Abstract

This thesis addresses the estimation and controller design for continuous-time nonlinear systems. The methodologies developed are based on the Takagi-Sugeno (TS) representation of the nonlinear model via the sector nonlinearity approach. All strategies intend to get more relaxed conditions.

The results presented for controller design are split in two parts. The first part is about standard TS models under control schemes based on: 1) a quadratic Lyapunov function (QLF); 2) a fuzzy Lyapunov function (FLF); 3) a line-integral Lyapunov functions (LILF); 4) a novel non-quadratic Lyapunov functional (NQLF). The second part concerns to TS descriptor models. Two strategies are proposed: 1) within the quadratic framework, conditions based on a general control law and some matrix transformations; 2) an extension to the nonquadratic approach based on a line-integral Lyapunov function (LILF) using non-PDC control law schemes and the Finsler's Lemma; this strategy offers parameter-dependent linear matrix inequality (LMI) conditions instead of bilinear matrix inequality (BMI) constraints for second-order systems.

On the other hand, the problem of the state estimation for nonlinear systems via TS models is also addressed considering: a) the particular case where premise vectors are based on measured variables and b) the general case where premise vectors can be based on unmeasured variables. Several examples have been included to illustrate the applicability of the obtained results. 7

Résumé

Cette thèse aborde l'estimation et la conception de commande de systèmes non linéaires à temps continu. Les méthodologies développées sont basées sur la représentation Takagi-Sugeno (TS) du modèle non linéaire par l'approche du secteur non-linéarité. Toutes les stratégies ont l'intention d'obtenir des conditions plus détendu.

Les résultats présentés pour la conception de commande sont divisés en deux parties. La première partie est environ sur les modèles TS standard au titre des schémas de commande basés sur: 1) une fonction de Lyapunov quadratique (QLF); 2) une fonction de Lyapunov floue (FLF); 3) une fonction de Lyapunov intégrale de ligne (LILF); 4) un nouveau fonctionnelle de Lyapunov non-quadratique (NQLF). La deuxième partie concerne des modèles TS descripteurs. Deux stratégies sont proposées: 1) dans le cadre quadratique, des conditions basées sur une loi de commande général et quelques transformations de matrices;

2) une extension de l'approche non quadratique basée sur LILF utilisant un schéma de commande non-PDC et le lemme du Finsler; cette stratégie offre conditions sur la forme d'inégalité matricielles linéaires (LMI) dépendant des paramètres au lieu des contraintes sur la forme d'inégalité matricielles bilinéaires (BMI) pour les systèmes de second ordre. D'autre part, le problème de l'estimation de l'état pour les systèmes non linéaires via modèles TS est également abordé considérant: a) le cas particulier où les vecteurs prémisses sont basées sur les variables mesurées et b) le cas général où les vecteurs prémisse peuvent être basés sur des variables non mesurées. Plusieurs exemples ont été inclus pour illustrer l'applicabilité des résultats obtenus.
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. Context of the thesis

In the last decades a lot of works about nonlinear analysis and design have been conducted on the basis of exact polytopic representation of nonlinear systems also known as Takagi-Sugeno (TS) models [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF]. A TS representation can be obtained from a nonlinear model via linearization in several points of interest [START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF], or via the sector nonlinearity approach, first proposed in [START_REF] Kawamoto | An approach to stability analysis of second order fuzzy systems[END_REF] and extended by [START_REF] Ohtake | Fuzzy modeling via sector nonlinearity concept[END_REF][START_REF] Taniguchi | Model construction, rule reduction, and robust compensation for generalized form of Takagi-Sugeno fuzzy systems[END_REF]. Loss of information is the main problem of linearization techniques, which give only an approximation of the nonlinear system, a problem that does not appear in the sector nonlinearity approach. Therefore, the sector nonlinearity approach has been usually applied in order to get a TS model. A TS model is composed of a set of linear models blended together with memberships functions (MFs) which contain the model nonlinearities and hold the convex sum property [START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF]. There are many reasons behind the increasing interest on stability analysis and controller/observer design of nonlinear systems via TS models: (a) they can exactly represent a large family of nonlinear models in a compact set of the state space via the sector nonlinearity approach; (b) its convex structure based on membership functions (MFs) allows linear methods to be "easily" mimicked via the direct Lyapunov method [START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF]; (c) appropriate manipulations altogether with parallel distributed compensation (PDC) as a control law usually lead to conditions in the form of linear matrix inequalities (LMIs), which are efficiently solved via convex optimization techniques [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF][START_REF] Scherer | Linear matrix inequalities in control[END_REF].

The TS-LMI framework was originally based on quadratic Lyapunov functions (QLF) such that several results on stability analysis as well as controller/observer design have been widely addressed [START_REF] Tanaka | Stability analysis and design of fuzzy control systems[END_REF][START_REF] Wang | An approach to fuzzy control of nonlinear systems: Stability and design issues[END_REF][START_REF] Tanaka | Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs[END_REF][START_REF] Patton | Fuzzy observers for nonlinear dynamic systems fault diagnosis[END_REF][START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF][START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Ichalal | Design of observers for Takagi-Sugeno systems with immeasurable premise variables: an L2 approach[END_REF]Z. Lendek et al., 2010b). Nevertheless, LMI conditions thus derived, though simple, were only sufficient, which means that conservativeness is introduced in the solutions, i.e., if the LMI conditions are unfeasible it does not imply that the original problem has no solution. Three independent sources of conservativeness have been identified: (1) the way MFs are removed from nested convex sums to obtain sufficient LMI conditions, (2) the type of Lyapunov function, and (3) the non-uniqueness of the TS model construction. Therefore, a huge effort has been devoted to reach necessity or, at least, relax sufficiency in order to cast a larger family of problems into the TS-LMI framework [START_REF] Sala | Perspectives of fuzzy systems and control[END_REF][START_REF] Feng | H∞ controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions and bilinear matrix inequalities[END_REF]. A lot of results are available that cover partially one or several of these three problems.

For (1), obtaining LMI expressions from nested convex sums has been tackled via matrix properties [START_REF] Tanaka | Stability analysis and design of fuzzy control systems[END_REF]Tuan et al., 2001), via parameter-dependent asymptotically sufficient and necessary conditions [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF], using triangulation approach to go to asymptotically exact conditions [START_REF] Kruszewski | A triangulation approach to asymptotically exact conditions for fuzzy summations[END_REF], and adding slack variables [START_REF] Kim | New approaches to relaxed quadratic stability condition of fuzzy control systems[END_REF][START_REF] Liu | Approaches to quadratic stability conditions and H∞ control designs for TS fuzzy systems[END_REF].

For (2), an important literature is now available that exploit the use of more general Lyapunov function such as piecewise (PWLF) [START_REF] Johansson | Piecewise quadratic stability of fuzzy systems[END_REF][START_REF] Feng | H∞ controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions and bilinear matrix inequalities[END_REF][START_REF] Campos | New stability conditions based on piecewise fuzzy Lyapunov functions and tensor product transformations[END_REF], fuzzy (FLF, also known as non-quadratic or basis-dependent in the literature) [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF][START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF], and line-integral (LILF) [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF]Mozelli et al., 2009). These general Lyapunov functions share the same MFs than the TS model. The use of PWLF have proved to be particularly difficult to deal with since piecewise generalizations of the quadratic Lyapunov function require extra conditions to guarantee its continuity [START_REF] Johansson | Piecewise quadratic stability of fuzzy systems[END_REF]). In the continuous-time framework, fuzzy Lyapunov functions have not met the development of the discrete-time domain [START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF]Guerra et al., 2009;Ding, 2010;[START_REF] Zou | des modèles TS: (a) ils peuvent représenter exactement une grande famille de modèles non linéaires dans un ensemble compact de l'espace de l'Etat par l'intermédiaire de l'approche du secteur non-linéarité; (b) sa structure convexe sur la base de fonctions d'appartenance permet aux méthodes linéaires d'être «facilement» imité par la méthode directe de Lyapunov[END_REF]. This asymmetry is due to the fact that the time derivatives of the MFs appear in the analysis and cannot be easily cast as a convex problem; moreover, it leads to local analysis which may create algebraic loops when controller design is concerned (Blanco et al., 2001). Among works on local nonquadratic approach, two directions can be found: those which simply assume a priori known bounds on the time-derivatives of the MFs [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF][START_REF] Bernal | Nonquadratic stabilization of continuous-time systems in the Takagi-Sugeno form[END_REF]Mozelli et al., 2009;[START_REF] Zhang | Relaxed stability conditions for continuous-time T-S fuzzy-control systems via augmented multi-indexed matrix approach[END_REF]Lee et al., 2012;[START_REF] Yoneyama | Nonlinear control design based on generalized Takagi-Sugeno fuzzy systems[END_REF], and those which rewrite the time-derivative of the MFs as to obtain more structured bounds (Guerra and Bernal, 2009;Bernal and Guerra, 2010;[START_REF] Pan | Non-quadratic Stabilization of Continuous T-S Fuzzy Models: LMI Solution for a Local Approach[END_REF][START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF][START_REF] Lee | Relaxed LMI Conditions for Local Stability and Local Stabilization of Continuous-Time Takagi-Sugeno Fuzzy Systems[END_REF]. Should FLFs be used to obtain global conditions, line-integral alternatives can be considered. In the seminal work [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF], the authors showed how line-integral Lyapunov functions can be used to avoid the time derivatives of the MFs at the price of imposing restrictive structures to guarantee the line integral to be path-independent; moreover, this approach leads to bilinear matrix inequalities (BMIs) for controller design; therefore, they are not optimally solvable because existing methods may lead to local minima.

For (3) other convex models besides the TS ones have been used: polynomial [START_REF] Tanaka | Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach[END_REF], [START_REF] Sala | On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems[END_REF] and descriptor [START_REF] Taniguchi | Fuzzy descriptor systems: stability analysis and design via LMIs[END_REF]. The descriptor structure appeared in [START_REF] Luenberger | Dynamic equations in descriptor form[END_REF] with the main interest of describing nonlinear families of systems in a more natural way than the standard state-space one, usually mechanical systems [START_REF] Luenberger | Dynamic equations in descriptor form[END_REF][START_REF] Dai | Singular control systems[END_REF]. TS descriptor model is similar to the standard one, the difference is that the descriptor has generally two families of MFs, one for the left-side and the other for the right-side. In [START_REF] Taniguchi | Fuzzy descriptor systems: stability analysis and design via LMIs[END_REF], stability and stabilization of fuzzy descriptor systems have been presented under a quadratic scheme; this work takes advantage of the descriptor structure to reduce the number of LMI constraints, thus reducing the computational burden. Better results for stabilization as well as robust H ∞ controller design have been presented in (Guerra et al., 2007) and [START_REF] Bouarar | Robust fuzzy Lyapunov stabilization for uncertain and disturbed Takagi-Sugeno descriptors[END_REF] respectively.

The problem of state estimation for dynamical systems is one of the main topics in control theory and has therefore been plentifully treated in the literature; its importance clearly arises from the fact that the control law often depends on state variables which may not be available due to the sensors high cost, inexistence, or impracticality. State estimation both for linear and nonlinear systems have been proposed long ago [START_REF] Luenberger | An introduction to observers[END_REF][START_REF] Thau | Observing the state of non-linear dynamic systems †[END_REF]; more recent works on the subject are: techniques based on sliding mode [START_REF] Efimov | Global sliding-mode observer with adjusted gains for locally Lipschitz systems[END_REF], nonlinear high-gain approach [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF][START_REF] Prasov | A nonlinear high-gain observer for systems with measurement noise in a feedback control framework[END_REF], time-varying gain approach [START_REF] Farza | Continuousdiscrete time observers for a class of MIMO nonlinear systems[END_REF], and extensions considering unknown inputs are also available [START_REF] Barbot | An observation algorithm for nonlinear systems with unknown inputs[END_REF][START_REF] Bejarano | Observation of Nonlinear Differential-Algebraic Systems with Unknown Inputs[END_REF]. Observer design for TS models can be separated in two classes: the first one considers that the MFs depend on measured variables [START_REF] Tanaka | Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs[END_REF][START_REF] Patton | Fuzzy observers for nonlinear dynamic systems fault diagnosis[END_REF][START_REF] Teixeira | On relaxed LMI-based designs for fuzzy regulators and fuzzy observers[END_REF][START_REF] Akhenak | Design of sliding mode unknown input observer for uncertain Takagi-Sugeno model[END_REF]Lendek et al., 2010a); the second one assumes that the MFs are also formed by unmeasured variables [START_REF] Bergsten | Fuzzy observers, in: Fuzzy Systems[END_REF][START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Ichalal | Conception d'observateurs pour un modèle de Takagi-Sugeno à variables de décision non mesurables[END_REF][START_REF] Yoneyama | H∞ filtering for fuzzy systems with immeasurable premise variables: an uncertain system approach[END_REF]Lendek et al., 2010a;[START_REF] Ichalal | On observer design for nonlinear Takagi-Sugeno systems with unmeasurable premise variable[END_REF][START_REF] Ichalal | Observer design and fault tolerant control of takagi-sugeno nonlinear systems with unmeasurable premise variables[END_REF]. For the first class, the results obtained in the quadratic framework resemble the characteristic duality observer/controller of linear systems. For the second class, one way to deal with this class of unmeasured variables is to consider extra conditions using classically Lipschitz constants as in [START_REF] Ichalal | Conception d'observateurs pour un modèle de Takagi-Sugeno à variables de décision non mesurables[END_REF]. Another way is to use the Differential Mean Value Theorem (DMVT) as in [START_REF] Ichalal | On observer design for nonlinear Takagi-Sugeno systems with unmeasurable premise variable[END_REF][START_REF] Ichalal | Observer design and fault tolerant control of takagi-sugeno nonlinear systems with unmeasurable premise variables[END_REF].

It is difficult to extract what are the real important results; there is a need to converge towards the "useful" methods. The ideas followed by this thesis, whatever they are (expanding the Lyapunov function, the control law, the nested sums, the state vector), try to reduce the conservatism of former results. For instance, why is it relevant to introduce control laws whose complexity may lead to less conservative conditions if there are already asymptotic necessary and sufficient (ANS) conditions for quadratic PDC-based controller design? The reason lies on the fact that ANS conditions have been obtained only for convex summations [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF][START_REF] Kruszewski | A triangulation approach to asymptotically exact conditions for fuzzy summations[END_REF] whose computational burden reaches very quickly a prohibitive size for current solvers; thus, approaches preserving asymptotic characteristics while reaching solutions where ANS conditions cannot, are worth exploring. The following example illustrates the limitations of the ANS methods. A TS representation    (more details in chapter 2). This example is constructed as follows [START_REF] Delmotte | Continuous Takagi-Sugeno's models: reduction of the number of LMI conditions in various fuzzy control design technics[END_REF]: consider a TS representation with 2 models Thus, the quadratic stabilizability via a PDC control law is guaranteed independently of the number of models r . Stabilization conditions in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF]) use Polya's property [START_REF] Scherer | LMI relaxations in robust control[END_REF] 

∑∑ ∑

, (1.3) where d represents the complexity parameter for (1.3). Note that if there exists a solution to the initial problem there must exist a sufficiently large value of d such that the problem (1.3) is feasible. Theorem 5 of [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF]) also adds some extra variables relaxing the conditions for a fixed value of d . Despite its simplicity, conditions in Theorem 5 of [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] with 10 r = and 2 d = , lead LMI solvers to failure. In this case, the number of LMI conditions and scalar decision variables are 41123 and 772, respectively. This example shows that, sometimes, very simple problems cannot be solved even if ANS conditions are available. Thus, it is important to explore alternatives that provide more relaxed conditions, for instance, non-quadratic Lyapunov functions.

Scope and objectives

This thesis proposes new schemes of control and observation for TS representations of continuous-time nonlinear systems such that more relaxed conditions are achieved. The problems considered are:  State feedback controller design.

 Observer design.

The strategies are applied for TS models in a standard or a descriptor form. All developments are based on the Lyapunov's direct method such that LMI conditions (or parameterized ones) are obtained.

Structure of the thesis

The thesis is organized as follows:

Chapter 2 presents the basis of TS modeling for continuous-time nonlinear systems as well as the main results in the literature about stability analysis, controller/observer design for this sort of TS models under the LMI framework. Additionally, advantages of using descriptor TS representations instead of standard ones are provided.

Chapter 3 provides some strategies on state feedback controller design both for continuous-time standard and descriptor TS models such that less conservative conditions with respect to previous works are achieved. These strategies are based on well-known matrix transformations as well as a variety of Lyapunov functions. Also, a new Lyapunov functional is proposed. In addition, the disturbance rejection problem is addressed.

Chapter 4 considers observer design for continuous-time TS models. Two lines are explored: the particular case where premise vectors are based on measured variables and the general case where some premise variables can be unmeasured. The obtained conditions present better results than those already available in the literature.

Chapter 5 concludes this thesis with final remarks and some future research directions.

Publications

The main results of my research have been reported or on track to be in the following publications:

International journal publications: CHAPTER 2. Preliminaries on Takagi-Sugeno Models

Introduction

This chapter presents the basis of modeling under a convex structure of nonlinear systems (TS model) as well as the main results about stability analysis and controller/observer design for this sort of models under quadratic and non-quadratic frameworks. Also, some results on TS models in a descriptor form are provided highlighting the advantages of this scheme when compared to the standard modeling. At the end of chapter some problems to be addressed along this thesis are pointed out.

Takagi-Sugeno Models

The general form of a nonlinear system is given by

        1 , x tf x t u t   (2.1)         2 , yt f xt ut  , (2.2) 
where 

x n xt  represents the system state vector,   u n ut  the input vector,  y n yt 

the measured output vector, and

 i f  ,   1, 2 i 
are sufficiently smooth nonlinear functions.

The state and output equations are defined by (2.1) and (2.2), respectively.

We reduce the family of nonlinear system (2.1)-(2.2) to the affine-in control model: A nonlinear system can be expressed by the so-called Takagi-Sugeno (TS) model presented in [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF]. A TS model is viewed as a convex blending of linear models via membership functions (MFs). The TS modeling is defined by "IF … THEN" rules which represent local linear input-output relations of a nonlinear system.

             x t Axt xt Bxt ut   (2.3)              yt C xt xt Dxt ut , (2.4 
The i R fuzzy rules of the TS model are:

IF  1 zt is 1 i  and   2 zt is 2 i  and    p zt is ip  THEN       ii x tA x tB u t   (2.5)       ii yt Cxt D ut , (2.6) 
where i R ,   are the premise variables which may be functions of the states, external disturbances, and/or time. In this thesis, the premise variables are functions of the states (Remark 2.1).

Then, a TS model of a nonlinear system (2.3)- (2.4) can be represented as: . Therefore, only the affine-in control model is considered in this thesis.

          1 r ii i i x th z x t A x t B u t     (2.7)           1 r ii i i yt h zxt Cxt D ut    , ( 2 
If the TS model has a convex sum of nonlinearities in the left-hand side, it may be represented more conveniently via a descriptor TS model [START_REF] Taniguchi | Fuzzy descriptor systems: stability analysis and design via LMIs[END_REF]: see section 2.8 for details. Fuzzy polynomial systems preserve the aforementioned structure, but matrices

 i A x ,  i Bx,  i
Cx, and  i D x are matrices of polynomials; consequently, membership functions might be involved polynomials instead of constants altogether nonlinearities [START_REF] Sala | On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems[END_REF].

Notation: In the following, for a symmetric matrix M , 0 M  (resp. 0 M  ) means that M is positive definite (resp. negative definite); an asterisk    for inline expressions will denote the transpose of the terms on its left-hand side; for matrix expressions, an asterisk will denote the transpose of its symmetric block-entry. When convenient, arguments will be omitted.

The shorthand notation for expressions involving convex sums in Table 2.1 will be adopted whenever considered appropriate. 

Obtaining Takagi-Sugeno Models

The TS representation can be obtained via: 1) linearization in several points of the nonlinear system [START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF], or 2) sector nonlinearity approach, first proposed in [START_REF] Kawamoto | An approach to stability analysis of second order fuzzy systems[END_REF] and extended by [START_REF] Ohtake | Fuzzy modeling via sector nonlinearity concept[END_REF][START_REF] Taniguchi | Model construction, rule reduction, and robust compensation for generalized form of Takagi-Sugeno fuzzy systems[END_REF]. Loss of information is the main problem of linearization techniques, a problem that does not appear in the sector nonlinearity approach since it leads to algebraically equivalent representations.

Linearization methods as well as polynomial representations are out of the scope of this thesis.

The sector nonlinearity approach consists in the following steps:

1. Identify the nonlinearities    , j jj zx        where        ,1 , 2 , , j zx j p    is the set of state-dependent non-constant entries in functions  A x ,  B x ,   Cx,



Dx for (2.3)-(2.4), j  and j  are the minimum and maximum bound of

    j zx  ,
respectively, in a predefined compact set x  that contains the origin.

2. Construct the weighting functions (WFs) in the following form:

    01 0 ,1 jj jj j jj z zz z          ,   1, 2, , jp   .
(2.9)

3. Set the membership functions (MFs) as follows:

    1 12 12 2 1 p j p p j ii j ii i j hh z           ,   1, 2, , 2 p i   ,   0,1 j i  .
(2.10) 4. Obtain matrices at the polytope vertex  

1 i h   :     1 i i h AA z    ,    1 i i h BB z    ,     1 i i h CC z    ,     1 i i h DD z    ,   1, 2, , ir   with 2 p r    .
The MFs satisfy the convex sum property in x  due to the way they are constructed, i.e. 

   1 r ii ih h i x hz A x B u A x B u       (2.11)    1 r ii ih h i y hzC xD u C xD u      .
(2.12) Remark 2.2. Notice that the TS representation of a nonlinear system via the sector nonlinearity approach is not unique and it is based on the selection of the premise variables.

Also, the number of linear models depends on the number of nonlinearities p and increases in an exponential way; hence the importance of selecting the minimum number of nonlinearities as premise variables such that a TS representation remains numerically useful for design purposes which might imply not optimal conditions. Remark 2.3. Generally a TS model is a local representation of the nonlinear system in the compact set of the state space

  : x x xc  
. However, a global model can be obtained if the compact set represents all the state space:

x n

x    .

The following example shows how the sector nonlinearity approach is used to obtain a TS representation of a nonlinear model. Moreover, an alternative representation of the same model is presented.

Example 2.1. Consider the following nonlinear model:

     11 2 1 2 21 2 2 1 sin 32 s i n , xx x x x xx x x u        (2.13)
which can be rewritten as: 

         1 2 1 2 0 1s i n 2s i n 3 Axt Bxt x x xu x x                         , ( 2 
  2 2 ,1 x xx     ; then   1 1, 1   and   2 0,1   .
2. The construction of WFs yields:

   1 1 0 1s i n 2 z z    ;    1 1 1 1s i n 2 z z    ;  2 02 1 zz   ;   1 12 zz   .
3. The MFs obtained are:

      12 10 0 hz z z   ;       12 21 0 hz z z   ;      12 30 1 hz z z   ;       12 41 1 hz z z   .
4. The methodology leads to the following linear matrices ( 4 r  ):

1 11 03 A        , 2 11 03 A          , 3 11 13 A           , 4 11 13 A          , 13 0 1 BB        , 24 0 3 BB        .
Finally, the nonlinear system (2.13) is exactly represented by the TS model (2.11) in the compact set of the state space x  . Now, in order to show the non-uniqueness of the TS model, if (2.13) is rewritten as: .15) Note that in this case, it is necessary to "know" something about 1

   1 1 12 0 1s i n 2s i n 03 x x xu x xx               . ( 2 
x , for example using either

  2 12
,, 1

x xxx       or directly   2 12 , x xx x     
. Even if not equivalent using either the first or the second compact set x  will give the same matrices. Following the sector nonlinearity approach, an alternative of TS model of the form (2.11) can be obtained, where:

1 11 03 A        , 2 11 03 A         , 3 11 03 A           , 4 11 03 A        , 13 0 1 BB     , 24 0 3 BB     , 11 sin( ) x   , 21 2 x x   , 11 zx  , 21 2 zx x  ,   1 1, 1   ,   2 ,    ,    1 1 0 1s i n 2 z z    ,    1 1 1 1s i n 2 z z    ,  2 2 0 2 z z      ,  1 2 1 2 z z      ,       12 10 0 hz z z   ,     12 21 1 0 2 hz z z   ,       12 30 1 hz z z   ,       12 41 1 hz z z   .
In this example, both representations are local with respect to the nonlinear system because either " 2

x " or " 12 x x " are bounded.♦

Lyapunov functions

The stability analysis and control design of TS models are based on the direct Lyapunov method (DLM) [START_REF] Tanaka | Stability analysis and design of fuzzy control systems[END_REF], which requires a Lyapunov function candidate (normally quadratic) to be proposed in order to find sufficient conditions to ensure the system trajectories to be asymptotically driven to the origin. Details about Lyapunov stability are given in Appendix A whereas this section analyzes several structures of Lyapunov function candidates that have been proposed in the literature in order to find conditions such that stability/stabilization of TS models is guaranteed. Without loss of generality, in the rest of this thesis, the considered equilibrium point for stability is supposed to be at 0 x = .

Quadratic Lyapunov function

The most popular is the quadratic Lyapunov function (QLF) which has the following form: However, only sufficient conditions are derived when a common QLF is used to solve the stability/stabilization problem, which means that conservativeness is introduced in the solutions. To tackle this inconvenience, new structures for the Lyapunov function candidate have been proposed; for instance: fuzzy (also known as non-quadratic) [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF][START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF], line-integral [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF]Mozelli et al., 2009), piecewise [START_REF] Johansson | Piecewise quadratic stability of fuzzy systems[END_REF][START_REF] Feng | H∞ controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions and bilinear matrix inequalities[END_REF][START_REF] Campos | New stability conditions based on piecewise fuzzy Lyapunov functions and tensor product transformations[END_REF], and polynomial [START_REF] Prajna | Nonlinear control synthesis by sum of squares optimization: A Lyapunov-based approach[END_REF]. Piecewise and polynomial Lyapunov functions are not considered in this thesis.

