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Dedicated to my grandmother Louise Halimi Laloum who died the 1st of february 2015 at the

age of 95 years old still without knowing how to write nor read.

Dedicated also to my friend Jonathan Sandler (30 years old), his two sons Aryeh (3 years old)
and Gabriel (6 years old) and their little friend Myriam Monsonego (8 years old) murdered at
the entrance of their school Ozar Hatorah in Toulouse (France) that horrible March 19, 2012,

Just because they were Jews.

"It can be said that anti-Semitism is one particular case of intolerance; that for centuries it had a
prevailingly religious character; that in the Third Reich it was exacerbated by the nationalistic and
military predisposition of the German people and by the “differentness” of the Jewish people; that it
was easily disseminated in all of Germany—and in a good part of Europe—thanks to the efficiency of
the fascist and Nazi propaganda, which needed a scapegoat on which to load all guilts and resentments;

that the phenomenon was heightened to paroxysm by Hitler, a maniacal dictator.

But these commonly accepted explanations do not satisfy me. They are reductive-not commensu-
rate with, nor proportionate to, the facts that need explaining. In rereading the chronicles of Nazism,
from its murky beginnings to its convulsed end, I cannot avoid the impression of a general atmosphere
of uncontrolled madness. Thus I prefer the humility with which some of the most serious historians

confess to not understanding the furious anti-Semitism of Hitler and of Germany back of him. |...]

For this reason, it is the duty of everyone to meditate on what happened. Everybody must know,
or remember, that Hitler and Mussolini, when they spoke in public, were believed, applauded, admired,
adored like gods. They were “charismatic leaders”; they possessed a secret power of seduction that did
not proceed from the credibility or the soundness of the things they said, but from the suggestive way
in which they said them. And we must remember that their faithful followers, among them the diligent
executors of inhuman orders, were not born torturers, were not (with a few exceptions) monsters:
they were ordinary men. Monsters exist, but they are too few in number to be truly dangerous; more

dangerous are the common men, the functionaries ready to believe and to act without asking questions.

Since it is difficult to distinguish true prophets from false, it is well to regard all prophets with
suspicion. Yet it is clear that this formula is too simple to suffice in every case. A new fascism, with
its trail of intolerance, abuse, and servitude, can be born outside our country and imported into it,
walking on tiptoe and calling itself by other names; or it can loose itself from within with such violence
that it routs all defenses. At that point, wise counsel no longer serves, and, and one must find the
strength to resist. But then, too, the memory of what happened in the heart of Europe, not very long
ago, can serve as support and warning.”

Primo Levi
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Relativistic electron beam transport

The electron temperature T, of the plasma, where the beam propagates through, is expressed in

eV, the plasma ion density n; is in em™2, the beam density n; is in [102! em ™3], the beam radius

rp is in [10 pm], the electron velocity v and the beam electrons mean velocity v, of a collimated

and monoenergetic electron beam (*) are in cm.s™! and the thermal Maxwell-Juttner (M-J) beam

temperature T} is in keV.
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Chapter 0
Introduction

” Physics is like sex: sure, it may give some practical results, but that’s not why we do it.”

Richard P. Feynman
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0.1. THERMONUCLEAR PLASMA FUSION AS THE SOLUTION FOR THE XXITH
CENTURY ENERGY PRODUCTION

0.1 Thermonuclear Plasma Fusion as the Solution for

the XXIth century Energy Production

0.1.1 World Energy Balance

All experiments and observations carried out until today show that there is a universal quantity which
is conserved during all evolutions and all transformations of matter and fields : the energy. According
to Noether’s theorem, conservation of energy is a direct mathematical consequence of the translational
symmetry of the quantity conjugate to the energy, namely the time. In other words, it is nothing else
than the intuition we have that physics laws do not change with time. In 1845, this quantity has
been introduced by James Prescott Joule in order to understand the link between mechanical work
and generation of heat. In order to pay homage to him, one calls ”Joule” and one notes ”J” the SI
energy unit, based on the amount transferred to an object by the mechanical work of moving it 1 m
against a force of 1 N. Since the development of the thermodynamics theory in the XIXth century, the
energy conservation principle has become an indispensable element of understanding of any physical
process. All developments of modern physics are related to studying different ways of converting
energy from one form into another. To give an order of magnitude, the nuclear reactions of fission
of 0.01 g of Uranium provide approximatively 1 kWh (1 kWh = 3.6 MJ) of heat energy in a nuclear
power plant. The same amount of heat energy can be obtained by burning approximatively 100 g of
oil, coal or gas (1 million of tonnes of oil or oil equivalent produces about 4.4 TWh of electricity on a
modern power station), by condensing 1.6 kg of water vapor or by capturing solar radiations energy
on a surface of 1 m? during one hour (The sun light intensity on Earth is about 0.1 W.cm ™2 during a
sunny day). 1 kWh represents also the gravitational potential energy of 3 tonnes of water falling from
100 m of altitude in a hydroelectric power plant or the kinetic energy of 20000 m? of air moving with
a velocity of 60 km.h™! in a wind power plant or the energy needed by a human being of 65 kg to
climb a mountain peak of 3000 m. In addition to this important concept of energy conservation, the
thermodynamic theory has also led to the Industrial Revolution : little by little, a manual labor has
been replaced by machines, a horse-drawn carriage has been replaced by steam powered or thermal
engines transportation vehicles and a lot of new manufacturing have been developed. In the XXth,
thanks to this concept, a technological and scientific knowledge has exponentially grown up and has led
to incredibly improved quality of human life, allowing the world population to considerably increase
(see the World Population estimates of the United Nations). It is striking to notice how the Gross
National Product of a today country is strongly correlated with its energy ”consumption”. The fossil
fuels such as oil, gas and coal are used today mainly for energy ”production” and represent ~ 90%
in the world energy ”consumption” as shown in Figure 1. The nuclear and hydroelectrical energy
represent each one only =~ 6% of the world energy ”consumptions”. Even if other renewable energies

from wind, biomass, waste, solar and geothermal power plants are more and more used thanks to
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governments subsidies, their contribution is still negligible.
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Figure 1: World consumption per capita (left) estimated from the BP Statistical Review of world
energy 2014 workbook and World Electricity Consumption per capita (right) estimated
from data published by the World Bank and the International Energy Agency. The world
population is estimated from the United Nations Revision of the World Population

One must say that the expressions such as energy ”consumption” or ”production” are misused.
Indeed, by definition, the energy is conserved during all transformations/evolutions. The sense that
we attribute to the words ”production” and ”consumption” of energy is that one converts one amount
of energy which already exists in a certain form into the same quantity of energy in another form.
In this way, there is no ”clean energy”, the energy ”production” /” consumption” is nothing else than
the pure modification of our environment. Thus, like all continous functions, one can show that each
energy resource extraction from Earth will attain its maximum at a certain time and then will decrease
until the resource will totally disappear from Earth. The BP Statistical Review of world energy 2014
estimates that the oil and natural gaz reserves-to-” production” ratios are available for about 50 years,
while the coal reserves-to-”production” ratio will be available for about 100 years. These evaluations
are probably underestimated because of financial reasons but, on the other hand, these estimates are
based on the 2013 data of the World population, while it is expected to grow up to more that 11
billions of people in ~ 2100 (compared to & 7.1 billions in 2013) according to extrapolations carried
out by the United Nations in 2012. In addition, this strong population growth is expected to happen
in developing countries where the resource demands will be the higher than average. One understands
easily, according to Figure 1, which highlights our huge consumption of coal, gaz and oil, that the
cost of energy consumption will be continuously increasing until each of them disappears if one does
not find an alternative. Even if it is the more efficient way of producing energy and the less harmful
for the environment, the governments policy is expected to limit the use of nuclear power plants due to
the long life time of the radioactive waste and the growing public opposition -which plays an important
role during elections- due to disasters such as Fukushima (2011), Chernobyl (1986) and Three Mile

Island (1979). However, the reality is quite opposite. One can easily demonstrate that nuclear power
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0.1. THERMONUCLEAR PLASMA FUSION AS THE SOLUTION FOR THE XXITH
CENTURY ENERGY PRODUCTION

plants are responsible for less human deaths than fossil fuel burning plants if one takes into account

the induced skin and lung cancers and the death of mine workers.

In addition, each way of ”producing” or ”consuming” energy produces actually entropy due to
the irreversible modifications it operates in the Nature. The entropy is also a physical quantity which
has been defined during the development of thermodynamics in the XIXth century. It is a measure of
the number of specific ways in which a thermodynamic system may be arranged. It can therefore be
understood as the measure of the system disorder. According to the second law of thermodynamics,
the entropy of an isolated system never decreases and such systems spontaneously evolve towards
thermodynamic equilibrium, that is to say, the configuration with a maximum entropy. The Earth is
not an isolated system due to its continuous irradiation by Cosmic Rays and its self-emission of thermal
infrared radiations. Besides, one can show according to the second principle of Thermodynamics taking
into account these processes, that the World ” Entropy consumption/production” is responsible for the
rise of the Earth temperature (= +1° since the beginning of the XXth century). Indeed, since 1965,
the carbon dioxide emission, known to be one of the major factor responsible for the Earth greenhouse
effect, has increased from =~ 3500 kg/year/capita to ~ 5000 kg/year/capita according to the BP
Statistical Review of world energy 2014 workbook and the United nations world population estimates.
Consequently, even if the hydro power plants are the most efficient way of ” producing” energy among
all ecologically friendly ones, it will also be affected by the climate changes due to the droughts induced
by this increase of temperature. For example, Europe is expected to lose 20 — 30% of precipitations
until 2100 leading to a smaller hydroelectricity production efficiency (The majority of European hydro
power plants does not work well yet at summer). Finally, other "renewable energies” such as wind
power plants or photovoltaic panels are unsufficient to supply the World demand especially in the
industrial zones. As a conclusion, there is an important and challenging Energy issue for the Humanity
in the XXIth century and will surely lead to important conflicts between Nations if one does not find

an alternative (or reduce our consumption which seems to be impossible).

0.1.2 Thermonuclear Fusion

Four fundamental interactions have been discoverded by physicists : the Gravitational, the Electro-
magnetic, the Strong Nuclear and the Weak Nuclear interaction. Effective only at a distance of a few
fm, the Strong Nuclear force is 137 times stronger than the Electromagnetic one, 102> times stronger
than the Weak Force interaction and 1038 times stronger than the Gravitational interaction. This en-
sures the stability of ordinary matter, in confining the elementary particles quarks into hadrons such
as proton and neutron both called nucleons, the largest components of the mass of ordinary matter.

2 2 is in the form of the Strong Force

Most of the mass-energy of a common proton my,c” or neutron m,,c
Field Energy; the individual quarks provide only about 1% of the mass-energy of a proton. Also, ex-

periments show that the mass of an atomic nucleus M is always smaller than the sum of its nucleons
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Figure 2: The Aston curve of the strong nuclear binding energy per nucleon B(Z, N)/A (left) and
a NASA density-temperature map of existing plasmas

mass N'm,, + Zm,, taken separately. This mass energy deficit [M — (Nm,, + Zm,)]c? is converted into
strong nuclear binding energy according to the famous Einstein equation, and it is consequently re-
sponsible for the stability of atoms. Besides, not all combinations of A = Z 4 N nucleons are necessary
stable. Only 282 nuclei are known to be stable on the Earth (see the Aston curve on the left panel of
Figure 2). Lightweight atoms are stable when the number of their neutrons N approximatively equals
the number of protons Z which defines the nucleus electrical charge. The atoms heavier than iron
(A > 54) are stable if N ~ 1.5Z. Again according to the Aston curve, two kinds of nuclear reactions
are exoenergetic : the nuclear fission of one heavy nucleus, which is a process already used in fission
nuclear power plants, but also the nuclear fusion of two lightweight nuclei. In the 1950’s, the idea of
controlling thermonuclear combustion of lightweight atoms for Energy ”production” was born shortly
after the development of a theoretical model of the fusion reactions of lightweight elements to explain
the conversion of nuclear binding energy into heat in stars [Bethe, 1939]. Since then, ”bringing the
star power on Earth” has been the dream of many physicists and seems to be a promising solution to
solve the World Energy issue of the XXIth century. The problem is that while the Gravitational and
Electromagnetic forces act over potentially infinite distance, the another two Nuclear forces act over
minuscule subatomic distances and are more difficult to access. According to the Electromagnetic
theory, an energy of about 1 MeV is needed to counteract the Coulomb barrier between two nuclei
and make them getting close enough to fuse. Actually, an energy of about 10 keV is sufficient thanks
to the quantum tunneling effect [Gamow, 1928]. The fusion of two nuclei has been achieved many
times thanks to particle accelerators and a lot of stable nuclei have been discovered thanks to them.
Recently, the yet-unnamed element 117 have been created by physicists at the GSI Helmholtz Center
for Heavy Ion Research, an accelerator laboratory located in Darmstadt, Germany. But, concerning
the energy ”production”, the quantity of accelerated isotopes is too small to generate more energy
than the energy needed to accelerate them. Also, even if the cold fusion or muon-catalyzed fusion is

a well known process since the 1980’s [Jones et al., 1983], it does not allow to get high gains. Indeed,
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a net energy production is impossible because of a high energy required to create muons, their short

2.2 s life time and a high probability that a muon will bind to a new alpha (He) particle.

The only way to ”produce” energy thanks to fusion reactions consists in creating a thermonu-
clear plasma in order to achieve high reaction rates and consequently high gains like in the Stellar
Temperature-Density conditions (see the right panel of Figure 2). In addition to this constraint,
there are other requirements : the nuclear reaction must be exothermic, it must employ the lightest
possible nuclei to limit the Coulomb barrier, which is proportional to their atomic number Z, it must
have a large cross section (probability), implying consequently only 2 nuclei, it must conserve the
proton and neutron numbers in order to limit the weak nuclear interaction and finally it must produce
at least one neutron in addition to the heavier nucleus in order to heat the blanket coolants and to
produce electricity. 80 fusion reactions satisfy these criteria but the most probable one is the fusion

reaction of the two Hydrogen isotopes :
D + 3T — 3He (3.5 MeV) + ¢n(14.1 MeV) (1)

due to the existence of an intermediate resonant nuclear state in this reaction. In Figure 3, the
reaction rate of such a T(d,n)*He fusion nuclear reaction (cv) is plotted. Here, o is the fusion reaction
cross section i.e. the effective area of a targeted Deuterium (or Tritium) nuclei seen by a projectile
Tritium (Deuterium, respectively), v is the relative velocity of the projectile in a collision and the
angle brackets mean that the rate is averaged over a Maxwell-Boltzmann distribution function (ther-
modynamic equilibrium). One can see that the reaction probability is maximum for a thermonuclear
DT plasma at a temperature 7' =~ 100 keV, which is not yet achievable with the today technology.
However, a plasma temperature of 10 keV can be achieved and would be sufficient. Three other fusion
nuclear reactions can also occur at this temperature but with smaller probabilities : *He(d,p)*He,

D(d,p)T and D(d,n)3He. Their reaction rates are also shown in Figure 3.

From a practical point of view, concerning the energy ”production”, there is an almost infinite
quantity of Deuterium 2D on the Earth with 33 g in each tons of sea water; That is why one calls
the DT fusion the blue energy. The Tritium $T can be produced in a fusion reaction between the
escaping neutrons jn(14.1 MeV) and lithium nuclei §Li or {Li which are abundant on Earth. So,
contrary to the fission nuclear power plants, which are using limited resources of Uranium, Plutonium
and Thorium, there is no resources problems. Also, the DT fusion presents no risk of a runaway chain
reactions and no long life time radioactive waste. The fusion reaction products are stable and only
activation of construction materials by fast neutrons is expected. As a conclusion, an eventual nuclear
fusion power plant would have all the pros of the nuclear fission ones without its cons that is to say,
without polluting the environment, without eventual nuclear catastrophes and not facing the problem

of limited terrestrial resources.
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0.1.3 Lawson Criterion
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Figure 3: Reaction rate (ov) of the different fusion nuclear reactions (left panel) and Lawson criterion
for the Ignition (right panel) both estimated from [Bosch and Hale, 1992]

Even more than 99% of visible matter in the universe can be found in the plasma state and it has
been studied for many decades. However, it is still difficult to create and maintain a thermonuclear
plasma today. In order to evaluate the conditions needed to create and control such an equimolar DT
plasma, one has to take into account on the one hand the plasma power losses Pgss and on the other
hand the total power gain Fyain. By definition, a plasma is made of a large number of charged particles
and it is characterized by a collective behavior of particles due to the long distance electromagnetic
forces. Therefore, the total power losses consist in the thermal, mechanical and radiation losses (every
accelerated charged particles lose energy by emitting light). The total power gain consists in the
external energy brought by the ”driver”, that is to say, the external power needed to create and
maintain the plasma Py and the fraction P, = F(3.5/17.6) Py,s released by the fusion reactions Ppys
in a form of alpha particles (3He), as only alpha-particles are depositing their energy. The neutrons
are electrically neutral and are consequently leaving from the plasma without collisions. Their energy
is recovered in the blanket and used to produce the Tritium and heat. By considering a stationary
energy balance Ploss = Pgain = Po + Pext and assuming that all o particles deposit their energy inside
the plasma (F, = 1), one may define the energy gain G = Pp;5/Pext- Then, by evaluating the plasma
life time or confinement time by the ratio of its internal energy divided by the total power losses
Te = 3nekpT [ Poss where n is the plasma electron density and 7 the plasma temperature, one finds a
criterion to achieve the ignition of such a little star on Earth defined by G — oo of an equimolar DT

plasma [Lawson, 1957]

S 12 kgT
3.5 MeV (oprv)

~ 10" cm™3.s at T ~ 10 keV. (2)

NeTe

Due to chaotic motion of charged particles at a temperature of T~ 10 keV, the plasma tends
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naturally to expand and it is difficult to maintain it during the needed time 7. with a sufficiently high
density n., because these two parameters T and 7, are linked according to the Lawson criterion. In the
star cores, the plasma confinement is accomplished naturally thanks to the Gravitational attraction.
For example, the mass of the Sun (about 1030 kg) is sufficiently high to attract and compress matter
to densities up to 1032 cm™3 during its whole life of about 10 billion years, which corresponds to the
time it needs to consume all its fusion fuel. The fact that plasma particles are electrically charged has
naturally led to the idea of using strong magnetic fields in order to confine the thermonuclear plasma.
In the 1950’s, the Soviet physicists Igor Tamm and Andrei Sakharov proposed a device called tokamak
in the shape of a torus allowing to confine a thermonuclear plasma thanks to a toroidal magnetic field
produced by magnetic coils that surround the torus. In addition, a poloidal magnetic field which is
created by a toroidal electric current that flows inside the plasma allows to heat it. The international
project ITER is currently building the world’s largest experimental tokamak nuclear fusion reactor
and aims to make the long-awaited transition from experimental studies of plasma physics to full-scale
electricity-producing fusion power plants. In 2003, the ITER prototype Tore Supra has obtained the

-3

world record by confining a thermonuclear plasma of n, ~ 10" cm™ more than 6 minutes and 30

seconds during which time, energy on the order of 300 kWh was injected and extracted.

0.2 Inertial Confinement Fusion (ICF)

Inertial confinement fusion (ICF) is an alternative way to control fusion reactions. It is based on
scaling down a thermonuclear bomb explosion to a small size, applicable for a power production. In
this approach, achieving the energy gain through fusion reactions relies firstly on a fast compression to
a high density (up to 1000 g.cm™3 in the fuel) of a mm-scale capsule filled with a mixture of Deuterium
and Tritium by the use of an ablative rocket effect. Then, a conversion of the implosion kinetic energy
into the internal energy results in heating of the central zone called "hotspot” up to temperatures
T > 5 keV, allowing to initiate the fusion reactions of the DT fuel in agreement with the Lawson
criterion. Thus, instead of magnetic fields, here, the plasma is confined by its own inertia. Besides,
this process lasts only a few ns so that this approach presents significant technological difficulties due
to a high repetition rate of 10 Hz needed to continuously produce electricity. However, by reaching
very high densities during a short confinement time, the ICF approach would be much more efficient
in terms of gain, than magnetic confinement fusion, which aims to fuse the DT fuel at low densities

but long confinement times.

0.2.1 Conventional ICF Schemes

Since the invention of lasers [Maiman, 1960], it came naturally the idea to use many laser pulses to

strongly compress DT fuel capsules. In the 1970’s, scientists began experimenting with powerful laser
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beams in France [Colin et al., 1968], in the United States of America (USA) [Nuckolls et al., 1973] and
in the Union of Soviet Socialist Republics (USSR) [Basov et al., 1968]. In the “direct drive” approach
to ICF, powerful beams of laser light are focused on a small spherical pellet containing micrograms of
Deuterium and Tritium (see Figure 4). A rapid heating caused by the laser driver makes the outer
layer of the target explode. According to the momentum conservation law, the remaining portion of the
target is driven inwards in a rocket-like implosion, causing compression of the fuel inside the capsule
and the formation of a shock wave. The latter heats the fuel in the very center and results in ignition
of fusion reactions which are propagating the fusion burn wave and release of more nuclear energy
than was initially deposited. In the “indirect drive” method, the lasers heat the inner walls of a gold
cavity called a hohlraum containing the pellet, creating a hot plasma which radiates a uniform “bath”
of soft X-rays (see Figure 4). The X-rays rapidly heat the outer surface of the fuel pellet, causing a
high-speed ablation, or “blowoff,” of the surface material and the fuel capsule implosion as if it had
been hit with the lasers directly. In both approaches (direct drive and indirect drive), symmetrically
compressing the capsule with radiations creates a central “hot spot” where fusion processes set in, the
plasma is self-heated and the fusion burn propagates outward through the cooler, outer regions of the

capsule much more rapidly than the capsule can expand.
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Figure 4: Classical ICF schemes : The Direct and Indirect drive approaches

[Campbell and Hogan, 1999]

Direct and indirect drive schemes have their advantages and drawbacks. The former has a higher
laser-target coupling efficiency but is less uniform in laser irradiation due to the use of discrete laser
beams. Beam smoothing techniques have a key role in the direct drive. The indirect drive by soft

X rays, which are generated at the inner surface of a hohlraum, may produce a better uniformity.
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This allows to reduce the growth of perturbations due to Rayleigh-Taylor instabilities. The soft X
ray drive has much higher ablation rates and is less sensitive to hot electron preheat. A potential
disadvantage of indirect drive is the larger scale of the plasma crossed by the laser beam from the inlet
hole to the hohlraum wall. Parametric instabilities (i.e. the unstable decomposition of the incoming
laser radiation into two daughter waves) in hohlraums are responsible for a significant energy loss
and production of energetic electrons. One of the most important advantages of the indirect drive
approach is a radiation drive concept which allows to use another drivers such as Z-pinch of heavy

ions.

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) is
operational since March 2009 and a variety of experiments have already been completed. The NIF
is a Nd : Glass laser facility, which is now routinely operating at 1.6 MJ of ultraviolet (3w) light
on target with a very high reliability. It recently reached its design goal of 1.8 MJ laser energy and
500 TW power of 3w light on target, and has performed experiments with 1.9 MJ at peak powers of
410 TW [Moses, 2009]. In addition to this impressive success, the National Ignition Campaign (NIC)
on the NIF has allowed to achieve the world record indirect-drive neutron yield of 6.1 10 neutrons
representing a gain G of few % during one indirect-implosion [Hurricane O. A. et al., 2014]. Even
if the primary break-even goal (G > 1) has not been achieved yet, the NIC allowed to obtain new
experimental results and code developments, generating a large body of knowledge and corrections of
the previous models. In France, the Laser MegaJoule (LMJ) is under construction near Bordeaux at
the Cesta center of the ”Commissariat a ’'Energie Atomique et aux Energies Alternatives” (CEA).
The project implies a construction of 176 laser beam lines (instead of 240 at the beginning) delivering
more than 1 MJ to a DT target using, as the NIF, the indirect drive method. The first laser shots with
8 beam lines were successfully delivered in the end of 2014. The laser lines of LMJ will be assembled
in quads of four beams. Each quad will deliver more than 30 kJ of energy within a few ns. Direct drive
ICF has been studied with smaller pellets at sub-ignition scale for many years, in particular, at the
University of Rochester (USA), on the Omega laser (60 beams delivering a total of 30 kJ on target)
and at the University of Osaka (Japan), on the Gekko laser (12 beams delivering 15 kJ on target).

0.2.2 Problems facing the ICF Conventional Schemes

The conventional schemes rely on the ignition of an isobaric hotspot where the DT fuel must reach
a temperature of T' ~ 7 keV and an areal density of pR ~ 0.25 g.cm™2 during a confinement time
of 7. = 40 ps. In order to achieve this extreme conditions, many ns laser pulses representing a total
energy of E;, ~ 1 MJ are needed to uniformly irradiate the solid shell. From irradiation by laser pulses
(direct approach) or x-rays (indirect approach), the outer shell layers are ablated and the resulting
laser-generated plasma expands. The time evolution of the laser pulses is chosen according to the

Nuckolls-Kidder law such that the ablation pressure launches a spherically converging shock wave
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Figure 5: Fuel configuration at ignition for the conventional scheme a), the fast ignition scheme b)
and the shock ignition scheme c) [Atzeni, 2009]

followed by a continuous succession of spherically converging compressional waves, which arrive at the
same time on the internal surface of the shell. At that moment, a shock wave is transmitted in the DT
gas, while a rarefaction wave is reflected in the shell. When the latter arrives at the ablation surface,
the shell undergoes a strong acceleration and the capsule implodes. Due to its spherical symmetry, the
DT fuel in the shell is compressed to the desired density. A conversion of the imploded target’s kinetic
energy into internal energy results in the creation of an isobaric hotspot, where a self-sustained reaction
of Deuterium and Tritium fusion is initiated. The fusion reactions generate a spherically diverging
thermonuclear combustion wave followed by a detonation, which burns the denser part of the shell.

The confinement time 7. corresponds to the hotspot lifetime before its hydrodynamic expansion.

Thus, the simultaneous compression and heating processes of the fuel impose several constraints
on the target and driver designs which make it difficult to obtain significant energy gains. These
constraints are multifactorial. Firstly, parametric instabilities may reduce the conversion efficiency of
laser energy deposited in the target and create the pressure inhomogeneities. Secondly, the generation
of fast electrons due to laser-plasma interaction processes results in the target preheat, which leads
to the increase of the target entropy and limits the shell compression. Finally, the hydrodynamic

instabilities may mix the hot and cold fuel and can break the shell during its implosion.

0.2.3 Fast Ignition and Shock Ignition Alternative Schemes

Since the discovery of the Chirped Pulse Amplification (CPA) by [Strickland and Mourou, 1985], short
pulse laser technology has grown steadily. In the 1990’s, the threshold intensity value of 10'® W.cm™?2
has been attained, allowing to reach the relativistic laser-matter interaction regime where high currents

of relativistic electrons can be generated. In order to relax the constraints on the driver and the target
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Figure 6: Schematic of cone-guided fast igntion (a) and photograph of cone-attached shell target
used for integrated experiments on OMEGA (b). [Norreys et al., 2014]

imposed by the simultaneous compressing and heating processes, it was thus proposed to separate
the target compression and fuel heating phases. In this scheme, the shell is imploded at a lower
velocity in a more stable regime. The ignition is achieved by using such a relativistic laser pulse
generating a fast electron beam, which creates a hot spot in the dense part of the fuel just after the
end of the compression phase at the capsule stagnation [Tabak et al., 1994]. In this fast ignition
scenario, the required density is much smaller (300 g.cm™2 instead of 1000 g.cm™3) due to the fact
that the hot spot is not created anymore in the center of the target but in the lateral denser region
due to the heating by the fast electrons, as shown in Figure 5. Thus, the constraints on the shock
wave convergence and on the implosion symmetry are reduced. Furthermore, the compression phase
needs much less energy (200 — 300 kJ) than in the conventional scheme and the compression driver
cost is consequently lower. This is definitely an advantage for a future fusion power plant. The
shell implosion velocity is also much smaller than in the conventional scenario. This allows a greater
tolerance concerning the hydrodynamic instabilities and a lower risk of breaking the shell. Moreover,
a laser-produced relativistic electron beam may provide a more efficient heating of the dense material
and one may expect much higher gains than in the conventional scenario. Finally, the fast ignition
has the advantage of creating a much denser isochoric hot spot due to the fact that the heating time

by the fast electrons is much less than the hot spot hydrodynamic expansion time.

However, the fast ignition opens new problems to resolve. Due to the fact that the Ultra-High
Intense (UHI) laser pulse cannot propagate beyond the critical density n. of the plasma, there is a
problem to transport the electron beam to the dense fuel. Moreover, it has been demonstrated that
the generated relativistic electron beam is divergent and cannot deliver the energy into a sufficiently
small hot spot. Two approaches have been proposed to compensate the beam divergence. First, one
may use a first ultra intense laser pulse to create a channel through the process of hole boring letting
a second UHI laser pulse to generate the ignitor electron beam as close as possible to the dense area.
However, an efficient hole boring was not demonstrated so far. Another approach relies on a cone

inserted in the target as shown in Figure 6. It allows to reduce the distance to ~ 100 yum between
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the electron beam generation zone and the dense part of the fuel. The parameters required to reach
ignition have been estimated thanks to hydrodynamic simulations assuming the fast electron beam

energy being deposited in a spherical zone of a compressed fuel [Atzeni, 1999
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It was found that, assuming a fuel density p = 300 g.cm™3, one needs to deposit the energy of

Eign ~ 18 kJ during the time 75, ~ 21 ps in a sphere of the radius rjz, ~ 20 um. This corresponds

3

to a hot spot areal density of pR = 0.6 g.cm™>. According to numerical simulations, the optimal
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The electrons having a stopping length of 40 um can be generated by a laser pulse with an intensity

of [Atzeni et al., 2009b]
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where 71, is the laser-to-electron beam conversion efficiency.

Experiments conducted on the Gekko-XII ns laser system coupled with a PW laser beam at the
Institute of Laser Engineering of the Osaka University in Japan has already demonstrated a significant
increase in the number of neutrons released by the fusion reactions compared to the direct scheme
scenario [Kodama R. et al., 2001] [Kodama R. et al., 2002]. In another experiment conducted in 2010
on the Gekko XII laser coupled with the new LFEX PW laser (that can deliver an energy up to 10 kJ
in a 0.5—20 ps pulse), the neutron enhancement was confirmed. However, a relatively modest neutron
yield of 3.5107 has been obtained with a short pulse laser energy of 300 J on the target, which is
smaller than the yield obtained in 2002 [Shiraga et al., 2011]. Some sub-ignition scale Fast-ignition
experiments were also performed on the OMEGA/OMEGA EP laser at the University of Rochester
in the USA. With optimal timing, the OMEGA EP pulse produced up to 1.4 107 additional neutrons,
which is a factor of &~ 4 more than without short-pulse heating [Theobald et al., 2011]. One quad
of NIF beams is undergoing conversion to high-intensity picosecond-duration pulses to provide an
Advanced Radiographic Capability (ARC). These beams will deliver up to 10 kJ in a 5 ps pulse that
can be used as a sub-scale ignitor pulse to study fast electron core heating in integrated fast ignition
experiments. In France, the PETAI project consists in coupling the LMJ facility to a PW laser with
an energy of 3.5 kJ and a pulse duration of 0.5-5 ps.

Another method to separate the assembly and ignition phases of the DT fuel is Shock Ignition.
It consists in igniting a central hot spot (see Figure 5) heated by the ignitor shock generated by an
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Figure 7: Laser pulses shape for schock ignition : (1) corresponds to the Nuckolls-Kidder law for the
compression phase and (2) is the ignitor pulse (left) and the corresponding logarithmic
pressure gradients in the target versus space and time (right) [Ribeyre et al., 2009]

ablation pressure of 300 Mbar at the end of compression phase. It increases its strength as it converges
in the imploding shell and collides with the return shock [Zhou and Betti, 2005] [Betti et al., 2007].
Massive cryogenic shells at a low implosion velocity and a low adiabat can be used in this shock
ignition scheme leading to fuel assemblies with large areal densities. The igniting shock creates the
hot-spot pressure greater than the surrounding dense fuel pressure. Such a nonisobaric assembly
features a lower energy threshold for ignition than the conventional isobaric one. The ignitor shock
can be launched by a spike in the laser power which is compatible with the performance of NIF and
LMJ. The thermonuclear gain can be significantly larger than in the conventional isobaric ignition for
an equal driver energy. Compared with fast ignition, shock ignition presents the advantages that it
does not require any complex cone-in-a-shell targets or high power lasers. Also, the physics at work
in this scheme is standard laser driven hydrodynamics, a relatively well-known and proven discipline.
Yet the latter observation must be mitigated considering the failure of the NIC. Besides, as it involves
low velocity implosions, this scheme is relatively robust with regards to hydrodynamic instabilities
during the shell acceleration and it mitigates the Rayleigh—Taylor instability at the stagnation time.
The required power for a 300 Mbar shock delivery corresponds to a 120-200 TW final spike, the actual
value depending on the ablator material and focal spot dimensions, independently of the irradiation
pattern. This power is an order of magnitude lower than the power required by fast ignition and
it is achievable with the NIF-LMJ technology. Nevertheless, the coupling of this final pulse to the
target presents several unsolved issues such as parametric instabilities, hydrodynamic instabilities or
the role of the fast electrons generation in the ignitor shock creation. An ignitor shock generated by
an ablation pressure close to the required 300 Mbar has been achieved recently in Omega experiments

with ~ 500 ym — diameter solid plastic ball targets and a laser spike of 410" W.cm™2 laser pulse
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[Theobald et al., 2013].

0.3 Fast Electron Generation in the context of ICF

0.3.1 Role of Fast Electrons in the Shock Ignition Scheme
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Figure 8: Schematic view of the laser-shell interaction

In the non relativistic regime of laser-plasma interaction where Iy \? < 10'® W.cm™2.um? (with
I, being the laser pulse intensity and A its wavelength), the material is ionized by the laser electric
field during the first ps of the Laser-Solid-Interaction (LSI) [Keldysh, 1965]. This quasi-instantaneous
multi-photon absorption process takes place for laser intensity above I, ~ 10! W.cm™2. Due to their
low inertia, the electrons rapidly gain a kinetic energy from the laser in collisions with atoms and
ions. The laser energy transfer to the ions is done indirectly through the energy exchange in collisions
with electrons. While the heated plasma consequently expands, the laser pulse cannot penetrate the
plasma where the electron density n. is above the value of n. ~ 10?! ecm=3/A[um]? called the critical
density. Indeed, in this denser part of the plasma, the Langmuir frequency wp. = \/m, at
which the electrons oscillate, is greater than the laser frequency w = 2mwc/A so that the laser field is
screened. Thus, a part of the laser energy is absorded in the sub-critical region and another part is
reflected. The denser part where n. > n. is heated by the electron thermal conduction lauched from
the absorption zone, that is to say, by the collisions of hotter electrons with cooler ones. The electron
heat conduction transports the absorbed energy to the ablation front where it is transformed into the
energy of vapors. The reaction of ejected vapors creates the ablation pressure which is responsible
for the rocket effect and the launching of shock/compression waves depending on the laser intensity

temporal profile.

Concerning the Shock Ignition scheme, at the moment of the laser peak, the absorption zone called

corona has a larger scale and a higher temperature than in the conventional ICF designs. This changes
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considerably the conditions of exciting the parametric instabilities. As the laser intensity is higher
than in the conventional schemes, more absorbed energy is transported by hot electrons which can
reach kinetic energies up to several 10th keV as pointed out by [Klimo et al., 2010] according to kinetic
simulations. Thus, one of the main issues of Shock Ignition concerns the transport of hot electrons.
At the moment of the ignition spike’s arrival, the shell is already compressed, its radius is reduced by
a factor of 2-3 and its areal density is increased by a factor of ten or twenty approaching a level of
about 10 mg.cm™2. This value is comparable to the range of a 100 keV electron. For this reason, the
hot electrons generated in the corona with lower energies than 100 keV may not present a danger for
the fuel compression contrary to the conventional scenario [Ribeyre et al., 2009]. Depending on their
characteristics (kinetic energy spectrum and number) as well on the target hydrodynamic properties
(density gradient and density value) at the moment of the spike arrival, the hot electrons may play an
important role in the creation of the ablation pressure =~ 300 Mbar required for launching the ignitor
shock. Also, the electron transport may affect the implosion symmetry because of a large distance
between the zone of electron generation in the underdense corona and the ablation surface. The hot
electrons may smooth out the small scale inhomogeneities improving consequently the shell stability
and suppressing the fuel mix with the hot-spot material at the internal surface of the shell. All these
observations about the role of the fast electrons in the shock ignition scheme need further experimental

as well as numerical studies.

0.3.2 Fast Electron Beam Divergence in the context of Fast Ignition
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Figure 9: Schematic of the transport of laser-driven fast electrons in a dense plasma
[Gremillet et al., 2002]

Interaction of Ultra-High Intensity (UHI) laser pulses, IrA? > 10'® W.cm=2.um?, with solid tar-
gets leads to a forward acceleration of electrons up to several MeV [Beg et al., 1997]. Such a relativistic
electron beam of a density n, and a current density j,, propagating through a plasma or a solid having

an electron density n. > nyp, generates an electric field, which tends to eject the plasma electrons
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out of the beam volume in order to equilibrate the total charge. The charge neutralisation proceeds
on a timescale of the order of the plasma electron-ion collision time [Hammer and Rostoker, 1970] or
the Coulomb explosion time [Cox and Bennett, 1970], depending on the plasma temperature-density
conditions. Over the same timescale, the electric field accelerates the plasma electrons thus cre-
ating a return current j. ~ —j;, and decelerates the beam electrons in order to cancel the total
current density in agreement with Lenz’s law [Hammer and Rostoker, 1970]. In case of irradiation of
an insulator by a UHI laser pulse, the laser-generated electron beam is electrostatically neutralized
[Debayle and Tikhonchuk, 2007]. Electrons of the material are firstly ionized at the beam front by the
charge-space electrostatic field generated by the fast escaping electrons. Then, they are accelerated
by this electrostatic field thus creating a current density jo =~ —jp. This "return current”, ionizing
the material through collisions with the bound electrons of the material, leads to the electric neu-
tralization of the fast electron beam. In both cases, metal/plasma or insulator, the return current
allows for the propagation of electron currents in excess of the Alfven-Lawson limit which defines the
maximum relativistic electron beam current in vacuum [Alfvén, 1939]. However, due to the imperfect
current neutralization, a magnetic field is induced that can deflect the beam electrons. The plasma
electron temperature-density crossed gradients, plasma resistivity gradients and the beam current
density curl are the main sources of this residual magnetic field. Later, this magnetic field begins to
diffuse leading to a separation of the beam and the return current [Lee and Sudan, 1971]. Besides,
the resulting system of two counterpropagating high currents is very unstable and may lead to the
electron beam resistive filamention [Bret et al., 2010b]. The collisions of the relativistic electrons with

plasma electrons and ions also contribute to the scattering and the slowing down of the beam.

The experimental studies of fast electron generation by a UHI laser pulse have shown a significant
beam divergence angle [Green et al., 2008]. Concerning the Fast Ignition scheme, this strong diver-
gence strongly limits the estimates (3) of energy deposition in the hot spot [Bellei et al., 2013]. Several
methods have been proposed to collimate the electron beam. It has been noticed that the plasma re-
sistivity gradients naturally induced in the heated material by the electron beam can collimate the
beam [Bell and Kingham, 2003]. This self-collimation, however, is not sufficient for the beam guiding
because of the radial dependence of the divergence angle [Debayle et al., 2010]. It was also proposed
to guide a relativistic electron beam in a magnetic channel created by a relativistically intense, picosec-
ond laser prepulse followed by the main pulse [Robinson et al., 2008] [Scott et al., 2012]. The prepulse
serves to create such a collimating magnetic field structure due to the laser-produced electron beam
propagation. This magnetic channel then helps guide the fast-electron beam generated by the second
pulse. Other methods consist in using targets containing a high-resistivity-core-low-resistivity-cladding
structure or a low-density-core-high-density-cladding structure. These field structures can be gener-
ated during the beam transport, hence enabling the beam to self-collimate [Cai et al., 2011]. In the
high-resistivity-core-low-resistivity-cladding targets, the magnetic field at the interfaces is generated by
the resistivity gradients and the fast electron current, while in low-density-core-high-density-cladding

targets, the magnetic field is generated by a rapid change of the flow velocity of the background elec-
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trons in the transverse direction (perpendicular to the flow velocity) caused by the density jump. A
similar idea, based on a more complex array of resistivity gradients consisting of alternating layers of
different Z materials have also been proposed [Robinson et al., 2012] [Schmitz et al., 2012a]. Adapted
to the Fast Ignition cone-in-shell target, this ”elliptical mirror” may improve the coupling efficiency
into the hot spot by a factor of 3-4 [Robinson and Schmitz, 2013]. Also, it has been shown that a
target composed of resistive filaments with a decreasing background density, adiabatically converts
the beam transverse energy into longitudinal energy [Debayle et al., 2013]. Another possibility is to
apply an external magnetic field parallel to the beam direction in the fuel [Strozzi et al., 2012]. With
a field strength exceeding 2 kT, relativistic electrons are trapped by the magnetic field lines and the
lateral transport of these electrons is strongly suppressed. In the paper by [Daido et al., 1986], it has
been demonstated that kilotesla magnetic fields can be generated by using a capacitor-coil target.
More recently, a magnetic field of 1.5 kT was generated [Fujioka S. et al., 2013]. Extended double
cones have also been proposed to confine the fast electrons escaping from the cone by electrostatic and
magnetic fields formed in the vacuum gap region of several micrometres width between the two walls
[Johzaki et al., 2011]. It has been shown through numerical simulations of electron transport that an
extended double cone may enhance the core heating rate by more than a factor four compared to single
cones, under otherwise similar conditions. However, despite these progresses in the understanding of

relativistic electron beam transport, there is still a need of further numerical and experimental studies.

0.3.3 Existing Simulation Methods for Fast Electron Transport
Modeling

The equation which takes into account both the collisional and collective processes of fast electron
transport in the context of shock and fast ignition is the Vlasov-Fokker-Planck (V-F-P) equation for
the beam distribution function f, [Landau and Lifshitz, 1981]. Due to the complexity of fast elec-
tron transport imposed by the coupling of the VFP equation with the Maxwell equations and the
temperature-dependence of the transport coefficients, numerical tools are needed for preparation and
interpretation of experiments. This system of equations has been extensively studied for 30 years and
several numerical methods have been developed [Thomas et al., 2012]. Several families of codes can be
identified. The first family consists in solving the V-F-P equation by a Particle-In-Cell (PIC) method
[Birdsall and Fuss, 1969] and by interpolating the resulting macroparticle positions and velocities to
compute the electromagnetic fields. Historically, this method was used to solve physical problems
where collisional processes can be neglected. All electrons (both plasma and beam electrons) are
sampled by macroparticles which consequently leads to accurate but time-consuming computations.
Moreover, in order to limit the non-conservative force associated with the particle-grid mapping which
leads to self-heating and numerical instabilities, the space resolution has to be comparable to the Debye

screening length. This poses a strong constraint in the case of dense and/or cold plasmas. Collisional
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processes are usually treated by Monte-Carlo methods [Takizuka and Abe, 1977]. The second family
of codes employs the same method but restricted to the beam electrons, introducing a low-energy cut
off [Gremillet et al., 2002]. The plasma electrons are taken into account via hydrodynamic equations
of conservation or simplified ones. This approach belongs to the family of hybrid PIC codes. Other
authors solve the full V-F-P equation [Yokota et al., 2006] [Duclous et al., 2009] or use a decomposi-
tion of the distribution function in the momentum space with their corresponding hybrid versions. It
has been shown that a spherical harmonic decomposition of the distribution function enables modeling
of arbitrary local anisotropy for large enough expansion orders [Tzoufras et al., 2011]. Besides their
accuracy and the rapid progress in high performance computing resources, all these codes are time
consuming because of the Courant-Friedrichs-Lewy condition that restricts the time step computation
(a fraction of a plasma period) combined with the high resolution needed (a fraction of the Debye
length), the large number of the distribution function variables (x, y, 2, vz, vy, vz, t) and the large
spatial (of the order of mm) and temporal (tens of ps) scales needed to study fast electrons transport

in the context of the fast or shock ignition of fusion pellets.

0.4 Objectives of the thesis and Plan of the Manuscript

The goal of this PhD thesis consists in developing a new reduced 3D-3V hybrid relativistic Vlasov-
Fokker-Planck model, which must be as accurate and time efficient as possible for the study of fast
electron transport in solids and dense plasmas in the context of ICF. Firstly, the model will be
applied to interprete experiments of laser-generated fast electron transport in solids or dense plasmas.
Secondly, the model will allow us to study the collimation methods for laser-generated electron beams
in a fusion pellet. Thirdly, the model will be coupled with a hydrodynamic code for studying of the

role of fast electrons in the shock ignition scheme.

In the first part of this manuscript, the state of the art of this problematic is presented:

e Chapter 1 reviews the physics of laser-plasma interaction and the main electron acceleration
mechanisms relevant to the Shock and Fast Ignition. We also estimate the laser-to-electron
coupling efficiency as well as the spatial, energetic and angular properties of laser-generated fast

electron beam.

e Chapter 2 is dedicated to the electromagnetic neutralization of laser-generated relativistic elec-
tron beam. Self-consistent electromagnetic fields of a relativistic electron beam propagating
through vacuum are derived in order to highlight the need of its electromagnetic neutralization
allowing it to overpass the Alfven-Lawson limit. The electric and magnetic neutralization of fast
electron beams are presented separately, showing the main differences between metal /plasma or

insulator targets.
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e Chapter 3 focuses on the collective effects of electromagnetically neutralized fast electron beam
transport. The quasi-static approximation in the Maxwell equations is introduced as well as the
instability theory of two counterpropagating currents and the temperature dependance of fast
electron beam transport. These collective effects play an important role in the Fast Ignition
scheme since the proposed collimation techniques are based on the self-generated electromagnetic
field.

e Chapter 4 deals with the collisional effects of fast electron beam transport. The slowing down
and scattering of fast electrons from collisions with free electrons, bound electrons and screened
free electrons is detailed as well as their angular scattering from collisions with background ions
and electrons. These effects play an important role in the Fast Ignition scheme since they are
responsible for the fuel heating and the pellet ignition. Finally, we present the relativistic Vlasov-
Fokker-Planck (VFP) equation based on the Belyaev-Budker small-angle collision tensor. This

equation describes both the collective and collisional processes ruling fast electron transport.

e Chapter 5 presents the numerical methods used to solve the relativistic V-F-P equation. Often,
these codes are based on the "hybrid assumption”, that is to say, they solve the V-F-P equation
only for the high-energy component of the electron population. The dynamics of background
particles is computed according to hydrodynamic equations or simplified ones. A comparison
between the PIC method, the full ” Vlasov-Fokker-Planck” method and other methods, based on
the decomposition of the distribution function, is presented. Most of V-F-P (full or expanded)
models do not use the Belyaev-Budker collision tensor but a Landau-like relativistic collision op-
erator. Moreover, except for the relativistic V-F-P code of [Yokota et al., 2006], the dependence

of Coulomb logarithms on the relativistic mass ym, is often neglected.

In the second part of the manuscript, a new fast electron model is presented including. Its numerical

implementation and its validation are also presented:

e In Chapter 6, the Landau-like relativistic collision operator mentioned above is derived from the
Belyaev-Budker collision operator in the context of relativistic electron beam transport. It allows
us to derive an expression for the relativistic Coulomb logarithm, starting from the fast electron
stopping power term, in the V-F-P equation. It thus relates naturally the fast electron angular
scattering rate due to the collisions with free, bound and screened free background electrons with
the corresponding stopping powers. According to Chapter 5, the best compromise between the
accuracy and the numerical cost can be obtained with hybrid and expanded relativistic V-F-P
methods. As a consequence, the model developed in this PhD thesis consists in solving the two
first angular moments of the V-F-P equation in order to make computations as fast as possible.
Besides, truncating the distribution function expansion at the first angular harmonic may lead
to non-physical results in a case of strong anisotropy. Consequently, a special closure relation

based on the Minerbo approach of a maximum angular entropy [Minerbo, 1977] [Minerbo, 1978],
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developed for the radiative transfer theory, is adapted here to the fast electron transport. It
allows us to close the set of equations by evaluating the 2nd order angular moment of the
distribution function needed in the 1*¢ order angular moment equation. Contrary to the largely
used approximation of the distribution function with one Legendre polynomial often called P1,
this M1 model allows to describe the distribution function with an arbitrary local anisotropy.
It is shown that the model is exact in the limits of fully isotropic and fully anisotropic local
angular distribution functions. As the laser-generated relativistic electron beams may have a
wide energy spectrum and an arbitrary angular distribution functions, the equation of the local
angular entropy is derived and the limitations of the model model are discussed. Developments
of new plasma transport coefficients necessary to model the self-generated electromagnetic fields

are also proposed.

e Chapter 7 is dedicated to the numerical tools developed to solve the equations of the model.
A key point is the use of a numerical model developed previously for the radiative transfer
equations which ensure that the Oth order angular moment stays positive and that the 1st order
angular moment stays smaller than the Oth order one for all electron energies, times and space

locations.

e Chapter 8 presents a simple academic test case of fast electron transport in a warm and dense
Hydrogen plasma, allowing us to present the major features of the model. Analytical expres-
sions are also derived to check the numerical schemes. Then, a comparison with a hybrid PIC
simulation is presented to validate the model. It deals with a realistic laser-produced fast elec-
tron beam deduced from the PIC simulation of an experiment conducted on the UHI100 laser

facility of the CEA (Saclay).
The third part of the manuscript is dedicated to applications of the model in the context of ICF:

e Chapter 9 is dedicated to studies of the Ka emission induced in a plasma or in a solid by the
fast electron transport. The theory of K« emission is presented and the simulation results are
compared to experimental data. It is shown that 3-dimentional effects as well as the photoion-
ization process assuming the specular reflexion of fast electrons at the solid target edges are not

sufficient to recover the results obtained experimentally.

e Chapter 10 presents two applications of the model concerning the generation of shock waves by
the fast electron energy deposition. The first one deals with the same experimental campaign
considered in two previous chapters. It is shown that, in agreement with the target temperature
evaluated with the M1 model, a UHI laser pulse with the energy less than 1 J can heat a
solid target and generate temperature gradients that drive a blast wave of ~ 50 Mbar. A
theoretical model of such a blast wave generation and transport is proposed and compared with

the experiment and hydrodynamic simulations. The second application concerns with the role
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of the fast electrons in the shock ignition scheme. The M1 model is coupled to the radiation
hydrodynamic code CHIC using a simplified numerical scheme. The simulation results are in
good agreement with theoretical predictions. It is shown that the hot electrons accelerated by
the ignitor laser spike can deposit a sufficient energy in the dense shell and generate a 300 Mbar

shock required to reach the ignition.

The original results obtained in this thesis are summarized in the Conclusion. Perspectives of this
present work are also proposed. Appendix A is dedicated to the classical plasma kinetic theory
while Appendix B presents the classical hydrodynamic theory. It introduces the non relativistic
kinetic approach as well as the Spitzer, Braginskii and Lee-More transport coefficients. The radiation

hydrodynamic monofluid and two-temperatures CHIC code is also presented.
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Chapter 1
Fast Electron Generation

” Philosophy is written in that great book which ever lies before our eyes — I mean the universe —
but we cannot understand it if we do not first learn the language and grasp the symbols, in which it is
written. This book is written in the mathematical language, and the symbols are triangles, circles and

other geometrical figures, without whose help it is impossible to comprehend a single word of it;
without which one wanders in vain through a dark labyrinth.”

Galileo Galilei
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1.1. LASER-SOLID INTERACTION AT HIGH INTENSITIES

In the non relativistic regime of laser-plasma Interaction (where Iy A\? < 10'® W.cm~2.um? with
I, being the laser pulse intensity and \ its wavelength), the laser pulses may have temporal durations
from several tens of fs with an energy of several mJ to several ns with an energy of several kJ.
For long pulse durations like those used in the conventional ICF schemes, the material is ionized by
the laser electric field during the first ps of the Laser-Solid-Interaction (LSI) and heat the plasma.
While the heated plasma consequently expands, the laser pulse cannot penetrate the plasma where

the electron density n. is above the critical density n. ~ 10*! cm™3/\[um]?.

Concerning the Shock
Igntion scheme, at the moment of the laser spike’s arrival, the sub-critical zone has a larger scale
and a higher temperature than in the conventional scheme. This changes considerably the conditions
of laser-plasma interaction and it is expected that part of the laser energy is converted into fast
electrons. For short laser pulse durations, the plasma has no time to expand so that the laser pulse
interacts with a steep gradient density. Since the discovery of the Chirped Pulse Amplification (CPA)
by [Strickland and Mourou, 1985], short-pulse laser technology has grown steadily. In the 1990’s, the
threshold value of a laser intensities with Iy A\? > 10'® W.cm™2.um? has been attained allowing to reach
the relativistic laser-matter interaction regime. However, the intense short laser pulse is preceded by a
lower intensity prepulse of several ps duration. Therefore, the plasma may have time to expand. The
relativistic laser plasma interaction leads to the generation of very energetic electrons. This chapter is
dedicated to the desciption of laser-plasma interaction in general and a special attention is devoted to

the different mechanisms responsible for fast electron generation in the context of conventional ICF,

shock ignition and fast ignition.

1.1 Laser-Solid Interaction at High Intensities

1.1.1 Collisional versus ” Collisionless” Absorption mechanisms

The laser pulse propagation is described by the equation for the electric field E obtained from the

02 o (0 1 0’E 47 dje
(az) B) = 5 <3E) e 2a (L.1)

where jo = —nceve is the plasma electron current density. The plasma response to electomagnetic

Maxwell equations

fields is described by the plasma electron hydrodynamic equations (see Appendix B, section B.1.2).
By neglecting the electron viscosity, the electron pressure, the magnetization effects and the thermal

force, these equations read

one 0 B
aat + ar.éneve) = 0 (a)
Ve - _ ¢ Ve ,
5 b (veg ) v = oo (E + 28 x B) vave (b)  (1.2)
3 oT. 0 0 oT. B 0
§nek¢B [875 + <Ve-8r> (Te):| ~ ("Gear> = ar (MabsIL) (c)
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CHAPTER 1. FAST ELECTRON GENERATION

where v = V()T;S/ 2 s the electron ion collision frequency with 1y =
(1/3)\/2/7Zncet In Aei/(\/nTS(kB)g/Q), Z the mean ionization state of the material and k. = 50T§/2
with ko = 8(2/m)/ 2/{:2/ 2 / my/*ZetIn A; is the Spitzer-Hirm transport coefficient (see Appendix B,
section B.2.2). In all what follows, we neglect the advection term of the temperature in the left

hand side of Equation (1.2 c).

1
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Figure 1.1: Inverse bremsstrahlung absorption coefficient 7,5 as a function of v.L/c according to
Equation (1.4) (left) and I, /Iy according to Equation (1.5) (right)

Let us firstly consider the case of a w = 2w¢/\ monochromatic laser pulse of linear polarization,
normally incident on a flat solid target (E = Eyey). We also assume the coronal plasma to be
quasi-neutral (n. = Zn;), fully ionized with the exponential electron density profile n. = Zn; =
neexp [—(z — x.)/L] if © > x and n, = C* else such that ve; < w in all the absorption zone z > z.
as illustrated in Figure 8. By solving the linearized 1st order equations of {(1.1), (1.2)}, one finds
for the electric field at normal incidence

dQEz w? ~
dr2 + Cﬁe(wvw)Ez(x) = 0. (1.3)

Here, F is the time Fourier transform of the electric field and e(z,w) = 1 — wp()?/ [w (W + iei(z))]
is the coronal permitivity. According to the WKB approximation (from the names of its founders G.

Wentzel, H. A. Kramers and L. Brillouin), one can derive the laser energy absorption coefficient in
the corona [Dawson and Oberman, 1962] [Mora, 1982]

Mabs = 1 — exp|—2 /x h ”eic(x) ne(z) (1—ne<x)>_1/2dx]

Ne

1 ( 8 LI/C>
= — exp|—= )
3 ¢

where v, = vgi(z.). The calculation of Integral (1.4) shows that, typically in the conventional ICF

(1.4)

schemes, 50 % of the laser absorption takes place in the immediate vicinity of the critical density where

Page 47



1.1. LASER-SOLID INTERACTION AT HIGH INTENSITIES

the density is between 0.88 n. and n. in the case of a low absorption (Lv. < ¢). In the opposite case
of an almost total absorption of the laser energy (Lv. >> ¢), more energy is absorbed in the lower
density zone. According to the self-similar isothermal expansion, L scales with cgt Te1 /% \here
cs = \/m is the sound velocity while v, o n.Te 3/2 Thus, by equating the absorbed energy
flux napslz to the energy flux necessary to maintain this self-similar isothermal expansion from the
critical density to the vacuum 4n.T.c;, one finds that the temperature scales with the laser intensity
)/

I, and the laser wavelength A as T, (nabsl A2 3, By injecting this expression in (1.4), one obtains

[Mora, 1982]
I 2/3
Mabs = 1 — exp [_ (77 bOIL) ] (15)

where Iy = 4.810" W.cm™2 (1.06 um/A)® (2Z/A)** [Z (In A,/6) (t/100 ps)]*/2. This laser energy ab-

sorption mechanism called Inverse Bremsstrahlung Absorption (IBA) is the main absorption

mechanism for laser intensities below 10> W.cm™2 used in the conventional ICF schemes. The im-
plicit Equation (1.5) can be solved numerically and the resulting IBA absorption coeeficient is plotted

in the right panel of Figure 1.1. 7,5 decreases as the intensity increases and is larger for shorter

wavelengths.
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0.3 --- SIB att=1ps |
0.2¢
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Figure 1.2: (Left panel) Parameters domain in the (g, w) plane where occurs each absorp-
tion mechanism during the LSI with a laser pulse and a steep density gradi-
ent; o = [L+ (r/2)Y4] /2 £ [1— (x/2)Y/4] /2 and B = [(1/2)3 + (7/2)Y/6] /2 £
[(1/2)1/3 - (7‘(/2)1/6] /2); the signs + come from the incertitudes on frontiers between
the different regimes, evaluated according to the conditions of validity of each mecha-
nism. (Right panel) Plot of the corresponding absorption coefficients as a function of
the laser pulse intensity I evaluated for Copper with A=1pym at t = 10 fs and t = 1
ps after the beginning of the LSI according to Equations (1.9), (1.10),(1.11) and (1.12)
(right)

For laser pulse duration Atpwpgm shorter than used in conventional ICF schemes such as

L/cs > Atpwnwm, the laser-ionized plasma has no time to expand hydrodynamically. Let us as-
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CHAPTER 1. FAST ELECTRON GENERATION

sume so that the laser pulse at normal incidence interacts directly with a solid steep density gradient
(L — 0). In this case, the resolution of {(1.1), (1.2)} shows that the laser pulse penetrates the solid
over a skin-depth Ls ~ ¢/wy, while a stationary wave consisting in the incident laser pulse and the
reflected parts is formed, standing in vacuum. For high electron temperatures and high laser frequen-
cies, the previous model developed for large density gradients can be extended by taking the limit
L — 0 and then by replacing L by the penetration depth Lg in (1.4). This laser energy absorption
mechanism is called Collisional Absorption (CA). For lower laser frequencies and colder and/or
denser solids, the electron collision frequency becomes larger than the laser frequency. In this case,
well-known in metal optics, this is the Normal Skin Effect (NSE) which is responsible for the
laser absorption in the skin-depth. This is what happens for example when a light is reflected by a
mirror. These two collisional absorption mechanisms are valid only if the electron mean free path
UTh,e/Vei and the mean distance travelled by electrons during one laser period vrpe/w are smaller
than the skin-depth L, where vy = \/m is the electron thermal velocity. With increasing
laser intensities and electron temperatures, ”collisionless” absorption mechanisms become dominant.
Two ”collisionless” mechanisms have been firstly identified : the Sheath Inverse Bremsstrahlung
(SIB) [Catto and More, 1977] and the Anormal Skin Effect (ASE) [Weibel, 1967a]. It has been
demonstrated later that they are in fact two limits of the same ”collisionless” absorption mechanism
[Yang et al., 1995]. Usually discussed separately, the absorption coefficients for these four mechanisms
can be derived within a common theory by linearizing Equation (1.1) coupled with the classical kinetic
equation expressed within the BGK approximation (for the name of its founders P. L. Bhatnagar, E.P.
Gross and M. Krook, see Appendix A, section A.3.1)

Ofe 0
ot or

) - o [ (1.6)

Me

(E+% xB)fe} = v (fo— fur).

where v is the effective electron collision frequency. The results obtained by [Rozmus et al., 1996],
according to this method, are summarized in the following table where the mean effective collision

frequency v has been evaluated by ve; for simplicity.

Conditions of validity Lg Nabs
2 .
CA L,> UThe > UThe c Vei
Vei w Wpe Wpe
v v QWi 8Ve;
NSE | Ly —1he s “The ¢ \/ Vei w \/ Vei
w Vei Wpe w Wpe w
1/6 2/3 1/6 2/3
v v 2 v 1/3 8 2 ) 1/3
ASE | I, < UThe o UThe <> (i) (c) <> (Th,e> <w>
w Vei m w Wpe 3v3\ 7 c Wpe
v v 2 /v 3 2
SIB The o o UThe c N /7( Thﬁ) (%)
w Vei Wpe 4 ¢ w

The domains in the plane (wpe, Vi), where each absorption mechanism occurs, are shown in the

left panel of Figure 1.2. These absorption mechanisms lead to the target isochoric heating over

the skin-depth L,. In order to evaluate the absorption coefficient, one has first to relate the electron
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1.1. LASER-SOLID INTERACTION AT HIGH INTENSITIES

temperature and the laser intensity according to Equation (1.2 ¢). At the LSI interface, the energy flux
conservation —ke(0Te)/0x) = NapsIr, imposes the boundary condition and ensures a unique solution.
By assuming a square temporal laser pulse shape and that the absorption coefficient 7,,s depends on
the electron temperature, one can find a self-similar solution of the heat equation (1.2 ¢) with the
form T,(x,t) = Tor?/?F(¢) [Zel’dovich and Raizer, 1966, where ¢ = £/77/°, € = x/vote, T = t/to,
To = mevd kg, to = (2/&0/3ne)(me/kb)5/2v8, vy = (27]absIL/3neme)l/3 and

d(pspdF _2F | TCAF
dc(F d<> ot oa =" (1.7)

This equation can be solved numerically, giving an expression for the temperature at the LSI interface
[Gibbon, 2005]

n; =2/9 Nabs L 4/9 t 2/9
T = To(r = 0,) = 250( {5 (1015Wm2 ) Y (18)

where n; is the initial atomic density. This expression is implicit since the absorption coefficient
depends on the temperature. However, by injecting this expression in the absorption coefficients, one
can deduce the explicit expressions of the absorption coefficient for the CA, the NSE, the ASE and

the SBI mechanisms assuming for simplicity In A.; = 4. It reads respectively

9 1 2 1
o TH i T Iy, 5 t 5
abs = 2.641 2210(”7 0L o 1.
lab 6410 1023 Cm—3> 1015 W.cm 2 100 fs ’ (1.9)
3 3 1 1 1
_ AN 8,2 7 2 Iy, 4 t 8
abs = 7.791072 ( —2— 28( )8 , 1.10
flbs = 119 (hﬂn) 1023 cm—3 1015 W.cm 2 100 fs (1.10)
18 9 2 1
—8.001072( -2 7%2_%<$)_% D st N2 gy
"labs = ©- 1 m 102 cm 3 1015 W.cm ™2 100 fs ‘
6 3 9 2 1
_ A\ 5.7 n; T 1y, 5 t 5
d Naps = 4.141072 ——— Z5 5 ) 1.12
AN Tabs 0 <1,um> <1023 cm*?’) (1015 W.cm—2> <100 fs> (1.12)

Even if the temperature dependence of the electron collision frequency ve; = voT, 6_3/ % and the thermal
electron velocity v, . = \/m has not been taken into account in Equation (1.8), these results
are in good agreement with the more rigorous calculations of NSE and ASE absorption coeeficients
found by [Rozmus and Tikhonchuk, 1990]. It must be emphasized that collisions play an important
role in the ASE and SBI mechanisms. The term ”collisionless” comes from the fact that the electron
collision frequency re; does not appear explicitly in the absorption coefficient 7,45, but the electrons

escaping the skin layer are thermalized in the bulk target.
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1.1.2 Resonant Absorption

Let us consider now a laser pulse interacting with a large scale density gradient at an incidence angle
with respect to the target normal direction ey (see Figure 8) such that the wave vector has the form
k = |k| (cos fex + sinfey,). If the laser pulse is s-polarized i.e. if E=E, (z) exp (iky sin 0)e, where the

double hat ™ means that we have also performed the y-Fourier transform of the electric field, one gets

~

2B, [w? .
o+ [Ze(w,w) ~ sin? 0] E.(z) =0 (1.13)
instead of Equation (1.3). According to the WKB approximation, the absorption coefficient can be
estimated. It reads

3
8 Ly, cos 9>. (1.14)

nabszl_exp <_3 c
Thus, the turning point in the oblique incidence case, i.e., the position where the laser pulse is reflected
is no longer at the critical surface z, but at the position where the density n. = n.cos?#6. In the case
where the laser pulse is p-polarized with the laser electric field in the plane (x,y), it is more convenient

to work with the magnetic field. One gets

?®B. 1 dedB,

-2 =
— — 0| B =0 1.15
dx? e(z,w) dr dr + c2 [6(x,w) St ] +(2) ( )
while the electric field can be found from the Maxwell-Ampere law : Ew = —csineéz/e and
Ey — —i(c?/we)dB,/dx. Starting from Equation (1.15), it has been shown that the plasma res-

onance may cause a significant laser energy absorption [Freidberg et al., 1972]. In addition to the
collisional absorption mechanism taken into account in Equation (1.15), it describes another absorp-
tion mechanism which does not depend on the collision frequency v. but only on the incidence angle
0, the laser frequency w and the density gradient length L [Ginzburg, 1961]. The underlying physical
process is the conversion of the incident laser wave into the resonant plasma wave near the critical

density. [Ginzburg, 1961] provides the estimate of the absorption coefficient

L\%3 4wLsin® 0
Nabs ~ 2.65<w> sin? f exp <_3wsm)‘ (1.16)
c c

It means that, due to the presence of the longitudinal component of the electric field, electron
plasma waves can be excited near the critical density. Indeed, at the turningA point where the realApart
of the dielectric function vanishes, the magnetic field takes a finite value Ezo. It follows that Ex =
—csin GEZ() /€ becomes very large, which means that the incident electromagnetic wave resonantly
excites an electron plasma wave. A rigorous account for the collisional and/or thermal effects is

needed to describe the plasma wave structure. Indeed, the excited electron plasma oscillations are

Page 51



1.1. LASER-SOLID INTERACTION AT HIGH INTENSITIES
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Figure 1.3: LSI resonant absorption scheme inspired by [Gibbon, 2005] (left) and resonant absorp-

tion coefficient of a p-polarized laser pulse 7,15 as a function of the incidence angle
(right)

convected by thermal effects from the critical density zone to a lower density zone. They are absorbed
in the zone where the local wave vector |k| ~ 0.3)\Bébye becomes comparable to the Debye screening
length Apehye = \/W [Forslund et al., 1975]. As the amplitude of electron plasma waves is
sufficiently large, non-linear effects may become important leading to the density profile steepening
near the critical density. At the same time, plasma oscillations excited at the critical density transfer
their energy to energetic electrons. The resonant absorption may play an important role in the laser
absorption of ICF pellet in the Conventional and Shock Ignition schemes due to the spherical symetry
of the capsule. It strongly depends on the angle between the capsule normal and the incident laser
pulse as shown in Figure 1.3. Moreover, it can induce the density profile steepening and fast electrons

acceleration. The energy of fast electrons scales with the intensity as [Forslund et al., 1977]

T. I A\ 2 1/3
¢ L
(1 keV> (1015 W.Cm2> <1um> ] keV. (1.17)

The resonant absorption can also occur in the case of a steep gradient density. In this case, the results

Tfast e 14

obtained in this section can be generalized by taking the limit of L — 0.

1.1.3 Ponderomotive Force and Parametric Instabilities

The 1st order response of the plasma electrons in the sub-critical zone in the cold plasma approximation

(1.1) is given by
0

mea

where E = E( is the laser electric field assumed here to be a 1st order term in the perturbation

(5vgl>) — _¢E (1.18)

expansion. The 1st order response consists in the plasma electron oscillations along the laser electric
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field direction at the laser frequency w, which are screening the laser field over a distance of the order
of the skin depth Ls behind the critical surface. The 2nd order response of plasma electrons is given
by

Q(a (2>> L (s 2 (5 (1)) _ v « B (1.19)
Me | 5 (OVe velan Ve =—e— . .

Thus, by noticing that the curl of Equation (1.18) provides —(m./e) (9/0t) [(8/8r) X 5vél)] =
(0/0r) x E=—(1/c)(0B/0t) and consequently B = (mec/e)(0/0r) x sviV , one can write

0 0
il @) — _ 1 < (y _ (1) — (1)
Me v (5Ve ) me(0ve . =) (0vY) — medvy X < " X OV, )

(1.20)

This non-linear force corresponds to the second order plasma response at the frequencies 0 and of 2w.
The ponderomotive force is the average of this quantity over a laser period. From a particle point of
view, it can be seen as a pressure force exerted by the laser photons. For a monochromatic plane wave
linearly polarized propagating in the z-direction with E = Ey(r, t) sin (wt + kx)ey where Ey(r,t) is the
slowly varying laser electric field envelope, the laser intensity has the form Iy (r,t) = cEy(r,t)?/87. In
this case, the mean ponderomotive force over a laser period can be written

o ,1 9 , e’E? 2me? 0

R My = _9% = — (Ip). 1.21
pond 8r<2meéve ) 8r<2mew2 w2mec 8r( ) (1.21)

In the local plane, the laser intensity profile can be taken to be Ip(rt) =
Inaxexp |—41n Z(T/ArFWHM)2 f(t) where r = \/yz—i-—z2 and Arpwawm is the spatial Full Width Half
Maximum (FWHM) of the focal spot. Consequently, the ponderomotive force tends to eject plasma
electrons from the focal spot center where the laser intensity is highest, leading to the ion density
modification on the hydrodynamic time scale. Moreover, in the rising part of the laser pulse, the
ponderomotive force is directed along the laser propagation axis and tends to push the plasma inward
the target [Lee et al., 1977].

The three-wave parametric instabilities consist in a decomposition of the laser wave at w into two
daughter waves wy and we where w; > 0 and wy = w — wy (Stokes configuration) or wy < 0 and wy =
w — w; (anti-Stokes configuration). The Stokes decomposition is unstable and leads to an energy
transfer from the laser pulse into the two daughter waves. According to the hydrodynamic equations
(1.2), the laser electromagnetic waves scatters in the expanding corona (see Figure 8), off the density
perturbations due to the excitation of Electron Plasma Waves (EPWs) or Ion Acoustic Waves (IAWs)
at the frequency wi. An electron current is generating the electromagnetic fields at the frequency wo.
It will be resonant if it corresponds to the electromagnetic dispersion relation. Then, as illustrated
in Figure 1.4, this electromagnetic field perturbation coupled with the laser pulse electromagnetic

field drives a ponderomotive force which resonantly amplifies the density perturbation if wy = w — wo
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corresponds to the dispersion relation of the longitudinal plasma waves (EPWs or IAWs). These non-
linear processes are important because they can scatter the laser pulse and prevent it from reaching
the absorption zone. In addition, part of the laser energy is transferred to EPWs, which can then
transfer part of their energy into fast electrons. Also, the stimulated Brillouin scattering as well as
the stimulated Raman scattering can lead to an energy transfer into the Daughter Electromagnetic

Wave (DEW) propagating in the backward direction, which can destroy the laser optics.

Density Perturbation

on,/n O

EPW or IAW
EPW or TAW

Ponderomotive Force | V(EQED) |mm w= w= wm = = - §j D= (0p,V/n,0) E | Plasma Dynamic

Dispersion Relation

(OEM, §BW))

Electromagnetic Fields Generation

Figure 1.4: Parametric instabilities scheme

There are four distinct three-wave processes. They are summarized in the following table.

Instability type Daughter 1 Daughter 2 Unstable zone
Acoustic Decay EPW wi ~w TAW wo < w Ne & Ny
Stimulated Brillouin Scattering | DEW wq ~ w TAW wy < w ne €]0, nc)
Two-Plasmon-Decay EPW wi = w/2 | EPW wo = w/2 | ne = n./4
Stimulated Raman Scattering | DEW w; =~ w/2 | EPW wy = w/2 | n. €]0,n./4]

Experiments on indirect or direct drive ICF have shown that several tens of per cent of laser en-
ergy can be reflected due to stimulated Raman and Brillouin scatterings while part of the scat-
tered light is absorbed in the corona thus modifying the absorption and accelerating fast electrons
[Ebrahim et al., 1980] [Lindl, 1995]. It is expected in the Shock Ignition scheme that the stimulated
Raman scattering plays an important role in the generation of energetic electrons [Klimo et al., 2010]
[Klimo et al., 2014].
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1.1.4 Simplified Scheme of Electron Acceleration by Landau Damp-

ing in strong Electron Plasma Waves

The resonant absorption of the laser pulse or parametric instabilities lead to the generation of strong
Electron Plasma Waves (EPWs) in the corona. The Landau damping of such EPWs may lead to
the acceleration of fast electrons. Instead of describing the Landau damping starting from classical
kinetic theory (see Appendix A) as it is done by [Villani, 2014], let us just consider the trapping of

one electron in one Fourier mode of such an electrostatic wave : E = Ejsin (wt — kx)ex. The phase

velocity reads v, = w/k = vrpe \/ 3+ (1/kApebye)? according to the wave dispersion relation, where
vThe = \/kBTe/me is the electron thermal velocity. From the electron equation of motion in the wave

frame moving at the velocity v ex, we can derive the energy conservation equation

2

) g cos (kX)=K (1.22)

me dX 2 EE()
k

where X is the electron position in the wave frame and K is the total energy. The electron tra-

3 T
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Figure 1.5: Solutions of (1.22) plotted in the phase-space (V = dX/dt as a function of X) for K =
3eEp/k (1) and (6), K = eEy/mck (2) and (5), K = eEy/4mek (3), K = —0.92eEy/mek
(4).

jectories are uni-directional only if K > eEy/k (see curves 1 and 6 in Figure 1.5). In the case
where eEy/k > K > —eEy/k, the Equation (1.22) describes circling trajectories trapped in the wave
(see trajectories (3) and (4) in Figure 1.5). The particular case |K| = eEy/k corresponds to the
separatrix (see trajectories (2) and (5) in Figure 1.5) separating the passing and trapped particles.
This simple analysis shows that a strong EPW can trap and accelerate electrons to energies up to
K =~ (v, — 1) mec? where vy, = 1/4/1 — (vy/ ¢)? written with the relativistic formalism here. In order
to give an order of magnitude, let us assume that k ~ 0.3)\Bébye (value at which the Landau damping
is optimal) and that the electron temperature scales as T, o (nabsl L)\2)2/ 3, according to analysis

presented in section 1.1.1.. Then, one finds that the energy of accelerated electrons scales with the
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absorption coefficient 7,15, the laser intensity I;, and the laser wavelength A as

2/3

Tabs IL A 2
(10%) <1015 W.cm2> <1um> ] keV.  (1.23)

Concerning the Shock Ignition scheme (I, ~ 10®> W.cm~2), fully kinetic large-scale two-dimensional

[A
Ttast e- = (Vo — 1) mec® ~ 12kpT. ~ 33 7

simulations have been conducted recently [Klimo et al., 2010] [Klimo et al., 2014]. They show that a
significant amount of the laser spike’s energy is reflected and absorbed close to n./4 due to stimulated
Raman scattering and that electrons are accelerated to energies up to several tens of keV in agreement

with the previous estimate.

1.2 Laser solid interaction at Ultra-High Intensities

1.2.1 Single Electron Motion in an Ultra-High Intense Laser Pulse

Since the invention of CPA by [Strickland and Mourou, 1985], the laser pulse durations have come
down from 1 ps to less than 5 fs, leading to an increase of laser pulse intensities by more than six
orders of magnitude allowing to overpass the relativistic threshold of IpA\? > 10'® W.cm™2.um?. In
order to introduce this regime, we first consider the motion of a single electron in such a Ultra-
High-Intense (UHI) laser pulse traveling in the positive z-direction. The wave vector potential is
A = |0, §Agf(t) cos d, V1 — 62Agf(t)sin gb] ! where ¢ = 27 (¢t — x) /X is the wave phase, ) is the laser
wavelength, f(¢) is a slowly varying laser pulse temporal envelope and ¢ is a polarization parameter
such that § € {—1,0,1} corresponds to a linearly polarized wave and § = +1/4/2 corresponds to a
circular wave. Using the relations E = —9A /0t and B = ¢(9/0r) x A as well as v x [(0/0r) x A] =
[((0/0r) ® A].v —[v.(0/0r)] (A), the motion of an electron in the presence of this electromagnetic field

is given by the Lorentz equation

dp v 0A 0 0
— =—e(E+ — B): — — | (A)| —e— ® A. 1.24
dt e( +c>< e[8t+<v8r)( )} €8r® M (1:24)
while the energy conservation equation reads
d 0A
T (’ymecg) =—ev.E= ev. o (1.25)

where p = ymv is the electron momentum, v = /1 + (p/mec)? its Lorentz factor and v its velocity.
The perpendicular component of Equation (1.24) reads

dpi _ (0A | OA\ _ dA
a - ot "% ) T “ar
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which after integrating gives

pL =cA (1.26)

by assuming the electron is initially at rest. The longitudinal component of Equation (1.24) and

Equation (1.25) gives

d vy (0A, 04, v, (0A, = 0A.\
>_ec<8t c(‘?x)_o

i (Pe —ymee) = —e <8t M *

because A is a function of the phase ¢, only. Thus, on one hand, v = 1+ (p,/mec) while in the other

hand, v = /1 + (pz/m¢)? + (p1 /mcc)?), by definition. These two relations give consequently

2 2 2
PL mec [ €A 1/ eA
= = dy=1+ 2 . 1.27
Pa 2mec 2 (mec> ey + 2 (mec> ( )

By noticing that d¢/dt = (0¢/0t)+v,(0¢/0x) = w/v and by changing the variable p = ym.(dr/dt) =
yme(de/dt)(dr/dp) = (2mmec/N)(dr/dp), the electron trajectory in the laboratory frame can be
integrated starting from (1.26) and (1.27) assuming it is initially at the origin and neglecting the

slowly varying terms. It reads

( ad T 25%-1 ag\ T
= 9 — in 2 1420} —
t L o g Sm2oF < 1) o ¢
2 2 2
ag A 20°-1 | ag A
= L - 2 -0 -
* A sin2¢ + 4 o ¢ (1.28)
Yy = ay — 1) sin ¢
5
2= —ap oo V1 =162 coso
T

Here, T = A/c and ag = eAgf/mec = /221122 /mm2c® where Iy, is the laser intensity. Equation
(1.28) shows that an electron interacting with a laser pulse starts to drift with an average momentum

(p) = (a3/4)mecex, corresponding to a drift velocity

©) @
{(y)me 1+a3/4 *

VD — (1.29)

Indeed, by performing the Lorentz transformation from the laboratory frame to the average rest

frame moving at the velocity vp : tg = vp (t - ’UD{L‘/C2), xo =yp (x —vpt), yo = y and zy = z where
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v = 1/y/T= (vp/e)2 = (1+ a3 /4)//T+ a3 /2, one gets

where the subscripts g

o ag/4  To
1+a3/2 2m

v — az/4 Ao
1+a3/2 2m

ag Ao

0o = T = o_

Y 1+a3/2 2m
Lo W N
[ T1a2 21

262 —1
2
26% — 1
2

4]

V1—62

T
sin2p9 + -2
27
sin 2¢0
sin ¢g
Cos ¢

b0

(1.30)

denote the values in the average rest frame and for which the phase

invariance ¢9 = ¢ as well as the longitudinal Doppler-Fizeau relationship To/T = Mg/A =

V(L +wvp/e)/(1 —vp/c) = /1 + a?/2 have been used. In this frame, the drift component has disap-

peared and the electron trajectory consists only in oscillations at 2wg in the z-direction and at wg in

the transverse direction. In the case of a linearly polarized laser pulse (§ = 1), the electron trajectory

describes a figure-of-eight as shown in Figure 1.6. If I;\? <« 10'® W.cm™2.um?, this longitudinal

y/a, M

1=10"7 W.em®

1=10" Weni™®

1.=10"° W.on™®
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0.5 1,52
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Figure 1.6: Plot of x vs ¢ (top left), y vs t (top right), y vs z (down left) and yo vs z¢ (down
right) for different values of the laser intensity with f(¢) = 1 and § = 1 corresponding to
ap = 0.27, 0.85 and 2.70 according to Equations (1.28) and (1.30).
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drift is negligible (a/4 < ap) and we find the transverse oscillations at the frequency w considered in
sections 1.1. In the opposite ultra-relativistic case where I A% > 10'® W.em™2.um? (a2/4 > ay),
this longitudinal drift, accompanied with oscillations at 2w is the main process. In the general case,

the angle between the electron momentum and the laser pulse propagation direction is

6 = arctan <M) = arctan (1 / 2>. (1.31)
Pz Y

UHI laser experiments are usually conducted with short laser pulses interacting with a solid target with
a steep density gradient. The analysis concerning the single electron response shows that electrons
interacting with a UHI propagating laser plane wave stop moving immediately after the laser pulse
ended. The electron motion is adiabatic and it cannot acquire energy directly from the laser pulse.
Moreover, contrary to the non-relativistic case, the colisional friction force is negligible here due to a
large amplitude of the laser electromagnetic fields and high temperatures in the skin-depth imposed
by the laser absorption. Indeed, the surface temperature 717 at the solid-vacuum interface scales with
the laser intensity as Ij-f/ ? according to Equation (1.8). It can reach several keV for laser intensities
Ir, > 10" W.cm™2. Consequently, in the relativistic regime, collisions cannot explain the break of this
adiabaticity. The UHI Laser Solid Interaction has been therefore intensively studied for more than
twenty years and a large number of collisionless processes can be found in the litterature to explain

the experimentally observed accelerated electron.

1.2.2 Cold Plasma Approximation

In a fluid framework, the mechanisms of UHI laser electron acceleration can be described by replacing

Equation (1.2) by the relativistic ones

one

i ™S éneve) — 0 (2)
p€ Ve
— = —¢(E x B b (1.32)
ot * (Ve 81‘) (pe) e( + MeC ) (b)
('Ye - 1)m662 = vV mgc4 + pe202 - 7nec2 (C)
where pe = 7YemeVe is the mean electron momentum, ~. is the mean Lorentz factor and v, the

mean velocity. It must be noted here that, in difference from the cold plasma approximation in the
classical regime, the relativistic cold plasma approximation assumes that the electron distribution
is monoenergetic and anisotropic. Indeed, due to the nonlinear relation between the single electron
velocity and momentum p = ym,v, the relation p. = YemeVve is valid only if all electrons have the
same velocity v, and consequently the same mass ym. = vem.. This explains why Equation (1.2
c) for the electron temperature is replaced by Equation (1.32 c¢) with zero electron temperature. By

working with the laser vector potential A and the electrostatic potential ® and by noticing that

27e(mec)?(9/0r)(ve — 1) = (mec)?(9/0r)(72) = (9/0r)(Pe-Pe) = 2[Pe-(0/0r)](pe) + 2pe x [9/0r) x
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Pe] = [ve.(0/0r)](pe) = (0/0r)(Ye — 1)mec?® — ve x [(0/0r) X pe|, one can rewrite (1.32 b) as

%, . s 0 d
g (Pe = eA) = =50 (Yo = 1) mec” + 2 (@) + Ve X [arx(pe—eA)}

Thus, by taking the curl of this equation, one gets

% [;r X (pe—eA)} = % [;r X (pe—eA)} + <ve.§r) {[081' X (pe—eA)H =0

and assuming the electrons are intially at rest, one has necessarily

0
[81’ X (Pe — eA)} = 0. (1.33)
Finally, Equation (1.32) becomes so
One + 2 (neve) =0 (a)
gt or P (130
ot (Pe —€A) = F+ ar (e®) (b) ‘

(Ye — D)mec? = /m2ct + pe2c2 — mec® (o)

where

_ 9 2
F = B (Ve — 1) mec (1.35)

is the non averaged Relativistic Ponderomotive Force which was extended from the classical
theory [Stroscio et al., 1978]. This force leads to exotic effects compared to the non-relativistic regime

and will be described more accurately in the next paragraph.

Let us consider a UHI elliptically polarized plane wave traveling in an underdense plasma wp. < w
(wWpe = \/m is the classical plasma frequency) in the positive z-direction represented by its
vector potential A = [O, §Aof(t)cos ¢, V1 — 02Agf(t)sin ¢]T. In contrast with the single electron
case, here, ¢ = 2mc(t — x/vg) /A where vy = w/k is the wave phase velocity. The system of equations
(1.34) is coupled with the Maxwell equations (1.1) expressed for the vector potential A and the
electrostatic potential ¢ in the Coulomb gauge ((9/dr).A = 0)

82
52 ) (®) = dme(ne—2Zn) (a) (136)
2 2 .

Assuming plasma electrons are initially at rest and f = 1, the system of Equations {1.34, 1.36} reads
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[Akhiezer and Polovin, 1956]

n. _ _ emevs I (@)
9 /Yemevqb — Pex )
d*Pe, 1 1 wpe ) 2 VMoV Vo
) — _ 7 -pe b
dg? Ve ( w YeMeVp — Dew Vg2 + 2 Pe,L (b) (1.37)
d’ 2 1 Wpe 2 VeleVg
gz (emee® —peave) = () vy —pes Ve Pea (©

According to [Kaw and Dawson, 1970], Equations (1.37 b) and (1.37 ¢) in the limit p. , < yemevy as
well as v¢2 / (v¢2 +c%) ~ 1 and yemec® K Pe,zVq take the non-relativistic form with wye/,/7e instead of
wpe. This can be interpreted as a deeper penetration of electromagnetic waves in the target with an
increased skin-depth Lg =~ ¢\/7e Jwpe instead of Lg & ¢/wpe, due to the higher electron inertia yeme.
This relativistic effect is called the Self-Induced Transparency. While this phenomenon has been
observed in kinetic simulations [Lefebvre and Bonnaud, 1995] [Guérin et al., 1996], its experimental
validation is still controversial [Gibbon, 2005]. Equations (1.37) provide the adequate theoretical for-
malism to extend some mechanisms to the relativistic regime as the Relativistic Parametric Insta-
bilities [Guérin et al., 1995] and the Relativistic Linear Resonant Absorption [Yu et al., 1998].
These two mechanisms can be responsible for laser energy absorption by driving strong EPWs and ac-
celerating fast electrons. Also, this formalism can be used to predict the Direct Laser Acceleration
of fast electrons by Channeling the laser pulse [Pukhov et al., 1999] [Li et al., 2011]. However, these
mechanisms take place in an underdense plasma (n. < n.) and they cannot explain the laser energy
absorption reported in UHI laser-solid interaction experiments where the absorption may reach up to
70 % [Sauerbrey et al., 1994]. Also, they cannot explain the fast electron energy spectrum reaching up
to 10 MeV as measured experimentally by [Beg et al., 1997]. The following sections present the main

absorption mechanisms operating in laser-solid interaction experiments in the relativistic regime.

1.2.3 Relativistic Ponderomotive Force and j x B heating

The ponderomotive force may push the plasma electrons inward the target at the center of the focal
spot. Then, the plasma ions are accelerated due to the induced electrostatic fields. In the relativis-
tic regime, the ponderomotive force (1.35) push the surface of a modestly overdense plasma over a
distance of several laser wavelengths deep in a moderately overdense plasma on the sub-ps timescale
[Wilks et al., 1992]. This so-called Hole boring process has been demonstrated experimentally at
a laser intensity of 10'® W.cm™2 by [Kalashnikov et al., 1994] by measuring the Doppler red-shifted
reflected light. This effect was at the basis of the fast ignition scheme [Tabak et al., 1994]. One can

derive the relativistic ponderomotive force expression (1.35) by projecting (1.34 b) on the parallel and
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perpendicular axes (e = d cos ey + V1 — §2sin dey) :

Pe,l. = €A (a)
62?5” = ;x(e@)JrF (b)
where
P = —us e - oo (b e

Thus, if the laser pulse has a circular polarization, i.e., if § = 1/4/2, the force reads

ape,xe e? é
oxr ° 4yeme Ox

F = —Ve,x (AOQ) €y

while for a linear polarization i.e. for § € {—1,0, 1}, it reads

15) 29
F = —Ve,z Pe €

. — ———4 A% 2 .
5. € 4%meax{ 0% [1 + cos (2wt)]} e

(1.38)

(1.39)

(1.40)

(1.41)

The ponderomotive force is usually defined by the average part of this force and it reads in both cases

e2 g
4yeme Ox

Fpond = <F> =

(A02) e,.

