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This thesis addresses the estimation and control for nonlinear descriptor systems. The developments are focused on a family of nonlinear descriptor models with a full-rank descriptor matrix. The proposed approaches are based on a Takagi-Sugeno (TS) descriptor representation of a given nonlinear descriptor model. This type of TS models is a generalization of the standard TS ones. One of the mains goals is to obtain conditions in terms of linear matrix inequalities (LMIs). In the existing literature, the observer design for TS descriptor models has led to bilinear matrix inequality (BMI) conditions. In addition, to the best of our knowledge, there are no results in the literature on controller/observer design for discrete-time TS descriptor models (with a non-constant and invertible descriptor matrix).

Three problems have been addressed: state feedback controller design, observer design, and static output feedback controller design. LMI conditions have been obtained for both continuous and discrete-time TS descriptor models. In the continuous-time case, relaxed LMI conditions for the state feedback controller design have been achieved via parameterdependent LMI conditions. For the observer design, pure LMI conditions have been developed by using a different extended estimation error. For the static output feedback controller, LMI constraints can be obtained once an auxiliary matrix is fixed. In the discretetime case, results in the LMI form are provided for state/output feedback controller design and observer design; thus filling the gap in the literature. Several examples have been included to illustrate the applicability of the obtained results and the importance of keeping the original descriptor structure instead of computing a standard state-space.

Résumé

Cette thèse est consacrée au développement des techniques d'estimation et de commande pour systèmes descripteurs non linéaires. Les développements sont centrés sur une famille particulière de systèmes descripteurs non linéaires avec une matrice descripteur de rang plein.

Toutes les approches présentées utilisent un formalisme de modélisation du type Takagi-Sugeno (TS) pour représenter les modèles descripteurs non linéaires. Un objectif très important est de développer des conditions sous la forme d'inégalités matricielles linéaires (LMI, en anglais). Dans la littérature, les conditions pour l'estimation des modèles TS descripteurs s'écrivent sous forme d'inégalités matricielles bilinéaires (BMI, en anglais). En plus, à notre connaissance, il n'y pas de résultats dans la littérature concernant la commande/estimation pour les modèles TS descripteurs en temps discret (avec une matrice descripteur régulière non linéaire).

Trois problèmes ont été examinés : commande par retour d'état, estimation de l'état et commande statique par retour de la sortie. Dans le cas continu, des conditions moins conservatives ont été développées pour la commande par retour d'état. Pour l'estimation d'état, des conditions LMI ont été obtenues (au lieu des usuelles BMI) en utilisant un différent vecteur d'erreur augmenté. Pour la commande statique par retour de la sortie, des conditions LMI sont proposées si une matrice auxiliaire est fixée. Pour le temps discret, des nouveaux résultats sous la forme LMI ont été développées pour la commande/estimation, comblant ainsi certains manques de la littérature. Des exemples ont été inclus pour montrer l'applicabilité de tous les résultats que nous avons obtenus et ainsi l'importance de garder la structure originale des descripteurs.

Mots clés -Systèmes descripteurs, modèles Takagi-Sugeno, commande, observateur, inégalités matricielles linéaires.

Chapter 1. Introduction 1.1. Context of the thesis

Fuzzy models are based on IF-THEN rules originally considered to represent operator experience and thus avoid the necessity of the mathematical representation of the system. Therefore, Takagi-Sugeno (TS) models were considered an approach that emulate human operators [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF] and were regarded as a heuristic technique. Breaking with this initial way, model-based approaches have been introduced by [START_REF] Tanaka | Stability analysis and design of fuzzy control systems[END_REF]. These approaches keep a framework similar to the initial fuzzy modelling one but the analysis and synthesis methods used have resulted in losing the heuristic point of view: classical tools such as Lyapunov analysis and synthesis have been introduced.

In the past decades, TS models have been widely used to represent nonlinear systems.

Two frequently used model-based methodologies to obtain a TS representation are 1) linearization around several points [START_REF] Johansen | On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models[END_REF] and 2) the sector nonlinearity approach [START_REF] Ohtake | Fuzzy modeling via sector nonlinearity concept[END_REF]. The former provides a TS model which is an approximation, while the latter gives a TS model that exactly represents the given nonlinear model in a compact set corresponding to the sectors considered. Therefore, the sector nonlinearity approach has been widely adopted. Nevertheless, the sector nonlinearity approach has an important shortcoming: the number of local linear models (rules) is exponentially related to the number of non-linear terms in the original nonlinear model.

A TS model is a collection of linear models blended together with membership functions (MFs), which are nonlinear and hold the convex sum property [START_REF] Lendek | Stability analysis and nonlinear observer design using Takagi-Sugeno fuzzy models[END_REF][START_REF] Tanaka | Stability analysis and design of fuzzy control systems[END_REF][START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF][START_REF] Wang | An approach to fuzzy control of nonlinear systems: Stability and design issues[END_REF]. The direct Lyapunov method is employed for the analysis and controller/observer design for such systems; usually, the conditions are cast as linear matrix inequalities (LMIs). The interest of obtaining conditions in LMI form comes from the fact that they can be efficiently solved via convex optimization techniques [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF][START_REF] Scherer | Linear matrix inequalities in control[END_REF].

The conditions developed within the TS-LMI framework, similarly to LPV, quasi-LPV, and piecewise models are only sufficient, that is, if the LMI problem is unfeasible, no conclusion can be drawn. Unfeasible conditions for stable / controllable / observable systems may be obtained due to several reasons: the type of Lyapunov function chosen, the way MFs (the nonlinear parts of the TS model) are removed to obtain an LMI formulation, the nonuniqueness of a TS representation from a given nonlinear model, etc. Quadratic Lyapunov functions have been extensively employed for the stability analysis or controller / observer design for TS models. They led to several results within the TS-LMI framework [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Ichalal | Design of observers for Takagi-Sugeno systems with immeasurable premise variables: an L2 approach[END_REF][START_REF] Lendek | Stability analysis and nonlinear observer design using Takagi-Sugeno fuzzy models[END_REF][START_REF] Tanaka | Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs[END_REF][START_REF] Tanaka | Stability analysis and design of fuzzy control systems[END_REF][START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF][START_REF] Wang | An approach to fuzzy control of nonlinear systems: Stability and design issues[END_REF]. However, since a common Lyapunov matrix is used for all the linear local models of the TS model, this type of Lyapunov function is in some cases highly conservative.

To alleviate the conservativeness, in [START_REF] Blanco | Non quadratic stability of nonlinear systems in the Takagi-Sugeno form[END_REF] a non-quadratic (fuzzy) Lyapunov function has been introduced; this Lyapunov function uses the same MFs as the TS model under study. For the continuous-time case, the use of such Lyapunov functions leads to dealing with the time-derivatives of the MFs. Several methods have been proposed to tackle this problem: by bounding a priori the time-derivatives of the MFs and checking a posteriori such bounds [START_REF] Bernal | Nonquadratic stabilization of continuous-time systems in the Takagi-Sugeno form[END_REF][START_REF] Blanco | Non quadratic stability of nonlinear systems in the Takagi-Sugeno form[END_REF][START_REF] Mozelli | Reducing conservativeness in recent stability conditions of TS fuzzy systems[END_REF][START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF]; via piecewise Lyapunov functions [START_REF] Campos | New stability conditions based on piecewise fuzzy Lyapunov functions and tensor product transformations[END_REF][START_REF] Johansson | Piecewise quadratic stability of fuzzy systems[END_REF]; via line-integral Lyapunov functions [START_REF] Mozelli | Reducing conservativeness in recent stability conditions of TS fuzzy systems[END_REF][START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF]; or by bounding the partial derivatives of the MFs, leading to local conditions [START_REF] Bernal | Generalized nonquadratic stability of continuous-time Takagi-Sugeno models[END_REF]Guerra et al., 2012a;[START_REF] Guerra | A way to escape from the quadratic framework[END_REF][START_REF] Lee | Relaxed LMI conditions for local stability and local stabilization of continuous-time Takagi-Sugeno fuzzy systems[END_REF][START_REF] Pan | Nonquadratic stabilization of continuous T-S fuzzy models: LMI Ssolution for a local approach[END_REF]. For the discrete-time case, the time derivative is replaced by a one sample delay that appears to have fewer drawbacks. The use of non-quadratic (NQ) Lyapunov functions has led to important improvements [START_REF] Ding | Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi-Sugeno's form[END_REF]Guerra et al., 2012bGuerra et al., , 2009;;[START_REF] Guerra | LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF][START_REF] Kruszewski | Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: a new approach[END_REF][START_REF] Lee | Improvement on nonquadratic stabilization of discrete-time Takagi-Sugeno fuzzy systems: multiple-parameterization approach[END_REF][START_REF] Lendek | Controller design for TS models using delayed nonquadratic Lyapunov functions[END_REF].

If the full information of the state is not available, one alternative is the use of state observers [START_REF] Luenberger | An introduction to observers[END_REF]. Usually two cases are considered for the observer design: 1) the MFs depend on measured (available) variables and, 2) the MFs depend on unmeasurable variables [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Ichalal | Design of observers for Takagi-Sugeno systems with immeasurable premise variables: an L2 approach[END_REF][START_REF] Tanaka | Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs[END_REF]. The first case can be seen sometimes (for example when quadratic Lyapunov functions are used) as the dual of the controller design, while the second one requires extra conditions, e.g., Lipchitz conditions (see [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF], to guarantee the convergence of the estimation error.

Another alternative when only partial information of the state is available is the design of output feedback controllers [START_REF] Cao | Static output feedback stabilization: An ILMI approach[END_REF][START_REF] Chadli | LMI solution for robust static output feedback control of Takagi-Sugeno fuzzy models[END_REF][START_REF] Kau | Robust H∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties[END_REF][START_REF] Syrmos | Static output feedback-A survey[END_REF]. However, the existing conditions for output feedback are not always "pure" LMIs.

Based on nonlinear descriptor models [START_REF] Luenberger | Dynamic equations in descriptor form[END_REF] that naturally appear in mechanical systems [START_REF] Dai | Singular control systems[END_REF][START_REF] Lewis | A survey of linear singular systems[END_REF][START_REF] Lewis | Robot manipulator control: Theory and practice, Control Engineering Series[END_REF][START_REF] Luenberger | Dynamic equations in descriptor form[END_REF] -, TS descriptor models have been introduced in [START_REF] Taniguchi | Fuzzy descriptor systems: stability analysis and design via LMIs[END_REF]. TS descriptor models use two families of MFs: one for the nonlinearities in the left-hand side (descriptor matrix) and another one for the nonlinear terms in the right-hand side. Tools developed for descriptor models have also been used for models which do not appear in a natural descriptor form. For example, the so-called descriptor redundancy approach [START_REF] Tanaka | General framework and BMI formulae for simultaneous design of structure and control systems[END_REF] has been adopted in order to relax existing conditions [START_REF] Cao | A descriptor system approach to robust stability analysis and controller synthesis[END_REF][START_REF] Chen | System analysis using redundancy of descriptor representation[END_REF][START_REF] Guelton | Robust dynamic output feedback fuzzy Lyapunov stabilization of Takagi-Sugeno systems-A descriptor redundancy approach[END_REF][START_REF] Tanaka | General framework and BMI formulae for simultaneous design of structure and control systems[END_REF][START_REF] Tanaka | A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions[END_REF].

Since the descriptor matrix may be singular, descriptor models are also called singular systems, differential-algebraic equation (DAE) systems, partial state space representation, etc. [START_REF] Dai | Singular control systems[END_REF]. For linear singular systems, generally, it is not sufficient to study their stability, but their admissibility has to be investigated. Therefore, concepts such as regular and impulse-free systems have been introduced. A descriptor system is admissible if it is regular, impulse-free, and stable [START_REF] Dai | Singular control systems[END_REF]. The concepts of controllability, observability, and duality have been stated in [START_REF] Cobb | Controllability, observability, and duality in singular systems[END_REF]. Controller design has been carried out in [START_REF] Mukunda | Feedback control of singular systems -proportional and derivative feedback of the state[END_REF]. Observer design conditions have been developed in [START_REF] Dai | Observers for discrete singular systems[END_REF][START_REF] Darouach | Design of observers for descriptor systems[END_REF], but these conditions are not in LMI form. Later, LMI conditions have been given in [START_REF] Chadli | Novel bounded real lemma for discrete-time descriptor systems: Application to control design[END_REF][START_REF] Feng | On state feedback H∞ control for discrete-time singular systems[END_REF][START_REF] Fridman | H∞-control of linear state-delay descriptor systems: an LMI approach[END_REF][START_REF] Garcia | The infinite time near optimal decentralized regulator problem for singularly perturbed systems: a convex optimization approach[END_REF][START_REF] Garcia | A LMI solution in the H2 optimal problem for singularly perturbed systems[END_REF][START_REF] Masubuchi | Stability and stabilization of discrete-time descriptor systems with several extensions[END_REF][START_REF] Rehm | An LMI approach towards H∞ control of discrete-time descriptor systems[END_REF][START_REF] Zhang | New bounded real lemma for discrete-time singular systems[END_REF].

Outline

The thesis is organized as follows:

Chapter 2 gives the necessary background on the TS-LMI framework, the descriptor form, and motivates the use of TS descriptor models. Chapters 3-5 develop design conditions for TS descriptor models.

Chapter 3 considers conditions for state feedback controller design. With respect to previous LMI conditions, a larger solution set for the continuous-time case is achieved. In the discrete-time case, LMI conditions are given with different NQ Lyapunov functions, thus filling the gap in the literature.

Chapter 4 deals with observer design for TS descriptor models. For the continuous-time case, LMI conditions are obtained by using a different extended estimation error. For the discrete-time case, results in LMI form are provided via several types of Lyapunov functions.

Chapter 5 considers static output feedback controller design. For both continuous and discrete-time, the developed conditions are still BMI and become LMI only if a slack variable is fixed.

Chapter 6 concludes this work with final remarks and some future research directions.

Additionally, a brief introduction to LMIs and some properties used throughout this thesis are given in Appendix A. Appendix B is devote to give some sum relaxations.

Publications

The results presented in this thesis have been disseminated in the following publications:

International journal publications:

1. V. Estrada-Manzo, Zs. Lendek, T. M. Guerra, and P. Pudlo. (2015). Controller design for discrete-time descriptor models: a systematic LMI approach. IEEE Transactions on Fuzzy Systems, vol. 23 [START_REF] Estrada-Manzo | H ∞ control for discretetime Takagi-Sugeno descriptor models: a delayed approach[END_REF], pp. 1608-1621. 2. T. M. Guerra, V. Estrada-Manzo, and Zs. Lendek. (2015). Observer design for nonlinear descriptor systems: an LMI approach. Automatica (52), pp. 154-159.

Chapter 2. Takagi-Sugeno models

This chapter will provide the reader with the basic knowledge on Takagi-Sugeno (TS) models as well as an introduction to the existing results in this framework. It is not intended to be an exhaustive survey but rather the necessary background to follow the developments in next chapters. In addition, it motivates the use of TS descriptor models instead of standard TS ones when a nonlinear models in the descriptor form. The final remarks in the chapter enumerate the problems to be faced in the present thesis.

Standard TS models

A TS model is a collection of linear systems and nonlinear membership functions (MFs) of the form [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF]:

            1 , r i i i i t h z t A t B xu t x    (2.1)
where   

        1 1, 0 1. i i r i h z t h z t      (2.2)
There are several model-based procedures to obtain a TS representation from a given nonlinear model. Two of them are frequently used. The first one is a method based on linearization in several operating points [START_REF] Johansen | On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models[END_REF]. The second method is called the sector nonlinearity approach [START_REF] Ohtake | Fuzzy modeling via sector nonlinearity concept[END_REF] and consists of an algebraic rewriting of the original nonlinear model based on the known bounds of the nonlinearities. The former provides a TS model which approximates the nonlinear one, while the latter gives a TS model that exactly represents the nonlinear one in a compact set [START_REF] Lendek | Stability analysis and nonlinear observer design using Takagi-Sugeno fuzzy models[END_REF][START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF].

The sector nonlinearity approach

This thesis focuses on TS models derived by using the sector nonlinearity approach, although LMI conditions can be applied regardless of the origin of the TS model. The idea of this approach is to rewrite a nonlinear expression as a convex combination of nonlinear membership functions (MFs). This is summarized in the following steps [START_REF] Ohtake | Fuzzy modeling via sector nonlinearity concept[END_REF][START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF].

Consider the following nonlinear model:

        , , t f x x t u t  (2.3)
where   f is a nonlinear function whose elements are smooth and bounded in a compact set of the state space  . In what follows, arguments will be omitted when their meaning is straightforward.

Step 1. Assume that the nonlinear system (2.3) can be expressed as the affine-in control model:

    , A x x x x Bu   (2.4)
where   By construction, each pair of WFs holds the convex sum property in the compact set  .

          0 1 0 , , 1 , 1,2, . 
Step 3. Define the 2 p r  membership functions (MFS) using WFs in (2.5):

        1 , 1, 2, , 0,1 . , j p j i j i j j h z z i r i        (2.6)
These MFs hold the convex sum property (2.2) in  .

Step 4. Compute the linear local models   Based on the above definitions, the nonlinear model (2.3) is exactly represented by the TS model (2.1) in the considered set  . ,, u f h x u x  have to be solved, which are nonlinear and difficult to work with. In the context of this work only affine in the control models are considered.

, ii A B ,  
Remark 2.2. The total number of rules r depends on the number of nonlinear terms p , that is, 2 p r  . Since the relation is exponential, this can be a problem when modeling complex nonlinear systems as it can lead to computationally intractable problems. (2.8) writes:

1 1 1 2 2 1 . 13 nl x x x x                   (2.9)
Then, the following WFs can be constructed:

          1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 , 1 2 1 1 2 . x x x x x x             
(2.10)

Using the WFs in (2.10), the MFs are    

1 1 0 1 h z x   and     1 2 1 1 h z x  
. The local matrices are computed as follows:

1 1 1 2 1 1 1 1 , . 1 3 1 3 1 3 13 1 1 A A nl nl                                     (2.11)
Finally, the TS model is

        2 1 1 1 2 2 , ii i x h z A h z x A z A x h      (2.12)
which exactly represents the nonlinear model (2.7) in the compact set  .

Recall that for a given nonlinear model there are many TS representations (Remark 2.3).

For instance, by choosing   Ax as   h   . The local matrices are calculated as:

1 1 1 2 0 0 1 0 0 1 0 1 3 1 3 1 3 13 2 , . nl A A nl                                     (2.13)
Note that 1 A is not Hurwitz. 

Notation

Throughout this thesis, the following shorthand notation is adopted to represent convex sums of matrix expressions:

          1 2 1 2 12 1 1 11 1 1 1
and , , .

j r r r r r h i i h i i i hhv i i i i j i i j i h z h z h z h z v z                      
In the discrete-time case, MFs with delays may appear:

            1 1 1
1 and 1 , , .

x x x x x x h i i i i i r i r r i i i h h h z k h z k h z k                   
Subscripts will change to v if the respective MFs are j v , e.g.,  

1 vj j j r vz      . Using
the aforementioned notation, the TS model (2.1) is written as

hh x A x B u .
An asterisk    will be used in matrix expressions to denote the transpose of the symmetric element; for in-line expressions it will denote the transpose of the terms on its left side, for example:

    . , T T T A AB A B A B A B C B BC C C                       
In addition, in matrix expressions, the symbols ">" and "<" will stand for positive and negative-definiteness, respectively. Arguments will be omitted when their meaning is clear.

Overview of existing results

The main advantage of expressing a nonlinear model as a TS one is that the direct Lyapunov method can be systematized. The main objective is to express the conditions in terms of LMIs, which can be efficiently solved via convex optimization techniques [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF][START_REF] Scherer | Linear matrix inequalities in control[END_REF].

The continuous-time case

This section will briefly present established results on the analysis and design for standard continuous-time TS models. Recall the TS model:

     1 1 ,, r r i i i i i i i x h z A x B u y h z C x       (2.14)
When 0 u  , system (2.14) has an equilibrium point in 0 x  . Sufficient conditions for the stability of (2.14) with 0 u  are given in the sense of Lyapunov. Effectively, the stability of the equilibrium point of the autonomous TS model (2.14) is analyzed using the quadratic

Lyapunov function   , 0. T T PP V x x Px   (2.15)
The equilibrium point is asymptotically stable if there exists a matrix T PP  such that [START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF]:

  0, 1 ,2, , 0, 
.

T i i P A P PA i r       (2.16)
The LMI conditions (2.16) are directly obtained when the time-derivative of (2.15) is taken:

       1 . r T T T T T T h h i i i i V x x Px x Px x A P PA x x h A P PA x z               (2.17) Since   1 1 i r i hz    and   0 1 i hz  , a sufficient condition for   0
Vx is given by the LMI conditions (2.16). Note that (2.16) is reduced to the Lyapunov stability theorem for linear systems, i.e., when 1 r  . Remark 2.4. Conditions (2.16) do not take into account the information of the MFs; in addition, the Lyapunov function candidate is restricted to a quadratic one. Hence, the given LMI conditions are only sufficient, i.e., if the LMI problem is unfeasible, no conclusion can be drawn. Moreover, notice that conditions (2.16) are valid for a family of TS models with the same vertex matrices. Therefore, it is also equivalent to LPV quadratic stability.

Example 2.2. Recall the nonlinear model in Example 2.1:

1 1 1 2 2 1 2 , 3 . x x x x x x x      (2.18)
Consider two different TS representations for (2.18):

  1 2 1 1 2 2 1 0 0 0 : , with 1 2 0.5 3 1 3 1 TS , , 1 h h x A A xx h A h                          (2.19)   1 1 2 1 2 2 1 1 1 1 0.5 1 TS , , 1 3 1 3 1 1 : , with h h x A A h x h Ax                            (2.20)
The stability analysis using LMIs (2.16) for 

  1 1 2 2 2 1 2 3 cos , . x x x x x x x      (2.22)
The nonlinear system (2.22) can be exactly represented in

  2 : xx  
 by a TS model (2.14) with local models: For the controller design, [START_REF] Wang | Parallel distributed compensation of nonlinear systems by Takagi-Sugeno fuzzy model[END_REF] have proposed the following parallel distributed compensator (PDC): .