  T Vx xP x  , (2.16) or   1 T Vx xPx   , ( 2 

Fuzzy Lyapunov function

The fuzzy Lyapunov function (FLF) is given by:   

Line-Integral Lyapunov function

The line-integral Lyapunov function (LILF) candidate has the next structure [START_REF] Khalil | Nonlinear systems[END_REF]:

      0, 2 x Vx d      F , ( 2.20) 
where   0, x  is any path from the origin to the current state x ,

x n    is a dummy vector for the integral,

x n d   is an infinitesimal displacement vector.

In order to have (2.20) well defined, integral part has to be path independent, i.e.,    F has to be the gradient of a continuous positive function of x ; it is satisfied through the conditions in the following lemma, more details in [START_REF] Khalil | Nonlinear systems[END_REF].

Lemma 2.1. (path-independency): Let     12 ,, , x T n x xx x       FF F F . A necessary
and sufficient condition for 

Vx to be a path-independent function is

    j i ji x x x x     F F , (2.21) for   ,1 , 2 , , x ij n   .
Proof: The condition above is the condition for a line-integral to be path-independent [START_REF] Khalil | Nonlinear systems[END_REF]. A special structure on  

x F has been proposed in [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF]) such as the path-independency condition is satisfied: 

     1 r ii i x hx P x Pxx        FD , ( 2 
                        D ,    1 x ij n ij j j hx x      where   ij jj x  
are the WFs, and

  0 T ii PP   DD .
Despite the fact that this structure avoids the appearance of time derivatives of the MFs leading to global conditions to the problem of stability/stabilization for TS models within a compact set x  , the special structure on the MFs (  

1 11 i x   ,   2 22 i x   ,…,   in x xx nn x  
) cannot be easily satisfied; for instance, consider the following nonlinear model: It is clear that the MFs depend on both states because of the term " 12 sin x x "; therefore, the special structure above cannot be satisfied.

Stability Analysis of Takagi-Sugeno Models

Stability analysis of TS models consists in deriving sufficient conditions to guarantee the stability of a nonlinear system in the TS form; these conditions are preferably written as linear matrix inequalities (LMI) because they are efficiently solved via convex optimization techniques [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF][START_REF] Scherer | Linear matrix inequalities in control[END_REF]; see Appendix B for more details on LMI problems as well as some properties. Expressing conditions in terms of LMIs is not a trivial task. In some approaches, multiple convex sums appear; then, in order to obtain LMI conditions from multiple-summation negativity problem, different relaxations have been developed which help to drop off the MFs from nested convex sums. All relaxations considered in this thesis are presented in Appendix C.

Some works have been developed in this direction. These works can be separated depending on the Lyapunov function they are based on: quadratic [START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF] and non-quadratic (Blanco et al., 2001;[START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF][START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF]Guerra and Bernal, 2009;Mozelli et al., 2009;Bernal and Guerra, 2010). Some recalls about them are given below.

Quadratic Stability of TS Models

Consider the TS model (2.11) without inputs ( 0 u = ), that writes: .24) and taking into account the QLF as in (2.16)

 1 r iih i x hzA x A x     , ( 2 
, condition   0 Vx  is satisfied if:    1 0 r T ii i i hz P A A P     . (2.25)
The following result has been presented in [START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF] and it provides conditions to guarantee stability of the origin in the TS model (2.24).

Theorem 2.  

1 1 10 1 2 z hz z    ,   1 1 21 1 2 z hz z    .
Conditions (2.26) fail to find a solution for this problem. However, it does not imply that the nonlinear system is not stable; consider the same nonlinear model (2.27) can be expressed as:

2 2 21 0.5 x x x           , (2.29) 
which can be represented as a TS model (2.24) in the same compact set   

P        .♦
The following section describes alternatives to reduce the conservativeness of quadratic solutions by using different non-quadratic Lyapunov functions for stability analysis of TS models.

Non-Quadratic Stability of TS Models

Consider the FLF (2.18). Its time-derivative along the trajectories of the TS model (2.24) is: A first approach for dealing with this term was presented in [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF], using a direct bound on the time derivatives of MFs in the following way:

    TT hh hh h Vx x P A AP Px     . ( 2 
1 r kk h k PP      ,   kk hz    . (2.33) Now, considering that  1 0 r k k hz     , z  , (2.34) 
can be written as   

k   ,   1, 2, , 1 kr   such that: 0 T ii PP  ,   1, 2, , ir   (2.36) kr PP  ,   1, 2, , 1 kr    (2.37)         1 2 1 1 0, , 1, 2, , , 2 r TT ji i j i j ji k k r k PA AP P A AP P P i j r i j            . (2.38)
The approaches for non-quadratic stability presented so far try, in a sense, to give a "global" stability result within a compact set x  for nonlinear systems in a TS form.

Unfortunately, global stability cannot be achieved for many nonlinear systems. The next proposal, presented in (Guerra and Bernal, 2009), is concerned with deriving local stability conditions instead of global ones, an idea which matches nonlinear analysis and design for models that do not admit global solutions [START_REF] Khalil | Nonlinear systems[END_REF].

In (Guerra and Bernal, 2009) the way to deal with h P  is using the MFs' information to find local conditions through the following relation:

      12 0 ,, 11 
k p r ik gi k g i k h ik k w Ph P P z z        , (2.39) with     11 1 ,1 / 2 2 1 1 m o d 2 pk pk p k gi k i i           and     21 ,, 2 pk gi k gi k   ,     
stands for the floor function. They also consider the premise vector as  An alternative has been presented in [START_REF] Sala | Improvements on local non-quadratic stability of Takagi-Sugeno models[END_REF] in order to consider a nonlinear structure in the premise vector  zx instead of a linear one. Then, the term h P  is written as: 

k lk l k w x z     for   1, 2, , kp   ,   1, 2
          2 0, 1, 2, , , 1, 2, , 2 2 0, , 1, 2, , , , 1, 2, 
          2 2 2 0, 1 , 2, , , 1, 2, , 2 2 0, , 1, 2, , , , 1, 2, , 2 , 1 x 
x pn m ii pn mmm ii ij ji ir m ij r i j m r                 (2.47) with          12 ,, 11 

Controller Design of Takagi-Sugeno Models

A control law must be designed such that the closed-loop nonlinear system in a TS form is stable. As in the stability problem, the stabilization conditions are written as linear matrix inequalities (LMI) and different relaxations can be applied.

Several approaches have been presented in order to solve the stabilization problem. These approaches are based on: quadratic Lyapunov function [START_REF] Wang | An approach to fuzzy control of nonlinear systems: Stability and design issues[END_REF][START_REF] Tanaka | Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs[END_REF][START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF] and non-quadratic Lyapunov function [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF][START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF]Mozelli et al., 2009;Bernal et al., 2010;[START_REF] Guerra | Non-quadratic local stabilization for continuous-time Takagi-Sugeno models[END_REF][START_REF] Pan | Non-quadratic Stabilization of Continuous T-S Fuzzy Models: LMI Solution for a Local Approach[END_REF][START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF].

Control law

In order to deal with the stabilization problem there exist different options of statefeedback control laws in the literature. A classical control law is the parallel distributed compensation (PDC), first proposed in [START_REF] Wang | An approach to fuzzy control of nonlinear systems: Stability and design issues[END_REF]. The PDC controller is given by .48) where

 1 r iih i uh z F x F x    , ( 2 
ux nn i F    ,   1, 2, , ir   .
Introducing directly the inverse matrix for quadratic stabilization gives an equivalent form that is more convenient to obtain LMI constraints problems and discuss the extensions of such control laws, i.e.:



11 1 r ii h i uh z F P x F P x     . (2.49)
The main advantage of this controller is that it shares the same MFs of the TS model; thus, the convex structure allows the direct Lyapunov method to be straightforwardly applied to controller synthesis. Moreover, the controller gains can be calculated through linear matrix inequalities (LMIs).

When the PDC control law (2.49) is substituted in the TS model (2.11), the following closed-loop TS model is obtained:

      11 11 rr ij i i j h h h ij x hzh z A B F P x A B F P x        . (2.50)
Another sort of control laws have been stated in [START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF] which are called non-PDC control laws:

  

     1 1 11 1 rr r ij i i j kk h h h h ij k x hzh z A B F h zP x A B F P x                  (2.53)      1 1 11 1 rr r ij i i j k k h h h h ij k x hzh z A B F h zH x A B F H x                  .
(2.54)

Remark 2.9. The control laws (2.51) and (2.52) have been applied to continuous-time TS models in [START_REF] Bernal | Nonquadratic stabilization of continuous-time systems in the Takagi-Sugeno form[END_REF] and [START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF], respectively. 

Quadratic stabilization of TS Models

    2 0, 1, 2, , 0, ( , ) 1, 2, , , , ii ij ji ir i j ri j           (2.58) with TT T ij i i i j j i A PP A B F F B     .
The next result for quadratic stabilization of TS models using the QLF provided in (2.17), the non-PDC control law (2.52), and the well-known Finsler's lemma, has been developed in [START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF].

Theorem 2.6. The TS model (2.11) 

   
, is adequate to avoid an exhaustive linear search of feasible solutions.

Remark 2.11. An important feature of TS-LMI framework is the fact that specifications and/or constraints such as decay rate, H ∞ disturbance attenuation, constraint on the input, constraint on the output, etc., can be introduced in a natural way (Zs. Lendek et al., 2010;[START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF].

Non-quadratic stabilization of TS Models

Some of these approaches consider the FLF given in (2.18) 

    .
As in stability analysis, different strategies have been developed in order to handle h P  for stabilization; most of them consider bounds on the time-derivatives of MFs ( k h  ), despite the fact that there is no direct extension from stability. These approaches are more questionable for stabilization as, by chain rule, the time derivatives of the MFs can contain the control action to be designed, so the validity region of the obtained controller must be checked a posteriori.

In [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF], BMI conditions are obtained, these conditions are rewritten as LMIs after the well-known completion square technique is applied; naturally, these are conservative results. In [START_REF] Tanaka | A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions[END_REF]) a redundancy descriptor system is used to directly get the design conditions in terms of LMIs; moreover, a significant reduction of computational complexity is achieved. Another alternative was presented in (Mozelli et al., 2009), where slack variables are introduced to provide new degrees of freedom to the problem: parameter-dependent LMI conditions are obtained.

Whatever the approach under consideration, they are all based on the assumption that bounds on the time-derivatives of MFs are known. On the other hand, they still use PDC control laws without taking into account the fuzzy structure of the Lyapunov function. The main drawback of these approaches is the fact that generally all the bounds are dependent on the control law u , which is not possible to know beforehand for controller design. This problem is highlighted with the following example:

Example 2.3. Consider the following nonlinear model: 

  3 x ax x b u    . ( 2 
        12 0 ,, 1 0 k p T hh h h hh h h k gh k g h k k k w AP BF AP BF z P P z           . ( 2 
              2 2 0, 1, 2, , 0 
          .
Results in Theorem 2.8 have been extended using a more complex non-PDC control law, instead of a PDC one, considering an extra term which depends on the time derivative of the MFs. This development leads to less conservative LMI conditions, details in [START_REF] Guerra | Non-quadratic local stabilization for continuous-time Takagi-Sugeno models[END_REF].

Although the approaches presented in (Bernal et al., 2010;[START_REF] Guerra | Non-quadratic local stabilization for continuous-time Takagi-Sugeno models[END_REF], which consider a bound on the control law, overcome the problems presented in [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF][START_REF] Tanaka | A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions[END_REF]Mozelli et al., 2009) about the necessity to know a priori the bounds of time-derivatives of MFs, they need to impose (even by LMIs) a bound on the control law, which constitutes a limitation.

The next result removes the assumption of bounding on the control law as u   and changes the way to introduce the control law in the conditions. Recalling (2.66), which presents the conditions for non-quadratic stabilization:

  0 T hh h h hh h h h AP BF AP BF P      , (2.69) 
where

      12 0 ,, 1 k p k gh k g h k h k k w Pz P P z        .
As in the previous non-quadratic approaches the idea is to derive LMI conditions from (2.69). In [START_REF] Guerra | Some refinements for non quadratic stabilization of continuous TS models[END_REF][START_REF] Pan | Non-quadratic Stabilization of Continuous T-S Fuzzy Models: LMI Solution for a Local Approach[END_REF] the following bound is presented: [START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF] gives LMI conditions via Finsler's lemma.

0 k kk k w z z      , 0 k   . ( 2 
                2 2 , 1,2, , , 1,2, , , 0, 1, 2, 
Another point is that this approach removes the link between controller and Lyapunov function, which reduces conservativeness due to the slack variables introduced in the conditions. In the following theorem the main result of this work is presented.

Theorem 2.10. The TS model (2.11) Other works which achieve global conditions for TS model have been developed in [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF]Mozelli et al., 2009). These approaches are based on line-integral Lyapunov function stated in (2.20). In [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF] 

                       12 ,, 11 2 , 1 , 2 ,,, 1 , 2 ,, , 1 0, , 1, 2, , , 1, 2, , , 0, 1, 2, , , 2 0, ( , ) 1, 2, , , , 1 0, 1, 2, , , 1, 2, , , 2 0, ( , 1 m 
j kj p r d jk gj k g j k jk ii ii ij ji k ii kkk ii ij ji ISj rk p PP P j m r k p ir ij r i j r ir k p ij r                                             2 )1 , 2 ,, , , 1 , 2 , 
                           ,    * T kj j j k ij ij i j HH S A HB F I             , 22 2 k k kx       ,  
    0 10 , 1 30 ,, 3 0, , ii T iii iii T iij iij T ijk ijk PP GG s X GG s X ij GGX i j k              D (2.75) where         1 6 ijk i j k j k k j j i k i k k i k i j i j j i G P A A BF BF P A A BF BF P A A BF BF            ,   iii i i i i GP A B F ,       1 3 iij i i j i j j i j i i i G P A A BF B F P A BF    
x   ,   2 22 i x   ,…,   in x xx nn x  
) which restricts harshly the family of nonlinear systems under consideration; 3) a special structure is necessary to construct the Lyapunov matrices in order to satisfy path independent conditions.

In (Mozelli et al., 2009) an improvement for stabilization problem is presented where the conditions obtained are LMI instead of BMI as in [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF]. However, these new conditions are very restrictive because its special structure which enforces pathindependency of the line integral.

Observer design for Takagi-Sugeno models

The problem of state estimation for dynamical systems is one of the main topics in control theory and has therefore been plentifully treated in the literature; its importance clearly arises from the fact that the control law often depends on state variables which may not be available due to the sensors high cost, inexistence, or impracticality. Observers are also useful for fault detection.

The following extension of the Luenberger observer presented in [START_REF] Luenberger | An introduction to observers[END_REF] is the most popular observer structure for nonlinear systems in a TS form:

        ˆˆ1 1 ˆˆˆ, r ii i i hh h i r ii h i x hz A x B u K y y A x B u K y y yh z C x C x              (2.76)
with ˆx n x   as the estimated state, ˆy n y   as the estimated measured output, ˆp n z   as the estimated premise variable vector, and

yx nn i K    ,   1, 2, , ir  
, being the gains of the observer to be designed.

In observer design, the estimated states converge asymptotically to the original states, this is x

x  , as t . In other words, the dynamics of the estimation error, defined as êxx , must be stable and autonomous, which explains why design conditions are usually aimed to guarantee asymptotic stability of the estimation error.

Several works have been developed within the TS framework; these works can be separated in two classes: the first one considers that the premise vector  zz x  is built with measured variables [START_REF] Tanaka | Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs[END_REF][START_REF] Patton | Fuzzy observers for nonlinear dynamic systems fault diagnosis[END_REF][START_REF] Teixeira | On relaxed LMI-based designs for fuzzy regulators and fuzzy observers[END_REF][START_REF] Akhenak | Design of sliding mode unknown input observer for uncertain Takagi-Sugeno model[END_REF]Z. Lendek et al., 2010); the second one assumes that the premise vector

  ẑz x 
is also formed by unmeasured variables [START_REF] Bergsten | Fuzzy observers, in: Fuzzy Systems[END_REF][START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Ichalal | Conception d'observateurs pour un modèle de Takagi-Sugeno à variables de décision non mesurables[END_REF][START_REF] Yoneyama | H∞ filtering for fuzzy systems with immeasurable premise variables: an uncertain system approach[END_REF]Z. Lendek et al., 2010;[START_REF] Ichalal | On observer design for nonlinear Takagi-Sugeno systems with unmeasurable premise variable[END_REF][START_REF] Ichalal | Observer design and fault tolerant control of takagi-sugeno nonlinear systems with unmeasurable premise variables[END_REF].

The main approaches about observer design for TS models are presented below.

Estimation of the state for Takagi-Sugeno models via measured variables

If the premise variables depend on measured variables z , then, the observer structure (2.76) yields:

        11 1 1 ˆˆˆ. r ii i i h h h i r iih i x hzA xB uP Kyy A xB uP Kyy yh z C x C x               (2.77)
As for the control design 1 P  is added, in order both to avoid any change of variable and to be suitable with various extensions. Therefore, the estimation error dynamics, êxx    , is described as: (2.79)

  1 hh h eAP K C e    . ( 2 
The condition  0

Ve  is satisfied if:

0 TT T hh hh h h PA K C A P C K    .
(2.80)

The next theorem has been presented in [START_REF] Tanaka | Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs[END_REF] [START_REF] Bergsten | Fuzzy observers, in: Fuzzy Systems[END_REF][START_REF] Ichalal | Conception d'observateurs pour un modèle de Takagi-Sugeno à variables de décision non mesurables[END_REF]. The following result comes from [START_REF] Bergsten | Fuzzy observers, in: Fuzzy Systems[END_REF]. .87) An alternative to deal with the problem has been presented in [START_REF] Ichalal | Conception d'observateurs pour un modèle de Takagi-Sugeno à variables de décision non mesurables[END_REF]; in it, the following assumptions are made:

  2 0, 1, 2, , 0, TT T ii i i PA K C A P C K Q i r QI P PI              (2.86) assuming that:       1 r ii i i i hx hx A x B u e      . ( 2 
1.

The matrices are calculated as: 0

1 1 r i i AA r    , 0 ii A AA   .

2.

The MFs are Lipschitz:

    îi i hx hx Ne .
(2.88)

    ˆîi i hxx hxx Me  .
(2.89)

3.

The input u is bounded: In [START_REF] Ichalal | State estimation of Takagi-Sugeno systems with unmeasurable premise variables[END_REF], an alternative to the previous approach based on Lipschitz constants is presented as well as an extension to disturbance rejection. On the other hand, an approach based on 2  -gain has been developed in [START_REF] Ichalal | Design of observers for Takagi-Sugeno systems with immeasurable premise variables: an L2 approach[END_REF] ; the approach in [START_REF] Ichalal | On observer design for nonlinear Takagi-Sugeno systems with unmeasurable premise variable[END_REF][START_REF] Ichalal | Observer design and fault tolerant control of takagi-sugeno nonlinear systems with unmeasurable premise variables[END_REF] follows this direction. Both the DMVT and the sector nonlinearity approach are used in order to get LMI conditions; details can be found in [START_REF] Ichalal | On observer design for nonlinear Takagi-Sugeno systems with unmeasurable premise variable[END_REF].

1 u   , 1 0   . Theorem 

Asymptotically necessary and sufficient conditions in fuzzy control.

In many control problems for TS models, multiple (double, triple, and so on) nested convex sums appear. Therefore, in order to obtain LMI conditions from multiple-summation positivity (or negativity) problems, different relaxations have been developed which help dropping off the MFs from these expressions looking for the lowest possible conservativeness while preserving computational treatability. One of the first approaches for double summations has been proposed in [START_REF] Wang | An approach to fuzzy control of nonlinear systems: Stability and design issues[END_REF] which has been enhanced in (Tuan et al., 2001) with an adequate compromise between quality and computational complexity.

Another way to reduce the conservativeness of former approaches consisted on introducing slack variables in the conditions; see [START_REF] Kim | New approaches to relaxed quadratic stability condition of fuzzy control systems[END_REF][START_REF] Liu | Approaches to quadratic stability conditions and H∞ control designs for TS fuzzy systems[END_REF][START_REF] Teixeira | On relaxed LMI-based designs for fuzzy regulators and fuzzy observers[END_REF] and [START_REF] Fang | A new LMI-based approach to relaxed quadratic stabilization of TS fuzzy control systems[END_REF] for double and triple sums, respectively. At last notice that the approaches presented in [START_REF] Kim | New approaches to relaxed quadratic stability condition of fuzzy control systems[END_REF]Tuan et al., 2001;[START_REF] Liu | Approaches to quadratic stability conditions and H∞ control designs for TS fuzzy systems[END_REF][START_REF] Teixeira | On relaxed LMI-based designs for fuzzy regulators and fuzzy observers[END_REF][START_REF] Fang | A new LMI-based approach to relaxed quadratic stabilization of TS fuzzy control systems[END_REF] are included as particular cases of results in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF].

In the latter, based on Polya's theorem, a set of progressively less conservative sufficient conditions for proving positivity of fuzzy summations is provided. The main idea was to derive asymptotically necessary and sufficient (ANS) conditions for summations which are dependent on a complexity parameter d . It is important to point out that it asymptotically solves the sum relaxation problem, but it does neither solve the conservativeness coming from the use of a quadratic Lyapunov function nor from the type of TS model or control law employed. It is also shown in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] that, if parameter d increases to infinity, then conservativeness decreases to zero.

Some recalls about results presented in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] are presented below.

Generally, for control design the following condition arises:

  11 0 rr hh i j ij ij hzh z     , (2.91) with TT T ij i i j i j i A PB F P A F B     , for instance.
Then, conditions derived in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] 

0 q q rr r r ii i j i j ii i j hz h z hz hz            , (2.93)
which represents 1 q  fuzzy summations. Then, LMI conditions are obtained from (2.93) in the following way (relaxation lemma C.4):

      12 1 1 2 1 1 12 1 ,, , , , 0, , , , , , 1, 2, , qq q ij q ii i ij i i i i j ii i ij r           ρ , (2.94) with   12 1
,, , , ,

q ii i ij   ρ
as the set of permutations with repeated elements of indexes 12 1

,, , , ,

q ii i ij   .
Also, in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF], an alternative introducing slack variables in the ANS conditions is proposed, such that for lower values of parameter d less conservative conditions arise respect to the conditions without the use of these decision variables.

Nevertheless, the computational burden increases very quickly to the point where solvers fail, even for simple problems. On the other hand, despite of the fact that the approaches proposed in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] lead to necessary and sufficient conditions, a conservatism remains because of the selection of the Lyapunov function candidate or the particular control law scheme; there is therefore room for improvements.

On the other hand, in [START_REF] Kruszewski | A triangulation approach to asymptotically exact conditions for fuzzy summations[END_REF] ANS conditions for summations are achieved considering a triangulation methodology to decide, in a finite number of steps, whether a given fuzzy control problem is strictly feasible or unfeasible; this approach has been improved in [START_REF] Campos | Using information on membership function shapes in asymptotically exact triangulation approaches[END_REF] due to the fact that the membership function shapes information are introduced in the methodology.

A completely different way to tackle with ANS was used in (Ding, 2010) for discrete-time TS models. The approach is concerned with increasing the complexity of the non-quadratic Lyapunov function via homogeneous polynomial parameter-dependent (HPPD) non-quadratic Lyapunov function. It uses the property that HPDD non-quadratic Lyapunov function approximates asymptotically any smooth Lyapunov function. As said in the introduction these two last approaches have not being developed in this work.

Takagi-Sugeno Models in a Descriptor Form

The descriptor structure appeared in [START_REF] Luenberger | Dynamic equations in descriptor form[END_REF] with the main interest of describing nonlinear families of systems in a more natural way than the standard state-space one. In [START_REF] Dai | Singular control systems[END_REF], some definitions are presented in order to determine the admissibility of the descriptor representation for linear case. Now, let us turn on the nonlinear case.

A nonlinear system affine-in-control in descriptor form is represented by:

       , E xx Axx Bxu yC x xD x u    (2.95)
where

x n

x   represents the system state vector, The sector nonlinearity approach has been applied in [START_REF] Taniguchi | Fuzzy descriptor systems: stability analysis and design via LMIs[END_REF] in order to get a TS representation of the descriptor model (2.95) which gives the next form:

,

vhh hh E xA xB u yC xD u     (2.96)
where l p and r p are the number of nonlinear terms in left and right side, the sums

 1 r hi i i Ah z A    ,  1 r hi i i Bh z B    ,  1 r hi i i Ch z C    ,  1 r hi i i D hzD   
, and The descriptor structure has sometimes real advantages in reducing the number of LMI constraints in contrast with standard TS modeling, thus alleviating the computational burden, as the following example illustrates.

 1 e r vk k k Ev z E    depend on matrices of appropriate dimensions i A , i B , i C , i D ,   1, 2, , ir   , and k E ,   1, 2, , e kr   , 2 
Example 2.4. Consider a descriptor nonlinear model with the following matrices:

    E xx Axx   , (2.97) 
where 

2 1 1 1 1 11 x Ex        
and  

2 21 10 3s i n Ax x x          .
Equation ( 2.97) can be rewritten as a standard TS model using 

1 E x  as follows:   1 () () x tE xA x x t    , (2.98) 
with 

22 1 11 2 2 1 1 11 1 2 11 x x Ex x x          .
The descriptor representation (2.97) gives When stability analysis under quadratic framework is addressed, the number of LMI conditions to be satisfied depends on the number of rules for each case; for this example, it is necessary to satisfy 33 and 257 LMI conditions for descriptor and standard representations, respectively, which shows an important reduction in computational terms if a TS model in the descriptor form is used.♦ Some results concerned with stability and controller/observer design [START_REF] Taniguchi | Fuzzy descriptor systems: stability analysis and design via LMIs[END_REF][START_REF] Taniguchi | Fuzzy descriptor systems and nonlinear model following control[END_REF]Guerra et al., 2004;[START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF] for TS models in a descriptor form have been addressed. The main results in this direction are presented below.