Depletion zone

1
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Figure 1.7: Schematic view of a UHI LSI in a steep gradient density

(1.42)
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Let us consider a UHI laser pulse of circular polarization normally incident on a steep density gra-
dient. It is reflected, generating a stationary standing wave in vacuum while the electromagnetic field
is evanescent inside the target over the skin-depth L. As explained above concerning the hole boring
effect, there is an electron depletion zone [0, x4] where the plasma electrons have been pushed forward
by the ponderomotive force. As the ponderomotive force is stationary, one can find an exact analytical
solution of the system of Equations {(1.34), (1.36)} assuming A = Ag(z)[cos (wt)ey + sin (wt)e,]/v/2
[Marburger and Tooper, 1975] [Siminos et al., 2012]. Neglecting the laser energy absorption, one finds

wx — T wpgz 1
M€ /o <1 w? > ‘ v
N e B w, 2 2 o 2
Ao(z) = P (wp; — 1) — cosh? [ww wp; -1
w c V w

T —xq 1 5 dA w=c/2w T — g .
2Ap cos | 27 +o | ==A0(x)" + cos | 2w 3 + if z < xy

p

cosh

if x> x4

4 dr

T=xq

(1.43)

and

w? e? 1 [dAo\]? d? Ay
AR § i — Ty ] A if 7 >
ne@)={ " { i Whe 27eme’w? H%Z < dx ﬂ T B (1.44)

0 if x <y

Ye(z) = \/1 + (;‘:‘C>2 — \/1 + (ZDQ (1.45)

Ay, is the initial normally incident laser pulse amplitude, ¢ is a constant phase delay, x,, is the position

where

where the vector potential is maximum Ag(zm) = 2(mec/€)\/2(wpe? /w?)[(wpe2/w?) — 1] and z4 =
—(1/2men;)Ao(xq)(dAo/dx)|g=s,/7(z4) is the target depth where the electrons have been displaced
by the laser pulse ponderomotive force. These three parameters ¢, =, and xg can be found by
connecting the electron density n. and the field Ay at the depletion edge x = z4 (see Figure 1.7). In
the region © < x4, the field behaves as in a vacuum. Assuming that the standing wave results from the
superposition of two progressive waves of amplitude A, (the laser energy absorption is neglected), one
obtains the lower line of Equation (1.43). The upper line of Equation (1.43) comes from the resolution
of the system of equations {(1.34), (1.36)} in the region & > x4. In the limit of a very dense solid
ne > n, this expression reduces to Ag o< exp [—(z — zp,)/Ls| with Ly = ¢/wpe being the skin-depth.

The linear polarization case A = Apcos(wt)e, is more complicated because one can-

not find the analytical expression for v, as (1.45) obtained for the circular polarization case
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[Bauer and Mulser, 2007]. However, in the limit wy, . > w, an approximate solution reads

2 d ALexp<—x;xd> if x> x4
Ag(z)={ “pe s (1.46)
T — T4
2A7, cos (27r \ +g0> if z < xy

where Ly = ¢/wy/(wpe? /w?) — 1 & ¢/wpe. The oscillating component of the ponderomotive force (1.41)
in the linearly polarized case can lead to laser energy absorption [Kruer and Estabrook, 1985]. This
mechanism is called j x B heating (and not ponderomotive heating!) due to the fact that it is induced
by the oscillating component of (1.41), coming from the Lorentz force (ve/c) x B term of (1.32). One

can explain this mechanism as follows :

1. During a quarter of the laser cycle, between ¢t = —T'/8 and t = T'/8, the cosine of (1.41) is

positive and electrons from the plasma surface are ejected in vacuum by the Lorentz force.

2. A strong electrostatic field @ is generated due to the induced charge separation according to
Equation (1.36 a).

3. During the following quarter of the laser cycle, the cosine becomes negative and the electrons are

consequently recalled by this ponderomotive force component but this time with an amplification
due to the force (0/0x)(e®).

4. Thus, the electrons are reinjected in the overdense plasma where the local electromagnetic fields

vanish behind the skin depth L.

Consequently, the adiabaticity of electron motion is broken at the moment when they are crossing the
plasma skin layer and they acquire the kinetic energy gained from the electric force (0/0z)(e®). Thus,
accelerated electrons escape from the laser solid interaction zone thanks to their residual energy. This
acceleration mechanism has been confirmed by kinetic simulations [Wilks et al., 1992]. The authors
find a good agreement between their numerical results and the estimate of the mean kinetic energy

often called ”temperature” of the accelerated electrons

2 2
T, ~ \/1+<<%> >—1 m602:<\/1+a0—1>m602 (1.47)
MeC 2

according to Equation (1.38 a) where (.) means that the value has been averaged over a laser cycle

and ag = /2€2I;,\2/mm.2c5. This expression is commonly called the ponderomotive scaling due to
the fact that it corresponds to the ponderomotive potential of a single electron [Bauer et al., 1995].
Besides, even if numerical simulations confirm that this process makes a significant contribution to the

laser energy absorption, this temperature scaling differs from experimental results [Ping et al., 2008].
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1.2.4 Brunel Effect and Vacuum heating

] Evanescent Wave
in the solid

Figure 1.8: Schematic view of a UHI p-polarized laser pulse incident on a steep gradient density

Here, we consider an interaction of a linearly polarized UHI laser pulse with a steep density
gradient at an oblique incidence with the angle # as illustrated in Figure 1.8. The laser pulse vector
potential reads A, cos[wt — k (z cos@ + ysin@)] (— sinfex + cosfey). The role of collective electric
fields in this configuration was demonstrated by [Brunel, 1987] thanks to kinetic simulations and a
simplified analytical model. Thus, it would have been possible to place this subsection in the previous
section. However, due to the fact that this mechanism plays an important role in UHI laser-plasma
interaction, we have prefered to place it here. This mechanism can be understood in a one-dimensional
approach, neglecting of the Lorentz force (ve/c) x B in Equation (1.32). Thus, the system of Equations
{(1.34), (1.36)} reduces to

2Ap cos (wt + @) cos (kx cos @) sinfeyx if 2 <0

A = _
X exp <_x :Ud) ifx>0 (a)
Ly
2
8—? = 4dme(ne — Zn;) (b) (1.48)
x
i; + aa (Reves) =0 (c)
D A ov @
dt “ot " “ox

where ¢ = kysin@ is a constant phase parameter. The Brunel heating can be explained as follows

1. In the first half of the laser cycle, between t = —(7'/2) — p/w and t = —p/w, the cosine of (1.48
a) is negative. Thus, a sheath of electrons at the plasma interface (x = 07) is experiencing the

longitudinal electric field (1.48 a) and is pulled out in vacuum up to a distance ~ Ax according
to Equations (1.48 ¢) and (1.48 d).
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2. According to Equation (1.48 b), an electrostatic field is created in this zone [—Awz, 0].

3. During the following half of the laser cycle, the cosine of (1.48 a) is positive and the electrons in
this zone are consequently recalled back but this times with an amplification due to the electric
force (0/0x)(e®), according to Equations (1.48 ¢) and (1.48 d).

4. The electrons are reinjected in the overdense plasma where the local electromagnetic fields vanish

beyond the skin depth L, according to Equation (1.48 a)

Consequently, the electron motion adiabaticity is broken and the electron gains a kinetic energy from
the electrostatic field. Moreover, the accelerated electrons escape from the interaction zone thanks to
this residual energy. Except for the time periodicity and the spatial configuration of the process, the
Brunel heating mechanism is similar to the j x B one. By using the capacitor approximation for the
step 2, approximating ve , ~ 2eAg/m. for the step 3 and assuming that all electrons are lost in the

solid for the step 4, one can estimate the laser energy absorption [Gibbon, 2005]

sin 6

TNabs ~2 7T1%f [\/1 + (fagsing)? — 1} (1.49)

cosf’

where f = 14 /1 — (4agsin® 6/ cos f) where the fast electrons ”temperature” has been assumed

2
Te ~ <\/1+T’m_ 1) mecz ~ ( 1+ 4&02 — 1) meCQ. (150)
C

The maximum laser energy absorption is obtained with § = 75° according to Equation (1.49). Ac-
tually, it has been shown that not all electrons pushed out into vacuum return to the target each
laser period [Brunel, 1988] [Gibbon and Bell, 1992]. Due to the presence in vacuum of non-stationary
electromagnetic fields and a low density plasma, the electron orbits are more complex than those pre-
dicted in the capacitor approximation. According to kinetic simulation results, the maximum of laser
absorption is obtained for § ~ 45° and the temperature scales with the laser intensity as T, o< (I\?)”
with « between 1/3 and 1/2. For these reasons, and notably because of recalling aspects of disorder,
the term Vacuum heating is used to make the distinction. It is considered as one of the main

absorption mechanisms.

1.2.5 Anharmonic Resonant Absorption

In the case of a linearly polarized incident laser pulse Ay, cos [wt — k (2 cos 6 + ysin 0)] (— sin fex + cos fey)
totally reflected by a steep density at normal or at oblique incidence, the Relativistic Harmonic Reso-
nance Absorption mentioned in the introduction of this section may be mitigated due to the absence
of any rarefaction wave. Moreover, the critical-surface oscillations driven by the laser ponderomotive

force may lead to the broadening and the splitting of the harmonics [Ding et al., 2009] as well as an
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Figure 1.9: Test electron trajectory position z(¢) and momentum py(t)/mec (black lines), total elec-
tric field E, (white line) at position z(t) plotted on the electric field (z, t) map from a
kinetic simulation done with a constant laser pulse ag = 0.3 with an oblique incidence
0 = 45° focused on a steept gradient with fixed ions Zn;/n. = 81 [Mulser et al., 2008]

efficient laser energy absorption mechanism [Mulser et al., 2008]. Noticing that a break of adiabaticity
under steady state conditions is obtained when (jcE) ~ (sin(wt + ¢)cos(wt)) = (1/2)singp # 0
according to the Poynting theorem, the authors conclude that only an anharmonic resonance in
the self-generated plasma potential may provide conditions for an efficient laser energy absorption
as observed in UHI laser-solid interaction experiments. Indeed, by considering a constant density
Zn;, an electron layer of thickness d, oscillating with the amplitude ¢ and by approximating the
non-averaged ponderomotive force (1.41) by F ~ Fyf(t)sin (2wt)ex, one can derive from Equation
(1.36 a)

H) .

A7 Zn;e (1 — = )¢ if&E<d

Ba(6) =~ = o (1.51)
v 4t Znie o7 if &€ >d

which along with Equation (1.38 b) gives the following equation of motion for the electron layer (in

the non-relativistic approximation)

@
dt?

2d
wf,ed

2/¢|

w;(1—50 ¢ ife<d

= Fof(t) sin (2wt) — (1.52)

€ ife>d

The anharmonic resonance heating can thus be understood as follows.
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1. According to Equation (1.52), the electron layer oscillates at the frequency wy, inside the plasma

where there is no driver (Fy = 0).

2. With increasing oscillation amplitudes, the electron layer escapes from the plasma and experi-

ences the non-averaged ponderomotive force Fy f(t) sin (2wt).

3. According to Equation (1.52), the increasing oscillation amplitude &, > d leads to a reduction

of the oscillation frequency enabling a resonance condition at 2wp..

4. Finally, due to the strong driver Fj f(t) sin (2wt), the oscillation amplitudes may rise to {y — oo
with a pulsation =~ , /wZ.d/2§) — 0

This means that between step 1 and step 3, there is a moment when the electron layer oscillation
frequency is 2w (0 < 2w < wpe). At this moment, the electron layer oscillates in phase with the driver
and enters the anharmonic resonance regime. This mechanism has been explained by considering the
electron trajectories obtained in kinetic simulations as illustrated in Figure 1.9. According to the
authors, this Anharmonic Resonance Heating in the self-generated plasma waves represents one
of the leading electron acceleration mechanisms in UHI laser-solid interaction experiments and may
explain energies of accelerated electrons many times the ponderomotive scaling observed in experiments
[Cerchez et al., 2008].

1.2.6 Stochastic heating

While the motion of an electron in a single laser wave is deterministic, its motion in two counter-
propagating electromagnetic waves can become chaotic if the frequencies of these two waves are dif-
ferent [Mendonca, 1983] [Forslund et al., 1985]. By ”chaotic”, one means that small differences in
the initial conditions produce a large divergence in the electron trajectory with time. Thus, in other
words, two counter-propagating electromagnetic waves with slightly different frequencies can break the
adiabaticity of the electron motion. This happens in the case of large-scale density gradients and high
laser intensities or a sufficiently long pulse 1 — 10 ps like in the Fast Ignition scenario. Let us consider
a linearly polarized laser pulse Ay = A; gcos ¢1ey with ¢1 = wit — k12 normally incident on a target
with a large scale density gradient and a counterpropagating one Ay = A g cos ¢o (cos ae, — sin aey)
with ¢2 = wat — ky |& — k2, 1y + o which may originate from the reflection of the incident laser pulse
or a Raman-backscattered wave as suggested by [Sheng et al., 2002]. The Hamiltonian of a single

electron in such a configuration can be expressed in the extended space by [Jackson, 1975]
H =7 mec® + (P + eAq + eAr)?c? — mec? (1.53)

where P = p — eA; — eA,. Indeed, in this case, H = 0 according to the momentum quadrivector

invariance along directions of translational invariance only. According to [Rax, 1992], by assuming
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Figure 1.10: Distribution of longitudinal electron momenta normalized by mcc in space at ¢ =
110(27e/A) [Yu et al., 2000] obtained from a 1D relativistic kinetic simulation of a lin-
early polarized, Gaussian laser pulse with a; = 7.5, A\; = 1 pm, and width L; = 15 um
normally incident on a foil of density n. = 10n. (dashed lines) with (c) or without (d)
the presence of a Deuterium preplasma of width 30 ym and density n, = 1073n,. The
time averaged laser electric field normalized by mecA;/2mc is also plotted in (c) (solid
line).

Ay < Ay, o = —7/2 and by changing of variables from (z, y, 2, ct, ps, Dy, P2, YMeC) to the angle-

action variables (0, ¢, ¢, E, P, PL), it can be shown that H can be written as

H(z, y, 2, ct, ps, Py, Pz, ymec) = HOO, ¢, ¢, E, P, P1) +5HY(0, ¢, ¢, E, P, P1)  (1.54)

where
HO = 52m.c?+ (P + €A1)262 — Mec? (1.55)
— E2 o PJ_Q o P’”Q o M2, ’
with M = \/1+ (a}/2) and a; = eAjo/mec, is the unperturbed Hamiltonian of the electron i.e.
without the counterpropagating electromagnetic wave As and
P +eA A As\?
SHL = 2( te 1)'<e 2>m602—|—0 (e 2> mec?
mec MmeC mecC
2 : e Ky jic e ko ic, —wo (1.56)
= agmec Z Vn (E, P, PL)cos |——p+——0+ —¢+ N (p+¢)
w1 w1 w1

NEZ
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is the 1st order perturbation induced by the counterpropagating wave where ay = eAso/mec,

2
aymec P (w2 — ko HC) aymec ko ic
WYY Y mmmvhjm( 1), ,
MEL nEL h=—2 wi [P —(B/o)] w1 B —(E/c)
X J, (kl”c_“? (eA10)” )
n 2 3
[Py = (B/o)]

and

Py P
cosa — —sina 5p +ap | cosa +
MmeC MmeC

Up=2

P, sina > 1 +a12 mecsina
Pi—(E/c)) " " 4 [P~ (E/e)]

with J,,, and J,, the Bessel functions. It is interesting to notice that according to the change of variable,
E = (7)mec?, P = (p,) and P = (p,) where (.) which means that the values are averaged over the
laser pulse cycle 27/w;. Indeed, in the case where Ay = 0, the perturbation disappear and H © =0
can be integrated and one finds that the unperturbed electron motion consists in the figure-of-eight

found in section 1.2.1

E(P, PL) = /M2 + P2+ P2 (1.57)

Following standard perturbation techniques, one can solve the Hamilton equations by plugging the
unperturbed motion (0 = (Py/mec)wrr, ¢ = (Pj/mec)wrr and ¢ = —(E/mec®)wiT where 7 is the
proper time) in the argument of the perturbating cosines of the right hand side of Equation (1.56).
According to the author, such a perturbation scheme fails to converge because of the occurence of
small resonant denominators when the cosine of the phase remains stationary which means that the

system cannot be integrated whenever it exists one N € Z such that

P, P E P FE
k:270<”) +k27Lc< L > — w9 < 2) + Nw, (— 2) =0. (1.58)
meC MeC MeC MeC  MeC

It means that the electron motion is not anymore deterministic and becomes chaotic. The degree of

chaoticity for each resonance N can be measured using the Chirikov criterion [Bourdier et al., 2005]
but in the general case, kinetic simulations of the UHI laser-solid interaction are needed to find the

stochastically accelerated electrons properties.

Efficient electron heating in two counter propagating electromagnetic waves was demonstrated in
1D relativistic kinetic simulations by [Yu et al., 2000]. A linearly polarized, Gaussian laser pulse with
a peak amplitude a; = 7.5, a wavelength A\ = 1 pm, and a width L; = 15 um was normally incident
and reflected from a foil of density n. = 10n.. The electron heating was observed in a Deuterium
preplasma of a width 30 ym and a density n, = 10~3n.. In Figure 1.10, one can clearly see the effect
of the preplasma on the accelerated electrons momenta. Although the electron heating is probably
due to stochastic effects, [Yu et al., 2000] do not mention it in their paper. Instead, they explain the

electron heating up to several ponderomotive energies as follows. Firstly, the incident laser pulse carries

Page 70



CHAPTER 1. FAST ELECTRON GENERATION

the accelerated electrons toward the target. As the preplasma behind the pulse maximum becomes
positively charged, a relativistic electron return current is created. These counterpropagating electrons
with negative momenta cover the entire preplasma and even extend beyond it into the vacuum area.
In addition, the target electrons localized near the density jump are accelerated due to the j x B
Heating. Highly accelerated electrons can be seen at the far right of the frame, showing that the
forward accelerated electrons escaping from the incident laser pulse have passed through the foil
target. As the reflected laser pulse propagates backwards in the preplasma, it accelerates a small
number of electrons to energies several times those of the forward ones, as shown on the far left of
Figure 1.10 (c). For the authors, this strong backward acceleration is therefore attributed to the

relativistic electrons return-current, which is missing in the case without preplasma.

As a conclusion, in a presence of a preplasma, laser-accelerated electrons may attain energies
exceeding several times the ponderomotive energy, thus forming a hot tail in the energy spectrum,
and have a significant angular divergence [Kemp et al., 2009]. This Stochastic heating dominates
in the underdense plasma in the case of large-scale density gradients according to kinetic simulations
and experiments. It largely prevails over the Direct Laser Acceleration as well as the Linear

Resonant Absorption mechanisms [Kemp et al., 2014].

1.3 Particle-in-Cell method for Laser-Plasma Interac-

tion simulations

Numerical simulations of kinetic processes in laser-plasma interactions are usually conducted with
Particle-In-Cell codes. In Part 3 of these manuscript, kinetic simulations will be used for character-
ization of the laser-generated fast electron transport. This section is dedicated to a brief description

of the Particle-In-Cell modeling of Laser-Plasma Interaction.

1.3.1 Phase-Space Discretization for the Vlasov Equation

In order to simulate the interaction between an incident laser pulse and a plasma, one has to solve the
Maxwell equations for the laser pulse propagation coupled with the Vlasov equation (see Appendix
A, section A.1.1) for the kinetic plasma response to the electromagnetic fields. We use the relativistic
formalism here and assume that the ions remain immobile. Let us note f. = fe(r, p, t) the distribution
function of plasma electrons. We do not consider the collisions here; they will be discussed in the next

subsection. The Vlasov equation reads

Ofe 0 (

Ot +8r'

b fe) = aap. e (E+ = x B) f.| =0 (1.59)

YMe
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where v = 1/1 + (p/ mec)2. Therefore, the distribution function fe(r;, p;,t) is constant at the electron

trajectories defined by the equations of motion

rp P
dt YiMe 1.60
s (1.60)

i —e(E—F%xB).

From this observation, it comes naturally the idea to discretize the phase-space (r, p) into macropar-
ticles {r;, p;}, [ € [1..N,] which are solutions of (1.60) depending only on their initial position
r;(t = 0) and momentum p;(t = 0) in order to approach the solution of (2.1) [Birdsall and Fuss, 1969].
Of course, the number of macropaticles N, is much less than the number N of electrons in the
system. Indeed, N = n.AzAyAz ~ 10°/Aum]* at the critical density with numerical cells
Az = Ay = Az = 1 um; The best actual computer technology has allowed a maximum of N, ~ 101°
particles and calculation of 10'° time steps, requiring 10 hours of CPU. Besides, in the most cases,
N, < N is sufficient to describe accurately the relevant long-range physical processes. The split ex-
plicit leapfrog scheme commonly called the Boris scheme is usually used to solve the electromagnetic
macroparticle pusher (1.60) (see [Birdsall and Langdon, 1991] for other numerical methods). This

numerical scheme reads :

P — pn—1/2
1° ot S E"
) At/2 ©
n n _ 2
2°) P —p; = Tp X where T = tan ﬁ with v~ =4/1+ b
: |Bn‘ 277 me MeC
2T B”
30 + % - % o
S i 11712 p 7|B”\ Lo
p"Jrl/2 _pr .
qoy L T1 _— cEn"
) At/2 c
n+1/2 n+1/2\ 2
5%) V?H/Q = 71;1_17/2 where 7ln+1/2 =41+ b
7[ Me meC
5) r?+1 — ]+ vln+1/2Atn

where n is the discrete time (¢, = nAt,). The complications come from the temporal and spatial

variations of the electromagnetic fields in (1.60). These are the solutions of the Maxwell equations

oA 0
E = =
t or
B = c— XA
52 Or (1.62)
52 (B) = dmp
A, 0? .
Tz ¢ gz = Ame
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which depend on the electrical charge density p and the current density je. These source terms
must consequently be interpolated at each time ¢,, from knowing the IV, macroparticle positions and

velocities. For example, the electrical charge is estimated as
Np
gk = SO [x (1.63)
k=1

where ri* = [;, Yj, zk]T with 2; = Zmin+ (1 —1)Az, yj = Ymin+ (1 —1)Ay and 2z, = zmin+(k—1)Az.

The function

. z;+Ax/2 yi+Ay/2 2k +Az/2
w [rl,],k _ rl"} = / dx/ dy/ d20(z; — a7, yj —y's 26 — 2]) (1.64)
z;—Ax/2 y;—Ay/2 zk—Az/2

is called the macroparticle weight. It depends on the interpolation function IT which can be a Dirac
distribution §2[r] (NGP method for Nearest-Grid-Point [Birdsall and Fuss, 1969]), a linear interpolat-
ing function (CIC method for Clouds in Clouds [Birdsall and Fuss, 1969]) and so on. Currently, third
order (or more) interpolations are used in high performance PIC codes. The higher the interpolation
order is, the higher the accuracy and the computational cost are. The electromagnetic fields are com-
puted according to the well known finite difference schemes of the propagation equation for the vector
potential and the Poisson equation for the scalar potential providing the electromagnetic fields. At
the next time step, the fields are reinterpolated at the positions of the macroparticles to compute their

trajectory at the following next time step.

Nw Ny Nz
(B"(r0), B"(r) = D 30 S W [r# — x| (B (r'95), B (7)) (1.65)

i=1 j=1 k=1
where N, N, and N, are the grid number respectively in the x, y and z directions. The interpolation
function must be the same as for the particle weighting in order to limit the self-force induced by the

macroparticles motion in the spatial mesh grid.

1.3.2 Binary Collision Modelling

Coulomb binary collisions are due to the mutual electromagnetic fields created by two interacting
particles. The PIC method cannot take into account the binary collisions effects because the forces
acting on the particles in a PIC scheme correspond to macroscopic fields, and because the collisional
spatial scales are not resolved. As a result, inter-particle forces inside grid cells are underestimated.
The binary collisions are described by introducing a Coulomb collision operator inside each cell. The
usual method consists of a Monte-Carlo scheme simulating the interaction between each particle pair.
Most of Coulomb collision operators used in today PIC codes are based on the binary collision model

introduced by [Takizuka and Abe, 1977]. The main idea is based on the fact that, the plasma being
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essentially collisionless, the binary Coulomb collisions occur only between particles separated by a
distance of the order of the Debye length Apepye. Since a typical size of the PIC cell is close to Apebye,
the interaction between particles in neighboring cells can be neglected. According to this method,
all particles are firstly grouped to the cells (7, j, k) where they are located. Then, these particles are
paired in a random way, so that one particle has at least one partner. Thus, selected pairs are collided
according to the Monte-Carlo method based on the collision probability of collision proportional to the
differential collision cross section. For example, the probability of a small angle and non-relativistic
collision between an electron (1) and an electron or ion (2) is proportional to the Rutherford differential
cross section (see Appendix A, section A.2.1). During the time step At,, the scattering angle 6

in the 2D collision plane follows the Gaussian stochastic process [Takizuka and Abe, 1977]

0 =2 i ith (62),, = 4 naZac’ |\ A (1.66)
=——exp|—=5— | Wi =4r————1In .
T T\, Ty e

where Z,, is the charge of the particle (2), n, is the density of particle (2), u = mema/(me + ma) is
the reduced mass in the center of mass frame and V = v; — vy is the relative velocity. Inverting the
relation (1.66) and randomly choosing a value pr between 0 and 1 (uniform stochastic process) for

the probability p, one obtains the scattering angle in the center of mass frame

0 =/—2(02)as, Inpr. (1.67)

Correspondingly, the azimuthal angle ¢ is chosen randomly between 0 and 27 according to the uniform
statistic process. If plasma is nearly uniform, one can introduce a cumulative binary collision operator,

as proposed by [Nanbu, 1997], which allows to increase the time step of the collision procedure.

1.3.3 Computational Constraints

The main time step restriction of PIC codes comes from the propagation equation for the vector

potential A. The time step must fulfill the Courant-Friedrichs-Lewy condition

1/ 1 1 1\ 2
At, < p (AazQ + A + Az2> : (1.68)

In addition, if the cumulative binary collision operator approximation cannot be introduced, the time
step must be shorter than the characteristic collision time, vg;At, < 1. Moreover, the value of the
laser frequency wqg limits the time step in the Boris scheme to wgAt, < 2. Concerning simulations of
laser plasma interaction, the critical density zone where, typically wy = wpe needs to be considered
with special attention because of strong laser-driven electron plasma waves. In that case, the spatial
grid must satisfy the condition Az ~ Ay ~ Az = ¢/wpe. In order to limit the non-conservative force

associated with the particle-grid mapping, which leads to self-heating and numerical instabilities, the
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space resolution has to be comparable to the plasma Debye length Az ~ Ay =~ Az < vppe/wpe <

¢/wpe. This imposes a strong constraint in the case of dense and/or cold plasmas!

PIC codes represent one the most time consuming numerical tools used in Physics. To give an
order of magnitude of a Laser Solid Interaction simulation in the context of fast ignition, a 100 pm size
plasma needs 6250 spatial cells in 1D, 3.9107 in 2D and 3.4 10! in 3D (c/wpe = 0.016 um) while the
oscillation time is about 1/wp. = 0.05 fs. Correspondingly, about 4 10° time steps are needed for a 20
ps simulation [Kemp et al., 2014]. Still according to [Kemp et al., 2014], a number of macroparticles
of 107 in 1D, 510° in 2D and 510" in 3D needs respectively 102, 5.610* and 5.6 10% time steps.
PIC codes are key tools to study the laser-plasma interaction in general, and the acceleration of fast

electrons in particular in the context of the physics of fast and shock ignition.

1.4 Brief Summary of Laser Solid Interation and Laser-

Generated Relativisitic Electron Beam Properties

High-Intensity Laser-Plasma Interaction (HILPI) has been studied for many years, motivated inter alia
by the Inertial Confinement Fusion (ICF) concept. In the conventional ICF schemes, ns laser pulses
interact with a sub-critical, long-scale length plasma (corona) and the dominant laser energy absorption
mechanisms are inverse bremsstrahlung heating and the resonant absorption. Besides, parametric
instabilities such as the acoustic decay, the stimulated Brillouin scattering, the two-plasmon-decay
and the stimulated Raman scattering may be an origin of strong electrostatic fields. The Landau
damping of such electrostatic plasma waves may be responsible for fast electron acceleration up to
100s of keV. For shorter laser pulses of several 10s or 100s of fs in the HILPI regime, the plasma has
no time to expand so the laser pulse interacts with a solid steep gradient density. In this case, various
absorption mechanisms may operate depending on the plasma temperature and density conditions :
the collisional absorption, the normal skin effect, the sheath inverse bremsstrahlung and the anormal
skin effect. In the context of Shock Ignition, the laser spike has a duration of several 100s of ps and
interacts with a hot and large-scale expanding corona. As a consequence, this changes considerably the
conditions of excitation of parametric instabilities and a large amount of fast electrons is expected. This
regime is still under investigation through extensive Particle-In-Cell simulations (briefly introduced in
section 1.3) [Klimo et al., 2014]. Ultra-High Intensity Laser-Plasma interaction (UHILPI) has been
studied since the 1990s, after the development of the chirped pulse amplification technique. It is an
intense field of research with several unresolved questions. The details of absorption processes are still
not well understood and new explanations for the break of adiabaticity in the laser-induced electron
motion have been recently proposed [May et al., 2011] [Mulser et al., 2012] [Sanz et al., 2012]. The
complexity of the laser-solid interaction due to strong nonlinearities and various competing processes

(see section 1.2) require the use of numerical Particle-In-Cell kinetic simulations. One can briefly
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summarize the obtained results as follows. While the particle acceleration is always due to the electric
field work, what differentiates the main mechanisms at play is the source of the electric field. In the
case of an obliquely incident laser pulse onto a steep gradient target, the standing wave structure
consisting of the incident and reflected waves combined with the electrostatic field is the source of the
vacuum heating. In the case of a normally incident laser pulse onto a steep gradient plasma, it is the
longitudinal component of the Lorentz force, along with the electrostatic field, which is responsible
for the j x B heating. In both cases, an electrostatic field induced by the plasma surface oscillation
is responsible for the anharmonic resonant absorption of the laser energy. Actually, due to hole
boring of the target, the vacuum heating operates also in the case of a normally incident UHI laser
pulse. The electron acceleration depends also on the laser pulse contrast (I7, max/Ir min). A strong
laser prepulse may ionize the surface, causing the plasma to expand. Then, the main laser pulse
interacts with a large-scale expanding plasma. In this case, the Raman backward scattered laser light
or the reflected laser pulse coupled with the incident laser pulse may lead to stochastic heating of the
electrons. Due to a relatively long laser pulse duration (= 10 ps) in the Fast Ignition scheme, the fast
electron acceleration mechanisms may change with time and extensive particle-in-cell simulations of
the LPI are needed. The state of the art of UHILPI in the context of Fast Ignition can be found in
[Kemp et al., 2014].

The physical processes described in sections 1.2.3, 1.2.4, 1.2.5 and 1.2.6 allow us to make
some conclusions concerning the properties of laser-generated relativistic electron beam Properties.
Firstly, it can be shown, by using the electron momentum conservation in the plane perpendicular to
the target normal that, in the case of a laser plane wave, obliquely incident on a steep gradient density
profile, the angle between the propagation direction of a forward accelerated electron and the target

normal reads [Sheng et al., 2000]

2(y— 1) (1+50) — 52 e
0y = arctan [ (-1 +9 )2 g sin~26 4 tan 2 9] (1.69)
(vy—1-0D)
where §® = [e®(z, t) — e®g]/mec? is the variation of the electrostatic potential and 6 is the laser

incidence angle.

Concerning the time dependence of the forward accelerated electrons, one can assume that, at
the target surface z = 0, the temporal envelope of the electron distribution follows the laser Gaussian
shape of duration At FWHM:

(1.70)

1 z — vpt 2
f2(z —vot) = ——==exp —41n2< > .
(voAt)? voAt

2m—7
8In2

Here, the internal temporal structure of the electron bunches with the modulation at w or 2w has been

omitted since it is usually not resolved in fast electron transport hybrid simulations (see Chapter 5).
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vo is the mean velocity associated with the energy flux density of the forward accelerated electrons
in the mean propagation z-direction such that the fast electron beam intensity I, = ny(e)vg = NabsIL
where 1,15 is the laser-to-electrons conversion efficiency, I, the laser pulse intensity, ny the fast electron
beam density and (g) their mean kinetic energy. As explained in Chapter 2, the fast electron beam
generates a counterpropagating return current in order to cancel the total electrical current. As ex-
plained in Chapter 3, this system of two counterpropagating currents may be unstable, leading to the
generation of small-scale magnetic fields with amplitudes comparable to the laser magnetic field. Such
self-generated magnetic fields can strongly deflect the electrons [Adam et al., 2006] [Pérez et al., 2013]
thus producing a divergent beam. Another source of the electron beam divergence is the curvature of
the electron acceleration region due to hole boring effects [Schmitz et al., 2012b]. The dependence of

the electron beam divergence on the intensity can be described by the following empirical scaling law

o | ano I

where 6/, is the cone apex angle. This scaling was deduced from experimental data by
[Green et al., 2008]. Since the more energetic electrons are less deviated by these strong stochas-
tic magnetic fields, the divergence angle 6,/ depends also on the electron energy. Moreover, due to
the laser transverse ponderomotive force and propagation effects in the preplasma, the divergence an-
gle of the accelerated electrons increases with the radial distance [Debayle et al., 2010]. The resulting

fast electron angular distribution can be approximated with the following form

0. — 0o\
fo(be) = 1AQQeXp [—41112( D 0) ] (1.72)

e

82

where ag = 2 or 4, Oy(r, €, t) is the mean angle of electron emission which increases with the radial
distance r from the beam axis and depends on the electron kinetic energy e and the time t according
to (1.69). Af(e, t) is the dispersion angle which decreases with increasing electron kinetic energy. 6,

is the half apex angle of the cone oriented in the direction defined by 6.

Experiments and simulations show that the laser-produced electron beam has approximately an

axisymetric Gaussian radial distribution of the form

fr(r) = IATQ exp [—4ln2(£7a)2] (1.73)
2782

in the case of a normally incident laser pulse. here, r = /22 + 92 is the distance from the beam
axis and the beam radius FWHM Ar is two or three times the laser pulse radial FWHM. In the case

of oblique incidence, in the (z, x) plane, the spatial distribution of the accelerated electrons can be
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written as

fola) = =g exp [—4ln2<xm °> ] (1.74)

TSIn2

where z9 and Az may depend on time. The distribution in the perpendicular direction f, can be

written similarly by replacing x by y and xzy by g in the previous Equation. Concerning the energy
spectrum of the forward accelerated electrons, several interpolations have been proposed. There is a

simple 1D exponential distribution :

1 €
fe(e) = mexp <_kBTb> (1.75)

where T}, can be estimated according to (1.47), (1.50) or with other scalings. Other proposed interpo-

lations such as a combination of two exponential functions

aq S a3 S
€ = ) L.
Jo(€) kgTy P <a2k‘BTb) * kgTy P <a4k‘BTb) (1.76)

a power law

'ﬁ@)zcw<k§n>aﬁ (1.77)

or

101 125

+ %exp (€>, (1.78)
kg

€
Oégk’BTb> 9 alokBTb
where {«;} and T}, are parameters found from the fitting of experimental or simulation results. The

total number of fast electrons can be written

_ nabsEL
(€)

where (g) is the mean electron kinetic energy and 7,,s means the laser energy conversion into the

No

(1.79)

forward accelerated fast electrons kinetic energy. By collecting available experimental and numerical
results, two interpolations were proposed for the time integrated laser energy absorption coefficient
[Davies, 2009]

ILN2 0.1958 ILN2 0.2661
Tabs = 20 ) OT Tabs = 21 ) : (180)
3.3710%Y W.cm™“.um 4.3010 W.cm™“.um

Note that the instantaneous laser energy absorption is expected to depend on time. The distribution
function of the forward accelerated electron beam at the Laser-Solid Interface z = 0 can be written as

follows
Uy (z, 4, 2 =0, ¢, 0, p, 1) = Nofo(2) fy(y) f2(—vot) f(€) fo (0c(0, ¢)) - (1.81)

It is the number of fast electrons emitted from the Laser Plasma Interaction zone per unit of volume

d®r = dxdydz, per unit of kinetic energy de and per unit of steradian d>Q = sin #dfdy at time t. It
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can be used as an initial condition for electron transport studies.
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Chapter 2

Electromagnetic Neutralization of a
Laser-generated Relativistic Electron

Beam

" The effects are always opposed to the causes that gave rise to them.”

Heinrich Lenz
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2.1. ELECTRIC FIELD GENERATED BY A MONOENERGETIC, COLLIMATED AND
HOMOGENEOUS SEMI-INFINITE RELATIVISTIC ELECTRON BEAM PROPAGATING
IN VACUUM

As described in the previous chapter, the interaction of (ultra) high-intensity short-pulse lasers
with solid targets of density n. generates large numbers of energetic electrons of density n, < ne.
These fast electrons can only penetrate into the solid if the solid can supply an equivalent charge
that electrically neutralize the fast electron beam. This electrical neutralization is done transversally
to the beam propagation direction in the case of solid conductors and longitudinally in the case of
solid insulators. While this electrostatically induced "return current” j. tends to compensate exactly
the fast electron beam current j, for insulators, the magnetic neutralization of the fast electron beam
occurs longitudinally for conductors. In the latter case, this is the magnetic neutralization of the beam
that induces the generation of the return current j. which tends to exactly compensate the fast electron
beam j; in agreement with the Lenz law. It allows the beam to propagate through the solid, overpassing
the Alfvén-Lawson limit. This chapter is dedicated to describing these electromagnetic neutralization
processes. Assuming a monoenergetic, collimated and homogeneous semi-infinite electron beam for
simplicity, the self-consistent electromagnetic fields are derived in order to highlight the need of these
electromagnetic neutralization processes allowing the beam to propagate. Assuming the beam to
be rigid, its electric neutralization is derived in both cases highlighting the difference between the
insulator and conductor cases. Then, the magnetic neutralization of the fast electron beams is derived

in the case of laser-irradiated solid conductors.

2.1 Electric Field Generated by a Monoenergetic, Col-
limated and Homogeneous Semi-infinite Relativistic

Electron Beam Propagating in Vacuum

o —————

Figure 2.1: Schematic of a semi-infinite ]—oo7 O’], axisymmetric, uniform, monoenergetic and col-
limated electron beam of radius r, moving at the velocity v, = vpe, compared to the
laboratory frame (O, z, y, z, t) and its associated beam rest frame (O', 2/, ¢/, 2/, t') such
that O’ = O at t = 0.

Let us firstly consider the case of a semi-infinite ] —o0, O ] , axisymmetric, uniform, monoenergetic
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and collimated relativistic electron beam propagating in vacuum along the z-axis with the velocity
vy, = vpe, compared to the laboratory frame (O, x, y, z, t). One notes (O, 2, 3/, 2/, t') the beam rest
frame such that O’ = O at t = 0 (see Figure 2.1). One notes 7, the beam radius and all values in the
beam rest frame are denoted by a prime symbol . There are no external electromagnetic fields and
one works with the spatial cylindrical coordinates (r, 0, z) and the momentum cylindrical coordinates
(pr, Po, p-) due to the geometry of the problem. According to the Einstein-Lorentz transformations,

one has the relations for each event (r, ¢t) and for each beam electron of momentum p and velocity v.

Vp VU
o= (t - 72> Y= Wy (1 - 7)
C (&
/ _ / _
r - r and p'r’ - pr
o = 6 Py = Do
2= (2 —wpt) P, = Wyme (v — vp)

where 4, = 1/4/1 — (vp/c)? is the beam Lorentz factor, ¢ is the velocity of light and m, is the electron
mass. In order to estimate the equilibrium (if it exists!) between the beam and the electric field it

generates in the beam rest frame, one has to solve the Vlasov equation

off 0 0 v/
@Jr@.(v’fé)—a—p,. B+ xB)f| =0 (2.1)
coupled with the Maxwell equations
0?9 ,
W = 47T€nb (22)

and

2AT 1 92A) 4 1 o’
d 0 ., d <8 > (2.3)

o 2o~ et g \ow
where fj(r', p’, t') = fo(r/, p’, t’) is the electron beam distribution function in the beam rest frame (see
Appendix A, section A.1.1). Also, it has been noted ® and A’ the electrostatic and vector potential
(B ' =¢(0/or') x A" and E' = —(09'/0r") — (0A’/0t’) ) with the Coulomb gauge ( (9/0r').A’ =0
), ny, = ny/y, the beam charge density and j, = 0 the beam current density. According to the least
action principle, the constants of motion for an electron in the beam volume are the Hamiltonian H’,

the canonical axial momentum P, and the angular momentum pj which are given by

H = ~'mec® —ed
PLo= g ed 24)
Py = Vme (x’v; — y'v;) .

Any function of these constants of motion is a solution of the Vlasov equation (2.1). Under our

assumptions of a semi-infinite, homogeneous, axisymmetric, monoenergetic and collimated electron
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beam, the distribution function reads consequently

1

2mTme

(', p ) = njIl (r, — ') I (—2') § (H' —mec®) 6 (p, — eAl) (2.5)

where it has been noted Il the Heaviside distribution and ¢ the Dirac distribution. Starting from this
distribution function, one can obtain the beam density in the beam rest frame by integrating it over

the whole momentum space. It reads

! / ! ! _ o / / o / 2 ! / / /
ny(r', 2/, ) = P,.dp, dp), dof,(x', p', t")
—00 —00 0

o o
= nyll (1, — ') T (—2) ni/ pr.dp,, dp.6 (H' — mec®) 6 (p, — eAL)
oo oo
1 p/ 2 e A 2
= nZOH (7“2 — r’) 11 (—Z’) o prdpr |:mec 1+ ch) 4 <mez> 1) —ed

= Tl (v = 7/) T (=2") mec? / Vdy'§ [(v — 1) mec? — ed]

(2.6)
Injecting this expression in (2.2) using E' = —(9®’/0r’) due to the fact A’ = 0 (because j, = 0 and
®’ does not depend on the time t' in the beam rest frame), one gets the following equation for the
electrostatic potential

0*® 109 9% 1
977 + e + 57 FH (ré — 7”) 11 (—z’) P = 47ren§,0H (7’2 — r’) 11 (—z’) (2.7)
b

where A = ¢/wj, = /A is the beam skin depth in the beam rest frame and wj, = /47n) e?/m, =
wp/+/7b its natural plasma frequency. Even if one can find solutions of Equation (2.7) in each separated
subspace (2' > 0), (r’ >y, 2 < 0) and (7"’ <y, 2 < 0), it is impossible to find an analytical solution
valid in the whole space by connecting continuously these electrostatic potentials and their spatial
derivatives (the self-electric field) found in these three subspaces. Besides, one can estimate the
longitudinal electric field by neglecting the radial spatial variation of the potential compared to the
longitudinal one close to the z’-axis and the vacuum-beam interface at 2z’ = 0. Equation (2.7) provides

in this case

2 /
®'(r'—0,2<0,t)= _mzc [1 — exp <f\,>] (2.8)
b

One deduces that the longitudinal self-electric field E, = —(90®'/9z’) vanishes inside the beam front

over approximately the beam skin depth )j. According to the Lorentz transformation,

E(r -0, z<ut, t) = E(r—0,z21t>z/wv)
E(r'—0,2 >0,t) (2.9)

— upt
= Fpexp [% (Z ; o )]ez
)‘b
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where Ey = —4men A;. It means physically that each beam slice of thickness ~ A} generates a longitu-
dinal electric field which is screened by the electromagnetic counter-reaction of its closest neighboring
slices of same thickness so that the slices are screened one by one by each other except for the last slices
close to the beam-front-vacuum interface at z/ = 0. Thus, one can roughly estimate the longitudinal
self-electric field generated at the beam front on the z’-axis by approximating the beam as a disk of
density of effective charge per surface unit o = —2n; e} located at 2’ = 0. According to the Gauss

theorem, one gets in this case
E(r—02>0t)~2m0, |1 - ——= ] €. (2.10)

and consequently

E(r—0,z>ut,t) = E(r—=0,zt<z/v)
Yo (2 — wpt) (2.11)
e..
\/%2 + 72 (2 — wpt)?

%

Eo|1-

The factor 2 in the expression of the density of charge per surface unit oj has been chosen in order
to respect the continuity of the electric field at 2z’ = 0 (z = vpt). Also, far away from the beam
front in the limit 2’ — —oo, one can neglect the longitudinal spatial variations of the electrostatic
potential compared to the radial ones. The resulting equation has already been obtained and solved
by [Hammer and Rostoker, 1970] while considering an infinite electron beam. This solution which
respects the continuity conditions at r = r;, and the boundary condition ®'(r' =0, 2/ — —o0, ') =0

is

2 !
_ e 1—-1 % if <
&' (', 2 — —o0, t') = € 9 14 9 p p (2.12)
MeC Tb meC T‘b rb r . / /
b b b b

where it has been noted I, the modified Bessel functions of the first kind. By applying the Lorentz

transformation, one gets [Hammer and Rostoker, 1970]

O(r, z— —o0,t) = P(r, z, t = )

= v [@’(r’, 2 — —oo, t') — v AL(r!, 2 — —oo0, t')]

_ WMMeC |:1 A <7’/>:| if r<mn
- e A
= 2

VoMeC Tp Vomec? Ty r r
- 11— (2 D (I m () i
| O(Azﬂ* 5 1<A;,> n(5) i e
(2.13)
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and consequently

Yo FEoly <;> e, if r<mn
b

N 74 . (2.14)
vwEo—2T) (") e, if r>n
T

In the case where r, < Ap, which implies r, < A}, one recovers the well known electric field generated
by a homogeneous, infinite and cylindrical rigid electron beam which can be obtained according to

the Gauss law : .
—47renb0§eT if r<mr
Eo = % (2.15)
—drenyy-Le, if r>mr
2r
(I1(z) ~ z/2 when  — 0). The term "rigid” means that it is assumed that the beam electrons are

not affected by the electromagnetic fields they generate as well as by external electromagnetic fields.

Fast ions

o

5
Electron cloud

Figure 2.2: Artist’s view taken from [Macchi et al., 2013] showing a laser-generated electron beam
trying to get out a solid target and the resulting electron cloud and accelerated ions.

We are more interested here in the opposite case where r, > )\, since in relativistic laser-solid
interaction experiments, the laser-generated electron beam has a radius r, ~ 10 ym while nyg is nec-
essarily less than the critical electron density n. ~ 10?! cm™ for a laser pulse of a 1 um wavelength
(cf. Chapter 1). Thus, )\, is typically less than A, ~ 0.2 um. Moreover, in such experiments, the
Lorentz factor 7, is typically less than 10 so that one can consider r, > Xj. In this case, the solution
(2.13) is not physical because the linear density of electric energy generated by the beam is greater

than the linear density of the beam energy itself (I1(x) ~ exp (x)/v/2mz when x — o0). This is, of
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course, physically impossible so that an electron beam cannot propagate in vacuum without being
electrically neutralized by a background media or by an accompanying positively charged beam. In
the case where there is no electric neutralization, the transport is necessarily inhibited. This is exactly
what happens when a laser-generated electron beam tries to get out in vacuum from the solid target
rear side (see Figure 2.2). When the beam electrons are escaping in vacuum, they create a spatial
charge separation which prevents the electrons with energies smaller than the target potential from
escaping the target. While the major part of beam electrons reflux inside the target, those with
energies higher than the surface potential can escape, thus creating a net positive charge at the sur-
face which is responsible for the generation of strong Electromagnetic pulses [Dubois et al., 2014].
Also, this strong electrostatic potential is responsible for the acceleration of light ions originated from
impurities, i.e., thin layers of water or hydrocarbons which are ordinarily present on solid surfaces un-
der standard experimental conditions. Such a positively charged ion beam accompanied by electrons
is commonly detected in laser-solid interaction experiments. A large number of theoretical and exper-
imental studies of accelerated ions have been published recently because of their interesting properties
such as ultrashort duration, high brilliance and low emittance comparable with ion beams generated

by a classical accelerator [Macchi et al., 2013].

2.2 Electric Neutralization of a Monoenergetic, Colli-
mated and Homogeneous Rigid Relativistic Electron

Beam Propagating in Solids or Dense Plasmas

2.2.1 Electric Neutralization of a Monoenergetic, Collimated and
Homogeneous Rigid Relativistic Electron Beam Propagating

in a Conductor

Let us consider the propagation in a conducting media of the semi-infinite electron beam studied in the
previous subsection. Such a conducting media can be a plasma or a metal. Due to their huge inertia
compared to the electrons and the time scale considered here, the ions (lattice) can be considered as
immobile. For simplicity, one assumes that the plasma (metal) is infinite, homogeneous and one notes
n; the fixed ion density (or the density of atoms for metals), n. the density, j. the current density
and fe the distribution function of the conducting electrons of the media where the electron beam is
propagating through. For metals, these electrons are those of the conduction band ; n.g = Z.n;0 with
for example Z. = 3 for Aluminum, Z. = 1 for Copper, ... For plasmas, they are the ionized electrons:
neo = Z*nyo at t = 0 where Z* is the plasma ionization state which depends on the plasma density

and the plasma electron temperature T.. As mentioned in the previous subsection, the electrical
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equilibrium of the beam electrons with the self-generated electric field is physically impossible. One
assumes so for simplicity that the electron beam is rigid in order to determine the electric response
to the beam propagation in the conducting media. Also, one neglects the collisions of the beam
electrons with the atoms, electrons or ions of the media which will be discussed in detail later on.
Thus, instead of solving Equation (2.1) for the beam electrons, one has to determine the conducting
electrons dynamics. This can be done by solving the Vlasov-Fokker-Planck equation in the BGK

approximation for the conducting electrons (cf. Appendix A, section A.3.1)

aé 8 ! el 6 / ! / / / / / 6:5/
e Lwn (e L m)](nb) e

Mg
coupled to the Maxwell equations

%.E' = —dre (ny, + n, — Z*nj) (2.17)

(for metals, Z* must be replaced by Z.),

0 1 0B’
% X /: _EW’ (218)
and 5 -
A7 . . . 10E
oy B = +ic+i) + o550 (2.19)

where the term
ony —/ (ff = fp) &°p'
R3

is added to ensure the conservation of the number of conducting electrons. Assuming the latter
are not relativistic in the laboratory frame, one has 4/ = (y)y = . Consequently, d3r'd®*p’ =
(d®r /) (d®*p/~s) and one has

2 ;2 /2 / 2
+ + Vpmev
fa, p ) =2 fulr, p, t) = Tp e [ Py TPy 2 (PL + mewy)

(ZWmekBTe)3/2 B 2mekpTe — 2mekpTe

where kT, < mec? is the conducting electron temperature in the laboratory frame. For simplicity,
one assumes that / does not depend on the velocity of particles and that it is equal to the conducting
electron-ion collision frequency in the beam rest frame v/,. Also, in order to ensure the Lorentz-
invariance of Equation (2.16), one has v/, = v,; /7, where v; is the non-relativistic electron-ion collision
frequency in the laboratory frame (see Appendix A, section A.3.2). By integrating (2.16) and (2.16)

multiplied by p’ over the whole momentum space, one gets

onl, 0
5 T ap (nev'e) =0 (2.20)
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and 5 5 ,
L‘%’ * (a)] (') = e (E ke B’) ~ V' (Pe ~P'eo) (2:21)

Here, the pressure tensor term has been neglected in (2.21) assuming the thermal velocity of the plasma
electrons can be neglected in comparison with the beam velocity i.e. \/m /7 < kBT /me <
vp. Concerning laser-generated relativistic electron beams, the beam density ny is necessarily less than
the critical density n. < n¢g and one has v, ~ 1 — 10. Thus, one can linearize the non-linear set of
equations {(2.17), (2.19), (2.18), (2.20), (2.21)} with respect to the small parameter nj/n., = ny/vZne.
One notes

V¢ € {ne, Ve, Je, E', B'}, § = &0 +0¢

where the & are the values at ¢ = 0 without the perturbation induced by the presence of the beam.

One has consequently fl, = fi;,
Mg :/ Fud’p’ = neo
R3
in agreement with the Lorentz transformation of the charge/current density quadrivector,

, 1

el 33,1 . . . / o/
Pew = [ Pfud’P = —Ymevy which implies v'eg = —vy, and j' oo = Ypneoevp.

neO R3

The unperturbed plasma is initially quasineutral so that Z*nl, = nl, j’;0 = —j'co and consequently
Ey = By = 0. Assuming that the perturbed conducting electrons have a momentum dp, < mec, the

linearized fluid equations are therefore

5}7/671;% + (5p'e’yey N 5pé7zez

&V, = , 2.22
VoMe Yime (2:22)
aon!, aon!, d
50 Yoy +n’60@. (6v'e) =0, (2.23)
0 0 r\ / Vp / / /
|:at, — 'Ubaz/:| (5p e) = —e <5E =+ ? x 0B ) — I/ei(Sp e’ (224)
a / / /
@.513 = —dre (nj + ony) , (2.25)
0 1068’
- | D —— 2.2
or 0 c ot (2.26)
and 5 O5E
4 100E
oy X 0B = %53'; + E% (2.27)
where d§j, = —nljedv’e + dnlevy. In the 1960’s, advances in the production of high-current

beams of relativistic electrons using a long coaxial capacitor [Graybill and Nablo, 1966],
[Roberts and Bennett, 1968] stimulated experimental [Andrews et al., 1970] and theoreti-
cal [Cox and Bennett, 1970] research. In this context, [Hammer and Rostoker, 1970] and
[Lee and Sudan, 1971] have solved the set of equations {(2.22),(2.23),(2.24)(2.25),(2.27),(2.26)}
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under some assumptions we are going to explain. The authors used the Laplace-Fourier method
(Laplace for ¢ and Fourier for r') in order to replace all spatial and temporal derivatives by simple
multiplications. Besides, interested in the behaviour of such beam-plasma system after the initial
transients, i.e., far away from the beam front in the laboratory frame (z — —o0), they looked for
solutions in the limit ¢ — oo using the final-value theorem of Laplace transform theory:

lim 6¢(k, ') = lim s6¢(k, s)

t'—o00 s—0
where (SAf is the Fourier transform of §¢ and (SAf its Laplace-Fourier transform. Thus, due to the fact

that the Fourier transform of the beam density is

o~

ny = 277y, 2o exp (—ik=z(),

where J, is the Bessel function of the first kind, they found that all these quantities d¢ in the limit

t' — oo can be written

(@, t —o00) = 1 kj_dkj_/ dk, hm séf(k s)

Pe(ky, k) Ji(kory)Jue (kor')
= — k| dk d dk, £ ik, (2 — 2/
/ L J_/ ZO/ DO(kLu kz) exp [Z (Z ZO)]
(2.28)

where P¢(k, k) are polynomials and v¢ =1 or 0 depending on § while

Do(ky, k2) = | (k> + k1?) kﬂi + s k., kﬂi - c Y’ : (2.29)
: vy N2 p VoUbAL

Here, A\{ = c¢/w;, = Ae/\/% is the plasma skin depth in the beam rest frame and wj, = /7w, is the

Langmuir plasma frequency. In order to perform such k,-integrations in the integrals (2.28) using the

residue theorem, one has to determine the zeros k, for which Dy(k, k,) = 0.

The second bracket term of (2.29) is easy to factorize and one finds the poles

v c 2 v 2 v C Ve
ke — —j_ei _ [ Zei — et Zer (2.30)
' S, T \/<%vb/\é> (2vb> 20 T VoUbAL e (%)

and

v c 2 v\ 2 v c Vei
ko = —j_e _ — Zei - _le Zeny 231
? 20 \/<%vb/\é> <2vb> "20, YoUbAL o (%) 230

The first one is more complicated and needs some approximations. [Hammer and Rostoker, 1970] have

o
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Figure 2.3: Integration contour used for the k,-integration of (2.28) when 2’ —z; > 0 (left) and when
2" — 2, < 0 (right )

approximated

(k% + k1 ?) k+¢éi~+£i—k (k2+k2)+4L +0 Vei
z 1 1 v )\/2 — hz z 1 )\/2 w;

by considering the weakly-collisional plasma case W;,o /vL, > 1. Thus, they found the poles
ks ~ i1+ (Mky)’ (2.32)

and
ks o~ — i1+ (ALK (2.33)

Actually, this is in the laboratory frame where the collisionless plasma condition must be verified
so that it is the condition wy,/ve; > 1 which must be considered and not wj,/v; > 1. Besides,
in the original paper of [Hammer and Rostoker, 1970], the authors consider that w, = w;, and not
wp = wy//. However, this does not change the poles obtained by [Hammer and Rostoker, 1970]
because wp/ve; > 1 still implies A,v., /v, < 1. ks is then found by identification :

e“er

.Véi kz
(/{?ZQ + k;J_Q) <kz + va> + W = (k‘z — k3) (kz — k4) (/{?z — k‘5)

e

which gives

/
—fi%(xelﬂ)? i ANk <1

&
%

—iZei i Mk, > 1
Up
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Thus, [Lee and Sudan, 1971] approximate

s Nk 2
]{55%—2'@ (e L)

2.34
vy 14 (Mky)? (2:34)

which reproduces well both limits. One can notice that this expression (2.34) can also be obtained
by assuming k, < k; in the first bracket of (2.29). In the opposite case where k, > k,, one can
also find the poles +2i/\. but they correspond to vanishing solutions close to z = vyt over the plasma
skin depth A /’yg/ 2 while we are interested here in the plasma response far away from the beam front,
ie., for |z — vpt| > /\e/fyg’/ ?. Like in the case studied by [Hammer and Rostoker, 1970], one can
neglect the pole k5. Indeed, concerning laser-generated electron beams, the typical length scale we are
interested in is in ranges from the collisional relaxation length Iy = vy/ve; = [} /5 to the beam length
Ly ~ vyt = Lj /v, where 77 is the laser pulse duration. In current experiments, 77, is typically less

than 1 — 10 ps and is consequently very small compared to the characteristic magnetic diffusion time

2 /
Ty Td
= = 2.35
7d Agl/ei 7b3 ( )

found by [Lee and Sudan, 1971]. Thus, for 2’ — z{, > 0, the k,-integration can be performed according
to the residue theorem along the contour defined by the real axis including the pole k, = k3 completed
by a half-circle in the upper half k, plane such as represented in the left panel of Figure 2.3. For
2’ —z{ < 0, it can be performed along the contour defined by the real axis including the pole k. = k1, k2
and k4 completed by a half-circle in the lower half k., plane such as represented in the right panel of
Figure 2.3. Finally, the z{ and k, -integrations can be performed exactly in the limit |2/| > A, and

gives [Hammer and Rostoker, 1970]

2
B <00 vo0) = dmeriapR() | - o)
SEH(r', 2/ <0, = 00) = 0
SEL(r, 2 <0t »00) = — 4mnerly, [?b,Gz(Z’) - gs(Z/)FQ(T/)]
P’
OBL(r', 2/ <0, = 00) = 0
/ / / / _ _ !/ / 2% / _ /
By, < 0,0 0) = — Amafer? R [1 - 0] 2.3)
OBL(r, 2/ <0, = 00) = 0
w/ 7,,/
on,(r', 2/ <0,/ - 00) = — nj {Gl(z’) + (v -1) prFg(r’) {1 — vcbgc(z’)] }
!/
wL(r, 2 <0, - 0) = — % bwyrpgs (2 ) Fi(r')
ne,o wir c
Sul(r', 2 <0, - 00) = — Lo, {Gl(z/) — 220 py () [1 - gc(z/)} }
Teo ¢ Ub
where
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/ /
Il (7"/) K1 <§\l/}) if r’ S r{)
(') = f> § and
K

/ /
I L/ K % if < &

FQ(T,) - 7‘5 7’73
: / /
\ — Il )\72 KO Yg lf ro> Tb

Here, I, and K, are the modified Bessel functions respectively of the first and second kind
(There is a mistake in [Hammer and Rostoker, 1970], Eq. (110) : it is 7+ (ry/AL) K1 (r'/AL)” and
not ”—1I1(ry/A,)K1("/X,)” in the lower line of the second bracket). The discontinuities at r’ = 7}
of the functions G; and G are due to the discontinious beam current profile and the cold plasma
assumption. According to the Lorentz transformations, one can now deduce the electric response to
the beam propagation of the conducting electrons far away from the beam front (|z — vpt| > A /73/ %)

in the laboratory frame

/

— ot (v — unt
1 — cos <wp,/ 2% > exp |:V€1(2Ub):| if < T{)
ne(r, z<upt, t < 19) = — My 20
0 it >
ny Tp z — Ubt Vei ( Ubt)
SVer(ry, 2z <wopt, t K 74) = — c——sin | wy/Tp exp | 22—V B (1)
Neo A 2uy
O0E (1, z < wpt, t K 19) = — 4dmngerycos <wp\/%z vb > exp V“(zvb) Fy(r)
\ Up Vp
(2.37)

Thus, the electric field generated by a relativistic electron beam far away from the beam front (2.15)
expels radially a small fraction (ny/ney < 1) of the conducting electrons out of the beam volume.
This electron current generates a radial electric field which counteracts the electric field generated by
the beam so that the full radial electric field E, = 0F, vanishes. This electric neutralization of the
beam occurs within a time scale of few yezl with oscillations at the plasma frequency wl’) = wWpv/ M
evaluated in the beam rest frame. This frequency can become significant for very large values of ~;.

In the opposite case of a collisional plasma where ve; > wpe, k1 becomes purely imaginary :

1 3
’)/bTevb Vei

where 7, = v); /w, =1, /2 is the Coulomb explosion time evaluated in the beam rest frame and ks

coincides now with ks (in the limit &, X, > 1) while k3, k4 and k5 are unchanged. By repeating the
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procedure described above, one obtains in this case for |z — vpt| > Ac/ 'yg /2

z — upt ) , ,
1—exp | it <
ne(r, z<upt, tL1g) = — np Te
0 it >
ny Ty Wp z — Ubt (239)
OVer (1T, 2 < Upt, t K 7q) = C—~, exp <7b >F17"
67"( ) Neo )\é Vei\/% 2 ( )
z—upt
OE (1, z < wpt, t K 17q) = — 4dmwmperpexp | W ’ )Fl(r)
e

Thus, the electron beam is electrically neutralized in a time scale of 7./7,. In agreement with
[Cox and Bennett, 1970], the oscillations at the plasma frequency w}’, have disappeared and the mag-

nitude of the radial velocity is lower because of a greater influence of the electron-ion collisions.

2.2.2 Electric Neutralization of a Monoenergetic, Collimated and
Homogeneous Rigid Relativistic Electron Beam Propagating

in a Dielectric

The propagation of a semi-infinite electron beam in a non-conducting media is more complicated.
The experiments show that the laser-generated electron beam can propagate deeply in the target
while there is no free electrons in dielectrics (Z* = 0) to electrically neutralize the beam. This
paradox is solved by noticing that the atoms in a dielectric can be ionized in collisions with the
beam electrons (or with the newborn electrons released by ionization), by the self-consistent electric
field at the beam front (2.11) or by the electrostatic field induced by the space-charge separation.
Let us consider that the electron beam is generated in the laser-solid interaction zone at z < 0
over a small thickness \s (cf. Chapter 1) and is propagating in a semi-infinite dielectric (z > 0).
[Tikhonchuk, 2002] has shown that the ionization of dielectric atoms by the self-consistent electric
field at the beam front (2.11) is much more important than their collisional ionization by the impact
of beam electrons. Indeed, according to our estimate (2.11) and assuming the typical values of laser-
generated electron beam parameters n, ~ n. and v, ~ 1 — 10, the typical value of the self-consistent
electric field at the beam front is Ey = —4dmenj A, ~ —10'2 V.m™! which represents ~ 10% of
the atomic electric field Egony, = —Z3e/n2r%0hr ~ —5(Z3/n?)10" V.m~! in the Bohr hydrogenoid
approximation (for example for Carbon, Z = 6 and n = 2). Thus, the field is sufficiently high to
induce a tunelling ionization with the characteristic rate of ~ 1 fs~! according to [Keldysh, 1965] while
the collisional ionization probability does not exceed =~ 100 ns~! according to [Tikhonchuk, 2002].
Besides, still according to the author, the self-consistent electric field is not sufficient to fully explain
a deep penetration of laser-generated electron beam in dielectrics as observed in experiments due to
the screening of the self-consistent electric field by newborn electrons. The space-charge-separation

electric field must so be taken into account. [Debayle and Tikhonchuk, 2007] have developed a quasi-
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stationary 1D model of the laser-generated electron beam transport through a dielectric material that
we are going to present here. In this model, the atoms and new born ions are assumed to be at rest
due to their huge inertia compared to the electrons and the small time scale considered here. The new
born free electrons dynamics is resolved according to the hydrodynamic equation for the conduction
electron density (see Appendix B, section B.1.2)

one 0 on; ony,

ot + & (nevez) = ﬁ = _W = VE (nn - nz) + Ven (nn - nz) — VrecTl; (240)

where vg = vg(E.,) is the electric field ionization rate, Ve, = Ven(ne, T¢) is the collisional ionization rate
depending on the conducting electrons density n. and their temperature T, and v,ec is the three-body
recombination rate, the hydrodynamic equation for the conduction electron momentum

8je,z o 92

ot = EneEz — Veij&z (241)

where the left hand side takes into account the temporal part of the electron inertia and the hydro-

dynamic equation for the conduction electron internal energy

§g (nekBTe) = je,zEz - 21})%

2.42
20t ( )

where the second term in the right hand side, depending on the mean ionization potential I, accounts

for the energy losses due to the ionization and finally the Saha’s equation

Np — Ny Vrec

based on the detailed equilibrium between the collisional ionization process and the three body recom-
bination. In a 1D model, the magnetic field is neglected while the electric field is estimated according

to the Maxwell-Gauss equation

OF,
0z

I, On;
= —4re (ne +np — ’n,z) — 47rE—pz 821

(2.44)

where the last term in the right hand side accounts for the dielectric polarization P, induced by the
field ionization process such that (0P, /0z) = (I,,/E.)(0n;/0z) [Debayle and Tikhonchuk, 2007]. Also,
for simplicity, only the first ionization of atoms is taken into account, leading to an ionization state
Z* = 1. One can notice that direct collisional ionization of atoms by the beam electrons is neglected
here as the pressure of the new born electrons, because their thermal velocity is small compared to
their mean velocity. The beam is assumed to be rigid since the ionization losses are relatively small
for present day laser-generated electron beam currents. The 1D approximation consists in considering
only the beam transport close to the z-axis rejecting the beam radius r, to the infinity. Consequently,

the self-consistent electric field at the beam front cancels. One can roughly estimate the space-charge-
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separation electric field on the time scale t <« V;jl by solving (2.44) assuming

e (z, t < 1/51) = (neo —np) ([z + Ag] — [z])
n; (z, t < 1/51) = ni ([z 4+ As] = [z])
ny (2, 1) = o (I[z] — [z — vpt])

where ney = n;p is the free electron/ion density of the laser-dielectric interaction zone. This condition
accounts for the lack of the forward accelerated electrons in this zone as well as their propagation

inside the target. The resulting space-charge separation electric field reads
E,(0<z<ut t< 1/51) ~ dme(2ny) (vpt — 2) . (2.45)

Contrary to the self-consistent electric field (2.11), this electric field (2.45) is positive. Its maximal
value is close to 4mwenyovp/vE which has the same order of magnitude as Fy and can consequently lead
to the tunnel ionization of the neutral atoms. Moreover, by coupling the Maxwell-Gauss equation

(2.44) with the charge conservation equation —e(9/0t)(ne + ny — n;) = (0/02)(je,» + jb), one gets

oF,
ot

op.
ot

= —4m (Jbo + Jez) — (2.46)

This Ampere-like equation (2.46) shows that the charge-space-separation electric field induces elec-
trostatically a ”return current” in the dielectric which tends to cancel the total current. This return
current generates an Ohmic electric field according to Equation (2.41). The new born electrons are
strongly heated by Joule effect according to Equation (2.42) and participate in the collisional ionization
of the dielectric according to Equation (2.40). Finally, the beam current is electrically neutralized in
agreement with the the charge conservation equation except close to the beam front where the "return
current” induces a lack of free electrons. These time-dependent processes are leading to an additional

beam energy loss compared to laser-metal interaction as shown experimentally by [Pisani et al., 2000].

2.3 Magnetic Neutralization of a Monoenergetic, Colli-
mated and Homogeneous Rigid Relativistic Electron

Beam Propagating in a Conductor

Let us consider here a monoenergetic cylindrical and semi-infinite electron beam propagating in a
medium assuming that it is already electrically neutralized. In a plasma or a conducting metal, the
beam is neutralized electrically by the radial expulsion of background electrons out of the beam volume
while in a dielectric material, this is the electrostatically induced ”return current” which longtudinally

neutralizes the beam. However, we show in this subsection that, even electrically neutralized, a
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high current of electron beam cannot propagate without its magnetic neutralization. We start from
Equations (2.1), (2.3) and the Maxwell-Gauss equation
9@’

which accounts for the electric beam neutralization. By performing an analysis similar to that of
Section 2.1, one can show that, far away from the beam front i.e. for |z| > A}, the beam remains

homogeneous ny = ny,II(r, — r), the electrostatic potential ® = 0 and the vector potential

T/

A() 1-— I() y if o < 7’;)
AL (r', 2 = —o0, t) = 14 / / / (2.48)
Ag |:1 — Iy (rb>:| *Aoﬁll (7qb> In <’I") if r>mn
Xy A\ Ay
where Ay = —yfBymec/e. Consequently, according to the Lorentz transformation of the fields, the

magnetic field in the laboratory frame reads

A
T?II <)7:/> €y if r < Tb
B(r, z— —o0, t) = b b (2.49)
Ag 5\ Th .
T;]I]_ )\72 7 €y if > Ty

In the case where r, < )}, one retrieves the well known magnetic field generated by a homogeneous,

infinite and cylindrical rigid electron beam, which can be obtained according to the Ampere law :

4 . r .
— Jbgee if r<m
Boo={ iz 72 (2.50)
—jp=2eg if r>mr
c” 2r

(I1(xz) ~ x/2 when x — 0). In order to explain observations concerning cosmic rays, [Alfvén, 1939] has
studied the trajectories of beam electrons in this self-consistent magnetic fields (2.50). Indeed, thanks
to the electrical neutralization and to the fact that ng is constant inside the beam, the beam electron
kinetic energy is constant. By integrating the beam electrons equation of motion, [Alfvén, 1939] showed
that if the beam current I, = jbm"g is sufficently small, their motion is approximatively sinusoidal as
illustrated by the trajectory a in Figure 2.4. As the current I, increases, the trajectory passes through
the beam axis at a greater angle (trajectory b) until I, = In for which the particle passes through
the axis perpendicular to it (trajectory c). If I is increased still further, the net particle motion is
backward, as shown by orbit e and the extreme case of orbit f. It means that the electron beam
propagation is stopped due to the action of the self-generated magnetic field on the beam electrons.
According to [Lawson, 1959], the threshold value I can be defined as the current for which the beam

electron Larmor radius Ry, in the maximum self-magnetic field, is equal to the half of the beam radius.
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Figure 2.4: Trajectories of beam electrons starting in the z-direction at various distance from the
axis of a uniform and electrically neutralized relativistic electron beam. Solid (dashed)
curves represent particle trajectories with net motion forward (inward) taken from
[Alfvén, 1939]

One obtains according to this criterion the well-known Alfvén-Lawson limit

mec>

In = — b ~ =178 kA. (2.51)

e

Concerning laser-generated electron beams, the typical current is greater than Iy by many orders
of magnitude while experiments show clearly the signature of the beam propagation deep inside the
irradiated target. Moreover, tfor laser-generated electron beam, we have typically rp, > Ap, which is
the opposite to the condition for which the solution (2.50) was obtained. In the case where r, > A,
(2.49) is not physical because we obtain that the linear density of magnetic energy generated by the
beam is greater than the linear density of the beam energy (I1(z) ~ exp (x)/v/27z when 2 — 00). This
is of course physically impossible. In order to break this paradox, we will show here that, in addition
to the electrical neutralization, an electron beam cannot propagate without being also magnetically

neutralized.

Let us consider so a rigid relativistic electron beam propagating through a conducting medium
(plasma or metal) and let us calculate the magnetic response of the medium to the beam propagation.
The system of equations to be solved {(2.16), (2.17), (2.18), (2.19)} was already introduced in the

previous section 2.2.1. According to [Hammer and Rostoker, 1970], assuming n, < n., a weakly
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collisional (v¢; < wp) and cold plasma (neglecting the pressure effects) and considering the time
scales small compared to the diffusion time 74, one obtains the solutions (2.36). Then performing the

Lorentz-transformations, one finds

z — upt Vei (2 — vpt
SE.(r, z <wpt, t K 1q) = —4dmnperysin (wp\/*yb b exp [“(2”]
(%)
)\/
@7@ — I() % K1 T—l/) if T S Ty
> C Ty e e
T T
I )76 K() )76 it r> Ty
1 - %Io ),\L/ Ky % if r<mr
Oje(r, z <upt, t L Tq) = —Jp TZ T; S
7111 Vi K() 37 if rT>Tp
. AL AL AL (2.52)
n b z — upt Vei (2 — wpt) : :
——c0s | Wpy/ Vb exp | ———
Vb 2up

w A, T\ N,
r b .
A I v Ky v if r<mr
(SBQ(T, z < vpt, Tt K Td) = — T € ¢
¢ {2V k() i
1 Y 1 Y 1 T>Ty

That solution shows that, within the time scale of the beam electrical neutralization (few 1/&1), a
temporal variation of the magnetic field generated by the beam induces a longitudinal electric field.
This electric field accelerates a return current of plasma electrons dj. . which tends to cancel the
total net current (j, + je.. = 0) over the time scale V;1 except in the narrow zone at the beam edge
rp = AL. This is in agreement with the Lenz law which stipulates that the effects of the magnetic
field generated by the beam counteract its cause, that is the total net current here. The longitu-

dinal electric field dF, vanishes over the time scale 1/;1.

Besides, as the two counterpropagating
currents do not cancel each other exactly, the magnetic field generated by the return current does
not completely cancel the magnetic field generated by the beam. There is a residual magnetic field
dBy localized at the beam edge r, = AL. The difference between expressions (2.52) and the original
results of [Hammer and Rostoker, 1970] comes from the fact that here, the relationship w;, = \/Jpwp
has been taken into account (and not w]'o = wp like [Hammer and Rostoker, 1970]). Also, as pointed
out by [Lee and Sudan, 1971], the magnetically induced return current and consequenly the residual
magnetic field diffuse over the time scale 7; estimated by Equation (2.35) (see also Chapter 3).
According to [Cox and Bennett, 1970], in the case of a collisional plasma (ve; > wpe), the time scale

of the magnetic neutralization is defined by the Coulomb explosion time 7./7,. In this case, the

resolution of the system of Equations {(2.16), (2.17), (2.18), (2.19)} using the same methodology as
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[Hammer and Rostoker, 1970] gives

— Upt
OE,(r, z < wpt, t K 7q) = —4mnyeryexp [’Yb(ZUb)]
Te
)\/
Dl Iy - K ™ if r<mr
X €T At A,
Ty r
L+ ) Kol if r>r
WA )
1 - %IO )7\;/ K, % if r<mry
Sioclrz<uttny = ] e SELAN
7/11 N/ KO 37 if r> T
AL AL AL . (2.53)
Wp Y (2 — vpt)
+ Jp——exp
Vej Te
C Ty r T
1 = —< | v ) K1 |+ if r<mn
X U Ay AL A,
CTo b r ]
—h{ ) Kol it r>r
o AN ) O\ b
4 Il L Kl Q if r < T
. N\ N
0Bo(r, z < wpt, t K 19) = ?]bTb 7«; re
I )\7/@ K /\—/6 if r>mn

In contrast to the collisionless case treated by [Hammer and Rostoker, 1970], the oscillatory component
of the return current and the longitudinal electric field have disappeared here. Also, the magnitude of
the time-dependent component of the return current is smaller than in the collisionless case because

of greater influence of collisions.

Magnetic neutralization proceeds differently through an insulator. In this case, the ”return cur-
rent” is already generated due to the induced charge-space-electric field. Thus, one cannot separate
the electric and magnetic neutralization of the beam but the resulting beam-"return current” system
is actually very similar : there is also a residual magnetic field at the beam edge. Thus, in both cases
(insulator or conductor), at the end of the beam electromagnetic neutralization, the beam-plasma
system consists in a relativistic electron beam, a quasi-opposite counterpropagating return current

and immobile ions. Such a system can be extremely unstable. The state of the art of the instablity

theory is presented in the next Chapter 3.
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Chapter 3

Collective Effects of Relativistic
Electron Beam Transport in Solids and

Dense Plasmas

” In relativity, movement is continuous, causally determinate and well defined, while in quantum
mechanics it is discontinuous, not causally determinate and not well defined.”
David Bohm
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When propagating through a material, laser-generated fast electron beams are electromagnetically
neutralized over a time scale of the background electron-ion collision time Ve_il or the background
Coulomb explosion time 7./, depending on the temperature and density conditions. In solids and
dense plasmas, these time scales are typically of the order of a few fs. The electric field generated by
the electron beam expels radially a small part of the background electrons ~ nj < n. out of the beam
volume in case of metals or plasmas. In case of insulators, the longitudinal electric field generated by
the fast electrons at the beam front initiates the field ionization of the material and accelerates the new-
born free electrons. The field ionization is followed by the collisional ionization by these accelerated
free electrons in the zone where the space-charge electrostatic field is screened. This electrostatically
induced "return current” j. tends to exactly compensate the beam current density je =~ —j,. In both
cases (insulators or conductors), the resulting electric field cancels at the end of the neutralization
process. Concerning metals or plasmas, the temporal variation of the magnetic field generated by
the beam induces a longitudinal electric field that accelerates a return current of background free
electrons. This magnetically induced return current j. tends also to exactly compensate the beam
current density je ~ —j, in agreement with the Lenz law. However, in both cases (insulator or
conductor), the magnetic neutralization is not perfect. A fine surface around the beam edge of the
order of the background skin depth A, remains non neutralized and a residual magnetic field remains
locally. However, this residual magnetic field must be mitigated in case of smoother radial gradients
of the beam where [(1/n3)(0ny/0r)] =% > A.. This chapter presents the collective effects, taking place
at time scales larger than the beam neutralization time. Indeed, in this PhD studies, we are interested
in a time scale ranging from a few fs to a few hundreds of ps since the studied laser-pulse durations

71, are typically of about 10 fs — 100 ps.

3.1 Quasi-static Approximation

3.1.1 Background Electrons Dynamics after the Beam Electromag-

netic Neutralization

In dense background media such as solids or dense plasmas, the background electrons can be assumed
sufficiently collisional and close to equilibrium (Maxwell-Boltzmann or Fermi-Dirac distribution func-
tions) so that they may be modelled by a non-relativistic fluid approach. Such a fluid model for the
background requires that departures from collisional equilibrium are small. For example, fluid models
break down when electric fields are greater than m.ve;vte/e because they may be responsible for the
acceleration of runaway electrons that are not taken into account by the hydrodynamic theory. The
non-relativistic assumption comes from the fact that the beam density n; is small compared to the
background conducting electrons density n.. Thus, the background response to the beam propagation

can be considered as a small perturbation and the induced background electron velocities are small
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compared to v, < ¢. Also, over the time scale considered here, ions/atoms can be considered immobile
because of their huge inertia compared to the electron mass. Thus, the background response to the

beam propagation can be described by the hydrodynamic equations

One +2 (
ot  Or

Mene Lft + <V6-59r>:| (ve) (3.2)

= e [E+% x B] - ;.(PGI—Te)—i—Rei

for the background free electrons, only (see Appendix B, section B.1.2). The relativistic electron

neve) =0 (3.1)

and

beam and the background electrons interact via the macroscopic electromagnetic fields E and B.
Direct collisions of background electrons with beam electrons do not appear in Equations (3.1) and
(3.2). This is due to the fact that, since n, < ne, they are negligible compared to collisions with
background ions/atoms or background electrons. Here, we focus on the electromagnetic fields; the
collisional effects of relativistic electron beam transport are considered in the next Chapter 4. In
the time scale considered here, the beam has already been neutralized electrically so that the charge

neutrality equation

Ne + Np = Z Zin;. (3.3)
7

replaces the Maxwell-Gauss Equation. The ion charge state Z; depends on the local temperature and
properties of the material. n, being small compared to n., the latter equation is valid on length scales
much longer than the Debye length like in the usual hydrodynamic approach. Also, over time scales

1 one can neglect the electron inertia (left hand side term

larger than the Langmuir wave time scale w,,’
in Equation (3.2)). In this case, oscillations of the laser-generated electron beam at the laser frequency
wr, or 2wy, cannot be resolved properly and are not taken into account. Also, the fluid viscosity is
neglected and the Braginskii or the Lee-More transport coefficients Re; = enen.j—kp a—re are usually
used (see Appendix B, sections B.2.3 and B.2.4). As a result, Equation (3.2) is usually replaced

by the more simple equation

1 0
E=nj.— — (nekpT, 4
N-Je nee Or (ne B e) (3 )
commonly called the Ohm’s law. Assuming that the cyclotron frequency w. = |eB|/mecc is small

compared to ve;, the magnetization of the background electrons is neglected and the resistivity tensor
is usually taken to be isotropic n = nl. Also, the thermal force is neglected since, in general, it is
small compared to the friction force. The electromagnetic fields are defined by the Maxwell-Faraday
equation

oB 0
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and the Maxwell-Ampere equation

OE 0 A
with the initial conditions of zero field divergences (9/Jr).B = 0 and (9/0r).E = 0. The quasi-static
approximation consists in neglecting the displacement current (OE/0t) in the Maxwell-Ampere
equation (3.6). This is fully justified as the background electron inertia is neglected, as one considers
time scales larger than w, I and space scales larger than the plasma skin depth A\.. Sometimes, due
to the fact that je ~ —j, on spatial scales larger than A, the Maxwell-Ampére Equation (3.6) is not
resolved and j. is directly replaced by —j, in (3.4). The system of Equations (3.6), (3.4) and (3.5)
describes the self-generated electromagnetic field

1
nc 0 B 0

1 Ir x B — o Or (nekpTe) (3.7)

and

10B 0 y <nc 0 on . kp On. « T (3.8)

-+ = — B)=n—xXjb+ =— - .
cot Tor \amar” > Tor ot g X e~ oo X or

The second term in the left hand side of Equation (3.8) describes the magnetic field diffusion. One can
understand easily now the characteristic time scale (2.35) proposed by [Lee and Sudan, 1971]. Indeed,

considering space scale of the order of the beam radius 7y, the diffusion operator gives the time scale

47rr? r2
Ty = b "
nc? A20e;

because 1 = 4nvg; /wg, by definition. There are three source terms for magnetic field generation in
Equation (3.8), depending on the beam current density, the electrical resisitivity and the background
electron temperature and density gradients, while the self-generated electric field E is mainly given by
—njp as already explained. These self-generated electromagnetic fields play an important role in the
relativisitic electron beam transport. The magnetic field due to the curl of the beam current density
tends to pinch the relativistic electron beam, the magnetic field due to the resistivity gradients tends
to move the relativistic electrons from low electrical resistivity zones to higher ones, while the resistive
electric field slows down the relativistic electrons [Davies et al., 1997]. The magnetic field generated
by the temperature-density crossed gradients in (3.8) may modify the beam transport on a time scale
of a few picoseconds [Nicolai et al., 2011] but on shorter time scales, it can be neglected. Using the
same assumptions and methodology as [Hammer and Rostoker, 1970], [Lee and Sudan, 1971] derived
the electron background response to the propagation of a semi-infinite, monoenergetic, cylindrical,
collimated and rigid relativistic homogenous electron beam on a time scale large compared to I/e_il or

Te /- Following the notations introduced in Chapter 2, [Lee and Sudan, 1971] considered only the
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pole k5. Their solution reads in the limit |z — vpt| > A,

-1
Ne (1, 2 < pt, t >V . OF To) = —1y
e( “ 6) 0 if r>mn

for the background electron density and

00 (e 1\2
Jeo (ry 2 <wpt,t>vlorr) = —ij‘b/ i, Jokur)Nilkir) [V” (2 = wt) _ (kLX)

14 (kM2 Up 14 (kM2
VpTd

= —j [1 — exp (7&4 = vbt)>] when r < \..
(3.10)

for the diffused background return current. This last expression shows that the return current starts
from the perfect neutralization j.. = —j, and then decreases in the time scale of 75 and in a spatial

scale of T vp.

3.1.2 Electric and Magnetic Fields Radial Profiles

Since laser-generated electron beam lengths are small compared to the diffusion length vy7;, < vp74,
let us consider here time scales shorter than the diffusion time (2.35). Due to the fact that there
are many orders of magnitude between ye_il or T/ and T4, one has to solve accurately Equations
(3.7) and (3.8). In order to estimate the radial profiles of the electric and magnetic field induced by
a laser-generated electron beam, [Fill, 2001] assumed a homogenous conducting background with a

constant resistivity 7, an axisymetric rigid electron beam of the form

b 2
b0 sin? <7T2TZL/UI’) exp <—27;2) if z < wupt < z 4+ 2uTL,
b

0 else

2 2
T T T T
<> <b> 4> (b> : (3.11)
TL TLC TI, 57’b

where dr, ' ~ 9/0r. Starting from (3.8), he thus obtained for the magnetic field

Jb =

and the scaling

t8'
Jb
By(r, z, t = n ——dt
0(7 7) 0C 0 9

. 2wr T r2
= Jw0 —eXp\—33 at t = 7.
c T4 2ry

(3.12)

Indeed, under the assumption (3.11), the diffusion term can be neglected, while the homogenous

background assumption cancels all the source terms except the one due to the curl of the beam
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Figure 3.1: Radial profile of beam current density jp, return current density je . (je,. with the Fills
notations), net current density jn. (jn), azimuthal magnetic field By (By), and radial
current density je, = jnr (Jer) at peak of a pulse ¢ = 7. The beam current is assumed
to have a Gaussian radial profile. The various quantities are normalized with respect
to the beam current density amplitude jp. In addition, the following scaling factors
are used: 7r,/74 for j, ., 2mryTr/Tqc for By. The radial current has the same spatial
profile as the B-field. Its scaling factor is rp/74c. The return current is drawn for a ratio
74/71, = 100 [Fill, 2001]

current density. The background current density is deduced by using the Maxwell-Ampere law (3.6)
knowing the magnetic field (3.12). It reads

j@ﬂ” = jn,r and je,z =—Jp+ jn,z (313)

where the net total current density
jn=——xB (3.14)
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and consequently

(i _ _c9B  10By . mch
Jnr = At 8z~ 4x 85 ~ A4x or
. r r
A Jw|—)exp|—-3 |att=m7L
27"3
, clo (rBy) noc® (1107, n azjbdt (3.15)
s — (T = — _— Y
In.z A7 r Or 0 A Jo T Or or?
2
= = 1- = exp - att =
L Joo T4 27“? 27“,3 L

assuming v ~ c. Finally, by using Ohm’s law (3.7) and by neglecting the pressure term, the electric
field can be deduced knowing the return current j.. The profiles of the current and the magnetic
field are shown in Figure 3.1. The small factor 77, /74 in (3.15) explains why the magnetic curl in
the Maxwell-Ampere equation (3.6) is usually neglected and why the return current density is usually
considered as the exact opposite to the beam current density jo = —j,. However, such an ”initial
situation” j. . = —jp is extremely unstable. One has to solve self-consistently Equation (3.7) for the
background electrons and the relativistic kinetic equation for the fast electron beam to model correctly

the laser-generated electron beam transport.

3.2 Beam-Plasma Instabilities

3.2.1 Linear Theory of Collisionless Instabilities

- - ---=- -—— =

A
2Vtx 1 4

X
-Viy T Vi

Weibel unstable =P Filamentation unstable

Figure 3.2: Typical distribution functions subject to the Weibel and the Filamentation instabilities
[Bret et al., 2010b].

