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de Paris, Université Pierre et Marie Curie
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General Introduction

In nature, many structures repeat themselves in space, from atoms to butterfly

wings. More than twenty years ago, it has been proposed i to construct artificial

elastic structures, the phononic crystals (PCs), by the repetition of inclusions em-

bedded into a host matrix made of a different material. As a consequence of the

periodicity of the elastic properties in the direct space, the elastic waves propagating

in a PC are characterized by a periodic wavenumber in the reciprocal space. Equiv-

alently, the band structure repeats itself in the Brillouin zone. Such a “wavenumber

trap” in the Brillouin zone has given birth to several unconventional and even ex-

otic properties for elastic waves propagating in PCs. Among these, one of the most

widely studied is the hindering for the propagation in PC of any wave in some fre-

quency bands, i.e., the bandgap. Apart from this, the unit cell of a PC, acting as

an atom or a molecule in a solid, can be artificially modulated to control the wave

propagation; e.g. by removing one inclusion in an infinite PC, one creates a defect

that may trap the elastic energy. By removing a line of inclusions, it helps guiding

the wave along this line. . .

Specific designs of the unit cell also enable to control the dispersion curves of a

PC. This is the case in particular when one deals with one of the most important

applications of acoustics as the imaging acoustic is. Actually, new types of acoustic

lenses, different from conventional ones, can be engineered from a PC. Conventional

acoustic lenses, which generally have a precise geometrical shape as for example the

Fresnel lenses or the elliptical ones, can be used to get an image of the source or to

focalize incident waves. Indeed, under certain conditions, plane waves can alter into

elliptical or circular wave by using transducers of similar shape, resulting them to

converge to a small region. However, limited by the geometrical shape of the lens or

by the arrangement of transducers, these lenses are usually designed to work within

a narrow frequency range, which makes it hard to tune the operating frequencies

or to combine them with other devices.

PC based acoustic lenses, on the other hand, can be engineered to have a sec-

ond acoustic band featuring a negative slope in the Brillouin zone, which leads to

iKushwaha et al., Physical Review Letters 71: 2022, 1993
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the unusual negative refraction of waves due to the opposite directions between the

group velocity and the phase velocity. Such PC based structures with just a flat

shape can give an almost perfect image of the source owing to the negative refrac-

tion. Indeed, in 2009, ii a PC-based lens was used to give an image of a point source

with a resolution at the focus less than half a wavelength, i.e., beyond the diffrac-

tion limit. The secret lies in the restoring of evanescent components emitted by the

source, owing to the negative index, making PC-based acoustic lenses to overcome

the diffraction limit as do the Maxwell fish-eye lenses, iii or the super-oscillations.
iv Moreover, the PCs keep the easy modification of the unit cell or of the overall

geometric shape.

For a long time, flat PC-based acoustic lenses have been investigated within the

high frequency range (i.e., above the band gap) in relation with imaging acoustic

using the negative refraction processes. This implies uniform shape for all the unit

cells in the heterostructure and a real periodicity along two perpendicular directions

in space. The independent control of each unit cell in the PC, on the other hand,

has triggered a new type of acoustic lenses, namely the gradient-index (GRIN )

PCs, in the Cartesian, cylindrical and spherical coordinates. The principle lies in

the careful modification of unit cells to obtain a varying sound velocity along some

directions. When an incident wave confronts such a gradient of velocity, its trace of

energy is shifted as it is the case for light impinging on a graded optical lens: the

phenomenon is nothing else than an effect that can be daily observed in nature the

“mirage effect”.

Cartesian artificial acoustic lenses, which generally have a flat shape, can focal-

ize, collimate or render divergent incident waves at low frequency with a positive

refractive index. The potential applications of GRIN PC include the relatively

large-band focalization and the convenient manipulation of elastic waves. These

acoustical lenses offer the simplest and least expensive route to obtain a small focal

zone with fairly high lateral resolution and energy efficiency. Although many studies

have concentrated on this topic, very few address the performances of focalization,

including the location of the focus, the gain factor, and the focusing resolution. Let

us consider the location of the focus for example. As in optics, it may be affected by

the operating wavelength or some defects of the PC. In terms of focusing resolution,

whether it can overcome the diffraction limit or not, poses an interesting question

and understanding the underlying physical mechanisms remains a challenge. An-

swering these questions not only requires numerical or experimental investigations

but also further theoretical views.

This PhD research work aims at studying the focusing of acoustic waves us-

iiSukhovich et al., Physical Review Letters, 102: 154301, 2009
iiiMa et al., New Journal of Physics, 14(2): 025001, 2012
ivHuang and Zheludev, Nano Letters, 9(3): 1249, 2009
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ing GRIN PCs. The study enters the more general scheme of manipulating the

elastic wave propagation using sub-wavelength unit, or equivalently to act on the

trajectories of modes within the first acoustic band. Because both of them are of

very broad interest in many fields of pure and applied physics or mechanics, such

as non-destructive testing, telecommunication, geophysics and so on, we have been

mainly interested in the lowest order anti-symmetric (A0) Lamb mode and in the

surface acoustic waves (Rayleigh mode). The manuscript is organized as follows:

In the first chapter we introduce the elastic waves focusing by flat acoustic

lenses. We recall the concepts of negative index and negative refraction. We further

describe the cutting edge of the researches devoted to the focusing with a positive-

index PC.

The second chapter concentrates on the propagation of A0 Lamb mode inside

a GRIN PC. In this chapter, a new formalism to calculate the ray trajectories is

proposed. This formalism is based on the consideration of the local anisotropy in

the GRIN PC. The ray trajectories are calculated and compared to numerical and

experimental results. The formalism is used all through this work.

Following the study of the focusing inside the GRIN PC, the third chapter

deals with the focusing of A0 Lamb mode downstream the GRIN PC. Through

the analysis both of the ray trajectories and of the transverse wavenumber, we

investigate the focusing pattern. To enhance the focusing achievements, we propose

a resonant structure to get the desired Fourier components at the focus. Then, we

present both numerical and experimental results in order to verify the focusing

resolution.

In the fourth chapter, we investigate the focusing of Rayleigh waves, both inside

and outside the GRIN PC. The formalism described in chapter 2 is extended to the

case of surface waves. The ray trajectories together with some experimental results

are used to analyze the focusing properties of the lens.

Lastly, we give the conclusions of this work.
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Chapter 1

The controlled wave focalization

in phononic crystals

1.1 Introduction

Engineered structures made of periodic inclusions in a matrix exhibit exotic and

unique propagation properties not inherent to the individual constituent compo-

nents. Proposed more than twenty years ago, the two-dimensional (2D) and three-

dimensional (3D) PCs were conceived to have a similar band structure than other

heterostructures, such as the photonic crystals or the electronic crystals.1–4 The pe-

riodicity in the elastic or in the dielectric properties along one or two directions of

space, enables them to have complete band gaps throughout the Brillouin zone, as

it is the case for the one-dimensional (1D) super-lattices that have been investigated

since more than half a century.5 The key factor for acoustic bandgap engineering is

the impedance mismatch between periodic elements, including the crystal and the

surrounding medium. Actually, when an advancing wave front impinges a mate-

rial with very large changes in the impedance, it tends to be back reflected. From

then on, many interesting characteristics of elastic waves in PC can be anticipated,

giving rise to many devices such as frequency filters, wave guides, noise absorbers,

transducers, cloaks and so on.

Bandgap engineering may also help answering long standing questions in solid

state matter studies, on the feasibility of shaping the elastic wave and focusing the

elastic energy. These promising perspectives for acoustic imaging, which has been

widely studied during the last ten years, are related to the fact that the PCs are

systems in which one can control the wave propagation at the wavelength scale.

Considering that many studies refer to the fact that the acoustic imaging using

PC based lenses is limited by the diffraction, J. Pendry stated in a seminal work6

that negative index makes perfect lenses. A schematic of imaging with a negative
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index PC (or photonic crystal) is shown in Figure 1.1. The part of the beam emitted

by the source which impinges the interface with an angle above a critical value gets

evanescent upon refraction. However, if the PC (or the photonic crystal) features

a negative-index, the evanescent waves are amplified by the medium and these

components may refocus and produce a near-field image.6,7 The fine information

carried by the restored evanescent components enables the resolution to be less than

half a wavelength in the image plane, i.e., to surpass the Abbé limit. This scheme

applies whatever the waves are.

source image 

Negative-Index 

Lens 

Figure 1.1: Scheme of imaging through a negative refraction lens.6

This so-called superlensing effect is the direct consequence of negative refraction

of ultrasound in PCs. Let us note however that there are other artificial structures

allowing for negative refraction: the acoustical metamaterials. They are generally

formed by a set of local resonators embedded into a matrix. For homogenization

theories to apply, these resonators must have lateral dimensions much less than the

wavelength. If this condition is fulfilled, they may feature negative effective mass

density and compressibility in certain frequency ranges, allowing for superlensing

effect as well.

Similarly to the optical imaging by photonic crystals,8,9 the acoustic imaging

through PCs is only achievable within the bands above the first acoustic branch and

can be tuned by controlling the elements in the PC in an comprehensive manner.

Moreover, because of the exponential decay of the evanescent waves behind the

lens, such superlensing effect is expected to appear only in the near field. To

overcome this barrier, several authors10–12 have proposed the negative-index far-field

superlens which allows transferring behind the lens the evanescent components to

the propagative ones. However, these systems still are designed to deal with elastic

modes above the first acoustic branch.

Gradually altering the periodic elements along certain directions in space, pro-
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vides another way to control the wave propagation. For example, the gradual mod-

ification of the filling ratio of inclusions creates in the PC, a graded sound velocity,

or equivalently a graded refractive index, giving rise to the GRIN PCs which can

produce an image of the wave source or focalize incident waves either in the Carte-

sian, cylindrical or spherical coordinates systems. Such wave focalization applies

not only at frequencies above the first band gap in the dispersion curves but also

for the first branch, at low frequency/large wavelength. For any mode in the first

band, the dimensions of the unit cell are less than the wavelength, making suitable

the homogenization of the elastic parameters of the GRIN PCs. All this shows

that GRIN PCs can be designed and analyzed in the same way as it is generally

done for the optical lenses. To now, flat GRIN PCs may lead to a focalization with

highly concentrated elastic energy at frequencies in a broad range within the first

band, distinguishing such positive-index systems from the negative-index ones. The

focusing resolution can be less the wavelength.

In what follows, we analyze the focusing of elastic waves considering either the

negative or the positive indices of PCs are presented together with their physical

explanations.

1.2 Negative-index focusing of phononic crystal

1.2.1 Analysis of near-field superlensing focusing

The negative index comes from, not a mystery, but the band structures of PC.

It appears within either the high frequency range in the first band,13–15 or in the

second band.16–19 To illustrate the first case, figure 1.2(a) shows the bands structure

of a PC with a square lattice.13 Two operating frequencies on the first acoustic

branch, namely 6.15 Hz and 7.20 Hz, are chosen as examples. At 6.15 Hz, the

EFC is centered at M point in the reciprocal space while the EFC for the wave in

the background is centered at Γ point, as shown in figure 1.2(b). A wave incident

from the background is denoted in the first Brillouin zone by the k vector together

with the group velocity vg. Within the first branch of the dispersion curves, the

relationship k · vg > 0 holds on. So that the incident wave undergoes negative

refraction at the interface between the background and the PC, as confirmed by

the direction of group velocity vector vg and shown by the label in figure 1.2(b).

Similar behaviors arise for 7.2 Hz (see figure 1.2(c)). However, in this latter case,

the wavenumber k is smaller in the PC than it is in the background, which in return

changes a little the achievements of the PC.
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(a) (b) (c) 

Figure 1.2: (a) Band structure of a PC. Two frequencies are chosen in the first branch at
6.15 Hz and 7.20 Hz. (b) The equal frequency contour at 6.15Hz for both the background
medium (black line) and the PC (red line), and (c) the equal frequency contour at 7.20
Hz for both the background medium (black line) and the PC (red line).13 The negative
refraction lens is formed at the first branch through the relationship k·vg > 0.

Γ Γ Γ 

(c) 

k 

vg 

k 

vg 

k 

vg 

Figure 1.3: (a) Band structure of a PC, with c the wave velocity of background medium.
(b) Equal frequency contours at the second branch.17 (c) Scheme of the wave vector and
group velocity for an incident wave. The negative refraction lens is formed at the second
branch through the relationship k·vg < 0.

To illustrate the second case of negative index, figure 1.3(a) shows the bands

structure of another PC with the honeycomb lattice. The sound line, indicated
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by the relationship ω = ck, crosses the second branch at normalized frequency

0.365 (2πc/a). Figure 1.3(b) shows the EFCs at several frequencies. The modulus

of k vector is almost constant whatever is the direction in the reciprocal space

and therefore the EFC is close to a circle at 0.365 (2πc/a), indicating very few

anisotropy at this frequency. Therefore, the EFCs both in the background and in

the PC are considered as circles (see figure 1.3(c)). In this figure, an initial wave

vector associated to the wave emitted by the source is drawn. The Snell’s law

predicts two potential wave vectors in the downstream medium, identified as solid

line and dashed line starting from Γ point, respectively. For frequency along the

second branch, the relationship between k and vg reads k ·vg < 0 now. The dashed

line gives the direction of the group velocity (associated to the flux of elastic energy)

just in opposite direction to the wave incident from the background, which is not

physically acceptable, so that only one wave vector indicated by the solid line is

conserved. It is clear from the direction of the group velocity that the incident wave

is negatively refracted.

It has been proved, both theoretically and experimentally, that a negative-index

PC allows for the sub-wavelength focusing or imaging, by either of the geometries

(first band or second band) described above.13–22 To a certain extent, the resolution

was beyond the diffraction limit, with the evanescent components gathered at the

focus.23–25 To further illustrate this, figure 1.4(a) shows a snapshot of the wave

focusing through a negative-index PC at 530 KHz.23 The transverse profile in figure

1.4(b) displays a resolution at the focus beyond the diffraction limit, at the peak

value of the horizontal profile along the central layer in figure 1.4(c). This is a clear

evidence that the superfocusing effect has been achieved.

To answer the question why the superfocusing effect was achieved in the work,23

whereas it was not observed in systems featuring an effective refraction index equal

to −1,17,18 the bound modes have been calculated, as shown in figures 1.5(a) and

1.5(b). The bound modes are those bands that exit below the sound line (dash

line in figure 1.5(a)) in the background medium. They correspond to leaky modes

between the PC and background medium with the horizontal wavenumber being

imaginary. These modes play the role of a real bridge transferring the information

carried by the evanescent components to the near-field focus.23 Therefore, they are

essential the mechanism leading to the superlensing effect.

All these studies about the negative refraction and superfocusing of acoustic

waves in a fluid (i.e., longitudinally polarized) have inspired a series of works on

both the negative refraction and the imaging or focusing of waves with other polar-

izations,26–36 including some recent works about Lamb and Rayleigh waves in solids.

However, in contrast with the state of the art in the photonic crystals side,37–39 the

mechanism at the origin of the bound modes by evanescent component has not been

fully explored yet for PCs in solid matrices.

8



Figure 1.4: (a) Numerical superfocusing through negative refraction PC at 530KHz, (b)
the transverse profile at the peak value, (c) the horizontal profile along the symmetric
axis.23

Figure 1.5: (a) Numerical investigation of the bound modes of a PC. The label indicates
the used model while the dash line presents the sound line of background medium.(b)
The zoom of the part in the box. The working frequency is 530 KHz, as shown in figure
1.4.23

The transverse profile at the peak value, when evanescent components are in-
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cluded, can be estimated through9

|I(x)| =

∣∣∣∣∣
∫ ω/c

−ω/c

eikxdk + (

∫ −ω/c

−kM

+

∫ kM

ω/c

)eikxdk

∣∣∣∣∣
2

, kM > ω/c (1.1)

where I is the image intensity, ω is the angular frequency, c is the velocity of

background, k is the transverse wavenumber, and kM is maximum value of k. In

equation (1.1), not only the propagating components with |k| < ω/c but also the

evanescent components with |k| > ω/c are integrated at the focus. Theoretically,

in the perfect lens proposed by J. Pendry, the maximum wavenumber kM → ∞,6

which is however not doable for PC based lenses since there is always a cut-off

wavelength for kM .23,25

1.2.2 Analysis of far-field superlensing focusing

The superlensing effect is considered to be limited to the near field because of the

exponential decay of the evanescent components.10,40 To illustrate this, figure 1.6(a)

schematically depicts the changes in the amplitude of evanescent waves from the

source to the far field behind a conventional superlens.10 The amplitude is almost

zero after one wavelength behind the lens. To overcome this barrier and get the

super-solution effect in the far field, the so-called far-field superlens was proposed

as a alternative to the conventional superlens.10 As showed in figure 1.6(b), for

the negative-index far-field superlens there is a one-to-one relationship between

the near-field and far-field angular spectra: k′ = k + 2π/d × p, where k is the

incident transverse wavenubmer, k′ is the transmitted transverse wavenumber, and

p is the diffraction order. Clearly, the far-field superlens is not limited to single-

mode analysis, as it is the case for the conventional superlens, and it has been

established already for electromagnetic waves in photonic crystals based lenses for

optics.11,12 In the view of angular momentum, the far-field superlensing applies not

only to optics but also to acoustics, once the conditions are satisfied. The effect

has been numerically predicted for the image of a point source through a negative-

index PC.41 However, the experimental verification and the underlying mechanism

are still missing.

In terms of imaging or focusing through the negative refraction, either in the near

field or in the far field, more attention has been paid to recover the information of

a point source. In return these works are more about the wave imaging than about

focusing, although a clear distinguishing between these effects is generally not made.

Negative-index PC, involving either the near-field or the far-field focusing, works

at the high frequency in the first acoustic or the second branch. The positive-index

PC, on the other hand, provides a practical way to focus acoustic waves at low

10



frequency in the first acoustic branch.

Figure 1.6: Transmitted properties of (a) conventional superlens versus (b) the far-
field superlens. The conventional lens has enhanced the incident evanescent component.
However the amplitude decreases quickly at the near field. The far-field superlens can
also recover the incident evanescent component. Meanwhile, the evanescent component
to propagating mode at the boundary through the angular spectrum.10

Figure 1.7: Acoustic focusing42 by using a shaped PC featuring a positive index at the
low frequencies: (a) scheme of geometric lens, (b) two-dimensional distribution of the
measured intensity |T |2, (c) the intensity along the symmetric axis, and (d) the intensity
along the transverse axis at the peak value in (c).
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1.3 Positive-index focusing of phononic crystal

Attention has been paid to the focusing by PCs based acoustical lenses featuring

a positive index since almost the beginning of the PC topic emerges. In the early

studies, the lenses were composed of uniform PC and were shaped in different ge-

ometries to make them behave similarly as optical lenses.42–46 Figure 1.7(a) shows

the drawing of an acoustical lens with a parabolic surface shape, while figure 1.7(b)

shows the intensity distribution behind the lens.42 A focusing zone is clearly observ-

able behind the lens and it focal distance can be identified by the peak value on the

horizontal profile of intensity along y = 0, as shown in figure 1.7(c). Figure 1.7(d)

shows the transverse profile of intensity at the peak value. As it is the case with the

geometric optical lenses, these acoustic lenses cannot gather the fine information

carried by the evanescent components.

