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Dedicated to my grandmother Louise Halimi Laloum who died the 1st of february 2015 at the

age of 95 years old still without knowing how to write nor read.

Dedicated also to my friend Jonathan Sandler (30 years old), his two sons Aryeh (3 years old)

and Gabriel (6 years old) and their little friend Myriam Monsonego (8 years old) murdered at

the entrance of their school Ozar Hatorah in Toulouse (France) that horrible March 19, 2012,

just because they were Jews.

”It can be said that anti-Semitism is one particular case of intolerance; that for centuries it had a

prevailingly religious character; that in the Third Reich it was exacerbated by the nationalistic and

military predisposition of the German people and by the “differentness” of the Jewish people; that it

was easily disseminated in all of Germany—and in a good part of Europe—thanks to the efficiency of

the fascist and Nazi propaganda, which needed a scapegoat on which to load all guilts and resentments;

that the phenomenon was heightened to paroxysm by Hitler, a maniacal dictator.

But these commonly accepted explanations do not satisfy me. They are reductive-not commensu-

rate with, nor proportionate to, the facts that need explaining. In rereading the chronicles of Nazism,

from its murky beginnings to its convulsed end, I cannot avoid the impression of a general atmosphere

of uncontrolled madness. Thus I prefer the humility with which some of the most serious historians

confess to not understanding the furious anti-Semitism of Hitler and of Germany back of him. [...]

For this reason, it is the duty of everyone to meditate on what happened. Everybody must know,

or remember, that Hitler and Mussolini, when they spoke in public, were believed, applauded, admired,

adored like gods. They were “charismatic leaders”; they possessed a secret power of seduction that did

not proceed from the credibility or the soundness of the things they said, but from the suggestive way

in which they said them. And we must remember that their faithful followers, among them the diligent

executors of inhuman orders, were not born torturers, were not (with a few exceptions) monsters:

they were ordinary men. Monsters exist, but they are too few in number to be truly dangerous; more

dangerous are the common men, the functionaries ready to believe and to act without asking questions.

Since it is difficult to distinguish true prophets from false, it is well to regard all prophets with

suspicion. Yet it is clear that this formula is too simple to suffice in every case. A new fascism, with

its trail of intolerance, abuse, and servitude, can be born outside our country and imported into it,

walking on tiptoe and calling itself by other names; or it can loose itself from within with such violence

that it routs all defenses. At that point, wise counsel no longer serves, and, and one must find the

strength to resist. But then, too, the memory of what happened in the heart of Europe, not very long

ago, can serve as support and warning.”

Primo Levi
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List of symbols used

Physical Constants (the manuscript is written in the cgs units)

Physical quantity Symbol Value Units

Boltzmann constant kB 1.3807 10−16 erg.K−1

Elementary charge e 4.8032 10−10 statcoulomb

Speed of light in vacuum c 2.9979 1010 cm/sec

Electron mass me 9.1094 10−28 g

Proton mass mp 1.6726 10−24 g

Standard atomic weight A depends on the material dimensionless

Atomic number Z depends on the material dimensionless

Ion mass mi Amp g

Planck constant h 6.6261 10−27 erg.sec

~ = h/2π 1.0546 10−27 erg.sec

Permittivity of free space ε0 1/4π dimensionless

Permeability of free space µ0 4π/c2 dimensionless

Fine-structure constant α = e2/~c 1/137.038 dimensionless

Electronvolt eV 1.6022 10−12 erg

Linear algebra notations

Let us note a a scalar, A, B and C three vectors in a 3-dimensional space (x, y, z), D2, E2 and

F2 second order tensors (or 3 × 3-dimensional matrices) and G3 a third order tensor in the same

3-dimensional space.

Scalar product

A.B =
∑

i=x,y,z

AiBi.

Linear transformations

B = D2.A implies ∀i ∈ {x, y, z}, Bi =
∑

j=x,y,z

D2,ijAj ,

C = A.D2 implies ∀j ∈ {x, y, z}, Cj =
∑

i=x,y,z

AiD2,ij ,

D2 = E2.F2 implies ∀(i, j) ∈ {x, y, z}2, D2,ij =
∑

k=x,y,z

E2,ikF2,kj ,

D2 = G3.A implies ∀(i, j) ∈ {x, y, z}2, D2,ij =
∑

k=x,y,z

G3,ijkAk and

E2 = A.G3 implies ∀(j, k) ∈ {x, y, z}2, E2,jk =
∑

i=x,y,z

AiG3,ijk.
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Transposition

A = BT is the transposition of B and

D2 = ET
2 is the transposition of E2.

Vectorial product

A×B =


AyBz − AzBy

AzBx − AxBz

AxBy − AyBx

 .

Tensorial products

T2 = A⊗B implies ∀(i, j) ∈ {x, y, z}2, T2,ij = AiBj and

T3 = A⊗B⊗C implies ∀(i, j, k) ∈ {x, y, z}3, T3,ijk = AiBjCj .

Twice contracted product

a = D2 : E2 =
∑

i=x,y,z

∑
j=x,y,z

D2,ijE2,ji.

Differential operators notations

Let us note x = (x, y, z)T a vector expressed in 3-dimensional Cartesian coordinates in the basis

(0, ex, ey, ez), r = (z, r, θ)T a vector expressed in 3-dimensional cylindrical coordinates in the basis

(0, ez, er, eθ) and p = (p, θ, ϕ)T a vector expressed in 3-dimensional spherical coordinates in the

basis (0, Ω = p/p, eθ, eϕ). Also, we note f = f(x), g = g(r) and h = h(p) scalar functions of

x, r and p, respectively, A = Ax(x)ex + Ay(x)ey + Az(x)ez, B = Bz(r)ez + Br(r)er + Bθ(r)eθ

and C = Cp(p)Ω + Cθ(p)eθ + Cϕ(p)eϕ vectorial functions of x, r and p, respectively and D =

[Dij(x)], (i, j) ∈ {x, y, z}2, E = [Eij(r)], (i, j) ∈ {z, r, θ}2 and F = [Fij(p)], (i, j) ∈ {p, θ, ϕ}2 2nd

order tensorial functions of x, r and p, respectively. Also, we note v = (vx, vy, vz)
T , (vz, vr, vθ)

T or

(vp, vθ, vϕ)T a velocity in the choosen system of coordinates.

Gradient

∂f

∂x
=


∂f

∂x
∂f

∂y
∂f

∂z

 ,
∂g

∂r
=


∂g

∂z
∂g

∂r
1

r

∂g

∂θ

 and
∂h

∂p
=


∂h

∂p
1

p

∂h

∂θ
1

p sin θ

∂h

∂ϕ

 .
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It may happen in the text that (∂/∂x) = (∂x, ∂y, ∂z)
T , (∂/∂r) = (∂z, ∂r, (1/r)∂θ)

T or (∂/∂p) =

(∂p, (1/p)∂θ, (1/p sin θ)∂ϕ)T are used as vectors in expressions such as presented previously in the

paragrah Linear algebra notations (see for example curl)

Infinitezimal volume

d3x = dx dy dz, d3r = rdz dr dθ and d3p = p2 sin θdp dθdϕ.

Divergence of a vectorial function

∂

∂x
. A =

∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

,

∂

∂r
. B =

∂Bz
∂z

+
1

r

∂

∂r
(rBr) +

1

r

∂Bθ
∂θ

and

∂

∂p
. C =

1

p2

∂

∂p

(
p2Cp

)
+

1

p sin θ

∂

∂θ
(sin θCθ) +

1

p sin θ

∂Bϕ
∂ϕ

.

Divergence of a tensorial function

∂

∂x
.D =


∂Dxx

∂x
+
∂Dyx

∂y
+
∂Dzx

∂z
∂Dxy

∂x
+
∂Dyy

∂y
+
∂Dzy

∂z
∂Dxz

∂x
+
∂Dyz

∂y
+
∂Dzz

∂z

 ,
∂

∂r
.E =


∂Ezz
∂z

+
1

r

∂

∂r
(rErz) +

1

r

∂Eθz
∂θ

∂Dzr

∂z
+

1

r

∂

∂r
(rErr) +

1

r

∂Eθr
∂θ

− Eθθ
r

∂Dzθ

∂z
+

1

r

∂

∂r
(rErθ) +

1

r

∂Eθθ
∂θ

+
Eθr
r



and
∂

∂p
.F =


1

p2

∂

∂p

(
p2Fpp

)
+

1

p sin θ

∂

∂θ
(sin θFθp) +

1

p sin θ

∂Fϕp
∂ϕ

− Fθθ + Fϕϕ
p

1

p2

∂

∂p

(
p2Fpθ

)
+

1

p sin θ

∂

∂θ
(sin θFθθ) +

1

p sin θ

∂Fϕθ
∂ϕ

+
Fθp − cot θFϕϕ

p
1

p2

∂

∂p

(
p2Fpϕ

)
+

1

p sin θ

∂

∂θ
(sin θFθϕ) +

1

p sin θ

∂Fϕϕ
∂ϕ

+
Fϕp + cot θFϕθ

p

 .

Curl

∂

∂x
×A =


∂Az
∂y

− ∂Ay
∂z

∂Ax
∂z

− ∂Az
∂x

∂Ay
∂x

− ∂Ax
∂y

 ,
∂

∂r
×B =


1

r

∂

∂r
(rBϕ) − 1

r

∂Br
∂ϕ

1

r

∂Bz
∂ϕ

− ∂Bϕ
∂z

∂Br
∂z

− ∂Bz
∂r

 and

∂

∂p
×C =


1

p sin θ

∂

∂θ
(sin θCϕ) − 1

p sin θ

∂Cθ
∂ϕ

1

p sin θ

∂Cr
∂ϕ

− 1

p

∂

∂p
(pCϕ)

1

p

∂

∂p
(pCθ) − 1

p

∂Cp
∂θ

.
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Laplacian of a scalar function

∂2f

∂x2
=

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
,

∂2g

∂r2
=

∂2g

∂z2
+

1

r

∂

∂r

(
r
∂g

∂r

)
+

1

r2

∂2g

∂θ2
and

∂2h

∂p2
=

1

p2

∂

∂p

(
p2∂h

∂p

)
+

1

p2 sin θ

∂

∂θ

(
sin θ

∂h

∂θ

)
+

1

p2 sin2 θ

∂2h

∂ϕ2
.

Laplacian of a vectorial function

∂2A

∂x2
=


∂2Ax
∂x2

∂2Ay
∂x2

∂2Az
∂x2

 ,
∂2B

∂r2
=


∂2Bz
∂r2

∂2Br
∂r2

− 2

r2

∂Bθ
∂θ

− Br
r2

∂2Bθ
∂r2

+
2

r2

∂Br
∂θ

− Bθ
r2

 and

∂2C

∂p2
=


∂2Cp
∂p2

− 2

p2

∂Cθ
∂θ

− 2

p2 sin θ

∂Cϕ
∂ϕ

− 2
Cp + cot θCθ

p2

∂2Cθ
∂p2

+
2

p2

∂Cp
∂θ

− 2 cos θ

p2 sin2 θ

∂Cϕ
∂ϕ

− Cθ

p2 sin2 θ
∂2Cϕ
∂2p2

+
2

p2 sin θ

∂Cp
∂ϕ

+
2 cos θ

p2 sin2 θ

∂Cθ
∂ϕ

− Cϕ

p2 sin2 θ

 .

Components of advection terms

In Plasma Hydrodynamic Theory, the relation

∂

∂x
. (nv ⊗ v) = n

[(
∂

∂x
.v

)
v +

(
v.

∂

∂x

)
(v)

]
describes the convection term. Therefore, we will note :

(
v.

∂

∂x

)
(A) =


vx
∂Ax
∂x

+ vy
∂Ax
∂y

+ vz
∂Ax
∂z

vx
∂Ay
∂x

+ vy
∂Ay
∂y

+ vz
∂Ay
∂z

vx
∂Az
∂x

+ vy
∂Az
∂y

+ vz
∂Az
∂z

,

(
v.
∂

∂r

)
(B) =


vz
∂Bz
∂z

+ vr
∂Bz
∂r

+
vθ
r

∂Bz
∂θ

vz
∂Br
∂z

+ vr
∂Br
∂r

+
vθ
r

∂Br
∂θ

− vθBθ
r

vz
∂Bθ
∂z

+ vr
∂Bθ
∂r

+
vθ
r

∂Bθ
∂θ

+
vθBr
r

 and

(
v.

∂

∂p

)
(C) =


vp
∂Cp
∂p

+
vθ
p

∂Cp
∂θ

+
vϕ

p sin θ

∂Cp
∂ϕ

− vθCθ + vϕCϕ
p

vp
∂Cθ
∂p

+
vθ
p

∂Cθ
∂θ

+
vϕ

p sin θ

∂Cθ
∂ϕ

+
vθCp − vϕ cot θCϕ

p

vp
∂Cϕ
∂p

+
vθ
p

∂Cϕ
∂θ

+
vϕ

p sin θ

∂Cϕ
∂ϕ

+ vϕ
Cp + cot θCθ

p

.

Symbols related to the laser pulse characteristics
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Physical quantity Symbol SI Unit cgs Unit Practical Unit

Intensity IL W.m−2 erg.sec−1.cm−2 W.cm−2

Wavelength λL or λ m cm µm or c/ω

Wave number k = 2π/λL rad.m−1 rad.cm−1 ω/c

Temporal period T = λ/c s sec /ω

Frequency f = 1/T Hz sec−1 ω

(angular) Frequency ω, ω0 or ωL = 2πf rad.s−1 rad.sec−1 ω

Electrostatic potential Φ V statvolt mec
2/e

Vector potential A V.s.m−1 gauss.sec mec/e

Electric field E = −∂Φ

∂r
− ∂A

∂t
V.m−1 statvolt/cm mecω/e

Magnetic field (induction) B = c
∂

∂r
×A T gauss mecω/e

(Here

r is the vector position expressed in whatever the coordinates system)

Symbols of fundamental plasma parameters

The electron temperature Te is expressed in eV, the electron and ion densities ne and ni in cm−3.

Physical quantity Symbol Formula order of magnitude (cgs)

Plasma ionization state Z∗ Z∗ = ne/ni 0 ≤ Z∗ ≤ Z
Electron-ion Coulomb logarithm ln Λei Annexe A.2.3 > 2

Electron Thermal velocity vT,e or vTh,e
√
kBTe/me 4.19 107

√
Te

Ion sound velocity cs
√
Z∗kBTe/mi 4.19 107

√
Te

Electron plasma frequency ωp, ωe or ωp,e
√

4πnee2/me 5.64 104√ne
Electron gyrofrenquency ωc or ωce eB/mec 1.76 107B

Electron-ion collision rate νei, νei or ν Annexe A.3.2 3.9 10−6niZ
∗2 ln ΛeiTe

−3/2

Coulomb explosion time τe νei/ωp
2 1.2 10−15Z∗ ln ΛeiTe

−3/2

Electron De Broglie wave length λDB or λDe Broglie ~/2mevT,e 1.38 10−8Te
−1/2

Electron-electron Landau length λL or λLandau e2/kBTe 1.44 10−7Te
−1

Debye screening length λD or λDebye vT,e/ωp 7.43 102(Te/ne)
1/2

Mean ions distance ri (3/4πni)
1/3 0.6ni

−1/3

Electron Larmor radius rL or RL vT,e/ωc 2.88Te
1/2B−1

Electron inertia length λe c/ωp 5.31 105ne
−1/2

Relativistic electron beam transport

The electron temperature Te of the plasma, where the beam propagates through, is expressed in

eV, the plasma ion density ni is in cm−3, the beam density nb is in [1021 cm−3], the beam radius

rb is in [10 µm], the electron velocity v and the beam electrons mean velocity vb of a collimated

and monoenergetic electron beam (∗) are in cm.s−1 and the thermal Maxwell-Juttner (M-J) beam

temperature Tb is in keV.
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Physical quantity Symbol Formula order of magnitude (cgs)

Electron velocity β v/c . 1

Electron Lorentz factor γ 1/
√

1− β2 ≤ 1

Electron momentum p γmev

Electron kinetic energy ε (γ − 1)mec
2

Electron gyrofrequency ωc eB/γmec 1.76 107B/γ

Larmor electron radius λL v/ωc 1.7 103γβB−1

Electron De Broglie wave length λDB ~/2p 1.9 10−11/γβ

Beam∗ electrons velocity βb vb/c . 1

Beam∗ electrons Lorentz factor γb 1/
√

1− βb2 ≤ 1

Beam∗ electrons momentum pb γbmevb

Beam∗ electrons kinetic energy εb (γb − 1)mec
2

Beam (M-J) thermal velocity βT,b
√

2kBTb/γbmec2 0.06Tb
1/2

Beam∗ neutralization time (ωp/νei � 1)) ν−1
ei Chapter 2.2 2.6 105Te

3/2/niZ
∗2 ln Λei

Beam∗ neutralization time (ωp/νei � 1)) τe/γb Chapter 2.2 1.2 10−15Z∗ ln Λei/γbTe
3/2

Beam∗ diffusion time τd Chapter 2.2 9 10−13rb
2Te

3/2/Z∗ ln Λei

Beam (∗ and M-J) plasma frequency ωb
√

4πnbe2/γbme 1.78 1015(nb/γb)
1/2

Beam (M-J) Debye screening length λD
√
kBTb/4πγbnbe2 7.43 10−7(Tb/γbnb)

1/2

Beam (∗ and M-J) electrons inertia length λb c/ωb 1.68 10−5γb/nb
1/2

Alfven-Lawson limit∗ IA −γbβbmec
3/e −17γbβb kA
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Chapter 0

Introduction

”Physics is like sex: sure, it may give some practical results, but that’s not why we do it.”

Richard P. Feynman
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0.1. THERMONUCLEAR PLASMA FUSION AS THE SOLUTION FOR THE XXITH
CENTURY ENERGY PRODUCTION

0.1 Thermonuclear Plasma Fusion as the Solution for

the XXIth century Energy Production

0.1.1 World Energy Balance

All experiments and observations carried out until today show that there is a universal quantity which

is conserved during all evolutions and all transformations of matter and fields : the energy. According

to Noether’s theorem, conservation of energy is a direct mathematical consequence of the translational

symmetry of the quantity conjugate to the energy, namely the time. In other words, it is nothing else

than the intuition we have that physics laws do not change with time. In 1845, this quantity has

been introduced by James Prescott Joule in order to understand the link between mechanical work

and generation of heat. In order to pay homage to him, one calls ”Joule” and one notes ”J” the SI

energy unit, based on the amount transferred to an object by the mechanical work of moving it 1 m

against a force of 1 N. Since the development of the thermodynamics theory in the XIXth century, the

energy conservation principle has become an indispensable element of understanding of any physical

process. All developments of modern physics are related to studying different ways of converting

energy from one form into another. To give an order of magnitude, the nuclear reactions of fission

of 0.01 g of Uranium provide approximatively 1 kWh (1 kWh = 3.6 MJ) of heat energy in a nuclear

power plant. The same amount of heat energy can be obtained by burning approximatively 100 g of

oil, coal or gas (1 million of tonnes of oil or oil equivalent produces about 4.4 TWh of electricity on a

modern power station), by condensing 1.6 kg of water vapor or by capturing solar radiations energy

on a surface of 1 m2 during one hour (The sun light intensity on Earth is about 0.1 W.cm−2 during a

sunny day). 1 kWh represents also the gravitational potential energy of 3 tonnes of water falling from

100 m of altitude in a hydroelectric power plant or the kinetic energy of 20000 m3 of air moving with

a velocity of 60 km.h−1 in a wind power plant or the energy needed by a human being of 65 kg to

climb a mountain peak of 3000 m. In addition to this important concept of energy conservation, the

thermodynamic theory has also led to the Industrial Revolution : little by little, a manual labor has

been replaced by machines, a horse-drawn carriage has been replaced by steam powered or thermal

engines transportation vehicles and a lot of new manufacturing have been developed. In the XXth,

thanks to this concept, a technological and scientific knowledge has exponentially grown up and has led

to incredibly improved quality of human life, allowing the world population to considerably increase

(see the World Population estimates of the United Nations). It is striking to notice how the Gross

National Product of a today country is strongly correlated with its energy ”consumption”. The fossil

fuels such as oil, gas and coal are used today mainly for energy ”production” and represent ≈ 90%

in the world energy ”consumption” as shown in Figure 1. The nuclear and hydroelectrical energy

represent each one only ≈ 6% of the world energy ”consumptions”. Even if other renewable energies

from wind, biomass, waste, solar and geothermal power plants are more and more used thanks to
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CHAPTER 0. INTRODUCTION

governments subsidies, their contribution is still negligible.

Figure 1: World consumption per capita (left) estimated from the BP Statistical Review of world
energy 2014 workbook and World Electricity Consumption per capita (right) estimated
from data published by the World Bank and the International Energy Agency. The world
population is estimated from the United Nations Revision of the World Population

One must say that the expressions such as energy ”consumption” or ”production” are misused.

Indeed, by definition, the energy is conserved during all transformations/evolutions. The sense that

we attribute to the words ”production” and ”consumption” of energy is that one converts one amount

of energy which already exists in a certain form into the same quantity of energy in another form.

In this way, there is no ”clean energy”, the energy ”production”/”consumption” is nothing else than

the pure modification of our environment. Thus, like all continous functions, one can show that each

energy resource extraction from Earth will attain its maximum at a certain time and then will decrease

until the resource will totally disappear from Earth. The BP Statistical Review of world energy 2014

estimates that the oil and natural gaz reserves-to-”production” ratios are available for about 50 years,

while the coal reserves-to-”production” ratio will be available for about 100 years. These evaluations

are probably underestimated because of financial reasons but, on the other hand, these estimates are

based on the 2013 data of the World population, while it is expected to grow up to more that 11

billions of people in ≈ 2100 (compared to ≈ 7.1 billions in 2013) according to extrapolations carried

out by the United Nations in 2012. In addition, this strong population growth is expected to happen

in developing countries where the resource demands will be the higher than average. One understands

easily, according to Figure 1, which highlights our huge consumption of coal, gaz and oil, that the

cost of energy consumption will be continuously increasing until each of them disappears if one does

not find an alternative. Even if it is the more efficient way of producing energy and the less harmful

for the environment, the governments policy is expected to limit the use of nuclear power plants due to

the long life time of the radioactive waste and the growing public opposition -which plays an important

role during elections- due to disasters such as Fukushima (2011), Chernobyl (1986) and Three Mile

Island (1979). However, the reality is quite opposite. One can easily demonstrate that nuclear power
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0.1. THERMONUCLEAR PLASMA FUSION AS THE SOLUTION FOR THE XXITH
CENTURY ENERGY PRODUCTION

plants are responsible for less human deaths than fossil fuel burning plants if one takes into account

the induced skin and lung cancers and the death of mine workers.

In addition, each way of ”producing” or ”consuming” energy produces actually entropy due to

the irreversible modifications it operates in the Nature. The entropy is also a physical quantity which

has been defined during the development of thermodynamics in the XIXth century. It is a measure of

the number of specific ways in which a thermodynamic system may be arranged. It can therefore be

understood as the measure of the system disorder. According to the second law of thermodynamics,

the entropy of an isolated system never decreases and such systems spontaneously evolve towards

thermodynamic equilibrium, that is to say, the configuration with a maximum entropy. The Earth is

not an isolated system due to its continuous irradiation by Cosmic Rays and its self-emission of thermal

infrared radiations. Besides, one can show according to the second principle of Thermodynamics taking

into account these processes, that the World ”Entropy consumption/production” is responsible for the

rise of the Earth temperature (≈ +1o since the beginning of the XXth century). Indeed, since 1965,

the carbon dioxide emission, known to be one of the major factor responsible for the Earth greenhouse

effect, has increased from ≈ 3500 kg/year/capita to ≈ 5000 kg/year/capita according to the BP

Statistical Review of world energy 2014 workbook and the United nations world population estimates.

Consequently, even if the hydro power plants are the most efficient way of ”producing” energy among

all ecologically friendly ones, it will also be affected by the climate changes due to the droughts induced

by this increase of temperature. For example, Europe is expected to lose 20 − 30% of precipitations

until 2100 leading to a smaller hydroelectricity production efficiency (The majority of European hydro

power plants does not work well yet at summer). Finally, other ”renewable energies” such as wind

power plants or photovoltaic panels are unsufficient to supply the World demand especially in the

industrial zones. As a conclusion, there is an important and challenging Energy issue for the Humanity

in the XXIth century and will surely lead to important conflicts between Nations if one does not find

an alternative (or reduce our consumption which seems to be impossible).

0.1.2 Thermonuclear Fusion

Four fundamental interactions have been discoverded by physicists : the Gravitational, the Electro-

magnetic, the Strong Nuclear and the Weak Nuclear interaction. Effective only at a distance of a few

fm, the Strong Nuclear force is 137 times stronger than the Electromagnetic one, 1025 times stronger

than the Weak Force interaction and 1038 times stronger than the Gravitational interaction. This en-

sures the stability of ordinary matter, in confining the elementary particles quarks into hadrons such

as proton and neutron both called nucleons, the largest components of the mass of ordinary matter.

Most of the mass-energy of a common proton mpc
2 or neutron mnc

2 is in the form of the Strong Force

Field Energy; the individual quarks provide only about 1% of the mass-energy of a proton. Also, ex-

periments show that the mass of an atomic nucleus M is always smaller than the sum of its nucleons

Page 24



CHAPTER 0. INTRODUCTION

Figure 2: The Aston curve of the strong nuclear binding energy per nucleon B(Z, N)/A (left) and
a NASA density-temperature map of existing plasmas

mass Nmn +Zmp taken separately. This mass energy deficit [M − (Nmn +Zmp)]c
2 is converted into

strong nuclear binding energy according to the famous Einstein equation, and it is consequently re-

sponsible for the stability of atoms. Besides, not all combinations of A = Z+N nucleons are necessary

stable. Only 282 nuclei are known to be stable on the Earth (see the Aston curve on the left panel of

Figure 2). Lightweight atoms are stable when the number of their neutrons N approximatively equals

the number of protons Z which defines the nucleus electrical charge. The atoms heavier than iron

(A > 54) are stable if N ≈ 1.5Z. Again according to the Aston curve, two kinds of nuclear reactions

are exoenergetic : the nuclear fission of one heavy nucleus, which is a process already used in fission

nuclear power plants, but also the nuclear fusion of two lightweight nuclei. In the 1950’s, the idea of

controlling thermonuclear combustion of lightweight atoms for Energy ”production” was born shortly

after the development of a theoretical model of the fusion reactions of lightweight elements to explain

the conversion of nuclear binding energy into heat in stars [Bethe, 1939]. Since then, ”bringing the

star power on Earth” has been the dream of many physicists and seems to be a promising solution to

solve the World Energy issue of the XXIth century. The problem is that while the Gravitational and

Electromagnetic forces act over potentially infinite distance, the another two Nuclear forces act over

minuscule subatomic distances and are more difficult to access. According to the Electromagnetic

theory, an energy of about 1 MeV is needed to counteract the Coulomb barrier between two nuclei

and make them getting close enough to fuse. Actually, an energy of about 10 keV is sufficient thanks

to the quantum tunneling effect [Gamow, 1928]. The fusion of two nuclei has been achieved many

times thanks to particle accelerators and a lot of stable nuclei have been discovered thanks to them.

Recently, the yet-unnamed element 117 have been created by physicists at the GSI Helmholtz Center

for Heavy Ion Research, an accelerator laboratory located in Darmstadt, Germany. But, concerning

the energy ”production”, the quantity of accelerated isotopes is too small to generate more energy

than the energy needed to accelerate them. Also, even if the cold fusion or muon-catalyzed fusion is

a well known process since the 1980’s [Jones et al., 1983], it does not allow to get high gains. Indeed,
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a net energy production is impossible because of a high energy required to create muons, their short

2.2µs life time and a high probability that a muon will bind to a new alpha (He) particle.

The only way to ”produce” energy thanks to fusion reactions consists in creating a thermonu-

clear plasma in order to achieve high reaction rates and consequently high gains like in the Stellar

Temperature-Density conditions (see the right panel of Figure 2). In addition to this constraint,

there are other requirements : the nuclear reaction must be exothermic, it must employ the lightest

possible nuclei to limit the Coulomb barrier, which is proportional to their atomic number Z, it must

have a large cross section (probability), implying consequently only 2 nuclei, it must conserve the

proton and neutron numbers in order to limit the weak nuclear interaction and finally it must produce

at least one neutron in addition to the heavier nucleus in order to heat the blanket coolants and to

produce electricity. 80 fusion reactions satisfy these criteria but the most probable one is the fusion

reaction of the two Hydrogen isotopes :

2
1D + 3

1T → 2
2He (3.5 MeV) + 1

0n (14.1 MeV) (1)

due to the existence of an intermediate resonant nuclear state in this reaction. In Figure 3, the

reaction rate of such a T(d,n)4He fusion nuclear reaction 〈σv〉 is plotted. Here, σ is the fusion reaction

cross section i.e. the effective area of a targeted Deuterium (or Tritium) nuclei seen by a projectile

Tritium (Deuterium, respectively), v is the relative velocity of the projectile in a collision and the

angle brackets mean that the rate is averaged over a Maxwell-Boltzmann distribution function (ther-

modynamic equilibrium). One can see that the reaction probability is maximum for a thermonuclear

DT plasma at a temperature T ≈ 100 keV, which is not yet achievable with the today technology.

However, a plasma temperature of 10 keV can be achieved and would be sufficient. Three other fusion

nuclear reactions can also occur at this temperature but with smaller probabilities : 3He(d,p)4He,

D(d,p)T and D(d,n)3He. Their reaction rates are also shown in Figure 3.

From a practical point of view, concerning the energy ”production”, there is an almost infinite

quantity of Deuterium 2
1D on the Earth with 33 g in each tons of sea water; That is why one calls

the DT fusion the blue energy. The Tritium 3
1T can be produced in a fusion reaction between the

escaping neutrons 1
0n (14.1 MeV) and lithium nuclei 6

3Li or 7
3Li which are abundant on Earth. So,

contrary to the fission nuclear power plants, which are using limited resources of Uranium, Plutonium

and Thorium, there is no resources problems. Also, the DT fusion presents no risk of a runaway chain

reactions and no long life time radioactive waste. The fusion reaction products are stable and only

activation of construction materials by fast neutrons is expected. As a conclusion, an eventual nuclear

fusion power plant would have all the pros of the nuclear fission ones without its cons that is to say,

without polluting the environment, without eventual nuclear catastrophes and not facing the problem

of limited terrestrial resources.
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0.1.3 Lawson Criterion

Figure 3: Reaction rate 〈σv〉 of the different fusion nuclear reactions (left panel) and Lawson criterion
for the Ignition (right panel) both estimated from [Bosch and Hale, 1992]

Even more than 99% of visible matter in the universe can be found in the plasma state and it has

been studied for many decades. However, it is still difficult to create and maintain a thermonuclear

plasma today. In order to evaluate the conditions needed to create and control such an equimolar DT

plasma, one has to take into account on the one hand the plasma power losses Ploss and on the other

hand the total power gain Pgain. By definition, a plasma is made of a large number of charged particles

and it is characterized by a collective behavior of particles due to the long distance electromagnetic

forces. Therefore, the total power losses consist in the thermal, mechanical and radiation losses (every

accelerated charged particles lose energy by emitting light). The total power gain consists in the

external energy brought by the ”driver”, that is to say, the external power needed to create and

maintain the plasma Pext and the fraction Pα = Fα(3.5/17.6)Pfus released by the fusion reactions Pfus

in a form of alpha particles (2
2He), as only alpha-particles are depositing their energy. The neutrons

are electrically neutral and are consequently leaving from the plasma without collisions. Their energy

is recovered in the blanket and used to produce the Tritium and heat. By considering a stationary

energy balance Ploss = Pgain = Pα + Pext and assuming that all α particles deposit their energy inside

the plasma (Fα = 1), one may define the energy gain G = Pfus/Pext. Then, by evaluating the plasma

life time or confinement time by the ratio of its internal energy divided by the total power losses

τc = 3nekBT/Ploss where ne is the plasma electron density and T the plasma temperature, one finds a

criterion to achieve the ignition of such a little star on Earth defined by G→∞ of an equimolar DT

plasma [Lawson, 1957]

neτc >
12

3.5 MeV

kBT

〈σDT v〉
≈ 1015 cm−3.s at T ≈ 10 keV. (2)

Due to chaotic motion of charged particles at a temperature of T ≈ 10 keV, the plasma tends
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naturally to expand and it is difficult to maintain it during the needed time τc with a sufficiently high

density ne, because these two parameters T and τc are linked according to the Lawson criterion. In the

star cores, the plasma confinement is accomplished naturally thanks to the Gravitational attraction.

For example, the mass of the Sun (about 1030 kg) is sufficiently high to attract and compress matter

to densities up to 1032 cm−3 during its whole life of about 10 billion years, which corresponds to the

time it needs to consume all its fusion fuel. The fact that plasma particles are electrically charged has

naturally led to the idea of using strong magnetic fields in order to confine the thermonuclear plasma.

In the 1950’s, the Soviet physicists Igor Tamm and Andrei Sakharov proposed a device called tokamak

in the shape of a torus allowing to confine a thermonuclear plasma thanks to a toroidal magnetic field

produced by magnetic coils that surround the torus. In addition, a poloidal magnetic field which is

created by a toroidal electric current that flows inside the plasma allows to heat it. The international

project ITER is currently building the world’s largest experimental tokamak nuclear fusion reactor

and aims to make the long-awaited transition from experimental studies of plasma physics to full-scale

electricity-producing fusion power plants. In 2003, the ITER prototype Tore Supra has obtained the

world record by confining a thermonuclear plasma of ne ≈ 1015 cm−3 more than 6 minutes and 30

seconds during which time, energy on the order of 300 kWh was injected and extracted.

0.2 Inertial Confinement Fusion (ICF)

Inertial confinement fusion (ICF) is an alternative way to control fusion reactions. It is based on

scaling down a thermonuclear bomb explosion to a small size, applicable for a power production. In

this approach, achieving the energy gain through fusion reactions relies firstly on a fast compression to

a high density (up to 1000 g.cm−3 in the fuel) of a mm-scale capsule filled with a mixture of Deuterium

and Tritium by the use of an ablative rocket effect. Then, a conversion of the implosion kinetic energy

into the internal energy results in heating of the central zone called ”hotspot” up to temperatures

T > 5 keV, allowing to initiate the fusion reactions of the DT fuel in agreement with the Lawson

criterion. Thus, instead of magnetic fields, here, the plasma is confined by its own inertia. Besides,

this process lasts only a few ns so that this approach presents significant technological difficulties due

to a high repetition rate of 10 Hz needed to continuously produce electricity. However, by reaching

very high densities during a short confinement time, the ICF approach would be much more efficient

in terms of gain, than magnetic confinement fusion, which aims to fuse the DT fuel at low densities

but long confinement times.

0.2.1 Conventional ICF Schemes

Since the invention of lasers [Maiman, 1960], it came naturally the idea to use many laser pulses to

strongly compress DT fuel capsules. In the 1970’s, scientists began experimenting with powerful laser
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beams in France [Colin et al., 1968], in the United States of America (USA) [Nuckolls et al., 1973] and

in the Union of Soviet Socialist Republics (USSR) [Basov et al., 1968]. In the “direct drive” approach

to ICF, powerful beams of laser light are focused on a small spherical pellet containing micrograms of

Deuterium and Tritium (see Figure 4). A rapid heating caused by the laser driver makes the outer

layer of the target explode. According to the momentum conservation law, the remaining portion of the

target is driven inwards in a rocket-like implosion, causing compression of the fuel inside the capsule

and the formation of a shock wave. The latter heats the fuel in the very center and results in ignition

of fusion reactions which are propagating the fusion burn wave and release of more nuclear energy

than was initially deposited. In the “indirect drive” method, the lasers heat the inner walls of a gold

cavity called a hohlraum containing the pellet, creating a hot plasma which radiates a uniform “bath”

of soft X-rays (see Figure 4). The X-rays rapidly heat the outer surface of the fuel pellet, causing a

high-speed ablation, or “blowoff,” of the surface material and the fuel capsule implosion as if it had

been hit with the lasers directly. In both approaches (direct drive and indirect drive), symmetrically

compressing the capsule with radiations creates a central “hot spot” where fusion processes set in, the

plasma is self-heated and the fusion burn propagates outward through the cooler, outer regions of the

capsule much more rapidly than the capsule can expand.

Figure 4: Classical ICF schemes : The Direct and Indirect drive approaches
[Campbell and Hogan, 1999]

Direct and indirect drive schemes have their advantages and drawbacks. The former has a higher

laser-target coupling efficiency but is less uniform in laser irradiation due to the use of discrete laser

beams. Beam smoothing techniques have a key role in the direct drive. The indirect drive by soft

X rays, which are generated at the inner surface of a hohlraum, may produce a better uniformity.
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This allows to reduce the growth of perturbations due to Rayleigh-Taylor instabilities. The soft X

ray drive has much higher ablation rates and is less sensitive to hot electron preheat. A potential

disadvantage of indirect drive is the larger scale of the plasma crossed by the laser beam from the inlet

hole to the hohlraum wall. Parametric instabilities (i.e. the unstable decomposition of the incoming

laser radiation into two daughter waves) in hohlraums are responsible for a significant energy loss

and production of energetic electrons. One of the most important advantages of the indirect drive

approach is a radiation drive concept which allows to use another drivers such as Z-pinch of heavy

ions.

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) is

operational since March 2009 and a variety of experiments have already been completed. The NIF

is a Nd : Glass laser facility, which is now routinely operating at 1.6 MJ of ultraviolet (3ω) light

on target with a very high reliability. It recently reached its design goal of 1.8 MJ laser energy and

500 TW power of 3ω light on target, and has performed experiments with 1.9 MJ at peak powers of

410 TW [Moses, 2009]. In addition to this impressive success, the National Ignition Campaign (NIC)

on the NIF has allowed to achieve the world record indirect-drive neutron yield of 6.1 1015 neutrons

representing a gain G of few % during one indirect-implosion [Hurricane O. A. et al., 2014]. Even

if the primary break-even goal (G > 1) has not been achieved yet, the NIC allowed to obtain new

experimental results and code developments, generating a large body of knowledge and corrections of

the previous models. In France, the Laser MegaJoule (LMJ) is under construction near Bordeaux at

the Cesta center of the ”Commissariat à l’Energie Atomique et aux Energies Alternatives” (CEA).

The project implies a construction of 176 laser beam lines (instead of 240 at the beginning) delivering

more than 1 MJ to a DT target using, as the NIF, the indirect drive method. The first laser shots with

8 beam lines were successfully delivered in the end of 2014. The laser lines of LMJ will be assembled

in quads of four beams. Each quad will deliver more than 30 kJ of energy within a few ns. Direct drive

ICF has been studied with smaller pellets at sub-ignition scale for many years, in particular, at the

University of Rochester (USA), on the Omega laser (60 beams delivering a total of 30 kJ on target)

and at the University of Osaka (Japan), on the Gekko laser (12 beams delivering 15 kJ on target).

0.2.2 Problems facing the ICF Conventional Schemes

The conventional schemes rely on the ignition of an isobaric hotspot where the DT fuel must reach

a temperature of T ≈ 7 keV and an areal density of ρR ≈ 0.25 g.cm−2 during a confinement time

of τc ≈ 40 ps. In order to achieve this extreme conditions, many ns laser pulses representing a total

energy of EL ≈ 1 MJ are needed to uniformly irradiate the solid shell. From irradiation by laser pulses

(direct approach) or x-rays (indirect approach), the outer shell layers are ablated and the resulting

laser-generated plasma expands. The time evolution of the laser pulses is chosen according to the

Nuckolls-Kidder law such that the ablation pressure launches a spherically converging shock wave

Page 30



CHAPTER 0. INTRODUCTION

Figure 5: Fuel configuration at ignition for the conventional scheme a), the fast ignition scheme b)
and the shock ignition scheme c) [Atzeni, 2009]

followed by a continuous succession of spherically converging compressional waves, which arrive at the

same time on the internal surface of the shell. At that moment, a shock wave is transmitted in the DT

gas, while a rarefaction wave is reflected in the shell. When the latter arrives at the ablation surface,

the shell undergoes a strong acceleration and the capsule implodes. Due to its spherical symmetry, the

DT fuel in the shell is compressed to the desired density. A conversion of the imploded target’s kinetic

energy into internal energy results in the creation of an isobaric hotspot, where a self-sustained reaction

of Deuterium and Tritium fusion is initiated. The fusion reactions generate a spherically diverging

thermonuclear combustion wave followed by a detonation, which burns the denser part of the shell.

The confinement time τc corresponds to the hotspot lifetime before its hydrodynamic expansion.

Thus, the simultaneous compression and heating processes of the fuel impose several constraints

on the target and driver designs which make it difficult to obtain significant energy gains. These

constraints are multifactorial. Firstly, parametric instabilities may reduce the conversion efficiency of

laser energy deposited in the target and create the pressure inhomogeneities. Secondly, the generation

of fast electrons due to laser-plasma interaction processes results in the target preheat, which leads

to the increase of the target entropy and limits the shell compression. Finally, the hydrodynamic

instabilities may mix the hot and cold fuel and can break the shell during its implosion.

0.2.3 Fast Ignition and Shock Ignition Alternative Schemes

Since the discovery of the Chirped Pulse Amplification (CPA) by [Strickland and Mourou, 1985], short

pulse laser technology has grown steadily. In the 1990’s, the threshold intensity value of 1018 W.cm−2

has been attained, allowing to reach the relativistic laser-matter interaction regime where high currents

of relativistic electrons can be generated. In order to relax the constraints on the driver and the target
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Figure 6: Schematic of cone-guided fast igntion (a) and photograph of cone-attached shell target
used for integrated experiments on OMEGA (b). [Norreys et al., 2014]

imposed by the simultaneous compressing and heating processes, it was thus proposed to separate

the target compression and fuel heating phases. In this scheme, the shell is imploded at a lower

velocity in a more stable regime. The ignition is achieved by using such a relativistic laser pulse

generating a fast electron beam, which creates a hot spot in the dense part of the fuel just after the

end of the compression phase at the capsule stagnation [Tabak et al., 1994]. In this fast ignition

scenario, the required density is much smaller (300 g.cm−3 instead of 1000 g.cm−3) due to the fact

that the hot spot is not created anymore in the center of the target but in the lateral denser region

due to the heating by the fast electrons, as shown in Figure 5. Thus, the constraints on the shock

wave convergence and on the implosion symmetry are reduced. Furthermore, the compression phase

needs much less energy (200 − 300 kJ) than in the conventional scheme and the compression driver

cost is consequently lower. This is definitely an advantage for a future fusion power plant. The

shell implosion velocity is also much smaller than in the conventional scenario. This allows a greater

tolerance concerning the hydrodynamic instabilities and a lower risk of breaking the shell. Moreover,

a laser-produced relativistic electron beam may provide a more efficient heating of the dense material

and one may expect much higher gains than in the conventional scenario. Finally, the fast ignition

has the advantage of creating a much denser isochoric hot spot due to the fact that the heating time

by the fast electrons is much less than the hot spot hydrodynamic expansion time.

However, the fast ignition opens new problems to resolve. Due to the fact that the Ultra-High

Intense (UHI) laser pulse cannot propagate beyond the critical density nc of the plasma, there is a

problem to transport the electron beam to the dense fuel. Moreover, it has been demonstrated that

the generated relativistic electron beam is divergent and cannot deliver the energy into a sufficiently

small hot spot. Two approaches have been proposed to compensate the beam divergence. First, one

may use a first ultra intense laser pulse to create a channel through the process of hole boring letting

a second UHI laser pulse to generate the ignitor electron beam as close as possible to the dense area.

However, an efficient hole boring was not demonstrated so far. Another approach relies on a cone

inserted in the target as shown in Figure 6. It allows to reduce the distance to ≈ 100µm between
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the electron beam generation zone and the dense part of the fuel. The parameters required to reach

ignition have been estimated thanks to hydrodynamic simulations assuming the fast electron beam

energy being deposited in a spherical zone of a compressed fuel [Atzeni, 1999]

Eign = 18

(
ρ

300 g.cm−2

)−1.85

kJ,

τign = 21

(
ρ

300 g.cm−2

)−0.85

ps and

rign = 20

(
ρ

300 g.cm−2

)−0.97

µm.

(3)

It was found that, assuming a fuel density ρ = 300 g.cm−3, one needs to deposit the energy of

Eign ≈ 18 kJ during the time τign ≈ 21 ps in a sphere of the radius rign ≈ 20µm. This corresponds

to a hot spot areal density of ρR = 0.6 g.cm−3. According to numerical simulations, the optimal

ignitor energy and pulse duration scale with the density as Eign ∝ ρ−1.85 and τign ∝ ρ−0.85, while

optimal beam radius of the resulting accelerated electrons scales with the density as rign ∝ ρ−0.97.

The electrons having a stopping length of 40µm can be generated by a laser pulse with an intensity

of [Atzeni et al., 2009b]

Iign =
6.8 1019

ηL→e

(
ρ

300 g.cm−2

)0.95

W.cm−2 (4)

where ηL→e is the laser-to-electron beam conversion efficiency.

Experiments conducted on the Gekko-XII ns laser system coupled with a PW laser beam at the

Institute of Laser Engineering of the Osaka University in Japan has already demonstrated a significant

increase in the number of neutrons released by the fusion reactions compared to the direct scheme

scenario [Kodama R. et al., 2001] [Kodama R. et al., 2002]. In another experiment conducted in 2010

on the Gekko XII laser coupled with the new LFEX PW laser (that can deliver an energy up to 10 kJ

in a 0.5−20 ps pulse), the neutron enhancement was confirmed. However, a relatively modest neutron

yield of 3.5 107 has been obtained with a short pulse laser energy of 300 J on the target, which is

smaller than the yield obtained in 2002 [Shiraga et al., 2011]. Some sub-ignition scale Fast-ignition

experiments were also performed on the OMEGA/OMEGA EP laser at the University of Rochester

in the USA. With optimal timing, the OMEGA EP pulse produced up to 1.4 107 additional neutrons,

which is a factor of ≈ 4 more than without short-pulse heating [Theobald et al., 2011]. One quad

of NIF beams is undergoing conversion to high-intensity picosecond-duration pulses to provide an

Advanced Radiographic Capability (ARC). These beams will deliver up to 10 kJ in a 5 ps pulse that

can be used as a sub-scale ignitor pulse to study fast electron core heating in integrated fast ignition

experiments. In France, the PETAl project consists in coupling the LMJ facility to a PW laser with

an energy of 3.5 kJ and a pulse duration of 0.5-5 ps.

Another method to separate the assembly and ignition phases of the DT fuel is Shock Ignition.

It consists in igniting a central hot spot (see Figure 5) heated by the ignitor shock generated by an
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Figure 7: Laser pulses shape for schock ignition : (1) corresponds to the Nuckolls-Kidder law for the
compression phase and (2) is the ignitor pulse (left) and the corresponding logarithmic
pressure gradients in the target versus space and time (right) [Ribeyre et al., 2009]

ablation pressure of 300 Mbar at the end of compression phase. It increases its strength as it converges

in the imploding shell and collides with the return shock [Zhou and Betti, 2005] [Betti et al., 2007].

Massive cryogenic shells at a low implosion velocity and a low adiabat can be used in this shock

ignition scheme leading to fuel assemblies with large areal densities. The igniting shock creates the

hot-spot pressure greater than the surrounding dense fuel pressure. Such a nonisobaric assembly

features a lower energy threshold for ignition than the conventional isobaric one. The ignitor shock

can be launched by a spike in the laser power which is compatible with the performance of NIF and

LMJ. The thermonuclear gain can be significantly larger than in the conventional isobaric ignition for

an equal driver energy. Compared with fast ignition, shock ignition presents the advantages that it

does not require any complex cone-in-a-shell targets or high power lasers. Also, the physics at work

in this scheme is standard laser driven hydrodynamics, a relatively well-known and proven discipline.

Yet the latter observation must be mitigated considering the failure of the NIC. Besides, as it involves

low velocity implosions, this scheme is relatively robust with regards to hydrodynamic instabilities

during the shell acceleration and it mitigates the Rayleigh–Taylor instability at the stagnation time.

The required power for a 300 Mbar shock delivery corresponds to a 120-200 TW final spike, the actual

value depending on the ablator material and focal spot dimensions, independently of the irradiation

pattern. This power is an order of magnitude lower than the power required by fast ignition and

it is achievable with the NIF-LMJ technology. Nevertheless, the coupling of this final pulse to the

target presents several unsolved issues such as parametric instabilities, hydrodynamic instabilities or

the role of the fast electrons generation in the ignitor shock creation. An ignitor shock generated by

an ablation pressure close to the required 300 Mbar has been achieved recently in Omega experiments

with ≈ 500µm − diameter solid plastic ball targets and a laser spike of 4 1015 W.cm−2 laser pulse
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[Theobald et al., 2013].

0.3 Fast Electron Generation in the context of ICF

0.3.1 Role of Fast Electrons in the Shock Ignition Scheme

Figure 8: Schematic view of the laser-shell interaction

In the non relativistic regime of laser-plasma interaction where ILλ
2 � 1018 W.cm−2.µm2 (with

IL being the laser pulse intensity and λ its wavelength), the material is ionized by the laser electric

field during the first ps of the Laser-Solid-Interaction (LSI) [Keldysh, 1965]. This quasi-instantaneous

multi-photon absorption process takes place for laser intensity above IL ≈ 1011 W.cm−2. Due to their

low inertia, the electrons rapidly gain a kinetic energy from the laser in collisions with atoms and

ions. The laser energy transfer to the ions is done indirectly through the energy exchange in collisions

with electrons. While the heated plasma consequently expands, the laser pulse cannot penetrate the

plasma where the electron density ne is above the value of nc ≈ 1021 cm−3/λ[µm]2 called the critical

density. Indeed, in this denser part of the plasma, the Langmuir frequency ωpe =
√

4πnee2/me, at

which the electrons oscillate, is greater than the laser frequency ω = 2πc/λ so that the laser field is

screened. Thus, a part of the laser energy is absorded in the sub-critical region and another part is

reflected. The denser part where ne ≥ nc is heated by the electron thermal conduction lauched from

the absorption zone, that is to say, by the collisions of hotter electrons with cooler ones. The electron

heat conduction transports the absorbed energy to the ablation front where it is transformed into the

energy of vapors. The reaction of ejected vapors creates the ablation pressure which is responsible

for the rocket effect and the launching of shock/compression waves depending on the laser intensity

temporal profile.

Concerning the Shock Ignition scheme, at the moment of the laser peak, the absorption zone called

corona has a larger scale and a higher temperature than in the conventional ICF designs. This changes
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considerably the conditions of exciting the parametric instabilities. As the laser intensity is higher

than in the conventional schemes, more absorbed energy is transported by hot electrons which can

reach kinetic energies up to several 10th keV as pointed out by [Klimo et al., 2010] according to kinetic

simulations. Thus, one of the main issues of Shock Ignition concerns the transport of hot electrons.

At the moment of the ignition spike’s arrival, the shell is already compressed, its radius is reduced by

a factor of 2-3 and its areal density is increased by a factor of ten or twenty approaching a level of

about 10 mg.cm−2. This value is comparable to the range of a 100 keV electron. For this reason, the

hot electrons generated in the corona with lower energies than 100 keV may not present a danger for

the fuel compression contrary to the conventional scenario [Ribeyre et al., 2009]. Depending on their

characteristics (kinetic energy spectrum and number) as well on the target hydrodynamic properties

(density gradient and density value) at the moment of the spike arrival, the hot electrons may play an

important role in the creation of the ablation pressure ≈ 300 Mbar required for launching the ignitor

shock. Also, the electron transport may affect the implosion symmetry because of a large distance

between the zone of electron generation in the underdense corona and the ablation surface. The hot

electrons may smooth out the small scale inhomogeneities improving consequently the shell stability

and suppressing the fuel mix with the hot-spot material at the internal surface of the shell. All these

observations about the role of the fast electrons in the shock ignition scheme need further experimental

as well as numerical studies.

0.3.2 Fast Electron Beam Divergence in the context of Fast Ignition

Figure 9: Schematic of the transport of laser-driven fast electrons in a dense plasma
[Gremillet et al., 2002]

Interaction of Ultra-High Intensity (UHI) laser pulses, ILλ
2 > 1018 W.cm−2.µm2, with solid tar-

gets leads to a forward acceleration of electrons up to several MeV [Beg et al., 1997]. Such a relativistic

electron beam of a density nb and a current density jb, propagating through a plasma or a solid having

an electron density ne � nb, generates an electric field, which tends to eject the plasma electrons
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out of the beam volume in order to equilibrate the total charge. The charge neutralisation proceeds

on a timescale of the order of the plasma electron-ion collision time [Hammer and Rostoker, 1970] or

the Coulomb explosion time [Cox and Bennett, 1970], depending on the plasma temperature-density

conditions. Over the same timescale, the electric field accelerates the plasma electrons thus cre-

ating a return current je ≈ −jb, and decelerates the beam electrons in order to cancel the total

current density in agreement with Lenz’s law [Hammer and Rostoker, 1970]. In case of irradiation of

an insulator by a UHI laser pulse, the laser-generated electron beam is electrostatically neutralized

[Debayle and Tikhonchuk, 2007]. Electrons of the material are firstly ionized at the beam front by the

charge-space electrostatic field generated by the fast escaping electrons. Then, they are accelerated

by this electrostatic field thus creating a current density je ≈ −jb. This ”return current”, ionizing

the material through collisions with the bound electrons of the material, leads to the electric neu-

tralization of the fast electron beam. In both cases, metal/plasma or insulator, the return current

allows for the propagation of electron currents in excess of the Alfven-Lawson limit which defines the

maximum relativistic electron beam current in vacuum [Alfvén, 1939]. However, due to the imperfect

current neutralization, a magnetic field is induced that can deflect the beam electrons. The plasma

electron temperature-density crossed gradients, plasma resistivity gradients and the beam current

density curl are the main sources of this residual magnetic field. Later, this magnetic field begins to

diffuse leading to a separation of the beam and the return current [Lee and Sudan, 1971]. Besides,

the resulting system of two counterpropagating high currents is very unstable and may lead to the

electron beam resistive filamention [Bret et al., 2010b]. The collisions of the relativistic electrons with

plasma electrons and ions also contribute to the scattering and the slowing down of the beam.

The experimental studies of fast electron generation by a UHI laser pulse have shown a significant

beam divergence angle [Green et al., 2008]. Concerning the Fast Ignition scheme, this strong diver-

gence strongly limits the estimates (3) of energy deposition in the hot spot [Bellei et al., 2013]. Several

methods have been proposed to collimate the electron beam. It has been noticed that the plasma re-

sistivity gradients naturally induced in the heated material by the electron beam can collimate the

beam [Bell and Kingham, 2003]. This self-collimation, however, is not sufficient for the beam guiding

because of the radial dependence of the divergence angle [Debayle et al., 2010]. It was also proposed

to guide a relativistic electron beam in a magnetic channel created by a relativistically intense, picosec-

ond laser prepulse followed by the main pulse [Robinson et al., 2008] [Scott et al., 2012]. The prepulse

serves to create such a collimating magnetic field structure due to the laser-produced electron beam

propagation. This magnetic channel then helps guide the fast-electron beam generated by the second

pulse. Other methods consist in using targets containing a high-resistivity-core-low-resistivity-cladding

structure or a low-density-core-high-density-cladding structure. These field structures can be gener-

ated during the beam transport, hence enabling the beam to self-collimate [Cai et al., 2011]. In the

high-resistivity-core-low-resistivity-cladding targets, the magnetic field at the interfaces is generated by

the resistivity gradients and the fast electron current, while in low-density-core-high-density-cladding

targets, the magnetic field is generated by a rapid change of the flow velocity of the background elec-
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trons in the transverse direction (perpendicular to the flow velocity) caused by the density jump. A

similar idea, based on a more complex array of resistivity gradients consisting of alternating layers of

different Z materials have also been proposed [Robinson et al., 2012] [Schmitz et al., 2012a]. Adapted

to the Fast Ignition cone-in-shell target, this ”elliptical mirror” may improve the coupling efficiency

into the hot spot by a factor of 3-4 [Robinson and Schmitz, 2013]. Also, it has been shown that a

target composed of resistive filaments with a decreasing background density, adiabatically converts

the beam transverse energy into longitudinal energy [Debayle et al., 2013]. Another possibility is to

apply an external magnetic field parallel to the beam direction in the fuel [Strozzi et al., 2012]. With

a field strength exceeding 2 kT, relativistic electrons are trapped by the magnetic field lines and the

lateral transport of these electrons is strongly suppressed. In the paper by [Daido et al., 1986], it has

been demonstated that kilotesla magnetic fields can be generated by using a capacitor-coil target.

More recently, a magnetic field of 1.5 kT was generated [Fujioka S. et al., 2013]. Extended double

cones have also been proposed to confine the fast electrons escaping from the cone by electrostatic and

magnetic fields formed in the vacuum gap region of several micrometres width between the two walls

[Johzaki et al., 2011]. It has been shown through numerical simulations of electron transport that an

extended double cone may enhance the core heating rate by more than a factor four compared to single

cones, under otherwise similar conditions. However, despite these progresses in the understanding of

relativistic electron beam transport, there is still a need of further numerical and experimental studies.

0.3.3 Existing Simulation Methods for Fast Electron Transport

Modeling

The equation which takes into account both the collisional and collective processes of fast electron

transport in the context of shock and fast ignition is the Vlasov-Fokker-Planck (V-F-P) equation for

the beam distribution function fb [Landau and Lifshitz, 1981]. Due to the complexity of fast elec-

tron transport imposed by the coupling of the VFP equation with the Maxwell equations and the

temperature-dependence of the transport coefficients, numerical tools are needed for preparation and

interpretation of experiments. This system of equations has been extensively studied for 30 years and

several numerical methods have been developed [Thomas et al., 2012]. Several families of codes can be

identified. The first family consists in solving the V-F-P equation by a Particle-In-Cell (PIC) method

[Birdsall and Fuss, 1969] and by interpolating the resulting macroparticle positions and velocities to

compute the electromagnetic fields. Historically, this method was used to solve physical problems

where collisional processes can be neglected. All electrons (both plasma and beam electrons) are

sampled by macroparticles which consequently leads to accurate but time-consuming computations.

Moreover, in order to limit the non-conservative force associated with the particle-grid mapping which

leads to self-heating and numerical instabilities, the space resolution has to be comparable to the Debye

screening length. This poses a strong constraint in the case of dense and/or cold plasmas. Collisional
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processes are usually treated by Monte-Carlo methods [Takizuka and Abe, 1977]. The second family

of codes employs the same method but restricted to the beam electrons, introducing a low-energy cut

off [Gremillet et al., 2002]. The plasma electrons are taken into account via hydrodynamic equations

of conservation or simplified ones. This approach belongs to the family of hybrid PIC codes. Other

authors solve the full V-F-P equation [Yokota et al., 2006] [Duclous et al., 2009] or use a decomposi-

tion of the distribution function in the momentum space with their corresponding hybrid versions. It

has been shown that a spherical harmonic decomposition of the distribution function enables modeling

of arbitrary local anisotropy for large enough expansion orders [Tzoufras et al., 2011]. Besides their

accuracy and the rapid progress in high performance computing resources, all these codes are time

consuming because of the Courant-Friedrichs-Lewy condition that restricts the time step computation

(a fraction of a plasma period) combined with the high resolution needed (a fraction of the Debye

length), the large number of the distribution function variables (x, y, z, vx, vy, vz, t) and the large

spatial (of the order of mm) and temporal (tens of ps) scales needed to study fast electrons transport

in the context of the fast or shock ignition of fusion pellets.

0.4 Objectives of the thesis and Plan of the Manuscript

The goal of this PhD thesis consists in developing a new reduced 3D-3V hybrid relativistic Vlasov-

Fokker-Planck model, which must be as accurate and time efficient as possible for the study of fast

electron transport in solids and dense plasmas in the context of ICF. Firstly, the model will be

applied to interprete experiments of laser-generated fast electron transport in solids or dense plasmas.

Secondly, the model will allow us to study the collimation methods for laser-generated electron beams

in a fusion pellet. Thirdly, the model will be coupled with a hydrodynamic code for studying of the

role of fast electrons in the shock ignition scheme.

In the first part of this manuscript, the state of the art of this problematic is presented:

� Chapter 1 reviews the physics of laser-plasma interaction and the main electron acceleration

mechanisms relevant to the Shock and Fast Ignition. We also estimate the laser-to-electron

coupling efficiency as well as the spatial, energetic and angular properties of laser-generated fast

electron beam.

� Chapter 2 is dedicated to the electromagnetic neutralization of laser-generated relativistic elec-

tron beam. Self-consistent electromagnetic fields of a relativistic electron beam propagating

through vacuum are derived in order to highlight the need of its electromagnetic neutralization

allowing it to overpass the Alfven-Lawson limit. The electric and magnetic neutralization of fast

electron beams are presented separately, showing the main differences between metal/plasma or

insulator targets.
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� Chapter 3 focuses on the collective effects of electromagnetically neutralized fast electron beam

transport. The quasi-static approximation in the Maxwell equations is introduced as well as the

instability theory of two counterpropagating currents and the temperature dependance of fast

electron beam transport. These collective effects play an important role in the Fast Ignition

scheme since the proposed collimation techniques are based on the self-generated electromagnetic

field.

� Chapter 4 deals with the collisional effects of fast electron beam transport. The slowing down

and scattering of fast electrons from collisions with free electrons, bound electrons and screened

free electrons is detailed as well as their angular scattering from collisions with background ions

and electrons. These effects play an important role in the Fast Ignition scheme since they are

responsible for the fuel heating and the pellet ignition. Finally, we present the relativistic Vlasov-

Fokker-Planck (VFP) equation based on the Belyaev-Budker small-angle collision tensor. This

equation describes both the collective and collisional processes ruling fast electron transport.

� Chapter 5 presents the numerical methods used to solve the relativistic V-F-P equation. Often,

these codes are based on the ”hybrid assumption”, that is to say, they solve the V-F-P equation

only for the high-energy component of the electron population. The dynamics of background

particles is computed according to hydrodynamic equations or simplified ones. A comparison

between the PIC method, the full ”Vlasov-Fokker-Planck” method and other methods, based on

the decomposition of the distribution function, is presented. Most of V-F-P (full or expanded)

models do not use the Belyaev-Budker collision tensor but a Landau-like relativistic collision op-

erator. Moreover, except for the relativistic V-F-P code of [Yokota et al., 2006], the dependence

of Coulomb logarithms on the relativistic mass γme is often neglected.

In the second part of the manuscript, a new fast electron model is presented including. Its numerical

implementation and its validation are also presented:

� In Chapter 6, the Landau-like relativistic collision operator mentioned above is derived from the

Belyaev-Budker collision operator in the context of relativistic electron beam transport. It allows

us to derive an expression for the relativistic Coulomb logarithm, starting from the fast electron

stopping power term, in the V-F-P equation. It thus relates naturally the fast electron angular

scattering rate due to the collisions with free, bound and screened free background electrons with

the corresponding stopping powers. According to Chapter 5, the best compromise between the

accuracy and the numerical cost can be obtained with hybrid and expanded relativistic V-F-P

methods. As a consequence, the model developed in this PhD thesis consists in solving the two

first angular moments of the V-F-P equation in order to make computations as fast as possible.

Besides, truncating the distribution function expansion at the first angular harmonic may lead

to non-physical results in a case of strong anisotropy. Consequently, a special closure relation

based on the Minerbo approach of a maximum angular entropy [Minerbo, 1977] [Minerbo, 1978],
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developed for the radiative transfer theory, is adapted here to the fast electron transport. It

allows us to close the set of equations by evaluating the 2nd order angular moment of the

distribution function needed in the 1st order angular moment equation. Contrary to the largely

used approximation of the distribution function with one Legendre polynomial often called P1,

this M1 model allows to describe the distribution function with an arbitrary local anisotropy.

It is shown that the model is exact in the limits of fully isotropic and fully anisotropic local

angular distribution functions. As the laser-generated relativistic electron beams may have a

wide energy spectrum and an arbitrary angular distribution functions, the equation of the local

angular entropy is derived and the limitations of the model model are discussed. Developments

of new plasma transport coefficients necessary to model the self-generated electromagnetic fields

are also proposed.

� Chapter 7 is dedicated to the numerical tools developed to solve the equations of the model.

A key point is the use of a numerical model developed previously for the radiative transfer

equations which ensure that the 0th order angular moment stays positive and that the 1st order

angular moment stays smaller than the 0th order one for all electron energies, times and space

locations.

� Chapter 8 presents a simple academic test case of fast electron transport in a warm and dense

Hydrogen plasma, allowing us to present the major features of the model. Analytical expres-

sions are also derived to check the numerical schemes. Then, a comparison with a hybrid PIC

simulation is presented to validate the model. It deals with a realistic laser-produced fast elec-

tron beam deduced from the PIC simulation of an experiment conducted on the UHI100 laser

facility of the CEA (Saclay).

The third part of the manuscript is dedicated to applications of the model in the context of ICF:

� Chapter 9 is dedicated to studies of the Kα emission induced in a plasma or in a solid by the

fast electron transport. The theory of Kα emission is presented and the simulation results are

compared to experimental data. It is shown that 3-dimentional effects as well as the photoion-

ization process assuming the specular reflexion of fast electrons at the solid target edges are not

sufficient to recover the results obtained experimentally.

� Chapter 10 presents two applications of the model concerning the generation of shock waves by

the fast electron energy deposition. The first one deals with the same experimental campaign

considered in two previous chapters. It is shown that, in agreement with the target temperature

evaluated with the M1 model, a UHI laser pulse with the energy less than 1 J can heat a

solid target and generate temperature gradients that drive a blast wave of ≈ 50 Mbar. A

theoretical model of such a blast wave generation and transport is proposed and compared with

the experiment and hydrodynamic simulations. The second application concerns with the role
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of the fast electrons in the shock ignition scheme. The M1 model is coupled to the radiation

hydrodynamic code CHIC using a simplified numerical scheme. The simulation results are in

good agreement with theoretical predictions. It is shown that the hot electrons accelerated by

the ignitor laser spike can deposit a sufficient energy in the dense shell and generate a 300 Mbar

shock required to reach the ignition.

The original results obtained in this thesis are summarized in the Conclusion. Perspectives of this

present work are also proposed. Appendix A is dedicated to the classical plasma kinetic theory

while Appendix B presents the classical hydrodynamic theory. It introduces the non relativistic

kinetic approach as well as the Spitzer, Braginskii and Lee-More transport coefficients. The radiation

hydrodynamic monofluid and two-temperatures CHIC code is also presented.
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Chapter 1

Fast Electron Generation

”Philosophy is written in that great book which ever lies before our eyes — I mean the universe —

but we cannot understand it if we do not first learn the language and grasp the symbols, in which it is

written. This book is written in the mathematical language, and the symbols are triangles, circles and

other geometrical figures, without whose help it is impossible to comprehend a single word of it;

without which one wanders in vain through a dark labyrinth.”

Galileo Galilei
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1.1. LASER-SOLID INTERACTION AT HIGH INTENSITIES

In the non relativistic regime of laser-plasma Interaction (where ILλ
2 � 1018 W.cm−2.µm2 with

IL being the laser pulse intensity and λ its wavelength), the laser pulses may have temporal durations

from several tens of fs with an energy of several mJ to several ns with an energy of several kJ.

For long pulse durations like those used in the conventional ICF schemes, the material is ionized by

the laser electric field during the first ps of the Laser-Solid-Interaction (LSI) and heat the plasma.

While the heated plasma consequently expands, the laser pulse cannot penetrate the plasma where

the electron density ne is above the critical density nc ≈ 1021 cm−3/λ[µm]2. Concerning the Shock

Igntion scheme, at the moment of the laser spike’s arrival, the sub-critical zone has a larger scale

and a higher temperature than in the conventional scheme. This changes considerably the conditions

of laser-plasma interaction and it is expected that part of the laser energy is converted into fast

electrons. For short laser pulse durations, the plasma has no time to expand so that the laser pulse

interacts with a steep gradient density. Since the discovery of the Chirped Pulse Amplification (CPA)

by [Strickland and Mourou, 1985], short-pulse laser technology has grown steadily. In the 1990’s, the

threshold value of a laser intensities with ILλ
2 > 1018 W.cm−2.µm2 has been attained allowing to reach

the relativistic laser-matter interaction regime. However, the intense short laser pulse is preceded by a

lower intensity prepulse of several ps duration. Therefore, the plasma may have time to expand. The

relativistic laser plasma interaction leads to the generation of very energetic electrons. This chapter is

dedicated to the desciption of laser-plasma interaction in general and a special attention is devoted to

the different mechanisms responsible for fast electron generation in the context of conventional ICF,

shock ignition and fast ignition.

1.1 Laser-Solid Interaction at High Intensities

1.1.1 Collisional versus ”Collisionless” Absorption mechanisms

The laser pulse propagation is described by the equation for the electric field E obtained from the

Maxwell equations (
∂2

∂2r

)
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∂r

(
∂
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.E
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− 1

c2
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where je = −neeve is the plasma electron current density. The plasma response to electomagnetic

fields is described by the plasma electron hydrodynamic equations (see Appendix B, section B.1.2).

By neglecting the electron viscosity, the electron pressure, the magnetization effects and the thermal

force, these equations read
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where νei = ν0T
−3/2
e is the electron ion collision frequency with ν0 =

(1/3)
√

2/πZnee
4 ln Λei/(

√
me(kB)3/2), Z the mean ionization state of the material and κe = κ0T

5/2
e

with κ0 = 8(2/π)3/2k
7/2
B /m

1/2
e Ze4 ln Λei is the Spitzer-Härm transport coefficient (see Appendix B,

section B.2.2). In all what follows, we neglect the advection term of the temperature in the left

hand side of Equation (1.2 c).

Figure 1.1: Inverse bremsstrahlung absorption coefficient ηabs as a function of νcL/c according to
Equation (1.4) (left) and IL/I0 according to Equation (1.5) (right)

Let us firstly consider the case of a ω = 2πc/λ monochromatic laser pulse of linear polarization,

normally incident on a flat solid target (E = Eyey). We also assume the coronal plasma to be

quasi-neutral (ne = Zni), fully ionized with the exponential electron density profile ne = Zni =

nc exp [−(x− xc)/L] if x > xf and ne = Cte else such that νei < ω in all the absorption zone x > xc

as illustrated in Figure 8. By solving the linearized 1st order equations of {(1.1), (1.2)}, one finds

for the electric field at normal incidence

d2Êz
dx2

+
ω2

c2
ε(x, ω)Êz(x) = 0. (1.3)

Here, Ê is the time Fourier transform of the electric field and ε(x, ω) = 1 − ωp(x)2/ [ω (ω + iνei(x))]

is the coronal permitivity. According to the WKB approximation (from the names of its founders G.

Wentzel, H. A. Kramers and L. Brillouin), one can derive the laser energy absorption coefficient in

the corona [Dawson and Oberman, 1962] [Mora, 1982]

ηabs = 1 − exp

[
−2

∫ ∞
xc

νei(x)

c

ne(x)

nc

(
1− ne(x)

nc

)−1/2

dx

]
= 1 − exp

(
−8

3

Lνc
c

)
.

(1.4)

where νc = νei(xc). The calculation of Integral (1.4) shows that, typically in the conventional ICF

schemes, 50 % of the laser absorption takes place in the immediate vicinity of the critical density where
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the density is between 0.88nc and nc in the case of a low absorption (Lνc . c). In the opposite case

of an almost total absorption of the laser energy (Lνc � c), more energy is absorbed in the lower

density zone. According to the self-similar isothermal expansion, L scales with cSt ∝ T
1/2
e where

cS =
√
ZkBTe/mi is the sound velocity while νc ∝ ncT

−3/2
e . Thus, by equating the absorbed energy

flux ηabsIL to the energy flux necessary to maintain this self-similar isothermal expansion from the

critical density to the vacuum 4ncTecs, one finds that the temperature scales with the laser intensity

IL and the laser wavelength λ as Te ∝
(
ηabsILλ

2
)2/3

. By injecting this expression in (1.4), one obtains

[Mora, 1982]

ηabs = 1− exp

[
−
(

I0

ηabsIL

)2/3
]

(1.5)

where I0 = 4.8 1011 W.cm−2 (1.06µm/λ)5 (2Z/A)5/4 [Z (ln Λc/6) (t/100 ps)]3/2. This laser energy ab-

sorption mechanism called Inverse Bremsstrahlung Absorption (IBA) is the main absorption

mechanism for laser intensities below 1015 W.cm−2 used in the conventional ICF schemes. The im-

plicit Equation (1.5) can be solved numerically and the resulting IBA absorption coeeficient is plotted

in the right panel of Figure 1.1. ηabs decreases as the intensity increases and is larger for shorter

wavelengths.

Figure 1.2: (Left panel) Parameters domain in the (νei, ω) plane where occurs each absorp-
tion mechanism during the LSI with a laser pulse and a steep density gradi-
ent; α =

[
1 + (π/2)1/4

]
/2 ±

[
1− (π/2)1/4

]
/2 and β =

[
(1/2)1/3 + (π/2)1/6

]
/2 ±[

(1/2)1/3 − (π/2)1/6
]
/2); the signs ± come from the incertitudes on frontiers between

the different regimes, evaluated according to the conditions of validity of each mecha-
nism. (Right panel) Plot of the corresponding absorption coefficients as a function of
the laser pulse intensity IL evaluated for Copper with λ = 1µm at t = 10 fs and t = 1
ps after the beginning of the LSI according to Equations (1.9), (1.10),(1.11) and (1.12)
(right)

For laser pulse duration ∆tFWHM shorter than used in conventional ICF schemes such as

L/cs � ∆tFWHM, the laser-ionized plasma has no time to expand hydrodynamically. Let us as-
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sume so that the laser pulse at normal incidence interacts directly with a solid steep density gradient

(L → 0). In this case, the resolution of {(1.1), (1.2)} shows that the laser pulse penetrates the solid

over a skin-depth Ls ≈ c/ωpe while a stationary wave consisting in the incident laser pulse and the

reflected parts is formed, standing in vacuum. For high electron temperatures and high laser frequen-

cies, the previous model developed for large density gradients can be extended by taking the limit

L → 0 and then by replacing L by the penetration depth Ls in (1.4). This laser energy absorption

mechanism is called Collisional Absorption (CA). For lower laser frequencies and colder and/or

denser solids, the electron collision frequency becomes larger than the laser frequency. In this case,

well-known in metal optics, this is the Normal Skin Effect (NSE) which is responsible for the

laser absorption in the skin-depth. This is what happens for example when a light is reflected by a

mirror. These two collisional absorption mechanisms are valid only if the electron mean free path

vTh,e/νei and the mean distance travelled by electrons during one laser period vThe/ω are smaller

than the skin-depth Ls where vTh,e =
√
kBTe/me is the electron thermal velocity. With increasing

laser intensities and electron temperatures, ”collisionless” absorption mechanisms become dominant.

Two ”collisionless” mechanisms have been firstly identified : the Sheath Inverse Bremsstrahlung

(SIB) [Catto and More, 1977] and the Anormal Skin Effect (ASE) [Weibel, 1967a]. It has been

demonstrated later that they are in fact two limits of the same ”collisionless” absorption mechanism

[Yang et al., 1995]. Usually discussed separately, the absorption coefficients for these four mechanisms

can be derived within a common theory by linearizing Equation (1.1) coupled with the classical kinetic

equation expressed within the BGK approximation (for the name of its founders P. L. Bhatnagar, E.P.

Gross and M. Krook, see Appendix A, section A.3.1)
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where ν is the effective electron collision frequency. The results obtained by [Rozmus et al., 1996],

according to this method, are summarized in the following table where the mean effective collision

frequency ν has been evaluated by νei for simplicity.
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The domains in the plane (ωpe, νei), where each absorption mechanism occurs, are shown in the

left panel of Figure 1.2. These absorption mechanisms lead to the target isochoric heating over

the skin-depth Ls. In order to evaluate the absorption coefficient, one has first to relate the electron
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temperature and the laser intensity according to Equation (1.2 c). At the LSI interface, the energy flux

conservation −κe(∂Te)/∂x) = ηabsIL imposes the boundary condition and ensures a unique solution.

By assuming a square temporal laser pulse shape and that the absorption coefficient ηabs depends on

the electron temperature, one can find a self-similar solution of the heat equation (1.2 c) with the

form Te(x, t) = T0τ
2/9F (ζ) [Zel’dovich and Raizer, 1966], where ζ = ξ/τ7/9, ξ = x/v0t0, τ = t/t0,

T0 = mev
2
0/kB, t0 = (2κ0/3ne)(me/kb)

5/2v3
0, v0 = (2ηabsIL/3neme)

1/3 and

d

dζ

(
F 5/2dF

dζ

)
− 2F

9
+

7ζ

9

dF

dζ
= 0. (1.7)

This equation can be solved numerically, giving an expression for the temperature at the LSI interface

[Gibbon, 2005]

TI = Te(x = 0, t) = 250
( ni

1023 cm−3

)−2/9
(

ηabsIL

1015 W.cm−2

)4/9( t

100 fs

)2/9

eV (1.8)

where ni is the initial atomic density. This expression is implicit since the absorption coefficient

depends on the temperature. However, by injecting this expression in the absorption coefficients, one

can deduce the explicit expressions of the absorption coefficient for the CA, the NSE, the ASE and

the SBI mechanisms assuming for simplicity ln Λei = 4. It reads respectively

ηabs = 2.64 10−2Z

9

10
( ni

1023 cm−3

) 1

10
(

IL

1015 W.cm−2

)−2

5
(

t

100 fs

)−1

5 , (1.9)

ηabs = 7.79 10−2

(
λ

1µm

)−3

8Z

3

8
( ni

1023 cm−3

)1

8
(

IL

1015 W.cm−2

)−1

4
(

t

100 fs

)−1

8 , (1.10)

ηabs = 8.00 10−2

(
λ

1µm

)−18

25Z
−

9

25
( ni

1023 cm−3

)− 9

25
(

IL

1015 W.cm−2

) 2

25
(

t

100 fs

) 1

25 (1.11)

and ηabs = 4.14 10−2

(
λ

1µm

)−6

5Z

3

5
( ni

1023 cm−3

)2

5
(

IL

1015 W.cm−2

)2

5
(

t

100 fs

)1

5 . (1.12)

Even if the temperature dependence of the electron collision frequency νei = ν0T
−3/2
e and the thermal

electron velocity vth,e =
√
kBTe/me has not been taken into account in Equation (1.8), these results

are in good agreement with the more rigorous calculations of NSE and ASE absorption coeeficients

found by [Rozmus and Tikhonchuk, 1990]. It must be emphasized that collisions play an important

role in the ASE and SBI mechanisms. The term ”collisionless” comes from the fact that the electron

collision frequency νei does not appear explicitly in the absorption coefficient ηabs, but the electrons

escaping the skin layer are thermalized in the bulk target.
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1.1.2 Resonant Absorption

Let us consider now a laser pulse interacting with a large scale density gradient at an incidence angle θ

with respect to the target normal direction ex (see Figure 8) such that the wave vector has the form

k = |k| (cos θex + sin θey). If the laser pulse is s-polarized i.e. if
̂̂
E = Ez(x) exp (iky sin θ)ez where the

double hat ̂̂means that we have also performed the y-Fourier transform of the electric field, one gets

d2 ̂̂Ez
dx2

+

[
ω2

c2
ε(x, ω)− sin2 θ

] ̂̂
Ez(x) = 0 (1.13)

instead of Equation (1.3). According to the WKB approximation, the absorption coefficient can be

estimated. It reads

ηabs = 1− exp

(
−8

3

Lνc cos3 θ

c

)
. (1.14)

Thus, the turning point in the oblique incidence case, i.e., the position where the laser pulse is reflected

is no longer at the critical surface xc but at the position where the density ne = nc cos2 θ. In the case

where the laser pulse is p-polarized with the laser electric field in the plane (x, y), it is more convenient

to work with the magnetic field. One gets

d2 ̂̂Bz

dx2
− 1

ε(x, ω)

dε

dx

d
̂̂
Bz

dx
+
ω2

c2

[
ε(x, ω)− sin2 θ

] ̂̂
Bz(x) = 0 (1.15)

while the electric field can be found from the Maxwell-Ampere law :
̂̂
Ex = −c sin θ

̂̂
Bz/ε and̂̂

Ey = −i(c2/ωε)d
̂̂
Bz/dx. Starting from Equation (1.15), it has been shown that the plasma res-

onance may cause a significant laser energy absorption [Freidberg et al., 1972]. In addition to the

collisional absorption mechanism taken into account in Equation (1.15), it describes another absorp-

tion mechanism which does not depend on the collision frequency νc but only on the incidence angle

θ, the laser frequency ω and the density gradient length L [Ginzburg, 1961]. The underlying physical

process is the conversion of the incident laser wave into the resonant plasma wave near the critical

density. [Ginzburg, 1961] provides the estimate of the absorption coefficient

ηabs ≈ 2.65

(
ωL

c

)2/3

sin2 θ exp

(
−4

3

ωL sin3 θ

c

)
. (1.16)

It means that, due to the presence of the longitudinal component of the electric field, electron

plasma waves can be excited near the critical density. Indeed, at the turning point where the real part

of the dielectric function vanishes, the magnetic field takes a finite value
̂̂
Bz0. It follows that

̂̂
Ex =

−c sin θ
̂̂
Bz0/ε becomes very large, which means that the incident electromagnetic wave resonantly

excites an electron plasma wave. A rigorous account for the collisional and/or thermal effects is

needed to describe the plasma wave structure. Indeed, the excited electron plasma oscillations are
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Figure 1.3: LSI resonant absorption scheme inspired by [Gibbon, 2005] (left) and resonant absorp-
tion coefficient of a p-polarized laser pulse ηabs as a function of the incidence angle θ
(right)

convected by thermal effects from the critical density zone to a lower density zone. They are absorbed

in the zone where the local wave vector |k| ≈ 0.3λ−1
Debye becomes comparable to the Debye screening

length λDebye =
√
kBTe/4πnee2 [Forslund et al., 1975]. As the amplitude of electron plasma waves is

sufficiently large, non-linear effects may become important leading to the density profile steepening

near the critical density. At the same time, plasma oscillations excited at the critical density transfer

their energy to energetic electrons. The resonant absorption may play an important role in the laser

absorption of ICF pellet in the Conventional and Shock Ignition schemes due to the spherical symetry

of the capsule. It strongly depends on the angle between the capsule normal and the incident laser

pulse as shown in Figure 1.3. Moreover, it can induce the density profile steepening and fast electrons

acceleration. The energy of fast electrons scales with the intensity as [Forslund et al., 1977]

Tfast e- ≈ 14

[(
Te

1 keV

)(
IL

1015 W.cm−2

)(
λ

1µm

)2
]1/3

keV. (1.17)

The resonant absorption can also occur in the case of a steep gradient density. In this case, the results

obtained in this section can be generalized by taking the limit of L→ 0.

1.1.3 Ponderomotive Force and Parametric Instabilities

The 1st order response of the plasma electrons in the sub-critical zone in the cold plasma approximation

(1.1) is given by

me
∂

∂t

(
δv(1)

e

)
= −eE (1.18)

where E = δE(1) is the laser electric field assumed here to be a 1st order term in the perturbation

expansion. The 1st order response consists in the plasma electron oscillations along the laser electric

Page 52



CHAPTER 1. FAST ELECTRON GENERATION

field direction at the laser frequency ω, which are screening the laser field over a distance of the order

of the skin depth Ls behind the critical surface. The 2nd order response of plasma electrons is given

by

me

[
∂

∂t

(
δv(2)

e

)
+

(
δv(1)

e .
∂

∂r

)(
δv(1)

e

)]
= −eδv

(1)
e

c
×B. (1.19)

Thus, by noticing that the curl of Equation (1.18) provides −(me/e) (∂/∂t)
[
(∂/∂r)× δv(1)

e

]
=

(∂/∂r)×E = −(1/c)(∂B/∂t) and consequently B = (mec/e)(∂/∂r)× δv(1)
e , one can write

me
∂

∂t

(
δv(2)

e

)
= −me(δv

(1)
e .

∂

∂r
)(δv(1)

e )−meδv
(1)
e ×

(
∂

∂r
× δv(1)

e

)
= − ∂

∂r

(
1

2
meδv

(1)
e

2
)
.

(1.20)

This non-linear force corresponds to the second order plasma response at the frequencies 0 and of 2ω.

The ponderomotive force is the average of this quantity over a laser period. From a particle point of

view, it can be seen as a pressure force exerted by the laser photons. For a monochromatic plane wave

linearly polarized propagating in the x-direction with E = E0(r, t) sin (ωt+ kx)ey where E0(r, t) is the

slowly varying laser electric field envelope, the laser intensity has the form IL(r, t) = cE0(r, t)2/8π. In

this case, the mean ponderomotive force over a laser period can be written

Fpond = − ∂

∂r
〈1
2
meδv

(1)
e

2〉 = − ∂

∂r
〈 e

2E2

2meω2
〉 = − 2πe2

ω2mec

∂

∂r
(IL) . (1.21)

In the local plane, the laser intensity profile can be taken to be IL(r, t) =

Imax exp
[
−4 ln 2(r/∆rFWHM)2

]
f(t) where r =

√
y2 + z2 and ∆rFWHM is the spatial Full Width Half

Maximum (FWHM) of the focal spot. Consequently, the ponderomotive force tends to eject plasma

electrons from the focal spot center where the laser intensity is highest, leading to the ion density

modification on the hydrodynamic time scale. Moreover, in the rising part of the laser pulse, the

ponderomotive force is directed along the laser propagation axis and tends to push the plasma inward

the target [Lee et al., 1977].

The three-wave parametric instabilities consist in a decomposition of the laser wave at ω into two

daughter waves ω1 and ω2 where ω1 > 0 and ω2 = ω − ω1 (Stokes configuration) or ω1 < 0 and ω2 =

ω − ω1 (anti-Stokes configuration). The Stokes decomposition is unstable and leads to an energy

transfer from the laser pulse into the two daughter waves. According to the hydrodynamic equations

(1.2), the laser electromagnetic waves scatters in the expanding corona (see Figure 8), off the density

perturbations due to the excitation of Electron Plasma Waves (EPWs) or Ion Acoustic Waves (IAWs)

at the frequency ω1. An electron current is generating the electromagnetic fields at the frequency ω2.

It will be resonant if it corresponds to the electromagnetic dispersion relation. Then, as illustrated

in Figure 1.4, this electromagnetic field perturbation coupled with the laser pulse electromagnetic

field drives a ponderomotive force which resonantly amplifies the density perturbation if ω1 = ω − ω2
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corresponds to the dispersion relation of the longitudinal plasma waves (EPWs or IAWs). These non-

linear processes are important because they can scatter the laser pulse and prevent it from reaching

the absorption zone. In addition, part of the laser energy is transferred to EPWs, which can then

transfer part of their energy into fast electrons. Also, the stimulated Brillouin scattering as well as

the stimulated Raman scattering can lead to an energy transfer into the Daughter Electromagnetic

Wave (DEW) propagating in the backward direction, which can destroy the laser optics.

Figure 1.4: Parametric instabilities scheme

There are four distinct three-wave processes. They are summarized in the following table.

Instability type Daughter 1 Daughter 2 Unstable zone

Acoustic Decay EPW ω1 ≈ ω IAW ω2 � ω ne ≈ nc
Stimulated Brillouin Scattering DEW ω1 ≈ ω IAW ω2 � ω ne ∈]0, nc]

Two-Plasmon-Decay EPW ω1 ≈ ω/2 EPW ω2 ≈ ω/2 ne = nc/4

Stimulated Raman Scattering DEW ω1 ≈ ω/2 EPW ω2 ≈ ω/2 ne ∈]0, nc/4]

Experiments on indirect or direct drive ICF have shown that several tens of per cent of laser en-

ergy can be reflected due to stimulated Raman and Brillouin scatterings while part of the scat-

tered light is absorbed in the corona thus modifying the absorption and accelerating fast electrons

[Ebrahim et al., 1980] [Lindl, 1995]. It is expected in the Shock Ignition scheme that the stimulated

Raman scattering plays an important role in the generation of energetic electrons [Klimo et al., 2010]

[Klimo et al., 2014].
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1.1.4 Simplified Scheme of Electron Acceleration by Landau Damp-

ing in strong Electron Plasma Waves

The resonant absorption of the laser pulse or parametric instabilities lead to the generation of strong

Electron Plasma Waves (EPWs) in the corona. The Landau damping of such EPWs may lead to

the acceleration of fast electrons. Instead of describing the Landau damping starting from classical

kinetic theory (see Appendix A) as it is done by [Villani, 2014], let us just consider the trapping of

one electron in one Fourier mode of such an electrostatic wave : E = E0 sin (ωt− kx)ex. The phase

velocity reads vϕ = ω/k = vTh,e
√

3 + (1/kλDebye)2 according to the wave dispersion relation, where

vTh,e =
√
kBTe/me is the electron thermal velocity. From the electron equation of motion in the wave

frame moving at the velocity vϕex, we can derive the energy conservation equation

me

2

(
dX

dt

)2

− eE0

k
cos (kX) = K (1.22)

where X is the electron position in the wave frame and K is the total energy. The electron tra-

Figure 1.5: Solutions of (1.22) plotted in the phase-space (V = dX/dt as a function of X) for K =
3eE0/k (1) and (6), K = eE0/mek (2) and (5), K = eE0/4mek (3), K = −0.92eE0/mek
(4).

jectories are uni-directional only if K > eE0/k (see curves 1 and 6 in Figure 1.5). In the case

where eE0/k > K > −eE0/k, the Equation (1.22) describes circling trajectories trapped in the wave

(see trajectories (3) and (4) in Figure 1.5). The particular case |K| = eE0/k corresponds to the

separatrix (see trajectories (2) and (5) in Figure 1.5) separating the passing and trapped particles.

This simple analysis shows that a strong EPW can trap and accelerate electrons to energies up to

K ≈ (γϕ − 1)mec
2 where γϕ = 1/

√
1− (vϕ/c)

2 written with the relativistic formalism here. In order

to give an order of magnitude, let us assume that k ≈ 0.3λ−1
Debye (value at which the Landau damping

is optimal) and that the electron temperature scales as Te ∝
(
ηabsILλ

2
)2/3

, according to analysis

presented in section 1.1.1.. Then, one finds that the energy of accelerated electrons scales with the
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absorption coefficient ηabs, the laser intensity IL and the laser wavelength λ as

Tfast e- ≈ (γϕ − 1)mec
2 ≈ 12kBTe ≈ 33

√
A

Z

[( ηabs

10%

)( IL

1015 W.cm−2

)(
λ

1µm

)2
]2/3

keV. (1.23)

Concerning the Shock Ignition scheme (IL ≈ 1015 W.cm−2), fully kinetic large-scale two-dimensional

simulations have been conducted recently [Klimo et al., 2010] [Klimo et al., 2014]. They show that a

significant amount of the laser spike’s energy is reflected and absorbed close to nc/4 due to stimulated

Raman scattering and that electrons are accelerated to energies up to several tens of keV in agreement

with the previous estimate.

1.2 Laser solid interaction at Ultra-High Intensities

1.2.1 Single Electron Motion in an Ultra-High Intense Laser Pulse

Since the invention of CPA by [Strickland and Mourou, 1985], the laser pulse durations have come

down from 1 ps to less than 5 fs, leading to an increase of laser pulse intensities by more than six

orders of magnitude allowing to overpass the relativistic threshold of ILλ
2 & 1018 W.cm−2.µm2. In

order to introduce this regime, we first consider the motion of a single electron in such a Ultra-

High-Intense (UHI) laser pulse traveling in the positive x-direction. The wave vector potential is

A =
[
0, δA0f(t) cosφ,

√
1− δ2A0f(t) sinφ

]T
where φ = 2π (ct− x) /λ is the wave phase, λ is the laser

wavelength, f(t) is a slowly varying laser pulse temporal envelope and δ is a polarization parameter

such that δ ∈ {−1, 0, 1} corresponds to a linearly polarized wave and δ = ±1/
√

2 corresponds to a

circular wave. Using the relations E = −∂A/∂t and B = c(∂/∂r)×A as well as v × [(∂/∂r)×A] =

[(∂/∂r)⊗A].v− [v.(∂/∂r)] (A), the motion of an electron in the presence of this electromagnetic field

is given by the Lorentz equation

dp

dt
= −e

(
E +

v

c
×B

)
= e

[
∂A

∂t
+

(
v.
∂

∂r

)
(A)

]
− e ∂

∂r
⊗A.v (1.24)

while the energy conservation equation reads

d

dt

(
γmec

2
)

= −ev.E = ev.
∂A

∂t
(1.25)

where p = γmev is the electron momentum, γ =
√

1 + (p/mec)2 its Lorentz factor and v its velocity.

The perpendicular component of Equation (1.24) reads

dp⊥
dt

= e

(
∂A

∂t
+ vx

∂A

∂x

)
= e

dA

dt
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which after integrating gives

p⊥ = eA (1.26)

by assuming the electron is initially at rest. The longitudinal component of Equation (1.24) and

Equation (1.25) gives

d

dt
(px − γmec) = −evy

c

(
∂Ay
∂t

+ c
∂Ay
∂x

)
− evz

c

(
∂Az
∂t

+ c
∂Az
∂x

)
= 0

because A is a function of the phase φ, only. Thus, on one hand, γ = 1 + (px/mec) while in the other

hand, γ =
√

1 + (px/mc)2 + (p⊥/mec)2), by definition. These two relations give consequently

px =
p⊥

2

2mec
=
mec

2

(
eA

mec

)2

and γ = 1 +
1

2

(
eA

mec

)2

. (1.27)

By noticing that dφ/dt = (∂φ/∂t)+vx(∂φ/∂x) = ω/γ and by changing the variable p = γme(dr/dt) =

γme(dφ/dt)(dr/dφ) = (2πmec/λ)(dr/dφ), the electron trajectory in the laboratory frame can be

integrated starting from (1.26) and (1.27) assuming it is initially at the origin and neglecting the

slowly varying terms. It reads

t =
a2

0

4

T

2π

2δ2 − 1

2
sin 2φ +

(
1 +

a2
0

4

)
T

2π
φ

x =
a2

0

4

λ

2π

2δ2 − 1

2
sin 2φ +

a2
0

4

λ

2π
φ

y = a0
λ

2π
δ sinφ

z = −a0
λ

2π

√
1− δ2 cosφ

(1.28)

Here, T = λ/c and a0 = eA0f/mec =
√

2e2ILλ2/πm2
ec

5 where IL is the laser intensity. Equation

(1.28) shows that an electron interacting with a laser pulse starts to drift with an average momentum

〈p〉 = (a2
0/4)mec ex, corresponding to a drift velocity

vD =
〈p〉
〈γ〉me

= c
a2

0/4

1 + a2
0/4

ex. (1.29)

Indeed, by performing the Lorentz transformation from the laboratory frame to the average rest

frame moving at the velocity vD : t0 = γD
(
t− vDx/c2

)
, x0 = γD (x− vDt), y0 = y and z0 = z where
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γD = 1/
√

1− (vD/c)2 = (1 + a2
0/4)/

√
1 + a2

0/2, one gets



t0 =
a2

0/4

1 + a2
0/2

T0

2π

2δ2 − 1

2
sin 2φ0 +

T0

2π
φ0

x0 =
a2

0/4

1 + a2
0/2

λ0

2π

2δ2 − 1

2
sin 2φ0

y0 =
a0√

1 + a2
0/2

λ0

2π
δ sinφ0

z0 = − a0√
1 + a2

0/2

λ0

2π

√
1− δ2 cosφ0

(1.30)

where the subscripts 0 denote the values in the average rest frame and for which the phase

invariance φ0 = φ as well as the longitudinal Doppler-Fizeau relationship T0/T = λ0/λ =√
(1 + vD/c)/(1− vD/c) =

√
1 + a2

0/2 have been used. In this frame, the drift component has disap-

peared and the electron trajectory consists only in oscillations at 2ω0 in the x-direction and at ω0 in

the transverse direction. In the case of a linearly polarized laser pulse (δ = 1), the electron trajectory

describes a figure-of-eight as shown in Figure 1.6. If ILλ
2 � 1018 W.cm−2.µm2, this longitudinal

Figure 1.6: Plot of x vs t (top left), y vs t (top right), y vs x (down left) and y0 vs x0 (down
right) for different values of the laser intensity with f(t) = 1 and δ = 1 corresponding to
a0 = 0.27, 0.85 and 2.70 according to Equations (1.28) and (1.30).
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drift is negligible (a2
0/4� a0) and we find the transverse oscillations at the frequency ω considered in

sections 1.1. In the opposite ultra-relativistic case where ILλ
2 � 1018 W.cm−2.µm2 (a2

0/4 � a0),

this longitudinal drift, accompanied with oscillations at 2ω is the main process. In the general case,

the angle between the electron momentum and the laser pulse propagation direction is

θ = arctan

(
|p⊥|
px

)
= arctan

(√
2

γ − 1

)
. (1.31)

UHI laser experiments are usually conducted with short laser pulses interacting with a solid target with

a steep density gradient. The analysis concerning the single electron response shows that electrons

interacting with a UHI propagating laser plane wave stop moving immediately after the laser pulse

ended. The electron motion is adiabatic and it cannot acquire energy directly from the laser pulse.

Moreover, contrary to the non-relativistic case, the colisional friction force is negligible here due to a

large amplitude of the laser electromagnetic fields and high temperatures in the skin-depth imposed

by the laser absorption. Indeed, the surface temperature TI at the solid-vacuum interface scales with

the laser intensity as I
4/9
L according to Equation (1.8). It can reach several keV for laser intensities

IL > 1018 W.cm−2. Consequently, in the relativistic regime, collisions cannot explain the break of this

adiabaticity. The UHI Laser Solid Interaction has been therefore intensively studied for more than

twenty years and a large number of collisionless processes can be found in the litterature to explain

the experimentally observed accelerated electron.

1.2.2 Cold Plasma Approximation

In a fluid framework, the mechanisms of UHI laser electron acceleration can be described by replacing

Equation (1.2) by the relativistic ones

∂ne
∂t

+
∂

∂r
. (neve) = 0 (a)

∂pe
∂t

+

(
ve.

∂

∂r

)
(pe) = −e

(
E +

ve
mec

×B

)
(b)

(γe − 1)mec
2 =

√
m2
ec

4 + pe2c2 −mec
2 (c)

(1.32)

where pe = γemeve is the mean electron momentum, γe is the mean Lorentz factor and ve the

mean velocity. It must be noted here that, in difference from the cold plasma approximation in the

classical regime, the relativistic cold plasma approximation assumes that the electron distribution

is monoenergetic and anisotropic. Indeed, due to the nonlinear relation between the single electron

velocity and momentum p = γmev, the relation pe = γemeve is valid only if all electrons have the

same velocity ve and consequently the same mass γme = γeme. This explains why Equation (1.2

c) for the electron temperature is replaced by Equation (1.32 c) with zero electron temperature. By

working with the laser vector potential A and the electrostatic potential Φ and by noticing that

2γe(mec)
2(∂/∂r)(γe − 1) = (mec)

2(∂/∂r)(γ2
e ) = (∂/∂r)(pe.pe) = 2[pe.(∂/∂r)](pe) + 2pe × [∂/∂r) ×
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pe]⇒ [ve.(∂/∂r)](pe) = (∂/∂r)(γe − 1)mec
2 − ve × [(∂/∂r)× pe], one can rewrite (1.32 b) as

∂

∂t
(pe − eA) = − ∂

∂r
(γe − 1)mec

2 +
∂

∂r
(eΦ) + ve ×

[
∂

∂r
× (pe − eA)

]
.