Since the 1950’s with the discovery of the longitudinal electrostatic ”two-stream instability” by
[Bohm and Gross, 1949], it is known that such a system of two counterpropagating electron beam
is unstable. Later, in order to determine the physical mechanism responsible for the purely trans-
verse instability growth found by [Weibel, 1959] and associated with an anisotropic two-temperature
Maxwellian plasma , [Fried, 1959] found a second class of instabilities by modelling the Weibel-unstable
distribution function by two cold counterpropagating electron beams as illustrated in Figure 3.2. This
purely transverse instability is called the ”filamentation instability”. However, these two designations

are often used interchangeably in the litterature (Weibel or filamentation) even if this equivalence
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holds only for symmetric beams. The longitudinal and transverse instabilities are two limits of a more
general instability called the ”oblique instability” [Bludman et al., 1960]. Let us consider here the
propagation in the z-direction of an axisymmetric relativistic electron beam in a dense plasma on the
time scale t ~ 77, such that 1/6;1 or T./v, < 7, < T4. In this case, while plasma ions can still be
assumed immobile, the electrical and the magnetical neutralization of the beam has already occured
and one has

nt® + n,()o) — Z*n; = 0 and j¥ —i—jl()o) = 0 with nl(,o) < n. (3.16)

e

The supscript ”(9” denotes here the initial equilibrium in charge and in current between the electron

9

beam denoted by the subscript ”;” and the background conducting electrons denoted by the subscript
7.”. Contrary to the previous Chapter 2, the beam is not considered here as a perturbation but as
a part of the equilibrium (%), One notes n;(r, t)f;(p, t), j € {e, b} the distribution functions in the
laboratory frame of both populations. We neglect the collisional effects so that n;f; are solutions of
the Vlasov equation with the electromagnetic fields given by the Maxwell equations (see Appendix
A, section A.1.1). Also, we neglect the boundary conditions assuming that the perturbation space
scale in the z-direction is much smaller than the characteristic size of the system. In order to address
relativistic thermal spreads kpTj, we model the initial distribution functions by drifting Maxwell-

Juttner distribution functions [Jiittner, 1911]

0 kpT;/mec? Mmec? P
10p) = e e By GRS (317)
4777‘(mec)3K2< Me® ) B et
’ vikBT)
where v = /14 p?/(mec)?, vjo = Bjc the initial drift velocity in the z—directions of species j,

vi=1/4/1— ,6’]2 the corresponding Lorentz factors and K5 the modified Bessel function of the second

kind. The standard method for studying instabilities consists in working in the Fourier’s space
~ o
U6 € (e e o BB €l w) = [P [ des(e, ) exp ik — i)
R3 —o0

and consider a small perturbation 55 < §(O> of the initial equilibrium E ©) such that fA = E 0) 4 52 in
order to determine eventual temporally exponentially increasing terms exp (6t). Here, 6 = Im{w(k)}
and depends on the excitation mode k. Applying this method to our considered equilibrium ©), one
can look for unstable modes, characterized by their linear growth rate §, by determining a solution
of the dispersion relation in the form w = w, + id where w, = Re{w} for which § > 0. According to
[Bret et al., 2010b], without specifying any favored direction for k, the linearized system of equations

consisting in the two Vlasov equations for the two distribution functions n; f; coupled with the Maxwell
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equations for the electromagnetic fields (E, B) gives the dispersion relation

€zzw? — K22 =0 (a)
or (3.18)
(wZGZZ - k§c2) (eyyw2 — kﬁcz) — (eyzw2 — kykZ62)2 =0 (b)
where
(0)
. “\ Op
S ap(k, w) = 8, PpPe / &p pam
V(e ) € {a, v, 2, caslk, w) B+ZWZ/RB Mpﬂ+2w2 "

T

is the dielectric tensor, w; = \/ém is the electron plasma frequency of species j and d,43 is
the Kronecker symbol. This dispersion equation has two main branches. The first one, defined by
Equation (3.18 a), pertains to modes with an electric field along the z-axis. Such modes are therefore
purely transverse for any k such that k.ex = 0. The second branch (3.18 b) defines modes with an
electric field lying within the (y, z) plane, which contains longitudinal and transverse components.
When considering wave-vectors k in the flow direction such that k, = 0, the off-diagonal term ¢,
vanishes and (3.18 b) reduces to

(eyyw?® — k2c®) €2 = 0. (3.19)

Whereas the first factor may yield unstable modes, the remaining dispersion equation €,, = 0 defines
modes with an electric field aligned with the flow. These are the two-stream modes, which are therefore
purely longitudinal. If we now consider wave vectors normal to the flow, with &k, = 0, we recover the

dispersion equation for the filamentation instability

]{32 2
Eyy (ezzw2 — ) = €y. (3.20)

w2

Thus, contrary to a common assumption, the filamentation instability is generally not purely trans-

verse. It is purely transverse only in the case where ¢,, = 0 and consequently

€rp — o =0, (3.21)

which corresponds to two perfectly symmetric counterpropagating electron beams which is not our
case since ny/n. < 1 (and therefore v, > v.). The domain of preponderance of each instability
class has been numerically computed in the (ny, n., T;) parameters space by [Bret et al., 2010b] for a
fixed plasma hot temperature kT, = 5 keV. The surfaces that delimit regions governed by different
instability classes are displayed in Figure 3.3 and coloured according to the local maximum growth

rate in the k-space. The two-stream instability prevails for non relativistic beam drift energies (y,—1 <
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1) as well as in the weakly relativistic systems with hot enough beams. Filamentation modes govern
systems where the beam and plasma densities are similar. Oblique modes are dominant for our case of
laser-generated electron beam propagation in a dense plasma. Also, oblique modes dominate for hot
enough relativistic beams. These results are illustrated by the lower panels of Figure 3.3 showing

the plasma density observed in 2D PIC simulations each ruled by a distinct intability class.

Two-stream
modes
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Figure 3.3: (top) Hierarchy of the two-stream, oblique and filamentation modes in the (ny, ne, Tp)
parameter space for Maxwell-Juttner distribution functions. (bottom) Plasma density
profiles at the end of the linear phase as predicted by 2D PIC simulations, each ruled by
a specific instability class. Here, the plasma temperature is T, = 5 keV and the beam
flows in the y-axis [Robinson et al., 2014]

Finding analytical expressions for the different growth rates ¢ is difficult due to the presence
of the Lorentz factor + in the integrals defining the dielectric tensor components. However, these
triple integrals can be reduced to much more tractable one-dimensional quadratures using a change
of variables mentioned in [Wright and Hadley, 1975]. It allows to find scaling laws for the maximum

of each instability in the case of high v;, and high T}. It reads still according to [Bret et al., 2010b]

n 3/2
Fmax g %—1/2 Tb—3/2’
e
583" o M %—1/3 Tb_l and (3'22)
Te
Ty _
jrg'lgx X - b Tb 17
Te
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respectively for the filamentation instability, the oblique instability and the two-stream instability. In

the case where the fast electron beam temperature is sufficiently small
_9\2/3

mec?  210/3 \ n, (1+'7b_1)2

the background electrons and the beam electrons can be considered as cold fluids according to
[Bret et al., 2010a]. In this particular case, starting from the hydrodynamic equations with the cold
approximation for both populations, coupled with the Maxwell-Gauss equation, one obtains the system

of equations

ik, F, = —dre (67y + 1)

(w— k,vep) 0T = kzngo)éﬁe,z

(w — K2vp0) 67 = k60, (3.24)
ime (w — kzve0) Ve - = eéE‘z

i’yg’me (w—k.vp0) 6T, = e(SEZ

for the two-stream instability, assuming that the problem is one-dimensional (k; = k, = 0 and thus,
neglecting the magnetic field). The combination of the previous equations provides the dispersion

relation 5

€

(w - kz'UeO)2 73(“} - szbO)2

2
W Wy

= 0. (3.25)

The imaginary part of unstable mode § = Im{w} > 0 presents a maximum at the wave number

k. = we/upp and it is cut off at higher wave numbers. This maximum can be approximated by

1/3

max \/§w€ n(O)

SPE(Ty — 0) ~ 2 5 b<0) . (3.26)
Te

For the filamentation instability, assuming k., = k, = 0, the hydrodynamic equations in the cold

approximation for both populations, coupled with the Maxwell equations gives

( iky0E, = —dme (07 + 07,
wdB, _ _kesp
ike0B, - — e (1063, — veodie + ny " 55, + w00y ) — z'%aﬁz
won, = kznéO)(%)\e,Cc
WO ke ") 6T (3.27)
iMewOUe, eéﬁz
iMewOUe 5 e ((5Ex — U—Zoégy>
i'ygmewéﬁb% eéEZ
iYpMew U 4 e (5@;0 + U—zoéﬁy)
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In the limit nl()o) < ngo), the determinant of this system provides the following dispersion relation

(w2 — wg) [w4 — (k:‘,%c2 + wZ) w? — wz(l + fyb_l)vgokg] - wé(l - fyb_l)Qvgoki =0. (3.28)

According to the equation, the unstable solution § = Im{w} > 0 saturates at high wave numbers

TLIEO) \/3’71) —1

w = Welpr | —— 3.29
max e ngo) Y ( )
In the limit w < we, the unstable solution can be written
max kzveo
0 (Ty = 0) = Wmax (3.30)

V k22 + wg.

3.2.2 Non-linear Evolution and Saturation Effects

The instability enters a nonlinear phase when the perturbations 62 become of the same order of
magnitude as § (), In this case, the linearization of the equations is no longer valid and some saturation
effects occur. The non-linear behaviour of these instabilities can be studied with PIC codes. However,
some key aspects of saturation effects can be understood from physical considerations. The two-
stream instability may give rise to a periodic chain of holes in the electron phase space. This coherent
structuring implies that a single mode eventually dominates the unstable spectrum. Oppositely, a
broad perturbation spectrum, like for laser-generated electron beam, may cause a quasilinear relaxation
of the beam. Scattering in the velocity space of primary unstable waves outside the beam-resonant
region limits their growth and the related beam energy loss. The instability saturation comes from
the growing waves that are trapping electrons which oscillate and form a vortex in the phase-space.
A simplified description of such electron traping by Landau dumping in strong electron plasma waves

has already been presented in Chapter 1, section 2.1.4.

The nonlinear development of the filamentation instability can be understood as follows. Electrons
of both beams interact through their microscopic currents. Electrons moving in opposite directions
repel each other. Thus, the initial charge and current neutral equilibrium is unstable. The magnetic
fields grow due to the rearrangement of beam electrons into spatially separated current filaments,
until it becomes sufficiently strong to confine the particles within a filament. The laser-generated
beam electrons are therefore strongly compressed while the electrons of the denser return current are
expelled. The tenuous beam electrons are channeled into filaments, which are immersed in an almost
uniform background return current. Such currents filaments can be remarkably stable according to
PIC simulations [Bret et al., 2010b]. This magnetic trapping was identified as the main mechanism

responsible for quenching the initial filamentation growth.

The main collisionless instability concerning laser-generated relativistic electron beam transport
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Figure 3.4: 3D PIC simulation of a Maxwell-Juttner beam-plasma system with ny/n. = 0.1, v, = 3,
Ty, = 50 keV and T, = 5 keV. Isosurfaces of the beam (upper plots) and plasma (lower
plots) density profiles at successive times. The beam flows rightward [Bret et al., 2010b]

in solids or dense plasmas is the oblique instability which is mixture of the filamentation and two-
stream instabilities. The nonlinear stage of this instability is illustrated in Figure 3.4. Numerical
simulations of electron beam transport in plasmas have also confirmed that the oblique instability is
an important heating mechanism of background electrons and may also induce the background ion

heating due to decay of ion acoustic waves generated in the parametric decay of Langmuir waves.

3.2.3 Resistive Filamentation Instability

Collisions of the return current electrons are expected to influence the development of the instabilities
in high density, low temperature regions due to the scaling of the background electron-ion collision
frequency ve; o< n;/ Tg /2 (see Appendix A, section A.3.2). As a consequence, the previous results
concerning the different instabilities inherent to the transport of laser-generated relativistic electron
beam transport through heated solids or dense plasmas may be affected by these collisions. An anal-
ysis of the collisional two-stream instability for Maxwell-Juttner electron distribution functions and
using the electron-ion Landau operator (see Appendix A, section A.2.2) has been recently car-
ried out, as illustrated in the left panel of Figure 3.5, according to [Robinson et al., 2014]. In the
presence of collisions, the peak growth rate drops from drg = 5.3 x 1073 to 1.1 x 1073, while the
dominant wave number remains approximately the same. If strong enough, collisions may completely
stabilize the two-stream mode. The oblique modes are affected by collisions in a similar fashion,
exhibiting complete stabilization in the strongly collisional limit [Hao et al., 2012]. As first demon-
strated by [Molvig, 1975], an opposite phenomenon occurs for the filamentation modes. For a dilute
and energetic enough relativistic electron beam, collisions keep it unstable regardless of the trans-
verse temperature. The right panel of Figure 3.5, which is extracted from [FIORE et al., 2010] by

[Robinson et al., 2014], illustrates this tendency by comparing the wave number dependence of the
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Figure 3.5: (Left panel) Growth rate of the two-stream instability (Maxwell-Juttner initial dis-
tribution function) normalized by w, versus k., normalized by the plasma skin depth
Ae = c/w. with (red, black) and without (blue) electron-ion collisions for n, = 1023
em ™3, ny/ne = 0.01, T, = 100 keV, v, = 3, T, = 1 keV, Z* = Z = 10 and a Coulomb
logarithm (see Appendis A, section A.2.3) InA.; = 2; (Right panel) Filamentation
growth rate (Maxwell-Juttner initial distribution function) normalized by w, versus k.
normalized by the plasma skin depth A\, = ¢/w, in collisionless (dashed lines) and colli-
sional (solid lines) configurations for v, = 5, T, = 10 keV, ny/n. = 0.1, v¢; = 0.5w, and
increasing transverse temperature Ty, = 0.5 keV (blue), T, = 0.5 keV (magenta) and
Ty, = 0.5 keV (red). Both plots are taken from [Robinson et al., 2014]

collisionless and collisional filamentation growth rates for waterbag distributions (squared distribu-
tion functions in the momentum space fitting roughly Maxwell-Juttner distributions but allowing to
separate the longitudinal temperature 7}, and the transverse one Tj ;). A BGK collision model (see
Appendix A, section A.3.1) is employed with v = 0.5w,. While the instability is weakened and
confined to smaller wave numbers as the beam transverse temperature is increasing, it is also enhanced
in the presence of collisions, especially in the large temperature limit. PIC simulations also confirmed
the predicted robustness of the collisional filamentation and the generation of filamentary structures
[Karmakar et al., 2008]. In this collisional regime, the filamentation instability is called the resistive
filamentation instability. Let us derive a simple dispersion relation for this instability. We still
assume n, > ng and we still neglect collisions of beam electrons with plasma particles so that f; still
satisfies the Vlasov equation. Also, we still consider the quasi-neutrality n, — Z*n; = 0 and we neglect

the displacement current in the Maxwell-Ampere equation so that the Maxwell equations reduce to

9 gt (je - e/ pfbd3p> (3.31)
or c R3 YMe
and 5 5
10B
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The background ions are still assumed immobile and the background electron dynamic is described
by the Ohm’s law (3.4)
E = nje (3.33)

for which we retain only the main term. Also, we consider a constant resistivity n = 7y in space and
time. Finally, we still consider that the initial beam distribution function is a drifted Maxwell-Juttner

distribution function. The set of equations for the self-generated electromagnetic fields gives

0B 0 77002 0 0 .
= 4 2 2 2 «xB) = — .34
ot T or” ( ir or Gy < I (3:34)
OE 0 ’17062 0 8jb
.2 22 xE) = = 3.35
8t+8rx<4ﬂ8rx (rm (3:35)
and consequently
Amw
- — 2 @
0B, = ————0p. (a
hy? — 2T : (3.36)
¢ Moc?
6EJ? = _7705jb,33 (b)
The linearized Vlasov equation reads
. (0) N7 (0)
—~ en — p-0E ko afp
5fy=—2- |0E | 3.37
YMew
and gives consequently
_ in0) g2 90 £ 0 o SE. 9.0
5jbz = - —lnb € / pj 5Ex8fb +(5Ezafb + kx px6 x+p25 zafb d3p
’ mew Jps 7y Opy op. YMmew kzpa Opy
) YMew
. (0) 2 (0)
z 1 1
N O pp| 5, (3.38)

mew Jrs Y _ kxpz  Op,
L YMew
) ka:pz
iny 62/ P 8fb(0)+ VMW ('“)fb(o)
mew Jr3 7y op. 1_ keps  Opy
VMW

—

dp| dE,

By neglecting (S/E\x compared to (5/@ in (3.38), due to the fact that in general the longitudinal beam

current density j,, is greater than the transverse component j,, and injecting (3.38) in (3.36 a), one
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finally finds the dispersion relation for the resistive filamentation instability

. (0) ap: 0)
2.2 1,0 a0
p— o / = —f;" dp+ [ Tl g” Pp| =o0. (3.39)
1—ij— /BT P2 rS V| _ FaPz  Ops
ka*noc? YMew

By performing the integrals for a low-temperature Maxwell-Juttner distribution function, the disper-

sion relation can finally be written with the form [Gremillet et al., 2002]
4 kee\® 11 2 1
i m‘;+(xc> +3+< ’Bb>F’< “):0 (3.40)
nowj, Wp % Y \Brhp Brhp kzc

ey = L $ex —u?)du
F(g)_\/?r/(u—f)Q p (—u’)d

is the derivative of the Fried-Comte function F and Brnp = /2kpTy/Ypmec? is the thermal beam

velocity normalized by ¢. The growth rate ¢ of the resistive filamentation instability can be deduced

where

by looking for the solution of the dispersion relation (3.40) in the form w = id. It is plotted in the

left panel of Figure 3.6. The growth rate § increases when increasing the plasma resistivity ng. For
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Figure 3.6: (Left panel) Growth rate of the resistive filamentation instability € normalized by the
beam plasma frequency as a function of the wave vector in the transverse direction k
normalized by the beam skin depth c/wy for Br4/8, = 0.001 (solid), 0.01 (dotted) and
0.1 (circles). The beam density is ny = 102° cm™3, the beam Lorentz factor is 7, = 2,
and the target resistivity is 79 = 107% Q.m; (Right panel) 3D Isosurface associated to
j» = 4.810'"" A.cm™2 of a Gaussian-shaped beam of monoenergetic 0.5 MeV electron
beam penetrating a 0.5-eV silica solid at normal incidence. The beam current density
is plotted at time t = 405 fs from a 3D PaRIS hybrid PIC simulation. Both plots are
taken from [Gremillet et al., 2002].

Brup/Bp = 0.01 and 1y = 1078 Q.m, the growth rate maximizes at a value three times lower than
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observed in the left panel of Figure 3.6. For a cold beam T, = 0, the asymptotic approximation of
F’ can be used (F'(£) ~ €72 when & > 1), which leads to [Gremillet et al., 2002]

am [ 6\° kee\? 1| [0\ 1 (Bpkec)?
B @A
Towp \ Wh Wp % | \ Wb Yo\ Wb
In the high-k, limit kyc/wy > /475y /nows+/75, when the magnetic diffusion is faster that the pinching
of the perturbation, the instability growth rate is saturated at § = wy3y// -

3.3 Temperature Dependence of Fast Electrons Trans-

port

3.3.1 Temperature Dependence of the Background Electrical Resis-

tivity and Ionization State

The key ingredient for fast electron transport models are the transport coefficients and the ionization
states of the material through which the fast electrons propagate. An ideal (fully ionized, weakly
coupled, non degenerate) plasma model is insufficient. At high density, it is important to account
for the Fermi-Dirac electron statistics. The exclusion principle causes the electrons to have random
momentum even at zero temperature. These quantum effects become significant when the electrons

temperature is below the Fermi energy

2

h
kpT. < Er = 5 —(37%n.)"". (3.42)

e

Ionization state

The ionization state Z* of the material defines the ratio of free and bound electrons in the material.
Based on the Thomas-Fermi model, [More, 1985] has proposed a useful formula for the ionization state

as a function of the density p = n;m; and electron temperature T, of the material. It reads

Te 1Ty X
7" = Zhp ( ntmn > =7 z (3.43)

Z43° Z 1+ Xz +/1+2X,
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where Z is the atomic number of the matrial, m,, is the atomic mass unit and

Ty, = T.[eV]/ZY3,
R = nmy/Z,
T,
Ty = 1+0T0’
Az = 0.003323 79718 4 9.26148 10~ 7310165,
B, = —exp—1.763+1.43175Tf—|—0.31546T]Z,
Cz = —0.366667Ts + 0.983333,
Q1 = AzRPz
Q = (RCZ—l—QlCZ)l/CZ and
Xy = 14.3139 Q06624

This formula is accurate for Z = 10 and it badly estimates the ionization state at a low temperature.
Indeed, the Thomas-Fermi model is inadequate for capturing the metal-insulator transition since it
neglects any atomic structure effects on the ionization equilibrium and thus gives a too high ionization
level at low temperatures. Therefore, [Desjarlais, 2001] proposed a weighted blend of Thomas-Fermi
and a single ionization Saha model with a pressure ionization correction. This model provides smooth
transitions between the Thomas-Fermi model and the non-ideal Saha limit. The Saha contribution is

determined from

fo= 1 (VET+ 1K - K)

where

3/2
e <2wmekBTe>3/2e D 152\
g _—— X — —
: h? kpT. 1(3/4mn;)'?

The statistical weights gy and g; correspond to the ground state of the neutral atom and singly ionized
ion respectively, I is the first ionization energy, n; is the total neutral plus ion number density. For
both Cu and Al, g0 = 2 and ¢g; = 1, but in general the level degeneracy g = 2J + 1 is used. The
second term in parentheses in the exponential gives a semi-empirical pressure ionization correction.

The ionization state is finally given by
* 2 * 2
7= [ Zip o+ (1= £ Zip) 1., (3.44)

according to [Desjarlais, 2001].

Electrical resistivity

The electrical resistivity is a key parameter for relativistic electron beam transport. According to the

Drude model, it can be written as
meVe
77 =

e (3.45)
e
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where v, is the background electron relaxation rate. The Lee-More model [Lee and More, 1984] is
usually used to estimate the relaxation rate. It takes into account the electron degeneracy by using the
Fermi-Dirac distribution (see Appendix B, section B.2.4 ) that covers the domain of temperatures
from kpT =~ Ep to the hot Spitzer regime [Cohen et al., 1950] [Spitzer and Harm, 1953]. For lower
temperatures in the solid and liquid phase, a different electron collision time is used. It is evaluated
according to

1
T= = max {Tec, Tmelt, Tmin } (3.46)
(&

U= 714+ 7.1 accounts for the collisions on ions 7., with the

where the electron collision frequency 7.
Lee-More degeneracy corrections and on atoms T;ll improved by [Desjarlais, 2001] while 7ye1¢ and Tiin
stem from a Bloch-Gruneisen melting model [Ziman, 1961] and a minimum time based on inter-atom
spacing Tiin = (3/47mi)1/3/\/(k:BT6 + EFp)/me. The melt model gives Tielt = 50(Timert /T ) Tmin With

the material dependant constant 50 decreasing somewhat for 7' > Ty,c¢. In the left panel of Figure

3.7, the electrical resistivity of Beryllium with p = 1.84 g.cm™ taken from [Robinson et al., 2014]
is plotted versus the temperature and is also compared with numerical results allowing to determine
the free parameters of the Lee-More model. Also, the hot Spitzer resistivity with and without the
electron-electron collisions correction factor (see Appendix B, section B.2.2) is plotted with the
cold melting model. For Hydrogen plasmas, as suggested by [Lambert et al., 2011], comparing it
with ab initio molecular dynamic computations, the electrical resistivity can be evaluated as 72 =
NHubbard > + nS_p21tzer where 7spitzer is the hot temperature Spitzer plasma transport coefficient and
NHubbard 1S the low temperature transport coefficient found by [Hubbard, 1966]. Comparisons between
such expression for Hydrogen plasmas with different densities are plotted in the right panel of Figure
3.7.

The main disadvantage of such models (Lee-More and Hubbard-Spitzer) is that they assume T; =
T. = T and they do not account for a different ion/lattice temperature T; than the conducting electron
temperature T,. A two-temperature model for the electrical resistivity of Copper and Aluminum has
been proposed by [Eidmann et al., 2000] and later improved by [Chimier et al., 2007]. In this model,
the collision frequency of the electrons v, is evaluated by taking the weighted average of the electron

relaxation rate in different temperature regimes

Ve = (Vemph + Ve—o) S+ V0 + Ve (3.47)

In the low temperature regime, the mean free path is evaluated by ve/ (Ve—pn + Ve—e) Where ve_py, is the

electron-phonon collision rate, v._. is the electron-electron collision rate and v, = \/ (2Er + T¢)/me
is the electron velocity. In the high temperature regime, the mean free path is evaluated by
Ve/VSpitzer- In the intermediate range of temperatures, the mean free path is written as v./v. where
ve = ve/(3/ 47rni)1/ ®. However, for other materials than Copper and Aluminum, experimental or nu-

merical data are needed to fix the free parameters of the model. The electrical resistivities n from
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Figure 3.7: (Left panel) Electrical resistivity of Beryllium with p = 1.84 g.cm™ taken from
[Robinson et al., 2014] versus the temperature (cyan solid curve) compared with nu-
merical results (black solid curve). The hot Spitzer resistivity (red) with (solid line) and
without (dashed line) the electron-electron collisions correction factor (see Appendix
B, section B.2.2) is also plotted with the cold melting model (dashed cyan line). (Right
panel) Electrical conductivity (o = 1/n) taken from [Lambert et al., 2011] obtained nu-
merically for Hydrogen plasmas with different densities as a function of temperature
compared with Hubbard—Spitzer, Lee-More, and Ichimaru models.
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Figure 3.8: Electrical resistivity n for Aluminum (black) and Copper (red) as a function of the
electron temperature plotted in two particular cases : T; = 300K (dashed curves) and
T; = T, (solid curves) and for Hydrogen (p = 50 g.cm™3) with T; = T, (solid blue curve).

the Eidmann-Chimier model are plotted for Aluminum, Copper as well as the Hubbard-Spitzer elec-

trical resistivity of a highly compressed Hydrogen in Figure 3.8. Concerning the Hubbard electrical
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resistivity, a least square fit from the ion-ion coupling parameter I' table of [Hubbard, 1966] is used
to avoid discontinuities. For dielectric materials (insulators), the situation is much more complicated
and one usually needs extensive quantum molecular dynamic computations. For example, the left
panel of Figure 3.9 shows huge differences between the electrical resistivity given by the Lee-More
model and such a computation, solving the the Kubo-Greenwood equation [MacLellan et al., 2013].
For a same material, [McKenna et al., 2011] found strong differences between the electrical resistivity
of amorphous and diamond Carbon, as illustrated in the right panel of Figure 3.9.

-4

10 T .
—— Kubo-Greenwood
10 — Vi
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——Spitzer / N
T e T 10° |
S ) :
= = [
> . /
@ 1075 % 10° |
W £ 1
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Figure 3.9: (Left panel) Theoretical calculations of the resistivity of silicon as a function of tem-
perature: The black line represents ab initio quantum molecular dynamic calculations
coupled with the Kubo-Greenwood equation, the red line the Lee-More model, and
the blue line the Spitzer model [MacLellan et al., 2013]. (Right panel) Structure of (a)
diamond and (b) vitreous carbon. (c¢) Electrical conductivity as a function of temper-
ature for both carbon allotropes computed with a quantum molecular dynamic code
[McKenna et al., 2011].

3.3.2 Heat Equations

The electrical resistivity of background electrons may change significantly due to the heating induced
by the beam energy deposition, the Ohmic heating by the return current and the resistive filamentation
instability. This heating needs to be accounted for in fast electron transport models. Under the

assumption T, = T; = T, the energy conservation equation reads (see Appendix B, section B.3.1)

) ) ) ) 9] .
Cy {m + (“‘arﬂ (T) + 5p 4= "PyutTo <ar ®u> +iE+W (3.48)

where

Cv = ng (Z* + 1) n;

is the plasma thermal capacity (electrons + ions). According to the assumptions presented in the

section 3.1.1 of this chapter, the magnetization and the ion conduction are neglected so that the
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q — q€ — e (3 49)
" aI‘ ’

where k. is the background electron thermal conduction evaluated within the same models as presented

in the previous subsection for the electrical resistivity 1. These two transport coefficients are indeed

related by the Lorenz relation
Re

oT., -

VL (3.50)

where vy, is the Lorenz factor (see Appendix B, section B.2.4). The background fluid is assumed to
be incompressible (9/0r).u = 0, the viscosity is neglected and the ions are assumed immobile. Thus,
the fluid current density reduces to the background electron return current j = j. and the electric field
is given by the system of equations {(3.7), (3.8)} presented in section 3.1.1. The direct collisional

heating of the background electrons by the beam electrons is taken into account via the heating source

_ s 3
W = /R3E< 9 >cond p (3.51)

which is nothing else than the energy lost by the beam electrons due to collisions with the background

electrons (cf. Chapter 4).

term

In the two-temperature model, which is notably the case for relativistic electron transport in solids,
the background electrons are firstly heated due to the beam energy deposition. Then, they transfer

their energy to ions. Therefore, Equation (3.48) must be replaced by the two energy conservation

equations
0 0 0
CV,e |:8t + (ue-ar>:| (Te) + a-qe =W+ Qei~ (352)
and : :
Cv, [81& + (ui-arﬂ (T3) = Qie (3.53)
where
Qie = _Qei + 77j62 = 2%0\467@ (Te - Tz) . (354)

For plasmas, 7,; may be expressed by the [Lee and More, 1984] formula accounting for the electrons

degeneracy at T, ~ Ef (see Appendix B, section B.2.4) while
3 . 3
CV,e = §I{ZBZ n; and CVJ' = Qani (355)

are the plasma electron and ion thermal capacities. However, these last expressions need to be im-

proved for low temperature materials in the solid/liquid phase.
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3.3.3 Plasma Heating by an Electron Beam

A simple model have been proposed by [Bell and Kingham, 2003] and [Davies, 2003] in order to ac-
count for the effects of the background electron heating. These are the self-collimation of the beam
and the beam hollowing, respectively. The model assumes that the return current equals the beam
current as explained in section 3.1.1

Jb+je=0. (3.56)

The background electron dynamic is modelled according to the Ohm’s law retaining only the main

term

E = nj. = —njp (3.57)

n— (;) (3.58)

where T is a characteristic temperature. The background electron heating is taken into account

with a resistivity of the form

according to Equation (3.52), neglecting the ion heating and the thermal conduction. In addition,
[Bell and Kingham, 2003] assumes the plasma is fully ionized and thus estimates the electron thermal
capacity according to Cy,. = (3/2)kpZn;. Contrary to [Bell and Kingham, 2003], [Davies, 2003] just
assumes a constant thermal capacity Cy,. The heat equation (3.52) thus reduces to

o _ o

Cvie = Mp- (3.59)

This equation can be generalized to the case of a metallic target with the solid Sommerfeld thermal
capacity Cy,e = Cye0(Te/Tp), replacing in the expressions below the parameter a by a+ 1 and Cly

by Cyco. The magnetic field is given by the Maxwell-Faraday equation

oB 0 0 . on .
E——caxE—ncarx.]b—l—carx.]b. (3.60)

The beam is assumed to be rigid, collimated and axisymmetric of the form

b = Jeo(r) [H <t - ;) - H(t)} e, with jyo = —jo exp (—:;) (3.61)
where jo > 0 and II is the Heaviside function. It is emitted from z = 0 and moves with the constant
velocity vy = vpe,. The Gaussian radial shape corresponds to the shape of the laser pulse. Therefore,
the magnetic field is azimuthal B = Byey and the electric field is longitudinal E = F,e,. The beam
transport strongly depends on the parameter «. In the case where « > 1 which corresponds to cold
solid/liquid temperatures (0 < a < 2 for kgT. < EF according to the resistivity models presented
in section 3.3.1), one finds diverging solutions for the temperature (7T, — oo) at very short times

t — (z/wp) = Cv,eTo/(a — 1)noj@,- However, this unphysical behaviour must be mitigated because the
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temperature growth for « is actually limited by the Fermi temperature kg1, ~ Ep since that, at
this temperature, the parameter o becomes negative and then reach the value & = —3/2 of the hot

temperature plasma regime. Thus, according to [Davies, 2003], (3.59) gives

)
Tp exp <g?‘7b%?> if a=1
T = Ve 0770]'2 . (3.62)
To |14 (1 — o) 5200 if 1
0[ + ( a)CV,eT0:| if a<

where it has been noted 7 = t — (z/v;). Knowing the temperature, one can express the electric field

according to Ohm’s law

-2
—0gs0 €xp <W> it a=1
B Cv,eTo
E, = o2 e 1e/a-e) (3.63)
—n0jp0 |1+ (1 — o) =200~ if <1
noybo[ + ( a)CWTJ if «

And, the magnetic field follows from the Maxwell-Faraday equation by making the change of variables

t—T 2
djro Cve Tt 2107 T
i zgo[1+<w_1)] it o=l
By = dr Jb0 C’V,eT‘O To (3 64)
_C@C‘/@TO 1—|—a£_ 2 a if a<l1 .
dr .750 1—aT0 1—0[77()

Self-collimation of the beam

Magnetic Field

Radius

Figure 3.10: Magnetic field By normalized by jo7o/c versus the radius r normalized by r;, at different
times 7 /79 taken from [Davies, 2003]
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In the limit of weak heating 7/79 < 1 where

Cv.Ti
0= 220 (3.65)
T0Jpo
one obtains from (3.63) and (3.64) to first order in 7/7
. T
E. = —nojw <1 + a> (3.66)
7o
and
djro
By = —ngc—— 3.67
p = —me (3.67)

for o < 1. This results is similar to the one obtained by [Fill, 2001], presented in section 3.1.2. The
magnetic field is negative and it reaches a minimum value at r = r,/v/2, as illustrated in Figure 3.10.
This magnetic field may be responsible for the beam pinching. [Bell and Kingham, 2003] estimated
the angle 0 that a fast electron will be deflected while propagating over the distance r,/tan 6, 5 by
= f}/njj% (3.68)
where the unperturbed beam doubles its radius. here, 0/, is the divergence half-angle of the beam
(which has not been taken into account in the previous derivations). The collimation condition can
be estimated as 6 = ;5. For example, [Bell and Kingham, 2003] considered the Spitzer resistivity
(v = —3/2) and a fast electron beam with a mean kinetic energy kpT}, and a current I, that is related
to the laser intensity Iy, as I = |e|nr—elr where 17, is the laser-to-electrons conversion efficiency.

Approximating djpg /dr ~ —jo/rp, where jo = I,/ kpTy, they conclude that the beam collimation occurs
if

(3.69)

3lelnckpTy [ 21042 2/5
91/2tan91/2= le|nckp Ty [770‘70 TS/ﬂ .

ymecBnrelr | 3lelne 0
Consequently, considering the experimental scaling (1.71) for the divergence half-angle ¢, /5, we deduce

that 6/, is in general too high for allowing the self-collimation of the beam.

Beam hollowing

According to [Davies, 2003], in the opposite limit of a strong heating 7 > 79, one obtains

. 2T .

—10jb0 €XP (%) if a=1
E, = et of(1-a) (3.70)

_1/(-a) ,(1+a)/(1-a) [ (1 — )T ¢ -1

o Tb0 CVeTO ' “
and
i

By~ —(1+a) 776%7’ (3.71)
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Magnetic Field
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Radius

Figure 3.11: Magnetic field By normalized by jo7o/c versus the radius r normalized by r;, at different
times 7 /79 taken from [Davies, 2003]

for « < 1. It is striking to notice that for o < —1 typical of the Spitzer regime, the electric field
decreases with the current beam density and the magnetic field changes sign as illustrated in Figure
3.11. This positive value of By deviates the beam electrons from the propagation axis and tends to hol-

low the beam. This effect has been later observed experimentally and numerically [Davies et al., 2006]
[McKenna et al., 2011].
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Chapter 4

Collisional Effects in Relativistic
Electron Transport through Solids and

Dense Plasmas

7 If quantum mechanics hasn’t profoundly shocked you, you haven’t understood it yet.”
Niels Bohr
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4.1. BINARY COLLISIONS OF A RELATIVISTIC ELECTRON WITH BACKGROUND
PARTICLES

This chapter review the theory of collisions of laser-generated relativistic electrons with particles
of the material they are propagating through, such as free electrons, bound electrons, screened free
electrons or ions. Due to the fact that the beam electrons travel at a relativistic velocity much
greater than background electron or ion velocities, the principal effects of collisions are the beam
electrons energy losses and their angular scattering. As the beam electron density is much less than
the background electron density n, < n., a single fast particle model provides an adequate desciption
of these drag and scattering processes. After describing the differential cross section for collisions of a
relativistic electron with a background particule at rest, the following subsections are devoted to the
slowing down and angular scattering theories of a relativistic electron. The last subsection presents
the relativistic Vlasov-Fokker-Planck equation for the laser-generated electron beam that describes

these effects.

4.1 Binary Collisions of a Relativistic Electron with

Background Particles

4.1.1 Electron-Electron Binary Collisions

Let us consider firstly a collision of a relativistic electron with a momentum p with a target electron

a € {free e”, bound e~ or free screened e~ } with a momentum p, such that

[Pl < [p. (4.1)

Thus, the target electron can be assumed to be initially at rest and one has the following relations

between the center of mass frame and the laboratory frame :

1
2 yHLl 2 (a)

5* — ’Y*mec = 2 mec
P JrEl
P =4/~ P (b)
i (4.2)
T2 in26

sin 6* =

(c)
1+ <7"2H —1) sin2 0

where * means that the values are taken in the center of mass frame, v is the Lorentz factor of the

relativistic electron projectile and 6 is the scattering angle. Consequently, one can obtain a relation

between the normalized energy loss in one binary collision w = and the scattering angle 6*

v—1

1 — cos§*
W= % (4.3)
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starting from the momentum 4-vector invariance and using the momentum and energy conservation

relations. It implies that
Ay

— (4.4)

dw =

and one can interchangeably use the differential cross sections

<Cf;;‘> — 4 (;l?zi) (4.5)

and (do,/dS¥*). By using the fundamental principle of Einstein’s mechanics for the effective parti-

cle motion in the Coulomb central force, one can relate the collision impact parameter b and the

normalized energy loss w by the following formula

2¢4 1 1

mev? (7 — 1)mec? b2 (46)

W =

As a consequence, similarly to the non relativistic case (see Appendix A, section A.2.1 and A.2.3),

one has to distinguish between collisions

e with an impact parameter bemin < b < bemax for collisions with a small momentum transfer

from the relativistic electron to a free plasma electron target where

h

be,min = 9

(4.7)

is the De Broglie wavelength of electrons in the center of mass frame and

5 \1/3
be,max = Inax {)\Debye; (471'77,) } (48)

is the plasma screening length as explained for the non-relativistic case in Appendix A, section
A.2.2. Besides, be min is directly choosen to be the De Broglie wavelength here. Indeed, in the
case of a relativistic electron projectile, the De Broglie wavelength is always much larger than the
Landau length. In the relativistic approach considered here, it is more convenient to deal with
w instead of b. The equivalent boundaries are therefore Wiy, < W < Wmax. Wmax = 1/2 must
be taken due to the indiscernability of the electrons. That means that it is the more energetic
electron outgoing from the collision which is considered as the primary electron (projectile).
Wmin = W is a cut-off used to distinguish the binary collisions from the collective interaction. It
is assumed that Wi, = w, is much less than the beam electron energy and much greater than

the energy of any electron in the material. One may estimate it by (be min/ be,max)Z.

e with an impact parameter b > b, max for collisions with a small momentum transfer from the
relativistic electron to a bound or screened free plasma electron target, which are affected by

a collective contribution of the surrounding electrons. The equivalent boundary is w < w, and
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this collective part will be treated in the next subsection devoted to the fast electron slowing

down.

e with an impact parameter b < bemin for collisions of beam electrons with a large momentum
transfer. Due to the fact that the probability of such a collision is small compared to the two

previous ones, we neglect this contribution.

For the binary part, one can use the Moller scattering formula [Méller, 1932]. It consists in an ap-
proximate solution to the Dirac equation to order awv/c (the first Born approximation) where « is the
fine structure constant. Indeed, [Méller, 1932] considered two interacting electrons, described by the
two component Dirac wave-functions; He ignored the two components referring to negative energy
states. He expressed the charge and current densities corresponding to the transition of the electron
1 from the initial state to the final state thanks to the obtained Dirac matrix tensor. In accordance
with a procedure proposed by Klein in 1927, he then expressed the corresponding retarded potentials
he obtained thanks to the Maxwell equations with the deduced charge and current densities of the
particle 1 as sources. Finally, he solved the Dirac equation for the particle 2 with the presence of these
fields and he identified the transition probability for the corresponding two-body system. Although
the method was controversial because of its unsymmetrical approach and the lack of electromag-
netic fields quantization, the result was readily confirmed in experiments [Champion, 1932] and a few
years later by more rigorous quantum electrodynamic treatments [Bhabha, 1936], as well explained in

[Beretstetskii et al., 1982]. The Moller differential cross section reads

64 *262 + 6*2 2 2 9 2
do p 4 3 4 p*c 2 #2 14 4 (4.9)
e _ C —_— . .
ase /) 4p*iex? sin*6*  sin? 6% p*? sin? 0

)

The first term in the square brackets correspond to the relativistic generalization of the Rutherford
differential cross section formula (see Appendix A, section A.2.1) while the other terms account
for the quantum spin and exchange effects. Usually, as already mentioned, one may use the equivalent

and simpler form

do B 2me? 1 1 v—1)° 2y —1
<dw>e,f_(’7—1)ﬁ27ngc4[w2+(1_w)2+< 5 ) —VQW(l_W)]. (4.10)

4.1.2 Electron-Ion Binary Collisions

Let us consider now a collision of a relativistic electron with a momentum p with a target ion with a
charge Z*|e| and a momentum p; statisfying (4.1) with & = i. One can assume that the ion is initially

at rest. Here, one consider only the “the binary part” where b; min < 0 < b; max. In this case, the
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laboratory frame coincides with the center of mass frame, since me/m; < 1. One has consequently

h
bimin = — 4.11
in = 5 (411)

which is much larger than b, mi, for ultra relativistic electron projectiles while

bi,max = be,max- (412)

The quantum relativistic differential cross section of such a binary collision has been obtained by

[Mott, 1932]. It reads ,
*,2\2 2 2

(%)i - m <1 - ‘C%sin2 2) . (4.13)
The first term in the parenthesis is the relativistic generalization of the Rutherford differential cross
section and the second term is the quantum spin effect correction. In the first order in the small
parameter m./m;, the electron conserves the energy in a collision with a target ion. It can be compared
with a collision of a tennis ball with a rigid wall. The tennis ball does not lose its energy but it is
strongly deflected. Instead of working with the maximum impact parameter b, max When integrating
the differential cross section over all impact parameters b, some authors prefer to add a screening
factor in the expression of the differential cross sections (4.9) and (4.13) and integrate from b = by min

to b — oo (see for example [Atzeni et al., 2009b)).

4.2 Slowing Down of a Relativistic Electron in Solids

and Dense Plasmas

4.2.1 Stopping Powers of relativistic Electrons

The stopping power of an electron is the electron energy loss de per unit path length ds due to collisions

with the particles of the medium. It is defined as

d 12 4
(dz) =(y-1) m602ni/0 Wﬁdw. (4.14)

Collisions with ions do not contribute to the slowing down of electrons due to their large mass compared
to the electron mass. One may separate in this integral the contributions of the binary collisions with
free electrons (w > w.) from those of the bound electrons and/or with the screened free electrons

(W < we).

Concerning the binary part, one can use the Moller differential cross section (4.10). The integration
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gives for cold solids

1/2
<d€> = (v—1) mec2ni/ W<da> dw
ds e,binary We dw e f

o Zel 1 2y — 1 1/~v—1\2
_2mniZel 1n< >+1_ e hm(”)
4w, v 8\ 7

Mev?
In case of plasmas, the contribution of collisions with background free electrons can be obtained by

(4.15)

replacing Z by Z* in the previous Equation (4.15) :

de omn; Z*e 1 2y —1 1/v—1\2
=) =-==2" 0 1— m2+-(1—) . 4.1
<d8>e,f mev? n<4wc)+ 2o +8< ¥ ) (4.16)

The first term in the square brackets corresponds to the well known Coulomb logarithm from the

non-relativistic theory (see Appendix A, section A.2.3). That is why the term w. may thus
be estimated by (be min/ be,max)z. This corresponds to the non relativistic stopping power Coulomb
logarithm, in the limit v — 1 [Jackson, 1975]. The other terms account for the quantum relativistic

effects.

For a combination of historical and mathematical reasons, the energy loss due to the collective

response of the material is artificially divided into two parts

e The “Bethe part” for collisions with bound electrons (acounting for the mean excitation energy
per atom I.y) for a impact parameters b smaller than the interatomic/interionic distance. This

corresponds to the beam electrons interacting with one atom/ion.

e The ”density effect” or ”plasmon part” for impact parameters b greater than the inter-
atomic/interionic distance for which the relativistic electron projectile interacts with many

electrons at the same time.

The contribution of collisions with bound electrons in a cold solid has been determined by
[Bethe, 1932], considering the energy transferred to the excitation of an atom by the electric field

of a charged electron moving at constant velocity. It reads

() e = e (), o
e,Bethe €,
_ _2777%26’4 {ln [2“’6 (72 —1) (v - 1)] B 52} ' (4.17)

mev? (Iex/mecQ)2

A striking results is that the cut-off w. at which the two models are patched together cancel out for
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cold solids when adding the two integral contributions (4.15) and (4.17) [Rohrlich and Carlson, 1954]

de de 4rn; Ze (v — 1)mec? n2 1
sl bl - _ I AL ol el Tl
<d8) e,binary - <d8> e,Bethe me'UQ { . |:\/7T Iex 2 + 16

2+ (1/8)  (1/2)In2+ (9/16) }
¥ ok '

(4.18)
It gives confidence in these expressions, even though neither model is valid for intermediate energy
losses, where no analytical model is available. In the case of ionized solids, one can thus extend (4.18)

for the stopping power of a relativistic electron by colliding with bound electrons, by replacing Z by
(Z —-2Z%):

de dmni(Z — Z*)et (7 — 1)mec? In2 1
o - In |/~ +1 e =
<d3>e,b mev? { " [ vt Tox > "6
In2+ (1/8) N (1/2)In2+ (9/16) }
gl 72 ’

(4.19)

The complexities of dealing with coupled, quantized oscillations of multiple bound electrons are hidden
in the mean excitation potential Iox. In very general terms, it can be written as the logarithm mean
of all possible transitions of bound electrons between the energy levels F; and E;, weighted by the
transition probability f;;

InIo =Y fijIn(E; — Ej). (4.20)

iJ

In the simple case of a single, undamped, harmonic oscillator at frequency w, one has Iy = hw. This
is a good approximation for a plasma, giving the mean excitation Iox = fw,. An approximate model
for the mean excitation potential of bound electrons in an ion was proposed by [More, 1985]. In this

simplified theoretical model known as the local plasma approximation,
Inlex = [ fe(r)In(hw,)dr, (4.21)
R3

where f, is the bound electron probability density function. In order to obtain the electron distribution

around an ion, [More, 1985] used the Thomas-Fermi model and found that the result could be described

by

exp [1.29<Z*/2)0.72—1.18(2*/2)}
1-(2*%/2)

Iex(Z*) = Iex(o) (422)

where I(0) = ZEp with Ey = 10 eV empirically chosen to fit the quantum calculus made by
[McGuire, 1982] for Aluminum, Krypton and Gold.

The second part of the collective contribution to the stopping power is the density effect correction
5. Tt has been firstly derived by [Fermi, 1940], using a purely classical calculation representing the
plasma electrons response to the electron projectile perturbation by a single harmonic oscillator. It

gives a reduction in the energy loss due to the electric field generated by the fast electron, shielded by
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the collective response of electrons in the material. It is called the density effect correction because it
increases with the electron density. According to [Fermi, 1940], it can be obtained analytically in the

limit of ultrarelativistic electron projectile and reads in this case

§=2In <7pr) -y (4.23)

ex

For a plasma, where Ix = hw,, this expression is valid for all cases of interest. For solids
and consequently bound electrons, where typically I > Fhw,, the expression obtained by
[Pines and Bohm, 1952]

AP AP 2 _
<d5> _ 277712226 5= _47mzZQe [V 1/ (4.24)
ds P mev mev wpbe,max

may be used. This formula was originally derived for a non-relativistic electron projectile. However,

it is valid in the limit v — oo and for intermediate v as well.

A relativistic electron can also lose energy by emitting bremsstrahlung radiations. It is a small
correction to the total collisional energy losses in the range of beam electron energies considered in

this manuscript. However, the radiative stopping power

<Zi>b _ 4n(z- ZLEZCQ_NZ + 1)nie4j: [m (29) 1] , (4.25)

obtained by [Heitler and Sauter, 1933] is taken into account. This formula is valid in the case where
1 < v < 1/aZ'? according to [Bethe and Heitler, 1934] and it is sufficient for our needs. Indeed,
according to [Berger and Seltzer, 1964], radiative losses become predominant for relativistic electrons

with energies greater than
__ 800 MeV

E.~ 4.26
T Z+12 (4.26)
while we consider in this manuscript laser generated electrons in the range 10 keV - 10 MeV and low

or intermediate Z-material. The resulting total stopping power reads

©)-0, @, @06, e

This expression is valid in the first Born approximation i.e. for low or intermediate Z-materials. Also,
there is an uncertainty at low energies due to the lack of shell corrections which are required when
the velocity of the incident electron is comparable to the velocities of the atomic electrons, especially
those in the inner shells. As a consequence, the formula (4.27) is valid for laser-generated relativistic

electrons of kinetic energies greater than ~ 1 — 10 keV.

As illustrated in Figure 4.1, it is worth noticing that, even if the contributions of the bound elec-

trons and the free electrons depend strongly on the temperature via their densities depending on the
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Figure 4.1: Total stopping power of a relativistic electron in Aluminum (p = 2.7 g.cm™3) versus its
kinetic energy according to formula (4.27) (black) and the different contributions due
to free electrons (red), bound electrons (blue), screened free electrons/plasmons ( )
and bremsstrahlung losses (magenta) at ambiant temperarure T, = T; = 300 K (solid
lines) and T, = T; = 100 eV (dashed lines).

ionization state Z*, the total stopping power weakly depends on the temperature (logarithmically).
The contribution of the bound electrons at a low temperature is essentially balanced by the contribu-
tion of the free electrons at a higher temperature. It can be understood qualitatively because, in both
cases, the amount of electrons encountered by the electron projectile is the same. The total stopping
power (4.27) is plotted in Figure 4.2 versus the electron kinetic energy (v — 1)mec? for materials that
will be studied in this manuscript. One can see a change of slope around € = mqc? ~ 511 keV. In the
non-relativistic side, the stopping power decreases with the non-relativistic kinetic energy (1/2)m.v?.
This is a consequence of the Rutherford cross section which decreases with the transferred momen-
tum. In the relativistic domain, an opposite behavior appears; the stopping power increases with the
electron kinetic energy. This is due to the fact that the velocity has reached its maximum value of < ¢
and does not change anymore while the electron inertia ym, in the relativistic Coulomb logarithm is
increasing so that the kinetic energy exchanged during each collision increases with the kinetic energy.
Moreover, for more energetic electrons, the radiation loss becomes predominant compared to the colli-
sional ones. It is well known that the more energetic the electron is, the more the electron radiates. In
Figure 4.2, the formula (4.27) is also compared with the total stopping power provided by the online
database ESTAR (http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html) based on the ICRU
report 37 [Brice, 1985]. Discrepancies between Formula (4.27) and ESTAR appear for relativistic elec-
trons with kinetic energies greater than 10 MeV mainly due to the simple expression for the radiation
stopping power (4.25). In the ESTAR database, the total collision stopping power is also calculated

from the theory by [Bethe, 1932] but with a more accurate density-effect correction evaluated accord-
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Figure 4.2: Total stopping power of a relativistic electron versus its kinetic energy according to
formula (4.27) (solid line) compared to the ESTAR database (dashed lines) plotted for
different materials : dense Hydrogen plasma (Z=1) with p = 10 g.cm™® (magenta),
amorpheous solid Carbon (Z=6) with p = 2.1 g.cm™3 ( ), solid Aluminum (Z=13)
with p = 2.7 g.cm ™3 (blue), solid Copper (Z=29) with p = 8.96 g.cm™3 (red) and solid
Tantalum (Z=73) with p = 16.69 g.cm 3 (black).

ing to [Sternheimer, 1952] [Sternheimer et al., 1982] and the mean excitation potential Iy adopted in
the ICRU Report 37 [Brice, 1985]. The uncertainties of the calculated collision stopping powers for
electrons are estimated [Brice, 1985] to be 1 % to 2 % above 100 keV, 2 % to 3 % (in low-Z materials)
and 5 % to 10 % (in high-Z materials) in the range between 10 keV and 100 keV. The radiative stop-
ping powers are evaluated in ESTAR with a combination of theoretical bremsstrahlung cross sections
described by [Seltzer and Berger, 1985]. Analytical formulas (using a high-energy approximation) are
used above 50 MeV, and accurate numerical results of [Pratt et al., 1977] below 2 MeV. Cross sections
in the intermediate energy region from 2 MeV to 50 MeV are obtained by interpolation, a procedure
whose accuracy was confirmed by more detailed calculations for a few cases. The uncertainties of the
radiative stopping powers are estimated to be 2 % above 50 MeV, 2 % to 5 % between 50 MeV and 2
MeV, and 5 % below 2 MeV.

4.2.2 Range of a Relativistic Electron Propagating in a Dense

Plasma

By neglecting the bremsstrahlung losses (4.25) and using the relation (4.23) for the density effect, the

total stopping power of a relativistic electron propagating in a fully ionized plasma with the atomic
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number Z can be estimated as

d Znet
(C;) = —4r m”; In A™e! (4.28)

with the relativistic electron-electron Coulomb logarithm, usually called drag number,

el (y—=1)mec®?] n2 1 In2+(1/8)  (1/2)In2+(9/16) &
lnAeel - ln \/mf@(}_Q—i_lﬁ_ ~y + 72 —5
MeC? In2 1 (4-29)
= m[hwp] _7+E+f(7)
with
f(y)=mn [\/7?(7 ; 1>] _In2 +7(1/8) L 2 lni; (9/16) (4.30)

The (undeflected) range of an electron with the initial kinetic energy €9 = (70 — 1)mec? is given by

Rm02/1 de _1d (4.31)
0y \ds ” '

One can estimate it by replacing f(vy) by a constant value f* in the integral. It reads, by noting
(In A" = In (mec?/hiwp) — (In2/2) 4 (1/16) + f*, according to [Atzeni et al., 2009b]

(o—1)7  (mec?)’

R= .
Yo o 4rZnie*(In A

(4.32)

For an equimolar DT plasma (Z = 1), still according to [Atzeni et al., 2009b], one gets by expanding
the logarithm of (In Ag‘;l)* around p = 300 g.cm™3 and by assuming f* =0

R [pm] =~ 23.7

o[MeV]? <300g.cm_3>1'066 (4.33)

0.34 + 0.66e0[MeV] p

However, this formula assumes that the beam electron trajectory is a straight line and consequently
overestimates the effective penetration length (along the initial electron velocity) of a relativistic

electron into a plasma owing to its angular scattering by colliding the background ions and electrons.

4.3 Angular Scattering of a Relativistic Electron in

Solids and Dense Plasmas

In materials with Z > 1, the fast electron scattering is dominated by elastic collisions with ions
and impact parameters b much greater than the De Broglie wavelength. For low Z materials such
as Hydrogen plasmas, angular scattering on target electrons also plays an important role. We may
describe the angular scattering of a relativistic electron colliding with target electrons, by following the

method used for the estimate of the total stopping power of relativistic electrons, as presented in the
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previous section 4.2.1. Collisions on target electrons with the scattering angle above 6. (respectively
below w.) need a statistical treatment of the electric field due to random thermal fluctuations and
will not be described in this section. Here, we will only describe the angular scattering of a relativistic
electron by colliding with target electrons with a scattering angle below 6. (respectively above w.), i.e.,
we will only consider the electrons angular scattering due to binary collisions. The binary collisions
with target ions are described by the Mott scattering formula (4.13) which can be written with the

simpler form

do Z*e?)?
(dﬂ) = 4(pi)2 Sin)4 5/ (1 - B*sin?0/2). (4.34)

Concerning binary collisions of a relativistic electron with free electrons of the material, one can use
the Moller scattering formula (4.9) expressed in the laboratory frame according to the relation (4.2

c). It reads

<d0> B 4646089 { 1 n (’y—i—l)Q n [(72—1)/7]2 (27_1)(7"‘1)}' (4'35)

aQ - (pv)> | sin*6  4costd [(y—1) sin? 6§ + 2] 2 2425in%f cos? f

According to [Atzeni et al., 2009b], although one can retain all terms, it suffices to consider the leading
term at small 6 corresponding to the relativistic generalization of the Rutherford differential cross

section (see Appendix A, section A.2.1)

do 4e* cos 6
— ] = . 4.36
<d9> . (pv)*sin* (4.36)

Indeed, the scattering at small angle 6 gives the dominant contribution to the mean scattering angle
(6%), as described in the next sections 4.3.1 and 4.3.2. This approximation does not lead to

significant errors in the resulting range of laser-generated electron’s energies.

4.3.1 Multiple Scattering Theory by Lewis

We start here from the simpler multiple scattering theory by [Lewis, 1950] and we restrict this subsec-
tion to fully ionized plasmas as done by [Solodov and Betti, 2008] and [Atzeni et al., 2009b] avoiding

collisions with 6 < .. In the Lewis theory, the mean scattering angle can be evaluated according to
(cos @) = exp (—kis) (4.37)

where s is the relativistic electron path length and ki 1is the relativistic electron mean free path.
Expanding both sides of equation (4.37) for small values of the arguments (# < 1 and ks < 1)

considering only small angle collisions, one gets

(0%) = 2k;s. (4.38)
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The mean free path of the relativistic electron -which is the key parameter of such a model- has two
contributions : its angular scattering due to binary collisions with electrons and its angular scattering

due to binary collisions on ions

k1 =kie+ ki (4.39)
where
ea,max do- .
k1o = 2mng (1 —cosf) | —= ) sinddf. (4.40)
7 ea,min dQ «

According to the quantum theory of diffraction, 4 min (Which corresponds to the cut-off 6.) can be

estimated by
b max
O min = 4w (4.41)

ba,min ’
where by min and ba max are the limiting impact parameters defined by (4.7), (4.8), (4.11) and (4.12).
For scattering on electrons, 6, max is the deflection angle corresponding to the maximum energy loss
Wmax = 1/2 and reads consequently
2

Oc max = i — 4.42
e,max = arcsin 13 (4.42)

according to (4.2). For the scattering on target ions, due to their greater inertia, the maximum angular
deflection is
gi,max =T. (443)

According to [Atzeni et al., 2009b], one gets consequently for the scattering on target electrons

Zn;e emax 1+In[2
ko = dn 2 {m <b’ > _ 1y +3)] } (4.44)
(p’l)) be,min 2

retaining only the leading terms. Following the same procedure, one gets for target ions

Z2 % 4 bz max 1 2
kg = dn 2 [m( ’ ) +5 } (4.45)
(pv) bi,min 2

One can see from (4.44) and (4.45) that the contribution of binary collisions with ions is Z times

greater than the contribution of binary collisions with electrons.

4.3.2 Multiple Scattering Theory by Moliere

The multiple scattering theory by [Moliere, 1948], later improved by [Bethe, 1953] and
[Nardi and Zinamon, 1978|, provides a more accurate description for the angular distribution func-

tion of a relativistic electron beam. It consists in solving the transport equation for the angular
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distribution function f(€2, s) of the electron beam

gﬁ =D na / [f(Q -9 5) - £(2, 5)] (j;;)dﬂ (4.46)

a=e,1

where 2 — € is the direction of electron velocity before the last scattering event, s is the electron path
length and the differential cross sections are given by (4.34) and (4.36). For simplicity, we will only
consider here the binary collisions of beam electrons with target ions. The equation (4.46) is solved
by expanding the distribution function on the spherical harmonic functions Y}, (6, ¢) depending on
the unassociated Legendre polynomials FPj(cos#). In the small angle approximation, the Legendre
polynomials can be approximated by the Oth order Bessel function of the first kind P,(6) =~ Jo(16),

and the sum over [ can be replaced by a continuous integral. Thus, one obtains

o0 ei,max
f(0,s) = / [Jo(10) exp [27Tnis/
0

ei,min

(jg,) (Jo(16") — 1) e’de’] dl (4.47)

7

where 60; in is given by (4.41) and 6; max by (4.43). By expanding the exponential and performing the

integrals, one obtains

10, s) = ni:o;)f(”) 0, s) = g % /RuJo (){i%) exp <—Zf> [f In <f>]ndu (4.48)

. . 2
B=W _1, _<91,m1n>
Xc

with W(—1, z) the Lambert W-function (the inverse function of © = yexpy on the intervals y €

[—o0, —1], z € [-1, 0]) and
2 = 4mn s(Zre>2
o =dmn,; :
* V62

In the limit of small angle scattering 8, the Oth order function

where

92
f(O)(H, s) = 2exp (—XCQB) (4.49)

is sufficient to describe the angular distribution of the relativistic electrons. Indeed, as all collisions
are independant, one would have deduced, according to the central limit theorem, that the deflection
probability f(6, s) can be described by such a normal law. Thus, the quadratic mean angle can be

deduced. It reads

V0% = xe 2111( Xe > (4.50)

ei,min
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4.4 Belyaev-Budker Collision Integral

A more general framework for description of the relativistic electron beam transport is the
relativistic kinetic equation.  The collision integral of this equation has been obtained by
[Belyaev and Budker, 1956] generalizing the Landau collision integral (see Appendix A, sec-
tion A.2.3) to the relativistic regime. Here, we present the phenomenological approach from
[Landau and Lifshitz, 1981], used to derive the equation. The general form of the electron kinetic

equation reads

afy 0 0 A% dfy
ZJo 7 - E+—-xB === ) 4.51
ot Tar VY " g5 e (m+ ¢ ) ) <8t ol (4.51)
Conservation of the number of particles implies that the collision integral has the form
ofp 0
—— =——"F, 4.52
( ot )coll ap ! ( )

where Fo is the particle flux in momentum space due to binary collisions. Let us consider a small
area near a point p in momentum space, perpendicular to the p,-axis where p € {x, y, z}. The flux
component Feo, is a difference between the number of electrons crossing this area from left to right
per time unit and those crossing it from right to left due to binary collisions. If a particle « € {i, e}
receives in a collision a y-component of momentum equal to Ap,, > 0, it will cross the small area from
left to right, thus increasing the value of its momentum from p,, — Ap,, to p,. Hence, the total number

of particles crossing the area from left to right is

Pu
> / d3Ap/ d3pa/ P(p, Pa, AP) fi(r, P, t) fa(r, Pa, t)dp,
App>0 R3 P

a=i,e u—Apu

where

P(p, Pa, AP) fo(r, P, t) fa(r, Pa, t)d°pad’Ap

is the number of collisions occurring per time unit between an electron with momentum p and a particle
a with momentum p,, in the range d*p,. After the collision, the particles acquire the momenta p+Ap
and p, — Ap, respectively. Similarly, the number of particles crossing that area from right to left may

be written as

Pu
> / d3Ap/ d3pa/ P(p, Pa, —AP)fo(r, P+ AP, t) fa(r, Pa — AP, t)dp,.
Ap;>0 R3 pu—Apy

a=i,e

From now, we omit the variables r and ¢ for brievity in the equations since the collisions take place
locally in space and time. By virtue of the principle of detailed balance, the probability density of

such a momentum exchanged is necessarily a symmetrical function with regard to the interchange of
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the initial and final particles states :

P(p, pa, Ap) = P(p, Pa, —ADP).

Thus, after adding these two contributions and replacing the integration over dp, by a multiplication

by Ap,,, one obtains the Boltzmann result (see Appendix A, section A.1.4)

Fcoll,u: Z /A

a=i,e

480 [ E*paP(p. o AP 4(P)fa(pe) = D+ AP) fapa — Ap)] Ay

(4.53)

pu>0
One can express the probability density P in terms of the differential collision-cross-section as
Pd3Ap = v, od?0, (4.54)

where v, o = cm /Ao is the relative velocity of one particle in the rest frame of the other during
their collision, Yo = ¥7a/72 and v, = 1/4/(1 — v.va/c?). This expression tends to |[v — v4| in the
non-relativistic limit. Under the assumption of a small momentum transfer Ap compared to p and
Po (also called the small angle assumption, see Appendix A, section A.2.2), one can expand the

difference in the square brackets of (4.53) to give

B « 8f04 afb
Fap= 3 X [ @0t |52 - 1) 5 (1.5
a=i,e V=T,Y, 2 )
where
o 1
U;w = Q/ApuApuvr,adzaa- (4.56)

For a small angle deviation, the exchanged momentum Ap’ is perpendicular to the velocity v/ (v7,)
in the electron projectile rest frame (in the « particle rest frame, respectively). The tensor U, o 18
therefore transverse to these vectors. According to [Belyaev and Budker, 1956], the only one possible

particle-symmetric tensor leading to a Lorentz-invariant collision integral and satisfying
Uy =0V, =0 (4.57)

where

and
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are the relative velocities of one particle expressed in the rest frame of the another (and having the

same Norm vy ) is

1 1 Pubv  PauPay . - PuPa,v Pev,uPv
U® = USRS, — prv o DRT pES L . 4.58
w2t { (R -1 [(mec)2 (mac)® e MeMaC? + MM C2 (4.58)

a

The scattering potential coming from the diagonal terms reads
« 1 2 2
Ug = 3 Ap“ vy odo,. (4.59)

However, in the litterature, one can find the Belyaev-Budker scattering potential expressed with
the relativistic generalization of the Rutherford differential cross-section (A.49), mentioned in the

introduction for both ions and electrons :

e _ 47rq362 InAco

0 Ur o

where InAeq = In (ba,max/ba,min) and ¢, = e for @« = e and g, = Ze for o = i (see for example
[Braams and Karney, 1987]). Obviously, the Belyaev-Budker collision tensor tends to the Landau

collision tensor (see Appendix A, section A.2.2) in the non-relativistic limit.
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Chapter 5

Existing Simulation Methods for Fast
Electron Transport

7 If people do not believe that mathematics is simple, it is only because they do not realize how
complicated life 1s.”

John Von Neumann
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The numerical computation of the Vlasov-Fokker-Planck equation (4.51) is crucial for understand-
ing the physics of laser-generated relativistic electron beam transport. The relativistic kinetic equation
takes into account both collective and collisional effects and it is coupled with Maxwell’s equations.
The numerical computation of this system of equations is extremely challenging because of the large
number of variables of the distribution function and the extremely small time and spatial numerical
steps compared to the several ps and hundreds of pm needed for fast electron transport studies in the
context of inertial confinement fusion. Compared with a hydrodynamic fluid model, a kinetic model
is computationally expensive, as such a model not only contains spatial information but also momen-
tum coordinates, and is therefore of high dimensionality and rich in information. In this chapter, we
review the existing numerical tools. We start from the Particle-in-Cell (PIC) methods and then pro-
ceed to describe the Eulerian methods commonly called ” Vlasov-Fokker-Planck methods”. Actually,
there is no Vlasov-Fokker-Planck codes which solve the Vlasov-Belyaev-Budker equation (4.51) but,
as we will demonstrate in Chapter 6, applied to laser-generated relativistic electron beam transport,
the Belyaev-Budker collision tensor can be simplified into a Landau-like collision tensor. Finally, we
describe the less expensive ” Vlasov-Fokker-Planck methods” based on expansions of the distribution

function.

5.1 Particle-In-Cell methods

5.1.1 Full Particle-in-Cell methods

p A ’(X,p)

Figure 5.1: Schematic view of the discretization in the 6D phase-space of the full distribution func-
tion f = fp + fe (a) in a serie of discrete charge clouds with eventually different weights
gi (b) according to the PIC method [Gibbon, 2005].

The Particle-In-Cell (PIC) method, introduced in Chapter 1 for laser-plasma interaction sim-
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ulations, approximates the Vlasov equation by a series of discrete charge clouds, which evolve in a
6-dimensional phase-space similarly to the original Liouville N-body problem of classical point-like
particles (cf Appendix A, section A.1.2). The principal difference between the PIC method and
another particle method, like a molecular dynamics model, is that the interactions between particles
are mediated by the electromagnetic fields calculated on a finite-difference grid, while the particles are
allowed to occupy an arbitrary location in the phase-space. This approach circumvents the necessity
to compute a huge number of binary interactions between individual particles while retaining N-body
particle dynamics. However, by representing the whole electron population by N, macroelectrons
gi, 1 € [1, N, weighted by the number of electrons each macroelectron represents, the PIC method
does not account for the binary collisions. The collisions must be taken into account separately us-
ing a Monte-Carlo collision operator. Indeed, if N, = NN, the self-consistent electromagnetic fields
computed from the Maxwell equations would account naturally for the binary collisions. But, the
fact that N, < IN because of computational restrictions and that binary collision space scales, much
smaller than the Debye length, are usually not resolved, only collective effects are taken into account.
Therefore, a Monte-Carlo method for modelling collisions is crucial. As already explained in Chapter
1, [Takizuka and Abe, 1977] developed a robust algorithm for dealing with binary collisions. The key
computational step is to pair particles within a cell randomly and perform a rotation in the center-
of-mass frame. This method has been extended for relativistic particles by [Sentoku and Kemp, 2008]
[Pérez et al., 2012] and their model can be generalized to arbitrary particle weights as proposed by
[Nanbu, 1997]. However, the momentum and energy are not always conserved in each individual col-
lision, and it has been shown that this method does not relax to the Maxwell-Juttner equilibrium
distribution function [Peano et al., 2009]. In addition, the non-conservative force associated with the
particle-grid mapping leads to self-heating and in some cases to a numerical instability, thus modi-
fying the plasma properties. Nevertheless, if the resolution is high enough, such that the numerical
space step Az < Apebye, the effects associated with the aliasing terms are unimportant. The PIC
codes which resolve Apepye are the best tools for studying Laser-Plasma Interaction, turbulences in
tokamaks, plasma-based accelerators, relativistic shocks, ion propulsion, and many other problems.
However, concerning the problem of fast electron transport in solids or dense plasmas, the Debye
length is very small compared to the characteristic scale of the problem, and the simulations become
too expensive. Moreover, by focusing on small-scale collisional effects, one loses precision in resolving
large scale collective effects such as introduced in Chapter 3. It has been early proposed to use
so implicit PIC methods without resolving Apepye by relating the fields at the new time to the par-
ticle positions and momenta at the new time [Cohen et al., 1982] or by using only the moments of
the distribution function needed in the Maxwell equations (p and j) at the new time [Mason, 1981].
More recently, [Welch et al., 2004] have implemented an implicit electromagnetic field solver in the

commercialized 3-Dimensional PIC code LSP.
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5.1.2 Hybrid Particle-in-Cell methods

Even if PIC codes are perfect tools for studying hot and relatively low density plasmas, they do not
incorporate all the Physics needed for describing the fast electron transport in solids and dense plasmas
such as the background electrons degeneracy, the presence of bound electrons and in general atomic
or molecular structure of materials and their equation of states. Therefore, it has been proposed more
recently by [Davies et al., 1997] [Davies, 2002] and [Gremillet et al., 2002] to use the PIC method
only for the laser-generated fast electron component f of the full electrons distribution function by
using a cut-off in the kinetic energy enin, = 1 — 20 keV separating the fast electrons > ep, and
the background electrons < epi. In this "hybrid” method, the background electron dynamics are
resolved according to hydrodynamic equations or simplified ones, such as introduced in Chapter 3,
allowing to account for the response of background electrons via their transport coefficients 1 and
Ke, their thermal capacities Cy, the electron-ion equilibration ;. which may vary from the solid
state to the plasma state as well as eventual equation of states P. = P.(p, T,) different from the
ideal gas. This natural separation of the electrons into two interlinked populations assumes that the
background plasma responds instantaneously to the fast electron beam transport in order to ensure
the electromagnetic beam neutralization, introduced in Chapter 2, without modifying the beam.
Thus, splitting of the populations is only valid when n, < n. and when the fast electrons’ mean
kinetic energy kpTj is much greater than the mean thermal energy of the background electrons kgT.
The Ohmic approximation (approximating the hydrodynamic momentum conservation equation by
Ohm’s law) is usually acompanied by the neglect of the displacement current in the Maxwell-Ampere
equation. Therefore, it does not allow for modeling of Langmuir plasma waves and/or perturbations
of the quasineutrality. Binary collisions of beam electrons with background particles are taken into
account in the electromagnetic particle pusher by adding a continuous slowing down term —vyp and
a Langevin term R representing a random rotation of p due to the angular scattering. The equation

of motion of a macroelectron k € |1, N,| can therefore be written

dpr.

Vi
—q (E+YE B) _ R 5.1
i Qk( + p X VqPk + (5.1)

where v, is choosen such that the total stopping power of the electrons contained by the macroelectron

<d€> () = =k, 02_11’k<dm) = —Vapy,
ds v dt ¢ U ’)/k(meC)Z dt coll
1

de

k reads

(5.2)
=y = o\
and the Langevin term R is treated by a Monte-Carlo method constructed in such a way that the
mean angular scattering value (6?) is defined by the multiple scattering theory of Moliere or Lewis.
This equation is implemented in the PaRIS [Gremillet et al., 2002] and ZUMA [Strozzi et al., 2012]

hybrid PIC codes. For example, in the case of a fully ionized plasma, the multiple scattering theory

Page 148



CHAPTER 5. EXISTING SIMULATION METHODS FOR FAST ELECTRON
TRANSPORT

of Lewis (4.38) reads

<9§> — ok, (5.3)

where k; is given (4.39), according to [Solodov and Betti, 2008] or [Atzeni et al., 2009b].

There are some cases where the "hybrid assumption” is not fully justified. For example, it is
not possible to distinguish between the fast and slow electrons in thin laser-irradiated targets where
fast electrons are crossing the laser-plasma interaction zone many times. In addition, even if the
"hybrid assumption” is justified, as in the case of thick targets, one needs to extract from the full PIC
simulation the properties of the fast electrons in order to initialize the hybrid simulation. More recently,
an improved model, named the two-region PIC, was proposed by [Cohen et al., 2010]. In this model,
the simulation box is separated into a low plasma density region of the laser-plasma interaction and a
high density region where the laser-generated fast electrons are propagating through. The position of
the boundary between these two regions is taken at the density 100n.. In the low density region, the
plasma is described by a full PIC algorithm with collisions taken into account. In the high density
region, the Maxwell’s equations are reduced to Ohm’s law for the electric fields and the Ampere’s law
for the magnetic field. This reduced field solver is similar to the one used in the hybrid PIC models,
whereas the background plasma comprises macroparticles as in a traditional PIC model. However, the
difficulty of this model arises from the continuity of electromagnetic fields near the boundary between
the two regions which can be violated due to the noise of the full Maxwell solver. This noise is usually
several orders of magnitude higher than the one of the reduced field solver, which may mask the real
value of the field given to the reduced field solver after a long period of simulation. This issue may be
partially solved by increasing the spatial resolution and using a large number of macroparticles per

cell.

5.2 Vlasov-Fokker-Planck methods

5.2.1 Full Vlasov-Fokker-Planck methods

Another approach consists in solving the Vlasov-Fokker-Planck equation (4.51) with finite-difference
schemes for the spatial advection, advection in the momentum space due to the electromagnetic fields
and the collisional friction and diffusion. This is a fundamentally different approach for the descrip-
tion of a system of particles compared to the PIC method. It considers a continuous distribution
function and solves the kinetic equation on a Eulerian grid. These methods are very expensive in
terms of numerical cost due to a huge number of variables that have to be resolved (3 in space
and 3 in momentum). Therefore, hybrid versions have also been proposed for the same reasons as
for PIC codes. Besides, due to the robustness and the long history of PIC codes (see for example
[Birdsall and Langdon, 1991]), the finite-difference techniques have only been developed recently after
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Figure 5.2: Spherical coordinates corresponding to Equation (5.4). Q = p/p =
[sin @ cos p, sin@sing, cos0]7, ey = [cosfcosp, cosfsinp, —sinf]l and e, =
[—sin ¢, cos ¢, 0]T.

the pioneering work by [Bell et al., 1981]. Besides, I did not find in the literature codes that solve the

full Vlasov-Belyaev-Budker equation (4.51), using, for example, the Rosenbluth potentials proposed

by [Braams and Karney, 1987]. The published codes solve the Vlasov equation with the Landau colli-

sional operator, which is only valid for relativistic electrons colliding with non-relativistic background

particles. Indeed, in the case of a ”hybrid model”, as it will be demonstrated in the next Chapter 6,

the Belyaev-Budker collision tensor can be simplified into a Landau-like collision operator. Consid-

ering the spherical coordinates (p, 6, ¢) for the momentum space (see Figure 5.2) and assuming a

fully ionized plasma, the kinetic equation reads, following the notations used by [Yokota et al., 2006]

oty o . . o . . . 9
yy quag}SIHOCOSSOfb]+&y[USIHQSIH@fb]—i_&z[Ucosefb}
+ 1?87) {p2 [Fysinf cos ¢ + F),sinfsin ¢ + F; cos 0] fb}
+ psiln 7 889 {sin @ [F cos @ cos p + F, cosOsinp — F, sinb)] f,}
' (5.4)
+ o [—Fypsing + Fycos o] fp}
mz 0 2 Yveene Y:eini
p= Op Me my 9
1 L me 1 0 (. 0f L 0°fy
+ 2 (}/eene + }/eznl) pg sin @ 00 < in 6 o0 + sin? 6 8@2 ’

where

F, = —e[E; — (v/c) cos 0B, + (v/c) sin 0 sin p B, ],
F, = —e[E, + (v/c)cos§B, — (v/c)sinf cos pB.],

F, = —e[E, + (v/c)sinf cos ¢ By — (v/c) sin 0 sin p By
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are the components of the force depending on the self-generated electromagnetic fields (E, B) while
Y, = 4me* In Ar61

and
Yy = 4nZ%e* In A%

are the coefficients coming from the stopping power/angular scattering formulas of the relativistic
electrons respectively by colliding electrons and ions. Besides, except for the code developed by
[Yokota et al., 2006], the Vlasov-Landau codes developed for fast electron transport do not take into
account the y-dependence in the relativistic Coulomb logarithms In Ag‘;l and In Agﬁl in Y. and Y
[Sherlock, 2009] [Duclous et al., 2009]. While this approximation is fully justified for non-relativistic
electrons, this y-dependence defines the energy loss comportment of relativistic electrons, as explained
in Chapter 4, section 4.2.1. Thus, by fixing numerical values for In A’ and In Ag‘;l, one under-
estimates the relativistic electron energy loss and the material heating. Even in the original paper
by [Yokota et al., 2006], the factor [(Yeene/me) + (Ying/m;)] of the collisional friction term appears
outside the p-derivative which means that the factors In AX! and In Az‘jl are supposed to be indepen-
dant of p. An excellent review dedicated to Vlasov-Fokker-Planck numerical modeling is given by
[Thomas et al., 2012].

5.2.2 Distribution Function Expansion methods

Spherical Harmonic Expansion method

%

<<
m‘<

ws
co‘<

-y Q“°g°¢ °
3 G Y

(o"<

Figure 5.3: Iso-surfaces of the first 10 spherical harmonics Y™, 0 < m < [ < 3 multiplied by
exp (—pz) [Tzoufras et al., 2011]

The computational cost of solving (5.4) can be prohibitive. Indeed, even if one considers mod-
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estly 102 cells for each dimension, one needs to memorize 1062 = 10'2 values of the distribu-
tion function f, at each time step which represents 8 To in double-precision. Depending on the
Courant-Friedrichs-Lewy condition which defines the time step At and the simulation time t; = N At,
Vlasov-Fokker-Planck simulations can become extremely expensive in terms of computer memory
and/or time computation. In practice, the full Vlasov-Fokker-Planck equation is resolved in 1D-1V,
1D-2V, 1D-3V or at maximum 2D-3V. Another approach consists in expanding the distribution func-
tion f in spherical harmonics in the momentum-space, as initially proposed by [Bell et al., 2006].

This expansion reads

N; l

L) =Y f(x.lpl,t) ™ (cos ) exp (imp) (5.5)

1=0 m=-I

where f; ™ equals the complex conjugate of f/™ and Pl|m|(cos ) are the associated Legendre polyno-

mials (including the Condon-Shortley phase (—1)")

m/2 dm]Dl

PP @) = (1) (1 - a2

with l
Pul@) = g g (@

_1)

the unassociated Legendre polynomials. For example, the first associated Legendre polynomials read

Fi(z) = 1,

P(z) = =,
Pla) = —(1-2)",
P(a) = 5 (22— 1),
Pi(z) = —31‘(1—1’2)1/2 and
Piz) = 3(1-27%).

The spherical harmonic expansion (5.5) is exact for N; — oo but, in practice, N; is chosen, depend-
ing on the degree of anisotropy of a given physical problem. The larger the indices (I, m) are, the
more directional /anisotropic the harmonics are. Recently, [Tzoufras et al., 2011] developed a relativis-
tic Fokker-Planck code, called OSHUN, following this approach initially proposed for non-relativistic
electrons (KALOS code by [Bell et al., 2006]). [Tzoufras et al., 2011] shown that N; > 13 (= 100
harmonics f;*) are sufficient to study the relativistic collisionless two-stream and filamentation insta-
bilities presented in Chapter 3. However, it is expected that collisional effects reduce the needed
degree of anisotropy NN;. In addition to reducing the number of variables from 6 (z, y, 2, ps, Dy, P2)

to only 4 (z, y, 2, |p|), the advantage of the spherical harmonic decomposition is that the Y;™ are the
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eigenfunction of the Laplace-Beltrami operator

10 oy L 2f
Nﬂﬁ*ﬁmmwemﬂm)+m”aﬁ

of the Vlasov-Fokker-Planck diffusion term in (5.4). Indeed, by noting

m 20411 —m)! . ,
Y0, ¢) = FE T m)'Pl (cos @) exp (imyp), =l <m <1 (5.6)
the spherical harmonics, one has
Do (V™) = =11 + Y™ (5.7)

This method gives rise to a set of coupled differential equations for the coefficients f;™, obtained

starting from the Vlasov-Landau equation (5.4). They read

8fm m m m m m m m
a; - le,l - Qly,l - le,l - egﬁl - sz,l - sz,l - %l (5 8)
0 [1 [(Yeene Yelnz l(l +1) YMe o :
= g lor (o Tt ] = M5 Oamect v 5

The advection terms in space are given for m # 0 by

m_ O [[(l=-m fm l+m+1 m
2= Ve g1 ) T g ) e

o am W o .o\ ! o .9 it
Ao T = 5[ <8x_zay> A1 (axﬂay)(l_m)(l_ m=1) 571
a o\ Mt o 0 jiel

and for m = 0 by

R I = T

The advection terms in the momentum space due to the electric field are given by

m o l=m ;10 ( _(1-1) m I+m+1 1190 ( 110.m
21 = el [2l 1P ap< fl—1>+ 26+3 ? ap(p fl+1>
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and, for m # 0 by

m m € E ZEZ/ l 1Y 0
oo+ Cya 5[ 20— 1 (p ) ]
_ Eatiky =19 (1) pma1
T ><z ~0p g ()
B — By _(142) 0 ( [+2 pm— >
23 op I+ )
Lig +oby —(+2) 9 [ 142 pmt1
+ gt m ) (m et 2)p ap(p fm”
and for m = 0 by
. 1(1-1 10 [ _
€0, + ), =Rele(E, +iE) | - él_l)pl o (V)
((+1)(+ )

S g ()]}

Finally, the rotational term in the momentum space due to the magnetic field is given for m # 0 by

By = —

:mf,m (1 —=m) (I +m+1)(By —iBy) /"™ — (By +1iBy) f* ']

29mec

and for m = 0 by

B =1(1+1) Re{(B, —iB,) f'}.

YMecC

The electron-electron collision operator in OSHUN [Tzoufras et al., 2011] [Tzoufras et al., 2013]
is based on the non-relativistic Rosenbluth potentials [Rosenbluth et al., 1957]

Ofp _ 4dme*lnAc [ O Oh|[fb] 1/0 0 0 09fi
() Ao (07507) 2 (o) [ (v )]} oo

ot 82
where aTZ[ fol = 53] = 87 fy

while the electron-ion collision operator is based on the non-relativistic Lorentzian approximation (see
Appendix A, section A.3.2)

0 Arn; Z%e* In A
(afb> = = (5.10)
13 coll,ez mev

In order to account for this electron-ion collision operator, one just has to replace Y.; by 0 in the
collisional friction term of (5.8) (first term in the right hand side) and replace In A’¢! by the classical
Coulomb logarithm InA.; (see Appendix A, section A.2.3) in Y; of the angular diffusion term
(second term in the right hand side). The electron-electron collision operator (5.9) is more difficult
to solve numerically. In OSHUN, in order to break the interdependance between the amplitudes f;"

and allow for rapid numerical calculations, it is linearized assuming that f; is weakly anisotropic
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fo = f§ + 8 fp. According to [Tzoufras et al., 2011], it gives

(U)o e gl (0 0ATY, (0 0)
Ot ) collee m2 ov ov ov ~ 0Ov (5.11)

+
(4m)%e* In Ace A ce 1 [1 OW 5] }
3m2 02

9
v
for the isotropic part where
W = f9 / flvtdv + 03 / fvdv — 3 / fvdv / fdv?dv
0 v v 0

according to [Bobylev and Chuyanov, 1976] and

a6 fy 4retIn Aee Lo 1/ 0 _ og[fl] 0 _0dfy
— =8mr————fp0 = = == ® =
( ot >cou,ee i— oo+ 5 v ® v av ® av
1 9fg\ . (9 _ 990/
* <8V®8v>'<8v® ov
for the anisotropic perturbation. In order to account for this electron-electron collision operator, one
just has to replace Y. by 0 in (5.8) and add (5.11) in the right hand side of Equation (5.8) with

m =1 =0 and (0f]"/0t)coll,ce) coming from the decomposition in spherical harmonics of (5.12) (see

[Tzoufras et al., 2011]) in the right hand side of the other equations (5.8) with [ # 0. These collision

(5.12)

operators are out of the scope of laser-generated relativistic electron beam transport presented in this
manuscript. The details of numerical methods used to discretize these collision operators can be found
n [Tzoufras et al., 2011]. The authors point out that for certain problems it would be extremely
expensive to apply an explicit scheme for the collisions of the anisotropic part of the distribution
function. Concerning the Vlasov part, i.e. the left hand side of equation (5.8), all advection terms in
the phase-space are differenciated by using the central difference scheme of the second order. While
periodic and reflecting boundaries in space have been implemented, the behavior of the harmonics
at p = 0 has been chosen such that fl’gl(p) = flm(pl)(p/pl)l and that the isotropic part of the
distribution has an extremum at p = 0 in order to get the p-derivatives at p = pg where pr = po + kAp
with pg = Ap/2 and Ap the numerical momentum step. An iteration loop involving a list of successive
operations on each harmonic is performed such that each operator in the (I, m)-equation (5.8) depends
only on f/™. These operations are found by starting from (5.8) to find the effect that each f;™ has on
its neighboring amplitudes in (I, m) space. Thus, (5.8) can finally be written with the form

of"

S F () (5.13)

and be therefore numerically solved by using the Runge-Kutta methods up to the 4th order.
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Cartesian Tensor Scalar Product Expansion method

Another expansion of the distribution function has been proposed by [Johnston, 1960] and

[Shkarofsky, 1963] for plasmas. This tensor scalar product expansion reads

1 3
_ = 2 @
fb(r7 P, t) 4ﬂ_f0(r) ‘p|7 t) + 47Tf1( |p| t Q+lz>; ’p‘ t QIQ (514)
where ( )
204+ 1)!
T

Q = p/p = [sinfcosp, sinfsing, cosh]” (see Figure 5.2), QY is the (I — 1) tensor products of Q
with itself

Q(l) =0R..0N= (Q“Qi?“QiZ)(il,ig,...,il)e{z,y,z}l

and @y is the [ times contracted product which means that

AoyB= Z Z Z Aitis, .. iy Bitl,io, ...

11=%,Y,212=T,Y, 2 U=x,Y,2

where A and B are Ith order tensors. Thus, fy is a scalar (1 term fy), fi is a vector (3 terms fi ,,
fi,y and fi1.), £z is a second order tensor (9 terms fo 4z, fo.0ys f2,020 foyer fouys foyz fo,20, f2,2y and
fo.22), f3 is a third order tensor (27 terms f3,,iyis, (i1, i2, i3) € {z, y, z}") and so on... The expansion
(5.14) is exact in the limit N; — oo and it is equivalent to the spherical harmonics expansion (5.5) cut
at the same order N;. Indeed, by writing the spherical harmonic decomposition (5.5) with the form
[Tzoufras et al., 2011]

N1
(£, ) =)D > fums(r, [P, £)Yims (6, ) (5.15)
I=0m=0 0
where
0os €0s (m@) + 15 sin (m .
21+1(l—m) 0s cos(mé) + dssin(me)
Yims(0, ») = I Pl (cos0) V2 )
( +m) 505 if m=0
one has [Johnston, 1960]
N !
el 0]
> i ol t) o 20 ZZZfzms [Pl £)Yims (0, ). (5.16)
=1 I=1m=0 0
For example, we have
ifo _ Jfooo
4T Var’
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and
3 3
—f.Q = o (fizsinfcosp + fiysin@singp + fi . cosf)
i

47
3 .
» 7

According to these two first examples, one can clearly see, that the dependences in
cos® @ sin® 6 cos“ @sindl @ are strictly the same where a;, b;, ¢;, and d; are constants depending on [.