The GRIN PC has the advantage over these former PC based prototypes to

be a flat lens, providing therefore more freedom to control the wave propagation.

GRIN PCs, analogously to graded metamaterials or photonic crystals,47–57 allow

waves propagating in themselves to converge, to collimate or to diverge . Although

certain GRIN PCs featured a negative index,58,59 most of the studies involved het-

erostructures with the positive index, i.e., they worked within the first acoustical

band.60–71 The concept of the GRIN PC, was chiefly proposed to manipulate elastic

waves at low frequencies, in the first band. To now GRIN PCs have been devel-

oped in either the Cartesian, cylindrical or spherical coordinates systems, such as

Eaton lens and Luneburg lenes.68,72,73 In this work however, we restricted ourselves

to study the focusing of elastic waves or the imaging via the flat GRIN PC in

Cartesian coordinates system.61

As an illustration, figure 1.8(a) shows the drawing of an optical lens featuring a

refractive index with a hyperbolic secant profile along the y axis, together with the

light trajectories in it.61 To get a gradual refractive index, the discrete GRIN PC

is formed by modifying either the radii of inclusions (figure 1.8(b)) or the elastic

constants (figure 1.8(c)) along the transverse direction. The reasons of such a choice

are well explained by the first bands of PCs for different radii of inclusions (figure

1.9(a)) or different elastic constants (figure 1.9(b)). These first bands shift gradually

with the alteration of inclusions, which in return results an effective refractive index

at a given frequency accordingly to the radii or the materials the inclusions are made

of. Therefore the GRIN PC is supposed to feature a graded refractive index, with

a profile that can be finely tune accordingly to the design.
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(d) 

Figure 1.8: (a) A gradient-index medium featuring a hyperbolic secant profile along
the transverse direction. A GRIN PC which performs as the GRIN lens is realized by
modifying(b) either the radii of cylinders or (c) the elastic constant.61

Figure 1.9: Band diagrams of the first shear-vertical wave along the ΓX orientation. (a)
By modifying the radii of the inclusion keeping the same material, (b) by modifying the
material of the inclusion keeping the geometry the same.61

Figure 1.8(d) shows the subwavelength focusing at low frequency which mani-

fests itself by the large amplitude of the displacements at the focus. Similar results

13



can be observed within a broad range of frequencies, which is different from the

negative-index flat lenses. These advantages can be well explained by the working

band of GRIN PC. The first band generally ensures high transmission of waves for

the small impendence mismatch between lens and background, so that energy can

be well gathered. Secondly, a given GRIN PC can exhibit similar profile of refrac-

tive index within the first band, which makes lens have similar function within this

broad range of frequencies.

The focusing behavior of different waves inside the GRIN PC, including the

numerical investigation A0 mode, has been studied.60–67 These research works, as

well as those came later, allowed observing the subwavelength focusing both inside

and outside the GIRN PC. However, they mainly were dealing with acoustic waves

in fluids.68,69 To now, the focusing of A0 mode and of the so-called “spoof surface-

acoustic-waves” (SSAW) has been verified experimentally.70,71,74–77

In the long-wavelength regime, the PC is considered to have an effective refrac-

tive index. This effective index serves as a basis to design the GRIN PC. However,

it should be noticed, that the theory predicts the focusing to occur at a different

distance than deduced from the numerical simulations.61 The disagreement can be

large at the short-wavelength regime where the definition of effective refraction in-

dex losses its efficiency. Certain physical explanations were given, including the

homogenization and anisotropy of GRIN PC.61,66 However, no quantitative anal-

ysis has been done to date. Actually, studies about the mirage effect of graded

photonic crystal, gave the opportunity to investigate the anisotropy of photonic

crystal. It has been qualitatively shown that the modulus of EFC has an important

influence on the behavior of the optical waves.49 However, few studies dealing with

the propagation of acoustic waves in a GRIN PC are available.
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Chapter 2

Subwavelength Focalization of A0

mode inside GRIN PC

2.1 Introduction

Using PC to focalize elastic waves with frequencies in the first branch of the Bril-

louin zone where negative refraction effects are not involved, is possible if considering

gradient index phononic crystals (GRIN PCs).60–66,68–71,74–77 These two-dimensional

(2D) systems are engineered with a gradual variation of their constitutive parame-

ters (e.g., filling factors, geometry of the inclusions or material properties) along one

direction. As a result, they feature a sound velocity gradient along that direction

making it possible the focalization of an incident wave. Actually, when an acoustic

beam propagates through a 2D GRIN PC, it encounters redirection at every virtual

interface between layers, resulting in successive reorientations of the acoustic beam

inside the structure. Thus, by gradually modulating the parameters of a GRIN

PC, one may create a focusing trajectory for the acoustic waves.61–64,66,68–71,74–77 In

principle, this trajectory can be analytically calculated, at least for some forms of

the gradient.

However, deviation between the focal distance predicted by the theory and that

derived from numerical simulations may be sometime significant, even in the ho-

mogenization frequency range.61–64,66,68–71,74–76 There are several reasons for this.

First, the actual 2D acoustic lenses feature discretized indices which may be imper-

fectly represented by a continuous gradient. However, this is probably not the most

relevant reason since small deviations of a few percent were observed for wavelength

only five times larger than the period.61–64,66,68–71,74–76 The observed disagreement

between theory and numerical simulations can be explained in a larger extent by

the overall shape of the equi-frequency contours (EFCs).77 Actually, in PCs with

large filling factors the EFCs may depart from a circle, even at low frequency, and
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analyzing the trajectories in terms of an effective index may not be relevant.

Instead, the effects of anisotropy are better described by considering both the

group velocity and the k vector as local parameters.49 Based on the same idea,

Hamiltonian optics approach has been recently proposed to study light propagation

in a graded photonic crystals in the short-wavelength regime.55,57 However, up to

now there is only few theoretical works enabling for a quantitative analysis of the

ray trajectory in the homogenization range. This is the reason why we address

this issue in this chapter where we describe a method that allows analyzing the

trajectory of an elastic beam propagating in a GRIN PC. Then we use this physical

model to analyze the focusing properties of 2D acoustical lenses where the velocity

gradient is realized either by gradually modifying the lattice spacing or by varying

the size of the air inclusions along one direction of the PC, as published in the Ref

[77].We present then an experimental investigation of the focusing of the zero order

anti-symmetric Lamb waves propagating through air/silicon GRIN PCs with either

of the two geometries and we compare their efficiency in focusing flexural Lamb

waves at sub-wavelength.

2.2 Band structures of phononic crystal

2.2.1 Description of physical model
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Figure 2.1: Scheme of (a) PC in rectangular lattice in the direct space, (b) unit cell, and
(c) the corresponding k vector in the reciprocal space.
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The PC was obtained by piercing air holes of radius r through a silicon plate of

thickness h. Figure 2.1(a) shows a scheme of air holes arranged in a rectangular

lattice, with a the periodic constant along x -axis and b along y-axis. The aspect

ratio is defined as b/a while the filling ratio is determined by ff = πr2/ab. Silicon

has its elastic constants C11 = 165.6 GPa, C12 = 63.9 GPa, C44 = 79.5 GPa, and

its mass density ρ = 2331 kg/m3. The x, y and z directions are parallel to the

crystallographic directions < 100 >, < 010 > and < 001 >, respectively. Figure

2.1(b) shows the unit cell of a PC with lateral surfaces identified as surfaces 1-

4, respectively. Figure 2.1(c) shows the first Brillouin zone with wavenumber kx
belonging to [−π/a, π/a] along ΓX direction while wavenumber ky belonging to

[−π/b, π/b] along ΓY direction.

The elastic medium obeys the constitutive equation78,79

T = C : S, (2.1)

where T is the stress tensor, C is the elastic tensor, and S is the strain tensor. The

strain tensor is related to displacement field u by equations

S = ∇su, (2.2)

where ∇ stands for the nabla operator. At the same time, the dynamic equations

are

∇ ·T =
∂2u

∂t2
, (2.3)

where t is time, and ∇· is the divergence operator. Equations (2.1)-(2.3) are written

in a tensor form. Their expansions can be derived for silicon of cubic symmetry to

be



Tx
Ty
Tz
Tyz
Txz
Tzy


=



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44





Sx

Sy

Sz

Syz

Sxz

Szy


, (2.4)



Sx

Sy

Sz

Syz

Sxz

Szy


=



∂ux/∂x

∂uy/∂y

∂uz/∂z

∂uy/∂z + ∂uz/∂y

∂ux/∂z + ∂uz/∂x

∂ux/∂y + ∂uy/∂x


, (2.5)
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∂Tx/∂x+ ∂Txy/∂y + ∂Txz/∂z = ∂2ux/∂t
2

∂Txy/∂x+ ∂Ty/∂y + ∂Tyz/∂z = ∂2uy/∂t
2

∂Txz/∂x+ ∂Tyz/∂y + ∂Tz/∂z = ∂2uz/∂t
2

, (2.6)

Displacement field in the PC satisfies the Bloch theorem1

uj(r) = ujk(r)e
ik·r, j = x, y, z (2.7)

where r is the position, and k is the wave number vector (kx, ky) as shown in figure

2.1(c). ujk has the same periodicity as the structure. Due to Bloch theorem, it

is sufficient to calculate Band structures by using just one unit of PC as shown

in figure 2.1(b), with Bloch theorem or periodic conditions applied on the lateral

surfaces 1-4.

Meanwhile, it is necessary to apply the free condition on any surface open to air

or vacuum. The stress T, and the unit normal vector n on such a surface obey the

relationship

T · n = 0. (2.8)

2.2.2 Bands calculation by finite element method

FEM is recognized as being one of the most powerful methods to solve the above

three-dimensional (3D) problem. It is convenient to modify the shape of inclusions

or unit cell in combination with commercial softwares. Details of FEM can be found

in many known references.79–81 So that it will not be repeated here. We used the

eignemode module in structures in Comsol Multiphysics to solve the 3D problem.

Wave motion equations, as described by equations (2.4)-(2.6), are initialized for

elastic medium in the software while the user just needs to put in the elastic con-

stants. Among the two groups of boundary conditions, the free conditions are set

as the default in the software. It needs only set up the periodic condition on the

lateral surfaces. The Bloch theorem is derived as79,80

u2j = u1je
ikxa

u4j = u3je
ikyb

, j = x, y, z (2.9)

The subscripts 1, 2, 3, 4 are for the surfaces 1, 2, 3, and 4, respectively. By

implanting the Bloch theorem as periodic condition on the lateral sides, it becomes

possible to calculate the eigenfrequency and eigenmode for any wave vector in the

first Brillouin zone and solve the set of equations81[
K(k)− ω2(k)M(k)

]
u(r) = 0, (2.10)
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Figure 2.2: (a) Band-gap structures of air/silicon PC with unit width a = b = 100m,
radius of air hole r = 40µm, and plate thickness h = 110µm. (b) Equal frequency contours
of A0 mode in the first Brillouin

where K is the reduced stiffness matrix; M is the reduced mass matrix.

2.2.3 Bands structures and equal frequency contours

The eigenfrequencies are usually obtained for wave vectors along the primary direc-

tions ΓX, XM, and ΓM, and allow in turn to calculate the band structures of the

PC within the first Brillouin zone. Figure 2.2(a) shows the band structures for a

PC with a = 100 µm, b = 100 µm, r = 40 µm, and h = 110 µm. For comparison,

similar results can be found66 although with the value h = 50 µm. Same results

were repeated by FEM, which helped ensure the validity of our model. The lowest

order symmetric (S0) mode wave, the lowest order antisymmetric (A0) mode wave,

and the lowest order shear horizontal (SH0) mode wave were identified in figure

2.2(a) according to their eigenmodes, respectively. The inset of figure 2.2(a) shows

the eigenmode of A0 mode, with its displacement polarized along the x and z axis.

However, in this work, we considered A0 mode only.

Band structures can be calculated along any direction in the first Brillouin zone.

The bands for a given mode, together with the corresponding k vectors, give rise to

a 2D mode surface. At a given frequency, it corresponds to a 2D equal frequency

contour (EFC, or isofrequency contour) in (kx, ky) plane. Figure 2.2(b) shows the

EFCs for A0 mode at several frequencies. As the frequency increases, the modulus

of EFCs evolves gradually from a small quasi-circular shape centered at Γ point at

1 MHz to a large quasi-circle almost until the edge of the first Brillouin zone at 13

MHz. After that, for frequencies larger than 13 MHz the modulus gets centered at M

point with decreasing radius. However, at close sight, the EFC shape is not exactly
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a circle for frequencies below 13 MHz. The mismatch may be different depending

on the direction within the first Brillouin zone. To account for this relationship, we

defined the ratio η(θ) = (k−kΓX)/kΓX with θ the angle between wave vector k and

ΓX. Along ΓM, η takes the values 0.066, 0.068, 0.036, 0.024 for 1 MHz, 5 MHz, 10

MHz, and 13 MHz respectively.

Having introduced the basic characteristics of PC, attention is turned now to

the wave behaviors in a GRIN PC.

2.3 Beam paths of waves in GRIN PC

2.3.1 Designs of GRIN PCs

Generally, as long as the wavelength is much larger than the size of unit cell, the

medium can be considered as homogeneous and the group velocity can be simply

derived from the derivative of the corresponding dispersion curve at any location

in the GRIN PC. This allows in turn defining an effective index neff as being the

average of the index along ΓX and along ΓM directions61

neff =
nΓX + nΓM

2
,

nΓX = vB/vΓX , nΓM = vB/vΓM .
(2.11)

vΓX and vΓM are the group velocity along ΓX and ΓM. vB is the group velocity in

the background medium. Equation (2.11) clearly shows that the refraction index is

dispersive.

Parabolic profile

GRIN PCs can be designed to have various profiles of refractive index. However,

deriving the trajectory without any approximation does not hold for all of them.

Following Wu et al., numerical simulations of a GRIN PC were performed on a

silicon plate with a thickness h = 110 µm with periodic constant a = 100 µm.66

The scheme was shown in figure 2.3(a).71 The lens was fabricated in such a way

that its refractive index neff has a transverse profile close to a parabola

n2(y) = n2
0(1− δ2y2) (2.12)

at 7 MHz, where n0 = 1.247 and δ = 0.011a−1. Figure 2.3(b) shows the A0 bands

for each horizontal inclusion layer in the sample with clear drop of the band at

ff = 0.726. Figure 2.3(c) shows the EFCs at 7 MHz. The EFC along the central
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Figure 2.3: (a) Scheme of the GRIN PC with wave propagating along the x-direction.
(b) Dispersion curves of the A0 mode wave for the air/silicon phononic slab with different
filling ratios. (c) Equal frequency contours of A0 mode at 7 MHz.

layer of the sample is far from being a circle, indicating a strong anisotropy.

Numerical simulations and experiment have been done to find the field distribu-

tion of wave focusing in the GRIN PC at 7 MHz. We will describe main features of

the experiment later in the section 2.5 in this chapter. Figure 2.4 shows the maxima

of (a) simulated and (b) experimental uz in a GRIN PC featuring 35 columns as

shown in figure 2.4(c). For both simulation and experiment, we found a focusing

zone well located at the center of lens with a gain factor (i.e., the ratio between

amplitude at the focus and that of the incident wave) about 3.8. However, the

experiment demonstrates an oscillatory trajectory to have another peak (slightly

smaller than the first one) while it is not the same case for the simulation. This

is clearly shown in figure 2.5(a) by the horizontal profile along the central layer, in

which there is a small distance between adjacent peaks. Simulation and experiment

give also a shift between transverse profiles observed at their first peaks as found

in figure 2.5(b).

Such disagreements can find their origin in the fabrication process: actually the

largest holes had larger diameters than expected. Besides, the large holes may have

their radii on one side of slab larger than on the other side. As a consequence,

both n0 and δ may be larger than expected, and the focal distance is shorter than

calculated. However, such a qualitative analysis cannot further reveal the focusing

features of the lens for several reasons. First, we set the refractive index have

a parabolic profile which, in theory, leads to aberrations of the ray trajectories.

Secondly, GRIN PCs are discrete structures and the influence of discreteness can

hardly be analysed precisely. Thirdly, the EFCs depart from being circular in some

rows of the system. The effective refractive index can be dependent both on the

local position and on the direction in the Brillouin zone, as shown in figure 2.3(c).

Therefore equation (2.11) may not keep the same efficiency at describing the index
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and in turn at describing the trajectories at any position in the GRIN PC or along

any direction.

(a) (b) 

(c) 

x 

y 

Figure 2.4: (a) Simulated maxima and (b) experimental maxima of uz on the top surface
of air/silicon slab at 7 MHz. (c) Image of surface of experimental sample.

(a) (b) 

Figure 2.5: (a) Experimental (solid line) and numerical (dashed line) of maxima of uz
along the acoustic symmetric axis. (b) Experimental (solid line, x = 12.5a) and numerical
(dashed line, x = 17a) of maxima of uz along the y axis.

Finding the primary factor to design the GRIN PC requires a subtle treatment

of the above physical conditions. This is the reason why we have continued our
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study with the case of the hyperbolic secant profile of which a parabolic profile is

the first-order Taylor series expansion. Actually, the hyperbolic secant profile allows

for an exact determination of the acoustical rays.82

Hyperbolic secant profile

GRIN PCs were designed to have an refraction index obeying a transverse hyper-

bolic secant profile, which can be formally written as66

n2(y) = n2
0sech

2(δy), (2.13)

where n0 is the index along x -axis, at the center of the lens and δ the gradient

parameter. A lens whose index features a hyperbolic secant profile is free of aber-

ration, i.e., any ray normally incident on the lens converges to a single point on the

axis, at the focal length fl, which depends only on δ through

fl = π/2δ. (2.14)

The derivation of equation (2.14) is found in the Appendix A together with the

ABCD law to calculate the ray trajectories.82 The gradient index along y-axis obey-

ing equation (2.13) may result from the gradual variation of the filling factor. This

can be achieved by modulating either the diameter of the cylindrical air inclusions

or the distance separating two consecutive inclusions while keeping uniform their

diameter. In the former case, the GRIN PC has a square lattice whereas the unit

cell is rectangular in the latter case. In what follows, the frequency was supposed

to be 5 MHz. All the results are for this frequency unless specified otherwise.