Thus, by taking the curl of this equation, one gets

d

dt

[
∂

∂r
× (pe − eA)

]
=

∂

∂t

[
∂

∂r
× (pe − eA)

]
+

(
ve.

∂

∂r

){[
∂

∂r
× (pe − eA)

]}
= 0

and assuming the electrons are intially at rest, one has necessarily[
∂

∂r
× (pe − eA)

]
= 0. (1.33)

Finally, Equation (1.32) becomes so

∂ne
∂t

+
∂

∂r
. (neve) = 0 (a)

∂

∂t
(pe − eA) = F +

∂

∂r
(eΦ) (b)

(γe − 1)mec
2 =

√
m2
ec

4 + pe2c2 −mec
2 (c)

(1.34)

where

F = − ∂

∂r
(γe − 1)mec

2 (1.35)

is the non averaged Relativistic Ponderomotive Force which was extended from the classical

theory [Stroscio et al., 1978]. This force leads to exotic effects compared to the non-relativistic regime

and will be described more accurately in the next paragraph.

Let us consider a UHI elliptically polarized plane wave traveling in an underdense plasma ωpe 6 ω

(ωpe =
√

4πZnie2/me is the classical plasma frequency) in the positive x-direction represented by its

vector potential A =
[
0, δA0f(t) cosφ,

√
1− δ2A0f(t) sinφ

]T
. In contrast with the single electron

case, here, φ = 2πc(t− x/vφ)/λ where vφ = ω/k is the wave phase velocity. The system of equations

(1.34) is coupled with the Maxwell equations (1.1) expressed for the vector potential A and the

electrostatic potential Φ in the Coulomb gauge ((∂/∂r).A = 0)(
∂2

∂r2

)
(Φ) = 4πe (ne − Zni) (a)

∂2

∂t2
(A)− c2

(
∂2

∂r2

)
(A) = 4πje. (b)

(1.36)

Assuming plasma electrons are initially at rest and f = 1, the system of Equations {1.34, 1.36} reads
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[Akhiezer and Polovin, 1956]

ne =
γemevφ

γemevφ − pe,x
Zni (a)

d2pe,⊥
dφ2

= − 1

γe

(ωpe
ω

)2 γemevφ
γemevφ − pe,x

vφ
2

vφ2 + c2
pe,⊥ (b)

d2

dφ2

(
γemec

2 − pe,xvφ
)

=
1

γe

(ωpe
ω

)2 γemevφ
γemevφ − pe,x

vφ pe,x. (c)

(1.37)

According to [Kaw and Dawson, 1970], Equations (1.37 b) and (1.37 c) in the limit pe,x � γemevφ as

well as vφ
2/(vφ

2 + c2) ≈ 1 and γemec
2 � pe,xvφ take the non-relativistic form with ωpe/

√
γe instead of

ωpe. This can be interpreted as a deeper penetration of electromagnetic waves in the target with an

increased skin-depth Ls ≈ c
√
γe/ωpe instead of Ls ≈ c/ωpe, due to the higher electron inertia γeme.

This relativistic effect is called the Self-Induced Transparency. While this phenomenon has been

observed in kinetic simulations [Lefebvre and Bonnaud, 1995] [Guérin et al., 1996], its experimental

validation is still controversial [Gibbon, 2005]. Equations (1.37) provide the adequate theoretical for-

malism to extend some mechanisms to the relativistic regime as the Relativistic Parametric Insta-

bilities [Guérin et al., 1995] and the Relativistic Linear Resonant Absorption [Yu et al., 1998].

These two mechanisms can be responsible for laser energy absorption by driving strong EPWs and ac-

celerating fast electrons. Also, this formalism can be used to predict the Direct Laser Acceleration

of fast electrons by Channeling the laser pulse [Pukhov et al., 1999] [Li et al., 2011]. However, these

mechanisms take place in an underdense plasma (ne < nc) and they cannot explain the laser energy

absorption reported in UHI laser-solid interaction experiments where the absorption may reach up to

70 % [Sauerbrey et al., 1994]. Also, they cannot explain the fast electron energy spectrum reaching up

to 10 MeV as measured experimentally by [Beg et al., 1997]. The following sections present the main

absorption mechanisms operating in laser-solid interaction experiments in the relativistic regime.

1.2.3 Relativistic Ponderomotive Force and j×B heating

The ponderomotive force may push the plasma electrons inward the target at the center of the focal

spot. Then, the plasma ions are accelerated due to the induced electrostatic fields. In the relativis-

tic regime, the ponderomotive force (1.35) push the surface of a modestly overdense plasma over a

distance of several laser wavelengths deep in a moderately overdense plasma on the sub-ps timescale

[Wilks et al., 1992]. This so-called Hole boring process has been demonstrated experimentally at

a laser intensity of 1018 W.cm−2 by [Kalashnikov et al., 1994] by measuring the Doppler red-shifted

reflected light. This effect was at the basis of the fast ignition scheme [Tabak et al., 1994]. One can

derive the relativistic ponderomotive force expression (1.35) by projecting (1.34 b) on the parallel and
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perpendicular axes (e⊥ = δ cosφey +
√

1− δ2 sinφex) : pe,⊥ = eA (a)
∂pe,x
∂t

=
∂

∂x
(eΦ) + F (b)

(1.38)

where

F = −ve,x
∂pe,x
∂x

ex −
1

2γeme

∂

∂x

(
pe,⊥

2
)
ex. (1.39)

Thus, if the laser pulse has a circular polarization, i.e., if δ = 1/
√

2, the force reads

F = −ve,x
∂pe,x
∂x

ex −
e2

4γeme

∂

∂x

(
A0

2
)
ex (1.40)

while for a linear polarization i.e. for δ ∈ {−1, 0, 1}, it reads

F = −ve,x
∂pe,x
∂x

ex −
e2

4γeme

∂

∂x

{
A0

2 [1 + cos (2ωt)]
}

ex. (1.41)

The ponderomotive force is usually defined by the average part of this force and it reads in both cases

Fpond = 〈F〉 = − e2

4γeme

∂

∂x

(
A0

2
)
ex. (1.42)

Figure 1.7: Schematic view of a UHI LSI in a steep gradient density
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Let us consider a UHI laser pulse of circular polarization normally incident on a steep density gra-

dient. It is reflected, generating a stationary standing wave in vacuum while the electromagnetic field

is evanescent inside the target over the skin-depth Ls. As explained above concerning the hole boring

effect, there is an electron depletion zone [0, xd] where the plasma electrons have been pushed forward

by the ponderomotive force. As the ponderomotive force is stationary, one can find an exact analytical

solution of the system of Equations {(1.34), (1.36)} assuming A = A0(x)[cos (ωt)ey + sin (ωt)ez]/
√

2

[Marburger and Tooper, 1975] [Siminos et al., 2012]. Neglecting the laser energy absorption, one finds

A0(x) =



−2
mec

e

√
2

(
1− ω2

ωpe2

) cosh

[
ω
x− xm

c

√
ωpe

2

ω2
− 1

]
(
ωpe

2

ω2
− 1

)
− cosh2

[
ω
x− xm

c

√
ωpe

2

ω2
− 1

] if x > xd

2AL cos

(
2π
x− xd
λ

+ ϕ

)
=

1

4

[
A0(x)2 +

dA0

dx

]x=c/2ω

x=xd

cos

(
2π
x− xd
λ

+ ϕ

)
if x < xd

(1.43)

and

ne(x) =

 Zni

{
1 +

ω2

ω2
pe

e2

2γeme
2ω2

[[
1

γe2

(
dA0

dx

)]2

+A0
d2A0

dx2

]}
if x > xd

0 if x < xd

(1.44)

where

γe(x) =

√
1 +

(
eA

mec

)2

=

√
1 +

(
eA0

mec

)2

, (1.45)

AL is the initial normally incident laser pulse amplitude, ϕ is a constant phase delay, xm is the position

where the vector potential is maximum A0(xm) = 2(mec/e)
√

2(ωpe2/ω2)[(ωpe2/ω2)− 1] and xd =

−(1/2πeni)A0(xd)(dA0/dx)|x=xd/γ(xd) is the target depth where the electrons have been displaced

by the laser pulse ponderomotive force. These three parameters ϕ, xm and xd can be found by

connecting the electron density ne and the field A0 at the depletion edge x = xd (see Figure 1.7). In

the region x < xd, the field behaves as in a vacuum. Assuming that the standing wave results from the

superposition of two progressive waves of amplitude AL (the laser energy absorption is neglected), one

obtains the lower line of Equation (1.43). The upper line of Equation (1.43) comes from the resolution

of the system of equations {(1.34), (1.36)} in the region x > xd. In the limit of a very dense solid

ne � nc, this expression reduces to A0 ∝ exp [−(x− xm)/Ls] with Ls = c/ωpe being the skin-depth.

The linear polarization case A = AL cos (ωt)e⊥ is more complicated because one can-

not find the analytical expression for γe as (1.45) obtained for the circular polarization case
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[Bauer and Mulser, 2007]. However, in the limit ωp,e � ω, an approximate solution reads

A0(x) =


2
ω

ωp,e
AL exp

(
−x− xd

Ls

)
if x > xd

2AL cos

(
2π
x− xd
λ

+ ϕ

)
if x < xd

(1.46)

where Ls = c/ω
√

(ωpe2/ω2)− 1 ≈ c/ωpe. The oscillating component of the ponderomotive force (1.41)

in the linearly polarized case can lead to laser energy absorption [Kruer and Estabrook, 1985]. This

mechanism is called j×B heating (and not ponderomotive heating!) due to the fact that it is induced

by the oscillating component of (1.41), coming from the Lorentz force (ve/c)×B term of (1.32). One

can explain this mechanism as follows :

1. During a quarter of the laser cycle, between t = −T/8 and t = T/8, the cosine of (1.41) is

positive and electrons from the plasma surface are ejected in vacuum by the Lorentz force.

2. A strong electrostatic field Φ is generated due to the induced charge separation according to

Equation (1.36 a).

3. During the following quarter of the laser cycle, the cosine becomes negative and the electrons are

consequently recalled by this ponderomotive force component but this time with an amplification

due to the force (∂/∂x)(eΦ).

4. Thus, the electrons are reinjected in the overdense plasma where the local electromagnetic fields

vanish behind the skin depth Ls.

Consequently, the adiabaticity of electron motion is broken at the moment when they are crossing the

plasma skin layer and they acquire the kinetic energy gained from the electric force (∂/∂x)(eΦ). Thus,

accelerated electrons escape from the laser solid interaction zone thanks to their residual energy. This

acceleration mechanism has been confirmed by kinetic simulations [Wilks et al., 1992]. The authors

find a good agreement between their numerical results and the estimate of the mean kinetic energy

often called ”temperature” of the accelerated electrons

Te ≈

√1 +
〈(epe,⊥

mec

)2〉
− 1

mec
2 =

(√
1 +

a0
2

2
− 1

)
mec

2 (1.47)

according to Equation (1.38 a) where 〈.〉 means that the value has been averaged over a laser cycle

and a0 =
√

2e2ILλ2/πme
2c5. This expression is commonly called the ponderomotive scaling due to

the fact that it corresponds to the ponderomotive potential of a single electron [Bauer et al., 1995].

Besides, even if numerical simulations confirm that this process makes a significant contribution to the

laser energy absorption, this temperature scaling differs from experimental results [Ping et al., 2008].
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1.2.4 Brunel Effect and Vacuum heating

Figure 1.8: Schematic view of a UHI p-polarized laser pulse incident on a steep gradient density

Here, we consider an interaction of a linearly polarized UHI laser pulse with a steep density

gradient at an oblique incidence with the angle θ as illustrated in Figure 1.8. The laser pulse vector

potential reads AL cos [ωt− k (x cos θ + y sin θ)] (− sin θex + cos θey). The role of collective electric

fields in this configuration was demonstrated by [Brunel, 1987] thanks to kinetic simulations and a

simplified analytical model. Thus, it would have been possible to place this subsection in the previous

section. However, due to the fact that this mechanism plays an important role in UHI laser-plasma

interaction, we have prefered to place it here. This mechanism can be understood in a one-dimensional

approach, neglecting of the Lorentz force (ve/c)×B in Equation (1.32). Thus, the system of Equations

{(1.34), (1.36)} reduces to

A =


2AL cos (ωt+ ϕ) cos (kx cos θ) sin θex if x 6 0

∝ exp

(
−x− xd

Ls

)
if x > 0

(a)

∂2Φ

∂x2
= 4πe (ne − Zni) (b)

∂ne
∂t

+
∂

∂x
(neve,x) = 0 (c)

dpe,x
dt

= e
∂A

∂t
+ e

∂Φ

∂x
(d)

(1.48)

where ϕ = ky sin θ is a constant phase parameter. The Brunel heating can be explained as follows

1. In the first half of the laser cycle, between t = −(T/2)−ϕ/ω and t = −ϕ/ω, the cosine of (1.48

a) is negative. Thus, a sheath of electrons at the plasma interface (x = 0−) is experiencing the

longitudinal electric field (1.48 a) and is pulled out in vacuum up to a distance ≈ ∆x according

to Equations (1.48 c) and (1.48 d).
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2. According to Equation (1.48 b), an electrostatic field is created in this zone [−∆x, 0].

3. During the following half of the laser cycle, the cosine of (1.48 a) is positive and the electrons in

this zone are consequently recalled back but this times with an amplification due to the electric

force (∂/∂x)(eΦ), according to Equations (1.48 c) and (1.48 d).

4. The electrons are reinjected in the overdense plasma where the local electromagnetic fields vanish

beyond the skin depth Ls according to Equation (1.48 a)

Consequently, the electron motion adiabaticity is broken and the electron gains a kinetic energy from

the electrostatic field. Moreover, the accelerated electrons escape from the interaction zone thanks to

this residual energy. Except for the time periodicity and the spatial configuration of the process, the

Brunel heating mechanism is similar to the j×B one. By using the capacitor approximation for the

step 2, approximating ve,x ≈ 2eA0/me for the step 3 and assuming that all electrons are lost in the

solid for the step 4, one can estimate the laser energy absorption [Gibbon, 2005]

ηabs ≈
1

πa0
f

[√
1 + (fa0 sin θ)2 − 1

]
sin θ

cos θ
. (1.49)

where f = 1 +
√

1− (4a0 sin3 θ/π cos θ) where the fast electrons ”temperature” has been assumed

Te ≈

(√
1 +

ve,x
c

2
− 1

)
mec

2 ≈
(√

1 + 4a0
2 − 1

)
mec

2. (1.50)

The maximum laser energy absorption is obtained with θ = 75o according to Equation (1.49). Ac-

tually, it has been shown that not all electrons pushed out into vacuum return to the target each

laser period [Brunel, 1988] [Gibbon and Bell, 1992]. Due to the presence in vacuum of non-stationary

electromagnetic fields and a low density plasma, the electron orbits are more complex than those pre-

dicted in the capacitor approximation. According to kinetic simulation results, the maximum of laser

absorption is obtained for θ ≈ 45o and the temperature scales with the laser intensity as Te ∝ (ILλ
2)
α

with α between 1/3 and 1/2. For these reasons, and notably because of recalling aspects of disorder,

the term Vacuum heating is used to make the distinction. It is considered as one of the main

absorption mechanisms.

1.2.5 Anharmonic Resonant Absorption

In the case of a linearly polarized incident laser pulseAL cos [ωt− k (x cos θ + y sin θ)] (− sin θex + cos θey)

totally reflected by a steep density at normal or at oblique incidence, the Relativistic Harmonic Reso-

nance Absorption mentioned in the introduction of this section may be mitigated due to the absence

of any rarefaction wave. Moreover, the critical-surface oscillations driven by the laser ponderomotive

force may lead to the broadening and the splitting of the harmonics [Ding et al., 2009] as well as an
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Figure 1.9: Test electron trajectory position x(t) and momentum px(t)/mec (black lines), total elec-
tric field Ex (white line) at position x(t) plotted on the electric field (x, t) map from a
kinetic simulation done with a constant laser pulse a0 = 0.3 with an oblique incidence
θ = 45o focused on a steept gradient with fixed ions Zni/nc = 81 [Mulser et al., 2008]

.

efficient laser energy absorption mechanism [Mulser et al., 2008]. Noticing that a break of adiabaticity

under steady state conditions is obtained when 〈jeE〉 ∼ 〈sin (ωt+ ϕ) cos (ωt)〉 = (1/2) sinϕ 6= 0

according to the Poynting theorem, the authors conclude that only an anharmonic resonance in

the self-generated plasma potential may provide conditions for an efficient laser energy absorption

as observed in UHI laser-solid interaction experiments. Indeed, by considering a constant density

Zni, an electron layer of thickness d, oscillating with the amplitude ξ and by approximating the

non-averaged ponderomotive force (1.41) by F ≈ F0f(t) sin (2ωt)ex, one can derive from Equation

(1.36 a)

Ex(ξ) = −e∂Φ

∂x
=


4πZnie

(
1− |ξ|

2d

)
ξ if ξ 6 d

4πZnie
ξd

2|ξ|
if ξ > d

(1.51)

which along with Equation (1.38 b) gives the following equation of motion for the electron layer (in

the non-relativistic approximation)

d2ξ

dt2
= F0f(t) sin (2ωt)−


ω2
pe

(
1− |ξ|

2d

)
ξ if ξ 6 d

ω2
ped

2|ξ|
ξ if ξ > d

(1.52)

The anharmonic resonance heating can thus be understood as follows.
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1. According to Equation (1.52), the electron layer oscillates at the frequency ωpe inside the plasma

where there is no driver (F0 = 0).

2. With increasing oscillation amplitudes, the electron layer escapes from the plasma and experi-

ences the non-averaged ponderomotive force F0f(t) sin (2ωt).

3. According to Equation (1.52), the increasing oscillation amplitude ξ0 > d leads to a reduction

of the oscillation frequency enabling a resonance condition at 2ωpe.

4. Finally, due to the strong driver F0f(t) sin (2ωt), the oscillation amplitudes may rise to ξ0 →∞
with a pulsation ≈

√
ω2
ped/2ξ0 → 0

This means that between step 1 and step 3, there is a moment when the electron layer oscillation

frequency is 2ω (0 6 2ω 6 ωpe). At this moment, the electron layer oscillates in phase with the driver

and enters the anharmonic resonance regime. This mechanism has been explained by considering the

electron trajectories obtained in kinetic simulations as illustrated in Figure 1.9. According to the

authors, this Anharmonic Resonance Heating in the self-generated plasma waves represents one

of the leading electron acceleration mechanisms in UHI laser-solid interaction experiments and may

explain energies of accelerated electrons many times the ponderomotive scaling observed in experiments

[Cerchez et al., 2008].

1.2.6 Stochastic heating

While the motion of an electron in a single laser wave is deterministic, its motion in two counter-

propagating electromagnetic waves can become chaotic if the frequencies of these two waves are dif-

ferent [Mendonça, 1983] [Forslund et al., 1985]. By ”chaotic”, one means that small differences in

the initial conditions produce a large divergence in the electron trajectory with time. Thus, in other

words, two counter-propagating electromagnetic waves with slightly different frequencies can break the

adiabaticity of the electron motion. This happens in the case of large-scale density gradients and high

laser intensities or a sufficiently long pulse 1− 10 ps like in the Fast Ignition scenario. Let us consider

a linearly polarized laser pulse A1 = A1,0 cosφ1ey with φ1 = ω1t− k1x normally incident on a target

with a large scale density gradient and a counterpropagating one A2 = A2,0 cosφ2 (cosαey − sinαex)

with φ2 = ω2t− k2,‖x− k2,⊥y + α0 which may originate from the reflection of the incident laser pulse

or a Raman-backscattered wave as suggested by [Sheng et al., 2002]. The Hamiltonian of a single

electron in such a configuration can be expressed in the extended space by [Jackson, 1975]

H = γ2mec
2 + (P + eA1 + eA2)2c2 −mec

2 (1.53)

where P = p − eA1 − eA2. Indeed, in this case, H = 0 according to the momentum quadrivector

invariance along directions of translational invariance only. According to [Rax, 1992], by assuming
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Figure 1.10: Distribution of longitudinal electron momenta normalized by mec in space at t =
110(2πc/λ) [Yu et al., 2000] obtained from a 1D relativistic kinetic simulation of a lin-
early polarized, Gaussian laser pulse with a1 = 7.5, λ1 = 1µm, and width L1 = 15µm
normally incident on a foil of density ne = 10nc (dashed lines) with (c) or without (d)
the presence of a Deuterium preplasma of width 30µm and density ne = 10−3nc. The
time averaged laser electric field normalized by mecλ1/2πc is also plotted in (c) (solid
line).

A2 � A1, α = −π/2 and by changing of variables from (x, y, z, ct, px, py, pz, γmec) to the angle-

action variables (θ, ϕ, φ, E, P‖, P⊥), it can be shown that H can be written as

H(x, y, z, ct, px, py, pz, γmec) = H(0)(θ, ϕ, φ, E, P‖, P⊥) + δH(1)(θ, ϕ, φ, E, P‖, P⊥) (1.54)

where
H(0) = γ2mec

2 + (P + eA1)2c2 −mec
2

= E2 − P⊥2 − P‖2 −M2,
(1.55)

with M =
√

1 + (a2
1/2) and a1 = eA1,0/mec, is the unperturbed Hamiltonian of the electron i.e.

without the counterpropagating electromagnetic wave A2 and

δH(1) = 2

(
P + eA1

mec

)
.

(
eA2

mec

)
mec

2 +O

[(
eA2

mec

)2

mec
2

]
= a2mec

2
∑
N∈Z

VN
(
E, P‖, P⊥

)
cos

[
k2,‖c

ω1
ϕ+

k2,⊥c

ω1
θ +

ω2

ω1
φ+N (ϕ+ φ)

] (1.56)

Page 69



1.2. LASER SOLID INTERACTION AT ULTRA-HIGH INTENSITIES

is the 1st order perturbation induced by the counterpropagating wave where a2 = eA2,0/mec,

VN =
∑
m∈Z

∑
n∈Z

2∑
h=−2

δNh+m+2nUhJm

(
a1mec

ω1

P⊥
(
ω2 − k2,‖c

)[
P‖ − (E/c)

]2 +
a1mec

ω1

k2,⊥c

P‖ − (E/c)

)

× Jn

(
k2,‖c− ω2

2ω1

(eA1,0)2[
P‖ − (E/c)

]2
)
,

and

Uh = 2

[
P⊥
mec

cosα−
P‖

mec
sinα

]
δ0
h + a1

(
cosα+

P⊥ sinα

P‖ − (E/c)

)
δ1
|h| +

a1
2

4

mec sinα[
P‖ − (E/c)

]δ2
|h|

with Jm and Jn the Bessel functions. It is interesting to notice that according to the change of variable,

E = 〈γ〉mec
2, P⊥ = 〈py〉 and P‖ = 〈px〉 where 〈.〉 which means that the values are averaged over the

laser pulse cycle 2π/ω1. Indeed, in the case where A2 = 0, the perturbation disappear and H(0) = 0

can be integrated and one finds that the unperturbed electron motion consists in the figure-of-eight

found in section 1.2.1

E
(
P‖, P⊥

)
=
√
M2 + P‖

2 + P⊥
2. (1.57)

Following standard perturbation techniques, one can solve the Hamilton equations by plugging the

unperturbed motion (θ = (P⊥/mec)ω1τ , ϕ = (P‖/mec)ω1τ and φ = −(E/mec
2)ω1τ where τ is the

proper time) in the argument of the perturbating cosines of the right hand side of Equation (1.56).

According to the author, such a perturbation scheme fails to converge because of the occurence of

small resonant denominators when the cosine of the phase remains stationary which means that the

system cannot be integrated whenever it exists one N ∈ Z such that

k2,‖c

(
P‖

mec

)
+ k2,⊥c

(
P⊥
mec

)
− ω2

(
E

mec2

)
+Nω1

(
P‖

mec
− E

mec2

)
= 0. (1.58)

It means that the electron motion is not anymore deterministic and becomes chaotic. The degree of

chaoticity for each resonance N can be measured using the Chirikov criterion [Bourdier et al., 2005]

but in the general case, kinetic simulations of the UHI laser-solid interaction are needed to find the

stochastically accelerated electrons properties.

Efficient electron heating in two counter propagating electromagnetic waves was demonstrated in

1D relativistic kinetic simulations by [Yu et al., 2000]. A linearly polarized, Gaussian laser pulse with

a peak amplitude a1 = 7.5, a wavelength λ1 = 1µm, and a width L1 = 15µm was normally incident

and reflected from a foil of density ne = 10nc. The electron heating was observed in a Deuterium

preplasma of a width 30µm and a density ne = 10−3nc. In Figure 1.10, one can clearly see the effect

of the preplasma on the accelerated electrons momenta. Although the electron heating is probably

due to stochastic effects, [Yu et al., 2000] do not mention it in their paper. Instead, they explain the

electron heating up to several ponderomotive energies as follows. Firstly, the incident laser pulse carries
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the accelerated electrons toward the target. As the preplasma behind the pulse maximum becomes

positively charged, a relativistic electron return current is created. These counterpropagating electrons

with negative momenta cover the entire preplasma and even extend beyond it into the vacuum area.

In addition, the target electrons localized near the density jump are accelerated due to the j × B

Heating. Highly accelerated electrons can be seen at the far right of the frame, showing that the

forward accelerated electrons escaping from the incident laser pulse have passed through the foil

target. As the reflected laser pulse propagates backwards in the preplasma, it accelerates a small

number of electrons to energies several times those of the forward ones, as shown on the far left of

Figure 1.10 (c). For the authors, this strong backward acceleration is therefore attributed to the

relativistic electrons return-current, which is missing in the case without preplasma.

As a conclusion, in a presence of a preplasma, laser-accelerated electrons may attain energies

exceeding several times the ponderomotive energy, thus forming a hot tail in the energy spectrum,

and have a significant angular divergence [Kemp et al., 2009]. This Stochastic heating dominates

in the underdense plasma in the case of large-scale density gradients according to kinetic simulations

and experiments. It largely prevails over the Direct Laser Acceleration as well as the Linear

Resonant Absorption mechanisms [Kemp et al., 2014].

1.3 Particle-in-Cell method for Laser-Plasma Interac-

tion simulations

Numerical simulations of kinetic processes in laser-plasma interactions are usually conducted with

Particle-In-Cell codes. In Part 3 of these manuscript, kinetic simulations will be used for character-

ization of the laser-generated fast electron transport. This section is dedicated to a brief description

of the Particle-In-Cell modeling of Laser-Plasma Interaction.

1.3.1 Phase-Space Discretization for the Vlasov Equation

In order to simulate the interaction between an incident laser pulse and a plasma, one has to solve the

Maxwell equations for the laser pulse propagation coupled with the Vlasov equation (see Appendix

A, section A.1.1) for the kinetic plasma response to the electromagnetic fields. We use the relativistic

formalism here and assume that the ions remain immobile. Let us note fe = fe(r, p, t) the distribution

function of plasma electrons. We do not consider the collisions here; they will be discussed in the next

subsection. The Vlasov equation reads

∂fe
∂t

+
∂

∂r
.

(
p

γme
fe

)
− ∂

∂p
.
[
e
(
E +

v

c
×B

)
fe

]
= 0 (1.59)

Page 71



1.3. PARTICLE-IN-CELL METHOD FOR LASER-PLASMA INTERACTION
SIMULATIONS

where γ =
√

1 + (p/mec)
2. Therefore, the distribution function fe(rl, pl, t) is constant at the electron

trajectories defined by the equations of motion

drl
dt

=
pl
γlme

dpl
dt

= −e
(
E +

vl
c
×B

)
.

(1.60)

From this observation, it comes naturally the idea to discretize the phase-space (r, p) into macropar-

ticles {rl, pl}, l ∈ [1..Np] which are solutions of (1.60) depending only on their initial position

rl(t = 0) and momentum pl(t = 0) in order to approach the solution of (2.1) [Birdsall and Fuss, 1969].

Of course, the number of macropaticles Np is much less than the number N of electrons in the

system. Indeed, N = nc∆x∆y∆z ≈ 109/λ[µm]2 at the critical density with numerical cells

∆x = ∆y = ∆z = 1µm; The best actual computer technology has allowed a maximum of Np ≈ 1010

particles and calculation of 1010 time steps, requiring 104 hours of CPU. Besides, in the most cases,

Np � N is sufficient to describe accurately the relevant long-range physical processes. The split ex-

plicit leapfrog scheme commonly called the Boris scheme is usually used to solve the electromagnetic

macroparticle pusher (1.60) (see [Birdsall and Langdon, 1991] for other numerical methods). This

numerical scheme reads :

1o)
p−l − p

n−1/2
l

∆t/2
= eEn

2o) p∗l − p−l = T p− × Bn

|Bn|
where T = tan

(
−e|Bn|
2γ−me

)
with γ− =

√
1 +

(
p−l
mec

)2

3o) p+
l − p∗l =

2T

1 + T 2
p∗ × Bn

|Bn|

4o)
p
n+1/2
l − p+

l

∆t/2
= eEn

5o) v
n+1/2
l =

p
n+1/2
l

γ
n+1/2
l me

where γ
n+1/2
l =

√√√√1 +

(
p
n+1/2
l

mec

)2

5o) rn+1
l = rnl + v

n+1/2
l ∆tn

(1.61)

where n is the discrete time (tn = n∆tn). The complications come from the temporal and spatial

variations of the electromagnetic fields in (1.60). These are the solutions of the Maxwell equations

E = −∂A

∂t
− ∂Φ

∂r

B = c
∂

∂r
×A

∂2

∂r2
(Φ) = 4πρ

∂2A

∂t2
− c2 ∂2

∂r2
(A) = 4πje

(1.62)
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which depend on the electrical charge density ρ and the current density je. These source terms

must consequently be interpolated at each time tn from knowing the Np macroparticle positions and

velocities. For example, the electrical charge is estimated as

ρn,i,j,k =

Np∑
k=1

W
[
ri,j,k − rnl

]
(1.63)

where ri,j,k = [xi, yj , zk]
T with xi = xmin +(i−1)∆x, yj = ymin +(j−1)∆y and zk = zmin +(k−1)∆z.

The function

W
[
ri,j,k − rnl

]
=

∫ xi+∆x/2

xi−∆x/2
dx

∫ yj+∆y/2

yj−∆y/2
dy

∫ zk+∆z/2

zk−∆z/2
dzΠ(xi − xnl , yj − ynl , zk − znl ) (1.64)

is called the macroparticle weight. It depends on the interpolation function Π which can be a Dirac

distribution δ3[r] (NGP method for Nearest-Grid-Point [Birdsall and Fuss, 1969]), a linear interpolat-

ing function (CIC method for Clouds in Clouds [Birdsall and Fuss, 1969]) and so on. Currently, third

order (or more) interpolations are used in high performance PIC codes. The higher the interpolation

order is, the higher the accuracy and the computational cost are. The electromagnetic fields are com-

puted according to the well known finite difference schemes of the propagation equation for the vector

potential and the Poisson equation for the scalar potential providing the electromagnetic fields. At

the next time step, the fields are reinterpolated at the positions of the macroparticles to compute their

trajectory at the following next time step.

(En(rl), Bn(rl)) =

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

W
[
ri,j,k − rnl

] (
En(ri,j,k), Bn(ri,j,k)

)
(1.65)

where Nx, Ny and Nz are the grid number respectively in the x, y and z directions. The interpolation

function must be the same as for the particle weighting in order to limit the self-force induced by the

macroparticles motion in the spatial mesh grid.

1.3.2 Binary Collision Modelling

Coulomb binary collisions are due to the mutual electromagnetic fields created by two interacting

particles. The PIC method cannot take into account the binary collisions effects because the forces

acting on the particles in a PIC scheme correspond to macroscopic fields, and because the collisional

spatial scales are not resolved. As a result, inter-particle forces inside grid cells are underestimated.

The binary collisions are described by introducing a Coulomb collision operator inside each cell. The

usual method consists of a Monte-Carlo scheme simulating the interaction between each particle pair.

Most of Coulomb collision operators used in today PIC codes are based on the binary collision model

introduced by [Takizuka and Abe, 1977]. The main idea is based on the fact that, the plasma being
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essentially collisionless, the binary Coulomb collisions occur only between particles separated by a

distance of the order of the Debye length λDebye. Since a typical size of the PIC cell is close to λDebye,

the interaction between particles in neighboring cells can be neglected. According to this method,

all particles are firstly grouped to the cells (i, j, k) where they are located. Then, these particles are

paired in a random way, so that one particle has at least one partner. Thus, selected pairs are collided

according to the Monte-Carlo method based on the collision probability of collision proportional to the

differential collision cross section. For example, the probability of a small angle and non-relativistic

collision between an electron (1) and an electron or ion (2) is proportional to the Rutherford differential

cross section (see Appendix A, section A.2.1). During the time step ∆tn, the scattering angle θ

in the 2D collision plane follows the Gaussian stochastic process [Takizuka and Abe, 1977]

p(θ) =
θ

〈θ2〉n
exp

(
− θ2

2〈θ2〉n

)
with 〈θ2〉n = 4π

nαZαe
4

(1/2)µ2V 3
ln Λeα∆tn (1.66)

where Zα is the charge of the particle (2), nα is the density of particle (2), µ = mem2/(me + m2) is

the reduced mass in the center of mass frame and V = v1 − v2 is the relative velocity. Inverting the

relation (1.66) and randomly choosing a value pR between 0 and 1 (uniform stochastic process) for

the probability p, one obtains the scattering angle in the center of mass frame

θ =
√
−2〈θ2〉∆tn ln pR. (1.67)

Correspondingly, the azimuthal angle ϕ is chosen randomly between 0 and 2π according to the uniform

statistic process. If plasma is nearly uniform, one can introduce a cumulative binary collision operator,

as proposed by [Nanbu, 1997], which allows to increase the time step of the collision procedure.

1.3.3 Computational Constraints

The main time step restriction of PIC codes comes from the propagation equation for the vector

potential A. The time step must fulfill the Courant-Friedrichs-Lewy condition

∆tn <
1

c

(
1

∆x2 +
1

∆y2 +
1

∆z2

)−1/2

. (1.68)

In addition, if the cumulative binary collision operator approximation cannot be introduced, the time

step must be shorter than the characteristic collision time, νei∆tn < 1. Moreover, the value of the

laser frequency ω0 limits the time step in the Boris scheme to ω0∆tn < 2. Concerning simulations of

laser plasma interaction, the critical density zone where, typically ω0 = ωpe needs to be considered

with special attention because of strong laser-driven electron plasma waves. In that case, the spatial

grid must satisfy the condition ∆x ≈ ∆y ≈ ∆z ≈ c/ωpe. In order to limit the non-conservative force

associated with the particle-grid mapping, which leads to self-heating and numerical instabilities, the
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space resolution has to be comparable to the plasma Debye length ∆x ≈ ∆y ≈ ∆z < vTh,e/ωpe <

c/ωpe. This imposes a strong constraint in the case of dense and/or cold plasmas!

PIC codes represent one the most time consuming numerical tools used in Physics. To give an

order of magnitude of a Laser Solid Interaction simulation in the context of fast ignition, a 100µm size

plasma needs 6250 spatial cells in 1D, 3.9 107 in 2D and 3.4 1011 in 3D (c/ωpe = 0.016µm) while the

oscillation time is about 1/ωpe = 0.05 fs. Correspondingly, about 4 105 time steps are needed for a 20

ps simulation [Kemp et al., 2014]. Still according to [Kemp et al., 2014], a number of macroparticles

of 107 in 1D, 5 109 in 2D and 5 1011 in 3D needs respectively 102, 5.6 104 and 5.6 106 time steps.

PIC codes are key tools to study the laser-plasma interaction in general, and the acceleration of fast

electrons in particular in the context of the physics of fast and shock ignition.

1.4 Brief Summary of Laser Solid Interation and Laser-

Generated Relativisitic Electron Beam Properties

High-Intensity Laser-Plasma Interaction (HILPI) has been studied for many years, motivated inter alia

by the Inertial Confinement Fusion (ICF) concept. In the conventional ICF schemes, ns laser pulses

interact with a sub-critical, long-scale length plasma (corona) and the dominant laser energy absorption

mechanisms are inverse bremsstrahlung heating and the resonant absorption. Besides, parametric

instabilities such as the acoustic decay, the stimulated Brillouin scattering, the two-plasmon-decay

and the stimulated Raman scattering may be an origin of strong electrostatic fields. The Landau

damping of such electrostatic plasma waves may be responsible for fast electron acceleration up to

100s of keV. For shorter laser pulses of several 10s or 100s of fs in the HILPI regime, the plasma has

no time to expand so the laser pulse interacts with a solid steep gradient density. In this case, various

absorption mechanisms may operate depending on the plasma temperature and density conditions :

the collisional absorption, the normal skin effect, the sheath inverse bremsstrahlung and the anormal

skin effect. In the context of Shock Ignition, the laser spike has a duration of several 100s of ps and

interacts with a hot and large-scale expanding corona. As a consequence, this changes considerably the

conditions of excitation of parametric instabilities and a large amount of fast electrons is expected. This

regime is still under investigation through extensive Particle-In-Cell simulations (briefly introduced in

section 1.3) [Klimo et al., 2014]. Ultra-High Intensity Laser-Plasma interaction (UHILPI) has been

studied since the 1990s, after the development of the chirped pulse amplification technique. It is an

intense field of research with several unresolved questions. The details of absorption processes are still

not well understood and new explanations for the break of adiabaticity in the laser-induced electron

motion have been recently proposed [May et al., 2011] [Mulser et al., 2012] [Sanz et al., 2012]. The

complexity of the laser-solid interaction due to strong nonlinearities and various competing processes

(see section 1.2) require the use of numerical Particle-In-Cell kinetic simulations. One can briefly
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summarize the obtained results as follows. While the particle acceleration is always due to the electric

field work, what differentiates the main mechanisms at play is the source of the electric field. In the

case of an obliquely incident laser pulse onto a steep gradient target, the standing wave structure

consisting of the incident and reflected waves combined with the electrostatic field is the source of the

vacuum heating. In the case of a normally incident laser pulse onto a steep gradient plasma, it is the

longitudinal component of the Lorentz force, along with the electrostatic field, which is responsible

for the j × B heating. In both cases, an electrostatic field induced by the plasma surface oscillation

is responsible for the anharmonic resonant absorption of the laser energy. Actually, due to hole

boring of the target, the vacuum heating operates also in the case of a normally incident UHI laser

pulse. The electron acceleration depends also on the laser pulse contrast (IL,max/IL,min). A strong

laser prepulse may ionize the surface, causing the plasma to expand. Then, the main laser pulse

interacts with a large-scale expanding plasma. In this case, the Raman backward scattered laser light

or the reflected laser pulse coupled with the incident laser pulse may lead to stochastic heating of the

electrons. Due to a relatively long laser pulse duration (≈ 10 ps) in the Fast Ignition scheme, the fast

electron acceleration mechanisms may change with time and extensive particle-in-cell simulations of

the LPI are needed. The state of the art of UHILPI in the context of Fast Ignition can be found in

[Kemp et al., 2014].

The physical processes described in sections 1.2.3, 1.2.4, 1.2.5 and 1.2.6 allow us to make

some conclusions concerning the properties of laser-generated relativistic electron beam Properties.

Firstly, it can be shown, by using the electron momentum conservation in the plane perpendicular to

the target normal that, in the case of a laser plane wave, obliquely incident on a steep gradient density

profile, the angle between the propagation direction of a forward accelerated electron and the target

normal reads [Sheng et al., 2000]

θ0 = arctan

{[
2 (γ − 1) (1 + δΦ)− δΦ2

(γ − 1− δΦ)2 sin−2 θ + tan−2 θ

]−1/2
}

(1.69)

where δΦ = [eΦ(z, t) − eΦ0]/mec
2 is the variation of the electrostatic potential and θ is the laser

incidence angle.

Concerning the time dependence of the forward accelerated electrons, one can assume that, at

the target surface z = 0, the temporal envelope of the electron distribution follows the laser Gaussian

shape of duration ∆t FWHM:

fz(z − v0t) =
1√

2π
(v0∆t)2

8 ln 2

exp

[
−4 ln 2

(
z − v0t

v0∆t

)2
]
. (1.70)

Here, the internal temporal structure of the electron bunches with the modulation at ω or 2ω has been

omitted since it is usually not resolved in fast electron transport hybrid simulations (see Chapter 5).
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v0 is the mean velocity associated with the energy flux density of the forward accelerated electrons

in the mean propagation z-direction such that the fast electron beam intensity Ib = nb〈ε〉v0 = ηabsIL

where ηabs is the laser-to-electrons conversion efficiency, IL the laser pulse intensity, nb the fast electron

beam density and 〈ε〉 their mean kinetic energy. As explained in Chapter 2, the fast electron beam

generates a counterpropagating return current in order to cancel the total electrical current. As ex-

plained in Chapter 3, this system of two counterpropagating currents may be unstable, leading to the

generation of small-scale magnetic fields with amplitudes comparable to the laser magnetic field. Such

self-generated magnetic fields can strongly deflect the electrons [Adam et al., 2006] [Pérez et al., 2013]

thus producing a divergent beam. Another source of the electron beam divergence is the curvature of

the electron acceleration region due to hole boring effects [Schmitz et al., 2012b]. The dependence of

the electron beam divergence on the intensity can be described by the following empirical scaling law

θ1/2 ≈ 15o + 30o log10

(
IL

1018 W.cm−2

)
(1.71)

where θ1/2 is the cone apex angle. This scaling was deduced from experimental data by

[Green et al., 2008]. Since the more energetic electrons are less deviated by these strong stochas-

tic magnetic fields, the divergence angle θ1/2 depends also on the electron energy. Moreover, due to

the laser transverse ponderomotive force and propagation effects in the preplasma, the divergence an-

gle of the accelerated electrons increases with the radial distance [Debayle et al., 2010]. The resulting

fast electron angular distribution can be approximated with the following form

fθ(θe) =
1√

2π
∆θe

2

8 ln 2

exp

[
−4 ln 2

(
θe − θ0

∆θ

)α0
]

(1.72)

where α0 = 2 or 4, θ0(r, ε, t) is the mean angle of electron emission which increases with the radial

distance r from the beam axis and depends on the electron kinetic energy ε and the time t according

to (1.69). ∆θ(ε, t) is the dispersion angle which decreases with increasing electron kinetic energy. θe

is the half apex angle of the cone oriented in the direction defined by θ0.

Experiments and simulations show that the laser-produced electron beam has approximately an

axisymetric Gaussian radial distribution of the form

fr(r) =
1

2π
∆r2

8 ln 2

exp

[
−4 ln 2

( r

∆r

)2
]

(1.73)

in the case of a normally incident laser pulse. here, r =
√
x2 + y2 is the distance from the beam

axis and the beam radius FWHM ∆r is two or three times the laser pulse radial FWHM. In the case

of oblique incidence, in the (z, x) plane, the spatial distribution of the accelerated electrons can be
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written as

fx(x) =
1√

2π
∆x2

8 ln 2

exp

[
−4 ln 2

(
x− x0

∆x

)2
]

(1.74)

where x0 and ∆x may depend on time. The distribution in the perpendicular direction fy can be

written similarly by replacing x by y and x0 by y0 in the previous Equation. Concerning the energy

spectrum of the forward accelerated electrons, several interpolations have been proposed. There is a

simple 1D exponential distribution :

fε(ε) =
1

kBTb
exp

(
− ε

kBTb

)
(1.75)

where Tb can be estimated according to (1.47), (1.50) or with other scalings. Other proposed interpo-

lations such as a combination of two exponential functions

fε(ε) =
α1

kBTb
exp

(
ε

α2kBTb

)
+

α3

kBTb
exp

(
ε

α4kBTb

)
, (1.76)

a power law

fε(ε) = α5

(
ε

kBTb

)α6

(1.77)

or

fε(ε) =
α7

kBTb
exp

(
ε

α8kBTb

)
+
α9

ε
exp

(
ε

α10kBTb

)
, (1.78)

where {αi} and Tb are parameters found from the fitting of experimental or simulation results. The

total number of fast electrons can be written

N0 =
ηabsEL
〈ε〉

(1.79)

where 〈ε〉 is the mean electron kinetic energy and ηabs means the laser energy conversion into the

forward accelerated fast electrons kinetic energy. By collecting available experimental and numerical

results, two interpolations were proposed for the time integrated laser energy absorption coefficient

[Davies, 2009]

ηabs =

(
ILλ

2

3.37 1020 W.cm−2.µm

)0.1958

or ηabs =

(
ILλ

2

4.30 1021 W.cm−2.µm

)0.2661

. (1.80)

Note that the instantaneous laser energy absorption is expected to depend on time. The distribution

function of the forward accelerated electron beam at the Laser-Solid Interface z = 0 can be written as

follows

Ψb (x, y, z = 0, ε, θ, ϕ, t) = N0fx(x)fy(y)fz(−v0t)fε(ε)fθ (θe(θ, ϕ)) . (1.81)

It is the number of fast electrons emitted from the Laser Plasma Interaction zone per unit of volume

d3r = dxdydz, per unit of kinetic energy dε and per unit of steradian d2Ω = sin θdθdϕ at time t. It
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can be used as an initial condition for electron transport studies.

Page 79



1.4. BRIEF SUMMARY OF LASER SOLID INTERATION AND LASER-GENERATED
RELATIVISITIC ELECTRON BEAM PROPERTIES

Page 80



Chapter 2

Electromagnetic Neutralization of a

Laser-generated Relativistic Electron

Beam

”The effects are always opposed to the causes that gave rise to them.”

Heinrich Lenz
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2.1. ELECTRIC FIELD GENERATED BY A MONOENERGETIC, COLLIMATED AND
HOMOGENEOUS SEMI-INFINITE RELATIVISTIC ELECTRON BEAM PROPAGATING
IN VACUUM

As described in the previous chapter, the interaction of (ultra) high-intensity short-pulse lasers

with solid targets of density ne generates large numbers of energetic electrons of density nb � ne.

These fast electrons can only penetrate into the solid if the solid can supply an equivalent charge

that electrically neutralize the fast electron beam. This electrical neutralization is done transversally

to the beam propagation direction in the case of solid conductors and longitudinally in the case of

solid insulators. While this electrostatically induced ”return current” je tends to compensate exactly

the fast electron beam current jb for insulators, the magnetic neutralization of the fast electron beam

occurs longitudinally for conductors. In the latter case, this is the magnetic neutralization of the beam

that induces the generation of the return current je which tends to exactly compensate the fast electron

beam jb in agreement with the Lenz law. It allows the beam to propagate through the solid, overpassing

the Alfvén-Lawson limit. This chapter is dedicated to describing these electromagnetic neutralization

processes. Assuming a monoenergetic, collimated and homogeneous semi-infinite electron beam for

simplicity, the self-consistent electromagnetic fields are derived in order to highlight the need of these

electromagnetic neutralization processes allowing the beam to propagate. Assuming the beam to

be rigid, its electric neutralization is derived in both cases highlighting the difference between the

insulator and conductor cases. Then, the magnetic neutralization of the fast electron beams is derived

in the case of laser-irradiated solid conductors.

2.1 Electric Field Generated by a Monoenergetic, Col-

limated and Homogeneous Semi-infinite Relativistic

Electron Beam Propagating in Vacuum

Figure 2.1: Schematic of a semi-infinite
]
−∞, O′

]
, axisymmetric, uniform, monoenergetic and col-

limated electron beam of radius rb moving at the velocity vb = vbez compared to the
laboratory frame (O, x, y, z, t) and its associated beam rest frame (O′, x′, y′, z′, t′) such
that O′ ≡ O at t = 0.

Let us firstly consider the case of a semi-infinite
]
−∞, O′

]
, axisymmetric, uniform, monoenergetic
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and collimated relativistic electron beam propagating in vacuum along the z-axis with the velocity

vb = vbez compared to the laboratory frame (O, x, y, z, t). One notes (O′, x′, y′, z′, t′) the beam rest

frame such that O′ ≡ O at t = 0 (see Figure 2.1). One notes rb the beam radius and all values in the

beam rest frame are denoted by a prime symbol ’. There are no external electromagnetic fields and

one works with the spatial cylindrical coordinates (r, θ, z) and the momentum cylindrical coordinates

(pr, pθ, pz) due to the geometry of the problem. According to the Einstein-Lorentz transformations,

one has the relations for each event (r, t) and for each beam electron of momentum p and velocity v.
t′ = γb

(
t− vb

c2
z
)

r′ = r

θ′ = θ

z′ = γb (z − vbt)

and


γ′ = γbγ

(
1− vvb

c2

)
p′r = pr

p′θ = pθ

p′z = γbγme (vz − vb)

where γb = 1/
√

1− (vb/c)
2 is the beam Lorentz factor, c is the velocity of light and me is the electron

mass. In order to estimate the equilibrium (if it exists!) between the beam and the electric field it

generates in the beam rest frame, one has to solve the Vlasov equation

∂f ′b
∂t′

+
∂

∂r′
.
(
v′f ′b

)
− ∂

∂p′
.

[
e

(
E′ +

v′

c
×B′

)
f ′b

]
= 0 (2.1)

coupled with the Maxwell equations
∂2Φ′

∂r′2
= 4πen′b (2.2)

and
∂2A′

∂r′2
− 1

c2

∂2A′

∂t′2
= −4π

c2
j′b +

1

c2

∂

∂t′

(
∂Φ′

∂r′

)
(2.3)

where f ′b(r
′, p′, t′) = fb(r

′, p′, t′) is the electron beam distribution function in the beam rest frame (see

Appendix A, section A.1.1). Also, it has been noted Φ′ and A′ the electrostatic and vector potential

( B′ = c(∂/∂r′) ×A′ and E′ = −(∂Φ′/∂r′) − (∂A′/∂t′) ) with the Coulomb gauge ( (∂/∂r′).A′ = 0

), n′b = nb/γb the beam charge density and j′b = 0 the beam current density. According to the least

action principle, the constants of motion for an electron in the beam volume are the Hamiltonian H ′,

the canonical axial momentum P ′z and the angular momentum p′θ which are given by
H ′ = γ′mec

2 − eΦ′

P ′z = p′z − eA′z
p′θ = γ′me

(
x′v′y − y′v′x

)
.

(2.4)

Any function of these constants of motion is a solution of the Vlasov equation (2.1). Under our

assumptions of a semi-infinite, homogeneous, axisymmetric, monoenergetic and collimated electron
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beam, the distribution function reads consequently

f ′b(r
′, p′, t′) = n′b0Π

(
r′b − r′

)
Π
(
−z′
) 1

2πme
δ
(
H ′ −mec

2
)
δ
(
p′z − eA′z

)
(2.5)

where it has been noted Π the Heaviside distribution and δ the Dirac distribution. Starting from this

distribution function, one can obtain the beam density in the beam rest frame by integrating it over

the whole momentum space. It reads

n′b(r
′, z′, t′) =

∫ ∞
−∞

p′rdp
′
r

∫ ∞
−∞

dp′z

∫ 2π

0
dθf ′b(r

′, p′, t′)

= n′b0Π
(
r′b − r′

)
Π
(
−z′
) 1

me

∫ ∞
−∞

p′rdp
′
r

∫ ∞
−∞

dp′zδ
(
H ′ −mec

2
)
δ
(
p′z − eA′z

)
= n′b0Π

(
r′b − r′

)
Π
(
−z′
) 1

me

∫ ∞
−∞

p′rdp
′
rδ

mec
2(

√
1 +

(
p′r
mec

)2

+

(
eA′z
mec

)2

− 1)− eΦ′


= n′b0Π
(
r′b − r′

)
Π
(
−z′
)
mec

2

∫ ∞
1

γ′dγ′δ
[(
γ′ − 1

)
mec

2 − eΦ′
]

= n′b0Π
(
r′b − r′

)
Π
(
−z′
)(

1 +
eΦ′

mec2

)
(2.6)

Injecting this expression in (2.2) using E′ = −(∂Φ′/∂r′) due to the fact A′ = 0 (because j′b = 0 and

Φ′ does not depend on the time t′ in the beam rest frame), one gets the following equation for the

electrostatic potential

∂2Φ′

∂r′2
+

1

r′
∂Φ′

∂r′
+
∂2Φ′

∂z′2
− 1

λ′b
2 Π
(
r′b − r′

)
Π
(
−z′
)

Φ′ = 4πen′b0Π
(
r′b − r′

)
Π
(
−z′
)

(2.7)

where λ′b = c/ω′b =
√
γbλb is the beam skin depth in the beam rest frame and ω′b =

√
4πn′b0e

2/me =

ωb/
√
γb its natural plasma frequency. Even if one can find solutions of Equation (2.7) in each separated

subspace (z′ > 0),
(
r′ > rb, z

′ ≤ 0
)

and
(
r′ ≤ rb, z′ ≤ 0

)
, it is impossible to find an analytical solution

valid in the whole space by connecting continuously these electrostatic potentials and their spatial

derivatives (the self-electric field) found in these three subspaces. Besides, one can estimate the

longitudinal electric field by neglecting the radial spatial variation of the potential compared to the

longitudinal one close to the z′-axis and the vacuum-beam interface at z′ = 0. Equation (2.7) provides

in this case

Φ′(r′ → 0, z′ ≤ 0, t′) = −mec
2

e

[
1− exp

(
z′

λ′b

)]
(2.8)

One deduces that the longitudinal self-electric field E′z = −(∂Φ′/∂z′) vanishes inside the beam front

over approximately the beam skin depth λ′b. According to the Lorentz transformation,

E(r → 0, z ≤ vbt, t) = E(r → 0, z, t ≥ z/vb)
= E′(r′ → 0, z′ > 0, t′)

= E0 exp

[
γb (z − vbt)

λ′b

]
ez

(2.9)
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where E0 = −4πen′b0λ
′
b. It means physically that each beam slice of thickness ≈ λ′b generates a longitu-

dinal electric field which is screened by the electromagnetic counter-reaction of its closest neighboring

slices of same thickness so that the slices are screened one by one by each other except for the last slices

close to the beam-front-vacuum interface at z′ = 0. Thus, one can roughly estimate the longitudinal

self-electric field generated at the beam front on the z′-axis by approximating the beam as a disk of

density of effective charge per surface unit σ′b = −2n′b0eλ
′
b located at z′ = 0. According to the Gauss

theorem, one gets in this case

E′(r′ → 0, z′ > 0, t′) ≈ 2πσ′b

1− z′√
r′b

2 + z′2

 ez (2.10)

and consequently

E(r → 0, z > vbt, t) = E(r → 0, z, t < z/vb)

≈ E0

1− γb (z − vbt)√
rb2 + γb2(z − vbt)2

 ez.
(2.11)

The factor 2 in the expression of the density of charge per surface unit σ′b has been chosen in order

to respect the continuity of the electric field at z′ = 0 (z = vbt). Also, far away from the beam

front in the limit z′ → −∞, one can neglect the longitudinal spatial variations of the electrostatic

potential compared to the radial ones. The resulting equation has already been obtained and solved

by [Hammer and Rostoker, 1970] while considering an infinite electron beam. This solution which

respects the continuity conditions at r = rb and the boundary condition Φ′(r′ = 0, z′ → −∞, t′) = 0

is

Φ′(r′, z′ → −∞, t′) =


−mec

2

e

[
1− I0

(
r′

λ′b

)]
if r′ ≤ r′b

−mec
2

e

[
1− I0

(
r′b
λ′b

)]
+
mec

2

e

r′b
λ′b
I1

(
r′b
λ′b

)
ln

(
r′

r′b

)
if r′ > r′b

(2.12)

where it has been noted Iν the modified Bessel functions of the first kind. By applying the Lorentz

transformation, one gets [Hammer and Rostoker, 1970]

Φ(r, z → −∞, t) = Φ(r, z, t→∞)

= γb
[
Φ′(r′, z′ → −∞, t′)− vbA′z(r′, z′ → −∞, t′)

]
=


−γbmec

2

e

[
1− I0

(
r

λ′b

)]
if r ≤ rb

−γbmec
2

e

[
1− I0

(
rb
λ′b

)]
+
γbmec

2

e

rb
λ′b
I1

(
r

λ′b

)
ln

(
r

rb

)
if r > rb

(2.13)
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and consequently

E(r, z → −∞, t) = E(r, z, t→∞) =


γbE0I1

(
r

λ′b

)
er if r ≤ rb

γbE0
rb
r
I1

(
rb
λ′b

)
er if r > rb

. (2.14)

In the case where rb � λb, which implies rb � λ′b, one recovers the well known electric field generated

by a homogeneous, infinite and cylindrical rigid electron beam which can be obtained according to

the Gauss law :

E∞ =


−4πenb0

r

2
er if r ≤ rb

−4πenb0
r2
b

2r
er if r > rb

(2.15)

(I1(x) ∼ x/2 when x → 0). The term ”rigid” means that it is assumed that the beam electrons are

not affected by the electromagnetic fields they generate as well as by external electromagnetic fields.

Figure 2.2: Artist’s view taken from [Macchi et al., 2013] showing a laser-generated electron beam
trying to get out a solid target and the resulting electron cloud and accelerated ions.

We are more interested here in the opposite case where rb � λb since in relativistic laser-solid

interaction experiments, the laser-generated electron beam has a radius rb ≈ 10µm while nb0 is nec-

essarily less than the critical electron density nc ≈ 1021 cm−3 for a laser pulse of a 1 µm wavelength

(cf. Chapter 1). Thus, λb is typically less than λc ≈ 0.2µm. Moreover, in such experiments, the

Lorentz factor γb is typically less than 10 so that one can consider rb � λ′b. In this case, the solution

(2.13) is not physical because the linear density of electric energy generated by the beam is greater

than the linear density of the beam energy itself (I1(x) ∼ exp (x)/
√

2πx when x → ∞). This is, of
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course, physically impossible so that an electron beam cannot propagate in vacuum without being

electrically neutralized by a background media or by an accompanying positively charged beam. In

the case where there is no electric neutralization, the transport is necessarily inhibited. This is exactly

what happens when a laser-generated electron beam tries to get out in vacuum from the solid target

rear side (see Figure 2.2). When the beam electrons are escaping in vacuum, they create a spatial

charge separation which prevents the electrons with energies smaller than the target potential from

escaping the target. While the major part of beam electrons reflux inside the target, those with

energies higher than the surface potential can escape, thus creating a net positive charge at the sur-

face which is responsible for the generation of strong Electromagnetic pulses [Dubois et al., 2014].

Also, this strong electrostatic potential is responsible for the acceleration of light ions originated from

impurities, i.e., thin layers of water or hydrocarbons which are ordinarily present on solid surfaces un-

der standard experimental conditions. Such a positively charged ion beam accompanied by electrons

is commonly detected in laser-solid interaction experiments. A large number of theoretical and exper-

imental studies of accelerated ions have been published recently because of their interesting properties

such as ultrashort duration, high brilliance and low emittance comparable with ion beams generated

by a classical accelerator [Macchi et al., 2013].

2.2 Electric Neutralization of a Monoenergetic, Colli-

mated and Homogeneous Rigid Relativistic Electron

Beam Propagating in Solids or Dense Plasmas

2.2.1 Electric Neutralization of a Monoenergetic, Collimated and

Homogeneous Rigid Relativistic Electron Beam Propagating

in a Conductor

Let us consider the propagation in a conducting media of the semi-infinite electron beam studied in the

previous subsection. Such a conducting media can be a plasma or a metal. Due to their huge inertia

compared to the electrons and the time scale considered here, the ions (lattice) can be considered as

immobile. For simplicity, one assumes that the plasma (metal) is infinite, homogeneous and one notes

ni the fixed ion density (or the density of atoms for metals), ne the density, je the current density

and fe the distribution function of the conducting electrons of the media where the electron beam is

propagating through. For metals, these electrons are those of the conduction band ; ne0 = Zcni0 with

for example Zc = 3 for Aluminum, Zc = 1 for Copper, ... For plasmas, they are the ionized electrons:

ne0 = Z∗ni0 at t = 0 where Z∗ is the plasma ionization state which depends on the plasma density

and the plasma electron temperature Te. As mentioned in the previous subsection, the electrical
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equilibrium of the beam electrons with the self-generated electric field is physically impossible. One

assumes so for simplicity that the electron beam is rigid in order to determine the electric response

to the beam propagation in the conducting media. Also, one neglects the collisions of the beam

electrons with the atoms, electrons or ions of the media which will be discussed in detail later on.

Thus, instead of solving Equation (2.1) for the beam electrons, one has to determine the conducting

electrons dynamics. This can be done by solving the Vlasov-Fokker-Planck equation in the BGK

approximation for the conducting electrons (cf. Appendix A, section A.3.1)

∂f ′e
∂t′

+
∂

∂r′
.
(
v′f ′e

)
− ∂

∂p′
.

[
e

(
E′ +

v′

c
×B′

)
f ′e

]
= −ν ′

(
f ′e − f ′M −

δn′e
n′e0

f ′M

)
(2.16)

coupled to the Maxwell equations

∂

∂r′
.E′ = −4πe

(
n′b + n′e − Z∗n′i

)
(2.17)

(for metals, Z∗ must be replaced by Zc),

∂

∂r′
×E′ = −1

c

∂B′

∂t′
, (2.18)

and
∂

∂r′
×B′ =

4π

c

(
j′b + j′e + j′i

)
+

1

c

∂E′

∂t′
(2.19)

where the term

δn′e =

∫
R3

(
f ′e − f ′M

)
d3p′

is added to ensure the conservation of the number of conducting electrons. Assuming the latter

are not relativistic in the laboratory frame, one has γ′ = 〈γ′〉M = γb. Consequently, d3r′d3p′ =

(d3r/γb)(d
3p/γb) and one has

f ′M(r′, p′, t′) = γ2
b fM(r, p, t) =

γ2
bne0

(2πmekBTe)
3/2

exp

[
−
p′x

2 + p′y
2

2mekBTe
− γ2

b

(
p′z + γbmevb

)2
2mekBTe

]

where kBTe � mec
2 is the conducting electron temperature in the laboratory frame. For simplicity,

one assumes that ν ′ does not depend on the velocity of particles and that it is equal to the conducting

electron-ion collision frequency in the beam rest frame ν ′ei. Also, in order to ensure the Lorentz-

invariance of Equation (2.16), one has ν ′ei = νei/γb where νei is the non-relativistic electron-ion collision

frequency in the laboratory frame (see Appendix A, section A.3.2). By integrating (2.16) and (2.16)

multiplied by p′ over the whole momentum space, one gets

∂n′e
∂t′

+
∂

∂r′
.
(
n′ev

′
e

)
= 0 (2.20)
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and [
∂

∂t′
+

(
v′e.

∂

∂r′

)] (
p′e
)

= −e
(

E′ +
v′e
c
×B′

)
− ν ′

(
p′e − p′e0

)
. (2.21)

Here, the pressure tensor term has been neglected in (2.21) assuming the thermal velocity of the plasma

electrons can be neglected in comparison with the beam velocity i.e.
√
kBTe/me/γb ≤

√
kBTe/me �

vb. Concerning laser-generated relativistic electron beams, the beam density nb is necessarily less than

the critical density nc ≤ ne0 and one has γb ≈ 1 − 10. Thus, one can linearize the non-linear set of

equations {(2.17), (2.19), (2.18), (2.20), (2.21)} with respect to the small parameter n′b/n
′
e = nb/γ

2
bne.

One notes

∀ξ ∈ {n′e, v′e, j′e, E′, B′}, ξ = ξ0 + δξ

where the ξ0 are the values at t = 0 without the perturbation induced by the presence of the beam.

One has consequently f ′e0 = f ′M,

n′e0 =

∫
R3

f ′Md
3p′ = γbne0

in agreement with the Lorentz transformation of the charge/current density quadrivector,

p′e0 =
1

n′e0

∫
R3

p′f ′Md
3p′ = −γbmevb which implies v′e0 = −vb and j′e0 = γbne0evb.

The unperturbed plasma is initially quasineutral so that Z∗n′i0 = n′e0, j′i0 = −j′e0 and consequently

E′0 = B′0 = 0. Assuming that the perturbed conducting electrons have a momentum δp′e � mec, the

linearized fluid equations are therefore

δv′e =
δp′e,xex + δp′e,yey

γbme
+
δp′e,zez

γ3
bme

, (2.22)

∂δn′e
∂t′
− vb

∂δn′e
∂r′

+ n′e0
∂

∂r′
.
(
δv′e

)
= 0, (2.23)[

∂

∂t′
− vb

∂

∂z′

] (
δp′e

)
= −e

(
δE′ +

vb
c
× δB′

)
− ν ′eiδp′e, (2.24)

∂

∂r′
.δE′ = −4πe

(
n′b + δn′e

)
, (2.25)

∂

∂r′
× δE′ = −1

c

∂δB′

∂t′
, (2.26)

and
∂

∂r′
× δB′ = 4π

c
δj′e +

1

c

∂δE′

∂t′
(2.27)

where δj′e = −n′e0eδv′e + δn′eevb. In the 1960’s, advances in the production of high-current

beams of relativistic electrons using a long coaxial capacitor [Graybill and Nablo, 1966],

[Roberts and Bennett, 1968] stimulated experimental [Andrews et al., 1970] and theoreti-

cal [Cox and Bennett, 1970] research. In this context, [Hammer and Rostoker, 1970] and

[Lee and Sudan, 1971] have solved the set of equations {(2.22), (2.23), (2.24)(2.25), (2.27), (2.26)}
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under some assumptions we are going to explain. The authors used the Laplace-Fourier method

(Laplace for t′ and Fourier for r′) in order to replace all spatial and temporal derivatives by simple

multiplications. Besides, interested in the behaviour of such beam-plasma system after the initial

transients, i.e., far away from the beam front in the laboratory frame (z → −∞), they looked for

solutions in the limit t′ →∞ using the final-value theorem of Laplace transform theory:

lim
t′→∞

δ̂ξ(k, t′) = lim
s→0

s
̂̂
δξ(k, s)

where δ̂ξ is the Fourier transform of δξ and
̂̂
δξ its Laplace-Fourier transform. Thus, due to the fact

that the Fourier transform of the beam density is

n̂b = 2πr′b
J1(k⊥)

k⊥

∫ 0

−∞
dz′0 exp

(
−ikzz′0

)
,

where Jν is the Bessel function of the first kind, they found that all these quantities δξ in the limit

t′ →∞ can be written

δξ(r′, t′ →∞) =
1

(2π)3

∫ ∞
0

k⊥dk⊥

∫ ∞
−∞

dkz lim
s→0

s
̂̂
δξ(k, s)

=
1

2π

∫ ∞
0

k⊥dk⊥

∫ 0

−∞
dz′0

∫ ∞
−∞

dkz
Pξ(k⊥, kz)J1(k⊥r

′
b)Jνξ(k⊥r

′)

D0(k⊥, kz)
exp

[
ikz
(
z′ − z′0

)]
(2.28)

where Pξ(k⊥, kz) are polynomials and νξ = 1 or 0 depending on ξ while

D0(k⊥, kz) =

[(
kz

2 + k⊥
2
)(

kz + i
ν ′ei
vb

)
+

kz

λ′e
2

][
kz

(
kz + i

ν ′ei
vb

)
−
(

c

γbvbλ′e

)2
]
. (2.29)

Here, λ′e = c/ω′p = λe/
√
γb is the plasma skin depth in the beam rest frame and ω′p =

√
γbωp is the

Langmuir plasma frequency. In order to perform such kz-integrations in the integrals (2.28) using the

residue theorem, one has to determine the zeros kν for which D0(k⊥, kν) = 0.

The second bracket term of (2.29) is easy to factorize and one finds the poles

k1 = −i ν
′
ei

2vb
+

√(
c

γbvbλ′e

)2

−
(
ν ′ei
2vb

)2

= −i ν
′
ei

2vb
+

c

γbvbλ′e
+ o

(
νei
ωp

)
(2.30)

and

k2 = −i ν
′
ei

2vb
−

√(
c

γbvbλ′e

)2

−
(
ν ′ei
2vb

)2

= −i ν
′
ei

2vb
− c

γbvbλ′e
+ o

(
νei
ωp

)
. (2.31)

The first one is more complicated and needs some approximations. [Hammer and Rostoker, 1970] have
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Figure 2.3: Integration contour used for the kz-integration of (2.28) when z′−z′0 > 0 (left) and when
z′ − z′0 < 0 (right )

approximated

(
kz

2 + k⊥
2
)(

kz + i
ν ′ei
vb

)
+

kz

λ′e
2 = kz

[(
kz

2 + k⊥
2
)

+
1

λ′e
2

]
+ o

(
ν ′ei
ω′p

)
by considering the weakly-collisional plasma case ω′p/ν

′
ei � 1. Thus, they found the poles

k3 ≈ i
1

λ′e

√
1 +

(
λ′ek⊥

)2
(2.32)

and

k4 ≈ − i
1

λ′e

√
1 +

(
λ′ek⊥

)2
. (2.33)

Actually, this is in the laboratory frame where the collisionless plasma condition must be verified

so that it is the condition ωp/νei � 1 which must be considered and not ω′p/ν
′
ei � 1. Besides,

in the original paper of [Hammer and Rostoker, 1970], the authors consider that ωp = ω′p and not

ωp = ω′p/
√
γb. However, this does not change the poles obtained by [Hammer and Rostoker, 1970]

because ωp/νei � 1 still implies λ′eν
′
ei/vb � 1. k5 is then found by identification :

(
kz

2 + k⊥
2
)(

kz + i
ν ′ei
vb

)
+

kz

λ′e
2 = (kz − k3) (kz − k4) (kz − k5)

which gives

k5 ≈


−iν

′
ei

vb
(λ′ek⊥)

2
if λ′ek⊥ � 1

−iν
′
ei

vb
if λ′ek⊥ � 1
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Thus, [Lee and Sudan, 1971] approximate

k5 ≈ −i
ν ′ei
vb

(λ′ek⊥)2

1 + (λ′ek⊥)2 (2.34)

which reproduces well both limits. One can notice that this expression (2.34) can also be obtained

by assuming kz � k⊥ in the first bracket of (2.29). In the opposite case where kz � k⊥, one can

also find the poles ±2i/λ′e but they correspond to vanishing solutions close to z = vbt over the plasma

skin depth λe/γ
3/2
b while we are interested here in the plasma response far away from the beam front,

i.e., for |z − vbt| � λe/γ
3/2
b . Like in the case studied by [Hammer and Rostoker, 1970], one can

neglect the pole k5. Indeed, concerning laser-generated electron beams, the typical length scale we are

interested in is in ranges from the collisional relaxation length lb = vb/νei = l′b/γb to the beam length

Lb ≈ vbτL = L′b/γb where τL is the laser pulse duration. In current experiments, τL is typically less

than 1− 10 ps and is consequently very small compared to the characteristic magnetic diffusion time

τd =
r2
b

λ2
eνei

=
τ ′d
γb3

(2.35)

found by [Lee and Sudan, 1971]. Thus, for z′− z′0 > 0, the kz-integration can be performed according

to the residue theorem along the contour defined by the real axis including the pole kz = k3 completed

by a half-circle in the upper half kz plane such as represented in the left panel of Figure 2.3. For

z′−z′0 < 0, it can be performed along the contour defined by the real axis including the pole kz = k1, k2

and k4 completed by a half-circle in the lower half kz plane such as represented in the right panel of

Figure 2.3. Finally, the z′0 and k⊥-integrations can be performed exactly in the limit |z′| � λ′e and

gives [Hammer and Rostoker, 1970]

δE′r(r
′, z′ < 0, t′ →∞) = 4πn′ber

′
bγ

2
bF1(r′)

[
v2
b

c2
− gc(z′)

]
δE′θ(r

′, z′ < 0, t′ →∞) = 0

δE′z(r
′, z′ < 0, t′ →∞) = − 4πn′ber

′
bγb

[
vb
ω′pr
′
b

G2(z′)− gs(z′)F2(r′)

]
δB′r(r

′, z′ < 0, t′ →∞) = 0

δB′θ(r
′, z′ < 0, t′ →∞) = − 4πn′ber

′
bγ

2
b

vb
c
F1(r′)

[
1− gc(z′)

]
δB′z(r

′, z′ < 0, t′ →∞) = 0

δn′e(r
′, z′ < 0, t′ →∞) = − n′b

{
G1(z′) +

(
γ2
b − 1

) ω′pr′b
c
F2(r′)

[
1− c

vb
gc(z

′)

]}
δv′er(r

′, z′ < 0, t′ →∞) = −
n′b
n′e0

γbω
′
pr
′
bgs(z

′)F1(r′)

δv′ez(r
′, z′ < 0, t′ →∞) = −

n′b
n′e0

vb

{
G1(z′)−

ω′pr
′
b

c
F2(r′)

[
1− c

vb
gc(z

′)

]}

(2.36)

where
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gc(z
′) = cos

(
ω′pz

′

γbvb

)
exp

(
ν ′eiz

′

2vb

)
, gs(z

′) = sin

(
ω′pz

′

γbvb

)
exp

(
ν ′eiz

′

2vb

)
,

G1(z′) =

{
1− gc(z′) if r′ ≤ r′b
0 if r′ > r′b

, G2(z′) =

{
gs(z

′) if r′ ≤ r′b
0 if r′ > r′b

,

F1(r′) =


I1

(
r′

λ′e

)
K1

(
r′b
λ′e

)
if r′ ≤ r′b

I1

(
r′b
λ′e

)
K1

(
r′

λ′e

)
if r′ > r′b

and

F2(r′) =


I0

(
r′

λ′e

)
K1

(
r′b
λ′e

)
if r′ ≤ r′b

− I1

(
r′b
λ′e

)
K0

(
r′

λ′e

)
if r′ > r′b

.

Here, Iν and Kν are the modified Bessel functions respectively of the first and second kind

(There is a mistake in [Hammer and Rostoker, 1970], Eq. (110) : it is ”+I1(r′b/λ
′
e)K1(r′/λ′e)” and

not ”−I1(r′b/λ
′
e)K1(r′/λ′e)” in the lower line of the second bracket). The discontinuities at r′ = r′b

of the functions G1 and G2 are due to the discontinious beam current profile and the cold plasma

assumption. According to the Lorentz transformations, one can now deduce the electric response to

the beam propagation of the conducting electrons far away from the beam front (|z− vbt| � λe/γ
3/2
b )

in the laboratory frame

δne(r, z < vbt, t� τd) = − nb

 1− cos

(
ωp
√
γb
z − vbt
vb

)
exp

[
νei (z − vbt)

2vb

]
if r′ ≤ r′b

0 if r′ > r′b

δver(r, z < vbt, t� τd) = − c
nb
ne0

rb
λ′e

sin

(
ωp
√
γb
z − vbt
vb

)
exp

[
νei (z − vbt)

2vb

]
F1(r)

δEr(r, z < vbt, t� τd) = − 4πnberb cos

(
ωp
√
γb
z − vbt
vb

)
exp

[
νei (z − vbt)

2vb

]
F1(r)

.

(2.37)

Thus, the electric field generated by a relativistic electron beam far away from the beam front (2.15)

expels radially a small fraction (nb/ne0 � 1) of the conducting electrons out of the beam volume.

This electron current generates a radial electric field which counteracts the electric field generated by

the beam so that the full radial electric field Er = δEr vanishes. This electric neutralization of the

beam occurs within a time scale of few ν−1
ei with oscillations at the plasma frequency ω′p = ωp

√
γb

evaluated in the beam rest frame. This frequency can become significant for very large values of γb.

In the opposite case of a collisional plasma where νei � ωpe, k1 becomes purely imaginary :

k1 = −i 1

γ2
b τ
′
evb

+ o

[(
ωp
νei

)3
]

(2.38)

where τ ′e = ν ′ei/ω
′
p

2 = τe/γb
2 is the Coulomb explosion time evaluated in the beam rest frame and k2

coincides now with k5 (in the limit k⊥λ
′
e � 1) while k3, k4 and k5 are unchanged. By repeating the
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procedure described above, one obtains in this case for |z − vbt| � λe/γ
3/2
b :

δne(r, z < vbt, t� τd) = − nb

 1− exp

(
γb
z − vbt
τe

)
if r′ ≤ r′b

0 if r′ > r′b

δver(r, z < vbt, t� τd) = c
nb
ne0

rb
λ′e

ωp
νei
√
γb

exp

(
γb
z − vbt
τe

)
F1(r)

δEr(r, z < vbt, t� τd) = − 4πnberb exp

(
γb
z − vbt
τe

)
F1(r)

. (2.39)

Thus, the electron beam is electrically neutralized in a time scale of τe/γb. In agreement with

[Cox and Bennett, 1970], the oscillations at the plasma frequency ω′p have disappeared and the mag-

nitude of the radial velocity is lower because of a greater influence of the electron-ion collisions.

2.2.2 Electric Neutralization of a Monoenergetic, Collimated and

Homogeneous Rigid Relativistic Electron Beam Propagating

in a Dielectric

The propagation of a semi-infinite electron beam in a non-conducting media is more complicated.

The experiments show that the laser-generated electron beam can propagate deeply in the target

while there is no free electrons in dielectrics (Z∗ = 0) to electrically neutralize the beam. This

paradox is solved by noticing that the atoms in a dielectric can be ionized in collisions with the

beam electrons (or with the newborn electrons released by ionization), by the self-consistent electric

field at the beam front (2.11) or by the electrostatic field induced by the space-charge separation.

Let us consider that the electron beam is generated in the laser-solid interaction zone at z . 0

over a small thickness λs (cf. Chapter 1) and is propagating in a semi-infinite dielectric (z > 0).

[Tikhonchuk, 2002] has shown that the ionization of dielectric atoms by the self-consistent electric

field at the beam front (2.11) is much more important than their collisional ionization by the impact

of beam electrons. Indeed, according to our estimate (2.11) and assuming the typical values of laser-

generated electron beam parameters nb ≈ nc and γb ≈ 1− 10, the typical value of the self-consistent

electric field at the beam front is E0 = −4πen′b0λ
′
b ≈ −1012 V.m−1 which represents ≈ 10% of

the atomic electric field EBohr,n = −Z3e/n2r2
Bohr ≈ −5(Z3/n2)1011 V.m−1 in the Bohr hydrogenoid

approximation (for example for Carbon, Z = 6 and n = 2). Thus, the field is sufficiently high to

induce a tunelling ionization with the characteristic rate of ≈ 1 fs−1 according to [Keldysh, 1965] while

the collisional ionization probability does not exceed ≈ 100 ns−1 according to [Tikhonchuk, 2002].

Besides, still according to the author, the self-consistent electric field is not sufficient to fully explain

a deep penetration of laser-generated electron beam in dielectrics as observed in experiments due to

the screening of the self-consistent electric field by newborn electrons. The space-charge-separation

electric field must so be taken into account. [Debayle and Tikhonchuk, 2007] have developed a quasi-
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stationary 1D model of the laser-generated electron beam transport through a dielectric material that

we are going to present here. In this model, the atoms and new born ions are assumed to be at rest

due to their huge inertia compared to the electrons and the small time scale considered here. The new

born free electrons dynamics is resolved according to the hydrodynamic equation for the conduction

electron density (see Appendix B, section B.1.2)

∂ne
∂t

+
∂

∂z
(nevez) =

∂ni
∂t

= −∂nn
∂t

= νE (nn − ni) + νen (nn − ni)− νrecni (2.40)

where νE = νE(Ez) is the electric field ionization rate, νen = νen(ne, Te) is the collisional ionization rate

depending on the conducting electrons density ne and their temperature Te and νrec is the three-body

recombination rate, the hydrodynamic equation for the conduction electron momentum

∂je,z
∂t

=
e2

me
neEz − νeije,z (2.41)

where the left hand side takes into account the temporal part of the electron inertia and the hydro-

dynamic equation for the conduction electron internal energy

3

2

∂

∂t
(nekBTe) = je,zEz − 2Ip

∂ni
∂t

(2.42)

where the second term in the right hand side, depending on the mean ionization potential Ip, accounts

for the energy losses due to the ionization and finally the Saha’s equation

ni
nn − ni

=
νen
νrec

, (2.43)

based on the detailed equilibrium between the collisional ionization process and the three body recom-

bination. In a 1D model, the magnetic field is neglected while the electric field is estimated according

to the Maxwell-Gauss equation

∂Ez
∂z

= −4πe (ne + nb − ni)− 4π
Ip
Ez

∂ni
∂z

(2.44)

where the last term in the right hand side accounts for the dielectric polarization Pz induced by the

field ionization process such that (∂Pz/∂z) = (Ip/Ez)(∂ni/∂z) [Debayle and Tikhonchuk, 2007]. Also,

for simplicity, only the first ionization of atoms is taken into account, leading to an ionization state

Z∗ = 1. One can notice that direct collisional ionization of atoms by the beam electrons is neglected

here as the pressure of the new born electrons, because their thermal velocity is small compared to

their mean velocity. The beam is assumed to be rigid since the ionization losses are relatively small

for present day laser-generated electron beam currents. The 1D approximation consists in considering

only the beam transport close to the z-axis rejecting the beam radius rb to the infinity. Consequently,

the self-consistent electric field at the beam front cancels. One can roughly estimate the space-charge-
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separation electric field on the time scale t� ν−1
E by solving (2.44) assuming

ne
(
z, t� ν−1

E

)
= (ne0 − nb) (Π[z + λs]−Π[z])

ni
(
z, t� ν−1

E

)
= ni0 (Π[z + λs]−Π[z])

nb (z, t) = nb0 (Π[z]−Π[z − vbt])

where ne0 = ni0 is the free electron/ion density of the laser-dielectric interaction zone. This condition

accounts for the lack of the forward accelerated electrons in this zone as well as their propagation

inside the target. The resulting space-charge separation electric field reads

Ez
(
0 < z < vbt, t� ν−1

E

)
≈ 4πe(2nb0) (vbt− z) . (2.45)

Contrary to the self-consistent electric field (2.11), this electric field (2.45) is positive. Its maximal

value is close to 4πenb0vb/νE which has the same order of magnitude as E0 and can consequently lead

to the tunnel ionization of the neutral atoms. Moreover, by coupling the Maxwell-Gauss equation

(2.44) with the charge conservation equation −e(∂/∂t)(ne + nb − ni) = (∂/∂z)(je,z + jb), one gets

∂Ez
∂t

= −4π (jb + jez)−
∂Pz
∂t

. (2.46)

This Ampère-like equation (2.46) shows that the charge-space-separation electric field induces elec-

trostatically a ”return current” in the dielectric which tends to cancel the total current. This return

current generates an Ohmic electric field according to Equation (2.41). The new born electrons are

strongly heated by Joule effect according to Equation (2.42) and participate in the collisional ionization

of the dielectric according to Equation (2.40). Finally, the beam current is electrically neutralized in

agreement with the the charge conservation equation except close to the beam front where the ”return

current” induces a lack of free electrons. These time-dependent processes are leading to an additional

beam energy loss compared to laser-metal interaction as shown experimentally by [Pisani et al., 2000].

2.3 Magnetic Neutralization of a Monoenergetic, Colli-

mated and Homogeneous Rigid Relativistic Electron

Beam Propagating in a Conductor

Let us consider here a monoenergetic cylindrical and semi-infinite electron beam propagating in a

medium assuming that it is already electrically neutralized. In a plasma or a conducting metal, the

beam is neutralized electrically by the radial expulsion of background electrons out of the beam volume

while in a dielectric material, this is the electrostatically induced ”return current” which longtudinally

neutralizes the beam. However, we show in this subsection that, even electrically neutralized, a
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high current of electron beam cannot propagate without its magnetic neutralization. We start from

Equations (2.1), (2.3) and the Maxwell-Gauss equation

∂2Φ′

∂r′2
= 0 (2.47)

which accounts for the electric beam neutralization. By performing an analysis similar to that of

Section 2.1, one can show that, far away from the beam front i.e. for |z| � λ′b, the beam remains

homogeneous n′b = n′b0Π(rb − r), the electrostatic potential Φ′ = 0 and the vector potential

A′z
(
r′, z′ → −∞, t′

)
=


A0

[
1− I0

(
r′

λ′b

)]
if r′ ≤ r′b

A0

[
1− I0

(
r′b
λ′b

)]
−A0

r′b
λ′b
I1

(
r′b
λ′b

)
ln

(
r′

λ′b

)
if r > rb

(2.48)

where A0 = −γbβbmec/e. Consequently, according to the Lorentz transformation of the fields, the

magnetic field in the laboratory frame reads

B (r, z → −∞, t) =


A0

λ′b
I1

(
r

λ′b

)
eθ if r ≤ rb

A0

λ′b
I1

(
rb
λ′b

)
rb
r

eθ if r > rb.
(2.49)

In the case where rb � λ′b, one retrieves the well known magnetic field generated by a homogeneous,

infinite and cylindrical rigid electron beam, which can be obtained according to the Ampère law :

B∞ =


4π

c
jb
r

2
eθ if r ≤ rb

4π

c
jb
r2
b

2r
eθ if r > rb

(2.50)

(I1(x) ∼ x/2 when x→ 0). In order to explain observations concerning cosmic rays, [Alfvén, 1939] has

studied the trajectories of beam electrons in this self-consistent magnetic fields (2.50). Indeed, thanks

to the electrical neutralization and to the fact that nb is constant inside the beam, the beam electron

kinetic energy is constant. By integrating the beam electrons equation of motion, [Alfvén, 1939] showed

that if the beam current Ib = jbπr
2
b is sufficently small, their motion is approximatively sinusöıdal as

illustrated by the trajectory a in Figure 2.4. As the current Ib increases, the trajectory passes through

the beam axis at a greater angle (trajectory b) until Ib = IA for which the particle passes through

the axis perpendicular to it (trajectory c). If Ib is increased still further, the net particle motion is

backward, as shown by orbit e and the extreme case of orbit f. It means that the electron beam

propagation is stopped due to the action of the self-generated magnetic field on the beam electrons.

According to [Lawson, 1959], the threshold value IA can be defined as the current for which the beam

electron Larmor radius RL in the maximum self-magnetic field, is equal to the half of the beam radius.
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Figure 2.4: Trajectories of beam electrons starting in the z-direction at various distance from the
axis of a uniform and electrically neutralized relativistic electron beam. Solid (dashed)
curves represent particle trajectories with net motion forward (inward) taken from
[Alfvén, 1939]

One obtains according to this criterion the well-known Alfvén-Lawson limit

IA = −γbβb
mec

3

e
≈ −17γbβb kA. (2.51)

Concerning laser-generated electron beams, the typical current is greater than IA by many orders

of magnitude while experiments show clearly the signature of the beam propagation deep inside the

irradiated target. Moreover, tfor laser-generated electron beam, we have typically rb � λb, which is

the opposite to the condition for which the solution (2.50) was obtained. In the case where rb � λb,

(2.49) is not physical because we obtain that the linear density of magnetic energy generated by the

beam is greater than the linear density of the beam energy (I1(x) ∼ exp (x)/
√

2πx when x→∞). This

is of course physically impossible. In order to break this paradox, we will show here that, in addition

to the electrical neutralization, an electron beam cannot propagate without being also magnetically

neutralized.

Let us consider so a rigid relativistic electron beam propagating through a conducting medium

(plasma or metal) and let us calculate the magnetic response of the medium to the beam propagation.

The system of equations to be solved {(2.16), (2.17), (2.18), (2.19)} was already introduced in the

previous section 2.2.1. According to [Hammer and Rostoker, 1970], assuming nb � ne, a weakly
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collisional (νei � ωp) and cold plasma (neglecting the pressure effects) and considering the time

scales small compared to the diffusion time τd, one obtains the solutions (2.36). Then performing the

Lorentz-transformations, one finds



δEz(r, z < vbt, t� τd) = −4πnberb sin

(
ωp
√
γb
z − vbt
vb

)
exp

[
νei (z − vbt)

2vb

]

×


vb
c

λ′e
rb
− I0

(
r

λ′e

)
K1

(
rb
λ′e

)
if r ≤ rb

I1

(
rb
λ′e

)
K0

(
r

λ′e

)
if r > rb

δje,z(r, z < vbt, t� τd) = −jb


1 − rb

λ′e
I0

(
r

λ′e

)
K1

(
rb
λ′e

)
if r ≤ rb

rb
λ′e
I1

(
rb
λ′e

)
K0

(
r

λ′e

)
if r > rb

+
jb√
γb

cos

(
ωp
√
γb
z − vbt
vb

)
exp

[
νei (z − vbt)

2vb

]

×


1 − c

vb

rb
λ′b
I0

(
r

λ′e

)
K1

(
rb
λ′e

)
if r ≤ rb

c

vb

rb
λ′b
I1

(
rb
λ′e

)
K0

(
r

λ′e

)
if r > rb

δBθ(r, z < vbt, t� τd) =
4π

c
jbrb


I1

(
r

λ′e

)
K1

(
rb
λ′e

)
if r ≤ rb

I1

(
rb
λ′e

)
K1

(
r

λ′e

)
if r > rb

. (2.52)

That solution shows that, within the time scale of the beam electrical neutralization (few ν−1
ei ), a

temporal variation of the magnetic field generated by the beam induces a longitudinal electric field.

This electric field accelerates a return current of plasma electrons δje,z which tends to cancel the

total net current (jb + je,z = 0) over the time scale ν−1
ei except in the narrow zone at the beam edge

rb ± λ′e. This is in agreement with the Lenz law which stipulates that the effects of the magnetic

field generated by the beam counteract its cause, that is the total net current here. The longitu-

dinal electric field δEz vanishes over the time scale ν−1
ei . Besides, as the two counterpropagating

currents do not cancel each other exactly, the magnetic field generated by the return current does

not completely cancel the magnetic field generated by the beam. There is a residual magnetic field

δBθ localized at the beam edge rb ± λ′e. The difference between expressions (2.52) and the original

results of [Hammer and Rostoker, 1970] comes from the fact that here, the relationship ω′p =
√
γbωp

has been taken into account (and not ω′p = ωp like [Hammer and Rostoker, 1970]). Also, as pointed

out by [Lee and Sudan, 1971], the magnetically induced return current and consequenly the residual

magnetic field diffuse over the time scale τd estimated by Equation (2.35) (see also Chapter 3).

According to [Cox and Bennett, 1970], in the case of a collisional plasma (νei � ωpe), the time scale

of the magnetic neutralization is defined by the Coulomb explosion time τe/γb. In this case, the

resolution of the system of Equations {(2.16), (2.17), (2.18), (2.19)} using the same methodology as
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[Hammer and Rostoker, 1970] gives

δEz(r, z < vbt, t� τd) = −4πnberb exp

[
γb (z − vbt)

τe

]

×


vb
c

λ′e
rb
− I0

(
r

λ′e

)
K1

(
rb
λ′e

)
if r ≤ rb

I1

(
rb
λ′e

)
K0

(
r

λ′e

)
if r > rb.

δje,z(r, z < vbt, t� τd) = −jb


1 − rb

λ′e
I0

(
r

λ′e

)
K1

(
rb
λ′e

)
if r ≤ rb

rb
λ′e
I1

(
rb
λ′e

)
K0

(
r

λ′e

)
if r > rb

+ jb
ωp
νei

exp

[
γb (z − vbt)

τe

]

×


1 − c

vb

rb
λ′e
I0

(
r

λ′e

)
K1

(
rb
λ′e

)
if r ≤ rb

c

vb

rb
λ′e
I1

(
rb
λ′e

)
K0

(
r

λ′e

)
if r > rb

δBθ(r, z < vbt, t� τd) =
4π

c
jbrb


I1

(
r

λ′e

)
K1

(
rb
λ′e

)
if r ≤ rb

I1

(
rb
λ′e

)
K1

(
r

λ′e

)
if r > rb

. (2.53)

In contrast to the collisionless case treated by [Hammer and Rostoker, 1970], the oscillatory component

of the return current and the longitudinal electric field have disappeared here. Also, the magnitude of

the time-dependent component of the return current is smaller than in the collisionless case because

of greater influence of collisions.

Magnetic neutralization proceeds differently through an insulator. In this case, the ”return cur-

rent” is already generated due to the induced charge-space-electric field. Thus, one cannot separate

the electric and magnetic neutralization of the beam but the resulting beam-”return current” system

is actually very similar : there is also a residual magnetic field at the beam edge. Thus, in both cases

(insulator or conductor), at the end of the beam electromagnetic neutralization, the beam-plasma

system consists in a relativistic electron beam, a quasi-opposite counterpropagating return current

and immobile ions. Such a system can be extremely unstable. The state of the art of the instablity

theory is presented in the next Chapter 3.
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Chapter 3

Collective Effects of Relativistic

Electron Beam Transport in Solids and

Dense Plasmas

”In relativity, movement is continuous, causally determinate and well defined, while in quantum

mechanics it is discontinuous, not causally determinate and not well defined.”

David Bohm
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3.1. QUASI-STATIC APPROXIMATION

When propagating through a material, laser-generated fast electron beams are electromagnetically

neutralized over a time scale of the background electron-ion collision time ν−1
ei or the background

Coulomb explosion time τe/γb depending on the temperature and density conditions. In solids and

dense plasmas, these time scales are typically of the order of a few fs. The electric field generated by

the electron beam expels radially a small part of the background electrons ∼ nb � ne out of the beam

volume in case of metals or plasmas. In case of insulators, the longitudinal electric field generated by

the fast electrons at the beam front initiates the field ionization of the material and accelerates the new-

born free electrons. The field ionization is followed by the collisional ionization by these accelerated

free electrons in the zone where the space-charge electrostatic field is screened. This electrostatically

induced ”return current” je tends to exactly compensate the beam current density je ≈ −jb. In both

cases (insulators or conductors), the resulting electric field cancels at the end of the neutralization

process. Concerning metals or plasmas, the temporal variation of the magnetic field generated by

the beam induces a longitudinal electric field that accelerates a return current of background free

electrons. This magnetically induced return current je tends also to exactly compensate the beam

current density je ≈ −jb in agreement with the Lenz law. However, in both cases (insulator or

conductor), the magnetic neutralization is not perfect. A fine surface around the beam edge of the

order of the background skin depth λ′e remains non neutralized and a residual magnetic field remains

locally. However, this residual magnetic field must be mitigated in case of smoother radial gradients

of the beam where [(1/nb)(∂nb/∂r)]
−1 � λ′e. This chapter presents the collective effects, taking place

at time scales larger than the beam neutralization time. Indeed, in this PhD studies, we are interested

in a time scale ranging from a few fs to a few hundreds of ps since the studied laser-pulse durations

τL are typically of about 10 fs− 100 ps.

3.1 Quasi-static Approximation

3.1.1 Background Electrons Dynamics after the Beam Electromag-

netic Neutralization

In dense background media such as solids or dense plasmas, the background electrons can be assumed

sufficiently collisional and close to equilibrium (Maxwell-Boltzmann or Fermi-Dirac distribution func-

tions) so that they may be modelled by a non-relativistic fluid approach. Such a fluid model for the

background requires that departures from collisional equilibrium are small. For example, fluid models

break down when electric fields are greater than meνeivTe/e because they may be responsible for the

acceleration of runaway electrons that are not taken into account by the hydrodynamic theory. The

non-relativistic assumption comes from the fact that the beam density nb is small compared to the

background conducting electrons density ne. Thus, the background response to the beam propagation

can be considered as a small perturbation and the induced background electron velocities are small
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compared to vb ≤ c. Also, over the time scale considered here, ions/atoms can be considered immobile

because of their huge inertia compared to the electron mass. Thus, the background response to the

beam propagation can be described by the hydrodynamic equations

∂ne
∂t

+
∂

∂r
. (neve) = 0 (3.1)

and

mene

[
∂

∂t
+

(
ve.

∂

∂r

)]
(ve)

= −nee
[
E +

ve
c
×B

]
− ∂

∂r
. (PeI− τ e) + Rei

(3.2)

for the background free electrons, only (see Appendix B, section B.1.2). The relativistic electron

beam and the background electrons interact via the macroscopic electromagnetic fields E and B.

Direct collisions of background electrons with beam electrons do not appear in Equations (3.1) and

(3.2). This is due to the fact that, since nb � ne, they are negligible compared to collisions with

background ions/atoms or background electrons. Here, we focus on the electromagnetic fields; the

collisional effects of relativistic electron beam transport are considered in the next Chapter 4. In

the time scale considered here, the beam has already been neutralized electrically so that the charge

neutrality equation

ne + nb =
∑
i

Zini. (3.3)

replaces the Maxwell-Gauss Equation. The ion charge state Zi depends on the local temperature and

properties of the material. nb being small compared to ne, the latter equation is valid on length scales

much longer than the Debye length like in the usual hydrodynamic approach. Also, over time scales

larger than the Langmuir wave time scale ω−1
p , one can neglect the electron inertia (left hand side term

in Equation (3.2)). In this case, oscillations of the laser-generated electron beam at the laser frequency

ωL or 2ωL cannot be resolved properly and are not taken into account. Also, the fluid viscosity is

neglected and the Braginskii or the Lee-More transport coefficients Rei = eneη.j−kBβ.
∂Te
∂r

are usually

used (see Appendix B, sections B.2.3 and B.2.4). As a result, Equation (3.2) is usually replaced

by the more simple equation

E = η.je −
1

nee

∂

∂r
(nekBTe) (3.4)

commonly called the Ohm’s law. Assuming that the cyclotron frequency ωc = |eB|/mec is small

compared to νei, the magnetization of the background electrons is neglected and the resistivity tensor

is usually taken to be isotropic η = ηI. Also, the thermal force is neglected since, in general, it is

small compared to the friction force. The electromagnetic fields are defined by the Maxwell-Faraday

equation
∂B

∂t
= −c ∂

∂r
×E (3.5)
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and the Maxwell-Ampère equation

∂E

∂t
= c

∂

∂r
×B− 4π (je + jb) = 0 (3.6)

with the initial conditions of zero field divergences (∂/∂r).B = 0 and (∂/∂r).E = 0. The quasi-static

approximation consists in neglecting the displacement current (∂E/∂t) in the Maxwell-Ampere

equation (3.6). This is fully justified as the background electron inertia is neglected, as one considers

time scales larger than ω−1
p and space scales larger than the plasma skin depth λe. Sometimes, due

to the fact that je ≈ −jb on spatial scales larger than λe, the Maxwell-Ampère Equation (3.6) is not

resolved and je is directly replaced by −jb in (3.4). The system of Equations (3.6), (3.4) and (3.5)

describes the self-generated electromagnetic field

E = −ηjb +
ηc

4π

∂

∂r
×B− 1

nee

∂

∂r
(nekBTe) (3.7)

and
1

c

∂B

∂t
+

∂

∂r
×
(
ηc

4π

∂

∂r
×B

)
= η

∂

∂r
× jb +

∂η

∂r
× jb −

kB
nee

∂ne
∂r
× ∂Te

∂r
. (3.8)

The second term in the left hand side of Equation (3.8) describes the magnetic field diffusion. One can

understand easily now the characteristic time scale (2.35) proposed by [Lee and Sudan, 1971]. Indeed,

considering space scale of the order of the beam radius rb, the diffusion operator gives the time scale

τd =
4πr2

b

ηc2
=

r2
b

λ2
eνei

because η = 4πνei/ω
2
p, by definition. There are three source terms for magnetic field generation in

Equation (3.8), depending on the beam current density, the electrical resisitivity and the background

electron temperature and density gradients, while the self-generated electric field E is mainly given by

−ηjb as already explained. These self-generated electromagnetic fields play an important role in the

relativisitic electron beam transport. The magnetic field due to the curl of the beam current density

tends to pinch the relativistic electron beam, the magnetic field due to the resistivity gradients tends

to move the relativistic electrons from low electrical resistivity zones to higher ones, while the resistive

electric field slows down the relativistic electrons [Davies et al., 1997]. The magnetic field generated

by the temperature-density crossed gradients in (3.8) may modify the beam transport on a time scale

of a few picoseconds [Nicolai et al., 2011] but on shorter time scales, it can be neglected. Using the

same assumptions and methodology as [Hammer and Rostoker, 1970], [Lee and Sudan, 1971] derived

the electron background response to the propagation of a semi-infinite, monoenergetic, cylindrical,

collimated and rigid relativistic homogenous electron beam on a time scale large compared to ν−1
ei or

τe/γb. Following the notations introduced in Chapter 2, [Lee and Sudan, 1971] considered only the
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pole k5. Their solution reads in the limit |z − vbt| � λe

ne
(
r, z < vbt, t� ν−1

ei or τe
)

= −nb

{
1 if r ≤ rb
0 if r > rb

(3.9)

for the background electron density and

je,z
(
r, z < vbt, t� ν−1

ei or τe
)

= −jbrb
∫ ∞

0
dk⊥

J0(k⊥r)J1(k⊥rb)

1 + (k⊥λ′e)
2 exp

[
νei (z − vbt)

vb

(k⊥λ
′
e)

2

1 + (k⊥λ′e)
2

]
≈ −jb

[
1− exp

(
γ2
b

vbτd
4 (z − vbt)

)]
when r � λ′e.

