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Abstract

The outcomes of quantum measurements are generally considered to be random, but

despite the fact that this randomness is an important element in quantum information

theory, its nature is not well understood. In this thesis, we study several issues relating

to the origin and certification of quantum randomness and unpredictability.

One of the key results in forming our understanding of quantum mechanics as an

intrinsically indeterministic theory is the Kochen-Specker theorem, which shows the

impossibility to consistently assign simultaneous noncontextual definite values to all

quantum mechanical observables prior to measurement. However, the theorem, under

the assumption that any definite values must be noncontextual, only strictly shows that

some observables must be value indefinite. We strengthen this result, proving a stronger

variant of the Kochen-Specker theorem showing that, under the same assumption, if a

system is prepared in an arbitrary state |ψ〉, then every observable A is value indefinite

unless |ψ〉 is an eigenstate of A.

The indeterministic nature of quantum measurements does little to explain how the

quality of quantum randomness differs from classical randomness. We show that, sub-

ject to certain physical assumptions, a sequence of bits generated by the measurement

of value indefinite observables is guaranteed, in the infinite limit, to be strongly incom-

putable. We further discuss how this can be used to build a quantum random number

generator certified by value indefiniteness.

Next, we study the notion of unpredictability, which is central to the concept of

(quantum) randomness. In doing so, we propose a formal model of prediction that can

be used to asses the predictability of arbitrary physical experiments. We investigate how

the quantum features of value indefiniteness and complementarity can be used to certify

different levels of unpredictability, and show that the outcome of a single measurement

of a value indefinite quantum observable is formally unpredictable. Finally, we study

the relation between this notion of unpredictability and the computability-theoretic

certification of quantum randomness.

Keywords: Quantum foundations, quantum randomness, quantum indeterminism, un-

predictability, value indefiniteness, quantum measurement
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Résumé

Les résultats de mesures quantiques sont généralement considérés comme aléatoires,

mais leur nature aléatoire, malgré son importance dans la théorie de l’information quan-

tique, est mal comprise. Dans cette thèse, nous étudions plusieurs problèmes liés à l’ori-

gine et la certification de l’aléatoire et l’imprévisibilité quantique.

L’un des résultats clés dans la formation de notre compréhension de la mécanique

quantique comme théorie intrinsèquement indéterministe est le théorème de Kochen et

Specker, qui démontre l’impossibilité d’attribuer simultanément, de façon cohérente, des

valeurs définies et non-contextuelles à chaque observable avant la mesure. Cependant,

si nous présumons qu’une observable à valeur définie doit être non-contextuelle, alors le

théorème ne montre que le fait qu’il existe au moins une observable à valeur indéfinie.

Nous renforçons ce résultat en démontrant une variante du théorème de Kochen et

Specker qui montre que si un système est préparé dans un état quelconque |ψ〉, alors

chaque observable A est à valeur indéfinie sauf si |ψ〉 est un état propre de A.

La nature indéterministe de la mesure quantique n’explique pas bien la différence

de qualité entre l’aléatoire quantique et classique. Soumise à certaines hypothèses phy-

siques, nous montrons qu’une suite de bits produite par la mesure des observables à

valeurs indéfinies est garantie, dans la limite infinie, d’être fortement incalculable. De

plus, nous discutons comment utiliser ces résultats afin de construire un générateur

quantique de nombres aléatoires qui est certifié par des observables à valeurs indéfinies.

Dans la dernière partie de cette thèse, nous étudions la notion d’imprévisibilité, qui

est au cœur du concept d’aléatoire (quantique). Ce faisant, nous proposons un modèle

formel de (im)prévisibilité qui peut servir à évaluer la prévisibilité d’expériences phy-

siques arbitraires. Ce modèle est appliqué aux mesures quantiques afin de comprendre

comment la valeur indéfinie et la complémentarité quantique peuvent être utilisées pour

certifier différents degrés d’imprévisibilité, et nous démontrons ainsi que le résultat d’une

seule mesure d’une observable à valeur indéfinie est formellement imprévisible. Enfin,

nous étudions la relation entre cette notion d’imprévisibilité et la certification de l’in-

calculabilité des suites aléatoires quantiques.

Mots-clés : Fondements de la mécanique quantique, aléatoire quantique, indétermi-

nisme quantique, imprévisibilité, la valeur indéfinie, mesure quantique
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Résumé long en français

L’étude des fondements de la mécanique quantique joue un rôle important dans l’effort

de comprendre la description quantique de la réalité physique, et de plus les différences

entre cette description et celle offerte par la physique classique. Des développements

dans ce domaine ont contribué à la poussée d’intérêt pour l’information quantique ces

dernières décennies qui, à son tour, a conduit aux développements et même aux implé-

mentations des systèmes cryptographiques quantiques et des générateurs quantiques de

nombres aléatoires [56].

Au cœur de ces applications reste la nature aléatoire des mesures quantiques, et, en

particulier, la croyance que ces mesures donnent des résultats intrinsèquement, même

« vraiment », aléatoire d’une façon inatteignable en physique classique [8]. L’étude de

ce caractère aléatoire implique non seulement l’usage des outils de la logique quantique

et de l’informatique, mais également l’analyse philosophique pour le comprendre.

Cependant, le concept d’aléatoire est un concept assez subtil, et ni son origine, ni son

degré n’est bien étudié ou compris. L’origine de l’aléatoire quantique est souvent réduite

à l’indéterminisme des mesures quantiques, pour lequel les théorèmes de Bell [14] et de

Kochen et Specker [80] offrent évidence, même s’ils ne parviennent pas à le garantir

complètement. Pourtant, il ne faut pas confondre les concepts d’aléatoire et d’indéter-

minisme, car, bien qu’ils soient liés, ce sont néanmoins des concepts distincts. Pour

obtenir une compréhension plus complète de l’aléatoire quantique, il faut donc mieux

comprendre la relation entre l’indéterminisme, l’imprévisibilité, et l’aléatoire avec l’aide

de modèles et d’outils formels.

Cette thèse peut être divisée en trois parties principales, dont chacune s’adresse, à

son tour, à l’un de ces concepts. En entreprenant ce travail, nous utilisons pas seulement

le cadre formel standard de la logique quantique et sa structure d’événements, qui nous

permet de formaliser l’indéterminisme comme le concept de la valeur indéfinie, mais

également les théories de calculabilité et d’information algorithmique. Ces théories nous

fournissent des outils mathématiques qui sont essentiels afin de formaliser les notions

d’aléatoire et d’imprévisibilité. En particulier, la théorie d’information algorithmique

xvii



xviii Résumé long en français

donne une notion rigoureuse d’aléatoire comme l’absence de structure effective, alors

que la calculabilité est indispensable pour formaliser la prévisibilité, vu que « prédire »

signifie dire, de manière effective, en avance.

Dans la première partie (les Chapitres 3 et 4) nous nous intéressons à l’indétermi-

nisme quantique, que nous formalisons dans le cadre formel de la logique quantique

comme la notion de la valeur indéfinie. Alors que le théorème de Kochen et Specker ne

montre que le fait qu’il existe au moins une observable à valeur indéfinie, nous renforçons

ce résultat en démontrant une variante de ce théorème qui montre que si un système

est préparé dans un état arbitraire |ψ〉, alors chaque observable A est à valeur indéfinie

sauf si |ψ〉 est un état propre de A. Ainsi nous montrons que presque toute observable

quantique est à valeur indéfinie.

Dans la deuxième partie (le Chapitre 5) nous nous tournons vers l’aléatoire quan-

tique, ainsi que des concepts philosophiques d’aléatoire, y compris l’aléatoire algorith-

mique. Enfin, soumise à certaines hypothèses physiques, nous montrons qu’une suite

de bits produite par la mesure des observables à valeurs indéfinies est garantie, dans

la limite infinie, d’être fortement incalculable. De plus, nous proposons un générateur

quantique de nombres aléatoire qui est certifié par la valeur indéfinie.

Dans la dernière partie (les Chapitres 6 et 7) nous considérons le concept d’imprévi-

sibilité. Après avoir discuté des notions existantes d’imprévisibilité en physique classique

et en théorie de l’information algorithmique, nous proposons un modèle formel général

de (im)prévisibilité qui peut servir à évaluer la prévisibilité d’expériences physiques ar-

bitraires. Ce modèle est appliqué aux mesures quantiques afin de comprendre comment

la valeur indéfinie et la complémentarité quantique peuvent être utilisées pour certifier

différents degrés d’imprévisibilité, et nous démontrons ainsi que le résultat d’une seule

mesure d’une observable à valeur indéfinie est formellement imprévisible. Enfin, nous

étudions la relation entre cette notion d’imprévisibilité et la certification de l’incalcula-

bilité des suites aléatoire quantiques.

Dans ce long résumé, nous abordons ces trois parties à la suite. Nous résumons la

motivation et le contexte de nos résultats dans ces trois parties, avant de présenter et

discuter nos contributions liées à ces résultats.

Le travail de cette thèse a mené aux publications [3–7], dont deux sont publiées dans

« Physical Review A », tandis que les autres sont actuellement sous considération dans

d’autres revues.
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Le théorème de Kochen et Specker et la valeur

indéfinie

L’interprétation prédominante de la mécanique quantique est que le processus de mesure

est intrinsèquement indéterministe [41]. De plus, cet indéterminisme semble être central

à l’idée que les résultats des mesures quantiques, au contraire des systèmes classiques,

sont « vraiment aléatoire » [8] et « intrinsèquement imprévisible » [139].

L’origine de ce point de vue se trouve à la règle de Born, qui donne la probabilité

d’obtenir chaque résultat lors de la mesure d’une observable quantique. Alors que les

éléments principaux de la mécanique quantique – les états, les dynamiques, les interac-

tions, et même les propriétés observables – sont décrits dans le cadre formel d’un espace

de Hilbert, la règle de Born associe, de plus, une distribution de probabilité à ce cadre.

La probabilité peut être interprétée de plusieurs manières selon la situation physique ;

il ne s’agit que d’un outil formel sans aucun sens physique intrinsèque [69, 117]. En

particulier, elle peut représenter un manque épistémique d’information au lieu d’une

propension objective.

Max Born fut le premier à prétendre, au contraire de la situation en physique clas-

sique, que la probabilité donnée par sa règle en mécanique quantique doit être comprise

comme une probabilité objective [21]. Cependant, cette proposition de Born était lar-

gement une « inclination », alors pourquoi devrions-nous accepter un tel départ du dé-

terminisme classique ? Einstein n’était bien pas convaincu, et, avec Podolsky et Rosen,

en arguant que la mécanique quantique est incomplète, démontrèrent que la formalisme

quantique implique le comportement non-local des états quantiques [51].

Alors que l’interprétation indéterministe devint généralement acceptée, ce ne fut

pas jusqu’à l’apparition du théorème de Bell aux années soixante que nous avons eu

un premier résultat formel sur la non-classicalité de la mesure quantique. En donnant

ses célèbres inégalités sur les limites des corrélations disponibles dans les théories à

variables cachées non-locales, mais qui sont violées par la mécanique quantique, Bell

démontra l’incapacité d’expliquer les mesures quantiques avec une théorie déterministe

non-locale [14]. Néanmoins, ceci n’assure pas définitivement que la mesure quantique

soit indéterministe : il existe bien des interprétations de la mécanique quantique qui

sont déterministes, mais non-locales [20]. Au mieux, le théorème de Bell nous permet de

réduire l’indéterminisme quantique à la supposition que n’importe quel déterminisme

physique soit local.
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Le théorème de Kochen et Specker

Le théorème de Kochen et Specker fut démontré peu après celui de Bell, et, contrairement

au théorème de Bell, s’exprime au niveau du cadre de la logique quantique. Il montre

l’impossibilité d’associer une valeur définie et non-contextuelle (qui représente le résultat

d’une mesure) à chaque observable quantique d’une façon cohérente [80]. Il s’agit, plus

précisément, d’une contradiction entre les trois hypothèses suivantes :

(i) chaque observable a une valeur définie qui détermine, en avance, le résultat de sa

mesure ;

(ii) la valeur définie associée à une observable devrait être non-contextuelle, c’est-à-

dire indépendante des autres observables compatibles qui peuvent être mesurée

simultanément avec celle-ci ;

(iii) les résultats d’une mesure (et donc aussi les valeurs définies) d’un ensemble d’ob-

servables compatibles doivent être cohérents avec les relations quantiques entre les

observables dans cet ensemble.

La troisième condition est largement acceptée, puisqu’elle assure que les valeurs dé-

finies ne peuvent pas donner lieu aux observations qui ne sont pas en accord avec la

mécanique quantique. Il faut donc abandonner soit la (i), soit la (ii), ou même les deux.

Bien qu’ils existent des interprétations à valeurs définies contextuelles – les interpréta-

tions déterministes non-locales mentionnées ci-dessus se trouvent dans cette catégorie –

qui donc choisissent d’abandonner la (ii), l’interprétation standard est qu’il faut rejeter

la (i) et accepter le fait que la réalité quantique soit indéterministe.

Nous discuterons davantage la motivation pour rejeter la (i) au lieu de la (ii) dans la

Section 4.4.3, mais permettons-nous d’explorer les conséquences d’insister sur la (i). Il

existe, dans ce cas, un fossé entre l’interprétation habituelle du théorème et la conclusion

formelle : la négation de la (i) est précisément qu’il existe au moins une observable à

valeur indéfinie, alors qu’il est souvent pris d’impliquer l’absence complète des valeurs

indéfinies. De plus, on ne peut pas dire quelles observables sont à valeurs indéfinies.

Dans le reste de cette partie de la thèse, nous entreprenons de fermer ce fossé et de

démontrer que toute observable ne correspondant pas au « contexte de préparation du

système » est à valeur indéfinie.

Un cadre formel de la valeur indéfinie

En visant à localiser la valeur indéfinie, nous concevons dans la Section 3.2 un cadre

formel de la valeur (in)définie et de la contextualité. Comme dans les présentations

normales du théorème de Kochen et Specker en logique quantique, la base de ce cadre
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est celle des observables qui sont des projecteurs sur des états quantiques – qui, à leur

tour, sont représentés comme vecteurs unitaires dans un espace de Hilbert. Dorénavant,

quand nous parlons d’observables, il sera entendu que nous parlons implicitement de

tels projecteurs.

Nous formalisons la notion d’une fonction à attribution de valeurs, qui attribue,

à chaque observable dans un ensemble donné, une valeur qui peut aussi dépendre du

contexte des observables (c’est-à-dire, le sous-ensemble d’observables compatibles). En

permettant à cette fonction d’être partielle (c’est-à-dire non-définies sur certaines obser-

vables), contrairement aux autres cadres standards, nous pouvons formaliser des notions

plus progressives de la contextualité et de la valeur indéfinie, ce qui est nécessaire afin

de localiser la valeur indéfinie. Nous appelons non-contextuelle une telle fonction qui at-

tribue une seule valeur à chaque observable définie dans chaque contexte qui la contient.

Enfin, nous définissons la notion d’admissibilité d’une fonction à attribution de valeurs,

qui signifie qu’elle satisfait, dans chaque contexte, aux relations quantiques entre les

observables qui sont à valeur définie dans le contexte.

Avant d’aborder l’issue d’établir l’étendue de la valeur indéfinie dans les systèmes

quantiques, il est utile de se demander si nous pouvons tout d’abord établir des limites

sur le degré de la contradiction entre la valeur définie et la non-contextualité identifiée

par le théorème de Kochen et Specker. Par exemple, est-il possible de montrer que la non-

contextualité ou la valeur définie d’une seule observable mène à une contradiction ? Nous

apportons une réponse négative dans la Section 3.4 en démontrant, dans le Théorème 30,

que pour tout ensemble des observables il existe une fonction admissible à attribution

de valeurs qui attribue à une observable une valeur définie et non-contextuelle.

Ce résultat met une limite importante sur l’étendue possible de la valeur indéfinie et

la non-contextualité, et en conséquence nous ne pouvons pas espérer de démontrer que

toute observable quantique est à valeur indéfinie et donc indéterministe. Cependant, ce

ne devrait pas être surprenant voyant que, donné un système quantique préparé dans un

état |ψ〉 arbitraire, la règle de Born stipule qu’une mesure de l’observable Pψ qui projet

sur cet état devrait donner le résultat ‘1’ avec probabilité un, non-contextuellement.

Ainsi, il n’est pas déraisonnable de postuler que, dans n’importe quel système il existe

une telle observable qui est à valeur définie et non-contextuelle. De plus, cette hypothèse

d’état propre, comme nous l’appelons, jouera un rôle important dans ce qui suit.

La localisation de la valeur indéfinie

Habituellement, les démonstrations du théorème de Kochen et Specker présentent un

ensemble fini des observables et démontrent qu’il n’existe pas de fonction admissible

à valeur définie et non-contextuelle sur cet ensemble. La démonstration de Kochen et
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Specker donnèrent un tel ensemble de 117 observables [80], et bien que, depuis lors,

beaucoup d’effort fût consacré à trouver des ensembles plus petits [27, 103], ces efforts

ne changèrent pas le fait que le théorème ne montre que l’existence des observables à

valeurs indéfinies, mais pas l’étendue de la valeur indéfinie.

En donnant une démonstration constructive du théorème du Gleason [62], Pi-

towsky [106] (et aussi avec Hrushovski [75]) montra un principe dit « le principe d’in-

détermination logique » qui montre l’impossibilité d’attribuer, d’une façon cohérente,

la valeur 1, non-contextuellement à deux observables, un résultat bien plus fort que le

théorème de Kochen et Specker. Cependant, en le montrant, ils supposent toujours que

chaque observable soit à valeur définie, et donc, comme nous discutons en détail dans la

Section 4.1, nous ne pouvons pas en tirer un résultat sur l’étendue de la valeur indéfinie.

Afin de progresser dans cette direction, il faut ainsi utiliser la notion plus nuancée

d’une fonction partielle à attribution de valeurs que nous définissons. Ceci est tout à

fait la voie que nous prenons : au lieu de supposer que chaque observable soit à valeur

définie, nous déduisons qu’une observable est à valeur définie seulement quand elle l’est

requise par l’admissibilité de la fonction et les valeurs des autres observables à valeurs

définies qui sont compatibles avec celle-là.

Ayant conçu le cadre formel pour aborder la localisation de la valeur indéfinie, nous

procédons, dans la Section 4.3, à présenter notre principale contribution à cette partie

de la thèse. Dans le Théorème 34 nous démontrons le résultat suivant :

Soit |ψ〉 , |φ〉 deux états dans un espace de Hilbert de dimension supérieure ou égale

à trois avec 0 < |〈ψ|φ〉| < 1, et donc pour lesquels les projecteurs sur ces états, Pψ et Pφ,

sont incompatibles. Alors on peut trouver effectivement un ensemble des observables,

dont Pψ, Pφ, sur lequel il n’existe pas de fonction admissible à attribution de valeurs

non-contextuelles qui attribue la valeur 1 à Pψ et une valeur définie à Pφ.

Ce résultat montre qu’il n’est possible d’attribuer la valeur 1, non-contextuellement,

qu’à une seule observable sur un système quantique. Nous démontrons ce théorème en

trois étapes principales :

1. Tout d’abord nous le démontrons pour le cas spécial de |〈ψ|φ〉| = 1√
2

dans le

Lemme 35, ce qui implique donner un ensemble explicit avec les propriétés désirées.

2. Nous démontrons, dans le Lemme 36, une réduction entre le cas de 0 < |〈ψ|φ〉| <
1√
2

et le premier cas.

3. Enfin, dans ce qui est la partie la plus difficile de cette démonstration, nous don-

nons une réduction dans la direction opposée pour le dernier cas de 1√
2
< |〈ψ|φ〉| <

1. Afin de la démontrer, nous montrons deux Lemmes : le Lemme 39, qui diminue
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le produit |〈ψ|φ〉| par un petit montant, et le Lemme 40, qui applique par itération

ce premier lemme jusqu’à ce que le résultat désiré soit obtenu.

Contrairement aux démonstrations du théorème de Kochen et Specker qui donnent

un ensemble fini montrant la contradiction entre la valeur définie et la non-contextualité,

le fait que les deux observables Pψ et Pφ doivent être contenues dans l’ensemble construit

nous force à donner pas un seul ensemble fini, mais une procédure effective pour obtenir

un tel ensemble fini. En outre, le besoin de satisfaire la condition faible d’admissibi-

lité de la fonction à attribution de valeurs requit que les observables dans l’ensemble

soient soigneusement connectées, ce qui explique l’usage des réductions et des itérations

compliquées dans les démonstrations des lemmes.

Interprétation physique

Le résultat du Théorème 34, tout comme le théorème de Kochen et Specker, est un

résultat purement formel dans le cadre de la logique quantique. Bien qu’il mène à une

interprétation physique naturelle en associant les valeurs définies d’observables avec les

résultats de leurs mesures, il faut être prudent d’en tirer de telles conclusions sans consi-

dérer soigneusement les suppositions physiques qui sont implicites dans ce raisonnement.

Nous nous occupons, dans la Section 4.4, de ce problème.

Premièrement, il y a une supposition liée au rôle des mesures qui est normalement

gardée implicite lors d’une interprétation d’une théorie à variables cachées. Plus spéci-

fiquement, il faut supposer qu’une mesure physique donne un résultat unique et signifi-

catif. Cela peut sembler évident, mais ce n’est pas le cas dans quelques interprétations

de la mécanique quantique, comme la théorie des mondes multiples d’Everett [54], et il

est donc important d’expliciter cette supposition.

Il faut également faire une connexion entre les valeurs définies par une fonction à

attribution de valeurs et la réalisation d’un système quantique. On appelle fidèle (à une

réalisation d’un système) toute fonction à attribution de valeurs qui attribue une valeur

définie à une observable si et seulement si elle a un résultat physique prédéterminée sur

le système.

Deuxièmement, nous considérons la question de « quand pouvons-nous attribuer une

valeur définie à une observable ». Einstein, Podolsky et Rosen proposent que, si l’on peut

prédire avec certitude le résultat d’une mesure, alors il doit exister une valeur définie

avant la mesure [51], un principe que nous appelons le principe d’EPR.

Ce principe nous permet à formuler l’hypothèse d’état propre que nous avons men-

tionné plus haut, qui affirme qu’un système préparé dans un état |ψ〉 a une valeur définie

pour chaque observable dont |ψ〉 est un état propre, et plus particulièrement que l’obser-

vable Pψ a la valeur 1. Cette hypothèse est essentielle afin de donner une interprétation
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physique au Théorème 34. Le principe d’EPR nous permet également à démontrer, dans

le Théorème 44, qu’une fonction fidèle à attribution de valeurs doit être admissible.

Finalement, dans la Section 4.4.3 nous réitérons qu’il faut supposer que les valeurs

définies soient non-contextuelles pour interpréter ces résultats comme montrant la valeur

indéfinie de la mécanique quantique, et nous exposons quelques arguments à cette fin.

En utilisant ces suppositions, nous montrons dans la Proposition 45 l’interprétation

principale du Théorème 34 : si un système quantique est préparé dans un état |ψ〉, alors

chaque observable A dont |ψ〉 n’est pas un état propre doit être à valeur indéfinie sous

n’importe quelle fonction fidèle à attribution de valeurs. Conséquemment, l’ensemble des

observables à valeurs indéfinies a la mesure un (pour la mesure de Lebesgue), comme

nous le montrons dans le Théorème 46.

Ces résultats, avec l’interprétation que nous venons d’énoncer, sont les principales

contributions physiques de cette partie de la thèse. Ils nous permettent de savoir préci-

sément quelles observables sont à valeurs indéfinies, et que presque toute observable est

bien à valeur indéfinie, donc fermant le fossé entre le Théorème de Kochen et Specker

et l’interprétation courante de la mécanique quantique.

L’aléatoire quantique et l’incalculabilité

Dans la deuxième partie de cette thèse nous nous tournons vers le concept d’aléatoire,

et en particulier l’aléatoire quantique du point de vue de la valeur indéfinie que nous

avons décrite et montrée dans la première partie. Tout d’abord, nous commençons par

analyser des différents concepts philosophiques d’aléatoire dans la Section 5.1.

Des concepts d’aléatoire

Des notions d’aléatoire basées sur le hasard

Depuis longtemps, l’aléatoire a été associée avec les probabilités et l’uniformité, mais,

comme nous en avons discuté plus haut, la probabilité n’est qu’un outil mathématique,

et peut cacher un déterminisme sous-jacent ou même des structure très régulière qui ne

sont pas intuitivement aléatoires. Il semble que cette association est plutôt limitée à la

probabilité objective, pour laquelle une distribution de probabilité représente le hasard

objectif, et non pas un manque épistémique d’information.

Nous avertissons, pourtant, qu’il ne faut pas confondre l’indéterminisme et le hasard

avec l’aléatoire, ce qui s’appelle la « commonplace thesis » [50, 74], et qu’il faut garder

ces concepts distincts. Malheureusement, cette identification semble être souvent prise

dans la mécanique quantique en déclarant que les mesures quantiques sont aléatoires [8].
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Au contraire, la valeur indéfinie ne sert pas, a priori, à garantir que l’on puisse considérer

les résultat des mesures quantiques comme aléatoires.

Une approche plus prometteuse est de baser le concept d’aléatoire sur celui d’impré-

visibilité. Ceci est exactement l’argumentation que Kofler et Zeilinger [81], et également

Fitzsimons et al. [56], donnent pour l’aléatoire quantique, mais ils risquent tous de ba-

naliser cette relation en considérant l’imprévisibilité comme conséquence évidente de

l’indéterminisme. Il est plutôt nécessaire de développer une notion plus formelle de

l’imprévisibilité pour la considérer comme base d’aléatoire, ce qu’ont fait, par exemple,

Eagle [49] et Longo [30], en définissant l’aléatoire comme un type formel d’imprévisibi-

lité. Nous revenons au problème de modélisation d’imprévisibilité dans la dernière partie

de cette thèse.

Des notions algorithmiques d’aléatoire

Une notion d’aléatoire existe également dans une forme plus mathématisée dans la

théorie de l’information algorithmique. Cette théorie formalise la notion d’aléatoire al-

gorithmique – dite également aléatoire au sens de Martin-Löf – comme une suite de bits

qui ne possède aucune structure calculable qui pourrait permettre de la compresser, et

est une notion bien acceptée et étudiée.

Un résultat important mais peut-être surprenant est qu’il n’existe pas de suite ab-

solument aléatoire dans le sens que chaque préfix d’une suite a une complexité maxi-

male [47]. Les résultats de la théorie de Ramsey [65] renforcent ce résultat et, ensemble,

ils montrent que la notion de l’aléatoire absolue n’a pas de sens mathématique : il

n’existe que des degrés d’aléatoires. Alors, il faut se méfier des affirmations que l’aléa-

toire quantique est absolue et vraie.

L’aléatoire de processus et de produits

Les deux notions d’aléatoire discutées ci-dessus sont à la fois différentes mais com-

plémentaires : la notion basée sur le hasard donne, par l’imprévisibilité, une notion

d’aléatoire qui s’applique aux processus physiques, alors que la notion algorithmique

s’applique aux résultats des suites d’événements physiques. Cependant, ces notions sont

connectées, puisqu’un processus aléatoire (qui suit une probabilité uniforme) produit,

avec probabilité un (mais sans certitude !), une suite aléatoire.

En effet, ces deux approches sont valides, et en pratique on voudrait garantir qu’un

processus physique soit imprévisible et également qu’il produise une suite aléatoire.

Nous proposons donc qu’il faille garder ces deux concepts séparés au lieu d’insister sur

une notion d’aléatoire absolue, et évaluer un processus physique par rapport à ces deux

formes d’aléatoires séparément.
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La bi-immunité des suites quantiques aléatoires

Jusqu’ici, les tentatives d’expliquer l’aléatoire quantique ont généralement été limitées à

une notion d’aléatoire de processus, par exemple en la réduisant à l’imprévisibilité. Alors

que nous reviendrons à cette approche dans la prochaine partie, nous abordons d’abord,

dans la Section 5.2, la possibilité de garantir une forme d’aléatoire algorithmique pour

les suites des mesures quantiques.

À première vue, il peut sembler que cette tâche soit futile, puisque une suite de

résultats des mesures prises d’une distribution uniforme est aléatoire au sens de Martin-

Löf avec probabilité un. Cependant, la probabilité un n’est pas une certitude, et cela

nous aiderait à comprendre la force de l’aléatoire quantique et les différences entre elle

et l’aléatoire des systèmes classiques.

Bien que nous ne réussissions pas à montrer qu’une telle suite des résultats des

mesures quantiques soit aléatoire au sens de Martin-Löf, pour des raisons que nous

expliquons, nous démontrons qu’elle est fortement incalculable, plus spécifiquement,

bi-immune, et nous montrons donc une différence concrète entre les suites aléatoires

classiques et quantiques.

Afin de démontrer ce résultat, qui est notre principale contribution technique dans

cette partie de la thèse, comme pour l’interprétation de la valeur indéfinie, nous clari-

fions et formulons soigneusement les hypothèses physiques dont nous avons besoin. En

particulier, nous utilisons une fois de plus le principe d’EPR en formulant l’hypothèse

des éléments calculables de réalité, qui spécifie une condition de plus sous laquelle nous

pouvons déduire l’existence des valeurs définies.

En considérant une expérience où l’on prépare un système quantique, mesure une

observable quantique à valeur indéfinie, note le résultat et répète, nous démontrons,

dans le Théorème 47, que la suite générée dans la limite infinie par cette expérience est

bi-immune. Ce résultat peut également être réduit aux mêmes suppositions que nous

avons utilisé plus tôt pour dériver la valeur indéfinie.

Les générateurs quantiques de nombres aléatoires

L’une des applications principales de l’aléatoire quantique est la génération des nombre

aléatoires. Plusieurs tels générateurs quantiques de nombres aléatoires ont été propo-

sés [78, 105, 125, 126, 129] et créés [76], qui fonctionnent typiquement par mesurer un

photon qui est préparé dans une superposition d’états de polarisation et donc produit un

bit qui, avec un peu de chance, est distribué uniformément. Étant donné l’importance de

nombres aléatoires dans les systèmes cryptographiques ainsi que, parmi d’autres, dans

le modelage statistique, cette application de l’aléatoire quantique est cruciale.
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En montrant qu’un tel générateur, s’il fonctionne en mesurant une observable à

valeur indéfinie, produit une suite bi-immune dans la limite infinie, nous illustrons une

différence conceptuelle concrète entre les générateurs de nombres aléatoires quantiques

et classiques, même si cette limite n’est pas disponible en pratique, puisqu’un générateur

classique ne peut produire qu’une suite calculable, même cyclique. Cependant, la plupart

des propositions actuelles ne fonctionnent que dans un espace de Hilbert de dimension

deux, et ne sont donc pas certifiées par la valeur indéfinie du Théorème 34.

Produire une suite certifiée par la valeur définie d’être bi-immune nécessite donc un

générateur de nombres aléatoire qui fonctionne dans un espace de Hilbert de dimension

supérieure ou égal à trois. Dans la Section 5.4 nous proposons un tel schéma pour un

générateur qui fonctionne dans un espace de dimension trois par préparer un système

quantique dans un état de spin 0 dans la direction x avant de mesurer l’observable de

spin dans la direction z. Cette conception assure que l’on obtient une suite binaire et non

pas ternaire, tandis qu’elle est robuste au malalignement, aidant à assurer l’uniformité

de la distribution des bits.

Dans la dernière section de cette partie nous proposons une implémentation explicite

utilisant des photons et un système généralisé des miroirs semi-réfléchissants (« gene-

ralised beamsplitters » en anglais), puisque l’usage des photons permet d’obtenir des

débits binaires bien meilleurs qu’il n’est possible avec des atomes et des observables de

spin. La suite générée par ce générateur quantique de nombres aléatoires est donc cer-

tifiée, toujours soumise aux hypothèses physiques que nous avons élaborées, d’être une

suite fortement incalculable, quelque chose qui n’est point possible avec un générateur

classique.

L’imprévisibilité des mesures quantiques

Dans la dernière partie de cette thèse, qui consiste des Chapitres 6 et 7, nous revenons à

la notion d’imprévisibilité dans le but de créer un modèle formel d’imprévisibilité dans

lequel nous pouvons étudier l’imprévisibilité des mesures des observables quantiques à

valeurs indéfinies. Nous présentons d’abord certains concepts existants, quoique moins

généraux, d’imprévisibilité en physique et mathématique afin de mettre en contexte et

motiver notre modèle.

Des notions d’imprévisibilité

Depuis Poincaré, le concept d’imprévisibilité a pris une forme précise en physique clas-

sique sous le cadre de dynamiques chaotiques [107, 146], que nous discutons dans la

Chapitre 6.
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Cette imprévisibilité chaotique se présente, pas en conséquence d’indéterminisme,

mais en conséquence de deux faits cruciaux :

1. Mesure : il n’est possible de mesurer qu’une approximation des conditions initiales

de l’évolution d’un système ;

2. Sensibilité : les dynamiques chaotiques sont très sensibles aux petites fluctuations

des conditions initiales sous le niveau de mesure.

Ces deux points s’interagissent d’une telle façon que l’évolution du système amplifie

l’incertitude des conditions initiales au point que le système peut être n’importe où

dans l’espace de phase, donc empêchant des prédictions. De plus, un tel système n’est

point itérable : lors d’une répétition du système avec la même mesure des conditions

initiales, la variation dans cette intervalle de mesure assure que les trajectoires divergent

vites [12].

La théorie d’information algorithmique apporte aussi un concept d’imprévisibilité

algorithmique qui s’applique aux suites de bits : la bi-immunité. Une suite bi-immune

ne peut contenir qu’un nombre fini de bits qui sont calculables, c’est-à-dire prévisibles

par un processus effectif. Cependant, comme nous le présentons dans la Section 6.2, une

suite bi-immune peut toujours révéler des structures qui sont intuitivement prévisible.

Nous considérons donc une notion plus forte, celle d’imprévisibilité au sens de Tadaki

qui, comme nous le démontrons, résoudre ces défauts [134]. Bien qu’il soit possible de

voir les suites aléatoires au sens de Martin-Löf comme imprévisibles, il nous semble que

ceci est trop fort comme concept d’imprévisibilité et que la notion de Tadaki est plus

raisonnable. Nous démontrons, dans le Théorème 55, qu’au contraire de la notion des

suites aléatoires, la notion d’imprévisibilité au sens de Tadaki ne dépend pas de l’es-

pace de mesure utilisé, et que cette notion représente donc une notion non-probabiliste

d’imprévisibilité algorithmique.

Enfin, dans la Section 6.3, nous considérons le concept d’irréductibilité computation-

nelle, qui essaye de capturer la notion que les dynamiques de certains processus com-

putationnels, et même physiques, ne peuvent pas être calculés plus vite qu’en suivant

explicitement leurs dynamiques, et sont donc irréductibles [151, 166]. Nous considérons

des diverses tentatives de formaliser ce concept et concluons que, bien que l’irréductibi-

lité computationnelle contienne des éléments importants aux notions d’imprévisibilité,

elle manque d’autres éléments essentiels d’imprévisibilité, et devrait être vue plutôt

comme une notion d’optimalité de dynamiques.
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Des modèles généralisés d’imprévisibilité

Ensuite, nous tournons notre attention aux modèles généraux d’imprévisibilité dans la

Section 6.4, au contraire des notions plus spécifiques dont nous avons déjà présenté.

Après avoir critiqué de plusieurs tels modèles, plus notablement ceux de Popper [108],

Wolpert [153], et du cadre général d’Eagle [49], identifiant au fur et à mesure leurs

éléments essentiels ainsi que leurs défauts, nous présentons notre cadre général d’impré-

visibilité qui sert de base pour nos contributions dans cette partie.

En visant à formuler un modèle qui est applicable aux expériences physiques arbi-

traires, notre cadre consiste en les éléments suivants :

1. La spécification, qui doit être finie, d’une expérience dont on doit prédire le résul-

tat.

2. Un agent de prédiction (dit un prédicteur), qui doit prédire le résultat de cette

expérience. Nous modélisons cet agent comme une fonction calculable, puisqu’une

prédiction doit être un processus effectif, un point que nous élaborons davantage.

3. Un extracteur, qui est un appareil physique que l’agent utilise pour extraire uni-

formément, par mesure, une quantité finie d’information du système qui peut être

pertinente pour prédiction, mais qui est tout de même au-dehors de la spécification

de l’expérience.

4. Une prédiction qui est faite par l’agent avec accès à un ensemble d’extracteurs.

Selon ce modèle, une expérience est imprévisible s’il existe un prédicteur qui ne fait

aucune prédiction incorrecte dans n’importe quelle suite des répétitions infinie de l’ex-

périence, en utilisant l’information extraite, à chaque prédiction, par un seul extracteur.

En limitant l’ensemble d’extracteurs disponible au prédicteur, nous pouvons donner

également une notion plus relativisée et donc épistémique d’imprévisibilité. Nous consi-

dérons plusieurs façons de classifier un tel ensemble d’extracteurs, ainsi qu’un exemple

détaillé d’une expérience qui est prévisible en général, mais imprévisible pour un en-

semble naturel d’extracteurs à précision de mesure limitée.

Alors que ce modèle a peut-être l’air d’être incompatible avec la notion algorithmique

d’imprévisibilité que nous avons présentée, nous expliquons comment nous pouvons lier

ces notions en montrant que, dans un cadre limité et relativisé, nous retrouvons la notion

d’imprévisibilité au sens de Tadaki.

L’imprévisibilité quantique

Ayant formulé notre modèle d’imprévisibilité, nous l’appliquons aux mesures quantiques

dans une tentative de formaliser les affirmations intuitives qu’elles soient intrinsèque-
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ment imprévisibles. Ces affirmations prétendent, typiquement, que l’absence d’un ré-

sultat prédéterminé pour des mesures des observable à valeur indéfinie (qui sont donc

indéterministes) implique tout simplement qu’un agent chargé de prédire le résultat de

cette mesure ne peut pas faire mieux que de le deviner aveuglément [81].

Dans ce but, nous considérons une expérience générale, similaire à celle que nous

avons considérée dans le contexte des suites bi-immunes et les générateurs quantiques

de nombres aléatoires, où une observable à valeur indéfinie est mesurée à plusieurs

reprises qui donne, dans la limite, une suite infinie de bits. En utilisant notre modèle,

dans le Théorème 65, nous démontrons que cette expérience est bien imprévisible grâce

à la valeur indéfinie d’observable mesurée, et qu’aucun bit de cette suite ne peut être

prédit avec certitude.

Alors que ce résultat n’est pas tout à fait inattendu donné l’intuition exposée ci-

dessus, en le démontrant dans un cadre formel nous précisons le concept et l’origine de

l’imprévisibilité quantique qui, comme élaborée dans la deuxième partie de cette thèse,

peut être vue comme une forme d’aléatoire de processus. Donc, ce résultat complémente

le notre montrant la bi-immunité d’une telle suite et nous aide à comprendre l’aléatoire

quantique en gros.

L’imprévisibilité et la complémentarité quantique

Bien que la valeur indéfinie puisse donc garantir l’imprévisibilité des mesures quantiques,

les résultats qui nous assurent cette valeur indéfinie (e.g., le Théorème 34) tiennent seule-

ment dans un espace de Hilbert de dimension supérieure ou égale à trois. Cependant,

une grande partie des générateurs quantiques de nombres aléatoires fonctionnent dans

un espace de Hilbert de dimension deux [125]. Il faut donc se demander s’il est possible

d’utiliser d’autres propriétés quantiques afin de certifier l’imprévisibilité.

La complémentarité quantique exprime le fait que les observables non-compatibles

ne puissent pas être mesurées simultanément parce qu’elles demandent des installations

de mesure incompatibles. Outre le fait qu’il tienne dans tout système quantique, même

de dimension deux, ce principe de complémentarité est souvent utilisé comme argument

informel pour la valeur indéfinie. Pourtant, il est parfaitement compatible avec la valeur

définie, comme le montre certains modèles déterministes de la complémentarité, tel que

celui basé sur les automates de Mealy [131].