To achieve an effective index with a hyperbolic secant profile, length b was

imposed to gradually vary along y-axis, whereas both parameters a and r kept

constant values. This was equivalent to vary both the aspect ratio b/a and the

filling factor along y-axis. The result for frequencies along the first branch is shown

in figure 2.6 for different values of the ratio b/a in between 1 and 2.09.

In all the calculations the size of the unit cell along x axis and the thickness

of the plate were a = 100 µm and h = 110 µm respectively. The radius of the

holes was kept constant to r = 40 µm. However, one should notice that, strictly

speaking, GRIN PCs are not 2D phononic crystals since they do not exhibit exact

periodicity along y-axis. Nevertheless, the dispersion properties can be computed by

considering as many reduced Brillouin zone as the number of discrete values taken

by the parameter b. All these reduced Brillouin zones extend over [−π/a, π/a] along
ΓX but the component ky takes values in intervals [−π/b, π/b] that are different

according to the value of b (see the inset in figure 2.6).
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Figure 2.6: First dispersion band of Lamb mode A0 propagating in a Si/air phononic
plate with a rectangular lattice for different sizes of the unit cell along y-axis

Figure 2.7: First dispersion band of Lamb mode A0 propagating in a Si/air phononic
plate with a square lattice for different values of the air inclusions radius

The squared array was deduced from the preceding case by setting a = b. In

that case, ΓX and XM have identical lengths in the reciprocal space and one obtains

a dispersion curve for each value of ff (figure 2.7). The hyperbolic secant profile

was achieved by gradually varying the radius r of the holes, or equivalently, the

filling factor ff. Note that the different geometrical parameters were fixed in such

a way that they allow for further comparisons between the two symmetries and that

they remain compatible with elaboration and experimental constraints. Actually,

the parameters of the lenses namely n0 = 1.32 and δ = 0.088 a−1 turned out

to represent the best compromise in equation (2.13). However, anisotropy along

some rows of inclusions may occur and consequently the EFCs may depart from

being circular along these rows. In that case, equation (2.13) fails to describe

the actual index profile since it does not account for this anisotropy. Indeed, the
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anisotropy coefficient η(θ) is maximum for θ = π/4 where, depending on the filling

ratio, it takes a value in between −0.03 (r = 0.2a) and 0.07 (r = 0.4a). As for

the rectangular lattice, the anisotropy coefficient has a maximum at an angle that

depends on the filling ratio but it remains always below 0.09.

Still, as shown below, equation (2.13) is not factored in the calculation of the

ray trajectories and it was solely used to design both lenses.

2.3.2 Beam path calculations

To calculate the ray trajectory within the GRIN PC of an elastic beam normally

incident on the lens, φ was defined as being the angle between the group velocity

vg (tangent to the trajectory) and x -axis (figures 2.8(a) and 2.8(c)). The filling

factor varying from one horizontal layer to the next, one must compute the EFC

in each layer, as depicted in figure 2.8(b). Because of Snell’s law, which states that

the component kx is conserved across the interface between two consecutive layers,

the initial k vector tilts gradually as the wave propagates in the medium, from the

horizontal direction to a maximum angle at the mid layer. In the general case, the

EFCs are not circular66,71 and the k vector makes an angle θ with respect to x axis

which is not equal to φ (figure 2.8(c)).

To account for this anisotropy, we state that the modulus of the k vector along

a given row of inclusions located at position y, may be written as

k(y, θ) = kΓX(y)p(y, θ), (2.15)

where kΓX(y) is the k vector along ΓX at position y, and p(y, θ) is a function whose

value deviates all the more from unity as the EFC departs from being circular.

The components of the wave vector k along x and y directions are given by

kx = k(y, θ)cos(θ)

ky = k(y, θ)sin(θ)
. (2.16)

To account for the effect of the local anisotropy, one must relate angles φ and θ.

To this end, it is sufficient to observe that the direction vector to the tangent to

the EFC is (∂kx
∂θ
, ∂ky

∂θ
); the group velocity, defined by vg = ∇kω(k), is normal to

this tangent and points in the direction given by a vector whose components are

(∂ky
∂θ
,−∂kx

∂θ
). Hence, the relationship between angles φ and θ reads:

tan(φ) = −∂kx
∂θ

(
∂ky
∂θ

)−1. (2.17)
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Figure 2.8: (a) Ray trajectory in a simplified GRIN PC made of five layers. P1, P2

and P3 indicate three different positions along the ray trajectory and φ is the angle
between the tangent to the ray trajectory and x axis; (b) the k vector gradually tilts
from being horizontal at P1 to a direction with an angle θ which depends on x, at P3.
The tangential component kx is conserved across the interface as shown by the location
dependent EFCs; (c) k vector in a typical EFC with group velocity vg normal to the
EFC. The above representation is general and applies to any other ray trajectory in the
lens.

In the direct space, vg is tangent to the trajectory and therefore:

tan(φ) =
dy(x)

dx
. (2.18)

In the long wavelength limit, the value at x = 0 of the x -component of the wave

vector varies continuously along y axis according to equation (2.13). Moreover, as

a consequence of the Snell’s law, the component kx keeps constant value all along

the acoustical ray that originates at position (x = 0, y), which translates into:

kx = k0x(y). (2.19)

Finally, an iterative procedure is used to derive the ray path from equations (2.15)-

(2.19). Actually, for a given value of y and at each position along x axis, the angle θ

was derived from equation (2.16) after setting k0x(y) to an initial value, allowing in

turn computing the slope φ using equation (2.17), from which the trajectory y(x )

is obtained by numerically integrating equation (2.18).

To complete this procedure for both symmetries that we have considered, one
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Figure 2.9: EFCs at 5 MHz (solid lines) and the corresponding fits derived from equation
(2.20) (circular markers) for a PC with the square symmetry and for different sizes of the
air holes.

must make assumptions on the form of the function p(y, θ) appearing in equation

(2.15).

Square lattice

In order to well reflect the anisotropy of the square lattice, the function p(y, θ) must

account both for any departure from the circular shape of the EFC and for the

four-fold axis characterizing this class of symmetry. Introducing the dimensionless

coefficient α(y) = kΓM−kΓX

kΓM+kΓX
in the definition of p(y, θ) allows satisfying the first

requirement. On the other hand, a cosine function was introduced in the definition

of p(y, θ) in order to fulfill the condition of periodicity of the wave vector, as θ

scans all angles within [0 − 2π] in the first Brillouin zone. The analytical form of

k(y, θ) that the closest matches to the EFCs whatever is the filling factor within the

interval [0.07− 0.5], corresponding to the actual samples that we have investigated

(see below), is:

k(y, θ) = kΓX(y)
1− α(y)cos(4θ)

1− α(y)
. (2.20)

The EFCs at 5 MHz for several values of the filling factor computed using FEM (full

lines) or derived from equation (2.20) (indicated by circular markers) are displayed

in figure 2.9. The agreement between both is excellent. EFCs are computed using

both methods and setting the frequency to different values in between 3 and 13

MHz (see r = 0.4a in figure 2.2(b)): whatever the frequency and the filling ratio

are, the agreement is equally good.
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Figure 2.10: EFCs at 5 MHz (solid lines) and the corresponding fits derived from equation
(2.21) (circular markers) for a PC with the rectangular symmetry and for different aspect
ratios b/a.

Deriving the trajectory y(x) within the GRIN PC is then straightforward. In-

deed, one must simply calculate both the derivatives of kx and ky with respect to θ,

using equation (2.16) and equation (2.20) and then integrate their ratio according

to equations (2.17) and (2.18).

Rectangular lattice

As with the preceding case, one can account for the anisotropy of the rectangular

lattice by introducing in the definition of p(y, θ) two dimensionless parameters,

α(y) = kΓM−kΓX

kΓM+kΓX
to account for the difference in the lengths of the wave vector along

ΓX and ΓM and β(y) = kΓY −kΓX

kΓY +kΓX
for the mismatch along ΓX and ΓY. In addition,

we introduced in the definition of p(y, θ) a cosine function to account for the two-

fold axis of the rectangular symmetry. Considering both these requirements, we

obtained the best fits to the computed EFCs with the function:

k(y, θ) = kΓX(y)

{
1− α(y)cos(4θ)

1− α(y)
+ β(y)[1− cos(2θ)]

}
. (2.21)

As can be seen from figure 2.10, whatever is the value of the aspect ratio b/a in

the sample, or equivalently the filling factor in the range [0.24 − 0.5], the fits to

the EFCs were as good as for the square lattice. Indeed, at 5 MHz, the largest

deviation was less than 2%; it appears along ΓM for the aspect ratio b/a = 2.09.

Both equations (2.20) and (2.21) well take into account the anisotropy along the
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(a) 

(b) 

(c) 

(d) 

Figure 2.11: Ray trajectories of GRIN PC in square lattice (a) ignoring the anisotropy
by setting k = kΓX and (b) with an exact consideration of anisotropy; Ray trajectories of
GRIN PC in rectangular lattice (c) ignoring the anisotropy by setting k = kΓX and (d)
with an exact consideration of anisotropy.

lines of inclusions where the EFCs may depart from a circle. Both remain valid as

long as the EFC is a closed curve and for any frequency below the first band gap in

the dispersion curves that opens at point X and 13 MHz for the square symmetry

(figure 2.7) and at point Y and 5 MHz for the rectangular symmetry (see right panel

in figure 2.6).

An example of computing ray trajectories is found in the Appendix A for the

GRIN PC with square symmetry. Such an example can be easily extended to GRIN

PCs of other lattices.

2.3.3 Effect of anisotropy of GRIN PCs

It is interesting to visualize the influence of anisotropy of EFCs before further

investigations by other methods. To this end, the ray trajectories of wave beams

were obtained for two cases: anisotropy ignored by setting k(y, θ) = kΓX(y) for each

horizontal layer, and anisotropy considered by using the above formalism.

Figures 2.11(a) and 2.11(b) present the corresponding results for elastic waves

in GRIN PC with square symmetry. When the local anisotropy is ignored, incident

wave beams are converging to a single point at about x = 25a with no aberration,

as shown in figure 2.11(a). Actually, in the designed GRIN PC with a square

lattice, kΓX(y) variation is close to a hyperbolic secant profile with kΓX0 = 0.457π/a,

n0 = 1.166, and δ = 0.065a−1. If ignoring the anisotropy, the focusing is expected
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at x = 24.2a, in good agreement with the ray trajectory calculation and equation

(2.14). When the local anisotropy is considered exactly, a focusing zone with strong

spherical aberrations occurs. The anisotropy of GRIN PC, as the irregularity of

geometry of optical lenses, leads to strong aberration at the focusing zone. Therefore

the focusing zone spreads out to a position at about x = 30a. This is unexpected

from the original design of GRIN PC.

Ray trajectories of the beam have also been obtained for GRIN PC with a rectan-

gular lattice for the same two cases: ignoring anisotropy or considering anisotropy,

as shown in figures 2.11(c) and 2.11(d) respectively. No aberration is found when

anisotropy is ignored with a focal distance almost equal to the counterpart of the

square lattice. This can be well explained by the fact that, in the designed lens

with a rectangular lattice, the kΓX(y) obeys a hyperbolic with kΓX0 = 0.457π/a,

n0 = 1.166, and δ = 0.066a−1. When the anisotropy is accounted for, strong aberra-

tions are observed in the focusing zone, in the vicinity of x = 31a. The aberrations

here, with ray trajectories concentrated at x ∼ [26a, 33a], are less spread along x-

axis than displayed in figure 2.11(b). This is because of the reduced anisotropy for

the GRIN PC of rectangular lattice, which will be discussed below in the subsection

2.5.3.

In what follows, we investigated the dynamics of the focusing process with the

help of numerical methods and experimental observations.

2.4 Numerical study of focalization

2.4.1 Time dependent computations

FEM was applied to calculate the displacements field of A0 mode associated with

the propagation in the GRIN PCs.66 To this end, we used the time dependent

module in structures in Comsol Multiphysics. The systems were designed in such a

way that they had a width (along y axis) 17a for the square lattice and 16.5a for the

rectangular lattice. In addition, to mimic at the best the experimental situation

and to avoid unwanted reflections on the boundaries of the phononic plate, the

structured part of the sample were surrounded by a large area of homogeneous

silicon, free of air inclusions.

A line force, along z -direction vibrating at 5 MHz, was applied in front of the

GRIN PCs to continuously excite the waves. The calculation was set to follow a

time step of one-tenth period. Such a source gave a wavelength along x -axis in

good agreement with the theoretical predication λΓX(y) = 2π/kΓX(y) for any wave

vector measured along y-axis. Meanwhile, the Fourier transform of time dependent

uz was centered at exactly 5MHz. These two features have confirm the accuracy of
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Figure 2.12: Snapshot of the out-of-plane displacement uz in a GRIN PC of 55 columns
with a square lattice (a) or with a rectangular lattice (b).

the antisymmetric mode source, paving the way for further studies.

2.4.2 Numerical results of A0 mode focalization in GRIN

PC

Figure 2.12 shots the snapshots of uz on a GRIN PC of 55 columns with (a) square

symmetry and (b) rectangular symmetry. uz is normalized to unity in both cases.

The displacement field has its maximum value at about x = 32a.

To allow for more precise comparisons with the ray trajectories, uz was calcu-

lated for GRIN PC of 120 columns for both symmetries. For each point measured

on the surface of GRIN PCs, we found the maximum value of uz during the whole

recorded time range. After that, all these maxima were normalized to the same

scale accordingly to the GRIN PC. Figure 2.13 depicts the normalized maximum

amplitude of uz in the GRIN PC with (a) square symmetry and (b) rectangular

symmetry. In these figures, the dash lines are for the ray trajectories derived from

the formalism established in the preceding section.

For the GRIN PC with square symmetry, FEM simulations predict the nor-

mal displacement to be maximum at the distance 34.5a from the origin, in good

agreement with the 55 columns long sample. The focal distance is almost twice the

distance of 18a derived from equation (2.14). Moreover, the amplitude along x -axis

is more than 90% of its maximum value in between x = 28a to x = 40a (figure

2.13(a)). These spherical aberrations that are not predicted by a simple theory of

rays in a GRIN lens with a hyperbolic secant profile, are the consequence of the

non-circular shape of the EFC. Actually, in this case θ and φ are not equal, all

the rays do not converge on a single point, and equation (2.14) is not relevant to
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calculate the focus distance anymore. Consequently, the elastic energy spreads out

along x -axis and the focal spot covers an area larger than expected.
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Figure 2.13: Normalized maximum of the displacement uz in a GRIN PC of 120 columns
with a square lattice (a) or with a rectangular lattice (b). Dash lines are for the ray
trajectories derived from the formalism described in section 2.

As expected, the second maximum appears at x = 103a, about three times the

focal length of 35a. The sound ray paths displayed in figure 2.13(a) well explain

the large spreading out of the elastic energy along x axis. Indeed, the aberrations

increase as the waves propagate and the maximum amplitude on this second focus

spot is only ∼ 84% of the value measured on the first one. At the same time, the

normal displacement has a smoother profile along x -axis.

Similar features are observed for the spatial distribution of displacement in the

GRIN PC with rectangular symmetry (figure 2.13(b)). As in the previous case, the

first focal point arises around 33.5a, far from the theoretical value derived from the

effective refractive index and equation (2.14) (about 18a). However, this geometry

leads to less spherical aberration, as can be seen from the ray paths drawn in figure

2.13(b), and the elastic energy spreads out over a smaller distance along x -axis:

the area where the amplitude is 0.95 times the maximum value extends over 5a

in the case of the rectangular lattice, against ∼ 8a for the square lattice. This

also explains the lateral profile along y-direction that turns out to be sharper with

the rectangular symmetry than it is with the square symmetry (see below). As

expected, a second focus arises at x = 92a, about three times the focal length. The

maximum amplitude of this second focus is ∼ 0.80 times the maximum amplitude

at the first focus, corresponding to a lessening similar to what is observed with the
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square lattice.

2.5 Experimental study of focalization

2.5.1 Background

In order to allow for relevant comparisons with theory, two GRIN PCs were elab-

orated on a 110 µm thick silicon plate according to the designs described in the

previous sections.

In known studies, many methods have been applied to generate A0 Lamb mode,

including a laser-based technique,28,83,84 piezoelectric transducers,85–88 and inter-

digital transducers (IDTs).89–91 Among these methods, excitation of elastic waves

using piezoelectric transducers are widely used to examine elastic properties of

large-scale composites, featuring a high intensity of energy. Laser based technique

and IDTs, however, can be sufficient for investigating small-scale samples of one

hundred micrometers or even smaller.

IDTs need being put on the surface of a substrate, which may add some complex-

ity of the experimental process. IDTs have also their excitation efficiency limited

by the distance between transducers. This is to say, once the transducers are fixed

on the substrate, it is impossible modifying the frequency of the generated elastic

waves while at the same time keeping a high efficiency.89–91 The laser based technol-

ogy allows to overcome this barrier. Laser pulses go through certain optical system

to obtain a periodical pattern of bright and dark strips similar to the arrangement

of IDTs. Distance between these strips can be monitored in order to pursue the

aimed frequency. During the experiments of this thesis, the frequency has been

tilted from 3 MHz to 20 MHz or even higher depending on the configuration of the

optical system, covering almost the whole range of A0 mode band compatible with

the detection stage. Based on these considerations, the laser-based technique was

applied all through this work to generate wave pulses.

A0 Lamb mode as well as Rayleigh waves features the dominance of out-of-plane

displacement. To measure this displacement, ultrasonic transducers and IDTs have

similar limitations as for exciting elastic waves. However, the optical method de-

scribed in the next section can be used to detect the displacement almost every-

where on the surface of samples.28,83,84 Therefore, we made use of this laser-based

technique to measure the out-of-plane displacements all through in this work.
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2.5.2 Description of experiments

Wave excitation

We used Nd:YAG laser that delivers ultra-short light pulses lasting 35 ps with a

wavelength 532 nm and 20 MHz repetition rate. Figure 2.14 shows the experimental

configuration where the green flashes indicate the trace of laser pulses. These laser

pulses passed through a mask and several mirrors before being focused onto the

surface of the silicon plate, just a few millimeters in front of the GRIN PCs.

The mask, featuring a periodic constant d, caused a spatially alternating bright

and dark pattern that is focused onto the sample. At a certain distance, the bright

and dark strips correspond to the bottom and peak values of intensity, producing

a maximum contrast of the energy between the two areas and making the fringes

look clear. Distance between the grading mask and silicon plate can be adjusted to

satisfy such a contrast or very close to it. These bright strips are partially absorbed

by silicon which induces expansion of the plate surface and in return produces elastic

waves pulses through photoelastic process.

Both the first and the second optical lenses had a cylindrical shope (figure 2.14).

