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In this Thesis, the robust design with an uncertain model of a vibroimpact electromechanical system is done. The electromechanical system is composed of a cart, whose motion is excited by a DC motor (motor with continuous current), and an embarked hammer into this cart. The hammer is connected to the cart by a nonlinear spring component and by a linear damper, so that a relative motion exists between them. A linear exible barrier, placed outside of the cart, constrains the hammer movements. Due to the relative movement between the hammer and the barrier, impacts can occur between these two elements. The developed model of the system takes into account the inuence of the DC motor in the dynamic behavior of the system. Some system parameters are uncertain, such as the stiness and the damping coecients of the exible barrier. The objective of the Thesis is to perform an optimization of this electromechanical system with respect to design parameters in order to maximize the impact power under the constraint that the electric power consumed by the DC motor is lower than a maximum value. To chose the design parameters in the optimization problem, a sensitivity analysis was performed in order to dene the most sensitive system parameters. The optimization is formulated in the framework of robust design due to the presence of uncertainties in the model.

The probability distributions of random variables are constructed using the Maximum Entropy Principle and statistics of the stochastic response of the system are computed using the Monte Carlo method. The set of nonlinear equations are presented, and an adapted time domain solver is developed.

The stochastic nonlinear constrained design optimization problem is solved for dierent levels of uncertainties, and also for the deterministic case. The results are dierent and this show the importance of the stochastic modeling.
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1 Introduction

Motivation of the Thesis

The oil well drilling is still an interesting topic of research. There are still many challenges involving the modeling of the complex dynamics of a drill string. It presents interesting phenomena, such as coupled axial, lateral and torsional vibrations [START_REF] Sampaio | Coupled axial/torsional vibrations of drill-strings by means of non-linear model[END_REF], bit-rock interaction, geometric nonlinearities, impacts, uid-structure interaction. The literature dealing with modeling the drill string dynamics is vast (see [START_REF] Christoforou | Fully coupled vibrations of actively controlled drillstrings[END_REF][START_REF] Khulief | Vibration analysis of drillstrings with self excited stick-slip oscillations[END_REF][START_REF] Paidoussis | System Dynamics: Modeling and Simulation of Mechatronic Systems[END_REF][START_REF] Ritto | Measuring the eciency of vertical drillstrings: A vibration perspective[END_REF][START_REF] Ritto | Fuzzy logic control of a drill-string[END_REF]).

Besides this complex dynamics, the drill string dynamics involves also numerous sources of uncertainties. In this context of modeling, uncertainties should be taken into account in the computational models in order to improve the robustness of the numerical predictions [START_REF] Kree | Mécanique aléatoire[END_REF][START_REF] Soize | Stochastic models of uncertainties in computational mechanics[END_REF][START_REF] Krée | Mathematics of random phenomena[END_REF][START_REF] Ohayon | Advanced Computational Vibroacoustics: Reduced-Order Models and Uncertainty Quantication[END_REF].

Recently this problem of modeling and simulation of nonlinear dynamics of a drill-string including uncertainty modeling has been intensively studied, as [START_REF] Ritto | Numerical analysis of the nonlinear dynamics of a drill-string with uncertainty modeling[END_REF][START_REF] Ritto | Drill-string horizontal dynamics with uncertainty on the frictional force[END_REF][START_REF] Ritto | Nonlinear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF][START_REF] Ritto | Numerical analysis of the nonlinear dynamics of a drill-string with uncertainty modeling[END_REF][START_REF] Ritto | Stochastic dynamics of a drillstring with uncertain weight-on-hook[END_REF][START_REF] Ritto | Stochastic drill-string dynamics with uncertainty on the imposed speed and on the bit-rock parameters[END_REF].

Due to the growth of perforation depth over the years, the drilling process requires a constant improvement in energy eciency. Reduction of costs and increase in bit life and in rate of penetration are always challenges for oil companies.

During conventional rotary drilling, many dierent forms of dissipation, as axial vibrations, can generate the waste of the energy applied in the drillstring. To compensate these losses, many new concepts of drilling were proposed over the years. These new approaches consider the ecient use of energy as an important factor, bringing an increase in rate of penetration, and consequently a reduction the cost of hard rock drilling. One example, is the concept of percussive drilling, introduced in the last decades [START_REF] Batako | A self-excited system for percussive-rotary drilling[END_REF].

The percussion proposes to insert energy into the drilling process through impacts to fracture the rock, and then facilitate the penetration of the bit [START_REF] Aguiar | Impact force magnitude analysis of an impact pendulum suspended in a vibrating structure[END_REF][START_REF] Aguiar | Mathematical modeling and experimental investigation of an embedded vibro-impact system[END_REF][START_REF] Franca | Experimental and numerical study of a new resonance hammer drilling model with drift[END_REF][START_REF] Franca | Self-excited percussive-rotary drilling in hard rocks[END_REF][START_REF] Liu | Modelling of a vibroimpact capsule system[END_REF][START_REF] Liu | Vibro-impact responses of capsule system with various friction models[END_REF][START_REF] Pavlovskaia | Modelling of high frequency vibro-impact drilling[END_REF][START_REF] Depouhon | Numerical simulation of percussive drilling[END_REF]. The objective is to combine rotary and impact action in order to increase the drilling rate.

This concept of use of impacts in drilling motivates this Thesis. We are interested in simple systems that present the phenomenon that somehow mimic the dynamical behavior found in the percussive drilling process: the vibro-impact action. Despite the systems analyzed do not consider the rotary action, we do believe that they represent an initial step to study the percussive drilling.

As percussive dynamical systems can be aected by many factors, their analysis requires to take into account uncertainties in the computational models that are used (see for instance [START_REF] Sampaio | On measures of non-linearity eects for uncertain dynamical systems -application to a vibro-impact system[END_REF]). Thus, we are interested also in problems that involve uncertainty quantication and stochastic modeling.

The analysis of vibro-impact systems is not a new subject, and is frequently encountered in technical applications of mechanisms. The interest of analyzing their performance is reected by the increasing amount of research in this area (see for instance [START_REF] Luo | Periodic-impact motions and bifurcations of vibro-impact systems near 1:4 strong resonance point[END_REF][START_REF] Ostasevicius | Numerical analysis of dynamic eects of a nonlinear vibro-impact process for enhancing the reliability of contact-type mems devices[END_REF][START_REF] Yue | Global analysis of boundary and interior crises in an elastic impact oscillator[END_REF][START_REF] Ritto | A new measure of eciency for model reduction: Application to a vibroimpact system[END_REF][START_REF] Ingar | Controle de impacto em manipuladores robóticos[END_REF][START_REF] Trindade | Karhunen-loéve decomposition of coupled axial/bending vibrations of beams subject to impacts[END_REF], and also the book by Ibrahim [START_REF] Ibrahim | Vibro-Impact Dynamics: Modeling, Mapping and Applications[END_REF], which is completely devoted to this problem). Besides the theoretical research in vibro-impact dynamics, numerous applications to vibro-impact systems have also been developed, such as vibration hammer, impact damper, and gears. The vibro-impact dynamics appears also in several other situations, as for example in earthquakes, where the interest is the seismic mitigation [START_REF] Nucera | Targeted energy transfers in vibro-impact oscillators for seismic mitigation[END_REF].

The focus of this Thesis is to analyze numerically the performance of vibro-impact systems with motion driven by an electrical motor. This performance is measured by the impact power (transferred from the system to an external barrier) and by the electric power consumed by the electrical motor that drives the system motion. In the developed model of the system, the inuence of the DC motor in the dynamic behavior of the system is taken into account.

The electromechanical systems analyzed in this Thesis were rst designed by R.R. Aguiar in his PhD Thesis [START_REF] Aguiar | Experimental investigation and numerical analysis of the vibro-impact phenomenon[END_REF]. He investigated experimentally a vibroimpact system with motion driven by an electrical motor, with a similar coupling mechanism between the mechanical and electrical parts of the system, the scotch yoke mechanism. The main objective of R.R. Aguiar was to characterize the impact force magnitude and to make numerical analysis through bifurcation diagrams, Peterka map [START_REF] Peterka | Bifurcations and transition phenomena in an impact oscillator[END_REF] and basins of attraction.

Aguiar published some journal papers about his work, as [START_REF] Aguiar | Impact force magnitude analysis of an impact pendulum suspended in a vibrating structure[END_REF][START_REF] Aguiar | Mathematical modeling and experimental investigation of an embedded vibro-impact system[END_REF].

Mechanical systems with motion driven by electric motors are usually modeled eliminating the motor and saying that the force between the mechanical and electric systems is imposed, so no electromechanical coupling is present, and it is harmonic with frequency given by the nominal frequency of the motor. In this Thesis, it is shown that this hypothesis is far from true and leads to a completely dierent dynamics. In the systems we analyze here, the coupling force is not prescribed by a function, it comes from the coupling, varying with the coupling conditions [START_REF] Lima | Stochastic analysis of an electromechanical coupled system with embarked mass[END_REF][START_REF] Dantas | Asymptotically stable periodic orbits of a coupled electromechanical system[END_REF]. Therefore, the dynamics of electromechanical systems is characterized by a mutual interaction between the mechanical and electric parts, that is, the dynamics of the motor is heavily inuenced by the mechanical system and the dynamics of the mechanical part depends on the dynamics of the motor [START_REF] Balthazar | An overview on non-ideal vibrations[END_REF].

After an extensive literature review, no references dealing with this mutual interaction between electric and percussive systems were found. Hence we believe that this Thesis is a rst work on this topic.

Percussive systems

Percussive systems are usually composed by a cart with motion driven by an external system (in our case it is an electrical DC motor) and, by an embarked hammer in the cart. The cart acts like a hammer case and induces the hammer motion. An external barrier (representing the soil, in the case of percussive drilling systems) constrains the hammer movements. Due to the relative movement between the hammer and the barrier, impacts can occur between these two elements. The interaction between those components (DC motor, cart, hammer, and barrier) gives to the system dynamical special features, and turns the dynamical behavior very nonlinear. These interactions are described as following:

Between the mechanical and electrical parts of the system appears an electromechanical coupling in which the coupling force varies with the coupling conditions. The result is a mutual interaction between the mechanical and electric parts.

The motion of the hammer is induced by the motion of the cart, in a way that there is no direct control on the hammer motion. Therefore, the hammer introduces a new feature since its motion acts as a reservoir of energy, i.e. energy from the electrical system is pumped to the hammer and stored in the hammer motion, changing the characteristics of the mechanical system (see [START_REF] Chernous'ko | On the motion of a body containing a movable internal mass[END_REF][START_REF] Liu | Forward and backward motion control of a vibro-impact capsule system[END_REF]).

Part of the energy stored in the hammer motion is transferred to the external barrier through the impacts. The impact power achieved is one the variables used for measuring the system performance. In the case of drilling, this power would be used to fracture the soil and enhance the penetration.

To understand the role played by each one of these phenomena in the dynamics of the electromechanical percussive systems, we decided to split the problem into four simpler problems, in hierarchical complexity: from simpler to more complexity. With this division, to every concluded step, we gained some insight into the behavior of the electromechanical percussive systems and, we published some works. The systems studied are described in the next Section.

Hierarchical electromechanical systems analyzed

We started the study analyzing the dynamics of a very simple system, composed of a cart whose motion is driven by an electrical DC motor, as shown in Fig. 1.1. The coupling between the motor and the cart is made by a mechanism called scotch yoke so that the motor rotational motion is transformed into a cart horizontal motion. This system is a bare minimum to analyze the eect of the electromechanical coupling, i.e., the mutual interaction between the mechanical and electric systems, in which the coupling torque appears as a parametric excitation, i.e., a time variation of the system parameters (see for instance [START_REF] Cartmell | Introduction to Linear, Parametric and Nonlinear Vibrations[END_REF][START_REF] Warminski | Vibrations of a parametrically and self-excited system with ideal and non-ideal energy sources[END_REF]). In this simple motor-cart system the coupling is a sort of master-slave condition: the motor drives, the cart is driven,

and that is all.

The second system analyzed has the same two elements of the rst and also a pendulum with suspension point xed in cart, as shown in Fig. 1.2. The pendulum is the embarked system and its motion is driven by the motion of the cart. So there is no direct control of the motion of the pendulum. The pendulum introduces a new feature since its motion acts as a reservoir of energy, i.e.

energy from the electrical system is pumped to the pendulum and stored in the pendulum motion, changing the characteristics of the mechanical system.

The objective of the study of this motor-cart-pendulum system is to analyze the inuence of an embarked element in the dynamics of the electromechanical system. One of the main results is that the master-slave condition, that appeared in the cart-motor system, is not anymore a characteristic of the system.