Dans la Section 7.3 nous précisons ce concept de complémentarité comme une restric-

tion sur l’ensemble des extracteurs qu’un agent de prédiction peut accéder. En utilisant

ce formalisme, nous démontrons dans le Théorème 69 qu’une expérience qui mesure

à plusieurs reprises une observable complémentaire à celle de la préparation de l’état

quantique est imprévisible pour un prédicteur avec accès à un tel ensemble restreint
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d’extracteurs. Cela fournit une forme d’imprévisible qui est plus faible et plus épisté-

mique que celle garantie par la valeur indéfinie, mais qui applique aux situations plus

générales.

L’incalculabilité et l’imprévisibilité quantique

Vu que la valeur indéfinie implique la bi-immunité ainsi que l’imprévisibilité des mesures

quantiques, et considérant aussi la relation entre l’imprévisibilité selon notre modèle

formel et l’imprévisibilité au sens de Tadaki que nous avons clarifiée dans la Section 6.6, il

est naturel de se demander si cette bi-immunité est une conséquence de l’imprévisibilité,

ou si elle est un résultat indépendant de la valeur indéfinie. Dans cette toute dernière

partie de la thèse, la Section 7.4, nous abordons cette question, clarifiant les relations

entre ces concepts et celui d’aléatoire.

En considérant un exemple d’une expérience impliquant une dynamique chaotique

que nous montrons étant imprévisible (toujours dans notre cadre formel), nous démon-

trons dans le Théorème 71 que cette expérience est capable de produire, dans la limite

infinie, non seulement des suites incalculable (et même bi-immune ou aléatoire), mais

également des suites calculables. Cela montre que l’imprévisibilité et la bi-immunité sont

bien des conséquences indépendantes de la valeur indéfinie dans le cas quantique, et que

l’assurance de la bi-immunité dans ce cas dépend de manière cruciale sur les hypothèses

physiques qui sont faites. A fortiori, c’est vrai aussi pour les expériences imprévisibles

relatives aux ensembles restreints d’extracteurs, puisqu’une expérience imprévisible dans

le sens plus générale implique l’imprévisibilité relative à tout ensemble restreint d’une

telle manière.

Ensuite, nous nous posons la question de si la complémentarité peut garantir une

forme quelconque d’incalculabilité, de la même façon que la valeur indéfinie le fait. En

donnant un exemple d’un système dont les observables agissent de façon complémentaire

mais qui est complètement déterministe et à valeur définie, nous répondons au négatif :

il existe des systèmes qui affichent de la complémentarité mais peuvent produire, dans la

limite infinie, des suites calculables. La valeur indéfinie semble donc être une propriété

plus forte sur le degré d’aléatoire et d’imprévisibilité qu’elle peut certifier.

Conclusions

En conclusion, nous utilisons la notion de la valeur indéfinie, que nous formalisons ri-

goureusement, pour formaliser et comprendre l’aléatoire quantique ainsi que l’imprévi-

sibilité quantique. Au lieu de voir ces propriétés comme des conséquences triviales d’un

indéterminisme supposé, cette approche formelle nous permet de formuler des résultats
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mathématiques et aide à expliquer l’origine et la qualité de l’aléatoire quantique. Nous

montrons que la valeur indéfinie peut garantir une notion d’aléatoire de produits – la

bi-immunité des suites de bits générées par un générateur quantique de nombres aléa-

toires – ainsi qu’une notion d’aléatoire de processus, formalisée comme imprévisibilité

dans un cadre formel.

Enfin, dans le dernier chapitre de la thèse nous présentons plusieurs questions ou-

vertes résultantes de notre travail.



Chapter 1

Introduction and outline

1.1 Background and motivation

The study of the foundations of quantum mechanics plays an important role in under-

standing how the quantum mechanical description of reality differs from the classical

description of reality. Developments in quantum foundations have been crucial for the

surge of interest in quantum information in the last decade, and have led to important

developments in quantum cryptography and random number generation, even leading

to the creation of practical devices and the implementation of protocols in the real

world [56]. At the heart of quantum foundations is the study of the differences between

quantum and classical measurement, and as a field it combines aspects of physics, the-

oretical computer science and cryptography, as well as philosophy, to understand and

exploit quantum measurement.

1.1.1 Value indefiniteness

Bell’s theorem [14] and the Kochen-Specker theorem [80] are perhaps two of the results

which have been most influential in developing the modern understanding of quantum

mechanics as an irreducibly nonclassical theory [91, 106]. Moreover, these two no-go

theorems are seen as the strongest arguments for quantum mechanics being a funda-

mentally indeterministic theory, rather than one ruled by a deeper determinism below

the level of the quantum mechanical description of reality.

However, these results do not guarantee quantum value indefiniteness, the notion

that formalises indeterminism. Rather, further physical assumptions are required in

order to rule out alternative deterministic, although necessarily nonclassical, descriptions

of quantum mechanics. Furthermore, even under such assumptions they formally succeed

1
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only in showing the existence of value indefiniteness, not the extent of it. These formal

results thus fail to show that all nontrivial measurements result in a value that was not

predetermined prior to measurement [4].

1.1.2 Quantum randomness

Closely related to the issue of quantum indeterminism, and key in many of the ap-

plications of quantum information theory, is the notion of quantum randomness. The

outcomes of individual quantum measurements are often referred to as intrinsically or

truly random [8, 105]. Such claims about quantum randomness stem largely from the

understanding that such measurements are indeterministic, or value indefinite, since this

indeterminism is absent in classical physical processes.

The notion of randomness, however, is more subtle than a simple equivalence with

indeterminism [50], and a more careful analysis of quantum randomness is needed. In-

deed, many different notions of randomness exist, both for physical processes and for

sequences of events produced by such processes, and there is much evidence to show

that the notion of true or absolute randomness is not mathematically robust [47, 65].

To understand the randomness produced by quantum random number generators

or other devices, we thus need to study quantum randomness from a more rigorous

perspective. In particular, questions such as the following ones need to be formally

addressed:

• Does value indefiniteness guarantee any formal notion of unpredictability?

• Can the outputs of quantum random number generators be guaranteed to be

stronger than what is obtainable from classical random number generators?

• How can value indefiniteness be used to certify (i.e., guarantee the production of)

a formal notion of randomness?

1.1.3 Unpredictability

Key to understanding the properties of quantum randomness is the notion of unpre-

dictability, which is closely related to randomness [49]. Unpredictability exists in many

different forms: classical dynamical unpredictability, manifesting itself at the interac-

tion between the inexactness of measurement and the chaotic dynamical behaviour of

physical systems [12]; algorithmic notions of unpredictability for infinite sequences of

bits [134]; and even computational definitions of unpredictability and irreducibility [166].

However, to understand randomness more broadly a more general formal model of

unpredictability is needed, one which encompasses these various forms of unpredictabil-
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ity. Only with such a model can we understand in a more unified fashion the different

forms of unpredictability, and determine where quantum randomness fits into the pic-

ture.

1.2 Outline of the thesis

In this thesis we address several of the issues raised above, aiming to contribute to the

understanding of quantum value indefiniteness, randomness and unpredictability.

In Chapter 2 we outline the basic concepts and definitions that will serve as a formal

basis to this thesis. In particular, this includes the formal notions needed from quantum

logic and algorithmic information theory.

In Chapter 3 we discuss quantum indeterminism, reviewing the key results, including

the Kochen-Specker theorem, contributing to the development of the general consensus

that quantum measurements are indeed indeterministic. We formalise precise notions

of contextuality and value indefiniteness that are sufficiently general to allow us to

consider varying degrees of these properties and examine the Kochen-Specker theorem

more carefully. We show that the Kochen-Specker theorem, even under the appropriate

physical assumptions, only guarantees the existence of some value indefiniteness, but

does not show the extent of value indefiniteness.

In Chapter 4 we prove a variant of the Kochen-Specker theorem showing that, under

the assumption that any value definite observables behave noncontextually, if a system

is prepared in an arbitrary state |ψ〉, then every observable A is value indefinite unless

|ψ〉 is an eigenstate of A. In contrast to standard proofs of the Kochen-Specker theorem,

this stronger result requires a constructive method of reduction between Kochen-Specker

sets – that is, the sets of observables used to derive Kochen-Specker type contradictions.

As a consequence we show that: a) the set of value indefinite observables has measure

one, that is, almost all observables are value indefinite; and b) value indefiniteness can

be localised, that is, we can indicate precisely which observables are value indefinite.

In Chapter 5 we review and critically discuss various notions of randomness in order

to assess claims about the nature of quantum randomness. We argue that most assertions

of ‘true’ quantum randomness are based on a misplaced conflation of indeterminism and

randomness, known as the commonplace thesis [50]. Instead, in order to understand

quantum randomness, its unpredictability and algorithmic quality need to be studied

more carefully.

We show that, under reasonable physical assumptions, infinite sequences of bits

produced by the measurement of quantum value indefinite observables can be guaranteed

to be bi-immune – a strong form of incomputability – something impossible for classical
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random number generators.

We further propose a schema, as well as a possible implementation using generalised

beamsplitters, for a quantum random number generator that is certified, via the Kochen-

Specker theorem, by value indefiniteness and thus guaranteed to produce bi-immune

sequences of bits.

In Chapter 6 we turn our attention to the understanding of unpredictability. We

review various notions of unpredictability in classical physics, in algorithmic information

theory, as well as a computational notion of unpredictability based on irreducibility.

We review some proposed general frameworks for unpredictability, before motivating

and formalising a new such framework. Our model of unpredictability is based on the

prediction of physical events by a predicting agent, operating with effective means,

and using finite information extracted (via measurement) from the environment. This

model allows for a distinction and comparison of relativised and non-relativised notions

of unpredictability.

Next, in Chapter 7, we apply this model of unpredictability to quantum random-

ness. We show that the outcome of a measurement of a value indefinite observable is

formally unpredictable, while quantum complementarity can be used to give a weaker

form of relativised unpredictability. This helps develop a clearer formal understanding

of quantum randomness as a form of unpredictability.

Finally, we conclude the thesis in Chapter 8 with some open questions and future

avenues of research in quantum foundations and randomness.



Chapter 2

Preliminaries

We assume a basic knowledge of computability theory and some understanding of quan-

tum mechanics, but we will outline all the key notions and concepts needed from these

fields in this thesis.

We use the notation N, Q, R and C to denote the natural numbers (in which we

include 0), the rational numbers, the real numbers and the complex numbers, respec-

tively. We denote the positive integers by N+ = N \ {0} and the non-negative reals by

R≥0 = {a ∈ R | a ≥ 0}. The cardinality of a finite set A will be denoted |A|, and the

empty set by ∅.
The set of all finite bitstrings is denoted {0, 1}∗ = {ε, 0, 1, 00, 01, 000, . . .}, where ε

is the empty string. If x ∈ {0, 1}∗ is a string, |x| is the length of x, where |ε| = 0. The

set of strings of length n is denoted {0, 1}n = {x ∈ {0, 1}∗ | |x| = n}.
The set of (right-)infinite binary sequences is denoted {0, 1}ω. For any x ∈ {0, 1}ω,

where x = x1x2x3 . . . , we denote the prefix of length n ∈ N by x ↾n = x1x2 . . . xn (for

n > 0); x↾0 = ε.

The mth section of a set T ⊂ {0, 1}∗×N+ is Tm = {x ∈ {0, 1}∗ | (x,m) ∈ T}. Given

a set of prefixes X ⊂ {0, 1}∗, the cylinder of X, [X] ⊂ {0, 1}ω, is the set

[X] = {x ∈ {0, 1}ω | ∃n ∈ N, x↾n ∈ X}.

We write [x] instead of [{x}] for the cylinder generated by a singleton set – that is,

an individual string. A set X ⊂ {0, 1}∗ is prefix-free if, for any x, y ∈ X with x 6= y,

[x] ∩ [y] = ∅.
Some familiarity with measure theory will be occasionally needed, in particular the

Lebesgue (uniform) measure.

Definition 1. A measure on a space Ω is a countably additive function µ : F → R≥0

5
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satisfying µ(∅) = 0, where F is a σ-algebra on Ω. If µ(Ω) = 1 then µ is a probability

measure.

A fundamental result in measure theory is that µ is uniquely determined by the

values it takes on an algebra A ⊂ F generating F [71].

If we consider measures on {0, 1}ω, the cylinders [x] for x ∈ {0, 1}∗ generate the

Borel σ-algebra FB on {0, 1}ω. The Lebesgue measure on {0, 1}ω, µL : FB → [0, 1], is

thus uniquely defined by its values on these cylinders: for all x ∈ {0, 1}∗, µL([x]) = 2−|x|.

Similarly, the Lebesgue measure µL on Rn is characterised by its action on closed

intervals: µL([a1, b1], [a2, b2], . . . , [an, bn]) = (b1 − a1)(b2 − a2) · · · (bn − an).

2.1 Quantum logic

Here we present the foundational aspects of quantum mechanics required for the thesis.

To this end, we restrict ourselves to finite systems, and follow the Hilbert space presen-

tation of quantum mechanics [70]. We cover the basic logical event structure of states,

measurements, observables, etc., following the standard approach of quantum logic [130].

We refer the reader to [118] for a more thorough overview of quantum mechanics.

A quantum mechanical system is represented by an n-dimensional Hilbert space Cn,

which takes the standard inner product. An element of Cn is denoted by the ket (vector)

|·〉, and the inner product by 〈·|·〉, which satisfies 〈x|y〉 = 〈y|x〉∗, where ·∗ denotes the

complex conjugate.

Quantum mechanical states are represented by unit vectors in Cn, and for the rest of

the thesis a state |x〉 ∈ Cn will always be assumed to be of unit length (i.e., |〈x|x〉| = 1).

Only the direction of a vector is important in defining a physical state, so two states

|x〉 and |y〉 are considered equivalent if they differ only by a phase shift, that is, if

|〈x|y〉| = 1. Two states are orthogonal if 〈x|y〉 = 0.

The Hilbert space structure means that the superposition principle applies to physi-

cal states. Thus, if {|x1〉 , . . . , |xn〉} is an orthonormal basis for Cn, any superposition of

these basis states |ψ〉 =∑n
i=1 αi |xi〉 with

∑n
i=1 |αi|2 = 1 is also a valid physical state.

Of particular importance in quantum information are the states in C2, called qubits,

which are usually expressed with respect to a computational basis {|0〉 , |1〉}.
Measurable properties of quantum states are represented by operators called observ-

ables.

Definition 2. An observable is a Hermitian operator A in a Hilbert space Cn. That is,

for any states |x〉 , |y〉 ∈ Cn we have 〈x|A|y〉 = 〈y|A|x〉∗.
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The eigenvalues of an observable A are precisely the possible outcomes obtainable

from a measurement of the observable A.

A class of observables of particular importance in quantum logic are the projection

observables. Specifically, if |ψ〉 ∈ Cn is a quantum state, then Pψ = |ψ〉〈ψ|
|〈ψ|ψ〉| is an ob-

servable projecting onto the linear subspace spanned by |ψ〉; that is, it is a rank-1 or

one-dimensional projection observable. Projection observables represent yes-no proposi-

tions in quantum logic, and yield either the value 1 or 0 upon measurement, indicating

the state ‘has’ the property represented by the eigenstate |ψ〉.
The dynamics and interactions of quantum systems are given by the action of a

unitary operator on its state-vector. The act of measurement, however, is not described

within the Hilbert space framework. Instead, when one measures an observable A with

eigenvalues {a1, . . . , an} and corresponding eigenstates1 {|a1〉 , . . . , |an〉}, one obtains one

of the eigenvalues ai probabilistically, and the system ‘collapses’ to the corresponding

eigenstate |ai〉 after measurement. This probability is given by the Born rule [21]: one

obtains the eigenvalue ai with probability |〈ai|ψ〉|2 = 〈ψ|Pai |ψ〉.
An important theorem in quantum logic is Gleason’s theorem [62], which shows that

the Born rule is the only probability distribution on quantum states satisfying certain

‘reasonable’ criteria. In order to state it more precisely, let us first introduce the notion

of a frame function.

Definition 3. Let n ≥ 2. A frame function on a set S ⊂ Cn of (normalised) quantum

states is a function p : S → [0, 1] such that:

1. if {|x1〉 , . . . , |xn〉} ⊂ S is an orthonormal basis then
∑n

i=1 p(|xi〉) = 1, and if

{|x1〉 , . . . , |xk〉} ⊂ S is orthonormal with k < n then
∑k

i=1 p(|xi〉) ≤ 1;

2. for all complex α ∈ C with |α| = 1 and all |x〉 ∈ S, p(|x〉) = p(α |x〉) whenever

α |x〉 ∈ S also.

Theorem 4 (Gleason, [62]). Let n ≥ 3, and assume that p is a frame function on the

set of unit vectors in Cn satisfying p(|ψ〉) = 1 for some (normalised) |ψ〉 ∈ Cn. Then,

for all |φ〉 ∈ Cn, p(|φ〉) = |〈ψ|φ〉|2.

Finally, we introduce the notion of compatible observables.

Definition 5. Two observables A and B are compatible or co-measurable if they com-

mute; that is, if [A,B] = AB − BA = 0.

1We assume that the spectrum of A is non-degenerate for simplicity, and label the eigenstates by
their corresponding eigenvalue. It is simple to extend this to the degenerate case.
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Compatible observables represent properties which can be simultaneously measured

on a quantum system without disturbing it. As a result of the Born rule, incompatible

observables cannot be simultaneously measured because the measurement of one causes

the system to collapse into one of the eigenstates of the measured observables, thus

altering the state.

2.2 Computability and algorithmic randomness

We define various notions of computability and randomness for infinite sequences of

bits. These notions come from the field of algorithmic information theory, and we refer

the reader to [29, 47] for further background on computability and randomness. The

theory is based around the Turing model of computation and functions computable by

Turing machines [122].

Definition 6. A function f : {0, 1}∗ → {0, 1}∗ is computable if there exists a determin-

istic Turing machine which, on every input x ∈ {0, 1}∗, halts and outputs f(x).

We denote the domain of a function f by dom f . Recall that a partial function is a

function that may be undefined on some elements in its domain.

Definition 7. A partial function f : {0, 1}∗ → {0, 1}∗ is partially computable if there

exists a deterministic Turing machine which, for every input x ∈ {0, 1}∗, halts and

outputs f(x) if x ∈ dom f , and does not halt if x /∈ dom f .

Definition 8. A set A ⊆ {0, 1}∗ is called computably enumerable (c.e.) if A = dom f

for some partially computable function f .

Definition 9. A set A ⊆ {0, 1}∗ is computable if both A and its complement Ā are

computably enumerable. Otherwise, it is incomputable.

These definitions can be naturally extended to other countable sets such as N or Q

via coding.

There is a natural bijection between infinite sequences in {0, 1}ω and sets of natural

numbers. In particular, for any x ∈ {0, 1}ω, one can view this as the set A
x
= {i ∈ N |

xi = 1}. Thus, we say that x is computable if and only if A
x

is computable, etc.

A sequence x is bi-immune if it contains no infinite computable subsequence. More

formally, we have the following definition.

Definition 10. A sequence x = x1x2 · · · ∈ {0, 1}ω is bi-immune if there exists no

infinite computable set A ⊂ N+ and computable function f : A → {0, 1} such that, for

all n ∈ A, f(n) = xn.
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We will briefly need the notion of computable and left-c.e. real numbers.

Definition 11. A real α ∈ R is computable if the set {q ∈ Q | q < α} is computable.

Definition 12. A real α ∈ R is left-computably enumerable, or lower semi-computable

if the set {q ∈ Q | q < α} is computably enumerable.

Although not strictly a computability theoretic notion, the notion of Borel normality

is important since it expresses the uniformity of a sequence of bits, and thus serves as a

very primitive notion of randomness. Borel normal sequences are those in which every

finite string appears with the expected frequency [29]. Let Nm
i : {0, 1}∗ → N count the

number of overlapping occurrences of the ith binary string (in lexicographical order) of

length m in a given string.

Definition 13. A sequence x ∈ {0, 1}ω is Borel normal if, for every m ≥ 1 and every

1 ≤ i ≤ 2m, we have

lim
n→∞

Nm
i (x↾n)

n
= 2−m.

Finally, we proceed to the definition of algorithmic, or Martin-Löf, randomness,

which formalises the notion that an infinite sequence is random or patternless.

In order to do so, we need the notion of a prefix-free Turing machine, which is

a Turing machine whose domain is a prefix-free set. The algorithmic formulation of

random sequences makes use of the prefix-free complexity of a string. Loosely speaking,

the complexity of a string x with respect to a particular Turing machine T is the length

of the shortest program for T which, when run, halts and outputs x.

Definition 14. The prefix-free (Kolmogorov) complexity of a string x ∈ {0, 1}∗ induced

by a prefix-free Turing machine W is HW (x) = min{|p| | W (p) = x}.

It is well known that there are universal Turing machines which can simulate any

other Turing machine.

Theorem 15. There exists a universal Turing machine U such that, for every prefix-

free Turing machine W , there is a constant c (depending only on U and W ) such that

HU(x) ≤ HW (x) + c for all x ∈ {0, 1}∗.

The intuition behind the notion of algorithmic randomness is that a random sequence

should not contain any computable patterns which allow it to be compressed, since such

patterns would be a symptom of non-randomness.

Definition 16. A sequence x ∈ {0, 1}ω is algorithmically random or Martin-Löf random,

if there exists a constant c such that HU(x↾n) ≥ n− c for all n ≥ 1.
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This definition is due to Chaitin [33]. However, this notion of randomness was first

formulated by Martin-Löf [89] in a different way, which also allows one to consider

whether sequences are random with respect to non-uniform measures. We give the def-

inition of this formulation also, since we will need it in the proof of Theorem 55.

Let µ : FB → R≥0 be a probability measure (recall that FB is the Borel σ-algebra

on {0, 1}ω).

Definition 17. A set A ⊂ {0, 1}ω is µ-Martin-Löf null if there exists a c.e. set T ⊂
{0, 1}∗ ×N+ such that, for all n ∈ N+, A ⊂ [Tn] and µ([Tn]) ≤ 2−n, where Tn is the nth

section of T .

The c.e. sets T ⊂ {0, 1}∗ × N+ in this definition are known as Martin-Löf tests.

Definition 18. A sequence x ∈ {0, 1}ω is µ-Martin-Löf random if {x} is not a µ-

Martin-Löf null set.

It is well known that this is equivalent to algorithmic randomness if one takes µ to

be the Lebesgue measure, µL [47].

Theorem 19. A sequence x ∈ {0, 1}ω is algorithmically random if and only if it is

µL-Martin-Löf random, where µL is the Lebesgue measure.



Chapter 3

The Kochen-Specker theorem and

quantum value indefiniteness

The predominant interpretation of quantum mechanics is that the quantum measure-

ment process is intrinsically indeterministic [41]. This indeterminism appears, moreover,

to be at the heart of claims that quantum measurement outcomes can provide ‘true ran-

domness’ [8] that is ‘intrinsically unpredictable’ [139] in a way that no classical physical

phenomena is capable of.

We will study the status of quantum randomness and unpredictability in more detail

in the following chapters. First, however, it is important to understand the origin of this

quantum indeterminism and the principles that it is based on; it is always possible to

assume indeterminism in the absence of a deterministic explanation, but to understand

quantum randomness properly, and especially to certify real devices using it [105], we

need to carefully consider its basis.

In this chapter we review how Bell’s theorem [14] and the Kochen-Specker theo-

rem [80] show the impossibility of classically deterministic theories. While they don’t

completely discount other, nonclassical, deterministic explanations of the apparent in-

determinism, the existence of indeterminism can thus be based on precise, fundamental,

physical assumptions. These results, however, only show the existence of some indeter-

minism – a property we formalise as value indefiniteness – but not the extent of this

value indefiniteness. In the next chapter we extend these results, proving a variant of

the Kochen-Specker theorem showing that almost all observables are value indefinite,

bringing the formal results closer to the intuition regarding quantum indeterminism.

The work of these two chapters covers, in a unified framework, many of the results

published in [3, 4, 7].

11
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3.1 Quantum indeterminism and value indefiniteness

The origin of the debate about quantum indeterminism resides in the probabilistic na-

ture of the Born rule. While the principal elements of quantum mechanics are described

within the Hilbert space framework – the states, the dynamical evolution and inter-

actions, as well as the observable properties – the Born rule specifies a probability

distribution for the outcomes of measurements on top of this framework. This fact,

along with the irreversible (i.e., non-unitary) ‘collapse’ of the state upon measurement,

has long been a source of philosophical debate, and continues to be so today [147].

The heart of the problem is that probability is, technically, a formal mathematical

tool and has no inherent physical meaning. There are many different interpretations of

probability, and rather than there being any question as to which is the correct interpre-

tation, the reality is rather that different interpretations may be more appropriate than

others in different situations [69, 117]. Thus, one has to consider the physical scenario

being modelled in determining how a probability within the mathematical model of the

scenario should be interpreted.

3.1.1 Interpreting probability distributions

Probabilities, for example, may be perfectly reasonable tools in modelling scenarios in

which we have limited knowledge. For example, consider that Alice flips a coin, hides the

result and asks her friend Bob to guess what the outcome of the flip was. Bob, having

not seen the result, assigns a probability distribution to heads/tails. In such a case,

a probability distribution naturally represents merely Bob’s degree of knowledge, and

should be interpreted as a subjective probability distribution [69, 138]. This probability

is epistemic: it depends on the knowledge of the observer, and different observers could

reasonably assign different subjective probability distributions to the same scenario. For

example, Alice, having peeked, knows the result is heads, and thus assigns a different

distribution than Bob.

This subjectivist interpretation of probability is, although more subtly so, the way

probability is generally viewed in classical physics. In statistical mechanics, for exam-

ple, the velocity of particles within a gas is given by a probability distribution. Each

particle in the gas follows a deterministic, reversible trajectory, and hence its velocity

is not objectively probabilistic at all. However, as an observer we can only measure the

macrostate of the system, and hence are forced to describe the velocities of individual

particles using the appropriate probability distribution. In fact, as a result of the er-

godic theorem, we can go a step further: almost all initial conditions (in the measure

theoretical sense) for a particle will result in a trajectory in which the proportion of time
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it spends in a particular region of phase space is equal to the probability assigned by

the distribution of finding it in this region. Thus, for a typical set of initial conditions,

the probability distribution is validated by the average dynamics over time [123, 138].

Of course, this raises the further question of why real gases should be in such ‘typical’

states, and whether the choice of the Lebesgue measure is valid [9, 57].

This subjectivistic view of probabilities is common also in other classical systems that

are often considered unpredictable, such as chaotic systems. We model certain properties

of these systems with probabilities not because we believe they are indeterministic, but

because we are unable to measure their state accurately enough to determine their

behaviour with sufficient precision to make useful predictions [16, 146].

3.1.2 Probabilities in quantum mechanics

Born was the first to argue that the probabilities in quantum mechanics should not be

interpreted in the subjective fashion that they are in classical mechanics, declaring that

he was ‘inclined to give up determinism in the world of atoms’ [21]. He thus proposed,

in essence, that quantum probabilities represent real objective propensities [110, 128]

for measurements to take on various outcomes; that the probability distribution given

by the Born rule represents objective indeterminism as opposed to an epistemic limit.

This represented a bold departure from the established dogma of classical determinism,

and it is unsurprising that there was much debate around whether such an assumption

was indeed justified [147]. After all, this amounted largely to an act of faith based on

Born’s inclination: why should we believe that quantum mechanics departs so radically

from the determinism of classical mechanics?

This is all the more true given that, during the early years of quantum mechanics,

quantum theory was used almost exclusively to explain statistical phenomena, such as

the spectra of atoms or scattering distributions. Such distributions are obtained from

large numbers of particles, a long stretch from the (relative) ease with which we can

manipulate and probe the quantum mechanical properties of individual particles these

days. Thus, despite the absence of a deterministic explanation for quantum phenomena,

it is natural to demand further explanation as to why a more classical, ensemble-based

interpretation could not also be possible, in principle, in quantum mechanics [110]. That

is, why should we discount the possibility that the probabilities represent distributions

of particles in definite, but unknown, states?

This indeed was the opinion of Einstein, who famously disagreed, stating that ‘He

does not throw dice’ [22, p. 204]. Along with Podolsky and Rosen, Einstein argued, in

formulating what is now known as the EPR paradox, that the quantum formalism and

collapse associated with measurement implies that quantum states can behave nonlo-
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cally [51]. To them, this was proof that quantum mechanics was ‘incomplete’, and needed

to be completed by a more fundamental, deterministic, theory that would explain the

apparent indeterminism arising at measurement.

In spite of this, the view that quantum measurements are intrinsically indeterminis-

tic gradually became accepted as the quantum orthodoxy, and remains so today [162].

The debate regarding the nature of quantum measurement received a subdued level of

attention for a long period of time as a more practical-minded approach to quantum

mechanics became the norm. After all, the theory was exceptionally successful in mak-

ing accurate predictions and describing quantum phenomena, and the success of these

aspects of the theory do not depend on its metaphysical interpretation.

Von Neumann was the first to make an attempt to show that it is impossible to com-

plete quantum mechanics with an underlying deterministic theory – a ‘hidden variable

theory’ – in the way that Einstein had envisaged. However, his purported proof of this

impossibility [97], within the framework of quantum logic that he helped develop [17],

was criticised and subsequently shown to be flawed [14, 94].

3.1.3 Bell’s theorem

Bell’s theorem was the first major breakthrough in this direction, showing that no lo-

cal hidden variable theory can successfully reproduce all of the statistical predictions of

quantum mechanics [14]. In particular, he derived inequalities involving expectation val-

ues of joint measurements on pairs of particles that must be satisfied by any local hidden

variable model, but which can be violated by certain entangled quantum states. Since

then, many variations and simpler versions of such inequalities have been given, such as

the well-known CHSH inequalities [37], but the fundamental concept is unchanged.

Bell’s theorem rules out certain classes of classical hidden variable theories, but it

is important to note that this does not necessarily imply quantum indeterminism. One

can give deterministic, but nonlocal, interpretations of quantum mechanics reproducing

all its statistical predictions but in which indeterminism is completely absent [20]; Bell

himself interpreted his results in this light [14]. Nonetheless, Bell’s theorem can be seen

as offering evidence to Born’s original inclination for indeterminism. At the very least,

they allow indeterminism to be reduced to the physical assumption that any determinism

must be local (although still a classical assumption by nature, given that the inequalities

show that quantum mechanics is indeed nonlocal, indeterministic or not).
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3.1.4 The Kochen-Specker theorem

The Kochen-Specker theorem [80] was proved very shortly after Bell’s theorem. It shows

that the Hilbert-space structure of quantum mechanics makes it impossible to assign,

prior to any measurement, ‘classical’ definite values predicting measurement outcomes

to all quantum observables in a consistent manner.

Like Bell’s theorem, the Kochen-Specker theorem received very little attention at the

time, largely as a result of a prevailing disinterest in the metaphysical issues of quantum

mechanics that these theories sought to address. Compared to Bell’s theorem, however,

it would take even longer for interest in the Kochen-Specker theorem to grow.

This can, for the most part, be explained by the apparent inability to test exper-

imentally the Kochen-Specker theorem. While Bell’s theorem was initially ignored for

the most part, the realisation that it was possible to experimentally test Bell inequalities

eventually led to a sufficient degree of interest and effort to find simpler or alternative

forms of the inequality more suitable to experimental tests [36]. This was followed by

actual realisations of such tests [10], confirming quantum nonlocality and precipitating

the growth of interest in the subject.

The Kochen-Specker theorem, on the other hand, is formulated within the framework

of quantum logic. Whereas the Bell inequalities are themselves independent of quantum

mechanics, the Kochen-Specker theorem is not, and identifies a contradiction within the

quantum mechanical framework, involving elements that cannot be simultaneously mea-

sured. As such, it is counterfactual in nature and not directly testable experimentally;

after all, as Rob Clifton asked [39], ‘how can you measure a contradiction?’

It is only more recently in the 1990s, following the success of experimental tests

of Bell’s theorem, that the Kochen-Specker theorem began to gain interest. This has

only grown further with the more recent boom of interest in quantum information and

foundational principles, and has led to further development.

In showing the impossibility of a classical ‘two-valued’ measure (i.e., value assign-

ment) the Kochen-Specker theorem leaves open several possible conclusions for quantum

mechanics, and, as for Bell’s theorem, does not necessarily guarantee quantum inde-

terminism [156]. The Kochen-Specker theorem, more specifically, finds a contradiction

between the following three assumptions, which will be formalised more rigorously in

the next section:

(i) all observables have a predefined measurement outcome (a definite value);

(ii) the definite value associated with an observable should be noncontextual, that is,

independent of what other compatible observables are simultaneously measured;
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(iii) the measurement outcomes (and hence definite values) for a set of compatible

observables must be consistent with the theoretical quantum predictions for the

relations between them.

Condition (iii) of the Kochen-Specker theorem is largely uncontroversial, since any

set of compatible observables are simultaneously co-measurable, and since quantum

mechanics requires that the measured values be eigenvalues of the corresponding ob-

servables, the values obtained should thus obey the same relations as the observables.

Indeed, one of the principal problems with von Neumann’s earlier attempt at proving

the impossibility of hidden variables failed precisely because he assumed that such rela-

tions be obeyed for all observables, even when not compatible. Since such observables

are not co-measurable, such a condition indeed appears too strong, and quantum theory

would seem only to imply that the relations hold for the expectation values of such ob-

servables [73]. The effort to correct this shortcoming of von Neumann’s argument was,

in many ways, what led both to Bell’s theorem, and, more directly, the Kochen-Specker

theorem. Hence, one must generally conclude that either (or even both) (i) and (ii) must

be given up.

3.1.4.1 Value indefiniteness

Several alternative interpretations of quantum mechanics are contextual, and hence

discard (ii). We will outline some such approaches later in Sec. 4.5.1, once we have

formalised the notion of contextuality further. Perhaps the more widespread interpre-

tation of the contradiction identified by the Kochen-Specker theorem, however, is that

one must abandon (i), the idea that measurement outcomes are determined in advance

at all: that quantum mechanics represents a value indefinite reality. This interpretation

has, at the very least, been at the heart of recent interest and advances in quantum

information and cryptography, where the practical advantages are based on precisely

this indeterminism.

Perhaps paradoxically, this interpretation is often referred to simply as ‘quantum

contextuality’ in the literature. This loose notion of contextuality, however, does not

necessarily refer to hidden variables and hence does not contradict the assumption of (ii).

We will return to discuss this issue in more detail in Section 4.5.2; however, we reserve

the term ‘contextuality’ strictly for the contextual behaviour of definite values.

3.1.5 Global vs local value indefiniteness

If we choose to follow the standard interpretation of the Kochen-Specker theorem, re-

quiring (ii) to hold – at least for any definite values that do exist – then there remains
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an oft-overlooked gap between the formal result of the Kochen-Specker theorem and

the general interpretation of it. Indeed, the negation of (i) is that not all measurement

outcomes are predetermined: it does not prove that all measurements must result in the

ex nihilo creation of an outcome, nor does it allow one to know which observables are

value indefinite. We can, of course, postulate that if there is some value indefiniteness,

this should, by symmetry or uniformity considerations, be the case for all observables.

However, it is key to realise that this is not in any sense a formal consequence of the

Kochen-Specker theorem, and constitutes an additional assumption. If possible, it would

therefore be desirable to eliminate this assumption, instead deducing this conclusion

from simpler, existing hypotheses.

The same limitation is in fact true of Bell’s theorem, since Bell-inequalities are

derived under the assumption that all measurement outcomes be predetermined. Thus,

the violation of Bell inequalities, even if one assumes that hidden variables behave

locally, only allows us to conclude the existence of some indeterminism, but not that all

such measurements behave in such a way. However, the issue is even more complicated

with Bell’s theorem, since the statistical nature of the inequalities adds another layer

of uncertainty as a violation must be built up over several rounds of measurements,

and deducing that the indeterminism was present in all of them requires yet further

assumptions. Moreover, only certain states and observables allow the deduction of Bell-

inequalities, meaning they cannot be used to satisfactorily show the extent of quantum

indeterminism.

The ability to determine precisely which observables are value indefinite and thus

produce indeterministic measurement outcomes is of importance not only for our under-

standing of quantum measurements at a foundational level, but is equally important in

many practical applications. In particular, the superiority of quantum random number

generators over classical devices is regularly justified by the assertion that they pro-

duce bits that are ‘intrinsically random’ [125], a claim not strictly supported by the

Kochen-Specker theorem, nor by Bell’s theorem.

In the following chapter we will address precisely this issue: by using a modified,

weakened set of assumptions, we show that no observable A can have a predetermined

measurement outcome except if the quantum system is in a state |ψ〉 that is an eigenstate

of A. This result, like the Kochen-Specker theorem, is proven within a purely formal,

abstract framework, but we will then carefully discuss the specific physical assumptions

that need to be made to give this result a solid physical interpretation.

Throughout these two chapters we will, unless explicitly specified, assume (ii) to hold,

as is common in interpretations of the Kochen-Specker theorem, and our strengthened

results and interpretation of the Kochen-Specker theorem thus rely on this condition.

Indeed, our goal is to strengthen the conclusions that can be drawn from the Kochen-
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Specker theorem under this hypothesis.

3.2 Formalising value indefiniteness and

contextuality

We begin by presenting the formal framework we will use to localise value indefiniteness,

which is similar to, but more general than, standard approaches to the Kochen-Specker

theorem [24]. This framework is deliberately very flexible and allows us to consider

varying degrees of value indefiniteness and contextuality – as is necessary if one wishes

to explore the extent of value indefiniteness – in a way not possible with the more rigid

but standard approach of quantum logic using two-valued (dispersionless) measures [17,

97, 130].

We refer the reader to Section 2.1 for definitions relating the the quantum mechanical

formalism, but we recall, in particular, that we denote by Pψ the operator projecting

onto the linear subspace spanned by |ψ〉; that is, Pψ = |ψ〉〈ψ|
|〈ψ|ψ〉| .

We fix a positive integer n ≥ 2. Let O ⊆ {Pψ | |ψ〉 ∈ Cn} be a nonempty set of

one-dimensional projection observables on the Hilbert space Cn.

Definition 20. A set C ⊂ O is a context in O if C has n elements (i.e., |C| = n) and

for all Pψ, Pφ ∈ C with Pψ 6= Pφ, 〈ψ|φ〉 = 0.

We denote the set of all contexts in O by CO. Since distinct one-dimensional projec-

tion observables commute if and only if they project onto mutually orthogonal linear

subspaces, a context C ∈ CO is thus a maximal set of compatible one-dimensional pro-

jection observables.

Since there is a direct correspondence between unit vectors and one-dimensional

projection observables, a context is uniquely defined by an orthonormal basis in Cn.

Thus, in slight abuse of terminology, we sometimes refer to two commuting observables

P1 and P2 as orthogonal, and a context as an orthogonal set of observables.

Recall that a partial function is one which may be undefined for some values in its

domain. If it is defined everywhere, then it is total.

Definition 21. A value assignment function (on O) is a partial two-valued function

v : O × CO → {0, 1}.

A value assignment function formalises the notion of a hidden variable theory, and

assigns values to some (possibly all) observables in O, possibly dependent on the context

in which an observable is to be measured.
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For two contexts C,C ′ ∈ CO and P ∈ C, P ′ ∈ C ′, we say that v(P,C) = v(P ′, C ′)

if both v(P,C) and v(P ′, C ′) are defined and have equal values. If either v(P,C) or

v(P ′, C ′) are undefined or they are both defined but have different values, then v(P,C) 6=
v(P ′, C ′).

Definition 22. An observable P ∈ C, C ∈ CO, is value definite (under v) in the context

C if v(P,C) is defined; otherwise it is value indefinite (under v) in C. If P is value

definite in all contexts C ∈ CO for which P ∈ C then we simply say that P is value

definite under v. Similarly, if P is value indefinite under all such contexts C then we

simply say that P is value indefinite under v.

Definition 23. The set O of observables is value definite (under v) if every observable

P ∈ O is value definite under v.

Definition 24. An observable P ∈ O is noncontextual (under v) if, for all contexts

C,C ′ ∈ CO with P ∈ C,C ′, we have v(P,C) = v(P,C ′). Otherwise, v is contextual.