(3.10)

for the diffused background return current. This last expression shows that the return current starts

from the perfect neutralization je,z = −jb and then decreases in the time scale of τd and in a spatial

scale of τdvb.

3.1.2 Electric and Magnetic Fields Radial Profiles

Since laser-generated electron beam lengths are small compared to the diffusion length vbτL � vbτd,

let us consider here time scales shorter than the diffusion time (2.35). Due to the fact that there

are many orders of magnitude between ν−1
ei or τe/γb and τd, one has to solve accurately Equations

(3.7) and (3.8). In order to estimate the radial profiles of the electric and magnetic field induced by

a laser-generated electron beam, [Fill, 2001] assumed a homogenous conducting background with a

constant resistivity η0, an axisymetric rigid electron beam of the form

jb =

 jb0 sin2

(
π
t− z/vb

2τL

)
exp

(
− r2

2r2
b

)
if z ≤ vbt < z + 2vbτL

0 else

and the scaling
τd
τL
�
(
rb
τLc

)2

,
τd
τL
�
(
rb
δrb

)2

, (3.11)

where δr−1
b ∼ ∂/∂r. Starting from (3.8), he thus obtained for the magnetic field

Bθ(r, z, t) = η0c

∫ t

0

∂jb
∂r

dt

= jb0
2πr

c

τL
τd

exp

(
− r2

2r2
b

)
at t = τL.

(3.12)

Indeed, under the assumption (3.11), the diffusion term can be neglected, while the homogenous

background assumption cancels all the source terms except the one due to the curl of the beam
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Figure 3.1: Radial profile of beam current density jb, return current density je,z (jc,z with the Fills
notations), net current density jn,z (jn), azimuthal magnetic field Bθ (Bϕ), and radial
current density je,r = jn,r (jc,r) at peak of a pulse t = τL. The beam current is assumed
to have a Gaussian radial profile. The various quantities are normalized with respect
to the beam current density amplitude jb0. In addition, the following scaling factors
are used: τL/τd for jn,z, 2πrbτL/τdc for Bθ. The radial current has the same spatial
profile as the B-field. Its scaling factor is rb/τdc. The return current is drawn for a ratio
τd/τL = 100 [Fill, 2001]

current density. The background current density is deduced by using the Maxwell-Ampere law (3.6)

knowing the magnetic field (3.12). It reads

je,r = jn,r and je,z = −jb + jn,z (3.13)

where the net total current density

jn =
c

4π

∂

∂r
×B (3.14)
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and consequently 

jn,r = − c

4π

∂Bθ
∂z
≈ − 1

4π

∂Bθ
∂t
≈ −η0c

4π

∂jb
∂r

≈ jb0

(
r

cτd

)
exp

(
− r2

2r2
b

)
at t = τL

jn,z =
c

4π

1

r

∂

∂r
(rBθ) =

η0c
2

4π

∫ t

0

1

r

∂jb
∂r

+
∂2jb
∂r2

dt

= jb0
τL
τd

(
1− r2

2r2
b

)
exp

(
− r2

2r2
b

)
at t = τL

(3.15)

assuming vb ≈ c. Finally, by using Ohm’s law (3.7) and by neglecting the pressure term, the electric

field can be deduced knowing the return current je. The profiles of the current and the magnetic

field are shown in Figure 3.1. The small factor τL/τd in (3.15) explains why the magnetic curl in

the Maxwell-Ampere equation (3.6) is usually neglected and why the return current density is usually

considered as the exact opposite to the beam current density je = −jb. However, such an ”initial

situation” je,z = −jb is extremely unstable. One has to solve self-consistently Equation (3.7) for the

background electrons and the relativistic kinetic equation for the fast electron beam to model correctly

the laser-generated electron beam transport.

3.2 Beam-Plasma Instabilities

3.2.1 Linear Theory of Collisionless Instabilities

Figure 3.2: Typical distribution functions subject to the Weibel and the Filamentation instabilities
[Bret et al., 2010b].

Since the 1950’s with the discovery of the longitudinal electrostatic ”two-stream instability” by

[Bohm and Gross, 1949], it is known that such a system of two counterpropagating electron beam

is unstable. Later, in order to determine the physical mechanism responsible for the purely trans-

verse instability growth found by [Weibel, 1959] and associated with an anisotropic two-temperature

Maxwellian plasma , [Fried, 1959] found a second class of instabilities by modelling the Weibel-unstable

distribution function by two cold counterpropagating electron beams as illustrated in Figure 3.2. This

purely transverse instability is called the ”filamentation instability”. However, these two designations

are often used interchangeably in the litterature (Weibel or filamentation) even if this equivalence
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holds only for symmetric beams. The longitudinal and transverse instabilities are two limits of a more

general instability called the ”oblique instability” [Bludman et al., 1960]. Let us consider here the

propagation in the z-direction of an axisymmetric relativistic electron beam in a dense plasma on the

time scale t ≈ τL such that ν−1
ei or τe/γb � τL � τd. In this case, while plasma ions can still be

assumed immobile, the electrical and the magnetical neutralization of the beam has already occured

and one has

n(0)
e + n

(0)
b − Z

∗ni = 0 and j(0)
e + j

(0)
b = 0 with n

(0)
b � n(0)

e . (3.16)

The supscript ”(0)” denotes here the initial equilibrium in charge and in current between the electron

beam denoted by the subscript ”b” and the background conducting electrons denoted by the subscript

”e”. Contrary to the previous Chapter 2, the beam is not considered here as a perturbation but as

a part of the equilibrium (0). One notes nj(r, t)fj(p, t), j ∈ {e, b} the distribution functions in the

laboratory frame of both populations. We neglect the collisional effects so that njfj are solutions of

the Vlasov equation with the electromagnetic fields given by the Maxwell equations (see Appendix

A, section A.1.1). Also, we neglect the boundary conditions assuming that the perturbation space

scale in the z-direction is much smaller than the characteristic size of the system. In order to address

relativistic thermal spreads kBTj , we model the initial distribution functions by drifting Maxwell-

Juttner distribution functions [Jüttner, 1911]

f
(0)
j (p) =

kBTj/mec
2

4πγj(mec)
3K2

(
mec

2

γjkBTj

) exp

[
−mec

2

kBTj

(
γ − βj

pz
mec

)]
(3.17)

where γ =
√

1 + p2/(mec)2, vj0 = βjc the initial drift velocity in the z−directions of species j,

γj = 1/
√

1− β2
j the corresponding Lorentz factors and K2 the modified Bessel function of the second

kind. The standard method for studying instabilities consists in working in the Fourier’s space

∀ξ ∈ {ne, nb, je, jb, E, B} , ξ̂(k, ω) =

∫
R3

d3r

∫ ∞
−∞

dt ξ(r, t) exp (ik.r− iωt)

and consider a small perturbation δξ̂ � ξ̂(0) of the initial equilibrium ξ̂(0) such that ξ̂ = ξ̂(0) + δξ̂ in

order to determine eventual temporally exponentially increasing terms exp (δt). Here, δ = Im{ω(k)}
and depends on the excitation mode k. Applying this method to our considered equilibrium (0), one

can look for unstable modes, characterized by their linear growth rate δ, by determining a solution

of the dispersion relation in the form ω = ωr + iδ where ωr = Re{ω} for which δ > 0. According to

[Bret et al., 2010b], without specifying any favored direction for k, the linearized system of equations

consisting in the two Vlasov equations for the two distribution functions njfj coupled with the Maxwell
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equations for the electromagnetic fields (E, B) gives the dispersion relation
εxxω

2 − k2c2 = 0 (a)

or (
ω2εzz − k2

yc
2
) (
εyyω

2 − k2
zc

2
)
−
(
εyzω

2 − kykzc2
)2

= 0 (b)

(3.18)

where

∀(α, β) ∈ {x, y, z}2, εαβ(k, ω) = δαβ +
∑
i

ω2
j

ω2

∫
R3

d3p
pα
γ

∂f
(0)
j

∂pβ
+
∑
i

ω2
j

ω2

∫
R3

d3p
pαpβ
γ2

k.

(
∂f

(0)
j

∂p

)
meω −

k.p

γ

is the dielectric tensor, ωj =
√

4πnje2/me is the electron plasma frequency of species j and δαβ is

the Kronecker symbol. This dispersion equation has two main branches. The first one, defined by

Equation (3.18 a), pertains to modes with an electric field along the x-axis. Such modes are therefore

purely transverse for any k such that k.ex = 0. The second branch (3.18 b) defines modes with an

electric field lying within the (y, z) plane, which contains longitudinal and transverse components.

When considering wave-vectors k in the flow direction such that ky = 0, the off-diagonal term εyz

vanishes and (3.18 b) reduces to (
εyyω

2 − k2
zc

2
)
εzz = 0. (3.19)

Whereas the first factor may yield unstable modes, the remaining dispersion equation εzz = 0 defines

modes with an electric field aligned with the flow. These are the two-stream modes, which are therefore

purely longitudinal. If we now consider wave vectors normal to the flow, with kz = 0, we recover the

dispersion equation for the filamentation instability

εyy

(
εzzω

2 −
k2
yc

2

ω2

)
= εyz. (3.20)

Thus, contrary to a common assumption, the filamentation instability is generally not purely trans-

verse. It is purely transverse only in the case where εyz = 0 and consequently

εzz −
k2
yc

2

ω2
= 0, (3.21)

which corresponds to two perfectly symmetric counterpropagating electron beams which is not our

case since nb/ne � 1 (and therefore vb � ve). The domain of preponderance of each instability

class has been numerically computed in the (nb, ne, Tb) parameters space by [Bret et al., 2010b] for a

fixed plasma hot temperature kBTe = 5 keV. The surfaces that delimit regions governed by different

instability classes are displayed in Figure 3.3 and coloured according to the local maximum growth

rate in the k-space. The two-stream instability prevails for non relativistic beam drift energies (γb−1�
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1) as well as in the weakly relativistic systems with hot enough beams. Filamentation modes govern

systems where the beam and plasma densities are similar. Oblique modes are dominant for our case of

laser-generated electron beam propagation in a dense plasma. Also, oblique modes dominate for hot

enough relativistic beams. These results are illustrated by the lower panels of Figure 3.3 showing

the plasma density observed in 2D PIC simulations each ruled by a distinct intability class.

Figure 3.3: (top) Hierarchy of the two-stream, oblique and filamentation modes in the (nb, ne, Tb)
parameter space for Maxwell-Juttner distribution functions. (bottom) Plasma density
profiles at the end of the linear phase as predicted by 2D PIC simulations, each ruled by
a specific instability class. Here, the plasma temperature is Te = 5 keV and the beam
flows in the y-axis [Robinson et al., 2014]

Finding analytical expressions for the different growth rates δ is difficult due to the presence

of the Lorentz factor γ in the integrals defining the dielectric tensor components. However, these

triple integrals can be reduced to much more tractable one-dimensional quadratures using a change

of variables mentioned in [Wright and Hadley, 1975]. It allows to find scaling laws for the maximum

of each instability in the case of high γb and high Tb. It reads still according to [Bret et al., 2010b]

δmax
F ∝

(
nb
ne

)3/2

γb
−1/2 Tb

−3/2,

δmax
O ∝

(
nb
ne

)
γb
−1/3 Tb

−1 and

δmax
TS ∝

(
nb
ne

)
γb Tb

−1,

(3.22)

Page 110



CHAPTER 3. COLLECTIVE EFFECTS OF RELATIVISTIC ELECTRON BEAM
TRANSPORT IN SOLIDS AND DENSE PLASMAS

respectively for the filamentation instability, the oblique instability and the two-stream instability. In

the case where the fast electron beam temperature is sufficiently small

kBTb
mec2

<
3

210/3

(
nb
ne

)2/3

γ
1/3
b

(
1 + γ−2

b

)2/3(
1 + γ−1

b

)2 , (3.23)

the background electrons and the beam electrons can be considered as cold fluids according to

[Bret et al., 2010a]. In this particular case, starting from the hydrodynamic equations with the cold

approximation for both populations, coupled with the Maxwell-Gauss equation, one obtains the system

of equations 

ikzδÊz = −4πe (δn̂b + δn̂e)

(ω − kzve0) δn̂e = kzn
(0)
e δv̂e,z

(ω − kzvb0) δn̂b = kzn
(0)
b δv̂b,z

ime (ω − kzve0) δv̂e,z = eδÊz

iγ3
bme (ω − kzvb0) δv̂b,z = eδÊz

(3.24)

for the two-stream instability, assuming that the problem is one-dimensional (kx = ky = 0 and thus,

neglecting the magnetic field). The combination of the previous equations provides the dispersion

relation

1− ω2
e

(ω − kzve0)2 −
ω2
b

γ3
b (ω − kzvb0)2 = 0. (3.25)

The imaginary part of unstable mode δ = Im{ω} > 0 presents a maximum at the wave number

kz = ωe/vb0 and it is cut off at higher wave numbers. This maximum can be approximated by

δmax
TS (Tb → 0) ≈

√
3ωe

2γb

(
n

(0)
b

2n
(0)
e

)1/3

. (3.26)

For the filamentation instability, assuming kz = ky = 0, the hydrodynamic equations in the cold

approximation for both populations, coupled with the Maxwell equations gives

ikxδÊx = −4πe (δn̂b + δn̂e)

ωδB̂y = −kx
c
δÊz

ikxδB̂y = −4π

c
e
(
n(0)
e δv̂e,z − ve0δn̂e + n

(0)
b δv̂b,z + vb0δn̂b

)
− iω

c
δÊz

ωδn̂e = kxn
(0)
e δv̂e,x

ωδn̂b = kxn
(0)
b δv̂b,x

imeωδv̂e,z = eδÊz

imeωδv̂e,x = e
(
δÊx −

ve0
c
δB̂y

)
iγ3
bmeωδv̂b,z = eδÊz

iγbmeωδv̂b,x = e
(
δÊx +

vb0
c
δB̂y

)

(3.27)
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In the limit n
(0)
b � n

(0)
e , the determinant of this system provides the following dispersion relation

(
ω2 − ω2

e

) [
ω4 −

(
k2
xc

2 + ω2
e

)
ω2 − ω2

e

(
1 + γ−1

b

)
v2
e0k

2
x

]
− ω4

e

(
1− γ−1

b

)2
v2
e0k

2
x = 0. (3.28)

According to the equation, the unstable solution δ = Im{ω} > 0 saturates at high wave numbers

ωmax = ωeβb

√√√√n
(0)
b

n
(0)
e

√
3γb − 1

γb
. (3.29)

In the limit ω � ωe, the unstable solution can be written

δmax
F (Tb → 0) ≈ ωmax

kxve0√
k2
xc

2 + ω2
e

. (3.30)

3.2.2 Non-linear Evolution and Saturation Effects

The instability enters a nonlinear phase when the perturbations δξ̂ become of the same order of

magnitude as ξ̂(0). In this case, the linearization of the equations is no longer valid and some saturation

effects occur. The non-linear behaviour of these instabilities can be studied with PIC codes. However,

some key aspects of saturation effects can be understood from physical considerations. The two-

stream instability may give rise to a periodic chain of holes in the electron phase space. This coherent

structuring implies that a single mode eventually dominates the unstable spectrum. Oppositely, a

broad perturbation spectrum, like for laser-generated electron beam, may cause a quasilinear relaxation

of the beam. Scattering in the velocity space of primary unstable waves outside the beam-resonant

region limits their growth and the related beam energy loss. The instability saturation comes from

the growing waves that are trapping electrons which oscillate and form a vortex in the phase-space.

A simplified description of such electron traping by Landau dumping in strong electron plasma waves

has already been presented in Chapter 1, section 2.1.4.

The nonlinear development of the filamentation instability can be understood as follows. Electrons

of both beams interact through their microscopic currents. Electrons moving in opposite directions

repel each other. Thus, the initial charge and current neutral equilibrium is unstable. The magnetic

fields grow due to the rearrangement of beam electrons into spatially separated current filaments,

until it becomes sufficiently strong to confine the particles within a filament. The laser-generated

beam electrons are therefore strongly compressed while the electrons of the denser return current are

expelled. The tenuous beam electrons are channeled into filaments, which are immersed in an almost

uniform background return current. Such currents filaments can be remarkably stable according to

PIC simulations [Bret et al., 2010b]. This magnetic trapping was identified as the main mechanism

responsible for quenching the initial filamentation growth.

The main collisionless instability concerning laser-generated relativistic electron beam transport
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Figure 3.4: 3D PIC simulation of a Maxwell-Juttner beam-plasma system with nb/ne = 0.1, γb = 3,
Tb = 50 keV and Te = 5 keV. Isosurfaces of the beam (upper plots) and plasma (lower
plots) density profiles at successive times. The beam flows rightward [Bret et al., 2010b]

in solids or dense plasmas is the oblique instability which is mixture of the filamentation and two-

stream instabilities. The nonlinear stage of this instability is illustrated in Figure 3.4. Numerical

simulations of electron beam transport in plasmas have also confirmed that the oblique instability is

an important heating mechanism of background electrons and may also induce the background ion

heating due to decay of ion acoustic waves generated in the parametric decay of Langmuir waves.

3.2.3 Resistive Filamentation Instability

Collisions of the return current electrons are expected to influence the development of the instabilities

in high density, low temperature regions due to the scaling of the background electron-ion collision

frequency νei ∝ ni/T
3/2
e (see Appendix A, section A.3.2). As a consequence, the previous results

concerning the different instabilities inherent to the transport of laser-generated relativistic electron

beam transport through heated solids or dense plasmas may be affected by these collisions. An anal-

ysis of the collisional two-stream instability for Maxwell-Juttner electron distribution functions and

using the electron-ion Landau operator (see Appendix A, section A.2.2) has been recently car-

ried out, as illustrated in the left panel of Figure 3.5, according to [Robinson et al., 2014]. In the

presence of collisions, the peak growth rate drops from δTS = 5.3 × 10−3 to 1.1 × 10−3, while the

dominant wave number remains approximately the same. If strong enough, collisions may completely

stabilize the two-stream mode. The oblique modes are affected by collisions in a similar fashion,

exhibiting complete stabilization in the strongly collisional limit [Hao et al., 2012]. As first demon-

strated by [Molvig, 1975], an opposite phenomenon occurs for the filamentation modes. For a dilute

and energetic enough relativistic electron beam, collisions keep it unstable regardless of the trans-

verse temperature. The right panel of Figure 3.5, which is extracted from [FIORE et al., 2010] by

[Robinson et al., 2014], illustrates this tendency by comparing the wave number dependence of the
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Figure 3.5: (Left panel) Growth rate of the two-stream instability (Maxwell-Juttner initial dis-
tribution function) normalized by ωe versus kz normalized by the plasma skin depth
λe = c/ωe with (red, black) and without (blue) electron-ion collisions for ne = 1023

cm−3, nb/ne = 0.01, Tb = 100 keV, γb = 3, Te = 1 keV, Z∗ = Z = 10 and a Coulomb
logarithm (see Appendis A, section A.2.3) ln Λei = 2; (Right panel) Filamentation
growth rate (Maxwell-Juttner initial distribution function) normalized by ωe versus kz
normalized by the plasma skin depth λe = c/ωe in collisionless (dashed lines) and colli-
sional (solid lines) configurations for γb = 5, Te = 10 keV, nb/ne = 0.1, νei = 0.5ωp and
increasing transverse temperature Tb⊥ = 0.5 keV (blue), Tb⊥ = 0.5 keV (magenta) and
Tb⊥ = 0.5 keV (red). Both plots are taken from [Robinson et al., 2014]

collisionless and collisional filamentation growth rates for waterbag distributions (squared distribu-

tion functions in the momentum space fitting roughly Maxwell-Juttner distributions but allowing to

separate the longitudinal temperature Tj,z and the transverse one Tj,⊥). A BGK collision model (see

Appendix A, section A.3.1) is employed with ν = 0.5ωp. While the instability is weakened and

confined to smaller wave numbers as the beam transverse temperature is increasing, it is also enhanced

in the presence of collisions, especially in the large temperature limit. PIC simulations also confirmed

the predicted robustness of the collisional filamentation and the generation of filamentary structures

[Karmakar et al., 2008]. In this collisional regime, the filamentation instability is called the resistive

filamentation instability. Let us derive a simple dispersion relation for this instability. We still

assume ne � nb and we still neglect collisions of beam electrons with plasma particles so that fb still

satisfies the Vlasov equation. Also, we still consider the quasi-neutrality ne−Z∗ni = 0 and we neglect

the displacement current in the Maxwell-Ampere equation so that the Maxwell equations reduce to

∂

∂r
×B =

4π

c

(
je − e

∫
R3

p

γme
fb d

3p

)
(3.31)

and
∂

∂r
×E = −1

c

∂B

∂t
. (3.32)
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The background ions are still assumed immobile and the background electron dynamic is described

by the Ohm’s law (3.4)

E = ηje (3.33)

for which we retain only the main term. Also, we consider a constant resistivity η = η0 in space and

time. Finally, we still consider that the initial beam distribution function is a drifted Maxwell-Juttner

distribution function. The set of equations for the self-generated electromagnetic fields gives

∂B

∂t
+

∂

∂r
×
(
η0c

2

4π

∂

∂r
×B

)
= η0c

∂

∂r
× jb, (3.34)

∂E

∂t
+

∂

∂r
×
(
η0c

2

4π

∂

∂r
×E

)
= −η0

∂jb
∂t

(3.35)

and consequently 
δ̂Ez =

i
4πω

c2

kx
2 − i4πω

η0c2

δ̂jb,z (a)

δ̂Ex = −η0δ̂jb,x (b)

. (3.36)

The linearized Vlasov equation reads

δ̂fb =
ien

(0)
b

ω

δ̂E +
p.δ̂E

1− kxpx
γmeω

kx
γmeω

ex

 .∂fb(0)

∂p
(3.37)

and gives consequently

δ̂jb,z = −
in

(0)
b e2

meω

∫
R3

pz
γ

δ̂Ex∂fb(0)

∂px
+ δ̂Ez

∂fb
(0)

∂pz
+

kx
γmeω

pxδ̂Ex + pz δ̂Ez

1− kxpx
γmeω

∂fb
(0)

∂px

 d3p

= −

 in(0)
b e2

meω

∫
R3

pz
γ

1

1− kxpx
γmeω

∂fb
(0)

∂px
d3p

 δ̂Ex
−

 in(0)
b e2

meω

∫
R3

pz
γ

∂fb(0)

∂pz
+

kxpz
γmeω

1− kxpx
γmeω

∂fb
(0)

∂px

 d3p

 δ̂Ez

(3.38)

By neglecting δ̂Ex compared to δ̂Ez in (3.38), due to the fact that in general the longitudinal beam

current density jbz is greater than the transverse component jbx, and injecting (3.38) in (3.36 a), one
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finally finds the dispersion relation for the resistive filamentation instability

1−

ω2
b

kx
2c2

1− i 4πω

kx
2η0c2

∫
R3

pz
γ

∂fb
(0)

∂pz
d3p +

∫
R3

pz
γ

kxpz
γmeω

1− kxpx
γmeω

∂fb
(0)

∂px
d3p

 = 0. (3.39)

By performing the integrals for a low-temperature Maxwell-Juttner distribution function, the disper-

sion relation can finally be written with the form [Gremillet et al., 2002]

−i 4πω

η0ω2
b

+

(
kxc

ωb

)2

+
1

γ3
b

+
1

γb

(
βb
βTh,b

)2

F ′
(

1

βTh,b

ω

kxc

)
= 0 (3.40)

where

F ′(ξ) =
1√
π

∫
1

(u− ξ)2 exp
(
−u2

)
du

is the derivative of the Fried–Comte function F and βTh,b =
√

2kBTb/γbmec2 is the thermal beam

velocity normalized by c. The growth rate δ of the resistive filamentation instability can be deduced

by looking for the solution of the dispersion relation (3.40) in the form ω = iδ. It is plotted in the

left panel of Figure 3.6. The growth rate δ increases when increasing the plasma resistivity η0. For

Figure 3.6: (Left panel) Growth rate of the resistive filamentation instability Ω normalized by the
beam plasma frequency as a function of the wave vector in the transverse direction k
normalized by the beam skin depth c/ωb for βTh,b/βb = 0.001 (solid), 0.01 (dotted) and
0.1 (circles). The beam density is nb = 1020 cm−3, the beam Lorentz factor is γb = 2,
and the target resistivity is η0 = 10−6 Ω.m; (Right panel) 3D Isosurface associated to
jb = 4.8 1011 A.cm−2 of a Gaussian-shaped beam of monoenergetic 0.5 MeV electron
beam penetrating a 0.5-eV silica solid at normal incidence. The beam current density
is plotted at time t = 405 fs from a 3D PaRIS hybrid PIC simulation. Both plots are
taken from [Gremillet et al., 2002].

βTh,b/βb = 0.01 and η0 = 10−8 Ω.m, the growth rate maximizes at a value three times lower than
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observed in the left panel of Figure 3.6. For a cold beam Tb = 0, the asymptotic approximation of

F ′ can be used (F ′(ξ) ∼ ξ−2 when ξ � 1), which leads to [Gremillet et al., 2002]

4π

η0ωb

(
δ

ωb

)3

+

[(
kxc

ωb

)2

+
1

γ3
b

](
δ

ωb

)2

− 1

γb

(
βbkxc

ωb

)2

= 0 (3.41)

In the high-kx limit kxc/ωb �
√

4πβb/η0ωb
√
γb, when the magnetic diffusion is faster that the pinching

of the perturbation, the instability growth rate is saturated at δ = ωbβb/
√
γb.

3.3 Temperature Dependence of Fast Electrons Trans-

port

3.3.1 Temperature Dependence of the Background Electrical Resis-

tivity and Ionization State

The key ingredient for fast electron transport models are the transport coefficients and the ionization

states of the material through which the fast electrons propagate. An ideal (fully ionized, weakly

coupled, non degenerate) plasma model is insufficient. At high density, it is important to account

for the Fermi-Dirac electron statistics. The exclusion principle causes the electrons to have random

momentum even at zero temperature. These quantum effects become significant when the electrons

temperature is below the Fermi energy

kBTe < EF =
~2

2me

(
3π2ne

)2/3
. (3.42)

Ionization state

The ionization state Z∗ of the material defines the ratio of free and bound electrons in the material.

Based on the Thomas-Fermi model, [More, 1985] has proposed a useful formula for the ionization state

as a function of the density ρ = nimi and electron temperature Te of the material. It reads

Z∗ = Z∗TF

(
Te

Z4/3
,
nimu

Z

)
= Z

XZ

1 +XZ +
√

1 + 2XZ

(3.43)
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where Z is the atomic number of the matrial, mu is the atomic mass unit and

T0 = Te[eV ]/Z4/3,

R = nimu/Z,

Tf =
T0

1 + T0
,

AZ = 0.003323T 0.9718
0 + 9.26148 10−5 T 3.10165

0 ,

BZ = − exp−1.763 + 1.43175Tf + 0.31546T 7
f ,

CZ = −0.366667Tf + 0.983333,

Q1 = AZR
BZ ,

Q =
(
RCZ +QCZ1

)1/CZ
and

XZ = 14.3139Q0.6624.

This formula is accurate for Z & 10 and it badly estimates the ionization state at a low temperature.

Indeed, the Thomas-Fermi model is inadequate for capturing the metal-insulator transition since it

neglects any atomic structure effects on the ionization equilibrium and thus gives a too high ionization

level at low temperatures. Therefore, [Desjarlais, 2001] proposed a weighted blend of Thomas-Fermi

and a single ionization Saha model with a pressure ionization correction. This model provides smooth

transitions between the Thomas-Fermi model and the non-ideal Saha limit. The Saha contribution is

determined from

fe =
1

2

(√
K2 + 4K −K

)
where

K = 2
g1

g0

1

ni

(
2πmekBTe

~2

)3/2

exp

− I

kBTe

1−

(
1.5e2

I(3/4πni)
1/3

)3/2
.

The statistical weights g0 and g1 correspond to the ground state of the neutral atom and singly ionized

ion respectively, I is the first ionization energy, ni is the total neutral plus ion number density. For

both Cu and Al, g0 = 2 and g1 = 1, but in general the level degeneracy g = 2J + 1 is used. The

second term in parentheses in the exponential gives a semi-empirical pressure ionization correction.

The ionization state is finally given by

Z∗ = f
2/Z∗TF

2

e Z∗TF +
(

1− f2/Z∗TF
2

e Z∗TF

)
fe, (3.44)

according to [Desjarlais, 2001].

Electrical resistivity

The electrical resistivity is a key parameter for relativistic electron beam transport. According to the

Drude model, it can be written as

η =
meνe
nee2

(3.45)
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where νe is the background electron relaxation rate. The Lee-More model [Lee and More, 1984] is

usually used to estimate the relaxation rate. It takes into account the electron degeneracy by using the

Fermi-Dirac distribution (see Appendix B, section B.2.4 ) that covers the domain of temperatures

from kBT ≈ EF to the hot Spitzer regime [Cohen et al., 1950] [Spitzer and Härm, 1953]. For lower

temperatures in the solid and liquid phase, a different electron collision time is used. It is evaluated

according to

τ =
1

νe
= max {τec, τmelt, τmin} (3.46)

where the electron collision frequency τ−1
ec = τ−1

ei +τ−1
en accounts for the collisions on ions τ−1

ei with the

Lee-More degeneracy corrections and on atoms τ−1
en improved by [Desjarlais, 2001] while τmelt and τmin

stem from a Bloch-Gruneisen melting model [Ziman, 1961] and a minimum time based on inter-atom

spacing τmin = (3/4πni)
1/3/

√
(kBTe + EF )/me. The melt model gives τmelt = 50(Tmelt/T )τmin with

the material dependant constant 50 decreasing somewhat for T > Tmelt. In the left panel of Figure

3.7, the electrical resistivity of Beryllium with ρ = 1.84 g.cm−3 taken from [Robinson et al., 2014]

is plotted versus the temperature and is also compared with numerical results allowing to determine

the free parameters of the Lee-More model. Also, the hot Spitzer resistivity with and without the

electron-electron collisions correction factor (see Appendix B, section B.2.2) is plotted with the

cold melting model. For Hydrogen plasmas, as suggested by [Lambert et al., 2011], comparing it

with ab initio molecular dynamic computations, the electrical resistivity can be evaluated as η−2 =

ηHubbard
−2 + η−2

Spitzer where ηSpitzer is the hot temperature Spitzer plasma transport coefficient and

ηHubbard is the low temperature transport coefficient found by [Hubbard, 1966]. Comparisons between

such expression for Hydrogen plasmas with different densities are plotted in the right panel of Figure

3.7.

The main disadvantage of such models (Lee-More and Hubbard-Spitzer) is that they assume Ti =

Te = T and they do not account for a different ion/lattice temperature Ti than the conducting electron

temperature Te. A two-temperature model for the electrical resistivity of Copper and Aluminum has

been proposed by [Eidmann et al., 2000] and later improved by [Chimier et al., 2007]. In this model,

the collision frequency of the electrons νe is evaluated by taking the weighted average of the electron

relaxation rate in different temperature regimes

ν−2
e = (νe−ph + νe−e)

−2 + ν−2
c + ν−2

Spitzer. (3.47)

In the low temperature regime, the mean free path is evaluated by ve/ (νe−ph + νe−e) where νe−ph is the

electron-phonon collision rate, νe−e is the electron-electron collision rate and ve =
√

(2EF + Te)/me

is the electron velocity. In the high temperature regime, the mean free path is evaluated by

ve/νSpitzer. In the intermediate range of temperatures, the mean free path is written as ve/νc where

νc = ve/(3/4πni)
1/3. However, for other materials than Copper and Aluminum, experimental or nu-

merical data are needed to fix the free parameters of the model. The electrical resistivities η from
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Figure 3.7: (Left panel) Electrical resistivity of Beryllium with ρ = 1.84 g.cm−3 taken from
[Robinson et al., 2014] versus the temperature (cyan solid curve) compared with nu-
merical results (black solid curve). The hot Spitzer resistivity (red) with (solid line) and
without (dashed line) the electron-electron collisions correction factor (see Appendix
B, section B.2.2) is also plotted with the cold melting model (dashed cyan line). (Right
panel) Electrical conductivity (σ = 1/η) taken from [Lambert et al., 2011] obtained nu-
merically for Hydrogen plasmas with different densities as a function of temperature
compared with Hubbard–Spitzer, Lee–More, and Ichimaru models.

Figure 3.8: Electrical resistivity η for Aluminum (black) and Copper (red) as a function of the
electron temperature plotted in two particular cases : Ti = 300K (dashed curves) and
Ti = Te (solid curves) and for Hydrogen (ρ = 50 g.cm−3) with Ti = Te (solid blue curve).

the Eidmann-Chimier model are plotted for Aluminum, Copper as well as the Hubbard-Spitzer elec-

trical resistivity of a highly compressed Hydrogen in Figure 3.8. Concerning the Hubbard electrical
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resistivity, a least square fit from the ion-ion coupling parameter Γ table of [Hubbard, 1966] is used

to avoid discontinuities. For dielectric materials (insulators), the situation is much more complicated

and one usually needs extensive quantum molecular dynamic computations. For example, the left

panel of Figure 3.9 shows huge differences between the electrical resistivity given by the Lee-More

model and such a computation, solving the the Kubo-Greenwood equation [MacLellan et al., 2013].

For a same material, [McKenna et al., 2011] found strong differences between the electrical resistivity

of amorphous and diamond Carbon, as illustrated in the right panel of Figure 3.9.

Figure 3.9: (Left panel) Theoretical calculations of the resistivity of silicon as a function of tem-
perature: The black line represents ab initio quantum molecular dynamic calculations
coupled with the Kubo-Greenwood equation, the red line the Lee-More model, and
the blue line the Spitzer model [MacLellan et al., 2013]. (Right panel) Structure of (a)
diamond and (b) vitreous carbon. (c) Electrical conductivity as a function of temper-
ature for both carbon allotropes computed with a quantum molecular dynamic code
[McKenna et al., 2011].

3.3.2 Heat Equations

The electrical resistivity of background electrons may change significantly due to the heating induced

by the beam energy deposition, the Ohmic heating by the return current and the resistive filamentation

instability. This heating needs to be accounted for in fast electron transport models. Under the

assumption Te = Ti = T , the energy conservation equation reads (see Appendix B, section B.3.1)

CV

[
∂

∂t
+

(
u.
∂

∂r

)]
(T ) +

∂

∂r
.q = −P ∂

∂r
.u + τ �

(
∂

∂r
⊗ u

)
+ j.E +W (3.48)

where

CV =
3

2
kB (Z∗ + 1)ni

is the plasma thermal capacity (electrons + ions). According to the assumptions presented in the

section 3.1.1 of this chapter, the magnetization and the ion conduction are neglected so that the
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thermal flux reduces to

q = qe = −κe
∂Te
∂r

(3.49)

where κe is the background electron thermal conduction evaluated within the same models as presented

in the previous subsection for the electrical resistivity η. These two transport coefficients are indeed

related by the Lorenz relation
κe
σTe

= γL (3.50)

where γL is the Lorenz factor (see Appendix B, section B.2.4). The background fluid is assumed to

be incompressible (∂/∂r).u = 0, the viscosity is neglected and the ions are assumed immobile. Thus,

the fluid current density reduces to the background electron return current j = je and the electric field

is given by the system of equations {(3.7), (3.8)} presented in section 3.1.1. The direct collisional

heating of the background electrons by the beam electrons is taken into account via the heating source

term

W = −
∫
R3

ε

(
∂fb
∂t

)
coll

d3p (3.51)

which is nothing else than the energy lost by the beam electrons due to collisions with the background

electrons (cf. Chapter 4).

In the two-temperature model, which is notably the case for relativistic electron transport in solids,

the background electrons are firstly heated due to the beam energy deposition. Then, they transfer

their energy to ions. Therefore, Equation (3.48) must be replaced by the two energy conservation

equations

CV,e

[
∂

∂t
+

(
ue.

∂

∂r

)]
(Te) +

∂

∂r
.qe = W +Qei. (3.52)

and

CV,i

[
∂

∂t
+

(
ui.

∂

∂r

)]
(Ti) = Qie (3.53)

where

Qie = −Qei + ηje
2 = 2

me

mi
CV,eνei (Te − Ti) . (3.54)

For plasmas, νei may be expressed by the [Lee and More, 1984] formula accounting for the electrons

degeneracy at Te ≈ Ef (see Appendix B, section B.2.4) while

CV,e =
3

2
kBZ

∗ni and CV,i =
3

2
kBni (3.55)

are the plasma electron and ion thermal capacities. However, these last expressions need to be im-

proved for low temperature materials in the solid/liquid phase.
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3.3.3 Plasma Heating by an Electron Beam

A simple model have been proposed by [Bell and Kingham, 2003] and [Davies, 2003] in order to ac-

count for the effects of the background electron heating. These are the self-collimation of the beam

and the beam hollowing, respectively. The model assumes that the return current equals the beam

current as explained in section 3.1.1

jb + je = 0. (3.56)

The background electron dynamic is modelled according to the Ohm’s law retaining only the main

term

E = ηje = −ηjb (3.57)

with a resistivity of the form

η = η0

(
T

T0

)α
(3.58)

where T0 is a characteristic temperature. The background electron heating is taken into account

according to Equation (3.52), neglecting the ion heating and the thermal conduction. In addition,

[Bell and Kingham, 2003] assumes the plasma is fully ionized and thus estimates the electron thermal

capacity according to CV,e = (3/2)kBZni. Contrary to [Bell and Kingham, 2003], [Davies, 2003] just

assumes a constant thermal capacity CV,e. The heat equation (3.52) thus reduces to

CV,e
∂Te
∂t

= ηj2
b . (3.59)

This equation can be generalized to the case of a metallic target with the solid Sommerfeld thermal

capacity CV,e = CV,e0(Te/T0), replacing in the expressions below the parameter α by α + 1 and CV,e

by CV,e0. The magnetic field is given by the Maxwell-Faraday equation

∂B

∂t
= −c ∂

∂r
×E = ηc

∂

∂r
× jb + c

∂η

∂r
× jb. (3.60)

The beam is assumed to be rigid, collimated and axisymmetric of the form

jb = jb0(r)

[
Π

(
t− z

vb

)
−Π(t)

]
ez with jb0 = −j0 exp

(
−r

2

r2
b

)
(3.61)

where j0 > 0 and Π is the Heaviside function. It is emitted from z = 0 and moves with the constant

velocity vb = vbez. The Gaussian radial shape corresponds to the shape of the laser pulse. Therefore,

the magnetic field is azimuthal B = Bθeθ and the electric field is longitudinal E = Ezez. The beam

transport strongly depends on the parameter α. In the case where α > 1 which corresponds to cold

solid/liquid temperatures (0 < α < 2 for kBTe < EF according to the resistivity models presented

in section 3.3.1), one finds diverging solutions for the temperature (Te → ∞) at very short times

t− (z/vb) = CV,eT0/(α− 1)η0j
2
b0. However, this unphysical behaviour must be mitigated because the
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temperature growth for α is actually limited by the Fermi temperature kBTe ≈ EF since that, at

this temperature, the parameter α becomes negative and then reach the value α = −3/2 of the hot

temperature plasma regime. Thus, according to [Davies, 2003], (3.59) gives

T =


T0 exp

(
η0j

2
b0τ

CV,eT0

)
if α = 1

T0

[
1 + (1− α)

η0j
2
b0τ

CV,eT0

]1/(1−α)

if α < 1

(3.62)

where it has been noted τ = t − (z/vb). Knowing the temperature, one can express the electric field

according to Ohm’s law

Ez =


−η0jb0 exp

(
η0j

2
b0τ

CV,eT0

)
if α = 1

−η0jb0

[
1 + (1− α)

η0j
2
b0τ

CV,eT0

]α/(1−α)

if α < 1

(3.63)

And, the magnetic field follows from the Maxwell-Faraday equation by making the change of variables

t→ τ

Bθ =


−cdjb0

dr

CV,eT0

j2
b0

[
1 +

(
2η0j

2
b0τ

CV,eT0
− 1

)
T

T0

]
if α = 1

−cdjb0
dr

CV,eT0

j2
b0

[
1 +

1 + α

1− α
T

T0
− 2

1− α
η

η0

]
if α < 1

. (3.64)

Self-collimation of the beam

Figure 3.10: Magnetic field Bθ normalized by j0τ0/c versus the radius r normalized by rb at different
times τ/τ0 taken from [Davies, 2003]
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In the limit of weak heating τ/τ0 � 1 where

τ0 =
CV,eT0

η0j2
b0

, (3.65)

one obtains from (3.63) and (3.64) to first order in τ/τ0

Ez = −η0jb0

(
1 + α

τ

τ0

)
(3.66)

and

Bθ = −η0c
djb0
dr

τ (3.67)

for α ≤ 1. This results is similar to the one obtained by [Fill, 2001], presented in section 3.1.2. The

magnetic field is negative and it reaches a minimum value at r = rb/
√

2, as illustrated in Figure 3.10.

This magnetic field may be responsible for the beam pinching. [Bell and Kingham, 2003] estimated

the angle θ that a fast electron will be deflected while propagating over the distance rb/ tan θ1/2 by

θ =
|eBθ|rb

γmec tan θ1/2
(3.68)

where the unperturbed beam doubles its radius. here, θ1/2 is the divergence half-angle of the beam

(which has not been taken into account in the previous derivations). The collimation condition can

be estimated as θ = θ1/2. For example, [Bell and Kingham, 2003] considered the Spitzer resistivity

(α = −3/2) and a fast electron beam with a mean kinetic energy kBTb and a current Ib, that is related

to the laser intensity IL as Ib = |e|ηL→eIL where ηL→e is the laser-to-electrons conversion efficiency.

Approximating djb0/dr ≈ −j0/rb where j0 = Ib/kBTb, they conclude that the beam collimation occurs

if

θ1/2 tan θ1/2 =
3|e|nekBTb

γmecβηL→eIL

[
2η0j

2
0

3|e|ne
+ T

5/2
0

]2/5

. (3.69)

Consequently, considering the experimental scaling (1.71) for the divergence half-angle θ1/2, we deduce

that θ1/2 is in general too high for allowing the self-collimation of the beam.

Beam hollowing

According to [Davies, 2003], in the opposite limit of a strong heating τ � τ0, one obtains

Ez =


−η0jb0 exp

(
η0j

2
b0τ

CV,eT0

)
if α = 1

−η1/(1−α)
0 j

(1+α)/(1−α)
b0

[
(1− α)τ

CV,eT0

]α/(1−α)

if α < 1

(3.70)

and

Bθ ≈ − (1 + α) ηc
djb0
dr

τ (3.71)
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Figure 3.11: Magnetic field Bθ normalized by j0τ0/c versus the radius r normalized by rb at different
times τ/τ0 taken from [Davies, 2003]

for α ≤ 1. It is striking to notice that for α < −1 typical of the Spitzer regime, the electric field

decreases with the current beam density and the magnetic field changes sign as illustrated in Figure

3.11. This positive value of Bθ deviates the beam electrons from the propagation axis and tends to hol-

low the beam. This effect has been later observed experimentally and numerically [Davies et al., 2006]

[McKenna et al., 2011].
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Chapter 4

Collisional Effects in Relativistic

Electron Transport through Solids and

Dense Plasmas

”If quantum mechanics hasn’t profoundly shocked you, you haven’t understood it yet.”

Niels Bohr
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4.1. BINARY COLLISIONS OF A RELATIVISTIC ELECTRON WITH BACKGROUND
PARTICLES

This chapter review the theory of collisions of laser-generated relativistic electrons with particles

of the material they are propagating through, such as free electrons, bound electrons, screened free

electrons or ions. Due to the fact that the beam electrons travel at a relativistic velocity much

greater than background electron or ion velocities, the principal effects of collisions are the beam

electrons energy losses and their angular scattering. As the beam electron density is much less than

the background electron density nb � ne, a single fast particle model provides an adequate desciption

of these drag and scattering processes. After describing the differential cross section for collisions of a

relativistic electron with a background particule at rest, the following subsections are devoted to the

slowing down and angular scattering theories of a relativistic electron. The last subsection presents

the relativistic Vlasov-Fokker-Planck equation for the laser-generated electron beam that describes

these effects.

4.1 Binary Collisions of a Relativistic Electron with

Background Particles

4.1.1 Electron-Electron Binary Collisions

Let us consider firstly a collision of a relativistic electron with a momentum p with a target electron

α ∈ {free e−, bound e− or free screened e−} with a momentum pα such that

|pα| � |p|. (4.1)

Thus, the target electron can be assumed to be initially at rest and one has the following relations

between the center of mass frame and the laboratory frame :

ε∗ = γ∗mec
2 =

√
γ + 1

2
mec

2 (a)

p∗ =

√
γ + 1

2
p (b)

sin θ∗ =

√
γ + 1

2
sin 2θ

1 +

(
γ + 1

2
− 1

)
sin2 θ

(c)

(4.2)

where ∗ means that the values are taken in the center of mass frame, γ is the Lorentz factor of the

relativistic electron projectile and θ is the scattering angle. Consequently, one can obtain a relation

between the normalized energy loss in one binary collision w =
∆γ

γ − 1
and the scattering angle θ∗

w =
1− cos θ∗

2
, (4.3)
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starting from the momentum 4-vector invariance and using the momentum and energy conservation

relations. It implies that

dw =
dΩ∗

4π
. (4.4)

and one can interchangeably use the differential cross sections(
dσα
dw

)
= 4π

(
dσα
dΩ∗

)
(4.5)

and (dσα/dΩ
∗). By using the fundamental principle of Einstein’s mechanics for the effective parti-

cle motion in the Coulomb central force, one can relate the collision impact parameter b and the

normalized energy loss w by the following formula

w =
2e4

mev2

1

(γ − 1)mec2

1

b2
(4.6)

As a consequence, similarly to the non relativistic case (see Appendix A, section A.2.1 and A.2.3),

one has to distinguish between collisions

� with an impact parameter be,min < b < be,max for collisions with a small momentum transfer

from the relativistic electron to a free plasma electron target where

be,min =
~

2p∗
(4.7)

is the De Broglie wavelength of electrons in the center of mass frame and

be,max = max

{
λDebye,

(
3

4πni

)1/3
}

(4.8)

is the plasma screening length as explained for the non-relativistic case in Appendix A, section

A.2.2. Besides, be,min is directly choosen to be the De Broglie wavelength here. Indeed, in the

case of a relativistic electron projectile, the De Broglie wavelength is always much larger than the

Landau length. In the relativistic approach considered here, it is more convenient to deal with

w instead of b. The equivalent boundaries are therefore wmin < w < wmax. wmax = 1/2 must

be taken due to the indiscernability of the electrons. That means that it is the more energetic

electron outgoing from the collision which is considered as the primary electron (projectile).

wmin = wc is a cut-off used to distinguish the binary collisions from the collective interaction. It

is assumed that wmin = wc is much less than the beam electron energy and much greater than

the energy of any electron in the material. One may estimate it by (be,min/be,max)2.

� with an impact parameter b > be,max for collisions with a small momentum transfer from the

relativistic electron to a bound or screened free plasma electron target, which are affected by

a collective contribution of the surrounding electrons. The equivalent boundary is w < wc and
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this collective part will be treated in the next subsection devoted to the fast electron slowing

down.

� with an impact parameter b < be,min for collisions of beam electrons with a large momentum

transfer. Due to the fact that the probability of such a collision is small compared to the two

previous ones, we neglect this contribution.

For the binary part, one can use the Möller scattering formula [Möller, 1932]. It consists in an ap-

proximate solution to the Dirac equation to order αv/c (the first Born approximation) where α is the

fine structure constant. Indeed, [Möller, 1932] considered two interacting electrons, described by the

two component Dirac wave-functions; He ignored the two components referring to negative energy

states. He expressed the charge and current densities corresponding to the transition of the electron

1 from the initial state to the final state thanks to the obtained Dirac matrix tensor. In accordance

with a procedure proposed by Klein in 1927, he then expressed the corresponding retarded potentials

he obtained thanks to the Maxwell equations with the deduced charge and current densities of the

particle 1 as sources. Finally, he solved the Dirac equation for the particle 2 with the presence of these

fields and he identified the transition probability for the corresponding two-body system. Although

the method was controversial because of its unsymmetrical approach and the lack of electromag-

netic fields quantization, the result was readily confirmed in experiments [Champion, 1932] and a few

years later by more rigorous quantum electrodynamic treatments [Bhabha, 1936], as well explained in

[Beretstetskii et al., 1982]. The Moller differential cross section reads

(
dσ

dΩ∗

)
e,f

=
e4
(
p∗2c2 + ε∗2

)2

4p∗4ε∗2

[
4

sin4 θ∗
− 3

sin2 θ∗
+

(
p∗2c2

p∗2
c2 + ε∗2

)2(
1 +

4

sin2 θ∗

)]
. (4.9)

The first term in the square brackets correspond to the relativistic generalization of the Rutherford

differential cross section formula (see Appendix A, section A.2.1) while the other terms account

for the quantum spin and exchange effects. Usually, as already mentioned, one may use the equivalent

and simpler form

(
dσ

dw

)
e,f

=
2πe4

(γ − 1)β2m2
ec

4

[
1

w2
+

1

(1− w)2 +

(
γ − 1

γ

)2

− 2γ − 1

γ2w (1− w)

]
. (4.10)

4.1.2 Electron-Ion Binary Collisions

Let us consider now a collision of a relativistic electron with a momentum p with a target ion with a

charge Z∗|e| and a momentum pi statisfying (4.1) with α = i. One can assume that the ion is initially

at rest. Here, one consider only the “the binary part” where bi,min < b < bi,max. In this case, the
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laboratory frame coincides with the center of mass frame, since me/mi � 1. One has consequently

bi,min =
~
2p

(4.11)

which is much larger than be,min for ultra relativistic electron projectiles while

bi,max = be,max. (4.12)

The quantum relativistic differential cross section of such a binary collision has been obtained by

[Mott, 1932]. It reads (
dσ

dΩ

)
i

=
(Z∗e2)

2
ε2

4p4 sin4 θ
2

(
1− v2

c2
sin2 θ

2

)
. (4.13)

The first term in the parenthesis is the relativistic generalization of the Rutherford differential cross

section and the second term is the quantum spin effect correction. In the first order in the small

parameter me/mi, the electron conserves the energy in a collision with a target ion. It can be compared

with a collision of a tennis ball with a rigid wall. The tennis ball does not lose its energy but it is

strongly deflected. Instead of working with the maximum impact parameter bα,max when integrating

the differential cross section over all impact parameters b, some authors prefer to add a screening

factor in the expression of the differential cross sections (4.9) and (4.13) and integrate from b = bα,min

to b→∞ (see for example [Atzeni et al., 2009b]).

4.2 Slowing Down of a Relativistic Electron in Solids

and Dense Plasmas

4.2.1 Stopping Powers of relativistic Electrons

The stopping power of an electron is the electron energy loss dε per unit path length ds due to collisions

with the particles of the medium. It is defined as(
dε

ds

)
= (γ − 1)mec

2ni

∫ 1/2

0
w
dσ

dw
dw. (4.14)

Collisions with ions do not contribute to the slowing down of electrons due to their large mass compared

to the electron mass. One may separate in this integral the contributions of the binary collisions with

free electrons (w > wc) from those of the bound electrons and/or with the screened free electrons

(w < wc).

Concerning the binary part, one can use the Moller differential cross section (4.10). The integration
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gives for cold solids(
dε

ds

)
e,binary

= (γ − 1)mec
2ni

∫ 1/2

wc

w

(
dσ

dw

)
e,f

dw

= −2πniZe
4

mev2

[
ln

(
1

4wc

)
+ 1− 2γ − 1

γ2
ln 2 +

1

8

(
γ − 1

γ

)2
] (4.15)

In case of plasmas, the contribution of collisions with background free electrons can be obtained by

replacing Z by Z∗ in the previous Equation (4.15) :

(
dε

ds

)
e,f

= −2πniZ
∗e4

mev2

[
ln

(
1

4wc

)
+ 1− 2γ − 1

γ2
ln 2 +

1

8

(
γ − 1

γ

)2
]
. (4.16)

The first term in the square brackets corresponds to the well known Coulomb logarithm from the

non-relativistic theory (see Appendix A, section A.2.3). That is why the term wc may thus

be estimated by (be,min/be,max)2. This corresponds to the non relativistic stopping power Coulomb

logarithm, in the limit γ → 1 [Jackson, 1975]. The other terms account for the quantum relativistic

effects.

For a combination of historical and mathematical reasons, the energy loss due to the collective

response of the material is artificially divided into two parts

� The “Bethe part” for collisions with bound electrons (acounting for the mean excitation energy

per atom Iex) for a impact parameters b smaller than the interatomic/interionic distance. This

corresponds to the beam electrons interacting with one atom/ion.

� The ”density effect” or ”plasmon part” for impact parameters b greater than the inter-

atomic/interionic distance for which the relativistic electron projectile interacts with many

electrons at the same time.

The contribution of collisions with bound electrons in a cold solid has been determined by

[Bethe, 1932], considering the energy transferred to the excitation of an atom by the electric field

of a charged electron moving at constant velocity. It reads(
dε

ds

)
e,Bethe

= (γ − 1)mec
2ni

∫ wc

0
w

(
dσ

dw

)
e,b

dw

= −2πniZe
4

mev2

{
ln

[
2wc

(
γ2 − 1

)
(γ − 1)(

Iex/mec
2
)2

]
− β2

}
.

(4.17)

A striking results is that the cut-off wc at which the two models are patched together cancel out for
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cold solids when adding the two integral contributions (4.15) and (4.17) [Rohrlich and Carlson, 1954](
dε

ds

)
e,binary

+

(
dε

ds

)
e,Bethe

= −4πniZe
4

mev2

{
ln

[√
γ + 1

(γ − 1)mec
2

Iex

]
− ln 2

2
+

1

16

− ln 2 + (1/8)

γ
+

(1/2) ln 2 + (9/16)

γ2

}
.

(4.18)

It gives confidence in these expressions, even though neither model is valid for intermediate energy

losses, where no analytical model is available. In the case of ionized solids, one can thus extend (4.18)

for the stopping power of a relativistic electron by colliding with bound electrons, by replacing Z by

(Z − Z∗) :(
dε

ds

)
e,b

= −4πni(Z − Z∗)e4

mev2

{
ln

[√
γ + 1

(γ − 1)mec
2

Iex

]
− ln 2

2
+

1

16

− ln 2 + (1/8)

γ
+

(1/2) ln 2 + (9/16)

γ2

}
.

(4.19)

The complexities of dealing with coupled, quantized oscillations of multiple bound electrons are hidden

in the mean excitation potential Iex. In very general terms, it can be written as the logarithm mean

of all possible transitions of bound electrons between the energy levels Ei and Ej , weighted by the

transition probability fij

ln Iex =
∑
i,j

fij ln (Ei − Ej). (4.20)

In the simple case of a single, undamped, harmonic oscillator at frequency ω, one has Iex = ~ω. This

is a good approximation for a plasma, giving the mean excitation Iex = ~ωp. An approximate model

for the mean excitation potential of bound electrons in an ion was proposed by [More, 1985]. In this

simplified theoretical model known as the local plasma approximation,

ln Iex =

∫
R3

fe(r) ln (~ωp)d3r, (4.21)

where fe is the bound electron probability density function. In order to obtain the electron distribution

around an ion, [More, 1985] used the Thomas-Fermi model and found that the result could be described

by

Iex(Z∗) = Iex(0)
exp

[
1.29(Z∗/Z)0.72−1.18(Z∗/Z)

]
√

1− (Z∗/Z)
(4.22)

where Iex(0) = ZE0 with E0 = 10 eV empirically chosen to fit the quantum calculus made by

[McGuire, 1982] for Aluminum, Krypton and Gold.

The second part of the collective contribution to the stopping power is the density effect correction

δ. It has been firstly derived by [Fermi, 1940], using a purely classical calculation representing the

plasma electrons response to the electron projectile perturbation by a single harmonic oscillator. It

gives a reduction in the energy loss due to the electric field generated by the fast electron, shielded by
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the collective response of electrons in the material. It is called the density effect correction because it

increases with the electron density. According to [Fermi, 1940], it can be obtained analytically in the

limit of ultrarelativistic electron projectile and reads in this case

δ = 2 ln

(
γ~ωp
Iex

)
− β2. (4.23)

For a plasma, where Iex = ~ωp, this expression is valid for all cases of interest. For solids

and consequently bound electrons, where typically Iex � ~ωp, the expression obtained by

[Pines and Bohm, 1952]

(
dε

ds

)
p

=
2πniZ

∗e4

mev2
δ = −4πniZ

∗e4

mev2
ln

(
c
√
γ2 − 1/γ

ωpbe,max

)
(4.24)

may be used. This formula was originally derived for a non-relativistic electron projectile. However,

it is valid in the limit γ →∞ and for intermediate γ as well.

A relativistic electron can also lose energy by emitting bremsstrahlung radiations. It is a small

correction to the total collisional energy losses in the range of beam electron energies considered in

this manuscript. However, the radiative stopping power(
dε

ds

)
b

= −4π(Z − Z∗)(Z − Z∗ + 1)nie
4

mec2/γ

α

π

[
ln (2γ)− 1

3

]
, (4.25)

obtained by [Heitler and Sauter, 1933] is taken into account. This formula is valid in the case where

1 � γ � 1/αZ1/3 according to [Bethe and Heitler, 1934] and it is sufficient for our needs. Indeed,

according to [Berger and Seltzer, 1964], radiative losses become predominant for relativistic electrons

with energies greater than

Ec ≈
800 MeV

Z + 1.2
(4.26)

while we consider in this manuscript laser generated electrons in the range 10 keV - 10 MeV and low

or intermediate Z-material. The resulting total stopping power reads(
dε

ds

)
=

(
dε

ds

)
e,f

+

(
dε

ds

)
e,b

+

(
dε

ds

)
p

+

(
dε

ds

)
b

. (4.27)

This expression is valid in the first Born approximation i.e. for low or intermediate Z-materials. Also,

there is an uncertainty at low energies due to the lack of shell corrections which are required when

the velocity of the incident electron is comparable to the velocities of the atomic electrons, especially

those in the inner shells. As a consequence, the formula (4.27) is valid for laser-generated relativistic

electrons of kinetic energies greater than ≈ 1− 10 keV.

As illustrated in Figure 4.1, it is worth noticing that, even if the contributions of the bound elec-

trons and the free electrons depend strongly on the temperature via their densities depending on the
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Figure 4.1: Total stopping power of a relativistic electron in Aluminum (ρ = 2.7 g.cm−3) versus its
kinetic energy according to formula (4.27) (black) and the different contributions due
to free electrons (red), bound electrons (blue), screened free electrons/plasmons (green)
and bremsstrahlung losses (magenta) at ambiant temperarure Te = Ti = 300 K (solid
lines) and Te = Ti = 100 eV (dashed lines).

ionization state Z∗, the total stopping power weakly depends on the temperature (logarithmically).

The contribution of the bound electrons at a low temperature is essentially balanced by the contribu-

tion of the free electrons at a higher temperature. It can be understood qualitatively because, in both

cases, the amount of electrons encountered by the electron projectile is the same. The total stopping

power (4.27) is plotted in Figure 4.2 versus the electron kinetic energy (γ−1)mec
2 for materials that

will be studied in this manuscript. One can see a change of slope around ε = mec
2 ≈ 511 keV. In the

non-relativistic side, the stopping power decreases with the non-relativistic kinetic energy (1/2)mev
2.

This is a consequence of the Rutherford cross section which decreases with the transferred momen-

tum. In the relativistic domain, an opposite behavior appears; the stopping power increases with the

electron kinetic energy. This is due to the fact that the velocity has reached its maximum value of . c

and does not change anymore while the electron inertia γme in the relativistic Coulomb logarithm is

increasing so that the kinetic energy exchanged during each collision increases with the kinetic energy.

Moreover, for more energetic electrons, the radiation loss becomes predominant compared to the colli-

sional ones. It is well known that the more energetic the electron is, the more the electron radiates. In

Figure 4.2, the formula (4.27) is also compared with the total stopping power provided by the online

database ESTAR (http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html) based on the ICRU

report 37 [Brice, 1985]. Discrepancies between Formula (4.27) and ESTAR appear for relativistic elec-

trons with kinetic energies greater than 10 MeV mainly due to the simple expression for the radiation

stopping power (4.25). In the ESTAR database, the total collision stopping power is also calculated

from the theory by [Bethe, 1932] but with a more accurate density-effect correction evaluated accord-
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Figure 4.2: Total stopping power of a relativistic electron versus its kinetic energy according to
formula (4.27) (solid line) compared to the ESTAR database (dashed lines) plotted for
different materials : dense Hydrogen plasma (Z=1) with ρ = 10 g.cm−3 (magenta),
amorpheous solid Carbon (Z=6) with ρ = 2.1 g.cm−3 (green), solid Aluminum (Z=13)
with ρ = 2.7 g.cm−3 (blue), solid Copper (Z=29) with ρ = 8.96 g.cm−3 (red) and solid
Tantalum (Z=73) with ρ = 16.69 g.cm−3 (black).

ing to [Sternheimer, 1952] [Sternheimer et al., 1982] and the mean excitation potential Iex adopted in

the ICRU Report 37 [Brice, 1985]. The uncertainties of the calculated collision stopping powers for

electrons are estimated [Brice, 1985] to be 1 % to 2 % above 100 keV, 2 % to 3 % (in low-Z materials)

and 5 % to 10 % (in high-Z materials) in the range between 10 keV and 100 keV. The radiative stop-

ping powers are evaluated in ESTAR with a combination of theoretical bremsstrahlung cross sections

described by [Seltzer and Berger, 1985]. Analytical formulas (using a high-energy approximation) are

used above 50 MeV, and accurate numerical results of [Pratt et al., 1977] below 2 MeV. Cross sections

in the intermediate energy region from 2 MeV to 50 MeV are obtained by interpolation, a procedure

whose accuracy was confirmed by more detailed calculations for a few cases. The uncertainties of the

radiative stopping powers are estimated to be 2 % above 50 MeV, 2 % to 5 % between 50 MeV and 2

MeV, and 5 % below 2 MeV.

4.2.2 Range of a Relativistic Electron Propagating in a Dense

Plasma

By neglecting the bremsstrahlung losses (4.25) and using the relation (4.23) for the density effect, the

total stopping power of a relativistic electron propagating in a fully ionized plasma with the atomic
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number Z can be estimated as (
dε

ds

)
= −4π

Znie
4

mev2
ln Λrel

ee (4.28)

with the relativistic electron-electron Coulomb logarithm, usually called drag number,

ln Λrel
ee = ln

[√
γ + 1

(γ − 1)mec
2

Iex

]
− ln 2

2
+

1

16
− ln 2 + (1/8)

γ
+

(1/2) ln 2 + (9/16)

γ2
− δ

2

= ln

[
mec

2

~ωp

]
− ln 2

2
+

1

16
+ f(γ)

(4.29)

with

f(γ) = ln

[√
γ + 1

(γ − 1)

γ

]
− ln 2 + (1/8)

γ
+

(1/2) ln 2 + (9/16)

γ2
. (4.30)

The (undeflected) range of an electron with the initial kinetic energy ε0 = (γ0 − 1)mec
2 is given by

R = mec
2

∫ 1

γ0

(
dε

ds

)−1

dγ. (4.31)

One can estimate it by replacing f(γ) by a constant value f∗ in the integral. It reads, by noting

(ln Λrel
ee )
∗

= ln (mec
2/~ωp)− (ln 2/2) + (1/16) + f∗, according to [Atzeni et al., 2009b]

R =
(γ0 − 1)2

γ0

(mec
2)

2

4πZnie4(ln Λrel
ee )
∗ . (4.32)

For an equimolar DT plasma (Z = 1), still according to [Atzeni et al., 2009b], one gets by expanding

the logarithm of (ln Λrel
ee )
∗

around ρ = 300 g.cm−3 and by assuming f∗ = 0

R [µm] ≈ 23.7
ε0[MeV]2

0.34 + 0.66ε0[MeV]

(
300g.cm−3

ρ

)1.066

. (4.33)

However, this formula assumes that the beam electron trajectory is a straight line and consequently

overestimates the effective penetration length (along the initial electron velocity) of a relativistic

electron into a plasma owing to its angular scattering by colliding the background ions and electrons.

4.3 Angular Scattering of a Relativistic Electron in

Solids and Dense Plasmas

In materials with Z � 1, the fast electron scattering is dominated by elastic collisions with ions

and impact parameters b much greater than the De Broglie wavelength. For low Z materials such

as Hydrogen plasmas, angular scattering on target electrons also plays an important role. We may

describe the angular scattering of a relativistic electron colliding with target electrons, by following the

method used for the estimate of the total stopping power of relativistic electrons, as presented in the
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previous section 4.2.1. Collisions on target electrons with the scattering angle above θc (respectively

below wc) need a statistical treatment of the electric field due to random thermal fluctuations and

will not be described in this section. Here, we will only describe the angular scattering of a relativistic

electron by colliding with target electrons with a scattering angle below θc (respectively above wc), i.e.,

we will only consider the electrons angular scattering due to binary collisions. The binary collisions

with target ions are described by the Mott scattering formula (4.13) which can be written with the

simpler form (
dσ

dΩ

)
i

=
(Z∗e2)

2

4(pv)2 sin4 θ/2

(
1− β2 sin2 θ/2

)
. (4.34)

Concerning binary collisions of a relativistic electron with free electrons of the material, one can use

the Möller scattering formula (4.9) expressed in the laboratory frame according to the relation (4.2

c). It reads

(
dσ

dΩ

)
e

=
4e4 cos θ

(pv)2

{
1

sin4 θ
+

(γ + 1)2

4 cos4 θ
+

[
(γ2 − 1)/γ

]2[
(γ − 1) sin2 θ + 2

]2 − (2γ − 1)(γ + 1)

2γ2 sin2 θ cos2 θ

}
. (4.35)

According to [Atzeni et al., 2009b], although one can retain all terms, it suffices to consider the leading

term at small θ corresponding to the relativistic generalization of the Rutherford differential cross

section (see Appendix A, section A.2.1)(
dσ

dΩ

)
e

=
4e4 cos θ

(pv)2 sin4 θ
. (4.36)

Indeed, the scattering at small angle θ gives the dominant contribution to the mean scattering angle√
〈θ2〉, as described in the next sections 4.3.1 and 4.3.2. This approximation does not lead to

significant errors in the resulting range of laser-generated electron’s energies.

4.3.1 Multiple Scattering Theory by Lewis

We start here from the simpler multiple scattering theory by [Lewis, 1950] and we restrict this subsec-

tion to fully ionized plasmas as done by [Solodov and Betti, 2008] and [Atzeni et al., 2009b] avoiding

collisions with θ < θc. In the Lewis theory, the mean scattering angle can be evaluated according to

〈cos θ〉 = exp (−k1s) (4.37)

where s is the relativistic electron path length and k−1
1 is the relativistic electron mean free path.

Expanding both sides of equation (4.37) for small values of the arguments (θ � 1 and k1s � 1)

considering only small angle collisions, one gets

〈θ2〉 = 2k1s. (4.38)
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The mean free path of the relativistic electron -which is the key parameter of such a model- has two

contributions : its angular scattering due to binary collisions with electrons and its angular scattering

due to binary collisions on ions

k1 = k1,e + k1,i (4.39)

where

k1,α = 2πnα

∫ θα,max

θα,min

(1− cos θ)

(
dσ

dΩ

)
α

sin θdθ. (4.40)

According to the quantum theory of diffraction, θα,min (which corresponds to the cut-off θc) can be

estimated by

θα,min = 4π
bα,max

bα,min
, (4.41)

where bα,min and bα,max are the limiting impact parameters defined by (4.7), (4.8), (4.11) and (4.12).

For scattering on electrons, θe,max is the deflection angle corresponding to the maximum energy loss

wmax = 1/2 and reads consequently

θe,max = arcsin

√
2

γ + 3
(4.42)

according to (4.2). For the scattering on target ions, due to their greater inertia, the maximum angular

deflection is

θi,max = π. (4.43)

According to [Atzeni et al., 2009b], one gets consequently for the scattering on target electrons

k1,e = 4π
Znie

4

(pv)2

{
ln

(
be,max

be,min

)
− 1 + ln [2(γ + 3)]

2

}
, (4.44)

retaining only the leading terms. Following the same procedure, one gets for target ions

k1,i = 4π
Z2nie

4

(pv)2

[
ln

(
bi,max

bi,min

)
− 1 + β2

2

]
. (4.45)

One can see from (4.44) and (4.45) that the contribution of binary collisions with ions is Z times

greater than the contribution of binary collisions with electrons.

4.3.2 Multiple Scattering Theory by Moliere

The multiple scattering theory by [Moliere, 1948], later improved by [Bethe, 1953] and

[Nardi and Zinamon, 1978], provides a more accurate description for the angular distribution func-

tion of a relativistic electron beam. It consists in solving the transport equation for the angular
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distribution function f(Ω, s) of the electron beam

∂f

∂s
=
∑
α=e, i

nα

∫ [
f(Ω−Ω′, s)− f(Ω, s)

]( dσ

dΩ′

)
α

dΩ′ (4.46)

where Ω−Ω′ is the direction of electron velocity before the last scattering event, s is the electron path

length and the differential cross sections are given by (4.34) and (4.36). For simplicity, we will only

consider here the binary collisions of beam electrons with target ions. The equation (4.46) is solved

by expanding the distribution function on the spherical harmonic functions Ylm(θ, ϕ) depending on

the unassociated Legendre polynomials Pl(cos θ). In the small angle approximation, the Legendre

polynomials can be approximated by the 0th order Bessel function of the first kind Pl(θ) ≈ J0(lθ),

and the sum over l can be replaced by a continuous integral. Thus, one obtains

f(θ, s) =

∫ ∞
0

lJ0(lθ) exp

[
2πnis

∫ θi,max

θi,min

(
dσ

dΩ′

)
i

(
J0(lθ′)− 1

)
θ′dθ′

]
dl (4.47)

where θi,min is given by (4.41) and θi,max by (4.43). By expanding the exponential and performing the

integrals, one obtains

f(θ, s) =
∞∑
n=0

f (n)(θ, s) =
∞∑
n=0

1

n!Bn

∫
R
uJ0

(
θu

χc
√
B

)
exp

(
−u

2

4

)[
u2

4
ln

(
u2

4

)]n
du (4.48)

where

B = W

(
−1, −

(
θi,min

χc

)2
)

with W (−1, x) the Lambert W-function (the inverse function of x = y exp y on the intervals y ∈
[−∞, −1], x ∈ [−1, 0[) and

χc
2 = 4πnis

(
Zre
γβ2

)2

.

In the limit of small angle scattering θ, the 0th order function

f (0)(θ, s) = 2 exp

(
− θ2

χc2B

)
. (4.49)

is sufficient to describe the angular distribution of the relativistic electrons. Indeed, as all collisions

are independant, one would have deduced, according to the central limit theorem, that the deflection

probability f(θ, s) can be described by such a normal law. Thus, the quadratic mean angle can be

deduced. It reads √
〈θ2〉 = χc

√
2 ln

(
χc
θi,min

)
. (4.50)
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4.4 Belyaev-Budker Collision Integral

A more general framework for description of the relativistic electron beam transport is the

relativistic kinetic equation. The collision integral of this equation has been obtained by

[Belyaev and Budker, 1956] generalizing the Landau collision integral (see Appendix A, sec-

tion A.2.3) to the relativistic regime. Here, we present the phenomenological approach from

[Landau and Lifshitz, 1981], used to derive the equation. The general form of the electron kinetic

equation reads
∂fb
∂t

+
∂

∂r
(vfb)−

∂

∂p

[
e
(
E +

v

c
×B

)
fb

]
=

(
∂fb
∂t

)
coll

. (4.51)

Conservation of the number of particles implies that the collision integral has the form(
∂fb
∂t

)
coll

= − ∂

∂p
.Fcoll (4.52)

where Fcoll is the particle flux in momentum space due to binary collisions. Let us consider a small

area near a point p in momentum space, perpendicular to the pµ-axis where µ ∈ {x, y, z}. The flux

component Fcoll,µ is a difference between the number of electrons crossing this area from left to right

per time unit and those crossing it from right to left due to binary collisions. If a particle α ∈ {i, e}
receives in a collision a µ-component of momentum equal to ∆pµ > 0, it will cross the small area from

left to right, thus increasing the value of its momentum from pµ−∆pµ to pµ. Hence, the total number

of particles crossing the area from left to right is

∑
α=i, e

∫
∆pµ>0

d3∆p

∫
R3

d3pα

∫ pµ

pµ−∆pµ

P (p, pα, ∆p)fb(r, p, t)fα(r, pα, t)dpµ

where

P (p, pα,∆p)fb(r, p, t)fα(r, pα, t)d
3pαd

3∆p

is the number of collisions occurring per time unit between an electron with momentum p and a particle

α with momentum pα in the range d3pα. After the collision, the particles acquire the momenta p+∆p

and pα−∆p, respectively. Similarly, the number of particles crossing that area from right to left may

be written as

∑
α=i, e

∫
∆pµ>0

d3∆p

∫
R3

d3pα

∫ pµ

pµ−∆pµ

P (p, pα, −∆p)fb(r, p + ∆p, t)fα(r, pα −∆p, t)dpµ.

From now, we omit the variables r and t for brievity in the equations since the collisions take place

locally in space and time. By virtue of the principle of detailed balance, the probability density of

such a momentum exchanged is necessarily a symmetrical function with regard to the interchange of
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the initial and final particles states :

P (p, pα, ∆p) = P (p, pα, −∆p).

Thus, after adding these two contributions and replacing the integration over dpµ by a multiplication

by ∆pµ, one obtains the Boltzmann result (see Appendix A, section A.1.4)

Fcoll,µ =
∑
α=i, e

∫
∆pµ>0

d3∆p

∫
R3

d3pαP (p, pα, ∆p) [fb(p)fα(pα)− fb(p + ∆p)fα(pα −∆p)] ∆pµ.

(4.53)

One can express the probability density P in terms of the differential collision-cross-section as

Pd3∆p = vr, αd
2σα (4.54)

where vr,α = c
√
γ̃2
α − 1/γ̃α is the relative velocity of one particle in the rest frame of the other during

their collision, γ̃α = γγα/γ
2
∗ and γ∗ = 1/

√
(1− v.vα/c2). This expression tends to |v − vα| in the

non-relativistic limit. Under the assumption of a small momentum transfer ∆p compared to p and

pα (also called the small angle assumption, see Appendix A, section A.2.2), one can expand the

difference in the square brackets of (4.53) to give

Fcoll,µ =
∑
α=i, e

∑
ν=x, y, z

∫
R3

d3pαU
α
µν

[
fb(p)

∂fα
∂pα, ν

− fα(pα)
∂fb
∂pν

]
(4.55)

where

Uαµν =
1

2

∫
∆pµ∆pνvr,αd

2σα. (4.56)

For a small angle deviation, the exchanged momentum ∆p′ is perpendicular to the velocity v′ (v′α)

in the electron projectile rest frame (in the α particle rest frame, respectively). The tensor Uαµν is

therefore transverse to these vectors. According to [Belyaev and Budker, 1956], the only one possible

particle-symmetric tensor leading to a Lorentz-invariant collision integral and satisfying

Uα.v′ = Uα.v′α = 0 (4.57)

where

v′ =
γ2
∗
γα

[
v +

(
γα − 1

v2
α

v.vα − γα
)
.vα

]
and

v′α =
γ2
∗
γ

[
vα +

(
γ − 1

v2
v.vα − γ

)
.v

]
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are the relative velocities of one particle expressed in the rest frame of the another (and having the

same norm vr,α) is

Uαµν =
1

2
Uα0

{
δµν −

1

(γ̃2
α − 1)

[
pµpν

(mec)
2 −

pα,µpα,ν

(mαc)
2 + γ̃α

(
pµpα,ν
memαc2

+
pα,µpν
memαc2

)]}
. (4.58)

The scattering potential coming from the diagonal terms reads

Uα0 =
1

2

∫
∆p2vr,αd

2σα. (4.59)

However, in the litterature, one can find the Belyaev-Budker scattering potential expressed with

the relativistic generalization of the Rutherford differential cross-section (A.49), mentioned in the

introduction for both ions and electrons :

Uα0 = 4π
q2
αe

2 ln Λeα
vr,α

where ln Λeα = ln (bα,max/bα,min) and qα = e for α = e and qα = Ze for α = i (see for example

[Braams and Karney, 1987]). Obviously, the Belyaev-Budker collision tensor tends to the Landau

collision tensor (see Appendix A, section A.2.2) in the non-relativistic limit.
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Chapter 5

Existing Simulation Methods for Fast

Electron Transport

”If people do not believe that mathematics is simple, it is only because they do not realize how

complicated life is.”

John Von Neumann
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The numerical computation of the Vlasov-Fokker-Planck equation (4.51) is crucial for understand-

ing the physics of laser-generated relativistic electron beam transport. The relativistic kinetic equation

takes into account both collective and collisional effects and it is coupled with Maxwell’s equations.

The numerical computation of this system of equations is extremely challenging because of the large

number of variables of the distribution function and the extremely small time and spatial numerical

steps compared to the several ps and hundreds of µm needed for fast electron transport studies in the

context of inertial confinement fusion. Compared with a hydrodynamic fluid model, a kinetic model

is computationally expensive, as such a model not only contains spatial information but also momen-

tum coordinates, and is therefore of high dimensionality and rich in information. In this chapter, we

review the existing numerical tools. We start from the Particle-in-Cell (PIC) methods and then pro-

ceed to describe the Eulerian methods commonly called ”Vlasov-Fokker-Planck methods”. Actually,

there is no Vlasov-Fokker-Planck codes which solve the Vlasov-Belyaev-Budker equation (4.51) but,

as we will demonstrate in Chapter 6, applied to laser-generated relativistic electron beam transport,

the Belyaev-Budker collision tensor can be simplified into a Landau-like collision tensor. Finally, we

describe the less expensive ”Vlasov-Fokker-Planck methods” based on expansions of the distribution

function.

5.1 Particle-In-Cell methods

5.1.1 Full Particle-in-Cell methods

Figure 5.1: Schematic view of the discretization in the 6D phase-space of the full distribution func-
tion f = fb + fe (a) in a serie of discrete charge clouds with eventually different weights
qi (b) according to the PIC method [Gibbon, 2005].

The Particle-In-Cell (PIC) method, introduced in Chapter 1 for laser-plasma interaction sim-
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ulations, approximates the Vlasov equation by a series of discrete charge clouds, which evolve in a

6-dimensional phase-space similarly to the original Liouville N -body problem of classical point-like

particles (cf Appendix A, section A.1.2). The principal difference between the PIC method and

another particle method, like a molecular dynamics model, is that the interactions between particles

are mediated by the electromagnetic fields calculated on a finite-difference grid, while the particles are

allowed to occupy an arbitrary location in the phase-space. This approach circumvents the necessity

to compute a huge number of binary interactions between individual particles while retaining N -body

particle dynamics. However, by representing the whole electron population by Np macroelectrons

qi, i ∈ [1, Np], weighted by the number of electrons each macroelectron represents, the PIC method

does not account for the binary collisions. The collisions must be taken into account separately us-

ing a Monte-Carlo collision operator. Indeed, if Np = N , the self-consistent electromagnetic fields

computed from the Maxwell equations would account naturally for the binary collisions. But, the

fact that Np � N because of computational restrictions and that binary collision space scales, much

smaller than the Debye length, are usually not resolved, only collective effects are taken into account.

Therefore, a Monte-Carlo method for modelling collisions is crucial. As already explained in Chapter

1, [Takizuka and Abe, 1977] developed a robust algorithm for dealing with binary collisions. The key

computational step is to pair particles within a cell randomly and perform a rotation in the center-

of-mass frame. This method has been extended for relativistic particles by [Sentoku and Kemp, 2008]

[Pérez et al., 2012] and their model can be generalized to arbitrary particle weights as proposed by

[Nanbu, 1997]. However, the momentum and energy are not always conserved in each individual col-

lision, and it has been shown that this method does not relax to the Maxwell-Juttner equilibrium

distribution function [Peano et al., 2009]. In addition, the non-conservative force associated with the

particle-grid mapping leads to self-heating and in some cases to a numerical instability, thus modi-

fying the plasma properties. Nevertheless, if the resolution is high enough, such that the numerical

space step ∆x ≤ λDebye, the effects associated with the aliasing terms are unimportant. The PIC

codes which resolve λDebye are the best tools for studying Laser-Plasma Interaction, turbulences in

tokamaks, plasma-based accelerators, relativistic shocks, ion propulsion, and many other problems.

However, concerning the problem of fast electron transport in solids or dense plasmas, the Debye

length is very small compared to the characteristic scale of the problem, and the simulations become

too expensive. Moreover, by focusing on small-scale collisional effects, one loses precision in resolving

large scale collective effects such as introduced in Chapter 3. It has been early proposed to use

so implicit PIC methods without resolving λDebye by relating the fields at the new time to the par-

ticle positions and momenta at the new time [Cohen et al., 1982] or by using only the moments of

the distribution function needed in the Maxwell equations (ρ and j) at the new time [Mason, 1981].

More recently, [Welch et al., 2004] have implemented an implicit electromagnetic field solver in the

commercialized 3-Dimensional PIC code LSP.
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5.1.2 Hybrid Particle-in-Cell methods

Even if PIC codes are perfect tools for studying hot and relatively low density plasmas, they do not

incorporate all the Physics needed for describing the fast electron transport in solids and dense plasmas

such as the background electrons degeneracy, the presence of bound electrons and in general atomic

or molecular structure of materials and their equation of states. Therefore, it has been proposed more

recently by [Davies et al., 1997] [Davies, 2002] and [Gremillet et al., 2002] to use the PIC method

only for the laser-generated fast electron component fb of the full electrons distribution function by

using a cut-off in the kinetic energy εmin = 1 − 20 keV separating the fast electrons > εmin and

the background electrons < εmin. In this ”hybrid” method, the background electron dynamics are

resolved according to hydrodynamic equations or simplified ones, such as introduced in Chapter 3,

allowing to account for the response of background electrons via their transport coefficients η and

κe, their thermal capacities CV,e, the electron-ion equilibration Qie which may vary from the solid

state to the plasma state as well as eventual equation of states Pe = Pe(ρ, Te) different from the

ideal gas. This natural separation of the electrons into two interlinked populations assumes that the

background plasma responds instantaneously to the fast electron beam transport in order to ensure

the electromagnetic beam neutralization, introduced in Chapter 2, without modifying the beam.

Thus, splitting of the populations is only valid when nb � ne and when the fast electrons’ mean

kinetic energy kBTb is much greater than the mean thermal energy of the background electrons kBTe.

The Ohmic approximation (approximating the hydrodynamic momentum conservation equation by

Ohm’s law) is usually acompanied by the neglect of the displacement current in the Maxwell-Ampère

equation. Therefore, it does not allow for modeling of Langmuir plasma waves and/or perturbations

of the quasineutrality. Binary collisions of beam electrons with background particles are taken into

account in the electromagnetic particle pusher by adding a continuous slowing down term −νdp and

a Langevin term R representing a random rotation of p due to the angular scattering. The equation

of motion of a macroelectron k ∈ |1, Np] can therefore be written

dpk
dt

= qk

(
E +

vk
c
×B

)
− νdpk + R (5.1)

where νd is choosen such that the total stopping power of the electrons contained by the macroelectron

k reads (
dε

ds

)
(γk) =

1

vk

dγk
dt

mec
2 =

1

vk

pk

γk(mec)
2

(
dpk
dt

)
coll

= −νdpk

⇒ νd = −1

p

(
dε

ds

) (5.2)

and the Langevin term R is treated by a Monte-Carlo method constructed in such a way that the

mean angular scattering value 〈θ2〉 is defined by the multiple scattering theory of Moliere or Lewis.

This equation is implemented in the PaRIS [Gremillet et al., 2002] and ZUMA [Strozzi et al., 2012]

hybrid PIC codes. For example, in the case of a fully ionized plasma, the multiple scattering theory
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of Lewis (4.38) reads
〈θ2〉
s

= 2k1 (5.3)

where k1 is given (4.39), according to [Solodov and Betti, 2008] or [Atzeni et al., 2009b].

There are some cases where the ”hybrid assumption” is not fully justified. For example, it is

not possible to distinguish between the fast and slow electrons in thin laser-irradiated targets where

fast electrons are crossing the laser-plasma interaction zone many times. In addition, even if the

”hybrid assumption” is justified, as in the case of thick targets, one needs to extract from the full PIC

simulation the properties of the fast electrons in order to initialize the hybrid simulation. More recently,

an improved model, named the two-region PIC, was proposed by [Cohen et al., 2010]. In this model,

the simulation box is separated into a low plasma density region of the laser-plasma interaction and a

high density region where the laser-generated fast electrons are propagating through. The position of

the boundary between these two regions is taken at the density 100nc. In the low density region, the

plasma is described by a full PIC algorithm with collisions taken into account. In the high density

region, the Maxwell’s equations are reduced to Ohm’s law for the electric fields and the Ampère’s law

for the magnetic field. This reduced field solver is similar to the one used in the hybrid PIC models,

whereas the background plasma comprises macroparticles as in a traditional PIC model. However, the

difficulty of this model arises from the continuity of electromagnetic fields near the boundary between

the two regions which can be violated due to the noise of the full Maxwell solver. This noise is usually

several orders of magnitude higher than the one of the reduced field solver, which may mask the real

value of the field given to the reduced field solver after a long period of simulation. This issue may be

partially solved by increasing the spatial resolution and using a large number of macroparticles per

cell.

5.2 Vlasov-Fokker-Planck methods

5.2.1 Full Vlasov-Fokker-Planck methods

Another approach consists in solving the Vlasov-Fokker-Planck equation (4.51) with finite-difference

schemes for the spatial advection, advection in the momentum space due to the electromagnetic fields

and the collisional friction and diffusion. This is a fundamentally different approach for the descrip-

tion of a system of particles compared to the PIC method. It considers a continuous distribution

function and solves the kinetic equation on a Eulerian grid. These methods are very expensive in

terms of numerical cost due to a huge number of variables that have to be resolved (3 in space

and 3 in momentum). Therefore, hybrid versions have also been proposed for the same reasons as

for PIC codes. Besides, due to the robustness and the long history of PIC codes (see for example

[Birdsall and Langdon, 1991]), the finite-difference techniques have only been developed recently after
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Figure 5.2: Spherical coordinates corresponding to Equation (5.4). Ω = p/p =
[sin θ cosϕ, sin θ sinϕ, cos θ]T , eθ = [cos θ cosϕ, cos θ sinϕ, − sin θ]T and eϕ =
[− sinϕ, cosϕ, 0]T .

the pioneering work by [Bell et al., 1981]. Besides, I did not find in the literature codes that solve the

full Vlasov-Belyaev-Budker equation (4.51), using, for example, the Rosenbluth potentials proposed

by [Braams and Karney, 1987]. The published codes solve the Vlasov equation with the Landau colli-

sional operator, which is only valid for relativistic electrons colliding with non-relativistic background

particles. Indeed, in the case of a ”hybrid model”, as it will be demonstrated in the next Chapter 6,

the Belyaev-Budker collision tensor can be simplified into a Landau-like collision operator. Consid-

ering the spherical coordinates (p, θ, ϕ) for the momentum space (see Figure 5.2) and assuming a

fully ionized plasma, the kinetic equation reads, following the notations used by [Yokota et al., 2006]

∂fb
∂t

+
∂

∂x
[v sin θ cosϕfb] +

∂

∂y
[v sin θ sinϕfb] +

∂

∂z
[v cos θfb]

+
1

p2

∂

∂p

{
p2 [Fx sin θ cosϕ+ Fy sin θ sinϕ+ Fz cos θ] fb

}
+

1

p sin θ

∂

∂θ
{sin θ [Fx cos θ cosϕ+ Fy cos θ sinϕ− Fz sin θ] fb}

+
1

p sin θ

∂

∂ϕ
{[−Fx sinϕ+ Fy cosϕ] fb}

=
m2
e

p2

∂

∂p

[
γ2

(
Yeene
me

+
Yeini
mi

)
fb

]
+

1

2
(Yeene + Yeini)

γme

p3

{
1

sin θ

∂

∂θ

(
sin θ

∂fb
∂θ

)
+

1

sin2 θ

∂2fb
∂ϕ2

}
.

(5.4)

where

Fx = −e[Ex − (v/c) cos θBy + (v/c) sin θ sinϕBz],

Fy = −e[Ey + (v/c) cos θBx − (v/c) sin θ cosϕBz],

Fz = −e[Ez + (v/c) sin θ cosϕBy − (v/c) sin θ sinϕBx]
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are the components of the force depending on the self-generated electromagnetic fields (E, B) while

Yee = 4πe4 ln Λrel
ee

and

Yei = 4πZ2e4 ln Λrel
ei

are the coefficients coming from the stopping power/angular scattering formulas of the relativistic

electrons respectively by colliding electrons and ions. Besides, except for the code developed by

[Yokota et al., 2006], the Vlasov-Landau codes developed for fast electron transport do not take into

account the γ-dependence in the relativistic Coulomb logarithms ln Λrel
ee and ln Λrel

ei in Yee and Yei

[Sherlock, 2009] [Duclous et al., 2009]. While this approximation is fully justified for non-relativistic

electrons, this γ-dependence defines the energy loss comportment of relativistic electrons, as explained

in Chapter 4, section 4.2.1. Thus, by fixing numerical values for ln Λrel
ee and ln Λrel

ei , one under-

estimates the relativistic electron energy loss and the material heating. Even in the original paper

by [Yokota et al., 2006], the factor [(Yeene/me) + (Yini/mi)] of the collisional friction term appears

outside the p-derivative which means that the factors ln Λrel
ee and ln Λrel

ei are supposed to be indepen-

dant of p. An excellent review dedicated to Vlasov-Fokker-Planck numerical modeling is given by

[Thomas et al., 2012].

5.2.2 Distribution Function Expansion methods

Spherical Harmonic Expansion method

Figure 5.3: Iso-surfaces of the first 10 spherical harmonics Y m
l , 0 ≤ m ≤ l ≤ 3 multiplied by

exp
(
−p2

)
[Tzoufras et al., 2011]

The computational cost of solving (5.4) can be prohibitive. Indeed, even if one considers mod-
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estly 102 cells for each dimension, one needs to memorize 106×2 = 1012 values of the distribu-

tion function fb at each time step which represents 8 To in double-precision. Depending on the

Courant–Friedrichs–Lewy condition which defines the time step ∆t and the simulation time tf = Nf∆t,

Vlasov-Fokker-Planck simulations can become extremely expensive in terms of computer memory

and/or time computation. In practice, the full Vlasov-Fokker-Planck equation is resolved in 1D-1V,

1D-2V, 1D-3V or at maximum 2D-3V. Another approach consists in expanding the distribution func-

tion fb in spherical harmonics in the momentum-space, as initially proposed by [Bell et al., 2006].

This expansion reads

fb (r, p, t) =

Nl∑
l=0

l∑
m=−l

fml (r, |p|, t)P |m|l (cos θ) exp (imϕ) (5.5)

where f−ml equals the complex conjugate of fml and P
|m|
l (cos θ) are the associated Legendre polyno-

mials (including the Condon-Shortley phase (−1)m)

Pml (x) = (−1)m
(
1− x2

)m/2dmPl
dx

with

Pl(x) =
1

2ll!

dl

dxl
(
x2 − 1

)
the unassociated Legendre polynomials. For example, the first associated Legendre polynomials read

P 0
0 (x) = 1,

P 0
1 (x) = x,

P 1
1 (x) = −

(
1− x2

)1/2
,

P 0
2 (x) =

1

2

(
3x2 − 1

)
,

P 1
2 (x) = −3x

(
1− x2

)1/2
and

P 2
2 (x) = 3

(
1− x2

)
.

The spherical harmonic expansion (5.5) is exact for Nl → ∞ but, in practice, Nl is chosen, depend-

ing on the degree of anisotropy of a given physical problem. The larger the indices (l, m) are, the

more directional/anisotropic the harmonics are. Recently, [Tzoufras et al., 2011] developed a relativis-

tic Fokker-Planck code, called OSHUN, following this approach initially proposed for non-relativistic

electrons (KALOS code by [Bell et al., 2006]). [Tzoufras et al., 2011] shown that Nl ≥ 13 (≈ 100

harmonics fml ) are sufficient to study the relativistic collisionless two-stream and filamentation insta-

bilities presented in Chapter 3. However, it is expected that collisional effects reduce the needed

degree of anisotropy Nl. In addition to reducing the number of variables from 6 (x, y, z, px, py, pz)

to only 4 (x, y, z, |p|), the advantage of the spherical harmonic decomposition is that the Y m
l are the
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eigenfunction of the Laplace-Beltrami operator

∆θ,ϕ(fb) =
1

sin θ

∂

∂θ

(
sin θ

∂fb
∂θ

)
+

1

sin2 θ

∂2fb
∂ϕ2

of the Vlasov-Fokker-Planck diffusion term in (5.4). Indeed, by noting

Y m
l (θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ) exp (imϕ), −l ≤ m ≤ l (5.6)

the spherical harmonics, one has

∆θ,ϕ(Y m
l ) = −l(l + 1)Y m

l . (5.7)

This method gives rise to a set of coupled differential equations for the coefficients fml , obtained

starting from the Vlasov-Landau equation (5.4). They read

∂fml
∂t

− Amx,l − Amy,l − Amz,l − Emx,l − Emy,l − Emz,l −Bm
l

=
∂

∂p

[
1

v2

(
Yeene
me

+
Yeini
mi

)
fml

]
− l(l + 1)

2
(Yeene + Yeini)

γme

p3
fml .

(5.8)

The advection terms in space are given for m 6= 0 by

Amz,l = −v ∂
∂z

[(
l −m
2l − 1

)
fml−1 +

(
l +m+ 1

2l + 3

)
fml+1

]
,

Amx,l + Amy,l =
v

2

[ (
∂

∂x
− i ∂

∂y

)
fm−1
l−1

2l − 1
−

(
∂

∂x
+ i

∂

∂y

)
(l −m) (l −m− 1)

fm+1
l−1

2l − 1

−
(
∂

∂x
− i ∂

∂y

)
fm−1
l+1

2l + 3
+

(
∂

∂x
+ i

∂

∂y

)
(l +m+ 1) (l +m+ 2)

fm+1
l+1

2l + 3

]
and for m = 0 by

A0
x,l + A0

y,l = Re

{
−v
(
∂

∂x
+ i

∂

∂y

)[
− l (l − 1)

2l − 1
f1
l−1 +

(l + 1) (l + 2)

2l + 3
f1
l+1

]}
.

The advection terms in the momentum space due to the electric field are given by

Emz,l = eEz

[
l −m
2l − 1

pl−1 ∂

∂p

(
p−(l−1)fml−1

)
+
l +m+ 1

2l + 3
p−(l+2) ∂

∂p

(
pl+2fml+1

)]
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and, for m 6= 0 by

Emx,l + Emy,l =
e

2

[ Ex − iEy
2l − 1

pl−1 ∂

∂p

(
p−(l−1)fm−1

l−1

)
− Ex + iEy

2l − 1
(l −m) (l −m− 1) pl−1 ∂

∂p

(
p−(l−1)fm+1

l−1

)
− Ex − iEy

2l + 3
p−(l+2) ∂

∂p

(
pl+2fm−1

l+1

)
+

Ex + iEy
2l + 3

(l +m+ 1) (l +m+ 2) p−(l+2) ∂

∂p

(
pl+2fm+1

l+1

) ]
and for m = 0 by

E0
x,l + E0

y,l = Re
{
e (Ex + iEy)

[
− l (l − 1)

2l − 1
pl−1 ∂

∂p

(
p−(l−1)f1

l−1

)
+

(l + 1) (l + 2)

2l + 3
p−(l+2) ∂

∂p

(
pl+2f1

l+1

) ]}
.

Finally, the rotational term in the momentum space due to the magnetic field is given for m 6= 0 by

Bm
l = −i eBz

γmec
mfml +

e

2γmec

[
(l −m) (l +m+ 1) (By − iBx) fm+1

l − (By + iBx) fm−1
l

]
and for m = 0 by

B0
l = l (l + 1)

e

γmec
Re
{

(By − iBx) f1
l

}
.

The electron-electron collision operator in OSHUN [Tzoufras et al., 2011] [Tzoufras et al., 2013]

is based on the non-relativistic Rosenbluth potentials [Rosenbluth et al., 1957](
∂fb
∂t

)
coll,ee

= −4πe4 ln Λee
m2
e

{
∂

∂v
.