To explain the function of these lenses, figure 2.15 shows the fringe pattern on a

card just in front of the silicon plate with an angle to the incident beam. The x and

y indicate the local horizontal and vertical axis on the card. The first cylindrical

lens was set in such a way that it controlled the distance between fringes along

x -axis. It had few influences on the length of the strips along y-axis. The second

cylindrical lens, on the contrary, controlled the length of strips along y-direction

with few influences on the distance between the fringes along x -direction. Such an

independent control of the fringes pattern by two cylindrical lenses enabled to finely

tune the pulses.

The first lens had its support fixed on a slide which could be moved precisely.

By changing the position of this lens, the distance between fringes on the silicon

plate was modified, so that the central frequency of the elastic wave pulses was

shifted. Figure 2.16 presents the central frequency of the observed signal against

the distance between the first lens and the silicon plate. A linear relationship is

observed between the two parameters, so that the frequency can be predicted from

this curve.

During all the process, the second optical lens was fixed to a certain position so

that the impinged area had an elliptic shape on the card. A short strip length along

y-axis concentrated energy in a small area in order to increase the efficiency of wave

excitation. The strip length, however, needs to be large enough in comparison to

the length of the GRIN PC, so that elastic wave pulses can be treated as plane wave
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sources. The second cylindrical lens was placed at a position insuring this property.

Grating 

First Lens 

Second Lens 

Silicon plate 

Figure 2.14: Experimental configuration of wave excitation.

Second Lens 

Silicon plate 

x 

y 

Figure 2.15: Configuration of fringe pattern.
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Figure 2.16: Shift of the central frequency of the observed signal against the distance
between the first cylindrical lens and the silicon plate.

Wave detection

We recorded the time dependance of uz at any point on the surface of the sample,

inside the GRIN PC using a Michelson interferometer in which the light source

was a He-Ne laser (632.8 nm). Figure 2.17 shows the experimental configuration

of Michelson interferometer. One beam of the interferometer was focused on the

sample acting as one of the mirrors of the interferometer to a spot size of ∼5 µm,

whereas the reference beam was reflected by an actively stabilized mirror. A high-

speed photodiode collected the interference pattern that was then digitized at 500

MS·s−1 by a digital oscilloscope. We obtained a very good S/N ratio after averaging

a few hundreds of scans. The microscope and the sample were both mounted on

translation stages in such a way that the probe beam could be scanned across the

sample with a precision of about 1 µm. This noncontact technique allowed us to

record the out-of-plane component at any location on the surface of the sample and

to study in details the focalization of the acoustic waves into the GRIN PC.

Figure 2.18 shows an example of the treatment of recorded signals. Figure

2.18(a) shows a signal recorded directly by the high speed photodetector noted as

I(t). Mean value of I(t) was then removed by the relationship Ĩ(t) = I(t)/Iave − 1

with Iave presenting the mean value of I(t) at the initial time range being about -66

(figure 2.18(b)).92 Frequency spectrum of the signal of interest Ĩ(t) recorded in the

time domain t = [2 − 5] µs was then analyzed. The central frequency was located

at about 5.1 MHz (figure 2.18(c)), satisfying the requirement. A Gaussian window

centered at 5 MHz with a width of about 1 MHz was used to filter the frequency

spectrum. The filtered spectrum was Fourier transformed back to the time domain

noted as Î(t), as shown by the figure 2.18(d).
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Figure 2.17: Experimental configuration of Michelson interferometer

uz is finally determined by the relationship92

uz(t) =
Î(t)λHeNe

4πCcontrast

, (2.22)

where λHeNe is the wavelength of the He-Ne laser 632.8 nm. Ccontrast is a parameter

presenting contrast of the interference pattern

Ccontrast =
Cmax − Cmin

Cmax + Cmin

, (2.23)

where Cmax and Cmin are the maximum and minimum value of Michelson interfer-

ometer. This parameter is dependent on surface qualities, such as the smoothness

and cleanness.
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(a) 

(b) 

(c) (d) 

Figure 2.18: (a) Signal measured directly by the photodetector I(t), (b) normalized
signal Ĩ(t) by removing the mean value Iave, (c) frequency spectrum of normalized signal
of [2− 5] µs, and (d) time signal Î(t) obtained from the inverse Fourier transform of data
in figure (c) filtered by a Gaussian window centered at 5 MHz with a width of 1 MHz.

38



2.5.3 Experimental results of A0 mode focalization in GRIN

PC

Wave propagation has been monitored in the middle the section of the sample

featuring 120 columns of inclusions. Figure 2.19 shows snapshots of uz at three

different moments after the sample with the square symmetry has been excited into

vibration. A first focus is observed to be centered at a focal length about x = 32.5a

(figure 2.19(a)), which is good agreement both with the numerical results (x =

34.5a) and the ray trajectory analysis presented in previous sections. Behind the

focus spot, the elastic beam is expected first to be divergent within the waveguide,

as it is shown in figure 2.19(b), and then to re-focus on a second point located at

97.5a, i.e., three times the focal distance of the lens (figure 2.19(c)). This is what

is indeed observed, in good agreement with the numerical results. The maximum

amplitude of the second focus is measured to be about 0.68 times what was observed

on the first focal spot, which is a little less than the numerical result.

Very similar behaviors were observed with the experimental sample featuring

the rectangular symmetry (figure 2.20). The focal distance in this latter case is

measured to be ∼ 28a, slightly less than the focal distance of 32.5a measured in

the previous sample. As expected, a second focus is formed at x = 90a with an

amplitude of about 0.63 times the maximum value. This is in good agreement with

the corresponding numerical simulations.

The gain factor, defined as being the ratio of the maximum displacement at the

focus to the amplitude of the elastic wave measured close to the excitation area of

lens, allows for quantitative comparisons between both structures. We observed a

value of 3.5 (corresponding to a maximum displacement of 21 pm at the focus) with

the square lattice against 3.2 (maximum displacement 16 pm) when using the lens

with the rectangular lattice. These values fairly well agree with the ones derived

from the numerical simulations: 3.9 in the former case and 3.6 in the latter case.

Beside the smaller gain factor obtained with the rectangular lattice, this system

features a greater uniformity in the distribution of elastic energy inside the first

focus.

As described in figures 2.21(a) and 2.21(b), the measured maxima of uz for the

square symmetry and for the rectangular symmetry respectively. Whatever the sym-

metry is, the amplitude is not homogeneous in between the two focal points. This

is consistent with numerical results (see figure 2.13); this feature is ascribed to the

spherical aberrations at the second focus. It is noticed that the amplitude recorded

within an area about 20a long along x -axis before the second focus is slightly less

than expected from the simulations (see figure 2.13): a mean amplitude around

0.4 is measured (in normalized units) instead of 0.5 as predicted by simulations.
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Figure 2.19: Amplitude of the out-of-plane displacement uz in a GRIN PC with the
square lattice, measured at three different times
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Figure 2.20: Amplitude of the out-of-plane displacement uz in a GRIN PC with the
rectangular lattice, measured at three different times

Several reasons may explain this small discrepancy, including the slightly coupling

of the symmetric mode [10] or tiny irregularities in shape, sizes and spacing of the

holes, which may induce the non-coherent diffusion of the elastic waves onto the air

inclusions.

As regards the focalization efficiency of the acoustic lenses, it can be evalu-

ated through the profiles of the focal spot along both x -and y-directions. In the

left panel of figure 2.22, we show as full lines the normalized longitudinal profiles

achieved with the square lattice (figure 2.22(a)) and with the rectangular lattice

(figure 2.22(b)). We show the corresponding profiles along y-axis in figure 2.22(c)

and 2.22(d) respectively. From these data, the full width at half maximum (FWHM)

was measured to be 7λ along x -axis. The experimental transverse size of the spot

was 0.71λ for the square lattice and 0.64λ for the rectangular lattice. These values

are in good agreement with the ones derived from the numerical simulations: 0.84λ

in the former case and 0.75λ in the latter case, quite close to the Abbé limit of 0.5λ.
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Figure 2.21: Experimental maximum of the out-of-plane displacement uz in a GRIN
PC with a square lattice (a) or with a rectangular lattice (b). Dash lines represent the
calculated ray trajectories.
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Figure 2.22: Normalized profiles of the out-of-plane component uz in the focus area. The
red lines are for the experimental data, the black lines are for the numerical simulations,
and the blue lines represent the density of rays (see the text). Along x -axis: square lattice
(a) ; rectangular lattice (b). Along y-axis: square lattice (c) ; rectangular lattice (d).

In addition, it should be noted that the formalism developed in section 2 also

allows for a quantitative analysis and efficiently predicting the waist of the beam. To
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show that, we have drawn the ray trajectories for more than 3000 initial positions

evenly distributed along y-direction in between ±8a and we have computed the

number of rays intersecting a segment of a given length, sliding along a line parallel

to y axis at position x = 30a. This linear density of ray against the position of

the segment is drawn as a blue line in figures 2.22(c) and 2.22(d). The agreement

with the experimental results and the FEM calculations is very good, except for

the peaks centered at y = ±4a that are not predicted by the model.

(a) (b) 

Figure 2.23: Profile of anisotropic ratio η(θ) for GRIN PC (a) in square lattice with
different air holes or (b) in rectangular lattice with different aspect ratios b/a.

It is important to understand the physical reasons why the lateral profile along y-

axis is sharper with the rectangular symmetry than it is with the square symmetry.

Actually, the origin of a better FWHM clearly lays in the smaller aberrations along

y axis in the former case than the ones founded in the GRIN PC with square lattice.

This follows from the dependence against θ of the anisotropy coefficient η, which is

very different according to the symmetry. Indeed, for both symmetries and for any

ray trajectory, the wave vector k lays along a direction that makes an angle θ with

respect to x axis ranging between 0◦ and ∼ 35◦ (see figures 2.23 (a) and (b)). In

this range, for the rectangular symmetry, η(θ) very few depends on the aspect ratio

b/a (figure 2.23(b)): as long as this ratio takes a value no more than ∼ 1.5, η(θ)

varies almost linearly from 0 at θ = 0◦ to a value comprised in between 0.05 (for

b/a = 1.37) and 0.06 (for b/a = 1) at θ = 35◦. This is in contrast to the situation

encountered in the lens with the square symmetry (figure 2.23(a)). In that case,

η(θ) varies quasi-linearly against θ as well, but with a mean slope, which is either

positive or negative and strongly depends on the aspect ratio. As long as the ratio

r/a keeps values around ∼0.3 or less, the anisotropy of the medium is mainly that

of crystalline silicon whereas the anisotropy of the effective medium dominates for
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Figure 2.24: Equal frequency contours of A0 mode in the first Brillouin zone for air/silicon
phononic crystal with unit width a = 100 µm, radius of air hole r = 40 µm, and plate
thickness h = 110 µm. The star, plus and circle are symbols obtained from the fitting
formula.

larger values of the aspect ratio. Consequently, a greater spreading out of the rays,

and a broader profile in turn, occur with the square symmetry.

2.6 Discussion on focalization within large fre-

quency range

Besides the investigation of the wave focusing at 5 MHz, it is interesting to extend

the study to higher frequencies. As mentioned before, EFCs can be fitted in almost

the whole range of A0 band. To demonstrate this, figure 2.24 depicts the EFCs of

PC featuring a = 100 µm, r = 40 µm, and h = 110 µm (see figure 2.2(b)). The

stars, plus and circles are for the fitting data derived from equation (2.20) for 5

MHz, 8 MHz and 11 MHz, respectively. Good agreement has been found between

the results of three groups. However, the fitting formula losses its validness when

EFC is no more centered at Γ point at 16 MHz or 19 MHz in the first Brillouin

zone, which is out of the scope of this thesis although similar procedures can be

applied. Figure 2.25 shows the normalized maximum of uz in the GRIN PC with

square symmetry at (a) 5 MHz, (b) 8 MHz, and (c) 11 MHz, respectively. The dash

lines are for the corresponding ray trajectories derived from the formalism.

In figure 2.25(a), a focusing zone appears at x ∼ [27a, 42a] with the overall

maximum of uz located at x = 35a. Inside this focusing zone, the ray trajecto-

ries are dispersed, because of aberrations which are very similar to the spherical
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Figure 2.25: Normalized maximum of out-of-plane displacement uz at the inner of GRIN
PC of 55 columns at (a) 5 MHz, (b) 8 MHz, and (c) 11 MHz; in all of figures, dashed
lines indicate the corresponding ray trajectories.
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Figure 2.26: The ratio tan(φ)/tan(θ) at 5 MHz(dot-dashed lines), 8 MHz(dashed lines)
and 11 MHz(solid lines) for two ray trajectory incident at y = 8a and y = 2a.

aberrations encountered in optical lenses. The focusing zone much more extends

along x axis than it does along y axis, where the lateral dimensions of the spot is

y ∼ [−1.5a, 1.5a].

Furthermore, the ray trajectories issued from the edges converge at a shorter

distance than the ray trajectories issued from the zone close to the central axis axis

of the GRIN PC do. For example, the rays impinging the lens at y = ±8a converge

at a distance x = 26a, while the value goes to 40a for rays at y = ±2a. This must

be related to the anisotropy coefficient which takes larger values for y close to the

central axis than it does for larger values of y, where the filling ratios are small.

When the anisotropy within each PC line constituting the lens is ignored by setting

k(y, θ) = kΓX(y), all rays focalize to a single point, at a distance 24.2a from the

origin. However, when considering this anisotropy the directions of phase velocity

and group velocity are not parallel anymore, as shown in the inset in figure 2.26.

As a consequence of Snell’s law that states the conservation of the wave vector kx

at the entrance of lens, for incident waves close to the central layer the angle θ is

limited to a very small region where the angle φ is much smaller than θ, as shown by

the ratio tan(φ)/tan(θ) for the rays incident at y = 2a. Thus the ray trajectory is

prolonged along x -coordinate, and the focal distance becomes larger than expected.

For rays incident far from the central axis, angle φ is first larger than θ, and then

becomes smaller as x coordinate increases, as shown by the ratio tan(φ)/tan(θ) for

the ray incident at y = 8a. This characteristic may compensate the anisotropy

to a certain extent, resulting to a focal distance very close to value derived from
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fl = π/2δ (equation (2.14)).

In figure 2.25(b), the overall maximum of uz at 8 MHz was found to be centered

at x = 30a, inside a focusing zone extending over x = [27a, 32a] and the focal

distance becomes shorter. Actually, the refraction index fits with a hyperbolic secant

profile with n0 = 1.129 and δ = 0.063. Meanwhile, the ratio tan(φ)/tan(θ) keeps

values close to 1, with smaller variations for rays impinging the lens at y = ±8a

than it was at 5 MHz; even, this ratio deviates less from 1 for the ray trajectory

with y = ±2a. This behavior corresponds to the reduced influence caused by the

anisotropy of the GRIN PC. In turn, the focus area is less elongated along x axis,

and the focal distance becomes smaller. Similar characteristics can be observed

in figure 2.25(c) for focalization at 11 MHz with even a shorter focal distance at

x = 25a: the refraction index can well be fitted by a hyperbolic secant profile with

n0 = 1.151 and the δ = 0.068; moreover, the anisotropy is expected to have less

influence as can be seen from the almost constant value of the ratio tan(φ)/tan(θ)

at 11 MHz.

It is important to ask for the physical reasons leading to the high accuracy of

the formalism that we have developed. To now the formalism is valid on the first

acoustic branch and is simply based on the Snell’s law. There are few opportunities

for the appearance of high-order Bragg scatterings. Accordingly, the single mode

approximation is supported, which agrees well with former study.93 As a result,

applying the Snell’s law is sufficient to account for the aberrations in almost the

whole range of A0 Lamb mode along ΓX. The anisotropy of PC is considered to

be location dependent and angle dependent which translates into k = k(y, θ) in an

accurate way. As a result, the formalism remains valid for the A0 mode even for

high frequencies in the first acoustic branch.

To now, the effective refractive index is defined in equation (2.11) by the ratio of

the group velocity in the background to that of the PC. In our formalism, equations

(2.15)-(2.17) and (2.19)-(2.21) can be rewritten using an effective refraction index

defined by the wavenumber

neff (y, θ) = k/kB(y, θ), (2.24)

or equivalently defined by the phase velocity vp (k = ω/vp)

neff (y, θ) = vBp /vp(y, θ), (2.25)

where vBp and vp(y, θ) are the phase velocities in the background and in the PC,

respectively. Therefore it is more suitable to use the phase velocity to define the

effective refractive index.
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2.7 Conclusion

In this work, it is demonstrated that one can accurately determine the focal length,

the size of the focal spot, and the displacement distribution within a GRIN PC when

accounting for the overall shape of the EFCs or equivalently, for the local anisotropy

if any, within a raw of inclusions. Being based onto a geometrical approach, the

ray analysis presented here is phenomenological in that it gives full account of the

observation although not derived from a theory but it remains valid whatever the

polarization of the waves is. Whereas the paraxial ray equation82 is well suited to

accurately determine the focusing properties of a GRIN lens only when the EFCs

are circular61, this ray analysis is more general and allows accounting both for the

position of the focus on x -axis and for the extension along y-axis. It should be also

noted that only real k vectors are considered in the formalism described in section

2 and hence evanescent waves are not involved in the focusing processes.

From the experimental side, the focusing of A0 mode has been demonstrated

at 5 MHz in GRIN PCs featuring two different designs. These heterostructures

are free from curved surfaces, compact, and therefore they can be integrated easily

with other phononic devices. In both systems, a very good agreement is found

between the numerical simulations and the experimental results. In particular, we

have shown that the focusing over a spot with lateral dimension close to the Abbé

limit are easily obtained with the acoustic lens with the rectangular symmetry. The

anisotropy being responsible for the spreading out at the focus, one must recognize

that, on average, the ultrasound beam shall be subject along the path, to less

anisotropy with the rectangular symmetry than it is with the square symmetry.

However, larger vibration amplitudes are obtained with the heterostructure with

the square symmetry. As predicted by the numerical simulations, a second focus

point was actually observed. For both systems we studied, the vibration amplitudes

at this second focal point are more than half the vibration amplitude at the first

focus.

Finally, we have investigated the focalization inside the GRIN PC within a large

range frequency of the A0 mode, from long-wavelength regime to short-wavelength

regime. Through the analysis of the ray trajectories and numerical simulations,

the focal distance is found to become smaller due to the enlarged variations of the

refractive index as the frequency increases, always in conjunction with the spherical

aberration caused by the anisotropy in the GRIN PC.

47



Chapter 3

Enhanced focalization of A0 mode

outside GRIN PC

3.1 Introduction

The acoustic beams emitted by a typical sound source, as for example a piezoelectric

transducer, are often of low spatial quality. Roughly speaking, the spatial quality

relates to inhomogeneities in the beam intensity and/or in the phase profile. It is

commonly accepted that the beams of the highest spatial quality feature a Gaussian

profile. The experimental technique we used in this thesis is based on the excitation

of elastic waves using a frequency doubled laser beam. Thus, we kept the optical

path of this laser as short as possible in order to avoid any distortion in the spatial

quality of the beam. As a consequence, the elastic waves carry the signature of the

pump laser quality and has a Gaussian profile as well.

