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Méthodes parcimonieuses et invariantes d'échelle en traitement d'images

Dans cette thèse, on présente de nouvelles approches à base de parcimonie et d'invariance d'échelle pour le développement de techniques rapides et efficaces en traitement d'images. Au lieu d'utiliser la norme l 1 pour imposer la parcimonie, on exploite plutôt des pénalités non-convexes qui encouragent plus la parcimonie. On propose une approche de premier ordre pour estimer une solution d'un opérateur proximal non-convexe, ce qui permet d'exploiter facilement la non-convexité. On étudie aussi le problème de pluri-parcimonie quand le problème d'optimisation est composé de plusieurs termes parcimonieux. Ce cas survient généralement dans les problèmes qui nécessitent à la fois une estimation robuste pour rejeter les valeurs aberrantes et exploiter une information de parcimonie connue a priori. Ces techniques sont appliquées à plusieurs problèmes importants en vision par ordinateur bas niveau telles que le lissage sélectif, la séparation d'images, l'intégration robuste et la déconvolution. On propose aussi d'aller au-delà de la parcimonie et apprendre un modèle de mapping spectral non-local pour le débruitage d'images. La notion d'invariance d'échelle joue aussi un rôle important dans nos travaux. En exploitant ce principe, une définition précise des contours est définie, ce qui peut être complémentaire à la notion de parcimonie. Plus précisément, on peut construire des représentations invariantes pour la classification en se basant sur une architecture de réseaux convolutionnels profonds. L'invariance d'échelle permet aussi d'extraire les pixels qui portent les informations nécessaires pour la reconstruction ou aussi améliorer l'estimation du flot optique sur les images turbulentes en imposant la parcimonie comme régularisation sur les exposants de singularité locaux.

Unité de recherche

• Acquisition comprimée : la parcimonie est utilisée en tant qu'information connue a priori dans un problème d'optimisation pour retrouver un signal parcimonieux à partir de combinaisons linéaires aléatoires.

• Restauration d'images : la parcimonie est utilisée en tant qu'information a priori qui reflète les statistiques du signal/image que l'on veut restaurer. Cela peut par exemple s'agit de la parcimonie dans le domaine du gradient, ou la parcimonie non-locale qui consiste à modéliser la parcimonie de patches matchés.

• Apprentissage statistique : la parcimonie est utilisée dans les problèmes d'optimisation associés aux problèmes d'apprentissage statistique (classifiiv cation ou régression) pour renforcer la robustesse par rapport aux données aberrantes ou pour imposer un modèle sélectif.

• Vision par ordinateur : la parcimonie joue un rôle principal dans plusieurs problèmes de vision par ordinateur tels que la reconnaissance d'objets, le tracking, le clustering, l'alignement robuste, la segmentation, la stéréo photométrie, la reconstruction de surfaces, etc.

Bien modéliser la parcimonie est donc une étape clé pour améliorer les méthodes parcimonieuses. Le modèle l 1 est le plus populaire pour représenter la parcimonie.

Bien que ce modèle résulte en un problème convexe, la norme l 1 ne reflète pas adéquatement le niveau de parcimonie de certains signaux. En effet, plusieurs études ont montré que la parcimonie est associée dans plusieurs cas à des distributions à queues lourdes, ce qui suggère d'utiliser plutôt des pénalités non-convexes. On présente dans cette thèse une méthode simple et efficace pour estimer une solution d'un opérateur proximal associé à une pénalité non-convexe. Notre approche est une solution de premier ordre qui consiste à trouver une estimation convexe du problème.

On démontre que la solution de premier ordre revient en fait à utiliser une norme l 1 pondérée qui admet une solution exacte, et ainsi les algorithmes proximaux convergent bien à un minimum local. On étudie aussi le problème de pluri-parcimonie, quand le problème d'optimisation est composé de plusieurs termes parcimonieux, ce qui est souvent le cas quand on veut une solution à la fois parcimonieuse et robuste aux données aberrantes. On étudie une extension du solveur Alternating Direction Method of Multipliers (ADMM) pour n'importe quel nombre de termes parcimonieux et on démontre que l'algorithme converge quand les opérateurs proximaux associés au problème principal admettent une solution exacte. Ces notions sont ensuite appliquées pour résoudre plusieurs problèmes en traitement d'images. On présente de nouvelles techniques rapides et efficaces pour la séparation d'images en se basant sur la parcimonie non-convexe. On montre aussi comment la parcimonie spectrale v peut-être utilisée pour séparer des pairs d'images par exemple flash/no-flash et ainsi corriger les problèmes de reflet. On développe aussi plusieurs techniques robustes de reconstruction de surfaces/images à partir de gradients corrompus qui améliorent considérablement les résultats par rapport à l'état de l'art. 
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Background on Sparsity

Sparsity or parsimony refers to the principle of representing a phenomenon with few elements. The origin of this principle can be traced back to the 14th century, according to the philosopher and theologian William of Ockham who formulated a doctrine that favors simple theories over more complex ones [START_REF] Mairal | Sparse modeling for image and video processing[END_REF]. This principle is also related to the concept of "simplicity" in the statistical modeling of physical observations as pointed out by Wrinch and Jeffreys [START_REF] Wrinch | Xlii. on certain fundamental principles of scientific inquiry[END_REF]. This "simplicity" principle and tendency of selecting "few elements", a.k.a. sparsity, is now central in various signal/image processing, computer vision and machine learning applications.

In signal/image processing, we say that a signal is sparse if most of its elements are zeros or near-zeros. Sparsity is mainly used as a prior information in an optimization framework. It turns out that clean natural signals/images are highly sparse after applying certain transformations. Early works on signal/image representations showed that natural signals can be efficiently represented in a wavelet basis [START_REF] Mallat | Matching pursuit in a time-frequency dictionary[END_REF][START_REF] Pati | Orthogonal matchin pursuit : Recursive function approximation with applications to wavelet decompostion[END_REF][START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF][START_REF] Chen | Atomic decomposition by basis pursuit[END_REF].

For instance, patches of natural signals/images can be approximated by a linear combination of few base wavelets that form a dictionary, producing a compact representation. This sparse decomposition plays a central role in restoration from corrupted data and compression. One of the questions that arise is why do natural images 1 admit such a compact representation? The answer to this question has been considered in various works about natural image statistics [START_REF] Ruderman | The statistics of natural images[END_REF][START_REF] Olshausen | Natural image statistics and efficient coding[END_REF][START_REF] Jalobeanu | Natural image modeling using complex wavelets[END_REF][START_REF] Hyvarinen | Natural image statistics -a probabilistic approach to early computational vision[END_REF][START_REF] Kuruoglu | Modelling sar images with a generalization of the rayleigh distribution[END_REF][START_REF] Simoncelli | Natural image statistics and neural representation[END_REF][START_REF] Jalobeanu | Satellite image deconvolution using complex wavelet packets[END_REF][START_REF] Srivastava | On advances in statistical modeling of natural images[END_REF][START_REF] Heiler | Natural image statistics for natural image segmentation[END_REF][START_REF] Zoran | Scale invariance and noise in natural images[END_REF].

It turns out that natural images have a rather heavy-tailed distribution in various domains such as wavelets, gradients, or simply any convolution with a zero-mean high-pass filter (see Figure 1.1). The presence of a massive amount of near-zero coefficients in such domains suggests simply that, except few rare events (borders), neighboring pixels have similar intensity values, which makes sense as natural images represent coherent structures. What is in fact surprising about this principle is that it is directly related to the human visual system [START_REF] Olshausen | A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information[END_REF][START_REF] Olshausen | Emergence of simple cell receptive field properties by learning a sparse code for natural images[END_REF][START_REF] Olshausen | Sparse coding with an overcomplete basis set : A strategy employed by v1?[END_REF][START_REF] Olshausen | How close are we to understanding v1?[END_REF]. Sparsity has led to a dramatic improvement in various imaging domains :

Compressed Sensing Compressed sensing permits to sense signals directly with few samples going beyond the classical Nyquist rate. By using sparsity as a prior in an optimization framework, exact recovery can be achieved from a small set of linear non-adaptive measurements [START_REF] Candes | Robust uncertainty principles : Exact signal reconstruction from highly incomplete frequency information[END_REF][START_REF] Donoho | Compressed sensing[END_REF][START_REF] Baraniuk | Compressive sensing[END_REF][START_REF] Romberg | Imaging via compressive sampling[END_REF]. Three notions are key components in compressed sensing :

1 Natural images are essentially images that represent a visual concept.

• the properties of the sampling matrix (RIP condition, etc.),

• the choice of the domain of sparsity (wavelet, gradient, dictionary, etc.),

• the choice of the sparse prior (l 1 , l p<1 , etc.).

While the l 1 -norm is widely used in the context of compressed sensing because of its convexity, non-convexity has shown to be able to recover signals from far fewer measurements than the l 1 -norm [START_REF] Chartrand | Exact reconstruction of sparse signals via nonconvex minimization[END_REF][START_REF] Chartrand | Fast algorithms for nonconvex compressive sensing: Mri reconstruction from very few data[END_REF][START_REF] Candes | Enhancing sparsity by reweighted l 1 minimization[END_REF][START_REF] Chartrand | Restricted isometry properties and nonconvex compressed sensing[END_REF][START_REF] Penghang | Minimization of l 1-2 for compressed sensing[END_REF].

Image Restoration Sparsity has led to powerful image restoration methods. Early works on sparsity-based image restoration were based on thresholding wavelet coefficients [START_REF] Donoho | De-noising by soft-thresholding[END_REF][START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF][START_REF] Hall | On the minimax optimality of block thresholded wavelet estimators[END_REF][START_REF] Jalobeanu | Satellite image deblurring using complex wavelet packets[END_REF][START_REF] Jalobeanu | Image deconvolution using hidden markov tree modeling of complex wavelet packets[END_REF][START_REF] Jalobeanu | Satellite image deconvolution using complex wavelet packets[END_REF][START_REF] Cai | Adaptive wavelet estimation : a block thresholding and oracle inequality approach[END_REF][START_REF] Mairal | Sparse modeling for image and video processing[END_REF]. Modern sparsity-based restoration techniques in image processing try to find a better compact representation via learning dictionaries [START_REF] Olshausen | Emergence of simple cell receptive field properties by learning a sparse code for natural images[END_REF][START_REF] Olshausen | Sparse coding with an overcomplete basis set : A strategy employed by v1?[END_REF][START_REF] Aharon | An algorithm for designing overcomplete dictionaries for sparse representation[END_REF][START_REF] Yang | Image super-resolution via sparse representation[END_REF][START_REF] Mairal | Sparse representation for color image restoration[END_REF][START_REF] Mairal | Non-local sparse models for image restoration[END_REF][START_REF] Yang | Couple dictionary training for image super-resolution[END_REF][START_REF] Mairal | Online dictionary learning for sparse coding[END_REF][START_REF] Sun | Complete dictionary recovery using nonconvex optimization[END_REF] or high-pass filters [START_REF] Roth | Fields of experts : A frawork for learning image priors[END_REF][START_REF] Burger | Image denoising : Can plain neural networks compete with bm3d?[END_REF][START_REF] Xie | Image denoising and inpainting with deep neural networks[END_REF][START_REF] Fanello | Filter forests for learning data-dependent convolutional kernels[END_REF][START_REF] Schmidt | Shrinkage fields for effective image restoration[END_REF][START_REF] Dong | Learning a deep convolutional network for image super-resolution[END_REF][START_REF] Xu | Deep convolutional neural networks for image deconvolution[END_REF][START_REF] Chen | On learning optimized reaction diffusion processes for effective image restoration[END_REF]. Sparsity is extensively used as a prior on the gradients for image deconvolution [START_REF] Chan | Total variation blind deconvolution[END_REF][START_REF] Fergus | Removing camera shake from a single photograph[END_REF][START_REF] Dey | A deconvolution method for confocal microscopy with total variation regularization[END_REF][START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF][START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF][START_REF] Krishnan | Fast image deconvolution using hyper-laplacian priors[END_REF][START_REF] Perrone | Total variation blind deconvolution : The devil is in the details[END_REF][START_REF] Xu | Unnatural l 0 sparse representation for natural image deblurring[END_REF]. The most powerful image restoration techniques exploit self-similarities using non-local processing [START_REF] Buades | A non-local algorithm for image denoising[END_REF] combined with sparsity either using dictionary learning [START_REF] Mairal | Non-local sparse models for image restoration[END_REF][START_REF] Yan | Nonlocal hierarchical dictionary learning using wavelets for image processing[END_REF][START_REF] Dong | Sparsity-based image denoising via dictionary learning and structural clustering[END_REF] or low-rank estimation (spectral sparsity) [START_REF] Dong | Non-local image restoration with bilateral variance estimation : A low-rank approach[END_REF][START_REF] Gu | Weighted nuclear norm minimization with application to image denoising[END_REF].

Computer Vision Sparsity is extensively used in various computer vision applications such as classification/recognition [START_REF] Wright | Robust face recognition via sparse representation[END_REF][START_REF] Elhamifar | Robust classification using structured sparse representation[END_REF][START_REF] Wright | Sparse representation for computer vision and pattern recognition[END_REF][START_REF] Samson | A variational model for image classification and restoration[END_REF][START_REF] Sun | Efficient point-to-subspace query in l 1 with application to robust face recognition[END_REF][START_REF] Wright | Implicit elastic matching with random projections for pose-variant face recognition[END_REF][START_REF] Mairal | Supervised dictionary learning[END_REF][START_REF] Mairal | Discriminative learned dictionaries for local image analysis[END_REF][START_REF] Bao | A convergent incoherent dictionary learning algorithm for sparse coding[END_REF][START_REF] Lu | Simultaneous feature and dictionary learning for image set based face recognition[END_REF][START_REF] Liu | Self-explanatory sparse representation for image classification[END_REF][START_REF] Mairal | Sparse modeling for image and video processing[END_REF], tracking [START_REF] Mei | Robust visual tracking and vehicle classification via sparse representation[END_REF][START_REF] Jia | Visual tracking via adaptive structural local sparse appearance model[END_REF][START_REF] Lan | Multi-cue visual tracking using robust featurelevel fusion based on joint sparse representation[END_REF], subspace clustering [START_REF] Elhamifar | Sparse subspace clustering[END_REF][START_REF] Soltanolkotabi | Robust subspace clustering[END_REF][START_REF] Yuan | Sparse additive subspace clustering[END_REF][START_REF] Elhamifar | Dissimilarity-based sparse subset selection[END_REF], robust alignment [START_REF] Peng | Rasl: Robust alignment by sparse and low-rank decomposition for linearly correlated images[END_REF][START_REF] Zhang | Tilt: Transform invariant low-rank textures[END_REF], segmentation [START_REF] Tao | Sparse dictionaries for semantic segmentation[END_REF][START_REF] Nieuwenhuis | Co-sparse textural similarity for image segmentation[END_REF], optical flow estimation, [START_REF] Sun | Secrets of optical flow estimation and their principles[END_REF], photometric stereo [START_REF] Wu | Robust photometric stereo via low-rank matrix completion and recovery[END_REF], hyper-spectal imaging [START_REF] Akhtar | Sparse spatio-spectral representation for hyperspectral image super-resolution[END_REF][START_REF] Akhtar | Bayesian sparse representation for hyperspectral image super resolution[END_REF], edge detection [START_REF] Mairal | Discriminative sparse image models for class-specific edge detection and image interpretation[END_REF] to cite a few.

The use of sparsity is not limited to these domains and it is now extensively used in almost any signal processing areas.

Convex vs. Non-Convex Sparsity

Sparsity can be used in many ways and there exist various sparse models in the literature. First of all, in order to use the sparsity principle in a mathematical framework, we need a way to measure it. Let x ∈ R n be a vector. A straightforward way to measure the sparsity of x is to count its number of non-zero elements, which leads to the l 0 quasi-norm

||x|| 0 = # {i | x i = 0} , (1.1)
and corresponds also to the limit of the l p -norm for p → 0 :

||x|| p p = i |x i | p . (1.2)
Minimizing the l 0 quasi-norm is known to be an NP-hard problem as one needs to try all the possible combinations of elements [START_REF] Natrajan | Sparse approximate solutions to linear systems[END_REF]. For p = 1, we get the l 1 -norm, which is the convex relaxation of the l 0 quasi-norm. As the l 1 -norm is convex, the l 0 measure is often replaced with the l 1 -norm which results in a tractable optimization problem. The case when 0 < p < 1 is particularly interesting as it gives a closer approximation of l 0 but results in a non-convex minimization problem. Thus, finding a global minimum for this kind of problem is not guaranteed. However, using a nonconvex penalty instead of the l 1 -norm has been shown to improve significantly various sparsity-based applications [START_REF] Chartrand | Exact reconstruction of sparse signals via nonconvex minimization[END_REF][START_REF] Chartrand | Fast algorithms for nonconvex compressive sensing: Mri reconstruction from very few data[END_REF][START_REF] Candes | Enhancing sparsity by reweighted l 1 minimization[END_REF][START_REF] Krishnan | Fast image deconvolution using hyper-laplacian priors[END_REF][START_REF] Shi | A nonconvex relaxation approach to sparse dictionary learning[END_REF][START_REF] Gasso | Recovering sparse signals with a certain family of non-convex penalties and dc programing[END_REF][START_REF] Sun | Secrets of optical flow estimation and their principles[END_REF][START_REF] Lu | Generalized nonconvex nonsmooth low-rank minimization[END_REF][START_REF] Ochs | An iterated l 1 algorithm for nonsmooth non-convex optimization in computer vision[END_REF][START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF][START_REF] Gupta | Non-convex p-norm projection for robust sparsity[END_REF][START_REF] Xu | Image smoothing via l 0 gradient minimization[END_REF][START_REF] Wipf | Don't relax: Why non-convex algorithms are often needed for sparse estimation[END_REF][START_REF] Sun | Complete dictionary recovery using nonconvex optimization[END_REF]. There are many ways to understand intuitively why a non-convex formulation will improve upon the regular l 1 -norm :

Statistical interpretation

The statistical approach is probably the most straightforward way to understand the importance of non-convexity in the context of image processing. As pointed out before, natural images tend to have a heavy-tailed (kurtotic) distribution in certain domains such as wavelets and gradients. This is probably the most important statistical result in image processing that has been extensively used as a prior information in many restoration applications. It is also a key observation in the recent multifractal microcanonical multiscale formalism [START_REF] Turiel | Microcanonical multifractal formalism: a geometrical approach to multifractal systems. part i: singularity analysis[END_REF]. It is well known that using the l 1 -norm comes to consider a Laplacian distribution p(x) ∝ e -k|x| as -log(p(x)) ∝ |x|. More generally, the hyper-Laplacian distribution p(x) ∝ e -k|x| p is related to the l p -norm, where the value of p controls how the distribution is heavy-tailed [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF][START_REF] Chartrand | Exact reconstruction of sparse signals via nonconvex minimization[END_REF][START_REF] Krishnan | Fast image deconvolution using hyper-laplacian priors[END_REF]. As the hyper-Laplacian distribution for p < 1 represents better the empirical distribution of the transformed images, it makes sense to use the l p<1 -norm for regularization instead of l 1 . Other functions that better reflect heavy-tailed distributions of images have been used as well such as Student-t [START_REF] Roth | Fields of experts : A frawork for learning image priors[END_REF], Gaussian Scale Mixtures (GSM) [START_REF] Portilla | Imag denoising using scale mixtures of gaussians in the wavelet domain[END_REF][START_REF] Lyu | Statistical modeling of images with fields of gaussian scale mixtures[END_REF] and mixture of Radial Basis Functions (RBFs) [START_REF] Schmidt | Shrinkage fields for effective image restoration[END_REF][START_REF] Chen | On learning optimized reaction diffusion processes for effective image restoration[END_REF].

Physical interpretation

Another way to understand why a non-convex penalty is a better choice than the l 1 -norm consists in analyzing how the l 1 -norm sparsifies the data. Consider for example a simple l 1 -norm regularization of the following form

E 1 (a) = 1 2 (a -b) + λ|a|, (1.3) 
where a and b are non-zero scalars and λ is a positive term. For a = 0, the l 1 -norm admits a derivative with respect to a of the form λsign(a). When minimizing E 1 we get (a -b) + λsign(a), which can be interpreted as applying a force driving a towards the origin with constant intensity λ [START_REF] Mairal | Sparse modeling for image and video processing[END_REF]. As a result, the l 1 -norm induces sparsity, however it is biased as it over-penalizes large variables because the intensity λ is constant. If we consider a quadratic energy instead such as now the intensity is linear λ|a|. As a result, the intensity vanishes as |a| → 0, which explains why the l 2 -norm does not induce sparsity. On the other hand, consider a non-convex penalization such ash the l p<1 -norm or the log -l 1 :

E 1 (a) = 1 2 (a -b) + λ 2 (a) 2 , (1.4) 
E log (a) = 1 2 (a -b) + λ log(|a|). (1.5)
Now, we get another linear intensity but it takes into account the inverse of the magnitude λ/|a|. What happens is that, when |a| → ∞, the intensity tends to zero so high magnitude values are not modified, however when |a| → 0, the intensity is very high giving much more importance to values close to zero, and thus promoting sparsity. As a result, a non-convex penalty introduces less bias than the l 1 -norm that penalizes all the points with the same value λ. It is thus important to have a function whose derivative is inversely proportional to |a|. As we will see later in the proximal operators section, this is exactly what makes a sparse non-convex minimization problem hard to solve.

Geometrical approach A geometrical approach to analyze the sparsity-inducing effect of various penalties consists in studying the geometrical properties of the associated ball. For instance, the l 1 -ball corresponds to {x | ||x|| 1 ≤ µ}, where µ is a positive value. The study of the geometrical properties of the ball associated to the sparse penalty naturally arises when sparsity is used in a constrained optimization problem and it is a nice way to visualize how a sparse constraint works. Balls of the l p -norm for various p values is given in Figure 1.2. Consider an Euclidean projection on these balls. For the case of p = 2, any non-sparse point is projected onto a non-sparse solution. For the case of p = 1, a large number of points is projected to a shrunk solution. Note also that as we approach 0, the values on the contour of the ball linearly increase, giving exactly the same shrinking weight for all the points.

For the case of p < 1, the points that are far from 0 are given less importance in the shrinkage. As a result, not all the values have their magnitude reduced with the same value, contrary to the l 1 -norm that tends to penalize all the projected points the same way.

Structured Sparsity and Non-Local Processing

The internal properties of natural images have helped researchers to push the sparsity principle further and develop highly efficient algorithms for restoration, representation and coding. Group sparsity is an extension of the sparsity principle where data is clustered into groups and each group is sparsified differently. More specifically, in many cases, it makes sense to follow a certain structure when sparsifying by forcing similar sets of points to be zeros or non-zeros simultaneously. This is typically true for natural images that represent coherent structures. The concept of group sparsity has been first used for simultaneously shrinking groups of wavelet coefficients because of the relations between wavelet basis elements [START_REF] Hall | On the minimax optimality of block thresholded wavelet estimators[END_REF][START_REF] Cai | Adaptive wavelet estimation : a block thresholding and oracle inequality approach[END_REF]. Also, as neighboring pixels are similar, it makes sense to process similar neighboring patches in a similar way. This technique of regrouping similar patches in clusters via block-matching and processing the whole group instead of pixels independently is called non-local processing (see Figure 1.3).

Non-local processing was first presented in [START_REF] Buades | A non-local algorithm for image denoising[END_REF] for image denoising, in a context in- dependent of sparsity. However, there is a direct relationship between both notions and combining them via structured sparse coding has led to a dramatic improvement compared to using local sparsity in the context of image restoration [START_REF] Mairal | Non-local sparse models for image restoration[END_REF][START_REF] Dong | Sparsity-based image denoising via dictionary learning and structural clustering[END_REF]. Another important relationship between sparsity and non-locality naturally flows from the fact that non-local patches should form a low-rank matrix. As the similarity of the columns of this matrix is controlled by the singular values, controlling the sparsity of these singular values is a powerful tool that permits to restore all the patches within the non-local group at once [START_REF] Dong | Non-local image restoration with bilateral variance estimation : A low-rank approach[END_REF][START_REF] Gu | Weighted nuclear norm minimization with application to image denoising[END_REF]. In this thesis, we present methods that use local and non-local sparsity for robust recovery from corrupted gradients. The non-local approach tends to improve the quality of recovery when the measurements are highly corrupted. Also, we use non-locality combined with learning techniques to learn the sparsity of the non-local singular values instead of using a standard sparse model for image restoration, leading to a substantial improvement.

Sparsity, Scale Invariance and Multifractals

There exists a relationship between sparsity and the notion of scale invariance of multifractals. The principle of scale invariance refers to signals for which no scale of time or space plays a characteristic role [START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF]. A fractal set of points exhibits scale invariance and is characterized by its fractal dimension. A collection of fractals of different Hausdorff dimensions forms a multifractal object that can be used to describe natural images. In the microcanonical framework [START_REF] Turiel | Reconstructing images from their most singular fractal manifold[END_REF][START_REF] Turiel | Microcanonical multifractal formalism: a geometrical approach to multifractal systems. part i: singularity analysis[END_REF], a singular exponent is associated to each pixel based on its local scale invariance that takes the form of a power-law. The singular exponents describe the local singularity of each pixel and are related to the local fractal dimension. It turns out that, in natural images, we get distinct groups of singular points so the points of each group form a fractal set, where the most singular one contains most of the information of the image called the Most Singular Manifold. By ignoring all the fractal sets except the most singular points by hard-thresholding of the singular values, we get a sparse representation of the image.

It is however very hard to use this form of sparsity as a prior in an optimization framework because it requires estimating two unknowns per pixel. Nevertheless, it can be used to select useful points to sparsify images for coding or use the local singularity to build invariant descriptors.

Thesis Contributions

In this thesis, we show how the two powerful concepts of sparsity and scale invariance can be exploited to design fast and efficient imaging algorithms. We present a simple framework for using non-convex sparsity by applying a first-order approximation.

When using a proximal solver to estimate a solution of a sparsity-based optimization problem, sparse terms are always separated in subproblems that take the form of a proximal operator (see Chapter 2). Estimating the proximal operator associated to a non-convex term is thus the key component to use efficient solvers for non-convex sparse optimization. Using this strategy, only the shrinkage operator changes and thus the solver has the same complexity for both the convex and non-convex cases.

While few previous works have also proposed to use non-convex sparsity, their choice of the sparse penalty is rather limited to functions like the l p -norm for certain values of p ≥ 0.5 [START_REF] Chartrand | Fast algorithms for nonconvex compressive sensing: Mri reconstruction from very few data[END_REF][START_REF] Krishnan | Fast image deconvolution using hyper-laplacian priors[END_REF] or the Minimax Concave (MC) penalty [START_REF] Shi | A nonconvex relaxation approach to sparse dictionary learning[END_REF] because they admit an analytical solution. Using a first-order approximation only requires calculating the (super)gradient of the function, which makes it possible to use a wide range of penalties for sparse regularization. This is important in various applications where we need a flexible shrinkage function such as in edge-aware processing. The presence of various parameters in such functions makes it very hard to estimate an analytical solution. Apart from non-convexity, using a first-order approximation makes it easier to verify the optimality condition of proximal operator-based solvers via fixed-point interpretation.

Another problem that arises in various imaging applications but has attracted less works is the problem of multi-sparsity, when the minimization problem includes various sparse terms that can be non-convex. This is typically the case when looking for a sparse solution in a certain domain while rejecting outliers in the data-fitting term. By using one intermediate variable per sparse term, we show that proximalbased solvers can be efficient. We give a detailed study of the Alternating Direction Method of Multipliers (ADMM) solver for multi-sparsity and study its properties.

We apply these concepts in real-world imaging applications and we show that we can improve state-of-the-art results.

Image manipulation

In the context of image smoothing, we propose a highly efficient edge-aware smoothing algorithm that permits to produce high quality results in 1-3 iterations and scales to large images via parallel filtering. Edge-aware smoothing plays a central role in computer vision and graphics as it is the building block for many applications. The problem of structure-texture separation is more challenging than edge-aware smoothing as we have to minimize two sparse terms instead of one.

We design an efficient algorithm using non-convex terms on both the data-fitting and the prior. The resulting problem is solved via a combination of Half-Quadratic (HQ)

and Maximization-Minimization (MM) methods. Our method permits to extract challenging texture layers outperforming existing techniques while maintaining a low computational cost. Using spectral sparsity in the framework of low-rank estimation, we propose to use robust Principal Component Analysis (RPCA) [START_REF] Candès | Robust principal component analysis?[END_REF] to perform robust separation on multi-channel images such as glare and artifacts removal of flash/no-flash photographs. As in this case, the matrix to decompose has much less columns than lines, we propose to use a QR decomposition trick instead of a direct singular value decomposition (SVD) which makes the decomposition faster.

Robust integration

In many applications, we need to reconstruct an image from corrupted gradient fields. The corruption can take the form of outliers only when the vector field is the result of transformed gradient fields (low-level vision), or mixed outliers and noise when the field is estimated from corrupted measurements (surface reconstruction, gradient camera, Magnetic Resonance Imaging (MRI) compressed sensing, etc.). We use non-convexity and multi-sparsity to build efficient integrability enforcement algorithms. We present two algorithms : 1) a local algorithm that uses sparsity in the gradient field as a prior together with a sparse data-fitting term, 2) a non-local algorithm that uses sparsity in the spectral domain of non-local patches as a prior together with a sparse data-fitting term. Both methods make use of a multisparse version of the Half-Quadratic solver. The proposed methods were the first in the literature to propose a sparse regularization to improve integration. Results

produced with these methods significantly outperform previous works that use no regularization or simple l 1 minimization. Exact or near-exact recovery of surfaces is possible with the proposed methods from highly corrupted gradient fields with outliers.

Learning image denoising Image denoising is one of the hottest topics in computer vision as it is extremely challenging. Most of the denoising algorithms in the literature build models based on the assumption that the noise is uniform and Gaus-sian with known variance. In the real case however, the noise is non-uniform and even its nature changes from one device to another. Non-local spectral sparsity has shown to be efficient for image denoising [START_REF] Dong | Non-local image restoration with bilateral variance estimation : A low-rank approach[END_REF][START_REF] Gu | Weighted nuclear norm minimization with application to image denoising[END_REF]. We propose to go beyond standard spectral sparsity (nuclear norm/weighted nuclear norm) by learning a mapping between noisy non-local singular values and their estimated optimal denoising values on a pair of clean/noisy images. We develop an efficient robust training algorithm to learn the spectral transformation that consists simply in solving few linear systems instead of a costly training of a large neural network. Learning the spectral transformation leads to a dramatic improvement compared to previous works in terms of restoration quality even in the case of non-uniform corruption.

Texture recognition Deep convolutional networks that consist in extracting features by repeated convolutions with high-pass filters and pooling/downsampling operators have shown to give near-human recognition rates [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. Training the filters of a multi-layer network is costly and requires powerful machines. However, visualizing the first layers of the filters shows that they resemble wavelet filters [START_REF] Bruna | Invariant scattering convolution networks[END_REF][START_REF] Sifre | Rotation, and scaling and deformation invariant scattering for texture discrimination[END_REF], leading to sparse representations in each layer. We propose to use the concept of scale invariance of multifractals to extract invariant features on each sparse representation. We build a bi-Lipschitz invariant descriptor based on the distribution of the singularities of the sparsified images in each layer. Combining the descriptors of each layer in one feature vector leads to a compact representation of a texture image that is invariant to various transformations. Using this descriptor that is efficient to calculate with learning techniques such as classifiers combination and artificially adding training data, we build a powerful texture recognition system that outperforms previous works on 3 challenging datasets. In fact, this system leads to quite close recognition rates compared to the latest advanced deep nets [START_REF] Cimpoi | Deep filter banks for texture recognition, and description and segmentation[END_REF] while not requiring any filters training.

Other applications Many other applications have been developed while working on sparsity and scale invariance during this PhD research, some of them are presented in this thesis as well.

The thesis is organized as follows : chapter 2 presents techniques for optimization with details on proximal operators, first-order approximation and multi-sparsity. 

Chapter 2

Optimization Methods for

Non-Convex and Multi-Sparsity

This chapter treats sparsity-based optimization techniques with a focus on proximalbased solvers. We start with a background section to present the various notations used throughout the thesis. Then we present the concept of proximal operators and some popular proximal-based solvers in the literature. We then show how to use a first-order approximation to estimate a solution of non-convex proximal operators.

We study an extension of the classical sparsity framework to multi-sparsity were multiple sparse terms are considered in one optimization problem instead of a single one. More specifically, we study multi-sparse fast versions of the Half-Quadratic and ADMM solvers that can be used in various computer vision and machine learning applications.

Background Material

Throughout this thesis, we denote vectors by lowercase letters, such as x, and denote matrices by uppercase letters, such as X. We assume that vectors and matrices consist of real-valued elements. For instance, x ∈ R m represents a vector with m real-valued elements, and X ∈ R m×n represents a matrix with m rows and n columns that consists of real-valued elements. 1 indicates a vector that consists of ones. The notation x i indicates the i-th element in the vector x. The transposition matrix operator is denoted by (.) T . The diagonalization operator is denoted by diag(.) and selects the diagonal of a matrix or builds a diagonal matrix from a vector. The Hadamard product (pixelwise multiplication) is denoted by •(.). Consider a vector x ∈ R m . The l p>0 -norm (to the power p) is defined as

||x|| p p = m i=1 |x| p .
(2.1)

The case p = 0 known as the l 0 quasi-norm counts the number of non-zero elements

||x|| 0 = # {i | x i = 0} . (2.2)
Consider a matrix X ∈ R m×n .The l p -norm (to the power p) of X is defined as

||X|| p p = ||vec(X)|| p p = m i=1 n j=1 |x i,j | p , (2.3) 
where vec(.) denotes the vectorization operator that concatenates all the columns of the matrix in one vector. The Frobenius norm or the Hilbert-Schmidt norm (to the power of 2) of a matrix X is defined as follows

||X|| 2 F = m i=1 n j=1 |x i,j | 2 = min(m,n) r=1 σ 2 r , (2.4) 
where σ i are the singular values of X. The spectral l p norm (nuclear l p norm) is defined as the l p -norm on the singular values

||X|| p * ,p = min(m,n) r=1 σ p r .
(2.5)

The inverse function operator is denoted as (.) -1 . The abbreviation s.t. is short for subject to when used in a constrained minimization formulation. The notation x (k) indicates the version of the vector x at iteration k when used in an iterative solver.

Finally we use the notation ∂ to denote the (sub/super)gradient of a function and ∇ to denote the discrete gradient. The subgradient or subdifferential ∂f ⊂ R n of a convex function f at x is defined as [START_REF] Parikh | Proximal algorithms[END_REF] ∂f

(x) = y | f (z) ≥ f (x) + y T (z -x) for all z ∈ dom f , (2.6) 
where domf represents the effective domain of f :

domf = {x ∈ R n | f (x) < +∞} . (2.7)
Similarly, the supergradient or superdifferential ∂g ⊂ R n of a concave function g is defined as

∂g(x) = y | g(z) ≤ g(x) + y T (z -x) for all z ∈ dom g . (2.8)
The (sub/super)gradients permit to generalize the differential for functions that are not everywhere differentiable, which is typically the case of sparse penalties. For instance, the subgradient of

f (x) = |x| at 0 is ∂f (0) = [-1, 1] because |z| ≥ y T z is satisfied for any y in [-1, 1].
We denote by lap the optical transfer function (OTF) of the discrete Laplacian filter. It is calculated by padding zeros to match the size of the image and then applying a Fourier transform.

Optimization Methods

Various optimization problems that involve sparsity take the following general form

argmin x f (x) + g(x), (2.9) 
where f (.) models the data-fitting term (residual error) while g(.) models the prior.

Typically, f = ||.|| 2 2 and the prior is sparse (g = λ||.|| 1 for instance). This form appears in many machine learning and signal/image processing applications. One of the methods to estimate a solution of 2.9 when it is hard to evaluate directly consists in introducing an intermediate variable which results in subproblems that take a special form called proximal operators.