(
fb
∂h[fb]

∂v

)
− 1

2

(
∂

∂v
⊗ ∂

∂v

)
:

[
fb

(
∂

∂v
⊗ ∂g[fb]

∂v

)]}
(5.9)

where
∂4g

∂v4
[fb] =

∂2h

∂v2
[fb] = −8πfb

while the electron-ion collision operator is based on the non-relativistic Lorentzian approximation (see

Appendix A, section A.3.2)(
∂fb
∂t

)
coll,ei

= −4πniZ
2e4 ln Λei
m2
ev

3
fb = −νei

2
fb. (5.10)

In order to account for this electron-ion collision operator, one just has to replace Yei by 0 in the

collisional friction term of (5.8) (first term in the right hand side) and replace ln Λrel
ei by the classical

Coulomb logarithm ln Λei (see Appendix A, section A.2.3) in Yei of the angular diffusion term

(second term in the right hand side). The electron-electron collision operator (5.9) is more difficult

to solve numerically. In OSHUN, in order to break the interdependance between the amplitudes fml

and allow for rapid numerical calculations, it is linearized assuming that fb is weakly anisotropic
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fb = f0
0 + δfb. According to [Tzoufras et al., 2011], it gives(
∂f0

0

∂t

)
coll,ee

=
4πe4 ln Λee

m2
e

4π
(
f0

0

)2
+

4πe4 ln Λee
m2
e

1

2

(
∂

∂v
⊗ ∂g[f0

0 ]

∂v

)
:

(
∂

∂v
⊗ ∂f0

0

∂v

)
=

(4π)2e4 ln Λee
3m2

e

1

v2

∂

∂v

[
1

v

∂W [f0
0 ]

∂v

] (5.11)

for the isotropic part where

W [f0
0 ] = f0

0

∫ v

0
f0

0 v
4dv + v3f0

0

∫ ∞
v

f0
0 vdv − 3

∫ ∞
v

f0
0 vdv

∫ v

0
f0

0 v
2dv

according to [Bobylev and Chuyanov, 1976] and(
∂δfb
∂t

)
coll,ee

= 8π
4πe4 ln Λee

m2
e

f0
0 δfb +

1

2

(
∂

∂v
⊗ ∂g[f0

0 ]

∂v

)
:

(
∂

∂v
⊗ ∂δfb

∂v

)
+

1

2

(
∂

∂v
⊗ ∂f0

0

∂v

)
:

(
∂

∂v
⊗ ∂g[δfb]

∂v

) (5.12)

for the anisotropic perturbation. In order to account for this electron-electron collision operator, one

just has to replace Yee by 0 in (5.8) and add (5.11) in the right hand side of Equation (5.8) with

m = l = 0 and (∂fml /∂t)coll,ee) coming from the decomposition in spherical harmonics of (5.12) (see

[Tzoufras et al., 2011]) in the right hand side of the other equations (5.8) with l 6= 0. These collision

operators are out of the scope of laser-generated relativistic electron beam transport presented in this

manuscript. The details of numerical methods used to discretize these collision operators can be found

in [Tzoufras et al., 2011]. The authors point out that for certain problems it would be extremely

expensive to apply an explicit scheme for the collisions of the anisotropic part of the distribution

function. Concerning the Vlasov part, i.e. the left hand side of equation (5.8), all advection terms in

the phase-space are differenciated by using the central difference scheme of the second order. While

periodic and reflecting boundaries in space have been implemented, the behavior of the harmonics

at p = 0 has been chosen such that fml≥1(p) = fml (p1)(p/p1)l and that the isotropic part of the

distribution has an extremum at p = 0 in order to get the p-derivatives at p = p0 where pk = p0 +k∆p

with p0 = ∆p/2 and ∆p the numerical momentum step. An iteration loop involving a list of successive

operations on each harmonic is performed such that each operator in the (l, m)-equation (5.8) depends

only on fml . These operations are found by starting from (5.8) to find the effect that each fml has on

its neighboring amplitudes in (l, m) space. Thus, (5.8) can finally be written with the form

∂fml
∂t

= F (fml , t) (5.13)

and be therefore numerically solved by using the Runge-Kutta methods up to the 4th order.
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Cartesian Tensor Scalar Product Expansion method

Another expansion of the distribution function has been proposed by [Johnston, 1960] and

[Shkarofsky, 1963] for plasmas. This tensor scalar product expansion reads

fb(r, p, t) =
1

4π
f0(r, |p|, t) +

3

4π
f1(r, |p|, t).Ω +

Nl∑
l≥2

Cl
4π

fl(r, |p|, t)�l Ω(l) (5.14)

where

Cl =
(2l + 1)!

2l!
,

Ω = p/p = [sin θ cosϕ, sin θ sinϕ, cos θ]T (see Figure 5.2), Ω(l) is the (l − 1) tensor products of Ω

with itself

Ω(l) = Ω⊗ ...⊗Ω = (Ωi1Ωi2 ...Ωil)(i1, i2, ..., il)∈{x, y, z}l

and �l is the l times contracted product which means that

A�` B =
∑

i1=x, y, z

∑
i2=x, y, z

...
∑

il=x, y, z

Ai1, i2, ..., ilBi1, i2, ..., il

where A and B are lth order tensors. Thus, f0 is a scalar (1 term f0), f1 is a vector (3 terms f1,x,

f1,y and f1,z), f2 is a second order tensor (9 terms f2,xx, f2,xy, f2,xz, f2,yx, f2,yy, f2,yz, f2,zx, f2,zy and

f2,zz), f3 is a third order tensor (27 terms f3,i1i2i3 , (i1, i2, i3) ∈ {x, y, z}3) and so on... The expansion

(5.14) is exact in the limit Nl →∞ and it is equivalent to the spherical harmonics expansion (5.5) cut

at the same order Nl. Indeed, by writing the spherical harmonic decomposition (5.5) with the form

[Tzoufras et al., 2011]

fb(r, p, t) =

Nl∑
l=0

l∑
m=0

1∑
0

flms(r, |p|, t)Ylms(θ, ϕ) (5.15)

where

Ylms(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)


δ0s cos (mφ) + δ1s sin (mφ)√

2
if m > 0

δ0s if m = 0

,

one has [Johnston, 1960]

Nl∑
l=1

Cl
4π

fl(r, |p|, t)�l Ω(l) =

Nl∑
l=1

l∑
m=0

1∑
0

flms(r, |p|, t)Ylms(θ, ϕ). (5.16)

For example, we have
1

4π
f0 =

f000√
4π
,
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and
3

4π
f1.Ω =

3

4π
(f1,x sin θ cosϕ+ f1,y sin θ sinϕ+ f1,z cos θ)

=

√
3

4π

(
f100 cos θ − f110

2
sin θ cosϕ− f111

2
sin θ sinϕ

) .

According to these two first examples, one can clearly see, that the dependences in

cosal θ sinbl θ coscl ϕ sindl ϕ are strictly the same where al, bl, cl, and dl are constants depending on l.

However, it is not true for the second order term

C2

4π
f2 : Ω⊗Ω 6=

2∑
m=0

1∑
0

f2ms(r, |p|, t)Ylms(θ, ϕ)

because 1, Ω and Ω ⊗ Ω are not orthogonal (with the definition of the scalar product �l) contrary

to the spherical harmonics. Actually, this is 1, Ω and Ω ⊗ Ω − (1/3)I that are orthogonal. Indeed,

according to (5.15), the relation between the Ylms and the Y m
l are straightforward and reads(

Ylm0

Ylm1

)
=

1√
2

(
1 (−1)m

−i i(−1)m

)
.

(
Y
|m|
l

Y
−|m|
l

)

while the relation between the flms and the fml are

fml =

√
2l + 1

4π

(l −m)!

(l +m)!

flm0 − iflm1√
2

.

Thus, one gets the relations for the three first components

f0 = 4πf0
0 , (5.17)

f1 =
4π

3


2Re

{
f1

1

}
−2Im

{
f1

1

}
f0

1

 , (5.18)

and

f2 −
1

3
f0I =

4π

15


12Re

{
f2

2

}
− f0

2 −12Im
{
f2

2

}
6Re

{
f1

2

}
−12Im

{
f2

2

}
12Re

{
f2

2

}
− f0

2 −6Im
{
f1

2

}
6Re

{
f1

2

}
−6Im

{
f1

2

}
2f0

2

 (5.19)

where I is the 2nd order unit tensor.

In the case where the Cartesian tensor scalar product expansion is cut at the first order Nl = 1,

each fl corresponds to the lth order angular moment of the distribution function fb :

f l (r, |p|, t) = p2

∫
S2

f(r, p, t)Ω(`)d2Ω (5.20)
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where it has been noted S2 the unity sphere in the momentum space, defined by {(θ, ϕ), θ ∈ [0, π], ϕ ∈
[0, 2π[} (see Figure 5.2). Thus, while it is strictly equivalent to the spherical harmonic expansion,

the Cartesian tensor scalar product expansion cut at the 1st order has the advantage to directly relate

the physical quantities and the expansion terms fl. In our case of relativistic electron beam transport,

f0 yields directly to the beam number density

nb =

∫
R3

fbd
3p =

∫ ∞
0

f0dp (5.21)

and the beam kinetic energy density

Kb = nb (γb − 1)mec
2 =

∫
R3

(γ − 1)mec
2fbd

3p =

∫ ∞
0

(γ − 1)mec
2f0dp (5.22)

while f1 yields directly to the beam current density

jb = −nbevb = e

∫
R3

vfbd
3p = −e

∫ ∞
0

vf1dp (5.23)

where vb is the mean beam electrons velocity, the mean beam electrons momentum

pb =
1

nb

∫
R3

pfbd
3p =

1

nb

∫ ∞
0

pf1dp (5.24)

and the beam kinetic energy flux

Fb =

∫
R3

(γ − 1)mec
2vfbd

3p =

∫ ∞
0

(γ − 1)mec
2vf1dp. (5.25)

In this cartesian tensor scalar product approach cut at the 1st order, the lth order equation that have

to be solved in order to get the expansion term fl can be obtained by integrating over the unity sphere

S2 the Vlasov-Fokker-Planck equation (5.4) multiplied by Ω(l). According to (5.20), these two first

equations of the hierarchy read

∂f0

∂t
+

∂

∂r
. (vf1)− ∂

∂p
(ef1.E) =

∂

∂p

[
1

v2

(
Yeene
me

+
Yeini
mi

)
f0

]
(5.26)

and
∂f1

∂t
+

∂

∂r
. (vf2)− ∂

∂p
(ef2.E) +

e

p
(f0I− f2) .E +

e

γmec
f1 ×B

=
∂

∂p

[
1

v2

(
Yeene
me

+
Yeini
mi

)
f1

]
− (Yeene + Yeini)

γme

p3
f1.

(5.27)

In addition to the increasing complexity of the obtained equations with increasing l, one can notice

that each lth order equation for fl makes appearing the (l+ 1)th order component fl+1. Consequently,

the (Nl + 1)th order component appearing in the Nlth order equation has to be approximated to close
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the set of equations. This is done by imposing the PN closure relation

fNl+1 =

∫
S2

fbΩ
(Nl+1)d2Ω ≈

∫
S2

[
Nl∑
l=0

Cl
4π

fl �l Ω(l)

]
Ω(Nl+1)d2Ω.

In practice, assuming a small perturbation of the isotropy, the Cartesian models are often limited to

the 1st order approximation (P1) in order to make fast computations. This was for example usually

done in studies of the non local thermal flux carried out by suprathermal electrons [Matte et al., 1984]

[Schurtz et al., 2000] [Nicoläı et al., 2006] [Schurtz et al., 2007]. In this case, the second order angular

moment expression reduces to the isotropic part of (5.19)

f2 =
1

3
f0I. (5.28)

Injecting it in the 1st order equation, one gets the so-called diffusive approximation characterized by

the two equations

∂f0

∂t
+

∂

∂r
. (vf1)− ∂

∂p
(ef1.E) =

∂

∂p

[
1

v2

(
Yeene
me

+
Yeini
mi

)
f0

]
and

∂f1

∂t
+
v

3

∂f0

∂r
− ∂

∂p

(e
3
f0E

)
+
e

p

2

3
f0.E +

e

γmec
f1 ×B

=
∂

∂p

[
1

v2

(
Yeene
me

+
Yeini
mi

)
f1

]
− (Yeene + Yeini)

γme

p3
f1.

5.3 Conclusion

Figure 5.4: Qualitative summary of the benefits and drawbacks of different approaches
[Thomas et al., 2012]

The pros and cons of each technique, finite difference Vlasov-Fokker-Planck and finite particle

methods are summarized in the Figure 5.4, taken from [Thomas et al., 2012]. Particle-in-cell (PIC)

Page 159



5.3. CONCLUSION

methods are listed with the headings Collisionless, Binary collisions, and Hybrid methods; Vlasov-

Fokker-Planck (VFP) methods are listed as Full, Hybrid and Expanded, with Full being the full

finite-differenced phase-space, Hybrid having the same basic fluid model as the PIC Hybrid model,

and Expanded meaning using the spherical harmonic or Cartesian tensor expansion. The first three

aspects of the codes, ”Efficiency”, ”Time/space constraint” and ”Noise/finesse” are rather qualitative.

Efficiency is how the information is stored, it relates to how fast the code is expected to be, and is

the most subjective rating. PIC methods store information in a minimal way, and are therefore

both listed as ”High”. Full Vlasov-Fokker-Planck would typically contain the most redundancy of

information storage, as the full phase-space needs to be stored. Hybrid and Expanded Vlasov-Fokker-

Planck are listed as ”Reasonable” as they store momentum phase-space information in a more efficient

way than Full Vlasov-Fokker-Planck. Time/space constraint is also somewhat subjective, and is

based on running a ”typical” code on a ”typical” cluster of ≈ 100 processors in terms of what are

the maximum length and timescales that could be ”reasonably simulated” for a hot solid target

interaction, based on the timescales in published results. Noise/finesse entries are more quantitative,

in that Vlasov-Fokker-Planck codes are naturally smoothed, whereas PIC methods are subject to

noise due to the finite number of discrete particles, with the Hybrid PIC therefore naturally being less

subject to noise. It is worth pointing out that while PIC codes tend to be noisy, which in some cases

may provide an unreasonably large seed perturbation for instabilities to grow from, Vlasov-Fokker-

Planck codes may be unrealistically smoothed [Thomas et al., 2012]. It is possible that numerical

diffusion in Vlasov-Fokker-Planck codes damps real physical instabilities. The last three aspects

describe the relative treatment of phenomena in different regimes of ln Λei and the relative evaluations

are therefore related to the physical equations involved. The most important difference between

PIC codes and Vlasov type codes is the issue of graininess, with PIC codes exhibiting artificially

high levels of it and Vlasov codes completely lacking it. The presence of granularity in PIC codes

is not fundamentally an issue of inadequate statistics, because no matter how high the number of

simulation particles is, graininess will never completely disappear from a PIC code (as it is also true

for an actual physical system) [Thomas et al., 2012]. This allows PIC codes to model instabilities

from noise and to incorporate physics associated with complex particle trajectories. For inertial

confinement fusion plasmas however, the lack of statistical smoothness can obscure and modify the

physics [Thomas et al., 2012]. Furthermore, numerical effects associated with finite size simulation

particles can severely compromise the reliability of the results. Vlasov and Vlasov-Fokker-Planck

codes produce results without noise, which allow for clear physical pictures to emerge since Vlasov-

Fokker-Planck codes represent the plasma using distribution functions, lack of statistics is never an

issue [Thomas et al., 2012]. However, if the distribution function is not described with sufficient

details, the physics cannot be modelled accurately, and as a result Vlasov-Fokker-Planck codes are

also prone to numerical artifacts.

As a conclusion, both hybrid PIC codes and hybrid Vlasov-Fokker-Planck codes are the best

and complementary numerical tools for solving the Vlasov-Belyaev-Budker equation applied to laser-
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generated relativistic electron beam transport. Moreover, expanded Vlasov-Fokker-Planck hybrid

method are able to limit the numerical cost imposed by the kinetic description of the relativistic

electron beam transport. Besides, cutting the expansion of the distribution function Nl may lead to

unphysical results since the resulting distribution function may become negative if Nl is not taken suf-

ficiently large for resolving strong anisotropy [Dubroca et al., 2010]. Starting from the V-F-P equation

for a Lorentzian gaz of non relativistic electrons, the authors proposed therefore to close the set of

equation by using a special closure relation based on the principle of the Minerbo maximum angular

entropy approximation [Minerbo, 1977] [Minerbo, 1978], from radiative transfer theory. It allows to

close the set of equations by evaluating the 2nd order angular moment f2 of the distribution function

needed in the 1st order angular moment equation. Contrary to the largely used approximation of the

distribution function with the two first Legendre polynomial P1, this M1 model allows to describe the

distribution function with an arbitrary local anisotropy.
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Chapter 6

Development of a Reduced Model for

Laser-generated Relativistic Electron

Beam Transport in Solids and Dense

Plasmas

”My original decision to devote myself to science was a direct result of the discovery which has never

ceased to fill me with enthusiasm since my early youth-the comprehension of the far from obvious fact

that the laws of human reasoning coincide with the laws governing the sequences of the impressions

we receive from the world about us; that, therefore, pure reasoning can enable man to gain an insight

into the mechanism of the latter. In this connection, it is of paramount importance that the outside

world is something independent from man, something absolute, and the quest for the laws which

apply to this absolute appeared to me as the most sublime scientific pursuit in life. ”

Max Planck
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In this chapter, the Landau-like relativistic collision tensor, mentioned in the previous Chapter 5

and allowing to obtain the Vlasov-Fokker-Planck (V-F-P) equation (5.4), is derived from the Belyaev-

Budker collision tensor and applied to relativistic electron beam transport in solids and dense plasmas.

It allows us to introduce the relativistic Coulomb logarithms, coming from the relativistic electron

stopping powers, in the V-F-P equation. Moreover, it allows us to naturally relate the fast electrons

angular scattering mean free path by colliding free, bound and screened free background electrons

and background ions with the corresponding stopping powers. It has been shown in Chapter 5 that

the best compromise between the accuracy and the numerical cost of a fast electron transport model

can be obtained with a hybrid and expanded relativistic V-F-P method. Such a new reduced kinetic

model, developed in this PhD, is presented. It consists in computing the two first angular moments

of the distribution function, according to Equations (5.27) and (5.28) in order to make computations

as fast as possible. However, in order to preserve the accuracy of calculations in case of strong

anisotropy, a special closure relation based on the Minerbo maximum angular entropy approximation

[Minerbo, 1977] [Minerbo, 1978], from radiative transfer theory, has been adapted. It allows to close

the set of equations by evaluating the anisotropic part of the 2nd order angular moment f2 of the

distribution function needed in the 1st order angular moment equation (5.28). Contrary to the largely

used approximation of the distribution function expanded on the two first Legendre polynomials,

often called P1, this M1 model allows to describe the distribution function with an arbitrary local

anisotropy. It is shown that the model is exact for fully isotropic and fully anisotropic local angular

distribution functions. Furthermore, it relates both of these extrema in the expression of f2. The

equation of the local angular entropy of fast electron beam is derived and the limitations of the model

are discussed. Developments of new plasma transport coefficients necessary to model the self-generated

electromagnetic fields are also proposed.

6.1 Kinetic Description of Relativistic Electron Beam

Transport in Solids and Dense Plasmas

6.1.1 The Relativistic Vlasov-Belyaev-Budker Equation Applied to

Relativistic Electron Beam Transport

We note fb(r, p, t) the distribution function of the relativistic electron beam in the laboratory frame.

It is the solution of the relativistic Vlasov-Belyaev-Budker equation

∂fb
∂t

+
∂

∂r
.

(
p

γme
fb

)
− ∂

∂p
.

[
e

(
E +

p

γmec
×B

)
fb

]
=
∑
α

Cα[fb] (6.1)
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where

Cα[fb] = − ∂

∂p
.

∫
R3

Uα.

[
fb
∂fα
∂pα

− ∂fb
∂p

fα

]
d3pα (6.2)

with Uα the Belyaev-Budker collision operator (see Chapter 4, section 4.4). The collision opera-

tor Cα[fb] comes from a 2nd order expansion of the Boltzmann collision integral in the small angle

scattering limit:

∆p = ∆p‖
p

p
+ ∆p⊥

b

b
with p� ∆p⊥ � ∆p‖, (6.3)

where b is the impact parameter vector and ∆p is the momentum transfer in a collision of a relativistic

beam electron with momentum p with a particle α having a momentum pα (cf. Annexe A, section

A.2.2). Here, α particles can be ions, bound electrons, free electrons or screened free electrons of the

medium where the relativistic electron beam is propagating through. We neglect the binary collisions

of the beam electrons with themselves since nb � ne. (6.3) means that each binary collision occurs

in the 2D plane (p,pα) and leads to an exchange of momentum mostly in the perpendicular direction

to p. Indeed, even if large angle collisions lead to a large change in momentum after each collision,

the probability that they occur is small compared to the probability of small angle collisions. The

Belyaev-Budker collision tensor reads

Uα =
1

2
Uα,0

{
I− 1

(γ̃2
α − 1)

[ p

mec
⊗ p

mec
− pα
mαc

⊗ pα
mαc

+ γ̃α

(
p

mec
⊗ pα
mαc

+
pα
mαc

⊗ p

mec

)]}
.

(6.4)

It is often expressed with the scattering potential Uα,0 = 4πZ2
αe

4 ln Λeα/vr,α expanded within the clas-

sical Rutherford cross section (dσα/dΩ)Ruth [Belyaev and Budker, 1956] [Landau and Lifshitz, 1981]

[Braams and Karney, 1987]. But, in a more general case i.e. without integrating it within a given

cross section, the scattering potential reads

Uα,0 =
1

2

∫
∆p2vr,αdσα. (6.5)

vr,α = c
√
γ̃2
α − 1/γ̃α is the relative velocity of one particle in the rest frame of the another, γ̃α = γγα/γ

2
∗

and γ∗ = 1/
√

(1− v.vα/c2) (cf. Chapter 4, section 4.4). In addition to the small angle scattering

assumption (6.3), we make the assumption that the target particles α remain non relativistic after each

binary collision with a relativistic beam electron. That is to say, we neglect high energy secondary

electrons

|pα| � |∆p| � mαc. (6.6)

Under the assumption (6.3), the 2D binary collision problem consists in solving 6 unknown variables

(the momenta and energy of each particle after the collision) while having 7 equations (1 energy

conservation equation, 4 momenta conservation equations and the 2 Einstein relationships between

energies and momenta). Consequently, there is 1 relation between 2 chosen free parameters which
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are for example the scattering angle θ and the relative energy loss of the relativistic electron w =

∆γ/ (γ − 1) in the laboratory frame. So, one is free to work with dσα/dw instead of dσα/dΩ. Moreover,

under the assumption (6.6), the energy conservation equation for one collision, ∆γαmαc
2 + ∆γmec

2 =

0, provides

∆p⊥
2 = −2mα∆γmec

2. (6.7)

This naturally leads to a relation between the stopping power of relativistic electrons due to collisions

with the α particles and the scattering potential Uα,0. Knowing the differential cross section dσα/dw,

one can define the loss of electron kinetic energy ε = (γ − 1)mec
2 per unit path length ds as follows

(cf. Chapter 4, section 4.2.1)(
dε

ds

)
α

= εnα

∫ wα,max

wα,min

w

(
dσα
dw

)
dw (6.8)

with nα the density of the α particles. The integration limits wα,min and wα,max in (6.8) depend on

the nature of collisions. For collisions on free electrons, wfree,max = 1/2 due to the indiscernibility

of electrons and a cut-off wc is used to distinguish between binary collisions and collisions where

collective effects take place. That is to say, for collisions on bound and screened free electrons. These

latter collisions can be understood respectively in terms of energy transfer to the excitation of bound

electrons by the beam electron electric field and in terms of energy transfer to plasma waves in quanta

of ~ωpe (plasmons). For collisions on plasma ions, wi,min and wi,max correspond to the commonly used

impact parameters. All details are given in Chapter 4, sections 4.2.1 and 4.2.2 and are summarized

in Figure 6.1.

Injecting the expression (6.7) in (6.5) and noticing that vr,α ∼ v under the assumptions (6.3) and

(6.6), one finds the following relation between the scattering potential Uα,0 and the electron stopping

power (dε/ds)α

Uα,0 = −mαv

nα

(
dε

ds

)
α

. (6.9)

Moreover, according to assumptions (6.3) and (6.6), one has γα ∼ 1, γ̃α ∼ γ and the Belyaev-Budker

tensor (6.4) can thus be simplified to

Uα =
Uα,0

2

[
I− p⊗ p

p2

]
(6.10)

and its divergence to
∂

∂pα
.Uα = −Uα,0

mαv

p

p
. (6.11)

Instead of momentum, it is more convenient to work with the kinetic energy ε of the relativistic elec-

trons. Besides, the structure of the collision tensor motivates to use spherical coordinates (Ω, eθ, eφ)

where Ω = p/p. Instead of fb, we make use of the distribution function Ψ depending on the kinetic
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energy ε and the propagation direction Ω

Ψ (r, ε,Ω, t) =
(
p2/v

)
fb(r, p, t), (6.12)

where p2/v comes from the Jacobian of the change of variables from p to (ε, Ω). By defining

S(r, ε, t) = −
∑
α

(
dε

ds

)
α

(6.13)

the total stopping power (> 0) and

ν(r, ε, t) = −
∑
α

mαv

p2

(
dε

ds

)
α

(6.14)

the total angular isotropization rate, one may integrate the collision integral (6.2) by parts and express

the Vlasov-Belyaev-Budker equation in the laboratory frame (6.1) as

∂Ψ

∂t
+

∂

∂r
.(vΩ Ψ)− ∂

∂ε
[v (eE.Ω + S) Ψ]

− ∂

∂Ω
.
{

(I−Ω⊗Ω) .
[e
p

(
E +

vΩ

c
×B

)
Ψ +

∂

∂Ω

(ν
2

Ψ
) ]}

= 0
(6.15)

where
∂

∂Ω
. [(I−Ω⊗Ω) .A] =

1

sin θ

∂

∂θ
(sin θAθ) +

1

sin θ

∂Aϕ
∂ϕ

and
∂

∂Ω
.

[
(I−Ω⊗Ω) .

∂f

∂Ω

]
=

1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂ϕ2

is the Laplace-Beltrami operator. It is the same equation as Equation (5.4), but written for

Ψ(r, ε, Ω, t) instead of fb(r, p, θ, ϕ, t).

6.1.2 Collisional Effects of Relativistic Electron Transport in Solids

and Dense Plasmas

The analysis presented above in the section 6.1.1 shows that the V-F-P equation (6.15) usually derived

for free electrons can be extended to a more general case by replacing the Coulomb scattering potential

Uα,0 by the realistic stopping power according to Equation (6.9). We use the general expression for

the stopping powers in solids and dense plasmas(
dε

ds

)
α

= −4π
nαZα

2e4

mαv2
ln Λrel

eα. (6.16)

Zα equals 1 for electrons and equals the nuclear charge Z for ions. As detailed in Chapter 4 section

4.2.1, the Coulomb logarithm ln Λrel
eα is calculated using the Mø̈ller cross section [Möller, 1932] for col-
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α nα ln Λrel
eα

ions ni ln Λclas
ei −

2γ2 − 1

2γ2

free e− Z∗ni ln Λclas
ee − ln 2 +

1

2
− 2γ − 1

2γ2
ln 2 +

1

16

(
γ − 1

γ

)2

bound e− (Z − Z∗)ni ln

(
(γ − 1)mec

2

Iex

√
γ + 1

2

)
+

1

2γ2
− 2γ − 1

2γ2
ln 2 +

1

16

(
γ − 1

γ

)2

plasmons Z∗ni ln

 c
√
γ2 − 1/γ

ωp,e max
{
λDebye, (3/4πni)

1/3
}


Figure 6.1: Expressions for the Coulomb Logarithms ln Λrel
eα and the densities nα of the stopping pow-

ers (6.16). Z∗ is the ionization state and ln Λclas
eα = max {2, ln (bmax/bmin,α)} is the “clas-

sical” Coulomb logarithm where bmax = max {λDebye, (3/4πni)
1/3} is the upper impact

parameter and bmin,α = ~/(2mec
√
γ2 − 1) if α = ions (bmin,α = ~/(2mec

√
(γ − 1)/2) if

α = free electrons) is the lower impact parameter.

lisions with free plasma electrons. The cut-off used to distinguish between the binary part (collision

with plasma free electrons) and the collective one (collisions with plasma bound and screened electrons)

is evaluated by wc = λDe Broglie
2/max {λDebye

2, (3/4πni)
2/3}. The Mott cross section [Mott, 1932] is

used for collisions with ions. An extension of the Bethe formula [Bethe, 1932] is used with a mean

excitation potential Iex provided by [More, 1985] to take into account collisions with plasma bound

electrons. The Fermi density effect correction [Fermi, 1940] is taken into account according to the

Pines and Bohm cross section [Pines and Bohm, 1952] for collisions with screened free electrons (plas-

mons). These expressions for stopping powers are derived in the first Born approximation for low and

intermediate Z plasmas and for electrons with kinetic energies greater than approximatively 10 keV.

The expressions for the densities nα and the Coulomb logarithms ln Λrel
eα of (6.16) are summarized in

Figure 6.1. Even if Bremsstrahlung losses of the relativistic electrons can be neglected in the consid-

ered range of energies (10 keV - 10 MeV), a radiative stopping power from [Heitler and Sauter, 1933](
dε

ds

)
rad

= −4π
(Z − Z∗)(Z − Z∗ + 1)nie

4

mec2/γ

α

π

[
ln (2γ)− 1

3

]
is added into S. Due to a very small mass ratio me/mi � 1, the contribution of the stopping power

on ions (dε/ds)i is negligible compared to those on electrons.

Concerning the angular diffusion of the beam electrons, it is worth noting that the isotropization

rate

ν =
∑
α

να with να = 4π
nαZα

2e4

γ2me
2v3

ln Λrel
eα (6.17)

deduced from (6.14) and (6.16) does not depend on the α particles mass. It is plotted in the left panel

of Figure 6.2 for Aluminum (ρ = 2.7 g.cm−3) versus the electron kinetic energy with the separate
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Figure 6.2: (Left panel) Total isotropization rate ν in Aluminum (ρ = 2.7 g.cm−3) versus its kinetic
energy according to formula (6.17) (black) and the different contributions due to free
electrons (red), bound electrons (blue), screened free electrons/plasmons (green) and
ions (magenta) at ambient temperarure Te = Ti = 300 K (solid lines) and Te = Ti = 100
eV (dashed lines). (Right panel) Total isotropization rate ν in Hydrogen (ρ = 10 g.cm−3

and T = 100 eV) versus its kinetic energy according to formula (6.17) (black) and the
separate contributions due to free electrons (red), bound electrons (blue), screened free
electrons/plasmons (green) and ions (magenta).

να of collisions with background free electrons, bound electrons, screened free electrons/plasmons

and ions at ambiant temperarure (Te = Ti = 300 K) and Te = Ti = 100 eV. It shows that, for

intermediate and high Z plasmas, the electron beam scattering on ions is dominant compared to

their scattering on electrons by a factor Z. One can also notice that, as for the total stopping

power (see Chapter 4, section 4.2.1), the isotropization rate ν weakly depends on the background

temperature (logarithmically). The isotropization rate (6.17) is also plotted for Hydrogen (ρ = 10

g.cm−3 and T = 100 eV) versus the electron kinetic energy in the right panel of Figure 6.2 with

the separate contributions of collisions with background free electrons, bound electrons, screened free

electrons/plasmons and ions. It shows that for the Hydrogen plasmas, the scattering on both plasma

ions and electrons provides comparable contributions. One also sees that, in the case of beam electrons

with kinetic energies less than ≈ 100 keV, propagating in a degenerate Hydrogen plasma, collisions

on screened free electrons/plasmons provide the main contribution to the beam electrons angular

scattering. The linearization of the Belyaev-Budker collision tensor has allowed us to determine a

relation between the stopping power on α particles (dε/ds)α and the corresponding isotropization rate

να = v/λα,lpm where λα,lpm = 1/k1,α is the angular scattering mean free path. This relation reads

να =
mα

γme

1

p

(
dε

ds

)
α

. (6.18)

One deduces consequently that the total slowing down rate νd = (1/p)(dε/ds) introduced in Equation

Page 171



6.1. KINETIC DESCRIPTION OF RELATIVISTIC ELECTRON BEAM TRANSPORT IN
SOLIDS AND DENSE PLASMAS

(5.2) is approximatevely γ times greater than the total isotropization rate ν of the beam electrons :

νd = γ (ν − νi) +
1

p

(
dε

ds

)
rad

(6.19)

in the limit me/mi � 1.

6.1.3 Background Electrons Dynamics in the ”Hybrid” Assumption

As detailed in Chapter 3, section 3.1.1, we consider that the beam is already electromagnetically

neutralized. That is to say, ne = Z∗ni − nb ≈ Z∗ni (nb � ne), and we neglect the displacement

current in the Maxwell-Ampere equation

∂

∂r
×B =

4π

c
(je + jb) , (6.20)

considering times greater than the beam electromagnetic neutralization time (see Chapter 2). The

plasma dynamics is taken into account by the generalized Ohm equation (3.4)

E = ηje −
1

nee

∂

∂r
(nekBTe) . (6.21)

Considering a space scale larger than the plasma skin depth λe = c/ωpe, which is typically less than a

fraction of microns, the electron inertia has been neglected in (6.21). It has been assumed an isotropic

resistivity tensor η = ηI (no magnetization effects) and the ideal gas expression for the electron

pressure Pe = nekBTe. As also discussed in Chapter 3, section 3.1.1, the electron viscosity, the

thermal force, the magnetic force and the friction force due to collisions with beam electrons have been

neglected compared to the friction force by colliding with background particles. In order to account

for the induced electric field, one has to add the Maxwell-Faraday equation (3.5)

∂

∂r
×E = −1

c

∂B

∂t
. (6.22)

Thus, the system of equations (6.20), (6.21) and (6.22) provides the self-generated electromagnetic

field equations (3.7) and (3.8)

E = −ηjb +
ηc

4π

∂

∂r
×B− 1

nee

∂

∂r
(nekBTe) (6.23)

and
1

c

∂B

∂t
+

∂

∂r
×
(
ηc

4π

∂

∂r
×B

)
= η

∂

∂r
× jb +

∂η

∂r
× jb −

kB
nee

∂ne
∂r
× ∂Te

∂r
. (6.24)

The role of each term in these equations is discussed in Chapter 3, section 3.1.1.

As detailed in Chapter 3, section 3.3.2, the energy deposition by the electron beam produces
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a heating and a hydrodynamic motion of the plasma. On the picosecond time scale, the dominant

effect is the electron heating while the ion motion is much less important. So, in our model, the ions

are assumed to be immobile. Both collisional and collective effects contribute to the plasma heating.

The electron temperature Te of the plasma is calculated in our model according to Equation (3.52)

CV,e
∂Te
∂t
− ∂

∂r
.

(
κe
∂Te
∂r

)
= We −G (Te − Ti) (6.25)

where the the hydrodynamic velocity divergence, the electron viscosity effects and the thermal force

have been neglected. Also, the thermal electron conductivity tensor has been assumed to be scalar

κe = κeI (no magnetization effects) and it has been noted CV,e the background electron heat capacity.

The heating source term (3.51)

We =

∫
dε

∫
S2

d2Ω (vScolΨ) + ηje
2 (6.26)

is evaluated by calculating the direct energy loss of the beam electrons in collisions with the back-

ground electrons according to (6.15) and the friction of background electrons on background particles

−Rei.ve = ηj2
e. Thus, Scol reads

Scol = −
(
dε

ds

)
free e−

−
(
dε

ds

)
bound e−

−
(
dε

ds

)
plasmons

. (6.27)

Finally, G is the electron-ion equilibration coupling factor. The ion temperature is evaluated from

Equation (3.53)

CV,i
∂Ti
∂t

= Wi = G (Te − Ti) . (6.28)

Here, CV,i is the background ion thermal capacity. The thermal ion conductivity has been neglected

since it is negligible in the considered time scale. Also, the energy loss of the relativistic electron beam

from collisions with the ions has been neglected compared to G(Te − Ti).

The energy conservation equation of the full system consiting of the beam electrons, the back-

ground electrons, the background ions, the bremsstralung photons and the electromagnetic fields can

be obtained starting from the Poynting theorem. It reads

Wi + (We −Wi) +Wbrem +Wem +
∂

∂r
.Π = −Wb =

∫
dε

∫
S2

d2Ω (vSΨ)− jb.E. (6.29)

Here, due to the fact that it is usually small, the pressure force has been neglected compared to the

friction force in the Ohm’s law (6.21) to write ηje
2 = je.E. The part of the beam power density

converted into the electromagnetic power density

Wem =
∂

∂t

(
E2 + B2

8π

)
(6.30)
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is negligible compared to We as well as the divergence of the Poynting vector Π = E ×B/4πc. The

term

Wbrem = −
∫
dε

∫
S2

d2Ω

[
v

(
dε

ds

)
brem

Ψ

]
(6.31)

comes from the bremsstrahlung power losses of beam electrons and Wb is the full power lost by

the fast electron beam. For low Z material, we have shown in Chapter 4, section 4.2.1 that

bremsstrahlung losses of beam electrons are negligible compared to their collisional losses. As the

transport of bremsstralung photons is not taken into account in our model, we make an implicit

assumption that photons deposit directly their energy in the material and therefore include Wbrem in

We. However, for intermediate Z materials and/or depending on the material opacity, this assumption

could not be sufficient and Wbrem is considered separately.

6.2 M1 Model for Relativistic Electron Beam Transport

6.2.1 Spherical Harmonic and Cartesian Tensor Scalar Product Ex-

pansions

A standard method of resolution of the V-F-P equation (6.15) consists in using a spherical harmonic

decomposition (see Chapter 5, section 5.2.2). This approach takes advantage of the fact that

the spherical harmonics constitute a full set of orthogonal functions on the unity sphere S2 and they

are the eigen functions of the Laplace-Beltrami operator [Tzoufras et al., 2011]. Another approach

consists in using a Cartesian tensor scalar product expansion (5.14)

Ψ =
∞∑
l=0

C`
4π

Ψ` �` Ω(`) (6.32)

where C` = (2`+ 1)!/2`!, Ω(`) equals the (l− 1) tensor products of Ω with itself Ω⊗ ...⊗Ω and �` is

the ` times contracted product. The Nth order Lagrange polynomial approximation (Cartesian tensor

scalar product expansion with `max = N) is strictly equivalent to the spherical harmonic expansion

approximation with `max = N [Johnston, 1960]. This method gives rise to a set of differential equations

where each equation, describing the `th order component Ψ`, involves the (`+ 1)th order component

Ψ`+1. Consequently, the (N + 1)th order component has to be approximated to close the set of

equations. This is done by imposing the PN closure relation

ΨN+1 (r, ε, t) =

∫
S2

ΨΩ(N+1)d2Ω ≈
∫
S2

[
N∑
l=0

C`
4π

Ψ` �` Ω(`)

]
Ω(N+1)d2Ω.

In practice, the models are limited to the 1st order approximation (P1) in order to make fast com-

putations. In this approach, the decomposition components Ψ` correspond to the `th order angular
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moments of the distribution function Ψ

Ψ` (r, ε, t) =

∫
S2

ΨΩ(`)d2Ω, (6.33)

and the first two equations can be obtained by integrating (6.15) multiplied by Ω(`) over the unity

sphere S2. They read
∂Ψ0

∂t
+

∂

∂r
. (vΨ1)− ∂

∂ε
[v (eΨ1.E + SΨ0)] = 0 (6.34)

and

∂Ψ1

∂t
+

∂

∂r
. (vΨ2)− ∂

∂ε
[v (eΨ2.E + SΨ1)] = −e

p
(Ψ0 −Ψ2) .E− e

γmec
Ψ1 ×B− νΨ1. (6.35)

The second order angular moment Ψ2 is evaluated by using the P1 approximation Ψ ≈ ΨP1 =

Ψ0/4π + 3Ψ1.Ω/4π of (6.32)

Ψ2 =

∫
ΨΩ⊗Ω d2Ω ≈

∫
ΨP1Ω⊗Ωd2Ω =

1

3
Ψ0I (6.36)

which is the second order angular moment of an isotropic angular distribution function. Consequently,

the P1 approximation (6.36) is limited to weakly anisotropic distributions and it does not allow to

evaluate the anisotropic part of Ψ2. Moreover, ΨP1 may become negative if the anisotropic part

3Ψ1.Ω/4π < 0 is greater than the isotropic part Ψ0/4π [Dubroca et al., 2010].

6.2.2 M1 closure

Figure 6.3: Closure parameter µ as a function of the anisotropic parameter |Ωε| = |Ψ1|/Ψ0 (solid
blue curve) plotted within the approximation (6.59). The dots are the exact values of µ
for some values of |Ωε|.
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Another approach consists in solving the set of equations (6.34) and (6.35) with a more general

closure relation. A general expression for a 2nd order tensor in a system with one preferential direction

given by the vector Ψ1/|Ψ1| reads

Ψ2 =
1

3
Ψ0I + µΨ0

(
Ψ1 ⊗Ψ1

|Ψ1|2
− 1

3
I

)
(6.37)

where µ = µ (Ψ0, Ψ1) is a closure parameter depending on the two first angular moments

[Eddington, 1926]. Indeed, let us define the eigenvalues χ1, χ2 and χ3 of the tensor Ψ2/Ψ0, asso-

ciated with the eigenvectors u1, u2 and u3, respectively. According to the definitions (6.33) of the

angular moments of the distribution function Ψ, we deduce that

Tr

(
Ψ2

Ψ0

)
= χ1 + χ2 + χ3 =

1

Ψ0

∫
S2

Tr (Ω⊗Ω) Ψd2Ω = 1. (6.38)

Due to the fact that we truncate the Cartesian tensor scalar product expansion at the 1st order, there

is only one preferential direction n = Ψ1/|Ψ1| for beam electrons at the space location r and having

the kinetic energy ε at time t. As a consequence, the vector (Ψ2/Ψ0).n must be invariant under a

rotation around the n-axis and so n must be an eigenvector of Ψ2/Ψ0 [Levermore, C.D., 1984]. Let

us choose u1 = n. By symetry, the plane perpendicular to u1 must also be a sub-eigenspace of Ψ2/Ψ0

so that the eigenspace (u1, u2, u3) is an orthonormal basis of R3. It implies that the corresponding

eigenvalues read

χ2 = χ3 =
1− χ1

2
, (6.39)

according to the trace identity relation (6.38). Let us note {αij , (i, j) ∈ {1, 2, 3}2} the components

of the tensor Ψ2/Ψ0 in this orthonormal basis (u1, u2, u3) :

Ψ2

Ψ0
=

3∑
i=1

3∑
j=1

αijui ⊗ uj . (6.40)

By definition of eigenvectors, we have

∀k ∈ {1, 2, 3}, Ψ2

Ψ0
.uk = χkuk. (6.41)

Injecting (6.40) in (6.41), we obtain

∀k ∈ {1, 2, 3},
3∑
i=1

3∑
j=1

αijui ⊗ uj .uk = χkuk

⇒
3∑
i=1

3∑
j=1

αij (ui.uk) uj = χkuk

⇒
3∑
j=1

αkjuj = χkuk

(6.42)
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and we deduce the components of Ψ2/Ψ0 :

∀(k, j) ∈ {1, 2, 3}2, αkj = δkjχk. (6.43)

Accounting for (6.43) and the axisymmetry relation (6.39) in (6.40), we finally obtain the closure

relation (6.37) with

µ =
3χ1 − 1

2
. (6.44)

In radiation transfer theory, χ1 is called the Eddington factor [Minerbo, 1977] [Levermore, 1979]

[Pomeraning, 1981] [Dubroca and Feugeas, 1999]. Finally, according to the definition (6.33) of Ψ2,

the tensor Ψ2/Ψ0 is symetric and positive-definite since it is the second order angular moment of a

positive unit density of probability on the unit sphere S2. Thus,

∀k ∈ {1, 2, 3}, 0 ≤ χk ≤ 1. (6.45)

The closure relation (6.37) is exact for both totally isotropic angular distributions (µ = 0 or χ1 = 1/3)

and totally anisotropic angular distributions (µ = 1 or χ1 = 1).

According to the method derived by [Minerbo, 1977] [Minerbo, 1978] in the context of radiation

transport and extended to electron transport by [Dubroca et al., 2010], the underlying parameter µ

can be estimated by maximizing the local angular entropy of beam electrons with a given kinetic

energy under the constraints of the definition of the angular moments Ψ0 and Ψ1. Let us demonstrate

so the closure relation (6.37) following this approach. The maximum local angular entropy principle is

discussed in detail in the next section 6.2.3. The local angular entropy per unit energy of the beam

is defined by

Hε [Ψ] = −
∫
S2

Ψ (ln Ψ− 1) d2Ω. (6.46)

The distribution function ΨM1, maximizing the local angular entropy Hε [Ψ], is obtained by the method

of Lagrange multipliers. This is a strategy for finding the local maxima and minima of a function

subject to equality constraints. For instance, we want to maximize the local angular entropy (6.46)

subject to the definition (6.33) of the two first angular moments Ψ0 and Ψ1. We introduce the 4-

dimensional vector α = (α0, α1)T where α0 and α1, called Lagrange multipliers, are living in the

same space than the angular moments Ψ0 and Ψ1, respectively. To incorporate these constraints, we

introduce the functional of this maximization problem, called Lagrangian, defined by

Lε[Ψ, α] = Hε[Ψ]− α0

(
Ψ0 −

∫
S2

Ψd2Ω

)
−α1.

(
Ψ1 −

∫
S2

ΨΩd2Ω

)
. (6.47)

The critical points of the Lagrangian (6.47) occur at saddle points. Note that

∂Lε
∂α

[Ψ = ΨM1, α] = 0 (6.48)
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implies the constraints of the definition (6.33) of the two first angular moments with Ψ = ΨM1, ` = 0

and ` = 1. The maximizing distribution function ΨM1 is defined by the Equation

∂Lε
∂Ψ

[Ψ = ΨM1, α] = 0 (6.49)

where ∂/∂Ψ is the functional derivative. It is defined by∫
S2

∂Lε
∂Ψ

[Ψ, α]δΨd2Ω = lim
ε→0

Lε[Ψ + εδΨ, α]− Lε[Ψ, α]

ε
(6.50)

where δΦ is an arbitrary function of Ω and εδΨ is the variation of Ψ. According to the definition

(6.46) of the beam local angular entropy and the Lagrangian (6.47) of this maximization problem, we

find

Lε[Ψ + εδΨ, α]− Lε[Ψ, α] =

∫
S2

εδΨ (− ln Ψ + α0 + α1.Ω) d2Ω +O(ε2) (6.51)

which gives ∫
S2

∂Lε
∂Ψ

[Ψ, α]δΨd2Ω =

∫
S2

δΨ (− ln Ψ + α0 + α1.Ω) d2Ω. (6.52)

Therefore, according to the definition (6.49) of the maximizing distribution function ΨM1, we deduce

that, whatever the function δΨ,∫
S2

δΨ (− ln ΨM1 + α0 + α1.Ω) d2Ω = 0. (6.53)

The only possible solution of the previous equation is

ΨM1 = exp (α0 +α1.Ω) . (6.54)

Then, the Lagrange multipliers α0 and α1 have to be evaluated in terms of physical quantities by

using the constraints given by Equation (6.48). One has

Ψ0 =

∫
S2

ΨM1 d
2Ω = exp (α0)

4π sinh |α1|
|α1|

(6.55)

and

Ψ1 =

∫
S2

ΨM1Ω d2Ω = exp (α0)
4π sinh |α1|
|α1|

(
coth |α1| −

1

|α1|

)
α1

|α1|
. (6.56)

The detailed calculation of these two integrals can be found in [Wright and Hadley, 1975]. From (6.55)

and (6.56), one deduces an expression for the anisotropy vector

Ωε =
Ψ1

Ψ0
=

(
coth |α1| −

1

|α1|

)
α1

|α1|
. (6.57)

It is defined as the mean propagation direction of the electrons having the energy ε at the position r
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at the time t. Due to the triangular inequality applied to (6.33) with ` = 1, one has

0 ≤ |Ωε| ≤ 1. (6.58)

Although the bijective relation (6.57) cannot be inverted analytically, one can fit the real values of α1

by

α1 ≈
3Ωε

1− |Ωε|2

2

(
1 + |Ωε|2

) . (6.59)

It is compared with the real value of α1 for some values of |Ωε| in Figure 6.3, where the dependence

of the anisotropy vector Ωε on the closure parameter µ is plotted. Consequently, one deduces an

explicit expression for the approximate beam distribution function

ΨM1 = Ψ0
|α1|

4π sinh |α1|
exp (α1.Ω). (6.60)

In the isotropic case where |α1| � 1 (|Ωε| � 1), the M1 model reduces to the one-polynomial

approximation P1. But, in the opposite case of a strong anisotropy |α1| → ∞ (|Ωε| → 1), the function

ΨM1 → Ψ0 δ [Ω−Ωε] where δ is the Dirac distribution. By substituting (6.60) in the definition (6.33)

of Ψ2, one obtains the closure relation

Ψ2 ≈
∫
S2

ΨM1Ω⊗Ω d2Ω =
1

3
Ψ0I + µΨ0

(
Ψ1 ⊗Ψ1

|Ψ1|2
− 1

3
I

)
(6.61)

with the closure parameter

µ = 1− 3

(
coth |α1|
|α1|

− 1

|α1|2

)
≈ |Ωε|2

2

(
1 + |Ωε|2

)
. (6.62)

Here, we refer again to [Wright and Hadley, 1975] for the detailed calculation of this integral. This M1

closure relation (6.61) provides an interpolation between the local beam-like case where all electrons

at the position r with the energy ε move in the same direction Ωε = ez and the local isotropic case

where all electrons at the position r with the energy ε move in all directions with the same probability

(Ωε = 0). It preserves consequently the advantage of the P1 model in fast computing while angular

distributions are described with a much better precision.

6.2.3 Properties of the M1 closure

Introduction

While the M1 closure shows a very good performance in the studies of radiation transfer, it is not

evident that the local angular entropy maximization under the constraints of the definition of the
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angular moments Ψ0 and Ψ1 provides the best possible closure relation for electrons, which are charged

particles evolving under the action of the Lorentz force. We refer here to Minerbo who justified this

closure concerning photons by saying : “In communication theory, it is shown that the information

content is the negative of the entropy of the distribution. Thus, by using the maximum entropy

criterion, one avoids introducing information that is not available. This approach is conceptually

superior to the use of an ad hoc model for the intensity” (i.e. Ψ1). Concerning the relativistic

electrons considered here, even if their angular scattering tends to isotropize their angular distribution

and increase their angular entropy, self-generated electromagnetic fields may not follow the same

trend. One can deduce the local angular entropy dissipation rate (∂Hε/∂t)col starting from the V-F-P

equation (6.15) and by integrating it over the unity sphere in the momentum space S2. Here, we define

the local angular entropy as

Hε[Ψ](r, ε, t) = −
∫
S2

Ψ

[
ln Ψ− 1 + ln

(
v

p2

)]
d2Ω. (6.63)

It is different from (6.46) by a constant term and therefore does not modify the results obtained in

the previous section 6.2.2. This definition allows us to relate the local angular entropy with the

Boltzmann entropy H[fb] (see Appendix A, section A.1.5) by the simple relation

H[fb](r, t) = −
∫
R3

fb (ln fb − 1) d3p =

∫ ∞
0

Hε[Ψ]dε. (6.64)

By noting φ = Ψ[1 − ln (v/p2)] − Ψ ln Ψ, the equation for the time derivative of the local angular

entropy reads

dHε

dt
=
∂Hε

∂t
+

∂

∂r
.

∫
S2

vΩφd2Ω− ∂

∂ε

[∫
S2

v (eE.Ω + S)φd2Ω

]
=

(
∂Hε

∂t

)
col

(6.65)

with (
∂Hε

∂t

)
col

=
ν

2

∫
S2

1

φ

[(
∂φ

∂θ

)2

+

(
∂φ

∂ϕ

)2
]
d2Ω−Ψ0

v

p2

∂

∂ε

(
p2S

)
. (6.66)

M1 Closure and Collisional Effects of Fast Electron Transport

The local angular entropy dissipation rate (∂Hε/∂t)col, which is the angular entropy time evolution

of a M1 mesoscopic particle following its trajectory in the (r, ε)-space, contains two terms according

to the previous equation (6.53). The term depending on the isotropization rate ν is positive and

consequently increases the angular entropy Hε with time. But, the sign of (∂Hε/∂t)col depending

also on the total stopping power S is not defined. Let us estimate so the contribution of each term

assuming that ∫
S2

1

φ

[(
∂φ

∂θ

)2

+

(
∂φ

∂ϕ

)2
]
d2Ω ∼ Ψ0
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Figure 6.4: (Left panel) Ratio ξ versus the kinetic energy of electrons according to Equation (6.67) for
dense Hydrogen (ρ = 10 g.cm−3, Z = 1), Aluminum (ρ = 2.7 g.cm−3, Z = 13), Copper
(ρ = 8.96 g.cm−3, Z = 29) and Tantalum (ρ = 16.65 g.cm−3, Z = 73) at T = 100
eV. (Right panel) Comparison between the M1 approximation (8.23) (full curves) and
the statistic normal law (dashed curves) for ∆ϕ = 180o (green), ∆ϕ = 90o (blue), 45o

(black) and 20o (red).

have the same order of magnitude. In this case, one may evaluate each term by comparing the ratio

ξ =
2

ν

v

p2

∂

∂ε

(
p2S

)
with 1. By neglecting the electron bremsstrahlung losses, one obtains

ξ =
2γβ2

1 + Z
ln Λrel

ei

ln Λrel
ee

[
2 +

γ

ln Λrel
ee

∂

∂γ

(
ln Λrel

ee

)]
(6.67)

where ln Λrel
ee = (Z∗/Z)(ln Λrel

e,free e−
+ln Λrel

e,plasmons)+(1−Z∗/Z) ln Λrel
e,bound e−

and ln Λrel
eα the Coulomb

logarithms given in Figure 6.1. It is plotted in the left panel of Figure 6.4 for Hydrogen, Aluminum,

Copper and Tantalum assuming Z∗ = 0 to simplify the calculation of the relativistic electron-electron

Coulomb logarithm derivative. This assumption does not modify the value of ξ since the total stopping

power and the isotropization rate do not depend on Z∗ (see Chapter 4, section 4.2.1). One can

notice that ξ strongly depends on the atomic number of the material Z and that the M1 closure seems

to be fully justified for the electrons with kinetic energies ε ≤ 100 keV for Hydrogen (Z = 1), ε ≤ 1

MeV for Aluminum (Z = 13), ε ≤ 3 MeV for Copper (Z = 29) and ε ≤ 10 MeV for Tantalum (Z = 73).

It means that, above these values, the energy exchange between energy groups of beam electrons, due

to their slowing down, does not allow to consider each group as a closed system and thus does not

allow to justify the maximum angular entropy criterion. This is due to the fact that the slowing

down rate is γ times greater than the angular diffusion rate (see Equation (6.19)). This limitation is

compatible with the characteristics of laser-generated electrons. The number of electrons with kinetic
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energies above these material-dependant threshold values represent only a small part of the whole

beam electron population (see Chapter 1, section 1.2.7). Moreover, being more energetic, these

electrons propagate faster in the target compared to others so that their local angular distribution is

quasi-anisotropic and therefore, is well described by the M1 model. Thus, one can conclude that the

collisional effects of laser-generated electron fully justify the M1 closure for their transport in solids

and dense plasmas. Indeed, by orienting the Cartesian coordinates such that

α1 =
8 ln 2

∆ϕ2


sinϕ0

0

cosϕ0

 ⇔ Ωε =

∣∣∣∣coth

(
8 ln 2

∆ϕ2

)
− ∆ϕ2

8 ln 2

∣∣∣∣


sinϕ0

0

cosϕ0

 , (6.68)

we obtain the angular distribution function averaged over the polar angle θ∫ π

0
ΨM1 sin θdθ = Ψ0

|α1|
4 sinh |α1|

({I1 [|α1| cos (ϕ− ϕ0)] + L−1 [|α1| cos (ϕ− ϕ0)]}

≈ Ψ0√
2π

∆ϕ2

8 ln 2

exp

[
−4 ln 2

(ϕ− ϕ0)2

∆ϕ2

]
(6.69)

which is nothing else than the 0th order statistical normal law obtained in the multiple scattering

theory by Moliere (see Chapter 4, section 4.3.2). They are strictly similar in the anisotropic

limit and diverge slightly in the isotropic limit, as illustrated in the right panel of Figure 6.4.

The integration has been carried out in the same way as for (6.55), (6.56) and (6.61) that is to

say, by expanding the exponential in power series, by performing the integration of the different

sinus power according to the formula 3.621 from [Gradshteyn and Ryzhik, 1965] and by applying the

doubling formula for Gamma functions 8.335.1 from [Gradshteyn and Ryzhik, 1965]. Then, the sum

was split in odd and even terms which were compared with the definitions 9.6.10 and 12.2.1 from

[Abramowitz and Stegun, 1965] of the modified Bessel function of the first kind Iν and the modified

Struve function Lν .

However, even if the collisional effects can justify the M1 closure in the problem of fast electron

transport, the third term in the left hand side of (6.65) shows that the self-generated electric field

affects the local angular entropy time evolution (i.e. the angular entropy obtained without following

the trajectory of a M1 mesoparticle in the (r, ε)-space). This is not the case for the Boltzmann

entropy, since by integrating over all kinetic energies (6.65), this term vanishes to give

dH

dt
=
∂H

∂t
+

∂

∂r
.

∫ ∞
0

∫
S2

vΩφd2Ωdε =

∫ ∞
0

(
∂Hε

∂t

)
col

dε. (6.70)

It must be emphasized here that, similarly to the maximum local angular entropy criterion, the Boltz-

mann H-theorem does not apply here. Indeed, contrary to the Boltzmann H-theorem demonstration

presented in Appendix A, section A.1.5, the right hand side term of (6.70) is not necessarily
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positive. It would have been positive if the whole electron population (beam electrons + background

electrons) were taken into account in Ψ, which is not the case in our ”hybrid” assumption. Energy

exchanges between the beam and background electrons do not allow to consider the beam electrons

as a closed system.

M1 Closure and Collective Effects of Fast Electron Transport

In order to illustrate the M1 closure in a collisionless case, let us evaluate the dispersion relation (3.39)

for the resistive filamentation instability with the M1 model. As in Chapter 3, section 3.2.3, we

neglect the pressure force in (6.21), consider ky = kz = 0 and assume |Ez| � |Ex|. While the system

of equations {(6.20), (6.22), (6.21)} provides the same relations as (3.36), for the electric field, the

linearization of the M1 equations (6.34), (6.35) and (6.61) is different. The distribution function at

the equilibrium is the Maxwell-Juttner distribution function (3.17) expressed as a function of (ε, Ω) :

Ψ(0) = ΨM-J = n
(0)
b

γ2βkBTb/mec
2

4πγb(mec2)K2

(
mec

2

γbkBTb

) exp

[
−mec

2

kBTb

(
γ − βb

pz
mec

)]
. (6.71)

Being a particular case of distribution functions of the kind (6.60), one can deduce easily the angular

moments of the distribution function at the equilibrium. They read

Ψ
(0)
0 =

4π sinh |α1|
|α1|

n
(0)
b

γ2βkBTb/mec
2

4πγb(mec2)K2

(
mec

2

γbkBTb

) exp

(
−γmec

2

kBTb

)
, (6.72)

Ψ
(0)
1 = Ψ

(0)
0

(
coth |α1| −

1

|α1|

)
α1

|α1|
(6.73)

and

Ψ
(0)
2 =

1

3
Ψ

(0)
0 I + µ(0)Ψ

(0)
0

Ψ
(0)
1 ⊗Ψ

(0)
1

|Ψ(0)
1 |

2 − 1

3
I

 (6.74)

where

µ(0) = 1− 3

(
coth |α1|
|α1|

− 1

|α1|2

)
and α1 =

mec
2

kBTb
βb

p

mec
ez.

The linearized M1 equations (6.34), (6.35) and (6.61) read

∂δΨ0

∂t
+

∂

∂r
. (v δΨ1)− e ∂

∂ε

(
vΨ

(0)
1

)
.δE = 0, (6.75)

∂δΨ1

∂t
+

∂

∂r
. (v δΨ2)− e ∂

∂ε

(
vΨ

(0)
2

)
.δE = −e

p

(
Ψ

(0)
0 −Ψ

(0)
2

)
.δE− e

γmec
Ψ

(0)
1 × δB (6.76)

and

δΨ2 =
∂Ψ2

∂Ψ0

(
Ψ

(0)
0 , Ψ

(0)
1

)
δΨ0 +

∂Ψ2

∂Ψ1

(
Ψ

(0)
0 , Ψ

(0)
1

)
.δΨ1. (6.77)
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Let us note the tensors

T0 =
∂Ψ2

∂Ψ0

(
Ψ

(0)
0 , Ψ

(0)
1

)
and ∀i ∈ {x, y, z}, T1,i =

∂Ψ2

∂Ψ1,i

(
Ψ

(0)
0 , Ψ

(0)
1

)
such that

δΨ2 = T0δΨ0 + T1,xδΨ1,x + T1,yδΨ1,y + T1,zδΨ1,z. (6.78)

Their general expressions are

∀(i, j) ∈ {x, y, z}2, (T0)ij =
1

3
δij −

(
Ψ

(0)
1

Ψ
(0)
0

)2
1 + 2

(
Ψ

(0)
1

Ψ
(0)
0

)2
Ψ

(0)
1,iΨ

(0)
1,j

Ψ
(0)
1

2 − 1

3
δij


+ µ(0)

Ψ
(0)
1,iΨ

(0)
1,j

Ψ
(0)
1

2 − 1

3
δij

 (6.79)

and

∀(i, j) ∈ {x, y, z}2, (T1,i)xj =
Ψ

(0)
1,i

Ψ
(0)
0

1 + 2

(
Ψ

(0)
1

Ψ
(0)
0

)2
Ψ

(0)
1,xΨ

(0)
1,j

Ψ
(0)
1

2 − 1

3
δxj


+ µ(0) Ψ

(0)
0

Ψ
(0)
1

4

[
Ψ

(0)
1

2 (
δixΨ

(0)
1,j + δijΨ

(0)
1,x

)
− 2Ψ

(0)
1,xΨ

(0)
1,iΨ

(0)
1,j

]
.

(6.80)

Performing the Fourier transform of Equations (6.75), (6.76) and (6.78), neglecting δÊx and using

the Maxwell-Faraday equation for the magnetic field (δB̂ = −(kxc/ω)δÊzey), we obtain the matrix

relation

A.δX̂ = −ieY(0)δÊz (6.81)

where

δX̂ =


δΨ̂0

δΨ̂1,x

δΨ̂1,y

δΨ̂1,z

 , Y(0) =


(d/dε)

(
vΨ1,z

(0)
)

−kxΨ1,z
(0)/γmeω

0

0


and

A =


−ω kxv 0 0

kxv(T0)xx kxv(T1,x)xx − ω kxv(T1,y)xx kxv(T1,z)xx

kxv(T0)xy kxv(T1,x)xy kxv(T1,y)xy − ω kxv(T1,z)xy

kxv(T0)xz kxv(T1,x)xz kxv(T1,y)xz kxv(T1,z)xz − ω

 .

Let us consider here the limit Tb → 0 for simplicity. In this case, the Lagrange multiplier |α1| → ∞
and the equilibrium distribution function (6.71) becomes purely anisotropic and monoenergetic, giving

Page 184



CHAPTER 6. DEVELOPMENT OF A REDUCED MODEL FOR LASER-GENERATED
RELATIVISTIC ELECTRON BEAM TRANSPORT IN SOLIDS AND DENSE PLASMAS

Figure 6.5: Comparison between the resistive filamentation growth rate in the M1 approximation
(full curves) and the resistive filamentation growth rate (3.41) (dashed curves) for η0 =

10−6 Ω.m, Tb → 0, n
(0)
b = 1021 cm−3 (ωb = 1.78 fs−1) and different values of γb = 1.5

(green), 3 (blue), 7 (black) and 14 (red).

consequently

Ψ
(0)
0 =

n
(0)
b

mec2
δ[γ − γb], Ψ

(0)
1 = Ψ

(0)
0 ez and Ψ

(0)
2 = Ψ

(0)
0 ez ⊗ ez. (6.82)

In this case, we obtain (T0)xx = (T1,x)xz = −(T1,z)xx = 1 and (T0)xy = (T0)xz = (T1,x)xx = (T1,x)xy =

(T1,y)xx = (T1,y)xy = (T1,y)xz = (T1,z)xy = (T1,z)xz = 0 and the matrix A reduces to the simpler form

A =


−ω kxv 0 0

kxv −ω 0 −kxv
0 0 −ω 0

0 kxv 0 −ω

 . (6.83)

Then, the solution of equation (6.81) reads

δX̂ = −ieA−1.Y(0)δÊz = i
e

ω3


(d/dε)

(
vΨ0

(0)
) (
k2
xc

2β2 + ω2
)
− k2

xc
2β(Ψ

(0)
0 /γmec)

kxω
[
v(d/dε)

(
vΨ0

(0)
)
− c(Ψ0

(0)/γmec)
]

0

k2
xv
[
v(d/dε)

(
vΨ0

(0)
)
− c(Ψ0

(0)/γmec)
]

 δÊz. (6.84)

This provides us with the expression for the beam current density perturbation

δĵb = −e
∫ ∞

0
δΨ̂1,zvdεez = i

(
kxc

ω

)2 ω2
bβ

2
b

4πωγb

(
1 +

3

γ2
b

)
δÊzez (6.85)

where ωb =

√
4πn

(0)
b e2/me is the electron beam plasma frequency. Injecting (6.85) in (3.36 a), we
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obtain the dispersion relation for the unstable mode ω = iδ

4π

η0ωb

(
δ

ωb

)3

+

(
kxc

ωb

)2( δ

ωb

)2

− 1

γb

(
βbkxc

ωb

)2(
1 +

3

γ2
b

)
= 0. (6.86)

It has to be compared with the dispersion relation (3.41) obtained starting from the Vlasov equation

4π

η0ωb

(
δ

ωb

)3

+

[(
kxc

ωb

)2

+
1

γ3
b

](
δ

ωb

)2

− 1

γb

(
βbkxc

ωb

)2

= 0.

A term ∝ 1/γ3
b has disappeared in the second term, while another term ∝ 3/γ2

b has appeared in

the third term. This is due to the fact that the Maxwell equations depend on the hydrodynamic

moments nb and jb of the beam distribution function Ψ(0) and not directly on its angular moments

Ψ0 and Ψ1. Indeed, contrary to the reference case of the Vlasov equation (3.37) where the currents

in (3.36) are calculated with px, py and pz-integrals, in the M1 approximation there appear only ε-

integrals since the integration over angles Ω = p/p has already been performed before the coupling

of the equations. Therefore, the integration of Y
(0)

0 and Y
(0)

1,x over ε leads to a different result. The

instability growth rates δ > 0, solutions of (6.86) and (3.41), are plotted in Figure 6.5 for η0 =

10−6 Ω.m, n
(0)
b = 1021 cm−3 (ωb = 1.78 fs−1) and different values of γb. The M1 approximation largely

overestimates the filamentation resistivity growth rate in the short wavelength region kxc/ωb � 1 for

low mean electron energies γb & 1. Indeed, according to (6.86), the growth rate obtained in the M1

approximation attains the value

δmax
M1 = δmax

Vlasov

√
1 +

3

γ2
b

where δmax
Vlasov =

ωbβb√
γb
. (6.87)

However, for larger electron energies, above γb ≈ 3 (〈ε〉 ≈ 1 MeV), the M1 model provides the solution

with an error less than ≈ 15%. For γb & 7 (〈ε〉 ≈ 3 MeV), the M1 model makes an error less than

≈ 3%. This example partially confirms the argument given by Minerbo, and quoted in the introduction

of this section, concerning the justification of the M1 closure (6.61) when neglecting collisions of beam

electrons with background particles.

Conclusion

Since the development of thermodynamics, physicists have discovered two main principles that govern

physical processes. The first one is the least action principle. A particle evolves from a state A, at

the space location rA and time tA, to a state B at the space location rB and time tB, by following

the trajectory from rA to rB that minimizes its action. The action of the particle being its kinetic

energy, minus its potential energy, integrated over time between tA and tB, it means that particles

will always move following the trajectory that minimizes its kinetic energy compared to its potential

energy, imposed by the surrounding force fields (there is a similar law concerning photons called the
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Fermat’s principle). This ”energy minimization principle” is at the origin of many theories in Physics

from optical geometry and Newton’s mechanics to quantum electrodynamics [Feynman et al., 1963].

However, another tendency arises when studying a system consisting of a lot of particles. In principle,

one may think that all the physical properties of such a system can be determined by its microscopic

state, i.e. by the description of the positions and momenta of all particles. Actually, because the

number of particles is so large, the details of the motion of individual particles is mostly irrelevant to

the behavior of the system as a whole. Indeed, according to thermodynamics and statistical physics,

the macroscopic state of a system is defined by a distribution on the microstates that are accessible to

the system in the course of its thermal fluctuations. In order to describe this discrete set (continuous

set) of microscopic states of a system, J.W. Gibbs introduced the statistical entropy

H = −kB
∑
i

pi ln pi

(
H = −kB

∫
f ln f , respectively

)
(6.88)

where Ei is the energy of the microscopic state i, and pi is the probability that it occurs during the

system’s fluctuations (f is the particles distribution function, respectively). The difference between

this last expression, the Boltzmann entropy (6.64) and the local angular entropy (6.46) or (6.63)

simply comes from an additive constant. The above expression of the statistical entropy is also used

in communication theory and it is called the Shannon Entropy. It is the opposite of the information

content of signals, consisting in a succcession of binary numbers. L. Boltzmann showed that the

statistical entropy of an isolated system of particles can only rise with time

dH

dt
≥ 0 (6.89)

(see Appendix A, section A.1.5) and that the thermodynamic equilibrium is obtained when all the

accessible microscopic states of the system are equally likely. Thus. the thermodynamic equilibrium

is the configuration corresponding to the maximum of a system’s entropy for a given set of accessible

microscopic states. In other words, the thermodynamic equilibrium is the macroscopic configuration

in which the lack of information is maximal. This is the second main principle mentioned previously.

The difficulties happen due to the fact that both principles (”Energy minimization” and ”Entropy

maximization”) are mutually exclusive. For example, according to the least action principle, the

particle can move from rB to rA by the same trajectory as he moved from rA to rB. Indeed, the

time is reversible in the equations describing the particle dynamics (Newton’s fundamental principle

of mechanics, Einstein’s fundamental principle of mechanics or Schrödinger’s fundamental principle of

quantum mechanics). It is not the case for a system of many particles. The increase of entropy can

proceed in an irreversible way, since the second law of Thermodynamics (6.89) is not time-reversible.

Concerning fast electron transport in solids or dense plasmas, these two principles are in compe-

tition. Collective effects are described by the particles dynamics in the self-generated electromagnetic

fields and therefore follows the ”Energy Minimization Principle”. Oppositely, the collisional effects
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tend to homogenize the particles momentum distribution and are therefore better described by the

”Entropy Maximization Principle”. In this section, it has been shown that collisional effects ensure

that the local angular entropy
dHε

dt
≥ 0 (6.90)

for fast electrons with kinetic energies less than a threshold value εth, depending on the atomic number

Z of the material. Concerning laser-generated fast electron beams, this threshold εth is sufficiently

large compared to their typical kinetic energies. Moreover, laser-generated fast electrons with energies

greater than εth propagate deeper in the laser-irradiated target and have consequently a local angular

distribution close to the anisotropic limit for which the M1 closure is exact. In order to check the

M1 closure in a collisionless case, where there is more arguments in favor of ”minimizing the action”

instead of ”maximizing the angular entropy”, we have derived the dispersion relation of the resistive

filamentation instability, obtained with the M1 model, in the limit Tb → 0, and we have compared it

to the reference Vlasov case presented in Chapter 3, section 3.2.3. An advantage of the M1 closure

in this derivation is that the angular moments of the Maxwell-Juttner distribution function of the

beam Ψ(0) are easy to obtain since the Maxwell-Jutnner distribution is a particular case of the more

general distribution function ΨM1. That can be explained by the following mathematical relation

H[ΨM-J] = maxΨ {H[Ψ]}

= maxΨ

{∫ ∞
0

Hε[Ψ]dε

}
≤

∫ ∞
0

max
Ψ
{Hε[Ψ]}dε

≤
∫ ∞

0
Hε[ΨM1]dε.

(6.91)

This relation shows that the M1 approximation overestimates the Boltzmann entropy of the beam and

that the maximum angular entropy distribution function (6.61) can be obtained by multiplying the

maximum entropy Maxwell-Juttner distribution function (6.71) with a Dirac distribution in energy

ΨM1(r, ε0, Ω, t) = δ[ε− ε0]ΨMJ(r, ε, Ω, t), (6.92)

as explained by [Wright and Hadley, 1975]. Besides, this study has shown that the M1 model overesti-

mates the instability growth rate for γb & 1. However, the resistive filamention instability is reproduced

with an error of less than 15 % for γb ≥ 3. This result is surprising since there is no reason to maximize

the angular entropy in such a collisionless case. It can be explained by the argument given by Minerbo,

saying that ”by using the maximum entropy criterion, one avoids introducing information that is not

available.” Nevertheless, it will be shown in Chapter 8 that the closure relation (6.61) allows for a

sufficiently accurate and fast computation of the V-F-P equation (6.15) with an arbitrary degree of

anisotropy. Moreover, contrary to P1, it continuously relates the anisotropic and isotropic regimes

while satisfying the physical constraints Ψ0 ≥ 0 and 0 ≤ |Ωε| ≤ 1 thanks to the exponential form of the
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underlying distribution function (6.60). Several numerical experiments in the non-relativistic regime,

carried out for the comparison of the M1 model with the full V-F-P code [Duclous et al., 2009], have

shown good agreements with a much reduced computation time [Mallet et al., 2014].

6.3 Physics of the Background Material

The response of the background particles to the beam propagation is described by the diffusion equa-

tion of the magnetic field (6.24), the Ohm’s law (6.23) and the heat equations (6.25) and (6.28). These

equations depend on the electrical resistivity η, thermal electron conductivity κe, thermal capacities

CV,e and CV,i and the electron-ion coupling factor G. All these parameters depend on the density and

temperatures of the target material. In the case of laser-irradiated solid targets, the solid is initially

cold and these different parameters are given by the solid state physics theory. One talks about the

lattice thermal capacity and electron-lattice coupling factor instead of the ion thermal capacity and

electron-ion coupling factor, in a plasma. However, the collisional and collective losses of the fast

electron beam rapidly induce the ionization of the material and the heating of the background free

electrons, which in turn heat the lattice. The material enters consequently the liquid and then the

plasma state. While the plasma parameters are known, there is no theory predicting the material

parameters in the transient domain between these states. In the case of insulators or Warm Dense

Matter (WDM), quantum molecular dynamics computations allow to evaluate these parameters. This

section is dedicated to the description of these parameters in metals.

6.3.1 Ionization State Z∗ and Thermal Capacities CV,α

Figure 6.6: Ionization state given by (6.93) (red) compared to the More formula (3.43) (blue) for
Copper (Left panel) and Tantalum (Right panel).
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The ionization state Z∗ is an important parameter, which allows us to determine the density of free

electrons ne,f = Z∗ni and bound electrons ne,b = (Z − Z∗)ni in the solid. As explained in Chapter

3, section 3.3.1, Z∗ can be estimated by the More Formula (3.43) based on the Thomas-Fermi

model. However, the Thomas-Fermi model is inadequate for capturing the metal-insulator transition

since it neglects any atomic structure effects on the ionization equilibrium. Contrary to the treatment

proposed by [Desjarlais, 2001], which consists in imposing a smooth transition from Thomas-Fermi to

non-ideal Saha at low temperature, we impose phenomenologically the adequate value of the ionization

state Z∗ = Zc at a low temperature, where Zc is the number of electrons per atom in the conduction

band (s-band), as

Z∗ = {[(1− fe)Zc]a1 + [fZ∗TF ]a1}1/a1 (6.93)

where Z∗TF is the ionization state given by (3.43) and

f = K1/Z∗TF
2

with K =
1

2

[
1 + tanh

(
kBTe − a2EF

a3EF

)]
.

Here, EF is the Fermi energy given by Equation (3.42) with ne = Zcni, a1 and a2 are parameters that

allow for adjusting a smooth transition from Zc to Z∗TF while a2 determines the temperature at which

the transition occurs. For example, Zc = 3 , a1 = a2 = 1 and a3 = 0.05 for Aluminum, Zc = 1, a1 = 2,

a2 = 35 and a3 = 1.925 for Copper and Zc = 2, a1 = 2, a2 = 20 and a3 = 1.25 for Tantalum provide

good estimates for the charge state, as illustrated in Figure 6.6. By taking Z∗ = Zc at the solid

temperature instead of Z∗ ≈ 0 as [Desjarlais, 2001], we empirically account for the collisions between

free electrons and neutral atoms in the calculation of transport coefficients η and κe by taking into

account collisions between free electrons and phonons (see the next section 6.3.2).

Figure 6.7: (Left panel) Electron thermal capacity (6.100) for Tantalum (solid black curve) and
comparison between the electron thermal capacity (6.100) (full curve) and the results by
[Lin et al., 2008] (dashed curves) for Aluminum (blue) and Copper (red). (Right panel)
Ion thermal capacity (6.105) for Tantalum (black), Copper (red) and Aluminum (blue)
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Knowing the ionization state, one can deduce the electron thermal capacity in the hot plasma

temperatures. It follows from the perfect electron gas expression (see Annexe B, section B.1.1)

Chot
V,e =

3

2
Z∗nikB. (6.94)

However, we need to model it in the whole range of electron temperatures starting from the ambiant

temperature Te ≈ 300K to kBTe ≈ 10 keV. It is known from experiments that, at temperatures below

the Fermi temperature (3.42), the electron heat capacity of metals can be written

Ccold
V,e = γexpTe (6.95)

where γexp is the Sommerfeld parameter. From a theoretical point of view, the thermal capacity of

degenerate electrons at low tempearatures is defined as

Ccold
V,e =

dUe
dTe

=

∫ ∞
0

(ε− EF )
∂fFD
∂Te

g(ε)dε (6.96)

where Ue is the total electron thermal energy, ε is the electron kinetic energy,

fFD (ε, µ, Te) =
1

1 + exp

(
ε− µ
kBTe

) (6.97)

is the Fermi-Dirac distribution function depending on the chemical potential µ and the Fermi energy

EF (3.42), expressed with the electron density ne = Z∗ni and g(ε) is the electron Density of States

(DOS). By assuming that g(ε) ≈ g(EF ) and by approximating the DOS g by the free electron gas

expression

g(ε) =
1

2π2

(
2me

~2

)3/2√
ε, (6.98)

one finds

Ccold
V,e = γthTe with γth =

π2

2

nekB
EF

. (6.99)

However, γth is usually of the expected magnitude, but often does not agree very closely with the

measured value γexp. Moreover, computational analysis based on first-principles electronic structure

calculations of the electron DOS have recently shown large deviations from the commonly used linear

approximations (6.95) [Lin et al., 2008] [Bévillon et al., 2014]. An interpolation formula presents a

good compromise, allowing to describe the electron thermal capacity in the whole range of considered

temperatures :

CV,e =

[
(γTe)

−2 +

(
3

2
Z∗nikB

)−2
]−1/2

(6.100)

where γ = 912 erg.cm−3.K−2 for Aluminum, 968 erg.cm−3.K−2 for Copper and 5428.8 erg.cm−3.K−2

for Tantalum. The temperature dependence of the electron heat capacity is illustrated in the left panel
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of Figure 6.7.

At the plasma state, the ion thermal capacity is given by the ideal gas expression (see Annexe

B, section B.1.1)

Chot
V,i =

3

2
nikB. (6.101)

In the cold solid phase, the lattice thermal capacity is due to phonons. According to experiments, it

can be written

Ccold
V,i = AexpTi

3. (6.102)

According to the Debye theory of phonons, the expression for this constant below the Debye temper-

ature TD reads

Ath =
12π4nikB

5TD
3 . (6.103)

However, above Te = 300 K, the Einstein model is sufficient to describe the lattice heat capacity. It

is calculated by using the Bose-Einstein distribution function for the phonons

fBE (ω, Ti) =
1

exp

(
~ω
kBTi

)
− 1

(6.104)

where ω is the phonon frequency and by assuming the Einstein phonon DOS g(ω) = δ (ω − ωE). Then,

the lattice heat capacity reads

Ccold
V,i =

dUi
dTi

=

∫ ∞
0
~ω

∂fBE
∂Ti

g(ω)dω = kBni

(
~ωE
kBTi

)2 exp

(
~ωE
kBTi

)
[
exp

(
~ωE
kBTi

)
− 1

]2 (6.105)

where ~ωE is the Einstein temperature. For example, ~ωE = 284 K for Aluminum, 278 K for Copper

and 193 K for Tantalum. Contrary to the Debye temperature, the Einstein temperature is difficult to

find in the literature for some metals. In this case, one can use the empirical relation ~ωE/kBTD ≈
(π/6)1/3. However, the Einstein heat capacity tends to kBni instead of (3/2)kBni when Ti � ~ωE .

Consequently, a good compromise, allowing to describe the ion thermal capacity in the whole range

of considered temperatures, can be obtained by estimating it as

CV,i =
3

2
kBni

(
~ωE
kBTi

)2 exp

(
~ωE
kBTi

)
[
exp

(
~ωE
kBTi

)
− 1

]2 . (6.106)

It is plotted in the right panel of Figure 6.7 for Aluminum, Copper and Tantalum.
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6.3.2 Two-Temperature Electron Transport Coefficients η and κe

Figure 6.8: Electrical resistivity (6.107) (Left panel) and thermal electron conductivity (6.108)
(Right panel) for Aluminum (blue), Copper (red) and Tantalum (black) at Ti = 300
K (dashed curves) and at Ti = Te (full curves).

As explained in Chapter 3, section 3.3.1, the Lee-More model [Lee and More, 1984] assumes

equal electron and ion temperatures. Another model that takes into account Ti 6= Te was proposed by

[Chimier et al., 2007]. Here, we propose to merge these two models. In our approach, the electrical

resistivity reads

η =
meνe
nee2

1

Aα
(

µ

kBTe

) (6.107)

and the thermal electron conductivity reads

κe = γL
Te
η

=
nek

2
bTe

meνe
Aβ
(

µ

kBTe

)
with γL =

Aβ
(

µ

kBTe

)
Aα
(

µ

kBTe

)(kB
e

)2

. (6.108)

They are plotted in Figure 6.8 for Aluminum, Copper and Tantalum. Here, the free electron density

is given by ne = Z∗ni where Z∗ is computed according to (6.93) so that at low temperatures ne = Zcni

is the density of s-band electrons. The Lorenz factor γL is computed according to the functions Aα

and Aβ provided by [Lee and More, 1984] (see Appendix B, section B.2.4) allowing to reproduce

the Wiedemann-Franz law at solid temperatures

γcold
L =

π2

3

(
kB
e

)2

(6.109)
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and the Spitzer result at plasma temperatures

γhot
L = 4

(
kB
e

)2

. (6.110)

Figure 6.9: Contributions of the different electron collision frequencies in the electrical resistivity of
Aluminum (6.107) with (6.111) (Zs = 3, Zd = 0). The electron frequency contributions
are indicated in the Figure.

The electron collision frequency is computed according to the harmonic mean

νe =
[
(νe−ph + νe−e)

−2 + ν−2
c + ν−2

hot

]−1/2
. (6.111)

At hot plasma temperatures, νe is therefore given by

νhot =
νei
γE

for η and νhot =
νei
εδT

for κe (6.112)

where γE and εδT are the electron-electron collision correction factors following the notation from

[Spitzer and Härm, 1953]. They can be fit as a function of Z∗ according to the table given by

[Spitzer and Härm, 1953] (see the fits given in Annexe B, section B.2.2). For νei, we use the

Lee-More electron-ion collision frequency

νei =
2
√

2π(Z∗)2nie
4 ln Λei

3
√
me(kBTe)

3/2

[
1 + exp

(
− µ

kBTe

)]
F1/2

(
µ

kBTe

) (6.113)
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where the Coulomb logarithm ln Λei is given in Appendix A, section A.2.3, allowing to account for

the electron degeneracy close to the Fermi temperature (see Appendix B, section B.2.4). At a low

temperature, νe is given by a sum of the electron-phonon collision frequency and the electron-electron

collision frequency

νcold
e = νe−ph + νe−e. (6.114)

According to [Lee and More, 1984] and [Chimier et al., 2007], we impose that the mean free path

ve/νe of the electrons cannot exceed the mean interionic distance ve/νc in the intermediate range of

temperatures where νc = ve/(3/4πni)
1/3, ve =

√
3kB(TF + Te)/me and TF = EF /kB. In the model

proposed by [Chimier et al., 2007], the electron-electron collision frequency is

νe−e = Aν
kB
~TF

T 2
e (6.115)

and the electron-phonon collision frequency is

νe−ph = ks
2e2kB

~2

√
2kBTF
me

Ti (6.116)

where ks and Aν are parameters depending on the material. At the ambient temperature, the

electron-phonon collision frequency νe−ph is the main contribution in the electron momentum dump-

ing. Therefore, while the parameter ks can be obtained by imposing the measured value of the elec-

trical resistivity meνe−ph/nee
2 at the ambient temperature, the parameter Aν of the electron-electron

collision frequency νe−e is usually unknown. Moreover, it has been recently shown experimentally

[Fourment et al., 2014] that collisions of s-band with d-band electrons make an important contribu-

tion to the electron collision frequency νe for transition and noble metals while the expression (6.115)

corresponds to the low one-temperature asymptotics accounting for the collisions between s-band

electrons only (Fermi liquid model).

[Inogamov and Petrov, 2010] and [Petrov et al., 2013] have developed a semi-analytical model by

using the electron kinetic equation, the matrix element for the scattering probability and a screened

Coulomb potential describing the interaction between s-band electrons and s or d-band electrons. In

their approach, the electron-electron collision frequency is given by

νe−e = νs−s + νs−d. (6.117)

According to [Inogamov and Petrov, 2010], the s-s electrons collision frequency reads

νs−s =

∫ ∞
0
−∂fFD

∂ε
(ε1)νs−s(ε1)dε1∫ ∞

0
−∂fFD

∂ε
(ε1)dε1

(6.118)
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Figure 6.10: Contributions of the different electron collision frequencies in the electrical resistivity of
Copper (6.107) with (6.111) (Zs = 1, Zd = 10). The electron frequency contributions
are indicated in the Figure.

where fFD the Fermi-Dirac electron distribution function (6.97), ε1 is the energy of electrons 1 and

νs−s(ε1) is the collision frequency for an electron 1 colliding electrons 2 having the energies ε2 given

by

νss(k1) =
2m2

e

(2π)3~5k1

∫
dq

∫
dk2

∫
dα

∫
dβ k2U(q)2S(k1, k2, α, β)δ[α− β]. (6.119)

U(q) =
4πe2

q2 + kscreen
2

is the screened Coulomb repulsion of electrons with the screening reciprocical length, estimated by

the Lindhard screening length kscreen =
√

4πe2/(∂µ/∂ne).

S(k1, k2, α, β) = fFD(ε2) [1− fFD(ε1 − α)] [1− fFD(ε2 + β)]

+ fFD(ε1 − α)fFD(ε2 + β) [1− fFD(ε2)]

is the statistical factor describing the admissible energy states for the electrons 1 and 2 before and

after their binary collision, α is the energy loss of the electron 1 and β is the energy gain of the

electron 2 during the collision. The Dirac distribution δ[α − β] describes the energy conservation in

the collision. First, the authors consider the one-band metal for all s band electrons with the simple
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Figure 6.11: Contributions of the different electron collision frequencies in the electrical resistivity of
Tantalum (6.107) with (6.111) (Zs = 2, Zd = 3). The electron frequency contributions
are indicated in the Figure.

parabolic dispersion law ε(k) = ~2k2/2me. The (α, β)-integration is straighforward and gives

s(α) =

∫
dα

∫
dβ S(k1, k2, α, β)δ[α− β] = kBTe

1 + exp

(
ε1 − µ
kBTe

)
1 + exp

(
ε2 − µ
kBTe

) exp

(
ε2 − µ
kBTe

)
1− exp

(
ε1 + ε2 − 2µ

kBTe

)

× ln

exp

(
ε1 − µ
kBTe

)
+ exp

(
α

kBTe

)
1 + exp

(
α+ ε2 − µ
kBTe

)
.

(6.120)

Then, the authors split the domain of integration as illustrated in the left panel of Figure 6.12 to

finally obtain

νs−s(k1) =
2m2

e

(2π)3~5k1

(Ia1 + Ia2 + Ib + Ic + Id) (6.121)

Page 197



6.3. PHYSICS OF THE BACKGROUND MATERIAL

where

Ia1 =

∫ k1

0
dq

∫ k1+q

k1−q
dk2 k2U(q)2

[
s(α′′)− s(β′)

]
,

Ia2 =

∫ ∞
k1

dq

∫ k1+q

−k1+q
dk2 k2U(q)2

[
s(α′′)− s(β′)

]
,

Ib =

∫ ∞
0

dq

∫ ∞
k1+q

dk2 k2U(q)2
[
s(α′′)− s(α′)

]
,

Ic = 0

Id =

∫ k1

0
dq

∫ k1−q

0
dk2 k2U(q)2

[
s(β′′)− s(β′)

]
with β′ = (~2/2me)

(
q2 − 2k2q

)
, β′′ = (~2/2me)

(
q2 + 2k2q

)
, α′ = −(~2/2me)

(
q2 + 2k1q

)
and α′′ =

−(~2/2me)
(
q2 − 2k1q

)
. The dependence of νss(k1) on the density is implicitly taken into account via

the chemical potential µ according to the relation

ne = Z∗ni =

∫ ∞
0

fFD(ε)g(ε)dε (6.122)

where g(ε) is the free electron gas DOS (6.98). In the limit Te → 0 in (6.121), which implies Ia1 +

Ia2 + Ib + Id → Ia1 + Ia2 and by approximating the s-band electron collision frequency by its value in

the vicinity of the Fermi surface kF = 2meEF /~2, i.e. by approximating νs−s ≈ νss(kF ), the authors

finally estimate

Aν =
π

8

EFme
3e4

~6kF
4

[
(2kF /kscreen)4

1 + (2kF /kscreen)2 +

(
2kF
kscreen

)3

+ arctan

(
2kF
kscreen

)]
. (6.123)

According to [Petrov et al., 2013], the s-d electron collision frequency is estimated with the same

method but, with two terms in the electron DOS as

g(ε) = gs(ε) + gd(ε) (6.124)

where, for s-band electrons, the authors use

ε = εs +
~2k2

2ms
(6.125)

and

gs(ε) =


1

2π2

(
2ms

~2

)3/2√
ε− εs if ε ≥ εs

0 else

(6.126)

while for the d-band electrons, they use

ε′ = ε′1 +
~2k′2

2ms
(6.127)
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and

gd(ε
′) =


1

2π2

(
2md

~2

)3/2√
ε′ − ε′1 if ε′1 ≤ ε′ ≤ ε′2

0 else

. (6.128)

Here, εs, ε
′
1, ε′2 are parameters determined by fitting the best as possible the real electron DOS of

the metal while ms and md are the effective mass of s-band and d-band electrons, respectively. Such

effective mass approximation is common in Solid States Physics in order to model the interaction of

electrons with the periodic lattice potential, the interaction of electrons with phonons or the interaction

of electrons with themselves. [Petrov et al., 2013] model these effective masses according to

ms = (3π2ns)
2/3 ~2

2 (EF − εs)
(6.129)

and

ms = (3π2nd)
2/3 ~2

2
(
EF − ε′1

) (6.130)

where ns and nd are the densities of s-band electrons (ns = Z∗ni) and d-band electrons. An example

is given for Tungsten in the right panel of Figure 6.12.

Figure 6.12: (Left panel) Regions in plane qk2 over which integrals Ia1, Ia2, Ib and Id of (6.119)
are taken. The heavy segment indicates the image of the Fermi surface at Te → 0 and
k1 = kF (Fermi wave number) [Inogamov and Petrov, 2010]. (Right panel) Example
of fit (6.124) for Tungsten (solid black curve) compared to ab initio calculation done
by [Lin et al., 2008] (solid red curve); the s-band electrons contribution gs in (6.124)
(dashed green curve) is plotted with ms = 0.9me (EF − εs = −9.2 eV) and the d-band
electrons contribution gd in (6.124) (dashed magenta curve) is plotted with md = 1.7me

(EF − ε1 = −6.6 eV and ε2 = EF + 5.5 eV); the Fermi energy value is EF = 17.969 eV
(dashed blue curve).

The upper limit ε′2 in (6.128) complicates the calculation of the multiple integrals Iµ in Equation

(6.121). The electron-electron collision frequency (6.117) is therefore computed numerically for any
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electron temperature Te � TF . they can be found for some metals at http://laser.itp.ac.ru. For other

metals, one can directly compute the electron collision frequency at a low temperature according to

the algorithm proposed in the Appendix of the original paper by [Inogamov and Petrov, 2010]. It is

very useful for determining the parameter Aν . However, we have noticed that the electron-electron

collision frequency (6.117) can be fit with a sufficient accuracy according to

νe−e =
(
ν−2

1 + ν−2
2

)−1/2
(6.131)

with

ν1 = Aν
kBT

2
e

~TF
and ν2 = Bν

kB
~
√
TeTF (6.132)

where Aν and Bν are parameters to be determined, depending on the material as illustrated in Figure

6.9 for Aluminum, in Figure 6.10 for Copper and in Figure 6.11 for Tantalum. We have obtained

a sufficiently accurate fit with ks = 1.6714, Aν = 0.014 and Bν = 0.125 for Aluminum, ks = 0.3764,

Aν = 2.75 and Bν = 0.63 for Copper and ks = 47.4416, Aν = 0.0082 and Bν = 0.08 for Tantalum.

They can be compared with the electrical restivity of Aluminum and Copper from the Eidmann-Chimer

model illustrated in Figure 3.8 of Chapter 3, section 3.3.1.

6.3.3 Electron-Ion/Lattice Coupling Term G

Figure 6.13: Electron-ion coupling factor (6.137) for Aluminum (blue), Copper (red) and Tantalum
(black) at Ti = 300 K (dashed curves) and at Ti = Te (full curves).

Last but not least, the electron-ion/lattice energy exchange is described by the parameter G in

Equations (6.25) and (6.28). Its value varies considerably in the range from the ambient temperature

Te ≈ 300 K to the hot plasma Te ≈ 10 keV. Concerning the high temperature regime, we use the
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plasma expression [Brysk et al., 1975] (see Appendix B, section B.2.4)

Ghot = 2
me

mi
CV,eνei (6.133)

where νei is given by (6.113) allowing to account for electrons degeneracy close to the Fermi tempera-

ture. In the limit of low temperatures Te, Ti < TF , but Te, Ti � TD, the rate of energy transfer per unit

volume from the electrons to the lattice in a metal can be written according to [Kaganov et al., 1957]

Gcold (Te − Ti) =
π2

6
nimecs

2

(
1

τe(Te, Te)
− 1

τe(Ti, Ti)

)
. (6.134)

This expression was obtained by assuming a Fermi-Dirac distribution for electrons, a Bose-Einstein

distribution for phonons, and by accounting for one-phonon emission and absorption processes. Here,

cs is the speed of sound in the solid and τe = 1/νcold
e is the electron relaxation time. By neglecting

ν2
−2 compared to ν−2

1 in the electron-electron collision frequency (6.131) at low temperatures (see

Figure 6.9, Figure 6.10 and Figure 6.11), one can write

τe(Te, Ti) =
1

AeT 2
e +BiTi

(6.135)

where Ae = AνkB/~TF and Bi = 2kse
2kB/~2

√
2kBTF /me. Injecting this relation in (6.134), one

finally obtains according to [Chen et al., 2005]

Gcold = GRT

[
1 +

Te + Ti
ℵTF

]
(6.136)

where GRT = π2Binimecs
2/6 is the room temperature electron-lattice coupling factor and ℵ =

Bi/AeTF is a parameter chosen from comparison with experimental or theoretical data such as those

proposed by [Lin et al., 2008] or [Petrov et al., 2013]. The cold and hot regime are related according

to

G =
[
G−2

cold +G−2
hot

]−1/2
. (6.137)

The value of ℵ calculated with Aν and ks given in the previous subsection, does not allow for patching

the two regimes around the Fermi temperature. A better interpolation can be obtained with ℵ = 0.2.

The room temperature value can be found in the literature : GRT = 1 1018 erg.s−1.cm−3.K−1 for

Aluminum, GRT = 3 1018 erg.s−1.cm−3.K−1 for Copper and GRT = 1.5 1018 erg.s−1.cm−3.K−1 for

Tantalum. The electron-ion coupling factors are plotted in Figure 6.13.

6.4 Conclusion

We have linearized the Belyaev-Budker collision tensor by applying it to the study of laser-generated

fast electron beam transport in solids or dense plasmas, assuming a small momentum transfer in
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a collision. The production of secondary electrons is neglected, assuming the residual energy of

background electrons after a collision with a beam electron is smaller than the exchanged momentum

∆p of a consecutive collision with another beam electron. These assumptions allowed us to obtain

a more simple Landau-like collision tensor. Moreover, it allows us to relate the angular scattering

collision frequency by colliding background particles (free electrons, bound electrons, screened free

electrons/plasmons or ion nuclei) with the corresponding stopping powers according to an Einstein-

like relation, similar to the one obtained for Brownian motion of particles. This allows us to obtain

more accurate expressions compared to the angular scattering theories presented in Chapter 4, by

retaining all terms in the Moller relativistic Coulomb logarithm instead of the relativistic generalization

of Rutherford term, only. However, our model is limited to low density beams nb � ne since the

collisions of beam electrons with themselves and the production of secondary electrons are neglected.

The analysis, presented in Chapter 5, of existing numerical methods for solving the obtained

Vlasov-Fokker-Planck (V-F-P) equation (6.15)

∂Ψ

∂t
+

∂

∂r
.(vΩ Ψ)− ∂

∂ε
[v (eE.Ω + S) Ψ]

− ∂

∂Ω
.
{

(I−Ω⊗Ω) .
[e
p

(
E +

vΩ

c
×B

)
Ψ +

∂

∂Ω

(ν
2

Ψ
) ]}

= 0

oriented our choice towards a hybrid and expanded ”Vlasov-Fokker-Planck” method. In order to make

numerical computations as fast as possible, we limit the angular order of expansion to the 1st order.

We derived the equations (6.34) and (6.35) by integrating over the unity sphere in the momentum

space the V-F-P equation (6.15) multiplied by 1 and Ω, respectively :

∂Ψ0

∂t
+

∂

∂r
. (vΨ1)− ∂

∂ε
[v (eΨ1.E + SΨ0)] = 0

and

∂Ψ1

∂t
+

∂

∂r
. (vΨ2)− ∂

∂ε
[v (eΨ2.E + SΨ1)] = −e

p
(Ψ0 −Ψ2) .E− e

γmec
Ψ1 ×B− νΨ1

where the Ψ` are the angular moments of the distribution function Ψ, S is the total stopping power of

the beam electrons introduced in Chapter 4 and ν is their total angular isotropization rate. Contrary

to an equivalent spherical harmonic decomposition, the beam density and current are directly related

to the angular moments :

nb =

∫ ∞
εmin

Ψ0dε

and

jb = −e
∫ ∞
εmin

vΨ1dε.

Here, the parameter εmin comes from the ”hybrid” assumption, which consists in separating the beam

electrons population ε > εmin and the background electrons population ε < εmin. Contrary to the
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widely used P1 approximation, also usually called the ”diffusion approximation”, which consists in

the closure relation Ψ2 = (1/3)Ψ0I, our M1 model accounts for an arbitrary degree of anisotropy by

using the closure

Ψ2 =
1

3
Ψ0I + µΨ0

(
Ψ1 ⊗Ψ1

|Ψ1|2
− 1

3
I

)
.

µ ≈ |Ωε|2

2

(
1 + |Ωε|2

)
is estimated according to the Minerbo maximum angular entropy criterion depending on the anisotropy

vector Ωε = Ψ1/Ψ0. Such a closure is exact for local (in space and kinetic energy) angular distribution

functions eiher fully isotropic or fully anisotropic, while the parameter µ allows us to relate these

limits. Obviously, the first order expansion reduces the information concerning the beam electrons

local angular distribution function. However, the maximum angular entropy criterion analysis shows

that it allows for a sufficient accuracy for laser-generated fast electron beam transport. Indeed, we

showed that collisional effects of laser-generated electron beam transport in solids or dense plasma

fully justified such a closure. Besides, comparison of the full kinetic and the M1 approach for the

analysis of the collisionless resitive filamentation instability for which there is no reason to maximize

the local angular entropy, shows that our model describes the instability growth rate with an error of

few 10s of % in the particular case of a monoenergetic electron beam.