We have justified in the second chapter the inner focusing of elastic waves using

a GRIN PC, and we have shown their achievements including highly concentrated

elastic energy and subwavelength resolution. However, under some situations or

for some applications, it may be difficult to measure the amplitude of the acoustic

displacement in the heterostructure or even, it may be more interesting to excite

some other structures outside the GRIN PCs. Get a focusing behind an acoustic

lens, as do the optical lenses, can be useful to solve such problems and to extend

the applications of GRIN PCs. In the following, we investigate how we could obtain

the focal point located behind the GRIN PC.

It has been shown in some studies6,9,23 that the external focusing can still go

beyond the diffraction limit. As noticed in chapter one, the super-resolution fo-

cusing has been observed both theoretically and experimentally through a number

of unconventional lenses.6,8–12,23–25,41,94,95 Some of these realizations stressed on the

participation of the evanescent components to the spot, such as the negative-index
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lens,6 and negative-index phononic/photonic crystals.6,8,9,23 While others have not

being claiming that; such as in the works about the super oscillations96–98 or the

metalens.12 In contrast to the negative-index lenses, the later devices consider the

diffraction or the scattering of high-order wave numbers, leading to extreme focusing

resolutions, while at the same time suffering from a low intensity at focus.

GRIN PCs that we used here feature a positive index and deal with the single-

mode Bragg scattering.60–66,68–71,74–77 A question then raises: whether the focusing

resolution can be enhanced to the diffraction limit or even overcome it or not? Re-

membering the literature on optical GRIN lenses, it has been shown that enhanced

resolutions are foreseeable for lenses with large values of the gradient coefficient and

large refractive index.82 To comply with this requirement, the first step is to find

suitable PCs with extremely large refractive index. To this end, resonant structures

are excellent candidates since unusual phenomena are expected at frequencies close

to resonance(s).99,100 Moreover, some of them have been highlighted by the extreme

value of their refractive index.101

In this chapter, we start with the conventional GRIN PCs as the ones we used

in chapter two. We are studying the limit of the resolution behind these lenses,

and we are seeking the requirements for the GRIN PC to enhance the focusing

achievements. As an answer both to this question and to these requirements, we

have redesigned the GRIN PCs and we have been considering a resonant structure

as the basic unit. The focusing of elastic waves behind such GRIN PCs has been

investigated both numerically and experimentally. We demonstrate in this chapter

that it is possible to further enhance the focusing with such a heterostructure. At

last, we discuss on the physical phenomena at the origin of the enhancement of the

resolution at the focus.

3.2 Focusing outside GRIN PC

3.2.1 Focusing through conventional GRIN PC

Let’s consider the propagation of A0 Lamb mode in a GRIN PC made of 21 columns

with the same design as the rectangular symmetry in chapter 2. We first made a

numerical study of this lens. A line source was placed in front of the sample to

excite elastic waves at the monochromatic frequency of 5 MHz. Figure 3.1(a) shows

a snapshot of the field distribution of the out-of-plane component uz. The maximum

value was measured to occur at x = 23.5a, i.e., 2.5a behind the exit interface of

the GRIN PC. This is very close to the value x = 25a where the ray trajectories

have a high density. Accordingly, the focus position can be predicted by the ray

trajectories.
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Figure 3.1: (a) Numerical and (b) experimental snapshot of normalized out-of-plane
displacement uz. Dashed lines indicate the ray trajectories.

We then made an experimental investigation of the system. The laser-based

technique was applied both to excite A0 Lamb mode pluses and to record the

displacement filed uz in the time domain, as already described in chapter 2. Figure

3.1(b) shows the experimental distribution of normalized uz behind the GRIN PC at

the moment when the overall maximum uz appears. The maximum value is found at

x = 23.5a, at exactly the same position as the numerical results. Furthermore, the

phase distribution of uz is in excellent agreement with the numerical counterpart.

Therefore, very good accordance of focal distance is found between the distribution

of ray trajectories, the simulations, and experiments.

We then investigated GRIN PCs with several lengths. Figure 3.2 shows the

profiles of normalized maxima of uz along the central axis behind a GRIN PC with

a length L = 15a (a), 18a (b), 21a (c) and 24a (d), respectively. For both numerical

(dashed lines) and experimental (solid lines) results, the peak values appear at 7a,

4.5a, 2.5a and 0 behind the of GRIN PC. Such a decreasing distance is expected

since incident waves converge all the more as L is large.

The focusing distance is however reduced in a large extendt, in comparison to

the focal distance of 32a of the inner focusing at 5 MHZ described in chapter 2.

One important reason, One important reason, as can be understood from the ray

trajectories drawn in figure 3.1(a), is the wave refraction occurring at the exit inter-

face between the GRIN PC and the background. The outgoing waves are refracted

closer to the interface so that the focusing zone is shifted toward a shorter focal dis-

tance. Secondly, if the focus appears too close to the interface, the inhomogeneity

of the PC can affect the field distribution of uz, at least to an extend. As a result,

when the GRIN PC takes a length L = 24a, the maximum value appears very close

to the exit.

Experimentally, we measured the gain factors to be 2.04, 2.18, 2.20 to 2.44, in

good agreement with the numerical outputs, namely 1.93, 2.12, 2.18 to 2.31. Such
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Figure 3.2: Numerical (dashed lines) and experimental (solid lines) maximum displace-
ment profile along the x -axis for GRIN PC with (a) 15, (b) 18, (c) 21 and (d) 24 layers,
respectively.
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Figure 3.3: Numerical (dashed lines) and experimental (solid lines) maximum displace-
ment profile along y-axis for GRIN PC with (a) 15, (b) 18, (c) 21 and (d) 24 layers,
respectively.

51



an increasing trend of the gain factor is well explained if remembering that the

waves are more convergent as L increases.

Figure 3.3 shows the transverse profile of normalized maximum uz at the peak

value for GRIN PCs with a length L = 15a (a), 18a (b), 21a (c) and 24a (d), respec-

tively. The numerical results (dashed lines) show a FWHM equal to 1.08λB, 0.96λB,

0.87λB, or 0.82λB in turn, with λB = 5.1a being the wavelength in the background.

This agrees well with the fact that incident waves are more strongly converged for

a larger L. The experimental results, on other hand, have given a FWHM 1.00λB,

0.86λB, 0.75λB, and 0.72λB, in good agreement with their numerical counterparts.

Both the experimental results and numerical ones illustrate that a length L large

enough (> 18a) in needed in order to get the subwavelength focusing with a GRIN

PC.

3.2.2 Discussion on limit of focusing outside GRIN PC

To explore the limit of focusing outside the GRIN PC, figure 3.4 shows the scheme of

beam paths through a simplified GRIN PC of square symmetry. A monochromatic

plane wave is normally incident from background medium to GRIN PC, resulting

in a focusing zone on the unstructured plate at L0 faraway behind output interface.

Generally, only propagating modes with |ky| < |kB| are excited at the exit with

kB standing for the wavenumber in the background. In such a situation, it allows

replacing the GRIN PC with an effective medium, because the working frequency

is chosen within the first acoustic branch; high-order Bragg scattering processes are

ignored.39,93,102

Inside this focus zone, the transverse wave number ky of the beams changes from

−kM to kM with kM the maximum value of |ky|. This is similar to an image of a

point source. The transverse profile at the peak value becomes straight, and it is

assumed to obey9,25

|U(x, y)| =

∣∣∣∣∣
∫ kM

−kM

exp
[
ikyy + i

√
k2B − k2y(x− L− L0)

]
dky

∣∣∣∣∣, kM < kB (3.1)

with U(x, y) indicating the field intensity. Equation (3.1) evaluates the field in-

tensity in a normalized way, and it cannot give a predication of the gain factor.

However, one may evaluate the primary focus spot of such a transverse profile to

be at full width ∆ = 2π/kM , giving arise to a minimum feature size that is ∆/2

(Rayleigh criteria).9,25

Figure 3.5 shows the transverse profiles (dashed lines) of |uz| derived from equa-

tion (3.1) with kM equal to 0.221π/a, 0.250π/a, 0.269π/a and 0.279π/a respectively.

Profiles of the numerical results (solid lines) have their primary peaks in a position
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in very good agreement with the theoretical predications. This shows that the res-

olution of focus is limited by kM . It is worthy to notice that there is no imaginary

wavenumber in this model, and thus the contribution of the evanescent components

have not to be considered here.

Figure 3.4: Scheme of a plane wave incident to a transverse GRIN PC.

Figure 3.5: Numerical (solid lines) and theoretical (dashed lines) maximum displacement
profile along y axis for GRIN PC with 15, 18, 21 and 24 layers, respectively.

3.3 Theoretical predication to enhance focusing

Following the discussion in the previous subsection, naturally raises some questions:

(i) what is the resolution when kM is equal to or even larger than kB? When kM is

equal to kB, the resolution will be close to half a wavelength according to equation

(3.1) and (ii) when kM is larger than kB while at the same time the focusing is

limited to the near field, what will be the resolution at the focus? Many studies

have been proposed to explore such near-field focusing, accounting both for the
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propagating and for the evanescent modes.9,103,104 However, few analytical solutions

have been found due to the complex behaviors of the elastic field. It is assumed here

that both propagating and evanescent modes give contributions at the same level in

the near-field focus plane at x = L+L0. It is then straight that, the focusing through

GRIN PC is analogous to the image of a point source through a negative-index flat

lens: at the exit of lens, both propagating and evanescent modes contribute to the

formation of image. The transverse profile in the near-field, through negative-index

lens applies directly to GRIN PC at the focus x = L+ L0 as9

|U(x, y)| =

∣∣∣∣∣
∫ kB

−kB

exp
[
ikyy + i

√
k2B − k2y(x− L− L0)

]
dky

+ (

∫ −kB

−kM

+

∫ kM

kB

)exp
[
ikyy + i

√
k2y − k2B(x− L− L0)

]
dky

∣∣∣∣∣, kM > kB

(3.2)

The primary spot of such a transverse profile features a value of ∆/2 less than

half a wavelength.9,25 Indeed, the detailed focus pattern depends strongly on the

interplay between propagating and evanescent modes.9 Besides, the L0 can be differ-

ent for each beam path due to the Snell’s law at the exit, which leads to aberrations.

Despite these uncertainties, the focus can still be compensated by the evanescent

modes to enhance the focusing resolution.

3.4 Physical model through resonant structures

3.4.1 Band structures of trampoline

To insure the relationship kM > kB, we elaborated a metamaterial featuring erected

pillars on the surface in between adjacent holes in a PC slab,105 as shown in figure

3.6. The benefits brought by this metamaterial, that we will name “trampoline”

in what follows, will be presented later together with the thorough design of the

GRIN PC.

We drilled air holes of radius ra with a square lattice of constant a = 100 µm

through a silicon plate of thickness h = 153 µm. The silicon plate lies in x−y plane

and the thickness is along z -direction. The x -, y- and z -axes are parallel to the

crystallographic directions of silicon < 001 >,< 010 > and < 100 >, respectively.

Arrays of identical silicon pillars of radius rp = 30 µm and thickness hp = 65 µm

were erected on one side of the PC slab, located at the center in between air holes

along ΓM direction. The transverse gradient is controlled by gradually modifying

the radii of the air inclusions along y-axis.
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Since investigating the negative elastic properties of this structure does not enter

the scope of this work, the trampolines were seen as periodic structures rather

than metamaterials. However, one should mention that, besides their relevance for

acoustical lenses, they are very promising structures in what concerns the acoustical

cloaking and related effects. Figure 3.6(a) shows the band structures (dotted lines)

calculated by FEM, of a trampoline with ra = 41.3 µm. Three basic modes A0, S0

and SH0 are noted according to their modal shapes in figure 3.6(a) with A0 band

highlighted by a solid line. For comparison, A0 band of the same structure, but

without the silicon pillars, is drawn as a dashed green line in figure 3.6(a). Clearly

A0 band of trampoline is down shifted to the low frequencies region.

Γ X 

M 

ux 

uy 

uz 

(d) 

(c) 

(b) (a) 

Figure 3.6: (a) Acoustic bands for a trampoline PC with a = 100 µm, h = 153 µm,
hp = 65 µm, ra = 41.3 µm, rp = 30 µm. Solid line and dashed line indicate A0 mode bands
of structures with and without silicon pillar, respectively. Normalized modal displacement
of A0 band of trampoline for (b) ux, (c) uy and (d) uz along ΓX at kΓX = 0.586π/a. The
modal deformation is also displayed in figures (b)-(d) in comparison to the initial shape
of trampoline noted by solid lines.

Figure 3.6 shows the modal displacements normalized to the same scale for A0

mode of trampoline along ΓX at kΓX = 0.586π/a (frequency f = 5.9 MHz) for

(b) ux, (c) uy and (d) uz, respectively. We showed also the modal deformation in

comparison to the initial shape of trampoline as noted by the solid lines in figures

3.6(b)-(d). The silicon pillar, together with the substrate composed of air/silicon

PC, is polarized within x − z plane. The polarization of the displacement field

associated to the pillars shows that the bending mode of the pillar well accounts
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for the large shift of A0 mode bands between the two structures, with and without

the pillars.

As the frequency increases, the trampoline is all dominated by the low-order

bending vibration of the silicon pillar with ux dominating the displacement field, so

that A0 band is down shifted and becomes flat along both ΓX and ΓM.

Figure 3.7: A0 bands of trampoline PC with different filling ratios (ffs) determined by
π(ra/a)

2.

3.4.2 Design of GRIN PC

Figure 3.7 shows A0 bands of trampolines with different filling ratios (filling ratio

ff = π(ra/a)
2). The frequency of the flat section in these bands decreases gradually

as the filling ratio increases. In the computations, the GRIN PC was designed for

the wavenumber along ΓX to have a hyperbolic secant profile

kΓX(y) = kΓX0sech(δy), (3.3)

where kΓX0 is the value of kΓX along the central layer. The geometric constants

a, h, hp and rp keep the same values as before with D = 8a. To underline the

advantages of the trampoline structure, let us temporary neglect the anisotropy of

the GRIN PC and let the lens being infinite along x -axis. When the wave beam is
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focused on the central layer, the wavenumber reads

|ky| =
√
k2ΓX0 − k2x

= kΓX0

√
1− sech2(δy0)

(3.4)

with y0 the position along y-axis where the wave is impinging the GRIN PC. One

finds:

kM = kΓX0

√
1− sech2(δD). (3.5)

Now consider a focusing of the beam behind the GRIN PC as shown in figure 3.4.

Owing to the conservation of ky (Snell’s law), the relationship between kΓM and

kΓX0 on the interface between the GRIN PC and the background reads:

kM ≤ kΓX0

√
1− sech2(δD). (3.6)

In comparison to kB, it requires a large kΓX0 and a large δ to get kM > kB.

Many other resonant structures, such as periodic membranes,106 soft stubs,107

or soft-layer-coated stubs,108,109 allow for the A0 mode branch to be shifted to lower

frequency in an overall behavior,110 as do the silicon pillars. This can be explained

by a cantilever beam,110,111 or a spring-mass model.32 On the other hand, due to

the weak rigidity of the membranes, the softness of stubs, or the softness of coated

layer, A0 bands of these structures are separated into several individual curves

which tend to be flat at certain k vector in the first Brillouin zone by the local

resonances of resonators, instead of being overall shift to lower frequency. This can

be explained to some extend by the spring-mass model: for the given mass, a weak

spring constant will decrease the resonant frequency, as what happens to resonators

of weak rigidity. On the other hand, for a given spring constant, if we increase too

much the mass (e.g. thickness of pillars), the A0 bands will also be separated into

several flat bands, as what finds in previous studies.110,112

The air holes in the trampoline lead to further down shift of A0 band in a

behavior similar to springboards, resulting in enlarged kΓX at a given frequency.105

This amplification phenomenon is graded for the GRIN PC with the maximum

amplification appearing at the central layer while the minimum one appears at the

lateral layers: at 5.9 MHz, the ratio of kΓX between structures with and without

pillars is 1.30 at y = 0 or 1.09 at y = ±D, which leads to an enlarged δ. These

values allow confirming that the trampolines are indeed advantageous structures to

design a GRIN PC.

Before further calculations, it is crucial to analyze the ultimate resolution one
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Figure 3.8: The fitting curves of EFCs for different filling ratios.

could expect. To this end, one states that kM satisfies:

kM < kΓX0 ≤ π/a, (3.7)

as derived from equation (3.6) in the first Brillouin zone. Therefore, if ignoring the

local anisotropy in the GRIN PC, one gets:

∆ = 2π/kM > 2a. (3.8)

Equation (3.8) means that the focusing of the positive-index lens is limited by the

periodic constant to be 2a. Such a value is also the minimum size for one of the

negative-index photonic/phononic crystal lens.9

For frequencies in the upper part of A0 band, the transmission of the wave from

the GRIN PC to the background may be hindered because of the large impendence

mismatch. Compromise frequencies shall be chosen in order to have both a large

value for kM and a relatively large transmission. In the present case, 5.9 MHz is a

good compromise frequency. We show in figures 3.6(b)-(d), the normalized modal

displacements along ΓX (kx = 0.586π/a) ux, uy and uz, respectively, computed at

5.9 MHz for ff = 0.536. The displacement field uz, which is essentially related to

A0 mode, has an amplitude about 1.5 time larger in the pillar than in the matrix.

This makes it possible to transmit the elastic energy attached to the propagating

mode, from the PC to the background. As for the evanescent modes, their behavior

at the output interface will be described in detail bellow. The optimized parameters

for the GRIN PC were finally δ = 0.107a−1, kΓX0 = 0.588π/a (ra = 41.3 µm), and

kB = 0.381π/a. The ray trajectories, together with the wavenumbers kx and ky,

were calculated using the formalism introduced in chapter 2. Figure 3.8 shows the
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Figure 3.9: Number of ky at different position x inside GRIN PC before the first focus.

EFCs of a PC with different filling ratios at 5.9 MHz. In comparison to the EFCs at

the working frequency of 5.9 MHz calculated in chapter 2 (for a GRIN PC without

pillars), the EFCs of the resonant structures are larger.

To determine the optimal length L of GRIN PC, we have computed the value

of ky at different positions inside the heterostructure before the first focus (figure

3.9). kM can be larger than kB when L is larger than 9a. With such a value of L,

evanescent modes are expected to arise at the output interface between the GRIN

PC and the background. In the following, L is set as 11a in order to have a large

kM (kM = 0.47π/a) while at the same time a value of L0 large enough to detach

the focusing from the GRIN PC. Accordingly, the GRIN PC is designed to have 11

columns of air holes with identical pillars erected on one side of the plate

3.5 Focalization through resonant structures

3.5.1 Focalization of A0 mode behind the GRIN PC: Nu-

merical results

Numerical simulations using FEM were performed by placing a line source in front

of GRIN PC to excite A0 Lamb mode at 5.9 MHz.66 The normal component uz was

then recorded on a part of the plate free of pillars. We can also record numerically

uz on the surface with pillars. However, experimentally, this is not doable at the

inner of the GRIN PC. The displacement field may be highly concentrated at the

feet of pillar, which may be not favorable to demonstrate the homogenized behavior

of the GRIN PC.

