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Abstract

Lima, Roberta de Queiroz; Sampaio, Rubens and Soize, Christian.
Modeling and simulation in nonlinear stochastic dynamics

of coupled systems and impacts. Rio de Janeiro, 2015. 89p.
PhD Thesis � Department of Mechanical Engineering of PUC-Rio
and Université Paris-Est.

In this Thesis, the robust design with an uncertain model of a vibro-

impact electromechanical system is done. The electromechanical system is

composed of a cart, whose motion is excited by a DC motor (motor with

continuous current), and an embarked hammer into this cart. The hammer

is connected to the cart by a nonlinear spring component and by a linear

damper, so that a relative motion exists between them. A linear �exible

barrier, placed outside of the cart, constrains the hammer movements. Due

to the relative movement between the hammer and the barrier, impacts

can occur between these two elements. The developed model of the system

takes into account the in�uence of the DC motor in the dynamic behavior

of the system. Some system parameters are uncertain, such as the sti�ness

and the damping coe�cients of the �exible barrier. The objective of the

Thesis is to perform an optimization of this electromechanical system

with respect to design parameters in order to maximize the impact power

under the constraint that the electric power consumed by the DC motor

is lower than a maximum value. To chose the design parameters in the

optimization problem, a sensitivity analysis was performed in order to de�ne

the most sensitive system parameters. The optimization is formulated in the

framework of robust design due to the presence of uncertainties in the model.

The probability distributions of random variables are constructed using the

Maximum Entropy Principle and statistics of the stochastic response of the

system are computed using the Monte Carlo method. The set of nonlinear

equations are presented, and an adapted time domain solver is developed.

The stochastic nonlinear constrained design optimization problem is solved

for di�erent levels of uncertainties, and also for the deterministic case. The

results are di�erent and this show the importance of the stochastic modeling.

Keywords

Coupled systems; Embarked system; Vibro-impact; Stochastic analysis;

Robust design optimization; Nonlinear dynamics.



Résumé

Lima, Roberta de Queiroz; Sampaio, Rubens and Soize, Christian.
Modélisation et simulation en dynamique stochastique non

linéaire des systèmes couplés avec phénomènes d'impact.
Rio de Janeiro, 2015. 89p. PhD Thesis � Département de Génie
Mécanique de la PUC-Rio and Université Paris-Est.

Dans cette Thèse, nous étudions l'optimisation robuste avec un modèle

incertain d'un système électromécanique avec vibro-impact. Le système

électromécanique est constitué d'un chariot dont le mouvement est généré

par un moteur à courant continu, et d'un marteau embarqué dans ce

chariot. Le marteau est relié au chariot par un ressort non linéaire et

par un amortisseur linéaire, de façon qu'un mouvement relatif existe entre

eux. Une barrière �exible linéaire, placée à l'extérieur du chariot limite les

mouvements du marteau. En raison du mouvement relatif entre le marteau

et la barrière, des impacts peuvent se produire entre ces deux éléments.

Le modèle du système développé prend en compte l'in�uence du moteur

à courant continu dans le comportement dynamique du système. Certains

paramètres du système sont incertains, tels que les coe�cients de rigidité

et d'amortissement de la barrière �exible. L'objectif de la Thèse est de

réaliser une optimisation de ce système électromécanique en jouant sur les

paramètres de conception. Le but est de maximiser la puissance d'impact

sous la contrainte que la puissance électrique consommée par le moteur

à courant continu soit inférieure à une valeur maximale. Pour choisir les

paramétres de conception dans le probléme d'optimisation, une analyse

de sensibilité a été réalisée a�n de dé�nir les paramètres du système les

plus sensibles. L'optimisation est formulée dans le cadre de la conception

robuste en raison de la présence d'incertitudes dans le modèle. Les lois

de probabilités des variables aléatoires du problème sont construites en

utilisant le Principe du Maximum d'Entropie. Les statistiques de la réponse

stochastique du système sont calculées en utilisant la méthode de Monte

Carlo. L'ensemble des équations non linéaires est présenté, et un solveur

temporel adapté est développé. Le problème d'optimisation non linéaire

stochastique est résolu pour di�érents niveaux d'incertitudes, ainsi que pour

le cas déterministe. Les résultats sont di�érents, ce qui montre l'importance

de la modélisation stochastique.

Mots-clés

Systémes couplés; Système embarqué; Vibro-imapct; Analyse

stochastique; Optimisation robuste; Dynamique non-linéaire.



Resumo

Lima, Roberta de Queiroz; Sampaio, Rubens and Soize, Christian.
Modelagem e simulação em dinâmica estocástica não-linear

de sistemas acoplados e impactos. Rio de Janeiro, 2015. 89p.
PhD Thesis � Departamento de Engenharia Mecânica da PUC-Rio
and Université Paris-Est.

Nesta Tese, o design robusto, com um modelo incerto de um sistema de

vibro-impacto eletromecânico é feito. O sistema é composto de um carrinho,

cujo movimento é aciondo por um motor de corrente contínua e um martelo

embarcado neste carrinho. O martelo é ligado ao carrinho por um mola

não linear e por um amortecedor linear, de modo que existe um movimento

relativo entre eles. Uma barreira linear �exível, colocada fora do carrinho,

restringe aos movimentos do martelo. Devido ao movimento relativo entre

o martelo e a barreira, impactos podem ocorrer entre estes dois elementos.

O modelo metemático desenvolvido para sistema leva em conta a in�uência

do motor no comportamento dinâmico do sistema. Alguns parâmetros do

sistema são incertos, tais como a rigidez e os coe�cientes de amortecimento

da barreira �exível. O objectivo da Tese é realizar uma otimização deste

sistema electromecânico com respeito a parâmetros de projeto, a �m de

maximizar a potência de impacto sob a restrição de que a potência elétrica

consumida pelo motor seja menor do que um valor máximo. Para escolher

os parâmetros de projeto no problema de otimização, uma análise de

sensibilidade foi realizada a �m de de�nir os parâmetros mais sensíveis do

sistema. O problema de otimização é formulado no âmbito de otimização

robusta, devido à presença de incertezas no modelo. As distribuições de

probabilidades das variáveis aleatórias são construídas através do Princípio

da Máxima Entropia e estatísticas da resposta estocástica do sistema são

calculadas pelo método de Monte Carlo. O conjunto de equações não-

lineares é apresentado, e um integrador temporal adaptado é desenvolvido.

O problema de otimização não-linear estocástico com restrição é resolvido

para diferentes níveis de incertezas e também para o caso determinístico.

Os resultados são diferentes e isto mostra a importância da modelagem

estocástica.

Palavras-chave

Sistemas acoplados; Sistema embarcado; Vibro-impacto; Análise es-

tocástica; Otimização robusta; Dinâmica não linear.
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1

Introduction

1.1 Motivation of the Thesis

The oil well drilling is still an interesting topic of research. There are

still many challenges involving the modeling of the complex dynamics of a

drill string. It presents interesting phenomena, such as coupled axial, lateral

and torsional vibrations [86], bit-rock interaction, geometric nonlinearities,

impacts, �uid-structure interaction. The literature dealing with modeling the

drill string dynamics is vast (see [14, 36, 69, 79, 77]).

Besides this complex dynamics, the drill string dynamics involves also

numerous sources of uncertainties. In this context of modeling, uncertainties

should be taken into account in the computational models in order to improve

the robustness of the numerical predictions [39, 92, 38, 67].

Recently this problem of modeling and simulation of nonlinear dynamics

of a drill-string including uncertainty modeling has been intensively studied,

as [74, 76, 80, 74, 82, 78].

Due to the growth of perforation depth over the years, the drilling process

requires a constant improvement in energy e�ciency. Reduction of costs and

increase in bit life and in rate of penetration are always challenges for oil

companies.

During conventional rotary drilling, many di�erent forms of dissipation,

as axial vibrations, can generate the waste of the energy applied in the

drillstring. To compensate these losses, many new concepts of drilling were

proposed over the years. These new approaches consider the e�cient use of

energy as an important factor, bringing an increase in rate of penetration,

and consequently a reduction the cost of hard rock drilling. One example,

is the concept of percussive drilling, introduced in the last decades [5].

The percussion proposes to insert energy into the drilling process through

impacts to fracture the rock, and then facilitate the penetration of the bit

[3, 2, 28, 27, 60, 58, 70, 22]. The objective is to combine rotary and impact

action in order to increase the drilling rate.

This concept of use of impacts in drilling motivates this Thesis. We are

interested in simple systems that present the phenomenon that somehow mimic

the dynamical behavior found in the percussive drilling process: the vibro-
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impact action. Despite the systems analyzed do not consider the rotary action,

we do believe that they represent an initial step to study the percussive drilling.

As percussive dynamical systems can be a�ected by many factors, their

analysis requires to take into account uncertainties in the computational

models that are used (see for instance [87]). Thus, we are interested also in

problems that involve uncertainty quanti�cation and stochastic modeling.

The analysis of vibro-impact systems is not a new subject, and is

frequently encountered in technical applications of mechanisms. The interest of

analyzing their performance is re�ected by the increasing amount of research in

this area (see for instance [63, 68, 98, 75, 33, 96], and also the book by Ibrahim

[32], which is completely devoted to this problem). Besides the theoretical

research in vibro-impact dynamics, numerous applications to vibro-impact

systems have also been developed, such as vibration hammer, impact damper,

and gears. The vibro-impact dynamics appears also in several other situations,

as for example in earthquakes, where the interest is the seismic mitigation [66].

The focus of this Thesis is to analyze numerically the performance

of vibro-impact systems with motion driven by an electrical motor. This

performance is measured by the impact power (transferred from the system

to an external barrier) and by the electric power consumed by the electrical

motor that drives the system motion. In the developed model of the system,

the in�uence of the DC motor in the dynamic behavior of the system is taken

into account.

The electromechanical systems analyzed in this Thesis were �rst designed

by R.R. Aguiar in his PhD Thesis [1]. He investigated experimentally a vibro-

impact system with motion driven by an electrical motor, with a similar

coupling mechanism between the mechanical and electrical parts of the system,

the scotch yoke mechanism. The main objective of R.R. Aguiar was to

characterize the impact force magnitude and to make numerical analysis

through bifurcation diagrams, Peterka map [72] and basins of attraction.

Aguiar published some journal papers about his work, as [3, 2].

Mechanical systems with motion driven by electric motors are usually

modeled eliminating the motor and saying that the force between the mech-

anical and electric systems is imposed, so no electromechanical coupling is

present, and it is harmonic with frequency given by the nominal frequency of

the motor. In this Thesis, it is shown that this hypothesis is far from true

and leads to a completely di�erent dynamics. In the systems we analyze here,

the coupling force is not prescribed by a function, it comes from the coupling,

varying with the coupling conditions [44, 18]. Therefore, the dynamics of elec-

tromechanical systems is characterized by a mutual interaction between the
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mechanical and electric parts, that is, the dynamics of the motor is heavily

in�uenced by the mechanical system and the dynamics of the mechanical part

depends on the dynamics of the motor [4].

After an extensive literature review, no references dealing with this

mutual interaction between electric and percussive systems were found. Hence

we believe that this Thesis is a �rst work on this topic.

1.2 Percussive systems

Percussive systems are usually composed by a cart with motion driven

by an external system (in our case it is an electrical DC motor) and, by

an embarked hammer in the cart. The cart acts like a hammer case and

induces the hammer motion. An external barrier (representing the soil, in the

case of percussive drilling systems) constrains the hammer movements. Due

to the relative movement between the hammer and the barrier, impacts can

occur between these two elements. The interaction between those components

(DC motor, cart, hammer, and barrier) gives to the system dynamical special

features, and turns the dynamical behavior very nonlinear. These interactions

are described as following:

� Between the mechanical and electrical parts of the system appears an

electromechanical coupling in which the coupling force varies with the

coupling conditions. The result is a mutual interaction between the

mechanical and electric parts.

� The motion of the hammer is induced by the motion of the cart, in a

way that there is no direct control on the hammer motion. Therefore, the

hammer introduces a new feature since its motion acts as a reservoir of

energy, i.e. energy from the electrical system is pumped to the hammer

and stored in the hammer motion, changing the characteristics of the

mechanical system (see [13, 59]).

� Part of the energy stored in the hammer motion is transferred to the

external barrier through the impacts. The impact power achieved is one

the variables used for measuring the system performance. In the case of

drilling, this power would be used to fracture the soil and enhance the

penetration.

To understand the role played by each one of these phenomena in the dynamics

of the electromechanical percussive systems, we decided to split the problem

into four simpler problems, in hierarchical complexity: from simpler to more

complexity. With this division, to every concluded step, we gained some
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Figure 1.1: First system: cart-motor system.

insight into the behavior of the electromechanical percussive systems and, we

published some works. The systems studied are described in the next Section.

1.3 Hierarchical electromechanical systems ana-

lyzed

We started the study analyzing the dynamics of a very simple system,

composed of a cart whose motion is driven by an electrical DC motor, as

shown in Fig. 1.1. The coupling between the motor and the cart is made

by a mechanism called scotch yoke so that the motor rotational motion is

transformed into a cart horizontal motion. This system is a bare minimum to

analyze the e�ect of the electromechanical coupling, i.e., the mutual interaction

between the mechanical and electric systems, in which the coupling torque

appears as a parametric excitation, i.e., a time variation of the system

parameters (see for instance [10, 97]). In this simple motor-cart system the

coupling is a sort of master-slave condition: the motor drives, the cart is driven,

and that is all.

The second system analyzed has the same two elements of the �rst and

also a pendulum with suspension point �xed in cart, as shown in Fig. 1.2. The

pendulum is the embarked system and its motion is driven by the motion of the

cart. So there is no direct control of the motion of the pendulum. The pendulum

introduces a new feature since its motion acts as a reservoir of energy, i.e.

energy from the electrical system is pumped to the pendulum and stored in

the pendulum motion, changing the characteristics of the mechanical system.

The objective of the study of this motor-cart-pendulum system is to analyze

the in�uence of an embarked element in the dynamics of the electromechanical

system. One of the main results is that the master-slave condition, that

appeared in the cart-motor system, is not anymore a characteristic of the

system.

The third system analyzed has the same three elements of the �rst and

also a �exible barrier placed inside the cart that constrains the pendulum
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Figure 1.2: Second system: cart-motor-pendulum system.

motion, as shown in Fig. 1.3. Due to the relative movement between the

cart and the pendulum, it is possible that occur impact between these two

elements. Thus, the third electromechanical system analyzed has internal

impacts. The impacts are caused by the motion of the cart that induces the

motion of the pendulum. As the impacts are internal, the energy stored in

the pendulum motion it is not transferred outside the system, it stays within,

with a possible dissipation. This system con�guration helps to understand the

di�erence between an internal and an external barrier. The objective in this

part of the Thesis is to analyze the maximal energy stored in the barrier in

impacts as function of some parameters of the electromechanical system. Due

to the presence of uncertainties in the computational nonlinear dynamics model

of the electromechanical system with internal impacts, the energy analysis is

performed from a stochastic view point for di�erent levels of uncertainties, and

also for the deterministic case.

