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Abstract

This thesis addresses the estimation and control for nonlinear descriptor systems. The
developments are focused on a family of nonlinear descriptor models with a full-rank
descriptor matrix. The proposed approaches are based on a Takagi-Sugeno (TS) descriptor
representation of a given nonlinear descriptor model. This type of TS models is a
generalization of the standard TS ones. One of the mains goals is to obtain conditions in
terms of linear matrix inequalities (LMIs). In the existing literature, the observer design for
TS descriptor models has led to bilinear matrix inequality (BMI) conditions. In addition, to
the best of our knowledge, there are no results in the literature on controller/observer design

for discrete-time TS descriptor models (with a non-constant and invertible descriptor matrix).

Three problems have been addressed: state feedback controller design, observer design,
and static output feedback controller design. LMI conditions have been obtained for both
continuous and discrete-time TS descriptor models. In the continuous-time case, relaxed LMI
conditions for the state feedback controller design have been achieved via parameter-
dependent LMI conditions. For the observer design, pure LMI conditions have been
developed by using a different extended estimation error. For the static output feedback
controller, LMI constraints can be obtained once an auxiliary matrix is fixed. In the discrete-
time case, results in the LMI form are provided for state/output feedback controller design
and observer design; thus filling the gap in the literature. Several examples have been
included to illustrate the applicability of the obtained results and the importance of keeping

the original descriptor structure instead of computing a standard state-space.

Keywords — Descriptor systems, Takagi-Sugeno models, controller design, observer

design, linear matrix inequalities.






Résumé

Cette these est consacrée au développement des techniques d’estimation et de commande
pour systemes descripteurs non linéaires. Les développements sont centrés sur une famille
particuliere de systémes descripteurs non linéaires avec une matrice descripteur de rang plein.
Toutes les approches présentées utilisent un formalisme de modélisation du type Takagi-
Sugeno (TS) pour représenter les modeles descripteurs non linéaires. Un objectif tres
important est de développer des conditions sous la forme d’inégalités matricielles linéaires
(LMI, en anglais). Dans la littérature, les conditions pour 1’estimation des modeles TS
descripteurs s’écrivent sous forme d’inégalités matricielles bilinéaires (BMI, en anglais). En
plus, a notre connaissance, il n’y pas de résultats dans la littérature concernant la
commande/estimation pour les modeles TS descripteurs en temps discret (avec une matrice

descripteur réguliere non linéaire).

Trois problemes ont été examinés : commande par retour d’état, estimation de 1’état et
commande statique par retour de la sortie. Dans le cas continu, des conditions moins
conservatives ont été développées pour la commande par retour d’état. Pour I’estimation
d’état, des conditions LMI ont été obtenues (au lieu des usuelles BMI) en utilisant un
différent vecteur d’erreur augmenté. Pour la commande statique par retour de la sortie, des
conditions LMI sont proposées si une matrice auxiliaire est fixée. Pour le temps discret, des
nouveaux résultats sous la forme LMI ont ét€ développées pour la commande/estimation,
comblant ainsi certains manques de la littérature. Des exemples ont été inclus pour montrer
I’applicabilité de tous les résultats que nous avons obtenus et ainsi I’importance de garder la

structure originale des descripteurs.

Mots clés — Systemes descripteurs, modeles Takagi-Sugeno, commande, observateur,

inégalités matricielles linéaires.
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Chapter 1. Introduction

1.1. Context of the thesis

Fuzzy models are based on IF-THEN rules originally considered to represent operator
experience and thus avoid the necessity of the mathematical representation of the system.
Therefore, Takagi-Sugeno (TS) models were considered an approach that emulate human
operators (Takagi and Sugeno, 1985) and were regarded as a heuristic technique. Breaking
with this initial way, model-based approaches have been introduced by Tanaka and Sugeno,
(1992). These approaches keep a framework similar to the initial fuzzy modelling one but the
analysis and synthesis methods used have resulted in losing the heuristic point of view:

classical tools such as Lyapunov analysis and synthesis have been introduced.

In the past decades, TS models have been widely used to represent nonlinear systems.
Two frequently used model-based methodologies to obtain a TS representation are 1)
linearization around several points (Johansen et al., 2000) and 2) the sector nonlinearity
approach (Ohtake et al., 2001). The former provides a TS model which is an approximation,
while the latter gives a TS model that exactly represents the given nonlinear model in a
compact set corresponding to the sectors considered. Therefore, the sector nonlinearity
approach has been widely adopted. Nevertheless, the sector nonlinearity approach has an
important shortcoming: the number of local linear models (rules) is exponentially related to

the number of non-linear terms in the original nonlinear model.

A TS model is a collection of linear models blended together with membership functions

(MFs), which are nonlinear and hold the convex sum property (Lendek et al., 2010; Tanaka
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and Sugeno, 1992; Tanaka and Wang, 2001; Wang et al., 1996). The direct Lyapunov method
is employed for the analysis and controller/observer design for such systems; usually, the
conditions are cast as linear matrix inequalities (LMIs). The interest of obtaining conditions
in LMI form comes from the fact that they can be efficiently solved via convex optimization

techniques (Boyd et al., 1994; Scherer and Weiland, 2005).

The conditions developed within the TS-LMI framework, similarly to LPV, quasi-LPV,
and piecewise models are only sufficient, that is, if the LMI problem is unfeasible, no
conclusion can be drawn. Unfeasible conditions for stable / controllable / observable systems
may be obtained due to several reasons: the type of Lyapunov function chosen, the way MFs
(the nonlinear parts of the TS model) are removed to obtain an LMI formulation, the non-

uniqueness of a TS representation from a given nonlinear model, etc.

Quadratic Lyapunov functions have been extensively employed for the stability analysis or
controller / observer design for TS models. They led to several results within the TS-LMI
framework (Bergsten and Driankov, 2002; Ichalal et al., 2008; Lendek et al., 2010; Tanaka et
al., 1998; Tanaka and Sugeno, 1992; Tanaka and Wang, 2001; Wang et al., 1996). However,
since a common Lyapunov matrix is used for all the linear local models of the TS model, this

type of Lyapunov function is in some cases highly conservative.

To alleviate the conservativeness, in (Blanco et al., 2001) a non-quadratic (fuzzy)
Lyapunov function has been introduced; this Lyapunov function uses the same MFs as the TS
model under study. For the continuous-time case, the use of such Lyapunov functions leads to
dealing with the time-derivatives of the MFs. Several methods have been proposed to tackle
this problem: by bounding a priori the time-derivatives of the MFs and checking a posteriori
such bounds (Bernal et al., 2006; Blanco et al., 2001; Mozelli et al., 2009; Tanaka et al.,
2003); via piecewise Lyapunov functions (Campos et al., 2013; Johansson et al., 1999); via
line-integral Lyapunov functions (Mozelli et al., 2009; Rhee and Won, 2006); or by bounding
the partial derivatives of the MFs, leading to local conditions (Bernal and Guerra, 2010;
Guerra et al., 2012a; Guerra and Bernal, 2009; Lee and Kim, 2014; Pan et al., 2012). For the
discrete-time case, the time derivative is replaced by a one sample delay that appears to have
fewer drawbacks. The use of non-quadratic (NQ) Lyapunov functions has led to important
improvements (Ding et al., 2006; Guerra et al., 2012b, 2009; Guerra and Vermeiren, 2004;
Kruszewski et al., 2008; Lee et al., 2010; Lendek et al., 2015).
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If the full information of the state is not available, one alternative is the use of state
observers (Luenberger, 1971). Usually two cases are considered for the observer design: 1)
the MFs depend on measured (available) variables and, 2) the MFs depend on unmeasurable
variables (Bergsten and Driankov, 2002; Ichalal et al., 2008; Tanaka et al., 1998). The first
case can be seen sometimes (for example when quadratic Lyapunov functions are used) as the
dual of the controller design, while the second one requires extra conditions, e.g., Lipchitz
conditions (see Bergsten et al. 2002), to guarantee the convergence of the estimation error.
Another alternative when only partial information of the state is available is the design of
output feedback controllers (Cao et al., 1998; Chadli and Guerra, 2012; Kau et al., 2007;
Syrmos et al., 1997). However, the existing conditions for output feedback are not always

“pure” LMIs.

Based on nonlinear descriptor models (Luenberger, 1977) — that naturally appear in
mechanical systems (Dai, 1989; Lewis, 1986; Lewis et al., 2004; Luenberger, 1977) —, TS
descriptor models have been introduced in (Taniguchi et al., 1999). TS descriptor models use
two families of MFs: one for the nonlinearities in the left-hand side (descriptor matrix) and
another one for the nonlinear terms in the right-hand side. Tools developed for descriptor
models have also been used for models which do not appear in a natural descriptor form. For
example, the so-called descriptor redundancy approach (Tanaka and Sugie, 1997) has been
adopted in order to relax existing conditions (Cao and Lin, 2004; Chen, 2004; Guelton et al.,
2009; Tanaka and Sugie, 1997; Tanaka et al., 2007).

Since the descriptor matrix may be singular, descriptor models are also called singular
systems, differential-algebraic equation (DAE) systems, partial state space representation,
etc. (Dai, 1989). For linear singular systems, generally, it is not sufficient to study their
stability, but their admissibility has to be investigated. Therefore, concepts such as regular
and impulse-free systems have been introduced. A descriptor system is admissible if it is
regular, impulse-free, and stable (Dai, 1989). The concepts of controllability, observability,
and duality have been stated in (Cobb, 1984). Controller design has been carried out in
(Mukunda and Dayawansa, 1983). Observer design conditions have been developed in (Dai,
1988; Darouach and Boutayeb, 1995), but these conditions are not in LMI form. Later, LMI
conditions have been given in (Chadli and Darouach, 2012; Feng and Yagoubi, 2013;
Fridman and Shaked, 2002; Garcia et al., 2002, 1998; Masubuchi and Ohta, 2013; Rehm and
Allgower, 2002; Zhang et al., 2008).
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Recently, in the linear-parameter-varying (LPV) field, several works concerning
controller/observer design have appeared (Chadli et al., 2008a, 2008b; Hamdi et al., 2009;
Lopez-Estrada et al., 2014). For nonlinear systems with a constant rank-deficient descriptor

matrix, few results that involve LMI constraints (Wang et al., 2012; Yang et al., 2013) exist.

All the above results on descriptor models consider a constant rank-deficient matrix. This
thesis focuses on nonlinear systems with a non-constant full-rank descriptor matrix. In such
case a standard state space model can be computed; however, it is important to keep the
original descriptor structure (Taniguchi et al., 1999). Stability conditions based on quadratic
Lyapunov functions for continuous-time TS descriptors models have been established in
(Taniguchi et al., 1999). Controller design conditions also based on quadratic Lyapunov
functions for TS descriptor models have been given in (Taniguchi et al., 2000). These
conditions have been improved in (Guerra et al., 2007) and extended to robust control in
(Vermeiren et al., 2012). Observer design for continuous-time TS descriptors has been
addressed in (Guerra et al., 2004); the procedure leads to a set of bilinear matrix inequalities
(BMlIs). Sufficient LMI conditions can be derived by fixing beforehand one of the decision
variables. To the best of our knowledge, discrete-time TS descriptor models with nonsingular

descriptor matrix have not been considered in the literature.

1.2. Scope and objectives

This work is concerned with developing conditions for nonlinear descriptor models in
order to improve the conditions found in the literature both for controller and observer
designs. In addition, since there are no results concerning the discrete-time case when the
descriptor matrix is invertible, LMI conditions for controller/observer design for discrete-

time TS descriptor models have been developed. The problems considered are:

e State feedback controller design.
e Observer design.

e Output feedback controller design.

The methods developed in this thesis are based on TS descriptor representations of a given
nonlinear descriptor model (in both continuous and discrete time), using Lyapunov’s direct

method, and with the objective of developing “pure” LMI conditions.
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1.3. Outline

The thesis is organized as follows:

Chapter 2 gives the necessary background on the TS-LMI framework, the descriptor form,

and motivates the use of TS descriptor models.
Chapters 3-5 develop design conditions for TS descriptor models.

Chapter 3 considers conditions for state feedback controller design. With respect to
previous LMI conditions, a larger solution set for the continuous-time case is achieved. In the
discrete-time case, LMI conditions are given with different NQ Lyapunov functions, thus

filling the gap in the literature.

Chapter 4 deals with observer design for TS descriptor models. For the continuous-time
case, LMI conditions are obtained by using a different extended estimation error. For the

discrete-time case, results in LMI form are provided via several types of Lyapunov functions.

Chapter 5 considers static output feedback controller design. For both continuous and
discrete-time, the developed conditions are still BMI and become LMI only if a slack variable

is fixed.
Chapter 6 concludes this work with final remarks and some future research directions.

Additionally, a brief introduction to LMIs and some properties used throughout this thesis

are given in Appendix A. Appendix B is devote to give some sum relaxations.

1.4. Publications

The results presented in this thesis have been disseminated in the following publications:
International journal publications:

1. V. Estrada-Manzo, Zs. Lendek, T. M. Guerra, and P. Pudlo. (2015). Controller design
for discrete-time descriptor models: a systematic LMI approach. IEEE Transactions

on Fuzzy Systems, vol. 23 (5), pp. 1608-1621.

2. T. M. Guerra, V. Estrada-Manzo, and Zs. Lendek. (2015). Observer design for
nonlinear descriptor systems: an LMI approach. Automatica (52), pp. 154-159.
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Book chapters:

1.

V. Estrada-Manzo, Zs. Lendek, and T. M. Guerra. (2015). Observer design for robotic
systems via Takagi-Sugeno models and linear matrix inequalities. In Handling

Uncertainty and Networked Structure in Robot Control. Ed. Springer.

Conference publications:

1.

V. Estrada-Manzo, Zs. Lendek, and T.M. Guerra. (2015). Unknown input estimation
for nonlinear descriptor systems via LMIs and Takagi-Sugeno models. In Proceedings

of the 54th IEEE Conference on Decision and Control (CDC). Osaka, Japan. pp. 1-6.

V. Estrada-Manzo, T.M. Guerra, and Zs. Lendek. (2015). Static output feedback
control for continuous-time TS descriptor models: decoupling the Lyapunov function.
In Proceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE). Istanbul, Turkey. pp. 1-5.

V. Estrada-Manzo, Zs. Lendek, and T. M. Guerra. (2015). Improving observer design
for discrete-time TS descriptor models under the quadratic framework. In
Proceedings of 2nd IFAC Conference on Embedded Systems, Computational
Intelligence and Telematics in Control (CESCIT). Maribor, Slovenia, pp. 276-281.

V. Estrada-Manzo, Zs. Lendek, and T. M. Guerra. (2014). Output feedback control for
T-S discrete-time nonlinear descriptor models. In Proceedings of the 53rd IEEE
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time Takagi-Sugeno descriptor models: a delayed approach. In Proceedings of the
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Chapter 2. Takagi-Sugeno models

This chapter will provide the reader with the basic knowledge on Takagi-Sugeno (TS)
models as well as an introduction to the existing results in this framework. It is not intended
to be an exhaustive survey but rather the necessary background to follow the developments in
next chapters. In addition, it motivates the use of TS descriptor models instead of standard TS
ones when a nonlinear models in the descriptor form. The final remarks in the chapter

enumerate the problems to be faced in the present thesis.

2.1. Standard TS models

A TS model is a collection of linear systems and nonlinear membership functions (MFs)

of the form (Takagi and Sugeno, 1985):
i) = 2 (2 (1)) (Ax(1) + Bu(7)). (2.1)

where x(t) € R™ is the state vector, u(7)eR™ is the control input, z(z) € R” is the premise
vector, and r is the number of rules (local models). Matrices (ABI) , 1€ {1, 2,...,r}

represent the i-th linear model of the TS one (2.1). The scheduling vector z(t) may depend

on the state, input, exogenous parameters, or time, on measurable and/or unmeasurable

variables. The MFs #, (z(t)), i €{1,2,...,r} are nonlinear functions and hold the convex sum

property in a compact set of the state space €2:
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Yh(z(t))=1  0<h(z(t))<L 22)

There are several model-based procedures to obtain a TS representation from a given
nonlinear model. Two of them are frequently used. The first one is a method based on
linearization in several operating points (Johansen et al., 2000). The second method is called
the sector nonlinearity approach (Ohtake et al., 2001) and consists of an algebraic rewriting
of the original nonlinear model based on the known bounds of the nonlinearities. The former
provides a TS model which approximates the nonlinear one, while the latter gives a TS model
that exactly represents the nonlinear one in a compact set (Lendek et al., 2010; Tanaka and

Wang, 2001).

2.1.1. The sector nonlinearity approach

This thesis focuses on TS models derived by using the sector nonlinearity approach,
although LMI conditions can be applied regardless of the origin of the TS model. The idea of
this approach is to rewrite a nonlinear expression as a convex combination of nonlinear
membership functions (MFs). This is summarized in the following steps (Ohtake et al., 2001;
Tanaka and Wang, 2001).

Consider the following nonlinear model:
x(t)=f(x(2).u(r)), (2.3)

where f (-) is a nonlinear function whose elements are smooth and bounded in a compact set

of the state space €2. In what follows, arguments will be omitted when their meaning is

straightforward.

Step 1. Assume that the nonlinear system (2.3) can be expressed as the affine-in control

model:
)'c:A(x)erB(x)u, 2.4)

where A(x)eR™" and B(x)eR™"™ are matrices whose entries may be non-constant

terms, which are assumed to be bounded in 2. Thus consider the p non-constant terms that
appear in (A(x),B(x)), ie., nlj(-)e[n_lj lﬁ,}, nl , =inf (nlj(-)), nl; :sup(nlj (-)),

je {1,2, ey p}; these non-constant terms constitute the premise vector z € R”.
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Step 2. Construct, for each nl,(+), j€{l,2,...,p}, a pair of weighting functions (WFs) as
follows:

ni, (+)—nl,

] L] = —
20 ( ) nl,—nl,

, o () =1-a](+), je{l,2,....p}. (2.5)

By construction, each pair of WFs holds the convex sum property in the compact set €.

Step 3. Define the r =2” membership functions (MFS) using WFs in (2.5):

p .
h(z)=11e/(z;). iell2...r}. i efo1}. (2.6)
j=1
These MFs hold the convex sum property (2.2) in 2.
Step 4. Compute the linear local models (A,.,Bi), ie {1,2,...,r} of (2.1). To this end, it is

necessary to substitute into (A(z),B(z)) the values of the bounds n/;, l’ﬁj , JE {1, 2,...,p}

that activate each rule, i.e., when h,(z)=1, i € {1,2,...,r}.

Based on the above definitions, the nonlinear model (2.3) is exactly represented by the TS

model (2.1) in the considered set Q2.

Remark 2.1: Formally, it is possible to consider also systems that are not affine-in-
control, i.e., x=A(x,u)x+ B(x,u)u. However the fuzzy control laws will generally include
the MFs h, (z(x,u)). This means that implicit equations, i.e., u = f(h (x,u),x) have to be

solved, which are nonlinear and difficult to work with. In the context of this work only affine

in the control models are considered.

Remark 2.2. The total number of rules r depends on the number of nonlinear terms p,
that is, r=2". Since the relation is exponential, this can be a problem when modeling
complex nonlinear systems as it can lead to computationally intractable problems.

Remark 2.3. From a given nonlinear model, several TS representations can be obtained,
since different algebraic manipulations may lead to different premise vectors. Since the
resulting vertices (A.,Bl.), ie{l,2,...,r} may have different properties, e.g., they may be

stable/unstable or uncontrollable/unobservable; thus different TS representations may lead to

different results. This non-uniqueness is considered one of the shortcomings of TS models.
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Example 2.1. Consider the following nonlinear model in the compact set
Q={x:|x|<Li=12}:
X, ==X +Xx,X,, X, = x, —3x,. (2.7)
One possible way of rewriting the system in the form (2.4) is by defining:
-3

i=A(x)x, with A(x):[_ll xl}. (2.8)

Following the procedure above one can identify nl, = x, as the non-constant term in A(x)

, and it is bounded inside Q as nl, €[-1 1]; the premise vector is z=nl, = x,. Thus (2.8)

x| | -1 nl||x (2.9)
1 [ 1 3|x] '

Then, the following WFs can be constructed:

writes:

x—(=1) _x+l

a)é(xl)zl_(_l) =, @ (x)=1-a)(x) =224,

2

(2.10)

Using the WFs in (2.10), the MFs are h (z)=a)(x,) and h,(z)=a(x). The local

matrices are computed as follows:

-1 ali| [-1 1 -1 nl,] [-1 -1
A: = 5 = = . 211
‘ L —3} {1 —3} & {1 —3} {1 —3} (10
Finally, the TS model is
2
= h(z)Ax=(h(2)A+h(2)A)x, (2.12)
i=1

which exactly represents the nonlinear model (2.7) in the compact set Q.

Recall that for a given nonlinear model there are many TS representations (Remark 2.3).

{—1+x2 0

For instance, by choosing A(x) as A(x)= . 3

}, we obtain nl, =x, e[-1 1], the

WFs are @y =0.5(x,+1) and @ =1-a,; thus the MFs are h =@, and &, =@, . The local

matrices are calculated as:
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~1+nly, O] [0 O —1+nl, 0] [-2 ©
= = . = - = . 2. 13
Note that A, is not Hurwitz. e

2.1.2. Notation

Throughout this thesis, the following shorthand notation is adopted to represent convex

sums of matrix expressions:

Y, = Zh )Y, Y [gh,.(z)nj, and Yh,w=222hi](z)hiz(z)vj(z)Y,{iz.

i=l1 iy=1 j=I

In the discrete-time case, MFs with delays may appear:
Y, :Zr:hi(z(k))Yi, Zh (z(k+1))Y,, and Y_ :ihix (z(k-1))Y,
i=1 i,=1

Subscripts will change to v if the respective MFs are v, e.g., I, = Z;:] v, (Z)Y j - Using
the aforementioned notation, the TS model (2.1) is written as x = A, x+ B,u .

An asterisk (*) will be used in matrix expressions to denote the transpose of the

symmetric element; for in-line expressions it will denote the transpose of the terms on its left

side, for example:

T
{A B }:{A (*)} A+B+A"+B" +C=A+B+(*)+C.
B C B C

In addition, in matrix expressions, the symbols “>” and “<” will stand for positive and

negative-definiteness, respectively. Arguments will be omitted when their meaning is clear.

2.1.3. Overview of existing results

The main advantage of expressing a nonlinear model as a TS one is that the direct
Lyapunov method can be systematized. The main objective is to express the conditions in
terms of LMIs, which can be efficiently solved via convex optimization techniques (Boyd et

al., 1994; Scherer and Weiland, 2005).
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The continuous-time case

This section will briefly present established results on the analysis and design for standard

continuous-time TS models. Recall the TS model:
5= (2)(Ax+Bu),  y=Yh(2)Cx, 2.14)
i=1

When u =0, system (2.14) has an equilibrium point in x = 0. Sufficient conditions for the
stability of (2.14) with u =0are given in the sense of Lyapunov. Effectively, the stability of
the equilibrium point of the autonomous TS model (2.14) is analyzed using the quadratic

Lyapunov function

V(x)=x"Px, P=P" >0. (2.15)

The equilibrium point is asymptotically stable if there exists a matrix P =P’ such that

(Tanaka and Wang, 2001):
P>0, AP+ PA <0, Vie{l,2,...r}. (2.16)

The LMI conditions (2.16) are directly obtained when the time-derivative of (2.15) is

taken:

V(x)=i"Px+x"Pi=x" (A P+PA,)x=x" (Zh (z)(ATP+PA )jx (2.17)

Since Y h(z)=1 and 0<h (z)<1, asufficient condition for V(x)<0 is given by the

LMI conditions (2.16). Note that (2.16) is reduced to the Lyapunov stability theorem for

linear systems, i.e., when r=1.

Remark 2.4. Conditions (2.16) do not take into account the information of the MFs; in
addition, the Lyapunov function candidate is restricted to a quadratic one. Hence, the given
LMI conditions are only sufficient, i.e., if the LMI problem is unfeasible, no conclusion can
be drawn. Moreover, notice that conditions (2.16) are valid for a family of TS models with

the same vertex matrices. Therefore, it is also equivalent to LPV quadratic stability.

Example 2.2. Recall the nonlinear model in Example 2.1:
X, ==X +Xx,X,, X, = x, —3x,. (2.18)

Consider two different TS representations for (2.18):
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0 0 2 07 (n=05(x,+1
TS, :i=Ax, with A1=[1 3}, Az{l 3}, {lh l(xzh ) 219
- - =T

-1 1 -1 -1 h =0.5(x +1
TS,:x=Ax, with A :{ . 3} A, :{ . 3}, { ! P I(XIh ) (2.20)
= - » =17 h

The stability analysis using LMIs (2.16) for TS, (2.19) yields unfeasible LMIs (4, is not
Hurwitz), but since conditions (2.16) are only sufficient, no conclusion can be drawn from
this result (see Remark 2.4). Indeed, for TS, (2.20), the LMI conditions are feasible and

provide the following Lyapunov matrix:

(2.21)

. 0.5510 0.0443
10.0443 0.2635]

Since the LMI conditions do not consider the information on the MFs beside their convex
structure, any TS model with vertex matrices (2.20) will be stable regardless of the original

nonlinear model. To see this, consider:

X, =—x, + Cos(x2)x2, X, = X, — 3x,. (2.22)

The nonlinear system (2.22) can be exactly represented in QQ € {x tX € ]Rz} by a TS model

(2.14) with local models:

Aol 4 a1 (2.23)
Sl ™ AT ) '

with A, = 0.5(cos(x2) + 1) and h, =1-h,. Since the vertex matrices are the same as (2.20),
and the LMI conditions are feasible, the stability of (2.22) is also established. ¢

Remark 2.5. If the set (2.16) of LMI conditions is feasible, it establishes global stability
of the TS model. However, since the TS model is usually valid locally in a compact set of the
state space €2, this does not mean that the original nonlinear model is globally stable. Thus, it

is necessary to study the outermost Lyapunov level in the modelling region Q.

For the controller design, (Wang et al., 1995) have proposed the following parallel
distributed compensator (PDC):

u= ihi (z)Kx=K,x, with K eR"™™, ie{l,2,...r}. (2.24)
i=1
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This type of controllers incorporates the system’s MFs in the control law; therefore, it
relaxes the linear controller u = Kx by introducing r control gains. The TS model (2.14)

together with PDC control law (2.24) produces

£= Y3, (2)h, (z)(A +B,K, )x. (2.25)

ii=1 ip=1

Stabilization conditions can be obtained via the quadratic Lyapunov function (2.15) as

follows:
V(x)=x"((4,+B,K,)" P+P(4,+BK,))x<0,

which after using the congruence property with the matrix X = P~' and a change of variables

M,=K,X gives
V(x)<0< A X +BM, +(*)<0. (2.26)

This is a co-negativity problem. To get more relaxed conditions than the trivial
A X +BilMi2+(*)<0’ Vi,i, €{l,2,...,r}, sum relaxations are used and the MFs are

dropped. In Appendix B, several sum relaxations are given.

The quadratic framework presents an important drawback: a single matrix P=P" >0
must satisfy the conditions for each linear local model of a given TS model. In the
continuous-time case, piecewise quadratic Lyapunov functions have been investigated as a
natural option for those TS models which do not have all linear models activated at once
(Johansson et al., 1999). This approach cannot be applied to TS models constructed by the
sector nonlinearity approach because all the rules are active at the same time. On the other
hand, non-quadratic Lyapunov functions (or fuzzy Lyapunov functions) have first been used

by (Blanco et al., 2001; Tanaka et al., 2003):
V(x)= xT(Zr:hi (z)ij, P=P">0, ie{l,2,..r}. (2.27)
i=1

The analysis of (Tanaka et al., 2003) is based on the existence of scalars ¢ such that

‘fzi (Z)‘ <@ ic {1,2,...,r}, these bounds must be checked a posteriori. A way to avoid this

problem has been presented in (Rhee and Won, 2006): a path-independent Lyapunov function
has been proposed. This type of Lyapunov function avoids the time-derivative of the MFs
and provides global results; however, it is restricted to a specific family of TS models and the
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controller design leads to conditions in bilinear matrix inequality (BMI) form. In (Bernal et

al., 2006) another controller structure has been proposed:

u= (Zr:h,. (2) K,}[Zr:h,. (z)Ej_ x=K,P 'x. (2.28)

The controller (2.28) is known as a non-PDC control law — it first appeared in the discrete-

time framework (Guerra and Vermeiren, 2004) — ; the stabilization conditions are derived via

a non-quadratic Lyapunov function of the form V(x) =x"P'x; this approach allows the

inclusion of ‘u (t)‘ < u into the MFs, however ‘h, (Z )‘ < ¢ must still be given a priori.