We show in figure 3.10(a) a snapshot and 3.10(b) the normalized maxima of uz
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Figure 3.10: (a) Snapshot of numerical displacement uz and (b) normalized maximum
uz both inside (x = [0, 11a]) and outside (x = [11a, 20a]) GRIN PC. The solid lines
indicate ray trajectories of wave beams with a |ky| < kB at exit of GRIN PC (x = 11a);
the solid lines illustrate ray trajectories of wave beams with a |ky| > kB at exit of GRIN
PC. Accordingly these beams are no more propagating modes and ray trajectories shall
not be sufficient after the exit where no ray trajectory is presented for these wave beams.

both at the inner and behind the GRIN PC. The overall maximum of uz appears at

L0 = 2a (0.38λB, λB = 5.25a) behind the GRIN PC. The calculated ray trajectories

can be divided into two groups: solid lines are for wave beams with |ky| < kB at

the exit of GRIN PC (x = 11a) while dot dashed lines are for those with |ky| > kB.

Evanescent modes with imagery kx are expected to appear for those waves for

which no ray trajectories are presented behind the interface. The ray trajectories

for propagating modes predict a focus zone located at a position in good agreement

with the numerical results.

In figure 3.10(b), the transverse profile at the peak value corresponds to FWHM

of 0.44λB, or a Rayleigh criteria ∆/2 = 0.37λB when fitted by the sinc func-

tion. This is very close to the Rayleigh criteria derived from equation (3.2), namely

0.41λB. Obviously, both FWHM and Rayleigh criteria are smaller than half a wave-
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length and therefore the super-resolution is predicted by our numerical simulations.

The above results mean also that, as predicted before, both propagating and

evanescent components make their own contributions to this small focus zone. A

density maximum is formed and the transverse profile at the peak value corresponds

to a resolution less than half a wavelength: the moderate subwavelength pattern

described by Luo et al.9 is achieved numerically in the time domain.

At the focus, the amplitude of the normal displacement uz is about 1.9 times

that of the incident wave. This gain factor is a little smaller than already observed

in former studies.71,77 This is mainly caused by the reflection of the propagating

waves close to the symmetry axis (y = [−2a, 2a]). However, it still provides

useful suggestions to enhance the transmission of the wave compared with previous

studies.23,96

3.5.2 Focalization of A0 mode behind the GRIN PC: Ex-

perimental results

Samples were fabricated according to the designs described before and we used the

laser-based technique both to excite quasi-monochromatic A0 Lamb mode and to

measure the out-of-plane displacements. A series of lenses allowed to form on the

surface of the sample, an image of a grating and to get optical fringes spaced at a

distance of an acoustical wavelength from each other. The corresponding acoustical

frequency was centered at 5.9 MHz. We show in figure 3.11 (a) a snapshot and

(b) the normalized maxima of uz behind GRIN PC. During the data process, we

used a very narrow Gaussian window centered at 5.9 MHz to filter the signal. The

maximum of uz is found at x = 13.7a or 2.7a (0.51λB) behind the interface GRIN

PC / substrate. This value is slightly more than what is predicted both by ray

trajectories computations and numerical results. The transverse profile at the peak

value in figure 3.11(b) gives a FWHM of about 2.79a or 0.53λB. Such a focusing

resolution, although not surpassing the diffraction limit, is actually very close to

half a wavelength and even is smaller than certain results of acoustical image using

negative-index PC for A0 mode.34

We show in figure 3.12 the SEM image of (a) the overall sample and (b) one pillar

on the PC slab. Uniform silicon pillars were well erected on the surface. However,

unexpected defects (resin, plasma hot spots, etc) appear here and there, which

can affect to some extent the overall performances of the GRIN PC. Moreover, the

actual diameter of the air holes along some rows may slightly differ from the nominal

value, affecting in turn the achievements of the GRIN PC. Indeed, the center of the

experimental transverse profile is shifted by 0.75a from the central axis of the lens.

This means that the sample is not exactly symmetric. This is clearly visible on the
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(a) 
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Figure 3.11: (a) Snapshot of experimental anti-plane displacement uz and (b) normalized
maximum uz outside (x = [11a, 20a]) GRIN trampoline PC. The black holes indicate the
designed size and position of air holes on the silicon plate.

snapshot of uz in figure 3.11(a). As a consequence, the resolution at the focus is

less than expected.

One should also remember our experimental technique involves elastic pulses and

not continuous waves: in the present case, the pulse comprised typically eight peri-

ods and therefore the experimental data could be affected by non-harmonic effects.

On the other hand, because of transient effects, it takes some time for the “steady

state” to be attained.25 To illustrate this, we show in figure 3.13 the transverse

profile (square markers) at the focus at the moment when the overall maximum uz
is reached, together with the profiles derived from the numerical simulations (solid

line) and theoretical predications by equation (3.2) (dashed line). At the outcomes

of the numerical simulations, the theory and the experiments, we found the trans-

verse profile ∆/2 to be about 0.33λB, 0.41λB and 0.46λB, respectively. Any of these

values is less than half a wavelength and hence the super-resolution is confirmed.

The FWHM is 0.42λB, 0.49λB and 0.52λB for the three methods, respectively. Al-
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though not surpassing the diffraction limit, the experimentally measured FWHM is

actually very close to it.

The maximum value (2.22 pm) is about 2.36 times that of the amplitude of the

incident waves (0.94 pm). This gain factor is slightly larger than the value obtained

by FEM, namely ∼ 1.9. Note also that, as a general trend,96: the larger the gain

factor is, the worse the resolution we get.

(a) (b) 

Figure 3.12: SEM image of (a) the overall sample and (b) one silicon pillar on the PC
slab.

Figure 3.13: Normalized transverse profile of out-of-plane displacement uz at the focus
at a moment with peak value obtained through simulation (solid line), theory (dashed
line) and experiments (square markers).

It is interesting to carry out a 2D Fourier transform of both the numerical and

the experimental data recorded within the focusing zone, in order to get information
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Figure 3.14: Fourier transform of the numerical snapshot of focusing at x = [11a, 21a]
in (a) real component space and (b) imaginary component space; Fourier transform of
the experimental snapshot of the focusing at x = [11a, 19a] in (c) real component space
and (d) imaginary component space. In all the figures, dashed line .

in the reciprocal space.30,113,114 We proceeded so with the data displayed in figures

3.10(a) and 3.11(a). The real part and the imaginary part of the Fourier compo-

nents of the numerical results are shown in figures 3.14(a) and 3.14(b) respectively.

A succession of symmetric spots is found all along the EFC at 5.9 MHZ in the

background (dashed line). These bright zones correspond to high density of elastic

energy and delimits the main streams for the elastic flux. The amplitude of the sig-

nal is weak for ky = [−0.1π/a, 0.1π/a], which is coherent with the strong reflection

of the wave at the interface in the central area of the GRIN PC. If |ky| is larger than
kB, the kx turns to be an imaginary number, as shown by the Fourier transform

in figure 3.14(b). Symmetric main spots are found at |ky| = [0.38π/a, 0.5π/a], in

good agreement the theoretical range |ky| = [0.38π/a, 0.47π/a] deduced from the

theoretical analysis described above and summarized in figure 3.9.

From the experimental side, the main spots in figure 3.14(c)spread asymmetri-

cally along the EFC in the k vectors space. This well agrees with the statement

that the sample is asymmetric. When considering the imaginary part of the Fourier

transformed data, one can see that |ky| is almost always less than kB. Accordingly,

the FWHM is just at the limit of diffraction. We attribute the disagreement be-
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tween our numerical and FEM results to some inhomogeneities or defects in the

samples, as can be observed in the SEM image in figure 3.12.

To finish this section, let us notice that in our model, the evanescent components

only appear at the interface during the transmission from the GRIN PC to the

substrate. Therefore, for the sub-wavelength focusing of A0 mode to occur behind

the trampoline structure, neither the negative refraction process is involved nor is

it necessary to satisfy the all-angle negative refraction (AANR) condition, which

is quite different from other works. Let us notice also that, a priori, the focusing

achievements of the trampoline structure should depend on the polarization of the

elastic waves and therefore we need attach the same pillar on both sides of the PC

slab if considering symmetric Lamb waves instead of A0 Lamb mode.

3.5.3 Physical explanations

A question naturally arising is how the evanescent modes are able to get to the

background medium? To answer this question, let us go back to the actual struc-

ture of these artificial media instead of viewing them as effective materials. We

considered a six units crystal attached on one side to a large silicon plate, as shown

in the inset in figure 3.15. Periodic conditions were applied on the lateral sides

of the slab, and the bands structure was computed as shown by the dotted lines

in figure 3.15.25 A0 bands of both the silicon plate (dot-dashed red line) and the

trampoline (solid green line) are displayed in the same figure.

A0 mode in the silicon plate features similar properties as the sound line in

fluids,23,90 and separates dotted curves into two parts: the propagating modes in

the shaded region with |ky| < kB, and the modes bounded to the trampolines

below the dot-dashed line with |ky| > kB. These bounded modes correspond to

kx = i
√
k2y − k2B being imaginary, and therefore the displacement field decays from

the trampoline to the background.

At the edge of the first Brillouin zone, just above the A0 band of the trampoline,

some bound modes are converging. The corresponding branches become flat due

to the bending vibration of the pillars, and large transverse wavenumber |ky| may

be expected.9 The bending mode of the silicon pillars is coupled to the A0 mode

of the silicon plate, as illustrated by the modal displacement in figure 3.6 (b-d).

Such a close coherence between the resonant behavior of the silicon pillars and the

vibrating modes in the silicon plate, indeed, allows the structure working towards

the desired direction: enhancing the transmission of the evanescent components

through the bound modes. The operating frequency of 5.9 MHz being quite close

to the frequency of the flat bounded modes, and the quality factor of the resonant

bending mode being low,92 the amplitude of evanescent modes at the interface
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Figure 3.15: Band structures of a six-layer crystal (see inset label) along the interface
direction ΓY. Radius of air holes keeps the same value of the central layer of GRIN PC
with ra = 40.5 µm. A0 mode band of silicon plate is superposed in the figure noticed by
the dot-dash line, as well as the A0 mode band of trampoline presented by the solid line.

between GRIN PC and background is enhanced.

To further investigate the relationship between the bending vibration of the

pillars and the bounded modes, special attention was paid to the local behaviors

in the two last rows of inclusions (holes + pillars). As could be seen from the ray

trajectories in figure 3.10, incident waves are concentrated into a limited region at

the exit layers, exciting the pillars into their normal bending mode. Let us now

consider the reverse situation where the pillars are driven into their bending mode

by an external source, along the direction given by the ray trajectories in figure

3.10. However To simplify, we consider only the two last columns of air inclusions

with silicon pillars inserted in between (figure 3.16(a)).

Forces are applied on the top surface of pillars at y = 3.5a (−3.5a), polarized

in the x − y plane, with an angle −0.26π (0.26π) with respect to x-axis. This

corresponds to both the position and the tangent to the trajectory at the interface

of the sample where |ky| < kB (see figure 3.10). Figure 3.16(b) shows the normal

displacements uz when only the pillar at y = −3.5a is excited. The displacement

field at x < −2a are not shown since only the forward field is of interest. In the near

filed, waves are found to propagate along the interface between the unit layer and

the silicon plate with decreasing amplitude along x-direction, as expected for waves

featuring an imaginary kx. This means that the bounded modes can be efficiently

excited by the bending mode of the pillars. Such efficiency comes probably from the
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Figure 3.16: (a) scheme of column of GRIN PC with force source applied on two sym-
metric pillars both along x and y coordinates with an angle indicated by arrows (0.26π).
Snapshot of uz when (b) only the pillar at y = −3.5a is excited and (c) pillar at y = ±3.5a
is excited.

coherence between the vibration mode of the resonator and that of the silicon plate.

Knowing whether such coherency can be extended to other polarized waves still

needs further discussion. Besides, the periodicity of the sub-wavelength apertures

of air holes may also help, to a certain extent,37 the transmission of the evanescent

mode.

Figure 3.16(c) shows the snapshot of uz when both pillars at y = ±3.5a are

excited into vibration. A focus spot is formed at the position 2.6a faraway from the

interface while the transverse profile gives a FWHM of about 0.46λB and a ∆/2 of

0.36λB. This shows that a focus zone can be observed in the near field for wave with

|ky| > kM owing to the excitation of bounded modes. The near-field focalization

after the exit of GRIN PC, indeed, can be seen as the integral of waves beams with

different values of transverse wavenumber as presented by equation (3.2).

3.6 Conclusion

Following the work described in the previous chapter, we used here a conventional

GRIN PC to investigate the focusing outside the structured part of the lens. With

the help of both the ray trajectories analysis and numerical results, it is found that

the position of the focus can be accurately predicted, and that the resolution at

the focus is enhanced for GRIN PC with larger length. Through the analysis of

transverse wavenumber ky, it is found that the resolution is limited by the maximum
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value of ky at the exit.

In order to enhance the resolution at the focus, a resonant structure was used

as the basic unit to design the GRIN PC. The bands structure shows that the

bending resonant mode of the pillar-based PC allows to shift A0 Lamb mode to

lower frequency. This property helps the GRIN PC to exhibit larger variations of

the refractive index. By tuning the width of the GRIN PC along y-axis, it is found

theoretically that kM may be larger than kB, leading to evanescent components of

the transverse wave vector at the interface. Following the theoretical predictions,

numerical simulations of the wave propagation in the GRIN PC gives the focusing

at the expected position. The resolution at the focus, evaluated either by FWHM

or by the Rayleigh criteria ∆/2, is less than half-wavelength: the super-resolution

is observed numerically. The gain factor is measured to be 1.9, a little less than the

counterpart in chapter 2.

For comparison with the numerical simulations, samples with the same design as

for the numerical study have been elaborated. The experimental results give a focal

length a few longer than predicted by the numerical simulations. The resolution

at focus, evaluated by FWHM, is 0.53λB, just above half-wavelength. However, at

the moment when the maximum uz appears, the focus features ∆/2 = 0.46λB, less

than half-wavelength. The experimental resolution is larger than the numerical one

but still remains very close to the limit of diffraction. The experimental gain factor

being about 2.36 is larger than computed, but at the cost of resolution.

To get a picture of the local processes at the origin of the global behavior, we

have calculated the bounded modes. We found that they couple to the evanescent

modes at the interface with the silicon substrate. The bending resonances of the

pillars act as a bridge connecting the bounded modes to the evanescent transverse

waves, which has been numerically verified through the excitation of the pillars by

an external source.
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Chapter 4

Focalization of a Rayleigh wave

inside and outside a GRIN PC

4.1 Introduction

In both the preceding chapters, we have investigated the focusing of A0 Lamb mode

both at the inner and behind the GRIN PCs. With the help of the ray trajectories,

as well as the numerical and experimental results, we have understood the influence

on the focusing achievements, of the anisotropy along certain lines of inclusions.

We have identify some key parameters to enhance the focusing resolution behind

the GRIN PCs. We are quite confident that the formalism allowing to compute

the ray trajectories can be easily extended to other types of waves. However, if

we wish applying our method to other waves, we may encounter some new physics

inherent to these waves. This is one of the most important reasons why we turned

our attention to the focusing of Rayleigh waves in GRIN PCs engraved on a semi-

infinite solid for which there are few experiments available to now.75

We applied the same methodology to design the GRIN PC as we did previously,

i.e., by adjusting in a controlled manner the sub-wavelength unit in order to get a

graded transverse velocity.75 In contrast to A0 mode, the Rayleigh waves have their

amplitude evanescently decreasing along the direction perpendicular to the free

surface, to being almost zero at one-wavelength depth. Such a property makes the

velocity of a Rayleigh wave gradually varying against the depth of the air inclusions,

until a fixed value when the depth gets larger than one wavelength.115,116 Therefore

to have a large gradient for the refractive index, we must consider the influence of

the depth of the inclusions.

In this chapter, we designed the GRIN PC by using the air/silicon structures.

We studied the focusing of Rayleigh wave both at the inner and behind GRIN

PCs. Features of wave focusing were revealed with the help of ray trajectories and
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Figure 4.1: (a) Scheme of square-lattice unit cells with a periodic constant a = 50 µm,
the radius of air hole r = 20 µm and the thickness of air hole h = 250 µm, in a semi-
infinite substrate of silicon. (b) Band structures of the PC below the sound line with
the bands of Rayleigh wave highlighted by the green dashed lines along ΓX and ΓM. The
field of modal displacement normalized to the same scale is shown for Rayleigh wave at
20 MHz along ΓX. The x, y, and z-axis are parallel to the crystallographic directions
< 100 >, < 010 > and < 001 >, respectively.

experimental results. Meanwhile, the focus pattern was compared between Rayleigh

wave and the A0 Lamb mode.

4.2 Physical model

4.2.1 Band structures of Rayleigh wave

We started our studies by analyzing the bands of Rayleigh wave for PCs. To this

end, FEM was applied to obtain the band structures for a PC constructed by drilling

air holes in a silicon substrate. Figure 4.1(a) shows the scheme of the square-lattice

unit cells with a periodic constant a = 50 µm, the radius of air hole r = 20 µm,

and the thickness of air hole h = 250 µm. To mimic the semi-infinite substrate, we

enlarged a little the thickness of the unit cells and we attached perfect match layers

(PMLs) to the bottom of the unit cell.117,118 Figure 4.1(b) shows the bands structure

of the PC. They are separated into two parts by the so called sound line: the dotted

black lines stand for the possible leaky/radiative modes to the substrate, whereas

the shaded area indicates the opposite cases.90 The sound line is determined by the

smallest phase velocity in the semi-infinite solid for any propagation direction.119

The slowness curves78 show that the sound line is determined by the velocity of the

shear-vertical (SV) wave along the < 101 > direction, as shown in figure 4.2.
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Figure 4.2: Slowness curve of the pressure (P) wave, shear-vertical (SV) and shear-
horizontal (SH) wave of silicon. The sx and sz are parallel to the < 100 > and < 001 >
of the crystalline direction of silicon, respectively.

The Rayleigh band is highlighted by the green dashed lines along ΓX and ΓM

in figure 4.1(b). At 20 MHz, the Rayleigh wave has a wavenumber along ΓX

kΓX = 0.500π/a, corresponding to a wavelength of 200 µm which is smaller than

the thickness of air holes. Figure 4.1(a) shows also the fields of modal displacements

normalized to the same scale at kΓX = 0.500π/a. The displacements are polarized

in x − z plane, extending over one-wavelength along z-direction. It should be no-

ticed also that the normal component uz dominates over ux in the field of modal

displacements.