Figure 1.3: Third system: motor-cart-pendulum-barrier system.

The fourth system analyzed is the percussive electromechanical system.

It is composed of a cart coupled to a DC motor by the scotch yoke mechanism,

and of an embarked hammer in the cart. In this percussive system, we opted

to change the geometry of the embarked element. We do not consider anymore

a pendulum. We took a particle with concentrate mass able to move in only

one direction. This hammer is connected to the cart by a nonlinear spring

component and by a linear damper, so that a relative motion exists between
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Figure 1.4: Fourth system: motor-cart-hammer coupled system.

them. A linear �exible barrier, placed outside of the cart, constrains the

hammer movements, as shown in Fig. 1.4. Due to the relative movement

between the hammer and the barrier, impacts can occur between these two

elements. As the impacts are in an external barrier, the energy stored in the

hammer motion it is transferred outside the system. The objective in this part

of the Thesis is to analyze the performance of this percussive system with

motion driven by a DC motor. We performed an optimization of the system

with respect to design parameters in order to maximize the impact power under

the constraint that the electric power consumed by the DC motor is lower than

a maximum value. This optimization problem is formulated in the framework

of robust design (see [81, 9]) and it is solved for di�erent levels of uncertainties

and also for the deterministic case.

1.4 Organization of the Thesis

The Thesis is organized as follows. In Chapter 2, we analyze the simplest

eletromechanical system: the motor-cart system. Then, in Chapter 3, we

analyze the system that has the same elements of the �rst system and has

a pendulum that is embarked in the cart: the motor-cart-pendulum system.

In Chapter 4, we include inside the cart a �exible barrier constraining the

pendulum motion. Thus we deal with an electromechanical system with

internal impacts. In Chapter 5, we analyze the performance of a percussive

electromechanical system. The objective is to optimize of this system with

respect to some chosen design parameters in order to maximize the impact

power under the constraint that the electric power consumed by the DC motor

is bounded. Finally, in Chapter 6, the results are summarized and future works

are discussed.



2

Motor-cart system: a parametric excited

nonlinear system due to electromechan-

ical coupling

The analysis of electromechanical systems is not a new subject. The

interest of analyzing their dynamic behavior is re�ected by the increasing

amount of research in this area (see for instance [99, 84, 41, 7, 8]). In [83]

there is a chapter dedicated to the coupled problem and it is remarked that

it is a problem di�erent from parametric resonance. In [37] the whole book is

dedicated to the problem but the analytical treatment supposes some small

parameter, a hypothesis avoided here. Recently, the problem is been intensely

studied again, see [6, 1, 4], but the literature is vast.

The mutual interaction between electrical and mechanical parts leads us

to analyze a very interesting nonlinear dynamical systems [64, 24, 31, 23, 10],

in which the nonlinearity comes from the coupling and varies with the coupling

conditions.

In this Chapter, we analyze the dynamical behavior of a simple elec-

tromechanical system composed by a cart whose motion is driven by a DC

motor. The coupling between the motor and the cart is made by a mechanism

called scotch yoke so that the motor rotational motion is transformed into a

cart horizontal motion.

2.1 Dynamics of the motor-cart system

2.1.1 Electrical system: DC motor

The mathematical modeling of DC motors is based on the Kirchho�'s

law [35]. It is written as

lċ(t) + r c(t) + keα̇(t) = ν , (2.1)

jmα̈(t) + bmα̇(t)− ke c(t) = −τ(t) , (2.2)

where t is the time, ν is the source voltage, c is the electric current, α̇ is

the angular speed of the motor, l is the electric inductance, jm is the inertia

moment of the motor, bm is the damping ratio in the transmission of the torque



Chapter 2. Motor-cart system: a parametric excited nonlinear system due

to electromechanical coupling 21

Figure 2.1: Electrical DC motor.

generated by the motor to drive the coupled mechanical system, ke is the motor

electromagnetic force constant and r is the electrical resistance. Figure 2.1

shows a sketch of the DC motor. The available torque delivered to the coupled

mechanical system is represented by τ , that is the component of the torque

vector τ in the z-direction shown in Fig. 2.1. Some relevant situations when

we analyze electrical motors are described as following:

� Assuming that τ and ν are constant in time, the motor achieves a steady

state in which the electric current and the angular speed become constant

in time. By Eqs. (2.1) and (2.2), the angular speed of the motor shaft and

the current in steady state, respectively α̇steady and csteady, are written as

α̇steady =
−τ r + ke ν

bm r + k2
e

, csteady =
ν

r
−ke
r

(
−τ r + ke ν

bm r + k2
e

)
. (2.3)

� When τ is not constant in time, the angular speed of the motor shaft and

the current do not reach a constant value. This kind of situation happens

when, for example, a mechanical system is coupled to a motor. In this

case, α̇ and c variate in time in a way that the dynamics of the motor

will be in�uenced by the coupled mechanical system. When there is no

load applied in the motor (i.e. τ(t) = 0, ∀t ∈ R≥0) and the source voltage

is constant in time, the motor achieves its maximum angular speed that

is called the no load speed. It is calculated by

α̇no load =
ke ν

bm r + k2
e

, cno load =
bm
ke

(
ke ν

bm r + k2
e

)
. (2.4)

� The motor delivers the maximum torque, when the load applied in the

motor is such that the motor does not move at all. This is called the stall

torque. If the source voltage is constant in time, it is calculated by

τstall =
ke ν

r
. (2.5)
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Figure 2.2: Coupled cart-motor system.

2.1.2 Cart-motor system: a master-slave relation

As described in the introduction, the system is composed by a cart whose

motion is driven by the DC motor. The motor is coupled to the cart through a

pin that slides into a slot machined in an acrylic plate that is attached to the

cart, as shown in Fig. 2.2. The o�-center pin is �xed on the disc at distance ∆

of the motor shaft, so that the motor rotational motion is transformed into a

cart horizontal movement. It is noticed that with this con�guration, the center

of mass of the mechanical system is always located in the center of mass of the

cart, so its position does not change. To model the coupling between the motor

and the mechanical system, the motor shaft is assumed to be rigid. Thus, the

available torque vector to the coupled mechanical system, τ , can be written

as
τ (t) = ∆(t)× f(t) , (2.6)

where ∆ = (∆ cosα(t), ∆ sinα(t), 0) is the vector related to the eccentricity

of the pin, and where f is the coupling force between the DC motor and the

cart. Assuming that there is no friction between the pin and the slot, the vector

f only has a horizontal component, f (the horizontal force that the DC motor

exerts in the cart). The available torque τ is written as

τ(t) = −f(t) ∆ sinα(t) . (2.7)

Due to constraints, the cart is not allowed to move in the vertical direction.

The mass of the mechanical system, m, is equal the cart mass, mc, and the

horizontal cart displacement is represented by x. Since the cart is modeled as

a particle, it satis�es the equation

m ẍ(t) = f(t) . (2.8)

Due to the system geometry, x(t) and α(t) are related by the following

constraint
x(t) = ∆ cos (α(t)) . (2.9)
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Substituting Eqs. (2.7) to (2.9) into Eqs. (2.1) and (2.2), we obtain the initial

value problem for the motor-cart system that is written as follows. Given a

constant source voltage ν, �nd (α, c) such that, for all t > 0,

l ċ(t) + r c(t) + ke α̇(t) = ν , (2.10)

α̈(t)
[
jm +m∆2(sinα(t))2]+α̇ [bm +m∆2α̇(t) cosα(t) sinα(t)

]
−ke c(t) = 0 ,

(2.11)
with the initial conditions,

α̇(0) = 0 , α(0) = 0 , c(0) =
ν

r
. (2.12)

Comparing Eq. (2.11) with Eq. (2.2), it is seen that the mechanical system

in�uences the motor in a parametric way, [40, 65, 93, 62, 71]. The coupling

torque, τ , that appears in the right side of Eq. (2.2), appears now as a time

variation of the system parameters.

2.2 Dimensionless cart-motor system

In this section, the initial value problem to the motor-cart system

is presented in a dimensionless form. The development of this form is a

strategy to determine the dimensionless parameters of the system, which

were useful in the prove of existence and asymptotic stability of a periodic

orbit to this electromechanical system, discussed in Section 2.4. Beside this,

the dimensionless equations were very useful for simulations, since it reduced

signi�cantly the computation time.

Consider the system of (2.10) to (2.11). Taking α̇ (t) = u (t), the system

can be written as a �rst-order system, thus one gets that

ċ (t) = −ke u (t) + r c (t)− ν
l

,

α̇ (t) = u (t) ,

u̇ (t) =
−
(
−c (t) kt + ∆2mu (t)2 cos (α (t)) sin (α (t)) + bm u (t)

)
(

∆2m sin2 (α (t)) + jm

) .

(2.13)

Writing

t =
l

r
s, α

(
l s

r

)
= p (s) , u

(
l s

r

)
=
r q (s)

l
, c

(
l s

r

)
=
kew (s)

l
(2.14)

one gets that s is dimensionless parameter. The functions p (s), q (s) and w (s)

are dimensionless functions. Substituting (2.14) into (2.13) one obtains
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w′ (s) = −w (s)− q (s) + v0

p′ (s) = q (s) ,

q′ (s) =
−
(
v1 q (s)2 cos (p (s)) sin (p (s))− v2w (s) + v3 q (s)

)
(
v1 sin2 (p (s)) + 1

) (2.15)

where ′ denotes the derivative with respect to s and vi, i = 0, . . . , 3, are

dimensionless parameters given by

v0 =
ν l

ke r
, v1 =

∆2m

jm
, v2 =

ke l kt
jm r2

, v3 =
bm l

jm r
. (2.16)

The strategy to obtain the dimensionless form of the initial value problem to

the motor-cart system, was writing the time t as function of the dimensionless

parameter s and as function of motor parameters (the inductance, l, and

resistance, r). Thus, the new dimensionless time s appeared as a parameter

that is independent of the parameters of the mechanical part of the system. Due

to this independence, this strategy of writing t as function of s, l, and r could

be applied to the others electromechanical systems analyzed in this Thesis. We

used the same dimensionless parameter s to obtain their dimensionless initial

value problems.

2.3 Numerical simulations of the dynamics of the

motor-cart system

Looking at Eqs. (2.10) to (2.12), it can be observed that if the nominal

eccentricity of the pin, ∆, is small, the initial value problem of the motor-

cart system tends to the linear system equations of the DC motor, Eq. (2.1)

and (2.2), in case of no load. But as the eccentricity grows, the non-linearities

become more pronounced. The nonlinearity also increases with the attached

mass, m. To understand the in�uence of ∆ and m in the dynamic behavior of

the motor-cart system, a parametric excited system, simulations with di�erent

values to these system parameters were performed. The objective was to

observe the graphs of the system variables, as the motor current over time,

angular displacement of the motor shaft and coupling force. For computation,

the initial value problem de�ned by Eqs. (2.10) to (2.12) has been rewritten

in the dimensionless form given by Eqs. (2.15) to (2.16). Despite of using the

dimensionless initial value problem for numerical simulations, the results are

presented in the dimensional form because we believe that in this way they have

an easier physical interpretation. The duration chosen is 2.0 s. The 4th-order

Runge-Kutta method is used for the time-integration scheme with a time-
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step equal to 10−4. The motor parameters used in all simulations are listed in

Table 2.1. The source voltage is assumed to be constant in time and equal to

2.4 V. To observe the in�uence of the eccentricity of the pin in the behavior

Parameter Value

l 1.880× 10−4 H
jm 1.210× 10−4 kg m2

bm 1.545× 10−4 Nm/(rad/s)
r 0.307 Ω
ke 5.330× 10−2 V/(rad/s)

Table 2.1: Values of the motor parameters used in simulations.

of the system, the mass was �xed to 5 kg and the results of simulations with

two values of ∆ were compared. The selected values are ∆ = 0.001 m and

∆ = 0.01 m. For ∆ = 0.001 m, Figs. 2.3(a) and 2.3(b) displays α̇ as function

of time and the Fast Fourier Transform (FFT) of the cart displacement, x̂. It

can be noted that the angular speed of the motor shaft oscillates with a small

amplitude around 7 Hz and the FFT graph of x presents only one peak at this

frequency. In contrast to this, when ∆ is bigger, as ∆ = 0.01 m, observing

Figs. 2.4(a) and 2.4(b), it is veri�ed that the amplitude of the oscillations

of α̇ grows and, due to the non-linearity e�ects, the FFT graph of x presents

more than one peak. The �rst of them is at 6.56 Hz and the others are at odd

multiples of this value, characterizing a periodic function.

2.3(a): 2.3(b):

Figure 2.3: Motor-cart system with ∆ = 0.001 m: (a) angular speed of the
motor shaft over time and (b) Fast Fourier Transform of the cart displacement.

As said in the introduction of this Thesis, normally problems of coupled

systems are modeled as uncoupled saying that the force is imposed, and it is

harmonic with frequency given by the nominal frequency of the motor. The

dynamic of the motor is not considered. The graphs of Fig. 2.3(a) and 2.4(a)

con�rm that this hypothesis does not correspond to reality. As ∆ increases,



Chapter 2. Motor-cart system: a parametric excited nonlinear system due

to electromechanical coupling 26

2.4(a): 2.4(b):

Figure 2.4: Motor-cart system with ∆ = 0.01 m: (a) angular speed of the motor
shaft over time and (b) Fast Fourier Transform of the cart displacement.

increases the nonlinearity of the problem, and the hypothesis of harmonic force

is inadequate since it falsi�es the dynamics. Even when ∆ is small, the angular

speed of the motor shaft does not reach a constant value. After a transient

it achieves a periodic state. It oscillates around a mean value and these

oscillations are periodic. To enrich the analysis in the frequency domain, the

Fast Fourier Transform of the current over time, ĉ, was computed for the two

values of ∆. The results are shown in Fig. 2.5(a) and 2.5(b). It can be observed

that in both cases, the FFT graph of ĉ presents a peak at a frequency that is

twice the peak frequency of the FFT x̂ indicating the parametric excitation,

[40]. In the following analysis of the motor-cart system, the nominal eccentricity

2.5(a): 2.5(b):

Figure 2.5: Motor-cart system: Fast Fourier Transform of the current (a) when
∆ = 0.001 m and (b) when ∆ = 0.01 m.

of the pin was consider to be 0.01 m. This value was selected to highlight

the non-linearity e�ects. The results obtained to the cart displacement and

current in motor over time are observed in Fig. 2.6(a) and Fig. 2.6(b). The

behavior found for the current over time is similar to the behavior found for
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the angular speed of the motor shaft, Fig. 2.4(a). It achieves a periodic state

after a transient phase. Other graphs to be analyzed are the f(t) and τ(t)

2.6(a): 2.6(b):

Figure 2.6: Motor-cart system with ∆ = 0.01 m: (a) cart displacement and (b)
motor current over time.

variation during one cart movement cycle in the periodic state, phase portraits

of the system, as it is shown in Figs. 2.7(a) and 2.7(b). Observing the f graph,

we see that the coupling force is not harmonic. Remembering the constrain

x(t) = ∆ cosα(t), it is veri�ed that the horizontal force presents its maximum

value when x(t) = −∆ and its minimum value when x(t) = ∆. Besides this,

the coupling force changes its sign twice. Observing the τ graph, it is veri�ed

that the torque presents four points of sign change. Two of them occur when

x(t) = −∆ and x(t) = ∆, corresponding respectively to α multiple of π and

α multiple of 2π. This changes were expected from Eq. (2.7). The others two

changes occur exactly in the same cart positions that we have the sign of f

changing. In each cart movement cycle, the horizontal force f and the torque

τ follow once the paths shown in Fig. 2.7(a) and 2.7(b). Figures 2.8(a) and

2.7(a): 2.7(b):

Figure 2.7: Motor-cart system with ∆ = 0.01 m: (a) horizontal force f and (b)
torque τ during one cycle of the cart movement.
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2.8(b) show the phase portraits graphs of the current variation during one cart

movement cycle and the torque variation in function of the current. In the left

graph, it is noted that the current presents four points of sign change in each

cart movement cycle. Observing the right graph, it is veri�ed that the current

follows two times the path shown in Fig. 2.8(b). Thus, there is a relation

2:1 between the period of rotation of the disk (part of the electromechanical

system) and the period of the current in the DC motor. This relation 2:1

between periods is a common phenomenon of parametric excited systems.