The third system analyzed has the same three elements of the rst and also a exible barrier placed inside the cart that constrains the pendulum cart and the pendulum, it is possible that occur impact between these two elements. Thus, the third electromechanical system analyzed has internal impacts. The impacts are caused by the motion of the cart that induces the motion of the pendulum. As the impacts are internal, the energy stored in the pendulum motion it is not transferred outside the system, it stays within, with a possible dissipation. This system conguration helps to understand the dierence between an internal and an external barrier. The objective in this part of the Thesis is to analyze the maximal energy stored in the barrier in impacts as function of some parameters of the electromechanical system. Due to the presence of uncertainties in the computational nonlinear dynamics model of the electromechanical system with internal impacts, the energy analysis is performed from a stochastic view point for dierent levels of uncertainties, and also for the deterministic case.

Figure 1.3: Third system: motor-cart-pendulum-barrier system.

The fourth system analyzed is the percussive electromechanical system.

It is composed of a cart coupled to a DC motor by the scotch yoke mechanism, and of an embarked hammer in the cart. In this percussive system, we opted to change the geometry of the embarked element. We do not consider anymore a pendulum. We took a particle with concentrate mass able to move in only one direction. This hammer is connected to the cart by a nonlinear spring component and by a linear damper, so that a relative motion exists between of the Thesis is to analyze the performance of this percussive system with motion driven by a DC motor. We performed an optimization of the system with respect to design parameters in order to maximize the impact power under the constraint that the electric power consumed by the DC motor is lower than a maximum value. This optimization problem is formulated in the framework of robust design (see [START_REF] Ritto | Robust optimization of the rate of penetration of a drill-string using a stochastic nonlinear dynamical model[END_REF][START_REF] Capiez-Lernout | Robust design optimization in computational mechanics[END_REF]) and it is solved for dierent levels of uncertainties and also for the deterministic case.

Organization of the Thesis

The Thesis is organized as follows. In Chapter 2, we analyze the simplest eletromechanical system: the motor-cart system. Then, in Chapter 3, we analyze the system that has the same elements of the rst system and has a pendulum that is embarked in the cart: the motor-cart-pendulum system.

In Chapter 4, we include inside the cart a exible barrier constraining the pendulum motion. Thus we deal with an electromechanical system with internal impacts. In Chapter 5, we analyze the performance of a percussive electromechanical system. The objective is to optimize of this system with respect to some chosen design parameters in order to maximize the impact power under the constraint that the electric power consumed by the DC motor is bounded. Finally, in Chapter 6, the results are summarized and future works are discussed.

Motor-cart system: a parametric excited nonlinear system due to electromechanical coupling

The analysis of electromechanical systems is not a new subject. The interest of analyzing their dynamic behavior is reected by the increasing amount of research in this area (see for instance [START_REF] Zhankui | Nonlinear and chaos control of a micro-electromechanical system by using second-order fast terminal sliding mode control[END_REF][START_REF] Sadeghian | Comparison of generalized dierential quadrature and galerkin methods for the analysis of micro-electromechanical coupled systems[END_REF][START_REF] Lee | Design and analysis of electro-mechanical characteristics of micromachined stainless steel pressure sensor[END_REF][START_REF] Belato | Escape in a nonideal electro-mechanical system[END_REF][START_REF] Belato | Chaotic vibrations of a non-ideal electro-mechanical system[END_REF]). In [START_REF] Rocard | Dynamique Générale des Vibrations[END_REF] there is a chapter dedicated to the coupled problem and it is remarked that it is a problem dierent from parametric resonance. In [START_REF] Kononenko | Vibrating Systems with a Limited Power Supply[END_REF] the whole book is dedicated to the problem but the analytical treatment supposes some small parameter, a hypothesis avoided here. Recently, the problem is been intensely studied again, see [START_REF] Belato | Análise Não Linear de Sistemas Dinâmicos Holônomos Não Ideais[END_REF][START_REF] Aguiar | Experimental investigation and numerical analysis of the vibro-impact phenomenon[END_REF][START_REF] Balthazar | An overview on non-ideal vibrations[END_REF], but the literature is vast.

The mutual interaction between electrical and mechanical parts leads us to analyze a very interesting nonlinear dynamical systems [START_REF] Nayfeh | Nonlinear Oscillations[END_REF][START_REF] Fidlin | Nonlinear Oscillations in Mechanical Engineering[END_REF][START_REF] Hagedorn | Non-linear Oscillations[END_REF][START_REF] Evan-Iwanowski | Resonance oscillations in mechanical systems[END_REF][START_REF] Cartmell | Introduction to Linear, Parametric and Nonlinear Vibrations[END_REF],

in which the nonlinearity comes from the coupling and varies with the coupling conditions.

In this Chapter, we analyze the dynamical behavior of a simple electromechanical system composed by a cart whose motion is driven by a DC motor. The coupling between the motor and the cart is made by a mechanism called scotch yoke so that the motor rotational motion is transformed into a cart horizontal motion.

2.1 Dynamics of the motor-cart system 2.1.1 Electrical system: DC motor

The mathematical modeling of DC motors is based on the Kirchho 's law [START_REF] Karnopp | System Dynamics: Modeling and Simulation of Mechatronic Systems[END_REF]. It is written as

l ċ(t) + r c(t) + k e α(t) = ν , (2.1) j m α(t) + b m α(t) -k e c(t) = -τ (t) , (2.2) 
where t is the time, ν is the source voltage, c is the electric current, α is the angular speed of the motor, l is the electric inductance, j m is the inertia moment of the motor, b m is the damping ratio in the transmission of the torque generated by the motor to drive the coupled mechanical system, k e is the motor electromagnetic force constant and r is the electrical resistance. When τ is not constant in time, the angular speed of the motor shaft and the current do not reach a constant value. This kind of situation happens when, for example, a mechanical system is coupled to a motor. In this case, α and c variate in time in a way that the dynamics of the motor will be inuenced by the coupled mechanical system. When there is no load applied in the motor (i.e. τ (t) = 0, ∀t ∈ R ≥0 ) and the source voltage is constant in time, the motor achieves its maximum angular speed that is called the no load speed. It is calculated by

αno load = k e ν b m r + k 2 e , c no load = b m k e k e ν b m r + k 2 e .
(2.4)

The motor delivers the maximum torque, when the load applied in the motor is such that the motor does not move at all. This is called the stall torque. If the source voltage is constant in time, it is calculated by 2.1.2 Cart-motor system: a master-slave relation

τ stall = k e ν r . (2.5)
As described in the introduction, the system is composed by a cart whose motion is driven by the DC motor. The motor is coupled to the cart through a pin that slides into a slot machined in an acrylic plate that is attached to the cart, as shown in Fig. 2.2. The o-center pin is xed on the disc at distance ∆ of the motor shaft, so that the motor rotational motion is transformed into a cart horizontal movement. It is noticed that with this conguration, the center of mass of the mechanical system is always located in the center of mass of the cart, so its position does not change. To model the coupling between the motor and the mechanical system, the motor shaft is assumed to be rigid. Thus, the available torque vector to the coupled mechanical system, τ , can be written as

τ (t) = ∆(t) × f (t) , (2.6) 
where ∆ = (∆ cos α(t), ∆ sin α(t), 0) is the vector related to the eccentricity of the pin, and where f is the coupling force between the DC motor and the cart. Assuming that there is no friction between the pin and the slot, the vector f only has a horizontal component, f (the horizontal force that the DC motor exerts in the cart). The available torque τ is written as

τ (t) = -f (t) ∆ sin α(t) .
(2.7)

Due to constraints, the cart is not allowed to move in the vertical direction.

The mass of the mechanical system, m, is equal the cart mass, m c , and the horizontal cart displacement is represented by x. 

α(0) = 0 , α(0) = 0 , c(0) = ν r .
(2.12)

Comparing Eq. (2.11) with Eq. (2.2), it is seen that the mechanical system inuences the motor in a parametric way, [START_REF] Lacarbonara | What is parametric excitation in structural dynamics? In ENOC-2008[END_REF][START_REF] Neumeyer | Jumps and bi-stability in the phase-gain characteristics of a nonlinear parametric amplier[END_REF][START_REF] Sorokin | On the response of a nonlinear parametric amplier driven beyond resonance[END_REF][START_REF] Luo | Analytical solutions of period-m motions in a parametric, quadratic nonlinear oscillator[END_REF][START_REF] Peruzzi | On control of a parametrically excited time-periodic mems[END_REF]. The coupling torque, τ , that appears in the right side of Eq. (2.2), appears now as a time variation of the system parameters.

Dimensionless cart-motor system

In this section, the initial value problem to the motor-cart system is presented in a dimensionless form. The development of this form is a strategy to determine the dimensionless parameters of the system, which were useful in the prove of existence and asymptotic stability of a periodic orbit to this electromechanical system, discussed in Section 2.4. Beside this, the dimensionless equations were very useful for simulations, since it reduced signicantly the computation time.

Consider the system of (2.10) to (2.11). Taking α (t) = u (t), the system can be written as a rst-order system, thus one gets that

ċ (t) = - k e u (t) + r c (t) -ν l , α (t) = u (t) , u (t) = --c (t) k t + ∆ 2 m u (t) 2 cos (α (t)) sin (α (t)) + b m u (t) ∆ 2 m sin 2 (α (t)) + j m . (2.13) Writing t = l r s, α l s r = p (s) , u l s r = r q (s) l , c l s r = k e w (s) l (2.14)
one gets that s is dimensionless parameter. The functions p (s), q (s) and w (s) are dimensionless functions. Substituting (2.14) into (2.13) one obtains

w (s) = -w (s) -q (s) + v 0 p (s) = q (s) , q (s) = -v 1 q (s) 2 cos (p (s)) sin (p (s)) -v 2 w (s) + v 3 q (s) v 1 sin 2 (p (s)) + 1 (2.15)
where denotes the derivative with respect to s and v i , i = 0, . . . , 3, are dimensionless parameters given by

v 0 = ν l k e r , v 1 = ∆ 2 m j m , v 2 = k e l k t j m r 2 , v 3 = b m l j m r .
(2.16)

The strategy to obtain the dimensionless form of the initial value problem to the motor-cart system, was writing the time t as function of the dimensionless parameter s and as function of motor parameters (the inductance, l, and resistance, r). Thus, the new dimensionless time s appeared as a parameter that is independent of the parameters of the mechanical part of the system. Due to this independence, this strategy of writing t as function of s, l, and r could be applied to the others electromechanical systems analyzed in this Thesis. We used the same dimensionless parameter s to obtain their dimensionless initial value problems.

Numerical simulations of the dynamics of the motor-cart system

Looking at Eqs. (2.10) to (2.12), it can be observed that if the nominal eccentricity of the pin, ∆, is small, the initial value problem of the motorcart system tends to the linear system equations of the DC motor, Eq. (2.1) and (2.2), in case of no load. But as the eccentricity grows, the non-linearities become more pronounced. The nonlinearity also increases with the attached mass, m. To understand the inuence of ∆ and m in the dynamic behavior of the motor-cart system, a parametric excited system, simulations with dierent values to these system parameters were performed. The objective was to observe the graphs of the system variables, as the motor current over time, angular displacement of the motor shaft and coupling force. For computation, the initial value problem dened by Eqs. (2.10) to (2.12) has been rewritten

in the dimensionless form given by Eqs. (2.15) to (2.16). Despite of using the dimensionless initial value problem for numerical simulations, the results are presented in the dimensional form because we believe that in this way they have an easier physical interpretation. The duration chosen is 2.0 s. The 4th-order Runge-Kutta method is used for the time-integration scheme with a time-step equal to 10 -4 . The motor parameters used in all simulations are listed in we see that the coupling force is not harmonic. Remembering the constrain x(t) = ∆ cos α(t), it is veried that the horizontal force presents its maximum value when x(t) = -∆ and its minimum value when x(t) = ∆. Besides this, the coupling force changes its sign twice. Observing the τ graph, it is veried that the torque presents four points of sign change. Two of them occur when 2.9(a): 2.9(b): 

Asymptotically stable periodic orbit

Due to the coupling mechanism, the coupling torque, τ , variates in time.

Thus, the angular speed of the motor shaft and the current are not constant values after the transient. To compare the response of the coupled systems for dierent values of ∆ and m, the duration of one cart movement cycle, T p , were computed in the periodic state. the paper [START_REF] Dantas | Asymptotically stable periodic orbits of a coupled electromechanical system[END_REF], in which a similar electromechanical motor-cart system was analyzed and the existence and asymptotic stability of a periodic orbit to this system were obtained in a mathematically rigorous way. To prove the existence and asymptotic stability of periodic orbits, the authors of [START_REF] Dantas | Asymptotically stable periodic orbits of a coupled electromechanical system[END_REF] used the dimensionless initial value problem given by Eq. (2.15) and, assumed the following Ansatz q (s) = ω 0 + z (s) ,

(2.17)

w (s) = k 1 + w 1 (s) (2.18)
where

k 1 = v 0 v 3 v 3 + v 2 , ω 0 = v 0 v 2 v 3 + v 2 , (2.19) 
and v 1 = . Substituting the expressions of v 0 , v 2 and, v 3 given in Eq. (2.16), one obtains that

k 1 = l k e ν r(b m r + k 2 e ) = l r αno load , ω 0 = b m ν l k e (b m r + k 2 e ) = l k e c no load .
(2.20)

From a mechanical point of view, Eq. (2.17) means that the disk, that is a part of the mechanical system modeled by Eqs. (2.10) and (2.11), will rotate at an angular speed near ω 0 (which is the velocity αno load in a dimensionless form) and (2.18) means that electrical current will oscillate near k 1 (which is current c no load in a dimensionless form).

