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Abstract 

This thesis addresses the estimation and control for nonlinear descriptor systems. The 

developments are focused on a family of nonlinear descriptor models with a full-rank 

descriptor matrix. The proposed approaches are based on a Takagi-Sugeno (TS) descriptor 

representation of a given nonlinear descriptor model. This type of TS models is a 

generalization of the standard TS ones. One of the mains goals is to obtain conditions in 

terms of linear matrix inequalities (LMIs). In the existing literature, the observer design for 

TS descriptor models has led to bilinear matrix inequality (BMI) conditions. In addition, to 

the best of our knowledge, there are no results in the literature on controller/observer design 

for discrete-time TS descriptor models (with a non-constant and invertible descriptor matrix). 

Three problems have been addressed: state feedback controller design, observer design, 

and static output feedback controller design. LMI conditions have been obtained for both 

continuous and discrete-time TS descriptor models. In the continuous-time case, relaxed LMI 

conditions for the state feedback controller design have been achieved via parameter-

dependent LMI conditions. For the observer design, pure LMI conditions have been 

developed by using a different extended estimation error. For the static output feedback 

controller, LMI constraints can be obtained once an auxiliary matrix is fixed. In the discrete-

time case, results in the LMI form are provided for state/output feedback controller design 

and observer design; thus filling the gap in the literature. Several examples have been 

included to illustrate the applicability of the obtained results and the importance of keeping 

the original descriptor structure instead of computing a standard state-space. 

Keywords – Descriptor systems, Takagi-Sugeno models, controller design, observer 

design, linear matrix inequalities.  



  



Résumé 

Cette thèse est consacrée au développement des techniques d’estimation et de commande 

pour systèmes descripteurs non linéaires. Les développements sont centrés sur une famille 

particulière de systèmes descripteurs non linéaires avec une matrice descripteur de rang plein. 

Toutes les approches présentées utilisent un formalisme de modélisation du type Takagi-

Sugeno (TS) pour représenter les modèles descripteurs non linéaires. Un objectif très 

important est de développer des conditions sous la forme d’inégalités matricielles linéaires  

(LMI, en anglais). Dans la littérature, les conditions pour l’estimation des modèles TS 

descripteurs s’écrivent sous forme d’inégalités matricielles bilinéaires (BMI, en anglais). En 

plus, à notre connaissance, il n’y pas de résultats dans la littérature concernant la 

commande/estimation pour les modèles TS descripteurs en temps discret (avec une matrice 

descripteur régulière non linéaire).  

Trois problèmes ont été examinés : commande par retour d’état, estimation de l’état et 

commande statique par retour de la sortie. Dans le cas continu, des conditions moins 

conservatives ont été développées pour la commande par retour d’état. Pour l’estimation 

d’état, des conditions LMI ont été obtenues (au lieu des usuelles BMI) en utilisant un 

différent vecteur d’erreur augmenté. Pour la commande statique par retour de la sortie, des 

conditions LMI sont proposées si une matrice auxiliaire est fixée.  Pour le temps discret, des 

nouveaux résultats sous la forme LMI ont été développées pour la commande/estimation, 

comblant ainsi certains manques de la littérature. Des exemples ont été inclus pour montrer 

l’applicabilité de tous les résultats que nous avons obtenus et ainsi l’importance de garder la 

structure originale des descripteurs. 

Mots clés – Systèmes descripteurs, modèles Takagi-Sugeno, commande, observateur, 

inégalités matricielles linéaires. 
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Chapter 1. Introduction 

1.1. Context of the thesis 

Fuzzy models are based on IF-THEN rules originally considered to represent operator 

experience and thus avoid the necessity of the mathematical representation of the system. 

Therefore, Takagi-Sugeno (TS) models were considered an approach that emulate human 

operators (Takagi and Sugeno, 1985) and were regarded as a heuristic technique. Breaking 

with this initial way, model-based approaches have been introduced by Tanaka and Sugeno, 

(1992). These approaches keep a framework similar to the initial fuzzy modelling one but the 

analysis and synthesis methods used have resulted in losing the heuristic point of view: 

classical tools such as Lyapunov analysis and synthesis have been introduced.  

In the past decades, TS models have been widely used to represent nonlinear systems. 

Two frequently used model-based methodologies to obtain a TS representation are 1) 

linearization around several points (Johansen et al., 2000) and 2) the sector nonlinearity 

approach (Ohtake et al., 2001). The former provides a TS model which is an approximation, 

while the latter gives a TS model that exactly represents the given nonlinear model in a 

compact set corresponding to the sectors considered. Therefore, the sector nonlinearity 

approach has been widely adopted. Nevertheless, the sector nonlinearity approach has an 

important shortcoming: the number of local linear models (rules) is exponentially related to 

the number of non-linear terms in the original nonlinear model. 

A TS model is a collection of linear models blended together with membership functions 

(MFs), which are nonlinear and hold the convex sum property (Lendek et al., 2010; Tanaka 
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and Sugeno, 1992; Tanaka and Wang, 2001; Wang et al., 1996). The direct Lyapunov method 

is employed for the analysis and controller/observer design for such systems; usually, the 

conditions are cast as linear matrix inequalities (LMIs). The interest of obtaining conditions 

in LMI form comes from the fact that they can be efficiently solved via convex optimization 

techniques (Boyd et al., 1994; Scherer and Weiland, 2005). 

The conditions developed within the TS-LMI framework, similarly to LPV, quasi-LPV, 

and piecewise models are only sufficient, that is, if the LMI problem is unfeasible, no 

conclusion can be drawn. Unfeasible conditions for stable / controllable / observable systems 

may be obtained due to several reasons: the type of Lyapunov function chosen, the way MFs 

(the nonlinear parts of the TS model) are removed to obtain an LMI formulation, the non-

uniqueness of a TS representation from a given nonlinear model, etc. 

Quadratic Lyapunov functions have been extensively employed for the stability analysis or 

controller / observer design for TS models. They led to several results within the TS-LMI 

framework (Bergsten and Driankov, 2002; Ichalal et al., 2008; Lendek et al., 2010; Tanaka et 

al., 1998; Tanaka and Sugeno, 1992; Tanaka and Wang, 2001; Wang et al., 1996). However, 

since a common Lyapunov matrix is used for all the linear local models of the TS model, this 

type of Lyapunov function is in some cases highly conservative. 

To alleviate the conservativeness, in (Blanco et al., 2001) a non-quadratic (fuzzy) 

Lyapunov function has been introduced; this Lyapunov function uses the same MFs as the TS 

model under study. For the continuous-time case, the use of such Lyapunov functions leads to 

dealing with the time-derivatives of the MFs. Several methods have been proposed to tackle 

this problem: by bounding a priori the time-derivatives of the MFs and checking a posteriori 

such bounds (Bernal et al., 2006; Blanco et al., 2001; Mozelli et al., 2009; Tanaka et al., 

2003); via piecewise Lyapunov functions (Campos et al., 2013; Johansson et al., 1999); via 

line-integral Lyapunov functions (Mozelli et al., 2009; Rhee and Won, 2006); or by bounding 

the partial derivatives of the MFs, leading to local conditions (Bernal and Guerra, 2010; 

Guerra et al., 2012a; Guerra and Bernal, 2009; Lee and Kim, 2014; Pan et al., 2012). For the 

discrete-time case, the time derivative is replaced by a one sample delay that appears to have 

fewer drawbacks. The use of non-quadratic (NQ) Lyapunov functions has led to important 

improvements (Ding et al., 2006; Guerra et al., 2012b, 2009; Guerra and Vermeiren, 2004; 

Kruszewski et al., 2008; Lee et al., 2010; Lendek et al., 2015).  
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If the full information of the state is not available, one alternative is the use of state 

observers (Luenberger, 1971). Usually two cases are considered for the observer design: 1) 

the MFs depend on measured (available) variables and, 2) the MFs depend on unmeasurable 

variables (Bergsten and Driankov, 2002; Ichalal et al., 2008; Tanaka et al., 1998). The first 

case can be seen sometimes (for example when quadratic Lyapunov functions are used) as the 

dual of the controller design, while the second one requires extra conditions, e.g.,  Lipchitz 

conditions (see Bergsten et al. 2002), to guarantee the convergence of the estimation error. 