Stability of Descriptor Takagi-Sugeno Models

Consider the descriptor TS model in (2.96) with 0 u  , which can be rewritten through the extended vector

T TT x xx     as:          , hv h hh Ex t A x t B u t y tC x tD u t    (2.99)
with 0 00

I E     , 0 hv hv I A A E      , 0 h h B B        ,   0 hh CC 
, and 0

h h D D     .
Consider a quadratic Lyapunov function candidate:

  TT Vx xEP x  , 0 T EP , (2.100)
where structure of P is selected such that TT E PP E  is satisfied.

Then, the time-derivative of 

Vx is:

 . TT TT TT TT TT TT V x x E Px x E Px x E Px x E P xx P E xx E P x        (2.101)
In order to satisfy TT E PP E  some structures on P have been defined in the literature: 1) with a constant matrix 

        2 0, 1, 2, , , 1, 2, , 2 0, ( , ) 1, 2, , , , 1, 2, 
F ,   1, , j r   ,   1, , e kr   .
When the PDC control law (2.104) is substituted in the state equation (2.99), the following closed-loop descriptor TS model is obtained:

  hv h hv ExAB F x   . ( 2 

.105)

In order to derive LMI conditions, a first result presented in [START_REF] Taniguchi | Fuzzy descriptor systems and nonlinear model following control[END_REF] with the following quadratic Lyapunov function was developed: Following the same path of the stability case, the next conditions guarantee 0

 1 TT Vx xEPx   , 1 0 TT EP P E    , ( 2 
Vx  :

    1 0 T T hv h hv hv h hv PAB F AB F P     . (2.107)
Multiplying the previous expression by T P on the left-hand side and by its transpose P on the right-hand side (the matrix is not symmetric), gives 

       33 13 1 1 1 0 T TT hh h v v v v PP AP BF EP P EP EP           .
(2.109)

A more general structure of P has been proposed in [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF]. If 

        2 0, 1, 2, , , 1, 2, , 2 0, ( , ) 1, 2, , , , 1, 2, 

Concluding Remark

This chapter has provided the main results for a class of nonlinear systems described in a TS form. Several results on stability analysis and controller design under a quadratic and nonquadratic LMI framework have been presented highlighting the principal contributions and drawbacks of these approaches. Also, the state estimation problem for dynamical systems has been treated both for measured and unmeasured premise variables. In addition, descriptor TS model scheme and various proposals about it have been summarized. Some examples were given to clarify the concepts and approaches.

The following problems will be addressed in the next chapters in order to provide some proposal of solution to tackle them:

 Despite of the fact that asymptotically necessary and sufficient (ANS) conditions are provided in the literature, the high demand of computational resources as well as the conservatism associated to the choice of the Lyapunov function candidate or the particular control law scheme are still open problems.  Even with the use of non-quadratic Lyapunov functions to reduce conservativeness of the sufficient conditions because the quadratic scheme, in the continuous-time case arise the necessity of handling the time-derivatives of MFs which difficult to find global conditions to the problem on controller design.  Observer design for TS models under unmeasured premise variables which is not easy to cast as a convex problem.

CHAPTER 3. Controller design for Takagi-Sugeno Models

Introduction

This chapter presents some contributions on state feedback controller design for continuous-time nonlinear systems. The methodologies are based on exact TS representations of the nonlinear setups under consideration; both standard as well as descriptor forms are addressed.

The first part is about standard TS models. The controller design schemes are based on: 1) a quadratic Lyapunov function (QLF) [START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF]; 2) a fuzzy Lyapunov function (FLF) [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF]; 3) a line-integral Lyapunov function (LILF) [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF]; 4) a novel non-quadratic Lyapunov functional (NQLF). Schemes 1) and 2) incorporate a sum relaxation scheme based on multiple convex sums as the one in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF]; in this case the improvements come from matrix transformations such as those in [START_REF] Shaked | Improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty[END_REF], (de [START_REF] De Oliveira | Perspectives in robust control[END_REF], and [START_REF] Peaucelle | A new robust D-stability condition for real convex polytopic uncertainty[END_REF]. Extensions to H performance design are made.

The second part concerns TS descriptor models. Two strategies are proposed: 1) within the quadratic framework, conditions based on a general control law and the matrix transformation in [START_REF] Peaucelle | A new robust D-stability condition for real convex polytopic uncertainty[END_REF]; an extension to H disturbance rejection is presented; 2) an extension to the non-quadratic approach in [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF] for second-order systems, which uses a line-integral Lyapunov function (LILF), a non-PDC control law, and the Finsler's Lemma; this strategy offers parameter-dependent LMI conditions instead of BMI constraints. Improvements are shown via illustrative examples along the chapter.

State feedback controller design for standard TS models

This section presents some schemes to tackle the stabilization problem as well as H disturbance rejection of continuous-time standard TS models. The proposals developed below give more relaxed conditions than former results.

Problem statement

Consider the following continuous-time T-S model with disturbances acting on the state and output equations:

      1 1 , r ii i i h h h i r ii i i h h h i x hz A x B u D w A x B u D w y hzC xJ uG w C xJ uG w                (3.1)
where

x n

x ∈  represents the system state vector, 

x x nn i A × ∈  , x u nn i B × ∈  , yx nn i C × ∈  , x w nn i D × ∈  , yu nn i J × ∈ 
, and

yw nn i G × ∈ 
result from the TS modeling of an associated nonlinear system (for instance, via the sector nonlinearity approach).

Control laws with the following general form will be adopted:

    1 uz z x    , ( 3.2) 
where  

xx nn z     and   x y nn z   
are matrix functions of the premise vector z to be designed in the sequel. Some of the results obtained are based on a procedure that "decouples" the control matrices from the Lyapunov function.

Then, the following closed-loop model arises: and TS-based nonlinear control?

    1 1 . hh h hh h x AB xD w yCJ x G w          (3.

Stabilization via quadratic Lyapunov function

Three results which reduce conservativeness without leaving the quadratic framework are hereby presented: a first one based on a Tustin-like transformation [START_REF] Shaked | Improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty[END_REF], another one exploiting the Finsler's Lemma (de [START_REF] De Oliveira | Perspectives in robust control[END_REF], and a last one using the matrix transformation in [START_REF] Peaucelle | A new robust D-stability condition for real convex polytopic uncertainty[END_REF]. All of them share the characteristics of using slack variables to relax existing conditions as well as being compatible with a control law whose complexity can be increased (up to computational limitations) to obtain progressively less conservative results (Márquez et al., 2013a).

Why is it relevant to introduce control laws whose complexity may lead to less conservative conditions if there are already asymptotic necessary and sufficient (ANS) conditions for quadratic PDC-based controller design? The reason lies on the fact that ANS conditions have been obtained only for convex summations [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] whose computational burden reaches very quickly a prohibitive size for current solvers; thus, approaches preserving asymptotic characteristics while reaching solutions where ANS conditions cannot, are worth exploring. The following example illustrates the limitations of the ANS methods.

Example 3.1: This example is constructed as follows [START_REF] Delmotte | Continuous Takagi-Sugeno's models: reduction of the number of LMI conditions in various fuzzy control design technics[END_REF]: consider a TS representation with 2 models 1 0.5 0 10 . 1

A ⎡⎤ ⎢⎥ = ⎢⎥ ⎣⎦ , 2 0.5 1 10 . 1 A ⎡⎤ - ⎢⎥ = ⎢⎥ - ⎣⎦ , 1 1 2 B ⎡⎤ ⎢⎥ = ⎢⎥ ⎣⎦ , 2 1 3 B ⎡⎤ ⎢⎥ = ⎢⎥ ⎣⎦ , ( 3.4) 
that is proved to be stabilizable via an ordinary PDC control law and a quadratic Lyapunov function. Complexity in the representation can be introduced artificially by adding models inside the original polytope. The matrices thus obtained are equally spaced, i.e.:  

, kk A B  , 1 k k r    with   1, 2, , 2 kr   corresponds to: ( ) 11 2 1 k kk A AA   + =- + , ( ) 
11 2 1 k kk BB B   + =- + . (3.5)
Thus, the quadratic stabilizability via a PDC control law is guaranteed independently of the number of models r . Stabilization conditions in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF]) use Polya's property [START_REF] Scherer | LMI relaxations in robust control[END_REF] introducing extra sums in the initial problem

( ) ( ) 11 0 rr ij i j ij hzh z == < ∑∑ with ( ) ij i i j AP BF  =+ + * , i.e.:    11 1 0 d rr r ii j i j ii j hz hzh z          , ( 3.6) 
where d represents the complexity parameter for (3.6). Note that if there exists a solution to the initial problem there must exist a sufficiently large value of d such that the problem (3.6) is feasible. Theorem 5 of [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF]) also adds some extra variables relaxing the conditions for a fixed value of d . Despite its simplicity, conditions in Theorem 5 of [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] with 10 r  and 2 d  , lead LMI solvers to failure. In this case, the number of LMI conditions and scalar decision variables are 41123 and 772, respectively. This example shows that, sometimes, very simple problems cannot be solved even if ANS conditions are available. ♦

The approaches to be developed will improve over existing ANS conditions since they reduce the computational burden (to help numerical solvers) and include Polya's theorem conditions (3.6) as a particular case (to maintain ANS property) due to the matrix transformations.

Consider the following quadratic Lyapunov function (QLF) candidate with 0

T PP  :   1 T Vx xPx   . (3.7) Condition   0 Vx  is satisfied if 11 0 TT xP x xP x     . (3.8)
The notation for " q" multiple nested convex sums, given in Table 2.1, will be used in the sequel; i.e.:

  

12 1 2 12 11 1 qq q q rr r hh h i i i i i i h ii i hz hz hz            
.

Tustin-like transformation

Using (3.3) with 0 w = , condition in (3.8) is equivalent to:     11 1 1 0 T hh hh PAB AB P         .
(3.9)

The following development follows the same line of [START_REF] Shaked | Improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty[END_REF]: pre-and postmultiplying the previous expression by P and considering a small enough 0   , the following condition is also equivalent:

        11 1 1 1 0 TT hh hh hh hh AB P P AB AB PAB               , (3.10) 
from which the next rewriting can be done multiplying by  and adding PP  : .11) which by Schur complement will be equivalent to:

        11 0 T hh hh IA B P IA B P           , ( 3 
    1 11 0 hh T hh PI A B IA B P              . (3.
12)

The previous expression can be pre-multiplied by 0 0

T I       
and post-multiplied by 0 0

I    
to produce the equivalent condition: ii i H  , and

    1 0 hh T TT hh PA B AB P                  . ( 3 
12 q ii i F  ,   12 ,, , 1 , 2 , 
,

q ii i r  
of proper dimensions such that the following conditions hold: 

      012 012 012 1 012 0, , , , , 1, 2, , q qq q iii i q iii i iii i iii i r          ρ , ( 3 
   0 0 0 TT hh AB P P                   . (3.19)
In order to get LMI conditions and recover the "classical" quadratic case, let ii i H  , and Matrix transformation [START_REF] Peaucelle | A new robust D-stability condition for real convex polytopic uncertainty[END_REF] Another possibility is to follow a similar path as in [START_REF] Peaucelle | A new robust D-stability condition for real convex polytopic uncertainty[END_REF]. In this case, condition in (3.8) is equivalent to: ii i H  , and

T    and 1 P     with 0   ; then (3.19) holds if       0 2
12 q ii i F  ,   12 ,, , 1 , 2 , , q ii i r   , such that the next conditions hold:       012 012 012 1 012 0, , , , , 1, 2, , q qq q iii i q iii i iii i iii i r          ρ , (3.21) with      01 2 0 1 2 01 2 0 1 2 012 12 0 12 0 12 2 qq qq q qq q T i i ii i i ii i i ii i i ii iii i ii i i ii i i ii i AH BF AH BF H PA H B F P                    . Proof: After substitution of h H   and h F   in (3.20), it yields      0 2 T hh hh hh hh hh hh h AH BF AH BF HP A HB F P              . ( 3 
    11 1 1 0 T hh hh PAB AB P         . ( 3 
12 q ii i K  ,   12 ,, , 1 , 2 , , q ii i r  
such that the following conditions hold: 

      012 012 012 1 012 0, , , , , 1, 2, , q qq q iii i q iii i iii i iii i r          ρ , ( 3 
T i i ii i i ii i i ii i i ii iii i TT T i ii i ii i i ii i ii AH BF AH BF PH R A R R                
.

Proof:

Assuming P   , h F  
, and applying property B.3 with

T h A   , T h H   , h R   , P   , TT hh hh BF F B  
to (3.24), it writes: This set of values for  is employed wherever an example involving this parameter appears.

   0 T hh hh hh hh TT T h hh hh AH BF AH BF PH R A R R            . ( 3 
Remark 3.3: If 1 q = , conditions in (3.14) and (3.21) are the same as those in Theorems 1 in (Márquez et al., 2013a) and [START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF], respectively; thus, the latter are particular cases.

Next corollary will show that ANS conditions [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] can be seen as a particular case of the results above.

Corollary 3.1:

The solution set of conditions (3.25) ,, , ,, ,

q qq ii i i ii i i i i FF ∈ = ∑   ρ , ( ) 12 12 1 2
,, , ,, ,

q qq ii i ii i i i i H P ∈ = ∑   ρ , and 
( ) 12 12 1 2
,, , ,, ,

q qq ii i ii i i i i R P  ∈ = ∑   ρ in (3.25) then:             00 1 012 0 1 2 0 012 0 1 2 012 0 1 2 ,, , , ,, , , ,, , , 0 2 
qq qq qq ii i iii i i i i i T i i i ii i i i i i i ii i i i i AP BF AP P                     ρ ρρ . (3.29)
Applying Schur complement, (3.29) is equivalent to:

          01 012 0 1 2 0 1 20 1 2 0 1 20 1 2 0 1 20 1 2 ,, , , 1 ,, , , ,, , , ,, , , 1 0. 
2 qq qq qq qq ii iii i i i i i T ii iii i i i i i iii i i i i i iii i i i i i AP P AP                   ρ ρρ ρ (3.30)
Thus, if (3.28) holds, there is always a sufficiently small 0   such that (3.30) -and consequently (3.29) -holds too, thus concluding the proof. ◈ Remark 3.4: As in Corollary 3.1, a similar analysis can be done for conditions in Theorems 3.1 and 3.2 in order to verify the inclusion of results in Proposition 2 of [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF]; they are omitted for brevity.

Remark 3.5: Although the three approaches presented above contain the quadratic result in Proposition 2 of [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] as a particular case, it is not possible, to the best of our knowledge, to demonstrate analytically any inclusion among them.

Remark 3.6: d represents the complexity parameter and plays exactly the same role as for (3.6) which relates to " q" as 1 qd =+ .

Comparisons of computational complexity among Theorems 3.1,3.2,3.3,and Theorem 5 in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] are presented below. The number of conditions ( L N ) required in Theorems 3.1, 3.2, and 3.3 as well as proposition 2 and Theorem 5 in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] are given in Table 3.1 where [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] Theorem 5 in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] On the other hand, the number of decision variables ( ) for Theorems 3.1, 3.2, and 3.3 as well as Proposition 2 and Theorem 5 in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] are determined in Table 3.2. A specific comparison of the number of LMI conditions for the different approaches under consideration is shown in Table 3.3. 

  ! !! a a b bab      and     max 1/2 h floor d  .
N L N 1 1 2 rd d         max 0 11 2 1, 22 2 if d+2 is odd 1 / 2 1 if d+2 is even h h rd rd h EC dd h r EC rr                       D N D N D N ( ) (
)

21 1 2 d x xx u x n nn n n r + ++ + ( ) ( ) 21 12 2 d x xx u x n nn n n r + ++ + ( ) 1 2 x x xu n nn n r ++ ( ) ( ) ( ) ( ) max max max max 22 1 1 22 1 1 11 22 0 1 is odd 1 d+1 is even 2 h h hd h xx xx u x h h dh h x x nn r nn n r n r r E V d EV nr nr r +- = + +- + + ++ + + + ⎧ + ⎪ ⎪ = ⎨ ⎪ + ⎪ ⎩ ∑ L N D N L N D N L N D N L N D N 1 u n = 2 x n = 0 d = 2 r = 1 u n = 2 x n = 1 d = 3 r = 1 u n = 2 x n = 2 d = 3 r = 2 u n = 3 x n = 2 d = 5 r = 2 u n = 3 x n = 3 d = 8 r =
It can be seen that Theorem 5 in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] leads quicker to high-size problems and also needs to satisfy more LMI conditions than the other approaches. Another point is the fact that the conditions in Theorem 3.3 require the same number of LMIs, but more decision variables than those presented in Theorems 3.1 and 3.2.

Example 3.2:

Consider the following TS model taken from Example 2 in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF]: 

   3 1 ii i i x hz A x B u     , ( 3 
a A ⎡⎤ -- ⎢⎥ = ⎢⎥ ⎣⎦ , 1 1 0 B ⎡⎤ ⎢⎥ = ⎢⎥ ⎣⎦ , 2 8 0 B ⎡⎤ ⎢⎥ = ⎢⎥ ⎣⎦ , 3 6 1 b B ⎡⎤ -+ ⎢⎥ = ⎢⎥ - ⎣⎦ .
Selecting 12 a = , a comparison between conditions in Theorem 3.3, Theorem 5 of [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF], and (3.28) in Corollary 3.1, is presented in Table 3 Notice that even with a large value of the complexity parameter up to what r can be possible to "push". For a different number of rules, results on applying Theorem 3.3 as well as Theorem 5 in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF], are presented in Table 3.5. In this example, conditions in Theorem 3.3 are selected because despite of the fact that they have the same number of LMI conditions with respect to Theorem 3.1 and 3.2, they require more decision variables which bring numerical problems before other approaches. Th. 5 [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] Th. 3.3 

( L N ) ( D N ) time(s) ( L N ) ( D N ) time(s)
⎡⎤ - ⎢⎥ = ⎢⎥ + ⎣⎦ , 1 1 1 a B b ⎡⎤ + ⎢⎥ = ⎢⎥ + ⎣⎦ , 2 1 1 a B b ⎡⎤ - ⎢⎥ = ⎢⎥ - ⎣⎦ , ( ) 
11 1 cos zx  == , 1 1 10 1c o s 2 x h  + ==
, and

1 20 1 h  =- defined in the compact set { } : 2 xi xx  =≤  , {} 1, 2 i ∈ .
The parameters a and b are varied in the following interval

[ ] 1, 1 a ∈- and [ ] 1, 1 b ∈- .
This example considers 4 q = in conditions (3.14), (3.21), and (3.25): all of them provide a larger feasibility region than Theorems 1 in [START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF] and (Márquez et al., 2013a), as can be appreciated in Figure 3.1. ♦ 4 q  , "o" for Theorems 1 in [START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF] and (Márquez et al., 2013a).

H disturbance attenuation

Consider the case where 0 w  . In order to find LMI conditions that guarantee the system   Approach Conditions:

( )

012 012 012 0 q qq iii i i i ii i i ii  ∈ < ∑   ρ , ( ) { } 1 012 ,, , , 1 , 2 , 
, 

q q iii i r + ∀∈  Eq. Theorem 3.4 0 h h h J F H = = =   ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0 12 0 12 0 12 0 012 12 12 0 0 qq q q qq T i i ii i i ii i i ii i T i iii i T ii i ii i PD P CH A H B F IG I PH H       ⎡⎤ -+ + ⎢⎥ ⎢⎥ * - ⎢⎥ = ⎢⎥ ⎢⎥ * * - ⎢⎥ ⎢⎥ * * * - - ⎣⎦     (3.38) Theorem 3.5 h h F H = =   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 01 2 0 1 2 12 0 12 0 12 012 00 01 2 0 1 2 0 2 0 qq qq q q qq i i ii i i ii ii i i ii i i ii i iii i TT ii i i ii i i ii i AH BF HP A HB F P DD I CH JF G I      ⎡⎤ + + * * * * ⎢⎥ ⎢⎥ -+ + - * * ⎢⎥ = ⎢⎥ ⎢⎥ - * ⎢⎥ ⎢⎥ +- ⎢⎥ ⎣⎦      (3.39) Theorem 3.6 h F P = =   ( ) ( ) ( ) ( ) ( ) ( ) ( ) 01 2 0 1 2 0 012 00 1 2 0 12 12 0 12 12 00 qq q q qq q q ii i i i i i i T i iii i ii i i i i TT T i ii i ii i i ii i ii AH BF DI CP JF G I PH R A R R    ⎡⎤ ++ * * * * ⎢⎥ ⎢⎥ - * * ⎢⎥ = ⎢⎥ +- * ⎢⎥ ⎢⎥ ⎢⎥ -+ - - ⎣⎦      (3.
J = , 13 0.1 GG  == , 24 0.1 GG  == - , 4 r = , 12 01 x  = , 2 2 2 0 4 x  = , 11 10 1   =-, 22 10 1   = -, 12 10 0 h   = , 12 20 1 h   = , 12 31 0 h   = , 12 41 1 h   =
, where  is a real-valued parameter.

The performance bounds  obtained by "classical" quadratic approach in (Tuan et al., 2001) as well as conditions in Theorems 3.4,3.5,and 3.6  with respect to an increasing parameter q in Theorems 3.4, 3.5, and 3.6. The minimal value for  is calculated for It is possible to observe from Figure 3.2 and 3.3 that if parameter q increases, the minimal value of  decreases altogether with the fact that conditions in Theorem 3.6 always give better results than Theorem 3.4 and 3.5. ♦ Despite the fact that ANS conditions are described in this section, it may occur that quadratic stability is not enough. Many works have already shown this problem and tackled it by using a different sort of Lyapunov functions: [START_REF] Blanchini | Nonquadratic Lyapunov functions for robust control[END_REF], where polyhedral Lyapunov functions are under consideration, [START_REF] Zhang | Relaxed stability conditions for continuous-time T-S fuzzy-control systems via augmented multi-indexed matrix approach[END_REF] the previous results to the non-quadratic framework; they will comprise previous works on the subject like those in [START_REF] Pan | Non-quadratic Stabilization of Continuous T-S Fuzzy Models: LMI Solution for a Local Approach[END_REF]; (Lee et al., 2012), and [START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF].

[ ] 0,1  ∈ .

Stabilization via fuzzy Lyapunov function

Consider the following fuzzy Lyapunov function (FLF) candidate (Blanco et al., 2001):

  1 1 1 r TT hi i i Vx xPx x hzP x         , (3.41)
where 0

T ii PP => , { } 1, , ir ∈  .
Results in this section are based on a procedure that "decouples" the control matrices from the Lyapunov function as in [START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF]. The following generalized non-PDC control law is employed:

1 hh uF Hx   , (3.42) which corresponds to h F =  and h H = 
in the general form (3.2). Discussion about regularity of h H will be done further on. Note that 1 q = ( 0 d = ) corresponds to the control law structure in [START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF]. Then, the state equation of the closed-loop TS model (3.3) without disturbances ( 0 w = ) yields as:

  1 hh hh x AB F H x    . (3.43)
It is important to recall the fact that for stabilization via FLF as in (3.41) the term

 1 r kk h k Ph z P     
appears, which implies a dependency on the time derivatives of the MFs which is difficult to cast as a convex problem. To circumvent this problem, in (Guerra and Bernal, 2009) the following relation is presented (Section 2.4.2):

      12 0 ,, 11 
k p r k gi k g i k h ik k Pz P P z         , (3.44) 
where

( ) ( ) ( ) 11 1 ,1 / 2 2 1 1 m o d 2 p kp k p k gi k i +- +- - ⎢⎥ =- × + +- ⎣⎦ and ( ) ( ) 21 ,, 2 pk gi k gi k - =+ , ⎢⎥ ⎣⎦ 
stands for the floor function, such that, in order to get LMI conditions, the following bound is stated [START_REF] Guerra | Some refinements for non quadratic stabilization of continuous TS models[END_REF][START_REF] Pan | Non-quadratic Stabilization of Continuous T-S Fuzzy Models: LMI Solution for a Local Approach[END_REF]:

0 k k    , 0 k   , (3.45) with 0 0 k k k k z z        .
Let us begin with an important property called local stabilizability (Theorem 2.7) (Bernal et al., 2010): if conditions in Theorem 2.7 hold then there exists a region containing origin such that it is stable, it means that k  exists.