After a mathematical proof of existence and asymptotic stability of periodic orbits, the authors of [START_REF] Dantas | Asymptotically stable periodic orbits of a coupled electromechanical system[END_REF] obtained the following expression to the period T p of the system

T p ( ) = π ω 0 + π ω 0 (v 2 + (4 ω 2 0 + 1) v 3 ) 2 4 E 1 + O 3 . (2.21)
where v 2 and v 3 are given in Eq. (2.16), and

E 1 = 2 (v 3 + v 2 ) Q 1 (2.22) Q 1 = 4 ω 2 0 + 1 v 2 3 + 2 v 2 v 3 + v 2 2 -8 ω 2 0 v 2 + 16 ω 4 0 + 4 ω 2 0 .
(2.23)

Observing this expression, one concludes that the nonlinear eects on the period are signicant at second order of that expansion. Beside this, using the expressions given in Eq. (2.16), it is veried that the period grows proportionally to m 2 ∆ 4 , and so the growing of the period is faster in relation to ∆ than to m. of the approximation of expression to the period T p , approximations to the period were computed to dierent values of considering just the rst and second orders terms of the Eq. (2.21). The obtained approximations were compared with the values of period obtained from numerical simulations.

The results displayed in Fig. 2.12 shows that domain of validity of the approximation considering only the rst and second orders terms is rather large, a fact that is not evident from perturbation theory. The paper [START_REF] Dantas | Asymptotically stable periodic orbits of a coupled electromechanical system[END_REF] treats the problem of electromechanical coupling by a mathematical approach.

As no other references dealing with this king of approach to electromechanical systems were found, we believe that [START_REF] Dantas | Asymptotically stable periodic orbits of a coupled electromechanical system[END_REF] is a rst work on the topic. Some others articles have been written in this way, as [START_REF] Dantas | General results of existence and asymptotic stability for a class of electromechanical systems[END_REF][START_REF] Dantas | Dynamics of an electromechanical system forced near the resonance[END_REF][START_REF] Dantas | Stable periodic orbits in an electromechanical system[END_REF][START_REF] Dantas | Existence of periodic orbits in an electromechanical system under parametric end external excitations[END_REF]]. Among the several routes for research coming from this mathematical approach, some have been studied. The objective is to prove the existence and asymptotic stability for electromechanical systems in which a capacitor is included in the circuit sketched in Fig. 2.1. This leads to a system with four degrees of freedom and the possibility of resonances.

The guessing is that if the techniques used here can be useful for this problem.

the cart is xed to a wall by a linear spring and damper, as shown in Fig. 2.13. Beside this, the motor has a time-dependent voltage source given by ν t (t) = ν + χ sin(ω 1 t). Without the spring, the system is driven by the constraint and the dynamics is a sort of master-slave relation, a very simple one. With the inclusion of the spring, the dynamics changes completely, now the constraints cannot always impose the dynamics and it is richer. The techniques used in [START_REF] Dantas | Asymptotically stable periodic orbits of a coupled electromechanical system[END_REF] do not work any more and new techniques to show existence and stability have to be used. If the spring has a high rigidity it does not let the motor to drive the cart all the way to the end of the track and the cart oscillates around a position that depends on the rigidity of the spring and the voltage that drives the system. Some of the results already obtained for this problem are published [START_REF] Dantas | Phase bifurcations in an electromechanical system[END_REF].

Summary of the Chapter

The developed models revealed that the electromechanical motor-cart system is parametric excited, in which the coupling torque appears as a time variation of the system parameters. Simulations of these systems were performed for dierent values of ∆ and m and the results of these numerical simulations, as the graphs the systems variables over time, graphs of the FFT of systems variables and phase portraits graphs were analyzed. From these graphs, a typical phenomenon of parametric excited systems was observed:

the existence of a periodic solution with a relation 2:1 between the period of rotation of the disk and the period of the current. This result is compatible with earlier numerical ndings in [START_REF] Lima | Analysis of an Electromechanic Coupled System with Embarked Mass[END_REF] and guided us in the development of [START_REF] Dantas | Asymptotically stable periodic orbits of a coupled electromechanical system[END_REF], in which the existence and asymptotic stability of a periodic orbit to an electromechanical system are obtained in a mathematically rigorous way.

Besides this, the nominal eccentricity of the pin of the motor, was characterized as a parameter that controls the nonlinearities of the equations of motion of the system.

Motor-cart-pendulum system: introduction of a mechanical energy reservoir

The second electromechanical system analyzed in this Thesis has the same elements of the rst system and a pendulum that is embarked into the cart, as shown in Fig. 3.1. Its suspension point is xed in the cart, hence moves with it. The main point here is that the pendulum can have a relative motion with respect to the cart.

Dynamics of the motor-cart-pendulum system

The pendulum is modeled as a mathematical pendulum (bar without mass and particle of mass m p at the end). Its length is noted as l p and the pendulum angular displacement as θ. 

(m p + m c )ẍ(t) + m p l p θ(t) cos θ(t) -m p l p θ2 (t) sin θ(t) = f (t) , (3.2) 
where, again, f represents the horizontal coupling force between the DC motor and the cart, g a is the acceleration of gravity, and the horizontal cart displacement is x. The mass of the mechanical system, m, is equal the cart mass plus the pendulum mass, m c + m p . The relative motion of the embarked pendulum causes a variation in the position of the center of mass of the mechanical system. As in the rst coupled system, the cart is not allowed to move in the vertical direction. Due to the problem geometry, x(t) and α(t) are related by Eq. (2.9). Once again, it is assumed that the motor shaft is rigid and that there is no friction between the pin and the slot. Thus, the available torque to the coupled mechanical system, τ , is written as Eq. (2.6).

Substituting the Eq. (2.7), (2.9), (3.1) and (3.2) into Eqs. (2.1) and (2.2), we obtain the initial value problem for the motor-cart-pendulum system that is written as follows. Given a constant source voltage ν, nd (α, c, θ) such that, for all t > 0,

l ċ(t) +rc(t) + k e α(t) = v , α(t) j m + (m c + m p )∆ 2 (sin α(t)) 2 + k e c(t) + α(t) [b m + (m c + m p )∆ 2 α(t) cos α(t) sin α(t)] -θ(t) [m p l p cos θ(t)∆ sin α(t)] + θ(t) m p l p θ(t) sin θ(t)∆ sin α(t) = 0 , θ(t) m p l 2 p -α(t) [m p l p cos θ(t)∆ sin α(t)] -α(t) [m p l p cos θ(t)∆ cos α(t) α(t)] + m p g a l p sin θ(t) = 0 , (3.3) with the initial conditions, α(0) = 0 , α(0) = 0 , θ(0) = 0 , θ(0) = 0 , c(0) = ν r . (3.4) 
Observing Eq. (3.3), it is veried that the motor-pendulum system inuences the cart in a parametric way.

Dimensionless cart-motor-pendulum system

In this section, the initial value problem to the motor-cart-pendulum system is presented in a dimensionless form. Taking α(t) = u(t) and θ(t) = n(t), the system can be written as a rst order system

ċ(t) = -k e u(t) -rc(t) + ν l , u(t) = {-n(t) 2 m p l p sin θ(t)∆ sin(α(t)) -u(t) 2 (m c + m p )∆ 2 cos(α(t)) sin(α(t)) -b m u(t) + k e c(t) + [cos (θ(t))∆ sin (α(t))] [u(t) 2 m p cos θ(t)∆ cos α(t) -m p g a sin (θ(t)) ] } 1 j m + ∆ 2 sin (α(t)) 2 (m c + m p sin (θ(t)) 2 )
,

ṅ(t) = {m p cos (θ(t))∆ sin (α(t)) [k e c(t) -u(t) 2 (m c + m p )∆ 2 cos(α(t)) sin(α(t)) -b m u(t) -n(t) 2 m p l p sin θ(t)∆ sin(α(t)) ] + j m + (m p + m c )∆ 2 sin (α(t)) 2 [-m p g a sin (θ(t)) + u(t) 2 m p cos θ(t)∆ cos α(t)] } 1 m p l p j m + ∆ 2 sin (α(t)) 2 (m c + m p sin (θ(t)) 2 )
.

(3.5) Writing t = l r s, α l r s = γ(s), u l r s = rq(s) l , θ l r s = β(s), n l r s = ry(s) l , c l r s = k e w(s) l , (3.6) 
one gets that s is dimensionless parameter. The functions γ (s), q (s), β (s), y (s) and w (s) are dimensionless functions. By substituting Eq. (3.6) into

Eq. (3.5) one obtains

w (s) = -w(s) -q(s) + v 0 , q (s) = {-v 3 q(s) -y(s) 2 v 5 sin (γ(s)) sin (β(s)) -v 6 sin (β(s)) cos (β(s)) sin (γ(s)) +v 2 w(s) -q(s) 2 cos (γ(s)) sin (γ(s)) v 9 -v 4 cos (β(s)) 2 1 1 + sin (γ(s)) 2 v 1 + v 4 sin (β(s)) 2 (3.7) y (s) = {-v 3 v 7 q(s) cos (β(s)) sin (γ(s)) + q(s) 2 v 7 cos (γ(s)) cos (β(s)) -v 4 y(s) 2 sin (γ(s)) 2 sin (β(s)) cos (β(s)) + v 2 v 7 w(s) cos (β(s)) sin (γ(s)) 1 -v 9 sin (γ(s)) 2 [-v 8 sin (β(s))] } 1 1 + sin (γ(s)) 2 v 1 + v 4 sin (β(s)) 2 , (3.8)
where denotes the derivative with respect to s and a i , i = 1, • • • , 16 are dimensionless parameters given by

v 0 = νl k e r , v 1 = ∆ 2 m c j m , v 2 = lk 2 e j m r 2 , v 3 = b m l j m r , v 4 = ∆ 2 m p j m , v 5 = m p l p ∆ j m , v 6 = m p ∆g a l 2 j m r 2 , v 7 = ∆ l p , v 8 = g a l 2 l p r 2 , v 9 = (m c + m p )∆ 2 j m . (3.9)
Comparing the dimensionless parameters of the motor-cart-pendulum system with the dimensionless parameters of the motor-cart system given by Eq. 2.16, it can be observed that the parameters v 0 to v 3 appear in both cases and, the inclusion of the embarked pendulum introduces six news parameters: v 4 to v 9 .

Numerical simulations of the dynamics of the motor-cart-pendulum system

A similar analysis to the one made to the motor-cart system, based on the results of numerical simulations, was developed for the motor-cartpendulum system. The 4th-order Runge-Kutta method is used for the timeintegration scheme with a time-step equal to 10 -4 . The motor parameters used in all simulations are listed in Table 2.1. The source voltage is assumed to be constant in time and equal to 2.4 V. Despite of using the dimensionless initial value problem for numerical simulations, the results are presented in the dimensional form because we believe that in this way they have an easier physical interpretation. Looking at the initial value problem Eqs. (3.3) to (3.4), it is observed that if the nominal eccentricity of the pin, ∆, is small and the angle, θ(t), is near zero, Eq. (3.3) tends to a linear system.

But as the eccentricity grows, the nonlinearities become more pronounced.

To understand the inuence of ∆ in the dynamic behavior of the motorcart system, simulations with two dierent values to this system parameter were performed. The selected values are ∆ = 0.001 m and ∆ = 0.01 m. In these simulations, the cart and the pendulum masses were m c = 0.0 kg and m p = 5.0 kg, so that the total mass, m = m c + m p = 5.0 kg, is equal to the embarked mass. Although the masses are equal, this conguration contrasts with the one of the motor-cart system used in the previous simulations. In spite of having the same masses, the pendulum has a relative motion with respect to the cart, and this makes a huge dierence. The pendulum length was assumed to be 0.075 m. For ∆ = 0.001 m, Figs. show the graphs of the angular velocity of the motor shaft, current, pendulum displacement and cart displacement over time. These results reveal that when ∆ is small, the angular speed of the motor shaft oscillates over time with a very small amplitude around 7 Hz, the current also oscillates with a small amplitude around 0.13 A, and the angular displacement of pendulum is near 

Pumping Leads To Revolution

In Section 3.3, the cart mass was considered to be zero and the pendulum mass 5.0 kg. Next, it is presented an analysis of the behavior of this system with a dierent mass conguration. The cart mass is kept as 0.0 kg (a limit case) and a smaller value is selected to the pendulum mass, m p = 4.0 kg, so that the total mass, m c + m p = 4.0 kg, is still equal to the embarked mass. of the motor shaft, current and cart and pendulum displacements over time for this new mass conguration when ∆ = 0.01 m. Regarding these graphs, it can be observed that after the transient state, the dynamics achieves a periodic state, in which α takes negatives values. With this new mass conguration, the mechanical system pumps energy from the motor and the amplitude of the pendulum grows reaching a point where the mechanical system starts to drive the motion, [START_REF] Gourdon | Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results[END_REF][START_REF] Gourdon | Contrôle passif de vibrations par pompage énergétique[END_REF][START_REF] Cataldo | Free vibrations of an uncertain energy pumping system[END_REF]. This is seen observing that α takes negative values, indicating that the motor shaft sometimes changes its motion direction. When the angular speed of the motor shaft is positive, it is considered that the motor drives the cart motion, the cart is driven. But when it is negative, the motor looses the control over the cart and drives it no more, it is now driven by the mechanical system. In these situations, it will be said that the relation master-slave is reversed. To understand the sign changing of the angular speed 3.9(a): 3.9(b): 

Summary of the Chapter

The inuence of a embarked mass was demonstrated and it was shown the changes it causes in the solutions of the dynamic equations. The motorcart system has no capacity to pump energy from the motor, it is a masterslave system: the motor drives the cart motion, the cart is driven. The only interesting feature is how the nonlinearity changes with ∆ and m, the mass of the cart. The motor-cart-pendulum system has a new feature, the capacity to store energy in the motion of the pendulum. With this, the mechanical system can pump energy from the motor and, in certain cases, revert the relation master-slave, that is the mechanical system can be itself the master stopping the motor and reversing its motion.