Another alternative when only partial information of the state is available is the design of 

output feedback controllers (Cao et al., 1998; Chadli and Guerra, 2012; Kau et al., 2007; 

Syrmos et al., 1997). However, the existing conditions for output feedback are not always 

“pure” LMIs. 

Based on nonlinear descriptor models (Luenberger, 1977) – that naturally appear in 

mechanical systems (Dai, 1989; Lewis, 1986; Lewis et al., 2004; Luenberger, 1977) –, TS 

descriptor models have been introduced in (Taniguchi et al., 1999). TS descriptor models use 

two families of MFs: one for the nonlinearities in the left-hand side (descriptor matrix) and 

another one for the nonlinear terms in the right-hand side. Tools developed for descriptor 

models have also been used for models which do not appear in a natural descriptor form. For 

example, the so-called descriptor redundancy approach (Tanaka and Sugie, 1997) has been 

adopted in order to relax existing conditions (Cao and Lin, 2004; Chen, 2004; Guelton et al., 

2009; Tanaka and Sugie, 1997; Tanaka et al., 2007). 

Since the descriptor matrix may be singular, descriptor models are also called singular 

systems, differential-algebraic equation (DAE) systems, partial state space representation, 

etc. (Dai, 1989). For linear singular systems, generally, it is not sufficient to study their 

stability, but their admissibility has to be investigated. Therefore, concepts such as regular 

and impulse-free systems have been introduced. A descriptor system is admissible if it is 

regular, impulse-free, and stable (Dai, 1989). The concepts of controllability, observability, 

and duality have been stated in (Cobb, 1984). Controller design has been carried out in 

(Mukunda and Dayawansa, 1983). Observer design conditions have been developed in (Dai, 

1988; Darouach and Boutayeb, 1995), but these conditions are not in LMI form. Later, LMI 

conditions have been given in (Chadli and Darouach, 2012; Feng and Yagoubi, 2013; 

Fridman and Shaked, 2002; Garcia et al., 2002, 1998; Masubuchi and Ohta, 2013; Rehm and 

Allgöwer, 2002; Zhang et al., 2008). 
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Recently, in the linear-parameter-varying (LPV) field, several works concerning 

controller/observer design have appeared (Chadli et al., 2008a, 2008b; Hamdi et al., 2009; 

López-Estrada et al., 2014). For nonlinear systems with a constant rank-deficient descriptor 

matrix, few results that involve LMI constraints (Wang et al., 2012; Yang et al., 2013) exist.  

All the above results on descriptor models consider a constant rank-deficient matrix. This 

thesis focuses on nonlinear systems with a non-constant full-rank descriptor matrix. In such 

case a standard state space model can be computed; however, it is important to keep the 

original descriptor structure (Taniguchi et al., 1999). Stability conditions based on quadratic 

Lyapunov functions for continuous-time TS descriptors models have been established in 

(Taniguchi et al., 1999). Controller design conditions also based on quadratic Lyapunov 

functions for TS descriptor models have been given in (Taniguchi et al., 2000). These 

conditions have been improved in (Guerra et al., 2007) and extended to robust control in 

(Vermeiren et al., 2012). Observer design for continuous-time TS descriptors has been 

addressed in (Guerra et al., 2004); the procedure leads to a set of bilinear matrix inequalities 

(BMIs). Sufficient LMI conditions can be derived by fixing beforehand one of the decision 

variables. To the best of our knowledge, discrete-time TS descriptor models with nonsingular 

descriptor matrix have not been considered in the literature. 

1.2. Scope and objectives 

This work is concerned with developing conditions for nonlinear descriptor models in 

order to improve the conditions found in the literature both for controller and observer 

designs. In addition, since there are no results concerning the discrete-time case when the 

descriptor matrix is invertible, LMI conditions for controller/observer design for discrete-

time TS descriptor models have been developed. The problems considered are: 

 State feedback controller design. 

 Observer design. 

 Output feedback controller design. 

The methods developed in this thesis are based on TS descriptor representations of a given 

nonlinear descriptor model (in both continuous and discrete time), using Lyapunov’s direct 

method, and with the objective of developing “pure” LMI conditions.  
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1.3. Outline 

The thesis is organized as follows: 

Chapter 2 gives the necessary background on the TS-LMI framework, the descriptor form, 

and motivates the use of TS descriptor models.  

Chapters 3-5 develop design conditions for TS descriptor models. 

Chapter 3 considers conditions for state feedback controller design. With respect to 

previous LMI conditions, a larger solution set for the continuous-time case is achieved. In the 

discrete-time case, LMI conditions are given with different NQ Lyapunov functions, thus 

filling the gap in the literature. 

Chapter 4 deals with observer design for TS descriptor models. For the continuous-time 

case, LMI conditions are obtained by using a different extended estimation error. For the 

discrete-time case, results in LMI form are provided via several types of Lyapunov functions.  

Chapter 5 considers static output feedback controller design. For both continuous and 

discrete-time, the developed conditions are still BMI and become LMI only if a slack variable 

is fixed. 

Chapter 6 concludes this work with final remarks and some future research directions. 

Additionally, a brief introduction to LMIs and some properties used throughout this thesis 

are given in Appendix A. Appendix B is devote to give some sum relaxations. 

1.4. Publications 

The results presented in this thesis have been disseminated in the following publications: 

International journal publications:  

1. V. Estrada-Manzo, Zs. Lendek, T. M. Guerra, and P. Pudlo. (2015). Controller design 

for discrete-time descriptor models: a systematic LMI approach. IEEE Transactions 

on Fuzzy Systems, vol. 23 (5), pp. 1608-1621. 

2. T. M. Guerra, V. Estrada-Manzo, and Zs. Lendek. (2015). Observer design for 

nonlinear descriptor systems: an LMI approach. Automatica (52), pp. 154-159. 
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Book chapters:  

1. V. Estrada-Manzo, Zs. Lendek, and T. M. Guerra. (2015). Observer design for robotic 

systems via Takagi-Sugeno models and linear matrix inequalities. In Handling 

Uncertainty and Networked Structure in Robot Control. Ed. Springer. 

Conference publications: 

1. V. Estrada-Manzo, Zs. Lendek, and T.M. Guerra. (2015). Unknown input estimation 

for nonlinear descriptor systems via LMIs and Takagi-Sugeno models. In Proceedings 

of the 54th IEEE Conference on Decision and Control (CDC). Osaka, Japan. pp. 1-6. 

2. V. Estrada-Manzo, T.M. Guerra, and Zs. Lendek. (2015). Static output feedback 

control for continuous-time TS descriptor models: decoupling the Lyapunov function. 

In Proceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-

IEEE). Istanbul, Turkey. pp. 1-5. 

3. V. Estrada-Manzo, Zs. Lendek, and T. M. Guerra. (2015). Improving observer design 

for discrete-time TS descriptor models under the quadratic framework. In 

Proceedings of 2nd IFAC Conference on Embedded Systems, Computational 

Intelligence and Telematics in Control (CESCIT). Maribor, Slovenia, pp. 276-281. 

4. V. Estrada-Manzo, Zs. Lendek, and T. M. Guerra. (2014). Output feedback control for 

T-S discrete-time nonlinear descriptor models. In Proceedings of the 53rd IEEE 

Conference on Decision and Control (CDC), Los Angeles, USA, pp. 860-865. 

5. V. Estrada-Manzo,  Zs. Lendek, and T. M. Guerra. (2014). H∞ control for discrete-

time Takagi-Sugeno descriptor models: a delayed approach. In Proceedings of the 

23rd Rencontres francophones sur la logique floue et ses applications (LFA), Ajaccio, 

France. pp 175-182. 

6. V. Estrada-Manzo, T. M. Guerra, and Zs. Lendek. (2014). An LMI approach for 
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Takagi-Sugeno descriptor models: controller design. In Proceedings of the 2014 

IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). Beijing, China, pp. 