Proximal Algorithms

Various methods to solve problems of the form 2.9 have emerged in the literature based on proximal operators. A proximal operator is a minimization problem of the following form [START_REF] Parikh | Proximal algorithms[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] prox λf (y) = argmin

x λf (x) + 1 2 ||x -y|| 2 2 .
(2.10)

If the function is f is strongly convex and not everywhere infinite, the solution of 2.10 has a unique minimizer for every y [START_REF] Parikh | Proximal algorithms[END_REF]. When f models the sparsity of x, the solution of this problem corresponds to a thresholding operator that reduces the magnitude of the elements. In the popular case when f is the l 1 -norm, the solution reduces to the soft-thresholding [START_REF] Donoho | De-noising by soft-thresholding[END_REF] that is given as follows x = max (0, |y| -λ) sign(y).

(2.11)

Many solvers in literature are based mainly on proximal splitting, that is, introducing an intermediate variable and splitting the main problem into subproblems that correspond to proximal operators. These solvers are particularly popular in image processing as they provide a good quality solution and scale well to large-scale problems while being efficient. Note also that the proximal operator is a pointwise operator, that is, the shrinkage is applied on each element separately, which permits to efficiently implement proximal solvers in parallel. We present some popular proximal-based solvers below.

Half-Quadratic Splitting

The (additive) Half-Quadratic method (HQ) introduced in [START_REF] Geman | Nonlinear image recovery with half-quadratic regularization[END_REF] is the simplest proximal-based solver that is widely used in low-level vision applications [START_REF] Krishnan | Fast image deconvolution using hyper-laplacian priors[END_REF][START_REF] Xu | Image smoothing via l 0 gradient minimization[END_REF][START_REF] Xu | Unnatural l 0 sparse representation for natural image deblurring[END_REF][START_REF] Schmidt | Shrinkage fields for effective image restoration[END_REF]. It consists in introducing a new intermediate y variable using an l 2 -proximity regularization. Problem 2.9 becomes as follows argmin

x,y

f (x) + g(y) + β 2 ||x -y|| 2 2 .
(2.12)

This result comes from the following linearization

f (x) + g(x) ≈ f (x) + g(y) + β 2 ||x -y|| 2 2 .
(2.13)

Note that now we have to minimize over two variables x and y, which results in the following alternate minimization approach (sp 1 ) :

y (k+1) ← argmin y g(y) + β 2 ||x (k) -y|| 2 2 (sp 2 ) : x (k+1) ← argmin x f (x) + β 2 ||x -y (k+1) || 2 2 .
(2.14)

Using the proximal operator notation, we can rewrite both subproblems as follows (sp 1 ) :

y (k+1) ← prox 1 β g (x (k) ) (sp 2 ) : x (k+1) ← prox 1 β f (y (k+1) ).
(2.15)

In the typical case when f is a least-square fitting term and g is a sparse prior, subproblem (sp 1 ) corresponds to a thresholding operator and (sp 2 ) is solved via a linear system. More specifically, in the general case

f (x) = 1 2 ||Ax -b|| 2 2
, where is A is matrix (Compressed Sensing, image deconvolution, classification, regression, etc.), the subproblem (sp 2 ) corresponds to a linear system of the form

A T A + βI x (k+1) = A T b + βy (k+1) .
(2.16)

When the matrix A is Toeplitz, which is the case in image deconvolution, the FFT can be used to speed-up calculations. For large-scale processing, when the matrix is too large but sparse, one can use methods such as Preconditioned Conjugate Gradient (PCG) [START_REF] Shewchuk | An introduction to the conjugate gradient method without the agonizing pain[END_REF].

Forward-Backward Splitting

The Forward-Backword splitting method (FB) [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] consists in applying a fixed point equation as follows

x (k+1) ← prox 1 β f x (k) - 1 β ∂g(x (k) ) .
(2.17)

This can be rewritten as two steps (sp 1 ) :

y (k+1) ← x (k) -1 β ∂g(x (k) ) (sp 2 ) : x (k+1) ← argmin x f (x) + β 2 ||x -y (k+1) || 2 2 (2.18)
The subproblem (sp 1 ) is the forward step and (sp 2 ) is the backward step. The FB splitting method can be seen as a linearized HQ.

Douglas-Rachford Splitting

The Douglas-Rachford Splitting method (DR) [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] consists in using the following separation [START_REF] Combettes | A douglas-rachford splitting approach to nonsmooth convex variational signal recovery[END_REF] (sp 1 ) :

x (k) ← prox 1 βf (z (k) ) (sp 2 ) : y (k) ← prox 1 βg (2x (k) -z (k) ) z (k+1) ← z (k) + β (k) (y (k) -x (k) ) (2.19)
Compared to HQ splitting, DS has one additional intermediate variable z (k) . In fact, by replacing z (k) with x (k) thus considering z (k) = x (k) , the DS solver reduces to the HQ method.

ADMM and Bregman Splitting

The Half-Quadratic method can be seen as a special case of the Alternating Direction Method of Multipliers (ADMM) [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF], where a constraint is used to express the similarity of the latent variable x and the intermediate one y. The problem becomes as follows argmin

x,y f (x) + g(y)

s.t. x -y = 0 (2.20)
The problem is then solved by minimizing the associated augmented Lagrangian term

L β (x, y, z) = f (x) + g(y) + z T (x -y) + β 2 ||x -y|| 2 2 , (2.21)
where z is a dual variable and β is a positive regularization term. By fixing one variable a time, the solution is obtained via alternate minimization (sp 1 ) :

y (k+1) ← argmin y L β (x (k) , y, z (k) ) (sp 2 ) : x (k+1) ← argmin x L β (x, y (k+1) , z (k) ) (sp 3 ) : z (k+1) ← z (k) + β(x (k+1) -y (k+1) ), (2.22) 
which can be expressed in the proximal form as follows (sp 1 ) :

y (k+1) ← argmin y g(y) + β 2 ||x (k) -y+(1/β)z (k) || 2 2 (sp 2 ) : x (k+1) ← argmin x f (x) + β 2 ||x-y (k+1) +(1/β)z (k) || 2 2 (sp 3 ) : z (k+1) ← z (k) + β(x (k+1) -y (k+1) ).
(2.23)

Note that, for z = 0, ADMM reduces to the Half-Quadratic approach. ADMM is equivalent to the Bregman splitting method [START_REF] Goldstein | The split bregman method for l1-regularized problems[END_REF][START_REF] Esser | Applications of lagrangian-based alternating direction methods and connections to split bregman[END_REF]. The difference is that, instead of using Lagrangian multipliers, the Bregman splitting method uses the Bregman distance as defined as follows

D p (k) J (x, x (k) ) = J(x) -J(x (k) ) -p (k) T (x -x (k) ), (2.24) 
where J(.) is a given function. Both methods are exactly equivalent and closely related to the Douglas-Rachford splitting technique. For both ADMM and Bregman iteration, a linearized version can be used when having a regularization of the form g(Ax). In this case, the proximal operator associated to g is hard to evaluate due to the presence of the matrix A. By performing a linearization, the method can solve the problem using only proximal operators associated to f and g [START_REF] Parikh | Proximal algorithms[END_REF]. This approach is also known in the literature as the Uzawa method [START_REF] Zhang | Bregmanized nonlocal regularization for deconvolution and sparse reconstruction[END_REF][START_REF] Esser | A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science[END_REF][START_REF] Parikh | Proximal algorithms[END_REF].

Maximization-Minimization

The Maximization -Minimization method (MM) [START_REF] Lange | Optimization. Springer Texts in Statistics[END_REF] can be seen as the multiplicative form of the Half-Quadratic approach and results in an iteratively reweighted least squares algorithm (IRLS). Contrary to the previous discussed solvers (known as an additive form), the MM method consists in very few steps (usually 3-4) where each subproblem is harder to solve compared to the additive form due to bad conditioning of the linear system. Also, the resulting linear systems are not homogeneous, and cannot be accelerated for instance using the FFT even when the matrix associated to the data-fitting term is Toeplitz. Still, in many cases, the MM method can be both efficient and fast using an appropriate preconditioner. The MM approach performs a majorization with an auxiliary variable and switches to argmin

x,u g(u) + f (x) s.t. |x| ≤ u, (2.25) 
which takes the general form of minimizing a function under a convex constraint.

Applying a linearization on g results in

(x (k+1) , u (k+1) ) ← argmin x,u i ∂g(u i )|x i | + f (x), (2.26) 
which can be rewritten as an iteratively reweighting problem

x (k+1) ← argmin x ||W (k) x|| 1 + f (x) W (k+1) = diag ∂g(|x (k+1) |) .
(2.27) This is the general case of the iteratively reweighted l 1 -norm [START_REF] Candes | Enhancing sparsity by reweighted l 1 minimization[END_REF]. Note however that this form would require solving at each iteration a weighted l 1 minimization problem that is already hard to solve. We call this problem of iteratively solving hard problems as nested optimization problems. This typically appears when using non-convexity in the classical MM approach or more specifically when having multiple sparse functions to minimize (see section 2.4). In the case of MM optimization and using a non-convex function, we can get around the problem by using a concave surrogate function on x 2 instead of |x| as follows argmin

x,u

g m (u) + f (x) s.t. x 2 ≤ u, (2.28)
where g m is a function such that g(x) ∝ g m (x 2 ). The solution becomes

x (k+1) ← argmin x ||W (k) x|| 2 2 + f (x) W (k+1) = diag ∂g m (x (k+1) 2 ) .
(2.29)

Applying this to the log-l 1 problem [START_REF] Candes | Enhancing sparsity by reweighted l 1 minimization[END_REF] yields

x (k+1) ← argmin x ||W (k) x|| 2 2 + f (x) W (k+1) = diag 1 x (k+1) 2 + (2.30)
Note that this solution is equivalent to the case of l p with p → 0 as we have

∂ log(x + ) = lim p→0 ∂(1/p)(x + ) p .
(2.31)

This explains the results reported in [START_REF] Candes | Enhancing sparsity by reweighted l 1 minimization[END_REF] stating that both the l p [START_REF] Chartrand | Exact reconstruction of sparse signals via nonconvex minimization[END_REF] and reweighted l 1 [START_REF] Candes | Enhancing sparsity by reweighted l 1 minimization[END_REF] achieve the same performance for instance in the context of Compressed Sensing.

First-Order Proximal Estimation

Proximal Estimation

Recall the proximal operator formulation

prox λf (y) = argmin x λf (x) + 1 2 ||x -y|| 2 2 (2.32)
By applying Euler-Lagrange equation we obtain

x + λ∂f (x) = y, (2.33) 
which results in [START_REF] Parikh | Proximal algorithms[END_REF] :

x = (I + λ∂f ) -1 (y).

(2.34)

The solution 2.34 is an inverse function that is not always easy to evaluate. Let's take for instance the case of the f (.) = l p -norm, which corresponds to the following proximal form :

argmin x λ 1 p ||x|| p p + 1 2 ||x -y|| 2 2 . (2.35)
For the sake of simplicity, let's suppose that x and y consist of positive elements, which permits to rewrite the problem as

argmin x λ 1 p i x p i + 1 2 ||x -y|| 2 2 .
(2.36)

Using 2.34, we need to estimate the inverse function of this form

x + λx p-1 = y.

(2.37)

For the special cases p = 1 we can easily solve it and we get

x = y -λ, s.t. x > 0, (2.38) 
which gives x = max(0, y -λ). Generalizing this formula for x, y < 0, we get the soft-thresholding operator 2.11. As a result, the soft-thresholding operator is an exact solution of the proximal operator associated to the l 1 -norm. What about the case when p < 1 ? For the special cases of p = 0.5 and p = 2/3, an analytical solution can be calculated by finding the roots of the cubic and quartic polynomials [START_REF] Krishnan | Fast image deconvolution using hyper-laplacian priors[END_REF] and can provide only an estimation as the solution should be calculated for different values of y and use interpolation to estimate a new solution. For other functions, finding the solution of the inverse function becomes very difficult. Instead of trying to find an analytical solution for special functions, we propose to estimate a solution of the proximal operator by applying a first-order approximation on the inverse function.

This linearization makes the estimation of the inverse function straightforward. The first-order approximation of the proximal operator is given via a first order Taylor expansion (linearization at point y) :

f (x) ≈ f (y) + ∂f (y) T (x -y) (2.39)
This approximation can be seen as a majorization step, a similar strategy used in the Maximization-Minimization (MM) method presented in the section before. As f is concave, it is then bounded above its first-order Taylor approximation [START_REF] Varian | Microeconomic analysis[END_REF] f (x) ≤ f (y) + ∂f (y) T (x -y).

(2.40)

Now the minimization problem becomes

argmin x λ∂f (y) T x + 1 2 ||x -y|| 2 2 .
(2.41)

As there is no surrogate function on x, minimization becomes easy and gives the following solution

x ≈ y -λ∂f (y) T .

(2.42)

Generalized Thresholding

Using the first order approximation, we can generalize the notion of thresholding to any function f by defining the equations and adding the sign constraint. For positive values, we have

x ≈ y -λ∂f (y) s.t. x > 0, (2.43)
which can be rewritten simply as x ≈ max(0, y -λ∂f (y)). Including the negative values as well gives the following generalized thresholding operator associated to f (.)

x ≈ max(0, |y| -λ∂f (|y|))sign(y).

(2.44)

Note that this corresponds simply to a weighted version of the soft-thresholding operator where each value of y is shrunk with a different intensity. We can thus rewrite it as the following

x ≈ max(0, |y| -λw)sign(y) (2. [START_REF] Chang | Adaptive wavelet thresholding for image denoising and compression[END_REF] and corresponds to the solution of the proximal operator associated to the weighted l 1 -norm :

prox λf (y) = argmin x λw T |x| + 1 2 ||x -y|| 2 2 (2.46)
As a result, the first-order approximation of the proximal operator gives a convex approximation of the non-convex formulation and thus convergence is achieved. In practice, y changes at each iteration, thus the proximal operator is reweighted at each iteration, which makes a direct relationship with the reweighted-l 1 algorithm [START_REF] Candes | Enhancing sparsity by reweighted l 1 minimization[END_REF].

Note however that the difference is that our method is in the additive form, while the method in [START_REF] Candes | Enhancing sparsity by reweighted l 1 minimization[END_REF] is in the multiplicative form. In many applications like in large-scale processing, it is more efficient to use solvers in the additive form such as proximalbased solvers as the multiplicative form requires working with very large matrices that can have a bad conditioning number because of the reweighting. A popular case largely encountered in image processing is when the matrix is Laplacian (L = D T x D x + D T y D y , where D i are discrete differentiation operators). This typically arises whenever a sparse prior is used on the gradients of the latent image. When using a solver in the additive form, the reconstruction step of the latent image requires always using a homogeneous Laplacian matrix that can be efficiently solved via FFT or parallel filtering (see chapter 3). Contrary, in the case of a solver in the multiplicative form, the matrix becomes inhomogeneous due to the reweighting (L = D

T x W x D x + D T y W y D y ).
The filter becomes anisotropic and cannot be inverted via FFT. Luckily, in the special case of the Laplacian matrix, efficient preconditioners can be designed even for the inhomogeneous case [START_REF] Krishnan | Efficient preconditioning of laplacian matrices for computer graphics[END_REF]. However, updating the preconditioner is costly as the matrix changes at each iteration of the solver and cannot be calculated off-line.

Fixed-Point Iteration Analysis

It is worth noting that the soft-thresholding solution coincides with its first order approximation of the proximal operator. That is, we have x = (I + λsign) -1 (y) = y -λsign(y).

(2.47)

Thus we have the following equality in the case of the l 1 -norm (or more generally speaking in the weighted l 1 -norm case) :

(I + λ∂f ) -1 (y) = y -λ∂f (y).

(2. [START_REF] Chartrand | Restricted isometry properties and nonconvex compressed sensing[END_REF] This equality that is achieved in the convex case is an important result as it permits to study the optimality condition of proximal-based solvers easily via fixed-point iteration by replacing the the closed-form solution that is a difficult inverse function with its first-order approximation. Here is an example of the Half-Quadratic solver studied with the first-order approximation tool. Consider the general minimization problem where g is a convex sparse prior minimize f (x) + g(x), (2.49)

We want to verify the optimality condition 0 ∈ ∂f (x) + ∂g(x).

(2.50)

To do so, we first start by introducing the intermediate variable v for half-quadratic splitting. For fixed x and v, we have the following proximal subproblems

v ← argmin v g(v) + β 2 ||x -v|| 2 2 x ← argmin x f (x) + β 2 ||x -v|| 2 2 , (2.51) 
which results in the following intermediate solutions

v = (I + 1 β ∂g) -1 x , x = (I + 1 β ∂f ) -1 v. (2.52)
By introducing the first order approximation on g we get

v = (I - 1 β ∂g)x , x = (I + 1 β ∂f ) -1 v. (2.53) 
Now by adding the two equations together, it is easy to see that the optimality condition 2.50 is verified. Other solvers are studied with the same tool throughout this thesis.

Compressed Sensing Demonstration

Let's apply first-order non-convex approximation to the problem of MRI compressed sensing. The goal is to recover an image from few pseudo-radial lines. then we minimize the augmented Lagrangian

L(x, z, a, b, β) = log(|z| + ) + β 2 ||F Ω (x) -y|| 2 2 + a T (F Ω (x) -y) + β 2 ||∇x -z|| 2 2 + b T (∇x -z) (2.57)
where a and b are dual variables and β is a positive regularization term. Applying alternate minimization results in the following subproblems

(sp 1 ) : z (k+1) ← argmin z log(|z| + ) + β 2 ||z -(∇x (k) + b (k) /β (k) )|| 2 2 (sp 2 ) : x (k+1) ← argmin x ||F Ω (x) -(y -a (k) /β (k) )|| 2 2 +||∇x -(z (k+1) -b (k) /β (k) )|| 2 2 a (k+1) ← a (k) + β (k) (F Ω (x (k+1) ) -y) b (k+1) ← b (k) + β (k) (∇x (k+1) -z (k+1) ) β (k+1) ← β (k) κ , κ > 0.
(2.58)

Solving (sp 1 )
(sp 1 ) takes the form of a proximal operator associated to the log-l 1 penalty. By applying the generalized thresholding operator 2.44 on each gradient component, we get the following

z (k+1) i ← max(0, |w (k) i | -1 β (k) (|w (k) i | + ) -1 ) sign(w (k) i ) w (k) i = ∇ i x (k) + b (k) /β (k) .
(2.59)

Solving (sp 2 )
(sp 2 ) is quadratic and admits a closed-form solution via Euler-Lagrange equations.

The solution can be efficiently calculated via Fast Fourier Transform (FFT)

x (k+1) ← F -1 (y -a (k) /β (k) ) -F(div(z (k+1) -b (k) /β (k) )) M -lap , (2.60)
where div is the discrete divergence operator, M is a binary mask that is 1 if the y is defined and 0 otherwise, and lap is the Optical Transfer Function (OTF) of the discrete Laplacian operator. This operator will appear often in this thesis whenever the FFT is used to solve a subproblem that contains the gradient of a latent image (a problem known in the literature as the screened Poisson equation [START_REF] Bhat | Fourier analysis of the 2d screened poisson equation for gradient domain problems[END_REF]).

Experiment

We run a reconstruction experiment on the popular Shepp-Logan phantom instance using only 9 pseudo-radials (see Figure 2.1). We take β = 10 4 and κ = 1.003. κ can be set to a higher value if we have more pseudo-radial samples, which leads to faster convergence. The error is calculated as follows

||x (gt) -x (m) || 2 /||x (gt) || 2 , (2.61) 
where x (gt) denotes the ground-truth and x (m) denotes the estimated solution with the method m. We get exact recovery after running 3000 iterations with error of around 10 -6 . Figure 2.1 presents the results produced with the l 1 -norm and the the log-l 1 version using the same ADMM solver. A detailed error analysis per iteration is given in Figure 2.2. As can be seen, a simple modification of the shrinkage operator using a first-order approximation on the log-l 1 penalty leads to a dramatic improvement.

For comparison, the l 1 -norm version needs 17 radial-lines to reconstruct perfectly the image, while the log-l 1 needs only 9 with the same complexity. It is worth noting that the reweighted-l 1 solver [START_REF] Candes | Enhancing sparsity by reweighted l 1 minimization[END_REF] that uses the same formulation 2.54 requires 17 radials to perfectly reconstruct the image with the l 1 penalty while our solver requires only 13.

For the case of the log-l 1 , 10 radial lines are used for the non-convex demonstration while we use only 9.

Multi-Sparse Optimization

We consider in this section the multi-sparse case, when both (or more) f (.) and g(.) are sparse. This is typically the case when using sparsity to model the residual error in the data-fitting term, which arises in the case of outliers (2.63)

Note that now, (sp 2 ) is hard to evaluate and requires running another time the solver to estimate its solution. To overcome this issue, it is important to introduce more intermediate variables as we will see. We consider extensions of the Half-Quadratic and ADMM solvers only in this section as these solvers are the most popular.

Double Sparsity Case

Half-Quadratic Approach A more appropriate half-quadratic approach to tackle a double sparsity minimization problem would be introducing a second intermediate variable w for the function f as follows

f (x) + g(x) ≈ f (w) + β 2 ||x -w|| 2 2 + g(y) + β 2 ||x -y|| 2 2 . (2.64)
This results in the following alternate minimization form (sp 1 ) :

y (k+1) ← argmin y g(y) + β 2 ||x (k) -y|| 2 2 (sp 2 ) : w (k+1) ← argmin w f (w) + β 2 ||x (k) -w|| 2 2 (sp 3 ) : x (k+1) ← argmin x ||x -y (k+1) || 2 2 + ||x -w (k+1) || 2 2 .
(2.65)

If we apply this to the previous problem, we get (sp 1 ) y (k+1) ← argmin

y ||y|| 1 + β 2 ||Bx (k) -y|| 2 2 (sp 2 ) w (k+1) ← argmin w ||w|| 1 + β 2 ||Ax (k) -b -w|| 2 2 (sp 3 ) x (k+1) ← argmin x ||Ax -(b + w (k+1) )|| 2 2 +λ||Bx -y (k+1) || 2 2 .
(2.66)

Note that now all the subproblems are easier to solve. Also, the difference between this solver and the single sparsity version (2.63) is only an additional shrinkage operator associated to problem (sp 2 ). Clearly, this is a much more efficient approach of the half-quadratic solver.

Augmented Lagrangian Approach

We follow the same strategy as the previous HQ solver by introducing one additional variable per sparse term in the consensus form which results in multiple constraints minimize f (y 0 ) + g(y 1 ) subject to x -y 0 = 0

x -y 1 = 0.

(2.67)

We consider the following associated augmented Lagrangian term

L β (x, y 0 , y 1 , z 0 , z 1 ) = f (y 0 ) + g(y 1 ) + z T 0 (x -y 0 ) +z T 1 (x -y 1 ) + β 2 ||x -y 0 || 2 2 + β 2 ||x -y 1 || 2 2 .
(2.68)

Now considering one variable a time, the alternate minimization is given as follows (sp 1 ) : y

(k+1) 0 ← argmin y 0 L β (x (k) , y 0 , y (k) 1 , z (k) 0 , z (k) 1 ) 
(sp 2 ) : y

(k+1) 1 ← argmin y 1 L β (x (k) , y (k+1) 0 
, y 1 , z

(k) 0 , z (k) 1 ) 
(sp 3 ) : x (k+1) ← argmin x L β (x, y (k+1) , w (k+1) , z

(k) 0 , z (k) 1 ) 
(sp 4 ) : z

(k+1) 0 ← z (k) 0 + β(x (k+1) -y (k+1) 0 ) (sp 5 ) : z (k+1) 1 ← z (k) 1 + β(x (k+1) -y (k+1) 1
),

(2.69)

with β increasing at each iteration β (k+1) ← β (k) κ , κ > 0.

Problems (sp 1 ) and (sp 2 )

These subproblems are given as follows

y (k+1) 0 ← argmin y 0 f (y 0 ) + z T 0 (x (k) -y 0 ) + β 2 ||x (k) -y 0 || 2 2 y (k+1) 1 ← argmin y 1 g(y 1 ) + z T 1 (x (k) -y 1 ) + β 2 ||x (k) -y 1 || 2 2 .
(2.70)

Now consider the quadratic energy

E y 0 = z T 0 (x (k) -y 0 ) + β 2 ||x (k) -y 0 || 2 2 E y 1 = z T 1 (x (k) -y 1 ) + β 2 ||x (k) -y 1 || 2 2 , (2.71) 
which results in :

∇E y 0 = -z 0 + β(y 0 -x (k) ) = 0 ∇E y 1 = -z 1 + β(y 1 -x (k) ) = 0.
(2.72)

As a result, subproblems (sp 1 ) and (sp 2 ) are given in the following proximal form (sp 1 ) : y

(k+1) 0 ← argmin y f (y 0 ) + β 2 ||x (k) -y 0 +(1/β)z (k) 0 || 2 2 (sp 2 ) : y (k+1) 1 ← argmin y 1 g(y 1 ) + β 2 ||x (k) -y 1 +(1/β)z (k) 1 || 2 2 .
(2.73)

Problem (sp 3 )
This subproblem is the main reconstruction step of the latent variable x, it consists in the following minimization problem

x (k+1) ← argmin x z T 0 (x -y 0 ) + z T 1 (x -y 1 ) + β 2 ||x -y 0 || 2 2 + β 2 ||x -y 1 || 2 2 .
(2.74)

Considering the energy

E x = (z T 0 + z T 1 )x + β 2 ||x -y 0 || 2 2 + β 2 ||x -y 1 || 2 2 ∇E x = z 0 + z 1 + β(2x -(y 0 + y 1 )) = 0,
(2. [START_REF] Falconer | Techniques in Fractal Geometry[END_REF] this subproblem can be reformulated as follows

x (k+1) ← argmin x ||x -q|| 2 2 q = 1 2 y (k+1) 0 + y (k+1) 1 -1 β z (k+1) 0 + z (k+1) 1
.

(2.76)

General Formulation

We now study ADMM for more than two sparse terms. Consider the following prob-

lem minimize f (x) + N i g i (x), (2.77) 
where f and g 1,...,N are sparsity promoting terms. This is typically the case when considering a data fitting term f and multiple sparse priors g i . By associating one intermediate variable to each sparse term, the consensus form is given as follows

minimize f (y 0 ) + N i=1 g i (y i ) subject to x -y i = 0 i = 0, ..., N.
(2.78)

The associated augmented Lagrangian term becomes

L β (x, y 0 , ..., y N , z 0 , ..., z N ) = f (y 0 ) + z T 0 (x -y 0 )+ β 2 ||x-y 0 || 2 2 + N i=1 g i (y i )+z T i (x-y i )+ β 2 ||x-y i || 2 2 .
(2.79)

Following the previous section, the subproblems associated to this Lagrangian term are given as follows :

Subproblem associated to y 0

y (k+1) 0 ← argmin y 0 f (y 0 ) + β 2 ||x (k) -y 0 +(1/β)z (k) 0 || 2 2 .
(2.80)

Subproblem associated to y i>0 y (k+1) i ← argmin y i g i (y i ) + β 2 ||x (k) -y i +(1/β)z (k) i || 2 2 .
(2.81)

Subproblems associated to z i z (k+1) i ← z (k) i + β(x (k+1) -y (k+1) i
).

(2.82)

Subproblems associated to x x (k+1) ← argmin x ||x -q|| 2 2 q = 1 N +1 N i=0 (y (k+1) i -1 β z (k+1) i
) .

(2.83)

Note that all the subproblems associated to the intermediate variables y i are simple proximal operators. As the functions f and g i are sparsity-promoting functions, the operators consist in simple pixelwise shrinkage functions that can be implemented efficiently in parallel. The subproblems associated to the dual variables z i are also easy to evaluate as they consist in simple vector/matrix additions. As a result, this solver can be also used for large-scale processing. The most computationally expensive subproblem is the reconstruction step of recovering x, which consists in solving a linear system as the problem is quadratic. However, there are many tricks to make processing faster, especially in the case of sparse convolution priors widely used in the vision community. The linear system can be replaced by efficient Fourier deconvolution or other methods, or using sparse orthogonal wavelet priors where the inverse is usually easy to evaluate.

For z i = 0, this extended ADMM solver reduces to the half-quadratic approach for multiple sparse terms. While the half-quadratic solver solves less subproblems than ADMM each iteration due to the absence of the dual variables, it takes in general more iterations to converge to a decent solution.

Fixed-Point Iteration Analysis

It is important to check the minimization equivalence between the original problem and the solution given by the solver. More specifically, we would like to check if the solution x given by the solver satisfies the optimality condition, that is

0 ∈ ∂f (x ) + ∂ N i=1 g i (x ). (2.84)
To do so, by considering fixed points x, y 0 , ...y N , z 0 , ..., z 1 , we have the following equations (eq 1 ) :

y 0 = prox 1 β f (x + 1 β z 0 ) (eq 2 ) : y i = prox 1 β g i (x + 1 β z i ) , i = 1, ..., N (eq 3 ) : z i = z i + β(x -y i ) , i = 0, ..., N (eq 4 ) : x = 1 N +1 N i=0 y i -1 β z i .
(2.85)

Equation (eq 3 ) gives x = y i , for i = 0, ..., N . replacing y i by x in (eq 1 ) and (eq 2 ) gives

x = prox 1 β f (x + 1 β z 0 ) , x = prox 1 β g (x + 1 β z i ).
(2.86)

Now we rewrite the proximal operator in the closed-form given by an inverse function expressed as follows

prox λf = (I + ∂f ) -1 . (2.87)
Equations (eq 1 ) and (eq 2 ) are reformulated as follows

x = (I + 1 β ∂f ) -1 (x + 1 β z 0 ) , x = (I + 1 β ∂g i ) -1 (x + 1 β z i ), (2.88) which results in (x + 1 β z 0 ) ∈ (x + 1 β ∂f (x)) (x + 1 β z i ) ∈ (x + 1 β ∂g i (x)).
(2.89)

Adding the equations together, we get

(N + 1)x + N i=0 1 β z i ∈ (N + 1)x + 1 β ∂f (x) + 1 β N i=1 ∂g i (x).
(2.90)

Now, replacing x by y i in (eq 4 ), we get N i=0 1 β z i = 0 and the optimality condition (2.84) is verified. Note that the only requirement for guaranteed equivalence is the exact evaluation of the proximal operator, that is, the inverse function of equation (2.87) should be correctly evaluated, which is verified in the general case of the weighted l 1 penalty as we saw in the previous section.

Conclusions

We presented in this chapter optimization techniques for efficient minimization of nonconvex and multi-sparsity problems that arise in various imaging applications. We showed how a first-order approximation can be used to easily estimate a solution of non-convex proximal operators, which permits to use standard proximal-based solvers and achieve high performance and efficiency. For multi-sparsity, we extended standard proximal-based solvers by associating one intermediate variable per sparse term, which results in solvers that have almost the same complexity as their single sparsity version, the additional cost is only that of shrinkage operators. A detailed analysis of the ADMM solver for N sparse terms was presented with verified optimality condition. Throughout this thesis, we use these techniques in the following chapters to solve real-world imaging problems and achieve new state-of-the-art results.

Chapter 3 Image Manipulation via Sparsity

This chapter considers image manipulation applications and how they can be efficiently implemented using sparse methods. Edge-aware processing consists in a wide range of computational photography applications ranging from smoothing to sparse scribbles propagation. We consider two main edge processing approaches that are the building-block of many other applications : 1) edge-aware smoothing where the residual error is quadratic and 2) structure-texture separation where the residual error is sparse. For edge-aware smoothing, we propose to use a fast Half-Quadratic (HQ) approach with a non-convex regularization. We introduce a warm-start solution via a first-order approximation to get quickly an initial solution. Compared to a classical HQ solver, our method needs only around 1-3 iterations, which permits to perform real-time processing of High-Definition videos on the GPU. This work was presented in SIGGRAPH Asia 2013 [START_REF] Badri | Fast multi-scale detail decomposition via accelerated iterative shrinkage[END_REF]. A modified version of the algorithm that permits fast large-scale processing consists in replacing the FFT operations with separable filters using low-rank decomposition and results in fixed-size 1D filters that can be efficiently implemented in parallel [START_REF] Badri | Fast edge-aware processing via first order proximal approximation[END_REF].

Structure-Texture separation differs from the edge-aware smoothing problem by considering a sparse residual instead of a quadratic one and permits to separate texture information, which is useful for many applications. We propose to use non-convexity on both the residual and regularization terms and adapt efficient solvers such as Half-Quadratic (HQ) and Majorization-Minimization (MM) for this problem.

Our method permits to produce much better decompositions compared to previous work while being efficient and easy to implement.

In the third part of this chapter, we present a different approach to image manipulation, a framework for processing multi-channel images using low-rank decomposition. This framework can be used directly on color images or other types of images such as flash/no-flash, NIR/ambient or day/night pairs. We show how this approach can be efficiently implemented using an Alternating Direction Method of Multipliers (ADMM) solver and a QR decomposition trick. Many computational photography applications can benefit from this approach such as automatic colorization and glare/artifacts flash removal, etc.

Edge-Aware Smoothing

Introduction

During the past few years, there has been a significant amount of work on edge-aware filtering. Unlike regular Gaussian smoothing, edge-aware filters blur the image while preserving sharp edges. Probably the most popular edge-aware filter is the bilateral filter [START_REF] Tomasi | Bilateral filtering for gray and color images[END_REF] that performs a weighted averaging of the pixel values in a window based on both space and range distances. The bilateral filter can be seen as a highdimensional filter working in a 5D space when performed on 2D RGB images [START_REF] Barash | A fundamental relationship between bilateral filtering, and adaptive smoothing, and the nonlinear diffusion equation[END_REF]. A naive implementation of this filter is computationally demanding as it operates in a high-dimension space. Many researchers tried to boost this filter or at least simulate bilateral-like results by either using linear interpolation [START_REF] Durand | Fast bilateral filtering for the display of high-dynamicrange images[END_REF], optimized data structures such as the bilateral grid [START_REF] Chen | Real-time edge-aware image processing with the bilateral grid[END_REF], reformulation and downsampling [START_REF] Paris | A fast approximation of the bilateral filter using a signal processing approach[END_REF][START_REF] Banterle | A low-memory, and straightforward and fast bilateral filter through subsampling in spatial domain[END_REF], constant time spatial filters decomposition [START_REF] Yang | Real-time o(1) bilateral filtering[END_REF], Gaussian KD-trees [START_REF] Adams | Gaussian kd-trees for fast high-dimensional filtering[END_REF], Supports Vector Machines regression [START_REF] Yang | Svm for edge-preserving filtering[END_REF], recursive implementation [START_REF] Yang | Recursive bilateral filtering[END_REF], dimensionality reduction [START_REF] Gastal | Domain transform for edge-aware image and video processing[END_REF],

adaptive manifolds [START_REF] Gastal | Adaptive manifolds for real-time highdimensional filtering[END_REF], among others. The bilateral filter is the building block of a wide range of applications such as HDR tone-mapping [START_REF] Durand | Fast bilateral filtering for the display of high-dynamicrange images[END_REF], non-photorealistic rendering [START_REF] Winnemöller | Real-time video abstraction[END_REF], upsampling [START_REF] Kopf | Joint bilateral upsampling[END_REF] and non-blind image deconvolution [START_REF] Yuan | Progressive inter-scale and intra-scale non-blind image deconvolution[END_REF]. Unfortunately, bilateral filtering suffers from several issues. For instance, it tends to produce several halo artifacts in detail manipulation applications as pointed out by Farbman et al. [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF]. It also tends to blur some edges and refuses to wash-out some large-scale details as can be seen in Figure 3.1. The main problem of the bilateral filter comes from its smoothing behavior that is controlled by the scale and range parameters denoted σ s and σ r . As σ s increases, the bilateral filter acts like a range filter and as σ r increases the bilateral filter becomes a Gaussian filter. Increasing σ s tends to preserve sharp edges but fails at smoothing small-scale details. On the other hand, increasing σ r tends to smooth small scale details but over-smooths sharp edges. As a result, the bilateral filter may not be suitable for some edge-aware manipulation applications due to its smoothing behavior. New local filtering methods perform filtering in a pyramid to prevent halo artifacts. The local laplacian filter method [START_REF] Paris | Local laplacian filters: Edge-aware image processing with a laplacian pyramid[END_REF][START_REF] Aubry | Fast local laplacian filters: Theory and applications[END_REF] uses a Laplacian pyramid while the mixed-domain method [START_REF] Li | Mixed-domain edge-aware image manipulation[END_REF] uses a Gaussian pyramid. While these methods produce high-quality smoothing results compared to previous local filtering methods, they are computationally expensive. (d) Domain Transform [START_REF] Gastal | Domain transform for edge-aware image and video processing[END_REF] (e) WLS [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF] (f) Proposed Local filtering methods such as the bilateral filter and the domain transform are not able to correctly smooth large-scale details and tend to blur sharp edges. In contrast, our method smooths both small and large details while being computationally efficient.