1 2 1 1 and 1 1 , 1 3 1 3 A A                    (2.23) with    
    1 with ,, 1, 2, , . ux nn i h i r i i u h z K x K x K r i        (2.24)
rr i i i i i i i x h z h z A B K x     (2.25)
Stabilization conditions can be obtained via the quadratic Lyapunov function (2.15) as follows:

        0, T T h h h h h h V x x B K P P B K x A A     
which after using the congruence property with the matrix

1 X P   and a change of variables hh M KX  gives     0 0. * h h h V x X B A M      (2.26)
This is a co-negativity problem. To get more relaxed conditions than the trivial natural option for those TS models which do not have all linear models activated at once [START_REF] Johansson | Piecewise quadratic stability of fuzzy systems[END_REF]. This approach cannot be applied to TS models constructed by the sector nonlinearity approach because all the rules are active at the same time. On the other hand, non-quadratic Lyapunov functions (or fuzzy Lyapunov functions) have first been used by [START_REF] Blanco | Non quadratic stability of nonlinear systems in the Takagi-Sugeno form[END_REF][START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF]:

  1 1 2 *0 i i i X B M A    ,   12 , 1, 2, , i i r    ,
      1 , 1,2, , 0, . r i T T i i i i V x x x i h z P P P r             (2.27)
The analysis of [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF] is based on the existence of scalars i

 such that   ii h z     1,2, , i
r  , these bounds must be checked a posteriori. A way to avoid this problem has been presented in [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF]: a path-independent Lyapunov function has been proposed. This type of Lyapunov function avoids the time-derivative of the MFs and provides global results; however, it is restricted to a specific family of TS models and the controller design leads to conditions in bilinear matrix inequality (BMI) form. In [START_REF] Bernal | Nonquadratic stabilization of continuous-time systems in the Takagi-Sugeno form[END_REF] another controller structure has been proposed:

    1 1 1 1 . r r i i i i i i h h h z K h z P u x K P x                    (2.28)
The controller (2.28) is known as a non-PDC control lawit first appeared in the discretetime framework [START_REF] Guerra | LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF]) -; the stabilization conditions are derived via a non-quadratic Lyapunov function of the form  

1 T h P V x x x  
; this approach allows the

inclusion of   ut   into the MFs, however   ii h z   must still be given a priori.
Example 2.3 Consider the following nonlinear system [START_REF] Pan | Nonquadratic stabilization of continuous T-S fuzzy models: LMI Ssolution for a local approach[END_REF][START_REF] Tanaka | A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions[END_REF]:

  3 . x ax x b u    (2.29)
By employing the sector nonlinearity approach, the following TS model is obtained:

   2 1 . i i i i x h z A x B u     (2.30) where 12 A A a  , 3 1 B d b  , 3 2 B d b    ; the MFs are     1 3 3 3 1 0 2 h z w x d d    and     1 3 3 3 2 1 2 h z w d x d   
; they hold the convex sum property in the compact set

  : x x d    . By computing   1 hz, it gives       2 2 3 1 1 33 33 . 22 h z x x x ax x b u dd       (2.31)
Via this simple example, it can be seen that since   1 hz depends on the control law to be designed, the assumption on an a priori bound of the time-derivatives of the MFs is an important drawback [START_REF] Tanaka | A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions[END_REF][START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF]. The validity of these conditions must be checked a posteriori, which makes their usefulness questionable.  Recently, another alternative has been stated in [START_REF] Bernal | Generalized nonquadratic stability of continuous-time Takagi-Sugeno models[END_REF][START_REF] Guerra | A way to escape from the quadratic framework[END_REF]; the main idea is to develop local stability conditions instead of global ones by bounding the partial derivatives of the MFs; these bounds can be calculated a priori and incorporated in the LMI conditions: therefore they no longer need to be verified. This idea has been extended to the controller design in (Guerra et al., 2012a;[START_REF] Pan | Nonquadratic stabilization of continuous T-S fuzzy models: LMI Ssolution for a local approach[END_REF].

When the full state is not available for control tasks, an observer can be implemented. In case of the state observer for the TS model (2.25), whose output is given by

h y C x  , two
cases can be considered [START_REF] Lendek | Stability analysis and nonlinear observer design using Takagi-Sugeno fuzzy models[END_REF]: 1) the MFs depend only on measured premise variables; 2) the MFs depend on some of the unmeasured variables. This thesis considers the former case, i.e., the nonlinear terms must depend on available (measurable) variables. State observers usually have the form:

  ˆˆˆˆ, , h h h h x A x B u L y y y C x      (2.32) where   1 r h i i i L h z L   
is the observer gain. By defining the estimation error

ê x x , its dynamics yield   h h h e A L C e 
. Thus, via a Lyapunov function   T

V e e Pe  , 0

T PP  
the following conditions are obtained:

    0 *0 , h h h V e P N A C      (2.33)
where hh N PL  . In order to achieve LMI conditions, sufficient conditions for (2.33) to hold are obtained via sum relaxations (see Appendix B). For the case of unmeasurable premise variables the interested reader is referred to [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Ichalal | Design of observers for Takagi-Sugeno systems with immeasurable premise variables: an L2 approach[END_REF].

The discrete-time case

Consider a discrete-time TS model of the form

      1 , h h x k A x k B u k    (2.34)
where  

x n xk is the state vector,   u n uk is the input, k stands for the current sample.

Recall the short hand notation

    1 r h i i i A h z k A    and     1 r h i i i B h z k B   
. In addition, in the sequel   

T k k k V x x Px 
 , the stability of (2.34) when   0 uk  is ensured if the following LMI problem is feasible [START_REF] Tanaka | Stability analysis and design of fuzzy control systems[END_REF]:

  0, 0, 1,2, , . T i i i r P A PA P       (2.35)
In [START_REF] Wang | An approach to fuzzy control of nonlinear systems: Stability and design issues[END_REF], a PDC control law of the form (2.24) is proposed. A stabilizing PDC controller of the form (2.24) can be designed. Via the Schur complement the resulting inequality is:

  1 0, with , 0. h h h h h X M A K X X X P X B M                (2.36)
Sufficient LMI conditions for (2.36) to hold can be obtained via sum relaxations (see

Appendix B).

Contrary to the continuous-time case, since the appearance of the non-quadratic Lyapunov function [START_REF] Guerra | LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF] analysis and design conditions for the discrete-time case has witnessed several improvements. This is thanks to the fact that the derivatives of the MFs do not appear. Thus, a non-PDC controller has been proposed [START_REF] Guerra | LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF]):

1 .

k h h k P u Kx   (2.37)
Consider the following non-quadratic Lyapunov function [START_REF] Guerra | LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF]:

        1 1 , 1, 2, , 0, . T T k k i i i i k i r V x x x i h z k P P P r               (2.38)
The controller design conditions are:

  * 0. h h h h h h P B K P AP            (2.39)
Another controller proposed in [START_REF] Guerra | LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF] is

        1 1 1 1 , k i i i i k h h r k r i i u h z k K h z k G K G x x                     (2.40)
which is a generalization of (2.37) in the sense that in the worst case hh G P  . The Lyapunov function used to synthesize this controller is

              1 1 1 1 . r r r i i T T k k i i i i i i i k Vx h z k G x h z k P h z x kG                            (2.41)
The stabilization conditions are:

  * 0. h h h h h h h h T P A G G P G B K                (2.42)
Within the discrete-time framework, the  -sample variation has been developed in [START_REF] Kruszewski | Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: a new approach[END_REF]. The approach is based on the idea to avoid the requirement for the difference of the Lyapunov function

          1 0 V x k V x k    to decrease at each consecutive sample. Instead it is required that     V x k  decreases at every  -samples           0 V x k V x k     .
Recently, a novel Lyapunov function has been proposed in (Guerra et al., 2012b) for the observer design, that is:

        1 , 1,2, 1 0, . , T T k k i i i r i k i V h z k P P P e e e i r               (2.43)
The idea is to use past samples in the MFs of the observer gains as well as in the Lyapunov function, thus the proposed observer reads:

  1 1

ˆˆˆˆ,

.

k h k h k k k k h k hh hh x A x B u G L y C y yx          (2.44)
This small change allows adding extra degrees of freedom to the LMI conditions without altering the number of conditions and thus achieving relaxed results. The delayed approach has been generalized in [START_REF] Lendek | Controller design for TS models using delayed nonquadratic Lyapunov functions[END_REF] for controller design.

Remark 2.6. One of the main advantages of the TS-LMI framework (both the continuous and discrete time case) is that one can easily include specifications and/or constraints such as decay rate, H ∞ disturbance attenuation, constraint on the input, constraint on the output, etc. (Lendek et al., 2010, Chapter 3;Tanaka and Wang, 2001, Chapter 3).

TS descriptor models

This section presents a more general state space representation. So-called descriptor models naturally appear when dealing with mechanical systems [START_REF] Lewis | A survey of linear singular systems[END_REF][START_REF] Luenberger | Dynamic equations in descriptor form[END_REF]. Consider the following descriptor model:

    ,, x f u g x x 
(2.45)

where   xx nn gx   may be a rank deficient matrix, i.e.,     x rank g x n  . This is the reason for the names for (2.45): Differential-algebraic equations (DAE) systems, partial state space representation, singular systems, etc. [START_REF] Dai | Singular control systems[END_REF]. Nevertheless, in this work the matrix   gx is considered full-rank at least in a compact set of the state space  . For instance, in mechanical systems, the matrix   gx contains the inertia matrix and is positive definitive [START_REF] Guelton | An alternative to inverse dynamics joint torques estimation in human stance based on a Takagi-Sugeno unknown-inputs observer in the descriptor form[END_REF][START_REF] Lewis | Robot manipulator control: Theory and practice, Control Engineering Series[END_REF][START_REF] Spong | Robot Modeling and Control[END_REF][START_REF] Vermeiren | Modeling, control and experimental verification on a two-wheeled vehicle with free inclination: An urban transportation system[END_REF].

Moreover, a nonsingular matrix   gx allows using classical ODE solvers.

The class of nonlinear descriptors treated in this thesis can be expressed as the affine-in control model (see Remark 2.1):

      , x A x u Ex x B x   (2.46) where x n
x  is the state vector and

u n u 
is the control input;   Ax,   Bx, and   Ex are matrices of appropriate sizes, whose entries may be non-constant.

The sector nonlinearity methodology has been extended to descriptor models in [START_REF] Taniguchi | Fuzzy descriptor systems: stability analysis and design via LMIs[END_REF]; hence, the a p nonlinearities in the right-hand side of ( 2 Therefore, the nonlinear descriptor model (2.46) can be exactly rewritten in the considered compact set as the following TS descriptor model [START_REF] Taniguchi | Fuzzy descriptor systems: stability analysis and design via LMIs[END_REF]:

     1 1 , e a r j j i i r j i i z x h z A x E B v u       (2.47) or in shorthand notation v h h E x A x B u ;
where matrices i A and i B , represent the i-th right- hand side local model of (2.47), while j E is the j-th left-hand side local model of the TS descriptor model.

General definitions and properties

In order to correctly place the reader in the context of the current research a short summary of results for linear singular systems follows. Consider the linear descriptor system [START_REF] Luenberger | Dynamic equations in descriptor form[END_REF]: 

, x Ax B Cx E u y    ( 2 

 

x rank E n  . In the case of autonomous singular systems 0 u  , consider the following definitions [START_REF] Dai | Singular control systems[END_REF]:

Definition 2.1.  The pair   , EA is said to be regular if   det 0 sE A  .  The pair   , EA is said to be impulse-free if       deg det sE k A E ran   .  The pair   , EA is said to be stable if   sE A  is Hurwitz.
 The pair   , EA is said to be admissible if it is regular, impulse-free, and stable.

For a given pair   The matrices M and N can be computed via the singular value decomposition of the matrix E followed by scaling of the bases. Thus the singular system (2.48) is casual (impulse-free) if and only if   4 det 0 A  . Hence, the stability of (2.48) is determined [START_REF] Dai | Singular control systems[END_REF]) by the stability of

1 1 2 4 3 A A A A  
. A similar discussion applies for discrete-time singular systems.

Now, let us recall the TS descriptor model with

  1 e v j j r j E v z E    regular in  : ,, v h h h x A x B C ux Ey   (2.50) with y n y 
being the output of the system.

In [START_REF] Taniguchi | Fuzzy descriptor systems: stability analysis and design via LMIs[END_REF], the open-loop system (2.50) with 0 u  is expressed as , wit 0 0 h , . 00 ,

x x x x n nn hv hv n hv x Ex A x x E A x I I AE                 (2.51)
This procedure is the so-called descriptor redundancy approach in [START_REF] Tanaka | General framework and BMI formulae for simultaneous design of structure and control systems[END_REF]. The TS descriptor system (2.51) is quadratically stable if

        2 , dV x t xt dt   (2.52)
where

        TT x t x t V E Px t 
and the following conditions are satisfied 1)

  det 0 hv sE A  . 
2) The open-loop is impulse free. Note that the representation (2.51) is impulse free due to

  det 0 v E  .
3) There exists a common matrix P and 0   such that:

22 x x nn P   , 0 TT E P P E  ,   det 0 P  .

Regular  

Ex: motivation (part I)

A large part of the thesis focuses on the case when the descriptor matrix   Ex is invertible. A motivation for this lies in models based on mechanical fundamentals. Generally, when studying the dynamics of robotic systems, a nonlinear descriptor model is obtained [START_REF] Guelton | An alternative to inverse dynamics joint torques estimation in human stance based on a Takagi-Sugeno unknown-inputs observer in the descriptor form[END_REF][START_REF] Lewis | Robot manipulator control: Theory and practice, Control Engineering Series[END_REF][START_REF] Luenberger | Dynamic equations in descriptor form[END_REF]. Since the matrix   Ex is the inertia matrix and is therefore nonsingular and positive definite in  , the descriptor model (2.46) can be written in the standard state-space form (2.4): Ex  .

            11 , x E x A x x E x B x u A x x B x u

3.

The closer the TS model is to the nonlinear model structure the 'more natural' it is.

To summarize, keeping the descriptor structure may significantly reduce the number of local models as well as the number of LMIs; thus, it may increase the feasibility set [START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF][START_REF] Taniguchi | Fuzzy descriptor systems and nonlinear model following control[END_REF]. In order to clarify these points, the following example is chosen.

Example 2.4. Consider the "Futura pendulum" system in descriptor form [START_REF] Fantoni | Non-linear control for underactuated mechanical systems[END_REF]: 

    , x x A x B E xu   (2.54) with:                           2 22 2 2 4 2 4 2 3 
1 1 2 23 2 1 0 0 0 0 0 0 1 0 0 0 ,, 0 0 0 sin cos 1 0 0 cos 0 0 0 1 0 0 0 0 1 0 0 0
m aI L   , 2 11 bm l  , 1 1 0 c m l L  , 2 1 1 1 m dJ l  
, and 

    1 2 1 0 , 0 a I Ex Mx          (2.55)
where

            2 1 2 2 2 2 2 2 2 2 cos 1 , sin . cos sin a d c x x ad c db c x c x a b x M                
The standard state space model is

      1 1 . x E x A x x E x Bu     (2.56)
The nonlinearities in (2.56) Stability analysis as well as controller design for TS descriptor models has been introduced in [START_REF] Taniguchi | Fuzzy descriptor systems: stability analysis and design via LMIs[END_REF]. In order to decouple the matrix v E , the system (2.50) is rewritten by using the so-called descriptor-redundancy approach (or augmented system) used in [START_REF] Tanaka | General framework and BMI formulae for simultaneous design of structure and control systems[END_REF]. The procedure is as follows: consider and ,. 0

h h v h xx x B u E x y C x xA    
Using an augmented state vector

T T T x x x    , we have , , hv h h B Ex A x y u C x    (2.57) 42 with 0 00 I E     , 0 hv h v I A AE         , 0 h h B B     
, and

  0 h h C C 
. Sufficient conditions for the stability of (2.57) when 0 u  are obtained via the following Lyapunov function [START_REF] Taniguchi | Fuzzy descriptor systems and nonlinear model following control[END_REF][START_REF] Taniguchi | Fuzzy descriptor systems: stability analysis and design via LMIs[END_REF]:

  , 0. T T T T x x E Px E V P P E   
(2.58)

The time-derivative of (2.58) is 

    . T T T T T T T hv hv x x E Px x P E V P A x x A P x     (2.59) Hence,   0 V x  implies 0 T T
                 (2.61)
The regularity of 4 P is guaranteed by the block [START_REF] Estrada-Manzo | Static output feedback control for continuous-time TS descriptor models: decoupling the Lyapunov function[END_REF][START_REF] Estrada-Manzo | Static output feedback control for continuous-time TS descriptor models: decoupling the Lyapunov function[END_REF]. In effect, if (2.61) holds, then has been proposed in [START_REF] Taniguchi | Fuzzy descriptor systems and nonlinear model following control[END_REF], where 

4 4 0 T T v v EE P P    also holds. Since v E is nonsingular   0 0 0, 0 v Ex x    , let
ux nn ij K   ,   1,
  . hv h hv B E A x K x   (2.63)
The time-derivative of the quadratic Lyapunov function (2.58) is:

      . T T T T T T T T hv h hv hv h hv x x E Px x P Ex x B K x x P B K x V A P A       (2.64) Thus       *0 0 T hv h hv V x B AP K    
 . LMI conditions are achieved by using the congruence property with 

N K P X K N         , (2.64) produces   3 3 1 1 3 4 4 4 0, 0. * v v T T T T h h h v XX X B N X E A X E X X E X               (2.65)
Sufficient LMI conditions can easily be obtained via sum relaxations.

Extensions to the previous results have been proposed by [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF] via the following quadratic Lyapunov function: 

  1 1 1 1 , 0, T T T T T hh hh hh x x E P x x P x V E P E P         ( 2 
  1 1 1 1 0. hv hv K P K x u x P         (2.67)
The conditions for designing (2.67) are:

  3 3 1 1 3 4 4 4 0, 0. * T h h T T T h h h v h v h v h h P A P PP P B K E P P E P E               (2.68)
For the case when the full state is not available, the following observer has been designed in (Guerra et al., 2004): via any technique (pole-placement, linear quadratic regulator, etc.) and using (2.71) to verify the convergence of the estimation error are given in [START_REF] Guelton | An alternative to inverse dynamics joint torques estimation in human stance based on a Takagi-Sugeno unknown-inputs observer in the descriptor form[END_REF]Guerra et al., 2004):.

  ˆˆˆˆ, , hv h hv h Ex A x B L C yy x u y      ( 2 
In what follows a preliminary technical result is stated on the equivalence between approaches involving descriptor-redundancy and Finsler's lemma in the case of continuoustime descriptors.

Relation between descriptor-redundancy and Finsler's lemma

For the analysis and design of controllers/observers for the TS descriptor model (2.50), the descriptor-redundancy approach has been used. This approach allows separating the matrix v E from the derivative of the state vector. Briefly, the descriptor-redundancy approach consists in adding a virtual state variable to the original expression, and rewriting the model (2.50) as a singular system [START_REF] Tanaka | General framework and BMI formulae for simultaneous design of structure and control systems[END_REF][START_REF] Taniguchi | Fuzzy descriptor systems: stability analysis and design via LMIs[END_REF].

An alternative to descriptor-redundancy is the Finsler's lemma (see Appendix A, Lemma A.1), which avoids the explicit substitution of the close-loop dynamics of the considered problem (de [START_REF] De Oliveira | A new discrete-time robust stability condition[END_REF]. Using this approach the closed-loop dynamics are rewritten as an equality constraint, the time-derivative of the Lyapunov function being an inequality constraint dependent on the state and its derivative.

In this section, we show that with the proper algebraic manipulations, the results (from the previous sections) obtained via the descriptor-redundancy approach can also be obtained using Finsler's lemma. To this end, recall the control law (2.67), i.e., 

  1 1 1 1 0. v h h hv h h hv v x E x A B K x A B K E P P x                (2.72)
The following Lyapunov function is employed 

  1 1 1 1 0 0 , , T T V x x P x P P      (2.73) its time-derivative gives   11 11 1 1 1 1 0 0. 0 TT T V x x P x x P x xx P xx P                     (2.74) By selecting 1 1 1 1 0 0 P P       , 1 1 h h hv v P A B K E         , x x   
  1 1 1 1 1 1 0 * 0, 0 h h hv v P A B E P K P                   (2.
    0. v h hv h h hv h v e E e e A L C e A L C E          (2.78)
The Lyapunov function under consideration is:

  (2.81) yields (2.71). Generally, in this work we will prefer writing the problems via descriptor redundancy for the continuous-time case and using Finsler's lemma for the discrete-time case.

Regular   Ex: motivation (part II)

To conclude this chapter, considering regular   Ex, we summarize the results for regular TS descriptors for the continuous case. LMI conditions exist only for the controller design, and the observer design remains a BMI problem. For the discrete-time case, to the best of our knowledge there are no results in the literature. Therefore there is room for improvements as will be shown in the following example.

Example 2.5. Consider a discrete time nonlinear descriptor model

      1 , , k k k k k k k k x x A x x x E y Bu C x     (2.82)
where   no solution was obtained either for classical non-quadratic (NQ) approach in [START_REF] Guerra | LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF]

2 1 k Ex        ,     1 cos 1 0.7 1.1 k x Ax          , 0 1 B     , and     11 sin / 0.2 T k xx Cx     ; with   2 1 11 x  . Since   Ex is regular for all 2 x         2 2 4 2 1 1 1 det 3 4 1 0 2 k x E x x x       ,
, i.e.,     22 2 1 r ii i h z k P    and               2 1 1 12 2 1 2 1 2 2 1 1 1 0, 1 x x x i rrr ii T i i i i i i i i i i i P k k k L C G h z h z h z G A G P                



or for the delayed non-quadratic (DNQ) approach in (Guerra et al., 2012b)

, i.e.,     1 1 xx x r ii i h z k P    and               1 2 12 2 1 2 1 2 2 2 1 1 1 0. 1 x x x x x x x rrr i T i i i i i i l i i i i i i i i i i h z h z h z GA P k k k G G L P C                    48 
Thus, what we can infer from this example is that even using recent results, there is no solution via a standard TS description. Whereas, using the descriptor formulation and associated LMI constraints a solution is available with a non quadratic Lyapunov function, as it will be shown in Chapter 4, Section 4.2.