4.2.2 Design of the GRIN PC

We repeated the calculation to find the Rayleigh bands for PCs with different filling

ratios. These bands are found to decrease gradually as the filling ratio increases,

as shown in figure 4.3(a). A GRIN PC was obtained by piercing air holes lattice of

square symmetry on a silicon substrate, with the periodic constant a = 50 µm and

a depth of holes h = 250 µm. The radii of the air holes change gradually along the

transverse direction in such a way that the wavenumber kΓX related to the Rayleigh

waves obeys a hyperbolic secant profile

kΓX(y) = kΓX0 × sech(δy), (4.1)

where δ is the gradient coefficient, kΓX0 is the wavenumber along ΓX, within the

central layer of PC. kB (0.407π/a) stands for the wavenumber in the background

along ΓX. The GRIN PC was designed to have n0 = 1.229 and δ = 0.080a−1 at 20
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Figure 4.3: (a) Bands of Rayleigh wave in the first Brillouin zone with different radii
of air holes. (b) Equal frequency contour at 20 MHz (star symbols) and its fitting curve
with r = 0.40a.

MHz, and to insure this, the radii of the air holes changed gradually from 0.4a in

the central row to 0.2a in the lateral rows.

The ray trajectories were calculated by using the same formalism as in chapter

2. To do this, the first step was to calculate the EFCs of the PCs. We show in

figure 4.3(b) the EFC (star symbols) with r = 0.40a at 20 MHz. The fitting curve

(solid line) was derived from the formula

k(θ) = kΓX
1− αcos(4θ)

1− α
, α =

kΓM − kΓX
kΓM + kΓX

(4.2)

where θ is the angle between k and ΓX in in the first Brillouin zone. Excellent

agreement is found between the two groups of results. The same comparison can

be made for PC featuring different diameters of the air holes with as good an

agreement.

4.3 Focalization inside the GRIN PC

4.3.1 Numerical results of Rayleigh wave focalization inside

the GRIN PC

A GRIN PC of 30 columns of air holes was drilled on a silicon substrate according

to the previous design. We used FEM to simulate the propagation of the waves in

the GRIN PC. To this end, a line force was applied in front of the GRIN PC to

72



Figure 4.4: Numerical observation of normalized maximum displacement inside a GRIN
PC of 30 columns. Dashed lines indicate ray trajectories.

continuously excite the Rayleigh waves at 20 MHz. Meanwhile, silicon substrates

large enough to prevent from reflected waves from the boundaries, were added on

both lateral sides of the GRIN PC. The simulations were set in such a way that

not only Rayleigh waves get excited in the silicon but also other polarized waves.

However, the displacements field was distributed mainly on the top surface with

a wavelength along x-axis at any horizontal row of inclusions in good agreement

with the value derived from λΓX(y) = 2π/kΓX(y). Figure 4.4 shows the normalized

maxima of uz measured on the surface of the GRIN PC, as well as the ray trajectories

noted by the dashed lines. The overall maximum value is found at x = 22a with an

amplitude of 2.8 times that of the incident wave, giving rise to the gain factor 2.8 at

the focal distance fl = 22a. The focus zone is found between x = 20a and x = 24a.

Both the focal distance and the focus zone have their positions in good agreement

with the ray trajectories. In contrast from the case of A0 mode in chapter 2, the

focal distance of Rayleigh wave is however very close to the theoretical value 20a

predicted by π/2δ. One important reason is the low anisotropy of the GRIN PC for

Rayleigh wave: e.g., the ratio η(θ) = (k− kΓX)/kΓX is 0.056 along the central layer

for Rayleigh wave to be compared to 0.069 for A0 mode. Secondly, the GRIN PC

has a large gradient coefficient δ, leading to a shorter focal distance in comparison

to the results in chapter 2. The focal zone is thus compacted to a smaller area along

x-axis so that the absolute difference between numerical and theoretical values of

the focal distance seems to be small.

The FWHM at the focus, is about 2.82a or 0.71λmin with λmin (4a) being the

wavelength in the central layer of GRIN PC along the ΓX. We will analyze the

resolution below, together with the experimental results.
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4.3.2 Experimental setup and samples

To verify the theoretical and numerical results, we fabricated a sample with 30

columns of air holes on a silicon substrate 500 µm thick, as shown in Figure 4.5. At

the outcome of the fabrication process, the diameters of the holes were measured

to be slightly larger than expected.71 The laser ultrasonic technique was applied

both to excite Rayleigh wave pulses and to monitor the normal displacements uz on

the top surface of the GRIN PC, as already described in Chapter 2. A finer mask

was used here in order to get a shorter distance between the light fringes impinging

onto the sample, i.e., to increase the working frequency up to 20 MHz. The incident

waves stretched over a width much greater than the size of the GRIN PC, making

it valid treating the incident waves as plane waves.
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Figure 4.5: Image of experimental sample of GRIN PC.
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Figure 4.6: Dispersion curves of Lamb wave for a silicon plate of 500 µm in the x-z plane
as shown by the inset figure.

Before measuring uz in the GRIN PC, it is necessary to make sure that Rayleigh

waves at 20 MHz can actually be excited on a 500 µm thick silicon substrate. To

this end, we calculated the dispersion curves of Lamb waves,120 as shown in figure

4.6. At 10 MHz and above, both A0 and S0 modes converge to the Rayleigh mode

confirming that the substrate is semi-infinite at the working frequency of 20 MHz.
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(a) 
(a) 

(b) (c) 

Figure 4.7: (a) Amplitude of observed original in a function of time, (b) frequency
spectrum of an interested region from 1.8 µs to 3.4 µs, and (c) the filtered signal amplitude
of interested region by a Gaussian profile centered at 20 MHz.

Figure 4.7(a) shows the signal I(t) observed directly through the high-speed

photodiode measured ∼ 600 µm before the elastic waves impinge the GRIN PC.

The signal of interest is located in the time range from 1.8 µs to 3.4 µs. Figure

4.7(b) shows the frequency spectrum of the averaged signal Ĩ(t) (see chapter 2) in

this time range. The frequency is well centered at ∼ 20 MHz with a FWHM of

about 1 MHz, well satisfying the requirement. We show in figure 4.7(c) the filtered

value Î(t) (see chapter 2) filtered by a Gaussian profile centered at 20 MHz. Very

few noise affects uz and high S/N is achieved. Furthermore, uz has been recorded

at several points over a 500µm length along x-axis, right in front of the GRIN PC.

The measured wavelength at 20 MHz is about 250µm, in excellent agreement with

the theoretical value of 246µm. Therefore our experimental technique is well suited

to investigate the propagation of Rayleigh waves in air/silicon PCs.

4.3.3 Experimental results of Rayleigh wave focalization in-

side the GRIN PC

Both time and space dependence of the normal displacement uz was recorded on the

middle part of the GRIN PC, in between y = −5.5a and y = 5.5a. We have only
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kept the maximum value of uz from each measurement. All these maxima were then

normalized to unity, as shown in figure 4.8. A focusing zone clearly appears along

x-coordinate, in between x = 20a and x = 25a, which is in good agreement both

with the calculated ray trajectories and with the numerical results. The overall

maximum value of uz appears on the central row of inclusions at x = 25a with an

amplitude (25.9 pm) 3.2 times that of the incident wave (8.14 pm), in fairly good

agreement with the values derived from our numerical simulations.

Figure 4.8: Experimental observation of normalized maximum displacement inside a
GRIN PC of 30 columns. Dashed lines indicate ray trajectories. Circles indicate the air
holes, and they do not keeps the real spatial ratio just for the display of figure.

(a) (b) 

Figure 4.9: Focusing through a GRIN PC of 30 columns: (a) experimental (solid line) and
numerical (dashed line) horizontal profile of normalized maxima of uz at the symmetric
layer of GRIN PC, and (b) experimental (solid line) and numerical (dashed line) transverse
profile of normalized maxima of uz at the focusing.

To further analyze the focus zone, we show in figure 4.9(a) the profile along the

central layer and in figure 4.9(b) the transverse profile at the peak value. Along the
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horizontal profile, the experiment yields a focal zone at a position slightly larger

from the simulated value (x = 25a instead of x = 22a). This small discrepancy

could be imputed to the samples. Actually, as already noticed, the radii of the air

holes are a little larger than the nominal value. Secondly, the air holes are designed

to have a depth 5 times of the periodic constant. Upon completion of the fabrication

process, the largest holes had a depth as designed while the smallest ones had not.

This may affect the achievements of the GRIN PC. Actually, there is another peak

at x=20a in figure 4.9(a), in a position different from the one predicted by the

numerical study, i.e. x = 15a. This is probably caused by the same reason.

On the other hand, the profile measured along y-axis is in very good agreement

with the numerical findings (figure 4.9(b)). The FWHM, either measured experi-

mentally or derived from FEM computations, is 2.53a (0.63λmin). The resolution

is even smaller than the resolution of A0 Lamb mode (0.71λmin) we found in in

chapter 2, for the square lattice. This is well explained by the larger gradient coef-

ficient ∼ 0.80a−1 of the GRIN PC for the Rayleigh waves here than ∼ 0.67a−1 for

A0 Lamb mode in chapter 2. Moreover, the silicon is less anisotropic against the

Rayleigh waves than it is against the Lamb modes. These two features combined,

help increasing the ky at the focus while at the same time reducing the impact

of the anisotropy. The resolution is comparable and even better than an earlier

study75 with spoof surface acoustic wave (SSAW) in which a resolution of 0.70λmin

was claimed. The most relevant reason is that in our case, the depth of the air holes

is larger than one wavelength and therefore the entire displacement field is affected,

allowing the surface waves to converge at the focus in an ultimate manner.

4.4 Focalization outside GRIN PC

4.4.1 Experimental results of Rayleigh wave focalization

behind GRIN PC

Both the simulations and the experiments have yielded sub-wavelength focusing for

Rayleigh waves in a GRIN PC. In this Section, we move to the focusing behind the

GRIN PC. To do this, another sample was elaborated, with 14 columns of air holes

along x-coordinate.

The displacements uz were recorded on the plain silicon behind the lattice, over a

length of 10a, in between y = −5.5a and y = 5.5a. Figure 4.10 shows the normalized

maxima of uz, together with the ray trajectories (dashed lines). A focusing zone

stretching from x = 16a to x = 19a is clearly observed, which is in very good

agreement with the calculated ray trajectories. Moreover, along the central layer,

on the interface, uz is found with a large value. We have not clear explanation for
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this feature but one hypothesis is that it might be caused by some resonant effect

of the silicon bridges in between two consecutive holes.92

Figure 4.10: Experimental observation of normalized maximum displacement after a
GRIN PC covering x = [0, 14a]. Dashed lines indicate ray trajectories both at the inner
and behind the GRIN PC. Circles indicate the air holes.

(b) (a) 

Figure 4.11: Focusing through a GRIN PC of 14 columns: (a) the horizontal profile of
normalized maxima of uz along the central layer of GRIN PC, and (b) the transverse
profile of normalized maxima of uz at the focusing.

To get insight into the quality of the focus, we show in figure 4.11(a) the hor-

izontal profile of the normalized maxima at y = 0. The overall maximum uz is

found at x = 17.5a, with an amplitude (19.6 pm) 2.2 times more than the ampli-

tude of the incident wave (8.9 pm); this corresponds to a gain factor of 2.2. The

gain factor is larger for the inward focusing than for the focusing behind the GRIN

PC. This is natural since the waves are less converged in a lens of 14 columns than

in a GRIN PC of 30 columns. Moreover, the partial reflection of the waves at the
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Figure 4.12: Profile of wave number ky corresponding to the incident position for the
designed GIRN PC (solid line) and experimental GRIN PC (dashed line).

interface between the GRIN PC and the background still lessen the amplitude at

the focusing.

The transverse profile at the peak value in 4.11(b) gives a FWHM of 2.87a,

which is larger than the absolute value of 2.53a measured in figure 4.9(b). Here

again, this is attributed to the fact that incident waves are less focused by a GRIN

PC of 14 columns. The FWHM, normalized to the wavelength in the background

(λB = 4.91a), is however 0.58λB, slightly smaller than the resolution 0.63λmin for

the inner focusing. Clearly, this should be attributed to the change of the reference

wavelength. However, as compared to the resolution (0.72λB) measured in chapter

3 behind “conventional” GRIN PC, this resolution is much better and very close

to the diffraction limit here. The reason is nothing else but the value of the ratio

kM/kB, as discussed in what follows.

4.4.2 Discussions on the focusing resolution

To evaluate the focusing behind the GRIN PC, figure 4.12 shows the profiles of

ky at the interface between GRIN PC and the background, both for the designed

GRIN PC (solid line) with kM = 0.315π/a and for the actual sample (dashed line)

with kM = 0.362π/a. Before further analysis, figure 13 shows the ray trajectories

for the experimental GRIN PC: the highest density appears at x ∼ 17a, in good

agreement with the experimental result, x ∼17.5a.

The elastic energy carried by each acoustic ray may suffer losses during the

propagation through the GRIN PC or at the interface between the GRIN PC and

the background. The losses are different according to the trajectory since the elastic
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Figure 4.13: Ray trajectories of incident waves through the actual sample of GRIN PC.

impendence is position-dependent in. Once admitted this characteristic, we start

the analysis by stating the dissipation is weak. We ignore the aberrations at the

focus, considering that the focus is restricted to a small region of the unstructured

isotropic substrate. Thus, the transverse profile at the peak becomes straight. It

is similar to the image of a point source produced by a negative-index lens which,

reads9,25

|uz(y)| =
∣∣∣ ∫ kM

−kM

exp(ikyy)dky

∣∣∣. (4.3)

Equation (4.3) leads to a primary spot with a full width ∆ = 2π/kM , which

displays an inverse relationship between the spot size and kM . Figure 4.14 shows

the transverse profile of uz at the peak value, derived from equation (4.3) for both

the designed (blue solid line) and actual dimensions obtained at the end of the

elaboration process (green dashed line) GRIN PCs, together with the profile of

experimental results (circles). The FWHM along y-axis is 3.83a (0.78λB) for the

designed GRIN PC and 3.32a (0.68λB) for the experimental GRIN PC. It sounds

good for the experimental lens to feature a finer focusing since larger kM arise from

the enlargement of the air holes because of fabrication issues. The derived profile of

the experimental GRIN PC is actually in good agreement with the measured profile

featuring a FWHM of 0.58λB.

In order to go even further, we show in figure 4.15(a) a snapshot of the ex-

perimental focus while figure 4.15(b) represents the 2D Fourier transform of the

snapshot. In figure 4.15(b), the components of k vector spread along the EFC for

Rayleigh waves at 20 MHz, propagating in the background (solid line). Two main

spots centered at ky = ±0.32π/a indicate the distribution of elastic energy within
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Figure 4.14: Transverse profile of maxima of |uz| at the peak value of focus: experimental
result (circles), evaluation by equation (4.3) for the actual sample of the GRIN PC (green
dashed line) or the designed one (blue solid line).
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Figure 4.15: (a) Snapshot of the focusing and (b) the normalized two-dimensional Fourier
transform of the snapshot image. The white solid line indicate the EFC of Rayleigh wave
at 20 MHz.
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the focal spot. This distribution along the EFC may have its origins in the internal

resonances in the GRIN PC.30 We however analyzed the features in the k-vector

space using a continuous model. Firstly, within the focal spot, the absolute value

of ky is restricted to the range |ky| < 0.36π/a, in good agreement with the value

of kM we found in the experimental GRIN PC. At the same time, the coefficient

of the Fourier components takes small values in the range |ky| < 0.2π/a, which

corresponds to the layers within the zone |y| < 4a in figure 4.12, because of the

wave reflection caused by the large size of the air holes.

Line Source 
(a) 

1.0 -0.31 

PML 
PML 

PML 

(b) (c) 

ux 

uy 

uz 

Figure 4.16: (a) Field of displacements in response to a line source applied in front of
PC with 14 layers of air holes along the ΓX. PMLs were attached to prevent the effect of
wave reflection. Periodic condition was applied along the lateral sides of PC and silicon
plate to mimic an infinite PC. (b) Transmissivity as a function of the radius of air holes.
The transmissivity is the ratio of |uz| measured after the PC to the |uz| of incident wave.
(c) Transmissivity as a function of the position of incident wave.

We refine now the analysis by accounting for the transmissivity against y-axis,

of each beam. Equation (4.3) changes9

|uz(y)| =
∣∣∣ ∫ kM

−kM

T (ky)exp(ikyy)dky

∣∣∣. (4.4)
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Figure 4.17: Transverse profile of |uz| at the peak value of focus: the experimental result
(line with circles), the evaluation for the actual sample of the GRIN PC when considering
(red solid line, by equation (4.3)) or ignoring (green dashed line, by equation (4.3)) the
transmissivity.

where T (ky) is the transmissivity of the heterostructure which shall be location-

dependent in the direct space and angle-dependent in the first Brillouin zone.

To simplify the physical model, the transmissivity was calculated along ΓX.

Figure 4.16(a) shows the numerical model: a line of 14 identical air holes are drilled

on the silicon substrate with the same depth, as in figure 4.1(a). The radius of the

holes is an input parameter of the simulation. Periodic conditions were applied on

each side along y-axis to mimic an infinite PC.119 We implemented PMLs to enclose

the substrate in an absorbing medium and to inhibit any reflection from boundaries.

A vibrating line force was applied along z-axis, in front of the GRIN PC to excite

the Rayleigh waves. In contrast to former chapters, we used here the frequency

domain module in structures in Comsol Multiphysics to solve the 3D problem. In

figure 4.16(a), the displacements field polarized within x−z plane is confined over a

one-wavelength depth from the top surface of the substrate, with uz dominating the

displacements field. This confirms that the waves are properly excited. Whatever

the radius of the air holes is, the maximum value of uz occurs within a spatial range

of 3λB behind the GRIN PC. The transmissivity, defined as the ratio between the

measured maximum of uz and the amplitude of the incident Rayleigh wave, is shown

in Figure 4.16(b) for different radii of air holes. As expected, the transmissivity

decreases gradually as the radius increases.

It is straightforward to deduce from figure 4.16(b) the transmissivity against
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the position along y-axis. The result is shown in figure 4.16(c). The transmissivity

for each horizontal row of inclusions being known, the transverse profile at the

focus can be simply evaluated using equation (4.4). The result for a virtual sample

having the actual dimensions of the sample that we used in the experiments is

shown as red solid line in figure 4.17. For comparison, we show in the same figure

as a green line, the transverse profile derived from equation (4.3) and as circles the

experimental data. Accounting for the transmissivity does not affect the calculated

transverse profile in a large extent; the FWHM is computed to 0.65λB, very close

to the experimental value 0.58λB. This however allows to better account for the

experimentally measured high and position of the lateral wings.

