 

for the description of three-dimensional systems.33 Another approach of biological mimics self-

assembly is illustrated in Figure VIII.104 c) with a model of aggregation from a fractal 

development of primary dendrimer units, assimilated here to a colloid, to explain the formation 

of covalent bonded nanostructures.40,41 This model is also in a good accordance with the classical 

network morphology described by Dusek42 considering a microgel agglomeration into clusters 

and theirs coalescence as seen on section II.1.2.1.  
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Figure VIII.104. WAXS patterns for TriaEP monomer at 140°C and for TriaEP/2,7-DAF 
polymer cured at 170°C for 1h (a); SEM fracture surface of fully cured network (b); model of 

dendrimer self-assembly extend to colloids from “Genealogically Directed Synthesis” in analogy 
with biological systems (c).43 

 

As specify by Baer et al.44 information concerning the self-organization of biological 

hierarchical structures can be useful to have an overview of the nanoscopic complexity, to be 

able to envision desired spectrum of functional properties. Thus, this biomimetic model could be 

a good approximation in regard to the fractal development which is a recurrent scheme to 

describe the great variety of natural structures.45 
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Figure VIII.105. Intensity of WAXS versus q of highly cross-linked TriaEP/2,7-DAF thermoset 
plotted on log-log scale. 
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Table VIII.15. X-ray d-spacing and scattering exponents. 

Polymer 

X-ray d-spacing (Å) 
mass fractal 

dimensions Df 

surface fractal 

dimensions Ds 
shor

t range 
long range 

TriaEP/2,7-DAF 5.0 55.2 3.2 2.8 

 

 
VIII.4.2.2. Relationship between anisotropic architecture and thermomechanical 

properties 

 

Tan δ curves of Figure VIII.106 make the distinction between three relaxations commonly 

called γ, β, α, in an ascending temperature range order, and associated with polymer chains part 

motions.38 Indeed, TriaEP/2,7-DAF polymer is characterized by a main cooperative α transition 

at 220°C for a curing temperature of 160°C for 3h. This very high transition temperature is 

usually found for dense aromatic cross-linked networks.14,46 The weak amplitude of α relaxation 

peak could be explained by a very dense network due to a high functionality but also by the 

mesogenic network character. Herein, Ortiz et al.47 explain the molecular constraint by a 

restriction of cross-link motions from all directions, imposed by the supramolecular self-

assembly associated with the randomly oriented mesophases in poly-domains. The residual 

segmental mobility in an interval temperature below Tα, such as β transition at 85°C, is 

correlated on the epoxy-amine networks with the crankshaft motions of the -N-CH2-CH(OH)-

CH2- segments. The polymer exhibits a modulus of E’ = 2.41 GPa at room temperature which 

corresponds to a highly cross-linked network.47 However the most notable result concerns the 

extremely high value of E’ = 690 MPa in the rubbery region, above Tα, even for liquid-

crystalline epoxy networks. For the sake of comparison, for a very ordered smectic epoxy 

thermoset network Ortiz et al.47 measured a modulus on the rubbery plateau of E’ = 115 MPa. 

This unusual high value of modulus plateau above Tα, is characteristic of mesogenic tri-

dimensional networks, where the deformation is mostly dominated by the entropic response and 

by the mobility of the aliphatic part provided by opened epoxy rings.47 Due to the dense ordered 

mesophase the crosslinks aren’t free to move in all directions, even above Tα, which explains the 

very high value of E’ and the presence of rubbery plateau. This particularity favours the integrity 

of architecture until the thermal degradation.  
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Figure VIII.106. Tan δ and E’ modulus curves from DMA experiments in traction mode for 
TriaEP/2,7-DAF polymer at 1 Hz and 1°C.min-1 

 

The TGA thermogram of the crosslinked material is presented in Figure VIII.107. A two steps 

thermal decomposition mechanism could be observed in 250-800°C temperature range. A first 

thermal degradation reaction, the cleavage of network, occurs at high temperatures, around 

350°C, highlighting a good thermal resistance of LCT.48 The 10% of mass loss of the material is 

observed at around Td 10%  = 393°C.  

As observed in Figure VIII.107 the slope of the degradation curve is very slow, the material 

being stable against temperature. At around 500°C, the mass loss is only 30%. This peculiar 

behavior underlines a high thermal stability of the material.49 The starting temperature range of 

degradation of the polymeric network is well correlated with the DSC results. The first 

degradation step at 354°C reveals a small exotherm in DSC curve, which could correspond to a 

small amount of thermal decomposition reactions with the generation of some radicals.  

Another exothermic peak observed in DSC at around 621 °C could be correlated with the 

thermo-oxidation and carbonization of the aromatic moieties. This second degradation 

mechanism occurs very fast, with a complete degradation of material, i.e. without any residual 

products starting from 700°C. 
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Figure VIII.107. Mass percentage and heat flow curves from TGA/DSC measurement at 
10°C.min-1 under air. 

 

VIII.5. Conclusions 

  

In this chapter we report, up to our knowledge, the first study of a star-shaped epoxy mesogen 

molecule, called TriaEP which was successfully synthesized, with a very good yield. In addition 

to its potential importance as precursor for C3-symetric supramolecules, we have been interested 

in this present work to explore it’s reactivity as monomer through two examples. In the first 

example, the TriaEP/SA polymer seems to reveal an anisotropic potential to form nematic 

columnar mesophases that were for the first time frozen in a tridimensional architecture. The 

reactivity by anionic living copolymerization in liquid-crystalline media has been carefully 

analyzed, exhibiting a strong influence of the monomer and macromolecule mesogenic character 

on the polymerization kinetic. This influence is expressed by a transition regime from Arrhenian 

to anti-Arrhenian behavior and vice-versa in correlation with the overall order variation during 

the polymerization. For the second example, TriaEP has been cross-linked with an aromatic di-

amine having a rod-like geometry (2,7-DAF), in order to generate an atypical A4B3 polymer 

structure revealing a hierarchical self-organization through a nematic architecture with a fractal 

polymerization development. SEM nodular surface, characteristic of FPs has been confirmed by 

the surface fractal dimension of 2.8 calculated from WAXS experiment for a primary colloid 

diameter of around 55.2 Å. This resulting material presents high Tα at about 220°C and also a 

very high thermal stability Td 10% ~ 393°C.  
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IX. General conclusion and perspectives 

IX.1. General conclusion  

After the conclusions relatives to each chapter, that expose the main results and interpretations, 

this general conclusion aims to cross the advances in thermosets field in the light of the 

objectives presented in the introductive Chapter I.  

(4) Upgrade the knowledge on monomers behavior as precursors for the elaboration of 

thermosets in terms of polymerization and structure-properties correlation Chapter IV, 

VI, VIII 

As presented in section II.1.1.2. in epoxies thermosets science, the nature of monomers governs 

the polymeric architecture which is driven by the functionality rules and determines also the 

reactivity. However, the physico-chemical characteristics of the monomers have a great impact 

in the network design:  

♦ Indeed, as a first example, ELO and TriaEP are epoxy monomers both with three-arms 

geometry (star-shape), but they differ by several aspects, as illustrated in Table IX.16. 

These dissimilarities induce not only differences between the physico-chemical properties 

intrinsic of monomers but condition the overall polymerization reactivity and thus the 

construction of polymer architecture. This is particularly relevant in regard to the apparent 

activation energy (Eα) of polymerization. Indeed, for a same epoxy/mono-anhydride 

polymerization reaction – i.e. the living anionic copolymerization – the systems 

ELO/MHHPA/2MI and TriaEP/SA/2MI present a very different evolution of Eα 

dependency. For ELO system this dependency presents a classical scenario with the 

successive chemical and diffusion controls, associated with characteristic values of Eα. In 

the case of TriaEP system, a very complex mechanism needs to be considerate in addition to 

the classical ELO behavior: the overlapping and evolution of supramolecular interactions of 

TriaEP monomer and TriaEP/SA polymer.  