Concluding remarks

This chapter briefly summarized the main results in the literature for TS models.

Motivated by mechanical systems, the TS descriptor model is introduced. Since this thesis considers the case when the descriptor matrix is invertible, it is always possible to obtain a standard state-space form; however, within the TS-LMI framework this may increase the computational cost.  To the best of our knowledge, there are no results in the literature for the discretetime case.

Solutions for the problems above are presented in the following chapters.

Chapter 3. State feedback controller design

This chapter presents improvements of the state feedback controller design for both continuous and discrete time TS descriptor models. In continuous-time, the use the Finsler's lemma leads to the enlargement of the solution set of previous results [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF].

For discrete-time TS descriptor models, results when the descriptor matrix is non-singular

    1 exists E x x 
  are presented. In this case, relaxations can be achieved by using past samples in the MFs of the Lyapunov function and the control law. A systematic procedure is also given that generalizes the past samples approach.

Continuous-time TS descriptor models

This section presents a relaxed approach for stabilization and H ∞ disturbance rejection of continuous-time TS descriptor models. It has been shown in [START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF][START_REF] Oliveira | Robust state feedback LMI methods for continuous-time linear systems: Discussions, extensions and numerical comparisons[END_REF] that it is possible to generalize results even under the quadratic framework by applying the well-known Finsler's lemma.

Thus, by exploiting the fact that Finsler's lemma allows decoupling the control law from the Lyapunov function, a new structure of the control law is used. The derived conditions are LMIs up to fixing a scalar parameter.

Problem statement

Consider the following TS descriptor model:

. v h h h h h E x A x B u D w y C x J w     (3.1)
The analysis and design for (3.1) have been performed by rewriting the TS descriptor as follows [START_REF] Taniguchi | Fuzzy descriptor systems: stability analysis and design via LMIs[END_REF]:

, . 0 h h h v h h x A x B u D w E x y C x J w        (3.2)
Then, by defining an extended vector 

I E     , 0 hv h v I A AE         , 0 h h B B      , 0 h h D D     
, and

  0 hh C C 
. In [START_REF] Taniguchi | Fuzzy descriptor systems and nonlinear model following control[END_REF], the stabilization of TS descriptor models has been studied via the PDC control hv ux K  . In [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF], relaxed conditions have been given using the following control law: . Thus, when 0 w  , the conditions for designing the stabilizing control law (3.4) are: 1 1 0

    1 1 1 1 0. hv hv K P K P x u x         (3.4)
T P P   and       3 1 3 4 4 : 0. hh v hh T h h hv v hh hh v hh P A E P B K E P P P                   (3.5)

Results

Stabilization

The aim is to stabilize (3.1) via the augmented system (3.3) with the following non-PDC control law: Remark 3.1. The control law (3.6) corresponds to a new control structure since classically the inverted matrix is the one used for the Lyapunov function (see (3.4)). The regularity of hhv G will be discussed later on.

  1 2 3 1 1 1 4 0 , hv hv h hv h h h hv hh v G x u K K K x GG x G              ( 3 
First, consider the stabilization problem without disturbances   0 w  . Substituting the control law (3.6) into the augmented TS descriptor (3.3) 

yields:   1 1 0. hv h hv hhv hv h hv hhv x B K A B K Ex A G x G I Ex             (3.7)
Consider the following Lyapunov function candidate:

  11 , 0, TT hhv hhv hhv TT V x x E P x E P P E       (3.8) with 1 3 4 0 hhv hhv hhv P P PP        , 1 1 1 1 1 1 4 3 1 4 0 hhv hhv hhv hhv P P P P P P             
, with 1 1 T P P  . 1 P is chosen as a constant matrix to prevent the time-derivatives of the MFs emerging in the following developments [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF], i.e.,

1 0   T hhv

EP

. Then, the time-derivative of (3.8) reads:

  1 0. T hhv hhv T T T V x x x x E P P Ex     (3.9)
Condition (3.9) can be expressed as 

1 0 0. 0 T T hhv hhv x x P Ex Ex P                      ( 3 
         , 1 hv h hv hhv G A B K I         , and 2 2 x x n n   is a free matrix. By selecting 1 T hhv hhv G P        , 0
  , and multiplying by the full-rank matrix ,

T hhv hhv dia G g P   
 the left-hand side and by its transpose ,

T hhv hhv diag P G   
 the right-hand side of (3.11) gives

  0 0. 0 T T hhv hv h hv hhv hh h v hv I A B K P G G G I                     (3.12)
The following theorem summarizes this result.

Theorem 3.1. The TS descriptor model (3.1) with 0 w  under control law (3.6) is asymptotically stable if, for a given 0   , there exist matrices

1 2 1 i ij P , 1 2 1 i ij G , 21 ij K ,   12 1, 2, , , a ir i  ,   1 1, 2, , e jr 
as defined in (3.6) and (3.8), such that:

1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 2 ,; 2 0, 0, , 1 , j j j j i i i i i i i i i a i i i r jj             (3.13) hold with         1 1 1 2 1 2 1 1 12 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 . i ii j i i j i j i i i j i i j i j i i j i i j i i ii j i T i j i j AB A B P P K G P G GK                 (3.14)
Proof. Developing (3.12), we obtain: 

        : 0, hv hhv h hv T hhv hv hhv h hv hhv hhv h h h h v v A B K AB G K P P P G G                       ( 3 
          1 1 0. T hv hhv h hv hhv hhv hhv hv hhv h hv hhv A B K P P A B K P G G G              (3.16)
Suppose that hhv G is singular. Therefore there exists 0 0

x  such that 0 0  hhv G x
, hence (3.16) yields:

        1 0 0 1 0, T T h hv h hv hhv hhv hhv h hv hhv T x B K B K P P P B K P x                 (3.17) which is equivalent to           1 0 0 1 0. T T T h hv hhv hhv h hv hhv hhv h v T h x B K P P B K P P P x                   (3.18)
After some algebraic manipulations (3.18) gives 

         1 0 1 1 0 1 1 0. T T T T T T
P P x                (3.19)
Multiplying by 0   and grouping terms results:  

          1 0 1 0 0, T T T h hv hhv hhv h hv T T T T hhv hhv hhv hhv hhv hhv x B K P P P B K P P P P P x           (3.
1 1 12 1 1 1 4 3 1 2 4 1 0 , hv hh hh hv hv h h v h x x G G G G x G u K K x               (3.21) with   1 1 1 1 1 2 4 3 1 1 hv hv hv hh hh hv G G G K G K      and 22 1 4 hv hh G K   . Knowing that   1 v h h A x E x B u   , (3.21) yields         11 1 2 2 11 2 1 2 1 11 2 1 2 . v h v h v h v h v h v h E x E B u I E B u E u x A x u I E A A B E x               (3.22)
The existence of the inverse of

1 2   v h I E B can be deduced from the matrix inversion lemma:     1 1 2 2 2 1 v vh h h I B E I E B B      
, which means that the regularity of 

        1 1 1 1 1 1 0. hv h hv T hv TT hhv hhv hhv hhv hhv hhv hhv h hv hhv hhv G G G G A B K P P A B K P P G                              (3.23) Define 1 1 1 1 1 1 1 34 4 3 1 4 0 0               hv hhv hh hh hv hh X X G X G X G GG G ; the (1,1) block of (3.23) writes   0 hv h hv TT X A X B K X     or:               1 4 3 2 4 2 1 1 3 0. hh T T T T h h v h v h XB X B X B B A E X A X E                      (3.24) Since (3.24) holds, then     4 2 0 h T v XB E      also holds. Suppose
matrices 1 0.8 0 0.2 0.5 E      , 2 4.7 0 0.4 0.7 E      , 1 4.3 4.8 1.7 1 A       , 2 4.4 0.5 4.6 3.9 1.9 A         , 1 5.6 0.9 B     , 2 8.1 0.5 B       
, and the parameter 0   . The maximum value of  for which conditions in [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF] were found feasible is 0.17 there is no solution for Theorem 1 in [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF], while employing the conditions of Theorem 3.1 with 0.1   the following values were found: 

      (1) (3) 
K P G K K K G G                                            
.03 0.28 0.01 . 

For simulation proposes, the MFs are chosen as  

  2 1 1 11 h x   , 21 1 h h  ,   12 1 2 vx  , 21 1 v v  .
1 1 0. hv h hv hhv hv h hv h hhv h x B K A B K I Ex A G x D w D Ex G w                   (3.25)
Recall that the output is implies (3.26). Thus, condition (3.27) gives:

1 2 0 0 0. 0 T hh TT h T TT h h h h hh h hv v h P P w J J I x C C C J w x Ex Ex CJ                               (3.28) Taking 1 1 2 a 0 0 , n 0 d T T hh TT hh T h h h h hv hhv hv h hv hhv h h P P A B K I J J I C C C J GD CJ                 via Finsler's lemma we have   1 1 2 0 0 0, 0 T h TT h h hhv hv h hv hhv h h h T h h T h h h v C C C J GD C P A B K I JI J P J                   (3.29)
where

  2 x w x n n n  
. Condition (3.29) guarantees (3.28) under restriction (3.25).

Multiplying (3.29) by , ,

T hhv hhv diag P G I   
 on the left-hand side and by its transpose on the right-hand side and choosing 1 0

T hhv hhv P G          , 0   renders   2 0 0 0, 0 0 T T T T hhv h h hhv hhv hhv T hv hhv h hv hhv h hhv T hh TT hh h h hv h G C C G G G C J G D G I I A B C G J KP J J I                     
which can be expressed as

            2 0 0 0. TT hv hhv h hv hhv h T hhv hv hhv h hv hhv h T T T h hhv hhv h h h hhv A B K A B K P G GC G G C G P D I D J J P                                  
Finally, applying the Schur complement yields

                  2 : 0. 0 hv hhv h hv T hhv hv hhv h hv hhv h v hh T T hv hhv h hh h h h v G GG D D CG A B K A B K P P P I JI                                    (3.30)
Based on the developments above, the following theorem can be stated:

Theorem 3.2.
The TS descriptor model (3.1) under control law (3.6) is asymptotically stable and ensures disturbance attenuation 0   if, for a given 0   , there exist matrices

1 2 1 i i j P , 1 2 1 i i j G , 21 ij K ,   12 , 1, 2, , a i i r  ,   1 1, 2, , e jr 
as defined in (3.6) and (3.8), such that 

1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 2 ,; 2 0, 0, , 1 , j j j j i i i i i i i i i a i i i r jj             (3.31) hold with                   1 1 2 1 1 2 1 1 2 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 12 1 1 1 1 2 1 1 1 2 . 0 j i j j i i j j i i j j i i j i i j i i i i i i T i i i j i T j i i T i i i i j i G AB A B P P P D D K G G K G JI C I                                    (3.
0.8 0 0.2 0.5 E      , 2 4.7 0 0.4 0.7 E      , 1 4.3 4.8 1.7 1 A       , 2 
3.9 4.6 3.9 1.9 

A       , 1 5.6 0.9 B     , 2 8.1 0.5 B     , 1 2 10 01        C C , 1 0.5 0 D       , 2 0 0.5 D       , 1 J   , 2 J   ,

Discrete-time TS descriptor models

This section provides LMI conditions for the stabilization of discrete-time TS descriptor models by following recent advances: 1) using past samples in the MFs of the Lyapunov function and the observer gains as in (Guerra et al., 2012b), 2) a generalization via two different non-quadratic Lyapunov functions as in [START_REF] Lendek | Controller design for TS models using delayed nonquadratic Lyapunov functions[END_REF].

Problem statement

Consider the following discrete-time TS model in the descriptor form:

1 . k k k h k k h k h v k hh E x A x B u D w y C x J w      (3.33)
For the controller design purpose, the following nonlinear control law is used:   

1 , k k u x   ( 3 
1 1 . y v k h h h k k h k h k k x A B x w w D x E CJ      (3.35) -2 -1.5 -1 -0.5 0 0 0.5 1 1.5
  , 0. k k k TT V x x x   (3.36)
The structure of depends on the case treated. The variation of the Lyapunov function

(3.36) reads:   11 0. TT k k k kk V x x x x x       (3.37)

Results

Stabilization

The closed-loop system (3.35) with 0 k w  can be written as the following equality constraint:

1 1 0. k h h v k x AB x E             (3.38)
The variation of the Lyapunov function, i.e., (3.37) can be expressed as:

  1 1 0 0. 0 k T k k k k x x Vx x x                          (3.39) Denote 1 k k x x      , 1 h h v A E B         , and 0 0       
; via Finsler's lemma the inequality (3.39) and the equality constraint (3.38) can be combined in the following inequality: 1) The non-quadratic (NQ) Lyapunov function [START_REF] Guerra | LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF].

  1 0 0, 0 h h v A E B                    ( 3 
2) The delayed non-quadratic (DNQ) Lyapunov function (Guerra et al., 2012b).

Non-quadratic approach

The following result uses the Lyapunov function (3.36) with

1 T h h h P G G    , i.e.,               1 1 1 1 . a a a T r r r T i i i i i i i i i k k k V x x h z k G h z k P h z k G x                         (3.41) Theorem 3.3.
The TS descriptor model (3.33) with 0 k w  is asymptotically stabilized by the controller

1 k hv h k K G x u   if there exist matrices 22 0 T ii PP  , 21 ij K , and 2 i G ,   12 , , 1, 2, , xa i i i r  ,   1 1, 2, , e jr 
such that:

1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 , ; , 0, , 0, , 1 , x x x x ii j j j j i i x ii i i i i i i x i a i i i r i j i j             (3.42) are satisfied with   2 1 12 1 2 1 2 1 1 1 . x x x x i T i i i j i i i T j i j i i j i P G E G A B K GP E                 (3.43)
Proof. Recall (3.40) and consider the controller gains

hv K  and h G  . The Lyapunov function is selected as   1 TT k k h h h k P V x x G Gx  
. By using the congruence property with the full-rank matrix ,

T T h h diag G G    
 and selecting the free matrix as

1 0 T h G        , (3.40) gives   : 0. T h h h hv v h v T hhh v h h h G E G G P A B K EP                    (3.44)
Finally, using the Lemma B.3 yields (3.42), thus concluding the proof. ■ Different conditions can be obtained when the structure of the Lyapunov function changes.

The following theorem uses another structure of the Lyapunov function (3.36), . Then, (3.40) gives

1 h P   , i.e.,       1 1 1 , a k k k r T T i i h i k k V x x h z k P x x P x             (3.
  1 1 1 0 0. 0 h h h hv hv v h P A B G K P E                        (3.46)
From (3.46), two results can be stated depending on the matrix used when the congruence property is applied. Theorems 3.4 and 3.5 summarize these results. 

xa i i i r  ,   1 1, 2, , e jr 
such that:

1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 , ; , 0, , 0, , , 1 x x x x ii j j j j i i x ii i i i i i i x i a i i i r i j i j             (3.47) are satisfied with   2 1 2 1 2 1 12 1 2 1 1 2 1 1 1 . x x x x i i i i i i T j i j j i i i T jj j i i j i G A B K E GP G E P P P                (3.48)
Proof. Recall (3.46). By congruence with the matrix ,

T hv h diag G P    
 and setting the free matrix as Lyapunov structures [START_REF] Lendek | Construction of extended Lyapunov functions and control laws for discrete-time TS systems[END_REF]. This means that for one control problem the conditions in Theorem 3.3 could be feasible while those of Theorem 3.4 could be unfeasible;

1 0 T h P        , (3.46) gives   1 0. : T hv h hv v T hhh h hv h hv v v h h h GP A B K E G G E P P P                       ( 3 
or vice-versa. 0.9 0.2 0.9 0.2 0.9 1 , , , 0.4

1.3 0.4 1.3 1.5 0.5 0.9 1 1 1 , , . 1.5 0.5 0 0 a a a E E A bb a b b A B B                                                          
The real valued parameters are defined as 3 3 a    and 1. 

xa i i i r  ,   1 1, 2, , e jr  such that: 11 1 1 2 2 11 1 1 1 1 1 1 1 2 2 0, , 0 , ; , ,, 1 x x x x ii j j j j i i x i i i i i ii i x i a ij i i i r ij             (3.50) are satisfied with       2 1 2 1 2 1 1 2 1 2 1 1 2 1 1 1 2 1 2 1 12 . 0 x x x x x i i T i j i j j TT i i i i j i j i i i i j i i i i j i i GP GE G AB FF F KE P                       (3.51)
Proof. Recall (3.46). By using the congruence property with the full-rank matrix

, T T hv hhh diag G F    
 and setting the free matrix as

1 0 T hhh F        , (3.46) gives:   1 1 0. T hv h hv T T T h hv h hv v v hhh hhh hhh h hhh G G E F F F GP A K F B E P                       (3.52)
Applying the Schur complement on the entry (2,2) gives: 

-1.5 -1 -0.5 0 0.5 1 1.5 -1 -0.5 0 0.5 1 a b       1 : 0 0, T hv h hv v T T h hv h hv v v hhh hhh hhh hhh h G A B K E PG G P E F F F                     (3.
T v h h h T v E G G E P        . Assume that v E is singular; then, there exist 0 0 x  such that 0 0 v Ex  ,
    1 x i h z k  ,   1, 2, ,

Delayed non-quadratic approach

This section introduces a way to improve the results obtained in the previous one. The main idea is to use delays in the MFs of the Lyapunov matrix, thus changing the structure of the controller matrices. This idea has been introduced in (Guerra et al., 2012b).

Recall the non-PDC control law:

            1 1 1 1 . a e a k i j ij i i r r r i j i k u h z k v z k K h z k G x              (3.54)
In order to introduce a delay in the MFs of (3.54), the simplest options for the Lyapunov function are:

            1 1 1 1 or 2) . 1) 1 a a x x x r r T T i i i i k k k k k k i i V x x h z k P x V x x h z k P x                     
Since the controller must be causal, i.e., no future information can be implemented, it should not contain positive delays. On the one hand, Option 1 implies that the variation of the Lyapunov function

            1 V x k V x k V x k     depends on the advanced MF -2 -1 0 1 2 -1 -0.5 0 0.5 1 a b     1 x i h z k    1, 2, , x a i r 
, which cannot be introduced in the control, i.e., 

1 TT k k k h h h P V x x G x G     
and the control law

1 kk hh v h u K G x    . We obtain (3.42) with   1 12 1 1 2 1 1 2 2 1 2 , x x x x i T i i i i i j j i i i T ij j ii A P G E G G P B K E                (3.55)   12 , , 1, 2, 
,

xa i i i r  ,   1 1, 2, , e jr  . For the delayed Lyapunov function   1 T k k k h P V x x x   
and the control law

1 kk hh v hh v u K G x    we obtain (3.47) with   2 1 2 1 1 12 1 2 1 1 2 1 1 2 2 1 2 , x x x x x x T j i j j i i i T j i i i i i i i i i i j i j i j i G A B K E GP G E P P P                 (3.56)   12 , , 1, 2, , xa i i i r  ,   1 1, 2, , e jr 
. An improvement leads to (3.50) with

      2 1 2 1 1 1 2 1 2 1 1 2 1 1 1 2 1 2 1 1 2 2 , 0 x x x x x x x x x T i j i j j TT i i i i j i j i i i i i i i j i i i i i i i j i i i G A B K E GP G E F F P F                 (3.57)   12 , , 1, 2, , xa i i i r  ,   1 1, 2, , e jr  .
Proof. The results follow direct from inequality (3.40) using the same lines of proofs as for Theorem 3.3, Theorem 3.4, and Theorem 3.5, respectively. Table 3.1 provides a sketch of the proof. ■ Since all the approaches involve three convex sums in   h and one convex sum in   v the number of LMI constraints is a a a e rr r r  and is the same for Theorems 3.3, 3.4, and 3.5, and their respective delayed approaches;. Table 3.2 summarizes the obtained results in terms of number of decision variables, where x n is the number of states, u n is the number of inputs, a r and e r are the number of linear models in the right-hand side and in the left-hand side, respectively.

Remark 3.7. Note that when using past samples in the MFs to achieve relaxations, double sum relaxations should be taken into account, i.e., cross products sharing the same sample index should appear between the decision variables and the system matrices. 

Approach

Step 1

Step 2

Step 3 Result Congruence with 

Theorem 3.3 Delayed 1 T h h h hh v h P K G G G          Congruence with , T T h h diag G G      Set 1 0 T h G     Lemma B.3 LMIs (3.42) with (3.55) Theorem 3.4 Delayed 1 h hh v hh v P K G        Congruence with , T h hh v diag G P      Set 1 0 T h P     Property A.
, T T hh v hhh diag G F       Set 1 0 T hhh F        Property A.
T h h h hh v h PG G K G           are implemented for parameter values 3 3 a    and 1.2 1.2 b    .
As can be seen from Figure 3.6, in this case, the delayed approach performs worse than Theorem 3.3. This is explained by the fact that there is no cross product at the same sample between the system matrix and the designed gain, i.e., no double sum relaxation scheme can be implemented on 

        1 1 1 1 1 1 a a x x x ii r r i i i i h z k h G z k A     .
3.3 1 T h h h PG G    hv h K G       2 0.5 1 x x a x u e x a n n r n n r nr       Theorem 3.4 1 h P   hv hv K G       2 0.5 1 x x a x u x a e n n r n n n r r       Theorem 3.5     2 2 3 0.5 1 x x a x u x a e x a n n r n n r n n r r        Theorem 3.3 Delayed 1 T h h h PG G      hh v h K G         2 0.5 1 x x a x u a e x a n n r n r n nr r       Theorem 3.4 Delayed 1 h P    hh v hh v K G         2 0.5 1 x x x u e x a a n n r n n n r r       Theorem 3.5 Delayed     2 2 2 3 0.5 1 x x a x u x a e x a n n r n n r n r n r        -2 -1 0 1 2 -1 -0.5 0 0.5 1 a b 3.2.2.