For the sake of clarity, the proof for the stabilization problem is split in two: a first part (Lemma 3.1) develops LMI conditions to guarantee that ii i H  , and

0 k k  ≤  holds for 0 k  > , { } 1, 2, , kp ∈  ,
12 q ii i F  , { } 12 ,, , 1 , 2 , 
,

q ii i r ∈ 
such that the following conditions hold :

            12 12 12 012 012 012 12 1 012 0, , , , 1, 2, , 0, , , , , 1, 2, 
, ,

q qq q qq q ii i q ii i ii i q iii i q iii i iii i ii i r iii i r                 ρ ρ (3.46) with (
)

12 12 12 12 qq qq T ii i ii i k ii i ii i QH H I   =- +-   , ( ) 
( ) 01 2 1 2 012 12 qq q q T k k i i ii i i ii iii i ii i ITA H B F Q   ⎡⎤ -- + ⎢⎥ = ⎢⎥ * - ⎢⎥ ⎣⎦    , 22 2 k k x k     = + , 1,2, , ; 1,2, , xk k ki j in jn T  == ⎡⎤ = ⎣⎦  , 1, 0 0, kk k k ij ij zz if x otherwise   ⎧ ∂∂ = ≠ ⎪ ⎪ ∂∂ = ⎨ ⎪ ⎪ ⎩ , kx nn ≤ , :0 k n k k i i z x x  ⎧⎫ ∂ ⎪⎪ =≠ ∈ ⎨⎬ ∂ ⎪⎪ ⎩⎭  .
In order to show how Proof:

Each condition 0 k k  ≤  , 0 k  > , { } 1, 2, , kp ∈  can be written as   1 00 0 T T kk kT kk kh h k hh h k kk zz xT A H B F H x zx z                        . (3.47)
Following the notation in [START_REF] Pan | Non-quadratic Stabilization of Continuous T-S Fuzzy Models: LMI Solution for a Local Approach[END_REF], a shorthand for previous expression is

1 T k h Hx   -≤ if 0 T k T k k k z z    ⎛⎞ ∂∂ ⎜⎟ = ⎜⎟ ∂∂ ⎝⎠ and 
( ) ; thus, (3.49) is implied by

T kh h hh TA H B F  =+ . Thus, (3.47) is equivalent to 1 2 TT T T k hh Hx x H        . ( 3 
1 12 2 0 2 0 TT T hh h k T xk h x xx x HQ H Q                          ,
which is equivalent to:

1 22 1 22 2 0 2 0. TT k hh h xk TT k h xk xI H Q H x IQ                             (3.50)
Applying Schur complement to the second expression of (3.50), it renders the following equivalent expression: 

    22 2 0 T k kh h hh xk T hh k hh h IT A H B F AH BF T Q            . ( 3 
k k  ≤  holds for 0 k  > , { } 1, 2, , kp ∈ 
, under different control schemes [START_REF] Pan | Non-quadratic Stabilization of Continuous T-S Fuzzy Models: LMI Solution for a Local Approach[END_REF]Lee et al., 2012;Jaadari et al., 2012). Some approaches intend to find the maximum region of attraction while fixing the values of every bound according to their maxima inside the modeling area, which may be as conservative as to preclude any solution on smaller regions still contained in the modeling compact. For this reason, whenever a systematic way to find a non-quadratic solution is found by adjusting the values of bounds as x  and k  , it will be done in the sequel, for instance, via the bisection method.

Now, using the FLF in (3.41) and the closed-loop TS model (3.43), then, ( ) ii i H  , and

0 Vx<  if:     11 1 1 1 0 T hhh hh h hh hh h P A BFH A BFH P P          . ( 3 
12 q ii i F  , { } 12 ,, , 1 , 2 , 
,

q ii i r ∈  such that the next conditions hold       012 012 012 1 012 0, , , , , 1, 2, , q qq q iii i q iii i iii i iii i r          ρ , (3.55) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 01 2 0 1 2 11 21 012 11 2 0 1 2 0 1 2 1 2 1 2
,, 1

1 i qq q qq q q q p d ii i i i i i i k gik g ik k iii i T T i i ii i i ii i i ii i ii i ii AH BF P P PH A H B F H H      = ⎡⎤ ++ * - - - * ⎢⎥ ⎢⎥ = ⎢⎥ ⎢⎥ -+ + - + ⎢⎥ ⎣⎦ ∑      
, where ( ) ( ) ( ) ( )

11 11 1 1 ,1 / 2 2 1 1 m o d 2 p kp k p k gik i i +- +- - ⎢⎥ =- × + + - ⎣⎦ and 
( ) ( ) 21 
1 T hh hh AB F H - =+  , T h H =  , h H  =  , h P = 
, and

h P =- 
, an equivalent inequality is obtained: Guerra and Bernal, 2009), it is clear that conditions [START_REF] Lee | Relaxed LMI Conditions for Local Stability and Local Stabilization of Continuous-Time Takagi-Sugeno Fuzzy Systems[END_REF] because the latter corresponds to the particular choice hh HP = .

        0 hh hh h T T hh h hh h h h AH BF P PH A H B F H H                 . (3.56) Since ( ) ( ) ( ) 12 0 ,, 1 p k gh k g h k h k PPP  = =-∑   (
Remark 3.12: The number of conditions ( L N ) and decision variables ( D N ) required for Theorem 3.7 and Theorem 2 in [START_REF] Lee | Relaxed LMI Conditions for Local Stability and Local Stabilization of Continuous-Time Takagi-Sugeno Fuzzy Systems[END_REF]) are given in Table 3.8. [START_REF] Delmotte | Continuous Takagi-Sugeno's models: reduction of the number of LMI conditions in various fuzzy control design technics[END_REF]. In this case the original matrices for the TS model are: [START_REF] Lee | Relaxed LMI Conditions for Local Stability and Local Stabilization of Continuous-Time Takagi-Sugeno Fuzzy Systems[END_REF] is not able to solve the problem when 5 q = whereas Theorem 3.7 can find a solution. Theorem 3.7 needs less LMI conditions, decision variables, and time to find a feasible solution than Theorem 2 in [START_REF] Lee | Relaxed LMI Conditions for Local Stability and Local Stabilization of Continuous-Time Takagi-Sugeno Fuzzy Systems[END_REF]. In this example (Table 3.9), the following parameters are considered: , a feasible solution with 3 q = can be found; the FLF thus is given by ( 

   4 1 hh i ii i x Ax Bu h z Ax Bu      , ( 3 
 = = , 2 1 1 0 4 4 x  - = , 2 

Stabilization via line-integral Lyapunov function

An alternative to circumvent the time-derivative of MFs when non-quadratic Lyapunov functions are used (which lies behind local conditions appearing in the literature) has been proposed in [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF]; it is based on a line-integral Lyapunov function [START_REF] Khalil | Nonlinear systems[END_REF] which gives global conditions inside the compact set of the state space. An extension of this approach is developed below; its scope being restricted to second-order systems.

Let us consider the following line-integral Lyapunov function candidate [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF]: 

     0, 2 x Vx d      F . ( 3 
                     D ,    1 x ij n ij j j hx x      where   ij j j x  
are the WFs, and

  0 T ii PP   DD .
The conditions for stabilization presented in [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF] are BMI; therefore, they are not optimally solvable because existing methods may lead to local minima. Now, consider  

1 x Px x   F
, where   

      1 T TTTT g V x L V x xgx g x x xPx x xPx x        FF , ( 3 
   1 1 1 0 TT T T hh h h h h h h AX B X X A X B Px         . ( 3 
    2 0, 1, 2, , 2 0, ( , ) 1, 2, , , , 1 ii ii ij ji ir ij r i j r             (3.70) with TT T ij i j i j j i j i A XB FX AF B     . Proof: Assuming h X   and h F   in (3.69), it yields 0 TT T hh h h h h h h AX BF X A F B   .
(3.71)

Applying the relaxation lemma C.3 to the previous expression gives the desired result, thus concluding the proof.◈ 

{ } { } 2 0, 1, 2, , , 2 0, , 1, 2, , , . 1 ii 
ii ij ji ir ij r i j r   ⎧ <∈ ⎪ ⎪ ⎨ ⎪ ++ < ∈ ≠ ⎪ - ⎩  
Eq. Theorem 3.9

(Tustin-like)

h h F H = =   ( ) ( ) ij i j i j ij T ijj X HA H B F XHH   ⎡⎤ -++ ⎢⎥ = ⎢⎥ * - - ⎢⎥ ⎣⎦ (3.72) Theorem 3.10 (Finsler) h h F H = =   ( ) ( ) ( ) 2 
T ij i j ij i j ij j ii j i j i AH BF AH BF HX A HB F X    ⎡⎤ ++ + * ⎢⎥ = ⎢⎥ ⎢⎥ -+ + - ⎣⎦ (3.73) Theorem 3.11 (Peaucelle) h h F X = =   ( ) ( ) T ij i j ij i j ij TT T ij j i j j AH BF AH BF XHR A RR  ⎡ ⎤ ++ + * ⎢⎥ = ⎢⎥ -+ -- ⎢⎥ ⎣⎦ (3.74)
Remark 3.13: The suggested  

Px in (3.66) is only valid for second-order systems;

higher order systems lead to products of decision variables which cannot be treated as a convex problem.

The refinements shown in Section 3.2.2, which are based on matrix transformations, can also be applied to the previous result in order to obtain more relaxed conditions; these are shown in Table 3.10: they can be developed from (3.61) following the same paths of Section 3.2.2 for each approach. 

   2 1 ii i i x hz A x B u     , (3.75) with 1 21 0 20 A      , 2 5 12 a A      , 1 1 1 B        , 2 2 b B        ,   20 

Stabilization via non-quadratic Lyapunov functional

This section proposes a new Lyapunov functional that includes the quadratic framework as a particular case, while solving the problem of the time-derivatives of the MFs. As the one proposed in [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF], it produces global instead of local conditions, but it does so without imposing the tough restrictions for path-independent line integrals and without any limitation on the system order.

Consider the following non-quadratic Lyapunov functional (NQLF): Notice also that the time-derivative of MFs i s is: 

     1 1 1 r TT si i i Vx xPx x s ztP x         , ( 3 
         1 ii i sz hz t hz t     , ( 3 
            00 1 lim lim ii i i sz hzt hzt hzt          
give additional consistency to the approach.

A non-PDC control law, introducing the  -delay of the Lyapunov functional is adopted: The use of lemma C.5 on the previous inequality gives conditions (3.90) (as in Remark 3.15), where

x n , u n , and r are the number of states, inputs, and rules, respectively. It is clear that Theorem 3.13 in any of its two cases needs more decision variables and twice the number of LMI conditions than Theorem 3.12. Note also that despite the fact that the number of LMIs for both versions of Theorem 3.13 is the same, there is an important difference with respect to the number of decision variables involved: a less complex control law ( ( ) In order to compare the feasibility sets of conditions in Theorems 3.12 and 3.13 with the quadratic case in [START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF] as well as Theorem 1 in [START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF], no disturbances are considered in this example, i.e., 0 w = . As expected from the inclusions analytically proven in Corollaries 3.1 and 3.2, Figure 3.9 shows that the feasibility region corresponding to LMI constraints (3.90) (Theorem 3.13) overcomes that corresponding to (3.89) (Theorem 3.12), which in turn includes the feasibility set corresponding to the quadratic approaches in [START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF] and [START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF] (based on Finsler transformation).

1 1 0 1s i n 2 x  - = , 2 
Similar comparisons are shown in Figure 3.10 between the feasibility set of Theorem 3.13 and those of conditions in Theorem 7 of (Mozelli et al., 2009) and Theorem 3.9, which have been chosen among non-quadratic schemes for being global as the approach hereby proposed.

It is clear that larger feasibility regions can be found with the new approach when compared with results in (Mozelli et al., 2009) and Theorem 3.9. Moreover, Figure 3.10 also illustrates that conditions in (Mozelli et al., 2009) are not able to find solutions due to its special structure which enforces path-independency of the line integral. Figure 3.9. Comparison: "• " for Th. 3.13, "× " for Th. 3.12, " + " for Th. 1 in [START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF], and "  " for quadratic case in [START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF].

Figure 3.10. Comparison: "• " for Th. 3.13, "× " for Th. 7 in (Mozelli et al., 2009), and "  " for Th. 3.9.

In order to illustrate a particular case, the following values have been selected: system The results above can lead to problems in practical terms when a complex control law as in (3.82) is used due to the necessity of calculating several multiplications and performing matrix inversion, especially in nonlinear TS representations with a high number of rules. However, it is still possible to relax this problem reducing the complexity in the proposed controller (3.82) 

H disturbance rejection

Now, consider the case where 0 w  . As in Section 3.2.2, the TS model (3.1) Applying Schur complement to the block-matrix in the middle of the last expression, it can be seen that the inequality therein is guaranteed if 3.12 for different values of  . Once again, the inclusions discussed in Remark 3.16 are verified. Table 3.12 shows that the best H ∞ attenuation criterion is obtained via conditions in Theorem 3.1, followed by those in Remark 3.16, which in turn are better than those corresponding to the quadratic approach. Figure 3.13 is presented in order to illustrate the behavior of the H ∞ attenuation value  with respect to parameter  for conditions in Theorem 3.14, Remark 3.16, and the quadratic approach in [START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF]. The minimal value for  is calculated for equally-spaced values in

  

1 il i j k l j k kl T ij i il i j k l i AP BF P P EI CP DF G I                    . ( 3 

[ ]

1, 1  ∈-. The ability of the proposed approach to reach lower minima for  is thus illustrated. where u is the torque input, 1 I is the link inertia, 2 I is the motor inertia, m is the mass, g is the gravity, l is the link length, k is the stiffness, 1

x and 3

x are angular positions of first and second joints respectively.

From (3.101) a TS representation considering perturbations in the model can be obtained as follows: 

      2 1 2 1 , ii i i i ii i i i x hz A x B u D w yh z C x J u G w          ( 3 
D ⎡⎤ ⎢⎥ ⎢⎥ ⎢⎥ = ⎢⎥ ⎢⎥ ⎢⎥ ⎣⎦ , 1 0.02 J =- , 2 0.2 J = , 1 4 G = , 2 0.67 G =- , ( ) ( ) 1 11 1 sin x zz x  == , min  = , max  = , 1 2 x  ≤ , ( ) 
1 1 z h   - = - , 21 1 hh =-. Matrices i D , i J , and i G {} 1, 2
i ∈ assumed to be random such that a comparison of disturbance attenuation with [START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF]) can be done.

Under the following model parameters 

 =
for [START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF]).

Notice that our solution for this example improves the disturbance attenuation level with respect to conditions in [START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF], thus illustrating the effectiveness of the result in Theorem 3.14. ♦

State feedback controller design for descriptor TS models

In this section the problem of state-feedback controller design for TS models in a descriptor form is addressed. Two schemes will be proposed: the first one is based on a more general non-PDC control law in a semi-quadratic framework, with a straightforward extension to H disturbance rejection; the second one is based on a line-integral fuzzy Lyapunov function and a non-PDC control law. Both schemes give more relaxed conditions than former approaches as it is shown via illustrative examples. w are the state vector, the control input, the output vector, and the disturbance vector, respectively; the sums 

Problem statement

 1 r hi i i A hzA    ,  1 r hi i i B hzB    ,  1 r hi i i Ch z C    ,  1 r hi i i D hzD    ,  1 r hi i i Gh z G    ,
I A A E      , 0 h h B B        , 0 h h D D       
, and

  0 hh CC  .
In the following developments, some alternatives will be proposed to reduce conservativeness of previous approaches such as [START_REF] Taniguchi | Fuzzy descriptor systems and nonlinear model following control[END_REF][START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF][START_REF] Bouarar | Robust fuzzy Lyapunov stabilization for uncertain and disturbed Takagi-Sugeno descriptors[END_REF][START_REF] Estrada-Manzo | Improvements on Non-Quadratic Stabilization of Continuous-Time Takagi-Sugeno Descriptor Models[END_REF].

Stabilization via quadratic Lyapunov function

Consider the following quadratic Lyapunov function candidate [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF][START_REF] Taniguchi | Fuzzy descriptor systems and nonlinear model following control[END_REF]: [START_REF] Taniguchi | Fuzzy descriptor systems and nonlinear model following control[END_REF][START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF], in order that the control law is not dependent on x  . In the following, the proposal is to extend

 1 TT hhv Vx xEPx   , 1 TT hhv hhv EP P E   , ( 3 
1 0 hv F   to 12 hv hv

FF

  , such that the non-PDC control law writes: 64 . 6 3.9 1.9 Theorem 3.15, Theorem 1 in [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF] as well as Theorem 1 in (Estrada-Manzo et al., 2013) were compared for several values of a and b . Figure 3.15 shows that all the solutions from [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF][START_REF] Estrada-Manzo | Improvements on Non-Quadratic Stabilization of Continuous-Time Takagi-Sugeno Descriptor Models[END_REF] are included in those of (3.112). Moreover, the quality of the solutions hereby provided is better than those of [START_REF] Estrada-Manzo | Improvements on Non-Quadratic Stabilization of Continuous-Time Takagi-Sugeno Descriptor Models[END_REF], since the latter approach requires a heuristic search of feasible solutions using a logarithmically spaced family of values of  for each particular system under examination. [START_REF] Estrada-Manzo | Improvements on Non-Quadratic Stabilization of Continuous-Time Takagi-Sugeno Descriptor Models[END_REF], and " o " for [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF].

        2 0, 1, 2, , , 1, 2, , 2 0, ( , ) 1, 2, , , , 1, 2, 
A       , 1 5.6 0.9 B        , 2 8.1 30 . 0 1 B a         , 1 1 0 T C        , 2 0 1 T C     , 1 0.2 0 0.21 0.03 b E      , 2 0.8 0.7 0.5 0.68 E        ,     12 0.3 1 0.02 1 5 DD                 , 12 0 GG  , 2 e rr , 1 2 x ≤ , 2 2 x ≤ , 2 1 1 4 4 x h   , 21 1 hh   ,
Conditions (3.112) are able to find a controller for cases where the previous approaches in [START_REF] Estrada-Manzo | Improvements on Non-Quadratic Stabilization of Continuous-Time Takagi-Sugeno Descriptor Models[END_REF] and [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF] cannot: for instance, when 

H Performance

The condition for H attenuation criterion of a TS descriptor model (3.103) is the same as for an ordinary TS model [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF] .122) which leads to the following result. Proof: Property B.3 can be applied to the block entry ( )

       0 hv hhv h hv T h h hhv h AP BF DI CP G I               , ( 3 
1, 1 in (3.122) with T hv A =  , T hhv H =  , hhv R =  , hhv P =  , and 
( )

hh v BF = + * 
, as to obtain the following inequality:

           0 0 0 hv hhv h hv TT T hhv hhv hhv h hhv hhv T h h hhv h AH BF PH R A R R DI CP G I                      .
Following similar steps as those in Theorem 3.15,i.e.: 1) that Theorem 2 of [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF] is a particular case of Theorem 3.16. , and 0 w ≠ . The performance bound  obtained by the theorems labelled as Theorem 2 in [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF] and [START_REF] Estrada-Manzo | Improvements on Non-Quadratic Stabilization of Continuous-Time Takagi-Sugeno Descriptor Models[END_REF], and Theorem 3.16, for different values of  , is provided in Table 3.13. Table 3.13 shows that the performance of Theorem 3.16 is clearly better than results in [START_REF] Estrada-Manzo | Improvements on Non-Quadratic Stabilization of Continuous-Time Takagi-Sugeno Descriptor Models[END_REF] and [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF]. Also, note that conditions (3.123) do not need any parameter  to be given as in [START_REF] Estrada-Manzo | Improvements on Non-Quadratic Stabilization of Continuous-Time Takagi-Sugeno Descriptor Models[END_REF], yet the new results perform better. Figure 3.17 is presented in order to illustrate the behavior of the parameter  with respect to an increasing parameter  in conditions (3.123), Theorem 2 in (Estrada-Manzo et al., 2013), and Theorem 2 in [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF], respectively. The minimal value for  is calculated for

 = - 3  = - 2  = - 1  =- 0  = Theorem 2 in (
  4, 0   .
It is possible to observe from Figure 3.17 that if parameter  increases, the minimal value of  decreases altogether with the fact that conditions in Theorem 3.16 give better results than former approaches. ♦ Figure 3.17.  values: "  " for [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF], " +" for (Estrada-Manzo et al., 2013), and "

× " for Theorem 3.16. 

Stabilization via line-integral Lyapunov function

The results to be developed hereafter are based on a line-integral Lyapunov function which is an extension for TS descriptor models of that in Section 3.2.4.

Let us consider the following line-integral Lyapunov function candidate [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF]: 

     0, 2 x Vx d      F , ( 3 
                        D ,    1 x ij n ij j j hx x     
where   Proof: From (3.126), the following expression , then LMI conditions in (3.132) reduce to those in Theorem 1 of [START_REF] Taniguchi | Fuzzy descriptor systems and nonlinear model following control[END_REF]: the latter is a particular case of theorem 3.17. Figure 3.18 highlight the fact that solutions of [START_REF] Taniguchi | Fuzzy descriptor systems and nonlinear model following control[END_REF] are all included in those of (3.132). 

    1 1 1 34 2 0 0 00 0 h h hh x Ix P Px x x x PP                         F F F , ( 3 
           TT g Vx L Vx xgx g x x    FF , ( 3 
        2 0, 1, 2, , , 1, 2, , 2 

Stabilization: 2 nd order case

Consider the following control law [START_REF] Estrada-Manzo | Improvements on Non-Quadratic Stabilization of Continuous-Time Takagi-Sugeno Descriptor Models[END_REF] As shown previously and in (Márquez et al., 2013b) For convenience, expression (3.138) will be written as follows: 

  1 1 1 1 h h h X P P   , ( 3 
Q , 12 jk Q , 21 ij Q , 22 ij Q ,   ,1 , 2 , , ij r   ,   1, 2, , e kr  
, such that the following conditions hold: 

        2 0, 1, 2, , , 1, 2, 
                ,   11 21 21 T ij ij ij QQ   ,   21 11 21 22 T ijk i jk k ij i jk ij AQ E Q B K Q     , 31 11 1 21 ijk jk j ij QX Q     ,   42 22 22 12 22 ijk ij ijk i jk k ij QX A QE Q      , 33 1 2 j j X    , 32 12 22 ijk jk ij QQ    ,   44 22 22 T ijk ijk ijk XX     ,   41 21 21 11 21 ijk ij ijk i jk k ij i jk QX A E Q K QB       , 43 21 ijk ijk X    , and   22 12 22 ijk i jk k ij AQ E Q     .
 0 0 0 TT T hhv hhv hv hhv h hv hhv hhv hhv YY AY BF P PY                   , (3.143) 
and selecting

T hhv Y    , 1 hhv P     , 0
  , the previous expression renders: 

        0 hv hhv h hv T hhv hhv hv hhv h hv hhv hhv AY BF YP A YB F PP               . ( 3 
hv hv h Q Y P   ,   12 12 1 1 hv hv h Q Y P   ,   21 21 1 1 hh hh h Q Y P   ,   22 22 1 1 hh hh h Q Y P   ,   1 1 hv hv h K F P  
, and after some operations, (3.144) can be rearranged as: 

        
QX A E Q K QB      
.

Due to the fact that   4.6 3.9 1.9 Unlike approaches in [START_REF] Estrada-Manzo | Improvements on Non-Quadratic Stabilization of Continuous-Time Takagi-Sugeno Descriptor Models[END_REF] and [START_REF] Bouarar | Robust fuzzy Lyapunov stabilization for uncertain and disturbed Takagi-Sugeno descriptors[END_REF] The time evolution of the states is presented in Figure 3.21: they converge to the origin.

a A       , 1 5.6 0.9 B        , 2 8.1 B b        , 1 0.8 0 0.21 0.03 a E b       , 2 0.8 0.7 0.5 0.68 E     , 2 e rr , 2 1 1 4 x h  , 21 1 hh   , 2 2 1 4 x v  , 21 1 vv   , with   7, 4 a  and   0.4, 2 b  .
The simulation has been performed from the initial condition    00 . 50 . 7

T x 

. ♦

Concluding remarks

Several methodologies for state feedback controller design, both for standard as well as descriptor TS representations of continuous-time nonlinear systems, have been presented. The proposed strategies are mainly based on matrix transformations such as the Finsler's Lemma as well as a variety of Lyapunov functions such as fuzzy and line-integral. Moreover, a new

Lyapunov functional has been proposed to be used instead of Lyapunov functions.

Improvements on controller design via QLF and a multiple nested control law have been achieved preserving asymptotic characteristics; these improvements bring a reduction in computational burden (to help numerical solvers) as well as the inclusion of previous results (Polya's theorem) as a particular case. Moreover, these improvements have been extended using fuzzy Lyapunov functions such that a significantly reduction on conservativeness is obtained. In addition, the disturbance rejection problem has been addressed. All the strategies presented produced larger feasibility sets, preserving their LMI expression up to parameterdependencies which can be treated via linear programming or logarithmically spaced search.

Observer design with measured premise variables: ẑz 

This section presents some results about observer design as well as an extension to H disturbance rejection for continuous-time TS models, under the assumption that the premise vector depends on measured variables.

Problem statement

Consider the following continuous-time TS model with disturbances coupled with the state and the system output:

      1 1 , r ii i i h h h i r ii i h h i x hz A x B u D w A x B u D w yh z C x G w C x G w              (4.1)
where

x n

x   represents the system state vector, ,

xu nn i B    , yx nn i C    , xw nn i D   
, and

yw nn i G   
result from modeling a given nonlinear system.

In order to estimate the states which are not available, the following observer, mimicking the TS model in (4.1), is proposed considering ẑz  :

     1 ˆˆ, hh h x Ax Bu z z y y yC x       (4.2) 
with ˆx n x   is the observer state, ˆy n y   the estimated measured output, are matrix functions of the premise vector z to be designed in the sequel. To ease notation, arguments of these matrix functions will be omitted.

Remark 4.1:

As it will be seen in detail, observer matrices  and  can be chosen as the corresponding approach requires, for instance, instance; this sort of "decoupling" implies more flexibility in the conditions to be satisfied. The notation for " q " multiple nested convex sums, given in Table 2.1, will be used in the sequel; i.e.:

  

12 1 2 12 11 1 qq q q rr r hh h i i i i i i h ii i hz hz hz             .
According to the notation above, the estimation error dynamics is described as: 

    11 hh hh eA C eD G w       . ( 4 

Observer design with measured premise variables

Three different approaches will be considered in the following developments to derive conditions for observer design of TS models: a first one based on a matrix transformation from [START_REF] Shaked | Improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty[END_REF], a second one via Finsler's Lemma (de [START_REF] De Oliveira | Perspectives in robust control[END_REF], and a third one based on the matrix transformation of [START_REF] Peaucelle | A new robust D-stability condition for real convex polytopic uncertainty[END_REF]; all of them will incorporate the necessary adjustments such that the conservativeness of the conditions is progressively reduced through sum relaxations (Márquez et al., 2013).