 

Table IX.16. ELO vs TriaEP physico-chemical characteristics 

ELO TriaEP 

viscous liquid at RT solid at RT 

isotropic character mesogenic character 135 °C < LC < 150 °C 

aliphatic aromatic 

∼ 5.5 epoxies  3 epoxies  

internal epoxies terminal epoxies 
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♦ With ELO/FA as a second example, the classical functionality associated to the 

epoxy/alcohol reaction is modifed by the superimposition of two main reactions. The first 

one is the epoxy/alcohol reaction respecting the functionality rules. The second one 

corresponds to the FA self-condensation in C2 position and cross-linking. The theoretical 

functionality of ELO50/FA50 is about 1:1.76 considering only epoxy/alcohol reactions, but 

is lower in reality, more close to a stoichiometric ratio (1:1) due to FA self-reaction 

consumption. Thus the overall polymerization and network formation are kinetically 

dependent on the competition between these two main reactions. This original example of 

combined cationic polymerizations represents well the advantages of thermosets science that 

allows to combine different kind of polymerizations with a selection of versatile monomers 

such as ELO or FA. 

 

(5) Elaboration of performant (fully) bio-based materials. Chapter IV, V, VI 

 

The transition to performant bio-based thermosets as alternative to petroleum-based resins is not 

evident because usually high Tg is associated with aromatic moieties (mostly phenyl moieties 

issued from petroleum) present on the polymer network. However, another way could be 

envisaged to reach high Tg. Our purpose has been to take advantage of the particular structure of 

ELO (with ~5.5 epoxy groups per triglyceride) by increasing the crosslink density to the 

maximum. So to reach a very dense network and thus an high Tg. This strategy has been relevant 

with a Tg of about 134 °C for the system ELO + mono-anhydride MHHPA, i.e. without aromatic 

moieties. The utilization of a cross-linker with a higher functionality, BTDA di-anhydride has 

also been successful. This kind of cross-linker is commonly used in industry in little quantity in 

the epoxy formulations to improve the Tg. In this context, as principal cross-linker, only a small 

quantity can be used for processability: our formulation was 1:0.5 in proportions of ELO and 

BTDA in regard to their functionalities. The large epoxy excess has been essential in regard with 

the final properties of thermoset material that exhibits two Tg at 127 and 240°C, with two kind of 

networks: respectively one copolymer network reinforced by homopolymer linkage, and one 

containing mostly the homopolymer. This last very high Tg highlights the great importance of 

homopolymerizations on the final targeted network properties. 

 

Concerning the elaboration of fully bio-based thermosets, two strategies have been proposed in 

this manuscript. The first strategy has been to create resins from the association of FA and 

humins. This route represents the most logical choice, with the combination of two furanic 
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entities, provided by the same bio-based “family”, which means from carbohydrates catalytic 

conversion. This furanic combination confirmed to be very interesting in terms of structure and 

chemistry, more specifically, concerning the very good solubilization of humins in FA, and the 

multiple possible cross-linking ways between the FA/FA oligomer and the furanic structure of 

humins particles. The second strategy was based on the combination of different bio-resources: 

ELO and FA. The epoxidation of linseed oil contributes to increase the reactivity and also the 

hydrophilic character of triglycerides, which had permitted to easily mix ELO and FA without 

phase separation. 

In term of monomeric contribution for the elaboration of tridimensional networks, these 

molecules possessing antagonist properties can polymerize together conducting on a network 

with hybrid properties. Indeed, FA/FA oligomers contribute to the network rigidity by aromatic 

furanic moieties, (in replacement of benzoic moieties currently provided by petroleum-based 

hardeners, as exposed above) while ELO contribution is reliable to a plasticization of the 

network by this intrinsic aliphatic moieties, but also because ELO provokes steric hindrances 

that reduce the PFA cross-links density. Both of these strategies lead to generate fully bio-based 

thermoset polymers with,  Tg varying from 20 °C to 170 °C. 

 

(6) Proposes original strategies to improve classical thermosets properties or to develop new 

ones. Chapter V, VII, VIII 

The proposed strategy has been based on a bio-mimetic reflection around the hierarchical matter 

organization at different scales from micrometer to nanometer (illustrated in Figure IX.108). 

Herein, for the micro-scale, humins have been successfully used as core-shell particles, through a 

preliminary investigation on cellulose composites, to respond to the PFA major problem, i.e. the 

brittleness. 

 For the micro and nanoscale the utilization of oriented nanofillers (m-Sep) has proven to be 

efficient in the generation of a controlled anisotropy following the applied magnetic field 

orientation. Finally, the polymerization of a star-epoxy mesogen exhibited a self-assembly from 

nanoscale (liquid-crystalline phase) to microscale.    
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Figure IX.108. Thesis strategy of thermoset multi-scale organization 

 

IX.2. Perspectives 

 

This last part of the thesis manuscript would like to expose some potential perspectives related to 

each chapter separately, by brief terms and finally to propose a general envision of the subject at 

long term. 

♦ Chapter IV: after this fundamental work on reactivity with petroleum-based hardeners, 

possible investigations would be to develop formulations with green hardeners, favoring 

cross-linkages by 1-1 functionality, as carboxylic acids/anhydrides instead of amines, 

because of the inherent steric hindrance of the triglyceride network. An idea to reach high Tg 

could be to use the succinic anhydride (short linker) that is derived from lactic acid. Another 

proposition, could be to improve this ELO/anhydride matrix by the elaboration of 

copolymer/nanocomposite, as an example with epoxidized silica nanocage: 

octakis(dimethylsiloxypropylglycidylether)silsesquioxane called POSS-OG (seen [Pub 05] 

in Annexes).  

 

♦ Chapter V: as a complementary work, after the study of cellulosic composite, a possible 

issue should be to investigate humins resin behavior in bulk, for another kind of application 

such as mold for instance. A first encouraging result is exhibited in the Figure IX.109 with 
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the DMA of 40FA/55Hu/5MA in regard to pure PFA resins. The main result can be 

summarized to a less dense network for humins resin, with an higher Tα in comparison with 

pure PFA material. The presence of a secondary transition at T = -20°C could be reliable to 

the ductile part of humins structure. This behavior is in good agreement with composite 

mechanical test, highlighting an increase of both ductility and rigidity properties. 
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Figure IX.109. DMA of resin bulk for PFA and 40FA/55Hu/5MA in the same conditions as 
presented in Chapter III. 

 
Concerning humins potential applications, in my opinion, one of an easier issue could be the 

use of humins as bitumen in additive or itself after modifications. Another higher added 

value application could be the utilization of humins for the elaboration of carbon material 

following the investigation on HTC materials. 

 

♦ Chapter VI: after focusing on the principal ELO/FA reactivity, with the middle 50/50 ratio, 

the future works could be oriented to the study of side-reactions influence (higher ratios of 

ELO) such as homopolymerization/etherification, firstly on the reactivity and secondly on 

the network density reliable to mechanical properties.   

 

♦ Chapter VII: nanofiller’s orientation in DGEBA matrix has been proven to be efficient to 

provoke anisotropic magnetical and mechanical properties. Now we could consider the 

utilization of a greener matrix, like ELO, with the difficulty to choose an adapted cross-

linker. Indeed, as shown on the Chapter IV, the utilization of aliphatic amines (as presented 

in the Chapter VII with DGEBA) for ELO cross-linking didn’t reach a fully cured material. 

Another interesting issue could be to use an high frequency alternative magnetic field devise 
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to selectively heat locally magnetite particles in order to induce the polymerization from the 

m-Sep. This approach, illustrated in Figure IX.110, could lead to improve the compatibility 

between nanoparticles and matrix that could be the main challenge for the strategy to 

improve the mechanical properties. 

 

 

Figure IX.110. Strategy of thermo-induced polymerization by an alternative magnetic field 

 
♦ Chapter VIII: Several issues could be considerate to promote star-epoxy mesogens as high 

added value monomers for the conception of multi-functional materials. As a first example, 

this kind of mesogenic monomers should be interesting to generate self-healing materials by 

promoting supramolecular interactions that could induce a possible segregation in order to 

favor reversible reactions such as the di-sulfur metathesis for instance. As a second example, 

rigid star-epoxy mesogen like TriaEP could be a very interesting precursor for the 

elaboration of materials with a multi-scale porosity. Indeed, the generation of a controllable 

porosity (around 30-100 nm) is possible for an epoxy/amine resin system considering 

supramolecular interaction which could occur during the polymerization in a polar solvent. 