However, it is not true for the second order term
Cs
7f2 Q®Q7é ZZ.}%ms |p| t Yims(e 90)
m=0 0

because 1,  and Q ® € are not orthogonal (with the definition of the scalar product ©;) contrary
to the spherical harmonics. Actually, this is 1, @ and Q ® € — (1/3)I that are orthogonal. Indeed,
according to (5.15), the relation between the Y,,s and the Y™ are straightforward and reads

Yo\ 1 (1 (=1)" v
Yir ) V2\ =i i-pm )y
while the relation between the fj,,s and the f/™ are

204+ 1 (1 —m)! fimo — @fim1
4 (I +m)! V2 '

"=

Thus, one gets the relations for the three first components

fo=4nfg, (5.17)
A 2Re{f11}
f, = g —2mm {fl} |, (5.18)
7
and
\ 12Re{f3} — f3 —12Im{f5}  6Re{f3}
fOI - 1 —12Im {f3}  12Re {f3} - f9 —6Im{f}} (5.19)
6Re { f3} —6Im { f5 } 2f3

where I is the 2nd order unit tensor.

In the case where the Cartesian tensor scalar product expansion is cut at the first order N; = 1,

each f; corresponds to the Ith order angular moment of the distribution function f; :

fi(x, pl, t) / f(r, p, )W d’Q (5.20)
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where it has been noted Sy the unity sphere in the momentum space, defined by {(6, ¢), 8 € [0, 7], ¢ €
[0, 27[} (see Figure 5.2). Thus, while it is strictly equivalent to the spherical harmonic expansion,
the Cartesian tensor scalar product expansion cut at the 1st order has the advantage to directly relate
the physical quantities and the expansion terms f;. In our case of relativistic electron beam transport,

fo yields directly to the beam number density

ny = /RB fbd3P=/0 Jodp (5.21)

and the beam kinetic energy density

Ky=np(w—1) Mmec® = /3 (v—1) mec2fbd3p = / (v—1) mec2f0dp (5.22)
R 0

while f; yields directly to the beam current density

Jb = —npevy = 6/ v fod’p = —6/ vfidp (5.23)
R3 0

where vy, is the mean beam electrons velocity, the mean beam electrons momentum
1 3 1 [

pob=— [ phd’p=— [ phdp (5.24)
np JRr3 bJo

n,

and the beam kinetic energy flux

Fy = / (v — 1) mec?v fipd®p = / (v — 1) mec®ofydp. (5.25)
R3 0

In this cartesian tensor scalar product approach cut at the 1st order, the [th order equation that have
to be solved in order to get the expansion term f; can be obtained by integrating over the unity sphere
Sy the Vlasov-Fokker-Planck equation (5.4) multiplied by Q). According to (5.20), these two first

equations of the hierarchy read

dfo 0 0 O |1 (Yeene Yeiny
990 L 9 up) = Ler By = L | & [ Leclte | Yl 2
5 + By (vfy) o9 (ef1.E) ap [UQ ( e + m )fo} (5.26)
and of 0 P
T (0fy) = 2 (e E)+ S (fl—f) E+ —f x B
ot  Or Op P YMeC 597
0 1 Yeene 4 Yeini £ (Y Ly ) fymef ( . )
= 7|3 — (Leelle eills .
Op |vZ2 \ me m; ! " 3 !

In addition to the increasing complexity of the obtained equations with increasing [/, one can notice
that each lth order equation for f; makes appearing the (I 4 1)th order component f;,;. Consequently,

the (IV; 4 1)th order component appearing in the N;th order equation has to be approximated to close
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the set of equations. This is done by imposing the PN closure relation

v = [ peteas |
SQ 52

In practice, assuming a small perturbation of the isotropy, the Cartesian models are often limited to

N

S Y 00
4

=0

QWi+t 20

the 1st order approximation (P1) in order to make fast computations. This was for example usually
done in studies of the non local thermal flux carried out by suprathermal electrons [Matte et al., 1984]
[Schurtz et al., 2000] [Nicolai et al., 2006] [Schurtz et al., 2007]. In this case, the second order angular

moment expression reduces to the isotropic part of (5.19)
1
fo = ngI. (5.28)

Injecting it in the 1st order equation, one gets the so-called diffusive approximation characterized by

the two equations

0 0 0 0 1 Y;ze e Y'ei %
0% * 5 (vf1) — o (efi.E) = [2 <n + n) fo}

ot 0 dp |v Me ™m;
and of, vofy O 2
1 v 0 € € (&
—+f———(ff0E>+fff0.E+ f, x B
ot 3 0r Op\3 p3 YMeC
0 1 Yeene Yein; YMe
= 4|3 + —— 1| = (Yeene + Yeini) —5-fi.
dp v Mme m; p
5.3 Conclusion
Aspect PIC PIC (binary  PIC (hybrid) VFP (full) VFP (hybrid) VFP (expanded)
(collisionless)  collisions)
Efficiency High High High Low Reasonable Reasonable
Time/space constraint Restrictive Restrictive ~ Somewhat Restrictive ~ Somewhat Reasonable (ps, 100
(fs, 10 pwm) (fs, 10 um)  restrictive (ps, (fs, wm) restrictive (ps, pm - ns, mm)
100 pm) 100 pm)
Noise/finesse Poor Poor Fair Good Good Good
Treatment of collisionless  Good Good Good Good Good Good-Poor (depends
phenomena on no. expansion
terms)
Treatment of semi- None Good None Good Good Good
collisional phenomena
(InAg> 1)
Treatment of highly- None None Reasonable None Reasonable None
collisional phenomena
(InAe<1)

Figure 5.4: Qualitative summary of the benefits and drawbacks of different approaches
[Thomas et al., 2012]

The pros and cons of each technique, finite difference Vlasov-Fokker-Planck and finite particle

methods are summarized in the Figure 5.4, taken from [Thomas et al., 2012]. Particle-in-cell (PIC)
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methods are listed with the headings Collisionless, Binary collisions, and Hybrid methods; Vlasov-
Fokker-Planck (VFP) methods are listed as Full, Hybrid and Expanded, with Full being the full
finite-differenced phase-space, Hybrid having the same basic fluid model as the PIC Hybrid model,
and Expanded meaning using the spherical harmonic or Cartesian tensor expansion. The first three
aspects of the codes, ”Efficiency”, ” Time/space constraint” and ”Noise/finesse” are rather qualitative.
Efficiency is how the information is stored, it relates to how fast the code is expected to be, and is
the most subjective rating. PIC methods store information in a minimal way, and are therefore
both listed as "High”. Full Vlasov-Fokker-Planck would typically contain the most redundancy of
information storage, as the full phase-space needs to be stored. Hybrid and Expanded Vlasov-Fokker-
Planck are listed as ”Reasonable” as they store momentum phase-space information in a more efficient
way than Full Vlasov-Fokker-Planck. Time/space constraint is also somewhat subjective, and is
based on running a ”typical” code on a ”typical” cluster of ~ 100 processors in terms of what are
the maximum length and timescales that could be ”reasonably simulated” for a hot solid target
interaction, based on the timescales in published results. Noise/finesse entries are more quantitative,
in that Vlasov-Fokker-Planck codes are naturally smoothed, whereas PIC methods are subject to
noise due to the finite number of discrete particles, with the Hybrid PIC therefore naturally being less
subject to noise. It is worth pointing out that while PIC codes tend to be noisy, which in some cases
may provide an unreasonably large seed perturbation for instabilities to grow from, Vlasov-Fokker-
Planck codes may be unrealistically smoothed [Thomas et al., 2012]. It is possible that numerical
diffusion in Vlasov-Fokker-Planck codes damps real physical instabilities. The last three aspects
describe the relative treatment of phenomena in different regimes of In A; and the relative evaluations
are therefore related to the physical equations involved. The most important difference between
PIC codes and Vlasov type codes is the issue of graininess, with PIC codes exhibiting artificially
high levels of it and Vlasov codes completely lacking it. The presence of granularity in PIC codes
is not fundamentally an issue of inadequate statistics, because no matter how high the number of
simulation particles is, graininess will never completely disappear from a PIC code (as it is also true
for an actual physical system) [Thomas et al., 2012]. This allows PIC codes to model instabilities
from noise and to incorporate physics associated with complex particle trajectories. For inertial
confinement fusion plasmas however, the lack of statistical smoothness can obscure and modify the
physics [Thomas et al., 2012]. Furthermore, numerical effects associated with finite size simulation
particles can severely compromise the reliability of the results. Vlasov and Vlasov-Fokker-Planck
codes produce results without noise, which allow for clear physical pictures to emerge since Vlasov-
Fokker-Planck codes represent the plasma using distribution functions, lack of statistics is never an
issue [Thomas et al., 2012]. However, if the distribution function is not described with sufficient
details, the physics cannot be modelled accurately, and as a result Vlasov-Fokker-Planck codes are

also prone to numerical artifacts.

As a conclusion, both hybrid PIC codes and hybrid Vlasov-Fokker-Planck codes are the best

and complementary numerical tools for solving the Vlasov-Belyaev-Budker equation applied to laser-
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generated relativistic electron beam transport. Moreover, expanded Vlasov-Fokker-Planck hybrid
method are able to limit the numerical cost imposed by the kinetic description of the relativistic
electron beam transport. Besides, cutting the expansion of the distribution function N; may lead to
unphysical results since the resulting distribution function may become negative if IV; is not taken suf-
ficiently large for resolving strong anisotropy [Dubroca et al., 2010]. Starting from the V-F-P equation
for a Lorentzian gaz of non relativistic electrons, the authors proposed therefore to close the set of
equation by using a special closure relation based on the principle of the Minerbo maximum angular
entropy approximation [Minerbo, 1977] [Minerbo, 1978], from radiative transfer theory. It allows to
close the set of equations by evaluating the 2nd order angular moment fy of the distribution function
needed in the 1st order angular moment equation. Contrary to the largely used approximation of the
distribution function with the two first Legendre polynomial P1, this M1 model allows to describe the

distribution function with an arbitrary local anisotropy.
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Chapter 6

Development of a Reduced Model for
Laser-generated Relativistic Electron
Beam Transport in Solids and Dense

Plasmas

” My original decision to devote myself to science was a direct result of the discovery which has never
ceased to fill me with enthusiasm since my early youth-the comprehension of the far from obvious fact
that the laws of human reasoning coincide with the laws governing the sequences of the impressions
we recetwe from the world about us; that, therefore, pure reasoning can enable man to gain an insight
into the mechanism of the latter. In this connection, it is of paramount importance that the outside
world is something independent from man, something absolute, and the quest for the laws which
apply to this absolute appeared to me as the most sublime scientific pursuit in life. ”

Max Planck
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In this chapter, the Landau-like relativistic collision tensor, mentioned in the previous Chapter 5
and allowing to obtain the Vlasov-Fokker-Planck (V-F-P) equation (5.4), is derived from the Belyaev-
Budker collision tensor and applied to relativistic electron beam transport in solids and dense plasmas.
It allows us to introduce the relativistic Coulomb logarithms, coming from the relativistic electron
stopping powers, in the V-F-P equation. Moreover, it allows us to naturally relate the fast electrons
angular scattering mean free path by colliding free, bound and screened free background electrons
and background ions with the corresponding stopping powers. It has been shown in Chapter 5 that
the best compromise between the accuracy and the numerical cost of a fast electron transport model
can be obtained with a hybrid and expanded relativistic V-F-P method. Such a new reduced kinetic
model, developed in this PhD, is presented. It consists in computing the two first angular moments
of the distribution function, according to Equations (5.27) and (5.28) in order to make computations
as fast as possible. However, in order to preserve the accuracy of calculations in case of strong
anisotropy, a special closure relation based on the Minerbo maximum angular entropy approximation
[Minerbo, 1977] [Minerbo, 1978], from radiative transfer theory, has been adapted. It allows to close
the set of equations by evaluating the anisotropic part of the 2nd order angular moment f> of the
distribution function needed in the 1st order angular moment equation (5.28). Contrary to the largely
used approximation of the distribution function expanded on the two first Legendre polynomials,
often called P1, this M1 model allows to describe the distribution function with an arbitrary local
anisotropy. It is shown that the model is exact for fully isotropic and fully anisotropic local angular
distribution functions. Furthermore, it relates both of these extrema in the expression of f;. The
equation of the local angular entropy of fast electron beam is derived and the limitations of the model
are discussed. Developments of new plasma transport coefficients necessary to model the self-generated

electromagnetic fields are also proposed.

6.1 Kinetic Description of Relativistic Electron Beam

Transport in Solids and Dense Plasmas

6.1.1 The Relativistic Vlasov-Belyaev-Budker Equation Applied to

Relativistic Electron Beam Transport

We note fp(r, p, t) the distribution function of the relativistic electron beam in the laboratory frame.

It is the solution of the relativistic Vlasov-Belyaev-Budker equation

ofy , 0 (P 9 p _
ot " or <7me fb) ~op’ [6 (E T e B> fb} = 2. Colt oy

07
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where

0 Ofoa O
Ca[fb] - _®A3 Ua. |:fba£a - 8'];;) a:| dgpa (62)

with U, the Belyaev-Budker collision operator (see Chapter 4, section 4.4). The collision opera-
tor Cy[fp] comes from a 2nd order expansion of the Boltzmann collision integral in the small angle
scattering limit:

b
3 with p > Ap, > Ap, (6.3)

Ap = APHB + Ap,.
p

where b is the impact parameter vector and Ap is the momentum transfer in a collision of a relativistic
beam electron with momentum p with a particle @ having a momentum p, (cf. Annexe A, section
A.2.2). Here, « particles can be ions, bound electrons, free electrons or screened free electrons of the
medium where the relativistic electron beam is propagating through. We neglect the binary collisions
of the beam electrons with themselves since n, < n.. (6.3) means that each binary collision occurs
in the 2D plane (p, pa) and leads to an exchange of momentum mostly in the perpendicular direction
to p. Indeed, even if large angle collisions lead to a large change in momentum after each collision,
the probability that they occur is small compared to the probability of small angle collisions. The

Belyaev-Budker collision tensor reads

1
Ua:*a,O{I* - [p®p7pa®pa
(72 = 1) Lmec ~ mec  mae  mge
+:ya<p®pa+pa®p]}.
MeC  MaC  MaC  MeC

(6.4)

It is often expressed with the scattering potential U, g = 47TZ§64 In Aco /vy o expanded within the clas-
sical Rutherford cross section (do,/dS2)™"™ [Belyaev and Budker, 1956] [Landau and Lifshitz, 1981]
[Braams and Karney, 1987]. But, in a more general case i.e. without integrating it within a given

cross section, the scattering potential reads
1 2
Uap = 5 Ap“vy odog. (6.5)

Uprq = c\/ﬁi—l /Ao is the relative velocity of one particle in the rest frame of the another, 7, = v7y4/72
and v, = 1/1/(1 — v.v,/c?) (cf. Chapter 4, section 4.4). In addition to the small angle scattering
assumption (6.3), we make the assumption that the target particles a remain non relativistic after each
binary collision with a relativistic beam electron. That is to say, we neglect high energy secondary
electrons

IPal < |Ap| < mge. (6.6)

Under the assumption (6.3), the 2D binary collision problem consists in solving 6 unknown variables
(the momenta and energy of each particle after the collision) while having 7 equations (1 energy
conservation equation, 4 momenta conservation equations and the 2 Einstein relationships between

energies and momenta). Consequently, there is 1 relation between 2 chosen free parameters which

Page 167



6.1. KINETIC DESCRIPTION OF RELATIVISTIC ELECTRON BEAM TRANSPORT IN
SOLIDS AND DENSE PLASMAS

are for example the scattering angle # and the relative energy loss of the relativistic electron w =
A~/ (v — 1) in the laboratory frame. So, one is free to work with do, /dw instead of do, /dQ2. Moreover,
under the assumption (6.6), the energy conservation equation for one collision, Ay,mac? + Aymec? =
0, provides

Ap? = —2maAymec?. (6.7)

This naturally leads to a relation between the stopping power of relativistic electrons due to collisions
with the o particles and the scattering potential U, . Knowing the differential cross section dog /dw,
one can define the loss of electron kinetic energy & = (7 — 1)mcc? per unit path length ds as follows
(cf. Chapter 4, section 4.2.1)

de Vo (o,
<ds>a = ENgy /Wa,min W (dvv) dW (68)

with n, the density of the « particles. The integration limits Wo min and wao, max in (6.8) depend on
the nature of collisions. For collisions on free electrons, Weeemax = 1/2 due to the indiscernibility
of electrons and a cut-off w. is used to distinguish between binary collisions and collisions where
collective effects take place. That is to say, for collisions on bound and screened free electrons. These
latter collisions can be understood respectively in terms of energy transfer to the excitation of bound
electrons by the beam electron electric field and in terms of energy transfer to plasma waves in quanta
of hwpe (plasmons). For collisions on plasma ions, Wi min and wi max correspond to the commonly used
impact parameters. All details are given in Chapter 4, sections 4.2.1 and 4.2.2 and are summarized
in Figure 6.1.

Injecting the expression (6.7) in (6.5) and noticing that v, ~ v under the assumptions (6.3) and
(6.6), one finds the following relation between the scattering potential Uy, and the electron stopping

power (de/ds),,
maqv [ de

Uno ===~ <ds)a. (6.9)

Moreover, according to assumptions (6.3) and (6.6), one has 7, ~ 1, 44 ~ 7 and the Belyaev-Budker

tensor (6.4) can thus be simplified to

Ua,O Y X p
U, 5 [I -2 (6.10)
and its divergence to
0 Ua oPp
—U,=——"-. 6.11
Opa * maup (6.1)

Instead of momentum, it is more convenient to work with the kinetic energy € of the relativistic elec-
trons. Besides, the structure of the collision tensor motivates to use spherical coordinates (£2,eg, eg)

where Q = p/p. Instead of fj,, we make use of the distribution function ¥ depending on the kinetic
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energy € and the propagation direction 2

U (r,e,9Q,t) = (p*/v) fo(r, p, 1), (6.12)

where p? /v comes from the Jacobian of the change of variables from p to (g, £2). By defining

S(r.et) = — %: (Zi)a (6.13)

the total stopping power (> 0) and

viret)=—Y ";‘;” <Zi>a (6.14)

67

the total angular isotropization rate, one may integrate the collision integral (6.2) by parts and express

the Vlasov-Belyaev-Budker equation in the laboratory frame (6.1) as

78\1/ + g.(vﬂ@)—g[v(eE.Q—i—S)\P}
N % o Q o (6.15)
e v v .
- galu-aen [ (me T B v g (Je)]) =0
where o
“ _ 9 1 o
BQ.[(I—Q@)Q).A]—SinHae (sm@A@—l—Sine—&P
and 5 o ) o oy
1 . 1
1o} [(I_Q®Q)'m]_sin089<sm089) Sn? 0 92

is the Laplace-Beltrami operator. It is the same equation as Equation (5.4), but written for
U(r, g, Q, t) instead of fy(r, p, 6, ¢, t).

6.1.2 Collisional Effects of Relativistic Electron Transport in Solids

and Dense Plasmas

The analysis presented above in the section 6.1.1 shows that the V-F-P equation (6.15) usually derived
for free electrons can be extended to a more general case by replacing the Coulomb scattering potential
Ua,o by the realistic stopping power according to Equation (6.9). We use the general expression for

the stopping powers in solids and dense plasmas

d ozZozz 4
< 5) = —4plafa © o Al (6.16)

ds), Ma V2

Zs equals 1 for electrons and equals the nuclear charge Z for ions. As detailed in Chapter 4 section

4.2.1, the Coulomb logarithm In A% is calculated using the Mgller cross section [Méller, 1932] for col-

Page 169



6.1. KINETIC DESCRIPTION OF RELATIVISTIC ELECTRON BEAM TRANSPORT IN
SOLIDS AND DENSE PLASMAS

! N, In A™
272 —1
ions n; In Adlas — 7
272
1 2y-1 1 [(y—1\?
free e~ Z*n; In A% —In2 4~ — T o — (172
2 92 16\ ~

—)me® [y+1 1 2y—1 1 [(y—-1\?
bound e” | (Z — Z*)n; | In (y=bmec Jy+ +— - m2+ —(1—
Ty 2 22 22 16\ ~
eV —1/v

Wy, Max {/\Debye, (3/47m2-)1/3}

plasmons | Z*n; In

Figure 6.1: Expressions for the Coulomb Logarithms In A’ and the densities n,, of the stopping pow-
ers (6.16). Z* is the ionization state and In A%% = max {2, In (bpax/bmina)} is the “clas-
sical” Coulomb logarithm where byax = max {Apebye, (3/ 47mi)1/ 3} is the upper impact

parameter and bmin,o = b/ (2mecy/v2 — 1) if @ = ionS (bmin,a = A/ (2mecy/(y —1)/2) if
a = free electrons) is the lower impact parameter.

lisions with free plasma electrons. The cut-off used to distinguish between the binary part (collision
with plasma free electrons) and the collective one (collisions with plasma bound and screened electrons)
is evaluated by w, = /\DeBroglie2 / max {)\DebyGZ, (3/47rni)2/ 3}. The Mott cross section [Mott, 1932] is
used for collisions with ions. An extension of the Bethe formula [Bethe, 1932] is used with a mean
excitation potential Iy provided by [More, 1985] to take into account collisions with plasma bound
electrons. The Fermi density effect correction [Fermi, 1940] is taken into account according to the
Pines and Bohm cross section [Pines and Bohm, 1952] for collisions with screened free electrons (plas-
mons). These expressions for stopping powers are derived in the first Born approximation for low and
intermediate Z plasmas and for electrons with kinetic energies greater than approximatively 10 keV.
The expressions for the densities n, and the Coulomb logarithms In A% of (6.16) are summarized in
Figure 6.1. Even if Bremsstrahlung losses of the relativistic electrons can be neglected in the consid-

ered range of energies (10 keV - 10 MeV), a radiative stopping power from [Heitler and Sauter, 1933]

de (Z - Z)Z - Z* + D)net « 1
) =4 P lm(2y) - =
(dS)rad " mec? /7y S

is added into S. Due to a very small mass ratio me/m; < 1, the contribution of the stopping power

on ions (de/ds), is negligible compared to those on electrons.

Concerning the angular diffusion of the beam electrons, it is worth noting that the isotropization
rate 9 4
. NaZa e 1
v= Vo With vy = dr———5—1In ALY 6.17
Za: « (0% 2 2/03 ex ( )

YMe

deduced from (6.14) and (6.16) does not depend on the « particles mass. It is plotted in the left panel

of Figure 6.2 for Aluminum (p = 2.7 g.cm™3) versus the electron kinetic energy with the separate
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vIfs]
vIfs]

10 10° 10° 10* 10° 10 10° 10° 10* 10°
¢ [keV] ¢ [keV]

Figure 6.2: (Left panel) Total isotropization rate v in Aluminum (p = 2.7 g.cm~3) versus its kinetic
energy according to formula (6.17) (black) and the different contributions due to free
electrons (red), bound electrons (blue), screened free electrons/plasmons ( ) and
ions (magenta) at ambient temperarure T, = T; = 300 K (solid lines) and T, = T; = 100
eV (dashed lines). (Right panel) Total isotropization rate v in Hydrogen (p = 10 g.cm ™3
and T' = 100 eV) versus its kinetic energy according to formula (6.17) (black) and the
separate contributions due to free electrons (red), bound electrons (blue), screened free
electrons/plasmons ( ) and ions (magenta).

vq of collisions with background free electrons, bound electrons, screened free electrons/plasmons
and ions at ambiant temperarure (T, = T; = 300 K) and T, = 7; = 100 eV. It shows that, for
intermediate and high Z plasmas, the electron beam scattering on ions is dominant compared to
their scattering on electrons by a factor Z. One can also notice that, as for the total stopping
power (see Chapter 4, section 4.2.1), the isotropization rate v weakly depends on the background
temperature (logarithmically). The isotropization rate (6.17) is also plotted for Hydrogen (p = 10
g.cm™3 and T = 100 eV) versus the electron kinetic energy in the right panel of Figure 6.2 with
the separate contributions of collisions with background free electrons, bound electrons, screened free
electrons/plasmons and ions. It shows that for the Hydrogen plasmas, the scattering on both plasma
ions and electrons provides comparable contributions. One also sees that, in the case of beam electrons
with kinetic energies less than =~ 100 keV, propagating in a degenerate Hydrogen plasma, collisions
on screened free electrons/plasmons provide the main contribution to the beam electrons angular
scattering. The linearization of the Belyaev-Budker collision tensor has allowed us to determine a
relation between the stopping power on « particles (de/ds), and the corresponding isotropization rate

Va = V/Aalpm Where Ay 1pm = 1/k1, is the angular scattering mean free path. This relation reads

Vo = Lo 1<d€>a. (6.18)

" ymep\ds

One deduces consequently that the total slowing down rate vy = (1/p)(de/ds) introduced in Equation
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(5.2) is approximatevely 7 times greater than the total isotropization rate v of the beam electrons :
1/de
udzv(v—V)Jr() (6.19)
' p ds rad

in the limit m./m; < 1.

6.1.3 Background Electrons Dynamics in the ”Hybrid” Assumption

As detailed in Chapter 3, section 3.1.1, we consider that the beam is already electromagnetically
neutralized. That is to say, ne = Z*n; — ny = Z*n; (np < n.), and we neglect the displacement

current in the Maxwell-Ampere equation

4
2><B: T

or ? (.]e +.]b) ; (6‘20)

considering times greater than the beam electromagnetic neutralization time (see Chapter 2). The

plasma dynamics is taken into account by the generalized Ohm equation (3.4)

o
— = (nekpT.). (6.21)
e

E:nje_

Considering a space scale larger than the plasma skin depth A. = ¢/wy., which is typically less than a
fraction of microns, the electron inertia has been neglected in (6.21). It has been assumed an isotropic
resistivity tensor 7 = nI (no magnetization effects) and the ideal gas expression for the electron
pressure P, = n.kpT,. As also discussed in Chapter 3, section 3.1.1, the electron viscosity, the
thermal force, the magnetic force and the friction force due to collisions with beam electrons have been
neglected compared to the friction force by colliding with background particles. In order to account

for the induced electric field, one has to add the Maxwell-Faraday equation (3.5)

0 g _10B

o xE=—"—" (6.22)

Thus, the system of equations (6.20), (6.21) and (6.22) provides the self-generated electromagnetic
field equations (3.7) and (3.8)

_ e ncd o 10
E 1Jp + A Or X nee Or (nekBTe) (623)
and 0 0 0 0 0 0 0
10B ne _ s n._ . kp One Te
cor T~ <47rar XB) e T T e o (624

The role of each term in these equations is discussed in Chapter 3, section 3.1.1.

As detailed in Chapter 3, section 3.3.2, the energy deposition by the electron beam produces
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a heating and a hydrodynamic motion of the plasma. On the picosecond time scale, the dominant
effect is the electron heating while the ion motion is much less important. So, in our model, the ions
are assumed to be immobile. Both collisional and collective effects contribute to the plasma heating.

The electron temperature T, of the plasma is calculated in our model according to Equation (3.52)

ST

5~ o | # ar>:We—G(Te—Ti) (6.25)

where the the hydrodynamic velocity divergence, the electron viscosity effects and the thermal force
have been neglected. Also, the thermal electron conductivity tensor has been assumed to be scalar
ke = kel (no magnetization effects) and it has been noted Cy . the background electron heat capacity.

The heating source term (3.51)
W, = / de / d?Q (VS V) + nje> (6.26)
Sa

is evaluated by calculating the direct energy loss of the beam electrons in collisions with the back-
ground electrons according to (6.15) and the friction of background electrons on background particles

—Rei.ve = njg. Thus, S reads

de de de
Scol = _<d> - (d) - <d> . (627)
S/ freee™ 5/ bound e~ s plasmons

Finally, G is the electron-ion equilibration coupling factor. The ion temperature is evaluated from
Equation (3.53)
oT;
Cvigy =Wi=G (Te = To) . (6.28)
Here, Cy; is the background ion thermal capacity. The thermal ion conductivity has been neglected
since it is negligible in the considered time scale. Also, the energy loss of the relativistic electron beam

from collisions with the ions has been neglected compared to G(T. — T;).

The energy conservation equation of the full system consiting of the beam electrons, the back-
ground electrons, the background ions, the bremsstralung photons and the electromagnetic fields can

be obtained starting from the Poynting theorem. It reads

0 .
Wi + (We — W;) + Wirem + Wem + G L= W = /da/ d’Q (vSV) — j,.E. (6.29)
Sa
Here, due to the fact that it is usually small, the pressure force has been neglected compared to the
friction force in the Ohm’s law (6.21) to write 1j.?> = je.E. The part of the beam power density

converted into the electromagnetic power density

0 (E?+B?
Wem = a1 <87r> (6.30)
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is negligible compared to W, as well as the divergence of the Poynting vector II = E x B/4mc. The

d
Wrem = —/de/ 42 [v <5> \p] (6.31)
Sa ds brem

comes from the bremsstrahlung power losses of beam electrons and W is the full power lost by

term

the fast electron beam. For low Z material, we have shown in Chapter 4, section 4.2.1 that
bremsstrahlung losses of beam electrons are negligible compared to their collisional losses. As the
transport of bremsstralung photons is not taken into account in our model, we make an implicit
assumption that photons deposit directly their energy in the material and therefore include Whyyepn, in
We. However, for intermediate Z materials and/or depending on the material opacity, this assumption

could not be sufficient and Wh,em is considered separately.

6.2 M1 Model for Relativistic Electron Beam Transport

6.2.1 Spherical Harmonic and Cartesian Tensor Scalar Product Ex-

pansions

A standard method of resolution of the V-F-P equation (6.15) consists in using a spherical harmonic
decomposition (see Chapter 5, section 5.2.2). This approach takes advantage of the fact that
the spherical harmonics constitute a full set of orthogonal functions on the unity sphere So and they
are the eigen functions of the Laplace-Beltrami operator [Tzoufras et al., 2011]. Another approach

consists in using a Cartesian tensor scalar product expansion (5.14)
o C
_ 4 )
U=> —, 0,0 6.32
= ar ¢ o ( )

where Cy = (20 +1)!/2¢!, Q) equals the (I — 1) tensor products of  with itself @ ® ... ® Q and Gy is
the ¢ times contracted product. The Nth order Lagrange polynomial approximation (Cartesian tensor
scalar product expansion with £,.x = N) is strictly equivalent to the spherical harmonic expansion
approximation with £y, = N [Johnston, 1960]. This method gives rise to a set of differential equations
where each equation, describing the ¢th order component Wy, involves the (¢ + 1)th order component
W,,q. Consequently, the (N + 1)th order component has to be approximated to close the set of
equations. This is done by imposing the PN closure relation

N o
Zﬁm@m“) QWD 2q

Uy (r,e,t):/ QN 20 &
=0

SQ SZ

In practice, the models are limited to the 1st order approximation (P1) in order to make fast com-

putations. In this approach, the decomposition components W, correspond to the fth order angular
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moments of the distribution function W

U, (r,e,t) = / vQq%q, (6.33)
So

and the first two equations can be obtained by integrating (6.15) multiplied by QO over the unity
sphere S5. They read

o¥g 0 0 _
o T e (1) = o= [0 (e¥LE + ST0)] =0 (6.34)
and
owr 0 0 e e
Ttl + e (vWy) — pE [v(eWy.E+ SU,)] = - (Vg — Wy) .E — ’YmeC\Ill xB—-v®¥;. (6.35)

The second order angular moment W, is evaluated by using the P1 approximation ¥ ~ WUp; =
Uy /4 + 3W1.Q /4w of (6.32)

1
U, = /m 2 Qd°Q ~ /\ppln ® Qd*Q = 3 ol (6.36)

which is the second order angular moment of an isotropic angular distribution function. Consequently,
the P1 approximation (6.36) is limited to weakly anisotropic distributions and it does not allow to
evaluate the anisotropic part of ¥5. Moreover, ¥Up; may become negative if the anisotropic part

3W,.Q /41 < 0 is greater than the isotropic part ¥o/4m [Dubroca et al., 2010].

6.2.2 M1 closure

IApproxi;’nation |

® Exact values
0.8 © Isotropic boundary
@ Anisotropic boundary

0.6

0.4

0.2

0. 02 04 06 08 1
Y

Figure 6.3: Closure parameter p as a function of the anisotropic parameter || = |¥1|/¥( (solid
blue curve) plotted within the approximation (6.59). The dots are the exact values of y
for some values of |€2|.
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Another approach consists in solving the set of equations (6.34) and (6.35) with a more general
closure relation. A general expression for a 2nd order tensor in a system with one preferential direction

given by the vector ¥y /| W] reads

1 U, ® ¥y 1
Wy = ol Uyl ——— — =1 6.37
2= 3%0 +u 0( | \Il1|2 3> ( )
where = p(¥g, ¥;) is a closure parameter depending on the two first angular moments

[Eddington, 1926]. Indeed, let us define the eigenvalues x1, x2 and x3 of the tensor Wo/Wy, asso-
ciated with the eigenvectors u;, ug and us, respectively. According to the definitions (6.33) of the

angular moments of the distribution function ¥, we deduce that

Tr (‘1’2> =x1+Xx2+Xx3= 1 Tr(Q® Q) ¥d*Q = 1. (6.38)
) Yo Js,
Due to the fact that we truncate the Cartesian tensor scalar product expansion at the 1st order, there
is only one preferential direction n = ¥, /|¥]| for beam electrons at the space location r and having
the kinetic energy € at time ¢. As a consequence, the vector (¥2/W¥p).n must be invariant under a
rotation around the n-axis and so n must be an eigenvector of Wy /¥ [Levermore, C.D., 1984]. Let
us choose u; = n. By symetry, the plane perpendicular to u; must also be a sub-eigenspace of ¥y /¥
so that the eigenspace (up, ug, u3) is an orthonormal basis of R3. It implies that the corresponding

eigenvalues read
I-x1
2 )

X2 = X3 = (6.39)

according to the trace identity relation (6.38). Let us note {cayj, (i, j) € {1, 2, 3}*} the components

of the tensor W9 /Wy in this orthonormal basis (uj, ug, ug) :

o 3 3
2
\Ifi() = E E QiU Q Uj. (6.40)

i=1 j=1
By definition of eigenvectors, we have
v
vk € {1, 2, 3}, W—Q.uk = XKUg. (6.41)
0
Injecting (6.40) in (6.41), we obtain
3 3
Vk € {1, 2, 3}, ZZaijui @uju = XrUg
i=1 j=1
3 3
= Z Z Qi (ui.uk) u; = XgpUg (6.42)
i=1 j=1
3
= Zakjuj = XkUg
j=1
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and we deduce the components of Wq /Uy :

Accounting for (6.43) and the axisymmetry relation (6.39) in (6.40), we finally obtain the closure
relation (6.37) with

_dazl (6.44)

2
In radiation transfer theory, x; is called the Eddington factor [Minerbo, 1977] [Levermore, 1979
[Pomeraning, 1981] [Dubroca and Feugeas, 1999]. Finally, according to the definition (6.33) of Wq,
the tensor Wo /Wy is symetric and positive-definite since it is the second order angular moment of a

positive unit density of probability on the unit sphere Sy. Thus,
Vk e {1, 2,3}, 0<x,<1. (6.45)

The closure relation (6.37) is exact for both totally isotropic angular distributions (= 0 or x; = 1/3)

and totally anisotropic angular distributions (x =1 or x1 = 1).

According to the method derived by [Minerbo, 1977] [Minerbo, 1978] in the context of radiation
transport and extended to electron transport by [Dubroca et al., 2010], the underlying parameter
can be estimated by maximizing the local angular entropy of beam electrons with a given kinetic
energy under the constraints of the definition of the angular moments ¥y and ¥;. Let us demonstrate
so the closure relation (6.37) following this approach. The maximum local angular entropy principle is
discussed in detail in the next section 6.2.3. The local angular entropy per unit energy of the beam
is defined by

H. [¥] = —/S U (In¥—1)d*Q. (6.46)
2

The distribution function Wy;, maximizing the local angular entropy H. [], is obtained by the method
of Lagrange multipliers. This is a strategy for finding the local maxima and minima of a function
subject to equality constraints. For instance, we want to maximize the local angular entropy (6.46)
subject to the definition (6.33) of the two first angular moments ¥y and ¥;. We introduce the 4-
dimensional vector a = (ay, al)T where ap and a;, called Lagrange multipliers, are living in the
same space than the angular moments ¥y and W1, respectively. To incorporate these constraints, we

introduce the functional of this maximization problem, called Lagrangian, defined by

L [V, o] = H.[¥] — ag (% — /32 WQ) — . (xpl - /52 \mdm> . (6.47)

The critical points of the Lagrangian (6.47) occur at saddle points. Note that

0L,
oo

W =T\, o] =0 (6.48)

Page 177



6.2. M1 MODEL FOR RELATIVISTIC ELECTRON BEAM TRANSPORT

implies the constraints of the definition (6.33) of the two first angular moments with ¥ = Wy, £ =0

and £ = 1. The maximizing distribution function Wy is defined by the Equation

0L,
ov

W =T\, o] =0 (6.49)

where 0/0V is the functional derivative. It is defined by

oL,
s, O¥

L. [¥ + €0V, o] — L[V, o]
€

(6.50)

[T, a]0Td*Q = lim
e—0

where 0P is an arbitrary function of € and edW is the variation of W. According to the definition
(6.46) of the beam local angular entropy and the Lagrangian (6.47) of this maximization problem, we
find

L[V + 0, o = L[V, a = / ST (—InT + ap + a1.2) P22 + O(c2) (6.51)
Sa
which gives 5
L.
[T, a)dWd’Q = [ 0¥ (—In¥ + ag + a1.9Q) d*Q. (6.52)
s, O¥ Sy

Therefore, according to the definition (6.49) of the maximizing distribution function Wy, we deduce

that, whatever the function 6V,

SV (—InWypy + ap + a1.Q) d*Q = 0. (6.53)
Sa

The only possible solution of the previous equation is
WUy = exp (Cko + al.ﬂ) . (6.54)

Then, the Lagrange multipliers ag and a3 have to be evaluated in terms of physical quantities by

using the constraints given by Equation (6.48). One has

47 sinh |y |

Uy = / Wy d2Q = exp (ag) (6.55)
So ‘al‘
and L
Arrsi 1
o, :/ Urin A2 = exp () TSR] (coth|a1 - > o (6.56)
S, | o] ) [au]

The detailed calculation of these two integrals can be found in [Wright and Hadley, 1975]. From (6.55)

and (6.56), one deduces an expression for the anisotropy vector

1 «

It is defined as the mean propagation direction of the electrons having the energy e at the position r
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at the time ¢. Due to the triangular inequality applied to (6.33) with ¢ = 1, one has
0<[92 <1 (6.58)

Although the bijective relation (6.57) cannot be inverted analytically, one can fit the real values of o
by
N 30,
~ E .
Lo 26‘ (1 + 195\2)

(6.59)

It is compared with the real value of a; for some values of |€2| in Figure 6.3, where the dependence
of the anisotropy vector €2, on the closure parameter p is plotted. Consequently, one deduces an

explicit expression for the approximate beam distribution function

o]

‘I’Ml =V exp (al.ﬂ). (660)

047rsinh|a1|

In the isotropic case where |a1| < 1 (|€2:] < 1), the M1 model reduces to the one-polynomial
approximation P1. But, in the opposite case of a strong anisotropy |ai| — oo (|€2| — 1), the function
U — o d [ — ] where § is the Dirac distribution. By substituting (6.60) in the definition (6.33)

of Wy, one obtains the closure relation

1 S T
T, ~ / T Q ® Qd2Q = ~ Tl + T, <1®21 _ I) (6.61)
Sa2 3 "111’ 3

with the closure parameter

B coth |y | 1\ |9 2
u—1—3( o] —|a1|2)~ ; (1+\QE|>. (6.62)

Here, we refer again to [Wright and Hadley, 1975] for the detailed calculation of this integral. This M1
closure relation (6.61) provides an interpolation between the local beam-like case where all electrons
at the position r with the energy € move in the same direction 2. = e, and the local isotropic case
where all electrons at the position r with the energy € move in all directions with the same probability
(2. = 0). It preserves consequently the advantage of the P1 model in fast computing while angular

distributions are described with a much better precision.

6.2.3 Properties of the M1 closure

Introduction

While the M1 closure shows a very good performance in the studies of radiation transfer, it is not

evident that the local angular entropy maximization under the constraints of the definition of the
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angular moments Wy and ¥, provides the best possible closure relation for electrons, which are charged
particles evolving under the action of the Lorentz force. We refer here to Minerbo who justified this
closure concerning photons by saying : “In communication theory, it is shown that the information
content is the negative of the entropy of the distribution. Thus, by using the maximum entropy
criterion, one avoids introducing information that is not available. This approach is conceptually
superior to the use of an ad hoc model for the intensity” (i.e. W;). Concerning the relativistic
electrons considered here, even if their angular scattering tends to isotropize their angular distribution
and increase their angular entropy, self-generated electromagnetic fields may not follow the same
trend. One can deduce the local angular entropy dissipation rate (OH./0t)co starting from the V-F-P
equation (6.15) and by integrating it over the unity sphere in the momentum space Ss. Here, we define

the local angular entropy as

H.[V](r, &, t) = — /52 [m\p —1+1In <p )] d’Q. (6.63)

It is different from (6.46) by a constant term and therefore does not modify the results obtained in
the previous section 6.2.2. This definition allows us to relate the local angular entropy with the

Boltzmann entropy H[f;] (see Appendix A, section A.1.5) by the simple relation

fb r, t / fo lnfb—l / He[\If]dE. (6.64)

By noting ¢ = ¥[1 — In(v/p?)] — ¥In V¥, the equation for the time derivative of the local angular

entropy reads

dH O0H o 9 o
ek 9 wed? - = E.Q 20| — . |
dt 5 T+ ar 521) ¢d o USQv(e +85)pd } ( = )COI (6.65)
with
8H5 _ K 8¢ a¢ o v ﬁ )
< ot >c01 2 /52 ¢ [(a&) * <a<p> Q=T 55 (075). (6.66)

M1 Closure and Collisional Effects of Fast Electron Transport

The local angular entropy dissipation rate (OHc/0t)co1, which is the angular entropy time evolution
of a M1 mesoscopic particle following its trajectory in the (r, €)-space, contains two terms according
to the previous equation (6.53). The term depending on the isotropization rate v is positive and
consequently increases the angular entropy H. with time. But, the sign of (0H./0t)co depending

also on the total stopping power S is not defined. Let us estimate so the contribution of each term

/SQ 5 [(23) i (8:?)

assuming that

d’Q ~ ¥,
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Figure 6.4: (Left panel) Ratio £ versus the kinetic energy of electrons according to Equation (6.67) for
dense Hydrogen (p = 10 g.cm™3, Z = 1), Aluminum (p = 2.7 g.cm™3, Z = 13), Copper
(p = 8.96 g.em™3, Z = 29) and Tantalum (p = 16.65 g.em ™3, Z = 73) at T = 100
eV. (Right panel) Comparison between the M1 approximation (8.23) (full curves) and
the statistic normal law (dashed curves) for Ay = 1807 ( ), Ap = 90° (blue), 45°
(black) and 20° (red).

have the same order of magnitude. In this case, one may evaluate each term by comparing the ratio

20 0

e=222 (75)

vp? e

with 1. By neglecting the electron bremsstrahlung losses, one obtains

275° v 0 1 ]
= 2+ — (In A% 6.67
¢ L A [ lnAg?}@y(n ) (6.67)
In Azel
where InAf! = (Z*/Z)(In A% -+ AT ong) + (1= Z7/Z) In A and In A the Coulomb

logarithms given in Figure 6.1. It is plotted in the left panel of Figure 6.4 for Hydrogen, Aluminum,
Copper and Tantalum assuming Z* = 0 to simplify the calculation of the relativistic electron-electron
Coulomb logarithm derivative. This assumption does not modify the value of ¢ since the total stopping
power and the isotropization rate do not depend on Z* (see Chapter 4, section 4.2.1). One can
notice that £ strongly depends on the atomic number of the material Z and that the M1 closure seems
to be fully justified for the electrons with kinetic energies ¢ < 100 keV for Hydrogen (Z =1),e < 1
MeV for Aluminum (Z = 13), e < 3 MeV for Copper (Z = 29) and € < 10 MeV for Tantalum (Z = 73).
It means that, above these values, the energy exchange between energy groups of beam electrons, due
to their slowing down, does not allow to consider each group as a closed system and thus does not
allow to justify the maximum angular entropy criterion. This is due to the fact that the slowing
down rate is v times greater than the angular diffusion rate (see Equation (6.19)). This limitation is

compatible with the characteristics of laser-generated electrons. The number of electrons with kinetic
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energies above these material-dependant threshold values represent only a small part of the whole
beam electron population (see Chapter 1, section 1.2.7). Moreover, being more energetic, these
electrons propagate faster in the target compared to others so that their local angular distribution is
quasi-anisotropic and therefore, is well described by the M1 model. Thus, one can conclude that the
collisional effects of laser-generated electron fully justify the M1 closure for their transport in solids

and dense plasmas. Indeed, by orienting the Cartesian coordinates such that

sin sin
Sln2 0<P0 =0 o (B02) A ogo0 (6.68)
o) = = |co - .
NS : Ap?)  8In2 :
COS ©o oS Yo
we obtain the angular distribution function averaged over the polar angle 6
/7T Wy sin0df = \Ifgﬂ ({I [Jo1| cos (¢ — ¢o)] + L_1 [|ar] cos (¢ — ¢o)]}
0 4 sinh |ay |
v — o) :
~ 0 exp |—41n2 (p = o) ] (6.69)

[ Ap? Ap®
2T ———
81n2

which is nothing else than the Oth order statistical normal law obtained in the multiple scattering
theory by Moliere (see Chapter 4, section 4.3.2). They are strictly similar in the anisotropic
limit and diverge slightly in the isotropic limit, as illustrated in the right panel of Figure 6.4.
The integration has been carried out in the same way as for (6.55), (6.56) and (6.61) that is to
say, by expanding the exponential in power series, by performing the integration of the different
sinus power according to the formula 3.621 from [Gradshteyn and Ryzhik, 1965] and by applying the
doubling formula for Gamma functions 8.335.1 from [Gradshteyn and Ryzhik, 1965]. Then, the sum
was split in odd and even terms which were compared with the definitions 9.6.10 and 12.2.1 from
[Abramowitz and Stegun, 1965] of the modified Bessel function of the first kind I, and the modified

Struve function L, .

However, even if the collisional effects can justify the M1 closure in the problem of fast electron
transport, the third term in the left hand side of (6.65) shows that the self-generated electric field
affects the local angular entropy time evolution (i.e. the angular entropy obtained without following
the trajectory of a M1 mesoparticle in the (r, €)-space). This is not the case for the Boltzmann

entropy, since by integrating over all kinetic energies (6.65), this term vanishes to give

dH oH o9 [* 2000 [ (OHe
i~ o, [ roetnse= [7(%0) e o

It must be emphasized here that, similarly to the maximum local angular entropy criterion, the Boltz-

mann H-theorem does not apply here. Indeed, contrary to the Boltzmann H-theorem demonstration

presented in Appendix A, section A.1.5, the right hand side term of (6.70) is not necessarily
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positive. It would have been positive if the whole electron population (beam electrons + background
electrons) were taken into account in W, which is not the case in our "hybrid” assumption. Energy
exchanges between the beam and background electrons do not allow to consider the beam electrons

as a closed system.

M1 Closure and Collective Effects of Fast Electron Transport

In order to illustrate the M1 closure in a collisionless case, let us evaluate the dispersion relation (3.39)
for the resistive filamentation instability with the M1 model. As in Chapter 3, section 3.2.3, we
neglect the pressure force in (6.21), consider k, = k, = 0 and assume |E,| > |E;|. While the system
of equations {(6.20), (6.22), (6.21)} provides the same relations as (3.36), for the electric field, the
linearization of the M1 equations (6.34), (6.35) and (6.61) is different. The distribution function at

the equilibrium is the Maxwell-Juttner distribution function (3.17) expressed as a function of (e, ) :

2 knT . 2 . 2 .
0O = gy ;= nl(70) 7" BkpTh/mec 5 exp [_mc <7 — By P ﬂ (6.71)
Amyp(mec?) K Me€ Fplh Me€
To Me 2 wkeT

Being a particular case of distribution functions of the kind (6.60), one can deduce easily the angular

moments of the distribution function at the equilibrium. They read

0 4msinh || (o V2 BkpTy/mec? VM
‘11(()) = o] n® e w2 ol aTy ) (6.72)
Ayp(mec?) Ko ( € >
WwkBTh
©) _ 3© I\ o
v =W th - — 6.73
o) (comlenl = ) o (o7
and
1 vV ee®
v — —o0r4 @0 | 2L =21 g (6.74)
1
where ol
h|a 1 MeC
0) = 1—3<COt ! — > and o] = = P z
8 o] \al\z k‘BTbﬂ MeC

The linearized M1 equations (6.34), (6.35) and (6.61) read

9oV¥y 0 0 (0) B
S e (00W) — e (v\pl ).5E_0, (6.75)
90w, 0 9 (O sp— ¢ (g©® O R0
St (00W) — e (vwl?) oE = p(% w(") oE v X B (676)
and 5 5
_ 0% (00) g Yo (30 g0
0y = (v, @ )5\1/0+N1 (v, ) oy, (6.77)
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Let us note the tensors

0w,

Ty = —=
0~ 2w,

. ow
(qlg)O)7 ‘I’§O)> and Vi € {.’L’, Y, Z}v Tl,i = 8\1’127; (lllg)O)7 ‘Ilgm)

such that
oWy =TyoVg + Tl,xéq’l,m + TLy(s\IILy + T1735\I/17Z. (6.78)

Their general expressions are

(0)\ 2 (0)\ 2 (0) ¢, (0)
- 2 I N .4 L3 Ui, 1o
V(Z7 .7) € {.Z', Y, Z} ’ (TO)U - 5511 <\I/(O) 1+2 lII(O) \11(0)2 5513
0 0 1 6.79)
OO (6.
o [ Fi¥y 1
+ ou 0)2 —§5z’]
‘I’l
and
(0) 0)\ 2 (0) i (0)
v o Uyaviso1
L. 2 N 1,3 1 Lz ™1,y s
V(i, §) € {z, y, 2}°, (Thi)ay = \I/(()O) 1+ 2(\1/(()0)> ‘Ilgo)2 3"

(6.80)

b0 0 (w0 (s, < 5,9) 2009000
b3
Performing the Fourier transform of Equations (6.75), (6.76) and (6.78), neglecting 6, and using
B =

the Maxwell-Faraday equation for the magnetic field (& —(kxc/w)ciﬁ\zey), we obtain the matrix

relation
ASX = —ieYO5E, (6.81)
where
53, (d/dz) (00, ©)
T 0
6\Il1,y 0
50y 0
and
—w kyv 0 0
A _ kmv(T0>xx sz(TLg;)xx —w kﬂCU(TLy)xa; kZU(T17Z)$$
kov(To)zy — kav(Tia),, — kav(Tiy),, —w  kov(Tiz),,
kzv(To),., ka(Tl,m)m k‘xv(TLy)M ka(Tl,z)m —w

Let us consider here the limit 7} — 0 for simplicity. In this case, the Lagrange multiplier |a;| — oo

and the equilibrium distribution function (6.71) becomes purely anisotropic and monoenergetic, giving
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Figure 6.5: Comparison between the resistive filamentation growth rate in the M1 approximation
(full curves) and the resistive filamentation growth rate (3.41) (dashed curves) for ny =

107°Q.m, T, — 0, n,()o) = 102" cm ™3 (wp, = 1.78 fs71) and different values of v, = 1.5
( ), 3 (blue), 7 (black) and 14 (red).

consequently
(0)

0 n 0 0 0 0
0 = o) 0 = 0P, and w0 = 0. .. (652

e

In this case, we obtain (70)zz = (T1,2)e: = —(11,2)ze = 1 and (T0)zy = (10)e> = (T12)az = (T1,2)ay =
(Th)ze = (Thy)ay = (Th,y)zz = (T1,2)zy = (11,2)2- = 0 and the matrix A reduces to the simpler form

—w kyv 0 0
koo —w 0 —k

A= v N (6.83)
0 0 -w 0

0 kyv O —w
Then, the solution of equation (6.81) reads

(d/de) (U%(O)) (K228 + w?) — k2280 Jymec)
§X = —ieA"LYOSE, = Z% kyw [v(d/ds) (”‘1’0(0;> — (U of /'ymec)}

2y [v(d/de) (’U\I’O(O)) - c(\lfo(o)/vmec)}

SE.. (6.84)

This provides us with the expression for the beam current density perturbation

5y = —e/ 5W, 2vdee, = z< > ﬂb ( ) SE.e. (6.85)
w Ay 'yb

where wy, = \/47ml()0)62 /me is the electron beam plasma frequency. Injecting (6.85) in (3.36 a), we
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obtain the dispersion relation for the unstable mode w = id

3 2 2 2 .
(5 () (L) L () (14 2) (6:56)
Nowp \ Wh Wh Wh o\ Wo Vb

It has to be compared with the dispersion relation (3.41) obtained starting from the Vlasov equation

dr (5)1 [(m)ﬁg] (6)2_1<ﬁbkxc>:o.
oWy \ Wh Wh Y Wy Vb Wh

A term o« 1 /’yg’ has disappeared in the second term, while another term 3/’y§ has appeared in

the third term. This is due to the fact that the Maxwell equations depend on the hydrodynamic
moments ny and j, of the beam distribution function U and not directly on its angular moments
Uy and ;. Indeed, contrary to the reference case of the Vlasov equation (3.37) where the currents
in (3.36) are calculated with p,, p, and p.-integrals, in the M1 approximation there appear only e-
integrals since the integration over angles © = p/p has already been performed before the coupling

of the equations. Therefore, the integration of YO(O) and Yl(,(a]:)

over ¢ leads to a different result. The
instability growth rates § > 0, solutions of (6.86) and (3.41), are plotted in Figure 6.5 for ny =
1076 Q.m, néo) = 102" em™3 (wp = 1.78 fs71) and different values of ;. The M1 approximation largely
overestimates the filamentation resistivity growth rate in the short wavelength region k,c/wy, > 1 for
low mean electron energies v, = 1. Indeed, according to (6.86), the growth rate obtained in the M1

approximation attains the value

b'e X | 3 X wbﬁb
5%\11/1% = \n/llé;sov 1+ 72 where 6{Tllgsov = ﬁ (687)

However, for larger electron energies, above v, ~ 3 ({¢) &~ 1 MeV), the M1 model provides the solution
with an error less than ~ 15%. For v, = 7 ({(¢) & 3 MeV), the M1 model makes an error less than
~ 3%. This example partially confirms the argument given by Minerbo, and quoted in the introduction
of this section, concerning the justification of the M1 closure (6.61) when neglecting collisions of beam

electrons with background particles.

Conclusion

Since the development of thermodynamics, physicists have discovered two main principles that govern
physical processes. The first one is the least action principle. A particle evolves from a state A, at
the space location r4 and time t4, to a state B at the space location rg and time tg, by following
the trajectory from r4 to rp that minimizes its action. The action of the particle being its kinetic
energy, minus its potential energy, integrated over time between t4 and tp, it means that particles
will always move following the trajectory that minimizes its kinetic energy compared to its potential

energy, imposed by the surrounding force fields (there is a similar law concerning photons called the
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Fermat’s principle). This ”energy minimization principle” is at the origin of many theories in Physics
from optical geometry and Newton’s mechanics to quantum electrodynamics [Feynman et al., 1963].
However, another tendency arises when studying a system consisting of a lot of particles. In principle,
one may think that all the physical properties of such a system can be determined by its microscopic
state, i.e. by the description of the positions and momenta of all particles. Actually, because the
number of particles is so large, the details of the motion of individual particles is mostly irrelevant to
the behavior of the system as a whole. Indeed, according to thermodynamics and statistical physics,
the macroscopic state of a system is defined by a distribution on the microstates that are accessible to
the system in the course of its thermal fluctuations. In order to describe this discrete set (continuous

set) of microscopic states of a system, J.W. Gibbs introduced the statistical entropy
H=—kp Zpi In p; (H = —k:B/fln 7, respectively> (6.88)
i

where F; is the energy of the microscopic state ¢, and p; is the probability that it occurs during the
system’s fluctuations (f is the particles distribution function, respectively). The difference between
this last expression, the Boltzmann entropy (6.64) and the local angular entropy (6.46) or (6.63)
simply comes from an additive constant. The above expression of the statistical entropy is also used
in communication theory and it is called the Shannon Entropy. It is the opposite of the information
content of signals, consisting in a succcession of binary numbers. L. Boltzmann showed that the
statistical entropy of an isolated system of particles can only rise with time

dH

o >0 (6.89)
(see Appendix A, section A.1.5) and that the thermodynamic equilibrium is obtained when all the
accessible microscopic states of the system are equally likely. Thus. the thermodynamic equilibrium
is the configuration corresponding to the maximum of a system’s entropy for a given set of accessible
microscopic states. In other words, the thermodynamic equilibrium is the macroscopic configuration
in which the lack of information is maximal. This is the second main principle mentioned previously.
The difficulties happen due to the fact that both principles (”Energy minimization” and ”Entropy
maximization”) are mutually exclusive. For example, according to the least action principle, the
particle can move from rp to rs by the same trajectory as he moved from r4 to rp. Indeed, the
time is reversible in the equations describing the particle dynamics (Newton’s fundamental principle
of mechanics, Einstein’s fundamental principle of mechanics or Schrédinger’s fundamental principle of
quantum mechanics). It is not the case for a system of many particles. The increase of entropy can

proceed in an irreversible way, since the second law of Thermodynamics (6.89) is not time-reversible.

Concerning fast electron transport in solids or dense plasmas, these two principles are in compe-
tition. Collective effects are described by the particles dynamics in the self-generated electromagnetic

fields and therefore follows the ”Energy Minimization Principle”. Oppositely, the collisional effects
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tend to homogenize the particles momentum distribution and are therefore better described by the
”Entropy Maximization Principle”. In this section, it has been shown that collisional effects ensure
that the local angular entropy

dH.
>0 6.90
at = (6.90)

for fast electrons with kinetic energies less than a threshold value ey, depending on the atomic number
Z of the material. Concerning laser-generated fast electron beams, this threshold ey, is sufficiently
large compared to their typical kinetic energies. Moreover, laser-generated fast electrons with energies
greater than ey, propagate deeper in the laser-irradiated target and have consequently a local angular
distribution close to the anisotropic limit for which the M1 closure is exact. In order to check the
M1 closure in a collisionless case, where there is more arguments in favor of ”minimizing the action”
instead of "maximizing the angular entropy”, we have derived the dispersion relation of the resistive
filamentation instability, obtained with the M1 model, in the limit T — 0, and we have compared it
to the reference Vlasov case presented in Chapter 3, section 3.2.3. An advantage of the M1 closure
in this derivation is that the angular moments of the Maxwell-Juttner distribution function of the
beam U are easy to obtain since the Maxwell-Jutnner distribution is a particular case of the more

general distribution function Wy;. That can be explained by the following mathematical relation

H[\I/M_J] = mnaxy {H[\I/]}

— maxy {/OOO Hg[\I/]da}

- (6.91)
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This relation shows that the M1 approximation overestimates the Boltzmann entropy of the beam and
that the maximum angular entropy distribution function (6.61) can be obtained by multiplying the

maximum entropy Maxwell-Juttner distribution function (6.71) with a Dirac distribution in energy
Ui (r, 0, 2, &) = d[e — o] Unrs(r, €, Q, 1), (6.92)

as explained by [Wright and Hadley, 1975]. Besides, this study has shown that the M1 model overesti-
mates the instability growth rate for 7, = 1. However, the resistive filamention instability is reproduced
with an error of less than 15 % for 4, > 3. This result is surprising since there is no reason to maximize
the angular entropy in such a collisionless case. It can be explained by the argument given by Minerbo,
saying that ”by using the maximum entropy criterion, one avoids introducing information that is not
available.” Nevertheless, it will be shown in Chapter 8 that the closure relation (6.61) allows for a
sufficiently accurate and fast computation of the V-F-P equation (6.15) with an arbitrary degree of
anisotropy. Moreover, contrary to P1, it continuously relates the anisotropic and isotropic regimes

while satisfying the physical constraints Uy > 0 and 0 < |€2.| < 1 thanks to the exponential form of the
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underlying distribution function (6.60). Several numerical experiments in the non-relativistic regime,
carried out for the comparison of the M1 model with the full V-F-P code [Duclous et al., 2009], have

shown good agreements with a much reduced computation time [Mallet et al., 2014].

6.3 Physics of the Background Material

The response of the background particles to the beam propagation is described by the diffusion equa-
tion of the magnetic field (6.24), the Ohm’s law (6.23) and the heat equations (6.25) and (6.28). These
equations depend on the electrical resistivity n, thermal electron conductivity k., thermal capacities
Cy, and Cy; and the electron-ion coupling factor G. All these parameters depend on the density and
temperatures of the target material. In the case of laser-irradiated solid targets, the solid is initially
cold and these different parameters are given by the solid state physics theory. One talks about the
lattice thermal capacity and electron-lattice coupling factor instead of the ion thermal capacity and
electron-ion coupling factor, in a plasma. However, the collisional and collective losses of the fast
electron beam rapidly induce the ionization of the material and the heating of the background free
electrons, which in turn heat the lattice. The material enters consequently the liquid and then the
plasma state. While the plasma parameters are known, there is no theory predicting the material
parameters in the transient domain between these states. In the case of insulators or Warm Dense
Matter (WDM), quantum molecular dynamics computations allow to evaluate these parameters. This

section is dedicated to the description of these parameters in metals.

6.3.1 Ionization State Z* and Thermal Capacities Cy,

— Ty

25¢

201

Z for Cu
o

-2 IO I2 4 -2 ‘D IZ
10 10 10 10 10 10 10 10
T, [eV] T, [eV]

4

Figure 6.6: Ionization state given by (6.93) (red) compared to the More formula (3.43) (blue) for
Copper (Left panel) and Tantalum (Right panel).
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The ionization state Z* is an important parameter, which allows us to determine the density of free
electrons n. r = Z*n; and bound electrons n., = (Z — Z*)n; in the solid. As explained in Chapter
3, section 3.3.1, Z* can be estimated by the More Formula (3.43) based on the Thomas-Fermi
model. However, the Thomas-Fermi model is inadequate for capturing the metal-insulator transition
since it neglects any atomic structure effects on the ionization equilibrium. Contrary to the treatment
proposed by [Desjarlais, 2001], which consists in imposing a smooth transition from Thomas-Fermi to
non-ideal Saha at low temperature, we impose phenomenologically the adequate value of the ionization
state Z* = Z. at a low temperature, where Z. is the number of electrons per atom in the conduction
band (s-band), as

7 ={[(1 = fo) ZJ™ + [f Zrp] "}/ (6.93)

where Z7.,. is the ionization state given by (3.43) and

kpTe — asEFR )]

* 1
f = KYZ%rr® with K = = |1 + tanh
2 agEF

Here, EF is the Fermi energy given by Equation (3.42) with n. = Z:n;, a; and ag are parameters that
allow for adjusting a smooth transition from Z. to Z75 while as determines the temperature at which
the transition occurs. For example, Z. = 3, a1 = as = 1 and a3 = 0.05 for Aluminum, Z. =1, a; = 2,
az = 35 and a3z = 1.925 for Copper and Z. = 2, a; = 2, ag = 20 and a3z = 1.25 for Tantalum provide
good estimates for the charge state, as illustrated in Figure 6.6. By taking Z* = Z. at the solid
temperature instead of Z* ~ 0 as [Desjarlais, 2001], we empirically account for the collisions between
free electrons and neutral atoms in the calculation of transport coefficients n and x. by taking into

account collisions between free electrons and phonons (see the next section 6.3.2).

10 T
10 x10
—Al 18
—Cu
10°} —Ta 1.6
— ----Al[Lin et al., 2008] —
| e 1 -
mx. s Cu [Lln et a|,200 |>‘ 1.4
IE 10" ¢ @
> cE: 1.2
= 7 9
L 10 @
o = 4
o S
10° & _
—
10° ' 0.6 Ta
-2 0 2 4 -2 0 2 4
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Figure 6.7: (Left panel) Electron thermal capacity (6.100) for Tantalum (solid black curve) and
comparison between the electron thermal capacity (6.100) (full curve) and the results by
[Lin et al., 2008] (dashed curves) for Aluminum (blue) and Copper (red). (Right panel)
Ion thermal capacity (6.105) for Tantalum (black), Copper (red) and Aluminum (blue)
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Knowing the ionization state, one can deduce the electron thermal capacity in the hot plasma

temperatures. It follows from the perfect electron gas expression (see Annexe B, section B.1.1)
hot 3 *

However, we need to model it in the whole range of electron temperatures starting from the ambiant
temperature T, =~ 300K to kT, ~ 10 keV. It is known from experiments that, at temperatures below

the Fermi temperature (3.42), the electron heat capacity of metals can be written
C = YexpTe (6.95)

where vexp is the Sommerfeld parameter. From a theoretical point of view, the thermal capacity of

degenerate electrons at low tempearatures is defined as

av, (=
cold __ e _ _
oyt = G = [ e~ ) SR ae)ae (6.96)

where U, is the total electron thermal energy, ¢ is the electron kinetic energy,

1
6_
1+exp <k:BTlu)
e

is the Fermi-Dirac distribution function depending on the chemical potential p and the Fermi energy

frp (g, p, Te) = (6.97)

Er (3.42), expressed with the electron density n. = Z*n; and g(e) is the electron Density of States
(DOS). By assuming that g(¢) ~ g(Er) and by approximating the DOS g by the free electron gas

expression
1 [/2m.\*?
96 = s () VR (6.99)
one finds )
k
O = T with iy = =22 (6.99)
’ 2 EF

However, 4y, is usually of the expected magnitude, but often does not agree very closely with the
measured value 7exp. Moreover, computational analysis based on first-principles electronic structure
calculations of the electron DOS have recently shown large deviations from the commonly used linear
approximations (6.95) [Lin et al., 2008] [Bévillon et al., 2014]. An interpolation formula presents a
good compromise, allowing to describe the electron thermal capacity in the whole range of considered

temperatures :
—1/2

-2
Cve=|("T.)* + <;’an3) ] (6.100)

where v = 912 erg.cm™3.K~? for Aluminum, 968 erg.cm™3.K~2 for Copper and 5428.8 erg.cm™3. K2

for Tantalum. The temperature dependence of the electron heat capacity is illustrated in the left panel
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of Figure 6.7.

At the plasma state, the ion thermal capacity is given by the ideal gas expression (see Annexe
B, section B.1.1)
3
CyY = SNk (6.101)
In the cold solid phase, the lattice thermal capacity is due to phonons. According to experiments, it
can be written

Cit = AexpTi. (6.102)

According to the Debye theory of phonons, the expression for this constant below the Debye temper-

ature Tp reads

(6.103)

However, above T, = 300 K, the Einstein model is sufficient to describe the lattice heat capacity. It

is calculated by using the Bose-Einstein distribution function for the phonons

1

e o 1
x _
P kpT;

where w is the phonon frequency and by assuming the Einstein phonon DOS g(w) = 0 (w — wg). Then,

fBE (W, Ti) = (6.104)

the lattice heat capacity reads

d 1

hwg >
. 0o 2 exp < ]
ceold — dU; = / hwafBEQ(w)dw = kpn; < s > kol
0 [

where hwp is the Einstein temperature. For example, hwp = 284 K for Aluminum, 278 K for Copper
and 193 K for Tantalum. Contrary to the Debye temperature, the Einstein temperature is difficult to
find in the literature for some metals. In this case, one can use the empirical relation hwp/kpTp =~
(7r/6)1/3. However, the Einstein heat capacity tends to kpn; instead of (3/2)kpn; when T; > hwg.
Consequently, a good compromise, allowing to describe the ion thermal capacity in the whole range

of considered temperatures, can be obtained by estimating it as

Vi =

(6.106)

hweg
3 s (ME)Q exp<kBTz‘)
2 ‘ kB,I% hwE 1 2
o (7)1

It is plotted in the right panel of Figure 6.7 for Aluminum, Copper and Tantalum.

Page 192



CHAPTER 6. DEVELOPMENT OF A REDUCED MODEL FOR LASER-GENERATED
RELATIVISTIC ELECTRON BEAM TRANSPORT IN SOLIDS AND DENSE PLASMAS

6.3.2 Two-Temperature Electron Transport Coefficients n and x.

K [erg.s".cm‘1 .K“]

10

Il Il 10 Il

-2 a 2 4 -2 o] 2 4
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T, [eV] T [eV]

Figure 6.8: Electrical resistivity (6.107) (Left panel) and thermal electron conductivity (6.108)
(Right panel) for Aluminum (blue), Copper (red) and Tantalum (black) at T; = 300
K (dashed curves) and at T; = T, (full curves).

As explained in Chapter 3, section 3.3.1, the Lee-More model [Lee and More, 1984] assumes
equal electron and ion temperatures. Another model that takes into account T; # T, was proposed by
[Chimier et al., 2007]. Here, we propose to merge these two models. In our approach, the electrical

resistivity reads
Mele 1

n= D)
Nee e I
<kBTe>

and the thermal electron conductivity reads

(6.107)

e

A8 (L
T, nckiTe 5( n : kBT,
Ke = Y[ — = A with v, = —————&
n Mele kT, e U
<kBTe>

<’“B)2. (6.108)

They are plotted in Figure 6.8 for Aluminum, Copper and Tantalum. Here, the free electron density
is given by ne = Z*n; where Z* is computed according to (6.93) so that at low temperatures n, = Z.n;
is the density of s-band electrons. The Lorenz factor vy, is computed according to the functions A%
and A® provided by [Lee and More, 1984] (see Appendix B, section B.2.4) allowing to reproduce

the Wiedemann-Franz law at solid temperatures

2 2
cold ™ kB
= —| — 6.109
YL 3 ( c ) ( )
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and the Spitzer result at plasma temperatures

hot __ kB 2
yhot — 4 (2B (6.110)

10
< ___ v (k=1.6714, T=300K
. aph * s i 1
o Vo g (K=1.6714, T=T )
-—;— v, (A =0.014)
= v, (B,=0.125)
-2 -2 -1/2
=@ oV, = (VT VT
v [Petrov et al., 2013]
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Figure 6.9: Contributions of the different electron collision frequencies in the electrical resistivity of

Aluminum (6.107) with (6.111) (Zs = 3, Z4 = 0). The electron frequency contributions

are indicated in the Figure.

The electron collision frequency is computed according to the harmonic mean

_ _ o1 1/2
Ve = | Weph + vee) 2+ 12 + uhjt] . (6.111)
At hot plasma temperatures, v, is therefore given by
Vhot = Yei for n and vpep = Y for Ke (6.112)
VE €or

where vg and edr are the electron-electron collision correction factors following the notation from
[Spitzer and Harm, 1953]. They can be fit as a function of Z* according to the table given by
[Spitzer and Hérm, 1953] (see the fits given in Annexe B, section B.2.2). For 7,;, we use the

Lee-More electron-ion collision frequency
20271 (Z*)?net In A
3/me(kpT,)*? |1 — PP (e
me(kpTe) + exp kpT. 1/2 pT.

Ve =

(6.113)
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where the Coulomb logarithm In A; is given in Appendix A, section A.2.3, allowing to account for
the electron degeneracy close to the Fermi temperature (see Appendix B, section B.2.4). At a low
temperature, v, is given by a sum of the electron-phonon collision frequency and the electron-electron
collision frequency

v =y h T Ve—e (6.114)

e

According to [Lee and More, 1984] and [Chimier et al., 2007], we impose that the mean free path
ve/Ve of the electrons cannot exceed the mean interionic distance ve/v. in the intermediate range of
temperatures where v, = ve/(3/47mi)1/3, Ve = \/3kB(TF +T.)/me and Tp = Er/kp. In the model

proposed by [Chimier et al., 2007], the electron-electron collision frequency is

kp
Voo = AyﬁTg (6.115)
and the electron-phonon collision frequency is
2€2k B

Ve_ph = ks (6.116)

——1;
52 [2kgTr
Me

where ks and A, are parameters depending on the material. At the ambient temperature, the
electron-phonon collision frequency v._yy, is the main contribution in the electron momentum dump-
ing. Therefore, while the parameter ks can be obtained by imposing the measured value of the elec-
trical resistivity meve_pn/ nee? at the ambient temperature, the parameter A, of the electron-electron
collision frequency v._. is usually unknown. Moreover, it has been recently shown experimentally
[Fourment et al., 2014] that collisions of s-band with d-band electrons make an important contribu-
tion to the electron collision frequency v, for transition and noble metals while the expression (6.115)
corresponds to the low one-temperature asymptotics accounting for the collisions between s-band

electrons only (Fermi liquid model).

[Inogamov and Petrov, 2010] and [Petrov et al., 2013] have developed a semi-analytical model by
using the electron kinetic equation, the matrix element for the scattering probability and a screened
Coulomb potential describing the interaction between s-band electrons and s or d-band electrons. In

their approach, the electron-electron collision frequency is given by
Voo = Vg—s +To_g. (6.117)

According to [Inogamov and Petrov, 2010], the s-s electrons collision frequency reads

/0 - —agi_ D (e s_s(e1)der

T o —
S—S8 o0 afFD
— d
/0 Oe (e1)dz

(6.118)
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Figure 6.10: Contributions of the different electron collision frequencies in the electrical resistivity of
Copper (6.107) with (6.111) (Zs = 1, Zg = 10). The electron frequency contributions
are indicated in the Figure.

where frpp the Fermi-Dirac electron distribution function (6.97), €1 is the energy of electrons 1 and
vs—s(€1) is the collision frequency for an electron 1 colliding electrons 2 having the energies 2 given

by
2

me
ves(k1) = W}%/dq/dkg/da/dﬁ koU(q)%S (K1, ko, a, B)6[ar — B]. (6.119)

2

Ul(q)

B q2 + kscreenZ
is the screened Coulomb repulsion of electrons with the screening reciprocical length, estimated by
the Lindhard screening length kgcreen = \/ Ame? [(Op/One).

S(k1, k2, a, B) = frp(e2)[1 = frp(er — a)] [1 = frp(e2 + B)]
+ frp(e1 —a)frp(e2 + B) [1 = frp(e2)]

is the statistical factor describing the admissible energy states for the electrons 1 and 2 before and
after their binary collision, « is the energy loss of the electron 1 and 3 is the energy gain of the
electron 2 during the collision. The Dirac distribution §[c — ] describes the energy conservation in

the collision. First, the authors consider the one-band metal for all s band electrons with the simple
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Figure 6.11: Contributions of the different electron collision frequencies in the electrical resistivity of

Tantalum (6.107) with (6.111) (Zs = 2, Z4 = 3). The electron frequency contributions
are indicated in the Figure.

parabolic dispersion law (k) = h%2k?/2m.. The (o, 3)-integration is straighforward and gives

e () oo (5)

s(a):/doz/dﬁS(k:l, ko, o, B)0[a— B] = kpT, Bre Bre
<62—M) €1 +€2—2,u>

1+ exp l—exp| ——F—

(6.120)
Then, the authors split the domain of integration as illustrated in the left panel of Figure 6.12 to

finally obtain
2m

(27)° KBk,

2
e

Vs—s(kl) = (Ial +Ia2 +Ib+Ic+Id) (6121)
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where

b Trdata

I, = / dq/ dky koU(q)? [s(a”) = s(a)],
0 ki+q

I. =0

k1 ki1—
L - /0 dq /0 " ks kaU(0)? [(8") — 5(8)]

with 8" = (h%/2me) (¢* — 2kaq), B" = (h*/2me) (¢ + 2k2q), o = —(h?/2m.) (¢° + 2k1q) and o =
—(h%/2me) (q2 — 2kzlq). The dependence of vss(k1) on the density is implicitly taken into account via

the chemical potential p according to the relation
(0.9}
Ne = Z*n; = / frp(e)g(e)de (6.122)
0

where g(¢) is the free electron gas DOS (6.98). In the limit 7. — 0 in (6.121), which implies I3 +
Too+ Iy + 15 — 141 + 142 and by approximating the s-band electron collision frequency by its value in
the vicinity of the Fermi surface kr = 2m.Er/h?, i.e. by approximating s s ~ vs, (kr), the authors

finally estimate

7w Epmg3e?

8 Kbkpt

v

1+ (QkF/kscreen)2 screen screen

4 3
(QkF/kscreen) + (kaF > +arctan( ZkF )] . (6123)

According to [Petrov et al., 2013], the s-d electron collision frequency is estimated with the same

method but, with two terms in the electron DOS as

g(e) = gs(€) + ga(e) (6.124)

where, for s-band electrons, the authors use

h?k?
e=¢e5+ o (6.125)
and 32
1 2mg .
a9\ £90 — Cs f > S
gs(e) ={ 2n2 ( 12 > veTes B E=f (6.126)
0 else
while for the d-band electrons, they use
thIQ
g =€+ 5 (6.127)
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and

12md3/2F b et e
ga(e) =<{ 22\ 12 T B ase=a (6.128)

0 else

Here, ¢4, €], € are parameters determined by fitting the best as possible the real electron DOS of
the metal while ms and mg are the effective mass of s-band and d-band electrons, respectively. Such
effective mass approximation is common in Solid States Physics in order to model the interaction of
electrons with the periodic lattice potential, the interaction of electrons with phonons or the interaction

of electrons with themselves. [Petrov et al., 2013] model these effective masses according to

9 \2/3 h?
= P 12
ms = (3m°ns) 3 (B — ) (6.129)
and 2
s = (372 p__Nv 6.130
ms = (3m°ng) 2 (Br =) ( )

where ng and ng are the densities of s-band electrons (ns = Z*n;) and d-band electrons. An example

is given for Tungsten in the right panel of Figure 6.12.

k, o>p Density of States for Tungsten

N

(5]

I
=]

g(e)/n. [e\:“1 .atom"]

15 20

e-gllev

Figure 6.12: (Left panel) Regions in plane gky over which integrals I,1, I42, I, and I; of (6.119)
are taken. The heavy segment indicates the image of the Fermi surface at T, — 0 and
k1 = krp (Fermi wave number) [Inogamov and Petrov, 2010]. (Right panel) Example
of fit (6.124) for Tungsten (solid black curve) compared to ab initio calculation done
by [Lin et al., 2008] (solid red curve); the s-band electrons contribution g5 in (6.124)
( ) is plotted with mg = 0.9m, (Er —es = —9.2 €V) and the d-band
electrons contribution gg in (6.124) (dashed magenta curve) is plotted with mg = 1.7m,
(Ep—e1 = —6.6 eV and 9 = Ep + 5.5 eV); the Fermi energy value is Ep = 17.969 eV
(dashed blue curve).

The upper limit €5 in (6.128) complicates the calculation of the multiple integrals I,, in Equation

(6.121). The electron-electron collision frequency (6.117) is therefore computed numerically for any
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electron temperature T, < Tx. they can be found for some metals at http://laser.itp.ac.ru. For other
metals, one can directly compute the electron collision frequency at a low temperature according to
the algorithm proposed in the Appendix of the original paper by [Inogamov and Petrov, 2010]. It is
very useful for determining the parameter A,. However, we have noticed that the electron-electron

collision frequency (6.117) can be fit with a sufficient accuracy according to

—-1/2

Ve—e = (112 4+ 157°) (6.131)
with )
kT, k
v =A, BZe and vy = BV—B\/TQTF (6.132)
TR h

where A, and B, are parameters to be determined, depending on the material as illustrated in Figure
6.9 for Aluminum, in Figure 6.10 for Copper and in Figure 6.11 for Tantalum. We have obtained
a sufficiently accurate fit with ks = 1.6714, A, = 0.014 and B, = 0.125 for Aluminum, ks = 0.3764,
A, = 2.75 and B, = 0.63 for Copper and ks = 47.4416, A, = 0.0082 and B, = 0.08 for Tantalum.
They can be compared with the electrical restivity of Aluminum and Copper from the Eidmann-Chimer

model illustrated in Figure 3.8 of Chapter 3, section 3.3.1.

6.3.3 Electron-Ion/Lattice Coupling Term G

Glergs lem =K

10 10 10 10
T_[eV]

Figure 6.13: Electron-ion coupling factor (6.137) for Aluminum (blue), Copper (red) and Tantalum
(black) at 7; = 300 K (dashed curves) and at T; = T¢ (full curves).

Last but not least, the electron-ion/lattice energy exchange is described by the parameter G in
Equations (6.25) and (6.28). Its value varies considerably in the range from the ambient temperature

T, =~ 300 K to the hot plasma T, ~ 10 keV. Concerning the high temperature regime, we use the
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plasma expression [Brysk et al., 1975] (see Appendix B, section B.2.4)
Gvhot = 2%CV,evei (6133)
m;

where T,; is given by (6.113) allowing to account for electrons degeneracy close to the Fermi tempera-
ture. In the limit of low temperatures T, T; < Tg, but T, T; > Tp, the rate of energy transfer per unit

volume from the electrons to the lattice in a metal can be written according to [Kaganov et al., 1957

w2 1 1
cold (Te —T3) = —nime 52 - ’ 134
Geold ( ) g Timec <Te(Tea T (T Tz)) (6.134)

This expression was obtained by assuming a Fermi-Dirac distribution for electrons, a Bose-Einstein
distribution for phonons, and by accounting for one-phonon emission and absorption processes. Here,
cs is the speed of sound in the solid and 7. = 1/ is the electron relaxation time. By neglecting
vy 2 compared to v] 2 in the electron-electron collision frequency (6.131) at low temperatures (see

Figure 6.9, Figure 6.10 and Figure 6.11), one can write

1
T, T;) = ————— 6.135
Te( € 7,) AeTg—i-Bsz ( )
where A, = A, kp/hTr and B; = 2kse’kp/h?\/2kpTr/m.. Injecting this relation in (6.134), one
finally obtains according to [Chen et al., 2005]

T, +T;
G =G 1 6.136
cold RT|: + NTF :| ( )
where Grr = m2Bjnimecs> /6 is the room temperature electron-lattice coupling factor and N =

B;/A.TF is a parameter chosen from comparison with experimental or theoretical data such as those
proposed by [Lin et al., 2008] or [Petrov et al., 2013]. The cold and hot regime are related according
to

_ _97—1/2
G=[G2+G2]" (6.137)

col

The value of X calculated with A, and ks given in the previous subsection, does not allow for patching
the two regimes around the Fermi temperature. A better interpolation can be obtained with X = 0.2.
The room temperature value can be found in the literature : Grp = 110 erg.s™l.em™3.K~! for

1

Aluminum, Grr = 310'® erg.s™ .cm 3Kt for Copper and Grr = 1.510'8 erg.s_l.cm_?’.Kf1 for

Tantalum. The electron-ion coupling factors are plotted in Figure 6.13.

6.4 Conclusion

We have linearized the Belyaev-Budker collision tensor by applying it to the study of laser-generated

fast electron beam transport in solids or dense plasmas, assuming a small momentum transfer in
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a collision. The production of secondary electrons is neglected, assuming the residual energy of
background electrons after a collision with a beam electron is smaller than the exchanged momentum
Ap of a consecutive collision with another beam electron. These assumptions allowed us to obtain
a more simple Landau-like collision tensor. Moreover, it allows us to relate the angular scattering
collision frequency by colliding background particles (free electrons, bound electrons, screened free
electrons/plasmons or ion nuclei) with the corresponding stopping powers according to an Einstein-
like relation, similar to the one obtained for Brownian motion of particles. This allows us to obtain
more accurate expressions compared to the angular scattering theories presented in Chapter 4, by
retaining all terms in the Moller relativistic Coulomb logarithm instead of the relativistic generalization
of Rutherford term, only. However, our model is limited to low density beams n; < n. since the

collisions of beam electrons with themselves and the production of secondary electrons are neglected.

The analysis, presented in Chapter 5, of existing numerical methods for solving the obtained
Vlasov-Fokker-Planck (V-F-P) equation (6.15)

aa\f + ;.(UQW)—gg[v(eE.Q—i—S)W]
- %.{(I—Q@Q).[Z(EJFQ}?xB)\I’JrC,)aQG\Il”}:O

oriented our choice towards a hybrid and expanded ” Vlasov-Fokker-Planck” method. In order to make
numerical computations as fast as possible, we limit the angular order of expansion to the 1st order.
We derived the equations (6.34) and (6.35) by integrating over the unity sphere in the momentum
space the V-F-P equation (6.15) multiplied by 1 and €2, respectively :

oYy 0 0 _
TR (v®y) — 5 [v(e®1.E+ S¥g)] =0

and

oW, 9 )
oL 9 (W) — = [v(e®s.E + STy = —< (T — ¥,) E — —

ot or Oe P YMeC

‘I’1XB—V‘I/1

where the ¥, are the angular moments of the distribution function ¥, S is the total stopping power of
the beam electrons introduced in Chapter 4 and v is their total angular isotropization rate. Contrary

to an equivalent spherical harmonic decomposition, the beam density and current are directly related

(o]
ny = / Wode
&

min

oo
Jb = —e/ vWide.

€min

to the angular moments :

and

Here, the parameter ey, comes from the ”hybrid” assumption, which consists in separating the beam

electrons population € > epi, and the background electrons population € < epiy. Contrary to the
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RELATIVISTIC ELECTRON BEAM TRANSPORT IN SOLIDS AND DENSE PLASMAS

widely used P1 approximation, also usually called the ”diffusion approximation”, which consists in

the closure relation W9 = (1/3)¥oI, our M1 model accounts for an arbitrary degree of anisotropy by

1 v w 1
W, = —U,l Uy ———— —=1].
2 3 ol + 1 0( |\Ill|2 3>

using the closure

Q.2
/“b’| 2| <1+‘Q€|2>

is estimated according to the Minerbo maximum angular entropy criterion depending on the anisotropy
vector Q. = Wy /¥y. Such a closure is exact for local (in space and kinetic energy) angular distribution
functions eiher fully isotropic or fully anisotropic, while the parameter p allows us to relate these
limits. Obviously, the first order expansion reduces the information concerning the beam electrons
local angular distribution function. However, the maximum angular entropy criterion analysis shows
that it allows for a sufficient accuracy for laser-generated fast electron beam transport. Indeed, we
showed that collisional effects of laser-generated electron beam transport in solids or dense plasma
fully justified such a closure. Besides, comparison of the full kinetic and the M1 approach for the
analysis of the collisionless resitive filamentation instability for which there is no reason to maximize
the local angular entropy, shows that our model describes the instability growth rate with an error of

few 10s of % in the particular case of a monoenergetic electron beam.