Example 2.3 Consider the following nonlinear system (Pan et al., 2012; Tanaka et al.,

2007):
)'c=ax+(x3 +b)u. (2.29)

By employing the sector nonlinearity approach, the following TS model is obtained:

2

x=> h(z)(Ax+Bu) (2.30)

i-1
where A =A,=a, B =d’+b, B,=—d’+b; the MFs are h(z)=w, :(x3+d3)/2d3 and
h(z)=w =(d3—x3) / 2d’; they hold the convex sum property in the compact set

Q= {x : |x| < d}. By computing h1 (z), it gives

(@) =[x

3 xz(ax+(x3+b)u) <4. (2.31)

:‘M

Via this simple example, it can be seen that since le (z) depends on the control law to be

designed, the assumption on an a priori bound of the time-derivatives of the MFs is an
important drawback (Tanaka et al., 2007, 2003). The validity of these conditions must be

checked a posteriori, which makes their usefulness questionable. &

Recently, another alternative has been stated in (Bernal and Guerra, 2010; Guerra and
Bernal, 2009); the main idea is to develop local stability conditions instead of global ones by
bounding the partial derivatives of the MFs; these bounds can be calculated a priori and
incorporated in the LMI conditions: therefore they no longer need to be verified. This idea

has been extended to the controller design in (Guerra et al., 2012a; Pan et al., 2012).
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When the full state is not available for control tasks, an observer can be implemented. In
case of the state observer for the TS model (2.25), whose output is given by y=C,x, two

cases can be considered (Lendek et al., 2010): 1) the MFs depend only on measured premise
variables; 2) the MFs depend on some of the unmeasured variables. This thesis considers the
former case, i.e., the nonlinear terms must depend on available (measurable) variables. State

observers usually have the form:
i=AZ+Bu+L,(y-3), $=Ci (2.32)
where L, =" h/(z)L, is the observer gain. By defining the estimation error e =x— %, its

dynamics yield é=(A, —L,C,)e. Thus, via a Lyapunov function V(e)=e'Pe, P=P" >0

the following conditions are obtained:
V(e)<0< PA,—N,C, +(*) <0, (2.33)

where N, = PL,. In order to achieve LMI conditions, sufficient conditions for (2.33) to hold

are obtained via sum relaxations (see Appendix B). For the case of unmeasurable premise

variables the interested reader is referred to (Bergsten et al., 2002; Ichalal et al., 2008).

The discrete-time case

Consider a discrete-time TS model of the form
x(k+1)=Ax(k)+B,u(k), (2.34)

where x(k) € R™ is the state vector, u(k) e R"™is the input, k stands for the current sample.
Recall the short hand notation A, = Z;l h, (z(k))A and B, = z;] h, (z(k))Bi . In addition,

in the sequel x(k+1) and x(k) will be denoted by Xx,,, and x, , respectively.

Via a quadratic Lyapunov function V(x,)=x;Px, >0, the stability of (2.34) when

u(k) =0 is ensured if the following LMI problem is feasible (Tanaka and Sugeno, 1992):

P>0, Al'PA - P <0, Vie{l,2,...,r}. (2.35)
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In (Wang et al., 1996), a PDC control law of the form (2.24) is proposed. A stabilizing
PDC controller of the form (2.24) can be designed. Via the Schur complement the resulting

inequality is:

_X %k
() <0, with M, =K, X, X=P'>0. (2.36)
AX+BM, -X

Sufficient LMI conditions for (2.36) to hold can be obtained via sum relaxations (see

Appendix B).

Contrary to the continuous-time case, since the appearance of the non-quadratic Lyapunov
function (Guerra and Vermeiren, 2004) analysis and design conditions for the discrete-time
case has witnessed several improvements. This is thanks to the fact that the derivatives of the
MFs do not appear. Thus, a non-PDC controller has been proposed (Guerra and Vermeiren,

2004):
u,=K,P'x,. (2.37)

Consider the following non-quadratic Lyapunov function (Guerra and Vermeiren, 2004):
, -1
Vi(x)=x/ (Zh,(z(k))f;j x, P=P'>0, ie{l2...r}. (2.38)
i=l1

The controller design conditions are:

[ ~h *) }< 0. (2.39)

AP +BK, -P.

Another controller proposed in (Guerra and Vermeiren, 2004) is

u, = (Zh (z(k))Kij(’Z;:hi (z(k))Gij_l x, =K,G,'x,, (2.40)

which is a generalization of (2.37) in the sense that in the worst case G, = F,. The Lyapunov

function used to synthesize this controller is

V(x)=x (Zh (z(k))Gij_T [Zh (z(k)) j(Zh (z(k))Gij_l X. (241

The stabilization conditions are:
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-P, (*)

g <0. (2.42)
AG,+BK, -G -G +P,

Within the discrete-time framework, the « -sample variation has been developed in

(Kruszewski et al., 2008). The approach is based on the idea to avoid the requirement for the

difference of the Lyapunov function (V (x(k + 1)) -V (x(k)) < 0) to decrease at each

consecutive sample. Instead it is required that AV (x(k)) decreases at every o -samples
(V (x(k+a))=V (x(k))<0).

Recently, a novel Lyapunov function has been proposed in (Guerra et al., 2012b) for the

observer design, that is:
Vie)=¢ (Zr:hi(z(k—l))ﬁjek, P=P">0, ief{l2..,r}. (2.43)
i=1

The idea is to use past samples in the MFs of the observer gains as well as in the

Lyapunov function, thus the proposed observer reads:

Yn=AX +Bu, +G L (y.—3,) y, =C,%,. (2.44)

hh™ " hh™
This small change allows adding extra degrees of freedom to the LMI conditions without

altering the number of conditions and thus achieving relaxed results. The delayed approach

has been generalized in (Lendek et al., 2015) for controller design.

Remark 2.6. One of the main advantages of the TS-LMI framework (both the continuous
and discrete time case) is that one can easily include specifications and/or constraints such as
decay rate, H,, disturbance attenuation, constraint on the input, constraint on the output, etc.

(Lendek et al., 2010, Chapter 3; Tanaka and Wang, 2001, Chapter 3).

2.2. TS descriptor models

This section presents a more general state space representation. So-called descriptor
models naturally appear when dealing with mechanical systems (Lewis, 1986; Luenberger,

1977). Consider the following descriptor model:

g(x)x=f(xu), (2.45)
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where g(x)eR™ may be a rank deficient matrix, i.e., rank (g (x))<n, . This is the reason

for the names for (2.45): Differential-algebraic equations (DAE) systems, partial state space

representation, singular systems, etc. (Dai, 1989). Nevertheless, in this work the matrix g (x)

is considered full-rank at least in a compact set of the state space (2. For instance, in

mechanical systems, the matrix g(x) contains the inertia matrix and is positive definitive

(Guelton et al., 2008; Lewis et al., 2004; Spong et al., 2005; Vermeiren et al., 2011).

Moreover, a nonsingular matrix g(x) allows using classical ODE solvers.

The class of nonlinear descriptors treated in this thesis can be expressed as the affine-in

control model (see Remark 2.1):
E(x)x = A(x)x+ B(x) u, (2.46)
where x eR™ is the state vector and u € R™ is the control input; A(x), B(x), and E(x)

are matrices of appropriate sizes, whose entries may be non-constant.

The sector nonlinearity methodology has been extended to descriptor models in

(Taniguchi et al., 1999); hence, the p, nonlinearities in the right-hand side of (2.46) — those
in A(x) and B(x) — are captured via MFs &, (z), i e{l,2,...,2"} . Proceeding similarly, the
p, nonlinear terms in the left-hand side of (2.46) — those in E (x) — give the MFs v, (z),
Jj e{l,2,...,2”f}. These MFs have the convex sum property in the compact set Q, i.e.,
Z;:lhi (z)=1, h(z)=0, z;f:lvj(z) =1, v,(z)20, with r, =2™, r, =2". Recall that this
work considers that the premise vector ze R”, p=p_ + p,, depends on measured variables.

Therefore, the nonlinear descriptor model (2.46) can be exactly rewritten in the considered

compact set as the following TS descriptor model (Taniguchi et al., 1999):
Zvj(z)Ejfc:Zhi(z)(Aix+Biu), (2.47)
j=1 i=1

or in shorthand notation E x = A,x+ B,u; where matrices A, and B,, represent the i-th right-
hand side local model of (2.47), while E; is the j-th left-hand side local model of the TS

descriptor model.
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2.2.1. General definitions and properties

In order to correctly place the reader in the context of the current research a short summary
of results for linear singular systems follows. Consider the linear descriptor system

(Luenberger, 1977):

Ex = Ax+ Bu, y=Cx (2.48)

where x e R™ is the state vector, u € R™ is the control input, and y e R™ is the output; A,
B, C, and E are real matrices of adequate sizes. Matrix E is not full rank, i.e.,
rank(E ) <n,. In the case of autonomous singular systems u =0, consider the following
definitions (Dai, 1989):

Definition 2.1.

e The pair (E, is said to be regular if det(sE — A) #0.

e The pair (E,A) is said to be impulse-free if deg (det(sE — A)) = rank (E).

(£.)
(£.)

e The pair (E A) 18 said to be stable if (sE — A) is Hurwitz.
(£.)

e The pair is said to be admissible if it is regular, impulse-free, and stable.

b

For a given pair (E , A) , there always exist nonsingular matrices M and N such that

I O A A
E=M N and A=M N. (2.49)
0 0 A A

4

The matrices M and N can be computed via the singular value decomposition of the

matrix E followed by scaling of the bases. Thus the singular system (2.48) is casual

(impulse-free) if and only if det(A,)# 0. Hence, the stability of (2.48) is determined (Dai,

1989) by the stability of A —A,A;'A,. A similar discussion applies for discrete-time singular

systems.

Now, let us recall the TS descriptor model with E = Zr” 14 (z)E ; regularin Q:

j=1J
E x=Ax+Bu, y=Cx, (2.50)
with y e R™ being the output of the system.

In (Taniguchi et al., 1999), the open-loop system (2.50) with u =0 is expressed as
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. — X _ I, O _ 0, I,
Ex=AXx, with x=| |, E=| , A, =] 7 Cl (2.51)
X 0 o, A, -E,

h

This procedure is the so-called descriptor redundancy approach in (Tanaka and Sugie,

1997). The TS descriptor system (2.51) is quadratically stable if

WED)
VO <oz

) (2.52)

2

where V ()_c (t)) =x' (t)ETP)_c (t) and the following conditions are satisfied

1) det(sE-A4,)#0.
2) The open-loop is impulse free. Note that the representation (2.51) is impulse free due

to det(E,)=0.

3) There exists a common matrix P and & >0 such that: Pe R** E'P=P'E>0,

det(P) 0.

2.2.2. Regular E(x): motivation (part I)

A large part of the thesis focuses on the case when the descriptor matrix E (x) is

invertible. A motivation for this lies in models based on mechanical fundamentals. Generally,

when studying the dynamics of robotic systems, a nonlinear descriptor model is obtained

(Guelton et al., 2008; Lewis et al., 2004; Luenberger, 1977). Since the matrix E(x) is the

inertia matrix and is therefore nonsingular and positive definite in €2, the descriptor model

(2.46) can be written in the standard state-space form (2.4):

x=E" ()C)A()C)X+E_l (x)B(x)u

- - (2.53)
=A(x)x+B(x)u,

thus standard tools can be applied. For example, in our case, a standard TS model can be
constructed from this nonlinear model. However, even if the nonlinear models (2.46) and
(2.53) are equivalent in the considered state space, (2.53) may have the following

shortcomings:
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1. The total number of rules is generally higher because E~'(x) has in most cases a
more ‘complicated’ structure than E(x).

2. If the input matrix B(x) is state-independent in (2.46), i.e., B(x) = B, the controller
design complexity is significantly reduced. Inverting E (x) produces a state-

dependent input matrix B(x)=E"'(x)B in (2.53), thus leading to more complexity
in the controller design by introducing double sums and increasing the number of
LMI constraints. For the observer design, this fact does not apply since the output
matrix C(x) is not multiplied by E™' (x).

3. The closer the TS model is to the nonlinear model structure the ‘more natural’ it is.

To summarize, keeping the descriptor structure may significantly reduce the number of
local models as well as the number of LMIs; thus, it may increase the feasibility set (Tanaka
and Wang, 2001; Taniguchi et al., 2000). In order to clarify these points, the following

example is chosen.

Example 2.4. Consider the “Futura pendulum” system in descriptor form (Fantoni and

Lozano, 2013):

E(x)x = A(x) X+ Bu, (2.54)
with:
1 0] 0 0 0
ool 0 |0 L 0 0 5|0
(x)= 0 M,(x)| [0 0ia+bsin’(x,) ccos(x,)| = |1
0 0} ccos(x,) d 0
0 0 1 0 ]
0 ; 0 0 | 0 1
A(x)= =10 0 | —esin(2x,)x, ecsin(x,)x, —esin(2x,)x, |:
(x) {_Gr(x) —Cf(x)} i gsin(x,) (2%)x (%)x (2x,)x,
0 —=—"22 esin(2x,)x, 0
L X i |

with parameters a =1, +mL,, b=ml’, c=mlL,, d=J,+m]l}, and e=0.5m,; where g
is the gravitational acceleration, m, is the mass of the pendulum, /, is the inertia of the arm,

L, is the total length of the arm, [, is the distance to the center of gravity of the pendulum,
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J, is the inertia of the pendulum around its center of gravity. Note that the input matrix B is
constant. A TS descriptor representation of (2.54) gives r, =2° =4 due to the terms cos(xz)
and sin’(x,) in E(x); and r, =2 =8 due to sin(x,)/x,, sin(2x,)x,, and sin(2x,)x, in
A(x) . To write (2.54) in the standard state space representation (2.3), it is necessary to invert

the matrix E(x), which gives

E™ = ! 0 (2.55)
(x)_ 0 Ma’l(xz) ’ :
where
M (x)=L ¢ —ecos(x,) n=ad—c*+(db+c*)sin’ (x,)
V2 n| —ccos(x,) a+bsin®(x,) | 2

The standard state space model is
x= E_I(X)A(x)x-f-E_l (x)Bu. (2.56)
The nonlinearities in (2.56) are: cos(x,), sin’(x,), sin(x,)/x, , sin(2x,)x,, sin(2x,)x,,
sin(xz)x4 , and 1/7; therefore a standard TS representation has r =27 =128 rules (vertices).

Moreover, the new input matrix E~' (x)B is no longer constant. ¢

2.2.3. Regular E(x): overview of existing results

Stability analysis as well as controller design for TS descriptor models has been
introduced in (Taniguchi et al., 1999). In order to decouple the matrix E , the system (2.50)

is rewritten by using the so-called descriptor-redundancy approach (or augmented system)

used in (Tanaka and Sugie, 1997). The procedure is as follows: consider

x=x and
OxXx=Ax+Bu—-Ex, y=Cnx.

T
. — .T
Using an augmented state vector x = [xT X } , we have

Ex=AX+Bu, y=CX, (2.57)
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o _ 1ol - [o 17 _-To0 _ - .
with E = , A, = , B, = ,and C, =[C, 0]. Sufficient conditions for
0 0 A -E .

the stability of (2.57) when u =0 are obtained via the following Lyapunov function
(Taniguchi et al., 2000, 1999):

V(x)=x"E"Px, E'P=P"E>0. (2.58)
The time-derivative of (2.58) is
V(x)=x"E"Px+x P Ex=%"(A P+ P"A,)X. (2.59)

Hence, V(X)<O0 implies A]P+P"A, <0. Thus, the system (2.57) is stable if there

exists a matrix P such that (once the MFs are removed):

E'P=P'E>0, AP+P'A;<0, Vie{l2,...r} je{l2,...r}. (2.60)

e

Note that in conditions (2.60) the decision variable is P € R*™ . This matrix should be

regular, i.e., det(P) #0; and E'P=P"E>0 must hold. One possible structure could be

P

1

0
P:{ } with P =P’ >0, which guarantees the regularity of P eR>*". Another
3 1

1

0
possible structure is P = { } with P =P" >0 and P, being a regular matrix. The latter

» B
structure provides more degrees of freedom; this choice turns (2.60) into

AP +P'A o
I)1>O, |: i 3+ 3 i ( )

<0, Viel,2,....r,{,je,2,...,r,;. (2.61
P/A—E/P+P, —PJEJ-—EJ.TPJ { AN .f- (260

The regularity of P, is guaranteed by the block (2,2). In effect, if (2.61) holds, then
—P/E,—E! P, <0 also holds. Since E, is nonsingular (E,x, #0, Vx,#0), let us assume
P, is singular; then, there exists x, #0 such that P,x, =0; consequently for that x, =0 it
yields x. (—P4TEV — Efﬂ)xo =0, which contradicts the condition —P/E, —E, P, <0. Thus if

AlP+P"A,_ <O is true, then P, is nonsingular.

hy

Regarding the controller design, a PDC controller

=330 (2, () Kyx 2.6

i=1 j=1
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has been proposed in (Taniguchi et al., 2000), where K, eR"™™, ie{l,2,....r,},
je{l,Z,...,rg} are the controller gains to be designed. This control law incorporates
nonlinearities from both sides of the TS descriptor model (2.50) via the MFs hi(z),
ie{l,2,....r,} and v;(z), je{l,2,...,r,}. Similarly to stability analysis, stabilization of

(2.50) is done via the augmented system (2.57); thus the control law (2.62) should be

rewritten using the extended vector X, i.e., u=K, X with K, = [Khv 0, ., ] The closed-

loop model is:

Ex=(A, +B,K, )x. (2.63)
The time-derivative of the quadratic Lyapunov function (2.58) is:
V(x)=%"E'Px+X' P'Ex=%" (A, +B,K,) Px+x'P"(4,+BK,)T. (2.64)

Thus V(X)<0< (;lhv +B,K,, )T P+(*)<0. LMI conditions are achieved by using the

., 0

X
congruence property with P~' = X :{ }, X,=P"', X,=-P'PP"',and X,=P;".

3 4

With these choices (2.64) yields A, X +B,K,, X + (*) <0. Finally, via a change of variables
N, =K, X = [K,WP]’l O] =[N, 0], (2.64) produces
X, + X, *
X, >0, o , ( ) s 7 <0 (2.65)
AX +BN,-EX,+X, -EX,-X,E
Sufficient LMI conditions can easily be obtained via sum relaxations.

Extensions to the previous results have been proposed by Guerra et al., (2007) via the

following quadratic Lyapunov function:

V(¥)=x"E'R,x=x"B'x, E'B,'=PBE>0, (2.66)
: R0 r : : , .
with B, = p I P =P >0. Since P is constant, this structure avoids the
3hh 4hh

appearance of the MFs’ time-derivative. The control law to be designed is
-1 —1 —
u=K,(BR) x=[K,P" 0]x. (2.67)

The conditions for designing (2.67) are:
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P, +P! *
P >0, { o3 , (%) ., T}<0. (2.68)
AhPI + BhKh —E P3h + P4h _EVP4/’£ _P4hEv

v

For the case when the full state is not available, the following observer has been designed

in (Guerra et al., 2004):

+Bu+L, (y-3). $=Cx, (2.69)

=D

Fi-7

v

- TR ) L
where X :[ch ch] is the augmented estimated state vector. The observer gain is

_ T A X— )%
L, = [O LZ‘,] . The dynamics of the extended estimation error vector: € =X —X ={ ‘ ;},
X—Xx

are given by Ee = (Ahv —Zhvc_‘h)E. The synthesis of the augmented observer (2.69) is done

via the quadratic Lyapunov function candidate (Guerra et al., 2004):
V(e)=e'E"Pe, E'P=P"E>0, (2.70)

. R 0
with P =

3 4

}, P =P' >0, P, being a regular matrix. The time-derivative of (2.70)

yields V(e)=¢e" ((Ahv -L,C, )T pP+P'(4,-L,C, ))E. Thus, the estimation error is
asymptotically stable if

Pz.TAh - P3TthCh + (*) (*)

P >0,
1 {PfAh -P/L,C,+R—E/P, —EP,—F

. 2.71
EL]<0 (2.71)

Although the MFs can be removed via sum relaxations from (2.71), because of the terms

P'L,C, and P/L

hv

C, it is not possible to obtain LMI conditions. Conservative solutions

such as fixing P, = P, or by designing the gains L., i€ {1, 2,...,ra}, je {1, 2,. r} via any

. T
technique (pole-placement, linear quadratic regulator, etc.) and using (2.71) to verify the

convergence of the estimation error are given in (Guelton et al., 2008; Guerra et al., 2004):.

In what follows a preliminary technical result is stated on the equivalence between
approaches involving descriptor-redundancy and Finsler’s lemma in the case of continuous-

time descriptors.
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2.2.4. Relation between descriptor-redundancy and Finsler’s lemma

For the analysis and design of controllers/observers for the TS descriptor model (2.50), the

descriptor-redundancy approach has been used. This approach allows separating the matrix
E, from the derivative of the state vector. Briefly, the descriptor-redundancy approach

consists in adding a virtual state variable to the original expression, and rewriting the model

(2.50) as a singular system (Tanaka and Sugie, 1997; Taniguchi et al., 1999).

An alternative to descriptor-redundancy is the Finsler’s lemma (see Appendix A, Lemma
A.1), which avoids the explicit substitution of the close-loop dynamics of the considered
problem (de Oliveira et al., 1999). Using this approach the closed-loop dynamics are
rewritten as an equality constraint, the time-derivative of the Lyapunov function being an

inequality constraint dependent on the state and its derivative.

In this section, we show that with the proper algebraic manipulations, the results (from the

previous sections) obtained via the descriptor-redundancy approach can also be obtained

using Finsler’s lemma. To this end, recall the control law (2.67), i.e., u=K, B"'x. The TS

descriptor model (2.50) with the control law (2.67) gives
. -1 -1 X
Ex=(A+BK,P")x < [A+BK,P —E]{ } =0. (2.72)
X

The following Lyapunov function is employed
V(x)=x"P"'x>0, P =F >0, (2.73)
its time-derivative gives

1% (x) =x"P'x+x"P %
x]['[ o P x (2.74)
=\ . . _|<O.
x| |P7 0 | x

0 P17l —1 X . : ’
, W= [Ah +B,K, P —E, |, y=| .| and using Finsler’s
X

-1
1

By selecting Q ={
lemma (see Appendix A, Lemma A.1), inequality (2.74) together with the equality constraint
(2.72) gives

M([ A, +B,K

hv

. 0 B
RN AR @19
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P P
where M e R*"*" is a free matrix. Congruence with the full-rank matrix { ! ;T} yields
4

P P B+P' P
L)‘ ;T}M[AhMBhKhV—EVa —EVP4]+(*)+{ s 6‘}0- (276)
4 4

_R—]BsTﬂ—T
-T

Since M is free a matrix, by choosing M ={ }, (2.76) produces exactly the

4

conditions given in (2.68).
In the observer design case, recall the final form of the augmented observer (2.69):
Ex=Ai+Bu+L, (y-3), $=Cxi (2.77)

The matrix inequality (2.71) can be achieved by the use of Finsler’s lemma. To this end,

consider the estimation error e = x — X and its dynamics:
. e
Eve = (Ah o thCh)e g [Ah o thCh _Ev]|: } =0. (2.78)
e

The Lyapunov function under consideration is:
V(e)=¢'Pe>0, P,=P'>0. (2.79)
The time-derivative is

V(e)=¢é"Pe+e'Bé
e1'To Ple (2.80)
= . < 0.
el |P Ofle
} , W= [Ah -L,C, -E ] , X = {1, and using Finsler’s lemma,
e

0 A
P 0

v

By defining Q = {

(2.78) together with inequality (2.80) gives:

P
M[A,-L,C, -E]+(*)+ { 01

}<O, (2.81)

vo

T

3
T
4

where M e R™™*" is a free matrix. By choosing M :{ }, (2.81) yields (2.71). Generally,

in this work we will prefer writing the problems via descriptor redundancy for the

continuous-time case and using Finsler’s lemma for the discrete-time case.
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2.2.5. Regular E(x): motivation (part II)

To conclude this chapter, considering regular E (x) , we summarize the results for regular

TS descriptors for the continuous case. LMI conditions exist only for the controller design,
and the observer design remains a BMI problem. For the discrete-time case, to the best of our
knowledge there are no results in the literature. Therefore there is room for improvements as

will be shown in the following example.

Example 2.5. Consider a discrete time nonlinear descriptor model

E(xk)x,Hl :A(xk)xk + Bu,, Y =C(xk)xk, (2.82)
where E(x, )= 2 , Alx)= cos(x;) -1  B= 0 _and C(x)= sin () / x, :
n 1 0.7 -1.1 1 0.2

with n=1/(1+x').  Since E(x) is  regular  for  all xeR?

det(E(x,)) =(3+4x12 +2x) )(1+x12 )72 #0, a standard state-space model can be computed.
The inverse of the descriptor matrix gives E~' (xk)= ;{ : 77} this means that
det(E(x)) -7 2

four different nonlinearities have to be considered, which results in »=16. Consider the

observer design problem. Using the Lyapunov function V(ek)=ekT7Dek, where e, is the
estimation error, and considering the compact set Q:{xeRQ} no solution was obtained

either for classical non-quadratic (NQ) approach in (Guerra and Vermeiren, 2004), i.e.,

P= Z - ,2( )Pi2 and

ii=li,=li .= i

S5 s ) o o B o

or for the delayed non-quadratic (DNQ) approach in (Guerra et al., 2012b), i.e

PZh( )f;and

S et o o0, O e

ii=1 i,=1i.=l it " 7 iyl
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Thus, what we can infer from this example is that even using recent results, there is no
solution via a standard TS description. Whereas, using the descriptor formulation and
associated LMI constraints a solution is available with a non quadratic Lyapunov function, as

it will be shown in Chapter 4, Section 4.2.

2.3. Concluding remarks

This chapter briefly summarized the main results in the literature for TS models.
Motivated by mechanical systems, the TS descriptor model is introduced. Since this thesis
considers the case when the descriptor matrix is invertible, it is always possible to obtain a
standard state-space form; however, within the TS-LMI framework this may increase the
computational cost. The advantages of keeping the descriptor structure have been illustrated

on examples.
Sections 2.2.3 and 2.2.5 showed that there are still many open problems, among them:

e Enlarging the feasible solution set of the existing results for controller and observer
design.

e In the observer design case existing conditions are BMIs.

e To the best of our knowledge, there are no results in the literature for the discrete-

time case.

Solutions for the problems above are presented in the following chapters.
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Chapter 3. State feedback controller design

This chapter presents improvements of the state feedback controller design for both
continuous and discrete time TS descriptor models. In continuous-time, the use the Finsler’s
lemma leads to the enlargement of the solution set of previous results (Guerra et al., 2007).

For discrete-time TS descriptor models, results when the descriptor matrix is non-singular

(E_1 (x) exists Vxe Q) are presented. In this case, relaxations can be achieved by using past

samples in the MFs of the Lyapunov function and the control law. A systematic procedure is

also given that generalizes the past samples approach.

3.1. Continuous-time TS descriptor models

This section presents a relaxed approach for stabilization and H,, disturbance rejection of
continuous-time TS descriptor models. It has been shown in (Jaadari et al., 2012; Oliveira et
al., 2011) that it is possible to generalize results even under the quadratic framework by

applying the well-known Finsler’s lemma.