Note that an observable which is value indefinite in a context is always contextual,

even if it is assigned the same value in every context in which it is value definite. On

the other hand, if an observable is value definite in all contexts containing it, it can be

either contextual or not, depending on v.

Definition 25. The set O of observables is noncontextual (under v) if every observable

P ∈ O which is not value indefinite (i.e., value definite in at least one context) is

noncontextual under v. Otherwise, O is contextual (under v).

Definition 26. The set O of observables is strongly contextual under v if every observ-

able P ∈ O is contextual under v.

The notion of contextuality is thus a subtle one with many slight variations possible,

and it is for this reason that we place an emphasis on carefully formalising it. Noncontex-

tuality represents the classical notion that the value obtained via measurement should

be independent of other compatible measurements that one makes on the system.

Every strongly contextual set of observables under v is contextual under v, provided

that v is not undefined everywhere. However, the converse implication is false, as we

will show in Sec. 3.4.

If an observable P is noncontextual then it is value definite, but this is not true for

sets of observables: O can be noncontextual but not value definite if it contains an ob-

servable which is value indefinite. Thus, our terminology differs slightly from that, often

used informally, where both value indefiniteness and contextual value definiteness are

referred to as showing quantum contextuality. Our decision, however, is justified by the
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fact that we treat noncontextuality as a specific property of value definite observables,

and this will help clarify further discussion.

This formalism of value assignment functions allows us to consider a wide range of

hidden variable models with varying degrees of contextuality and value indefiniteness.

However, it does not by itself impose any structure on the function v. In order to

apply this framework to quantum mechanics, we need to give such a structure, and

thus formalise condition (iii) of the Kochen-Specker theorem mentioned informally in

Sec. 3.1.4.

This condition, specifically, requires that for any given context C ∈ CO, any func-

tional relation between the observables in C (thus specifying another compatible ob-

servable, although generally not a projection observable) also be satisfied by the cor-

responding definite values, which would be, in turn, obtained by their simultaneous

measurement. In particular, if such observables are value definite, these relations should

be satisfied by their definite values. For projection observables, since, for any context

C,
∑

P∈C P = I, the identity operator, this means that only one observable P ∈ C can

have v(P,C) = 1.

If O is value definite and noncontextual under v, this would require that
∑

P∈C v(P,C) = 1 for all C ∈ CO. Traditionally, in the field of quantum logic this

has been formalised by the notion of a two-valued (dispersionless) measure [130] or a

Boolean frame function with weight 1 [62]. However, in order to localise value indefinite-

ness we need to generalise this for partial value assignment functions v, that is, the case

where some observables in O may be value indefinite and hence the sum
∑

P∈C v(P,C)

is not well defined for some contexts.

Definition 27 (Admissibility). Let O be a set of observables on Cn and let v : O×CO →
{0, 1} be a value assignment function. Then v is admissible if the following two conditions

hold for every context C ∈ CO:

(a) if there exists a P ∈ C with v(P,C) = 1, then v(P ′, C) = 0 for all P ′ ∈ C \ {P};

(b) if there exists a P ∈ C with v(P ′, C) = 0 for all P ′ ∈ C \ {P}, then v(P,C) = 1.

Admissibility requires that the quantum predictions of condition (iii) of the Kochen-

Specker theorem (see Sec. 3.1.4) are never violated, while allowing value indefiniteness of

an observable P if both outcomes (0 and 1) of a measurement of P would be compatible

with the definite values of other observables sharing a context with P . For example, if

v(P,C) = 1, then a measurement of all the observables in a context C containing P

must yield the outcome 1 for P , and hence to avoid contradiction the outcome 0 for

the other observables in the context. On the other hand, if v(P,C) = 0, even though

measurement of P must yield the outcome 0, any of the other observables in C could
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yield the value 1 or 0 (as long as only one yields 1), hence we should not conclude the

value definiteness of these other observables. We will justify the physical interpretation

and form of the admissibility requirement more carefully later, in Sec. 4.4.2.

If O is noncontextual under an assignment function v, then the values v assigns to

observables are independent of the context. Since we will assume noncontextuality when

localising the value indefiniteness, it will be useful to define the notion of a noncontextual

value assignment function for notational simplicity.

Definition 28. A noncontextual value assignment function (on O) is a partial two-

valued function v : O → {0, 1}, assigning values to some (possibly all) observables in

O.

Thus, if O is value indefinite under v we can simply talk about the value v(P ) of an

observable P ∈ O, independent of the context.

A noncontextual value assignment function v : O → {0, 1} induces naturally a value

assignment function uv : O × CO → {0, 1} such that, for all P ∈ O and C ∈ CO with

P ∈ C, uv(P,C) = v(P ). Thus, the definitions of value (in)definiteness and admissibility

generalise naturally to noncontextual value assignment functions: v is admissible if uv

is admissible, and P ∈ O is value definite under v if it is value definite under uv.

3.3 The Kochen-Specker theorem

With this terminology laid out, we can state the Kochen-Specker theorem formally.

Theorem 29 (Kochen-Specker, [80]). Let n ≥ 3. Then there exists a (finite) set O of

one-dimensional projection observables on Cn such that there is no value assignment

function v satisfying the following three conditions:

(i) O is value definite under v; that is, v is a total function.

(ii) O is noncontextual under v.

(iii) v is admissible; that is, for every context C ∈ CO,
∑

P∈C v(P,C) = 1.

We presented the theorem in this form deliberately in order to draw the comparison

to our informal description given earlier in Sec. 3.1.4, and thus to clarify the associ-

ated discussion. However, it can equivalently be stated in the more simple form: there

exists a finite set of projection observables O on Cn such that there is no admissible

noncontextual value assignment function v on O.

As we mentioned earlier, the condition of admissibility is largely uncontroversial:

one can simultaneously measure the observables in a context and quantum mechanics
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predicts precisely that exactly one of these measurements should give the result ‘1’.

Thus, if we assume (ii) to be true then the Kochen-Specker theorem requires us to

conclude the negation of (i): that O cannot be value definite, and hence at least one

observable must be value indefinite.

Note that, by defining a set of observables to be noncontextual only if all value

definite observables within it are noncontextual, such a conclusion can be made clear. If,

as is often considered informally, noncontextuality is taken to imply value definiteness,

even for an entire set of observables, then one cannot conclude value indefiniteness,

since it would violate the very assumptions used to deduce it. Thus, by removing the

dependence of (ii) on (i) and decoupling the assumptions we allow a much more nuanced

analysis of the Kochen-Specker theorem and value indefiniteness.

3.3.1 The Kochen-Specker theorem up to the present

The original proof of the Kochen-Specker theorem was notoriously difficult, and involved

a rather heavy mathematical formalism and several rather subtle elements. The specific

finite set of observables given contains 117 observables connected in a rather clever

construction [80]. This formalism and difficulty probably helped contribute to the long

period of time between when the theorem appeared and when it started to gather real

interest and attention.

It was only really following the success of experimental tests of Bell’s theorem, as

well as the emergence of the GHZ theorem [66], that the Kochen-Specker theorem finally

received some attention and efforts were made to try and simplify the original argument.

This started with Mermin [91, 92], and was continued by Peres [103], Clifton [38] and

Cabello [24], amongst others.

These results significantly reduced the complexity of the proof, bringing down the

number of observables needed from 117 to 31 [103], introducing much more symmet-

ric and understandable sets of observables. The advancements culminated in Cabello’s

proof requiring only 18 observables, albeit in four-dimensional Hilbert space [27]. This

proof is notable in its simplicity, and it is possible to show that no noncontextual value

assignment is possible by a simple parity argument, without even considering potential

value assignments. More recently, computational techniques have been used to exhaus-

tively search for possible proofs and show that these are indeed the smallest possible

Kochen-Specker sets obtainable [90, 101].

With the advent of quantum information and quantum cryptography, which propose

practical uses for Bell inequality violation in verifying nonclassicality and nonlocality,

there has been further interest in the Kochen-Specker theorem. These results have cen-

tred around the ability to derive testable ‘noncontextuality inequalities’ from proofs



3.3. The Kochen-Specker theorem 23

of the Kochen-Specker theorem [83, 157, 158] as well as their experimental verifica-

tion [79, 163]. These inequalities gave further incentive to the search for small proofs of

the Kochen-Specker theorem, since smaller proofs lead naturally to smaller and more

readily testable inequalities.

One of the main conceptual debates that surfaced around the Kochen-Specker theo-

rem relates to the precision of measurements needed for the theorem to hold. Meyer

claimed, in a much debated paper, that finite-precision measurement ‘nullifies’ the

Kochen-Specker theorem [93]. More specifically, he showed that it is possible to as-

sign definite values to all possible observables that can be specified by rational valued

unit vectors (which are dense in the n-dimensional unit sphere), and argued that, since

we can only ever specify, experimentally, an observable up to a rational approximation,

that this casts doubt over the validity of the theorem. It was later shown that such value

assignments lead to statistical predictions in contradiction with quantum mechanics [25]

and hence are unsupportable, but only after much debate.

However, this response appears to miss a further crucial conceptual issue with this

supposed nullification of the Kochen-Specker theorem. While it is of little debate that we

can only experimentally measure rational approximations or intervals, a fact acknowl-

edged by Poincaré and crucial to the development of the concept of chaotic systems,

Meyer’s nullification goes a step further in asserting that physical reality consists solely

of these rationals. It is, after all, not the results of the measurements of the quantum

observables, but the specification of the observables themselves which he asserts must

be rational valued. While we may not be able to measure, and hence know, the precise

observables we measure to more than a rational approximation, this does not guarantee

in any way the observable actually measured is itself rational valued. Indeed, unless one

refutes the existence of the continuum and poses an absolute limit on measurement,

one should rather view the observable measured as a generic one within the interval

specified by our rational approximation. With probability one, such an observable is

irrational valued. Thus, the Kochen-Specker theorem, which requires only the existence

of arbitrary observables and not our practical ability to measure them, hardly appears

to be nullified by such an argument.

Throughout these advances, however, the nature of the theorem and its assumptions

have remained largely unchallenged. In particular, the results have not addressed the

extent of nonclassicality shown by the theorem, and in all the variants it remains im-

possible to determine which observables in particular must be value indefinite. Given

the use of the Bell and Kochen-Specker theorems to justify the indeterministic nature

of quantum mechanics and its use in quantum mechanics, it seems especially important

to address this issue and try and strengthen the specific form – as opposed to simply

the proof – of the theorem in an attempt to locate value indefiniteness.
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3.4 Strong contextuality cannot be guaranteed

Before we proceed to our main results localising value indefiniteness, it is interesting to

ask whether there are any limits we can pose on how strong the contradiction, identified

by the Kochen-Specker theorem, between noncontextuality and value definiteness is.

Is it possible, for example, to show that any value definiteness or noncontextuality

would lead to a contradiction, and thus guarantee the strong contextuality of the set

of projection observables on Cn for n ≥ 3? We provide a negative response to this

question: the contradiction cannot be maximal in the sense that no set of observables

can be guaranteed to be strongly contextual.

Theorem 30. Let n ≥ 2, and O be an arbitrary set of one-dimensional projection ob-

servables on Cn. Then for every observable P ∈ O there exists an admissible assignment

function v such that v(P,C) = 1 for every context C ∈ CO with P ∈ C, and O is value

definite under v.

Proof. Let us consider the set

SP = {C | C ∈ CO and P ∈ C} ⊆ CO

of contexts in which P appears. If we define the assignment function vP such that for

every C ∈ SP

vP (Q,C) =







1 for P = Q,

0 for P 6= Q,

it is clear this satisfies
∑

Q∈C vP (Q,C) = 1 for all C ∈ SP . For C ∈ CO \SP the function

vP can be defined in any arbitrary contextual way to satisfy admissibility. The function

is then admissible and assigns a definite value (namely 1) to the observable P (which is

arbitrary) in a noncontextual fashion (i.e., vP (P,C) = 1 for all C ∈ SP ).

Indeed this should not be surprising in light of the predictions of quantum mechan-

ics. Specifically, for a physical system prepared in the state |ψ〉, the Born rule predicts

that measurement of the observable Pψ should give the value 1, noncontextually, with

probability 1. Nevertheless, it is important to place a bound on the degree of nonclas-

sicality that we can guarantee [52, 132]. In fact, it is possible to go further: vP can

be constructed so that every observable P ′ ∈ O for which there is a context C ∈ SP

such that P ′, P ∈ C is noncontextual under vP (in addition to P ) with v(P ′, C) = 0.

This is a consequence of the fact that no two observables P1, P2, orthogonal to P but in

different contexts C1, C2 with P ∈ C1, C2, can both be in some third context C3 with

P /∈ C3. This scenario is shown in the ‘star’ Greechie diagram in Fig. 3.1, where nodes

represent observables and smooth line segments contexts. Strong contextuality cannot
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be guaranteed because such star-shaped pockets of noncontextuality are always possible

under an admissible value assignment function,

C1 C2

C3

C5

C6

C7

P

Figure 3.1: Greechie diagram showing an observable P with v(P,Ci) = 1 for i ≥ 1 and
the (infinite) set of compatible observables P ′ for which v(P ′, Ci) = 0. Observables are
shown by nodes and contexts by smooth line segments. Circles represent the value 0
and squares the value 1.





Chapter 4

Localising value indefiniteness

While the Kochen-Specker theorem certainly succeeds, as was the original intention, in

showing that quantum mechanics must obey an entirely nonclassical event structure,

it does not, as we have pointed out, show that all measurement outcomes must be

indeterministic. As a consequence of the global nature of the hypothesis of the theorem

– that all observables are value definite – one can only draw a global conclusion: that

not all observables are value definite. That is, the theorem, even under the assumption

of noncontextuality, cannot ‘locate’ value indefiniteness. This is an important point, not

only for the foundational understanding of quantum mechanics, but also in practical

applications: quantum random number generators and cryptographic schemes rely on

the indeterminism of quantum mechanics providing ‘irreducible randomness’ [55]. To

certify such claims, it is important to be able to localise value indefiniteness to ensure

it applies to the observables measured in such applications.

4.1 The logical indeterminacy principle

Pitowsky [106] (also in the subsequent paper [75] with Hrushovski) gave a constructive

proof of Gleason’s theorem (Theorem 4 in Section 2.1) in terms of orthogonality graphs

which motivated the study of probability distributions on finite sets of projection ob-

servables. In this context he proved a result called ‘the logical indeterminacy principle’

which has a striking similarity with the Kochen-Specker theorem and appears as if it

could be used to locate value indefiniteness. Given that this principle is in fact stronger

than the Kochen-Specker theorem, it is important to analyse this possible localisation

of value indefiniteness more carefully.

Recall the definition of a frame function (Definition 3). For the sake of presenting

27
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Pitowsky’s logical indeterminacy principle, let us define further the following notion.

Definition 31. A Boolean frame function p on a set S ⊂ Cn of (normalised) quantum

states is a frame function on S taking only the values 0 and 1; that is, for all |x〉 ∈ S,

p(|x〉) ∈ {0, 1}.

Since there is a direct equivalence between quantum states and one-dimensional

projection observables, the notion of a frame function is a generalisation of a noncon-

textual, value definite, value assignment function to a more generalised probability mea-

sure assigning real numbers to observables [75]; the notions coincide and are essentially

equivalent for Boolean frame functions.

Pitowsky’s logical indeterminacy principle is the following:

Theorem 32 (Pitowsky, [106]). For all states |a〉 , |b〉 ∈ C3 with 0 < |〈a|b〉| < 1, there

exists a finite set of states S with |a〉 , |b〉 ∈ S such that every frame function p on S

satisfying p(|a〉), p(|b〉) ∈ {0, 1} has p(|a〉) = p(|b〉) = 0.

A consequence of this principle is that there is no Boolean frame function p on this

set S such that p(|a〉) = 1 if p(|b〉) ∈ {0, 1}. From the logical indeterminacy principle

we can readily deduce the Kochen-Specker theorem by identifying each state with the

observable projecting onto the linear subspace spanned by it. As noted by Hrushovski

and Pitowsky [75], however, the logical indeterminacy principle is stronger than the

Kochen-Specker theorem because the result is true for arbitrary frame functions which

can take any value in the unit interval [0, 1], but which are restricted to Boolean values

for |a〉 , |b〉. The Kochen-Specker theorem, on the other hand, is proved under the as-

sumption that all observables are assigned Boolean values, as is required for a Boolean

frame function.

The form of the logical indeterminacy principle makes it tempting to conclude that

it permits us to locate a value indefinite observable. Indeed, if we consider the entire

set of unit vectors in C3, fix p, and choose |a〉 ∈ C3 such that p(|a〉) = 1, then, by the

logical indeterminacy principle, for every distinct non-orthogonal unit vector |b〉 ∈ C3 it

is impossible to have p(|b〉) = 1 or p(|b〉) = 0. It thus seems that we can conclude that the

observable projecting onto the subspace spanned by |b〉 is value indefinite. However, such

reasoning would be incorrect. It instead shows merely the non-existence of a p assigning

1 to |a〉 and a definite value to |b〉. However, as with the Kochen-Specker theorem, this

does not rule out that the observable Pb could be value definite if other states in the set

S have value indefinite projectors since the definition of a frame function requires that

p be a total function.

This means that, using the logical indeterminacy principle, we get the same global

information derived in the Kochen-Specker theorem, namely that some state in S has a
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corresponding value indefinite projection observable, and no more. The reason for this

limitation is the definition of a frame function, which must be defined everywhere: it

can model local value definiteness, but not local value indefiniteness, which, as in the

Kochen-Specker theorem, emerges only as a global phenomenon.

4.2 Localising the hypotheses

We now proceed to use our notion of admissibility to localise value indefiniteness. Once

again, we remind the reader that, in doing so, we work under the assumption that the

set of observables considered is noncontextual (i.e., any value definite observables are

noncontextual), since we wish to strengthen the implications of the Kochen-Specker

theorem under this particular assumption.

By using the fact that our definition of admissibility is carefully formulated to be

compatible with the existence of value indefinite observables, we are able to take a

conservative approach. Specifically, rather than assuming complete value definiteness

of the entire set of observables considered, we require observables to be value definite

only when their indefiniteness would allow the possibility of measurements2 violating

the quantum predictions specified in condition (iii) of the Kochen-Specker theorem (see

the more detailed discussion and example below).

Theorem 30 implies that we can always have one observable value definite under an

admissible assignment function. Thus, for this approach to work, we instead need, as a

premise, a single value definite observable and then to show that the assumption that

any other observable is value definite leads to a contradiction with the admissibility of

the value assignment function.

Fortunately, there is a very reasonable physically motivated justification for this

premise: as we discussed in the previous section, if a system is prepared in an arbitrary

state |ψ〉 ∈ Cn, then measurement of the observable Pψ should yield the outcome 1.

Thus, it seems perfectly reasonable to require that, if Pψ ∈ O, v(Pψ) = 1. We call

this the eigenstate assumption [3] and will discuss this in more detail in Sec. 4.4.2

when we look carefully at the connection between our formal results and their physical

interpretation. Furthermore, since the critical feature of a set O of observables is the

orthogonality relations between these observables rather than the specific form of these

observables, we can hence choose our basis at will. It is thus not unreasonable to consider

that some observable in O has the value 1, and to fix the basis used to express O to

that of the state |ψ〉 to make this observable coincide with Pψ.

2If an observable is value indefinite, this must surely imply that both outcomes are possibilities.
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Pb

Pf

Pd

Pc×

Pa

Pe

C1

C2
Pb

Pc

Pa

(a) (b)

Figure 4.1: Greechie orthogonality diagram of a proof of the Kochen-Specker theo-
rem [27]. The value of of v of each observable (node) P is represented as follows: v(P ) = 1
– black square; v(P ) = 0 – filled circle; v(P ) undefined (value indefinite) – hollow circle.
(a) The contradiction arising when v(Pa) = v(Pb) = 1: v cannot be admissible, since this
would require that v(Pc) = 0 and v(Pc) = 1 simultaneously, as shown by the cross in
the diagram. (b) A possible admissible noncontextual value assignment when v(Pa) = 1
and v(Pb) = 0.

Example 33. Let us illustrate the difference between our weakened assumptions, and

in particular admissibility, with the hypotheses of the Kochen-Specker theorem. This is

important, as it serves to clarify the difference between our notion of admissibility and

the properties of two-valued measures used in standard proofs of the Kochen-Specker

theorem, as well as how the difference necessitates different reasoning in deducing a con-

tradiction; the difference between these notions is subtle, since they coincide if complete

value definiteness is assumed.

Consider the Greechie orthogonality diagram shown in Fig. 4.1, in which vertices

depict observables and smooth lines or curves represent contexts. This well known dia-

gram represents the ‘orthogonality’ relations between the observables used in a proof of

the Kochen-Specker theorem due to Cabello et al. [27], containing only 18 observables

on C4 and 9 contexts.

The Kochen-Specker theorem implies that there is no way to assign every observable

in this diagram a value such that the admissibility requirements hold: that is, exactly

one observable in each context should have the value 1.

Let us instead suppose not complete value definiteness, but only that v(Pa) =

v(Pb) = 1 and that v is admissible and noncontextual, in order to try and derive a

contradiction. Then, by working from Pa and Pb and applying the admissibility rule (a)
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(recall Definition 27) one deduces that all observables in a context with Pa or Pb must

take the value 0. One then notices that there are contexts containing 3 observables with

the value 0, so we can deduce from (b) that the fourth must have the value 1. If we

follow this line of reasoning, we can continue to assign values to observables in order

to try and satisfy the admissibility requirements, as depicted in Fig. 4.1(a), where a

black square represents the value 1, and a black circle the value 0. As we can see, by

considering the contexts C1 and C2 we can infer that Pc must take both the values 1

and 0 respectively: both possibilities contradict the admissibility of v, as does the fi-

nal possibility – that Pc is value indefinite. Thus, no admissible noncontextual v with

the property that v(Pa) = v(Pb) = 1 exists on this set of observables. Note that, in

Fig. 4.1(a), the contradiction obtained at Pc marked by the cross is a consequence of a

specific succession of applications of the admissibility rules (a) and (b) in Definition 27.

By applying these rules in a different order, one can obtain the contradiction also at Pd,

Pe, or Pf ; however, the location of the contradiction is irrelevant to the conclusion.

The most important aspect of this reasoning in this context is that it is deterministic:

we proceed only by deducing the value definiteness of observables via conditions (a) and

(b) in order to satisfy the admissibility of v.

Now let us assume that v(Pa) = 1 and v(Pb) = 0, as depicted in Fig. 4.1(b). We

again apply condition (a) to observables commuting with Pa; however, we then see

that neither (a) nor (b) can be used again to deduce the value of another observable.

Normally, in proving that this diagram permits no consistent assignment of definite

values, one would then proceed by assuming that one of the unfilled observables, such

as Pc, must have either v(Pc) = 1 or v(Pc) = 0, and trying both possibilities. One can do

this when proving the Kochen-Specker theorem since one assumes that every observable

must have a definite value. However, in order to localise value indefiniteness we do not

make this assumption. Hence, the value assignment in Fig. 4.1(b), with the observables

represented by unfilled circles being value indefinite (e.g., v(Pc) undefined) represents

an admissible noncontextual value assignment.

Thus, under the assumption that v(Pa) = 1, the construction in Fig. 4.1 does not

suffice to prove that v(Pb) must be value indefinite, and hence cannot be used to lo-

calise value indefiniteness. It is not difficult to see that we reach the same conclusion

irrespective of our choice of observables as Pa and Pb.

In proving the main result of this chapter, we give a set of observables for which this

is the case. That is, there are observables Pa and Pb such that if v(Pa) = 1 then both

v(Pb) = 0 and v(Pb) = 1 lead, via admissibility, to contradictions.



32 Chapter 4. Localising value indefiniteness

4.3 The localised variant of the Kochen-Specker

theorem

In order to avoid arriving at the same inconclusive outcome regarding value indefinite-

ness as in Example 33, the contexts in the set of observables considered need to be

much more carefully interconnected. Furthermore, we can only aim to prove the value

indefiniteness of those observables in the specific set we consider. In order to prove a

more general result, showing the value indefiniteness of a wide range of observables, we

need either a set of orthogonality relationships that are realisable for many observables,

or another novel approach. This second point in particular will require special attention

in order to succeed in locating value indefiniteness.

The main result of this chapter, which succeeds in locating value indefiniteness, is

the following theorem.

Theorem 34. Let n ≥ 3 and |ψ〉 , |φ〉 ∈ Cn be unit vectors such that 0 < |〈ψ|φ〉| < 1. We

can effectively find a finite set of one-dimensional projection observables O containing

Pψ and Pφ for which there is no admissible noncontextual value assignment function on

O such that v(Pψ) = 1 and Pφ is value definite under v.

Before we proceed to prove Theorem 34, let us first discuss some important relevant

issues. We then present the proof in Section 4.3.2.

This theorem has a slightly different form from the standard Kochen-Specker theorem

because of the requirement that a particular observable in the set O be assigned the

value 1. However, since, as we will see, it is only the orthogonality relations between

the observables in O which is important, a change of basis can always ensure that the

required observable Pψ be assigned the value 1.

In [3] we proved a restricted form of Theorem 34 which held only for
√

5
14
< |〈ψ|φ〉| <

3√
14

, thus showing that a significant portion of, but not all, observables are value in-

definite. Since we prove the extended version of this result in this chapter we will not

reproduce the specific construction used for this restricted result, which is different from

what we will use to prove Theorem 34; we instead refer the reader to [3] for details.

In particular, we proved the restricted result of [3] using an explicit set of orthog-

onality relations applicable to all observables within this restricted range. While it

proved possible to produce constructions providing proofs of value indefiniteness for

larger ranges of observables, new techniques were needed to extend this completely to

the desired result, that is, for 0 < |〈ψ|φ〉| < 1. In particular, as we will discuss in more

detail later in Sec. 4.3.3, it seems unlikely that one can give a finite set of orthogonal

relations with the desired properties, and instead constructive methods are essential in

proving the more general result.
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4.3.1 Insufficiency of existing Kochen-Specker diagrams

The first question to address is whether existing Kochen-Specker diagrams (i.e., Greechie

diagrams specifying the orthogonality relations of O) could be used to provide a set O
of observables proving Theorem 34; it is not a priori obvious that such diagrams are

unable to do so. In Example 33 we showed, as an example, that a particular simple

and well-known Kochen-Specker diagram is not sufficient for this purpose. A careful

search through existing diagrams [27, 80, 91, 102, 103, 135] showed that this is the case

in general, and we were unable to find an existing Kochen-Specker diagram in which

there are two observables Pa and Pb with the required property that if v(Pa) = 1, both

v(Pb) = 0 and v(Pb) = 1 lead to a contradiction.

A second and deeper conceptual problem with the use of fixed Kochen-Specker di-

agrams as in existing proofs is the following. Since, in order to derive a contradiction,

we need to assume that an observable Pψ in the given set of observables has v(Pψ) = 1,

this limits the observables which can be shown to be value indefinite to, at best, the

remaining ones in O\{Pψ}. However, we wish to prove more: that every observable not

commuting with Pψ is value indefinite.

As a result, we need not only a set of observables with the required properties

discussed above, but furthermore an approach to generalise this set of observables to

arbitrary other observables. We overcome this apparent lack of generality via a method

of reductions, which we present in the next section and will return to discuss later on.

4.3.2 Proof of Theorem 34

We prove Theorem 34 in three main steps:

1. We first prove it for the special case that |〈ψ|φ〉| = 1√
2
. We proved a similar result

(for |〈ψ|φ〉| = 3√
14

) in [3], but this involved two separate diagrams applying to

separate cases. Here we give a single diagram providing a much more compact,

clear proof.

2. We prove a simple reduction for 0 < |〈ψ|φ〉| < 1√
2

to the first case.

3. The third and main part of the proof involves finding a reduction in the opposite

sense, applying to the final case of 1√
2
< |〈ψ|φ〉| < 1. It is this final reduction

allowing the complete proof that is the most involved technical aspect of the

proof.

As is standard in Kochen-Specker proofs [24], we will work directly in the three-

dimensional case of C3, since the case for n > 3 can be simply reduced to this situation.3

3In fact, only R3 is needed, since the orthogonality relationships we give can be expressed in R3.
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Lemma 35. Given any two unit vectors |a〉 , |b〉 ∈ C3 with |〈a|b〉| = 1√
2

there exists a

finite set of observables O such that if v(Pa) = 1 then Pb is value indefinite under every

admissible noncontextual assignment function v on O.

Proof. By choosing an appropriate basis we can assume, without loss of generality,

that |a〉 = (1, 0, 0) and |b〉 = 1
2
(1,

√
2, 1). Let us consider the set O = {Pa, Pb, Pi; i =

1, . . . , 35} of rank-1 projection observables where the vectors |i〉 for i = 1, . . . , 35 are

defined in Table 4.1 (with the normalisation factors emitted for simplicity). The or-

thogonality relations between these vectors gives the 26 contexts shown in Table 4.2.

Note that these observables are quite ‘tightly’ connected: the context-observable ratio

is relatively high. The Greechie diagram showing these orthogonality relations is shown

in Fig. 4.2.

Table 4.1: The 37 vectors specifying the observables used in the proof of Lemma 35,
with normalisation factors omitted.

|a〉 = (1, 0, 0) |b〉 = (
√
2, 1, 1) |1〉 = (0, 1, 1) |2〉 = (0, 1,−1)

|3〉 = (
√
2,−1,−1) |4〉 = (0, 0, 1) |5〉 = (0, 1, 0) |6〉 = (

√
2, 1,−3)

|7〉 = (1,−
√
2, 0) |8〉 = (

√
2,−3, 1) |9〉 = (1, 0,−

√
2) |10〉 = (

√
2, 1, 0)

|11〉 = (
√
2, 0, 1) |12〉 = (

√
2,−2,−3) |13〉 = (1,−

√
2,
√
2) |14〉 = (

√
2,−3,−2)

|15〉 = (1,
√
2,−

√
2) |16〉 = (

√
8, 1,−1) |17〉 = (

√
8,−1, 1) |18〉 = (

√
2,−7,−3)

|19〉 = (
√
2,−1, 3) |20〉 = (

√
2,−3,−7) |21〉 = (

√
2, 3,−1) |22〉 = (1,

√
2, 0)

|23〉 = (1, 0,
√
2) |24〉 = (

√
2,−1,−3) |25〉 = (

√
2,−1, 1) |26〉 = (

√
2,−3,−1)

|27〉 = (
√
2, 1,−1) |28〉 = (

√
2,−1, 0) |29〉 = (

√
2, 0,−1) |30〉 = (

√
2, 2, 3)

|31〉 = (
√
2, 3, 2) |32〉 = (

√
2, 3, 7) |33〉 = (

√
2, 7, 3) |34〉 = (

√
2, 1, 3)

|35〉 = (
√
2, 3, 1)

Table 4.2: The 26 contexts used in the proof of Lemma 35.

C1 = {Pa, P1, P2} C2 = {Pa, P4, P5} C3 = {Pb, P2, P3} C4 = {Pb, P6, P7}
C5 = {Pb, P8, P9} C6 = {P4, P7, P10} C7 = {P5, P9, P11} C8 = {P10, P12, P13}
C9 = {P11, P14, P15} C10 = {P1, P13, P16} C11 = {P1, P15, P17} C12 = {P16, P18, P19}
C13 = {P17, P20, P21} C14 = {P3, P19, P22} C15 = {P3, P21, P23} C16 = {P22, P24, P25}
C17 = {P23, P26, P27} C18 = {P4, P22, P28} C19 = {P5, P23, P29} C20 = {P15, P28, P30}
C21 = {P13, P29, P31} C22 = {P8, P16, P32} C23 = {P6, P17, P33} C24 = {P7, P27, P34}
C25 = {P9, P25, P35} C26 = {P1, P25, P27}

Let us assume, for the sake of contradiction, that an admissible noncontextual v

exists for O, with v(Pa) = 1 and v(Pb) defined (i.e., Pb value definite). Then there are

two cases: v(Pb) = 1 or v(Pb) = 0.

Observables projecting onto complex linear subspaces can thus be handled by a simple change of basis
to the set of observables defining the orthogonality relations.
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Figure 4.2: Greechie diagram showing the orthogonality relation between the observables
in Table 4.1. We have shown the deduction of values for any admissible noncontextual v
satisfying v(Pa) = v(Pb) = 1, where black squares represent the value 1, and circles the
value 0. Observe that the context C26, shown dotted, contains three observables with
the value 0, and hence v is not admissible.

Case 1: v(Pb) = 1. Since Pa ∈ C1, C2 and v(Pa) = 1, admissibility requires that

v(P1) = v(P2) = v(P4) = v(P5) = 0. Similarly, since Pb ∈ C3, C4, C5 we have v(P3) =

v(P6) = v(P7) = v(P8) = v(P9) = 0. Since v(P4) = v(P7) = 0, admissibility in C6

means that we must have v(P10) = 1; similarly v(P11) = 1 also. This chain of reasoning

can be continued, applying the admissibility rules from Definition 27 one context at a

time, as shown in Table 4.3. In this table, where the leftmost column indicates the value

of v on the given observables, the values shown in bold in each column (context) are

deduced from the admissibility rules based on the values of the other observables in the

context which have already been deduced in the preceding columns. Note that, at each

step, admissibility requires, deterministically, that certain observables take particular

values; we never proceed by reasoning that v(Pi) must be either 0 or 1 for some Pi
as is common in proofs of the standard Kochen-Specker theorem (except for Pb, where
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this is exactly the assumption that Pb is value definite), because this is not required by

admissibility. Eventually, as we see, we deduce that v(P1) = v(P25) = v(P27) = 0. But

since C26 = {P1, P25, P27}, this contradicts the admissibility of v.

Table 4.3: The values that must be taken for the shown observables under any admissible
noncontextual assignment function v satisfying v(Pa) = v(Pb) = 1. The value (shown in
the leftmost column) for observables in bold is deduced from the admissibility rules and
observables appearing in columns to the left of that observable in the table, or from the
assumption that v(Pa) = v(Pb) = 1.

v C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

1 Pa Pa Pb Pb Pb P10 P11 P10 P11 P16 P17 P16 P17 P22 P23 P22 P23

0 P1 P4 P2 P6 P8 P4 P5 P12 P14 P1 P1 P18 P20 P3 P3 P24 P26

0 P2 P5 P3 P7 P9 P7 P9 P13 P15 P13 P15 P19 P21 P19 P21 P25 P27

Case 2: v(Pb) = 0. By following a similar line of reasoning, shown in Table 4.4, we

once again deduce that v(P1) = v(P25) = v(P27) = 0, a contradiction.

Table 4.4: The values that must be taken for the shown observables under any admissible
noncontextual assignment function v satisfying v(Pa) = 1 and v(Pb) = 0.

v C1 C2 C3 C14 C15 C18 C19 C20 C21 C10 C11 C22 C23 C4 C5 C24 C25

1 Pa Pa P3 P3 P3 P28 P29 P28 P29 P16 P17 P16 P17 P7 P9 P7 P9

0 P1 P4 Pb P19 P21 P4 P5 P15 P13 P1 P1 P8 P6 Pb Pb P27 P25

0 P2 P5 P2 P22 P23 P22 P23 P30 P31 P13 P15 P32 P33 P6 P8 P34 P35

Hence, we must conclude that Pb cannot be value definite if v is admissible on O
with v(Pa) = 1.

We next show a ‘contraction’ lemma that constitutes a simple ‘forcing’ of value

definiteness: given Pa and Pb with v(Pa) = v(Pb) = 1, there is a |c〉 which is ‘closer’

(i.e., at a smaller angle of our choosing; contracted) to both |a〉 and |b〉, for which

v(Pc) = 1 as well if v is admissible. The form of the vectors |c±〉 specified in the lemma

will be used several times in the rest of the proof of Theorem 34.

Lemma 36. Given any two unit vectors |a〉 , |b〉 ∈ C3 with 0 < |〈a|b〉| < 1 and z ∈ C

such that |〈a|b〉| < |z| < 1, we can effectively find a unit vector |c〉 with 〈a|c〉 = z, and

a finite set of observables O containing Pa, Pb, Pc such that if v(Pa) = v(Pb) = 1, then

v(Pc) = 1 for every admissible noncontextual assignment function v on O.

Furthermore, if we choose our basis such that |a〉 = (0, 0, 1) and |b〉 =

(
√

1− |p|2, 0, p), where p = 〈a|b〉, then |c〉 can only be one of the following two vectors:

|c±〉 = (x,±y, z), where z = 〈a|c〉, x = p(1− z2)/(z
√

1− p2) and y =
√
1− x2 − z2.
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Proof. Without loss of generality, we assume the 〈a|b〉 ∈ R and choose a basis so that

|a〉 = (0, 0, 1) and |b〉 = (q, 0, p) where p = 〈a|b〉 and q =
√

1− p2.

Note that, since p < |z| and thus p2 < z2 we have

p2(1− z2)

q2z2
=
p2 − p2z2

q2z2
<
z2 − p2z2

q2z2
=

(1− p2)z2

q2z2
= 1.

If we let x = p(1−z2)
qz

we thus have

x2 =
p2(1− z2)

q2z2
(1− z2) < 1− z2.

We can then set y =
√
1− x2 − z2 ∈ R, making |c〉 = (x, y, z) a unit vector such that

〈a|c〉 = z.

Let |α〉 = |a〉 × |c〉 = (−y, x, 0), |β〉 = |b〉 × |c〉 = (−py, px − qz, qy) and note

that 〈α|β〉 = 0 also. Thus, if we let |α′〉 = |a〉 × |α〉 and |β′〉 = |b〉 × |β′〉, then

{|a〉 , |α〉 , |α′〉}, {|b〉 , |β〉 , |β′〉} and {|α〉 , |β〉 , |c〉} are all orthonormal bases for R3 and

thus C1 = {Pα, Pβ, Pc}, C2 = {Pa, Pα, Pα′} and C3 = {Pb, Pβ, Pβ′} are all contexts in

O = C1 ∪ C2 ∪ C3. This construction is illustrated in Fig. 4.3.

If v is an admissible noncontextual assignment function on O with v(Pa) = v(Pb) = 1

then we must have v(Pα) = v(Pβ) = 0 and hence v(Pc) = 1, as required.

Pb

C3

Pβ

Pc C2

Pα

C1

Pa

Figure 4.3: Greechie orthogonality diagram with an overlaid value assignment that il-
lustrates the reduction in Lemma 36. Once again, the circles and squares represent
observables that have the values 0 and 1 respectively.

The final part of the proof, finding from |a〉 , |b〉 a vector |c〉 for which we must

have v(Pc) = 1, and which is further apart from |a〉 than |b〉 is from |a〉, is the most

challenging. Despite searching via many different methods, we were unable to find a

single Greechie diagram specifying such a set of observables with the required constraints

as we did in Lemma 36. Indeed, as we will discuss later, we conjecture that it is impossible
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to do so. Rather, we use an iterated (constructive) approach to give the required set of

observables for any particular |c〉.
We prove such a result in the following lemma, which was originally published in [4],

with the help of computational analysis. We then prove a similar approach using a

slightly different, but purely analytic approach. The computational proof, while perhaps

less rigorous in the sense that it relies on the computational analysis of certain functions,

is more illustrative and intuitive, thus helping to understand this crucial aspect of the

proof of Theorem 34. The presentation of these two approaches follows the historical

approach to the problem [4, 7].

4.3.2.1 Computational approach

The idea behind this approach comes from realising that, in the proof of Lemma 35, we

start with v(Pa) = v(Pb) = 1 and derive v(Pv22) = 1, where 〈a|v22〉 = 1√
3
< 1√

2
= 〈a|b〉.

This thus constitutes an explicit case of an expansion (in angle) between observables

that must be assigned the value 1, and if we extract the intermediary vectors required,

we obtain the Greechie diagram shown in Fig. 4.4, where in the specific case discussed

we have |c〉 = |v22〉.
In order to generalise this to arbitrary vectors |b〉 with 〈a|b〉 > 1√

2
, we scale the

angles between the vectors accordingly in a way in which we will soon make precise.

Note that Fig. 4.4 is constructed by ‘gluing’ together three copies of the reduction

used in Lemma 36 and shown in Figure 4.3. It is thus realisable as long as 〈a|b〉 < 〈a|v1〉,
〈a|v1〉 < 〈a|v2〉 and 〈b|v2〉 < 〈b|c〉, which is ensured to be true by the way we scale the

vectors.