Recently, the research has focused on conjugated microporous polymers (CMPs) that exhibit 

tailored micropores (1-3 nm). The distribution and surface area of such thermoset generated 

is reliable to a rigid three-arm monomer linked to a rigid rod-like spacer. Thus, by the 

association of TriaEP monomer with a rigid cross-linker, using a functionality of 1-1, a 

material which presents two different scales of porosities could be obtained.  

 
Since the classical tridimensional cross-linked amorphous polymers elaborated in the beginning 

of 20th century, thermosets science field has been continually enlarged in correlation with the 

major discoveries in chemistry field. Herein, as seen on section II.3.5.1. with the theoretical 

description of the liquid-crystal state, De Gennes initiated the great adventure of liquid-

crystalline thermosets. In the same manner, Lehn’s work on supramolecular chemistry and then 
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on dynamic adaptive chemistry, has contributed to extend the thermosets field by the creation of 

dynamic covalent polymers. These thermosets possess a network with reversible covalent cross-

linked bonds that are able to respond to several stimuli such as pH or temperature, leading to 

self-healing properties for instance. As examples, these reversing covalent reactions could 

correspond to transesterification or disulfide metathesis reactions. Finally, in regard to the quest 

of the universal dynamic nature undertaken by Leonardo Da Vinci (section II.3.) through the 

precursory concept of bio-inspiration, the lowest common denominator of this motion could be 

the chemical bond, in all of its diversity. Thus, the elaboration of a future generation of adaptive 

biomimetic materials could be based on the association of bio-inspiration concept with the 

utilization of bio-based synthons and monomers. The building-blocks required to accomplish the 

“eco-design” of this kind of materials could be found in the richest diversity provided by the 

combination of different bio-resources that  can derived from ligno-cellulosic biomass, lipids or 

3rd biomass generation (algae and aquatic derived).  
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• Ed de Jong, Jan Kees van der Waal, Nathanael Guigo, Jean-Mathieu Pin, Composition 

comprising furfuryl alcohol, Dutch Patent Application, 2013, P31679NL00. 

 

 

 

 

Publications 

 

• [Pub 01]: Jean-Mathieu Pin, Nathanael Guigo, Alice Mija, Luc Vincent, Nicolas 
Sbirrazzuoli, Jan Kees van der Waal, Ed de Jong, Valorization of bio-refinery side-stream 

products: combination of humins with polyfurfuryl alcohol for composite elaboration, 
ACS Sustainable Chem. Eng. 2014, 2(9), 2182-2190. 

 

Abstract: 

A challenge of today’s industry is to transform low-value side products into more value-
added materials. Humins, a byproduct derived from sugar conversion processes, can be 
transformed into high value-added products. Thermosetting furanic composites were 
elaborated with cellulose filters. Large quantities of humins were included into a 
polyfuranic thermosetting network. Comparisons were made with composites generated 
with polyfurfuryl alcohol (PFA) and with PFA/lignin. It was concluded that new 
chemical interactions were created between the side-chain oxygen groups of the humins 
and the PFA network. Analysis of the fracture surface of the composites containing 
humins lead to the conclusion that higher interfacial bonding and more efficient stress 
transfer between the matrix and the fibers is present. The higher ductility of the humins-
based matrix allows for a two-fold higher tensile strength in comparison with other 
composites tested. Incorporation of humins decreases the brittleness of the furanic 
composites, which is one major drawback of the pure PFA composites. 
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• [Pub 02]: Jean-Mathieu Pin, Nicolas Sbirrazzuoli, Alice Mija, From epoxidized linseed 

oil to bio-resin: an overall approach of epoxy/anhydride cross-linking, ChemSusChem 
2015, 8, 1232–1243. 
 
Abstract: 

Biorenewable resources can be used as green monomers to design tailored structures for 
formulations that can play an important role as functional materials. The choice of 
optimal structures depends on the targeted properties and applications. This work focuses 
on the elaboration of biobased materials with toughened mechanical properties based on 
epoxidized linseed oil. This result was obtained by an overall approach of cross-linking 
process, that is, starting with the optimal choice of hardeners and finally favoring the side 
reactions of polymerization. Therefore, the anionic alternating copolymerization of 
epoxide with mono- and dianhydrides was investigated to tailor the parameters that led to 
maximal conversions and properties. The obtained highly cross-linked networks perform 
well, as demonstrated by good impact strengths, high glass transition temperatures, and 
excellent thermal stability, which opens up the possibility of using these emergent 
materials for industrial applications. 
 

 

 

 

• [Pub 03]: Jessica Alves Marins, Alice Mija, Jean-Mathieu Pin, Francoise Giulieri, Bluma 
Guenther Soares, Nicolas Sbirrazzuoli, Pascal Lançon, Georges Bossis Anisotropic 

Reinforcement of Epoxy-Based Nanocomposites with Aligned Magnetite-Sepiolite Hybrid 

Nanofiller, Composites Science and Technology 2015, 112, 34–41.  
 
Abstract: 

Magnetic sepiolite fiber (m-SEP) was successfully prepared by chemical coupling of 
aminosilane- functionalized sepiolite with epoxysilane-functionalized magnetite, as 
confirmed by Fourier Transform Infrared Spectroscopy and Transmission Electron 
Microscopy. This hybrid material was magnetically aligned into an epoxy resin under the 
action of a relatively weak magnetic field and the resulting oriented dispersion was cured 
with a polyether amine. The addition of m-SEP increased the flexural modulus of the 
epoxy nanocomposites and the alignment in the longitudinal direction resulted in an 
additional reinforcement of the epoxy network, mainly for system containing 10wt% of 
m-SEP. These results confirm the anisotropic reinforcing effect of the aligned magnetic 
sepiolite fibers. 
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• [Pub 04]: Jean-Mathieu Pin, Nathanael Guigo, Luc Vincent, Nicolas Sbirrazzuoli, Alice 
Mija, Combination of epoxidized linseed oil and furfuryl alcohol to design tailored fully 

bio-based material, submitted. 
 

Abstract: 

Epoxidized Linseed Oil (ELO) and Furfuryl Alcohol (FA) are bio-resourced monomers 
with high potential in material science. This work proposes to copolymerize for the first 
time these monomers, under BF3 catalysis, with the aim to design fully green thermoset. 
Herein, the cationic polymerization reactivity has been investigated through DSC and 
obtained structures confirmed by IR spectroscopy and 2D NMR revealing the principals 
chains connections. Essentially, the interconnections between oxiran rings of ELO and 
the hydroxyl groups of furanic moieties are emphasized. Multi-ways possibilities of 
chemical connections, including copolymerization and cross-linking, lead to an 
homogeneous network confirmed by dynamic mechanical analysis (DMA) and scanning 
electron microscopy (SEM). Furthermore, the tensile test measurements show the 
creation of a copolymer with semi-ductile behavior (tensile strain at break: ≈ 40%), 
which is a significant challenge for applications as very high potential thermoset material. 
 

 

 

 

• [Pub 05]: Jean-Mathieu Pin, Nicolas Sbirrazzuoli, Alice Mija, Bio-based nanocomposite 

with epoxidized linseed oil and POSS-OG: influence of hybrid architecture on 

epoxy/anhydride polymerization kinetics, submitted. 
 
Abstract: 

Epoxidized linseed oil (ELO) and octakis(dimethylsiloxypropylglycidylether) 
silsesquioxane (OG) have been cross-linked with mono- and di-anhydride hardeners 
(methyltetrahydrophthalic anhydride and pyromellytic dianhydride). Apparent activation 
energies (Eα) dependencies have been firstly determined for initially systems: 
ELO/anhydride and OG/anhydride. Further, a compared investigation has been done for 
ELO/OG/anhydride copolymer with increasing ratios of 2/5/10 % in weight of OG. The 
influences of cross-linkers and OG co-monomer nature have been evaluated on the 
polymerization kinetics in regard to chemical and diffusion regime controls. SEM and 
WAXD observations confirmed that ELO/OG/anhydride networks are homogenous, 
without exhibition of OG silica nano-cage aggregations. The final architecture reveals an 
improvement of Tg from 103 to 129 °C for an addition of 10 % OG by weight on the 
ELO/anhydride matrix. 
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•  [Pub 06]: Jean-Mathieu Pin, Nicolas Sbirrazzuoli, Alice Mija, Star-epoxy mesogen with 

1,3,5-triazine core: a model of A4B3 fractal polymerization in a liquid-crystalline 

thermoset media, submitted. 
 