Gradient-domain methods have emerged as another set of techniques for edgeaware manipulation. These methods are based on optimization, contrary to local filtering such as the bilateral filter. The first method introduced in this category is the Total Variation (TV) method [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. This approach consists in minimizing an energy regularized by a convex gradient function (l 1 -norm). The method was mainly used for denoising and its use for computer graphics applications was limited. The method of Farbman et al. [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF] is also based on a convex optimization formulation but instead of the l 1 -norm, it makes use of a weighted least squares formulation (WLS).

The approach has shown to produce improved smoothing results and was successfully used in detail manipulation applications. Xu et al. make use of the l 0 -minimization framework [START_REF] Xu | Image smoothing via l 0 gradient minimization[END_REF] to progressively suppress details. The l 0 quasi-norm is a non-convex and non-differentiable function that highly promotes sparsity. The method produces sharp and piecewise constant-like smoothing that is suitable for applications such as abstraction and non-photorealistic rendering. These optimization-based methods produce in general a high-quality smoothing result and do not introduce halo artifacts in detail manipulation applications. However, they suffer from two issues. The first one is the limited smoothing behavior that is directly related to the choice of the regularizer. For instance, using the l 0 quasi-norm produces only sharp and piecewise constant-like smoothing, which may be unsuitable for some smoothing applications.

The second issue is the computational cost. In order to preserve sharp edges, the regularization term should promote sparsity in the gradient domain. Minimization results in solving large inhomogeneous linear systems in the case of the weighted least squares (WLS) method or a large number of gradient shrinkage/reconstruction [START_REF] Xu | Image smoothing via l 0 gradient minimization[END_REF].

We present a fast and flexible framework for image smoothing based on non-convex regularization and various approximations to make the method computationally efficient. First, we remind how to efficiently estimate a solution to optimization problems with non-convex penalties. We use a half-quadratic solver with a first order approximation to estimate the solution of the non-convex proximal operator. This approach has been presented in Chapter 2. Secondly, we show how to accelerate this solver by introducing a warm-start solution and forcing a low number of iterations. We also propose two flexible regularization functions derived from Cauchy and Welsch functions that produce suitable photographic smoothing behavior. Finally, we discuss numerical solutions for fast processing. We show how to estimate the proposed filter with few independent convolutions that can fully take advantage of parallel processing. Not only this parallel filtering approach enables fast processing, it also permits the method to be applied to large-scale images. We present various edge-aware applications produced with our method and compare with state-of-the-art methods.

Problem Formulation

Given an input image g, we seek a smooth image u that is close to g under a sparse

gradient assumption. The problem is formulated as follows

argmin u λ 2 ||u -g|| 2 2 + ψ(∇u), (3.1) 
where ψ(.) is a function and λ is a positive regularization term. Producing a smooth image requires forcing the output u to have sparse gradients. Thus, ψ(.) should be a sparsity-inducing function1 . The problem is not easy to solve as the function ψ(.) can be a non-smooth or not even convex. One popular method to tackle optimization problems of this form is by introducing an additional variable v to obtain a halfquadratic form [START_REF] Geman | Constrained restoration and the recovery of discontinuities[END_REF] as discussed in Chapter 2

argmin u,v λ 2 ||u -g|| 2 2 + ψ(v) + β 2 ||∇u -v|| 2 2 , (3.2)
where β is a new regularization term. As we have seen in the previous chapter, the problem then can be solved by alternate minimization

(sp 1 ) : v (k+1) ← argmin v ψ(v) + β 2 ||∇u (k) -v|| 2 2 (sp 2 ) : u (k+1) ← argmin u λ||u -g|| 2 2 + β||∇u -v (k+1) || 2 2 , (3.3)
where k is the current iteration number. The sub-problem (p 2 ) is a least-squares problem and is relatively easy to solve. However, problem (p 1 ) is hard to solve due to the presence of the non-quadratic function ψ(.). In a nutshell, the function ψ(.) For instance, in the case of the Laplacian distribution, we have p(u) ∝ e -τ |u| , which comes to take ψ(.) as the l 1 -norm on the gradient. The smoothing behavior of the filter is totally determined by the choice of the function ψ(.). The main issue with this choice is that, in order to correctly smooth strong edges, the distribution of the gradients should be highly kurtotic to promote sparsity in the gradient field, which naturally leads to a non-convex regularization. We will see through this section how to perform edge-aware smoothing with non-convex but differentiable functions ψ(.) using a first order proximal estimation.

determines

Non-Convex Proximal Operators

We have discussed in Chapter 2 proximal operators and how to get a first-order approximation via Taylor expansion. Consider the proximal form

prox th (x) = argmin y h(y) + 1 2t ||y -x|| 2 2 , (3.5)
where t is a positive regularization term. For a differentiable function h, the solution can be found by direct minimization of the energy, which leads to the following equation

y + t∂h(y) = x. (3.6)
Therefore, the solution of the proximal operator is given by the following inverse function

prox th (x) = (I + t∂h) -1 (x). (3.7)
As the inverse function is hard to calculate, we can consider a first-order approximation instead for positive values

prox th (x) ≈ x -t∇h(x). (3.8)
We apply this estimation to the first subproblem by replacing x by ∇u (k) , h by ψ and t by 1/β, we get the following estimate

v (k+1) ← prox 1 β ψ (∇u (k) ) ≈ ∇u (k) - 1 β ∂ψ ∇u (k) , (3.9) 
which simplifies to pixelwise operations

v (k+1) ← ∇u (k) 1 - 1 β w ψ ∇u (k) , (3.10) 
where

w ψ (x) = ∂ψ(x)
x is the weight function of ψ.

Photographic Smoothing Behavior

We need to choose an appropriate function ψ(.). As discussed before, the smoothing behavior of the filter is totally defined by the choice of ψ and this is directly related to the derivative distribution prior adopted in the method. Studies have shown that real-world images' gradient distribution has a heavier tail than a Laplacian distribution [START_REF] Krishnan | Fast image deconvolution using hyper-laplacian priors[END_REF][START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF], which suggests using a non-convex regularization. In order to be able to generate different smoothing results, we propose two flexible models derived from Cauchy and Welsch functions, two models widely used in M-estimation. The weight functions w ψ i (x) of Cauchy and Welsh functions are given as follows Cauchy :

w ψ 1 (x) = 1 1+(x/γ) 2 Welsch : w ψ 2 (x) = e -((x/γ) 2 ) (3.11)
These functions act as thresholding operators as they have an inverted sigmoid-like shape. The derivation of these weights functions comes from sparsity-inducing functions. For instance, the Cauchy function is derived from

ψ(x) = γ 2 2 log 1 + ( x γ ) 2 . (3.12)
The influence function is defined as follows

∂ψ(x) = x 1 + (x/γ) 2 , (3.13) 
and the weight function is defined as follows

w(x) = ∂ψ(x) x = 1 1 + (x/γ) 2 , (3.14)
We introduce a new parameter α that controls the nature of the thresholding

w 1 (x) = 1 1 + (x/γ) α , w 2 (x) = e -((x/γ) α ) . (3.15)
As α → ∞, the functions act more as hard-thresholding operators and approach the l 0 case. As a result, decreasing α produces more blurry results and increasing γ smooths more details. The parameter λ, on the other hand, controls the balance between the original image and the smoothing. Visual results for various parameters using function w 2 can be found in Figure 3.2. For color images, we define the following Results produced with the proposed method for various parameter settings (image from [START_REF] Paris | Local laplacian filters: Edge-aware image processing with a laplacian pyramid[END_REF]). The parameter γ controls the main smoothing behavior of the filter, α controls the blur, while λ controls the balance between the original image and the smoothing.

gradient function for full color filtering

T (∇u) = c k=1 | ∂u k ∂x | 2 + ch k=1 | ∂u k ∂y | 2 , (3.16) 
where c is the number of channels. The solution of the shrinkage subproblem becomes

v (k+1) ← ∇u (k) 1 - 1 β w i T (∇u (k) ) .
(3.17)

Efficient Warm-Start

Solving the edge-aware smoothing problem corresponds to an iterative process. Thus, the initial solution u (0) plays an important role in terms of speed of the algorithm.

To accelerate the method, we derive a warm-start solution u (0) . The warm-start solution corresponds to a rough estimation that can be calculated quickly. Using

Euler-Lagrange equation, we rewrite the solution in the matrix form

(βL + λI) A u (0) x = -βdiv(v (0) ) + λg b , (3.18) 
where Lu (0) ≡ -div(∇u (0) ), L being the Laplacian matrix. We consider the quadratic form f (x) = 1 2 x T Ax -b T x. Solving for f (x) = 0 is equivalent to solving the system 3.18. To estimate a rough solution, we use a quadratic regularization, which takes the form of the proximal form on the point x (0)

prox tf (x (0) ) = argmin x f (x) + 1 2t ||x -x (0) || 2 2 , (3.19) 
where x (0) is close to x. Applying the first order approximation, we get the linearized form

x ≈ x (0) -t(Ax (0) -b) (3.20)
Note that this is equivalent to a gradient descent method. In fact, the relationship between proximal operators and the gradient descent method was pointed out in [START_REF] Parikh | Proximal algorithms[END_REF].

Now replacing x (0) with the input image g, we get the first order estimation

u (0) ≈ g + ξdiv ∇g -∇g • (1 - 1 β w i (T (∇g))) , ξ > 0, (3.21)
where • denotes the Hadamard product and ξ = βt. As we want a relatively small number of iterations, we rather fix β = 1. This choice has two motivations. First, as the functions w 1 and w 2 have values between 0 and 1, the term (1 -1 β w i ) will also have values between 0 and 1 for β = 1, and thus one can use only the parameters γ and α to control smoothing. The second reason is that, with the same β at each iteration, one does not need to update the preconditioner or the filters to solve the subproblem (sp 2 ). In a theoretical point of view, β should slightly increase at each iteration. As we force a low iteration number for faster processing, fixing β has little impact on the truncated solution and offers a more efficient implementation. For the warm-start parameters, ξ is set between 0.01 and 0.25, α is fixed to 2 and γ is set to around 400. It is worth noting that the warm-start solution that we derived 3.21 looks much like the popular anisotropic diffusion filter [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF]. This suggests that, in fact, the anisotropic diffusion filter is just a first-order approximation of a minimization problem with a non-convex gradient domain regularization.

Fast Numerical Solution

Here we discuss fast methods to compute problem (sp 2 ). The problem is quadratic and the solution is given by Euler-Lagrange equation

λu (k+1) -∇ 2 u (k+1) = λg -div(v (k+1) ), (3.22) 
One approach to solve this equation consists in using the Fourier transform. As the divergence and Laplacian operators can be expressed using convolutions, introducing the Fourier transform permits to split the differential operators from the variable u (k+1) and the solution is given as follows (for β = 1)

u (k+1) ← F -1 F λg -div(v (k+1) ) λ -lap , (3.23)
where F is the Fourier transform, div is the discrete divergence operator2 and lap is the OTF (optical transfer function) of the discrete Laplacian filter. Calculating the filter lap depends only on the size of the image and can be calculated only once when for example the image is loaded by the user, or even pre-stored for multiple image sizes. Another approach consists in using sparse linear solvers. Differential operations can be expressed as linear operations using discrete differential operators D x and D y , the solution corresponds to the following linear system

(L + λI) A u (k+1) x = -div(v (k+1) ) + λg b . (3.24) 
The matrix A is symmetric, positive-semidefinite and very sparse due to the Laplacian matrix L. The good news about this system is that it corresponds to a homogeneous system [START_REF] Krishnan | Efficient preconditioning of laplacian matrices for computer graphics[END_REF]. Contrary to inhomogeneous systems as the one that corresponds to the WLS solution [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF], they are much easier to solve. Using the latest Laplacian matrix preconditioner by Krishnan et al. [START_REF] Krishnan | Efficient preconditioning of laplacian matrices for computer graphics[END_REF], we have noticed that solving the linear system takes in general only one iteration, and two iterations for very small λ values. This is very fast processing : for two iterations of the proposed method, around 2 × 3 = 6 preconditioned conjugate gradient iterations in total are required to perform edgeaware smoothing of a full-color image. Note also that, as β is fixed, the method does not need to update the preconditioner. Hence, the Laplacian matrix and the preconditioner for various discrete λ values and image sizes can be pre-computed and stored for faster processing.

Note however that the use of these two approaches can be problematic for largescale images due to large memory requirement. We propose a simple method to extend the proposed fast edge-processing method to large-scale processing and can fully take advantage of parallel processing. The idea consists in transforming the deconvolution operation first to a convolution operation, then estimating the convolution kernel with separable filters. The reconstruction equation can be written as the following convolution

u (k+1) ← λg -div v (k+1) gconv F -1 1 λ -lap G λ . (3.25)
Unfortunately, the filter G λ has a large support and using a straightforward convolution is costly. However, note that : 1) the size of the filter depends only on λ, 2) as λ becomes larger, the filter G λ tends to Dirac's delta function, a 1 × 1 filter. This means that for a given λ > 0 value, G λ can be estimated with a smaller kernel of size h×h, given an error tolerance. Figure 3 The table above simply shows that one can indeed estimate the filter G λ with high accuracy using a much smaller truncated filter. As a result, instead of using two Fourier transforms, the solution can be calculated using a convolution with a medium-size kernel. In the next paragraph, we show that the cropped version of the filter can be estimated with a small set of separable filters which offers significant speed-up compared to a straightforward convolution. 

Efficient Estimation via Separable Filters

A convolution with a large kernel is still costly. It turns out that the kernel in our case can be written as the sum of few separable filters making the process much faster. It is well known that a matrix of rank 1 can be written as the product of two vectors.

More generally, if a kernel is of rank r, it can be written as the sum of r two successive convolutions with 1D kernels. This operation is highly parallelizable and can make our filter faster for large-scale processing. Mathematically speaking, the filters are given by SVD decomposition

G λ = DΣS T = r i=1 σ i d i s T i , (3.26) 
where d i and s i denote respectively the i-th column of the matrices D and S, and σ i denotes the singular value at position i. It turns out that the filter G λ is real symmetric and positive-semidefinite. Hence, calculating u (k+1) becomes In order to perform less filtering operations, we take the sum to r t < r instead of the full rank of the matrix. This comes to using a truncated SVD and corresponds to the best r t -rank approximation in the sense of the squared Frobenius norm. We found that, for λ 0.04, r t = 2 or 3 is generally enough to guarantee high-quality visual results as shown in Figure 3.5.

u (k+1) ← r i=1 (g conv √ σ i d i ) √ σ i d T i (3.27)

Analysis

The proposed method consists mainly in two steps. The first step consists in calculating the gradient, the weights, the divergence and the summation. These are pixelwise operations that can be calculated quickly and take advantage of parallel processing.

In fact, they can be coded more efficiently by combining for example the gradient and the weights calculations in the same loop. They can also take advantage of SIMD instructions for even more efficient processing. The final IRLS solution is given as follows

I + (1/λ) D T x W (k) x D x + D T y W (k) y D y u (k) = g W (k+1) i = diag ∂ψ m (∇ i u (k) 2 ) , i = x, y.
(3.30)

Contrary to the classical Half-Quadratic solution that needs a large number of iterations [START_REF] Xu | Image smoothing via l 0 gradient minimization[END_REF], the MM approach converges in 2-3 iterations. Note however that due to inhomogeneity of the Laplacian matrix, we cannot use the FFT trick nor the separable filters approach presented above to speed-up calculations. The only solution to speed-up calculations in this case is to use an appropriate preconditioner as discussed before such as [START_REF] Krishnan | Efficient preconditioning of laplacian matrices for computer graphics[END_REF]. Moreover, the preconditioner has to be updated at each iterations as the Laplacian matrix changes, which is not the case of the previous presented method when β is fixed for small iterations. The use of the MM approach is more interesting for the problem of structure-texture separation as we will see in the next section. It is worth noting that the popular weighted least squares (WLS) smoothing method [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF] is a special case of the MM optimization approach. It corresponds to only one iteration of the MM method and thus explains why it produces over-smoothing in various situations. Updating the weights using the previously smoothed image permits to fix this issue. 

Applications

We present in this section various applications produced with the proposed method as well as a comparison with various state-of-the-art methods.

Image Smoothing

Image smoothing is a very popular method to filter out small noise and produce abstracted versions of a natural image. It is the building-block for a wide range of applications such as detail manipulation, HDR tone-mapping, fast edge simplification and video edge-aware processing.

(a) Input (b) BLF [START_REF] Tomasi | Bilateral filtering for gray and color images[END_REF] (c) NCF [START_REF] Gastal | Domain transform for edge-aware image and video processing[END_REF] (d) TV [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] (e) Extrema [START_REF] Subr | Edge-preserving multiscale image decomposition based on local extrema[END_REF] (f) GF [START_REF] He | Guided image filtering[END_REF] (g) WLS [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF] (h) L 0 [START_REF] Xu | Image smoothing via l 0 gradient minimization[END_REF] (i) Proposed (c) NCF [START_REF] Gastal | Domain transform for edge-aware image and video processing[END_REF] (d) TV [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] (e) Extrema [START_REF] Subr | Edge-preserving multiscale image decomposition based on local extrema[END_REF] (f) GF [START_REF] He | Guided image filtering[END_REF] (g) WLS [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF] (h) L 0 [START_REF] Xu | Image smoothing via l 0 gradient minimization[END_REF] (i) Proposed produces a globally blurred result. The most important salient structures such as the face and the hand of the lady were completely washed-out. This result was produced with a brute-force bilateral filter implementation [START_REF] Tomasi | Bilateral filtering for gray and color images[END_REF], which offers the best BLF quality possible as some fast BLF implementations [START_REF] Chen | Real-time edge-aware image processing with the bilateral grid[END_REF][START_REF] Paris | A fast approximation of the bilateral filter using a signal processing approach[END_REF][START_REF] Banterle | A low-memory, and straightforward and fast bilateral filter through subsampling in spatial domain[END_REF] do not produce exactly the same quality as the brute-force implementation. The second result (c) was produced with the fast Domain Transform method using the NC filter (σ s = 50, σ r = 0.47). The global blurring produced by the BLF is much less present, but the method is not able to preserve some important salient structures such as the face and the hand of the lady. The third example (d) is produced with our implementation of TV regularization using a half-quadratic solver. The use of a half-quadratic solver here is important so we can compare it with the L 0 -minimization method and the proposed method. With parameters λ = 0.1 and κ = 2, the method took around 23 iterations, which comes to the cost of using 23 × 2 FFTs. The result contains a global blurring, and some salient structures were also not preserved. The local extrema method that consists in extracting the extrema envelopes and produce a smooth signal by calculating the mean of these envelopes has shown to be effective in textured areas. The method in this case (e) was not able to correctly smooth the background and also was not able to correctly smooth important salient structures. The forth result is produced by the Guided Filtering (GF) method (radius = 5, = 0.15 2 ).

The GF method is fast but produces severe global blur in the smoothing result. The fifth example is produced using the Weighted Least Squares method of Farbman et.

al (λ = 0.25, α = 1.2). The method seems to produce a better result than TV regularization (d) but the most important salient structures were blurred. Note also that the method requires solving a large inhomogenous linear system that becomes harder to solve as λ increases. The seventh result (h) is produced with the L 0 gradient minimization method (λ = 0.015, κ = 2). The approach produces a better result than the other 6 results. The faces are better preserved and the method does not suffer from the global blur produced by most of the other methods. However, the method required 23 × 2 FFTs. Finally, the proposed method (i) (γ = 12, α = 20, λ = 0.04, function w 1 ) produces a high-quality smoothing result at a low computational cost.

Note how the salient structures such as the faces and the hand of the lady on the left are preserved. The method required 2 iterations. This is more than 12 times faster than L 0 -minimization when using the FFT approach. Using the sparse linear system approach with Krishnan et al. preconditioner [START_REF] Krishnan | Efficient preconditioning of laplacian matrices for computer graphics[END_REF], the method required a total of 2 × 1 × 3 = 6 preconditioned conjugate gradient iterations, where the 3 iterations in Local Laplacian Filters [START_REF] Paris | Local laplacian filters: Edge-aware image processing with a laplacian pyramid[END_REF] each iteration can be performed in parallel. Note also that the preconditioner does not to be updated and can be fixed in advance according to the value λ. We compare with multi-scale local filtering methods such as Local Laplacian Filters [START_REF] Paris | Local laplacian filters: Edge-aware image processing with a laplacian pyramid[END_REF] and the mixed-domain method [START_REF] Li | Mixed-domain edge-aware image manipulation[END_REF]. These methods produce high-quality results but they are relatively computationally demanding. Results are given in Figure 3.8. As can be seen, the proposed smoothing method produces comparable smoothing quality at lower computational cost. Note that the results presented here are produced with the original Local Laplacian Filter implementation that is computationally very demand-ing. The Fast Local Laplacian Filters method [START_REF] Aubry | Fast local laplacian filters: Theory and applications[END_REF] that aims at making the Local Laplacian Filter faster is only an approximation and does not produce comparable smoothing quality.

Fast Smoothing Comparison

Another smoothing example is presented in Figure 3.9. We evaluate the quality and speed of 3 fast edge-aware filters : the fast implementation of the bilateral filter in [START_REF] Yang | Real-time o(1) bilateral filtering[END_REF], the domain transform method (RF filter) in [START_REF] Gastal | Domain transform for edge-aware image and video processing[END_REF] and the adaptive manifolds method in [START_REF] Gastal | Adaptive manifolds for real-time highdimensional filtering[END_REF]. We use the following setup : Intel Xeon CPU E5-2609 2. [START_REF] Barash | A fundamental relationship between bilateral filtering, and adaptive smoothing, and the nonlinear diffusion equation[END_REF] 

Large-Scale Image Smoothing

We present here an example of large-scale processing with the proposed method on a real photo taken with a smartphone (Nokia Lumia 620) in Figure 3.10. Mid-range smartphones can produce large images but the result is relatively noisy. Using the FFT approach in this case can cause memory issues. We rather use the proposed (d) Extrema [START_REF] Subr | Edge-preserving multiscale image decomposition based on local extrema[END_REF] (e) Domain transform [START_REF] Gastal | Domain transform for edge-aware image and video processing[END_REF] (f) EAW [START_REF]Edge-avoiding wavelets and their applications[END_REF] [START_REF] Subr | Edge-preserving multiscale image decomposition based on local extrema[END_REF]. (e) Domain transform [START_REF] Gastal | Domain transform for edge-aware image and video processing[END_REF]. (f) Edge-avoiding wavelets from [START_REF]Edge-avoiding wavelets and their applications[END_REF].

Figure 3.11 (b) presents an example of multi-scale detail enhancement applied to the flower (a). As can be seen, the result generated with the proposed method is visually similar to the one produced with the WLS filter (c). However, generating the two layers took only a total of 0.048 seconds with our approach. The WLS method [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF] took 2.7 seconds with the direct solver and around 1.5 seconds with the PCG method [START_REF] Saad | Iterative Methods for Sparse Linear Systems[END_REF] using an incomplete Cholesky factorization preconditioner (the method took more processing time with the preconditioner in [START_REF] Krishnan | Efficient preconditioning of laplacian matrices for computer graphics[END_REF] due to the preconditioner update processing time. The incomplete Cholesky factorization preconditioner produces in this case a high-quality result while being fast to generate). cian Filters [START_REF] Paris | Local laplacian filters: Edge-aware image processing with a laplacian pyramid[END_REF] and the mixed-domain [START_REF] Li | Mixed-domain edge-aware image manipulation[END_REF] methods. As can be seen, the proposed method offers high-quality results with reduced processing time.

HDR Tone Mapping

Edge-aware filtering can be used for tone-mapping high dynamic range images by performing a multi-scale decomposition of the log-luminance channel similar to the one discussed in the previous paragraph. We present in Figure 3.13 an example of HDR tone mapping with our approach using one detail layer. Our result (d) is artifact-free and visually similar to (c). The proposed solution took only 0.025 seconds on Matlab to extract the base layer.

(a) BLF [START_REF] Durand | Fast bilateral filtering for the display of high-dynamicrange images[END_REF] (b) RF [START_REF] Gastal | Domain transform for edge-aware image and video processing[END_REF] (c) WLS [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF] (d) Proposed 

Edge Simplification

Edge extraction is an important application in computer vision and graphics. The goal is to extract the perceptually most important structures from a natural image.

Natural signals are very complex with unpredictable perturbations everywhere that makes accurate edge extraction extremely difficult. Instead of designing a highly sophisticated and adapted edge detector, which is very hard to realize, edge-aware filters can be used to reduce unecessary details and better extract edges using regular edge detectors. We propose to use the filter presented herein for edge extraction and compare it with various state-of-the art filters. To evaluate the performance of each method, we used the same Canny edge detector [START_REF] Canny | A computational approach to edge detection[END_REF] for all the filters. Smoothing is applied only on the luminance channel. Results are presented in Figure 3.14.

Note how the proposed filter (h) is able to get rid of the unecessary details and correctly captures important structures. Methods such as bilateral filter (b) and extrema method (e) are much less adapted to this task.

(a) Input (b) BLF [START_REF] Winnemöller | Real-time video abstraction[END_REF] (c) NC [START_REF] Gastal | Domain transform for edge-aware image and video processing[END_REF] (d) WLS [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF] (e) Extrema [START_REF] Subr | Edge-preserving multiscale image decomposition based on local extrema[END_REF] (f) GF [START_REF] He | Guided image filtering[END_REF] (g) L 0 [START_REF] Xu | Image smoothing via l 0 gradient minimization[END_REF] (h) Proposed Figure 3.14: Edge simplification example (picture from [START_REF] Xu | Image smoothing via l 0 gradient minimization[END_REF]). The proposed method permits to extract relevant edge structures while being computationally efficient.

Fast Video Processing

One important point about an edge-aware filter is its ability to be extended for video processing. Temporal coherence must be hold in order to prevent flickering effects.

It turns out that the proposed method is temporally coherent even when performing frame-per-frame filtering. Theoretically, temporal coherence can be easily added in our method by simply adding the temporal gradients and adjusting it to the temporal gradients of the original video. The method in this case would require a 3D FFT.

We found that simple frame-per-frame filtering works already quite well and does not introduce any flickering effect. We can thus take advantage of the separable filters approach for fast large-scale video smoothing. GPU processing can be used instead of the CPU for real-time processing. An example is given in Figure 3.15 for a video frame. The smoothing was performed in Matlab using a Tesla C2075 GPU device in real-time. requires that the data-fitting term should be sparse. For instance, this approach can be used to simplify images by getting rid of all the insignificant textures, which can improve various recognition tasks as well as various computational photography applications. Unfortunately, few approaches in the literature try to tackle this problem compared to the large amount of work that has been proposed to address the edge-aware smoothing problem. The most popular method consists in using the total variation framework [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] to perform structure-texture separation using the l 1 norm on the data-fitting term [START_REF] Yin | Image cartoon-texture decomposition and feature selection using the total variation regularized l1 functional[END_REF][START_REF] Aujol | Structure-texture image decomposition-modeling, and algorithms, and parameter selection[END_REF][START_REF] Guen | Cartoon + texture image decomposition by the TV-L1 model[END_REF], known as the l 1 -TV model. Various methods to solve the l 1 -TV problem have been proposed [START_REF] Guen | Cartoon + texture image decomposition by the TV-L1 model[END_REF][START_REF] Chan | A fast and efficient half-quadratic algorithm for tv-l1 image restoration[END_REF][START_REF] Yang | An efficient tv-l1 algorithm for deblurring multichannel images corrupted by impulsive noise[END_REF][START_REF] Wu | Augmented lagrangian method for total variation restoration with non-quadratic fidelity[END_REF]. However, results generated by the l 1 -TV model tend to be blurry due to the use of the l 1 penalty that shrinks all the pixels in the same way. Edge-aware smoothing operators as the one we saw in the previous section are unable either to correctly generate a piecewise image as they rather tend smooth out dense details only. Hence, these methods are unsuitable to separate textures from the main structure. The Relative Total Variation method [START_REF] Xu | Structure extraction from texture via relative total variation[END_REF] on the other hand permits to perform this separation more efficiently than the l 1 -TV model. However, it is unable to produce a true piecewise constant layer and sometimes tends to blur fine edges.

We address the problem of structure-texture separation as a double sparsity optimization problem using non-convex functions to model sparsity contrary to the l 1 -TV problem. Due to the multi-sparse nature of this problem, applying a regular solver with one single intermediate variable associated to the prior results in slow solvers (see Chapter 2 ). We thus use one intermediate variable for each sparse term which results in much more efficient solvers. We present how to perform high-quality structure-texture separation via non-convexity using three approaches : 1) a simply

Half-Quadratic solver with two splits, 2) a Maximization-Minimization solver with two majorization terms and 3) a hybrid solver that uses HQ for the associated variable to the data-fitting and MM for the inner smoothing problem. The best results in terms of quality were given by the hybrid solver and offers also a good compromise between quality and complexity. As we will see in various results, the use of non-convexity instead of the regular l 1 -TV model produces much better and cleaner results and permits to achieve very challenging separations. To estimate an efficient solution to this general problem, not just in the convex case, one might use one intermediate variable for each sparse term to isolate the sub-problems associated to the sparse terms as we will see below.

Problem Formulation

HQ Approach

A multi-sparse additive Half-Quadratic approach to the structure-texture separation problem 3.31 would be similar to the solver we presented in Chapter 2. That is, we

two intermediate variables as follows w 1 , w 2 argmin u,w 1 ,w 2 φ(w 1 ) + β 2 ||(u -g) -w 1 || 2 2 + λ ψ(w 2 ) + β 2 ||∇u -w 2 || 2 2 . (3.32)
The associated iterative algorithm is given as follows (sp 1 ) :

w (k) 1 ← argmin w 1 φ(w 1 ) + β 2 ||(u (k) -g) -w 1 || 2 2 (sp 2 ) : w (k) 2 ← argmin w 1 ψ(w 2 ) + β 2 ||∇u (k) -w 2 || 2 2 (sp 3 ) : u (k) ← argmin u ||(u -g) -w (k) 1 || 2 2 + λ||∇u -w (k) 2 || 2 2 , (3.33) 
with β increasing at each iteration β ← κβ, κ > 1. Problems (sp 1 ) and (sp 2 ) are proximal operators associated respectively to sparsity-inducing functions φ and ψ.

They admit a first-order approximation via shrinkage as shown in Chapter 2. The problem (sp 3 ) is quadratic and is similar to the reconstruction part in the HQ solver of edge-aware smoothing problem. It can be thus solved via FFTs or a Laplacian linear system. Note that, compared to a the edge-aware smoothing algorithm, there is only an additional shrinkage cost associated to the data-fitting term.

MM Approach

An efficient Maximization-Minimization approach to problem 3.31 would consist in performing two majorizations as follows

argmin u,w 1 ,w 2 φ m (w 1 ) + λψ m (w 2 ) s.t. (u -g) 2 ≤ w 1 , (∇u) 2 ≤ w 2 . (3.34)
Applying the minimization step (linearization) results in the following iterative solution

W (k) + λ D T x W (k) x D x + D T y W (k) y D y u (k) = g W (k+1) = diag ∂φ m ((u (k) -g) 2 ) W (k+1) i = diag ∂ψ m (∇ i u (k) 2 ) , i = x, y. (3.35)
Here again, compared to the MM solution for the edge-aware smoothing term, the additional cost is computing the diagonal matrix W , which is a simple pixelwise operation. However, note that for the edge-aware smoothing case, the identity matrix is used instead of the weights W (k) which improves the conditioning number of the matrix and the linear system is thus easier to solve. We have noticed that, due to the bad conditioning number of the matrix, the IRLS as presented above does not produce correct results. We thus add a small regularization with the identity matrix to improve the conditioning number of the matrix, which comes at using a quadratic regularization on the latent variable ||u|| 2 2 .

It is worth noting that the IRLS solution proposed for the l 1 -TV problem [START_REF] Chan | A fast and efficient half-quadratic algorithm for tv-l1 image restoration[END_REF] does not use the Maximization-Minimization approach we presented above, but rather a gradient linearized iteration for the l 1 -norm. While the derivation of the proposed solution is very different, both methods result in the same solution for the l 1 case.

Hybrid MM-HQ Solver

As discussed before, the plain HQ approach in its additive form would result in solving a large number of homogeneous linear systems. On the other hand, the MM approach needs in general only around 3 iterations to converge. However, when both the data-fitting term and the prior are sparse, the conditioning number of the matrix associated to the linear system becomes very bad, which can cause various problems and thus sometimes artifacts in the results. The use of a quadratic regularization corrects this problem, but in this case, we do not try to estimate a solution of the original problem. We thus propose to use a combination of HQ and MM into a hybrid method. This would permit to benefit from the low number of iterations of the MM solver for smoothing, and using the HQ step for the data-fitting term only. To do that, we first write the HQ splitting only for the data-fitting term (one single intermediate variable w)

(sp 1 ) : w (k) ← argmin w φ(w) + β 2 ||(u (k) -g) -w|| 2 2 (sp 2 ) : u (k) ← argmin u 1 2 ||(u -(g + w (k) )|| 2 2 + λ β ψ(∇u).
(3.36)

Now (sp 1 ) would the shrinkage step associated to the sparse data-fitting term and (sp 2 ) is an edge-aware smoothing problem that can be solved efficiently as we saw in the previous subsection. We use the MM approach for (sp 2 ) that was presented before. This solution of (sp 2 ) is the following IRLS

I + (λ/β) D T x W (k) x D x + D T y W (k) y D y u (k) = g + w (k) . W (k+1) i = diag ∂ψ m (∇ i u (k) 2 ) , i = x, y.
(3.37)

Note that, compared to the pure MM approach presented before, the matrix associated to the linear system in this case is a pure inhomogeneous matrix. It is thus quite well conditioned and dedicated efficient preconditioners can be used such as [START_REF] Krishnan | Efficient preconditioning of laplacian matrices for computer graphics[END_REF]. To demonstrate the difference in terms of quality between the three solvers, we run structure-texture separation on a challenging case and visualize the result in Figure 3.16. For the HQ solver, we run 30 iterations using the FFT to solve the reconstruction part. As can be seen, in the MM approach, due to the use the small quadratic regularization to make the system well conditioned, there is a slight but present global blurring. Removing the quadratic regularization results in very large iterations in the PCG solver and can result in artifacts. The hybrid MM-HQ approach offers a high-quality result due to the well-conditioned linear system in the inner optimization problem as well as the use of dedicated preconditioners [START_REF] Krishnan | Efficient preconditioning of laplacian matrices for computer graphics[END_REF].

Choice of Non-Convexity

As discussed in the introduction, our main motivation to improve the structuretexture solution is the use of non-convexity in order to promote much more sparsity compared to the convex l 1 -norm. After testing various sparsity-promoting functions, we found the following function works very well for various separation tasks. For the data-fitting term, we take the l p<1 -norm for p around 0.1 to remove as much as possible the details from the main structure. For the smoothing part in the MM form, we take the following reweighting function

∂ψ m (x) = δ|x| α-1 (|x| α + ) γ , → 0, δ = 0.001. (3.38)
The behavior of the smoothing is controlled by the parameters α and γ. Note that for the case of the general l p -norm case we have (see Chapter 2)

∂ψ m (x) = 1 |x| (2-p) + , → 0. (3.39)
Note that, by considering the limit → 0, the two functions are equivalent to l 1

smoothing for α = 0 lim →0 δ|x| α-1 (|x| α + ) γ ∝ |x| α-1-αγ lim →0 1 (|x| 2-p + ) ∝ |x| p-2 .
(3.40)

We can verify the conditions on α > 0 and γ > 0 to satisfy non-convexity by comparing the two limits. The non-convexity for the l p -norm is verified for p < 1 thus by replacing p by 1 we have the following inequality to verify

α + 1 -αγ < 1, (3.41) 
which leads to α(1 -γ) < 0. As both α and γ are strictly positive, the condition for non-convexity is γ > 1. In practice, the parameter α controls the smoothness of the derivative while the parameter γ controls its tightness. We thus have a flexible function that we will use for the smoothing part.