H ∞ control

In this subsection, the problem of disturbance attenuation is addressed. To end, rewrite the closed-loop system (3.35) as

1 1 . 0, h h v h k k h k k hk k x A B x C x J w w E D y                  (3.58) Then, consider Lyapunov function   kk T k V x x x  , then   2 0 TT k k k k k x V y y w w     
together with (3.37) writes

1 2 1 0 0 0 0. 0 TT k h h h h k kk TT k h h h T hk C C J J C J x C x xx w J I w                                  (3.59) Take 1 k k k x x w        , 1 h h v h E AB D         , 2 0 00 0 TT h h h h TT h h h h C C J JC C JI J           
.

Using Finsler's lemma, the equality constraint (3.58) together with the inequality (3.59) gives  

1 2 0 0 0 0, 0 TT h h h h h h v h TT h h h h C C J C ED J A JJ I B C                     (3.60)
where

  2 x w x n n n  
is a free matrix. The following results are based on inequality (3.60).

As in the previous section, the resulting LMI constraints depend on the selection of the Lyapunov matrix , controller gains , , and the slack matrix . For the sake of simplicity, only the proof of the first result is given. The others can be easily inferred from the previous developments. 

xa i i i r  ,   1 1, 2, , e jr  such that 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 , ; , 0, , 0, , , 1 x x x x ii j j j j i i x ii i i i i i i x i a i i i r i j i j             (3.61)             2 1 2 1 2 1 1 1 1 12 1 1 2 1 2 . 0 0 x x x x i TT i i i i j j i i j i j i i i T i i i i P G B K G G E P I AE D C J I G                              (3.62)
Proof. Recall (3.60). The Lyapunov matrix is selected as 

T T h h diag G G I      and selecting 1 0 0 T h G        , (3.60) yields       2 0, TT h h h h h TT h h h hv v v h h h T T T h h h h h h G A E P J C C G P G B K G G E C J G J I D                       (3.63)
which can be expressed as 

        2 0 0 0. 0 : TT h h h v T T h h h hv v v h h h hhh h h h T T h h G P C G B K G G E C A E P D G J J I                               
ii i F ,   12 , , 1, 2, , xa i i i r  ,   1 1, 2, , e jr 
such that:

1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 , ; , 0, , 0, , , 1 x x x x ii j j j j i i x ii i i i i i i x i a i i i r i j i j             (3.64) are satisfied with                     2 1 2 1 2 1 2 1 1 2 1 1 1 2 1 2 1 1 12 12 1 1 2 1 1 2 0 . 0 0 00 xx x x x T T i j i j i T i i i i j j i i i i i i j j i i i i i i i T i ii j j i GP A E F F G P D G B K F E I I G C J                                        (3.65)
Remark 3.8. Since One can easily extend the results of Theorems 3.6 and 3.7 using past samples in the MFs. For instance, consider (3.60) and set the Lyapunov matrix as

1 T h h h PG G      
and the control law as

1 kk hh v h K u Gx   
. Based on Theorem 3.6, the delayed approach gives (3.61) with:

            1 1 2 1 1 2 2 1 2 1 12 1 1 1 2 . 0 0 x xx x x i TT i i i i j j i i j i j i i i T i i i i i G B K G G E P AE D CJ I G I P                        (3.66)
Example 3.6. Consider the following nonlinear descriptor model: 

        1 ,, k k k k k k k k k k k Dy E x x A x x Bu x w x x J C w      (3.67) with                   1 
k k k T k x E x A x B x x C x x D x x J                            
where  is a real-valued parameter. Notice that since     

    11 cos 1 2 vx   , 1 2 1 v v  , 12 1 0 0 h   , 2 0 2 1 1 h   , 3 1 2 0 1 h   , and 4 1 2 1 1 h   ;
their corresponding weighting functions are:

    1 02 cos 1 2 x    ,   0 2 2 12 x    , 0 1 1 1 1
  , and   . The MFs hold the convex sum property in the compact set  .

Hence, an exact TS representation is:

              1 4 11 4 1 , e j j k i i k i k i k k i i i i j k i k r x B u D v z k E x h z k A y h z k C w x J w           (3.68)
with local matrices as follows: 

TT i E E A A B C C C AA DD C D D J                                                                               0.2 , 1, 2, , .

Generalization

As it can be inferred from the previous subsections, extending the Lyapunov function and/or the control laws can significantly improve the results. Therefore, a natural question that arises is the generalization of this approach. The question is: if we add some more past samples, does it contribute to the effort of reducing conservativeness? Moreover, is there a "good" choice for the structure (in the sense of which and how many past samples) of the Lyapunov function and of the control law? The section hereafter answers these questions. To that end, the following notation is adopted from [START_REF] Lendek | Controller design for TS models using delayed nonquadratic Lyapunov functions[END_REF]. 

            1 1 2 1 2 0 2 2 1 1 1 1 , n n h h n h h r r r n i i i H i i i i i i h z h z h z k d k d k d                  
where 0 H  is the multiset of delays pr i , is the part of the index that corresponds to the delays in AB HH  .

  12 0 ,,,d h n Hd d    ,   d   . The definition of 0  is similar, i.e.,         1 1 0 1 1 1 1 . n n v n h h v r r j j n j j j j kd v k z v d z               
        : max , C A B H C H H xH x x x   1 1 1 .

Definition 3.7. (Intersection) The intersection of two multisets A H and A H , denoted

A C B H H H , is such that C xH  :         min , C A B H H H x x x 
The following example illustrates the previous definitions.

Example 3.7. Consider the multiple sum:

                    1 5 1 2 3 4 5 2 3 1 5 4 0 234 1 1 1 1 1 1 2 3 3 . aaaaa rrrrr i i i i H ii i i i i i i i i i k k k h z h z h k k z h z h z               Then, 0 H  is given by   0 0, 1, 2, 3, 3 H       , or   , 1, 2, , 3 3 
H             . The cardinality of 0 H  is 0 5 h Hn     . The index set of the multiple sum 0 H   is   0 : 1, 2, , , 1, 2, 
,5

j j a H i i r j     . The multiplicity of the elements in 0 H  is   0 01 H   1 ,   0 11 H   1 ,   0 21 H   1
, and 

  0 32 H   1 . Now,
E A B D C J H H H H H k k k k k k k E x A x B u D w y x J w C      (3.69) with   0 0 0 0 0 0 0 E A B C D J H H H H H      
, i.e., the system matrices are without delays.

In what follows, for design purposes, consider the following non-PDC control law: . 

0 0 0 0 1 , K K G G k k H H u G x K   ( 3 
E A B K K G G k k H H H H K E x A B G x     ( 3 
  0 0 0 0 0 K G K G HH    
for the controller gains, the closed-loop TS descriptor (3.71) renders:

                        1 1 1 2 1 1 1 2 1 1 2 2 1 2 1 2 1 21 1 1 1 1 1 1 1 1
, ee e rr rr

j j i j j i i j r r i i i i j i i ki j j k j v z k E x h z k h z v z A B K k h z v k kk z G x                        



which is exactly the same as Theorem 3. 

A B E K K G G H k H H H k x A E K B G x             (3.72)
while the variation of the Lyapunov function (3.37) is:

  1 1 0 0. 0 k T k k k k x x Vx x x                          (3.73)
By taking

1 k k x x      , 0 0 0 0 0 0 0 1 A B K K G G E H H H H A B G E K         , 0 0        ,

and using

Finsler's lemma, inequality (3.73) under constraint (3.72) yields:

  0 0 0 0 0 0 0 1 0 0. 0 K G A E K B G H H H H A B G K E                    (3.74)
From here, as in Section 3.2.2, two main configurations of are considered:

Case 1: 

0 0 0 0 0 0 1 PP G G G G T H H H G P G    , thus   0 0 0 0 00 1 , PP G G G G T H T k k k H H V x x G P G x    75 
P P P P k k k k T PP   i j i j , P k P k H pr  i i , P k P k pr  j j , , GG kk G ij , G k G k H pr  i i , G k G k pr  j j , 0,1 k  , and 00 , KK K ij , 0 0 K K H pr  i i , 0 0 K K pr  j j , H   i ,   j , with   0 1 0 0 0 1 P P K G E G            0 1 0 0 0 0 1 P P B K A G G H H H H H H H H         , such that   00 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0. PP A G G B K K E G G G G E P P H TT H H H H H H H P A G B K E G E P G                (3.75) Proof. Recall (3.74). Choosing   00 0 0 0 0 1 P G G G P G T H T k k k H H V x x G P G x    , congruence with matrix 0 1 1 0 , G G G G T T H H diag G G     and selecting 1 1 1 0 G G T H G     0 
gives directly (3.75). ■

Employing the Lyapunov function in Case 2, the following can be stated. 

P k P k pr  j j , 0,1 k  , 00 , KK K ij , 0 0 K K H pr  i i , 0 0 K K pr  j j ,
and 00 ,

GG G ij , 0 0 G G H pr  i i , 0 0 G G pr  j j , H   i ,   j
, where

    0 1 0 0 0 0 P P B K A G H H H H H H H        , 0 1 0 0 0 P P K G E       such that   0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0. G G G G P P A G G B K K E P P P P E P P T H H H T H H H H H H H G G P A G B K E P P E P                  (3.76) Proof. Consider (3.74) with the Lyapunov function   00 1 PP T k k H k V x x P x  
. Applying the congruence property with the full-rank matrix

0 1 1 0 , G P G P T H H diag G P    
and choosing 

  0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0. G G P P G G A G G B K
P P P P k k k k T PP   i j i j , P k P k H pr  i i , P k P k pr  j j , 0,1 k  , 00 , KK K ij , 0 0 K K H pr  i i , 0 0 K K pr  j j , 00 , GG G ij , 0 0 G G H pr  i i , 0 0 G G pr  j j 0 
, and 00 ,

FF F ij , 0 0 F F H pr  i i , 0 0 F F pr  j j , H   i ,   j
, where:

    0 1 0 0 0 0 0 P P B K A G F H H H H H H H H         ,   0 1 0 0 0 0 P P K G E F        such that       0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0. 0 G G G G P P A G G B K K E F F F F E F F P P T H H H TT H H H H H H H H G G P A G B K E F F E F P                        (3.78) Proof. Consider (3.74) with the Lyapunov function   00 1 PP T k k H k V x x P x  
. Applying the congruence property with the full-rank matrix

0 1 1 0 , G F G F T T H H diag G F     and selecting 1 1 1 0 F F T H F     , (3.74) gives   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0. G G P P G G A G G B K K E F F F F E F F P P F F T H H H T T T H H H H H H H H H G P G A G B K E F F E F P F             (3.79)
Applying Property A.3 on the first block of (3.79) yields: Remark 3.9. Note that the standard TS model is a special case of the TS descriptor one when 0 E EI  ,  , where  stands for the empty set; therefore Theorem 3.9 and 3.10 recover their respective theorems in [START_REF] Lendek | Controller design for TS models using delayed nonquadratic Lyapunov functions[END_REF].

  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0. FF G G G G P P A G G B K K E F F F F E F F P P F F T H H H T T T H H H H H H H H H G G P A G B K E F E P F               ( 
Example 3.9. Consider the closed-loop system (3.71) with 

  0 0 0 0 A B E H H    and the multisets   0 0 0 0, 1 G K F HH H     ,   0 0 0 0, 1 G F K     , and   0 0 1 P P H    , i.e.,                                                     1 
j j i j H i i j j rr i i j i i i j i i i j j i j H j i j j P P h z v z P h z h z v z v z K kk KK G G h z h z z v z G k k k k k k k k                                            1 1 00 1 1 1 11 1 1 1 1 1 0, 1 , 0, 1 1 . 1 GG xx x aa a a e e xx x rr i r r r r j j i j H ij i i i i j j F F k k k h z h z v z v F k z          
Thus, conditions for Theorem 3.9 yield: 

                                  2 3 4 2 3 1 2 3 4 4 2 1 1 4 2 3 4 1 4 33 1 2 2 1 2 3 2 3 2 1 2 3 2 3 2 3 2 3 1 1 1 1 1 1 1 1 1 11 1 0.
i i i i j j j j jj i i i i i j i j j i j i j j j ij TT i i j i i j i j i j j i j h z h z h z h z v z v z v z v z P A G B K E G G E P k k k k k k k k                               (3.81)
Conditions in Theorem 3.10 write:

                          1 1 2 1 2 2 2 2 1 2 21 2 2 2 2 2 2 2 2 1 2 2 1 2 1 1 1 1 1 1 1 0 1 1 . a a a e e x x x x x x x e x x x x x x x r r r r r r i i i j j j j j j T i j i j i j T i ii i j i i i j i j ij i j j i j i j j i j ij h z h z h z v z v z v z G G P AG k k k kk B K E P P E P k                              (3.82)
Finally conditions in Theorem 3.11 are:

                              1 12 1 2 2 2 2 1 2 2 1 2 21 2 2 2 2 1 2 3 2 2 2 1 22 2 1 1 1 1 1 1 1 . 1 0 0 a a a e e x x x x x x x x x x x x x x x e x x x x i i i i j i j r r r r r r i i i j j j j j j T i j i j i j TT i i j i i j i j i j i j i j j i j i j j i j i ij j h z h z h z v z v z v z G G P A G B K E F F E F k k k k k k P                                (3.83)
The number of sums in Theorem 3.9 is 8 H nH     , while for both Theorems 3.10 and 3.11 is 6

H n  . These differences are due to the fact that H  and  depend on the chosen multisets for each theorem. 

Selecting multisets

At this point, it is important to clarify how to select the multisets involved in the control law and in the Lyapunov functions. The main idea is that multisets in and the computational complexity of the resulting LMI should be reduced. Therefore, without considering solver limitations, the following reasoning applies:

Step 1: Since the system under study does not have delays in its matrices, i.e.,  

0 0 0 0 E A B HH , multisets 0 K H , 0 G H , 0 F H , 0 K , 0 G , and 0 F should contain   0 .
Double sum relaxations and the maximum number of variables should be used, but without increasing the number of sums. To illustrate the considerations above, consider conditions in Theorem 3.11 with

  0 0 0 0 0 0 0 K G F K G F H H H       :                                           00 11 0 , 0 0 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 , 0 0 0 , 0 0, 0 PP PP T H TT H G G P A G B K E F F E FP                  (3.84) which after selecting   00 1 PP H    gives                                                   0 , 0 0 , 0 1 , 1 0 0 , 0 0 0 , 0 0 0 , 0 0 , 0 0 0 , 0 0 , 0 0, 0 T TT G G P A G B K E F F E F P                         (3.85) it consists of three sums involving               1 12 2 1 1 1 : 1 a a a x x r r r i i i i i i h h z h z k k k hz        and three sums of               1 12 2 1 1 1 : 1 e e e x x r r r j j j j j j v v z v z k k k vz        .
Step 2: Due to the structure of (3.85), it is possible to add the delay   

                                                  0, 1 , 0, 1 0, 1 , 0, 1 1 , 1 0 0, 1 , 0, 1 0 0, 1 , 0, 1 0 0, 1 , 0, 1 0, 1 , 0, 1 0 0, 1 , 0, 1 0 , 0 0. 0 T TT G G P A G B K E F F E F P                                      
Step 3: Since the multiple sum respectively. Thus the "good"more decision variables with less number of convex sums multisets for this problem are:

                                                  0, 1 , 0,0, 1 0, 1 , 0,0, 1 1 , 1 0 0, 1 , 0,0, 1 0 0, 1 , 0,0, 1 0 0,0, 1 , 0, 1 0,0, 1 , 0, 1 0 0,0, 1 , 0, 1 0 , 0 0. 0 T T T G G P A G B K E F F E F P                                      
Table 3.3 shows how the number of decision variables changes at each step. Step

Number of decision variables Number of sums

Step 1 The method for Theorem 3.9 is as follows:

            2 0.5 2 1 x x a e x a e u x a e n n r n r r n r n r r        3 sums in   h 3 sums in   v Step 2             2 2 2 2 2 0.5 2 1 x x a e a e u x a e n n r n r r n m r r r        3 sums in   h 3 sums in   v Step 3                
Step 1: Select multisets

  0 0 0 0 0 K G K G HH    
, thus conditions in Theorem 3.9 give:

                          00 11 0 0 , 0 0 0 , 0 0 1 , 1 1 , 1 0 0. PP PP H TT H P A G B K E G G E P                (3.86)
Since there are no double sums in   v at the current sample k , it is possible to add  

0 in 0 K , i.e.,   0 0 0 K E G . Then (3.86) yields                           00 11 0 0 , 0 0 0 , 0,0 0 1 , 1 1 , 1 0 0, PP PP H TT H P A G B K E G G E P                (3.87) which ends in three sums for               1 12 2 1 1 1 : 1 a a a x x r r r i i i i i i h h z h z k k k hz        and three for               1 12 2 1 1 1
:

1 e e e x x r r r j j j j j j v v z v z k k k vz        .
Step 2: To keep the same number for sums as for Theorem 3.11, the best solution for the Lyapunov multiple sums is   00 0 PP H . Finally, (3.87) renders: , where 0   is a real-valued parameter. Applying Theorem 3.9 with multisets: 0,0, ,0 ,

                                  0 , 0 0 0 , 0 0 0 , 0,0 0 1 , 1 1 , 1 0 1 , 1 0. TT P A G B K E G G E P                (3.88)
   0 0 0 0 0 P K G K H H H     , 0 0 P G    (
h P P P H H n     0 0 1, 1, , 1 , h P P P H H n        0 0 0, 0, , 0 , v P P P n     0 0 1, 1, , 1 , v P P P n      00 KK H K   0 0 0, 0, , 0, , P h h K K P n H H n  
  00 0, 0, , 0, 1, 1, , 1 , 2

P h P hh KK P nn H H n        00 0, 0, 0, , 0 , 1 v P v KK P n n      00 0, 0, 0, , 0, 1, 1, , 1 , 1 2 v P v P v KK P n n n       00 GG H G   0 0 0, 0, , 0, , P h h G G P n H H n  
  00 0, 0, , 0, 1, 1, , 1 , 2

P h P hh GG P nn H H n        0 0 0, 0, , 0, , v P v G G P n n     0 0 0, 0, 0, , 0, 1, 1, , 1 , 1 2 v P v P v G G P n n n       00 FF H F ----------------
  00 0, 0, 0, , 0, 1, 1, , 1 , 1 2

P h P h h FF P n n H H n       ----------------   00 0, 0, , 0, 1, 1, , 1 , 2 v PP vv FF P nn n      H ∞ attenuation
In this part, we consider disturbance attenuation. Recall the TS descriptor model (3.69).

Using the control law (3.70) gives:

  0 0 0 0 0 0 0 0 0 0 1 1 . K K G G E A B D C J H H H k k k HH k k H k H E x A B G x D w y K C x J w       (3.89)
Since the proofs follow the same lines as for the previous results, they are not stated here.

For Case 1 the following result is obtained.

Theorem 3.12. The closed-loop system (3.89) is asymptotically stable and the attenuation is  if there exist 0   , , , 0 and0 0 ,

P P P P k k k k T PP  i j i j , P k P k H pr  i i , P k P k pr  j j , , GG kk G ij , G k G k H pr  i i , G k G k pr  j j , 0,1 k  ,
K K K ij , 0 0 K K H pr  i i , 0 0 K K pr  j j , H   i ,   j , with         0 1 0 0 0 0 0 1 0 1 0 0 0 1 , P P B K G A C G P P K G E G H H H H H H H H H                             00 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 2 0. 0 0 PP A G G B K K E G G G G E P P D C G G J H TT H H H T H H H H H H H H D P I C A G B K E G G E P GI J                        (3.90)
For Case 2, the following result can be stated. Theorem 3.13. The closed-loop system (3.89) is asymptotically stable and the attenuation is  if there exist 0   , , ,

P P P P k k k k T PP  i j i j , P k P k H pr  i i , P k P k pr  j j , 0,1 k  , 0 0 , KK K ij , 0 0 K K H pr  i i , 0 0 K K pr  j j , 00 , GG G ij , 0 0 G G H pr  i i , 0 0 G G pr  j j
, and 00 ,

FF F ij , 0 0 F F H pr  i i , 0 0 F F pr  j j , H   i ,   j ,         0 1 0 0 0 0 0 0 0 1 0 0 0 0 , P P B K G A C F P P K G E F H H H H H H H H H                 such that                     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 00 0 0 0 2 F 0 F 0. 0 0 00 G G G G P P A G G B E F F F F E F F P P D C G G J KK T H H H TT H H H H H T H H H H H H H G G P A G B E F E P I G D C J K I                                        
(3.91)

The following numerical example illustrates the performances of Theorems 3.12 and 3.13 for the options for multisets given in Table 3.5. 

E        , 2 0.9 1.1 0.4 1.1 E      , 1 0 1.5 0 0.5 A       , 2 1 1.5 2 0.5 A      , 12 0 1 BB      ,   1 0 1.28 C  ,   2 0 0.43 C  ,   1 0.23 0 T D  ,   2 0 0.12 T D  , 1 0.12 J 
, and 2 0.09 J   , where  is a real-valued parameter. Table 3.6 shows the results for several parameter values when using the options in Table 3.5. 

  0 0 0 0 0 P G K K H H H     0 0 P G    3 convex sums in   h 1 convex sum in   v 2   0 0 0 0 0 0 P K G P G H H H        0 0,0 K  3 convex sums in   h 3 convex sums in   v Theorem 3.13 3   0 0 0 0 0 0 P K G K G H H H        0 0,0,1 F H  , 0 0 P F    3 convex sums in   h 1 convex sum in   v 4   0 0 0 0, 1 K G F HH       00 1 PP H      0 0 0 0,0, 1 K G F H     3 convex sums in   h 3 convex sums in   v
  1.79   1   1.27   1.21   1.23   1.12   0.5   0.78   0.72   0.69   0.64   0   0.56   0.56   0.53   0.50   0.5   0.77   0.77   0.77   0.77  
The obtained results illustrate Remark 3.4, for instance, when 1.5

  , Option 1 has provided better attenuation than Option 3; while for 0.5

  Option 3 has given better result than Option 1. 