This reduction only allows us to find a |c〉 with v(Pc) = 1 which is only slightly

further from |a〉 than |b〉 was. In order to expand the angle sufficiently, we thus have

to iterate this procedure, applying it again with |c〉 as our new |b〉, until the angle is

sufficiently large.

We break this into two lemmata: the first gives the general expansion, and then the

second shows that we can iterate this expansion as required.

Lemma 37. Given any two unit vectors |a〉 , |b〉 ∈ C3 with 1√
2
< |〈a|b〉| < 1, we can

effectively find a unit vector |c〉 with 0 < |〈a|c〉| < |〈a|b〉 and a finite set of one-dimension

projection observables O containing Pa, Pb, Pc such that if v(Pa) = v(Pb) = 1, then

v(Pc) = 1, for every admissible noncontextual value assignment function v on O.

Proof. The constants which will be used for scaling, obtained from the reduction shown
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Pa Pb

Pc

Pv1

Pv2

Figure 4.4: Greechie orthogonality diagram with an overlaid value assignment showing
the reduction used in the computational proof of Lemma 37.

in Figure 4.4 and Table 4.1, are as follows:

α1 =
arccos

√

2
3

arccos 1√
2

, α2 =
arccos 2√

5

arccos
√

2
3

, α3 =
arccos

√

2
3

arccos
√

2
5

.

α1, for example, is the ratio of the angle between |a〉 and |b〉 to the angle between

|a〉 and |c〉; the others are found similarly. Given the initial vectors |a〉, |b〉 and the

above constants, we thus make use of the following scaled angles between the relevant

observables:

θa,b = arccos〈a|b〉, θa,v1 = α1θa,b, θa,v2 = α2θa,v1 .

Once the form of |v2〉 is determined via the procedure to follow, we take the following:

θb,v2 = arccos〈b|v2〉, θb,c = α3θb,v2 .

Without loss of generality, we assume 〈a|b〉 ∈ R and fix our basis so that |a〉 = (1, 0, 0)

and |b〉 = (p1, q1, 0) where p1 = 〈a|b〉 and q1 =
√

1− p21. In order to show that v(Pc) = 1,

we need find the form of the vectors |v1〉 , |v2〉 , |c〉 that satisfy the orthogonality relations

shown in Fig. 4.4.

Following our scaling procedure, we want to choose |v1〉 so that 〈a|v1〉 = x1 =

cos θa,v1 . From Lemma 36 we know this is possible since x1 > p1 (because α1 < 1), and

we thus have |v1〉 = (x1, y1, z1), where y1 = p1(1− x21)/q1x1 and z1 =
√

1− x21 − y21.

We now want to find the form of the vector |v2〉, once again using Lemma 36 to

guarantee the orthogonality constraints are satisfied, such that 〈a|v2〉 = x2 = cos θa,v2
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(this is possible since α2 < 1). In order to use the same general form (specified in

Lemma 36) as above, we perform a change of basis to bring |v1〉 into the xy-plane,

describe |v2〉 in this basis using the above result, then perform the inverse change of

basis. Our new basis vectors |e2〉 , |f2〉 , |g2〉 are given by |e2〉 = (1, 0, 0),

|f2〉 = (|v1〉 − x1 |e2〉)/q2 = (0, y1/q2, z1/q2)

where q2 =
√

1− x21, and |g2〉 = |e2〉 × |f2〉 = (0, z1/q2,−y1/q2). We thus have the

transformation matrix

T2 =







1 0 0

0 y1/q2 z1/q2

0 z1/q2 −y1/q2







.

We can now put y2 = x1(1− x22)/q2x2 and z2 =
√

1− x22 − y22 so that in our original

basis we have

|v2〉 = T1(x2, y2,−z2)t =
(

x2,
y1y2 − z1z2

q2
,
y2z1 + y1z2

q2

)

.

We note at this point that the constant θb,v2 is now determined, and we have

〈b|v2〉 = p1x2 +
q1
q2
(y1y2 − z1z2).

The final step is to apply Lemma 36 a third time to find the form of |c〉 such

that 〈b|c〉 = x3 = cos θb,c (again, such a |c〉 with the required orthogonality relations

exists, since α3 < 1). Let p3 = 〈b|v2〉 and q3 =
√

1− p23. Again we perform a basis

transformation, this time to the basis defined by |e3〉 = |b〉 = (p1, q1, 0),

|f3〉 = (|v2〉 − p3 |b〉)/k

=

(

x2 − p3p1,
(y1y2 − z1z2)

q2
− p3q1,

(y2z1 + y1z2)

q2

)

/k,

where k is a constant such that |f3〉 is normalised, that is,

k =

√

(x2 − p3p1)
2 +

(

(y1y2 − z1z2)

q2
− p3q1

)2

+

(

y2z1 + y1z2
q2

)2

,

and

|g3〉 = |e3〉 × |f3〉

=

(

q1
q2
(y2z1 + y1z2),

−p1
q2

(y2z1 + y1z2),
p1
q2
(y1y2 − z1z2)− q1x2

)

/k.

The transformation matrix is then given by

T3 =







p1
x2−p3p1

k
q1(y2z1+y1z2)

q2k

q1
y1y2−z1z2−p3q1q2

q2k
−p1(y2z1+y1z2)

q2k

0 y2z1+y1z2
q2k

p1(y1y2−z1z2)−x2q1q2
q2k







.
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We now put y3 = p3(1 − x23)/q3x3 and z3 =
√

1− x23 − y23 so that in the original basis

we have

|c〉 =T3(x3, y3,−z3)t

=

(

x3p1 +
y3
k
(x2 − p1p3)−

q1z3
kq2

(y2z1 + y1z2),

x3q1 +
y3
kq2

(y1y2 − z1z2 − p3q1q2) +
z3p1
kq2

(y2z1 + y1z2),

y3
kq2

(y2z1 + y1z2)−
z3
k

[

p1
q2
(y1y2 − z1z2)− q1x2

])

. (1)

We thus need to prove that 〈a|c〉 < 〈a|b〉 = p1, where

〈a|c〉 = x3p1 +
y3
k
(x2 − p1p3)−

q1z3
kq2

(y2z1 + y1z2). (2)

Note that only the first coordinate of the vector |c〉 in (1) is of importance for this. The

product 〈a|c〉 is, with appropriate substitutions, a function of one variable, p1; let us

denote f(p1) = 〈a|c〉. We thus need to determine if, for p1 ∈
(

1√
2
, 1
)

, the inequality

f(p1) < p1 holds. Unfortunately, once the appropriate substitutions are made, it takes

several pages to write f(p1) in terms of p1 only, involving several nested trigonometric

and inverse-trigonometric functions, and a direct analytic analysis proved intractable,

even with the aid of computer algebra systems.

Using symbolic calculation in Mathematica (see Appendix A for the code and full

details) for a Taylor series expansion around p1 = 1, we find that for small |p1 − 1|,

f(p1) = 1−m(1− p1) +O
(

(p1 − 1)2
)

,

where m ≈ 1.27 is a constant. Hence limp1→1− f(p1) = 1 as claimed and for some ε > 0

we have f(p1) < p1 for p1 ∈ (1− ε, 1). Further, the continuity of f on this domain can

be readily guaranteed by verifying the continuity of each individual term as a function

of p1 on its respective domain (see Appendix A for details). From Figure 4.5 and the

above results it follows that to prove the inequality f(p1) < p1 for all p1 ∈
(

1√
2
, 1
)

we

need to show that for no p1 → 1 (which implies f(p1) → p1) we have f(p1) > p1.

Since we know from the Taylor series expansion that f(p1) < p1 in the neighbourhood

of p1 = 1, if for some p′1 ∈
(

1√
2
, 1
)

we were to have f(p′1) > p′1, then for some p′′1 we

must have d
dp1
f(p′′1) < 1, which can be seen to be false from Fig. 4.6, as required.

Thus, there exists a set of observables O, with {Pa, Pb, Pv1 , Pv2 , Pc} ⊂ O such that,

under any admissible noncontextual value assignment function on O with v(Pa) =

v(Pb) = 1, we must have v(Pc) = 1 also, and 〈a|c〉 < 〈a|b〉 as required.

We now prove that we can iterate Lemma 37 in order to find a vector |c〉 sufficiently

far from |a〉.
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Figure 4.5: Plot of p1 (dashed red line) and f(p1) (solid blue line) for p1 ∈ (0.7, 1) ⊃
(
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2
, 1
)

.

Lemma 38. Given any two unit vectors |a〉 , |b〉 ∈ C3 with 1√
2
< |〈a|b〉| < 1, we can

effectively find a unit vector |c〉 with 0 < |〈a|c〉| ≤ 1√
2

and a finite set of one-dimensional

projection observables O containing Pa, Pb, Pc such that if v(Pa) = v(Pb) = 1, then

v(Pc) = 1, for every admissible, noncontextual assignment function v on O.

Proof. We prove by iterating Lemma 37, and use the notation |c0〉 ≡ |b〉 to indicate the

0th iteration. We start with |c0〉 and for each i ≥ 0, as long as 〈a|ci〉 > 1√
2
, apply the

construction used in the proof of Lemma 37 to generate |ci+1〉 for the next iteration.

Let ri = 〈a|ci〉. Then, as in Lemma 37, taking the function f(p1) as defined in (2)

(recall that 〈a|c〉 was a function of p1 only and hence 〈a|ci+1〉 depends only on ri), we

have f(ri) < ri for i ≥ 1. Furthermore, as a result of iteration, 〈a|ci〉 = f i(r0) for i ≥ 1.

It remains to show that this iteration in fact terminates with the desired condition.

That is, that for some finite n > 0 we have fn(r0) ≤ 1√
2
.

However, from Figure 4.5 along with the fact that the derivative df
dp1

is positive, as

seen in Fig. 4.6, the difference p1 − f(p1) is strictly decreasing with p1 on
(

1√
2
, 1
)

⊂
(0.7, 1). Finally, since we can also see that f( 1√

2
) > 0, it follows that for a finite n we

indeed have fn(r0) ∈
(

0, 1√
2

]

as required.
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Figure 4.6: Plot of df
dp1

for p1 ∈ (0.7, 1) ⊃
(

1√
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)

.

By Lemma 37, for each i = 0, . . . , n−1 there exists a set Oi of projection observables

such that v(Pci+1) = 1 under any admissible noncontextual v on Oi satisfying v(Pa) =

v(Pci) = 1. Hence, if we take the set O = ∪n−1
i=0 Oi we must have v(Pcn) = 1 under any

admissible noncontextual v on O satisfying v(Pa) = v(Pb) = 1, and 〈a|cn〉 ≤ 1√
2

as

required.

4.3.2.2 Analytic approach

We now present a second approach to the reduction in the opposite direction. Rather

than searching for a single vector |c〉 which is closer to |a〉 than |b〉 is, we instead

find (from |a〉 , |b〉) two vectors |c〉 , |d〉 specifying observables Pc, Pd for which v(Pc) =

v(Pd) = 1, and which are further apart from each other than |a〉 is from |b〉. This allows

for a much more symmetrical situation and simpler Greechie diagram, thus producing

vectors for which there are much simpler expressions, and hence simplifying the analysis.

Like Lemma 38, this approach relies on the iteration of a particular expansion.

As with the previous approach, we break this process into two steps. We first prove

a lemma specifying a single iteration of the reduction, and gives an explicit formula for

the amount of expansion provided. We then show a further lemma proving that this

expansion can be iterated to meet the required conditions.
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Lemma 39. Given any two unit vectors |a〉 , |b〉 ∈ C3 with 1
3
< |〈a|b〉| < 1, we can

effectively find unit vectors |c〉 , |d〉 with 0 < |〈c|d〉| < |〈a|b〉| and a finite set of one-

dimensional projection observables O containing Pa, Pb, Pc, Pd such that if v(Pa) =

v(Pb) = 1, then v(Pc) = v(Pd) = 1, for every admissible noncontextual assignment

function v on O.

Proof. Let 〈a|b〉 = α. Without loss of generality, we will consider only the positive, real

case of 1
3
< α < 1. We fix an orthonormal basis such that, written in this basis, |a〉 and

|b〉 lie in the xz-plane bisected by the z-axis. In this basis we thus have

|a〉 =
(

√

1− β2, 0, β
)

, |b〉 =
(

−
√

1− β2, 0, β
)

,

where

β =

√

α + 1

2
· (3)

It is readily confirmed that

〈a|b〉 = β2 − (1− β2) = 2β2 − 1 = α

as desired. Note that we thus have
√

2

3
< β < 1. (4)

Figure 4.7 shows the curve representing all the possible vectors specifying observables

which can be forced to take the value 1 from the construction in Lemma 36. We use

two applications of Lemma 36 applied to |a〉 , |b〉 to give two such vectors |c〉 , |d〉 lying

in the yz-plane.

We can also see, at least for the chosen vectors |a〉 , |b〉 that are shown in Fig. 4.7, that

〈a|b〉 > 〈c|d〉. Indeed it appears that the vectors |c〉, |d〉 shown in the yz-plane provide

the maximum separation possible, and the symmetry under exchange of |a〉 and |b〉 of

Lemma 36 seems to support this. However, it is not necessary to prove this is the case.

Rather, we will show directly that the vectors |c〉 , |d〉 provide the required expansion.

To do so, we derive a simple explicit form for |c〉 , |d〉 and thus 〈c|d〉. We focus first on

finding |c〉; the form of |d〉 follows immediately.

Rather than use basis transformations to attempt to apply Lemma 36 to find the

form of |c〉 and |d〉 in this specific case, we will re-derive the result explicitly making use

of our symmetrised basis choice.

The vectors |a〉 , |b〉 , |c〉 need to follow the orthogonality relations shown in Fig. 4.3

in order to conclude that v(Pc) = 1. That is, we need vectors |e〉 , |f〉 such that

{|e〉 , |f〉 , |c〉} is an orthonormal set, and further that 〈a|e〉 = 〈b|f〉 = 0.
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Figure 4.7: A plot of the possible vectors |c〉 that Lemma 36 can force to take the value
1. The bold (red) curve represents the position on the unit sphere of such vectors for
given |a〉 , |b〉. Note that |c〉 and |d〉 are further apart from each other than |a〉 and |b〉,
as is evident from the contour lines on the hemisphere.

Since we choose |c〉 to be in the yz-plane, we can write it in the parameterised form

|c〉 = (0,
√

1− γ2, γ), where γ > 0 remains to be found. Since |e〉 should be orthogonal

to both |a〉 and |c〉, we have

|e〉 = |a〉 × |c〉 =
(

−β
√

1− γ2,−γ
√

1− β2,
√

(1− β2)(1− γ2)
)

.

Similarly, we have

|f〉 = |b〉 × |c〉 =
(

−β
√

1− γ2, γ
√

1− β2,−
√

(1− β2)(1− γ2)
)

.

Further, the orthogonality of |e〉 and |f〉 gives us

〈e|f〉 = β2(1− γ2)− γ2(1− β2)− (1− β2)(1− γ2)

= β2 − β2γ2 − γ2 + β2γ2 − 1 + γ2 + β2 − β2γ2

= 2β2 − β2γ2 − 1

= 0
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Pb

Pf

Pk

Pe

Pc

Pa

Pi

Pg

Pj

Ph
Pd

Pℓ

Figure 4.8: Greechie orthogonality diagram with an overlaid value assignment that il-
lustrates the reduction in Lemma 39. Once again, the circles and squares represent
observables that have the values 0 and 1 respectively.

and hence β2(2− γ2) = 1. Thus,

γ =

√

2− 1

β2
· (5)

Further, it is readily verified that 1√
2
< γ < 1 for

√

2
3
< β < 1, and hence for all

1
3
< α < 1 (recall Eqn. 4).

Similarly, we find |d〉 = (0,−
√

1− γ2, γ) using a further two auxiliary vectors |g〉 , |h〉
forming the orthonormal set {|d〉 , |g〉 , |h〉} where 〈a|g〉 = 〈b|h〉 = 0.

This construction and the associated orthogonality relations are shown in Fig. 4.8.

Thus, if we let |i〉 = |a〉 × |e〉, |j〉 = |a〉 × |g〉, |k〉 = |b〉 × |f〉 and |ℓ〉 = |b〉 × |h〉
to complete the contexts, and let O = {Pa, Pb, Pc, Pd, Pe, Pf , Pg, Ph, Pi, Pj, Pk, Pℓ}, as a

consequence of the resulting orthogonality relations, shown in Fig. 4.8, then v(Pc) =

v(Pd) = 1 for any admissible noncontextual v on O with v(Pa) = v(Pb) = 1.

It remains then just to show that

〈c|d〉 = 2γ2 − 1 < 〈a|b〉 = α = 2β2 − 1. (6)

We note that 〈c|d〉 > 0 for γ > 1√
2
.

We finish the proof by showing proving (6), that is, that 〈c|d〉 < α, or, equivalently,

γ2 < β2. But since we can write
(

β − 1

β

)2

= β2 − 1

β2
− 2

we have from (5)

γ2 = 2− 1

β2
= β2 −

(

β − 1

β

)2

< β2,
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concluding the proof.

We note for completeness that we can write 〈c|d〉 directly in terms of α from Eqns. 3,

5 and 6 as

〈c|d〉 = 3− 4

α + 1
· (7)

We now prove that by iterating this procedure we can find a pair of vectors arbitrarily

far apart from each other.

Lemma 40. Given any two unit vectors |a〉 , |b〉 ∈ C3 with 1
3
< |〈a|b〉| < 1, we can

effectively find unit vectors |c〉 , |d〉 with 0 < |〈c|d〉| ≤ 1
3

and a finite set of observables

O containing Pa, Pb, Pc, Pd such that if v(Pa) = v(Pb) = 1, then v(Pc) = v(Pd) = 1, for

every admissible noncontextual assignment function v on O.

Proof. We prove by iterating Lemma 39, and use the notation |c0〉 ≡ |a〉 and |d0〉 ≡ |b〉,
indicating the 0th iteration. We start with |c0〉 , |d0〉 and for each i ≥ 0, as long as

|ci〉 , |di〉 satisfy 〈ci|di〉 > 1
3
, apply the construction used in the proof of Lemma 39

to generate |ci+1〉 , |di+1〉 for the next iteration. In particular, |ci+1〉 , |di+1〉 satisfy the

equality (7) for αi = 〈ci|di〉 (and hence α0 = 〈c0|d0〉 = 〈a|b〉).
By Lemma 39, we know that 〈ci|di〉 > 〈ci+1|di+1〉 for each iteration i. We now

prove that the process cannot produce an infinite sequence |c0〉 , |d0〉 ; |c1〉 , |d1〉 ; · · · , with

〈ci|di〉 > 1
3

for all i, that is, for some i we have 〈ci|di〉 ≤ 1
3
. (The sequence must stop

here, since Lemma 39 cannot be applied for 〈ci|di〉 ≤ 1
3
.)

From (7) we define the function s :
(

1
3
, 1
)

→ (0, 1) such that

s(u) = 3− 4

u+ 1
,

giving the inner product of the next pair in the iteration. We thus have s(α0) = α1 and,

more generally, αi = si(α0). We can thus rephrase the problem: does there exist a k such

that sk(α0) ≤ 1
3
?

Let us, for the sake of contradiction, assume the contrary. Then (αi)i = (si(α0))i is

an infinite strictly decreasing sequence of reals with αi > 1
3

for all i. For any finite i we

thus have

si(α0) = αi = α0 − |α1 − α0| − · · · − |αi − αi−1|
= α0 − (α0 − α1)− · · · − (αi−1 − αi)

= α0 −
i−1
∑

k=0

(αk − αk+1).
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Let us define the function D :
(

1
3
, 1
)

→
(

0, 1
3

)

such that

D(u) = u− s(u) = u−
(

3− 4

u+ 1

)

so that

αi = α0 −
i−1
∑

k=0

D(αk).

We can show that dD
du

< 0 for u ∈
(

1
3
, 1
)

: calculating the derivative we have

dD

du
= 1− 4

(u+ 1)2
< 1− 4

(1 + 1)2
= 0.

Since D is thus a strictly decreasing function on
(

1
3
, 1
)

and αk < α0 for all k > 0, we

have D(α0) < D(αk) for all k > 0. Hence we set

αi = α0 −
i−1
∑

k=0

D(αk) < α0 − iD(α0).

Since D(α0) = α0−α1 > 0 is a positive constant, it is not possible that si(α0) = αi >
1
3
,

for all i > 0, because in this case we would have 1
3
< α0 − iD(α0), for all i > 0, a

contradiction.

In fact, if k is the smallest positive integer greater than
α0− 1

3

D(α0)
, then αk ≤ 1

3
, as

required. We note that sk+1(α0) is not defined.

By Lemma 39, for each i = 0, . . . , k−1 there exists a set Oi of observables such that

v(Pci+1
) = v(Pdi+1

) = 1 under any v admissible on Oi satisfying v(Pci) = v(Pdi) = 1.

Hence, if we take the set O = ∪k−1
i=0Oi we must have v(Pck) = v(Pdk) = 1 under any

admissible noncontextual v on O satisfying v(Pa) = v(Pb) = 1, and 〈ck|dk〉 ≤ 1
3
, as

required.

Lemmata 35, 36 and 40 together4 show that, if v(Pψ) = 1, then we cannot have

v(Pφ) = 1 if v is admissible. We are now in a position to put these results together to

show that we also cannot have v(Pφ) = 0 and thus prove Theorem 34.

Proof of Theorem 34. If we have |〈ψ|φ〉| = 1√
2

then, by Lemma 35, there exists a finite

set O for which there is no admissible noncontextual v on O satisfying the requirements,

so we are done.

Otherwise, we proceed directly to prove that there exists a set of observables O
containing Pψ, Pφ for which there is no admissible noncontextual assignment function

v on O with v(Pψ) = 1 and Pφ value definite. We show this in two cases: first that

4Note that we could equally use the computational result of Lemma 38 instead of Lemma 40 for
this.
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v(Pφ) 6= 1 and then that v(Pφ) 6= 0. Let us first show that there is a set O1 for which

v(Pφ) 6= 1 if v is admissible on O1.

There are two cases: either 0 < |〈ψ|φ〉| < 1√
2

or 1 > |〈ψ|φ〉| > 1√
2
.

If 0 < |〈ψ|φ〉| < 1√
2
, then by Lemma 36 there exists a vector |φ′〉 such that 〈ψ|φ′〉 =

1√
2

and a set O2 of observables containing Pψ, Pφ, Pφ′ such that if v is admissible on

O2, v(Pφ′) = 1 also. But, by Lemma 35, there exists a set O3 of observables containing

Pψ, Pφ′ such that if v is admissible on O3 and v(Pψ) = 1, Pφ′ must be value indefinite.

Thus, if we take O1 = O2 ∪ O3 we cannot have v(Pφ) = 1 as required.

If 1 > |〈ψ|φ〉| > 1√
2
, then by Lemma 40 there exist two vectors |ψ′〉 , |φ′〉 such that

0 < |〈ψ′|φ′〉| ≤ 1
3

and a set O4 of observables containing Pψ, Pφ, Pψ′ , Pφ′ such that if v

is admissible on O4 then v(Pψ′) = v(Pφ′) = 1 also. But, by Lemma 36, there exists a

vector |φ′′〉 such that 〈ψ′|φ′′〉 = 1√
2

and a set O5 of observables containing Pψ′ , Pφ′′ , Pφ′

such that if v is admissible, v(Pφ′′) = 1 also. Finally, once more by Lemma 35, there

exists a set O6 for which v there is no admissible v on O5 satisfying v(Pψ′) = v(Pφ′′) = 1.

Hence, there is no admissible v on the set O1 = O4 ∪ O5 ∪ O6 such that v(Pφ) = 1 as

required.

This shows that there exists a set O1 of observables containing Pψ, Pφ such that we

cannot have v(Pφ) = v(Pψ) = 1 if v is admissible on O1. It remains to show that there

exists a set O0 such that we cannot have v(Pφ) = 0 if v is admissible on O0.

Let us assume, without loss of generality, that |ψ〉 = (1, 0, 0) and |φ〉 =

(p,
√

1− p2, 0) where p = |〈ψ|φ〉|. Then let |α〉 = (0, 1, 0), |β〉 = (0, 0, 1) and

|φ′〉 = (
√

1− p2, p, 0). Then {|ψ〉 , |α〉 , |β〉} and {|φ〉 , |φ′〉 , |β〉} are orthonormal bases for

C3 and hence C1 = {Pψ, Pα, Pβ} and C2 = {Pφ, Pφ′ , Pβ} are contexts in O7 = C1 ∪ C2.

But if v is admissible on O7 and v(Pψ) = 1, v(Pφ) = 0, admissibility implies that

v(Pφ) = 1.

As we have shown just before, there exists a set O8 of observables containing Pψ, Pφ′

such that there is no admissible noncontextual assignment function v on O8 with v(Pψ) =

v(Pφ′) = 1, and hence there is no admissible noncontextual v on O0 = O7 ∪ O8 such

that v(Pψ) = 1 and v(Pφ) = 0.

Having covered all cases, we are forced to conclude that there is a set O = O0 ∪O1

of containing Pψ and Pφ such that if v(Pψ) = 1, Pφ cannot be value definite if v is

admissible on O.

The important difference between Theorem 34 and the Kochen-Specker theorem lies

in what physical conclusions can be drawn from the theorems which, of course, are

purely mathematical results. However, before we proceed to discuss this interpretation

and the associated physical assumptions that are required, let us first discuss some final

issues relating to Theorem 34 and its proof.
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4.3.3 Proof size

Since the first appearance of the Kochen-Specker theorem [80], much attention has

been given to reducing the number of observables and contexts needed to obtain a

contradiction and prove the theorem.

Conceptually, however, the key point is probably that the theorem can be proved

using a finite set of observables; if a contradiction only arose when an infinity of ob-

servables were considered, this would potentially raise questions about the physicality

of the theorem and its use of counterfactuals, and its interpretation would be more

questionable [106].

Due to its ability to locate value indefinite observables, the form of Theorem 34

immediately means that a single finite set O of observables will never suffice to prove

the value indefiniteness of all observables Pφ not commuting with Pψ for a given state

|ψ〉. There are infinitely many such observables, and one must, by definition, include Pφ
in O to localise value indefiniteness to Pφ. Rather, the nature of Theorem 34 means we

must look for constructive methods to obtain a set Oφ for a given Pφ, which is precisely

what we have done in our proof of the result.

Of course, a given set of orthogonality relations (i.e., a Greechie diagram) may be

realisable non-trivially (i.e., not simply by a basis transformation equivalent to a unitary

transformation on the set) for an infinity of different sets O containing Pψ, as is the

case with the diagram depicted in Fig. 4.3. Thus, it would be preferable to find a given

set of orthogonality relations for which a set Oφ of observables realising these relations

and containing both Pψ and Pφ for any Pφ. Since we were unable to give such a set

of relations, we had to iterate reductions in both proofs given (i.e., in Lemma 40 and

Lemma 38) a number of times depending on Pψ, with no upper bound (but only ever

finitely many times).

Furthermore, it seems that it is difficult, if not impossible, to succeed in giving a

fixed set of orthogonality relations that works in all cases. In order to show an observ-

able Pa has v(Pa) = 1 using the admissibility requirements, one must give a context

{Pa, Pb, Pc} ⊂ O for which it is already known that v(Pb) = v(Pc) = 0. This implies

two observable Pd and Pe such that v(Pd) = v(Pe) = 1 and 〈b|d〉 = 〈c|e〉 = 0. But

this is precisely the case described in Lemma 36. However, in Lemma 39 we showed

the limitations of this process in ‘widening the angle’ between vectors whose projectors

both take the value 1 – hence the necessity of iterating Lemma 39.

As a result, we formulate the following conjecture.

Conjecture 41. There exists no n ∈ N such that, for all |ψ〉 , |φ〉 with 0 < |〈ψ|φ〉 < 1,

there exists a set of one-dimensional projection observables Oψ,φ containing Pψ and Pφ
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with |Oψ,φ| ≤ n such that, under any noncontextual admissible value assignment v on

Oψ,φ with v(Pψ) = 1, Pφ is value indefinite.

Thus, in contrast to the Kochen-Specker theorem, it seems that arbitrarily large

sets of observables are needed to show that a given observable Pφ is value indefinite.

Nonetheless, the critical point is once again that for any given Pφ, we can show that

Pφ is value indefinite with a finite set of observables, and hence that the counterfactual

reasoning used is no more problematic than in the Kochen-Specker theorem.

4.4 A physical interpretation of localised value

indefiniteness

Theorem 34 shows that, under certain mathematical conditions, particular systems must

contain a formal kind of value indefiniteness. Although this lends naturally to a par-

ticular physical interpretation, as we have briefly discussed, one should be particularly

careful in drawing such physical conclusions without looking at what extra physical as-

sumptions are hidden in this process. One must carefully identify these physical assump-

tions needed to interpret these formal results, as well as scrutinising the justification for

certain elements of the model.

Here we will do precisely that. We will discuss the various assumptions that need

to be taken into account and how these justify the model, and in particular admissibil-

ity. Finally, we will discuss some further issues relating to the possible interpretations

following from the Kochen-Specker theorem as well as our results.

4.4.1 The role of measurement

An inherent assumption in any attempt to attribute physical meaning to the Kochen-

Specker theorem and the related results is that measurement constitutes a physically

meaningful process. In particular, one must assume the

Measurement assumption: Measurement is fundamental and yields a physically

meaningful and unique result.

This may seem rather self-evident, but it is not true of interpretations of quantum

mechanics such as the many-worlds interpretation, where measurement is just a pro-

cess by which the apparatus or experimenter becomes entangled with the state being

‘measured’ [54]. In such an interpretation it does not make sense to talk about the

unique ‘result’ of a measurement, let alone any definite values which one may assign to

them in advance. Rather, both outcomes are seen to actually occur, and the notion of

a measurement result loses its ontological status.
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Furthermore, it is worth making explicit the fact that, whenever we talk about the

measurement outcomes of a particular physical system in a state |ψ〉 by reference to

a value assignment function v, we (normally implicitly) assume that v is a faithful

representation of this particular realisation of the physical system. Let us be more

explicit.

Definition 42. A (physical) realisation rψ of a state |ψ〉 is a physical system prepared

in the quantum state |ψ〉.

Of course, the standard interpretation is that |ψ〉 is the maximal description possible

of any realisation rψ of it, but we need to consider that this may not be the case in order

to consider the implications of no-go theorems properly.

Definition 43. A value assignment function v is a faithful representation of a realisation

rψ of a state |ψ〉 if an observable P in a context C is value definite under v with value

v(P,C) if and only if its outcome is physically predetermined to be precisely the value

v(P,C).

The Kochen-Specker theorem, as well as our results, talk only about value assignment

functions – faithful or not. Usually, it is implicitly assumed that a value assignment

function is faithful – if it is not then it has no real relation to the physical system that it

is meant to model and is of little interest. Nonetheless, we feel it is important to make all

the relevant assumptions explicit, and to make any interpretation we need, specifically,

to consider the features of any faithful v for any realisation rψ of |ψ〉. Thus, when we

wish to discuss the actual indefiniteness or indeterminism of physical measurements, we

will always consider value assignment functions that are faithful representations of the

system considered.

4.4.2 Assignment of definite values

A further issue that is important not only in justifying the requirement of admissibility in

our model, but also critical in giving it a physical meaning, is the question of when we can

conclude that definite values should be assigned to an observable, and determining the

nature of any faithful value assignment function. This is intimately related to the issue

of the faithfulness of a value assignment function, as an assignment function faithfully

representing a system in state |ψ〉 must have definite values whenever a measurement

outcome on the state is predetermined. So when can we determine that a measurement

outcome is predetermined? The question is perhaps more subtle than it first appears.

Einstein, Podolsky and Rosen (EPR), in their seminal paper on the EPR paradox

said [51, p. 777]:
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If, without in any way disturbing a system, we can predict with certainty

(i.e., with probability equal to unity) the value of a physical quantity, then

there exists an element of physical reality5 corresponding to this physical

quantity.

From the physicist’s point of view, the ability to predict the value of an observable

with certainty seems sufficient to posit the existence of a definite value associated with

that observable. However, the identification that EPR make between certainty and prob-

ability one is less sound. Mathematically, the statement is simply not true: for infinite

measure spaces, probability zero events not only can, but must occur – for example,

every point on the real line has probability 0 under the Lebesgue measure. One can only

say an event is certain if its complement is the empty set.

Nonetheless, modulo these small difficulties, the principle outlined by EPR seems

to outline a sound condition for value definiteness; indeed, without some such principle

we would be left unable to ever reasonably conclude the presence of value definiteness.

Thus, reformulating this slightly, we will take take the following as a guiding principle:

EPR principle: If, without in any way disturbing a system, we can predict with

certainty the value of a physical quantity, then there exists a definite value prior to

observation corresponding to this physical quantity.

With the formalism of quantum mechanics entirely based on probability spaces, what

then can we say about the existence of any definite values associated with any measure-

ment in the quantum mechanical description of physical reality? A deterministic theory

is based on a description of a state which is complete in that it specifies definite values

for all observables. The state in quantum theory, however, is given as a wave function,

which in turn is determined by the operators of which the system is an eigenstate.

This is further backed up by more recent results showing the impossibility to view the

wave-function as simply an epistemic ‘catalogue’ of results, and that it is rather an on-

tological description [111]. Quantum theory is thus based on the notion that a physical

state is ‘completely characterised by the wave function’, which is an eigenstate of some

operator and is determined for any context containing the said operator; as EPR note,

the ‘physical quantity’ corresponding to that operator has ‘with certainty’ the corre-

sponding eigenvalue [51, p. 778]. The theory then presents a probabilistic framework to

express the behaviour of other observables and their measurement.

While the Kochen-Specker theorem and related results explore the possibility to

explain these probabilistic outcomes via an underlying determinism, one would expect

these approaches to coincide on measurements confirming the known property of the sys-

5An element of physical reality corresponds to the notion of a definite value, possibly contextual,
as outlined in this paper.
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tem corresponding to its preparation state. It is thus reasonable to assume, as discussed

more briefly earlier, the

Eigenstate assumption: Let |ψ〉 be a quantum state and v be a faithful assignment

function of a realisation rψ of |ψ〉. Then v(Pψ, C) = 1 for any context C ∈ CO with

Pψ ∈ C.

It is worth noting that this assumption is similar to the ‘eigenstate-eigenvalue link’

discussed in [128], although the eigenstate-eigenvalue link is stronger in the crucial fact

that it considers that the relation is bi-directional, whereas we do not assume that a

system must be in an eigenstate of an observable if the observable is value definite.

We can finally justify the requirement that a faithful assignment function v should

be admissible by again using the EPR principle relating to the assignment of definite

values.

Theorem 44. Let v be a faithful value assignment function of a system realising the

state |ψ〉. Then v must be admissible.

Proof. Let O be the set of one-dimensional projection observables on Cn for n ≥ 2,

C = {P1, . . . , Pn} ∈ CO a context of O, and v a faithful assignment function on O with

v(P1, C) = 1.

Since P1 and Pi (for i 6= 1) are compatible (physically co-measurable), if we measure

them both, the system will collapse into the eigenstate of P1 corresponding to the

eigenvalue 1. Since this final state would also be an eigenstate of Pi, it follows from the

fact that
∑n

j=1 Pj = I that this state corresponds to the eigenvalue 0 of Pi and hence,

by the eigenstate assumption, v(Pi, C) = 0. Thus we conclude that v(Pi, C) = 0 for all

2 ≤ i ≤ n.

By a similar argument, we see that if instead v(Pi, C) = 0 for 2 ≤ i ≤ n we must

have v(P1, C) = 1.

This justifies that a faithful assignment function v must be admissible, hence justi-

fying the final element of our model.

4.4.3 Noncontextuality

Similar to the manner in which the Kochen-Specker theorem finds a contradiction be-

tween complete noncontextuality and value definiteness, Theorem 34 finds a contradic-

tion between noncontextuality and the value definiteness of any observable not corre-

sponding to the preparation observable of the system. Our notion of noncontextuality is

weaker than that used in the Kochen-Specker theorem, since we define it, and require it

to hold, only for those observables that are value definite, rather than the complete set

under consideration. Nonetheless, a negation of either assumption (or even both) is a
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valid mathematical conclusion of the theorem. A specific interpretation of the theorem

thus inevitably relies on physical and philosophical assumptions.

Both options lead to rather different interpretations, and if we accept the possibility

of a contextual reality, then Theorem 34 leads to the same interpretational conclusion

as the Kochen-Specker theorem. In this thesis, and in particular in the following chap-

ters when we consider more carefully the certification of quantum randomness, we opt

to assume the noncontextuality of measurement outcomes for measurements of observ-

ables whose outcome is predetermined, and thus give up the historic notion of complete

determinism and classical omniscience.

This assumption might be in contradiction to that of some physicists who, in the

tradition of the realist Bell (see the oft-quoted text, [14]), tend to opt for contextuality.

The option for contextuality saves realistic omniscience and ‘contextual value definite-

ness’ at the price of introducing a more general dependence of at least some potential

observables on the measurement context.

Nonetheless, we feel this assumption is quite reasonable. Our assumption of non-

contextuality requires only that value definite observables – that is, those which are

classically deterministic – behave in the classical, noncontextual manner. Refusing any

value indefiniteness, on the other hand, appears a somewhat stronger assumption, and

forces this classical property on all observables.

At the very least, the fields of quantum information theory and cryptography are

intimately connected to the indeterministic view of quantum mechanics, and such an

assumption allows our results to contribute to these fields, as well as for us to investigate,

in the forthcoming chapters, their practical implications.

Thus we make the

Noncontextuality assumption: The outcome of measurements on a quantum

system can be faithfully represented by a noncontextual value assignment function.

4.4.4 A physical interpretation

With these physical assumptions made clear, we can express more carefully our inter-

pretation, how it follows from Theorem 34, and the physical assumptions we make. This

allows us to show the extent of indeterminism in quantum mechanics resulting from our

formal result.

Proposition 45. If a quantum system is prepared in an arbitrary state |ψ〉 ∈ Cn for n ≥
3, then, assuming the measurement, noncontextuality and eigenstate assumptions, no

observable Pφ for 0 < |〈ψ|φ〉| < 1 can be value definite under any faithful noncontextual

value assignment function.
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Although Theorem 34 and its interpretation in Proposition 45 formally apply only

to one-dimensional projection observables, we note that it is not difficult to generalise

them to more general classes of observables. Since an observable A with a non-degenerate

spectrum, eigenvalues a1, . . . , an, and eigenstates |a1〉 , . . . , |an〉 can be expressed in terms

of projection observables via its spectral decomposition A =
∑n

i=1 aiPai , it makes sense

to consider it to be value definite if and only if all the projectors Pai , i = 1, . . . , n, are

value definite.6

Thus we can conclude more generally that any observable A such that |ψ〉 is not an

eigenstate of A must be value indefinite, and the measurement of A then produces an

outcome that is not-predetermined in advance. That is, the measurement of A yields a

value indeterministically, and the outcome is created ex nihilo by measurement. This

represents a complete departure from classical realism, and formalises the quantum

indeterminism that is often assumed a priori, basing it on more fundamental, explicit,

physical assumptions.

This is in stark contrast to the Kochen-Specker theorem, which supports, under the

same assumptions, a significantly weaker interpretation: that some observables must be

value indefinite. This eliminates the need to assume that the nonclassicality that the

Kochen-Specker theorem implies should apply uniformly to all observables, instead de-

riving this result. Since the Kochen-Specker theorem cannot locate value indefiniteness,

the physical conclusions drawn from it have much less practical value. For example,

since one can never be sure that they are measuring a value definite observable (one

can imagine, for example, a demon ensuring that the value indefiniteness always occurs

at some other observable), this creates a loophole in the generation of random numbers

via quantum mechanics that is supposed to be certified by quantum indeterminism.

Conceptually, this means that Theorem 34 goes significantly further than the

Kochen-Specker theorem in showing the extent of nonclassicality that the quantum

logic event-structure implies.

We can formalise this even further from a measure theoretic point of view.