Electromechanical system with internal impacts and uncertainties

The system analyzed in this chapter is composed by a cart whose motion is driven by a DC motor, sketched in Fig. 2.1, and a embarked pendulum into this cart. The motor is coupled to the cart through a pin that slides into a slot machined on an acrylic plate that is attached to the cart, as shown in Fig. 4.1.

The o-center pin is xed on the disc at distance ∆ of the motor shaft, so that the motor rotational motion is transformed into a cart horizontal movement.

The suspension point of the pendulum is xed in the cart, so that exists a relative motion between cart and pendulum induced by the motion of the cart.

The embarked pendulum is modeled as a mathematical pendulum (bar without stored in the pendulum motion it is not transferred outside the system, it stays within, with a possible dissipation. This system conguration helps to understand the dierence between an internal and an external barrier. The objective is to analyze the maximal energy stored in the barrier in impacts as function of some parameters of the electromechanical system. Due to the presence of uncertainties in the computational nonlinear dynamics model of the electromechanical system, the energy analysis is performed from a stochastic view point for dierent levels of uncertainties, and also for the deterministic case.

In the deterministic analysis, these parameters are the horizontal distance from the suspension point of the pendulum to the equilibrium position of the barrier and the coupling parameter between motor and the mechanical system, ∆. Numerical simulations were performed with dierent values of these parameters. The coupling parameter has been varied from zero, an asymptotic case, (meaning no coupling between motor and the mechanical system) up to 10 -3 m. Comparing the results obtained with ∆ = 0 and with ∆ > 0, it is possible to observe the inuence of the coupling in the maximal energy stored in the barrier.

Dynamics of the motor-cart-pendulumbarrier system

A continuous contact dynamic model is developed and the impact is described using the spring-dashpot model. The spring-damper element of the impact is represented by a spring with stiness k i and a damper with damping coecient c i . The equations of the cart-pendulum-barrier system were obtained with the Lagrange principle. They are m p l 2 p θ(t) + m p l p ẍ(t) cos θ(t) + m p g a l p sin θ(t) = f imp (t)l p cos θ(t) , 

(m p + m c )ẍ(t) + m p l p θ(t) cos θ(t) -m p l p θ2 (t) sin θ(t) = f (t) , (4.2) 
where, g a is the acceleration of gravity, f represents the horizontal coupling force between the DC motor and the cart and f imp the impact force exerted in the pendulum. This force is written as:

f imp (t) = -φ(t) k i (l p sin θ(t) + gap) + c i (l p θ(t) cos θ(t)) , (4.3) 
φ(t) = 1 , if -l p sin θ(t) > gap , 0 , if -l p sin θ(t) ≤ gap , (4.4) 
in Eq. (4.4) gap is the horizontal distance from the suspension point to the equilibrium position of the barrier. Due to the system geometry, x(t) and α(t)

are related by the following constraint

x(t) = ∆ cos α(t) . 2), we obtain the initial value problem for the motor-cart-pendulum-barrier system. Given a constant source voltage ν, nd (α, c, θ) such that, for all t > 0,

l ċ(t) + rc(t) + k e α(t) = ν , α(t) j m + (m c + m p )∆ 2 (sin α(t)) 2 + α(t) [b m + (m c + m p )∆ 2 α(t) cos α(t) sin α(t)]
-k e c(t) -θ(t) [m p l p cos θ(t)∆ sin α(t)] + θ(t) m p l p θ(t) sin θ(t)∆ sin α(t) = 0 ,

θ(t) m p l 2 p -α(t) [m p l p cos θ(t)∆ sin α(t)] -α(t) [m p l p cos θ(t)∆ cos α(t) α(t)] + m p g a l p sin θ(t) + φ(t) k i (l p sin θ(t) + gap) + c i (l p θ(t) cos θ(t)) l p cos θ(t) = 0 , (4.6)
where

φ(t) =    1, if -l p sin θ(t) > gap , 0, in all other cases , (4.7) 
with the initial conditions,

α(0) = 0 , α(0) = 0 , θ(0) = 0 , θ(0) = π/2 , c(0) = ν r . (4.8)

Dimensionless motor-cart-pendulum-barrier system

In this section, the initial value problem to the motor-cart-pendulumbarrier system is presented in a dimensionless form. Taking α(t) = u(t) and θ(t) = n(t), the system can be written as a rst order system ċ(t) = -k e u(t) -rc(t) + ν l ,

u(t) = {-n(t) 2 m p l p sin θ(t)∆ sin(α(t)) -u(t) 2 (m c + m p )∆ 2 cos(α(t)) sin(α(t)) -b m u(t) + k e c(t) + [cos (θ(t))∆ sin (α(t))] [u(t) 2 m p cos θ(t)∆ cos α(t) -m p g a sin (θ(t)) -φ [k i (l p sin θ(t) + gap) + c i (l p n(t) cos θ(t))] cos θ(t) ] } 1 j m + ∆ 2 sin (α(t)) 2 (m c + m p sin (θ(t)) 2 ) , ṅ(t) = {m p cos (θ(t))∆ sin (α(t)) [k e c(t) -u(t) 2 (m c + m p )∆ 2 cos(α(t)) sin(α(t)) -b m u(t) -n(t) 2 m p l p sin θ(t)∆ sin(α(t)) ] + j m + (m p + m c )∆ 2 sin (α(t)) 2 [-m p g a sin (θ(t)) + u(t) 2 m p cos θ(t)∆ cos α(t) -φ [k i (l p sin θ(t) + gap) +c i (l p n(t) cos θ(t)) ] cos θ(t) ] } 1 m p l p j m + ∆ 2 sin (α(t)) 2 (m c + m p sin (θ(t)) 2 )
. one gets that s is dimensionless parameter. The functions γ (s), q (s), β (s), y (s) and w (s) are dimensionless functions. By substituting Eq. (4.10) into

Eq. (4.9) one obtains 

w (s) = -w(s) -q(s) + v 0 , q (s) = {-v 3 q(s) -y(s) 2 v 5 sin (γ(s)) sin (β(s)) -v 6 sin (β(s)) cos (β(s)) sin (γ(s)) +v 2 w(s) -q(s) 2 cos (γ(s)) sin (γ(s)) v 9 -v 4 cos (β(s)) 2 -ϕ(s) cos (β(s)) 2 sin (γ(s)) [v 10 sin (β(s)) + v 11 + v 12 cos (β(s))y(s)] } 1 1 + sin (γ(s)) 2 v 1 + v 4 sin (β(s)) 2 (4.11) y (s) = {-v 3 v 7 q(s) cos (β(s)) sin (γ(s)) + q(s) 2 v 7 cos (γ(s)) cos (β(s)) -v 4 y(s) 2 sin (γ(s)) 2 sin (β(s)) cos (β(s)) + v 2 v 7 w(s) cos (β(s)) sin (γ(s)) 1 -v 9 sin (γ(s))
v 0 = νl k e r , v 1 = ∆ 2 m c j m , v 2 = lk 2 e j m r 2 , v 3 = b m l j m r , v 4 = ∆ 2 m p j m , v 5 = m p l p ∆ j m , v 6 = m p ∆g a l 2 j m r 2 , v 7 = ∆ l p , v 8 = g a l 2 l p r 2 , v 9 = (m c + m p )∆ 2 j m , v 10 = k i l p ∆l 2 j m r 2 , v 11 = k i gap∆l 2 j m r 2 , v 12 = c i l p ∆l j m r , v 13 = k i l 2 m p r 2 , v 14 = gap l p , v 15 = c i l m p r . (4.14)
Comparing the dimensionless parameters of the motor-cart-pendulum-barrier system with the dimensionless parameters of the motor-cart-pendulum system given by Eq. 3.9, it can be observed that the internal barrier introduces six news parameters to the equations: v 10 to v 15 .

Impact energy

As explained in the introduction, the objective of this chapter is to analyze the maximum energy stored in the barrier in each impact in function of some parameters of the electromechanical system. These parameters are gap/l p and ∆. The maximum impact energy during the j-th impact, λ j , occurs when the spring k i is compressed to the maximum, that is, when l p sin (θ) achieves its minimum value during the j-th impact. Noting as θ the angle of the pendulum corresponding to this conguration of maximum compression, λ j is calculated by

λ j = 1 2 k i (l p sin(θ ) + gap) 2 ,
with -l p sin θ > gap .

(4.15)

The average of the maximum impact energy is written as

λ = N imp j=1 λ j N imp , ( 4.16) 
where N imp is the total number of impacts that occur during time interval [0, T ].

T is the duration chosen for analysis. The variable λ is chosen to measure the system performance. The bigger λ is, the better will be the system performance.

Numerical simulations of the dynamics of the coupled system

To observe the inuence of the coupling between the electrical and mechanical parts in the maximum energy stored in the barrier, two congurations of the vibro-impact system were analyzed separately. In the rst one, it is considered no coupling between the motor and the mechanical system, i.e., ∆ = 0 m. In this case, the motor behaves as if it is turned o and, consequently, the cart does not move. In the second conguration, it is considered coupling, i.e., ∆ > 0 m.

No coupling between the motor and the mechanical system

When ∆ = 0 m, there is no coupling between the motor and the mechanical system. Thus the cart does not move. Considering that there is no energy dissipation in the impact model between the pendulum and the barrier (c i = 0 Ns/m), the maximum energy stored in the barrier in each impact can be calculated as function of the initial potential and kinetic energies of the pendulum. Calling the initial conditions for the pendulum as θ(0) = θ 0 and θ(0) = θ0 , the initial mechanical energy of the pendulum is

λ 0 = m p g cos (θ 0 ) + 1 2 m p [(l p θ0 cos θ 0 ) 2 + (l p θ0 sin θ 0 ) 2 ] .
(4.17)

When the spring k i is compressed to the maximum during the j-th impact, a part of λ 0 is stored as potential energy in the pendulum and another part as potential energy in spring k i (λ j ). Thus

λ 0 = m p g cos (θ ) + 1 2 k i (l p sin(θ ) + gap) 2 . (4.18)
Observing Eq. ( 4.17), it is possible to verify that when ∆ = 0 m, λ j the j-th impact will be maximum if gap/l p = 0. With this conguration, the pendulum begins the impact in the vertical position, exactly when it has its maximum velocity. Thus, this conguration is taken as reference. The impact energy in this conguration represented by λ ref will be used as normalization factor in the analysis of the impact factor. The value of λ ref is computed considering k i = 10 6 N/m. The graph of λ/λ ref as function of gap/l p for dierent values of k i is shown in Fig. 4.2. As expected, its maximum occurs when gap/l p = 0 and its minimum at gap/l p = 1 (conguration in which there is no impact between the pendulum and the barrier). 