This chapter terminates with a discussion of the self-consistent hydrodynamic response of the

laser-irradiated target material to the beam propagation as well as the self-generated electromagnetic

fields. We consider the time scale greater than the electromagnetic neutralization time of the beam

ν−1
ei or τe/γe, presented in Chapter 2. Similarly to other hybrid models, our model assumes that

the beam is not modified during its electromagnetic neutralization. This is a strong assumption in

case of propagation through insulators since the ionization processes occur in this time scale, implying

additional energy losses of the electron beam that are omitted here. In our hybrid model, the self-

generated magnetic field verifies the diffusion equation (6.24)

1

c

∂B

∂t
+

∂

∂r
×
(
ηc

4π

∂

∂r
×B

)
= η

∂

∂r
× jb +

∂η

∂r
× jb −

kB
nee

∂ne
∂r
× ∂Te

∂r

with the source terms introduced in Chapter 3 and the self-generated electric field is given by the

Ohm’s law (6.23)

E = −ηjb +
ηc

4π

∂

∂r
×B− 1

nee

∂

∂r
(nekBTe)

also discussed with details in Chapter 3. Thus, we have neglected the magnetization effects, the

background electrons viscosity, the collisional friction of the background electrons due to collisions

with beam electrons, the displacement current in the Maxwell-Ampère equation (quasi-static approx-

imation), the background electrons inertia and we have considered the ideal gas expression for the

equation of state Pe = Pe(ne, Te) of background electrons. These assumptions are justified in the

case of laser-generated electron beam transport in dense targets as it was explained in Chapter 3.
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However, the effect of electron inertia and the quasi-static approximation may be responsible for an

additional time-dependent heating of the background electrons, as it was demonstrated recently by

[Sherlock et al., 2014], and eventual angular deviations of the fast electrons due to strong local mag-

netic fields. Nevertheless, the self-generated electromagnetic fields described by Equations (6.23) and

(6.24) account for the main processes of laser-generated relativistic electron beam transport in solids

or dense plasmas. They depend on the electrical resistivity η of the material and its spatial gradients,

which depend on the electron and ion temperatures of the material. Thus, the electron temperature

evolution needs to be described self-consistently according to the electron heat equation (6.25)

CV,e
∂Te
∂t
− ∂

∂r
.

(
κe
∂Te
∂r

)
= We −G (Te − Ti)

where

We =

∫ ∞
εmin

vScolΨ0dε+ ηje
2.

The background ion heating is described self-consistently according to the heat equation (6.28)

CV,i
∂Ti
∂t

= G (Te − Ti) .

In our model, we neglect the ion motion and the ion thermal conductivity, considering times scales

smaller than 10th of ps. These heat equations are in agreement with the assumptions made with

respect to the self-consistent electromagnetic fields (no viscosities, no magnetization effects, no inertiae

and no collisional friction by colliding the beam electrons in η) except for the temporal derivatives

of the temperatures that have not been neglected here. We also proposed new expressions for the

heat capacities CV,e and CV,i, the electrical resistivity η, the electron thermal conductivity κe and the

electron-ion coupling factor G, allowing to describe metals from the solid state at the room temperature

≈ 300 K through the liquid and Warm and Dense Matter (WDM) states to the hot plasma state with

temperatures ≈ 10 keV. The collisions of background free electrons with d-band bound electrons are

taken into account according to recent studies showing the importance of this relaxation process.
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Chapter 7

Numerical Implementation of the

Model

”I have tried to read philosophers of all ages and have found many illuminating ideas but no steady

progress toward deeper knowledge and understanding. Science, however, gives me the feeling of

steady progress: I am convinced that theoretical physics is actual philosophy. It has revolutionized

fundamental concepts, e.g., about space and time (relativity), about causality (quantum theory), and

about substance and matter (atomistics), and it has taught us new methods of thinking

(complementarity) which are applicable far beyond physics.”

Max Born
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Figure 7.1: Spatial simulation box (Left panel) and Momentum Simulation box (Right panel)

This chapter is dedicated to the numerical implementation with Fortran F90 of the new reduced

model for fast electron transport in solids or dense plasmas presented in Chapter 6. The equations

that have to be solved are summarized in the conclusion of Chapter 6. The code contains four main

packages as illustrated in Figure 7.2, depending on 16 Fortran files ”.f90 ”. The file acuracy.f90

allows to define the acuracy of reals numbers computed with the code. The double-precision floating-

point format is used. The physical constants are defined in the file physical constants.f90. The

initialization parameters of the simulation, defined in data.f90, describe the laser-irradiated target

properties. It include also some options concerning the desired numerical methods and the desired

diagnostics for the simulation as well as the simulation box sizes (Lx, Ly and Lz) and parameters of

the laser-generated fast electron distribution function injected at z = 0, as illustrated in the left panel

of Figure 7.1. Relations between the fast electron kinetic energy, its momentum and its velocity

are computed in the file special relativity.f90. The non-relativistic Coulomb logarithms needed for the

transport coefficients as well as the logarithmic term of the relativistic Coulomb logaritms and plasma

parameters such as the plasma frequency, Fermi temperatures, Debye length, etc... are computed in

the file coulomb logarithms.f90. The Fermi integrals Fj and the chemical potential µ, needed for the

transport coefficients are computed in the file Fermi integrales.f90 according to accurate fits provided

by [Aymerich-Humet et al., 1983] and [ANTIA, 1993]. The file collisional terms.f90 allows for the

computations of the fast electron stopping powers and the fast electron isotropization rates. The file

resistivity.f90 allows for the computations of the transport coefficients.

The first package deals with the computation of the M1 equations. It is based on three Fortran

files. The file M1.f90 defines subroutines needed for the numerical scheme. The file initialization.f90

describes the fast electrons injection at z = 0. And the file boundaries conditions.f90 defines the

boundary conditions. The fast electron beam distribution function at z = 0 can be taken from a

Particle-In-Cell (PIC) simulation of the laser-target interaction. In this case, the parameters that

has been described in Chapter 1, section 1.4 and depending on this preliminary simulation are

computed in the file initialization.f90. The angular moments of the initial distribution function are

deduced from the PIC simulation according to the geometry presented in the right panel of Figure
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7.1. The second package concerns the computation of the electromagnetic fields. It is based on two

Fortran files : the file MHD.f90 which allows for computing the electromagnetic fields and the file

conjugated gradients.f90 allows for solving the magnetic field diffusion operator. The third package

deals with the computation of the two heat equations. It is based on the Fortran file temperatures.f90.

The last package deals with the diagnostics that have been implemented in the code. It is based

on the Fortran file diagnostics.f90. It allows for storing the numerical simulation results in text files

”.dat”. Finally, the main Fortran file scheme.f90 provides the coupling between the packages. Par-

allelization and vectorization of the different loops have been implemented with the open mp library

and the code is compiled with ifort which can be freely obtained at https://software.intel.com/. For

example, on a Linux terminal, the instruction ”ifort -prec-div -prec-sqrt -openmp -openmp-report2

-r8 -o exec acuracy.f90 physical constants.f90 data.f90 special relativity.f90 coulomb logarithms.f90

Fermi integrales.f90 collisional terms.f90 resistivity.f90 M1.f90 diagnostics.f90 initialization.f90 con-

jugated gradients.f90 MHD.f90 temperatures.f90 boundaries conditions.f90 scheme.f90 ” allows for the

compilation of the code and the instruction ”time OMP NUM THREADS=8 ./exec” allows for its

execution on 8 CPU. In the code, the space variables are normalized by L = 1µm, the time is normal-

ized by τ = 1 fs and the masses are normalized by M = keV/c2, except for the distribution function

which is normalized by its maximum value. The chosen units correspond to the typical values in

laser-generated fast electron transport. For example, the velocity of light is ≈ 0.3µm/fs and the

fast electrons may have energies from a few keV to several MeV. In the following, the variables are

discretized as follows.

∀l ∈ [1, Nε], εl[keV] = εmin +
∆ε

2
+ (l − 1)∆ε where Nε = E

{
Lε
∆ε

}
(7.1)

where the index l, is used for the kinetic energy variable ε of the fast electrons, εmin may vary from a

few keV to 20 keV and Lε may vary from a few MeV to 10th of MeV depending on the simulation.

Concerning the discretization of space, we use

∀i ∈ [1, Nx], xi[µm] = −Lx
2

+
∆x

2
+ (i− 1)∆x where Nx = E

{
Lx
∆x

}
+ 1, (7.2)

indexed by i for the position in the x-direction,

∀j ∈ [1, Ny], xj [µm] = −Ly
2

+
∆y

2
+ (j − 1)∆y where Ny = E

{
Lx
∆x

}
+ 1, (7.3)

indexed by j for the position in the y-direction and

∀k ∈ [1, Nz], zk[µm] =
∆z

2
+ (k − 1)∆z where Nz = E

{
Lz
∆z

}
, (7.4)

indexed by k for the position in the z-direction according to Figure 7.1. Finally, we discretize the

Page 207



Figure 7.2: Synoptic Diagram describing the code.

time and we index it by n according to

∀n ∈ N∗, tn[fs] = (n− 1)∆tn (7.5)

where the time step ∆tn depends on the Courant–Friedrichs–Lewy (CFL) condition for the resolution

of M1 equations.

The first section of this chapter is dedicated to the numerical schemes used for the resolution of the

M1 equations. The second section deals with the numerical schemes used to compute self-consistently

the electromagnetic fields. The third section is dedicated to the numerical schemes used to solve

self-consistently the heat equations.
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7.1 M1 equations

According to Chapter 6, section 6.2.1 and 6.2.2, the M1 equations that have to solved are

∂Ψ0

∂t
+

∂

∂x
[v(ε)Ψ1,x] +

∂

∂y
[v(ε)Ψ1,y] +

∂

∂z
[v(ε)Ψ1,z]

− ∂

∂ε

[
S(x, y, z, ε, t)v(ε)Ψ0

+eEx(x, y, z, t)v(ε)Ψ1,x + eEy(x, y, z, t)v(ε)Ψ1,y + eEz(x, y, z, t)v(ε)Ψ1,z

]
,

= 0

(7.6)

∂Ψ1,x

∂t
+

∂

∂x
[v(ε)Ψ2,xx] +

∂

∂y
[v(ε)Ψ2,xy] +

∂

∂z
[v(ε)Ψ2,xz]

− ∂

∂ε

[
S(x, y, z, ε, t)v(ε)Ψ1,x

+eEx(x, y, z, t)v(ε)Ψ2,xx + eEy(x, y, z, t)v(ε)Ψ2,xy + eEz(x, y, z, t)v(ε)Ψ2,xz

]
= − e

p(ε)

[(
Ψ0 −Ψ2,xx

)
Ex(x, y, z, t)−Ψ2,xyEy(x, y, z, t)−Ψ2,xzEz(x, y, z, t)

]
− e

γ(ε)mec

[
Ψ1,yBz(x, y, z, t)−Ψ1,zBy(x, y, z, t)

]
− ν(x, y, z, ε, t)Ψ1,x

(7.7)
∂Ψ1,y

∂t
+

∂

∂x
[v(ε)Ψ2,yx] +

∂

∂y
[v(ε)Ψ2,yy] +

∂

∂z
[v(ε)Ψ2,yz]

− ∂

∂ε

[
S(x, y, z, ε, t)v(ε)Ψ1,y

+eEx(x, y, z, t)v(ε)Ψ2,yx + eEy(x, y, z, t)v(ε)Ψ2,yy + eEz(x, y, z, t)v(ε)Ψ2,yz

]
= − e

p(ε)

[
−Ψ2,yxEx(x, y, z, t) +

(
Ψ0 −Ψ2,yy

)
Ey(x, y, z, t)−Ψ2,yzEz(x, y, z, t)

]
− e

γ(ε)mec

[
Ψ1,zBx(x, y, z, t)−Ψ1,xBz(x, y, z, t)

]
− ν(x, y, z, ε, t)Ψ1,y

(7.8)

and

∂Ψ1,z

∂t
+

∂

∂x
[v(ε)Ψ2,zx] +

∂

∂y
[v(ε)Ψ2,zy] +

∂

∂z
[v(ε)Ψ2,zz]

− ∂

∂ε

[
S(x, y, z, ε, t)v(ε)Ψ1,z

+eEx(x, y, z, t)v(ε)Ψ2,zx + eEy(x, y, z, t)v(ε)Ψ2,zy + eEz(x, y, z, t)v(ε)Ψ2,zz

]
= − e

p(ε)

[
−Ψ2,zxEx(x, y, z, t)−Ψ2,zyEy(x, y, z, t) +

(
Ψ0 −Ψ2,zz

)
Ez(x, y, z, t)

]
− e

γ(ε)mec

[
Ψ1,xBy(x, y, z, t)−Ψ1,yBx(x, y, z, t)

]
− ν(x, y, z, ε, t)Ψ1,z

(7.9)

where Ψ0 = Ψ0(x, y, z, ε, t) is the 0th order angular moment and Ψ1 = Ψ1(x, y, z, ε, t) is the 1st

order angular moment of the distribution function while Ψ2 = Ψ2(x, y, z, ε, t) is the 2nd order angular

moment given by the M1 closure :

∀(i, j) ∈ {x, y, z}2, Ψ2,ij =
1

3
δijΨ0 + µΨ0

[
Ψ1,iΨ1,j

Ψ1,x
2 + Ψ1,y

2 + Ψ1,z
2 −

1

3
δij

]
(7.10)
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with

µ(x, y, z, ε, t) =
1

2Ψ0
2

(
Ψ1,x

2 + Ψ1,y
2 + Ψ1,z

2
)[

1 +
1

Ψ0
2

(
Ψ1,x

2 + Ψ1,y
2 + Ψ1,z

2
)]
.

7.1.1 Second Order Explicit HLL Scheme for the Fast Electron Ad-

vection in Space and Fast Electron Slowing Down due to the

Self-Generated Electric field

First order HLL scheme

Let us consider firstly the 1D-3V case, in order to point out the major features of the numerical scheme

that is used to solve the fast electrons advection in space and in kinetic energy space (due to their

collective energy losses). In this 1D case, the equations that have to be solved are (7.6) and (7.7) with

Ψ1,y = Ψ1,z = 0. The 3D-3V case will be further generalized in the section. Therefore, we are here

interested in the numerical resolution of two 1D coupled equations

∂Ψ0

∂t
+

∂

∂ξ
(uξΨ1,x) = 0

∂Ψ1,x

∂t
+

∂

∂ξ
(uξΨ2,xx) = 0

(7.11)

with

Ψ2,xx =
1 + 2µ

3
Ψ0 and µ =

1

2

(
Ψ1,x

Ψ0

)2
[

1 +

(
Ψ1,x

Ψ0

)2
]

describing the fast electrons advection in the x-direction in space (ξ = x and ux = v(ε)) or the fast

electrons advection in the ε-direction in the kinetic energy space due to their collective energy losses

(ξ = ε and uε = −eEx(x, t)v(ε)), appearing in (7.6) and (7.7).

This hyperbolic system (7.11) can be solved numerically with respect to the realizability domain

A = {(Ψ0, Ψ1,x) /Ψ0 ≥ 0 and |Ψ1,x| ≤ Ψ0} (7.12)

by using the HLL scheme (from the name of its founders A. Harten, P. Lax and B. Van Leer)

developed for the radiative transfer equations [Harten et al., 1983] [Dubroca and Feugeas, 1999]

[Berthon et al., 2010]. According to the finite volume method, we define the mean values in each

cell :

Ψn,i,l
0 =

1

∆x∆ε

∫ xi+∆x/2

xi−∆x/2

∫ εl+∆ε/2

εl−∆ε/2
Ψ0 (x, ε, tn) dx dε, (7.13)

Ψn,i,l
1,x =

1

∆x∆ε

∫ xi+∆x/2

xi−∆x/2

∫ εl+∆ε/2

εl−∆ε/2
Ψ1,x (x, ε, tn) dx dε (7.14)
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and

Ψn,i,l
2,xx =

1

∆x∆ε

∫ xi+∆x/2

xi−∆x/2

∫ εl+∆ε/2

εl−∆ε/2
Ψ2,xx (x, ε, tn) dx dε. (7.15)

Let us note Φ the vector Φ = (Ψ0, Ψ1,x)T , iξ the index i (if ξ = x) or l (if ξ = ε) depending on ξ

and F = F (Φ) the vector F = (Ψ1,x, Ψ2,xx)T depending on Φ. According to the HLL scheme, one

can update at each time step the new value Φn+1,iξ at time tn+1 in the cell iξ, knowing the previous

values Φn,iξ at time tn according to

Φn+1,iξ = Φn,iξ − ∆tn
∆ξ

[
F
n,iξ+1/2
HLL − Fn,ix−1/2

HLL

]
(7.16)

where the HLL fluxes are given by

F
n,iξ+1/2
HLL = u

n,iξ
ξ

(u
n,iξ+1
ξ /u

n,iξ
ξ )Fn,iξ+1 + Fn,iξ

2
−
∣∣∣un,iξξ

∣∣∣ (u
n,iξ+1
ξ /u

n,iξ
ξ )Φn,iξ+1 − Φn,iξ

2
(7.17)

and

F
n,iξ−1/2
HLL = u

n,iξ
ξ

Fn,iξ + (u
n,iξ−1
ξ /u

n,iξ
ξ )Fn,iξ−1

2
−
∣∣∣un,iξξ

∣∣∣ Φn,iξ − (u
n,iξ−1
ξ /u

n,iξ
ξ )Φn,iξ−1

2
. (7.18)

In the case where ξ = x for which uξ = v(ε) does not depend on ξ, the ratios (u
n,iξ±1
ξ /u

n,iξ
ξ ) appearing

in the the HLL fluxes (7.17) and (7.18) are equal to 1. In the case where ξ = ε for which uξ =

−eEx(x, t)v(ε) depends on ξ, the ratios reduce to vl+1/vl and vl−1/vl where ∀l ∈ [1, Nε], vl = v(εl).

This has been deduced from the case where uξ does not depend on ξ. Indeed, let us define Φ̂ = vΦ

and F̂ = vF . In this case, the realizability domain is still the same :

Â =
{(

Ψ̂0, Ψ̂1,x

)
/Ψ̂0 ≥ 0 and

∣∣∣Ψ̂1,x

∣∣∣ ≤ Ψ̂0

}
(7.19)

while the equation (7.11) for ξ = ε can be written

∂Φ̂

∂t
− ∂

∂p

(
eEx(x, t)F̂

)
= 0 (7.20)

as (dε/dp) = v. Therefore, the velocity uε depending on ε in (7.11) has disappeared and, since

up = −eEx does not depend on p, we can compute this equation with the same way as (7.11) for

which uξ does not depend on ξ. We obtain consequently (7.16) with the ratios (u
n,iξ±1
ξ /u

n,iξ
ξ ) which

are equal to 1. By coming back to Φ and F instead of Φ̂ and F̂ , we finally obtain (7.11) with the

ratios (u
n,iξ±1
ξ /u

n,iξ
ξ ).

The 1st order HLL scheme is stable and the numerical solutions are in the realizability domain
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(7.12) if the Courant-Friedrich-Lewy (CFL) condition

∆tn <
∆ξ

maxiξ∈[1, Nξ]

{
u
n,iξ
ξ

} (7.21)

is verified. However, according to numerical experiments that I have performed during this thesis, the

consistency error of this 1st order explicit HLL scheme

ε
n,iξ
HLL, 1D =

Φn+1,iξ − Φn,iξ

∆tn
+
F
n,iξ+1/2
HLL − Fn,iξ−1/2

HLL

∆ξ
−

[
∂Φ

∂t

∣∣∣∣n,iξ +
∂

∂ξ
(uξF )

∣∣∣∣n,iξ
]

=
∆tn

2

∂2Φ

∂t2

∣∣∣∣n,iξ − ∆ξ

2

∂2

∂ξ2
(|uξ|Φ)

∣∣∣∣n,iξ +O(∆t2 + ∆ξ2)

(7.22)

is not sufficiently small for values ∆ξ about a fraction of microns (if ξ = x) or about a keV (if ξ = ε)

typical of laser-generated fast electron transport studies. We used therefore the 2nd order explicit

HLL scheme.

2nd order HLL scheme

The second order explicit HLL scheme can be obtained by replacing the HLL fluxes (7.17) and (7.18)

by

F
n,iξ+1/2
HLL = u

n,iξ
ξ

(u
n,iξ+1
ξ /u

n,iξ
ξ )Fn,iξ+1,− + Fn,iξ,+

2
− |un,iξξ |

(u
n,iξ+1
ξ /u

n,iξ
ξ )Φn,iξ+1,− − Φn,iξ,+

2
(7.23)

and

F
n,iξ−1/2
HLL = u

n,iξ
ξ

Fn,iξ,− + (u
n,iξ−1
ξ /u

n,iξ
ξ )Fn,iξ−1,+

2
− |un,iξξ |

Φn,iξ,− − (u
n,iξ−1
ξ /u

n,iξ
ξ )Φn,iξ−1,+

2
, (7.24)

respectively [Dubroca, 2012]. Here, the sign + indicates

∀iξ ∈ [1, Nξ], Φn,iξ,+ = Φn,iξ + Pn,iξ
∆ξ

2
and Fn,iξ,+ = F (Φn,iξ,+) (7.25)

while the sign − indicates

∀iξ ∈ [1, Nξ], Φn,iξ,− = Φn,iξ − Pn,iξ ∆ξ

2
and Fn,iξ,− = F (Φn,iξ,−). (7.26)

Pn,iξ is the vector defined by

Pn,iξ = min

(
0, max

(
Φn,iξ+1 − Φn,iξ

∆ξ
,

Φn,iξ − Φn,iξ−1

∆ξ

))
+ max

(
0, min

(
Φn,iξ+1 − Φn,iξ

∆ξ
,

Φn,iξ − Φn,iξ−1

∆ξ

))
.

(7.27)
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However, these 2nd order HLL fluxes (7.23) and (7.24) may lead to numerical solutions outside the

realizability domain (7.12); while Ψ0 ≥ 0 is respected, it is not necessarily the case for the condition

|Ψ1,x| ≤ Ψ0. Consequently, we introduce a value Θ at each time step and in each cell iξ defined by

Φn,iξ,+ = Φn,iξ + Pn,ξΘ
∆ξ

2
and Φn,iξ,− = Φn,iξ − Pn,ξΘ∆ξ

2
(7.28)

such that |Ψ1,x| ≤ Ψ0 [Dubroca, 2012]. Thus, by injecting (7.28) in the conditions (Ψ
n,iξ,+
1,x )

2
≤

(Ψ
n,iξ,+
0 )

2
or (Ψ

n,iξ,−
1,x )

2
≤ (Ψ

n,iξ,−
0 )

2
, we obtain the following condition

(Ψ
n,iξ
0 )

2
− (Ψ

n,iξ
1,x )

2
± 2Θ′

(
P
n,iξ
0 Ψ

n,iξ
0 − Pn,iξ1,x Ψ

n,iξ
1,x

) ∆ξ

2
+ Θ′2

(
(P

n,iξ
0 )

2
− (P

n,iξ
1,x )

2) ∆ξ2

4
≥ 0. (7.29)

Consequently, if Ψ
n,iξ
0 = Ψ

n,iξ
1,x or if the discriminant of the trinomial left hand side is negative, we can

impose Θ = 1 without problems. But, if we find solution Θ′ ∈ [0, 1] cancelling the trinomial left hand

side, allowing to obtain (Ψ
n,iξ,±
0 )2 ≥ (Ψ

n,iξ,±
1,x )2, we impose Θ = min Θ′. In other exotic cases, we come

back to the 1st order HLL scheme by imposing Θ = 0. The 2nd order HLL scheme allows for a much

smaller consistency error O(∆t+ ∆ξ2) compared to the 1st order consistency error (7.22) O(∆t+ ∆ξ)

while the CFL condition (7.21) remains the same.

Generalization to the 3D-3V case

We note ∀ζ ∈ {x, y, z}, Eζ(xi, yj , zk, tn) = En,i,j,kζ

Ψn,i,j,k,l
0 =

1

∆x∆y∆z∆ε

∫ xi+∆x/2

xi−∆x/2

∫ yj+∆y/2

yj−∆y/2

∫ zk+∆z/2

zk−∆z/2

∫ εl+∆ε/2

εl−∆ε/2
Ψ0 (x, y, z, ε, tn) dx dy dz dε

(7.30)

and

Ψn,i,j,k,l
1,ζ =

1

∆x∆y∆z∆ε

∫ xi+∆x/2

xi−∆x/2

∫ yj+∆y/2

yj−∆y/2

∫ zk+∆z/2

zk−∆z/2

∫ εl+∆ε/2

εl−∆ε/2
Ψ1,ζ (x, y, z, ε, tn) dx dy dz dε.

(7.31)

Also, we define the vector Φ = (Ψ0, Ψ1,x, Ψ1,y, Ψ1,z)
T and ∀ζ ∈ {x, y, z} and the vectors Fζ =

Fζ(Φ) = (Ψ1,ζ , Ψ2,ζx, Ψ2,ζy, Ψ2,ζz)
T depending on Φ. This subsection is dedicated to the generaliza-

tion of the numerical resolution of the two 1D coupled equations (7.11) to the numerical resolution of

the four ”4D” (3D-1ε) coupled equations

∂Φ

∂t
+

∑
ξ=x, y, z, ε

 ∑
ζ=x, y, z

∂

∂ξ
(uξζFζ)

 = 0 (7.32)

where the uξζ are recapitulated in Figure 7.3. The 2nd order explicit HLL scheme applied to these
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ξ� ζ x y z
x v(ε) 0 0
y 0 v(ε) 0
z 0 0 v(ε)
ε −eEx(x, y, z, t) −eEy(x, y, z, t) −eEz(x, y, z, t)

Figure 7.3: Expression of uξ,ζ in (7.32) depending on ξ and ζ.

four ”4D” coupled equations reads

Φn+1,i,j,k,l = Φn,i,j,k,l − (∆tn/∆x)
[
F
n,i+1/2,j,k,l
x,HLL − Fn,i−1/2,j,k,l

x,HLL

]
− (∆tn/∆y)

[
F
n,i,j+1/2,k,l
y,HLL − Fn,i,j−1/2,k,l

y,HLL

]
− (∆tn/∆z)

[
F
n,i,j,k+1/2,l
z,HLL − Fn,i,j,k−1/2,l

z,HLL

]
− (∆tn/∆ε)

[
F
n,i,j,k,l+1/2
ε,HLL − Fn,i,j,k,l−1/2

ε,HLL

] (7.33)

where the HLL fluxes are given by

F
n,i+1/2,j,k,l
x,HLL = vl

[
F i+1,−
x + F i,+x

2

]n,j,k,l
− |vl|

[
Φi+1,− − Φi,+

2

]n,j,k,l
,

F
n,i−1/2,j,k,l
x,HLL = vl

[
F i,−x + F i−1,+

x

2

]n,j,k,l
− |vl|

[
Φi,− − Φi−1,+

2

]n,j,k,l
,

F
n,i,j+1/2,k,l
y,HLL = vl

[
F j+1,−
y + F j,+y

2

]n,i,k,l
− |vl|

[
Φj+1,− − Φj,+

2

]n,i,k,l
,

F
n,i,j−1/2,j,k,l
y,HLL = vl

[
F j,−y + F j−1,+

y

2

]n,i,k,l
− |vl|

[
Φj,− − Φj−1,+

2

]n,i,k,l
,

F
n,i,j,k+1/2,l
z,HLL = vl

[
F k+1,−
z + F k,+z

2

]n,i,j,l
− |vl|

[
Φk+1,− − Φk,+

2

]n,i,j,l
,

F
n,i,j,k−1/2,l
z,HLL = vl

[
F k,−z + F k−1,+

z

2

]n,i,j,l
− |vl|

[
Φk,− − Φk−1,+

2

]n,i,j,l
,

F
n,i,j,k,l+1/2
ε,HLL = −eEn,i,j,kx vl

[
(vl+1/vl)F

l+1,−
x + F l,+x
2

]n,i,j,k
− |eEn,i,j,kx vl|

[
(vl+1/vl)Φ

l+1,− − Φl,+

2

]n,i,j,k
+ −eEn,i,j,ky vl

[
(vl+1/vl)F

l+1,−
y + F l,+y
2

]n,i,j,k
− |eEn,i,j,ky vl|

[
(vl+1/vl)Φ

l+1,− − Φl,+

2

]n,i,j,k
+ −eEn,i,j,kz vl

[
(vl+1/vl)

F l+1,−
z + F l,+z

2

]n,i,j,k
− |eEn,i,j,kz vl|

[
(vl+1/vl)Φ

l+1,− − Φl,+

2

]n,i,j,k
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and

F
n,i,j,k,l−1/2
ε,HLL = −eEn,i,j,kx vl

[
F l,−x + (vl−1/vl)F

l−1,+
x

2

]n,i,j,k
− |eEn,i,j,kx vl|

[
Φl,− − (vl−1/vl)Φ

l−1,+

2

]n,i,j,k
+ −eEn,i,j,ky vl

[
F l,−y + (vl−1/vl)F

l−1,+
y

2

]n,i,j,k
− |eEn,i,j,ky vl|

[
Φl,− − (vl−1/vl)Φ

l−1,+

2

]n,i,j,k
+ −eEn,i,j,kz vl

[
F l,−z + (vl−1/vl)F

l−1,+
z

2

]n,i,j,k
− |eEn,i,j,kz vl|

[
Φl,− − (vl−1/vl)Φ

l−1,+

2

]n,i,j,k
.

Here, for all indexes iξ ∈ {i, j, k, l} corresponding respectively to the random variable ξ ∈ {x, y, z, ε},

Φn, iξ,+ = Φn,iξ + ΘPn,iξ
∆ξ

2
and Φn,iξ,− = Φn,iξ −ΘPn,iξ

∆ξ

2
(7.34)

where

Pn,iξ = min

(
0, max

(
Φn,iξ+1 − Φn,iξ

∆ξ
,

Φn,iξ − Φn,iξ−1

∆ξ

))
+ max

(
0, min

(
Φn,iξ+1 − Φn,iξ

∆ξ
,

Φn,iξ − Φn,iξ−1

∆ξ

))
and

if ∃Θ′ ∈ [0, 1] / (Ψ
n,iξ
0 )

2
− (Ψ

n,iξ
1,x )

2
− (Ψ

n,iξ
1,y )

2
− (Ψ

n,iξ
1,z )

2

± 2Θ′
(
P
n,iξ
0 Ψ

n,iξ
0 − Pn,iξ1,x Ψ

n,iξ
1,x − P

n,iξ
1,y Ψ

n,iξ
1,y − P

n,iξ
1,z Ψ

n,iξ
1,z

) ∆ξ

2

+ Θ′2
(

(Pn,iξ0 )
2
− (P

n,iξ
1,x )

2
− (P

n,iξ
1,y )

2
− (P

n,iξ
1,z )

2) ∆ξ2

4
= 0

then Θ = min Θ′

else Θ = 1.

This ”4D” explicit 2nd order HLL scheme is stable and the numerical solutions are in the realizability

domain

A = {(Ψ0, Ψ1) /Ψ0 ≥ 0 and |Ψ1| ≤ Ψ0} (7.35)

if the CFL condition

∆tn <
1

vmax

(
1

∆x
+

1

∆y
+

1

∆z

)
+
evmax

∆ε

√
(Enx,max)2 + (Eny,max)2 + (Enz,max)2

. (7.36)
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is verified. Also, we can estimate the consistency error in the worst case (i.e. in the 1st order case) :

εn,i,j,k,lHLL =
∆tn

2

∂2Φ

∂t2

∣∣∣∣n,i,j,k,l − ∆ε

2

[( ∣∣∣eEn,i,k,kx

∣∣∣+
∣∣∣eEn,i,k,ky

∣∣∣+
∣∣∣eEn,i,k,kz

∣∣∣ ) ∂2

∂ε2
(vΦ)

∣∣∣∣n,i,k,k,l
]

− ∆x

2

∂2

∂x2
(vΦ)

∣∣∣∣n,i,k,k,l − ∆y

2

∂2

∂y2
(vΦ)

∣∣∣∣n,i,k,k,l − ∆z

2

∂2

∂z2
(vΦ)

∣∣∣∣n,i,k,k,l
+ O

(
∆t2 + ∆x2 + ∆y2 + ∆z2 + ∆ε2

)
(7.37)

7.1.2 Downwind Explicit Scheme for the Fast Electron Collisional

Slowing Down

Concerning the slowing down due to collisional effects, we have to solve the equation

∂Φ

∂t
− ∂

∂ε

[
S(x, y, z, ε, t)v(ε)Φ

]
= 0. (7.38)

Since the total stopping power S is always positive, we can use the simple downwind scheme

Φn+1,i,j,k,l = Φn,i,j,k,l +
∆tn
∆ε

[
Sn,i,j,k,l+1vl+1Φn,i,j,k,l+1 − Sn,i,j,k,lvlΦn,i,j,k,l

]
(7.39)

where it has been noted Sn,i,j,k,l = S(xi, yj , zk, εl, tn) the opposite of the total discretized stopping

power of the fast electrons. This 1st order downwind scheme is stable if the CFL condition

∆tn <
∆ε

2Smaxvmax
(7.40)

is verified and the consistency error is

εn,i,j,k,lS =
∆tn

2

∂2Φ

∂t2

∣∣∣∣n,i,j,k,l − ∆ε

2

∂2

∂ε2
(SvΦ)

∣∣∣∣n,i,j,k,l +O
(

∆t2 + ∆ε2
)
. (7.41)

7.1.3 Explicit Scheme for the Fast Electron Angular Deviations

The fast electron angular deviations are due to the self-generated electric and magnetic fields and the

angular scattering. Let us note γl = γ(εl) the discretized Lorentz factor, pl = p(εl) the discretized

momenta and ∀ζ ∈ {x, y, z}, Bζ(xi, yj , zk, tn) = Bn,i,j,k
ζ the components of the self-generated magnetic

field. This subsection is dedicated to the numerical resolution of the equation

∂Φ

∂t
= ΓE + ΓB + Γν . (7.42)
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where

Γn,i,j,k,lE = − e
pl


0(

Ψn,i,j,k,l
0 −Ψn,i,j,k,l

2,xx

)
En,i,j,kx −Ψn,i,j,k,l

2,xy En,i,j,ky −Ψn,i,j,k,l
2,xz En,i,j,kz

− Ψn,i,j,k,l
2,yx En,i,j,kx +

(
Ψn,i,j,k,l

0 −Ψn,i,j,k,l
2,yy

)
En,i,j,ky −Ψn,i,j,k,l

2,yz En,i,j,kz

− Ψn,i,j,k,l
2,zx En,i,j,kx −Ψn,i,j,k,l

2,zy En,i,j,ky −
(

Ψn,i,j,k,l
0 −Ψn,i,j,k,l

2,zz

)
En,i,j,kz

 (7.43)

is the angular deviation term due to the self-generated electric field,

Γn,i,j,k,lB = − e

γlmec


0

Ψn,i,j,k,l
1,y Bn,i,j,k

z −Ψn,i,j,k,l
1,z Bn,i,j,k

y

Ψn,i,j,k,l
1,z Bn,i,j,k

x −Ψn,i,j,k,l
1,x Bn,i,j,k

z

Ψn,i,j,k,l
1,x Bn,i,j,k

y −Ψn,i,j,k,l
1,y Bn,i,j,k

x

 (7.44)

is the angular deviation term due to the self-generated magnetic field and

Γn,i,j,k,lν = −νn,i,j,k,l


0

Ψn,i,j,k,l
1,x

Ψn,i,j,k,l
1,y

Ψn,i,j,k,l
1,z

 (7.45)

is the angular deviation term due to the fast electron collisional angular scattering. We use the explicit

numerical scheme

Φn+1,i,j,k,l = Φn,i,j,k,l + ∆tn

(
Γn,i,j,k,lE + Γn,i,j,k,lB + Γn,i,j,k,lν

)
. (7.46)

It is stable if the approximated CFL condition

∆tn <
1

ωc,max + νmax +
e

pmin

√
(Enx,max)2 + (Eny,max)2 + (Enz,max)2

(7.47)

is verified where ωc,max = e
√

(Bn
x,max)2 + (Bn

y,max)2 + (Bn
z,max)2/mec is the most restrictive fast elec-

tron cyclotron frequency and νmax is the most restrictive fast electron isotropization rate ν. The

consistency error of this scheme is directly given by

εn,i,j,k,lA =
∆tn

2

∂2Φ

∂t2

∣∣∣∣n,i,j,k,l +O
(

∆t2
)
. (7.48)
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7.1.4 Summary of the Full Explicit Scheme

As a conclusion, we use the numerical scheme

Φn+1,i,j,k,l = Φn,i,j,k,l − (∆tn/∆x)
[
F
n,i+1/2,j,k,l
x,HLL − Fn,i−1/2,j,k,l

x,HLL

]
− (∆tn/∆y)

[
F
n,i+1/2,j,k,l
y,HLL − Fn,i−1/2,j,k,l

y,HLL

]
− (∆tn/∆z)

[
F
n,i,j,k+1/2,l
z,HLL − Fn,i,j,k−1/2,l

z,HLL

]
− (∆tn/∆ε)

[
(−Sn,i,j,k,l+1)vl+1Φn,i,j,k,l+1 − (−Sn,i,j,k,l)vlΦn,i,j,k,l

]
− (∆tn/∆ε)

[
F
n,i,j,k,l+1/2
ε,HLL − Fn,i,j,k,l−1/2

ε,HLL

]
+ ∆tn

(
Γn,i,j,k,lE + Γn,i,j,k,lB + Γn,i,j,k,lν

)
.

(7.49)

It is stable with the respect of the approximate CFL condition

1

∆tn
> vmax

(
1

∆x
+

1

∆y
+

1

∆z

)
+

2Snmaxvmax

∆ε
+
evmax

√
Enx,max

2 + Eny,max
2 + Enz,max

2

∆ε

+ νnmax + ωnc,max +
e
√
Enx,max

2 + Eny,max
2 + Enz,max

2

pmin
.

(7.50)

In practice, the CFL condition is mainly constrained by the resolution of the spatial derivatives and

leads to time step ∆tn of a fraction of fs. The resolution of the kinetic energy derivative due to

collective energy losses constrains the CFL condition only near the peak of the laser pulse which

corresponds to the peak of the self-generated electric field. The consistency error can be estimated by

εn,i,j,k,l =
∆tn

2

∂2Φ

∂t2

∣∣∣∣n,i,j,k,l − ∆ε

2

[( ∣∣∣eEn,i,k,kx

∣∣∣+
∣∣∣eEn,i,k,ky

∣∣∣+
∣∣∣eEn,i,k,kz

∣∣∣ ) ∂2

∂ε2
(vΦ)

∣∣∣∣n,i,k,k,l
]

− ∆x

2

∂2

∂x2
(vΦ)

∣∣∣∣n,i,k,k,l − ∆y

2

∂2

∂y2
(vΦ)

∣∣∣∣n,i,k,k,l − ∆z

2

∂2

∂z2
(vΦ)

∣∣∣∣n,i,k,k,l
− ∆ε

2

∂2

∂ε2
(SvΦ)

∣∣∣∣n,i,j,k,l +O
(

∆t2 + ∆x2 + ∆y2 + ∆z2 + ∆ε2
)
.

(7.51)

However, in practice, the consistency error of the simulation results is measured by computing the

percentage of error in the time-and-space-integrated energy conservation equation (6.29).

7.1.5 First order Implicit Scheme for the Collisional Terms in the

case of Very Dense Plasmas

In the case of laser-generated fast electron transport in a very dense plasma like in the Fast Ignition or

the Shock Ignition Scheme for Inertial Confinement Fusion, the total stopping power S and the angular

isotropization rate ν may severely restrict the CFL criterion (7.21). Therefore, I also introduce implicit
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numerical schemes for these two terms in order to relax the CFL condition to the less restrictive one :

1

∆tn
> vmax

(
1

∆x
+

1

∆y
+

1

∆z

)
+
evmax

√
Enx,max

2 + Eny,max
2 + Enz,max

2

∆ε

+ ωnc,max +
e
√
Enx,max

2 + Eny,max
2 + Enz,max

2

pmin
.

(7.52)

In this case, we firstly compute all the other terms :

Φ∗,i,j,k,l = Φn,i,j,k,l − (∆tn/∆x)
[
F
n,i+1/2,j,k,l
x,HLL − Fn,i−1/2,j,k,l

x,HLL

]
− (∆tn/∆y)

[
F
n,i+1/2,j,k,l
y,HLL − Fn,i−1/2,j,k,l

y,HLL

]
− (∆tn/∆z)

[
F
n,i,j,k+1/2,l
z,HLL − Fn,i,j,k−1/2,l

z,HLL

]
− (∆tn/∆ε)

[
F
n,i,j,k,l+1/2
ε,HLL − Fn,i,j,k,l−1/2

ε,HLL

]
+ ∆tn

(
Γn,i,j,k,lE + Γn,i,j,k,lB

)
.

(7.53)

Then, the collisional effects are taken into account implicitely :

Ψn+1,i,j,k,l
0 =

Φ∗,i,j,k,l0 +
Sn,i,j,k,l+1vl+1∆tn

∆ε
Φ∗,i,j,k,l+1

0

1 +
Sn,i,j,k,lvl∆tn

∆ε

(7.54)

and ∀ζ ∈ {x, y, z},

Ψn+1,i,j,k,l
1,ζ =

Φ∗,i,j,k,l1,ζ +
Sn,i,j,k,l+1vl+1∆tn

∆ε
Φ∗,i,j,k,l+1

1,ζ

1 +
Sn,i,j,k,lvl∆tn

∆ε
+ νn,i,j,k,l∆tn

. (7.55)

In order to improve the consistency error of the numerical scheme for the collisional slowing down of

the fast electrons, I have also tested the centered implicit scheme. However, it led to solutions outside

the realizability domain (7.35). That is why, we have finally chosen the simpler implicit and explicit

downwind schemes.

7.1.6 Fast Electron Injection and Escaping Boundary Conditions

The fast electron injection in the simulation box is performed by defining the angular moments Φini

of the distribution function ΨM1(xi, yj , z1, εl, θ, ϕ, tn) in the first cells in the z-direction z = z1 at

each time step tn (see Figure 7.1). The distribution function may depend on parameters introduced

in Chapter 1, section 1.4 that are deduced from a Particle-In-Cell simulation of the laser-target

interaction. It may happen that fast electrons are still propagating in the simulation box while the

laser pulse is off. In this case, we define the laser pulse duration tsource such that for times tn ≥ tsource,

we stop injecting fast electrons by imposing Φini = 0. This section is dedicated to the boundary

conditions at the simulation box boundaries x = ±Lx/2, y = ±Ly/2, z = 0 and z = Lz as well as the
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kinetic energy space boundaries ε = εmin and ε = Lε.

In a first attempt, we decided to let the fast electrons escape the target at the target spatial

boundaries (see Chapter 9 for the fast electrons refluxing). One may therefore naively think that it

would be sufficient to impose for example Φn,i,j,Nz+1,l = Φn,i,j,Nz+2,l = 0, which means that there are

no fast electrons in vacuum at the target rear side, so that all fast electrons with a positive momentum

plΨ
n,i,j,Nz ,l
1,z will escape from the target boundary k = Nz. Actually, it is not so easy. Indeed, what

really matters is the fast electron fluxes at z = Lz which are computed according to the HLL scheme.

Thus, concerning this example, this is the HLL flux Fn,i,j,Nz ,lz,HLL that must be taken equal to Fn,i,j,Nz ,lz

and not directly Fn,i,j,Nz ,lz . Consequently, for this example, we have to impose the following boundary

condition at the target rear side :

If Ψn,i,j,Nz ,l
1,z > 0 then Φn,i,j,Nz+2,l = Φn,i,j,Nz+1,l = Φn,i,j,Nz ,l

else Φn,i,Nz+2,l = Φn,i,Nz+1,l = 0.
(7.56)

If the fast electrons have a positive momentum plΨ
n,i,j,Nz ,l
1,z in the z-direction at the target rear side

k = Nz, it means that they are going to escape from the target so that we have to impose Φn,i,j,Nz+2,l =

Φn,i,j,Nz+1,l = Φn,i,j,Nz ,l such that the HLL flux in the z-direction at the rear side reads

F
n,i,j,Nz+1/2,l
z,HLL = vl

[
FNz+1,−
z + FNz ,+z

2

]n,i,j,l
− |vl|

[
ΦNz+1,− − ΦNz ,+

2

]n,i,j,l
= Fn,i,j,Nz ,lz .

In the opposite case where the fast electrons have a negative momentum plΨ
n,i,j,Nz ,l
1,z at the target rear

side k = Nz, we impose no fast electrons in vacuum k = Nz + 1 and k = Nz + 2 so that we do not

inject fast electrons according to the HLL flux expression. By generalizing to other target boundaries,
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we impose the following boundary conditions :

If t < tsource then Φn,i,j,0,l = Φn,i,j,1,l = Φn,i,j,1,l
ini

else if Ψn,i,j,2,l
1,z < 0 and t > tsource then Φn,i,j,0,l = Φn,i,j,1,l = Φn,i,j,2,l

else Φn,i,j,0,l = Φn,i,j,1,l = 0,

If Ψn,i,1,k,l
1,y < 0 then Φn,i,−1,k,l = Φn,i,0,k,l = Φn,i,1,k,l

else Φn,i,−1,k,l = Φn,i,0,k,l = 0,

If Ψ
n,i,Ny ,k,l
1,y > 0 then Φn,i,Ny+1,k,l = Φn,i,Ny+2,j,k,l = Φn,i,Ny ,k,l

else Φn,i,Ny+1,k,l = Φn,i,Ny+2,k,l = 0,

If Ψn,1,j,k,l
1,x < 0 then Φn,−1,j,k,l = Φn,0,j,k,l = Φn,1,j,k,l

else Φn,−1,j,k,l = Φn,0,j,k,l = 0 and

If Ψn,Nx,j,k,l
1,x > 0 then Φn,Nx+1,j,k,l = Φn,Nx+2,j,k,l = Φn,Nx,j,k,l

else Φn,Nx+1,j,k,l = Φn,Nx+2,j,k,l = 0.

(7.57)

Concerning the target corners, the priority is given to the z-axis fluxes, assuming that Lx and Ly have

been chosen sufficiently large.

The boundary conditions concerning the HLL fluxes in the kinetic energy space are simpler since

in our laser-generated fast electron transport model, fast electrons only lose their kinetic energy.

Consequently, we impose

Φn,i,j,k,−1 = Φn,i,j,k,0 = Φn,i,j,k,1 (7.58)

in order to let the fast electrons lose all their energy according to the HLL fluxes at the low energy

boundary ε = εmin. Since nb � ne, these electrons with energies less than εmin are not injected in the

background electrons population and are just removed from the system. In the opposite boundary,

we impose

Φn,i,j,k,Nε+1 = Φn,i,j,k,Nε+2 = 0 (7.59)

in order to avoid injection of fast electrons at the high energy boundary ε = Lε.

7.2 Self-Generated Electromagnetic Fields

According to the previous section, we know exactly the fast electron distribution function Ψn
M1 at each

time step n in the whole simulation box. Therefore, we can compute the laser-generated fast electron
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beam density according to

nn,i,j,kb = nb(xi, yj , zk, tn) =

Nε∑
l=1

Ψn,i,j,k,l
0 ∆ε (7.60)

and the beam current density according to

jn,i,j,kb = jb(xi, yj , zk, tn) = −e
Nε∑
l=1

Ψn,i,j,k,l
1 vl∆ε. (7.61)

Also, as illustrated in Figure 7.2, the background electron and ion temperatures at time tn, Tne and

Tni , are known in each cell, allowing to compute the electrical resistivity ηn,i,j,k and the background

electron density nn,i,j,ke = (Z∗)n,i,j,knn,i,j,k,li in each cell at time tn. This section is dedicated to the

resolution of the self-generated electromagnetic fields at each time step tn. The equations that have

to be solved self-consistently in 3 dimensions for the self-generated magnetic fields are

∂Bx
∂t
− ∂

∂y

(
η(x, y, z, t)c2

4π

∂Bx
∂y

)
− ∂

∂z

(
η(x, y, z, t)c2

4π

∂Bx
∂z

)
= − ∂

∂y

(
η(x, y, z, t)c2

4π

∂By
∂x

)
− ∂

∂z

(
η(x, y, z, t)c2

4π

∂Bz
∂x

)
+ η(x, y, z, t)c

(
∂jb,z
∂y
−
∂jb,y
∂z

)
+ jb,zc

∂η

∂y
− jb,yc

∂η

∂z

+
kBc

nee

(
∂ne
∂z

∂Te
∂y
− ∂ne

∂y

∂Te
∂z

)
,

(7.62)

∂By
∂t
− ∂

∂z

(
η(x, y, z, t)c2

4π

∂By
∂z

)
− ∂

∂x

(
η(x, y, z, t)c2

4π

∂By
∂x

)
= − ∂

∂z

(
η(x, y, z, t)c2

4π

∂Bz
∂y

)
− ∂

∂x

(
η(x, y, z, t)c2

4π

∂Bx
∂y

)
+ η(x, y, z, t)c

(
∂jb,x
∂z
−
∂jb,z
∂x

)
+ jb,xc

∂η

∂z
− jb,zc

∂η

∂x

+
kBc

nee

(
∂ne
∂x

∂Te
∂z
− ∂ne

∂z

∂Te
∂x

)
(7.63)

and
∂Bz
∂t
− ∂

∂x

(
η(x, y, z, t)c2

4π

∂Bz
∂x

)
− ∂

∂y

(
η(x, y, z, t)c2

4π

∂Bz
∂y

)
= − ∂

∂x

(
η(x, y, z, t)c2

4π

∂Bx
∂z

)
− ∂

∂y

(
η(x, y, z, t)c2

4π

∂By
∂z

)
+ η(x, y, z, t)c

(
∂jb,y
∂x
−
∂jb,x
∂y

)
+ jb,yc

∂η

∂x
− jb,xc

∂η

∂y

+
kBc

nee

(
∂ne
∂y

∂Te
∂x
− ∂ne

∂x

∂Te
∂y

)
(7.64)
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while the self-generated electric fields can be deduced knowing the self-generated magnetic field ac-

cording to

Ex = −η(x, y, z, t)jb,x +
η(x, y, z, t)c

4π

(
∂Bz
∂y
− ∂By

∂z

)
− kB
ne(x, y, z, t)e

∂

∂x
(neTe) , (7.65)

Ey = −η(x, y, z, t)jb,y +
η(x, y, z, t)c

4π

(
∂Bx
∂z
− ∂Bz

∂x

)
− kB
ne(x, y, z, t)e

∂

∂y
(neTe) (7.66)

and

Ez = −η(x, y, z, t)jb,z +
η(x, y, z, t)c

4π

(
∂By
∂x
− ∂Bx

∂y

)
− kB
ne(x, y, z, t)e

∂

∂z
(neTe) . (7.67)

The first line of the B-field equations (7.62), (7.63) and (7.64) describes the diffusion of the B-field

component Bξ, ξ ∈ {x, y, z} in the plane perpendicular to the ξ-axis. The second line describes the

coupling between the different B-field components, which cancels in two dimensions. The third line

describes the B-field source term due to the curl of the beam density current while the fourth line

describes the B-field source due to resistivity gradients. Finally, the fifth line describes the B-field

source term due to the background electron temperature-density crossed gradients. The first term in

the left hand side of the E-field equations (7.65), (7.66) and (7.67) provides the main contribution

due to the beam density component jb in the return current expression je = jt − jb. The second term

comes from the total net current jt = (c/4π)(∂/∂r) ×B according to the Maxwell-Ampere equation

with the quasi-static approximation. Finally, the last term comes from the pressure force. This latter

is usually very small compared to other terms.

7.2.1 Second Order Implicit Scheme describing the Self-Generated

Magnetic Fields Diffusion and Second Order Explicit Schemes

describing the Self-Generated Magnetic Fields Sources

Here, we describe the numerical methods used to solve the magnetic fields equations (7.62), (7.63) and

(7.64). For simplicity, we present the resolution of the y-component of the B-field (7.63) in each slice

y = yj0 , indexed by j0. This numerical scheme can be generalized to the x-component of the B-field

(7.62) by permuting x→ z, y → x and z → y (j0 → i0, i→ k and k → j) and to the z-component of

the B-field (7.64) by permuting x → y, y → z and z → x (j0 → k0, i → j and k → i). Thus, let us

note

Bn,i,j0,k
y,cour = ηn,i,j0,kc∆tn

(
jn,i,j0,k+1
b,x − jn,i,j0,k−1

b,x

2∆z
−
jn,i+1,j0,k
b,z − jn,i−1,j0,k

b,z

2∆x

)
(7.68)

Page 223



7.2. SELF-GENERATED ELECTROMAGNETIC FIELDS

the discretized By-field generated at the time interval between tn and tn + ∆tn due to the curl of the

beam current density,

Bn,i,j0,k
y,res = jn,i,j0,kb,x c∆tn

ηn,i,j0,k+1 − ηn,i,j0,k−1

2∆z
− jn,i,j0,kb,z c∆tn

ηn,i+1,j0,k − ηn,i−1,j0,k

2∆x
(7.69)

the discretized By-field generated at the time interval between tn and tn + ∆tn due to the resistivity

gradients,

Bn,i,j0,k
y,cross =

kBc

ene
∆tn

( nn,i+1,j0,k
e − nn,i−1,j0,k

e

2∆x

Tn,i,j0,k+1
e − Tn,i,j0,k−1

e

2∆z

− nn,i,j0,k+1
e − nn,i,j0,k−1

e

2∆z

Tn,i+1,j0,k
e − Tn,i−1,j0,k

e

2∆x

) (7.70)

the discretized By-field generated at the time interval between tn and tn + ∆tn due to the background

electrons temperature-density crossed gradients and

Bn,i,j0,k
y,3D = −∆tn

[ 1

2∆z

( ηn,i,j0,k+1c2

4π

Bn,i,j0+1,k+1
z −Bn,i,j0−1,k+1

z

2∆y

−η
n,i,j0,k−1c2

4π

Bn,i,j0+1,k−1
z −Bn,i,j0−1,k−1

z

2∆y

)
+

1

2∆x

( ηn,i+1,j0,kc2

4π

Bn,i+1,j0+1,k
x −Bn,i+1,j0−1,k

x

2∆y

−η
n,i−1,j0,kc2

4π

Bn,i−1,j0+1,k
x −Bn,i−1,j0−1,k

x

2∆y

)]
(7.71)

the discretized By-field generated between tn and tn + ∆tn due to 3D effects, all expressed fully

explicitely with second order schemes. The diffusion of the y-component of the B-field By in the plane

(x, z) is computed semi-implicitely according to the numerical scheme :

Bn+1,i,j0,k
y −Bn,i,j0,k

y

∆tn
− ηn,i+1/2,j0,kc2

4π∆x

Bn+1,i+1,j0,k
y −Bn+1,i,j0,k

y

∆x

+
ηn,i−1/2,j0,kc2

4π∆x

Bn+1,i,j0,k
y −Bn+1,i−1,j0,k

y

∆x

− ηn,i,j0,k+1/2c2

4π∆z

Bn+1,i,j0,k+1
y −Bn+1,i,j0,k

y

∆z

+
ηn,i,j0,k−1/2c2

4π∆z

Bn+1,i,j0,k
y −Bn+1,i,j0,k−1

y

∆z

=
1

∆tn

(
Bn,i,j0,k
y,cour +Bn,i,j0,k

y,res +Bn,i,j0,k
y,cross +Bn,i,j0,k

y,3D

)
(7.72)

where it has been noted

∀iξ ∈ {i, k} corresponding to ξ ∈ {x, z}, ηiξ+1/2 =
2ηiξ+1ηiξ

ηiξ + ηiξ+1
and ηiξ−1/2 =

2ηiξηiξ−1

ηiξ + ηiξ−1
. (7.73)
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Indeed, a fully explicit scheme would lead to a CFL condition

∆tn <
4π

2ηmaxc2

1
1

∆x2 +
1

∆z2

,

that strongly constrains the time step ∆tn in case of highly resistive material and/or ”highly” resolved

spatial grids. For example, with ηmax = 10−5 Ω.m and ∆x = ∆z = 0.1µm, an explicit scheme would

lead to time step ∆tn < 0.3 fs that can be smaller than the time step imposed by the resolution of

the M1 equations. Let us define the vector

xn =



un,Nz
...

un,k
...

un,1


where ∀k ∈ [1, Nz], un,k =



Bn,Nx,j0,k
y

...

Bn,i,j0,k
y

...

Bn,1,j0,k
y


, (7.74)

the vector

sn =



vn,Nz
...

vn,k
...

vn,1


where ∀k ∈ [1, Nz], vn,k =



Bn,Nx,j0,k
y,cour +Bn,Nx,j0,k

y,res +Bn,Nx,j0,k
y,cross +Bn,Nx,j0,k

y,3D
...

Bn,i,j0,k
y,cour +Bn,i,j0,k

y,res +Bn,i,j0,k
y,cross +Bn,i,j0,k

y,3D
...

Bn,1,j0,k
y,cour +Bn,1,j0,k

y,res +Bn,1,j0,k
y,cross +Bn,1,j0,k

y,3D


(7.75)

and the matrix

An =



DNz ENz (0)

CNz−1 DNz−1 ENz−1 (0)

(0) CNz−2 DNz−2 ENz−2 (0) (0)

. . .
. . .

. . .
. . .

. . .

(0) Ck Dk Ek (0)

. . .
. . .

. . .
. . .

. . .

(0) (0) C3 D3 E3 (0)

(0) C2 D2 E2

(0) C1 D1



(7.76)
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where Dk =



dNx,k1 dNx,k4 0

dNx−1,k
2 dNx−1,k

1 dNx−1,k
4 0

0 dNx−2,k
2 dNx−2,k

1 dNx−2,k
4 0 0

. . .
. . .

. . .
. . .

. . .

0 di,k2 di,k1 di,k4 0

. . .
. . .

. . .
. . .

. . .

0 0 d3,k
2 d3,k

1 d3,k
4 0

0 d2,k
2 d2,k

1 d2,k
4

0 d1,k
2 d1,k

1



, (7.77)

Ck =



dNx,k3

. . . (0)

di,k3

(0)
. . .

d1,k
3


and Ek =



dNx,k5

. . . (0)

di,k5

(0)
. . .

d1,k
5


(7.78)

with di,k1 = 1 +

(
ηn,i+1/2,j0,k + ηn,i−1/2,j0,k

)
c2∆tn

4π∆x2 +

(
ηn,i,j0,k+1/2 + ηn,i,j0,k−1/2

)
c2∆tn

4π∆z2 ,

di,k2 = −η
n,i+1/2,j0,kc2∆tn

4π∆z2 ,

di,k3 = −η
n,i,j0,k+1/2c2∆tn

4π∆x2 ,

di,k4 = −η
n,i−1/2,j0,kc2∆tn

4π∆z2 and

di,k5 = −η
n,i,j0,k−1/2c2∆tn

4π∆x2 .

(7.79)

In this case, the NxNz coupled equations (7.72) can be written with the linear form

An.xn+1 = yn with yn = xn + sn (7.80)

where An is a symetric positively definite matrix of dimension NxNz ×NxNz. It would be computa-

tionnaly expensive to inverse numerically this linear equation (7.80) at each slice y = yj0 and at other

slices x = xi0 for (7.62) and z = zk0 for (7.64). Consequently, by noticing that (7.80) can be written

with the form
df

dx

∣∣∣∣
x=xn+1

= 0 where f(x) =
1

2
xT .An.x− xT .yn, (7.81)
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xn+1 can approached with the wanted error ε by using the following conjugated gradients algorithm :

m := 0

x
(m)
n+1 := yn

rm := yn − A.x(m)
n+1

pm := rm

While |rm| > ε|yn| do αm :=
rTm.rm

pTm.An.pm
x

(m+1)
n+1 := x

(m)
n+1 + αmpm

rm+1 := rm − αmAn.pm

βm :=
rTm+1.rm+1

rTm.rm
pm+1 := rm+1 + βmpm

m := m+ 1

end do.

Also, a Jacobi preconditionner is used so that it is A′n.xn+1 = y′n that is actually solved instead of

An.xn+1 = yn where A′n = P−1
n .A and y′n = P−1

n .yn with

Pn =



dNx,Nz1

. . .

d1,Nz
1 (0)

. . .

di,k1

. . .

(0) dNx,11

. . .

d1,1
1


in order to work with a better conditioned matrix. Usually, tens of m-iterations are needed to obtain

xn+1 with an error of ε = 10−14. The consistency error in the discretization of yn is O(∆tn + ∆x2 +

∆y2 +∆z2). An option in the Fortran file data.f90 allows for deciding to compute or not the magnetic

field diffusion. In the case where the magnetic diffusion is not computed, the magnetic field Bn+1
y is

directly given by (7.80) with the NxNz-dimensional unity matrix I instead of An i.e. xn+1 = yn. In the

3D-3V case where the fast electrons are injected parallel to the z-axis (without an angle of incidence),

the z-component of the B-field Bz is small compared to the other transverse components Bx and By.

In this particular case, the conjugated gradients algorithm does not work since the residues rm are
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very small. We may deduce the z-component of the B-field Bn
z by knowing the transverse components

(Bn
x , Bn

y ) and by imposing the Maxwell-Thomson equation (∂/∂r).B = 0. However, for simplicity,

this method has not been implemented in the code and an option in the Fortran file data.f90 allows

for deciding or not the computation of the diffusion of this z-component Bn
z of the magnetic field.

7.2.2 Deduction of the Self-Generated Electric Field from the Mag-

netic Fields

Instead of solving similar equations than (7.62), (7.63) and (7.64) for the self-generated electric field,

we can compute directly the electric field at each time step tn by knowing the self generated magnetic

field at the same time step tn according to

En,i,j,kx = −ηn,i,j,kjn,i,j,kb,x +
ηn,i,j,kc

4π

(
Bn,i,j+1,k
z −Bn,i,j−1,k

z

2∆y
− Bn,i,j,k+1

y −Bn,i,j,k−1
y

2∆z

)
− kB

enn,i,j,ke

nn,i+1,j,k
e Tn,i+1,j,k

e − Tn,i−1,j,k
e nn,i−1,j,k

e

2∆x
,

(7.82)

En,i,j,ky = −ηn,i,j,kjn,i,j,kb,y +
ηn,i,j,kc

4π

(
Bn,i,j,k+1
x −Bn,i,j,k−1

x

2∆z
− Bn,i+1,j,k

z −Bn,i−1,j,k
z

2∆x

)
− kB

enn,i,j,ke

nn,i,j+1,k
e Tn,i,j+1,k

e − Tn,i,j−1,k
e nn,i,j−1,k

e

2∆y

(7.83)

and

En,i,j,kz = −ηn,i,j,kjn,i,j,kb,z +
ηn,i,j,kc

4π

(
Bn,i+1,j,k
y −Bn,i−1,j,k

y

2∆x
− Bn,i,j+1,k

x −Bn,i,j−1,k
x

2∆y

)
− kB

enn,i,j,ke

nn,i,j,k+1
e Tn,i,j,k+1

e − Tn,i,j,k−1
e nn,i,j,k−1

e

2∆z
.

(7.84)

The second term in the right hand side of each equation (7.82), (7.83) and (7.84) represents the

discretized components of the total net current

jt = jb + je =
c

4π

∂

∂r
×B, (7.85)

multiplied by ηn,i,j,k.
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7.2.3 Boundary Conditions

We suppose that the lateral dimensions of the simulation box Lx and Ly have been chosen sufficiently

large to impose vanishing magnetic fields at the transverse boundaries :

Bn,−1,j,k = Bn,0,j,k = Bn,Nx+1,j,k = Bn,Nx+2,j,k = 0 (7.86)

and

Bn,i,−1,k = Bn,i,0,k = Bn,i,Ny+1,k = Bn,i,Ny+2,k = 0. (7.87)

Concerning the target rear side (z = Lz), we impose the same boundary condition assuming the target

is sufficiently deep (see Chapter 9 for the fast electrons refluxing) :

Bn,i,j,Nz+1 = Bn,i,j,Nz+2 = 0. (7.88)

At the laser-irradiated side of the target, we assume that the magnetic field is the same as in the first

cells z = z1 (k = 1) where it is usually maximal :

Bn,i,j,−1 = Bn,i,j,0 = Bn,i,j,1. (7.89)

Concerning the self-generated electric fields, the same boundary conditions are used i.e. :

En,−1,j,k = En,0,j,k = En,Nx+1,j,k = En,Nx+2,j,k = 0, (7.90)

En,i,−1,k = En,i,0,k = En,i,Ny+1,k = En,i,Ny+2,k = 0. (7.91)

En,i,j,Nz+1 = En,i,j,Nz+2 = 0 (7.92)

and

En,i,j,−1 = En,i,j,0 = En,i,j,1. (7.93)

Finally, the priority is given to the boundary conditions in the z-direction at the simulation box

corners.

7.3 Second order Explicit Schemes for the Heat Equa-

tions

According to the two previous sections, we know exactly the distribution function Ψn
M1 as well as

the electric field En at the time step tn in the whole simulation box. These data are needed for the
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numerical resolution of the background electron and ion Heat equations

CV,e(x, y, z, t)
∂Te
∂t
− ∂

∂x

(
κe(x, y, z, t)

∂Te
∂x

)
− ∂

∂y

(
κe(x, y, z, t)

∂Te
∂y

)
− ∂

∂z

(
κe(x, y, z, t)

∂Te
∂z

)
= We(x, y, z, t)−G(x, y, z, t) (Te − Ti)

(7.94)

and

CV,i(x, y, z, t)
∂Ti
∂t

= G(x, y, z, t) (Te − Ti) . (7.95)

The energy deposition due to the direct collisional energy losses of fast electrons and the Ohmic

heating by the return current is deduced from the MHD and M1 packages as illustrated in Figure

7.2 according to

Wn,i,j,k
e =

Nε∑
l=1

(
Sn,i,j,k,lcol vlΨ

n,i,j,k,l
0 ∆ε

)
+ ηn,i,j,k

[
(jn,i,j,ke,x )

2
+ (jn,i,j,ke,y )

2
+ (jn,i,j,ke,z )

2
]

(7.96)

where it has been noted Sn,i,j,k,lcol = Scol(xi, yj , zk, εl, tn) the discretized stopping power of fast electrons

due to collisions with background electrons (free, bound and screened free) and jne = jnt − jnb the return

current deduced from the beam current density jnb (7.61) and the total current density jnt depending

on the curl of the magnetic field Bn. According to the previous section 7.2.2, its discretized values

are

jn,i,j,kt,x =
c

4π

(
Bn,i,j+1,k
z −Bn,i,j−1,k

z

2∆y
− Bn,i,j,k+1

y −Bn,i,j,k−1
y

2∆z

)
, (7.97)

jn,i,j,kt,y =
c

4π

(
Bn,i,j,k+1
x −Bn,i,j,k+1

x

2∆z
− Bn,i+1,j,k

z −Bn,i−1,j,k
z

2∆x

)
(7.98)

and

jn,i,j,kt,z =
c

4π

(
Bn,i+1,j,k
y −Bn,i−1,j,k

y

2∆x
− Bn,i,j+1,k

x −Bn,i,j−1,k
x

2∆y

)
. (7.99)

Also, the discretized values of the electron-ion/lattice coupling factorGn,i,j,k and the thermal capacities

Cn,i,j,kV,e and Cn,i,j,kV,i are calculated from the known temperatures Tne and Tni at the time step tn. In

what follows, we explain how the electron temperature Tn+1
e and the ion temperature Tn+1

i at tn+1

are computed.

Let us begin with the equation for the ion temperature. It is computed according to

Tn+1,i,j,k
i = Tn,i,j,ki + ∆tn

Gn,i,j,k

Cn,i,j,kV,i

(
Tn,i,j,ke − Tn,i,j,ki

)
. (7.100)

This numerical scheme is stable with the respect of the approximated CFL condition

∆tn <

(
CV,i
G

)
max

(7.101)
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and present a consistency error O(∆tn). The worst case is the Spitzer regime for Tantalum where

CV,i ≈ 107 erg.cm−3.s−1.K−1 and G ≈ 1020 erg.cm−3.s−1.K−1 that gives ∆tn . 100 fs, which is much

less restrivtive than the CFL criterion for solving the M1 equations (7.50) or (7.52). The heat equation

for the background electron temperature is computed according to the 2nd order explicit scheme

Tn+1,i,j,k
e = Tn,i,ke + ∆tn

Wn,i,j,k
e

Cn,i,j,kV,e

−∆tn
Gn,i,j,k

Cn,i,j,kV,e

(
Tn,i,j,ke − Tn,i,j,ki

)
+

∆tn

Cn,i,j,kV,e ∆x

(
κn,i+1/2,j,k
e

Tn,i+1,j,k
e − Tn,i,j,ke

∆x
− κn,i−1/2,j,k

e

Tn,i,j,ke − Tn,i−1,j,k
e

∆x

)

+
∆tn

Cn,i,j,kV,e ∆y

(
κn,i,j+1/2,k
e

Tn,i,j+1,k
e − Tn,i,j,ke

∆y
− κn,i,j−1/2,k

e

Tn,i,j,ke − Tn,i,j−1,k
e

∆y

)

+
∆tn

Cn,i,j,kV,e ∆z

(
κn,i,j,k+1/2
e

Tn,i,j,k+1
e − Tn,i,j,ke

∆z
− κn,i,j,k−1/2

e

Tn,i,j,ke − Tn,i,j,k−1
e

∆z

)
(7.102)

where it has been noted

∀iξ ∈ {i, j, k} corresponding to{x, y, z}, κiξ+1/2
e =

2κ
iξ+1
e κ

iξ
e

κ
iξ
e + κ

iξ+1
e

and κ
iξ−1/2
e =

2κ
iξ
e κ

iξ−1
e

κ
iξ
e + κ

iξ−1
e

. (7.103)

This scheme is stable with the respect of the approximated CFL condition

∆tn <
1

2

(
κe
CV,e

)
max

(
1

∆x2 +
1

∆y2 +
1

∆z2

)
+

(
G

CV,e

)
max

(7.104)

and presents a consistency error O(∆t + ∆x2 + ∆y2 + ∆z2). In practice, as for the ion temperature

equation, this CFL condition is much less restrictive than the CFL for the M1 equations (7.50) or

(7.52). In the worst case, in the hot Spitzer regime for Tantalum with a coupling factor G ≈ 1020

erg.cm−3.s−1.K−1, a thermal capacity CV,e ≈ 109 erg.cm−3.s−1.K−1 and a thermal conduction κe ≈
1013 erg.cm−1.s−1.K−1, we obtain that ∆tn must be less than several fs, which is larger than a fraction

of fs imposed by the CFL condition for the M1 equations. Concerning the boundary conditions, we

impose the same temperatures at the target boundaries with a priority for the z-axis at the simulation

box corners :

Tn,−1,j,k
α = Tn,0,j,kα = Tn,1,j,kα and Tn,Nx+1,j,k

α = Tn,Nx+2,j,k
α = Tn,Nx,j,kα , (7.105)

Tn,i,−1,k
α = Tn,i,0,kα = Tn,i,1,kα and T

n,i,Ny+1,k
α = T

n,i,Ny+2,k
α = T

n,i,Ny ,k
α (7.106)

and

Tn,i,j,−1
α = Tn,i,j,0α = Tn,i,j,1α and Tn,i,j,Nz+1

α = Tn,i,j,Nz+2
α = Tn,i,j,Nzα (7.107)

for both electrons temperature (α = e) and ions temperature (α = i). Sometimes, for short laser pulses

with a duration less than 100 fs, the fast electron transport simulation takes only several hundreds
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of fs, and one can neglect the electron thermal conductivity. Therefore, an option in the Fortran

file data.f90 allows for deciding to compute or not the thermal electron diffusion. In the case where

the thermal electron diffusion is not computed, the background electron temperature Tn+1
e is directly

given by (7.102) with κe = 0 in each cell. Also, sometimes, we only know the transport coefficients

η and κ depending on Te = Ti = T and not Ti 6= Te. In this case, Tn+1 is directly given by (7.102)

with G = 0 while the background ion heat equation is not computed. An option in the Fortran file

data.f90 also allows for deciding to compute or not the temperatures Te and Ti or only T = Te = Ti.

7.4 Summary

We have implemented with Fortran 90 the reduced model for fast electron transport in solids or dense

plasmas presented in Chapter 6. The numerical resolution of the M1 equations is performed according

to the 2nd order explicit HLL scheme for the advection of the fast electrons in space and in the kinetic

energy space due to the collective effects. It allows to respect the physical constraints Ψ0 ≥ 0 and

|Ψ1| ≤ Ψ0 that define the realizability domain. The angular deviations of the fast electrons due to the

self-generated electromagnetic field are also computed explicitely. Concerning the collisional effects,

they can be computed explicitely or implicitely depending on the density of the target material. In

the implicit case, the advection in the kinetic energy space due to the collisional slowing down is

computed according to the implicit downwind scheme. The implicit centered scheme does not allow

for respecting the realizability domain. Therefore, in order to make comparisons between implicit and

fully explicit computations, we also use the explicit downwind scheme.

The self-generated electromagnetic fields as well as the background temperature(s) are computed

self-consistently according to second order explicit schemes except for the magnetic field diffusion,

which is computed implicitly according to the conjugated gradients algorithm. The numerical model

is constrained by the CFL condition of the resolution of the M1 equations. The package diagnostics

(see Figure 7.2) allows to write the computational results at each time step (ΨM1, (E, B), Te, Ti,

...) in 86 text files ”.dat” with one text file per quantity. For example, the contribution of each source

term to the By-field is written in a separate file. That is the contribution of the the curl of the beam

current density :

∂By,cour

∂t
− ∂

∂z

(
ηc2

4π

∂By,cour

∂z

)
− ∂

∂x

(
ηc2

4π

∂By,cour

∂x

)
= ηc

(
∂jb,x
∂z
−
∂jb,z
∂x

)
the contribution due to the resistivity gradients :

∂By,res

∂t
− ∂

∂z

(
ηc2

4π

∂By,res

∂z

)
− ∂

∂x

(
ηc2

4π

∂By,res

∂x

)
= jb,xc

∂η

∂z
− jb,zc

∂η

∂x
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the contribution due to the temperature-density crossed gradients

∂By,cross

∂t
− ∂

∂z

(
ηc2

4π

∂By,cross

∂z

)
− ∂

∂x

(
ηc2

4π

∂By,cross

∂x

)
=
kBc

nee

(
∂ne
∂x

∂Te
∂z
− ∂ne

∂z

∂Te
∂x

)
and the contribution due to 3D effects

∂By,3D

∂t
− ∂

∂z

(
ηc2

4π

∂By,3D

∂z

)
− ∂

∂x

(
ηc2

4π

∂By,3D

∂x

)
= − ∂

∂z

(
ηc2

4π

∂Bz
∂y

)
− ∂

∂x

(
ηc2

4π

∂Bx
∂y

)
are computed and written separately. It is also performed for the other components Bx and Bz, etc...

In the case where the CFL condition strongly constrains the time step, it is possible to chose the

intervals ∆tdiag between the two consecutive time steps at which the simulation results are saved in

the text files in order to limit the memory needed to stock the information.

The consistency error of the full numerical model is estimated by measuring the percentage error

in the discretized energy conservation equation (6.29) integrated in space and time at t = tNt :

Uinj = Ubrem + UE + UB + Ucol + Ures + Ub + Uout (7.108)

where

Uinj =

Nt∑
n=1

Nx∑
i=1

Ny∑
j=1

Nε∑
l=1

Ψn,i,j,1,l
1,z εlvl∆tn∆x∆y∆ε (7.109)

is the total fast electrons’ kinetic energy injected in the simulation box from t = 0 to t = tNt (it also

accounts for eventual escaping electrons at the irradiated side of the target z = 0),

Uout =

Nt∑
n=1

Nx∑
i=1

Ny∑
j=1

Nε∑
l=1

Ψn,i,j,Nz ,l
1,z εlvl ∆tn∆x∆y∆ε

−
Nt∑
n=1

Nx∑
i=1

Nz∑
k=1

Nε∑
l=1

Ψn,i,1,k,l
1,y εlvl ∆tn∆x∆z∆ε

+

Nt∑
n=1

Nx∑
i=1

Nz∑
k=1

Nε∑
l=1

Ψ
n,i,Ny ,k,l
1,y εlvl ∆tn∆x∆z∆ε

−
Nt∑
n=1

Ny∑
j=1

Nz∑
k=1

Nε∑
l=1

Ψn,1,j,k,l
1,x εlvl ∆tn∆y∆z∆ε

+

Nt∑
n=1

Ny∑
j=1

Nz∑
k=1

Nε∑
l=1

Ψn,Nx,j,k,l
1,x εlvl ∆tn∆y∆z∆ε

(7.110)

is the total fast electrons’ kinetic energy escaped from the simulation box from t = 0 to t = tNt at

z = Lz (first line), x = −Ly/2 (second line), y = Ly/2 (third line), x = −Lx/2 (fourth line) and

x = Lx/2 (fifth line),

Ub =

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

Nε∑
l=1

ΨNt,i,j,k,l
0 εl∆x∆y∆z∆ε (7.111)
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is the instantaneous beam kinetic energy at t = tNt ,

UE =

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

(ENt,i,j,kx )
2

+ (ENt,i,j,ky )
2

+ (ENt,i,j,kz )
2

2
∆x∆y∆z (7.112)

is the instantaneous electric energy in the simulation box at t = tNt ,

UB =

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

(BNt,i,j,k
x )

2
+ (BNt,i,j,k

y )
2

+ (BNt,i,j,k
z )

2

2
∆x∆y∆z (7.113)

is the instantaneous magnetic energy in the simulation box at t =Nt ,

Ucol =

Nt∑
n=1

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

Wn,i,j,k
e,col ∆tn∆x∆y∆z

=

Nt∑
n=1

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

Nε∑
l=1

Ψn,i,j,k,l
0 Sn,i,j,k,lcol vl ∆tn∆x∆y∆z∆ε

(7.114)

is the total kinetic energy lost (gain) by the fast electrons (background electrons) by colliding the

background electrons (by being collided by fast electrons),

Ubrem = −
Nt∑
n=1

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

Nε∑
l=1

Ψn,i,j,k,l
0

(
dε

ds

)n,i,j,k,l
brem

vl∆tn∆x∆y∆z∆ε (7.115)

is the total kinetic energy lost (gained) by the fast electrons (bremsstrahlung photons) by radiating

bremsstrahlung photons (emitted by the fast electrons) and finally

Ures =

Nt∑
n=1

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

Wn,i,j,k
e,res ∆tn∆x∆y∆z

=

Nt∑
n=1

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

Nε∑
l=1

(
eEn,i,j,kx Ψn,i,j,k,l

1,x

+eEn,i,j,ky Ψn,i,j,k,l
1,y

+eEn,i,j,kz Ψn,i,j,k,l
1,z

)
vl ∆tn∆x∆y∆z∆ε

(7.116)

is the total kinetic energy lost by the fast electrons due to the electric field induced by the magnetic

neutralization of the beam. As already mentioned, except for intermediate Z materials like Tantalum,

we include the bremsstrahlung losses directly in We,col and Ucol even if it is a rough approximation

since the bremsstrahlung photons do not deposit their energy locally but propagate in the material

depending on its opacity. Also, since jt = (c/4π)(∂/∂r)×B ≈ 0 and −(kB/nee)(∂/∂r)(neTe) is small

compared to ηjb, we can consider that the total kinetic energy lost by the fast electrons Ures, due to

their slowing down by the electric field induced by the magnetic neutralization of the beam, is also
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the total kinetic energy gained by the background electrons due to their acceleration by this electric

field.
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Chapter 8

Validation of the Model

”There are two possible outcomes: if the result confirms the hypothesis, then you’ve made a

measurement. If the result is contrary to the hypothesis, then you’ve made a discovery.”

Enrico Fermi
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8.1. 2D-3V ACADEMIC CASE

This chapter is dedicated to the validation of the model. In a first time, a 2D-3V academic

case of a monoenergetic and collimated fast electron beam propagating in a warm and dense hydro-

gen plasma is presented. It allows us to demonstrate the major features of the M1 approximation

and to derive analytical expressions for the various quantities computed by the code. Therefore, it

serves to check the simulation results and to validate the numerical methods described in Chapter

7. Secondly, a more realistic simulation of a laser-generated fast electron beam transport in a thin

Aluminum target is presented. The laser-generated fast electron beam distribution function is ob-

tained from a 2D-2V Particle-In-Cell (PIC) simulation of the laser plasma simulation, conducted by

[Gremillet, 2012] with the PIC code CALDER [Lefebvre et al., 2003]. The resulting 2D-3V M1 simu-

lation of the laser-generated fast electron transport is compared with a 3D-3V fast electron transport

simulation conducted by [Gremillet, 2012] with the hybrid PIC code PaRIS [Gremillet et al., 2002]

[Martinolli et al., 2006]. It shows that the M1 approximation is sufficiently accurate to reproduce the

hybrid PIC simulation results.

8.1 2D-3V Academic Case

8.1.1 Introduction

As a first illustration of the M1 model, we consider the simple case of a quasi-monoenergetic and

monodirectional (Ωε(z = 0) = ez) relativistic electron beam injected at z = 0 in a 2D box (100µm×
100µm) of a Hydrogen plasma with a density ρ = 50 g.cm−3 and an initial temperature T0 = 1 eV. A

Gaussian distribution centered at ε0 = (γ0−1)mec
2 = 1 MeV with a 50 keV standard deviation is used

for the beam energy spectrum. A Gaussian temporal shape centered at t0 = 1750 fs with a standard

deviation of σt = 500 fs and a Gaussian spatial shape with a standard deviation of σx = 10µm have

also been used. The electron beam has a total energy of U = 10 J. As already mentioned in Chapter

6, we neglect the electron-ion energy exchange, assume Z∗ = 1, Ti = Te = T and CV = (3/2)kBni

in the heat equation. Even if the background electron thermal conduction can be neglected in this

simulation due to the small considered time scale (≈ ps), it is computed according to the Hubbard-

Spitzer model (for the electrical resistivity η and the thermal electron conduction κe; see Chapter 3,

section 3.3.1) in order to check the numerical method for solving the thermal diffusion. The spatial

resolution has been chosen ∆x = ∆z = 1µm while the energy resolution has been chosen ∆ε = 5

keV with εmin = 20 keV and the maximum electron energy Lε = 1.2 MeV, so that the computation

time needed is about 5 hours on 20 CPU with the full explicit numerical scheme. In this academic

case, due to the high Hydrogen density, which implies strongly collisional beam transport, and a low

plasma electrical resistivity because of plasma electrons degeneracy, for the value of the initial beam
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Figure 8.1: Instantaneous beam energy Ub × 10 (solid black), integrated beam energy balanced be-
tween injected and escaping electrons at z = 0 Uinc (solid red), escaped energy Uout from
the simulation box (dashed red), total collisional energy loss Ucol (solid magenta), total
“collective” Ures energy loss (solid blue), instantaneous electric energy UE × 108 (solid
green) and instantaneous magnetic energy UB×106 (solid cyan) from the M1 simulation
according to the formula given in Chapter 7, section 7.4.1.

current density

jb(x, z, t) = jb0 exp

{
− x2

2σ2
x

− [z − v0(t− t0)]2

2(v0σt)
2

}
(8.1)

with jb0 = Ue/(2π)3/2ε0σ
2
xσt = −1.27 1012 A.cm−2 and v0 = c(1 − 1/γ0

2)1/2, the collisional effects

are predominant compared to the collective ones. In Figure 8.1, various contributions to the total

energy integrated in space and time, as defined in Chapter 7, section 7.4, are plotted versus time.

It shows that the numerical simulation have been sufficiently converged with an error in the energy

conservation of ≈ 0.3%.

8.1.2 Plasma Heating and Self-generated Electromagnetic Fields

By assuming a Dirac distribution in energy centered at ε0 for Ψ0 and by neglecting the Ohmic heating

by the return current as well as the electron thermal conduction, we can evaluate from the heat

equation (6.25) the plasma temperature distribution due to collisional losses of the beam close to

z = 0 (to ensure the rigid beam approximation):

T (x, z, t) ≈ T0 + T1 exp

(
− x2

2σ2
x

)
F (z, t) (8.2)
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Figure 8.2: Hydrogen temperature T [eV] at t = 3.5 ps from the simulation (a) and a comparison
of the temperature T profiles at z = 0.5µm from the simulation (solid black) and the
estimate (8.2) (dashed red) at t = 3.5 ps (b).

where F (z, t) = 1−erf[(t0 + z/v0 − t)/σt
√

2], erf is the error function and T1 = S(ε0)U/4π2CV ε0σ
2
x ≈

17.6 eV. A comparison of the simulation profile at z = 0.5µm and t = 3.5 ps with the estimate

(8.2) shows a good agreement, as illustrated in Figure 8.2 b). That confirms that neglecting the

temperature diffusion as well as the indirect electron beam energy deposition via Ohmic heating

We,res is a good approximation. Indeed, the diffusion time of the temperature is about CV σ
2
x/κe ≈

100− 1000 ns, which is large compared to the few ps time interval considered here. Along the z-axis,

the temperature rises from z = 0 to z ≈ 30µm reaching a maximum value of T = 21 eV and then it

decreases to the initial value T0 due to the beam’s energy losses discussed in the next section.

By neglecting the resistive diffusion of the magnetic field (ηc2(t − z/v0 − t0)/2πσx
2 � 1 at the

considered times of a few ps) and by approximating the temperature dependence of the resistivity in

the self-generated magnetic diffusion equation (6.24) as η ≈ η0(T/T0)α where η0 = 9.10−9 Ω.m and

α = 0.25 according to the Hubbard theory in this regime (see Chapter 3, section 3.3.1, Figure

3.8), the estimate (8.2) of the temperature allows us to evaluate the self-generated magnetic field close

to z = 0:

By = By,j +By,η (8.3)

where

By,j ≈ B0
T0

T1

(x/σx)

α+ 1

[(
T

T0

)α+1

− 1

]
(8.4)
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Figure 8.3: Magnetic field By [T] at 3.5 ps from the simulation (a) and comparison between the
magnetic field By = Bj,y +Bη,y profile at z = 0.5µm and t = 3.5 ps (solid black) where
By,j is the contribution due to the beam current density gradients (solid red) and Bj,η
the contribution due to the resistivity gradient (solid blue) from the simulation and their
respective estimates (8.3) (dashed black), (8.4) (dashed red) and (8.5) (dashed blue) (b).

is the contribution due to the beam current density and

By,η ≈ B0
T1

T0

α(x/σx) exp

(
−x

2

σ2
x

)
[
1 +

T1

T0
exp

(
− x2

2σ2
x

)]1−αF (z, t) (8.5)

is the contribution due to the resitivity gradients. Here, B0 = jb0(ηc/σx)σt
√
π/2 ≈ −7.95 T and

F (z, t) of (8.2) has been approximated by the Heaviside function H(t− z/v0− t0) to get these results.

These analytic estimates are plotted and compared with the simulation results in Figure 8.3 b). It

confirms that the resistivity gradient makes a significant contribution to the self-generated magnetic

field even for Hydrogen temperatures below 20 eV. The temperature-density crossed gradients do not

contribute to the magnetic field generation because the plasma electron density is constant.

By neglecting the plasma pressure gradients and the self-generated magnetic field in (6.23), we

can also evaluate the self-generated electric field

Ez ≈ −ηjb0 exp

{
− x2

2σ2
x

− [z − v0(t− t0)]2

2(v0σt)
2

}
. (8.6)

The maximum value of the slowing down electric force −eE.Ωε is eηjb0 ≈ 0.1 keV.µm−1. It is very

small compared to S (see Chapter 4, section 4.2.1, Figure 4.1). This confirms again that the

resistive heating We,res in the heat equation is negligible. According to the estimates (8.4) and (8.5),

the maximum of the beam cyclotron frequency ωc = eBy/γmec is about eB0/mec ≈ 1 ps−1 at x = σx,
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z = 0 and t = 3.5 ps. Consequently, the inequality ωc � ν is verified in this particular case (see

Chapter 6, section 6.1.2, Figure 6.2). Thus, the effects of the self-generated electromagnetic

fields are negligible and the evolution of the electron beam is essentially collisional.

8.1.3 Kinetic evolution of the electron beam

Figure 8.4: Electron beam density nb [cm−3] at t = 1750 fs from the simulation. The electron
trajectory (oscillating red curve) is arbitrary and is presented here to illustrate the
definitions of the mean cosine of the angle between the z-axis and the position of the
beam electron 〈cos θ〉 and the path length following the electron trajectory in the (r, ε)
space s.

We can evaluate the mean position on the z-axis of a beam electron with an initial energy ε0 and

an initial velocity v0 = v0 ez at z = 0 by

〈z〉(ε) =

∫ s

0
〈cos θ〉(s) ds =

∫ ε

ε0

〈cos θ〉(ε)
(
dε

ds

)−1

dε. (8.7)

Notations are illustrated in Figure 8.4 : 〈cos θ〉 is the mean cosine of the angle between the z-axis

and the position of the beam electron and s is the path length following the electron trajectory in the

(r, ε) space. In this academic case, the total stopping power can be writen

dε

ds
= −S = −4π

ner
2
emec

2

β2
ln Λe (8.8)

where ln Λe is the sum of the Coulomb logarithms ln Λrel
eα of beam electrons scattering on the bound,
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free and screened plasma electrons (6.16), re is the classical electron radius and the stopping power on

plasma ions has been neglected since me/mi � 1. For the case of a plasma with degenerate electrons

(T = 1 − 20 eV � TF = 351 eV for ρ = 50 g.cm−3), the drag number ln Λe can be evaluated in the

limit β → 1 as

ln Λe = ln
mec

2

~ωpe
+

9

16
− ln 2

2
+ f(γ) (8.9)

where f(γ) = ln (β
√
γ − 1) − [(1/8) + ln 2] /γ + [(1/16) + (1/2) ln 2] /γ2 (see Chapter 4, section

4.2.2).

The mean cosine 〈cos θ〉 can be evaluated in the M1 model (6.34), (6.35) and (6.61) by noticing that

〈cos θ〉 = Ωε.ez. Then, neglecting the self-generated electromagnetic field E and B, we finds

d

ds
〈cos θ〉 = −k1〈cos θ〉 − 1

Ψ0

∂

∂r
. (Πε.ez) (8.10)

where Πε =
1− µ

3
Ψ0I + Ψ0

(
µ− |Ωε|2

) Ψ1 ⊗Ψ1

|Ψ1|2
and

d

ds
=

1

v

[
∂

∂t
+ vΩε.

∂

∂r
− Sv ∂

∂ε

]
.

It has also been noted

k1 =
ν

v
= 4π

ner
2
e

γ2β4

(
ln Λe + ln Λrel

ei

)
(8.11)

the inverse of the beam electrons mean free path where ln Λrel
ei = ln

[
2(3/4πni)

1/3/(~/mec)
]
− 1 +

ln (
√
γ2 − 1) + 1/γ2 is the Coulomb logarithm from the stopping power of the beam electrons on ions.

Assuming that |Ωε| ≈ 1 which implies Πε ≈ 0, we may neglect the second term in the right hand

side of (8.10) and obtain, in agreement with the multiple scattering theory of Lewis (see Chapter 4,

section 4.3.1), that

〈cos θ〉(ε) ≈ exp

(
−
∫ s

0
k1(s)ds

)
= exp

(
−
∫ ε

ε0

k1(ε)

(
dε

ds

)−1

dε

)
. (8.12)

As it was suggested in [Solodov and Betti, 2008] and [Robiche et al., 2010], the ratio ln Λrel
ei / ln Λe

can be considered as a constant (the ratio ln Λrel
ei / ln Λrel

e attains its minimum when γ = 1 with the

value 0.50 and it is maximum when γ ≈ 3 with the value 0.64) and we obtain

〈cos θ〉 ≈
[

(γ − 1)/(γ + 1)

(γ0 − 1)/(γ0 + 1)

] ln Λe + ln Λrel
ei

2 ln Λe . (8.13)

Following the arguments by [Atzeni et al., 2009b] (see Chapter 4, section 4.2.2), we neglect the γ-

dependance of f(γ) in (dε/ds)−1 of (8.9) and we note ln Λ∗e = ln (mec
2/~ωpe)+(9/16)−(ln 2/2) ≈ 7.98

for ρ = 50 g.cm−3. Moreover, by considering
(
ln Λe + ln Λrel

ei

)
/2 ln Λe ≈ 1 in 〈cos θ〉 of (8.7), the mean

electron propagation distance can be estimated as

〈z〉 ≈ 1

4πner2
e ln Λ∗e

γ0 + 1

γ0 − 1

[
γ2

0 − 1

γ0
− γ2 − 1

γ
− 2 ln

(
γ0

γ

)]
. (8.14)
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Figure 8.5: Comparison between the simulation results at t = t0: arccos
(
Ωmax
ε,z

)
versus z

where Ωmax
ε,z = Ωε,z (x = 0, z, εm, t0) = maxε {Ωε,z (x = 0, z, ε, t0)} (black curve),

arccos
(
Ωmean
ε,z

)
versus z where Ωmean

ε,z = 〈Ωε,z (x = 0, z, ε, t0)〉 over |εm − ε| < 200 keV
(blue curve) and the analytical estimates arccos 〈cos θ〉(ε) (from (8.13)) versus 〈z〉(ε)
(from (8.14)) (red curve).

Actually,
(
ln Λe + ln Λrel

ei

)
/2 ln Λe is minimum when γ = 1 with the value 0.75 and it is maximum

when γ ≈ 3 with the value 0.82. Then, the penetration depth of the beam electrons with an initial

kinetic energy ε0 and an initial velocity v0 = v0ez at z = 0 can be written as

Lp = 〈z〉(ε→ 0) = ξR (8.15)

where

R =

∫ 0

ε0

(
dε

ds

)−1

dε =
1

4πner2
e ln Λ∗e

(ε0/mec
2)

2

1 + ε0/mec2
(8.16)

is the range of the beam electrons with an initial kinetic energy ε0 (see Chapter 4, section 4.2.2)

and

ξ =

(
γ0 + 1

γ0 − 1

)2 1

β2
0

(
β2

0 − 2
ln γ0

γ0

)
(8.17)

is the correction due to angular scattering. It is equal to 2/3 when γ0 → 1 and it increases to 1

when γ0 → ∞. These values are in agreement with the approximation of the penetration depth (30)

in [Atzeni et al., 2009b], which assumes a factor ξ ≈ 0.8 to recover the Monte Carlo simulation. For

ρ = 50 g.cm−3 and ε0 = 1 MeV, we find R ≈ 54µm and ξ ≈ 0.7, which corresponds to Lp ≈ 38µm.

This is in agreement with our simulation results shown in Figure 8.2 a) and Figure 8.4. The

estimates (8.13) and (8.14) predict the mean position 〈z〉 and the mean diffusion angle arccos 〈cos θ〉
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of ≈ 10µm and ≈ 20o respectively for pz/mec = 2.5, ≈ 20µm and ≈ 30o for pz/mec = 2 and ≈ 30µm

and ≈ 45o for pz/mec = 1.7. This is in agreement with the numerical results obtained for the electron

beam distribution function in the M1 approximation (6.60) as illustrated in Figure 8.6, panels b), c)

and d), respectively. Close to z = Lp, the analytic estimates 〈z〉 and 〈cos θ〉 differ from the numerical

results as shown in Figure 8.5. This is due to the singularity at the penetration depth Lp in this

particular case of monoenergetic electron beam in (8.13) and (8.14) and to the fact that the last term

in the right hand side of (8.10) cannot be neglected anymore when the local angular distribution is

close to be isotropic.
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Figure 8.6: Electron beam distribution function fb [cm−3.mec
−3] from the simulation on the z-axis

at t = 1750 fs, py = 0 and at different depth z = 1µm (a), z = 10µm (b), z = 20µm
(c) and z = 30µm (d). The dashed red curves represent the analytical estimates of
arccos 〈cos θ〉(ε) evaluated at the kinetic energies ε corresponding to 〈z〉(ε) = 10µm (b),
20µm (c) and 30µm (d).
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8.1.4 Summary

We have derived an analytical estimate of the temperature of a Hydrogen plasma heated through the

direct collisional losses of a monoenergetic and collimated fast electron beam. It is in good agreement

with the numerical result close to the fast electron injection zone. That fact validates the numerical

scheme used to solve the Heat Equations presented in Chapter 7, section 7.3. Moreover, the

analytical estimates of the self-generated magnetic fields generated due to the curl of the beam current

density and the resistivity gradients, assuming that the Hubbard electrical resistivity follows roughly

η = η0(T/T0)α with η0 = 9.10−9 Ω.m and α = 0.25 in the considered range of temperatures. These

estimates are in agreement with the magnetic fields calculated numerically close to the fast electron

injection zone. The agreement betwen analytical estimates and numerical solutions concerning the

self-generated electromagnetic fields validates the numerical schemes presented in Chapter 7, section

7.2. In addition, by neglecting the collective effects in this academic case, we obtained estimates of the

mean propagation angle 〈cos θ〉 and the fast electron penetration depth Lp due to collisional effects.

An analytical expression of the correction factor

ξ =

(
γ0 + 1

γ0 − 1

)2 1

β2
0

(
β2

0 − 2
ln γ0

γ0

)
due to the fast electrons angular scattering have been derived in the expression of the penetration depth

Lp in agreement with the empirical value given by [Atzeni et al., 2009b]. The estimates for 〈cos θ〉 and

Lp are also in good agreement with the M1 simulation results, thus validating the numerical schemes

used to solve the M1 equations presented in Chapter 7, section 7.1.
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8.2 2D-3V Realistic Simulation of Laser-generated Rel-

ativistic Electron Beam Transport

8.2.1 Introduction

Figure 8.7: (Left panel) Scheme of the thin solid target irradiated by the ultra-high intense laser
pulse. (Right panel) 2D spatial map of the mean kinetic energy of the laser-generated
fast electrons normalized by ncmec

2, at t = 168ω−1
0 where ω0 is the laser frequency,

according to the Particle-In-Cell (PIC) simulation of the laser plasma simulation con-
ducted by [Gremillet, 2012]. The z-axis in all the following section (like in the Left
Panel) corresponds to the x-axis of the PIC simulation picture (Right panel) and the
x-axis correspond to the y-axis, respectively

In this section, the M1 model is compared to a hybrid PIC simulation of a relativistic electron beam

propagation in a thin solid target, motivated by an experimental campaign [SANTOS et al., 2013].