Robust control

Consider a TS descriptor model with uncertainties:

      0 0 0 1 , E A B H k k k H E E x A A x B B u          (3.92)
with the uncertainties defined as .

K K G G G B K K G E A k k H H H HH H E E x A K B G A BK Gx            (3.93)
For Case 1, the following result can be stated:

Theorem 3.14. The closed-loop system (3.93) is asymptotically stable if there exist , , , where 0 1 1 

P P P P k k k k T PP  i j i j , P k P k H pr  i i , P k P k pr  j j , , GG kk G ij , G k G k H pr  i i , G k G k pr  j j , 0,1 k  , 0 0 , K K K ij , 0 0 K K H pr  i i , 0 0 K K pr  j j , 0, 0, , aa   ij , 0, 0 a a H pr    i i , 0, 0 a a pr    j j , 0, 0, , b b   i j , 0, 0 b b H pr    i i , 0,
P P G H H H H                  0 0 0, 0 0 0,a 0, 0, 0,b 0,b 0,e K B L G A L D D b a a H H H H H H H H H H H              ,       0 1 0 0 0,a 0,b 1 0 0, 0,e 0,e P P K G G E L D e                such that         00 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0, 0 PP E G G G G E P P A G G B K K H TT H H H H H H H T P E G G E P A G B K                           ( 
0 0 0 0 D L D L GG aa KK GG D L H H T H H H H T H H T H H T DL DL G D K I I L I G                                         
Proof. Using the results in Theorem 3.7 for the uncertain closed-loop model (3.93) gives: 

    00 0 0 0 0 0 0 0 1 1 1 1 0, PP A G G B K K E G G P P H H H H H H H P A G B K E G P                (3.95) where     0 0 0 0 1 1 0 G G K K G G H H H AG BK EG                  ,
GG L L D L G D K D K G H H H H a b H H H e L L D D D G K G L                                           Employ Property A.4 (Appendix A) with  , T  
, and 0, 0, 0, 0, 0, 0, ,, 

    1 1 T T T        . Consider T I   , thus     1 1 . T T      (3.
    00 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0, PP A G G B K K E G G P P H H H H H H H T T P A G B K E G P                        
which by means of the Schur complement yields (3.94), thus concluding the proof. ■ For Case 2, the following result can be established: Theorem 3.15. The closed-loop system (3.93) is asymptotically stable if there exist , , , where Proof: The proof follows the same lines as the proof of Theorem 3.14 but using the Lyapunov function in Case 2. ■

P P P P k k k k T PP  i j i j , P k P k H pr  i i , P k P k pr  j j , 0,1 k  , 0 0 , K K K ij , 0 0 K K H pr  i i , 0 0 K K pr  j j , 00 , GG G ij , 0 0 , G G H pr  i i 0 0 G G pr  j j , 00 , FF F ij , 0 0 F F H pr  i i , 0 0 F F pr  j j , 0, 0, , aa   ij , 0, 0 a a H pr    i i , 0, 0 a a pr    j j , 0, 0, , b b   i j , 0, 0 b b H pr    i i , 0,
          0 1 0 0 0, 0 0 0,a 0 0, 0, 0,e P P K B L G A L F D b a a H H H H H H H H H H H H H                  0,b 0,b D HH  ,       0 1 0 0 0 0 0, 0,e 0,e 0,a 0,b P P K G F E L D e                such that               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0, 0 00 G G G G P P E F F F F E A G G B K K PP T H H H TT HH H H H H T H G G P E F F E A G B K P                                    ( 

Summary and concluding remarks

In this chapter, state feedback control design methods for TS descriptor models have been presented. The improvements are based on the well-known Finsler's lemma; this lemma allows handling the descriptor matrix as well as "cutting" the link between the Lyapunov matrix and the controller matrices. Nevertheless, when dealing with continuous-time TS descriptors the conditions are not "pure" LMIs since a scalar parameter must be fixed a priori.

Therefore a logarithmically spaced search is performed. This increases the computational cost, but since all the computations are done offline, they are still realizable.

Chapter 4. Observer design

This chapter presents observer design for both continuous and discrete time nonlinear descriptor systems using an exact TS representation. In the case of the continuous-time TS descriptor model, strict LMI conditions are obtained by changing the extended estimated state vector and using a full observer gain. For discrete-time TS descriptors several LMI conditions are stated. These conditions depend on the selection of the Lyapunov function: quadratic, non-quadratic, or delayed non-quadratic. All the presented cases consider that the descriptor matrix is nonsingular in the considered compact set of the state space. Numerical examples are given in order to illustrate the performances of the provided improvements.

Continuous-time TS descriptor models

This section presents a novel observer design for continuous-time nonlinear descriptor systems using their Takagi-Sugeno representation, which overcomes BMI conditions existing in the literature. The main idea is to change the estimated state vector by using an auxiliary variable. This allows changing the structure of the observer and using a full observer gain LMI constraints are stated that improve results in the literature. In addition, some relaxations are achieved when a non-PDC-like observer is used. Finally, Finsler's lemma is used to enlarge the solution set by adding slack variables and decoupling the Lyapunov function from the observer gains.

Problem statement

Conditions in previous works [START_REF] Guelton | An alternative to inverse dynamics joint torques estimation in human stance based on a Takagi-Sugeno unknown-inputs observer in the descriptor form[END_REF]Guerra et al., 2004) are given in BMI terms. Sufficient LMI conditions are obtained by fixing some of the decision variables, as will be shown in what follows.

Consider the following TS descriptor model , .

v h h h x A x B u y C x E    (4.1)
The following extended state vector is commonly used T TT x x x    . Then (4.1) can be written as [START_REF] Taniguchi | Fuzzy descriptor systems: stability analysis and design via LMIs[END_REF]:

, , hv h h Ex A x B u y C x    (4.2)
with 0 00

I E     , 0 hv h v I A AE         , 0 h h B B    
, and

  0 hh CC  .
For the observer design the main task is to make the estimation error êxx  converge to zero as t . To this end, in (Guerra et al., 2004) the following estimated state for the extended model (4.2) was proposed:

ˆ. x x x      (4.3)
The corresponding observer is:

  ˆˆ, ĥv h hv h uy Ex A x B L y C x y        (4.4)
where the observer gain is defined as its dynamic is given as

  * . hv hv h Ee A L e C    (4.6)
The synthesis of the augmented observer (4.4) is done via the quadratic Lyapunov function candidate (Guerra et al., 2004): The next subsection presents a way to overcome the BMI problem in (4.8).

  , 0 , T T T T V e e E Pe E E PP       ( 4 
        . T T T hv hv h hv hv h V e e A L C P P A L C e        Thus     0 0 T T hv hv h V e P A P L C       or:     3 3 4 4 1 3 4 4 * * 0. T T h hv h T T T T h hv h v v T v P A P L C P A P L C P E P E E PP               ( 4 

Results

The first attempt to overcome the BMI problem in (4.8) is to consider a full observer gain, i.e., 12

T TT hv hv hv L L L    . Thus   0 T T hv hv h P A P L C     gives:       3 3 2 4 4 2 1 11 44 3 * * 0. T T h hv h T T T T h hv h hv T v v v P A P P L C P A P L C P E P E P E P L                  (4.9)
From here, a change of variables 

L L L    reads:   1 2 ˆ0 0 0 0. 0 ˆ0 hv hv h h v h x x x x x x x I L I uC A E B L x                                             (4.10)
The first row in (4.10) implies The definition of  depends on the observer under study and will be discussed later on.

  1 ˆˆˆ, hv h C x x L x x    which is consistent only if ˆ0 xx  or if 1 0 hv h L C  . When
The main idea is that x   as t   . Based on the previous discussion, the following observer is proposed: 

  ˆˆˆˆ, , hv h hv h Ex A x B L C yy x u y      ( 4 
i i r  ,   1 1, 2, , e j r  such that 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 0, , ; 0, , 1 , j j j j i i i i ii i a i j i i r j i             (4.16) holds with     11 1 1 12 1 1 1 1 1 1 1 1 31 4 2 1 3 4 4 ** , T i i j i j i T T T i i j i T j i j j P A N C P A N C P E P P E E P                
then the estimation error e is asymptotically stable. The observer gains are recovered by

ii jj T P L N   ,   1, 2, , a i r  ,   1, 2, , e jr 
. Moreover, the final observer structure is

    1 2 . v h h v h hv hv E x A x B u E I y L L y y C x          (4.17)
Proof. By taking 0

T T v v P E E P    . Since v E is nonsingular   0 0 0, 0 v Ex x 
  , let us assume 4 P is singular; then there exists 0 0 x  such that 40 0 Px  . Consequently for that 0 0

x  it yields   0 4 4 0 0 v T T T v E x P P E x    , which contradicts the condition 4 4 0 T T v v P E E P    . Thus if 0 v hh
 is true, then 4 P is nonsingular.

The final observer form is obtained as follows: recall (4.12), i.e.,  

1 2 00 0 , 0 0 ˆhv h hh h v h v I L C I ux A E B L x x C x                                         or equivalently     1 2 ˆ. ˆĥ h vh v hv hh x C x E A x B u x Lx C x L         (4.19)
From (4.19), the definition of  arises:

  1 ˆ. ĥ h v x x C x L     (4.20)
Finally, substituting the intermediate variable  into (4.19) gives 

      1 2 ˆ, v h h h h hv hv E x C x A x B u L C Lx x x       or     2 1 ˆ, v h h h h v h v hv E x A x B u L C x E C x L x x       (4.
i i r  ,   1 1, 2, , e j r  such that 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 0, , ; 0, , 1 , j j j j i i i i ii i a i j i i r j i             (4.23) hold with     2 1 1 12 2 1 1 1 1 1 1 1 1 2 2 1 1 2 3 1 4 2 1 3 4 4 * * , T i i i j i j i T T T i i i j i j i T ji i i j P A L C P A L C P E P P P E E                
then the estimation error e is asymptotically stable. Moreover, the final observer structure is . 00 

    1 2 ˆˆ. hv v h T vh h v hh L E x A x B u E I P y y L y C x          (4.
    *. T T h hv h hv T h V P P e e A L C e     Thus     0 *0 hv h h T v e V LC P A      or:     4 1 2 4 4 1 3 3 : 0. v h hv h hh T h hv h T h T T T T h h v h v h v A L C A L C P E P P E P E P P                   ( 4 
ˆĥv T h h v v h h IL I u x Py A E B L x y                                          (4.26) Define       1 1 1 1 1 3 4 2 1 1 1 1 3 
                               (4.27)
The subscripts h and v stand for the dependence on convex structures, while   

          1 1 2 2 1 1 1 1 2 2 4 2 1 1 1 a e a T hv i j i i i rr ij j r i N h h z v z h z P L        
. Hence, (4.26) can be written as

      1 2 00 0 , 0 0 ˆhhv hh h h h vv I N h C I ux A x x x E B N h C                                      or equivalently         1 2 . ˆĥ hv h h v h h h v x N h C x E A x B u N h C x x x         (4.28)
From (4.28),  is obtained as:

    1 ˆ. ĥhv h x N h C x x     (4.29)
Equation ( 4.28) by eliminating  gives As it has been shown in Chapter 3, Section 3.1, Finsler's lemma allows decoupling the gains from the Lyapunov function. Therefore, a direct extension of the proposed observer in descriptor form is given by: 

          1 2 ˆ. v h h h hhv h h v E x N h C x A x B u N C x x hx      
1.1 0.1 0.2 1.5 E b          , 2 0.9 0.1 0.2 0.2 E      , 1 0.2 1 0.1 1.9 A         , 2 1 0.6 1.7 0.3 a A        ,  
  ˆ, ˆˆˆ, T hv h hv hhv h u G y Ex A x B L y C x y       ( 4 
  0 0 0 T hhv h T hv ee e Ee P V P Ee                 . ( 4 
T hv hv hvv h A L C I G        
, via Finsler's lemma, the inequality constraint (4.33) together with the equality constraint (4.32) gives 

  0 0, 0 T T hhv hv hv hvv h hhv A L C I P G P                 (4.
       1 11 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 1 2 1 2 1 2 2 1 11 1 1 2 1 1 2 0, , ; 2 0, , 1 2 0, , ,, 1 4 2 2 1 1 1 1 j ii j j j j j j i i i i i j j j j j j i i i i i i j j j j j j j j j j i i i i i i i i i a e i j j j j i e a e a i i i i i j ii r i j j r r r j rr                                     2 1 2 1 1 2 2 1 1 2 1 2 0, , , j j j j i i i i i i j j       (4.35) hold with                           1 2 1 1 1 2 1 1 2 1 1 1 2 1 1 2 2 1 2 1 12 12 1 2 1 1 1 2 1 1 2 1 31 4 4,1 4,2 4, 2 1 3 4 31 4 1 3 1 ; 2 0 T i j i i j j i T T T i j i i j j i j i j i j j i T T i j i i j j i i j i jj j G G P G E G P G A L C EP A L C E G A L C                                         where       1 2 1 1 1 2 1 1 1 2 2 2 2 4 2 3 3 4,1 T T i j i i j j i j i i j i j G E P G A L C      ,     1 2 1 1 2 2 2 2 4,2 4 4 4 
T T i j j i i j i j G E P G       ,
and

    1 2 1 1 1 2 4,4 4 4 
T T i j j j i j G E E G      . Moreover, the final observer structure is     1 2 ˆˆˆˆ, . hhv v hh T v h hv h v h L E x A x B u E I G y y y C x L          (4.36)
Proof. Recall (4.34). By selecting the free matrix as

T hv TT hv G G         
, congruence of (4.34) with a full-rank matrix ,

T diag I   yields           0, : T hv hv hvv h vv hh T T T hv hv hvv h hhv hv hv G G P G A L C A L C G                      (4.37)
which by setting 

T T v h hv v v G E E G    . Since v E is nonsingular   0 0 0, 0 v Ex x    ,
  4 0 4 0 0 hv v T T T v hv x G G E E x    , which contradicts the condition 4 4 0 T T v h hv v v G E E G   
. Thus, if 0

vv hh  is true, then hv G is nonsingular.
The final form of the observer (4.36) can be obtained via manipulations similar to those in : .

Th h hv h hhv T h h T v h v h h T T T T h h v v h A L C A L C P E P P P P P EE                
Choose for Theorem 4.3: 

Unknown input observers

In [START_REF] Guelton | An alternative to inverse dynamics joint torques estimation in human stance based on a Takagi-Sugeno unknown-inputs observer in the descriptor form[END_REF], the observer (4.4) has been extended to estimate unknown inputs;

however it provides BMI conditions (see Remark 4.1). This section proposes to give LMI conditions via a simple extension of the previous work.

Consider the TS descriptor model: L , and 

21 2ij L ,   2 1, 2, , a r i ,   1 1, 2, , e j r such that 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 0, , ; 0, , 1 , j j j j i i i i ii i a i j i i r j i             (4.47) hold with         1 2 1 1 1 12 1 2 1 1 1 1
P P E                 
then the estimation error e is asymptotically stable and, the observer structure is

  1 2
ˆˆ. 

      * hv T h T v T h V e e A L C e P P     ; hence     0 0 * hv h h T v e V LC P A     or        
L ,   2 1, 2, , a r i ,   1 1, 2, , e j r such that 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 0, , ; 0, , 1 , j j j j i i i i ii i a i j i i r j i             (4.55) hold with         2 1 2 1 1 1 12 2 1 2
P P E                 
then the estimation error e is asymptotically stable. 

        , , x u M d E x A x x B x y C x x Gd      (4.56) with       0.87 0.33 0.5 1 2 0.53 1 2 0.95 E x            ,     1 0.81 0.8 c 3 0.74 0. os 57 x x A         , 0 1 B     ,     1 21 1 0.5 cos x x M         ,     1 1.5 0 c .5 0 0 0. os 1 x C x      
, and

    1 1 0.5 0.2 0.5cos 0.4 G x x       ,   2 1 11 x  , 0   a real-valued parameter known a priori. Note that     det 0 E x  for all 1
x . Using the sector nonlinearity a TS descriptor model can be constructed with 2 

  2 x x    :         1 2 2 1 1 2 , , k k i i i i i k i i i v z E h z A x B y x u M d x G d h z C            (4.
          , 0 1 B     , 1 21 1 0.5 M           , 2 21 1 0.5 M        , 1 20 0 0.1 C      , 103 2 10 0 0.1 C      , 1 1 0.5 0.7 0.4 G      
, and 2 0.3

1 0.5 0.4 G       . Consider that 1 x is available. The MFs are   2 1 1 11 vx   , 21 1 vv  ,     1 1 0.5 cos 1 h x 
 , and 21 1 hh  . The dynamics of the unknown input are given by the exo-system 0 0.5 0.5 0 dd      . Note that in [START_REF] Guelton | An alternative to inverse dynamics joint torques estimation in human stance based on a Takagi-Sugeno unknown-inputs observer in the descriptor form[END_REF][START_REF] Ichalal | Simultaneous state and unknown inputs estimation with PI and PMI observers for Takagi Sugeno model with unmeasurable premise variables[END_REF], 

0 d  or   0 m d  is considered.

 

; conditions in Theorem 1 in [START_REF] Ichalal | Simultaneous state and unknown inputs estimation with PI and PMI observers for Takagi Sugeno model with unmeasurable premise variables[END_REF] were feasible until 0.53   (the larger  is the more relaxed the approach is).

2. Comparing the conditions given in Theorem 2 [START_REF] Guelton | An alternative to inverse dynamics joint torques estimation in human stance based on a Takagi-Sugeno unknown-inputs observer in the descriptor form[END_REF], Theorem 4.4 and Corollary 4.2. The aim is to design an UI observer for the TS descriptor model (4.57), considering the exo-system. For the conditions of Theorem 2 [START_REF] Guelton | An alternative to inverse dynamics joint torques estimation in human stance based on a Takagi-Sugeno unknown-inputs observer in the descriptor form[END_REF], the maximum value of  for which feasible solutions were found is 1.16

 

. In case of Theorem 4.4, the maximum value of  for which the conditions were found feasible is 

P P                                      
LL                                                             
LL                                                             .             

Discrete-time TS descriptor models

This section is dedicated to observer design for discrete-time nonlinear descriptor models using Lyapunov functions: quadratic, non-quadratic, and delayed-non-quadratic.. Throughout the section, the achieved improvements are illustrated on numerical examples.

Problem statement

Consider the following discrete-time TS descriptor model:

1 , . v k h h h k k k k E x A x B u y x C     (4.58) Recall that     1 e v j j j r E v z k E   
is regular in the considered compact set of the state space  . Recall that, to the best of our knowledge, there are no results in the literature for systems of the form (4.58). The aim is to make the estimation error êxx  converge to zero as t . To this end the following generic observer is proposed:

  1 ˆ, v k h k k k h h k E A B u x x y C x y y       (4.59)
where the observer gain xy nn   may change according to the approach under study.

Consider the error dynamics as follows:

    1 1 0. k v k h h k h h v k E C e C e e A A e E            (4.60)

Results

In order to investigate the stability of the estimation error (4.60)consider the following Lyapunov function

  0, 0, T k k k T V e e e     (4.61)
where may be constant (quadratic approach) or depend on MFs (non-quadratic approach).

The variation of the Lyapunov function 

                    (4.62) Denote 1 k k e e      , 0 0         
, and

  h h v C A E   
; via Finsler's lemma the inequality (4.62) together with the equality (4.60) yields In what follows three approaches are considered: the quadratic (Q) approach, the non-quadratic (NQ) approach, and the delayed non-quadratic (DNQ) approach.

    0 0, 0 h h v A CE               ( 4 

Quadratic Lyapunov function

If a common quadratic Lyapunov function is used, the following result can be stated. 

  12 1, 2, , , a i i r  ,   1 1, 2, , e j r  such that: 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 2 ; 2 0, , 0, , , 1 j 
j j j i i i i i i i i i a i i i r jj             (4.64) hold with   1 12 1 2 1 1 1 1 
.

T i i i j ii jj j PA E P P P N C PE              (4.65)
The observer gains are recovered with 

1 ij ij L P N   ,   1, 2, , a i r  ,   1, 2, , e j r  . The final observer structure is   ˆˆ. ˆˆk k k k k k v k h h hv h E L x A x B u y y y Cx       ( 4 
  : 0, T h hv h v v v hh P N C P PA E E PP              (4.
21 ij N for   12 1, 2, , , a i i r  ,   1 1, 2, , e j r 
such that:

1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 2 ; 2 0, , 0, , , 1 
j j j j i i i i i i i i i a i i i r jj             (4.68) hold with       1 1 2 1 2 1 1 1 1 . 0 T i i i T j i i j jj PA E F F P N P C PE F P                     (4.69) 
The observer gains are recovered as

1 ij ij L P N   ,   1, 2, , a i r  ,   1, 2, , e j r 
. The final observer structure is (4.66).