Abstract: 

A Star-Epoxy monomer with intrinsic LC behavior has been synthetized by creation of a 
1,3,5-triazine core. Combined with a rod-like crosslinker 2,7-DAF, a hierarchical self-
assembly has been revealed. From the primary diameter colloid of around 55.2 Å to 
colloid cluster and to in fine “genealogically” generate colloid macro-lattice. The fractal 
development of thermoset morphology is associated to the formation of an anisotropic 
network through a self-organisation into nematic mesophase organized at micro-scale in 
polydomains. This hierarchical multi self-assembly has been highlighted by WAXS, SEM 
and POM investigations. The LC thermoset network presents high thermo-mechanical 
properties such as a high Tα at about 220°C and a very high thermal stability Td ~ 393°C. 
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ANNEXES – Français 
 

Introduction Générale: 
 

La stratégie entreprise par la « recherche » internationale, dans le contexte de nos sociétés 

moderne, est orientée vers l’élaboration de matériaux possédant des propriétés originales, comme 

illustré dans la Figure A.1. La demande actuelle en matériaux à haute valeur ajoutées est 

considérable et exacerbé by un marché compétitif. La création de matériaux haute performances 

est devenue possible avec l’émergence des nanotechnologies. Ce domaine est le fruit d’une 

transversalité entre les sciences chimique et physique, le but étant le contrôle de l’auto-

assemblage d’entités nanométriques. De plus, ce contrôle permettrait d’induire des propriétés 

spécifiques par modification de la matière à différentes échelles : les matériaux multifonctionnels 

sont nés. 

La science macromoléculaire joue un rôle primordial dans le design et l’élaboration de matériaux 

multifonctionnels qui peuvent posséder des propriétés combinés comme la semi-conduction, 

l’adsorption de gaz ou la résistance au feu et de hautes propriétés mécaniques. Ces types de 

matériaux peuvent être trouvés dans des objets du quotidien comme les bouteilles plastiques, les 

batteries, les colles, ainsi que les matériaux utilisés pour le transport ou l’énergie par exemple.  

 

Figure A.1. Omniprésence des polymères dans nos sociétés, pour les secteurs du transport, de 

l’énergie, du textile etc. 

Aujourd’hui l’hégémonie pétrolière dans la conception de matériaux avancés est quasi-totale. 

Toutefois, la raréfaction de cette ressource, qui n’est pas renouvelable à l’échelle humaine, 
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impacte directement l’économie mondiale. En outre, l’usage immodéré des sous-produits 

pétrolier à causer d’importants dommages environnementaux. Pour toutes ces raisons 

économique, environnementale et géostratégique, de plus en plus de pays sont engagés pour une 

transition vers une bio-économie, comme décrit dans la Figure A.2.  

Cette prise de conscience se matérialise concrètement à travers la ratification d’accords comme 

le protocole de Kyoto en 1997, qui engage les pays signataires à une régulation de l’émission de 

gaz à effets de serres d’origine anthropique. Dans le cadre de l’Union Européenne, la directive 

REACH (Registration, Evaluation and Authorization of Chemicals) a été ratifié par les pays 

membres, rendant la législation en termes de sécurité et de management des produits chimiques 

bien plus drastique, en accord avec les principes de « Chimie Verte », qui valorise une utilisation 

de produits chimiques et de processus éco-respectueux.3 

 

Figure A.2. les 3 piliers associés au modèle de bio-économie. 

Comme observé dans la Figure A.2., le concept de bio-économie est basé sur l’utilisation de 

matériaux issue de la biomasse. Deux bio-ressources sont reconnu comme ayant un grand 

potentiel pour substituer les « briques chimiques » issue du pétrole, ce sont les huiles biologiques 

et la biomasse ligno-cellulosique. Comme premier exemple, nous pouvons noter l’association 

Fimalin crée en 2009, qui vante l’utilisation des fibres et de l’huile de lin afin de concevoir des 

biomatériaux performants. Un autre exemple est celui de la société Avantium Chemicals qui 

développe de nouveau synthons et polymères à partir de la conversion de la biomasse ligno-

cellulosique. En effet, Avantium développe une unité pilote ayant pour but de convertir les 

carbohydrates en Alkoxymethylfurfural (RMF), et ainsi générer une nouvelle classe de composés 

furaniques basée sur le FDCA, noté YXY.  

                                                           
3
  Anastas, P. T.; Warner, J. C., Green chemistry: theory and practice. Oxford university press: 2000. 
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Due à leurs grands potentiels et leur abondance, l’huile de lin et l’alcool furfurylique ont été 

choisis comme précurseurs à l’élaboration de matériaux bio-sourcées pour ce travail doctoral. 

Cette thèse a été cofinancée par la région Provence-Alpes-Côte d’Azur (PACA) et la société 

Sicomin Composite qui travaille sur la formulation de résines époxydes depuis plus de vingt ans 

pour divers secteurs comme l’énergie et le transport. Ce financement a été concrètement 

supporté par le projet Région-APO BIOECOMAT.  En accord avec le contexte international de 

transition d’une économie basée sur le pétrole à une bio-économie présenté précédemment, ce 

projet ambitionne le développement de nouveau matériaux bio-sourcés. 

Les objectifs du projet BIOECOMAT ont été étendu à un projet Européen appelé “BIOpolymers 

and BIOfuels from FURan” (BIOFUR) dans le cadre de “Marie Curie Industry-Academia 

Partnerships and Pathways” (IAPP) (FP7-PEOPLE-2012-IAPP). Ce projet est conduit par la 

société Avantium Chemicals, en collaboration avec le laboratoire CNRS à Nice, France, pour la 

partie polymère, et à l’université de Messine, Italie, pour la partie catalyse. Le travail principal 

de ce manuscrit en relation avec le projet BIOFUR a été d’étudier les possibilités de valorisation 

d’un sous-produit issue de la conversion de la biomasse destiné à l’élaboration de biopolymère et 

biocarburant : les humins. Ce travail a été essentiellement conduit dans la société Avantium à 

Amsterdam, Pays-Bas, sous la supervision du Dr. Ed de Jong, Dr. Jan C. Van der Wall et Dr. 

Nathanaël Guigo, durant mon détachement de quatre mois, du 22 juillet 2013 au 15 novembre 

2013. 

En accord avec les projets BIOECOMAT et BIOFUR, trois objectifs ont été définis pour cette 

investigation doctorale : 

(7) Apporter de nouvelles connaissances sur le comportement de monomères pour 

l’élaboration de thermodurcissable en termes de polymérisation et de corrélation 

structure-propriétés. Chapitre IV, VI, VIII 

(8) Elaboration de matériaux (totalement) bio-sourcés performants. Chapitre IV, V, VI 

(9) Proposer des stratégies originales afin d’améliorer les propriétés d’un polymère 

thermodurcissable ou en développer de nouvelles. Chapitre V, VII, VIII 

 

En conformité avec ces objectifs, ce manuscrit a été organisé en 9 chapitres, avec 5 chapitres de 

résultats : Chapitres IV, V, VI pour les polymères issus de la biomasse et Chapitres VII et 

VIII pour les matériaux organisés. 
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♦ Chapitre I: présente une partie introductive, qui met en lumière les objectifs principaux de 

cette thèse en accord avec le contexte international actuel. La stratégie de recherche est 

présentée.  

♦ Chapitre II: la partie bibliographique, ce chapitre présente les concepts principaux qui 

seront discutés dans les chapitres suivant. Le premier paragraphe présente les principales 

avancées dans la science des polymères thermodurcissables, à travers les différents 

phénomènes physico-chimiques qui se déroule durant le processus de réticulation, lié à la 

création d’une architecture tridimensionelle. Un deuxième paragraphe s’articulera autour 

de la chimie développée autour de la conversion de la biomasse, mettant en exergue l’huile 

de lin époxydée, l’alcool furfurylique et les humins comme précurseur préférentiels pour 

l’élaboration de polymères bio-sourcés. Le dernier paragraphe présentera une approche 

fondamentale pour le développement de matériaux hiérarchiquement organisé à travers 

une approche bio-inspiré. Cette démarche concerne la conception de nanocomposites avec 

l’élaboration de nano-objet inorganique-hybrides (sepiolite et magnétite) ainsi que leurs 

combinaisons. Enfin, une autre stratégie présentée traitera de l’auto-assemblage de 

monomère mésogène en polymères cristaux-liquides.  