Others phase portrait graphs are shown in Figs. 2.9(a), 2.9(b), 2.10(a) and

2.8(a): 2.8(b):

Figure 2.8: Motor-cart system with ∆ = 0.01 m: (a) current variation during
one cart movement cycle and (b) torque variation as function of the current.

2.10(b).

2.9(a): 2.9(b):

Figure 2.9: Motor-cart system with ∆ = 0.01 m: (a) angular velocity of the
motor shaft during one cart movement cycle and (b) current variation as
function of the angular velocity of the motor shaft.
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2.10(a): 2.10(b):

Figure 2.10: Motor-cart system ∆ = 0.01 m: (a) torque variation as function
of the horizontal force f and (b) horizontal force variation as function of the
angular velocity of the motor shaft.

2.4 Asymptotically stable periodic orbit

Due to the coupling mechanism, the coupling torque, τ , variates in time.

Thus, the angular speed of the motor shaft and the current are not constant

values after the transient. To compare the response of the coupled systems

for di�erent values of ∆ and m, the duration of one cart movement cycle,

Tp, were computed in the periodic state. Figures 2.11(a) and 2.11(b) show

the graphs of the computed periods as function of ∆ and m. In both graphs

it is observed that, the bigger ∆, or m, is, the bigger is the period of the

cart movement cycle in the periodic state. It is noted too that this increment

is more pronounced in relation to ∆. This result guided the development of

2.11(a): 2.11(b):

Figure 2.11: Motor-cart system: period of one cart movement cycle (a) as
function of ∆ with m = 5.0 kg and (b) as function of m with ∆ = 0.005 m.

the paper [18], in which a similar electromechanical motor-cart system was

analyzed and the existence and asymptotic stability of a periodic orbit to

this system were obtained in a mathematically rigorous way. To prove the
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existence and asymptotic stability of periodic orbits, the authors of [18] used

the dimensionless initial value problem given by Eq. (2.15) and, assumed the

following Ansatz

q (s) = ω0 + ε z (s) , (2.17)

w (s) = k1 + ε w1 (s) (2.18)

where
k1 =

v0 v3

v3 + v2

, ω0 =
v0 v2

v3 + v2

, (2.19)

and v1 = ε. Substituting the expressions of v0, v2 and, v3 given in Eq. (2.16),

one obtains that

k1 =
l ke ν

r(bm r + k2
e)

=
l

r
α̇no load, ω0 =

bm ν l

ke(bm r + k2
e)

=
l

ke
cno load. (2.20)

From a mechanical point of view, Eq. (2.17) means that the disk, that is a part

of the mechanical system modeled by Eqs. (2.10) and (2.11), will rotate at an

angular speed near ω0 (which is the velocity α̇no load in a dimensionless form)

and (2.18) means that electrical current will oscillate near k1 (which is current

cno load in a dimensionless form).

After a mathematical proof of existence and asymptotic stability of

periodic orbits, the authors of [18] obtained the following expression to the

period Tp of the system

Tp (ε) =
π

ω0

+
π ω0 (v2 + (4ω2

0 + 1) v3) ε2

4E1

+O
(
ε3
)
. (2.21)

where v2 and v3 are given in Eq. (2.16), and

E1 = 2 (v3 + v2) Q1 (2.22)

Q1 =
(
4ω2

0 + 1
)
v2

3 + 2 v2 v3 + v2
2 − 8ω2

0 v2 + 16ω4
0 + 4ω2

0. (2.23)

Observing this expression, one concludes that the nonlinear e�ects on the

period are signi�cant at second order of that expansion. Beside this, using

the expressions given in Eq. (2.16), it is veri�ed that the period grows

proportionally to m2 ∆4, and so the growing of the period is faster in relation

to ∆ than to m. These results are compatible with the numerical �ndings

shown in Figs. 2.11(a) and 2.11(b). Another interesting consequence is the

following one: from Eqs. (2.17) and (2.8) it follows that the period of rotation

of the disk, in the electromechanical system, is given by 2π
ω0

+ O (ε). So, it

follows from Eq. (2.21) that there is a 2:1 relation between the period of the

disk and the current. Those results are compatible with the numerical �ndings

shown previously in Figs. 2.8(b) and 2.9(b). To analyze the domain of validity
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Figure 2.12: Comparison between numerical �ndings and the asymptotic
approximation.

of the approximation of expression to the period Tp, approximations to the

period were computed to di�erent values of ε considering just the �rst and

second orders terms of the Eq. (2.21). The obtained approximations were

compared with the values of period obtained from numerical simulations.

The results displayed in Fig. 2.12 shows that domain of validity of the

approximation considering only the �rst and second orders terms is rather

large, a fact that is not evident from perturbation theory. The paper [18]

treats the problem of electromechanical coupling by a mathematical approach.

As no other references dealing with this king of approach to electromechanical

systems were found, we believe that [18] is a �rst work on the topic. Some

others articles have been written in this way, as [20, 19, 17, 16]. Among the

several routes for research coming from this mathematical approach, some have

been studied. The objective is to prove the existence and asymptotic stability

for electromechanical systems in which

� a capacitor is included in the circuit sketched in Fig. 2.1. This leads to

a system with four degrees of freedom and the possibility of resonances.

The guessing is that if the techniques used here can be useful for this

problem.

� the cart is �xed to a wall by a linear spring and damper, as shown in

Fig. 2.13. Beside this, the motor has a time-dependent voltage source

given by νt(t) = ν +χ sin(ω1t). Without the spring, the system is driven

by the constraint and the dynamics is a sort of master-slave relation, a

very simple one. With the inclusion of the spring, the dynamics changes

completely, now the constraints cannot always impose the dynamics and
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Figure 2.13: Coupled cart-motor-spring-damper system.

it is richer. The techniques used in [18] do not work any more and new

techniques to show existence and stability have to be used. If the spring

has a high rigidity it does not let the motor to drive the cart all the

way to the end of the track and the cart oscillates around a position

that depends on the rigidity of the spring and the voltage that drives

the system. Some of the results already obtained for this problem are

published [21].

2.5 Summary of the Chapter

The developed models revealed that the electromechanical motor-cart

system is parametric excited, in which the coupling torque appears as a

time variation of the system parameters. Simulations of these systems were

performed for di�erent values of ∆ and m and the results of these numerical

simulations, as the graphs the systems variables over time, graphs of the FFT

of systems variables and phase portraits graphs were analyzed. From these

graphs, a typical phenomenon of parametric excited systems was observed:

the existence of a periodic solution with a relation 2:1 between the period of

rotation of the disk and the period of the current. This result is compatible

with earlier numerical �ndings in [42] and guided us in the development of

[18], in which the existence and asymptotic stability of a periodic orbit to

an electromechanical system are obtained in a mathematically rigorous way.

Besides this, the nominal eccentricity of the pin of the motor, was characterized

as a parameter that controls the nonlinearities of the equations of motion of

the system.



3

Motor-cart-pendulum system: introduc-

tion of a mechanical energy reservoir

The second electromechanical system analyzed in this Thesis has the

same elements of the �rst system and a pendulum that is embarked into the

cart, as shown in Fig. 3.1. Its suspension point is �xed in the cart, hence moves

with it. The main point here is that the pendulum can have a relative motion

with respect to the cart.

3.1 Dynamics of the motor-cart-pendulum sys-

tem

The pendulum is modeled as a mathematical pendulum (bar without

mass and particle of mass mp at the end). Its length is noted as lp and the

pendulum angular displacement as θ. The equations of the cart-pendulum were

obtained with the Lagrange principle. They are

mpl
2
pθ̈(t) +mplpẍ(t) cos θ(t) +mpgalp sin θ(t) = 0 , (3.1)

(mp +mc)ẍ(t) +mplpθ̈(t) cos θ(t)−mplpθ̇
2(t) sin θ(t) = f(t) , (3.2)

where, again, f represents the horizontal coupling force between the DC

motor and the cart, ga is the acceleration of gravity, and the horizontal cart

displacement is x. The mass of the mechanical system, m, is equal the cart

mass plus the pendulum mass, mc +mp. The relative motion of the embarked

pendulum causes a variation in the position of the center of mass of the

mechanical system. As in the �rst coupled system, the cart is not allowed

to move in the vertical direction. Due to the problem geometry, x(t) and α(t)

Figure 3.1: Cart-motor-pendulum system.
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are related by Eq. (2.9). Once again, it is assumed that the motor shaft is

rigid and that there is no friction between the pin and the slot. Thus, the

available torque to the coupled mechanical system, τ , is written as Eq. (2.6).

Substituting the Eq. (2.7), (2.9), (3.1) and (3.2) into Eqs. (2.1) and (2.2), we

obtain the initial value problem for the motor-cart-pendulum system that is

written as follows. Given a constant source voltage ν, �nd (α, c, θ) such that,

for all t > 0,

lċ(t) +rc(t) + keα̇(t) = v ,

α̈(t)
[
jm + (mc +mp)∆

2(sinα(t))2]+ ke c(t)

+ α̇(t) [bm + (mc +mp)∆
2α̇(t) cosα(t) sinα(t)]

− θ̈(t) [mplp cos θ(t)∆ sinα(t)] + θ̇(t)
[
mp lpθ̇(t) sin θ(t)∆ sinα(t)

]
= 0 ,

θ̈(t)
[
mp l

2
p

]
− α̈(t) [mp lp cos θ(t)∆ sinα(t)]

− α̇(t) [mp lp cos θ(t)∆ cosα(t)α̇(t)] + mp ga lp sin θ(t) = 0 ,
(3.3)

with the initial conditions,

α̇(0) = 0 , α(0) = 0 , θ̇(0) = 0 , θ(0) = 0 , c(0) =
ν

r
. (3.4)

Observing Eq. (3.3), it is veri�ed that the motor-pendulum system in�uences

the cart in a parametric way.

3.2 Dimensionless cart-motor-pendulum system

In this section, the initial value problem to the motor-cart-pendulum

system is presented in a dimensionless form. Taking α̇(t) = u(t) and θ̇(t) =

n(t), the system can be written as a �rst order system
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ċ(t) =
−keu(t)− rc(t) + ν

l
,

u̇(t) = {−n(t)2mplp sin θ(t)∆ sin(α(t))− u(t)2(mc +mp)∆
2 cos(α(t)) sin(α(t))

−bmu(t) + kec(t) + [cos (θ(t))∆ sin (α(t))] [u(t)2mp cos θ(t)∆ cosα(t)

−mpga sin (θ(t)) ] }{
1

jm + ∆2sin (α(t))2(mc +mpsin (θ(t))2)

}
,

ṅ(t) = {mp cos (θ(t))∆ sin (α(t)) [kec(t)− u(t)2(mc +mp)∆
2 cos(α(t)) sin(α(t))

−bmu(t)− n(t)2mplp sin θ(t)∆ sin(α(t)) ] +
[
jm + (mp +mc)∆

2 sin (α(t))2]
[−mpga sin (θ(t)) + u(t)2mp cos θ(t)∆ cosα(t)] }{

1

mplp
[
jm + ∆2sin (α(t))2(mc +mpsin (θ(t))2)

]} .

(3.5)
Writing

t =
l

r
s, α

(
l

r
s

)
= γ(s), u

(
l

r
s

)
=
rq(s)

l
, θ

(
l

r
s

)
= β(s),

n

(
l

r
s

)
=
ry(s)

l
, c

(
l

r
s

)
=
kew(s)

l
,

(3.6)

one gets that s is dimensionless parameter. The functions γ (s), q (s), β (s),

y (s) and w (s) are dimensionless functions. By substituting Eq. (3.6) into

Eq. (3.5) one obtains

w′(s) = −w(s)− q(s) + v0 ,

q′(s) = {−v3q(s)− y(s)2v5 sin (γ(s)) sin (β(s))− v6 sin (β(s)) cos (β(s)) sin (γ(s))

+v2w(s)− q(s)2 cos (γ(s)) sin (γ(s))
[
v9 − v4 cos (β(s))2]{

1

1 + sin (γ(s))2 [v1 + v4 sin (β(s))2]
}

(3.7)

y′(s) = {−v3v7q(s) cos (β(s)) sin (γ(s)) + q(s)2v7 cos (γ(s)) cos (β(s))

−v4y(s)2 sin (γ(s))2 sin (β(s)) cos (β(s)) + v2v7w(s) cos (β(s)) sin (γ(s))[
1− v9 sin (γ(s))2] [−v8 sin (β(s))] }

{
1

1 + sin (γ(s))2 [v1 + v4 sin (β(s))2]
}

,

(3.8)
where ′ denotes the derivative with respect to s and ai, i = 1, · · · , 16 are

dimensionless parameters given by
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v0 =
νl

ker
, v1 =

∆2mc

jm
, v2 =

lk2
e

jmr2
, v3 =

bml

jmr
, v4 =

∆2mp

jm
,

v5 =
mplp∆

jm
, v6 =

mp∆gal
2

jmr2
, v7 =

∆

lp
, v8 =

gal
2

lpr2
, v9 =

(mc +mp)∆
2

jm
.

(3.9)
Comparing the dimensionless parameters of the motor-cart-pendulum system

with the dimensionless parameters of the motor-cart system given by Eq. 2.16,

it can be observed that the parameters v0 to v3 appear in both cases and, the

inclusion of the embarked pendulum introduces six news parameters: v4 to v9.