To begin with, the estimation error dynamics is considered without disturbances, i.e., 0 w  .

First approach.

Condition in (4.5) is equivalent to:

    11 0 T hh hh PA C A C P       . ( 4.6) 
Inspired by [START_REF] Shaked | Improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty[END_REF], considering a small enough 0   , it is clear that the following condition is equivalent to (4.6):

        11 1 1 0 TT hh hh hh hh PA C A C P A C PA C              , (4.7) 
from which the next rewriting can be done multiplying by  and adding PP  :

       12 1 1 0 T hh hh hh PA C A C PA C P P               . (4.8)
This expression can be rearranged as:

        11 0 T hh hh IA CP IA CP           , (4.9) 
which by Schur complement will be equivalent to:

    11 0 hh P IA C P           . ( 4.10) 
The previous expression can be pre-multiplied by 0 0

I       
and post-multiplied by 0 0 T I     to produce the equivalent condition: ii i H  , and

    1 0 T hh P AC P            . ( 4 
12 q ii i K  ,   12 ,, , 1 , 2 , 
,

q ii i r  
of proper dimensions such that the following conditions hold:

      012 012 012 1 012 0, , , , , 1, 2, , q qq 
q iii i q iii i iii i iii i r          ρ , (4.12) 
with

    012 12 12 0 12 0 12 12 q qqq q q iii i T i ii i ii i i ii i i ii i ii P HH A K C P H H                and   012 ,, , , q iii i  ρ
as the set of permutations with repeated elements of indexes 012 ,, , , q iii i  .

Proof: Using the property B. 

    0 T hh hhh h h P HH A K C P H H           . ( 4.13) 
Applying relaxation lemma C.4 to (4.13) leads to conditions (4.12), which concludes the proof. ◈

Second approach.

Condition in (4.5) can be rearranged as:

0 0 0 T eP e V eP e                 , (4.14) 
altogether with the following equality constraint: 

 1 0 *0 0 hh P AC I P                    . (4.16) 
In order to get LMI conditions and recover the "classical" quadratic case, let   and    with 0   , then (4.16) holds if: ii i H  , and

        0 T hh hh TT hh AC AC PA C                     , ( 4.17 
12 q ii i K  ,   1 ,, 1 ,, q ii r  
of proper dimensions such that the next conditions hold:

      012 012 012 1 012 0, , , , , 1, 2, 
, ii i H  , and

q qq q iii i q iii i iii i iii i r          ρ , ( 4 
T ii i i ii i i ii i i ii i i iii i T T i ii i ii i i ii i i ii i ii HA KCHA KC PH H A K C H H                      . Proof: After substitution of h H   and h K   in (4.17), it yields        0 T hh hh hh hh TT hh hh h h h HA KC HA KC PH H A K C H H               . ( 4 
12 q ii i K  ,   12 ,, , 1 , 2 , 
,

q ii i r  
of proper dimensions such that the following conditions hold: 

      012 012 012 1 012 0, , , , , 1, 2, , q qq 
q iii i q iii i iii i iii i r          ρ , (4.21) with  
T ii i i ii i i ii i i ii i i iii i TT T i ii i ii i i ii i ii HA KCHA KC PH R A R R                
.

Proof:

Assuming P   , h K   ,

and applying property B.3 with

h A   , h H   , h R   , P   , TT hh hh K CC K    to (4.20), it writes:    0 T hh hh hh hh TT T h hh hh HA KC HA KC PH R A R R            , ( 4.22) 
and when lemma C.4 is applied to the previous expression, conditions in (4.21) are obtained, which ends the proof. ◈ Remark 4.2: A parameter 0   appears for the first and second approach as usual when dealing with Finsler's Lemma [START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF]. Effectively, in order to include the quadratic case it is mandatory that  can go to 0, therefore setting    answers to this constraint.

-For example, considering the first approach, with h HP  , h h KK  , using the Schur complement of (4.13), and after some manipulations, we have:

      1 0

TT hh h hh h hh h hh h P A KC P A KC P A KC

P P A KC        , (4.23) 
which proves the referred inclusion when 0   is small enough.

-The inclusion proof for the second approach is directly obtained by the Schur complement to (4.19) with h HP  , h h KK  , and choosing  small enough, which can be noticed in the next conditions: 4.1 presents the number of LMI conditions ( L N ) and decision variables ( D N ) of each approach, for comparison. 

      1 1 0 2 TT hh h hh h hh h hh h PA K C PA K C PA K C P PA K C        . ( 4 
  0 T hh h hh h PA K C PA K C   . ( 4 
Approaches L N D N Theorem 4.1 1 1 rq q       ( ) 2 1 2 qq x xx u x n nn n r n r ++ + Theorem 4.2 1 1 rq q       ( ) 2 1 2 qq x xx u x n nn n r n r ++ + Theorem 4.3 1 1 rq q       ( ) 2 12 2 qq x xx u x n nn n r n r ++ + In Table 4.1,   ! !! a a b bab      .
Example 4.1: Consider the following TS model: 1, 4.2, 4.3, and conditions in (4.25) were compared considering different values for q ( 1 q = , 2 q = , and 3 q = ). In Table 4.2, the maximum value of b achieved for each approach is presented considering It is clear to observe that conditions in Theorem 4.3 give feasible solutions for higher values respect to the other approaches. Moreover, it is not necessary to use a heuristic search of feasible solutions using a logarithmically spaced family of values of  as in Theorems 4.1 and 4.2. Nevertheless, it is not possible to show that these approaches are equivalent or any inclusion between them. They remain as different proposals to solve the problem. Now, using the conditions in Theorem 4.3 for state estimation (measured premises) and selecting the following parameters 2 q  , 0 a  , and 10 b  , a feasible solution has been found; notice that it is not possible with the other approaches.

      4 1 4 1 , ii i i ii i i x hz A x D w yh z C x G w        (4.26) with   1 14 10 . 1 21 1.4 0.7 a A b           , 2 0.8 1.3 0.2 0.3 A         , 3 0.3 1.1 0.9 0.6 A      , 4 0.8 0.8 0.4 0.3 A      ,   1 0.1 0 C  ,   2 0.3 0.1 0 Cb  ,   3 0.04 0 C  ,   4 0.2 0 C  ,   13 1 0.3 1.2 0.02 4 T DD           ,   24 1 0.2 1.2 0.01 5 T DD              , 0 i G  , { } 1, 2, 3, 4 i ∈ ,   1 2, 2 x  , 11 sin( ) zx  , 2 21 zx  ,  1 1 0 1s i n () 2 x z    ,    1 1 1 1s i n 2 x z    ,  2 2 1 0 4 4 x z    ,  2 1 1 1 4 x z   ,      
{ } 0, 0.5,1 a ∈ . Table 4.2. Comparison of maximum value of b . Approach 1 q = 2 q = 3 q = 0 a = 0.5 a = 1 a = 0 a = 0.5 a = 1 a = 0 a = 0.5 a = 1 a = QS (4.25) 6.2 4.1 2.9 - - - - - - Theorem 
The gains for the observer and Lyapunov matrix are given by 0.2175 0.0866 0.0866 0.1537

P     , 11 0.5017 0.1980 K      , 12 2.1101 1.1060 K         , 13 0.2748 1.4931 K      , 14 0.9728 1.0092 K      , 21 0 K  , 22 0.9071 0.1646 K      , 23 1.94 0.3468 K         , 24 0.9593 0.2867 K      , 31 0 K  , 32 0 K  , 33 2.4202 1.0851 K      , 34 1.5366 0.7265 K      , 41 0 K  , 42 0 K  , 43 0 K  , 44 1.1603 0.4704 K      .
The estimation error for a trajectory of the states is presented in x (solid line) and 2 x (dashed line).

H  disturbance rejection

In this case 0 w ≠ . The H ∞ attenuation criterion for the estimation error dynamics is given by 2 2 () 0

   wt et wt , 2 () sup () 
where 0

 > is a positive scalar representing the disturbance level of attenuation [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]. This is equivalent to the existence of a Lyapunov functional candidate ( )

Ve such that   2 0 TT Ve ee ww     . ( 4.28) 
Then, using condition in (4.5), the following inequality is equivalent to (4.28): The matrix transformations in section 4.2.2 will be used in the following developments: 1) (4.31) for the first approach with matrix transformation in [START_REF] Shaked | Improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty[END_REF]) (Theorem 4.4); 2) (4.30) and (4.3) for the second approach with Finsler's Lemma in (de [START_REF] De Oliveira | Perspectives in robust control[END_REF]) (Theorem 4.5); 3) (4.31) for the third approach with matrix transformation (Peaucelle et al., 2000) (Theorem 4.6). In Table 4.3 the obtained conditions for each approach are presented. ( )

012 012 012 0 q qq iii i iii i iii i  ∈ < ∑   ρ , ( ) { } 1 012 ,, , , 1 , 2 , 
, ii i i ii i i 4.3, 4,4, and 4.5 are presented in order to illustrate the behavior of the attenuation level  with respect to parameter q in conditions (4.32), (4.33), and (4.34), respectively. The minimal value for  is calculated for From the figures above it is clear that if parameter q increases, the minimal value of  decreases. Conditions in Theorem 4.6 always give better results than the others. ♦

q q iii i r + ∀∈  ,  = . Eq. Th. 4.4 0 h G = h H =  h K =  ( ) ( ) ( ) ( ) 0 12 12 0 12 0 12 12 0 qqq q q T i T i ii i ii i i ii i i ii i ii PI DP I HH A K C P H H      ⎡⎤ ⎢⎥ -+ * * ⎢⎥ ⎢⎥ - * ⎢⎥ ⎢⎥ +- - - ⎢⎥ ⎣⎦    (4.32) Th. 4.5 h H =  h K =  ( ) ( ) ( ) ( ) ( ) ( ) ( )
TT TT i i ii i i ii T i ii i ii i i ii i i ii i i ii i i ii HA KC I DH GK I P H H A KC HD KG H    ⎡ ⎤ -+ * + * * ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ -- * ⎢ ⎥ ⎢ ⎥ -+ - - - - * ⎢ ⎥ ⎣ ⎦       (4.33) Th. 4.6 P =  h K =  ( ) ( ) ( ) ( ) 12 
  0,1   .

Observer design with unmeasured premise variables: ẑz 

This section provides some results concerned with state estimation for continuous-time nonlinear systems. It is shown that the differential mean value theorem and a quadratic Lyapunov function can be used to provide conditions in the form of linear matrix inequalities, guaranteeing the state estimation error to be asymptotically driven to zero. As in the previous section, an extension to H disturbance rejection is also presented.

Problem statement

Consider the continuous-time TS model with disturbances in (4.1). As the development presented hereafter concerns state variable estimations, it is convenient to separate the expressions of the functions   i h  which depend exclusively on measured premise variables   z  and the ones depending on non-measured premise variable   z  . This separation leads to the next equivalent representation of (4.1): 

        11 11 , r r i j ij ij ij ij r r ij i j i j ij x zz A x B u D w A x B u D w yz z C x G w C x G w           
    ii zh z    ,   1 j z    ; when none of them is measurable,   1 i z    ,     jj zh z    .
Notice also that: hold; 3) the observer is supposed to converge to the system's state. From these bounds, scalars j  are deduced such that

j j z       in xu  .
The following example shows the relation between TS models (4.1) and (4.36). which can be rearranged as:

1 12 1 11 2 22 1 12 1 0 0 , c in c x Kx x x xx u Sx xx kx Kx x yx                               (4.38)
where 1

x is the biomass concentration, 2

x the substrate,  * and c K the Contois law parameters, and k a yield coefficient. The bioprocess inputs are the dilution rate u and the substrate concentration in S .

Considering the state dependent terms in the matrices, i.e. ( )

11 x x  = , ( ) 22 x x  = , and
( )

1 3 12 c x x K xx  = +
, where 2

x is an unmeasured state, the following premise variables are defined according to representation (4.36): is straightforward; it will be discussed afterwards in section 4.3.3.

1 zx  = , 1 2 zx  = ,

Observer design with unmeasured variables

The following observer structure is proposed for the TS model in Recalling that êxx =-is the estimation error and using (4.1) with (4.39), its dynamics is:

  

( ) ( ) ( ) ( ) ( ) 1 ˆˆˆ1 1 ˆˆ. hh hh h h h hh h hh h eAP K C eAA xBB u PK C C x D PKG w - -- =- +- +- -- + -  (4.42)
To expand the grouped matrix differences above, the second notation is used: , so that: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ˆ11 ˆ11 ˆ11 ˆ, ˆ, ˆ. r r ij ji j ij r r ij ji j ij r r ij ji j ij A Az z z A B Bz z z B CC z z zC                     
           11 ˆˆˆˆˆˆˆ1
( ) ( ) ( ) ( ) ( ) 11 ˆˆ1 1 1 ˆˆ1 . hh hh h h r jz j j j hh h h h j eAP K C eDP K G w ce A P KC PY x B PZ u      -- -- - = =- +- ⎡⎤ +∇ - + + + ⎢⎥ ⎣⎦ ∑  (4.46)
With the assumption of a linear mapping z eT e = and considering the notation: 

⎡ ⎤ = ⎢⎥ ⎣⎦  , ( ) 
( ) ( ) ( ) 1 2 r c c c c      ⎡⎤ ∇ ⎢⎥ ⎢⎥ ∇ ⎢⎥ ∇= ⎢⎥ ⎢⎥ ⎢⎥ ∇ ⎣⎦  , ( ) ( ) xu z nn rn a b    + ⋅× ⎡⎤ ⎢⎥ =∈ ⎢⎥ ⎣⎦  , ( ) ( ) ( ) ( ) ( ) 1 2 ar r x c x c Ix c x c       ⎡⎤ ∇ ⎢⎥ ⎢⎥ ∇ ⎢⎥ =⊗ ∇ = ⎢⎥ ⎢⎥ ⎢⎥ ∇ ⎣⎦  , ( ) ( ) ( ) ( ) ( ) 
1 2 br r uc uc Iu c uc       ⎡ ⎤ ∇ ⎢⎥ ⎢⎥ ∇ ⎢⎥ =⊗ ∇ = ⎢⎥ ⎢⎥ ⎢⎥ ∇ ⎣⎦  .
Consider first the estimation without perturbation, 0 w = :

( ) Proof: Taking into account the estimation error model (4.49), the time-derivative of (4.41) gives:

ˆˆˆĥ
( ) ( ) 

ˆˆˆˆˆˆˆˆ0
CC = ( ) ( ) ( ) 2 * T ij ij ij ij ij ij r n PA K C T T I      ⎡⎤ -+ + ⎢⎥ = ⎢⎥ * - ⎢⎥ ⎣⎦ 1 ij i ij ir ij PA Y PA Y   ⎡⎤ =+ + ⎢⎥ ⎣⎦ 
1 ijkl i ijkl ir ijkl PA Y PA Y   ⎡⎤ =+ + ⎢⎥ ⎣⎦  2 1 r x j j    = ≥ ∑ (4.56) ĥ CC = ( ) ( ) ( ) ( ) 2 * T ij ij ij ij ij ij rn m PA K C T T I      + ⎡⎤ -+ + ⎢⎥ = ⎢⎥ * - ⎢⎥ ⎣⎦ 11 ij i ij ir ij i ij ir ij PA Y PA Y PB Z PB Z    ⎡⎤ =+ + + + ⎢⎥ ⎣⎦  2 1 22 r tj j txu      = ≥ =+ ∑ (4.57) ˆh h CC = ( ) ( ) ( ) ( ) 2 * T ij ij kl ijkl ijkl ijkl ijkl rn m PA K C T T I      + ⎡⎤ -+ + ⎢⎥ = ⎢⎥ * - ⎢⎥ ⎣⎦ 11 ijkl i ijkl ir ijkl i ijkl ir ijkl PA Y PA Y PB Z PB Z    ⎡⎤ =+ + + + ⎢⎥ ⎣⎦ 

H disturbance rejection

The following theorem gives conditions to guarantee H ∞ attenuation criterion for the estimation error dynamics given in (4.27).

Theorem 4.8: The estimation error model (4.48) In order to compare with results in [START_REF] Ichalal | On observer design for nonlinear Takagi-Sugeno systems with unmeasurable premise variable[END_REF], the following conditions are obtained for the particular case ˆh h BB = and ĥ CC = : C is used, the mean value theorem can still be used in the following way: it exists can be obtained for 1 

{ } { } { } { } 0, 1, 2, , , , 1, 2, , , 2 0, , 1, 2, , , , 1, 2, 
( ) 1 cx x   =+ - , ] [ 0,1  ∈ such that:           ˆĵ jj j xc zx zx zx xx zce x                  , ( 4 
 * = , 1 k = , 1000 c K = , 0 . 
0 D = , 0 G = .
Since the MFs depend on the unmeasured state 2

x , it is not possible to construct an "exact" observer (in the sense of the sector nonlinearity approach) with the classical measurablepremise approach for TS models.

In this example, ( ) ( ) In this example, ( ) ( ) conditions. Parameter  for conditions in (Bergsten et al., 2001) is calculated in each iteration while for Theorem 1 in [START_REF] Ichalal | Conception d'observateurs pour un modèle de Takagi-Sugeno à variables de décision non mesurables[END_REF] [START_REF] Ichalal | Conception d'observateurs pour un modèle de Takagi-Sugeno à variables de décision non mesurables[END_REF], and "  " for conditions in [START_REF] Bergsten | Fuzzy observers, in: Fuzzy Systems[END_REF].

1 1 4 1 88 zc z z c zz        = ⎛⎞ ∂ - ∂ ⎜⎟ ∇ == = - ⎜⎟ ∂∂ ⎝⎠ , ( ) 

Example 4.4:

Consider the following nonlinear model: :1

( ) ( ) ( ) ( ) ( ) ( ) 32 
x xx = ∈ ≤  
can be obtained where: 

 ⎡⎤ ⎢⎥ == ⎢⎥ -- ⎢⎥ + ⎢⎥ ⎣⎦ , 0 G = , [ ] 0,1  ∈ , ( ) ( ) 1 1s i n 2 z z    - = , ( ) ( ) 2 1s i n 2 z z    + = , ( ) 1 1, zz   =- ( ) 2 zz    = , ( ) ( ) ( ) 11 1 hz z z    = , ( ) ( ) ( ) 22 1 hz z z    = , ( ) ( ) ( ) 31 2 hz z z    = , ( ) ( ) ( ) 42 2 hz z z    = .
No disturbances are considered for this example, i.e., 0 w = . The following parameters are calculated: Figure 4.9. Feasibility region: "  " for conditions (4.55), "  " for conditions in [START_REF] Ichalal | On observer design for nonlinear Takagi-Sugeno systems with unmeasurable premise variable[END_REF]. This chapter gives some general concluding remarks on the results presented in this thesis as well as possible directions for future research.

( ) ( ) ( ) ( ) 1 1 1s i n cos 1 22 2 zc zz c c zz        = ⎛⎞ ∂-∂ ⎜⎟ ∇= = = - ≤ ⎜⎟ ⎜⎟ ∂∂ ⎝⎠ , ( ) ( ) 

General conclusions

This thesis has been directed on the analysis of continuous-time nonlinear systems via Takagi-Sugeno models. The following TS representations have been considered along this thesis: 1) standard TS model (5.1) and 2) descriptor TS model (5.2).

Standard TS model: (5.

   1 r ii i i x hz A x B u     ,    1 r ii i yh z C x    . ( 5 
2)

The following problems have been addressed:

 State feedback controller design.

 Observer design.

The goal of all new approaches has been focused in to reduce the conservativeness on the conditions of former results within TS-LMI framework.

New schemes for state feedback controller design have been developed for the TS representations (5.1) and (5.2). For the standard case, these schemes which are based on some matrix properties can be split in two parts: 1) via quadratic Lyapunov functions and 2) via non-quadratic Lyapunov functions. For the first part, the scheme proposed incorporates a relaxation based on multiple convex sums such that asymptotic features are kept. For the second part, schemes based on fuzzy (FLF) or line-integral (LILF) Lyapunov functions have been presented. The conditions thus achieved are local or global within a compact set of the state space for FLF and LILF, respectively. For stabilization problem based on a LILF, convex structure remains until second order systems. In addition, a new non-quadratic Lyapunov functional (NQLF) has been proposed which leads to less conservative conditions.

For descriptor case, the schemes developed have been based on QLF as well as LILF. Also, the disturbance rejection problem has been addressed. All of these strategies give more relaxed conditions respect to previous works.

In the case of observer design only standard TS model (5.1) has been considered. Two directions have been discussed: 1) premise vectors are based on measured variables and 2)

premise vectors are based on unmeasured variables or both. In the first direction progressively more relaxed conditions via a quadratic Lyapunov function and multiple nested sums have been obtained. Some alternatives through matrix transformations have been given. For the second direction, a novel scheme based on the differential mean value theorem has been addressed. The feasibility set of this approach overcomes the results of previous methods on this direction. The LMI conditions obtained assure asymptotical convergence to zero for the state estimation error. An extension of these results to H ∞ performance design has been presented. The contributions developed for observer/controller design are summarized in the following tables. 

Future work

This section gives some directions for future research.

Stabilization with multiple nested convex sums

When the following control law is adopted:

1 hh h hh h uF H x    , (5.3) 
where q hh h F   and q hh h H     are convex matrices and " q " is the number of convex sums.

Whatever is the approach used altogether with the complex control law (5.3), it can lead to problems for implementation purposes because several multiplications and matrix inversion have to be performed on real-time applications, especially in nonlinear TS representations with a high number of rules. However, some tracks can be explored. Once we get a stabilizing Lyapunov function, it is possible to: 1) apply regressions on the control law to get a simpler one (approximation); 2) build a numerical map (may use a lot of memory); 3) use the obtained Lyapunov function and search for a simpler controller by LMI (may lead to infeasibility if the problem is sensitive) or via optimal control (may lead to high gains).

Non-quadratic Lyapunov functions

An interesting result for stabilization which circumvent handling the time-derivatives of MFs, are based on a line-integral Lyapunov function which leads to global conditions within the compact set of the state space [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF]. This approach has been improved at least for second order systems leading to LMI conditions instead of BMI. Nevertheless, if higher order systems are considered, then the problem cannot be treated as a convex problem.

In order to understand the difficulties that arise with the control problem associated with 1 h h dd q q q q d q q q d Pq q q d d d q q q q d P qq qd qq qd d d q

    0, 2 x Vx f d      ,  1 h f Px    ,
               
. Despite of the fact that 1 h P  can be easily removed from the LMI constraints (the same way as for the 2 nd order case), the adjoin matrix presents BMI conditions for the 3 rd order and polynomial conditions for higher order and up-to-now no transformation is available to render the problem LMI.

Therefore, tracks that can be pursued need some extra matrix operations, such that Finsler's lemma or the use of descriptor redundancy. Another point of view could be to solve a sort of 2 path algorithm. The first one would consider the solution to the general problem  0 hh h h AP BF    with h P holding the path-independent structure. Note that as duality is not satisfied, this does not guarantee that the "real" problem involving path-independent structure of 1 h P  will be satisfied. This point is illustrated via counter-example in (Guelton et al., 2010). If a solution is found, then use the gains obtained h F in a single stability problem of the closed-loop that is a LMI constraints problem such as in [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF].

Non-quadratic Lyapunov functional

A new approach via a non-quadratic Lyapunov functional (NQLF) have been proposed

which gives also global conditions without imposing strong restrictions on the structure of MFs as path-independent line integrals do and without any limitation on the system order. The NQLF has the following structure:

     1 1 1 r TT si i i Vx xPx x s ztP x         , (5.5) 
with 0

T ii PP  , and       1 0 t ii t sz t hz d       , 0   . (5.6)
Following the same generalization that can be found in (Ding, 2010[START_REF] Lee | Approaches to extended non-quadratic stability and stabilization conditions for discrete-time Takagi-Sugeno fuzzy systems[END_REF][START_REF] Estrada-Manzo | Controller design for discretetime descriptor models: a systematic LMI approach[END_REF] with multiple sums Lyapunov functions, (5.5) 

 ,   1, 2, , j q   :       1 0 jj j t ii t j sz t hz d       , 0 j   .
(5.8)

Therefore, these extensions also directly make sense for TS time-delay systems since the Lyapunov functional does already implicitly involve delays which could be easily to handle.

Consider the following classical Lyapunov-Krasovskii functional candidate for time-delay systems [START_REF] Gu | Stability of time-delay systems[END_REF]: .9) where  is the time-delay. The idea is to substitute the term 1

     1 23 0 tt TT T tt V VV V x Px x s Sx s ds x s Rx s dsd                     , ( 5 
V in (5.9) by the NQLF in (5.5) or its extension (5.7), and try to get LMI conditions improving former results.

Observer design

All approaches presented in this thesis for state estimation assume a quadratic Lyapunov function for both cases measured/unmeasured variables premise vector. Therefore, nonquadratic Lyapunov functions or functional can be applied in the analysis in order to reduce the degree of sufficiency of the LMI conditions. Nevertheless, this problem is far from being easy. In the "simplest" case the Lyapunov function writes:

    , which means a part of  

x t  . Thus, it is directly impossible to cope with the observation of an unstable system, as to cope with (5.12), it will be required to have

  k zt 
bounded. This point can be thought as a serious limitation.

On other hand, the results presented in this work about state estimation are only developed for standard TS model, thus, it would be interesting to extend them for descriptor TS representation.