♦ Chapitre III: décrit les différentes techniques, appareils et méthodes qui ont été utilisés 

pendant cette investigation, associées à chaque chapitre.  

♦ Chapitre IV: ce chapitre se concentre sur l’élaboration de polymères à partir d’huile de 

lin époxydée, à travers une étude comparative entre un mono- et di-anhydride comme 

agent réticulant. Premièrement, les paramètres physico-chimique de polymérisation ont été 

optimisés (par DSC, rhéométrie, analyse cinétique) afin d’obtenir un réseau 

tridimensionnel totalement réticulé. Deuxièmement, les propriétés thermomécanique 

(DMA, TGA) ont été discuté en mettant en lumière les relations entre la réactivité et 

l’architecture du polymère obtenue i.e. l’influence des réactions secondaires comme 

l’homopolymérisation ou l’étherification.  

♦ Chapitre V: l’objectif principal de ce chapitre est d’exploré les possibles applications 

concernant les humins qui sont un sous-produit récalcitrant. Pour cela, une stratégie 

« furanique » a été investie en utilisant les humins comme charge et co-monomère en 

association avec le polyalcool furfurylique (PFA). Des composites cellulosique ont alors 

été préparé comme modèle pour tester l’habilité des résines à base d’humins à imprégner le 

bois ou les textiles. Des tests en traction ont alors été effectués sur ces composites 

cellulosiques afin d’évaluer l’influence des humins par rapport à la résine PFA pure et d’un 

composite à base de lignine.  
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♦ Chapitre VI: ce chapitre rapporte l’élaboration d’un polymère thermodurcissable 

totalement bio-sourcé à travers la combinaison d’huile de lin époxydée (ELO) et 

d’alcool furfurylique (FA). Le but de cette étude étant d’être capable d’avoir un matériau 

avec des propriétés modulable en fonction du ratio de monomères utilisés. La 

polymérisation cationique a été étudiée par FT-IR, RMN-2D et les propriétés mécaniques 

ont été mises en avant par DMA et machine à traction. 

♦ Chapitre VII: propose une stratégie pour le renforcement anisotropique d’une résine 

époxyde à travers la création originale d’un nano-objet hybride composé de magnétite 

greffée sur la surface de la sépiolite. La nanoparticule résultante est capable de s’orienté 

sous champs magnétique. La première partie de cette étude présente l’élaboration de cette 

nanofibre par la double fonctionnalisation de magnétite et sépiolite, suivie par 

l’élaboration et la réticulation de la résine époxyde nanocomposite sous champ 

magnétique. La deuxième partie de l’étude se focalisera sur l’influence de l’orientation de 

ces nanofibres (parallèle, anti-parallèle ou isotrope) dans le composite, par rapport à une 

sollicitation mécanique unidirectionnelle (DMA). Ce travail a été fait en collaboration avec 

le Dr. Jessica Alves Marins, le Dr. Françoise Giulieri et le Dr. Georges Bossis. 

♦ Chapitre VIII: se focalise sur le développement de résines époxydes possédant une 

organisation multi-échelle. Pour cela, un travail préliminaire a été entrepris avec la 

conception et l’étude d’une nouvelle classe d’époxyde monomère possédant une géométrie 

en forme d’étoile (star) et un caractère mésogène capable d’induire une auto-organisation 

en mésophase pendant la polymérisation. Après la synthèse et la caractérisation de ce star-

époxyde mésogène, sa propension à générer des polymères réticulés a été explorée. 

Premièrement, avec la combinaison d’anhydride d’acide à travers une analyse de 

l’influence des interactions supramoléculaires sur la cinétique de polymérisation ; et 

deuxièmement avec l’association d’une diamine comme agent réticulant, mettant en 

exergue le développement fractale du réseau polymère crée (WAXS) en relation avec les 

propriétés thermomécaniques (TGA et DMA). 

♦ Chapitre IX: présente la conclusion générale de ce travail  doctoral, et ouvre la discussion 

sur des perspectives. 

 

Résumé des principaux résultats : 

 
Les principaux résultats obtenus au cours des 5 chapitres de résultats vont être brièvement 

présenté ci-dessous. La valorisation de molécules plateformes issues des bio-raffineries est au 
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cœur de la stratégie de substitution des matériaux pétro-sourcés. Deux molécules à fort potentiel, 

que sont l’huile de lin époxydée et l’alcool furfurylique, ont été choisies afin d’élaborer de 

nouveaux matériaux biosourcés à hautes performances. De la chimie supramoléculaire (star-

époxy mésogène) aux nanocomposites (sépiolite et magnétite fonctionnalisées), plusieurs voies 

de recherches ont été explorées afin d’obtenir des matériaux aux propriétés thermo-mécaniques 

intéressantes. 

 

La première étude s’est intéressée à l’élaboration de copolymère ELO/anhydride à travers une 

étude globale qui va de la compréhension de la réactivité physico-chimique (copolymérisation 

anionique vivante) associé à la polymérisation et à la relation structure propriété de l’architecture 

polymère considérée. Cette étude s’est effectuée à travers le choix de deux durcisseurs anhydride 

(MHHPA et BTDA) présentant des fonctionnalités différentes, et donnant lieux à des réseaux et 

des réactivités bien particulières, mettant en avant une certaine propension à 

l’homopolymérisation dans le cas du di-anhydride. Ces principaux résultats peuvent être décrits 

par la Figure A.3. qui met en lumière la possibilité qu’a une matrice comme ELO de générer des 

propriétés thermomécanique semblable aux matrices pétro-sourcées. 

 

 

 

 

Figure A.3. Thermogrames DMA des systèmes ELO/MHHPA/2MI (vert) et ELO/BTDA/2MI 
(bleu). 
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Une deuxième étude s’est focalisée sur l’élaboration de composite cellulosique à base de 

diverses résines furaniques PFA. Le principal but de cette étude a été de mettre en évidence 

l’influence d’une charge micrométrique appelée humins (sous-produit des bio-raffineries) sur la 

cohésion matrice-cellulose. Un résumé de ces résultats peut être observé sur la Figure A.4. où 

nous remarquons, qu’en plus de pouvoir ajouter une très grande quantité d’humins à la matrice 

PFA, les valeurs des modules, et du tensile strength en particulier, sont augmenté de manière 

drastique en comparaison de la matrice PFA pure. 
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Figure A.4. Young’s modulus (a) et tensile strength (b) histogrames des composites cellulosique 

 

L’étude suivante est le fruit de la combinaison de deux matrices totalement bio-sourcées et 

précédemment présentées, qui sont l’ELO et le FA. A travers une stratégie de copolymérisation 

cationique, des copolymères entièrement bio-sourcés et  homogènes ont été créés. Après avoir 

mis en évidence les réactions principales qui régissent la copolymérisation (réaction 

epoxyde/alcool et la réaction de polycondensation/réticulation du FA) par FT-IR et RMN 2D, les 

propriétés mécaniques de du copolymère ELO50/FA50 ont été comparé à l’homopolymère PFA 

comme nous pouvons le voir ci-dessous dans la Figure A.5. Le résultat principal peut-être 

associé à la grande propension qu’à l’ELO à flexibiliser la matrice PFA de manière covalente i.e. 

avec 50% d’ELO dans la matrice PFA, on obtient une élongation à la rupture du matériau qui 

passe de 5 à 40 %. 
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Figure A.5. Module (E’) et tan δ évolutions pour ELO/FA polymère (noir) comparé au PFA 
(vert). 

L’investigation suivante propose une stratégie originale afin de générer une anisotropie contrôlée 

dans une matrice époxyde. Cette stratégie passe par l’élaboration d’un nano-objet hybride par la 

double fonctionnalisation de sépiolite par un aminosilane et de magnétite par un époxysilane. La 

nanofibre hydride résultante (greffage des nanoparticules de magnétite sur la surface de la 

sépiolite via réaction époxy/amine) possède la capacité de s’orienter sous champs magnétique 

(Figure A.6.). Cette nanofibre a alors été mélangé à différent ratio dans une matrice époxyde 

DGEBA suivant différente orientations (parallèle, antiparallèle et isotrope) afin de mesurer 

l’influence de l’orientation des fibres par rapport à une sollicitation mécanique unidirectionnelle 

en traction. Le résultat principal est associé à l’influence de la fréquence sur les mesures des 

modules, mettant en évidence un module plus élevé dans le cas d’une sollicitation qui est 

provoqué dans le sens de l’alignement des fibres. 