The target is composed of three successive layers of 1 µm of Aluminum, 3 µm of Copper and 1 µm

of Aluminum as illustrated in the left panel of Figure 8.7. A linearly polarized laser pulse with a

wavelength λ = 800 nm, a total energy EL = 0.7 J and a 26 fs Full Width at Half Maximum (FWHM)

time duration is focused with a peak intensity of IL = 3.1019 W.cm−2 at a 45◦ incident angle. Plasma

mirrors have been used in this experiment to avoid prepulse/preplasma so that the main electron accel-

eration mechanism during the laser-target interaction is the j×B heating (see Chapter 1, section

1.2) and the accelerated electrons propagate mainly in the laser pulse propagation direction. The

laser-generated fast electron beam’s initial properties are obtained from a 2D-2V fully PIC simulation

of the laser-plasma interaction [Gremillet, 2012] using the code CALDER [Lefebvre et al., 2003] as

illustrated in the right panel of Figure 8.7. The energy distribution of the laser-generated electron
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Figure 8.8: Propagation direction angle ϕ0(ε, t) (full curves) from PIC simulation and anisotropic
parameter |Ωε(ε, t)| (dashed curves) deduced from ∆ϕ(ε, t) for the different considered
energy ranges 20-50 keV (black), 50-100 keV (blue), 100-500 keV (cyan), 500-1000 keV
(magenta) and 1000-5000 keV (red).

beam Fε (ε, t), its angular Fϕ (ε, ϕ, t) and spatial Fx (x, t) distribution as well as the instantaneous

conversion efficiency ηL→e(t) from the laser to the beam have been interpolated by [Gremillet, 2012].

Here, we present how they are adapted to initializing the angular moments Ψ0 and Ψ1 at z = 0.

Firstly, the cut-off εmin = 20 keV is used to distinguish between the beam electrons and the bulk

electrons. Secondly, the initial beam distribution is parameterized according to the PIC simulation:

Fε(ε, t) =


0 if ε > εmax

exp

[
c1

(γ(ε) + c2)c3
− c4γ(ε)− c5

]
else

, (8.18)

Fϕ(ε, ϕ, t) = exp

[
−4 ln 2

(
ϕ− ϕ0

∆ϕ

)2
]

(8.19)

and

Fx(x, t) = exp

[
−4 ln 2

(
x− x0

∆x

)2
]

(8.20)

where c1(t), c2(t), c3(t), c4(t), c5(t), εmax(t), x0(t), ∆x(t), νL→e(t) have a polynomial time dependence

and ∆ϕ(ε, t) and ϕ0(ε, t) have a polynomial time dependence depending on the energy range (ε[keV] ∈
[20, 50], [50, 100], [100, 500], [500, 1000] or [1000, 5000]) as illustrated in Figure 8.8. In order to
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relate these fits with the angular moments Ψ0 and Ψ1 of the M1 model, we assume

α1 (Ωε(x, z = 0, ε, t)) =
8 ln 2

∆ϕ(ε, t)2


sinϕ0(ε, t)

0

cosϕ0(ε, t)

 , (8.21)

which is equivalent to

Ωε(x, z = 0, ε, t) =

∣∣∣∣∣coth

(
8 ln 2

∆ϕ(ε, t)2

)
− ∆ϕ(ε, t)2

8 ln 2

∣∣∣∣∣


sinϕ0(ε, t)

0

cosϕ0(ε, t)

 (8.22)

in such a way that, in agreement with the angular notations introduced in Chapter 7, Figure 7.1,∫ π

0
ΨM1(x, z = 0, ε, θ, ϕ, t) sin θdθ

=
Ψ0(x, z = 0, ε, t)

|α1(ε, t)|
4 sinh |α1(ε, t)|

{
I1

[
|α1(ε, t)| cos (ϕ− ϕ0(ε, t))

]
+ L−1

[
|α1(ε, t)| cos (ϕ− ϕ0(ε, t))

]}
≈ Ψ0(x, z = 0, ε, t)√

2π
∆ϕ(ε, t)2

8 ln 2

exp

[
−4 ln 2

(ϕ− ϕ0(ε, t))2

∆ϕ2

]
.

(8.23)

as already discussed in Chapter 6, section 6.2.3. The first angular moment has been initialized as

follows:

Ψ0(x, z = 0, ε, t) = N0(t)fx(x, t)fz(z = 0, t)fε(ε, t) (8.24)

where

N0(t) = νL→e(t)
EL

kBTb0(t)

√
2π

∆y2

8 ln 2

(8.25)

is the number of electrons per unit length in the third y-dimension (not taken into account in this

simulation) with ∆y = 8.6µm,

fx(x, t) =
Fx(x, t)√
2π

∆x(t)2

8 ln 2

(8.26)

is the normalized transverse spatial distribution function,

fz(z = 0, t) =
1

Vb(t)

√
2π

∆t2

8 ln 2

exp

[
−4 ln 2

(
t− tc

∆t

)2
]

(8.27)
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is the normalized longitudinal spatial distribution at z = 0 and

fε(ε, t) =
Fε(ε, t)∫ ∞

εmin

Fε(ε, t) dε

(8.28)

is the normalized energy spectrum of the fast electrons. Here, tc = 40 fs,

kBTb0(t) = 〈ε〉(t) =

∫ ∞
εmin

εfε(ε, t) dε (8.29)

is the initial ”beam temperature” and

Vb(t) =
〈εv〉(t)
〈ε〉(t)

.ez =

∫ ∞
εmin

εv(ε)

kBTb0(t)
|Ωε(x, z = 0, ε, t)| cos (ϕ0(ε, t))fε(ε, t) dε (8.30)

is the velocity at which the beam kinetic energy is injected in the simulation box at z = 0 in the

z-direction. Finally, the first order angular moment is initialized according to (8.21) :

Ψ1(x, z = 0, ε, t) = Ψ0(x, z = 0, ε, t)Ωε(x, z = 0, ε, t). (8.31)
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Figure 8.9: Instantaneous beam energy Ub × 10 (solid black), integrated beam energy balanced be-
tween injected and escaping electrons at z = 0 Uinc (solid red), escaped energy Uout at
z = 5µm (dashed red), total collisional energy loss Ucol (solid magenta), total “collective”
Ures energy loss (solid blue), instantaneous electric energy UE × 103 (solid green) and
instantaneous magnetic energy UB × 103 (solid cyan) from the M1 simulation according
to the formula given in Chapter 7, section 7.4.1.

For this transport simulation, the Eidmann-Chimer model for the electrical resistivity and the

thermal conductivity, introduced in Chapter 3, section 3.3.1, have been used (see Figure 3.8).

The More formula for the ionization state Z∗ has been used without the corrections introduced in

Chapter 6, section 6.3.1. Both background electron and ion heat equations have been computed

with the plasma expression for the thermal capacities and the electron-ion coupling factor. The spatial

resolution has been chosen ∆x = ∆z = 0.25µm while the energy resolution has been chosen ∆ε = 10

keV, in the range from εmin = 20 keV to 3 MeV so that the computation time needed is about 4 hours

and 40 minutes on 20 CPU. Absorbing conditions at the target boundaries have been used so that

the refluxing of the beam electrons at both the rear and irradiated sides of the target was suppressed.

As illustrated in Figure 8.9, the percentage of error in the energy conservation equation is about

0.5 %. The total injected energy at z = 0 is ≈ 70 mJ, which represents a conversion efficiency from

the laser to the electron beam of ≈ 10 %. The electromagnetic energy is negligible compared to the

beam energy by a factor ≈ 1000. The heating of the target due to the return current (≈ 10 mJ)

exceeds by roughly two times the direct collisional heating by the beam electrons. Thus, contrary to

the previous academic case, collective effects are here predominant. Indeed, while the maximum initial

beam density is close to the critical density nb,max ≈ 1021 cm−3, the maximum value of the initial

beam current density jb,max is above 1012 A.cm−2 and the Aluminum and Copper electrical resistivity

is much higher than that of Hydrogen (see Figure 3.8).
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8.2.2 Comparison with the Hybrid PIC Simulation

Figure 8.10: Distribution function fb(px, pz) from the M1 simulation at t = 77 fs and different target
depth : z = 0.125µm (Up Left), z = 1.125µm (Up Right), z = 2.125µm (Down Left)
and z = 3.125µm (Down Right). Each plot corresponds to the transverse position x
where the beam density nb is maximum at the given depth z.

Figure 8.10 shows the evolution of the fast electron distribution function fb with the target

depth. It is plotted in the plane (px, py) since the M1 distribution function is locally axisymmetric

around the mean propagation direction Ωε. At z = 0.125µm, we can distinguish between the different

initial angular distributions, depending on the energy range (ε[keV] ∈ [20, 50], [50, 100], [100, 500],

[500, 1000] or [1000, 5000]), as explained above. In the first cells of Copper located at z = 1.125µm,

the lower energy electrons are already almost fully isotropized while the more energetic ones retain

their initial anisotropy. The angular spread rises with increasing depth z while the mean energy

steadily decreases.
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Figure 8.11: Electron beam density nb [cm−3] from the M1 simulation at t = 25 fs (a), t = 50 fs (b),
t = 75 fs (c), and t = 100 fs (d),

Figure 8.12: Plasma electron temperature Te [eV] in a logarithmic scale (a), plasma electrical resis-
tivity η [Ω.m] in a logarithmic scale (b), self-generated magnetic field By [T] (c) and
time integrated density of Kα photons emitted per steradian nKα [cm−3.sr−1] (d) from
the M1 simulation at t = 500 fs.

Page 254



CHAPTER 8. VALIDATION OF THE MODEL

Figure 8.13: Slices at z = 0.375µm of the resistivity (black curve), the electron temperature (red
curve) and the ion temperature (blue curve) at t = 26.6 fs (Left panel) and t = 499.3
fs (Right panel).

According to Figures 8.9 and 8.11, almost all beam electrons reach the rear side of the target

after approximatively 100 fs. The self-generated magnetic field reaches its maximum value of approx-

imatively 200 T in the first Aluminum layer at the end of the beam propagation and then decreases

down to 100 T at 500 fs (see Figure 8.12 c)). The main contribution to the magnetic field is due to

the curl of the beam current density but the electrical resistivity gradients play also an important role:

at 27 fs, the plasma electrons have been heated up to the Fermi temperature (≈ 10 eV) in the first

Aluminum layer as illustrated in the left panel of Figure 8.13. Consequently, the electrical resistivity

in this area goes from the solid-liquid phase to the hot plasma phase and decreases with the temper-

ature. The same scenario appears in the Copper layer at 40 fs and later in the rear Aluminum layer.

The consequence is that the electrical resistivity gradients tend to hollow the beam as illustrated in

the right panel of Figure 8.13 and explained in Chapter 3, section 3.3.3. In spite of the relative

complexity of this laser-generated electron beam transport, the results of the M1 simulation are close

to those of the 3D-3V hybrid PIC simulation performed with distinct (although similar) models for

the thermodynamic parameters (Z∗, η, κe, CV,e, CV,i and G). The same behaviour is recovered for

the temperature profile of the target as shown in Figure 8.14. We can observe the signature of a

dominant Ohmic heating in the Copper layer (z = 1→ 4µm) where the temperature profile is lower.

Indeed, Copper is less resistive but denser than Aluminum; if direct collisional losses were dominant,

the Copper temperature would be higher than in Aluminum, which is not the case here.
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8.2.3 Conclusion

Figure 8.14: Comparison at t = 500 fs between the mean electron temperature < Te > over |xmax−
x| < 5µm profile obtained with M1 (blue) and the one obtained with the hybrid PIC
code Paris (green) [Gremillet, 2012]. xmax is defined as the position where Te(xmax, z)
is the maximum electron temperature at a given depth z (red).

The test simulation performed in this section shows that the M1 model reproduces well the

results obtained with a hybrid PIC simulation concerning a realistic laser-generated electron beam

transport, inspired by an experimental campaign conducted on the UHI100 laser facility. The initial

beam distribution is deduced from a 2D PIC simulation of the laser-plasma interaction. The electron

beam density and current temporal evolution as well as the self-generated electromagnetic fields are

in agreement with the hybrid PIC simulation. The final temperature in the target agrees with the

hybrid PIC results, showing the dominance of the collective effects. The time integrated emission of

Kα photons has been computed by using the empirical expression for K-shell ionization cross section

by electron impact [Hombourger, 1998] and the K-shell fluorescence yield probability provided by

[Bambynek, 1984]. It is plotted in Figure 8.12 d) at t = 500 fs. There is an important discrepancy

between the simulation result and the experimental data concerning the Kα spot size. This can be

explained by the refluxing of beam electrons from the target boundaries, which enhances their lateral

expansion and consequently increases the Kα emission spot size. Note, however, that, at this stage,

collisions between the background free electrons and the d-band electrons in Copper are not taken

into account. These two effects will be considered in Part III.

Page 256



Part III

Applications to the Study of

Laser-Generated Fast Electron Beam

Transport in the Context of ICF

257





Chapter 9

Application to the Kα emission during

Fast Electron Transport in Solid

Targets

”God made solids, but surfaces were the work of the devil.”

Wolfgang Pauli
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From an experimental point of view, many methods may be used to diagnose the properties of

electrons produced by intense laser pulses, including vacuum electron spectrometry [Wei et al., 2004]

[Yabuuchi et al., 2010], nuclear activation [Hatchett et al., 2000] [Ledingham et al., 2000], optical

emission from foams [Jung et al., 2005], optical probing [Norreys et al., 2006] [Ping et al., 2012], x-

rays bremstrahlung spectrometry [Chen et al., 2009] [Westover et al., 2011], Incoherent Transition Ra-

diation (ITR) or Coherent Transition Radiation (CTR) spectrometry and imagery [Santos et al., 2002]

[Storm et al., 2009] and Kα fluorescence measurements [Stephens et al., 2004] [Baton et al., 2008].

Each technique has advantages and disadvantages for measuring aspects of the electron beam. The

vacuum electron spectroscopy measures the properties of electrons escaping the target, which may

differ from those of the electrons in the bulk of the material [Yabuuchi et al., 2010]. The nuclear

activation is likewise sensitive to very energetic (> 10 MeV) x-rays, which are produced by high-

energy electrons outside the spectral region with the best coupling to the dense core in Fast Ignition

[Kodama R. et al., 2002]. The x-ray bremsstrahlung spectrometers, that measure the light emitted by

the fast electrons thanks to a set of compact filter-stack based x-ray detectors, are sensitive to x-rays

in the 10-700 keV range corresponding to energetic electrons (> 1 MeV) [Westover et al., 2011]. The

CTR and ITR techniques are operating in the visible domain by detecting the emission produced by

fast electrons crossing the rear target. [Santos et al., 2002] showed that by imaging this transition

radiation, the spatial distribution of electrons emerging from the target can be accurately measured.

When the emerging hot electron flux is modulated at the laser frequency and/or its harmonics, the

emitted CTR can be much brighter than the ITR that results from un-bunched electrons. The coher-

ent addition of the transition radiation from periodically bunched hot electrons also yields information

on the acceleration mechanism, as the spectrum of the CTR is intimately related to the period of the

bunches [Baton et al., 2003] [Zheng et al., 2003] [Schroeder et al., 2004] [Bellei et al., 2012].

The most commonly used diagnostic is the imaging of X-rays that are produced in the cold

target material as the electrons propagate through the target. The Kα radiation is due to the atomic

electron transitions to K-shell holes produced in a collision of a hot electron with an atom of the

target material; see Figure 9.1. When an outer shell electron fills the vacancy, the energy is released

in a form of Auger electron or an emission of a photon. The cross section for this K-shell electron

impact ionization peaks at the electron energy roughly two to three times the ionization energy and

decays slowly at higher energies. Since most materials used in experiments have K-shell transitions

in the tens of keV range, this X-ray imaging technique is, in principle, sensitive to electrons with

energies as low as tens of keV. However, with an electron energy distribution extending to much

higher energies, the signal of the lowest energy electrons will be diminished and masked. Imaging this

K-shell X-ray emission with a spherically bent diffraction crystal has become so a powerful diagnostic

of hot electron beams. However, it has been shown that a Kα image is not solely determined by the

initial population of forward directed hot electrons, but also depends upon “delayed” hot electrons,

and in fact continues to evolve long after the end of the laser interaction [Ovchinnikov et al., 2011].

Firstly, there is a population of hot electrons created in the laser-plasma interaction that acquire
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Figure 9.1: Scheme illustrating the collisional ionization of a K-shell electron of a cold atom by a
laser-generated fast electron (Left panel) and the recombination of the electron-generated
hole by a L-shell electron of the cold atom, which results in the emission of a Kα photon
(Right panel).

a velocity direction opposite that of the laser and subsequently reflux off the front surface of the

target, deflect when they encounter magnetic fields and then spread far from the laser focal spot

[Pérez et al., 2013]. These delayed fast electrons create significant features in the Kα time-integrated

images. Secondly, the electrons refluxing from the sides and the rear of the target also contribute to

the final Kα image [Ovchinnikov et al., 2011]. Indeed, shortly after the beginning of the laser-plasma

interaction, the hot electrons leave the target, making it positively charged. This gives rise to strong

electric fields that cause most of the escaping electrons return to the target. In some experiments

the refluxing is minimized by increasing the target dimensions and/or by using materials with short

stopping distances.

More recently, a novel technique of shadowgraphy coupled to phase contrast imaging has been

proposed. The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory in

Stanford (United States of America) is one of few available sources of high peak brightness photons

suitable for studies of transient behaviour of hot electrons. They can provide a sub-ps temporal

resolution and a spatial resolution of the order of several 10 µm (inaccessible for conventional sources).

The basic principle of this novel technique relies on the shift of the K-edge of the target atoms after

the hot electrons have created a K-shell vacancy. This shift is sufficiently large (about 400 eV for an

electron in the K-shell of Copper according to Atomic Physic numerical computations) to be used as

a femtosecond X-ray switch. This technique will allow to observe traces of hot electron transport,

depending on whether electrons have created K-shell hole(s) or not in the atoms, thus leading to a

transparent or opaque material for the LCLS photons. The vacancies created by a collisional ionization

of cold atoms are also those responsible for the emission of Kα photons. Tuned to a photon energy

just above the K-edge, these photons, primarily absorbed before the hot electrons propagate, will be
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transmitted after their propagation. However, this technique, directly related to the Kα emission, can

be biased because of refluxing of hot electrons at boundaries. Cross-correlation of this Kα emission

with direct observations of the hot electrons inside the sample may remove this ambiguity.

This chapter is dedicated to the implementation of the commonly used Kα photons diagnostic

in the M1 model for the fast electron transport in solids or dense plasmas, presented in Part II.

Indeed, thanks to the fast computations allowed by the M1 model, sufficiently long times (several

tens of ps) and large spatial dimensions (several hundreds of µm) can be computed with a relatively

small computational cost. We will study the recirculation of the fast electrons due to their reflection

at the target borders, the K-shell hole dynamics and 3-dimensional effects on photon emission. It

will be also possible to apply these developments to the novel technique of shadowgraphy based

on the LCLS X-ray source. In a first time, the model for the computation of the emission of Kα

photons is presented. Secondly, the model is applied to the interpretation of experiments conducted

by [SANTOS et al., 2013] on the UHI100 laser facility of the CEA (Saclay) introduced in the previous

section Chapter 8, section 2. The source of fast electrons was calculated by [Gremillet, 2012] with

a fully Particle-In-Cell (PIC) simulation. The electron transport is described with the M1 model by

taking into account the reflexing effect. The emission of Kα photons emitted by the Copper tracer

layer located at different depths is calculated and compared with the experimental results.

9.1 Computational Methods for Estimating the Emis-

sion of Kα Photons

9.1.1 Fast Electron Recirculation and M1 Model for Fast Electron

Transport

Fast Electron Recirculation in the M1 Model

The Kα images obtained in the laser plasma interaction experiments are contaminated by the elec-

trons refluxing off the target sides. Indeed, the propagation of fast electrons in vacuum is limited by

the Alfven-Lawson limit Imax ≈ −17γbβb kA and the space charge electric field. Most of the beam

electrons are thus strongly decelerated and then accelerated in the opposite direction by the space

charge electric field at the target boundary in the beam Debye sheath λD,b =
√
kBTb/4πΓbnbe2 ≈

7.43 10−3 µm
√
Tb[keV]/Γbnb[1021 cm−3], which is less than one micron. Here, kBTb is the beam elec-

trons temperature (and not their mean kinetic energy!) and Γb = Γ(pb) is the bulk Lorentz factor

where pb is the mean momentum of beam electrons. In a first attempt, electron refluxing can be

described as specular reflections off the target boundaries.

However, one issue of the M1 model is that, by working with the angular averaged values, it
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Figure 9.2: Schematic illustrating the M1 limitation in the case of two counterpropagating
anisotropic and monoenergetic electron beam having the same energy.

cannot make a distinction between an isotropic angular distribution function and two monoenergetic,

collimated and counterpropagating electron beams, as illustrated in Figure 9.2. It might be possible

to extend the model to the second order of the hierarchy M2. In this approach, the three first angular

moments are computed according to

∂Ψ0

∂t
+

∂

∂r
. (vΨ1)− ∂

∂ε
(vSΨ0 + evΨ1.E) = 0, (9.1)

∂Ψ1

∂t
+

∂

∂r
. (vΨ2)− ∂

∂ε
(vSΨ1 + evΨ2.E) = −e

p
(Ψ0I−Ψ2) .E− e

γmec
Ψ1 ×B− νΨ1 (9.2)

and

∂Ψ2

∂t
+

∂

∂r
. (vΨ3)− ∂

∂ε
(vSΨ2 + evΨ3.E)

= −e
p

(Ψ1 ⊗E + E⊗Ψ1 − 2Ψ3.E)− 2e

γmec
[Ψ2.T(B)−T(B).Ψ2]− 3ν

(
Ψ2 −

1

3
Ψ0I

) (9.3)

where it has been noted T(B) the tensor

T(Bx, By, Bz) =


0 Bz −By
−Bz 0 Bx

By −Bx 0

 such that ∀V ∈ R3, T(B).V = V ×B.

The third order angular moment Ψ3 (third order tensor → 27 terms) must be computed according to

the Minerbo maximum entropy criterion in order to close the system. However, this option is outside

the scope of this thesis.
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Two Sets of M1 Equations as a Solution for the M1 Limitation

Figure 9.3: Schematic of the method used to account for the fast electrons refluxing at the laser-
irradiated side and/or the rear side of the target by solving two sets of M1 equations for
two counterpropagating fast electron beams.

Instead, we choose another possibility that consists in solving two sets of M1 equations for each

counterpropagating electron beam in order to account for the fast electrons refluxing : one set of M1

equations (see Chapter 6, section 6.2), for the angular moments Ψ
(1)
0 and Ψ

(1)
1 , is computed for

the fast electrons population propagating in the laser pulse propagation direction and another one, for

the angular moments Ψ
(2)
0 and Ψ

(2)
1 , is computed for the refluxed electrons population that propagate

in the opposite direction. While the absorbing boundary conditions, detailed in Chapter 7, section

7.1.6, are not modified, we initialize the electron beam (2) propagating in the backward direction

upon assuming specular reflections off the target rear side of the forward-propagating beam (1). It is

expected that we do not lose much of physics since λD,b is small compared to the considered space

scales ∆z and since only a small part of fast electrons is escaping from the target (few percents).

From a numerical point of view, it reads, according to the HLL scheme for the fast electrons spatial

advection (see Chapter 7 for the notations) :

If Ψ
(1),n,i,j,Nz ,l
1,z > 0 then


Ψ

(2),n,i,j,Nz+2,l
0 = Ψ

(2),n,i,j,Nz+1,l
0 = Ψ

(1),n,i,j,Nz ,l
0

Ψ
(2),n,i,j,Nz+2,l
1,x = Ψ

(2),n,i,j,Nz+1,l
1,x = Ψ

(1),n,i,j,Nz ,l
1,x

Ψ
(2),n,i,j,Nz+2,l
1,y = Ψ

(2),n,i,j,Nz+1,l
1,y = Ψ

(1),n,i,j,Nz ,l
1,y

Ψ
(2),n,i,j,Nz+2,l
1,z = Ψ

(2),n,i,j,Nz+1,l
1,z = −Ψ

(1),n,i,j,Nz ,l
1,z

else φ(2),n,i,j,Nz+2 = φ(2),n,i,j,Nz+1 = 0

(9.4)

and
If Ψ

(2),n,i,j,2,l
1,z < 0 then φ(2),n,i,j,0,l = φ(2),n,i,j,1,l = φ(2),n,i,j,2,l

else φ(2),n,i,j,0,l = φ(2),n,i,j,1,l = 0.
(9.5)

Concerning the other boundary conditions at x = ±Lx/2, y = ±Ly/2, ε = εmin and ε = Lε, we use
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the boundary conditions explained in Chapter 7, section 7.1.6, assuming Lx and Lz are taken suffi-

ciently large (several hundreds of µm) to avoid fast electrons refluxing at the target lateral boundaries

as it is usually the case in experiments.

Also, the use of large transverse dimensions Lx and Ly allows us to neglect the electromagnetic

fields at the transverse simulation box boundaries ±Lx/2 and ±Ly/2, as explained in Chapter 7,

section 7.2.3. However, contrary to Chapter 7, section 7.2.3, we cannot impose the same boundary

condition at the target rear side z = Lz. Instead of Equations (7.88) and (7.92), we impose the same

boundary conditions as at the irradiated side of the target (7.89) and (7.93). It reads respectively :

Bn,i,j,Nz+2 = Bn,i,j,Nz+1 = Bn,i,j,Nz (9.6)

and

En,i,j,Nz+2 = En,i,j,Nz+1 = En,i,j,Nz . (9.7)

In the case of a normally incident laser pulse on a solid target, the electrons coming back to the

laser-plasma interaction zone may be strongly deviated due to the presence of local magnetic fields

or they may enter in the underdense preplasma. In all cases, we assume that these electrons are

taken into account by the Particle-In-Cell (PIC) simulation of the laser plasma interaction Φini and

we consequently let all fast electrons (1) and (2) escape from the target in the laser-irradiated side.

However, in the case of a high contrast, short pulse obliquely incident on the target, the laser-generated

fast electrons (1) propagate mainly in the laser pulse propagation direction. The refluxed fast electrons

(2), coming from the target rear side arrive at an abrupt solid-vacuum interface at the laser irradiated

side of the target away from the laser plasma interaction zone. Therefore, in this case, we also account

for the refluxing of the fast electrons (2) at the front side. Thus, after initializing the laser-generated

fast electron (1) as

If t < tsource then φ(1),n,i,j,0,l = φ(1),n,i,j,1,l = φn,i,j,1,lini

else if Ψ
(1),n,i,j,2,l
1,z < 0 and t > tsource then φ(1),n,i,j,0,l = φ(1),n,i,j,1,l = φ(1),n,i,j,2,l

else φ(1),n,i,j,0,l = φ(1),n,i,j,1,l = 0

(9.8)

by knowing the fast electron distribution φini according to the PIC simulation of the laser plasma

interaction, we add the fast electrons component due to the refluxing of the fast electrons population

propagating backward (2) as follows.

If Ψ
(2),n,i,j,2,l
1,z < 0 then


Ψ

(1),n,i,j,0,l
0 = Ψ

(1),n,i,j,1,l
0 = Ψ

(1),n,i,j,1,l
0 + Ψ

(2),n,i,j,2,l
0

Ψ
(1),n,i,j,0,l
1,x = Ψ

(1),n,i,j,1,l
1,x = Ψ

(1),n,i,j,1,l
1,x + Ψ

(2),n,i,j,2,l
1,x

Ψ
(1),n,i,j,0,l
1,y = Ψ

(1),n,i,j,1,l
1,y = Ψ

(1),n,i,j,1,l
1,y + Ψ

(2),n,i,j,2,l
1,y

Ψ
(1),n,i,j,0,l
1,z = Ψ

(1),n,i,j,1,l
1,z = Ψ

(1),n,i,j,1,l
1,x −Ψ

(2),n,i,j,2,l
1,z

. (9.9)

An option in the Fortran 90 file data.f90 allows for enabling or not the refluxing of fast electrons at
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the target rear side and another one for enabling or not the refluxing of fast electrons at the target

irradiated side. This is illustrated in Figure 9.3. Obviously, solving two sets of M1 equations doubles

the computational cost. Also, the beam density reads now

nb =

∫ Lε

εmin

(
Ψ

(1)
0 + Ψ

(2)
0

)
dε→ nn,i,j,kb =

Nε∑
l=1

(
Ψ

(1),n,i,j,k,l
0 + Ψ

(2),n,i,j,k,l
0

)
∆ε (9.10)

while the beam current density needed to compute the self-generated electromagnetic fields reads now

jb = −e
∫ Lε

εmin

v
(
Ψ

(1)
1 + Ψ

(2)
1

)
dε→ jn,i,j,kb = −e

Nε∑
l=1

vl

(
Ψ

(1),n,i,j,k,l
1 + Ψ

(2),n,i,j,k,l
1

)
∆ε. (9.11)

In the following, we note Ψ0 = Ψ
(1)
0 + Ψ

(2)
0 and Ψ1 = Ψ

(1)
1 + Ψ

(2)
1 .

9.1.2 Emission of Kα Photons in Hybrid Models due to Laser-

generated Fast Electron Beam

K-shell emission is produced when a fast electron knocks out a K-shell electron from an atom in

the solid target is then replaced by an electron from an outer shell - a transition that leads to the

emission of a photon with a characteristic energy in the x-ray band (see Figure 9.1). If the outer

electron comes from the L-shell, the emission is called Kα; if it comes from the M-shell, it is called

Kβ. Depending on the orbital moment of the L-shell electron, one can distinguish between a more

energetic Kα1 photon and a less energetic Kα2 photon. According to the Dipole Transition Criterion,

Kα emission is more probable than Kβ emission while Kα1 emission is more probable than Kα2

emission. Therefore, the majority of K-shell diagnostics used in laser solid experiments rely on the

detection of Kα1 photons. A fundamental parameter is the collisional K-shell electron ionization cross

section. According to [Davies et al., 2013] for Copper tracer layer, the empirical formula provided by

[Hombourger, 1998]

σK(ε) = 2π r2
BohrGr(ε)D(ε)

(
E0

EK

)C(ε)

(9.12)

is the most acurate expression found by the authors in the literature for the K-shell electron ionization

cross section induced by a collision with a laser-generated fast electron with a kinetic energy ε. Here,

rBohr = 5.2918.10−9 cm is the Bohr radius, E0 = 13.61 eV is the fundamental Hydrogen state energy,

EK is the ionization energy of the K-shell electron depending on the atomic number Z of the material,

D(ε) =

(
3.125− 4.172

U
+

1.877

U2

)
lnU

U
, (9.13)

C(ε) = 2.0305− 0.3160

U
+

0.1545

U2
(9.14)
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Material Z EK [eV] hνKα1 [eV] hνKα2 [eV] IKα2/IKα1 hνKβ [eV] IKβ/IKα
Al 13 1559.6 1486.70 1486.27 0.5 1557.45 0.02
Cu 29 8979 8047.78 8027.83 0.51 8905.29 0.12
Ta 73 67416 57532. 56277 0.57 65223 0.22

Figure 9.4: Values of a K-shell electron ionization energy EK , energy of a Kα1, Kα2 and Kβ photon
hνKα1 , hνKα2 and hνKβ, and ratios IKα2/IKα1 and IKβ/IKα of the K-lines intensities
depending on the atomic number Z of the material.

where U = ε/EK is the normalized kinetic energy of the fast electron and

Gr(ε) =
(1 + 2J) (U + J)2

[
(1 + U) (U + 2J) (1 + J)2

]3/2

(U + 2J) (1 + J)2[J2 (1 + 2J) + U (U + 2J) (1 + J2)]3/2
(9.15)

is the Grysinski coefficient where J = mec
2/EK is the normalized electron mass energy. Actually,

there is a mistake in the original paper by [Hombourger, 1998]. It is 2J and not only 2 as colored in

red in (9.15) [Gryziński, 1965a] [Gryziński, 1965b].

According to [Davies et al., 2013], it is usually assumed that the fraction of atoms with

empty K-shells, as a result of collisions with fast electrons, is negligible. Under this

assumption, by knowing the K-shell fluorescence yield ωK depending on the atomic number Z of the

material, one may directly deduce the number of Kα and Kβ photons emited per unit of time, volume

and steradian according to(
dnα1

dt

)
Emitted

=
1

4π
FKα1FKαωK

2ni
τb

with FKα1 =
1

1 +
IKα2

IKα1

and FKα =
1

1 +
IKβ
IKα

,

(
dnα2

dt

)
Emitted

=
1

4π
FKα2FKαωK

2ni
τb

with FKα2 =
1

1 +
IKα1

IKα2

= 1− FKα1

and

(
dnβ
dt

)
Emitted

=
1

4π
FKβωK

2ni
τb

with FKβ =
1

1 +
IKα
IKβ

= 1− FKα

(9.16)

where

τb =

(∫ ∞
εmin

Ψ0σKv dε

)−1

. (9.17)

Here, ni is the ion density, IKα1 , IKα2 , IKα and IKβ are the intensities of a single Kα or Kβ photon

signal, respectively. Their values, depending on the atomic number Z, are given in Figure 9.4

according to [Thomson et al., 2009]. The factor 1/4π comes from the fact that the photons emission

is assumed to be isotropic. FKαiFKαωK and FKβωK are the probabilities that a photon Kαi or

Kβ, respectively, is emitted when a K-shell hole is recombined by a L-shell electron or a M-shell

electron, respectively. 2ni is the density of holes induced by the ionization of K-shell electrons (there

are two electrons in the K-shell of atoms used in experiments). τb is the characteristic ionization
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time or the inverse of the ionization frequency. It accounts for the fast electron energy distribution

Ψ0(r, ε, t) at the space location r and time t and the ionization probability σK(ε)v(ε) that a fast

electron with a kinetic energy ε ionize one K-shell electron. According to [Kahoul A. et al., 2011], the

K-shell fluorescence yield can be estimated as

ωK = 0.985
(Z/30.896)3.847

1 + (Z/30.896)3.847 . (9.18)

This formula fits the experimental results compiled by [BAMBYNEK et al., 1972] and

[Krause and Oliver, 1979] with an error less than 5 % except Aluminum with a deviation of 14 %

compared to [Krause and Oliver, 1979]. The time integrated number of Kα1 photons emitted per

unit of volume and steradian

nα1(r, t) =

∫ t

0

(
dnα1

dt

)
Emitted

dt (9.19)

is computed self-consistently with the fast electron beam transport hybrid model, as illustrated in

Figure 8.12 d) of Chapter 8, section 8.2. It can be directly compared with the experimental

time-integrated Kα1 signal.
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9.1.3 K-shell Hole Density Dynamics

As explained in the previous subsection, the method of computing the emisssion of Kα photons (9.19)

is based on five assumptions :

1. The hole lifetime τK due to K-shell fluorescence, Auger and Coster-Kronig effects is small

compared to the ionization time τb.

2. The numerical time step of the fast electron transport hybrid model ∆tn is large compared

to the hole lifetime τK so that the density of holes nH(r, tn+1) attains its maximum value

2ni(r, tn)τK/τb(r, tn).

3. The target is fully transparent for the Kα photons.

4. The K-shell photoionization by the X-rays emitted by the fast electrons or other laser-plasma

processes is negligible compared to the collisional ionization by the fast electrons.

5. The K-shell fluorescence yield ωK and the collisional ionization cross section σK do not depend

on the target temperature.

A more detailed analysis of Kα emission was proposed by [Thomas et al., 2013]. It allows us to

demonstrate that, while the assumption 1 is fully justified, one must be careful with the assumption

2, which is depending on the tracer material.

Let us note nH1 the density of atoms with one hole in the K-shell. According to

[Thomas et al., 2013], its temporal evolution can be described by the following kinetic equation

∂nH1

∂t
= RK1 −

nH1

τK
where RK1 = 2

ni − nH1

τb
(9.20)

is the ionization rate depending on the density of available K-shell holes 2(ni−nH1). τK = ~/ΓK is the

hole life time deduced from the K-shell natural level width ΓK (� Heisenberg incertitude principle).

The factor 2 in RK1 comes from the assumption that the K-shell is initially full, as it is the case in the

laser-solid experiments. Let us note nH2 the density of atoms in the solid target with two holes in the

K-shell. According to [Thomas et al., 2013], its temporal evolution can be described by the following

kinetic equation
∂nH2

∂t
= RK2 −

nH2

τK
where RK2 =

nH1 − nH2

τb
(9.21)

is the ionization rate of the second K-shell electron and (nH1 − nH2) is the density of available atoms

with only one K-shell hole. Then, the total number of atoms with one or two holes in the K-shell

nH = nH1 + nH2 evolves according to the following kinetic equation

∂nH
∂t

+

(
1

τb
+

1

τK

)
nH =

2ni
τb
. (9.22)
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According to [Thomas et al., 2013], the K-shell natural level width can be estimated by

ΓK = exp
(
−0.0002725Z2 + 0.09932Z − 2.160

)
eV, (9.23)

which agrees with the results compiled by [Krause, 1979] with an error less than ≈ 10 % for Z ≥
10. The hole lifetime τK = ~/ΓK is plotted in the right panel of Figure 9.5. As proposed by

[Thomas et al., 2013], one can solve analytically Equation (9.22) to determine in each numerical spatial

cell (i, j, k) the hole density nn+1,i,j,k
H at tn + ∆tn as a function of the ionization time

τn,i,j,kb =
1

Nε∑
l=1

Ψn,i,j,k,l
0 σK(εl)vl∆ε

(9.24)

and the hole density nn,i,j,kH at time tn. It reads [Thomas et al., 2013]

nn+1,i,j,k
H = nn,i,j,kH +

(
nn,i,j,kH −

2nn,i,j,ki

Γn,i,j,kτn,i,j,kb

)[
exp

(
−Γn,i,j,k∆tn

)
− 1
]

=
(

1− Γn,i,j,k∆tn

)
nn,i,j,kH +

2nn,i,j,ki ∆tn

τn,i,j,kb

+O

[(
Γn,i,j,k∆tn

)2
]

if Γn,i,j,k∆tn � 1

=
2nn,i,j,ki

Γn,i,j,kτn,i,j,kb

if Γn,i,j,k∆tn � 1

(9.25)

where it has been noted Γn,i,j,k = (1/τK) + (1/τn,i,j,kb ).
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Figure 9.5: (Left panel) Collisional K-shell electron ionization cross section σK on the electron kinetic
energy ε for Aluminum (blue curve), Copper (red curve) and Tantalum (black curve)
according to Equation (9.12); (Right panel) Dependence of the hole lifetime τK = ~/ΓK
on the atomic number Z according to Equation (9.23).

Let us compare the typical values of τb and τK . Assuming the electron distribution function in the

form Ψ0 ≈ (nb0/kBTb) exp (−ε/kBTb) with the mean kinetic energy kBTb � EK and approximating the

collisional K-shell electron ionization cross section σK by the Heaviside function σK(ε) ≈ σ0Π[ε−EK ]

(see the left panel of Figure 9.5), one obtains

τb ≈
3 107 fs

nb0[1021 cm−3]σ0[barns]
. (9.26)

It gives τb/τK ≈ 4 103 for Aluminum (nb0 = 1021 cm−3, τK = 1.628 fs, σ0 ≈ 5 10−21 cm2 and

EK = 1559.6 eV), τb/τK ≈ 2 105 for Copper (nb0 = 1021 cm−3, τK = 0.4028 fs, σ0 ≈ 4 10−22 cm2 and

EK = 8979 eV) and τb/τK ≈ 6 107 for Tantalum (nb0 = 1021 cm−3, τK = 0.01731 fs, σ0 ≈ 3 10−23 cm2

and EK = 67416 eV). We deduce consequently that the assumption 1 is fully justified and that we can

consider Γn,i,j,k = 1/τK . However, depending on the material and on the numerical time step ∆tn, the

assumption 2 is not necessarily verified as the hole lifetime can be comparable with the numerical time

step ∆tn ≈ 0.5 fs (see the CFL condition (7.50) of Chapter 7, section 7.1.4 or (7.52) of Chapter

7, section 7.1.5). Besides, for intermediate Z materials like Tantalum ∆tn � τK = 0.01731 fs,

we obtain nn+1,i,j,k
H → 2nn,i,j,ki τK/τ

n,i,j,k
b by making Γ → 1/τK � 1/∆tn in (9.25). According to

[Thomas et al., 2013], the Kα1 emission rate reads per unit of time, volume and steradian reads(
dnα1

dt

)
Emitted

=
1

4π
FKα1FKαωK

nH
τK

. (9.27)

Therefore, in the particular case where Γn,i,j,k∆tn = ∆tn/τK + o(τK/τb)� 1 as for Tantalum, (9.25)

and (9.27) lead to the standard expression (9.19) of the time integrated density of Kα photons emitted

per steradian. It is not the case for Copper and Aluminum. Consequently, we decide to take into
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account the hole density dynamics in our model. It will be also useful for studies of the temporal

dynamics of the hole density in the context of the X-ray shadowgraphy.

The analytical solution of (9.22) for t ∈ [tn, tn + ∆tn] is

ni,j,kH (t) =

(
ni,j,k,nH −

2nn,i,j,ki

Γn,i,j,kτn,i,j,kb

)
exp

(
−Γn,i,j,k(t− tn)

)
+

2nn,i,j,ki

Γn,i,j,kτn,i,j,kb

(9.28)

by assuming that τn,i,j,kb and nn,i,j,ki are constants during the numerical time step. Correspondingly,

we compute the Kα1, Kα2 and Kβ photons number emited per unit of time, volume and steradian

according to (
dnα1

dt

)n,i,j,k
Emitted

=
1

4π
FKα1 FKαωK

〈ni,j,kH 〉n
τK

,(
dnα2

dt

)n,i,j,k
Emitted

=
1

4π
FKα2 FKαωK

〈ni,j,kH 〉n
τK

and

(
dnβ
dt

)n,i,j,k
Emitted

=
1

4π
FKβωK

〈ni,j,kH 〉n
τK

(9.29)

where

〈ni,j,kH 〉n =
1

∆tn

∫ tn+∆tn

tn

ni,j,kH (t) dt

=
nn,i,j,kH − nn+1,i,j,k

H + 2nn,i,j,ki (∆tn/τ
n,i,j,k
b )

Γn,i,j,k∆tn

(9.30)

according to the analytical solution (9.28), with nn+1,i,j,k
H given by Equation (9.25). The time inte-

grated number of photons emitted from the cell (i, j, k) per unit of volume and steradian at time tNt

is then given by

nNt,i,j,kα1
=

Nt∑
n=1

(
dnα1

dt

)n,i,j,k
Emitted

∆tn. (9.31)
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9.2 Application to the Saclay UHI100 Experiment

Figure 9.6: Scheme of the different targets irradiated by the UHI100 laser pulses in the experimental
campaign conducted by [SANTOS et al., 2013]; courtesy of J. Santos.

In this section, we apply the model of Kα1 photon emission (9.31), developed in the previous

section 9.1.3, to the experiments conducted by [SANTOS et al., 2013] on the UHI100 laser facility,

introduced in Chapter 8, section 2. As illustrated in Figure 9.6, an ultra high contrast laser pulse

was focused at 45 o on Aluminum targets with different thicknesses, and the hot electrons were detected

in a Kα Copper tracer layer of 3µm located at different depths. As already explained in Chapter

8, section 8.2.1, the hot electron source was calculated using Particle-In-Cell simulations performed

by [Gremillet, 2012]. We may assume that these simulation results are close to the experimental

reality thanks to the high contrast of the laser pulses, avoiding prepulse/preplasma effects on the

laser solid interaction that are usually not well characterized. In addition, the laser pulses have been

focused with a 45o angle of incidence. Thus, since the hiher-energy fast electrons propagate mainly

in the propagation direction of the laser pulse, the recirculation through the laser plasma interaction
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zone and their deflections by strong local magnetic fields are minimized here. Therefore, we only

take into account refluxing process due to the strong electric fields generated by the fast electrons at

the target’s rear and irradiated sides. The fast electron propagation is modeled with the M1 code

accounting for two, forward and backward propagating groups, and assuming specular reflections

of the fast electrons at both target surfaces. The time integrated Cu Kα1 photon signal,

emitted from the Copper tracer layer have been measured experimentally with a cylindrical quartz

crystal Von Hamos spectrometer and another spherical quartz crystal completed by two cooled X-ray

CCD camera [SANTOS et al., 2013] so that we can compare the time integrated Kα1 photons signals

obtained numerically and those obtained experimentally for all targets.

The M1 simulations presented in this Chapter are performed with the thermal capacities CV,e

and CV,i presented in Chapter 6, section 6.3.1, the transport coefficients η and κe presented in

section 6.3.2 and the electron-latice/ion coupling factor G presented in section 6.3.3. We start

with a 2D-3V M1 simulation of the Al(1 µm)Cu(3 µm)Al(1 µm) target without refluxing but with

these solid state physics corrections. It can be compared with the reference M1 simulation presented

in Chapter 8, section 8.2, computed with the Eidmann-Chimier model for η and κe (see Chapter

3, section 3.3.1) and the hot plasma expressions for G, CV,e and CV,i. Moreover, we will confirm

that the assumption 2 made in the reference simulation is not verified for Copper and Aluminum.

Secondly, we present the M1 simulation results with refluxing for the Al(1 µm)Cu(3 µm)Al(1 µm)

and Al(1 µm)Cu(3 µm)Al(15 µm) targets. It allows us to highlight the dependence of refluxing effects

upon the target thickness. Thirdly, we present the 2D-3V M1 simulation results with refluxing for

all targets, focusing on the emission of Kα1 photons. The simulations reproduce qualitatively the

experimental data. Finally, three-dimensional effects are analyzed by considering the the 3D-3V M1

simulation results with refluxing for the Al(1 µm)Cu(3 µm)Al(1 µm) target.

Except for the 2D-3V M1 simulation presented in 9.2.1, which uses the same numerical conditions

as the simulation presented in Chapter 8, section 8.2, all others are performed with the same

conditions. Firstly, in agreement with the experiments (≈ mm), the lateral size of the targets are

taken sufficiently large (Lx = Ly = 500µm) to avoid refluxing at the lateral target boundaries. We

choose ∆x = ∆y = ∆z = 1µm for the spatial mesh size and ∆ε = 30 keV for the kinetic energy cells.

This is a compromise between the numerical cost of the simulations and their accuracy, imposed by

the available dynamic random access memory of the computer for the 3D-3V simulation. Indeed, with

these conditions, we have to allocate at each time step the variables Φ, Fx, Fy, Fz, ΓE , ΓB and Γν (see

Chapter 7, section 7.1 for the notations) while each one represents a 2× 4× 500× 500× 5× 100-

dimensional table (2 for the two electron populations (1) and (2), 4 for Ψ0, Ψ1,x, Ψ1,y and Ψ1,z, 5002×5

for the spatial cells and 100 for the kinetic energy cells), that needs approximately 8 Go of available

dynamic memory in double-precision floating-point format.

The fast electrons are initialized as in Chapter 8, section 8.2, except for the 3D-3V simulation
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where the third spatial dimension is introduced as

Ψini,0(x, y, z = 0, ε, t) = N ′0(t)fx(x, t)fy(y, t)fz(z = 0, t)fε(ε, t) (9.32)

where

fy(y, t) =
1√

2π
∆x(t)2

8 ln 2

exp

[
−4 ln 2

(
y

∆x(t)

)2
]

(9.33)

and

N ′0(t) = νL→e(t)
EL

kBTb0(t)
(9.34)

while

Ψini,1(x, y, z = 0, ε, t) = Ψini,0(x, y, z = 0, ε, t)Ωε(x, z = 0, ε, t) (9.35)

remains unchanged, following the notations introduced in Chapter 8, section 8.2. The computa-

tional time Lt = 1.5 ps is sufficient to let the fast electrons lose all their energy, thus ensuring that

they do not contribute to the emission of Kα photons anymore at the end of each simulation. The

2D simulations took from ≈ 2 to ≈ 11 hours on 20 CPU, depending on the target thickness compared

to ≈ 4 days and 17 hours on 40 CPU for the 3D simulation. In what follows, we will talk about Kα1

photons and Kα photons interchangeably and we omit the emission of Kα2 photons. The latter can

be deduced from the Kα1 emission and the contribution FKα2 to the K-shell fluorescence.

9.2.1 Preliminary 2D-3V Simulation - Effects of Solid State Correc-

tions

Firstly, let us present the 2D-3V simulation results for the thinnest target Al(1 µm)Cu(3 µm)Al(1

µm) without refluxing (absorbing conditions for 1 set of M1 equations) but with the target electron

and ion parameters introduced in Chapter 6, section 6.3 for the Copper and Aluminum layers

and with the model of Kα emission, described in subsection 9.1.3. By comparing it with the

reference 2D-3V simulation presented in Chapter 8, section 8.2, one can evaluate the impact of

the solid state physics corrections on the fast electron transport and the impact of the hole density

dynamics on the emission of Kα1 photons. Let us remind here that the reference simulation has been

conducted without refluxing, with the Eidmann-Chimier model for η and κe, the plasma expressions

for the thermal capacities Chot
V,e and Chot

V,i , the Lee-More plasma electron-ion coupling factor Ghot (see

Chapter 6, section 6.3 for the notations) and the standard formula (9.19) for the Kα emission.

The total energy is conserved within an accuracy about 1.7 %, compared to the value of 0.5 %

obtained in the reference simulation. As illustrated in Figures 8.9 and 9.7, the energy injected in

the target Uinc ≈ 70 mJ, the energy escaping from the target rear side Uout ≈ 50 mJ, the maximum

instantaneous beam energy in the target Ub,max ≈ 4 mJ and the total energy loss of the fast electron
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Figure 9.7: Instantaneous beam energy Ub × 10 (solid black), integrated beam energy balanced be-
tween injected and escaping electrons at z = 0 Uinc (solid red), escaped energy Uout at
z = 5µm (dashed red), total collisional energy loss Ucol (solid magenta), total “collec-
tive” Ures energy loss (solid blue), instantaneous electric energy UE × 103 (solid green)
and instantaneous magnetic energy UB × 103 (solid cyan).

beam Ucol + Ures ≈ 20 mJ are close to the reference results. However, the maximum of electric

energy in the target UE,max ≈ 5 10−3 mJ is approximatively twice less than the value obtained in

the reference simulation, the maximum magnetic energy UB ≈ 20 10−3 mJ is less than the reference

UB,max ≈ 30 10−3 mJ and the contributions of the collisional and collective losses are different :

Ures ≈ 10 mJ and Ucol ≈ 8 mJ while it has been obtained Ures ≈ 13 mJ and Ucol ≈ 6 mJ in the

reference case. Therefore, we conclude that the greater energy conservation error is due to the greater

collisional losses of fast electrons, computed with the downwind scheme (1st order). The differences

in the contributions of collective and collisional fast electron energy losses indicate a significant effect

of solid state physics effects introduced in Chapter 6, section 6.3.

Page 276



CHAPTER 9. APPLICATION TO THE Kα EMISSION DURING FAST ELECTRON
TRANSPORT IN SOLID TARGETS

Figure 9.8: Slices at z = 0.375µm of the resistivity (black curve), the electron temperature (red
curve) and the ion temperature (blue curve) at t = 26.6 fs (Left panel) and t = 499.3 fs
(Right panel).

As illustrated in Figure 9.10 (to be compared with Figure 8.11), the fast electrons reach the

target rear side at approximatively 100 fs in both simulations and the beam propagation do not

differ too much. However, Figure 9.11 (to be compared with Figure 8.12) shows differences in

the target heating profile (a), that affects the electrical resistivity (b) and consequently the self-

generated magnetic field (c). The maximum value of the self-generated magnetic field is less than

90 T while it exceeds 100 T in the reference case. Also, we observe a broader transverse profile (in

the x-direction) of the heated Copper area compared to both Aluminum layers while we obtained

exactly the opposite in the reference case. These discrepancies may be explained as follows. The

Lee-More electron-ion coupling factor Ghot overestimates the electron-lattice coupling factor Gcold

at solid/liquid/Warm Dense Matter (WDM) temperatures by one or two order of magnitudes (see

Figure 6.13). Consequently, in the reference simulation, the ratios Ghot/CV,e and Ghot/CV,i were

so huge that the target ion and electron temperature were instantaneously equilibrated (Te ≈ Ti), as

illustrated in Figure 8.13. Therefore, the Eidmann-Chimier model led to electrical resistivity values

close to those obtained with the Lee-More model that assumes Te = Ti; see Chapter 3, section

3.3.1. Similar results were obtained with the Paris hybrid PIC simulation that uses the Lee-More

electrical resistivity (see Figure 8.14). As illustrated in the left panel of Figure 9.8, this is not

anymore the case here. The lower values of Gcold at solid/liquid/WDM temperatures imply a strongly

non-equilibrium state, which impacts the target electrical resistivity η. Moreover, as illustrated in

Figure 6.8, the electrical resistivity is higher in Aluminum than in Copper in the solid state regime

with Ti � Te but it is much lower in the liquid/Warm Dense Matter (WDM) state. Since the Ohmic

heating by the return current and the self-generated magnetic field generation strongly depend on the

beam current and the electrical resisitivity, the temperature decreases at both the Al/Cu and Cu/Al

interfaces. By contrast, the reference simulation shows an increase in electron temperature at the

Cu/Al interface (see Figure 9.9). This is due to the Eidmann-Chimer model predicting a greater
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electrical resistivity of Aluminum than the electrical resistivity of Copper in the liquid/WDM state

with Ti = Te.

Figure 9.9: Comparison at t = 500 fs between the mean electron temperature < Te > over |xmax −
x| < 5µm profile obtained with M1 (blue) and the one obtained with the hybrid PIC
code Paris (green). xmax is defined as the position where Te(xmax, z) is the maximum
electron temperature at a given depth z (red). Refluxing is neglected here.

As illustrated in the right panel of Figure 9.8 (to be compared with the right panel of Figure

8.13), we observe the decrease of the electrical resistivity in the hot plasma regime, typical of the beam

hollowing effect. This different Ohmic heating by the return current in the first target layers is therefore

due to the introduction of the parameter Bν that saturates the target electron-electron collision rate

(6.113) in the liquid/WDM states. Thus, collisions of s-band electrons on d-band electrons may play

a significant role in Copper. Due to the short time scale considered here, the target electron thermal

conduction κe does not play any role. Also, CV,i does not impact the results since it weakly varies

from the solid state to the plasma state according to the Einstein model.

Both simulations give approximately the same 2D distribution of the time-integrated number of

emitted Kα photons, as illutrated in Figure 9.11 d) (to be compared with Figure 8.12 d)). Both

densities of time integrated Al and Cu Kα1 photons are noted nKα even if they are computed from

different formulae depending on the atomic number of the material. It confirms the analytical estimates

obtained for Copper and Aluminum, showing that the hole density dynamics plays an important role

in the Kα emission in cases where ∆tn is comparable to τK . Indeed, we obtain a maximum number

of emitted of Kα photons about 3 1018 cm−3.sr−1 from the Copper layer, which is four times less than

the value of 12 1018 cm−3.sr−1, obtained in the reference case. In what follows, we will only discuss

the Kα1 and Kβ emissions from the Copper layer.
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Figure 9.10: Electron beam density nb [cm−3] from the M1 simulation at t = 25 fs (a), t = 50 fs (b),
t = 75 fs (c), and t = 100 fs (d). Refluxing is neglected here.

Figure 9.11: Plasma electron temperature Te [eV] in a logarithmic scale (a), plasma electrical resis-
tivity η [Ω.m] in a logarithmic scale (b), self-generated magnetic field By [T] (c) and
the number of emitted Kα photons nKα [cm−3.sr−1] (d) from the M1 simulation at
t = 500 fs. Refluxing is neglected here.
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9.2.2 Refluxing Dependence on the Target Thickness

Figure 9.12: (Left panel) Al(1µm)Cu(3µm)Al(1µm) target; (Right panel)
Al(1µm)Cu(3µm)Al(15µm) target; Instantaneous beam energy Ub (solid black),
integrated beam energy injected at z = 0 Uinc (solid red), total collisional energy loss
Ucol (solid magenta), total “collective” energy loss Ures (solid blue), instantaneous
electric energy UE × 104 (solid green) and instantaneous magnetic energy UB × 103

(solid cyan).

In this subsection, we consider the effects of refluxing on the fast electron transport. We present

here the simulation results concerning the thinnest target Al(1 µm)Cu(3 µm)Al(1 µm) and the thickest

target Al(1 µm)Cu(3 µm)Al(15 µm). Let us remind here that the fast electron refluxing at the

target-vacuum interfaces is modelled assuming their specular reflections.

Figure 9.12, illustrates the time evolution of the injected fast electrons kinetic energy Uinc, the

instantaneous fast electron’s energy in the target Ub, the collisional and collective losses of the fast

electrons Ucol and Ures and the self-generated electromagnetic energies UE and UB for both targets.

The energy conservation errors in these two simulations are approximatively 0.8 and 1.9 %. A larger

energy conservation error obtained for the thinner target is due to a greater collisional energy loss

by the fast electrons, which is computed according to the downwind scheme (1st order consistency

error). We can see that, contrary to the case without refluxing, the simulation must be run up to

1.5 ps in order to allow the fast electrons to lose all their energy and to ensure that they do not

contribute anymore to the emission of Kα photons. Actually, a simulation time of 1.5 ps is not

sufficient for the thicker target (Ub ≈ 5 mJ at this time). However, as indicated by the increasing fast

electron energy escaping from the target transverse boundaries x = ±Lx/2, the fast electrons still in

the target at times t > 1.5 ps are located at the target transverse boundaries and do not contribute

to the Kα emission zone we are interested in. As soon as the fast electrons have completed their first

recirculation in the target (at ≈ 200 fs for the thinner target and ≈ 250 fs for the thicker target), the

fast electron’s energy losses are mostly due to collisions. Indeed, the recirculation of fast electrons
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recirculation induces the presence of two counterpropagating beams of similar current densities in

the z-direction. Thus, the background electron current and the self-generated electric field in the

z-direction decrease rapidly (j
(1)
b,z + j

(2)
b,z + je,z ≈ 0 implies je,z ≈ 0 ⇒ Ez = ηje,z ≈ 0 if j

(1)
b,z ≈ −j

(2)
b,z ).

This effect can be seen in Figure 9.13 for the Al(1µm)Cu(3µm)Al(15µm) target and in Figure

9.14 for the Al(1µm)Cu(3µm)Al(1µm) target. Indeed, we clearly see that the beam current density

|jb| = |j
(1)
b + j

(2)
b | ≈ 0 at x ≈ 10µm and t ≈ 240 fs or t ≈ 490 fs, while there is a lot of fast electrons in

these zones according to the corresponding beam density maps.

Figure 9.12 also shows that, for the thin target, the collective energy losses of the fast electrons

are comparable with those obtained without refluxing (Ures ≈ 15 mJ iSnstead of ≈ 10 mJ). The

fact that we observe the same amount of collective energy losses for the thick target (Ures ≈ 15 mJ)

indicates that the decrease in the beam current density with depth is such that collisional losses of the

fast electrons prevail for z & 4µm. That is why we also obtain similar temperatures at the Aluminum

rear side layer when comparing the simulations without refluxing in the previous subsection.

In Figure 9.12, we can see that the maximum of magnetic energy UB in the target is greater

for the thin target compared to the thick target by a factor ≈ 2. This is a consequence of resistivity

gradients at the Al/Cu and Cu/Al interfaces (see By at t ≈ 1.5 ps in Figure 9.13 and 9.14). They

are greater in the thin target compared to the thick target since the transverse component of the beam

current density jb,x is greater. this results from the shorter propagation distance of the fast electrons,

which have thus a larger density (see Figure 9.13 and 9.14). It must be emphasized here that we

have to be careful concerning these self-generated magnetic fields induced by resistivity gradients at

material interfaces: like all ”hybrid” model, our model is based on the quasi-static approximation and

the neglect of the target electron inertia, assuming time scales greater than the beam neutralization

time. Consequently, it is valid on space scales much larger than the target skin depth λe = c/ωp.

Therefore, the increase of these self-generated magnetic fields with decreasing spatial cell dimensions

∆z must be mitigated in the case where ∆z is chosen smaller than λe. Indeed, the temporal growth

of this contribution to the self-generated magnetic field reads

∂By,res

∂t
≈ jb,xc

∂η

∂z
⇒

∣∣∣∣∣Bn+1,i,k
y, res −Bn,i,k

y, res

∆tn

∣∣∣∣∣ =

∣∣∣∣jn,i,kb,x c
ηi,k+1 − ηi,k−1

2∆z

∣∣∣∣ . (9.36)

Thus, if we fix ηi,k+1 = ηCu and ηi,k−1 = ηAl or ηi,k+1 = ηAl and ηi,k−1 = ηCu, the B-field strongly

depends on the value of ∆z for a given beam current density jb,x. Even if these huge magnetic fields

are initially located over a few ∆z, they subsequently diffuse inside the target, leading to unphysical

magnetic energies. It is not the case for all the simulations presented in this thesis (∆z = 0.25µm is

the smaller spatial cell dimension that is used). However, additional simulations were conducted in

the course of the thesis for the understanding of experiments using targets made of a Copper layer

followed by a vitreous Carbon layer, for which the ratio ηC/ηCu was huge (see Figure 3.9 c). As a

consequence, the obtained magnetic energy was found greater than the injected fast electron’s kinetic

Page 281



9.2. APPLICATION TO THE SACLAY UHI100 EXPERIMENT

energy, which is clearly unphysical.

The maximum number of emitted Kα photons in the thick target (see nKα in Figure 9.13), is

approximately equal to that obtained in the thin target without refluxing (see Figure 9.11 d). By

contrast, the Kα yield in the thin target with refluxing is increased by a factor > 8 (see Figure 9.14).

We conclude that there is a strong dependence of refluxing effects on the fast electron transport with

the target thickness and that the refluxing effects on the emission of Kα photons decrease with the

target thickness.
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Figure 9.13: 2D maps of the beam density nb [cm−3] at t = 127 fs, t = 172 fs, t = 240 fs and t = 492
fs, corresponding 2D maps of the beam current density |jb| and target electron tem-
perature Te, self-generated magnetic field By and the number of Kα and Kβ photons
nKα and nKβ, emitted from the Copper tracer layer at t = 1487 fs.
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Figure 9.14: 2D maps of the beam density nb [cm−3] at t = 127 fs, t = 172 fs, t = 240 fs and t = 492
fs, corresponding 2D maps of the beam current density |jb| and target electron tem-
perature Te, self-generated magnetic field By and the number of Kα and Kβ photons
nKα and nKβ, emitted from the Copper tracer layer at t = 1487 fs.
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Figure 9.15: (Left panel) Longitudinal profiles of background electron temperature 〈Te〉 (averaged
over |xmax − x| < 5µm) obtained with the M1 code (blue points) with ∆z = 1µm,
the hybrid PIC code PaRIS [Gremillet, 2014] (green curve) and the full collisional
PIC code CALDER [Gremillet, 2014] (red curve) for the Al(1µm)Cu(3µm)Al(1µm)
target. (Right panel) Longitudinal profiles of 〈Te〉 obtained with the M1 code (blue
points) with ∆z = 1µm and with the hybrid PIC code PaRIS [Gremillet, 2014] (green
curve) for the Al(1µm)Cu(3µm)Al(15µm) target. xmax is defined as the position where
Te(xmax, z) is the maximum electron temperature at a given depth z.

We can see that in both thin and thick targets, far away from the first recirculation zone (from

x ≈ −10 to x ≈ 20µm), the Copper tracer layer is hotter than the Aluminum layers (see Te in Figures

9.13 and 9.14). This is due to the greater density of background electrons (bound, free and screened

free) in Copper, leading to greater collisional energy losses (see Chapter 4, section 4.2, Figure

4.2) compared to Aluminum. Besides, the Copper layer is hotter in the thin target due to the same

reason as given for the explanation of the resistivity gradients contribution to the self-generated mag-

netic fields: the fast electrons recirculate more times through the Copper layer in the thin target and

thus mainly deposit their energy through collisions. Also, in the M1 simulations, the Ohmic heating

of the Copper layer by the return current is greater than the collisional heating of the Aluminum

rear side layer during the first 100 fs due to solid state effects (section 9.2.1). Indeed, as illus-

trated in Figure 9.15, this is not the case for the simulation results obtained with the full collisional

PIC code CALDER [Lefebvre et al., 2003] [Nuter et al., 2011] [Pérez et al., 2012] and the hybrid PIC

code PARIS [Gremillet et al., 2002] conducted by [Gremillet, 2014]. The difference between the PIC

methods (hybrid or not) and the M1 method concerning the spatial cell dimensions may be striking:

∆z = 1µm for M1 while ∆z ≤ λD,b =
√
kBTb/4πγbnbe2 ≈ 7.43 10−3 µm(Tb [keV]/γbnb [1021 cm−3])

1/2

for the PIC codes. This is due to the conceptual difference between a PIC method and a ”Vlasov-

Fokker-Planck” method, like M1. For the latter, the whole space 500µm(×500µm)× 5( or 19)µm) is

discretized in order to describe the distribution function, while for both PIC methods, this is the tra-

jectories of the discretized macro particles following their position that are computed, only. Thus, the

PIC method allows for a less expensive numerical cost concerning the space discretization by following
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the particles trajectories. The counterpart of this advantage is the interpolation and extrapolation

of the electromagnetic fields that imposes ∆z ≤ λD,b and contrains severely the computational cost.

However, while we obtain a significant difference of heating in the Copper layer due to the solid state

corrections mentioned above, we obtain the same temperature at the rear side Aluminum layer for

the thick target, where the fast electron collisions dominate, is approximately the same (see Figure

9.15).

Besides, the full collisional PIC simulation predicts the temperature of the first Aluminum layer

twice greater than the one predicted in both hybrid simulations. Let us try to explain such a discrep-

ancy by the fact that the fast electron current is temporally modulated. For this, we solve the Maxwell

equations coupled to the background electron hydrodynamic equations, assuming for simplicity

1. that the problem is one-dimensional,

2. a negligible pressure force of the plasma electrons,

3. a negligible electron thermal conductivity,

4. negligible collisionnal effects of fast electrons transport,

5. a negligible electron-ion energy exchange and

6. a rigid electron beam with a beam density

nb(z, t) = nb0 + δnb where δnb = −nb0 sin2
(ω0

2
t
)

such that nb(z, t) = nb0 cos2
(ω0

2
t
)
. (9.37)

nb0 = nb0(z− vbt) represents the temporal/spatial envelope of the laser-generated beam density

and δnb accounts for the fast electron bunches injected in the target at the frequency ω0 = ωL

or ω0 = 2ωL depending on the acceleration mechanisms (see Chapter 8, section 8.2, Figure

8.7). Here, due to the ultra high contrast of the laser pulse, we may expect that the j × B

heating is the dominant acceleration mechanism so that we may consider ω0 = 2ωL. We note

jb0 = −nb0evb the rigid beam current density envelope with vb the beam velocity, assumed to

be constant, and δjb = −δnbevb the bunches component.

While assumptions 1 and 6 are made for simplicity in order to obtain analytical estimates, assumptions

2, 3, 4 and 5 are fully justified over simulation times of t ≈ 100 fs. The equations that have to be

solved are the Maxwell-Gauss equation

∂E

∂z
= −4πe (ne + nb − Z∗ni) , (9.38)

the Maxwell-Ampère equation
∂E

∂t
= −4π (je + jb) (9.39)
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the target electron continuity equation,

∂ne
∂t

+
∂

∂z
(neve) = 0 (9.40)

the target electron momentum conservation equation

∂je
∂t

+
∂

∂z
(veje) =

nee
2

me
(E − ηje) =

nee
2

me
E − νje (9.41)

and the target electron heat equation

CV,e

[
∂

∂t
+ ve

∂

∂z

]
(Te) = ηje

2 = −meνve
e

je. (9.42)

The solutions ne0, ve0, je0, Te0 provided by hybrid models correspond to the quasi-static approxima-

tion: they neglect the target electron inertia, assuming times greater than the beam electromagnetic

neutralization time. They read consequently

∂E0

∂z
= −4πe (ne0 + nb0 − Z∗ni) = 0 with nb0 � ne0 = Z∗ni

∂E0

∂t
= −4π (je0 + jb0) = 0 implying je0 = −jb0 and ve0 = −nb0

ne0
vb

∂ne0
∂t

+
∂

∂z
(ne0ve0) = 0

E0 = η0je0 = −meνve0
e

with η0 =
meν

ne0e2
=

4πν

ωp2
and

CV,e
∂Te0
∂t

= η0je0
2 = E0je0.

(9.43)

Let us estimate analytically the errors

∀ξ ∈ {ne, ve, je, Te}, δξ = ξ − ξ0 (9.44)

done by hybrid codes. Assuming ξ0 vary slowly compared to δξ, we obtain, by injecting (10.56) and

(10.60) in the previous equations :

∂

∂z
δE = −4πe (δne + δnb) , (9.45)

∂

∂t
δE = −4π (δje + δjb) , (9.46)[

∂

∂t
+ ve0

∂

∂z

]
δne = −ne0

∂

∂z
δve −

∂

∂z
(δneδve) where δve = − δje + δneeve0

ne0e

(
1 +

δne
ne0

) , (9.47)

[
∂

∂t
+ ve0

∂

∂z

]
δje = − ∂

∂z
(δveδje)− je0

∂

∂z
δve +

ωp
2

4π

δne
ne0

δE +
ωp

2

4π
δE +

ωp
2

4π
E0
δne
ne0
− νδje (9.48)
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and

CV,e

[
∂

∂t
+ ve0

∂

∂z

]
δTe = −CV,eδve

∂

∂z
δTe + E0

δve
ve0

δje + E0δje − E0ne0eδve. (9.49)

We assume constant thermal capacity CV,e and electron relaxation time ν in space and time. In

addition, ni = 6 1022 cm−3 and ne0 = Z∗ni ≥ 3ni in Aluminum so that the plasma frequency ωp ≥ 23

rad.fs−1. The laser frequency is ωL = 2πc/λ = 2.3 rad.fs−1 (λ = 800 nm). Consequently, we can

consider ωp � ω0. Also, according to Figure 6.9, the background electron relaxation rate ν can be

consider smaller than 10 fs−1 but larger than 1 fs−1 from Te ≈ 10−1 eV (Ti = Te) to Te ≈ 1 keV.

Thus, we consider the scaling

ωp � ν � ω0. (9.50)

We assume in addition

7. the non-linear terms are negligible,

8. quasi neutrality δne = −δnb and

9. (∂δve/∂z) = 0.

Assumptions 8. and 9. can be justified by noting that the charge neutralization mainly takes place

in the transverse direction leading rapidly to δne = −δnb with spatial variations of δve mainly in

the x-direction. Assumption 7 serves to linearize the equations and to find analytical estimates.

Under these last assumptions, by working in the frame where the target electron envelope is at rest :

δξ̂(ζ, t) = δξ(z, t) with ζ = z−ve0t and by coupling (9.45) and (9.46), we obtain the coupled equations

∂δÊ

∂t
= −4π

(
δĵe + δĵb

)
a)

∂δn̂e
∂t

= 0 b)

∂δĵe
∂t

=
ωp

2

4π
δÊ +

ωp
2

4π
E0
δn̂e
ne0
− νδĵe c)

, (9.51)

that finally gives
∂2δĵe
∂t2

+ ν
∂δĵe
∂t

+ ωp
2δĵe = −ωp2δĵb, (9.52)

describing the error δĵe done by the hybrid methods. Considering the limit (9.50), assuming δĵe(ζ, t =

0) = 0 and ∂tδĵe(ζ, t = 0) = 0, we find

δĵe = −jb0
2

[
1− cos (ωpt) exp

(
−ν

2
t
)]
. (9.53)
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Solving then the heat equation (9.49) for the error in temperature, we find

CV,e
∂δT̂e
∂t

= 2E0δĵe + Eje0
δn̂e
ne0

. (9.54)

Following assumptions 7, 8 and 9, assuming δT̂e(ζ, t = 0) = 0, the ordering (9.50) and nb0 � ne0 for

neglecting of the second term in the right hand side of Equation (9.54), the solution reads

δT̂e = −jb0E0

CV,e

[
t− sin (ωpt)

ωp
exp

(
−ν

2
t
)]
. (9.55)

Finally, averaging over one electron bunch period τ0 = 2π/ω0, we deduce an estimate of the additive

temperature component in the first Aluminum layer, obtained by the full PIC simulation and neglected

by both hybrid models :

〈δT̂e〉1 bunch =
1

τ0

∫ τ0

0
δT̂e(ζ, t)dt = −jb0E0

CV,e
τ0 = 〈Te0〉1 bunch. (9.56)

Thus, according to our simple model (9.51), each fast electron bunch generates a weak field of back-

ground electron plasma wave according to (9.51 a) and (9.51 c), which are damped due to collisions

with the background ions and electrons, according to (9.51 c). This damping results in an additional

target electron heating mechanism according to (9.54) that leads to a target electron temperature

Te = Te0 +δTe, which is approximatively two times greater than the one predicted by the hybrid mod-

els Te0 according to (9.56). This is quite in good agreement with the simulation results, illustrated in

the left panel of Figure 9.16. This additional electron heating mechanism was recently pointed out

by [Sherlock et al., 2014]. They proposed therefore to replace the quasi-static Ohm’s law E = −ηjb
by the dynamic equation

∂2E

∂t2
+ ν

∂E

∂t
+ ωp

2E = −4π

c

(
∂jb
∂t

+ νjb

)
(9.57)

for the electric field that takes into account the excitation of plasma waves and their collisional damping

due to collisions.

9.2.3 Comparison of Time Integrated Kα Emission of with the Ex-

perimental Data
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Figure 9.16: 2D maps of the number of emitted Kα1 photons at t = tf = 1.5 ps from the 2D-3V
M1 simulations with refluxing and an example of CCD images obtained experimentally
[Vauzour, 2014].
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The 2D maps of the time integrated number of Kα1 photons emitted per steradian at t = 1.5

ps from the 2D-3V M1 simulations with refluxing for all targets are plotted in Figure 9.16. We

can see that the emission of Kα1 photons from the Copper tracer layer increases with decreasing

target thickness. Indeed, the maximum value of the Kα1 emission reaches ≈ 30 1018 cm−3.sr−1 for

the thinner target while this number decreases to ≈ 11 1018 cm−3.sr−1 for the Al(1 µm)Cu(3 µm)Al(6

µm) target and ≈ 7 1018 cm−3.sr−1 for the Al(1 µm)Cu(3 µm)Al(10 µm) target falling down to 4 1018

cm−3.sr−1 for the thickest target. Moreover, the location of maximum emission shifts to larger x with

increasing target thickness. This is a clear signature of the fast electron’s mean propagation direction

that makes an angle of ≈ 25 o with the target normal.

Let us compare these 2D-3V M1 simulation results with the experimental Kα1 signals received

by the CCD camera and obtained thanks to the crystal spectrometers. An example of CCD image is

shown in Figure 9.16. In order to decrease the effects of noise-to-signal ratios estimated around 10 %

according to [Santos, 2014], the experimental signals have been summed over several shots under the

same conditions [Vauzour, 2014]. Therefore, we cannot directly compare the absolute values of the

signals (since they depend on the number of shots conducted for each target). Rather, we renormalize

the experimental signals according to our 2D-3V M1 simulation results:

nKα,exp → nKα,exp
〈nKα〉zmax

nmax
Kα,exp

. (9.58)

Here, 〈nKα〉zmax is the maximum value of the number of emitted Kα1 photons from the 2D-3V M1

simulations, averaged over the Copper layer thickness

〈nKα〉z(x) =
1

LCu

∫ z2

z1

nKα(x, z, tf )dz. (9.59)

Here, LCu = 3µm, tf = 1.5 ps, z1 = 1µm and z2 = 4µm or z1 = 3µm and z2 = 6µm or z1 = 6µm

and z2 = 9µm depending on the targets. The resulting experimental signals averaged over 5 pixels

(8.6 µm × 7.825 µm) [Vauzour, 2014] are plotted in Figure 9.17. The panels a) and b) present the

horizontal (x-axis) and vertical axis (y-axis) of the two-dimensional CCD image as shown in Figure

9.16. In order to make comparable plots, we add a uniform noise of 10 % of the maximum value to

the calculated Ka profiles:

〈nKα〉z(x)→ 〈nKα〉z(x) + b[x] where b[x] = 0.1 〈nKα〉zmax 1x∈[−∞,∞][x]. (9.60)

Also, we account for the average over 5 pixels (8.62µm in the x-direction) of Kα1 signals by convolving

(9.60) with a Gaussian function that has a Full Width at Half Maximum (FWHM) of ∆x0 = 10 µm

〈nKα〉z(x) =

∫ Lx
2

−
Lx
2

〈nKα〉z(x0)√
2π

∆x0
2

8 ln 2

exp

[
−4 ln 2

(
x− x0

∆x0

)2
]
dx0. (9.61)
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Finally, the offset implied by the artificial noise b is accounted for by substracting 0.1〈nKα〉zmax from

(9.61). The processed numerical ”signals” are plotted in Figure 9.17 c) for targets of variable

thickness and in Figure 9.17 d) for targets of variable target depth.

Figure 9.17: Experimental horizontal a) and vertical b) profiles of Kα1 photon signals averaged over
5 pixels (8.62 µm × 7.825 µm) [Vauzour, 2014] for targets of variable thickness (renor-
malized according to the corresponding 2D-3V M1 simulations). Horizontal profiles of
the Kα1 emission obtained from the simulations by averaging it over the whole Cop-
per layer thickness (dashed curves), adding an uniform noise and convolving it with a
Gaussian function of 10µm FWHM (full curves) for targets of variable thickness c) and
variable tracer depth d). Corresponding normalized profiles are plotted in the inserts
of Figures c) and d).
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According to the inset in Figure 17 d), we can see that the Kα1 emission spot size increases with

the tracer depth. It is usually interpreted in experiments as a signature of a strong angular divergence

of laser-generated electron beams. However, as already noticed by [Ovchinnikov et al., 2011], it is not

so evident. The wings of the emission profiles are contamined by the recirculation of fast electrons

inside the target. For example, the normalized emission profiles plotted in the insert of Figure 9.17 c)

would mean that the Kα1 photon emission spot size increases with increasing target depth. It is false

according to the non-normalized values as illustrated in Figure 9.17 c) : due to the fast electron

refluxing, the emission spot size increases with decreasing target thickness. According to

9.17 b), the Kα1 photon signals obtained experimentally are symmetric with respect to the y-axis in

the plane x = 0. As illustrated in Figure 9.17 a), it is not the case with respect to the x-axis in the

plane y = 0 due to the incidence angle of the laser pulse in the plane y = 0.

Except for the thinner target, Figures 9.17 a) and c) show that the 2D-3V M1 simulations

reproduce well the experimental results. However, these 2D-3V calculations must be revised with

regard to three-dimensional effects. The right panel of Figure 9.18 compares the 3D-3V simulation

result and the experimental data. There is a strong discrepancy concerning the Kα photon emission

spot size, even worse than for the 2D-3V simulation. The comparison is conducted under the same

conditions as in the 2D-3V simulations. Firstly, the experimental signal is renormalized to the 3D-3V

M1 simulation according to (9.58). The maximum value of the Kα1 emission is averaged over the

Copper layer thickness

〈nKα〉z(x, y) =
1

LCu

∫ z2

z1

nKα(x, y, z, tf )dz (9.62)

with LCu = 3µm, tf = 1.5 ps, z1 = 1µm and z2 = 4µm. A uniform noise of 10 % of the maximum value

is added in x and y directions according to (9.60) and the result was convolved with two Gaussian

functions of ∆x0 = ∆y0 = 10µm FWHM according to (9.61). The offset of 0.1〈nKα〉zmax is then

substracted from the final result.

9.2.4 Three-Dimensional Effects

As illustrated in the inset of the right panel of Figure 9.18, the spot size on x-axis of the Kα1 photon

emission is almost twice less in 3D than in 2D. We explain this as follows. In the 2D simulations,

we impose specular reflections of the fast electrons in the plane y = 0 since the third dimension is

not taken into account. Therefore, the fast electrons are confined in this plane and the emission in

the x-direction is enlarged. It is not the case in the 3D simulation where we allow the fast electrons

to propagate in the y-direction. It is important to notice that this 3D effect also lead to a smaller

maximum value of Kα1 photon emission of 1.4 1018 cm−3.sr−1 even smaller than in the 2D case

without refluxing (see nKα in Figure 9.11). However, the effective surface of Kα1 photon emission

Sα is greater in 3D as we may expect. Indeed, we obtain a total number of Kα1 photons emitted per
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Figure 9.18: Left panel : Instantaneous beam energy Ub (solid black), integrated beam energy bal-
anced between injected at z = 0 Uinc (solid red), total collisional energy loss Ucol (solid
magenta), total “collective” energy loss Ures (solid blue), instantaneous electric energy
UE × 104 (solid green) and instantaneous magnetic energy UB × 102 (solid cyan) from
the 3D-3V simulation for the thinner target. Right panel : Experimental horizontal and
vertical profiles of Kα1 photon signals averaged over 5 pixels (8.62 µm × 7.825 µm) for
the thinner target [Vauzour, 2014], renormalized according to the simulation (dashed
curves) and corresponding horizontal and vertical profiles of the Kα1 photon emission
obtained from the 3D simulation (full curves). The horizontal profile is compared to
the corresponding profile from the 2D simulation in the insert.

steradian

NKα =



√
2π

∆y2

8 ln 2

∫ Lx
2

−
Lx
2

dx

∫ z2

z1

dz nKα(x, z, tf ) ≈ 7.8 108 sr−1 for the 2D-3V simulation

∫ Ly
2

−
Ly
2

dy

∫ Lx
2

−
Lx
2

dx

∫ z2

z1

dz nKα(x, y, z, tf ) ≈ 1.5 109 sr−1 for the 3D-3V simulation

,

(9.63)

an averaged emittance of Kα1 photons per steradian

EKα =



∫ Lx
2

−
Lx
2

dx

Lx

∫ z2

z1

dz nKα(x, z, tf ) ≈ 4.3 1013 cm−2.sr−1 for the 2D-3V simulation

∫ Ly
2

−
Ly
2

dy

Ly

∫ Lx
2

−
Lx
2

dx

Lx

∫ z2

z1

dz nKα(x, y, z, tf ) ≈ 3.8 1012 cm−2.sr−1 for the 3D-3V simulation

(9.64)

which results in an effective emission surface of

SKα =
NKα

EKα
≈

{
1.8 103 µm2 for the 2D-3V simulation

4.0 104 µm2 for the 3D-3V simulation
, (9.65)
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as we expected. The left panel of Figure 9.18 illustrates the different energy balance for the 3D

simulation. By comparing it with the left panel of Figure 9.12 for the corresponding 2D simulation,

one can clearly see strong 3D effects. While the maximum electric energy in the target weakly varies,

the maximum magnetic energy UB ≈ 40 10−2 mJ (compared to UB ≈ 60 10−3 mJ) is greater than in

the 2D simulation since the self-generated magnetic field diffuse in the third dimension. Also, since we

let the fast electrons propagate in the third dimension, the longitudinal beam current density jb,z is

lower in 3D during the first passage of the fast electrons through the target. Consequently, the Ohmic

heating by the return current Ures ≈ 8 mJ is smaller than in 2D, where Ures ≈ 15 mJ. It also explains

why the number of Kα photons emitted in the 3D simulation is greater than in the 2D simulation.

Indeed, fast electrons lose less energy due to their slowing down by the self-generated electric field

compared to the 2D simulation. Therefore, the fast electrons are more energetic and ionize more

K-shell electrons. This explains also why the 3D simulation shows greater collisional losses.

Page 295



9.2. APPLICATION TO THE SACLAY UHI100 EXPERIMENT

Figure 9.19: 3D-3V run : Slices of the beam density (Up Left) and current density at t = 235.1
fs (Up Right), target electron temperature (Middle Left), target electrical resistivity
(Middle Right), time integrated density of Kα1 photons emitted per steradian (Down
Left) and magnetic fields at t = 1062.1 fs (Down Right); Slices are indicated in the
Figure.
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Figure 9.20: 3D-3V run : Slices at x = 0µm (Up) and y = 0µm of the x-component (Left), y-
component (Middle) and z-component (Right) of the self-generated magnetic field B.

Page 297



9.2. APPLICATION TO THE SACLAY UHI100 EXPERIMENT

Figure 9.21: 3D-3V run : Slices at z = 0.5µm (Left) and z = 2.5µm (Right) of the x-component
(Up), y-component (Middle) and z-component (Down) of the self-generated magnetic
field B.
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The beam density nb and the beam current |jb| obtained from the 3D simulation for the thinner

target at t = 235.1 fs are plotted in the upper panel of Figure 9.19. The slices at y = 0 can directly

be compared with the corresponding 2D plots at t = 239 fs in Figure 9.14. These graphs confirm

the conclusions drawn from the emission of Kα photons : by allowing the fast electrons to propagate

in the third dimension, the fast electron beam density and the maximum fast electron beam current

density in the plane y = 0 are smaller in 3D. Indeed, the maximum beam density is 1 1020 cm−3 and

the maximum beam current density is 1.6 1011 A.cm−2 compared to 5 1020 cm−3 and 2.5 1011 A.cm−2

obtained in 2D. That confirms the explanation of a lower Kα emission in 3D. Due to their refluxing

and the self-generated magnetic fields, the fast electrons propagate towards two opposite target corners

instead of the x-direction as in the 2D case.

The electrical resistivity from the 3D simulation at t = 1062.1 fs is plotted in the middle right

panel of Figure 9.19. The slice at z = 2.5µm illustrates the beam tendancy towards hollowing in

Copper. The norm of the self-generated magnetic field vector |B| is also plotted in the lower right panel

of Figure 9.19. In order to understand its geometry, the different components of the self-generated

magnetic field Bx, By and Bz are plotted in Figures 9.20 and 9.21 showing the strong 3D effects.

The magnetic field is mainly generated during the first passage of fast electrons through the target,

then the magnetic field decreases due to the decrease of the resistivity entering the Spitzer regime and

the decrease of beam currents. The plot of three magnetic field components in the plane x = 0 in the

upper panel of Figure 9.20 confirms the symmetry with respect to the y-axis in this plane. Since

the electrons propagate mainly in the z-direction (with an angle ≈ 25 o compared to the z-axis), the

z-component of the magnetic field is the smallest one. The y-component in the plane y = 0 is plotted

in the lower middle panel of Figure 9.20. It can directly be compared with the corresponding By

field obtained in the 2D simulation plotted in Figure 9.14. Except the contribution to By due to

resistivity gradients and refluxing effects at the Al/Cu and Cu/Al interfaces, we do not observe too

much differences between both simulations concerning the shape and the maximum value of By which

is due to the curl of the beam current. However, we observe that Bx, which is totally omitted in the

2D simulation is actually the main component in the 3D simulation and reaches ≈ 150 T compared to

≈ 100 T for the By. In order to understand the shape of Bx, the contribution of resistivity gradients,

curls of the beam current, target electron-density crossed gradients and 3-dimensional effects are

plotted in Figure 9.22. The contribution due to the temperature-density crossed gradients is small

and can be neglected while the 3D effects contribution has comparable values as the contribution of

resistivity gradients. The major contribution to the x-component is mainly due the to the curls of the

beam current, in particular due to the term ηc(∂jb,z/∂y). Similarly, By is mainly due to −ηc(∂jb,z/∂x).

However, since the fast electron beam propagate also in the x-direction, gradients in the x-direction

are smoother so that Bx is greater than By.
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Figure 9.22: Slices of the contributions to Bx due to curls of the beam current density, resistivity
gradients, temperature-density crossed gradients and 3D effects at x = 0 (Left), z =
0.5µm (Middle) and z = 2.5µm (Right).
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9.2.5 Photoionization Effects

Figure 9.23: (Left panel) Photoionization cross section σP in Copper (red curves) and in Aluminum
(blue curves) dependence on the photon energy hν according to [Verner et al., 1993]
(full curves) and the semiclassical formula (9.68) (dashed curves). Kα1 photon energy
from Copper is indicated by a vertical dashed line. (Right panel) Transparency of
an Aluminum or Copper layer with a thickness L for a photon having the energy hν
according to [Henke et al., 1993] (http://henke.lbl.gov/optical constants/).

In this subsection, we discuss the photoionization effects on the emission of CuKα1 photons

in order to check the assumptions 3 and 4 of our model in the subsection 9.1.3. According to

[Verner et al., 1993] and [Verner and Yakovlev, 1995], the partial photoionization cross section for a

photon with an energy hν, colliding with a (nl) atomic shell-electron, reads

σ
(nl)
P (hν) =


σ0

[(
hν

E0
− 1

)2

+ yw
2

](
hν

E0

)−Q(
1 +

√
hν

ya

hν

E0

)−P
if hν ≥ Eth

0 else

(9.66)

where Q = 5.5 + l − 0.5P . This is an interpolation of a series of numerical calculations using the

Hartree-Dirac-Slater method. [Verner et al., 1993] provide the tables for the photoionization threshold

Eth and the parameters σ0, E0, yw, ya and P , depending on the quantum numbers n and l, that fit

their numerical results for atomic numbers Z,Z∗ ≤ 30 and photon energies hν ≤ 50 keV. n = 1

for K-shell electrons, n = 2 for L-shell electrons, n = 3 for M-shell electrons and n = 4 for N-shell

electrons while l = 0 for s-band electrons, l = 1 for p-band electrons, l = 2 for d-band electrons and

l = 3 for f-band electrons. The total photoionization cross section

σp(hν) =

nmax∑
n=1

n−1∑
l=0

N (nl)
e σ

(nl)
P (hν) (9.67)
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is plotted in the left panel of Figure 9.23 for Aluminum and Copper in the worst case, that is to say

: for cold solid atoms (Z∗ = Zc). Therefore, nmax = 3, N
(10)
e = N

(20)
e = N

(30)
e = 2, N

(21)
e = 6 and

N
(31)
e = 1 for Aluminum while nmax = 4, N

(10)
e = N

(20)
e = N

(30)
e = 2, N

(21)
e = N

(31)
e = 6, N

(32)
e = 10

and N
(40)
e = 1 for Copper. We find a good agreement with the total photoionization cross section

computed according to the simpler semi-classical Kramers formula

σ
(nl)
P (hν) =


64

3
√

3

π4mee
10

h3c

Z4

n5

1

(hν)3 if hν ≥ Eth

0 else

(9.68)

However, the Hydrogen-like approximation for the estimates of Eth is too rough. Knowing the pho-

toionization cross section, one may deduce the attenuation length 1/niσP of a photon hν propagating

in Aluminum (ni = 6.0 1022 cm−3) or Copper (ni = 8.5 1022 cm−3). The transmission of a photon

beam propagating through Aluminum or Copper of a thickness L is plotted in the right panel of

Figure 9.23 according to [Henke et al., 1993] (http://henke.lbl.gov/optical constants/).

The photoionization threshold for Cu K-shell electrons is Eth = 8.972 keV. According to formula

(1.8), the temperature TI of electrons in the conditions of the UHI100 experiment is around 7 keV.

Photons with energies greater than the Cu K-shell photoionization threshold Eth are thus emitted

from the laser plasma interaction zone. In addition, according to the right panel of Figure 9.23,

the first Aluminum layer is fully transparent for photons with energy greater than 10 keV. Therefore,

the bremsstrahlung photons emitted from the laser plasma interaction zone may ionize some Cu K-

shell electrons. However, their density is too small to play a significant role in the Cu K-shell hole

dynamic (9.22) compared to the collisional ionization of K-shell electrons by the laser-generated fast

electrons. Indeed, the radiative stopping power (dε/ds)brem ≈ 10−8 keV/µm for electrons with a

kinetic energy of ε ≈ 10 keV in Aluminum according to [Heitler and Sauter, 1933]; see Figure 4.1.

This is 8 orders of magnitude smaller than the collisional stopping power. Therefore, we can neglect

the photoionization of K-shell electrons by X-ray bremsstrahlung photons compared to the collisional

ionization by the laser-generated fast electrons. Also, X-ray photons may be emitted due to the

presence of impurities in the laser plasma interaction zone such as hydrocarbons; see Chapter 2,

section 2.1. However, for the same reason as for bremsstrahlung photons, the photoionization of

CuK-shell electrons by these transition line photons can also be neglected compared to the collisional

ionization by the laser-generated fast electrons. As a conclusion, the assumption 4 is fully justified.

According to the right panel of Figure 9.2.4, the assumption 3 must be mitigated, and the re-

absorption of Ka photons might be important. Indeed, even if Kα1 photons emitted from the Copper

tracer layer cannot ionize Cu K-shell electrons since hνα1 = 8047.78 eV < Eth, they may ionize L-shell,

M-shell or N-shell electrons of the Copper tracer layer and K-shell, L-shell or M-shell electrons of the

Aluminum layers; , see the left panel of Figure 9.23. Consequently, according to the right panel of

Figure 9.23, only ≈ 90 % of Kα1 photons are transmitted through ≈ 3µm of Copper or ≈ 15µm
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of Aluminum. This effect is omitted in our model. Moreover, the ionization of CuL-shell electrons

by CuKα1 photons may be responsible for a decrease of the emission of Kα1 photons. However, an

error around 10 % is not sufficient to explain a strong discrepancy between our simulations and the

experimental data concerning the size of the Ka emission zone..

9.2.6 Summary and Conclusion

The refluxing of fast electrons in the target may strongly affect the emission of Kα photons. This

effect must be taken into account when comparing numerical simulations of the Kα emission with

experimental data. In our model, this effect is accounted for by imposing specular reflection of fast

electrons at the target-vacuum interfaces and adding a second population in the M1 equations. The

first one describes the laser-generated electron population (1) propagating in the laser pulse propagation

direction while the second one describes the counterpropagating fast electron poulation (2). The model

of calculation of the emission of Kα photons is revised. It is demonstrated that the numerical time

step of the fast electron transport calculation ∆tn may be comparable to the K-hole lifetime τK in

the case of Aluminum and Copper targets. Therefore, we have implemented the self-consistent model

proposed by [Thomas et al., 2013] describing the K-shell holes dynamic.

Simulations of fast electron transport in solid targets are compared with the experiments con-

ducted on the UHI100 laser facility, introduced in Chapter 8, section 8.2. By comparing the

simulations with different models for the target parameters such as the electron and ion thermal ca-

pacities, their temperature equilibration parameter and the transport coefficients, we demonstrated

that solid state physics effects must be taken into account. In particular, the electron-ion tempera-

ture equilibration time and collisions of d-band with s-band electrons may affect the magnetic field

distribution in the Copper target.

By comparing our simulations with refluxing with corresponding hybrid PIC and/or full PIC

simulations conducted by [Gremillet, 2014], we confirmed the results obtained by [Sherlock et al., 2014]

concerning the error made in the quasi-static hybrid models neglecting the target electron inertia in

the Ohm’s law and the displacement current. However, this effect is restricted to the first thin

Aluminum layer. Here, the laser-generated bunches of electrons are injected into the target at the

laser frequency or twice the laser frequency. each bunch generates an electric field that excites a weak

field of background electron plasma waves. These plasma oscillations are damped due to collisions

with target electrons and ions, resulting in an additive target electron heating component that is taken

into account by full PIC simulations but neglected by hybrid models. The hybrid quasi-static model

agrees well with the full PIC simulation in the following Copper tracer layer. This may be explained

by the fast electron collisions in Copper (Z = 29) which degrades the coherence of the fast electron

bunches and the decrease of the Ohmic heating by the return current with the target depth.

The profiles of Kα1 photon emission from the Copper tracer layers obtained in to 2D and 3D
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simulations are compared to the experimental signals. Except for the thinnest target, the 2D simulation

qualitatively reproduce the experiments. However, we found significant differences between 2D and

3D simulations, especially in what concerns the self-generated magnetic fields, the size of the Kα

emission zone and the absolute value of the local number of photons emitted per unit of volume. The

simulation predicts a Kα1 emission spot size 2-3 times smaller than the experimentally measured. We

analyzed the assumptions of our model concerning the Kα emission. The photon re-absorption may

introduce an error of ≈ 10 % in our computations but it cannot explain the discrepancy concerning

the Kα1 spot size. We also checked the effective surface of Kα emission. Even if the 3D simulation

predicts a smaller spot size in the x-direction, it predicts a larger effective surface of emission of about

≈ 200µm×200µm, as compared to ≈ 40µm×40µm obtained in the 2D case. This apparent paradox

comes from simple geometrical reasons. Let us note r3D the mean radius of the Kα spot size obtained

in 3D, r2D the radius obtained in 2D (x-axis) and l =
√

2π∆y2/8 ln 2 the thickness of the slice y = 0

of the 2D simulations. Even if r2D is greater than r3D, l is so small compared to r3D that finally

πr2
3D > r2Dl.

Figure 9.24: Sketch of the toy model by [Macchi, 2012].

The neglect of secondary electrons in our model may explain the discrepancy between the exper-

imental data and our simulations. However, I think that the main critical assumption in our model

concerns the specular reflection of fast electrons at the target-vacuum interfaces. The local mag-

netic fields generated at the target-vacuum interfaces may deviate strongly the refluxed

fast electrons, thus enhancing the off-axis Kα1 signal. Such magnetic fields have already

been observed in experiments [Sarri et al., 2012] and in PIC simulations [Pukhov, 2001] with the laser

parameters in the range of the UHI100 experiments. Similar observations have also been reported

in the context of the resonant absorption [Sakagami et al., 1979] [Kolodner and Yablonovitch, 1979]

(see Chapter 1, section 1.1.2). [Macchi, 2012] proposed a simple model called ”toy model of the

fountain effect”, allowing to estimate the value of the magnetic field generated by the fast electrons
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escaping from the target and reaccelerated back. The term ”fountain” comes from the analogy with a

fountain of water (electrons) where the water (electrons) fall to the floor (to the target) due to gravity

(electrostatic field). The ”toy model of fountain” is based on many simplifying assumptions such as

non-relativistic electrons, small beam divergence, uniform electric field and many others. However,

according to [Macchi, 2012], it provides an order of magnitude of the magnetic field generated at the

target-vacuum interfaces. For example, this simple model provides an estimate of ≈ 10 kT in agree-

ment with the experiment by [Sarri et al., 2012] and a corresponding PIC simulation. According to

[Macchi, 2012], the magnetic field generated at the target-vacuum interface may be estimated as

B ≈ 8kBTb
eEr0

θd
2Ib
r0c

. (9.69)

The notations are illustrated in Figure 9.24. In order to apply this formula to our case, let us firstly

estimate the maximum value of the electrostatic field at the target edge. Assuming that fast electrons

escaping from the target form a Boltzmann distribution with a temperature kBTb in the electrostatic

potential, we may estimated the maximum electrostatic field as

E ≈ kBTb
√

2

λD,be
where λD,b =

√
kBTb

4πγb0nb0e2
is the relativistic Debye screening length. (9.70)

The electron divergence angle θd can be roughly estimated by the angle ≈ 25 o of the fast electron

propagation direction during their first passage in the target and the ”fountain” beam radius r0 by

Lz arctan θd ≈ 2.1µm. According to our simulation, 〈ε〉(z = Lz) ≈ 70 keV (→ γb0 ≈ 1.13), nb ≈ 1020

cm−3 and Ib ≈ −2 MA at the target rear side at t ≈ 75 fs. Then, assuming roughly kBTb ≈ 〈ε〉(z = Lz),

we obtain

λD,b ≈ 0.18µm, E ≈ 7.6 1011 V/m and B ≈ 30kT. (9.71)

We deduce that fast electrons has a Larmor radius of

ρL =
γvmec

eB
≈ 0.056γβ µm. (9.72)

In agreement with the PIC simulation performed by [Pukhov, 2001], who obtains magnetic fields ≈ 1

kT, the main part of fast electrons with low kinetic energies are trapped by the magnetic field while

only fast electrons with a momentum greater than

p > 3.3mec such that ρL > λD,b (9.73)

may escape from the magnetized electron cloud and are reaccelerated inside the target with a strong

angular deviation. It exactly corresponds to fast electrons with kinetic energies greater than

ε > 2.5mec
2 ≈ 1.2 MeV (9.74)
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that are responsible for the emission of CuKα1 photons. We thus lose this physics by assuming the

specular reflection of fast electrons at the target edges and it may explain why we obtain discrepancies

with the experimental Kα signals.
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Chapter 10

Application to the Generation of Shock

Waves by Fast Electron Energy

Deposition

”We knew the world would not be the same. A few people laughed, a few people cried, most people

were silent. I remembered the line from the Hindu scripture, the Bhagavad-Gita. Vishnu is trying to

persuade the Prince that he should do his duty and to impress him takes on his multi-armed form

and says, ”Now, I am become Death, the destroyer of worlds.” I suppose we all thought that one way

or another.”