Real-time applications

All results provided in this thesis are under a theoretical framework. Nevertheless, it is also important to test the different approaches provided in this work for different physical systems and compare with other strategies as heuristic fuzzy controller (model-free) or classical methodologies on nonlinear control. Some academic physical systems that are available at ITSON which could be used are: the inverted pendulum rail, the furuta pendulum, twin rotor MIMO, interconnected tanks, and 3D crane.

APPENDIX A. Lyapunov Stability

A.1. Stability Criteria

The following definitions an theorems can be found in [START_REF] Khalil | Nonlinear systems[END_REF]. Consider the autonomous nonlinear system:

  x fx   , x   , (A.1)
with an equilibrium point in 0 x  where 

 stable if, for any 0  > , there is ( ) 0   = > such that ( ) ( ) 0, 0 x xt t  < ⇒< ∀ ≥
 unstable if it is not stable.

 asymptotically stable if it is stable and  can be chosen such that ( ) ( )

0l i m 0 t xx t  →∞ < ⇒= .
The following theorems define the type of stability for the equilibrium point 0

x = via a function   Vx called Lyapunov function. Theorem A.1. Let : V    be a continuously differentiable function such that       00 0, 0 0, , V Vx x Vx x          (A.2) then, the equilibrium point 0 x  is stable. Theorem A.2. Let : V    be a continuously differentiable function such that         00 0, 0 0, 0 , V Vx x Vx x           (A.3) then, the equilibrium point 0 x  is asymptotically stable. Theorem A.3. Let : x n V   be a continuously differentiable function such that      00 0, 0 0, 0, V Vx x xV x Vx x         (A.4)
then, the equilibrium point 0 x  is globally asymptotically stable.

Remark A.1: Sufficient conditions are achieved with these theorems; it means that if a function  Vx cannot be found such that the conditions are satisfied no conclusions can be drawn respect to the stability of the equilibrium point. 

APPENDIX B. Matrix Inequalities

B.2. Linear Matrix Inequalities

In this section is presented a brief review about LMI framework. For more details check [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF][START_REF] Scherer | Linear matrix inequalities in control[END_REF]. The standard form for a Linear matrix inequality (LMI) is defined as: 

 0 1 0 m ii i Fx F x F     , ( B 

Standard problems

The three common convex or quasi-convex optimization problems for the analysis and controller design of systems are introduced below. 

B.3. Bilinear Matrix Inequalities

A bilinear matrix inequality (BMI) has the next structure [START_REF] Vanantwerp | A tutorial on linear and bilinear matrix inequalities[END_REF]: temps discret [START_REF] Guerra | Ces fonctions générales de Lyapunov partagent les mêmes MFs que le modèle TS. L'utilisation de PWLF se sont révélés être particulièrement difficile à traiter depuis des généralisations par morceaux de la fonction de Lyapunov quadratique exigent des conditions supplémentaires pour garantir sa continuité[END_REF]Guerra et al., 2009;Ding, 2010;[START_REF] Zou | des modèles TS: (a) ils peuvent représenter exactement une grande famille de modèles non linéaires dans un ensemble compact de l'espace de l'Etat par l'intermédiaire de l'approche du secteur non-linéarité; (b) sa structure convexe sur la base de fonctions d'appartenance permet aux méthodes linéaires d'être «facilement» imité par la méthode directe de Lyapunov[END_REF].

  0 11 1 1 ,0 mn m n ii j j i j i j ij i j Fxy F x F y G x yH           , ( B 
c   with   , ca b  such that:           fc f bf a b a f c b a z        . (B.17) j k ii  ,   12 1 1 ,, , 1 , 2 , 
Cette asymétrie est due au fait que les dérivées temporelles des MFs apparaissent dans l'analyse et ne peuvent pas être facilement exprimés comme un problème convexe; en outre, elle conduit à une analyse locale qui peut créer des boucles algébriques lorsque la conception du contrôleur est concerné (Blanco et al., 2001). Parmi les travaux sur l'approche non quadratique local, deux directions peuvent être trouvées: celles qui assume simplement limites connues a priori des dérivés de la MFs [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF][START_REF] Bernal | Nonquadratic stabilization of continuous-time systems in the Takagi-Sugeno form[END_REF]Mozelli et al., 2009;[START_REF] Zhang | Relaxed stability conditions for continuous-time T-S fuzzy-control systems via augmented multi-indexed matrix approach[END_REF]Lee et al., 2012;[START_REF] Yoneyama | Nonlinear control design based on generalized Takagi-Sugeno fuzzy systems[END_REF], et celles qui réécrit la dérivée de la MFs à obtenir des limites plus structurés (Guerra et Bernal, 2009;Bernal et Guerra, 2010 ;[START_REF] Pan | Non-quadratic Stabilization of Continuous T-S Fuzzy Models: LMI Solution for a Local Approach[END_REF][START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF][START_REF] Lee | Relaxed LMI Conditions for Local Stability and Local Stabilization of Continuous-Time Takagi-Sugeno Fuzzy Systems[END_REF]. FLFs devraient être utilisés pour obtenir des conditions globaux, des solutions de rechange en intégrale de ligne peuvent être considérées. Dans le travail séminal [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF], les auteurs ont montré comment les fonctions de Lyapunov par intégrale de ligne peuvent être utilisés pour éviter les dérivés de MFs au prix d'imposer des structures restrictives pour garantir la ligne intégrante d'être indépendant du trajectoires; en outre, cette approche conduit à inégalités matricielles bilinéaires (BMI en anglais) pour la conception de contrôleur; par conséquent, ils ne sont pas de façon optimale solvable parce que les méthodes existantes peuvent conduire à des minima locaux.

Pour (3) autres modèles convexes en plus de ceux TS ont été utilisées: polynôme [START_REF] Tanaka | Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach[END_REF][START_REF] Sala | On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems[END_REF] et le descripteur [START_REF] Taniguchi | Fuzzy descriptor systems: stability analysis and design via LMIs[END_REF]. La structure de descripteur paru dans [START_REF] Luenberger | Dynamic equations in descriptor form[END_REF] avec le principal intérêt de décrire familles non linéaires des systèmes d'une manière plus naturelle que l'espace d'un état standard, généralement des systèmes mécaniques [START_REF] Luenberger | Dynamic equations in descriptor form[END_REF][START_REF] Dai | Singular control systems[END_REF]. Modèle de descripteur de TS est similaire à la version standard, la différence est que le descripteur a généralement deux familles de MFs, un pour le côté gauche et l'autre pour le côté droit. Dans [START_REF] Taniguchi | Fuzzy descriptor systems: stability analysis and design via LMIs[END_REF], la stabilité et la stabilisation des systèmes de descripteurs flous ont été présentés sous un régime quadratique; ce travail tire parti de la structure de descripteur de réduire le nombre de contraintes LMI, réduisant ainsi la charge de calcul. De meilleurs résultats pour la stabilisation ainsi que la conception du contrôleur robuste ont été présentés dans (Guerra et al., 2007) et [START_REF] Bouarar | Robust fuzzy Lyapunov stabilization for uncertain and disturbed Takagi-Sugeno descriptors[END_REF], respectivement.

Le problème de l'estimation de l'état des systèmes dynamiques est l'un des principaux sujets de la théorie du contrôle et a donc été abondamment traité dans la littérature; son importance se pose clairement du fait que la loi de commande dépend souvent de variables d'état qui peuvent ne pas être disponibles en raison des capteurs coût élevé, inexistence ou impraticabilité. Estimation d'état à la fois pour les systèmes linéaires et non linéaires ont été proposées il ya longtemps [START_REF] Luenberger | An introduction to observers[END_REF][START_REF] Thau | Observing the state of non-linear dynamic systems †[END_REF]; les plus récents travaux sur le sujet sont: techniques basées sur la mode glissant [START_REF] Efimov | Global sliding-mode observer with adjusted gains for locally Lipschitz systems[END_REF], approche à grand gain non linéaire [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF][START_REF] Prasov | A nonlinear high-gain observer for systems with measurement noise in a feedback control framework[END_REF], approche de gain variable dans le temps [START_REF] Farza | Continuousdiscrete time observers for a class of MIMO nonlinear systems[END_REF], et des extensions tenu en compte entrées inconnues sont également disponibles [START_REF] Barbot | An observation algorithm for nonlinear systems with unknown inputs[END_REF][START_REF] Bejarano | Observation of Nonlinear Differential-Algebraic Systems with Unknown Inputs[END_REF]. Conception d'observateur pour les modèles TS peut être séparé en deux catégories: la première considère que les MFs dépendent de variables mesurées [START_REF] Tanaka | Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs[END_REF][START_REF] Patton | Fuzzy observers for nonlinear dynamic systems fault diagnosis[END_REF][START_REF] Teixeira | On relaxed LMI-based designs for fuzzy regulators and fuzzy observers[END_REF][START_REF] Akhenak | Design of sliding mode unknown input observer for uncertain Takagi-Sugeno model[END_REF]Lendek et al., 2010a); le second suppose que les MFs sont également formés par des variables non mesurées [START_REF] Bergsten | Fuzzy observers, in: Fuzzy Systems[END_REF][START_REF] Bergsten | identifiés: (1) la façon dont les MFs sont retirés de sommes convexes imbriqués pour obtenir des conditions LMI suffisantes, (2) le type de fonction de Lyapunov, et (3) la nonunicité de la construction de modèle TS. Par conséquent, un effort énorme a été consacrée à atteindre nécessité ou, au moins, se détendre suffisance afin de jeter une grande famille de problèmes dans le cadre TS-LMI[END_REF][START_REF] Ichalal | Conception d'observateurs pour un modèle de Takagi-Sugeno à variables de décision non mesurables[END_REF][START_REF] Yoneyama | H∞ filtering for fuzzy systems with immeasurable premise variables: an uncertain system approach[END_REF]Lendek et al., 2010a;[START_REF] Ichalal | On observer design for nonlinear Takagi-Sugeno systems with unmeasurable premise variable[END_REF][START_REF] Ichalal | Observer design and fault tolerant control of takagi-sugeno nonlinear systems with unmeasurable premise variables[END_REF]. Pour la première classe, les résultats obtenus dans le cadre quadratique ressemblent à la dualité caractéristique observateurs/contrôleurs de systèmes linéaires. Pour la seconde classe, une façon de faire face à cette classe de variables non mesurées est de tenir compte des conditions supplémentaires en utilisant des constantes de Lipschitz classiquement comme dans [START_REF] Ichalal | Conception d'observateurs pour un modèle de Takagi-Sugeno à variables de décision non mesurables[END_REF]. Une autre façon est d'utiliser le Théorème de valeur moyenne différentiel (DMVT en anglais) comme dans [START_REF] Ichalal | On observer design for nonlinear Takagi-Sugeno systems with unmeasurable premise variable[END_REF][START_REF] Ichalal | Observer design and fault tolerant control of takagi-sugeno nonlinear systems with unmeasurable premise variables[END_REF].

Il est difficile d'extraire ce que sont les vrais résultats importants; il existe un besoin pour converger vers des méthodes "utiles". Les idées suivies par cette thèse, quels qu'ils soient (élargissement de la fonction de Lyapunov, la loi de commande, les sommes imbriqués, le vecteur d'état), tentent de réduire le conservatisme des anciens résultats. Par exemple, pourquoi est-il pertinent d'introduire des lois de contrôle dont la complexité peut conduire à des conditions moins conservatrices si il ya déjà conditions nécessaires et suffisantes asymptotiques (ANS en anglais) pour la conception de contrôleur PDC basé sur fonction de Lyapunov quadratique? La raison réside dans le fait que les conditions ANS ont été obtenus uniquement pour les sommations convexes [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF][START_REF] Kruszewski | A triangulation approach to asymptotically exact conditions for fuzzy summations[END_REF] dont la charge de calcul atteint très rapidement une taille prohibitif pour les solveurs actuels; Les problèmes suivants ont été abordés dans les chapitres suivants afin de fournir une proposition de solution pour y faire face:

• Malgré le fait que conditions asymptotiquement nécessaires et suffisantes (ANS) sont fournies dans la littérature, la forte demande de ressources informatiques ainsi que le conservatisme associé au choix du candidat de fonction de Lyapunov ou le régime de la loi de contrôle particulier sont encore des problèmes ouverts.

• Même avec l'utilisation de fonctions de Lyapunov non quadratique pour réduire prudence des conditions suffisantes parce que le régime quadratique, dans le cas continu se pose la nécessité de gérer les dérivés de la MFs dont difficile de trouver des conditions globaux au problème sur conception de contrôleur.

• Conception d'observateur pour les modèles TS sous variables non mesurées qui n'est pas facile de jeter comme un problème convexe. réduction significative sur le conservatisme est obtenu. En outre, le problème de rejet de perturbation a été résolu. Toutes les stratégies présentées produits de plus grands ensembles de faisabilité, en préservant leur expression LMI jusqu'à paramètre dépendances qui peuvent être traitées par programmation linéaire ou recherche espacées logarithmique. La première partie propose des systèmes de conception d'observateurs de plus en plus détendue sur la base de: (1) une transformation de matrices «Tustin-like» apparu dans [START_REF] Shaked | Improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty[END_REF] (2) le Lemme du Finsler (Jaadari et al., 2012) et (3) une transformation basés sur [START_REF] Peaucelle | A new robust D-stability condition for real convex polytopic uncertainty[END_REF]. Tous ces régimes sera prolongée pour incorporer plusieurs sommes convexes imbriqués (Márquez et al., 2013). En outre, les extensions directes à rejet de perturbation H sont développées. Lipschitz classiques [START_REF] Bergsten | Fuzzy observers, in: Fuzzy Systems[END_REF][START_REF] Ichalal | Conception d'observateurs pour un modèle de Takagi-Sugeno à variables de décision non mesurables[END_REF]; ce ne sera pas l'approche présentes considéré. L'approche en [START_REF] Ichalal | On observer design for nonlinear Takagi-Sugeno systems with unmeasurable premise variable[END_REF][START_REF] Ichalal | Observer design and fault tolerant control of takagi-sugeno nonlinear systems with unmeasurable premise variables[END_REF] Lorsque la loi de commande suivante a été adoptée: H     sont des matrices convexes et « q » est le nombre de sommes convexes.

Quelle que soit l'approche utilisée tout à fait avec la loi de commande complexes (R.6), il peut conduire à des problèmes à la intention des implémentation parce que plusieurs multiplications et inversion de la matrice doivent être effectuées sur les applications en temps réel, en particulier dans les représentations TS non linéaires avec un nombre élevé de règles .

Cependant, certaines pistes peuvent être explorées. Une fois que nous obtenons une fonction de Lyapunov de stabilisation, il est possible de: 1) applique des régressions sur la loi de commande pour obtenir une plus simple (approximation); 2) construire une carte numérique (peut utiliser beaucoup de mémoire); 3) utiliser la fonction de Lyapunov obtenus et recherche pour un contrôleur simple par LMI (peut conduire à une impossibilité si le problème est sensible) ou via un contrôle optimal (peut conduire à des gains élevés).

 Les fonctions de Lyapunov non quadratique.

Un résultat intéressant pour la stabilisation qui contourne la manipulation des les dérivés des MFs, sont basées sur une fonction de Lyapunov par intégrale de ligne qui conduit à des conditions globales au sein de l'ensemble compact de l'espace d'état [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF].

Cette approche a été améliorée au moins pour les systèmes de second ordre conduisant à des conditions LMI à la place de BMI. Néanmoins, si les systèmes d'ordre supérieur sont considérés, alors le problème ne peut pas être traité comme un problème convexe. Afin de comprendre les difficultés qui se posent sur le problème de contrôle associé avec 1 h h dd q q q q d q q q d Pq q q d d d q q q q d P qq qd qq qd d d q
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. Malgré le fait que 1 h P  peut être facilement retiré des contraintes LMI (de la même façon que pour le cas de 2ème ordre), la matrice de jouxtent présente des conditions BMI pour le cas de 3ème ordre et des conditions polynômes pour ordre supérieur et up-to-maintenant aucune transformation est disponibles pour rendre le problème LMI.

Par conséquent, les pistes qui peuvent être poursuivis besoin de quelques opérations de matrice supplémentaires, tels que le lemme de Finsler ou l'utilisation de descripteur redondance. Un autre point de vue pourrait être de résoudre une sorte d'algorithme de 2 étape.

La première serait la solution à envisager le problème général  0 hh h h AP BF   avec h P maintien de la structure de trajectoire indépendant. Notez que la dualité est pas satisfait, cela ne garantit pas que le «vrai» problème impliquant la structure de trajectoire indépendant de 1 h P  sera satisfait. Ce point est illustré par l'intermédiaire de contre-exemple dans (Guelton et al., 2010). Si une solution est trouvée, puis utilisez les gains obtenus h F dans un problème de stabilité unique de la boucle fermée qui est un problème contraintes LMI comme dans [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF].

 Fonctionnelle de Lyapunov Non quadratique. (R.9) Suivant la même généralisation qui peut être trouvé dans (Ding, 2010[START_REF] Lee | Approaches to extended non-quadratic stability and stabilization conditions for discrete-time Takagi-Sugeno fuzzy systems[END_REF][START_REF] Estrada-Manzo | Controller design for discretetime descriptor models: a systematic LMI approach[END_REF] , ce qui signifie une partie de   
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  to be stabilizable via an ordinary PDC control law and a quadratic Lyapunov function. Complexity in the representation can be introduced artificially by adding models inside the original polytope. The matrices thus obtained are equally spaced, i.e.:
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 21 . The nonlinearities are assumed to be bounded and smooth in a compact set x  of the state space which include the desired equilibrium point at 0 x = . The premise variables vector is formed by all the individual elements , p zx t z x t z x t  which may depend on measured and/or unmeasured states variables. A more general case is to consider a non affine-in control model, i.edepends also on the control law. However, for TS representations, the MFs are based also on  ut, i.e., it gives algebraic nonlinear equations that can be difficult to solve when dealing with control, it means,

  previous steps, the nonlinear model in (2.3)-(2.4) can be exactly represented in x  by the following continuous-time TS model:

  and positive definite matrix.

  of nonlinear functions. The matrix   Ex might be singular in some cases. However, in this thesis only non-singular representation on  Ex are addressed because numerous applications in mechanical systems can be treated with this assumption.

  of model rules in the left and right part, respectively. As in the ordinary TS model, the two sets of MFs set of the state variables; they both depend on a premise vector p z   which depends on the state x .

  On the other hand, in the standard representation (2.98) the nonlinear terms after multiplication in the right-hand side lead to 4 2 16. r 

  et al., 2007). Case 3) gives a better set of solutions than the other cases. Note that whatever is the structure selected, as a constant matrix in order to avoid the time derivatives of the MFs; case 3) for a descriptor TS model (2.99) with 0 u  , the time-derivative
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 331 RemarkIn the following sections, matrix functions   z  and   z  are going to be chosen according to the problem under consideration, attending to the following criteria: (a) do they lead to LMI conditions?, (b) do they relax (i.e., contain) previous results?, (c) do they provide any insight towards the goal of closing the gap between "classical nonlinear control"

  .22) Applying lemma C.4 to (3.22) gives the conditions presented in (3.21); thus producing the desired result. ◈

  .

  4. The parameters to compare are the maximum feasible value of b , the complexity parameter used ( d ), the number of LMI conditions ( L N ) and scalar decision variables ( D N ), as well as the time required by the solver to find a solution.

  obtain the same max b as other approaches. The advantages of using conditions (3.25) instead of conditions in Theorem 5 of (Sala and Ariño, 2007) or (3.28) are clear: they significantly lowered the number of LMIs, decision variables (except to (3.28)), and computational time to find a solution.♦ Example 3.1 (continued): Recall that the TS model of Example 3.1 is proved to be stable regardless of the number of its vertices; therefore the goal is to see for the different methods
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 31 Figure 3.1. Comparison: "*" for (3.14), (3.21), and (3.25) with 4 q  , "o" for Theorems 1 in
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 31 under the non-PDC control law(3.2) to hold the H attenuation criterion As shown in[START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF], condition(3.33) is guaranteed if there exists a Lyapunov functional candidate   the QLF (3.7), the following inequality is equivalent to(3.34): be used to guarantee H attenuation criterion, both can be obtained considering the closed-loop TS model(3.3) and an extended vector (

Figure 3 . 2 .

 32 Figure 3.2.  values for Theorems 3.4, 3.5, and 3.6 with 2 q = .

Figure 3 . 3 .

 33 Figure 3.3.  values for Theorems 3.4, 3.5, and 3.6 with 3 q = .

  using a fuzzy Lyapunov function and homogeneous polynomial techniques. The next section proposes an extension of

where 0 k

 0 are the weighting functions (WFs); a second part (Theorem 3.7) assumes these bounds are available (since they are guaranteed by the first part) and establishes stability based on them. It is important to stress that both sets of results are run together as a single parameter-dependent LMI problem.

  Applying property B.3 to (3.54) with

( 3 .

 3 55) guarantee(3.56), thus concluding the proof. ◈ Conditions in Theorem 3.7 are more relaxed than conditions in[START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF]; a very hard assumption has been employed that consists in the use of the Regularity of h H derives directly from block entry ( ) 2, 2 in (3.56). Remark 3.9: Lemma 3.1 altogether with Theorem 3.7 provides conditions for nonquadratic local stabilization of nonlinear systems in the Takagi-Sugeno form. The designed controller guarantee stabilization of the TS model in the outermost level contained in region

  are unfeasible. Moreover, it is also impossible to find a nona solution can be found by gradually reducing certain bounds; for instance, define the FLF in the form of(3.41).

Figure 3 .Figure 3 . 4 .

 334 Figure 3.4 depicts the biggest stabilization regions with reduced bounds ( red  ). Two trajectories of the controlled model have been included which show the convergence towards the origin.

Figure 3 . 5 .Example 3 . 5 :

 3535 Figure 3.5. Bound k  .

  quadratic stabilization conditions proposed in(Bernal and Guerra, 2010) for the TS model(3.58) are based on direct bounds over the time-derivatives of MFs and the input control law , i.e. bounds have to be taken into account to validate the stabilization region. On the other hand, Theorem 3

Figure 3 .Figure 3 . 6 .

 336 Figure 3.6 compares the stabilization domains of results in (3.55) ( 1 R ) with those in (Bernal and Guerra, 2010) ( 0 R ) for the TS model (3.58): it is clear that the new approach presents the biggest domain of attraction. ♦

  .59) As mentioned before in Section 2.3.3., a special structure on   x F has been proposed in order to satisfy the path-independency condition:

  time-derivative of the Lyapunov function in (3.59) is

Example 3 . 6 :

 36 Consider the following T-S model (Example 2 in (Rhee and Won, 2006)):

Figure 3 .

 3 Figure 3.7 shows that the feasibility set of conditions (3.72) includes that of[START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF].

Figure 3 . 7 .

 37 Figure 3.7. Comparison: " * " for(3.72) and " o " for conditions in[START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF].Let us illustrate a particular case. Selecting 4 a  , 1 b  , and 0.1   , a non-PDC controller as in (3.72) can be found via a line-integral Lyapunov function candidate (3.59).The gains and Lyapunov matrices are given by:

  Convexity in(3.77) as well as the fact that

3 :

 3 The solution set for LMIs(3.89) defined in Theorem 3.12 is included in the solution set of (3.90) defined in Theorem 3.13.Proof:The solution set of (3.90) of Theorem 3.13 guarantees(3.92). Pre-and postmultiplying(3.92) by   h I A and its transpose, respectively produces (3.88), which is guaranteed by LMIs (3.89) of Theorem 3.12, thus concluding the proof. ◈ Remark 3.15: Theorem 3.13 significantly increases the number of decision variables. If needed, a way to reduce it is to assume that

  . A controller of the form (3.82) was found via a non-quadratic Lyapunov functional (3.76) through conditions in Theorem 3.13. Due to space limitations, the Lyapunov matrices and some of the 64 gains jkl F ,

Figure 3 .

 3 Figure 3.11 shows the time response of the Lyapunov functional (a) and the states (b) from initial condition ( ) 0[ 0 . 7 0 . 5 ] x =-; as expected, the Lyapunov functional decreases monotonically and the states are driven towards the origin.

Figure 3

 3 Figure 3.11. Non-perturbed time evolution with

Figure 3

 3 Figure 3.12. Time response without disturbance and

1 

 1 = s. The minimum performance bound  such that (3.94) holds via quadratic conditions in[START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF],Theorem 3.14 , and conditions (3.100) in Remark 3.16, is provided in Table

Figure 3 .

 3 Figure 3.13.  values: "  " for[START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF], " +" for Remark 3.16, and "× " for Theorem 3.14.

Figure 3 .Figure 3 .

 33 Figure 3.14 illustrates the effect over the minimal value of  (z axis) of parameters  and  (axis on the floor plane); the same plot is shown from two different angles in order to appreciate the effect of the parameters. Note that the best results (lowest minima) are obtained via Theorem 3.14, as expected. ♦

  Consider the nonlinear model of a flexible joint robot[START_REF] Banks | Stable controller design for T-S fuzzy systems based on Lie algebras[END_REF] 

.

  In this example, no disturbances are considered, i.e., 0 w  .When convenient, a logarithmically spaced family of values (Theorem 1 and 2 in[START_REF] Estrada-Manzo | Improvements on Non-Quadratic Stabilization of Continuous-Time Takagi-Sugeno Descriptor Models[END_REF]).

Figure 3 .

 3 Figure 3.15. Stabilization: "× " for (3.112), " + " for[START_REF] Estrada-Manzo | Improvements on Non-Quadratic Stabilization of Continuous-Time Takagi-Sugeno Descriptor Models[END_REF], and " o " for[START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF].