Another thing to consider is that we smooth color images. To guarantee full color filtering, we should take into account the gradients of all the channels once, and not applying separate weights for each channel. To do that, instead of the directional derivative, we consider the following isotropic term

1 3 3 c=1 (∂ x u (l) 2 + ∂ y u (l) 2 ).
(3.42)

Applications

We compare with various methods to evaluate the proposed method on various separation-based applications : WLS [START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF],l 0 [START_REF] Xu | Image smoothing via l 0 gradient minimization[END_REF], l 1 -TV [START_REF] Guen | Cartoon + texture image decomposition by the TV-L1 model[END_REF] and RTV [START_REF] Xu | Structure extraction from texture via relative total variation[END_REF]. For the l 1 -TV, we use the same solver as our proposed method (hybrid HQ-MM) that actually gives better results than the popular implementation http://demo.ipol. As can be seen, the proposed method produces high-quality separation even in the most challenging cases where the texture is very hard to extract (the bricks and hand examples). Also, note how the filter preserves fine details where other techniques introduce blur that can wash-out these details.

Sparse Scribbles Propagation

Structure-texture separation is useful for sparse scribbles propagation in the case when the scribbles are very few in the image to edit. By performing the propagation on the base structure part instead of the image itself, we can produce high-quality scribbles propagation from very few scribble points. The optimization-based formulation of the scribbles propagation problem is given as a weighted least squares minimization [START_REF] Lischinski | Interactive local adjustment of tonal values[END_REF].

This type of filtering is known in the literature as joint filtering, which consists in propagating the scribbles using edge information of a joint image (the texture-free image in our case). Let s be the scribbles image and W s be a diagonal matrix with binary values w s that are 1 if a scribble is defined and 0 otherwise. We denote by u the propagated version of the scribbles s. The problem is formulated as follows

argmin u i w s (i)(u(i) -s(i)) 2 + λw(i)||∇u(i)|| 2 2 , (3.43) 
where λ is a positive regularization term and w are weights guiding the scribbles propagation. The main difference compared to [START_REF] Lischinski | Interactive local adjustment of tonal values[END_REF] is that, instead of using edgeinformation from the original image, we use its texture-free version. As the filtered image is piecewise constant, the scribbles can be much better propagated. In order to visualize the piecewise layer in this case, we show the mean of the layers I and Q. As can be seen, the results (b) and (c) exhibit strong color spilling. The colors were not able to reach some regions such as the bottom of the image. The main challenge here is to propagate the scribbles from very sparse input scribbles.

Colorization

The results (b) and (c) can be improved by adding more scribbles. Note however that the proposed method method did not require additional scribbles to produce a true piecewise layer. The colors were correctly propagated throughout the image, which results in a high-quality colorization result.

(a) Input (b) Levin [START_REF] Levin | Colorization using optimization[END_REF] (c) Lischinski [START_REF] Lischinski | Interactive local adjustment of tonal values[END_REF] (d) Proposed 

Binary Scribbles Propagation

Using binary scribbles provided by the user, the goal is to propagate these scribbles and produce a similarity map that can be used in many applications such as background subtraction, selective colorization/decolorization, local tone adjustment, and many more. To perform this task, we follow the same approach as the colorization method with few changes. The weights W remain unchanged. However, we take the scribbles image as a binary image that is one if a foreground scribble (yellow in the examples) is defined and zero if the background scribble is defined (blue in the exam-ples). The weights w s correspond to either or not a scribble was defined (1 if so and 0 otherwise). We present in Figure 3.22 a local tone adjustment example produced with this approach. The goal is to extract a foreground mask (b) of the dark region in order to increase its brightness and improve the local tone of the image as shown in the result (c). As can be seen, the proposed approach produces a high-quality foreground layer from few sparse scribbles. 

Low-Rank Multi-Image Decomposition

In this section, we propose a novel approach to image editing based on forcing lowrankness on similar pixels along the channels with a sparse prior. Given a set of similar images, such as multichannel images, the method consists in separating each image of this set into two layers : a base layer capturing dense redundant structures across the channels, and a sparse layer containing the dissimilarities. This is formulated as a convex low-rank estimation problem known as Robust Principal Component Analysis (RPCA) and we propose an efficient numerical solution. The framework is flexible and produces high-quality results as it operates directly in the image domain.

We demonstrate how this solution can be used to perform a wide range of lowlevel graphics applications including contrast-preserving decolorization, flash/no-flash photography, image fusion, among others.

Problem Formulation

Let I v ∈ R m×n be an input matrix. The goal is to decompose I v into two matrices

A and E, where A is low-rank and E is sparse. This problem can be formulated as follows [START_REF] Candès | Robust principal component analysis?[END_REF][START_REF] Candes | Recent progress in low-rank modeling some theory and some applications[END_REF][START_REF] Wright | Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization[END_REF] minimize rank(A) + λ||E|| 0 subject to 

I v = A + E, (3.44 
I v = A + E. (3.45)
This convex formulation is known in the literature as Robust Principal Component Analysis (RPCA) [START_REF] Candès | Robust principal component analysis?[END_REF][START_REF] Wright | Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization[END_REF]. The RPCA is essentially a robust version of the popular PCA that uses the l 1 -norm for robustness instead of the l 2 -norm. Various versions of this problem are used in computer vision applications [START_REF] Peng | Rasl: Robust alignment by sparse and low-rank decomposition for linearly correlated images[END_REF][START_REF] Zhang | Tilt: Transform invariant low-rank textures[END_REF][START_REF] Zhang | Camera calibration with lens distortion from low-rank textures[END_REF][START_REF] Guo | Robust separation of reflection from multiple images[END_REF]. Our goal here is to use this powerful tool to solve separation problems on aligned images such as color and flash/no-flash images in the context of image editing, which is new in the field of low-level graphics.

Optimization

There are many ways to solve problems of the form 3.45. We propose to use an ADMM (Augmented Direction Method of Multipliers) approach. As seen in Chapter 2, the ADMM solver uses the augmented Lagrangian form and then solves the problem with alternate minimization. The first step consists in switching to the consensus form minimize

||A|| * + λ||E|| 1 subject to I v -A -E = 0, (3.46) 
and then set the augmented Lagrangian L ρ (A, E, y, ρ) as follows :

L ρ (A, E, y, ρ) = ||A|| * + λ||E|| 1 + < y | I v -A -E > + ρ 2 ||I v -A -E|| 2 2 , (3.47)
where y is a dual variable and ρ is a new positive regularization parameter. Now we simply minimize the Lagrangian L ρ over each variable separately and iteratively :

(sp 1 ) :

E (k+1) ← argmin E λ||E|| 1 + ρ (k) 2 ||(A (k) +E)-(I v +y (k) /ρ (k) )|| 2 F (sp 2 ) : A (k+1) ← argmin A ||A|| * + ρ (k) 2 ||(A+E (k+1) )-(I v +y (k) /ρ (k) )|| 2 F (sp 3 ) : y (k+1) ← y (k) + ρ (k) I v -A (k+1) -E (k+1) (sp 4 ) : ρ (k+1) ← κρ (k) (3.48)
Solving Problem (sp 1 )

Problem (sp 1 ) is easy to solve as it corresponds to a convex proximal form (argmin

a γ||a|| 1 + 1 2 ||a -b|| 2 F ).
Due to the use of the l 1 -norm, the problem admits a closed-form solution known as soft-thresholding as seen in Chapter 2

E (k+1) ← max 0, |x (k) | -λ ρ (k) sign x (k) x (k) = I v + y (k) /ρ (k) -A (k) . (3.49)
Solving Problem (sp 2 ) Problem (sp 2 ) is slightly different from (sp 1 ). The only difference is that the l 1 -norm is applied on the singular values and not on the matrix itself (argmin

a γ||a|| * + 1 2 ||a-b|| 2 F ).
First, we set the following variable for the sake of simplicity

M = I v + y (k) /ρ (k) -E (k+1) . (3.50)
Now, applying a singular values decomposition (SVD) of M = U ΣV T , we have

||M || * = min(m,n) k=1 σ i , where σ i = diag(Σ) i .
As multiplication by unitary matrices preserves the norm, the solution reduces to a proximal operator associated to the singular values. Hence, the solution to problem (sp 2 ) is given as follows

A (k+1) ← U ΣV T diag( Σ) = max 0, diag(Σ) -1 ρ (k) .
(3.51)

Problems (sp 3 ) and (sp 4 ) are straightforward.

Analysis

The ADMM solver alternates between estimating a sparse matrix E and a low-rank matrix A. We have noticed that few iterations are usually enough to recover these matrices in the applications presented in this manuscript. The most computationally demanding task is calculating an SVD decomposition at each iteration, the rest of the operations are simple matrix multiplications and pointwise operations. We have also tried the inexact Augmented Lagrangian Method (ALM) solver presented in [START_REF] Lin | The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[END_REF].

We have noticed that the authors' code of the inexact solver requires more iterations than our ADMM implementation probably because the inexact ALM solver alternates between using a true a SVD decomposition and a randomized SVD decomposition (Lanczos bidiagonalization algorithm).

It turns out that, for editing applications, the number of the columns of the matrix M = I v + y (k) /ρ (k) -E (k+1) tends to be very small (n m). Hence, we can use an efficient QR decomposition trick to perform the singular value thresholding step (solving (sp 2 )) instead of calculating a full SVD decomposition. The idea is that if we perform a QR decomposition on the matrix M = QR with M ∈ R i×j , where j is very small, then the matrix R ∈ R j×j is very small because M T M ∈ R j×j . The matrix R can be easily obtained by a Cholesky decomposition of the matrix M T M and the matrix Q can be recovered via Q = I v R -1 . Now by performing an SVD decomposition on the small matrix R = U r ΣV T r , we efficiently recover the singular values matrix Σ. One can thereafter perform the thresholding on Σ and reconstruct the matrix A (k+1) = Q(U r ΣV T r ), without using a full SVD decomposition. A summary of the method is given in algorithm 1. This proposed solution has many benefits :

1) it is memory efficient, 2) steps 1,3,4 have always the same complexity regardless the size of the input image. For a 1 megapixel image and for j = 3, the whole A/E decomposition takes around 0.5 seconds with this approach for 10 iterations (versus 1.1 seconds with Matlab's svd() function) on an Intel Xeon @2.40Ghz CPU.

The parameters are set as follows : ρ (1) = 1.25/||A|| 2 , κ ≈ 1.5 and the number of iterations around 10 for almost all the experiments. The only remaining parameter to tune is λ that depends on the application.

Algorithm 1: Summary of the proposed method. Data: Input matrix I v , parameters : λ, κ and iterations iter.

Result: Matrices A and E. Init : A (1) = y (1) = 0; for k=1 to iter do Solve (p 1 ) :

E (k+1) ← max 0, |x (k) | -λ ρ (k) sign x (k) x (k) = I v + y (k) /ρ (k) -A (k) ; Solve (p 2 ) : Step 0 : M ← I v + y (k) /ρ (k) -E (k+1) ;
Step 1 : R T R = Cholesky(M T M );

Step 2 :

Q = M R -1 ; Step 3 : U r ΣV T r =svd(R); Step 4 : diag( Σ) = max 0, diag(Σ) -1 ρ (k) ; Step 5 : A (k+1) = Q(U r ΣV T r ); Update y (k+1) and ρ (k+1) : y (k+1) ← y (k) + ρ (k) I v -A (k+1) -E (k+1) ; ρ (k+1) ← κρ (k) ; end return A (k+1) , E (k+1) ;

Applications

Now that we have introduced the problem of low-rank estimation and how to efficiently solve it, we show how this framework can be used for a wide range of low-level graphics applications. 

Contrast Preserving Decolorization

Contrast preserving decolorization consists in transforming a color image to a grayscale image while preserving the contrast. The popular rgb2gray() method that consists in linearly combining the RGB color channels has been shown to fail in many situations, for example in the case of iso-luminant regions. This problem is challenging as it corresponds to a low-dimensional reduction problem. Various methods have been presented so far [START_REF] Gooch | Color2gray: Saliencepreserving color removal[END_REF][START_REF] Čadík | Perceptual evaluation of color-to-grayscale image conversions[END_REF][START_REF] Kim | Robust color-to-gray via nonlinear global mapping[END_REF][START_REF] Song | Color to gray: Visual cue preservation[END_REF][START_REF] Ancuti | Enhancing by saliency-guided decolorization[END_REF][START_REF] Lu | Contrast preserving decolorization[END_REF][START_REF] Lu | Real-time contrast preserving decolorization[END_REF][START_REF] Song | Decolorization: Is rgb2gray() out?[END_REF]. The main issue remains robustness as some methods are most likely to fail in some situations.

Our approach substantially differs from the other methods in the sense that it splits a color image into two images : a base layer that contains similar information across the color channels, and a sparse layer that contains sparse dissimilarities. In the case of decolorization, the sparse layer tends to capture contrast information. By boosting the sparse layer and adding it to the base layer, we can produce enhanced decolorization results.

Let I ∈ R m×n×3 be a color image in the RGB domain. We search for a low-dimensional mapping from I to L ∈ R m×n×1 , where L is the grayscale image. Equivalently, the mapping can be applied in the vector form

I v = vec(R) vec(G) vec(B) ∈ R (m×n)×3 to produce L v = vect(L)
, where vec(.) is a matrix vectorization operator. By applying a low-rank estimation on the matrix I v , the dissimilarities such as iso-luminant structures, can be extracted in the residual layer E ∈ R (m×n)×3 as they maximize the nuclear norm of I v . On the other hand, the matrix A ∈ R (m×n)×3 = I v -E contains similar structures between the channels, hence the low-rankness property of this matrix. Once the base and sparse layers recovered, the low-dimensional mapping becomes easy and can be performed via a linear combination of A and E ; we simply calculate their mean with respect to the columns and then reshape the vectors to produces respectively the images L a and L e .

The final grayscale image can then be produced by linearly merging the two layers

L = L a + γL e , (3.52) 
where γ is a new parameter that controls the amount of mixing. The special case γ = 1 corresponds simply to L = 1 3 (R + G + B). A demonstration is given in Figure 3.23 on two widely used images in decolorization benchmarks. Note how the proposed method successfully separates contrast-changing structures in L e from redundant structures in L a , even the smallest structures in the flower petals. We used the following parameters : λ = 0.006 for both examples with γ = 2.8 for the first one (top row) and γ = 6 for the second one (bottom row). We evaluate the proposed method on the publicly available decolorization benchmark dataset [START_REF] Čadík | Perceptual evaluation of color-to-grayscale image conversions[END_REF] (see Figure 3.24). We compare our method with state-of-the-art methods [START_REF] Gooch | Color2gray: Saliencepreserving color removal[END_REF][START_REF] Kim | Robust color-to-gray via nonlinear global mapping[END_REF][START_REF] Lu | Contrast preserving decolorization[END_REF]. As can be seen, the most noticeable failure cases are the second and third examples (from 

Automatic Color Manipulation

Color manipulation has received a significant amount of attention lately. Pioneer work by Levin et al. [START_REF] Levin | Colorization using optimization[END_REF] addressed the problem of colorizing a grayscale image from color scribbles provided by the user. The method propagates the scribbles by solving an optimization problem, similar to section 2. This approach has become very popular, especially thanks to the use of edge-aware filters. Other color manipulation tasks are : color harmonization [START_REF] Cohen-Or | Color harmonization[END_REF], when an input color image is transformed into another one with harmonized colors between the foreground and the background, and color consistency reinforcement [START_REF] Hacohen | Optimizing color consistency in photo collections[END_REF] where the input is a collection of photos and the goal is to optimize their color consistency. Using low-rank decomposition, we present a set of new color manipulation tools that automatically permit to manipulate the colors without using input scribbles from the user. Similar to the previous contrast preserving decolorization application, we set

I v = vec(R) vec(G) vec(B) ∈ R (m n)×3 ,
where R, G and B are the color channels of the input RGB image. We perform low-rank decomposition to extract the matrices A and E. Then, we manipulate the matrix E and finally linearly merge it with A and reshape the resulting matrix to produce the final image.

Automatic Color Enhancement This tool permits to globally enhance the colors of an image. We perform this by setting a relatively low λ so that the matrix E becomes denser, and then we linearly combine the matrices A + γE to produce the enhanced image.

Automatic Recoloring This tool permits to automatically recolor structures with strong dissimilar colors. It consists in modifying the colors of the matrix E, linearly combine it with A and finally reshape the resulting matrix to produce the final image.

Automatic Selective Decoloring This tool is similar to the previous one, but instead of colorization it automatically turns everything into grayscale except structures captured in the residual layer E. To perform this task, we produce a mask with values between 0 and 1 based on the matrix E, then this mask is used to linearly combine the grayscale image and the color layer.

Various examples are presented in Figure 3.25. As can be seen, the results are of high quality without any spilling artifacts. There is however a limitation in this method as the user has no control on the structure to edit. A more flexible version would consist in combining scribbles propagation with the proposed approach to edit specific regions in the image.

Flash/No-Flash Photography

The previous image manipulation tools use only one single color image as an input. It is possible to perform low-rank decomposition on a pair of similar RGB images such as flash/no-flash image pairs. Let I a be an ambient image and I f its corresponding flash image. The idea consists in performing the decomposition on each color channel c by setting where vec -1 denotes the inverse vectorization operation that consists in reshaping the vector to the matrix form, and the notation X(:, i) denotes the i-th column of the matrix X. Due to the constraint I v = A + E, we have

I v,c = vec(I a,c ) vec(I f,c ) ∈ R (m n)×2
I a,c = B a,c + B e,c I f,c = F a,c + F e,c .
(3.54) 

Flash/No-Flash Artifacts Removal

Using low-rank estimation, the method can separate both the ambient and flash images into a base layer that contains similar structures between the ambient and flash images, and a residual layer that contains dissimilarities such as artifacts, disturbing glare and reflections. A first example is given in Figure 3.26. Note how we are able to successfully separate disturbing artifacts/glare in the flash image and the reflection in the ambient image. The approach generates an ambient artifact-free image, but also a flash artifact-free image. We compare with the method in [START_REF] Agrawal | Removing photography artifacts using gradient projection and flash-exposure sampling[END_REF] that operates in the gradient domain by analyzing the gradients of the ambient and flash images under the assumption that the gradients must have the same direction if there is no reflection. The first difference is that only one single output is produced, which is a combination between the ambient and flash image. In contrast, our method corrects both the ambient and the flash images. Secondly, the method of Agrawal et al. [START_REF] Agrawal | Removing photography artifacts using gradient projection and flash-exposure sampling[END_REF] produces only one reflection layer combining the artifacts of the ambient and the flash image whereas the proposed method produces separately a special layer for the ambient image and a special layer for the flash image. Thirdly, the method reconstructs from a non-integrable gradient field via the Poisson equation (see chapter 3), which can lead to various reconstruct artifacts, contrary to our method that operates directly in the image domain. On the other hand, the sparse layer may also contain color differences between the ambient and flash image, which results in few color changes in the base layer B a as can be seen in Figure 3. A second flash/no-flash artifacts removal example is given in Figure 3.28. This time we are interested in removing the glare from the flash image. We use the proposed Other Flash/No-Flash Applications

Other than artifacts removal, the framework can be used to transfer lighting from the ambient image to the flash image as presented in Figure 3.29. The ambient image (a) contains lighting information and details such as shadows of the scene but looks rather dark. The flash image on the other hand exhibits more objects but looks rather flat. The lighting in the ambient image can be seen as a "loosely sparse" layer that can be extracted via the proposed framework3 . This layer corresponds to the image B e presented in (c). Once this layer extracted, it can be linearly combined with the flash image to produce the lighting transfer result (d). Note that this application is different from the one proposed in [START_REF] Eisemann | Flash photography enhancement via intrinsic relighting[END_REF] where the authors enhance the ambient image, not the flash image. We simply want to show here that the proposed framework can be used in a generic way to transfer lighting from the ambient to the flash image without introducing artifacts due to shadows. In contrast, using bilateral filtering such as in [START_REF] Eisemann | Flash photography enhancement via intrinsic relighting[END_REF] introduces artifacts that need shadow post-processing.

Image Fusion Applications

The low-rank decomposition framework can be used to perform a wide range of existing and new image fusion applications. The technique is the same as the flash/noflash approach presented in the previous subsection. The only difference is the input ; instead of using an ambient and flash image as input, one can use for example a day/night image pair, an ambient/NIR image, etc. Ambient/NIR Image Fusion Near-infrared images (NIR) can capture interesting features that are not acquired in the corresponding ambient image. An interesting approach consists in combining both images to produce an enhanced output. The proposed low-rank photography framework can be used to perform this image fusion.

Day/Night Fusion

An example is given in Figure 3.31. We compare the proposed method with the method in [START_REF] Lau | Cluster-based color space optimizations[END_REF] which aims at optimizing colorspace transformations. The extracted sparse layer successfully captures the word "secret" that is present in the NIR image but not in the ambient image. This layer is then linearly combined with the ambient image to produce the output (d). image captured with a blue filter as presented in Figure 3.32. The RGB image (a)

does not make enough color difference between the lemon and the orange. The blue filtered image (b) however permits to highlight the actual color differences. Using the proposed low-rank photography framework, we can extract the color differences from the blue filter image in the sparse layer E to create an enhanced image (d).

Conclusions

We presented first in this chapter a fast solution for high-quality edge-aware processing. The proposed approach is based on non-convex regularization and makes use of various mathematical tools to perform efficient processing. First, we showed how to estimate non-convex differentiable proximal operators using a first order approximation. Secondly, we used a first order proximal estimation to derive a warm-start solution that permits to generate high-quality smoothing at low iterations. Thirdly, we showed that the proposed filter can be reduced to few convolutions with separable filters such that the size of the filters is independent of the size of the image.

The separable filters approach permits fast large-scale image processing at low memory cost. We also showed how to perform smoothing with MM optimization instead of HQ splitting, which can be also an alternative approach if the preconditioner at each iteration can be updated quickly. We demonstrate the effectiveness of the proposed method on various applications such as image smoothing, detail manipulation, HDR tone-mapping and edge simplification and compare with various state-of-the-art methods.

In the second section, we presented an efficient approach to structure-texture separation via optimization. Instead of using the l 1 norm like in the popular l 1 -TV model, we use non-convexity on both the data-fitting term and the sparse gradient prior.

We proposed various ways to estimate a solution to the problem of structure-texture separation using HQ splitting and MM optimization. We adopted a hybrid HQ-MM approach to generate our results. The hybrid HQ-MM solver produces high-quality results and is still efficient using dedicated preconditioners. We showed various decomposition results and applications on challenging examples. Compared to previous works, our method generates better separation results even in challenging cases such as bricks and preserves small scale textures, whereas other methods wash them out and introduce unwanted blur.

In the third section, we showed how to use the generic framework of low-rank decomposition to perform a variety of editing applications on a single or a pair of color images. The main strength of the method is its ability to automatically separate sparse dissimilar structures from basic and redundant ones. Moreover, it offers high flexibility with computational efficiency. The proposed approach operates directly in the image domain and does not suffer from various artifacts that may occur during the reconstruction process from the gradient domain. We have introduced tools to perform high-quality image decolorization, automatic color editing tools, flash/noflash artifacts removal tools and various image fusion applications such as day/night fusion or ambient/NIR image fusion. The method supposes that the values of each line of the matrix I v correspond exactly to the same pixel location. This is not the case of dynamic objects in the scene where the camera can move or shake. In this case, the method can introduce ghosting artifacts such as in stereo or HDR imaging.

The method can be coupled for example with other methods such as [START_REF] Granados | Automatic noise modeling for ghost-free hdr reconstruction[END_REF] to improve robustness to such ghosting artifacts.

Chapter 4

Robust Recovery from Corrupted

Gradients via Sparsity

This chapter considers the problem of reconstructing a signal (image or surface) from heavily corrupted gradients with outliers and dense noise. This reconstruction step is important in many imaging applications ranging from computer vision/graphics to astronomy. In this thesis, we present new state-of-the art results that we have achieved using non-convex and multi-sparsity. Non-convexity is imposed by using a hyper-Laplacian prior (l p -norm) on the data-fitting term, which models the distribution of the residual gradient error. We present two sparse methods : 1) a local prior using sparsity in the gradient domain [START_REF] Badri | Robust surface reconstruction via triple sparsity[END_REF] and 2) a non-local prior using low-rank estimation [START_REF] Badri | A non-local low-rank approach to enforce integrability[END_REF]. We extend the Half-Quadratic splitting method to solve the corresponding optimization problems. We demonstrate the effectiveness of the proposed solutions on both synthetic and real data and compare with previous methods of the literature.

Introduction

Reconstruction from gradients is an important step in various computer vision and graphics applications such as shape-from-shading (SfS) [START_REF] Horn | Height and gradient from shading[END_REF] and photometric stereo (PS) [START_REF] Woodham | Shape from shading. chapter Photometric method for determining surface orientation from multiple images[END_REF]. PS and SfS methods first compute the surface normals. An estimated gradient of the depth map is then calculated from the normals and used for reconstruction. However, due to perturbations in the input images such as noise, outliers, shadows and other sources, the estimated gradient field is subject to high-magnitude (outliers) and dense corruptions (noise) as well. This downgrades the gradient field to an non-integrable vector field. As a result, a straightforward integration approach results in a deformed surface with various artifacts. The problem of integration is not limited only to surface reconstruction from a non-integrable field (SfG), but is also essential in other applications. For instance, in Adaptive Optics (AO) [START_REF] Roddier | Adaptive Optics in Astronomy[END_REF], the wavefront phase reconstruction consists in recovering the phase from low-resolution corrupted gradient measurements. Various low-level gradient-domain processing applications directly manipulate gradient fields via transformations or mixing various gradients [START_REF] Patrick | Poisson image editing[END_REF][START_REF] Fattal | Gradient domain high dynamic range compression[END_REF][START_REF] Levin | Seamless image stitching in the gradient domain[END_REF]. In all these cases, the resulting transformed gradient field is no longer integrable and direct integration results in various disturbing artifacts.

Surface Reconstruction Problem

The surface reconstruction problem typically arises in shape-from-shading (SfS) and photometric stereo (PS) applications. The classical SfS method consists in taking various photographs of a static Lambertian scene under various lighting conditions [START_REF] Horn | Height and gradient from shading[END_REF].

Using this set of photographs and lighting information, the normals of the 3D scene representation can be calculated via the following equation

I = ρn T .L, (4.1) 
where n ∈ R 3 represents the latent normals, I is the intensity matrix and L ∈ R 3 is the lighting directions and ρ is the diffusion albedo. Given the lighting directions L (calibrated SfS) and the diffusion albedo ρ (supposed constant in this chapter), a straightforward way to recover the normals n would be a least-squares estimation.

Note however that this approach would result in corrupted normals due to perturbations in the images (noise and outliers) and/or in the lighting information (shadows, specularities, errors in L, etc.). Once the normals are calculated n = (n x , n y , n z ), the gradients of the depth map -→ v = (v x , v y ) can be estimated as follows

- → v = ( -n x n z , -n y n z ). (4.2)
Reconstructing the depth map consists in integrating the vector field -→ v , hence the need of a robust reconstruction method.

It is worth noting that robust methods for photometric stereo have been proposed lately using sparsity as well [START_REF] Wu | Robust photometric stereo via low-rank matrix completion and recovery[END_REF][START_REF] Ikehata | Robust photometric stereo using sparse regression[END_REF]. Note however that they consider the problem of estimating the normals 4.1, not reconstructing the depth map from the estimated gradient field 4.2. To evaluate the ability of the proposed methods to recover high-quality surfaces from highly corrupted gradients, we use a standard least-squares method to recover the normals. Both robust methods for normals estimation and integration are complementary and can be combined to produce even better reconstructions.

Gradient Domain Processing

Gradient domain processing is a technique that performs manipulation in the gradient domain instead of intensity pixels. The manipulation consists in combining gradients of multiple images (image stitching, cloning, inpainting, etc.) or performing non-linear operations on the gradient field. The resulting vector field is then integrated to produce the final image. This approach was first proposed in the semi-nal paper by Pérez et. al [START_REF] Patrick | Poisson image editing[END_REF] for interactive image editing (seamless cloning, feature exchange, etc.). The approach was then extensively used for various applications such as HDR tone-mapping [START_REF] Fattal | Gradient domain high dynamic range compression[END_REF], matting [START_REF] Sun | Poisson matting[END_REF], gradient camera [START_REF] Tumblin | Why i want a gradient camera[END_REF], image stitching [START_REF] Levin | Seamless image stitching in the gradient domain[END_REF], super-resolution [START_REF] Sun | Image super-resolution using gradient profile prior[END_REF], MRI Compressed Sensing [START_REF] Patel | Gradient-based image recovery methods from incomplete fourier measurements[END_REF], among others. As a result, improving the reconstruction algorithm can enhance the quality of many gradient domain processing techniques.

Previous Work

The problem of integrability enforcement has received important attention in the vision community since early works on SfS and PS applications. The most popular and straightforward approach consists in formulating the problem in terms of a quadratic energy, which results in the Poisson equation as a solution [START_REF] Simchony | Direct analytical methods for solving poisson equations in computer vision problems[END_REF]. Frankot and Chellappa propose to perform a projection of the non-integrable gradient field onto the set of Fourier basis, which results in a fast FFT solver. A similar solution was proposed in [START_REF] Turiel | Reconstructing images from their most singular fractal manifold[END_REF][START_REF] Turiel | Microcanonical multifractal formalism: a geometrical approach to multifractal systems. part i: singularity analysis[END_REF] in the context of reconstructing images from their Most Singular Manifold (MSM) using various assumptions such as linearity, translational invariance, isotropy and power spectrum prior. Kovesi [START_REF] Kovesi | Shapelets correlated with surface normals produce surfaces[END_REF] proposed to perform the projection on shapelets. The work in [START_REF] Petrovic | Enforcing integrability for surface reconstruction algorithms using belief propagation in graphical models[END_REF] uses loopy belief propagation scheme to deal with dense noise in the vector field. A generalization of the Poisson integration framework was proposed by Agrawal et al. [START_REF] Agrawal | What is the range of surface reconstructions from a gradient field[END_REF], which uses various methods such as M-estimation, α-surface and diffusion. An algebraic approach to deal with sparse corruptions in the vector field based on the zero-curl constraint was proposed in [START_REF] Agrawal | An algebraic approach to surface reconstruction from gradient fields[END_REF].

The algebraic approach can handle quite well the outliers but performs poorly in the presence of even a small amount of dense corruption. Spectral and Tikhonov regularization were proposed in [START_REF] Harker | Least squares surface reconstruction from gradients: Direct algebraic methods with spectral, and tikhonov, and constrained regularization[END_REF] to improve robustness of the least-squares fitting. Sparsity-based methods have been proposed recently to deal with both sparse and dense corruptions. The work in [START_REF] Dun | Robust surface reconstruction from gradient field using the l1 norm[END_REF] proposes to use the l 1 -norm instead of the l 2 -norm in the integrability formulation. Similarly, the method in [START_REF] Reddy | Enforcing integrability by error correction using l 1 -minimization[END_REF] uses the l 1 -norm to model the sparsity of the residual gradient with a minimum curl constraint, which improves robustness to high-magnitude sparse corruptions. Another set of methods known as kernel methods [START_REF] Wu | Interactive normal reconstruction from a single image[END_REF] follow a different direction to deal with gradient-domain perturbations by using kernel basis functions for high-dimensional fitting. Finally, the recent approach of Xie et al. [START_REF] Xie | Surface-from-gradients: An approach based on discrete geometry processing[END_REF] formulates the problem using discrete geometry processing and performs manipulation based on meshes. Contrary to this approach, we study in this chapter the problem of integrability enforcement in the general case and not only for 3D reconstruction. Our solutions are thus not limited only to surface-from-gradients problems.

We propose to use regularization and non-convexity to improve recovery in the presence of both outliers and dense noise. Non-convexity via the l p<1 -norm can promote more sparsity than the l 1 -norm and the associated proximal operator admits an easy to derive first-order approximation. Regularization on the other hand helps the data-fitting term to converge to a better solution. We propose to use two regularizations : a local regularization via sparsity in the gradient domain and a non-local prior using low-rank estimation. In both cases, we derive an efficient solver via a modification of the Half-Quadratic splitting using more than one intermediate variable.

Results on synthetic and real data show that the proposed sparsity-based solutions outperform significantly previous methods and are able to produce high-quality images/surfaces from highly corrupted gradient fields.

Problem Formulation

Let S(x, y) be the desired discrete surface to recover. We denote by s its vectorized form (which corresponds to concatenating each column in one vector). Let -→ v = (v x , v y ) be the given corrupted gradient field in the vectorized form. Typically, the given vector field -→ v is an estimate of the true gradient of the surface that we denotes by ∇s = (s x , s y ), which is subject to dense noise and outliers. The discrete gradients can either be calculated via matrix differential operators (D x and D y ) or using convolutions with filters [1, -1], [1, -1] T . We consider periodic boundary conditions so we can accelerate calculations using the FFT later on. A straightforward approach to formulate the problem is using a least-squares minimization. That is to say, we search for s such as its gradient is close to -→ v in the l 2 sense argmin

s ||∇s -- → v || 2 2 ≡ argmin s ||D x s -v x || 2 2 + ||D y s -v y || 2 2 . (4.3)
As the problem is quadratic, the linear system corresponding to the solution is obtained straightforward using Euler-Lagrange equations

(D x D T x + D y D T y )s = D T x v x + D T y v y . (4.4) 
The matrix L = D x D T x + D y D T y is called the homogeneous Laplacian matrix and appears in many problems that involve gradient manipulation. Equation 4.4 corresponds to the Poisson equation [START_REF] Simchony | Direct analytical methods for solving poisson equations in computer vision problems[END_REF][START_REF] Patrick | Poisson image editing[END_REF] and takes the following form

s = div( - → v ), (4.5) 
where and div denote respectively the Laplacian and divergence operators. An efficient way to solve this approach consists in using the FFT as the Laplacian matrix is Toeplitz

s = F -1 F (div( - → v ) lap , (4.6) 
where F denotes the Fourier transform and lap is the optical transfer function (OTF) of the discrete Laplacian filter. Throughout the manuscript, we will use the FFT method instead of solving the linear system 4.4.

The Problem with l 2 minimization

The l 2 formulation of the reconstruction problem 4.3 considers a dense (Gaussian) corruption on the residual gradient error. As a result, when corruption is not dense as in the case of outliers, this approach fails at reconstructing a good surface as the errors are propagated all over the image/surface. A typical example is given in If the location of the outliers is known, we can derive a closed-form solution by modifying the problem 4.3 as follows

argmin s ||W x (D x s -v x )|| 2 2 + ||W y (D y s -v y )|| 2 2 , (4.7) 
where W x and W y are diagonal matrices that specify the location of the outliers (1 if no corruption and 0 otherwise). The resulting linear system is as follows

(D x W x D T x + D y W y D T y )s = D T x W x v x + D T y W y v y , (4.8) 
where the matrix D x W x D T x + D y W y D T y is called the inhomogeneous Laplacian matrix that appears in various edge-aware processing applications (see the chapter 3).

This approach is known as the Weighted Poisson Reconstruction method and is used for compositing [START_REF] Tao | Error-tolerant image compositing[END_REF]. Contrary to the homogeneous version, problem 4.8 cannot be solved via FFT and the inhomogeneous matrix has a worse conditioning number in practice compared to its homogeneous version. The method presented in [START_REF] Krishnan | Efficient preconditioning of laplacian matrices for computer graphics[END_REF] presents a very efficient preconditioner for this kind of matrices and solving problem 4.8 via Preconditioned Conjugate Gradient (PCG) requires in practice very few iterations to converge.