Proof. Recall (4.63). By choosing the Lyapunov function as  

1 T T k k k V e e F P Fe   , the observer gain as hv L  ,   0 T P  , Finsler's lemma gives:   1 1 0. T T T h h v h v v F P F NC PA P E P E F P F                (4.70)
By applying Property A.3 and the Schur complement, (4.70) renders Proof: Consider (4.71), using FP  gives:

      : 0 0 , T v T h hh v h hv v PA P F F P N C E F EP P                       (4.
      , : 0 0 h v v T hh h hv v PA P E P P P N C E P                    
which by means of the Schur complement it is equivalent to (4.67). For the reverse, even if any positive matrix 0

T PP   can be decomposed in T F XF with 0 T X X 
 and F full- rank, (4.67) produces:

      0, T h hv h v T T T T T v TT F F F L C FE FX F X A F X F X E F X F X FF         
which does not lead to the conditions in Theorem 4.6. ■

In order to illustrate this proposition, the following example is given. The following developments use a non-PDC-like observer with 

0.9 0.1 0.4 1.1 a E b       , 2 0.9 0.1 0.4 1.1 a E b       , 1 11 1.5 0.5 a A        , 2 11 1.5 0.5 a A        , 1 0 1 T C b       ,
i G for   2 1, 2, , a i r  ,   1 1, 2, , e j r  such that: 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 0, , 0, , 1 ; 
j j j j i i i i i i i i i a i i i r jj             (4.72) hold with   1 12 2 1 2 1 1 2 1 1 2 . T ii j ii T i j i i i j j P L C E G A G E G P              (4.73)
The final observer structure is

  1 1 ˆ. , v k h h h k h k k k v k k h x A x B u G y y E L C y x        (4.74) Proof. Recall (4.63). Selecting the Lyapunov function as   T k k k V e e Pe 
, the observer gain as

1 h hv GL  
, and 0

T T h G    we have:   0 : , v hh T h h T h hv h v v h G A E P L C G GP E              (4.75)
which by Lemma B.3 yields (4.72). ■ 

      : 0 0 . T v T T hh h h hv h v h h v G A G F F P L C E G F E P                       ( 4 
  1 1 0. h T T T T h h hv h v h v G A G E G F P F L C E F P F                (4.77)
Therefore if (4.76) holds, by means of Property A.3 and using Schur complement, it ends in (4.76) implying (4.75). Therefore there is no improvement in using  

1 T T k k k V e e F P Fe   over   T k k k V e e Pe 
when non-PDC-like observers are being designed.

Non-quadratic Lyapunov functions

The use of non-quadratic Lyapunov functions has been introduced in [START_REF] Guerra | LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF], where the benefits of this approach over its quadratic counterpart have been shown. In this part, results for the state estimation problem via a non-quadratic Lyapunov function and a non-PDC-like observer are presented. These results are summarized in the following theorem.

Theorem 4.8. The estimation error dynamics in (4.60) with

1 h hv GL   is asymptotically stable if there exist matrices 2 2 0 T i i PP  , 21 ij L , and 2 i G for   12 , , 1, 2, 
,

x a i i i r  ,   1 1, 2, , e j r 
such that:

1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 0, , , 0, , , , 1 ; 
x x x x i i j j j j i i x ii i i i i i i x i a i i i i i r j j             (4.78) hold with   2 1 12 2 1 2 1 1 2 1 1 2 . x x i T i i i j j i j ii T i j i i i P L C E G A G E G P              
The final observer structure is (4.74).

Proof. Recall inequality (4.63). Choose the observer gain as 

      1 , , k k k k k k k k x x A x x x E y Bu C x     (4.79)
where   

2 1 k Ex        ,     1 cos 1 0.7 1.1 k x Ax          , 0 1 B  
  2 1 2 11 vx , 2 1 1 v v  , 10 2 0 1 h   , 20 2 1 1 h   , 31 2 0 1 h   , 41 2 1 1 h   , with     0 1 1 0.5 cos 1 x    , 0 11 1 1   ,     0 1 1 2 sin / 0.
P P L L L G P G                                                          .   
Simulation results are shown in Figure 4.7 for initial conditions     Recall that by means of the approaches given in [START_REF] Guerra | LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF]Guerra et al., 2012b), no solution was found for a standard TS representation of (4.79). In addition via Theorem 4.8 only 132 LMI constraints are needed instead of 4112 for [START_REF] Guerra | LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF]Guerra et al., 2012b) 

0 1 1 T x  and     ˆ0 0 0 T x  ; the input is     0.5sin u t t  .

Delayed non-quadratic Lyapunov function

As it has been stated in Chapter 3, Section 3.2, the use of past samples in the MFs of the Lyapunov function allows adding extra degrees of freedom while keeping the same number of convex sums, thus relaxing the results from the NQ approach. In this section the observer to be designed is: 

  1 1 , ˆ. ˆˆv k h h h hh hh v k k k k k k E L y C x x A x B u G y y          (4.80)
2 x i i G for   12 , , 1, 2, , x a i i i r  ,   1 1, 2, , e j r 
such that:

1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 0, , , 0, , , , 1 ; 
x x x x i i j j j j i i x ii i i i i i i x i a i i i i i r j j             (4.81) hold with   1 12 2 1 2 1 1 2 1 1 2 2 . x x x x x x i T i i i i i i j j i i j ii T i j i i i G A G L C E GP P E               (4.82)
Proof. Recall inequality (4.63). Choose the observer gain as . Hence, the delayed approach provides a larger solution set than the classical approaches. 

Generalization

It has been shown in the previous subsection that more relaxed results can be achieved by incorporating delayed samples both in the Lyapunov function and in the observer gains. In order to generalize this approach, recall Definitions 3.1~3.9. Hence, the TS descriptor model (4.58) is rewritten as

0 0 0 0 1 , , E A B C k k k k k H H H E x A x B x u y C     (4.83) with   0 0 0 0 0 E A B C HHH     , i.e.
, without delays in the system matrices. The observer to be designed is: 

  0 0 0 0 0 0 0 0 1 1 ˆ, ˆÊ A B G G L L C k k k k k kk H H H H H E x A x B u G L y y y x C        ( 4 
  0 0 0 0 0 0 0 1 1 , E A G G L L C H H H k k H E e A G L C e    
which can be expressed as

0 0 0 0 0 0 0 1 1 0. A G G L L C E H H H k H k e A G L C E e             (4.85)
Employing the Lyapunov function candidate ,

  0 0 0 0 0 0 0 0 , , , 0, , 
G G G ij , 0 0 G G H pr  i i , 0 0 G G pr  j j , H   i ,   j , 0,1 k 
, where (Guerra et al., 2012b). ■

  0 1 0 0 0 P P L G E       ,     0 1 0 0 0 0 P P L C G A H H H H H H H        such that   00 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0. PP G G A L L C G G E E G G P P H TT H H H H H H H P G A L C G E E G P                (4.89)

Selecting multisets

This part formalizes the delayed approach for the observer design. The main idea is that the multisets used in the design should be selected such that sums relaxations can be employed (double sums at the same instant). To this end, constructive steps are given.

Step 1: Recall that the system (4.83) does not contain delays in its matrices, i. 

                          00 11 0 , 0 0 0 , 0 0 0 , 0 0 0 0 , 0 0, PP PP H TT H P G A L C G E E G P               
which by selecting the multisets for the Lyapunov matrix as Guerra et al., 2012b) writes:

  0 0 1 P P H    (
                                  1 , 1 0 , 0 0 0 , 0 0 0 , 0 0 0 0 , 0 0 , 0 0. TT P G A L C G E E G P                 (4.91)
Step 2: Note that the convex inequality (4.91) contains three sums of

              12 12 1 1 1 : 1 a a a x x r r r i i i i i i h h z k h z k h z k       
and three sums of the form 

             
                                  1 , 1 0, 1 , 0, 1 0 0, 1 , 0, 1 0 0, 1 , 0, 1 0 0 0, 1 , 0, 1 0 , 0 0. TT P G A L C G E E G P                         (4.92)
Step 3: Since there is no product involving The α-sample variation More relaxed conditions using the α-sample variation presented in [START_REF] Kruszewski | Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: a new approach[END_REF] 

                                  1 , 1 0, 1 , 0, 1 0 0, 1 , 0,0, 1 0 0, 1 , 0, 1 0 0 0, 1 , 0, 1 0 , 0 0. TT P G A L C G E E G P                        
H H n        0 0 1, 1, , 1 , v P P P n      , 00 LL H L   0 0 0, 0, , 0, 1, 1, , 1 , 2 P h P h h L L P n n H H n        0 0 0, 0, 0, , 0, 1, 1, , 1 , 1 2 v P v P v L L P n n n       00 GG H G   0 0 0, 0, , 0, 1, 1, , 1 , 2 P h P h h G G P n n H H n        0 0 0, 0, , 0, 1, 1, , 1 , 2 v P P v v G G P n n n     
LL L L G G PP                                                         
L ij , L l L l H pr  i i , L l L l pr  j j
, and

, GG ll G ij , G l G l H pr  i i , G l G l pr  j j , H   i ,   j , 0, k   ,   0,1, , 1 l    with       1 1 1 1 0 0 0 0 0 0 , P P L G E P P L C G A l l l l l l l l l l l H H H H H H H                           
such that: 

0 0 0 2 1 1 1 1 1 1 1 1 1 00 0 00 PP G G A G G E L L C G G E G G A G G E L L C PP H HH H HH H HH H HH H P GA GE LC GE GA GE LC P                                                      (4.93)
Proof. Consider the Lyapunov function (4.86) and its α-sample variation as follows (Guerra et al., 2012b;[START_REF] Kruszewski | Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: a new approach[END_REF][START_REF] Lendek | Controller design for TS models using delayed nonquadratic Lyapunov functions[END_REF]: 

                           
                                                 (4.94)
The error dynamics (4.85) during α samples can be summarized as the following equality constraint: 

      0 2 1 0 1 1 00 0 1 0, 0 00 E E E SE ek S ek E ek SE                                   (4.95) with 1 A G G L L C l l l l l l l H H H H S A G L C    ,   0,1, , 1 l  
                                          
where

  1 xx nn   
. In order to obtain strict LMI conditions a natural choice [START_REF] Kruszewski | Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: a new approach[END_REF] of matrix is: 

00 11 0 0 1 1 11 0 0 0 00 00 , 00 GG GG G G G G GG H H HH H G G M G                       

Continuous-time TS descriptor models

This section deals with static output feedback controller design for continuous-time Takagi-Sugeno descriptor models. Via the well-known Finsler's lemma and the descriptorredundancy approach a set of linear matrix inequalities are derived to solve this design problem.

Problem statement

Consider the following TS descriptor model [START_REF] Taniguchi | Fuzzy descriptor systems: stability analysis and design via LMIs[END_REF]:

, . v h h h x x B C u x E A y    (5.1)
In the case of static output feedback control (SOFC) design for standard TS models, an iterated LMI (ILMI) approach has been presented in [START_REF] Huang | Static output feedback controller design for fuzzy systems: An ILMI approach[END_REF], while sufficient LMI conditions have been developed in [START_REF] Kau | Robust H∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties[END_REF]. In particular, [START_REF] Kau | Robust H∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties[END_REF] designed a SOFC PDC-like control law of the form:

.

h h h K y K u Cx   (5.2)
Their analysis relied on the closed-loop system

  h h h h x A B K x C  . Stabilization
conditions have been given in terms of LMIs together with equalities:

  0, , 0. 0, h h h h h h T hh P B N C C P K M P C N P A M       (5.3)
Conditions (5.3) are similar to those in [START_REF] Crusius | Sufficient LMI conditions for output feedback control problems[END_REF] [START_REF] Crusius | Sufficient LMI conditions for output feedback control problems[END_REF] gave sufficient conditions for the output feedback control problem. Two different approaches have been stated:

The W-Problem: given matrices A , B , and C with C full row rank, a controller 1 u N y M   can be designed if there exist W , N , M so that the following conditions hold:

  0, 0, 0. T AW BNC MC CW W W        
(5.4)

The P-Problem: given matrices A , B , and C with B full column rank, a controller

1 u y M N  
can be designed if the exist P , N , M so that following conditions hold:

  0, . 0, 0 T PA BNC P M P B B P         (5.5)
Thus the conditions in [START_REF] Kau | Robust H∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties[END_REF] are a "direct" extension of the W-Problem. The result in [START_REF] Bouarar | Static output feedback controller design for Takagi-Sugeno systems -a fuzzy Lyapunov LMI approach[END_REF] has established LMI conditions for stabilization of a standard TS model via the descriptor-redundancy approach together with a non-PDC control law

  1 1 h h u y P K  
. Matrix 1h P is in the Lyapunov matrix, thus the conditions involve the timederivative of the MFs.

Our aim is to control the TS descriptor model ( 5 . Substituting the control law (5.6) in the system dynamics (5.1), it produces the closed-loop

    1 , v h h hhv hv h x A B K x E G C   (5.7)
which is difficult to deal with.

Results

Using Finsler's lemma, it is possible to avoid the equality conditions in [START_REF] Kau | Robust H∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties[END_REF] and the ILMI conditions in [START_REF] Huang | Static output feedback controller design for fuzzy systems: An ILMI approach[END_REF]. The TS descriptor model together with the control law are written as the following equality constraint:

  1 0. 0 u x u h v h hhv hv h n n n x A E B GC x K u I                   
(5.8)

The expression (5.8) avoids the explicit appearance of the classical closed-loop

    1 v h h hhv hv h x A B K x E G C  
, and it also decouples the nonlinear matrix v E .

Consider the following quadratic Lyapunov function candidate:

  , 0. 

                            (5.10) Taking x u x       ,   1 0 h v h hhv hv h K A E B G C I            
, and 00 00 0 0 0

P P      
. Via Finsler's lemma the inequality constraint (5.10) together the equality constraint (5.8) yields

    1 00 0 0 0, 0 0 0 0 h v h hhv hv h P A E B P G C K I                         
( 5.11) 126 where

    2 x u x u n n n n    
is a free matrix. Therefore, the following result can be stated. 

i i j G , 21 ij K ,   12 , 1, 2, , i ir  ,   1 1, 2
, , e jr  such that:

1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 0, , ; 0, , 1 , j j j j i i i i i i i a i j i i r j i            
(5.12) hold with

              1 5 5 3 . ij T i i i j j i i i i j j j i i i i i i i i i i TT i i i j i i i T ij i j i j T i ii j A K C E A K C E E M E BG A K C B M PM M M M M M B M M G G                                               
Proof. Going on from (5.11) we choose:

1 3 5 . h hhv h hhv h hhv MG MG MG             
(5.13) Then, inequality (5.11) renders

                1 33 2,1 3,1 3,2 5 : 0, h h hv h TT h v v h v hh h h hhv A K C E E M B M M M G                             (5.14) where     3 2,1 1 
T h h hv h h v A K C M P M E       ,     5 3,1 1 
T h h hv h h h hhv A K C B G M M       ,
and

    5 3,2 3 
T h v h h hhv M M E B G      
. Finally, applying Lemma B.3, (5.14) yields (5.12), thus concluding the proof. ■ Remark 5.1. The goal is to obtain an LMI problem. Since the slack matrices in can be chosen, several options are available. The structure in (5.13) has been chosen following the idea from [START_REF] Chadli | LMI solution for robust static output feedback control of Takagi-Sugeno fuzzy models[END_REF]. . Different configurations may lead to different results [START_REF] Chadli | LMI solution for robust static output feedback control of Takagi-Sugeno fuzzy models[END_REF].

Remark 5.3. In this particular case (SOFC design), when using the extended vector T TTT xu x   , equivalent conditions are obtained employing Finsler's lemma and descriptor-redundancy, as follows.

Consider

T T TT x

x x u    ; thus the system (5.1) together with the control law (5.6) writes:

  1 0 0 , h h v hhv hv h x B u E x uK xA x Cu x Gx             (5.15) with 00 0 0 0 0 0 0 x x u n n n I        and   1 0 0 0 x x u u n n n h v h hhv hv h n I A E K B G C I                 . The Lyapunov function under consideration is   TT x P V x x 
, where 0 and7 T hhv P G  gives exactly (5.14).

                1 25 1 3 6 3 3 12 1 4 7 4 4 7 2 5 3 6 0, TT h hhv hv h T T T T T T h hhv hv h v v v T T T T T T T T T T h hhv hv h v h h h P G K C A P G K C E E P PE A P G K C E B P B P B P PA P P P P P P PP                                    which by setting 1 PP  , 2 1 
T h P M  , 3 3 
T h P M  , 4 5 
T h P M  , 5 6 
T T hhv P P G    ,
Corollary 5.1. The P-Problem conditions (5.5) given in [START_REF] Crusius | Sufficient LMI conditions for output feedback control problems[END_REF] are included in those of Theorem 5.1. 5.11) gives: 5.17) which by means of the Schur complement produces

Proof. By choosing

v E I  , 1 MP  , 2 h hh M B G  , 3 M P   , 4 h hh M B G   , 5 0 M  , and 6 hh M G   , ( 
              20 0. 1 h h h h h h h TT T h h h h hh h h hh hh hh PA K C PA K C K C B B B P P B G G P B G G                              (5.16) Set hh G G  . If the equality 0 hh PB B G   holds, then     0, 20 0 h h h h h h h T hh PA K C PA B P G KC K G C                       ( 
    1 20 0. 0 h h h T h h h h hh P B G PA K C PA K C KC G                 (5.18)
Considering a sufficiently small 0   , conditions similar to those of the P-Problem appear:

  0, 0 0. , T h h h h h h PA K C B P P B G P B        (5.19) 
Conditions (5.19) can be seen as the P-Problem for nonlinear systems in standard TS form. Moreover, when a standard linear system is under study, conditions (5.19) yield exactly the P-Problem conditions in (5.5). Note that in this case,  has been set as Conf : , Con 0 0 0 1 1 1 and 0 0 0 1 1 1 f : , Conf : . Observe that when Configuration 3 is implemented, another sum must be taken into account, turning the problem from three sums -

              , 2 0.8 0.8 0.7 0.9 1.1 0.2 0.4 0.5 0.6 E b               , 1 1.15 0.1 1.8 0.3 1.3 0.5 0.1 0.8 0.8 b A                 , 2 1.2 0.3 0.1 0.4 0.6 0.3 0.2 0.2 0.2 A a                   , 1 0.6 1.2 0.3 1.5 0.6 1.3 a B              , 2 1.3 2.1 2.7 0.5 1.5 1.6 B             , 1 0.4 1 0 T C      
T T h B                  
      1 2 1 1 2 1 1 1 1 a a e r r r j i i i i j hv h       -to four sums -         1 2 3 1 1 2 3 1 1 1 1 1 a a a e r r r r i i j i i i i j h h v h         .

Discrete-time TS descriptor models

This section presents a static output feedback controller design for discrete-time TS descriptor models. The proposed method exploits the discrete-time nature of the TS model by the use of delayed Lyapunov functions, similarly to the previous chapters. 

Problem statement

Consider the following discrete-time TS descriptor model [START_REF] Taniguchi | Fuzzy descriptor systems: stability analysis and design via LMIs[END_REF]

: 1 , . v k k k k h h h k A x B y C E x u x     (5.20)
Recall that v E is full rank, thus a standard TS model can be constructed. For standard TS models, in [START_REF] Chadli | LMI solution for robust static output feedback control of Takagi-Sugeno fuzzy models[END_REF][START_REF] Kau | Robust H∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties[END_REF][START_REF] Lo | Robust H∞ nonlinear control via fuzzy static output feedback[END_REF], the following PDC control law is used

.

k h k h h k u K y K C x   (5.21)
In case of the TS descriptor model (5.20), the following control law is used:

  1 . hhh v h v k h k u G K y     (5.22)
The control law contains past samples incorporated via the MFs similar to Chapter 3.

Results

Controller design

The TS descriptor model (5.20) and the control law (5.22) can be expressed as: 5.23) Consider the following delayed Lyapunov function (Guerra et al., 2012b): 

  1 1 0. 0 u x u k h n h v h k n hhh v hh v k n x A E B x G K I u C                      ( 
      1 1 1 1 0, 1 a k i i r T T k k h k i k V x x h z k P x P x x              ( 5 
x                                (5.25) Taking 1 k k k x x u        ,   1 0 h v h h hhh v hh v A E B G K I C             
, and 00 00 0 0 0

h h P P         . Via
Finsler's lemma equality (5.23) together with inequality (5.25) 

yield     1 00 0 0 0, 0 0 0 0 h hh h h v hhh v hh v A E B P P C G K I                    (5.26)
where

    2 x u x u nn n n    
is a free matrix. Therefore, the following result can be stated. 