5 a  and 1 b

 1  , Theorem 3.15 finds a stabilizing controller of the form (3.106) with the following controller gains and common part of the Lyapunov matrix:

Figure 3 .Figure 3 .

 33 Figure 3.16 shows the time response of the states for: a) open-loop ( 0 u = ); b) under the controller developed via conditions (3.112). Note that in open-loop the system is unstable (left) while states converge to zero under the designed controller (right). The simulations were carried out from initial condition   010 . 5 T x  . ♦

Lemma 3 . 2 :

 32 shows that the Lyapunov function candidate satisfies the pathindependency criterion (Lemma 2.1): The function  x F satisfies path-independent conditions if it has the next structure:

Figure 3 .Figure 3 .Figure 3 .

 333 Figure 3.18. Stability: " * " for (3.132) and " o " for condition in (Taniguchi et al., 2000). Now, selecting 5 a  and 25 b  , a Lyapunov function of the form (3.59) can be found via conditions (3.132). The Lyapunov matrices 1 i P ,

Proof:

  The time derivative of the Lyapunov function candidate(3.124) with(3

Figure 3 .

 3 Figure 3.20 shows that all the solutions from[START_REF] Estrada-Manzo | Improvements on Non-Quadratic Stabilization of Continuous-Time Takagi-Sugeno Descriptor Models[END_REF] and Theorem 2 in[START_REF] Bouarar | Robust fuzzy Lyapunov stabilization for uncertain and disturbed Takagi-Sugeno descriptors[END_REF] are included in those of Theorem 3.18.

Figure 3 . 1 

 31 Figure 3.20. Feasibility set: "× " for (3.140), " + " for Th. 1 in (Estrada-Manzo et al., 2013), and " o " from Th. 2 in (Bouarar et al., 2010) with 1, 2

Figure 3 .

 3 Figure 3.21. Time evolution of the states.

  single sums. The link between Lyapunov function and the observer design can be removed when h H   , for

Remark 4 . 4 :Remark 4 . 5 :

 4445 Results in Theorems 4.1 and 4.2 are parameter-dependent LMIs; they depend on the choice of 0   . This parameter is employed in several works concerning linear parameter varying (LPV) systems (de[START_REF] De Oliveira | Perspectives in robust control[END_REF][START_REF] Shaked | Improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty[END_REF][START_REF] Oliveira | Robust state feedback LMI methods for continuous-time linear systems: Discussions, extensions and numerical comparisons[END_REF][START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF]: they are normally prefixed values belonging to a logarithmically spaced family of values, such as: Conditions in Theorem 4.3 are LMI, i.e., they do not require a priori parameters. Nevertheless, they require more slack variables. Table
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 441 Figure 4.1. Time evolution of the estimation error.

Figure 4 . 2 .

 42 Figure 4.2. Time evolution of the states: 1x (solid line) and 2 x (dashed line).

Figures

  Figures 4.3, 4,4, and 4.5 are presented in order to illustrate the behavior of the attenuation

Figure 4 . 3 .

 43 Figure 4.3.  values for Theorems 4.4, 4.5, and 4.6 with 1 q = .

Figure 4

 4 Figure 4.4.  values forTheorems 4.4, 4.5, and 4.6 with 

Figure 4 . 5 .

 45 Figure 4.5.  values for Theorems 4.4, 4.5, and 4.6 with

  When all the premises are measured

  In the following, xu  denotes the operating set of the TS observer in which:1) TS model (4.1) perfectly match the non-linear model; 2) there exist known scalars x

Example 4 . 2 :

 42 Consider the following nonlinear model of the bioreactor from(Farza et al., 

  38) can be rewritten via the sector nonlinearity approach as a TS model(4.36) in the compact set x  with the following matrices and MFs (matrices C , D , and G are constant): linear mapping between the non-measurable premise and the state vectors is considered hereafter, i.e., zT x  = ,

  definitions presented after(4.36), the polytopic (TS) observer (4.39) can be written in a way that measured ( z  )/non-measured ( ẑ ) premise variables are separated: to be designed in the sequel. For the correspondence between both notations, it should be understood that h  =

  the differential mean value theorem in lemma B.2, and the premise error ẑ ezz   =-, (4.43) can be rewritten, i.e., it exists ,

Figure 4 . 7 :Figure 4 . 6 .

 4746 Figure 4.6. Time evolution of the states: 2x (solid line) and 2 x (dashed line).

3 :

 3 Figure 4.7. Estimation error 2 e . Example 4.3: Consider the following nonlinear model:

Figure 4 .

 4 Figure 4.8 shows the feasibility regions obtained by (a) varying parameters

Figure 4 .

 4 Figure 4.9 shows the feasibility sets for parameters

Figure 4 .

 4 Figure 4.10. Time evolution of the estimation error: 1 e (solid line) and 2 e (dashed line).

Figure 4 .

 4 Figure 4.11. Time evolution of the states: 1x (solid line) and 2 x (dashed line).

Figure 4

 4 Figure 4.12. Bound: 2

1 .

 1 The equilibrium point 0 x  of (A.1) is:

Chapitre 2 :

 2 ainsi, les approches en préservant les caractéristiques asymptotiques tout en atteignant des solutions où les conditions ANS ne peuvent pas, méritent d'être explorées. L'exemple suivant illustre les limitations des méthodes ANS. Une représentation TS, que d'une loi de commande PDC, dans l'analyse en • conception d'observateur.Les stratégies sont appliquées pour les modèles TS dans une forme standard et descripteur.Tous les développements sont basés sur la méthode directe de Lyapunov tels que les conditions LMI (ou ceux paramétrés) sont obtenus. Préliminaires sur les modèles de Takagi-Sugeno.Ce chapitre présente la base de la modélisation sous une structure convexe de systèmes non linéaires (modèle TS) ainsi que les principaux résultats sur l'analyse de la stabilité et de la conception contrôleur et d'observateur pour ce genre de modèles dans les cadres quadratique et non quadratique. En outre, certains résultats sur les modèles TS dans une forme de descripteur sont fournis mettront en lumière les avantages de ce système par rapport à la modélisation standard.Résultats sur l'analyse de la stabilité et de la conception du contrôleur en vertu d'un cadre quadratique et non quadratique à travers LMI ont été présentés en soulignant les principales contributions et les inconvénients de ces approches. En outre, le problème de l'estimation de l'état pour les systèmes dynamiques a été traitée à la fois pour les variables de prémisse mesurées et non mesurées. En outre, descripteur TS régime de modèle et diverses propositions à ce sujet ont été résumées. Quelques exemples ont été donnés pour clarifier les concepts et les approches.

Chapitre 4 :

 4 Conception d'observateur pour les modèles Takagi-Sugeno.Ce chapitre fournit des contributions sur l'estimation d'état pour les systèmes non linéaires à temps continu via les modèles TS; ils sont divisés en deux parties: le cas particulier où les vecteurs de prémisses sont basés sur les variables mesurées et le cas général où les vecteurs de prémisses peuvent être basés sur des variables non mesurées.

  La deuxième partie est plus difficile car il fait face le cas général, à savoir, une structure d'observateur qui facilite la manipulation des fonctions d'appartenance qui dépendent de variables non mesurées  î hz. Anciens résultats sur le sujet des variables non mesurées considèrent l'erreur de fonction d'appartenance     îi hz hz  tout à fait avec des constantes de

Chapitre 5 :

 5 est poursuivi dans cette thèse; la conception d'observateur est basée sur le théorème de la valeur moyenne différentiel. Ainsi, les conditions LMI assurant la convergence asymptotique de l'erreur d'estimation d'état à zéro sont obtenues; ces conditions sont étendues à la conception de la performance H .Nouvelles approches pour la conception d'observateur des modèles non linéaires de temps continu qui surmontent la mise à jour des résultats dans l'état de l'art, ont été rapportés. Une première série de résultats se concentre sur la conception d'observateur basé dans les prémisses mesurables: profitant d'une réécriture convexe du modèle (forme TS) ainsi que de plusieurs transformations de matrice tels que le lemme du Finsler, l'observateur est découplée de leur fonction de Lyapunov correspondant; en outre, la proposition de découplage permet l'introduction progressive de meilleurs résultats grâce à une structure convexe imbriqué. Une deuxième série de solutions dans ce chapitre examine le cas prémisse non mesurées: le problème d'estimation d'état est exprimée comment une convexe en utilisant d'une fonction de Lyapunov quadratique et le théorème de la valeur moyenne; la structure ainsi obtenue permet l'introduction de variables d'écart. Tant le cas des prémisses mesuré et non mesurée comprennent des extensions sur les perturbations rejet H , où de meilleurs résultats que ceux déjà disponibles dans la littérature sont signalés. Conclusions et perspectives. Ce chapitre donne quelques conclusions générales sur les résultats présentés dans cette thèse ainsi que les directions possibles pour la recherche future. Cette thèse a été dirigée sur l'analyse des systèmes non linéaires à temps continu via des modèles de Takagi-Sugeno. Les TS représentations suivantes ont été considérés dans cette thèse: 1) modèle TS forme standard (R.4) et 2) modèle TS forme descripteur (R.5ont été abordés: • conception de contrôleur de retour d'état. • conception d'observateur. Le but de toutes nouvelles approches a été porté pour réduire la prudence sur les conditions de résultats antérieurs dans le cadre TS-LMI. Nouveaux schémas pour la conception de contrôleur de retour d'état ont été développés pour les représentations TS (R.4) et (R.5). Pour le cas standard, ces systèmes qui sont fondés sur certaines propriétés de la matrice peut être divisé en deux parties: 1) par l'intermédiaire de fonctions de Lyapunov quadratique et 2) par l'intermédiaire des fonctions Lyapunov non quadratique. Pour la première partie, le schéma proposé incorpore une relaxation basée sur de multiples sommes convexes tels que les caractéristiques asymptotiques sont gardés. Pour la deuxième partie, les régimes basés sur floue (FLF) ou des fonctions de Lyapunov par intégrale de ligne (LILF) ont été présentés. Les conditions ainsi obtenus sont local ou global dans un ensemble compact de l'espace de l'Etat pour FLF et LILF, respectivement. Pour le problème de stabilisation basée sur une LILF, la structure convexe reste jusqu'à ce que les systèmes de second ordre. En outre, une nouvelle fonctionnelle de Lyapunov non quadratique (NQLF) a été proposée qui conduit à des conditions moins conservatrices. Pour le cas de descripteur, les régimes ont été développés sur la base de QLF ainsi que LILF. En outre, le problème de rejet de perturbation H a été abordé. Toutes ces stratégies donnent des conditions plus souples pour les oeuvres précédentes. Dans le cas de la conception d'observateur seul modèle TS standard (R.4) a été envisagée. Deux directions ont été discutées: 1) vecteurs de prémisses sont basées sur les variables mesurées et 2) Les vecteurs de prémisses sont basées sur variables non mesurées ou les deux. Dans la première direction conditions de plus en plus détendu via une fonction de Lyapunov quadratique et plusieurs sommes imbriqués ont été obtenus. Certaines solutions de rechange par l'intermédiaire des transformations de matrice ont été données. Pour la deuxième direction, un nouveau schéma basé sur le théorème de valeur moyenne a été abordée. La faisabilité de cette approche régler surmonte les résultats des méthodes antérieures sur cette direction. Les conditions LMI obtenues assurent la convergence asymptotique à zéro pour l'erreur d'estimation d'état. Une extension de ces résultats à la conception de la performance H a été présenté. Les contributions développés pour la conception observateur/contrôleur sont résumés dans les tableaux suivants. Stabilisation avec multiple sommes convexes imbriquées.

  Une nouvelle approche par un fonctionnelle de Lyapunov non quadratique (NQLF) a été proposés qui donne également les conditions globaux sans imposer de fortes restrictions sur la structure des MFs comme intégrales de ligne indépendants du parcours font et sans aucune limitation de l'ordre du système. Le NQLF a la structure suivante:

  , il est impossible de faire face directement à l'observation d'un système instable, que pour faire face à (R.15), il sera nécessaire d'avoir délimité  k zt  . Ce point peut être considéré comme une limitation sérieuse. En autre, les résultats présentés dans ce travail à propos de l'estimation d'état sont développés pour le modèle TS standard, par conséquent, il serait intéressant de les prolonger pour un descripteur représentation TS.  Les applications temps réel. Tous les résultats présentés dans cette thèse sont dans un cadre théorique. Néanmoins, il est également important de tester les différentes approches prévues à ce travail pour les systèmes physiques différents et de comparer avec d'autres stratégies comme contrôleur heuristique floue (sans modèle) ou méthodologies classiques sur le contrôle non linéaire. Certains systèmes physiques universitaires qui sont disponibles à ITSON qui pourraient être utilisés sont: le rail inversé de pendule, le pendule Furuta, double rotor MIMO, réservoirs interconnectés, et de la grue 3D.

  introducing extra sums in the initial problem

					( ) ( ) ij ij hzh z 11 rr == ∑∑	i j	<	0
	with	ij  =+ i AP BF i j	( ) + * , i.e.:	
			( ) 11 1 d rr r ii ii j hz hzh z  ( ) ( ) j == = ⎛⎞ ⎜⎟ ⎜⎟ ⎝⎠	i j	<	0

Table 2 .

 2 

		1. Notation for convex sums
	Description	Notation
	Single convex sum	

  Theorem 2.3 provides local conditions for stability problem of nonlinear systems in the Takagi-Sugeno form. They guarantee stability of the TS model (2.24) for the outermost Lyapunov level  contained in region x  and

			m ii    ir  m 	pn 	x
			r		1	mmm ii ij ji    	ij		r  i j m  	, 2	pn 	x	,	(2.44)
	with	mT ij i j j i PA A P  		11 x n kl p  	 1 	d	m kl	kl 	       12 ,, j g ik g ik kl LA P P 		, m kl d defined from the binary
	representation of	 12  1 x x mm pn pn mdd       11 m d 	 2 x pn   1 	,   1 , gi k and	  , gi k defined as 2
	in (2.39).									
	Remark 2.6. T hh hh PA A P  has a solution.
	particular case since i PP  means   12 ,,   gi k g i k PP 	0  and conditions (2.44) are exactly (2.26),
	i.e.	0  . T ii PA A P					

 :   x   . Remark 2.7. Conditions in Theorem 2.3 are LMI because the values of bounds 0 kl   can be calculated a priori. If no solution is achieved with these bounds, the largest region of attraction can be found via a dichotomy search algorithm under the assumption that the problem 0 Remark 2.8. It is clear that conditions in Theorem 2.3 include the quadratic stability as a

  the following theorem is presented:

	Theorem 2.11. The TS model (2.11) with the PDC control law (2.48) is asymptotically
	stable if there exist P , i D , i F , and	0 X  such that the following conditions hold:

.6.2. Estimation of the state for Takagi-Sugeno models via unmeasured variables

  

	2Consider that the premise variables depend on unmeasured variables ẑ with common
	output matrices i CC  ,	 1, 2, , ir  		. Then, the observer structure (2.76) yields:
					 ii  hzA xB uP Kyy  11   ˆˆ1   ˆˆˆ. r i i hh h i x A xB uP Kyy            (2.82)
					yC x 	
	Therefore, the estimation error dynamics,	êxx    	, is described as:
							 e A xA xB uB uPKC xC x 1 ˆĥh hh h    		.	(2.83)
	Provided x xe , the previous expression can be rewritten as:
							 eAP K C eAA xBB u      1 ˆˆˆĥh hh h h     	,	(2.84)
	which can be expressed as:
					e 	  11  1 ˆrr ii i ii hz A PK Ce     		  i hz hz A x B u   i i i  		.	(2.85)
	It is clear that the membership function error term     îi hz hz 	makes difficult to derive
	LMI conditions that guarantee the estimation error dynamics goes to zero.
	One way to deal with this class of unmeasured variables is to consider the MF error
	  îi hz hz 	and to use classical Lipschitz constants as in
								and gives LMI conditions to
	guarantee stability of the estimation error dynamics.
	Theorem 2.12. The estimation error model (2.78) is asymptotically stable if there exist
	matrices	0 PP  and j T K ,	j	 1, ,  	r		of proper dimensions such that the following
	conditions hold:		
							 1, 2, , 0, ( , ) 1, 2, ,   ir i j   0, ii ij ji       	 ri j 2 , 	,	(2.81)
	with	ij 	TT i i PA K C A P C K i j i   	T j	.

Theorem 2.13. The estimation error

  

			model (2.85) is asymptotically stable if for a given
	scalar	0   , there exist matrices	PP 	T	0  ,	QQ 	T	0  , and i K ,	 1, , ir  		of proper
	dimensions such that the following conditions hold:					

2.14. The

  

		estimation error model (2.85) is asymptotically stable if, for given
	scalars 1  ,	i M , i N , there exist scalars 1  , 2  ,  , and matrices of proper dimensions
	0 PP  , T	0 QQ  , and i T K ,	 1, , ir  		such that the following conditions hold:
		00 TT ii T PA K C A P C K Q       0, i	 1, 2, , 	r	
		   1 QM I P AP BN I 2 1 2 2 00 00 00 ii i i I I I                 	0,	(2.90)
		12   	0.		

  came from the introduction of extra

	sums in (2.91)				
		  hh d 	 11 d rr i ii hz       1 r j 	  j hzh z i   ij	0	,	(2.92)
	where	0 d  represents the complexity parameter for (2.92) and   hh d 	as the expansion of
	degree	2 d  . For instance, if	1 dq , then, (2.92) writes:
					 11	 
		11 11 1	1	

.2. Stabilization of Descriptor Takagi-Sugeno Models

  

		k ii   ir  kr e 
		r		1	kkk ii ij ji     	ij		r  i j k  	, , e r	(2.103)
	with	    33 13 4 T T ij j TT    4 4 i kj j i kj kj AP P A PE P P A E P E P         	0	.
	2.8Consider the following modified PDC control law:
					 u t FP   11   11 hv hv x t FP   0   	 x t F x t  hv 	,	(2.104)
	with	11 e rr jk Fh v F hv j k jk				

  

formed by the gains jk

  defined in Theorem 3.3 always include the solution set of LMIs (3.28) presented in Proposition 2 of[START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] 

			     00 10 1 0 012 012 qq qq  012 TT T ii ii i i iii i 012 iii i iii i iii i AP BF P A F B      ρρ 		0 1 i i  	0	.	(3.28)
	Recall that ( iii 012 ,,, , q i  ρ	)	is the set of all permutations of the indexes 012 ,, , , q iii i  . For
	instance, ( ) { 1,1, 2 112 211 121 } = ρ	. If	12	12	(	1 2	)	1
	with	ij 	i AP BF i j 	   under the same complexity parameter d .
	Proof: From Proposition 2 in (Sala and Ariño, 2007) or Section 2.7:
					 11 d rr ii 1 r ii j hz hzh z   j      i j    	0	,	(3.27)
	and after considering	1 qd =+ , 0 ii = and 1 ij = , the conditions to guarantee (3.27) can be
	rewritten as:					

Table 3 .

 3 

	1. Number of LMI conditions (	).
	Approach	
	Theorems 3.1, 3.2, and 3.3	
	Proposition 2 in	

Table 3 .

 3 

	2. Number of decision variables (	).
	Approach	
	Theorems 3.1 and 3.2	
	Theorem 3.3	
	Proposition 2 in (Sala and Ariño, 2007)	
	Theorem 5 in (Sala and Ariño, 2007)	

Table 3 .

 3 

				3. Number of LMI conditions (	) and decision variables (	).
				Th. 5 (Sala and Ariño, 2007) Th. 3.1 and 3.2	Th. 3.3
		Parameters		()	()		() () () ()
	,	,	,	5	17		4	15	4	23
	,	,	,	14	72		11	57	11	93
	,	,	,	23	369		16	165	16	273
	,	,	,	87	5886		71	1881	71	3006
	,	,	,	921	301878	793	61446 793 98310

L

Table 3 .

 3 

	4. Comparison with	12 a = .					
	Approach	max b	d	N	L	N	D	time(s)
	Theorem 3.3	12.3	1	11	93	0.58
	Theorem 5 in (Sala and Ariño, 2007) 12.3	2	23	369	2
	(3.28) in Corollary 3.1	11.8 200 20707	9	33930

Table 3 .

 3 5. Comparison of number of conditions, decisions variables, and time to find a feasible solution for Theorem 3.3 and Theorem 5 in[START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] with

  ) are developed for H ∞ controller design. The conditions to satisfy the H ∞ attenuation criterion for each approach are given in Table3.6. These sets of conditions are obtained by applying Schur complement and some properties on matrices to conditions(3.36) or(3.37).

	1 PC J 1 11 00 00 0 00 T hh hh T h CJ P IG              1 0 h G           		0	,	(3.36)
	or					
	 11 1 hh T h PAB DP        1 h P D I       			 11  1 T hh hh T h CJ CJ G      h G       	0	.(3.37)
	As in the first part of this section, similar approaches based on (Shaked, 2001) (Theorem
	3.4), (de Oliveira and Skelton, 2001) (Theorem 3.5), and (Peaucelle et al., 2000) (Theorem
	3.6					

Table 3 . 6

 36 

. Conditions of H controller design for different approaches.

  40) 

		Example 3.4: Consider a TS model as in (3.1) with:							
	1 A	1.59 7.29 0.01 0 ⎡⎤ -⎢⎥ = ⎢⎥ ⎣⎦	, 1 B	1 0 ⎡⎤ ⎢⎥ = ⎢⎥ ⎣⎦	, 2 A	0.02 4.64 0.35 0.21 ⎡⎤ -⎢⎥ = ⎢⎥ ⎣⎦	, 2 B	8 0 ⎡⎤ ⎢⎥ = ⎢⎥ ⎣⎦	, 3 A	54 . 3 3 00 . 0 5 ⎡⎤ --⎢⎥ = ⎢⎥ ⎣⎦	, 3 B	12 1 ⎡⎤ ⎢⎥ = ⎢⎥ -⎣⎦	,
	4 A	0.89 5.29 0.1 0 ⎡⎤ -⎢⎥ = ⎢⎥ ⎣⎦	, 4 B	1 0 ⎡⎤ ⎢⎥ = ⎢⎥ ⎣⎦	, 1 C	0.1 0.4 ⎡⎤ -⎢⎥ = ⎢⎥ -⎣⎦	T	,	C	2	0.1 0.1 ⎡⎤ ⎢⎥ = ⎢⎥ -⎣⎦	T	,	C	3	0.2 0.1 ⎡⎤ ⎢⎥ = ⎢⎥ ⎣⎦	T	,	C	4	0.1 0.4 ⎡⎤ -⎢⎥ = ⎢⎥ -⎣⎦	T	,
	13 DD == ⎢⎥ -0.15 0.3 0.1  ⎡⎤ -⎢⎥ ⎣⎦	,		24 DD == ⎢⎥ + 0.15 0.3 0.1  ⎡⎤ -⎢⎥ ⎣⎦	,		h	0							

  for different values of  are provided in Table3.7 with 1 q = and a logarithmically spaced family of values

		∈	{ 10 ,10 , ,10 65 6 --	}	when it is necessary.

Table 3 .

 3 

	1 q = .

7. Comparison of H ∞ performances with

Table 3 .

 3 

[START_REF] Márquez | Improvements on Non-quadratic Stabilization of Takagi-Sugeno Models via Line-Integral Lyapunov Functions[END_REF] 

shows that the performance level achieved by conditions in Theorem 3.6 is better than results for Theorems 3.4, 3.5, and the quadratic approach. Also, note that conditions

(3.40) 

do not need parameter  as in

(3.38) and (3.39

): yet, they still perform better. Figures 3.2 and 3.3 are presented in order to illustrate the behavior of the attenuation level

  Several solutions have appeared to guarantee that 0

						.51)
	As for the first expression of (3.50), pre-multiplication by T h H and post-multiplication by
	h H yields the equivalent inequality:					
	 TT 22 22 22 kk hh h h xk xk HH Q H      		 H I Q h h  	0	.	(3.52)
	Applying lemma C.4 to (3.51) and (3.52) gives the set of conditions presented in (3.46);
	thus producing the desired result.◈					
	Remark 3.7:					

  Note that conditions(3.55) in Theorem 3.7 can be extended to support multi-index Lyapunov functions of the form

					  Vx xPx  1 T h 	,	(3.57)
	where	12 ii i qq 12 T ii i PP => 	0	,	{ 1 , 2 , ,  , since there are generalizations allowing } 12 ,, , q ii i r ∈	h P 
	to be written in a convex form provided 0 k  ≤ 	k	(Bernal and Guerra, 2010). The set of
	solutions of Theorem 3.7 via Lyapunov function (3.57) includes that of
							1, 2, , kp ∈ 	. On the other hand, if the

property of local stabilizability (Theorem 2.7) holds, and if no feasible solution is found, the bounds in k   ≤ and x x  ≤ can be gradually reduced in order to find a solution. Remark 3.11:

Table 3

 3 

		.8. Number of LMI conditions ( L N ) and decision variables ( D N ).
	Approach	N	L					N	D
	Theorem 3.7	( ) 21 r ++ 1 21 rd rd dd ⎛⎞ ⎛ ++ + ⎜⎟ ⎜ ⎜⎟ ⎜ ++ ⎝⎠ ⎝	⎞ ⎟ ⎟ ⎠	+	r		( ) 11 ( ) 21 22 d xx xx u x x nn nn n n r n + ⎛⎞ ⎜⎟ ++ + + + ⎜⎟ ⎝⎠	r
	Th. 2 (Lee and Kim, 2014)	( ) 12 ( 12 ) r rd rd pr w dd ⎛⎞ ⎛ ++ + ⎜⎟ ⎜ ++ + ⎜⎟ ⎜ ++ ⎝⎠ ⎝	1 ⎞ ⎟ ⎟ ⎠	( 31 d ) 21 xxx u nnn n r + + ++

Example 3.1 (Continued): This example follows the same line as in

Table 3 .