2277-2281. 

9. V. Estrada-Manzo, T. M. Guerra, Zs. Lendek, and M. Bernal. (2013). Improvements 

on non-quadratic stabilization of continuous-time Takagi-Sugeno descriptor models. 

In Proceedings of the 2013 IEEE International Conference on Fuzzy Systems (FUZZ-

IEEE), Hyderabad, India, pp. 1-6. 
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Chapter 2. Takagi-Sugeno models 

This chapter will provide the reader with the basic knowledge on Takagi-Sugeno (TS) 

models as well as an introduction to the existing results in this framework. It is not intended 

to be an exhaustive survey but rather the necessary background to follow the developments in 

next chapters. In addition, it motivates the use of TS descriptor models instead of standard TS 

ones when a nonlinear models in the descriptor form. The final remarks in the chapter 

enumerate the problems to be faced in the present thesis. 

2.1. Standard TS models 

A TS model is a collection of linear systems and nonlinear membership functions (MFs) 

of the form (Takagi and Sugeno, 1985): 

          
1

,
r

i

i i it h z t A t Bx u tx


    (2.1) 

where   xn
x t   is the state vector,   un

u t   is the control input,   p
z t   is the premise 

vector, and r  is the number of rules (local models). Matrices  ,
i i

A B ,  1,2, ,i r   

represent the i-th linear model of the TS one (2.1). The scheduling vector  z t  may depend 

on the state, input, exogenous parameters, or time, on measurable and/or unmeasurable 

variables. The MFs   i
h z t ,  1,2, ,i r  are nonlinear functions and hold the convex sum 

property in a compact set of the state space  : 
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      
1

1, 0 1.
i

i

r

ih z t h z t


     (2.2) 

There are several model-based procedures to obtain a TS representation from a given 

nonlinear model. Two of them are frequently used. The first one is a method based on 

linearization in several operating points (Johansen et al., 2000). The second method is called 

the sector nonlinearity approach (Ohtake et al., 2001) and consists of an algebraic rewriting 

of the original nonlinear model based on the known bounds of the nonlinearities. The former 

provides a TS model which approximates the nonlinear one, while the latter gives a TS model 

that exactly represents the nonlinear one in a compact set (Lendek et al., 2010; Tanaka and 

Wang, 2001). 

2.1.1. The sector nonlinearity approach 

This thesis focuses on TS models derived by using the sector nonlinearity approach, 

although LMI conditions can be applied regardless of the origin of the TS model. The idea of 

this approach is to rewrite a nonlinear expression as a convex combination of nonlinear 

membership functions (MFs). This is summarized in the following steps (Ohtake et al., 2001; 

Tanaka and Wang, 2001). 

Consider the following nonlinear model: 

       , ,t f xx t u t   (2.3) 

where  f  is a nonlinear function whose elements are smooth and bounded in a compact set 

of the state space  . In what follows, arguments will be omitted when their meaning is 

straightforward.  

Step 1. Assume that the nonlinear system (2.3) can be expressed as the affine-in control 

model: 

     ,A x x xx B u    (2.4) 

where   x xn n
A x

  and   x un n
B x

  are matrices whose entries may be non-constant 

terms, which are assumed to be bounded in  . Thus consider the p  non-constant terms that 

appear in     ,A x B x , i.e.,   jjj
nl nnl l   ,   infj j

nl nl ,   supj j
nl nl , 

 1,2 ,,j p  ; these non-constant terms constitute the premise vector p
z . 
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Step 2. Construct, for each  j
nl ,  1,2 ,,j p  , a pair of weighting functions (WFs) as 

follows: 

          0 1 0 ,, 1 , 1,2, .
jjj j j

j j

nl
p

nl nl

nl
j    




     (2.5) 

By construction, each pair of WFs holds the convex sum property in the compact set  . 

Step 3. Define the 2p
r   membership functions (MFS) using WFs in (2.5): 

        
1

, 1,2, , 0,1 .,
j

p
j

i

j

i j j
h z z i r i



     (2.6) 

These MFs hold the convex sum property (2.2) in  . 

Step 4. Compute the linear local models  ,
i i

A B ,  1,2 ,,i r   of (2.1). To this end, it is 

necessary to substitute into     ,A z B z the values of the bounds jnl , jnl ,  1,2 ,,j p   

that activate each rule, i.e., when   1
i

h z  ,  1,2 ,,i r  .  

Based on the above definitions, the nonlinear model (2.3) is exactly represented by the TS 

model (2.1) in the considered set  . 

Remark 2.1: Formally, it is possible to consider also systems that are not affine-in-

control, i.e.,    , ,A x u xx B x u u  . However the fuzzy control laws will generally include 

the MFs   ,
i

h z x u . This means that implicit equations, i.e.,   , ,u f h x u x  have to be 

solved, which are nonlinear and difficult to work with. In the context of this work only affine 

in the control models are considered. 

Remark 2.2. The total number of rules r  depends on the number of nonlinear terms p , 

that is, 2p
r  . Since the relation is exponential, this can be a problem when modeling 

complex nonlinear systems as it can lead to computationally intractable problems. 

Remark 2.3. From a given nonlinear model, several TS representations can be obtained, 

since different algebraic manipulations may lead to different premise vectors. Since the 

resulting vertices  ,
i i

A B ,  1,2 ,,i r   may have different properties, e.g., they may be 

stable/unstable or uncontrollable/unobservable; thus different TS representations may lead to 

different results. This non-uniqueness is considered one of the shortcomings of TS models. 
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Example 2.1. Consider the following nonlinear model in the compact set 

 : 1, 1,2
i

x x i    :  

 1 1 1 2 2 1 2, 3 .x x x x x x x       (2.7) 

One possible way of rewriting the system in the form (2.4) is by defining:  

     1
with

1
, .

1 3
A x x A x

x
x

 
    

  (2.8) 

Following the procedure above one can identify 1 1nl x  as the non-constant term in  A x

, and it is bounded inside   as  1 1 1nl   ; the premise vector is 1 1z xnl  . Thus (2.8) 

writes: 

 
1 11

2 2

1
.

1 3

nl

x

x x

x

    
        

  (2.9) 

Then, the following WFs can be constructed: 

    
     1 1 11 1 1

0 1 1 1 0 1

1 1 1
,

1 2
1

1 2
.

x x x
x x x  

   
    

 
  (2.10) 

Using the WFs in (2.10), the MFs are    1

1 0 1h z x  and    1

2 1 1h z x . The local 

matrices are computed as follows: 

 
1 1

1 2

1 1 11
, .

1 3 1 3 1 31 3

1 1
A A

nlnl          
              



    
  (2.11) 

Finally, the TS model is 

       
2

1

1 1 2 2 ,i i

i

x h z A h zx A z A xh


    (2.12) 

which exactly represents the nonlinear model (2.7) in the compact set  . 

Recall that for a given nonlinear model there are many TS representations (Remark 2.3). 

For instance, by choosing  A x  as   21 0

1 3

x
A x

  
   

, we obtain  1 2 1 1nl x   , the 

WFs are  1

0 20.5 1x    and 1 1

1 01   ; thus the MFs are 1

1 0h   and 1

2 1h  . The local 

matrices are calculated as: 
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1 1

1 2

0 0 1 0 01 0

1 3 1 3 1 31 3

2
, .

nl
A A

nl       
   

  
                

  (2.13) 

Note that 1A  is not Hurwitz.  

2.1.2. Notation 

Throughout this thesis, the following shorthand notation is adopted to represent convex 

sums of matrix expressions: 

          
1 2 1 2

1 2

1

1

1 11 1 1

and, , .j
r r r r r

h i i h ii i hhv

i i i i j

i i j ih z h z h z h zvz





 

          
 

     

In the discrete-time case, MFs with delays may appear: 

          
1 1 1

1 and 1, , .
x x x x

x x

h i i i i i

r

i

r r

i i i
h h

h z k h z k h z k 

  

              

Subscripts will change to v  if the respective MFs are 
j

v , e.g.,  
1v jj j

r
v z


   . Using 

the aforementioned notation, the TS model (2.1) is written as h h
x A x B u  . 