Thus, by exploiting the fact that Finsler’s lemma allows decoupling the control law from
the Lyapunov function, a new structure of the control law is used. The derived conditions are

LMIs up to fixing a scalar parameter.
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3.1.1. Problem statement

Consider the following TS descriptor model:

E x=Ax+Bu+Dw
3.1)
y=Cx+J,w.

The analysis and design for (3.1) have been performed by rewriting the TS descriptor as

follows (Taniguchi et al., 1999):

Oxx=Ax+Bu+Dw-Ex, y=Cx+J,w. (3.2)

Then, by defining an extended vector X = [xT i ]T , (3.2) can be written as

(3.3)

— |1 0 — 0 1 — 0 — 0 —
with E = . A, = , B, = , D, = , and C, =[Ch 0]. In
00 A, -E B, D,

v

(Taniguchi et al., 2000), the stabilization of TS descriptor models has been studied via the
PDC control u =K, x. In (Guerra et al., 2007), relaxed conditions have been given using the

following control law:

u=K,w(1f1)"x=[1<hv(131)’1 o}—c. (3.4)

Guerra et al.,, (2007) consider the Lyapunov function V()_c)z)_cTETB;)_c, with

P 0
P

4hh

E'P,)'=P,E>0 and B, :{ }, P =P >0. Thus, when w=0, the conditions for

3hh

designing the stabilizing control law (3.4) are: P =P" >0 and

v .{ By, +(*) (*)

_ <0. 3.5
" Ahpl + BhKhv - EvPShh + P4Thh _Evathh +(*):| ( )
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3.1.2. Results
3.1.2.1. Stabilization

The aim is to stabilize (3.1) via the augmented system (3.3) with the following non-PDC

control law:

4

G 0 x _ _

u=[K,, Kz,w]{ } H=Khth;;c, (3.6)
Gy Gu X

where K, € R"™*" and G,, €R***" are matrices to be designed. These matrices depend on
MFs h(z), ie{l,2,....r,} and v,(z), je{l.2,....r.}.

Remark 3.1. The control law (3.6) corresponds to a new control structure since classically

the inverted matrix is the one used for the Lyapunov function (see (3.4)). The regularity of

G,,, will be discussed later on.

First, consider the stabilization problem without disturbances (WZO). Substituting the

control law (3.6) into the augmented TS descriptor (3.3) yields:
Bi=(4,+B,K,Gl)5 < [4,+BK,Gp -1] |0 3.7)
n vV v Ef

Consider the following Lyapunov function candidate:

V(3)=x"E'R,%,  E'R, =P, E20, (3.8)
: F 0 I 0 . :
with Ph,w:{ ! } Phhi,:{ o Lo }, with P=P". P, is chosen as a
S Lan ~F P B Lme

constant matrix to prevent the time-derivatives of the MFs emerging in the following

developments (Guerra et al., 2007), i.e., ETP,;IIV =0. Then, the time-derivative of (3.8) reads:
V(x)=x"E"P, x+x" P, Ex <0. (3.9)

Condition (3.9) can be expressed as

_qr I —
S 7 N P (3.10)
Ex||p! o | Ex

Via Finsler’s lemma, the equality constraint (3.7) and the inequality (3.10) yields:
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MW+W' M +0Q <0, (3.11)

o +B,K, G,. —I ], and M eR>*" is a free matrix. By
hhy

-T
where Q:{ 0 Phh”}, W=[Zh

. G,p o . T=
selecting M = L " } , € >0, and multiplying by the full-rank matrix diag [GZIW, Pth] the
hhy

left-hand side and by its transpose diag [éh,w, thw] the right-hand side of (3.11) gives

Iz = 2% _pr 0 Gy,
el [Ahthhv+BhK/1v _P/ihv:|+(*)+ 5 0 <0. (3.12)
hhy

The following theorem summarizes this result.

Theorem 3.1. The TS descriptor model (3.1) with w=0 under control law (3.6) is

asymptotically stable if, for a given &>0, there exist matrices P

iyiz Jy hiyjp hji°

i,i, € {1, 2,...,};}, Ji € {1, 2,...,};} as defined in (3.6) and (3.8), such that:

Y] <0, Vi, j; ; YL +YL +Y) <0, Vi, i =i, (3.13)
ra —
hold with
; Aljléilizjl +Eii Eizf] +(*) (*)
=l o . (3.14)
© |G e (Aii.fGiliz.il +B, K, )_Pz‘liz.i, —¢ (Elizj] +B,iz.n)
Proof. Developing (3.12), we obtain:
A, G, +BK, +(* *
Y= "’__() *) <o, (3.15)
thv +& (Ahthhv + BhKhv ) - Phhv ¢ (Phhv + Phhv)

which by applying the relaxation Lemma B.3 (Appendix B) yields conditions (3.13). The

regularity of G,, is given as follows: if conditions in Theorem 3.1 hold, then (3.15) also

hy

holds. By means of the Schur complement (3.15) is equivalent to
—_ — — — 1 (= — — —_
Ahthhv + BhKhv + (*) + (*); (Phhv + Phhv) (thv +& (Ahthhv + BhKhv ) - Phhv ) < 0 (3 16)

Suppose that G,,, is singular. Therefore there exists x, #0 such that G,, x, =0, hence

(3.16) yields:
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_ — _ 1 9, — -
xg {BhKhv +(*) +(‘9BhKhv _Phlw )T E(Phhv + Phiv) 1 (gBhKhv - Phhv )}xo <0, (3.17)
which is equivalent to
— 1 a - -
'xg {BhKhv +(*)+(*);(Phhv + Phjl;v) l (gBhKhv _(Phhv + ])hiv)_{_ I)h]};v )}‘XO < O (318)

After some algebraic manipulations (3.18) gives

o e [
xg {gK}Yt;BhT (Phhv + Ph]l;v) BhKhv + KT

hv

B! (B, +EL) B

B 1 ; (3.19)
T D v T T
+Phhv (Phhv + Bmv) BhKhv + E Phhv (Phhv + Phhv) Phhv}xO < O
Multiplying by & >0 and grouping terms results:

xg {(gEhEhv + P;;v )T (Bmv + Phiv )_l (gEhEhv + Phiv ) +hB,, (Blhv + P;;u )_1 Pth;v} x, <0, (3.20)

which contradicts (3.15), since (Phhv+Ph7,;v )71 >0 and therefore (3.20) cannot be true; as

v

consequence if Y!, <0 holds, then G, is not singular.

hy

Remark 3.2. The conditions in (3.13) are LMIs up to the selection of ¢. Prefixing this
sort of parameter has been a common practice in the LPV community in recent years (de
Oliveira and Skelton, 2001; Jaadari et al., 2012; Oliveira et al., 2011; Shaked, 2001) since it

allows searching for a feasible solution in a logarithmically spaced family of values

ce {10‘6,1()_5 .. .,106} , which avoids an exhaustive linear search.

Remark 3.3. The control law (3.6) could be implemented as follows:

G, 0 || x
u=[K,, thv]{ Lo }{1=}:x+]—;x, (3.21)
_G4th3thlhv G4hh

with  Jy = thvG_l + Ky (_Gzl_I:hG3thl_hlv) and 5= KZhVG;}:h' Knowing  that

1hy

x=E'(Ax+Bu), (3.21) yields

u=Fx+FE,'Ax+FE, Bu
= (I-FE'B,)Ju=(F+FE A, )x (3.22)

su=(I-FE'B,) (F+FE'A)x
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The existence of the inverse of /—F,E,'B, can be deduced from the matrix inversion
lemma: (I - FE'B, )71 =1-B,(E, —Bh]-;)_l JF,, which means that the regularity of
I-FEE'B, is equivalent to E —B,F, being regular. In addition, if the LMI conditions
(3.13) are satisfied, then (3.15) is also satisfied; by congruence with diag [é,thv, E;,lv],

(3.15) gives:

_G"hT”A"_” +£_;”’Tvgfkﬁvé’i"l_”+(*)__ E*) . |<o. (3.23)

Bzh}/ + (C"Phhi (A/w + BhKhv hlv - hlv —& (Phhi + [)hhf )

= Gy 0 X 0 .
Define G,,, = . » L |1=X= ; the (1,1) block of (3.23) writes
_G4th3thlhv G4hh X3 X4
XTZ,W +XT§,1[2,WX +(*) <0 or:
X' (A +B F)+(* ¢
(4 +BF) (%) . (*) <0 (3.24)
X, (A, +BF)+X —(E -BF) X, -X,(E -BJF)+(*)

Since (3.24) holds, then —X, (E,—B,F,)+(*)<0 also holds. Suppose E, —B,F, is
singular; therefore there exist x, #0 such that (EV —Bh.7-"2)x0 =0 which contradicts (3.24).
Thus if the LMI conditions (3.13) hold, E — B, F, is regular and the control law (3.22) can be

computed.

Example 3.1. Consider the TS descriptor model (3.1) with w=0, r,=r, =2, and

a

. 08 0 47 0 —4.3 438 44+0.50 4.6
matrices E, = , E, = , A= , A= ;
0.2 0.5 04 0.7 -1.7 1 3.9 -1.9

5.6 8.1
B, = , B, = , and the parameter 6 >0. The maximum value of 0 for which
L1097 T [-058

conditions in (Guerra et al., 2007) were found feasible is 0 =0.17; the conditions in

Theorem 3.1 were feasible up to the value 6 =0.47.

Note that taking 6 =0.40 there is no solution for Theorem 1 in (Guerra et al., 2007), while

employing the conditions of Theorem 3.1 with £ =0.1 the following values were found:
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0.09 0.14] . [0.08 0.12 GO -
P = .G =
1014 041" 014 040
K, =[-021 -032 -026 0.08],
K,=[-0.19 -030 030 0.12],

-022 -037] _, [051 -0.12
—0.16 -032]" 2 1030 0.19

K, =[-0.25 0.08 0.01 0.02],
K,,=[-0.10 0.03 028 -0.01].
For simulation proposes, the MFs are chosen as i, = 1/(1+x12) ,hy=1=h, v, =(x, +1)/2,

v, =1-v,. Figure 3.1 shows the open-loop u(r)=0 and the close-loop trajectories for the

initial conditions x(0)=[1 -0.5] .
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Time (s)
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-
—

osf < .
N 2
g 0 L ______________
5
0.5k .o i
_1 r r r r
0 5 10 15 20 25

Time (s)

Figure 3.1. (a) State trajectories of the open-loop system. (b) State trajectories of the closed-loop system. 4

3.1.2.2. H,, control

Consider now the disturbance rejection problem (in). Substituting the control law

(3.6) into the augmented TS descriptor (3.3) yields:

X
Ex=(4, +B,K,G, )x+Dw < [A, w —1 D] Ex|=0. (3.25)

s

Recall that the output is y=C,x+J,w. The disturbance rejection can be realized by

minimizing y >0 subject to
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2 <y, (3.26)

w(o)],

, stands for [, norm. The following well-known condition (Tanaka and Wang,

Hw(t)H2¢0

where

2001):
V(x)+y y-r'ww<0, vxeR™, (3.27)

implies (3.26). Thus, condition (3.27) gives:

‘[aic Bl G,

x X
Ex|| P O 0 Ex |<0. (3.28)
wl|JIC, 0 JJ,-yT| w

GG Bw G,
+B,K,G,,, -I D,|+(*)+ P 0 0 <0, (329
JIC, 0 JlJ, -y

where MER(Z""M“’)X"*. Condition (3.29) guarantees (3.28) under restriction (3.25).
Multiplying (3.29) by diag| Gj,,. P,

hi

. ] on the left-hand side and by its transpose on the

G
right-hand side and choosing M =| &P, |, &€ >0 renders
0
I GinCiCiGu G GGy,
el [Zth_}th +B,K, -P Dh] +(*)+ G, 0 0 <0,
0 JiCG,, 0 JJ, -y

which can be expressed as
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A, G, +BK, +(*) (*) (*) G Cr
thv +& (Ahv(_;h E IZ ) f)hhv (Blh» + P/’lhl ) (*) + O [(_jh(_;hhv 0 Jh:l < O
D! eD! 21 Ty

Finally, applying the Schur complement yields

A,Gpy + B, K, +(¥) (*) (5) ()]
YV — G/’lhl +& (A thh B K ’) Phhv (Phhv + [)hZL ) ( ) (*) < 0 (330)
" D’ 6‘Dh 7/ (*

C,G,, 0 J, -

Based on the developments above, the following theorem can be stated:

Theorem 3.2. The TS descriptor model (3.1) under control law (3.6) is asymptotically

stable and ensures disturbance attenuation y >0 if, for a given & >0, there exist matrices

K, .. ini,e{l.2...r}, j€{l.2....r,} asdefined in (3.6) and (3.8), such that

iy jy ? hi gy ?

YJ <0, Vi, j; %Yé; Y;{;ﬁ +Yif,-. <0, Vj, i #i,, (3.31)
’,;l 2 2
hold with
| A, G +B K, +(*) (*) () ()]
le — _’1’211 (1&1 i _’1'2/1 _’1 I?lzll )_ B]izj] (P’llzll Bﬂz J ) (*) (*) . (332)
LU D:“ gDil _7/2] (*)
L _il _ilizjl 0 ]il -1 B

Proof. Applying the relaxation Lemma B.3 (Appendix B) to (3.30) ends the proof. Il

08 0
Example 3.2. Consider the TS descriptor model (3.1) with r, =r, =2, E :{O 20 5}’

47 0 —43 4.8 39 4.6 5.6 8.1
E2 = B Al = s = s B] = s Bz = s
04 0.7 -1.7 1 39 -1.9 09 0.5

G 1 0 -0.56 0
= , D= , D,= , J,=—0, J,=0, and the parameter
C, 0 1 0 -0.56

o e[—Z O]. Figure 3.2 shows the results when the optimal values for y (min y) are

computed via Theorem 2 in (Guerra et al., 2007) (represented by black-O) and Theorem 3.2

(represented by blue-X). As can be seen, Theorem 3.2 obtains betters results.
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Figure 3.2. Optimal values for y in Example 3.2. ¢

3.2. Discrete-time TS descriptor models

This section provides LMI conditions for the stabilization of discrete-time TS descriptor
models by following recent advances: 1) using past samples in the MFs of the Lyapunov
function and the observer gains as in (Guerra et al., 2012b), 2) a generalization via two

different non-quadratic Lyapunov functions as in (Lendek et al., 2015).

3.2.1. Problem statement

Consider the following discrete-time TS model in the descriptor form:

Ex ,=Ax +Bu +Dw,

(3.33)
Ve =G+, W
For the controller design purpose, the following nonlinear control law is used:
u, =KG'x,, (3.34)

where K eR"™™ and GeR"™™ are the controller gains to be designed. Their structure will
be defined later on. The TS descriptor model (3.33) together with the control law (3.34)
yields:

Ex., =(A,+BKG")x, +Dw, (3.35)
Vi =G +J, W,
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In order to design the state feedback controller (3.34), a generic Lyapunov function is

considered:
V(x)=xPx, P=P >0. (3.36)

The structure of P depends on the case treated. The variation of the Lyapunov function

(3.36) reads:

AV (x,)=x.,,Px,., —x Px <O0. (3.37)

3.2.2. Results

3.2.2.1. Stabilization

The closed-loop system (3.35) with w, =0 can be written as the following equality

constraint:

xk+1

-1 Xk
[A,+B,KG —E][ } =0. (3.38)
The variation of the Lyapunov function, i.e., (3.37) can be expressed as:

X, T-P o X,
w27 ]2 o -

P
0

Xy

Denote Xz{ ] )/\/=[A,,+B,,ICQ’1 —Ev], and Q:{

; via Finsler’s lemma
Xea1

the inequality (3.39) and the equality constraint (3.38) can be combined in the following
inequality:

~P 0
- 4
M[Ah+Bthg E]+(*)+{ 0 7D}<0, (3.40)

+

where M eR***" is a free matrix. Depending on the selection of P € R™*", the controller
gains K eR™"™ and GeR™™ , and the matrix M several results can be obtained from

(3.40). Two classes of Lyapunov functions are employed:

1) The non-quadratic (NQ) Lyapunov function (Guerra and Vermeiren, 2004).
2) The delayed non-quadratic (DNQ) Lyapunov function (Guerra et al., 2012b).
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Non-quadratic approach
The following result uses the Lyapunov function (3.36) with P=G,” P,G,", i.e.,

-1

Vi(x)=x {Zh (z(k))G,.]T [Zh (z(k))Bj(Zhi (z(k))Gij X, (3.41)

Theorem 3.3. The TS descriptor model (3.33) with w, =0 is asymptotically stabilized by

the controller wu, =K, G,'x, if there exist matrices £, = Bf >0, K., and G,
AN 6{1,2,...,;;}, Ji 6{1,2,...,7‘6} such that:
Y 0. Vi.i.ij- 2 Y Y4 Y4 0. Vi.i.i ;
i, <Y Vil s Zq i + 1 s <U Vi, #, (3.42)
are satisfied with
, —P, *
| 2 ( ) (343)

Y, = T T .
o [AG,tB K, -EG -GE;+F

Proof. Recall (3.40) and consider the controller gains X =K, and G =G, . The Lyapunov
function is selected as V(xk ) =x,G," P,G,'x,. By using the congruence property with the
full-rank matrix diag [GhT, GhT] and selecting the free matrix as./\/l:[O G ]T, (3.40)

gives

L[ - (%

= - <0. (3.44)
fihh AG,+BK, -EG. -G.E +PF,
Finally, using the Lemma B.3 yields (3.42), thus concluding the proof. ll

Different conditions can be obtained when the structure of the Lyapunov function changes.

The following theorem uses another structure of the Lyapunov function (3.36), P= P, i.e.,

V(x)=x (ih(z(k))f?} x, =x P 'x,, (3.45)

and the controller gains are defined as K =K, and G =G,,. Then, (3.40) gives
-1 _Phil 0
M| A, +BK, G, -E, ]+(x)+ o | (3.46)
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From (3.46), two results can be stated depending on the matrix used when the congruence
property is applied. Theorems 3.4 and 3.5 summarize these results.
Theorem 3.4. The TS descriptor model (3.33) (when w=0) is asymptotically stabilized

by the control law u, =K, G, x, if there exist matrices P, =Pl.2T >0, K, ., and G,

b

NANS e{l,2,...,ra}, Ji 6{1,2,...,7‘2} such that:

. 2 . .

i . j i i C .
Yi,li]ix <0, Yi,i,j; —_1 Yillilt; +Yl.]',.2ix +Yiz]ilix <0, Vi, j, i, #1i,, (3.47)
a

are satisfied with

(3.48)

i = {_Giz./l -G, +h, (*) }

i, T
AG,, +B K —E,F, -EE; +F

0 i i
Proof. Recall (3.46). By congruence with the matrix diag [G;v, P ] and setting the free

T
matrix as M = [0 Phjlj , (3.46) gives

Y o= _GZVPhilGhv (*) <0 (349)
hh* AG, +BK, -EP. —Ph+EvT +h. .

Applying Property A.3 and the Lemma B.3 yields (3.47), thus concluding the proof. Il

Remark 3.4. Neither equivalence nor inclusion relation can be established between the
LMI constraints in Theorems 3.3 and 3.4, since they have been derived from different
Lyapunov structures (Lendek et al., 2012). This means that for one control problem the
conditions in Theorem 3.3 could be feasible while those of Theorem 3.4 could be unfeasible;

or vice-versa.

Example 3.3. Consider the TS descriptor model (3.33) with r, =r, =2 and
09 02+a 09 02-a 09 1+a
E1 = s Ez = s A1 = >
-04-b 13 —04+b 13 -1.5 05

[-09 1-a B_l—b B_1+b
A"‘_—l.s o050 "ol *|ol[l

The real valued parameters are defined as —3<a<3 and —-1.2<b<1.2. The LMI

conditions in Theorem 3.3 and Theorem 3.4 have been tested in order to illustrate Remark

3.4. Figure 3.3 shows the feasibility sets for Theorem 3.3 (X) and Theorem 3.4 (EI).
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1 T T T T T T T
XREHMNXXXXXOOOOODOOOO
KKK XM XX KX X OO0 OO0
XXX AR KXXX X XXM XXXOO OO0
2K XXX X XX XX X X XX XXX X ]
2 2€ 24 X AR X X B XA X A I DX I AR A ] b
AR KRR IR AR K1 K1 X X XK K T
2K XXX BRI X XX XX X X R XK X XX
22K XX X XX X XX X X X X X XXX ] X XX X
22K 22X X A X TR R X A I T BT IR B IR X 2 2K 2K X 2K
o 0F XXXXXXKIXIRHRX R RR KX R KKK RRRRK X XXX XK
242X X R BX RXBX X X 4 XK X1 X XU BRI > 2 X XX
2K XX XXX R R XK X T B X X BRI XL X X X X X
22 X ARARA B (R X A X P R IR B 2 2 X X X
KRR B BRI A R B B P IR 2 < XX X
05 XU [ B B XX R R BXIRXI oX X XXK b
DO AR X IR X XX AR AR X < < X
OOOO XK RIRRE M KK KRR X X X
OO0 D RIXR MR KX KKK X X
DOOOOO0O00DX KKK KM KX X
_1 r r r r r r r
-1.5 -1 -0.5 0 0.5 1 1.5

a

7

0.5

Figure 3.3. Feasibility set for Theorem 3.3 (x) and Theorem 3.4 (0) in Example 3.3. 4

A refined result of Theorem 3.4 can be obtained using different matrices for congruence

and for M in (3.46).

Theorem 3.5. The TS descriptor model (3.33) with w, =0 is asymptotically stabilized by

the controller u, =K, G,

hv™—"hv

x, if there exist matrices P, =P12T >0, K,,, G,,, and F,

b ij? higly 7

iy, €{1,2,...,r,}, j€{l,2,...,r,} such that:
Yi <0, Vi,i,j; — YR YA YL <0, Vi, i #i,, (3.50)

lllll 1 uyt, Ul l l Lyt

are satisfied with

_G"ZJ} _Gl”/] + P (*) (*)
Y’.];]izix - Ail Giz.fl + Bi] Kizjl -k, F;llzl F‘ITI;I} Ei (*) (35 1)
0 F,. P

Proof. Recall (3.46). By using the congruence property with the full-rank matrix
dzag[ - F};H] and setting the free matrix ast[O Wﬁ} (3.46) gives:

-G,,b,'G,, (*)
AG, +BK, -EF —F' E'+F' P'F

hhh* hhh* hhh* hhh*

<0. (3.52)

Applying the Schur complement on the entry (2,2) gives:
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_GT Bl_lGhV (*) (*)

hv

v — T T
Yhh]f T AhGhv + BhKhv _Evf?hthr - thh* Ev (*) < Oa (353)
0 Foe —F,

which by means of Property A.3 on entry (1,1) and via Lemma B.3 yields (3.50), thus
concluding the proof. Il

Remark 3.5. The conditions given by Theorems 3.3, 3.4, and 3.5 hold if the matrix E is
nonsingular; this fact can be seen, for instance, from conditions in Theorem 3.3: if Theorem

3.3 holds then (3.44) holds too, which means —E,G,. =G E; +P. <0. Assume that E, is
singular; then, there exist x, #0 such that E x, =0, thus the block (2,2) of (3.44) becomes
P, < 0 which cannot be true since B, >0. Thus, if conditions in Theorem 3.3 hold, then E,

1s not singular.

Remark 3.6. Note that in Theorem 3.5 a new matrix F . is introduced, which adds extra
degrees of freedom without increasing the number of LMI constraints. Moreover, F, . is not
used in the control law, therefore the use of the next sample MFs hix (Z(k +1)) ,
i € {l, 2,..., ra} is valid. Hence, the results in the Theorem 3.5 are more general than those in
Theorem 3.4. To see this, let F, . =P, . Applying the Schur complement on (3.53) gives
(3.49).

Figure 3.4 illustrates Remarks 3.4 and 3.6.