3.3 Numerical simulations of the dynamics of the

motor-cart-pendulum system

A similar analysis to the one made to the motor-cart system, based

on the results of numerical simulations, was developed for the motor-cart-

pendulum system. The 4th-order Runge-Kutta method is used for the time-

integration scheme with a time-step equal to 10−4. The motor parameters used

in all simulations are listed in Table 2.1. The source voltage is assumed to

be constant in time and equal to 2.4 V. Despite of using the dimensionless

initial value problem for numerical simulations, the results are presented

in the dimensional form because we believe that in this way they have an

easier physical interpretation. Looking at the initial value problem Eqs. (3.3)

to (3.4), it is observed that if the nominal eccentricity of the pin, ∆, is

small and the angle, θ(t), is near zero, Eq. (3.3) tends to a linear system.

But as the eccentricity grows, the nonlinearities become more pronounced.

To understand the in�uence of ∆ in the dynamic behavior of the motor-

cart system, simulations with two di�erent values to this system parameter

were performed. The selected values are ∆ = 0.001 m and ∆ = 0.01 m. In

these simulations, the cart and the pendulum masses were mc = 0.0 kg and

mp = 5.0 kg, so that the total mass, m = mc + mp = 5.0 kg, is equal to the

embarked mass. Although the masses are equal, this con�guration contrasts

with the one of the motor-cart system used in the previous simulations. In spite

of having the same masses, the pendulum has a relative motion with respect to

the cart, and this makes a huge di�erence. The pendulum length was assumed

to be 0.075 m. For ∆ = 0.001 m, Figs. 3.2(a), 3.2(b), 3.3(a) and 3.3(b)

show the graphs of the angular velocity of the motor shaft, current, pendulum

displacement and cart displacement over time. These results reveal that when

∆ is small, the angular speed of the motor shaft oscillates over time with a

very small amplitude around 7 Hz, the current also oscillates with a small

amplitude around 0.13 A, and the angular displacement of pendulum is near
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zero. The Fast Fourier Transform was computed to the cart and pendulum

3.2(a): 3.2(b):

Figure 3.2: Motor-cart-pendulum system with ∆ = 0.001 m: (a) angular
velocity of the motor shaft and (b) current over time.

3.3(a): 3.3(b):

Figure 3.3: Motor-cart-pendulum system with ∆ = 0.001 m: (a) pendulum
displacement and (b) cart displacement over time.

displacements and to the current for this small value of ∆. The obtained graphs

are shown in Figs. 3.4(a) and 3.4(b). The FFT graph of x̂, shown in Fig. 3.4(a),

presents only one peak at the frequency at 7.04 Hz. This peak was expected,

since this is close to the angular speed of the motor shaft. The FFT graph of θ̂

presents two peaks. One of them coincides with the x̂ peak and the other one

is at the natural frequency of the pendulum, i.e., ωn =
√
g/lp/(2π) = 1.82 Hz.

The FFT graph of ĉ presents three peaks. The �rst one is at 5.22 Hz, the

second on is at 8.86 Hz and the third one at 14.08 Hz, that is twice the peak

frequency of the FFT x̂. This relation 2:1 between the peak frequency of ĉ

and x̂ indicates the parametric excitation. Figures 3.5(a), 3.5(b), 3.6(a) and

3.6(b) show the graphs of angular speed of the motor, current, pendulum and
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3.4(a): 3.4(b):

Figure 3.4: Motor-cart-pendulum system with ∆ = 0.001 m: Fast Fourier
Transform of (a) cart and pendulum displacements and (b) of current.

cart displacement over time when ∆ = 0.01 m. Comparing these graphs with

Figs. 3.2(a), 3.2(b), 3.3(a) and 3.3(b), It is veri�ed that with a bigger ∆,

the amplitude of the oscillations of α̇, c, and θ in the steady state will be also

bigger. As done to the results with small ∆, the FFT was computed to the

3.5(a): 3.5(b):

Figure 3.5: Motor-cart-pendulum system with ∆ = 0.01 m: (a) angular velocity
of the motor shaft and (b) current over time.

cart and pendulum displacements, angular speed of the motor shaft and to the

current for the new value of ∆. Figures 3.7(a), 3.7(b), 3.7(a), 3.7(b) display the

obtained graphs. Observing Figs. 3.7(a) and 3.7(b), it can be noted that x̂ and

θ̂ present peaks at the same frequencies. The �rst of them is at 1.61 Hz and the

following are at odd multiples of this value. Comparing x̂ with ∆ = 0.001 m

and with ∆ = 0.01 m, it is veri�ed that the peak at the natural frequency

of the pendulum, ωn = 1.82 Hz, vanished when ∆ grows. This result certi�es

that the system behavior is far from linear. Regarding Figs. 3.8(a) and 3.8(b),
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3.6(a): 3.6(b):

Figure 3.6: Motor-cart-pendulum system with ∆ = 0.01 m: (a) pendulum and
(b) cart displacement over time.

3.7(a): 3.7(b):

Figure 3.7: Motor-cart-pendulum system with ∆ = 0.01 m: Fast Fourier
Transform of (a) pendulum and (b) cart displacements.

it can be noted that the FFT graphs of the current and of the angular speed

of the motor shaft over time also present peaks at the same frequencies. The

�rst of them is at 3.21 Hz and the following are at multiples of this value.

Comparing Figs. 3.8(a) and 3.7(b), it can be veri�ed that the frequencies in

which ĉ presents peaks are twice the frequencies in which x̂ presents peaks.

3.4 Pumping Leads To Revolution

In Section 3.3, the cart mass was considered to be zero and the pendulum

mass 5.0 kg. Next, it is presented an analysis of the behavior of this system

with a di�erent mass con�guration. The cart mass is kept as 0.0 kg (a limit

case) and a smaller value is selected to the pendulum mass, mp = 4.0 kg, so

that the total mass, mc + mp = 4.0 kg, is still equal to the embarked mass.

Figures 3.9(a), 3.9(b), 3.10(a) and 3.10(b) show the graphs of the angular speed
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3.8(a): 3.8(b):

Figure 3.8: Motor-cart-pendulum system with ∆ = 0.01 m: Fast Fourier
Transform of (a) current and (b) angular speed of the motor shaft over time.

of the motor shaft, current and cart and pendulum displacements over time for

this new mass con�guration when ∆ = 0.01 m. Regarding these graphs, it can

be observed that after the transient state, the dynamics achieves a periodic

state, in which α̇ takes negatives values. With this new mass con�guration,

the mechanical system pumps energy from the motor and the amplitude of the

pendulum grows reaching a point where the mechanical system starts to drive

the motion, [30, 29, 12]. This is seen observing that α̇ takes negative values,

indicating that the motor shaft sometimes changes its motion direction. When

the angular speed of the motor shaft is positive, it is considered that the

motor drives the cart motion, the cart is driven. But when it is negative, the

motor looses the control over the cart and drives it no more, it is now driven

by the mechanical system. In these situations, it will be said that the relation

master-slave is reversed. To understand the sign changing of the angular speed

3.9(a): 3.9(b):

Figure 3.9: Motor-cart-pendulum system with ∆ = 0.01 m: (a) angular velocity
of the motor shaft and (b) current over time.
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3.10(a): 3.10(b):

Figure 3.10: Motor-cart-pendulum system with ∆ = 0.01 m: (a) pendulum and
(b) cart displacement over time.

of the motor shaft, some phase portrait graphs were plotted. Figures 3.11(a)

and 3.11(b) show the α̈ graph as function of α̇ and the α̇ graph as function

of x during one movement cycle. It is veri�ed that when α̇(t) turns negative,

the motor shaft has a negative acceleration. After a short period of time, its

acceleration becomes positive and brakes the motor shaft motion. This causes

other sign changing in α̇(t) and consequently, it turns positive again. Thus,

the motor recovers the control over the cart motion. Looking at Fig. 3.11(b),

3.11(a): 3.11(b):

Figure 3.11: Motor-cart-pendulum system with ∆ = 0.01 m: portrait graphs
of (a) α̈ graph as function of α̇ and (b) α̇ graph as function of x.

it is noted that this reversion in the relation master-slave occurs two times

in each movement cycle. The position and angular speed of the pendulum, at

the moment of the reversion, can be observed by the graphs of θ̇ as function

of α̇ and θ in function of α̇, shown in Figs. 3.12(a) and 3.12(b). It is veri�ed

that when the the motor looses the control over the cart by the sign changing

of α̇, the pendulum angle is around 21.6o or around −21.6o. When the motor

recovers the control, the pendulum angle is around 6.0o or around −6.0o. It
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3.12(a): 3.12(b):

Figure 3.12: Motor-cart-pendulum system with ∆ = 0.01 m: portrait graphs
of (a) θ̇ graph as function of α̇ and (b) θ as function of α̇.

is also noted that, during the period of reversion, the pendulum does not

change its direction of motion in spite of its angular speed presents a change of

behavior. In the beginning of the reversion the modulus of θ̇ grows, but when it

achieves the value 2.95 Hz, it starts to decrease. This change occurs due to the

sign changing in the tangent angular acceleration of the pendulum, as can be

observed in Fig. 3.13(a). The graph of the torque variation in function of the

angular speed of the motor shaft shows that the maximum torque is achieved

during the period of reversion.

3.13(a): 3.13(b):

Figure 3.13: Motor-cart-pendulum system with ∆ = 0.01 m: portrait graphs
of (a) tangent θ̈ graph as function of α̇ and (b) τ as function of α̇.
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3.5 Summary of the Chapter

The in�uence of a embarked mass was demonstrated and it was shown

the changes it causes in the solutions of the dynamic equations. The motor-

cart system has no capacity to pump energy from the motor, it is a master-

slave system: the motor drives the cart motion, the cart is driven. The only

interesting feature is how the nonlinearity changes with ∆ and m, the mass of

the cart. The motor-cart-pendulum system has a new feature, the capacity to

store energy in the motion of the pendulum. With this, the mechanical system

can pump energy from the motor and, in certain cases, revert the relation

master-slave, that is the mechanical system can be itself the master stopping

the motor and reversing its motion.



4

Electromechanical system with internal

impacts and uncertainties

The system analyzed in this chapter is composed by a cart whose motion

is driven by a DC motor, sketched in Fig. 2.1, and a embarked pendulum into

this cart. The motor is coupled to the cart through a pin that slides into a slot

machined on an acrylic plate that is attached to the cart, as shown in Fig. 4.1.

The o�-center pin is �xed on the disc at distance ∆ of the motor shaft, so that

the motor rotational motion is transformed into a cart horizontal movement.

The suspension point of the pendulum is �xed in the cart, so that exists a

relative motion between cart and pendulum induced by the motion of the cart.

The embarked pendulum is modeled as a mathematical pendulum (bar without

mass and particle of mass mp at the end). The pendulum length is represented

by lp and the pendulum angular displacement by θ. The mass of the mechanical

system,m, is equal the cart mass plus pendulum mass,mc+mp. The horizontal

cart position is represented by x. Due to constraints, the cart is not allowed

to move in the vertical direction. A �exible barrier is attached inside the cart,

constraining the pendulum motion. Due to the relative motion between the cart

and the pendulum, it is possible that occur impacts between the pendulum and

the barrier, as suggested in Fig. 4.1. As the impacts are internal, the energy

Figure 4.1: Coupled motor-cart-pendulum-barrier system.

stored in the pendulum motion it is not transferred outside the system, it

stays within, with a possible dissipation. This system con�guration helps to

understand the di�erence between an internal and an external barrier. The

objective is to analyze the maximal energy stored in the barrier in impacts

as function of some parameters of the electromechanical system. Due to the

presence of uncertainties in the computational nonlinear dynamics model of the
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electromechanical system, the energy analysis is performed from a stochastic

view point for di�erent levels of uncertainties, and also for the deterministic

case.

In the deterministic analysis, these parameters are the horizontal distance

from the suspension point of the pendulum to the equilibrium position of

the barrier and the coupling parameter between motor and the mechanical

system, ∆. Numerical simulations were performed with di�erent values of these

parameters. The coupling parameter has been varied from zero, an asymptotic

case, (meaning no coupling between motor and the mechanical system) up to

10−3 m. Comparing the results obtained with ∆ = 0 and with ∆ > 0, it is

possible to observe the in�uence of the coupling in the maximal energy stored

in the barrier.

4.1 Dynamics of the motor-cart-pendulum-

barrier system

A continuous contact dynamic model is developed and the impact is

described using the spring-dashpot model. The spring-damper element of the

impact is represented by a spring with sti�ness ki and a damper with damping

coe�cient ci. The equations of the cart-pendulum-barrier system were obtained

with the Lagrange principle. They are

mpl
2
pθ̈(t) +mplpẍ(t) cos θ(t) +mpgalp sin θ(t) = fimp(t)lp cos θ(t) , (4.1)

(mp +mc)ẍ(t) +mplpθ̈(t) cos θ(t)−mplpθ̇
2(t) sin θ(t) = f(t) , (4.2)

where, ga is the acceleration of gravity, f represents the horizontal coupling

force between the DC motor and the cart and fimp the impact force exerted in

the pendulum. This force is written as:

fimp(t) = −φ(t)
[
ki (lp sin θ(t) + gap) + ci (lpθ̇(t) cos θ(t))

]
, (4.3)

φ(t) =

{
1 , if − lp sin θ(t) > gap ,

0 , if − lp sin θ(t) ≤ gap ,
(4.4)

in Eq. (4.4) gap is the horizontal distance from the suspension point to the

equilibrium position of the barrier. Due to the system geometry, x(t) and α(t)

are related by the following constraint

x(t) = ∆ cosα(t) . (4.5)

Substituting Eqs. (2.6) and (4.1) to (4.5) into Eqs. (2.1) and (2.2), we obtain

the initial value problem for the motor-cart-pendulum-barrier system. Given
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a constant source voltage ν, �nd (α, c, θ) such that, for all t > 0,

lċ(t) + rc(t) + keα̇(t) = ν ,

α̈(t)
[
jm + (mc +mp)∆

2(sinα(t))2]+ α̇(t) [bm + (mc +mp)∆
2α̇(t) cosα(t) sinα(t)]

−ke c(t) − θ̈(t) [mplp cos θ(t)∆ sinα(t)] + θ̇(t)
[
mp lpθ̇(t) sin θ(t)∆ sinα(t)

]
= 0 ,

θ̈(t)
[
mp l

2
p

]
− α̈(t) [mp lp cos θ(t)∆ sinα(t)]− α̇(t) [mp lp cos θ(t)∆ cosα(t)α̇(t)]

+ mp ga lp sin θ(t) + φ(t)
[
ki(lp sin θ(t) + gap) + ci(lpθ̇(t) cos θ(t))

]
lp cos θ(t) = 0 ,

(4.6)
where

φ(t) =

1, if − lp sin θ(t) > gap ,

0, in all other cases ,
(4.7)

with the initial conditions,

α̇(0) = 0 , α(0) = 0 , θ̇(0) = 0 , θ(0) = π/2 , c(0) =
ν

r
. (4.8)

4.2 Dimensionless motor-cart-pendulum-barrier

system

In this section, the initial value problem to the motor-cart-pendulum-

barrier system is presented in a dimensionless form. Taking α̇(t) = u(t) and

θ̇(t) = n(t), the system can be written as a �rst order system

ċ(t) =
−keu(t)− rc(t) + ν

l
,

u̇(t) = {−n(t)2mplp sin θ(t)∆ sin(α(t))− u(t)2(mc +mp)∆
2 cos(α(t)) sin(α(t))

−bmu(t) + kec(t) + [cos (θ(t))∆ sin (α(t))] [u(t)2mp cos θ(t)∆ cosα(t)

−mpga sin (θ(t))− φ [ki(lp sin θ(t) + gap) + ci(lpn(t) cos θ(t))] cos θ(t) ] }{
1

jm + ∆2sin (α(t))2(mc +mpsin (θ(t))2)

}
,

ṅ(t) = {mp cos (θ(t))∆ sin (α(t)) [kec(t)− u(t)2(mc +mp)∆
2 cos(α(t)) sin(α(t))

−bmu(t)− n(t)2mplp sin θ(t)∆ sin(α(t)) ] +
[
jm + (mp +mc)∆

2 sin (α(t))2]
[−mpga sin (θ(t)) + u(t)2mp cos θ(t)∆ cosα(t)− φ [ki(lp sin θ(t) + gap)

+ci(lpn(t) cos θ(t)) ] cos θ(t) ] }{
1

mplp
[
jm + ∆2sin (α(t))2(mc +mpsin (θ(t))2)

]} .