Coupled system

When ∆ > 0 m, i.e., there is coupling between the motor and the mechanical system. The bigger is ∆, the more highlighted will be the nonlinear behavior of system [START_REF] Lima | Analysis of an Electromechanic Coupled System with Embarked Mass[END_REF]. Small changes in the values of ∆ and gap/l p can modify a lot the response of the system, as the maximum amplitude of the pendulum displacement, maximum velocity of the motor shaft and therefore, the impact behavior of the system. The form of the graph of the average of the impact energy changes as shown in Sec. 4.4. Considering just the coupled motor-cart system, i.e., there is no pendulum embarked in the cart, the existence and asymptotic stability of a periodic orbit were already obtained in a mathematically rigorous way in [START_REF] Dantas | Dynamical Systems: Applications (chapter: A nonlinear electromechanical system with stable periodic orbits[END_REF][START_REF] Dantas | Asymptotically stable periodic orbits of a coupled electromechanical system[END_REF]. The inuence of the parameters ∆ and gap/l p in λ, Eq. (4.16), was investigated numerically. For computation, the initial value problem dened by Eqs. (4.6) to (4.8) has been rewritten in the dimensionless form given by Eqs. (4.11) to (4.14). Despite of using the dimensionless initial value problem for numerical simulations, the results are presented in the dimensional form because we believe that in this way they have an easier physical interpretation. Duration is chosen as T = 20.0 s. The 4th-order Runge-Kutta method is used for the time-integration scheme. The specications of the motor parameters used in all simulations were obtained from the specications of the DC motor Maxon brushless number 411678 (values could be nd at [START_REF] Lima | Analysis of an Electromechanic Coupled System with Embarked Mass[END_REF](table 1)). The applied voltage was assumed to be constant in time and equal to 2.4 V. The pendulum length was assumed to be 0.075 m. The values of the cart and the pendulum masses were m c = 0.0 kg and m p = 5.0 kg, so that the total mass, m = m c + m p = 5.0 kg, is equal to the embarked mass, a limit case. The values of the stiness and damping coecient used in the simulations were k i = 10 6 N/m and c i = 0 Ns/m, so that there is no energy dissipation in the impact model. To investigate the inuence of ∆ and gap/l p in λ/λ ref , 700 numerical simulations have been carried out combining the following values of the parameters: 7 values for ∆ nonuniformly selected in the interval [0 , 10 -3 ] m, and 100 values for gap/l p uniformly selected in [0 , 1]. Figure 4.3 shows the graph of λ/λ ref as function of gap/l p for dierent values of ∆. It is noted that for values of d near zero, as 10 -5 m and 10 -4 m, the graph of the impact energy is very similar to the graph with ∆ = 0 m. The average impact energy presents its maximum at gap/l p = 0 and its minimum when gap/l p = 1. When ∆ is bigger, as 2×10 -4 m, 5 × 10 -4 m, 8 × 10 -4 m and 10 -3 m, the form of the graph of the average of the impact energy changes completely. The maximum does not occur anymore at gap/l p = 0. Depending on the value of ∆, the maximum occurs at a dierent value of gap/l p . Among the considered values of ∆ and gap/l p , the maximum of the average of the impact energy was obtained with ∆ = 10 -3 m and gap/l p = 0.6263. Considering ∆ = 10 -3 m and varying the value of k i , the shape of the curve of the average of the maximum impact energy in function of the parameter gap/l p (shown in Fig. 4.4) changes in an unexpected fashion.

Comparing it with Fig. 4.3, it is possible to observe that for small values of k i , as 10 2 N/m and 10 3 N/m, both graphs are similar. But, when k i is bigger, the form of the graph of the average of the impact energy changes completely.

Among the considered values of k i and gap/l p , the maximum of the average of the impact energy was obtained with k i = 10 4 N/m and gap/l p = 0.293. Thus the maximum of the average of the impact energy does not occur anymore with the bigger k i as happens in the ∆ = 0 m conguration. To construct the graph of Fig. 4.4, for each value of k i selected, 100 values of gap/l p equally spaced between 0 and 1 were considered. Thus, in total, 600 numerical simulations have been carried out.

Probabilistic model

The system parameter considered uncertain is k i , which is modeled by the random variable K i . The probability distribution of this random variable is constructed using the Maximum Entropy Principle [START_REF] Jaynes | Information theory and statistical mechanics[END_REF][START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Probabilités et modélisation des incertitudes -Eléments de base et concepts fondamentaux[END_REF][START_REF] Sampaio | Modelagem Estocástica e Geração de Amostras de Variáveis e Vetores Aleatórios[END_REF][START_REF] Souza De Cursi | Modelagem estocástica e quanticação de incertezas[END_REF][START_REF] Souza De Cursi | Uncertainty quantication and stochastic modeling with Matlab[END_REF]. This Principle allows the probability distribution of a random variable to be constructed using only the available information, avoiding the use of any additional information that introduces a bias on the estimation of the probability distribution. The Maximum Entropy Principle states: out of all probability distributions consistent with a given set of available information choose the one that has maximum uncertainty (the Shannon measure of entropy). The available information of the random variable is dened as 1. K i is a positive-valued random variable, 

the mean value is known: E{K

i } = µ,
3. in order that the response of the dynamical system be a second-order stochastic process, we impose the following condition: E{log K i } < ∞.

Therefore, the Maximum Entropy Principle using Shannon entropy measure of the probability density function, p, of K i yields the Gamma probability density function, given by

p(k i ) = 1 [0,+∞) (k i ) 1 µ 1 δ 2 1 δ 2 1 Γ(1/δ 2 ) x µ 1 δ 2 -1 exp x δ 2 µ , ( 4.19) 
where 1 [0,+∞) (k i ) is an indicator function that is equal to 1 for k i ∈ [0, +∞) and 0 otherwise, and

Γ is the Gamma function: Γ(a) = ∞ 0 t a-1 exp(-t)dt; δ = σ µ
is the coecient variation (σ is the standard deviation).

Numerical simulations of the stochastic vibro-impact electromechanical system

As it was assumed that the stiness of the spring, k i , in the barrier model is a random variable, the output variables of the stochastic coupled system are random processes [START_REF] Soize | Probabilités et modélisation des incertitudes -Eléments de base et concepts fondamentaux[END_REF][START_REF] Cataldo | Introdução aos processos estocásticos. Notas em Matemática Aplicada[END_REF] and, consequently, the average of the impact energy, 

Summary of the Chapter

The purpose of this chapter was to analyze the impact energy of an embarked pendulum in a vibro-impact electromechanical system. A exible barrier, attached to the cart, constrains the pendulum motion and causes impacts. Since this nonlinear electromechanical system is devoted to the vibro-impact, the time responses exhibit numerous shocks that have to be identied with accuracy and, consequently, a very small time-step is required.

To reduce the computation time, the initial-value problem, Eqs. half of this time. In the deterministic analysis, the inuence of the parameter gap/l p in the impact behavior was numerically investigated for dierent values of the nominal eccentricity of the pin, ∆, the parameter that governs the coupling and the nonlinearity of the system. As ∆ increases the nonlinearity also increases. It was veried that for values of ∆ near zero, the graph of the impact energy is very similar to the graph with ∆ = 0 m. This result can be nicely predicted from conservation of energy. However, as ∆ increases the form of the graph changes completely and in an unexpected fashion. This peculiar behavior is due to the energy taken by the pendulum from the motor. The energy of the mechanical systems varies a lot and the pumping of energy, from the motor to the mechanical system, increases with ∆. The systems analyzed show a self-oscillation behavior, in the sense that the generation and maintenance of the motion comes from the motor but the oscillations somehow control the energy taken from the motor. It varies with ∆, that is a measure of the nonlinearity of the system. It is worth mentioning that the energy intake is at frequency zero, the constant voltage, but this energy is distributed to all frequencies due to the impacts. The inuence of the parameter gap/l p in the impact behavior was also investigated for dierent values of the stiness, k i , with the xed value ∆ = 10 -3 m. Similar to what happens with the parameter d, it was veried that for small values of k i , the graph of the impact energy is very similar to the graph of impact energy with the same k i and ∆ = 0 m. However, as k i increases the form of the graph changes completely if compared to the graph of impact energy with the same k i and ∆ = 0 m. It was also observed that the maximum of the impact energy do not occur anymore with the bigger k i as happens in the ∆ = 0 m conguration.

In the stochastic analysis, the stiness of the spring k i , in the barrier was modeled as a random variable and the propagation of uncertainties in the coupled motor-cart-pendulum-barrier system was computed through Monte Carlo simulations. Thus statistics of the impact energy, as mean and 90% condence interval, were computed for dierent values of gap/l p , E{K i } and δ. Comparing these statistics with the results of deterministic simulations, it is veried that in relation to the mean of impact energy, deterministic and stochastic systems have similar behavior. However, the 90% condence interval decreases as E{K i } increases and expands as δ increases.

Robust design optimization with an uncertain model of a nonlinear percussive electromechanical system

The objective of this part of the Thesis is to perform an optimization of a percussive electromechanical system with respect to some chosen design parameters. The optimization consists in maximizing the impact power under the constraint that the electric power consumed by the DC motor is lower than a maximum value. This nonlinear constrained design optimization problem is formulated in the framework of robust design due to the presence of uncertainties in the computational nonlinear dynamics model of the electromechanical system [START_REF] Lopez | Optimisation en présence d'incertitudes[END_REF][START_REF] Ritto | Robust optimization of the rate of penetration of a drill-string using a stochastic nonlinear dynamical model[END_REF][START_REF] Capiez-Lernout | Robust design optimization in computational mechanics[END_REF].

Dynamics of the vibro-impact electromechanical system

As described in the introduction, the system is composed by a cart whose movement is driven by the DC motor, and by a hammer that is embarked into the cart. The motor is coupled to the cart through a pin that slides into a slot machined in an acrylic plate that is attached to the cart, as shown in Fig. 5.1.

The o-center pin is xed on the disc at distance ∆ of the motor shaft, so that the motor rotational motion is transformed into a cart horizontal movement.

To model the coupling between the motor and the mechanical system, the motor shaft is assumed to be rigid. Thus, the available torque vector to the coupled mechanical system, τ , can be written as

τ (t) = ∆(t) × f (t) , (5.1) 
where ∆ = (∆ cos α(t), ∆ sin α(t), 0) is the vector related to the eccentricity of the pin, and where f is the coupling force between the DC motor and the cart. Assuming that there is viscous friction between the pin and the slot, the vector f has two components: the horizontal force that the DC motor exerts in the cart, f x , and the vertical force, f y , induced by the viscous friction. The available torque τ and vertical force f y are written as

τ (t) = f y (t) ∆ cos α(t) -f x (t) ∆ sin α(t) , (5.2) 
f y (t) = c pin ∆ α(t) cos α(t) , (5.3) 
where c pin is the viscous friction. The embarked hammer is modeled as a rigid body of mass m h and its relative displacement is h with respect to the cart. In the adopted model, the constitutive equation of the spring component between the hammer and the cart is written as

f s (t) = k h1 h(t) + k h3 h(t) 3 .
The rate of nonlinearity of the hammer stiness is dened as r h = k h3 /k h1 . We introduce the natural frequency, ω h , of the hammer suspended to the linear spring with constant stiness k h1 such that ω h = k h1 /m h . The horizontal cart displacement is represented by x. Due to constraints, the cart is not allowed to move in the vertical direction. The spring-damper element modeling the medium on which the impacts occur, is constituted of a linear spring with stiness coecient k i and a damper with damping coecient c i . The equations of the cart-hammer-barrier system were obtained with the Lagrange principle.

They are

ẍ(t) (m c + m h ) + ḧ(t) m h + c ext ẋ(t) = -f imp (t) + f x (t) , (5.4) 
ẍ(t) m h + ḧ(t) m h + c int ḣ + k h1 h(t) + k h3 h 3 (t) = -f imp (t) , (5.5) 
where, c ext is the viscous friction coecient between the cart and the rail and c int = 2ς int √ m h k h1 is the viscous friction coecient between the cart and the hammer (ς int is the damping ratio). The term f x is the horizontal coupling force between the DC motor and the cart, and f imp is the impact force between the hammer and the barrier, which is written as

f imp (t) = -φ(t) k i (x(t) + h(t) + g) + c i ( ẋ(t) + ḣ(t)) , (5.6) 
where

φ(t) =    1, if x(t) + h(t) + g < 0 and ḣ(t) + ẋ(t) < 0 , 0, in all other cases , (5.7) 
in which g is dened as the horizontal distance from the hammer (when α = π/2 rad) to the equilibrium position of the barrier. In the model dened by Eq. (5.7), an impact starts when x(t)+h(t) is negative and equal to -g and, ḣ(t) -ẋ(t) < 0. During an impact, the action of the barrier on the hammer stops as soon as the total velocity ḣ(t) + ẋ(t) becomes positive (the return of the hammer), i.e, the barrier moves irreversibly in one direction, simulating a penetration. Due to the system geometry, x(t) and α(t) are related by the following constraint

x(t) = ∆ cos (α(t)) .