4.5 Conclusion

In this chapter, we have studied the focusing of Rayleigh waves both at the inner

and outside a GRIN PC. We designed the heterostructure with squared symmetry

by gradually modifying the radii of the air holes along the transverse direction of a

silicon substrate.

A sample featuring 30 columns of air holes was fabricated on a substrate with a

thickness two times the operating wavelength. The laser ultrasonic technique was

applied both to excite and to detect the propagation of the Rayleigh waves. This

technique allows for an accurate excitation of pulsed Rayleigh wave at an operating

wavelength that can be finely tuned; this paves the way for further experiments. A

sub-wavelength focusing is experimentally observed in the inner of the GRIN PC

at a distance in good agreement with the predictions of ray trajectories analysis.

The focus features a gain factor of 3.2 comparable with the one obtained with A0

Lamb mode in chapter 2 and a FWHM of 0.63λmin. The fine focus obtained with

the Rayleigh waves is attributed to a large gradient of the refractive index and the

reduced anisotropy against the Rayleigh mode of the GRIN PC.

Then, a sample featuring 14 columns of air holes was used to study the focusing

behind the GRIN PC. A sub-wavelength focusing is observed experimentally at the

position predicted by the ray trajectories analysis, with a gain factor of 2.2. The

transverse profile at the peak has a FWHM of 0.58λB, even finer than the resolution

for the A0 Lamb mode behind the “conventional” GRIN PC in chapter 3. Such a

sharp focus comes from the transverse components of the wave vector gathered at

the focus, as noticed by the range of ky at the interface between the GRIN PC and

the background. In fact, the resolution is found to be determined by the maximum

of the transverse wavenumber. Finally, we discussed the effects of the transmissivity

on the focusing properties. With such consideration, the focusing resolution gets

very close to the experimental one of 0.65λB.
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General Conclusion

GRIN PCs have demonstrated their merits to control the wave propagation by

using the subwavelength unit cells. In this thesis, we followed this basic idea to

control the propagation of elastic waves in such artificial lenses, including a series

of works on both the A0 mode Lamb wave and Rayleigh wave. The numerical and

experimental results from these works, together with the formalism developed to

calculate ray trajectories, have given some new understandings of the wave focusing

in the acoustical lenses. We would like to give a summary of all the works in what

follows.

At the very beginning, we investigated the A0 mode focusing at the inner of

GRIN PCs. We used two different lattice symmetries to design the artificial lens:

the square lattice by modifying the radii of inclusions, and the rectangular lattice

by modifying the distance between inclusions. A universal formalism was proposed

to calculate the ray trajectories in any of the designed structures. This formalism,

taking account of the anisotropy along any horizontal layer of PCs, has helped

us to reveal the existence of aberrations at the inner focusing. The numerical

results, together with the experimental results, have verified the accuracy of the

formalism to predict the focus pattern, including the focal distance and focusing

resolution at the low frequency. Both simulations and experiments have given a

focus with a large gain factor and a small lateral resolution close to the diffraction

limit. Meanwhile, the rectangular lattice has proven stronger ability to get a sharper

resolution ∼ 0.64λmin than its counterpart ∼ 0.71λmin of the square lattice due to

the reduced anisotropy.

After that, we have investigated numerically the efficiency of these devices to

focalize waves within a broad range of frequencies: from the long-wavelength regime

to the short-wavelength regime at the first acoustic branch. The formalism shows

always high efficiency to predict the focus pattern within any of this broad range.

At higher frequencies, the GRIN PC gets a shorter focal distance but an enlarged

the gain factor with almost the same focusing resolution. These results can be

useful for the experimental investigation in future.

Encouraged by the results on the inner focusing of A0 in the lenses, we turned
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our efforts to the focusing of A0 mode behind them. The idea was to reduce the

size of the artificial structures along the propagation direction and allow the elastic

wave to converge in the non-structured plate behind the lenses. By this way, such

PC based acoustical lens can be considered like a conventional optical lens and be

useful for various instrumental applications. We used the GRIN PC of rectangular

symmetry as found in chapter 2. We tried also several values smaller than the

focal distance for the size of the lens in order to find a suitable one. For both

numerical and experimental results, we find behind the lens a focusing zone well

located at the position as predicted by the ray trajectories. The focusing resolution

is found mostly relevant to the maximum transverse wavenumber kM , in an inverse

relationship.

To get a large kM , a resonant structure formed by erecting pillars on the bridge

of air/silicon PC was used as the basic unit to design GRIN PCs. The lens was

designed in such a way that the kM was found surpass the wavenumber kB in the

background, producing evanescent components at the exit of lens. With such a

lens, we have found numerically the superlensing effect behind lens: the focusing

resolution (FWHM) reached 0.44λB. The bound modes, which are leaky between

the PC and the background, work as the mechanism to transfer the evanescent

components to the focus, giving rise to the superlensing effect together with the

propagative modes. The experimental results, although not being able to surpass

the diffraction limit, have indeed ensured a focusing resolution 0.53λB being very

close to the limit. The disagreement between the experiments and simulations

comes mainly from the fabrication of experimental samples, as noticed in chapter 3.

However, the resonant GRIN PC has shown its dramatic abilities to get a focusing

behind itself with a very small resolution.

Different from the A0 mode Lamb wave, Rayleigh waves travel on the surface

of an semi-infinite solid substrate penetrating to a depth of one wavelength. These

waves are interesting for their sensitivity to surface defects (and other surface fea-

tures) and can be used to inspect areas that other waves might have difficulty reach-

ing. Analogously to previous chapters, we designed the GRIN PC for Rayleigh wave

by gradually modifying the radii of inclusions. The ray trajectories, together with

experimental results, have revealed first the focus pattern at the inner of lens. With-

out using silicon pillars, the lens gives a large gain factor and a focusing resolution

0.63λmin due to the large gradient coefficient and the reduced anisotropy. Secondly,

we turned to the focusing behind the lens. The analysis of Fourier component and

wave transmission, together with experimental results, has revealed a focus pattern

with the resolution determined by the kM in this case, close to 0.58λB.

This work is devoted to study of focusing the plate and surface acoustic waves by

using the GRIN PCs. For both the long-wavelength and short-wavelength regimes,

we show that the formalism of computing ray trajectories serves an useful tool to
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the engineering of such acoustical lenses, aiding the lens as smart and compact

devices in future. The formalism shall be useful in future where the anisotropy may

display important influences. In a view of engineering, we show that the kM is one

of the most important parameters to determine the focusing resolution behind the

lens. However, for the inner focusing, we have not claimed the same conclusion, for

both the aberrations at the focus and most importantly the graded properties of

lens. This may be one of our future topics.

This work has not claimed to now the possible applications of the resonant

structures proposed in Ref [119] by Khelif et al., to design graded lens for Rayleigh

wave. As proposed in chapter 3, once the transverse wavenumber can be larger

than wavenumber in the background, the artificial lens has a chance to gather the

fine information carried by the evanescent components at the focus, so that the

superlensing effect is possible for the positive-index lens. However this needs being

verified in future.

Another topic of interest is to focalize the zero-order symmetric (S0) Lamb mode

by the trampoline, which is already noticed in chapter 3. In future, we need possible

modifications of the resonant structure to find suitable designs for the S0 mode, so

that we can have a chance to get evanescent components.
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Appendix A

Examples of computing ray

trajectories

The formalism that we have developed to compute ray trajectories was used through-

out this work. In this appendix, we would like to give examples on the formalism

together with the ABCD law.

A.1 k vector based method

We began with an example by using the GRIN PC of square symmetry in chapter

2 where the GRIN PC was assumed to have the wavenumber

k(y, θ) = kΓX(y)
1− α(y)cos(4θ)

1− α(y)
, α(y) =

kΓM(y)− kΓX(y)

kΓM(y) + kΓX(y)
(A.1)

with kΓX(y) and kΓM(y) the wavenumber along the ΓX and ΓM, θ the angle in

the first Brillouin zone, and α(y) the anisotropy coefficient. At 5 MHz, kΓX(y) is

described by a hyperbolic secant profile

kΓX(y) = 0.457π/a×sech(0.065y/a), (A.2)

while the anisotropy coefficient α(y) can be fitted by the polynomials

α(y) = 0.0332− 7.585
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. (A.3)

Figure A.1 shows the profiles of both (a) the wavenumber kΓX and (b) the anisotropy

coefficient α. The discrete values obtained by FEM (circles) are in good agreement

with the fitting curves (solid lines) derived from equations (A.2) and (A.3).
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(a) (b) (a) (b) 

Figure A.1: Profiles of (a) wavenumber kΓX and (b) anisotropy coefficient α. In both
figures, the circles stand for discrete obtained by FEM while the solid lines indicate the
fitting curves from equations (A.2) and (A.3).

The strategy of computation is to find ray trajectories one by one. Let us think

about one trajectory starting at y = 8a, as shown in figure A.2. We set y|x=0 = 8a

as the first position of ray trajectory at which the k vector has its component ky = 0

while the kx determined by

k0x = k(y=8a, θ=0). (A.4)

The Snell’s law says that the transverse wavenumber is conserved at the interface

between two materials. As a consequence, kx keeps the constant along any ray

trajectory within the GRIN lens. To find the trace at other positions, we defined

an uniform spatial step ∆x along the x -axis. At the second position with x = ∆x,

it assumes

y|x=∆x = y|x=0 +∆y, (A.5)

where ∆y stands for the increment of y(x). Actually, equation (A.2) says that

the wavenumber k(y < 8a, θ = 0) is larger than the wave number k(y = 8a, θ = 0).

Supported by the Snell’s law, when wave propagates from the first position to the

second one, the k vector tilts away from the horizontal direction towards the central

layer of GRIN PC. This gives rise to the ∆y ̸= 0. For a small step ∆x, the k vector

is expected to have a small angle, which produces a tiny value for ∆y assumed to

be −1e−5 in our calculation. We have also tried other values for ∆y with each time

the same path for the ray. Besides, ∆y needs changing its sign for a ray starting at

the opposite side of lens for example at y = −8a.

Considering kx keeps constant along any ray trajectory, angle θ at the second

position can be derived from

kx = k0x,

kx = k(y|x=∆x, θ)cos(θ).
(A.6)
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x=Δx 
x=2Δx 

x=3Δx 

y=8a 

Figure A.2: Scheme of calculation of ray trajectory beginning at y=8a. The first several
points are amplified as shown by the inset.

It is not doable to give an analytical solution to this equation. We used here a

numerical skill to find the solution of θ by defining a function

g(ψ) = k(y|x=∆x, ψ)cos(ψ)− k0x, (A.7)

where ψ stands for a variable in the first Brilluion zone. Scan the ψ in the range

[0,−π/2] with a small step ∆ψ (π/1000 here). At certain value, the function g(ψ)

will change the sign, and set the θ be equal to this ψ. Again, for a ray leaving

at y = −8a we scan the ψ in the opposite range [0, π/2]. The group velocity is

perpendicular to the EFC of GRIN PC, yielding to the relationship

tan(φ) = −∂kx
∂θ

(
∂ky
∂θ

)−1

kx = k(y, θ)cos(θ), ky = k(y, θ)sin(θ)
. (A.8)

where φ is the angle between the group velocity and ΓX orientation. Meanwhile,

the group velocity is parallel to the tangent of ray path, so that it holds

tan(φ) =
dy(x)

dx
. (A.9)

Combining equations (A.8) and (A.9), ray trajectory at the third position x=2∆x

is found as

y|x=2∆x = y|x=∆x +∆x× tan(φ|x=∆x). (A.10)

To obtain ray trajectory at following positions x = m∆x (m≥3), it needs just

the repetition of equations (6)-(10) in order, by replacing the x = ∆x with x =

(m−1)∆x and x = 2∆x with x = m∆x, respectively. In figure 2 the ray trajectory

y(x) becomes very close to the y = −8a at x = 49a. During the calculation, once

the |y(x)| > 8a, the ray trajectory is adjusted since physically this kind of situation
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is not reasonable.

To get other rays, it needs just the repetition of equations (A.4)-(A.10) by re-

placing y = 8a with the corresponding starting position. The formalism is sufficient

to find not only the ray trajectory y(x), the angle θ, or the tan(φ), but also the

wavenumber ky and the ratio tan(φ)/tan(θ). Same processes can be easily extended

to other waves for the focusing both at the inner of GRIN PCs or behind them.

A.2 ABCD law

When ignoring the anisotropy of any horizontal inclusion, wavenumber of the GRIN

PC changes into

k = kΓX = 0.457π/a×sech(0.065y/a), (A.11)

which means that the refractive index neff follows the hyperbolic secant profile

neff = n0sech(δy),

neff = k/kB,
(A.12)

with n0 = 1.166 the refractive index of the central layer, δ = 0.065a−1 the gradient

coefficient, and kB = 0.392π/a the wavenumber of the background.

x 

u 

u0 

x 

y 

y0 

(a) (b) 

Figure A.3: Scheme of one ray trajectory in a GRIN lens in the (a) x− y space and (b)
x− u space. A coordinate transformation is make for the y-coordinate into a hyperbolic
coordinate u by equation (A.13).

Figure A.3 shows the scheme of one trajectory in the GRIN lens, beginning at

y0 with a slope ẏ0. To find the ray trajectory at any position, we make first a

coordinate transformation

u = sinh(δy),

u̇ = ẏδcosh(δy).
(A.13)

of y-coordinate into the hyperbolic coordinate u. Ray trajectory at any position in
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the x− u space can be determined by a transfer matrix or the ABCD law[
u(x)

u̇(x)

]
=

[
Hf Ha

Ḣf Ḣa

][
u0
u̇0

]

=

[
cos(δx) sin(δx)/δ

−sin(δx)/δ cos(δx)

][
u0
u̇0

], (A.14)

where Ha and Hf are the axial and the field rays whereas Ḣa and Ḣf are the slopes

of the axial and field rays, respectively. u0 and u̇0 are derived from equation (A.13)

u0 = sinh(δy0),

u̇0 = ẏ0δcosh(δy0).
(A.15)

Equation (A.14) shows that once u0 and u̇0 are known, we can infer the u and u̇ at

any position x in the lens. Different from our formalism, the ABCD law needs not

knowing the u and u̇ at the previous neighbor point. The ABCD law applies however

to very few transverse profiles within the framework of paraxial approximation. It

cannot evaluate the influences of anisotropy as what does our formalism to now.

The ray trajectory at any position in the direct space can be derived by using

the inverse computation of equation (A.13)

y = sinh−1
[
u(x)

]
/δ,

ẏ =
u̇(x)

δcosh(δx)
.

(A.16)

We consider now the normal incident wave in the planar GRIN lens. It says ẏ0 = 0

for any trajectory and in turn u̇0 = 0 as derived from equation (A.15). Substituting

u̇0 = 0 into equations (A.14) and (A.16), it finds that

y(x) =
sinh−1

[
cos(δx)× sinh(δy0)

]
δ

. (A.17)

Clearly, the hyperbolic profile gives an oscillatory path for any trajectory in the

planar lens. Meanwhile, it promises for any of them

y(x|fl) = 0,

fl =
π

2δ
.

(A.18)

Therefore, the hyperbolic secant profile focus all the ray trajectories at the same

point with the focal distance fl depending only on the gradient coefficient δ.
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Figure A.4: Ray trajectories in a planer GRIN lens featuring the hyperbolic secant profile
as in equation (A.12) with n0 = 1.116 and δ = 0.065−1. Circles lines stand for results
derived from the ABCD law while solid lines are for results from the k vector based
method.

Figure A.4 shows the path of rays in a planer GRIN lens featuring the hyperbolic

secant profile as in equation (A.12) with n0 = 1.116 and δ = 0.065−1. We used both

the ABCD law (circles) and the k vector based method (solid lines) to find the focal

distance. Ray trajectories derived from the two methods are in excellent agreement.

All the rays are converged to the same point at a distance about 25a as predicted

by π/2δ.

We consider now a general expression for the hyperbolic secant profile

n2
eff = n2

s + (n2
0 − n2

s)sech
2(δy), (A.19)

with ns the refractive index of substrate. To find the ray trajectory, we make the

same coordinate transformation as equation (A.13), and get the transfer matrix[
u(x)

u̇(x)

]
=

[
cos(δγx) sin(δγx)/δγ

−sin(δγx)/δγ cos(δx)

][
u0
u̇0

]
, (A.20)

where γ is written as

γ =

√
l20 − n2

s

l0
, l0 =

n(y)√
(1 + ẏ2)

. (A.21)

l0 stands for the cosine of optical index along y-axis. It is invariant along any ray

within the medium. The inverse computation of u(x) finds the same expression as

equation (A.16). Substituting u̇0 = 0 into equations (A.20) and (A.16), it finds that

y(x) =
sinh−1

[
cos(δγx)× sinh(δy0)

]
δ

, (A.22)

with the focal distance

fl =
π

2δγ
. (A.23)
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Let us return to equation (A.21). It says ẏ0 = 0 for the initial slope of any ray of

the normal incident wave. Therefore, γ can be written as

γ =

√
n(y)2 − n2

s

n(y)
. (A.24)

γ is relevant to the n(y) so that it is variant between different ray trajectories al-

though it keeps constant along the same path. As a consequence, the focal distance

fl is different between ray trajectories, yielding to aberrations at the focus. Further-

more, equation (A.24) gives a γ smaller than one so that the focal distance π/2δγ

in equation (A.23) is enlarged in comparison to the one π/2δ in equation (A.18).

Figure A.5: Ray trajectories in a planer GRIN lens featuring the general hyperbolic
secant profile as in equation (A.19) with n0 = 1.116, ns = 1, and δ = 0.065−1. Circles
lines stand for results derived from the ABCD law while solid lines are for results from
the k vector based method.

Figure A.6: Profile of γ against y-axis for the planer GRIN lens with a general hyperbolic
secant profile as in equation (A.19) with n0 = 1.116, ns = 1, and δ = 0.065−1.

Figure A.5 shows the path of rays in a planer GRIN lens featuring the general

hyperbolic secant profile as in equation (A.19) with n0 = 1.116, ns = 1, and δ =

0.065−1. The ABCD law (circles) and the k vector based method (solid lines)

have produced the same results. We observe a focus with geometrical aberrations
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located at a distance about 50a, almost two times of the focal distance 25a in figure

A.4. This is understandable if we review the profile of γ against y-axis as shown

in figure A.6. The γ takes its value close 0.5 which can double the focal distance

π/2δ according to equation (A.23). Meanwhile, γ decreases gradually from the

symmetric axis of lens to the lateral sides. As a result, ray trajectories beginning

from the lateral sides are crossed to the symmetric axis at a distance larger than

those from the center axis of lens.
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