 

Figure A.6. Stratégie de synthèse de la nanofibre hybride magnétique-sépiolite (a) et son 
orientation sous champs magnétique (b). 
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La dernière étude s’est focalisée sur les résines époxydes mésomorphe, où l’état cristal-liquide 

est figé dans un réseau tridimensionnel. La chimie des monomères à géométrie bâtonnet ou 

« rod-like » dérivé de cœurs mésogènes biphényle ou azométhine par exemple, ainsi que leur 

influence sur l’architecture supramoléculaire ont fait l’objet de nombreuses recherches. Certaines 

études se sont également intéressées à la cinétique de polymérisation à l’état anisotrope et ont 

révélé un comportement atypique où les liaisons faibles de type π-stacking, en particulier, jouent 

un rôle prépondérant sur la réactivité. Afin de poursuivre ces travaux, inspirés par une chimie 

supramoléculaire de plus en plus inventive, nous nous sommes proposé de synthétiser un 

monomère époxyde modèle à géométrie discotique, le 1,3,5-triazine,2,4,6-tris[4-(2-

oxiranylmethoxy)phenyl] appelé TriaEP. Cette géométrie en tri-branche également appelé 

« Star » a été choisie pour sa propension à adopter un grand nombre de mésophases différentes et 

éclectiques (colonnaire, dendritique…). Une étude thermo-mécanique globale a été investie par 

calorimétrie différentielle à balayage (DSC), analyse mécanique dynamique (DMA) et 

thermogravimétrie (TGA). Les premiers résultats concernant le monomère TriaEP ont pu mettre 

en exergue un caractère cristal-liquide intrinsèque, sur une plage de température allant de 135 à 

150°C. Par la suite, les premiers polymères thermodurcissables ont été élaborés avec des 

durcisseurs classiques de type di-amines, en particulier avec le 2,7-diaminofluorène (2,7-DAF) 

qui révèle un développement de type fractale au cours de la polymérisation. Ce réseau anisotrope 

très dense possède  avec une transition α à 220°C pour une température de réticulation de 160°C 

(Figure . A.7.)   

 

Figure A.7. WAXS diffractogramme pour le monmère TriaEP à 140°C et pour le polymère 
réticulé TriaEP/2,7-DAF à 170°C pendant 1h (a); MEB cryo-fracture du polymère TriaEP/2,7-
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DAF  (b); modèle d’auto-assemblage de dendrimères étendu aux colloïdes par analogie avec les 
systems biologiques“Genealogically Directed Synthesis”  (c). 

 

Une deuxième étude sur la cinétique de la réticulation via une copolymérisation anionique 

vivante avec l’anhydride succinique (SA) a été investie par les méthodes isoconversionnelles 

avancées en mode dynamique. Nous pouvons ainsi observer la variation d’énergie apparente de 

réaction (Eα) de la polymérisation, de la fusion des réactifs jusqu’à la formation du réseau 

tridimensionnel. La dépendance de l’énergie d’activation apparente de réaction (Eα) montre en 

effet un mécanisme de réticulation complexe,  avec une variation de l’énergie qui passe du 

positif au négatif et vice-versa. Cette variation reflète la transition d’une vitesse de réaction 

suivant un comportement Arrhénien à anti-Arrhénien. Cela correspond respectivement au 

passage d’une vitesse de polymérisation qui croit à une vitesse qui décroit avec l’augmentation 

de la température. Ce résultat peut être interprété comme étant le reflet d’une polymérisation où 

l’ordre supramoléculaire évolue au cours de la réaction. Une étude menée par A. Numez et coll. 

sur une réaction d’isomérisation en présence d’un solvant cristal-liquide, a mis en évidence un 

changement d’ordre dans la mésogénie Nématique-Smectique-Nématique lorsque la température 

varie. La vitesse de polymérisation présente alors un comportement anti-arrhénien lorsque 

l’ordre diminue, au passage d’une organisation Smectique à Nématique : c’est le phénomène de 

ré-entrance. Dans notre cas, afin de mettre en exergue l’évolution de l’anisotropie optique durant 

la réticulation, un suivie par microscopie optique en lumière polarisée à la même vitesse de 

chauffe a été entrepris. Cela nous a permis de corréler les fluctuations de l’énergie d’activation 

apparente de réaction (Eα) avec l’anisotropie optique, généralisé aux variations d’ordre au sein 

des chaines oligomères puis polymère pendant la réticulation. Le phénomène global de 

polymérization en phase crystal-liquide de TriaEP/SA est résumé dans la Figure A.8. 
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Figure A.8. Schéma récapitulation des phénomènes physico-chimiques qui ont lieux durant la 
réticulation du système TriaEP/SA. 

 

 

Conclusion Générale et Perspectives: 
 

Après les conclusions relatives à chaque chapitre, qui ont exposé les résultats et interprétations 

principales, cette conclusion générale veut croiser les différentes avancées dans la science des 

polymères thermodurcissables à la lumière des objectifs présentés dans la partie introductive 

(Chapitre I).  

(1) Apporter de nouvelles connaissances sur le comportement de monomères pour l’élaboration 

de thermodurcissable en termes de polymérisation et de corrélation structure-propriétés. 

Chapter IV, VI, VIII 

 

Comme présenté en section II.1.1.2., dans la science des polymères thermodurcissable, la nature 

des monomères gouvernent l’édification de l’architecture polymérique qui est conditionné par les 

règles de la fonctionnalité et déterminé par la réactivité. Toutefois, les caractéristiques physico-
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chimiques du monomère peuvent avoir un grand impact sur la conception de l’architecture 

polymère :  

 

♦ En effet, comme premier exemple, les monomères époxydes ELO et TriaEP, présentent tous 

deux une géométrie tri-branche (star-géométrie), mais diffère par différents aspects, comme 

illustré dans la Table A.1. Ces dissimilarités induisent non seulement des différences entre 

les propriétés physico-chimiques intrinsèques aux monomères, mais conditionnent tout le 

processus de polymérisation et donc les architectures résultantes. C’est particulièrement 

visible si nous comparons l’énergie d’activation apparente associé à chaque polymérisation. 

En effet, pour une même polymérisation époxyde/anhydride – i.e. copolymérisation 

anionique vivante – les systèmes ELO/MHHPA/2MI et TriaEP/SA/2MI présentent une 

évolution de Eα très différente. Pour le système avec ELO la dépendance de l’énergie 

présente un scénario d’évolution classique avec la succession des contrôles chimique et de 

diffusion de la polymérisation, associé à des valeurs caractéristique de Eα qui peuvent être 

retrouvé dans la littérature. Dans le cas du système avec le TriaEP, un mécanisme complexe 

est mis en évidence, en plus du comportement classique comme observé pour le système 

ELO : la superposition et l’évolution des interactions supramoléculaires du monomère 

TriaEP et du polymère TriaEP/SA. 

 

 

Table A.1. ELO vs TriaEP: caractéristiques phisico-chimiques 

ELO TriaEP 

Liquide visqueux à RT Solide à RT 

Caractère isotrope Caractère mésogène 135 °C < LC < 150 °C 

aliphatique aromatique 

∼ 5.5 époxydes  3 époxydes 

époxyde interne époxydes terminaux 

 

♦ Avec ELO/FA comme second exemple, la fonctionnalité associée à la réaction 

époxyde/alcool est modifiée par la superposition de deux réactions principales. La première 

réaction est celle respectant une fonctionnalité déterminée : époxyde/alcool. La seconde 

correspond à la condensation du FA en position C2 et la réticulation. La fonctionnalité 

théorique de ELO50/FA50 est 1 :1.76, considérant seulement la réaction époxyde/alcool, 

mais se trouve être moindre en réalité, plus proche d’un ratio stœchiométrique (1:1) dû à la 

consommation du FA par auto-condensation. Le processus global de polymérisation, et la 
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formation du réseau polymère sont donc cinétiquement dépendants, fruit de la compétition 

de ces deux réactions principales. Cet exemple orignal de polymérisation cationique 

combinée représente bien la versatilité de la science des thermodurcissables qui permet la 

combinaison de différents types de polymérisation par une sélection judicieuse de 

monomère comme ELO et FA. 