While in some cases we can get the position of the gradient outliers, in most of the applications we cannot guess. Moreover, the estimated field is corrupted with both outliers and dense noise in practice. We thus need a more generic approach that can recover the image/surface without the need of having access to the outliers location and jointly denoise the signal to reduce integrated dense noise in the image.

Sparsity for Robust Integrability

l 1 Minimization Method

One approach to improve robustness to outliers is to consider the l 1 -norm on the data-fitting term [START_REF] Dun | Robust surface reconstruction from gradient field using the l1 norm[END_REF]. The problem becomes as follows

argmin s ||∇s -- → v || 1 ≡ argmin s ||D x s -v x || 1 + ||D y s -v y || 1 . (4.9)
Another l 1 -minimization approach, similar to 4.9, consists in recovering the residual gradient error e first, then correcting the field -→ v with e and performing finally a

Poisson reconstruction [START_REF] Reddy | Enforcing integrability by error correction using l 1 -minimization[END_REF] argmin

e ||e|| 1 s.t. Ce = rot( - → v ), (4.10)
where C is the matrix rotational operator and rot is the rotational operator (using the assumption that the rotational of an integrable field is zero). In practice, both methods give almost similar results. For this reason, we will denote by the "l 1 -norm method" the first approach that is more compact.

Half-Quadratic Optimization

The papers [START_REF] Reddy | Enforcing integrability by error correction using l 1 -minimization[END_REF][START_REF] Dun | Robust surface reconstruction from gradient field using the l1 norm[END_REF] use off-the-shelf solvers. We propose a Half-Quadratic splitting (HQ) method for faster recovery. Applying HQ to problem 4.9 consists in introducing an intermediate variable w = (w x , w y ) and a positive regularization term β argmin s,w

||w|| 1 + β 2 ||(∇s -- → v ) -w|| 2 2 . (4.11)
Alternate minimization is then perform by fixing one variable a time (sp 1 ) :

w (k+1) ← argmin w ||w|| 1 + β 2 ||(∇s (k) -- → v ) -w|| 2 2 (sp 2 ) : s (k+1) ← argmin s ||(∇s -- → v ) -w (k+1) || 2 2 (4.12)
Note that (sp 1 ) is a classical soft-shrinkage subproblem and (sp 2 ) results in the classical Poisson equation method. Note however that w has two components w x and w y . We apply an anisotropic approach that consists in thresholding each component separately w

(k+1) x = shrink l 1 (∇ x s (k) -v x , β) w (k+1) y = shrink l 1 (∇ y s (k) -v y , β) s (k+1) = F -1 F (div( -→ v +w (k+1) ) lap , (4.13) 
with β increased at each iteration β (k+1) = κβ (k) , κ > 1 and the standard softthresholding operator defined as follows 

shrink l 1 (x, β) = max 0, |x| - 1 β sign(x). ( 4 
(D T x W (k) x D x + D T y W (k) y D y )s (k+1) = D T x W (k) x v x + D T y W (k) y v y W (k+1) i = diag 1 |∇ i s (k+1) -v i |+ , i = x, y, (4.15)
where is a small parameter to prevent division by zero.

Using Sparse Regularization

We improve the l 1 formulation by adding a sparse regularization. The prior that we propose to use is generic ; it consists in imposing sparsity on the gradient of the latent image/surface. This prior is widely used in edge-aware processing (see chapter 3). The problem becomes as follows

argmin s ||∇s -- → v || 1 + λ||∇s|| 1 , (4.16)
where λ is a positive regularization term. We call this model l 1 -l 1 .

Half-Quadratic Optimization

We estimate a solution to this problem via Half-Quadratic splitting. However, this problem has two sparse terms and a straightforward HQ splitting will result in a nested optimization problem (see chapter 2). The HQ splitting approach can be extended by adding two intermediate variables w 1 , w 2 instead of one argmin

s,w 1 ,w 2 ||w 1 || 1 + β 2 ||(∇s -- → v ) -w 1 || 2 2 +λ ||w 2 || 1 + β 2 ||∇s -w 2 || 2 2 , (4.17)
where β is an additional positive regularization terms. The problem is then split into independent sub-problems solved iteratively (sp 1 ) :

w (k+1) 1 ← argmin w 1 ||w 1 || 1 + β 2 ||w 1 -(∇s (k) -- → v )|| 2 2 (sp 2 ) : w (k+1) 2 ← argmin w 2 ||w 2 || 1 + β 2 ||w 2 -∇s (k+1) || 2 2 (sp 3 ) : s (k+1) ← argmin s ||∇s -( - → v + w (k+1) 1 )|| 2 2 +λ||∇s -w (k+1) 2 || 2 2 .
(4.18)

Solving problems (sp 1 ) and (sp 2 )

Problems (sp 1 ) and (sp 2 ) are typically soft-thresholding operators. We adopt an anisotropic approach for both w 1 and w 2 which consists in applying the thresholding on each vector field component separately. Thus, the solutions to problems (sp 1 ) and (sp 2 ) are given as follows

w (k+1) 1 =        w (k+1) 1,x = shrink l 1 (∇ x s (k) -v x , β) w (k+1) 1,y = shrink l 1 (∇ y s (k) -v y , β). (4.19) w (k+1) 2 =        w (k+1) 2,x = shrink l 1 (∇ x s (k) , β) w (k+1) 2,y = shrink l 1 (∇ y s (k) , β). (4.20)
Solving problem (sp 3 ) Problem (sp 3 ) is quadratic and thus admits a closed-form via Euler-Lagrange equations. Similar to before, the Fourier solution is given as follows

s (k+1) = F -1    F div - → v + w (k+1) 1 +λw (k+1) 2 (1 + λ) lap    . (4.21)
The associated linear system is given as follows

(I + λ)Ls (k+1) = D T x v x + w (k+1) 1,x + λw (k+1) 2,x +D T y v y + w (k+1) 1,y + λw (k+1) 2,y , (4.22) 
where L = D x D T x + D y D T y is the homogeneous Laplacian matrix. Note that using two variables in the Half-Quadratic solver, the difference between the l 1 and the l 1l 1 formulations consists in only one additional subproblem to solve that is simple shrinkage (problem (sp 2 )) . This approach remains efficient even when we have two sparse terms instead of one.

Using Non-Convexity

Problem 4.16 makes use of the l 1 -norm to model both the sparsity of the gradient residual (data-fitting term) as well as the gradient prior. Note however that the presence of the outliers makes both the residual gradient and the gradient of the latent signal highly sparse. We thus replace the l 1 -norm with the l p<1 -norm that promotes more sparsity :

argmin s ||∇s -- → v || p 1 p 1 + λ||∇s|| p 2 p 2 , (4.23)
where λ is a positive regularization term. We call the model l p -l p . Using the l p<1 norm to model sparsity of the sparse gradient prior is widely used in the low-level vision community (see chapter 1). An example that demonstrates the difference between using the l 1 and the l p<1 norms in terms of distribution of the residual gradient error is given in Figure 4.2. We perform Photometric Stereo on real corrupted images (see the Real Photometric Stereo section) to estimate the gradients of depth map and use it to calculated the residual gradient. As can be seen in the figure, the distribution of the residual gradient is kurtotic and can be better modeled using a hyper-Laplacian distribution (l p<1 ) rather than a Laplacian one (l 1 ). The same statement holds for the distribution of the gradient itself, a result that is already known in the low-level vision community. 

Half-Quadratic Optimization

We estimate a solution to this problem via Half-Quadratic splitting similar to the previous approach. Note that thanks to the use of a proximal-based solver, adapting the solver for the non-convex case requires only estimating a solution for the corre-sponding proximal operator, the rest of the subproblems do not change. Problems (sp 1 ) and (sp 2 ) are in the following proximal form

prox 1 β lp (z) = argmin w ||w|| p p + β 2 ||w -z|| 2 2 . (4.24)
While this problem is non-convex for p < 1, it admits the following first order solution by following the genrealized shrinkage operator presented in chapter 2

w = shrink lp (z, β) = max 0, |z| - |z + | p-1 β sign(z). (4.25)
This solution is also discussed in the Appendix A. For p = 1, we get the softthresholding operator for the l 1 -norm, which is the exact solution of the proximal operator in this case. For the special case p = 0, Xu et al. [START_REF] Xu | Image smoothing via l 0 gradient minimization[END_REF][START_REF] Xu | Unnatural l 0 sparse representation for natural image deblurring[END_REF] proposed a solution via hard-thresholding

w = shrink l 0 (z, β) =        0 |z| 2 ≤ 2 β z otherwise. (4.26)
The solutions to problems (sp 1 ) and (sp 2 ) become as follows

w (k+1) 1 =        w (k+1) 1,x = shrink lp (∇ x s (k) -v x , β) w (k+1) 1,y = shrink lp (∇ y s (k) -v y , β) (4.27) w (k+1) 2 =        w (k+1) 2,x = shrink lp (∇ x s (k) , β) w (k+1) 2,y = shrink lp (∇ y s (k) , β) (4.28)
Changing the sparsity model does not introduce additional cost as only the shrinkage operators are changed. The proposed solver thus remains fast even in the case of both 

Experiments

We evaluate the proposed methods l 1 -l 1 and l p -l p and compare with previous optimization methods : Poisson reconstruction (l 2 -minimization) [START_REF] Patrick | Poisson image editing[END_REF][START_REF] Simchony | Direct analytical methods for solving poisson equations in computer vision problems[END_REF], Diffusion [START_REF] Agrawal | What is the range of surface reconstructions from a gradient field[END_REF],

M-estimation [START_REF] Agrawal | What is the range of surface reconstructions from a gradient field[END_REF] and l 1 -minimization [START_REF] Reddy | Enforcing integrability by error correction using l 1 -minimization[END_REF][START_REF] Dun | Robust surface reconstruction from gradient field using the l1 norm[END_REF]. The setup for these experiments in this part consists in corrupting a ground-truth gradient field with outliers of a certain percent by multiplying the values with a high value and we try to recover the surface/image back. We start by evaluating our method on popular standard natural images given in Figure 4.3. As can be seen, the proposed method is able to recover high-quality images from highly corrupted gradients (30% of outliers).

The mean PSNR for 5 levels of outliers corruption for each method is given in the As can be seen, the sparse regularization significantly improves the reconstruction quality. Non-convexity improves even better the results. This can be clearly seen both visually and in terms of the PSNR. To see how non-convexity improves the quality of recovery on each part (data-fitting term and regularization), we run 4 variants of the proposed approach : l 1 -l 1 , l p -l 1 , l 1 -l p and l p -l p . We use the popular Shepp Logan phantom test image widely used in the Compressed Sensing community and present the results in Figure 4.5.

As can be seen, the use of non-convexity on the data-fitting term is better than using convexity on the prior only. However, using sparsity on both terms improves better the reconstruction. In fact, we get in many cases exact recovery with the l p -l p model whereas using the l 1 -l 1 model, it happens only in low corruption scenarios.

Application to Surface Reconstruction

We evaluate the proposed solution on surface reconstruction using standard benchmark surfaces : Ramp Peaks, Mozart and Cat datasets. We consider 6 level our outliers corruption from 2% to 20%. Note that 20% outliers corruption is very high and such level of corruption was not considered in previous works (10% being the maximum level used). The mean PSNR for each surface and corruption level is given in Table 4.2. Here again, the proposed approach outperforms classical methods. We present results for these surfaces in Figure 4.0 that show visually the improvement compared to previous methods. where λ, λ 2 and γ are positive regularization terms, s is an intermediate surface and p 1 , p 2 , p 3 < 1. Note that the robust recovery part corresponds exactly to the l p -l p . Thus, for outliers only corruption (γ = λ 2 = 0), the triple sparsity model reduces to l p -l p . The denoising part consists in an edge-aware smoothing operator (l 2 -l p ), where the l 2 norm on s -s models the dense noise corruption after outliers correction. While this model is highly non-convex, a good solution can be estimated via Half-Quadratic splitting as follows argmin s,s ,w 1 ,w 2 ,w 3

Ramp Peaks dataset (10% corruption)

(a) Ground Truth (b) Diffusion (c) M-estimation (d) l 1 (e) l 1 -l 1 (f) l p -l p Cat dataset (20% corruption) (g) Ground Truth (h) Diffusion (i) M-estimation (j) l 1 (k) l 1 -l 1 (l) l p -l p
||w 1 || p 1 p 1 + β 2 ||(∇s -- → v ) -w 1 || 2 2 +λ ||w 2 || p 2 p 2 + β 2 ||∇s -w 2 || 2 2 + γ 2 ||s -s || 2 2 + λ 2 ||w 3 || p 3 p 3 + β 2 ||∇s -w 3 || 2 2 , (4.30) 
where β is a positive regularization term and w 1 , w 2 , w 3 are intermediate variables.

The optimization problem is split into subproblems solved iteratively

(sp 1 ) : w (k+1) 1 ← argmin w 1 ||w 1 || p 1 p 1 + β 2 ||(∇s (k) -- → v ) -w 1 || 2 2 (sp 2 ) : w (k+1) 2 ← argmin w 2 ||w 2 || p 2 p 2 + β 2 ||∇s (k) -w 2 || 2 2 (sp 3 ) : s (k+1) ← argmin s γ||s -s (k) || 2 2 + β||(∇s -( - → v + w (k+1) 1 )|| 2 2 +λβ||∇s -w (k+1) 2 || 2 2 , ∇s (k) ← ∇s (k+1) (sp 4 ) : w (k+1) 3 ← argmin w 3 ||w 3 || p 3 p 3 + β 2 ||∇s (k) -w 3 || 2 2 (sp 5 ) : s (k+1) ← argmin s γ||s -s (k) || 2 2 + λ 2 β||∇s -w (k+1) 3 || 2 2 ∇s (k+1) ← ∇s (k+1) , β ← κβ. (4.31)
Problems (sp 1 ), (sp 2 ) and (sp 4 ) are in the proximal l p -form and thus admit a shrinkage solution similar to what we have presented before.

w (k+1) 1 =        w (k+1) 1,x = shrink lp (∇ x s (k) -v x , β) w (k+1) 1,y = shrink lp (∇ y s (k) -v y , β).
(4.32)

w (k+1) 2 =        w (k+1) 2,x = shrink lp (∇ x s (k) , β) w (k+1) 2,y
= shrink lp (∇ y s (k) , β).

(4.33)

w (k+1) 3 =        w (k+1) 3,x = shrink lp (∇ x s (k) , β) w (k+1) 3,y = shrink lp (∇ y s (k) , β).
(4.34)

The remaining subproblems are quadratic and can be solved via the FFT as presented before

s (k+1) = F -1   F γs (k) + λ 2 βdiv(w (k+1) 3 ) γ + λ 2 βlap   . (4.35) s (k+1) = F -1 F (γs (k) -div(u)) γ-(β+λβ)lap u = β( - → w + v (k+1) 1
) + λβw (a) Ground Truth (b) Least Squares [START_REF] Simchony | Direct analytical methods for solving poisson equations in computer vision problems[END_REF] (c) Diffusion [START_REF] Agrawal | What is the range of surface reconstructions from a gradient field[END_REF] (d) M-estimator [START_REF] Agrawal | What is the range of surface reconstructions from a gradient field[END_REF] (e) l 1 -minimization [START_REF] Reddy | Enforcing integrability by error correction using l 1 -minimization[END_REF] (f) Triple Sparsity (g) Input stant albedo so we generate maximum corruptions in the normals. From the normals we estimate the gradients as explained in the beginning of this chapter. As can be seen in these figures, the proposed method produces better surfaces compared to previous methods.

Noise only (σ = 10%)

(a) Ground Truth (b) l 2 (c) Diffusion (d) M-estimation (e) l 1 (f) Proposed
Mixed Noise/ Outliers (outliers : 7%, noise : σ = 7%) 

(g) Ground Truth (h) l 2 (i) Diffusion (j) M-estimation (k) l 1 (l) Proposed

Using a Non-Local Regularization

While local sparse regularization together with non-convexity improves the reconstruction quality compared to previous methods, it produces flat surfaces in the presence of dense noise. This is because the sparse gradient prior encourages a piecewise constant solution. This "flatness" of the results is known in the low-level vision community when using TV-like approaches. An alternative to local regularization is using a non-local regularization instead [START_REF] Buades | A non-local algorithm for image denoising[END_REF][START_REF] Dong | Non-local image restoration with bilateral variance estimation : A low-rank approach[END_REF][START_REF] Gu | Weighted nuclear norm minimization with application to image denoising[END_REF]. A sparse local prior models the global distribution of a signal in a domain (gradient domain for instance). As a result, by simply shrinking each pixel separately, we can get closer to the desired distribution (hyper-Laplacian in the case of the l p < 1-norm). In contrast, a non-local approach takes advantage of the self-similarities within the signal and processes together similar patches collected via block-matching instead of processing each pixel separately.

Using non-locality in low-level vision has led to a dramatic improvement especially in denoising applications (see denoising chapter 5). In this section, we replace the local prior of the model 4.23 with a non-local prior that plays the role of both outliers correction and denoising at the same time. The non-local prior that we choose is based on low-rank estimation due to its recent success in natural image denoising [START_REF] Dong | Non-local image restoration with bilateral variance estimation : A low-rank approach[END_REF][START_REF] Gu | Weighted nuclear norm minimization with application to image denoising[END_REF].

Note however that here we use low-rankness as a prior in an optimization problem, which requires a new mathematical approach. We propose to use the following model

argmin s ||∇s -- → v || p 1 p 1 + λ g g j=1 ||R j x D x s|| * ,p 2 +||R j y D y s|| * ,p 2 , (4.37) 
where λ is a positive regularization term, g is the number of clusters of non-local patches 1 , D x , D y and are discrete differential operators and R j x , R j y are binary matrices that select block-matched patches for cluster j and p 1,2 ≤ 1. ||.|| * ,p = ||diag(Σ)|| p p denotes the l p -nuclear norm, which is the l p -norm applied on the singular values.

1 Non-local patches are the similar patches collected via block-matching.
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Half-Quadratic Optimization

We adopt a similar HQ splitting approach as before to estimate a solution to problem 4.37, which results in the following problem argmin s,ws,w j x ,w j y

||w s || p 1 p 1 + β 2 ||(∇s -- → v ) -w s || 2 2 + λ g g j=1 ||w j x || * ,p 2 + β 2 ||R j x D x s -w j x || 2 2 + λ g g j=1 ||w j y || * ,p 2 + β 2 ||R j y D y s -w j y || 2 2 , (4.38) 
where β is a positive regularization parameters and w s , w j x , w j y are intermediate variables. The corresponding subproblems for alternate minimization are given by considering one variable a time as follows

(sp 1 ) : w (k+1) s ← argmin ws ||w s || p 1 p 1 + β 2 ||(∇s (k) -- → v )-w s || 2 2 (sp 2 ) : w j, (k+1) x 
← argmin

w j x ||w j x || * ,p 2 + β 2 ||R j x D x s (k) -w j x || 2 2 (sp 3 ) : w j, (k+1) y 
← argmin

w j y ||w j y || * ,p 2 + β 2 ||R j y D y s (k) -w j y || 2 2 (sp 4 ) : s (k+1) ← argmin s ||(∇s-- → v )-w (k+1) s || 2 2 + λ g g j=1 ||R j x D x s-w j,(k+1) x || 2 2 + ||R j y D y s-w j,(k+1) y || 2 2 . (4.39) 
Here again, problems (sp 1 ), (sp 2 ) and (sp 3 ) are in the proximal form, so they can be efficiently solved via pixelwise shrinkage. Problem (sp 4 ) is quadratic and admits a closed-form. Problem (sp 1 ) is similar to the previous subproblems studied in the local prior version

w (k+1) s =        w (k+1) s,x = shrink lp 1 D x s (k) -v x , β w (k+1) s,y = shrink lp 1 D y s (k) -v y , β (4.40) 
Solving problems (sp 2 ) and (sp 3 ) Problems (sp 2 ) and (sp 3 ) take the following general form argmin can be expressed using the l p -thresholding operator as follows

X 1 β ||X|| * ,p + 1 2 ||X -Y || 2 F . ( 4 
X = shrink * ,p (Y, β) = U diag(shrink lp (diag(Σ), β))V T . (4.42) 
Applying this result to problems (sp 2 ) and (sp 3 ) gives the following solutions

w j, (k+1) x 
= shrink * ,p 2 (R j x D x s (k) , β) w j,(k+1) y 
= shrink * ,p 2 (R j y D y s (k) , β).

(4.43)

A detailed derivation is discussed in the Appendix A.

Solving problem (sp 4 )

Problem (sp 4 ) is quadratic, hence it admits a closed-form. However, it is not straightforward to get the closed-form due to the presence of the non-local matrices R j x and R j y . For this reason, we need a reformulation of this form

1 g g j=1 ||R j Ds -w j || 2 2 ≡ ||Ds -w|| 2 2 . (4.44) 
Once this formulation established, the solution s (k+1) can be efficiently calculated via Fourier transform by considering periodic boundary conditions. Consider the general problem argmin

x 1 g j ||A j x -b j || 2 2 , (4.45) 
which admits the following closed-form

1 g g j A jT A j x = 1 g j A jT b j . (4.46) 
Applying this result to problem (4.45) results in the following solution

1 g j R jT R j Dx = 1 g j R jT w j . (4.47) 
As the non-local groups are not overlapping, we have 1 g j R jT R j = I. The equivalence is thus given as follows

1 g g j=1 ||R j Ds -w j || 2 2 ≡ ||Ds - 1 g j R jT w j || 2 2 . (4.48) 
The R jT w j simply consists in placing the patches of w j in their corresponding position.

As each pixel can have g estimates, division by g permits to aggregate all the patches.

Applying this result to problem (p 4 ) results in the following subproblem

(sp 4 ) : s (k+1) ← argmin s ||(∇s -- → v ) -w (k+1) s || 2 2 +λ||D x s -1 g g j=1 R jT x w j,(k+1) x || 2 2 +λ||D y s -1 g g j=1 R jT y w j,(k+1) y || 2 2 . (4.49) 
Similar to the previous local approach, we use the Fourier Transform F to get the solution as follows

s (k+1) = F -1 F (div(dx,dy)) (1+λ)lap d x = (v x + w (k+1) s,x ) + λ 1 g g j=1 R jT x w j,(k+1) x d y = (v y + w (k+1) s,y ) + λ 1 g g j=1 R jT y w j, (k+1) y . (4.50) 
The method consists in shrinkage operations that are fast to calculate as they correspond to pixelwise operations, a Fourier-based reconstruction that can be performed efficiently and a non-local sparsity part. The block-matching operation in our case is a straightforward Matlab code. We perform block-matching only around 6 times. This operation can be accelerated using fast dedicated methods such as PatchMatch [START_REF] Barnes | The generalized patchmatch correspondence algorithm[END_REF] or parallel processing. For the non-local sparsity part, as processing each group is independent (because the groups are non-overlapping), the low-rank processing step can be performed in parallel as well. Patch manipulation (extraction and reconstruction) are easy operations that are efficiently implemented in C (mex). On a laptop with a i7-2670QM CPU using 4 cores, the block-matching reduces to 0.40 second and the low-rank estimation subproblem to 0.25 second for a heavily corrupted 128×128 gradient field.

Comparison with Local Regularization

We present in Figure 4.6 results comparison between our local regularization model and the new non-local low-rank approach in the case of outliers only (high corruption 30%) and mixed outliers/noise (high corruption 30% under a high amount of noise).

Note that these are very challenging corruption cases and the maximum outliers corruption considered in the literature is 10% corruption. As can be seen, the nonlocal model improves much better the reconstruction quality especially in the presence of dense noise. The local regularization tends to oversmooth the surface and produces a piecewise constant surface. But still, the local approach outperforms the simple l 1model. More results are given in 4.5.

Application to Real Photometric Stereo

We use the proposed solutions to perform Photometric Stereo on real corrupted images with dense noise and outliers. As the images are extremely corrupted, the 130 Performance of the proposed method under various levels of outliers corruption when there is no noise, medium amount of noise and high amount of noise. The proposed method outperforms previous optimization methods in all the cases (visual results are reported in 4.6). equation 4.1 is no longer verified and a least-squares solution introduces many errors in the normals, hence errors in the estimated gradient field. We use three levels of outliers corruption on the input images : 1% , 5% and 10%. The outliers are generated as random sparse points with magnitude three time the maximum intensity value of the image. We add Gaussian dense noise with standard deviation 2% the maximum intensity value. We use the following parameters • Triple sparsity : p 1 = 0.5, p 2 = 0.3, p 3 = 0.7, γ = 10 -4 and λ 2 = λ 1 γ.

• Non-local method : p 1 = 0.5, p 2 = 0.7.

We use the same values for all the solvers : β = 10 -4 and κ = 1.10 for 100 iterations.

The regularization parameter λ for both methods is increased for higher corruption values. The choice of p 1 = 0.5 comes from the fact that the residual gradient contains both dense noise and outliers, the value 0.5 is a good compromise to handle this case. The results are given in the Frog and Octopus figures. As can be seen, eventhrough the input images are massively corrupted, and even using a simple leastsquares solution to recover the normals, acting directly on the estimated gradient field with the proposed solutions lead to high-quality reconstruction.

Conclusions

In this chapter we have presented how to use sparsity to improve the recovery of signals from highly corrupted gradient fields. We showed how non-convexity and regularization can be integrated in an optimization formulation and how to get efficiently a solution via Half-Quadratic splitting. We presented two approaches for regularization : a local approach via a sparse gradient prior and a non-local method using low-rank estimation. The local approach is fast but requires two different local priors to get rid of both noise and outliers. It requires additional parameters to tune compared to the non-local approach and tends to oversmooth some structures.

The non-local method on the other hand handles both outliers and dense noise via a single prior and requires few parameters. However, due to the need of performing block-matching and low-rank estimation on each non-local patch matrix for several iterations, the method is much slower than the local approach, but produces superior results especially in the case of dense corruption. We have evaluated our methods on both synthetic and real data and showed that the proposed solutions outperform previous work. works, this approach offers many advantages over the classical denoising strategy :

1) it does not require exact noise level estimation, 2) it can support various types of noise and can be adapted to the camera device in hand, 3) it can be adapted to the noisy image by using a similar image for training. Experiments conducted on syn-thetic and real camera noise show that the proposed method leads to an important improvement both visually and in terms of PSNR/SSIM.

Introduction

Image denoising is one of the most challenging problems in imaging science. It is also one of the most important long-standing problems because of its big commercial impact. Even-though camera devices become every year more powerful, noise is still present in pictures even using high-end devices. The ISO settings in each camera device permit to control the sensitivity of the sensor. Increasing the ISO leads to a better representation of the scene but produces more noise. High-end devices tend to capture less noise at higher ISO settings, which permits to capture better pictures but this comes at a much higher cost. The most simple way to model image corruption is by supposing that the noise is Gaussian uniform with known variance (AWGN model).

This model is adopted to tune most of the current denoising methods. It is well known however that real camera noise is far from being Gaussian and uniform due to the complex camera imaging pipeline. For instance, the popular Charge-Couple Device (CCD) image sensors pipeline includes various perturbations such as atmospheric attenuation, lens/geometric distortion, CCD imaging/Bayer pattern, interpolation, white balancing and Gamma correction [START_REF] Liu | Noise estimation from a single image[END_REF][START_REF] Yang | Estimation of signal-dependent noise level function in transform domain via a sparse recovery model[END_REF]. In addition, at least five noise sources are added in the process including fixed pattern noise, dark current noise, short noise, amlifier noise and quantization noise. Due to the complexity and nonlinearity of the pipeline, one popular approach consists in simplifying the model to two noise corruptions of the irradiance where one is uniform and the other is signaldependent [START_REF] Liu | Noise estimation from a single image[END_REF]. The noisy image is then converted back with the camera response function (CRF) of the corrupted irradiance. From this model, a noise level function (NLF) can be calculated that maps the brightness to standard deviation and clearly reflects the non-uniformity of noise corruption. While this model is much richer than the standard AWGN model, it is still a simplification of a complex pipeline. Moreover, even if the NLF is well estimated, which is already a hard problem especially when fine textures are present in the picture, it is not clear how non-local methods can fully take advantage of it. As non-local methods manipulate non-local matrices, even if the noise levels of all the pixels are exactly known, the transformation from the nonlocal patch matrices to the clean ones so far takes into account only one noise level that controls the way the non-local patch matrices are processed in an appropriate domain.

Working Secondly, we propose a fast and efficient method to learn the correspondence between the noisy and derived optimal denoising values. As the derived optimal values do not correspond to true singular values because they are not necessary in decreasing order, learning a shrinkage function is not suitable in this domain. We rather propose to learn various full mapping functions between the values via robust optimization of multiple singular values clusters for a richer model. Our training model is simple and fast while being efficient compared to more advanced function mapping learning techniques such as neural networks. Finally, we evaluate our technique on synthetic and real noise corruptions. First, we use uniform and non-uniform Gaussian noise via the CCD-CRF model for synthetic evaluation. Secondly, we use real-world camera noise samples extracted with the help of professional photographers for a more realistic noise evaluation. Finally, we evaluate the proposed method on real noisy images with unknown camera settings. Experiments show that the proposed approach leads to better denoising results even in challenging small-scale textures and text structures.

Related Work

In this section, we give an overview of the most recent existing denoising methods in the literature. There are mainly three approaches to image denoising that are classified in the literature as follows : 1) internal-based, where only the image structures within the noisy image are used to perform restoration, 2) learning-based, where learning is used to improve the recovery of the latent clean image, 3) external-based, where external information from correlated images is directly used to improve recovery.

Internal-Based Denoising

Internal-based denoising is solely based on using information within the noisy image itself. Early methods perform pixelwise operations by exploring neighboring pixels via Gaussian filtering, bilateral filtering [START_REF] Tomasi | Bilateral filtering for gray and color images[END_REF], total variation [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] or wavelet thresholding [START_REF] Chang | Adaptive wavelet thresholding for image denoising and compression[END_REF][START_REF] Portilla | Imag denoising using scale mixtures of gaussians in the wavelet domain[END_REF]. Preliminary work on non-local processing [START_REF] Buades | A non-local algorithm for image denoising[END_REF] has shown to lead to a dramatic improvement. The standard non-local means (NLM) approach [START_REF] Buades | A non-local algorithm for image denoising[END_REF][START_REF] Ram | Image denoising using nl-means via smooth patch ordering[END_REF] consists in simply perfoming weighted averaging. The idea has been generalized by gathering similar patches in a matrix (a.k.a. non-local matrix ), process this matrix in a domain and reconstruct the patches back. Various domains of processing have been proposed such as 3D collaborative filtering transform (BM3D) [START_REF] Dabov | Image denoising by sparse 3d transform-domain collaborative filtering[END_REF] and singular values [START_REF] Rajwade | Image denoising using the higher order singular value decomposition[END_REF][START_REF] Dong | Non-local image restoration with bilateral variance estimation : A low-rank approach[END_REF][START_REF] Gu | Weighted nuclear norm minimization with application to image denoising[END_REF]. Other internal-based methods have been proposed such as denoising by exploring patch recurrence across scales [START_REF] Zontak | Separating signal from noise using patch recurrence across scales[END_REF] or matching gradient histograms [START_REF] Zuo | Texture enhanced image denoising via gradient histogram preservation[END_REF].

Learning-Based Denoising

Learning has significantly improved image restoration quality. Methods [START_REF] Aharon | An algorithm for designing overcomplete dictionaries for sparse representation[END_REF][START_REF] Mairal | Sparse representation for color image restoration[END_REF][START_REF] Sulam | Image denoising through multi-scale learnt dictionaries[END_REF][START_REF] Chatterjee | Clustering-based denoising with locally learned dictionaries (k-lld)[END_REF] permit to learn a dictionary to perform denoising via Orthogonal Matching Pursuit (OMP) locally [START_REF] Mairal | Sparse representation for color image restoration[END_REF] or non-locally [START_REF] Mairal | Non-local sparse models for image restoration[END_REF][START_REF] Dong | Nonlocally centralized sparse representation for image restoration[END_REF]. Learning priors via high-order MRF models [START_REF] Roth | Fields of experts[END_REF], Gaussian mixture models [START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF] or shrinkage functions [START_REF] Schmidt | Shrinkage fields for effective image restoration[END_REF] has shown to give interesting results in image denoising. Plain learning via neural networks has shown to give interesting results as well [START_REF] Burger | Image denoising : Can plain neural networks compete with bm3d?[END_REF].

However, as these methods try to learn one single model based on various clean sources, performance compared to BM3D is not impressive and challenging structures such as textures (grass, trees, grainy wall,...) and small-scale texts are still not well restored. Moreover, both internal and external-based methods suppose that the noise level is known and most of the time, the noise is supposed to be uniform (AWGN), which is far from the real case scenario. As a result, even if these methods can be tuned to perform well in this case, they lose their potential on real noise corruption when exact noise estimation is almost-impossible, and does not reflect the complex camera pipeline.

External-Based Denoising

External-based denoising is a relatively new approach that consists in exploiting directly external information using a set of correlated images. The approach by

Burger et al. propose to use learning to combining denoising results from internal and external results [START_REF] Burger | Learning how to combine internal and external denoising methods[END_REF]. The method [START_REF] Yue | Image denoising using cloud images[END_REF] uses web images to recover correlated images and use external patches in BM3D. Similarly, methods [START_REF] Yue | Cid: Combined image denoising in spatial and frequency domains using web images[END_REF][START_REF] Yue | Image denoising by exploring external and internal correlations[END_REF] combine internal and external patches extracted from correlated images in the BM3D framework.

While these methods improve considerably restoration quality, they require that the external correlated images should be too similar to the input noisy image containing the same patterns, which is only possible in specific scenarios.

We propose a powerful method that manipulates only the internal patch correlations of the noisy image. Our method performs processing in the singular values domain similar to internal-based denoising methods SAIST [START_REF] Dong | Non-local image restoration with bilateral variance estimation : A low-rank approach[END_REF] and WNNM [START_REF] Gu | Weighted nuclear norm minimization with application to image denoising[END_REF].

However, unlike these methods that use simple shrinkage operators via sparse priors, we learn a mapping between the noisy singular values and the derived optimal denoising values. Learning in our method does not consist in learning dictionaries [START_REF] Aharon | An algorithm for designing overcomplete dictionaries for sparse representation[END_REF][START_REF] Mairal | Sparse representation for color image restoration[END_REF][START_REF] Mairal | Non-local sparse models for image restoration[END_REF] or shrinkage functions [START_REF] Schmidt | Shrinkage fields for effective image restoration[END_REF][START_REF] Chen | On learning optimized reaction diffusion processes for effective image restoration[END_REF]. We rather learn a mapping similar to neural networks [START_REF] Burger | Image denoising : Can plain neural networks compete with bm3d?[END_REF], but in the singular values domain, which reduces considerably the number of latent variables to infer. Contrary to previous learning-based methods such as [START_REF] Aharon | An algorithm for designing overcomplete dictionaries for sparse representation[END_REF][START_REF] Mairal | Sparse representation for color image restoration[END_REF][START_REF] Mairal | Non-local sparse models for image restoration[END_REF][START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF][START_REF] Burger | Image denoising : Can plain neural networks compete with bm3d?[END_REF], our method does not need a very large amount of patches to learn a model that can take a lot of time, sometimes days to train one single model.

The proposed approach uses only one single image for training. Moreover, training is fast as it consists in solving few linear systems. The overall training time is almost equal to the denoising time in our case. This transfer approach that consists in learning a denoising model on a pair of clean/noisy pair has many advantages. First of all, the method is not designed for a specific type of corruption. Secondly, the denoising quality can be improved by choosing a pair that is somehow similar with the noisy instance. Thirdly, as various camera devices respond differently to noise as they do not have the same response function or even not the same pipeline, our method can use noise samples from the camera device at hand and adapt the learned model to the device. To demonstrate the potential of the proposed approach, we evaluate it against some leading methods on various types of noise : uniform Gaussian noise, non-uniform noise and real noise sampled from a camera. Moreover, by learning a model based on a Nikon D-600, we show how our method produces high-quality denoising even if the noise corruption of the noisy instances is not the same as that of the training pair.