___________
~~~~~
--------
»?

Theorem 3.5 (G 34 ™, \Theorem 3.3
7 \‘
P= E:‘l ','I P= G;:—TP;:G—J
g = G}:\ !‘ g = Gf:
K=K, \ K=K,

.....
- .

s oot
So o
~ .
-~ e
~ = S L I |
e —————TT A e rrrnaeaeett

Figure 3.4. Illustration of Remark 3.4 and Remark 3.6.
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Example 3.4. Recall Example 3.3. Figure 3.5 illustrates Remark 3.6 when the conditions

of Theorems 3.4 (D) and 3.5 (X) are tested for parameter values —-3<a<3 and

-1.2<b<1.2.

Figure 3.5. Solution set for Theorem 3.4 (0) and Theorem 3.5 (x) in Example 3.4. ¢

Delayed non-quadratic approach

This section introduces a way to improve the results obtained in the previous one. The
main idea is to use delays in the MFs of the Lyapunov matrix, thus changing the structure of

the controller matrices. This idea has been introduced in (Guerra et al., 2012b).

Recall the non-PDC control law:

u, :iihi(z(k))vj(z(k))l(ij (g‘hi(z(k))Gij X,. (3.54)

i=1 j=1
In order to introduce a delay in the MFs of (3.54), the simplest options for the Lyapunov
function are:

-1

1)V(xk):x,f(ghi(z(k))li]_lxk or 2>v(xk):x,{[§h,.x(z(k-l))gj ..

Since the controller must be causal, i.e., no future information can be implemented, it

should not contain positive delays. On the one hand, Option 1 implies that the variation of the

Lyapunov function AV (x(k)) =V (x(k+1))-V (x(k)) depends on the advanced MF
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h, (z(k+1)) i.e{l,2,...,r,}, which cannot be introduced in the control, i.e.,
u, = KhmGh_;Jk cannot be implemented. On the other hand, Option 2 does not introduce

future MFs but the delayed one hl.x (z (k —1)), i € {1, 2...., ra} which can be introduced in the

controller (3.54), i.e., u, =K hh’th_hl’vxk . For consistency, it is assumed that z(—1)=z(0).

Based on the discussion above, the following results were obtained; since they are a
‘direct’ extension of Theorems 3.3, 3.4, and 3.5, they are summarized in the following

corollary.
Corollary 3.1. Consider the delayed Lyapunov function V(xk )= )C,(TG}:,TP”G}:,l x, and the
control law u, = K hh,vG;xk . We obtain (3.42) with

P *
Y, { " *) } (3.55)

AG +BK, -EG -G E +P

Il € {1, 2,...,rg}, J € {1, 2’---”2} . For the delayed Lyapunov function V(xk)=kaPhilxk

and the control law u, = K hh,vGI;ll,vxk we obtain (3.47) with

v _Gizix j —G;-le + Pl (*) (3.56)
il B 141.1 Gizi'jl + Bil Kizi Ji _E]1 Bz - Piv EJT; + EZ ’ |

Il € {1, 2,...,ra}, Ji € {l, 2,..., re} . An improvement leads to (3.50) with

=G _Gifr;jl +E, (*) (*)
Yl'jlllizi.r - Ai] G"zl'le +Bil Kizile _Efl F;]izix _F;:zix EJTl (*) ’ (3.57)
0 i, _Pi2

iy €{1,2,...r}, je{l2,...r}.

Proof. The results follow direct from inequality (3.40) using the same lines of proofs as for
Theorem 3.3, Theorem 3.4, and Theorem 3.5, respectively. Table 3.1 provides a sketch of the
proof.

Since all the approaches involve three convex sums in h(-) and one convex sum in v(-)

the number of LMI constraints is r, xr, xr, Xr, and is the same for Theorems 3.3, 3.4, and
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3.5, and their respective delayed approaches;. Table 3.2 summarizes the obtained results in

terms of number of decision variables, where n_ is the number of states, n, is the number of
inputs, r, and r, are the number of linear models in the right-hand side and in the left-hand
side, respectively.

Remark 3.7. Note that when using past samples in the MFs to achieve relaxations, double
sum relaxations should be taken into account, i.e., cross products sharing the same sample

index should appear between the decision variables and the system matrices.

Table 3.1. Sketch of the proof for Corollary 3.1 (Delayed approaches).

Approach Step 1 Step 2 Step 3 Result
T 1 Congruence with
Theorem 3.3 it diag| G, G| | LMIs (3.42)
. - K iag ., n .
Delayed K=K, ' Lemma B.3 1 "Cap (3 55)
T
G=G, Set M=[0 G,']

Congruence with
Property A.3

Theorem 3.4 diag| G’ _, P, LMIs (3.47)
Delayed ] L% ]T and Lemma | yith 3.56)
P=P_ Set M=[0 B']
_ " Congruence with Property A.3,
hh™v
Theorem 3.5 diag[G! . F! ] Schur 1y vir (3.50)
hh"v hhh complement, .
Delayed and Lemma with (3.57)
Set M= [O Fh;;f ! B.3

Example 3.5. Recall Example 3.3. Figure 3.7 illustrates Remark 3.7 when the conditions

in Theorem 3.3 and its delayed approach (73: G;,T P G' K=K

> G s 9= Gh,) are
implemented for parameter values —3<a <3 and —1.2<bh<1.2. As can be seen from Figure
3.6, in this case, the delayed approach performs worse than Theorem 3.3. This is explained by
the fact that there is no cross product at the same sample between the system matrix and the

designed gain, i.e., no double sum relaxation scheme can be implemented on

a2t (2(R)h (2(k-1))AG, .
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Figure 3.6. Solution set for conditions in Theorem 3.3 (x) and its delayed approach (+) in Example 3.5. ¢

Table 3.2. Comparison of Theorems 3.3, 3.4, and 3.5; and their delayed approaches (Corollary 3.1).

Lyapunov

Approach function N Number of decision variables
(3.36) law (3.34)
Theorem T el K=K, 2
3.3 P=G," PG, ) 0.5n, x(n, +1)xr, +(”x”u’; +nx)><ra
Thgoiem 0.5n, x(nx +1)><ra +(nxnu +nf)><rar€
' P=P" k=K,
—h
g=aG,
Thgo;em ! 0.5n, x(nx +1)><ra +(nxnu +ni)>< rr+nr
Theorem K=K
33 P= G}:,TPh,G}:,1 " 0.5n, x(n, +1)xr, +(nxnurar€ +nf)><ra
Delayed 9=0G,
Theorem
3.4 0.5n, x(n, +1)xr, +(nxnu+n§)xrare
Delayed D 1 K = .
=P !
Theorem ' G=G,,
3.5 0.5n, x(n, +1)xr, +<nxnu +nf)>< rr+nlr)
Delayed
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3.2.2.2. H.. control

In this subsection, the problem of disturbance attenuation is addressed. To end, rewrite the

closed-loop system (3.35) as

[A,+BKG" -E, D] x.,|=0, y =Cx +Jw,. (3.58)

Then, consider Lyapunov function V (xk ) =x, Px,, then AV (xk ) +yl v, 7 ww, <0
together with (3.37) writes

T

X, C,C,-P 0 C,J, X,

X, 0 P 0 X, |<O0. (3.59)
Wy JhTCh 0 JZJ;L_721 Wy
X, crc,-P 0 cry,
Take X=|x. |, W=|A+BKG' -E D,|, Q= 0 P 0
W, J'c, 0 JJ,-71

Using Finsler’s lemma, the equality constraint (3.58) together with the inequality (3.59) gives

cc,-P o CJ,
M[A,+BKG" -E, D,]+(x)+| 0 P 0 |<0.  (3.60)

+

JC, 0 J'J, -1

where M e R® ™ is a free matrix. The following results are based on inequality (3.60).
As in the previous section, the resulting LMI constraints depend on the selection of the
Lyapunov matrix 7P, controller gains K, G, and the slack matrix M. For the sake of
simplicity, only the proof of the first result is given. The others can be easily inferred from

the previous developments.

Theorem 3.6. The TS descriptor model (3.33) under the control law u, =K, G,'x, is

asymptotically stable and guarantees disturbance attenuation y >0 if there exist matrices

P =P12T >0, G, ,and K,

) iy ?

AN 6{1,2,...,}’;1}, i 6{1,2,...,1’6} such that

. 2 . .
j . i i i ...
Yi,]i]ix <0, Yi,i,j; —_1Yillill; +Yi,lizz, +Yiz]ilix <0, Yi,j, i #1,, (3.61)
a
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are satisfied with

i —
iyipl

b

0

b h

(*)

AG +BK,, -EG -GE, +P

DT

i

0

*)
)

1

e

7
J,

(*
(*
(*

-1

— N N

(3.62)

Proof. Recall (3.60). The Lyapunov matrix is selected as P=G," B,G," ; the controller

gains are selected as K=K, and G=G,. By congruence with the full-rank matrix

diag[G!. G, I]andselecting M=[0 G 0] .(3.60)yields

GhTChTChGh - Ph (*) (*)
AG,+BK, -EG. -G E +P. (*) <0, (3.63)
J/C.G, D} JIJ =y

which can be expressed as

-P, (*) (*) | |GG
Y —=|AG,+BK, -EG.-G.E +P, () |+| 0o |[c,G, 0 J,]<0.
0 D, 1 Jy

Finally, applying the Schur complement and Lemma B.3 yields (3.61) .

The following results are based on the Lyapunov function V(xk ) =x P 'x,.

Theorem 3.7. The TS descriptor model (3.33) under the control law u, =Kh‘,G,;1xk 1S
asymptotically stable and guarantees disturbance attenuation y >0 if there exist matrices

P :PlzT >0,G,,, K, ,and Fii s B>y, 6{1’2""”;}’ J 6{1’2""’r

i i’ irj? e

} such that:

‘ , . .
i . i i i S
Yili]ix <0, Vi,i,j; 1 +Yi]i2i), +Yi2i1i), <0, Vi, j, i; #i,,
a

(3.64)

are satisfied with
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__Gizjl -G, +P, (*) (*) (*) (%]
AG,, +B K, —EF, -F,E (*) (¥) (%)
Yijl']izix = 0 ihyiy _Pz; (*) (*) : (3.65)
0 ,? 0 71 (¥
G, 0 o J, -1

Remark 3.8. Since One can easily extend the results of Theorems 3.6 and 3.7 using past

samples in the MFs. For instance, consider (3.60) and set the Lyapunov matrix as

P = G;,TPh, Gh‘,1 and the control law as u, = K hh’thi]xk . Based on Theorem 3.6, the delayed

approach gives (3.61) with:

—F, (*) (*) (4]
AG +BK.. -EG —-G'E'+P * *
ljl, o= by b bl ok L) b ( ( ) ) (366)
112k 0 le' _}/21 (*)
L Cil Gi)_ 0 ‘]i1 —I_
Example 3.6. Consider the following nonlinear descriptor model:
E(xk)xk+1 =A(xk)xk + Bu, +D(xk)wk, Vi =C(xk)xk +Jw,, (3.67)

with

E( )_ 1.1 0.6 B 0.5
B = 0.7 cos(x,) cos(x,)+25" | 1]

C(x)=[04 05+x,], D(x)=[0 03+0.55x], and J =026,

0.7 cos(x,) -0.9
, Alx )=

1.3 } (%) { -1

where & is a real-valued parameter. Notice that since |E(x, )|=1.43+0.49cos’(x)>0,

E(xk) is regular Vx, € R. Via the sector nonlinearity approach, a TS descriptor model

results with 7, =2 and r, =4 due to the number of nonlinearities in the left-hand side and in

the right-hand side. Considering the compact set Q2= {x :x, €R,

x2| < 1} , the MFs are defined
as follows: v, =(Cos(x1)+1)/2, v, =1-v, h =0}, hy=w,0], =0, and h, =0 o];
their corresponding weighting functions are: a)(') = (Cos(x2)+1) / 2, w= (x, +1)/ 2,
o =1-aw,, and @’ =1-@;. The MFs hold the convex sum property in the compact set €.

Hence, an exact TS representation is:
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Te

dvi(z(k)Ex,, = ,il:hi (z(k))(Ax, +Bu, +Dw,)

j=1 '4 (3.68)
Ve = zhi (Z(k))(cixk +Jw, )’

with local matrices as follows:
1.1 -0.7 1.1 0.7 -09 0.6 -09 0.6
E1: ,EZI ’A1:A2: ’A3:A4: .
07 1.3 -0.7 1.3 -1 35 -1 3.05
0.5 047 047
Bi= ,C2:C4: ,C1:C3: .
1 -0.5 1.5

0 0
D, =D, = , D,=D, = ,and J, =026, ie{l,2,...,r,}.
0.3+0.56 0.3-0.56

Figure 3.7 shows the minimal value for y is computed for 0 € [—2, O] when employing

the conditions in Theorems 3.6 (0) and its delayed approach (><) (see Remark 3.8). It can be

seen that the delayed approach provides better attenuation.

4 T T T

3.5

3x O i

NS

25- * O -
~ 2 * o ]
1.5r
1F o .

0.5
r r r @
° 0

-2 -1.5 -1 -0.5

. 9)

Figure 3.7. Minimal values for y: Theorem 3.6 (O) and Theorem 3.6 delayed (x) in Example 3.6. ¢

3.2.3. Generalization

As it can be inferred from the previous subsections, extending the Lyapunov function
and/or the control laws can significantly improve the results. Therefore, a natural question

that arises is the generalization of this approach. The question is: if we add some more past
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samples, does it contribute to the effort of reducing conservativeness? Moreover, is there a
“good” choice for the structure (in the sense of which and how many past samples) of the
Lyapunov function and of the control law? The section hereafter answers these questions. To

that end, the following notation is adopted from (Lendek et al., 2015).

Definition 3.1. (Multiple sum) A multiple sum with n, terms and delays evaluated at

sample k is of the form:

IS WICCENINCERNESN CET) L

=1 i,=1

where H| is the multiset of delays H, = {dl,dz,...,dnY } dy €Z. The definition of 1" is

similar, i.e., Y, Z Y v, (e(kd))xeoxw, (2(k+d, )Y,

= Jr*l

Definition 3.2. (Multiset of delays) H, denotes the multiset containing the delays in the
multiple sum involving Y at sample k. H_ denotes the multiset containing the delays in the

sum Y at sample k+c« .

Definition 3.3. (Cardinality) The cardinality of a multiset H, [H | =n,, is defined as the

number of elements in H .
Definition 3.4. (Index set) The index set of a multiple sum Y, is

L, ={i;:i,=12.....r,j=12,....|H

}, the set of all indices that appear in the sum. An

element i is a multiindex.

Definition 3.5. (Multiplicity) The multiplicity of an element x in a multiset H, 1, (x)
denotes the number of times this element appears in the multiset H .
Definition 3.6. (Union) The union of two multisets H, and H,, denoted H.=H, UH,

is such that: Vxe H,. :1,, (x)=max {IHA (x).1,, (x)} :

Definition 3.7. (Intersection) The intersection of two multisets H, and H,, denoted

H.=H,NH,,is such that Vxe H.: 1, (x)=min{1, (x).1,, (x)}.
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Definition 3.8. (Sum) The sum of two multisets H, and H,, denoted H.=H, ®H,, is
such that Vxe H. 11, (x) =1, (x)+1HB (x) .
Definition 3.9. (Projection of an index) The projection of the index i €I, to the multiset

of delays H,, priB , 1s the part of the index that corresponds to the delays in H, "H .

The following example illustrates the previous definitions.

Example 3.7. Consider the multiple sum:

ZZZZZ (2(0)h, (2(k=1))h, (2(k=2))h, (2(k=3)), (2(k=3)) ¥

i=1 iy=1 i3=1 iy=1 is=1

Then, H, is given by H, ={0,-1,-2,-3,-3}, or H, ={a,a—1,a-2,a—3,a—-3}. The
cardinality of H/ is ‘HJ ‘ =n, =5. The index set of the multiple sum YH&r 1S
L, ={i;1i;=12,....7,, j=1,2,...,5}. The multiplicity of the elements in H, is 1, (0)=1,
IHJ (—1) =1, IH(T (—2) =1, and ng (—3) =2.Now, let H, and H, be two multisets defined
as H,= {O, 0,-1,-2, —3} and Hy= {0, —3,—4}. The union of these multisets is
H,UH, 2{0,0,—1,—2,—3,—4}, the intersection is H, N"H, :{O,—3}, and their sum is
H,®H, :{0,0,0,—l,—Z,—3,—3,—4}. .

Considering the previous definitions, the discrete-time TS descriptor model (3.33) can be
written as

E X = AHéxk +BH(§”/¢ +DH(§>W/< (3.:69)

Y, = CHOka +JH({WI<’

with W' =H!=H!=H, =H =H, = {0} , 1.e., the system matrices are without delays.
In what follows, for design purposes, consider the following non-PDC control law:

Mk—

G o e (3.70)

He W'

where K, . « and G, . . are matrices to be determined of appropriate dimensions. The
00

0"

regularity of G, . . will be discussed further on. Obviously, for causality these matrices

cannot contain positive delays, otherwise they incorporate future samples (Guerra et al.,
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2012b; Lendek et al., 2015). The delays are given by the multisets H(f , HOG , VOK , and VOG .
Thus, when w, =0, the model (3.69) under the control law (3.70) gives the closed-loop

dynamics

Ex., = (A +B,,K, . G ) (3.71)

0 HOVO HO%

Example 3.8. Recall that the multisets for the system matrices are V' =H,' = H, = {0}

and by choosing H =H(? =R =1{)G ={0} for the controller gains, the closed-loop TS
descriptor (3.71) renders:

XACORNS »HAACOIACOIALE)

i=1i,=1 j=1

x| A +BK, [Zz (z(k))v, ((k))(;izjlj_l X, »

=1 j=1

which is exactly the same as Theorem 3.4 and Corollary 3.1. ¢

Following the same procedure as in the previous sections, i.e., using the generic Lyapunov

function (3.36) and its variation (3.37), the closed-loop model (3.71) is

_ -xk X 2
[ Ay 4By Ko G —Ee | R (3.72)
while the variation of the Lyapunov function (3.37) is:
x |[-P o7 x
AV (x)=| " |<o. (3.73)
xk+l O 73+ xk+1
By taking X=| ** |, W=[A  +B K, .Gl -E o-| " %1 and us
YIRS T R A S I -3 A
Finsler’s lemma, inequality (3.73) under constraint (3.72) yields:
-P 0
1
M| A, +BK Gt —E%E}(*){ X R}O' (3.74)

From here, as in Section 3.2.2, two main configurations of 7P are considered:

Case l: P=G. _.P,,G!

FV(‘ H({—‘VO H(‘VF >

thus V(x,)=x.G ¢ G‘1 o X

HOWY H({‘ W
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. _ p-l _ T p-l1
Case2: P=F,,, . therefore V (%) =X P s o X,

HOO

where P, , = P. > 0,ie ]IHP , J € ]IVP . Considering Case 1, the conditions in Theorem 3.3
I Iy »Jo 0 0

0 -Jo

can be generalized as follows:

Theorem 3.9. The closed-loop TS descriptor model (3.71) is asymptotically stable if there

. _ pT .p i .p Jj G __ i «G __ J
exist P, , =P, ,>0, i =Plyrs Ji = Pl GiE,jf’ b = Plyes Ji =Pl k=0,1, and

b oJk U o Jk

Ky iy =prigs Jo =pric.iel, . jel, , with V=" uy o Uy u(K e’

1y >Jo

H. =HJ OH/ U(H} @ H )U(H; ® Hy )UH, such that

P (%)
i oo <0. (3.75)
AH: GHEVU +B HE KHO v _Evf GHFH GHI we EVE +F, HIW

Proof. Recall (3.74). Choosing V(x,)=x,G ¢ P . ,G oy - congruence with matrix

HOWC ™ HOW

HGW? HPYC Hi'Y

diag[GT G, }and selecting M = [0 Gl } gives directly (3.75). W

Employing the Lyapunov function in Case 2, the following can be stated.

Theorem 3.10. The closed-loop TS descriptor model (3.71) is asymptotically stable if

_ pT Jj _ <K __ i <K J
there exist P P,, i >0, er,, , Jk prs k=0,1, Ki(f,jok s by = Plycs Jo = Pl
.G _ i .G __ Jj . .
and Gig»joc , iy = Py » Jo = Prs iel, . Jjel, ., where

H.=H; OH! O(H] ®H) )U(Hy ®HY ), ¥ =% o OB U’ UL such that

_G GG_GTGG+PP (*)
HO V(J V HUVO , < O. (3,76)
AuGros *BuK i —E Py =P Bl 4P

HZ W’ Hy T HEY
Proof. Consider (3.74) with the Lyapunov function V(x,)=x P, - Applying the

congruence property with the full-rank matrix diag [ngvg, PHPHP:| and choosing

M= [0 P Pv"} , (3.74) gives:

_ T -1 (*)
Gy,6 Ly py,r I 60,6
HyW'  Hyly — He'W

T
AyiGroro B K, —EyPs =P El 4P,

Hy " HGY HIY' HIY 0

<0. (3.77)
3

75



At last, by means of Property A.3 on the first block of (3.77) gives (3.76).
The next result provides more relaxed conditions than Theorem 3.10.

Theorem 3.11. The closed—loop TS descriptor model (3.71) is asymptotically stable if

_ T Vi <K i <K Jj
there exist P PP p >0, er,,, Jk prs k=0,1, Ki(f,jg s by =Pl Jo = Phyes

JA

i6 = pp iF = pp 5 N . .
o> By = Plyc s _]0 prVG, and FF o b0 = DPhyrs Jo =Pl ze]IHr, _]E]IH_,WhCI'C.

el
iy .Jo Y »Jo

H.=Hy UHU(H} ®@H))U(H} ®HJ )UH,, W=Y R uy ur’u(y ey

such that
T
_GHOGVO G HEVE +P”v” (*) (*)
Ay G + B K By Fupy ~Fapp By (1) <0, (3.78)
0 Furr “Barye

Proof. Consider (3.74) with the Lyapunov function V(x,)=x P, "X - Applying the

congruence property with the full-rank matrix diag [G;GVG, F;FVF} and selecting

M= [O F ;vf} , (3.74) gives

G0 Pt G (%)
S HF i <0.  (3.79)
AH() GH(();V(]G + BH() KH(:(V() _EVO FH() V() FH[) U E ) + FH(P 1’{) P ] P H({:W]F

Applying Property A.3 on the first block of (3.79) yields:

T
— £ 3
Gyope = Gpoys + Pyryr (*)
A.G..+B K E F F, E' +F ! <0 (3.80)
H() H(();V() H(l H(g(v() l’{)E H(fV)F H(fV()F W)E H(f"{)F HIP"{P H(fl'{)F

Finally, the Schur complement applied on (3.80) gives (3.78), thus ending the proof. H
Note that the total number of sums — for MFs h(-) and v(-) — 1involved in Theorem 3.9,
Theorem 3.10, and Theorem 3.11 is given by n,,,, = |HF|+|VF| .

Remark 3.9. Note that the standard TS model is a special case of the TS descriptor one

when EVE =1, V. =0, where & stands for the empty set; therefore Theorem 3.9 and 3.10

recover their respective theorems in (Lendek et al., 2015).
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Example 3.9. Consider the closed-loop system (3.71) with V)" = Hj' = Hj ={0} and the

multisets Hy = Hy = H,; ={0,—1}, Y° =V =W ={0,-1},and H; =))" ={-1}, ie.,

P =By =2 o, (k=0 (2(k-1)) 2,

i.=1j,.=1
K = Kooy oy = ZZZ} Zlh (z(k)h (z(k=1)v, (2(k))v, (z(k=1)) K, -
=l =L j=1j,=
Grove = Clocnjoy = 222 Zlh (2(K))h, (2(k=1)), (2(K))v, (2(k=1))G,,,, -
=1 N=by
FH(?VOG - 0 1{0.-1} ZZZ}Z ’1( ) ix( (k_l))vll(z(k)) ( (k 1)) b Jiix
= =L n=tJy

Thus, conditions for Theorem 3.9 yield:

SIY Y S SIS b (k) (k) (k1)) (2K -1)

i=l =1 i3=1 =1 j=1 j=1 jz=1 j;=1
-1)) (3.81)

xv; (2(k)vy, (2(k))v,, (z(k+1))v,, (2(k
ET B, } <0.

{ i ( )
T
Ail Gi2i4jzj4 + B K ii3 o J3 Ejl Giz’é] J3 Gz i32J3

Conditions in Theorem 3.10 write:

aaaaa

>33 h (<(k)h,

i=l i=1i.=l ji=1 j,=1j=1

xv; (2(k))v,, (2(k))v; (2(k-1)) (3.82)
[ G =G + R ORI
A Glzl Jadx B Kl L Jadx -k 1P12J2 - })l 22 EJTl Y,

Finally conditions in Theorem 3.11 are:

aaaaa

>>YY Y (<()h,

=1 i,=1i.=l j=1 j,=1j,=1

(k) (2 (k1))

xv, (z(k))v, (z(k))v, (z(k-1)) (3.83)
_Gizl}fzj} - G’zl Jadx + Pl Jx (*) (*)
X A’] Giziszjx i K"ziszjx _Ej1 F;zizjzj,r - F;'z];szjx Ej; (*) <0.
0 F;'z"szj} _Pizjz
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The number of sums in Theorem 3.9 is n,,,, = |H r| + |Vr| =8, while for both Theorems 3.10

and 3.11 is n,,, =6. These differences are due to the fact that H. and )). depend on the

chosen multisets for each theorem. ¢
Selecting multisets

At this point, it is important to clarify how to select the multisets involved in the control

law and in the Lyapunov functions. The main idea is that multisets in K KK GHGVG , FHFVF ,
0" 0" 0"

and PH”v" should be chosen such that sum relaxations can be used and the number of sums
and the computational complexity of the resulting LMI should be reduced. Therefore, without
considering solver limitations, the following reasoning applies:

Step 1: Since the system under study does not have delays in its matrices, i.e.,

W =H!=H ={0}, multisets HX, HE

0’ 0

HI, VF, W, and 1) should contain {0}.

Double sum relaxations and the maximum number of variables should be used, but without

increasing the number of sums. To illustrate the considerations above, consider conditions in

Theorem 3.11 with Hy =Hy =H] =W =)=} ={O}:

T
“Gopgop =Gy + Pupyy (*) (*)
T T
0G0+ Bo Kooy ~EwoFono = Fopo By (%) <0 (3.84)
0 Floy0) Py

which after selecting Hy =) = {—1} gives

T
~Gorio; ~ oty T Fonpiy (*) (*)
T T
AoGu o +BoKo  EoFom ~FouFy  (*) [<0 (3.85)
0 Fiy, 10 ~Foy

it consists of three sums involving h(-) : Z:":l 22:1 Z:":l h (Z(k))hl.2 (Z(k))hix (Z(k —1)) and
three sums of v(e): szzzdzz:lvh (z(k))vj2 (z(k))vjx (z(k—l)).
Step 2: Due to the structure of (3.85), it is possible to add the delay {—1} in each multiple

sum K _, ., G . ., F . . without increasing the number of sums:
H()VO HUVO HOVO
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=Gy 10y~ Go o (*) (*)

AqGo oy *BoKo ooy ~EgFoypy ~FooppyEe (%) [<O

0 F?{(),—l},{(),—l}

Step 3: Since the multiple sum FHFvF does not multiply AHA and B

0 » One can add {0} in

: one can add {0} in ¥ and L°,

Fooeo s :
H, ; similarly for the multiple sums K YK and GHngG :

respectively. Thus the “good” — more decision variables with less number of convex sums

— multisets for this problem are:

~Gioygo01 = Gloiooy + By (*) (*)
A0 Gp 00+ BoKoonpoy  ~EgFoo-giooy = FoononEo () |<0
0 Floo-p04 oo}
Table 3.3 shows how the number of decision variables changes at each step.
Table 3.3. Number of decision variables at each step for Theorem 3.11.
Step Number of decision variables Number of sums

3 sums in h(-)
Step 1| 0.5 x(n, +1)x(rr ) +2(mf )% (r7.) +(mn ) x (1,7,
3 sums in v(-)

3 sums in h(-)
Step 2 0.5n, x(n, +l)><(rure)+2(n2)x(razrf)+(m n )x(;frf)
3 sums in v(-)

O.Snxx(nx+1)><(;;l};)+(n2)><(;;12r3) 3 sums in h(-)
Step 3 2 3.2 2.3
(n?)x (5272 )+ (mm, )< (27 3 sums in v(+)

Remark 3.10. For a fixed combination of multisets, independent of the structure chosen,

adding {0} or {—1} in every possible place will reduce the conservatism. Thus, the more

delays {O},{—l} are used, the more relaxed the conditions are. Following the procedure

given above, the maximum number of sums is given by n,,,, =2n, +2n, +2.
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The method for Theorem 3.9 is as follows:

Step 1: Select multisets Hy = HY =V =)’ = {0} , thus conditions in Theorem 3.9 give:

—P . ., *
[ Ho% *) }0. (3.86)

T T
A0 G0 BoKioy  ~EwOu . ~ OBy + By

Since there are no double sums in v(-) at the current sample k , it is possible to add {0} in
V¥, ie, W=(1 @V7). Then (3.86) yields

~Farw (*)
A T) <0, (3.87)

T
0C010, t By Kooy ~Eq Oy~ CupnEigy + iy

which ends in three sums for h(-):Z:Z':]ZZZ’:IZ::;]ftil (Z(k))hiz(Z(k))hix(z(k+1)) and
three for v(-) : zzzlzzzlzzzlvﬁ (z(k))vj2 (z(k))vjx (z(k+1)).

Step 2: To keep the same number for sums as for Theorem 3.11, the best solution for the

Lyapunov multiple sums is H;, =) = {()} . Finally, (3.87) renders:

_P %k
[ oL *) ]<o. (3.88)
)

T T
A0 G0t B Koo ~ECug ~CGnnEe + Hy