An asterisk    will be used in matrix expressions to denote the transpose of the 

symmetric element; for in-line expressions it will denote the transpose of the terms on its left 

side, for example: 

 
    .,

T

T TAA B
A B A B A B C

BB C
C

C

    
            
  

  

In addition, in matrix expressions, the symbols “>” and “<” will stand for positive and 

negative-definiteness, respectively. Arguments will be omitted when their meaning is clear.  

 

2.1.3. Overview of existing results 

The main advantage of expressing a nonlinear model as a TS one is that the direct 

Lyapunov method can be systematized. The main objective is to express the conditions in 

terms of LMIs, which can be efficiently solved via convex optimization techniques (Boyd et 

al., 1994; Scherer and Weiland, 2005). 
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The continuous-time case 

This section will briefly present established results on the analysis and design for standard 

continuous-time TS models. Recall the TS model: 

     
1 1

, ,
r r

i i i i i

i i

x h z A x B u y h z C x
 

      (2.14) 

When 0u  , system (2.14) has an equilibrium point in 0x  . Sufficient conditions for the 

stability of (2.14) with 0u  are given in the sense of Lyapunov. Effectively, the stability of 

the equilibrium point of the autonomous TS model (2.14) is analyzed using the quadratic 

Lyapunov function 

   , 0.T T
P PV x x Px     (2.15) 

The equilibrium point is asymptotically stable if there exists a matrix T
P P  such that 

(Tanaka and Wang, 2001): 

  0, 1,2, ,0, .T

i i
P A P PA i r       (2.16) 

The LMI conditions (2.16) are directly obtained when the time-derivative of (2.15) is 

taken: 

       
1

.
r

T T T T T T

h h i ii

i

V x x Px x Px x A P PA x x h A P PA xz


       
 
   (2.17) 

Since  
1

1
i

r

i
h z


   and  0 1

i
h z  , a sufficient condition for   0V x   is given by the 

LMI conditions (2.16). Note that (2.16) is reduced to the Lyapunov stability theorem for 

linear systems, i.e., when 1r  .  

Remark 2.4. Conditions (2.16) do not take into account the information of the MFs; in 

addition, the Lyapunov function candidate is restricted to a quadratic one. Hence, the given 

LMI conditions are only sufficient, i.e., if the LMI problem is unfeasible, no conclusion can 

be drawn. Moreover, notice that conditions (2.16) are valid for a family of TS models with 

the same vertex matrices. Therefore, it is also equivalent to LPV quadratic stability. 

Example 2.2. Recall the nonlinear model in Example 2.1:  

 1 1 1 2 2 1 2, 3 .x x x x x x x       (2.18) 

Consider two different TS representations for (2.18): 
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 1 2

1 1 2

2 1

0 0 0
: , with

1

2 0.5

3 1 3

1
TS , ,

1
h

h x
A Ax x

h
A

h

   
    

 
        

  (2.19) 

 
 1 1

2 1 2

2 1

11 1 0.5 1
TS , ,

1 3 1 3 1

1
: , with

h

h x
A A

h
x

h
A x

      
       




    
  (2.20) 

The stability analysis using LMIs (2.16) for 1TS  (2.19) yields unfeasible LMIs ( 1A  is not 

Hurwitz), but since conditions (2.16) are only sufficient, no conclusion can be drawn from 

this result (see Remark 2.4). Indeed, for 2TS  (2.20), the LMI conditions are feasible and 

provide the following Lyapunov matrix:  

 
0.5510 0.0443

.
0.0443 0.2635

P
 

  
 

  (2.21) 

Since the LMI conditions do not consider the information on the MFs beside their convex 

structure, any TS model with vertex matrices (2.20) will be stable regardless of the original 

nonlinear model. To see this, consider:  

  1 1 2 2 2 1 23cos , .x x xx x x x       (2.22) 

The nonlinear system (2.22) can be exactly represented in  2:x x   by a TS model 

(2.14) with local models: 

 1 2

1 1
and

1 1
,

1 3 1 3
A A

    
       




  (2.23) 

with   1 2cos5 10.h x   and 2 11h h  . Since the vertex matrices are the same as (2.20), 

and the LMI conditions are feasible, the stability of (2.22) is also established.    

Remark 2.5. If the set (2.16) of LMI conditions is feasible, it establishes global stability 

of the TS model. However, since the TS model is usually valid locally in a compact set of the 

state space  , this does not mean that the original nonlinear model is globally stable. Thus, it 

is necessary to study the outermost Lyapunov level in the modelling region  . 

For the controller design, (Wang et al., 1995) have proposed the following parallel 

distributed compensator (PDC): 

    
1

with, , 1,2, , .u xn n

i h i

r

i

i

u h z K x K x K ri




      (2.24) 
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This type of controllers incorporates the system’s MFs in the control law; therefore, it 

relaxes the linear controller u Kx  by introducing r control gains. The TS model (2.14) 

together with PDC control law (2.24) produces 

       
1 2 1 1 2

1 21 1

.
r r

i i i i

i

i

i

x h z h z A B K x
 

    (2.25) 

Stabilization conditions can be obtained via the quadratic Lyapunov function (2.15) as 

follows: 

        0,
TT

h h h h h hV x x B K P P B K xA A       

which after using the congruence property with the matrix 1
X P

  and a change of variables 

h h
M K X  gives 

    0 0.*
h h h

V x X BA M      (2.26) 

This is a co-negativity problem. To get more relaxed conditions than the trivial

 
1 1 2

* 0
i i i
X B MA   ,  1 2, 1,2, ,i i r   , sum relaxations are used and the MFs are 

dropped. In Appendix B, several sum relaxations are given. 

The quadratic framework presents an important drawback: a single matrix 0T
P P   

must satisfy the conditions for each linear local model of a given TS model. In the 

continuous-time case, piecewise quadratic Lyapunov functions have been investigated as a 

natural option for those TS models which do not have all linear models activated at once 

(Johansson et al., 1999). This approach cannot be applied to TS models constructed by the 

sector nonlinearity approach because all the rules are active at the same time. On the other 

hand, non-quadratic Lyapunov functions (or fuzzy Lyapunov functions) have first been used 

by (Blanco et al., 2001; Tanaka et al., 2003): 

      
1

, 1,2, ,0, .
r

i

T T

i i i i
V x x x ih z P P P r



    
 

    (2.27) 

The analysis of (Tanaka et al., 2003) is based on the existence of scalars i
  such that 

 i i
h z    1,2, ,i r  , these bounds must be checked a posteriori. A way to avoid this 

problem has been presented in (Rhee and Won, 2006): a path-independent Lyapunov function 

has been proposed. This type of Lyapunov function avoids the time-derivative of the MFs 

and provides global results; however, it is restricted to a specific family of TS models and the 



33 

 

controller design leads to conditions in bilinear matrix inequality (BMI) form. In (Bernal et 

al., 2006) another controller structure has been proposed: 

    
1 1

1

1 .
r r

i i

i i

i i h h
h z K h z Pu x K P x









  
  
 

 


    (2.28) 

The controller (2.28) is known as a non-PDC control law – it first appeared in the discrete-

time framework (Guerra and Vermeiren, 2004) – ; the stabilization conditions are derived via 

a non-quadratic Lyapunov function of the form   1T

h
PV x xx

 ; this approach allows the 

inclusion of  u t   into the MFs, however  i i
h z   must still be given a priori.  

Example 2.3 Consider the following nonlinear system (Pan et al., 2012; Tanaka et al., 

2007): 

  3 .x ax x b u    (2.29) 

By employing the sector nonlinearity approach, the following TS model is obtained: 

    
2

1

.
i i i

i

x h z A x B u


   (2.30) 

where 1 2A A a  , 3

1B d b  , 3

2B d b   ; the MFs are    1 3 3 3

1 0 2h z w x d d    and 

   1 3 3 3

2 1 2h z w d x d   ; they hold the convex sum property in the compact set 

 :x x d   . By computing  1h z , it gives 

     2 2 3

1 13 3

3 3
.