Problem Formulation

Let x c be a clean image and x n its corrupted version. Non-local image restoration exploits the self-similarities in natural images. The approach consists in gathering similar patches of x n via block-matching, stack them in a matrix X n where the columns correspond to the vectorized versions of the patches, applying a transformation, reconstruct the estimated clean matrices Xc , and finally reconstruct the clean image xc by aggregating all the transformed matrices. Methods such as SAIST [START_REF] Dong | Non-local image restoration with bilateral variance estimation : A low-rank approach[END_REF] and WNNM [START_REF] Gu | Weighted nuclear norm minimization with application to image denoising[END_REF] use low-rank estimation as a transformation by imposing sparsity models on the singular values. More precisely, the problem can be posed in the following general formulation :

Xc = argmin Xc 1 2 ||X c -X n || 2 F + λψ * (X c ), (5.1) 
where ψ * models the sparsity of the singular values of the clean matrix X c . ψ * can take the form of the nuclear norm by supposing a Laplacian distribution [START_REF] Dong | Non-local image restoration with bilateral variance estimation : A low-rank approach[END_REF] or reweighted-nuclear norm [START_REF] Gu | Weighted nuclear norm minimization with application to image denoising[END_REF]. While these methods tend to model the singular values of the clean matrices X c , it turns out that the singular values of the matrices X c in the clean natural image do not correspond to the optimal denoising singular values. This is because we do not have the true orthogonal matrices of X c for the complete decomposition. The values that need to be modeled should rather depend on the whole decomposition of the noisy patches. As we are going to see, the actual optimal values do not even correspond to a true low-rank transformation. As a result, a sparsity-based model that leads to a shrinkage operator cannot take fully advantage of this observation.

Optimal Denoising Singular Values

Given a pair of clean/noisy non-local patch matrices X c /X n , we would like to derive the best denoising singular values that we denote Σ o . In other words, Σ o are the optimal singular values that permit to reconstruct X c from X n . Suppose the Singular Value Decomposition (SVD) of both X c and X n

X c = U c diag(Σ c )V T c , X n = U n diag(Σ n )V T n , (5.2) 
where diag is the diagonal matrix operator that extracts the diagonal from a matrix or builds a diagonal matrix from a vector. Typically, sparsity-based methods [START_REF] Dong | Non-local image restoration with bilateral variance estimation : A low-rank approach[END_REF][START_REF] Gu | Weighted nuclear norm minimization with application to image denoising[END_REF] try to denoise Σ n by applying a shrinkage operator (shrink(Σ n )). However, it is not clear which are the best denoising values to model. For a dense corruption, the best singular values Σ o to estimate X c from X n can be recovered by minimizing the error between X c and its reconstruction argmin

Σo ||U n diag(Σ o )V T n -X c || 2 F . (5.3)
By rewriting the diagonal operator as a linear operation diag(A) = A1, (5.4) where 1 is an all-ones vector, the solution of the problem is given as the following least squares solution

Σ o = U T n X c V n 1 = diag(U T n X c V n ). (5.5)
As there is no particular prior on the solution Σ o , they do not necessarily correspond to "true" singular values. In fact, they can be even negative and in a non-decreasing order.

Learning the Spectral Mapping

Given a pair of noisy/optimal singular values Σ n /Σ o , we would like to learn a mapping function F such that F (Σ n ) ≈ Σ o . The good thing about the proposed LRT approach is that denoising each set of similar patches is reduced to estimating few singular values, which makes learning in the singular values domain easier. One approach would be to learn a shrinkage function as adopted in some techniques such as [START_REF] Schmidt | Shrinkage fields for effective image restoration[END_REF].

However, as explained before, the mapping F (Σ n ) ≈ Σ o does not correspond to a shrinkage as the optimal singular values Σ o do not correspond to real singular values : they are not necessarily in decreasing order, are hard to fit and they can be even negative. A general model for a shrinkage shrink(.) can be formulated as follows

Σ o ≈ shrink(Σ n ) = max(0, Σ n -βw(Σ n )), (5.6) 
where β is a postive regularization term and w is a weight function. As seen in Chapter 2, this shrinkage function is the solution (or first-order solution) of the proximal operator of the form :

argmin Σo 1 2 ||Σ o -Σ n || 2 F + βψ(Σ o ), (5.7) 
where ψ models the sparse prior. Learning a shrinkage function is reduced to learning the weight function w(.) ≥ 0. However, as can be clearly seen in equation 5.6, a shrinkage function is by definition monotonic. As a result, learning a shrinkage function is not appropriate in our case because of the nature of Σ o . Instead, we learn an actual point-by-point mapping.

Transfer Problem Formulation

A straightforward way to estimate this mapping F is to use a feedforward neural networks. While this approach is highly likely to work, it is time consuming especially if the training image is large. The method that we propose is a simple yet efficient learning approach that is fast as it requires solving few linear systems and can benefit from sparsity for robust estimation. We formulate the mapping as a linear model with a latent matrix W that minimizes the fitting error in a high-dimensional space.

The problem is formulated as follows argmin

W 1 M p M j=1 ||W T φ(Σ n,j ) -Σ o,j || p p + λ||W || 2 F F (Σ n ) = W T φ(Σ n ), (5.8) 
where λ = 0.001 is a small regularization term to prevent numerical problems, p ≤ 1 represents the l p -norm for robust fitting and φ(.) is a non-linear mapping to a highdimensional space. Σ n,j and Σ o,j correspond to the singular values of the matrices X n,j and X c,j respectively extracted from the training pair. The total number of such matrices is M . Typically, φ(.) is a basis function that can take any form as long as it is independent of the weights. In our case, we use a polynomial basis function of the following form

φ(Σ n,j ) = 1 Σ T n,j Σ T n,j 2 Σ T n,j 3 ... T .
(5.9)

Optimization

To estimate a solution to the problem (5. 

1 M p M j=1 N i=1 Y p/2 i s.t. W T φ(Σ n,j ) -Σ o,j 2 i ≤ Y i , i = 1, ..., N, ||W || 2 F ≤ ξ. , (5.10) 
where i is the singular value index and N is the number of singular values. Typically, because the energy is concentrated in the first singular values, we learn the mapping only on the first half singular values. The relaxation (5.10) is in the following general

form argmin v h(v) s.t. v ∈ C, (5.11) 
where C is a convex set and h(v) = v p/2 is a concave function that admits the following linearization :

v (l+1) = argmin v h(v (l) ) + ∂h(v (l) )(v -v (l)
).

(5.12)

The estimated solution thus corresponds to a reweighted-least squares problem (IRLS)

W (l+1) = A (l)-1 M j=1 φ(Σ n,j )Z (l) j Σ o,j T A (l) = M j=1 (φ(Σ n,j )Z (l) j φ(Σ n,j ) T )+λI Z (l+1) j = diag 1 |φ(Σ n,j ) T W (l) -Σ T o,j | 2-p + , (5.13) 
where = 0.001 is set for stability. However, this is a slow estimate as the weights Z should be evaluated for each patch matrix. Instead, we use the following estimation that computes directly one least-squares solution instead of performing M estimations of the weights Z j

W (l+1) ≈ φ( Σn )Z (l) φ( Σn ) T +λI -1 φ( Σn )Z (l) Σo T Z (l+1) = diag 1 1 M M j=1 (|φ(Σ n,j ) T W (l) -Σ T o,j )| 2-p + , (5.14) 
where Σn and Σo correspond to the matrices containing all the singular values for all the M patch matrices along the columns

Σn = Σ n,1 • • • Σ n,M , Σo = Σ o,1 • • • Σ o,M . (5.15) 
This estimation is based on the observation that (5.8) aims at minimizing the mean error over all the M patch matrices. We thus take the re-weighting that corresponds to the mean over all the the M weights Z j . rank denoising methods [START_REF] Dong | Non-local image restoration with bilateral variance estimation : A low-rank approach[END_REF][START_REF] Gu | Weighted nuclear norm minimization with application to image denoising[END_REF] are implemented in an iterative framework that adds the filtered noise back to the denoised image as follows

Fitting a Richer Model

x (k+1) n = x (k) n + γ(x n -x (k) n ), (5.16) 
where k denotes the current iteration with x (0) = x n and γ is a positive regularization 

as follows Σo,j

= W T r,k φ(Σ n,j (k) ), (5.17) where W r,k denotes the trained model for cluster number r during iteration k.

Extension to Full Color Denoising

Color images contain important correlations along the channels that need to be taken into account. Our method is easily extended to full color image denoising by concatenating the corresponding color patches through the rows. As a result, we only need to learn LRT for few singular values per non-local color patch, which is faster both for training and main denoising. We call this full color denoising approach C-LRT and the grayscale version G-LRT. 

Processing Time

The main bottleneck in both non-local and learning-based denoising methods is the processing time. Our training model is very fast compared to previous learning-based methods that can take hours or even days for large data [START_REF] Burger | Image denoising : Can plain neural networks compete with bm3d?[END_REF][START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF][START_REF] Schmidt | Shrinkage fields for effective image restoration[END_REF]. For an image from the Kodak dataset (500 × 750), learning the model (eq 5. image. We compare with four leading methods : BM3D [START_REF] Dabov | Image denoising by sparse 3d transform-domain collaborative filtering[END_REF], EPLL [START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF], SAIST [START_REF] Dong | Non-local image restoration with bilateral variance estimation : A low-rank approach[END_REF] and WNNM [START_REF] Gu | Weighted nuclear norm minimization with application to image denoising[END_REF] for the grayscale case. For full color denoising, we compare with CBM3D [START_REF] Dabov | Color image denoising via sparse 3d collaborative filtering with grouping constraint in luminancechrominance space[END_REF]. The results are given in Table 5.1. As can be seen, the proposed method leads to better empirical restoration in terms of both PSNR and SSIM [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF] for higher noise level. It is worth noting that the proposed method successfully transfers denoising even if the training image is not correlated with the test image, which is not possible with external-based methods.

Visual denoising results are given in Figure 5.3 that demonstrate the ability of the proposed method to better denoise textured regions such as grass, trees and water.

Synthetic Signal-Dependent Noise Experiments

The second set of experiments consists in evaluating the proposed method using a synthetic realistic noise level. In order to perform experiments with more realistic noise, we propose to use the CCD-CRF model that reflects better the non-uniformity of the corruption. This model is a simplification of the non-linear complicated imaging pipeline that includes various perturbations and noise corruptions. Following previous work [START_REF] Liu | Noise estimation from a single image[END_REF][START_REF] Yang | Estimation of signal-dependent noise level function in transform domain via a sparse recovery model[END_REF], the noise model is given as follows

x n = f (L + n s + n c ) + n q , (5.19) 
where L is the clean irradiance, I n is the resulting corrupted image and f (.) = CRF denotes the camera response function (CRF). This model considers mainly in two types of noise : n c that is independent of the signal before gamma correction and n c represents all the noise components that depend on the irradiance L. n q is the minimum camera noise that is ignored. As previous methods are tuned to work with Gaussian noise, the noises n s and n c are generated based on Gaussian noise as well.

The noise n s is zero-mean with variance Var(n s ) = Lσ 2 s and n c is zero-mean with variance Var(n c ) = σ 2 c . This model is further simplified to take the signal-dependent variance model where η is supposed a zero-mean independent random noise with unit standard deviation and the noise level σ η depends on the intensity level x c , described by the noise level function (NLF). For noise simulation, we use a simple noise synthesis technique proposed in previous works [START_REF] Liu | Noise estimation from a single image[END_REF]. The CRF function is downloaded from the popular camera response database http://www.cs.columbia.edu/CAVE/databases/. Various methods to estimate the NLF are available [START_REF] Liu | Noise estimation from a single image[END_REF][START_REF] Yang | Estimation of signal-dependent noise level function in transform domain via a sparse recovery model[END_REF]. In this experiment however, we have access to the true CRF and the noise levels σ s and σ c , so we can recover the exact NLF using the technique in [START_REF] Liu | Noise estimation from a single image[END_REF]. The CRFs and the corresponding NLFs (normalized to [0,1]) for two noise setups are given in Figure 5.4. The empirical denoising results are given in Table 5.1 (Non-Uniform noise table). As can be seen again, the proposed method leads to better denoising results, even in the case of non-uniform corruption. This demonstrates the ability of the proposed method to automatically adapt to internal structures of the image.

x n = x c + σ η (x c )η, (5.20) 

Real Noise Experiments

This experiment uses real noise samples directly instead of a synthetic noise model.

We extract real camera noise sampled from a Canon 5D MK3, corrupt a groundtruth and denoise it. To perform this task, we first need a noise model to simulate the corrupted images. The sampled noise at a fixed ISO setting corresponds to blank frames with known unique background color (typically black) that we note η. We first zero-mean η to remove the background color and normalize the standard deviation to control the amount of corruption with a parameter σ η . Given a clean color image I, we generate the noisy output I n based on the noise level function (NLF) as follows :

x n = x c + σ η NLF(x c /255, η).

(5.21)

Following previous works, the NLF can be estimated from the CRF and the variances Var(n c ), Var(n s ). As we do not have access to the CRF of the Canon 5D MK3 device, we use a simple NLF that gives less weight to brighter pixels and more weight to darker pixels similar to standard NLFs. For each image, we fine-tune the noise level to get the best denoising result with methods BM3D, EPLL, SAIST and WNNM as the noise in this case is not uniform. In fact, each method required a different optimal noise level and standard methods for noise estimation failed to give an accurate estimation. To demonstrate the ability of our method to recover structures such as text and textures, we use two challenging images : one of a tiger with a fur and another one of books with various text sizes. The results are presented in Figure 5.5. Note how the proposed method is able to recover the fur of the tiger and the text of the books. The other methods, even-though fine-tuned, result in over-smoothing. It is worth noting that, in the second example, the training image is not even visually close to the groundtruth, but contains text. Our training model is able to capture such structures and successfully transfer it to another noisy image.

Real Noisy Images Experiments

We evaluate in this section the proposed method on true real noisy images with 

Conclusions

We present in this chapter a new approach to image denoising based on the principle of non-local low-rankness transfer (LRT). Instead of using shrinkage operators to apply on the non-local singular values, we learn a mapping using a simple but efficient training model. This approach does not require exact noise estimation and does not suppose a prior knowledge on the noise type. Experiments on uniform and nonuniform noise as well as real camera noise demonstrate the ability of the proposed method to successfully recover challenging details and textures that are over-smoothed with previous methods even when fine-tuned. Note that in this work, we use only one

single training image and we do not fine-tune the training parameters. Our approach can be greatly improved by using better training images, automatically selecting the best training parameters via cross-validation and/or designing a new learning method such as neural networks. We believe the LRT approach can be useful not just for image restoration but for other applications that require low-rank estimation as well .

Introduction

Texture classification is one of the most challenging computer vision and pattern recognition problems. A powerful texture descriptor should be invariant to scale, illumination, occlusions, perspective/affine transformations and even non-rigid surface deformations, while being computationally efficient. Modeling textures via statistics of spatial local textons is probably the most popular approach to build a texture classification system [START_REF] Lazebnik | A sparse texture representation using local affine regions[END_REF][START_REF] Zhang | Local features and kernels for classification of texture and object categories: A comprehensive study[END_REF][START_REF] Varma | A statistical approach to material classification using image patch exemplars[END_REF][START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[END_REF][START_REF] Crosier | Texture classification with a dictionary of basic image features[END_REF][START_REF] Liu | Texture classification from random features[END_REF][START_REF] Fieguth | Sorted random projections for robust texture classification[END_REF]. Based on this Bag-of-Words architecture, these methods try to design a robust local descriptor. Distributions over these textons are then compared using a proper distance and a nearest neighbor or kernel SVMs classifier [START_REF] Yang | Svm for edge-preserving filtering[END_REF]. Another alternative to regular histograms consists in using wavelet and multifractal analysis [START_REF] Regniers | Waveletbased texture features for the classification of age classes in a maritime pine forest[END_REF][START_REF] Lasmar | Parametric gaussianization procedure of wavelet coefficients for texture retrieval[END_REF][START_REF] Varma | Locally invariant fractal features for statistical texture classification[END_REF][START_REF] Wendt | Wavelet leader multifractal analysis for texture classification[END_REF][START_REF] Xu | A projective invariant for textures[END_REF][START_REF] Xu | Combining powerful local and global statistics for texture description[END_REF][START_REF] Xu | A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid[END_REF][START_REF] Ji | Wavelet domain multifractal analysis for static and dynamic texture classification[END_REF]. The VG-fractal method [START_REF] Varma | Locally invariant fractal features for statistical texture classification[END_REF] statistically represents the textures with the full PDF of the local fractal dimensions or lengths, while the methods in [START_REF] Xu | A projective invariant for textures[END_REF][START_REF] Xu | Combining powerful local and global statistics for texture description[END_REF][START_REF] Xu | A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid[END_REF][START_REF] Ji | Wavelet domain multifractal analysis for static and dynamic texture classification[END_REF]] make use of the box-counting method to estimate the multifractal spectrum. Multifractal-based descriptors are theoretically globally invariant to bi-Lipschitz transforms that include perspective transforms and texture deformations. A different approach recently presented in [START_REF] Sifre | Rotation, and scaling and deformation invariant scattering for texture discrimination[END_REF] consists in building a powerful local descriptor by cascading wavelet scattering transformations of image patches and using a generative PCA classifier [START_REF] Bruna | Invariant scattering convolution networks[END_REF].

We present in this manuscript a new texture classification system that is both accurate and computationally efficient. The motivation behind the proposed work comes from the success of multifractal analysis [START_REF] Xu | A projective invariant for textures[END_REF][START_REF] Wendt | Wavelet leader multifractal analysis for texture classification[END_REF][START_REF] Varma | Locally invariant fractal features for statistical texture classification[END_REF][START_REF] Xu | Combining powerful local and global statistics for texture description[END_REF][START_REF] Xu | A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid[END_REF][START_REF] Ji | Wavelet domain multifractal analysis for static and dynamic texture classification[END_REF] as well as recent advances in deep networks [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Bruna | Invariant scattering convolution networks[END_REF]. Given an input texture, the image is filtered with a small filter bank for various filter orientations. A pooling operator [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Ji | Wavelet domain multifractal analysis for static and dynamic texture classification[END_REF][START_REF] Bruna | Invariant scattering convolution networks[END_REF] is then applied to improve robustness to local orientation change.

This process is repeated for different resolutions for a richer representation just like in a regular deep network. This first step generates various low-pass and high-pass responses that form a locally invariant representation. The mapping towards the final descriptor is performed via multifractal analysis. It is well known that the multifractal spectrum encodes rich texture information. The methods in [START_REF] Xu | A projective invariant for textures[END_REF][START_REF] Xu | Combining powerful local and global statistics for texture description[END_REF][START_REF] Xu | A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid[END_REF][START_REF] Ji | Wavelet domain multifractal analysis for static and dynamic texture classification[END_REF] use the box-counting method to estimate the multifractal spectrum. However, this method is unstable due the limited resolution of real-world images. We present a new multifractal descriptor that is stable and mathematically related to the true multifractal spectrum, which guarantees improved invariance to bi-Lipschitz transformations. This improvement is validated by extensive experiments on public benchmark datasets. The second part of our work concerns training strategies to improve classification rates. We propose to combine the generative PCA classifier [START_REF] Sifre | Rotation, and scaling and deformation invariant scattering for texture discrimination[END_REF][START_REF] Bruna | Invariant scattering convolution networks[END_REF] with kernel SVMs [START_REF] Yang | Svm for edge-preserving filtering[END_REF] for classification. We also introduce two strategies called "synthetic training" to artificially add more training data based on illumination and scale change. Results outperforming the state-of-the-art are obtained over challenging public datasets, with high computational efficiency.

Robust Invariant Texture Representation

The main goal of a texture recognition system is to build an invariant representation, a mapping which reduces the large intra-class variability. This is a challenging task because the invariance must include various complex transformations such as translation, rotation, occlusion, illumination change, non-rigid deformations, perspective view, among others. As a result, two similar textures with different transformation parameters must have similar descriptors. An example is given in Figure 6.1. Not only the system should be accurate, but it should be also computationally efficient.

Our goal in this work is to build both an accurate and fast texture recognition system. We explain in this section how we build the proposed descriptor, the motivation behind the approach and the connection with previous work. As can be seen, the proposed descriptor is nearly invariant to these transformations.

Overview of the Proposed Approach

The main model of the proposed method consists in a deep convolutional network [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Bruna | Invariant scattering convolution networks[END_REF], with some differences : 1) the filters are not learned, we rather use various wavelet filters which permits fast training [START_REF] Bruna | Invariant scattering convolution networks[END_REF], 2) a new step before pooling is added to extract a globally invariant representation for each convolutional response using scale invariance. More specifically, the proposed descriptor is based on the following two main steps :

1. Building a locally invariant representation : using multiple high-pass filters, we generate different sparse representations for different filter orientations. A pooling and down-sampling operator is applied to increase the local invariance.

2. Building a globally invariant representation : the first step generates various images that encode different texture information. We need a mapping that transforms this set of images into a stable, fixed-size descriptor. We use multifractal analysis to statistically describe each one these images. We present a new method that extracts rich information directly from local singularity exponents. The local exponents encode rich multi-scale texture information. Their log-normalized distribution represents a stable mapping which is invariant to complex bi-Lipschitz transforms. As a result, the proposed multifractal descriptor is proven mathematically to be robust to strong environmental changes.

Locally Invariant Representation

A locally invariant representation aims at increasing the similarity of local statistics between textures of the same class. To build this representation, we construct a simple convolutional network where the input image is convolved with a filter bank, for various orientations, and then pooled to reduce local orientation change. The multilayer extension consists in repeating the same process for various image resolutions on the low-pass output of the previous resolution. Given an input texture I, the image is first low-pass filtered with a filter ψ l to reduce small image domain perturbations and produce an image J 1,0 . This image is then filtered with multiple zero-mean high-pass filters ψ k,θ , where k denotes the filter number and θ its orientation. High-pass responses encode higher-order statistics that are not present in the low-pass response J 1,0 . A more stable approach consists in applying the modulus on the high-pass response, which imposes symmetric statistics and improves the invariance of local statistics. Applying multiple filtering with multiple different filters naturally increases the amount of texture information that are going to be extracted further via multifractal analysis. In order to increase the local invariance to orientation, we apply a pooling operator φ θ : R i×j×n → R i×j on the oriented outputs for each filter :

J 1,k = φ θ (|J 1,0 ψ k,θ | , θ = θ 1 , ..., θ n ) , k = 1, ..., K, (6.1) 
where n is the number of orientations and i × j is the size of the low-pass image.

As a result, we obtain 1 low-pass response and K high-pass responses, each image is encoding different statistics. For a richer representation, we repeat the same operation for different resolutions s = 2 0,...,-L , where s = 1 is the finest resolution and s = 2 -L is the coarsest resolution. The image generation process is then generalized as

J s,k =                I ψ l k = 0 , s = 1 ↓ (J 2s,0 ψ l ) k = 0 φ θ (|J s,0 ψ k,θ | , θ = θ 1 , ..., θ n ) k = 1, ..., K, (6.2) 
where ↓ denotes the downsampling operator. Note that the images generated are sparse due to the use of high-pass wavelet filters. However, measuring sparsity of these images is not enough to describe them efficiently. Instead we later use the notion of fractal dimension to build a rich descriptor at each layer.

Dimensionality Reduction with Pooling

Using multiple filters ψ k,θ increases dramatically the size of the image set. Knowing that each image J s,k will be used to extract statistics using multifractal analysis, this will result in a very large descriptor. Another problem is the processing time as the statistics should be applied on each image. We propose to merge different high-pass responses J s,k together to reduce the number of images. A straightforward approach would be to gather various images {J s,k , k = t, .., u} and then apply a pooling operator φ r that is going to merge each image subset into one single image J s,kt,..,u J s,kt,..,u = φ r ( J s,k , k = t, .., u). (6.3)

As a result, the number of high-pass responses will be decreased ; this leads to a reduced size descriptor. The pooling operator φ r can be either the mean or the min/max functions. We take φ r as a maximum function in this manuscript. An example is given in Figure 6.2 for one resolution s = 0 using 6 high-pass filters and

I J s,k ↓ J 0,0 J 0,1 J 0,2 J 0,3 J 0,4 J 0,5 J 0,6 ↓ φ r ↓ φ r ↓ J 0,0 J 0,k 1,...,3 J 0,k 4,...,6
Figure 6.2: Image generation example applied on the texture input I for one resolution using 6 high-pass filters. The images J 0,1...6 are a result of the orientation pooling (eq. 2). The 6 images are reduced to 2 images using a pooling operator φ r on similar responses to reduce the dimensionality. The same process is repeated for each layer.

one low-pass filter. The number of images is reduced from 7 to 3. For 5 resolutions (s = 2 0,...,-4 ), the total number of images goes from 35 to 15, which is an important reduction.

Globally Invariant Representation

Once the set of low-pass and high-pass images is generated, we need to extract global statistics, a mapping into a fixed-size descriptor, which is globally invariant to the complex physical transformations. We propose to use a new multifractal approach to statistically describe textures suffering from strong environmental changes. To understand the difference between the proposed method and the previous work, we first present the standard fractal and multifractal analysis framework used by the previous methods [START_REF] Xu | A projective invariant for textures[END_REF][START_REF] Xu | Combining powerful local and global statistics for texture description[END_REF][START_REF] Xu | A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid[END_REF][START_REF] Ji | Wavelet domain multifractal analysis for static and dynamic texture classification[END_REF], we then introduce the proposed approach.

Multifractal Analysis

In a nutshell, a fractal object E is self-similar across scales. One characteristic of its irregularity is the so-called box fractal dimension. By measuring a fractal object on multiple scales r, the box fractal dimension is defined as a power-law relashionship between the scale r and the smallest number of sets of length r covering E [START_REF] Falconer | Techniques in Fractal Geometry[END_REF] dim

(E) = lim r→0 log N (r, E) -log r , (6.4) 
Using squared boxes of size r, this dimension can be estimated numerically, known as the box-counting method. Multifractal analysis is an extension of this important notion. A multifractal object F is composed of many fractal components F 1,...,f . In this case, a single fractal dimension is not sufficient to describe this object. The multifractal spectrum is the collection of all the associated fractal dimensions that describes the multifractal object.

It is easy to show mathematically that the fractal dimension is invariant to bi-Lipschitz transformations [START_REF] Xu | Viewpoint invariant texture description using fractal analysis[END_REF], which includes various transformations such as nonrigid transformations, view-point change, translation, rotation, etc.. As a result, the multifractal spectrum is also invariant to these transformations. This makes the multifractal spectrum an interesting tool to globally describe textures. However, the box-counting method gives a rather crude estimation of the real fractal dimension.

The fractal dimension is estimated for each fractal set using a log-log regression. As the resolution r is supposed to be very small (r → 0), using small-sized boxes on a relatively low-resolution image results in a biased estimation due to the relatively low-resolution of real-world images [START_REF] Arneodo | The thermodynamics of fractals revisited with wavelets[END_REF]. It has been used as the core of various multifractal texture descriptors [START_REF] Xu | A projective invariant for textures[END_REF][START_REF] Xu | Combining powerful local and global statistics for texture description[END_REF][START_REF] Xu | A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid[END_REF][START_REF] Ji | Wavelet domain multifractal analysis for static and dynamic texture classification[END_REF] that use the same box-counting method to build the final descriptor. We present a different method to statistically describe textures using multifractal analysis. Contrary to previous methods, we use a new measure which is based on the distribution of local singularity exponents. It can be shown in fact that this measure is related to the true multifractal spectrum (see section 6.2.4), and its precision is proven by the high-accuracy of the proposed descriptor. Moreover, this approach is much more computationally efficient, which permits our system to achieve high accuracy at reduced processing time.

Proposed Multifractal Descriptor

The proposed method first estimates the local singularity exponents h(x) on each pixel x, and then applies the empirical histogram followed by log operator to extract the global statistics ϕ h = log(ρ h + ). This operation is performed on all the resulting images of the first step, which results in multiple histograms ϕ h i . The concatenation of all these histograms forms the final descriptor.

Let J be an image, and µ ψ (B(x, r)) = B(x,r) (J ψ r )(y)dy a positive measure, where ψ r is an appropriate wavelet at scale r (Gaussian in our case) and B(x, r) a closed disc of radius r > 0 centered at x. Multifractal analysis states that the wavelet projections scale as a power law in r [START_REF] Turiel | Reconstructing images from their most singular fractal manifold[END_REF][START_REF] Turiel | Microcanonical multifractal formalism: a geometrical approach to multifractal systems. part i: singularity analysis[END_REF][START_REF] Yahia | Motion analysis in oceanographic satellite images using multiscale methods and the energy cascade[END_REF][START_REF] Turiel | The multifractal structure of contrast changes in natural images: From sharp edges to textures[END_REF]. We use a microcanonical evaluation [START_REF] Turiel | Microcanonical multifractal formalism: a geometrical approach to multifractal systems. part i: singularity analysis[END_REF] which consists in assessing an exponent h(x) for each pixel x µ ψ (B(x, r)) ≈ α(x)r h(x) , r → 0. (6.5)

The validity this equation has been tested on large datasets [START_REF] Turiel | The multifractal structure of contrast changes in natural images: From sharp edges to textures[END_REF], which proves that natural images exhibit a strong multifractal behavior. Introducing the log, the formula is expressed as a linear fit log(µ ψ (B(x, r))) ≈ log(α(x)) + h(x) log(r) , r → 0. (6.6)

Rewriting the equation in the matrix form permits to calculate all the exponents at once by solving the following linear system :

     1 log(r 1 ) . . . . . . 1 log(r l )      A   log(α(x 1 )) • • • log(α(x N )) h(x 1 ) • • • h(x N )   η =      log(µ ψ (B(x 1 , r 1 ))) . . . log(µ ψ (B(x N , r 1 ))) . . . . . . . . . log(µ ψ (B(x 1 , r l ))) . . . log(µ ψ (B(x N , r l )))      b , (6.7) 
argmin η ||Aη -b|| 2 2 , h(x i ) = η(2, i), (6.8) 
where N is the number of pixels of the image J, l is the number of scales used in the log-log regression. This matrix formulation is computationally efficient and plays an important role in the speed of the proposed method. Given the local exponents h(x),

which is an image of the same size of J that describes the local irregularities at each pixel, we need to extract now a fixed-size measure that globally describes the statistics of h(x). Using the box-counting method, this would require extracting all the fractal sets F h = {x | h(x) ≈ h}, and then calculating the box-counting dimension for each set F h . As discussed before, this approach leads to a crude estimation of the true multifractal spectrum due to the actual low-resolution of real-world images [START_REF] Turiel | Microcanonical multifractal formalism : a geometrical approach to multifractal systems: Part i. singularity analysis[END_REF].

Moreover, it is relatively slow as a log-log regression should be performed on each fractal set. Instead, we propose to use the empirical histogram ρ h followed by a log operator :

ϕ h = log(ρ h + ), (6.9) 
where ≥ 1 is set to provide stability. The distribution of the local exponents is an invariant representation which encodes the multi-scale properties of the texture. The log acts as a pooling operator which nearly linearizes histogram scaling and makes the descriptor more robust to small perturbations. This way, we have access to reliable statistics. This log-histogram is calculated on each image generated in the first step, which results in a set of histograms ϕ h 1,...,M , where M is the total number of generated images. The final descriptor ϕ is constructed by concatenating ( ) all the generated A descriptor example is given in Figure 6.4 and an overview is given in Figure 6.3.

This descriptor ϕ is the result of the concatenation of 14 log exponent histograms calculated on the images generated with the first step of the method presented in section 2.2 and further explained in Figure 6.2. Three images are generated for each scale s ; a low-pass response is presented in red, and two high-pass responses are presented in black and gray in the Figure 1 .

Relationship between log(ρ h ) and D(h)

We show that the log-histogram log(ρ h ) of the local exponents h(x) that we use to statistically model the textures is related the multifractal spectrum D(h). According to the microcanonical formalism [START_REF] Arneodo | The thermodynamics of fractals revisited with wavelets[END_REF][START_REF] Turiel | Microcanonical multifractal formalism: a geometrical approach to multifractal systems. part i: singularity analysis[END_REF], the wavelet projections µ ψ (B(x, r)) scale as power laws in r µ ψ (B(x, r)) ∝ r h(x) , r → 0, (6.11) low first high range second high range

s = 2 0 s = 2 -1 s = 2 -2 s = 2 -3 s = 2 -4 s = 2 0 s = 2 -1 s = 2 -2 s = 2 -3 s = 2 -4 s = 2 0 s = 2 -1 s = 2 -2 s = 2 -3 Figure 6
.4: A descriptor example using a low-pass response and two high-pass responses for 5 resolutions s = 2 0,...,-4 . The exponents log-histogram is calculated for each response and for multiple image resolutions s.

where the exponent h(x) represents the singularity strenght of the measure µ at the point x. The singularity spectrum is the mapping h → D(h) such that

D(h) = d H {x ∈ supp µ, h(x) = h}, (6.12) 
where d H is the Hausdorff dimension of the fractal set asssociated to the value h. The singularity spectrum describes the statistical distribution of the singularity exponents h(x). If the support of the measure µ is covered with balls of size r, we have the following power law [START_REF] Arneodo | The thermodynamics of fractals revisited with wavelets[END_REF] :

ρ r h (h) ∝ r d-D(h) , (6.13) 
where ρ r h (h) is the histogram of the exponents h(x) at scale r and d is the topological dimension of the embedding space of the signal (d = 2 for grayscale images). As a result, the histogram ρ r h (h) is related to the singularity spectrum D(h). If the exponents are obtained at a minimum resolution r 0 , then the distribution of singularities .14) but is substantially different from the previous methods. The differences lie in both the image generation step and the statistical description. For instance, the WMFS method [START_REF] Ji | Wavelet domain multifractal analysis for static and dynamic texture classification[END_REF] generates multiple images for multiple orientations, each oriented image is then analyzed using Daubechies discrete wavelet transform as well as using the wavelet leaders [START_REF] Jaffard | Wavelet leaders in multifractal analysis[END_REF][START_REF] Wendt | Wavelet leaders and bootstrap for multifractal analysis of images[END_REF][START_REF] Wendt | Wavelet leader multifractal analysis for texture classification[END_REF]. The multifractal spectrum (MFS ) is then estimated for each image, for a given orientation using the box-counting method. Each MFS is then concatenated for a given orientation and the final descriptor is defined as the mean of all the descriptors over the orientation. Contrary to this method, we use different high-pass filters instead of one single analyzing wavelet, which permits to extract different statistics, more like in a deep convolutional network [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Bruna | Invariant scattering convolution networks[END_REF].

ρ h verifies [211] ρ h (h) ∝ r d-D(h) 0 . ( 6 
Generating multiple descriptors for multiple orientations is computationally expensive. In contrast, we generate only one descriptor. To ensure local robustness to orientation, we apply a pooling operator on the filtered responses. This approach is much more computationally efficient. Finally, the core of our method is the new multifractal descriptor which permits to extract accurate statistics, contrary to the popular box-counting method as explained in the previous section. The proposed method takes about 0.7 second to extract the whole descriptor on an image of size 480 × 640, compared to 37 seconds as reported in the state-of-the-art multifractal method [START_REF] Ji | Wavelet domain multifractal analysis for static and dynamic texture classification[END_REF]. Experiments show that the proposed descriptor permits also to achieve higher accuracy, especially in large-scale situations when the extra-class decorrelation is a challenging issue.

Pre and Post Processing

Pre-processing and post-processing can improve the robustness of a texture recognition system. For instance, the method in [START_REF] Xu | A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid[END_REF] performs a scale normalization step on each input texture using blob detection. This step first estimates the scale of the texture and then a normalization is applied, which aims at increasing the robustness to scale change. Other texture classification methods such as [START_REF] Varma | Locally invariant fractal features for statistical texture classification[END_REF] use Weber's law normalization to improve robustness to illumination. We do not use any scale normalization step such as [START_REF] Xu | A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid[END_REF][START_REF] Ji | Wavelet domain multifractal analysis for static and dynamic texture classification[END_REF], we rather use sometimes histogram equalization to improve robustness to illumination change. We also use a post-processing on features vector ϕ using wavelet domain soft-thresholding [START_REF] Donoho | De-noising by soft-thresholding[END_REF]. This step aims at increasing the intra-class correlation by reducing small histogram perturbations.