(4.9)
Writing
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t =
l

r
s, α

(
l

r
s

)
= γ(s), u

(
l

r
s

)
=
rq(s)

l
, θ

(
l

r
s

)
= β(s),

n

(
l

r
s

)
=
ry(s)

l
, c

(
l

r
s

)
=
kew(s)

l
,

(4.10)

one gets that s is dimensionless parameter. The functions γ (s), q (s), β (s),

y (s) and w (s) are dimensionless functions. By substituting Eq. (4.10) into

Eq. (4.9) one obtains

w′(s) = −w(s)− q(s) + v0 ,

q′(s) = {−v3q(s)− y(s)2v5 sin (γ(s)) sin (β(s))− v6 sin (β(s)) cos (β(s)) sin (γ(s))

+v2w(s)− q(s)2 cos (γ(s)) sin (γ(s))
[
v9 − v4 cos (β(s))2]

−ϕ(s) cos (β(s))2 sin (γ(s)) [v10 sin (β(s)) + v11 + v12 cos (β(s))y(s)] }{
1

1 + sin (γ(s))2 [v1 + v4 sin (β(s))2]
}

(4.11)

y′(s) = {−v3v7q(s) cos (β(s)) sin (γ(s)) + q(s)2v7 cos (γ(s)) cos (β(s))

−v4y(s)2 sin (γ(s))2 sin (β(s)) cos (β(s)) + v2v7w(s) cos (β(s)) sin (γ(s))[
1− v9 sin (γ(s))2] [−v8 sin (β(s))− ϕ(s)(v13(sin (β(s)) + v14)

+v15y(s) cos (β(s))) cos (β) ] }

{
1

1 + sin (γ(s))2 [v1 + v4 sin (β(s))2]
}

,

(4.12)
where

ϕ(s) =

{
1 , if − sin β(s) > a14 ,

0 , if − sin β(t) ≤ a14 ,
(4.13)

and where ′ denotes the derivative with respect to s and ai, i = 1, · · · , 16 are

dimensionless parameters given by

v0 =
νl

ker
, v1 =

∆2mc

jm
, v2 =

lk2
e

jmr2
, v3 =

bml

jmr
, v4 =

∆2mp

jm
,

v5 =
mplp∆

jm
, v6 =

mp∆gal
2

jmr2
, v7 =

∆

lp
, v8 =

gal
2

lpr2
, v9 =

(mc +mp)∆
2

jm
,

v10 =
kilp∆l

2

jmr2
, v11 =

kigap∆l2

jmr2
, v12 =

cilp∆l

jmr
, v13 =

kil
2

mpr2
, v14 =

gap
lp

,

v15 =
cil

mpr
.

(4.14)
Comparing the dimensionless parameters of the motor-cart-pendulum-barrier

system with the dimensionless parameters of the motor-cart-pendulum system

given by Eq. 3.9, it can be observed that the internal barrier introduces six

news parameters to the equations: v10 to v15.
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4.3 Impact energy

As explained in the introduction, the objective of this chapter is to

analyze the maximum energy stored in the barrier in each impact in function of

some parameters of the electromechanical system. These parameters are gap/lp
and ∆. The maximum impact energy during the j-th impact, λj, occurs when

the spring ki is compressed to the maximum, that is, when lp sin (θ) achieves its

minimum value during the j-th impact. Noting as θ? the angle of the pendulum

corresponding to this con�guration of maximum compression, λj is calculated

by

λj =
1

2
ki (lp sin(θ?) + gap)2, with − lp sin θ? > gap . (4.15)

The average of the maximum impact energy is written as

λ =

∑Nimp

j=1 λj

Nimp

, (4.16)

whereNimp is the total number of impacts that occur during time interval [0, T ].

T is the duration chosen for analysis. The variable λ is chosen to measure the

system performance. The bigger λ is, the better will be the system performance.

4.4 Numerical simulations of the dynamics of the

coupled system

To observe the in�uence of the coupling between the electrical and mech-

anical parts in the maximum energy stored in the barrier, two con�gurations

of the vibro-impact system were analyzed separately. In the �rst one, it is

considered no coupling between the motor and the mechanical system, i.e.,

∆ = 0 m. In this case, the motor behaves as if it is turned o� and, con-

sequently, the cart does not move. In the second con�guration, it is considered

coupling, i.e., ∆ > 0 m.

4.4.1 No coupling between the motor and the mechanical

system

When ∆ = 0 m, there is no coupling between the motor and the

mechanical system. Thus the cart does not move. Considering that there is no

energy dissipation in the impact model between the pendulum and the barrier

(ci = 0 Ns/m), the maximum energy stored in the barrier in each impact can

be calculated as function of the initial potential and kinetic energies of the

pendulum. Calling the initial conditions for the pendulum as θ(0) = θ0 and

θ̇(0) = θ̇0, the initial mechanical energy of the pendulum is
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λ0 = mp g cos (θ0) +
1

2
mp[(lpθ̇0 cos θ0)

2
+ (lpθ̇0 sin θ0)

2
] . (4.17)

When the spring ki is compressed to the maximum during the j-th impact, a

part of λ0 is stored as potential energy in the pendulum and another part as

potential energy in spring ki (λj). Thus

λ0 = mp g cos (θ?) +
1

2
ki (lp sin(θ?) + gap)2 . (4.18)

Observing Eq. (4.17), it is possible to verify that when ∆ = 0 m, λj the j-th

impact will be maximum if gap/lp = 0. With this con�guration, the pendulum

begins the impact in the vertical position, exactly when it has its maximum

velocity. Thus, this con�guration is taken as reference. The impact energy in

this con�guration represented by λref will be used as normalization factor in

the analysis of the impact factor. The value of λref is computed considering

ki = 106 N/m. The graph of λ/λref as function of gap/lp for di�erent values of

ki is shown in Fig. 4.2. As expected, its maximum occurs when gap/lp = 0 and

its minimum at gap/lp = 1 (con�guration in which there is no impact between

the pendulum and the barrier).

Figure 4.2: No coupling (∆ = 0 m): normalized average of the maximum impact
energy as function of the parameter gap/lp for di�erent values of ki N/m.

4.4.2 Coupled system

When ∆ > 0 m, i.e., there is coupling between the motor and the

mechanical system. The bigger is ∆, the more highlighted will be the non-

linear behavior of system [42]. Small changes in the values of ∆ and gap/lp
can modify a lot the response of the system, as the maximum amplitude
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of the pendulum displacement, maximum velocity of the motor shaft and

therefore, the impact behavior of the system. The form of the graph of the

average of the impact energy changes as shown in Sec. 4.4. Considering just

the coupled motor-cart system, i.e., there is no pendulum embarked in the cart,

the existence and asymptotic stability of a periodic orbit were already obtained

in a mathematically rigorous way in [15, 18]. The in�uence of the parameters

∆ and gap/lp in λ, Eq. (4.16), was investigated numerically. For computation,

the initial value problem de�ned by Eqs. (4.6) to (4.8) has been rewritten in

the dimensionless form given by Eqs. (4.11) to (4.14). Despite of using the

dimensionless initial value problem for numerical simulations, the results are

presented in the dimensional form because we believe that in this way they

have an easier physical interpretation. Duration is chosen as T = 20.0 s. The

4th-order Runge-Kutta method is used for the time-integration scheme. The

speci�cations of the motor parameters used in all simulations were obtained

from the speci�cations of the DC motor Maxon brushless number 411678

(values could be �nd at [42](table 1)). The applied voltage was assumed to

be constant in time and equal to 2.4 V. The pendulum length was assumed to

be 0.075 m. The values of the cart and the pendulum masses were mc = 0.0 kg

and mp = 5.0 kg, so that the total mass, m = mc + mp = 5.0 kg, is equal

to the embarked mass, a limit case. The values of the sti�ness and damping

coe�cient used in the simulations were ki = 106 N/m and ci = 0 Ns/m, so

that there is no energy dissipation in the impact model. To investigate the

in�uence of ∆ and gap/lp in λ/λref , 700 numerical simulations have been

carried out combining the following values of the parameters: 7 values for ∆

nonuniformly selected in the interval [0 , 10−3] m, and 100 values for gap/lp
uniformly selected in [0 , 1]. Figure 4.3 shows the graph of λ/λref as function

of gap/lp for di�erent values of ∆. It is noted that for values of d near zero,

as 10−5 m and 10−4 m, the graph of the impact energy is very similar to

the graph with ∆ = 0 m. The average impact energy presents its maximum at

gap/lp = 0 and its minimum when gap/lp = 1. When ∆ is bigger, as 2×10−4 m,

5×10−4 m, 8×10−4 m and 10−3 m, the form of the graph of the average of the

impact energy changes completely. The maximum does not occur anymore at

gap/lp = 0. Depending on the value of ∆, the maximum occurs at a di�erent

value of gap/lp. Among the considered values of ∆ and gap/lp, the maximum

of the average of the impact energy was obtained with ∆ = 10−3 m and

gap/lp = 0.6263. Considering ∆ = 10−3 m and varying the value of ki, the

shape of the curve of the average of the maximum impact energy in function

of the parameter gap/lp (shown in Fig. 4.4) changes in an unexpected fashion.

Comparing it with Fig. 4.3, it is possible to observe that for small values of
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Figure 4.3: Coupled system (∆ > 0): normalized average of the impact energy
as function of the parameter gap/lp for di�erent values of ∆ (units in meters).

ki, as 102 N/m and 103 N/m, both graphs are similar. But, when ki is bigger,

the form of the graph of the average of the impact energy changes completely.

Among the considered values of ki and gap/lp, the maximum of the average of

the impact energy was obtained with ki = 104 N/m and gap/lp = 0.293. Thus

the maximum of the average of the impact energy does not occur anymore with

the bigger ki as happens in the ∆ = 0 m con�guration. To construct the graph

of Fig. 4.4, for each value of ki selected, 100 values of gap/lp equally spaced

between 0 and 1 were considered. Thus, in total, 600 numerical simulations

have been carried out.

4.5 Probabilistic model

The system parameter considered uncertain is ki, which is modeled by

the random variable Ki. The probability distribution of this random variable is

constructed using the Maximum Entropy Principle [34, 88, 89, 91, 85, 94, 95].

This Principle allows the probability distribution of a random variable to

be constructed using only the available information, avoiding the use of

any additional information that introduces a bias on the estimation of the

probability distribution. The Maximum Entropy Principle states: out of all

probability distributions consistent with a given set of available information

choose the one that has maximum uncertainty (the Shannon measure of

entropy). The available information of the random variable is de�ned as

1. Ki is a positive-valued random variable,
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Figure 4.4: Coupled system (∆ > 0): normalized average of the impact
energy as function of the parameter gap/lp for di�erent values of ki N/m with
∆ = 10−3 m.

2. the mean value is known: E{Ki} = µ,

3. in order that the response of the dynamical system be a second-order

stochastic process, we impose the following condition: ‖E{logKi}‖ <∞.

Therefore, the Maximum Entropy Principle using Shannon entropy measure of

the probability density function, p, of Ki yields the Gamma probability density

function, given by

p(ki) = 1[0,+∞)(ki)
1

µ

(
1

δ2

) 1
δ2 1

Γ(1/δ2)

(
x

µ

) 1
δ2
−1

exp

(
x

δ2µ

)
, (4.19)

where 1[0,+∞)(ki) is an indicator function that is equal to 1 for ki ∈ [0,+∞)

and 0 otherwise, and

� Γ is the Gamma function: Γ(a) =

∫ ∞
0

ta−1 exp(−t)dt;

� δ = σ
µ
is the coe�cient variation (σ is the standard deviation).

4.6 Numerical simulations of the stochastic

vibro-impact electromechanical system

As it was assumed that the sti�ness of the spring, ki, in the barrier model

is a random variable, the output variables of the stochastic coupled system are

random processes [91, 11] and, consequently, the average of the impact energy,
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4.5(a): 4.5(b):

Figure 4.5: Mean and 90% con�dence interval of Λ/λref as function of gap/lp
with δ = 0.15 for(a) E{Ki} = 104 N/m and (b)E{Ki} = 105 N/m .

λ, become a random variable Λ. To make the stochastic analysis, Monte Carlo

simulations were employed to compute statistics of Λ, as mean and intervals of

con�dence, using 100 independent realizations of Ki. To observe the in�uence

of gap/lp in the statistics of the impact energy for di�erent values of E{Ki}
and hyperparameter δ (which controls the level of uncertainties for Ki), the

Monte Carlo simulations have been carried out combining the following values

of the parameters: 3 values for E{Ki} (104, 105, and 106 N/m), 3 values for

δ (0.15, 0.25, and 0.35) and 100 values for gap/lp uniformly selected in the

interval [0 , 1.0]. Thus, 90, 000 numerical simulations have been carried out in

the stochastic analysis. The graphs of E{Λ}/λref and 90% con�dence interval

as function of gap/lp for E{Ki} = 104, 105 and 106 N/m with δ = 0.15 are

displayed in Figs. 4.5 and 4.6(a). Comparing these statistics with the results

of deterministic simulations shown in Fig. 4.4, it is veri�ed that in relation to

the impact energy, deterministic and stochastic systems have similar behavior.