0 T ii PP  , 2 3 x i i M 1 2 1 x i i i j G
, and

21 x i ij K ,   12 , , 1, 2, , xa i i i r  ,   1 1, 2, , e jr  such that 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 0, , , 0, , , , 1 ; 
x x x x i i j j j j i i x i i i i i i i i x i a i i i i i r j j             (5.27) hold with         1 1 1 2 2 2 1 2 1 1 2 2 1 2 1 2 1 1 2 1 1 2 1 2 11 1 3 3 3 3 . x x x x x x x x x x x i j i i i i j i i j j i i T i TT i i i i i i T j i i i i i j i i j i i j i i i i i P M M E P A K C E M C B G K M G G                            
(5.28)

Proof. Recall (5.26), and select the free matrix as: : 

h v h h h hhh hh hh v TT v hh hh T h h hh v hh hhh v hhh v hh v T hv P M M E P K A M G G K C E M C B G                                      
      1 ,, k k k k k k k k A Bu y E x x x x x C x     (5.31) with   2 2 0.9 0.1 0.1 0.4 0.15 1.1 k x Ex x          ,   2 2 0.5 0.8 0.1 1.2 0.5 k x Ax          , 1 1 B     , and 
  2 2 0 1.3 0.15 k C x x       . Consider the compact set   1 2 : , 2 x x x    : inside this compact set   Ex is nonsingular:     det 0 Ex  , x   .
The TS descriptor model for (5.31) In order to apply the SOFC conditions in [START_REF] Chadli | LMI solution for robust static output feedback control of Takagi-Sugeno fuzzy models[END_REF], it is necessary to write (5.31) in the standard form:

                     
      1 1 k k k k k x E x A x x Bu    with       2 2 1 1.1 0.1 0.1 1 0.4 0.15 0.9 det k k x Ex x Ex           ; this leads to 3 8 2 r   linear models.
Note that the input matrix B is no longer constant. Now, by employing conditions in [START_REF] Chadli | LMI solution for robust static output feedback control of Takagi-Sugeno fuzzy models[END_REF] 

Robust control

Consider the following uncertain TS descriptor model:

        1 , h h k h h k k h v h k vk E x A x B u E y B x C A C             (5.32) where   aa h h ah D F A t   ,   bb h h h b D F B t   ,   cc h h h c D F C t  
, and 

  ee v v v e D F E t   with     T aa t t I    ,     b T b t t I    ,     c T c t t I    ,
(b) x 1 x 2 x 1 x 2 134     1 1 0. 0 u x u h h h h h k v v k n h n n k hhh v hh v x A E B x G A E B CC K I u                              
(5.33)

Consider the delayed Lyapunov function (5.24). Through Finsler's lemma, its variation 

  1 00 u x u h h h n hhh hh v nn A C K B G E A                    . A  can be written as A    where   1 0 0 0 00 0 0 0 0 00 , , . 0 0 0 00 0 0 0 0 0 0 00 c hhh v a a h ab hh v e e b h h v b h c c h h e v F DD D G D F F K F                             Then, expression (5.34) produces 0. v T T h T T hh       ( 
xa i i i r  ,   1 1, 2, , e jr  , such that 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 0, , , 0, , , , 1 ; 
x x x x i i j j j j i i x i i i i i i i i x i a i i i i i r j j             (5.37) hold with       1 1 1 1 2 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 2 1 3 3 3 0 0 0 0 0 0 0 0 00 00 00 00 x x x x x x x xx x T a i b i a b c e i i i i i i i i i i j i i i j i i i j c i c i i j i e j j i i i i i j i i i i j i j F F D D K D D T F KD F MM T M T                                                ,           where 1 12 x i i i j 
has been defined in (5.28) and

  1 2 1 2 1 2 1 2 1 1 2
,,,

x x x x x i i i j i j i j a b c e i i i i i i j i diag I I I I   .
Proof. Note that inequality (5.36) can be rewritten as 5.38) which by means of the Schur complement gives

1 0 0, 0 T T T v hhh                   ( 
      : 0 0. v hhh v hh T h                 (5.39) By employing Lemma B.3 the proof is concluded. ■
To show the potential of the proposed approach and in order to compare it with other works, we propose the following corollary that applies the methodology to standard TS models, i.e. with,

x v n E I  , 1 k k k h h x A x B u   .
Corollary 5.2. Consider the SOFC , such that:

1 1 2 2 1 1 1 1 1 2 2 0, , 0 , ; , 1 x x x x i i x i i i i i i x i i i i i a i i i i i r             (5.40) hold with         1 2 2 2 2 2 2 2 1 1 1 2 2 1 2 1 1 2 1 3 3 3 3 . x x x x x x x x x x x T i i i i i i T i i i i i i i i i i T i i i i i i i i i i i i i i P M A K C M C MP K BG M G G                      
Similar reasoning applies for the uncertain model (5.32) 

: if x v n E I  and 0 v E  then:       1 , . h h h h h h k k k k k A B C x x A x B u y C          ( 
i i a   , 2 0 x i i b   , 2 0 x i i c   ,   12 , , 1, 2, 
,

xa i i i r 
, such that: 

1 1 2 2 1 1 1 1 1 2 2 0, , 0 , ; , 1 x x x x i i x i i i i i i x i i i i i a i i i i i r             (5.42) hold with       1 1 2 2 1 2 1 2 1 1 1 2 1 21
i i i i i i i i i i i i i i i c c i i i i i i i i i i ii i i M F D D K D F T F KD T T M                                        
Proof. The proofs are straightforward from Theorems 5.2 and 5.3. ■

When v E I  , the following numerical example compares the performance of Corollary 5.2 and Theorem 2 in [START_REF] Chadli | LMI solution for robust static output feedback control of Takagi-Sugeno fuzzy models[END_REF]. The example is adapted from [START_REF] Chadli | LMI solution for robust static output feedback control of Takagi-Sugeno fuzzy models[END_REF], by including a real-valued parameter in the uncertain terms. Also for this example different values for the arbitrary matrix  are tested (see Remark 

AA B B                                           1 
T T T a a c i i i T cb ii C C D F D F D F                                                                               0.3, 1, 2. b i i 
The parameter introduced is 0   . The goal is to design a SOFC for as large values of  as possible. Table 5.1 summarizes the obtained results.   Table 5.1 shows that a larger value of  is obtained when Corollary 5.2 is applied, i.e., the new approach allows stabilizing the system for a larger size of the uncertainty than the one in [START_REF] Chadli | LMI solution for robust static output feedback control of Takagi-Sugeno fuzzy models[END_REF]. Furthermore, since there are different output matrices, the conditions in [START_REF] Kau | Robust H∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties[END_REF] are difficult to fulfill. Moreover, in both examples the output is nonlinear. 

Summary and concluding remarks

An LMI approach has been presented to deal with the static output feedback controller design for both continuous and discrete time TS descriptor models. These conditions circumvent those in the literature in the sense that no equality and/or rank constraints, which for TS models are considered an important drawback, are needed in the design procedure.

The obtained conditions are LMIs up to fixing the matrix 

 

Ex is regular.

Three problems have been addressed: 1) State feedback control design, 2) Observer design, and 3) Output feedback control design.

To develop the conditions, both for the continuous and discrete-time case, a TS representation of the nonlinear models (6.1) has been used. The conditions are given in LMI terms.

Within the TS-LMI framework for descriptor models, beside direct extensions such as including more performance criteria in the conditions, reducing the complexity of the LMI problems and so on, we can enumerate some future research directions. structure in [START_REF] Marquez | Non-quadratic stabilization of second order continuous Takagi-Sugeno descriptor systems via line-integral Lyapunov function[END_REF].  A second possible NQ approach is to extend the local approach given in [START_REF] Bernal | Generalized nonquadratic stability of continuous-time Takagi-Sugeno models[END_REF]. By introducing Lyapunov functions such as:

Use of NQ Lyapunov functions

    1 2 1 2 12 1 1 1 q q q r r r T i i i i i i i i i V x x h h h z P x              
together with given a priori bounds

0 k kk k w z z    
, its ensured that the future trajectories do not to escape from the prescribed region [START_REF] Pan | Nonquadratic stabilization of continuous T-S fuzzy models: LMI Ssolution for a local approach[END_REF].  A third approach can be the extension of TS models to sum-of-squares (SOS) tools [START_REF] Prajna | Nonlinear control synthesis by sum of squares optimization: A Lyapunov-based approach[END_REF]. Without entering into details, the idea of the SOS approach is that with an even integer d , any polynomial   px can be written as:       

 

px. It represents a "natural" extension of the LMI tools; moreover, it has already been used in the TS framework [START_REF] Bernal | Stability analysis of polynomial fuzzy models via polynomial fuzzy Lyapunov functions[END_REF][START_REF] Sala | On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems[END_REF][START_REF] Tanaka | A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems[END_REF].

Nevertheless, for the moment, the two last ideas present the drawback of huge increase of the computational cost. Only reduced order models could be considered.

Unmeasurable premise variables

In general MFs may depend on unmeasurable variables. Considering that the MFs depend on state variables that are not measurable is a more challenging problem for the observer design. Effectively, in this case, within the quadratic framework, a continuous-time TS descriptor observer will write:

        AA  , ĥ h BB  , etc. First ideas that can be exploited are the use of Lipchitz conditions as in [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Bergsten | Fuzzy Observers[END_REF][START_REF] Lendek | Stability analysis and nonlinear observer design using Takagi-Sugeno fuzzy models[END_REF]; but a more promising way is the use of the differential mean value theorem as for standard TS models in [START_REF] Ichalal | On observer design for nonlinear Takagi-Sugeno systems with unmeasurable premise variable[END_REF]. For example, consider the case where the premise vector is the state, i.e.,    

z t x t  , then       ˆ1 1 âa r r h i i i h i j A A h x h x A       ; it exists a constant   , c x x  such that:        ˆî ii h h x h x c x x x     
. In this case it is possible to turn back to the estimation error Ex. This could be addressed by exploring a reduced statespace representation as in [START_REF] Feng | On state feedback H∞ control for discrete-time singular systems[END_REF]. For example, in the discrete case, 

                1 1 1 2 2 1 2 1 3 4 2 1 . k k k k k k k k k k k k k ID A x A x B x x x E x E x u A x A x B x x x                               (6.2)
If it is possible to find a change of variable 2 2

1 1 0 x q nq k k k k I x I x x                      
, the descriptor (6.2) can be rewritten as:

                  1 2 1 1 2 3 4 3 2 1 1 1 2 1 0 . k k k k k k k k k k k k k I k A x A x A x B x E x u A x A x A x B x x x                                  
This is a first track in the sense that for the change of variables  is not state dependent.

Then in a sense for the vector 1 q k   , we are turning back to a descriptor with     I k rank E x q  . Naturally, the control has to be re-designed in order to avoid the feedback of future states. Moreover, a TS form should be expressed only after the transformation in order to keep a lower number of vertices.

Fault diagnosis

Extension to fault diagnosis and/or fault tolerant control seems also natural. For instance, in [START_REF] Koenig | Unknown input proportional multiple-integral observer design for linear descriptor systems: application to state and fault estimation[END_REF][START_REF] Marx | Robust fault diagnosis for linear descriptor systems using proportional integral observers[END_REF], an asymptotic estimation of both states and failures are obtained via proportional-integral (PI) observers. This approach has been developed for linear singular systems. In [START_REF] Marx | Design of observers for Takagi-Sugeno descriptor systems with unknown inputs and application to fault diagnosis[END_REF], the fault diagnosis of TS descriptor models (with a constant and singular descriptor matrix) has been addressed via an observer whose structure is not in the descriptor form:

   are matrices of appropriate dimensions to be designed. Since this procedure has been stated for singular TS models, by using descriptor-redundancy (see Chapter 2), we can induce a singular TS system and therefore investigate the design conditions for an observer with a structure similar to (6.3).

Real-time applications

The work presented is also a preliminary theoretical study to cope with real-time problems. Effectively, applications at LAMIH UMR CNRS 8201 include the use of parallel robot manipulators and other mechanical systems that could be subject to the descriptor TS modeling. For parallel robots, preliminary results have been obtained on 2-DOF planar parallel robot so-called biglide [START_REF] Vermeiren | Motion control of planar parallel robot using the fuzzy descriptor system approach[END_REF]. Now, a very challenging problem to be faced concerns the step-crossing feasibility of a two-wheeled transporter [START_REF] Allouche | Step-crossing feasibility of two-wheeled transporter: Analysis based on Takagi-Sugeno descriptor approach[END_REF].

Another challenging problem concerns disabled people in wheelchair. The problem is the estimation of the forces in the shoulder during the push with electrical assistance; this problem is decomposed into two phases. The first one consists in an observer that from the measured speed of the wheels is able to compute the torque applied on the wheel by the person [START_REF] Mohammad | Procédé et dispositif d'aide à la propulsion électrique d'un système roulant, kit pour fauteuil roulant comportant un tel dispositif et fauteuil roulant équipé d'un tel dispositif[END_REF]. Once this estimated torque and the model of an arm are available, the goal is to find the efforts in the shoulder. The final aim is to produce an electrical assistance system that adapts to the estimated efforts as well as detects possible dissymmetry between the sides and compensates in real time. This activity is currently ongoing as a nonlinear descriptor has been designed in [START_REF] Dequidt | Modeling in descriptor form of an arm (Internal note LAMIH UMR CNRS 8201)[END_REF]. 

A.2. Linear matrix inequalities

A short introduction to linear matrix inequalities (LMIs) is given in this section. An LMI is a set of mathematical expressions whose variables are linearly-related matrices. A formal definition is [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF][START_REF] Duan | LMIS in control systems: Analysis, Design and Applications[END_REF][START_REF] Scherer | Linear matrix inequalities in control[END_REF]: convex optimization problem [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]. Basically, there are three well-known problems that often appear in control problems:

  0 1



The Feasibility Problem (FP) consist of determining if there exist elements x X  such that   0 Fx . The LMI   0

Fx is called feasible if such an x exists, otherwise it is said to be infeasible.



The Eigenvalue Problem (EVP) is the minimization of a linear combination of the decision variables T c x under some LMI constraints:

  subjet to min 0,

T x c

Fx (A.5) where c is a vector of appropriate dimensions.



The Generalized Eigenvalue Problem (GEVP) consists of minimizing the eigenvalues of a pair of matrices which depend affinely on a variable, subject to a set of LMI constraints:

        subject min to 0, 0, 0, B x A x B x C x        (A.6)
where  is scalar, the matrices   Ax,   Bx, and  

Cx are symmetric and affine in x .

Often, matrices appear as decision variables. For instance, consider the Lyapunov inequality: In this thesis unless otherwise specified, the sum relaxation scheme given by Lemma B.3 is adopted, especially since it does not involve extra slack matrices and therefore has a "reasonable" complexity. Other sum relaxations that include slack variables exist in the literature but they are beyond the scope of this thesis [START_REF] Liu | New approaches to H∞ controller designs based on fuzzy observers for TS fuzzy systems via LMI[END_REF][START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF].

Usually, when dealing with stability/design of discrete-time TS or TS descriptor models, the co-negativity problem may involve more than 2 convex sums of matrices, for example: 

            1 

  i-th linear model of the TS one(2.1). The scheduling vector   zt may depend on the state, input, exogenous parameters, or time, on measurable and/or unmeasurable variables. The MFs and hold the convex sum property in a compact set of the state space  :

  entries may be non-constant terms, which are assumed to be bounded in  . Thus consider the p non-constant terms that appear in       , A x B x , i.e., non-constant terms constitute the premise vector p z  .

Remark 2 . 1 :

 21 Formally, it is possible to consider also systems that are not affine-incontrol, i.e., u . This means that implicit equations, i.e.,

Remark 2 . 3 .

 23 From a given nonlinear model, several TS representations can be obtained, since different algebraic manipulations may lead to different premise vectors.

  sum relaxations are used and the MFs are dropped. In Appendix B, several sum relaxations are given. The quadratic framework presents an important drawback: a single matrix 0 T PP   must satisfy the conditions for each linear local model of a given TS model. In the continuous-time case, piecewise quadratic Lyapunov functions have been investigated as a

  in the left-hand side of (2.46)those in   Exgive the MFs  , have the convex sum property in the compact set  , i.e., depends on measured variables.

  .10) Via Finsler's lemma, the equality constraint (3.7) and the inequality (3.10) yields:

  .15) which by applying the relaxation Lemma B.3 (Appendix B) yields conditions (3.13). The regularity of hhv G is given as follows: if conditions in Theorem 3.1 hold, then (3.15) also holds. By means of the Schur complement (3.15) is equivalent to

Remark 3 . 2 .Remark 3 . 3 .

 3233 The conditions in(3.13) are LMIs up to the selection of  . Prefixing this sort of parameter has been a common practice in the LPV community in recent years (de[START_REF] De Oliveira | Stability tests for constrained linear systems[END_REF][START_REF] Jaadari | New controllers and new designs for continuous-time Takagi-Sugeno models[END_REF][START_REF] Oliveira | Robust state feedback LMI methods for continuous-time linear systems: Discussions, extensions and numerical comparisons[END_REF][START_REF] Shaked | Improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty[END_REF] since it allows searching for a feasible solution in a logarithmically spaced family of values The control law (3.6) could be implemented as follows:

Figure 3 .

 3 1 shows the open-loop   0 ut  and the close-loop trajectories for the initial conditions

Figure 3 . 1 .

 31 Figure 3.1. (a) State trajectories of the open-loop system. (b) State trajectories of the closed-loop system. 

  . Figure3.2 shows the results when the optimal values for  (min  ) are computed via Theorem 2 in[START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF] (represented by black-O) and Theorem 3.2 (represented by blue-X). As can be seen, Theorem 3.2 obtains betters results.

Figure 3 . 2 .

 32 Figure 3.2. Optimal values for γ in Example 3.2. 

  gains to be designed. Their structure will be defined later on. The TS descriptor model(3.33) together with the control law(3.34) yields:

  design the state feedback controller (3.34), a generic Lyapunov function is considered:

  40). Two classes of Lyapunov functions are employed:

Theorem 3 . 4 .

 34 The TS descriptor model[START_REF] Estrada-Manzo | Improving observer design for discrete-time TS descriptor models under the quadratic framework[END_REF]

Remark 3 . 4 .

 34 .49) Applying Property A.3 and the Lemma B.3 yields (3.47), thus concluding the proof. ■ Neither equivalence nor inclusion relation can be established between the LMI constraints in Theorems 3.3 and 3.4, since they have been derived from different

Example 3 . 3 .

 33 Consider the TS descriptor model[START_REF] Estrada-Manzo | Improving observer design for discrete-time TS descriptor models under the quadratic framework[END_REF]

  2 1.2 b    . The LMI conditions in Theorem 3.3 and Theorem 3.4 have been tested in order to illustrate Remark 3.4. Figure 3.3 shows the feasibility sets for Theorem 3.3    and Theorem 3.4   .

Figure 3 . 3 .Theorem 3 . 5 .

 3335 Figure 3.3. Feasibility set for Theorem 3.3 (×) and Theorem 3.4 (□) in Example 3.3. 

  is valid. Hence, the results in the Theorem 3.5 are more general than those in Theorem 3.4. To see this, let Schur complement on (3.53) gives (3.49).

Figure 3 .

 3 Figure 3.4 illustrates Remarks 3.4 and 3.6.

Figure 3 . 4 .Example 3 . 4 .

 3434 Figure 3.4. Illustration of Remark 3.4 and Remark 3.6.

Figure 3 . 5 .

 35 Figure 3.5. Solution set for Theorem 3.4 (□) and Theorem 3.5 (×) in Example 3.4.

.Corollary 3 . 1 .

 31 implemented. On the other hand, Option 2 does not introduce future MFs but the delayed one For consistency, it is assumed that     10 zz  .Based on the discussion above, the following results were obtained; since they are a 'direct' extension ofTheorems 3.3, 3.4, and 3.5, they are summarized in the following corollary. Consider the delayed Lyapunov function  

Figure 3 . 6 .

 36 Figure 3.6. Solution set for conditions in Theorem 3.3 (x) and its delayed approach (+) in Example 3.5. 

Theorem 3 . 6 .

 36 The TS descriptor model(3.33) under the control law

Finally 7 .

 7 , applying the Schur complement and Lemma B.3 yields (3.61) . ■ The following results are based on the Lyapunov function   The TS descriptor model (3.33) under the control law 1

Figure 3 .

 3 Figure 3.7 shows the minimal value for  is computed for

Figure 3 . 7 .

 37 Figure 3.7. Minimal values for γ: Theorem 3.6 (O) and Theorem 3.6 delayed (×) in Example 3.6. 

Definition 3 . 1 .

 31 (Multiple sum) A multiple sum with h n  terms and delays evaluated at sample k is of the form:

  Considering the previous definitions, the discrete-time TS descriptor model[START_REF] Estrada-Manzo | Improving observer design for discrete-time TS descriptor models under the quadratic framework[END_REF]

K

  be determined of appropriate dimensions. The regularity of 00 GG H Gwill be discussed further on. Obviously, for causality these matrices cannot contain positive delays, otherwise they incorporate future samples(Guerra et al., 2012b;[START_REF] Lendek | Controller design for TS models using delayed nonquadratic Lyapunov functions[END_REF]. The delays are given by the multisets 0

Example 3 . 8 .

 38 Recall that the multisets for the system matrices are

  4 and Corollary 3.1. Following the same procedure as in the previous sections, i.e., using the generic Lyapunov function(3.36) and its variation(3.37), the closed-loop model[START_REF] Estrada-Manzo | Improving observer design for discrete-time TS descriptor models under the quadratic framework[END_REF]

Theorem 3 . 9 .

 39 The closed-loop TS descriptor model (3.71) is asymptotically stable if there exist , ,

  3.80) Finally, the Schur complement applied on (3.80) gives(3.78), thus ending the proof. ■ Note that the total number of sumsfor MFs  

  such that sum relaxations can be used and the number of sums

1 

 1 For a fixed combination of multisets, independent of the structure chosen, are used, the more relaxed the conditions are. Following the procedure given above, the maximum number of sums is given by 2

  four sums are involved). The maximum value of  for which conditions were found feasible is 0.86  . Using the same number of sums the conditions of Theorems 3.10 and 3.11 are not feasible for any  .

  .25) By means of Lemma B.3, (4.25) gives (4.23). The proof of regularity of 4h P follows a procedure similar the one in Theorem 4.1. The final observer form is obtained as follows: recall (4.22), i.e.,

Example 4 . 1 .

 41 27) and after some algebraic manipulations, (4.30) gives the final descriptor observer (4.24), thus concluding the proof. ■ Consider a TS descriptor model (4

1

 1 

  the feasible regions for conditions (4.9) when 43 PP  (see Remark 4.1)   O , for the conditions in Theorem 4.1    , and therein Theorem 4.2    .As expected, the results obtained from Theorems 4.1 and 4.2 significantly outperform the ones obtained when fixing one of the decision variables.

Figure 4 . 1 .

 41 Figure 4.1. Feasible sets in Example 4.1. 

2 . 4 . 1 .

 241 ., 2011;[START_REF] Shaked | Improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty[END_REF] can be used, see Remark 3.CorollaryThe results given by Theorem 4.2 are always included in those of Theorem 4.3 under the same relaxation scheme.Proof. Suppose conditions of Theorem 4.2 hold; thus

Figure 4 . 2 .

 42 Figure 4.2. Feasible sets for Theorem 4.2 (O) and Theorem 4.3 (×). 

  The time-derivative of the Lyapunov function (4.46) produces

Proof.Remark 4 . 5 .Example 4 . 3 .

 4543 It follows a similar procedure as in Theorem 4.4. ■ The results given in Theorem 4.4 and Corollary 4.2 can be extended directly to the Proportional Integral (PI) or to Proportional Multi-Integral (PMI) observer. For a PI observer, set 0 S  ; while for the PMI observer consider   0 m d  , where   m d is the mth- derivative of the unknown input. Consider the following nonlinear descriptor model:

  needed to exactly represent the original nonlinear system in

  The exo-system in this example generates sinusoidal signals. In order to show the effectiveness of Theorem 4.4 and Corollary 4.2, two comparisons are done: 1. Comparing the conditions in Theorem 4.4 and Corollary 4.2 to those in[START_REF] Ichalal | Simultaneous state and unknown inputs estimation with PI and PMI observers for Takagi Sugeno model with unmeasurable premise variables[END_REF]: In order to use the methodology given in[START_REF] Ichalal | Simultaneous state and unknown inputs estimation with PI and PMI observers for Takagi Sugeno model with unmeasurable premise variables[END_REF], a standard TS representation is needed. After the inversion of the matrix   Ex, a TS model with 8 vertices is obtained. By choosing common matrices as follows:

Figure 4 . 3 .

 43 Figure 4.3. States in (black lines) and their estimates (blue-dashed lines) for Example 4.3 for δ=1.55.

Figure 4 . 4 .