This chapter terminates with a discussion of the self-consistent hydrodynamic response of the
laser-irradiated target material to the beam propagation as well as the self-generated electromagnetic
fields. We consider the time scale greater than the electromagnetic neutralization time of the beam

v-lor T, /7e, presented in Chapter 2. Similarly to other hybrid models, our model assumes that

el
the beam is not modified during its electromagnetic neutralization. This is a strong assumption in
case of propagation through insulators since the ionization processes occur in this time scale, implying
additional energy losses of the electron beam that are omitted here. In our hybrid model, the self-

generated magnetic field verifies the diffusion equation (6.24)

187B+8X 7702 _chane oT,
c ot or

. n._ .
= i B)=n— habd4
ir or ) n@rXJb+8rXJb nee Or " or

with the source terms introduced in Chapter 3 and the self-generated electric field is given by the

Ohm’s law (6.23)
. nc 0 1 9

E=— rZyB = (nekpT,

e+ 41 Or % nee Or (neksTe)

also discussed with details in Chapter 3. Thus, we have neglected the magnetization effects, the
background electrons viscosity, the collisional friction of the background electrons due to collisions
with beam electrons, the displacement current in the Maxwell-Ampeére equation (quasi-static approx-
imation), the background electrons inertia and we have considered the ideal gas expression for the
equation of state P. = P.(n.,T.) of background electrons. These assumptions are justified in the

case of laser-generated electron beam transport in dense targets as it was explained in Chapter 3.
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However, the effect of electron inertia and the quasi-static approximation may be responsible for an
additional time-dependent heating of the background electrons, as it was demonstrated recently by
[Sherlock et al., 2014], and eventual angular deviations of the fast electrons due to strong local mag-
netic fields. Nevertheless, the self-generated electromagnetic fields described by Equations (6.23) and
(6.24) account for the main processes of laser-generated relativistic electron beam transport in solids
or dense plasmas. They depend on the electrical resistivity n of the material and its spatial gradients,
which depend on the electron and ion temperatures of the material. Thus, the electron temperature

evolution needs to be described self-consistently according to the electron heat equation (6.25)

oT, 0 oT, _
CV,EE o ( e(?t') =W, -G (T. - Tj)
where -
W, = 0Seo1 Wode + nje.
Emin

The background ion heating is described self-consistently according to the heat equation (6.28)

Cv,i% =G(T.-T).
In our model, we neglect the ion motion and the ion thermal conductivity, considering times scales
smaller than 10th of ps. These heat equations are in agreement with the assumptions made with
respect to the self-consistent electromagnetic fields (no viscosities, no magnetization effects, no inertiae
and no collisional friction by colliding the beam electrons in 1) except for the temporal derivatives
of the temperatures that have not been neglected here. We also proposed new expressions for the
heat capacities Cy, and Cy;, the electrical resistivity n, the electron thermal conductivity x. and the
electron-ion coupling factor G, allowing to describe metals from the solid state at the room temperature
~ 300 K through the liquid and Warm and Dense Matter (WDM) states to the hot plasma state with

temperatures =~ 10 keV. The collisions of background free electrons with d-band bound electrons are

taken into account according to recent studies showing the importance of this relaxation process.
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Chapter 7

Numerical Implementation of the
Model

” I have tried to read philosophers of all ages and have found many illuminating ideas but no steady
progress toward deeper knowledge and understanding. Science, however, gives me the feeling of
steady progress: I am convinced that theoretical physics is actual philosophy. It has revolutionized
fundamental concepts, e.g., about space and time (relativity), about causality (quantum theory), and
about substance and matter (atomistics), and it has taught us new methods of thinking
(complementarity) which are applicable far beyond physics.”

Max Born
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Figure 7.1: Spatial simulation box (Left panel) and Momentum Simulation box (Right panel)

This chapter is dedicated to the numerical implementation with Fortran F90 of the new reduced
model for fast electron transport in solids or dense plasmas presented in Chapter 6. The equations
that have to be solved are summarized in the conclusion of Chapter 6. The code contains four main
packages as illustrated in Figure 7.2, depending on 16 Fortran files ”.f90”. The file acuracy.f90
allows to define the acuracy of reals numbers computed with the code. The double-precision floating-
point format is used. The physical constants are defined in the file physical_constants.f90. The
initialization parameters of the simulation, defined in data.f90, describe the laser-irradiated target
properties. It include also some options concerning the desired numerical methods and the desired
diagnostics for the simulation as well as the simulation box sizes (L, L, and L) and parameters of
the laser-generated fast electron distribution function injected at z = 0, as illustrated in the left panel
of Figure 7.1. Relations between the fast electron kinetic energy, its momentum and its velocity
are computed in the file special_relativity.f90. The non-relativistic Coulomb logarithms needed for the
transport coeflicients as well as the logarithmic term of the relativistic Coulomb logaritms and plasma
parameters such as the plasma frequency, Fermi temperatures, Debye length, etc... are computed in
the file coulomb_logarithms.f90. The Fermi integrals F; and the chemical potential ;, needed for the
transport coefficients are computed in the file Fermi_integrales.f90 according to accurate fits provided
by [Aymerich-Humet et al., 1983] and [ANTIA, 1993]. The file collisional_terms.f90 allows for the
computations of the fast electron stopping powers and the fast electron isotropization rates. The file

resistivity.f90 allows for the computations of the transport coefficients.

The first package deals with the computation of the M1 equations. It is based on three Fortran
files. The file M1.f90 defines subroutines needed for the numerical scheme. The file initialization.f90
describes the fast electrons injection at z = 0. And the file boundaries_conditions.f90 defines the
boundary conditions. The fast electron beam distribution function at z = 0 can be taken from a
Particle-In-Cell (PIC) simulation of the laser-target interaction. In this case, the parameters that
has been described in Chapter 1, section 1.4 and depending on this preliminary simulation are
computed in the file initialization.f90. The angular moments of the initial distribution function are

deduced from the PIC simulation according to the geometry presented in the right panel of Figure
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CHAPTER 7. NUMERICAL IMPLEMENTATION OF THE MODEL

7.1. The second package concerns the computation of the electromagnetic fields. It is based on two
Fortran files : the file MHD.f90 which allows for computing the electromagnetic fields and the file
conjugated _gradients.f90 allows for solving the magnetic field diffusion operator. The third package
deals with the computation of the two heat equations. It is based on the Fortran file temperatures.f90.
The last package deals with the diagnostics that have been implemented in the code. It is based
on the Fortran file diagnostics.f90. It allows for storing the numerical simulation results in text files
”.dat”. Finally, the main Fortran file scheme.f90 provides the coupling between the packages. Par-
allelization and vectorization of the different loops have been implemented with the open mp library
and the code is compiled with ifort which can be freely obtained at https://software.intel.com/. For
example, on a Linux terminal, the instruction ”ifort -prec-div -prec-sqrt -openmp -openmp-report2
-r8 -0 exec acuracy.f90 physical_constants.f90 data.f90 special_relativity.f90 coulomb_logarithms.f90
Fermi_integrales.f90 collisional _terms.f90 resistivity.f90 M1.f90 diagnostics.f90 initialization.f90 con-
jugated _gradients.f90 MHD.f90 temperatures.f90 boundaries_conditions.f90 scheme.f90” allows for the
compilation of the code and the instruction ”time OMP_NUM_THREADS=S8 ./exec” allows for its
execution on 8 CPU. In the code, the space variables are normalized by L = 1 yum, the time is normal-
ized by 7 = 1 fs and the masses are normalized by M = keV/c?, except for the distribution function
which is normalized by its maximum value. The chosen units correspond to the typical values in
laser-generated fast electron transport. For example, the velocity of light is &~ 0.3 um/fs and the
fast electrons may have energies from a few keV to several MeV. In the following, the variables are

discretized as follows.

A L
Vi € [1, N], e1]keV] = emin + 76 + (I — 1)Ae where N, = E {AZ} (7.1)

where the index [, is used for the kinetic energy variable € of the fast electrons, ey, may vary from a
few keV to 20 keV and L. may vary from a few MeV to 10th of MeV depending on the simulation.

Concerning the discretization of space, we use

Vi € [1, Ng], xi[pm] = —% + % + (i — 1)Az where N, = E {ifv} +1, (7.2)
indexed by ¢ for the position in the z-direction,
Vj e [1,N,y], zjlpum] = —% + % + (j —1)Ay where N, =E {i;} +1, (7.3)
indexed by j for the position in the y-direction and
VEk € [1, N,], zx[pm] = % + (k—1)Az where N, = E {i’;} , (7.4)

indexed by k for the position in the z-direction according to Figure 7.1. Finally, we discretize the
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Figure 7.2: Synoptic Diagram describing the code.

time and we index it by n according to
Vn € N*, t,[fs] = (n — 1)At, (7.5)

where the time step At,, depends on the Courant—Friedrichs-Lewy (CFL) condition for the resolution
of M1 equations.

The first section of this chapter is dedicated to the numerical schemes used for the resolution of the
M1 equations. The second section deals with the numerical schemes used to compute self-consistently
the electromagnetic fields. The third section is dedicated to the numerical schemes used to solve

self-consistently the heat equations.
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7.1 M1 equations

According to Chapter 6, section 6.2.1 and 6.2.2, the M1 equations that have to solved are

oy 0 0 0
il 2 U]+ 2 ()W) + - [u(e) Wy,
W MM g O g em
- o [S@yzeanuE, 76)
+eEy(x,y, 2, t)v(e)Vi, + eBy(x,y, 2, t)v(e)Viy + eE.(x,y, 2, t)v(s)‘I/LZ} ,
= 0
oV, 0 0 0
— a_ \I’ TT a \I’ x a_ \IJ Tz
5t gy Ol bl g e
— e S(x,y,z,e,t)v(e)Uq 4
+el, (LL’, Y, z, t)U(E)\I’ijx + eEy(xu Y, z, t)v(e)\I’ny + GEZ(SC, Y, z, t)v(g)‘lllrz}
B _
— _pis) _<\IJO — \I]27a;$>Ex(x, Y, z,t) — Vo Ey(z,y,2,t) — Vo . E.(2,y, z,t)]
) L
_ e _\IlLsz(a:, y,z,t) — VU . By(x,v, z,t)} —v(z,y,2,6,t)V1 4
(7.7)
vy, 0 0 0
Wy + % [:11(5)‘1’2,%] + ay [v(e) W2,y + 7 [v(e)W2y:]
- a S(x,y,Z,E,t)U(E)\I}Ly
+6Ex($7 Y, %, t)“(5)‘1/2,yx + EEy(mv Y, %, t)v(e)\IJQ,yy +ek, (l’, Y,z t)v(e)\IIQ,yz:|
¢ _
= _]976) - \IIQ,yIEx(xvyaZ7t) + (\IIO - lIIZ,yy)-Ey(xaya th) - \IJQ,yZEZ(xayaZ7t):|
A .
_ SO _\I’LZBx(a:,y, z,t) =V B (z,v, z,t)] —v(z,y, 2,6, t)W1y
(7.8)
and
oYy, 0 0 0
d —_— v 2T ~ )\ z a_ v 2z
R L ir SR
- % S(xayaza€>t)v(€)qjl,z
+el, (-737 Y, z, t)v(E)WQ,zx + eEy(x, Y, z, t)v(g)lplzy + (ZEZ(LU, Y, z, t)v(g)‘lllzz]
B _
= —75) — Vo o EBy(z,y,2,t) — Vo oy Ey(2,y, 2,t) + <\I/0 — \P27zz>EZ(:c, Y, z,t)}
_ e _\I/LmBy(x, Yy, z,t) — VU yBe(z,y, z,t)} —v(z,y, 2,6,t)¥1 ,

(7.9)
where Uy = Uy(z,y,2,¢,t) is the Oth order angular moment and ¥; = Wy(x,y,z,¢,t) is the Ist
order angular moment of the distribution function while W9 = Wy(x,y, z, £, t) is the 2nd order angular
moment given by the M1 closure :

1
3

Wy, Wy, 1
LiZ 1 *(Sij (710)

V(i7j)€{w7 Y, 2}27 \IIQ,ij: U, 2+\1;1 2+\I’1 2_3
, T Y e

(5ij\I/0 + M\I/()
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with

1 1
M(xayvz>5at) (\Illac +\Illy +\Illz)|:1+\11

Uy, 2+ 0,2+ 0 )
2\110 () ( 1,x 1y 1,z :|

7.1.1 Second Order Explicit HLL Scheme for the Fast Electron Ad-
vection in Space and Fast Electron Slowing Down due to the

Self-Generated Electric field
First order HLL scheme

Let us consider firstly the 1D-3V case, in order to point out the major features of the numerical scheme
that is used to solve the fast electrons advection in space and in kinetic energy space (due to their
collective energy losses). In this 1D case, the equations that have to be solved are (7.6) and (7.7) with
Uiy = ¥y, = 0. The 3D-3V case will be further generalized in the section. Therefore, we are here

interested in the numerical resolution of two 1D coupled equations

ow )
o T gl =0

¢ ¢ (7.11)
Mie 0 ) = 0

ot g e Ban) =

with

14 2 1/ 01,2 Uy, °
I Woand p= - (22 ) |1 :
2 g ok 2(%) T\,

describing the fast electrons advection in the z-direction in space (§ = z and u, = v(¢)) or the fast

electrons advection in the e-direction in the kinetic energy space due to their collective energy losses
(¢ = and u. = —eE,(z, t)v(e)), appearing in (7.6) and (7.7).

This hyperbolic system (7.11) can be solved numerically with respect to the realizability domain
A= {(\I/(), \Ill,x) /\IJQ > 0 and ‘\Ijl,x’ < \I/()} (7.12)

by using the HLL scheme (from the name of its founders A. Harten, P. Lax and B. Van Leer)
developed for the radiative transfer equations [Harten et al., 1983] [Dubroca and Feugeas, 1999]

[Berthon et al., 2010]. According to the finite volume method, we define the mean values in each

cell :
il zi+Az/2 £l+Aa/2
LS Ax e ornupo /‘5 Cae (z, &, tn) dzx de, (7.13)
\Ilnﬂﬁ,l B 1 zi+Az/2  pe+Aeg/2 .
Lr ™ Az Ae /xiAm/Z /zAE/Q e (@ & fn) do de (7.14)
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and

il 1 zi+Az/2  re+Ae/2
U, = / / Uy o (x, €, ty) da de. 7.15
2,z Ax Ae vi-Awj2 Jer—ne)2 » LT ( n) ( )

Let us note ® the vector ® = (Vg, ¥y ,)7, i¢ the index i (if £ = z) or [ (if £ = €) depending on &
and F' = F(®) the vector F' = (¥ 4, \IJQ’M)T depending on ®. According to the HLL scheme, one
can update at each time step the new value ®"1% at time ¢,,1 in the cell i¢, knowing the previous
values ®™% at time ¢, according to

: At : -
R L AR S (7.16)

where the HLL fluxes are given by

nyig+1 , ny ; i nyie+1 , ny i ;
prietl/2 _ i (ug™ " Jug ) Friett ot nie| (e fu )@ — e 7.17
HLL = Ug 9 | U B) (7.17)
and
; nyic—1 , n,i i ; nyie—1 , n, P
Fn,igfl/Q i Frote (u£ 3 /u§ E)Fn,lg 1 niie Prste (u§ 3 /u5 f)q)n,zg 1 18
HLL = Ug 5 U 5 (7.18)
In the case where £ = x for which ug = v(e) does not depend on &, the ratios (ug’igﬂ/uz’ig) appearing

in the the HLL fluxes (7.17) and (7.18) are equal to 1. In the case where { = ¢ for which ug =
—eE,(x, t)v(e) depends on &, the ratios reduce to vy41/v; and vi—y /vy where VI € [1, Ne|, vy = v(gp).
This has been deduced from the case where u¢ does not depend on . Indeed, let us define d = 0vd

and F = vF. In this case, the realizability domain is still the same :

A\: {({I\lo, {1\11735) /{I\/() Z 0 and ’@I,m S \/I}()} (719)
while the equation (7.11) for £ = £ can be written
9% 9 -
G o (eEz(x,t)F) ~0 (7.20)

as (de/dp) = v. Therefore, the velocity u. depending on ¢ in (7.11) has disappeared and, since

up, = —ekE, does not depend on p, we can compute this equation with the same way as (7.11) for
which u¢ does not depend on §. We obtain consequently (7.16) with the ratios (u?’zfil/ ug,15) which
are equal to 1. By coming back to ® and F' instead of ® and 1/7\, we finally obtain (7.11) with the

ratios (uz’igil/uz’ié).

The 1st order HLL scheme is stable and the numerical solutions are in the realizability domain
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(7.12) if the Courant-Friedrich-Lewy (CFL) condition
A

n,ig
MaX;.e[1, Ne] | Ye

Aty < (7.21)

is verified. However, according to numerical experiments that I have performed during this thesis, the

consistency error of this 1st order explicit HLL scheme

n+1,i n,i n,ig+1/2 n,ig—1/2 5t et
ST At AL A L A
HLL, 1D At, Ag ot o€ (7.22)
Aty 820 ™ A 52 " |
= 2o oz og (MW HOATEAD)

is not sufficiently small for values A¢ about a fraction of microns (if £ = ) or about a keV (if £ = ¢)
typical of laser-generated fast electron transport studies. We used therefore the 2nd order explicit
HLL scheme.

2nd order HLL scheme

The second order explicit HLL scheme can be obtained by replacing the HLL fluxes (7.17) and (7.18)
by

nietl/2 e (“g’iﬁl/“g’i&)F”’i&“’_ + Frviet nyie (U?%H/“z’ié)@”’iﬁl’_ — it
Faii = ug lu (7.23)
2 2
and
P ie—1 , ny i P nyic—1 , ny ;
o N T (un,lﬁ /u 7§)Fn,z€—1,+ . Pprie— — (’LL 3 /u aé)q)n,zé:—l,-i-
nie—1/2 g 3 ¢ e 3 ¢
Py, = v 5 |ug ™| 5 , (7.24)
respectively [Dubroca, 2012]. Here, the sign + indicates
. n,ie,+ n,t n,i Ag n,ie,+ n,te,+
Vieg € [1, Ne], @' = ™% + P Sy and F™'e™ = F(@™'eT) (7.25)
while the sign — indicates
. . A . A
Vig € [1, Ne], @™'¢™ = @™ — P"’%?g and F™™'¢™ = F(®™' 7). (7.26)
P™i is the vector defined by
Pt = min | 0, max et - anie e - pnie
’ AL AL (7.27)
N 0 . (I)n,ngrl — Pmie  Ppric _ (I)n,zgfl
max ( 0, min A , A .
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However, these 2nd order HLL fluxes (7.23) and (7.24) may lead to numerical solutions outside the
realizability domain (7.12); while Wy > 0 is respected, it is not necessarily the case for the condition

U1 .| < ¥g. Consequently, we introduce a value © at each time step and in each cell i¢ defined by

Ag
2

A

q,n,ig;‘r — (I)n,ig + Pn,{@ and q)n,i57— — q)n,ig . Pn,{@7

(7.28)

n,i 2
such that |W1,| < Wo [Dubroca, 2012]. Thus, by injecting (7.28) in the conditions (¥]75")" <

o2 o2 o2
(\Ilg’%’Jr) or (U]"¢7)" < (¥y"7)", we obtain the following condition

1,x
.9 .9 . . . . A .9 .9 A 2
(W) = ()" 00 (Ppewy s - priewt) S5 o2 ()" - (P19 B 20 (1.29)

n,i§

1 or if the discriminant of the trinomial left hand side is negative, we can

Consequently, if \Ilg’ig =
impose © = 1 without problems. But, if we find solution ©’ € [0, 1] cancelling the trinomial left hand
side, allowing to obtain (\I/g’i&’j[)2 > (\I'T,’;g’i)Q, we impose © = min ©’. In other exotic cases, we come
back to the 1st order HLL scheme by imposing ©® = 0. The 2nd order HLL scheme allows for a much
smaller consistency error O(At + A¢?) compared to the Ist order consistency error (7.22) O(At + Af)

while the CFL condition (7.21) remains the same.

Generalization to the 3D-3V case

7‘7 A7k
We note VC € {CC, Y, 2}7 EC(xhyj?Zkatn) = E?Z]

Ny kol 1 Ti+AT/2  (yi+Ay/2  patDz/2 re+Ae/2
\11:/ / / / Vo (z, y, 2, €, t,) dedy dz de
0 Az Ay Az Ae Jyp_Ax)2 PN SN N n
(7.30)
and
nisg kol 1 Ti+AzT/2  ryi+Ay/2  patDz/2 re+Ae/2
Pk, :/ / / / Uz, vy, 2, €, ty) de dy dz de.
1,¢ Az Ay Az Ac Jo_pnajz Jy—ny2 Ja—nz2 Je—nc)2 ¢ n
(7.31)

Also, we define the vector ® = (Vg, Uy ,, Uy, ¥;,)T and V¢ € {z, y, 2z} and the vectors Fe =
Fe(®) = (Wi, Yo cu, Yoy, \1'27<Z)T depending on ®. This subsection is dedicated to the generaliza-
tion of the numerical resolution of the two 1D coupled equations (7.11) to the numerical resolution of

the four 74D” (3D-1¢) coupled equations

O o
S+ > a?(““F@") =0 (7.32)

§=w,y,2,¢ |(=2,y,%

where the uge are recapitulated in Figure 7.3. The 2nd order explicit HLL scheme applied to these
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ENC |z y z

x v(e) 0 0

Y 0 v(e) 0

z 0 0 v(e)

€ —eEy(x, y, 2, t) | —eEy(x,y, 2, t) | —eE,(z, y, 2, t)

Figure 7.3: Expression of u¢ ¢ in (7.32) depending on £ and (.

four 74D” coupled equations reads

n+1,i,j,k,l _ n,i,j,k,l [ TL7Z+1/2,j,k’,l _ nvi_1/27j7k7l—
@ = (Atn/Az) | F F,
[ i, +1/2,k,1 n,i,5—1/2,k,1]
— (Atn/Ay) |F, Hir — F, HiL (7.33)
[ i, k+1/2,0 n,i,5,k—1/2,0] :
— (Atn/Az) |F, gy, —F, HiL
ikl 41/2 n,i,5,k,l—1/2]
— (Atp/Ae) | F_Hit, — I hiL
where the HLL fluxes are given by
i+1,— i+ n,j.k,l ritl,— i, Tedsksl
it /2 kil F + F o= — pv
2,HLL =u B) — |ul i 5 ] )
i— | il PR C i _ i L4k
ri=1/25k0 _ Fy +Fy v L
= — |u
z,HLL 9 I 9 ] )
B j+1,— j,+_ n,i,k,! rdi+1l,— g4 n,i,k,l
a2kl Fym o+ EyT | oItL= — @I
y,HLL - 9 l i 9 )
g,— j—1,+ n,i,k,l §,— j—1,+ n,i,k,l
Fn,i,j—l/lj,k,l — Fy 4+ Fy vy A S
=y | — |u
y,HLL 9 9 ’
B k+1,7 k,+_ n7i’j’l — n7i7j7l
Fn,i,j,k+1/27l . F; + F, Pkt+1,— _ pkt
z,HLL =u 2 B ‘vl| 2 ’
r _ -1 T TL,i,j,l _ — 'I'L,Z', ‘7l
i ke1/20 Ff + sz‘ + Pk~ — pF-1+ J
Frbd, /20 _ v vy
=y |—F — |u
zHLL 9 9 ’
r l+177 l7+- n7i7j7k r I+1.— l 7 n7i7j7k
preidkiel/2 ik (i1 /v) e + Fy ok (V1 /o) 7T — T
e, HLL = —€Lg U 2 - | T Ul’ 9
= I+1,— l,+: n,i,j,k - I+1.— 149 Mgk
+ —eky 7y 9 — leEy™" o 9
r 141, 14+ wbdk - 141, 147 gk
” F,77 + Fy ; (Vg1 /)@ T — @b
n,i,5,k z z 1,5,k +1/Y1
+ —eEy (Ul+1/vl)—2 — [eEZ" | 5
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and
I VT | UYL ] I T L an GRSV
+ —eEytity :F;_ z (vlgl/vl)Fé_H: " — [eEy " | e (vlg/”l)q)”’*' ik
L epmidky, :FZl’_ + (vl_zl/vl)pzl—l,+: nyij.k ) ‘eEQiJF’“UZ’ Fpl— _ (01—21/7)1)‘131_1’+_ nzjk

Here, for all indexes i¢ € {4, j, k, I} corresponding respectively to the random variable § € {z, y, z, €},

it = @M @ P A; and ™' = ™% — O P"”f% (7.34)
where - ) ) .
) Prie — PMile  Pte — Prie—
P = min (0, max A , A >
0 ] (I)n,iEJrl _ ‘I)n’if (I)n’if _ q)n,igfl
+ max ({0, min A€ , Af
and
. / n,ig 2 n,ig 2 n,ig 2 n,ig 2
if 10" € [07 1]/ (\IIO ) - (\Ill L ) - (\Ijl,y ) - (\Ijl,z )
+ 20 ( Py’ - pliewy - pliewie - pliegie ) %
@/2 nzg P’n,i§ 2 Pn,ig 2 P’n,ig A§2 -0
+ ( ) (l,x)_(l,y)_(l,z) 4

then © = min®’
else 0 =1.

This 74D” explicit 2nd order HLL scheme is stable and the numerical solutions are in the realizability
domain
.A = {(\Ifo, ‘Ill) /\I’O 2 0 and ‘\I/l‘ S \Ifo} (735)

if the CFL condition

At, <

(7.36)

1 1 1 €Vmax 2
max U A Enm X Enm b'e E;Lm X
s (374 3+ 32 ) 0 (B + (B + (B
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is verified. Also, we can estimate the consistency error in the worst case (i.e. in the 1st order case) :

165kl 2 n,i,k,k,l
gk At, 9@ | Ae ik k ik k k| ) 9
Gt = S am| g (et femptth  fenrtt ) 5 o)
Ap 8 . nikkl AL g2 e nikkl AL g2 o) niskkl
- — = - ——(v —— —— (v
2 Ox? 2 Oy? 2 022

n O(At2 F A2+ AR+ AZ 4 A52>
(7.37)

7.1.2 Downwind Explicit Scheme for the Fast Electron Collisional

Slowing Down

Concerning the slowing down due to collisional effects, we have to solve the equation

o 0
5 e [S(:L',y, z,e,t)v(e)®| =0. (7.38)

Since the total stopping power S is always positive, we can use the simple downwind scheme

Aty
+ .

¢n+17i7j7k7l — (bn)i’jak’l
Ae

|:Sn)7'"]’kal+1/vl+1@n)l’]ukﬁl'i_l _ Sn727]7k7lvl¢nzl’]7k7l:| (7‘39)

where it has been noted S™#J*! = S(xi, Y5, 2k, €1, tn) the opposite of the total discretized stopping

power of the fast electrons. This 1st order downwind scheme is stable if the CFL condition

A
Aty < 2 (7.40)

2SmaxVUmax

is verified and the consistency error is

n7i7j7k7l

L At 2@ nzinj»kvl A 2
el _ Aln 0 0 (500)

2 o2 PE

+ O(At2 + A€2). (7.41)

7.1.3 Explicit Scheme for the Fast Electron Angular Deviations

The fast electron angular deviations are due to the self-generated electric and magnetic fields and the
angular scattering. Let us note ; = 7(g;) the discretized Lorentz factor, p; = p(g;) the discretized
momenta and V¢ € {x,y, 2}, Be(xi,yj, 2k, tn) = Bg’i’j’k the components of the self-generated magnetic

field. This subsection is dedicated to the numerical resolution of the equation

0P
EZFE‘FFB‘FFV- (7.42)
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where
0
n,i,5,k,l n,i,5,k,l 4,5,k n,i,5,k,0 n,i,5,k n,i,7,k,l n,i,j,k
Fn,i,j,k,l e (‘IIO - \P2,zx EZ’ - \IJQ,ry Ey - \IJQ,xz Ez (7 43)
E =T nzivjvkvl n7i7j7k nvimjvk’l nvimjvk’l n,i,j,k nzivjvkvl n7i7j7k '
Pul = Wy Ee + (\I’O — Vol Ey — Wy B
n7i7j7k7l n7i7j7k n7i7j7k7l n7i7j7k n7i7j7k7l n7i7j7k7l n7i7j7k
\DZ,zx Ez - \112,zy Ey - \IJO - \IJQ,ZZ Ez
is the angular deviation term due to the self-generated electric field,
0
n7i7j7k7l n7i7j7k n71;7j7k7l n7i7j7k
prighd _ ¢ | Wiy B = W By (7.44)
B - n’/l:7 .7k:’l n7/[:7 ‘7k n7i’ '7k"l n7/l:7 "k :
NMeC | W PrIEE Bt g gt
1,z z 1,x z
n,5,5,k,l pnsi,gk n,5,5,k,l pnsi,g.k
Wy By =0y, By
is the angular deviation term due to the self-generated magnetic field and
0
gkl
Fnziajzkzl = —U, ;. \I]’,f:;7j7 7 (7 45)
12 - nvl’]ak’l ‘Ifn7i7j7k7l .
Ly
n7i7j7k7l
\Ijl,z

is the angular deviation term due to the fast electron collisional angular scattering. We use the explicit

numerical scheme
gkl — gridkl L At (p%iﬂ?kl + F%,z‘,j,k,l + I‘Zﬂ'ﬁjv"/’vl> . (7.46)
It is stable if the approximated CFL condition

At,, < c (7.47)
Wc,max + Vmax + \/(Fj’grl,max)2 + (E;max)z + (E,?,max)2

Pmin

is verified where wemax = e\/(B" 24 (B2 ) + (B2 )? /mec is the most restrictive fast elec-

T,max y,max zZ,max

tron cyclotron frequency and .y is the most restrictive fast electron isotropization rate v. The

consistency error of this scheme is directly given by

n?i)j)k)l

> At, 0*®
ekl — S +o(ar). (7.48)

2 o2
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7.1.4 Summary of the Full Explicit Scheme

As a conclusion, we use the numerical scheme

Wi isJ [ 7+1 27 '7k7l 7'71 27 .7k7l-
@Tl-‘rl,’b,j,k,l — (I)n,z,],k,l (Atn/ALE) F:Z}lILL/ J - F:ZI?ILL/ J
| on,it1/2,5,k,1 n,i—1/2,5.k,1]
— (Aty/Ay) | F, —F
[ i, k172, N5, k—1/2,1]
- (Atn/Az) -Fz,HLL —F, hiL | (7.49)
_ (Atn/AE) (_Snﬂ?]?k?l"’_l)vl_’_l(I)nvl7j7k7l+1 —_ (_Sn7i7j7k7l)UZ(I)n7i7j7k7l
I 7‘) )k’l+1 2 a'7 ‘7k7l_1 2_
— (Ato/Ae) [ — Bl
+ Atn (F%’L:]:kzl + F%ﬂ':j:kl + FZ,i,j,k,l) .
It is stable with the respect of the approximate CFL condition
2 2 2
O (1Y 2 ey B+ B’ + Pl
At, A Ay Az Ae Ae (7.50)
4 n L n e\/Eg,max2 + Eg?,max2 + ‘Eg,max2
v w
max c,max Pmin

In practice, the CFL condition is mainly constrained by the resolution of the spatial derivatives and
leads to time step At, of a fraction of fs. The resolution of the kinetic energy derivative due to
collective energy losses constrains the CFL condition only near the peak of the laser pulse which

corresponds to the peak of the self-generated electric field. The consistency error can be estimated by

o At az(b n7i7j7k7l A . . ) 2 n,i,k,k,l
oot = et (| e sz £ o
Az 82 n,i,k,k,l Ay 82 n,i,k,k,l Az 82 n,i,k,k,l
T 2 TRt T
A6 82 n7i7jvk7l
— 7 W (SUq)) + O(At2 + AZ'Q + Ayz + AZQ + AEQ) .
9

(7.51)
However, in practice, the consistency error of the simulation results is measured by computing the

percentage of error in the time-and-space-integrated energy conservation equation (6.29).

7.1.5 First order Implicit Scheme for the Collisional Terms in the

case of Very Dense Plasmas

In the case of laser-generated fast electron transport in a very dense plasma like in the Fast Ignition or
the Shock Ignition Scheme for Inertial Confinement Fusion, the total stopping power S and the angular

isotropization rate v may severely restrict the CFL criterion (7.21). Therefore, I also introduce implicit
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numerical schemes for these two terms in order to relax the CFL condition to the less restrictive one :

1 1 1 €Umax \/Eg,max2 + E'Z/L,max2 + E;L,max2
[ > R JE— JRN—
Ap, © Umax <Ax Tay T Az) +

: g _ fe (7.52)
n n n e\/E;cL,max + E;},max + Eg,max
w
c,max pmln
In this case, we firstly compute all the other terms :
i, 0, [ 7+1 27 lykzl 7'_1 2a "k’l_
(I)*,z,j,k,l — (I)n,z,],k:,l (Atn/Al') F;:i}zILL/ J _ F;I%ILL/ J
I ’I’L,’L+1/2,],k),l n77"71/27j’k’l-
— (Atn/Ay) | F, L —F
I 7‘7 7k+1 27l 7'7 7k71 27l-
— (Dt /Az) [FIGH2 = Eg Y (7.53)
[,k 412 0,5,k 1—1/2]
— (At /Ae) _FE,HLL — F_hin ]
n’i7j7k7l n)i7j7k7l
Aty (T TR
Then, the collisional effects are taken into account implicitely :
o ¢S7i7j7k7l + Sn717]7k7l+1vl+1Atn ¢S717]7k7l+1
gt Lidkl _ Ae (7.54)
0 N S At ’
1+ n,i,5,k, 1 V1Rl
Ae
and V¢ € {z, y, 2},
- (I)I,é,j,k,l n Snij k1101410, (I)?z‘c,j,k,l—i—l
grtligkl _ b Ae ’ (7.55)
1L,¢ Sni gk V1AL, ’ ’
14+ —=——— 4 vy ki Aty

Ae
In order to improve the consistency error of the numerical scheme for the collisional slowing down of
the fast electrons, I have also tested the centered implicit scheme. However, it led to solutions outside
the realizability domain (7.35). That is why, we have finally chosen the simpler implicit and explicit

downwind schemes.

7.1.6 Fast Electron Injection and Escaping Boundary Conditions

The fast electron injection in the simulation box is performed by defining the angular moments ®;y;
of the distribution function Wy (z;,y5, 21,¢€1,0, ¢, ) in the first cells in the z-direction z = z; at
each time step ¢, (see Figure 7.1). The distribution function may depend on parameters introduced
in Chapter 1, section 1.4 that are deduced from a Particle-In-Cell simulation of the laser-target
interaction. It may happen that fast electrons are still propagating in the simulation box while the
laser pulse is off. In this case, we define the laser pulse duration tsource such that for times ¢, > tsources
we stop injecting fast electrons by imposing ®;,; = 0. This section is dedicated to the boundary

conditions at the simulation box boundaries © = £L,/2, y = £L,/2, 2 =0 and z = L, as well as the
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kinetic energy space boundaries € = ey and € = L.

In a first attempt, we decided to let the fast electrons escape the target at the target spatial
boundaries (see Chapter 9 for the fast electrons refluxing). One may therefore naively think that it
would be sufficient to impose for example ®"H7N=+1l = §m.1.5:N=+21 — () which means that there are
no fast electrons in vacuum at the target rear side, so that all fast electrons with a positive momentum
pl\Ili’i’j’Nz’l will escape from the target boundary & = N,. Actually, it is not so easy. Indeed, what

really matters is the fast electron fluxes at z = L, which are computed according to the HLL scheme.

Thus, concerning this example, this is the HLL flux F:IZ{JLng that must be taken equal to FL' 20, Nzl

and not directly F,' B Neol, Consequently, for this example, we have to impose the following boundary

condition at the target rear side :

If W?:;,J,Nz»l >0 then @n,i,j,Nz—l—Z,l — (I)n,i,j,Nz—i-l,l —_ (I)n,i,j,Nz,l

else PriN=42,0 — pniN=+11 — (. (7-56)

If the fast electrons have a positive momentum pl\I/?:Zi’j N=l i the 2-direction at the target rear side

k = N, it means that they are going to escape from the target so that we have to impose ®"H5N=+2l —

@nid N+l — nitd: Nl gych that the HLL flux in the z-direction at the rear side reads

_ %,
FZJVZ+17 _|_ Févzy+

2

4,5, N2+1/2,1
Fnzg »+1/ —

— nyi,g,Nzl
2 HLL =I; o

PN:AL— _ Nyt
-l |

In the opposite case where the fast electrons have a negative momentum pl\Il?”i’j Nl at the target rear
side k = N,, we impose no fast electrons in vacuum £ = N, + 1 and k = N, 4+ 2 so that we do not

inject fast electrons according to the HLL flux expression. By generalizing to other target boundaries,
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we impose the following boundary conditions :

1
If t < tsource then q)n,z,] 0,0 q)n,z,],l,l q)ﬁn%]y il
else if \1]711,;,3,2,1 < 0and t > teouee then @000 = gLl — niig:2l
else (I)n,z,J 0,0 (I)n,z,],l,l _ 0
If \I/;Mﬂl,k»l <0 then (I)n,i, 1.k, (I)n,z,O kil _ (I)n,z,l,kl
)y
else q)n,i,—l,k,l — (I)n,z,O,k,l — 07
If ql?yi,Ny»k,l >0 then @viNutLEL — $niNy+2,5k1 — pni,Nyk,l (757)
7y
else q)n,i,Ny—i—l,k,l — (I)n,z,Ny—l-Q,k,l — 0’
If \I;’il,l,j,kJ <0 then (I)n,fl,j,k:,l — ™ ,0,7,k,1 (I)n,l,j k,l
T
else dr—Lakl — en0.4kl — 0 and
If \1171"07]\7:57]'»]‘3»[ >0 then @™ JNz+1,5.k,1 = P JNz+2,5,k,1 — ™ N7k,
T
else o™ Ne+1,5,k,01 _ — ™ Ng+2,5,k,01 _ =0.

Concerning the target corners, the priority is given to the z-axis fluxes, assuming that L, and L, have

been chosen sufficiently large.

The boundary conditions concerning the HLL fluxes in the kinetic energy space are simpler since
in our laser-generated fast electron transport model, fast electrons only lose their kinetic energy.
Consequently, we impose

(I)n,i,j,k,— = P ,1,9,k,0 - P ,i,9,k,1 (758)

in order to let the fast electrons lose all their energy according to the HLL fluxes at the low energy
boundary € = epi,. Since n, < ne, these electrons with energies less than e,,;, are not injected in the
background electrons population and are just removed from the system. In the opposite boundary,

we impose
PrbdikNe+1 _ pniisj ks Net2 _ (7.59)

in order to avoid injection of fast electrons at the high energy boundary € = L..

7.2 Self-Generated Electromagnetic Fields

According to the previous section, we know exactly the fast electron distribution function ¥y, at each

time step n in the whole simulation box. Therefore, we can compute the laser-generated fast electron
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beam density according to

Ne
I = (@i, Y5, 2 tn) = > Uy A (7.60)
=1
and the beam current density according to
Ne
gk s i3,k
ok — 5y (i, ygs 2k te) = _ez WL A, (7.61)
=1

Also, as illustrated in Figure 7.2, the background electron and ion temperatures at time ¢,, 7' and
T, are known in each cell, allowing to compute the electrical resistivity n™"3* and the background

in each cell at time ¢,,. This section is dedicated to the

electron density ne’" = (Z*)"’Z’J’kn?”z’]’ ’

resolution of the self-generated electromagnetic fields at each time step t,. The equations that have

to be solved self-consistently in 3 dimensions for the self-generated magnetic fields are

0B, 0 (n(z,y,zt)c 831«) 0 (n(x,y,z,t)cQ 8Bx)

ot oy 47 oy 9z 47 0z
o _g 77($7yazat)62 8By - 2 n($7yaz7t)62 aBz
N oy 47 ox 0z 47 ox
8jbz 6jby
LA : 7.62
+ n(x’ y7 Z7t)c < ay az ( )
on on

+ ]b,zcai - Jb,ycg

n kgc (One 0T, B one 0T,

nee \ 0z dy Oy 0z )’

OBy 0 (n(z,y,2,t)* 0B, 0 (n(x,y,zt)c* OB,

ot 0z 47 0z ox 4 Ox
B _3 n(z,y, z,t)c? OB, _E n(z,y, z,t)c? OB,
N 0z 47 Ay ox 47 oy

ajb,a: 8jb,z 763
+ U(QU,y,th)C <az_ 833‘ ( )
an on

S/ )
+ Jb,x P} Jb,z O

L+ ke [ On. 0T, B on, 0T,
nee \ 0x 0z 0z Oz
and
0B, _g n(z,y,z,t)c? 0B, _2 n(z,y,z,t)c? 0B,
ot ox 47 Oz oy 47 oy
_ _2 77(%3/, Z,t)Cz an _ 2 n(xvyazat)CQ aBy
- ox 47 0z oy 47 0z
8jby a]bx
; W ; 7.64
+ TI(‘/'U’Z’ Z? )C( 8$ ay ( )

. Ui . n
+ Jb,yc% - ]b,xcaiy
kgc [ One 0T, B one 0T,
0y Ox oxr Oy

Ne€
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while the self-generated electric fields can be deduced knowing the self-generated magnetic field ac-

cording to
. n(x,y,z,t)c (0B, 0B, kp 0
EJJ = - » Y 7t T - - -~ eTe y 7.65
0@y, 2,0 b + 47 ( oy 0z ne(z,y,z,t)e Ox (neTe) ( )
) n(x,y,z,t)c (0B, 0B, kg o
B, =- t - - = (nT. 7.66
Y 77(1’7 Y, z, )]b,y + An < Oz o ne(x’ Y, 2, t)e 8y (n ) ( )

and

n(x,y,z,t)c (0B, _0Bg\ kp 0
= ( o By el (neTy) . (7.67)

B, = — t)j
z n(x’yvzv )jbuz+ "E,y?’z?t)eaz

The first line of the B-field equations (7.62), (7.63) and (7.64) describes the diffusion of the B-field
component Be, £ € {z, y, 2z} in the plane perpendicular to the {-axis. The second line describes the
coupling between the different B-field components, which cancels in two dimensions. The third line
describes the B-field source term due to the curl of the beam density current while the fourth line
describes the B-field source due to resistivity gradients. Finally, the fifth line describes the B-field
source term due to the background electron temperature-density crossed gradients. The first term in
the left hand side of the E-field equations (7.65), (7.66) and (7.67) provides the main contribution
due to the beam density component j in the return current expression je = j; — j,. The second term
comes from the total net current j; = (¢/47)(0/0r) x B according to the Maxwell-Ampere equation
with the quasi-static approximation. Finally, the last term comes from the pressure force. This latter

is usually very small compared to other terms.

7.2.1 Second Order Implicit Scheme describing the Self-Generated
Magnetic Fields Diffusion and Second Order Explicit Schemes
describing the Self-Generated Magnetic Fields Sources

Here, we describe the numerical methods used to solve the magnetic fields equations (7.62), (7.63) and
(7.64). For simplicity, we present the resolution of the y-component of the B-field (7.63) in each slice
Y = Yj,, indexed by jo. This numerical scheme can be generalized to the z-component of the B-field
(7.62) by permuting x — 2z, y — z and z — y (jo — %o, ¢ — k and k — j) and to the z-component of
the B-field (7.64) by permuting © — y, y — z and z — x (jo — ko, ¢ — j and k — i). Thus, let us

note

nyigok+l  nisjok—1 nyitlgok  nyi—1jok
> (7.68)

i\ i\ ) ) Jb,2 ~ b,z
7,2, 7k — ,2,] 7k e g _ ) )
B?/,Cogr =" 0 CAtn < 2A AL
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the discretized By-field generated at the time interval between ¢, and t, + At, due to the curl of the

beam current density,

nyi,jo,k+1 nyijo,k—1 o nyi+1,50k _ omii—1.50.k
Jjo — o - jn’z’jo’kcAt n Jo n Jjo
20z bz " 2Ax

n,i,j0,k -n,1,750,k n
y,res = b,z Atn

(7.69)

the discretized B,-field generated at the time interval between ¢,, and ¢,, + At,, due to the resistivity

gradients,
n,i+1,50,k n,i—1,50,k m,i,j0,k+1 n,1,70,k—1
ook kBC ny Jo —nu Jo Te Jo _Te Jo
By,cross - Atn
ene 2w 282 (7.70)
n?”’jo’ + _ng,ujm - Tg,H- ,JOs _Ten,z— ,JOs )
2Az 2Ax

the discretized B,-field generated at the time interval between ¢,, and t,, + At,, due to the background

electrons temperature-density crossed gradients and

n5,50,k41 2 B?7i7j0+17k+1 . Bn,i,jo—l,k—f—l

4 2Ay
n,4,50,k—1 2Bnl,jo+1k 1 an,jo 1,k—1

TL,’L,jO,k n
Bt =t | oo

n
a 47 2A
1 1 ( nn,iJrl,jo,kCQ B;L,i+1,jo+1,k . By’hi-*-l,jo—l,k (7.71)
2Ax Am 2Ay
i Ldo k2 gri=hjotLk - pri=ljo—1k
o A 24y )}

the discretized By-field generated between ¢, and ¢, + At, due to 3D effects, all expressed fully
explicitely with second order schemes. The diffusion of the y-component of the B-field By in the plane

(x, z) is computed semi-implicitely according to the numerical scheme :

n
Aty, dr Az Az o
nn,z—l/Q,jo,kCQ Bn+1ﬂ:]07k _ Bn+171*1730,k

47T19A1/2 2 pntl k+1A +1,i,j0.k
n,%,J0,k+ n 16,J05 n »2,J0,
2 B! Bl

n+1,i,50,k n,%,50,k n,i+1/2,j0,k .2 pn+1i+1,j0,k n+1,i,50,k
By - By [%dokc2 By - By

U (7.72)

ArAz +1"kAZ e kel
n,z,]o,k—1/2c2 Bg »%:J05 —BS »,J05

AT Az Az
— 1 (Bn7i7107 + B™ i1,J0,k + B™ 1,J0,k + Bk )
y,3D

At,, y,cour y,res Y,Cross

n

where it has been noted

ie+1 ig—1

2n'<n

ier1j2 _ 2nt iy
= e + e L’

Vig € {1, k} corresponding to & € {z,z}, U and nie1/2 = (7.73)
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Indeed, a fully explicit scheme would lead to a CFL condition

4 1
277max 2 1 . + 1 .
Az Az

At, <

)

that strongly constrains the time step At,, in case of highly resistive material and/or "highly” resolved
spatial grids. For example, with Ny = 1072 Q.m and Az = Az = 0.1 um, an explicit scheme would
lead to time step At, < 0.3 fs that can be smaller than the time step imposed by the resolution of
the M1 equations. Let us define the vector

. ] [ proNeidok ]
Xy = , where Vk € [1, N,], W, = B;z,i,jo,k ’ (7.74)
L un,l | i B;Lylmjo’k |
the vector
_ V'n,,Nz | i B;L’E]Xﬁ}jovk + B;L771!g§v,j0,k +B:L7/L:c]1\‘[gs’g07k + B;”’ész,jo,k -
Sn=| Vap | where Vk € [1, Vo], vy = Bidsk + Bk 4 Bytivk 4 Braok
- | Byt + Bt 4 Brnlst + Byt
(7.75)
and the matrix
[ Dy, En, (0) .
(CNz—l DNz—l ENZ—l (0)
(0) Cn.—2 Dn.—2 En._2 (0) 0)
A, = (0) Ce Dy Ep (0 (7.76)
© () C; Dy E; (0)
(0) (C2 ]D)Q EQ
) (0) C; Dy
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[ a4y ayt 0 ]
dévw—Lk divﬁ—l,k divl'_l’k 0
No—2k  ;Ny—2.k =2k
0 dy d, dy 0 0
where D, = 0 N L LR , (17m)
0 0o &F & BF o
0 d&F dpr &F
_ 0 4t ]
[ Neok 7 [ Ne ok .
(0) (0)
Ci = dy"* and E; = dg* (7.78)
(0) (0)
_ dy* _ s

(nn,z‘+1/2,jo,k; +77n,i—1/2,j0,k:) AL, <,,7n,i,j0,k+1/2 +77n,i,j0,k—1/2) AL,

with  d% = 1+ + ,
1 ) ) ArAx? A A2
di,k L nn,z+1/2,jo,k02Atn
2 AT AZ? ’
di,k L nn,z,jo,k+1/262Atn
3 TAz? 7
, ni=1/2,J0k 2 Ay
&= S5 and
. ATTRAZ
di,k _ nn,z,jo,k—1/262Atn
> At Az? (7.79)
In this case, the N, N, coupled equations (7.72) can be written with the linear form
Ay xpy1 =y, withy, =x, + s, (7.80)

where A,, is a symetric positively definite matrix of dimension N, N, x N,N.. It would be computa-
tionnaly expensive to inverse numerically this linear equation (7.80) at each slice y = y;o and at other
slices © = x;p for (7.62) and z = 2y for (7.64). Consequently, by noticing that (7.80) can be written

with the form
df
dx

X=Xn+1

1
= 0 where f(x) = §XT.An.X —xT .y, (7.81)
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Xn+1 can approached with the wanted error € by using the following conjugated gradients algorithm :

m:=0
ng_)l =Yn
Ty i =yn — A x\™)

n+41
Pm =TIm

[oW)

While |r,,| > €|y, 0

end do.

T

o L I'm.I'm
:n‘n Do fyn
+
XnTJnrl = XnTzl + OmPm

Cmtl i= T — Oy . Pm

T
B N rm+1‘rm+1
e rl ey,
Pm+1 = TI'm41 + BmPm

m:=m-++1

Also, a Jacobi preconditionner is used so that it is Al .x,,+1 = y/, that is actually solved instead of

Ap X1 =yn where A/, =P LA and y/, = P, Ly, with

[ N2 N
dl

1,N.
dy

dNI,].

1,1
dy

in order to work with a better conditioned matrix. Usually, tens of m-iterations are needed to obtain

X1 with an error of € = 10714, The consistency error in the discretization of y,, is O(At, + Az? +

Ay?+ Azz). An option in the Fortran file data.f90 allows for deciding to compute or not the magnetic

field diffusion. In the case where the magnetic diffusion is not computed, the magnetic field B;f“ is

directly given by (7.80) with the N, N.-dimensional unity matrix I instead of A,, i.e. X411 = yp. In the

3D-3V case where the fast electrons are injected parallel to the z-axis (without an angle of incidence),

the z-component of the B-field B, is small compared to the other transverse components B, and B,,.

In this particular case, the conjugated gradients algorithm does not work since the residues r,, are
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very small. We may deduce the z-component of the B-field B by knowing the transverse components
(By, By) and by imposing the Maxwell-Thomson equation (9/9r).B = 0. However, for simplicity,
this method has not been implemented in the code and an option in the Fortran file data.f90 allows

for deciding or not the computation of the diffusion of this z-component B of the magnetic field.

7.2.2 Deduction of the Self-Generated Electric Field from the Mag-

netic Fields

Instead of solving similar equations than (7.62), (7.63) and (7.64) for the self-generated electric field,
we can compute directly the electric field at each time step ¢,, by knowing the self generated magnetic

field at the same time step t,, according to

n,i,j,k n,i,j+1,k n,,j—1,k n,i,7,k+1 n,t,J,k—1
Enviujvk — _ ’I'L,’L',j,k ‘nviujvk + 77 / c Bz — BZ _ By — By
z - n b,x
' 47 2Ay 2Az 7 89
k.B ngvz+17]7kT£1Z+11J1k _ Téluz_lv]vkngﬂ_ldvk ( ’ )
en™hk 2Ax ’
n,i,jk n,%,5,k+1 4,5,k —1 n,i+1,5,k n,i—1,5,k
Eriik gk gk 1 M — B B - B
v by A 2Az 2Az (7.83)
kB n2727]+17kTgL7Z7J+17k _ T:7173_17kn7g’77"]_17k
eng’i7j7k 2Ay
and
ik nyit14,k nyi—1,j,k nyij+1,k nyj—1,k
ik __onagkmagk | MTe [ By = Byt Bt — Byt
z = —-n Jb + _
' 4 2Ax 2Ay - 84
kB ngzzajak+1Tén’7Z7]7k+l _ Tg7’77'7]7k71n7€7’717]7k71 ( ’ )
6n2’7i7j7k 2AZ

The second term in the right hand side of each equation (7.82), (7.83) and (7.84) represents the

discretized components of the total net current

C c 0
U R e B, (7.85)

multiplied by 5™,
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7.2.3 Boundary Conditions

We suppose that the lateral dimensions of the simulation box L, and L, have been chosen sufficiently

large to impose vanishing magnetic fields at the transverse boundaries :

Bn7_17j7k — Bn707j7k — anNZ+17]7k — Bn7NI+27]7k — O (7'86)

and
Bn,i,—Lk — Bn,i,O,k) — Bn,i,Ny-i-l,k — Bn,i,Ny+2,k —0. (787)

Concerning the target rear side (z = L,), we impose the same boundary condition assuming the target

is sufficiently deep (see Chapter 9 for the fast electrons refluxing) :
BNt = BridNat2 — g, (7.88)

At the laser-irradiated side of the target, we assume that the magnetic field is the same as in the first

cells z = z; (k = 1) where it is usually maximal :

Brid—1 — Bridi0 — gl (7.89)

Concerning the self-generated electric fields, the same boundary conditions are used i.e. :

E?L—l,j,k: — En,o,j,k — En»Nz+17j7k — En7N®+27j7k = 07 (790)
En,i,—l,k — En,i,o,k — En,i,Ny-i-l,k — En,i,Ny-I—Q,k‘ —0. (791)
EnzivijZJFl — En7i7.j7Nz+2 — 0 (7.92)
and
Envivjv_l — En7i7j70 — Envivjv]-. (7.93)

Finally, the priority is given to the boundary conditions in the z-direction at the simulation box

corners.

7.3 Second order Explicit Schemes for the Heat Equa-

tions

According to the two previous sections, we know exactly the distribution function ¥§;; as well as

the electric field E™ at the time step ¢, in the whole simulation box. These data are needed for the
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numerical resolution of the background electron and ion Heat equations

oT, 0 0T, 0 oT, 0 oT,
OV,e(':Evyv’%t)W T o (He(l'vyvzat)am> - 67/ (Ke(xvya'z?t)a:U) T 9. (/‘ie(%%zat)az)

= WE(J:? Y, =, t) - G(xa Y, z, t) (Te - E)
(7.94)
and

T,
Cvi(z,y, z,t)aat =G(z,y,2,1) (Te = Ti) - (7.95)

The energy deposition due to the direct collisional energy losses of fast electrons and the Ohmic
heating by the return current is deduced from the MHD and M1 packages as illustrated in Figure
7.2 according to

Ne
W::Z,],k — Z (S?(;iv]vkvlUl\ljgazvjvkleE-) + 77”7'57]7"5 |:<j27;5v]7k) + (jg%j:]:k) + (]gg’j’k) :| (796)

=1
where it has been noted S?O’f"j kb Scol(Zi, Yj, 2k, €1, tn) the discretized stopping power of fast electrons
due to collisions with background electrons (free, bound and screened free) and j? = ji’ —j;' the return
current deduced from the beam current density j; (7.61) and the total current density j; depending

on the curl of the magnetic field B™. According to the previous section 7.2.2, its discretized values

are
nyij+1,k nyij—1,k nyigk+1 ning,k—1
gk _ ¢ (BT = BT Byt — By (7.97)
te T 2Ay 2Az ’ ’
ning k1 nying k41 nyit+1,5,k nyi—1,4,k
ik _ ¢ [ Be T BT B - BT (7.98)
ty An 2A 2 2Ax '
and
nyi+1,5,k nyi—1,5,k nyiyj+1k nyij—1,k
piak _ € By Byt ppit gyt 1.99)
b 47 2Ax 2Ay ’ )

Also, the discretized values of the electron-ion/lattice coupling factor G™%* and the thermal capacities
C’;};jk and C\%] k are calculated from the known temperatures 1" and T;* at the time step ¢,. In
what follows, we explain how the electron temperature 77! and the ion temperature Ti"Jrl at tn41

are computed.

Let us begin with the equation for the ion temperature. It is computed according to

n1,i,5k Nk A
T' 500 :T'7ﬂ) +Atn — T”’ _T,”’ . (7100)
i i k e i
cid
g

This numerical scheme is stable with the respect of the approximated CFL condition

Cv,
At, ’ 7.101
(%) (7-101)
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and present a consistency error O(At,). The worst case is the Spitzer regime for Tantalum where
Cyi =~ 107 erg.cm 3.5 LK1 and G ~ 10%° erg.cm3.s L. K~ ! that gives At,, < 100 fs, which is much

less restrivtive than the CFL criterion for solving the M1 equations (7.50) or (7.52). The heat equation

for the background electron temperature is computed according to the 2nd order explicit scheme

k N
. Wn727.77 Gn727.77
T:“‘lﬂy]:k — T'I'L i,k + Atn o Atn (Tn J0,9,k Tn s )

n Z7J7k n7/l‘7j7k €
CVe CV,e
S . o Lk
n Aty (it 1/2,5k T ety _emi=1/2,5k e
C€7Z7j7kAx € AQL‘ €
’ L+ Lk ik gk -1k
Afn an,g+1/2 R T - T _an,] 1/2, p I — T
CptI Ay Ay
k41 i,k id, k=1
Atn (T, k+1/2Tn” - T _ n,z,jk 1/2Tn” — T
C€7;7J7kAZ € AZ AZ
(7.102)
where it has been noted
2kl e — 2!
Vie € {4, J, k} corresponding to{x,y, 2}, K;ZfH/Q 167111 and ke 12 _ % (7.103)
K 4 gt K 4 gt
This scheme is stable with the respect of the approximated CFL condition
1
At, < (7.104)

(), (aevaptaz) (o)
CV,e max AxQ AyQ AZZ CV,e max

and presents a consistency error O(At + Az? + Ay? + Azz). In practice, as for the ion temperature
equation, this CFL condition is much less restrictive than the CFL for the M1 equations (7.50) or
(7.52). In the worst case, in the hot Spitzer regime for Tantalum with a coupling factor G ~ 10%°
erg.cm3.s7L. K1, a thermal capacity Cve ~ 10” erg.cm™3.s7L. K~ and a thermal conduction k. ~
10" erg.cm™.s71.K™!, we obtain that At,, must be less than several fs, which is larger than a fraction
of fs imposed by the CFL condition for the M1 equations. Concerning the boundary conditions, we
impose the same temperatures at the target boundaries with a priority for the z-axis at the simulation

box corners :

n,—1,5,k __ gm,0,5,k __ mn,1,5.k n,Ngy+1,7,k __ qm,Ny+2,5,k __ qmn,Ng,j,k
T ik = Er0dk — prlik and TNethik — rNet 25k — ruNe gk (7.105)
P— i 4,Ny+1,k i, Ny+2,k 4,Ny k
T bk = Ok — ik gpd gt tbE = it MR — Ry (7.106)
and
n7/[:7j771 —_— n7i7j70 — n’i7j71 n7i’j’N +1 —_— n7i7j7N +2 —_— n7i7j7N
" = T30 = il gnd TN+l = i Na+2 — sij,N (7.107)

for both electrons temperature (o = e) and ions temperature (o = 7). Sometimes, for short laser pulses

with a duration less than 100 fs, the fast electron transport simulation takes only several hundreds
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of fs, and one can neglect the electron thermal conductivity. Therefore, an option in the Fortran
file data.f90 allows for deciding to compute or not the thermal electron diffusion. In the case where
the thermal electron diffusion is not computed, the background electron temperature T+ is directly
given by (7.102) with k. = 0 in each cell. Also, sometimes, we only know the transport coefficients
n and k depending on T, = T; = T and not T; # T.. In this case, T"*! is directly given by (7.102)
with G = 0 while the background ion heat equation is not computed. An option in the Fortran file

data.f90 also allows for deciding to compute or not the temperatures T, and T; or only T' =T, = T;.

7.4 Summary

We have implemented with Fortran 90 the reduced model for fast electron transport in solids or dense
plasmas presented in Chapter 6. The numerical resolution of the M1 equations is performed according
to the 2nd order explicit HLL scheme for the advection of the fast electrons in space and in the kinetic
energy space due to the collective effects. It allows to respect the physical constraints ¥g > 0 and
|| < ¥ that define the realizability domain. The angular deviations of the fast electrons due to the
self-generated electromagnetic field are also computed explicitely. Concerning the collisional effects,
they can be computed explicitely or implicitely depending on the density of the target material. In
the implicit case, the advection in the kinetic energy space due to the collisional slowing down is
computed according to the implicit downwind scheme. The implicit centered scheme does not allow
for respecting the realizability domain. Therefore, in order to make comparisons between implicit and

fully explicit computations, we also use the explicit downwind scheme.

The self-generated electromagnetic fields as well as the background temperature(s) are computed
self-consistently according to second order explicit schemes except for the magnetic field diffusion,
which is computed implicitly according to the conjugated gradients algorithm. The numerical model
is constrained by the CFL condition of the resolution of the M1 equations. The package diagnostics
(see Figure 7.2) allows to write the computational results at each time step (U1, (E, B), T¢, T;,
...) in 86 text files ”.dat” with one text file per quantity. For example, the contribution of each source
term to the By-field is written in a separate file. That is the contribution of the the curl of the beam

current density :

8By,cour _ 0 <7762 aBy,cour) . 0 (7702 8-By,cour> —ne <8jb,x . ajb,z)

ot 0z A4 Ox 0z ox

4T 0z

ox

the contribution due to the resistivity gradients :

Oz

OByres O (7702 aBy,res> ) (ncz OB, res an

/N
ot _5 A7 Oz E o >_Jb’x68z_‘]b’zcax
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the contribution due to the temperature-density crossed gradients

8By,cross . g chaBy,cross o g LCQ@By,cross . @ one 0T¢ _ on. 0T,
ot Oz \ 4n 0z Or \ 4r Oz N or 0z 0z Ox

and the contribution due to 3D effects

8By73D_2 7]7028317,73]3 _g 7’}76283%3]) __8 7762 0B, 0 1702 0B,
ot 0z \ 4 0z Or \ 4m  Ox T 9z \4r 9y ) 0z \Am oy

are computed and written separately. It is also performed for the other components B, and B,, etc...
In the case where the CFL condition strongly constrains the time step, it is possible to chose the
intervals Atgiag between the two consecutive time steps at which the simulation results are saved in

the text files in order to limit the memory needed to stock the information.

The consistency error of the full numerical model is estimated by measuring the percentage error

in the discretized energy conservation equation (6.29) integrated in space and time at t = ty;, :
Uinj - Ubrem + UE + UB + Ucol + Ures + Ub + Uout (7108)

where
Nt Nz Ny E

Unj=>_ 33 3 0Pt e At, AzAyAe (7.109)

n=1i=1 j=1 I=1

is the total fast electrons’ kinetic energy injected in the simulation box from ¢t = 0 to ¢t = ty, (it also

accounts for eventual escaping electrons at the irradiated side of the target z = 0),

Ny N, Ny N

Ut = D> > > Pisley  At,AzAyAe
n=1 i:l j:l 1:1

a: z

N; N
- Z DI 4 GRS At,AzAzAe

nlzlklll

:v z

N, Ne
i Z Y'Y O q;"N’“ ! At,AzAzAe (7.110)

n=11=1 k=1 I=1
Nt Ny Nz NE

— Z Z Z Z \I/?:;’j’k’lslvl At AyAzAe

n=1j=1 k=1 I=1
N: Ny N, N.

+ S SNSTN e ey Aty AyAzAe

n=1 j=1 k=1 I=1

is the total fast electrons’ kinetic energy escaped from the simulation box from ¢t = 0 to ¢t = ty, at
z = L, (first line), * = —L,/2 (second line), y = L,/2 (third line), x = —L,/2 (fourth line) and
x = L, /2 (fifth line),

N, Ny N. No
Uy = Z Z Z Z \Pévt’z’j’k’leleAyAzAa (7.111)

i=1 j=1 k=1 I=1
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is the instantaneous beam kinetic energy at t = ty,,

Noe Ny N 2Nyji,jky2 Nii,jky2 Niji,jk
(E t307, ) + (E t3%0, ) + (E ts0,]5 )
e =330y s =) Awaya: (7112)
i=1 j=1 k=1

is the instantaneous electric energy in the simulation box at ¢t = ty,,

Up = ZZZ z ¥ 5 z AxAyAz (7.113)

is the instantaneous magnetic energy in the simulation box at ¢ =y,

Nt Nac Ny Nz

Ul = Z Z Z Z W:éi(;{’k At, AxzAyAz

n=1i=1 j=1 k=1
N, N. N, N. N. (7.114)

= Y Y33 S gt RS My Aty AzAyAzAe

n=11=1 j=1 k=1 I=1

is the total kinetic energy lost (gain) by the fast electrons (background electrons) by colliding the
background electrons (by being collided by fast electrons),

Ni N, Ny N. N n,i gkl
Ubrem = — Z Z Z Z Z \I/"’m okt < ) VAL, ArAyAzAe (7.115)

n=1i=1 j=1 k=1 I=1 brem

is the total kinetic energy lost (gained) by the fast electrons (bremsstrahlung photons) by radiating
bremsstrahlung photons (emitted by the fast electrons) and finally

Nt Nz NZJ Nz

Ues = 3.3 3.3 Wiied" At, AzAyAz
n=1i=1 j=1 k=1
:c NU z E

Ny
=200 Z( I (7.116)

n=1 i=1 j=1 k=1 =
n7l7.] k n7i7j7k7l
+ekEy \Ill,y
b
Y oL )w Aty AzAyAzAs

is the total kinetic energy lost by the fast electrons due to the electric field induced by the magnetic
neutralization of the beam. As already mentioned, except for intermediate Z materials like Tantalum,
we include the bremsstrahlung losses directly in W, o1 and Ug even if it is a rough approximation
since the bremsstrahlung photons do not deposit their energy locally but propagate in the material
depending on its opacity. Also, since j; = (¢/47)(0/0r) x B =~ 0 and —(kp/ne.e)(0/0r)(n.Te) is small
compared to njp, we can consider that the total kinetic energy lost by the fast electrons Ues, due to

their slowing down by the electric field induced by the magnetic neutralization of the beam, is also
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the total kinetic energy gained by the background electrons due to their acceleration by this electric
field.

Page 235



7.4. SUMMARY

Page 236



Chapter 8

Validation of the Model

" There are two possible outcomes: if the result confirms the hypothesis, then you’ve made a
measurement. If the result is contrary to the hypothesis, then you’ve made a discovery.”

Enrico Fermi
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8.1. 2D-3V ACADEMIC CASE

This chapter is dedicated to the validation of the model. In a first time, a 2D-3V academic
case of a monoenergetic and collimated fast electron beam propagating in a warm and dense hydro-
gen plasma is presented. It allows us to demonstrate the major features of the M1 approximation
and to derive analytical expressions for the various quantities computed by the code. Therefore, it
serves to check the simulation results and to validate the numerical methods described in Chapter
7. Secondly, a more realistic simulation of a laser-generated fast electron beam transport in a thin
Aluminum target is presented. The laser-generated fast electron beam distribution function is ob-
tained from a 2D-2V Particle-In-Cell (PIC) simulation of the laser plasma simulation, conducted by
[Gremillet, 2012] with the PIC code CALDER [Lefebvre et al., 2003]. The resulting 2D-3V M1 simu-
lation of the laser-generated fast electron transport is compared with a 3D-3V fast electron transport
simulation conducted by [Gremillet, 2012] with the hybrid PIC code PaRIS [Gremillet et al., 2002]
[Martinolli et al., 2006]. It shows that the M1 approximation is sufficiently accurate to reproduce the
hybrid PIC simulation results.

8.1 2D-3V Academic Case

8.1.1 Introduction

As a first illustration of the M1 model, we consider the simple case of a quasi-monoenergetic and
monodirectional (2.(z = 0) = e,) relativistic electron beam injected at z = 0 in a 2D box (100 um x
100 um) of a Hydrogen plasma with a density p = 50 g.cm™3 and an initial temperature Ty = 1 eV. A
Gaussian distribution centered at g = (79 —1)mec? = 1 MeV with a 50 keV standard deviation is used
for the beam energy spectrum. A Gaussian temporal shape centered at tg = 1750 fs with a standard
deviation of o, = 500 fs and a Gaussian spatial shape with a standard deviation of o, = 10 um have
also been used. The electron beam has a total energy of U = 10 J. As already mentioned in Chapter
6, we neglect the electron-ion energy exchange, assume Z* =1, T; = T, = T and Cy = (3/2)kpn;
in the heat equation. Even if the background electron thermal conduction can be neglected in this
simulation due to the small considered time scale (& ps), it is computed according to the Hubbard-
Spitzer model (for the electrical resistivity 7 and the thermal electron conduction k; see Chapter 3,
section 3.3.1) in order to check the numerical method for solving the thermal diffusion. The spatial
resolution has been chosen Az = Az = 1 pum while the energy resolution has been chosen Ae = 5
keV with epin = 20 keV and the maximum electron energy L. = 1.2 MeV, so that the computation
time needed is about 5 hours on 20 CPU with the full explicit numerical scheme. In this academic
case, due to the high Hydrogen density, which implies strongly collisional beam transport, and a low

plasma electrical resistivity because of plasma electrons degeneracy, for the value of the initial beam
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Energy conservation error : 0.33201 %

10

0 500 1000 15'0?[f ?000 2500 3000 3500
S

Figure 8.1: Instantaneous beam energy U x 10 (solid black), integrated beam energy balanced be-
tween injected and escaping electrons at z = 0 Uy (solid red), escaped energy Uy from
the simulation box (dashed red), total collisional energy loss U (solid magenta), total
“collective” Uses energy loss (solid blue), instantaneous electric energy Ug x 108 (

) and instantaneous magnetic energy Up x 10% (solid cyan) from the M1 simulation
according to the formula given in Chapter 7, section 7.4.1.

current density

202 2(U00t)2

(8.1)

2 ot — )12
Jb(z, 2, t)ZJ'boeXp{—m L2 =~ volt tO)]}

with jyo = Ue/(2m)3/2ego20; = —1.2710'2 A.cm™2 and vy = ¢(1 — 1/792)"/2, the collisional effects
are predominant compared to the collective ones. In Figure 8.1, various contributions to the total
energy integrated in space and time, as defined in Chapter 7, section 7.4, are plotted versus time.
It shows that the numerical simulation have been sufficiently converged with an error in the energy

conservation of ~ 0.3%.

8.1.2 Plasma Heating and Self-generated Electromagnetic Fields

By assuming a Dirac distribution in energy centered at ¢g for ¥y and by neglecting the Ohmic heating
by the return current as well as the electron thermal conduction, we can evaluate from the heat
equation (6.25) the plasma temperature distribution due to collisional losses of the beam close to

z = 0 (to ensure the rigid beam approximation):

T(z, z, t) = Ty + T1 exp (—23;2>F(z, t) (8.2)
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Figure 8.2: Hydrogen temperature T' [eV] at ¢ = 3.5 ps from the simulation (a) and a comparison
of the temperature T' profiles at z = 0.5 ym from the simulation (solid black) and the
estimate (8.2) (dashed red) at ¢ = 3.5 ps (b).

where F(z,t) = 1 —erf[(tp + z/vg — t)/04V/2], erf is the error function and T} = S(g0)U/4n%Cyeoo? ~
17.6 eV. A comparison of the simulation profile at z = 0.5 um and ¢t = 3.5 ps with the estimate
(8.2) shows a good agreement, as illustrated in Figure 8.2 b). That confirms that neglecting the
temperature diffusion as well as the indirect electron beam energy deposition via Ohmic heating
We res is a good approximation. Indeed, the diffusion time of the temperature is about Cyo2/ke =~
100 — 1000 ns, which is large compared to the few ps time interval considered here. Along the z-axis,
the temperature rises from z = 0 to z ~ 30 pm reaching a maximum value of T' = 21 eV and then it

decreases to the initial value Ty due to the beam’s energy losses discussed in the next section.

By neglecting the resistive diffusion of the magnetic field (nc?(t — z/vg — tg)/2m0,2 < 1 at the
considered times of a few ps) and by approximating the temperature dependence of the resistivity in
the self-generated magnetic diffusion equation (6.24) as n ~ no(T/Tp)" where 9 = 9.107? Q.m and
a = 0.25 according to the Hubbard theory in this regime (see Chapter 3, section 3.3.1, Figure

3.8), the estimate (8.2) of the temperature allows us to evaluate the self-generated magnetic field close

to z =0:
By = By,; + By (8.3)
where )
Ty (z)oe) | ( T\
B, ; ~ Bg— — -1 8.4
Y,J 0/1'11 o+ 1 TO ( )
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Figure 8.3: Magnetic field By [T] at 3.5 ps from the simulation (a) and comparison between the
magnetic field By = Bj, + By, profile at z = 0.5 yum and ¢t = 3.5 ps (solid black) where
By ; is the contribution due to the beam current density gradients (solid red) and Bj,,
the contribution due to the resistivity gradient (solid blue) from the simulation and their
respective estimates (8.3) (dashed black), (8.4) (dashed red) and (8.5) (dashed blue) (b).

is the contribution due to the beam current density and

.’L'2
T ar/oy)exp <—2>
B, ~ By—- 9%/ __p
y,n ~ 20

TO 14 T1 .172 o
TO P 20’%

is the contribution due to the resitivity gradients. Here, By = jpo(nc/oz)oe\/7/2 ~ —7.95 T and
F(z,t) of (8.2) has been approximated by the Heaviside function H(t — z/vg —to) to get these results.

(2, 1) (8.5)

These analytic estimates are plotted and compared with the simulation results in Figure 8.3 b). It
confirms that the resistivity gradient makes a significant contribution to the self-generated magnetic
field even for Hydrogen temperatures below 20 eV. The temperature-density crossed gradients do not

contribute to the magnetic field generation because the plasma electron density is constant.

By neglecting the plasma pressure gradients and the self-generated magnetic field in (6.23), we

can also evaluate the self-generated electric field

. 22 [z —up(t — o))
E. = —njy exp {_%3 T 2w : (8.6)

The maximum value of the slowing down electric force —eE.£2, is enjp ~ 0.1 keV.um™!. It is very
small compared to S (see Chapter 4, section 4.2.1, Figure 4.1). This confirms again that the
resistive heating We ;s in the heat equation is negligible. According to the estimates (8.4) and (8.5),

the maximum of the beam cyclotron frequency w. = eB, /ymec is about eBy/mec ~ 1 ps—!atx=oy,,
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z = 0 and t = 3.5 ps. Consequently, the inequality w. < v is verified in this particular case (see
Chapter 6, section 6.1.2, Figure 6.2). Thus, the effects of the self-generated electromagnetic

fields are negligible and the evolution of the electron beam is essentially collisional.

8.1.3 Kinetic evolution of the electron beam

n, [em™] at 1750 fs

X 102D

2.5

11.5

10.5

20 40 60 80
z [um]
Figure 8.4: Electron beam density n,[cm™3] at ¢+ = 1750 fs from the simulation. The electron
trajectory (oscillating red curve) is arbitrary and is presented here to illustrate the
definitions of the mean cosine of the angle between the z-axis and the position of the

beam electron (cos#) and the path length following the electron trajectory in the (r, €)
space s.

We can evaluate the mean position on the z-axis of a beam electron with an initial energy €9 and

an initial velocity vo = vge, at z =0 by

(2)(e) = /0 (cos B)(s) ds — / " (cos B)(e) (ZZ) s (8.7)

€0

Notations are illustrated in Figure 8.4 : (cos#) is the mean cosine of the angle between the z-axis
and the position of the beam electron and s is the path length following the electron trajectory in the
(r, €) space. In this academic case, the total stopping power can be writen

2 2
de NeT5MeC

% =-5= —47TT lnAe (88)

where In A, is the sum of the Coulomb logarithms In AX! of beam electrons scattering on the bound,
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free and screened plasma electrons (6.16), 7 is the classical electron radius and the stopping power on
plasma ions has been neglected since m./m; < 1. For the case of a plasma with degenerate electrons
(T =1-20eV < Tr = 351 eV for p = 50 g.cm™?), the drag number In A, can be evaluated in the

limit 8 — 1 as
Mec? 9 In2

e +T6—7+f(7) (8.9)

where f(y) = In(8v/7y —1) — [(1/8) +1n2] /v + [(1/16) + (1/2)In2] /4* (see Chapter 4, section
4.2.2).

The mean cosine {cosf) can be evaluated in the M1 model (6.34), (6.35) and (6.61) by noticing that
(cos @) = Q..e,. Then, neglecting the self-generated electromagnetic field E and B, we finds

InA., =1n

d 1
£(cos 0) = —ki(cosf) — \Il()fi" (I1..e,) (8.10)
. 1—u o\ ¥1 ® ¥, d o 1[0 0 0
Where HE—T\I’OI—F\IJO (/.L—|QE| )“1’1‘2 all £_’U |:at+UQE.ar—SUa€ .
It has also been noted )
v Nel'e rel
b= =T (mAe + InAei) (8.11)

the inverse of the beam electrons mean free path where In A’¢! = In [2(3/4777%)1/ 3/(h/mec)] — 1+
In (\/727—1) +1/~? is the Coulomb logarithm from the stopping power of the beam electrons on ions.
Assuming that [€2.] ~ 1 which implies II. ~ 0, we may neglect the second term in the right hand
side of (8.10) and obtain, in agreement with the multiple scattering theory of Lewis (see Chapter 4,
section 4.3.1), that

(cos B)(2) ~ exp (- /0 ) kl(s)ds> ~ exp (- / kl(a)(;lz>lds>. (8.12)

As it was suggested in [Solodov and Betti, 2008] and [Robiche et al., 2010], the ratio In A%/ In A,

can be considered as a constant (the ratio In A™!/In AX attains its minimum when v = 1 with the

value 0.50 and it is maximum when 7 &~ 3 with the value 0.64) and we obtain

In A + In AX!
(v—-1/(v+1) 21n A,
(o =1/ +1)

(cos ) ~ (8.13)
Following the arguments by [Atzeni et al., 2009b] (see Chapter 4, section 4.2.2), we neglect the ~-
dependance of f(v) in (de/ds)™" of (8.9) and we note In A* = In (mec? /hwpye) + (9/16) — (In 2/2) ~ 7.98
for p = 50 g.cm™3. Moreover, by considering (In A, +InAX') /2In A, &~ 1 in (cos6) of (8.7), the mean

electron propagation distance can be estimated as

1 1[d-1 -1
(z) ~ 5 Jot % 7 —2In <’YO>} . (8.14)
drnerzIn Ay — 1 Y0 v v
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Figure 8.5: Comparison between the simulation results at ¢ = {¢3: arccos (Qma") versus z
where QP2 = Q.. (z=0, 2, em, to) = max. {Q..(x =0, 2, ¢, to)} (black curve),

arccos (Q??‘jan) versus z where Q5" = (Q. . (v =0, z, ¢, tg)) over |ey, — €] < 200 keV
(blue curve) and the analytical estimates arccos (cos6)(g) (from (8.13)) versus (z)(e)
(from (8.14)) (red curve).

Actually, (ln Ae+1n Az‘fl) /2In A, is minimum when v = 1 with the value 0.75 and it is maximum
when v = 3 with the value 0.82. Then, the penetration depth of the beam electrons with an initial

kinetic energy ¢¢ and an initial velocity vg = vge, at z = 0 can be written as

Ly =(2)(e = 0)=¢R (8.15)

where

1 (EO/me 2)2
R = 8.16
/ < > 47me7“2 InA¥ 14 eg/mec? (8.16)

is the range of the beam electrons with an initial kinetic energy ¢y (see Chapter 4, section 4.2.2)

() R () 6

is the correction due to angular scattering. It is equal to 2/3 when 79 — 1 and it increases to 1

and

when 9 — oo. These values are in agreement with the approximation of the penetration depth (30)
in [Atzeni et al., 2009b], which assumes a factor £ ~ 0.8 to recover the Monte Carlo simulation. For
p =50 g.cm™3 and gg = 1 MeV, we find R ~ 54 um and ¢ = 0.7, which corresponds to L, ~ 38 um.
This is in agreement with our simulation results shown in Figure 8.2 a) and Figure 8.4. The

estimates (8.13) and (8.14) predict the mean position (z) and the mean diffusion angle arccos (cos )
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of ~ 10 um and = 20° respectively for p,/mec = 2.5, ~ 20 pum and =~ 30° for p,/mec = 2 and ~ 30 um
and = 45° for p,/mec = 1.7. This is in agreement with the numerical results obtained for the electron
beam distribution function in the M1 approximation (6.60) as illustrated in Figure 8.6, panels b), c)
and d), respectively. Close to z = L;, the analytic estimates (z) and (cos#) differ from the numerical
results as shown in Figure 8.5. This is due to the singularity at the penetration depth L, in this
particular case of monoenergetic electron beam in (8.13) and (8.14) and to the fact that the last term
in the right hand side of (8.10) cannot be neglected anymore when the local angular distribution is

close to be isotropic.
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Figure 8.6: Electron beam distribution function f, [cm™3.mec™3] from the simulation on the z-axis

at t = 1750 fs, p, = 0 and at different depth z = 1 um (a), z = 10 um (b), z = 20 um
(c) and z = 30 um (d). The dashed red curves represent the analytical estimates of

arccos (cos 6) (¢) evaluated at the kinetic energies ¢ corresponding to (z)(g) = 10 um (b),
20 um (c¢) and 30 pm (d).
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8.1.4 Summary

We have derived an analytical estimate of the temperature of a Hydrogen plasma heated through the
direct collisional losses of a monoenergetic and collimated fast electron beam. It is in good agreement
with the numerical result close to the fast electron injection zone. That fact validates the numerical
scheme used to solve the Heat Equations presented in Chapter 7, section 7.3. Moreover, the
analytical estimates of the self-generated magnetic fields generated due to the curl of the beam current
density and the resistivity gradients, assuming that the Hubbard electrical resistivity follows roughly
n = no(T/Tp)® with n9p = 9.107? Q.m and o = 0.25 in the considered range of temperatures. These
estimates are in agreement with the magnetic fields calculated numerically close to the fast electron
injection zone. The agreement betwen analytical estimates and numerical solutions concerning the
self-generated electromagnetic fields validates the numerical schemes presented in Chapter 7, section
7.2. In addition, by neglecting the collective effects in this academic case, we obtained estimates of the
mean propagation angle (cos#) and the fast electron penetration depth L, due to collisional effects.

An analytical expression of the correction factor

_(+1 21( - M)
5_<’Y01) B2 Po 270

due to the fast electrons angular scattering have been derived in the expression of the penetration depth

L, in agreement with the empirical value given by [Atzeni et al., 2009b]. The estimates for (cos ) and
L, are also in good agreement with the M1 simulation results, thus validating the numerical schemes

used to solve the M1 equations presented in Chapter 7, section 7.1.
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8.2 2D-3V Realistic Simulation of Laser-generated Rel-

ativistic Electron Beam Transport

8.2.1 Introduction
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Figure 8.7: (Left panel) Scheme of the thin solid target irradiated by the ultra-high intense laser
pulse. (Right panel) 2D spatial map of the mean kinetic energy of the laser-generated
fast electrons normalized by n.mcc?, at t = 168w, ! where wp is the laser frequency,
according to the Particle-In-Cell (PIC) simulation of the laser plasma simulation con-
ducted by [Gremillet, 2012]. The z-axis in all the following section (like in the Left
Panel) corresponds to the z-axis of the PIC simulation picture (Right panel) and the
x-axis correspond to the y-axis, respectively

In this section, the M1 model is compared to a hybrid PIC simulation of a relativistic electron beam
propagation in a thin solid target, motivated by an experimental campaign [SANTOS et al., 2013].
The target is composed of three successive layers of 1 pm of Aluminum, 3 pm of Copper and 1 pm
of Aluminum as illustrated in the left panel of Figure 8.7. A linearly polarized laser pulse with a
wavelength A = 800 nm, a total energy Er, = 0.7 J and a 26 fs Full Width at Half Maximum (FWHM)
time duration is focused with a peak intensity of I, = 3.10' W.cm ™2 at a 45° incident angle. Plasma
mirrors have been used in this experiment to avoid prepulse/preplasma so that the main electron accel-
eration mechanism during the laser-target interaction is the j x B heating (see Chapter 1, section
1.2) and the accelerated electrons propagate mainly in the laser pulse propagation direction. The
laser-generated fast electron beam’s initial properties are obtained from a 2D-2V fully PIC simulation
of the laser-plasma interaction [Gremillet, 2012] using the code CALDER [Lefebvre et al., 2003] as
illustrated in the right panel of Figure 8.7. The energy distribution of the laser-generated electron
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Figure 8.8: Propagation direction angle ¢g(g, t) (full curves) from PIC simulation and anisotropic
parameter |2 (e, t)| (dashed curves) deduced from Agp(e, t) for the different considered
energy ranges 20-50 keV (black), 50-100 keV (blue), 100-500 keV (cyan), 500-1000 keV
(magenta) and 1000-5000 keV (red).

beam F; (e,t), its angular F, (¢, ¢, t) and spatial F (z,t) distribution as well as the instantaneous
conversion efficiency 7y, (t) from the laser to the beam have been interpolated by [Gremillet, 2012].
Here, we present how they are adapted to initializing the angular moments ¥y and ¥; at z = 0.
Firstly, the cut-off ey = 20 keV is used to distinguish between the beam electrons and the bulk

electrons. Secondly, the initial beam distribution is parameterized according to the PIC simulation:

01if € > emax
(8.18)

FE(S, t) = c1
exp [(’7(5)4‘52)63 —c4y(e) — 05] else
Fy(e, ¢, t) = exp —4ln2<¢;;0>2] (8.19)
and
Fu(z, t) = exp [—41112(3’;50)2] (8.20)

where ¢ (t), ca(t), c3(t), ca(t), c5(t), emax(t), zo(t), Az(t), vi—(t) have a polynomial time dependence
and Ag(e, t) and ¢g(g, t) have a polynomial time dependence depending on the energy range (elkeV] €
[20, 50], [50, 100], [100, 500], [500, 1000] or [1000, 5000]) as illustrated in Figure 8.8. In order to
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relate these fits with the angular moments ¥y and ¥, of the M1 model, we assume

g [ el
oy (R, 2=0,¢6,t) = — 0 , (8.21)
Apl(e,t)
cos (e, t)
which is equivalent to
sin o (e, )
81ln2 Apl(e,t)?
Q. (z,2=0, ¢, t) = |coth <A (n t)2> - gig’; 0 (8.22)
plg, n
cos ol )

in such a way that, in agreement with the angular notations introduced in Chapter 7, Figure 7.1,

/ Uiz, 2 =0, ¢, 6, o, t)sinOdo
0

o=, 0 SHEIL L e olcos (o - aule, )]
+ L_j||lag(e, t)|cos (v —ole, t))]} (8:23)
~ \110(1:7 = 07 €, t) exp [—41112(('0 - 900(57 t))z )
5 Aple, 1) Ap?

8In?2

as already discussed in Chapter 6, section 6.2.3. The first angular moment has been initialized as

follows:
Uo(x, 2=0, ¢, t) = No(t) fu(z, t)f.(2 =0, t) fe(e, ) (8.24)
where
£y
No(t) = vi (1) = (8.25)
)
kBTbO(t) 271'8 In2

is the number of electrons per unit length in the third y-dimension (not taken into account in this

simulation) with Ay = 8.6 um,

F.lxz, t
fu(, 1) = _BEh > (8.26)
5 Ax(t)
" 8In2
is the normalized transverse spatial distribution function,
1 t—t.\?
fa(z=0,1) = exp [—4In2 (8.27)
Vu(t)4/2 Ar? A
QONETY

Page 250



CHAPTER 8. VALIDATION OF THE MODEL

is the normalized longitudinal spatial distribution at z = 0 and

fole 1) = &) (8.28)
F.(g, t)de

€min

is the normalized energy spectrum of the fast electrons. Here, t. = 40 fs,

kaTio(t) = (€)(t) = / T efe b de (8.29)

€min

is the initial "beam temperature” and

Vi(t) = <<€€‘;>(g> e, — / :O iﬁgwmf(x’ 2 =0, ¢, t)|cos (pole, 1) f-(c, t) de (8.30)

is the velocity at which the beam kinetic energy is injected in the simulation box at z = 0 in the

z-direction. Finally, the first order angular moment is initialized according to (8.21) :

Wi(x,z=0,¢e,t) =Vy(x,2=0, ¢, t)Q(x, 2 =0, €, t). (8.31)
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Figure 8.9: Instantaneous beam energy Uj, x 10 (solid black), integrated beam energy balanced be-
tween injected and escaping electrons at z = 0 Uiy (solid red), escaped energy Usyt, at
z = b pum (dashed red), total collisional energy loss U.q (solid magenta), total “collective”
Uses energy loss (solid blue), instantaneous electric energy Ug x 103 ( ) and
instantaneous magnetic energy Up x 103 (solid cyan) from the M1 simulation according
to the formula given in Chapter 7, section 7.4.1.

For this transport simulation, the Eidmann-Chimer model for the electrical resistivity and the
thermal conductivity, introduced in Chapter 3, section 3.3.1, have been used (see Figure 3.8).
The More formula for the ionization state Z* has been used without the corrections introduced in
Chapter 6, section 6.3.1. Both background electron and ion heat equations have been computed
with the plasma expression for the thermal capacities and the electron-ion coupling factor. The spatial
resolution has been chosen Ax = Az = 0.25 ym while the energy resolution has been chosen Ae = 10
keV, in the range from e;, = 20 keV to 3 MeV so that the computation time needed is about 4 hours
and 40 minutes on 20 CPU. Absorbing conditions at the target boundaries have been used so that
the refluxing of the beam electrons at both the rear and irradiated sides of the target was suppressed.
As illustrated in Figure 8.9, the percentage of error in the energy conservation equation is about
0.5 %. The total injected energy at z = 0 is ~ 70 mJ, which represents a conversion efficiency from
the laser to the electron beam of &~ 10%. The electromagnetic energy is negligible compared to the
beam energy by a factor &~ 1000. The heating of the target due to the return current (=~ 10 mJ)
exceeds by roughly two times the direct collisional heating by the beam electrons. Thus, contrary to
the previous academic case, collective effects are here predominant. Indeed, while the maximum initial
beam density is close to the critical density 14 max ~ 10%! cm™3, the maximum value of the initial
beam current density jj max is above 10" A.cm™2 and the Aluminum and Copper electrical resistivity

is much higher than that of Hydrogen (see Figure 3.8).
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8.2.2 Comparison with the Hybrid PIC Simulation
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Figure 8.10: Distribution function f,(ps, p,) from the M1 simulation at ¢t = 77 fs and different target
depth : z =0.125 um (Up Left), z = 1.125 um (Up Right), z = 2.125 ym (Down Left)
and z = 3.125 um (Down Right). Each plot corresponds to the transverse position z
where the beam density n; is maximum at the given depth z.