Table 3.4 summarizes these results for an arbitrary cardinality of the multisets.

Example 3.10. Consider the TS descriptor (3.69) when w, =0, with r,=r =2,

1.1 0 095 0 1.18-0.20 -1.31 0.69 1.41
E = . E= . A= ) A = ,
| 0 0.36 0 1 -0.33 0.23 -1.17 143

! 1-0.16 ) .
B = Lo5 I and B, = 0 , where 0 >0 is a real-valued parameter. Applying

Theorem 3.9 with multisets:
P __ K _ G __ \)k _ P G . .
e H)=H;, =H)=Y] —{O}, V' =)’ = (four sums are involved). The maximum

value of [ for which conditions were found feasible is 0 =0.86. Using the same

number of sums the conditions of Theorems 3.10 and 3.11 are not feasible for any 0 .
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e H =H/=H}= {O,—l} , W= {O} . W=Y =D (five sums are involved). The
maximum value of £ for which conditions were found feasible is 0 =0.90.
e Hy=H;=H =Y =%°={0} and V¥ ={0,0} : three sums in h(+) and three sums

in v(-) , the maximum value was 0 =1.86. o

Table 3.4. How to select multisets for Theorem 3.9 and Theorem 3.11.

Matrix Multisets in Theorem 3.9 Multisets in Theorem 3.11
Hy ={0,0,...,0}, |H|=n, Hy ={-1-1,....-1}, |HJ|=n,
Fawr
¥ ={0,0,....0}, [¥|=n, W ={-L-L...-1}, [W’|=n,
Hy ={0,0,....,0.}, |H|=n, Hy ={0,0,...,0,~1,-1,....—1}, |H|=2n,
np, np, p,
K KK
HOV()
¥ ={0.0,0,....0}, [V | =1+n, VOK={o,o,o,n...,o,—1,—1,...,—1}, VS |=1+2n,
H ={0,0,....,0.}, |H|=n, Hy ={0,0,...,0,-1,-1,....—1}, |H{| =2n,
np, np, np,
s
¥’ ={0,0.....0.}, W’|=n, VOG={0,0,0,...,0,—1,—1,...,—1},VOG\=1+2nP
________________ Hy ={0,0,0,....0,~1,-1....=1} |H}|=1+2n,
np, np,
FHJVJ
________________ ¥ ={0.0,....0,-1—1....—1},[¥"|=2n,

H.. attenuation

In this part, we consider disturbance attenuation. Recall the TS descriptor model (3.69).

Using the control law (3.70) gives:

_ -1
Eox, = (AH[;x B, K s G )xk +D,w,

(3.89)
Vi = Cngk + JH-O’Wk'
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Since the proofs follow the same lines as for the previous results, they are not stated here.

For Case 1 the following result is obtained.
Theorem 3.12. The closed-loop system (3.89) is asymptotically stable and the attenuation
is y if there exist 7/>O, P"kPJ'kP =Pi§,j[, >0, i: =prli[, , ]: =pl”]£p, Gif»jf’ if = Pr:[kg )

J

G __ — K _ i K Jj . . .
Ji =pre. k=0,1, and Kiu’f,j(f’ iy =Dric. Jo =Pl iel,, jel,, with

Hy=H) UH] U(H] @ HY )O(HT ®(Hy OHS )|V HT, W =37 o uR ot u(y @)

I _PHGDV()P (*) (*) (*)
AHO GHOQVO +B K HEYK _EVOEGHIUVIG _G; Gye E;OE + PHIPWP (*) (*) <0 (3.90)
0 Dy I (s
| CuGpe 0 T 71

For Case 2, the following result can be stated.

Theorem 3.13. The closed-loop system (3.89) is asymptotically stable and the attenuation

is y 1if there exist y>0, P, , =P ,, i,f=prip, j,f:prj,,, k=01, K, .. ié{:pri,(,
Y 5Jk Hy Vi Ly »Jo Hy

L sJk

K __ J G __ i G __ J +F i oF J . .
Jo =Pl GiOG o> b = Plycs Jo —pr%G,and Ii,opyjor, Iy =Plyrs Jo = Pl iel, , jel,

Jo
Hy = HJ OH! O(H) ® HY )o(Hy ®(Hy O HS ) O HY, V.=V V"o oviu(Viey))
such that

“Gueys ~Gugvs * Pugr (*) (=) () ()

AyaGuone T B K e —E B —F, ; vFET(,E (*) (*) (%)
0 Foos =P (*) (¥)|<0. (391

0 DZIOD 0 -1 (¥

CcGyons 0 o J, -

The following numerical example illustrates the performances of Theorems 3.12 and 3.13

for the options for multisets given in Table 3.5.

Example 3.11. Consider the TS descriptor model (3.69) with r=r, =2

2

09 0.l+«a 09 1.1 0 -15 -1 -15 0
E‘1 -_— . E2 = . Al -_— . A2 p— . Bl = B2 = .
-04 1.1 -04 1.1 0 05 2 05 1

c,=[0 128], C,=[0 043], D=[023 0], D,=[0 0.12], J,=0.12, and
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J,=0.09+«a, where « is a real-valued parameter. Table 3.6 shows the results for several

parameter values when using the options in Table 3.5.

Table 3.5. Selection of multisets for Example 3.11

Approach | Option Multisets Numbesru(I)iSconvex
| Hl =HS=HF=V* = {0} 3 convex sums in h(-)
VOP = VOG = 1 convex sum in v(-)
Theorem
3.12
H(f:[-](f:[—]g:]}opzv(f:{()} 3 convex sums in h(-)
2
VoK = {O’ 0} 3 convex sums in v(-)
; H(f:H(f:Hg:VOK :VOG :{0} 3 convex sums in h(-)
H(f = {0’0’1} K=Y =0 1 convex sum in v(-)
Theorem
313 Hy =Hy =) = {O’_l} 3 convex sums in h(-)
4 HE = = (1)
VOK :VOG _ H(f _ {0,0,—l} 3 convex sums in v(-)

Table 3.6. Minimum y values in Example 3.11

Parameter a Option 1 | Option2 | Option 3 | Option 4
a=-15 y=246 | y=218 | y=276 | y=1.79
a=-1 y=127 | y=121 | y=123 | y=1.12
a=-0.5 y=0.78 y=0.72 y =0.69 y =0.64
a=0 y =0.56 y =0.56 y=0.53 ¥ =0.50
a=05 y=077 | y=077 | =077 | »=0.77

The obtained results illustrate Remark 3.4, for instance, when a =-1.5, Option 1 has

provided better attenuation than Option 3; while for & =—0.5 Option 3 has given better result

than Option 1. ¢
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Robust control

Consider a TS descriptor model with uncertainties:
(EVOE +AE)ka (A +AA)xk (BH(? +AB)uk, (3.92)

with the uncertainties defined as AE = Dv AL AA = D A L AB=D, ,A,L it and

e VL’ a HL’ th

classical norm bounds A’A, <71, A'A, <I, and AJA, <I. The uncertain model (3.92)

a a

under the control law (3.70) gives

(EVE+AE)ka (A + B K g G + M+ ABK Gl

Hy “THIWE T HGW HoW' ~ HYWY )

(3.93)

For Case 1, the following result can be stated:

Theorem 3.14. The closed-loop system (3.93) is asymptotically stable if there exist

_ pT +P i +P J G __ i G __ J —
P P PP Py lk _er[7 Jk _prkaa GlG :G 9 lk _erkG’ Jk _prVkG’ k_0’19 KinKa

’A »Jk U sJk k Jk 0 +Jo

_ i <K o7, i o7 J
= pr rl b = b = and
Pluss Jo =Phycs T o g8 =Prye o Jo = PRy s Ty oo B =Py Jo = prij s

°T, __ i °T, __ J . . _ P P G
by =pry > Jo =Ph iel, , jel,, where H.=H, VH, VH U

T *T b
L.e5Joe

Hy ®(Hy UH,))o(HY ®(H, OH;,))O(H;, ® Hy, )U(H;, ® HY, ) U H,,

V=Y o uR o oy, o (W e UNL)) (1L ©132) such that

RS o) ) )
AHAGHGV +B KHKV E GH(‘VF GTFV(‘ET +P1WP E E
RN S ebezdeee [ <0, (3.94)
" T (%)
g L0 1T
0 D, L, Gopo 0 .. 0 0
. ~NT _ T 5 _ r_
with D" =|0 DHgb , g= HObKHo’(Vo’( 0 , T = 0 THo"b%’,bI
T
0 Dy 0 L Gpon 0 0 Tyt

Proof. Using the results in Theorem 3.7 for the uncertain closed-loop model (3.93) gives:

_PH({’VO” (*)
AgrGove TBuK o —EGoo+(*)+ Py

H'  HG WY HY

+AI' <0, (3.95)
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0 (*)

[AAG . +ABK , _AEG ., . +(*)} , which can be represented as

HGW HEW H'Y

where A" =

0 0 0 A, 0 O LHOLJ‘ GH(? W 0
AF=DAQ+(*)={D b D } 0 A, 0L, K, 0 +()
Hﬂ.u H(J,h 1/(')‘3 0 0 Ae 0 _L G
W. HIWC

Employ Property A4 (Appendix A) with N = G, R :7.55, and

Q= T = diag [TH&“%,‘”I s THé,bVo’.hI , z'H&%,_fl } , T=T"> 0. The uncertain terms can be
~— ~N—l — o~ ~, ~\—1 ~ —_—
expressed as A" < DA(T ) ATD" +G" (T ) G . Consider AA” <[, thus

-1 ~~ ~ ~\—1

Arsﬁ(if) TD" +G" (7) G. (3.96)
Substituting (3.96) in (3.95) writes:
e T * T s ragr
Hyl ( ) +|:'DT gT:||: (zi| |:TZ3 i|<0’
AH&‘GHOGVO +B KHOVO _E%EGHNG +(*)+PHW U g

which by means of the Schur complement yields (3.94), thus concluding the proof. Il

For Case 2, the following result can be established:

Theorem 3.15. The closed-loop system (3.93) is asymptotically stable if there exist
By =Bpys B=phyps Jo=prps k=01 Koo ig = pryc. Ji =pris Ge e

G _ i .G j F i F Jj or i or j
i1 = pr =prl., F i, = pr, =prl., T @ = a =
0 T Plyg> Jo = Phyos Tir jro bo = Plyrs> Jo = Plyes Ty e > W' = Pl > Jo" = Pl > T e

.7, i o7, J
i" = pr. =pr’., and T,
0 p Hg, Jo p W

PR pr . p ie]IHr, je]I%, where
H.=H) UH! O(H ®(H) UH, ))u (HG@ (Hy OH; )uH U(H;, ®H,)UH;,
U(H;, @ Hy, ), vr=%"u14”u%’(u%f"u(VJ@(Wu%i))u(%;@%ﬁ)u%;uvo;,

such that
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Gt~ o KPS CIt It
4, GHGV +B, KHKV _E%EFH(MF FHVoEo !
> T B S S B P X 7))
G EIG
F 000 =P,
L,.G.. 0
where D and 7 are defined in Theorem 3.11, G= LHL KHKVK 0 and
0 _LVOL.FHOFVF
F= [0 FHUVU]

Proof: The proof follows the same lines as the proof of Theorem 3.14 but using the

Lyapunov function in Case 2. B

3.3. Summary and concluding remarks

In this chapter, state feedback control design methods for TS descriptor models have been
presented. The improvements are based on the well-known Finsler’s lemma; this lemma
allows handling the descriptor matrix as well as “cutting” the link between the Lyapunov
matrix and the controller matrices. Nevertheless, when dealing with continuous-time TS
descriptors the conditions are not “pure” LMIs since a scalar parameter must be fixed a priori.
Therefore a logarithmically spaced search is performed. This increases the computational

cost, but since all the computations are done offline, they are still realizable.
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Chapter 4. Observer design

This chapter presents observer design for both continuous and discrete time nonlinear
descriptor systems using an exact TS representation. In the case of the continuous-time TS
descriptor model, strict LMI conditions are obtained by changing the extended estimated state
vector and using a full observer gain. For discrete-time TS descriptors several LMI conditions
are stated. These conditions depend on the selection of the Lyapunov function: quadratic,
non-quadratic, or delayed non-quadratic. All the presented cases consider that the descriptor
matrix is nonsingular in the considered compact set of the state space. Numerical examples

are given in order to illustrate the performances of the provided improvements.

4.1. Continuous-time TS descriptor models

This section presents a novel observer design for continuous-time nonlinear descriptor
systems using their Takagi-Sugeno representation, which overcomes BMI conditions existing
in the literature. The main idea is to change the estimated state vector by using an auxiliary
variable. This allows changing the structure of the observer and using a full observer gain
LMI constraints are stated that improve results in the literature. In addition, some relaxations
are achieved when a non-PDC-like observer is used. Finally, Finsler’s lemma is used to
enlarge the solution set by adding slack variables and decoupling the Lyapunov function from

the observer gains.
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4.1.1. Problem statement

Conditions in previous works (Guelton et al., 2008; Guerra et al., 2004) are given in BMI
terms. Sufficient LMI conditions are obtained by fixing some of the decision variables, as

will be shown in what follows.

Consider the following TS descriptor model

Ex=Ax+Bu, y=C,x. 4.1)

T
The following extended state vector is commonly used X = [xT XT] . Then (4.1) can be

written as (Taniguchi et al., 1999):

¥+Bu, y=CJx, (4.2)

-1 0l - Jo 17 - Jo _
with E = , A = , B, = ,and C, =[C, 0].
0 0 A, -E, B,

v

For the observer design the main task is to make the estimation error ¢ = x—X converge to

zero as t—oo. To this end, in (Guerra et al., 2004) the following estimated state for the

s
x'=| L 4.3)
x

4.4)

extended model (4.2) was proposed:

T
where the observer gain is defined as L, :[0 Lghv} . Defining an extended estimation

error vector:

. oA, | Xx—X
e =X—-X = s 4.5
X—Xx
its dynamic is given as
Ee* = ( _hv - _hv _h)e*' (46)
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The synthesis of the augmented observer (4.4) is done via the quadratic Lyapunov

function candidate (Guerra et al., 2004):
V(e')=e"E"Pe’, E'P=P'E=0, (4.7)

P 0
P

4

with P:{ }, P=P">0. Taking the time-derivative of (4.7) gives

3

V(e*) =¢"E"Pe’ +¢" P'Eé", which by substituting (4.6) renders

P'A —-P'L C, +(* *
T3 hT3 hvh()T T()T <0. 4.8)
P4Ah_P4thCh+P1_EvP3 _EVP4_P4EL

Remark 4.1. From inequality (4.8) is not possible to obtain LMI conditions because of the
terms P L, C, and P/ L, C,, thus (4.8) is a BMI problem. In (Guerra et al., 2004), a way to
obtain LMIs is by fixing P, as P, = P,. In (Guelton et al., 2008), the authors suggest a two-
step algorithm: 1) design the gains L, i€{L2,...r,}, je{l2...,r} via the pole-

placement technique; and 2) use (4.8) to verify the convergence of the estimation error.

The next subsection presents a way to overcome the BMI problem in (4.8).

4.1.2. Results

The first attempt to overcome the BMI problem in (4.8) is to consider a full observer gain,

ie, L, = [lfhv Lg,w]T. Thus P'A, —P'L,C,+(*)<0 gives:

P/ A, ~(PL,, +PL,,)C,+(*) (*)

<0. (4.9)
P/A,~-P/L,C,+P—-EP, —E P—-FE,

From here, a change of variables N,, =PBL, +P'L,, , N,, =P/ L, is possible and

LMI constraints can be obtained. Nevertheless, the observer (4.4) with a full gain

Ijhv = [L’ﬂw Lg,w]T reads:
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1 oljx| [o 1 7[x] o L, x—%
= NE s [C, O] .| (4.10)
0 O -5‘\: Ah _Ev -5‘\: Bh LZhv x_-i:
The first row in (4.10) implies
';e:)’é-i_l'lhvch (x_-i:)9

which is consistent only if x—x=0 or if L, C,=0. When setting L, =0, the observer

— T
(4.4) is recovered. Hence, when using a full observer gain L, = [LlThv LZhV] , the estimated

state vector must be changed. Therefore, consider the following new estimated state vector:

:{x} (4.11)
ol .

The definition of S depends on the observer under study and will be discussed later on.

=>

The main idea is that f— x as r—oo. Based on the previous discussion, the following

observer is proposed:

Ex=AX+Bu+L, (y-3), $=Cx, (4.12)

A A T T T . . . .
where x = [xT ﬂTJ and L, = [LIT . L;W] . The extended estimation error is defined as:

~ | x=x
E:)_C—)_C:{ }, 4.13)

and its dynamics are

Consider the following Lyapunov function candidate:
V(e)=e"E"Pe, E"P=P'Ex0. (4.14)

By considering that E”P is constant, the time-derivative of the Lyapunov function (4.14)

is:
V(e)=¢"E"Pe+e P Ee. (4.15)

The following result can be stated.
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Theorem 4.1. Consider the system (4.2) together with the observer (4.12). If there exist

matrices P=P' >0, P,, P,, N, , and Ny i,i, €{,2,...,r,}, j, €{1,2,...,r,} such that

1y jy

, 2 . . .
T <0, Vi, j; :Yi’]‘il +X7 + Y <0, V)i #i,, (4.16)
holds with
Yj] _ f)3T14il _Nliljl Cil +(*) (*)
“OBA SNy, C o R-ER PE -ER |

then the estimation error e is asymptotically stable. The observer gains are recovered by

Z[J. =P'N,, ie{l,2,....r,}, je{l.2,...,r,} . Moreover, the final observer structure is

Ei=Ax+Bu+|E, I]F’“}(y— )

hv

4.17)
5=C,%

. 5 R 0 " S (= T3 TT A (%
Proof. By taking? = P = b , the condition V(e)<0< P'A, —P'L, C,+(*)<0,

3 4

together with the change of variables N,, = P'L, gives:

1| B A NG () ®) <o (4.18)
hh * T T T T . .
B A-N,C+R-E B -PE-ET,

By means of Lemma B.3 (4.18) gives (4.16). The proof of the regularity of P, is as
follows: if the LMIs (4.16) hold, then inequality (4.18) also holds, which ensures
—P/E,—E_P,<0. Since E, is nonsingular (E,x,#0, Vx,#0), let us assume P, is
singular; then there exists x, #0 such that P,x, =0. Consequently for that x, #0 it yields
X (—QTEV—Efﬂ)xO=O, which contradicts the condition —P/E,—E'P, <0. Thus if

Y,, <O is true, then P, is nonsingular.

The final observer form is obtained as follows: recall (4.12), i.e.,
I 0] % 0 I ]x]]0 C
0 0 p A —E I p B, L, G,
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)Ac:ﬂ+L1thh (x—%)

(4.19)
EB=A%+Bu+L,,C,(x-%).
From (4.19), the definition of S arises:
p=i-L,C,(x—%). (4.20)
Finally, substituting the intermediate variable £ into (4.19) gives
E,(£-1,,C, (x=%))= A&+ Bu+L,,C, (x~3),
or
Ex=A%+Bu+L,C,(x—%)+EL,C,(x—%), 4.21)

which yields (4.17), thus concluding the proof. Il
Remark 4.2. If the LMI problem is feasible, it means that (x— fc) —0 and ()'c— p ) —0 as
time goes to infinity.

Remark 4.3. Once the BMI problem in (4.8) is overcome, a more general observer
structure can be achieved, thus relaxing the conditions given in Theorem 4.1. This will be

shown in what follows.

Consider a non-PDC like observer of the form:

Il
=D

v +E/’lu+B’l_Tth (y_j’)

(4.22)

Il
E@l)

Ex
y=C,

~ A T — T P O
where XZ[XT IBT] and L;,V=[L,Thv LZ,WJ . The structure of P, is Ph={ ! },

3h P4h

: . I 0
B=PB" >0, P, being a regular matrix, note that P = . 1 . |- Recall the
T Y

4h

extended estimation error (4.13):

E¢=(A,-P"L,C,)e,

and the following result can be established.

Theorem 4.2. Consider the system (4.2) together with the observer (4.22). If there exist

matrices ,=F' >0, P, , P, , L, and L, , i;,i, €{1,2,...,7,}, j, €{1,2,....r,} such that

e
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Yl]llll <0, Vil’jl; Llejltl +Y]l +Yh <0, v]'1’i1 iiz’ (4.23)
r

a

hold with

" 412A7 LZ’]J C + P E P _1347;2 Ejl a E;;R‘iz

Ji” 30

L[ EAre e (% }

then the estimation error e is asymptotically stable. Moreover, the final observer structure is

Ex=Aj+Bu+[E, I|P" {lﬂhv}(y—f)

Ly, (4.24)

P 0
Proof. By setting P =P, :{ : }, the time-derivative of the Lyapunov function

LN
4.15)is V(e)=2"P] (A, - B,"L,C,)e +(*). Thus V(¢) <0< P'A, —L,C,+(*)<0 or:
T p—
Y, :{ P =L ()T S T}o (4.25)
thAh _12/1\C +P Ev B&h P E E\ P4h

By means of Lemma B.3, (4.25) gives (4.23). The proof of regularity of P,, follows a

procedure similar the one in Theorem 4.1. The final observer form is obtained as follows:

recall (4.22), i.e.,

DL AT e e e

{N (h)} i {p _PPIP W } _ {P (L~ PLP Ly, )}. )

NZhv (h) 0 Bt_hT LZhV Rl_th‘Zhv

Define

The subscripts 4 and v stand for the dependence on convex structures, while (h) means

dependence  on  non-convex  ones, for instance, N,,, (h) stands  for

2hv Z, ) Z/ . ll Jl (Z,r=1 h, (Z)B“2 )T L, . . Hence, (4.26) can be written as
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R S P M A O

or equivalently

O

f= f N, (h)C, (x-3)

E,=AX+Bu+N,, (h)C,(x-%). (428
From (4.28), B is obtained as:
f=5~N,. (h)C,(x—%). (4.29)
Equation (4.28) by eliminating 3 gives
E,(£=Ny, ()G, (x=2)) = A g+ Bu+N,, (h)C, (x~%). (4.30)

Substituting (4.27) and after some algebraic manipulations, (4.30) gives the final

descriptor observer (4.24), thus concluding the proof. Il
Example 4.1. Consider a TS descriptor model (4.1) when u=0, r, =r, =2 and matrices:
1.1 —0.1 09 -0.1 02 -1 l+a 0.6
E] = s E2 = s A] = s A'Z = s
—02+b 15 02 02 -0.1 -19 1.7 03
C,=[0 -1], and C,=[0 0.6]. The real-valued parameters are defined as a €[-0.5 2.5]

and b e [—1.5 1.5]. Figure 4.1 shows the feasible regions for conditions (4.9) when P, = P,

(see Remark 4.1) (0) , for the conditions in Theorem 4.1 (+) , and therein Theorem 4.2 (x) .

As expected, the results obtained from Theorems 4.1 and 4.2 significantly outperform the

ones obtained when fixing one of the decision variables.
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1.5 : T T
X
<
1K .
X
XX
XX
050
LXK X
XXX
XXX
XX XX
o) HE KK .
XX KKK
KKK
HHHXEK
HHHKK K
-0. WA AKX KK .
WA XX KK X
HHHX KKK ®
HHX XX HH KK KR K
. KRR EX XX XK XX KRR KR XXX XX
-1 KRKK KL KK KL KK L KKK KRR E .
HHHHXXXXXHIIKKKK ¥
A XA XK XK XK
L& LKL
-1 S :
-0.5 0 0.5 1.5 2 2.5
a

Figure 4.1. Feasible sets in Example 4.1. ¢

As it has been shown in Chapter 3, Section 3.1, Finsler’s lemma allows decoupling the
gains from the Lyapunov function. Therefore, a direct extension of the proposed observer in

descriptor form is given by:

Ex=AX+Bu+G, L, (y-3)., 3=Cx, (4.31)

— P 0 —
with G, :{ : } and L, = [L””“l . In this case, the dynamics of the error (4.13) are

3hv (;4hv

given by:

E¢=(A,-G,L, (4.32)

v

O
SN—
|
1
>
]
|
=~
3
APl
|
~
1
1
%Im|
|
Il
o

1

P,

3hhv 4hhv

Consider the Lyapunov function (4.14) with P=P, :{ } . The time-derivative

of the Lyapunov function gives V(¢)=e"E" B, e+e' P}, Ee <0, which can be expressed

as:

o [el[o B e
V(e)—{@} {P 0 ME?}O’ (4.33)
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0 B,
Taking Q={P ’(’)”V} and W= [Ahv -G,'L,,C, —I], via Finsler’s lemma, the
hhv

inequality constraint (4.33) together with the equality constraint (4.32) gives

- =g+ = 0 P
M| A, -G,'L,,C, —1]+(*)+{le H<O, (4.34)

where M e R**™ is a free matrix. Then, the following result can be stated.

Theorem 4.3. Consider the system (4.2) together with the observer (4.31). The estimation

error e is asymptotically stable if there exist matrices P, =P" >0, Py Puiis Gujyo

G4i2j2’ Llizjlj2 and LZin.lj2 s sy e{l,Z,...,rﬂ} s Jio )y 6{1,2,...,1;} such that

Yi <0, Vi, j;

Iy

Jii Jij Y s
r _lYi]'il' +Yil‘iz' +Yl.2’i]l <0, Vj,i#i,,

a

S XWX TR <O Vi # o (4.35)

4 ) 2 A 2 ) .
CECER +;(YZ”' i)+ - —— (i)

i Jih> JaJi Jal . (O .
+Yillizz +Yi2]il +Yi,?2] +Yi22ill <0, i #i,, J, # J,»

hold with
3’117 ll lll’l/l/z i ( ) (*) (*) (*)
lejz _ G4’l/2 G _Llelll C +P ETG31 2 )2 GZ’]] J (*) (*) (*) .
" E(GSTMZAI _Lliljljzcil) (P G, ) —2¢R, () ’
r(4,l) F(4,2) 0 F(4,4)

where I'*) = ( 411/2A Ly zl) T(Psilizjz_Gyzjz)’ r*? =G,

4, jz (P41112 Ja - G4i2jz ) 4

and T = (Gfl LE; +ETG41 s ) Moreover, the final observer structure is
A D ~-T Ly, ~ A n
Ex=AX+Bu+[E, I]G, L (y=3), 3=Cx (4.36)
hhy

T

Proof. Recall (4.34). By selecting the free matrix as Mz{ G’”_ }, congruence of
8‘77T T

(4.34) with a full-rank matrix diag [I , J T] yields
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G'A —-L C +(* *
=l o hT( ) T( ) <0, (4.37)
(Gthht _thvCh ) + (Phhv _Ghv) gGhvj +(*)

I _P G’Zhv v . .
0 and applying the Lemma B.4 gives (4.35). The

v

which by setting J :{

— _ P 0
regularity of matrix G,, is guaranteed as follows: recall that G,, :{ : } with £ >0.
3

3hy 4hv
If the LMI conditions (4.35) hold, it implies —G;, E, —E.G,,, <0. Since E, is nonsingular

(E,x,#0, Vx,#0), let us assume that G,,, is singular; then it exists x, #0 such that

G,,, %, =0; and for that x, #0 it yields x, ( -G, E,—E'G

4hv

)xo =0, which contradicts the

condition —G/, E, —E'G,, <0. Thus, if Y}) <0 is true, then G,, is nonsingular.

The final form of the observer (4.36) can be obtained via manipulations similar to those in

Theorem 4.2. W

Remark 4.4. The conditions in Theorem 4.3 are LMIs when the scalar parameter ¢ >0 is
fixed. A logarithmically spaced family of values & {10‘6,10‘5 ,...,106} (Jaadari et al., 2012;
Oliveira et al., 2011; Shaked, 2001) can be used, see Remark 3.2.

Corollary 4.1. The results given by Theorem 4.2 are always included in those of Theorem

4.3 under the same relaxation scheme.
Proof. Suppose conditions of Theorem 4.2 hold; thus

Y{ Py =Ly, G+ (#) (*) }

" | PhA,-L,C,+B-EP, -PLE —E!P],

Choose for Theorem 4.3: B, =G, =P and L, =IL"**. The conditions in Theorem
4.3 become
Vi (*)

: 21310 <0, (4.38)
e wv | € T T
| 0 PLE+E'P

v~ 4h
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P37I;Ah _Llthh P1 _Ps]f;Ev

with @, = , .
P4hAh - LZthh _P4hEv

. Since the conditions in Theorem 4.2 hold,

2P 0

. . > 0 also holds, thus via Schur complement (4.38) is equivalent to
0 P4hEv + Ev P4h

2P 0 B

YTh4,2 + 6(DT
hhy hhy T T
O BlhEv + Ev P4h

@, <O. (4.39)

If Theorem 4.2 holds, it always exists a sufficiently small ¢ >0 such that (4.39) is true,
(4.38) is also true and Theorem 4.3 holds. Il
Example 4.2. Recall Example 4.1. Corollary 4.1 is illustrated when the LMI conditions in

Theorem 4.2 (O) and Theorem 4.3 (x) are implemented. From Figure 4.2 it can be seen that

conditions in Theorem 4.3 are more relaxed (a larger solution set is obtained) than those in

Theorem 4.2.

Figure 4.2. Feasible sets for Theorem 4.2 (O) and Theorem 4.3 (x). ¢

4.1.3. Unknown input observers

In (Guelton et al., 2008), the observer (4.4) has been extended to estimate unknown inputs;
however it provides BMI conditions (see Remark 4.1). This section proposes to give LMI

conditions via a simple extension of the previous work.

Consider the TS descriptor model:
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Ex=Ax+Bx+M,d
(4.40)
y=Cx+Gd,
where d(r)eR™ stands for the unknown input vector and M, =>"" h(z)M, eR™* . The
goal is to design an observer capable to estimate both the state x(t) and the unknown input

d (t) To this end, assume that the unknown inputs are given by an exo-system d=5d,

. ) ) T
where S € R is a known matrix. Using an extended vector x° = [xT d T] e R  the

TS descriptor model is expressed as:

E'x* =A,x°+Bu, y=C;x°, (4.41)