Theorem 46. Let |ψ〉 be an arbitrary state in Cn for n ≥ 3. Then the set of one-

dimensional projection observables that are value definite for this state under any non-

contextual value assignment function on Cn has Lebesgue measure zero.

Proof. Let v be a noncontextual value assignment function on Cn. Since the system is

in the state |ψ〉, we have v(Pψ) = 1 by the eigenstate assumption.

Then, by Theorem 34, every observable Pφ is value indefinite under v if 0 < |〈ψ|φ〉| <
1. That is, the set of value definite observables is precisely D = {Pψ}∪{Pφ | 〈ψ|φ〉 = 0}.

6Intuitively, if one such Pai
has the predetermined value 1 then one must obtain ai upon measure-

ment of A; admissibility then requires that all Paj
have the predetermined value 0 for j 6= i.
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However, the set {Pφ | 〈ψ|φ〉 = 0} is isomorphic to Cn−1, which has Lebesgue measure

zero in Cn since any subspace of dimension smaller than n has Lebesgue measure zero

in Cn.

For the simplest case of n = 3, if we let |ψ〉 = (1, 0, 0) then the set D in the

above proof corresponds to the set {(1, 0, 0)} ∪ {(0, x, y) | |x|2 + |y|2 = 1} on the three-

dimensional (complex) unit sphere, consisting of (i) a single point of dimension zero,

and (ii) a great circle of dimension one. Again this set has Lebesgue measure zero on

the unit sphere, and hence the set of value indefinite observables has measure one.

4.4.5 State-independence and testability

One of the strengths of the Kochen-Specker theorem that has been repeatedly empha-

sised is the fact that the contradiction between its hypotheses is derived independently

of the state a quantum system is prepared in; this is commonly referred to as state-

independence. This is in contrast to violation of Bell-type inequalities (which occur

only for particular entangled states) and shows that the nonclassicality results from

the structure of quantum mechanics itself, rather than features of particular states,

such as entanglement [79, 163]. Consequently, various experimental inequalities based

on the Kochen-Specker theorem that, although often simpler, are state-dependent have

been criticised, and much effort has been expended to find simple, state-independent

inequalities to test [26].

In contrast to the Kochen-Specker theorem, the form of Theorem 34 and, in par-

ticular, the interpretation that for a given state |ψ〉, any observable Pφ not commuting

with Pψ is value indefinite, may suggest that Theorem 34 does not share this state-

independence. As a result, this issue deserves a little discussion.

The state-independence of the Kochen-Specker theorem ensures that no quantum

state in n ≥ 3 dimensional Hilbert space admits a classical assignment of definite values

to all observables within certain finite sets. This is true also with Theorem 34: for

any quantum state |ψ〉, all observables not contained within the ‘star’ of observables

commuting with Pψ (see Fig. 4.9) are value indefinite. Of course, this set of observables

that are guaranteed to be value indefinite will differ for different states |ψ〉, but never

on a set of non-zero measure.

Rather, it is not Theorem 34 that is state-dependent, but the proof we have given: to

show that a given observable Pφ is value indefinite, we need a set O = Oφ particular to

this |φ〉. However, as we discussed in the preceding section, this is perfectly reasonable

given the form of the theorem.

One can emphasise further the state-independence of Theorem 34 by restating the

theorem in the following form: ‘Only a single one-dimensional projection observable
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C1 C2

C3

C5

C6

C7

Pψ

Figure 4.9: Greechie diagram showing an observable Pψ with v(Pψ) = 1 and the (infinite)
set of compatible observables Pφ for which v(Pφ) = 0. This is the maximal extent of value
definiteness for a system in state |ψ〉 – no other one-dimensional projection observables
in C3 can be value definite.

on the Hilbert space Cn for n ≥ 3 can be assigned the value 1 by an admissible non-

contextual value assignment function’. In this form the state-independence is clear; the

illusion of state-dependence enters because of the connection, via the eigenstate assump-

tion, between the ‘one observable assigned the value 1’ and the particular state |ψ〉 (and

corresponding observable Pψ with v(Pψ) = 1) which is necessary for the physical inter-

pretation of the theorem.

The importance of the state-independence of the Kochen-Specker theorem arises,

in part, in the use of Kochen-Specker sets of observables in testable inequalities. It is

important to note that, even though these inequalities are sometimes referred to as

‘Kochen-Specker inequalities’ [83], they are better seen simply as noncontextuality in-

equalities. These inequalities are derived under the assumption only of noncontextuality,

ignoring the admissibility requirements, and bounds on quantities are calculated over all

possible noncontextual value assignments. A key result shows that one can derive such

an inequality from any Kochen-Specker set [158]. It is clear that these value assignments

cannot obey the admissibility requirements, since the Kochen-Specker theorem shows

precisely that no classical value assignment can do so.

The strength of Theorem 34, on the other hand, relies precisely on the use of the

admissibility requirements to determine when definite values should be assigned. Hence,

while one can use the methods of [158] to derive inequalities from the constructions in

the proof of Theorem 34, these bounds would be calculated over all noncontextual value

assignments (subject to v(Pψ) = 1), without paying heed to admissibility, and hence

would offer no conceptual advantage over existing inequalities. Furthermore, since our

construction in Lemma 35, for example, contains 37 observables, these would pose no

experimental benefit to existing, simpler, inequalities either [79].



4.5. The limits of value indefiniteness 59

Nonetheless, the state-independence of the result shows that the value indefiniteness

of almost all observables in quantum mechanics is indeed a deep feature of the theory –

of the logical structure of Hilbert space – rather than a property of particular states.

4.5 The limits of value indefiniteness

Before we proceed to discussing some of the consequences of the strengthened variant

of the Kochen-Specker theorem, let us discuss some further issues relating to notions of

noncontextuality and contextuality, as well as their relation to value indefiniteness and

use in the contemporary literature.

4.5.1 Contextuality

While in this thesis we focus on exploring the consequences of value indefiniteness under

the assumption of noncontextuality, it is important to keep in mind that it seems unlikely

that one can definitively rule out a contextual value definite model of reality [121]. It is

thus instructive to consider briefly some contextual alternatives.

In such a model, physical reality is maintained, but the outcome of measurement of an

observable would depend explicitly on any other compatible observables also measured.

That is, we would need an explicitly contextual value assignment function to model

this physical reality. The successful experimental verification of Bell inequalities [145]

means that such a reality would necessarily have to be nonlocal: the outcome of a

measurement could depend on the choice of compatible observable measured, even if it

is done so (and even chosen) at a space-like separated point in space-time. Furthermore,

one can envisage systems for which the measurement of an observable A is followed by

measurement of a compatible observable B or C – the outcome of the first measurement

would depend on the choice of observable to be made in the future, a highly unintuitive

reality.

While all such classical models must have this general structure, there are many dif-

ferent approaches to creating a cohesive picture or interpretation of quantum mechanics

explaining such value definite contextuality. The most explicit and well known such

approach is the de Broglie-Bohm pilot wave theory [20], also known as Bohmian me-

chanics. While this approach was not explicitly created with contextuality or nonlocality

in mind, it can be readily seen to exhibit these phenomena.

Bell, in response to his own theorem, was somewhat more circumspect, instead choos-

ing to highlight the influence of the macroscopic arrangement of the apparatus, and

insisted that the ‘result of an observation may reasonably depend not only on the state

of the system [. . . ] but also on the complete disposition of the apparatus’ [14, Sec. 5]. In
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this way he explains the possible context dependence as a result of the fact that measur-

ing contexts involves, as a consequence of complementarity, incompatible measurement

arrangements.

In this viewpoint, even when the macroscopic measurement apparatuses are still ide-

alised as being perfect, their many degrees of freedom (which may far exceed the order of

Avogadro’s number) contribute to any measurement of a single quantum. Most of these

degrees of freedom might be totally uncontrollable by the experimenter, and would hence

result in an epistemic uncertainty which is dominated by the combined complexities of

interactions between the single quantum measured and the (macroscopic) measurement

device producing the outcome, and thus giving the illusion of indeterminism.

In such a measurement, the pure single quantum and the measurement apparatus

would become entangled. In the absence of one-to-one uniqueness between the macro-

scopic states of the measurement apparatus and the quantum, any measurement would

amount to a partial trace resulting in a mixed state of the apparatus, and consequently

to an uncertainty and unpredictability of the measurement outcome obtained. Thus,

realism may be maintained, but, in Bell’s terms, the outcome may be irreversible ‘for

all practical purposes’ [15].

4.5.2 The Kochen-Specker theorem and quantum contextuality

There is a final, further, issue that needs to be clarified regarding the relationship be-

tween the Kochen-Specker theorem (and consequently the variant we have proven) and

contextuality. In particular, there is a growing trend of viewing the Kochen-Specker

theorem as ‘proving quantum contextuality’ [18, 124, 139, 157, 163]. This interpretation

could easily be thought to be incompatible with ours, which relies on our ‘noncontextual-

ity assumption’, but the issue is rather one of terminology than an actual contradiction.

Such statements are generally made without any explicit formal definition of con-

textuality. Our noncontextuality assumption requires only that value definite observ-

ables behave noncontextually, not all quantum observables. Indeed, as we discussed in

Sec. 3.2, under our definition of contextuality, any value indefinite observable is contex-

tual. Thus, it is indeed true that the Kochen-Specker theorem implies contextuality, but

it says nothing about whether this contextuality is value definite or indefinite.

We nonetheless choose to avoid referring to Kochen-Specker as implying contextu-

ality in order to avoid any such confusion, given the importance of the limited form

of noncontextuality required by the noncontextuality assumption. Furthermore, as we

showed in Theorem 30, we can never guarantee that all observables are contextual (i.e.,

strong contextuality) and indeed it is reasonable to assume that some observables are

noncontextual.
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Beyond avoiding any confusion, we also wish to emphasise in particular the value

indefiniteness guaranteed by Theorem 34 under our assumptions, something which is

not implied by contextuality alone. This is important in order to avoid creating the per-

ception of any link between contextuality and quantum indeterminism or randomness.

4.6 Conclusion

While quantum value indefiniteness gives a formal basis to the belief that quantum mea-

surement outcomes are intrinsically indeterministic, we must be careful before jumping

to conclusions about the implications of this for quantum randomness and unpredictabil-

ity.

Quantum value indefiniteness itself represents simply an absence of predetermined

measurements outcomes, that is, of determinism. Most of the rest of this thesis will be

devoted to exploring precisely these issues of quantum randomness and unpredictability

in more detail.

Finally, it is important to keep in mind that no derivation or claim of quantum value

indefiniteness is absolute. Rather, it can only ever be guaranteed relative to the physical

assumptions that one employs, as we highlighted in the previous sections.





Chapter 5

Quantum randomness and

incomputability

Accompanying the standard interpretation that quantum measurements are intrinsically

indeterministic – that is, the measured observables are value indefinite and the outcomes

not predetermined – is the view that the outcomes of such measurement are therefore

intrinsically, or irreducibly, random [161]. This randomness plays an essential role in the

active field of quantum information and cryptography [8, 40], and serves as the basis for

the quality of quantum random number generators (QRNGs) which promise to produce

‘true randomness’ [78, 105, 125].

Randomness is a subtle concept, and many different definitions of randomness exist.

Indeed, there is much philosophical disagreement as to what exactly the notion of ran-

domness is, and how it relates to indeterminism, chance and unpredictability [50]. Hence,

although there is an intuitive connection between quantum indeterminism and random-

ness, we should be cautious in claiming that quantum value indefiniteness immediately

guarantees the randomness of quantum measurements. It is instead important to study

precisely what form of randomness (if any) manifests itself in quantum measurements,

and to understand exactly what can be guaranteed of devices such as QRNGs.

In this chapter we look more closely at various notions of randomness and the ex-

tent to which they are present in quantum measurements. We show how, in addition

to providing physical access to an objective probability distribution, quantum value

indefiniteness can certify that infinite sequences of quantum measurement results are

strongly incomputable. This goes beyond what is certified by the objective probability

distribution alone, showing a stronger, algorithmic form of unpredictability. We finally

propose a QRNG that, via the Kochen-Specker theorem, is certified to produce such

63
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incomputable sequences in the infinite limit.

5.1 The concept of randomness

5.1.1 Chance-based notions of randomness

The notion of randomness has long been associated with probability. In cryptographic

settings, for example, randomness usually refers to uniformly distributed random vari-

ables: random bits are those which are generated independently and identically, with

equal probabilities of 0 and 1 [140]. As a notion of randomness this is problematic for

the same reason that, as we discussed in Sec. 3.1, probability alone does not guarantee

any form of indeterminism. Probability distributions are only a mathematical tool and

may hide an underlying determinism or patterns, instead expressing an epistemic (even

uniform) uncertainty regarding the bits produced. There are, for example, computable

Borel normal sequences such as Champernowne’s constant, 0100011011000 . . . , created

by appending the binary representation of every integer 0, 1, 2, . . . [34]. A deterministic

device outputting such a sequence would appear, in the limit, to be producing statis-

tically uniform bits, and an unknowing observer could well model this as a uniform

distribution, despite the clear absence of randomness. Thus, the fact we represent a

system probabilistically certainly falls short of providing a sufficient condition for, let

alone a definition of, randomness. Nonetheless, there is at least an intuitive connection

between randomness and probability, and a good definition of randomness should at

least explain the relation between these two concepts [50].

Randomness, rather than being necessarily associated with probabilities, seems

rather to be related to objective probability distributions; that is, scenarios where the

probability distribution represents objective chance, rather than an epistemic lack of in-

formation. Indeed, randomness has historically been intimately connected to the notions

of chance and indeterminism, and these concepts have often been conflated in the litera-

ture. Hellman, for example, has argued that physical randomness and indeterminism are

essentially the same concept [74]. This identification of indeterminism and randomness

appears to be one of the principal reasons behind the belief that quantum measure-

ments are intrinsically random [8], although often this link is implicit rather explicit.

Eagle argues strongly against this ‘commonplace thesis’ that chance and randomness

are not merely related, but one and the same concept [50]. He argues that not only does

this trivialise the argument for randomness, but this thesis ignores other important as-

pects of randomness such as unpredictability, and avoids scientifically fruitful notions of

product randomness and the existence of examples that appear to show scenarios that

are ‘chancy’ but intuitively not random.
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While quantum value indefiniteness, either via blind assumption or, more plausibly,

deduced via the Bell and Kochen-Specker theorems, shows that quantum mechanics

indeed contains such indeterministic, ‘chance’ events, this alone does not show that

quantum measurements are indeed random.

5.1.1.1 Randomness as unpredictability

Rather than attributing quantum randomness directly to value indefiniteness, some

authors have taken the subtly different approach of identifying the unpredictability pro-

vided by value indefiniteness as the feature providing randomness. Kofler and Zeilinger,

for example, attribute ‘objective randomness’ in quantum mechanics to the fact that we

can do no better than make probabilistic guesses in predicting measurement results [81].

Fitzsimons et al. go a step further, and define ‘intrinsic randomness’ as unpredictabil-

ity with unlimited computational power [56], although they fail to define precisely this

notion of unpredictability. As with Kofler and Zeilinger, they see indeterminism (i.e.,

value indefiniteness) as providing an assurance that this unpredictability is ensured.

The use of unpredictability in these arguments, however, appears to play a rather

shallow role, and rather than providing a formal model of unpredictability they seem

rather to equate unpredictability with indeterminism. This point of view seems to orig-

inate with Laplace’s infamous demon, an argument that he laid out in A Philosophical

Essay on Probabilities [82]:

We may regard the present state of the universe as the effect of its past and

the cause of its future. An intellect which at a certain moment would know

all forces that set nature in motion, and all positions of all items of which

nature is composed, if this intellect were also vast enough to submit these

data to analysis, it would embrace in a single formula the movements of the

greatest bodies of the universe and those of the tiniest atom; for such an

intellect nothing would be uncertain and the future just like the past would

be present before its eyes.

Laplace’s demon is often (mis)interpreted as showing that determinism leads to a notion

of absolute predictability, and the subsequent equivalence between indeterminism and

unpredictability. This analysis ignores the fact that many classical systems may contain

intrinsic, if epistemic, unpredictability as a result of sensitivity to initial conditions and

chaotic mixing [12, 85]. One can hardly criticise Laplace for this oversight, since his essay

predates Poincaré’s seminal work on the instability of the three-body problem by some

90 years [107], but such deterministic unpredictability is well understood today [146].

Laplace’s demon should instead be understood as a formulation of determinism [50],
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and indeed the predicting demon he proposes is not physical: the inexact nature of

measurement is fundamental, so we can never obtain the complete state exactly. Further,

the analysis the demon would have to undergo in order to predict the future of every

body in the universe would require, at the very least, infinite memory and computational

power just to write and process the exact phase space coordinates of all such bodies.

Thus, although the attempt to argue for quantum randomness from unpredictability

may indeed be a reasonable approach, one should not assume a priori that such unpre-

dictability follows directly from indeterminism. Instead, the notion of unpredictability

needs to be worked through much more carefully.

Several of the more promising philosophical efforts towards providing a more satis-

factory definition of randomness have indeed taken this approach and singled out the

unpredictability of random events as the characteristic property of randomness. Eagle,

for example, developed a particular notion of unpredictability and defines randomness

as maximal unpredictability [49]. Longo has argued for a more relativised notion of

randomness, considering it to be unpredictability within a given formal system, where

unpredictability is essentially relative to the physical measure, such as the approxima-

tion of initial conditions [30]. A key aspect of unpredictability is that, rather then being

a consequence of objective indeterminism, it arises at the interface of measurements of a

physical system and the formal description of the system, and must be formulated care-

fully in such terms [85]. If randomness is defined in terms of unpredictability in such a

way it thus takes on a subjective element. Given the problems associated with equating

randomness with objective indeterminism, this should not necessarily be seen as prob-

lematic, nor need it detract from the status of quantum randomness which nevertheless

appears to be based on the intrinsic value indefiniteness within the theory [50].

Thus, while quantum measurements are routinely claimed to be intrinsically random,

this largely results from a conflation of the concepts of randomness, indeterminism and

unpredictability, which we have argued are in fact distinct concepts. In any case, there

is more to the issue than a trivial implication from value indefiniteness to randomness,

and value indefiniteness certainly does not ‘confirm the existence of a new form of

randomness’ [8].

It is nonetheless clear that there is a relation between these concepts, and, intu-

itively, value indefiniteness provides a form of unpredictability. Unpredictability is a

good candidate as a form of randomness, but in order to draw any conclusions about

quantum randomness from this, one needs to consider it within a reasonable, general,

formal framework. We will return to the issue of modelling unpredictability and develop

such a framework, as well as applying it to quantum randomness, in Chapters 6 and 7.



5.1. The concept of randomness 67

5.1.2 Algorithmic notions of randomness

In addition to unpredictability, a further intuitive property of randomness is the ab-

sence of patterns. Indeed, if an infinite sequence of events exhibits pattern or order, this

would seem to indicate that the sequence is not random. The absence of patterns is a

particularly important feature of randomness in cryptographic settings, since cryptog-

raphy relies on the use of random bits not containing any pattern that an adversary

can exploit [50]. This is of course related to the issue of unpredictability discussed in

the previous section, since patterns, intuitively, would give an adversary a method of

prediction which could potentially be used to break a cryptographic scheme.

The notion of randomness as the absence of patterns has been rigorously formalised

and studied in the field of algorithmic information theory (AIT) [29, 47]. Thus, in con-

trast to the lack of consensus over notions of randomness based on unpredictability and

indeterminism, the notion of algorithmic randomness is well defined and its properties

are, mathematically, well understood.

In AIT, the randomness of finite bitstrings is expressed as their inability to be

compressed by a universal Turing machine; that is, random strings have Kolmogorov

complexity at least equal to their length in bits. This incompressibility expresses the

inability for a Turing machine to exploit any patterns within the string to compress it;

such strings are, in a sense, maximally random.

This approach to the randomness of finite strings is, on the other hand, problematic

as an absolute notion of randomness, since the complexity of any string is only fixed

up to a constant depending on the universal Turing machine used. Thus, in order to

develop a more rigorous notion of algorithmic randomness it is necessary to consider

the limit case of infinite sequences of bits.

A particularly surprising and fundamental result in AIT is that no infinite sequence

x ∈ {0, 1}ω has every prefix, that is, x↾n for n ≥ 1, incompressible, even by a fixed finite

number of bits [29]. Thus, in a rigorous sense, there are no maximally random sequences.

This surprising conclusion can be emphasised even more explicitly by a result that, in

fact, predates the development of algorithmic information theory, coming instead from

Ramsey theory. This result shows that there are certain types of patterns present in

every infinite sequence [65, 133]. As a result, there are no ‘truly’ or ‘absolutely’ random

sequences; for infinite sequences these are mathematically vacuous notions.

In order to develop a consistent notion of algorithmic randomness, one must instead

use the more subtle notion of prefix-free Kolmogorov complexity. Maximally random

finite strings of length n have, under this complexity measure, complexity of order

n + log n, rather than of order n. As before, there are no infinite sequences x with all

prefixes x ↾n being maximally random, but there are sequences for which all such pre-
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fixes are incompressible, that is, having prefix-free complexity of order n. It is precisely

these sequences which are algorithmically random, and are sometimes called Martin-Löf

random.

The algorithmically random sequences contain no patterns allowing them to be com-

pressed by a prefix-free Turing machine, and as such form a rigorous definition for a

sequence of random objects. While there are other variations and degrees of algorith-

mic randomness [47], it is certainly the most accepted as an intuitively reasonable,

yet rigorous, definition of randomness [50]. Furthermore, irrespective of how much one

strengthens the notion of randomness, one can never achieve the vacuous notion of

absolute algorithmic randomness; there is instead an infinite hierarchy of notions of

randomness [47].

The notion of algorithmic, or Martin-Löf, randomness succeeds in capturing an im-

portant intuition about random events. The notion of randomness as an objective notion

of (uniform) probability fails to completely capture this absence of patterns that algo-

rithmic randomness addresses: it provides a probabilistic guarantee of this, since almost

all sequences (in the measure-theoretic sense) are Martin-Löf random, but is unable

to guarantee the absence of computable patterns completely. Furthermore, the non-

existence of maximally random sequences shows that we should resist any urge to refer

to quantum (or any other form of) randomness as being ‘absolute’ or ‘true’ randomness.

5.1.3 Process and product randomness

The two approaches to defining a notion of randomness that we have outlined – the first

drawing on the notions of chance and unpredictability, the second on an algorithmic

notion of incompressibility – represent fundamentally different conceptual approaches.

The first seeks to formalise a notion of randomness for processes and events, while the

second defines a notion of randomness for the output (in the infinite limit) of such

processes, and is sometimes referred to as product randomness [50].

There is nonetheless a connection between these process and product notions of

randomness, since an objective probability distribution of the type present in quantum

mechanics will, with probability one, produce an algorithmically random sequence in the

infinite limit. Conversely, all algorithmically random sequences are Borel normal, and

hence fulfil the statistical predictions of a uniform distribution.7 Indeed, the Martin-Löf

formulation of algorithmic randomness shows that random sequences are precisely those

which are typical, in a formal sense, with respect to the measure in question.

7Both the notions of Martin-Löf randomness and Borel normality can be generalised to other
probability measures [2, 29], although their connection to patternlessness becomes murkier, especially
with more complicated probability measures [50].
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Both these approaches are valid, and in practice one generally wants not only an

unpredictable process generating bits, but also a patternless sequence. In cryptography,

for example, it is essential to be able to generate bits unpredictable to an adversary, and

ideally ones that are not predetermined in any way. But on the flip-side, when using

such bits, for example, as a one-time pad, one ideally wants them to be patternless.

To illustrate this point, note that even if the string of n 0s, 000 . . . 0, has the same

probability of being produced by an objective uniform probability source as any other

string of length n, namely 2−n, few people would be happy to use this string as a one-time

pad.

Thus, while unpredictability may appear the most sensible route to formalising pro-

cess randomness – and indeed it is essential if one wishes to formalise a notion of ran-

domness for individual events –, it appears that the algorithmic notion of randomness is

equally invaluable. Instead of attempting to define a unified notion of randomness, it is

perhaps more sensible to keep these two notions of randomness separate, although there

is, as discussed, a deep link between the two. Hence, one should be ever more wary of

claims of absolute randomness, and instead focus on clearly identifying which forms of

randomness are present in particular physical phenomena.

In quantum mechanics, the claims of quantum randomness focus almost uniquely

around the process notion of randomness. Since quantum value indefiniteness provides

certification of the ontological nature of the distribution specified by the Born rule,

it seems plausible that one can formalise the unpredictability this provides and hence

clarify the nature of such randomness. Nonetheless, in order to conclude that value

indefiniteness indeed certifies a form of randomness, this process of formalisation is

essential. We will return to this issue in Chapter 7, and show that, with respect to a

specific generalised model, value indefiniteness indeed leads to unpredictability. However,

we reiterate that we should not view this randomness as ‘true’ or ‘absolute’, since it does

not address the product of quantum measurements, and in the formal sense we have

discussed, true randomness is mathematically impossible.

Recently there has been a new generation of QRNGs that claim to produce ran-

domness certified in a device-independent manner by the violation of Bell inequali-

ties [105, 139]. These QRNGs rely on the violation of these inequalities to show the im-

possibility that the generated bits were predetermined classically. As such, they certify

a form of value indefiniteness, rather than randomness. Moreover, as we discussed in the

previous chapter, the violation of such inequalities only allows one to conclude value in-

definiteness under additional, although perhaps reasonable, physical assumptions. Thus,

not only is this certification necessarily relative to these physical assumptions, it can

only be seen as a form of randomness if the connection between value indefiniteness and

randomness, which we have argued is nontrivial, is better understood.
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In summary, while value indefiniteness intuitively suggests unpredictability, and

hence a form – although not an absolute notion – of randomness, such a connection

requires further clarification within a formal framework. Moreover, such certification

from value indefiniteness provides no certification of any algorithmic form of random-

ness. Thus, in order to better understand the quality of quantum randomness, we need to

look more closely at whether value indefiniteness has any connection to such algorithmic

product notions of randomness.

5.2 Incomputability of quantum random sequences

While value indefiniteness, via the Kochen-Specker theorem, gives a formal basis to the

notion of quantum indeterminism and the objective nature of the quantum probabil-

ity distribution, is it possible to use value indefiniteness to guarantee any algorithmic,

product notions of random, even to partial extent? Initially, it might seem like such

a question is futile, since, if one considers a scenario of ‘maximal misalignment’ be-

tween preparation and measurement contexts, the Born rule specifies that quantum

measurement outcomes are uniformly distributed, and hence the sequence formed by

concatenating the outputs of such measurements is, in the infinite limit, algorithmically

random with probability one. However, simply because the set of non-random sequences

has measure zero does not mean that it is impossible to obtain such sequences.

The issue of probability zero events is a particularly subtle one [159], and it is prob-

lematic to view such events as impossible, especially in infinite measure spaces. Indeed,

every individual sequence has probability zero, and yet some sequence not only can,

but must be obtained. Furthermore, under a frequentist interpretation of probability,

such an identification is problematic even for finite strings, since an event can still (even

infinitely often) occur so long as its limit frequency is zero.

It may seem like the desire to guarantee algorithmic properties of quantum ran-

domness is a moot point, since the probability zero difference between guaranteeing

their presence and the probability one assurance of their presence would seem to have

little practical benefit. However, such a result would be conceptually important in un-

derstanding the nature of quantum randomness, and would show an explicit difference

between quantum randomness and classical forms of randomness.

While we are unable to show from value indefiniteness alone that quantum random

sequences are algorithmically random – for reasons which we will discuss – we show that

they are bi-immune, a strong form of incomputability and a weaker notion of product

randomness, still beyond the reach of any classical source of randomness.
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5.2.1 Physical assumptions

As was the case with value indefiniteness, there is no absolute way to be sure that

sequences of bits generated by quantum measurements must be random, or even incom-

putable. Of course, just as for value indefiniteness, one can simply assume this to be

the case, but without further evidence this would be completely unjustified. Instead, we

must once again make some reasonable assumptions in order to proceed.

In giving a physical interpretation to the results of Theorem 34 locating quantum

value indefiniteness we made use of the EPR principle regarding the existence of def-

inite values relating to observable properties. By using the EPR principle to motive a

further physical assumption, formalising and generalising the ideas from [31], we show

that sequences produced by quantum measurements are bi-immune, a strong form of

incomputability [3].

Let us consider a system which we prepare in a quantum state |ψ〉, measure the

observable Pφ where 0 < |〈ψ|φ〉| < 1 producing a single bit, rinse and repeat in an

algorithmic fashion ad infinitum. Let x = x1x2 · · · ∈ {0, 1}ω denote the infinite sequence

produced by concatenating the outputs of these measurements. Let ri denote the physi-

cal realisation of the ith preparation of the state |ψ〉, and vi the faithful value assignment

function for ri.

If there exists a computable function f : N → {0, 1} such that, for every i, f(i) = xi,

then this function f gives an effective procedure to compute in advance the result of

each measurement. It is crucial that f be computable: there exists such a function for

any sequence of outcomes, but if it is not computable it does not give us any method

to predict its values. Furthermore, it is essential that this condition only be applied

to infinite sequences, since computability is only a meaningful concept at this infinite

limit; it is clear that any technique which allows prediction of every measurement with

certainty must also do so when the measurements are continued ad infinitum.

Thus, using the EPR assumption, we formulate the

Computable elements of reality assumption: If there exists a computable func-

tion f : N → {0, 1} such that for every i, f(i) = xi, then there is a definite value

associated with the observable Pφ measured at each step. That is, the ith realisation of

|ψ〉, ri, has vi(Pφ) = f(i) and thus Pφ is value definite for ri.

We note that the assumption above does not postulate the existence of an effective

way to find or to compute the computable function f : such a function simply exists.

Furthermore, we follow EPR in noting that this is certainly only a sufficient condition

for definite values to be present; it is by no means a necessary condition, and there may

be other perfectly reasonable conditions under which value definiteness can be deduced.

principle:epr
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5.2.2 Bi-immunity of x

Let us once more consider the infinite sequence x produced in the manner described

above by a hypothetical experiment run ad infinitum. We show that, as long as the

observable Pφ measured is value indefinite, the infinite sequence x must be bi-immune:

it can contain no infinite computable subsequence.

This result relies not only on the computable elements of reality assumption, but

also the measurement assumption, since we must assume that x is actually produced

(not that, for example, all infinite sequences are generated in different universes).

Theorem 47. Let x ∈ {0, 1}ω be an infinite sequence produced by repeated preparation of

a state |ψ〉 followed by measurement of a value indefinite observable Pφ in an algorithmic

fashion as described above. Then, assuming the measurement and computable elements

of reality assumptions, the sequence x is bi-immune

Proof. For the sake of contradiction let us assume that x as described above is com-

putable. Then, by definition, there must exist a Turing machine T (and thus a com-

putable function) that can be associated with x allowing us to predict with certainty

every value xi. From the computable elements of reality assumption, it follows that for

each realisation ri of |ψ〉, the observable Pφ is value definite under any faithful assign-

ment function vi, and that vi(Pφ) = xi. However, this contradicts directly the value

indefiniteness of Pφ, and hence x cannot be computable.

We can generalise this to show that it cannot be bi-immune either. Let us assume,

for the sake of contradiction, that x is not bi-immune, and hence contains a computable

subsequence. This means that there exists an infinite computable setA and a computable

function T : A→ {0, 1} such that, for all n ∈ A, T (n) = xn. Since A is computable, one

can perform the sub-experiment that consists of discarding each repetition i if i /∈ A;

since A is computable this is also an algorithmically performed experiment. This sub-

experiment produces precisely the computable subsequence of x as output. But as we

showed above, this is in contradiction with the value indefiniteness of the observables

measured for every repetition, and once again we arrive at a contradiction, and hence

x is bi-immune.

More importantly, using our physical interpretation of Theorem 34 stated in Propo-

sition 45, this allows us to show that, under the same physical assumptions leading to

value indefiniteness, one obtains also bi-immunity.

Corollary 48. Let x ∈ {0, 1}ω be an infinite sequence produced by repeated preparation

of a state |ψ〉 in dimension n ≥ 3 Hilbert space, followed by measurement of an observable

Pφ for |φ〉 ∈ Cn, 0 < |〈ψ|φ〉| < 1, in an algorithmic fashion as described above. Then,
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assuming the eigenstate, noncontextuality, measurement and computable elements of

reality assumptions, the sequence x is bi-immune

We note briefly that these results are more general than those proved in [31], since

they make use of the ability to locate value indefiniteness and do not require any assump-

tion about the uniformity of the bits produced. We also note once more the importance

of the physical hypotheses made. As for the interpretation and conclusion of value indef-

initeness from the Kochen-Specker theorem, the bi-immunity of quantum randomness

is necessarily relative to the physical assumptions made, and it is impossible to give an

absolute certification of such a notion of randomness.

The bi-immunity of quantum randomness we have proven is certainly a weaker notion

of product randomness than the ideal of algorithmic randomness. Bi-immunity, as a

strong form of incomputability, is independent of the physical measure, and does not

rely on the uniformity of bits generated, whereas Martin-Löf randomness does, even

though it can be formulated for different measures. Value indefiniteness, in representing

the absence of physical reality corresponding to the outcomes of measurements, is also

independent of the measure used. Indeed, if a system is prepared in a state |ψ〉, then

any observable Pφ is value indefinite as long as 0 < |〈ψ|φ〉| < 1, and hence has no

requirement that the probability of measuring a 1 be 0.5.

Thus, in order to guarantee Martin-Löf randomness, one needs something more than

value indefiniteness, a way to combine the distribution predicted by the Born rule with

the bi-immunity provided by value indefiniteness. It remains an open question to find a

way to combine these aspects of quantum mechanics in such a way as to do so.

5.3 Quantum random number generators

A lot of effort has been devoted to attempting to exploit quantum randomness in order

to generate random numbers. The classical approach to random number generation is

to use pseudo random number generators (RNGs). These are mathematical formula or,

more generally, algorithms which, starting with a small ‘random’ seed, usually extracted

from some physical or user generated data, compute a sequence of bits which appears

statistically random [140]. By their very nature, such methods are entirely deterministic:

once the initial seed is chosen the entire pseudorandom sequence is uniquely determined.

In the infinite limit, such a sequence is thus guaranteed to be computable, whereas one

would expect, with probability one, a sequence sampled from a true uniform distribution

to be algorithmically random. Furthermore, in most real cases, pseudorandom sequences

are eventually cyclic. Instead, effort is generally made to make such sequences compu-

tationally difficult to distinguish from those generated by a uniform distribution [140],
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as this provides a level of cryptographic security. Nonetheless, it is clear that although

pseudorandom sequences are designed to look random, they are not. Indeed, issues with

pseudo RNGs have led to many real-world cryptographic problems, and are increasingly

important in real-world security. While there have been some efforts to use physical phe-

nomena, such as chaotic behaviour, to produce random numbers, these have suffered

from various issues [127] and have not seen much practical success. Given the prevailing

interpretation of quantum mechanics as a fundamentally indeterministic theory, it is

thus natural to try and use quantum phenomena to address these issues; in particular

to try and build practical quantum random number generators (QRNGs).

Some early such approaches made use of the timing of radioactive decay [119], while

others have looked to make use of quantum mechanical noise in electrical circuits [120].

The majority of research, however, has focused on cleaner quantum systems, usually

photonic systems, which have simple theoretical descriptions and can be easily modelled,

allowing better control over the probability distribution produced, as well as being

capable of producing the high bitrates required in many practical applications [78].

The simplest, and perhaps most popular, approach uses beamsplitters to produce

photons in a 50-50 superposition of polarisation states, before measuring this polari-

sation using, for example, polarising beamsplitters [113, 129]. This technique has been

applied, amongst other uses, to show violation of Bell inequalities under strict local-

ity conditions [78] and as a one-time pad to encrypt sequences [143]. Many variations

have been presented, including techniques that use entangled photon pairs in order to

increase the bitrate [68] or decrease bias [55].

A particularly noteworthy example is that of Stefanov et al. [125]. Their approach,

although very simple, has led to the most successful commercial QRNG to date, Quan-

tis [76], produced by ID Quantique in Geneva. As a result, it is possible to buy and

test such devices; a detailed analysis showed some detectable correlation to be present,

apparently the consequence of poor normalisation techniques [1], although this does not

impact the quantum nature of the outcomes.

More recently there have been several devices proposed that, instead of using polar-

isation or related beamsplitter techniques to generate bits, make use of photon arrival

times [59, 126, 142, 144]. For example, by dividing time into blocks of an equal, suffi-

ciently short, period, one can assign a photon detection a 0 or 1 depending on whether

it was detected in an even or odd numbered block [48]. This method has also seen sev-

eral commercial devices [104, 112], although not (yet) with the same popular success as

Quantis.

This approach has the advantage that it allows much higher bitrates to be readily

achieved, but it sacrifices much of the theoretical clarity of the beamsplitter-based ap-

proaches. With beamsplitter-based QRNGs, one can describe simply the superposition
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of quantum states and the observable giving rise to the bits obtained upon measure-

ment. In timing-based approached, on the other hand, this is not the case: the time being

measured does not correspond to any quantum observable nor, by extension, value in-

definiteness, and instead analysis of photon statistics is generally used. As such, it is

much more difficult to identify precisely the quantum origin of the random bits, and

hence any clear theoretical certification is somewhat more difficult.

A final approach, that has a slightly different conceptual stance, is the use of Bell

or noncontextuality inequality violation in order to certify random number generation.

This was first proposed by Pironio et al. [105], and since then many further variations

have been considered [139, 141]. This approach uses pairs of particles (ideally photons,

but due to constraints in closing the detection loophole in Bell’s theorem existing imple-

mentations have sometimes used atoms in traps) and tests violation of the inequalities.

As a byproduct of the measurements made in testing the inequalities, this produces bits

much as in other QRNGs, but with the added advantage that, by ensuring the equalities

are violated, it is possible to certify that the generated bits cannot have been produced

classically.

Such an approach, although not providing a better source of quantum random bits,

allows one to verify the quantum nature of the device, which has particular relevance

in device-independent quantum cryptography, where one needs random numbers but

cannot necessarily trust the devices they have access to [105]. Technically, such results

require some initial randomness, and hence act as randomness expanders rather than

generators [40]. The violation of Bell or noncontextuality inequalities allows one to

certify the nonclassicality of the RNG, but, in order to guarantee that the numbers are

truly generated indeterministically, they require the assumption that this nonclassicality

allows us to conclude that the devices are indeed quantum mechanical, and further

that quantum measurements are indeed indeterministic, as is the case with the other

QRNGs discussed. The Bell inequality violation is indeed an important resource for

cryptography, but one must keep in mind that, as for the Kochen-Specker theorem,

this need not a priori imply the intrinsic indeterminism of the associated measurement

outcomes.

5.4 A proposed QRNG certified by value

indefiniteness

As we have shown in the previous chapter, under simple physical assumptions, it is

possible to show that almost all quantum observables are value indefinite in n ≥ 3

dimensional Hilbert space. Thus, this value indefiniteness can be used to more care-
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Figure 5.1: Experimental schema for a configuration of a quantum random number
generator producing bits certified by quantum value indefiniteness.

fully justify, or certify, the randomness produced by QRNGs. Such a certification is

not device-independent, but instead a form of certification that allows us to explain

more precisely the advantage of QRNGs, and why they indeed are not bound to pro-

duce computable, pseudorandom sequences like classical devices. This complements, not

contradicts, device-independent certification.

Unfortunately, most of the QRNGs proposed thus far operate in two-dimensional

Hilbert space, where Theorem 34 does not apply. Furthermore, the timing-based schemes

do not allow one to easily attribute the bits to value indefinite observables.

Here we propose a schema for a simple, optical QRNG, operating in three-

dimensional Hilbert space and hence certified by value indefiniteness.

5.4.1 Experimental schema

Figure 5.1 shows the conceptual schema for the proposed QRNG. Spin-1 particles are

prepared in the Sz = 0 state, and then the incompatible Sx observable is measured. Since

〈Sz = 0|Sx = 0〉 = 0 and 〈Sz = 0|Sx = ±1〉 = 1√
2
, measurement of the Sx observable

will yield the values ±1 with probability 0.5 each, and 0 with probability zero. By the

eigenstate assumption, since the |Sz = 0〉 state is an eigenstate of the Sx observable, the

PSx=0 observable is value indefinite and hence we cannot obtain the outcome 0 in the

ideal case, a stronger statement than this merely being true with probability zero.