2 2
h z x x x ax x b u

d d
      (2.31) 

Via this simple example, it can be seen that since  1h z  depends on the control law to be 

designed, the assumption on an a priori bound of the time-derivatives of the MFs is an 

important drawback (Tanaka et al., 2007, 2003). The validity of these conditions must be 

checked a posteriori, which makes their usefulness questionable.    

Recently, another alternative has been stated in (Bernal and Guerra, 2010; Guerra and 

Bernal, 2009); the main idea is to develop local stability conditions instead of global ones by 

bounding the partial derivatives of the MFs; these bounds can be calculated a priori and 

incorporated in the LMI conditions: therefore they no longer need to be verified. This idea 

has been extended to the controller design in (Guerra et al., 2012a; Pan et al., 2012). 
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When the full state is not available for control tasks, an observer can be implemented. In 

case of the state observer for the TS model (2.25), whose output is given by h
y C x , two 

cases can be considered (Lendek et al., 2010): 1) the MFs depend only on measured premise 

variables; 2) the MFs depend on some of the unmeasured variables. This thesis considers the 

former case, i.e., the nonlinear terms must depend on available (measurable) variables. State 

observers usually have the form: 

  ˆ ˆ ˆ ˆ ˆ, ,
h h h h

x A x B u L y y y C x       (2.32) 

where  
1

r

h i ii
L h z L


  is the observer gain. By defining the estimation error ˆe x x  , its 

dynamics yield  h h h
e A L C e  . Thus, via a Lyapunov function   T

V e e Pe , 0T
P P   

the following conditions are obtained: 

    0 * 0,
h h h

V e P NA C     (2.33) 

where h h
N PL . In order to achieve LMI conditions, sufficient conditions for (2.33) to hold 

are obtained via sum relaxations (see Appendix B). For the case of unmeasurable premise 

variables the interested reader is referred to (Bergsten et al., 2002; Ichalal et al., 2008). 

 

The discrete-time case 

Consider a discrete-time TS model of the form 

      1 ,
h h

x k A x k B u k     (2.34) 

where   xn
x k  is the state vector,    un

u k  is the input, k  stands for the current sample. 

Recall the short hand notation   
1

r

h i ii
A h z k A


  and   

1

r

h i ii
B h z k B


 . In addition, 

in the sequel  1x k   and  x k  will be denoted by 1kx   and kx , respectively.  

Via a quadratic Lyapunov function   0T

k k k
V x x Px  , the stability of (2.34) when 

  0u k   is ensured if the following LMI problem is feasible (Tanaka and Sugeno, 1992):  

  0, 0, 1,2, , .T

i i
i rP A PA P        (2.35) 
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In (Wang et al., 1996), a PDC control law of the form (2.24) is proposed. A stabilizing 

PDC controller of the form (2.24) can be designed. Via the Schur complement the resulting 

inequality is: 

 
  10, with , 0.

h h

h h h

X
M

A
K

X
X X P

X B M

  
  

 
  

  (2.36) 

Sufficient LMI conditions for (2.36) to hold can be obtained via sum relaxations (see 

Appendix B).  

Contrary to the continuous-time case, since the appearance of the non-quadratic Lyapunov 

function (Guerra and Vermeiren, 2004) analysis and design conditions for the discrete-time 

case has witnessed several improvements. This is thanks to the fact that the derivatives of the 

MFs do not appear. Thus, a non-PDC controller has been proposed (Guerra and Vermeiren, 

2004): 

 1 .
k h h k

Pu K x
   (2.37) 

Consider the following non-quadratic Lyapunov function (Guerra and Vermeiren, 2004): 

       
1

1

, 1,2, ,0, .T T

k k i i i

i

k i

r

V x x x ih z k P P P r





   





   (2.38) 

The controller design conditions are: 

 
 *

0.
h

h h h h h
P B K

P

A P 

 
  

  (2.39) 

Another controller proposed in (Guerra and Vermeiren, 2004) is 

      
1

1

1

1 ,
k i i i i k h h

r

k

r

i i

u h z k K h z k G K G xx






     
 

 
 
    (2.40) 

which is a generalization of (2.37) in the sense that in the worst case h hG P . The Lyapunov 

function used to synthesize this controller is 

           
1 1 1

1

.
r r r

i i

T

T

k k i i i i

i

i i k
V x h z k Gx h z k P h z xk G

 

 



         
    
     (2.41) 

The stabilization conditions are: 
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 *

0.
h

h h h h h h h

T

P

A G G PG B K   

 
    

  (2.42) 

Within the discrete-time framework, the  -sample variation has been developed in 

(Kruszewski et al., 2008). The approach is based on the idea to avoid the requirement for the 

difference of the Lyapunov function       1 0V x k V x k    to decrease at each 

consecutive sample. Instead it is required that   V x k  decreases at every  -samples 

      0V x k V x k   .  

Recently, a novel Lyapunov function has been proposed in (Guerra et al., 2012b) for the 

observer design, that is: 

       
1

, 1,2,1 0, .,T T

k k i i i

r

i

k i
V h z k P P Pe e e i r



    
 

     (2.43) 

The idea is to use past samples in the MFs of the observer gains as well as in the 

Lyapunov function, thus the proposed observer reads: 

  1

1
ˆ ˆ ˆ ˆ ˆ, .

k h k h k k k k h khh hh
x A x B u G L y Cy y x 


        (2.44) 

This small change allows adding extra degrees of freedom to the LMI conditions without 

altering the number of conditions and thus achieving relaxed results. The delayed approach 

has been generalized in (Lendek et al., 2015) for controller design. 

Remark 2.6. One of the main advantages of the TS-LMI framework (both the continuous 

and discrete time case) is that one can easily include specifications and/or constraints such as 

decay rate, H∞ disturbance attenuation, constraint on the input, constraint on the output, etc. 

(Lendek et al., 2010, Chapter 3; Tanaka and Wang, 2001,  Chapter 3).  

2.2. TS descriptor models 

This section presents a more general state space representation. So-called descriptor 

models naturally appear when dealing with mechanical systems (Lewis, 1986; Luenberger, 

1977). Consider the following descriptor model: 

    , ,x f ug xx    (2.45) 
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where   x xn n
g x

  may be a rank deficient matrix, i.e.,    x
rank g x n . This is the reason 

for the names for (2.45): Differential-algebraic equations (DAE) systems, partial state space 

representation, singular systems, etc. (Dai, 1989). Nevertheless, in this work the matrix  g x  

is considered full-rank at least in a compact set of the state space  . For instance, in 

mechanical systems, the matrix  g x  contains the inertia matrix and is positive definitive 

(Guelton et al., 2008; Lewis et al., 2004; Spong et al., 2005; Vermeiren et al., 2011). 

Moreover, a nonsingular matrix  g x  allows using classical ODE solvers. 

The class of nonlinear descriptors treated in this thesis can be expressed as the affine-in 

control model (see Remark 2.1): 

       ,x A x uE x x B x    (2.46) 

where xn
x  is the state vector and un

u  is the control input;  A x ,  B x , and  E x  

are matrices of appropriate sizes, whose entries may be non-constant.  

The sector nonlinearity methodology has been extended to descriptor models in 

(Taniguchi et al., 1999); hence, the a
p  nonlinearities in the right-hand side of (2.46) – those 

in  A x  and  B x  –  are captured via MFs  i
h z ,  1,2, ,2 ap

i . Proceeding similarly, the 

ep  nonlinear terms in the left-hand side of (2.46) – those in  E x  – give the MFs   ,j
v z  

 1,2, ,2 ep
j . These MFs have the convex sum property in the compact set  , i.e., 

 
1

1
ar

ii
h z


 ,   0

i
h z  ,  

1
1

er

jj
v z


 ,   0

j
v z  , with 2 ap

a
r  , 2 ep

e
r  . Recall that this 

work considers that the premise vector p
z , a e

p pp  , depends on measured variables. 