with Ee _ Ev 0 c R(”x"’”d W(n,+ny) B = Bh e R(nﬁnd xn, A€ = Ah Mh e R(”x*”d W(no+ny)
v 0 Ind ) h 0 ) h O S ’

and C; =[C, Gh]eR"’x("”""). A classical approach is to use an extended descriptor

redundancy on (4.41) by defining X = {xe} e RCn+2m)XCn2m) - the model writes directly:
X

Ex=A,X+Bu, y=Cx, (4.42)

= In +n, 0 - O In +n = 0 =
where E=| , A, = L, B, = , and C, :[CZ ()]. Then,
0 0 A —E B

n,+n,

consider the following nonlinear observer in TS descriptor form:
Ex=Ax+Bu+P'L, (y-3), 3=Cx, (4.43)

with a full observer gain I, = [LlThv L;w]T, L,, L, eR"™)" The matrix P will be

defined later on. Define the estimated state as:

=

_ |:;;ii| c R(an-ﬁ—an )><(2n)+2nd)' (4.44)

and the estimation error e=x‘—3x°. As previously, S plays a role equivalent to Xx°,

therefore:
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e
. e re d C’l\
z:x—)—c{’: xe} 474 (4.45)
X =p x—- B
d-p; |

whose dynamics are given by

Consider the following Lyapunov function:

V(e)=e"E"Pe, E'P=P'E>0, (4.46)

. R O (2n,+2ny )x(2n,+2n,) T . .
with P= P p e RO P=F >0, P, being a full-rank matrix. The
3 4

following result can be stated:

Theorem 4.4. Consider the model (4.42) together with the observer (4.43). If there exist

matrices P =P’ >0, P,, P,, L, ,and L, , i, e{1,2,...,r,}, j €{1,2,...,r,} such that

j —
Yl.lll.l <0, Vi,j;

Yo+ Y0+ Y0 <0, V)i #i,,

(4.47)
r,—1
hold with
v PIA; L, C+(*) (*)
" P4TA; _L2i2jl C: + Pl _(E,Ll )T Px _PthE/e‘l +(*) ,
then the estimation error e is asymptotically stable and, the observer structure is
E% = A% +Bu+[E 1]P” Fa (y=39)
i (4.48)
y=C;x°.
Proof. The time-derivative of the Lyapunov function (4.46) produces
v(e)=e'P"(A,-P"L,C,)e+(*); hence V(¢)<0 < P'A, —L,C,+(*)<0 or
V PIA, =L, G +(%) (*)
Y= T ., <0, (4.49)
PIA =L, C,+R~(El) P, ~P[E;+(¥)
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which leads to conditions (4.47) via Lemma B.3. The final observer form (4.48) is computed

as follows: define

-1 T p-T
|:N1/1v:|=P_TZhV _ I (Llhv —F P, Lzhv) . (4.50)
NZhV P47Tl‘2hv

The augmented observer (4.43) produces

In".+nd 0 );ee O In iy )26 0 Nlth; e ne
.= ) + . u-+ (x —X ),
0 0. Jl8 ] [A -E |LB5] LB Ny, G,

which is equivalent to:

X = +N,,Ch(x=3)

(4.51)
E{° = A% +Bju+N,,C; (x =),
Using S =x°—N,,C! (xe —fce), (4.51) gives:
ES (3 =Ny, (y=3)) = A% + Bju+N,, (y-9). (4.52)
Rearranging the terms, we have:
E% = A% +Bu+(EN,, +N,,)(y-3)
N (4.53)
= A+ Bju+| E; 1]{ ”"}(y—i}),
NZhv

substituting (4.50) into (4.53) leads to (4.48), thus and concludes the proof. Il
As it can be inferred, more relaxed results can be obtained by introducing MFs in the
matrices P, and P,; therefore P, =Z;l h(z)P, and P, = " h(z)P, can be introduced

without altering the number of LMIs to be verified. Effectively, the PDC-like observer (4.43)

becomes:

Ex=AX+Bu+PL, (y-3), 3=Cx, (4.54)

P 0

with P, :{
p, P,

} e Rn+2m)<C2n2m) - pserver (4.54) is a non-PDC-like observer.

Corollary 4.2. Consider the model (4.42) together with the observer (4.54). If there exists
matrices P, =P >0, PP, L, and L, . i€ {1.2,....,r,}, j,€{l.2,...,r,} such that
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A 2 . , .
T <0, Vi, j; :Y{]‘il +X7 + Y <0, V)i #i,, (4.55)

hold with

P A - L, Cy +(*) (%)
P A =Ly, G+ R—(E]) By ~PLE; +(%)

o

i1 2
4

then the estimation error e is asymptotically stable.
Proof. It follows a similar procedure as in Theorem 4.4. H

Remark 4.5. The results given in Theorem 4.4 and Corollary 4.2 can be extended directly

to the Proportional Integral (PI) or to Proportional Multi-Integral (PMI) observer. For a PI

observer, set S =0:; while for the PMI observer consider d™ =0 , where d"™ is the mth-

derivative of the unknown input.

Example 4.3. Consider the following nonlinear descriptor model:

E(x)fc=A(x)x+Bu+M(x)d, y:C(x)x+Ga’, (4.56)

it E(x)- 0.87 0.33+0.5(1-27) A(x)= —0.81 0.83+5cos(x,)
. *= 0.53-5(1-27) 0.95 ’ | 074 0.57 ,

Bzm’ M(x)=[2 1+5cos(xl)] C(x)z[l.sw.scos(xl) 0 } ind

1 -0.5 0 0.1

G(x)= ! 03 /(1+x2), 650 l-valued K
(.X)— O.2+0_5005(_x1) _04 . 77— /( +x1 ), > a real-value parameter nown a

priori. Note that det (E (x)) # 0 for all x,. Using the sector nonlinearity a TS descriptor model

can be constructed with 7, =2 due to the terms cos (xl) ;7,=2 dueto n= 1/ (1 +x; ) . In total
4 vertices are needed to exactly represent the original nonlinear system in €2 = {x € Rz} :

2 2

Zzlvk (2)Ex=>h(2)(Ax+Bu+Md),  y=>h(z)(Cx+Gd), (4.57)

i=1 i=1

with

2

[ 087 -017 o 0.87 0.83 Y, —0.81 0.83+0]
'10.53+5 095 | 271053-6 095/ 1-074 057

-0.81 0.83-6 0 2 140 2 1-0 2 0 |
A= , B=| |, M, = , M, = , C = ,
-0.74  0.57 1 I -05 I -0.5 0 -0.1]
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1 0 1 =05 1 —0.5 ) ) )
C, = , G = ,and G, = . Consider that x, is available.

0 -0.1 0.7 -04 0.3 04

The MFs are v, :1/(1+x12), v, =1-v,, h =0.5(cos(x,)+1), and h, =1—h,. The dynamics

of the unknown input are given by the exo-system d :{

0.5
d . Note that in (Guelton
-05 0

et al., 2008; Ichalal et al., 2009), d=0 or d™ =0 is considered. The exo-system in this

example generates sinusoidal signals. In order to show the effectiveness of Theorem 4.4 and

Corollary 4.2, two comparisons are done:

1.

Comparing the conditions in Theorem 4.4 and Corollary 4.2 to those in (Ichalal et al.,

2009): In order to use the methodology given in (Ichalal et al., 2009), a standard TS

representation is needed. After the inversion of the matrix E (x), a TS model with 8

vertices is obtained. By choosing common matrices as follows: C=C,, G=G,, and

S=0 (d =0), the following results were obtained: Theorem 4.4 and Corollary 4.2 were
feasible up to the value 6 =0.91; conditions in Theorem 1 in (Ichalal et al., 2009) were

feasible until 6 =0.53 (the larger o is the more relaxed the approach is).

Comparing the conditions given in Theorem 2 (Guelton et al., 2008), Theorem 4.4 and
Corollary 4.2. The aim is to design an Ul observer for the TS descriptor model (4.57),
considering the exo-system. For the conditions of Theorem 2 (Guelton et al., 2008), the
maximum value of J for which feasible solutions were found is 0 =1.16. In case of
Theorem 4.4, the maximum value of ¢ for which the conditions were found feasible is

0 =1.66 ; while for Corollary 4.2 the maximum is 6 =1.84.

When setting 6 =1.55 and d = Sd , conditions in Theorem 4.4 were found feasible.

Figures 43 and 4.4 illustrate the trajectories with initial conditions

x° (O) = [—0.4 0.5 0.1 —0.1] . Some matrices of the solution are:

0.14 001 -154 0.33 0.15 002 0.07 0.06
| 001 002 -021 029 1004 009 -0.02 -0.02
'1-1.54 -021 2096 2797 ' |-0.08 -0.05 0.78 0.00 |

033 029 -279 2244 -0.01 0.01 -0.05 0.62
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[ 0.39
-0.62
2.17
_ =192
0.08
-0.11
-0.09
-0.33

Figure 4.3. States in (black lines) and their estimates (blue-dashed lines) for Example 4.3 for 6=1.55.

—6.49] [ 043 -5.99] 092 -1.71] [ 0.90
—4.04 —~0.64 -3.89 025 -2.36 0.26
—4.17 193 -3.74 ~1.62 -2.66 ~1.56
221 L - ~1.88 -2.06 I - ~-0.79 -0.01 I - -0.85
“1.18"™ 017 018 " |-032 -055|"%* | 027
—0.81 0.16 034 045 -0.46 0.31
0.26 -0.06 0.13 —0.01 0.74 0.03
-0.93 | -0.40 —0.59 | | -0.81 —0.59 | | -0.81
2 05 L L L L
£
2 _
@ Or/-"*’" T 1
©
[
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£ 05 L L
£ e
g Or ,/l = A
ﬂ 7
S 05} ]
c /
mN _1 " r r r r
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d
o
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d2 and its estimate

Time (s)

15

10

Time (s)

15

—2.33]
—2.40
-2.77
0.00
0.25
-0.16
0.55
—0.45

Figure 4.4. Unknown inputs (black lines) and their estimates (blue-dashed lines) for Example 4.3 for 0=1.55. ¢
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4.2. Discrete-time TS descriptor models

This section is dedicated to observer design for discrete-time nonlinear descriptor models
using Lyapunov functions: quadratic, non-quadratic, and delayed-non-quadratic.. Throughout

the section, the achieved improvements are illustrated on numerical examples.

4.2.1. Problem statement

Consider the following discrete-time TS descriptor model:

E x4 = AX + By, Vi = G (4.58)

Recall that E, = Zr]f’:l v; (z(k))E ; 1s regular in the considered compact set of the state

space (2. Recall that, to the best of our knowledge, there are no results in the literature for
systems of the form (4.58). The aim is to make the estimation error e =x—Xx converge to

zero as t —> . To this end the following generic observer is proposed:

Ev)’ek-#l = Ahfck +B,u, +g(y_ 5}) (4.59)
e =C, X,

where the observer gain GeR™™ may change according to the approach under study.

Consider the error dynamics as follows:

ek
Ee,, =(A,-GC,)e, < [A,-GC, -E,| =0. (4.60)

ek+l

4.2.2. Results

In order to investigate the stability of the estimation error (4.60)consider the following

Lyapunov function
V(e )=¢/Pe, >0, P=P >0, (4.61)

where P may be constant (quadratic approach) or depend on MFs (non-quadratic approach).

The variation of the Lyapunov function (4.61) gives

AV (ek ) = ekT+1P+ek+1 - ekTPek

{ e, T [—73 0 M e, } (4.62)
= <0.
ek+1 O 734— ek+1
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ek+1 0 +

-P 0
Denote X ={ G }, Q ={ » }, and Wz[Ah -GC, —Ev]; via Finsler’s lemma the

inequality (4.62) together with the equality (4.60) yields

' 0o P

+

M[A, -GC, —E]+(>x<)4{_73 0}0, (4.63)

where M e R** is a free matrix to be defined later on. From (4.63) many results can be
derived, e.g., selecting G=L, and P=P gives a PDC-like observer designed via a
quadratic Lyapunov function; setting G=G,'L, and P = P, yields a non-PDC-like observer

designed under a non-quadratic Lyapunov function. In what follows three approaches are
considered: the quadratic (Q) approach, the non-quadratic (NQ) approach, and the delayed
non-quadratic (DNQ) approach.

4.2.2.1. Quadratic Lyapunov function

If a common quadratic Lyapunov function is used, the following result can be stated.

Theorem 4.5. The estimation error dynamics in (4.60) with G=1L, is asymptotically

stable if there exist matrices P=P" >0 and N, , for i,i, e{1,2,....,r,}, j€{l.2,....,r.}

hij

such that:

Yl <0, Vi, j;; ilrf'. +Yh +YL <0, V), i #i,, (4.64)
1 r — 12 24

il
a

hold with

4 —P
i _ (*) (4.65)

" |PA -N,,C —PE —E P+P|
The observer gains are recovered with l‘ij = P’INU. , 1€ {1, 2,...,7;1} , JE {1, 2,...,re}. The
final observer structure is

Ex, =AX +Bu, +L, ()’k - )A)k) (4.66)
5’1( = Ch)%k'

Proof. Recall (4.63). Selecting the Lyapunov function as V (ek) = e, Pe,, the observer gain

as G=1L,, M=[0 P],and defining N, =PL, gives:
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—P *
Y = ( )T <0, (4.67)
PA,~N,C, —PE,—E'P+P

which by applying Lemma B.3 yields (4.64), thus concluding the proof. i

By using a different but still quadratic Lyapunov function V (e, )=¢F' P™'Fe,, a more

relaxed result can be obtained; this is summarized in the following theorem.

Theorem 4.6. The estimation error dynamics in (4.60) with G=L, are asymptotically

stable if there exist matrices P=P' >0, F, and N

Y

for i,i,e{l.2,....,r,},

Ji€{l,2,...,r,} such that:

) 2 . )
<O Vi jp YT Y <0, Vs £, (4.68)
’/‘a f—
hold with
FoFaP () ()
Yi =| PA -N,,C, —PE,-E'P (x)|. (4.69)
0 F -p

The observer gains are recovered as Ll.j =P'N. ie{1,2,...,r}, je{l,2,...,re}. The

i’ a

final observer structure is (4.66).
Proof. Recall (4.63). By choosing the Lyapunov function as V(ek):eZF "P'Fe,, the

observer gainas G=1, , M=[0 P]T , Finsler’s lemma gives:

-F'P'F *
T( ) . |<o. (4.70)
PA,—N,C, -PE —E'P+F'P'F

By applying Property A.3 and the Schur complement, (4.70) renders

FoFTaP () ()
Y,,=| PA,—-N,C, —-PE —-E'P (*)|<0, (4.71)
0 F -P

which by Lemma B.3 gives (4.68), thus concluding the proof. Il

Proposition 4.1. Under the same relaxation scheme, the conditions of Theorem 4.6

include those of Theorem 4.5. The reverse does not hold.

107



Proof: Consider (4.71), using F =P gives:

which by means of the Schur complement it is equivalent to (4.67). For the reverse, even if

any positive matrix P =P >0 can be decomposed in F'XF with X = X" >0 and F full-
rank, (4.67) produces:

~F"XF (*)
<0,
F"XFA,-(F"XF )L

‘hv

C, ~F'XFE,~E'(F'XF) +F'XF

which does not lead to the conditions in Theorem 4.6. H

In order to illustrate this proposition, the following example is given.

Example 4.4. Consider the TS descriptor (4.58) with u, =0, r, =7, =2, and matrices:

a

09  0.14a 09 0.1-a -1 l+a -1 l1-a
E = , E, = , A= , A= ,
-04-b 1.1 —04+b 1.1 -15 05 -1.5 05

o7 o7
C = b} ,and C, = L b} . The real-valued parameters are defined as a e [—().7 0.7]
+

and be[—l 1]. Figure 4.5 shows the results when conditions in Theorem 4.5 (O) are

compared to those in Theorem 4.6 (x) . Theorem 4.6 performs better than Theorem 4.5.

—_

0.5

T

HXAXXXXX
HAXAXAXAXAXXXXAXXX
HXAAXXAKXAXAXAKXAXAXAXXXX
XXRRRRIRRRIRDRRR X
XRRIRBIRRIIIRDIIIINR
DORIVIIXIRXRRRRRRE
DOV ORRRRR X
XRRRIRZVDDIDDIDRE® X X
HXAXAXAKXAKXAXAXAXAXAXXAXXX
XXX XXX

-0.5

T

HHXAXXXXXXXX XX

-06 -04 -02 0 0.2 0.4 0.6
a

Figure 4.5. Feasible sets for theorems 4.5 and 4.6 in Example 4.4. ¢

108



The following developments use a non-PDC-like observer with G=G,'L, under the

quadratic framework.

Theorem 4.7. The estimation error dynamics in (4.60) with G=G,'L, is asymptotically

stable if there exist matrices P=P" >0, L

i °

and G, for i, e{l,2,....r,}, je{l2,...r}

such that:

4 2 4 )
<O Vi jp YT Y <0, (4.72)
T :

a

hold with

A -P (*)
i = . 4.73)
v oA LG —GLE —E G +P

The final observer structure is
EX, =A% +Bu +G'L,(y, =)  F=CA. (4.74)
Proof. Recall (4.63). Selecting the Lyapunov function as V (e, ) = ¢; Pe,, the observer gain

as G=G,'L, ,and M= [O G/ ]T we have:

v 2

-P *
Y, = ( )T . |<o, (4.75)
G,A,—L,C, —-G,E —E'G'+P

h™~v

which by Lemma B.3 yields (4.72).

1

o o oo d
O oo XK X OO0
O o0 Xx X XK XK OO
o0 XX XK KX X O O
05F DO K KM W K K K X X O O N
0o X ¥ x x x X K X X X O
0o X ¥ X ¥ X X XK K X K OO
O XX KKK XX KOO
O X X XX K KKK XK XK X DO
Neo] OoFr O0K K X X X X X K XK K O A
o X ¥ x X R X XK K X K X O
o0 XK X KK X®XK KX DO
o0 X ¥ X RKKK KK XK X O
O X ¥ XX XX XK X K X O
-05r o0 xX XX XK XKXRK XK OO M
0o o0ox K XK XXX OO
o0 x X X XX XK OO
0o o0 X X O oOod
o oo 0o o
_1 r r r r r r r
-06 -04 -0.2 0 0.2 0.4 0.6
a

Figure 4.6. Feasible regions for Theorems 4.6 (x) and 4.7 (0) in Example 4.4. ¢
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Example 4.5. Consider the local matrices of Example 4.4. Figure 4.6 shows the
improvements brought via the non-PDC-like observer designed using Theorem 4.7.
Theorem 4.6 can be directly extended using the Lyapunov function V (e, )=¢, F' P'Fe,.

However, the extension is equivalent to conditions in Theorem 4.7. Effectively, following the

same path as Theorem 4.6 gives directly:

FoFeP (5 (9)
Y}, =|G,A,~L,C, -G,E,~E'GI (*)|<0. (4.76)
0 F iy

By selecting F'= P as previously, (4.75) implies (4.76). Now, recall Proposition 4.1 where
P =F"P"'F ; substituting it in (4.75) produces:

~-F"P'F *
T( )T . |<0. 4.77)
GA -L C, -GE-EG +F P'F

‘hv

Therefore if (4.76) holds, by means of Property A.3 and using Schur complement, it ends

in (4.76) implying (4.75). Therefore there is no improvement in using V(ek):ekTF TP_IFek

over V (ek ) = e, Pe, when non-PDC-like observers are being designed.

4.2.2.2. Non-quadratic Lyapunov functions

The use of non-quadratic Lyapunov functions has been introduced in (Guerra and
Vermeiren, 2004), where the benefits of this approach over its quadratic counterpart have
been shown. In this part, results for the state estimation problem via a non-quadratic
Lyapunov function and a non-PDC-like observer are presented. These results are summarized

in the following theorem.

Theorem 4.8. The estimation error dynamics in (4.60) with G=G,'L, is asymptotically

stable if there exist matrices F, =R.2T>O, L., and G, for il,iz,ixe{l,Z,...,ra},

i °
j€{l.2,...,r,} such that:
‘ L. 2
Yio <0, Vi,i,j; Y

i i
1y 1
r,—1

'] +Y4 . + Y

1 1
Ll Lty Lyl

<0, Vi, j,. i #i, (4.78)

hold with
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i -k, (*)

" |G A -L.,C, -GE, -EG +P |
The final observer structure is (4.74).
Proof. Recall inequality (4.63). Choose the observer gain as G=G,'L,, and
M=[0 G!'].Using Lemma B.3 on (4.63) gives (4.75). W

Example 4.6. Recall the nonlinear descriptor model in Example 2.5 (Chapter 2, Section

2.2.5),1.e.,

E(x,)x., =A(x,)x, +Bu,, ¥, =C (%)%, (4.79)

T D ) P N G

with 77=1/ (1+x12). Employing the sector nonlinearity approach, an exact TS descriptor

2 -1
representation (4.58) in Q2= {x € Rz}, with r, =2, r, =4, matrices as follows E, :L . } ,

g=Z 0 a=a-| T aca< Tt T B2]? C,=C=[1 02]
2o 1) 1_A2_0.7 11 7t o7 <1al o v Y

and C, =C, =[-0.2167 0.2]. The MFs are defined as v, = 1/(1+x22), v, =1-v,, h =a\a],
h=ow , h=oa, h=oo, with @=05(cos(x)+l), o =1-a),
@, =(sin(x,)/ x,+0.2167)/1.2167, and @] =1-w; . Applying conditions in Theorem 4.8

the following values have been obtained:
0.60 -0.36 0.66 -0.32 0.75 -0.18 0.06
R= L P= L B= L= ok
-0.36  0.46 -0.32 045 —0.18 041 -0.12
—0.44 —0.57 038 -0.13 032 -0.07
L, = , Ly = , G = , and G, = :
—0.04 —0.16 —0.08 0.38 —0.13  0.37
Simulation results are shown in Figure 4.7 for initial conditions x(O):[l —l]T and

x(0)=[0 O]T ; the input is u(#)=0.5sin(r).
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Figure 4.7. Simulation results for Example 4.6: States (black-solid-lie) and their estimates (blue-dashed-line).

Recall that by means of the approaches given in (Guerra and Vermeiren, 2004; Guerra et
al., 2012b), no solution was found for a standard TS representation of (4.79). In addition via
Theorem 4.8 only 132 LMI constraints are needed instead of 4112 for (Guerra and
Vermeiren, 2004; Guerra et al., 2012b). ¢

Example 4.7. Consider a TS descriptor with u=0, r,=4, r, =2, and matrices:

09 1.8 09 03 -1 1.8 -1.8 0.86
l% = 5 lzz = s [41 = s 142 = s
0.1 1.1 -14 0.8 -1.5 0.5 -1.5 0.5

(-1 02 02 1.14 07 o o
A= , A = , C=C,= , C, = ,and C, = , where
_—1.5 0.5 -1.5 0.5 1-6 2 1

0 >0 is real-valued parameter. Conditions in Theorems 4.5 and 4.6 are not feasible for any

0 >0; conditions in Theorem 4.7 provide solutions up to 6 =0.16; conditions in Theorem

4.8 are feasible up to 0 =0.40. &
4.2.2.3. Delayed non-quadratic Lyapunov function

As it has been stated in Chapter 3, Section 3.2, the use of past samples in the MFs of the
Lyapunov function allows adding extra degrees of freedom while keeping the same number
of convex sums, thus relaxing the results from the NQ approach. In this section the observer

to be designed is:

EX., =A% +Bu,+G L _(y.—%) 3 =Ck. (4.80)

h™ hh™v
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The following result is a delayed version of Theorem 4.8.

Theorem 4.9. The estimation error dynamics in (4.60) with G = G};:,th,v is asymptotically

stable if there exist matrices P, =P, >0, L

b biji ?

and Gl.zix for zl,zz,lxe{l,Z,...,ra},

Ji€{1,2,...,r,} such that:
j . . . 2 j J j . . . .
Y <0, Vi,i,j; —lYi'il. + YA+ Y <0, Vi, g, i #i,, (4.81)
x ’,;l _ 14l 12k 24y
hold with
4 -P, *
A= ( )T ; : (4.82)
= Gizix Ai] - Lizile Cil _Gizix Ejl - Ejl Gizi.x + Piz
Proof. Recall inequality (4.63). Choose the observer gain as §= Gh_h1 L . and

T r . -
M= [0 th,] , by means of Lemma B.3, (4.63) gives (4.81).

Example 4.7 (continued). Employing conditions in Theorem 4.9 on Example 4.7
increases the feasible solution set from 6=0.40 up to 6=0.76. Hence, the delayed

approach provides a larger solution set than the classical approaches. ¢

4.2.3. Generalization

It has been shown in the previous subsection that more relaxed results can be achieved by
incorporating delayed samples both in the Lyapunov function and in the observer gains. In
order to generalize this approach, recall Definitions 3.1~3.9. Hence, the TS descriptor model

(4.58) is rewritten as

E X =A X, + B, sty Yo =C cx, (4.83)

1}[ H() - H(E’
with V' =H;' = Hj = H; ={0}, i.e., without delays in the system matrices. The observer to
be designed is:

EVOE Xy = AH[;* X+ BHrfuk + Gl;(lfvoc LHOL%L (yk B yk) (4.84)
5 =Ce k.
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where G, o0 and L. are the observer gains to be determined. They include delays given

W 0
by multisets Hy , H,, V)’ , and ))"; these multisets must not contain positive delays, since a

positive delay refers to future state variables, which are not available for computation.

The estimation error is e, = x, —X, and its dynamics are
_ -1
EEekH—(A G o.L . .C )ek,

GG Ly,L C
VO HO HOVO HO‘%} HO

which can be expressed as

A -G . L..c. -E,|%|=0 (4.85)
Hy' THOW THOY T HG W e '

Employing the Lyapunov function candidate

Vv (ek )= ekTPHMPek , E;(f,j(f = Pig,jg’ >0, ic ]IHg , J€ ]IVO,, , (4.86)
its variation is
N 0
e PyP e
AV(ek):{ k} o { ¢ }<o. (4.87)
ek+l O PH,PHP ek+]
e —P ., 0
.. & 1 Hy W
By deflnlng X = |: :| ) W= |:AHA _GH(;V(; LHLV)L CH(“ _EVE :| ’ Q = 0 p . and
ek+l 0 0" 0 0 0 Hl[-’v],v

employing Finsler’s lemma, inequality (4.87) under the equality constraint (4.85) results in:

P,, 0
-1 Hy Y
M Ay =G Ly G By [#(4)+ o p |0 (4.88)
HYP

Therefore, the following result can be stated:

Theorem 4.10. The estimation error dynamics in (4.85) is asymptotically stable if there

. T . P i .p j .1 i .] j
exist P, , =P, ,>0, i, =pr = pr L, . i =pr = pr and G, .
it = g 7 e T Py e TPy By s bo = Plges Jo = Pl .9

i = prig, Jo =prl. iel, . jel,, k=01, where V=V O} U U(W @K’),

H.=H UH U(H; ®H; )U(Hy ®H') such that

-F, HOW (*)
U <0. (4.89)
Grove Ay ~Lup Cre ~Ongys Byr ~ By Oy + Py
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The total number of sums involved in (4.89) is n,,, =|H|+[}.

Proof. Consider (4.88). Selecting M = [o G,

HEW’

T
} gives directly (4.89). H

Remark 4.6. Considering that the system matrices do not contain delays, the maximum

number of sums involved in (4.89) is given by n,,, <2n, +2n, +n, +n, +n; +n; +2.

I,

Corollary 4.3. The result for standard TS models stated in (Guerra et al., 2012b) is a

special case of Theorem 4.10.

Proof. For (4.89), consider E , =1 . Since V=W =W' =2, we have:

_PHS’ ( * )
’ <0. (4.90)
GusAnp ~ Lyt Crug —Opg —Cys + By

By defining the multisets as Hy = Hy ={0,—1} and H, ={-1} expression (4.90) directly
yields the conditions in (Guerra et al., 2012b). Il
Selecting multisets

This part formalizes the delayed approach for the observer design. The main idea is that
the multisets used in the design should be selected such that sums relaxations can be

employed (double sums at the same instant). To this end, constructive steps are given.

Step 1: Recall that the system (4.83) does not contain delays in its matrices, 1.e.,
W =H;=H; =H; ={0}; thus the multisets H;,H;, 1), and )" should, at least,
contain {0O}. Thanks to the terms G, ,A , and L ,C ., a smart selection is

G A Ly,L Cc
H(l ]/() H() H() 1]0 H(D

Hy =H, =))°. Hence (4.89) gives

{ Parge (*) } 0
T T ’
G040 ~ Loy Cop  ~Clopio Bl ~E1CGlopioy T Parwe

which by selecting the multisets for the Lyapunov matrix as H, =))" ={-1} (Guerra et al.,

2012b) writes:

P_ ~ *
{ e (T) . } 0. (4.91)
G040 ~ Loy oy ~Glopio Eroy ~ B0y Cloyioy + Floyio)
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Step 2: Note that the convex inequality (4.91) contains three sums of

h(e): Z;“:IZZ:I Z:1hi1 (Z(k))hiz(Z(k))hix(z(k—l)) and three sums of the form

v(-): Z;:IZZ:IZZ:IVJ.I (z(k))vj2 (Z(k))vjj (Z(k—l)). Thus, it is possible to include the

delay {—1} in each multiple sum of GHOGVOG and L, , without altering the total number of

0"

sums:

Gocypo-y A0 ~ LioyjoCop - ~Oponion )

_P_ ~ %
[ A (T) ) } <0. (4.92)
~E0Go 101+ Boypo)

Step 3: Since there is no product involving L. and E,, the MFs v(-) of L. should

0"