Since the proposed setup uses spin-1 particle, it operates in a three-dimensional

Hilbert space. Despite this, the construction ensures that the measured value is nonethe-

less a binary, rather than tertiary value, as is usually desired in RNGs. As a result of

this dimensionality, the system is guaranteed to contain value indefiniteness as a re-

sult of Proposition 45, and in particular, since 〈Sz = 0|Sx = ±1〉 = 1√
2
, the projec-

tion observables PSz=±1 are value indefinite under any faithful value assignment func-

tion. Since Sx can, by the Spectral Decomposition theorem [130], be decomposed as

Sx =
∑

a∈{−1,0,+1} PSx=a, Sx is similarly value indefinite, and hence the measurement

produces a result of ±1 which cannot have been determined prior to measurement, that
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is, indeterministically.

Thus, rather than assuming the measured observables are value indefinite, as is the

case with most existing systems operating in a two-dimensional Hilbert space, for our

proposed schema this can be based on the eigenstate and noncontextuality assumptions

used to interpret Theorem 34. As a result, the bits produced by this QRNG design are

certified by quantum value indefiniteness in a way not possible with existing proposals.

5.4.2 Robustness to misalignment

Before we proceed to describe a possible explicit realisation of the QRNG outlined above,

we wish to briefly make a couple of points on the robustness of this certification by value

indefiniteness to experimental imperfections.

We can describe the measurement context more generally by the spin observable

S(θ, ϕ), where θ and ϕ are the polar and azimuthal angles respectively, and we thus

have Sx = S(π/2, 0) and Sz = S(0, 0). Explicitly, using the standard orthonormal Sz
basis with |Sz = +1〉 = (1, 0, 0), |Sz = 0〉 = (0, 1, 0), and |Sz = −1〉 = (0, 0, 1), this

operator is represented in matrix form as

S(θ, ϕ) =









cos(θ) e−iϕ sin(θ)√
2

0
eiϕ sin(θ)√

2
0 e−iϕ sin(θ)√

2

0 eiϕ sin(θ)√
2

− cos(θ)









. (8)

Misalignment and imperfection in an experimental setup will, in general, lead to angles

θ and ϕ differing slightly from π/2 and 0 respectively. While a change in ϕ only induces

a phase shift and does not alter the probability of measuring any particular eigenvalue,

a change in θ will alter the probabilities of detection.

A detailed calculation (e.g., by diagonalising S(θ, ϕ) to find its eigenvalues) finds

that in general we have

|S(θ, ϕ) = +1〉 =
(

e−2iϕ cos2
θ

2
,
e−iϕ sin θ√

2
, sin2 θ

2

)

,

|S(θ, ϕ) = −1〉 =
(

e−2iϕ sin2 θ

2
,
e−iϕ sin θ√

2
, cos2

θ

2

)

,

and hence

|〈Sz = 0|S(θ, ϕ) = ±1〉| = sin θ/
√
2,

meaning that the probability of obtaining a +1 or −1 when measuring the Sx observable

remains equal even when θ is not exactly π/2. Thus, if we discard any outcomes of 0

and identify +1 and −1 with 0 and 1 respectively, the sequence generated should obey

a uniform distribution even when this misalignment is present.
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Although there are bound to be other experimental imperfections which will lead

to bias in any actual experimental implementation, this eliminates one major source of

bias, in effect converting the misalignment into a loss of efficiency (since we discard the

measurements yielding 0, which should theoretically never occur) instead of bias. This

is in distinct contrast to setups based on single beamsplitters, in which misalignment

introduces bias into the distribution of bits [1, 28]. Furthermore, this misalignment does

not affect in any way the certification by value definiteness: unless the misalignment is

maximal (in which case no bits will be produced anyway), the conditions of Theorem 34

will be satisfied.

5.4.3 Proposed realisation using generalised beamsplitters

Since it is not particularly feasible to directly use spin-1 particles in a QRNG with an

acceptably high bitrate, we present an outline of a possible realisation using photons that

is expressed in terms of generalised beamsplitters [114, 164]. Generalised beamsplitters

are based on the possibility to decompose an arbitrary unitary transformation Un on n-

dimensional Hilbert space into two-dimensional transformations U2 of two-dimensional

subspaces thereof, a possibility that can be used to parametrise U(n) [95]. In more

physical terms, they amount to serial stacks of phase shifters and beamsplitters in the

form of an interferometer with n input and output ports such that the beamsplitters

act on only two (sub-)paths each, which, together with the phase shifters (affecting

single paths at any one time), realise the associated transformations in U(2). These

components can be conveniently arranged into ‘triangle form’ with n in- and out-bound

beam paths.

In order to realise an arbitrary spin observable S(θ, ϕ), the eigenvectors of the cor-

responding matrix given in (8) form the rows of a unitary matrix which is decomposed

into U(2) matrices and can be implemented with beamsplitters and phase shifts [114].

In particular, let us consider the Sx observable, that is, the specific case of θ = π
2

and

ϕ = 0. We then have

Sx = S (π/2, 0) =









0 1√
2

0
1√
2

0 1√
2

0 1√
2

0









with the associated normalised eigenvectors

|Sx = +1〉 = 1
2

(

1,
√
2, 1
)

,

|Sx = 0〉 = 1√
2
(1, 0,−1) ,

|Sx = −1〉 = 1
2

(

1,−
√
2, 1
)

.
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These are used to form the rows of the unitary matrix Ux given by the matrix

Ux =
1

2







1
√
2 1√

2 0 −
√
2

1 −
√
2 1






.

While many variations on unitary matrix representations for beamsplitters exist [32,

67, 114, 160], without loss of generality we can represent an arbitrary U(2) matrix

realised by a beamsplitter and external phase shift as
(√

T ieiφ
√
R

i
√
R eiφ

√
T

)

,

where φ represents the phase of an external phase shifter on the second input port, and

T,R ∈ [0, 1] are the transmittance and reflectance of the beamsplitter respectively (with

R + T = 1). The beamsplitter arrangement to realise Ux can be found by transforming

Ux into the identity matrix I3 by successive right-multiplication by adjoints of U(2)

matrices of the above form – each one making an individual off-diagonal element equal

to zero – followed by a final set of phase shifters [114].

In our specific case, we have
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= Ux.

This corresponds to three beamsplitters with transmittances T3,2 = T2,1 = 1
3
, T3,1 = 3

4
,

and phases φ3,2 = φ2,1 = −π/2, φ3,1 = π, where Ti,j and φi,j are the parameters for the

beamsplitter operating on beams i and j (beams 1,2,3 correspond to Sz = +1, 0,−1

respectively). Two final phase shifts of −π/2 are needed on beams 2 and 3. The physical

realisation of Ux is depicted in Fig. 5.2.

This setup is equivalent to the spin-1 schema certified by value indefiniteness that is

illustrated in Fig. 5.1. This possible realisation with beamsplitters shows that, although

needing a three-dimensional system such as a spin-1 particle in order for Kochen-Specker

type theorems to apply and thus provide certification via value indefiniteness, these

systems can be implemented with readily available optical methods, rather than careful

control of spin-1 particles or atoms, greatly improving the bitrate of such devices [35].

Such a beamsplitter implementation, however, unfortunately means that the robustness

to bias discussed in the previous section will not hold exactly, since bias at individual

beamsplitters may lead to an observable not of the form S(θ, ϕ) being implemented

exactly. However, there exist many unbiasing techniques which can be used to remove

bias in such generated streams of bits [1, 2].
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Figure 5.2: Configuration of a QRNG with a preparation and a measurement stage,
including filters blocking |Sz = +1〉 and |Sz = −1〉. (For ideal beam splitters, these filters
would not be required.) The measurement stage (right array) realises a unitary quantum
gate Ux, corresponding to the projectors onto the Sx state observables for spin state
measurements along the x-axis, in terms of generalised beamsplitters.

Not only is this proposed QRNG certified by value indefiniteness, and thus the bits

generated do not correspond to any property existing prior to their generation, as a

result of Theorem 47, in the infinite limit, such a device can be guaranteed to produce

a bi-immune sequence. Although this is only a limit property, and hence offers perhaps

little practical benefit, it highlights the difference between such a device certified by

value indefiniteness and pseudo RNGs, which are guaranteed to produce computable

sequences in the infinite limit.



Chapter 6

Concepts and models of

unpredictability

In this chapter, we work towards formalising a framework of (un)predictability which

can be used to assess the (un)predictability of arbitrary physical experiments. We first

review various notions of unpredictability across several domains: physical and dynami-

cal unpredictability, algorithmic notions of unpredictability, and finally a computational

notion based on irreducibility. We then review previous work on generalised models of

unpredictability, before motivating and formalising a new model based around the abil-

ity for a predicting agent to effectively predict the outcome of experiments using finite

information extracted from the system and its environment.

6.1 Physical unpredictability

When we think of unpredictable events in classical physics, perhaps the first such events

that come to mind are the archetypical ‘random’ events: the toss of a die or the flip of a

coin. Why are these events considered to be unpredictable? After all, the trajectory of a

coin is governed by Newtonian mechanics and is hence uniquely determined the instant

it is released by the precise initial conditions. The unpredictability arises not because

of any indeterminism, but as a result of two critical facts.

1. Measurement: we can only ever measure an approximation of the precise initial

conditions;

2. Sensitivity: the dynamics are sufficiently sensitive to the initial conditions that

the approximation garnered by measurement is not good enough for us to predict

81



82 Chapter 6. Concepts and models of unpredictability

the outcome from.

The dependence on the accuracy of measurement of such events was exemplified

by a clever experiment by Diaconis et al. [46] who, by carefully controlling the initial

conditions, produced perfectly predictable coin flips.

These examples may not be the best examples of classical unpredictability from a

technical point of view, but they serve to outline the main contributing factors, which

we will now discuss in more detail.

6.1.1 Intervals of measurement

In classical mechanics the state of a dynamical system is represented by a point in the

pertinent phase space, which can be mathematically represented as a point in Rn, where

n is the number of degrees of freedom of the system. While such a point determines, via

the dynamical equations, the trajectory of the system in phase space, it is impossible to

know precisely what the state of the system actually is. This follows from the realisation

that any physical measurement can only ever yield a rational number, or, equivalently, an

interval specifying a continuous range of possible values. This corresponds to determining

a region of phase space of non-zero measure containing the point representing the state

of the system.

This limitation of measurement is somewhat self evident and had been long under-

stood. However, its implication for unpredictability was not recognised until Poincaré,

in his famous work on the three-body problem, realised that [107]

it may happen that slight differences in the initial conditions produce very

great differences in the final phenomena; a slight error in the former would

make an enormous error in the latter.

Hence, the uncertainty introduced by the unavoidable imprecision of measurement can

lead to much greater uncertainty and, ultimately, unpredictability – a phenomenon that

Poincaré saw as randomness.

It is important that this role of measurement imprecision not be seen merely as

a practical limitation. Although such unpredictability results from an epistemic lack

of information, it should nonetheless be seen as a fundamental feature of the theory

due to this unavoidable physical role of measurement [85]. Rather, this emphasises that

predictability is ‘means-relative’ in the sense that the degree or scale of unpredictability

depends on the abilities of the predicting agent [96].
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6.1.2 Dynamical chaos

A particularly important example is that of systems that exhibit dynamic chaos, which

include the three-body problem. Indeed, Poincaré was the first to demonstrate that some

systems may be not admit analytic solutions and instead exhibit exponential sensitivity

to initial conditions [85], and as a result the fundamental interval of measurement around

the initial conditions blows up to impair prediction. However, this was followed up by

many others including Turing, who described how the ‘displacement of a single electron

by a billionth of centimetre at one moment might make the difference between a man

being killed by an avalanche a year later, or escaping’ [137, p. 440], and later Lorenz,

with the better known ‘butterfly effect’ [86], eventually leading to the notion of chaos

being more rigorously formalised. Indeed, in some cases it is not only that the solutions

to the dynamical equations diverge exponentially fast, but that such analytic solutions

do not exist at all [84].

6.1.2.1 Defining Chaos

The notion of chaos tries to capture two main intuitive concepts [146]:

1. Sensitive dependence on initial conditions;

2. Irregular behaviour that ‘mixes’ trajectories.

The first point is natural based on our previous discussion. The second point, on the

other hand, while more subtle is necessary to intuitively capture chaos: the doubling

of a real number, for example, exhibits sensitive dependence on initial conditions, since

the difference between two close numbers will grow exponentially fast, but this lacks the

complexity and unpredictability intuitively necessary for chaos.

Several different approaches to formalising these notions have been proposed [88],

but perhaps the most accepted definition is due to Devaney [45].8

Definition 49. A dynamical system is chaotic (in the sense of Devaney [45]) if:

1. It exhibits sensitive dependence on initial conditions: arbitrarily close points even-

tually diverge as the system evolves;

2. The system is topologically transitive: any approximation of a point in phase space

contains points whose trajectories will enter every other region of phase space;

3. The set of periodic points is dense in the phase space.

8We refer the reader to [45] for formal definitions. We outline only roughly these notions, since we
will not need them in any technical detail.



84 Chapter 6. Concepts and models of unpredictability

The third condition enforces a certain degree of stability in the system, and has

little relevance to unpredictability. Indeed, some definitions of chaos leave out this con-

dition [88].

The condition of topological transitivity, sometimes called topological mixing, is,

however, crucial. It shows that, given an approximation of the initial conditions, after

a long enough period of time, the system could be anywhere in the phase space. That

is, the approximation is useless for prediction too far into the future.

A final property often related to chaos is that of (weak) mixing, which differs slightly

from topological mixing. Mixing requires that the set of possible initial conditions con-

tained within a specific interval or region of phase space spread out evenly across the

phase space (in a specific measure theoretical sense) as time tends to infinity. Although

mixing turns out not to be a sufficient nor a necessary condition for chaos as defined

above, some authors have argued that is constitutes an appropriate definition of chaos

by itself [146].

6.1.2.2 Properties of chaotic systems

One important feature of these notions of chaos is that they are all limit properties [98].

That is, it is only in the limit of infinite time that their chaoticity is fully expressed.

Nonetheless, for any approximation of the initial conditions, this means that after long

enough times the properties of chaos will be expressed more and more fully, and thus

lead to finite limits on prediction.

It would perhaps seem prima facie that chaos has little or no non-trivial relation

to algorithmic notions of randomness – indeed, one can have completely computable

chaotic systems [148]. Surprisingly, however, there are some nontrivial connections of

interest. If one considers suitably effectivised dynamical systems9 that exhibit weak mix-

ing then the typical points for the dynamics are precisely the Schnorr random points

(a form of algorithmic randomness weaker than, but closely related to, Martin-Löf ran-

domness) [60]. In this context, typical points are those which obey a kind of ergodic

property, and thus are precisely those expressing the ‘mixing’ within the system.

In these systems, the Schnorr randomness of this measure-one set of points within

the phase space plays an essential role in the mixing behaviour of the system, a property

often associated with unpredictability.

6.1.3 Dynamical unpredictability

Unpredictability in classical systems arises not as a result of either the approximation of

initial conditions or of chaotic dynamics, but rather because of the interaction between
9Specifically, the dynamics should be computable and and take place in a computable metric space.
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these two things [85, 146]. That is, the fact that any measurement necessarily results

in an interval approximating the state of the system, and this uncertainty in the initial

conditions is then blown up in a way that prohibits prediction. Furthermore, this fun-

damental approximation means that if we repeat the experiment we can do no better

than to ensure the initial conditions are the same up to our limit of approximation. As

a result, if we repeat the experiment with the same approximated initial conditions, the

outcome of the experiment will in general be different, since the precise initial conditions

would differ.

There is one further, related, element contributing to unpredictability, which is the

fact that no real system is ever perfectly isolated. Thus, in addition to the uncertainty

inherent in any measurement of the initial conditions of a system, there is a further

uncertainty affecting the dynamics resulting from external effects that are not accounted

for within the formal model of the system. For example, the gravitational effect of an

electron far outside the solar system, although minuscule, is large enough to alter the

dynamics of molecules (or even billiard balls) bouncing chaotically on earth in a way

that, as a result of the extreme sensitivity of chaos, produces noticeable effects after a

short period of time [117].

One normally ignores such effects since they are much harder to formally model

than sensitivity to initial conditions, and the interaction alone between chaos and ap-

proximate measurement is generally sufficient, if not the dominant effect, to explain the

unpredictability in real systems. However, in more complicated systems, such as bio-

logical ones, this effect is perhaps as, if not more, important in explaining the manifest

unpredictability.

6.2 Algorithmic notions of unpredictability

The physical notions of unpredictability discussed in the previous section present a

process-based approach to analysing the unpredictability of particular physical systems.

In other words, this approach is centred around the dynamics of particular systems.

In contrast, computability theory concerns the properties of finite or infinite se-

quences of bits, and allows us to ask, for example, whether particular infinite sequences

are computable or not – a fixed, non-dynamical, property of a particular sequence [29].

Nonetheless, such properties can be viewed in the context of (algorithmic) unpredictabil-

ity, since a Turing machine is perhaps the most general notion of an effectively pre-

dictable process. Thus, the very fact that there are incomputable sequences indicates,

perhaps, the existence of absolutely (as opposed to within a particular theory describing

a system) unpredictable phenomena. The field of algorithmic information theory allows
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for further, more careful analysis, as it formalises various levels of unpredictability and

notions of algorithmic randomness [47].

In this section, we will look more closely at several algorithmic notions of unpre-

dictability and the relation between them, and discuss the extent to which they really

capture the notion of unpredictability.

6.2.1 Incomputability, bi-immunity and Martin-Löf

randomness

The computability of an infinite sequence clearly represents a form of predictability,

since it implies the existence of a deterministic Turing machine capable of methodically

computing, or predicting, every bit that will appear in the sequence. Incomputability,

however, falls short of guaranteeing any real unpredictability, since an incomputable

sequence can contain extremely regular behaviour. For example, one can have every even-

positioned bit a 0, a simple, infinite, computable pattern within a possibly incomputable

sequence. Thus, it seems we need substantially more to consider an infinite sequence

unpredictable.

Bi-immunity is a much stronger form of incomputability (indeed it represents a form

of maximal incomputability, although not maximal information content or randomness),

and appears a more promising candidate for unpredictability. Recall that an infinite

bit-sequence is bi-immune if it contains no infinite computable subsequence. Note that

the definition requires not only that there is such an infinite subsequence, but that

one can compute also its location within the sequence. If this were not the case, any

sequence with infinitely many 0s (and thus all incomputable sequences) would contain

the computable subsequence 000 . . . ; instead we must be able, for example, to compute

the positions of these 0s.

Bi-immunity addresses most of the issues with viewing incomputability alone as

unpredictability, since we can only compute or know in advance finitely many bits

within the sequence. However, some intuitively predictable sequences are nonetheless bi-

immune, such as the sequence produced by doubling each bit in a bi-immune sequence.

Proposition 50. Let x = x1x2 · · · ∈ {0, 1}ω be a bi-immune sequence. Then the se-

quence y = x1x1x2x2 . . . is also bi-immune.

Proof. Let us assume, for the sake of contradiction, that y = x1x1x2x2 . . . = y1y2y3y4 . . .

is not bi-immune. Then, from the definition of bi-immunity, there exists an infinite

computable set K ⊂ N+ and a computable function f : K → {0, 1} such that for all

k ∈ K, f(k) = yk.
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Since K is infinite, either K0 = K ∩ {n ∈ N | n mod 2 = 0} or K1 = K ∩ {n ∈
N | n mod 2 = 1} is infinite, since K = K0 ∪K1; further both K0 and K1 are clearly

computable.

If K0 is infinite then, for all k ∈ K0, f(k) = yk = xk/2 by the construction of

y. Thus, if we choose K ′
0 = {k/2 | k ∈ K0}, and let f0 : K ′

0 → {0, 1} be defined

as f0(k) = f(2k) = y2k = xk we see that K ′
0 and f0 define an infinite computable

subsequence in x, contradicting the bi-immunity of x.

Similarly, if K0 is finite and hence K1 is infinite, we proceed as follows. Note that,

for all k ∈ K1, f(k) = yk = x(k+1)/2 by construction of y. Thus, if we choose K ′
1 =

{(k+1)/2 |∈ K1}, and let f1 : K ′
1 → {0, 1} be defined as f1(k) = f(2k−1)y2k−1 = xk we

see that K ′
1 and f1 define an infinite computable subsequence in x, again contradicting

the bi-immunity of x.

Note that we do not need to be able to determine which of K0 and K1 is infinite, it

suffices to know that one of them is.

Bi-immune sequences can, as we also mentioned in the previous chapter, still contain

statistical bias – for example, more 0s than 1s, or in the case of the sequence above, no

01s or 10s – as these need not introduce incomputability in a sequence. However, this is

not necessarily a barrier for unpredictability, especially in any objective sense, since such

a bias does not allow us to ‘say in advance’ with any certainty the values of particular

bits. Nonetheless, the issue shown in Proposition 50 does need to be addressed, and

means bi-immunity also falls short of being a satisfactory notion of unpredictability for

sequences.

One possible, extreme, approach is to consider Martin-Löf randomness. Recall that a

sequence x is Martin-Löf random if all prefixes x↾n for n ≥ 1 cannot be compressed by

more than a fixed constant by a universal prefix-free Turing machine. Martin-Löf random

sequences thus contain no ‘algorithmic’ patterns that can be used to compress them.

Such patterns could be seen as a form of predictability, so in this sense such random

sequences are indeed intuitively unpredictable. However, this notion might be too strong,

since it considers even very weak statistical patterns as a form of predictability, even

when they do not allow any bit to be known in advance. It does, however, address the

types of issues illustrated in Proposition 50.

6.2.2 Tadaki unpredictability

In this section, we present a further notion that represents a good compromise between

bi-immunity and Martin-Löf randomness as a candidate for a form of algorithmic pre-

dictability with certainty, due to Tadaki [134].
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Definition 51. An infinite sequence of bits x = x1x2 · · · ∈ {0, 1}ω is Tadaki predictable

(or total strongly predictable, in Tadaki’s terminology) if there exists a Turing ma-

chine F : {0, 1}∗ → {0, 1,W} that halts on every input, and satisfies the following two

conditions:

(i) for every n, either F (x↾n) = xn+1 or F (x↾n) = W ;

(ii) the set {n ∈ N+ | F (x↾n) 6= W} is infinite.

F is called a Tadaki predictor for x.

If a sequence x is not Tadaki predictable, we say it is Tadaki unpredictable.

As with incomputability, by varying the strength of effectivity endowed upon the

predictor, one can strengthen or weaken the notion of unpredictability. While the notion

presented is perhaps the most natural, this can be put into practice more generally. For

example, one could consider the predictive power of finite state transducers [134], or at

the other extreme, of predictors with access to incomputable oracles [47]. However, the

Church-Turing thesis [42] privileges the computational model of Turing machines (and

all other equivalent models), and thus the notion of Tadaki predictability is perhaps

the most reasonable if one wishes to form a realistic, absolute notion of algorithmic

unpredictability.

Tadaki predictability can be related to the various other algorithmic notions of un-

predictability we have discussed. Perhaps most importantly are the following two results.

Theorem 52 (Tadaki, [134, Theorem 4]). If x ∈ {0, 1}ω is a Martin-Löf random se-

quence, then x is Tadaki unpredictable

Theorem 53. If x ∈ {0, 1}ω is not bi-immune, then x is Tadaki predictable.

Proof. Assume, for the sake of contradiction, that x is not bi-immune. Then there is an

infinite computable set K ⊂ N+ and a computable function f : K → {0, 1} such that

for all k ∈ K, f(k) = xk. Hence, for a string y ∈ {0, 1}∗ the function

F (y) =







f(|y|+ 1) = x|y|+1, if |y|+ 1 ∈ K,

W, otherwise,

is a Tadaki predictor for x.

Furthermore, the notion of Tadaki unpredictability is strictly stronger than bi-

immunity, since there exist bi-immune, Tadaki predictable sequences.

Fact 54. There exists a sequence x ∈ {0, 1}ω such that x is bi-immune and Tadaki

predictable.
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Proof. Let x = x1x2 . . . be a bi-immune sequence. As we showed in Proposition 50,

the sequence y = y1y2 · · · = x1x1x2x2 . . . created by doubling the bits of x is also bi-

immune. However, y has a Tadaki predictor F defined for all z = z1 . . . zn ∈ {0, 1}n
as

F (z1 . . . zn) =







zn, if n is odd,

W, if n is even,

since this correctly predicts the value of every bit at an even position in y.

This final result shows that Tadaki predictability addresses the issue we raised in

Proposition 50, and such intuitively predictable but strongly incomputable sequences

are indeed predictable with respect to this notion.

While classical notions of randomness such as Martin-Löf randomness are measure

dependent (i.e., in general if a sequence x ∈ {0, 1}ω is random with respect to a measure

µ, it will not be random with respect to a different measure µ′), this is, as we saw also

for bi-immunity, not the case for Tadaki unpredictability.

Before we prove this, let us recall that a Bernoulli measure µp with heads probability

p is the function µp : FB → [0, 1] (where FB is the Borel algebra on {0, 1}ω) defined for

x ∈ {0, 1}∗ as µp([x]) = p#0(x)(1− p)n−#0(x), where #0(x) is the number of 0s in x. We

will also make use of the Martin-Löf-test formulation of randomness from Definition 18.

Theorem 55. Let p be a computable real with 0 < p < 1, and let µp be the Bernoulli

measure with heads probability p. If x ∈ {0, 1}ω is µp-Martin-Löf random then x is

Tadaki unpredictable.

Proof. Without lack of generality we assume p > 0.5. (The case of equality is covered

by Theorem 52.)

Let us assume for the sake of contradiction that x = x1x2 . . . has a predictor F . Let

m ∈ N be large enough that m ≥ −1
lg p

.

Let us define the function g : {0, 1}∗ → N for y = y1 . . . yn ∈ {0, 1}∗ as

g(y1 . . . yn) = |{i < n | F (y1 . . . yi) = yi+1}| ,

which counts the number of bits in y that F correctly predicts.

Next, for each k ∈ N+ let Vk ⊂ {0, 1}∗ be the set

Vk =
{

y ∈ {0, 1}∗ | g(y) = mk, F (y1 . . . y|y|−1) = y|y|
}

.

For every string y ∈ Vk, F predicts exactly mk bits of y, including the last bit. Note

that Vk is a prefix-free set: if there exist strings y, z ∈ Vk with |y| > |z| and [y] ⊂ [z]

then we must have g(z) > g(y), a contradiction with the definition of Vk.
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We introduce the notation iyj = min{ℓ | g(y1 . . . yℓ) = j} for y ∈ Vk, so iyj is the index

of the jth digit in y predicted by F .

Finally, we let

Uk =
{

y1 . . . yiy1−1z1yiy1+1 . . . yiy
mk

−1zmk | y = y1 . . . yuy
mk

∈ Vk, z ∈ {0, 1}mk
}

,

formed by replacing the predicted bits yiy1 . . . yiymk
by all strings z ∈ {0, 1}mk. Note that

Vk ⊂ Uk and that Uk is also a prefix-free set since for any two strings u1, u2 ∈ Uk with

u1 6= u2 either u1 and u2 are both formed from the same string y ∈ Vk, in which case

|u1| = |u2| and it is clear that [u1] ∩ [u2] = ∅, or they are formed from different strings

y1, y2 ∈ Vk, in which case it follows from the prefix-freeness of Vk that [u1] ∩ [u2] = ∅.
We will show that µp([Vk]) ≤ 2−k for all k ≥ 1 and hence the Vk form the sections

of a µp-Martin-Löf test V . We have

µp([Vk]) =
∑

y∈Vk

µp([y])

=
∑

y∈Vk

µp([y1 . . . yiy1 . . . yi
y
mk
])

=
∑

y∈Vk

µp([y1 . . . yiy1−1yiy1+1 . . . yiy2−1yiy2+1 . . . yiy
mk

−1])µp([yiy1 . . . yi
y
mk
])

=
∑

y∈Vk

∑

z∈{0,1}mk

µp([y1 . . . yiy1−1z1yiy1+1 . . . yiy
mk

−1zmk])µp([yiy1 . . . yi
y
mk
]),

where the first step follows from the prefix-freeness of Vk and the additivity of µp over

disjoint subsets. Note that for all y ∈ {0, 1}∗, µp([y]) ≤ p|y| since we assumed p > 0.5

(for p < 0.5 we simply interchange heads and tails probabilities). Hence, we have

µp([Vk]) ≤ pmk
∑

y∈Vk

∑

z∈{0,1}mk

µp([y1 . . . yiy1−1z1yiy1+1 . . . yiy2−1z2yiy2+1 . . . yiy
mk

−1zmk])

= pmkµp([Uk])

≤ pmk,

where the final two steps follow from the prefix-freeness of Uk and the facts that [Uk] ⊂
{0, 1}ω and µp({0, 1}ω) = 1.

Since we chose m such that m ≥ −1
lg p

we thus have

µp([Vk]) ≤ pmk

≤ p
−k
lg p

≤ plogp(2
−k)

≤ 2−k.
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It is clear that the sets Vk are computable since F is computable, and hence they

form the sections of a µp-Martin-Löf test V = {(y, k) | y ∈ Vk}. Finally, it is easy to see

that x ∈ [Vk] for all k since there are infinitely many n such that F (x ↾ n) = xn+1 by

the assumption of Tadaki predictability.

But this shows precisely that {x} is µP -Martin-Löf null and hence that x is not

µp-Martin-Löf random, a contradiction. Thus, we must conclude that x is not Tadaki

predictable.

This result clearly shows that the unpredictability is independent of the measure

used, and does not guarantee any statistical uniformity, as was also the case for bi-

immunity. This is not unreasonable, since predictability relates to whether or not we

can predict a particular bit, not necessarily how well we can guess it. For example, even

though a biased sequence resulting from a loaded coin (say, containing in the limit 1/3

heads) is an atypical sequence to be produced by a biased coin, it is still not predictable

in that we still have no way of knowing for sure the outcome of any individual flip of

the coin.

6.3 Computational irreducibility

The concept of computational irreducibility (CIR) was proposed by Wolfram and elab-

orated in detail in A New Kind of Science [151, Sec. 6]. Combining both computational

and dynamical approaches, it takes a rather different approach to understanding un-

predictability, proposing that it results from the inability to describe certain dynamics

simply. Such an approach is interesting and sufficiently different from the physical and

algorithmic approaches to unpredictability we have discussed in the preceding sections

to warrant further investigation.

In this section we will briefly overview the notion of computational irreducibility,

before discussing some different approaches to providing a more formal basis to the gen-

erally informal concept. We will then discuss whether CIR indeed presents a reasonable

explanation for unpredictability, ultimately concluding that, although containing some

interesting features, it fails to account for several important aspects of unpredictability.

Nonetheless, by examining it in some detail we can gain a better understanding of what

elements are essential for a generalised model of unpredictability.

6.3.1 An overview of computational irreducibility

Computational irreducibility is a property of the dynamics of a particular computational

system – its computational dynamics – and attempts to capture the idea that a compu-
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(a) (b)

Figure 6.1: Two elementary cellular automata, corresponding to rules 60 and 30, respec-
tively, with a single black cell initial state. The first shows reducible behaviour, while
the second is presumed to be computationally irreducible: there seems no easy way to
determine the nth state other than computing the ECA dynamics shown.

tation may be irreducible in the sense that there is no way to ‘shortcut’ it: in order to

determine the nth state of the system we have to simulate its dynamics, computing the

intermediate states in doing so. To quote Wolfram, ‘the behaviour of such systems may

in general be determined in detail essentially only by explicit simulation of their time

evolution’ [149, p. 31]. Thus, CIR views unpredictability as arising from the fact that,

in order to predict the behaviour of certain systems, we can do no better than simply

letting them evolve, and hence cannot predict their behaviour in advance.

Computational irreducibility is perhaps most clearly illustrated in the domain of

cellular automata in which it was originally introduced, and we will mostly restrict

our discussion to this context. One-dimensional cellular automata consist of a one-

dimensional array of cells, each of which can be in finitely many states, and at each

time-step the cells are updated based on fixed rules that depend only on a finite set of

neighbouring cells. A particularly important class of cellular automata is the two-state

‘elementary’ cellular automata (ECA), for which the state of each cell is updated based

on its own state and the states of its two neighbours. In Figure 6.1 we show two such

ECA. In Figure 6.1(a) the dynamics are relatively simple, and it is possible to compute

the nth state with a very simple algorithm (by taking the parity of the numbers in the

nth row of Pascal’s triangle) meaning its evolution is readily predictable. In contrast,

the dynamics of the ECA in Figure 6.1(b) are much more complicated, and it does not

seem possible to give any such formula in this case. Furthermore, there seems to be no

way to even compute the nth state without ‘following the dynamics’ and computing the

n− 1 preceding states, and its dynamics thus seem somewhat unpredictable.

This notion can, of course, be extended to the dynamics of other forms of com-
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putation, but the interest in CIR goes beyond cellular automata and Turing machine

computations. Wolfram, and more generally the digital physics community, see all real

processes, be they physical, biological, etc., as computational, and CIR is seen as partic-

ularly relevant under this viewpoint. This is especially the case given one of Wolfram’s

other key conjectures: the principle of computational equivalence, which states that al-

most all computational processes are universal, and thus of equivalent computational

power [151]. Thus, he claims, CIR is not merely an interesting concept, but a ubiquitous

one with deep consequences. In particular, if CIR is a common feature of phenomena

in the natural sciences, he claims that this could have profound effects on our ability

to understand and predict scientific phenomena, since science traditionally searches for

exactly the kind of simple descriptions that CIR denies [151] in order to describe and

predict the behaviour of systems.

6.3.2 Formalising computational irreducibility

Despite these bold claims regarding CIR there is a lack of formal work on CIR, and

in particular the concept lacks a rigorous definition, with Wolfram and others [13, 77]

switching between related, but not quite consistent, informal definitions of CIR. Even if

CIR is to be investigated via the experimental approach to mathematics that Wolfram

advocates, a rigorous definition is undoubtedly needed. It is only with such a defini-

tion that the consequences of CIR can be more carefully understood and investigated,

whether formally or experimentally.

We can group the various informal uses of CIR in the literature into the following

three informal definitions of varying strength.

1. A computational system is CIR if there is no closed-form formula describing the

nth state of the system as a function of its initial state.

2. A computational system is CIR if it is impossible to compute the nth state of the

system more efficiently than by computing the dynamics of the system.

3. A computational system is CIR if it is impossible to compute the nth state of the

system without following the same computational path as the dynamics of the

system.

It is relatively clear that these notions are not equivalent, although they certainly are

related to some extent.

If the concept is to be more formally studied it is necessary to decide which of

these informal concepts should be formalised. Such a decision depends not only on the
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intuitive concept that one wishes to capture, but equally on the need to ensure that the

concept is mathematically robust.

6.3.3 CIR, closed-form solutions and unpredictability

By definition, computational systems such as ECA are completely deterministic: just

as for classical (physical) dynamical systems, the dynamics are uniquely determined by

the initial conditions. As we saw in our discussion of chaotic systems, however, this does

not necessarily preclude unpredictability.

The notion of a closed-form solution, however, is not so well defined for discrete

computational systems. Whereas the differential equations of some classical systems

have no closed-form solution, the computability of computational systems means there

is always a computable function giving the nth state of the system. This approach to

CIR thus appears problematic to formulate well. One may require that there exist no

functions computing the nth state in a time scaling as a (polynomial) function of log n

– that is, the number of digits in n – as opposed to n, but immediately this restricts the

notion of CIR somewhat.

Since we are interested specifically in unpredictability, it is important to look at the

extent to which this formulation of CIR implies unpredictability, particularly given that

this is one of the key claims of the proponents of CIR. The non-existence of closed-form

solutions is often associated with dynamical chaos and unpredictability, although it is

not a requirement of chaos. Indeed there exist chaotic systems that do permit closed

form solutions [64]. For example, the logistic map for µ = 4 given by xn+1 = µxn(1−xn)
with a seed x0 ∈ (0, 1) is chaotic but has the closed form solution

xn =
1

2

(

1− cos
[

2n cos−1(1− 2x0)
]

)

.

With this particular example, as for other chaotic systems, unpredictability is still

present as a result of the sensitivity to the initial conditions, which renders the uncer-

tainty yielded from the closed-form solution too large to give meaningful predictions.

With computational systems, however, the discreteness plays a critical role [12], elim-

inating this sensitivity to the initial conditions. Thus, computational systems that are

CIR are perfectly iterable: when they are reinitialised with the same initial conditions

their dynamics are exactly the same. This is not the case in classical chaotic systems,

since one can only ever initialise the initial conditions up to a given accuracy, and this

intrinsic uncertainty in measurement renders exact iterability impossible.

One can try and simulate this uncertainty by proposing a coarse-graining scheme.

Taking ECA as an example one can group cells into blocks of n, where several combi-

nations of the states of these cells correspond to a single coarse-grained state. This is
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the approach taken by Israeli and Goldenfield [77], who showed that some ECA which

are intuitively CIR become reducible when coarse-grained and hence show globally pre-

dictable behaviour. While such a coarse-graining can be used to simulate a form of

non-iterability by considering iterability with respect to the coarse-graining, this fails

to guarantee any unpredictability. Since, unlike in the continuum, only a finite number

of state configurations correspond to a single coarse-grained configuration, one can sim-

ply compute the dynamics for all such possibilities and, after a finite amount of time,

distinguish them – something impossible in chaotic systems where a finite interval of

phase space contains continuously many points.

Thus, although the non-existence of closed-form solutions is related to unpredictabil-

ity, it appears rather to be a byproduct, rather than a necessary condition of it. In

ignoring the role of the observer and measurement, such a definition of CIR fails to cap-

ture the elements that lead to physical unpredictability and instead seems to suggest

a much weaker, complexity theoretic notion of unpredictability. The non-iterability of

classical dynamics resulting from these limits on measurement is an essential aspect of

unpredictability in classical systems, and this aspect is lost in the discrete computational

dynamics to which CIR applies.

6.3.4 Following computational paths

The notion of CIR as the inability to compute the nth state of a computational system

without following the path of the computational dynamics seems more closely related

to computational irreducibility as the notion of there being no other way to find the nth

state of a system than by following or running it [150], although its intuitive relation to

unpredictability is perhaps less clear.

This was the notion that Zwirn and Delahaye attempted to formalise in what appears

to be the only attempt to carefully define CIR [165, 166]. They considered the ability

to compute with a Turing machine the nth state of an ECA (given a fixed encoding 〈·〉
for ECA states) without computing any approximations of intermediate states in the

process. Unfortunately, the formalism given in [165, 166] contains many technical issues,

such as confounding the configurations and tape contents of Turing machines, as well

as a notion of approximation that is not sufficiently general. However, these issues all

appear fixable, and one can define such a notion of an ‘approximate computation’ of an

ECA A by a Turing machine T by requiring there to be points in time t1, . . . , tn such

that, at time ti the configuration of T can be efficiently reduced to the encoding 〈ai〉 of

the ith state in the computation of A.

Since such systems are computable, the efficiency of the reduction mapping the

simulation to the dynamics is essential, because the computations are trivially compu-
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tationally reducible to each other. As a result, however, one loses the objectivity of the

notion of CIR, and instead it becomes relative to the strength or form of reduction.

A more important issue is the robustness of such a definition, since it is not clear

that there exist any two algorithms computing 〈an〉 with the same time complexity that

are not reducible to each other. The existence of such an example is essential for such

a formulation of CIR, as otherwise the notion reduces to a purely complexity theoretic

one. It is perhaps questionable whether this is in fact possible, since it has been argued

that there is no robust way to form equivalence classes of machines computing the

‘same algorithm as opposed to just computing the same function’ [19], a problem that

has obvious links to the one at hand.