(

Substituting Eqs. (5.2) to (5.8) into Eqs. (2.1) and (2.2), we obtain the initial value problem for the motor-cart-hammer-barrier coupled system that is written as follows. Given a constant source voltage ν, nd (α, c, h) such that, for all t > 0,

l ċ(t) + rc(t) + k e α = ν , (5.9) α(t 
) j m + (m c + m h )∆ 2 sin (α(t)) 2 -ḧ(t) (m h ∆ sin (α(t))) -k e c(t) + α(t) b m + α(t)(m c + m h )∆ 2 cos (α(t)) sin (α(t)) +c pin ∆ 2 cos (α(t)) 2 -c ext ∆ 2 sin (α(t)) 2 = φ k i (∆ cos (α(t)) + h + g) + c i (-d α(t) sin (α(t)) + ḣ(t)) ∆ sin (α(t)) , (5.10) 
ḧ(t)m h -α(t) (m h ∆ sin (α(t))) -α(t) (m h ∆ α(t) cos (α(t))) + ḣ(t)c int + k h1 h(t) + k h3 h 3 (t) = φ(t) k i (∆ cos (α(t)) + h + g) + c i (-∆ α(t) sin (α(t)) + ḣ(t)) , (5.11) 
where

φ(t) =    1, if ∆ cos α(t) + h(t) + g < 0 and ḣ(t) -∆ α(t) cos (α(t)) < 0 0, in all other cases , (5.12) 
with the initial conditions, α(0) = 0 , α(0) = 0 , c(0) = ν r , h(0) = 0 , ḣ(0) = 0 . (5.13)

Dimensionless vibro-impact electromechanical system

In this section, the initial value problem to the vibro-impact electromechanical system is presented in a dimensionless form used for simulations. To get the dimensionless form, we take α (t) = u (t) and ḣ (t) = η (t), and rewrite the initial value problem dened by Eqs. (5.9) to (5.13) as a rst order system, as follows q (s) = -v 3 q(s) -v 1 q 2 (s) cos (p(s)) sin (p(s))

u(t) = -[b m + m c ∆ 2 u(t) cos (α(t)) sin (α(t)) + c pin ∆ 2 cos (α(t)) 2 -c ext ∆ 2 sin (α(t)) 2 ] u(t) m h + k e c(t) m h -c int η (t) m h ∆ sin (α(t)) -(k h1 h(t) + k h3 h 3 (t)) m h ∆ sin (α(t))} /m h (j m + m c ∆ 2 sin (α(t)) 2 ) η(t) = -[b m + c pin ∆ 2 cos (α(t)) 2 -c ext ∆ 2 sin (α(t)) 2 ] u(t) m h ∆ sin (α(t)) +k e c(t) m h ∆ sin (α(t)) -j m ∆ u 2 (t) cos (α(t)) -φ(t) [k i (∆ cos (α(t)) + h(t) + g) + c i (-∆ u(t) sin (α(t)) + η(t))] [j m + m c ∆sin (α(t)) 2 ] -[c int η(t) + k h1 h(t) + k h3 h 3 (t)] [j m + (m c + m h ) ∆ sin (α(t)) 2 ] /m h (j m + m c ∆ 2 sin (α(t)) 2 ) c(t) = 1 l (ν -k e u(t
-v 12 q(s)cos (p(s)) 2 + v 11 q(s)sin (p(s)) 2 + v 2 w(s)

-v 9 y(s) sin (p(s)) -v 4 a(s) + v 18 a 2 (s) + v 6 a 3 (s) sin (p(s))

1 1 + v 1 sin (p(s)) 2
(5.17) y (s) = -v 3 q(s) sin (p(s)) -v 12 q(s)cos (p(s)) 2 sin (p(s)) + v 11 q(s)sin (p(s)) 3 + v 2 w(s) sin (p(s)) + q 2 (s) cos (p(s)) -v 10 + v 9 sin (p(s)) 2 (v 8 + 1) y(s)

-v 5 + v 4 sin (p(s)) 2 (v 8 + 1) a(s) -v 7 + v 6 sin (p(s)) 2 (v 8 + 1) a 3 (s) -φ(s) (v 13 + v 14 v 8 sin (p(s)) 2 )(cos (p(s)) + a(s) + v 15 ) -(v 16 + v 17 v 18 sin (p(s)) 2 )(q(s) sin (p(s)) -y(s)) } 1 1 + v 1 sin (p(s)) 2 (5.18)
w (s) = -w(s) -q(s) + v 0 (5. [START_REF] Dantas | Dynamics of an electromechanical system forced near the resonance[END_REF] p (s) = q(s) (5.20) a (s) = y(s) (5.21) where denotes the derivative with respect to s and v i , i = 0, . . . , 19 are dimensionless parameters given by

v 0 = ν l k e r , v 1 = ∆ 2 m c j m , v 2 = k 2 e l j m r 2 , v 3 = b m l j m r , v 4 = k h1 l 2 ∆ 2 j m r 2 , v 5 = k h1 l 2 m h r 2 , v 6 = k h3 l 2 ∆ 4 j m r 2 , v 7 = k h3 l 2 ∆ 2 m h r 2 , v 8 = m c m h , v 9 = c int ∆ 2 l j m r , v 10 = c int l m h r , v 11 = c ext l ∆ 2 j m r , v 12 = c pin l ∆ 2 r , v 13 = k i l 2 m h r 2 , v 14 = k i l 2 ∆ 2 j m r 2 , v 15 = g ∆ , v 16 = c i l m h r , v 17 = c i l ∆ 2 j m r .
(5.22)

Measure of the system performance

At time t, the electric power introduced by the electrical grid in the motor is π in (t) = ν c(t) .

(5.23) Let t j b and t j e be the instants of begin and end of the j-th impact, such that for all t belonging to [t j b , t j e ], we have ẋ(t) + ḣ(t) < 0. At time t, the impact power, π j imp (t), is then written as

π j imp (t) = k i (x(t) + h(t)) ( ẋ(t) + ḣ(t)), t j b ≤ t ≤ t j e .
(5.24)

The time average of the impact power during the j-th impact, π j imp , is written as

π j imp = 1 t j e -t j b t j e t j b π j imp (t) dt .
(5.25)

The sum, π imp , of the averages of the impact powers, which is one of the variable of interest in the design optimization problem, is written as

π imp = N imp j=1 π j imp , (5.26) 
where N imp is the total number of impacts that occur during time interval [0, T ]. The time average of the electric power consumed in this time interval is

π elec = 1 T T 0 π in (t) dt .
(5.27)

These two variables, π imp and π elec , are chosen to measure the system performance. The biggest π imp is and the smaller π elec is, better will be the system performance.

Sensitivity analysis and choice of the design parameters

To understand the role played by each system parameter in π imp and π elec , a sensitivity analysis has been done. The objective was to determine what were the system parameters that had the biggest inuence in π imp and π elec , in order to dene those that will be the design parameters for the robust design optimization problem. The initial value problem dened by Eqs. (5.9) to (5.13) has been rewritten in a dimensionless form for computation and some dimensionless parameters were dened. However, in the sensitivity analysis, these dimensionless parameters were not considered as varying parameters (5.9) to (5.13) has been rewritten in the dimensionless form given by Eqs. (5.17) to (5.22) . The main objective was to reduce the computation time. Duration is chosen as T = 10.0 s. The 4th-order Runge-Kutta method is used for the time-integration scheme for which we have implemented a varying time-step. The time-step is adapted to the state of the dynamical system according to the occurrence or the non occurrence of impacts. When the hammer is not impacting the barrier, the time-step used is 10 -4 s, but when the hammer is approaching the barrier and when it is impacting it, the time-step is chosen as the value 10 -5 s.

Simulations with dierent values to the initial conditions, were performed.

As it was veried that they do not have a signicant inuence in π imp and π elec , in all simulations the initial conditions were taken as constant, given by Eq. (5.13). Concerning the sensitivity analysis, 20, 000 With these strategies, the computational time necessary to perform the 20, 000 numerical simulations were approximately 3.5 days. The largest value of π imp , Regarding all the graphs of π imp and π elec as a function m c /m h , k h1 /m h , g and ∆, it can be seen that small variations on g, k h1 /m h , and ∆ induce large variations for π imp and for π elec , but the same phenomenon does not occur with respect to the parameter m c /m h . Thus, while π imp and π elec are not very sensitive to m c /m h , they are sensitive to k h1 /m h , g and ∆. It is also seen, that two dierent kinds of sensitivity can be distinguished among these three parameters. For parameters k h1 /m h and g, it can be seen show that the highest is ∆, the highest are π imp and π elec . It has been considered as not necessarily to verify the behavior of π imp and π elec for a larger range of ∆ because the value ∆ = 0.013 m is already suciently large when compared with the system dimensions and the motor properties. It should be noted that if parameter ∆ is increased, then, the nonlinearities would increase also, but that is not the objective of the analysis. Considering that m c /m h does not have a signicant inuence in π imp and π elec , and considering that the sensitivity of the parameter ∆ is easily predictable, these two parameters will not be considered as design parameters in the robust design optimization problem. Only parameters g and k h1 /m h will thus be considered as design parameters.

Construction of the probability model

As explained in the introduction, this chapter deals with the robust design of the electromechanical system in presence of uncertainties in the computational model. The three parameters that are assumed to be uncertain are k h1 , k i and c i , which are modeled by the independent random variables K h1 , K i and C i . The probability distribution of each one is constructed using the Maximum Entropy Principle [START_REF] Jaynes | Information theory and statistical mechanics[END_REF][START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Probabilités et modélisation des incertitudes -Eléments de base et concepts fondamentaux[END_REF][START_REF] Sampaio | Modelagem Estocástica e Geração de Amostras de Variáveis e Vetores Aleatórios[END_REF][START_REF] Souza De Cursi | Modelagem estocástica e quanticação de incertezas[END_REF][START_REF] Souza De Cursi | Uncertainty quantication and stochastic modeling with Matlab[END_REF]. This Principle allows the probability distribution of a random variable to be constructed using only the available information, avoiding the use of any additional information that introduces a bias on the estimation of the probability distribution. 

E{K i } = K i , E{C i } = C i and E{K h1 } = K h1 ,
3. in order that the response of the dynamical system be a second-order stochastic process, we impose the following conditions:

E{log K i } < ∞, E{log C i } < ∞ and E{log K h1 } < ∞.
Thus, the Maximum Entropy Principle for each random variable K i , C i , and K h1 , yields a Gamma distribution (see [START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF]),

p(a) = 1 [0,+∞) (a) 1 µ 1 δ 2 1 δ 2 1 Γ(1/δ 2 ) a µ 1 δ 2 -1 exp a δ 2 µ , ( 5.28) 
where 1 [0,+∞) (a) is an indicator function that is equal to 1 for a ∈ [0, +∞) and 0 otherwise, and where

Γ is the Gamma function: Γ(b) = ∞ 0 t b-1 exp(-t)dt; δ = σ µ
is the coecient variation of the random variable, µ is its mean value representing K i , C i , or K h1 , and σ is its standard deviation.

Robust design optimization problem

In order to formulate the robust design problem, the set of all the system parameters is divided into three subsets. The rst subset is the family of the xed parameters that is represented by the vector p x = { ν, l, r, j m , k e , b m , c pin , c ext , ς int , r h , m c , m h , ∆ }. The second one is the family of the design parameters that is represented by the vector p des = {K h1 /m h , g}.

The third one is the family of the uncertain parameters that is represented by the random vector P unc = {K i , C i , K h1 }. Since P unc is a random vector, the outputs of the electromechanical system are stochastic processes and, consequently, π imp (p des , p unc ) and π elec (p des , p unc ), become random variables Π imp (p des ) = π imp (p des , P unc ) and Π elec (p des ) = π elec (p des , P unc ). The cost function of the robust design optimization problem is dened by J(p des ) = E{Π imp (p des )} .

(5.29)

The robust design optimization problem is written as

p opt des = arg max p des ∈C ad J(p des ) , (5.30) 
in which C ad = {p des ∈ P des ; E{Π elec (p des )} ≤ c elec }, where P des is the admissible set of the values of p des , and where c elec is an upper bound.

Results of the robust optimization problem

The hyperparameters δ K i and δ C i , which control the level of uncertainties for K i and C i are xed to 0.1. The robust design optimization problem is then solved for three levels of uncertainties for K h1 , dened by the following values of the hyperparameters δ K h1 = 0, δ K h1 = 0.1, and δ K h1 = 0.4. The optimization problem is also considered whitout uncertainties in the systems parameters, that is, the deterministic case (δ K h1 = δ K i = δ C i = 0). For p des ∈ C ad , the cost function is estimated by the Monte Carlo simulation method using 100 independent realizations of random vector P unc following its probability distribution. The optimization problem (dened by Eq. (5.30)) is solved using the trial method for which the admissible set C ad is meshed as follows: for K h1 /m h , 13 values are nonuniformly selected in the interval [703 , 3 830], and for g, 20 nonuniform values in [0 , 0.038]. Thus, 26, 000 numerical simulations have been carried out to solve optimization problem for each level of uncertainties.