J. Robert Oppenheimer
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Figure 10.1: (Left panel) Schematic view of a rarefaction wave arising from the motion of a pis-
ton and corresponding distributions of the density (a) and gas velocity (b). (Middle
panel) Schematic view of the equilibrium bewteen the gaz and the ambiant pressure
and corresponding distribution of the density (c). (Right panel) Schematic view of a
compression wave generated by an accelerated piston : (d) is the distribution of the
gas velocity of a compression wave arising from the slow motion of the piston, (e) is
the distribution of the gas velocity of a blast wave arising from an instantaneous and
rapid motion of the piston and (f) is the distribution of the gas velocity of a shock wave
arising from a continuous and rapid motion of the piston.

In order to define what is a shock, let us conduct the following thought experiment. A semi-

infinite tube is filled of a gas and a piston allows for expanding or compressing the gas, as illustrated

in Figure 10.1. As a fluid, the gas can be described by the Navier-Stokes equations (B.60), (B.61)

and (B.63) with ρc = 0 and j = 0 complemented by the specific entropy conservation equation (B.65),

derived in Appendix B, section B.3.1 for charged fluids, i.e., for plasmas where ρc 6= 0 and j 6= 0.

If in addition, we neglect the fluid viscosity, the equations in one dimension read:

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (10.1)

ρ

[
∂

∂t
+ u

∂

∂x

]
(u) = −∂P

∂x
, (10.2)

CV

[
∂

∂t
+ u

∂

∂x

]
(T ) = −∂q

∂x
+We (10.3)

and

ρ

[
∂

∂t
+ u

∂

∂x

]
(H) = − 1

T

∂q

∂x
. (10.4)

The notations are explained in Appendix B, section B.3.1. We have omitted the subscript ”m”

for brievity. Compression waves generated when pushing the piston, as illustrated Figure 10.1 c),

can be described by assuming a perturbation of the equilibrium ρ = ρ0, u = 0, T = T0, H = H0. By
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noting δρ and u the 1st order perturbation terms of this equilibrium and

cs =

√(
∂P

∂ρ

)
H

(10.5)

the velocity of sound in the gas, the 1st order linearized equations (10.1) and (10.2) give(
∂

∂t
− cs

∂

∂x

)(
∂

∂t
+ cs

∂

∂x

)
(δρ) = 0. (10.6)

This equation describes compression waves propagating at the velocity of sound in the gas filling the

tube, as illustrated in Figure 10.1 d).

When the perturbation is strong enough (δρ ∼ ρ0), we cannot anymore linearize the equations

assuming δρ is a perturbation of the equilibrium ρ0. A powerful theoretical tool when studying such

non-linear equations is the search for self-similar solutions. It consists in looking for solutions of

the equations in the form ρ(x, t) = ρ0F (xatb) where the scalar parameters a and b may be found

according to dimensional reasoning depending on the invariant quantities of the problem, while the

function F may be found by injecting the assumed form F (xatb) in the equations; see for example

the self-similar rarefaction waves in a plasma found by [Gurevich et al., 1966] [Manheimer et al., 1982]

[Fabbro et al., 1985] and illustrated in Figure 10.1 a). When studying the nonlinear equations of

conservation (10.1), (10.2), (10.3) and (10.4), neglecting the thermal energy flux q and the source term

We, B. Riemann discovered in the second half of the XIXth century thanks to a self-similar solution

that the development of singularities may be possible, in the form of shock waves, as illustrated in

Figure 10.1 f). Actually, if we zoom in on this hydrodynamic density discontinuity to the kinetic

scale, i.e. at the spatial scale of the order of the particle mean free path, this discontinuity disappears.

A few years later, starting from the same conservation equations (10.1), (10.2), (10.3) and (10.4) on

the jump 

ρ0D = ρ1 (D − U)

P1 − P0 = ρ0DU

ρ0D

(
ε1 − ε0 +

U2

2

)
= P1U

h1 − h0 +
U2

2
= DU

(10.7)

in such a configuration f), W. J. M. Rankine and H. Hugoniot found the relations between the specific

internal energies εi = CV Ti/ρi, the pressures Pi, the specific enthalpies hi = εi +PiVi and the specific

volumes Vi = 1/ρi of the shocked (i = 1) and unperturbed gas (i = 0). These so-called Rankine-

Hugoniot relations read 
ε1 − ε0 =

1

2
(P1 + P0) (V0 − V1)

h1 − h0 =
1

2
(P1 − P0) (V0 + V1)

. (10.8)

Here, U and D are the velocities of the piston and the shock front, respectively. The velocities of the
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shocked and unperturbed gas have been taken equal to u0 = 0 and u1 = U . Let us apply Equation

(10.8) to the case of an ideal gas filling the tube with the specific internal energy and enthalpy read

ε =
CV
ρ
T =

1

γ − 1

P

ρ
and h =

CP
ρ
T =

γ

γ − 1

P

ρ
(10.9)

where γ = CP /CV = 1+(2/d) is the adiabatic index depending on the number d of degrees of freedom

of particles. In this particular case, if we push the piston such that U � cs, a strong shock is generated

that propagates in the tube with the velocity

D =

√
γ + 1

2

P1

ρ0
(10.10)

(P1 � P0) and compresses the gas downstream up to the density

ρ1

ρ0
=
γ + 1

γ − 1
. (10.11)

according to (10.7), (10.8) and (10.9). Therefore, maximum density ratio for a monoatomic ideal gas

with γ = 5/3 is equal to 4. In reality, at high temperatures and pressures, the specific heats and the

specific heat ratio are no longer constant because of molecular dissociation and of ionization. However,

the density ratio (10.11) remains finite and does not increase without limits : generally, it does not

exceed 11-13 according to [Zel’dovich and Raizer, 1966].

When a large amount of energy is quasi-instantaneously deposited in a very small volume, we

talk about blast waves instead of shock waves. Even if it presents a leading front discontinuity, as in

shock waves, a blast wave is followed by a blast wind of negative pressure gradients. For example,

the outcome from supernova-explosions may be described as a blast wave. Indeed, when a star has

consumed all its thermonuclear fuel (see the section 0.1.2 of the Introduction), the star internal

pressure decreases and does not counterbalance anymore the star gravitational force. As a result,

the equilibrium is broken, the star implodes and its plasma density increases. Depending on its

mass according to [Chandrasekhar, 1931], it may reach the degeneracy pressure and a sudden re-

ignition of nuclear fusions in the degenerate core may lead to its explosion. The subsequent expansion

phase, called supernova and illustrated in Figure 10.2, may be described by the adiabatic self-similar

blast wave obtained by [Sedov, 1946] and confirmed by [Taylor G., 1950], according to numerical

simulations. It allows us to illustrate the ”dimensional reasoning” mentioned above concerning the

self-similar solutions of the non-linear and coupled equations of conservation (10.1), (10.2), (10.3) and

(10.4) that must be expressed here in 3 dimensions, assuming a spherical symetry and neglecting the

thermal energy flux q as well as eventual source terms We. Indeed, let us try to find out the expression

of the radius r [cm] of such an expanding spherical supernova according to the dimensional reasoning.

We expect that r depends on the energy released quasi-instantenously, let us say at t = 0, by the star

explosion E0 [erg]. It may thus be considered as the self-similar invariant quantity. We expect also

Page 310



CHAPTER 10. APPLICATION TO THE GENERATION OF SHOCK WAVES BY FAST
ELECTRON ENERGY DEPOSITION

Figure 10.2: Supernovae G299 (Left panel) and SN 1572, also called Tycho’s Supernova because of
Tycho Brahe’s extensive work [Tycho, 1573] (Right panel). Both are expected to be
supernovae of Type Ia i.e. from a thermonuclear explosion of a white dwarf star in
a tight orbit with a companion star. Pictures are taken from the NASA’s telescope
Chandra X-ray Observatory, called Chandra to pay homage to the astrophysicist and
mathematician S. Chandrasekhar. Chandra orbits above Earth’s atmosphere at an
altitude of 139,000 km. The Smithsonian’s Astrophysical Observatory in Cambridge,
MA (USA), hosts the Chandra X-ray Center which operates the satellite, processes the
data, and distributes it to scientists around the world for analysis.

that r depends on the surrounding medium density ρ0 [g/cm−3] and the age of the supernova t [s].

Therefore, let us look for an expression of the radius with the form

r [cm] = ξ0 (E0 [erg])a
(
ρ0 [g/cm3]

)b
(t [s])c (10.12)

where ξ0, a, b and c are dimensionless constants to be determined. Since 1 erg = 1 g.cm2/s2, we

deduce that we must have necessarily
(a+ b) kg = 0 kg

(2a− 3b) cm = 1 cm

(−2a+ c) s = 0 s

(10.13)

for dimensional reasons. It thus gives the self-similar variable found by [Sedov, 1946]

r = ξ0

(
E0

ρ0

)1/5

t2/5 (10.14)

and the blast wave properties can be found by looking for the function F (r), solution of the non-

linear and coupled equations (10.1), (10.2), (10.3) and (10.4) expressed in 3 dimensions, assuming a
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spherical symetry and neglecting q as well as We. Applying this procedure for an ideal gas (10.9),

[Taylor G., 1950] found that ξ0 ≈ 1.11 for γ = 5/3 (d = 3). Concerning our thought experiment of

a piston compressing a gas filling a semi-infinite tube, a blast wave can be generated by applying a

strong hit of hammer to the piston. The resulting blast wave is illustrated in Figure 10.1 e). It

has this particular triangular shape due to the fact that the piston is not continuously pushed like

in the case of shock waves. The X-ray photographies of the supernovae G299 and Tycho, illustrated

in Figure 10.2, are obtained thanks to the strong emission of the hot expanding plasma behind the

front.

The first direct observation of a laser-driven shock wave was reported by

[van Kessel and Sigel, 1974]. A planar solid hydrogen target was irradiated with a 10 J, 5 ns,

Nd laser (1.06 µm wavelength) and the propagation of the laser-driven shock wave was measured

using a high-speed photography. The estimated pressure in this pioneering experiment was 2 Mbar.

Twenty years after the first published experiment, the Nova laser at the Livermore laboratories in

the United States of America (USA) created a pressure of 750 ± 200 Mbar [Cauble et al., 1994].

This was achieved in a collision of two gold foils, where the flyer (Au foil) was accelerated by a

high-intensity x-ray flux created by the laser–plasma interaction. As explained above, a shock or

a blast wave is created in a medium that suffers a sudden impact or in a medium where a large

amount of energy is released in a short period of time. As already explained in the section 0.2.1

of the Introduction concerning the conventional schemes of Inertial Confinement Fusion (ICF), a

high-power laser pulse creates a very hot plasma at the target surface. This plasma exerts a high

pressure on the surrounding material, acting like the piston of our though experiment, that leads to

the formation of an intense shock wave, moving into the interior of the target. The momentum of the

out-flowing plasma balances the momentum imparted to the compressed medium behind the shock

front. The thermal pressure together with the momentum of the ablated material drives the shock

wave.

Energetic electrons are commonly considered to be a dangerous effect for ICF; see the section

0.2.2 of the Introduction. Having a long mean free path, they penetrate through the solid shell

and deposit their energy in the ablator and Deuterium-Tritium (DT) fuel. This process significantly

increases the target entropy H, thus degrading its implosion. The phenomenon of target preheat

was the major reason for several milestone events [Lindl, 1998] : cessation of the ICF program

based on the CO2 laser in the 1980s, switching to the third harmonic in the Nd:glass ICF lasers,

and limiting the ”useful” laser intensities to a few PW/cm2. All these limitations significantly re-

duce the ICF operational domain. However, matching the mean free path of fast electrons with the

target size may suppress the negative effect of preheat and open the possibility of using the ener-

getic particles for creation of a high ablation pressure [Volosevich and Rozanov, 1981] [Gus’kov, 1983]

[Evans, 1983] [Evans, 1986]. Fast ignition is an example of the application of energetic electrons in

ICF. Here, a beam of relativistic electrons is supposed to create a small hot spot in the compressed
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fuel [Tabak et al., 1994]; see the section 0.2.3. This scheme, nevertheless, faces serious difficulties

related to tight focusing of an intense electron beam; see the section 0.3.2. Energetic electrons may

play an important role in the creation of a high ablation pressure, which is interesting for ignition

of fusion reactions in the laboratory [Betti et al., 2007] and in astrophysics concerning thermonuclear

supernovae [Gamezo et al., 2004] or deflagration (subsonic)-to-detonation (supersonic) transition in

premixed combustion wave front [Bychkov et al., 2008]. In the shock ignition scheme in ICF, the fuel

is ignited by a strong shock launched by an intense laser spike at the end of the implosion process; see

the section 0.2.3. The laser spike intensity is in the range of 10 PW/cm2, certainly well above the

threshold of parametric instabilities, and a significant part of laser energy is expected to be deposited

in the nonthermal, energetic electrons [Klimo et al., 2011]; see the section 0.3.1. It was suggested

by [Betti et al., 2007] and [Ribeyre et al., 2009] that their deleterious effect on target implosion can

be mitigated by the fact that, at the moment of spike arrival, the target has already passed halfway

through the implosion phase, and its areal density is increased significantly, by a factor of 10-20 at

least. If the target areal density would be larger than the range of fast electrons, the latter will be

stopped in the imploding shell and may play a positive role by contributing to the ablation pressure.

In this Chapter, we study for the first time the generation of a shock wave by an ablation

pressure driven by an energetic electron beam in a dense plasma. For this, we first present the

theoretical predictions found by [Gus’kov et al., 2012]. Then, we describe the coupling of the reduced

model for the fast electron transport in solids and dense plasmas presented in Chapter 6 with the

radiation hydrodynamic code CHIC, briefly described in Appendix B, section B.3.2 and B.3.3.

Finally, we compare the predictions of the theory with one-dimensional simulations of an electron

beam energy deposition in a DT plasma with a step-like density profile. The parameters of these

academic simulations correspond to typical values expected at the time of spike arrival in the shock

ignition scheme. These simulations show a positive effect of energetic electrons in the shock ignition

scheme, allowing to achieve the ablation pressures above 500 Mbar. Furthermore, in this section we

consider another example of a blast wave generated by an ultrashort femtosecond laser pulse. The

experimental campaign conducted by [SANTOS et al., 2013] was already described in sections 8.2

and 9.2. We demonstrate here by using analytical estimates and numerical radiation hydrodynamic

simulations that a strong blast wave can be generated in a thin target due to strong temperature

gradients induced by fast electron heating. This interpretation is confirmed by the observation of the

shock breakout at the target rear side with a Streaked Optical Pyrometry.
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10.1 Role of Laser-generated Fast electrons in the Shock

Ignition Scheme

10.1.1 Theoretical predictions

Figure 10.3: Schematic of the density and temperature profiles in the hot electron beam ablation
non-stationary regime after the loading time.

There is no general model of pressure formation by an energetic particle beam. The model by

[Gus’kov, 1983] applies for nanosecond electron beams where the heat conductivity of the thermal

electrons plays an important role. In this case, the laser energy is deposited at the critical density

and it is transported to the ablation zone by the thermal electrons. This is a stationary ablation

process where the shock wave launched into the solid material is connected to the isothermal rarefac-

tion wave [Gurevich et al., 1966] [Manheimer et al., 1982] [Fabbro et al., 1985], as it is schematically

shown in the Figure 8 of the Introduction and in Figure 10.1 a). Formation of the ablation

pressure by an energetic ion beam was considered by [Evans, 1983] [Evans, 1986]. A recent paper

[Bell and Tzoufras, 2011] considers the regime of transition from the thermal electron diffusion to a

nonlocal energy transport. However, the fast electron plasma heating is limited to a very short time

scale, before the hydrodynamic separation takes place. The fast electrons, similarly to energetic x rays,

propagate deeper in the target behind the ablation front created by the thermal electron conduction

and produce a second ablation front. However, in contrast to x rays and thermal electrons, the range

of fast electrons depends only weakly on the plasma temperature (only logarithmically; see Chapter

4, section 4.2). For this simple reason, the standard stationary isothermal model of plasma expan-

sion does not apply to fast electrons. Fast electron-driven ablation is intrinsically a nonstationary

process similar to the ion driven ablation [Evans, 1983] [Evans, 1986]. It can be described by a model
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of heating and expansion of a finite mass defined by the fast electron range. Consequently, the shock is

launched by the ablation pressure created by fast electrons during a finite time interval, the loading

time, and after that, the shock transforms in a blast wave and its amplitude decreases slowly with

time. Figure 10.3 presents schematically the density and temperature profiles in this regime after

the loading time. Thus, the fixed energy deposition range of fast particles implies an optimal time

for fast electron beam injection : shorter beams will drive a smaller amplitude shock, while longer

beams will be detached from the solid target and deposit their energy in the expanding plasma, thus

decreasing the coupling efficiency. The fast electron ablation theoretical model GRT is presented here

for a simple case of monoenergetic electrons and a plane geometry.

There are two classes of self-similar solutions of equations of ideal hydrodynamics that describe

a rarefaction wave. One of them is the well-known stationary isothermal rarefaction wave, where

the temperature is constant and the ablated mass increases linearly with time [Gurevich et al., 1966]

[Manheimer et al., 1982] [Fabbro et al., 1985]. Another one describes an isothermal expansion of a

given mass plasma with a temperature increasing with time [Imshennik, 1960] [Drake, 2011]. The

former applies readily to the energy deposition of laser beams and thermal x rays [Fabbro et al., 1985]

[Mora, 2003]. There, the plasma temperature is adjusted in a way that it accommodates the photon

stopping length to the plasma density profile. This model, however, does not apply to fast electrons

because their stopping power depends only on the fast electron energy ε0 = (γ0 − 1)mec
2. According

to section 8.1.3, a monoenergetic and collimated electron beam deposits its energy over the distance

Lp = ξR (10.15)

where

R =
(γ0 − 1)2

γ0

mi(mec
2)

2

4πZρ0e4(ln Λrel
ee )
∗ (10.16)

is the range of the beam electrons and

ξ =

(
γ0 + 1

γ0 − 1

)2 1

β2
0

(
β2

0 − 2
ln γ0

γ0

)
(10.17)

is the correction factor due to their angular scattering. For a fully ionized DT plasma with a density

of ρ0 = 10 g/cm2 and a temperature of 1 eV, the range R of a beam of collimated electrons is 0.878

µm for the electron energy ε0 = 30 keV and 6.650 µm for ε0 = 100 keV while the correction factor

reaches the limiting value of 2/3 so that

Lp = 0.5µm for ε0 = 30 keV and Lp = 4.4µm for ε0 = 100 keV. (10.18)

Collisions on screened free electrons (plasmons) provide the main contribution to the stopping power

and the angular scattering correction factor in such a degenerate plasma; see section 8.2. Since

the fast electron range depends only logarithmically on the plasma temperature, the electron beam
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will deposit its energy in the same mass even when this mass expands. This reasoning enables to

introduce the following two-stage model of plasma expansion driven by a monoenergetic electron

beam transporting the energy flux Ib = nbε0v0, where v0 is the initial electron velocity and nb the

beam density.

In the first stage, the plasma is heated by the incident beam of fast electrons and starts expanding.

The plasma energy increases linearly with time. It is redistributed between the areal density of internal

energy,

Wint =
3

2

∫
ρ0c

2
sdx (10.19)

and the areal density of kinetic energy

Wkin =
1

2

∫
ρ0u

2dx (10.20)

where cs is the velocity of sound (10.22). The energy conservation of the process reads

Wint +Wkin = Ibt, (10.21)

assuming that the energy flux Ib does dot depend on time. In addition, it is assumed that the DT

follows the relations (10.9) with d = 3, typical of a monoatomic ideal gas, so that the sound velocity

(10.5) can be written

cs =

√
(Z + 1)

kBT

mi
. (10.22)

As a consequence, the repartition between the internal and kinetic energies in the heated layer,

Wkin/Wint = ζ(t), increases with time. The duration of this stage th, called the loading time, is

defined by the time of propagation of the rarefaction wave across the heated layer, th ≈ Lp/cs. The

coefficient ζ can be evaluated by requesting a continuity of the plasma density and pressure at the

time th with the self-similar solution. During the expansion phase, the absorbed energy is equally

divided between the kinetic and internal energy. Thus, ζ(th) = 1 at this stage, and the loading time

and the pressure read consequently

th = 2
Wkin

Ib
=

(
9

2π

)1/3 Lp
D0

(10.23)

and

Pm = Ph
t

th
(10.24)

where

Ph =

(
1

6π

)1/3 Ib
D0

(10.25)

is the maximum pressure and

D0 =

(
Ib
ρ0

)1/3

(10.26)
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is the characteristic hydrodynamic velocity found according to the dimensional reasoning. Note that

the maximum pressure depends only on the beam intensity and on the target density, while the loading

time increases strongly with the electron energy in agreement with [Evans, 1983] [Evans, 1986].

For electron beam intensities in the range of few PW/cm2, the heating proceeds so fast that the

electron thermal conduction does not play a significant role, and the heated mass undergoes expansion

without transferring the internal energy to the adjacent cold plasma. However, the pressure in the

heated layer exerts a mechanical work and launches a shock wave in the cold plasma. Therefore, the

second stage consists in the expansion of a heated layer of plasma continuously heated by an electron

beam. It can be described by the isothermal rarefaction wave of a constant mass [Imshennik, 1960]

[Drake, 2011]. It corresponds to the solution of hydrodynamics equations (10.1), (10.2), (10.3) and

(10.4) with the energy deposition rate defined by the flux of fast electrons

We ≈
Ib
Lp

(10.27)

in the right hand side of Equation (10.3) and neglecting the thermal energy flux q. Assuming the

boundary conditions of zero flow velocity at x = Lp and zero density at x → ∞, this self-similar

solution reads : 
ρ =

3√
2πIb

(
ρ0Lp
t

)3/2

exp

[
−9ρ0Lp(Lp − x)2

8Ibt3

]
a)

T =
miIb

3 (Z + 1) ρ0kBLp
t b)

u =
3

2

x− Lp
t

b)

, (10.28)

Here, the velocity increases linearly with the coordinate for x < xh, the temperature increases linearly

with time, and the density profile has a Gaussian-like shape with the characteristic scale length

λρ(t) =
1

3
√
Lp

(2D0t)
3/2 (10.29)

increasing with time as t3/2. As this self-similar solution corresponds to an infinitely thin initial heated

layer, it formally diverges at t = 0, but it has a physical sense for times longer than the loading time

th. We can check according to Equation (10.28 a) that the maximum of density ρm is obtained at

t = th and x = Lp that gives the expression of the loading time (10.23). Also, we can check that, by

injecting the sound velocity (10.22) expressed with the temperature (10.28 b) in the areal density of

kinetic energy (10.19) at the loading time th, we find (10.23), as previously explained. The effect of

expanding plasma on the shock wave formation depends on the values of plasma density

ρm = ρ0

(
th
t

)3/2

(10.30)
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and pressure

Pm = Ph

√
th
t

(10.31)

at the cold plasma interface at x = Lp accoding to Equations (10.9), (10.23), (10.28 a and b). The

pressure decreases as a square root of time at the second stage.

As an example, we consider an electron beam with an energy ε0 = 30 keV and intensity Ib = 1

PW/cm2 incident on a DT plasma with a density ρ0 = 10 g/cm3. Then, the maximum pressure Ph

rises to the value of 380 Mbar according to Equations (10.24) and (10.25). The loading time th ≈ 6 ps

(D0 = 107 cm/s and Lp = 0.5µm) is relatively short according to (10.23). However, for longer times,

the pressure decreases rather slowly according to (10.31). Knowing the pressure, it is straightforward

to evaluate the shock wave velocity in the strong pressure limit. According to Equation (10.10), it

reads

Dsh(t) =

√
4

3

Pm
ρ0

=


Dsh(th)

(
t

th

)1/2

if t < th

Dsh(th)

(
th
t

)1/4

if t ≥ th
(10.32)

where

Dsh(th) =

√
4

3

Ph
ρ0

=

(
32

81π

)1/6

D0 (10.33)

according to (10.26) and (10.25).

10.1.2 Coupling of the Reduced Model for Fast Electron Transport

with the Radiation Hydrodynamic CHIC code

Figure 10.4: Schematic view of the coupling between the reduced model for fast electron transport
and the radiation hydrodynamic CHIC code.

In this section, we present the coupling of the reduced model for the fast electron transport
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in dense plasmas, described in Chapter 6, with the radiation MagnetoHydrodynamic CHIC code

[Breil et al., 2011], described in Appendix B, sections B.3.2 and B.3.3. This code is currently

used to simulate laser-plasma interaction experiments. It includes thermal coupling of electrons and

ions, classical or nonlocal electron heat conduction, and a detailed radiation transport with the tab-

ulated ionization and the opacity data. Equations (6.34) and (6.35) completed with the M1 closure

(6.61) of the reduced model for fast electron transport have already been implemented in CHIC by

[Regan, 2010] [Regan et al., 2011] [Regan, 2011] for fast ion or electron beam transport in dense plas-

mas, without electromagnetic fields. An option allows for projecting or not the different quantities

from the hydrodynamic Lagrangian grid of the code CHIC to a regular Eulerian grid for the fast

particle transport, and vice-versa, at each hydrodynamic time step ∆tn. In the case where there are

no projections, the resolution of the fast particle transport has been extended to irregular Eulerian

grids, allowing to propagate the fast particles in the Lagrangian CHIC grid [Feugeas, 2011]. The self-

generated magnetic fields have been implemented by [Nicolai et al., 2011] by adding the source terms

η(∂/∂r)×jb and (∂η/∂r)×jb of Equation (6.24) into the magnetic field equation (B.81) [Nicolai, 2011].

The numerical scheme used to solve the resulting M1 equations

∂

∂ε

(
SΨ̂0

)
− ∂

∂r
.Ψ̂1 =

∂Ψ̂0

v∂t
, (10.34)

∂

∂ε

(
SΨ̂1

)
− ∂

∂r
.Ψ̂2 =

∂Ψ̂1

v∂t
+ kΨ̂1 +

e

pc
Ψ̂1 ×B (10.35)

and

Ψ̂2 =
1

3
Ψ̂0I + µΨ̂0

(
Ψ̂1 ⊗ Ψ̂1

|Ψ̂1|
2 − 1

3
I

)
(10.36)

has been implemented by [Regan, 2010] in 1 or 2D Cartesian or axisymetric and cylindrical geometry.

Here, ∀i ∈ {0, 1, 2}, Ψ̂i = vΨi and k = ν/v is the inverse of the beam electrons mean free path (8.11).

This fully implicit numerical scheme reads

Sn+1,l+1Φ̂n+1,l+1 − Sn+1,lΦ̂n+1,l

∆εl
−
[
∂

∂r
.F̂

]n+1,l+1

=
Φ̂n+1,l − Φ̂n,l

0

vl∆tn
+ Γ̂n+1,l

ν + Γ̂n+1,l
B (10.37)

where the kinetic energy derivative is computed according to the 1st order downwind scheme and the

spatial derivative according to the 2nd order HLL scheme described in section 7.1.1. It considers the

kinetic energy derivative as a ”time derivative” and it allows to deduce the angular moments Φ̂n+1,l

at kinetic energy εl from the knowledge of the angular moments Φ̂n+1,l+1 at kinetic energy εl. Here,

Φ̂n,l = vlΦ
n,l, F̂n,l = (Fn,lx , Fn,ly , Fn,lz ),

Γ̂n+1,l
ν = k


0

Ψ̂n+1,l
1,x

Ψ̂n+1,l
1,y

Ψ̂n+1,l
1,z

 and Γ̂n+1,l
B =

e

plc


0

Ψ̂n+1,l
1,y Bn

z − Ψ̂n+1,l
1,z Bn

y

Ψ̂n+1,l
1,z Bn

x − Ψ̂n+1,l
1,x Bn

z

Ψ̂n+1,l
1,x Bn

y − Ψ̂n+1,l
1,z Bn

x

 ,
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following the notations introduced in section 7.1. The CFL condition reads

∆εl <
minr

{
Sn+1,l+1(r)

}
1

∆x
+

1

∆y
+

1

∆z

. (10.38)

Here, we introduce the self-generated electric field in the electron transport equations. For this,

we consider only the main term of Equation (6.23) i.e. we assume the simpler Ohm’s law

E = −ηjb. (10.39)

In order to solve Equations (6.34) and (6.35) with the self-generated electric field according to the

numerical scheme (10.37), we introduce the resistive stopping power

Sres = eE.Ωε, (10.40)

the resistive slowing down frequency

νres =
Sres

p
(10.41)

and the inverse of the fast electrons resistive mean free path

kres =
νres

v
. (10.42)

Then Equations (6.34), (6.35) and (6.61) multiplied by p read

∂

∂ε

(
Stot

̂̂
Ψ0

)
− ∂

∂r
.
̂̂
Ψ1 =

∂
̂̂
Ψ0

v∂t
+ (kres + kd)

̂̂
Ψ0, (10.43)

∂

∂ε

(
Stot

̂̂
Ψ1 +

̂̂
Πε.E

)
− ∂

∂r
.
̂̂
Ψ2 =

∂
̂̂
Ψ1

v∂t
+ (k + kd)

̂̂
Ψ1 +

e

pv
̂̂
Ψ0E +

e

pc
̂̂
Ψ1 ×B (10.44)

and ̂̂
Ψ2 =

1

3
̂̂
Ψ0I + µ

̂̂
Ψ0

 ̂̂Ψ1 ⊗
̂̂
Ψ1

| ̂̂Ψ1|
2 − 1

3
.I

 (10.45)

where it has been noted ∀i ∈ {0, 1, 2}, ̂̂Ψi = pΨ̂i = pvΨi, νd = S/p the collisional slowing down

frequency (5.2), kd = νd/v the corresponding mean free path,

Stot = Sres + S (10.46)
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the total stopping power due to both collective and collisional effects and

̂̂
Πε =

̂̂
Ψ2 −

̂̂
Ψ1 ⊗

̂̂
Ψ1 = pvΠε =

1− µ
3

̂̂
Ψ0I +

̂̂
Ψ0

(
µ− |Ωε|2

) ̂̂Ψ1 ⊗
̂̂
Ψ1

| ̂̂Ψ1|
2 (10.47)

the ”angular pressure tensor” that has already been introduced in (8.10). These notations allow to

make appearing the term
̂̂
Ψ2.E only in the kinetic energy derivative of the 1st order equation (10.44).

Then, by noticing that
̂̂
Πε.E = 0 in both anisotropic (

̂̂
Πε = 0) and isotropic (E = 0 since jb = 0 for

monoenergetic electron beam) limits, we assume

̂̂
Πε.E = 0 (10.48)

in all cases. As a consequence, we can use the same numerical scheme as (10.37), by replacing S by

Stot in (10.37) and by adding the new source terms expressed at tn+1 for εl of Equations (10.43) and

(10.44) in the the right hand side of the discretized Equation (10.37). The terms depending on the

self-generated electric field in Equations (10.43) and (10.44) are discretized semi-implicitely i.e. they

are expressed with the electric field En at time tn. It may happen that the resistive stopping power

(10.40) changes sign and transforms into a ”resistive pushing power” (Sres < 0) for some electron

energy groups εl. However, it does not lead to numerical issues with the downwind scheme in the

following simulations since we consider cases where Sres � S so that the total stopping power (10.46)

in the CFL condition (10.38) is always positive. Finally, we use the absorbing boundary conditions,

described in section 7.1.6.

10.1.3 Electron driven shock waves

Figure 10.5: (Left panel) DT plasma density profile at the moment of spike arrival obtained from a
CHIC simulation [Ribeyre et al., 2009]; Courtesy of X. Ribeyre. (Right panel) Initial-
ization of the 1D academic simulations assuming an idealized target density profile at
the time of ignitor spike arrival.

The geometry corresponding to the shock excitation in the shock ignition scheme is presented in

the left panel of Figure 10.5. The distribution of the DT plasma density at the moment of spike
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arrival corresponds to a thin shell converging to the center. It is obtained from a CHIC simulation

conducted by [Ribeyre et al., 2009] with the HiPER baseline target designed by [Atzeni et al., 2009a].

The initial dimensions of the capsule are 1044 µm of external radius and 211 µm of shell thickness. It

is supposed to be imploded at a constant in-flight adiabat α ≈ 1. At the moment of the spike launch

the shell is already compressed by a factor of 40. Consequently, we model here the shell as a DT

plasma layer of a steplike profile with a maximum density of ρ0 = 10 g/cm3, a temperature of T0 = 10

eV and a thickness of 100 µm. This idealized target density profile is illustrated in the right panel

of Figure 10.5. The plasma thickness is much larger than the fast electron range, thus allowing us

to observe the creation and propagation of the shock wave for a sufficiently long time of the order of

tf = 1 ns. The energy flux of monoenergetic and collimated electron beams is maintained constant in

time during the simulation. Two representative cases with Ib = 1 PW/cm2 and ε0 = 30 keV (case 1)

and Ib = 10 PW/cm2 and ε0 = 100 keV (case 2) have been tested. In both cases, because of a high

plasma density, the resistive losses (10.40) are small and the electron energy deposition is due to the

collisional effects of in a dense plasma. The fast electrons propagate in the Lagrangian CHIC grid, as

explained in section 10.1.2. The initialized angular moments of the beam distribution function thus

read

Ψ1,x(x = 0, ε, t) = Ψ0(x = 0, ε, t) = Nfε(ε)Fz(t) (10.49)

where

Fz(t) = Π(t)−Π(t− tf ) (10.50)

(Π is the Heaviside distribution function),

fε(ε) =


1

2δε
if |ε− ε0| ≤ δε

0 else
(10.51)

with δε = 1 keV and

N =
Ib
ε0v0

. (10.52)

The kinetic energy boundaries are εmin = 1 keV and Lε = ε0 + 5 keV.

The left panel in Figure 10.6 shows the power density We deposited by the electron beam, the

plasma pressure and the density profiles for case 1. The mean free path of fast electrons is initially of

the order of Lp ≈ 1µm, that is, twice the theoretical estimate (10.18). This difference is due to the

assumption (lnλe+lnλrel
ei )/2 lnλe ≈ 1, which allows us to find an analytical estimate for the correction

factor (8.17) due to angular scattering of fast electrons. However, the characteristic hydrodynamic

velocity D0 ≈ 100µm/ns and the corresponding loading time th ≈ 11ps are not so far from the

predicted values. The maximum pressure Ph rises to 400 Mbar in agreement with the theoretical

prediction and the density increases by a factor of 2.7 after the loading time. The assumption of a

homogeneous energy deposition, We ≈ Ib/Lp, seems to be reasonable even if the beam energy flux

evolves in time according to Figure 10.6 a). Then, as time goes on, the pressure drops down to
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Figure 10.6: Distributions of the deposited power density We (a), the plasma density ρ (b) and
DT plasma pressure P (c) from the simulations of a shock drive by a monoenergetic
and collimated beam of electrons with a kinetic energy and an energy flux of 30 keV,
1 PW/cm2 (Left panel) and 100 keV, 10 PW/cm2 (Right panel). The numbers near
the curves indicate the time in ps. The dashed line in the right panel b shows the
self-similar solution (10.28 a).
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Psh ≈ 120 Mbar, and the shock takes a triangular shape characteristic for a blast wave. It propagates

with a velocity Dsh ≈ 60µm/ns. Consequently, the shock wave power Ish = PshDsh is about 70

TW/cm2. The driver efficiency is thus about Ish/Ib ≈ 7 %. The fast electron energy deposition does

not follow the shock front, but instead moves out and spreads over the expanding plasma. The front

edge of the energy deposition zone coincides with the rear edge of the density compression. Thus, the

deposited energy becomes decoupled from the shock, so the shock pressure drops down with time. A

comparison of the runs with and without electron thermal conductivity shows that its role is negligible

at the loading stage as the plasma temperature in the shock is rather low, just a few eV. Later in

time, after ≈ 600 ps, the thermal wave from the hot corona catches up to the shock and broadens the

pressure profile.

The electron beams of higher energy and intensity may create even much stronger blast waves.

For the case 2 shown in the right panel of Figure 10.6, the loading time is ≈ 80 ps and the shock

pressure rises to 1800 Mbar at the time of 100 ps. It reduces then to 700 Mbar after 1 ns. The shock

velocity is about 120 µm/ns and the shock power is about 0.7 PW/cm2. The Gaussian-like density

profile corresponding to the self-similar solution (10.28 a) with λρ = 20µm for t = 100 ps is shown in

Figure 10.6 b with a dashed line. It agrees rather well with the numerical solution shown with a red

line corresponding to the time of 100 ps. The density profile in the shock in the later time, t > 200

ps, takes a two-humps shape. The second hump is driven by the thermal wave catching up the shock

at the time of 1 ns. The driving efficiency of the beam remains at the same level of 7 % as in case 1.

10.1.4 Conclusion

The limits of the model are threefold. First, the target thickness should be larger than the electron

beam stopping length. In practice, having in mind the electron energies of several tens of keV and the

stopping lengths Lp of a few microns, the target density needs to be in the range of 10 g/cm3 or more.

Second, the planar model is limited by the two or three-dimensional effects. Thus, the thickness of the

expanding plasma layer, ≈ (D0t
3/2/

√
Lp, according to Equation (10.29), should be smaller than the

characteristic distance in the second dimension r (the shell radius for a spherical target or the electron

beam radius for a planar target). This condition limits the time to t < th(r/Lp)
2/3. Considering the

shell radius of 200 µm, this condition allows the time intervals of a few hundred ps in the examples

discussed above. Third, a strong plane shock may become unstable with respect to front modulations

if the target is accelerated. However, this effect needs a global description of the target dynamics.

The theory of the fast electron driven shock wave in dense solids has been confirmed by numerical

simulations. It shows a possibility to achieve extremely high shock pressures in high density solid

materials with the coupling efficiency up to 10 %. The case presented in the left panel of Figure

10.6 corresponds to the fast electron current of 30 GA/cm2, which can be generated with high power

laser pulses. The numerical simulations of laser plasma interaction [Klimo et al., 2011] predict the

Page 324



CHAPTER 10. APPLICATION TO THE GENERATION OF SHOCK WAVES BY FAST
ELECTRON ENERGY DEPOSITION

efficiency of laser absorption more than 70 % with 90 % conversion in fast electrons for the laser

intensities exceeding 10 PW/cm2 at the wavelength 0.351 µm. The laser accelerated electrons with

energies less than 100 keV could be efficient drivers of strong shocks for ignition of ICF targets and for

other high energy density applications. Such drivers could invest about 10 % of energy in the shock

wave in solids with a pressure amplitude at the level of several hundred Mbar or more. However,

the electron energy distribution, angular aperture and the target density profile may affect the shock

amplitude or the preheat of the imploding shell. The simulations similar to those presented in this

section have been conducted with more realistic electron energy spectrum and more realistic density

profiles [Nicoläı et al., 2014]. It has been shown that the fast electron beam may preheat the DT shell

and jeopardizes its compression.

Since this work, another model developed by [Piriz et al., 2012] for the desciption of ablation

driven by hot electrons generated during the ignitor laser pulse in shock ignition have been pro-

posed. However, contrary to the model presented here, it assumes the process to be quasi-stationary,

which does not agree with our numerical simulations. The possibility to launch shocks of several-

hundred Mbar in spherical targets has been recently demonstrated on the OMEGA laser facility

[Theobald et al., 2013] [Nora et al., 2015]. The ablation pressure has been inferred from the time of

shock propagation to the target center by using radiation-hydrodynamic simulations. Peak ablation

pressures exceeding 300 Mbar are inferred at absorbed laser intensities of ≈ 3 1015 W/cm2. It has

been demonstrated that the shock strength is significantly enhanced by the coupling of suprathermal

electrons with a total converted energy of up to 8 % of the incident laser energy. At the end of the

laser pulse, the shock pressure is estimated to exceed ≈ 1 Gbar because of convergence effects.

10.2 Blast Wave generation in solid targets by the quasi-

isochoric heating by laser-generated Electron Beam

10.2.1 Analytical Estimates

Here, we consider another example of a blast wave driven by an intense short laser pulse. The

experimental campaign conducted by [SANTOS et al., 2013], was described in sections 8.2 and 9.2.

As illustrated in Figure 10.7 a), a Streaked Optical Pyrometry (SOP) at the wavelengths λ = 405

and 532 nm have been used to diagnose the targets rear side temperature [Vauzour, 2012]. It was

estimated from the signal intensity assuming a Planckian-type emission (Black body radiations). The

estimates of the target rear side temperature are in good agreement with the M1 and PaRIS simulations

illustrated in Figure 9.15. A strong increase in visible light emission has been observed for the thick

targets with a delay of ≈ 500 ps after a 50 fs laser pulse Figure 10.7 b), but not the thinner

targets. This effect is interpreted as a blast wave formation in a sufficiently thick target. From 2D
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Figure 10.7: Schematic view of the laser-irradiated target and the Streaked Optical Pyrometry
(SOP) diagnostic a) and a SOP image of SOP result at λ = 532 nm for the
Al(1µm)Cu(3µm)Al(15µm) target b); Courtesy of J. Santos.

PIC simulations of laser-solid interaction with a laser pulse intensity of IL = 7.5 1017 W/cm2 and a

duration of 500 fs, [Sentoku et al., 2007] showed that the quasi-isochoric heating of the target by the

laser-generated fast electrons may excite shock waves that compress the plasma beyond solid density

and to keV temperatures. According to their simulations, shocks with pressures up to gigabar can be

launched inside the target with ultrashort laser pulses.

Therefore, in order to explain this increase of visible light emission in the experiments conducted

by [SANTOS et al., 2013], we developed a model of a blast wave generation by strong temperature

gradients induced by a fast target heating. For this, we solve Equations (10.1), (10.2), (10.3) and

(10.4) with a nonlinear heat flux

q = −κ0T
n∂T

∂x
(10.53)

induced by an instantaneous energy deposition

We ∝ δ(t). (10.54)

Indeed, according to section 9.2.2, the target heating by the laser-generated fast electrons lasts

≈ 1− 2 ps; see Figure 9.12. On the hydrodynamic time scale, this heating may thus be considered

as instantaneous and isochoric due to the large ion inertia. Actually, some ions are accelerated on the

ps time scale, but they do not affect the target dynamics. The main part of ions may be considered

as immobile. Since in our conditions the electron and radiation heat fluxes are comparable

κrad

κSH
≈ 5 1018 (kBTe [eV])5/2

ne [cm−3]
> 1 (10.55)

according to [Ditmire et al., 1996], we do not specify the values of n and κ0 in the thermal energy

flux (10.53). Here, κSH is the Spitzer-Harm thermal electron conductivity (see Appendix B, section

B.2.1 and B.2.2). Indeed, thermal waves are driven by radiation transport for solids (ne ≈ 1023
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cm−3) at temperatures greater than kBTe ≈ 100 eV, according to the Ditmire criterion (10.55).

Let us assume that at the time t = 0 after the end of the laser pulse, the electron heating resulted

in an exponential temperature profile

T (x, t = 0) = Tm exp (−x/d0), (10.56)

with Tm = 400 eV and d0 = 5 µm; see Figure 9.15. Contrary to the explanation given by

[Sentoku et al., 2007], the blast wave generation is not related to the Copper tracer layer in our

case. Therefore, we assume a simple target made of Aluminum, only (ρ = 2.69 g/cm3 and ni = 6 1022

cm−3). We model therefore the thermal capacity as

CV =
3

2
nekB = Cst with ne = Z∗ni (10.57)

and the velocity of sound as

cs =

√
Z∗
kBT

mi
. (10.58)

The ionization state may be estimated by its averaged value :

Z∗ =
1

Lx

∫ Lx

0
Z∗m exp

(
− x

d0

)
dx ≈ 5 (10.59)

with Lx being the target thickness and Z∗m = 10 the ionization state in the first micron of Aluminum.

Due to the high temperature Tm, the plasma expands rapidly in vacuum at the irradiated side of

the target with the velocity cs(Tm) =
√
Z∗mkBTm/miex corresponding to few hundreds of µm/ns, in

agreement with the self-similar rarefaction wave expanding in vacuum [Gurevich et al., 1966]. Due to

the plasma expansion, the temperature at x = 0 decreases rapidly to low temperatures in agreement

with the 1D academic simulation so that we can consider the boundary condition

∀t > 0, T (x = 0, t) = 0. (10.60)

This boundary condition corresponds to the dipole-type solution found by

[Barenblatt and Zel’dovich, 1957] when studying the self-similar process of gas filtration in a

porous medium. Here, the invariant quantities are the heat diffusivity

a =
κ0

CV
[cm2.s−1.K−n] (10.61)

and

P [K.cm2] =

∫ ∞
0

zT (z, t = 0) dz = Tmd0
2 ≈ 1.16 K.cm2 (10.62)

with Tm = 400 eV and d0 = 5µm instead of a [cm2.s−1.K−n] and T0 [K] for the self-similar solution
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with a constant temperature T0 at x = 0. Consequently, we can construct the two self-similar variables

xf (t) [cm] = ξ1(aPnt)

1

2(n+ 1) (10.63)

and the effective initial heating depth

τ(t) [s] = M

(
P

at

) 1

n+ 1 . (10.64)

Here, ξ1 and M are dimensionless constants while a ≈ 4.7 10−14 cm2.s−1.K−5/2 for the electron thermal

conductivity (CV = 6.2 107 erg.K−1.cm−3 and ln Λei = 3) and a ≈ 8.5 10−29 cm2.s−1.K−5 for the

radiation thermal conductivity assuming

κrad =
16σSBλRT

3

3
(10.65)

and the Rosseland mean free path for Hydrogen-like plasmas

λR ≈ 8.7 106 T 2

Z∗2ni
(10.66)

according to [Eliezer, 2002]. By looking for the function F such that

T (x, t) = τ(t).F

(
x

xf (t)

)
(10.67)

is solution of (10.3), we find according to [Barenblatt and Zel’dovich, 1957]

F (ξ) = ξ1/(n+1)
(

1− ξ(n+2)/(n+1)
)
, (10.68)

M =

[
n

2(n+ 2)

]1/n

≈

{
0.599 if n = 5/2

0.814 if n = 5
(10.69)

and

ξ0 = (n+ 2)1/2

{
2

n

[
(n+ 1)B

(
1 +

1

n
,
n+ 1

n+ 2
+ 1

)]−n} 1

2(n+ 1)
≈

{
1.918 if n = 5/2

1.680 if n = 5
. (10.70)

The dipole-type solution is illustrated in Figure 10.8.

Knowing the temperature profile, let us now estimate the target depth and the time at which

the blast wave is generated. A criterion called hydrodynamic separation consists in estimating the

time needed for compression waves to ”overshoot” the thermal wave front. According to Equation

(10.6) that describes the propagation of compression waves, we estimate the propagation velocity of
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Figure 10.8: (Left panel) Dipole-type solution profile for the heat equation at 10 ps. (Right panel)
Plots of the thermal wave front and compression wave velocities versus time.

compression waves that propagate towards the target rear side as

cs(t) ≈

√
Z∗kB〈T 〉(t)

mi
(10.71)

where

〈T 〉(t) = τ(t)
n

n+ 2
(10.72)

is the mean temperature in the dipole-type profile illustrated in Figure 10.8. Then, by equating the

compression wave velocity at the steepening time with the thermal wave front velocity

cs(ts) ≈
dxf
dt

(ts) =
xf (ts)

2(n+ 1)ts
, (10.73)

we obtain

ts ≈
(

ξ1
2(n+ 2)

4Mn(n+ 1)2 .
mi

Z∗kBP

)(n+1)/2n

(aPn)1/n

≈


16

(
Tm

400 eV

)3/10 (
d0

5µm

)3/5

ps if n = 5/2

16

(
Tm

400 eV

)3/5 (
d0

5µm

)6/5

ps if n = 5

.

(10.74)

Knowing the steepening time, we can also estimate the steepening depth as the thermal wave front

position at the steepening time ts. It reads

xs ≈ xf (ts)

≈


7

(
Tm

400 eV

)2/5 (
d0

5µm

)4/5

µm if n = 5/2

10

(
Tm

400 eV

)9/20 (
d0

5µm

)9/10

µm if n = 5

.
(10.75)

Page 329



10.2. BLAST WAVE GENERATION IN SOLID TARGETS BY THE QUASI-ISOCHORIC
HEATING BY LASER-GENERATED ELECTRON BEAM

This expression explains why a strong increase in visible light emission has been observed experimen-

tally for the thickest target and not for the thinnest target. This is due to the fact that the thin target

does not have a the sufficient thickness to allow for the blast wave generation. Interestingly, we obtain

the same steepening time of 16 ps in both regimes of thermal conduction for the set of parameters

corresponding to the experiment. However, the compression waves steepening depth is slightly larger

in the case of radiation thermal transport. Since the heat transport regime changes with depth, we

estimate between 7 and 10 µm the value of the steepening depth.

We have demonstrated analytically that the target temperature gradients, due to the isochoric

and instantaneous target heating by the laser-generated fast electrons, may be responsible for the

generation of a blast wave in the thicker target. The blast wave breakout at the target rear side is

in turn responsible for a rapid increase of the temperature at the target rear side. It thus increases

the visible light emission from the target rear side that has been observed in the experiment. Let us

estimate now the time tbo needed for the blast wave to reach the target rear side. By estimating the

energy released in the target, responsible for the blast wave generation as

E0 =

∫ ∞
0

2πrdr

∫ Lx

0
dxCV T (x, t = 0) exp

[
−4 ln 2

( r

∆r

)2
]
≈ 16 mJ (10.76)

with ∆r = 10µm according to the hybrid simulation results (see log10 (Te) in Figure 9.13) but

assuming an axisymmetry for simplicity, we may estimate tbo according to the Sedov law (10.14) with

γ = 5/3. It reads

tbo = ts +

(
Lx − xs
ξ0

)5/2( ρ0

E0

)1/2

≈

{
174 ps if n = 5/2

93 ps if n = 5/2
. (10.77)

We thus obtain the same order of magnitude of a few hundreds of ps as observed in the experiment

for the thicker target. The target rear side temperature of ≈ 10 eV that drives a rarefaction wave

may explain the discrepancy between the analytical estimate and the experiment as we are going to

explain in the next section. For example, if we conduct the same estimate with Lx = 19µm instead

of Lx − xs, we obtain tb0 = 514 ps.

10.2.2 Radiation Hydrodynamic Simulations

We have performed hydrodynamic simulations with the hydrodynamic code CHIC, which described

the radiative transfer in the diffusive approximation and the visible light emission at λ = 405 nm

from the target rear side. Opacities were computed according to the approximate method proposed

by [Tsakiris and Eidmann, 1987]. The blast wave was generated with or without accounting for the

radiation thermal conduction, confirming the results obtained in section 10.2.1. In order to account

for the 3-dimensional effects of the blast wave propagation, the simulations are conducted in the 2D-
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Figure 10.9: Comparison between the temperature profile obtained with the hybrid PIC simulation
conducted by [Gremillet, 2012] and the initialization of the Radiation Hydrodynamic
simulation for the thinner and thicker targets with the Copper traer layer at z = 1µm.

axisymetric geometry. The initial temperature profile was deduced from the graph in the left panel of

Figure 10.9 in agreement with the simulation results obtained by [Gremillet, 2012] with the hybrid

PIC code PaRIS. The longitudinal profile of the fast electron transport energy deposition was obtained

by projecting into the axisymmetric geometry of the hydrodynamic codethe energy deposition along

the main direction of fast electron propagation in the M1 simulation, Lx = Lz/ cos(25◦). The radial

profile ∆r0 at x = 0 is the same as in Equation (10.76). However, in order to model the effects of the

departure from axisymetry of the target around the fast electron propagation direction, the FWHM

was decreased with the target depth as ∆r = ∆r0 − 6(x cos (25◦)/19µm).

Figure 10.10: Distribution of the plasma temperature and pressure at t = 60 (Left panel) and 600
ps (Right panel).

The initial 2D map of the temperature and the pressure are plotted in the right panel of Figure

10.9. The pressure rises up to 400 Mbar over the first micron. Snaphots of the plasma density,

temperature and pressure at t = 39, 239 ps, 499 and 1000 ps are illustrated in Figure 10.10 for the

thinner target and in Figure 10.11 for the thicker target. We can see that the high temperature
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and pressure produce a rapid plasma expansion in vacuum at the target boundaries. At the laser-

irradiated side of the target, the temperature is much higher so that the expansion is stronger and a

rapid decrease of the temperature corresponds well to our theoretical model (10.60). The gradients of

the temperature and the pressure drive both a thermal wave and a compression wave inside the target.

The thermal wave front is caught up by the compression wave for the thicker target, producing a blast

wave. It is not the case for the thinner target, which simply explodes. A shock is formed at a depth

of xs ≈ 10µm (in agreement with our theoretical predictions) at a time between 20 and 60 ps for the

thicker target. It is not evident to distinguish between the expansion of the Copper tracer layer in the

rear side Aluminum layer and the shock front at these times. The pressure at the shock front is ≈ 50

Mbar at 60 ps as illustrated in the left panel of Figure 10.10 and decreases with time, as illustrated

in Figure 10.12. The downstream plasma temperature behind it is more or less homogeneous and

on the level of T ≈ 50 eV. We can see that the plasma expansion at the target rear side drives a

rarefaction wave that decreases strongly the blast wave strength on-axis. As a result, we deduce that

the increase of visible light observed experimentally is mainly due to the blast wave front breakout far

away from the fast electron propagation axis. It may also explain why using Lx = 19µm in (10.77)

instead of Lx − xs allows for a better agreement with the experimental observations.
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Figure 10.11: Distributions of the target density ρ (Left), temperature T (Middle) and pressure P
(Right) from the CHIC simulation at t = 39, 239, 499 and 979 ps for the 5-microns
thick target.
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Figure 10.12: Distributions of the target density ρ (Left) and temperature Te (Middle) and pressure
P (Right) from the CHIC simulation at t = 39, 239, 499 and 1000 ps for the 19-microns
thick target.
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Figure 10.13: (Left panel) Comparison between the experimental signals and the simulation results
for both targets. (Right panel) Streak camera-like images from the CHIC simulation
for the thicker target.

The chronometry of the shock breakout at Lz = 19µm (the rear surface) is shown in the right

panel of Figure 10.13. In order to make a comparison with the experimental SOP image as illus-

trated in Figure 10.7 b), we convolve the signal obtained numerically by the Gaussian function in

time with a FWHM of 20 ps and in space with a FWHM of 20 µm. The resulting signal obtained

in the hydrodynamic simulation is renormalized by the value of the maximum emission obtained ex-

perimentally for the thinner target. The signals summed over the y-axis are plotted versus time in

the left panel of Figure 10.13. At tbo ≈ 600 ps, we observe a large increase by a factor ≈ 10 of the

visible light emitted from the thicker target. It can be directly compared with the simulation result

conducted for the thinner target where no such increase of temperature occurs.

As a conclusion, the hydrodynamic simulations confirm the explanation given in section 9.2.1

concerning the generation of a blast wave in the thicker target due to the large temperature gradients

induced by the laser energy deposition. When the the blast wave arrives at the target rear side, the

temperature increases by a factor ≈ 6 and the emission of visible light is enhanced. No blast wave is

generated in the thinner target due to the absence of hydrodynamic separation.
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Conclusion

”We need science education to produce scientists, but we need it equally to create literacy in the

public. Man has a fundamental urge to comprehend the world about him, and science gives today the

only world picture which we can consider as valid. It gives an understanding of the inside of the

atom and of the whole universe, or the peculiar properties of the chemical substances and of the

manner in which genes duplicate in biology. An educated layman can, of course, not contribute to

science, but can enjoy and participate in many scientific discoveries which as constantly made. Such

participation was quite common in the 19th century, but has unhappily declined. Literacy in science

will enrich a person’s life.”

Hans Bethe
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The goal of this PhD thesis was to develop a new reduced 3D-3V hybrid relativistic Vlasov-Fokker-

Planck model, which must be as accurate and as time efficient as possible for the study of fast electron

transport in solids and dense plasmas in the context of ICF. For this, we have linearized the Belyaev-

Budker collision tensor by applying it to the study of laser-generated fast electron beam transport

in solids or dense plasmas, assuming a small momentum transfer in a collision. The production

of secondary electrons is neglected, assuming the residual energy of background electrons after a

collision with a beam electron is smaller than the exchanged momentum of a consecutive collision

with another beam electron. These assumptions allowed us to obtain a simpler Landau-like collision

operator. Moreover, it allowed us to relate the angular scattering collision frequency by colliding with

background particles (free electrons, bound electrons, screened free electrons/plasmons or ion nuclei)

to the corresponding stopping powers according to an Einstein-like relation, similar to the one obtained

for Brownian motion of particles. This allows us to obtain more accurate expressions compared to

the angular scattering theories usually used, by retaining all terms in the Moller relativistic Coulomb

logarithm instead of the relativistic generalization of Rutherford term, only. However, our model is

limited to low density beams nb � ne since the collisions of beam electrons with themselves and the

production of secondary electrons are neglected.

The analysis of existing numerical methods for solving the Vlasov-Fokker-Planck equation (V-F-P)

oriented our choice towards a hybrid and expanded ”Vlasov-Fokker-Planck” method. In order to make

numerical computations as fast as possible, we limited ourselves to the first two angular moments.

The ”hybrid” assumption consists in separating the beam electron population and the background

electron population. Contrary to the widely used P1 approximation, also usually called the ”diffusion

approximation”, our M1 model accounts for an arbitrary degree of anisotropy. The closure relation is

deduced from the Minerbo maximum angular entropy criterion depending on the anisotropy vector.

Such a closure is exact for fully isotropic local (in space and kinetic energy) angular distribution

function and for fully anisotropic local angular distribution function. While the first order expansion

reduces the information concerning the local angular distribution function, it provides a sufficient

accuracy for the laser-generated fast electron beam transport. Such a closure is fully justified in the

collisional limit. Besides, a comparison of the full kinetic and the M1 approach for the analysis of the

resitive filamentation instability shows that our model describes the instability growth rate with an

error of a few 10s of % in the case of collisionless fast electrons.

Our model assumes time scales greater than the electromagnetic neutralization time of the beam

and that the beam is not modified during its electromagnetic neutralization. This is a strong assump-

tion in the case of propagation through insulators since the ionization processes occur in this time

scale, implying additional energy losses of the electron beam that are omitted here. In our hybrid

model, the self-generated magnetic field verifies the diffusion equation with source terms depending

on the resistivity gradients, curls of the beam current and temperature-density crossed gradients while

the self-generated electric field is given by the quasi-static Ohm’s law. Thus, we have neglected the
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magnetization effects, the background electron viscosity, the collisional friction of the background elec-

trons due to collisions with beam electrons, the displacement current in the Maxwell-Ampere equation

(quasi-static approximation), the background electron inertia and we have considered the ideal gas

expression for the equation of state of background electrons. These assumptions are justified in the

case of laser-generated electron beam transport in dense targets. The self-generated electromagnetic

fields depend on the electrical resistivity of the material and its spatial gradients, which depend on the

electron and ion temperatures of the material. Thus, the electron temperature evolution needs to be

described self-consistently according to the electron heat equation. Also, the background ion heating

is described self-consistently according to a simplified heat equation. In our model, we neglect the

ion motion and the ion thermal conductivity, considering times scales smaller than 10-100s of ps. We

also proposed new expressions for the heat capacities, the electrical resistivity, the electron thermal

conductivity and the electron-ion coupling factor, allowing to describe metals from the solid state at

the room temperature ≈ 300 K through the liquid and Warm and Dense Matter (WDM) states to

the hot plasma state with temperatures ≈ 10 keV. The collisions of background free electrons with

d-band bound electrons are taken into account according to recent studies showing the importance of

this relaxation process.

The numerical schemes used for the solution of the M1 equations have been described. The M1

equations are computed with second order explicit schemes except for the fast electron collisional

slowing down, which is computed according to the 1st order downwind scheme. The advection terms

are computed according to the HLL schemes allowing to ensure a positive number of electrons and

a norm of the mean propagation vector less than 1. Implicit schemes have also been implemented

in order relax the CFL condition in case of fast electron transport in a very dense plasma. The

self-generated electromagnetic fields are computed according to 2nd order schemes except the self-

generated magnetic diffusion that is resolved semi-implicitely thanks to 2nd order discretizations and

a conjugated gradients algorithm. Finally, both heat equations are computed according to explicit

numerical schemes. The numerical schemes used to solve the equations of the model have been

validated thanks to a 2D-3V academic case of a monoenergetic and collimated fast electron beam

propagating in a warm and dense hydrogen plasma. Also, it allowed to demonstrate the major features

of the M1 approximation and to derive analytical expressions for the various quantities computed by

the code such as the fast electrons penetration-depth-to-the-range ratio due to their angular scattering.

A realistic simulation of a laser-generated fast electron beam transport in a thin Aluminum target

has been conducted and compared to a hybrid PIC simulation. It shows that the M1 approximation is

sufficiently accurate to reproduce the hybrid PIC simulation results. We have applied the model to the

study of the emission of Kα photons. The refluxing of fast electrons is accounted for by imposing the

specular reflection of fast electrons at the target-vacuum interfaces and adding a second population

in the M1 equations. The first one describes the laser-generated electron population propagating in

the laser direction, while the second one describes the counterpropagating fast electrons. The model
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of calculation of the emisssion of Kα photons is revised. The conclusion of this study are manyfold.

Firstly, we demonstrated that the numerical time step of the fast electron transport calculation may

be comparable to the K-hole lifetime in the case of Aluminum and Copper targets. Therefore, we

have implemented the K-shell hole dynamics in our model. Secondly, we demonstrated that the solid

state corrections must be taken into account. In particular, the electron-ion temperature equilibration

time and collisions of d-band with s-band electrons may affect the magnetic field distribution in

the Copper target. Thirdly, we confirmed with a simple analytical model, the result obtained by

[Sherlock et al., 2014] concerning the effect of the target electron inertia in the Ohm’s law and the

displacement current. Each laser-generated bunch of electrons, injected in the target at the laser

frequency or twice the laser frequency excites a weak field of background electron plasma waves.

Collisional damping of these plasma oscillations results in an additional target electron heating ,

which is not accounted for in hybrid models. Fourthly, we confirmed a strong contribution of refluxing

electrons in the Kα photon emission. The thinner the target is, the stronger the refluxing electrons

contribute to the Kα photon emission. Fifthly, we demonstrated significant differences between 2D

and 3D simulations, especially in what concerns the self-generated magnetic fields, the size of the Kα

emission zone and the local density of emitted photons. In particular, the size of the Kα emission

zone is underestimated in our calculations as compared to the experimental data. We analyzed the

assumptions of our model concerning the Kα emission that may explain this discrepancy. The photon

re-absorption may introduce an error of only ≈ 10 % in our computations. Another candidate is the

contribution of the secondary electrons. However, it seems to me that the main critical assumption in

our model is concerned with the specular reflection of fast electrons at the target-vacuum interfaces.

A simple estimate of the magnetic field generated by the ”fountain” effect indicates that these local

fields may significantly deviate the refluxed fast electrons, thus enhancing the Kα1 signal spotsize.

We coupled our reduced model for fast electron transport with a radiation hydrodynamic code

and investigated the generation of strong shock by energetic electron beam. One example concerns

the fast electron driven shock wave in dense plasmasin the shock ignition conditions. It confirms the

theoretical estimates by [Gus’kov et al., 2012] and shows a possibility to achieve Gbar shock pressures

in high density solid materials with the coupling efficiency up to 10 %. In contrast, we disapprove

another model developed by [Piriz et al., 2012] as the quasi-stationary assumption of that paper does

not agree with our numerical simulations. Another example concerns the excitation of a blast wave

with a femtosecond laser pulse. We have demonstrated analytically and numerically that a blast wave

is generated due to the temperature gradients induced by the laser-generated fast electron energy

deposition in the target tens of picoseconds after the end of the laser pulse. The analytical estimates

and hydrodynamic simulations showed a good agreement with the experimental data.

The hybrid model of fast electron transport developed in this thesis has been already used in

several other studies. More realistic simulations of the ablation pressure driven by an electron beam

in the context of shock ignition by [Nicoläı et al., 2014] show that an exponential electron energy
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spectrum and a more realistic target density profiles may reduce the ablation pressure and preheat

the target thus reducing the shock strength. The model have been applied by [Volpe et al., 2014]

for studies of the multiple pulse scheme proposed by [Robinson et al., 2008] [Scott et al., 2012] to

control the divergence of laser-generated electron beam in the context of fast ignition. It is shown

that a sequence of three ps laser pulses allows to improve the collimation of the beam at least by

a factor 2 compared to the double pulse scheme. Another series of simulations has been performed

for the understanding of a laser-generated transport experiment reported by [Vaisseau, 2014]. In this

experiment, a collimation of the fast electron beam in a planar Carbon target has been demonstrated

and explained with hybrid numerical simulations. Finally, we conducted estimates of the emission of

Kα photons in future PETAL laser pulse experiments for radiography applications. Simulations with

the M1 code have been compared with 3D Monte Carlo simulations conducted by [Boutoux, 2014]

with the codes GEANT4 [Agostinelli et al., 2003] and PENELOPE [Sempau et al., 1997].

The perspectives of this work are manyfold. Firstly, the wake field losses of modulated electron

beams may be implemented in the hybrid code. This will allow to resolve the laser-generated elec-

tron bunches and to implement the CTR diagnostic in the code. The secondary electrons and the

magnetic field generated at the target edges by the escaping electrons can also be taken into account.

However, these physical effects require resolving very small spatial scales of the order of the fast elec-

tron Larmor radius and, therefore, represent an important investment in terms of vectorization and

parallelization of codes. Also, it would be interesting to compute self-consistently the fast electron

and Kα photon transport in the target in order to account for opacity effects that are usually ne-

glected. Concerning the application of fast electron transport to the generation of shocks in ICF,

more realistic simulations must be conducted combining both laser-and-electron-generated shocks in

a convergent geometry. Concerning fast ignition, the interaction of the petawatt laser pulse with

the cone is still an intense field of research [Kemp et al., 2014]. The M1 model may be useful to

perform a parametric study of the target density and temperature conditions and the properties of

the ignitor electron beam. Different ways to collimate the fast electron beam can be also considered.

For example, simulations at the ignition scale of the fast ignition of fusion pellets with an engineered

cone-in-shell [Robinson and Schmitz, 2013] or with an external magnetic field [Fujioka S. et al., 2013]

can be performed with plasma magnetization and three-dimensional effects taken into account.

Page 341



Page 342



Part IV
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Chapter 12

Étude du transport d’Électrons

Rapides pour la Fusion par

Confinement Inertiel

”I do not know what I may appear to the world, but to myself I seem to have been only like a boy

playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a

prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.”

Isaac Newton
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Toutes les expériences et les observations menées jusqu’à aujourd’hui montrent qu’il existe une

quantité universelle qui est conservée au cours de toutes évolutions et/ou transformations de la matière

et des champs : l’Énergie. En d’autres termes, cela signifie que les lois de la Physique ne changent

pas au cours du temps. Tous les développements de la physique moderne sont liés à ce principe de

conservation de l’énergie et consiste en l’étude des différentes manières de convertir l’énergie existante

sous une forme donnée en une autre forme d’énergie. Par exemple, les réactions nucléaires de fission

de 0.01 g d’uranium fournissent approximativement 1 kWh (1 kWh = 3.6 MJ) d’énergie thermique

dans une centrale nucléaire. La même quantité d’énergie thermique peut être obtenue par combustion

d’approximativement 100 g de pétrole, de charbon ou de gaz (1 million de tonnes de pétrole ou

équivalent pétrole produit environ 4,4 TWh d’électricité dans une centrale électrique moderne), par

condensation de 1,6 kg de vapeur d’eau ou en capturant le rayonnement solaire sur un panneau d’une

surface de 1 m2 pendant une heure (l’intensité de la lumière du soleil sur la Terre est d’environ 0,1

W/cm2 lors d’une journée ensoleillée). 1 kWh représente aussi l’énergie potentielle gravitationnelle

de 3 tonnes d’eau chutant de plus de 100 m d’altitude dans une centrale hydroélectrique, l’énergie

cinétique de 20000 m3 d’air se déplaçant à une vitesse de 60 km/h poussant une pâle d’éolienne ou

encore l’énergie nécessaire pour un être humain de 65 kg pour grimper jusqu’à un sommet de montagne

situé à une altitude de 3000 m.

Depuis le XIXe siècle, la croissance exponentielle des connaissances technologiques et scientifiques,

rendue possible grâce à ce concept de conservation d’énergie, a conduit à une incroyable amélioration

de la qualité de vie de l’Homme sur Terre ainsi qu’une augmentation fulgurante de la population

mondiale. A titre d’exemple, il est frappant de constater la forte corrélation qu’il existe entre le

produit national brut d’un pays et la consommation en énergie de ses habitants à l’heure actuelle.

Cependant, la combustion de ressources fossiles tels que le pétrole, le gaz et le charbon qui est toujours

majoritairement utilisée aujourd’hui afin de produire de l’énergie. Ils représentent à eux seuls environ

90 % des ressources en énergie consommées dans le monde. Le nucléaire et l’énergie hydroélectrique ne

représentent que seulement 6 % de la consommation mondiale en énergie. Même si d’autres énergies

renouvelables tels que l’éolien, la combustion de biomasse ou de déchets, l’énergie solaire ou encore les

centrales géothermiques sont de plus en plus utilisés grâce aux subventions gouvernementales, leurs

contributions restent toutefois négligeables. Comme toute fonction continue positive partant de zéro et

arrivant à zéro, on peut montrer que l’extraction de chaque ressource naturelle terrestre atteindra tôt

ou tard un maximum à un moment donné de notre Histoire, puis diminuera jusqu’à ce que la ressource

ait totalement disparu de la surface de la Terre. On estime ainsi que nous disposons de 50 ans de

réserves en gaz et en pétrole ainsi que d’environ 100 ans de réserves en charbon avant d’avoir consommé

tout ce qu’il en reste sur Terre. Ces évaluations sont probablement sous-estimées pour des raisons

financières. Cependant, elles sont fondées sur des données datant de 2013 concernant le nombre d’être

humains sur Terre alors que l’on s’attend à être plus de 11 milliards en 2100 (par rapport à environ 7,1

milliards en 2013). En outre, cette forte croissance démographique devrait se produire dans les pays où

les demandes en ressources naturelles seront les plus élevés. On comprend donc facilement que, si nous
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ne trouvons pas d’alternatives, le coût financier de notre consommation en charbon, gaz ou pétrole

sera en perpétuelle augmentation jusqu’à ce que chacune de ces ressources disparaissent. Même si

l’utilisation de centrales nucléaires reste à l’heure actuelle la solution la plus efficace et la moins nocive

pour l’environnement, on peut s’attendre à ce que la politique des gouvernements tende à limiter leur

utilisation en raison de la grande durée de vie des déchets radioactifs qu’elles produisent ainsi que

l’opposition croissante du public à son utilisation en raison des catastrophes telles que Fukushima en

2011, Tchernobyl en 1986 ou encore Three Mile Island en 1979.

Depuis 1965, l’ émission de dioxyde de carbone dans notre atmosphère, connue pour être l’un

des principaux facteurs responsables de l’effet de serre et donc de l’augmentation de la température

moyenne sur Terre, est passé d’environ 3500 kg/an/habitant à environ 5000 kg/an/habitant au-

jourd’hui. Par conséquent, même si l’hydroélectricité reste le moyen le plus efficace pour produire

de l’énergie parmi les méthodes les plus écologiques, son utilisation sera également affectée par les

sécheresses induites par cette augmentation de température. Par exemple, l’Europe devrait perdre

entre 20 et 30 % de ces précipitations d’ici à 2100 conduisant ainsi à une efficacité de production hy-

droélectrique beaucoup plus faible (La majorité des centrales hydroélectriques européennes ne fonction-

nent déjà pas très bien en été). Enfin, d’autres ’énergies renouvelables’, comme les centrales éoliennes

ou les panneaux photovoltäıques sont insuffisantes pour satisfaire la demande mondiale et en partic-

ulier la demande industrielle. En conclusion, l’humanité va faire face au XXIe siècle à d’importantes

pénuries d’énergie si nous ne trouvons pas d’alternatives pour la production d’énergie (ou si nous ne

réduisons pas notre consommation; ce qui suppose une prise de conscience collective pour contrôler

l’insatiable désir de consommation imposé par nos sociétés pour des raisons économiques).

Dans les années 1950, l’idée de contrôler la combustion thermonucléaire d’atomes légers pour pro-

duire de l’énergie est née peu de temps après le développement par H. Bethe d’un modèle théorique

de réactions de fusion permettant d’expliquer la conversion de l’énergie de liaison nucléaire en chaleur

dans les Étoiles. Dès lors, ”reproduire l’énergie des Étoiles sur Terre” est devenu le rêve de nom-

breux physiciens et semble être aujourd’hui une solution prometteuse pour résoudre le problème de

la production et de la consommation de l’énergie dans le monde au XXIe siècle. Cependant, con-

trairement à la force gravitationnelle et à la force électromagnétique qui agissent sur des distances

potentiellement infinies, les deux autres forces nucléaires forte et faible agissent sur des distances sub-

atomiques minuscules et sont beaucoup plus difficiles d’accès avec la technologie actuelle. Selon la

théorie de l’Électromagnétisme, une énergie d’environ 1 MeV (1 eV = 1.6022 10−19 J) est nécessaire

afin de vaincre la barrière d’énergie Coulombienne d’un atome afin de le faire fusionner avec un autre.

En réalité, une énergie d’environ 10 keV est suffisante grâce à l’effet tunnel quantique découvert par

G. Gamow. La seule manière possible de produire de l’énergie grâce à de telles réactions de fusion

d’atomes légers consiste à créer un plasma thermonucléaire ayant des conditions de température et

de densité proche de celles de certaines Étoiles. Cela permettrait en effet d’atteindre des taux de

réaction de fusion nucléaire suffisamment élevés et donc des gains de conversion d’énergie élevés pour
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la production d’électricité. Cependant, en plus de ces contraintes de températures et de densités, la

réaction de fusion nucléaire choisie doit être exothermique. Pour cela, il faut donc que la réaction con-

somme des noyaux atomiques les plus légers possibles afin d’avoir à vaincre une barrière Coulombienne

moins énergétique. Aussi, la section efficace de la réaction de fusion (ou probabilité de réaction de

fusion) doit être la plus grande possible. Cela implique par conséquent une réaction nucléaire consom-

mant seulement deux noyaux, conservant le nombre de protons et de neutrons afin de limiter la force

nucléaire faible et, enfin, produisant au moins un neutron en plus du noyau plus lourd produit afin de

chauffer le liquide caloporteur circulant dans la couverture de la chambre de la centrale, permettant

ainsi de chauffer de l’eau pour la production d’électricité à l’aide d’une turbine. 80 réactions de fusion

nucléaire satisfont à ces critères. Cependant, la réaction la plus probable compte tenu de la technologie

actuelle est la réaction de fusion des deux isotopes de l’atome d’Hydrogène

D + T→ He (3, 5 MeV) + n (14, 1 MeV)

en raison de l’existence d’un état intermédiaire résonant lors de la réaction. D’un point de vue

pratique concernant la production d’énergie électrique, il existe sur Terre une quantité quasi-infinie

de Deutérium (D) avec une concentration de 33 g par tonne d’eau de mer; C’est pour cette raison

que la production d’énergie par fusion d’un plasma de DT s’appelle l’énergie bleue. Le Tritium (T)

peut être produit directement dans la centrale à l’aide d’une seconde réaction de fusion entre les

neutrons (n), s’échappant du plasma thermonucléaire, et des noyaux de Lithium (Li), eux aussi très

abondants sur Terre, préalablement placés dans la couverture de la chambre de la centrale. Ainsi,

contrairement aux centrales nucléaires de fission préexistantes, qui utilisent des ressources limitées

comme l’Uranium, le Plutonium ou le Thorium, l’énergie bleue ne fait face à aucun problème de

limitation de ressources. En outre, la fusion d’un plasma thermonucléaire de DT ne présente aucun

risque d’ emballement des réactions en châıne et ne produit que des déchets radioactifs à courte durée

de vie (moins de 10 ans). En conclusion, une éventuelle centrale à fusion thermonucléaire aurait donc

tous les avantages des centrales à fission nucléaire sans ses inconvénients, c’est-à-dire, sans polluer

l’environnement, sans provoquer d’éventuelles catastrophes nucléaires ou encore sans problèmes liés à

la limitation des ressources terrestres. Seule la radioactivation éventuelle de matériaux environnant

peut poser problème.

Du fait du mouvement chaotique des particules chargées portées à de grandes températures T ≈ 10

keV (1 eV = 11600 K), un plasma thermonucléaire tend naturellement à s’expandre et il est difficile

de le maintenir confiné pendant le temps nécessaire τc avec une densité suffisamment élevée ne. En

effet, d’après le critère de J. Lawson, la température T ainsi que le temps de confinement τc d’un

plasma thermonucléaire sont reliés par la densité ne du plasma si on veut pouvoir extirper du plasma

plus d’énergie de fusion que d’énergie investie pour le créer et le maintenir confiné. Dans les Étoiles,

le confinement du plasma est accompli naturellement par l’attraction gravitationnelle de l’Étoile sur

elle-même. Par exemple, la masse du Soleil d’environ 1030 kg est suffisamment élevée pour attirer et
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comprimer le plasma stellaire à des densités pouvant aller jusqu’à ne ≈ 1032 /cm3 et des températures

de l’ordre de T ≈ 10 keV pendant toute sa durée de vie d’à peu près τc ≈ 10 milliards d’années. Du fait

que, dans un plasma, les particules sont chargées électriquement, les physiciens soviétiques I. Tamm et

A. Sakharov ont proposé dans les années 1950 l’idée d’utiliser de puissants champs magnétiques afin

de confiner le plasma thermonucléaire. Ce dispositif expérimental appelé tokamak se présente sous

la forme d’un tore. Il permet de confiner le plasma thermonucléaire grâce à un champ magnétique

toröıdal produit par des bobines magnétiques supraconductrices entourant le tore alors qu’un autre

champ magnétique polöıdal est créé par un courant électrique à l’intérieur du tore permettant ainsi

le chauffage du plasma. Le projet internationale ITER planifie la construction d’un tel dispositif sur

le site du CEA (Commissariat à l’Énergie Atomique et aux Énergies Alternatives) à Cadarache, en

France, d’ici quelques années.

La Fusion par Confinement Inertiel (FCI) est un autre moyen de produire et contrôler de l’énergie

de fusion thermonucléaire. Suivant cette approche, les conditions de densités extrêmes (jusqu’à 1000

g/cm3) sont obtenues grâce à la compression rapide d’une capsule sphérique solide de dimension

millimétrique remplie d’un mélange de D et de T gazeux et cryogénisé. La conversion de l’énergie

cinétique de l’implosion en énergie interne à la fin de la phase de compression entrâıne le chauffage

de la zone centrale, communément appelé ”point chaud”, jusqu’à une température T > 5 keV. Les

réactions de fusion du combustible de DT sont ainsi initiés en accord avec le critère de J. Lawson.

Contrairement à la Fusion par Confinement Magnétique (FCM), le plasma thermonucléaire est ici

confiné par l’inertie de sa propre masse et non grâce à des champs magnétiques extérieurs. En outre,

l’implosion des cibles ne dure que quelques nanosecondes. Par conséquent, cette approche entrâıne des

difficultés technologiques supplémentaires dues au taux de répétition du processus à 10 Hz, imposé

par la production continue d’électricité. Cependant, en atteignant des densités ne si élevées pendant

un temps de confinement τc si bref, l’approche FCI est beaucoup plus efficace en termes de gain de

production par rapport à la FCM qui, elle, vise à fusionner les isotopes de D et T à de faibles densités

ne mais sur des temps de confinement τc beaucoup plus longs. Les schémas FCI conventionnels

impliquent l’allumage d’un point chaud central de manière isobarique où le combustible de DT atteint

une température de T ≈ 7 keV et une densité surfacique ρ.R d’ environ 0,25 g/cm2, où R est le

rayon de la coquille solide, pendant un temps de confinement τc d’environ 40 ps. Afin d’atteindre

ces conditions extrêmes, de nombreuses impulsions laser nanosecondes représentant une énergie totale

de EL ≈ 1 MJ peuvent être utilisées afin d’irradier uniformément la coquille solide renfermant le

combustible de DT. L’irradiation de la coquille peut se faire directement avec les impulsions laser

(Attaque directe) ou par des rayons X produits par interaction laser-matière (Attaque indirecte).

Dans les deux cas, les couches externes du solide irradié sont ablatés par la lumière. Cette ablation

de matière entrâıne ensuite l’implosion de la cible par effet fusée, i.e. par conservation de la quantité

de mouvement. L’évolution temporelle des impulsions laser de Nuckolls-Kidder est choisie de telle

sorte que la pression d’ablation de la coquille génère une onde de choc suivie d’une succession continue

d’ondes de compression sphériques convergentes dans la cible. Au moment précis où les ondes de
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compression arrivent au même instant au niveau de la surface interne de la coquille, une onde de

choc est transmise dans le DT gazeux, tandis qu’une onde de raréfaction est réfléchit dans la coquille.

Lorsque cette dernière arrive à la surface d’ablation, la coquille est mise en vol et subit une forte

accélération centripète. Du fait de sa symétrie sphérique, la capsule implose et le combustible de

DT est alors comprimé à la densité souhaitée. La conversion de l’énergie cinétique de l’implosion

en énergie interne à la fin de la phase de compression entrâıne la création d’un point chaud central

isobare à la température voulue. Des réactions de fusion auto-entretenues entre les atomes de D et de

T sont alors initiées, générant une onde de combustion thermonucléaire sphérique divergente suivie

d’une détonation, qui brûle la partie dense du combustible dans la coquille. Le temps de confinement

tauc correspond à la durée de vie du point chaud centrale juste avant son explosion hydrodynamique.

Les processus de compression et de chauffage de la cible imposent de nombreuses contraintes sur la

rugosité et la symétrie sphérique des cibles ainsi que sur l’uniformité de l’irradiation par les impulsions

laser pour l’attaque directe ou du rayonnement X pour l’attaque indirecte.

Ces contraintes sont multifactorielles. Tout d’abord, les instabilités paramétriques liées à

l’interaction des impulsions lasers avec le plasma en expansion, appelé ”couronne”, peuvent réduire

l’efficacité de conversion de l’énergie laser en pression d’ablation de la coquille ainsi qu’entrâıner des

inhomogénéités de la surface d’ablation. D’autres part, la génération d’électrons rapides inhérent

à l’interaction laser-plasma dans la couronne entrâıne un préchauffage de la cible. Cela conduit

à l’augmentation de l’entropie de cette dernière et limite par conséquent la bonne compression du

combustible. Enfin, du fait d’une vitesse d’implosion élevée et de la non-uniformité de la surface

d’ablation, les instabilités hydrodynamiques peuvent briser la coquille pendant son implosion et en-

trâıner le mélange du combustible chaud avec le combustible froid. Afin de relaxer ces contraintes liées

à la compression et au chauffage simultanés du combustible, M. Tabak a proposé en 1994 de séparer la

phase de compression de la phase de chauffage. Dans ce schéma qualifié d’allumage rapide, la coquille

est implosée et le combustible est densifié de manière analogue aux schémas conventionnels de FCI.

Cependant, l’allumage des réactions de fusion est amorcé dans un second temps en focalisant une im-

pulsion laser relativiste sur la cible. L’impulsion laser relativiste génère alors un faisceau d’électrons

rapides qui va déposer son énergie en profondeur dans la partie plus dense du combustible juste à

la fin de la phase de compression, créant ainsi un point chaud latéral isochore. La densité centrale

requise est donc beaucoup plus faible (300 g/cm3 au lieu de 1000 g/cm3) que dans les schémas clas-

siques d’allumage et les contraintes sur la convergence de l’onde de choc, la vitesse et la symétrie de

l’implosion sont réduits. Notamment, la vitesse d’implosion étant plus faible, les contraintes imposées

sur la cible et les impulsions laser vis-à-vis des instabilités hydrodynamiques se retrouvent amoindries

et le risque de briser la coquille lors de l’implosion est réduit. Aussi, un faisceau d’électrons relativistes

accéléré par laser peut fournir un chauffage beaucoup plus efficace de la matière dense et des gains

beaucoup plus élevés peuvent être obtenus comparé aux scénarios classiques. En outre, la phase de

compression a besoin de beaucoup moins d’énergie (200 - 300 kJ) comparée aux schémas conven-

tionnels et le coût d’une éventuelle centrale à fusion thermonucléaire par allumage rapide serait donc
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plus faible. Toutefois, l’allumage rapide présente toujours de nombreux problèmes à résoudre. En

raison du fait que l’impulsion laser ultra-intense, utilisée pour générer le faisceau d’électrons, ne peut

pas pénétrer les zones de la couronne ayant une densité supérieure à la densité critique du plasma,

il est difficile de focaliser le faisceau d’électrons rapides d’allumage sur une toute petite zone de la

partie dense du combustible. De plus, il a été démontré expérimentalement et numériquement que les

faisceaux d’électrons relativistes accélérés par laser présentent nécessairement un angle de divergence

important. Depuis, de nombreuses méthodes ont alors été proposées pour tenter de collimater le fais-

ceaux d’électrons d’allumage. Cependant, de nombreuses expériences et simulations numériques sont

toujours nécessaires afin de pouvoir les confirmer et les valider.

Plus récemment en 2006, une autre méthode séparant les phases de compression et d’allumage du

combustible de DT a été proposé par R. Betti. Il s’agit du schéma d’allumage par choc qui consiste

à allumer un point chaud central à la fin de la phase de compression en générant un fort choc à

l’aide d’une pression d’ablation supérieure à 300 Mbar. En convergeant ensuite vers le centre de la

coquille en implosion, la force du choc va en augmentant. Lorsque ce dernier entre en collision avec

sa propre réflexion au centre de la coquille, le point chaud central est boosté, libérant ainsi l’énergie

de fusion thermonucléaire. Pour ce schéma d’allumage, des coquilles cryogéniques de grande masses

ainsi qu’une faible vitesse d’implosion et un faible adiabat (quantité physique mesurant l’entropie de

la cible) peuvent aussi être utilisés. Par conséquent, le combustible de DT atteint de grandes densités

surfaciques et permet d’atteindre l’allumage des réactions de fusion avec une énergie inférieure à

celle de l’allumage central isobarique conventionnel. Le choc d’ allumage peut être lancé par une

puissance laser compatible avec les lasers existants pour l’étude de la FCI comme le NIF (National

Ignition Facility) du LLNL (Lawrence Livermore National Laboratory) aux Etats-Unis d’Amérique ou

le LMJ (Laser MegaJoule) du CEA-Cesta près de Bordeaux, en France. Aussi, le gain thermonucléaire

obtenu par allumage par choc peut être significativement plus grand que dans le cas isobare classique

pour une énergie laser donnée. Enfin, vu qu’il implique des implosions de cible à faible vitesse de

même que pour l’allumage rapide, le schéma d’allumage par choc est aussi plus robuste en ce qui

concerne les instabilités hydrodynamiques au cours de l’accélération de la coquille. La puissance laser

nécessaire pour générer une pression d’ablation de 300 Mbar dépend du matériau de la coquille et

de ses dimensions. Néanmoins, elle peut être estimée à 120-200 TW. Cela représente une puissance

laser un ordre de grandeur inférieure à la puissance requise par l’impulsion laser d’allumage rapide.

Ainsi, contrairement à l’allumage rapide, l’allumage par choc présente l’avantage qu’il ne nécessite pas

d’installation laser de ultra forte puissance. Cependant, le couplage de l’impulsion laser d’allumage

avec la cible en implosion présente plusieurs problèmes toujours non résolus tels que les instabilités

paramétriques dans la couronne, les instabilités hydrodynamiques de la coquille et le rôle des électrons

rapides accélérés dans la couronne sur l’ablation de la coquille dans ce régime particulier d’interaction

laser-plasma.

Cette thèse s’inscrit directement dans ce contexte. Elle a en effet consisté à développer un nouveau
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modèle hybride 3D-3V de type ”Vlasov-Fokker-Planck” pour le transport d’électrons rapides accélérés

par laser. Afin de pouvoir étudier le transport de ces électrons dans des solides ou des plasmas denses du

même type que ceux de la FCI, le modèle devait être à la fois le plus précis et le plus économe en temps

de calcul possible. Pour cela, nous avons donc tout d’abord linéarisé le tenseur de collisions relativistes

de Belyaev-Budker en l’appliquant à l’étude du transport de faisceaux d’électrons relativistes accélérés

par laser dans des solides ou des plasmas denses. Dans ce cas, le transfert de quantité de mouvement

est supposé faible lors de chaque collision avec une particule cible du milieu dans lequel se propagent le

faisceau. De plus, la production d’électrons secondaires est négligée, supposant que l’énergie résiduelle

des électrons cibles après une collision avec un électron du faisceau est plus petite que l’énergie échangé

lors d’une collision consécutive avec un autre électron du faisceau. Ces hypothèses nous ont permis

d’obtenir un opérateur de collision relativiste plus simple et du même type que celui obtenu par L.

Landau dans le cas non relativiste. En outre, cela nous a permis de relier la fréquence de diffusion

angulaire des électrons du faisceau due à leurs collisions avec des électrons libres, des électrons liés,

des électrons libres écrantés (plasmons) ou des noyaux atomiques du milieu dans lequel se propage le

faisceau avec les pouvoirs d’arrêts correspondants selon une formule de type de celle obtenue par A.

Einstein lors de son étude du mouvement Brownien des particules. Ainsi, en conservant tous les termes

du logarithme Coulombien relativiste que l’on a déduit du pouvoir d’arrêt de C. Möller, nous avons

pu obtenir une équation cinétique relativiste plus précise que celle utilisée généralement ne prenant

en compte que le logarithme Coulombien de E. Rutherford. Cependant, notre modèle est limité à des

faisceaux de basse densité et nous avons négligé les collisions des électrons du faisceau entre eux.

L’analyse des méthodes numériques existantes pour résoudre l’équation Vlasov-Fokker-Planck

(VFP) obtenue a orienté notre choix vers un modèle de transport d’électrons relativistes hybride

basé sur la décomposition de la fonction de distribution en produits scalaires-tensoriels. Afin d’être

en mesure de résoudre numériquement les équations le plus rapidement possible, nous limitons cette

expansion angulaire au 1er ordre. Nous avons donc déduit les deux premières équations de la hiérarchie

des modèles aux moments angulaires MN en intégrant l’équation VFP sur la sphère unité de l’espace

des quantités de mouvement des électrons du faisceau. Contrairement à la décomposition strictement

équivalente de la fonction de distribution sur les harmoniques sphériques limitée au même ordre dans

le même espace, la densité du faisceau ainsi que sa densité de courant sont directement liées aux

moments angulaires de la fonction de distribution, solutions des équations M1. L’hypothèse ”hybride”

consiste à ne considérer dans l’ équation cinétique uniquement la population des électrons du faisceau

en introduisant une valeur d’énergie cinétique seuil ε ≥ εmin afin de les distinguer avec la population

d’électrons du milieu dans lequel se propage le faisceau ε < εmin. Contrairement à l’approximation

P1 couramment utilisée, aussi appelé ”approximation de la diffusion”, notre modèle M1 permet de

considérer des faisceaux se propageant de manière totalement anisotrope. En effet, la relation de

fermeture utilisée est obtenue en appliquant le critère de maximisation de l’entropie angulaire proposé

par G. N. Minerbo dans le cadre de la théorie du transport radiatif. Une telle fermeture est exacte pour

des distributions angulaires isotropes locales, i.e. à une position de l’espace, à un instant et pour une
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énergie cinétique des électrons donnés, ainsi que pour des distributions angulaires locales totalement

anisotropes. Un paramètre dépendant de la direction moyenne locale de propagation des électrons du

faisceau permet de relier ces deux régimes extrêmes. De manière évidente, le fait d’arrêter l’expansion

de la fonction de distribution du faisceau d’électrons à l’ordre 1 entrâıne nécessairement une perte

d’informations concernant la distribution angulaire locale des électrons du faisceau. Par conséquent,

nous avons dérivé l’équation d’évolution de l’entropie angulaire du faisceau afin d’étudier le critère que

nous avons choisi. Notre analyse montre que le critère de G. N. Minerbo est justifié pour le transport

de faisceaux d’électrons rapides accélérés par laser en raison de la diffusion angulaire des électrons

du faisceau et de la propagation anisotrope des électrons les plus énergetiques. En outre, l’étude

menée sur l’instabilité faisceau-plasma de filamentation résistive, pour laquelle il n’y a aucune raison

de maximiser localement l’entropie angulaire, montre que notre modèle décrit le taux de croissance de

l’instabilité avec une erreur de l’ordre de 10particulier d’un faisceau d’électrons monoénergétique.

Dans notre modèle, nous considérons des échelles de temps grandes devant le temps caractéristique

de la neutralisation électromagnétique du faisceau d’électrons. Par conséquent, de même que les autres

modèles hybrides, notre modèle suppose que le faisceau ne subit pas de modifications importantes

durant sa neutralisation en charge et en courant électriques. Ceci est une hypothèse grossière dans le

cas particulier du transport de faisceau d’électrons accélérés par laser dans des matériaux isolants du

fait des processus d’ionisation qui se produisent à cette échelle de temps et qui impliquent une perte en

énergie supplémentaire pour le faisceau. Dans notre modèle hybride, le champ magnétique auto-généré

par le faisceau vérifie l’équation de diffusion couramment utilisée avec les différents termes sources dus

aux gradients de résistivité électrique du milieu, au rotationnel du courant électrique du faisceau ainsi

qu’aux gradients croisés de température et de densité des électrons du milieu tandis que le champ

électrique auto-généré par le faisceau est donné par la loi d’Ohm quasi-statique classique. Ainsi,

nous avons négligé l’aimantation du milieu, la viscosité des électrons du milieu, leur friction sur les

électrons du faisceau, le courant de déplacement dans l’équation de Maxwell-Ampère (approximation

quasi-statique), l’inertie des électrons du milieu et nous avons considéré l’expression de la pression d’un

gaz parfait d’électrons. Ces hypothèses sont justifiées dans le cas du transport de faisceaux d’électrons

accélérés par laser dans des cibles denses ainsi que dans le cas où la fréquence cyclotron des électrons

du milieu est négligeable devant leur fréquence de collisions. Les champs électromagnétiques auto-

générés dépendent donc de la résistivité électrique du matériau dans lequel se propage le faisceau ainsi

que de ses gradients spatiaux. Ces derniers dépendent fortement de la température des électrons et

du réseau cristallin/ions du matériau. Par conséquent, l’évolution des températures électronique et

du réseau/ions du matériau sont aussi décrites de manière auto-cohérente suivant les équations bien

connues de la chaleur. Dans notre modèle, nous négligeons le mouvement des ions et la conductivité

thermique ionique, considérant des échelles de temps plus petites que la dizaine ou la centaine de

picosecondes. Par ailleurs, les équations de la chaleur résolues sont en accord avec les hypothèses

faites à l’égard des champs électromagnétiques auto-générés (pas de viscosités, aucune aimantation, pas

d’inertie et pas de friction sur les électrons du faisceau), sauf en ce qui concerne les dérivées temporelles
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de la température dans les équations de la chaleur qui, ici, ne sont pas négligées. Nous avons également

proposé de nouvelles expressions pour les capacités thermiques, la résistivité électrique, la conductivité

thermique électronique ainsi que le facteur de couplage des températures électronique et ionique, dans

le cas particulier des métaux. En effet, sous l’action de son chauffage par le faisceau d’ électrons

accélérés par l’impulsion laser, un métal initialement à l’état solide à température ambiante (≈ 300 K)

devient rapidement liquide avant de devenir un plasma avec des températures pouvant aller jusqu’à

plusieurs keV. Les collisions des électrons du matériau avec les vibrations (phonons) et les électrons

libres du réseau cristallin ainsi qu’avec les électrons liés aux atomes sont pris en compte, en accord

avec des études récentes montrant l’importance de ces processus de relaxation.

Les schémas numériques utilisés pour la résolution des équations M1 sont décrits en détail. Elles

sont résolues avec des schémas explicites du second ordre, sauf pour le terme d’advection en énergie dû

au ralentissement collisionnel des électrons rapides qui est résolu par le schéma d’advection décentré

d’ordre 1. Concernant les termes d’advection spatiale et d’advection en énergie dûs au champ électrique

auto-généré, nous avons utilisés les schémas HLL (A. Harten, P. Lax et B. Van Leer) permettant

d’assurer un nombre positif d’électrons et une norme du vecteur d’anisotropie (vecteur associé à la

direction moyenne locale de propagation des électrons) inférieure à l’unité. Des schémas implicites

ont également été développés pour les effets collisionnels afin de diminuer la contrainte sur le pas de

temps numérique imposée par la condition CFL (R. Courant, K. Friedrich et H. Lewy) dans le cas

d’un transport de faisceau d’électrons rapides dans des plasmas très denses. Les équations d’évolution

des champs électromagnétiques auto-générés sont résolues à l’aide de schémas explicites du second

ordre sauf en ce qui concerne le terme de diffusion magnétique qui est résolu semi-implicitement

grâce à une discrétisation de l’opérateur de diffusion au second ordre ainsi qu’à l’inversion de la

matrice de diffusion obtenue par la méthode des gradients conjugués. Enfin, les deux équations de

la chaleur sont discrétisées à l’aide de schémas numériques explicites du second ordre. L’ensemble

de ces schémas numériques utilisés pour résoudre les équations du modèle ont été validées grâce

à leur application à un cas d’école de transport de faisceau d’électrons rapides mono énergétique

et collimaté dans un plasma dense et tiède d’Hydrogène pour lequel nous avons pu déterminer des

solutions analytiques afin de les comparer aux différentes quantités physiques calculées par le code.

Par exemple, l’expression analytique de la distance de pénétration d’un électron relativiste dans un

plasma dense et tiède d’Hydrogène que nous avons trouvé reproduit bien les résultats de la simulation.

Dans un second temps, une simulation plus réaliste de transport d’électrons rapides accélérés par

laser dans une cible mince d’aluminium a été comparée à une simulation PIC (Particle-In-Cell) hybride.