 

(2) Elaboration de matériaux (totalement) bio-sourcés performants. Chapter IV, V, VI 

 

La transition vers l’élaboration de polymère thermodurcissable bio-sourcé comme alternative 

aux résines pétro-sourcé n’est pas forcement évidente, car les hautes Tg sont généralement 

associé aux résines contenant des noyaux aromatiques (principalement des phényls issus du 

pétrole). Toutefois, une autre voie peut être envisagée pour obtenir des matériaux à haute Tg. 

Notre proposition est de tenir compte de l’avantage que nous porte la structure de l’ELO (avec 

~5.5 groupes époxydes par triglycérides) par augmentation de la densité de réticulation à son 

paroxysme, afin d’obtenir un réseau très dense et donc une Tg élevé. Cette stratégie s’est révélé 

efficace avec une Tg de 134 °C pour le système ELO + mono-anhydride (MHHPA), i.e. sans 

aromatique. L’utilisation d’un agent réticulant avec une fonctionnalité supérieure, un di-

anhydride (BTDA) a été investie avec succès. Ce type de durcisseur est généralement utilisé dans 

l’industrie en petite quantité dans certaine formulation pour augmenter la Tg.   

Dans ce contexte, comme principal agent réticulant, seulement une petite quantité peut être 

utilisée pour des raisons de processabilité : notre formulation est de 1:0.5 en proportion d’ELO et 

de BTDA, considerant leur focntionnlités respectives. Le large excès d’époxyde joue un rôle 

prépondérant dans les propriétés finale du matériau qui montre deux Tg à 127 et 240 °C, avec 

deux type de réseau polymère : un réseau copolymère renforcé par certaine liaison 

homopolymère, et un autre réseau contenant pour majorité un réseau homopolymère. Cette 

dernière très haute Tg met en évidence la grande importance des reactions d’homopolymérisation 

sur les propriétés finale du matériau.  

Concernant l’élaboration de polymère thermodurcissable totalement bio-sourcé, deux stratégies 

ont été proposés dans ce manuscrit. La première stratégie a été de crée des résine par association 

de FA avec des humins. Cette voie représente le choix le plus logique, en combinant deux entités 

furaniques, provenant de la même bio-source, c’est-à-dire de la conversion catalytique de 

carbohydrate. Cette combinaison furanique s’avère très intéréssante en terme de structure et de 

chimie, plus spécifiquement, concernant la bonne solubilisation des humins dans le FA, et les 

multiples connextion possible entre FA/FA oligomère et la structure furanique des particules 

d’humins. La deuxième stratégie est basé sur la combinaison de différente bio-ressource : ELO et 
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FA. L’époxydation de l’huile de lin contribuant à augmenter la réactivité et le caratère 

hydrophile des triglycérides, ce qui à permis de mélangé facilement ELO et FA sans séparation 

de phase. 

Si nous considérons la contribution de chaque monomère pour l’élaboration de l’architecture 

polymère, ces molécules possèdent des propriétés antagonistes conduisant à l’édification d’un 

réseau polymère avec des propriétés hybrides. En effet, les oligomères de FA contribue à la 

rigidité du réseau par la présence de chromophore furanique, (en remplacement des groupe 

phenyls que l’on peut retrouver dans les résines pétro-sourcé) alors que l’ELO apporte une 

contribution flexibilisante au réseau par ces groupes aliphatiques : l’ELO causant une gêne 

stérique qui a pour effet de réduire la densité de réticulation du PFA. Ces deux stratégies ont 

permis de concevoir des polymères thermodurcissable totalement bio-sourcés, possèdant des Tg 

variant de 20 à 170 °C.  

 

(3) Proposer des stratégies originales afin d’améliorer les propriétés d’un polymère 

thermodurcissable ou en développer de nouvelles. Chapter V, VII, VIII 

La stratégie propose ici a été basé sur une réflexion biomimétique autour de l’organisation 

hiérarchique de la matière à différente échelle, du micromètre jusqu’au nanomètre (comme 

illustré dans la Figure A.9.). Pour ce qui est de l’échelle micrométrique, les humins ont été 

utilisé comme core-shell particules avec succès, comme l’a montré l’étude préliminaire à travers 

l’élaboration de composite cellulosique pour répondre au problème majeur du PFA, qui est sa 

fragilité. Pour l’échelle micrométrique et nanométrique, l’utilisation de nanofibres orientable 

sous champs magnétique a prouvé être efficace pour générer une anisotropie contrôlé. Enfin, la 

polymérisation d’un star-époxyde mésogène à montrer un auto-assemblage de l’échelle 

nanométrique (phase crystal-liquide) à l’échelle micrométrique. 
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Figure A.9. Stratégie employé dans ce travail doctoral autour d’une l’organisation multi-échelle. 

Cette dernière partie du manuscrit se focalise sur les potentielles perspectives associées à chaque 

chapitre de manière indépendante, et fini par proposer une vision générale du sujet à plus long 

terme. 

♦ Chapitre IV: après le travail fondamental qui a été effectué sur la réactivité de la 

réticulation avec des durcisseur pétro-sourcé, des investigations peuvent être développer 

avec des agents réticulant bio-sourcés, favorisant une fonctionnalité 1-1 avec des durcisseurs 

comme des acides carboxyliques ou anhydrides à la place des classiques amines, dû au 

réseau triglycéride qui induit beaucoup de gêne stérique. Une idée pour avoir un matériau à 

haute Tg pourrait d’être d’utiliser l’anhydride succinique (espaceur court) qui est dérivé de 

l’acide lactique. Une autre proposition, pourrait d’être d’augmenter les propriétés de la 

matrice ELO/anhydride par l’élaboration de copolymer/nanocomposite avec, par exemple, 

l’utilisation de nanocages de silice époxydées : 

octakis(dimethylsiloxypropylglycidylether)silsesquioxane appelé POSS-OG (voir [Pub 05] 

dans Annexes). 

 

♦ Chapitre V: Comme travail complémentaire, après l’étude de composite cellulosique, une 

investigation sur les propriétés mécaniques des résines humins en « block » peut être 

entreprise, pour étendre leur domaine d’application aux moules de fonderie par exemple. Un 
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premier résultat encourageant est présenté dans la Figure A.10. avec la DMA du mélange 

40FA/55hu/5MA comparé au pure PFA. Le résultat principal peut être résumé par un réseau 

polymère moins dense pour le matériaux contenant les humins. La présence d’une transition 

secondaire à T= -20 °C peut être relié à la partie ductile de la structure des humins. Ce 

comportement est en bonne corrélation avec les propriétés mécaniques trouvé pour le 

composite cellulosique, mettant en évidence une augmentation de la ductilité et de la 

rigidité.  

Concernant le potentiel des humins en termes d’application, de mon point de vue, une des 

plus évidentes pourrait être de les utiliser comme bitume, comme additif, ou en 

remplacement des actuels bitumes après modification. Une autre possible application à plus 

haute valeur ajouté pourrait d’être d’utiliser les humins pour l’élaboration de matériaux 

carboné suivant la stratégie opérée pour les matériaux HTC.  
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Figure A.10. Thermogrammes DMA pour les résines PFA et 40FA/55Hu/5MA. 

 

♦ Chapitre VI: après s’être focalisé sur la réactivité principale entre ELO et FA avec le ratio 

un médian 50/50, le travail futur peut être orienté sur l’étude de l’influence des réactions 

secondaires (pour des haut ratios en ELO) comme l’homopolymérisation/éthérification, 

premièrement sur la réactivité et deuxièmement sur la densité du réseau polymère, lié aux 

propriétés mécaniques. 

 

♦ Chapitre VII: l’orientation de nanofibers dans une matrice DGEBA à montrer de bons 

résultats dans la génération d’une anisotropie magnétique et mécanique. Nous pourrions 

considérer l’utilisation d’une matrice bio-sourcé, comme l’ELO, avec la difficulté de choisir 
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un agent réticulant adapté. En effet, comme montré dans le Chapitre IV, l’utilisation 

d’amine aliphatique (comme utilisé dans le Chapitre VII avec le DGEBA) pour la 

réticulation de l’ELO ne forme pas un réseau totalement réticuler. Une autre possible 

perspective serait d’utiliser un champ magnétique alternatif à haute fréquence pour 

selectivement chauffer localement les nanoparticules magnétiques afin d’induire une 

polymérisation qui s’initierais à partir de m-Sep. Cette approche, illustrée par la Figure 

A.11., pourrait augmenter la compatibilité entre les nano-objets et la matrice, ce qui est le 

principal défi pour augmenter les propriétés mécaniques. 