 3 

	9. Comparison: number of conditions ( L N ), decisions variables ( D N ), and time.
			Th. 2 (Lee and Kim, 2014)		Th. 3.7	
			( L N ) ( D N )	time(s) ( L N ) ( D N ) time(s)
	q =	2	590	529	45.55	354	312	26.16
	q =	3	1040	2113	268.82	619	1176 187.51
	q =	4	1673	8449	2714	991	4632	1636
	q =	5	2520 33793 Failure 1488 18456 12718

Table 3 .

 3 9 presents a comparison between Theorem 3.7 and Theorem 2 in[START_REF] Lee | Relaxed LMI Conditions for Local Stability and Local Stabilization of Continuous-Time Takagi-Sugeno Fuzzy Systems[END_REF]; the number of LMI conditions and decisions variables, as well as the time required to find a feasible solution are considered. The following values for comparisons are considered: . From the table above, it can be seen that Theorem 2 in

	1 n = , u	3 n = , x	2 p = ,	3 w = , and	r =	4

Table 3 .

 3 10. Conditions of controller design for new approaches.

	Approach	Control law 1 ux -= 	Conditions:

Table 3

 3 

	hh s F	h F

.11 compares the number of LMIs rows ( L N ) and scalar decision variables ( D N ) of Theorem 3.12, Theorem 3.13, and Theorem 3.13 with -=

Table 3

 3 

	.11. Number of LMI rows ( L N ) and scalar decision variables ( D N ) in the conditions.
	Approach	N	L		N	D
	Theorem 3.12	( ) 4 nr r x +	( ) 1 xx u n nr n n r 2 x ++	3
	Theorem 3.13	( 2 nrr + 4 x	)	( ) 12 32 3 xx u x n n 2 x r nnr nr ++ +
	Theorem 3.13 -Remark 3.15	( 2 nrr + 4 x	)	( ) 12 xx u n n 2 x r nnr nr 23 x ++ +

  by considering

					h FF -= hh s	(Remark 3.15). If such a reduced control law is
	used, i.e., a controller of the form	1 uF P x hs -=	, the Lyapunov matrices and gains are:
	1 P	17.3466 2.4356 2.4356 1.2183 ⎡⎤ -⎢⎥ = ⎢⎥ -⎣⎦	, 1 F	120.9134 9.8819 ⎡⎤ -⎢⎥ = ⎢⎥ ⎣⎦	T	, 2 P	14.0184 2.2833 2.2833 1.2098 ⎡⎤ -⎢⎥ = ⎢⎥ -⎣⎦	, 2 F	50.6415 0.1977 ⎡⎤ -⎢⎥ = ⎢⎥ ⎣⎦	T	,
	3 P	17.6680 2.2991 2.2991 1.1723 ⎡⎤ -⎢⎥ = ⎢⎥ -⎣⎦	, 3 F	14.0533 4.9980 ⎡⎤ ⎢⎥ = ⎢⎥ ⎣⎦	T	, 4 P	17.2673 2.5281 2.5281 1.1954 ⎡⎤ -⎢⎥ = ⎢⎥ -⎣⎦	, and 4 F	73.0781 5.3767 ⎡⎤ -⎢⎥ = ⎢⎥ ⎣⎦	T	.

Table 3 .

 3 12. Comparison of H performances.

	Approach	 = -	1	 =	0	 =	1
	(Tanaka and Wang, 2001) 88.9285 56.3613 27.5164
	Remark 3.16	63.2932 40.1710 20.1161
	Theorem 3.14	44.4336 29.1970 13.3715

  , i.e.:

	 V x 	  TT   yt yt wt wt   1  		0	.	(3.121)
	Recalling that 0 Vx 	and taking into account (3.108), (3.121) takes the following form:
	   TT hhv hv h hv hhv 11     h x P A B F P xD w      	  T C xG w C xG w h h h h 				T w w	0  ,
	which can be rearranged as:						
	 PAB F P T hhv hv h hv hhv 11   1 T hh h v xx  T T h h h T h C CG G ww DP I                          		0	.
	Applying the Schur complement to the block matrix in the middle of the previous
	inequality as well as congruence property with	 diag P I I , the previous condition is  ,, T hhv
	expressed as:						

Theorem 3.16:

  The TS descriptor model(3.103) under the control law(3.113) is asymptotically stable with disturbance attenuation  if there exist a symmetric and positive

	definite matrix 1 P and matrices 21 ijk P , 22 ijk P , 1 jk F , 2 jk F , 11 jk H , 12 jk H , 21 ij H , 22 ij H , 11 jk R , 12 jk R , 21 ij R , 22 ij R ,
	 ,1 , 2 , , ij   ,  r	 1, 2, , e kr  		, such that the following LMI conditions hold:
		 1, 2, , ,  ir   0, k ii   1, 2, , kr e 	
		r	2 	1	 0, ( , ) 1, 2, , ij      kkk ii ij ji     2 , , 1, 2, , ,  e r i j k r  	(3.123)
	with	                22 32 33 42 43 44 00 11 21 31 41 1 0 000 ij ijk ijk ijk ijk jk ijk ijk ijk ij T i ih DI CP G I                 k ij           	, where 11 ij  , 21 ijk  , 22 ijk  , 31 ijk  , 32 ijk  , 33 jk  , 41 ijk  , 42 ijk 
	, 43 ijk  , and 44			

ij

 are defined as in Theorem 3.15.

  As inCorollary 3.4, it is possible to demonstrate (following the same path)

	substitution of hhv P , hv A , h B , h C ,
	h D , hv F , hhv H , and hhv R , and 2) application of lemma C.6, the previous inequality yields
	conditions in (3.123), thus concluding the proof.◈
	Remark 3.20:

Table 3 .

 3 13. Comparison of H Performances

	Approach	4

Example 3.10:

  Consider the following TS descriptor model:

							 11 r kk ki e r vz E x    	 ii hz A x	,	(3.133)
	with model matrices	1 A	4.3 4.8 1.7 a      	,	2 A	   	4.6 1.9 3.9 b  	  	,	1 E	0.8 0.21 1.3 0.5     	,
	2 E	0.8 0.7 0.5 0.68    	; number of rules	2 rr   ; MFs: e	2 1 4 x h  , 21 1 1 hh   ,	2 2 4 x v  , 21 1 1 vv  ;
	and parameters	 a  100,5 	and	 b  120, 0		.		

  :

										 uF hv   11 0 hhv hv hhv Y xF Y x 	,	(3.134)
	where	hhv Y	11 21 hv hh YY hv 12 22 hh YY    	,	11 e rr ik Fh v F hv i k ik   	,	111 e rr r ijk Yh h v Y hhv i j k ijk    	, and ik F , 11 ik Y
	, 12 ik Y , 21 ij Y , 22 ij Y ,	 ,1 , 2 , , ij   ,  r	 1, 2, , e kr  		are matrices of adequate size.
	Substituting (3.134) in (3.104) with	0 w = and properly grouping terms, the following
	closed-loop equality constraint is obtained:
								1 h hv hhv AB F Y hv    I    x Ex  		0	.	(3.135)
	Now, consider the following path-independent function
								F	 x EP x 1 T hhv  	;	1 TT hhv hhv EP P E  	,	(3.136)
	where	hhv P	1 21 h hhv P PP 0 22 hhv    	,	1  h P	       1 1 11 22 21 1 22 0 h hhv hhv h hhv P PP P P    1       	,	 PP x 1 h 	defined as in
	(3.125),	21 hhv Ph h v P 111 e rr r i j k ijk 21 ijk   	,	22 hhv Ph h v P 111 e rr r i j k ijk 22 ijk    	, with	22 hhv P	as a
	regular matrix.					

  , the Lyapunov function is path

	independent if and only if								
						  1 h P	1 	   	1 dq 11 22 i i qd  	2	  	,	(3.137)
	where	 1  1 1 1 dd 1 11 i   		1 d	and	 1  2 2 2 dd 2 22 i   		d	2	, with 1 d , 1 d , 2 d , 2 d , and q being
	constants. Thus, the following inverse can be directly obtained:
		1 h P	12 12 21 1 22 2 11 22 22 11 1 ii 11 ii ii dq d q dd q qd qd                	.	(3.138)

  The inclusion of the quadratic case is also guaranteed in the third approach, even if it is not parameter-dependent. It is clear hat with

			.24)
	Remark 4.3: h h KK 	and pre-and post-
	multiplying (4.22) by 	

h I A and its transpose, respectively, the classical conditions are recovered:

Table 4 .

 4 1. Number of LMI conditions and decision variables.

Table 4 .

 4 3. Conditions of H  observer design for new approaches.

	Approach Conditions:

  The performance bounds  obtained by conditions inTheorems 4.4, 4.5, 4.6, and the classical conditions(4.35), for different values of  , are provided inTable 4.4. 

	0 00 12 12 qq qq 0 1 2 12 q ii i i ii i i TT T ii i i i TT i ii i ii HA KC DP GK PH R ⎡⎤ -+ * + 0 12 12 0 q q T i i ii i ii I I A R R  * * ⎢⎥  ⎢⎥ -- * ⎢⎥ ⎢⎥ -+ -⎣⎦   -⎢⎥ 	.	(4.34)
	Example 4.1 (continued): Consider the TS model in (4.26) with	1 a  ,	b 	2.9	, and
	0 w  . For sake of comparison, recall also that the classical conditions are:
	 DP hh h T h P A KC    T hh h h P A KC I P D I      		0	.		(4.35)

Table 4 .

 4 4. Comparison of H  performances.

	Approach	 =	0	 =	0.5	 =	1
	Conditions (4.35) 71.5	41.7	11.9
	Theorem 4.4	71.5	41.7	11.9
	Theorem 4.5	27.5	16	4.6
	Theorem 4.6	10.9	6.4	1.8

Table 4 .

 4 4 shows that the performance achieved by Theorem 4.6 is clearly better than in other approaches.

Table 4 .

 4 

	TT hh hh Ve e P A AP P N T T hh  T T =+ ++ 	T hh NPe	<	.	(4.52)
	Applying property B.5, considering	T ≤		2	I	n	z	and introducing ˆˆ0 hh  > , (4.52) holds if:
	21 ˆˆˆˆˆˆˆˆˆˆˆˆ0 TT T hh hh hh hh hh hh PA A P T T PN N P   -++ + < .	(4.53)
	Applying Schur complement to (4.53) gives:					
	( ) ˆˆˆˆˆˆˆˆ0 2 TT hh hh hh hh T rn m hh hh PA A P T T PN NP I    + ⎡⎤ ++ ⎢⎥ < ⎢⎥ -⎣⎦	.	(4.54)

  holds the H ∞ attenuation criterion

	(4.27) for given x  , u  , and j  , if there exist scalars	0  > , m ijkl	0  > , and matrices
	0 PP => , kl T K , m ijkl Y , m ijkl Z ,	{ ,1 , 2 , , ik ∈ 	r 	}	,	,, j lm	∈	{ 1 , 2 , , 	r 	}	of proper dimensions such
	that the following LMI conditions hold
								m ijij	<	0,
							r	2 -	1	mm ijij ijkl  + +< m klij	0,	, ik jl ≠≠	,	(4.60)
	with		( mm ) ( ) ( ) ( ) 2 * *0 ( ) *0 xy mT m ij kl ij ijkl ijkl im ijkl ijkl rnn PA K C T T I PD K G w kl im n I I      + ⎡⎤ -+ + + -⎢⎥ ⎢⎥ =-⎢⎥ ⎣⎦ ⎢⎥ -⎢⎥	, 	=		,
		11 mm ijkl i kl i ijkl PA K C Y ⎡⎤ 1 m m m ir kl ir ijkl i ijkl ir ijkl PA K C Y PB Z PB Z    =-+ -+ + + ⎢⎥ ⎣⎦ 	,	and
		(  22 xu ≥+	)	2 j ∑ . 1 r j   =				
			Proof: It follows straightforwardly considering that (4.28) is:
							ˆˆˆˆˆˆˆˆ2 ˆ0 TT T T hh hh hh hh hh T hh PA A P PN T T N P I PD ee T DP I ww   ⎡⎤ ⎡⎤ ⎡⎤ ++ + + ⎢⎥ ⎢⎥ ⎢⎥ < ⎢⎥ ⎢⎥ ⎢⎥ -⎣⎦ ⎣⎦ ⎣⎦	;
	then following the same path as in Theorem 4.7 to obtain:
							21 ˆˆˆˆˆˆˆˆˆˆˆˆ2 ˆ0 TT T hh hh hh hh hh hh hh T hh PA A P T T PN N P I PD DP I             	.	(4.61)
			Applying Schur complement and lemma C.6 with 	=		and

  1 

									in S =	:
	11 AAAA 12 21 22 ==== ⎢⎥ -0 0.00099 0 0.00099 ⎡⎤ ⎢⎥ ⎣⎦	,		13 AAAA 14 23 24 ==== ⎢⎥ -0 0.001 0 0.001 ⎡⎤ ⎢⎥ ⎣⎦	,	C =	[ ] 10	,
	11 BB 13 == ⎢⎥ ⎣⎦ 0.01 0.1 ⎡⎤ -⎢⎥	,	12 BB 14 == ⎢⎥ ⎣⎦ 0.01 0 ⎡⎤ -⎢⎥	,	21 BB 23 == ⎢⎥ ⎣⎦ 0.2 0.1 ⎡⎤ -⎢⎥	,	22 BB 24 == ⎢⎥ ⎣⎦ 0.2 0 ⎡⎤ -⎢⎥	,

Table 5 .

 5 1. Contributions on controller design

	Controller design	QLF	FLF	LILF	NQLF
	Standard TS model	Generalized approaches: -Technical lemmas -Multiple convex sums	Generalized approach	LMIs for second order systems	LMIs under a new Lyapunov Functional
	Descriptor TS model	Parameter dependent LMIs: -Extended control law -Finsler lemma	-	LMIs for second order systems	-

Table 5 .

 5 

		2. Contributions on observer design
	Observer design	Measured premise variables Unmeasured premise variables
	QLF	Generalized approaches: -Technical lemmas -Multiple convex sums	LMIs based on mean value theorem

  just consider the case of a 2-rules third order TS model. In this case, the Lyapunov function must verify the path-independent conditions (see chapter 3), which means that the matrix of the Lyapunov function has the following form ij q ,

	Of course, the problem comes from the fact that the LMI constraints are written according
				2					
			2 3	23	13 23	12 3		12 23	13 2
	to h P , i.e. with	1	13 23	12 3	1 3	2 13			12 13	23	1
										2
			12 23	13 2	12 13	23	1		1 2	12
	j i  and i d are the unknown variables:					
				12 2 23 dqq 13 12 23 13 3 Pq 1 h d q qq d        	    	,	(5.4)

B.1. Convex set

  

	A set  is convex if for any 12 , xx  and 01    there holds		
	  12 1 xx     .		(B.1)
	A function : m f  is called convex if f is a non-empty convex set and if for all 
	12 , xx  and 01  m  there holds that		
	  12 11        1 2 f xx  f x f x      	.	(B.2)

3 (Peaucelle transformation).

  BMI as in (B.7) is only an LMI in x or y for a fixed y or x respectively. The main drawback of BMIs is that they are not optimally solvable because existing methods may lead to local minima. Let  ,  ,  ,  , and  be matrices of proper size. The following inequalities are equivalent:

		Property B.7: Given	T  	0	, then
									1 TT        .	(B.15)
	Lemma B.1. (Finsler's lemma) (de Oliveira and Skelton, 2001). Let B.4. Matrix properties Property B.1 (Congruence transformation). Consider nn T    Tn n   , and mn    such that   rank n   ; the following statements are , n x     and a full row rank matrix mn  equivalent:   . The following expression holds: 00 ; 00 . TT         (B.8)   a) 0, : 0, 0 . b) : 0. Tn nm T T xx xx x x                    (B.16)
	Property B.2 (Schur complement). Let Lemma B.2 (Differential Mean Value Theorem): Let   : n 11 12 12 22 T T MM MM        fz  and , , with 11 M and 22 M  n ab . If  square matrices of appropriate dimensions. Then:  f z is a differentiable function on   , ab then, there exists a vector n
							0 	11 22 MM M M 11 22 12 11 12 11 12 22 00 0 TT 12 MM M M MM         		0
		Property B.0 TT     	(B.9)
									,:   TT T T TT T                    	0	.	(B.10)
		Property B.4. For	n y   and	0   , the following equivalence holds:
									00 TT yy y y I      	(B.11)
		Property B.5. Let  ,  , and	 	T		0	matrices of appropriate dimension, the
	following holds:		
									1     , TT T T   	(B.12)
	if		=		I	, with	0  > a scalar, then (B.12) yields
									TT   	T    	1  . T	.7) (B.13)
	where i F , j G , and ij H	{ 0,1, , im ∈ } 	,	j	∈	{ 1, 2, , 	} n	are symmetric matrices,
									00       .	(B.14)

m x ∈  and n y ∈  are decision variables vectors. The BMI (B.7) is not convex at same time in x and y . 169 Therefore, a Property B.6. Let  and  be matrices of appropriate dimension; thus, if   then

  , il suffit de considérer le cas d'un modèle TS des troisième ordre et 2 règles. Dans ce cas, la fonction de Lyapunov doit vérifier les conditions de la trajectoire indépendante (voir chapitre 3), ce qui signifie que la matrice de la fonction de Lyapunov a la forme suivante, et sont les variables inconnues:

	 Vx	2   	  0, x	f	   d	,  f 		1 Px h 
									12 2 23 dqq 13 12 23 13 3 Pq 1 h d q qq d        	    	,	(R.7)
	Bien entendu, le problème vient du fait que les contraintes LMI sont écrites conformément
									2
							2 3	23	13 23	12 3	12 23	13 2
	à h P , soit avec		1	13 23	12 3	1 3	2 13	12 13	23	1
										2
							12 23	13 2	12 13	23	1	1 2	12

  , avec des fonctions de Lyapunov à sommes multiples, (R.8) pourraient être facilement généralisés à fonctionnel tel que: Par conséquent, ces extensions aussi directement de sens pour systèmes de temporisation TS depuis la fonctionnelle de Lyapunov comporte déjà implicitement retards qui pourraient être facilement à manipuler.Considérez le candidat fonctionnelle suivante classique Lyapunov-Krasovskii pour les systèmes temps-retard[START_REF] Gu | Stability of time-delay systems[END_REF]:  est le temps de retard. L'idée est de substituer le terme 1 Toutes les approches présentées dans cette thèse pour l'estimation de l'État assument une fonction de Lyapunov quadratique pour les deux: vecteur des prémisses mesurées et non mesurées. Par conséquent, les fonctions de Lyapunov non quadratique ou fonctionnelle peuvent être appliquées dans l'analyse afin de réduire le degré de suffisance des conditions LMI. Néanmoins, ce problème est loin d'être facile. Dans le «simple» cas la fonction de

	où tous les retards différents j   j i s z ,  ,	j	 1, 2, ,   1, 2, , q   q   j  : correspond à la définition (R.9), ou encore définir des       12 0 ,, 11 k p r ik gi k g i k h ik k w Ph P P z z        , (R.15)
	   jj 1 j t ii t j sz t hz      d       11 2 1 1 m o d 2 pk pk p k i     avec   1 ,1 / 2 gi k i       dresse pour la fonction de plancher. Par conséquent, la dérivée de la fonction de Lyapunov 0 , 0 j   . et     21 ,, 2 p k gi k gi k   ,    se   (R.11)
	inclut explicitement  		
		 1 TT tt   23   0 T tt V VV V x Px x s Sx s ds x s Rx s dsd                    	,	(R.12)
	Lyapunov écrit:					
				 Ve eP e x TT hi 1 r i h zt P x    i   	,	(R.13)
	avec l'erreur d'état dynamique	êxx  sous la forme:
					 eAP K C e  1 hh h h   	.	(R.14)
	Puis naturellement la dérivée de la fonction de Lyapunov comprendra h P  qui écrit (voir
	chapitre 2):	 Vx xP x x  1 q TT ss       11 1 11 qq q rr i i i i ii s z s zP      	1 	x	,	(R.10)
					187	

où V de (R.12) par le NQLF dans (R.8) ou son extension (R.10), et essayer d'obtenir des conditions LMI que l'amélioration anciens résultats.  Conception d'observateur.
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This chapter provides contributions on state estimation for continuous-time nonlinear systems via TS models; they are split in two parts: the particular case where the premise vectors are based on measured variables and the general case where the premise vectors can be based on unmeasured variables.

The first part proposes progressively more relaxed observer design schemes based on: (1) a Tustin-like matrix transformation appeared in [START_REF] Shaked | Improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty[END_REF] (2) the Finsler's Lemma [START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF], and (3) the matrix transformation in [START_REF] Peaucelle | A new robust D-stability condition for real convex polytopic uncertainty[END_REF]. All of these schemes will be extended as to incorporate multiple nested convex sums (Márquez et al., 2013). Additionally, direct extensions to H ∞ disturbance rejection are developed.

The second part is more challenging as it faces the general case, i.e., an observer structure which facilitates handling the membership functions which depend on unmeasured variables ( ) î hz. Former results on the subject of unmeasured variables consider the membership function error ( ) ( ) îi hz hz altogether with classical Lipschitz constants [START_REF] Bergsten | Fuzzy observers, in: Fuzzy Systems[END_REF][START_REF] Ichalal | Conception d'observateurs pour un modèle de Takagi-Sugeno à variables de décision non mesurables[END_REF]; this will not be the approach hereby considered. The approach in [START_REF] Ichalal | On observer design for nonlinear Takagi-Sugeno systems with unmeasurable premise variable[END_REF][START_REF] Ichalal | Observer design and fault tolerant control of takagi-sugeno nonlinear systems with unmeasurable premise variables[END_REF] is pursued in this thesis; the observer design is based on the differential mean value theorem. Thus, LMI conditions assuring asymptotical convergence of the state estimation error to zero are obtained; these conditions are extended to H ∞ performance design.

Conditions in (4.62) clearly outperform those in [START_REF] Ichalal | On observer design for nonlinear Takagi-Sugeno systems with unmeasurable premise variable[END_REF] by leading to remarkably lower attenuation minima.♦ Figure 4.13.  values: " o " for Th. 3 in [START_REF] Ichalal | On observer design for nonlinear Takagi-Sugeno systems with unmeasurable premise variable[END_REF] and "  " for conditions (4.62).

Concluding Remarks.

Novel approaches for observer design of continuous-time nonlinear models that overcome up-to-date results in the state of the art, have been reported. A first set of results focuses on observer design based on measurable premises: taking advantage of a convex rewriting of the model (TS form) as well as from several matrix transformations such as the Finsler's Lemma, the observer is decoupled from their corresponding Lyapunov function; additionally, the proposed decoupling allows introducing progressively better results thanks to a nested convex structure. A second set of solutions in this chapter considers the unmeasured-premise case: the state estimation problem is expressed as a convex one using a quadratic Lyapunov function and the differential mean value theorem; the structure thus obtained allows introducing slack variables. Both the measured-and unmeasured-premise case include extensions on H disturbance rejection, where better results than those already available in the literature are reported. 

APPENDIX C. Sum relaxations

It is well-known that TS-LMI framework usually leads to inequalities containing convex sums. These inequalities include the membership functions (MFs) which contain nonlinear functions which must be removed in order to get LMI conditions. Expressing conditions in terms of LMIs is not a trivial task. Therefore, different sum relaxations have been developed in this sense. Some sum relaxations which are applied along the thesis are presented.

Consider a general case of inequalities with multiple nested convex sums:

where

,

are symmetric matrices of appropriate size.

The sign of such expressions should be established via LMIs, which implies that the MFs therein should be adequately dealt with: conditions thus obtained will be therefore only sufficient. This is why selecting a proper way to perform this task is important to reduce conservatism.

For single sums ( 1 q  in (C.1)), the following lemma arises.

Lemma C.1 [START_REF] Wang | An approach to fuzzy control of nonlinear systems: Stability and design issues[END_REF]. Let Condition (C.1) is verified for 1 q  if the following LMIs hold:

When double sums are involved ( 2 q  in (C.1)), usually for controller/observer design, two schemes have been proposed in the literature. The following lemmas present these sum relaxations.

Lemma C.2 [START_REF] Wang | An approach to fuzzy control of nonlinear systems: Stability and design issues[END_REF] 

Should more than two nested convex sums be involved, a generalization of the sum relaxation in lemma C.2 will be used.

Lemma C.4 [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF]. Let

,

be matrices of the same size and   12 ,, , q ii i  ρ be the set of all permutations of the indexes 12 ,, , q ii i  . Condition (C.1) is verified the following LMIs hold:

,

(C.5)

Remark C.1. There exists other relaxation sums which include extra slack matrices on the

LMIs [START_REF] Kim | New approaches to relaxed quadratic stability condition of fuzzy control systems[END_REF][START_REF] Liu | Approaches to quadratic stability conditions and H∞ control designs for TS fuzzy systems[END_REF][START_REF] Fang | A new LMI-based approach to relaxed quadratic stabilization of TS fuzzy control systems[END_REF][START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF].

However, it may leads to computational burden. In this thesis, sum relaxations without extra slack matrices are adopted.

When different MFs are involved in the convex sums, for instance: 1) use of a Lyapunov functional (section 3.2.5); 2) stability or controller design for descriptor models (section 3.3), it is necessary to make some adaptation of previous sum relaxations.

Inequality with convex sums for case 1) has the following structure: 

Ainsi, le stabilisabilité quadratique par une loi de commande PDC est garanti indépendamment du nombre de modèles. Conditions de stabilisation en [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] utiliser la propriété de Polya [START_REF] Scherer | LMI relaxations in robust control[END_REF]