 44 Figure 4.4. Unknown inputs (black lines) and their estimates (blue-dashed lines) for Example 4.3 for δ=1.55. 

Theorem 4 . 5 .

 45 The estimation error dynamics in[START_REF] Estrada-Manzo | Output feedback control for T-S discrete-time nonlinear descriptor models[END_REF]

  .66) Proof.Recall (4.63). Selecting the Lyapunov function as  

  71) which by Lemma B.3 gives (4.68), thus concluding the proof. ■ Proposition 4.1. Under the same relaxation scheme, the conditions of Theorem 4.6 include those of Theorem 4.5. The reverse does not hold.

Example 4 . 4 .

 44 Consider the TS descriptor (4

  the results when conditions in Theorem 4.5   O are compared to those in Theorem 4.6    . Theorem 4.6 performs better than Theorem 4.5.

Figure 4 . 5 .

 45 Figure 4.5. Feasible sets for theorems 4.5 and 4.6 in Example 4.4. 

Figure 4 . 6 . 5 .

 465 Figure 4.6. Feasible regions for Theorems 4.6 (×) and 4.7 (□) in Example 4.4. 

Example 4 . 6 .

 46 . UsingLemma B.3 on (4.63) gives(4.78). ■ Recall the nonlinear descriptor model in Example 2.5 (Chapter 2, Section 2.2.5), i.e.,

Figure 4 . 7 .

 47 Figure 4.7. Simulation results for Example 4.6: States (black-solid-lie) and their estimates (blue-dashed-line).

  , by means ofLemma B.3, (4.63) gives(4.81). ■ Example 4.7 (continued). Employing conditions in Theorem 4.9 on Example 4

Example 4 . 8 .

 48 We turn back to the TS descriptor model in Example 4.4. Figure4.8 shows the feasible regions for the proposed approach when

Figure

  Figure 4.8. Feasible sets for different configurations for Theorem 4.10 in Example 4.8 . 

Figure 4 . 9 .

 49 Figure 4.9. Simulation results for Example 4.8: States (black-solid-line) and their estimates (blue-dashed-line).



  Conditions in Theorem 4.11 for 1   , i.e., the conditions in Theorem 4.10. The resulting feasible solutions are represented by ( ) in Figure 4.10.  Conditions in Theorem 4.11 for 2   , the resulting feasible solutions are represented by (  ) in Figure 4.10.

Figure 4

 4 Figure 4.10. Feasible solution set for Theorem 4.11 for α=1 (□) and for α=2 (×) in Example 4.9.

  .1) via SOFC of the form

Remark 5 . 2 .

 52 Several results can be obtained from Theorem 5.1, for instance,

Example 5 . 1 .

 51 The following example illustrates the performance of Theorem 5.1 when different options for  are tested. Consider a TS descriptor model of the form (5

  are real-valued parameters. Three configurations for Theorem 5.1 have been tested:

Figure 5 .

 5 Figure 5.1 shows the feasible solution set for each of the configurations: Configuration 1   O , Configuration 2    , and Configuration 3    . In addition, Figure 5.1 illustrates Remark 5.2, since different solution sets have been obtained for different selections of the free matrix

Figure 5 . 1 .

 51 Figure 5.1. Feasible solution set in Example 5.1.

Example 5 . 2 .

 52 by means ofLemma B.3 yields (5.27). ■ Consider the following nonlinear TS descriptor:

Figure 5

 5 Figure 5.2 shows simulation results for initial conditions     0 1 1 T x  .

Figure 5 . 2 .

 52 Figure 5.2. (a) State trajectories of the open-loop systems, (b) State trajectories of the closed-loop system in Example 5.2.

  the results presented in the thesis and discusses future research directions within the TS-LMI framework. Throughout the thesis the following family of nonlinear descriptor models has been considered: are based on the assumption that the matrix descriptor matrix   Ex is regular at least in a compact set of the state-space  including the origin . Several examples have shown the importance of keeping the original descriptor structure instead of computing a standard state-space modelthis is possible since

For

  the continuous-time case, only quadratic Lyapunov functions have been employed in this work. A future research direction could be the investigation of recent NQ Lyapunov functions used for standard TS models. Several possibilities can come at hand:  The most interesting would be to extend the line-integral Lyapunov function[START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF] from TS to TS descriptors, therefore obtaining to global conditions. . Nevertheless, the condition for line-integral, i.e., problem. This problem has been solved in an efficient manner only for second-order TS descriptor systems with certain specific



  is a vector of monomials and  is a matrix directly obtained from the coefficients of

6 . 3 .

 63 be done a priori as they only depend on the shape of the MFs   i hx and not on their time-derivative. Of course, the convergence of the estimation error will only be ensured in a ball around the origin depending of the bounds i  . Extending the results to singular systems: singular   Ex Naturally, one of the next steps is to extend the results to nonlinear descriptor models with rank deficient descriptor matrix  

  The symbol  stands for negative definitiveness, while  means positive definitiveness. In addition, non-strict LMIs can appear as   0 Fx (negative semi- definitiveness).The feasibility set or the set of solutions of the LMI (A.4), denoted by a convex subset of d . Finding a solution of the LMI (A.4) is a

  matrix to be found, i.e., P is a decision variable. Inequality (A.7) can be written in the form (A.4), as shown in Example A.1. inequality (BMI) has the general form[START_REF] Van Antwerp | A tutorial on linear and bilinear matrix inequalities[END_REF]: decision variables. Inequality (A.10) is not convex in x and y . A way to obtain an LMI from(A.4) is by fixing beforehand one of the decision variables: 1) the BMI (A.10) is an LMI in x for a fixed y , or 2) the BMI (A.10) is an LMI in y for a fixed x .

  where

Lemma B. 4 .

 4 has two different pairs of convex sums, Lemma B.3 can be extended as follows: Sufficient conditions for (B.9) to hold are:

  Consider the following nonlinear model in the compact set

	 		: x x i	 1, 1,2 i  	:				
						1 x	1 x x x 1 2   	,	2 x x 1  	2 3 . x	(2.7)
	One possible way of rewriting the system in the form (2.4) is by defining:
					x		  A x x	,	with	  A x	1 13 1 x      	.	(2.8)
	Following the procedure above one can identify 11 nl x  as the non-constant term in   Ax
	, and it is bounded inside  as	 nl   1 11 	; the premise vector is	z	11 x nl   . Thus
					1,2 , , ir 	may have different properties, e.g., they may be

stable/unstable or uncontrollable/unobservable; thus different TS representations may lead to different results. This non-uniqueness is considered one of the shortcomings of TS models. Example 2.1.

  This type of controllers incorporates the system's MFs in the control law; therefore, it

	relaxes the linear controller u Kx 	by introducing r control gains. The TS model (2.14)
	together with PDC control law (2.24) produces			
		1	    2	1	1	2	
	12 11				

  , and E are real matrices of adequate sizes. Matrix E is not full rank, i.e.,

												.48)
	where	x 	n	x	is the state vector,	u 	u n	is the control input, and	y 	n	y	is the output; A ,

B , C

2.2.3. Regular   Ex: overview of existing results

  

	are:	  2 cos x ,	  2 sin x , 2	  2 sin xx , 2	  23 sin 2xx ,	  24 sin 2xx ,
	  24 sin xx , and 1  ; therefore a standard TS representation has	7 2 128 r 	rules (vertices).
	Moreover, the new input matrix	  E x B 1			



is no longer constant. 

  a standard state-space model can be computed.

	The inverse of the descriptor matrix gives	  k Ex 1 		det		  1 k Ex		1   2    	; this means that
	four different nonlinearities have to be considered, which results in	16 r  . Consider the
	observer design problem. Using the Lyapunov function   T k k V e e e k 	, where k e is the
	estimation error, and considering the compact set	   x	2	

Table 3 .

 3 1. Sketch of the proof for Corollary 3.1 (Delayed approaches).

Table 3 .

 3 2. Comparison ofTheorems 3.3, 3.4, and 3.5; and their delayed approaches (Corollary 3.1).

	Approach	Lyapunov function (3.36)	Control law (3.34)	Number of decision variables
	Theorem			

  At last, by means of Property A.3 on the first block of (3.77) gives(3.76). ■The next result provides more relaxed conditions than Theorem 3.10.

	Theorem 3.11. The closed-loop TS descriptor model (3.71) is asymptotically stable if
	there exist	,	,
			K   E P P P P E P P T H H H T H H H H H H H G P G A G B K E P P E P         	(3.77)

Table 3 .

 3 

3. Number of decision variables at each step for Theorem 3.11.

Table 3 .

 3 4 summarizes these results for an arbitrary cardinality of the multisets.

		Example 3.10. Consider the TS descriptor (3.69) when	0 w  , with k	2 rr   , ae
	1 E		1.1 0 0 0.36   	,	2 E		0.95 0 01   	,	1 A		1.18 0.2 0.33   1.31 0.23    	,	2 A		0.69 1.41 1.17 1.43    	,
	1 B	1 1.05     	,	and 2 B	1 0.1 0      						

Table 3 .

 3 

		5. Selection of multisets for Example 3.11	
	Approach Option	Multisets	Number of convex sums
	1		
	Theorem		
	3.12		

Table 3 .

 3 

		6. Minimum γ values in Example 3.11
	Parameter α	Option 1 Option 2 Option 3 Option 4
	1.5  	 	2.46	 	2.18	2.76

  24) 

	Proof. By setting	1 34 0 hh P PP    h P 	, the time-derivative of the Lyapunov function
	(4.15) is  		

  67)which by applying Lemma B.3 yields (4.64), thus concluding the proof. ■

	By using a different but still quadratic Lyapunov function   k V e		1 e F P Fe T T k k 	, a more
	relaxed result can be obtained; this is summarized in the following theorem.
	Theorem 4.6. The estimation error dynamics in (4.60) with		hv L	are asymptotically
	stable if there exist matrices	T PP 	0  , F , and	

  . 

		Example 4.7. Consider a TS descriptor with		0 u  ,	4 r  , a	2 r  , and matrices: e
	1 E		0.9 1.8 0.1 1.1    	,				2 E		0.9 0.3 1.4 0.8    	,		1 A		1 1.8 1.5 0.5     	,	2 A		1.8 0.86 1.5 0.5      	,
	3 A		1 0.2 1.5 0.5     	, 4 A		0.2 1.14 1.5 0.5      	, 13 CC 		0   1   	T	, 2 C		0 2   	T	, and 4 C		0 1   	T	, where
	0   is real-valued parameter. Conditions in Theorems 4.5 and 4.6 are not feasible for any
	0   ; conditions in Theorem 4.7 provide solutions up to	 	0.16	; conditions in Theorem
	4.8 are feasible up to	 	0.40	. 							

  ,

					k V e			P P e P e T H k k			P P i j P	P P T P  i j	i		H	P	j		P	(4.86)
	its variation is																						
								V 	  k e			00 11 11 0 0 PP PP H H T kk kk ee e P P e                  		0.	(4.87)
	By defining	1 e  k k e    	,		 	H A	0 A		0 0 1 G G H G 	H L	0 0 L L	C	H	0 C		E	0 E	 	,	00 0 PP H P  11 0 PP H P     	, and
	employing Finsler's lemma, inequality (4.87) under the equality constraint (4.85) results in:
					0 A  0 0 0 0 0 0 1 G G L L C E H H H H A G L C E    	    	00 0 PP H P  11 0 PP H P     	0 .	(4.88)
	Therefore, the following result can be stated:		
	Theorem 4.10. The estimation error dynamics in (4.85) is asymptotically stable if there
	exist	, P P k k P i j		, P P k k T P i j		0	,	i	P k	H pr  i	P k	,		P k j	P k  j pr	,		00 , LL L ij ,	0 L i	H pr  i	0 L	,	L 0 j	0 L  j pr	, and	0	0

Table 4 .

 4 1 provides the generalization based on the previous steps (similar toChapter 3, 

	Section 3.2.3).

Table 4 .

 4 1 How to select multisets for Theorem 4.10.

	Matrix	Multisets in Theorem 4.10
			0 P		 1, 1, , 1 ,	0 P	h P
	H P	00 PP			

  4.8. Feasible sets for different configurations for Theorem 4.10 in Example 4.8 . 

	By selecting    , 1,0.3 ab 		Configuration 1 does not provide a solution, while
	Configuration 2 is feasible; some of the obtained gains are:	
	11	0.16 0.05 0.03 0.05	,	22		0.15 0.17 0.20 0.17	,	11222		0.16 0.20	,	11211	0.34 0.18	,
	11111	0.16 0.06	12212 ,, 0.33 0.35	1111	0.07 0.03 0.08 0.0 6	,	and	2222	0.12	0.06

  are given in what follows. The main idea is to replace the classical one-sample variation of the Lyapunov function by its variation overall several samples, thus allowing the Lyapunov function to decrease at each α sample and not at each sample. This can be summarized in the following theorem.

	Theorem 4.11. The estimation error dynamics in (4.85) is asymptotically stable if there
	exist	, P P k k PP  , P P k k T i j i j	0	,	P k i	H pr  i	P k	,	P k j	P k  j pr	,	LL , ll

   . These sets of MFs hold the convex sum property in  .Three configurations have been tested using the conditions in Theorem 5.2:

															has	2 r  due to 2 e x (left-hand side) and	2 r  due to a
	2 2 x	(right-hand side). The matrices are	1 E	0.9 0.3 0.7 1.1     	,	2 E	0.9 0.1 1.1 0.1      	,
	1 A	0.5 1.2 1.2 0.5      	, 2 A	0.5 0.8 1.2 0.5      	,	i B	1 1    	,	i 	1, 2	,	 C , and  1 0 0.7	2 C 		 0 1.3	.
	On the right-hand side, the MFs are	2 2 4 hx  1	and 2 h	1 h  . On the left-hand side the MFs 1
	are	 12 vx 		 2 4	and	2 v	1	1 v						
							1 Conf : 		2 , Conf : 01 01              	3 , Conf : 		h B	.
	Configuration 1 provides no feasible solution. In this case, Configurations 2 and 3 are
	exactly the same since	h B 	  11 T	. Theorem 5.2 with Configuration 2 provides the
	following matrices:											
								2 ,, 0 .60 0.14 0.14 0.28 PP 1 0 .48 0.08 0.08 0 .25
					111 K		0.25,	K	222		0 .10,	121 KK 122 0.23,	0.27,
					1 111 HH 0.27,	2222	0.30,	H	1122	0.28,	H	122 1	0.45	.

  5.2).

	Example 5.3. Consider a TS model as in (5.41) with	2 r  and local matrices as follows a
	(Chadli and Guerra, 2012):			
	0.55 0.12 0.27 0.23	0.62 0.29	0.31 0.28	0.4
	11 2 0.37 0.51 0.39 0.36 0.24 0.59 0.23 0.19 ,, 0.14 0.25 0.65 0.47 0.19 0.37 0.43 0.15	0.4 . 15	,
	0.53 0.15 0.22 0.46	0.16 0.3 1 0.22 0.5 5	1.2
	2			

Table 5 .

 5 1. Results for Example 5.3.

	Approach	Variable	Maximum parameter value
	Theorem 2 in		
	(Chadli and Guerra, 2012)		

   are matrices of appropriate dimensions. The following lemmas give sufficient conditions for (B.3) to hold. Lemma B.2.[START_REF] Wang | An approach to fuzzy control of nonlinear systems: Stability and design issues[END_REF]. The double convex-sum (B.3) is negative if the following set of LMIs holds Lemma B.3.[START_REF] Tuan | Parameterized linear matrix inequality techniques in fuzzy control system design[END_REF]. The double convex-sum (B.3) is negative if the following set of LMIs holds

	1 2 i i    , 1 2 T i i	12 , i i	 1, 2, , a r		
					 1, 2, , ,   1 2 0, , 1 1, 2, , ,  a a ir i i r         11 1 2 2 1 0, i i i i i i   	1 i i 2 	.	(B.4)
		11 i i  	0,	1 i 		 1, 2, , ,  a r 
		a r	2 	1	1 1 i i       1 2 2 1 i i i i	1 2 0, , i i		 1, 2, , ,  a r 	1 i i 2 	.	(B.5)

  Note that the co-negativity problems (B.6), (B.7), (B.8), and (B.9) share two sums of the same nature. In these cases, Lemma B.3 can be applied on the two common convex sums. For instance, sufficient LMI conditions for (B.8) to hold are

	where	  1 1 2 x T i j i i    1 1 2 x i j i i	,	12 , , i i i x	 1, 2, , ,  a r	 1, 2, , e jr  1		are matrices of appropriate
	dimensions. In addition, inequalities involving two different pairs of convex sums may
	appear:																			
			:   vv hh	1 r a i  1  2 1 2 1 1 1 a e e r r r i j j   	            2 1 i j t t t h z 1 i h z v z	    t v z 2 j		1 2 1 2 i i j j		0,	(B.9)
	where	  1 2 1 2 T ii 1 2 1 2 j j j j ii   	,		2 i i 1 ,		 1, 2, , a r		,	12 , j j		 1, 2, , e r		.
	Remark B.1.  1 11 1 0, 1, 2, , , j x i i i x	a		,	1	 1, 2, , ;  e
		a	2	1	1 1 1 j i i i	x				1 1 2 j i i	i	x			1 2 1 j i i i	x	0,	x	 1, 2, ,	a		,	1	 1, 2, , ,  e	1	2	.
							h hh		: 	1 rrr 2 1 1 11 aaa ii j  	1 i h z	k	2 i h z	k	1 j hz	k		1		1 2 i j i		, 0	(B.6)
	where	  1 1 2 T jj 1 1 2 i ii i   	,	1 2 1 , , i i j	 1, , or  2, , a r
											v hh	: 	1 r a i  2 1 1 1 1 a e r r i j 	        2 i t t h z 1 i h z	    1 1 2 j i i v z t 1 j 		0.	(B.7)
	where	  1 1 2 T jj 1 1 2 i ii i   	,		12 , i i	 1, 2, , a r , 	 1, 2, , e jr  1		are matrices of appropriate
	dimensions. The following co-negativity problem also commonly appears:
			v hhh		: 	1 r a i  2 1 1 11 1 a a e x r r r i j i 	           2 1 x i i h z 1 i h z h z k k k 	     1 1 1 2 j i i x j i k v z  	0 ,	(B.8)

  Proof. Applying Lemma B.3 on the double convex sum     Using Lemma B.3 for the first inequality in (B.11) on the double sum of     Following a similar procedure with the second inequality in (B.11), we obtain: This concludes the proof. ■

		 1, 2, , 2 1 1 1 j j i i ij  1 2 1 1 1 1 0, , a j j ii i 1 1 1 1 0, j j i rr   1 1, 2, , ,  1, 2, , e a r i              11 11 2 1 j i j i e r      11 0 vv ii      		1 ,, j j 2		 1, 2, , ,  e r 	1 j		2 j	.
		a r	2 	1	1 1 vv ii       1 2 2 1 i vv vv i ii	0	
					        	  1 1 2 1 ,,      1 1 1 2 1 1 1 1 1 2 22 1 2 1 2 1 1, 2, , , 1, 2, , a e j j j j j j j j i i i i i i i i a i i j r r r      1 1 1 2 j j i i            1 1 1 1 1 2 1 1 1 1 1 2 2 1 1 0, j j j j i i i i j j i i e r           1 1 1 2 1 2 1 1 2 1 4 1 j j i i e a j j i i r a  r r         21 21 1 2 2 1 1 , , 0 1, 2, , , , 1, 2, , , jj i i a e i i j r j r ij j 1 2 2 1 1 2 , j j i i i i    2 1 2 , i         	.
	            	1 1 1 1 1 4 0, j j 1 i i j j i i a r       1 1 1 1 1 1 1 1 1 2 1 1 1 1 22 2 1 11 1 1 1 2 , 2 1 1 1, 2, , 0, 1 0, 1 1 a j j j j i i i i j j j j i i i i j j j j i i i i e rr 1 1 2 1 1 1 1, 2, , , 3 2 1, 2, , 1 , 2, , e a j j i i a rj 1 2 1 2 , , 1 , i ri ij ij ji r r   2 2 jj i i a e e r r r                                  11 , 1 1 1 1 1 2 1 2 2 1 2 1 1 2 2 1 1 2 2 2 1 2 1 2 1 0 1, 2, , , , , , j j j j i i i j j j j j j j j i i i i i i i i a r j i i             	 2 j		 1, 2, , ,  e r 	1 i		2 i	,	1 j j 2 	.
										h z h z in (B.9) yields
						1 1 vv i i  	0,	1 1 vv i i       1 2 2 1 vv vv i i i i  1 2 , 0, 1 a i i i 1 2 , r 		 1, 2, , ,  a r i i 1 2  	.	(B.11)
												v z v z it
	renders								
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Summary and concluding remarks

In this chapter, recent results for observer design for TS descriptor models have been presented. In the continuous time case, the observer design is carried out efficiently by avoiding BMI conditions in the literature. The improvement is obtained by changing the estimated state vector. More, relaxed results can be achieved with different observer configurations. In the discrete-time case, several approaches have been provided; relaxed results are achieved via the delayed approach. An arbitrary number of past samples can be added into the MFs of both the Lyapunov function and the observer gains, and a systematic procedure is given to do this, thus providing the generalization of the delayed approach.

Several numerical examples have been used to illustrate the performances of the given conditions.

For the continuous-time case, the state feedback control design has been carried out by means of the descriptor redundancy approach together with Finsler's lemma. By enlarging the set of feasible solutions, we have improved previous results in the literature. For the discrete-time case, a systematic methodology has been presented, which allows including past samples in the MFs used in the Lyapunov function as well as in the controller gains.

For the observer design, since no "pure" LMI conditions were available in the literature, we proposed a new observer structure in order to solve the problem. This new structure does not fix any decision variable a priori and the feasibility sets in comparison to previous methods are significantly enlarged. In the discrete-time case, LMI conditions have been developed for the design of state estimators, thus filling this gap in the literature.

The output feedback controller design has led to LMI conditions up to the selection of an auxiliary matrix. Depending on the selection of this slack matrix, different results may be obtained. Table 6.1 summarizes the contributions of this thesis. where 

Property A.2 (Congruence transformation). Consider