Elle montre que le modèle M1 pour le transport de faisceaux d’électrons relativistes est suffisamment

précis pour reproduire les résultats de la simulation PIC hybride. Une fois le modèle théorique et

numérique validé, nous avons pu appliqué le modèle à l’étude de l’émission de photons Kα induit par

le transport d’électrons relativistes dans des cibles solides ou des plasmas denses. Lors des expériences

d’interaction laser-matière, ce processus est en effet souvent utilisé pour diagnostiquer le passage des
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électrons accélérés par le laser dans la cible irradiée. Dans notre modèle, la recirculation des électrons

rapides dans la cible est prise en compte en imposant la réflexion spéculaire des électrons rapides

au niveau des interfaces cible-vide ainsi qu’une seconde population d’électrons rapides décrite par un

second système d’équations M1. La première population décrit les électrons rapides se propageant

dans la direction de propagation de l’impulsion laser et la seconde population décrit les électrons

rapides se propageant en sens contraire, réaccélérés dans la cible par les forts champs électriques de

charge d’espace générés aux interfaces cible-vide lorsque la première population tente de s’échapper de

la cible. Le modèle de calcul de l’émission de photons Kα est ensuite révisé. Les conclusions de cette

étude sont multiples. Tout d’abord, nous avons montré que, dans le cas de cibles faites d’Aluminium ou

de Cuivre, le pas de temps numérique imposé par la résolution des équations du transport d’électrons

rapides peut être comparable à la durée de vie des absences électroniques ou ”trous” du niveau

d’énergie K des électrons atomiques, responsables de l’émission Kα. Par conséquent, nous avons pris

en compte dans notre modèle la dynamique des trous en couche K des atomes du solide irradié par

le laser. Deuxièmement, nous avons démontré que les propriétés du solide à basses températures

doivent être prises en compte. En particulier, le facteur de couplage entre la température électronique

et la température du réseau cristallin du solide ainsi que les collisions des électrons de la bande s

de conduction sur les électrons de la bande d sont susceptibles d’affecter la distribution des champs

magnétiques dans des cibles de Cuivre. En troisième lieu, nous avons confirmé, à l’aide un modèle

analytique simple, le résultat obtenu par M. Sherlock (2014) en ce qui concerne les effets de l’inertie des

électrons dans la loi d’Ohm ainsi que du courant de déplacement dans l’équation de Maxwell-Ampère

sur le chauffage de la cible. Les paquets d’électrons accélérés par l’impulsion laser son injectés dans la

cible à la fréquence du laser ou deux fois la fréquence du laser. Chaque paquet excite dans son sillage des

ondes plasma électroniques. L’amortissement de ces oscillations plasma du fait des collisions entrâıne

un chauffage supplémentaire des électrons de la cible qui n’est pas pris en compte dans les modèles

hybrides de transport électronique. Quatrièmement, nous avons confirmé une forte contribution de

la recirculation des électrons dans la cible sur la tâche d’émission de photons Kα. Plus la cible est

fine, plus la tâche d’émission Kα de la cible est contaminée par la recirculation des électrons. En

cinquième lieu, nous avons trouvé des différences significatives entre des simulations bidimensionnelles

et tridimensionnelles, en particulier en ce qui concerne les champs magnétiques auto-générés mais

aussi en ce qui concerne la taille de la tache d’émission Kα ainsi que la valeur absolue du nombre de

photons émis localement par unité de volume. Néanmoins, la taille de la tâche d’émission Kα obtenue

reste beaucoup plus petite que celle déduite des données expérimentales même dans la simulation

tridimensionnelle beaucoup plus réaliste. Nous avons donc analysé toutes les hypothèses de notre

modèle concernant l’émission de photons Kα afin de déterminer qu’est ce qui pourrait expliquer cette

différence. L’opacité de la cible peut introduire une erreur de seulement ≈ 10 % dans nos calculs. Une

autre possibilité serait que les électrons secondaires, négligés dans notre modèle, influent sur l’émission

Kα. Aussi, la forte augmentation de la température pourrait éventuellement jouer sur la physique

atomique de l’émission de photons Kα. Cependant, il me semble que l’hypothèse la plus critique dans
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le modèle est d’avoir supposé une réflexion spéculaire des électrons rapides au niveau des interfaces

cible-vide. En effet, une simple estimation du champ magnétique généré par l’effet ”fontaine” indique

que des champs magnétiques locaux générés au niveau des interfaces cible-vide peuvent dévier de

façon significative les électrons rapides réaccelerés dans la cible par les champs électriques de charge

d’espace, et peuvent donc être responsables d’un agrandissement de la taille de la tâche d’émission de

photons Kα.

Nous avons aussi couplé notre modèle réduit de transport d’électrons rapides avec un code La-

grangien d’hydrodynamique radiative. Cela nous a permis d’étudier la génération de choc par le

dépôt d’énergie d’un faisceau d’électrons rapides. Un exemple traite de la génération d’une onde de

choc dans un plasma dense d’Hydrogène dans les conditions typiques du schéma d’allumage par choc.

Il confirme les estimations théoriques établies par S. Gus’kov (2012) qui montrent qu’il est possible

d’atteindre des pressions de choc de l’ordre du Gbar par le dépôt d’énergie d’un faisceau d’électrons

rapides dans une cible dense avec une efficacité de couplage pouvant aller jusqu’à 10 %. Une autre

application concerne la génération d’une onde de choc avec une impulsion laser femtoseconde. Nous

avons démontré analytiquement et numériquement que les gradients de température induits dans une

cible solide par le dépôt d’énergie des électrons accélérés par une impulsion laser femtoseconde peut

générer une onde de choc dans la cible au bout de plusieurs dizaines de picosecondes, bien après la

fin du dépôt d’énergie par les électrons rapides. Les estimations analytiques ainsi que les simulations

hydrodynamiques sont en bon accord avec les données expérimentales.

Les perspectives de ce travail sont multiples. Tout d’abord, les pertes énergétiques du faisceau

d’électrons dues au champ de sillage d’ondes plasma électroniques doivent être pris en compte dans le

code. Cela permettrait de résoudre correctement la propagation des paquets d’électrons accélérés par

l’impulsion laser et de développer un diagnostic de l’émission CTR (Coherent Transition Radiation)

des électrons dans le code. En ce qui concerne l’émission de photons Kα, les électrons secondaires

ainsi le champ magnétique généré au niveau des bords de la cible doivent également être pris en

compte. Toutefois, ce dernier nécessite de résoudre les équations sur une très petite échelle spatiale

de l’ordre des rayons électroniques de Larmor et ce, sur des durées de l’ordre de la picoseconde et

sur des distances de l’ordre de la centaine de microns. Cela représente un investissement important

en termes de vectorisation et de parallélisation de codes. En outre, il serait intéressant de coupler de

manière auto- cohérente le transport des photons Kα émis avec le transport des électrons rapides afin

de prendre en compte l’opacité des cibles irradiées par impulsion laser. En ce qui concerne l’application

du transport des électrons rapides à la génération de chocs dans le contexte de l’allumage par choc, des

simulations plus réalistes doivent être menées combinant à la fois la génération de choc par ablation

laser et par dépôt d’électrons rapides accélérés par les instabilités paramétriques dans la couronne;

le tout dans une géométrie tridimensionnelle sphérique convergente. Concernant l’allumage rapide,

l’interaction de l’impulsion laser petawatt avec la cible est toujours un domaine intense de recherche

A. Kemp (2014). Le modèle M1 peut être utile pour effectuer une étude paramétrique des conditions
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de densité et de température optimales de la cible au moment de l’allumage ainsi que les propriétés

optimales du faisceau d’électrons lui-même. Par ailleurs, différentes méthodes ont déjà été proposées

afin de collimater le faisceau d’électrons rapides d’allumage. Par exemple, des simulations à l’échelle de

l’allumage rapide d’une cible de FCI avec un cône préalablement inséré dans la coquille et présentant

des gradients de résistivités du type de ceux proposés par A. Robinson (2013) ou encore avec un champ

magnétique externe comme proposé par S. Fujioka (2013) peuvent être réalisées en prenant en compte

l’aimantation de la cible ainsi que les effets tridimensionnels.
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Appendix A

Classical Plasma Kinetic Theory

”When you ask what are electrons and protons I ought to answer that this question is not a profitable

one to ask and does not really have a meaning. The important thing about electrons and protons is

not what they are but how they behave, how they move. I can describe the situation by comparing it

to the game of chess. In chess, we have various chessmen, kings, knights, pawns and so on. If you

ask what chessman is, the answer would be that it is a piece of wood, or a piece of ivory, or perhaps

just a sign written on paper, or anything whatever. It does not matter. Each chessman has a

characteristic way of moving and this is all that matters about it. The whole game os chess follows

from this way of moving the various chessmen.”

Paul A.M. Dirac
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A plasma is an ensemble of a large number of charged particles which are interacting collectively

though long distance Electromagnetic forces. In order to describe physical processes in plasmas,

one has to take into account the electromagnetic fields (E, B) generated by the charged particles.

According to the Electromagnetic Theory, they are described by the Maxwell’s equations

∂E

∂t
= c

∂

∂r
×B − 4πj ,

∂

∂r
.E = 4πρ,

∂B

∂t
= − c

∂

∂r
×E ,

∂

∂r
.B = 0.

(A.1)

where ρ is the plasma electric charge density and j the electric current density. In a quantum approach,

which is out of scope in this thesis, the electromagnetic fields are considered as an ensemble of photons

with quantized energy hν described by the Klein-Gordon equation for bosons.

The retroaction of these electromagnetic fields on the charged particles must be also resolved. For

a very diluted classical gas consisting of Ni ions and Ne = Z∗ni electrons, one can solve direcly the

dynamic equations for all N = Ni +Ne particles

dpα,n
dt

= qα

{
Eext (rα,n, t) + E (rα,n, t) +

vα,n
c
× [Bext (rα,n, t) + B (rα,n, t)]

}
drα,n
dt

= vα,n =
pα,n
γα,nmα

(A.2)

with given initial conditions pα,n(t = 0) = pα,n,0 and rα,n(t = 0) = rα,n,0 where rα,n and pα,n are the

position and the momentum at time t of the particle denoted by (α, n). Here, α = e for electrons, α = i

for ions and n ∈ [1..Nα]. Thus, the particle charges read qe = −e while qi = Z∗e. Also, it has been

noted γα,n =
√

1 + (pα,n/mαc)
2 the Lorentz factor of the particle (α, n) and vα,n its velocity. Finally,

(Eext, Bext) are eventual external electromagnetic fields. The plasma generated electromagnetic fields

(E, B) can be deduced by solving self-consistently the Maxwell’s equations (A.1) with the source

terms

j (r, t) = −e
Ne∑
n=1

ve,n(t)δ3 [r− re,n(t)] + Z∗e

Ni∑
n=1

vi,n(t)δ3 [r− ri,n(t)]

ρ (r, t) = −e
Ne∑
n=1

δ3 [r− re,n(t)] + Z∗e

Ni∑
n=1

δ3 [r− ri,n(t)] .

(A.3)

For example, in the static approch i.e. by neglecting the time delay terms in the Maxwell’s equations

(A.1), the electromagnetic fields read

E (r, t) = −∂Φ

∂r
(r, t)

B (r, t) = c
∂

∂r
×A (r, t)

(A.4)
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with

Φ (r, t) = −4πe

Ne∑
n=1

δ3 [r− re,n(t)]

|r− re,n(t)|
+ 4πZ∗e

Ni∑
m=1

δ3 [r− ri,n(t)]

|r− ri,n(t)|

and

A (r, t) = 4πe

Ne∑
n=1

ve,n(t)δ3 [r− re,n(t)]

c|r− re,n(t)|
− 4πZ∗e

Ni∑
n=1

vi,n(t)δ3 [r− ri,n(t)]

c|r− ri,n(t)|
.

In the Copenhagen quantum approach, electrons trajectories does not exist anymore and one has

to solve the Dirac equation for fermions, verified by the Ne-body wave function. Also, the electron

dynamics cannot be resolved without considering the electron antiparticles namely the positrons.

However, in the De Broglie-Bohm quantum approach, also usually called the pilot wave approach,

developped in the non relativistic case, one can solve Newton-like particle trajectory equations with a

quantum force depending on the Ne-boby wavefunction, which is a solution of the Schrodinger equation

[Bohm, 1952a] [Bohm, 1952b]. It can be done exactly with the same technique as one uses to solve

the Lorentz-equation depending on the electromagnetic field (respectively the wave function) which

are the solution of the Maxwell’s equations (respectively the Schrodinger equation). In this approach,

which is mathematically strictly equivalent to the Copenhagen approach, particles trajectories remains

true, r and p not being hidden variables [Bell et al., 1964]. This quantum approach is however out of

scope in this thesis and we will only consider the Classical and not Quantum Physics.

The resolution of the N -body problem could be the more accurate method for plasma studies.

However, it is impossible to solve it analytically and it can be done numerically only for a small number

of particles N = Ne + Ni. In the usual plasma physics cases of a very large number of Ne electrons

and Ni ions, one may adopt a statistical approach. In this case, the electron and ion populations are

described by the Nα-body distribution functions

fα,Nα = fα,Nα(r1, p1, ..., rn, pn, ..., rNα , pNα , t)

=

Nα∑
n=1

δ3 [rn − rα,n(t)] δ3 [pn − pα,n(t)]
(A.5)

where rn is the random variable for the position in space of the particle (α, n) and pn is the random

variable for its momentum.

This Appendix is dedicated to the Classical Plasma Kinetic Theory (without Relativistic effects),

allowing to estimate the distribution functions fα,Nα . For simplicity, we neglect external electromag-

netic fields and assume that the ions are immobile.
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A.1 BBGKY Hierarchy

A.1.1 Vlasov Equation

In a first attempt, let us neglect collisions between electrons and between electrons and ions. In this

particular case, one can assume that all electrons are independent. It follows from the Theory of

Probability that

fe,Ne(r1, p1, ..., rn, pn, ..., rNe , pNe , t) = Ne

Ne∏
n=1

f̂e,1(rn, pn, t) (A.6)

and the problem is reduced to study of the 1-body distribution function

fe,1 (r1, p1, t) = Nef̂e,1(rn, pn, t)

= Ne

Ne∏
n=2

∫
d3rn

∫
d3pnfe,Ne(r1, p1, r2, p2, ..., rn, pn, ..., rNe , pNe , t).

(A.7)

The 1-body electron distribution function fe,1(r, p, t) is the probable number of electrons per unit of

the phase-space infinitezimal volume d6V1 = d3rd3p located between (r, p) and (r + d3r, p + d3p)

with a given initial condition fe,1(t = 0). Indeed, since all electrons evolve in the same way according

to (A.6), it is sufficient to characterize their properties in the 6-dimensional phase space (r, p). By

assuming that the total number Ne of electrons is conserved in this 6-dimensional infinitezimal phase

space (no chemichal reactions, no quantum electrodynamic effects, no radiation losses, ...), one obtains

the Vlasov equation
dfe,1
dt

=
∂fe,1
∂t

+ v.
∂fe,1
∂r

+ F.
∂fe,1
∂p

= 0. (A.8)

Here, v = p/me is the the velocity random variable of the electrons and

F = −e
(
E +

v

c
×B

)
is the Lorentz force acting on the electrons deduced from the self-consitent Maxwell’s equation (A.1)

with the source terms

ρ = −e
∫
R3

fe,1 (r, p, t) d3p + Z∗eni

j = −e
∫
R3

fe,1 (r, p, t) vd3p + 0
(A.9)

where ni is the ion density. It can be shown that the Vlasov equation (A.8) remains true in the

relativistic regime [Weibel, 1967b]. The only difference is that, one has to account for the relativistic

relation between the velocity and momentum v = p/γme in (A.8) and (A.9) where γ =
√

1 + (p/mec)
2

is the Lorentz factor.
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A.1.2 Liouville Theorem

The Ne-body electron distribution function fe,Ne = fe,Ne(r1, p1, ..., rn, pn, , ..., rNe , pNe , t) is the

density of probabilty of all electrons in the the phase space infinitezimal volume d6NeV located

between (r1, p1, ..., rn, pn, , ..., rNe , pNe) and (r1 + d3r1, p1 + d3p1, ..., rn + d3rn, pn + d3pn,

..., rNe + d3rNe , pNe + d3pNe) with a given initial condition fe,Ne(t = 0). rn is the random posi-

tion variable of the electron denoted by n and pn its random momentum variable. Assuming the

conservation of the total number of particles, one has

∀t,
Ne∏
n=1

∫
d3rn

∫
d3pnfe,Ne(r1, p1, ..., rn, pn, ..., rNe , pNe , t) = 1. (A.10)

One can also consider that the 6Ne-dimensional infinitezimal phase space volume is incompressible.

Then, the conservation of Ne electrons between t and t+ dt in the infinitezimal phase-space volume

d6NeV =

Ne∏
n=1

d6Vn

where d6Vn = d3rnd
3pn leads to the Liouville equation

dfe,Ne
dt

=
∂fe,Ne
∂t

+

Ne∑
n=1

{
vn
∂fe,Ne
∂rn

+ Fn
∂fe,Ne
∂pn

}
= 0, (A.11)

which also describes the conservation of the number of particles but this time in the 6Ne-dimensional

phase space. Here, for all n ∈ [1..Ne], vn = pn/me is the the velocity random variable of the electron

n and

Fn = −e
(
E +

vn
c
×B

)
is the Lorentz force acting on the electron n deduced from (A.2). The Liouville theorem (A.11) means

that the electron Ne-body distribution function fe,Ne is constant along the electron trajectories (A.2)

expressed with the variables rn and pn.

A.1.3 BBGKY Hierarchy

In this section, we assume the static approximation (A.4) and neglect the magnetic force in order to

simplify the presentation. Equation (A.11) can be reduced to the to 6-dimensional phase space by

integrating it over 6(Ne − 1) phase coordinates i.e. over r2, p2, ..., rNe , pNe :

∂f1

∂t
+ v1.

∂f1

∂r1
= −

∫
d3r2

∫
d3p2

(
e2 r1 − r2

|r1 − r2|3

)
.
∂fe,2
∂p1

. (A.12)
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This equation depends on the 2-body distribution function

fe,2 (r1, p1, r2, p2, t)

= Ne (Ne − 1)

Ne∏
n=3

∫
d3rn

∫
d3pnfe,Ne(r1, p1, r2, p2, ..., rn, pn, ..., rNe , pNe , t).

(A.13)

The equation for this function can be obtained by integrating the Liouville Equation (A.11) over the

6(Ne − 2) phase coordinates. It reads

∂fe,2
∂t

+

[
v1.

∂

∂r1
+ v2.

∂

∂r2

]
(fe,2)

+

[(
e2 r1 − r2

|r1 − r2|3

)
.

(
∂

∂p1
− ∂

∂p2

)]
(fe,2)

= −
∫
d3r3

∫
d3p3

[(
e2 r1 − r3

|r1 − r3|3

)
.
∂

∂p1
+

(
e2 r2 − r3

|r2 − r3|3

)
.
∂

∂p2

]
(fe,3)

(A.14)

And one can continue that procedure until s = Ne − 1 with

∀s ∈ [3, Ne − 1], fe,s (r1, p1, ..., rs, ps, t)

=
Ne!

(Ne − s)!

Ne∏
n=s+1

∫
d3rn

∫
d3pnfe,Ne(r1, p1, r2, p2, ..., rn, pn, ..., rNe , pNe , t).

(A.15)

This chain of equations is called the BBGKY hierarchy (from the name of its founders N.N. Bo-

goliubov, M. Born, H.S. Green, J.G. Kirkwood and J. Yvon). It formally simplifies the Ne-body

problem by approaching the solution. In practice, it allows to evaluate the right hand side of Equation

(A.12) that accounts for collisions by evaluating the two-body distribution function fe,2 from Equation

(A.14).

A.1.4 Vlasov-Boltzmann Equation

In order to find an expression for the right hand side of Equation (A.12), we consider the BBGKY

hierarchy at the 1st order. Thus, one has to simplify the second order equation (A.14) to express the

right hand side of the first order equation of the hierarchy (A.12). Let us introduce the normalized

distribution functions f̂e,1 = fe,1/Ne and f̂e,2 = fe,2/Ne(Ne−1). If electrons 1 and 2 were independent,

one has f̂e,2(r1, p1, r2, p2, t) = f̂e,1(r1, p1, t)f̂e,1(r2, p2, t). The binary collisions between electrons 1

and 2 can be accounted for by the correlation function g2

f̂e,2(r1, p1, r2, p2, t) = f̂e,1(r1, p1, t)f̂e,1(r2, p2, t) + g2(r1, p1, r2, p2, t). (A.16)
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Obviously, g2 is particle-symmetric, i.e. it has the same values by permuting the two electrons. By

injecting (A.16) in the first order equation (A.12), we obtain

∂f̂e,1
∂t

+ v1.
∂f̂e,1
∂r1

+ F1.
∂f̂e,1
∂p1

=

(
∂f̂e,1
∂t

)
col

(A.17)

where

F1 = e
∂Φ

∂r1
(r1, t) =

∫
d3r2

∫
d3p2

(
e2 r1 − r2

|r1 − r2|3

)
fe,1(r2, p2, t)

is the Coulomb electrostatic force averaged over the momenta and positions of the electron 2 and(
∂f̂e,1
∂t

)
col

= − 1

Ne

∫
d3r2

∫
d3p2

(
e2 r1 − r2

|r1 − r2|3

)
.
∂g2

∂p1

is the collision integral that has to be estimated according to the second order Equation (A.14). In a

first attempt, we neglect the right hand side of Equation (A.14) accounting for 3-body correlations.

Also, assuming that f̂2 evolves in time mainly due to changes in f̂1, rather than to changes in the pair

correlations g2, we neglect the time derivative of f̂2 in (A.14) to get[
v1.

∂

∂r1
+ v2.

∂

∂r2

] [
f̂e,2

]
+

[(
e2 r1 − r2

|r1 − r2|3

)
.

(
∂

∂p1
− ∂

∂p2

)] [
f̂e,2

]
= 0. (A.18)

Again, by assuming that f̂2 evolves in space mainly due to changes in f̂1, rather than to changes

in the pair correlations g2, we neglect the space derivative of ĝ2 in the first term of (A.18). One

expects that f̂e,2 (r1, p1, re,2, p2, t) is varying slowly in the binary collision center of mass coordinates

R12 = (r1+r2)/2 while it exhibits fast variations over the relative coordinates r12 = r2−r1. Therefore,

(∂f̂e,2/∂r12) � (∂f̂e,2/∂R12) and (∂f̂e,2/∂r12) = (∂f̂e,2/∂r2) = −(∂f̂e,2/∂r1). Thus, by integrating

(A.18) over the positions r2 and momenta p2 of the electron 2, we make appearing the collision integral

of Equation (A.17)(
∂f̂e,1
∂t

)
col

= − 1

Ne

∫
d3r2

∫
d3p2

(
e2 r1 − r2

|r1 − r2|3

)
.
∂g2

∂p1

=
1

Ne

∫
d3p2

∫
d3r12 (v2 − v1) .

∂

∂r12
.
[
f̂e,1(r1, p1, t)f̂e,1(r2, p2, t)

] (A.19)

By renormalizing the distribution functions and performing the integration of this last equation,

introducing the differential cross section d2σ and the exchanged momentum ∆p in such a electron-

electron binary collision, we finally obtain the Boltzmann equation

∂fe,1
∂t

+ v1.
∂fe,1
∂r1

+ F1.
∂fe,1
∂p1

=

(
∂fe,1
∂t

)
col

(A.20)
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where the Boltzmann collision integral reads(
∂fe,1
∂t

)
col

= −
∫
d3p2

∫
d2σ |v2 − v1| .

[
fe,1 (r1, p1, t) fe,1 (r1, p2, t)

−fe,1 (r1, p1 −∆p, t) fe,1 (r1, p2 + ∆p, t)
] (A.21)

By generalizing this result to the electron-ion collisions and by taking into account all terms in the

one-body force F1 as in the Vlasov equation (A.8), we obtain the Vlasov-Boltzmann equation

∂fe,1
∂t

+
∂

∂r1
(v1fe,1)− ∂

∂p1

{
e
[
E (r1, t) +

v1

c
×B (r1, t)

]
fe,1

}
=

(
∂fe,1
∂t

)
col

= CB
ee [fe,1, fe,1] (r1, p1, t) + CB

ei [fe,1, fi,1] (r1, p1, t)
(A.22)

where

CB
ee [fe,1, fe,1] (r1, p1, t) = −

∫
R3

d3p2

∫
R3

d2σee |v2 − v1| .
[
fe,1 (r1, p1, t) fe,1 (r1, p2, t)

−fe,1 (r1, p1 −∆pee, t) fe,1 (r1, p2 + ∆pee, t)
]
,

(A.23)

is the electron-electron Boltzmann collision integral and

CB
ei [fe,1, fi,1] (r1, p1, t) = −

∫
R3

d3p2

∫
R3

d2σei |v1 − v2| .
[
fe,1 (r1, p1, t) fi,1 (r1, p2, t)

−fe,1 (r1, p1 −∆pei, t) fi,1 (r1, p2 + ∆pei, t)
] (A.24)

is the electron-ion Boltzmann collision integral. Similarly to the Vlasov equation (A.8), the elec-

tromagnetic fields (E, B) verify the Maxwell equations (A.1) with the plasma charge and current

densities

ρ (r, t) = −e
∫
R3

fe,1 (r, p1, t) d
3p1 + Z∗eni

j (r, t) = −e
∫
R3

fe,1 (r, p1, t) v1d
3pe,1 + 0.

(A.25)

A.1.5 Properties of the Boltzmann equation

Boltzmann integral invariants

Firstly, one can easily notice that for α = e or i,∫
R3

CB
αα [fα,1, fα,1] (r, pα,1, t) 1 d3pα,1 = 0∫

R3

CB
αα [fα,1, fα,1] (r, pα,1, t) pα,1 d3pα,1 = 0∫

R3

CB
αα [fα,1, fα,1] (r, pα,1, t)

pα,1
2

2mα
d3pα,1 = 0

(A.26)
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by doing the change of variables pα,1 −∆pαα → pα,1 and pα,2 + ∆pαα → pα,2 in the second double

integral ∫
d3pα,1

∫
R3

d3pα,2

∫
R3

d2σαα |vα,2 − vα,1| fα,1 (pα,1 −∆pαα) fα,1 (pα,2 + ∆pαα) A(pα,1)

=

∫
d3pα,1

∫
R3

d3pα,2

∫
R3

d2σαα |vα,2 − vα,1| fα,1 (pα,1) fα,1 (pα,2) A(pα,1 + ∆pαα)

where

A(pα,1) = 1, pα,1 or pα,1
2/2mα.

The case A(pα,1) = 1 is obvious because the double integral of the second term cancels directly

the double integral of the first term of (A.24) or (A.23). The demonstration for A(pα,1) = pα,1 and

A(pα,1) = pα,1
2/2mα is also evident. These three functions A(pα,1) are called the Boltzmann integral

invariants. These conservation properties come from the fact that each binary collision conserves

the number (1), momentum (pα,1) and kinetic energy pα,1
2/2mα of the particles. For the same

mathematical reasons, one can also show that∫
R3

CB
ei [fe,1, fi,1] (r, pe,1, t) 1 d3pe,1 =

∫
R3

CB
ie [fi,1, fe,1] (r, pi,1, t) 1 d3pi,1 = 0∫

R3

CB
ei [fe,1, fi,1] (r, pe,1, t) pe,1 d3pe,1 +

∫
R3

CB
ie [fi,1, fe,1] (r, pi,1, t) pi,1 d3pi,1 = 0∫

R3

CB
ei [fe,1, fi,1] (r, pe,1, t)

pe,1
2

2me
d3pe,1 +

∫
R3

CB
ie [fi,1, fe,1] (r, pi,1, t)

pi,1
2

2mi
d3pi,1 = 0

(A.27)

It was demonstrated that the Vlasov-Boltzmann equation has only these three integral invariants

[Decoster et al., 1997]. Thus, any other functions which is Boltzmann integral invariant, is a linear

combination of these three functions.

H-Theorem

The Boltzmann collision operator property is that for any A(pe,1)∫
R3

A(pe,1)CB
eα [fe,1, fα,1] d3pe,1

=
1

4

∫
R3

[A(pe,1) + A(pe,2)−A(pe,1 −∆peα)−A(pe,2 −∆peα)]CB
eα [fe,1, fα,1] d3pe,1.

(A.28)

This equality can be demonstrated similarly to the Boltzmann integrals by performing the change

of variables pe,1 − ∆peα → pe,1 and pα,2 + ∆peα → pα,2 in the integrals. Then, starting from the

Boltzmann equation (A.22), one can also show that the function defined as

H (re,1, t) = −
∫
R3

(fe,1 ln fe,1 − fe,1) d3pe,1 (A.29)
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is the solution of the equation

dH

dt
=
∂H

∂t
+

∂

∂re,1
.

[
−
∫
R3

ve,1 (fe,1 ln fe,1 − fe,1) d3pe,1

]
= −

∑
α=e,i

∫
R3

ln fe,1C
B
eα [fe,1, fα,1] d3pe,1

(A.30)

since for all µ ∈ [t, re,1, pe,1]

∂

∂µ
(fe,1 ln fe,1 − fe,1) =

∂fe,1
∂µ

ln fe,1.

According to (A.28), one gets so

dH

dt
=
∑
α=e,i

1

4

∫
R3

d3pα

∫
R3

d3pe

∫
d2σ |vα − ve| ln

(
fe(pe)fα(pα)

fe(pe −∆peα)fα(pα + ∆peα)

)
×
[
fe(pe)fα(pα)− fe(pe −∆peα)fα(pα + ∆peα)

] (A.31)

for which the subscript ”1” and ”2” have been omitted for brevity. Thus, if fe(pe)fα(pα) > fe(pe −
∆peα)fα(pα + ∆peα), the logarithm is positive and in the opposite case where it is negative, the

logarithm is also negative. As a conclusion, as Boltzmann has noticed, the function H so called the

plasma electrons Entropy is such that
dH

dt
≥ 0. (A.32)

This property is called the H-theorem and it is at the origin of the 2nd principle of Thermodynamics.

Maxwell-Boltzmann distribution function

According to the H-theorem (A.32), the entropy H of any closed system will asymptotically reach its

maximum value. Let us find the distribution function fM which maximizes the entropy H under the

constraints of the definition of the electron density

ne (r, t) =

∫
R3

fed
3pe, (A.33)

the mean electron flux

neue (r, t) =

∫
R3

feved
3pe. (A.34)

and the internal energy
3

2
nekBTe (r, t) =

∫
R3

fe
me(ve − ue)

2

2
d3pe. (A.35)

By following the standard procedure of maximization problems, one introduces the Lagrange multi-

pliers α0, α1 and α2 associated with these three constraints, respectively. Then, in order to find fM ,

one has to solve
dL

dfe
[fM] = 0 (A.36)
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where L is the Lagrangian of this maximization problem :

L[fe] = H[fe] + α0

(
ne −

∫
R3

fed
3pe

)
+ α1.

(
neue −

∫
R3

feved
3pe

)
+ α2

(
3

2
nekBTe −

∫
R3

fe
mev

2
e

2
d3pe

)
.

(A.37)

The solution of (A.36) is an exponential function

fM = exp

[
−
(
α0 +α1.ve + α2

meve
2

2

)]
. (A.38)

Injecting this expression in the definition of the electron density (A.33), the mean electron flux (A.34)

and the mean electron kinetic energy (A.35), one finds respectively

ne = exp

(
−α0 +

α1
2

2α2me

)
me

3

∫
R3

exp

[
−α2me

2

(
v +

α1

α2me

)2
]
d3ve

= exp

(
−α0 +

α1
2

2α2me

)
me

3

(
2π

α2me

)3/2

,

neue = exp

(
−α0 +

α1
2

2α2me

)
me

3

∫
R3

ve exp

[
−α2me

2

(
v +

α1

α2me

)2
]
d3ve

= exp

(
−α0 +

α1
2

2α2me

)
me

3

(
2π

α2me

)3/2(
− α1

α2me

)
and

3

2
nekBTe = exp

(
−α0 +

α1
2

2α2me

)
me

3

∫
R3

meve
2

2
exp

[
−α2me

2

(
v +

α1

α2me

)2
]
d3ve

= exp

(
−α0 +

α1
2

2α2me

)
me

3

(
2π

α2me

)3/2 3

2

1

α2

which provides

α2 =
1

kBTe
, α1 = −meue

kBTe
and exp (−α0) =

ne

(2πmekBTe)
3/2

exp

[
−meue

2

2kBTe

]
(A.39)

and consequently

fM (re, pe, t) =
ne (re, t)

(2πmekBTe)
3/2

exp

[
−me(ve − ue)

2

2kBTe

]
(A.40)

called the Maxwell-Boltzmann distribution function. It is the stationary solution of the Boltzmann

equation (A.22).
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A.2 Vlasov-Fokker-Plank-Landau Equation

A.2.1 Differential Rutherford Cross Section

Figure A.1: Elastic collision in the laboratory frame

Figure A.2: Corresponding elastic collision in the center of mass frame

Let us consider the binary Coulomb collision between a non-relativistic charged particle (1) of

mass m1 and a charge q1 moving with the velocity v1,i before t = 0 with the momentum p1,i and

a non-relativistic charged particle (2) of mass m2 and a charge q2 moving with the velocity v2,i

before t = 0 with the momentum p2,i in the laboratory frame. These particles collide at the time

t = 0 at the origine O. Let us note v1 or 2,f and p1 or 2,f their velocities and momenta after the

collision time t = 0. The system consisting of these two particles {(1) + (2)} interacting with each

other at t = 0 is equivalent to a system of one effective particle of mass µ = m1m2/(m1 + m2)

with a velocity vrel = v1 − v2, a momentum P = µvrel and a charge q1 interacting with a Coulomb

potential q2r/|r|3 located at the origine Ocom ≡ O in the center-of-mass frame moving at the velocity

vcom = (m1v1 +m2v2)/(m1 +m2). It has been noted r = r1 − r2. This equivalence follows from the

conservation of the energy and momentum of the system, which means that the center of mass motion

is not affected by the collision:

∀t, p∗1 = −p∗2 = P and ε∗1 = ε∗2 =
P2

2µ
=

1

2
µv2

rel (A.41)

Page 372



APPENDIX A. CLASSICAL PLASMA KINETIC THEORY

where it has been noted the values in the center of mass frame within the supscript ∗ (see Figure

A.2). According to the Newton’s law expressed in the center of mass frame, the momentum variation

of the fictitious particle reads

∆P = Pf −Pi =

∫ ∞
−∞

dP

dt
dt =

∫ ∞
−∞

q1q2r(t)

|r(t)|3
dt = ∆Pu. (A.42)

According to the law of conservation of angular momentum for a central force, one has necessarily

|µvrel × r| = µr2|dϕ/dt| = |b| where b is a constant vector called the impact parameter and ϕ(t) the

angle between the vector u and r(t) (see Figure A.3). It means that the binary collision occurs in

the 2D plane (Pi, b). By projecting (A.42) on the u-axis and by doing the change of variable t→ ϕ,

one gets
∆P

Pi
=
λL

b
cos

(
θ∗

2

)
(A.43)

where θ∗ is the angle between the momenta of the fictitious particle before (Pi) and after (Pf ) its

diffusion while

λL =
2q1q2

µv2
rel

(A.44)

is the Landau length i.e. the classical minimal distance between the fictitious particle and the diffusion

center. According to the law of energy conservation for the fictitious particle (A.41), |Pf | = |Pi+∆P|.
It leads consequently to

∆P

Pi
= 2 sin

(
θ∗

2

)
. (A.45)

Finally, due to the fact that u = cos (θ∗/2)b/b− sin (θ∗/2)Pi/Pi, one deduces from (A.43) and (A.45)

the variation of the momentum of the fictitious scattered particle

∆P

Pi
= −

(
∆P

Pi

)2 Pi

2Pi
+

(
∆P

Pi

)2 b

λL
where

∆P

Pi
=

2
λL

b√
4 +

(
λL

b

)2
(A.46)

and

b =
λL

2
cot

(
θ∗

2

)
. (A.47)

By definition, the number of particles dNdif scattered into the solid angle d2Ω∗ = dϕ∗ sin θ∗dθ∗ per

time dt is equal to the number of incident fictitious particles dNinc = n1 |v1,i − v2,i| d2Sdt. That

defines the differential cross section

d2σ =
d2σ

d2Ω∗
d2Ω∗ =

dNdif/dt

dNinc/dt/d2S
= dϕ∗bdb. (A.48)
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Thus, one deduces from (A.47)

d2σ

d2Ω∗
=

b

sin θ∗

∣∣∣∣ dbdθ∗
∣∣∣∣ =

(
λL

4

)2 1

sin4

(
θ∗

2

) (A.49)

called the Rutherford differential Coulomb collision cross-section. Coming back to the laboratory

frame, one finds the exchange momentum in the collision

∆p = p1,i − p1,f = p2,f − p2,i = ∆P

=
m1m2

m1 +m2
|v1,i − v2,i|

[
sin θ∗

b

b
− (1− cos θ∗)

v1,i − v2,i

|v1,i − v2,i|

]
.

(A.50)

A.2.2 Small-angle Collisions

Figure A.3: Schematic view of the diffusion of the fictitious particle of charge e and mass µ by the
Coulomb diffusion center qα .

According to (A.47) and (A.49), the effective cross section increases with the impact parameter.

This is a consequence of the long range electrostatic interaction. Therefore, one can neglect the

large angle binary collisions and account only for the collisions at large impact parameters b � λL.

Assuming so θ∗ → 0 in (A.46) and (A.50), one finds as far as the second order term

∆p =
memα

me +mα
|ve − vα|

[
λL

b

b

b
− 1

2

(
λL

b

)2 ve − vα
|ve − vα|

]
+ o

(
θ∗2
)

with
λL

b
� 1. (A.51)

Thus, under the small angle assumption, the change of momentum of the particles in the binary

collision ∆p is perpendicular to their relative velocity vrel = ve − vα and is small compared to the

initial momentum of the particles pe and pα. Applying this small angle assumption in the Boltzmann
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equation (A.22), one obtains

fe (pe) fα (pα)− fe (pe −∆p) fα (pα + ∆p)

= −
(

∆p(1) + ∆p(2)
)[ ∂

∂pe
− ∂

∂pα

]
(fe(pe)fα(pα))

− ∆p(1) ⊗∆p(1)

2
.

[
∂

∂pe
− ∂

∂pα

] [
∂

∂pe
− ∂

∂pα

]
(fe(pe)fα(pα)) + o

(
θ∗2
)
.

(A.52)

Here,

∆p(1) = µvrel
λL

b

b

b

is the first order term ∼ θ∗ of the exchanged momentum and

∆p(2) = −µvrel

2

(
λL

b

)2 vrel

vrel

is the second order term ∼ θ∗2. By noticing that

∂

∂pe
− ∂

∂pα
=

1

µ

∂

∂vrel
, (A.53)

expressing the differential cross section as d2σ = dϕ∗bdb and injecting the resulting Taylor expansion

(A.52) in the Coulomb collision operator of the Boltzmann equation (A.22), one obtains

CB
eα[fe, fα] =

∫
R3

d3pα

∫ 2π

0
dϕ∗

∫
bdb

vrel

[
∆p(1) + ∆p(2)

µ
.
∂

∂vrel
(fefα) +

∆p(1) ⊗∆p(1)

2µ2
.
∂

∂vrel
.
∂

∂vrel
(fefα)

]
.

(A.54)

Firstly, one has ∫
bdb

∫ 2π

0
dϕ∗∆p(1) =

∫
µvrel

λL

b

∫ 2π

0

b

b
dϕ∗bdb = 0

due to the axisymetry arount the vrel-axis of the binary collisions,∫
bdb

∫ 2π

0
dϕ∗∆p(2) = −

∫ 2π

0
dϕ∗

µvrel

2
λL

2 vrel

vrel

∫
db

b
= −2π

µ

2
λL

2vrel ln Λeα

where it has been noted ln Λeα =
∫
db/b the Coulomb logarithm which is discussed in the next section

A.3.3 and ∫
bdb

∫ 2π

0
dϕ∗∆p(1) ⊗∆p(1) =

∫
µ2vrel

2

(
λL

b

)2 ∫ 2π

0

b⊗ b

b2
dϕ∗bdb

=

∫
µ2vrel

2

(
λL

b

)2

π
vrel

2I− vrel ⊗ vrel

vrel
2

bdb

= πµ2λL
2
(
vrel

2I− vrel ⊗ vrel

)
ln Λeα.
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Secondly, noticing that
∂

∂vrel
.
vrel

2I− vrel ⊗ vrel

2vrel
3

= − vrel

vrel
3

(A.55)

where I is the unity tensor, the Boltzmann collision operator under the small angle assumption becomes

CB
eα[fe, fα] =

2πe2qα
2 ln Λeα
µ2

∫
R3

∂

∂vrel
.

[
vrel

2I− vrel ⊗ vrel

vrel
3

.
∂

∂vrel
(fefα)

]
d3pα. (A.56)

Finally, due to the fact that the distribution function fα and its derivatives tend to zero when |pα| →
±∞, one finally gets the Landau collision operator according to the relationship (A.53)

CL
eα[fe, fα] =

∂

∂pe
.

∫
R3

Ueα.

[
fα
∂fe
∂pe
− fe

∂fα
∂pα

]
d3pα (A.57)

with

Ueα = Ueα,0
|ve − vα|2I− (ve − vα)⊗ (ve − vα)

2|ve − vα|2
and Ueα,0 = 4π

e2qα
2 ln Λeα

|ve − vα|
(A.58)

which is called the Landau collision tensor. This expression has been derived using the Rutherford

differential cross section (A.49) but in the more general case,

Ueα,0 =

∫
d2σeα

∆p2

2
|ve − vα| . (A.59)

The structure of the Landau collision kernel Ueα is originated from the small angle assumption. By

integrating by part the second term in the integrand of the Landau collision operator (A.57), one can

write it using the fact that the distribution functions fe (and fα) as well as its derivatives tend to 0

when |pe| → ±∞ (respectively when |pα| → ±∞) as follows :

CL
eα[fe, fα] = − ∂

∂p
.

[
〈∆p〉α

∆t
fe −

〈∆p⊗∆p〉α
2∆t

.
∂fe
∂t

]
(A.60)

where the friction vector term can be written in the general case

〈∆p〉α
∆t

=

∫
R3

d3pαfα
∂

∂pα
.Ueα (A.61)

and the diffusion tensor term
〈∆p⊗∆p〉α

2∆t
=

∫
R3

d3pαfαUeα. (A.62)

Using the Rutherford differential cross section (A.49), it reads

〈∆p〉α
∆t

= −4π
e2qα

2 ln Λeα
mα

∫
R3

ve − vα

|ve − vα|3
fαd

3pα (A.63)

Page 376



APPENDIX A. CLASSICAL PLASMA KINETIC THEORY

and

〈∆p⊗∆p〉α
2∆t

= 4πe2qα
2 ln Λeα

∫
R3

|ve − vα|2I− (ve − vα)⊗ (ve − vα)

2|ve − vα|3
fαd

3pα. (A.64)

These friction and diffusion terms are also called the Spitzer-Chandrasekhar coefficients. The expres-

sion (A.60) is a Fokker-Planck-like expression verified by any Markovian stochastic process. Indeed,

as explained in [Chandrasekhar, 1943], the Landau collision operator (??) can also be derived assum-

ing that the distribution function fe(pe, t) is a stochastic process which does not depend at t = t0 on

its whole history t < t0 but only on the infinitezimal time interval t0−∆t with ∆t� t0 which however,

is sufficiently large compared to the time between two consecutive electron-α collisions (definition of

a Markovian stochastic process). In the textbook by [Balescu, 1963], a similar approach is presented

to derive (A.57) from the Boltzmann collision operator while [Landau and Lifshitz, 1981] derived it

by using physical considerations on the electron fluxes in the momentum space. Equation (A.57) can

also be derived from the Lenard-Balescu equation, as done in the textbook by [Decoster et al., 1997],

assuming the permittivity ε(k, ω) = 1 + (1/3k2λD
2) that takes into account electron plasma waves

with thermal corrections. The Landau collision integral can be extended to degenerate electrons by

replacing the Debye length λD by a more general expression evaluated in the Debye-Huckel theory

λD =

[
4πnee

2

kB
√
Te

2 + TF
2

+
4πni(Z

∗e)r

kBTi

]−1/2

. (A.65)

Here, the electron temperature Te has been replaced by
√
Te

2 + TF
2 [Lee and More, 1984] where

TF =
~2

2mekB

(
3π2ne

)2/3
(A.66)

is the Fermi temperature and Z∗ the ionization state which can be evaluated using the formula

Z∗ = g

(
Te

Z4/3
,
ρ

ZA

)
Z (A.67)

where g is an analytical fit of numerical Thomas-Fermi calculations provided by [More, 1985].

A.2.3 Coulomb Logarithm ln Λeα

The integral defined in the previous section as the Coulomb logarithm

ln Λeα =

∫ bmax

bmin

db

b

diverges at both the lower and upper boundaries of integration if bmin = 0 and bmax =∞. These limits

need to be defined separately. As the Landau collision operator (A.57) is valid only for small angle
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collisions θ∗ � 1 or b � λL according to (A.47), the low boundary has to be defined by bmin = λL.

Moreover, the Landau collision operator must be cut at the screening length bmax = λD. This also

explains why assuming kλD � 1 (k ∼ b−1), the Lenard-Balescu collision operator also allows to

describe this Debye screening effect. Thus, the Coulomb logarithm can be evaluated as

ln Λeα =

∫ λD

λL

db

b
= ln

(
λD

λL

)
.

This classical expression is valid only if the relative collision velocity is sufficiently small so that the

Landau length is larger than the effective De Broglie length

λDB =
~

2µvrel
(A.68)

(see Figure A.3). In this case, the lower limit must be chosen by bmin = λDB. This quantum limit

must be chosen for the electron energies larger than 10 eV. Concerning collisions of electrons on ions,

in the case of dense plasmas, the Debye-Huckel treatment of screening breaks down due to strong

ion-ion correlation effects. If the Debye length λD becomes less than interparticle distance

ri =

(
3

4πni

)1/3

, (A.69)

the screening length must be evaluated by ri [Lee and More, 1984]. The Coulomb logarithm depends

on the colliding particles velocities ve and vα. In a plasma at the thermal equilibrium, the particles

follow a Maxwell-Boltzmann distribution function and the effective lengths in the Coulomb logarithm

can be replaced by their average values
√

3kBTe/me. Finally, one can write the Coulomb logarithm

as ( the minimum value of 2 accounts for the non-ideal plasma effects)

ln Λeα = max

{
2,

1

2
ln

(
1 +

bmax
2

bmin
2

)}
(A.70)

where

bmax = max {ri, λD} and bmin = max
{
λL, λDB

}
with

λL =
2eqα

memα

me +mα

√
3kBTe
me

and λDB =
~

2
memα

me +mα

√
3kBTe
me

.
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A.2.4 Properties of the Landau equation

One can check that the Landau equation preserves the properties of the Boltzmann equation. The

functions 1, pα,1 and pα,1
2/2mα are still integral invariant i.e. for α = e or i,∫
R3

CL
αα [fα,1, fα,1] (r, pα,1, t) 1 d3pα,1 = 0∫

R3

CL
αα [fα,1, fα,1] (r, pα,1, t) pα,1 d3pα,1 = 0∫

R3

CL
α [fα,1, fα,1] (r, pα,1, t)

pα,1
2

2mα
d3pα,1 = 0

(A.71)

and ∫
R3

CL
ei [fe,1, fi,1] (r, pe,1, t) 1 d3pe,1 =

∫
R3

CL
ie [fi,1, fe,1] (r, pi,1, t) 1 d3pi,1 = 0∫

R3

CL
ei [fe,1, fi,1] (r, pe,1, t) pe,1 d3pe,1 +

∫
R3

CL
ie [fi,1, fe,1] (r, pi,1, t) pi,1 d3pi,1 = 0∫

R3

CL
ei [fe,1, fi,1] (r, pe,1, t)

pe,1
2

2me
d3pe,1 +

∫
R3

CL
ie [fi,1, fe,1] (r, pi,1, t)

pi,1
2

2mi
d3pi,1 = 0.

(A.72)

Secondly, one can show that if fe,1 is the solution of the Landau equation

∂fe,1
∂t

+
∂

∂re,1
(ve,1fe,1) +

∂

∂pe,1

{
e
[
Eext + Ep (re,1, t) +

ve,1
c
× (Bext + Bp (re,1, t))

]
fe,1

}
=

(
∂fe,1
∂t

)
coll

= CL
ee [fe,1, fe,1] (re,1, pe,1, t) + CL

ei [fe,1, fi,1] (re,1, pe,1, t) ,
(A.73)

thus, the entropy defined as

H (re,1, t) = −
∫
R3

(fe,1 ln fe,1 − fe,1) d3pe,1 (A.74)

verifies the H-theorem
dH

dt
≥ 0. (A.75)

Finally, it can be shown that the Maxwell-Boltzmann distribution, maximizing the entropy H,

fM (re, pe, t) =
ne (re, t)

(2πmekBTe)
3/2

exp

[
−me(ve − ue)

2

2kBTe

]
(A.76)

is still the stationary solution of the Landau equation (A.73).
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A.3 Simplified Forms of the Collision Integral

A.3.1 BGK Approximation

A simplified form of the collision term was proposed by P. L. Bhatnagar, E. P. Gross and M. Krook.

It reads (
∂fe,1
∂t

)
col

= −ν (fe,1 − fM) (A.77)

where ν is a velocity-dependent effective collision frequency which characterize the time needed by fe,1

to reach the maximum-entropy equilibrium distribution function fM [Bhatnagar et al., 1954]. This is

called the BGK approximation from the names of its founders. It describes the relaxation of the

distribution function to the Maxwell-Boltzmann distribution in agreement with the H-theorem. The

parameters in the function fM (A.40) are defined according to the conservation of the number of

particles, the total momentum and energy.

A.3.2 Lorentzian Plasmas

The Lorentz assumption concerns only the electron-ion collision term (??). Because of the large mass

ratio mi/me � 1, the friction term (A.61) is much smaller than the diffusion term (A.62). By assuming

that the distribution function of particles α is given by fα(r, pα, t) = nα(r, t)δ[pα], where δ is the

Dirac distribution, in order to account for only small α particle velocities, the diffusion term (A.62)

reads :
〈∆p⊗∆p〉α

2∆t
= νeα(ve)

|pe|2I− pe ⊗ pe
2

(A.78)

where

νeα(ve) = 4πnα
e2qα

2 ln Λeα

me
2|ve|3

. (A.79)

One can directly notice that the ratio of the two isotropization rates

νei
νee

=
Z∗ ln Λei

ln Λee
� 1. (A.80)

for material with Z∗ & 10 assuming ln Λei and ln Λee have approximatively the same order of magni-

tude. Thus, the omission of the electron-electron diffusion term compared to the electron-ion one is

fully justified for a plasma with Z∗ & 10 and the Lorentz approximation leads to(
∂fe
∂t

)
col

= νei(ve)|ve|3
∂

∂pe
.
|pe|2I− pe ⊗ pe

2|ve|3
.
∂fe
∂pe

=
νei(ve)

2

[
1

sin θe

∂

∂θe

(
sin θe

∂fe
∂θe

)
+

1

sin2 θe

∂2fe
∂ϕe2

] (A.81)

expressed in the spherical coordinates in the electron momentum space (pe, θe, ϕe).
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The Lorentz assumption neglects the electron-electron collisions and therefore describes only the

isotropization of the electron distribution function. The Lorentz approximation is particularly useful

for estimating the electron-ion collision friction expressed with the frequency νei averaged over the

whole electron velocty distribution function fe(ve). It is defined by the relation

−nemeνeiue = me

∫
R3

(
∂fe
∂t

)
col

ved
3pe (A.82)

where

neue =

∫
R3

feved
3pe

is the hydrodynamic electron flux. By injecting (A.81) in (A.82) and by assuming the electrons follow

the Maxwell-Boltzmann distribution function (A.40), we obtain

νei =
1

3

√
2

π
4πni

Z∗2e4 ln Λei
me

2vT,e3
(A.83)

where

vT,e =

√
kBTe
me

is the electron thermal velocity.
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Appendix B

Classical Plasma Hydrodynamic

Theory

”Classical thermodynamics ... is the only physical theory of universal content which I am convinced

... will never be overthrown. ”

Albert Einstein
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According to Appendix A, section A.2., plasma electrons can be described on the kinetic

scale according to the Vlasov-Fokker-Planck-Landau equation for the electron distribution function

fe = fe (r, p, t). It reads

∂fe
∂t

+
∂

∂r
. (vfe)−

∂

∂p
.
{
e
[
E (r, t) +

v

c
×B (r, t)

]
fe

}
=

(
∂fe
∂t

)
col

(B.1)

with (
∂fe
∂t

)
coll

= CL
ee [fe, fe] (r, p, t) + CL

ei [fe, fi] (r, p, t)

where for α = i or e,

CL
eα[fe, fα] (r, p, t) = − ∂

∂p
.

[
〈∆p〉α

∆t
fe −

〈∆p⊗∆p〉α
2∆t

.
∂fe
∂t

]
(B.2)

with
〈∆p〉α

∆t
= −4π

e2qα
2 ln Λeα
me

∫
R3

v − vα

|v − vα|3
fα (r, pα, t) d

3pα (B.3)

and

〈∆p⊗∆p〉α
2∆t

= 4πe2qα
2 ln Λeα

∫
R3

|v − vα|2I− (v − vα)⊗ (v − vα)

2|v − vα|3
fα (r, pα, t) d

3pα. (B.4)

According to the H-theorem (cf Appendix A, section A.1.5), there is a time t ∼ ν−1 needed for

the electrons and ions to reach the maximum entropy equilibrium where their distribution functions

are close to the Maxwell-Boltzmann distribution function

fα (r, pα, t) =
nα (r, t)

(2πmαkBTα)3/2
exp

[
−mα(vα − uα)2

2kBTα

]
. (B.5)

The kinetic time scale ν−1 can be estimated by the averaged electron-ion collision frequency (A.83)

ν ≈ νei =
1

3

√
2

π
4πni

Z∗2e4 ln Λei
me

2vT,e3
. (B.6)

Thus, the distribution function fe being assumed to be locally a Maxwell-Boltzmann distribution in

the considered time scales t � ν−1
ei , we only need to find the electron density ne, the mean electron

velocity ue and the electron temperature Te in order to fully characterize the electron distribution

function fe. This approximation is called the Local Thermodynamic Equilibrium.

This Appendix is dedicated to the Classical Plasma Hydrodynamic Theory (without Relativistic

effects) based on this Local Thermodynamic Equilibrium, quoted throughout this thesis. It also

presents the radiation hydrodynamic code CHIC that has been used in this work. For simplicity, we

neglect external electromagnetic fields (except in the derivation of the Spitzer, Lee-More or Braginskii

transport coefficients) and assume that the plasma consists of two species -electrons and ions.
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B.1 Two fluids Hydrodynamic Equations

B.1.1 Definitions

Knowing the distribution function fα = fα (r, pα, t) for the particles α, one defines the following

quantities

Name Notation Definition

Particles density nα (r, t)

∫
R3

fαd
3pα

Mean particles flux nαuα (r, t)

∫
R3

fαvαd
3pα

Mean particles kinetic energy Kα (r, t)
1

nα

∫
R3

fα
mev

2
α

2
d3pα

Internal kinetic energy Uα (r, t)

∫
R3

fα
me(vα − uα)2

2
d3pα

Particles temperature Tα (r, t)
mα

3kB

1

nα

∫
R3

fα(vα − uα)2d3pα

Mean particles momentum flux tensor Πα (r, t) mα

∫
R3

fαvα ⊗ vαd
3pα

Kinetic pressure tensor Pα (r, t) mα

∫
R3

fα (vα − uα)⊗ (vα − uα) d3pα

Scalar kinetic pressure Pα (r, t)
mα

3

∫
R3

fα(vα − uα)2d3pα

Kinetic energy flux Qα nα

∫
R3

fα
mαvα

2

2
vαd

3pα

Thermal energy flux qα

∫
R3

fα
mα(vα − uα)2

2
(vα − uα) d3pα

Under these definitions, one can relate the internal kinetic energy Uα with the mean particles

kinetic energy Kα, the mean particle velocity uα and the temperature Tα as follows

Uα (r, t) = nαKα − nα
mαu2

α

2
= CV,αTα (B.7)

where it has been noted CV,α = (3/2)nαkB the α particles thermal capacity. Also, the kinetic pressure

tensor Pα is related with the scalar kinetic pressure Pα, the temperature Tα and the viscosity tensor

τα = Πα − PαI− nαmαuα ⊗ uα (B.8)

as follows

Pα = PαI− τα (B.9)

with

Pα (r, t) =
1

3
Tr [Pα] = nαkBTe. (B.10)

The thermal energy flux qα can be related with the kinetic energy flux Qα, the mean particles velocity
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uα, the scalar pressure Pα and the viscosity tensor τα as follows

qα = Qα −
mαuα

2

2
nαuα −

5

2
Pαuα − τα.uα. (B.11)

B.1.2 Local Thermodynamic Equilibrium

By integrating (B.1) over the momentum space
∫
d3p, one gets the hydrodynamic particles conserva-

tion equation
∂ne
∂t

+
∂

∂r
. (neue) = 0 (B.12)

in agreement with the Landau collision integral property of the section A.3.4 of Appendix A∫
R3

CL
eα[fe, fα] (r, p, t) d3p = 0.

By integrating (B.1) multiplied by the particles momentum mev over the momentum space
∫
d3p v,

one gets the hydrodynamic particle momentum conservation equation

me

[
∂

∂t
(neue) +

∂

∂r
. (neue ⊗ ue)

]
= −nee

[
E +

ue
c
×B

]
− ∂

∂r
. (PeI− τ e) + Rei.

(B.13)

Indeed, according to the Landau collision integral property (see Appendix A, section A.2.4), one

has ∫
R3

vCL
ee[fe, fe] (r, p, t) d3p = 0.

Concerning electron-ion collisions, we define the friction force

Rei (r, t) =

∫
R3

mevC
L
ei[fe, fi] (r, p, t) d3p. (B.14)

By developing (B.13) and simplifying it using (B.12), one can also deduce the hydrodynamic electron

fluid velocity equation

mene

[
∂

∂t
+

(
ue.

∂

∂r

)]
(ue)

= −nee
[
E +

ue
c
×B

]
− ∂

∂r
. (PeI− τ e) + Rei.

(B.15)

By integrating (B.1) multiplied by the electron kinetic energy mev
2/2 over the momentum space∫

d3p (mev
2/2), one gets the hydrodynamic electron energy conservation equation

∂

∂t

(
1

2
nemeue

2 +
3

2
nekBTe

)
+

∂

∂r
.

[(
3

2
nekBTe +

1

2
nemeue

2

)
.ue

]
= − ∂

∂r
. [(PeI− τ e) .ue]−

∂

∂r
.qe − neeue.E +Wei

(B.16)
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Indeed, according to the Landau collision integral property (see Appendix A, section A.2.4), one

has ∫
R3

mev
2

2
CL
ee[fe, fe] (r, p, t) d3p = 0.

Concerning electron-ion collisions, we define the energy exchange rate

Wei (r, t) =

∫
R3

mev
2

2
CL
ei[fe, fi] (r, p, t) d3p. (B.17)

By substracting the work of the friction force, one gets the relation

Wei (r, t) = Qei + Rei.ue (B.18)

where

Qei (r, t) =

∫
R3

me(v − ue)
2

2
CL
ei[fe, fi] (r, p, t) d3p

is the thermal electron-ion equilibration power. By developing (B.16) and using the hydrodynamic

electron momentum conservation equation (B.13), one finds the electron hydrodynamic electron energy

equation in the form

ne

[
∂

∂t
+

(
ue.

∂

∂r

)](
1

2
meue

2 +
3

2
kBTe

)
= − ∂

∂r
. [(PeI− τ e) .ue]−

∂

∂r
.qe − neeE.ue + Rei.ue +Qei

(B.19)

By multiplying (B.15) by meue, one can find the hydrodynamic electron kinetic energy conservation

equation

ne

[
∂

∂t
+

(
ue.

∂

∂r

)](
1

2
meue

2

)
= −neeE.ue − ue.

∂

∂r
. (PeI− τ e) + Rei.ue.

(B.20)

Substracting (B.19) by (B.20), one gets the hydrodynamic electron internal energy equation

CV,e

[
∂

∂t
+

(
ue.

∂

∂r

)]
(Te) +

∂

∂r
.qe = −Pe

∂

∂r
.ue + τ e �

(
∂

∂r
⊗ ue

)
+Qei. (B.21)

By performing the same calculi for the ions starting from the Vlasov-Fokker-Planck-Landau equation

for the ion distribution function fi = fi (r, p, t), one gets respectively

∂ni
∂t

+
∂

∂r
. (niui) = 0, (B.22)

mi

[
∂

∂t
(niui) +

∂

∂r
. (niui ⊗ ui)

]
= niZ

∗e
[
E +

ui
c
×B

]
− ∂

∂r
. (PiI− τ i) + Rie

(B.23)
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which consequently provides the non conservative form

mini

[
∂

∂t
+

(
ui.

∂

∂r

)]
(ui)

= niZ
∗e
[
E +

ui
c
×B

]
− ∂

∂r
. (PiI− τ i) + Rie.

(B.24)

Also, one obtains

∂

∂t

(
1

2
nimiui

2 +
3

2
nikBTi

)
+

∂

∂r
.

[(
3

2
nikBTi +

1

2
nimiui

2

)
.ui

]
= − ∂

∂r
. [(PiI− τ i) .ui]−

∂

∂r
.qi + niZ

∗eui.E +Wie

(B.25)

which provides the non conservative form

CV,i

[
∂

∂t
+

(
ui.

∂

∂r

)]
(Ti) +

∂

∂r
.qi = −Pi

∂

∂r
.ui + τ i �

(
∂

∂r
⊗ ui

)
+Qie (B.26)

where obviously

Rie = −Rei,Wie = −Wei and thus Qie = −Qei + Rei. (ue − ui) . (B.27)

B.2 Plasma Transport Coefficients

The system consisting of the hydrodynamic equations {(B.12), (B.15, B.21), (B.22), (B.24), (B.26)}
forms a set of 10 equations with 10 hydrodynamic unknowns ne, ue, Te, ni, ui, Ti assuming that the

hydrodynamic fluxes Pe, qe, Pi, qi, Qei and Rei are known. Considering the time scales much less

than ∼ 100 ps, we neglect the ion conductivity qi and the ion velocity ui in the ion conservation

equations. Also, the viscosity tensors τ i and τ e and the mechanical work −Pe(∂/∂r).ue of (B.26) are

neglected. In what follows, we evaluate the transport coefficients allowing to express the friction force

Rei, the electron-ion energy exchange Qei and the electron thermal flux qe in order to close this set

of 10 equations.

B.2.1 Lorentz Approximation

The hydrodynamic fluxes are found from the kinetic equation by evaluating the deviation of the

electron distribution function δfe from the local equilibrium Maxwellian function fM . Here, we account

only for the electron-ion collisions in the electron kinetic equation and also neglect the magnetic

component of the Lorentz force. Then, the electron kinetic equation takes the following from (see
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Appendix A, section A.3.2)

∂fe
∂t

+
∂

∂r
. (vfe)−

∂

∂p
. (eEfe) =

νei(v)

2

[
1

sin θ

∂

∂θ

(
sin θ

∂fe
∂θ

)
+

1

sin2 θ

∂2fe
∂ϕ2

]
. (B.28)

Also, the electric field E is assumed to be homogeneous, not varying with time and with a value

|E| � Erun ∼ meνeivT,e/e sufficiently small such that the electric field E can be seen as a perturbation

of the maximum entropy equilibrium fe
(0) = fM with ue

(0) = 0 (see Appendix A, section A.2.4).

By noting so

fe (r, p, t) = fM (r, p, t) + δfe (r, p) , (B.29)

one can linearize the equation assuming the electric field is a first order term E = δE to get

−eE.∂fM

∂p
=
νei(v)

2

[
1

sin θ

∂

∂θ

(
sin θe

∂δfe
∂θ

)
+

1

sin2 θ

∂2δfe
∂ϕ2

]
. (B.30)

By expanding δfe on the Legendre polynomial basis and by noticing that the left hand side of this

equation does not depend on the azimuthal angle ϕ, one deduces δfe and consequently

δje = je = −e
∫
R3

vδfed
3p = σLE (B.31)

(because ue = 0) with

σL =
32

3π

nee
2

meνei
(B.32)

called the plasma electron electrical conductivity and expressed with the averaged electron-ion collision

frequency (see Appendix A, section A.3.2).

Recalling that the electric current is proportional to the electron mean velocity, one can find from

(B.31) the expression for the friction force in the electron momentum hydrodynamic equation :

Rei = eneηLje (B.33)

with

ηL =
1

σL
=
π3/2me

1/2Z∗e2 ln Λei

(kBTe)
3/2

(B.34)

called the plasma electrical resistivivity. It does not depend on the plasma density (in this approxi-

mation) but only on the plasma temperature.

To obtain an expression for the electron heat flux, one has to solve the linearized equation

v.
∂fM

∂r
− eE.∂fM

∂p
=
νei(v)

2

[
1

sin θ

∂

∂θ

(
sin θ

∂δfe
∂θ

)
+

1

sin2 θ

∂2δfe
∂ϕ2

]
. (B.35)

One can express the electron current density δje and the electron heat flux δqe as a function of the

moments of δfe which depend on (∂Te/∂r) and E. One gets the expression of the electric field E by
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considering δje = 0 in order to avoid charge accumulations. Injecting the obtained expression of the

electric field in the expression of δqe, one finally obtains

qe = δqe =

∫
R3

meve
2

2
veδfed

3pe = −κL
∂Te
∂r

(B.36)

with

κL =
128

3π

nekB
2Te

meνei
= 0.4

20 (2/π)3/2 k
7/2
B T

5/2
e

m
1/2
e Z∗e4 ln Λei

(B.37)

the plasma electron thermal conductivity. Besides, one can easily notice that the ratio

γL =
κL

σLTe
= 4

(
kB
e

)2

(B.38)

is a constant called the Lorenz constant.

Concerning the electron-ion energy exchange Qei, it can be obtained directly by using the Maxwell-

Boltzmann distribution function (B.5) and the full Landau electron-ion collision integral, i.e. without

neglecting the term ∝ me/mi (see for example [Landau and Lifshitz, 1981] p.173). It reads

Qie (r, t) =

∫
R3

mi(v − ui)
2

2
CL
ie[fi, fe] (r, p, t) d3p

= 2
me

mi
CV,eνei (Te − Ti)

= −Qei (r, t)−Rei (ue − ui) .

(B.39)

B.2.2 Electron-electron Collision Contribution to the Hydrody-

namic Fluxes

By taking into account the electron-electron collision term, the linearized equation (B.35) becomes

v.
∂fM

∂r
− eE.∂fM

∂p

= CL
ee[fM , δfe] + CL

ee[δfe, fM ] +
νei(v)

2

[
1

sin θ

∂

∂θ

(
sin θ

∂δfe
∂θ

)
+

1

sin2 θ

∂2δfe
∂ϕ2

]
.

(B.40)

[Spitzer and Härm, 1953] have shown that the electron-electron collision contribution to the electrical

and thermal conductivities can be expressed as follows

σSp = γEσL and κSp =
εδT
0.4

κL (B.41)

where γE and εδT are correction factors, which can be fitted by functions of the ionization state Z∗

from the tabulations provided by [Spitzer and Härm, 1953]. They read

γE ≈
Z∗ + 0.9833

Z∗ + 2.4101
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and
εδT
0.4
≈ Z∗

Z∗ + 0.2 lnZ∗ + 3.44
.

The expression proposed by [Brysk et al., 1975] for εδT is less accurate than the expression proposed

here because it does not reproduce the Spitzer results (κSp/σSpTe) → (κL/σLTe) = 4(kB/e)
2 when

Z∗ →∞ [Ribeyre, 2014]. The parameters δT and δE account for the electron-electron collisions while ε

accounts for the reduction of the heat flux due the electrostatic field induced by temperature gradients

in a steady state.

One may ask himself why electron-electron collisions modify the electric conductivity since the

hydrodynamic moments of the electron-electron collision terms vanish, giving Ree = 0 and Qee = 0,

according to the properties of the Landau collision integral. This is actually a purely kinetic effect due

to the ”rearrangement” of the electron momentum spectrum, due to electron-electron collisions, such

that the electron-ion collisions (∝ 1/v3) are enhanced leading to larger slowing downs of the electrons

by colliding the ions. Indeed, in the limit Z∗ → ∞ where electron-electron collisions are negligible

compared to electron-ion collisions, one can notice that σSp → σL, κSp → κL and that the Lorenz

factor (κSp/σSpTe) → (κL/σLTe) = 4(kB/e)
2. For other specific values of Z∗, one gets according to

[Spitzer and Härm, 1953] :

κSp
σSpTe

≈ 1.6

(
kB
e

)2

for Z∗ = 1

κSp
σSpTe

≈ 2.2

(
kB
e

)2

for Z∗ = 2

κSp
σSpTe

≈ 2.7

(
kB
e

)2

for Z∗ = 4

κSp
σSpTe

≈ 3.5

(
kB
e

)2

for Z∗ = 16

B.2.3 Transport Coefficients in an External Magnetic Field

The transport in the external homogeneous magnetic field was considered by [Braginskii, 1965]. The

magnetic field may strongly affect the electron fluxes if the electron cyclotron frequency ωce = |eB|/mec

is of the same order of magnitude than the electron-ion collision frequency νei. The electron kinetic

equation in the external magnetic field B (B.40) reads

v.
∂fM

∂r
− eE.∂fM

∂p
− ev

c
×B

∂δfe
∂p

= CL
ee[fM , δfe] + CL

ee[δfe, fM ] +
νei(v)

2

[
1

sin θ

∂

∂θ

(
sin θ

∂δfe
∂θ

)
+

1

sin2 θ

∂2δfe
∂ϕ2

]
.

(B.42)
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The magnetic field introduces an anisotropy of the fluxes that are not parallel to the generalized forces

any more. Consequently, transport coefficients become tensors :

Rei = Ru + RT (B.43)

with

Ru = eneη.j = eneη‖j‖ + eneη⊥j⊥ + eneη∧
B

|B|
× j

and

RT = −kBβ.
∂Te
∂r

= −β‖kB
(
∂Te
∂r

)
‖
− β⊥kB

(
∂Te
∂r

)
⊥
− β∧kB

B

|B|
× ∂Te

∂r
.

The notations ‖ and ⊥ define the components for the generalized forces (current and temperature

gradient) parallel and perpendicular to the magnetic field direction. The first term Ru is due to

the friction of electrons on the ions as already presented in the previous section while RT is due to

the temperature gradient effect. Here, j is the plasma current density evaluated in the quasineutral

approximation :

j = −eneue + Z∗eniui = ρcu− ene (ue − ui) = −ene (ue − ui) .

Analogously, the electron heat flux consists of two parts

qe = qu + qT (B.44)

with

qu =
kBTe
nee

β.j = β‖
kBTe
nee

j‖ + β⊥
kBTe
nee

j⊥ + β∧
kBTe
nee

B

|B|
× j

and

qT = −κe = −κ‖
(
∂Te
∂r

)
‖
− κ⊥

(
∂Te
∂r

)
⊥
− κ∧

B

|B|
× ∂Te

∂r
.

The components of the tensors are

κ⊥ =
nekB

2Te
meνei

γ′1x
2 + γ′0
∆

κ∧ =
nekB

2Te
meνei

x
(
γ′′1x

2 + γ′′0
)

∆

η⊥ =
1

σ⊥
=
meνei
nee2

(
1− α′1x

2 + α′0
∆

)

η∧ =
1

σ∧
=
meνei
nee2

x
(
α′′1x

2 + α′′0
)

∆

β‖ = ne
β′0
δ0
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β⊥ = ne
β′1x

2 + β′0
∆

and β∧ = ne
x
(
β′′1x

2 + β′′0
)

∆

where ∆ = x4 + δ1x
2 + δ0 and x = ωce/νei while the transport coefficients η‖ and κ‖ in the ‖ direction

are defined by equations (B.41). The parameters in these expressions depend only on the ionization

state Z∗:

δ0 ≈
((

1.3008

Z∗
+ 1.5956

)
1

Z∗
+ 0.7778

)
1

Z∗
+ 0.0961

δ1 ≈
(

1.35

Z∗
+ 5.958

)
1

Z∗
+ 7.482

α′0 ≈
((

0.3008

Z∗
+ 0.976

)
1

Z∗
+ 0.4924

)
1

Z∗
+ 0.0678

α′′0 ≈
(

0.3714

Z∗
+ 0.3142

)
1

Z∗
+ 0.094

α′1 ≈
1.786

Z∗
+ 4.630

α′′1 ≈ 1.704

β′0 ≈
((

0.3768

Z∗
+ 1.2998

)
1

Z∗
+ 0.8583

)
1

Z∗
+ 0.146

β′′0 ≈
(

0.7215

Z∗
+ 1.4545

)
1

Z∗
+ 0.877

β′1 ≈
1.303

Z∗
+ 3.798

β′′1 ≈ 1.50

γ′0 ≈
((

0.909

Z∗
+ 4.405

)
1

Z∗
+ 5.406

)
1

Z∗
+ 1.20

γ′′0 ≈
(

2.31

Z∗
+ 9.31

)
1

Z∗
+ 10.23

γ′1 ≈
1.414

Z∗
+ 3.250

γ′′1 ≈ 2.50

B.2.4 Electron Degeneracy Corrections

The transport coefficients in the case of degenerated electrons were considered by [Lee and More, 1984].

They considered a linearized kinetic equation in the BGK approximation (see Appendix A section
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A.4.1) with the Fermi-Dirac distribution function

fFD (r, p, t) =
1

1 + exp

[
me(v − ue)

2

2kBTe
− µ

kBTe

] (B.45)

instead of the Maxwell-Boltzmann distribution function (B.5). The chemical potential µ is defined by

the normalization of Fermi-Dirac distribution function to the electron density ne

ne (r, t) =

∫
R3

fFD (r, pα, t) d
3pe.

The transport coefficients in the case without external magnetic read

η =
meνei
nee2

1

Aα
(

µ

kBTe

) (B.46)

and

κ =
nekB

2Te
meνei

Aβ
(

µ

kBTe

)
(B.47)

where the averaged electron-ion collision frequency is given by

νei =
2
√

2π(Z∗)2nie
4 ln Λei

3
√
me(kBTe)

3/2

[
1 + exp

(
− µ

kBTe

)]
F1/2

(
µ

kBTe

) . (B.48)

The expression of the electron-ion coupling powerQei (B.39) depending on νei is therefore also modified

by the electron degeneracy according to (B.48). Here,

Aα
(

µ

kBTe

)
=

4

3

F2

(
µ

kBTe

)
[
1 + exp

(
− µ

kBTe

)][
F1/2

(
µ

kBTe

)]2

and

Aβ
(

µ

kBTe

)
=

20

9

F4

(
µ

kBTe

)1−
16F4

(
µ

kBTe

)2

15F2

(
µ

kBTe

)
F4

(
µ

kBTe

)


[
1 + exp

(
− µ

kBTe

)][
F1/2

(
µ

kBTe

)]2

where

Fj

(
µ

kBTe

)
=

∫ ∞
0

tj

1 + exp

(
t− µ

kBTe

)dt
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are the Fermi-Dirac integrals (There is a mistake in the original paper [Lee and More, 1984] concerning

the numerator of Aα, it is F2 and not F3). Thus, according to [Lee and More, 1984] the Lorenz factor

reads

γL =

Aα
(

µ

kBTe

)
Aβ
(

µ

kBTe

)(kB
e

)2

.

In the non-degenerate limit i.e. when µ/kBTe → −∞, one hasAα → 32/3π andAβ → 128/3π which re-

produces the transport coefficients in the non-degenerate case considered by [Spitzer and Härm, 1953]

without the electron-electron correction factors. At the complete degeneracy limit i.e. when

µ/kBTe → ∞, the conductivities of totally degenerated plasmas are recovered. Indeed, one has

Aα → 1, Aβ → π2/3 and νei → 3π~3/2meZ
∗e4 ln Λei (second mistake in [Lee and More, 1984] where

it is written 4 and not 2 in the denominator) which agree with the results given by [Hubbard, 1966]

κH =
21/2π

3

kB (kBTe) (kBTF)3/2

m
1/2
e e4Z∗ ln Λei

and ηH = γL
Te
κe
. (B.49)

Here, the empirical Wiedemann–Franz law for metals γL = (π2/3)(kB/e)
2

[Franz and Wiedemann, 1853] is also recovered. The only difference with the results found by

[Hubbard, 1966] is the Coulomb logarithm which is defined in [Hubbard, 1966] as ln Λei = 1/GΓ(κF )

where Γ = Z∗2e4/kBriTi is the ion-ion coupling parameter and κF = ri(2mekBTF )1/2/~ the Fermi

wavenumber. [Hubbard, 1966] provides a tabulation of GΓ depending on Γ and κF .

B.3 Radiation Hydrodynamic Code CHIC

B.3.1 Monofluid Hydrodynamic Equations

For a plasma consisting of electrons and one ion species, one can define the mass density

ρm = neme + nimi, (B.50)

the momentum flux

ρmu = meneue +miniui (B.51)

where u is the mean velocity, the charge density

ρc = −ene + Z∗eni, (B.52)

the current density

j = −eneue + Z∗eniui = ρcui + ene (ui − ue) , (B.53)
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the scalar plasma pressure

P = Pe + Pi (B.54)

and a plasma viscosity tensor

τ = τ e + τ i, (B.55)

the specific internal energy

Um =
Ue + Ui
ρm

= εe + εi with ∀α ∈ {i, e}, εα = Uα/ρm, (B.56)

and the heat flux

q = qe + qi. (B.57)

With these definitions, one can obtain the monofluid hydrodynamic continuity equation from (B.12)

and (B.22) :
∂ρm
∂t

+
∂

∂r
. (ρmu) = 0 (B.58)

and the charge continuity equation
∂ρc
∂t

+
∂

∂r
.j = 0. (B.59)

The monofluid conservation equation for the particles momentum is obtained by adding Equation

(B.13) and Equation (B.23) :

∂

∂t
(ρmu) +

∂

∂r
. (ρmu⊗ u) = ρcE +

j

c
×B− ∂

∂r
. (P I− τ ) . (B.60)

Substracting (B.58) from (B.60), one obtains

ρm

[
∂

∂t
+

(
u.
∂

∂r

)]
(u) = ρcE +

j

c
×B− ∂

∂r
. (P I− τ ) . (B.61)

By adding (B.16) and (B.25), one obtains the monofluid energy conservation equation

∂

∂t

[
ρm

(
Um +

u2

2

)]
+

∂

∂r
.

{[
ρm

(
Um +

u2

2

)
+ P

]
.u

}
=

∂

∂r
. (τ .u)− ∂

∂r
.q + j.E

(B.62)

which provides by taking into account (B.58) and (B.60) the monofluid specific internal energy con-

servation equation

ρm

[
∂

∂t
+

(
u.
∂

∂r

)]
(Um) +

∂

∂r
.q = −P ∂

∂r
.u + τ �

(
∂

∂r
⊗ u

)
+ j.E. (B.63)

It is usually assumed that the plasma is quasi-neutral (ρc = 0). In this case, (B.58), (B.61) and (B.63)

are commonly called the Navier-Stokes equations. In the particular case where the electron and
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ion populations have thermalized (Te = Ti = T ) in addition to the quasi-neutrality assumption, one

can write Equation (B.63) as

CV

[
∂

∂t
+

(
u.
∂

∂r

)]
(T ) +

∂

∂r
.q = −P ∂

∂r
.u + τ �

(
∂

∂r
⊗ u

)
+ j.E (B.64)

where

CV dT = ρmdUm and CV =
3

2
kB (Z∗ + 1)ni

is the plasma thermal capacity. Still under the same assumption, according to the first principle of

Thermodynamics, one has

dUm = δQm − Pd
(

1

ρm

)
while according to the second principle of Thermodynamics

δQm = TdHm ≥ 0

where it has been noted δQm the infinitesimal specific heat energy exchange and Hm the specific en-

tropy (usually noted s but we prefer Hm to relate it with the Boltzmann kinetic theory, see Appendix

A, section A.1.5), one can obtain the time evolution of the plasma specific entropy according to

(B.63)

ρm

[
∂

∂t
+ u.

∂

∂r

]
(Hm) =

1

T

[
τ �

(
∂

∂r
⊗ u

)
− ∂

∂r
.q

]
. (B.65)

By making the assumption τ = 0, j = 0 and q = 0, one gets Euler’s equations from fluid mechanics:

∂ρm
∂t

+
∂

∂r
. (ρmu) = 0, (B.66)

ρm

[
∂

∂t
+

(
u.
∂

∂r

)]
(u) = −∂P

∂r
(B.67)

and

ρm

[
∂

∂t
+

(
u.
∂

∂r

)]
(Um) = −P ∂

∂r
.u. (B.68)

B.3.2 Radiation Hydrodynamic Code CHIC

The Hydrodynamic CHIC code solves the monofluid two temperatures hydrodynamic equations under

the assumption of zero tensor viscosity (τ = 0) and small current density |j| � neec for a quasi neutral

plasma (ρc = 0). The code solves the following equations (B.58) and (B.61) :

∂ρm
∂t

+
∂

∂r
. (ρmu) = 0,

ρm

[
∂

∂t
+

(
u.
∂

∂r

)]
(u) = − ∂

∂r
(Pe + Pi)
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Figure B.1: CHIC main packages [Breil et al., 2011]

and Equation (B.63) which is split in two equations. One for the plasma electrons

ρm

[
∂

∂t
+

(
u.
∂

∂r

)]
(εe) +

∂

∂r
.qe = −Pe

∂

∂r
.u−Qie +We,ext

for which the collisional term −Rei (ue − ui) from Qei has been neglected (since in pratice, ue and ui

are unknown here) and another one for the plasma ions

ρm

[
∂

∂t
+

(
u.
∂

∂r

)]
(εi) +

∂

∂r
.qi = −Pi

∂

∂r
.u +Qie

where it has been noted We,ext = Wlas + Wrad + Wfus + Wfe the source terms due to laser plasma

interaction Wlas, radiation heating Wrad, nuclear fusion reactions heating Wfus or fast electron beam

heating Wfe (cf. Chapter 10, section 10.2). Each heating source term is computed with a special

package, as shown in Figure B.1. Pe = Pe(ρm, Te), Pi = Pi(ρ, Ti), εe = εe(ρ, Te) and εi = εi(ρ, Ti)

are given by the material Equation of State (Thomas-Fermi for the electrons, Cowan for the ions and/or

Sesame tables). qe can be computed with the Spitzer, the Braginskii or the Non Local Schurtz-Nicolai-

Busquet model [Schurtz et al., 2000] while Qie is given by (B.39). These hydrodynamic equations are

solved by using the Lagrangian formalism i.e. by presenting the transport terms with a derivative

along the fluid trajectories
d

dt
=

∂

∂t
+ u.

∂

∂r
.
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By noting with a supscript i the index of the fluid streamline denoted by i, Vm = 1/ρm and ∀ξ ∈
{ρm, Vm, u, Pe, Pi, P, Te, Ti, εe, εi, Qei, We,ext, Qie} , ξ̂i(t) = ξ(r̂i, t) where

dr̂i

dt
= ûi(t) = u

(
r̂i, t

)
knowing the initial condition r̂i(t = 0),

these equations read

ρ̂im
dV̂ i

m

dt
−
[
∂

∂r
.u

]
(r̂i, t) = 0, (B.69)

ρ̂im
dûi

dt
+

[
∂

∂r
(Pe + Pi)

]
(r̂i, t) = 0, (B.70)

ρ̂im

[
dε̂ie
dt

+ P̂ ie
dV̂ i

m

dt

]
−
[
∂

∂r
.

(
κe
∂Te
∂r

)]
(r̂i, t) = −Q̂iie + Ŵ i

e,ext (B.71)

and

ρ̂im

[
dε̂ii
dt

+ P̂ ii
dV̂ i

m

dt

]
−
[
∂

∂r
.

(
κi
∂Ti
∂r

)]
(r̂i, t) = Q̂iie. (B.72)

Indeed, as mentioned, the time derivative of ξ following a fluid particle reads

dξ̂i

dt
=
∂ξ

∂t

(
r̂i, t

)
+ u

(
r̂i, t

)
.
∂ξ

∂r

(
r̂i, t

)
.

Also, for numerical reasons which will be explained further, Equation (B.62) is simplified according

to (B.58) and expressed in the Lagrangian formalism to give

ρ̂im
dÊi

dt
+

[
∂

∂r
. (Pu)

]
(r̂i, t) = −

[
∂

∂r
. (q)

]
(r̂i, t) (B.73)

where E = Um+(u2/2) (There is a mistake in [Breil et al., 2011] concerning the second term of the left

hand side of this equation [?]). These equations are solved in 2D Cartesian (x, y) or in 2D cylindrical

(z, r) assuming an axial symetry (azimuthal invariance assumption).

Numerical Schemes :

The numerical computation of Equations (B.69), (B.70), (B.71) and (B.72) is split in two steps

1. On the interval between the time step tn and t∗ = tn + ∆t∗, the system of Equations (B.69),

(B.70) and (B.73) is solved without taking into account the thermal conduction according to

a cell-centered discretization of each fluid mesoparticle i [Maire et al., 2007] and a high order

Lagrangian finite volume scheme based on the acoustic generalized Riemann problem solved
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using a least squares procedure followed by a slope limitation procedure [Maire, 2009]

ρ̂i,nm

[
V̂ ∗m − V̂ n

m

∆t∗

]i
−

[
∂

∂r
.u

]n,i
= 0

ρ̂i,nm

[
û∗ − ûn

∆t∗

]i
+

[
∂

∂r
. (P I)

]i,n
= 0

ρ̂i,nm

[
E∗ − En

∆t∗

]i
+

[
∂

∂r
. (Pu)

]n,i
= 0

(B.74)

Then, by assuming that the electron evolution at this time step is isentropic in such a way that

the entropy is deposited into the ion internal energy, one has to solve

ρ̂im

[
dε̂ie
dt

+ P̂ ie
dV̂m

i

dt

]
= 0

which gives numerically

[
ε̂e
∗ − ε̂en

∆t∗

]i
+ P̂e

i,n

[
V̂m
∗
− V̂m

n

∆t∗

]i
= 0. (B.75)

It allows to deduce ε̂i
i,∗ = Êi,∗ − ε̂i,∗e − [

(
ûi,∗
)2
/2].

2. Then, the energy transfer between ions and electrons and the electron heating is solved on the

interval between t∗ and tn+1 using a Newton algorithm while the non linear conduction is solved

implicitly with the discretization of the thermal diffusion operator [Breil and Maire, 2007]
ρ̂imĈ

i
V,e,m

dT̂ ie
dt

−
[
∂

∂r
.

(
κe
∂Te
∂r

)]
(r̂i, t) = −Q̂iie + Ŵ i

e,ext

ρ̂imĈ
i
V,i,m

dT̂ ii
dt

−
[
∂

∂r
.

(
κi
∂Ti
∂r

)]
(r̂i, t) = Q̂iie

(B.76)

where it has been noted ∀α ∈ {e, i} , CV,α,m = dεe/dTα the specific thermal capacity.

B.3.3 CHIC MHD Package

In order to study the effects of the magnetic fields on the thermal conduction according to the Bra-

ginskii expression for the thermal conduction coefficient κe, a MHD package has been implemented in

CHIC by [Schurtz et al., 2007] and [Breil et al., 2008]. This has been motivated by an experimental

campaign on the LIL facility of CEA. This section is devoted to the description of this package. By ne-

glecting the viscosity tensor (τ = 0), the plasma electrons inertia ( neme(∂ue/∂t)+neme(ue.∂/∂r)(ue)

) and by assuming that the plasma is quasineutral (ρc = 0), the hydrodynamic conservation equation
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of electron momentum (B.24) is written with the Braginskii collisional terms as

E− j

neec
×B +

ui
c
×B +

kB
ene

β.
∂Te
∂r
− η.j +

1

nee

∂Pe
∂r

= 0. (B.77)

This equation is called the generalized Ohm’s law. The term

EHall =
j

neec
×B (B.78)

accounts for the Hall effect and will be neglected since |j| � neec while in the 2D Cartesian or 2D

axisymetric configuration, one can write

kB
ene

β.
∂Te
∂r

=
uNernst

c
×B (B.79)

where

uNernst,⊥ =
kBc

nee|B|
β⊥

(
∂Te
∂r

)
⊥

and

uNernst,∧ =
kBc

nee|B|
β∧

B

|B|
× ∂Te

∂r

which accounts for the Nernst effect. Coupled to the Maxwell equations in the quasi-static approxi-

mation, the generalized Braginskii Ohm’s law gives

∂B

∂t
+

∂

∂r
×
(
ηc2

4π
.
∂

∂r
×B

)
− ∂

∂r
× [(ui + uNernst)×B]

= −kBc
nee

∂ne
∂r
× ∂Te

∂r
.

(B.80)

The first line of this equation accounts for the magnetic diffusion, the second line accounts for its

advection by the plasma ions (ui) and the plasma heat flux via the Nernst effect (uNernst) and the

third line accounts for the magnetic field generation due to electron temperature-density crossed

gradients. Focused on the heat-conduction phenomena, the electrical resistivity has been assumed

isotropic, such that η = ηI with η−2 = η−2
Hubbard +η−2

Spitzer. Also, due to the huge ion mass, the electron

contribution to the plasma fluid velocity is neglected u = ui. Thus, Equation (B.80) can be written

in the Lagrangian form (in the 2D Cartesian or 2D axisymetric geometry!)

dB̂i

dt
+

[
∂

∂r
×
(
ηc2

4π
.
∂

∂r
×B

)]
(r̂i, t)

−
[
∂

∂r
× (uNernst ×B)

]
(r̂i, t)

= −
[
kBc

nee

∂ne
∂r
× ∂Te

∂r

]
(r̂i, t).

(B.81)
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Numerical scheme : The numerical computation of Equation (B.81) is presented here in the 2D

axisymetric case :

d

dt

(
r̂iB̂θ

i
)
−

{
∂

∂z

[
ηc2

4π

∂

∂z
(rBθ)

]}
(r̂i, t) −

{
∂

∂r

[
ηc2

4π

∂

∂r
(rBθ)

]}
(r̂i, t)

+

{
∂

∂z
[uNernst,z (rBθ)]

}
(r̂i, t) +

{
∂

∂r
[uNernst,r (rBθ)]

}
(r̂i, t)

=

[
1

r
uNernst,r (rBθ)

]
(r̂i, t) −

[
1

r

ηc2

4π

∂

∂r
(rBθ)

]
(r̂i, t)

−
[
kBc

nee

∂ne
∂r
× ∂Te

∂r

]
(r̂i, t) .

The 2D Cartesian case can be obtained in the same way by removing all terms ∝ 1/r in the right

hand side of this equation, by replacing z by x, r by y and rBθ by By. The compution is split in two

steps

1. Firstly, the magnetic field generation due to density-temperature crossed gradients and the

Nernst advection are solved explicitely using a finite volume method. Let us note

SnB =
(
r̂iB̂θ

i
)n
−∆t

[
kBc

nee

∂ne
∂r
× ∂Te

∂r

]i,n
−∆t

{
∂

∂z
[uNernst,z (rBθ)]

}i,n
−∆t

{
∂

∂r
[uNernst,r (rBθ)]

}i,n
the results of this computation.

2. Secondly, the diffusion of the magnetic field is solved in the same way as the thermal diffusion

[Breil and Maire, 2007] to deduce
(
r̂iB̂θ

i
)n+1

from

(
r̂iB̂θ

i
)n+1

−∆t

{
∂

∂z

[
ηc2

4π

∂

∂z
(rBθ)

]}n+1

−∆t

{
∂

∂r

[
ηc2

4π

∂

∂r
(rBθ)

]}n+1

= SnB + ∆t

[
1

r
uNernst,r (rBθ)

]i,n
−∆t

[
1

r

ηc2

4π

∂

∂r
(rBθ)

]i,n
.
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[Nicoläı et al., 2006] Nicoläı, P. D., Feugeas, J.-L. A., and Schurtz, G. P. (2006). A practical nonlocal

model for heat transport in magnetized laser plasmas. Physics of Plasmas (1994-present), 13(3):–.

[Nora et al., 2015] Nora, R., Theobald, W., Betti, R., Marshall, F. J., Michel, D. T., Seka, W.,

Yaakobi, B., Lafon, M., Stoeckl, C., Delettrez, J., Solodov, A. A., Casner, A., Reverdin, C., Ribeyre,

X., Vallet, A., Peebles, J., Beg, F. N., and Wei, M. S. (2015). Gigabar Spherical Shock Generation

on the OMEGA Laser. Phys. Rev. Lett., 114:045001.

Page 420



BIBLIOGRAPHY

[Norreys et al., 2014] Norreys, P., Batani, D., Baton, S., Beg, F. N., Kodama, R., Nilson, P., Patel,
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Nicoläı, P. (2011). Cone-guided fast ignition with ponderomotively accelerated carbon ions. Plasma

Physics and Controlled Fusion, 53(4):045014.

[Ribeyre, 2014] Ribeyre, X. (2014). Private communication.

[Ribeyre et al., 2009] Ribeyre, X., Schurtz, G., Lafon, M., Galera, S., and Weber, S. (2009). Shock

ignition: an alternative scheme for HiPER. Plasma Physics and Controlled Fusion, 51(1):015013.

Page 422



BIBLIOGRAPHY

[Roberts and Bennett, 1968] Roberts, T. G. and Bennett, W. H. (1968). The pinch effect in pulsed

streams at relativistic energies. Plasma Physics, 10(4):381.

[Robiche et al., 2010] Robiche, J., Rax, J.-M., Bonnaud, G., and Gremillet, L. (2010). Fast electron

energy deposition in a magnetized plasma: Kinetic theory and particle-in-cell simulation. Phys.

Plasmas, 17(3):–.

[Robinson et al., 2014] Robinson, A., Strozzi, D., Davies, J., Gremillet, L., Honrubia, J., Johzaki,

T., Kingham, R., Sherlock, M., and Solodov, A. (2014). Theory of fast electron transport for fast

ignition. Nuclear Fusion, 54(5):054003.

[Robinson et al., 2012] Robinson, A. P. L., Key, M. H., and Tabak, M. (2012). Focusing of Relativistic

Electrons in Dense Plasma Using a Resistivity Gradient-Generated Magnetic Switchyard. Phys. Rev.

Lett., 108:125004.

[Robinson and Schmitz, 2013] Robinson, A. P. L. and Schmitz, H. (2013). Elliptical magnetic mirror

generated via resistivity gradients for fast ignition inertial confinement fusion. Physics of Plasmas

(1994-present), 20(6):–.

[Robinson et al., 2008] Robinson, A. P. L., Sherlock, M., and Norreys, P. A. (2008). Artificial Colli-

mation of Fast-Electron Beams with Two Laser Pulses. Phys. Rev. Lett., 100:025002.

[Rohrlich and Carlson, 1954] Rohrlich, F. and Carlson, B. C. (1954). Positron-Electron Differences in

Energy Loss and Multiple Scattering. Phys. Rev., 93:38–44.

[Rosenbluth et al., 1957] Rosenbluth, M. N., MacDonald, W. M., and Judd, D. L. (1957). Fokker-

Planck Equation for an Inverse-Square Force. Phys. Rev., 107:1–6.

[Rozmus and Tikhonchuk, 1990] Rozmus, W. and Tikhonchuk, V. T. (1990). Skin effect and interac-

tion of short laser pulses with dense plasmas. Phys. Rev. A, 42:7401–7412.

[Rozmus et al., 1996] Rozmus, W., Tikhonchuk, V. T., Cauble, R., et al. (1996). A model of ultrashort

laser pulse absorption in solid targets. Physics of Plasmas (1994-present), 3(1):360–367.

[Sakagami et al., 1979] Sakagami, Y., Kawakami, H., Nagao, S., and Yamanaka, C. (1979). Two-

Dimensional Distribution of Self-Generated Magnetic Fields near the Laser-Plasma Resonant-

Interaction Region. Phys. Rev. Lett., 42:839–842.

[Santos, 2014] Santos, J. (2014). Private communication.

[Santos et al., 2002] Santos, J. J., Amiranoff, F., Baton, S. D., Gremillet, L., Koenig, M., Martinolli,

E., Rabec Le Gloahec, M., Rousseaux, C., Batani, D., Bernardinello, A., Greison, G., and Hall,

T. (2002). Fast Electron Transport in Ultraintense Laser Pulse Interaction with Solid Targets by

Rear-Side Self-Radiation Diagnostics. Phys. Rev. Lett., 89:025001.

Page 423



BIBLIOGRAPHY

[SANTOS et al., 2013] SANTOS, J. J., BATANI, D., BATON, S. D., BEG, F. N., CECCOTTI, T.,

DEBAYLE, A., DORCHIES, F., FEUGEAS, J.-L., FOURMENT, C., GREMILLET, L., HON-

RUBIA, J. J., HULIN, S., MORACE, A., NICOLAÏ, P., PÉREZ, F., SAWADA, H., SCHLEN-
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Titre : Étude du Transport d’Électrons Rapides pour la Fusion par

Confinement Inertiel

Résumé :

Un nouveau modèle réduit pour le transport de faisceaux d’électrons relativistes dans des solide

ou des plasma denses est proposé. Il est basé sur la résolution des deux premiers moments angulaires

de l’équation cinétique relativiste, complétés par une relation de fermeture déduite du principe de

maximisation de l’entropie angulaire de Minerbo. Le modèle prend en compte aussi bien les effets

collectifs du transport avec les champs électromagnétiques auto générés que les effets collisionnels liés

au ralentissement des électrons par collision sur les plasmons, les électrons liés et les électrons libres du

milieu ainsi que leur diffusion angulaire par collisions sur les électrons et les ions. Le modèle permet

une résolution numérique rapide des équations du transport de faisceau d’électrons rapides tout en

décrivant l’évolution cinétique de leur fonction de distribution. Malgré le fait de travailler avec les

grandeurs angulaires moyennes, le modèle a été validé par comparaison avec des solutions analytiques

dérivées dans un cas académique de transport de faisceau mono énergétique et collimaté dans un

plasma dense et chaud d’Hydrogène ainsi qu’avec une simulation PIC hybride dans un cas réaliste de

transport d’électrons accélérés par laser dans une cible solide. Le modèle est appliqué à l’étude de

l’émission de photons Kα lors d’expériences laser-plasma ainsi qu’à la génération d’ondes de choc.

Mots clés : Plasmas, Fusion par Confinement Inertielle, Interaction Laser-Plasma (Relativiste),

Transport de Faisceaux d’Électrons Relativistes, Entropie Angulaire, Théorie Cinétique, Théorie Hy-

drodynamique

Title : Fast Electron Transport Study For Inertial Confinement Fusion

Abstract :

A new hybrid reduced model for relativistic electron beam transport in solids and dense plasmas

is presented. It is based on the two first angular moments of the relativistic kinetic equation completed

with the Minerbo maximum angular entropy closure. It takes into account collective effects with the

self-generated electromagnetic fields as well as collisional effects with the slowing down of the elec-

trons in collisions with plasmons, bound and free electrons and their angular scattering on both ions

and electrons. This model allows for fast computations of relativistic electron beam transport while

describing the kinetic distribution function evolution. Despite the loss of information concerning the

angular distribution of the electron beam, the model reproduces analytical estimates in the academic

case of a collimated and monoenergetic electron beam propagating through a warm and dense Hydro-

gen plasma and hybrid PIC simulation results in a realistic laser-generated electron beam transport

in a solid target. The model is applied to the study of the emission of Kα photons in laser-solid

experiments and to the generation of shock waves.

Key words : Plasmas, Inertial Confinement Fusion, (Relativistic) Laser-Plasma Interaction,

Relativistic Electron Beam Transport, Angular Entropy, Kinetic Theory, Hydrodynamic Theory