However, the 90% con�dence interval gets narrower as E{Ki} increases. For
E{Ki} = 106 N/m and δ = 0.15, the maximum of E{Λ}/λref occurs at gap/lp
= 0.63 m. The normalized histogram of Λ/λref with this con�guration is shown

in Fig. 4.6(b). Figures 4.7 to 4.9 show the graphs of E{Λ}/λref and 90%

con�dence interval as function of gap/lp for E{Ki} = 104, 105 and 106 N/m

and for δ = 0.25 and 0.35. These �gures show that the bigger δ is, the larger

is the con�dence interval of Λ/λref .
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4.6(a): 4.6(b):

Figure 4.6: (a) Mean and 90% con�dence interval of Λ as function of gap/lp
with δ = 0.15 and E{Ki} = 106 N/m and (b) normalized histogram of Λ/λref

for gap/lp = 0.63 m, E{Ki} = 106 N/m and δ = 0.15.

4.7(a): 4.7(b):

Figure 4.7: Mean and 90% con�dence interval of Λ/λref as function of gap/lp
with E{Ki} = 104 N/m for(a) δ = 0.25 and (b) δ = 0.35.
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4.8(a): 4.8(b):

Figure 4.8: Mean and 90% con�dence interval of Λ/λref as function of gap/lp
with E{Ki} = 105 N/m for(a) δ = 0.25 and (b) δ = 0.35.

4.9(a): 4.9(b):

Figure 4.9: Mean and 90% con�dence interval of Λ/λref as function of gap/lp
with E{Ki} = 106 N/m for(a) δ = 0.25 and (b) δ = 0.35.
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4.7 Summary of the Chapter

The purpose of this chapter was to analyze the impact energy of an

embarked pendulum in a vibro-impact electromechanical system. A �exible

barrier, attached to the cart, constrains the pendulum motion and causes

impacts. Since this nonlinear electromechanical system is devoted to the

vibro-impact, the time responses exhibit numerous shocks that have to be

identi�ed with accuracy and, consequently, a very small time-step is required.

To reduce the computation time, the initial-value problem, Eqs. (4.6) to (4.8),

was rewritten in the dimensionless form, Eqs. (4.11) to (4.13). While each

numerical simulation of Eqs. (4.6) to (4.8) takes approximately 30 seconds to be

computed, each numerical simulation of Eqs. (4.6) to (4.8) takes approximately

half of this time. In the deterministic analysis, the in�uence of the parameter

gap/lp in the impact behavior was numerically investigated for di�erent values

of the nominal eccentricity of the pin, ∆, the parameter that governs the

coupling and the nonlinearity of the system. As ∆ increases the nonlinearity

also increases. It was veri�ed that for values of ∆ near zero, the graph of the

impact energy is very similar to the graph with ∆ = 0 m. This result can be

nicely predicted from conservation of energy. However, as ∆ increases the form

of the graph changes completely and in an unexpected fashion. This peculiar

behavior is due to the energy taken by the pendulum from the motor. The

energy of the mechanical systems varies a lot and the pumping of energy,

from the motor to the mechanical system, increases with ∆. The systems

analyzed show a self-oscillation behavior, in the sense that the generation

and maintenance of the motion comes from the motor but the oscillations

somehow control the energy taken from the motor. It varies with ∆, that

is a measure of the nonlinearity of the system. It is worth mentioning that

the energy intake is at frequency zero, the constant voltage, but this energy is

distributed to all frequencies due to the impacts. The in�uence of the parameter

gap/lp in the impact behavior was also investigated for di�erent values of the

sti�ness, ki, with the �xed value ∆ = 10−3 m. Similar to what happens with

the parameter d, it was veri�ed that for small values of ki, the graph of the

impact energy is very similar to the graph of impact energy with the same

ki and ∆ = 0 m. However, as ki increases the form of the graph changes

completely if compared to the graph of impact energy with the same ki and

∆ = 0 m. It was also observed that the maximum of the impact energy do not

occur anymore with the bigger ki as happens in the ∆ = 0 m con�guration.

In the stochastic analysis, the sti�ness of the spring ki, in the barrier was

modeled as a random variable and the propagation of uncertainties in the
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coupled motor-cart-pendulum-barrier system was computed through Monte

Carlo simulations. Thus statistics of the impact energy, as mean and 90%

con�dence interval, were computed for di�erent values of gap/lp, E{Ki} and
δ. Comparing these statistics with the results of deterministic simulations,

it is veri�ed that in relation to the mean of impact energy, deterministic and

stochastic systems have similar behavior. However, the 90% con�dence interval

decreases as E{Ki} increases and expands as δ increases.



5

Robust design optimization with an un-

certain model of a nonlinear percussive

electromechanical system

The objective of this part of the Thesis is to perform an optimization

of a percussive electromechanical system with respect to some chosen design

parameters. The optimization consists in maximizing the impact power under

the constraint that the electric power consumed by the DC motor is lower than

a maximum value. This nonlinear constrained design optimization problem is

formulated in the framework of robust design due to the presence of uncertain-

ties in the computational nonlinear dynamics model of the electromechanical

system [61, 81, 9].

5.1 Dynamics of the vibro-impact electromech-

anical system

As described in the introduction, the system is composed by a cart whose

movement is driven by the DC motor, and by a hammer that is embarked into

the cart. The motor is coupled to the cart through a pin that slides into a slot

machined in an acrylic plate that is attached to the cart, as shown in Fig. 5.1.

The o�-center pin is �xed on the disc at distance ∆ of the motor shaft, so that

the motor rotational motion is transformed into a cart horizontal movement.

To model the coupling between the motor and the mechanical system, the

motor shaft is assumed to be rigid. Thus, the available torque vector to the

Figure 5.1: Motor-cart-hammer coupled system. The nonlinear component
spring is drawn as a linear spring with constant kh1 and a nonlinear cubic
spring with constant kh3.
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coupled mechanical system, τ , can be written as

τ (t) = ∆(t)× f(t) , (5.1)

where ∆ = (∆ cosα(t), ∆ sinα(t), 0) is the vector related to the eccentricity

of the pin, and where f is the coupling force between the DC motor and the

cart. Assuming that there is viscous friction between the pin and the slot, the

vector f has two components: the horizontal force that the DC motor exerts

in the cart, fx, and the vertical force, fy, induced by the viscous friction. The

available torque τ and vertical force fy are written as

τ(t) = fy(t) ∆ cosα(t)− fx(t) ∆ sinα(t) , (5.2)

fy(t) = cpin ∆ α̇(t) cosα(t) , (5.3)

where cpin is the viscous friction. The embarked hammer is modeled as a rigid

body of mass mh and its relative displacement is h with respect to the cart. In

the adopted model, the constitutive equation of the spring component between

the hammer and the cart is written as fs(t) = kh1 h(t) + kh3 h(t)3. The

rate of nonlinearity of the hammer sti�ness is de�ned as rh = kh3/kh1. We

introduce the natural frequency, ωh, of the hammer suspended to the linear

spring with constant sti�ness kh1 such that ωh =
√
kh1/mh. The horizontal cart

displacement is represented by x. Due to constraints, the cart is not allowed

to move in the vertical direction. The spring-damper element modeling the

medium on which the impacts occur, is constituted of a linear spring with

sti�ness coe�cient ki and a damper with damping coe�cient ci. The equations

of the cart-hammer-barrier system were obtained with the Lagrange principle.

They are

ẍ(t) (mc +mh) + ḧ(t) mh + cext ẋ(t) = −fimp(t) + fx(t) , (5.4)

ẍ(t) mh + ḧ(t) mh + cint ḣ+ kh1 h(t) + kh3 h
3(t) = −fimp(t) , (5.5)

where, cext is the viscous friction coe�cient between the cart and the rail and

cint = 2ςint
√
mhkh1 is the viscous friction coe�cient between the cart and the

hammer (ςint is the damping ratio). The term fx is the horizontal coupling force

between the DC motor and the cart, and fimp is the impact force between the

hammer and the barrier, which is written as

fimp(t) = −φ(t)
(
ki (x(t) + h(t) + g) + ci (ẋ(t) + ḣ(t))

)
, (5.6)

where
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φ(t) =

1, if x(t) + h(t) + g < 0 and ḣ(t) + ẋ(t) < 0 ,

0, in all other cases ,
(5.7)

in which g is de�ned as the horizontal distance from the hammer (when

α = π/2 rad) to the equilibrium position of the barrier. In the model de�ned

by Eq. (5.7), an impact starts when x(t)+h(t) is negative and equal to −g and,
ḣ(t) − ẋ(t) < 0. During an impact, the action of the barrier on the hammer

stops as soon as the total velocity ḣ(t) + ẋ(t) becomes positive (the return of

the hammer), i.e, the barrier moves irreversibly in one direction, simulating

a penetration. Due to the system geometry, x(t) and α(t) are related by the

following constraint
x(t) = ∆ cos (α(t)) . (5.8)

Substituting Eqs. (5.2) to (5.8) into Eqs. (2.1) and (2.2), we obtain the

initial value problem for the motor-cart-hammer-barrier coupled system that

is written as follows. Given a constant source voltage ν, �nd (α, c, h) such that,

for all t > 0,
lċ(t) + rc(t) + keα̇ = ν , (5.9)

α̈(t)
(
jm + (mc +mh)∆

2sin (α(t))2)− ḧ(t) (mh∆ sin (α(t)))− kec(t)

+α̇(t)
(
bm + α̇(t)(mc +mh)∆

2 cos (α(t)) sin (α(t))

+cpin∆2 cos (α(t))2 − cext∆2 sin (α(t))2
)

= φ
(
ki(∆ cos (α(t)) + h+ g) + ci(−dα̇(t) sin (α(t)) + ḣ(t))

)
∆ sin (α(t)) ,

(5.10)

ḧ(t)mh − α̈(t) (mh∆ sin (α(t)))− α̇(t) (mh∆ α̇(t) cos (α(t)))

+ḣ(t)cint + kh1h(t) + kh3h
3(t)

= φ(t)
(
ki(∆ cos (α(t)) + h+ g) + ci(−∆ α̇(t) sin (α(t)) + ḣ(t))

)
,

(5.11)

where

φ(t) =

1, if ∆ cosα(t) + h(t) + g < 0 and ḣ(t)−∆ α̇(t) cos (α(t)) < 0

0, in all other cases ,
(5.12)

with the initial conditions,

α(0) = 0 , α̇(0) = 0 , c(0) =
ν

r
, h(0) = 0 , ḣ(0) = 0 . (5.13)
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5.2 Dimensionless vibro-impact electromechan-

ical system

In this section, the initial value problem to the vibro-impact electromech-

anical system is presented in a dimensionless form used for simulations. To get

the dimensionless form, we take α̇ (t) = u (t) and ḣ (t) = η (t), and rewrite the

initial value problem de�ned by Eqs. (5.9) to (5.13) as a �rst order system, as

follows

u̇(t) =
{
−[bm +mc ∆2u(t) cos (α(t)) sin (α(t)) + cpin ∆2cos (α(t))2

−cext ∆2sin (α(t))2]u(t)mh + ke c(t)mh − cint η (t)mh ∆ sin (α(t))

−(kh1 h(t) + kh3 h
3(t))mh ∆ sin (α(t))}

/mh (jm +mc ∆2sin (α(t))2)

η̇(t) =
{
−[bm + cpin ∆2cos (α(t))2 − cext ∆2sin (α(t))2]u(t)mh ∆ sin (α(t))

+ke c(t)mh ∆ sin (α(t))− jm ∆u2(t) cos (α(t))

−φ(t) [ki(∆ cos (α(t)) + h(t) + g) + ci(−∆u(t) sin (α(t)) + η(t))]

[jm +mc ∆sin (α(t))2]

−[cint η(t) + kh1 h(t) + kh3 h
3(t)] [jm + (mc +mh) ∆ sin (α(t))2]

}
/mh (jm +mc ∆2sin (α(t))2)

c(t) =
1

l
(ν − ke u(t)− r c(t))

(5.14)
where

φ(t) =

1, if ∆ cos (α(t)) + h(t) + g < 0 and η(t)−∆u(t) sin (α(t)) < 0 ,

0, in all other cases ,
(5.15)

Writing

t =
l

r
s, α

(
l s

r

)
= p (s) , u

(
l s

r

)
=
r q (s)

l
,

c

(
l s

r

)
=
kew (s)

l
, h

(
l s

r

)
= ∆ a (s) , η

(
l s

r

)
=
r

l
∆ y(s)

(5.16)

one gets that s is dimensionless parameter. The functions p (s), q (s), w (s),

a (s) and y (s) are dimensionless functions. By substituting the new functions

into the Eq. (5.14) one obtains
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q′(s) =
{
−v3q(s)− v1q

2(s) cos (p(s)) sin (p(s))

− v12q(s)cos (p(s))2 + v11q(s)sin (p(s))2 + v2w(s)

−v9y(s) sin (p(s))−
[
v4a(s) + v18a

2(s) + v6a
3(s)

]
sin (p(s))

}{
1

1 + v1sin (p(s))2

} (5.17)

y′(s) =
{
−v3q(s) sin (p(s))− v12q(s)cos (p(s))2 sin (p(s)) + v11q(s)sin (p(s))3

+ v2w(s) sin (p(s)) + q2(s) cos (p(s))−
[
v10 + v9sin (p(s))2(v8 + 1)

]
y(s)

−
[
v5 + v4sin (p(s))2(v8 + 1)

]
a(s)−

[
v7 + v6sin (p(s))2(v8 + 1)

]
a3(s)

− φ(s)
[
(v13 + v14v8sin (p(s))2)(cos (p(s)) + a(s) + v15)

−(v16 + v17v18sin (p(s))2)(q(s) sin (p(s))− y(s))
]
}{

1

1 + v1sin (p(s))2

}
(5.18)

w′(s) = −w(s)− q(s) + v0 (5.19)

p′(s) = q(s) (5.20)

a′(s) = y(s) (5.21)

where ′ denotes the derivative with respect to s and vi, i = 0, . . . , 19 are

dimensionless parameters given by

v0 =
ν l

ke r
, v1 =

∆2mc

jm
, v2 =

k2
e l

jm r2
, v3 =

bm l

jm r
, v4 =

kh1 l
2 ∆2

jm r2
,

v5 =
kh1 l

2

mh r2
, v6 =

kh3 l
2 ∆4

jm r2
, v7 =

kh3 l
2 ∆2

mh r2
, v8 =

mc

mh

, v9 =
cint ∆2 l

jm r
,

v10 =
cint l

mh r
, v11 =

cext l∆
2

jm r
, v12 =

cpin l∆
2

r
, v13 =

ki l
2

mh r2
, v14 =

ki l
2 ∆2

jm r2
,

v15 =
g
∆
, v16 =

ci l

mh r
, v17 =

ci l∆
2

jm r
.