Classification and Training Strategies

The second part of our work concerns the training aspect of the texture recognition problem. The globally invariant representation offers a theoretically stable invariant representation via accurate multifractal statistics. However, there are other small transformations and perturbations that may occur in real-world images and this is where a good training strategy will help us to take advantage of the proposed descriptor in practice. We work on two ideas :

1. The choice of the classifier can improve recognition rates : we introduce a simple combination between the Generative PCA classifier [START_REF] Sifre | Rotation, and scaling and deformation invariant scattering for texture discrimination[END_REF] and SVMs [START_REF] Yang | Svm for edge-preserving filtering[END_REF].

2. The lack of data is an issue, how to get more data? : Given an input training texture image, we synthetically generate more images by changing its illumination and scale. We call this strategy "synthetic training".

Experiments on challenging public benchmark datasets, including a large-scale dataset with 250 classes, validates the robustness of the proposed solution.

Classification Support Vector Machines

SVMs [START_REF] Yang | Svm for edge-preserving filtering[END_REF] are widely used in texture classification [START_REF] Xu | A projective invariant for textures[END_REF][START_REF] Xu | A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid[END_REF][START_REF] Xu | A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid[END_REF][START_REF] Ji | Wavelet domain multifractal analysis for static and dynamic texture classification[END_REF][START_REF] Fieguth | Sorted random projections for robust texture classification[END_REF]. Commonly used kernels are mainly RBF Gaussian kernel, polynomials and χ 2 kernel.

Extension to multiclass can be done via strategies such as one-vs-one and one-vs-all.

In this manuscript, we use the one-vs-all strategy with an RBF-kernel. It consists in building a binary classifier for each class as follows : for each class, a positive label is assigned to the corresponding instances and a negative label is affected to all the remaining instances. The winning class c svm can be chosen based on probability estimates [START_REF] Chang | Libsvm: A library for support vector machines[END_REF] or a simple score maximization

c svm = argmax 1≤c≤Nc {f svm (x, c)} , f svm (x, c) = Mc i=1 α c i y c i K(x c i , x) + b c , (6.18) 
where α c i are the optimal Lagrange multipliers of the classifier representing the class c, x c i are the support vectors of the class c, y c i are the corresponding ±1 labels, N c is the number of classes and x is the instance to classify.

Generative PCA Classifier

The generative PCA (GPCA) classifier is a simple PCA-based classifier recently used in [START_REF] Bruna | Invariant scattering convolution networks[END_REF][START_REF] Sifre | Rotation, and scaling and deformation invariant scattering for texture discrimination[END_REF]. Given a test descriptor x, GPCA finds the closest class centroid E({x c }) to x, after ignoring the first D principal variability directions. Let V c be the linear space generated by the D eigenvectors of the covariance matrix of largest eigenvalues, and V ⊥ c its orthogonal complement. The generative PCA classifier uses the projection distance associated to

P V ⊥ c c pca = argmin 1≤c≤Nc ||P V ⊥ c (x -E({x c })) || 2 . (6.19)
Classification consists in choosing the class c pca with the minimum projection distance.

GPCA-SVM Classifier

We propose to combine GPCA and SVMs in one single classifier. The idea behind this combination comes from the observation that SVMs and GPCA often fail on different instances. As a result, a well-established combination of these two classifiers should theoretically lead to improved performance. We propose a combination based on the distance between the score separation of each classifier output

c f inal =        c svm if f svm (x, c svm ) -f svm (x, c pca ) ≥ th svm c pca otherwise, (6.20) 
where th svm is a threshold parameter. The score separation gives an idea of SVMs' accuracy to classify a given instance. An approach to get accurate scores consists in using probability estimates [START_REF] Chang | Libsvm: A library for support vector machines[END_REF] via Platt Scaling [START_REF] Platt | Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[END_REF]. If the measure f svm (x, c svm )f svm (x, c pca ) is relatively important, this means that SVMs are quite confident about the result. Otherwise, the classifier selects the GPCA result. Determining the best threshold th svm for each instance is an open problem. In this manuscript, we rather fix a threshold value for each experiment. We generally select a small threshold for small training sets and larger thresholds for larger sets. Even if this strategy is not optimal, experiments show that the combination improves the classification rates as expected.

Synthetic Training

One important problem in training is coping with the low amount of examples. We propose a simple strategy to artificially add more data to the training set by changing illumination and scale of each instance of the training set. While this idea seems simple, it can have a dramatic impact on the performance as we will see in the next section.

Multi-Illumination Training

Given an input image I, multi-illumination training consists in generating other images of the same content of I but with different illumination. There are two illu-mination cases ; the first one consists in uniform changing by image scaling of the form aI, where a is a given scalar. The second case consists in nonuniform changing using histogram matching with a set of histograms. The histograms can come from external images, or even from the training set itself (for example by transforming or combining a set of histograms).

Multi-Scale Training

Given an input image I, multi-scale training consists simply in generating other images of the same size as I by zooming-in and out. In this work, we use around 4 generated images, 2 by zooming-in and 2 others by zooming-out.

Texture Classification Experiments

We present in this section texture classiffication results conducted on standard public datasets UIUC [1, 122], UMD [2] and ALOT [START_REF] Burghouts | Material-specific adaptation of color invariant features[END_REF]3], as well as a comparison with 9 state-of-the-art methods.

Datasets Description

The 

Implementation details

In order to build a fast texture classification system, we use only two high-pass filtering responses, which results in 3 histograms per image resolution3 . The number of the image scales is fixed to 5. The filter bank consists in high-pass wavelet filters (Daubechies, Symlets and Gabor). A more robust descriptor can be built by increasing the number of filters and orientations. Filtering can be parallelized for faster processing. While augmenting the number of filters slightly improves classification results, the minimalist setup presented above, coupled with the training strategies introduced in this manuscript, permits to outperform existing techniques while offering in addition computational efficiency. The problem of estimating the flow on turbulent data is very different from estimating it on natural images. For instance, a sparse gradient prior on natural images works well because of the internal properties of such images. In contrast, the statistics of turbulent data do not match with those of natural images and applying a sparse gradient prior as it is widely used in the literature leads to over-smoothing and artifcats.

We propose a new simple yet efficient regularization by considering that the flow is advected in the same way on the singularity exponents of the images. For a more robust estimation, we propose to use Gaussian weighting on the intensity data-fitting term and a sparse term on the prior to reduce the influence of outliers. We incorporate this method in the pyramidal framework to support large displacements. Experiments on synthetic turbulent flow with a ground-truth show that the proposed method is more adapted for turbulent flow rather than the sparse gradient prior method.

Problem Formulation

Optical flow estimation consists in recovering the displacement u that minimizes the error between two successive images f 1 and f 2 . Let's first start with the basic formulation (l 2 -norm on the prior). We follow the brightness constancy notion and the formulation is given as follows

argmin u i |f 2 (i + u) -f 1 (i)| 2 + λ|h 2 (i + u) -h 1 (i)| 2 , (7.1) 
where h 1 , h 2 are the singularity exponents of the image f 1 , f 2 and λ is a positive regularization term. The singularity exponents are calculated in a similar way as explained in Chapter 6. The sparse gradient prior method largely used in various methods [START_REF] Sun | Secrets of optical flow estimation and their principles[END_REF] is formulated as follows

argmin u i |f 2 (i + u) -f 1 (i)| 2 + λφ(∇u(i)), (7.2) 
where φ is a sparsity promoting penalty. A popular approach used in optical flow estimation consists in starting with an initial flow u 0 estimated in the previous step, then solving the minimization problem by estimating the increments du = (u x , u y ) T , such that u = u (0) + du [START_REF] Sun | Secrets of optical flow estimation and their principles[END_REF]. Applying a Taylor expansion at point i + u (0) yields argmin ux,uy

||f x u x + f y u y + f t || 2 2 + λ||h x u x + h y u y + h t || 2 2 , (7.3) 
where

f x = ∇ x f 2 (i + u 0 ) h x = ∇ x h 2 (i + u 0 ) f y = ∇ y f 2 (i + u 0 ) h y = ∇ y h 2 (i + u 0 ) f t = f 2 (i + u 0 ) -f 1 (i) h t = h 2 (i + u 0 ) -h 1 (i).
(7.4)

The increments is thus given by the following linear system

(A T f A f + λA T h A h )du = -(A T f f t + λA T h h t ), (7.5) 
where

A f = f x f y , A H = h x h y . (7.6)
Following [START_REF] Sun | Secrets of optical flow estimation and their principles[END_REF], the increments du are iteratively estimated such that u (t+1) ← u (t) + du (t) u (t+1) ← med(u (t+1) ), (7.7) where med(.) is the median filter used to reduce the influence of outliers. The whole estimation is embedded in a pyramidal way where the optical flow is estimated on multiple scales, a technique largely used to improve robustness to large displacements [START_REF] Sun | Secrets of optical flow estimation and their principles[END_REF].

Improving Robustness with Weighting and Sparsity

The main formulation 7.3 uses the l 2 -norm on both terms, which is not quite robust.

To improve estimation we use Gaussian weighting with a kernel G similar to the Lucas-Kanade method [START_REF] Baker | Lucas-kanade 20 years on: A unifying framework[END_REF] on the intensity data-fitting term as well a the l p<1 norm on the singularity exponents data-fitting term to reduce the influence of outliers. This results in the following formulation

argmin du ||A g f du + f g t || 2 2 + λ||A h du + h t || p p , (7.8) 
where

A g f =    f 2 x ⊗ G (f x f y ) ⊗ G (f x f y ) ⊗ G f 2 y ⊗ G    (7.9)
By applying the MM-minimization method (see chapter 2), we get a reweighted leastsquares solution 7.1: Mean errors comparison between the sparse gradient prior approach the proposed method.

(A g f + λA T h W (k) A h )du (k) = -(f g t + λA T h W (k) h t ) W (k+1) = diag

Experiments

We run experiments on synthetic turbulent data with given ground-truth flow [START_REF] Carlier | Fluid image analysis and description (fluid)[END_REF]. We use the same implementation as [START_REF] Sun | Secrets of optical flow estimation and their principles[END_REF] for a fair comparison with the sparse gradient method. We only change the basic optical flow estimation step. We report the l 2norm error, the average angular error (AAE) and the average end-point error (AEPE) in Table 7.1 and visual results in Figure 7.1. As can be seen, the sparse gradient prior leads to over-smoothing. In contrast, the proposed methods leads to a better estimation and the result looks closer to the ground-truth. 

Conclusion

The use of sparse gradient prior is popular in optical flow estimation on natural images. However, this prior does not work well with turbulent data as turbulent images do not exhibit sharp edges. As an alternative, we propose to replace the

Robust Deconvolution with Double Sparsity

Non-blind deconvolution consists in recovering a sharp latent image from a blurred image with a known kernel. Deconvolved images usually contain unpleasant artifacts due to the ill-posedness of the problem even when the kernel is known. Making use of natural sparse priors has shown to reduce ringing artifacts but handling noise remains limited [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF][START_REF] Krishnan | Fast image deconvolution using hyper-laplacian priors[END_REF][START_REF] Sroubek | Robust multichannel blind deconvolution via fast alternating minimization[END_REF]. On the other hand, non-local priors have shown to give the best results in image denoising [START_REF] Dong | Non-local image restoration with bilateral variance estimation : A low-rank approach[END_REF][START_REF] Gu | Weighted nuclear norm minimization with application to image denoising[END_REF]. As the blur increases the self-similarity of non-local patches, we propose to denoise first the image with a non-local method and then perform fast deconvolution with a local prior. However, denoising introduces outliers. We thus use double sparsity for robust recovery of the latent image. We show that this approach performs better than pure local or non-local methods.

Introduction

Image deblurring consists in reconstructing a true image x from a degraded image y with a kernel k y -x ⊗ k = η, (7.11) where ⊗ is the convolution operator that we consider spatially invariant in this manuscript and η is the noise considered Gaussian. Instead of directly recovering

x from y as popular methods do, we propose to first denoise the image y which produces the image y and then recover the latent image x from y . The use of an intermediate denoised (but blurry) image y comes from the observation that neighboring patches are much more similar in a blurred image compared to its blur-free version. As a result, denoising a blurry image is easier than denoising and deblurring at the same time the image by imposing a prior on x. red is lower and sparser compared to those in black. We thus perform first denoising with non-local low-rank estimation similar to [START_REF] Dong | Non-local image restoration with bilateral variance estimation : A low-rank approach[END_REF] on y to produce a blurred but noise free image y . The problem now is to recover the clear image x from y .

Problem Formulation

Unfortunately, denoising introduces outliers and thus the model 7.11 is no longer valid for y . As shown in Figure 7.3, it turns out that the residual error in this case can be well modeled with a Laplacian distribution, which is why we propose to use the l 1 -norm on the data-fitting term instead of the l 2 -norm. As the problem is ill-posed, we use a sparse regularization. More specifically, we use a non-convex regularization that highly promotes sparsity via the log-l p penalty. where γ, ρ t , and α s are positive regularization terms. The first term consists in the l 1 norm to handle outliers due to the denoising step as explained before, the second term consists in the sparse prior and the third term models the residual error of the derivatives. The use of the l 2 norm instead of a sparse penalty to model the derivatives residual error is considered for the sake of simplicity. While the l 2 norm does not fit the real model of this residual, we found that it slightly improves the deconvolution result. This is a multi-sparsity problem and thus the solution can be estimated using the techniques we have discussed in chapter 2. For instance, applying the half quadratic approach with one split at a time would be as follows (sp 1 ) : q (l1+1) ← argmin = max 0, |∇ t x (l 2 ) | -1 β 2 p|∇ t x (l 2 ) | p-1 |∇ t x (l 2 ) | p + sign(∇ t x (l 2 ) ), (7.16) where is a small parameter set to 0.001 to offer stability. The remaining problem (sp 22 ) is quadratic and easy to solve using the Fourier transform F :

q N i |q i | + β1 2 (x (l1) ⊗ k -y ) i -q i 2 (sp 2 ) : x (l1+1) ← argmin x N i γβ1 2 (x ⊗ k) i -(y i + q (l1+1) i ) 2 + T t=1 ρ t log(|(∇ t x) i | p + ) + S s=1 αs 2 ∇ s (x ⊗ k) i -(y i + q (l1+1) i ) 2 , ( 7 
x (l 2 +1) = F -1 F (y +q (l 1 +1) )•Γ 1 + T t=1 Γ 2 •F (v (l 1 +1) t ) F (k)•Γ 1 + T t=1 Γ 2 •F (∇t) Γ 1 = F(k) • γβ 1 + S s=1 α s F(∇ s )F(∇ s ) Γ 2 = ρ t β 2 F(∇ t ), (7.17) 
where • denotes a pointwise multiplication. Now, using a half quadratic approach with two splits as discussed in chapter 2 would consist in introducing additional These subproblems are similar to the ones addressed in the previous approach and admit similar solutions.

Experiments

We evaluate the proposed method and compare it with three methods : two popular methods that use a hyper-Laplacian sparse gradient prior only [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF][START_REF] Krishnan | Fast image deconvolution using hyper-laplacian priors[END_REF], and a third method that uses BM3D [START_REF] Dabov | Image denoising by sparse 3d transform-domain collaborative filtering[END_REF] non-local regularization instead of the local sparse gradient prior. We use 4 images and 4 real-world blur kernels from the standard benchmark dataset of [START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF] (see Figure . 7.4) for 5 synthetic Gaussian noise levels σ = 0.25, 0.5, 1, 2, 5%, resulting in a total of 80 test images. The PSNR and SSIM [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF] of the experiments are presented in Table 7.2. As can be seen, the proposed method performs well in both low and high level noise situations in terms of the PSNR and SSIM. The improvement is most noticeable for high noise levels. It is worth noting that even though the IRLS method [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF] leads to higher PSNR and SSIM compared to the HQ approach of [START_REF] Krishnan | Fast image deconvolution using hyper-laplacian priors[END_REF], it does not necessarily lead to a better visual quality. In order to show the visual quality of the proposed method, we run experiments on a 800 × 800 real-world image blurred with a 19×19 real camera shake kernel (both from [START_REF] Krishnan | Fast image deconvolution using hyper-laplacian priors[END_REF]). The results are presented in Figure 7.5. As can be seen, the proposed method (f) leads to a better reconstruction result compared to the three other methods (c), (d), (e). The BM3D regularization (e) seems to perform better than the sparse gradient prior methods (c) and (d), but introduces over-smoothing and some visible artifacts. Note that BM3D regularization is slower compared to simple sparse gradient regularization as it consists in non-local denoising at each iteration. Our method performs denoising only once and benefits from the computational efficiency of local methods.

Method HQ [START_REF] Krishnan | Fast image deconvolution using hyper-laplacian priors[END_REF] IRLS [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF] The proposed method produces a better reconstruction with less visible artifacts.

Conclusion

We present a new approach to image deconvolution via densoing and robust reconstruction. As non-local patches tend to be more similar in the blurred image compared to its clear version, we propose to apply denoising first then perform reconstruction.

Unfortunately, noise introduces outliers in the deconvolution model. We propose to use sparsity on the data-fitting term as well as the use of a non-convex sparse prior for robust recovery. The problem results in a multi-sparse formulation that can be efficiently solved with the techniques discussed in this thesis. Experiments show that the proposed method produces a better image reconstruction both visually and empirically while benefiting from the computational efficiency of sparse gradient methods.

Fast Image Sparsification with Singularity Analysis

Introduction

Image sparsification consists in selecting relevant (intensity) pixels and setting the rest to zeros for efficient coding. One popular approach consists in randomly selecting pixels and focusing on a better reconstruction technique. These techniques as they are non-local are time consuming. In contrast, we propose to extract relevant pixels by performing scale invariant analysis and selecting the most singular points that resemble edges. For reconstruction, we perform inpainting with a non-convex sparse gradient prior. This simple and fast solution permits to reconstruct high-quality images from sparsified inputs.

Sparsification Step

Given an input image I c , we would like to select relevant pixels and set the rest to zero to produce a sparsified image J c . Note that we act directly on intensity pixels and not in another domain such as wavelets. As natural images exhibit various correlations and self-similarities as explained in chapter 1, the most relevant pixels for reconstruction are near edges. This is because pixels in smooth regions can be easily recovered via simple propagation of neighboring pixels. Performing a local scale invariant analysis as explained in chapter 6, we obtain local singular exponents that we denote h c . As h c gives for each pixel the level of singularity, we select the most singular points given a threshold to sparsify the image I c . These points form the most singular manifold M and J c is defined as

J c (i) =        I c (i) if i ∈ M 0 otherwise. (7.20)
To prevent large areas of zeros in the image, we perform this step locally on a grid.

Reconstruction Step

We address the problem of reconstructing the original image from its sparse set of pixels J c . This can be seen as an inpainting problem [START_REF] Bertalmio | Image inpainting[END_REF]. Due to the highly kurtotic distribution of salient structures in natural images, our sparsification method tends to produce large sparse regions. As a result, patch-based restoration methods do not perform well in this case. The result can be improved by taking a larger patch size, but this highly increases the processing time. We propose a fast structure propagation scheme using a sparse gradient prior for reconstruction via the l p<1 -norm

argmin Îc i w(i)( Îc (i) -J c (i)) 2 + λ d |∇ d Îc (i)| p , (7.21) 
where w(i) = 0 if the pixel i is missing and 1 otherwise, λ is a regularization parameter and ∇ d represents the derivatives with respect to direction d (only line and column directions are considered here). By applying the MM method presented in chapter 2 we get the following reweighted least squares solution

W + λ D T x W (l) x D x + D T y W (l) y D y Î(l) c = J c W (l+1) k = diag 1 |D k Î(l) c | 2-p + , k = x, y, (7.22) 
where W is a diagonal matrix containing the weights w(i), l is the current iteration and D x , D y are differentiable operators. Parameter is fixed to 0.001, p is fixed to 0.5, λ is fixed to 0.003 and the number of iterations to 2.

Experiments

We evaluate the performance of the proposed method both in terms of quality and speed on the popular Kodak dataset that contains 24 color images. We compare our 199 method with two approaches : 1) random sampling with our reconstruction method instead of our sparsification method 2) random sampling with dictionary training where the dictionaries are trained using the method in [START_REF] Mairal | Online dictionary learning for sparse coding[END_REF] over the whole dataset.

We perform all the experiments in the YCbCr colorspace by giving more points to the luminance than the chrominance as the human visual system is more sensitive to luminance changes. We evaluate the reconstruction with various sparsity densities (from 5% to 50%) and compare with random sampling and dictionary training. The PSNR graph is given in Figure 7.6. As can be seen, the performance of the proposed method (in red) is similar to dictionary training (in green) for a sparsity density between 10% and 20%. However, the proposed reconstruction method is faster and does not require any dictionary training or dictionary storage. For higher sparsity densities (greater than 20%), our method produces a better reconstruction in terms of the PSNR. Note also the importance of the choice of the points : randomly sampling the image and using the same reconstruction method as the one we propose gives poor results (in black). Visual results are given in Figure 7.7. 

Conclusion

Sparsifying images by selecting the most singular pixels improves image sparsification compared to randomly selecting points. A simple yet efficient reconstruction can be performed using a sparse non-convex gradient prior and solved via iteratively reweighted least-squares. While advanced non-local inpainting methods can lead to a better reconstruction such as [START_REF] Dong | Non-local image restoration with bilateral variance estimation : A low-rank approach[END_REF], they remain much slower compared to the proposed approach.

Chapter 8 Conclusions

In this thesis, we have demonstrated the effectiveness of sparsity and scale invariance in the context of image processing. First, we started by explaining the motivation behind using non-convex sparsity instead of the popular convex formulation.

As using non-convexity directly makes the minimization problem more challenging, we propose to use a first-order approximation to estimate a solution of non-convex proximal operators. This permits to use fast proximal solvers by simply changing the shrinkage operators. We introduce the generalized shrinkage operator that requires only calculating the derivative of the sparse penalty function and permits to use a wide range of penalties. We have also addressed the problem of multi-sparsity when the minimization problem consists of two or more sparse terms and gave a complete study of the ADMM solver for this case. These techniques have been applied to various important problems in low-level computer vision.

We have proposed a fast and efficient edge-aware smoothing operator, a powerful structure-texture separation algorithm that takes advantage of both non-convexity and multi-sparsity, as well as an image separation framework based on spectral sparsity. These techniques take advantage of fast solvers and can be efficiently implemented in parallel, which is crucial in low-level vision and graphics.

We showed how the notion of scale invariance can be used to extract relevant features. By adding a new step in the deep convolution architecture which consists in extracting scale invariant features, we build compact representations of textures in a simple and efficient manner. This features extraction method is combined with learning techniques such as classifiers combination and synthetically augmenting the training set. By using standard wavelet filters, our method tested on three popular benchmark datasets permits to achieve results outperforming previous works. We expect to achieve higher accuracy rates by extracting the scale invariant features using learned filters in a large deep network. Also, the method can be extended to dynamic textures by calculating spatio-temporal exponents.

We use scale invariance as a regularization as well to estimate optical flow on turbulent images. In this case, because of the internal properties of turbulent images, sparse gradient priors widely used in the literature do not work well in this case. We propose to replace the sparse gradient prior with sparse singular values, which permits to achieve better results. Turbulent flow estimation remains a very challenging problem because classical methods that work for natural images fail in this case. The proposed regularization suggests that the use of scale invariance in the optical flow estimation framework can lead to important improvements. Finally, by selecting the most singular points on images, we can extract relevant points for sparsification. We address the reconstruction problem via inpainting with a sparse gradient prior. This leads to a fast method for sparsifying images and can be combined with other methods such as Compressed Sensing for efficient coding.

The techniques presented in this thesis are not only suitable for imaging problems but can be easily applied to other problems in other areas such as signal processing and machine learning.
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Figure 1

 1 Figure 1.1: Absolute value of the 2-level Haar wavelet decomposition of the input (a), and the corresponding distribution of the detail coefficients fitted with a hyper-Laplacian distribution.

Figure 1

 1 Figure 1.2: l p -ball for various values of p.

Figure 1

 1 Figure 1.3: Non-local processing example. Similar neighboring patches are grouped together in a matrix to be processed instead of processing each pixel separately.

  Figure 2.1: Reconstruction results with l 1 -norm and log-l 1 using 9 radial lines.

Figure 2

 2 Figure2.2: Error per iteration with l 1 -norm and log-l 1 using 9 radial lines.

Figure 3 . 1 :

 31 Figure 3.1: Image smoothing of the noisy input (a) with various edge-aware filters (image from[START_REF] Farbman | Edge-preserving decompositions for multi-scale tone and detail manipulation[END_REF]). Local filtering methods such as the bilateral filter and the domain transform are not able to correctly smooth large-scale details and tend to blur sharp edges. In contrast, our method smooths both small and large details while being computationally efficient.

  the distribution of the gradient of the smooth output image u. In the MAP estimation framework, the main formulation is derived from the Bayes rule p(u|g) ∝ p(g|u)p(u). Searching for the smooth image comes to solve the following problem argmin u -{log (p(g|u)) + log (p(u))} .(3.4)

  Figure3.2: Results produced with the proposed method for various parameter settings (image from[START_REF] Paris | Local laplacian filters: Edge-aware image processing with a laplacian pyramid[END_REF]). The parameter γ controls the main smoothing behavior of the filter, α controls the blur, while λ controls the balance between the original image and the smoothing.

  Figure 3.3: Smoothing example showing the importance of the warm-start solution when filtering at low iterations (3 iterations). We took : γ = 4.1, α = 12 and λ = 5 × 10 -4 .

  Figure 3.4: As λ becomes larger, the G λ filter tends to Dirac's delta function as shown in these experiments.
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 35 Figure 3.5: Smoothing example with the proposed method (image from publicdomainpictures.net). (b) smoothing performed with the Fourier transform, (c) smoothing performed using the separable filters approach using 2 separable filters of size h = 31. The parameters were set as follows : λ = 0.07, γ = 9, α = 2 using function w 2 .
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 36 Figure 3.6: Smoothing comparison with various state-of-the-art methods (image from [236]). The proposed method produces high-quality smoothing while being flexible and computationally efficient. A close-up is given in Figure 3.7.
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 37 Figure 3.7: Close-up on Figure 3.6. Note how the proposed method preserved the features on the face and the hand.

  Figure 3.8: Comparison with multi-scale local filters. Our method produces comparable smoothing quality while offering computational efficiency in addition.

  GHz, Matlab 2013a on Linux 64bits and an Intel i7-2670QM 2.20Ghz on Windows 7. The result (b) was produced with the author's C++ code (Visual Studio). It took around 0.09 secs to produce this result with values (σ s = 0.01, σ r = 0.1). The adaptive manifolds method took around 0.4 seconds (Matlab implementation) to produce the result (d) (σ s = 10, σ r = 0.2). The proposed method produces a high-quality result even using one single iteration (e). The result is further improved with a second iteration. The pears are correctly smoothed and the image does not contain background artifacts. With a Matlab implementation and using the FFT method, the proposed method with 1 iteration took around 0.045 seconds, and around 0.09 seconds with 2 iterations with the following parameters : γ = 12, α = 25, λ = 0.03 using the function w 1 . The processing is around 5 times faster using Matlab's GPU computing toolbox.

  Figure 3.9: Smoothing comparison with various fast state-of-the-art methods (image from publicdomainpictures.net). The proposed method produces a high-quality smoothing.

  Figure 3.10: Large-scale image smoothing of a real-world smartphone image.

  (a) Input (b) Proposed (c) WLS [77]

Figure 3 . 11 :

 311 Figure 3.11: Fine Detail Enhancement. (a) Input image. (b) Proposed method using w 1 . (c) Weighted-least squares approach [77]. (d) Local extrema[START_REF] Subr | Edge-preserving multiscale image decomposition based on local extrema[END_REF]. (e) Domain transform[START_REF] Gastal | Domain transform for edge-aware image and video processing[END_REF]. (f) Edge-avoiding wavelets from[START_REF]Edge-avoiding wavelets and their applications[END_REF].

  Figure 3.12: Detail enhancement examples (images from[START_REF] Paris | Local laplacian filters: Edge-aware image processing with a laplacian pyramid[END_REF]). The proposed method produces a high-quality detail manipulation with reduced processing time.

Figure 3 .

 3 Figure 3.12 shows examples of detail enhancement compared with the Local Lapla-

Figure 3 . 13 :

 313 Figure 3.13: HDR tone mapping example. (a) Result with the bilateral filter. (b) Result using the domain transform approach. (c) Result using WLS [77]. (d) Our result for 1 iteration with λ = 0.006, γ = 40 and α = 2 using the function w 2 .

  Figure 3.15: Fast video filtering example ( c 2008, Blender Foundation / www.bigbuckbunny.org)

  Similar to the edge-aware smoothing problem, structure-texture separation uses a sparse gradient regularization. The difference is that the quadratic data-fitting term is replaced by a sparsity-inducing function φ. The problem becomes argmin u φ(u -g) + λψ(∇u).(3.31)
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 316 Figure 3.16: Quality comparison between 3 solvers. The hybrid approach produces the best quality result compared to MM and HQ.

  im/demo/103/. First, we run a separation experiment on various challenging image instances and see how each of the methods performs in terms of quality of separation between basic structures and texture information. We fix the values as follows α = 1.4, γ = 2.8, 3 iterations for the inner MM smoothing problem. The parameter λ depends on the image but is typically in range of 0.10 to 0.8 for the most challenging situations 3.20.
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 320 Figure 3.20: Structure-texture separation of multiple images with various techniques.As can be seen, the proposed method produces high-quality separation even in the most challenging cases where the texture is very hard to extract (the bricks and hand examples). Also, note how the filter preserves fine details where other techniques introduce blur that can wash-out these details.

  Colorization consists in colorizing a grayscale image, given color scribbles provided by the user. An example is presented in Figure 3.21. The top row represents the final colorization example, the bottom row represents the piecewise layer recovery form the sparse color scribbles of the input (a). For the results (c) and (d), the piecewise layer was first generated by solving (17) with the proposed weights w. Then, the piecewise layer is transformed from the RGB colorspace to YCbCr. The luminance channel Y is replaced with the grayscale image and the final colorization result is then transformed back to the RGB colorspace. The method of Levin et al. (b) generates directly the colorized image in the YIQ (NTSC) colorspace.

Figure 3 . 21 :

 321 Figure 3.21: Colorization example with the proposed method. Top row is the final colorization result, bottom row is the piecewise layer recovery result. Note the highquality of the result compared to result (b) and (c) that exhibit several color spilling artifacts.

  Figure 3.22: Local tone adjustment example. The proposed approach produces a high-quality foreground layer from few sparse scribbles.

  ) where λ is a positive regularization term, ||.|| 0 is the L 0 quasi-norm that counts the number of non-zeros of the matrix E and rank(A) is the rank of the matrix A. Clearly, this problem is NP-hard due to the use of both the rank penalty and the L 0 quasinorm. A popular way of tackling this problem consists in replacing the rank(A) with the nuclear norm ||A|| * = min(m,n) k=1 σ i , where σ i denote the singular values of A, and replacing the L 0 quasi-norm by its convex relaxation the l 1 -norm minimize ||A|| * + λ||E|| 1 subject to

  Figure 3.23: Image decolorization examples with low-rank estimation. The proposed method captures contrast structures in the sparse layer L e and produces a high-quality decolorization result (e) compared to (d).

  Luminance (c) Gooch[START_REF] Gooch | Color2gray: Saliencepreserving color removal[END_REF] (d) Kim[START_REF] Kim | Robust color-to-gray via nonlinear global mapping[END_REF] (e) Cewu[START_REF] Lu | Contrast preserving decolorization[END_REF] (f) Proposed

Figure 3 . 24 :

 324 Figure 3.24: Image decolorization comparison with state-of-the-art methods. The proposed method is able to assign different gray values to different colors even in the most challenging situations such as examples 2 and 3 from top to bottom.

  , where I o,c denotes the channel c of the color imageI o | o = a, f . This results in 3 low-rank matrices A c ∈ R (m n)×2and 3 sparse matrices E c ∈ R (m n)×2 . From these matrices we reconstruct 4 images, 2 images B a and B e for the ambient image, and 2 images F a and F e for the flash image as follows B a,c = vec -1 (A c (:, 1)) B e,c = vec -1 (E c (:, 1)) F a,c = vec -1 (A c (:, 2)) F e,c = vec -1 (E c (:, 2)) , (3.[START_REF] Cimpoi | Deep filter banks for texture recognition, and description and segmentation[END_REF] 
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 325 Figure 3.25: Various automatic colorization results produced with the proposed method.

  Figure 3.26: Low-rank estimation example applied on a flash/no-flash pair. The proposed method successfully separates artifacts such as glare and reflections from meaningful structures in both the ambient and flash images.

  26 (c). However, thanks to the constraint I a = B a + B e , the user can interactively delete these color differences in the sparse layer B e and then subtract it from the ambient image I a to produce the final reflection-free image. A visual comparison of the final result is presented in Figure3.27. Note the difference between the results (b) and (c). The method of Agrawal et al. combines the ambient and flash informations which leads to a substantial contrast and color change compared to the original ambient input. The proposed method is able to remove the reflection while fully preserving most of the original content of the ambient image.
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 327 Figure 3.27: Flash/no-flash reflection removal comparison with the the method in [7]. The proposed method better preserves the original contrast and colors of the ambient image.
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 328 Figure 3.28: Flash glare removal example. The proposed method successfully extracts the glare layer and permits to generate a glare-free flash image while preserving the remaining structures.
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 329 Figure 3.29: No-flash to flash lighting transfer. The proposed method can extract a light layer than can be combined with the flash image to produce an enhanced image. Note also the shadows transfered from the ambient to the flash image without introducing artifacts.

  This tool consists in combining different images of the same scene captured under different illumination conditions (day/night image pairs for example). The goal is to enhance the night image which tends to be dark, or to transfer interesting features from one image to another for non-photorealistic rendering. Existing image fusion methods such as[START_REF] Raskar | Image fusion for context enhancement and video surrealism[END_REF][START_REF] Yan | Cross-field joint image restoration via scale map[END_REF] operate in the gradient domain by combining edge information of the image pair and then performing reconstruction to produce the fusion result. The main issue with gradient domain methods is the artifacts that may occur during the reconstruction. Instead, our solution operates directly in the image domain and does not require a reconstruction from a non-integrable gradient field. As a result, high-quality image fusion results are produced without introducing spilling or other type of artifacts.An example is given in Figure3.30. The first 2 images in the first row represent the input day/night image pair, the 2 others represent the separation performed with our method on the night image. Meaningful features of the night image were successfully separated and can be transfered to the day image to produce two results. The first one is a basic day/night fusion example where the night features are transfered from the night image to the day image to create a surrealism result. The result (e) exhibits color fading and spilling artifacts as can be seen in Figure3.30. Our result (f) does not contain these artifacts. The main features are preserved as we do not process the day image, we simple linearly combine the night sparse layer (d) with the day image (a) to produce the final result. The images (g) and (f) represent results of night/image restoration. The goal here is to enhance the dark image with information extracted from the day image as the night image (b) looks dark and noisy. The method in[START_REF] Yan | Cross-field joint image restoration via scale map[END_REF] performs this task with a sophisticated gradient domain method but unfortunately produces various artifacts. Instead, we perform this task by extracting the sparse features of the night image and transferring them directly to the day image by a simple linear combination. However, due to the low-rank constraint on the matrix A, a portion of the noise that comes from the input night image is contained in the night sparse layer. A straightforward slight denoising with the BM3D approach[START_REF] Dabov | Image denoising by sparse 3d transform-domain collaborative filtering[END_REF] permits to successfully reduce this noise and produce a high-quality night image enhancement (h).