Therefore, the nonlinear descriptor model (2.46) can be exactly rewritten in the considered 

compact set as the following TS descriptor model (Taniguchi et al., 1999): 

     
1 1

,
e ar

j j i i

r

j

i

i

z x h z A xE Bv u
 

     (2.47) 

or in shorthand notation v h hE x A x B u  ; where matrices iA  and iB , represent the i-th right-

hand side local model of (2.47), while j
E  is the j-th left-hand side local model of the TS 

descriptor model. 
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2.2.1. General definitions and properties 

In order to correctly place the reader in the context of the current research a short summary 

of results for linear singular systems follows. Consider the linear descriptor system 

(Luenberger, 1977): 

 ,x Ax B CxE u y     (2.48) 

where xn
x  is the state vector, un

u  is the control input, and yn
y  is the output; A , 

B , C , and E  are real matrices of adequate sizes. Matrix E  is not full rank, i.e., 

  x
rank E n . In the case of autonomous singular systems 0u  , consider the following 

definitions (Dai, 1989): 

Definition 2.1.  

 The pair  ,E A  is said to be regular if  det 0sE A  . 

 The pair  ,E A  is said to be impulse-free if     deg det sE kA Eran  . 

 The pair  ,E A  is said to be stable if  sE A  is Hurwitz. 

 The pair  ,E A  is said to be admissible if it is regular, impulse-free, and stable. 

For a given pair  ,E A , there always exist nonsingular matrices M  and N  such that  

 
2

3 4

10
.

0 0
and

A AI
E M N A M N

A A

  
    

   
  (2.49) 

The matrices M  and N can be computed via the singular value decomposition of the 

matrix E  followed by scaling of the bases. Thus the singular system (2.48) is casual 

(impulse-free) if and only if  4det 0A  . Hence, the stability of (2.48) is determined (Dai, 

1989) by the stability of 1

1 2 4 3A A AA
 . A similar discussion applies for discrete-time singular 

systems.  

Now, let us recall the TS descriptor model with  
1

e

v j j

r

j
E v z E


  regular in  : 

 , ,
v h h h
x A x B Cu xE y     (2.50) 

with yn
y  being the output of the system.  

In (Taniguchi et al., 1999), the open-loop system (2.50) with 0u   is expressed as  
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 , wit
0 0

h , .
0 0

,
x x x

x

n n n

hv hv

n h v

x
Ex A x x E A

x

I I

A E

 
   



   
       

  (2.51) 

This procedure is the so-called descriptor redundancy approach in (Tanaka and Sugie, 

1997).  The TS descriptor system (2.51) is quadratically stable if 

 
     

2
,

dV x t
x t

dt
    (2.52) 

where       T T
x t x tV E Px t  and the following conditions are satisfied 

1)  det 0
hv

sE A  . 

2) The open-loop is impulse free. Note that the representation (2.51) is impulse free due 

to  det 0
v

E  .  

3) There exists a common matrix P  and 0   such that: 
2 2x xn n

P
 , 0T T

E P P E  , 

 det 0P  . 

2.2.2. Regular  E x : motivation (part I) 

A large part of the thesis focuses on the case when the descriptor matrix  E x  is 

invertible. A motivation for this lies in models based on mechanical fundamentals. Generally, 

when studying the dynamics of robotic systems, a nonlinear descriptor model is obtained 

(Guelton et al., 2008; Lewis et al., 2004; Luenberger, 1977). Since the matrix  E x  is the 

inertia matrix and is therefore nonsingular and positive definite in  , the descriptor model 

(2.46) can be written in the standard state-space form  (2.4): 

 
       

   

1 1

,

x E x A x x E x B x u

A x x B x u

  

 
  (2.53) 

thus standard tools can be applied. For example, in our case, a standard TS model can be 

constructed from this nonlinear model. However, even if the nonlinear models (2.46) and 

(2.53) are equivalent in the considered state space, (2.53) may have the following 

shortcomings: 
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1. The total number of rules is generally higher because  1
E x

  has in most cases a 

more ‘complicated’ structure than  E x .  

2. If the input matrix  B x  is state-independent in (2.46), i.e.,  B x B , the controller 

design complexity is significantly reduced. Inverting  E x  produces a state-

dependent input matrix    1
B x E x B

  in (2.53), thus leading to more complexity 

in the controller design by introducing double sums and increasing the number of 

LMI constraints. For the observer design, this fact does not apply since the output 

matrix  C x  is not multiplied by  1
E x

 . 

3. The closer the TS model is to the nonlinear model structure the ‘more natural’ it is. 

To summarize, keeping the descriptor structure may significantly reduce the number of 

local models as well as the number of LMIs; thus, it may increase the feasibility set (Tanaka 

and Wang, 2001; Taniguchi et al., 2000). In order to clarify these points, the following 

example is chosen. 

Example 2.4. Consider the “Futura pendulum” system in descriptor form (Fantoni and 

Lozano, 2013):  

     ,x x A x BE x u    (2.54) 

with: 

 

       
 

           
   

2

2 2

2

2 4 2 4 2 3

1 1 2

2 3

2

1 0 0 0 0

0 0 1 0 0 0
, ,

0 0 0 sin cos 1

0 0 cos 0

0 0 1 0

0 0 0 1
0

0 0 sin 2 sin sin 2 ;

sin
0 sin 2 0

a

r f

I
x B

M x a b x c x

c x d

I
e x x c x x e x xx

G x C x
m l g

E

x
e x

x

A

x

   
                    

  
 
 
  
        
 
  

  

with parameters 2

0 1 0ma I L , 2

1 1b m l , 1 1 0c m l L , 2

1 1 1md J l , and 2

1 10.5e m l ; where g  

is the gravitational acceleration, 1m  is the mass of the pendulum, 0I  is the inertia of the arm, 

0L  is the total length of the arm, 1l  is the distance to the center of gravity of the pendulum, 
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1J  is the inertia of the pendulum around its center of gravity. Note that the input matrix B  is 

constant. A TS descriptor representation of (2.54) gives 22 4
e

r    due to the terms  2cos x  

and  2

2sin x  in  E x ; and 32 8
a

r    due to  2 2sin x x ,  2 3sin 2x x , and  2 4sin 2x x  in 

 A x . To write (2.54) in the standard state space representation (2.3), it is necessary to invert 

the matrix  E x , which gives 

    1

2

1
0

,
0 a

I
E x

M x


  
  
 

  (2.55) 

where 

    
       21 2 2 2

2 22

2 2

cos1
, sin .

cos sin
a

d c x
x ad c db c x

c x a b x
M 


  

       
  

The standard state space model is  

      1 1 .x E x A x x E x Bu
     (2.56) 

The nonlinearities in (2.56) are:  2cos x ,  2

2sin x ,  2 2sin x x ,  2 3sin 2x x ,  2 4sin 2x x , 

 2 4sin x x , and 1  ; therefore a standard TS representation has 72 128r    rules (vertices). 

Moreover, the new input matrix  1
E x B

  is no longer constant.   