(5.22)
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5.3 Measure of the system performance

At time t, the electric power introduced by the electrical grid in the motor

is
πin(t) = ν c(t) . (5.23)

Let tjb and t
j
e be the instants of begin and end of the j-th impact, such that

for all t belonging to [tjb , t
j
e], we have ẋ(t) + ḣ(t) < 0. At time t, the impact

power, πjimp(t), is then written as

πjimp(t) = ki (x(t) + h(t)) (ẋ(t) + ḣ(t)), tjb ≤ t ≤ tje . (5.24)

The time average of the impact power during the j-th impact, πjimp, is written

as
πjimp =

1

tje − tjb

∫ tje

tjb

πjimp(t) dt . (5.25)

The sum, πimp, of the averages of the impact powers, which is one of the

variable of interest in the design optimization problem, is written as

πimp =

Nimp∑
j=1

πjimp , (5.26)

where Nimp is the total number of impacts that occur during time interval

[0, T ]. The time average of the electric power consumed in this time interval is

πelec =
1

T

∫ T

0

πin(t) dt . (5.27)

These two variables, πimp and πelec, are chosen to measure the system perform-

ance. The biggest πimp is and the smaller πelec is, better will be the system

performance.

5.4 Sensitivity analysis and choice of the design

parameters

To understand the role played by each system parameter in πimp and

πelec, a sensitivity analysis has been done. The objective was to determine

what were the system parameters that had the biggest in�uence in πimp and

πelec, in order to de�ne those that will be the design parameters for the robust

design optimization problem. The initial value problem de�ned by Eqs. (5.9) to

(5.13) has been rewritten in a dimensionless form for computation and some

dimensionless parameters were de�ned. However, in the sensitivity analysis,

these dimensionless parameters were not considered as varying parameters

since they do not have an easy physical interpretation. The varying parameters

used for the numerical simulations are related with the design of the cart and

the embarked hammer. They are:
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� mc/mh, relation between the hammer mass and the cart mass;

� kh1/mh, relation between the linear sti�ness of the spring component and

hammer mass (a sort of natural frequency of the hammer);

� g, horizontal distance from the hammer (when α = π/2 rad) to the

equilibrium position of the barrier;

� ∆, eccentricity of the pin. This parameter determines the length of the

cart path.

The other parameters, related with the motor properties and viscous friction

coe�cients, are �xed and the values of these �xed parameters are given in

Table 5.1. The output responses are πimp and πelec. For computation, the

Table 5.1: Values of the system parameters used in simulations.
Parameter Value Parameter Value

mc 0.50 Kg ν 2.4 V
rh 0.30 1/m2 r 0.307 Ω
cpin 5.00 Ns/m l 1.88× 10−4 H
cext 5.00 Ns/m jm 1.21× 10−4 Kgm2

ςint 0.05 bm 1.5452× 10−4 Nm/(rad/s)
ki 106 N/m ke 0.0533 V/(rad/s)
ci 103 Ns/m

initial value problem de�ned by Eqs. (5.9) to (5.13) has been rewritten in

the dimensionless form given by Eqs. (5.17) to (5.22) . The main objective

was to reduce the computation time. Duration is chosen as T = 10.0 s. The

4th-order Runge-Kutta method is used for the time-integration scheme for

which we have implemented a varying time-step. The time-step is adapted

to the state of the dynamical system according to the occurrence or the non

occurrence of impacts. When the hammer is not impacting the barrier, the

time-step used is 10−4 s, but when the hammer is approaching the barrier

and when it is impacting it, the time-step is chosen as the value 10−5 s.

Simulations with di�erent values to the initial conditions, were performed.

As it was veri�ed that they do not have a signi�cant in�uence in πimp and

πelec, in all simulations the initial conditions were taken as constant, given by

Eq. (5.13). Concerning the sensitivity analysis, 20, 000 numerical simulations

have been carried out combining the following values of the parameters: 10

values for mc/mh selected in the interval [0.10 , 2.00], 10 values for kh1/mh

in [657 , 4 410] rad2/s2, 10 values for g in [0 , 0.02] m, and 20 values for ∆

in [0.003 , 0.013] m. Due the high numerical cost of these simulations, some

strategies were adopted to reduce the computation time:
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� the varying time-step integration scheme was used for numerical itera-

tions;

� the initial value problem has been rewritten in a dimensionless form, the

computation time of each simulation was reduced from 8 minutes to 5

minutes on average;

� parallelization of the simulations: a cluster in the Laboratoire de Modél-

isation et Simulation Multi-Echelle of Université Paris-Est with 20 com-

puters was used to make the simulations, as shown in Fig 5.4.

With these strategies, the computational time necessary to perform the 20, 000

numerical simulations were approximately 3.5 days. The largest value of πimp,

Figure 5.2: Parallelization of the simulations in the sensitivity analysis.

obtained with such numerical simulations, is 5, 690 W, and is reached for the

following values of the parameters: (mc/mh)
? = 0.40, (kh1/mh)

? = 1, 580

rad2/s2, g? = 0.011 m, and ∆? = 0.013 m. With these values, the average

of the consumed electric power is πelec = 3.93 W. For ∆ = ∆? and mc/mh =

(mc/mh)
?, Fig. 5.3 displays πimp as a function of parameters g and kh1/mh. In

Fig. 5.3(a), g and kh1/mh vary in all its range of values, and in Fig. 5.3(b),

they vary in [0.06 , 0.02] and [1 250 , 1 953] respectively. These �gures show that,

the optimal value of the design parameter correspond to a global maximum.

The in�uence of each parameter in πimp and πelec can be observed through the

graphs plotted in Figs. 5.4 to 5.7. Regarding all the graphs of πimp and πelec
as a function mc/mh, kh1/mh, g and ∆, it can be seen that small variations on

g, kh1/mh, and ∆ induce large variations for πimp and for πelec, but the same

phenomenon does not occur with respect to the parametermc/mh. Thus, while

πimp and πelec are not very sensitive to mc/mh, they are sensitive to kh1/mh, g

and ∆. It is also seen, that two di�erent kinds of sensitivity can be distinguished

among these three parameters. For parameters kh1/mh and g, it can be seen
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5.3(a): 5.3(b):

Figure 5.3: For the optimal values (mc/mh)
? and ∆?: (a) graph of πimp as a

function of g and kh1/mh (varying in all its range of values), (b) graph of
πimp as a function of g and kh1/mh (varying in [0.06 , 0.02] and [1 250 , 1 953]
respectively).

5.4(a): 5.4(b):

Figure 5.4: (a) Graph of πimp as a function of mc/mh with (kh1/mh)
?, g?, and

∆?. (b) Graph of πimp as a function of kh1/mh with (mc/mh)
?, g?, and ∆?.

5.5(a): 5.5(b):

Figure 5.5: (a) Graph of πimp as a function of g with (mc/mh)
?, (kh1/mh)

?, and
∆?. (b) Graph of πimp as a function of ∆ with (mc/mh)

?, (kh1/mh)
?, and g?.
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5.6(a): 5.6(b):

Figure 5.6: (a) Graph of πelec as a function of mc/mh with (kh1/mh)
?, g?, and

∆?. (b) Graph of πelec as a function of kh1/mh with (mc/mh)
?, g?, and ∆?.

5.7(a): 5.7(b):

Figure 5.7: (a) Graph of πelec as a function of g with �x (mc/mh)
?, (kh1/mh)

?,
and ∆?. (b) Graph of πelec as a function of ∆ with �x (mc/mh)

?, (kh1/mh)
?,

and g?.

that πimp and πelec reach their maxima when kh1/mh and g are equal to 1, 580

rad2/s2 and 0.011 m respectively. For parameter ∆ varying in its range of

values, Figs. 5.5(b) and 5.7(b) show that the highest is ∆, the highest are

πimp and πelec. It has been considered as not necessarily to verify the behavior

of πimp and πelec for a larger range of ∆ because the value ∆ = 0.013 m is

already su�ciently large when compared with the system dimensions and the

motor properties. It should be noted that if parameter ∆ is increased, then,

the nonlinearities would increase also, but that is not the objective of the

analysis. Considering that mc/mh does not have a signi�cant in�uence in πimp

and πelec, and considering that the sensitivity of the parameter ∆ is easily

predictable, these two parameters will not be considered as design parameters

in the robust design optimization problem. Only parameters g and kh1/mh will

thus be considered as design parameters.
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5.5 Construction of the probability model

As explained in the introduction, this chapter deals with the robust

design of the electromechanical system in presence of uncertainties in the

computational model. The three parameters that are assumed to be uncertain

are kh1, ki and ci, which are modeled by the independent random variables

Kh1, Ki and Ci. The probability distribution of each one is constructed using

the Maximum Entropy Principle [34, 88, 89, 91, 85, 94, 95]. This Principle

allows the probability distribution of a random variable to be constructed using

only the available information, avoiding the use of any additional information

that introduces a bias on the estimation of the probability distribution. If

a large amount of experimental data are available, then the nonparametric

statistics can be used. If there are no available experimental data, or if there are

only a few experimental data, then the Maximum Entropy from Information

Theory is the most e�cient tool for constructing a prior probability model.

The Maximum Entropy Principle states: out of all probability distributions

consistent with a given set of available information, choose the one that

has maximum uncertainty (the Shannon measure of entropy). The available

information of the random variables is de�ned as

1. Kh1, Ki and Ci are positive-valued independent random variables,

2. the mean values are known: E{Ki} = Ki, E{Ci} = Ci and E{Kh1} =

Kh1,

3. in order that the response of the dynamical system be a second-order

stochastic process, we impose the following conditions: ‖E{logKi}‖ <
∞, ‖E{logCi}‖ < ∞ and ‖E{logKh1}‖ <∞.

Thus, the Maximum Entropy Principle for each random variable Ki, Ci, and

Kh1, yields a Gamma distribution (see [90]),

p(a) = 1[0,+∞)(a)
1

µ

(
1

δ2

) 1
δ2 1

Γ(1/δ2)

(
a

µ

) 1
δ2
−1

exp

(
a

δ2µ

)
, (5.28)

where 1[0,+∞)(a) is an indicator function that is equal to 1 for a ∈ [0,+∞) and

0 otherwise, and where

� Γ is the Gamma function: Γ(b) =

∫ ∞
0

tb−1 exp(−t)dt;

� δ = σ
µ
is the coe�cient variation of the random variable, µ is its mean

value representing Ki, Ci, or Kh1, and σ is its standard deviation.
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5.6 Robust design optimization problem

In order to formulate the robust design problem, the set of all the

system parameters is divided into three subsets. The �rst subset is the

family of the �xed parameters that is represented by the vector p�x = { ν,
l, r, jm, ke, bm, cpin, cext, ςint, rh, mc, mh, ∆ }. The second one is the family of

the design parameters that is represented by the vector pdes = {Kh1/mh, g}.
The third one is the family of the uncertain parameters that is represented by

the random vector Punc = {Ki, Ci, Kh1}. Since Punc is a random vector,

the outputs of the electromechanical system are stochastic processes and,

consequently, πimp(pdes,punc) and πelec(pdes,punc), become random variables

Πimp(pdes) = πimp(pdes,Punc) and Πelec(pdes) = πelec(pdes,Punc). The cost

function of the robust design optimization problem is de�ned by

J(pdes) = E{Πimp(pdes)} . (5.29)

The robust design optimization problem is written as

popt
des = arg max

pdes∈Cad
J(pdes) , (5.30)

in which Cad = {pdes ∈ Pdes; E{Πelec(pdes)} ≤ celec}, where Pdes is the admiss-

ible set of the values of pdes, and where celec is an upper bound.

5.7 Results of the robust optimization problem

The hyperparameters δKi and δCi , which control the level of uncertainties

for Ki and Ci are �xed to 0.1. The robust design optimization problem is then

solved for three levels of uncertainties forKh1, de�ned by the following values of

the hyperparameters δKh1 = 0, δKh1 = 0.1, and δKh1 = 0.4. The optimization

problem is also considered whitout uncertainties in the systems parameters,

that is, the deterministic case (δKh1 = δKi = δCi = 0). For pdes ∈ Cad,
the cost function is estimated by the Monte Carlo simulation method using

100 independent realizations of random vector Punc following its probability

distribution. The optimization problem (de�ned by Eq. (5.30)) is solved using

the trial method for which the admissible set Cad is meshed as follows: for

Kh1/mh, 13 values are nonuniformly selected in the interval [703 , 3 830], and for

g, 20 nonuniform values in [0 , 0.038]. Thus, 26, 000 numerical simulations have

been carried out to solve optimization problem for each level of uncertainties.

Due the high numerical cost of these simulations, the same strategies used in

the sensitivity analysis were adopted to reduce the computation time. They

were:
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� a varying time-step integration scheme was used for numerical iterations

(described in Section 5.4 with duration T = 10.0 s),

� the initial value problem has been rewritten in a dimensionless form, the

computation time of each simulation was reduced from 8 minutes to 5

minutes on average;

� parallelization of the simulations: a cluster in the Laboratoire de Modél-

isation et Simulation Multi-Echelle of Université Paris-Est with 20 com-

puters was used to make the simulations.

These strategies allowed us to solve the optimization problem (de�ned by

Eq. (5.30)) with the trial method. With the reduction of computation time,

di�erent kind of algorithms, as evolutionary algorithms or random search

algorithm were not necessary. The computational time necessary to perform

the 26, 000 numerical simulations were approximately 4.5 days for each level

of uncertainties. The values of the �xed parameters are mc = 0.3 Kg, mh =

Figure 5.8: Parallelization of the simulations performed to solve the robust
optimization problem.

0.5 Kg, ∆ = 0.01 m, and the others are given in Table 5.1. Upper bound celec
is �xed to the value 6.00 W. For the deterministic case, the components of the

optimal solution popt
des are (Kh1/mh)

opt = 1, 580 rad2/s2 and gopt = 0.011 m. For

case with uncertainties, for which δKi is �xed to 0.1, and δCi to 0.1, we obtain,

for δKh1 = 0, (Kh1/mh)
opt = 957 rad2/s2 and gopt = 0.018 m, for δKh1 = 0.1,

(Kh1/mh)
opt = 1, 950 rad2/s2 and gopt = 0.008 m, and for δKh1 = 0.4,

(Kh1/mh)
opt = 2, 360 rad2/s2 and gopt = 0.008 m. Figures 5.9 and 5.10 display

the graphs of the cost function de�ned by Eq. (5.29) as a function of the

design parameter for these four cases. These �gures show that, for each case,

the optimal value of the design parameter correspond to a global maximum

in Cad. The role played by uncertainties on the optimal values of the design
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5.9(a): 5.9(b):

Figure 5.9: (a) Cost function as function of the design parameters for the
deterministic case. (b) Cost function as function of the design parameters for
the case in which δKi = δCi = 0.1 and δKh1 = 0.

parameters can be analyzed through Figs. 5.11 and 5.12, which display the

graphs g 7→ E{Πimp((Kh1/mh)
opt , g)}, Kh1/mh 7→ E{Πimp(Kh1/mh , g

opt)},
g 7→ E{Πelec((Kh1/mh)

opt , g)}, and Kh1/mh 7→ E{Πelec(Kh1/mh , g
opt)}.