Figure 8.10 shows the evolution of the fast electron distribution function f; with the target
depth. It is plotted in the plane (ps, py) since the M1 distribution function is locally axisymmetric
around the mean propagation direction .. At z = 0.125 um, we can distinguish between the different
initial angular distributions, depending on the energy range (¢[keV] € [20, 50], [50, 100], [100, 500],
[500, 1000] or [1000, 5000]), as explained above. In the first cells of Copper located at z = 1.125 um,
the lower energy electrons are already almost fully isotropized while the more energetic ones retain

their initial anisotropy. The angular spread rises with increasing depth z while the mean energy

steadily decreases.
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Figure 8.11: Electron beam density n; [cm ™3] from the M1 simulation at t = 25 fs (a), t = 50 fs (b),
t =75 1fs (c), and ¢t = 100 fs (d),
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Figure 8.12: Plasma electron temperature T, [eV] in a logarithmic scale (a), plasma electrical resis-
tivity n [Q.m] in a logarithmic scale (b), self-generated magnetic field B, [T] (c) and
time integrated density of Ka photons emitted per steradian ng, [em™=3.sr71] (d) from
the M1 simulation at ¢t = 500 fs.
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Figure 8.13: Slices at z = 0.375 um of the resistivity (black curve), the electron temperature (red
curve) and the ion temperature (blue curve) at ¢t = 26.6 fs (Left panel) and ¢t = 499.3
fs (Right panel).

According to Figures 8.9 and 8.11, almost all beam electrons reach the rear side of the target
after approximatively 100 fs. The self-generated magnetic field reaches its maximum value of approx-
imatively 200 T in the first Aluminum layer at the end of the beam propagation and then decreases
down to 100 T at 500 fs (see Figure 8.12 c)). The main contribution to the magnetic field is due to
the curl of the beam current density but the electrical resistivity gradients play also an important role:
at 27 fs, the plasma electrons have been heated up to the Fermi temperature (=~ 10 eV) in the first
Aluminum layer as illustrated in the left panel of Figure 8.13. Consequently, the electrical resistivity
in this area goes from the solid-liquid phase to the hot plasma phase and decreases with the temper-
ature. The same scenario appears in the Copper layer at 40 fs and later in the rear Aluminum layer.
The consequence is that the electrical resistivity gradients tend to hollow the beam as illustrated in
the right panel of Figure 8.13 and explained in Chapter 3, section 3.3.3. In spite of the relative
complexity of this laser-generated electron beam transport, the results of the M1 simulation are close
to those of the 3D-3V hybrid PIC simulation performed with distinct (although similar) models for
the thermodynamic parameters (Z*, 1, ke, Cye, Cy,; and G). The same behaviour is recovered for
the temperature profile of the target as shown in Figure 8.14. We can observe the signature of a
dominant Ohmic heating in the Copper layer (z = 1 — 4 um) where the temperature profile is lower.
Indeed, Copper is less resistive but denser than Aluminum; if direct collisional losses were dominant,

the Copper temperature would be higher than in Aluminum, which is not the case here.
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Figure 8.14: Comparison at ¢t = 500 fs between the mean electron temperature < T, > over |Zpax —
x| < 5 pm profile obtained with M1 (blue) and the one obtained with the hybrid PIC
code Paris ( ) [Gremillet, 2012]. xyax is defined as the position where T¢(Zmax, )
is the maximum electron temperature at a given depth z (red).

The test simulation performed in this section shows that the M1 model reproduces well the
results obtained with a hybrid PIC simulation concerning a realistic laser-generated electron beam
transport, inspired by an experimental campaign conducted on the UHI100 laser facility. The initial
beam distribution is deduced from a 2D PIC simulation of the laser-plasma interaction. The electron
beam density and current temporal evolution as well as the self-generated electromagnetic fields are
in agreement with the hybrid PIC simulation. The final temperature in the target agrees with the
hybrid PIC results, showing the dominance of the collective effects. The time integrated emission of
K« photons has been computed by using the empirical expression for K-shell ionization cross section
by electron impact [Hombourger, 1998] and the K-shell fluorescence yield probability provided by
[Bambynek, 1984]. It is plotted in Figure 8.12 d) at ¢t = 500 fs. There is an important discrepancy
between the simulation result and the experimental data concerning the Ka spot size. This can be
explained by the refluxing of beam electrons from the target boundaries, which enhances their lateral
expansion and consequently increases the Ko emission spot size. Note, however, that, at this stage,
collisions between the background free electrons and the d-band electrons in Copper are not taken

into account. These two effects will be considered in Part III.
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Applications to the Study of
Laser-Generated Fast Electron Beam
Transport in the Context of ICF
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Chapter 9

Application to the Ka emission during
Fast Electron Transport in Solid
Targets

” God made solids, but surfaces were the work of the devil.”

Wolfgang Pauli
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From an experimental point of view, many methods may be used to diagnose the properties of
electrons produced by intense laser pulses, including vacuum electron spectrometry [Wei et al., 2004]
[Yabuuchi et al., 2010], nuclear activation [Hatchett et al., 2000] [Ledingham et al., 2000], optical
emission from foams [Jung et al., 2005], optical probing [Norreys et al., 2006] [Ping et al., 2012], x-
rays bremstrahlung spectrometry [Chen et al., 2009] [Westover et al., 2011], Incoherent Transition Ra-
diation (ITR) or Coherent Transition Radiation (CTR) spectrometry and imagery [Santos et al., 2002]
[Storm et al., 2009] and Ko fluorescence measurements [Stephens et al., 2004] [Baton et al., 2008].
Each technique has advantages and disadvantages for measuring aspects of the electron beam. The
vacuum electron spectroscopy measures the properties of electrons escaping the target, which may
differ from those of the electrons in the bulk of the material [Yabuuchi et al., 2010]. The nuclear
activation is likewise sensitive to very energetic (> 10 MeV) x-rays, which are produced by high-
energy electrons outside the spectral region with the best coupling to the dense core in Fast Ignition
[Kodama R. et al., 2002]. The x-ray bremsstrahlung spectrometers, that measure the light emitted by
the fast electrons thanks to a set of compact filter-stack based x-ray detectors, are sensitive to x-rays
in the 10-700 keV range corresponding to energetic electrons (> 1 MeV) [Westover et al., 2011]. The
CTR and ITR techniques are operating in the visible domain by detecting the emission produced by
fast electrons crossing the rear target. [Santos et al., 2002] showed that by imaging this transition
radiation, the spatial distribution of electrons emerging from the target can be accurately measured.
When the emerging hot electron flux is modulated at the laser frequency and/or its harmonics, the
emitted CTR can be much brighter than the ITR that results from un-bunched electrons. The coher-
ent addition of the transition radiation from periodically bunched hot electrons also yields information
on the acceleration mechanism, as the spectrum of the CTR is intimately related to the period of the
bunches [Baton et al., 2003] [Zheng et al., 2003] [Schroeder et al., 2004] [Bellei et al., 2012].

The most commonly used diagnostic is the imaging of X-rays that are produced in the cold
target material as the electrons propagate through the target. The Ka radiation is due to the atomic
electron transitions to K-shell holes produced in a collision of a hot electron with an atom of the
target material; see Figure 9.1. When an outer shell electron fills the vacancy, the energy is released
in a form of Auger electron or an emission of a photon. The cross section for this K-shell electron
impact ionization peaks at the electron energy roughly two to three times the ionization energy and
decays slowly at higher energies. Since most materials used in experiments have K-shell transitions
in the tens of keV range, this X-ray imaging technique is, in principle, sensitive to electrons with
energies as low as tens of keV. However, with an electron energy distribution extending to much
higher energies, the signal of the lowest energy electrons will be diminished and masked. Imaging this
K-shell X-ray emission with a spherically bent diffraction crystal has become so a powerful diagnostic
of hot electron beams. However, it has been shown that a Ka image is not solely determined by the
initial population of forward directed hot electrons, but also depends upon “delayed” hot electrons,
and in fact continues to evolve long after the end of the laser interaction [Ovchinnikov et al., 2011].

Firstly, there is a population of hot electrons created in the laser-plasma interaction that acquire
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Figure 9.1: Scheme illustrating the collisional ionization of a K-shell electron of a cold atom by a
laser-generated fast electron (Left panel) and the recombination of the electron-generated
hole by a L-shell electron of the cold atom, which results in the emission of a K« photon
(Right panel).

a velocity direction opposite that of the laser and subsequently reflux off the front surface of the
target, deflect when they encounter magnetic fields and then spread far from the laser focal spot
[Pérez et al., 2013]. These delayed fast electrons create significant features in the Ka time-integrated
images. Secondly, the electrons refluxing from the sides and the rear of the target also contribute to
the final K« image [Ovchinnikov et al., 2011]. Indeed, shortly after the beginning of the laser-plasma
interaction, the hot electrons leave the target, making it positively charged. This gives rise to strong
electric fields that cause most of the escaping electrons return to the target. In some experiments
the refluxing is minimized by increasing the target dimensions and/or by using materials with short

stopping distances.

More recently, a novel technique of shadowgraphy coupled to phase contrast imaging has been
proposed. The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory in
Stanford (United States of America) is one of few available sources of high peak brightness photons
suitable for studies of transient behaviour of hot electrons. They can provide a sub-ps temporal
resolution and a spatial resolution of the order of several 10 ym (inaccessible for conventional sources).
The basic principle of this novel technique relies on the shift of the K-edge of the target atoms after
the hot electrons have created a K-shell vacancy. This shift is sufficiently large (about 400 eV for an
electron in the K-shell of Copper according to Atomic Physic numerical computations) to be used as
a femtosecond X-ray switch. This technique will allow to observe traces of hot electron transport,
depending on whether electrons have created K-shell hole(s) or not in the atoms, thus leading to a
transparent or opaque material for the LCLS photons. The vacancies created by a collisional ionization
of cold atoms are also those responsible for the emission of Ka photons. Tuned to a photon energy

just above the K-edge, these photons, primarily absorbed before the hot electrons propagate, will be
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transmitted after their propagation. However, this technique, directly related to the Ka emission, can
be biased because of refluxing of hot electrons at boundaries. Cross-correlation of this Ko emission

with direct observations of the hot electrons inside the sample may remove this ambiguity.

This chapter is dedicated to the implementation of the commonly used K« photons diagnostic
in the M1 model for the fast electron transport in solids or dense plasmas, presented in Part II.
Indeed, thanks to the fast computations allowed by the M1 model, sufficiently long times (several
tens of ps) and large spatial dimensions (several hundreds of ym) can be computed with a relatively
small computational cost. We will study the recirculation of the fast electrons due to their reflection
at the target borders, the K-shell hole dynamics and 3-dimensional effects on photon emission. It
will be also possible to apply these developments to the novel technique of shadowgraphy based
on the LCLS X-ray source. In a first time, the model for the computation of the emission of K«
photons is presented. Secondly, the model is applied to the interpretation of experiments conducted
by [SANTOS et al., 2013] on the UHI100 laser facility of the CEA (Saclay) introduced in the previous
section Chapter 8, section 2. The source of fast electrons was calculated by [Gremillet, 2012] with
a fully Particle-In-Cell (PIC) simulation. The electron transport is described with the M1 model by
taking into account the reflexing effect. The emission of K« photons emitted by the Copper tracer

layer located at different depths is calculated and compared with the experimental results.

9.1 Computational Methods for Estimating the Emis-

sion of Ka Photons

9.1.1 Fast Electron Recirculation and M1 Model for Fast Electron
Transport

Fast Electron Recirculation in the M1 Model

The Ka images obtained in the laser plasma interaction experiments are contaminated by the elec-
trons refluxing off the target sides. Indeed, the propagation of fast electrons in vacuum is limited by
the Alfven-Lawson limit I, = —17790, kA and the space charge electric field. Most of the beam

electrons are thus strongly decelerated and then accelerated in the opposite direction by the space

charge electric field at the target boundary in the beam Debye sheath Ap; = \/ kpTy/AnTynpe? =~
7.431073 pm+/Ty[keV]/Tpnp[1021 em=3], which is less than one micron. Here, kpT}, is the beam elec-

trons temperature (and not their mean kinetic energy!) and T'y, = I'(pp) is the bulk Lorentz factor

where pp is the mean momentum of beam electrons. In a first attempt, electron refluxing can be

described as specular reflections off the target boundaries.

However, one issue of the M1 model is that, by working with the angular averaged values, it
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Figure 9.2: Schematic illustrating the M1 limitation in the case of two counterpropagating
anisotropic and monoenergetic electron beam having the same energy.

cannot make a distinction between an isotropic angular distribution function and two monoenergetic,
collimated and counterpropagating electron beams, as illustrated in Figure 9.2. It might be possible
to extend the model to the second order of the hierarchy M2. In this approach, the three first angular

moments are computed according to

ovy 0 0
o T g (T1) = 5 (05T + W1 E) =0, (9.1)
owr 0 0 e e
87751 + g (V82) = o (vST1 + evlr.E) = > (Tl — ¥3) .E — vmec‘h x B —v¥, (9.2)
and
%2 L 9 () - 2 (05D, + W4 E)
ot Or Oe
2 (9.3)

1
= —]E) (‘I’l & E + E ® ‘I’l - 2‘I’3E) — [‘I’QT(B) - T(B)‘I’Q] —3v <‘I’2 - 3\11()1)

YMeC

where it has been noted T(B) the tensor
T(Bs, By, B.)=| -B. 0 B, such that VV € R?, T(B).V =V x B.

The third order angular moment W3 (third order tensor — 27 terms) must be computed according to
the Minerbo maximum entropy criterion in order to close the system. However, this option is outside

the scope of this thesis.
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Two Sets of M1 Equations as a Solution for the M1 Limitation

<= ——
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Irradiated side refluxing Rear side refluxing
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Figure 9.3: Schematic of the method used to account for the fast electrons refluxing at the laser-
irradiated side and/or the rear side of the target by solving two sets of M1 equations for
two counterpropagating fast electron beams.

Instead, we choose another possibility that consists in solving two sets of M1 equations for each
counterpropagating electron beam in order to account for the fast electrons refluxing : one set of M1
equations (see Chapter 6, section 6.2), for the angular moments \If(()l) and \Ilgl), is computed for
the fast electrons population propagating in the laser pulse propagation direction and another one, for
the angular moments \If(()Q) and \1152), is computed for the refluxed electrons population that propagate
in the opposite direction. While the absorbing boundary conditions, detailed in Chapter 7, section
7.1.6, are not modified, we initialize the electron beam (@) propagating in the backward direction
upon assuming specular reflections off the target rear side of the forward-propagating beam (). Tt is
expected that we do not lose much of physics since Ap is small compared to the considered space
scales Az and since only a small part of fast electrons is escaping from the target (few percents).
From a numerical point of view, it reads, according to the HLL scheme for the fast electrons spatial

advection (see Chapter 7 for the notations) :

\IJ(()2)7n,i7j7Nz+27l — \:[162)7nai7jaNz+1al — \Il(gl)vnaivijz,l
(2)7n7i7ijZ+27l — (2)7n7i7j7NZ+17l i (1)7n7izj7NZvl
i gOmiiNal o e Vis = Ui, = VYig
1’Z (2)7n7i7j7N2+2»l —_ (2):n’i7j7Nz+1yl _ (1)7n’i7j7Nzyl 9 4
\Ijl,y - \Ijl,y - \Ijl,y (9-4)
(2)7nai7j7NZ+27l S (2),n,i,j,Nz+1,l _ (1)7n7i7j7Nz’l
\Ijl,z - \Ill,z - _\Ill,z
else ¢(2)7n7i7j7N2+2 — ¢(2)7n7i7j7Nz+1 — 0

and
If qjg?z);znvizjz27l < O then ¢(2)7n7i7j707l — ¢(2)7n7i7j71’l — ¢(2)7n7i7j72’l

9.5
clse @m0l — p(@midll — @, (9-5)

Concerning the other boundary conditions at « = +L,/2, y = £L,/2, € = enin and € = L., we use

Page 264



CHAPTER 9. APPLICATION TO THE Ka EMISSION DURING FAST ELECTRON
TRANSPORT IN SOLID TARGETS

the boundary conditions explained in Chapter 7, section 7.1.6, assuming L, and L, are taken suffi-
ciently large (several hundreds of um) to avoid fast electrons refluxing at the target lateral boundaries

as it is usually the case in experiments.

Also, the use of large transverse dimensions L, and L, allows us to neglect the electromagnetic
fields at the transverse simulation box boundaries +L,/2 and +L,/2, as explained in Chapter 7,
section 7.2.3. However, contrary to Chapter 7, section 7.2.3, we cannot impose the same boundary
condition at the target rear side z = L,. Instead of Equations (7.88) and (7.92), we impose the same

boundary conditions as at the irradiated side of the target (7.89) and (7.93). It reads respectively :

BN +2 — BN+ _ gntd Ve (9.6)

and
EiiNa+2 _ i Na+1 _ gnigNe (9.7)

In the case of a normally incident laser pulse on a solid target, the electrons coming back to the
laser-plasma interaction zone may be strongly deviated due to the presence of local magnetic fields
or they may enter in the underdense preplasma. In all cases, we assume that these electrons are
taken into account by the Particle-In-Cell (PIC) simulation of the laser plasma interaction ®;,; and
we consequently let all fast electrons M and @ escape from the target in the laser-irradiated side.
However, in the case of a high contrast, short pulse obliquely incident on the target, the laser-generated
fast electrons (V) propagate mainly in the laser pulse propagation direction. The refluxed fast electrons
(2)| coming from the target rear side arrive at an abrupt solid-vacuum interface at the laser irradiated
side of the target away from the laser plasma interaction zone. Therefore, in this case, we also account
for the refluxing of the fast electrons @) at the front side. Thus, after initializing the laser-generated

fast electron (V) as

If t< tsource then Qs(l)’n’i’j’o’l = Qs(l),n,i,j,l,l = (Z)gl’ii’jJ’Z
else if Wg{;JIﬂZJvQ»l < 0 and t > tsource then ¢(1)7n7i7j707l e ¢(1)7n7iaj717l = ¢(1)7n7i7j7271 (9'8)
elSe ¢(1)7n7i7j70’l — ¢(1)7n7i7.j71’l — 0

by knowing the fast electron distribution ¢,; according to the PIC simulation of the laser plasma
interaction, we add the fast electrons component due to the refluxing of the fast electrons population

propagating backward ) as follows.

(1),m,3,5,00 (1),m,3,5,1,0 _ g, (1),ny4,5,1,0 (2),m,4,5,2,1

Yo = ¥ =¥ + ¥
(1),nyi,5,0,0 (Dm,i,d 10 g (1),my4,5,1,0 (2),m,4,5,2,1

If \I](2)>n7i7j727l < 0 then \Il].ﬂ? - \II].,I - \I]].,CE + \I/].,Z‘ (9 9)
172 \I}(l)»nzixj)OJ —_ \P(l)ynyiyjle —_ \P(l)7n7i7j71’l _|_ W(2)7n7i’ja27l ’ :

Ly - Ly - T ly 1,
(1)nyi,5,00 ()ynying, Lt _ (1), 10 (2),m,4,5,2,1

\Ijl,z - \Ill,z - \Ill,ac - \Ijl,z

An option in the Fortran 90 file data.f90 allows for enabling or not the refluxing of fast electrons at
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the target rear side and another one for enabling or not the refluxing of fast electrons at the target
irradiated side. This is illustrated in Figure 9.3. Obviously, solving two sets of M1 equations doubles

the computational cost. Also, the beam density reads now

L. X . y
np = / (06 + W) de = mpt3k = 37 (W g Bt A (9.10)
€min =1

while the beam current density needed to compute the self-generated electromagnetic fields reads now

Le o Ne - .
5 = e/ v (\pgﬂ n \Iff)) I L (\pgl%wm v \Ilﬁ”’"”’““’l) Ae.  (9.11)
Emin =1

In the following, we note Vg = \I'(()l) + \I/(()g) and ¥y = ‘Pgl) + \I’gz).

9.1.2 Emission of Ka Photons in Hybrid Models due to Laser-

generated Fast Electron Beam

K-shell emission is produced when a fast electron knocks out a K-shell electron from an atom in
the solid target is then replaced by an electron from an outer shell - a transition that leads to the
emission of a photon with a characteristic energy in the x-ray band (see Figure 9.1). If the outer
electron comes from the L-shell, the emission is called K«; if it comes from the M-shell, it is called
K. Depending on the orbital moment of the L-shell electron, one can distinguish between a more
energetic Kaj photon and a less energetic K ay photon. According to the Dipole Transition Criterion,
Ka emission is more probable than K emission while K« emission is more probable than Koo
emission. Therefore, the majority of K-shell diagnostics used in laser solid experiments rely on the
detection of Ka; photons. A fundamental parameter is the collisional K-shell electron ionization cross
section. According to [Davies et al., 2013] for Copper tracer layer, the empirical formula provided by
[Hombourger, 1998]

C(e)
E°> 9.12)

o (€) = 2oy, Gr(€) D(e) (EK
is the most acurate expression found by the authors in the literature for the K-shell electron ionization
cross section induced by a collision with a laser-generated fast electron with a kinetic energy . Here,
TBohr = 5.2918.107% cm is the Bohr radius, Fy = 13.61 eV is the fundamental Hydrogen state energy,

FEi is the ionization energy of the K-shell electron depending on the atomic number Z of the material,

4.172  1.877\ InU
D(e) = (3.125 — 9.13
o= ( o+ ) 5 (0.13)
0.3160  0.1545
O(e) = 2.0305 — + (9.14)

U U?
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Material | Z | Ex [eV] | hvka, [€V] | hvka, [€V] | Ikas/IKka, | hvks [€V] | Ikp/Ika
Al 13 | 1559.6 1486.70 1486.27 0.5 1557.45 0.02
Cu 29 8979 8047.78 8027.83 0.51 8905.29 0.12
Ta 73| 67416 D7532. 56277 0.57 65223 0.22

Figure 9.4: Values of a K-shell electron ionization energy E, energy of a Ka1, Kas and K photon
hvka, s hVka, and hvgg, and ratios Ixa,/Ika, and Ixg/Ika of the K-lines intensities
depending on the atomic number Z of the material.

where U = ¢/Fk is the normalized kinetic energy of the fast electron and

(L+20) (U + 2 [0+ U) (U +20) (1 + J)Z]?’/2

O = N A RO LoD 1 U 12 (15 2

(9.15)

is the Grysinski coefficient where J = m.c?/Ek is the normalized electron mass energy. Actually,
there is a mistake in the original paper by [Hombourger, 1998]. It is 2J and not only 2 as colored in
red in (9.15) [Gryzinski, 1965a] [Gryzinski, 1965b].

According to [Davies et al., 2013], it is usually assumed that the fraction of atoms with
Under this

assumption, by knowing the K-shell fluorescence yield wx depending on the atomic number Z of the

empty K-shells, as a result of collisions with fast electrons, is negligible.

material, one may directly deduce the number of Ka and KS photons emited per unit of time, volume

and steradian according to

d 1 2n; 1 1
< Za1> = ZFKOélFKOéwKﬂ with FKa1 = f and FKOt = 717
t Emitted 4 To 1+ Kas 1+ Kp
[Kal IKa
dn 1 2n; . 1
(da2> = 4*F'KO[2FKOL(,UKiZ with FKag = T =1- FKa1
t Emitted T T 1+ ZKay
IKCVQ
d 1 2n; 1
and (nﬂ) = fFngKﬂ with FKB I S 1— Fgq
t Emitted 4m ) 1+ Ka
IKB
(9.16)
where . .
Ty = </ \Ifoo'K'U Cle’:‘) . (9.17)
Emin

Here, n; is the ion density, Ixa,, IKkay, Ik, and I Ks are the intensities of a single Ko or K/ photon
signal, respectively. Their values, depending on the atomic number Z, are given in Figure 9.4
according to [Thomson et al., 2009]. The factor 1/47 comes from the fact that the photons emission
is assumed to be isotropic. Fko, Frowk and Fgpgwg are the probabilities that a photon Ka; or
Kg, respectively, is emitted when a K-shell hole is recombined by a L-shell electron or a M-shell
electron, respectively. 2n; is the density of holes induced by the ionization of K-shell electrons (there

are two electrons in the K-shell of atoms used in experiments). 73, is the characteristic ionization
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time or the inverse of the ionization frequency. It accounts for the fast electron energy distribution
Uy(r, €,t) at the space location r and time ¢ and the ionization probability o (e)v(e) that a fast
electron with a kinetic energy ¢ ionize one K-shell electron. According to [Kahoul A. et al., 2011], the

K-shell fluorescence yield can be estimated as

(Z/30.896)3347
1+ (Z/30.896)>347

wi = 0. (9.18)

This formula fits the experimental results compiled by [BAMBYNEK et al., 1972] and
[Krause and Oliver, 1979] with an error less than 5 % except Aluminum with a deviation of 14 %

compared to [Krause and Oliver, 1979]. The time integrated number of Ka; photons emitted per

t d o
N, (T, t):/ < Z;) dt (9.19)
0 Emitted

is computed self-consistently with the fast electron beam transport hybrid model, as illustrated in

unit of volume and steradian

Figure 8.12 d) of Chapter 8, section 8.2. It can be directly compared with the experimental

time-integrated Koy signal.

Page 268



CHAPTER 9. APPLICATION TO THE Ka EMISSION DURING FAST ELECTRON
TRANSPORT IN SOLID TARGETS

9.1.3 K-shell Hole Density Dynamics

As explained in the previous subsection, the method of computing the emisssion of K« photons (9.19)

is based on five assumptions :

1. The hole lifetime 7 due to K-shell fluorescence, Auger and Coster-Kronig effects is small

compared to the ionization time 7.

2. The numerical time step of the fast electron transport hybrid model At, is large compared

to the hole lifetime 7x so that the density of holes ng(r, t,+1) attains its maximum value

Qni(r, tn)TK/Tb(r, tn).
3. The target is fully transparent for the K« photons.

4. The K-shell photoionization by the X-rays emitted by the fast electrons or other laser-plasma

processes is negligible compared to the collisional ionization by the fast electrons.

5. The K-shell fluorescence yield wg and the collisional ionization cross section o do not depend

on the target temperature.

A more detailed analysis of Ka emission was proposed by [Thomas et al., 2013]. It allows us to
demonstrate that, while the assumption 1 is fully justified, one must be careful with the assumption

2, which is depending on the tracer material.

Let us note npg; the density of atoms with one hole in the K-shell. According to

[Thomas et al., 2013], its temporal evolution can be described by the following kinetic equation

871}[1

= RKl — @ Where RKl = QM (9.20)
8t TK Th

is the ionization rate depending on the density of available K-shell holes 2(n; —ng1). 7 = h/T i is the
hole life time deduced from the K-shell natural level width I'x (< Heisenberg incertitude principle).
The factor 2 in Rg1 comes from the assumption that the K-shell is initially full, as it is the case in the
laser-solid experiments. Let us note nps the density of atoms in the solid target with two holes in the
K-shell. According to [Thomas et al., 2013], its temporal evolution can be described by the following

kinetic equation
8nH2

= RK2 — @ where RK2 = w (9.21)
ot TK Th

is the ionization rate of the second K-shell electron and (ng — np2) is the density of available atoms
with only one K-shell hole. Then, the total number of atoms with one or two holes in the K-shell

nyg = ng1 + ng2 evolves according to the following kinetic equation
0 1 1 2n;
on ( n ) nyy = 24 (9.22)
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According to [Thomas et al., 2013], the K-shell natural level width can be estimated by
' = exp (—0.0002725Z7 + 0.09932Z — 2.160) eV, (9.23)

which agrees with the results compiled by [Krause, 1979] with an error less than ~ 10% for Z >
10. The hole lifetime 7 = h/T'k is plotted in the right panel of Figure 9.5. As proposed by
[Thomas et al., 2013], one can solve analytically Equation (9.22) to determine in each numerical spatial

cell (i, j, k) the hole density nzﬂ’i’j’k at t, + At, as a function of the ionization time

o 1

g (9.24)
Z \I/g’i’j’k’lUK (EZ)’UIAE
=1

and the hole density n’;I” * at time t,. It reads [Thomas et al., 2013]

nHLigk o migk niyjk 2n;"" ni,jk
X2WH Tb 9 7'7 '

. . oI bIR AL . 2 .

— (1 _ F"”’]’kAtn> n%Z,J,k + ZTJ"’” +0 (F””’JVkAtn) if F”7Z’]7kAtn <1
7— 199
. b

2n7jl77’».7»k N

— B if Fn77'7.77kAtn >> 1

Fn7i’j’k7—£7i7j7k
(9.25)
where it has been noted T™* = (1/75¢) + (1/7,°"F).
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Figure 9.5: (Left panel) Collisional K-shell electron ionization cross section ok on the electron kinetic
energy ¢ for Aluminum (blue curve), Copper (red curve) and Tantalum (black curve)
according to Equation (9.12); (Right panel) Dependence of the hole lifetime 75 = h/T'x
on the atomic number Z according to Equation (9.23).

Let us compare the typical values of 7, and 7x. Assuming the electron distribution function in the
form g = (nyo/kpTy) exp (—e/kpTy) with the mean kinetic energy kgT}, > Fx and approximating the
collisional K-shell electron ionization cross section ok by the Heaviside function o (¢) ~ opll[e — Fk]

(see the left panel of Figure 9.5), one obtains

B 3107 fs
™ npo[1021 em—3]og[barns]

(9.26)

It gives 7,/7 ~ 4103 for Aluminum (nyg = 10%! em™3, 7% = 1.628 fs, 09 ~ 51072! cm? and
Er =1559.6 eV), 7,/7) ~ 210° for Copper (ny = 102! cm™3, 75 = 0.4028 fs, 09 ~ 410722 cm? and
Ex = 8979 eV) and 7,/7x ~ 6107 for Tantalum (nyy = 10%! cm ™3, 75 = 0.01731 fs, 0p ~ 310723 cm?
and Fx = 67416 eV). We deduce consequently that the assumption 1 is fully justified and that we can
consider I'"™"J** = 1 /7. However, depending on the material and on the numerical time step At,, the
assumption 2 is not necessarily verified as the hole lifetime can be comparable with the numerical time
step At, ~ 0.5 fs (see the CFL condition (7.50) of Chapter 7, section 7.1.4 or (7.52) of Chapter
7, section 7.1.5). Besides, for intermediate Z materials like Tantalum At, > 7 = 0.01731 fs,
we obtain nzﬂ’i’j’k — 2n?’i’j’kTK/T£’i’j’k by making I' — 1/7x > 1/At, in (9.25). According to
[Thomas et al., 2013], the K«a; emission rate reads per unit of time, volume and steradian reads
ng

dna1> 1
= —Fro Frowrg —. 9.27
< dt ) gmittea 47 froafta KTK ( )

Therefore, in the particular case where I'"™""*At,, = At,, /Tx + o(Tx /T5) > 1 as for Tantalum, (9.25)
and (9.27) lead to the standard expression (9.19) of the time integrated density of K« photons emitted

per steradian. It is not the case for Copper and Aluminum. Consequently, we decide to take into
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account the hole density dynamics in our model. It will be also useful for studies of the temporal

dynamics of the hole density in the context of the X-ray shadowgraphy.

The analytical solution of (9.22) for t € [ty, t, + Aty,] is

2nn77/7]7k 2nn77/7.77k

ng’k(t) _ (nzj,k,n . i ) exp <_Fn,i,j,k(t _ tn)) O — (9.28)

rmbakr, ok

15,5,k
1

by assuming that 7," B3k and n are constants during the numerical time step. Correspondingly,
we compute the Koy, Kas and K photons number emited per unit of time, volume and steradian

according to

dn 1 nﬂu]vk 1 <nz7]7 >
< d: > = ZFKOCI Frowr 2
Emitted T ZTJKk
dn 9 n,,7, 1 <n 5Ty >
( da ) = ZFKQQ Frowk H_n (9.29)
t Emifted ™ ZTJKk
nv"’? k) 2J 3
dt Emitted dm TK
where AL
(i), = 5 / w3 (1) dt
rf?‘kt" n+1,i,5,k n,i gk n,ij.k (9.30)
_ n[{v IR nH 3005 + 2nz 3005 (Atn/Tb 005 )
FTL:i?j?kAtn

7;[+1’i’j’k given by Equation (9.25). The time inte-

according to the analytical solution (9.28), with n
grated number of photons emitted from the cell (i, j, k) per unit of volume and steradian at time ¢y,

is then given by

o N dn n,i,j,k
nehik =% < al) At,,. (9.31)

n=1 dt Emitted
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9.2 Application to the Saclay UHI100 Experiment

Type A: Targets of variable thickness
from 4 ym to 19 ym
Tum Al Tum Al

Ka diagnostics

Tracer layer: Cu-3um
at 1um depth

Type B: Targets of variable tracer depth (19um constant thickness)
1pm Al 3um Al 6um Al

Tracer layer: Cu-3um
at variable depth

Figure 9.6: Scheme of the different targets irradiated by the UHI100 laser pulses in the experimental
campaign conducted by [SANTOS et al., 2013]; courtesy of J. Santos.

In this section, we apply the model of K«; photon emission (9.31), developed in the previous
section 9.1.3, to the experiments conducted by [SANTOS et al., 2013] on the UHI100 laser facility,
introduced in Chapter 8, section 2. As illustrated in Figure 9.6, an ultra high contrast laser pulse
was focused at 45 © on Aluminum targets with different thicknesses, and the hot electrons were detected
in a Ka Copper tracer layer of 3 um located at different depths. As already explained in Chapter
8, section 8.2.1, the hot electron source was calculated using Particle-In-Cell simulations performed
by [Gremillet, 2012]. We may assume that these simulation results are close to the experimental
reality thanks to the high contrast of the laser pulses, avoiding prepulse/preplasma effects on the
laser solid interaction that are usually not well characterized. In addition, the laser pulses have been
focused with a 45° angle of incidence. Thus, since the hiher-energy fast electrons propagate mainly

in the propagation direction of the laser pulse, the recirculation through the laser plasma interaction
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zone and their deflections by strong local magnetic fields are minimized here. Therefore, we only
take into account refluxing process due to the strong electric fields generated by the fast electrons at
the target’s rear and irradiated sides. The fast electron propagation is modeled with the M1 code
accounting for two, forward and backward propagating groups, and assuming specular reflections
of the fast electrons at both target surfaces. The time integrated Cu Kaj photon signal,
emitted from the Copper tracer layer have been measured experimentally with a cylindrical quartz
crystal Von Hamos spectrometer and another spherical quartz crystal completed by two cooled X-ray
CCD camera [SANTOS et al., 2013] so that we can compare the time integrated K«a; photons signals

obtained numerically and those obtained experimentally for all targets.

The M1 simulations presented in this Chapter are performed with the thermal capacities Cy,
and Cy,; presented in Chapter 6, section 6.3.1, the transport coefficients 1 and k. presented in
section 6.3.2 and the electron-latice/ion coupling factor G presented in section 6.3.3. We start
with a 2D-3V M1 simulation of the Al(1 pm)Cu(3 pgm)Al(1 pm) target without refluxing but with
these solid state physics corrections. It can be compared with the reference M1 simulation presented
in Chapter 8, section 8.2, computed with the Eidmann-Chimier model for  and . (see Chapter
3, section 3.3.1) and the hot plasma expressions for G, Cy,. and Cy;. Moreover, we will confirm
that the assumption 2 made in the reference simulation is not verified for Copper and Aluminum.
Secondly, we present the M1 simulation results with refluxing for the Al(1 pm)Cu(3 pm)Al(1 pm)
and Al(1 pm)Cu(3 pm)AI(15 pm) targets. It allows us to highlight the dependence of refluxing effects
upon the target thickness. Thirdly, we present the 2D-3V M1 simulation results with refluxing for
all targets, focusing on the emission of K«aj photons. The simulations reproduce qualitatively the
experimental data. Finally, three-dimensional effects are analyzed by considering the the 3D-3V M1
simulation results with refluxing for the Al(1 pm)Cu(3 pm)Al(1 pm) target.

Except for the 2D-3V M1 simulation presented in 9.2.1, which uses the same numerical conditions
as the simulation presented in Chapter 8, section 8.2, all others are performed with the same
conditions. Firstly, in agreement with the experiments (=~ mm), the lateral size of the targets are
taken sufficiently large (L, = L, = 500 um) to avoid refluxing at the lateral target boundaries. We
choose Ax = Ay = Az = 1 um for the spatial mesh size and Ae = 30 keV for the kinetic energy cells.
This is a compromise between the numerical cost of the simulations and their accuracy, imposed by
the available dynamic random access memory of the computer for the 3D-3V simulation. Indeed, with
these conditions, we have to allocate at each time step the variables ®, F, F,, F,,I'g, I'p and I, (see
Chapter 7, section 7.1 for the notations) while each one represents a 2 x 4 x 500 x 500 x 5 x 100-
dimensional table (2 for the two electron populations 1 and @, 4 for Uy, Vi, Uiy and ¥y ., 5002 x 5
for the spatial cells and 100 for the kinetic energy cells), that needs approximately 8 Go of available

dynamic memory in double-precision floating-point format.

The fast electrons are initialized as in Chapter 8, section 8.2, except for the 3D-3V simulation
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where the third spatial dimension is introduced as

Uinio(z, y, 2=0,¢,1t) = N{(t) fo(, ) fy(y, t)f2(2=0,t)f(e, t) (9.32)

where

1 Y 2
fy(y, t) = Wexp [—4ln2<m(t)> ] (9.33)
"8Iz
and
NY(t) = vpse(t) ok (9.34)
kpTyo(t)

while

Winii1(z, ¥y, 2=0,6,t) = ¥inio(z, y, 2 =0, ¢, 1)Q(x, 2 =0, ¢, t) (9.35)

remains unchanged, following the notations introduced in Chapter 8, section 8.2. The computa-
tional time L; = 1.5 ps is sufficient to let the fast electrons lose all their energy, thus ensuring that
they do not contribute to the emission of K« photons anymore at the end of each simulation. The
2D simulations took from = 2 to &~ 11 hours on 20 CPU, depending on the target thickness compared
to & 4 days and 17 hours on 40 CPU for the 3D simulation. In what follows, we will talk about Kay
photons and K« photons interchangeably and we omit the emission of Ko photons. The latter can

be deduced from the K«; emission and the contribution F,, to the K-shell fluorescence.

9.2.1 Preliminary 2D-3V Simulation - Effects of Solid State Correc-

tions

Firstly, let us present the 2D-3V simulation results for the thinnest target Al(1 pm)Cu(3 pm)Al(1
pm) without refluxing (absorbing conditions for 1 set of M1 equations) but with the target electron
and ion parameters introduced in Chapter 6, section 6.3 for the Copper and Aluminum layers
and with the model of Ka emission, described in subsection 9.1.3. By comparing it with the
reference 2D-3V simulation presented in Chapter 8, section 8.2, one can evaluate the impact of
the solid state physics corrections on the fast electron transport and the impact of the hole density
dynamics on the emission of K« photons. Let us remind here that the reference simulation has been
conducted without refluxing, with the Eidmann-Chimier model for 1 and k., the plasma expressions
hot

for the thermal capacities Cv, ~ and C%}gt, the Lee-More plasma electron-ion coupling factor GP° (see

Chapter 6, section 6.3 for the notations) and the standard formula (9.19) for the K« emission.

The total energy is conserved within an accuracy about 1.7 %, compared to the value of 0.5%
obtained in the reference simulation. As illustrated in Figures 8.9 and 9.7, the energy injected in
the target Ui, &~ 70 mJ, the energy escaping from the target rear side U,y ~ 50 mJ, the maximum

instantaneous beam energy in the target U max ~ 4 mJ and the total energy loss of the fast electron
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Energy conservation error : 1.7806 %
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Figure 9.7: Instantaneous beam energy Uj, x 10 (solid black), integrated beam energy balanced be-
tween injected and escaping electrons at z = 0 Uy (solid red), escaped energy Uyt at
z = b um (dashed red), total collisional energy loss U, (solid magenta), total “collec-
tive” Uyes energy loss (solid blue), instantaneous electric energy Ug x 103 ( )
and instantaneous magnetic energy Up x 103 (solid cyan).

beam Ugy + Ures = 20 mJ are close to the reference results. However, the maximum of electric
energy in the target Ug max =~ 5 1072 mJ is approximatively twice less than the value obtained in
the reference simulation, the maximum magnetic energy Up ~ 201072 mJ is less than the reference
UBmax ~ 30 1073 mJ and the contributions of the collisional and collective losses are different :
Ures = 10 mJ and U, ~ 8 mJ while it has been obtained U,,s ~ 13 mJ and U., ~ 6 mJ in the
reference case. Therefore, we conclude that the greater energy conservation error is due to the greater
collisional losses of fast electrons, computed with the downwind scheme (1st order). The differences
in the contributions of collective and collisional fast electron energy losses indicate a significant effect

of solid state physics effects introduced in Chapter 6, section 6.3.
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Figure 9.8: Slices at z = 0.375 um of the resistivity (black curve), the electron temperature (red
curve) and the ion temperature (blue curve) at ¢ = 26.6 fs (Left panel) and t = 499.3 fs
(Right panel).

As illustrated in Figure 9.10 (to be compared with Figure 8.11), the fast electrons reach the
target rear side at approximatively 100 fs in both simulations and the beam propagation do not
differ too much. However, Figure 9.11 (to be compared with Figure 8.12) shows differences in
the target heating profile (a), that affects the electrical resistivity (b) and consequently the self-
generated magnetic field (¢). The maximum value of the self-generated magnetic field is less than
90 T while it exceeds 100 T in the reference case. Also, we observe a broader transverse profile (in
the a-direction) of the heated Copper area compared to both Aluminum layers while we obtained
exactly the opposite in the reference case. These discrepancies may be explained as follows. The
Lee-More electron-ion coupling factor GP°! overestimates the electron-lattice coupling factor G4
at solid/liquid/Warm Dense Matter (WDM) temperatures by one or two order of magnitudes (see
Figure 6.13). Consequently, in the reference simulation, the ratios G'/Cy, and G"'/Cy; were
so huge that the target ion and electron temperature were instantaneously equilibrated (T, ~ T;), as
illustrated in Figure 8.13. Therefore, the Eidmann-Chimier model led to electrical resistivity values
close to those obtained with the Lee-More model that assumes T, = T;; see Chapter 3, section
3.3.1. Similar results were obtained with the Paris hybrid PIC simulation that uses the Lee-More
electrical resistivity (see Figure 8.14). As illustrated in the left panel of Figure 9.8, this is not
anymore the case here. The lower values of G4 at solid /liquid/WDM temperatures imply a strongly
non-equilibrium state, which impacts the target electrical resistivity n. Moreover, as illustrated in
Figure 6.8, the electrical resistivity is higher in Aluminum than in Copper in the solid state regime
with T; < T¢ but it is much lower in the liquid/Warm Dense Matter (WDM) state. Since the Ohmic
heating by the return current and the self-generated magnetic field generation strongly depend on the
beam current and the electrical resisitivity, the temperature decreases at both the Al/Cu and Cu/Al
interfaces. By contrast, the reference simulation shows an increase in electron temperature at the

Cu/Al interface (see Figure 9.9). This is due to the Eidmann-Chimer model predicting a greater
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electrical resistivity of Aluminum than the electrical resistivity of Copper in the liquid/WDM state
with T; = Te.
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Figure 9.9: Comparison at ¢ = 500 fs between the mean electron temperature < T, > over |Tpax —
x| < 5pum profile obtained with M1 (blue) and the one obtained with the hybrid PIC

code Paris ( ). Tmax is defined as the position where T¢(Zmax, 2) is the maximum
electron temperature at a given depth z (red). Refluxing is neglected here.

As illustrated in the right panel of Figure 9.8 (to be compared with the right panel of Figure
8.13), we observe the decrease of the electrical resistivity in the hot plasma regime, typical of the beam
hollowing effect. This different Ohmic heating by the return current in the first target layers is therefore
due to the introduction of the parameter B, that saturates the target electron-electron collision rate
(6.113) in the liquid/WDM states. Thus, collisions of s-band electrons on d-band electrons may play
a significant role in Copper. Due to the short time scale considered here, the target electron thermal
conduction k. does not play any role. Also, Cy,; does not impact the results since it weakly varies

from the solid state to the plasma state according to the Einstein model.

Both simulations give approximately the same 2D distribution of the time-integrated number of
emitted Ko photons, as illutrated in Figure 9.11 d) (to be compared with Figure 8.12 d)). Both
densities of time integrated Al and Cu Ka; photons are noted ng, even if they are computed from
different formulae depending on the atomic number of the material. It confirms the analytical estimates
obtained for Copper and Aluminum, showing that the hole density dynamics plays an important role
in the K« emission in cases where At, is comparable to 7. Indeed, we obtain a maximum number
of emitted of K« photons about 310" cm™3.sr~! from the Copper layer, which is four times less than
the value of 1210'® cm™3.sr~!, obtained in the reference case. In what follows, we will only discuss

the Koy and K emissions from the Copper layer.
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Figure 9.10: Electron beam density n; [cm ™3] from the M1 simulation at ¢ = 25 fs (a), t = 50 fs (b),
t="751s (c), and t = 100 fs (d). Refluxing is neglected here.

log, (T, [eV]) log, , (m [Q.m]) By [T]
15 05 15
¢ 80
10 2 10 60
5 1.5 5} 1140
— ' 2 {20
E || <} —
= 0 1 s 0 0 E
= E ¢
05 > 1-20
-5 —5t
L 1—40
0 .
-10 -10 ' §-60
-05 | l-80

0 5
Z [microns]

z [um]

Figure 9.11: Plasma electron temperature T, [eV] in a logarithmic scale (a), plasma electrical resis-

tivity 7 [Q.m] in a logarithmic scale (b), self-generated magnetic field B, [T] (c) and
the number of emitted Ka photons ng, [em™3.sr7!] (d) from the M1 simulation at
t = 500 fs. Refluxing is neglected here.
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9.2.2 Refluxing Dependence on the Target Thickness

Energy conservation error : 1.9346 % Energy conservation error : 0.76759 %
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Figure 9.12: (Left panel) Al(1 pm)Cu(3 pm)Al(1 pm) target; (Right panel)

Al(1 pm)Cu(3 pm)Al(15 pm) target; Instantaneous beam energy U, (solid black),
integrated beam energy injected at z = 0 Uiy (solid red), total collisional energy loss
Ucol (solid magenta), total “collective” energy loss Uyes (solid blue), instantaneous
electric energy Ug x 10% ( ) and instantaneous magnetic energy Upg x 103
(solid cyan).

In this subsection, we consider the effects of refluxing on the fast electron transport. We present
here the simulation results concerning the thinnest target Al(1 pm)Cu(3 pm)Al(1 pm) and the thickest
target Al(1 pm)Cu(3 pm)Al(15 pm). Let us remind here that the fast electron refluxing at the

target-vacuum interfaces is modelled assuming their specular reflections.

Figure 9.12, illustrates the time evolution of the injected fast electrons kinetic energy Uiyc, the
instantaneous fast electron’s energy in the target Up, the collisional and collective losses of the fast
electrons Uy and U, and the self-generated electromagnetic energies Ug and Up for both targets.
The energy conservation errors in these two simulations are approximatively 0.8 and 1.9 %. A larger
energy conservation error obtained for the thinner target is due to a greater collisional energy loss
by the fast electrons, which is computed according to the downwind scheme (1st order consistency
error). We can see that, contrary to the case without refluxing, the simulation must be run up to
1.5 ps in order to allow the fast electrons to lose all their energy and to ensure that they do not
contribute anymore to the emission of Ka photons. Actually, a simulation time of 1.5 ps is not
sufficient for the thicker target (U ~ 5 mJ at this time). However, as indicated by the increasing fast
electron energy escaping from the target transverse boundaries x = +L, /2, the fast electrons still in
the target at times ¢ > 1.5 ps are located at the target transverse boundaries and do not contribute
to the Ka emission zone we are interested in. As soon as the fast electrons have completed their first
recirculation in the target (at ~ 200 fs for the thinner target and = 250 fs for the thicker target), the

fast electron’s energy losses are mostly due to collisions. Indeed, the recirculation of fast electrons
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recirculation induces the presence of two counterpropagating beams of similar current densities in
the z-direction. Thus, the background electron current and the self-generated electric field in the
z-direction decrease rapidly (]élz) + jéi) + Je,- = 0 implies je. ~ 0 = E, = nj.. ~ 0 if jé}z) ~ —jé?)).
This effect can be seen in Figure 9.13 for the Al(1 pm)Cu(3 pm)Al(15 pm) target and in Figure
9.14 for the Al(1 pum)Cu(3 pm)Al(1 um) target. Indeed, we clearly see that the beam current density
ls| = yjff) +jl()2)| ~0at x ~ 10pm and ¢ ~ 240 fs or t ~ 490 fs, while there is a lot of fast electrons in

these zones according to the corresponding beam density maps.

Figure 9.12 also shows that, for the thin target, the collective energy losses of the fast electrons
are comparable with those obtained without refluxing (U,es ~ 15 mJ iSnstead of ~ 10 mJ). The
fact that we observe the same amount of collective energy losses for the thick target (Upes ~ 15 mJ)
indicates that the decrease in the beam current density with depth is such that collisional losses of the
fast electrons prevail for z = 4 um. That is why we also obtain similar temperatures at the Aluminum

rear side layer when comparing the simulations without refluxing in the previous subsection.

In Figure 9.12, we can see that the maximum of magnetic energy Up in the target is greater
for the thin target compared to the thick target by a factor ~ 2. This is a consequence of resistivity
gradients at the Al/Cu and Cu/Al interfaces (see By at t =~ 1.5 ps in Figure 9.13 and 9.14). They
are greater in the thin target compared to the thick target since the transverse component of the beam
current density jp . is greater. this results from the shorter propagation distance of the fast electrons,
which have thus a larger density (see Figure 9.13 and 9.14). It must be emphasized here that we
have to be careful concerning these self-generated magnetic fields induced by resistivity gradients at
material interfaces: like all ”hybrid” model, our model is based on the quasi-static approximation and
the neglect of the target electron inertia, assuming time scales greater than the beam neutralization
time. Consequently, it is valid on space scales much larger than the target skin depth A\ = c¢/wp.
Therefore, the increase of these self-generated magnetic fields with decreasing spatial cell dimensions
Az must be mitigated in the case where Az is chosen smaller than A.. Indeed, the temporal growth

of this contribution to the self-generated magnetic field reads

8By,res N] C@ - Bg7—’r—els7i7k - Bg:?eks _ .n,i,kcni’k—i_l — Ui’k_l (9 36)
ot P Aty b 2Az ' '
Thus, if we fix n»**1 = ne, and p™*~1 = na; or n®F+1 = na and p**~1 = 5c,, the B-field strongly

depends on the value of Az for a given beam current density j; .. Even if these huge magnetic fields
are initially located over a few Az, they subsequently diffuse inside the target, leading to unphysical
magnetic energies. It is not the case for all the simulations presented in this thesis (Az = 0.25 um is
the smaller spatial cell dimension that is used). However, additional simulations were conducted in
the course of the thesis for the understanding of experiments using targets made of a Copper layer
followed by a vitreous Carbon layer, for which the ratio nc/ncy was huge (see Figure 3.9 c). As a

consequence, the obtained magnetic energy was found greater than the injected fast electron’s kinetic

Page 281



9.2. APPLICATION TO THE SACLAY UHI100 EXPERIMENT

energy, which is clearly unphysical.

The maximum number of emitted Ka photons in the thick target (see ng, in Figure 9.13), is
approximately equal to that obtained in the thin target without refluxing (see Figure 9.11 d). By
contrast, the Ka yield in the thin target with refluxing is increased by a factor > 8 (see Figure 9.14).
We conclude that there is a strong dependence of refluxing effects on the fast electron transport with
the target thickness and that the refluxing effects on the emission of K« photons decrease with the

target thickness.
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Figure 9.13: 2D maps of the beam density n, [cm ™3] at t = 127 fs, t = 172 fs, t = 240 fs and t = 492
fs, corresponding 2D maps of the beam current density |j,| and target electron tem-
perature 7T, self-generated magnetic field B, and the number of Ka and K photons
nio and ngg, emitted from the Copper tracer layer at ¢ = 1487 fs.
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Figure 9.14: 2D maps of the beam density n, [cm ™3] at t = 127 fs, t = 172 fs, t = 240 fs and t = 492
fs, corresponding 2D maps of the beam current density |j,| and target electron tem-
perature 7T, self-generated magnetic field B, and the number of Ka and K3 photons
nia and ngg, emitted from the Copper tracer layer at ¢ = 1487 fs.
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Figure 9.15: (Left panel) Longitudinal profiles of background electron temperature (T¢.) (averaged
over |Tmax — x| < 5pum) obtained with the M1 code (blue points) with Az =1 um,
the hybrid PIC code PaRIS [Gremillet, 2014] ( ) and the full collisional
PIC code CALDER [Gremillet, 2014] (red curve) for the Al(1 pm)Cu(3 pm)Al(1 pm)
target. (Right panel) Longitudinal profiles of (T¢) obtained with the M1 code (blue
points) with Az = 1 ym and with the hybrid PIC code PaRIS [Gremillet, 2014] (

) for the Al(1 pm)Cu(3 pm)Al(15 pm) target. zpay is defined as the position where
Te(Zmax, 2) is the maximum electron temperature at a given depth z.

We can see that in both thin and thick targets, far away from the first recirculation zone (from
x ~ —10 to x ~ 20 um), the Copper tracer layer is hotter than the Aluminum layers (see T, in Figures
9.13 and 9.14). This is due to the greater density of background electrons (bound, free and screened
free) in Copper, leading to greater collisional energy losses (see Chapter 4, section 4.2, Figure
4.2) compared to Aluminum. Besides, the Copper layer is hotter in the thin target due to the same
reason as given for the explanation of the resistivity gradients contribution to the self-generated mag-
netic fields: the fast electrons recirculate more times through the Copper layer in the thin target and
thus mainly deposit their energy through collisions. Also, in the M1 simulations, the Ohmic heating
of the Copper layer by the return current is greater than the collisional heating of the Aluminum
rear side layer during the first 100 fs due to solid state effects (section 9.2.1). Indeed, as illus-
trated in Figure 9.15, this is not the case for the simulation results obtained with the full collisional
PIC code CALDER [Lefebvre et al., 2003] [Nuter et al., 2011] [Pérez et al., 2012] and the hybrid PIC
code PARIS [Gremillet et al., 2002] conducted by [Gremillet, 2014]. The difference between the PIC
methods (hybrid or not) and the M1 method concerning the spatial cell dimensions may be striking:
Az =1 pum for M1 while Az < Apy = /kpTp/dmypnpe? ~ 7.43 1073 yum(Ty, [keV]/vpnp [10%! cnrf3])1/2
for the PIC codes. This is due to the conceptual difference between a PIC method and a ”Vlasov-
Fokker-Planck” method, like M1. For the latter, the whole space 500 pm(x500 um) x 5( or 19) ym) is
discretized in order to describe the distribution function, while for both PIC methods, this is the tra-
jectories of the discretized macro particles following their position that are computed, only. Thus, the

PIC method allows for a less expensive numerical cost concerning the space discretization by following

Page 285



9.2. APPLICATION TO THE SACLAY UHI100 EXPERIMENT

the particles trajectories. The counterpart of this advantage is the interpolation and extrapolation
of the electromagnetic fields that imposes Az < Apj and contrains severely the computational cost.
However, while we obtain a significant difference of heating in the Copper layer due to the solid state
corrections mentioned above, we obtain the same temperature at the rear side Aluminum layer for
the thick target, where the fast electron collisions dominate, is approximately the same (see Figure
9.15).

Besides, the full collisional PIC simulation predicts the temperature of the first Aluminum layer
twice greater than the one predicted in both hybrid simulations. Let us try to explain such a discrep-
ancy by the fact that the fast electron current is temporally modulated. For this, we solve the Maxwell

equations coupled to the background electron hydrodynamic equations, assuming for simplicity

1. that the problem is one-dimensional,

2. a negligible pressure force of the plasma electrons,

3. a negligible electron thermal conductivity,

4. negligible collisionnal effects of fast electrons transport,
5. a negligible electron-ion energy exchange and

6. a rigid electron beam with a beam density

%t) such that ny(z, t) = nyo cos? (@t>. (9.37)

ny(z, t) = nyo + ony where dny = —nyg sin’ ( 5

npo = npo(z — vpt) represents the temporal/spatial envelope of the laser-generated beam density
and dny accounts for the fast electron bunches injected in the target at the frequency wy = wy,
or wy = 2wy, depending on the acceleration mechanisms (see Chapter 8, section 8.2, Figure
8.7). Here, due to the ultra high contrast of the laser pulse, we may expect that the j x B
heating is the dominant acceleration mechanism so that we may consider wyg = 2wr. We note
Joo = —npoevy the rigid beam current density envelope with v, the beam velocity, assumed to

be constant, and §j, = —dnyev, the bunches component.

While assumptions 1 and 6 are made for simplicity in order to obtain analytical estimates, assumptions
2, 3, 4 and 5 are fully justified over simulation times of ¢ ~ 100 fs. The equations that have to be

solved are the Maxwell-Gauss equation

oFE

5 = —4me (ne +np — Z*n;) , (9.38)

the Maxwell-Ampere equation

oF
i |
= AT e+ o) (9.39)
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the target electron continuity equation,

One 0 B
5 + P (neve) =0 (9.40)

the target electron momentum conservation equation

0j 0 . nee? ) nee? .
or + 3, (ede) = ——(E=nje) = ——E = vje (9.41)
e e
and the target electron heat equation
0 0 ) MelVe |
CV,e |:8t + 'Ue82:| (Te) = 77]62 = - ee eje. (942)

The solutions neg, Veg, Jeo, Leo provided by hybrid models correspond to the quasi-static approxima-
tion: they neglect the target electron inertia, assuming times greater than the beam electromagnetic

neutralization time. They read consequently

OFE
830 = —4dme(neo +npo — Z*n;) =0 with nyg K neg = Z*n;
F o L . e
7: = —47 (jeo + Jeo) =0 implying jeo = —jpo and vep = - zvb
on B ‘
850 ’ 0z (neoveor)n:m? MelV 4mv o
E() = aneO =_—= <0 with N = c 3= o and
Neo€ Wp
oT, . .
Cve 8;0 = Nojeo’ = Eojeo-
Let us estimate analytically the errors
V¢ € {nea Ve, Je, Te}7 0 =¢—& (9.44)

done by hybrid codes. Assuming &, vary slowly compared to d¢, we obtain, by injecting (10.56) and

(10.60) in the previous equations :

2(5E = —4dme (dne + ony) , (9.45)
0z
0 . .
a(SE = —47 (0je + 6J) , (9.46)
0 0 B 0 0 B 0je + dneeve
[875 + veoaz} ONne = —ne()%éve ~ 5 (0nedve) where dv, = — < 5ne) , (9.47)
nege | 1+
Te0
D o] 70 = =2 (50et7) — oo Lobve + 25 1 gy g e s (0.48)
ot " U0, | e T T, \OVe0e) T ey O T L Neo 47 4 0 Neo Je '
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and

0 0 0 Ve
G v | 0T, = —Cyebve—0T, + E,
Cv7e [at +v 082:| ) va ov 82(5 + O'Ueg

0je + Eobje — Egnepedve. (9.49)

We assume constant thermal capacity Cy, and electron relaxation time v in space and time. In
addition, n; = 6 10?2 cm™2 and n.o = Z*n; > 3n,; in Aluminum so that the plasma frequency wp > 23
rad.fs~!. The laser frequency is wy = 2mc/A = 2.3 rad.fs~' (A = 800 nm). Consequently, we can
consider wy, > wp. Also, according to Figure 6.9, the background electron relaxation rate v can be
consider smaller than 10 fs~! but larger than 1 fs~! from T, ~ 107! eV (T; = T.) to T, ~ 1 keV.
Thus, we consider the scaling

wp > V> wp. (9.50)

We assume in addition

7. the non-linear terms are negligible,
8. quasi neutrality én. = —dn; and

9. (0dve/0z) = 0.

Assumptions 8. and 9. can be justified by noting that the charge neutralization mainly takes place
in the transverse direction leading rapidly to dn. = —dn; with spatial variations of dv. mainly in
the z-direction. Assumption 7 serves to linearize the equations and to find analytical estimates.
Under these last assumptions, by working in the frame where the target electron envelope is at rest :

~

0&(C, t) = 0&(z, t) with ¢ = z—weot and by coupling (9.45) and (9.46), we obtain the coupled equations

OO

% —4m (536 + tﬁb) a)
82?6 -0 b (9.51)
6;3 e A
that finally gives N ~
9%57e n ,90je w0257, = —w, 257, (9.52)

ot? ot
describing the error 6, done by the hybrid methods. Considering the limit (9.50), assuming (57@@ , b=
0) = 0 and 9;04.(¢, t = 0) = 0, we find
b0

§je = -5 1 — cos (wpt) exp <—%t>] . (9.53)
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Solving then the heat equation (9.49) for the error in temperature, we find

80T, - 57e
Cve 2078 = 9B485, + Ejeg e (9.54)
’ at Neo

Following assumptions 7, 8 and 9, assuming 5@@ ,t = 0) = 0, the ordering (9.50) and nyy < neo for
neglecting of the second term in the right hand side of Equation (9.54), the solution reads

= JooEo sin (wpt) v
6T, = — t— T exp (—2t) | 9.55
=T 1 ) o (— (9.55)
Finally, averaging over one electron bunch period 79 = 27/wp, we deduce an estimate of the additive
temperature component in the first Aluminum layer, obtained by the full PIC simulation and neglected
by both hybrid models :

_ 1 [ v
<6T€>1 bunch — 7_/ 6T€(<7t)dt = - g) OTU = <T€0>1 bunch* (956)
0.Jo Vie

Thus, according to our simple model (9.51), each fast electron bunch generates a weak field of back-
ground electron plasma wave according to (9.51 a) and (9.51 ¢), which are damped due to collisions
with the background ions and electrons, according to (9.51 ¢). This damping results in an additional
target electron heating mechanism according to (9.54) that leads to a target electron temperature
T, = Teo+ 0T,, which is approximatively two times greater than the one predicted by the hybrid mod-
els Typ according to (9.56). This is quite in good agreement with the simulation results, illustrated in
the left panel of Figure 9.16. This additional electron heating mechanism was recently pointed out
by [Sherlock et al., 2014]. They proposed therefore to replace the quasi-static Ohm’s law E = —nj,

by the dynamic equation
O’E  OE 9 47 [ Oj
— — E=—— (= j .
92 +V8t + wp - <8t +ij> (9.57)

for the electric field that takes into account the excitation of plasma waves and their collisional damping

due to collisions.

9.2.3 Comparison of Time Integrated Ka Emission of with the Ex-

perimental Data
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Figure 9.16: 2D maps of the number of emitted K« photons at ¢ = ¢ty = 1.5 ps from the 2D-3V
M1 simulations with refluxing and an example of CCD images obtained experimentally

[Vauzour, 2014].
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The 2D maps of the time integrated number of Ka; photons emitted per steradian at ¢ = 1.5
ps from the 2D-3V M1 simulations with refluxing for all targets are plotted in Figure 9.16. We
can see that the emission of K«j photons from the Copper tracer layer increases with decreasing
target thickness. Indeed, the maximum value of the Ko emission reaches ~ 3010 cm™3.sr™! for
the thinner target while this number decreases to ~ 11 10'® cm=3.sr7! for the Al(1 ym)Cu(3 pm)Al(6
pm) target and ~ 71018 cm=3.sr~! for the Al(1 ym)Cu(3 pm)Al(10 um) target falling down to 4 10'8

3.sr7! for the thickest target. Moreover, the location of maximum emission shifts to larger = with

cm™
increasing target thickness. This is a clear signature of the fast electron’s mean propagation direction

that makes an angle of ~ 25° with the target normal.

Let us compare these 2D-3V M1 simulation results with the experimental K«a; signals received
by the CCD camera and obtained thanks to the crystal spectrometers. An example of CCD image is
shown in Figure 9.16. In order to decrease the effects of noise-to-signal ratios estimated around 10 %
according to [Santos, 2014], the experimental signals have been summed over several shots under the
same conditions [Vauzour, 2014]. Therefore, we cannot directly compare the absolute values of the
signals (since they depend on the number of shots conducted for each target). Rather, we renormalize

the experimental signals according to our 2D-3V M1 simulation results:

<nKa>zmaX
NKaexp 7 NKa,exp™ max * (958)

Ka,exp

max

Here, (nka)- is the maximum value of the number of emitted K« photons from the 2D-3V M1

simulations, averaged over the Copper layer thickness

1
LCu

(nKa):(x) /Z2 nia(, 2, ty)dz. (9.59)

21

Here, Loy = 3pm, ty = 1.5 ps, 21 = 1pm and 22 = 4um or 23 = 3um and z3 = 6 um or z; = 6 um
and zo = 9 um depending on the targets. The resulting experimental signals averaged over 5 pixels
(8.6 pm x 7.825 um) [Vauzour, 2014] are plotted in Figure 9.17. The panels a) and b) present the
horizontal (z-axis) and vertical axis (y-axis) of the two-dimensional CCD image as shown in Figure
9.16. In order to make comparable plots, we add a uniform noise of 10 % of the maximum value to

the calculated Ka profiles:
(nKa)z(2) = (nKa).(z) + blz] where b[z] = 0.1 (ngq),"™ Lpe[—o0,00][%]- (9.60)

Also, we account for the average over 5 pixels (8.62 um in the z-direction) of K« signals by convolving
(9.60) with a Gaussian function that has a Full Width at Half Maximum (FWHM) of Azg = 10 pm

La .
<nKa>z(.ZE) = / 12/:0 <TUQ.)g(l’O;exp [—41112(1.&1:20) ]d$0 (961)
_ i)
2 81n2
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Finally, the offset implied by the artificial noise b is accounted for by substracting 0.1(ngq)," from

(9.61).

thickness and in Figure 9.17 d) for targets of variable target depth.
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Figure 9.17: Experimental horizontal a) and vertical b) profiles of K «; photon signals averaged over
5 pixels (8.62 um x 7.825 pm) [Vauzour, 2014] for targets of variable thickness (renor-
malized according to the corresponding 2D-3V M1 simulations). Horizontal profiles of
the K« emission obtained from the simulations by averaging it over the whole Cop-
per layer thickness (dashed curves), adding an uniform noise and convolving it with a
Gaussian function of 10 um FWHM (full curves) for targets of variable thickness c) and
variable tracer depth d). Corresponding normalized profiles are plotted in the inserts

of Figures ¢) and d).
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According to the inset in Figure 17 d), we can see that the K«; emission spot size increases with
the tracer depth. It is usually interpreted in experiments as a signature of a strong angular divergence
of laser-generated electron beams. However, as already noticed by [Ovchinnikov et al., 2011], it is not
so evident. The wings of the emission profiles are contamined by the recirculation of fast electrons
inside the target. For example, the normalized emission profiles plotted in the insert of Figure 9.17 c)
would mean that the K« photon emission spot size increases with increasing target depth. It is false
according to the non-normalized values as illustrated in Figure 9.17 c) : due to the fast electron
refluxing, the emission spot size increases with decreasing target thickness. According to
9.17 b), the Ka; photon signals obtained experimentally are symmetric with respect to the y-axis in
the plane x = 0. As illustrated in Figure 9.17 a), it is not the case with respect to the z-axis in the

plane y = 0 due to the incidence angle of the laser pulse in the plane y = 0.

Except for the thinner target, Figures 9.17 a) and c) show that the 2D-3V M1 simulations
reproduce well the experimental results. However, these 2D-3V calculations must be revised with
regard to three-dimensional effects. The right panel of Figure 9.18 compares the 3D-3V simulation
result and the experimental data. There is a strong discrepancy concerning the K« photon emission
spot size, even worse than for the 2D-3V simulation. The comparison is conducted under the same
conditions as in the 2D-3V simulations. Firstly, the experimental signal is renormalized to the 3D-3V
M1 simulation according to (9.58). The maximum value of the K«; emission is averaged over the

Copper layer thickness
1

LCu

22
/ nKa(xa Y, %, tf)dZ (962)

21

(nKa>z(x> y) =

with Loy = 3 pum, ty = 1.5 ps, 21 = 1 um and 2o = 4 pm. A uniform noise of 10 % of the maximum value
is added in = and y directions according to (9.60) and the result was convolved with two Gaussian
functions of Axy = Ayy = 10 um FWHM according to (9.61). The offset of 0.1(ngq)."— is then

substracted from the final result.

9.2.4 Three-Dimensional Effects

As illustrated in the inset of the right panel of Figure 9.18, the spot size on z-axis of the K« photon
emission is almost twice less in 3D than in 2D. We explain this as follows. In the 2D simulations,
we impose specular reflections of the fast electrons in the plane y = 0 since the third dimension is
not taken into account. Therefore, the fast electrons are confined in this plane and the emission in
the z-direction is enlarged. It is not the case in the 3D simulation where we allow the fast electrons
to propagate in the y-direction. It is important to notice that this 3D effect also lead to a smaller

3 st even smaller than in the 2D case

maximum value of Ka; photon emission of 1.410® cm™
without refluxing (see ng, in Figure 9.11). However, the effective surface of K«; photon emission

S, is greater in 3D as we may expect. Indeed, we obtain a total number of K« photons emitted per
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Figure 9.18: Left panel : Instantaneous beam energy U, (solid black), integrated beam energy bal-
anced between injected at z = 0 Uiy (solid red), total collisional energy loss U, (solid
magenta), total “collective” energy loss Uses (solid blue), instantaneous electric energy
Ug x 10* ( ) and instantaneous magnetic energy Up x 10% (solid cyan) from
the 3D-3V simulation for the thinner target. Right panel : Experimental horizontal and
vertical profiles of K «; photon signals averaged over 5 pixels (8.62 ym x 7.825 um) for
the thinner target [Vauzour, 2014], renormalized according to the simulation (dashed
curves) and corresponding horizontal and vertical profiles of the K« photon emission
obtained from the 3D simulation (full curves). The horizontal profile is compared to
the corresponding profile from the 2D simulation in the insert.
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as we expected. The left panel of Figure 9.18 illustrates the different energy balance for the 3D
simulation. By comparing it with the left panel of Figure 9.12 for the corresponding 2D simulation,
one can clearly see strong 3D effects. While the maximum electric energy in the target weakly varies,
the maximum magnetic energy Up ~ 401072 mJ (compared to Up =~ 601072 mJ) is greater than in
the 2D simulation since the self-generated magnetic field diffuse in the third dimension. Also, since we
let the fast electrons propagate in the third dimension, the longitudinal beam current density jj . is
lower in 3D during the first passage of the fast electrons through the target. Consequently, the Ohmic
heating by the return current U,es =~ 8 mJ is smaller than in 2D, where U,es =~ 15 mJ. It also explains
why the number of K« photons emitted in the 3D simulation is greater than in the 2D simulation.
Indeed, fast electrons lose less energy due to their slowing down by the self-generated electric field
compared to the 2D simulation. Therefore, the fast electrons are more energetic and ionize more

K-shell electrons. This explains also why the 3D simulation shows greater collisional losses.
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Figure 9.19: 3D-3V run : Slices of the beam density (Up Left) and current density at t = 235.1
fs (Up Right), target electron temperature (Middle Left), target electrical resistivity
(Middle Right), time integrated density of K« photons emitted per steradian (Down
Left) and magnetic fields at ¢ = 1062.1 fs (Down Right); Slices are indicated in the

TFigure.
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Figure 9.21: 3D-3V run : Slices at z = 0.5 um (Left) and z = 2.5 um (Right) of the z-component

(Up), y-component (Middle) and z-component (Down) of the self-generated magnetic
field B.
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The beam density n, and the beam current |j,| obtained from the 3D simulation for the thinner
target at t = 235.1 fs are plotted in the upper panel of Figure 9.19. The slices at y = 0 can directly
be compared with the corresponding 2D plots at t = 239 fs in Figure 9.14. These graphs confirm
the conclusions drawn from the emission of K« photons : by allowing the fast electrons to propagate
in the third dimension, the fast electron beam density and the maximum fast electron beam current
density in the plane y = 0 are smaller in 3D. Indeed, the maximum beam density is 110%° cm ™2 and
the maximum beam current density is 1.6 10! A.cm™2 compared to 510%° cm ™ and 2.510' A.cm™2
obtained in 2D. That confirms the explanation of a lower K« emission in 3D. Due to their refluxing
and the self-generated magnetic fields, the fast electrons propagate towards two opposite target corners

instead of the z-direction as in the 2D case.

The electrical resistivity from the 3D simulation at ¢ = 1062.1 fs is plotted in the middle right
panel of Figure 9.19. The slice at z = 2.5 um illustrates the beam tendancy towards hollowing in
Copper. The norm of the self-generated magnetic field vector |B| is also plotted in the lower right panel
of Figure 9.19. In order to understand its geometry, the different components of the self-generated
magnetic field B,, B, and B, are plotted in Figures 9.20 and 9.21 showing the strong 3D effects.
The magnetic field is mainly generated during the first passage of fast electrons through the target,
then the magnetic field decreases due to the decrease of the resistivity entering the Spitzer regime and
the decrease of beam currents. The plot of three magnetic field components in the plane = 0 in the
upper panel of Figure 9.20 confirms the symmetry with respect to the y-axis in this plane. Since
the electrons propagate mainly in the z-direction (with an angle ~ 25° compared to the z-axis), the
z-component of the magnetic field is the smallest one. The y-component in the plane y = 0 is plotted
in the lower middle panel of Figure 9.20. It can directly be compared with the corresponding B,
field obtained in the 2D simulation plotted in Figure 9.14. Except the contribution to B, due to
resistivity gradients and refluxing effects at the Al/Cu and Cu/Al interfaces, we do not observe too
much differences between both simulations concerning the shape and the maximum value of By which
is due to the curl of the beam current. However, we observe that B,, which is totally omitted in the
2D simulation is actually the main component in the 3D simulation and reaches =~ 150 T compared to
~ 100 T for the B,. In order to understand the shape of B, the contribution of resistivity gradients,
curls of the beam current, target electron-density crossed gradients and 3-dimensional effects are
plotted in Figure 9.22. The contribution due to the temperature-density crossed gradients is small
and can be neglected while the 3D effects contribution has comparable values as the contribution of
resistivity gradients. The major contribution to the x-component is mainly due the to the curls of the
beam current, in particular due to the term ne(9jp . /0y). Similarly, B, is mainly due to —nc(9jp, ./ 0x).
However, since the fast electron beam propagate also in the x-direction, gradients in the x-direction

are smoother so that B, is greater than B,.
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Figure 9.22: Slices of the contributions to B, due to curls of the beam current density, resistivity
gradients, temperature-density crossed gradients and 3D effects at = = 0 (Left), z =
0.5 pm (Middle) and z = 2.5 um (Right).
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9.2.5 Photoionization Effects
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Figure 9.23: (Left panel) Photoionization cross section op in Copper (red curves) and in Aluminum
(blue curves) dependence on the photon energy hv according to [Verner et al., 1993]
(full curves) and the semiclassical formula (9.68) (dashed curves). K« photon energy
from Copper is indicated by a vertical dashed line. (Right panel) Transparency of
an Aluminum or Copper layer with a thickness L for a photon having the energy hv
according to [Henke et al., 1993] (http://henke.lbl.gov/optical_constants/).

In this subsection, we discuss the photoionization effects on the emission of CuK«; photons
in order to check the assumptions 3 and 4 of our model in the subsection 9.1.3. According to
[Verner et al., 1993] and [Verner and Yakovlev, 1995], the partial photoionization cross section for a

photon with an energy hv, colliding with a (nl) atomic shell-electron, reads

h\ @ AN

14 vV nrv

mw 14,/ if hy > E

<E0> ( Vo Eo) hy = Bin (9.66)

0 else

where ) = 5.5+ [ — 0.5P. This is an interpolation of a series of numerical calculations using the
Hartree-Dirac-Slater method. [Verner et al., 1993] provide the tables for the photoionization threshold
FEin and the parameters og, Ep, Yw, Yo and P, depending on the quantum numbers n and [, that fit
their numerical results for atomic numbers Z, Z* < 30 and photon energies hv < 50 keV. n =1
for K-shell electrons, n = 2 for L-shell electrons, n = 3 for M-shell electrons and n = 4 for N-shell
electrons while [ = 0 for s-band electrons, I = 1 for p-band electrons, [ = 2 for d-band electrons and

I = 3 for f-band electrons. The total photoionization cross section

Nmax N—1

op(hv) = Z ZNénl)O‘ng)(hV) (9.67)

n=1 [=0
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is plotted in the left panel of Figure 9.23 for Aluminum and Copper in the worst case, that is to say
: for cold solid atoms (Z* = Z.). Therefore, nya.x = 3, Ne(lo) = Ne@o) = Ne(30) =2, Ne(21) = 6 and
NEY — 1 for Aluminum while gy, = 4, N = NEO = yBY — 9 N — NOY — 6 NB? = 10
and Néw) = 1 for Copper. We find a good agreement with the total photoionization cross section

computed according to the simpler semi-classical Kramers formula

64 mimee® 20 1 h > E
o)y ={ 3v3 hdc  nd (hw)? = (9.68)
0 else

However, the Hydrogen-like approximation for the estimates of Ey, is too rough. Knowing the pho-
toionization cross section, one may deduce the attenuation length 1/n;0p of a photon hv propagating
in Aluminum (n; = 6.010*2 cm™3) or Copper (n; = 8.510?2 cm™3). The transmission of a photon
beam propagating through Aluminum or Copper of a thickness L is plotted in the right panel of
Figure 9.23 according to [Henke et al., 1993] (http://henke.lbl.gov/optical_constants/).

The photoionization threshold for Cu K-shell electrons is Ej;, = 8.972 keV. According to formula
(1.8), the temperature 77 of electrons in the conditions of the UHI100 experiment is around 7 keV.
Photons with energies greater than the Cu K-shell photoionization threshold Ej; are thus emitted
from the laser plasma interaction zone. In addition, according to the right panel of Figure 9.23,
the first Aluminum layer is fully transparent for photons with energy greater than 10 keV. Therefore,
the bremsstrahlung photons emitted from the laser plasma interaction zone may ionize some Cu K-
shell electrons. However, their density is too small to play a significant role in the Cu K-shell hole
dynamic (9.22) compared to the collisional ionization of K-shell electrons by the laser-generated fast

electrons. Indeed, the radiative stopping power (de/ds) ~ 1078 keV/um for electrons with a

brem
kinetic energy of £ ~ 10 keV in Aluminum according to [Heitler and Sauter, 1933]; see Figure 4.1.
This is 8 orders of magnitude smaller than the collisional stopping power. Therefore, we can neglect
the photoionization of K-shell electrons by X-ray bremsstrahlung photons compared to the collisional
ionization by the laser-generated fast electrons. Also, X-ray photons may be emitted due to the
presence of impurities in the laser plasma interaction zone such as hydrocarbons; see Chapter 2,
section 2.1. However, for the same reason as for bremsstrahlung photons, the photoionization of
CuK-shell electrons by these transition line photons can also be neglected compared to the collisional

ionization by the laser-generated fast electrons. As a conclusion, the assumption 4 is fully justified.

According to the right panel of Figure 9.2.4, the assumption 3 must be mitigated, and the re-
absorption of Ka photons might be important. Indeed, even if K«; photons emitted from the Copper
tracer layer cannot ionize Cu K-shell electrons since hv,, = 8047.78 eV < Ey,, they may ionize L-shell,
M-shell or N-shell electrons of the Copper tracer layer and K-shell, L-shell or M-shell electrons of the
Aluminum layers; , see the left panel of Figure 9.23. Consequently, according to the right panel of
Figure 9.23, only =~ 90 % of Kaj photons are transmitted through ~ 3 um of Copper or ~ 15 um
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of Aluminum. This effect is omitted in our model. Moreover, the ionization of CuL-shell electrons
by CuKa; photons may be responsible for a decrease of the emission of Ka; photons. However, an
error around 10 % is not sufficient to explain a strong discrepancy between our simulations and the

experimental data concerning the size of the Ka emission zone..

9.2.6 Summary and Conclusion

The refluxing of fast electrons in the target may strongly affect the emission of K« photons. This
effect must be taken into account when comparing numerical simulations of the Ka emission with
experimental data. In our model, this effect is accounted for by imposing specular reflection of fast
electrons at the target-vacuum interfaces and adding a second population in the M1 equations. The
first one describes the laser-generated electron population () propagating in the laser pulse propagation
direction while the second one describes the counterpropagating fast electron poulation (). The model
of calculation of the emission of K« photons is revised. It is demonstrated that the numerical time
step of the fast electron transport calculation At, may be comparable to the K-hole lifetime 7x in
the case of Aluminum and Copper targets. Therefore, we have implemented the self-consistent model

proposed by [Thomas et al., 2013] describing the K-shell holes dynamic.

Simulations of fast electron transport in solid targets are compared with the experiments con-
ducted on the UHI100 laser facility, introduced in Chapter 8, section 8.2. By comparing the
simulations with different models for the target parameters such as the electron and ion thermal ca-
pacities, their temperature equilibration parameter and the transport coefficients, we demonstrated
that solid state physics effects must be taken into account. In particular, the electron-ion tempera-
ture equilibration time and collisions of d-band with s-band electrons may affect the magnetic field

distribution in the Copper target.

By comparing our simulations with refluxing with corresponding hybrid PIC and/or full PIC
simulations conducted by [Gremillet, 2014], we confirmed the results obtained by [Sherlock et al., 2014]
concerning the error made in the quasi-static hybrid models neglecting the target electron inertia in
the Ohm’s law and the displacement current. However, this effect is restricted to the first thin
Aluminum layer. Here, the laser-generated bunches of electrons are injected into the target at the
laser frequency or twice the laser frequency. each bunch generates an electric field that excites a weak
field of background electron plasma waves. These plasma oscillations are damped due to collisions
with target electrons and ions, resulting in an additive target electron heating component that is taken
into account by full PIC simulations but neglected by hybrid models. The hybrid quasi-static model
agrees well with the full PIC simulation in the following Copper tracer layer. This may be explained
by the fast electron collisions in Copper (Z = 29) which degrades the coherence of the fast electron
bunches and the decrease of the Ohmic heating by the return current with the target depth.

The profiles of K«; photon emission from the Copper tracer layers obtained in to 2D and 3D
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simulations are compared to the experimental signals. Except for the thinnest target, the 2D simulation
qualitatively reproduce the experiments. However, we found significant differences between 2D and
3D simulations, especially in what concerns the self-generated magnetic fields, the size of the Ka
emission zone and the absolute value of the local number of photons emitted per unit of volume. The
simulation predicts a K «; emission spot size 2-3 times smaller than the experimentally measured. We
analyzed the assumptions of our model concerning the Ko emission. The photon re-absorption may
introduce an error of ~ 10% in our computations but it cannot explain the discrepancy concerning
the Koy spot size. We also checked the effective surface of K« emission. Even if the 3D simulation
predicts a smaller spot size in the xz-direction, it predicts a larger effective surface of emission of about
~ 200 pum x 200 pm, as compared to ~ 40 ym x 40 um obtained in the 2D case. This apparent paradox
comes from simple geometrical reasons. Let us note r3p the mean radius of the Ka spot size obtained
in 3D, rop the radius obtained in 2D (z-axis) and [ = /27 Ay?/81n2 the thickness of the slice y = 0
of the 2D simulations. Even if rop is greater than rsp, [ is so small compared to r3p that finally

2
Trip > ropl.

Figure 9.24: Sketch of the toy model by [Macchi, 2012].

The neglect of secondary electrons in our model may explain the discrepancy between the exper-
imental data and our simulations. However, I think that the main critical assumption in our model
concerns the specular reflection of fast electrons at the target-vacuum interfaces. The local mag-
netic fields generated at the target-vacuum interfaces may deviate strongly the refluxed
fast electrons, thus enhancing the off-axis K«; signal. Such magnetic fields have already
been observed in experiments [Sarri et al., 2012] and in PIC simulations [Pukhov, 2001] with the laser
parameters in the range of the UHI100 experiments. Similar observations have also been reported
in the context of the resonant absorption [Sakagami et al., 1979] [Kolodner and Yablonovitch, 1979]
(see Chapter 1, section 1.1.2). [Macchi, 2012] proposed a simple model called ”toy model of the

fountain effect”, allowing to estimate the value of the magnetic field generated by the fast electrons
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escaping from the target and reaccelerated back. The term ”fountain” comes from the analogy with a
fountain of water (electrons) where the water (electrons) fall to the floor (to the target) due to gravity
(electrostatic field). The ”toy model of fountain” is based on many simplifying assumptions such as
non-relativistic electrons, small beam divergence, uniform electric field and many others. However,
according to [Macchi, 2012], it provides an order of magnitude of the magnetic field generated at the
target-vacuum interfaces. For example, this simple model provides an estimate of &~ 10 kT in agree-
ment with the experiment by [Sarri et al., 2012] and a corresponding PIC simulation. According to

[Macchi, 2012], the magnetic field generated at the target-vacuum interface may be estimated as

~ SkBTbQ 21,

B
eErg droc

(9.69)

The notations are illustrated in Figure 9.24. In order to apply this formula to our case, let us firstly
estimate the maximum value of the electrostatic field at the target edge. Assuming that fast electrons
escaping from the target form a Boltzmann distribution with a temperature kpTj, in the electrostatic

potential, we may estimated the maximum electrostatic field as

kpTyv?2 kT,
E~ M where A\pp = 1/ ——2-" _ is the relativistic Debye screening length. (9.70)
AD pe ’ Amyponpoe?

The electron divergence angle 6; can be roughly estimated by the angle ~ 25¢ of the fast electron
propagation direction during their first passage in the target and the ”fountain” beam radius r¢ by
L, arctan f ~ 2.1 um. According to our simulation, {¢)(z = L,) ~ 70 keV (— 0 ~ 1.13), n;, ~ 10%°
ecm 3 and I, &~ —2 MA at the target rear side at ¢t ~ 75 fs. Then, assuming roughly kgT} ~ (¢)(z = L),
we obtain

App~ 0.18 um, E ~ 7.610'" V/m and B = 30kT. (9.71)

We deduce that fast electrons has a Larmor radius of

Yumec

pL = ~ 0.056v03 pm. (9.72)

In agreement with the PIC simulation performed by [Pukhov, 2001], who obtains magnetic fields ~ 1
kT, the main part of fast electrons with low kinetic energies are trapped by the magnetic field while

only fast electrons with a momentum greater than
p > 3.3mec such that pr, > Apy (9.73)

may escape from the magnetized electron cloud and are reaccelerated inside the target with a strong

angular deviation. It exactly corresponds to fast electrons with kinetic energies greater than

£ > 2.5mec® ~ 1.2 MeV (9.74)
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that are responsible for the emission of CuK«a; photons. We thus lose this physics by assuming the
specular reflection of fast electrons at the target edges and it may explain why we obtain discrepancies

with the experimental Ko signals.
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Chapter 10

Application to the Generation of Shock
Waves by Fast Electron Energy

Deposition

” We knew the world would not be the same. A few people laughed, a few people cried, most people
were silent. I remembered the line from the Hindu scripture, the Bhagavad-Gita. Vishnu is trying to
persuade the Prince that he should do his duty and to impress him takes on his multi-armed form
and says, "Now, I am become Death, the destroyer of worlds.” I suppose we all thought that one way
or another.”

J. Robert Oppenheimer
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Figure 10.1: (Left panel) Schematic view of a rarefaction wave arising from the motion of a pis-
ton and corresponding distributions of the density (a) and gas velocity (b). (Middle
panel) Schematic view of the equilibrium bewteen the gaz and the ambiant pressure
and corresponding distribution of the density (c¢). (Right panel) Schematic view of a
compression wave generated by an accelerated piston : (d) is the distribution of the
gas velocity of a compression wave arising from the slow motion of the piston, (e) is
the distribution of the gas velocity of a blast wave arising from an instantaneous and
rapid motion of the piston and (f) is the distribution of the gas velocity of a shock wave
arising from a continuous and rapid motion of the piston.

In order to define what is a shock, let us conduct the following thought experiment. A semi-
infinite tube is filled of a gas and a piston allows for expanding or compressing the gas, as illustrated
in Figure 10.1. As a fluid, the gas can be described by the Navier-Stokes equations (B.60), (B.61)
and (B.63) with p. = 0 and j = 0 complemented by the specific entropy conservation equation (B.65),
derived in Appendix B, section B.3.1 for charged fluids, i.e., for plasmas where p. # 0 and j # 0.