2.2.3. Regular  E x : overview of existing results 

Stability analysis as well as controller design for TS descriptor models has been 

introduced in (Taniguchi et al., 1999). In order to decouple the matrix v
E , the system (2.50) 

is rewritten by using the so-called descriptor-redundancy approach (or augmented system) 

used in (Tanaka and Sugie, 1997). The procedure is as follows: consider  

 
and

, .0
h h v h

x x

x B u E x y C xx A


   

   

Using an augmented state vector  
T

TT
x x x     , we have 

 , ,
hv h h

BEx A x yu C x     (2.57) 
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with 
0

0 0

I
E

 
  
 

, 
0

hv

h v

I
A

A E

 
   

, 
0

h

h

B
B





 
 

, and  0
h h

C C . Sufficient conditions for 

the stability of (2.57) when 0u   are obtained via the following Lyapunov function 

(Taniguchi et al., 2000, 1999): 

   , 0.T T T T
x x E Px EV P P E    (2.58) 

The time-derivative of (2.58) is 

     .T T T T T T T

hv hv
x x E Px x P EV P Ax x A P x     (2.59) 

Hence,   0V x   implies 0T T

hv hv
A PP A  . Thus, the system (2.57) is stable if there 

exists a matrix P  such that (once the MFs are removed):  

    0, 0, 1,2, , 1, .,2, ,T T T T

ij ij a e
i jE P P E A P P A r r           (2.60) 

Note that in conditions (2.60) the decision variable is 
2 2x xn n

P
 . This matrix should be 

regular, i.e.,  det 0P  ; and 0T T
E P P E   must hold. One possible structure could be 

1

3 1

0P
P

P P

 
 
 

 with 
1 1 0T

P P  , which guarantees the regularity of 
2 2x xn n

P
 . Another 

possible structure is 
3 4

1 0P
P

P P

 
 
 

 with 
1 1 0T

P P   and 4P  being a regular matrix. The latter 

structure provides more degrees of freedom; this choice turns (2.60) into 

     
     3 3

1

4 3 1 4 4

*
1,20, , , 1,2, .0, , ,

T T

i i

aT T T T

j

e

i j j

A
P

P P A
r r

A E P
i j

P EP E PP


      

  

 
  

  (2.61) 

The regularity of 4P  is guaranteed by the block (2,2). In effect, if (2.61) holds, then  

4 4 0T T

v v
E EP P    also holds. Since v

E  is nonsingular  0 00, 0
v

E x x   , let us assume 

4P  is singular; then, there exists 0 0x   such that 4 0 0P x  ; consequently for that 0 0x   it 

yields  0 4 4 0 0
v

T T T

v
Ex P PE x   , which contradicts the condition 4 4 0T T

vv
P E E P   . Thus if 

0T T

hv hv
A PP A   is true, then 4P  is nonsingular. 

Regarding the controller design, a PDC controller 

    
1 1

a e

i j ij

r r

i j

u h z v z K x
 

   (2.62) 
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has been proposed in (Taniguchi et al., 2000), where u xn n

ij
K

 ,  1,2, ,
a

i r  , 

 1,2, ,
e

j r   are the controller gains to be designed. This control law incorporates 

nonlinearities from both sides of the TS descriptor model (2.50) via the MFs  i
h z , 

 1,2, ,
a

ri   and  j
v z ,  1,2, ,

e
j r  . Similarly to stability analysis, stabilization of 

(2.50) is done via the augmented system (2.57); thus the control law (2.62) should be 

rewritten using the extended vector x , i.e., 
hv

u K x  with 0
u xhv hv n n

K K     . The closed-

loop model is: 

   .
hv h hv

BE A xKx     (2.63) 

The time-derivative of the quadratic Lyapunov function (2.58) is: 

       .
TT T T T T T T

hv h hv hv h hvx x E Px x P Ex x B K x x P B K xV A P A       (2.64) 

Thus      * 00
T

hv h hvV x BA PK   . LMI conditions are achieved by using the 

congruence property with 
11

3 4

0X
X

X X
P

 
 


 
 

, 
1

1

1X P
 , 1 1

3 4 3 1X P P P
   , and 1

4 4X P
 . 

With these choices (2.64) yields  * 0
hv h hv

B KA X X   . Finally, via a change of variables 

 1

1 0 0
hv hv hv hv

N K PXK N
    , (2.64) produces 

 
 3 3

1

1 3 4 4 4

0, 0.
*

v v

T

T T T

h h h v

X X

X B N
X

EA X EXX E X


 



 
    

  (2.65) 

Sufficient LMI conditions can easily be obtained via sum relaxations. 

Extensions to the previous results have been proposed by Guerra et al., (2007) via the 

following quadratic Lyapunov function: 

   1 1 1

1 , 0,T T T T T

hh hh hh
x x E P x x P xV E P EP

        (2.66) 

with 
1

3 4

0
hh

hh hh

P
P

P P

 
  
 

, 1 1 0T
P P  . Since 1P  is constant, this structure avoids the 

appearance of the MFs’ time-derivative. The control law to be designed is 

   1 1

1 1 0 .
hv hv

K P K xu x P
        (2.67) 

The conditions for designing (2.67) are:   
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 3 3

1

1 3 4 4 4

0, 0.
*T

h h

T T T

h h h v h vh vh h

P
A P

P P

P B K E P P E P E


 

   

 
  

  (2.68) 

For the case when the full state is not available, the following observer has been designed 

in (Guerra et al., 2004): 

  ˆ ˆ ˆ ˆˆ ,,hv h hv hEx A x B L Cy y xu y       (2.69) 

where ˆ ˆ ˆ
T

T T
x x x     is the augmented estimated state vector. The observer gain is 

0
T

T

hv hvL L    . The dynamics of the extended estimation error vector: 
ˆ

ˆ
ˆ

x x
e x x

x x

 
    

 
, 

are given by  hv hv h
Ee A L C e  . The synthesis of the augmented observer (2.69) is done 

via the quadratic Lyapunov function candidate (Guerra et al., 2004): 

   , 0,T T T T
V e e E Pe E P P E    (2.70) 

with 
1

3 4

0P
P

P P

 
  
 

, 
1 1 0T

P P  , 4P  being a regular matrix. The time-derivative of (2.70) 

yields       TT T

hv hv h hv hv hV e e A L C P P A L C e   . Thus, the estimation error is 

asymptotically stable if  

 
   

1

4 4

3 3

4 4 1 3

* *
0, .0

T T

h hv h

T T T T

h hv h v v

T

v

P A P L C
P

P A P L C P E P E P EP

  
      

   (2.71) 

Although the MFs can be removed via sum relaxations from (2.71), because of the terms 

3

T

hv h
P L C  and 

4

T

hv h
P L C  it is not possible to obtain LMI conditions. Conservative solutions 

such as fixing 3 4P P  or by designing the gains ij
L ,  1,2, ,

a
ri  ,  1,2, ,

e
rj   via any 

technique (pole-placement, linear quadratic regulator, etc.) and using (2.71) to verify the 

convergence of the estimation error are given in (Guelton et al., 2008; Guerra et al., 2004):. 

In what follows a preliminary technical result is stated on the equivalence between 

approaches involving descriptor-redundancy and Finsler’s lemma in the case of continuous-

time descriptors.  
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2.2.4. Relation between descriptor-redundancy and Finsler’s lemma 

For the analysis and design of controllers/observers for the TS descriptor model (2.50), the 

descriptor-redundancy approach has been used. This approach allows separating the matrix 

v
E  from the derivative of the state vector. Briefly, the descriptor-redundancy approach 

consists in adding a virtual state variable to the original expression, and rewriting the model 

(2.50) as a singular system (Tanaka and Sugie, 1997; Taniguchi et al., 1999).  

An alternative to descriptor-redundancy is the Finsler’s lemma (see Appendix A, Lemma 

A.1), which avoids the explicit substitution of the close-loop dynamics of the considered 

problem (de Oliveira et al., 1999). Using this approach the closed-loop dynamics are 

rewritten as an equality constraint, the time-derivative of the Lyapunov function being an 

inequality constraint dependent on the state and its derivative. 

In this section, we show that with the proper algebraic manipulations, the results (from the 

previous sections) obtained via the descriptor-redundancy approach can also be obtained 

using Finsler’s lemma. To this end, recall the control law (2.67), i.e., 1

1hv
Pu K x

 . The TS 

descriptor model (2.50) with the control law (2.67) gives 

  1 1

1 1 0.
v h h hv h h hv v

x
E x A B K x A B K EP P

x

   
          

  (2.72) 

The following Lyapunov function is employed 

   1

1 1 10 0, ,T T
V x x P x P P

     (2.73) 

its time-derivative gives 

 

  1 1

1 1

1

1

1

1

0
0.