While formalising the notion of ‘following similar computational paths’ may be inter-

esting in its own right, with applications to the computation of digits of constants such

as π [11], it is not clear that this is essential for the notion of CIR. In particular, it is not

clear why an algorithm computing the nth state of a system that does not approximate

the system’s dynamics, but which is nonetheless no more efficient, should count as a

reduction. Furthermore, this concept seems even less relevant for unpredictability, since

there seems to be little reason to privilege, as a method of prediction, computations

following a different computational path to the natural dynamics. In cases where an

alternative computation seems to provide a more direct prediction, this seems rather to

be due to its efficiency than the specific computational path.

6.3.5 Complexity theoretic approach to CIR

The final approach to defining CIR is to take a more complexity theoretic approach,

defining a CIR system as one whose dynamics cannot be computed asymptotically

faster. For an ECA A, for example, this would mean that there is no algorithm T

which, on input n, computes 〈an〉 with more than a logarithmic10 improvement in time

over A. Indeed, this seems in many ways closest to the conception Wolfram had in

mind in proposing CIR [149, 150], and its simplicity makes it attractive as a notion of

CIR. Furthermore, it does not seem to have the conceptual limitations of the other two

potential definitions in relation to irreducibility: a CIR system under this definition is

irreducible in the clear sense that its dynamics are computationally optimal.

The connection between this formulation of CIR and unpredictability is nonetheless

still limited, since the inability to compute asymptotically faster does not rule out the

computation being used to ‘say in advance’ (prœdicere); indeed, computation has no

inherent time scale, per se. The computability and perfect iterability of discrete com-

10The logarithmic factor is necessary to avoid speed-up theorems [53] and issues related to machine
representations.
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putational systems means, as we discussed above, that they are in some sense perfectly

predictable.

This notion of CIR, however, when viewed in conjunction with Wolfram’s princi-

ple of computation equivalence [151] on the ubiquitousness of universality, does have

some connection to a different form of unpredictability. The existence of efficient uni-

versal Turing machines [87, 122] gives an immediate example of CIR systems under this

complexity theoretic formulation of CIR, since such systems cannot be more efficiently

simulated, themselves already being efficient simulators. The efficiency of the univer-

sality is essential, since systems that behave universally, but not optimally so, can be

reduced to other more efficient universal machines. This is an important caveat, since,

for example, although the rule 110 ECA is known to be universal, it is very inefficiently

so – it simulates a computation of T time steps in time O(T 4 log2 T ) [154] – and claims

of its CIR thus appear dubious [61, 77].

The fact that such universal systems are limited by the halting problem [122] means

that there are certain properties about the long term behaviour of such systems which

cannot be computationally resolved, thus representing an explicit form of (computa-

tional) unpredictability. For such questions there is no way to compute in advance the

behaviour of the system, one must simply run them and wait. However, to fully justify

the claims that CIR is so important in the natural sciences [151] and can help explain

the unpredictability of physical systems, one must justify that such systems are not just

capable of universality, but actually implement optimally universal behaviour, a bold

claim needing more careful mathematical treatment.

6.3.6 Conclusions on CIR and unpredictability

We have discussed in some detail three possible approaches to formalising the concept

of CIR, as well as how these notions serving as possible definitions relate to the concept

of unpredictability. While CIR appears to be most robustly formalisable as a complexity

theoretic notion, its relation to unpredictability appears rather weak. The perfect iter-

ability and computability of computational systems such as cellular automata mean that

the unpredictability found in classical systems arising, via measurement, at the interface

between the system and observer is nonexistent. Rather, CIR represents a property of

optimality of certain computational systems.

Nonetheless, CIR does highlight the need to include a computational element in a

model of unpredictability: predictability necessitates the ability to compute in advance

the behaviour of certain systems. The challenge, and what we will undertake in the

following section, is to combine this notion of predicting via computational means and

the essential role of measurement to provide a more suitable, general model of unpre-
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dictability.

6.4 Generalised models of unpredictability

While the algorithmic notions of unpredictability discussed in Sec. 6.2 allow for a some-

what more objective notion of unpredictability than that usually discussed in the context

of physical theories, they are too abstract to be applied directly in more practical con-

texts. Moreover, they are ‘product’ rather than ‘process’ notions of unpredictability,

which limits their applicability in many physical scenarios.

In the rest of this chapter we take a different approach, and consider more general

frameworks in which unpredictability can be analysed. We first study and critique vari-

ous models of unpredictability that have been presented and used in the literature. We

then proceed to develop a new model of unpredictability which is sufficiently general

to be applied to relatively arbitrary physical processes, makes use of relevant physical

information in order to asses the predictability of such processes, but retains certain

aspects of effectivity from computability theory which allow it to be sufficiently general

and powerful [5, 6].

6.4.1 Review of models of unpredictability

To predict – in Latin prœdicere, ‘to say beforehand’ – means to forecast what will occur

under specific conditions before the phenomenon happens. We will discuss some various

definitions of predictability proposed by different authors, in particular with regards to

their suitability for capturing the notion of predictability of individual physical events

or sequences thereof in the most general sense.

As is the case with the notion of randomness, which is often considered to be synony-

mous with probabilities in physics, probabilities are often taken to imply unpredictabil-

ity within physical systems. However, for very much the same reason that they are not

suitable as a notion of randomness, they fall short of providing a solid generalised or ob-

jective notion of unpredictability. In particular, there is no guarantee that an epistemic

probability is not hiding perfectly predictable, deterministic behaviour.

In cryptographic applications probability is perhaps a slightly more suitable notion of

unpredictability precisely because it is epistemic, rather than objective, unpredictability

that is normally required [48]. That is, one generally wants a secret key that is unpre-

dictable for any adversary: if the adversary behaves rationally, they can do no better

than assigning an (ideally almost uniform) probability distribution for the secret key.

One would expect, of course, this to be also true if the key were unpredictable with

respect to a more objective form of indeterminism.
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In order to pursue a more suitable notion of unpredictability which avoids any issues

related to the use of particular representations within theories, it seems a more robust

path is to formulate prediction in terms of a ‘predicting agent’ of some form. This is

indeed the approach taken by some definitions, and that we also will follow.

In Section 6.1 we discussed the notion of unpredictability within dynamical systems.

In these systems, unpredictability has long been linked to chaos and the inability to cal-

culate with sufficient precision the future state of a system given a particular observable

initial condition [146]. Note that, while chaos is formally linked to measure theory, this

notion of unpredictability relies on more than simple probabilistic formalism – indeed,

it is formalised within deterministic dynamical systems. Although not a general model

of unpredictability, this notion emphasises a critical aspect: the role of observation,

since although a system may presumably have a well-defined initial state (a point in

phase space), any observation yields an interval of positive measure (a region of phase

space). This certainly seems the correct path to follow in formalising predictability, but

more generality and formalism is needed to provide a definition for arbitrary physical

processes.

Popper defines prediction in terms of ‘physical predicting machines’, although he

takes the fairly unconventional viewpoint that unpredictability is indeterminism [108].

He considers these as real machines that can take measurements of the world around

them, compute via physical means, and output (via some display or tape, for example)

predictions of the future state of the system. He then studies experiments which must

be predicted with a certain accuracy and considers these to be predictable if it is physi-

cally possible to construct a predictor for them. Via a form of diagonalisation argument,

Popper shows that this is not possible for all such experiments. This definition of predic-

tion is unfortunately rather abstract, and it is not particularly clear how to work with

this in all but trivial specific cases, since the notion of a physical predicting machine is

difficult to consider practically. It is sufficient for the type of abstract argument Popper

wishes to use, but not overly suitable to serve as a base for a generalised framework for

unpredictability.

Wolpert formalised this notion much further in developing a general abstract model

of physical inference [153]. Like Popper, Wolpert was interested in investigating the

limits of inference, including prediction, arising from the simple fact that any inference

device must itself be a physical device, hence an object whose behaviour we can try

to predict. While Wolpert’s aim was not so focused on the predictability arising from

the nature of specific physical theories, he identified and formalised the need for an

experimenter to develop prediction techniques and initialise them by interacting with the

environment via measurements. However, Wolpert, like Popper, was interested mainly

in the limits inherent in the notion of such inference devices, and arrives at such limits
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by considering inference devices forced to make self-referential predictions.

Popper’s and Wolpert’s notions of predictability perhaps lack generality by requiring

the predictor to be embedded, that is, physically present, in its environment [136], and

their abstract natures means that they are not so suited to investigating the predictabil-

ity of particular physical processes, but rather of the physical world as a whole.

A more modern and technical definition of unpredictability was given by Eagle [49] in

defining randomness as maximal unpredictability. While we have already discussed the

relation between randomness and unpredictability at some length, Eagle’s definition of

unpredictability deserves further attention. He defined prediction relative to a particular

theory and for a particular predicting agent, an approach thus with some similarity to

that of Wolpert. Specifically, a prediction function is defined as a function mapping

the state of the system described by the theory and specified epistemically (and thus

finitely) by the agent to a probability distribution of states at some time. This definition

formalises more clearly prediction as the output of a function operating on information

extracted about the physical system by an agent. This framework, however, renders

predictability relative to a particular physical theory, rather than producing a more

objective notion as we want.

In particular, in order to relate the intrinsic indeterminism of a system to unpre-

dictability, it would be more appropriate to have a definition of events as unpredictable

in principle. Thus, the predictor’s ignorance of a better theory might change their asso-

ciated epistemic ability to know if an event is predictable or not, but would not change

the fact that an event may or may not be, in principle, predictable.

Last but not least, it is important to restrict the class of prediction functions by

imposing some effectivity (i.e., computability) constraints. Indeed, we suggest that ‘to

predict’ is to say in advance in some effective/constructive/computable way what phys-

ical event or outcome will happen. Thus, motivated by the Church-Turing thesis, we

choose here Turing computability as this seems to provide the most uniform and gen-

eral model of effectivity which corresponds to the power available to any predicting

agent. Any predicting agent operating with incomputable means – incomputable or infi-

nite inputs, or procedures, that can go beyond the power of algorithms (for example, by

executing infinitely many operations in a finite amount of time) – seems to be physically

highly speculative if not impossible [44]. Technically, ‘controlled incomputability’ could

be easily incorporated in the model, if necessary. One must be careful, however, not to

remove all such constraints of effectivity from the model, otherwise one runs the risk

of viewing any deterministic process as predictable, since one can associate a (generally

incomputable) function to any deterministic infinite sequence.

Taking these points into account, we propose in the next section a definition, similar

in some aspects to Wolpert’s and Eagle’s definitions, based on the ability of some com-
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putably operating agent to correctly predict using finite information extracted from the

system of the specified experiment. Unlike Eagle [49], we consider only prediction with

certainty, rather than with probability. While it is not difficult nor perhaps unreason-

able to extend our definition to the more general scenario, we wish to focus on a more

absolute notion of unpredictability; this is sufficient, and perhaps even advantageous,

for our main application of interest: quantum unpredictability. Moreover, in doing so we

avoid any potential pitfalls related to probability one or zero events [159].

Our main aim is to define the (correct) prediction of individual events [49], which

can be easily extended to an infinite sequence of events. An individual event can be

correctly predicted simply by chance, and a robust definition of predictability clearly

has to avoid this possibility. Popper succinctly summarises this predicament in [108, pp.

117–118]:

If we assert of an observable event that it is unpredictable we do not mean,

of course, that it is logically or physically impossible for anybody to give

a correct description of the event in question before it has occurred; for it

is clearly not impossible that somebody may hit upon such a description

accidentally. What is asserted is that certain rational methods of prediction

break down in certain cases—the methods of prediction which are practised

in physical science.

One possible approach is then to demand a proof that the prediction is correct, thus

formalising the ‘rational methods of prediction’ that Popper refers to. However, this

is notoriously difficult and must be made relative to the physical theory considered,

which generally is not well axiomatised and may change over time as our understanding

evolves. Instead we demand that such predictions be repeatable, and not merely one-off

events. This point of view is consistent with Popper’s own framework of empirical fal-

sification [109]: an empirical theory (in our case, the prediction) can never be proven

correct, but it can be falsified through decisive experiments pointing to incorrect pre-

dictions. Specifically, we require that the predictions remain correct in any arbitrarily

long (but finite) sequence of repetitions of the experiment.

6.5 Proposed formal model of (un)predictability

Let us lay out the formalism for this model, which formulates a notion of predictability

for individual events by considering the ability for a predicting agent, acting via uniform,

effective means, to predict correctly and reproducibly the outcome of an experiment

using some finite information the agent extracts from the ‘system’ and its ‘environment’
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as input. We further consider the possibility that the extracting power of the agent may

be limited, thus allowing us to consider also a relativised notion of unpredictability.

More precisely, the model consists of several elements:

1. The specification of an experiment E for which the outcome must be predicted.

2. A predicting agent or ‘predictor’, which must predict the outcome of the experi-

ment. We model this as an effectively computable function, a choice which we will

justify further.

3. An extractor ξ, which is a physical device the agent uses to (uniformly) extract

information pertinent to prediction that may be outside the scope of the experi-

mental specification E. This could be, for example, the time, the measurement of

some parameter, the iteration of the experiment, etc.

4. A prediction made by the agent with access to a set Ξ of extractors.

6.5.1 The formal model

We will next elaborate on, and formalise the individual aspects of the model.

Experimental specification. An experimental specification is a finite specification

of an experiment for which the outcome is to be predicted. We restrict ourselves to the

case where the result of the experiment, that is, the value to be predicted, is a single bit:

0 or 1. However, this can readily be generalised to the case of finite or countably many

output values; that is, when the outcome can be finitely specified. On the other hand,

it does not make sense to predict an outcome requiring an infinite description, such as

a real number, since this can never be measured exactly. In such a case the outcome

would be an approximation of the real – a rational number, and thus finitely specifiable.

The experimental specification, being finite, can not normally specify exactly the

required setup of the experiment, as a precise description of experimental conditions

generally involves real-valued parameters. Rather, it is expressed with finite precision

and with respect to the symmetries pertinent to the experimenter and their limited

capacities. A particular trial of E is associated with the parameter λ which fully describes

the ‘state of the universe’ in which the trial is run. As an example, one could consider

E to specify the flipping of a certain coin, or it could go further and specify, up to

a certain accuracy, the initial dynamical conditions of the coin flip. In both cases, λ

contains further details – such as the exact initial conditions of a particular flip – which

could be used by an agent in trying to predict the result of E.
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The parameter λ will generally11 be ‘an infinite quantity’ – for example, an infinite

sequence or a real number – structured in an unknown manner (i.e., we do not force

any specific encoding on λ). Forcing a specific encoding upon λ, such as a real number,

may impose an inadequate structure (e.g., metric, topological) which is not needed for

what follows. While λ is generally not in its entirety an obtainable quantity, it contains

any information that may be pertinent to prediction – such as the time at which the

experiment takes place, the precise initial state, any hidden parameters, etc. – and any

predictor can have practical access to a finite amount of this information. We can view

λ as a resource from which one can extract finite information in order to try and predict

the outcome of the experiment E.

Predicting agent. The predicting agent (or ‘predictor’) is, as one might expect,

the agent trying to predict the outcome of a particular experiment, using potentially

some data obtained from the system (i.e., from λ) to help in the process. Since such

an agent should be able to produce a prediction in a finite amount of time via some

uniform procedure, we need the prediction to be effective in the computational sense of

the term.

Formally, we describe a predicting agent as a computable function PE (i.e., an al-

gorithm) which halts on every input and outputs either 0,1, or ‘prediction withheld’.

Thus, the agent may refrain from making a prediction in some cases if it is not certain of

the outcome. This allows us to consider more carefully the ability of a predicting agent

in the infinite limit when it may only be able to correctly predict with certainty almost

all trials of an experiment. PE will generally be dependent on E, but its definition as

an abstract algorithm means it must be able to operate without interacting with the sub-

system whose behaviour it predicts. This is necessary to avoid the possibility that the

predictor affects the very outcome it is trying to predict.

We note finally that, as mentioned in Sec. 6.2.2 in the context of Tadaki predictabil-

ity, the choice of computability as the level of effectivity required can be strengthened

or weakened, as long as some effectivity is kept. Our alternative choice here is motived

by the Church-Turing thesis, a rather robust assumption [42] (see also the discussions

in Sec. 6.2.2 and Sec. 6.4).

Extractor. An extractor is a physically realisable device which a predicting agent

can use to extract (a finite amount of) useful data that may not be a part of the

description of E from λ to use for prediction – that is, as input to PE. In many cases

this can be viewed as a measurement instrument, whether it be a ruler, a clock, or a

11If one insists on a discrete or computational universe – whether it be as a ‘toy’ universe, in reality
or in virtual reality – then λ could be conceived as a finite quantity. This is, however, the exception,
and in the standard view of real physical experiments λ would be infinite, even if the prediction itself
is discrete or finite. We will not consider this possibility further here.
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more complicated device.

Formally, an extractor is a function λ 7→ ξ(λ) ∈ {0, 1}∗, where ξ(λ) is a finite string

of bits, which can be physically realised without altering the system, that is, passively.

We require that ξ(λ) be a finite string since, in order to be used by PE for prediction,

ξ(λ) should be finite and effectively codable.

Prediction. We define now the notion of a correct prediction for a predicting agent

having access to a fixed (finite or infinite) set Ξ of extractors.

Definition 56. Given a particular extractor ξ, we say the prediction of a run of E with

parameter λ is correct for ξ if the output PE(ξ(λ)) is the same as the outcome of the

experiment.

That is, the predictor PE correctly predicts E when using information extracted

from λ by ξ as input.

However, this is not enough to give us a robust definition of predictability, since

for any given run it could be that we predict correctly by chance. To overcome this

possibility, we need to consider the behaviour of repeated runs of predictions.

Definition 57. A repetition procedure for E is an algorithmic procedure for resetting

and repeating the experiment E.

Generally this will be of the form ‘E is prepared, performed, and reset in a specific

fashion’. The specific procedure is of little importance, but the requirement is needed to

ensure that the way the experiment is repeated cannot give a predicting agent power that

should be beyond their capabilities or introduce mathematical loopholes by ‘encoding’

the answer in the repetitions or particular initial conditions, for example; both the

prediction and repetition should be performed algorithmically.

Definition 58. We say the predictor PE is k-correct for ξ if for any repetition procedure

for E (giving parameters λ1, λ2, . . . when E is repeated) there exists an n ≥ k such that

after n repetitions of E producing the outputs x1, . . . , xn, the sequence of predictions

PE(ξ(λ1)), . . . , PE(ξ(λn)):

1. contains k correct predictions,

2. contains no incorrect prediction; that is, the remaining n−k predictions are with-

held.

If PE is k-correct for ξ we can bound the probability that PE is in fact operating

by chance and may not continue to give correct predictions, and thus give a measure

of our confidence in the predictions of PE. Specifically, the sequence of n predictions

made by PE can be represented as a string of length n over the alphabet {T, F,W},
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where T represents a correct prediction, F an incorrect prediction, and W a withheld

prediction. Then, for a predictor that is k-correct for ξ there exists an n ≥ k such that

the sequence of predictions contains k T ’s and (n−k) W ’s. There are
(

n
k

)

such possible

prediction sequences out of 3n possible strings of length n. Thus, the probability that

such a correct sequence would be produced by chance tends to zero as expected when

k goes to infinity because
(

n
k

)

3n
<

2n

3n
≤
(

2

3

)k

.

Clearly the confidence we have in a k-correct predictor increases as k tends to infinity.

We thus formalise the notion of predictability with respect to this limit scenario to

avoid the possibility that, as Popper described, one may produce correct predictions

accidentally.

Definition 59. We say the predictor PE is correct for ξ if it is k-correct for ξ for all

k ≥ 1.

It is important to note that the infinity used in going to this limit case is only

potential, not actual: its role is to guarantee arbitrarily many correct predictions. If PE
is correct for ξ, then PE never makes an incorrect prediction and the number of correct

predictions can be made arbitrarily large by repeating E enough times.

From this notion of correctness we can define predictability both relative to a set of

extractors, and in a stronger, non-means-relative form.

Definition 60. Let Ξ be a set of extractors. An experiment E is predictable for Ξ

if there exists a predictor PE and an extractor ξ ∈ Ξ such that PE is correct for ξ.

Otherwise, it is unpredictable for Ξ.

This means that PE has access to an extractor ξ ∈ Ξ which, when using this extrac-

tor to provide input to PE, can be made to give arbitrarily many correct predictions by

repeating E enough (but finitely many) times, without ever giving an incorrect predic-

tion.

We can extend this to a more objective notion of predictability by considering the

set of all possible extractors [6].

Definition 61. An experiment is (simply) predictable if there exists a predictor PE and

an extractor ξ such that PE is correct for ξ. Otherwise, it is (simply) unpredictable.

We will only insist on referring to events as simply (un)predictable when we wish

to avoid ambiguity with informal notions of (un)predictability or in direct contrast to

predictability relative to a set of extractors. If there is no ambiguity, we will just refer

to such events as (un)predictable.
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Finally, we can use this notion of a predictable experiment to define a notion of

predictability of individual events.

Definition 62. The outcome x of an single trial of the experiment E is predictable (for

Ξ) if E is predictable (for Ξ). Otherwise, it is unpredictable (for Ξ).

We emphasise here that the predictability of the result of a single trial is predictabil-

ity with certainty, as opposed to simply with probability one.

6.5.2 Some remarks on relativisation

The notion of simple predictability defined above is clearly the stronger notion, and it

is this that we will pursue initially in relation to quantum unpredictability. However,

we wish to briefly discuss some issues in relating to the relativised unpredictability we

have defined, in order to clarify this notion further.

Beyond indeterminism, which offers the most obvious physical case for unpredictabil-

ity and which we will discuss explicitly in the context of quantum mechanics, it does

not seem simple to find physical properties which can guarantee unpredictability. This

is a result of the stringent requirements the definition imposes: we must prove that no

predictor-extractor pair exists satisfying the requirements of prediction. The inability

to do so does not mean such phenomena are necessarily unpredictable, but only that

we cannot prove either way.

In some physical situations, particularly in classical physics, our inability to predict

would seem to be linked to our epistemic lack of information – often due to measurement.

Put differently, it is a result of only having access to a set Ξ of extractors of limited power.

Our relativised model of prediction attempts to capture this, defining predictability

relative to a given set of extractors Ξ. Thus, relativised unpredictability is generally

epistemic in nature, since it is due to the inability for a predicting agent to have access to

an extractor extracting the information required for prediction. Simple unpredictability,

on the other hand, is an objective notion, as it does not depend on the limited powers

of any such agent.

6.5.2.1 Choosing the set of extractors Ξ

In defining this notion, we deliberately avoided saying anything about how Ξ should be

specified. Here we outline two possible ways this can be done.

The simplest but most restrictive way would be to explicitly specify the set of ex-

tractors. As an example, let us consider the experiment of firing a cannonball from a

cannon and the task of predicting where it will land (assume for now that the muzzle

velocity is known and independent of firing angle). Clearly the position will depend on



6.5. Proposed formal model of (un)predictability 107

the angle the cannonball is fired at. Then if we are limited to measuring this with a

ruler, we can consider, for example, the set of extractors

Ξ = {ξ | ξ(λ) = (x, y) where x and y are the muzzle position to an accuracy of 1cm}

and then consider predictability with respect to this set Ξ (e.g., by using trigonometry

to calculate the angle of firing, and then where the cannonball will land).

Often it is unrealistic to characterise completely the set of extractors available to an

agent in this way – think about a standard laboratory full of measuring devices that can

be used in various ways. Furthermore, such devices might be able to measure properties

indirectly, so we might not be able to characterise the set Ξ so naively. Nonetheless, this

can allow simple consideration and analysis of predictability in various situations, such

as under-sensitivity to initial conditions.

A more general approach, although requiring further assumptions, is to limit the ‘in-

formation content’ of extractors. This avoids the difficulty of having to explicitly specify

Ξ. Continuing with the same example as before, we could require that no extractor

ξ ∈ Ξ can allow us to know the firing angle better than 1◦. This circumvents any prob-

lems raised by the possibility of indirect measurement, but of course requires us to have

faith in the assumption that this is indeed the case; it could be possible that we can

extract the angle better than this, but we simply do not know how to do it with our

equipment. (This would not be a first in science!) Nonetheless, this approach captures

well the epistemic position of the predicting agent.

Let us formalise this more rigorously. We hypothesise that we cannot do any better

than a hypothetical extractor ξ′ extracting the desired physical quantity. Then we char-

acterise Ξ by asserting: for all ξ ∈ Ξ there is no computable function f such that for

every parameter λ, f(ξ(λ)) is more accurate than ξ′. Obviously, the evaluation of ‘more

accurate’ requires a (computable) metric on the physical quantity extracted, something

not unreasonable physically, given that observables tend to be measured as rational

approximations of reals [85].

This general approach would need to be applied and carefully justified on a case by

case basis, given assumptions about the capabilities available to the predicting agent.

One can view this in the context of the epistemic unpredictability within dynamical

systems discussed in Sec. 6.1. Such a restriction on the set of extractors corresponds

naturally to positing an explicit limit on our accuracy of observation. This goes beyond

the statement that a particular measuring instrument cannot measure beyond this accu-

racy, but states that we do not have access to any instrument that can be used to deduce

accuracy beyond this limit. This may be due to purely practical constraints, or deeper

limits, for example limiting measurements of positions based on thermal fluctuations,

etc. [12].
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Either of these approaches, and perhaps others, can be used with our relativised

model of prediction. In any such case of relativisation, one would need to argue that the

set Ξ for which unpredictability is proven is relevant physically. This is unavoidable for

any epistemic model of prediction.

Let us illustrate the use of relativised unpredictability with a more interesting exam-

ple of a hypothetical experiment which is predictable, but its intuitive unpredictability is

well captured by the notion of relativised unpredictability. In particular, let us consider

a simple chaotic dynamical system. As we discussed in Section 6.1.3, chaos is often asso-

ciated with unpredictability within a system. However, chaos is, formally, an asymptotic

property [98], and we will see that, as a result, the unpredictability of chaotic systems

is not so simple as might be initially suspected.

Example 63. For simplicity, we will take the example of the dyadic map, that is, the

operation d : {0, 1}ω → {0, 1}ω defined by d(x1x2x3 . . . ) = x2x3 . . . , as in [6]. We work

with this archetypal example since it is mathematically clear and simple, and is known

to be chaotic and equivalent (more precisely, topologically conjugate) to many others,

such as the logistic map an+1 = µan(1−an) (where an ∈ (0, 1) for n ≥ 0) with µ = 4 [45].

However, the analysis could equally apply to more familiar (continuous) chaotic physical

dynamics, such as that of a double pendulum.

Let us consider the hypothetical experiment Ek (for fixed k ≥ 1) which involves

iterating the dyadic map k times (i.e., dk) on an arbitrary ‘seed’ x = x1x2 . . . . The

outcome of the experiment is then taken to be the first bit of the resulting sequence

dk(x) = xk+1xk+2 . . . , that is, xk+1. This corresponds to letting the system evolve for

some fixed time k before measuring the result.

While the shift d (and hence dk) is chaotic [45] and generally considered to be

unpredictable, it is clearly (simply) predictable if we have an extractor that can ‘see’ (or

measure) more than k bits of the seed. That is, take the extractor ξk(λx) = xk+1 which

clearly extracts only finite information, and the identity Turing machine TI as PEk
so

that, for any trial of Ek with parameter λ
x

we have PEk
(ξk(λx)) = TI(xk+1) = xk+1,

which is precisely the result of the experiment.

On the other hand, if we consider that there is some limit ℓ on the ‘precision’ of

measurement of x that we can perform, the experiment is unpredictable relative to this

limited set of extractors Ξℓ defined such that for every sequence x, every computable

function f there exists λ such that for all j > ℓ, f(ξ(λ)) 6= xj. It is clear that for ℓ = k,

given the assumption that this is the limit of our precision, the experiment Ek is unpre-

dictable for Ξk. Indeed, if this were not the case, the pair (ξ, PEk
) allowing prediction

would make arbitrarily many correct predictions, thus contradicting the assumption of

limited precision of measurements.
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This example may appear somewhat artificial, but this is not necessarily so. If one

considers the more physical example of a double pendulum, as mentioned earlier, one

can let it evolve for a fixed time t and attempt to predict its final position (e.g., above

or below the horizontal plane) given a set limit ℓ on the precision of any measurement

of the initial position in phase space. If the time t is very short, we may well succeed,

but for long t this becomes unpredictable.

This re-emphasises that chaos is an asymptotic property, occurring only strictly at

infinite time. While, in the limit, it indeed seems to correspond well to unpredictability,

in finite time the unpredictability of chaotic systems is relative: a result of our limits on

measurement. Of course, in physical situations such limits may be rather fundamental:

thermal fluctuations and quantum uncertainty seem to pose very real limits on mea-

surement precision [85], although in most situations the limits actually obtained are of

a far more practical origin.

6.6 Relation to algorithmic notions of

unpredictability

We can study the relation between our model of unpredictability, which is applicable

to arbitrary physical systems, and the algorithmic notions of unpredictability that we

discussed in Sec. 6.2, by considering a toy model in the following way, giving them a

physical interpretation. Consider a black box B(x) with a button that, when pressed,

gives the next digit of x (starting from some arbitrary position k); by repeating this

operation one can slowly learn, in order, the bits of x (modulo a finite prefix of length

k− 1). A sequence is Tadaki predictable if there is a uniform way to compute infinitely

often xn+1 having learnt the initial segment x1 . . . xn, with the proviso that we must

know in advance when – that is, the times at which – we will be able to do so.

When viewed from the physical point of view described above, there is a clear relation

to our notion of predictability. In particular, we can consider a deterministic experiment

E
x

that consists of generating a bit from the black box B(x), and asking if E
x

is

predictable for the ‘prefix’ extractor ξp(λi) = x1 . . . xi−1 for the trial of E
x

producing

xi – that is, using just the results of the previous repetitions of E
x
. (We assume, for

simplicity and without loss of generality, that k = 1.) Although B(x) is not (generally)

finitely specifiably (since x is infinite), we assume that one has physical access to such

a black box and can thus finitely prepare the experiment E
x
. It is not too difficult to

see that there is an equivalence between predictability and Tadaki total predictability

in this scenario.

Fact 64. E
x

is predictable (for ξp) if and only if x is Tadaki totally predictable.
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Proof. It suffices to simply equate the function F from the Definition of Tadaki pre-

dictability and the predictor PE, as well as the outputs ‘W ’ and ‘withheld’.

While the physicality of such a black box is clearly debatable, this hypothetical sce-

nario allows us to see the relation between the purely mathematical algorithmic notion

of Tadaki unpredictability and our generalised model. In general, algorithmic informa-

tion theoretical properties of sequences could be explored using this model via such an

approach. However, the relation between these notions exists only when one consid-

ers particular, abstract, extractors such as ξp. The generality of our model originates

in the importance it affords to physical properties of systems, via extractors, which

are essential for prediction in real systems. Depending on the physical scenario investi-

gated, physical devices might permit us to extract information allowing to predict an

experiment, regardless of the algorithmic content of this information, as long as finite

information suffices for a single prediction.



Chapter 7

Unpredictability of quantum

measurements

In this chapter, we aim to put into practice the framework of unpredictability formalised

in the previous chapter. In particular, we apply it to the analysis of quantum measure-

ments, which are often claimed, at least informally, to be unpredictable [8, 139].

By working with a clear, formalised notion of unpredictability, we are able to look

much more closely at which principles give rise to this unpredictability, as well as the

physical assumptions under which this is valid.

We first look at the relation between quantum value indefiniteness, of the kind which

can be identified by Theorem 34 in Chapter 3 and show that this formalised notion

of indeterminism indeed guarantees unpredictability. We then turn our attention to

quantum complementarity, and show that this provides a weaker, relativised notion

of unpredictability, and requires stronger physical assumptions to be used to certify

any more objective unpredictability. Finally, we discuss the relationship between these

forms of quantum unpredictability and incomputability, and in particular the results of

Chapter 5 on the incomputability of quantum randomness.

7.1 Quantum unpredictability from value

indefiniteness

The justification for the claims that quantum measurement results are unpredictable

seems to be based on the understanding that quantum mechanics is a fundamentally

indeterministic theory. Intuitively, quantum indeterminism is seen as the absence of

physical reality before the act of measurement; if no unique element of physical real-

111
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ity [51] corresponding to a particular physical quantity exists, this is reflected by the

said quantity being indeterminate. That is, for such an observable none of the of the pos-

sible exclusive measurement outcomes are certain to occur prior to measurement, and

therefore, it is argued, we should conclude that any kind of prediction with certainty is

impossible [81]. For example, an agent trying to predict the outcome of a measurement

of a projection observable in a basis unbiased with respect to the preparation basis (i.e.,

if there is a ‘maximal mismatch’ between preparation and measurement) could do no

better than blindly guess the outcome of the measurement.

This argument is too informal to be taken as a direct argument for unpredictability,

since the notions of unpredictability and indeterminism need to be carefully formalised

and considered to give the statement any formal meaning. However, with the formalisms

we have presented at hand, it serves as a good starting point.

In order to properly analyse how this may lead to unpredictability, we need to

work from this formal notion of value indefiniteness and make use of the more rigorous

definition of unpredictability that we have formulated. This notion will allow us to clarify

the possible origins of unpredictability in quantum mechanics more clearly.

7.1.1 Unpredictability of individual quantum measurements

Throughout this section we will consider a general quantum experiment EQ, which

is closely related to the hypothetical infinite experiment analysed in the context of

incomputability in Chapter 5.

More specifically, let EQ be an experiment in which a quantum system is prepared

in an arbitrary (but fixed) state |ψ〉 in dimension n ≥ 3 Hilbert space and a value

indefinite projection observable Pφ (i.e., with 0 < |〈ψ|φ〉| < 1) is measured producing a

single bit x. We similarly assume (as in Section 4.4.4) the measurement, noncontextuality

and eigenstate assumptions, which hence guarantees that Pφ is value indefinite, since

we indeed have a mismatch between the preparation and measurement contexts. We

note that we could simply assume that Pφ is value indefinite under any faithful value

assignment function, but, since we wish to explore more carefully the physical origin of

unpredictability, it seems more reasonable, and certainly more consistent with our prior

results, to work from the same set of basic physical assumptions.

The nature of the physical system in which this state is prepared and the experi-

ment performed is not important, whether it be photons passing through generalised

beamsplitters [114], or ions in an atomic trap. However, we require that the system must

be at least three-dimensional, since the results used to derive value indefiniteness, such

as Theorem 34, require this as an assumption. Of course, if we were to blindly take

value-indefiniteness as an assumption for all systems this would not be necessary.
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We first show that experiments utilising quantum value indefinite observables cannot

have a predictor which is correct for some ξ, and hence EQ is unpredictable.

Theorem 65. The experiment EQ producing a bit from the measurement of a value

indefinite observable is unpredictable.

Proof. Let us assume for the sake of contradiction that there exists an extractor ξ and a

predictor PEQ
for EQ which is correct for ξ. This means that there is a repetition scenario

in which EQ is repeated, algorithmically, ad infinitum, and for which PEQ
never makes

an incorrect prediction for any infinite sequence x = x1x2 . . . of bits produced via this

repetition procedure.

Since PE never makes an incorrect prediction, each of its predictions is correct

with certainty. Then, according to the EPR principle we must conclude that each such

correct prediction corresponds to a value definite property of the system measured in

EQ. However, we chose EQ such that this is not the case: each xi is the result of the

measurement of an observable Pφ which is value indefinite under any faithful value

assignment function. Thus we obtain a contradiction: Pφ must be both value definite

and indefinite under any faithful value assignment function, and hence we must conclude

that no such predictor PEQ
can exist.

Moreover, since there does not exist a predictor PEQ
which is correct for some ξ, for

such a quantum experiment EQ, no single outcome is predictable with certainty.

Corollary 66. In an infinite repetition of EQ generating the infinite sequence x =

x1x2 . . . as described above, no single bit xi, i ≥ 1, can be predicted with certainty.

These results are not unexpected, since they largely confirm the intuition that quan-

tum measurement are indeed unpredictable (unless one measures a known property,

corresponding to the system being in an eigenstate of the measurement observable) and

that this arises from quantum indeterminism. However, there is nonetheless merit in for-

malising and deriving such a result within this framework. Rather than simply assuming

quantum indeterminism, unpredictability, etc., as quantum folklore, this formalises the

relationship between the concepts and clarifies the physical assumptions needed to ar-

rive at such conclusions. In this way, we show that quantum unpredictability follows

from the same assumptions giving rise to value indefiniteness in Kochen-Specker type

results.

7.2 Complementarity

While these results show that value indefiniteness leads to unpredictability, this is not

to say that this is the only origin of quantum unpredictability. The quantum phenomena
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of complementarity has also been linked to unpredictability and, contrary to the value

indefiniteness pinpointed by the Kochen-Specker theorem and Theorem 34, is present

in all quantum systems, including two-dimensional systems. By itself complementarity

is not a priori incompatible with value definiteness: it is possible, for example, to give

toy models based on automata or generalised urn models that feature complementarity

but not value indefiniteness [131, 155]. Although these models can not completely re-

produce quantum mechanics – the Kochen-Specker theorem, for example, forbids this

for nontrivial systems, and nonlocality is a further issue – they nonetheless show that

complementarity itself constitutes a weaker hypothesis than value indefiniteness, even

though it is sometimes taken as ‘evidence’ when arguing that value indefiniteness is

present in all quantum systems.

It is therefore of interest to see if complementarity alone can guarantee some degree of

unpredictability. This interest is not only theoretical, but also practical as some current

quantum random generators, such as Quantis [76], operate in two-dimensional Hilbert

space where the Kochen-Specker theorem cannot be used to certify value indefiniteness,

and would hence seem to (implicitly) rely on complementarity for certification.

7.2.1 Quantum complementarity

Since complementarity can be taken to mean a range of different concepts [58], it is

important that we first discuss briefly the notion of quantum complementarity and the

particular form we will use before we proceed to an analysis of its predictability.

The principle of complementarity was originally formulated and promoted by

Pauli [99]. As originally intended it is more of a general principle than a formal state-

ment about quantum mechanics, and states that it is impossible to simultaneously (i.e.,

jointly) measure formally non-commuting observables; for this reason commutativity

is nowadays often synonymous with co-measurability. It is often discussed in the con-

text of the position and momentum observables, but it is equally applicable to any other

non-commuting observables such as spin operators corresponding to different directions,

such as Sx and Sy, which operate in two-dimensional Hilbert space.

Given a pair of such ‘complementary’ observables and a spin-1
2

particle, measuring

one observable alters the state of the particle so that the measurement of the other

observable can no longer be performed on the original state. Such complementarity is

closely related to Heisenberg’s original uncertainty principle [72], which postulated that

any measurement arrangement for an observable necessarily introduces uncertainty into

the value of any complementary observable. For example, an apparatus used to measure

the position of a particle, would necessarily introduce uncertainty in the knowledge of

the momentum of said particle. This principle and supposed proofs of it have been the
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subject of longstanding (and ongoing) debate [23, 43, 116].

More precise are the formal uncertainty relations due to Robertson [115] – confus-

ingly also often referred to as Heisenberg’s uncertainty principle – which state that the

standard deviations of the position and momentum observables satisfy σxσp ≥ ~/2,

and give a more general form for any non-commuting observables A and B. However,

this mathematically only places constraints on the variances of repeated measurements

of such observables, and does not formally imply that such observables cannot be co-

measured, let alone have co-existing definite values, as is often claimed [110, Ch. 3].

In contrast to such uncertainty relations, complementarity is usually taken to mean

the stronger statement that it is impossible to simultaneously measure pairs of non-

commuting observables, and that a measurement of one will result in an irreversible

loss of information relating to the other, non-measured, observable. Although one may

define simultaneous (or joint) measurability in several ways, such as the existence of a

joint distribution or the nonexistence of uncertainty relations [58], we take this to mean

the possibility to measure two observables A and B such that subsequent measurements

of either A or B yield the same results (i.e., the state is not altered). We will take

the negation of this as our basis in formalising complementarity, but we do not claim

that such a loss of information need be more than epistemic; to deduce more from

the uncertainty relations one has to assume quantum indeterminism – that is, value

indefiniteness. This assumption is indeed often made implicitly, as the indeterminism of

measurements is part of the standard quantum mechanical canon, but we do not make

this assumption as we wish to see to what extent complementarity alone guarantees

unpredictability.