be chosen as W' =1’ ® V), thus (4.92) gives

[ _P{—l},{—l} (*) } <0
T T :
Glom o140 ~ Lioyioo oy ~Clompomn Eiop ~Egy ooy  Foygo)

Table 4.1 provides the generalization based on the previous steps (similar to Chapter 3,

Section 3.2.3).

Table 4.1 How to select multisets for Theorem 4.10.

Matrix Multisets in Theorem 4.10
Hy ={-1-1...-1}, |H/|=n,
P
W= {-L—L...—1}, [W|=n,,
Hy ={0,0,...,0,-1,—1,...,-1}, |Hy|=2n,
nP/ l‘lﬂ
Lot
L _ 1 . Ll _
Y _{o,o,o,n...,o, L=L....=1}, [V =1+2n,
H ={0,0,...,0,-1,—1,....~1}, |H{|=2n,
"y "y
Y
¥ ={0,0,....0,~1,—1L,....—1},|}}°| = 2n,

"p, tp,
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Example 4.8. We turn back to the TS descriptor model in Example 4.4. Figure 4.8 shows
the feasible regions for the proposed approach when a €[-1.5,1.5] and be[-1.5,1.5]. Two

configurations for Theorem 4.10 are tested:
e Configuration 1: Multisets H, =H, =H, =V ={0} and )’ =))° =, leading to
the conditions in Theorem 4.8 The results are represented by (EI) in Figure 4.8.
e Configuration 2: Multisets H(f; :HOL :VOG ={0,-1}, VOL :{0,0,—l}, and

H =)= {—1} . The results are represented by (x) in Figure 4.8.

KAKKK XK XXX
XKEXK XK XK KK X XX

KK XK XK KKK X XX
KX KK X XK R AR X 2 X K
KX KK KK XX M KK XK KX XXX A

XXX EH XK XN XXX R X KX KX

XX RXKXHK KK XK MKX XX XK XX XX
KA X XK R IR BRI PR X 2K 2K XK
KRR KKK KX KR K IR XX K KKK
O Or XAXKX KX KK XK XX XX XK XXX XXX A
XA XK KX KK XK XK R XX XK XK XXX
222K XX IR X A A X B A < 2K 2K X
KARARKHH KK KK KKK XK KR XX XX

XA XX KXEHK KK KRR XX KR XXX
05 XXX AXHKH KK XXX XX XX XX A
XXX XK KK KR KK X X
KX KXEHR KKK KK XK X
XX XRKRHXXXKM X

XA XKRXRX X

_1 r r r r

-1.5 -1 -0.5 0 0.5 1 1.5

a

T

0.5

Figure 4.8. Feasible sets for different configurations for Theorem 4.10 in Example 4.8 . ¢

By selecting (a,b)z(l,().?a) Configuration 1 does not provide a solution, while

Configuration 2 is feasible; some of the obtained gains are:
P - 0.16 -0.05 P 0.15 -0.17 | 0.16 L~ 0.34
"= 005 003 | 2T 2007 020 | T 020 BT s

0.16 0.33 G 0.07 -0.06 iG 0.12 -0.06
= , = R = . an = .
olill —0.06 Lraane -0.35 M _0.03 0 0.08 22 1.0.08 -0.09
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: ==
7 0 | e [ L1 LI 1
(0]
y_)l
5 -0.5¢ y
s
< _1 r r r r
0 2 4 6 8 10
Sample
9 1 [ pp——— 3 T 3
{4 J I ———
e LT | :
Z Op==-= |  ]eae-d | 1 I 1 I 1
1%]
: 1 L *
©
><C\I _2 r r r r
0 2 4 6 8 10
Sample

Figure 4.9. Simulation results for Example 4.8: States (black-solid-line) and their estimates (blue-dashed-line).

Simulation results are shown in Figure 4.9 for initial conditions x(O) = [0.5 —O.S]T and
%(0)=[0 0] . The MFs used for simulation are / =x/4, h,=1-h, v, =(x, +2)/4, and
v,=1-v . e
The a-sample variation

More relaxed conditions using the a-sample variation presented in (Kruszewski et al.,
2008) are given in what follows. The main idea is to replace the classical one-sample
variation of the Lyapunov function by its variation overall several samples, thus allowing the
Lyapunov function to decrease at each o sample and not at each sample. This can be

summarized in the following theorem.

Theorem 4.11. The estimation error dynamics in (4.85) is asymptotically stable if there

. _ T P i P Jj oL i oL J
exist P, ,=P, ,>0, i, =pr = pr L, . i = pr = pr and G .
it =t 7Y W TPy Je TPy By b = Pls Jp = Pl 0.6

G .G j

i :pr:[/c, Ji = rre, ie]IHr, je]IVr, k=0, «, le{O,l,...,a—l} with

V=Y oV uULV uUL (VW eV ). H =H) UH, OU (H @ Hf )uU, (H @ H')
such that:
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-P (*) 0
HOVY
G .cA .
WG B ()
L C HOW TW®
HoW  Hg
: : -G, . E
HY Vil Vb,
GHG Y6 AHA
a-1"a-1 a-1
0 0 L C
- THL VR T HS

+(%)

-G E ,
H(?—lva(il vac—l
tha

<0(4.93)

(*)

+(*)}

Proof. Consider the Lyapunov function (4.86) and its a-sample variation as follows

(Guerra et al., 2012b; Kruszewski et al., 2008; Lendek et al., 2015):

AV, =V (e(k+a))-V(e(k))

=e' (k +a)PH,,V,,e(k +a)-e (k)PH(m,,e(k)
e(k) i __PH(va” 0 0
e+ || 0 0 0
e(k+a) 0 0 P

(4.94)

e(k)

e(k+l) <0.

| e(k.-l-a)

The error dynamics (4.85) during o samples can be summarized as the following equality

constraint:
'S, —E. O 0
0 \Y :
: : _Evf_ ) 0
O 0 Sa—l _EVE

with §,=A -G o .L,.,C. ., 1€{0,L....a—1}.

o Sy

(4.94) under constraint (4.95) is equivalent to

Sy ~Ey 0 0 r
0 S :

M| . : E, 0 +(*)+
0 0 S, -E, I

e(k)

e(k+1)

=0, (4.95)

| e(k.+a)

Applying Finsler’s lemma, inequality

0
0 0

. . <0,
O Funy |

where M e R™ ™ 1 order to obtain strict LMI conditions a natural choice (Kruszewski

et al., 2008) of matrix M is:
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0 0 0 |

G o 0 0
Myownge, = 0 e 0

L 0 0 GHg—IVaG—]_

leading to (4.93) and concluding the proof. ll
Remark 4.7. Using o =1 in Theorem 4.11, Theorem 4.10 is recovered.

Example 4.9. Consider a discrete-time TS descriptor model as (4.58) with u, =0,

“1+a -02 -1 22 o T o T
ra:}';:z, A1= , A2= , C1: . C2: s
-1.5 0.5 -1.5 0.5 1.2-b 1.2+b

09 -1.1 09 13 ,
E = ,and E, = . The parameters are defined as a e[—O.S,l] and
-02 1.1 -0.6 1.1

be[—O.S,O.S]. Choose the multisets of Lyapunov matrix and of the observer gains as
Hy =Hy =%’ ={0,-1}, }* ={0,0,—1}, and H; =1}" ={-1}. Two sets of conditions have
been tested:

e Conditions in Theorem 4.11 for a =1, i.e., the conditions in Theorem 4.10. The
resulting feasible solutions are represented by (O) in Figure 4.10.
e Conditions in Theorem 4.11 for o =2, the resulting feasible solutions are represented

by (%) in Figure 4.10.

0.4 : : c

0.3+ X X X A
0.2F X X X X X X X X X X R
01F x X K K K K B B ® X X X g

o 0Fr x ¥ K X XK KKKKKKKKRKK X X X A

-0.1+ X X B K KR KK KRR X X X -
-0.2+ X X X B B KB X X X X X .
-0.3r X X X X X i
-0.4 r r r
0 0.5 1
a

Figure 4.10. Feasible solution set for Theorem 4.11 for a=1 (o) and for 0=2 (x) in Example 4.9. ¢
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4.3. Summary and concluding remarks

In this chapter, recent results for observer design for TS descriptor models have been
presented. In the continuous time case, the observer design is carried out efficiently by
avoiding BMI conditions in the literature. The improvement is obtained by changing the
estimated state vector. More, relaxed results can be achieved with different observer
configurations. In the discrete-time case, several approaches have been provided; relaxed
results are achieved via the delayed approach. An arbitrary number of past samples can be
added into the MFs of both the Lyapunov function and the observer gains, and a systematic
procedure is given to do this, thus providing the generalization of the delayed approach.
Several numerical examples have been used to illustrate the performances of the given

conditions.
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Chapter 5. Static output feedback controller

design

This chapter presents conditions for output feedback control design for both continuous
and discrete time TS descriptor models under the assumption that the descriptor matrix is
non-singular. In the continuous-time case, a quadratic Lyapunov function is used together
with slack variables. In the discrete-time case, a delayed Lyapunov function is proposed
together with delayed non-PDC controllers. In both cases, the design conditions are given in
terms of LMIs up to the selection of a slack variable; naturally, different choices of this

variable may lead to different degrees of conservatism, as illustrated via numerical examples.

5.1. Continuous-time TS descriptor models

This section deals with static output feedback controller design for continuous-time
Takagi-Sugeno descriptor models. Via the well-known Finsler’s lemma and the descriptor-
redundancy approach a set of linear matrix inequalities are derived to solve this design

problem.

5.1.1. Problem statement

Consider the following TS descriptor model (Taniguchi et al., 1999):

E x=Ax+Bu, y=C,x. (5.1)
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In the case of static output feedback control (SOFC) design for standard TS models, an
iterated LMI (ILMI) approach has been presented in (Huang and Nguang, 2007), while
sufficient LMI conditions have been developed in (Kau et al., 2007). In particular, (Kau et al.,
2007) designed a SOFC PDC-like control law of the form:

u=K,y=K,C,x. (5.2)

Their analysis relied on the closed-loop system x= (Ah +B,K,C, )x. Stabilization
conditions have been given in terms of LMIs together with equalities:

AP+BN,C, +(x)<0, MC,-C,P=0,

(5.3)
N,=K,M, P=P">0.

Conditions (5.3) are similar to those in (Crusius and Trofino, 1999). Effectively, in case of

standard linear systems
X = Ax+ Bu, y=Cx.

Crusius and Trofino, (1999) gave sufficient conditions for the output feedback control

problem. Two different approaches have been stated:

The W-Problem: given matrices A, B, and C with C full row rank, a controller

u=NM""y can be designed if there exist W, N, M so that the following conditions hold:
AW +BNC +(%x)<0, MC—-CW =0, W=W">0. (5.4)

The P-Problem: given matrices A, B, and C with B full column rank, a controller

u =M "'Ny can be designed if the exist P, N, M so that following conditions hold:
PA+BNC+(x)<0, BM —PB=0, P=P" >0. (5.5)

Thus the conditions in (Kau et al., 2007) are a “direct” extension of the W-Problem. The
result in (Bouarar et al., 2009) has established LMI conditions for stabilization of a standard

TS model via the descriptor-redundancy approach together with a non-PDC control law

u=K, (Plh)f1 y. Matrix P,

, 18 in the Lyapunov matrix, thus the conditions involve the time-

derivative of the MFs.

Our aim is to control the TS descriptor model (5.1) via SOFC of the form

u=(G,,) K

hv

y= (thv )71 K, C,x, (5.6)
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where G,,, e R™* and K, € R*™. Substituting the control law (5.6) in the system

dynamics (5.1), it produces the closed-loop
Eji=(4,+B,(G,)" K,G,)x, (5.7)

which is difficult to deal with.

5.1.2. Results

Using Finsler’s lemma, it is possible to avoid the equality conditions in (Kau et al., 2007)
and the ILMI conditions in (Huang and Nguang, 2007). The TS descriptor model together

with the control law are written as the following equality constraint:

X

x|=0. (5.8)

A -E B

h v h

(thv)il Kthh Onuan -1

nu

The expression (5.8) avoids the explicit appearance of the classical closed-loop

E = (Ah +B,(G,,) " K,C, )x, and it also decouples the nonlinear matrix E, .

Consider the following quadratic Lyapunov function candidate:
V(x) =x"Px, P=P" >0. (5.9)
Its time-derivate, adding the null-term u" 0, u produces:

1% (x) =x"Px+x"Px+u"Ou

T

x[ 0 P O |l x (5.10)
=lx||P O O | x|<O.
u 0O O On“ u
O PO
. * Ah _Ev Bh . .
Taking X' =|x|, W= » ,and Q=P 0 O0]. Via Finsler’s
u (thv) Kthh 0 -1 0O 0 O

lemma the inequality constraint (5.10) together the equality constraint (5.8) yields

O P O
Ah _Ev Bh
M[( }+(*)+ P 0 0]<0, (5.11)

-1
thv) Kthh 0 -1 0O 0 O
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where M e R0 m) i o free matrix. Therefore, the following result can be stated.

Theorem 5.1. Consider 77 € R®™ a constant matrix, the TS descriptor model (5.1) under

the control law (5.6) is asymptotically stable if there exist matrices P =P" >0, M o M, s

M, .G, . K. . i e{l,2,....r}, j,€{l,2,...,r,} such that:
Yh <0, Vi, j; %Yl{‘il +YX1 +Y) <0, Vi #i,, (5.12)
r— 3
hold with
I MlizAi, +77Ki2jlci, +(*) (*) (*) |
Y’jlllz = M3i214"1 +77Ki2.f| Cil +(P_M”2Ejl )T _M3i2 Ej] _EZM;I;z (*)
_MSizEjl

My A + K, C +(M,, B, —nG,,, )T [+(M B, —nG )T
3i, 4 iy Jy

Proof. Going on from (5.11) we choose:

M,, nG,,
M=\M,, nG,, | (5.13)
MSh thv
Then, inequality (5.11) renders
MlhAh +77Kthh +(*) (*) (*)
Y = r®) ~M,E —E'M (*) <0, (5.14)
F(&l) F(M) MShBh - thv + (*)

where TV = M, A, +1K, C, +(P-M,,E, )T N M, A, +K,C,+(M,B,-1G,, )T )
and T =-M_,E, +(M,,B, —1G,,) . Finally, applying Lemma B.3, (5.14) yields (5.12),
thus concluding the proof. Il

Remark 5.1. The goal is to obtain an LMI problem. Since the slack matrices in M can be
chosen, several options are available. The structure in (5.13) has been chosen following the

idea from (Chadli and Guerra, 2012).
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Remark 5.2. Several results can be obtained from Theorem 5.1, for instance, setting

n=0,, or n=B, or M;=0, . Different configurations may lead to different results
(Chadli and Guerra, 2012).
Remark 5.3. In this particular case (SOFC design), when using the extended vector

T . . . . .
[xT x’ uT] , equivalent conditions are obtained employing Finsler’s lemma and

descriptor-redundancy, as follows.

Consider x :[xT i’ uTJT; thus the system (5.1) together with the control law (5.6)

writes:
OxX=Ax+Bu—-FEx - -
-1 = gx = AX, (5 15)
0xii=(Gy,) K, Cx—u
I, 0 0 0, I, o0,
with £=/ 0 0, 0 | and A= A, —E, B, |. The Lyapunov function
0 0 0, (G) K,C, O I,
P 0O 0
under consideration is V()_c) =x"ETPx, where E'P=P'£ >0 and P = P, P, P, | with
K K F
P, =F" >0. Therefore V(X)<0 is equivalent to A’ P+ P’ A <0, or extending
[)ZTAh + [)STG;hvithh + (*) (*) (*)
_ T
P’ETAh + PsTthvithh + (P1 - PzTEv) _P3TEV - E»TP3 (*) <0,

P4TAh + ETG;hvithh + (PzTBh - FQT )T —P4TEv + (P;Bh - P, )T P4TBh — P7T + (*)

which by setting A =P, PzT =M,,, F;T =M,,, BtT =Ms,, PST =P6T =nG,, . and P7T =Gy,

gives exactly (5.14).

Corollary 5.1. The P-Problem conditions (5.5) given in (Crusius and Trofino, 1999) are

included in those of Theorem 5.1.
Proof. By choosing E, =1, M,=P, M,=B,G,,, M,=sP, M,=¢B,G,,, M;=0, and

M, =¢&G,,, (5.11) gives:
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PA, +B,K,C, +(*) (*) (*)

e(PA, +K,C,) —2&P 0 0. (16
1 T T
g[KhCh +Z(PB,1 -B,G,,) j ¢(PB,-B,G,) -¢(G,+G},)

Set G, =G . If the equality PB, —B,G =0 holds, then

PA, +B,K,C, +(*) (*)
PA, +K,C, 2P 0 <0, (5.17)

8 p—
K,C, 0 G+G'
which by means of the Schur complement produces
2P 0 ]'[PA+K,C

PA, +BK,C, +(*)+¢&(* A P! 5.18
HBEC, () (){0 G+GT}{ K,C, } O-18)

Considering a sufficiently small & >0, conditions similar to those of the P-Problem

appear:
PA,+B,K,C, +(*)<0, PB,—-BG=0, P=P" >0. (5.19)

Conditions (5.19) can be seen as the P-Problem for nonlinear systems in standard TS
form. Moreover, when a standard linear system is under study, conditions (5.19) yield exactly

the P-Problem conditions in (5.5). Note that in this case, 7 has been setas =58,. i

The following example illustrates the performance of Theorem 5.1 when different options

for 7 are tested.

Example 5.1. Consider a TS descriptor model of the form (5.1) with », =7, =2 and

105 07 07 [0.8+b 0.8 0.7 “1.15 0.1 1.8+b
E=[-01 1.1 -02 |, E=[-09 11 -02|, A=| 03 -13 -05 |,
0.1 05 09-a | 04 05 06 01 08 -08
12 03 0.1 (06 12 13 2.1 047
A =04 -06 03 |, B=|03 15-a|, B=|-27 05|, C=| 1], and
02 02 -02-a 06 13 15 16 0

C,=[08 1 0], where ae[0 1], be[-05,1] are real-valued parameters. Three

configurations for Theorem 5.1 have been tested:
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00 o 11 17

Conf:n = 00 ol Conf2:77=1 L1l and Conf;:n7=B,.

Figure 5.1 shows the feasible solution set for each of the configurations: Configuration 1
(O), Configuration 2 (X), and Configuration 3 (V) In addition, Figure 5.1 illustrates

Remark 5.2, since different solution sets have been obtained for different selections of the

free matrix 7 € R, i.e., they do not include each other.

HAUHXHXKHXXX
1

XX X RN

Figure 5.1. Feasible solution set in Example 5.1.

Observe that when Configuration 3 is implemented, another sum must be taken into

account, turning the problem from three sums — Z:”ZIZ:”:IZ:” (4B (+)v; (¢) — to four

sums _Z;”:] ZZ:l ZZ:]ZZ:] hi1 (.)hiz (.)his (.)vjl (.) -4

5.2. Discrete-time TS descriptor models

This section presents a static output feedback controller design for discrete-time TS
descriptor models. The proposed method exploits the discrete-time nature of the TS model by

the use of delayed Lyapunov functions, similarly to the previous chapters.
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5.2.1. Problem statement

Consider the following discrete-time TS descriptor model (Taniguchi et al., 1999):
Ex,  =Ax +Bu, v, =C,x,. (5.20)

Recall that E, is full rank, thus a standard TS model can be constructed. For standard TS

models, in (Chadli and Guerra, 2012; Kau et al., 2007; Lo and Lin, 2003), the following PDC

control law is used
u, =K,y =K,C,x,. (5.21)

In case of the TS descriptor model (5.20), the following control law is used:

u,=(G,, ) K, (5.22)

hhh™v

The control law contains past samples incorporated via the MFs similar to Chapter 3.

5.2.2. Results

Controller design

The TS descriptor model (5.20) and the control law (5.22) can be expressed as:

A, —E, B, e
4 X, |=0. (5.23)
(thh’v ) Ky iCho Oupn, —1,, ",

Consider the following delayed Lyapunov function (Guerra et al., 2012b):
V(x)=x" (Zh (2(k-1)P )Jxk —x/P_x, >0, (5.24)
i=1

where Fj] =Pl.]T >0, i e{l, 2,...,ra}. The variation of the Lyapunov function (5.24) gives

AV (x,)=x.,,P,X,, — X P_x, , which by adding the null-term « Ou, can be rewritten as

X, -P. 0 0| x
AV (x)=| %, 0O B 0 |=x,|<O0 (5.25)
u, 0 0 0, | u
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X, A, -E, B, -0 0
Taking X' =|x_, |, W= . ,and Q= 0 P 0|. Via
u, (thh’v ) K, G 0 - 0 0 0
Finsler’s lemma equality (5.23) together with inequality (5.25) yield
A _E B, -F. 00
M = +(*)+| 0 P, 0|<0, (5.26)
(thh‘v) K, G 0 - 0 0 O

where Me R )(n+n) ig a free matrix. Therefore, the following result can be stated.

Theorem 5.2. Consider 7 € R™™ a constant matrix. The TS descriptor model (5.20)

under the control law (5.22) is asymptotically stable if there exist matrices P :Plj >0,

)

sii. Gii i and K . AN 6{1,2,...,};}, Ji e{l, 2,...,1;} such that
Y"jlllll <O’ Vll’lx"]]; —lYljlll Yljlzl +Yljllz <O’ vzx’-]l’ li¢l2’ (527)
hold with
P, (*) (*)
YL, =|My, A +nK,, ,C, M, E, ETM;Z, +P, (*) . (5.28)
T
T
i g (M311 iy 11121 Ji _Gl'll'zl'le _Gilizile
Proof. Recall (5.26), and select the free matrix as:
0, 0, .,
M = M3h}f 77 hhh™y |? (529)
O"uX” hhh™v
where M € R™™ and G, €R"™™ are decision variables. As previously, 7 € R™" is

3hh~ hhh™v

not a decision variable (Remark 5.2). Hence, (5.26) produces

=k, (*) (*)

v .- T T
Yhhlf = M3h/fA +77Khh’ G, M?hh’E‘ E M%hh’ L, (*) <0, (5.30)
T
Khh vC (M 3hh’B -1 thh ) _th/fv T Moy

which by means of Lemma B.3 yields (5.27).
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Example 5.2. Consider the following nonlinear TS descriptor:

E(x)x., =A(x)x +Bu, y,=C(x)x, (5.31)
: 1-0.1 — ~0.1x2 1

win E(p)<| 09 01-0Im] ) [0 os—ond] 1)
04-0.15x, L1 1205 1

C(xk):[O 1.3—0.15x22]. Consider the compact set Qe{x:xle]R,

x| < 2} : inside this
compact set £(x) is nonsingular: det(E(x)) #0, VxeQ.

The TS descriptor model for (5.31) has r, =2 due to x, (left-hand side) and r, =2 due to

5 , . , 09 03 09 -0.1
x, (right-hand side). The matrices are E = , E, = ,
-0.7 1.1 -0.1 1.1

|05 12, [0S 08 L [T, C=[0 0], and C,=[0 13]
O X O P I X R T 7], and €, =[0 13].

On the right-hand side, the MFs are h =x?/4 and h, =1-h,. On the left-hand side the MFs

are v, = ()c2 + 2) / 4 and v, =1—v,. These sets of MFs hold the convex sum property in Q.

Three configurations have been tested using the conditions in Theorem 5.2:
0 1
Conf:n7 = ol Conf,:n7 = e Conf;:n=B8B,.

Configuration 1 provides no feasible solution. In this case, Configurations 2 and 3 are
exactly the same since B, :[1 1]T. Theorem 5.2 with Configuration 2 provides the

following matrices:

~0.08 0.25 ~0.14 028
K, =-025 K,,=-0.10, K, =-023, K,,=-027,
H,,, =027, H,,=030, H,, =028 H,, =045

048 —-0.08 0.60 —-0.14
Pl ) { }, P2 :{ },

Figure 5.2 shows simulation results for initial conditions x(O) = [1 —I]T .
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Figure 5.2. (a) State trajectories of the open-loop systems, (b) State trajectories of the closed-loop system in Example 5.2.

In order to apply the SOFC conditions in (Chadli and Guerra, 2012), it is necessary to
writt (5.31) in the standard form: x_ =E (xk )(A(xk )xk +Buk) with

E"(x,)

o 1.1 ~0.1+0.1x,
~ det(E(x,))[0.4+0.15x, 0.9

Note that the input matrix B is no longer constant. Now, by employing conditions in (Chadli

} this leads to r=2°=8 linear models.

and Guerra, 2012), Configurations 1 and 2 yield r’ +r =520 LMIs, while Configuration 3
leads r*+r=4104. Configurations 1 and 2 were not feasible; Configuration 3 gave

numerical problems. ¢
Robust control

Consider the following uncertain T'S descriptor model:

(E, +AE,)x,,, =(A,+AA,)x, +(B, +AB,)u,

(5.32)
y, =(C, +AC,) x,,

where AA, =D;A, (t)F;, AB,=D;A,(1)F,, AC,=D;A (t)F, and AE, =D{A, (t)F’
with Al (£)A,(£)<I, A, (0)A,(£)<I, Al(t)A.(1)<I, and A](t)A,(t)<I. The TS

descriptor model (5.32) together with the control law (5.6) can be expressed as
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=0. (5.33)

1 Xeat

A, +AA, ~E -AE, B,+AB, | %
)’ K _(C,+AC,) 0 -1,

hhh™v n,xn,

(G

Uy

Consider the delayed Lyapunov function (5.24). Through Finsler’s lemma, its variation

(5.25) under constraint (5.33) produces

Y+ MAM+AT M <0, (5.34)
— AAh _AEV ABh _
with Yzhh, as in (5.30), M as in (5.29), and AA = 1 . AA
(thh’) Khh’ACh On,,xnx Onu
can be written as AA = DAF where
A, 0 0 O FE' 0 0
o [P D 0 D Jooa 0 0 Jo o R
0 0 (G, ) K, D 0] |0 0 A 07 |F 0 0
0 0 0 A, 0 FE 0
Then, expression (5.34) produces
Y +MDAF+F A'D' M <. (5.35)
By employing  Property A4  with N=MDA, R=F, and

Wy hhv hhv hhh™

Q=T=diag[r” I, =2 I, = I, t° I], T=T">0, (535) can be written as

Y+ MDAT 'ATD" M" + FTTF <0. Recall that ATA< 1, and thus:

hhh™

Y  + MDT'D'M +F'TF <0. (5.36)

hhh
Therefore, the following result can be stated.

Theorem 5.3. Consider 77 € R*™ a constant matrix. The uncertain TS descriptor system

(5.32) together with the control law (5.22) is robustly asymptotically stable if there exist

b

: _ pT a c
matrices B, =F >0, M,, G, ., K, . and scalars 7,, >0, 7, >0, 7;,, >0,
e >0, 0,00 €{1,2,...,r,}, j,€{L2,...,r.}, such that

iy, s “otpo by sLeeeslafs )1 sy lof s
Ti <0, Yipi.ji  ——Th +Th 4% <0, Vi j, i #i (5.37)
i, ’ 1ol Jis 1 e i, iy > oJi T, .

a

hold with
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_Ela
0 0 0 0 0
Yijl']izix ; M31 i Dz M'iz i Dl 77K121 i D] _M3i2ix D]el f FC
o0 0  K,,D o i
28xJ1 1 ; O ¢
1—"‘jllilix - (*) g _’Zzlizile

where Y" . has been defined in (5.28) and T,

iyisi, i

Proof. Note that inequality (5.36) can be rewritten as

-1
Y +[MD ]-"TT]{O 7} [D;fT}o,

which by means of the Schur complement gives

h”f MD fTT
r, = __(j“_?_. i T 0 <o
(*) 1 (%) -T

By employing Lemma B.3 the proof is concluded. Il

To show the potential of the proposed approach and in order to compare it with other

works, we propose the following corollary that applies the methodology to standard TS

models, i.e. with, E =1 , x,,, =A,x, +Bu, .

Corollary 5.2. Consider the SOFC u, =G ¥, and 7€ R™™ a constant matrix. The

hhh’

standard TS model is globally asymptotically stable if there exist matrices

M, .G, .and K, . i,i,i, €{1,2,....r,}, such that:

AN
3iyi,
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hial Jy

(5.38)

(5.39)

=P >0,




Y., <0, Vi,i

L 5
iyl x

lYilili +Y,,, +Y,., <0 Vi, i=#i, (5.40)
r — x 1ty 2hly

hold with

- (*) (*)

_ T
Yilizix =M 3iyi, Ail + 77Ki2ix Cil -M 3ii, M 3iyi, + i (*)
T T
iy Cil (M 3iyiy Bi, - nGi,iziX ) _Gilizix - Gi,izix

Similar reasoning applies for the uncertain model (5.32):if E, =7, and AE, =0 then:
Xy = (A, +AA ) x, +(B,+AB, u,,  y,=(C,+AC,)x,. (5.41)

Thus (5.41) together the control law u, = G}:hlh, K, , is robustly asymptotically stable if

there exist matrices F, =PI.2T >0, M, G,,, K, ,and scalars 7;; >0, TZ,-, >0, 7, >0,
iy,iy,i, €{1,2,...,r,}, such that:
. 2 L
I <0, Vi,is 1ri,ii +0 +1,, <O Vi, i #i,, (5.42)