Due the high numerical cost of these simulations, the same strategies used in the sensitivity analysis were adopted to reduce the computation time. They were: a varying time-step integration scheme was used for numerical iterations 5.1. Upper bound c elec is xed to the value 6.00 W. For the deterministic case, the components of the optimal solution p opt des are (K h1 /m h ) opt = 1, 580 rad 2 /s 2 and g opt = 0.011 m. For case with uncertainties, for which δ K i is xed to 0.1, and δ C i to 0.1, we obtain, for δ K h1 = 0, (K h1 /m h ) opt = 957 rad 2 /s 2 and g opt = 0.018 m, for δ K h1 = 0.1, (K h1 /m h ) opt = 1, 950 rad 2 /s 2 and g opt = 0.008 m, and for δ K h1 = 0.4, (K h1 /m h ) opt = 2, 360 rad 2 /s 2 and g opt = 0.008 m. Figures 5.9 

g → E{Π imp ((K h1 /m h ) opt , g)}, K h1 /m h → E{Π imp (K h1 /m h , g opt )}, g → E{Π elec ((K h1 /m h ) opt , g)}, and K h1 /m h → E{Π elec (K h1 /m h , g opt )}.
These gures show that the optimal design point strongly depends on the level of uncertainties. In particular, it can be deduced that the mean value of the electric power increases with the increase of the gap. The robustness of the optimal design point, p opt des , can be analyzed in studying the evolution of the coecient variation, δ Π imp (p opt des ), of random variable Π imp (p opt des ) as a function of the uncertainty level. However, in order to better analyze the sensitivity of the responses with respect to the uncertainty level, we have constructed Fig. 5.13 that displays the graphs g → δ Π imp ((K h1 /m h ) opt , g) and K h1 /m h → δ Π imp (K h1 /m h , g opt ). For each level of uncertainties, it can be seen that the value δ Π imp (p opt des ) occurs in a region for which the two following functions g → δ Π imp ((K h1 /m h ) opt , g) and K h1 /m h → δ Π imp (K h1 /m h , g opt ) are minima. This means the optimal design point is robust with respect to uncertainties.

Summary of the Chapter

In this chapter of the Thesis, the formulation and the solution of a robust design optimization problem have been presented for a nonlinear electromechanical vibro-impact system in presence of uncertainties in the computational model. Since this nonlinear electromechanical system is devoted to the vibroimpact optimization, the time responses exhibit numerous shocks that have to be identied with accuracy, and consequently, a very small time-step is re- quired. We have thus chosen an explicit time-integration scheme and not an implicit one. Nevertheless, due to the presence of low-frequency contributions in the time responses, a long time duration is required, which will imply a huge number of integration time-step if the time-step was chosen constant. This is the reason why we have implemented an adaptive integration time-step. It was one of the diculties encountered for the solver implementation. The use a varying time-step integration scheme was not the only strategy adopted to reduce the computation time. The initial value problem has been rewritten in a dimensionless form, which reduced the computation time of each simulation from 8 minutes to 5 minutes on average. Furthermore, a cluster with 20

computers has been used to to parallelize the simulations carried out in the sensitivity analysis and in the optimization problem. Observing the results of numerical integration, as time histories and phase diagrams, some interesting phenomena were veried, as for example bifurcation. Bifurcation is a typical nonlinear phenomena, and it is frequently discussed in many works (see for instance [START_REF] Ragulskis | The eect of dynamical self-orientation and its applicability for identication of natural frequencies[END_REF]). In the analyzed vibro-impact electromechanical system, it appears because depending on the values of the system parameters, the system response will have the occurrence or the non occurrence of impacts. But this topic is an ongoing research that will be object of a future work. The construction of the solution for the design optimization problem, has been prepared by carrying out a sensitivity analysis with respect all the possible design parameters.

This pre-analysis has allowed for reducing the number of design parameters to two parameters. Consequently, a random search algorithm or a genetic algorithm was not necessary, and we have thus used a trail method. It should be noted that in the framework of a robust analysis formulated in the context of the probability theory, and taking into account the types of nonlinearities in the dynamical system, the Monte Carlo numerical simulation method has been used, and this introduces a signicant increase of the numerical cost. The design optimization problem of the dynamical system without uncertainties yields an optimal design point that diers from the nominal values, and which can not be determined, a priori, without solving the design optimization problem. In addition, the robust analysis that has been presented demonstrates the interest that there is to take into account the uncertainties in the computational model. The optimal design point that has been identied in the robust design framework signicantly diers from design point obtained with the computational model without uncertainties. For this electromechanical system, it has been seen that, the minimum value of the dispersion of the random output occurs in the region of the optimal design parameters, which means that the optimal design point is robust with respect to uncertainties.

Summary, future works and publications

This Thesis is a joint work between PUC-Rio and Université Paris-Est in a program of double diploma supported by the Capes-Cofecub project (number 17795/12 -5).

In relation to the motor-cart system, we analyze the eect of the electromechanical coupling, i.e., the mutual interaction between the mechanical and electric systems. We formulated the time-evolution of the system dynamics as initial value problems, in which the coupling torque appears as a parametric excitation, i.e., a time variation of the system parameters Numerical simulations were performed for dierent values of system parameters, and their results, as the graphs the systems variables over time, FFT and phase portraits were analyzed. The main results observed were: the existence of a periodic solution with a relation 2:1 between the period of rotation of the disk and the period of the current (a typical phenomenon of parametric excited systems)

and, the characterization of the nominal eccentricity of the pin of the motor, as a parameter that controls the nonlinearities of the equations of motion of the system [START_REF] Lima | Analysis of an Electromechanic Coupled System with Embarked Mass[END_REF]. In [START_REF] Dantas | Asymptotically stable periodic orbits of a coupled electromechanical system[END_REF], the existence and asymptotic stability of a periodic orbit to this motor-cart system were obtained in a mathematically rigorous way.

In relation to the motor-cart-pendulum system, by numerical simulations it was veried that the pendulum introduces a new feature to the system dynamics: it can pump energy from the motor and, in certain cases, revert the relation master-slave [START_REF] Lima | Analysis of an Electromechanic Coupled System with Embarked Mass[END_REF][START_REF] Lima | Stochastic analysis of mechanical systems with nonideal source of power[END_REF][START_REF] Lima | Uncertainty quantication of coupled electromechanical systems with an embarked pendulum[END_REF][START_REF] Lima | Uncertainty quantication of the nonlinear dynamics of electromechanical coupled systems[END_REF].

In relation to the electromechanical system with internal impacts, we analyzed from a deterministic and from a stochastic view point the maximal energy stored in the barrier in impacts as function of some parameters of the electromechanical system, as gap/l p and ∆ [START_REF] Lima | A vibro-impact electromechanical system: models of the random dynamics of an embarked pendulum[END_REF]. It was veried that for values of ∆ near zero, the graph of the impact energy as function of gap/l p , is very similar to the graph with ∆ = 0 m (which can be nicely predicted from conservation of energy). However, as ∆ increases the form of the graph changes completely and in an unexpected fashion.

In relation to the percussive electromechanical system, we performed a robust optimization respect to design parameters in order to maximize the impact power under the constraint that the electric power consumed by the DC motor is lower than a maximum value. The construction of the solution for this robust design optimization problem, has been prepared by carrying out a sensitivity analysis with respect all the possible design parameters. This pre-analysis has allowed for reducing the number of design parameters to two parameters. The nonlinear constrained design optimization problem was formulated in the framework of robust design. It is solved for dierent levels of uncertainties, and also for the nominal value of deterministic design. The results are dierent and this show the importance of the stochastic modeling.

Future works

During the period of the thesis, several research topics arose from the study of electromechanical systems. In relation to the vibro-impact electromechanical system, some of the plans are:

to analyze the impact power for dierent models to the barrier, considering for example, plasticity in the displacement, i.e., the barrier moves irreversibly in one direction, simulating a penetration. The objective is to model the propagation of waves in a continuous heterogeneous media, which is unbounded (due to wavelengths that would be generated), and thus there is an additional dissipation by radiation to innity.

to develop a controller acting the source voltage in order to synchronize the hammer and the cart movements. Since the total hammer velocity is equal to the cart velocity ẋ added to the relative hammer velocity in relation to the cart ḣ, if we could control the system in a way that x and h be in phase, the total hammer velocity could achieve higher values, and consequently, the impact power could grow.

to consider dierent variables to measure the system performance, and to include this new variables in the formulation of the robust design optimization problem. Examples of these new variables are the number of impacts and frequency of impacts.

Publications

Concerning publications, during the period of Thesis, we have published three journal papers, see [START_REF] Lima | Robust design optimization with an uncertain model of a nonlinear vibro-impact electro-mechanical system[END_REF][START_REF] Lima | Robust design of a vibro-impact electro-mechanical system[END_REF][START_REF] Lima | Analysis of an Electromechanic Coupled System with Embarked Mass[END_REF]:

[J1] Robust design optimization with an uncertain model of a nonlinear vibro-impact electro-mechanical system; R. Lima, C. Soize, and R. Sampaio.

Communications in Nonlinear Science and Numerical Simulation, 23, pp.

263-273, 2015.

Lima,

  Roberta de Queiroz; Sampaio, Rubens and Soize, Christian. Modélisation et simulation en dynamique stochastique non linéaire des systèmes couplés avec phénomènes d'impact. Rio de Janeiro, 2015. 89p. PhD Thesis Département de Génie Mécanique de la PUC-Rio and Université Paris-Est. Dans cette Thèse, nous étudions l'optimisation robuste avec un modèle incertain d'un système électromécanique avec vibro-impact. Le système électromécanique est constitué d'un chariot dont le mouvement est généré par un moteur à courant continu, et d'un marteau embarqué dans ce chariot. Le marteau est relié au chariot par un ressort non linéaire et par un amortisseur linéaire, de façon qu'un mouvement relatif existe entre eux. Une barrière exible linéaire, placée à l'extérieur du chariot limite les mouvements du marteau. En raison du mouvement relatif entre le marteau et la barrière, des impacts peuvent se produire entre ces deux éléments. Le modèle du système développé prend en compte l'inuence du moteur à courant continu dans le comportement dynamique du système. Certains paramètres du système sont incertains, tels que les coecients de rigidité et d'amortissement de la barrière exible. L'objectif de la Thèse est de réaliser une optimisation de ce système électromécanique en jouant sur les paramètres de conception. Le but est de maximiser la puissance d'impact sous la contrainte que la puissance électrique consommée par le moteur à courant continu soit inférieure à une valeur maximale. Pour choisir les paramétres de conception dans le probléme d'optimisation, une analyse de sensibilité a été réalisée an de dénir les paramètres du système les plus sensibles. L'optimisation est formulée dans le cadre de la conception robuste en raison de la présence d'incertitudes dans le modèle. Les lois de probabilités des variables aléatoires du problème sont construites en utilisant le Principe du Maximum d'Entropie. Les statistiques de la réponse stochastique du système sont calculées en utilisant la méthode de Monte Carlo. L'ensemble des équations non linéaires est présenté, et un solveur temporel adapté est développé. Le problème d'optimisation non linéaire stochastique est résolu pour diérents niveaux d'incertitudes, ainsi que pour le cas déterministe. Les résultats sont diérents, ce qui montre l'importance de la modélisation stochastique. Mots-clés Systémes couplés; Système embarqué; Vibro-imapct; Analyse stochastique; Optimisation robuste; Dynamique non-linéaire. Motor-cart system with ∆ = 0.001 m: (a) angular speed of the motor shaft over time and (b) Fast Fourier Transform of the cart displacement. 2.4 Motor-cart system with ∆ = 0.01 m: (a) angular speed of the motor shaft over time and (b) Fast Fourier Transform of the cart displacement.

4 . 5

 45 Mean and 90% condence interval of Λ/λ ref as function of gap/l p with δ = 0.15 for(a) E{K i } = 10 4 N/m and (b)E{K i } = 10 5 N/m . 4.6 (a) Mean and 90% condence interval of Λ as function of gap/l p with δ = 0.15 and E{K i } = 10 6 N/m and (b) normalized histogram of Λ/λ ref for gap/l p = 0.63 m, E{K i } = 10 6 N/m and δ = 0.15.
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 47 Mean and 90% condence interval of Λ/λ ref as function of gap/l p with E{K i } = 10 4 N/m for(a) δ = 0.25 and (b) δ = 0.35.
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 48 Mean and 90% condence interval of Λ/λ ref as function of gap/l p with E{K i } = 10 5 N/m for(a) δ = 0.25 and (b) δ = 0.35.
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 5567 a) Graph of π imp as a function of g with (m c /m h ) , (k h1 /m h ) , and ∆ . (b) Graph of π imp as a function of ∆ with (m c /m h ) , (k h1 /m h ) , and g . 5.a) Graph of π elec as a function of m c /m h with (k h1 /m h ) , g , and ∆ . (b) Graph of π elec as a function of k h1 /m h with (m c /m h ) , g , and ∆ . 5.a) Graph of π elec as a function of g with x (m c /m h ) , (k h1 /m h ) , and ∆ . (b) Graph of π elec as a function of ∆ with x (m c /m h ) , (k h1 /m h ) , and g . 5.8 Parallelization of the simulations performed to solve the robust optimization problem. 5.9 (a) Cost function as function of the design parameters for the deterministic case. (b) Cost function as function of the design parameters for the case in which δ K i = δ C i = 0.1 and δ K h1 = 0. 5.10 (a) Cost function as function of the design parameters for the case in which δ K i = δ C i = δ K h1 = 0.1. (b) Cost function as function of the design parameters for the case in which δ K i = δ C i = 0.1 and δ K h1 = 0.4. 5.11 (a) Cost function as function of g with (K h1 /m h ) opt . (b) Cost function as function of K h1 /m h with g opt . In both graphs, the E{Π imp (p opt des )} is highlighted for each level of uncertainties with markers.
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 11 Figure 1.1: First system: cart-motor system.