If in addition, we neglect the fluid viscosity, the equations in one dimension read:

op 0 B

e + 2 (pu) =0, (10.1)

0 0 oP

0 0 _ Oq

Cy [at + uax] (T) = e + We (10.3)

and 5 5 5

__19q

p [(‘% +u8x] (H) = To (10.4)

b

The notations are explained in Appendix B, section B.3.1. We have omitted the subscript ”,,
for brievity. Compression waves generated when pushing the piston, as illustrated Figure 10.1 c),

can be described by assuming a perturbation of the equilibrium p = pg, u =0, T = Ty, H = Hy. By
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noting §p and u the 1st order perturbation terms of this equilibrium and

P
Cs = (3) (10.5)
op /)y
the velocity of sound in the gas, the 1st order linearized equations (10.1) and (10.2) give
0 0 0 0

This equation describes compression waves propagating at the velocity of sound in the gas filling the

tube, as illustrated in Figure 10.1 d).

When the perturbation is strong enough (dp ~ pp), we cannot anymore linearize the equations
assuming dp is a perturbation of the equilibrium pg. A powerful theoretical tool when studying such
non-linear equations is the search for self-similar solutions. It consists in looking for solutions of
the equations in the form p(z, t) = poF (z%t") where the scalar parameters a and b may be found
according to dimensional reasoning depending on the invariant quantities of the problem, while the
function F may be found by injecting the assumed form F(z?t?) in the equations; see for example
the self-similar rarefaction waves in a plasma found by [Gurevich et al., 1966] [Manheimer et al., 1982]
[Fabbro et al., 1985] and illustrated in Figure 10.1 a). When studying the nonlinear equations of
conservation (10.1), (10.2), (10.3) and (10.4), neglecting the thermal energy flux ¢ and the source term
W, B. Riemann discovered in the second half of the XIXth century thanks to a self-similar solution
that the development of singularities may be possible, in the form of shock waves, as illustrated in
Figure 10.1 f). Actually, if we zoom in on this hydrodynamic density discontinuity to the kinetic
scale, i.e. at the spatial scale of the order of the particle mean free path, this discontinuity disappears.

A few years later, starting from the same conservation equations (10.1), (10.2), (10.3) and (10.4) on

the jump
poD = p(D-0)
P —F = poDU
U2
poD <€1 — &0+ 2> = PU (10.7)
2
hy — h() + % = DU

in such a configuration f), W. J. M. Rankine and H. Hugoniot found the relations between the specific
internal energies e; = Cy'T;/p;, the pressures P;, the specific enthalpies h; = ¢; + P;V; and the specific
volumes V; = 1/p; of the shocked (i = 1) and unperturbed gas (i = 0). These so-called Rankine-

Hugoniot relations read

€1 —egy = 1(P1-i-1:’0) (Vo — V1)
2 _ (10.8)
hl—ho = i(Pl_PO)(VO"i‘Vl)

Here, U and D are the velocities of the piston and the shock front, respectively. The velocities of the
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shocked and unperturbed gas have been taken equal to ug = 0 and w3 = U. Let us apply Equation

(10.8) to the case of an ideal gas filling the tube with the specific internal energy and enthalpy read

1 P P
= &T: ——— and h = gT: e (10.9)

g
p y—1p p y—1p

where v = Cp/Cy = 1+4(2/d) is the adiabatic index depending on the number d of degrees of freedom
of particles. In this particular case, if we push the piston such that U >> ¢, a strong shock is generated

that propagates in the tube with the velocity

1P,
p—, /1t th (10.10)
2 po

(P > Py) and compresses the gas downstream up to the density

&:’Hl

T (10.11)

according to (10.7), (10.8) and (10.9). Therefore, maximum density ratio for a monoatomic ideal gas
with v = 5/3 is equal to 4. In reality, at high temperatures and pressures, the specific heats and the
specific heat ratio are no longer constant because of molecular dissociation and of ionization. However,
the density ratio (10.11) remains finite and does not increase without limits : generally, it does not
exceed 11-13 according to [Zel’dovich and Raizer, 1966].

When a large amount of energy is quasi-instantaneously deposited in a very small volume, we
talk about blast waves instead of shock waves. Even if it presents a leading front discontinuity, as in
shock waves, a blast wave is followed by a blast wind of negative pressure gradients. For example,
the outcome from supernova-explosions may be described as a blast wave. Indeed, when a star has
consumed all its thermonuclear fuel (see the section 0.1.2 of the Introduction), the star internal
pressure decreases and does not counterbalance anymore the star gravitational force. As a result,
the equilibrium is broken, the star implodes and its plasma density increases. Depending on its
mass according to [Chandrasekhar, 1931}, it may reach the degeneracy pressure and a sudden re-
ignition of nuclear fusions in the degenerate core may lead to its explosion. The subsequent expansion
phase, called supernova and illustrated in Figure 10.2, may be described by the adiabatic self-similar
blast wave obtained by [Sedov, 1946] and confirmed by [Taylor G., 1950], according to numerical
simulations. It allows us to illustrate the ”dimensional reasoning” mentioned above concerning the
self-similar solutions of the non-linear and coupled equations of conservation (10.1), (10.2), (10.3) and
(10.4) that must be expressed here in 3 dimensions, assuming a spherical symetry and neglecting the
thermal energy flux ¢q as well as eventual source terms W,. Indeed, let us try to find out the expression
of the radius r [cm] of such an expanding spherical supernova according to the dimensional reasoning.
We expect that r depends on the energy released quasi-instantenously, let us say at ¢t = 0, by the star

explosion Fy [erg]. It may thus be considered as the self-similar invariant quantity. We expect also
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Figure 10.2: Supernovae G299 (Left panel) and SN 1572, also called Tycho’s Supernova because of
Tycho Brahe’s extensive work [Tycho, 1573] (Right panel). Both are expected to be
supernovae of Type Ia i.e. from a thermonuclear explosion of a white dwarf star in
a tight orbit with a companion star. Pictures are taken from the NASA’s telescope
Chandra X-ray Observatory, called Chandra to pay homage to the astrophysicist and
mathematician S. Chandrasekhar. Chandra orbits above Earth’s atmosphere at an
altitude of 139,000 km. The Smithsonian’s Astrophysical Observatory in Cambridge,
MA (USA), hosts the Chandra X-ray Center which operates the satellite, processes the
data, and distributes it to scientists around the world for analysis.

that » depends on the surrounding medium density po [g/cm ™3] and the age of the supernova t [s].

Therefore, let us look for an expression of the radius with the form
b
r [em] = & (B [erg])* (oo [g/em®)) (¢ [5))° (10.12)

where &, a, b and ¢ are dimensionless constants to be determined. Since 1 erg = 1 g.cm?/s?, we

deduce that we must have necessarily

(a+ D) kg = 0kg
(2a—3b) cm = 1lcm (10.13)
(=2a+¢) s = O0s

for dimensional reasons. It thus gives the self-similar variable found by [Sedov, 1946]

1/5
r =& (EO> /5 (10.14)

and the blast wave properties can be found by looking for the function F(r), solution of the non-

linear and coupled equations (10.1), (10.2), (10.3) and (10.4) expressed in 3 dimensions, assuming a
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spherical symetry and neglecting ¢ as well as W,. Applying this procedure for an ideal gas (10.9),
[Taylor G., 1950] found that &, ~ 1.11 for v = 5/3 (d = 3). Concerning our thought experiment of
a piston compressing a gas filling a semi-infinite tube, a blast wave can be generated by applying a
strong hit of hammer to the piston. The resulting blast wave is illustrated in Figure 10.1 e). It
has this particular triangular shape due to the fact that the piston is not continuously pushed like
in the case of shock waves. The X-ray photographies of the supernovae G299 and Tycho, illustrated
in Figure 10.2, are obtained thanks to the strong emission of the hot expanding plasma behind the

front.

The first direct observation of a laser-driven shock wave was reported by
[van Kessel and Sigel, 1974]. A planar solid hydrogen target was irradiated with a 10 J, 5 ns,
Nd laser (1.06 pum wavelength) and the propagation of the laser-driven shock wave was measured
using a high-speed photography. The estimated pressure in this pioneering experiment was 2 Mbar.
Twenty years after the first published experiment, the Nova laser at the Livermore laboratories in
the United States of America (USA) created a pressure of 750 £ 200 Mbar [Cauble et al., 1994].
This was achieved in a collision of two gold foils, where the flyer (Au foil) was accelerated by a
high-intensity x-ray flux created by the laser—plasma interaction. As explained above, a shock or
a blast wave is created in a medium that suffers a sudden impact or in a medium where a large
amount of energy is released in a short period of time. As already explained in the section 0.2.1
of the Introduction concerning the conventional schemes of Inertial Confinement Fusion (ICF), a
high-power laser pulse creates a very hot plasma at the target surface. This plasma exerts a high
pressure on the surrounding material, acting like the piston of our though experiment, that leads to
the formation of an intense shock wave, moving into the interior of the target. The momentum of the
out-flowing plasma balances the momentum imparted to the compressed medium behind the shock
front. The thermal pressure together with the momentum of the ablated material drives the shock

wave.

Energetic electrons are commonly considered to be a dangerous effect for ICF; see the section
0.2.2 of the Introduction. Having a long mean free path, they penetrate through the solid shell
and deposit their energy in the ablator and Deuterium-Tritium (DT) fuel. This process significantly
increases the target entropy H, thus degrading its implosion. The phenomenon of target preheat
was the major reason for several milestone events [Lindl, 1998] : cessation of the ICF program

based on the CO2 laser in the 1980s, switching to the third harmonic in the Nd:glass ICF lasers,
2

’ . All these limitations significantly re-

and limiting the "useful” laser intensities to a few PW/cm
duce the ICF operational domain. However, matching the mean free path of fast electrons with the
target size may suppress the negative effect of preheat and open the possibility of using the ener-
getic particles for creation of a high ablation pressure [Volosevich and Rozanov, 1981] [Gus’kov, 1983]
[Evans, 1983] [Evans, 1986]. Fast ignition is an example of the application of energetic electrons in

ICF. Here, a beam of relativistic electrons is supposed to create a small hot spot in the compressed
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fuel [Tabak et al., 1994]; see the section 0.2.3. This scheme, nevertheless, faces serious difficulties
related to tight focusing of an intense electron beam; see the section 0.3.2. Energetic electrons may
play an important role in the creation of a high ablation pressure, which is interesting for ignition
of fusion reactions in the laboratory [Betti et al., 2007] and in astrophysics concerning thermonuclear
supernovae [Gamezo et al., 2004] or deflagration (subsonic)-to-detonation (supersonic) transition in
premixed combustion wave front [Bychkov et al., 2008]. In the shock ignition scheme in ICF, the fuel
is ignited by a strong shock launched by an intense laser spike at the end of the implosion process; see
the section 0.2.3. The laser spike intensity is in the range of 10 PW/cm?, certainly well above the
threshold of parametric instabilities, and a significant part of laser energy is expected to be deposited
in the nonthermal, energetic electrons [Klimo et al., 2011]; see the section 0.3.1. It was suggested
by [Betti et al., 2007] and [Ribeyre et al., 2009] that their deleterious effect on target implosion can
be mitigated by the fact that, at the moment of spike arrival, the target has already passed halfway
through the implosion phase, and its areal density is increased significantly, by a factor of 10-20 at
least. If the target areal density would be larger than the range of fast electrons, the latter will be

stopped in the imploding shell and may play a positive role by contributing to the ablation pressure.

In this Chapter, we study for the first time the generation of a shock wave by an ablation
pressure driven by an energetic electron beam in a dense plasma. For this, we first present the
theoretical predictions found by [Gus’kov et al., 2012]. Then, we describe the coupling of the reduced
model for the fast electron transport in solids and dense plasmas presented in Chapter 6 with the
radiation hydrodynamic code CHIC, briefly described in Appendix B, section B.3.2 and B.3.3.
Finally, we compare the predictions of the theory with one-dimensional simulations of an electron
beam energy deposition in a DT plasma with a step-like density profile. The parameters of these
academic simulations correspond to typical values expected at the time of spike arrival in the shock
ignition scheme. These simulations show a positive effect of energetic electrons in the shock ignition
scheme, allowing to achieve the ablation pressures above 500 Mbar. Furthermore, in this section we
consider another example of a blast wave generated by an ultrashort femtosecond laser pulse. The
experimental campaign conducted by [SANTOS et al., 2013] was already described in sections 8.2
and 9.2. We demonstrate here by using analytical estimates and numerical radiation hydrodynamic
simulations that a strong blast wave can be generated in a thin target due to strong temperature
gradients induced by fast electron heating. This interpretation is confirmed by the observation of the

shock breakout at the target rear side with a Streaked Optical Pyrometry.
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10.1 Role of Laser-generated Fast electrons in the Shock

Ignition Scheme

10.1.1 Theoretical predictions
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Figure 10.3: Schematic of the density and temperature profiles in the hot electron beam ablation
non-stationary regime after the loading time.

There is no general model of pressure formation by an energetic particle beam. The model by
[Gus’kov, 1983] applies for nanosecond electron beams where the heat conductivity of the thermal
electrons plays an important role. In this case, the laser energy is deposited at the critical density
and it is transported to the ablation zone by the thermal electrons. This is a stationary ablation
process where the shock wave launched into the solid material is connected to the isothermal rarefac-
tion wave [Gurevich et al., 1966] [Manheimer et al., 1982] [Fabbro et al., 1985], as it is schematically
shown in the Figure 8 of the Introduction and in Figure 10.1 a). Formation of the ablation
pressure by an energetic ion beam was considered by [Evans, 1983] [Evans, 1986]. A recent paper
[Bell and Tzoufras, 2011] considers the regime of transition from the thermal electron diffusion to a
nonlocal energy transport. However, the fast electron plasma heating is limited to a very short time
scale, before the hydrodynamic separation takes place. The fast electrons, similarly to energetic x rays,
propagate deeper in the target behind the ablation front created by the thermal electron conduction
and produce a second ablation front. However, in contrast to x rays and thermal electrons, the range
of fast electrons depends only weakly on the plasma temperature (only logarithmically; see Chapter
4, section 4.2). For this simple reason, the standard stationary isothermal model of plasma expan-
sion does not apply to fast electrons. Fast electron-driven ablation is intrinsically a nonstationary

process similar to the ion driven ablation [Evans, 1983] [Evans, 1986]. It can be described by a model
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of heating and expansion of a finite mass defined by the fast electron range. Consequently, the shock is
launched by the ablation pressure created by fast electrons during a finite time interval, the loading
time, and after that, the shock transforms in a blast wave and its amplitude decreases slowly with
time. Figure 10.3 presents schematically the density and temperature profiles in this regime after
the loading time. Thus, the fixed energy deposition range of fast particles implies an optimal time
for fast electron beam injection : shorter beams will drive a smaller amplitude shock, while longer
beams will be detached from the solid target and deposit their energy in the expanding plasma, thus
decreasing the coupling efficiency. The fast electron ablation theoretical model GRT is presented here

for a simple case of monoenergetic electrons and a plane geometry.

There are two classes of self-similar solutions of equations of ideal hydrodynamics that describe
a rarefaction wave. One of them is the well-known stationary isothermal rarefaction wave, where
the temperature is constant and the ablated mass increases linearly with time [Gurevich et al., 1966]
[Manheimer et al., 1982] [Fabbro et al., 1985]. Another one describes an isothermal expansion of a
given mass plasma with a temperature increasing with time [Imshennik, 1960] [Drake, 2011]. The
former applies readily to the energy deposition of laser beams and thermal x rays [Fabbro et al., 1985]
[Mora, 2003]. There, the plasma temperature is adjusted in a way that it accommodates the photon
stopping length to the plasma density profile. This model, however, does not apply to fast electrons
because their stopping power depends only on the fast electron energy €9 = (Yo — 1)mec?. According

to section 8.1.3, a monoenergetic and collimated electron beam deposits its energy over the distance
L,=¢R (10.15)
where

(o —1°  mi(mee®)’
Yo o 4mZpoet(In Areh)*

R= (10.16)

is the range of the beam electrons and

2
€= (’70+1) i <6(2)_21I1’}/0> (10.17)

-1/ 32 Y0

is the correction factor due to their angular scattering. For a fully ionized DT plasma with a density
of po = 10 g/cm? and a temperature of 1 eV, the range R of a beam of collimated electrons is 0.878
pm for the electron energy 9 = 30 keV and 6.650 pum for g = 100 keV while the correction factor

reaches the limiting value of 2/3 so that
L, = 0.5 um for g = 30 keV and L, = 4.4 um for eg = 100 keV. (10.18)

Collisions on screened free electrons (plasmons) provide the main contribution to the stopping power
and the angular scattering correction factor in such a degenerate plasma; see section 8.2. Since

the fast electron range depends only logarithmically on the plasma temperature, the electron beam
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will deposit its energy in the same mass even when this mass expands. This reasoning enables to
introduce the following two-stage model of plasma expansion driven by a monoenergetic electron
beam transporting the energy flux I, = nyegvg, where v is the initial electron velocity and n; the

beam density.

In the first stage, the plasma is heated by the incident beam of fast electrons and starts expanding.

The plasma energy increases linearly with time. It is redistributed between the areal density of internal

energy,

Wing = 2/poc§dx (10.19)
and the areal density of kinetic energy

Wiin = % / pou’dz (10.20)

where ¢, is the velocity of sound (10.22). The energy conservation of the process reads
Wint + Wiin = Ipt, (10.21)

assuming that the energy flux I, does dot depend on time. In addition, it is assumed that the DT
follows the relations (10.9) with d = 3, typical of a monoatomic ideal gas, so that the sound velocity

(10.5) can be written

kT
cs =1/ (Z+1) :; . (10.22)

As a consequence, the repartition between the internal and kinetic energies in the heated layer,
Wiin/Wint = ((t), increases with time. The duration of this stage ¢, called the loading time, is
defined by the time of propagation of the rarefaction wave across the heated layer, t;, ~ L,/cs. The
coefficient ¢ can be evaluated by requesting a continuity of the plasma density and pressure at the
time t;, with the self-similar solution. During the expansion phase, the absorbed energy is equally
divided between the kinetic and internal energy. Thus, ((¢,) = 1 at this stage, and the loading time

and the pressure read consequently

Wiin 9\ '"*L,
th=2—2 = () =2 10.2
h I, <27r> Do (10.23)
and
t
P =P— (10.24)
th
where 13
1 I
Po=|— — 10.2
s <6ﬁ) - (10.25)
is the maximum pressure and
I, 1/3
Dy = () (10.26)
Po
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is the characteristic hydrodynamic velocity found according to the dimensional reasoning. Note that
the maximum pressure depends only on the beam intensity and on the target density, while the loading

time increases strongly with the electron energy in agreement with [Evans, 1983] [Evans, 1986].

For electron beam intensities in the range of few PW /cm?, the heating proceeds so fast that the
electron thermal conduction does not play a significant role, and the heated mass undergoes expansion
without transferring the internal energy to the adjacent cold plasma. However, the pressure in the
heated layer exerts a mechanical work and launches a shock wave in the cold plasma. Therefore, the
second stage consists in the expansion of a heated layer of plasma continuously heated by an electron
beam. It can be described by the isothermal rarefaction wave of a constant mass [Imshennik, 1960]
[Drake, 2011]. It corresponds to the solution of hydrodynamics equations (10.1), (10.2), (10.3) and
(10.4) with the energy deposition rate defined by the flux of fast electrons

W, ~ -2 (10.27)

in the right hand side of Equation (10.3) and neglecting the thermal energy flux ¢q. Assuming the
boundary conditions of zero flow velocity at * = L, and zero density at x — oo, this self-similar

solution reads :

( _ 3 (POLP)3/2 ox _9P0Lp(Lp - $)2 a)
P NN P 81,13
mily (10.28)
T = t b ) .
3(Z+1) pokpLy )
_ 7$ — Lp b)
(YT 2t

Here, the velocity increases linearly with the coordinate for z < xj, the temperature increases linearly

with time, and the density profile has a Gaussian-like shape with the characteristic scale length

Ap(t) = ;( Dot)*/? (10.29)

N
increasing with time as ¢3/2. As this self-similar solution corresponds to an infinitely thin initial heated
layer, it formally diverges at ¢ = 0, but it has a physical sense for times longer than the loading time
tn. We can check according to Equation (10.28 a) that the maximum of density p,, is obtained at
t =ty and = = L, that gives the expression of the loading time (10.23). Also, we can check that, by
injecting the sound velocity (10.22) expressed with the temperature (10.28 b) in the areal density of
kinetic energy (10.19) at the loading time 5, we find (10.23), as previously explained. The effect of

expanding plasma on the shock wave formation depends on the values of plasma density

3/2
t
P = po (f) (10.30)
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and pressure

t
P, = Ph,/?h (10.31)

at the cold plasma interface at = L, accoding to Equations (10.9), (10.23), (10.28 a and b). The

pressure decreases as a square root of time at the second stage.

As an example, we consider an electron beam with an energy €y = 30 keV and intensity I, = 1
PW /cm? incident on a DT plasma with a density pg = 10 g/cm3. Then, the maximum pressure P,
rises to the value of 380 Mbar according to Equations (10.24) and (10.25). The loading time t; ~ 6 ps
(Dg = 107 cm/s and L, = 0.5 um) is relatively short according to (10.23). However, for longer times,
the pressure decreases rather slowly according to (10.31). Knowing the pressure, it is straightforward

to evaluate the shock wave velocity in the strong pressure limit. According to Equation (10.10), it

reads
£\ 172 .
4P, Dsh(th) ? ift <ty
Dsn(t) = 300 th 1/4 (10.32)
D (ts) (:) ift >ty
where

4P 32\ /6
D (tn) = §7§ = (m) Do (10.33)

according to (10.26) and (10.25).

10.1.2 Coupling of the Reduced Model for Fast Electron Transport
with the Radiation Hydrodynamic CHIC code

2D Axiallv Symetric Hvdrodvnamic Lagrangian CHIC module

— ». 1. T,
| (monofluid bitemperature)
p. 1. T, f
W,
The MHD module ‘
* Generalized Braginskii Ohm’s law for £ £ B |~ The Angular Moments
» Nernst effect Model for fast electrons
* Diffusion Equation for B fields
transport

Jo

Figure 10.4: Schematic view of the coupling between the reduced model for fast electron transport
and the radiation hydrodynamic CHIC code.

In this section, we present the coupling of the reduced model for the fast electron transport
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in dense plasmas, described in Chapter 6, with the radiation MagnetoHydrodynamic CHIC code
[Breil et al., 2011], described in Appendix B, sections B.3.2 and B.3.3. This code is currently
used to simulate laser-plasma interaction experiments. It includes thermal coupling of electrons and
ions, classical or nonlocal electron heat conduction, and a detailed radiation transport with the tab-
ulated ionization and the opacity data. Equations (6.34) and (6.35) completed with the M1 closure
(6.61) of the reduced model for fast electron transport have already been implemented in CHIC by
[Regan, 2010] [Regan et al., 2011] [Regan, 2011] for fast ion or electron beam transport in dense plas-
mas, without electromagnetic fields. An option allows for projecting or not the different quantities
from the hydrodynamic Lagrangian grid of the code CHIC to a regular Eulerian grid for the fast
particle transport, and vice-versa, at each hydrodynamic time step At,. In the case where there are
no projections, the resolution of the fast particle transport has been extended to irregular Eulerian
grids, allowing to propagate the fast particles in the Lagrangian CHIC grid [Feugeas, 2011]. The self-
generated magnetic fields have been implemented by [Nicolai et al., 2011] by adding the source terms
n(0/0r) x jp and (On/dr) x jp of Equation (6.24) into the magnetic field equation (B.81) [Nicolai, 2011].

The numerical scheme used to solve the resulting M1 equations

d /.~ o ~ 0
= (ST) — =B, = 2 10.34
Oe (S 0) or t T wot’ (10.34)
0 (o= o~ oW~ e
- (S\Ill) — =g HRE B X B (10.35)
and ~ ~
1 ~ (B2, 1
Ty = Bl + o <1A® - S (10.36)
||

has been implemented by [Regan, 2010] in 1 or 2D Cartesian or axisymetric and cylindrical geometry.
Here, Vi € {0, 1, 2}, ¥; = v®; and k = v/v is the inverse of the beam electrons mean free path (8.11).

This fully implicit numerical scheme reads

= = 1,14+1 = 1.1 x=n,l
Sn+1,l+1¢)n+1,l+1 o Sn+1,lq)n+1,l o ~ n+1, pntll _ @ R R
- = —— O 4T TR (10.37)

—.F
Ag; Or v At,

where the kinetic energy derivative is computed according to the 1st order downwind scheme and the
spatial derivative according to the 2nd order HLL scheme described in section 7.1.1. It considers the
kinetic energy derivative as a "time derivative” and it allows to deduce the angular moments P+l

(f)n+1,l+1

at kinetic energy ¢; from the knowledge of the angular moments at kinetic energy ¢;. Here,

= - n,l n,l n,l
Pl = @l Bl = (B, FY, F2,

0 0
Tn+1,0 Tn+1,10 pn Tn+1,0 pn
[nt1,0 \Ill,:c Hn+ll € ‘1’1,y B? — ‘I’l,z By
FV =k \’I}n-l-l,l and FB T e \/I}’fH-Lan \/I}TH-LZBn ’
1,y b 1,z z~ Tlx z
Fn+1,l Tn+1,1l on Tn+1,0 pn
\Ill,z ‘Ill,a: By - \Ill,z B:B
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following the notations introduced in section 7.1. The CFL condition reads

(10.38)

Here, we introduce the self-generated electric field in the electron transport equations. For this,

we consider only the main term of Equation (6.23) i.e. we assume the simpler Ohm’s law
E = —njs. (10.39)

In order to solve Equations (6.34) and (6.35) with the self-generated electric field according to the

numerical scheme (10.37), we introduce the resistive stopping power
Sres = eE.Q, (10.40)

the resistive slowing down frequency
Srcs

(10.41)

Vres =

and the inverse of the fast electrons resistive mean free path

kres = VI‘QS. (1042)

Then Equations (6.34), (6.35) and (6.61) multiplied by p read

8 = 8 = 8 0 =
T (8000 | — L) = 0 1 (kpes + k) T, 10.43
86<tt O) or ! v@t+( + ka) Yo ( )
9 N N 9 = a\f;l N e 2 e 2
— | Syt P ILE) — — ¥y = —— kE+ k)W —VUsE + —W B 10.44
ag(tt 1+ 11, ) o Y2 v8t+( + kq) 1+pv 0 +pc 1 X ( )
and N N
-~ 1=z 2 (0,00, 1
Ty = Ul + g — -1 (10.45)
|0y |

where it has been noted Vi € {0, 1, 2}, U, = p\fli = pv¥;, vy = S/p the collisional slowing down

frequency (5.2), kg = vq/v the corresponding mean free path,

Stot = Sres + S (10.46)
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the total stopping power due to both collective and collisional effects and

N N N N 1—p= 2
=0, — ¥, @ ¥ = pull, = TM\IIOI + 0 (u SNTONE (10.47)

the ”angular pressure tensor” that has already been introduced in (8.10). These notations allow to
make appearing the term ‘/I\lQ.E only in the kinetic energy derivative of the 1st order equation (10.44).
Then, by noticing that II..E = 0 in both anisotropic (f[E = 0) and isotropic (E = 0 since j, = 0 for

monoenergetic electron beam) limits, we assume

=

.E=0 (10.48)

in all cases. As a consequence, we can use the same numerical scheme as (10.37), by replacing S by
Stot in (10.37) and by adding the new source terms expressed at ¢, for ; of Equations (10.43) and
(10.44) in the the right hand side of the discretized Equation (10.37). The terms depending on the
self-generated electric field in Equations (10.43) and (10.44) are discretized semi-implicitely i.e. they
are expressed with the electric field E™ at time ¢,. It may happen that the resistive stopping power
(10.40) changes sign and transforms into a "resistive pushing power” (Sies < 0) for some electron
energy groups ;. However, it does not lead to numerical issues with the downwind scheme in the
following simulations since we consider cases where S5 < S so that the total stopping power (10.46)
in the CFL condition (10.38) is always positive. Finally, we use the absorbing boundary conditions,

described in section 7.1.6.

10.1.3 Electron driven shock waves

o e Zes0mm p lg.cnr?]
10° —
Fast electrons 104+ — — — — — — — — DT
101+
10— Fast electrons
103 : :
f t>x[cm] 0 X [um]
-0.25 0 0.25 0 100

Figure 10.5: (Left panel) DT plasma density profile at the moment of spike arrival obtained from a
CHIC simulation [Ribeyre et al., 2009]; Courtesy of X. Ribeyre. (Right panel) Initial-
ization of the 1D academic simulations assuming an idealized target density profile at
the time of ignitor spike arrival.

The geometry corresponding to the shock excitation in the shock ignition scheme is presented in

the left panel of Figure 10.5. The distribution of the DT plasma density at the moment of spike
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arrival corresponds to a thin shell converging to the center. It is obtained from a CHIC simulation
conducted by [Ribeyre et al., 2009] with the HIPER baseline target designed by [Atzeni et al., 2009a].
The initial dimensions of the capsule are 1044 pum of external radius and 211 pm of shell thickness. It
is supposed to be imploded at a constant in-flight adiabat o &~ 1. At the moment of the spike launch
the shell is already compressed by a factor of 40. Consequently, we model here the shell as a DT
plasma layer of a steplike profile with a maximum density of pg = 10 g/cm?, a temperature of Ty = 10
eV and a thickness of 100 um. This idealized target density profile is illustrated in the right panel
of Figure 10.5. The plasma thickness is much larger than the fast electron range, thus allowing us
to observe the creation and propagation of the shock wave for a sufficiently long time of the order of
t; = 1 ns. The energy flux of monoenergetic and collimated electron beams is maintained constant in
time during the simulation. Two representative cases with I, = 1 PW/cm? and 9 = 30 keV (case 1)
and I, = 10 PW/cm? and ¢y = 100 keV (case 2) have been tested. In both cases, because of a high
plasma density, the resistive losses (10.40) are small and the electron energy deposition is due to the
collisional effects of in a dense plasma. The fast electrons propagate in the Lagrangian CHIC grid, as
explained in section 10.1.2. The initialized angular moments of the beam distribution function thus
read

Ui.(r=0,¢t) =Ug(z=0,¢,t) = Nf(e)F.(t) (10.49)

where
F.(t) =1I(t) — II(t — ty) (10.50)

(IT is the Heaviside distribution function),

=S if |e —eo| < e
fo(e) =14 20e ol = (10.51)
0 else
with de =1 keV and
1
N=_—"t (10.52)
E0v0

The kinetic energy boundaries are e, = 1 keV and L. = ¢y + 5 keV.

The left panel in Figure 10.6 shows the power density W, deposited by the electron beam, the
plasma pressure and the density profiles for case 1. The mean free path of fast electrons is initially of
the order of L, ~ 1 pm, that is, twice the theoretical estimate (10.18). This difference is due to the
assumption (In Ae+In A'¢))/21In A, ~ 1, which allows us to find an analytical estimate for the correction
factor (8.17) due to angular scattering of fast electrons. However, the characteristic hydrodynamic
velocity Dy ~ 100um/ns and the corresponding loading time ¢; =~ 1lps are not so far from the
predicted values. The maximum pressure Py rises to 400 Mbar in agreement with the theoretical
prediction and the density increases by a factor of 2.7 after the loading time. The assumption of a
homogeneous energy deposition, W, =~ I,,/L,, seems to be reasonable even if the beam energy flux

evolves in time according to Figure 10.6 a). Then, as time goes on, the pressure drops down to
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Figure 10.6: Distributions of the deposited power density W, (a), the plasma density p (b) and
DT plasma pressure P (c) from the simulations of a shock drive by a monoenergetic
and collimated beam of electrons with a kinetic energy and an energy flux of 30 keV,
1 PW/cm? (Left panel) and 100 keV, 10 PW/cm? (Right panel). The numbers near
the curves indicate the time in ps. The dashed line in the right panel b shows the

self-similar solution (10.28 a).
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P, ~ 120 Mbar, and the shock takes a triangular shape characteristic for a blast wave. It propagates
with a velocity Dy, ~ 60 um/ns. Consequently, the shock wave power Iy, = Py, Dgp is about 70
TW /cm?. The driver efficiency is thus about I, /I, ~ 7%. The fast electron energy deposition does
not follow the shock front, but instead moves out and spreads over the expanding plasma. The front
edge of the energy deposition zone coincides with the rear edge of the density compression. Thus, the
deposited energy becomes decoupled from the shock, so the shock pressure drops down with time. A
comparison of the runs with and without electron thermal conductivity shows that its role is negligible
at the loading stage as the plasma temperature in the shock is rather low, just a few eV. Later in
time, after &~ 600 ps, the thermal wave from the hot corona catches up to the shock and broadens the

pressure profile.

The electron beams of higher energy and intensity may create even much stronger blast waves.
For the case 2 shown in the right panel of Figure 10.6, the loading time is ~ 80 ps and the shock
pressure rises to 1800 Mbar at the time of 100 ps. It reduces then to 700 Mbar after 1 ns. The shock

velocity is about 120 pm/ns and the shock power is about 0.7 PW /cm?

. The Gaussian-like density
profile corresponding to the self-similar solution (10.28 a) with A, = 20 um for ¢ = 100 ps is shown in
Figure 10.6 b with a dashed line. It agrees rather well with the numerical solution shown with a red
line corresponding to the time of 100 ps. The density profile in the shock in the later time, ¢ > 200
ps, takes a two-humps shape. The second hump is driven by the thermal wave catching up the shock

at the time of 1 ns. The driving efficiency of the beam remains at the same level of 7 % as in case 1.

10.1.4 Conclusion

The limits of the model are threefold. First, the target thickness should be larger than the electron
beam stopping length. In practice, having in mind the electron energies of several tens of keV and the
stopping lengths L, of a few microns, the target density needs to be in the range of 10 g/ cm? or more.
Second, the planar model is limited by the two or three-dimensional effects. Thus, the thickness of the
expanding plasma layer, = (D0t3/ 2 / \/fp, according to Equation (10.29), should be smaller than the
characteristic distance in the second dimension r (the shell radius for a spherical target or the electron
beam radius for a planar target). This condition limits the time to ¢ < ¢, (r/ Lp)2/ ®. Considering the
shell radius of 200 pum, this condition allows the time intervals of a few hundred ps in the examples
discussed above. Third, a strong plane shock may become unstable with respect to front modulations

if the target is accelerated. However, this effect needs a global description of the target dynamics.

The theory of the fast electron driven shock wave in dense solids has been confirmed by numerical
simulations. It shows a possibility to achieve extremely high shock pressures in high density solid
materials with the coupling efficiency up to 10 %. The case presented in the left panel of Figure
10.6 corresponds to the fast electron current of 30 GA/cm?, which can be generated with high power

laser pulses. The numerical simulations of laser plasma interaction [Klimo et al., 2011] predict the
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efficiency of laser absorption more than 70 % with 90 % conversion in fast electrons for the laser
intensities exceeding 10 PW/cm? at the wavelength 0.351 um. The laser accelerated electrons with
energies less than 100 keV could be efficient drivers of strong shocks for ignition of ICF targets and for
other high energy density applications. Such drivers could invest about 10 % of energy in the shock
wave in solids with a pressure amplitude at the level of several hundred Mbar or more. However,
the electron energy distribution, angular aperture and the target density profile may affect the shock
amplitude or the preheat of the imploding shell. The simulations similar to those presented in this
section have been conducted with more realistic electron energy spectrum and more realistic density
profiles [Nicolai et al., 2014]. It has been shown that the fast electron beam may preheat the DT shell

and jeopardizes its compression.

Since this work, another model developed by [Piriz et al., 2012] for the desciption of ablation
driven by hot electrons generated during the ignitor laser pulse in shock ignition have been pro-
posed. However, contrary to the model presented here, it assumes the process to be quasi-stationary,
which does not agree with our numerical simulations. The possibility to launch shocks of several-
hundred Mbar in spherical targets has been recently demonstrated on the OMEGA laser facility
[Theobald et al., 2013] [Nora et al., 2015]. The ablation pressure has been inferred from the time of
shock propagation to the target center by using radiation-hydrodynamic simulations. Peak ablation
pressures exceeding 300 Mbar are inferred at absorbed laser intensities of ~ 310 W/cm?. It has
been demonstrated that the shock strength is significantly enhanced by the coupling of suprathermal
electrons with a total converted energy of up to 8% of the incident laser energy. At the end of the

laser pulse, the shock pressure is estimated to exceed ~ 1 Gbar because of convergence effects.

10.2 Blast Wave generation in solid targets by the quasi-

isochoric heating by laser-generated Electron Beam

10.2.1 Analytical Estimates

Here, we consider another example of a blast wave driven by an intense short laser pulse. The
experimental campaign conducted by [SANTOS et al., 2013], was described in sections 8.2 and 9.2.
As illustrated in Figure 10.7 a), a Streaked Optical Pyrometry (SOP) at the wavelengths A = 405
and 532 nm have been used to diagnose the targets rear side temperature [Vauzour, 2012]. It was
estimated from the signal intensity assuming a Planckian-type emission (Black body radiations). The
estimates of the target rear side temperature are in good agreement with the M1 and PaRIS simulations
illustrated in Figure 9.15. A strong increase in visible light emission has been observed for the thick
targets with a delay of ~ 500 ps after a 50 fs laser pulse Figure 10.7 b), but not the thinner

targets. This effect is interpreted as a blast wave formation in a sufficiently thick target. From 2D
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Figure 10.7: Schematic view of the laser-irradiated target and the Streaked Optical Pyrometry
(SOP) diagnostic a) and a SOP image of SOP result at A = 532 nm for the
Al(1 pm)Cu(3 pm)Al(15 pm) target b); Courtesy of J. Santos.

PIC simulations of laser-solid interaction with a laser pulse intensity of Iy, = 7.510'” W/cm? and a
duration of 500 fs, [Sentoku et al., 2007] showed that the quasi-isochoric heating of the target by the
laser-generated fast electrons may excite shock waves that compress the plasma beyond solid density
and to keV temperatures. According to their simulations, shocks with pressures up to gigabar can be

launched inside the target with ultrashort laser pulses.

Therefore, in order to explain this increase of visible light emission in the experiments conducted
by [SANTOS et al., 2013], we developed a model of a blast wave generation by strong temperature
gradients induced by a fast target heating. For this, we solve Equations (10.1), (10.2), (10.3) and

(10.4) with a nonlinear heat flux
or

= g "
q Ko O

(10.53)

induced by an instantaneous energy deposition
We o 6(t). (10.54)

Indeed, according to section 9.2.2, the target heating by the laser-generated fast electrons lasts
~ 1 — 2 ps; see Figure 9.12. On the hydrodynamic time scale, this heating may thus be considered
as instantaneous and isochoric due to the large ion inertia. Actually, some ions are accelerated on the
ps time scale, but they do not affect the target dynamics. The main part of ions may be considered

as immobile. Since in our conditions the electron and radiation heat fluxes are comparable

> 1 (10.55)

according to [Ditmire et al., 1996], we do not specify the values of n and k¢ in the thermal energy
flux (10.53). Here, kgp is the Spitzer-Harm thermal electron conductivity (see Appendix B, section

B.2.1 and B.2.2). Indeed, thermal waves are driven by radiation transport for solids (n. ~ 10?3
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cm™3) at temperatures greater than kg7, ~ 100 eV, according to the Ditmire criterion (10.55).

Let us assume that at the time ¢t = 0 after the end of the laser pulse, the electron heating resulted

in an exponential temperature profile
T(x,t=0)="Tyexp(—z/dpy), (10.56)

with T,,, = 400 eV and dy = 5 pm; see Figure 9.15. Contrary to the explanation given by
[Sentoku et al., 2007], the blast wave generation is not related to the Copper tracer layer in our
case. Therefore, we assume a simple target made of Aluminum, only (p = 2.69 g/cm?® and n; = 6 10?2

cm~3). We model therefore the thermal capacity as

Cy = §nek3 = " with n. = Z*n; (10.57)

2
kT

s =] Z*°B2 (10.58)
m;

The ionization state may be estimated by its averaged value :

and the velocity of sound as

Ly T
7* = — zZ —— |dx = 10.
Lz/() mexp< d0> x (10.59)

with L, being the target thickness and Z, = 10 the ionization state in the first micron of Aluminum.
Due to the high temperature T),, the plasma expands rapidly in vacuum at the irradiated side of
the target with the velocity cs(Tm) = \/Z5kpTm/mie, corresponding to few hundreds of ym/ns, in
agreement with the self-similar rarefaction wave expanding in vacuum [Gurevich et al., 1966]. Due to
the plasma expansion, the temperature at x = 0 decreases rapidly to low temperatures in agreement

with the 1D academic simulation so that we can consider the boundary condition

Vt >0, T(x=0,t)=0. (10.60)

This  boundary condition corresponds to the  dipole-type  solution found by
[Barenblatt and Zel’dovich, 1957] when studying the self-similar process of gas filtration in a

porous medium. Here, the invariant quantities are the heat diffusivity

a= 2 [em?.s™L K™ (10.61)
Cy
and
oo
P[K.cm?] = / 2T(z, t = 0)dz = Tp,do* ~ 1.16 K.cm? (10.62)
0

with T}, = 400 eV and dy = 5 um instead of a [em?.s71.K™"] and Tp [K] for the self-similar solution
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with a constant temperature Ty at x = 0. Consequently, we can construct the two self-similar variables

1
24 (t) [em] = & (aPt) 2(n +1) (10.63)
and the effective initial heating depth
1
P\
7(t) [s] = M(m) ntl (10.64)

Here, &1 and M are dimensionless constants while @ ~ 4.7107 ¢m?2.s71. K~%/2 for the electron thermal
conductivity (Cy = 6.2 107 erg K '.em™3 and InAy; = 3) and a ~ 8.5 10729 cm?.s 1. K for the

radiation thermal conductivity assuming

160 ART>

Krad = 3 (10.65)
and the Rosseland mean free path for Hydrogen-like plasmas
, T?
Ar ~ 8.710 10.66
R Z*an‘ ( )
according to [Eliezer, 2002]. By looking for the function F' such that
T(z, t) = 7(t).F < i > (10.67)
x, t) = T7(t). .
zy(t)
is solution of (10.3), we find according to [Barenblatt and Zel’dovich, 1957]
F(E) _ 51/(n+1) (1 o g(n+2)/(n+1)) ’ (1068)
L/n 0.599 ifn=15/2
M= [”} ~ ifn =5/ (10.69)
2(n +2) 0814 ifn=>5
and
b
2 1 1 12(n+1 1.918 ifn=15/2
€0 = (n+2)? [(n+1)3<1+,”+ +1>} m+D) ifn=>5/2 (10.70)
n non+2 1.680 ifn=5

The dipole-type solution is illustrated in Figure 10.8.

Knowing the temperature profile, let us now estimate the target depth and the time at which
the blast wave is generated. A criterion called hydrodynamic separation consists in estimating the
time needed for compression waves to ”overshoot” the thermal wave front. According to Equation

(10.6) that describes the propagation of compression waves, we estimate the propagation velocity of
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Figure 10.8: (Left panel) Dipole-type solution profile for the heat equation at 10 ps. (Right panel)
Plots of the thermal wave front and compression wave velocities versus time.

compression waves that propagate towards the target rear side as

cs(t) = ”Z*kl:éfw (10.71)

n
n+ 2

where

(T)(t) = 7(t) (10.72)

is the mean temperature in the dipole-type profile illustrated in Figure 10.8. Then, by equating the

compression wave velocity at the steepening time with the thermal wave front velocity

dxy xy(ts)
~ 2T I I 10.
we obtain s
" ( 512(714-2) mg >(n+ / n(aPn)l/n
° 4Mn(n + 1)2'Z*k:BP
T 3/10 do 3/5
1 m = ifn=5/2 (10.74)
0 (400 eV) <5um> ps ifn =5/

T 3/5 do \%°
(400 eV) <5Mm> ps ifn=>5

Knowing the steepening time, we can also estimate the steepening depth as the thermal wave front

position at the steepening time ts. It reads

re =~ wf(ts)
T, \2° do \° ‘
T <400 eV 5 um pan i n = 5/2 (10.75)
~ T, \92 do \°/1° :
10 — ifn=>5
(400 eV) <5um> pm
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This expression explains why a strong increase in visible light emission has been observed experimen-
tally for the thickest target and not for the thinnest target. This is due to the fact that the thin target
does not have a the sufficient thickness to allow for the blast wave generation. Interestingly, we obtain
the same steepening time of 16 ps in both regimes of thermal conduction for the set of parameters
corresponding to the experiment. However, the compression waves steepening depth is slightly larger
in the case of radiation thermal transport. Since the heat transport regime changes with depth, we

estimate between 7 and 10 pum the value of the steepening depth.

We have demonstrated analytically that the target temperature gradients, due to the isochoric
and instantaneous target heating by the laser-generated fast electrons, may be responsible for the
generation of a blast wave in the thicker target. The blast wave breakout at the target rear side is
in turn responsible for a rapid increase of the temperature at the target rear side. It thus increases
the visible light emission from the target rear side that has been observed in the experiment. Let us
estimate now the time tp, needed for the blast wave to reach the target rear side. By estimating the
energy released in the target, responsible for the blast wave generation as

ro\2

0o L,
Ey = / 27T7’d7’/ dxCyT(x,t = 0)exp [—41112(A ) ] ~ 16 mJ (10.76)
0 0 r
with Ar = 10 um according to the hybrid simulation results (see log;, (7¢) in Figure 9.13) but
assuming an axisymmetry for simplicity, we may estimate t, according to the Sedov law (10.14) with
~v=5/3. It reads

Ly —25\"? 1/2 174 ps if n =5/2
too =t + <$) <p0> ~ ps ifn=>5/2 (10.77)
€o Eo 93 ps ifn=75/2

We thus obtain the same order of magnitude of a few hundreds of ps as observed in the experiment
for the thicker target. The target rear side temperature of ~ 10 eV that drives a rarefaction wave
may explain the discrepancy between the analytical estimate and the experiment as we are going to
explain in the next section. For example, if we conduct the same estimate with L, = 19 um instead

of L, — x4, we obtain t,g = 514 ps.

10.2.2 Radiation Hydrodynamic Simulations

We have performed hydrodynamic simulations with the hydrodynamic code CHIC, which described
the radiative transfer in the diffusive approximation and the visible light emission at A = 405 nm
from the target rear side. Opacities were computed according to the approximate method proposed
by [Tsakiris and Eidmann, 1987]. The blast wave was generated with or without accounting for the
radiation thermal conduction, confirming the results obtained in section 10.2.1. In order to account

for the 3-dimensional effects of the blast wave propagation, the simulations are conducted in the 2D-
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Figure 10.9: Comparison between the temperature profile obtained with the hybrid PIC simulation
conducted by [Gremillet, 2012] and the initialization of the Radiation Hydrodynamic
simulation for the thinner and thicker targets with the Copper traer layer at z = 1 pym.

axisymetric geometry. The initial temperature profile was deduced from the graph in the left panel of
Figure 10.9 in agreement with the simulation results obtained by [Gremillet, 2012] with the hybrid
PIC code PaRIS. The longitudinal profile of the fast electron transport energy deposition was obtained
by projecting into the axisymmetric geometry of the hydrodynamic codethe energy deposition along
the main direction of fast electron propagation in the M1 simulation, L, = L,/ cos(25°). The radial
profile Arg at = 0 is the same as in Equation (10.76). However, in order to model the effects of the
departure from axisymetry of the target around the fast electron propagation direction, the FWHM
was decreased with the target depth as Ar = Arg — 6(z cos (25°)/19 pm).
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Figure 10.10: Distribution of the plasma temperature and pressure at ¢ = 60 (Left panel) and 600
ps (Right panel).

The initial 2D map of the temperature and the pressure are plotted in the right panel of Figure
10.9. The pressure rises up to 400 Mbar over the first micron. Snaphots of the plasma density,
temperature and pressure at t = 39, 239 ps, 499 and 1000 ps are illustrated in Figure 10.10 for the
thinner target and in Figure 10.11 for the thicker target. We can see that the high temperature
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and pressure produce a rapid plasma expansion in vacuum at the target boundaries. At the laser-
irradiated side of the target, the temperature is much higher so that the expansion is stronger and a
rapid decrease of the temperature corresponds well to our theoretical model (10.60). The gradients of
the temperature and the pressure drive both a thermal wave and a compression wave inside the target.
The thermal wave front is caught up by the compression wave for the thicker target, producing a blast
wave. It is not the case for the thinner target, which simply explodes. A shock is formed at a depth
of zs &~ 10 ym (in agreement with our theoretical predictions) at a time between 20 and 60 ps for the
thicker target. It is not evident to distinguish between the expansion of the Copper tracer layer in the
rear side Aluminum layer and the shock front at these times. The pressure at the shock front is ~ 50
Mbar at 60 ps as illustrated in the left panel of Figure 10.10 and decreases with time, as illustrated
in Figure 10.12. The downstream plasma temperature behind it is more or less homogeneous and
on the level of T ~ 50 eV. We can see that the plasma expansion at the target rear side drives a
rarefaction wave that decreases strongly the blast wave strength on-axis. As a result, we deduce that
the increase of visible light observed experimentally is mainly due to the blast wave front breakout far
away from the fast electron propagation axis. It may also explain why using L, = 19 ym in (10.77)

instead of L, — x, allows for a better agreement with the experimental observations.

Page 332



CHAPTER 10. APPLICATION TO THE GENERATION OF SHOCK WAVES BY FAST

ELECTRON ENERGY DEPOSITION

40

p(gem™) @ t =0.039 ns

30
20
10

y [um]

-10
-20

%

—4
_G 0

P(Qcm

X [uml

) @ t=0.239 ns

y [um]

T40

40

30
20
10

0

y [um]

y [um]

p (gcm™

40
30
20
10
0
-10
-20
-30
-4Q

X [pm

t=0.499 ns

X [uml

p(g.cm™) @t=0979 ns

20

0
x [um]

40

T (eV) @ 1=0.039 ns

40
30
20
10

y [um]

-10
-20

-30

|
.

—4
%

X[um]
T (eV) @t =0.239 ns

40
30
20
10

0

y [um]

-10
-20
-30

1
=

4%

y [um]

-20

-30

%0

y [um]

-20

X [um]
T (eV) @t =0.499 ns

40

-20 20

0
X [um]
T(eV) @1=0.979 ns

A\ 4

F1N

X [um]

40

15

10

(4]

[e2]

[e2]

~

n

y [um]

y [um]

y [um]

P (Mbar) @ t =0.039 ns

-20 0
x [um]

20 40

P (Mbar) @ t =0.239 ns

Y0

40

240

-20

0
X [um]

20 40

P (Mbar) @ t =0.499 ns

40
30
20 '
10
0 .
10
20
30
_4g

X [um]

P (Mbar) @ t =0.979 ns

X [um]

N ‘ r |
20 .
10
0
-10
-20
> ‘ L
40

Figure 10.11: Distributions of the target density p (Left), temperature 7' (Middle) and pressure P
(Right) from the CHIC simulation at ¢t = 39, 239, 499 and 979 ps for the 5-microns

thick target.
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CHAPTER 10. APPLICATION TO THE GENERATION OF SHOCK WAVES BY FAST
ELECTRON ENERGY DEPOSITION
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Figure 10.13: (Left panel) Comparison between the experimental signals and the simulation results
for both targets. (Right panel) Streak camera-like images from the CHIC simulation
for the thicker target.

The chronometry of the shock breakout at L, = 19 ym (the rear surface) is shown in the right
panel of Figure 10.13. In order to make a comparison with the experimental SOP image as illus-
trated in Figure 10.7 b), we convolve the signal obtained numerically by the Gaussian function in
time with a FWHM of 20 ps and in space with a FWHM of 20 um. The resulting signal obtained
in the hydrodynamic simulation is renormalized by the value of the maximum emission obtained ex-
perimentally for the thinner target. The signals summed over the y-axis are plotted versus time in
the left panel of Figure 10.13. At t,, =~ 600 ps, we observe a large increase by a factor =~ 10 of the
visible light emitted from the thicker target. It can be directly compared with the simulation result

conducted for the thinner target where no such increase of temperature occurs.

As a conclusion, the hydrodynamic simulations confirm the explanation given in section 9.2.1
concerning the generation of a blast wave in the thicker target due to the large temperature gradients
induced by the laser energy deposition. When the the blast wave arrives at the target rear side, the
temperature increases by a factor =~ 6 and the emission of visible light is enhanced. No blast wave is

generated in the thinner target due to the absence of hydrodynamic separation.
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Chapter 11
Conclusion

” We need science education to produce scientists, but we need it equally to create literacy in the
public. Man has a fundamental urge to comprehend the world about him, and science gives today the
only world picture which we can consider as valid. It gives an understanding of the inside of the
atom and of the whole universe, or the peculiar properties of the chemical substances and of the
manner in which genes duplicate in biology. An educated layman can, of course, not contribute to
science, but can enjoy and participate in many scientific discoveries which as constantly made. Such
participation was quite common in the 19th century, but has unhappily declined. Literacy in science
will enrich a person’s life.”

Hans Bethe
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The goal of this PhD thesis was to develop a new reduced 3D-3V hybrid relativistic Vlasov-Fokker-
Planck model, which must be as accurate and as time efficient as possible for the study of fast electron
transport in solids and dense plasmas in the context of ICF. For this, we have linearized the Belyaev-
Budker collision tensor by applying it to the study of laser-generated fast electron beam transport
in solids or dense plasmas, assuming a small momentum transfer in a collision. The production
of secondary electrons is neglected, assuming the residual energy of background electrons after a
collision with a beam electron is smaller than the exchanged momentum of a consecutive collision
with another beam electron. These assumptions allowed us to obtain a simpler Landau-like collision
operator. Moreover, it allowed us to relate the angular scattering collision frequency by colliding with
background particles (free electrons, bound electrons, screened free electrons/plasmons or ion nuclei)
to the corresponding stopping powers according to an Einstein-like relation, similar to the one obtained
for Brownian motion of particles. This allows us to obtain more accurate expressions compared to
the angular scattering theories usually used, by retaining all terms in the Moller relativistic Coulomb
logarithm instead of the relativistic generalization of Rutherford term, only. However, our model is
limited to low density beams n; < n. since the collisions of beam electrons with themselves and the

production of secondary electrons are neglected.

The analysis of existing numerical methods for solving the Vlasov-Fokker-Planck equation (V-F-P)
oriented our choice towards a hybrid and expanded ” Vlasov-Fokker-Planck” method. In order to make
numerical computations as fast as possible, we limited ourselves to the first two angular moments.
The "hybrid” assumption consists in separating the beam electron population and the background
electron population. Contrary to the widely used P1 approximation, also usually called the ”diffusion
approximation”, our M1 model accounts for an arbitrary degree of anisotropy. The closure relation is
deduced from the Minerbo maximum angular entropy criterion depending on the anisotropy vector.
Such a closure is exact for fully isotropic local (in space and kinetic energy) angular distribution
function and for fully anisotropic local angular distribution function. While the first order expansion
reduces the information concerning the local angular distribution function, it provides a sufficient
accuracy for the laser-generated fast electron beam transport. Such a closure is fully justified in the
collisional limit. Besides, a comparison of the full kinetic and the M1 approach for the analysis of the
resitive filamentation instability shows that our model describes the instability growth rate with an

error of a few 10s of % in the case of collisionless fast electrons.

Our model assumes time scales greater than the electromagnetic neutralization time of the beam
and that the beam is not modified during its electromagnetic neutralization. This is a strong assump-
tion in the case of propagation through insulators since the ionization processes occur in this time
scale, implying additional energy losses of the electron beam that are omitted here. In our hybrid
model, the self-generated magnetic field verifies the diffusion equation with source terms depending
on the resistivity gradients, curls of the beam current and temperature-density crossed gradients while

the self-generated electric field is given by the quasi-static Ohm’s law. Thus, we have neglected the
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magnetization effects, the background electron viscosity, the collisional friction of the background elec-
trons due to collisions with beam electrons, the displacement current in the Maxwell-Ampere equation
(quasi-static approximation), the background electron inertia and we have considered the ideal gas
expression for the equation of state of background electrons. These assumptions are justified in the
case of laser-generated electron beam transport in dense targets. The self-generated electromagnetic
fields depend on the electrical resistivity of the material and its spatial gradients, which depend on the
electron and ion temperatures of the material. Thus, the electron temperature evolution needs to be
described self-consistently according to the electron heat equation. Also, the background ion heating
is described self-consistently according to a simplified heat equation. In our model, we neglect the
ion motion and the ion thermal conductivity, considering times scales smaller than 10-100s of ps. We
also proposed new expressions for the heat capacities, the electrical resistivity, the electron thermal
conductivity and the electron-ion coupling factor, allowing to describe metals from the solid state at
the room temperature ~ 300 K through the liquid and Warm and Dense Matter (WDM) states to
the hot plasma state with temperatures ~ 10 keV. The collisions of background free electrons with
d-band bound electrons are taken into account according to recent studies showing the importance of

this relaxation process.

The numerical schemes used for the solution of the M1 equations have been described. The M1
equations are computed with second order explicit schemes except for the fast electron collisional
slowing down, which is computed according to the 1st order downwind scheme. The advection terms
are computed according to the HLL schemes allowing to ensure a positive number of electrons and
a norm of the mean propagation vector less than 1. Implicit schemes have also been implemented
in order relax the CFL condition in case of fast electron transport in a very dense plasma. The
self-generated electromagnetic fields are computed according to 2nd order schemes except the self-
generated magnetic diffusion that is resolved semi-implicitely thanks to 2nd order discretizations and
a conjugated gradients algorithm. Finally, both heat equations are computed according to explicit
numerical schemes. The numerical schemes used to solve the equations of the model have been
validated thanks to a 2D-3V academic case of a monoenergetic and collimated fast electron beam
propagating in a warm and dense hydrogen plasma. Also, it allowed to demonstrate the major features
of the M1 approximation and to derive analytical expressions for the various quantities computed by

the code such as the fast electrons penetration-depth-to-the-range ratio due to their angular scattering.

A realistic simulation of a laser-generated fast electron beam transport in a thin Aluminum target
has been conducted and compared to a hybrid PIC simulation. It shows that the M1 approximation is
sufficiently accurate to reproduce the hybrid PIC simulation results. We have applied the model to the
study of the emission of K« photons. The refluxing of fast electrons is accounted for by imposing the
specular reflection of fast electrons at the target-vacuum interfaces and adding a second population
in the M1 equations. The first one describes the laser-generated electron population propagating in

the laser direction, while the second one describes the counterpropagating fast electrons. The model

Page 339



of calculation of the emisssion of K« photons is revised. The conclusion of this study are manyfold.
Firstly, we demonstrated that the numerical time step of the fast electron transport calculation may
be comparable to the K-hole lifetime in the case of Aluminum and Copper targets. Therefore, we
have implemented the K-shell hole dynamics in our model. Secondly, we demonstrated that the solid
state corrections must be taken into account. In particular, the electron-ion temperature equilibration
time and collisions of d-band with s-band electrons may affect the magnetic field distribution in
the Copper target. Thirdly, we confirmed with a simple analytical model, the result obtained by
[Sherlock et al., 2014] concerning the effect of the target electron inertia in the Ohm’s law and the
displacement current. Each laser-generated bunch of electrons, injected in the target at the laser
frequency or twice the laser frequency excites a weak field of background electron plasma waves.
Collisional damping of these plasma oscillations results in an additional target electron heating ,
which is not accounted for in hybrid models. Fourthly, we confirmed a strong contribution of refluxing
electrons in the Ka photon emission. The thinner the target is, the stronger the refluxing electrons
contribute to the Ka photon emission. Fifthly, we demonstrated significant differences between 2D
and 3D simulations, especially in what concerns the self-generated magnetic fields, the size of the K«
emission zone and the local density of emitted photons. In particular, the size of the Ka emission
zone is underestimated in our calculations as compared to the experimental data. We analyzed the
assumptions of our model concerning the Ka emission that may explain this discrepancy. The photon
re-absorption may introduce an error of only ~ 10 % in our computations. Another candidate is the
contribution of the secondary electrons. However, it seems to me that the main critical assumption in
our model is concerned with the specular reflection of fast electrons at the target-vacuum interfaces.
A simple estimate of the magnetic field generated by the ”fountain” effect indicates that these local

fields may significantly deviate the refluxed fast electrons, thus enhancing the K« signal spotsize.

We coupled our reduced model for fast electron transport with a radiation hydrodynamic code
and investigated the generation of strong shock by energetic electron beam. One example concerns
the fast electron driven shock wave in dense plasmasin the shock ignition conditions. It confirms the
theoretical estimates by [Gus’kov et al., 2012] and shows a possibility to achieve Gbar shock pressures
in high density solid materials with the coupling efficiency up to 10 %. In contrast, we disapprove
another model developed by [Piriz et al., 2012] as the quasi-stationary assumption of that paper does
not agree with our numerical simulations. Another example concerns the excitation of a blast wave
with a femtosecond laser pulse. We have demonstrated analytically and numerically that a blast wave
is generated due to the temperature gradients induced by the laser-generated fast electron energy
deposition in the target tens of picoseconds after the end of the laser pulse. The analytical estimates

and hydrodynamic simulations showed a good agreement with the experimental data.

The hybrid model of fast electron transport developed in this thesis has been already used in
several other studies. More realistic simulations of the ablation pressure driven by an electron beam

in the context of shock ignition by [Nicolal et al., 2014] show that an exponential electron energy
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spectrum and a more realistic target density profiles may reduce the ablation pressure and preheat
the target thus reducing the shock strength. The model have been applied by [Volpe et al., 2014]
for studies of the multiple pulse scheme proposed by [Robinson et al., 2008] [Scott et al., 2012] to
control the divergence of laser-generated electron beam in the context of fast ignition. It is shown
that a sequence of three ps laser pulses allows to improve the collimation of the beam at least by
a factor 2 compared to the double pulse scheme. Another series of simulations has been performed
for the understanding of a laser-generated transport experiment reported by [Vaisseau, 2014]. In this
experiment, a collimation of the fast electron beam in a planar Carbon target has been demonstrated
and explained with hybrid numerical simulations. Finally, we conducted estimates of the emission of
Ka photons in future PETAL laser pulse experiments for radiography applications. Simulations with
the M1 code have been compared with 3D Monte Carlo simulations conducted by [Boutoux, 2014]
with the codes GEANT4 [Agostinelli et al., 2003] and PENELOPE [Sempau et al., 1997].

The perspectives of this work are manyfold. Firstly, the wake field losses of modulated electron
beams may be implemented in the hybrid code. This will allow to resolve the laser-generated elec-
tron bunches and to implement the CTR diagnostic in the code. The secondary electrons and the
magnetic field generated at the target edges by the escaping electrons can also be taken into account.
However, these physical effects require resolving very small spatial scales of the order of the fast elec-
tron Larmor radius and, therefore, represent an important investment in terms of vectorization and
parallelization of codes. Also, it would be interesting to compute self-consistently the fast electron
and Ka photon transport in the target in order to account for opacity effects that are usually ne-
glected. Concerning the application of fast electron transport to the generation of shocks in ICF,
more realistic simulations must be conducted combining both laser-and-electron-generated shocks in
a convergent geometry. Concerning fast ignition, the interaction of the petawatt laser pulse with
the cone is still an intense field of research [Kemp et al., 2014]. The M1 model may be useful to
perform a parametric study of the target density and temperature conditions and the properties of
the ignitor electron beam. Different ways to collimate the fast electron beam can be also considered.
For example, simulations at the ignition scale of the fast ignition of fusion pellets with an engineered
cone-in-shell [Robinson and Schmitz, 2013] or with an external magnetic field [Fujioka S. et al., 2013]

can be performed with plasma magnetization and three-dimensional effects taken into account.
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Chapter 12

Etude du transport d’Electrons
Rapides pour la Fusion par

Confinement Inertiel

"I do not know what I may appear to the world, but to myself I seem to have been only like a boy
playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a
prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.”

Isaac Newton
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Toutes les expériences et les observations menées jusqu’a aujourd’hui montrent qu’il existe une
quantité universelle qui est conservée au cours de toutes évolutions et/ou transformations de la matiere
et des champs : I’Energie. En d’autres termes, cela signifie que les lois de la Physique ne changent
pas au cours du temps. Tous les développements de la physique moderne sont liés a ce principe de
conservation de I’énergie et consiste en 1’étude des différentes manieres de convertir I’énergie existante
sous une forme donnée en une autre forme d’énergie. Par exemple, les réactions nucléaires de fission
de 0.01 g d’uranium fournissent approximativement 1 kWh (1 kWh = 3.6 MJ) d’énergie thermique
dans une centrale nucléaire. La méme quantité d’énergie thermique peut étre obtenue par combustion
d’approximativement 100 g de pétrole, de charbon ou de gaz (1 million de tonnes de pétrole ou
équivalent pétrole produit environ 4,4 TWh d’électricité dans une centrale électrique moderne), par
condensation de 1,6 kg de vapeur d’eau ou en capturant le rayonnement solaire sur un panneau d’une
surface de 1 m? pendant une heure (l'intensité de la lumiere du soleil sur la Terre est d’environ 0,1
W /cm? lors d’une journée ensoleillée). 1 kWh représente aussi I’énergie potentielle gravitationnelle
de 3 tonnes d’eau chutant de plus de 100 m d’altitude dans une centrale hydroélectrique, I’énergie
cinétique de 20000 m? d’air se déplacant  une vitesse de 60 km/h poussant une pale d’éolienne ou
encore I'énergie nécessaire pour un étre humain de 65 kg pour grimper jusqu’a un sommet de montagne

situé a une altitude de 3000 m.

Depuis le XIXe siecle, la croissance exponentielle des connaissances technologiques et scientifiques,
rendue possible grace a ce concept de conservation d’énergie, a conduit a une incroyable amélioration
de la qualité de vie de 'Homme sur Terre ainsi qu’une augmentation fulgurante de la population
mondiale. A titre d’exemple, il est frappant de constater la forte corrélation qu’il existe entre le
produit national brut d’un pays et la consommation en énergie de ses habitants a I’heure actuelle.
Cependant, la combustion de ressources fossiles tels que le pétrole, le gaz et le charbon qui est toujours
majoritairement utilisée aujourd’hui afin de produire de ’énergie. Ils représentent a eux seuls environ
90 % des ressources en énergie consommées dans le monde. Le nucléaire et I’énergie hydroélectrique ne
représentent que seulement 6 % de la consommation mondiale en énergie. Méme si d’autres énergies
renouvelables tels que 1’éolien, la combustion de biomasse ou de déchets, 1’énergie solaire ou encore les
centrales géothermiques sont de plus en plus utilisés grace aux subventions gouvernementales, leurs
contributions restent toutefois négligeables. Comme toute fonction continue positive partant de zéro et
arrivant a zéro, on peut montrer que 'extraction de chaque ressource naturelle terrestre atteindra tot
ou tard un maximum a un moment donné de notre Histoire, puis diminuera jusqu’a ce que la ressource
ait totalement disparu de la surface de la Terre. On estime ainsi que nous disposons de 50 ans de
réserves en gaz et en pétrole ainsi que d’environ 100 ans de réserves en charbon avant d’avoir consommé
tout ce qu’il en reste sur Terre. Ces évaluations sont probablement sous-estimées pour des raisons
financieres. Cependant, elles sont fondées sur des données datant de 2013 concernant le nombre d’étre
humains sur Terre alors que 'on s’attend & étre plus de 11 milliards en 2100 (par rapport & environ 7,1
milliards en 2013). En outre, cette forte croissance démographique devrait se produire dans les pays ou

les demandes en ressources naturelles seront les plus élevés. On comprend donc facilement que, si nous
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ne trouvons pas d’alternatives, le cout financier de notre consommation en charbon, gaz ou pétrole
sera en perpétuelle augmentation jusqu’a ce que chacune de ces ressources disparaissent. Méme si
I’'utilisation de centrales nucléaires reste a I’heure actuelle la solution la plus efficace et la moins nocive
pour ’environnement, on peut s’attendre & ce que la politique des gouvernements tende a limiter leur
utilisation en raison de la grande durée de vie des déchets radioactifs qu’elles produisent ainsi que
I’opposition croissante du public a son utilisation en raison des catastrophes telles que Fukushima en
2011, Tchernobyl en 1986 ou encore Three Mile Island en 1979.

Depuis 1965, I’ émission de dioxyde de carbone dans notre atmospheére, connue pour étre 'un
des principaux facteurs responsables de l'effet de serre et donc de 'augmentation de la température
moyenne sur Terre, est passé d’environ 3500 kg/an/habitant & environ 5000 kg/an/habitant au-
jourd’hui. Par conséquent, méme si I’hydroélectricité reste le moyen le plus efficace pour produire
de I’énergie parmi les méthodes les plus écologiques, son utilisation sera également affectée par les
sécheresses induites par cette augmentation de température. Par exemple, I'Europe devrait perdre
entre 20 et 30 % de ces précipitations d’ici & 2100 conduisant ainsi & une efficacité de production hy-
droélectrique beaucoup plus faible (La majorité des centrales hydroélectriques européennes ne fonction-
nent déja pas treés bien en été). Enfin, d’autres ’énergies renouvelables’, comme les centrales éoliennes
ou les panneaux photovoltaiques sont insuffisantes pour satisfaire la demande mondiale et en partic-
ulier la demande industrielle. En conclusion, I’humanité va faire face au XXle siecle a d’importantes
pénuries d’énergie si nous ne trouvons pas d’alternatives pour la production d’énergie (ou si nous ne
réduisons pas notre consommation; ce qui suppose une prise de conscience collective pour controler

'insatiable désir de consommation imposé par nos sociétés pour des raisons économiques).

Dans les années 1950, I’idée de controler la combustion thermonucléaire d’atomes légers pour pro-
duire de ’énergie est née peu de temps apres le développement par H. Bethe d’'un modele théorique
de réactions de fusion permettant d’expliquer la conversion de I’énergie de liaison nucléaire en chaleur
dans les Etoiles. Deés lors, ”reproduire I’énergie des Etoiles sur Terre” est devenu le réve de nom-
breux physiciens et semble étre aujourd’hui une solution prometteuse pour résoudre le probleme de
la production et de la consommation de ’énergie dans le monde au XXle siecle. Cependant, con-
trairement a la force gravitationnelle et a la force électromagnétique qui agissent sur des distances
potentiellement infinies, les deux autres forces nucléaires forte et faible agissent sur des distances sub-
atomiques minuscules et sont beaucoup plus difficiles d’acces avec la technologie actuelle. Selon la
théorie de IElectromagnétisme, une énergie d’environ 1 MeV (1 eV = 1.6022 1071 J) est nécessaire
afin de vaincre la barriere d’énergie Coulombienne d’un atome afin de le faire fusionner avec un autre.
En réalité, une énergie d’environ 10 keV est suffisante grace a l'effet tunnel quantique découvert par
G. Gamow. La seule maniere possible de produire de I’énergie grace a de telles réactions de fusion
d’atomes légers consiste a créer un plasma thermonucléaire ayant des conditions de température et
de densité proche de celles de certaines Etoiles. Cela permettrait en effet d’atteindre des taux de

réaction de fusion nucléaire suffisamment élevés et donc des gains de conversion d’énergie élevés pour
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la production d’électricité. Cependant, en plus de ces contraintes de températures et de densités, la
réaction de fusion nucléaire choisie doit étre exothermique. Pour cela, il faut donc que la réaction con-
somme des noyaux atomiques les plus légers possibles afin d’avoir a vaincre une barriere Coulombienne
moins énergétique. Aussi, la section efficace de la réaction de fusion (ou probabilité de réaction de
fusion) doit étre la plus grande possible. Cela implique par conséquent une réaction nucléaire consom-
mant seulement deux noyaux, conservant le nombre de protons et de neutrons afin de limiter la force
nucléaire faible et, enfin, produisant au moins un neutron en plus du noyau plus lourd produit afin de
chauffer le liquide caloporteur circulant dans la couverture de la chambre de la centrale, permettant
ainsi de chauffer de I’eau pour la production d’électricité a I’aide d’une turbine. 80 réactions de fusion
nucléaire satisfont a ces criteres. Cependant, la réaction la plus probable compte tenu de la technologie

actuelle est la réaction de fusion des deux isotopes de I’atome d’Hydrogene
D+ T — He(3,5 MeV) +n(14,1 MeV)

en raison de l'existence d’un état intermédiaire résonant lors de la réaction. D’un point de vue
pratique concernant la production d’énergie électrique, il existe sur Terre une quantité quasi-infinie
de Deutérium (D) avec une concentration de 33 g par tonne d’eau de mer; C’est pour cette raison
que la production d’énergie par fusion d’un plasma de DT s’appelle ’énergie bleue. Le Tritium (T)
peut étre produit directement dans la centrale a 1’aide d’une seconde réaction de fusion entre les
neutrons (n), s’échappant du plasma thermonucléaire, et des noyaux de Lithium (Li), eux aussi tres
abondants sur Terre, préalablement placés dans la couverture de la chambre de la centrale. Ainsi,
contrairement aux centrales nucléaires de fission préexistantes, qui utilisent des ressources limitées
comme 'Uranium, le Plutonium ou le Thorium, I’énergie bleue ne fait face a aucun probleme de
limitation de ressources. En outre, la fusion d’'un plasma thermonucléaire de DT ne présente aucun
risque d’ emballement des réactions en chaine et ne produit que des déchets radioactifs a courte durée
de vie (moins de 10 ans). En conclusion, une éventuelle centrale & fusion thermonucléaire aurait donc
tous les avantages des centrales & fission nucléaire sans ses inconvénients, c’est-a-dire, sans polluer
I’environnement, sans provoquer d’éventuelles catastrophes nucléaires ou encore sans problemes liés a
la limitation des ressources terrestres. Seule la radioactivation éventuelle de matériaux environnant

peut poser probléme.

Du fait du mouvement chaotique des particules chargées portées a de grandes températures T = 10
keV (1 eV = 11600 K), un plasma thermonucléaire tend naturellement a s’expandre et il est difficile
de le maintenir confiné pendant le temps nécessaire 7. avec une densité suffisamment élevée n.. En
effet, d’apres le critere de J. Lawson, la température T ainsi que le temps de confinement 7. d’un
plasma thermonucléaire sont reliés par la densité n. du plasma si on veut pouvoir extirper du plasma
plus d’énergie de fusion que d’énergie investie pour le créer et le maintenir confiné. Dans les Etoiles,
le confinement du plasma est accompli naturellement par ’attraction gravitationnelle de I’Etoile sur

elle-méme. Par exemple, la masse du Soleil d’environ 1030 kg est suffisamment élevée pour attirer et
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comprimer le plasma stellaire & des densités pouvant aller jusqu’a n. =~ 1032 /em? et des températures
de 'ordre de T' =~ 10 keV pendant toute sa durée de vie d’a peu pres 7. ~ 10 milliards d’années. Du fait
que, dans un plasma, les particules sont chargées électriquement, les physiciens soviétiques I. Tamm et
A. Sakharov ont proposé dans les années 1950 I'idée d’utiliser de puissants champs magnétiques afin
de confiner le plasma thermonucléaire. Ce dispositif expérimental appelé tokamak se présente sous
la forme d’un tore. Il permet de confiner le plasma thermonucléaire grace a un champ magnétique
toroidal produit par des bobines magnétiques supraconductrices entourant le tore alors qu’un autre
champ magnétique poloidal est créé par un courant électrique a 'intérieur du tore permettant ainsi
le chauffage du plasma. Le projet internationale ITER planifie la construction d’un tel dispositif sur
le site du CEA (Commissariat a I’Energie Atomique et aux Energies Alternatives) & Cadarache, en

France, d’ici quelques années.

La Fusion par Confinement Inertiel (FCI) est un autre moyen de produire et contrdler de 1’énergie
de fusion thermonucléaire. Suivant cette approche, les conditions de densités extrémes (jusqu’a 1000
g/cm?) sont obtenues grace a la compression rapide d’une capsule sphérique solide de dimension
millimétrique remplie d'un mélange de D et de T gazeux et cryogénisé. La conversion de I’énergie
cinétique de I'implosion en énergie interne & la fin de la phase de compression entraine le chauffage
de la zone centrale, communément appelé ”point chaud”, jusqu’a une température T’ > 5 keV. Les
réactions de fusion du combustible de DT sont ainsi initiés en accord avec le critére de J. Lawson.
Contrairement a la Fusion par Confinement Magnétique (FCM), le plasma thermonucléaire est ici
confiné par I'inertie de sa propre masse et non grace a des champs magnétiques extérieurs. En outre,
I’implosion des cibles ne dure que quelques nanosecondes. Par conséquent, cette approche entraine des
difficultés technologiques supplémentaires dues au taux de répétition du processus a 10 Hz, imposé
par la production continue d’électricité. Cependant, en atteignant des densités n. si élevées pendant
un temps de confinement 7, si bref, 'approche FCI est beaucoup plus efficace en termes de gain de
production par rapport a la FCM qui, elle, vise a fusionner les isotopes de D et T a de faibles densités
ne mais sur des temps de confinement 7. beaucoup plus longs. Les schémas FCI conventionnels
impliquent I'allumage d’un point chaud central de maniere isobarique ot le combustible de DT atteint
une température de T ~ 7 keV et une densité surfacique p.R d’ environ 0,25 g/cm?, olt R est le
rayon de la coquille solide, pendant un temps de confinement 7. d’environ 40 ps. Afin d’atteindre
ces conditions extrémes, de nombreuses impulsions laser nanosecondes représentant une énergie totale
de E;, =~ 1 MJ peuvent étre utilisées afin d’irradier uniformément la coquille solide renfermant le
combustible de DT. L’irradiation de la coquille peut se faire directement avec les impulsions laser
(Attaque directe) ou par des rayons X produits par interaction laser-matiere (Attaque indirecte).
Dans les deux cas, les couches externes du solide irradié sont ablatés par la lumiere. Cette ablation
de matiere entraine ensuite I'implosion de la cible par effet fusée, i.e. par conservation de la quantité
de mouvement. L’évolution temporelle des impulsions laser de Nuckolls-Kidder est choisie de telle
sorte que la pression d’ablation de la coquille génere une onde de choc suivie d’une succession continue

d’ondes de compression sphériques convergentes dans la cible. Au moment précis ou les ondes de
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compression arrivent au méme instant au niveau de la surface interne de la coquille, une onde de
choc est transmise dans le DT gazeux, tandis qu'une onde de raréfaction est réfléchit dans la coquille.
Lorsque cette derniere arrive a la surface d’ablation, la coquille est mise en vol et subit une forte
accélération centripete. Du fait de sa symétrie sphérique, la capsule implose et le combustible de
DT est alors comprimé a la densité souhaitée. La conversion de I’énergie cinétique de I'implosion
en énergie interne a la fin de la phase de compression entraine la création d’un point chaud central
isobare a la température voulue. Des réactions de fusion auto-entretenues entre les atomes de D et de
T sont alors initiées, générant une onde de combustion thermonucléaire sphérique divergente suivie
d’une détonation, qui brile la partie dense du combustible dans la coquille. Le temps de confinement
tau. correspond a la durée de vie du point chaud centrale juste avant son explosion hydrodynamique.
Les processus de compression et de chauffage de la cible imposent de nombreuses contraintes sur la
rugosité et la symétrie sphérique des cibles ainsi que sur I'uniformité de I'irradiation par les impulsions

laser pour l'attaque directe ou du rayonnement X pour 'attaque indirecte.

Ces contraintes sont multifactorielles. Tout d’abord, les instabilités paramétriques liées a
I'interaction des impulsions lasers avec le plasma en expansion, appelé ”couronne”, peuvent réduire
lefficacité de conversion de 1’énergie laser en pression d’ablation de la coquille ainsi qu’entrainer des
inhomogénéités de la surface d’ablation. D’autres part, la génération d’électrons rapides inhérent
a linteraction laser-plasma dans la couronne entraine un préchauffage de la cible. Cela conduit
a 'augmentation de ’entropie de cette derniere et limite par conséquent la bonne compression du
combustible. Enfin, du fait d’une vitesse d’implosion élevée et de la non-uniformité de la surface
d’ablation, les instabilités hydrodynamiques peuvent briser la coquille pendant son implosion et en-
trainer le mélange du combustible chaud avec le combustible froid. Afin de relaxer ces contraintes liées
a la compression et au chauffage simultanés du combustible, M. Tabak a proposé en 1994 de séparer la
phase de compression de la phase de chauffage. Dans ce schéma qualifié d’allumage rapide, la coquille
est implosée et le combustible est densifié de maniere analogue aux schémas conventionnels de FCI.
Cependant, ’allumage des réactions de fusion est amorcé dans un second temps en focalisant une im-
pulsion laser relativiste sur la cible. L’impulsion laser relativiste génere alors un faisceau d’électrons
rapides qui va déposer son énergie en profondeur dans la partie plus dense du combustible juste a
la fin de la phase de compression, créant ainsi un point chaud latéral isochore. La densité centrale
requise est donc beaucoup plus faible (300 g/cm? au lieu de 1000 g/cm?) que dans les schémas clas-
siques d’allumage et les contraintes sur la convergence de 'onde de choc, la vitesse et la symétrie de
I’implosion sont réduits. Notamment, la vitesse d’implosion étant plus faible, les contraintes imposées
sur la cible et les impulsions laser vis-a-vis des instabilités hydrodynamiques se retrouvent amoindries
et le risque de briser la coquille lors de I'implosion est réduit. Aussi, un faisceau d’électrons relativistes
accéléré par laser peut fournir un chauffage beaucoup plus efficace de la matiere dense et des gains
beaucoup plus élevés peuvent étre obtenus comparé aux scénarios classiques. En outre, la phase de
compression a besoin de beaucoup moins d’énergie (200 - 300 kJ) comparée aux schémas conven-

tionnels et le cott d’une éventuelle centrale a fusion thermonucléaire par allumage rapide serait donc
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plus faible. Toutefois, ’allumage rapide présente toujours de nombreux problemes a résoudre. En
raison du fait que I'impulsion laser ultra-intense, utilisée pour générer le faisceau d’électrons, ne peut
pas pénétrer les zones de la couronne ayant une densité supérieure a la densité critique du plasma,
il est difficile de focaliser le faisceau d’électrons rapides d’allumage sur une toute petite zone de la
partie dense du combustible. De plus, il a été démontré expérimentalement et numériquement que les
faisceaux d’électrons relativistes accélérés par laser présentent nécessairement un angle de divergence
important. Depuis, de nombreuses méthodes ont alors été proposées pour tenter de collimater le fais-
ceaux d’électrons d’allumage. Cependant, de nombreuses expériences et simulations numériques sont

toujours nécessaires afin de pouvoir les confirmer et les valider.

Plus récemment en 2006, une autre méthode séparant les phases de compression et d’allumage du
combustible de DT a été proposé par R. Betti. Il s’agit du schéma d’allumage par choc qui consiste
a allumer un point chaud central a la fin de la phase de compression en générant un fort choc a
I’aide d’une pression d’ablation supérieure a 300 Mbar. En convergeant ensuite vers le centre de la
coquille en implosion, la force du choc va en augmentant. Lorsque ce dernier entre en collision avec
sa propre réflexion au centre de la coquille, le point chaud central est boosté, libérant ainsi I’énergie
de fusion thermonucléaire. Pour ce schéma d’allumage, des coquilles cryogéniques de grande masses
ainsi qu’une faible vitesse d’implosion et un faible adiabat (quantité physique mesurant l’entropie de
la cible) peuvent aussi étre utilisés. Par conséquent, le combustible de DT atteint de grandes densités
surfaciques et permet d’atteindre l’allumage des réactions de fusion avec une énergie inférieure a
celle de I'allumage central isobarique conventionnel. Le choc d’ allumage peut étre lancé par une
puissance laser compatible avec les lasers existants pour 1’étude de la FCI comme le NIF (National
Ignition Facility) du LLNL (Lawrence Livermore National Laboratory) aux Etats-Unis d’Amérique ou
le LMJ (Laser MegaJoule) du CEA-Cesta pres de Bordeaux, en France. Aussi, le gain thermonucléaire
obtenu par allumage par choc peut étre significativement plus grand que dans le cas isobare classique
pour une énergie laser donnée. Enfin, vu qu’il implique des implosions de cible & faible vitesse de
méme que pour l'allumage rapide, le schéma d’allumage par choc est aussi plus robuste en ce qui
concerne les instabilités hydrodynamiques au cours de 'accélération de la coquille. La puissance laser
nécessaire pour générer une pression d’ablation de 300 Mbar dépend du matériau de la coquille et
de ses dimensions. Néanmoins, elle peut étre estimée a 120-200 TW. Cela représente une puissance
laser un ordre de grandeur inférieure a la puissance requise par I'impulsion laser d’allumage rapide.
Ainsi, contrairement a I’allumage rapide, I’allumage par choc présente I’avantage qu’il ne nécessite pas
d’installation laser de ultra forte puissance. Cependant, le couplage de 'impulsion laser d’allumage
avec la cible en implosion présente plusieurs problemes toujours non résolus tels que les instabilités
paramétriques dans la couronne, les instabilités hydrodynamiques de la coquille et le role des électrons
rapides accélérés dans la couronne sur I’ablation de la coquille dans ce régime particulier d’interaction

laser-plasma.

Cette these s’inscrit directement dans ce contexte. Elle a en effet consisté a développer un nouveau
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modele hybride 3D-3V de type ” Vlasov-Fokker-Planck” pour le transport d’électrons rapides accélérés
par laser. Afin de pouvoir étudier le transport de ces électrons dans des solides ou des plasmas denses du
méme type que ceux de la FCI, le modele devait étre a la fois le plus précis et le plus économe en temps
de calcul possible. Pour cela, nous avons donc tout d’abord linéarisé le tenseur de collisions relativistes
de Belyaev-Budker en ’appliquant & I’étude du transport de faisceaux d’électrons relativistes accélérés
par laser dans des solides ou des plasmas denses. Dans ce cas, le transfert de quantité de mouvement
est supposé faible lors de chaque collision avec une particule cible du milieu dans lequel se propagent le
faisceau. De plus, la production d’électrons secondaires est négligée, supposant que ’énergie résiduelle
des électrons cibles apres une collision avec un électron du faisceau est plus petite que ’énergie échangé
lors d’une collision consécutive avec un autre électron du faisceau. Ces hypothéses nous ont permis
d’obtenir un opérateur de collision relativiste plus simple et du méme type que celui obtenu par L.
Landau dans le cas non relativiste. En outre, cela nous a permis de relier la fréquence de diffusion
angulaire des électrons du faisceau due a leurs collisions avec des électrons libres, des électrons liés,
des électrons libres écrantés (plasmons) ou des noyaux atomiques du milieu dans lequel se propage le
faisceau avec les pouvoirs d’arréts correspondants selon une formule de type de celle obtenue par A.
Einstein lors de son étude du mouvement Brownien des particules. Ainsi, en conservant tous les termes
du logarithme Coulombien relativiste que ’on a déduit du pouvoir d’arrét de C. Moller, nous avons
pu obtenir une équation cinétique relativiste plus précise que celle utilisée généralement ne prenant
en compte que le logarithme Coulombien de E. Rutherford. Cependant, notre modele est limité a des

faisceaux de basse densité et nous avons négligé les collisions des électrons du faisceau entre eux.

L’analyse des méthodes numériques existantes pour résoudre 1’équation Vlasov-Fokker-Planck
(VFP) obtenue a orienté notre choix vers un modele de transport d’électrons relativistes hybride
basé sur la décomposition de la fonction de distribution en produits scalaires-tensoriels. Afin d’étre
en mesure de résoudre numériquement les équations le plus rapidement possible, nous limitons cette
expansion angulaire au ler ordre. Nous avons donc déduit les deux premiéres équations de la hiérarchie
des modeles aux moments angulaires MN en intégrant 1’équation VFP sur la sphere unité de 1’espace
des quantités de mouvement des électrons du faisceau. Contrairement a la décomposition strictement
équivalente de la fonction de distribution sur les harmoniques sphériques limitée au méme ordre dans
le méme espace, la densité du faisceau ainsi que sa densité de courant sont directement liées aux
moments angulaires de la fonction de distribution, solutions des équations M1. L’hypothese ”hybride”
consiste a ne considérer dans 1’ équation cinétique uniquement la population des électrons du faisceau
en introduisant une valeur d’énergie cinétique seuil € > e, afin de les distinguer avec la population
d’électrons du milieu dans lequel se propage le faisceau € < enin. Contrairement a ’approximation
P1 couramment utilisée, aussi appelé ”approximation de la diffusion”, notre modele M1 permet de
considérer des faisceaux se propageant de maniere totalement anisotrope. En effet, la relation de
fermeture utilisée est obtenue en appliquant le critéere de maximisation de I’entropie angulaire proposé
par G. N. Minerbo dans le cadre de la théorie du transport radiatif. Une telle fermeture est exacte pour

des distributions angulaires isotropes locales, i.e. a une position de ’espace, & un instant et pour une
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énergie cinétique des électrons donnés, ainsi que pour des distributions angulaires locales totalement
anisotropes. Un parametre dépendant de la direction moyenne locale de propagation des électrons du
faisceau permet de relier ces deux régimes extrémes. De maniere évidente, le fait d’arréter ’expansion
de la fonction de distribution du faisceau d’électrons a l'ordre 1 entraine nécessairement une perte
d’informations concernant la distribution angulaire locale des électrons du faisceau. Par conséquent,
nous avons dérivé I’équation d’évolution de ’entropie angulaire du faisceau afin d’étudier le critere que
nous avons choisi. Notre analyse montre que le critere de G. N. Minerbo est justifié pour le transport
de faisceaux d’électrons rapides accélérés par laser en raison de la diffusion angulaire des électrons
du faisceau et de la propagation anisotrope des électrons les plus énergetiques. En outre, ’étude
menée sur 'instabilité faisceau-plasma de filamentation résistive, pour laquelle il n’y a aucune raison
de maximiser localement ’entropie angulaire, montre que notre modele décrit le taux de croissance de

Iinstabilité avec une erreur de l'ordre de 10particulier d’un faisceau d’électrons monoénergétique.