 

 

Figure A.11. Stratégie de polymérisation thermo-induite par un champ magnétique 

alternatif. 

 
♦ Chapitre VIII: plusieurs stratégies peuvent être envisage afin de promouvoir les star-

époxydes mésogène comme monomère à haute valeur ajouté pour la conception de 

matériaux multifonctionnel. Comme premier exemple, ce type de monomère mésogène 

pourrait s’avérer intéressant pour générer des matériaux auto-réparant, en favorisant les 

interactions supramoléculaires qui par ségrégation de phase favoriseraient des réactions 

réversibles comme la métathèse de ponts disulfures par exemple. Comme second exemple, 

les star-époxydes mésogène rigide comme le TriaEP pourrait être des précurseurs intéressant 

pour l’élaboration de matériaux présentant une porosité à différente échelle. En effet, il est 

possible de générer une porosité contrôlée (autour de 30-100 nm) pour une résine 

époxyde/amine, tenant compte des interactions supramoléculaires qui ont lieux durant la 

polymérisation dans un solvant polaire. Récemment, la recherche s’est focalisée sur les 

polymères conjugués microporeux (CMPs) qui présente des micropores de l’ordre de 1-3 

nm. La distribution et l’aire de ces pores est reliées à la structure du polymère qui se 

présente sous forme d’un monomère rigide tri-branche associé à un espaceur di-fonctionnel 
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en forme de « bâtonnet ». Fort de ce constat, l’association du monomère TriaEP avec un 

agent réticulant rigide, possédant une fonctionnalité 1-1, pourrait générer un matériau qui 

présenterait deux différentes porosités. 

 
Depuis l’élaboration des premiers polymères amorphes réticulés au début du 20ème siècle, la 

science des polymères thermodurcissables a été continuellement élargie en corrélation avec les 

découvertes majeures de la Chimie. En effet, comme nous l’avons vu dans la section II.3.5.1. 

avec la description théorique de l’état crystal-liquide, De Gennes initia la grande aventure des 

polymères thermodurcissables cristaux-liquides. De la même manière, le travail de Lehn sur la 

chimie supramoléculaire et puis, sur la chimie dynamique adaptative a contribué à étendre le 

champ des thermodurcissables par la création de polymère possédant des liaisons covalente 

dynamique. Ces polymères possèdent un réseau avec des liaisons covalentes réversibles qui sont 

capable de répondre a différent stimuli comme le pH ou la température, afin d’obtenir des 

propriétés d’autoréparation par exemple. Comme exemple de ces réactions covalentes réversible, 

nous pouvons citer la transestérification ou la métathèse de ponts disulfures. Pour finir, en ce qui 

concerne la quête de la dynamique universelle de la nature entreprise par Leonardo Da Vinci 

(section II.3.) à travers le concept précurseur de bio-inspiration, le plus petit dénominateur 

commun de cette dynamique pourrait être associé à la liaison chimique, dans toute sa diversité. 

En cela, l’élaboration d’une future génération de matériaux adaptatifs biomimétiques pourrait 

être basée sur l’association du concept de bio-inspiration associé à l’utilisation de synthons bio-

sourcé. Les éléments « briques » requis pour accomplir « l’éco-design » de ce type de matériaux 

pourrait être trouvé parmi la richesse pourvoyé par la combinaison de différentes bio-ressources 

qui peuvent dériver de la biomasse ligno-cellulosique, les lipides, ou la biomasse de 3ème 

génération (algues et dérivés aquatique)  

 





 

 

RESUME: 

Le travail de recherche présenté dans cette thèse s’est orienté vers l’élaboration de matériaux avancés et la 
conception de polymères/composites biosourcés. Ce dernier sujet a été entrepris à travers la combinaison de 
différentes matières premières biosourcées qui sont connues comme ayant un grand potentiel de substitution des 
monomères pétrosourcés. Tout d’abord, un travail fondamental a été exécuté en combinant l’huile de lin 
epoxydée (ELO) avec des dérivés d’anhydrides d’acides comme agents de réticulation, afin de relier la réactivité 
chimique de polymérisation à la structure du réseau formé et aux propriétés thermomécaniques. Afin de devenir 
économiquement viable, les bio-raffineries doivent urgemment valoriser les sous-produits issus de la conversion 
de la biomasse. Fort de ce constat, une deuxième étude sur l’incorporation et la copolymérisation d’une quantité 
importante d’humins (résidu hétérogène obtenu durant la conversion des sucres en hydroxymethylfurfural 
(HMF)) avec de l’alcool furfurylique (FA) a été réalisée avec succès afin de créer de nouvelles résines 
thermodures. Une autre voie proposée consiste en la combinaison de ELO et de FA à travers une polymérisation 
cationique, dans l’idée de créer de nouvelles résines totalement biosourcées, générant ainsi une gamme de 
matériaux aux propriétés mécaniques modulables. En ce qui concerne l’élaboration de polymères et composites 
aux propriétés avancées, une réflexion autour des matériaux naturels structurés de manière hiérarchique a été 
entreprise afin d’adapter les concepts d’auto-organisation et de structuration aux architectures polymères. Pour 
cela, un nano-objet hybride-inorganique orientable (m-Sep) a été synthétisé à travers le greffage covalent de 
nanoparticules de magnétite sur la surface de la sépiolite. L’hybride m-Sep ainsi obtenu a été « gelé » dans une 
matrice thermodure suivant différentes orientations, puis les réponses mécaniques de ces matériaux anisotropes 
ont été évaluées. Pour finir, la conception de matériaux organisés en multi-échelle a été explorée à travers la 
synthèse d’un monomère époxyde cristal-liquide présentant une géométrie en forme d’étoile. Par la suite, le 
processus de réticulation a été étudié en termes de cinétique de réticulation et d’auto-assemblage en corrélation 
avec les propriétés mécaniques des matériaux. 

Mots-clés: alcool furfurylique, cristaux-liquides, huile de lin époydée, humins, magnétite, nanocomposite, 
polymère biosourcé, sépiolite, thermodur. 

 

ABSTRACT: 

The research work presented in this thesis was oriented on advanced thermoset materials and also on the 
conception of bio-based polymers and composites. This last topic has been investigated by the combination of 
different bio-based raw materials which are well-known to have a great potential to substitute the petroleum 
monomers. Firstly, a fundamental work has been done on the combination of epoxidized linseed oil (ELO) and 
anhydrides as cross-linkers, which links the polymerization reactivity with the network structure and 
thermomechanical properties. For being economically realistic, the bio-refineries are urged to valorize the side-
stream products issued from biomass conversion. In that respect, a second study investigated successfully the 
incorporation and copolymerization of an important amount of humins (heterogeneous residues obtained during 
the sugar conversion into hydroxymethylfurfural (HMF)) with furfuryl alcohol (FA) in order to create new 
resins. Another proposed combination, focused on ELO and FA cationic copolymerization with the purpose to 
create new fully bio-based resins with tailored mechanical properties. Concerning the elaboration of advanced 
polymers and composites, a reflection around the hierarchically organized natural materials has been achieved in 
order to adapt the self-organization and structuration concepts to polymeric network. Herein, an inorganic-
hybride orientable nanofiller (m-Sep) has been synthetized through the covalent grafting of magnetite 
nanoparticles under sepiolite surface. The obtained hybrid of m-Sep was ulterior “frozen” in different 
orientations in a thermoset matrix, and it’s anistropic mechanical responses have been highlighted. Finally, the 
conception of multi-scale ordered materials has been explored through the synthesis of an epoxidized liquid-
crystalline monomer with a star-shape geometry. Then, the cross-linking process of this monomer has been 
studied in terms of polymerization kinetics and self-organization in correlation with the mechanical properties.  

Keywords: bio-based polymers, epoxidized linseed oil, furfuryl alcohol, humins, liquid-crystals, magnetite, 
nanocomposites, sepiolite, thermosets. 
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