Figure 1 . 2 :

 12 Figure 1.2: Second system: cart-motor-pendulum system.

Figure 1 . 4 :

 14 Figure 1.4: Fourth system: motor-cart-hammer coupled system.

Figure 2 . 1 :

 21 Figure 2.1: Electrical DC motor.

Figure 2 . 1 shows-τ r + k e ν b m r + k 2 e,-τ r + k e ν b m r + k 2 e.

 2122 a sketch of the DC motor. The available torque delivered to the coupled mechanical system is represented by τ , that is the component of the torque vector τ in the z-direction shown in Fig.2.1. Some relevant situations when we analyze electrical motors are described as following:Assuming that τ and ν are constant in time, the motor achieves a steady state in which the electric current and the angular speed become constant in time. By Eqs. (2.1) and (2.2), the angular speed of the motor shaft and the current in steady state, respectively αsteady and c steady , are written as αsteady =

Figure 2 . 2 :

 22 Figure 2.2: Coupled cart-motor system.

  Figs. 2.4(a) and 2.4(b), it is veried that the amplitude of the oscillations of α grows and, due to the non-linearity eects, the FFT graph of x presents more than one peak. The rst of them is at 6.56 Hz and the others are at odd multiples of this value, characterizing a periodic function.

Figure 2 . 3 :

 23 Figure 2.3: Motor-cart system with ∆ = 0.001 m: (a) angular speed of the motor shaft over time and (b) Fast Fourier Transform of the cart displacement.

Figure 2 . 4 :

 24 Figure 2.4: Motor-cart system with ∆ = 0.01 m: (a) angular speed of the motor shaft over time and (b) Fast Fourier Transform of the cart displacement.

Figure 2 . 5 :

 25 Figure 2.5: Motor-cart system: Fast Fourier Transform of the current (a) when ∆ = 0.001 m and (b) when ∆ = 0.01 m.

Figure 2 . 6 :

 26 Figure 2.6: Motor-cart system with ∆ = 0.01 m: (a) cart displacement and (b) motor current over time.

  x(t) = -∆ and x(t) = ∆, corresponding respectively to α multiple of π and α multiple of 2π. This changes were expected from Eq. (2.7). The others two changes occur exactly in the same cart positions that we have the sign of f changing. In each cart movement cycle, the horizontal force f and the torque τ follow once the paths shown in Fig.2.7(a) and 2.7(b). Figures 2.8(a) and 2.7(a): 2.7(b):
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 27 Figure 2.7: Motor-cart system with ∆ = 0.01 m: (a) horizontal force f and (b) torque τ during one cycle of the cart movement.

Figure 2 . 8 :

 28 Figure 2.8: Motor-cart system with ∆ = 0.01 m: (a) current variation during one cart movement cycle and (b) torque variation as function of the current.

Figure 2 . 9 :Figure 2 . 10 :

 29210 Figure 2.9: Motor-cart system with ∆ = 0.01 m: (a) angular velocity of the motor shaft during one cart movement cycle and (b) current variation as function of the angular velocity of the motor shaft.

Figures 2 .

 2 11(a) and 2.11(b) show the graphs of the computed periods as function of ∆ and m. In both graphs it is observed that, the bigger ∆, or m, is, the bigger is the period of the cart movement cycle in the periodic state. It is noted too that this increment is more pronounced in relation to ∆. This result guided the development of 2.11(a): 2.11(b):
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 211 Figure 2.11: Motor-cart system: period of one cart movement cycle (a) as function of ∆ with m = 5.0 kg and (b) as function of m with ∆ = 0.005 m.
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 212 Figure 2.12: Comparison between numerical ndings and the asymptotic approximation.
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 213 Figure 2.13: Coupled cart-motor-spring-damper system.
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 31 Figure 3.1: Cart-motor-pendulum system.

  3.2(a), 3.2(b), 3.3(a) and 3.3(b)
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 32333435 Figure 3.2: Motor-cart-pendulum system with ∆ = 0.001 m: (a) angular velocity of the motor shaft and (b) current over time.

Figure 3 . 6 :Figure 3 . 7 :

 3637 Figure 3.6: Motor-cart-pendulum system with ∆ = 0.01 m: (a) pendulum and (b) cart displacement over time.

Figures 3 .Figure 3 . 8 :

 338 Figures 3.9(a), 3.9(b), 3.10(a) and 3.10(b) show the graphs of the angular speed

Figure 3 . 9 :Figure 3 . 10 :Figure 3 . 11 :Figure 3 . 12 :

 39310311312 Figure 3.9: Motor-cart-pendulum system with ∆ = 0.01 m: (a) angular velocity of the motor shaft and (b) current over time.

Figure 3 . 13 :

 313 Figure 3.13: Motor-cart-pendulum system with ∆ = 0.01 m: portrait graphs of (a) tangent θ graph as function of α and (b) τ as function of α.

  mass and particle of mass m p at the end). The pendulum length is represented by l p and the pendulum angular displacement by θ. The mass of the mechanical system, m, is equal the cart mass plus pendulum mass, m c +m p . The horizontal cart position is represented by x. Due to constraints, the cart is not allowed to move in the vertical direction. A exible barrier is attached inside the cart, constraining the pendulum motion. Due to the relative motion between the cart and the pendulum, it is possible that occur impacts between the pendulum and the barrier, as suggested in Fig. 4.1. As the impacts are internal, the energy

Figure 4 . 1 :

 41 Figure 4.1: Coupled motor-cart-pendulum-barrier system.

(4. 5 )

 5 Substituting Eqs. (2.6) and (4.1) to (4.5) into Eqs. (2.1) and (2.

Figure 4 . 2 :

 42 Figure 4.2: No coupling (∆ = 0 m): normalized average of the maximum impact energy as function of the parameter gap/l p for dierent values of k i N/m.

Figure 4 . 3 :

 43 Figure 4.3: Coupled system (∆ > 0): normalized average of the impact energy as function of the parameter gap/l p for dierent values of ∆ (units in meters).

Figure 4 . 4 :

 44 Figure 4.4: Coupled system (∆ > 0): normalized average of the impact energy as function of the parameter gap/l p for dierent values of k i N/m with ∆ = 10 -3 m.
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 45 Figure 4.5: Mean and 90% condence interval of Λ/λ ref as function of gap/l p with δ = 0.15 for(a) E{K i } = 10 4 N/m and (b)E{K i } = 10 5 N/m .

Figures 4 .

 4 7 to 4.9 show the graphs of E{Λ}/λ ref and 90% condence interval as function of gap/l p for E{K i } = 10 4 , 10 5 and 10 6 N/m and for δ = 0.25 and 0.35. These gures show that the bigger δ is, the larger is the condence interval of Λ/λ ref . 4.6(a): 4.6(b):

Figure 4 . 6 :

 46 Figure 4.6: (a) Mean and 90% condence interval of Λ as function of gap/l p with δ = 0.15 and E{K i } = 10 6 N/m and (b) normalized histogram of Λ/λ ref for gap/l p = 0.63 m, E{K i } = 10 6 N/m and δ = 0.15.
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 47 Figure 4.7: Mean and 90% condence interval of Λ/λ ref as function of gap/l p with E{K i } = 10 4 N/m for(a) δ = 0.25 and (b) δ = 0.35.
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 48 Figure 4.8: Mean and 90% condence interval of Λ/λ ref as function of gap/l p with E{K i } = 10 5 N/m for(a) δ = 0.25 and (b) δ = 0.35.

Figure 4 . 9 :

 49 Figure 4.9: Mean and 90% condence interval of Λ/λ ref as function of gap/l p with E{K i } = 10 6 N/m for(a) δ = 0.25 and (b) δ = 0.35.

  (4.6) to (4.8), was rewritten in the dimensionless form, Eqs. (4.11) to (4.13). While each numerical simulation of Eqs. (4.6) to (4.8) takes approximately 30 seconds to be computed, each numerical simulation of Eqs. (4.6) to (4.8) takes approximately

Figure 5 . 1 :

 51 Figure 5.1: Motor-cart-hammer coupled system. The nonlinear component spring is drawn as a linear spring with constant k h1 and a nonlinear cubic spring with constant k h3 .

  since they do not have an easy physical interpretation. The varying parameters used for the numerical simulations are related with the design of the cart and the embarked hammer. They are: m c /m h , relation between the hammer mass and the cart mass; k h1 /m h , relation between the linear stiness of the spring component and hammer mass (a sort of natural frequency of the hammer); g, horizontal distance from the hammer (when α = π/2 rad) to the equilibrium position of the barrier; ∆, eccentricity of the pin. This parameter determines the length of the cart path. The other parameters, related with the motor properties and viscous friction coecients, are xed and the values of these xed parameters are given in

  numerical simulations have been carried out combining the following values of the parameters: 10 values for m c /m h selected in the interval [0.10 , 2.00], 10 values for k h1 /m h in [657 , 4 410] rad 2 /s 2 , 10 values for g in [0 , 0.02] m, and 20 values for ∆ in [0.003 , 0.013] m. Due the high numerical cost of these simulations, some strategies were adopted to reduce the computation time: the varying time-step integration scheme was used for numerical iterations; the initial value problem has been rewritten in a dimensionless form, the computation time of each simulation was reduced from 8 minutes to 5 minutes on average; parallelization of the simulations: a cluster in the Laboratoire de Modélisation et Simulation Multi-Echelle of Université Paris-Est with 20 computers was used to make the simulations, as shown in Fig 5.4.
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 52 Figure 5.2: Parallelization of the simulations in the sensitivity analysis.
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 53545657 Figure 5.3: For the optimal values (m c /m h ) and ∆ : (a) graph of π imp as a function of g and k h1 /m h (varying in all its range of values), (b) graph of π imp as a function of g and k h1 /m h (varying in [0.06 , 0.02] and [1 250 , 1 953] respectively).
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 58 Figure 5.8: Parallelization of the simulations performed to solve the robust optimization problem.
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 59 Figure 5.9: (a) Cost function as function of the design parameters for the deterministic case. (b) Cost function as function of the design parameters for the case in which δ K i = δ C i = 0.1 and δ K h1 = 0.

  Figure 5.10: (a) Cost function as function of the design parameters for the case in which δ K i = δ C i = δ K h1 = 0.1. (b) Cost function as function of the design parameters for the case in which δ K i = δ C i = 0.1 and δ K h1 = 0.4.

Figure 5 .

 5 Figure 5.11: (a) Cost function as function of g with (K h1 /m h ) opt . (b) Cost function as function of K h1 /m h with g opt . In both graphs, the E{Π imp (p opt des )}is highlighted for each level of uncertainties with markers.

Figure 5 .

 5 Figure 5.12: (a) Mean value of the time average of electric power as function of g with (K h1 /m h ) opt . (b) Mean value of the time average of electric power as function of K h1 /m h with g opt . In both graphs, the E{Π elec (p opt des )} is highlighted for each level of uncertainties with markers.

Figure 5 .

 5 Figure 5.13: (a) Coecient variation of Π imp as function of g with (K h1 /m h ) opt . (b) Coecient variation of Π imp as function of K h1 /m h with g opt . In both graphs, the δ Π imp (p opt des ) is highlighted for each level of uncertainties with markers.

Table 2 .

 2 1. The source voltage is assumed to be constant in time and equal to 2.4 V. To observe the inuence of the eccentricity of the pin in the behavior

	Parameter	Value
	l	1.880 × 10 -4 H
	j m	1.210 × 10 -4 kg m 2
	b m	1.545 × 10 -4 Nm/(rad/s)
	r	0.307 Ω
	k e	5.330 × 10 -2 V/(rad/s)

Table 2 .

 2 1: Values of the motor parameters used in simulations.

Table 5 .

 5 1. The output responses are π imp and π elec . For computation, the

Table 5 . 1 :

 51 Values of the system parameters used in simulations.

	Parameter	Value	Parameter	Value
	m c	0.50 Kg	ν	2.4 V
	r h	0.30 1/m 2	r	0.307 Ω
	c pin	5.00 Ns/m	l	1.88 × 10 -4 H
	c ext	5.00 Ns/m	j m	1.21 × 10 -4 Kg m 2
	ς int	0.05	b m	1.5452 × 10 -4 Nm/(rad/s)
	k i	10 6 N/m	k e	0.0533 V/(rad/s)
	c i	10 3 Ns/m		
	initial value problem dened by Eqs.	

  Ifa large amount of experimental data are available, then the nonparametric statistics can be used. If there are no available experimental data, or if there are only a few experimental data, then the Maximum Entropy from Information Theory is the most ecient tool for constructing a prior probability model.

The Maximum Entropy Principle states: out of all probability distributions consistent with a given set of available information, choose the one that has maximum uncertainty (the Shannon measure of entropy). The available information of the random variables is dened as 1. K h1 , K i and C i are positive-valued independent random variables, 2. the mean values are known:
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