Dans notre modele, nous considérons des échelles de temps grandes devant le temps caractéristique
de la neutralisation électromagnétique du faisceau d’électrons. Par conséquent, de méme que les autres
modeles hybrides, notre modele suppose que le faisceau ne subit pas de modifications importantes
durant sa neutralisation en charge et en courant électriques. Ceci est une hypothese grossiere dans le
cas particulier du transport de faisceau d’électrons accélérés par laser dans des matériaux isolants du
fait des processus d’ionisation qui se produisent a cette échelle de temps et qui impliquent une perte en
énergie supplémentaire pour le faisceau. Dans notre modele hybride, le champ magnétique auto-généré
par le faisceau vérifie ’équation de diffusion couramment utilisée avec les différents termes sources dus
aux gradients de résistivité électrique du milieu, au rotationnel du courant électrique du faisceau ainsi
qu’aux gradients croisés de température et de densité des électrons du milieu tandis que le champ
électrique auto-généré par le faisceau est donné par la loi d’Ohm quasi-statique classique. Ainsi,
nous avons négligé 'aimantation du milieu, la viscosité des électrons du milieu, leur friction sur les
électrons du faisceau, le courant de déplacement dans 1’équation de Maxwell-Ampeére (approximation
quasi-statique), I'inertie des électrons du milieu et nous avons considéré 1’expression de la pression d’un
gaz parfait d’électrons. Ces hypotheses sont justifiées dans le cas du transport de faisceaux d’électrons
accélérés par laser dans des cibles denses ainsi que dans le cas ou la fréquence cyclotron des électrons
du milieu est négligeable devant leur fréquence de collisions. Les champs électromagnétiques auto-
générés dépendent donc de la résistivité électrique du matériau dans lequel se propage le faisceau ainsi
que de ses gradients spatiaux. Ces derniers dépendent fortement de la température des électrons et
du réseau cristallin/ions du matériau. Par conséquent, I’évolution des températures électronique et
du réseau/ions du matériau sont aussi décrites de maniere auto-cohérente suivant les équations bien
connues de la chaleur. Dans notre modele, nous négligeons le mouvement des ions et la conductivité
thermique ionique, considérant des échelles de temps plus petites que la dizaine ou la centaine de
picosecondes. Par ailleurs, les équations de la chaleur résolues sont en accord avec les hypotheses
faites a 1’égard des champs électromagnétiques auto-générés (pas de viscosités, aucune aimantation, pas

d’inertie et pas de friction sur les électrons du faisceau), sauf en ce qui concerne les dérivées temporelles
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de la température dans les équations de la chaleur qui, ici, ne sont pas négligées. Nous avons également
proposé de nouvelles expressions pour les capacités thermiques, la résistivité électrique, la conductivité
thermique électronique ainsi que le facteur de couplage des températures électronique et ionique, dans
le cas particulier des métaux. En effet, sous 'action de son chauffage par le faisceau d’ électrons
accélérés par I'impulsion laser, un métal initialement a I’état solide & température ambiante (~ 300 K)
devient rapidement liquide avant de devenir un plasma avec des températures pouvant aller jusqu’a
plusieurs keV. Les collisions des électrons du matériau avec les vibrations (phonons) et les électrons
libres du réseau cristallin ainsi qu’avec les électrons liés aux atomes sont pris en compte, en accord

avec des études récentes montrant I'importance de ces processus de relaxation.

Les schémas numériques utilisés pour la résolution des équations M1 sont décrits en détail. Elles
sont résolues avec des schémas explicites du second ordre, sauf pour le terme d’advection en énergie di
au ralentissement collisionnel des électrons rapides qui est résolu par le schéma d’advection décentré
d’ordre 1. Concernant les termes d’advection spatiale et d’advection en énergie diis au champ électrique
auto-généré, nous avons utilisés les schémas HLL (A. Harten, P. Lax et B. Van Leer) permettant
d’assurer un nombre positif d’électrons et une norme du vecteur d’anisotropie (vecteur associé a la
direction moyenne locale de propagation des électrons) inférieure & l'unité. Des schémas implicites
ont également été développés pour les effets collisionnels afin de diminuer la contrainte sur le pas de
temps numérique imposée par la condition CFL (R. Courant, K. Friedrich et H. Lewy) dans le cas
d’un transport de faisceau d’électrons rapides dans des plasmas tres denses. Les équations d’évolution
des champs électromagnétiques auto-générés sont résolues a ’aide de schémas explicites du second
ordre sauf en ce qui concerne le terme de diffusion magnétique qui est résolu semi-implicitement
grace a une discrétisation de l'opérateur de diffusion au second ordre ainsi qu’a l’'inversion de la
matrice de diffusion obtenue par la méthode des gradients conjugués. Enfin, les deux équations de
la chaleur sont discrétisées a ’aide de schémas numériques explicites du second ordre. L’ensemble
de ces schémas numériques utilisés pour résoudre les équations du modele ont été validées grace
a leur application & un cas d’école de transport de faisceau d’électrons rapides mono énergétique
et collimaté dans un plasma dense et tiede d’Hydrogene pour lequel nous avons pu déterminer des
solutions analytiques afin de les comparer aux différentes quantités physiques calculées par le code.
Par exemple, 'expression analytique de la distance de pénétration d’un électron relativiste dans un

plasma dense et tiede d’Hydrogene que nous avons trouvé reproduit bien les résultats de la simulation.

Dans un second temps, une simulation plus réaliste de transport d’électrons rapides accélérés par
laser dans une cible mince d’aluminium a été comparée a une simulation PIC (Particle-In-Cell) hybride.
Elle montre que le modele M1 pour le transport de faisceaux d’électrons relativistes est suffisamment
précis pour reproduire les résultats de la simulation PIC hybride. Une fois le modele théorique et
numérique validé, nous avons pu appliqué le modele a I’étude de I’émission de photons Ko induit par
le transport d’électrons relativistes dans des cibles solides ou des plasmas denses. Lors des expériences

d’interaction laser-matiere, ce processus est en effet souvent utilisé pour diagnostiquer le passage des
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électrons accélérés par le laser dans la cible irradiée. Dans notre modele, la recirculation des électrons
rapides dans la cible est prise en compte en imposant la réflexion spéculaire des électrons rapides
au niveau des interfaces cible-vide ainsi qu’une seconde population d’électrons rapides décrite par un
second systeéme d’équations M1. La premiere population décrit les électrons rapides se propageant
dans la direction de propagation de l'impulsion laser et la seconde population décrit les électrons
rapides se propageant en sens contraire, réaccélérés dans la cible par les forts champs électriques de
charge d’espace générés aux interfaces cible-vide lorsque la premiére population tente de s’échapper de
la cible. Le modele de calcul de ’émission de photons Ka est ensuite révisé. Les conclusions de cette
étude sont multiples. Tout d’abord, nous avons montré que, dans le cas de cibles faites d’ Aluminium ou
de Cuivre, le pas de temps numérique imposé par la résolution des équations du transport d’électrons
rapides peut étre comparable a la durée de vie des absences électroniques ou ”trous” du niveau
d’énergie K des électrons atomiques, responsables de 1’émission Ka. Par conséquent, nous avons pris
en compte dans notre modele la dynamique des trous en couche K des atomes du solide irradié par
le laser. Deuxiemement, nous avons démontré que les propriétés du solide a basses températures
doivent étre prises en compte. En particulier, le facteur de couplage entre la température électronique
et la température du réseau cristallin du solide ainsi que les collisions des électrons de la bande s
de conduction sur les électrons de la bande d sont susceptibles d’affecter la distribution des champs
magnétiques dans des cibles de Cuivre. En troisieme lieu, nous avons confirmé, a ’aide un modele
analytique simple, le résultat obtenu par M. Sherlock (2014) en ce qui concerne les effets de I'inertie des
électrons dans la loi d’Ohm ainsi que du courant de déplacement dans 1’équation de Maxwell-Ampere
sur le chauffage de la cible. Les paquets d’électrons accélérés par I'impulsion laser son injectés dans la
cible & la fréquence du laser ou deux fois la fréquence du laser. Chaque paquet excite dans son sillage des
ondes plasma électroniques. L’amortissement de ces oscillations plasma du fait des collisions entraine
un chauffage supplémentaire des électrons de la cible qui n’est pas pris en compte dans les modeles
hybrides de transport électronique. Quatriemement, nous avons confirmé une forte contribution de
la recirculation des électrons dans la cible sur la tache d’émission de photons Ka. Plus la cible est
fine, plus la tache d’émission Ka de la cible est contaminée par la recirculation des électrons. En
cinquieme lieu, nous avons trouvé des différences significatives entre des simulations bidimensionnelles
et tridimensionnelles, en particulier en ce qui concerne les champs magnétiques auto-générés mais
aussi en ce qui concerne la taille de la tache d’émission Ko ainsi que la valeur absolue du nombre de
photons émis localement par unité de volume. Néanmoins, la taille de la tache d’émission Ka obtenue
reste beaucoup plus petite que celle déduite des données expérimentales méme dans la simulation
tridimensionnelle beaucoup plus réaliste. Nous avons donc analysé toutes les hypotheses de notre
modele concernant I’émission de photons Ko afin de déterminer qu’est ce qui pourrait expliquer cette
différence. L’opacité de la cible peut introduire une erreur de seulement =~ 10 % dans nos calculs. Une
autre possibilité serait que les électrons secondaires, négligés dans notre modele, influent sur ’émission
Ka. Aussi, la forte augmentation de la température pourrait éventuellement jouer sur la physique

atomique de I’émission de photons Ka. Cependant, il me semble que I’hypothese la plus critique dans
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le modele est d’avoir supposé une réflexion spéculaire des électrons rapides au niveau des interfaces
cible-vide. En effet, une simple estimation du champ magnétique généré par l'effet ”fontaine” indique
que des champs magnétiques locaux générés au niveau des interfaces cible-vide peuvent dévier de
fagon significative les électrons rapides réaccelerés dans la cible par les champs électriques de charge
d’espace, et peuvent donc étre responsables d’un agrandissement de la taille de la tache d’émission de

photons Ka.

Nous avons aussi couplé notre modele réduit de transport d’électrons rapides avec un code La-
grangien d’hydrodynamique radiative. Cela nous a permis d’étudier la génération de choc par le
dépot d’énergie d’un faisceau d’électrons rapides. Un exemple traite de la génération d’une onde de
choc dans un plasma dense d’Hydrogene dans les conditions typiques du schéma d’allumage par choc.
Il confirme les estimations théoriques établies par S. Gus’kov (2012) qui montrent qu’il est possible
d’atteindre des pressions de choc de 'ordre du Gbar par le dépot d’énergie d’un faisceau d’électrons
rapides dans une cible dense avec une efficacité de couplage pouvant aller jusqu’a 10%. Une autre
application concerne la génération d’une onde de choc avec une impulsion laser femtoseconde. Nous
avons démontré analytiquement et numériquement que les gradients de température induits dans une
cible solide par le dépot d’énergie des électrons accélérés par une impulsion laser femtoseconde peut
générer une onde de choc dans la cible au bout de plusieurs dizaines de picosecondes, bien apres la
fin du dépdt d’énergie par les électrons rapides. Les estimations analytiques ainsi que les simulations

hydrodynamiques sont en bon accord avec les données expérimentales.

Les perspectives de ce travail sont multiples. Tout d’abord, les pertes énergétiques du faisceau
d’électrons dues au champ de sillage d’ondes plasma électroniques doivent étre pris en compte dans le
code. Cela permettrait de résoudre correctement la propagation des paquets d’électrons accélérés par
I'impulsion laser et de développer un diagnostic de ’émission CTR (Coherent Transition Radiation)
des électrons dans le code. En ce qui concerne 1’émission de photons Ka, les électrons secondaires
ainsi le champ magnétique généré au niveau des bords de la cible doivent également étre pris en
compte. Toutefois, ce dernier nécessite de résoudre les équations sur une tres petite échelle spatiale
de l'ordre des rayons électroniques de Larmor et ce, sur des durées de l'ordre de la picoseconde et
sur des distances de l'ordre de la centaine de microns. Cela représente un investissement important
en termes de vectorisation et de parallélisation de codes. En outre, il serait intéressant de coupler de
maniere auto- cohérente le transport des photons Ko émis avec le transport des électrons rapides afin
de prendre en compte ’opacité des cibles irradiées par impulsion laser. En ce qui concerne ’application
du transport des électrons rapides a la génération de chocs dans le contexte de ’allumage par choc, des
simulations plus réalistes doivent étre menées combinant a la fois la génération de choc par ablation
laser et par dépot d’électrons rapides accélérés par les instabilités paramétriques dans la couronne;
le tout dans une géométrie tridimensionnelle sphérique convergente. Concernant ’allumage rapide,
I'interaction de I'impulsion laser petawatt avec la cible est toujours un domaine intense de recherche

A. Kemp (2014). Le modele M1 peut étre utile pour effectuer une étude paramétrique des conditions
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de densité et de température optimales de la cible au moment de I'allumage ainsi que les propriétés
optimales du faisceau d’électrons lui-méme. Par ailleurs, différentes méthodes ont déja été proposées
afin de collimater le faisceau d’électrons rapides d’allumage. Par exemple, des simulations a 1’échelle de
I’allumage rapide d’une cible de FCI avec un cone préalablement inséré dans la coquille et présentant
des gradients de résistivités du type de ceux proposés par A. Robinson (2013) ou encore avec un champ
magnétique externe comme proposé par S. Fujioka (2013) peuvent étre réalisées en prenant en compte

I’aimantation de la cible ainsi que les effets tridimensionnels.
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Appendix A
Classical Plasma Kinetic Theory

” When you ask what are electrons and protons I ought to answer that this question is not a profitable
one to ask and does not really have a meaning. The important thing about electrons and protons is
not what they are but how they behave, how they move. I can describe the situation by comparing it
to the game of chess. In chess, we have various chessmen, kings, knights, pawns and so on. If you
ask what chessman is, the answer would be that it is a piece of wood, or a piece of wory, or perhaps

just a sign written on paper, or anything whatever. It does not matter. Fach chessman has a
characteristic way of moving and this is all that matters about it. The whole game os chess follows
from this way of moving the various chessmen.”

Paul A.M. Dirac
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A plasma is an ensemble of a large number of charged particles which are interacting collectively
though long distance Electromagnetic forces. In order to describe physical processes in plasmas,
one has to take into account the electromagnetic fields (E, B) generated by the charged particles.

According to the Electromagnetic Theory, they are described by the Maxwell’s equations

@ = c 2 xB — 4xj 2 E = dmp,
% 5 5 =
E e — C a X 5 a . — 0

where p is the plasma electric charge density and j the electric current density. In a quantum approach,
which is out of scope in this thesis, the electromagnetic fields are considered as an ensemble of photons

with quantized energy hv described by the Klein-Gordon equation for bosons.

The retroaction of these electromagnetic fields on the charged particles must be also resolved. For
a very diluted classical gas consisting of N; ions and N, = Z*n; electrons, one can solve direcly the

dynamic equations for all N = N; + N, particles

d v
Ij;t[’n = (a {Ecxt (ra,n7 t) +E (ra,na t) + o X [cht (ra,na t) +B (ra,rw t)]}
dr P ¢ (A.2)
an _ o,n
dt an Ya.nMa

with given initial conditions pan(t = 0) = pPan,0 and rq,(t = 0) = r, 0 Where ry , and po,, are the
position and the momentum at time ¢ of the particle denoted by («,n). Here, a = e for electrons, o = 4

for ions and n € [1..N,]. Thus, the particle charges read g = —e while ¢; = Z*e. Also, it has been

noted yo.n = \/1 + (Pan/Mac)? the Lorentz factor of the particle (o, n) and v, its velocity. Finally,
(Ecxt, Bext) are eventual external electromagnetic fields. The plasma generated electromagnetic fields

(E, B) can be deduced by solving self-consistently the Maxwell’s equations (A.1) with the source

terms
Ne N;
jirt) = —e Y Ven®F[r—ren®)] + Z'e¢ Y vin(t)6®[r —rin(t)]
p(r,t) = —e Z 83 r —ren(t)] + Z'e Z B r—rint).
n=1 n=1

For example, in the static approch i.e. by neglecting the time delay terms in the Maxwell’s equations

(A.1), the electromagnetic fields read

0P
E(r,t) = ——(r, t
) = =g "
B(r,t) = Cop X A(r, t)
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with N N
C B3 [r —ren(t)] L83 [r— (1)
D (r, t) = —4re : +4nZ%e :
(r. ) D 0] P O]
and

AOnwzkmgi“m@ﬁh_r”“”—Mzwféwﬂﬂﬁ“_”mwl

clr —ren(t)] clr —rin(t)

n=1 n=1
In the Copenhagen quantum approach, electrons trajectories does not exist anymore and one has
to solve the Dirac equation for fermions, verified by the N.-body wave function. Also, the electron
dynamics cannot be resolved without considering the electron antiparticles namely the positrons.
However, in the De Broglie-Bohm quantum approach, also usually called the pilot wave approach,
developped in the non relativistic case, one can solve Newton-like particle trajectory equations with a
quantum force depending on the N.-boby wavefunction, which is a solution of the Schrodinger equation
[Bohm, 1952a] [Bohm, 1952b]. It can be done exactly with the same technique as one uses to solve
the Lorentz-equation depending on the electromagnetic field (respectively the wave function) which
are the solution of the Maxwell’s equations (respectively the Schrodinger equation). In this approach,
which is mathematically strictly equivalent to the Copenhagen approach, particles trajectories remains
true, r and p not being hidden variables [Bell et al., 1964]. This quantum approach is however out of

scope in this thesis and we will only consider the Classical and not Quantum Physics.

The resolution of the N-body problem could be the more accurate method for plasma studies.
However, it is impossible to solve it analytically and it can be done numerically only for a small number
of particles N = N, + N;. In the usual plasma physics cases of a very large number of N, electrons
and N; ions, one may adopt a statistical approach. In this case, the electron and ion populations are

described by the N,-body distribution functions

fa,Na - fa,Na(rla P1; ---s 'ny Pny -y TN, PN,» t)

Ja, ; (A.5)
= Y 8 [rn—Tan(®)] 6’ [Pn — Pan(t)]

n=1
where r,, is the random variable for the position in space of the particle (a,n) and p,, is the random

variable for its momentum.

This Appendix is dedicated to the Classical Plasma Kinetic Theory (without Relativistic effects),
allowing to estimate the distribution functions f, n,. For simplicity, we neglect external electromag-

netic fields and assume that the ions are immobile.
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A.1 BBGKY Hierarchy

A.1.1 Vlasov Equation

In a first attempt, let us neglect collisions between electrons and between electrons and ions. In this
particular case, one can assume that all electrons are independent. It follows from the Theory of

Probability that

Ne
fe,Ne(rlv P1, ---s T'ny Pny -y YN,y PN, t) - Ne H fe,l(rn’ Pn; t) (A6)

n=1

and the problem is reduced to study of the 1-body distribution function

fe,l (I‘l, P1, t) = Nefe,l(rna Pn, t)

Ne (A.7)
= N, H /d‘grn/d?’pnfe’Ne(rl, Pi; 2, P2, s Ty Pry -y TNL, PN, ).
n=2

The 1-body electron distribution function fe 1(r, p, t) is the probable number of electrons per unit of
the phase-space infinitezimal volume d®V; = d®rd®p located between (r, p) and (r + d®r, p + d®p)
with a given initial condition f. 1(¢ = 0). Indeed, since all electrons evolve in the same way according
to (A.6), it is sufficient to characterize their properties in the 6-dimensional phase space (r, p). By
assuming that the total number N, of electrons is conserved in this 6-dimensional infinitezimal phase
space (no chemichal reactions, no quantum electrodynamic effects, no radiation losses, ...), one obtains

the Vlasov equation
dfe,l _ afe,l +v 8fe,l —l—F 8fe,1

dt ot " Or " Op

= 0. (A.8)

Here, v = p/m, is the the velocity random variable of the electrons and
F——c(B+> xB)
c

is the Lorentz force acting on the electrons deduced from the self-consitent Maxwell’s equation (A.1)

with the source terms
P = —6/ fE,l (I‘, P, t) d3p + Z*eni
3

(A.9)
j = —€ fe,l (r7 P, t) Vd3p + 0
R3

where n; is the ion density. It can be shown that the Vlasov equation (A.8) remains true in the
relativistic regime [Weibel, 1967b]. The only difference is that, one has to account for the relativistic
relation between the velocity and momentum v = p/ym, in (A.8) and (A.9) where v = /1 + (p/mec)*

is the Lorentz factor.
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A.1.2 Liouville Theorem

The Nc-body electron distribution function fen, = fen.(r1, P1, --s 'n, Pns 5 --o, IN., PN, t) is the
density of probabilty of all electrons in the the phase space infinitezimal volume dfeV located
between (r1, pi, ..., T'n, Pnss - TN,, PN.) and (r; + d®ry, p1 + d°p1, ..., v, + d3rp, P + d3py,

o TN, + drn,, Py, + d®pn,) with a given initial condition f. n,(t = 0). 1, is the random posi-
tion variable of the electron denoted by n and p, its random momentum variable. Assuming the

conservation of the total number of particles, one has

Ne
vt7 H /dgrn/dgpnfe,]\fe(rla P1, ---; T'ny, Pny ---» TN, PN, t) =1 (AlO)
n=1

One can also consider that the 6 N.-dimensional infinitezimal phase space volume is incompressible.

Then, the conservation of N, electrons between ¢t and t + dt in the infinitezimal phase-space volume
Ne
dNev =T d°Va
n=1

where d%V,, = d®r,,d>p,, leads to the Liouville equation

dfe,N 8fe Ne - afe Ne 8fe,N€ o
o= +Z{ +Fop }_0, (A.11)

which also describes the conservation of the number of particles but this time in the 6 /NV.-dimensional
phase space. Here, for all n € [1..N,], v;, = p/me is the the velocity random variable of the electron

n and

Fn:—e(EJrleB)
C

is the Lorentz force acting on the electron n deduced from (A.2). The Liouville theorem (A.11) means
that the electron N.-body distribution function fe n, is constant along the electron trajectories (A.2)

expressed with the variables r,, and p,,.

A.1.3 BBGKY Hierarchy

In this section, we assume the static approximation (A.4) and neglect the magnetic force in order to

simplify the presentation. Equation (A.11) can be reduced to the to 6-dimensional phase space by

integrating it over 6(/N. — 1) phase coordinates i.e. over ry, p2, ..., I'n., PN, :
(9f1 8 / 3 / 3 o2 ry —T3 Ofe2

d’ry [ d°po — A.12

ot Ity —12*/  Op1 (4.12)
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This equation depends on the 2-body distribution function

f€,2 <r17 P1, r2, p2, t)

N . (A.13)
- Ne (Ne - ]-) H /d rn/d pnfe,Ne(rl, Pi1, 2, P2, .-, I'ny, Pn, ---; 'N,, PN,, t)
n=3

The equation for this function can be obtained by integrating the Liouville Equation (A.11) over the
6(Ne — 2) phase coordinates. It reads

afe,Z 0 0
ot + V1.arl +V2.ar2] (fe,Z)
g 't — T 0 B 0
i <e r1 — r2\3> ' <8P1 8p2>} (fe2) (A.14)
- 0 r'os —r 0
= — d3 /d3 |:(2r1 r3>‘ +<2 2 3>' :| ;
/ ' ps c |I‘1 — I‘3|3 5p1 € |I‘2 _ I‘3|3 ap2 (f ,3)

And one can continue that procedure until s = N, — 1 with

Vs € [37 Ne - 1]7 fe,s (rla pi1, .-, I's, Ps, t)

N,! (A.15)

Ne
= Mnglfdgrn/dgpnfe7Ne(rl7 Pi1, r2, P2, .-, 'n, Pn, .-+, TN, PN., t)-
This chain of equations is called the BBGKY hierarchy (from the name of its founders N.N. Bo-
goliubov, M. Born, H.S. Green, J.G. Kirkwood and J. Yvon). It formally simplifies the N.-body
problem by approaching the solution. In practice, it allows to evaluate the right hand side of Equation
(A.12) that accounts for collisions by evaluating the two-body distribution function f, 2 from Equation
(A.14).

A.1.4 Vlasov-Boltzmann Equation

In order to find an expression for the right hand side of Equation (A.12), we consider the BBGKY
hierarchy at the 1st order. Thus, one has to simplify the second order equation (A.14) to express the
right hand side of the first order equation of the hierarchy (A.12). Let us introduce the normalized
distribution functions .]/c;yl = fe,1/Ne and fe,g = fe.2/Ne(Ne—1). If electrons 1 and 2 were independent,
one has j/;g(rl, p1, Iy, P2, t) = fA’e,l(rl, P1, t)!)?&l(rg, p2, t). The binary collisions between electrons 1

and 2 can be accounted for by the correlation function go

.]?6,2(1‘17 P1, 2, P2, t) = fe,l(rb Pi1, t)fe,l(r% P2, t) +92(r17 Pi1, Iz, P2, t) (Alﬁ)
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Obviously, go is particle-symmetric, i.e. it has the same values by permuting the two electrons. By

injecting (A.16) in the first order equation (A.12), we obtain

Ofer |, 0fea +F1'3fe,1 _ (a&;) (A.17)
col

ot ' or, Ip1 ot
where

0P r{—r
F, = eaT‘l(rh t) = /dsl‘z/d3p2 <€212) fea(rz, p2; t)

vy — o’

is the Coulomb electrostatic force averaged over the momenta and positions of the electron 2 and

0fe.1 1 / 3 / 3 (2 ry —ro > 992
! =—— [ d°r d e .
( ot >col Ne ’ i |I'1 - I'2‘3 8]:)1

is the collision integral that has to be estimated according to the second order Equation (A.14). In a

first attempt, we neglect the right hand side of Equation (A.14) accounting for 3-body correlations.
Also, assuming that fg evolves in time mainly due to changes in fl, rather than to changes in the pair

correlations go, we neglect the time derivative of ]?2 in (A.14) to get

0 15) -~ o 't —TI2 0 0 -~ _
Vl.airl +V2.8r2:| [fe,?} + |:<€ ‘rl _r2|3> . (8[)1 — 8p2>] [fe,?} =0. (AlS)

Again, by assuming that ]?2 evolves in space mainly due to changes in fl, rather than to changes

in the pair correlations g2, we neglect the space derivative of g2 in the first term of (A.18). One
expects that ]?6,2 (r1, p1, Teg2, P2, t) is varying slowly in the binary collision center of mass coordinates
Ri2 = (r1+r2)/2 while it exhibits fast variations over the relative coordinates r13 = ro—rj. Therefore,
(8]?612/(91'12) > ((9]";72/6R12) and (8]/”;,2/(%12) = (8};72/81'2) = —(8]/”;72/(%1). Thus, by integrating
(A.18) over the positions ry and momenta ps of the electron 2, we make appearing the collision integral
of Equation (A.17)

Ofen _ —1/d3r2/d3p2 <€2 r1—r23>'892
o ) | Ne r1 —rof”/ IP1 (A.19)

1 3 3 9 [+ >
= Ne/d P2/d rig(vy —vy) Oy [fe,l(rla P1, t) fe1(r2, P2, t)

By renormalizing the distribution functions and performing the integration of this last equation,
introducing the differential cross section d?c and the exchanged momentum Ap in such a electron-

electron binary collision, we finally obtain the Boltzmann equation

afel afel 8fel 8fel
: = F,.—= = : A2
at Vo, M ap a )., (4.20)
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where the Boltzmann collision integral reads

Ofe
< gtJ) = —/d3p2/d20'v2 —vi| .| fea (r1, P1, t) feq (r1, P2, 1)
col

(A.21)
—fe1(r1, p1 — Ap, t) fe,1 (r1, P2 + Ap, t)}

By generalizing this result to the electron-ion collisions and by taking into account all terms in the

one-body force F as in the Vlasov equation (A.8), we obtain the Vlasov-Boltzmann equation

Ofen 0 0 Vi
’ — 1) — — E(r,t — x B(ry, t)| fe
8158f+ ory (V1fes) op1 {e [ (r1, 2) + c x B (ry )] 7, ’1} (A.22)
= < 6’1> = CB [fen, fea] (v1, P1, t) + C% [fe, fia] (r1, P1, t)
ot col
where
CB [fer, fen] (r1, P1, 1) = —/ d3p2/ d*ee |Va — Vl"[fe,l (r1, P1, t) fea (r1, P2, t)
R3 R3 (A.23)
_fe,l (1‘1, P1 — Apee> t) fe,l (1‘1, p2 + Apeea t) :|7
is the electron-electron Boltzmann collision integral and
CB [fen, fin] (x1, p1, t) = —/ d3p2/ d*e; |v1 — Va| -|:fe,1 (r1, p1, t) fi1 (r1, P2, t)
R3 R3 (A.24)

—fea (r1, P1 — Apg;, t) fin (r1, P2 + Apg;, t)}

is the electron-ion Boltzmann collision integral. Similarly to the Vlasov equation (A.8), the elec-

tromagnetic fields (E, B) verify the Maxwell equations (A.1) with the plasma charge and current

densities
p(r,t) = —8/ fer(r, p1,t) d°p1 + Zren;
i (A.25)
j(r7 t) = —€ 5 fe,l (I‘, Pi, t) Vldgpe,l + 0.
R
A.1.5 Properties of the Boltzmann equation
Boltzmann integral invariants
Firstly, one can easily notice that for a = e or i,
/3 Cga [foz,l, fa,l] (r, Pa,1, t) 1 d3pa,1 = 0
]i CSCM [fa,la fa,l] (I', pa,17 t) pa,l d3poz,1 =0 (A26)
R
2
B¢ o f. ol t Pa,1 Bpay =
/R3 Coa [fa1s fal (v, Pas1, 1) om. EPan 0
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by doing the change of variables pa,1 — APaa =+ Pa,1 and Pa,2 + APaa — Pa,2 in the second double

integral

/d3pa,1 /3 dSpa,Q /3 dQUaa ’Voz,Q - Va,l‘ fa,l (pa,l - Apaa) fa,l (pa,Z + Apaa) A(pa,l)

= /d3pa,1 ]i d3pa,2 ]i d20'aa ’Va,2 - Va,l‘ fa,l (pa,l) fa71 (p%g) A(pa,l + Apaa)
R R
where
A(payl) = 17 Pa,1 Or pa,12/2ma.
The case A(Pa,l) = 1 is obvious because the double integral of the second term cancels directly

the double integral of the first term of (A.24) or (A.23). The demonstration for A(pa,1) = Pa,1 and
A(Pa,1) = Pa1?/2mg is also evident. These three functions A(pg,1) are called the Boltzmann integral
invariants. These conservation properties come from the fact that each binary collision conserves
the number (1), momentum (p, 1) and kinetic energy pas.12/2m, of the particles. For the same

mathematical reasons, one can also show that

/3 CB (fer, firl (*, Pes, t) 1 d®pes = /3 CBfir, fer] (r, Pin, 1) 1 dPpi1 =0
\ CBfer, firl (r,; Pens t)  Pen  d*pes + \ CBfir, fer] (r, Pin, t) pix dPpi1 =0

R R
2 2
Pe,1 Pi1
/ Co [ fer, fial (x, Peas t) To— dPpen +/ Citlfins fea] (x, Pin, t) 2— d*pin=0

R3 2me R3 2my;
(A.27)
It was demonstrated that the Vlasov-Boltzmann equation has only these three integral invariants
[Decoster et al., 1997]. Thus, any other functions which is Boltzmann integral invariant, is a linear

combination of these three functions.

H-Theorem

The Boltzmann collision operator property is that for any A(pe,1)

/]RB A(pe,l)cfa [fe,l, fa,l] d3Pe,1
1

= Z /RS [A(pe,l) + A(pe,2) - A(pe,l - Apea) - A(pe,Z - Apea)] O?a [fe,la fa,l] dSpe,l-

(A.28)

This equality can be demonstrated similarly to the Boltzmann integrals by performing the change
of variables pe1 — Apea — Pe,1 and Pa2 + APea — Pa,2 in the integrals. Then, starting from the

Boltzmann equation (A.22), one can also show that the function defined as

H (re,h t) = - /R3 (fe,l In fe,l - fe,l) d3pe,1 (A29)
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is the solution of the equation

dH _OH 0
dt 0t  Oreq

[—/R Ve (fealnfeq — fer) dpel] = Z/ In fe1C8, [fe, far] @°Pe

a=e,l

(A.30)

since for all p € [t, re1, Pe]

8fel

i(fe,llnfe,l_fe,l) In fel

According to (A.28), one gets so

ﬂ: 1 3 3 25 1v. — v n( fe(Pe) fa(Pa) >
; a;i 1 /R3 d°pa /RB d pe/d o |va ell F.(Pe — Apoo) fa(Po + Apoa) A3)
X [fe(pe)fa(poz) - fe(pe - Apea)fa(pa + Apeoz)

for which the subscript ”1” and ”5” have been omitted for brevity. Thus, if fe(pe)fa(Pa) > fe(Pe —
APea) fa(Pa + APea), the logarithm is positive and in the opposite case where it is negative, the
logarithm is also negative. As a conclusion, as Boltzmann has noticed, the function H so called the

plasma electrons Entropy is such that
dH

20, (A.32)

This property is called the H-theorem and it is at the origin of the 2nd principle of Thermodynamics.

Maxwell-Boltzmann distribution function

According to the H-theorem (A.32), the entropy H of any closed system will asymptotically reach its
maximum value. Let us find the distribution function fj; which maximizes the entropy H under the

constraints of the definition of the electron density

e(r, t) = /]R . fod’pe, (A.33)

the mean electron flux
neue (r, t) :/ foved®pe. (A.34)
RS

and the internal energy

énekBTe (r,t) = feme Ve pe. (A.35)
2 -

By following the standard procedure of maximization problems, one introduces the Lagrange multi-
pliers ag, a1 and ag associated with these three constraints, respectively. Then, in order to find fys,

one has to solve
dL

7 =0 (A.36)
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where L is the Lagrangian of this maximization problem :

L= 1A+ oo (ne- [ fp)

+ a1.<neue—/ feved?’pe) (A.37)
]R3

3 mev?>
+ a9 <2nekBTe _/ fe = 6d3p6> .
R3 2

The solution of (A.36) is an exponential function

2
fm = exp {— <ao + a1.ve + ag mezve ﬂ ) (A.38)

Injecting this expression in the definition of the electron density (A.33), the mean electron flux (A.34)

and the mean electron kinetic energy (A.35), one finds respectively

2

Ne = exp( oo +
2042me

Nele = €xp

s
(o)
(s
s et S
(s
()

—nkpT, = exp

which provides

1 mell n Mele>
_ —_—_°"¢ and _ - e __ere A.
Q= T, 0 exp (—ap) ek T exp { %BTe] (A.39)
and consequently
Ne (Te, t) Me(Ve — ue)2
fM r87 pe; t - p - A40

called the Maxwell-Boltzmann distribution function. It is the stationary solution of the Boltzmann

equation (A.22).
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A.2 Vlasov-Fokker-Plank-Landau Equation

A.2.1 Differential Rutherford Cross Section

P2y
t=—o
0
................. 04
P1i N
%’i t=+
= (ool
Yl’f
Figure A.1: Elastic collision in the laboratory frame
t=—
_ Y- J _
............... OW"‘_O Ve "'~.9£0m =0
P1i =P pz,l__Pl ...........
171*

Figure A.2: Corresponding elastic collision in the center of mass frame

Let us consider the binary Coulomb collision between a non-relativistic charged particle (1) of
mass mi and a charge ¢; moving with the velocity vi; before t = 0 with the momentum p;; and
a non-relativistic charged particle (2) of mass my and a charge g2 moving with the velocity va;
before ¢ = 0 with the momentum p2; in the laboratory frame. These particles collide at the time
t = 0 at the origine O. Let us note vy o2y and pi oo, their velocities and momenta after the
collision time ¢ = 0. The system consisting of these two particles {(1) 4+ (2)} interacting with each
other at t = 0 is equivalent to a system of one effective particle of mass p = mima/(mi + ma)
with a velocity vy = vi — Vo, a momentum P = v, and a charge ¢; interacting with a Coulomb
potential gor/ |r\3 located at the origine O¢om = O in the center-of-mass frame moving at the velocity
Veom = (m1v1 4+ mava)/(m1 + mg). It has been noted r = r; — ro. This equivalence follows from the
conservation of the energy and momentum of the system, which means that the center of mass motion
is not affected by the collision:

P2 1

Vi, p] = —py; =P and ] =¢5 = o = 5HViel (A.41)
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where it has been noted the values in the center of mass frame within the supscript * (see Figure
A.2). According to the Newton’s law expressed in the center of mass frame, the momentum variation

of the fictitious particle reads

AP:Pf_Pi:/ det:/ q1gor(t)

— dt = APu. A 42
o At TP (442

According to the law of conservation of angular momentum for a central force, one has necessarily
|1iviel X v| = pr?|dp/dt| = |b| where b is a constant vector called the impact parameter and ¢(t) the
angle between the vector u and r(t) (see Figure A.3). It means that the binary collision occurs in

the 2D plane (P;, b). By projecting (A.42) on the u-axis and by doing the change of variable t — ¢,

AP AL 0
P cos <2> (A.43)

one gets

where 6* is the angle between the momenta of the fictitious particle before (P;) and after (Py) its

diffusion while
2q12
AL = 3
lu’vrel

(A.44)

is the Landau length i.e. the classical minimal distance between the fictitious particle and the diffusion

center. According to the law of energy conservation for the fictitious particle (A.41), |P¢| = |P;+AP].

AP . [0
P~ 2sin <2) (A.45)

It leads consequently to

Finally, due to the fact that u = cos (0*/2)b/b—sin (0*/2)P;/P;, one deduces from (A.43) and (A.45)

the variation of the momentum of the fictitious scattered particle

2 2 A

AP AP\?>P;, (AP\’b AP 7
— (=2 ¢ —— ) — where —/— = 0 A4
P, <P1»>2PZ- <PZ->ALWGTGP1- e (4.40)

4+(L>
b
and \ 5

b:%cot <2> (A.47)

By definition, the number of particles dNgi; scattered into the solid angle d?Q* = dy* sin #*df* per
time dt is equal to the number of incident fictitious particles dNipe = n1 |[v1,; — Vol d?Sdt. That

defines the differential cross section

dNqie/dt
_ __ lNait/ At b, Ad
20 dNmo/dt/ 2S5 ~ °% (A.48)
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Thus, one deduces from (A.47)

Ao b

d2Q*  sin 6%

b
do*

S

(2)2.4a§> (A.49)

called the Rutherford differential Coulomb collision cross-section. Coming back to the laboratory

frame, one finds the exchange momentum in the collision

Ap = PuLi—PLf =Pz —Pp2i=AP
T b Vi — Vo A50
= —— |Vii— Vol |sinf*— — (1 — cos 0") “27’} . ( )
mi + ma b Vii— Vo

A.2.2 Small-angle Collisions

Figure A.3: Schematic view of the diffusion of the fictitious particle of charge e and mass p by the
Coulomb diffusion center g, .

According to (A.47) and (A.49), the effective cross section increases with the impact parameter.
This is a consequence of the long range electrostatic interaction. Therefore, one can neglect the
large angle binary collisions and account only for the collisions at large impact parameters b > Ap.

Assuming so 8* — 0 in (A.46) and (A.50), one finds as far as the second order term

ellta ALb 1/A 2 e Ya
Ap:mm‘ve_m[L (L) —

AL
= 0*?) with == < 1. A.51
Mo + Mg b5 2\ D) [ve—val o (07) with T < (A-51)

Thus, under the small angle assumption, the change of momentum of the particles in the binary
collision Ap is perpendicular to their relative velocity v, = ve — v, and is small compared to the

initial momentum of the particles p. and p,. Applying this small angle assumption in the Boltzmann
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equation (A.22), one obtains

fe (Pe) fo (Pa) — fe (Pe — AP) fa (Pa + Ap)

— (80 1 2p®) [‘9 - ‘9] (fo(De) fu(Per) (A.52)

op. Op
- A o o) Lo ] (w00 o (0%).

2 ape ape B aI)Ol

Here,
AL b

b b

is the first order term ~ 6* of the exchanged momentum and

Ap(l) HUrel 7—

(2) (el (AL Vrel
A 2) _ _ rel [ AL re
p 2 < b ) VUrel

is the second order term ~ 6*2. By noticing that

o 9 10
Ope  OPa WOVl

(A.53)

expressing the differential cross section as d?c = dy*bdb and injecting the resulting Taylor expansion

(A.52) in the Coulomb collision operator of the Boltzmann equation (A.22), one obtains

talfer fal = / d’pa / 2de0 / bdb

ApW +Ap< ) Guf) + Ap®M @ Ap™)
el 2 ‘6Vrel e 2#2 8Vrel 6Vrel

(A.54)

(fefoz)]

Firstly, one has

2 . )\L 27 b
/ bdb / dp*ApH = / [WVpel — / —dp*bdb = 0
0 b Jo b

due to the axisymetry arount the v,q-axis of the binary collisions,

27 2
/ badb / dg* Ap® = — / dpr HVrel y; 2 Vel / B oty vy In Ay,
0 0 2 b 2

Urel

where it has been noted In A, = f db/b the Coulomb logarithm which is discussed in the next section

A.3.3 and
27 A 2 por bob
/ bdb /O do*ApM @ ApH) = / u%el?(;) /0 52 dp*bdb

_ / MQUre12 <)‘L) Urel 21— Vrel & Vrel bdb
b Urel

- 7rluf2)‘L2 (UreIQI — Vil ® Vrel) In Acq.
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Secondly, noticing that

2
0 Vel — Viel ® Vil __ Vrel

_ ' (A.55)

OVrel 2Urelg Urel

where I is the unity tensor, the Boltzmann collision operator under the small angle assumption becomes

Cfa [fe, fa} — 27T62qq2 In Aea /R 0 |:Ur612]: — Vel X Vryel 0

,LL2 3 avrel 7Jrelg 8Vrel

(f;faﬂ @pa. (A.56)

Finally, due to the fact that the distribution function f, and its derivatives tend to zero when |p,| —

+00, one finally gets the Landau collision operator according to the relationship (A.53)

9 Ofe I fa
L 3
es Ja] = 75 - Uca- | fa — Je d°pa A.
Chalte £l = e | Ve [ 152 — g5 | % (A57)
with ) 2, 21

Ueo = Ucars Ve — Vol T— (Ve — Va) @ (Ve — Vq) and Ueq o = 4ﬂw (A.58)

2|ve — Vol [Ve = Val
which is called the Landau collision tensor. This expression has been derived using the Rutherford
differential cross section (A.49) but in the more general case,

Ap?

Uea,O = /d2aea2 ’Ve - Voz‘ . (A59)

The structure of the Landau collision kernel Uy, is originated from the small angle assumption. By
integrating by part the second term in the integrand of the Landau collision operator (A.57), one can
write it using the fact that the distribution functions f. (and f,) as well as its derivatives tend to 0

when |p.| — oo (respectively when |po| — +00) as follows :

9 [(Ap)a (Ap ® Ap)a Ofe
CL e, fo] = —=. . — . A.60
where the friction vector term can be written in the general case
(Ap)a / 3 9
= &’Pofo=—Uea A.61
AL 4P [ Ipe (A.61)
and the diffusion tensor term A Ap)
pP®Ap 3
—— & = d o aerc- A.62
sar = [ b (A62)
Using the Rutherford differential cross section (A.49), it reads
(APla _ ;. ¢*a’In Aca / Ve TV fud? (A.63)
= —aT el el .
At Mey R3 |Ve — Va|3 p
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and

(Ap® Ap),, — 4me?q,2 In A Ve = Val’T = (Ve = Va) ® (Ve — Va)

APy A.64
2At R3 2|Ve _ va‘?) f p ( )

These friction and diffusion terms are also called the Spitzer-Chandrasekhar coefficients. The expres-
sion (A.60) is a Fokker-Planck-like expression verified by any Markovian stochastic process. Indeed,
as explained in [Chandrasekhar, 1943], the Landau collision operator (??) can also be derived assum-
ing that the distribution function f.(pe, t) is a stochastic process which does not depend at ¢t = ¢y on
its whole history ¢ < tg but only on the infinitezimal time interval to — At with At < tg which however,
is sufficiently large compared to the time between two consecutive electron-a collisions (definition of
a Markovian stochastic process). In the textbook by [Balescu, 1963], a similar approach is presented
to derive (A.57) from the Boltzmann collision operator while [Landau and Lifshitz, 1981] derived it
by using physical considerations on the electron fluxes in the momentum space. Equation (A.57) can
also be derived from the Lenard-Balescu equation, as done in the textbook by [Decoster et al., 1997],
assuming the permittivity e(k, w) = 1 + (1/3k%Ap?) that takes into account electron plasma waves
with thermal corrections. The Landau collision integral can be extended to degenerate electrons by

replacing the Debye length Ap by a more general expression evaluated in the Debye-Huckel theory

dmnee? smeny(z7e)r |
Ap = TNee N mni(Z*e)r ' (A.65)

kpV/T.2 + Tr? kpTi

Here, the electron temperature T, has been replaced by \/T.2 + Tr? [Lee and More, 1984] where

(A.66)

is the Fermi temperature and Z* the ionization state which can be evaluated using the formula

* Te 14

where g is an analytical fit of numerical Thomas-Fermi calculations provided by [More, 1985].

A.2.3 Coulomb Logarithm In A.,

The integral defined in the previous section as the Coulomb logarithm

b
max db
\ Aea = -
n / ‘

bmin

diverges at both the lower and upper boundaries of integration if b, = 0 and byax = co. These limits

need to be defined separately. As the Landau collision operator (A.57) is valid only for small angle
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collisions 6* < 1 or b > A, according to (A.47), the low boundary has to be defined by byin = AL.
Moreover, the Landau collision operator must be cut at the screening length b,,x = Ap. This also
explains why assuming kAp > 1 (k ~ b~!), the Lenard-Balescu collision operator also allows to

describe this Debye screening effect. Thus, the Coulomb logarithm can be evaluated as

AD
lnAea:/ @:ln </\D>
AL D AL

This classical expression is valid only if the relative collision velocity is sufficiently small so that the

Landau length is larger than the effective De Broglie length

h
2/"“)1"61

ADB = (A.68)
(see Figure A.3). In this case, the lower limit must be chosen by by, = App. This quantum limit
must be chosen for the electron energies larger than 10 eV. Concerning collisions of electrons on ions,
in the case of dense plasmas, the Debye-Huckel treatment of screening breaks down due to strong

ion-ion correlation effects. If the Debye length A\p becomes less than interparticle distance

m=< 3 )1/3, (A.69)

47n;

the screening length must be evaluated by r; [Lee and More, 1984]. The Coulomb logarithm depends
on the colliding particles velocities v, and v,. In a plasma at the thermal equilibrium, the particles
follow a Maxwell-Boltzmann distribution function and the effective lengths in the Coulomb logarithm
can be replaced by their average values \/m. Finally, one can write the Coulomb logarithm

as ( the minimum value of 2 accounts for the non-ideal plasma effects)

InAn, = max {2, 11 1+ bmas” (A.70)
nAg, = max- 2, 5 n b2 .
where
bmax = max {r;, \p} and by, = max {X, )\DB}
with
_ 2€eqq N h
)\L = ¢ and /\DB = .
MeMa 3kpT. 5 MeMa 3kpT.
Me + Mg, Me Me + Mg, Me
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A.2.4 Properties of the Landau equation

One can check that the Landau equation preserves the properties of the Boltzmann equation. The

functions 1, po,1 and pa712 /2m,, are still integral invariant i.e. for a = e or i,

nga [fa,lu fa,l] (I’, Pao,1, t) 1 d3po¢,1 =0
ji nga [fOé,la fa,l] (I’, poz,lv t) poz,l d3po¢,1 = 0 (A?l)
R
2
Lifo1, £y o, t Pa,1 Bpay =
/]R3 Ca [f ,1af 71] (I‘, Pa,1, ) 2ma Pa,1 0

and

/ CLfer, fir] (t, Pers t) 1 dPper = /3 CEfit, ferl(x,pin, t) 1 d®pi1=0
f CL(fe1, fir] (t, Pe1s t) Penr  d°Pen +/R CE(fi1, fer] (r, Pin, ) pi1 d®pi1 =0

2

Pe,1

/ f617f2 (I', pe,17t) 26 pel+/ leafel (I', pi,lat)
Me

Secondly, one can show that if f.; is the solution of the Landau equation

Ofe 0 0 Ve
f = + (Ve,lfe,l) + 5 {6 |:Eext + Ep (re,la t) + 1 X (Bext + Bp (re,h t))} fe,l}
ot Orea OPe,1 ¢ (A.73)
Ofe )
(1) Ot o) s et )+ O e S Gt s 1),
coll
thus, the entropy defined as
H (ren, t) = — /3 (fealn foq = fea) dpes (A.74)
R
verifies the H-theorem
dH
— > 0. A.75
o (A.75)
Finally, it can be shown that the Maxwell-Boltzmann distribution, maximizing the entropy H,
Ne (e, t) Me(Ve — ue)?
fM Te, p(ivt = exXp | — A.76
( ) (27TmekBTe)3/2 2kBTe ( )

is still the stationary solution of the Landau equation (A.73).
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A.3 Simplified Forms of the Collision Integral

A.3.1 BGK Approximation

A simplified form of the collision term was proposed by P. L. Bhatnagar, E. P. Gross and M. Krook.
It reads

where v is a velocity-dependent effective collision frequency which characterize the time needed by f. 1
to reach the maximum-entropy equilibrium distribution function fy; [Bhatnagar et al., 1954]. This is
called the BGK approximation from the names of its founders. It describes the relaxation of the
distribution function to the Maxwell-Boltzmann distribution in agreement with the H-theorem. The
parameters in the function fp; (A.40) are defined according to the conservation of the number of

particles, the total momentum and energy.

A.3.2 Lorentzian Plasmas

The Lorentz assumption concerns only the electron-ion collision term (??). Because of the large mass
ratio m;/me > 1, the friction term (A.61) is much smaller than the diffusion term (A.62). By assuming
that the distribution function of particles « is given by fu(r, pa, t) = na(r, t)d[pa), where § is the

Dirac distribution, in order to account for only small « particle velocities, the diffusion term (A.62)

reads : A Ap) )
P ®Ap Pe I—p.®p
oAt < = Vea(ve)| d 9 : : (A'78)
where )
In A
Vea(Ve) = 47rna€q0627n3€a. (A.79)
me?|vel
One can directly notice that the ratio of the two isotropization rates
; Z*In A
T o2 Tleig (A.80)

Vee In A

for material with Z* 2 10 assuming In A.; and In A, have approximatively the same order of magni-
tude. Thus, the omission of the electron-electron diffusion term compared to the electron-ion one is

fully justified for a plasma with Z* 2 10 and the Lorentz approximation leads to

<8fe> - ) 3 0 |pe‘21_pe®pe ofe
= Vei(Ve)|Vel . 3 .
ot col Ipe 2‘V€’ Ipe (A.81)
O N B RV AN U
2 sin 6, 00, €00, sin® 0, Ope?

expressed in the spherical coordinates in the electron momentum space (pe, e, @e).
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The Lorentz assumption neglects the electron-electron collisions and therefore describes only the
isotropization of the electron distribution function. The Lorentz approximation is particularly useful
for estimating the electron-ion collision friction expressed with the frequency 7.; averaged over the

whole electron velocty distribution function fe(ve). It is defined by the relation

—nemeueiue:me/ (3f6> ved®pe (A.82)
r3 \ Ot col

where
3
Nele = / feved Pe
R3

is the hydrodynamic electron flux. By injecting (A.81) in (A.82) and by assuming the electrons follow

the Maxwell-Boltzmann distribution function (A.40), we obtain

1 /2 Z*2e4 In A
Uy = —A| —4mn,——— AR3
s = 112 o (A.83)
where
kT,
UTe =
Me

is the electron thermal velocity.

Page 381



A.3. SIMPLIFIED FORMS OF THE COLLISION INTEGRAL

Page 382



Appendix B

Classical Plasma Hydrodynamic

Theory

” Classical thermodynamics ... is the only physical theory of universal content which I am convinced
... will never be overthrown. ”

Albert Einstein
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According to Appendix A, section A.2., plasma electrons can be described on the kinetic

scale according to the Vlasov-Fokker-Planck-Landau equation for the electron distribution function
fe=fe(r, p, t). It reads

oo Ly ol emed - (%),

with

<88J;e>coll - CL [feafe] (I‘, p, ) [fe’ fz] (I‘ p; )

where for @ =i or e,

9 [{Ap)a (Ap ® Ap)a Ofe
=, — . B.2
Chalfe £o1 19, 0) =~ | R g, - (52 E 20 O (.2
with (Ap) 20 210 A
Pla €°qa” In Aey vV — Vg 3
= —4 a y Paoy « B.
AL T - /]R3 |v—va]3f (r, Pa, t)d°p (B.3)
and
Ap ® A v—VQQI— V—Vy) R (V—vy
u = 47T€2qa2 ln Aea/ | ’ ( z))) ( )fa (I" pOéu t) d3p(l' <B4)
2At R3 2|V - Va|

According to the H-theorem (cf Appendix A, section A.1.5), there is a time ¢t ~ v~! needed for
the electrons and ions to reach the maximum entropy equilibrium where their distribution functions

are close to the Maxwell-Boltzmann distribution function

N (1, t) [_ Ma(Va — ua)2 '

exp
(27rmakBTa)3/2 2kpT,

fa (r, Pa, t) = (B.5)

The kinetic time scale v~! can be estimated by the averaged electron-ion collision frequency (A.83)

1 /2 Z*2e4 n Ay,
~ T — dmn, 2= et B.6
14 Vej 3\/> n; 621) 63 ( )

Thus, the distribution function f, being assumed to be locally a Maxwell-Boltzmann distribution in

the considered time scales ¢t > 7_.", we only need to find the electron density n., the mean electron

el
velocity u. and the electron temperature T, in order to fully characterize the electron distribution

function f.. This approximation is called the Local Thermodynamic Equilibrium.

This Appendix is dedicated to the Classical Plasma Hydrodynamic Theory (without Relativistic
effects) based on this Local Thermodynamic Equilibrium, quoted throughout this thesis. It also
presents the radiation hydrodynamic code CHIC that has been used in this work. For simplicity, we
neglect external electromagnetic fields (except in the derivation of the Spitzer, Lee-More or Braginskii

transport coefficients) and assume that the plasma consists of two species -electrons and ions.
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B.1 Two fluids Hydrodynamic Equations

B.1.1 Definitions

Knowing the distribution function f, = fa (r, pPa, t) for the particles «, one defines the following

quantities
Name Notation Definition
Particles density Ng (T, t) / fad®pa
R3
Mean particles flux NaUgy (T, t) favad3pa
1
Mean particles kinetic energy K, (r, 1) — fa Va d®pa
v
Internal kinetic energy Uy (r, t) fame(oé)dgpa
mq 1
Particles temperature T, (r, t) — fa (Vo — ua)2d3pa
3k B Nq
Mean particles momentum flux tensor | I, (r, t) fava R Vad®pa
Kinetic pressure tensor P, (r, t) / fa (Vo —u4) ® (Vg — ugy) d®pq
Scalar kinetic pressure P, (r,t) Mo / fa(va — d Pa
. . ma a
Kinetic energy flux Qo fa Vad®pa
Mgy (Va - uoz)Q 3
Thermal energy flux da faf (Vo — Uq) d°Pa
RS

Under these definitions, one can relate the internal kinetic energy U, with the mean particles

kinetic energy K, the mean particle velocity u, and the temperature T, as follows

—

Ug (r, t) = no Ko — ng

= CvaTh (B.7)

where it has been noted Cy,, = (3/2)n.kp the a particles thermal capacity. Also, the kinetic pressure

tensor P, is related with the scalar kinetic pressure P,, the temperature T, and the viscosity tensor

70 = Iy, — P21 — ngmaugy ® ug (B.8)
as follows
P,=PI-1, (B.9)
with
1
P, (r,t)= gTr [Po] = nokpTe. (B.10)

The thermal energy flux q, can be related with the kinetic energy flux Q, the mean particles velocity
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Ug, the scalar pressure P, and the viscosity tensor 7, as follows

2
MW, )
Qo = Qa - %naua - ipozua — Tq-Uqg- (Bll)

B.1.2 Local Thermodynamic Equilibrium

By integrating (B.1) over the momentum space | d3p, one gets the hydrodynamic particles conserva-

tion equation

One n 2
ot = Or
in agreement with the Landau collision integral property of the section A.3.4 of Appendix A

.(neue) =0 (B.12)

/ wlfes fol (x, P, 1) d°p = 0.

By integrating (B.1) multiplied by the particles momentum m.v over the momentum space [ d’pv,

one gets the hydrodynamic particle momentum conservation equation

0 0
|:8t (neue) + &.é(neue ® ue)

= —nee {E + 7@ X B} - (B.13)

. (PeI — Te> + Re;.

Indeed, according to the Landau collision integral property (see Appendix A, section A.2.4), one

has

/R3 vCL[fe, fe] (r, p, t) d’p = 0.

Concerning electron-ion collisions, we define the friction force

Rei (I‘, t) = meVC [fe; f’L] (I‘ p;t )dgp' (B'14)
R3
By developing (B.13) and simplifying it using (B.12), one can also deduce the hydrodynamic electron

fluid velocity equation

0 +(u 0 (ue)
MeNe | — —
¢ u ot eaar ‘ (B.15)
= —nee [E TR B} ~ 2 (PI-7.)+R..
c Or
By integrating (B.1) multiplied by the electron kinetic energy m.v?/2 over the momentum space

i d®p (mev?/2), one gets the hydrodynamic electron energy conservation equation

0 (1 3 0 3 1
T, —. (= T, + = 2).
8t < nemeue + 2n€kB ) + or (2nekB et 2nemeue ) ue:|

= —a. [(PSI - Te) .lle] - ai]e — neeue. E + We;

(B.16)
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Indeed, according to the Landau collision integral property (see Appendix A, section A.2.4), one

has
mev?2

[fe7 fe] (I’ P, )d p:().
R3

Concerning electron-ion collisions, we define the energy exchange rate
mev?

Wei (I‘, t) =
R3

[fey fz] (I‘ p, )d p. (B.17)

By substracting the work of the friction force, one gets the relation
Wei (I‘, t) = Qei + Rejue (B18)

where )
me(v —ug)

Qei (I', t) = C%i[f@) fz] (I’, P, t) dsp

R3 2

is the thermal electron-ion equilibration power. By developing (B.16) and using the hydrodynamic

electron momentum conservation equation (B.13), one finds the electron hydrodynamic electron energy

Te ﬁ + ue.2 1meue2 + §kBTe
3 ot aI‘ 2 2 (B.lg)

- _5' [(PeI - Te) -ue] o a'qe — neeE.ue + Rejtle 4 Qe

equation in the form

By multiplying (B.15) by mcu,, one can find the hydrodynamic electron kinetic energy conservation

b [;‘ i (ue';r)] (;meuf) (B.20)

(P.I-7.) + Rejue.

equation

= —neeE.u. —u

“Br
Substracting (B.19) by (B.20), one gets the hydrodynamic electron internal energy equation

0 0 0 0 0
Cve [& + (ueﬂr)] (Te) + a.qe = —Pea.ue +Te ® <8r ® u6> 4+ Qei- (B.21)

By performing the same calculi for the ions starting from the Vlasov-Fokker-Planck-Landau equation

for the ion distribution function f; = f; (r, p, t), one gets respectively

ot  Or

. (n,ul) = 0, (B.22)

0 0
[(% (nju;) + " (niw; ® uz)]

(B.23)
=n;Z%e [E—i—?z XB} -

- (BI—7;) + Ry
81'( Ti) +
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which consequently provides the non conservative form

min; ot D i (B 24)
% u; 8 ’
—nZ e[E—F? xB} — oo (BI=7) + Ry,
Also, one obtains
0 (1 5 3 0 3 1 9
a (2nzmzuz + 2n1kBTz> + a |:(2nzk‘BT‘z + inzmzuz ) -uz:| (B 25)
9 .
=5 (PI—7;) w] — E Uy n;Z" eu;. E 4+ Wi,

which provides the non conservative form

0 0 0 0 0
Cv, [(% + (uz(?r)} (1) + o = _Pia-ui +Ti© (81‘ ® uz’> + Qie (B.26)
where obviously
Ric = —Rei, Wie = —We; and thus Qe = —Qei + R (ue - ui) . (B27)

B.2 Plasma Transport Coefficients

The system consisting of the hydrodynamic equations {(B.12), (B.15, B.21), (B.22), (B.24), (B.26)}
forms a set of 10 equations with 10 hydrodynamic unknowns ne, ue, Te, n;, u;, 7; assuming that the
hydrodynamic fluxes P,, qe, P, qi, Qe; and Re; are known. Considering the time scales much less
than ~ 100 ps, we neglect the ion conductivity q; and the ion velocity u; in the ion conservation
equations. Also, the viscosity tensors 7; and 7. and the mechanical work —P.(9/0r).u. of (B.26) are
neglected. In what follows, we evaluate the transport coefficients allowing to express the friction force
R.;, the electron-ion energy exchange (); and the electron thermal flux q. in order to close this set

of 10 equations.

B.2.1 Lorentz Approximation

The hydrodynamic fluxes are found from the kinetic equation by evaluating the deviation of the
electron distribution function ¢ f. from the local equilibrium Maxwellian function f3;. Here, we account
only for the electron-ion collisions in the electron kinetic equation and also neglect the magnetic

component of the Lorentz force. Then, the electron kinetic equation takes the following from (see
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Appendix A, section A.3.2)

Ofe 2 _ i . Vei (V) Lﬁ . Ofe 1 82fe
ot "o V) T gp (Bl =5 Lineae (Sme ae) T mZe0p? | (B-28)

Also, the electric field E is assumed to be homogeneous, not varying with time and with a value
|E| < Erun ~ meVeivr /e sufficiently small such that the electric field E can be seen as a perturbation
of the maximum entropy equilibrium fe(o) = fu with u,® =0 (see Appendix A, section A.2.4).
By noting so

fe(r,p, t) = fm(r, p, t) +6fe (r, P), (B.29)

one can linearize the equation assuming the electric field is a first order term E = §E to get

Ofm  vei(v) 1 9 /. 06 fe 1 0%f.
cE. op 2 [sinfod sin 0e a0 +s.in29 a2 |’ (B.30)

By expanding § f. on the Legendre polynomial basis and by noticing that the left hand side of this

equation does not depend on the azimuthal angle ¢, one deduces ¢ f. and consequently

8je = je = —e/ véf.d’p = oLE (B.31)
R3
(because u, = 0) with
32 nge?
== B.32
oL 3T MV ( )

called the plasma electron electrical conductivity and expressed with the averaged electron-ion collision

frequency (see Appendix A, section A.3.2).

Recalling that the electric current is proportional to the electron mean velocity, one can find from

(B.31) the expression for the friction force in the electron momentum hydrodynamic equation :
Rei = eneipje (B.33)

with
1 732m 2 Z*%e2 In Ay,
n=-—_—=
oL (kBTe>3/2

(B.34)

called the plasma electrical resistivivity. It does not depend on the plasma density (in this approxi-

mation) but only on the plasma temperature.

To obtain an expression for the electron heat flux, one has to solve the linearized equation

8fM an Vei(v) |: 1 9 (Sin985f€> + 1 825f6:| . (B35)

Mg M =
V'or T ap 2 |sin6ae 90 ) " sin20 0y?

One can express the electron current density dj. and the electron heat flux dq. as a function of the

moments of § fe which depend on (07, /0r) and E. One gets the expression of the electric field E by
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considering Jj. = 0 in order to avoid charge accumulations. Injecting the obtained expression of the

electric field in the expression of dq., one finally obtains

MeVe? oT,
e = 0Qe = £c Veéfed?)pe = —KL ° (B36)
R3 2 81‘
with
128 no k2T, 20 (2/m)%2 k1210
KL, = =04 7 (B.37)
3T MeTe; me/ Z*et1n Ag;
the plasma electron thermal conductivity. Besides, one can easily notice that the ratio
2
K1, kB
_ — 4 2B B.38
= e —a("2) (B.38)

is a constant called the Lorenz constant.

Concerning the electron-ion energy exchange Q¢;, it can be obtained directly by using the Maxwell-
Boltzmann distribution function (B.5) and the full Landau electron-ion collision integral, i.e. without

neglecting the term o< m./m; (see for example [Landau and Lifshitz, 1981] p.173). It reads

Que(r 1) = / MY S W) oL p ) (e p £) dPp
= 2WCV61/€Z(T T;) (B.39)

= —Qe (I‘, t) Rei ( Ue — ui) )

B.2.2 Electron-electron Collision Contribution to the Hydrody-

namic Fluxes

By taking into account the electron-electron collision term, the linearized equation (B.35) becomes

dfum E Ofm
or " op (B.40)
L L Vei(v) [ 1 9 (4np2fe L 0% ‘
Cee[fMyfsfe] +Cee[5f€7fM} + 9 {3111939 sin ¢ 00 + SiHQQ aQDZ )

[Spitzer and Hérm, 1953] have shown that the electron-electron collision contribution to the electrical

and thermal conductivities can be expressed as follows

eor

07:‘4/[/ (B41)

osp = YEorL and Kgp =

where vg and edr are correction factors, which can be fitted by functions of the ionization state Z*

from the tabulations provided by [Spitzer and Harm, 1953]. They read

Z* 4+ 0.9833

TER o101
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and
o z
0.4 Z*+0.2InZ* +3.44°

The expression proposed by [Brysk et al., 1975] for edr is less accurate than the expression proposed
here because it does not reproduce the Spitzer results (ksp/0spTe) — (kp/orT.) = 4(kp/e)* when
Z* — oo [Ribeyre, 2014]. The parameters 7 and g account for the electron-electron collisions while e
accounts for the reduction of the heat flux due the electrostatic field induced by temperature gradients

in a steady state.

One may ask himself why electron-electron collisions modify the electric conductivity since the
hydrodynamic moments of the electron-electron collision terms vanish, giving Ree = 0 and Q.. = 0,
according to the properties of the Landau collision integral. This is actually a purely kinetic effect due
to the "rearrangement” of the electron momentum spectrum, due to electron-electron collisions, such
that the electron-ion collisions (o< 1/v?) are enhanced leading to larger slowing downs of the electrons
by colliding the ions. Indeed, in the limit Z* — oo where electron-electron collisions are negligible
compared to electron-ion collisions, one can notice that og, — o1, ks, — k1, and that the Lorenz
factor (ksp/ospTe) — (kr/orT.) = 4(kp/e)?. For other specific values of Z*, one gets according to
[Spitzer and Hérm, 1953] :

KS kp\?
PP 1.6() for 7* =1

osple e
2

ﬂ%ZZ > for Z7* =2
osple e

e\ 2
_FSp_ ~ 2.7<B> for Z* =4
osple e

o\ 2
AL/ BN 3.5(B> for Z* = 16
osple e

B.2.3 Transport Coefficients in an External Magnetic Field

The transport in the external homogeneous magnetic field was considered by [Braginskii, 1965]. The
magnetic field may strongly affect the electron fluxes if the electron cyclotron frequency we. = [eB|/m.c
is of the same order of magnitude than the electron-ion collision frequency 7.;. The electron kinetic

equation in the external magnetic field B (B.40) reads

8fM _¢E 8fM v % Baéfe

Tor ¢ " Op c op

ei 1 0 (. ,00fe 1 02%f.

v

(B.42)
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The magnetic field introduces an anisotropy of the fluxes that are not parallel to the generalized forces

any more. Consequently, transport coefficients become tensors :

R.; =R, + Ry (B.43)
with
. . . B .
R, = enen.j = enenyj) + eneniji + enefin gy *J
and o) 0 0 19
T, Te Te B T,
= —kpQ. = —pFk k kp— .
T BB-— - ar B B(a >” BL B(ar> = Ba B|B|>< or

The notations || and L define the components for the generalized forces (current and temperature
gradient) parallel and perpendicular to the magnetic field direction. The first term R, is due to
the friction of electrons on the ions as already presented in the previous section while R is due to
the temperature gradient effect. Here, j is the plasma current density evaluated in the quasineutral

approximation :
j=—eneu. + Z'enu; = pou — ene (e — w;) = —ene (Ue — W;) .
Analogously, the electron heat flux consists of two parts
de = qu +qr (B.44)

with
k: T. k T kgT. B
b /8.]_ B 5/\ & |B|

= (2T . (T B 0T
ar = "Fe = 7HI Tor I "L or 1 RA]B\ or

The components of the tensors are

qu

and

2 /.2 /
_ nekp“Te T+ Y
Mele;

nekBQTe x ( 1/:(}2 + 70)

RA =

MeVei A
- 2
_L_meyei 170/1$ +066
nL - - 2
o1 Ne€ A
1 MeVe; T (0/1'372 + 046’)
AN=— =
g on Nee? A
B
BH = ne(sf
0
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B$2+5O
A

(//2+6)
A

where A = 2% 4+ 612% + 69 and & = wee/Te; while the transport coefficients 7y and x| in the || direction

BL=n

and [a = ne

are defined by equations (B.41). The parameters in these expressions depend only on the ionization

state Z*:

1.3008 1 1
0o = —— +1.5956 | —— +0.7778 | —- 4+ 0.0961
o= (72 w1ow0) e o) 7o
1.35 1
51z( 5958>+7482
Z*
0.3008 1 1
ap & << 7 + 0. 976) — +0. 4924) 7= +0.0678
14 1
af ~ <O 37 + 0. 3142) —- +0.094
Z*
1.786
'~ —— 4 4.630
a 7 +
off = 1.704
0.3768 1 1
0~ 1.2 — . — .14
By (( 7 + 998> 7 +08583> 7 +0.146
0.7215 1
By ~ ( 7 + 1. 4545) 7= +0.877
1.303
" 3.798
b g T
7~ 1.50
0.909 1 1
! 4.405 | — +5.406 | — +1.20
o (0 00) )
2.31 1
0~ 31) — +10.2
Yo <Z*+93)Z*+03
(~ 22 5050
71 ~ Z* :
v =~ 2.50

B.2.4 Electron Degeneracy Corrections

The transport coefficients in the case of degenerated electrons were considered by [Lee and More, 1984].

They considered a linearized kinetic equation in the BGK approximation (see Appendix A section
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A.4.1) with the Fermi-Dirac distribution function

1

fFD (I’, P, t) = 5 (B45)
me(v —u) I

2%pT.  kgT,

14 exp

instead of the Maxwell-Boltzmann distribution function (B.5). The chemical potential y is defined by

the normalization of Fermi-Dirac distribution function to the electron density n.

Ne (I’, t) - /3 JFD (I’, Po; t) d3p€'
R

The transport coefficients in the case without external magnetic read

_ 1
n= m@”;@ (B.46)
nee” o i
kT,
and )
nekpTe B < 1% )
K= —— A B.47
Melej kpTe, ( )
where the averaged electron-ion collision frequency is given by
221 (Z*) niet In A
Vei = v2m(Z°) it A (B.48)

3/2 1% 2 '
3v/me(kpTe) / [1 + exp <— kBTe>:| Fij9 </€BT6>

The expression of the electron-ion coupling power Q.; (B.39) depending on 7g; is therefore also modified

by the electron degeneracy according to (B.48). Here,

1%
F:
Aa H _ ? <kBTe>
kBTe B

ol i

and )
1
16F,
F<M> 1 64<kBTe>
| _
FpTe 15F2< a )F4< a )
5( 1% )_20 kBTe kBTe
kpT.) 9 u Rk
e (i) [Foe (k)
where

[ > t/
F; = dt
! <kBTe> /0 1% >

1 t—
+ exp ( KT
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are the Fermi-Dirac integrals (There is a mistake in the original paper [Lee and More, 1984] concerning

the numerator of A%, it is F, and not F3). Thus, according to [Lee and More, 1984] the Lorenz factor

”L‘Aﬁ< i )()

reads

kpTe

In the non-degenerate limit i.e. when p/kgT, — —00, one has A% — 32/37 and A? — 128/3m which re-
produces the transport coefficients in the non-degenerate case considered by [Spitzer and Harm, 1953]
without the electron-electron correction factors. At the complete degeneracy limit i.e. when
u/kpTe — oo, the conductivities of totally degenerated plasmas are recovered. Indeed, one has
A* 1, AP = 7%/3 and Ty — 37h3/2m.Z*e*In A,; (second mistake in [Lee and More, 1984] where
it is written 4 and not 2 in the denominator) which agree with the results given by [Hubbard, 1966]

2121 kp (kpT.) (kpTr)®” T,
KH = and ng = vy —. (B.49)
3 m?eAZ* In Agi Ke
Here, the empirical Wiedemann-Franz law for metals 7, = (72/3)(kp/e)?

[Franz and Wiedemann, 1853] is also recovered. The only difference with the results found by
[Hubbard, 1966] is the Coulomb logarithm which is defined in [Hubbard, 1966] as InA.; = 1/Gr(kF)
where T’ = Z*264/k37“iTi is the ion-ion coupling parameter and kp = ri(QkaBTp)lﬂ/h the Fermi

wavenumber. [Hubbard, 1966] provides a tabulation of Gr depending on I" and kp.

B.3 Radiation Hydrodynamic Code CHIC

B.3.1 Monofluid Hydrodynamic Equations
For a plasma consisting of electrons and one ion species, one can define the mass density
Pm = NeMe + Nym;, (B.50)

the momentum flux

PmU = MeNeUe + myn;u; (B.51)

where u is the mean velocity, the charge density
pe = —ene + Z¥eny, (B.52)

the current density

j=—eneu. + Z'en;u; = pou; + ene (4; — ), (B.53)
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the scalar plasma pressure

P=P.+ P (B.54)
and a plasma viscosity tensor

T =Te¢+ T4, (B.55)
the specific internal energy

Ue + U;
U, = — tY e + &; with Va € {i, e}, e = Us/ pm, (B.56)
Pm

and the heat flux

q=qc+q (B.57)

With these definitions, one can obtain the monofluid hydrodynamic continuity equation from (B.12)
and (B.22) :

0pm 0
— 4+ —.(pmu) =0 B.58
L s = (o) (5.5)
and the charge continuity equation 5 5
Pc .
—.j=0. B.59
ot " or? (B:59)

The monofluid conservation equation for the particles momentum is obtained by adding Equation
(B.13) and Equation (B.23) :

0 0 B J 0
a(ﬂmu)+a.(0mu®u)_ch+E xB—a.(PI—T). (B.60)
Substracting (B.58) from (B.60), one obtains
0 0 J 0

By adding (B.16) and (B.25), one obtains the monofluid energy conservation equation

% [pm (Um+ u22)] i %' { [pm <Um+ f) +P] 'u} (B.62)
O r)- 2 q+iE |

:a( or’

which provides by taking into account (B.58) and (B.60) the monofluid specific internal energy con-
servation equation
d 0 0 0 0
= = U, —q=—-P—. — j.E. B.63
”m[at*(“ar)]( )+ g ar“+7@<ar®“>“ (B-63)

It is usually assumed that the plasma is quasi-neutral (p. = 0). In this case, (B.58), (B.61) and (B.63)

are commonly called the Navier-Stokes equations. In the particular case where the electron and
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ion populations have thermalized (T, = T; = T') in addition to the quasi-neutrality assumption, one

can write Equation (B.63) as

3} 0 0 3} 0 .
Cy [(% <u 8r>] (T)~I—a.q——Pa.u+T® <8r®u> +j.E (B.64)

where

CvdT = ppdU,, and Cy = ;k‘B (Z*+1)n;

is the plasma thermal capacity. Still under the same assumption, according to the first principle of

AUpm = 6Qum — Pd (;)

while according to the second principle of Thermodynamics

Thermodynamics, one has

0Qm =TdH,, >0

where it has been noted 6@Q),, the infinitesimal specific heat energy exchange and H,, the specific en-
tropy (usually noted s but we prefer H,, to relate it with the Boltzmann kinetic theory, see Appendix
A, section A.1.5), one can obtain the time evolution of the plasma specific entropy according to
(B.63)

m [gt +u.§r} (Hp) = % {r@ (gr ®u> - gr-q] : (B.65)

By making the assumption 7 = 0, j = 0 and q = 0, one gets Euler’s equations from fluid mechanics:

85% + % (pmu) = 0, (B.66)
[ o
and . [gt . <uaar>] (U, = —P%.u. (B.68)

B.3.2 Radiation Hydrodynamic Code CHIC

The Hydrodynamic CHIC code solves the monofluid two temperatures hydrodynamic equations under
the assumption of zero tensor viscosity (7 = 0) and small current density |j| < nec for a quasi neutral

plasma (p. = 0). The code solves the following equations (B.58) and (B.61) :

Opm Q

ot

o L

<pmu) 0,
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2D LAGRANGIAN
HYDRODYNAMICS

ALE
Ti, Te fluid model
[ EOS
MHD

e~ : Thomas Fermi
Transverse B \

Screened hydrogenic AA
2D ELECTRON / Ion : Cowan
HEAT TRANSPORT Sesame tables

THERMONUCLEAR Spitzer-Harm, Braginskii
BURN ol Non local Schurtz-Nicolai
2D RADIATIVE TRANSPORT 3D LASER RAYTRACING
Steady state Multi-group Bemsation
LTE opacities Collisional absorption

Figure B.1: CHIC main packages [Breil et al., 2011]

and Equation (B.63) which is split in two equations. One for the plasma electrons

0 0 0 0
m | 5, A e a_ e:_Pei- — Wie e,ex
p [6t+<u ﬂ(s)—i—arq oY Qie + We ext
for which the collisional term —Re; (ue — u;) from @Q.; has been neglected (since in pratice, u, and u;

are unknown here) and another one for the plasma ions

Pm [gt + <U§r)] (ei) + %-Qi = —B%-IH- Qie
where it has been noted We ext = Wias + Wiaqa + Wiys + Wie the source terms due to laser plasma
interaction Wi,s, radiation heating Wi.q, nuclear fusion reactions heating We,s or fast electron beam
heating Wi, (cf. Chapter 10, section 10.2). Each heating source term is computed with a special
package, as shown in Figure B.1. P, = P.(pm, 1¢), Pi = Pi(p, T3), e = cc(p, Te) and €; = ¢;(p, T;)
are given by the material Equation of State (Thomas-Fermi for the electrons, Cowan for the ions and /or
Sesame tables). e can be computed with the Spitzer, the Braginskii or the Non Local Schurtz-Nicolai-
Busquet model [Schurtz et al., 2000] while Q. is given by (B.39). These hydrodynamic equations are
solved by using the Lagrangian formalism i.e. by presenting the transport terms with a derivative
along the fluid trajectories
d 0 0
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By noting with a supscript ¢ the index of the fluid streamline denoted by i, V,, = 1/p,, and V€ €
{pm, Vi, 0, Pe, Py, P, Te, T, €e, €i, Qei, We,exta Qie}7 gl(t) = g(iﬂat) where

Cili: =t'(t)=u (?i, t) knowing the initial condition Tt =0),
these equations read -
ﬁﬁ% - [;r.u] (t',t) =0, (B.69)
. d;f + L;i (P, + Pi)] (T,1) =0, (B.70)
P [‘i} + ﬁgdZ% - [881" @%{eﬂ (1) = —Ql + Wi ot (B.71)

and

- [;. <mi%€i>] (#, 1) = QL. (B.72)

Indeed, as mentioned, the time derivative of £ following a fluid particle reads

@~ AV
Pm [dt T

R a0 ()

Also, for numerical reasons which will be explained further, Equation (B.62) is simplified according

to (B.58) and expressed in the Lagrangian formalism to give

P

df: n [;. (Pu)} (F,1) = — [;- (q)} (¥, 1) (B.73)

where E = U,,+(u?/2) (There is a mistake in [Breil et al., 2011] concerning the second term of the left
hand side of this equation [?]). These equations are solved in 2D Cartesian (z, y) or in 2D cylindrical

(z, r) assuming an axial symetry (azimuthal invariance assumption).

Numerical Schemes :

The numerical computation of Equations (B.69), (B.70), (B.71) and (B.72) is split in two steps

1. On the interval between the time step t,, and ¢, = t, + At*, the system of Equations (B.69),
(B.70) and (B.73) is solved without taking into account the thermal conduction according to
a cell-centered discretization of each fluid mesoparticle i [Maire et al., 2007] and a high order

Lagrangian finite volume scheme based on the acoustic generalized Riemann problem solved
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using a least squares procedure followed by a slope limitation procedure [Maire, 2009]

o R R

N N or

n -0 [0 o B.74)
i 2 (P1 (B.

p | At* ‘ + | Or ( )] '

. 'E* . ? r 6 n,?

P | At* } + | Or ( u)}

Then, by assuming that the electron evolution at this time step is isentropic in such a way that

the entropy is deposited into the ion internal energy, one has to solve

[az L av)
~ e Pz m =0
m [ dt € dt
which gives numerically
Vm - Vm

=0. (B.75)

It allows to deduce &* = Ei* — gb* [(ﬁl*)Q/Q]

2. Then, the energy transfer between ions and electrons and the electron heating is solved on the
interval between ¢, and ¢,41 using a Newton algorithm while the non linear conduction is solved

implicitly with the discretization of the thermal diffusion operator [Breil and Maire, 2007]

4T ) oT, , P
ﬁ%m %/ S - | Re (/Iﬂv t) = - ﬁe + Wez ext
em gt or \"or : (B.76)
o~ dT? 0 oT: A . '
~ i i S T = [
meV,inn dt |:ar <’L€z or >:| (I‘ 7t) ie

where it has been noted Va € {e, i}, Cyam = dee/dT, the specific thermal capacity.

B.3.3 CHIC MHD Package

In order to study the effects of the magnetic fields on the thermal conduction according to the Bra-
ginskii expression for the thermal conduction coefficient k., a MHD package has been implemented in
CHIC by [Schurtz et al., 2007] and [Breil et al., 2008]. This has been motivated by an experimental
campaign on the LIL facility of CEA. This section is devoted to the description of this package. By ne-
glecting the viscosity tensor (7 = 0), the plasma electrons inertia ( neme(Oue/0t) +neme(ue.0/0r)(ue)

) and by assuming that the plasma is quasineutral (p. = 0), the hydrodynamic conservation equation
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of electron momentum (B.24) is written with the Braginskii collisional terms as

j i kg , OT. 1 0P,
E- 1 «B1+YxBt 2Rl g —0. (B.77)
Ne€C c ene Or nee Or
This equation is called the generalized Ohm’s law. The term
Epai = 2 x B (B.78)

Ne€C

accounts for the Hall effect and will be neglected since |j| < n.ec while in the 2D Cartesian or 2D

axisymetric configuration, one can write

kB aTe UNernst

. = B B.79
en. Or c X ( )
where
kgc 3 oT,
U = —— —
Nernst, L nee]B\ 1 or N
and
kpc 5 B " oT,
U = ——fOr— X —
Nernst,/\ ’]’Le€|B’ A ’B‘ ar

which accounts for the Nernst effect. Coupled to the Maxwell equations in the quasi-static approxi-

mation, the generalized Braginskii Ohm’s law gives

0B 0 7702 0
0
a x [(ul + uNernst) X B] (B80)

_ch one " oT,
nee Or or '

The first line of this equation accounts for the magnetic diffusion, the second line accounts for its
advection by the plasma ions (u;) and the plasma heat flux via the Nernst effect (Unernst) and the
third line accounts for the magnetic field generation due to electron temperature-density crossed
gradients. Focused on the heat-conduction phenomena, the electrical resistivity has been assumed
isotropic, such that n = nI with n=2 = nﬁibbar d +778_I)21tzer. Also, due to the huge ion mass, the electron
contribution to the plasma fluid velocity is neglected u = u;. Thus, Equation (B.80) can be written

in the Lagrangian form (in the 2D Cartesian or 2D axisymetric geometry!)

dB' 0 nct o —
dt 8I'><<47T61'XB :|(I',t)
[ (e < B)| (1) (B.51)
kpcon. OT.|
B _[nee ar 8r](r’t)'
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Numerical scheme : The numerical computation of Equation (B.81) is presented here in the 2D

axisymetric case :

+ ;Z[UNemst,z (rBg)| ¢ (F%,t) + aar[uNernst,r B\ (@0
= %UNernst,r(TBe) (T, 1) _ [iﬁg(rBw] G
s = o

The 2D Cartesian case can be obtained in the same way by removing all terms o 1/7 in the right
hand side of this equation, by replacing z by x, r by y and rBy by B,. The compution is split in two
steps

1. Firstly, the magnetic field generation due to density-temperature crossed gradients and the

Nernst advection are solved explicitely using a finite volume method. Let us note

i\ kpcon, OT.]"" d i B b
Sg = </IﬂBg ) —At |: B X :| —At { [UNernst,z (TB@)]} —At { [uNernst,r (TB@)]}

nee Or or 0z or

the results of this computation.

2. Secondly, the diffusion of the magnetic field is solved in the same way as the thermal diffusion
i\ n+1
[Breil and Maire, 2007] to deduce (WBQZ> from

i\t d [nc® 0 il d [nc? o e

1 in 1ne 9 in
= Sg + At |:TUNernst,r (TBG):| — At |:777T’l“ (’I“Bg):| .
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Titre : Etude du Transport d’Electrons Rapides pour la Fusion par

Confinement Inertiel
Résumé :

Un nouveau modele réduit pour le transport de faisceaux d’électrons relativistes dans des solide
ou des plasma denses est proposé. Il est basé sur la résolution des deux premiers moments angulaires
de I’équation cinétique relativiste, complétés par une relation de fermeture déduite du principe de
maximisation de ’entropie angulaire de Minerbo. Le modele prend en compte aussi bien les effets
collectifs du transport avec les champs électromagnétiques auto générés que les effets collisionnels liés
au ralentissement des électrons par collision sur les plasmons, les électrons liés et les électrons libres du
milieu ainsi que leur diffusion angulaire par collisions sur les électrons et les ions. Le modele permet
une résolution numeérique rapide des équations du transport de faisceau d’électrons rapides tout en
décrivant 1’évolution cinétique de leur fonction de distribution. Malgré le fait de travailler avec les
grandeurs angulaires moyennes, le modeéle a été validé par comparaison avec des solutions analytiques
dérivées dans un cas académique de transport de faisceau mono énergétique et collimaté dans un
plasma dense et chaud d’Hydrogene ainsi qu’avec une simulation PIC hybride dans un cas réaliste de
transport d’électrons accélérés par laser dans une cible solide. Le modele est appliqué a 1’étude de

I’émission de photons Ka lors d’expériences laser-plasma ainsi qu’a la génération d’ondes de choc.

Mots clés : Plasmas, Fusion par Confinement Inertielle, Interaction Laser-Plasma (Relativiste),
Transport de Faisceaux d’Electrons Relativistes, Entropie Angulaire, Théorie Cinétique, Théorie Hy-

drodynamique
Title : Fast Electron Transport Study For Inertial Confinement Fusion
Abstract :

A new hybrid reduced model for relativistic electron beam transport in solids and dense plasmas
is presented. It is based on the two first angular moments of the relativistic kinetic equation completed
with the Minerbo maximum angular entropy closure. It takes into account collective effects with the
self-generated electromagnetic fields as well as collisional effects with the slowing down of the elec-
trons in collisions with plasmons, bound and free electrons and their angular scattering on both ions
and electrons. This model allows for fast computations of relativistic electron beam transport while
describing the kinetic distribution function evolution. Despite the loss of information concerning the
angular distribution of the electron beam, the model reproduces analytical estimates in the academic
case of a collimated and monoenergetic electron beam propagating through a warm and dense Hydro-
gen plasma and hybrid PIC simulation results in a realistic laser-generated electron beam transport
in a solid target. The model is applied to the study of the emission of Ka photons in laser-solid

experiments and to the generation of shock waves.

Key words : Plasmas, Inertial Confinement Fusion, (Relativistic) Laser-Plasma Interaction,

Relativistic Electron Beam Transport, Angular Entropy, Kinetic Theory, Hydrodynamic Theory