  Figure 3.30: Day/night image fusion results and comparison with two state-of-the-art methods. The proposed method does not introduce fusion artifacts that may occur in gradient-domain methods such as results (e) and (g).
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 331 Figure 3.31: Ambient/NIR image fusion example. The proposed method can be used to enhance ambient images using information from the corresponding NIR image.
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 332 Figure 3.32: RGB/color-filtred image fusion example. The blue-filter input (b) is used to enhance the colors of the RGB input (a) and highlight the difference between the orange and the lemon.
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 41 The ground truth gradients of the surface (b) were corrupted with outliers in exactly four locations (a). The outliers correspond to sparse random high magnitude perturbations (5 times the maximum gradient intensity in this case). The Poisson reconstruction result (c) is deformed even though only 4 gradient points were corrupted. A robust method however (like the ones proposed in this thesis) can recover exactly the surface up to a high amount of outliers corruption that goes beyond previous works.

Figure 4 . 1 :

 41 Figure 4.1: Least squares fitting example in the case of outliers. As can be seen, Poisson reconstruction (c) produces a deformed surface even in the presence of very few outliers. A robust method efficiently handles outliers and produces a high quality surface (d).

. 14 )

 14 The intermediate variable of the solver plays the same role as the residual error e in formulation 4.10. That is, the solver tries to progressively estimate the residual error and the final reconstruction is performed via the Poisson method. Similarly, we can propose a multiplicative form of the Half-Quadratic solver (a.k.a. Maximization-Minimization optimization, see chapter 2). This would result in an iteratively reweighted Poisson equation
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 4 Figure 4.2: log 2 distribution of the residual gradient error in a real photometric stereo case. A kurtotic distribution is needed to better model this distribution (l p<1 ).
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 43 Figure 4.3: Natural images used for the benchmark 4.1.
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 44 Figure 4.4: Visual quality evaluation of the proposed method.As can be seen, the proposed method is able to recover high-quality images from highly corrupted gradients (30% of outliers).
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 45 Figure 4.5: Convex vs. non-convex optimization demonstration on Shepp-Logan with 40% of outliers corruption. Using non-convex functions improves the quality of recovery.
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 40 Figure 4.0: Surface from highly corrupted gradients . The proposed method (e)-(f) preserves meaningful structures in the surface even in extreme outliers corruption.
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 44123 Figure 4.4 for the case of dense noise. As can be seen, the proposed approach smooths the surface and corrects outliers. It can thus handle both cases contrary to previous methods.
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 42 Figure 4.2: Photometric stereo on noisy Mozart dataset (σ = 3% of the maximum intensity). The proposed method is able to recover a high quality surface from noisy images.

Figure 4 . 3 :

 43 Figure 4.3: Photometric stereo on noisy Vase dataset (σ = 14% of the maximum intensity). The proposed solution performs a better feature preserving reconstruction even in challenging mixed noise/outliers situations.

Figure 4 . 4 :

 44 Figure 4.4: Ramp peaks reconstruction in the case of dense noise only and mixed dense noise/outliers. The proposed method smooths the surface and handles outliers better than previous methods.

. 41 )

 41 Consider the Singular Values Decomposition (SVD) of Y = U ΣV T , where diag(Σ) are the singular values. The l p -nuclear norm is expressed in terms of the singular values only ||X|| * ,p = ||diag(Σ)|| p p . As a result, an approximated solution of (4.41)
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 45 Figure 4.5: Performance of the proposed method under various levels of outliers corruption when there is no noise, medium amount of noise and high amount of noise. The proposed method outperforms previous optimization methods in all the cases (visual results are reported in 4.6).

  (a) l 2[START_REF] Simchony | Direct analytical methods for solving poisson equations in computer vision problems[END_REF][START_REF] Frankot | A method for enforcing integrability in shape from shading algorithms[END_REF] (b) l 1[START_REF] Reddy | Enforcing integrability by error correction using l 1 -minimization[END_REF][START_REF] Dun | Robust surface reconstruction from gradient field using the l1 norm[END_REF] (c) Local Reg. (d) Non-Local Reg.

Figure 4 . 6 :

 46 Figure 4.6: Reconstruction quality in the case of high outliers corruption (30%) (top)and high outliers corruption mixed with a high noise level (bottom), for three standard surfaces. The proposed method leads to a better reconstruction quality in both cases as it correctly preserves important structures even in extreme corruption situations.

  cleaning the input image from dense noise corruption. Current state-of-the-art methods use non-local techniques and have shown to give impressive results lately. They are however mainly tuned to work under uniform Gaussian noise corruption with known variance, which is far from the real noise scenario. In fact, noise level estimation is already a challenging problem and denoising methods are quite sensitive to this parameter. In the context of image denoising, using shrinkagebased solutions introduce over-smoothing of important structures such as small-scale text and textures when the noise level is high. We propose in this chapter a new approach for more realistic image restoration based on learning low-rankness, a concept that we call low-rankness transfer (LRT). Given a training clean/noisy image pair, our method learns a mapping between the non-local noisy singular values and the optimal denoising values to be transfered to a new noisy input. Contrary to previous

70 ( 8 × 8 )

 7088 on the singular values of the non-local patches has various interesting properties in the context of non-local denoising. Using this approach, denoising each non-local patch matrix reduces to manipulating its singular values. Suppose that the patch size is 8 × 8, and we consider 70 similar patches, which results in a nonlocal patch matrix of size 64 × 70 and corresponds to 4480 unknown clean pixels to recover. The number of singular values to manipulate is 64 in this case. However, as the energy is concentrated in the first singular values, one can consider for example only the first 30 values, the rest can be set to zero. As a result, denoising all the patches reduces to estimating about 30 unknowns or less. This is a powerful property that makes learning denoising in this domain interesting due to the low dimensionality of the domain transformation instead of simply shrinking the values with sparse models[START_REF] Dong | Non-local image restoration with bilateral variance estimation : A low-rank approach[END_REF][START_REF] Gu | Weighted nuclear norm minimization with application to image denoising[END_REF]. Based on this observation, we propose a method that efficiently learns the spectral mapping for denoising based on a pair of clean/training image. Efficient training and transfer is however not straightforward in this domain as it is not clear what are the best singular values to map to. For that, we need first to derive a formulation of the optimal denoising singular values. This is done via an inverse problem that takes into account both the clean and noisy training images.

  8), we use a Maximization-Minimization (MM) approach (see Chapter 2). Training consists in estimating the weights W minimized over all the singular values pairs Σ n /Σ o in the training image. Due to the use of the l p≤1 -norm to prevent the influence of outliers, the energy cannot be minimized directly via Euler-Lagrange equations. The MM method consists in majorizing the non-convex term leading to a more tractable energy argmin W,Y

Problem 5 .

 5 8 attempts to learn a mapping between a pair of noisy singular values and their corresponding optimal denoising values over all the patch matrices of the training image pairs, which corresponds to only one denoising pass. Non-local low-

  term. This iterative regularization technique used in previous works has shown to significantly improve denoising results and can be seen as a simple gradient boosting method. We use the same approach where a new model W k is learned at each iteration k. Additionally, in order to fit a more flexible model, we gather the singular values in clusters and train a separate model for each cluster and for each iteration. The number of clusters R that we use in the experiments is typically around 3, not too high to prevent over-fitting. The proposed training method is summarized in Algorithm 2 and an overview is given in Figure5.1. Inference consists in a similar workflow, with a difference that the singular values Σ (k) n,j are first used to determine the right cluster r by minimizing the l 2 distance, then for estimating the denoising singular values Σc,j

Algorithm 2 :Figure 5 . 1 :

 251 Figure 5.1: Overview of the proposed training approach.

8 )

 8 at each iteration for 3 clusters takes only 1.50 seconds for full color filtering and 0.70 seconds for the grayscale version. Predicting the denoising singular values takes 0.13 seconds for the full color filtering and 0.08 for the grayscale version. We have implemented both training and denoising in parallel using the Matlab Parallel Computing Toolbox on an Intel Xeon E5-2609 CPU (8 cores). It takes a total of 378 seconds to denoise the

Figure 5 . 2 :

 52 Figure 5.2: Kodak dataset images used for the experiments. Top row are the test images and the bottom row are the training images.

Figure 5 . 3 :

 53 Figure 5.3: Image denoising with high amount of uniform Gaussian noise (σ = 70). Note how the proposed method is able to recover challenging structures such as trees and water.

Figure 5 . 4 :

 54 Figure 5.4: CRFs and simulated NLFs on the pattern (a) used in the non-uniform Gaussian noise experiments for mid and high noise setups.

  unknown camera model and ISO settings. The images used in this experiments were taken with different devices. For training, we use one model trained on a Nikon D-600 device for a high ISO setting (see Figure 5.6). To get the best results with

Figure 5 . 6 :

 56 Figure 5.6: Real clean/noisy training pair based on a Nikon D-600.

Figure 5 . 7 :Figure 5

 575 Figure 5.7: Real Image denoising using one single training model based on Nikon D-600 device (see Figure 5.6). Without estimating the noise, our method is able to produce high-quality denoising results.

Figure 5 . 8 :

 58 Figure5.8: Real image denoising example on a challenging example. As can be seen, standard methods tends to over-smooth textured regions and also required fine tuning to estimate the noise level. By directly sampling noise from the image itself, our method produces a high-quality result, preserving fine structures.

Figure 5 . 9 :

 59 Figure 5.9: Real image denoising example on a challenging example (close-up) that shows the details recovered with the proposed method.

Figure 6

 6 Figure 6.1: Intra-class variability demonstration with the proposed descriptor. The three textures 1, 2 and 3 exhibit strong changes in scale and orientation in addition to non-rigid deformations. As can be seen, the proposed descriptor is nearly invariant to these transformations.

  Figure 6.3: Overview of the proposed method.

  UIUC dataset [1, 122] is one of the most challenging texture datasets presented so far. It is composed of 25 classes, each class contains 40 grayscale images of size 480 × 640 with strong scale, rotation and viewpoint changes in uncontrolled illumination environment. Some images exhibit also strong non-rigid deformations. Some samples are presented in Figure 6.5. The UMD dataset [2] is similar to UIUC with higher resolution images (1280 × 960) but exhibits less non-rigid deformations and stronger illumination changes compared to UIUC. To evaluate the proposed method on a large-scale dataset, we choose the ALOT dataset [33, 3]. It consists of 250 classes, 100 samples each. We use the same setup as the previous multifractal methods [99]: grayscale version with half resolution (768 × 512). The ALOT dataset is very challenging as it reprensents a significantly larger number of classes (250) compared to UIUC and UMD (25) and very strong illumination change (8 levels of illumination). The viewpoint change is however less dramatic compared to UIUC and UMD.

Figure 6 . 5 :

 65 Figure 6.5: Texture samples from the UIUC dataset [1, 122]. Each row represents images from the same class with strong enviromental changes.

Figure 6 . 6 :

 66 Figure 6.6: Comparison between the box-counting method and the proposed loghistogram approach for various dataset training sizes(5, 10 and 20). The proposed approach leads to a more accurate descriptor.

1

  |A h du (k) +ht| 2-p + (7.10) l 2 -error AAE AEPE Sparse gradient 0.171 4.993 0.140 Proposed 0.109 3.532 0.098 Table

Figure 7 . 1 :

 71 Figure 7.1: Norm of the optical flow comparison. The proposed method (c) produces a better estimation.

Figure 7 .

 7 2 shows the distribution of the singular values of the non-local matrices in both the clear and blurred versions of the same image. As can be seen, the magnitude of the singular values in

Figure 7 . 2 :

 72 Figure 7.2: Distribution of the singular values of non-local patch matrices in a natural image (in black) and its blurred version (red). The self-similarity in the blurred image is much more present compared to its natural version.

Figure 7 .

 7 Figure 7.3: The Laplacian distribution models well the residual error between the image y and the convolution x ⊗ k.

β 2

 2 is another regularization term. Problems (sp 1 ) and (sp 21 ) are in the proximal form. The solution of the l 1 norm in the proximal form is the soft-thresholding operation, thus the solution to problem (sp 1 ) is given as followsq (l 1 +1) = max 0, |(x (l 1 ) ⊗ k -y )| -1 β 1 sign(x (l 1 ) ⊗ k -y ). (7.15) However solving problem (sp 21 ) is not straightforward due to the non-convexity of the proximal operator. By applying the generalized thresholding operator presented in chapter 2, we directly get the following estimation v (l 2 +1) t
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 74 Figure 7.4: Dataset from [125] used in our experiments with 5 noise levels, resulting in 80 test images.

Figure 7 . 5 :

 75 Figure 7.5: Various deconvolution results in the case of high noise level (σ = 5%).The proposed method produces a better reconstruction with less visible artifacts.

Figure 7 . 6 :

 76 Figure 7.6: PSNR results on the Kodak dataset.

Figure 7 . 7 :

 77 Figure 7.7: Reconstruction examples from 25% of the points.

Table 3 .

 3 1: MSE of the truncated filter for different kernel sizes.

  Concerning the warm-start solution, it consists in pixelwise operations. For large images, the weights can be calculated on a downsampled image for faster processing. We use the following setup : Intel Xeon CPU E5-2609 2.24 GHz

	and Nvidia Tesla C2075 GPU on Matlab 2013a and Linux 64bits, Intel i7-2670QM
	2.20Ghz on Visual Studio 2008 and Windows 7. Processing time for various methods
	can be found in Table 4.1. NaN means that the method encountred out of mem-
	ory error. As can be seen, the proposed method offers attractive efficiency with a
	non-optimized Matlab implementation. We expect to get faster processing with an
	optimized and parallelized C/C++ implementation.
	3.1.8 Smoothing with MM Optimization
			u	λ 2	||u -g|| 2 2 + ψ(∇u).	(3.28)
	By applying the maximization step on (∇u) 2 using an intermadiate variable w
	argmin u,w	λ 2	The second step consists in the im-2 + ψ m (w) s.t. (∇u) 2 ≤ w. ||u -g|| 2 (3.29)
	age reconstruction. Here again, the processing time reported in this manuscript is
	for serial filtering. A more efficient implementation would perform filtering in paral-

lel using SIMD instructions for instance. For the separable filtering (SP) approach, the reconstruction cost is r t × 2 × h operation per pixel, where r t operations can be performed in parallel.

In the previous subsection, we showed how to use Half-Quadratic splitting (additive form) to estimate a solution of the smoothing problem. By using a warm-start solution and separable filters, this approach can produce photographic look smoothing in 1-3 iterations instead of 20 × 2 FFTs with a regular approach. Another way to approach the problem is by adopting a multiplicative splitting approach via Maximization-Minimization (see Chapter 2 ). Recall the smoothing problem argmin

Table 3

 3 

	57

.2: Processing time in secondes for various methods (left) and our method (right).

  46.83 dB 41.70 dB 35.27 dB 28.54 dB 21.85 dB 34.84 dB l p -l p 53.33 dB 45.41 dB 36.36 dB 28.70 dB 23.14 dB 37.39 dB Table 4.1: Mean PSNR on real-world images 4.3 for different high outliers corruption levels. The proposed double sparsity model significantly improves the quality of reconstruction.

		10%	20%	30%	40%	50%	Mean
	l 2	9.60 dB	5.29 dB	2.24 dB	0.54 dB -1.9 dB 3.15 dB
	Diffusion	14.02 dB 10.03 dB 6.50 dB	3.98 dB	2.1 dB	7.33 dB
	M-estimation 36.46 dB 22.54 dB 10.46 dB 4, 30 dB	0.32 dB 14.82 dB
	l 1	25.52 dB 17.01 dB 8.97 dB	4.15 dB	0.49 dB 11.29 dB
	l 1 -l 1					

non-convexity and regularization. The fixed-point analysis of this solver is given in the Appendix A.

Table 4

 4 

.1 and visual results for two instances (House and Barbara) are given as well in Figure 4.4.

  .88 dB 21.61 dB 14.25 dB 38.10 dB Proposed 99.32 dB 91.12 dB 88.62 dB 79.53 dB 72.08 dB 50.02 dB 80.12 dB Table 4.2: Surface reconstruction results on three synthetic datasets for 6 levels of outliers corruption. The proposed method is able to produce high-quality results in the presence of outliers.

	2% 33.18 dB 35.76 dB M-estimation 36.25 dB l 2 Diffusion l 1 46.21dB l Mozart Ramp Peaks l 2 17.84 dB Diffusion 30.44 dB M-estimation 40.73 dB l 1 63.75 dB Proposed 89.83 dB 82.54 dB 73.68 dB 67.36 dB 53.97 dB 50.95 dB 69.72 dB 5% 7% 10% 15% 20% Mean 28.91 dB 25.75 dB 24.80 dB 23.80 dB 23.04 dB 26.58 dB 26.79 dB 27.63 dB 24.92 dB 22.93 dB 22.31 dB 26.72 dB 31.89 dB 28.83 dB 27.86 dB 25.10 dB 21.62 dB 33.24 dB 40.57 dB 38.54 dB 37.70 dB 29.34 dB 25.29 dB 36.28 dB 14.38 dB 12.76 dB 9.20 dB 5.95 dB 3.97 dB 10.68 dB 23.07 dB 20.31 dB 16.07 dB 13.76 dB 11.94 dB 19.27 dB 32.58 dB 29.23 dB 25.42 dB 21.71 dB 18.78 dB 28.08 dB 52.23 dB 45.70 dB 38.57 dB 27.85 dB 21.78 dB 41.64 dB Cat l 2 23.26 dB 16.21 dB 13.62 dB 10.42 dB 6.88 dB 4.61 dB 12.50 dB Diffusion 23.66 dB 19.11 dB 13.57 dB 10.21 dB 6.48 dB 4.12 dB 12.86 dB M-estimation 35.64 dB 27.46 dB 24.54 dB 21.07 dB 16.67 dB 11.91 dB 23.39 dB l 1 63.20 dB 46.86 dB robust recovery smoothing 45.75 dB 36argmin s,s ||∇s --→ v || p 1 p 1 + λ||∇s || p 2 p 2 + γ 2 ||s -s || 2 2 + λ 2 ||∇s|| p 3 p 3 , (4.29)

p -l p 144.62 dB 140.21 dB 120.01 dB 80.02 dB 41.07 dB 32.04 dB 92.99 dB

  SVM 92.58 ± 1.59% 97.17 ± 0.65% 99.10 ± 0.39% GPCA 95.84 ± 1.17% 98.77 ± 0.46% 99.67 ± 0.30% + Synthetic Train SVM 95.40 ± 1.30% 98.43 ± 0.55% 99.46 ± 0.33% GPCA-SVM 96.13 ± 1.18% 98.93 ± 0.39% 99.78 ± 0.22% ± 1.37% 97.85 ± 0.77% 99.40 ± 0.46% MCMA SVM 94.43 ± 1.41% 97.44 ± 0.83% 99.25 ± 0.51% GPCA-SVM 95.23 ± 1.28% 98.04 ± 0.72% 99.44 ± 0.42% ± 0.40% 98.16 ± 0.14% 99.14 ± 0.09% GPCA-SVM 90.67 ± 0.49% 98.45 ± 0.20% 99.34 ± 0.07% GPCA 91.54 ± 0.26% 98.81 ± 0.14% 99.59 ± 0.06% + Synthetic Train SVM 92.23 ± 0.26% 98.80 ± 0.10% 99.51 ± 0.09% GPCA-SVM 92.82 ± 0.14% 99.03 ± 0.10% 99.64 ± 0.07%

	Training size		5	10	20
			UIUC	
	GPCA	91.15 ± 1.80% 97.12 ± 0.70% 99.07 ± 0.40%
	MCMA	SVM	91.23 ± 1.90% 96.30 ± 0.74% 98.47 ± 0.48%
	GPCA-Training size	5	10	20
			UMD	
	GPCA 95.07 GPCA 98.02 ± 0.77% 99.13 ± 0.55% 99.62 ± 0.35%
	+ Synthetic Train	SVM	97.75 ± 0.81% 99.06 ± 0.57% 99.72 ± 0.20%
	GPCA-SVM 98.20 ± 0.71% 99.24 ± 0.49% 99.79 ± 0.21%
	Training size		10	30	50
			ALOT	
	GPCA	89.30 ± 1.99% 98.03 ± 0.57% 99.27 ± 0.06%
	MCMA	SVM	88.96	

Table 6
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.1: Detailed results on the three datasets (mean ± standard deviation).

  The deconvolution method that we propose consists in solving the following optimization problem argmin

	Empirical
	Laplacian
	Gaussian
	log 2 probability
	Residual error

x i γ|(x ⊗ k) i -y i | + t ρ t log (|(∇ t x) i | p + ) + s αs 2 ((∇ s x ⊗ k) i -(∇ s y ) i ) 2 ,

(7.12) 

  .[START_REF] Aujol | Structure-texture image decomposition-modeling, and algorithms, and parameter selection[END_REF] where β 1 is a new regularization term. Then problem (sp 2 ) is then split into two ∇ t (x ⊗ k) i -(y i + q

	sub-problems							
	(sp 21 ) : v	(l2+1) t	← argmin vt	N i log(|v t,i | p + ) + β2 2	∇ t x	i (l2)	-v t,i	2
	(sp 22 ) : x (l2+1) ← argmin x T t=1 ρ t β 2 ∇ t x i -v N i γβ 1 (x ⊗ k) i -(y i + q 2 (l2+1) t,i +	(l1+1) i	)	2	+
			S s=1 α s (l1+1) i				

  variables v and q t argmin x,v,qt i γ |v i | + β 2 (v i -(x ⊗ k) i + y i ) 2 + t ρ t log (|q t,i | p + ) + β 2 (q t,i -(∇ t x) i ) 2 + s αs 2 ((∇ s x ⊗ k) i -(∇ s y ) i ) 2 , |v i | + β 2 (v i -(x ⊗ k) i + y i ) 2(sp 2 ) : argminq t,i log (|q t,i | p + ) + β 2 (q t,i -(∇ t x) i ) 2

			(7.18)
	which results in the following subproblems
	(sp 1 ) : argmin
			v i
	(sp 3 ) : argmin x	i	γβ 2 (v

i -(x ⊗ k) i + y i ) 2 + t ρtβ 2 (q t,i -(∇ t x) i ) 2 + s αs 2 ((∇ s x ⊗ k) i -(∇ s y ) i ) 2 .

(7.

[START_REF] Badri | Fast and accurate texture recognition with multilayer convolution and multifractal analysis[END_REF] 

Table 7 .

 7 2: Experiments results conducted on the dataset in figure7.4. The proposed method performs well for both low and high noise levels.

	BM3Dreg [59] Proposed

Typically a function such that exp(-ψ(.)) models a heavy-tailed distribution.

The discrete Laplacian operator ∆ corresponds to ∆ = -(∇ T x ∇ x + ∇ T y ∇ y ) = L, where L is the discrete Laplacian matrix.

Due to the noise in the ambient input, we perform a slight denoising with the BM3D method[START_REF] Dabov | Image denoising by sparse 3d transform-domain collaborative filtering[END_REF] to reduce the noise.

A histogram was discarded for s =

-4 in the second high response (in gray) due to the large size of the filter which is larger than the actual size of the input image at resolution s = 2 -4 .

"Equivalent"' in the sense that the classifier is not influenced by these parameters as they correspond to uniform shifts and scalings.

Except for ALOT dataset, we use 3 high-pass responses for a more robust representation.
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Case of Mixed Noise-Outliers

While the l p -l p model works very well with outliers only corruption, it turns out that this model does not handle well the mixed noise-outliers scenario when both dense noise and outliers are present in the vector field -→ v . What happens is that the outliers are correctly handled but noise stays in the reconstruction. An example that demonstrates this is given in Figure 4.1. We thus need to add a denoising part in the model 4.23. We propose adding a third sparse gradient prior with a different setting to induce smoothing and thus reduce noise. Comparison between the double sparsity approach l p -l p and the l pl p -l p approach. Double sparsity corrects the outliers but dense noise remains in the reconstructed image. The third sparse prior permits to smooth the surface and resulting in near-exact recovery.

The Triple Sparsity Model

The triple sparsity model that we propose consists on using a third sparsity term to handle noise based on the previous l p -l p model that we used for outliers only corruption. The model is defined as follows Depth reconstruction via photometric stereo on real corrupted images (Frog dataset), with various outliers corruption levels mixed with dense noise. The proposed higher quality surfaces even in the presence of extreme corruption. Depth reconstruction via photometric stereo on real corrupted images (Octopus dataset), with various outliers corruption levels mixed with dense noise. The proposed higher quality surfaces even in the presence of extreme corruption.

1% of corruption

full color version and 136 seconds to denoise the grayscale version for 8 iterations (the total training time is similar). Compared to WNNM [START_REF] Gu | Weighted nuclear norm minimization with application to image denoising[END_REF], our implementation is more than 11 times faster.

Experimental Results

In this section, we perform extensive experiments to show the potential of the pro- 

Synthetic Noise Experiments

The first experiments consist in evaluating the proposed denoising against previous methods using the standard Gaussian noise setup with fixed standard deviation.

While this model is far from more realistic noise models that we use in the next subsections, it gives us an idea about the potential of the proposed method. In this case, the noisy image is generated as follows

where η is here a zero mean Gaussian noise and σ is the noise level. The noisy images are then truncated to fit values between 0 and 255 and the optimal noise level is re-estimated by calculating the standard deviation between the clean and noisy Under a general assumption [START_REF] Turiel | Numerical methods for the estimation of multifractal singularity spectra on sampled data: A comparative study[END_REF], there exists a fractal set F h 1 of maximal dimension, D(h 1 ) = d. This is the case of the fractal set of maximal probablity. The singularity spectrum can thus be calculated by introducing the log in the previous equation

As the dimension d and the resolution r 0 is the same for all images, the spectrum

Now, suppose that a texture is transformed using a bi-Lipschitz transform. The Hausdorff dimension of each fractal set is known to be invariant to these transformations. Thus, the singularity spectrum D(h) is also invariant to these transformations.

Hence, similar textures will have the same maximal probability ρ h (h 1 ). Finally, we get the relashionship between the spectrum D(h) and the log of the histogram of the exponents h(x) D(h) ≡ log(ρ h (h)). (6.17)

The log-histogram is thus related to the multifractal spectrum D(h), which is bi-Lipschitz invariant.

Analysis

The basic multifractal framework consists in generating multiple images and then extracting statistics using multifractal analysis. Multifractal descriptors are mathematically invariant to bi-Lipschitz transforms, which even includes non-rigid transformation and view-point change. The proposed method follows the same strategy,

Evaluation

We evaluate the proposed system and compare it with state-of-the-art methods for 50 random splits between training and testing. The evaluation consists in 3 steps :

1. log-histogram vs. box-counting : We evaluate the precision of our log-histogram method and compare it with the box-counting method used in previous methods.

2. Learning efficiency : We compare the proposed GPCA-SVM combination with single GPCA and SVM results and see how the proposed synthetic training strategy improves classification rates.

3. We compare our main results with 9 state-of-the-art results.

log-histogram vs. box-counting

In this experiment, we replace the log-histogram step of our approach with the boxcounting method widely used in the previous multifractal methods to see if the proposed log-histogram leads to a more accurate bi-Lipschitz invariance. The results are presented in Figure 6.6. As can be seen, the log-histogram approach leads to higher performance, especially when more data is available. This clearly shows that indeed, the log-histogram leads to a better bi-Lipschitz invariance, as theoretically discussed before. The log-histogram is a simple operation that permits our system to achieve high computational efficiency.

Learning Efficiency

In this experiment, we first compare the proposed GPCA-SVM combination with single GPCA and SVM classifiers using the proposed descriptor. Each dataset is presented in the form D x (y) where x is the name of the dataset and y is the training size in number of images. The best results are in bold. As can be seen in Table 6.1,

Discussions

We compare the proposed method MCMA (Multilayer Convolution -Multifractal Analysis) with 10 state-of-the-art methods for 50 random splits between training and testing, for different training sizes. Results are presented in Table 6.2. The best results are in bold. As can be seen, the proposed method outperforms the published results on the 3 datasets. Compared to the leading method [START_REF] Sifre | Rotation, and scaling and deformation invariant scattering for texture discrimination[END_REF], our system seems to better handle viewpoint change and non-rigid deformations. This is clearly shown in the results on the UIUC dataset that exhibits strong enviromental changes. This result can be expected as the scattering method builds invariants on translation, rotation and scale changes, which does not include viewpoint change and non-rigid deformations. Contrary to this, using accurate multifractal statistics, our solution produces descriptors that are invariant to these complex transformations.

The proposed system maintains a high performance on the UMD dataset. It is worth noting that on this dataset, the images are of high resolution (1280 × 960), which gives an advantage over the UIUC dataset. However, we did not use the original resolution, we rather rescale the images to half-size for faster processing. The high accuracy shows that the proposed multifractal method is able to extract robust invariant statistics even on low-resolution images. On the large-scale dataset ALOT, the proposed method maintains high performance. Recall that this dataset contains in Table 6.1. This proves that the proposed descriptor is able to extract a robust invariant representation.

The new method VGG [START_REF] Cimpoi | Deep filter banks for texture recognition, and description and segmentation[END_REF] recently appeared on arXiv. This method outperforms the proposed work that we published 1 year before [START_REF] Badri | Fast and accurate texture recognition with multilayer convolution and multifractal analysis[END_REF]. The VGG method consists in a very large deep convolutional network trained on the ImageNet dataset similar to the AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], but it is much richer as it performs more sophisticated pooling encoding. Transfer learning is used to adapt the network to the texture recognition problem as explained in their paper. Note however that in our case, the deep filters are not trained similar to [START_REF] Sifre | Rotation, and scaling and deformation invariant scattering for texture discrimination[END_REF] to significantly improve performance in the context of digits recognition [START_REF] Simard | Best practices for convolutional neural networks applied to visual document analysis[END_REF].

Conclusions

In this chapter, we present a fast and accurate texture classification system. The proposed solution builds a locally invariant representation using a multilayer convolution architecture that performs convolutions with a filter bank, applies a pooling operator to increase the local invariance and repeats the process for various image resolutions. The resulting images are mapped into a stable descriptor via multifractal analysis. We present a new multifractal descriptor that extracts rich texture information from the local singularity exponents. The descriptor is mathematically validated to be invariant to bi-Lipschitz transformations, which includes complex environmental changes. The second part of chapter tackles the training part of the recognition system. We propose the GPCA-SVM classifier that combines the generative PCA classifier with the popular kernel SVMs to achieve higher accuracy. In sparse gradient prior with sparse brightness constancy of the singular exponents of the images, which offers a more precise definition of edges. Compared to the sparse gradient prior that leads to over-smoothing and artifacts in this case, a sparse prior on the singularity exponents produces a better flow estimation.

Using local and non-local sparsity with multi-sparsity and non-convexity, we have proposed techniques for robust integration from highly corrupted gradients which permit to reconstruct high-quality images/surfaces from severely corrupted fields.

Robust integration is a central step in various vision and graphics applications such as photometric stereo and gradient-domain processing. Combining the proposed gradient integration step with robust photometric stereo techniques to estimate the normals, we expect to produce much better reconstructions as in this case, the proposed method will have a better estimate of the initial solution.

We then proposed to go beyond sparsity models and learn non-local spectral mapping for image denoising. Given a clean and noisy image pair, our method learns spectral mapping between the corresponding non-local patch matrices. We have developed a fast method for training and regression. While sparse spectral models have shown to produce high-quality denoising results in previous works, we showed that learning the spectral mapping permits to improve even better, especially in the case of nonuniform corruption. We expect that the proposed approach will produce better results by using a more sophisticated learning method such as large neural networks.

Also, it would be interesting to explore other transformations such as the generalized and weighted singular values decompositions in the same framework.

In the context of image deconvolution, we showed that denoising first then performing robust deconvolution permits to achieve better image recovery results. This approach is based on the observation that non-local patches in the blurry image tend to be very similar. As denoising introduces outliers in the deconvolution model, using sparsity on the data-fitting term is important. By using a sparse prior for regularization, the resulting problem is multi-sparse and can be efficiently solved with the techniques discussed in this thesis. We expect to achieve better results using a better denoising technique especially designed for blurry images as well as the use of other priors.

List of Publications

The works in this thesis have led to the following publications : 

205

and the following talks/presentations :

• "Enforcing Integrability via Sparse Regularization", ORASIS conference, Amiens -France, 2015.

• "Fast Sparse Methods For Edge-Aware Processing", Sminaires Signal Image (invited speaker), IMB, Bordeaux -France, 2014.

• "Sparse and Scale-Invariant Methods in Image Procesing", University Mohammed V, Rabat -Morocco, 2014.

• "Robust Surface Reconstruction via Triple Sparsity", INRIA GM Manao (invited speaker), Bordeaux -France, 2014.

• "Fast Multi-Scale Detail Decomposition via Accelerated Iterative Shrinkage", SIGGRAPH Asia, Hong Kong, 2013.

Appendix A Proximal Operators

A.0.1 l p -Shrinkage Solution

The proof of the approximation of the proximal operator associated to the l p -norm is given here. First, consider the following proximal operator

This problem admits an exact solution via an inverse function [START_REF] Parikh | Proximal algorithms[END_REF] prox λf (y) = (I + λ∂f ) -1 (y). (A.2)

Unfortunately, this inverse function cannot be evaluated directly for the l p -norm. However, a solution can be approximated by a first-order approximation :

prox λf (y) ≈ y -λ∂f (y). , where is a small value to prevent division by zero. The solution is thus given as follows : max 0, |y i | -λ|y i + | p-1 sign(y i ).

(A.6)

The same solution was proposed by Chartrand [START_REF] Chartrand | Fast algorithms for nonconvex compressive sensing: Mri reconstruction from very few data[END_REF] using Legendre-Fenchel transform.

For the case of the l 1 -norm, by taking p = 1, we get the soft-thresholding operator [START_REF] Donoho | De-noising by soft-thresholding[END_REF] max {0, |y i | -λ} sign(y i ).

(A.7)

A.0.2 Nuclear Norm Proximal Operators

We show how to derive a solution of proximal operators with a nuclear norm (||.|| * or ||.|| * ,p in a more general case). For this, we propose to use a first-order approximation which makes the solution easier to derive. Recall the proximal operator form :

A first-order approximation on f (x) is given via Taylor expansion as follows

The minimization problem becomes as follows

Note that in the convex case (weighted l 1 -based formulations), problems A.8 and A.10 are equivalent as we have .11) We apply this to the nuclear-norm case argmin Now considering Y = U y Σ y V T y and the constraint 0 ≤ diag(Σ x ), we get the soft singular value thresholding (SVT) result

Another simpler way to calculate the proximal operator consists in using the fact that the nuclear norm prior manipulates only the singular values and thus X takes the form X = U y Σ x V T y . That is true as we have the equality A.11 in the l 1 -norm case. We thus have equivalence between A. [START_REF] Badri | A non-local low-rank approach to enforce integrability[END_REF] ). Problem A.17 now reduces to a regular l 1 -norm proximal operator. In the case of the l p<1 norm, only a first order approximation is achieved by applying the l p -shrinkage presented before as we no longer have the equality A.11 valid, which corresponds simply to a weighted SVT.

A.0.3 Optimality Condition for HQ with Double Sparsity

We discuss here the optimality condition of the proposed solver that introduces two additional variables. For the sake of simplicity, suppose the following minimization problem : minimize f (x) + g(x).

(A.18)

The solver introduces two new variables w 1 and w 2 instead of one and minimizes minimize f (w 1 ) + To study the equivalence between these two problems, we need to verify the optimality condition 0 ∈ ∂f (x) + ∂g(x).

(A.20)

For fixed points x, w 1 , w 2 , the solver satisfies

which is equivalent to the following, considering the proximal form w 1 = (I + 1 β ∂f ) -1 x , w 2 = (I + 1 β ∂g) -1 x 2x = w 1 + w 2 .

(A. [START_REF] Bao | A convergent incoherent dictionary learning algorithm for sparse coding[END_REF] Consider now a first order approximation of the proximal operator

we get :

(A.24)

Adding the two equations, we get the optimality condition for the general weighted l 1 case. Note that it is important to set the same additional variable β for subproblems (sp 1 ) and (sp 2 ). Without this constraint, the optimality condition is not verified.