x r — 1hx 112l x
hold with
- ) .-
0 0 0 E 00
iyisi ; M3i i Dia M3ii Dzb nKii Dic i 0 O 1b iylyi
1°2%x 1 2% 1 2% 1 2%x 1 1 1 1925
0 0 K. D |i|F 0 0
I hid, T (*) _T;lizi.v f 0

Proof. The proofs are straightforward from Theorems 5.2 and 5.3. H

When E =1, the following numerical example compares the performance of Corollary

5.2 and Theorem 2 in (Chadli and Guerra, 2012). The example is adapted from (Chadli and
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Guerra, 2012), by including a real-valued parameter in the uncertain terms. Also for this

example different values for the arbitrary matrix 7 are tested (see Remark 5.2).

Example 5.3. Consider a TS model as in (5.41) with r, =2 and local matrices as follows

(Chadli and Guerra, 2012):

055 0.2 027 0.23 0.62 -029 -031 0.28 0.4
1037 051 -039 036 1024 059 -023 0.19 |04
'T1-0.14 -025 065 047/ 4 = 0.19 -037 043 015 ' |15

—0.53 —-0.15 022 0.46 0.16 031 022 0.55 1.2

0.25 02 0] 041 057 0.1+6 0.1

0.20 0 0 0 0 . 0.2 .10 . {0.1}

C = ,C, = Dy = JE = . D; = >
" 035/ 02 1 0 07 0 0.1 0.1
0.20 0 0 0 0 0 0

Ff=[01 01-6 0 001], D’=[0.1 0.1+5 0 0.12], F’=03, i=12.

The parameter introduced is ¢ > 0. The goal is to design a SOFC for as large values of o

as possible. Table 5.1 summarizes the obtained results.

Table 5.1. Results for Example 5.3.

Approach Variable Maximum
parameter value
Theorem 2 in n=B, 0=0.1
(Chadli and Guerra, 2012) n=0,., 5=03
Corollary 5.2 =5, 0=19
orollary 5. n=0, .. 515

Table 5.1 shows that a larger value of ¢ is obtained when Corollary 5.2 is applied, i.e., the
new approach allows stabilizing the system for a larger size of the uncertainty than the one in
(Chadli and Guerra, 2012). Furthermore, since there are different output matrices, the
conditions in (Kau et al., 2007) are difficult to fulfill. Moreover, in both examples the output

is nonlinear. ¢

137



5.3. Summary and concluding remarks

An LMI approach has been presented to deal with the static output feedback controller
design for both continuous and discrete time TS descriptor models. These conditions
circumvent those in the literature in the sense that no equality and/or rank constraints, which

for TS models are considered an important drawback, are needed in the design procedure.

The obtained conditions are LMIs up to fixing the matrix 77 € R™" .
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Chapter 6. Concluding remarks and future

research directions

This section summarizes the results presented in the thesis and discusses future research

directions within the TS-LMI framework.

Throughout the thesis the following family of nonlinear descriptor models has been

considered:

Continuous-time:  E(x)x=A(x)x+B(x)u, y=C(x)x. 6.1)
Discrete-time:  E(x, )x,,, = A(x)x, +B(x )u,, v, =C(x)x,. .

The developed results are based on the assumption that the matrix descriptor matrix E(x)

is regular at least in a compact set of the state-space Q including the origin

(EI(E (x))f1 Vx eQ). Several examples have shown the importance of keeping the original

descriptor structure instead of computing a standard state-space model — this is possible since
E(x) is regular.

Three problems have been addressed: 1) State feedback control design, 2) Observer
design, and 3) Output feedback control design.

To develop the conditions, both for the continuous and discrete-time case, a TS
representation of the nonlinear models (6.1) has been used. The conditions are given in LMI

terms.
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For the continuous-time case, the state feedback control design has been carried out by
means of the descriptor redundancy approach together with Finsler’s lemma. By enlarging
the set of feasible solutions, we have improved previous results in the literature. For the
discrete-time case, a systematic methodology has been presented, which allows including

past samples in the MFs used in the Lyapunov function as well as in the controller gains.

For the observer design, since no “pure” LMI conditions were available in the literature,
we proposed a new observer structure in order to solve the problem. This new structure does
not fix any decision variable a priori and the feasibility sets in comparison to previous
methods are significantly enlarged. In the discrete-time case, LMI conditions have been

developed for the design of state estimators, thus filling this gap in the literature.

The output feedback controller design has led to LMI conditions up to the selection of an
auxiliary matrix. Depending on the selection of this slack matrix, different results may be

obtained. Table 6.1 summarizes the contributions of this thesis.

Table 13.1. Contributions of the thesis, where CT stands for continuous-time and DT means discrete-time.

Contributions Tools Publications
CT: Enlarge the solution Egr:rli:gs/ler S
set via parameter- ) CT: FUZZ-1EEE 2013
dependent LMI conditions Descriptor
5 p " | redundancy.
tate DT: FUZZ-IEEE 2014
Feedback | DT: Provide strict LMI - , / LFA 2014/
constraints / DT: Finsler’s IEEE Trans. on Fuzz
Generalization to an Lemma / Delayed Svyst 2()i 5 d
ystems .
arbitrarily delayed MFs. Lyappnov
functions.
CT: Overcome a BMI CT: Auxiliar
problem by providing oariable i thz CT: AQTR 2014 /
APP estimation error. pter 2
Observer | Input observers. Automatica 2015.
Design .
DT: Provide strict LMI DT: Finsler’s DT: IFAC World
) Lemma / Delayed
constraints / Lvanunov Congress 2014 /
Generalization to an fu};lcﬁions CESCIT 2014.
arbitrarily delayed MFs. '
Feedback constraints up to fixing a vector with the
variable. input. DT: CDC 2014
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Within the TS-LMI framework for descriptor models, beside direct extensions such as
including more performance criteria in the conditions, reducing the complexity of the LMI

problems and so on, we can enumerate some future research directions.

6.1. Use of NQ Lyapunov functions

For the continuous-time case, only quadratic Lyapunov functions have been employed in
this work. A future research direction could be the investigation of recent NQ Lyapunov

functions used for standard TS models. Several possibilities can come at hand:
e The most interesting would be to extend the line-integral Lyapunov function (Rhee
and Won, 2006) from TS to TS descriptors, therefore obtaining to global conditions. The

Lyapunov function V (x) = 2L(0 : f (v)dy, with T'(0,x) being any path from the origin to

the current state x€R™, w e R™ is a dummy vector for the integral, and dy e R™ an

infinitesimal displacement vector. Nevertheless, the condition for line-integral, i.e.,

o, (x) _9, (%)
Ox; Ox.

l

, I,j€E {1, 2,...,nx} seems a huge problem. This problem has been solved in

an efficient manner only for second-order TS descriptor systems with certain specific
structure in (Marquez et al., 2014).
e A second possible NQ approach is to extend the local approach given in (Bernal and

Guerra, 2010). By introducing Lyapunov functions such as:

V(x) - [22...2}%% ...hiq (Z)Pz’,izmiq jx
i=l =l  i=I

k
0 Z'k
Xy

together with given a priori bounds < fB,, its ensured that the future trajectories do

not to escape from the prescribed region (Pan et al., 2012).
e A third approach can be the extension of TS models to sum-of-squares (SOS) tools
(Prajna et al., 2004). Without entering into details, the idea of the SOS approach is that with

an even integer d, any polynomial p(x) can be written as: p(x)=y" (x)IIy(x) where

7 (x) is a vector of monomials and IT is a matrix directly obtained from the coefficients of
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p(x). It represents a “natural” extension of the LMI tools; moreover, it has already been

used in the TS framework (Bernal et al., 2011; Sala, 2009; Tanaka et al., 2009).

Nevertheless, for the moment, the two last ideas present the drawback of huge increase of

the computational cost. Only reduced order models could be considered.

6.2. Unmeasurable premise variables

In general MFs may depend on unmeasurable variables. Considering that the MFs depend
on state variables that are not measurable is a more challenging problem for the observer
design. Effectively, in this case, within the quadratic framework, a continuous-time TS

descriptor observer will write:

¢ “}H el Db (o) e

or in shorthand: Ex = A, x +B.u+P "L (y—3). Therefore, similar procedure as in Chapter

N>

4, the extended estimation error writes

Ee = (Zﬁﬁ _E};Tz;;oc_vﬁ)?+(ghv _‘Z”))_H_(Eh _E‘)u _P:Tzﬁa (Eh -G ))_C'

hv

Thus, it introduces terms as E, —E;, A —A.,, B,—B,;, etc. First ideas that can be

exploited are the use of Lipchitz conditions as in (Bergsten et al., 2002; Bergsten, P. and
Driankov, D., 2001; Lendek et al., 2010); but a more promising way is the use of the

differential mean value theorem as for standard TS models in (Ichalal et al., 2011). For

example, consider the case where the premise vector is the state, i.e., z(t)Ex(t), then
- A :ZZIZ;T':](h[ (x)-h(X))A; it exists a constant celx, i such that:

Oh,
ox

hi(x)_hi()%)

e=x—x, and the computation of the bounds Hah,. (x)/ GxH </ can be done a priori as they

( )(x—i). In this case it is possible to turn back to the estimation error

only depend on the shape of the MFs £, (x) and not on their time-derivative. Of course, the

convergence of the estimation error will only be ensured in a ball around the origin

depending of the bounds 4.
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6.3. Extending the results to singular systems: singular E(x)

Naturally, one of the next steps is to extend the results to nonlinear descriptor models with

rank deficient descriptor matrix E(x). This could be addressed by exploring a reduced state-
space representation as in (Feng and Yagoubi, 2013). For example, in the discrete case,

consider the following decomposition with rank(E (x, )) =q<n, and E, (x )eR"™,

ED (-xk ) c R”xx("x*Q) .

TN [ B i Sovin] [H o] TR

Xt

1 I —A | 2
If it is possible to find a change of variable {x’;} ={ (;1 / } é’;} , the descriptor (6.2)
Xk n—q || Xk

can be rewritten as:

SRR R NS IS TN EI S &

This is a first track in the sense that for the change of variables A is not state dependent.

Then in a sense for the vector & eR?, we are turning back to a descriptor with

rank (E L (%, )) = g . Naturally, the control has to be re-designed in order to avoid the feedback

of future states. Moreover, a TS form should be expressed only after the transformation in

order to keep a lower number of vertices.

6.4. Fault diagnosis

Extension to fault diagnosis and/or fault tolerant control seems also natural. For instance,
in (Koenig, 2005; Marx et al., 2003), an asymptotic estimation of both states and failures are
obtained via proportional-integral (PI) observers. This approach has been developed for linear
singular systems. In (Marx et al., 2007), the fault diagnosis of TS descriptor models (with a
constant and singular descriptor matrix) has been addressed via an observer whose structure

is not in the descriptor form:

Ta

E=h(2)(NE+Mu+Ly),  £=E&+Ty, (6.3)

i=1
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where £ € R™ is an auxiliary variable, X € R™ is the estimated vector, N M, L,and T,,

i€ {1, 2,...7, } are matrices of appropriate dimensions to be designed. Since this procedure
has been stated for singular TS models, by using descriptor-redundancy (see Chapter 2), we
can induce a singular TS system and therefore investigate the design conditions for an

observer with a structure similar to (6.3).

6.5. Real-time applications

The work presented is also a preliminary theoretical study to cope with real-time
problems. Effectively, applications at LAMIH UMR CNRS 8201 include the use of parallel
robot manipulators and other mechanical systems that could be subject to the descriptor TS
modeling. For parallel robots, preliminary results have been obtained on 2-DOF planar
parallel robot so-called biglide (Vermeiren et al., 2012). Now, a very challenging problem to
be faced concerns the step-crossing feasibility of a two-wheeled transporter (Allouche et al.,

2014).

Another challenging problem concerns disabled people in wheelchair. The problem is the
estimation of the forces in the shoulder during the push with electrical assistance; this
problem is decomposed into two phases. The first one consists in an observer that from the
measured speed of the wheels is able to compute the torque applied on the wheel by the
person (Mohammad and Guerra, 2015). Once this estimated torque and the model of an arm
are available, the goal is to find the efforts in the shoulder. The final aim is to produce an
electrical assistance system that adapts to the estimated efforts as well as detects possible
dissymmetry between the sides and compensates in real time. This activity is currently

ongoing as a nonlinear descriptor has been designed in (Dequidt, 2015).
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Appendix A. Matrix inequalities

A.1. Some matrix properties

Lemma A.l. (Finsler’s lemma) (de Oliveira and Skelton, 2001). Let yeR",
Q=0" eR"™, and WeR™ such that rank (W) <n; the following expressions are
equivalent:

a) y'Qy <0, V;(E{;(ER” :;(iO,WZ:O}.
b) IMeR™ : MIW+ W' M" +Q <0.

Mll M12

Property A.1 (Schur complement). Let M= AM" :{ ’
M12 M22

} , with M, and M,,

square matrices of appropriate dimensions. Then:

M<o {M“<O {M22<()
<0 & g

Mzz_MszMl_llM12<O Mll_M12M2_21M1T2<O
Property A.2 (Congruence transformation). Consider Q=90" € R™" and a nonsingular

matrix M e R"" . The following expression holds:

<0
M

0>0

} & MM <0, } o MoM! > 0. (A.1)

Property A.3. Let Q=Q" >0 and W be matrices of appropriate sizes. The following

expression holds:
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(W-0)' Q'(W-0)20 & WO W2W+W' -Q. (A.2)

Property Ad. Let 9=Q" >0, R and AN be matrices of appropriate sizes. The

following expression holds:

RN+ N R<R'OR+N"Q'N (A3)

A.2. Linear matrix inequalities

A short introduction to linear matrix inequalities (LMIs) is given in this section. An LMI
is a set of mathematical expressions whose variables are linearly-related matrices. A formal

definition is (Boyd et al., 1994; Duan and Yu, 2013; Scherer and Weiland, 2005):

F(x)=F,+xF+X,F,+--+x,F,

d A4
=F()+inFi <0, (&.4)

i=1

where xeR? is the vector of decision variables and F, :FJ.T, j€{0.1,...,d} are known
constant matrices. The symbol < stands for negative definitiveness, while > means positive
definitiveness. In addition, non-strict LMIs can appear as F (x) <0 (negative semi-
definitiveness).

The feasibility set or the set of solutions of the LMI (A.4), denoted by
S = {x eR? :F(x) < O} , is a convex subset of R?. Finding a solution of the LMI (A.4) is a
convex optimization problem (Boyd et al., 1994). Basically, there are three well-known
problems that often appear in control problems:
. The Feasibility Problem (FP) consist of determining if there exist elements x e X
such that F (x) <0.The LMI F (x) <0 is called feasible if such an x exists, otherwise it is
said to be infeasible.

. The Eigenvalue Problem (EVP) is the minimization of a linear combination of the

. . . T .
decision variables ¢’ x under some LMI constraints:

min ' x

A5
subjetto  F(x)<0, (&.3)

where ¢ is a vector of appropriate dimensions.
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. The Generalized Eigenvalue Problem (GEVP) consists of minimizing the eigenvalues

of a pair of matrices which depend affinely on a variable, subject to a set of LMI constraints:

min AeR

subject to AB(x)—A(x)<0, B(x)<0, C(x)<0, (A0

where A is scalar, the matrices A(x), B(x), and C(x) are symmetric and affine in x.

Often, matrices appear as decision variables. For instance, consider the Lyapunov

inequality:
AT P+ PA<O, (A.7)

where matrix A€ R"™" is known and P=P" € R™ is the Lyapunov matrix to be found, i.e.,
P is a decision variable. Inequality (A.7) can be written in the form (A.4), as shown in

Example A.1.

Example A.l1. For sake of clarity, let us consider AeR*?, then n=2. The decision

variable P with d =3 unknown entries can be rewritten as

X X 1 0 0 1 0 0
P= =X, + X, + X, , (A.8)
X, X 0 0 1 0 01
— — —

E E, E;

thus, the inequality A" P+ PA <0 can be represented as

F(x)=)_xF <0, (A.9)

with F=A"E +EA, i€{l,2,3}. ¢

A bilinear matrix inequality (BMI) has the general form (Van Antwerp and Braatz, 2000):

d d, dy

d,
F(x,y)=F,+ ) xF,+Y y,G,+>.> xyH, >0, (A.10)
=1

P J i=1 =l

where F,=(F,), F=(F) . G,=(G,) .and H,=(H,

, J ) ie{l2ad), je{l2. . .d,)
are given constant matrices of appropriate dimensions; x€R“ and ye R* are vectors of
decision variables. Inequality (A.10) is not convex in x and y . A way to obtain an LMI from
(A.4) is by fixing beforehand one of the decision variables: 1) the BMI (A.10) is an LMI in x
for a fixed y, or 2) the BMI (A.10) is an LMI in y for a fixed x.
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Appendix B. Sum relaxations

In the TS-LMI framework, it is natural to obtain inequality conditions involving convex
sums; the weights in the convex combinations are nonlinear functions called membership
functions (MFs). In order to obtain LMI conditions, the MFs must be removed. To this end,
sum relaxations are employed. In what follows, some relaxation schemes that are employed

throughout the thesis are presented.

First, consider the following problem with one convex sum
Y, =Dl (z(1))Y, <0, (B.1)
i=l1

where Y, =Y, ie{l,2,...,r,} are symmetric matrices of appropriate dimensions. The

following lemma gives sufficient conditions for (B.1) to hold:

Lemma B.1. (Wang et al., 1996). The convex-sum (B.1) is negative if the following set of

LMIs holds
Y, <0, Vie{l,2,...r}. (B.2)

a

When dealing with controller/observer design within the quadratic framework, a double

sum problem may appear:

Y, =  “ h (2()h, (2(1))Y,,, <O, (B.3)
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where Y, =Y., i,i, € {1, 2,...,1 } are matrices of appropriate dimensions. The following

iy ? a

lemmas give sufficient conditions for (B.3) to hold.

Lemma B.2. (Wang et al., 1996). The double convex-sum (B.3) is negative if the
following set of LMIs holds

Y, <0, Vie{l2..r},
Y, +Y, <0, i€ {1,2, WL <.

iy

(B.4)

Lemma B.3. (Tuan et al., 2001). The double convex-sum (B.3) is negative if the following
set of LMIs holds

Y, <0, Vie{l2..r},

(B.5)
2 1Y”‘ + Y, +Y,, <0, i,i,e{l,2,...,r}, i #i,.
r — 11 12 2h

In this thesis unless otherwise specified, the sum relaxation scheme given by Lemma B.3
is adopted, especially since it does not involve extra slack matrices and therefore has a
“reasonable” complexity. Other sum relaxations that include slack variables exist in the
literature but they are beyond the scope of this thesis (Liu and Zhang, 2003; Sala and Arifio,
2007).

Usually, when dealing with stability/design of discrete-time TS or TS descriptor models,

the co-negativity problem may involve more than 2 convex sums of matrices, for example:

o =SS () (k) (<L), <0 @)

i=1i=1j=1

. . \T
i~ ..
where Yil‘l.2 —(Yil‘iz) s Lslys J 6{1,2,...,1;1} , Or

MIZZZ (2(0)h, (2(1)v, (2(1) x5, <O0. (B.7)

i=1i=1 j=1

where Y{;‘lé:(Y?{ )T, il,ize{l,Z,...,ra}, jle{1,2,...,r

iyl e

} are matrices of appropriate

dimensions. The following co-negativity problem also commonly appears:

WfZZZZ (2(0))n, (2(0)h, (z(k+1)v, (2(k)) Y5, <0, (BY)

ii=1 i,=1i.=1 j=1
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where Y/ (Y" )T, il,iz,ixe{l,Z,...,ra}, jle{l,2,...,re} are matrices of appropriate

iyl iyl
dimensions. In addition, inequalities involving two different pairs of convex sums may

appear:

Y, = ZZZZ iy (2(0), (2(0)v,, (2(0)) v, (2(0)) X <O, (B.9)

i=l 5=l =1 j=1

.. . .oN\T
N2 JJ R : o
where Yil‘iz —(Yil‘izz) A e{1,2,...,ra}, JisJa e{l,2,...,r}.

e

Remark B.1. Note that the co-negativity problems (B.6), (B.7), (B.8), and (B.9) share two
sums of the same nature. In these cases, Lemma B.3 can be applied on the two common

convex sums. For instance, sufficient LMI conditions for (B.8) to hold are

Yl"” <0, Vi,i e{l,2,...r}, je{l.2,....10.};
i | | . (B.10)
Y] Yll +Y/1 <O, leG{l,z,...,ra},]l6{1’2""’};}’ lI¢12'

lll lll lll
r,—1

Since (B.9) has two different pairs of convex sums, Lemma B.3 can be extended as

follows:

Lemma B.4. Sufficient conditions for (B.9) to hold are:

Y <0, Vie{l,2,...r},je{l2,....r.},

i JiJ JaJi : : :
— 1Yll‘lll Yl.l‘ilz+Yi]§l‘<0, Vzle{l,2,...,ra}, Ji % Jro

e

i Ju Y ; P
r 1Ynltl] i+ Y0 <O, V]le{l,Z,...,ig}, I, #1,,

a

i LU

4 : 2
Y][]] YJ[][ YJ1]1
(re _1)(’,;1 _1) uy r, _1( L) bl )

i i i i .. . . ..
+Yillizz+Yi21i]z+Yi]§21+Yi22i]1<O, Vzl,lze{l,2,...,ra},]l,]2e{l,Z,...,rE}, L #ly, i #

(Y?'.fz + Y7 )

r,—1

Proof. Applying Lemma B.3 on the double convex sum h(z )h(z) in (B.9) yields

2
Y <0, Vi, 1Y3+Y&+YW<Q Vi,i,e{l,2,....r,
r

i #i.  (B.AD)

Using Lemma B.3 for the first inequality in (B.11) on the double sum of v(z)v(z) it

renders
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Yi <0, Vie{l,2,..,r},je{l2,...n},

Y <0 L

0 <0 Lln{‘,-;"+Y;f‘,-;’2+Y;f?;"<0, Vi e{l2r ) g, €L 2 n )y i # i
r -

Following a similar procedure with the second inequality in (B.11), we obtain:
2

r —

a

Y5 +YE +Y) <0

1 iy iji

—IY;‘?}[]]"'Y;f;Z]"'Y;’QiT <0, Vi,he{l,2,...r}, jie{l.2,...r}, i#i,
r —

a
4 9 . . o) . - . .
Y.J]AJI + (YA]{J] +Y{1J1)+ (Y{l‘.lz +Y!2.]l)+Y'.]]Ah +Y{1]2
(re _1)(,.0 _1) ul r, -1 iy bl r, -1 i ul Ll bl
FYR YD <0, Vinh e{L,2,..,n ), jp, i €{L2,nn )y b #E G, i # .

This concludes the proof. H

162



	Cover.pdf
	Abstract
	Abstract
	Résumé
	Acknowledgments

	Chapters
	Chapter 1. Introduction
	1.1. Context of the thesis
	1.2. Scope and objectives
	1.3. Outline
	1.4. Publications

	Chapter 2. Takagi-Sugeno models
	2.1. Standard TS models
	2.1.1. The sector nonlinearity approach
	2.1.2. Notation
	2.1.3. Overview of existing results

	2.2. TS descriptor models
	2.2.1. General definitions and properties
	2.2.2. Regular  : motivation (part I)
	2.2.3. Regular  : overview of existing results
	2.2.4. Relation between descriptor-redundancy and Finsler’s lemma
	2.2.5. Regular  : motivation (part II)

	2.3. Concluding remarks

	Chapter 3. State feedback controller design
	3.1. Continuous-time TS descriptor models
	3.1.1. Problem statement
	3.1.2. Results
	3.1.2.1. Stabilization
	3.1.2.2. H∞ control


	3.2. Discrete-time TS descriptor models
	3.2.1. Problem statement
	3.2.2. Results
	3.2.2.1. Stabilization
	3.2.2.2. H∞ control

	3.2.3. Generalization

	3.3. Summary and concluding remarks

	Chapter 4.  Observer design
	4.1. Continuous-time TS descriptor models
	4.1.1. Problem statement
	4.1.2. Results
	4.1.3. Unknown input observers

	4.2. Discrete-time TS descriptor models
	4.2.1. Problem statement
	4.2.2. Results
	4.2.2.1. Quadratic Lyapunov function
	4.2.2.2. Non-quadratic Lyapunov functions
	4.2.2.3. Delayed non-quadratic Lyapunov function

	4.2.3. Generalization

	4.3. Summary and concluding remarks

	Chapter 5. Static output feedback controller design
	5.1. Continuous-time TS descriptor models
	5.1.1. Problem statement
	5.1.2. Results

	5.2. Discrete-time TS descriptor models
	5.2.1. Problem statement
	5.2.2. Results

	5.3. Summary and concluding remarks

	Chapter 6. Concluding remarks and future research directions
	6.1. Use of NQ Lyapunov functions
	6.2. Unmeasurable premise variables
	6.3. Extending the results to singular systems: singular
	6.4. Fault diagnosis
	6.5. Real-time applications
	Appendix A. Matrix inequalities
	A.1. Some matrix properties
	A.2. Linear matrix inequalities

	Appendix B. Sum relaxations