7.2.2 Complementarity and value definiteness: a toy

configuration

In order to illustrate that complementarity is not incompatible with value definiteness we

briefly consider an example of a toy-model of a system that is value definite but exhibits

complementarity. This model was outlined in [131] and concerns a system modelled as an

automaton; a different, but equivalent, generalised urn-type model is described in [155].

More specifically, the system is modelled as a Mealy automaton.

Definition 67. A Mealy automaton is a 5-tuple M = (Q,Σ,Θ, δ, ω) where Q is the set

of states, Σ and Θ the input and output alphabets, respectively, δ : Q × Σ → Q the

transition function and ω : Q× Σ → Θ the output function.

If one is uncomfortable thinking of a system as an automaton, one can consider

the system as a black box, whose internal workings as an automaton are hidden. The
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state of the system thus corresponds to the state q of the automaton, and each input

character a ∈ Σ corresponds to a measurement, the output of which is ω(q, a) and the

state of the automaton changes to q′ = δ(q, a). To give a stronger correspondence to

the quantum situation, we demand that repeated measurements of the same character

a ∈ Σ (i.e., observable) gives the same output: for all q ∈ Q, ω(q, a) = ω(δ(q, a), a). The

system is clearly value definite, since the output of a measurement is defined prior to

any measurement being made.

However, if we have two ‘measurements’ a, b ∈ Σ such that ω(q, a) 6= ω(δ(q, b), a)

then the system exhibits complementarity: measuring b changes the state of the system

from q to q′ = δ(q, b), and, as a consequence, we lose the ability to know ω(q, a).

While this example is not necessarily intended to realistically model a quantum

system, it represents well many aspects of quantum logic, and serves to show that

complementarity itself is not incompatible with value definiteness.

7.2.3 Complementarity as an argument for value indefiniteness

While complementarity is not incompatible with value definiteness, it is worth briefly

discussing whether it nonetheless provides good evidence of quantum value indefinite-

ness.

On its own, complementarity only tells us that we cannot obtain via measurement

a pre-existing value for certain observables. The choice of whether to interpret this as

being due to the actual non-existence of these parameters or not could be seen as a choice

of faith between determinism and indeterminism. Einstein famously preferred to stick

to a deterministic explanation, while his contemporaries were more willing to take the

bold move of attributing the seemingly unpredictable results of quantum measurements

to indeterminism.

The prevailing preference to give up determinism means that, these days, one usually

prefers to attribute this to indeterminism, and hence associate complementarity with this

indeterminism. However, this view is heavily influenced by the Bell and Kochen-Specker

theorems, and the indeterminism deduced from them (formally, via value indefiniteness).

This argument suffers from a degree of circular reasoning: complementarity is taken

as evidence for value indefiniteness because value indefiniteness is already believed,

thanks to independent results with additional hypotheses. Complementarity itself is,

thus, compatible with value definiteness, and we should be cautious of using it as an

argument for value indefiniteness, since the latter cannot be derived from the former.

Hence, any unpredictability resulting from complementarity alone can be interpreted

as being relative to the limits imposed by the principle of complementarity, rather that

due to an absence of physical reality.
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7.3 Complementarity and unpredictability

In order to consider the unpredictability of measurements of complementary observables,

we will make use of the relativised notion of unpredictability we introduced in the pre-

vious chapter. This is relatively natural, since complementarity places clear restrictions

on the information that any extractor can measure, simultaneously, in a systems.

Complementarity tends to be more of a general principle than a formal statement,

hence in order to investigate mathematically the degree of unpredictability that com-

plementarity entails we need to give complementarity a solid formalism. While several

approaches are perhaps possible, following our previous discussion we choose a fairly

strong form of complementarity and consider it not as an absolute impossibility to si-

multaneously know the values of non-commuting observables, but rather as a restriction

on our current set of extractors – that is, using standard quantum measurements and

other techniques we currently have access to.

Definition 68. Let E be an experiment involving a quantum system, and let ΛA be the

set of parameters λ corresponding to the situation in which the value v(A) of an observ-

able A is known.12 We say that a set of extractors Ξ is restricted by complementarity

if, for any two incompatible quantum observables A,B (i.e., [A,B] 6= 0), there does not

exist an extractor ξ ∈ Ξ and partially computable function f such that, whenever the

value v(A) of the observable A is known, the following holds for an infinite set Λ ⊂ ΛA:

for all λ ∈ Λ, f(ξ(λ)) = v(B), and f(ξ(λ)) is undefined for all λ ∈ ΛA \ Λ.

It would be tempting to require that v(B) cannot be “extracted” for any single trial

λ ∈ ΛA without altering the system, but, as in the definition of predictability, we need

to ensure that one cannot correctly obtain v(B) simply by chance. Thus, this definition

requires that the value v(B) cannot be reliably extracted an infinite number of times.

We stress that this does not imply that A and B cannot simultaneously have definite

values, simply that we cannot know both at once.

As for our analysis of value indefinite observables, let us consider an experiment EC
that prepares a system in an arbitrary pure state |ψ〉, thus giving v(Pψ) = 1 for the

12We assume for simplicity that the observables A and B have discrete spectra (as for bounded
systems), that is, the eigenvalues are isolated points, and hence the values v(A) and v(B) can be
uniquely determined by measurement. Furthermore, since the choice of units is arbitrary (e.g., we can
choose ~ = 1) one can generally assume that v(A) and v(B) are rational-valued, and hence can be
known ‘exactly’. Even if this were not the case, a finite approximation of v(A) is sufficient to uniquely
identify it, and thus is enough here.

For continuous observables it is obviously impossible to identify precisely v(A) or v(B). Such systems
are generally idealisations, but one can still handle this case by considering observables A′ and B′ that
measure A and B to some fixed accuracy. Protection by complementarity may depend on this accuracy.
For example, for position and momentum, one expects complementarity to apply only when the product
of accuracies in position and momentum is less than ~/2 according to the uncertainty relations.
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projection observable Pψ = |ψ〉〈ψ|, before performing a projective measurement onto a

state |φ〉 with 0 < |〈ψ|φ〉| < 1 (thus [Pψ, Pφ] 6= 0) and outputting the resulting bit.

It is not difficult to see that if this experiment is unpredictable relative to an agent

whose predicting power is restricted by complementarity. More formally, we have the

following theorem.

Theorem 69. Let Ξ be restricted by complementarity. Then the experiment EC de-

scribed above is unpredictable for Ξ.

Proof. If this were not the case, there would exist an extractor ξ ∈ Ξ and a computable

predictor PEC
such that, under any repetition procedure giving parameters λ1, λ2, . . . ,

we have PEC
(ξ(λi)) = xi for infinitely many i and PEC

(ξ(λi)) witheld otherwise, where

xi is the outcome of the ith iteration/trial. But if we define f such that f = PEC
when

prediction is not witheld, and undefined otherwise, then the pair (ξ, f) contradicts the

restriction by complementarity, and hence EC is unpredictable for Ξ.

It is important to note that this result holds regardless of whether the observables

measured are value definite or not, although the value definite case is of more interest.

Indeed, if the observables are value indefinite then we are guaranteed unpredictability

without assuming restriction by complementarity, and hence we gain little extra by

considering this situation.

As a concrete example, consider the preparation of a spin-1
2

particle, for instance

an electron, prepared by in a Sz = +~/2 state before measuring the complementary

observable 2Sx/~ producing an outcome in {−1,+1}. This could, for example, be im-

plemented by a pair of orthogonally aligned Stern-Gerlach devices. Next let us assume

that the system is indeed value definite. The preparation step means that, prior to the

trial of the experiment being performed, v(Sz) is known, and by assumption v(Sx) exists

(i.e., is value definite) and is thus ‘contained’ in the parameter λ. The assumption that

Ξ is restricted by complementarity means that there is no extractor ξ ∈ Ξ able to be

used by a predictor PE giving PE(ξ(λi)) = 2v(Sx)/~ = xi, thus giving unpredictability

for Ξ.

As we noted at the start of the section, this is a fairly strong notion of complemen-

tarity (although not the strongest possible). A weaker option would be to consider only

that we cannot directly extract the definite values: that there is no ξ ∈ Ξ such that

ξ(λ) = v(Sx) for all λ. However, this does not rule out the possibility that there are

other extractors allowing us to indirectly measure the definite values (unless we take the

strong step of assuming Ξ is closed under composition with computable functions, for

example). This weaker notion of complementarity would thus seem insufficient to derive

unpredictability for Ξ, although it would not show predictability either. We would thus,
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at least for the moment, be left unsure about the unpredictability of measurements

limited by this weak notion of complementarity.

7.3.1 Means-relative versus absolute complementarity

In expressing the notion of complementarity as a restriction on the set of extractors

Ξ available to any predicting agent, we made a deliberate choice to consider the most

general notion of complementarity possible. This means that complementarity, in this

form, is to some extent a ‘means-relative’ condition, as opposed to an absolute limit

on possible extractors. As a result, we deduced that complementarity is only able to

guarantee an epistemic, relativised form of unpredictability. The examples we have given

that show the possibility to conceive toy models that are not unpredictable, but still

certified by a form of complementarity, show that this is indeed a good general approach

to complementarity.

However, one could choose to argue that, especially in the case of quantum com-

plementarity, the concept of complementarity should be formulated as the stronger

hypothesis that no such extractor ξ ∈ Ξ extracting complementary values can physi-

cally exist for any set Ξ of extractors. However, this constitutes an additional, relatively

strong and certainly unproven, physical assumption, especially in the case of interest

of a value definite reality subject to the principle of complementarity. It would, in this

case, mean the existence of definite values that are in principle unknowable – a strongly

metaphysical assumption that is by its very nature untestable.

If one were to make such an assumption, complementarity would guarantee (simple)

unpredictability (i.e., not just a relativised form of unpredictability), since the definition

of an extractor requires that it be physically implementable in principle.

7.4 Incomputability, unpredictability, and quantum

randomness

As we discussed at length in Chapter 5, the notion of randomness is a subtle one, and

we should be careful not to claim that the unpredictability of quantum measurements

implies that quantum randomness is ‘truly random’ in any sense. We showed then that,

under the appropriate physical assumptions, one can use value indefiniteness to guar-

antee that the output of the kind of infinite experiment we have been discussing can be

guaranteed to be bi-immune, although this is of course well short even of Martin-Löf

randomness. Furthermore, as discussed in Chapter 5, maximal randomness in the sense
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that no correlations exist between successive measurement results is mathematically

impossible [29, 65]: there exist only degrees of randomness with no upper limit.

Nonetheless, the unpredictability of quantum measurement outcomes certainly ap-

pears to add a stronger formal basis to the intuitions generally expressed regarding

quantum randomness, and can help to explain its origin. As mentioned earlier, Eagle

has argued that a physical process is random if it is ‘maximally unpredictable’ [49]. In

this light it may be reasonable to consider quantum measurements as random events,

giving a more formal meaning to the notion of ‘quantum randomness’. However, given

the intricacies of randomness, it should be clear that this refers to the measurement

process, and does not entail that quantum measurement outcomes are maximally ran-

dom. As a result, any claims regarding the quality of quantum randomness need to be

analysed carefully.

Given the relation between unpredictability and Tadaki total unpredictability (which

implies bi-immunity) discussed in Sec. 6.6, it is natural to ask whether the bi-immunity

of sequences generated by measuring repeatedly a value indefinite observable is a gen-

eral consequence of its unpredictability, or if it is an independent consequence of value

indefiniteness.

7.4.1 Unpredictability and incomputability

The links between unpredictability and Tadaki total unpredictability we explored in

Sec. 6.6 are relative to the use of specific extractors – such as the ‘prefix’ extractor ξp –

which limit the predicting agent to an algorithmic framework, and need not hold when

other more physically relevant extractors are considered. Furthermore, for the unpre-

dictability of an experiment E to guarantee that any outcome of an infinite repetition

of E be incomputable – a much weaker statement than bi-immunity – it would have to

be the case that (taking the contrapositive) if even a single infinite repetition λ1, λ2, . . .

of E could generate a computable sequence this would imply that E is predictable.

However, the definition of a predictor PE for E requires that PE gives correct predic-

tions for all repetitions. Hence, we will elaborate a simple example of an unpredictable

experiment E that can produce both computable and incomputable sequences, showing

that unpredictability does not imply incomputability (let alone bi-immunity).

Example 70. Recall that the dyadic map d : {0, 1}ω → {0, 1}ω is chaotic and is

defined by d(x1x2x3 . . . ) = x2x3 . . . (see Example 63). Let us consider an experiment

Ed which involves iterating the dyadic map k ≥ 2 times on a ‘seed’ x = 0x2x3 . . . until

xk+1 = 0. In other words, given x we look for the smallest integer k ≥ 2 such that

xk+1 = 0, hence dk(x) = 0xk+2xk+3 . . . . If such a k exists, then the outcome of the

experiment is xk+2 ∈ {0, 1}. Note that this experiment differs from the experiment Ek
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used in Example 63 in that the number of iterations, k, may vary depending on the

seed, whereas in Ek it is constant.

We assume that such an Ed (ideally) is physically implementable. We have chosen

this example for simplicity; a more ‘physically natural’ example might be the evolution of

a chaotic double pendulum from some set of initial condition (i.e., up to finite accuracy)

for which the outcome is read off once the pendulum returns sufficiently close to its initial

conditions. Let us assume further that any sequence x = x1x2 . . . such that x1 = 0 is a

valid physical seed. For the case of a double pendulum this is akin to assuming that the

position of a pendulum can take any value in the continuum rather than be restricted

to a countable, discrete set of states – not an unreasonable, if nonetheless important,

assumption.

Theorem 71. The experiment Ed can, when repeated ad infinitum, produce both com-

putable and incomputable sequences.

Proof. The experiment can, of course, be repeated in many different ways – that is, under

many different repetition scenarios – to generate an infinite sequence, but it suffices to

consider the simplest case where the transformed seed x
(1) = dk(x) after one iteration is

taken as the seed for the next step; note that this, by design, satisfies the requirement

that the first bit of x(1) is 0 (i.e., x(1)1 = 0), provided k exists.

Let y = y1y2 . . . be an arbitrary infinite sequence, and consider the sequence x =

010y10y20y3 . . . . For any such sequence x of this form, d2(x) = 0y10y2 . . . , so the outcome

of Ed with seed x is precisely y1, and the new seed x
(1) = d2(x) = 0y10y2 . . . . Similarly,

for all i, starting with the seed x
(0) = x, the outcome of the ith repetition is precisely yi,

since a minimum number of k = 2 applications of d suffices for the first bit of d2(x(i−1))

to be 0, and the seed after this repetition is precisely x
(i) = 0yi0yi+1 . . . . If the repetition

is started with the seed x one obtains the infinite sequence y by repeating Ed to infinity.

In particular, since y can be any sequence at all, one can obtain both computable and

incomputable sequences by repeating Ed. Note that, since y (and x) is an infinitely

specified quantity we cannot ‘choose’ the seed x for the repetition; the important point

is simply that any such x is a possibility.

Let us show also that Ed is unpredictable.

Theorem 72. The experiment Ed is (simply) unpredictable.

Proof. Let us assume, for the sake of contradiction, that there exists a predictor PEd

and extractor ξd such that PEd
is correct for ξd. Then PEd

must give infinitely many

correct predictions using ξd for any two runs λ1λ2 . . . and λ′1λ
′
2 . . . which differ only in

their seeds x and x
′. In particular, this is true if x,x′ are sequences of the form 0a1a2 . . .
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where ai ∈ {1t00, 1t01} for all i, and t ≥ 1 is fixed, since these are possible seeds for Ed.

For such seeds x,x′ the minimum k ≥ 2 such that the first bit of dk(x) is 0 is precisely

k = t+ 1. Furthermore, if we let x
(0) = x and x

(i) = dki
(

x
(i−1)

)

be the seed for the ith

repetition of Ed, then ki = t + 1 for all i; that is, each iteration of Ed shifts the seed

precisely t + 1 bits. Thus, to make infinitely many correct predictions for Ed starting

with seeds x and x
′ correctly, PE must have access, via ξd, to more than t + 3 bits of

the current seed, since the first t+2 bits of x(i) and x
′(i) are the same for all i. However,

since t is arbitrary, and the same extractor ξd must be used for all repetitions regardless

of the seed, this implies that ξd is infinitely accurate, which is, again, not physically

possible for an extractor. Consequently, Ed must be unpredictable.

The construction of Ed may be slightly artificial and its unpredictability relies, of

course, on certain physical assumptions about the possibility of certain extractors. How-

ever, this concrete example shows that there is no mathematical obstacle to an un-

predictable experiment producing both computable and incomputable outcomes when

repeated, and is, at the very least, physically conceivable.

Any link between the unpredictability of an experiment and computability theoretic

properties of its output thus relies critically on physical properties – and assumptions –

of the particular experiment. Indeed, this careful dependance on the particular physical

description of E is one of the strengths of this general model. This gives the model more

physical relevance as a notion of (un)predictability than purely algorithmic proposals.

The bi-immunity of quantum randomness is a crucial illustration of this fact. Al-

though bi-immunity does not guarantee the unpredictability of an experiment (see Ex-

ample 63), it can also be derived, via the relevant physical assumptions, from value

indefiniteness. For this particular quantum experiment bi-immunity complements, but

is independent of, unpredictability.

7.4.2 Relativised unpredictability and incomputability

Given the relationship between complementarity and relativised unpredictability, and

hence its relevance for quantum unpredictability, it is important to also look at the

relation between experiments that are unpredictable with respect to restricted sets of

extractors, but not simply unpredictable, and the computability of sequences that these

experiments produce.

Example 70 shows that a simply unpredictable experiment can produce both com-

putable and incomputable, even algorithmically random, sequences. It thus follows, a

fortiori, that the same is true for relativised unpredictability, since a simply unpre-

dictable experiment is also unpredictable for any subset of extractors: there exist exper-
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iments that are unpredictable for a restricted sets of extractors, and which are capable

of producing, in the limit, computable outcomes.

7.4.3 Incomputability and complementarity

Even though the (relativised) unpredictability associated with complementary quantum

observables cannot guarantee incomputability, one may ask whether this complementar-

ity may, with reasonable physical assumptions, lead directly to incomputability, much

as value indefiniteness does.

We will show that complementarity, unlike value indefiniteness, cannot guarantee

any kind of incomputability. Specifically, we will show how an, admittedly toy, (value

definite) system exhibiting complementarity (and thus unpredictable relative for extrac-

tors limited by the complementarity principle) can produce computable sequences when

repeated.

Example 73. Consider an experiment EM involving the prediction of the outcome of

measurements on an (unknown but fixed) Mealy automaton M = (Q,Σ,Θ, δ, ω), which

we can idealise as a black box, with {x, z} ∈ Σ characters in the input alphabet, output

alphabet Θ = {0, 1} and satisfying the conditions that a) for all q ∈ Q and a ∈ Σ,

ω(q, a) = ω(δ(q, a), a), and b) x and z are complementary: that is, for all q ∈ Q we have

ω(q, z) 6= ω(δ(q, x), z) and ω(q, x) 6= ω(δ(q, z), x). Note that the specification of EM does

not require M to be in any particular initial state, which in general is unknown. This

automaton is deliberately specified to resemble measurements on a qubit, and can be

viewed as a toy model of a two-dimensional value definite quantum system, where the

outcomes of measurements are determined by some unknown, hidden Mealy automaton.

Since the Kochen-Specker theorem does not apply to two-dimensional systems, this value

definite toy model poses no direct contradiction with quantum mechanics [80], even if

it is not intended to be particularly realistic. We complete the specification of EM by

considering a trial of EM to be the output on the string xz, that is, if the automaton is

initially in the state q, the output is ω(δ(q, x), z), and the final state is δ(δ(q, x), z). This

is a clear analogy to the preparation and measurement of a qubit using complementary

observables, of the type discussed earlier.

We wish to show that EM is unpredictable for a set ΞC of extractors that expresses

the restriction by complementarity present in Mealy automata. In particular, let us

consider the set ΞC that, in analogy to the restriction by complementarity of two quan-

tum observables defined earlier, is restricted by an analogue of complementarity for the

inputs x, z ∈ Σ.

Definition 74. Let Λx be the set of parameters λ corresponding to M being in a state
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q in the set {q ∈ Q | δ(q′, x) = q for some q′ ∈ Q}.13 A set Ξ of extractors is restricted

by M-complementarity if there is no extractor ξ ∈ Ξ and partially computable function

f such that, if M is in a state q with λ ∈ Λx, the following holds for an infinite set

Λ ⊂ Λx: for all λ ∈ Λ, f(ξ(λ)) = ω(q, x)), and f(ξ(λ)) is undefined for all λ∈Λx \ Λ.

That means that, if M is in an ‘eigenstate’ of x, we cannot extract the output of the

input z (and similarly for z and x interchanged).

Theorem 75. The experiment EM is unpredictable for ΞC if ΞC is restricted by M-

complementarity.

Proof. Let us assume for the sake of contradiction that EM is predictable for ΞC : that

is, there is a predictor PEM
and an extractor ξ ∈ ΞC such that EM is predictable for ξ.

Thus, from the definition of predictability, when EM is is repeated under any repetition

procedure, PEM
must provide infinitely correct predictions and no incorrect ones. This

must thus be true if EM is repeated by inputting x to prepare the ith trial so that

each λi is in Λx. For such a repetition procedure, the output of the ith trial of EM is

precisely ω(δ(qi, x), z) = ω(qi, z), and for each trial we have either PEM
(ξ(λi)) = ω(qi, z)

or prediction witheld. But if we define f such that f = PEM
when prediction is not

witheld, and undefined otherwise, then the pair (ξ, f) contradicts the restriction by

M -complementarity, and hence we conclude that EM is unpredictable for ΞC .

It is important to understand that the unpredictability of EM for any ΞC restricted

by M -complementarity expresses the inability to give a single predictor/extractor pair

that gives correct predictions for any valid repetition procedure, rather than just for

a single repetition procedure. Indeed, if we consider perhaps the simplest repetition

procedure, where the final state of the system after the ith trial is the initial state for the

(i+1)th trial, then the sequence produced by the infinite repetition of trials is necessarily

computable – even cyclic – since it simply represents the run of the automaton. This

computability, however, fails to provide a predictor for EM since it would fail to provide

correct predictions for other repetition procedures, where, for example, a new copy of

the system in a new initial state is used for each trial. This same observation means that

the fact that any Mealy automaton is learnable in the infinite limit [63] equally fails to

provide a general method of prediction for EM .

This example does show, however, that the experiment EM , although unpredictable

for ΞC , is capable of producing computable sequences, even if it need not do so under

all repetition procedures, and hence computability is not excluded by complementarity.

13Note that such a state q satisfies ω(q′, x) = ω(δ(q′, x), x) = ω(q, x), and hence q is an ‘eigenstate’
of x.
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We note that one could easily consider slightly more complicated scenarios where

the outcomes are controlled not by a Mealy automaton, but an arbitrary computable –

or even, in principle, incomputable – function; complementarity is agnostic with respect

to the computability of the output of such an experiment. If indeed we were to consider

a toy system modelled as a Turing machine, one loses the simplicity of the finite-state

model, as well as a certain degree of finiteness, since Turing machines must in general

have access to arbitrary large, although only ever finite, memory [122].

Let us nonetheless entertain such an example, and consider such a system and a

corresponding experiment ET which, by analogy to EM , performs a finite computation

on the working tape of the Turing machine, before outputting a single bit. If such an

ET were iterated, as we considered for EM , keeping the contents of the working tape

between iterations (i.e., its internal state – always finite), this iteration could produce,

in the infinite limit, any computable sequence. Such a sequence may be ‘obviously’

computable – such as the sequence 000 . . . – but it could equally be something far less

obvious, such as the digits in the binary expansion of π = π1π2 . . . at prime indices,

that is, πp = π2π3π5π7π11 . . . . Hence, this scenario cannot be easily ruled out empirically,

regardless of the computability and subsequent predictability of the resulting sequences.

Further emphasising this, we note that computable sequences can also be Borel normal,

as for Champernowne’s constant or (as conjectured) π (and, perhaps, even πp), and thus

satisfy many statistical properties one would expect of random sequences.

Our point was not to propose this as a realistic physical model (although it perhaps

cannot be dismissed so easily; if quantum mechanics is value definite, but contextually

so, such a model is not so implausible conceptually) but to illustrate a conceptual

possibility. Value indefiniteness rules this computability out, but complementarity fails

to do the same in spite of its intuitive interpretation as a form of quantum uncertainty.

At best it can be seen as an epistemic uncertainty, as it at least poses a physical barrier to

the knowledge of any definite values. The fact that complementarity cannot guarantee

incomputability is in agreement with the fact that value definite, contextual models

of quantum mechanics are perfectly possible (see Sec. 4.5.1); such models need not

contradict any principle of complementarity, and can be computable or incomputable.

7.5 Summary

The unpredictability of single bits generated by the measurement of a value indefinite

quantum observable formalises and confirms the intuition regarding the unpredictability

of such measurements. As we discussed in Section 5.1, unpredictability is a key notion

of randomness for physical processes, and by formalising such a general notion of unpre-
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dictability we allow the randomness of physical events to be more carefully evaluated.

As our formalism makes clear, unpredictability can come in several different

strengths, from a relativised epistemic form, to the simple unpredictability that we prove

for quantum value indefinite measurements. The non-relativised form of a unpredictabil-

ity provides a more suitable candidate for a general definition of process randomness,

since one generally conceives such randomness to be an objective, rather than epistemic

notion. However, as our formulation makes clear, this should not be taken as evidence

for a form of absolute randomness, since one can vary the strength of unpredictabil-

ity by varying the level of effectivity of the predictor. Thus, as for algorithmic forms

of randomness, several strengths of process randomness are possible, with no absolute

or maximal form of randomness possible. However, as for Martin-Löf randomness, the

notion of predictability based on Turing computability is perhaps the most natural.

Value indefiniteness can thus be used to certify not only the strong incomputability

of sequences of bits generated by quantum measurements, but also the unpredictability

and subsequent randomness of individual quantum measurements. This gives a formal

notion to help clarify the precise strength and degree of quantum randomness.



Chapter 8

Conclusions and open questions

In this thesis we have discussed several issues at the core of the notion of quantum

randomness.

In one of the main theoretical results of the thesis we extended the Kochen-Specker

theorem, proving a stronger variant (Theorem 34) that formally shows the extent of

quantum value indefiniteness. This adds a much stronger basis to the intuition that all

non-trivial quantum measurements are indeterministic, a critical prerequisite to quan-

tum randomness.

We proved that infinite sequences of bits generated by measurements of value indefi-

nite observables are bi-immune, thus showing a formal algorithmic difference in strength

between classical and quantum sources of randomness. This scenario is precisely that

which quantum random number generators attempt to reproduce, and we propose such

a design that is certified by value indefiniteness.

Finally, we presented a general framework for unpredictability and showed, in sup-

port of the standard intuition, that individual quantum measurements of value indefinite

observables are unpredictable with respect to our model.

These results help provide a more nuanced and complete understanding of the nature

of quantum randomness, beyond the much flaunted claims of true quantum randomness

that reduce it simply to indeterminism.

8.1 Open questions and future research

We conclude this thesis with some open questions raised by our research.

127
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8.1.1 Value indefiniteness of two-dimensional spaces

Theorem 34, in extending the Kochen-Specker theorem to localise value indefiniteness,

allows quantum indeterminism to be deduced from more fundamental physical princi-

ples. However, the formal result, like the Kochen-Specker theorem, only holds in dimen-

sion three or higher Hilbert spaces. While value indefiniteness can be postulated to be

present also in two-dimensional Hilbert spaces, this is less satisfying than deriving it

from formal results. Although it is well known that there are counterexamples to the

Kochen-Specker theorem in two-dimensional Hilbert spaces [80], it would be interesting

to see if there are any stronger, but still reasonable, physical assumptions that can be

used to prove value indefiniteness even in the two-dimensional case.

8.1.2 Orthogonality relations for proving Theorem 34

Much attention has been given to the orthogonality relations (Greechie diagrams) used

to prove the Kochen-Specker theorem. The proof of Theorem 34, unlike the Kochen-

Specker theorem, requires arbitrarily large (but always finite) sets of observables to

deduce the value indefiniteness of certain observables. In Section 4.3.3 we posed Conjec-

ture 41, hypothesising that this is unavoidable, and that it is impossible to give a fixed

orthogonality diagram which can be used to prove the value indefiniteness of any observ-

able. It would be interesting and valuable to our understanding of quantum foundations

to confirm this conjecture.

8.1.3 Beyond quantum bi-immunity

While we showed in Theorem 47 that an infinite sequence produced by measuring value

indefinite quantum observables is guaranteed to be bi-immune, we failed to show that

such a sequence is Martin-Löf random, a much more desirable notion of randomness. As

we discussed in Section 5.2.2, this is primarily due to the measure-independence of this

result. Thus, it would be interesting to look at how one can combine the distribution

predicted by the Born rule with this guarantee of bi-immunity to see if a stronger,

measure-dependent, notion of algorithmic randomness can be guaranteed in the same

way bi-immunity is.

8.1.4 Alternative principles certifying quantum randomness

Although we have approached the issue of quantum randomness from the view of quan-

tum value indefiniteness, using this to certify both the bi-immunity and unpredictability
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of quantum randomness, it would be of interest to see if there are other quantum prop-

erties that can be used to certify forms of randomness.

8.1.5 Computational irreducibility

In Section 6.3 we discussed several possible routes to formalising the notion of com-

putational irreducibility (CIR) introduced by Wolfram [151]. The concept of CIR is

generally dealt with informally, and it would be valuable to study certain properties of

CIR more formally. We identified one particular route, based on the complexity theo-

retic optimality of certain computational dynamics, that appears to be the most robust

and reasonable option.

We did not pursue this avenue because we determined its relation to unpredictability

was not strong enough to warrant pursuing further in that direction, but the concept of

CIR is nonetheless interesting. However, it remains to be rigorously defined and certain

factors such as the leeway in efficiency given to simulations need careful consideration.

It would be interesting to do so and apply the notion to certain computational sys-

tems (automata, Turing machines, etc.) as well as to formally study the computational

irreducibility of universality.
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Further details and code

A.1 Further details for the proof of Lemma 37

The computational proof of Lemma 40 in Sec. 4.3.2.1 relies critically on the analysis of

the function f(p1) = 〈a|c〉 for p1 ∈
(

1√
2
, 1
)

, where p1 = |〈a|b〉|. Here we give further

details of this analysis, which was carried out using Wolfram Mathematica 9.0.1.0 [152].

Specifically, we have

f(p1) = 〈a|c〉 = x3p1 +
y3
k
(x2 − p1p3)−

q1z3
kq2

(y2z1 + y1z2),

where the constants are defined in terms of p1 as follows:

α1 =
arccos

√

2
3
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2

, α2 =
arccos 2√

5

arccos
√

2
3

, α3 =
arccos

√

2
3

arccos
√

2
5

,

θa,b = arccos p1, θa,v1 = α1θa,b, θa,v2 = α2θa,v1 ,

q1 =
√

1− p21, x1 = cos θa,v1 , y1 =
p1(1− x21)

q1x1
, z1 =

√

1− x21 − y21,

q2 =
√

1− x21, x2 = cos θa,v2 , y2 =
x1(1− x22)

q2x2
, z2 =

√

1− x22 − y22,

p3 = p1x2 + q1
y1y2 − z1z2

q2
, θb,v2 = arccos p3, θb,c = α3θb,v2 ,

q3 =
√

1− p23, x3 = cos θb,c, y3 = p3
(1− x23)

q3x3
, z3 =

√

1− x23 − y23,

k =

√

(x2 − p3p1)
2 +

(

(y1y2 − z1z2)

q2
− p3q1

)2

+

(

y2z1 + y1z2
q2

)2

.
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A.1.1 Continuity of f

The continuity of f on the domain
(

1√
2
, 1
)

can be shown by looking at the continuity

of each term above.

We can easily see that θa,b is continuous on this domain since p1 < 1, and furthermore

that θa,b ∈
(

0, π
4

)

. Thus, θa,v1 and θa,v2 are also continuous and non-zero. It is clear that

q1 is continuous and q1 ∈ (0, 1), and the continuity of x1 follows from the continuity of

θa,v1 , and x1 > 0. Thus, since q1x1 6= 0 we deduce the continuity of y1 and z1. From an

analogous argument we get the continuity of q2, x2, y2, z2, p3, as well as that p3 ∈ (0, 1).

Thus, this shows further the continuity of θb,v2 . The remaining terms, including k can

readily be shown to be continuous (as a function of p1) in a similar fashion, with k 6= 0.

Thus, since f is composed of terms that are continuous on
(

1√
2
, 1
)

with non-zero

denominators, it follows that f is continuous on this domain.

A.1.2 Limit behaviour of f

The Mathematica code below uses these constants and the form of f(p1) to give the

following Taylor expansion of f at p1 = 1, showing the behaviour of f(p1) as p1 → 1

from below. It also calculates the derivative df
dp1

which is used to generate Fig. 4.6.

f(p1) =1 +
(p1 − 1)

π2 arccos2
√

2
5

(

π2

(

arccos2
√

2

5
+ arcosh2

√

2

3

)

+ 8 arccos
2√
5

(

arccos
2√
5

(

2 arccos2
√

2

3

+

√

√

√

√

(

π2 + 16 arcosh2

√

2

3

)(

arccos2

√

2

5
+ arcosh2

√

2

3

)



+ 4 arccos

√

2

3

×

√

√

√

√

(

arccos2

√

2

5
+ arcosh2

√

2

3

)(

arccos2

√

2

3
+ arcosh2 2√

5

)









+O((p1 − 1)2),

which numerically simplifies to

f(p1) = 1− 1.2658(1− p1) +O((p1 − 1)2).
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A.1.3 Mathematica code

$Assumptions = 0 < p1 < 1;

f[p1_] :=

Module[{a, \[Alpha]1, \[Alpha]2, \[Alpha]3, q1,

b, \[Theta]ab, \[Theta]av1, x1, y1, z1, v1, \[Theta]av2, p2, q2,

x2, y2, z2, v2, \[Theta]bv2, \[Theta]bc, p3, q3, k, x3, y3,

z3}, \[Alpha]1 = ArcCos[Sqrt[2/3]]/ArcCos[1/Sqrt[2]];

\[Alpha]2 = ArcCos[Sqrt[4/5]]/ArcCos[Sqrt[2/3]];

\[Alpha]3 = ArcCos[Sqrt[2/3]]/ArcCos[Sqrt[2/5]];

a = {1, 0, 0};

q1 = Sqrt[1 - p1^2];

b = {p1, q1, 0};

\[Theta]ab = ArcCos[a.b];

\[Theta]av1 = \[Alpha]1 \[Theta]ab;

x1 = Cos[\[Theta]av1];

y1 = p1 (1 - x1^2)/(q1 x1);

z1 = Sqrt[1 - x1^2 - y1^2];

v1 = {x1, y1, z1};

\[Theta]av2 = \[Alpha]2 \[Theta]av1;

p2 = x1; q2 = Sqrt[1 - x1^2] ;

x2 = Cos[\[Theta]av2] ;

y2 = p2 (1 - x2^2)/(q2 x2);

z2 = Sqrt[1 - x2^2 - y2^2];

v2 = {x2, (y1 y2 - z1 z2)/q2, (y2 z1 + y1 z2)/q2};

\[Theta]bv2 = ArcCos[b.v2];

\[Theta]bc = \[Alpha]3 \[Theta]bv2;

p3 = b.v2;

q3 = Sqrt[1 - p3^2];

norm[x_] := Sqrt[x.x]; k = norm[v2 - p3 b];

x3 = Cos[\[Theta]bc];

y3 = p3 (1 - x3^2)/(q3 x3) ;

z3 = Sqrt[1 - x3^2 - y3^2];

Return[x3 p1 + y3/k (x2 - p1 p3) - (z3 q1)/(k q2) (y2 z1 + y1 z2)]]

Series[f[p1], {p1, 1, 1}]

D[f, p1]
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Abstract

The outcomes of quantum measurements are generally considered to be random, but

despite the fact that this randomness is an important element in quantum information

theory, its nature is not well understood. In this thesis, we study several issues relating

to the origin and certification of quantum randomness and unpredictability.

One of the key results in forming our understanding of quantum mechanics as an

intrinsically indeterministic theory is the Kochen-Specker theorem, which shows the

impossibility to consistently assign simultaneous noncontextual definite values to all

quantum mechanical observables prior to measurement. However, the theorem, under

the assumption that any definite values must be noncontextual, only strictly shows that

some observables must be value indefinite. We strengthen this result, proving a stronger

variant of the Kochen-Specker theorem showing that, under the same assumption, if a

system is prepared in an arbitrary state |ψ〉, then every observable A is value indefinite

unless |ψ〉 is an eigenstate of A.

The indeterministic nature of quantum measurements does little to explain how the

quality of quantum randomness differs from classical randomness. We show that, sub-

ject to certain physical assumptions, a sequence of bits generated by the measurement

of value indefinite observables is guaranteed, in the infinite limit, to be strongly incom-

putable. We further discuss how this can be used to build a quantum random number

generator certified by value indefiniteness.

Next, we study the notion of unpredictability, which is central to the concept of

(quantum) randomness. In doing so, we propose a formal model of prediction that can

be used to asses the predictability of arbitrary physical experiments. We investigate how

the quantum features of value indefiniteness and complementarity can be used to certify

different levels of unpredictability, and show that the outcome of a single measurement

of a value indefinite quantum observable is formally unpredictable. Finally, we study

the relation between this notion of unpredictability and the computability-theoretic

certification of quantum randomness.

Keywords: Quantum foundations, quantum randomness, quantum indeterminism, un-

predictability, value indefiniteness, quantum measurement
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Résumé

Les résultats de mesures quantiques sont généralement considérés comme aléatoires,

mais leur nature aléatoire, malgré son importance dans la théorie de l’information quan-

tique, est mal comprise. Dans cette thèse, nous étudions plusieurs problèmes liés à l’ori-

gine et la certification de l’aléatoire et l’imprévisibilité quantique.

L’un des résultats clés dans la formation de notre compréhension de la mécanique

quantique comme théorie intrinsèquement indéterministe est le théorème de Kochen et

Specker, qui démontre l’impossibilité d’attribuer simultanément, de façon cohérente, des

valeurs définies et non-contextuelles à chaque observable avant la mesure. Cependant,

si nous présumons qu’une observable à valeur définie doit être non-contextuelle, alors le

théorème ne montre que le fait qu’il existe au moins une observable à valeur indéfinie.

Nous renforçons ce résultat en démontrant une variante du théorème de Kochen et

Specker qui montre que si un système est préparé dans un état quelconque |ψ〉, alors

chaque observable A est à valeur indéfinie sauf si |ψ〉 est un état propre de A.

La nature indéterministe de la mesure quantique n’explique pas bien la différence

de qualité entre l’aléatoire quantique et classique. Soumise à certaines hypothèses phy-

siques, nous montrons qu’une suite de bits produite par la mesure des observables à

valeurs indéfinies est garantie, dans la limite infinie, d’être fortement incalculable. De

plus, nous discutons comment utiliser ces résultats afin de construire un générateur

quantique de nombres aléatoires qui est certifié par des observables à valeurs indéfinies.

Dans la dernière partie de cette thèse, nous étudions la notion d’imprévisibilité, qui

est au cœur du concept d’aléatoire (quantique). Ce faisant, nous proposons un modèle

formel de (im)prévisibilité qui peut servir à évaluer la prévisibilité d’expériences phy-

siques arbitraires. Ce modèle est appliqué aux mesures quantiques afin de comprendre

comment la valeur indéfinie et la complémentarité quantique peuvent être utilisées pour

certifier différents degrés d’imprévisibilité, et nous démontrons ainsi que le résultat d’une

seule mesure d’une observable à valeur indéfinie est formellement imprévisible. Enfin,

nous étudions la relation entre cette notion d’imprévisibilité et la certification de l’in-

calculabilité des suites aléatoires quantiques.

Mots-clés : Fondements de la mécanique quantique, aléatoire quantique, indétermi-

nisme quantique, imprévisibilité, la valeur indéfinie, mesure quantique
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