These �gures show that the optimal design point strongly depends on the

level of uncertainties. In particular, it can be deduced that the mean value

of the electric power increases with the increase of the gap. The robustness

of the optimal design point, popt
des, can be analyzed in studying the evolution

of the coe�cient variation, δΠimp
(popt

des), of random variable Πimp(popt
des) as a

function of the uncertainty level. However, in order to better analyze the

sensitivity of the responses with respect to the uncertainty level, we have

constructed Fig. 5.13 that displays the graphs g 7→ δΠimp
((Kh1/mh)

opt , g)

and Kh1/mh 7→ δΠimp
(Kh1/mh , g

opt). For each level of uncertainties, it can be

seen that the value δΠimp
(popt

des) occurs in a region for which the two following

functions g 7→ δΠimp
((Kh1/mh)

opt , g) and Kh1/mh 7→ δΠimp
(Kh1/mh , g

opt)

are minima. This means the optimal design point is robust with respect to

uncertainties.

5.8 Summary of the Chapter

In this chapter of the Thesis, the formulation and the solution of a robust

design optimization problem have been presented for a nonlinear electromech-

anical vibro-impact system in presence of uncertainties in the computational

model. Since this nonlinear electromechanical system is devoted to the vibro-

impact optimization, the time responses exhibit numerous shocks that have

to be identi�ed with accuracy, and consequently, a very small time-step is re-
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5.10(a): 5.10(b):

Figure 5.10: (a) Cost function as function of the design parameters for the case
in which δKi = δCi = δKh1 = 0.1. (b) Cost function as function of the design
parameters for the case in which δKi = δCi = 0.1 and δKh1 = 0.4.

5.11(a): 5.11(b):

Figure 5.11: (a) Cost function as function of g with (Kh1/mh)
opt. (b) Cost

function as function of Kh1/mh with gopt. In both graphs, the E{Πimp(popt
des)}

is highlighted for each level of uncertainties with markers.
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5.12(a): 5.12(b):

Figure 5.12: (a) Mean value of the time average of electric power as function
of g with (Kh1/mh)

opt. (b) Mean value of the time average of electric power as
function ofKh1/mh with gopt. In both graphs, the E{Πelec(p

opt
des)} is highlighted

for each level of uncertainties with markers.

5.13(a): 5.13(b):

Figure 5.13: (a) Coe�cient variation of Πimp as function of g with (Kh1/mh)
opt.

(b) Coe�cient variation of Πimp as function of Kh1/mh with gopt. In both
graphs, the δΠimp

(popt
des) is highlighted for each level of uncertainties with

markers.
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quired. We have thus chosen an explicit time-integration scheme and not an

implicit one. Nevertheless, due to the presence of low-frequency contributions

in the time responses, a long time duration is required, which will imply a huge

number of integration time-step if the time-step was chosen constant. This is

the reason why we have implemented an adaptive integration time-step. It

was one of the di�culties encountered for the solver implementation. The use

a varying time-step integration scheme was not the only strategy adopted to

reduce the computation time. The initial value problem has been rewritten

in a dimensionless form, which reduced the computation time of each simula-

tion from 8 minutes to 5 minutes on average. Furthermore, a cluster with 20

computers has been used to to parallelize the simulations carried out in the

sensitivity analysis and in the optimization problem. Observing the results of

numerical integration, as time histories and phase diagrams, some interesting

phenomena were veri�ed, as for example bifurcation. Bifurcation is a typical

nonlinear phenomena, and it is frequently discussed in many works (see for in-

stance [73]). In the analyzed vibro-impact electromechanical system, it appears

because depending on the values of the system parameters, the system response

will have the occurrence or the non occurrence of impacts. But this topic is

an ongoing research that will be object of a future work. The construction of

the solution for the design optimization problem, has been prepared by carry-

ing out a sensitivity analysis with respect all the possible design parameters.

This pre-analysis has allowed for reducing the number of design parameters

to two parameters. Consequently, a random search algorithm or a genetic al-

gorithm was not necessary, and we have thus used a trail method. It should

be noted that in the framework of a robust analysis formulated in the context

of the probability theory, and taking into account the types of nonlinearities

in the dynamical system, the Monte Carlo numerical simulation method has

been used, and this introduces a signi�cant increase of the numerical cost. The

design optimization problem of the dynamical system without uncertainties

yields an optimal design point that di�ers from the nominal values, and which

can not be determined, a priori, without solving the design optimization prob-

lem. In addition, the robust analysis that has been presented demonstrates the

interest that there is to take into account the uncertainties in the computa-

tional model. The optimal design point that has been identi�ed in the robust

design framework signi�cantly di�ers from design point obtained with the com-

putational model without uncertainties. For this electromechanical system, it

has been seen that, the minimum value of the dispersion of the random output

occurs in the region of the optimal design parameters, which means that the

optimal design point is robust with respect to uncertainties.



6

Summary, future works and publications

This Thesis is a joint work between PUC-Rio and Université Paris-Est in

a program of double diploma supported by the Capes-Cofecub project (number

17795/12− 5).

In relation to the motor-cart system, we analyze the e�ect of the elec-

tromechanical coupling, i.e., the mutual interaction between the mechanical

and electric systems. We formulated the time-evolution of the system dynamics

as initial value problems, in which the coupling torque appears as a parametric

excitation, i.e., a time variation of the system parameters Numerical simula-

tions were performed for di�erent values of system parameters, and their res-

ults, as the graphs the systems variables over time, FFT and phase portraits

were analyzed. The main results observed were: the existence of a periodic

solution with a relation 2:1 between the period of rotation of the disk and the

period of the current (a typical phenomenon of parametric excited systems)

and, the characterization of the nominal eccentricity of the pin of the motor, as

a parameter that controls the nonlinearities of the equations of motion of the

system [42]. In [18], the existence and asymptotic stability of a periodic orbit

to this motor-cart system were obtained in a mathematically rigorous way.

In relation to the motor-cart-pendulum system, by numerical simulations

it was veri�ed that the pendulum introduces a new feature to the system

dynamics: it can pump energy from the motor and, in certain cases, revert the

relation master-slave [42, 45, 47, 53].

In relation to the electromechanical system with internal impacts, we

analyzed from a deterministic and from a stochastic view point the maximal

energy stored in the barrier in impacts as function of some parameters of

the electromechanical system, as gap/lp and ∆ [54]. It was veri�ed that for

values of ∆ near zero, the graph of the impact energy as function of gap/lp, is

very similar to the graph with ∆ = 0 m (which can be nicely predicted from

conservation of energy). However, as ∆ increases the form of the graph changes

completely and in an unexpected fashion.

In relation to the percussive electromechanical system, we performed a

robust optimization respect to design parameters in order to maximize the

impact power under the constraint that the electric power consumed by the

DC motor is lower than a maximum value. The construction of the solution for

this robust design optimization problem, has been prepared by carrying out
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a sensitivity analysis with respect all the possible design parameters. This

pre-analysis has allowed for reducing the number of design parameters to

two parameters. The nonlinear constrained design optimization problem was

formulated in the framework of robust design. It is solved for di�erent levels

of uncertainties, and also for the nominal value of deterministic design. The

results are di�erent and this show the importance of the stochastic modeling.

6.1 Future works

During the period of the thesis, several research topics arose from the

study of electromechanical systems. In relation to the vibro-impact elec-

tromechanical system, some of the plans are:

� to analyze the impact power for di�erent models to the barrier, consid-

ering for example, plasticity in the displacement, i.e., the barrier moves

irreversibly in one direction, simulating a penetration. The objective is

to model the propagation of waves in a continuous heterogeneous media,

which is unbounded (due to wavelengths that would be generated), and

thus there is an additional dissipation by radiation to in�nity.

� to develop a controller acting the source voltage in order to synchronize

the hammer and the cart movements. Since the total hammer velocity

is equal to the cart velocity ẋ added to the relative hammer velocity in

relation to the cart ḣ, if we could control the system in a way that x and

h be in phase, the total hammer velocity could achieve higher values,

and consequently, the impact power could grow.

� to consider di�erent variables to measure the system performance, and

to include this new variables in the formulation of the robust design

optimization problem. Examples of these new variables are the number

of impacts and frequency of impacts.

6.2 Publications

Concerning publications, during the period of Thesis, we have published

three journal papers, see [57, 55, 42]:

[J1] �Robust design optimization with an uncertain model of a nonlinear

vibro-impact electro-mechanical system�; R. Lima, C. Soize, and R. Sampaio.

Communications in Nonlinear Science and Numerical Simulation, 23, pp.

263-273, 2015.
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[J2] �Robust design of a vibro-impact electro-mechanical system�; R. Lima, C.

Soize, and R. Sampaio. Mecánica Computacional, XXXIII(27), pp. 1813-1819,

2014.

[J3] �Stochastic analysis of an electromechanical coupled system with em-

barked mass�; R. Lima e R. Sampaio, Mecánica Computacional, XXXI(14),

pp. 2783-2800, 2012.

We have submitted others two journal papers:

[J4] �Two parametric excited nonlinear systems due to electromechanical

coupling�; R. Lima e R. Sampaio.

[J5] �Electromechanical system with internal impacts and uncertainties�; R.

Lima e R. Sampaio.

During the period of this Thesis other works have been developed be-

sides the work of the Thesis, which have originated four journal papers, see

[52, 18, 26, 46]:

[J6] �Stick-mode duration of a dry-friction oscillator with an uncertain model�;

R. Lima e R. Sampaio. To be published in Journal of Sound and Vibration,

2015.

[J7] �Asymptotically stable periodic orbits of a coupled electromechanical

system�; M.J.H. Dantas, R. Sampaio and R. Lima. Nonlinear Dynamics, 78,

pp. 29-35, 2014.

[J8] �Robust Identi�cation and passive control of vibration of a test rig under

uncertain conditions�; C. Fonseca, R. Lima, G. Wagner and R. Sampaio.

Mecánica Computacional, XXXIII (27), pp. 1767-1781, 2014.

[J9] �Some remarks about stick-slip oscillators�; R. Lima and R. Sampaio.

Mecánica Computacional, XXXII (8), pp. 647-668, 2013.

In relation to these woks developed besides the work of the Thesis, we

have submitted another journal paper:

[J10] �General results of existence and asymptotic stability for a class of
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electromechanical systems, M.J.H. Dantas, R. Sampaio e R. Lima.

I published a book [85].

[B1] �Modelagem Estocástica e Geração de Amostras de Variáveis e Vetores

Aleatórios�, Sampaio, R. and Lima, R., Notas de Matemática Aplicada, SB-

MAC, 2012.

We have published �fteen conference papers: [56, 20, 48, 50, 19, 49,

25, 51, 54, 17, 16, 53, 47, 45, 43]. With the �nancial support of Labor-

atoire de Modélisation et Simulation Multi-Echelle (MSME) of Université

Paris-Est and PUC-Rio, I had the chance to present papers in several interna-

tional conferences, such as Uncertainties 2012 (Maresias, Brazil), COMPDYN

2013 (Kos, Greece), USNCCM12 2013 (Raleigh, EUA), EURODYN 2014

(Porto, Portugal), ENOC (Vienna, Austria) and Uncertainties 2014 (Rouen,

France). I presented works also in CNMAC 2012(Águas de Lindóia, Brasil),

and CMAC-NE 2012 (Natal, Barzil), in which I gave the mini-course �Mo-

delagem Estocástica e Geração de Amostras de Variáveis e Vetores Aleatórios�.

[C1] �Optimal design of a vibro-impact electro-mechanical system with un-

certainties�, Lima, R. and Soize, C. and Sampaio, R., 17th International

Symposium on Dynamic Problems of Mechanics (DINAME 2015), Natal, RN,

Brazil, 2015.

[C2] �General results of existence and asymptotic stability for a class of elec-

tromechanical systems�, Dantas, M.J.H. and Sampaio, R. and Lima, R., 35o

Congresso Nacional de Matemática Aplicada e Computacional (CNMAC),

Natal, RN, Brazil, 2014.

[C3] �Analysis of the stick-slip dynamics with a stochastic approach�, Lima,

R. and Sampaio, R., 35o Congresso Nacional de Matemática Aplicada e Com-

putacional (CNMAC), Natal, RN, Brazil, 2014.

[C4] �Stick-mode duration of random dry-friction oscillators�, Lima, R. and

Sampaio, R., 8th European Nonlinear Dynamics Conference (ENOC 2014),

Vienna, Austria, 2014.

[C5] �Dynamics of an electromechanical system forced near the resonance�,

Dantas, M.J.H. and Sampaio, R. and Lima, R., 8th European Nonlinear
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Dynamics Conference (ENOC 2014), Vienna, Austria, 2014.

[C6] �The random dynamics of an embarked pendulum in a vibro-impact

electromechanical system�, Lima, R. and Sampaio, R., 9th International Con-

ference on Structural Dynamics (EURODYN 2014), Porto, Portugal, 2014.

[C7] �Design of a nonlinear dynamical absorber for an uncertain system�,

Fonseca, C and Lima, R. and Wagner, G. and Sampaio, R., 2nd International

Symposium on Uncertainty Quanti�cation and Stochastic Modeling (Uncer-

tainties 2014) Rouen, France, 2014.

[C8] �Uncertainties on the stick-slip dynamics�, Lima, R. and Sampaio, R.,

2nd International Symposium on Uncertainty Quanti�cation and Stochastic

Modeling (Uncertainties 2014) Rouen, France, 2014.

[C9] �A vibro-impact electromechanical system: models of the random dynam-

ics of an embarked pendulum�, Lima, R. and Sampaio, R. and Soize, C., 22nd

International Congress of Mechanical Engineering (COBEM 2013), Ribeirão

Preto, SP, Brazil, 2013.

[C10] �Stable periodic orbits in an electromechanical system�, Dantas, M.J.H.

and Sampaio, R. and Lima, R., Congresso Nacional de Dinâmica e Controle

(DINCON 2013), Fortaleza, CE, Brazil, 2013.

[C11] �Existence of periodic orbits in an electromechanical system under para-

metric end external excitations�, Dantas, M.J.H. and Sampaio, R. and Lima,

R., VII Encontro Nacional de Análise Matemática e Aplicações (ENAMA

2013) Rio de Janeiro, Brazil, 2013.

[C12] �Uncertainty quanti�cation of the nonlinear dynamics of electromechan-

ical coupled systems�, Lima, R. and Sampaio, R. and Soize, C., 3rd South-East

European Conference on Computational Mechanics (COMPDYN 2013), Kos

Island, Greece, 2013.

[C13] �Uncertainty quanti�cation of coupled electro-mechanical systems with

an embarked pendulum�, Lima, R. and Sampaio, R., XV International Sym-

posium on Dynamic Problems of Mechanics (DINAME 2013) Búzios, RJ,

Brazil, 2013.
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[C14] �Stochastic Analysis of mechanical systems with nonideal source of

power�, Lima, R. and Sampaio, R., Congresso Matemática Aplicada e Com-

putacional (CMAC-NE 2012), Natal, RN, Brazil, 2012.

[C15] �Analysis of Markov Chain Monte Carlo Method and example of its

application in random vibration simulations�, Lima, R. and Sampaio, R.,

1st International Symposium on Uncertainty Quanti�cation and Stochastic

Modeling (Uncertainties 2012), Maresias, SP Brazil, 2012.
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