0

T T

T

V x x P x x P x

x xP

x xP

 





 

    
     
    

  (2.74) 

By selecting 
1

1

1

1

0

0

P

P





 
  
 

, 1

1h h hv v
PA B K E

     , 
x

x
  
  
 

 and using Finsler’s 

lemma (see Appendix A, Lemma A.1), inequality (2.74) together with the equality constraint 

(2.72) gives 

  
1

1 1

1 1

1

0
* 0,

0
h h hv v

P
A B EPK

P






 
       

 
  (2.75) 
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where 2 x xn n  is a free matrix. Congruence with the full-rank matrix  1 3

40

T

T

P P

P

 
 
 

 yields 

    1 3 3 3 4

1 3 4

4 4

0.
0 0

T T

h h hv v vT T

P P P P P
A P B K E P E P

P P

   
         

   
  (2.76) 

Since  is free a matrix, by choosing 
1

1 3 4

4

,
T T

T

P PP

P

 



 
  
 

 (2.76) produces exactly the 

conditions given in (2.68). 

In the observer design case, recall the final form of the augmented observer (2.69): 

  ˆ ˆ ˆ ˆ ˆ, .
v h h hv h

E A B u Lx x y y y C x      (2.77) 

The matrix inequality (2.71) can be achieved by the use of Finsler’s lemma. To this end, 

consider the estimation error ˆe x x   and its dynamics: 

     0.
v h hv h h hv h v

e
E e eA L C

e
A L C E 

 
    

 
  (2.78) 

The Lyapunov function under consideration is: 

   1 1 10, 0.T T
V e PPe Pe       (2.79) 

The time-derivative is 

 

  1 1

1

1

0
0.

0

T T

T

Pe Pe

Pe e

V e

e

e

e

e

P

    
     
   









  (2.80) 

By defining 
1

1

0

0

P

P

 
  
 

,  h hv h v
A L C E   , 

e

e
  
  
 

, and using Finsler’s lemma, 

(2.78) together with inequality (2.80) gives: 

     1

1

0
* 0,

0
h hv h v

P

P
A L C E

 
    

 
   (2.81) 

where 2 x xn n  is a free matrix. By choosing 3

4

,

T

T

P

P

 
  
 

 (2.81) yields (2.71). Generally, 

in this work we will prefer writing the problems via descriptor redundancy for the 

continuous-time case and using Finsler’s lemma for the discrete-time case. 
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2.2.5. Regular  E x : motivation (part II) 

To conclude this chapter, considering regular  E x , we summarize the results for regular 

TS descriptors for the continuous case. LMI conditions exist only for the controller design, 

and the observer design remains a BMI problem. For the discrete-time case, to the best of our 

knowledge there are no results in the literature. Therefore there is room for improvements as 

will be shown in the following example. 

Example 2.5. Consider a discrete time nonlinear descriptor model 

      1 ,,
k k k k k k k k

x x A x x xE yBu C x      (2.82) 

where  
2

1
k

E x



 

  
 

,    1cos 1

0.7 1.1
k

x
A x

  
   

, 
0

1
B

 
  
 

, and    1 1sin /

0.2

T

k

x x
C x

 
  
 

; 

with  2

11 1 x   . Since  E x  is regular for all 2
x

      2
2 4 2

1 1 1det 3 4 1 02k xE x x x


    , a standard state-space model can be computed.   

The inverse of the descriptor matrix gives     
1

11

2det
k

k

E x
E x




  
   

; this means that 

four different nonlinearities have to be considered, which results in 16r  . Consider the 

observer design problem. Using the Lyapunov function   T

k k k
V e e e , where ke  is the 

estimation error, and considering the compact set  2
x    no solution was obtained 

either for classical non-quadratic (NQ) approach in (Guerra and Vermeiren, 2004), i.e., 

  
2 22 1

r

i ii
h z k P


  and 

           
2

1 1

1 2 2 1 2 1 2 21 1 1

0,1
x

x x

i
r r r

i i T

i i i i i i i i i

i

i

P
k k k

L C G
h z h z h z

G A G P  

  
  


    

or for the delayed non-quadratic (DNQ) approach in (Guerra et al., 2012b), i.e., 

  
1

1
x xx

r

i ii
h z k P


   and 

         
 

1 2

1 2 2 1 2 1 2 2 2
1 1 1

0.1
x

x

x x x x x

r r r
i

T
i i i i

i i l

i i i i i ii i i i

h z h z h z
G A

P
k k k

G GL PC  

 
 

  


 



    
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Thus, what we can infer from this example is that even using recent results, there is no 

solution via a standard TS description. Whereas, using the descriptor formulation and 

associated LMI constraints a solution is available with a non quadratic Lyapunov function, as 

it will be shown in Chapter 4, Section 4.2. 

2.3. Concluding remarks 

This chapter briefly summarized the main results in the literature for TS models. 

Motivated by mechanical systems, the TS descriptor model is introduced. Since this thesis 

considers the case when the descriptor matrix is invertible, it is always possible to obtain a 

standard state-space form; however, within the TS-LMI framework this may increase the 

computational cost. The advantages of keeping the descriptor structure have been illustrated 

on examples.  

Sections 2.2.3 and 2.2.5 showed that there are still many open problems, among them: 

 Enlarging the feasible solution set of the existing results for controller and observer 

design.  

 In the observer design case existing conditions are BMIs. 

 To the best of our knowledge, there are no results in the literature for the discrete-

time case. 

Solutions for the problems above are presented in the following chapters. 
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Chapter 3. State feedback controller design 

This chapter presents improvements of the state feedback controller design for both 

continuous and discrete time TS descriptor models. In continuous-time, the use the Finsler’s 

lemma leads to the enlargement of the solution set of previous results (Guerra et al., 2007). 

For discrete-time TS descriptor models, results when the descriptor matrix is non-singular 

  1 existsE xx
    are presented. In this case, relaxations can be achieved by using past 

samples in the MFs of the Lyapunov function and the control law. A systematic procedure is 

also given that generalizes the past samples approach. 

3.1. Continuous-time TS descriptor models 

This section presents a relaxed approach for stabilization and H∞ disturbance rejection of 

continuous-time TS descriptor models. It has been shown in (Jaadari et al., 2012; Oliveira et 

al., 2011) that it is possible to generalize results even under the quadratic framework by 

applying the well-known Finsler’s lemma. 

Thus, by exploiting the fact that Finsler’s lemma allows decoupling the control law from 

the Lyapunov function, a new structure of the control law is used. The derived conditions are 

LMIs up to fixing a scalar parameter. 
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3.1.1. Problem statement 

Consider the following TS descriptor model: 

 
.

v h h

h

h

h

E x A x B u D w

y C x J w

  
 

  (3.1) 

The analysis and design for (3.1) have been performed by rewriting the TS descriptor as 

follows (Taniguchi et al., 1999): 

 , .0
h h h v h h

x A x B u D w E x y C x J w         (3.2) 

Then, by defining an extended vector 
T

T T
x x x     , (3.2) can be written as 

 
,

h

hh

hhv
D wEx A x B u

y J wC x

  

 
  (3.3) 

with 
0

0 0

I
E

 
  
 

, 
0

hv

h v

I
A

A E

 
   

, 
0

h

h

B
B





 
 

, 
0

h

h

D
D





 
 

, and  0
h h

C C . In 

(Taniguchi et al., 2000), the stabilization of TS descriptor models has been studied via the 

PDC control hv
u xK . In (Guerra et al., 2007), relaxed conditions have been given using the 

following control law: 

    1 1

1 1 0 .hv hvK P K P xu x
    

    (3.4) 

Guerra et al., (2007) consider the Lyapunov function   1T T

hh
x x P xV E

 , with 

1 0T T

hh hh
PE P E

    and 
1

3 4

0
hh

hh hh

P
P

P P

 
  
 

, 
1 1 0T

P P  . Thus, when 0w  , the conditions for 

designing the stabilizing control law (3.4) are: 
1 1 0T

P P   and  

 
   

 
3

1 3 4 4

: 0.
hhv

hh T

h h hv v hh hh v hh

P

A EP B K E P P P




 
  

     
  (3.5) 



51 

 

3.1.2. Results 

3.1.2.1. Stabilization 

The aim is to stabilize (3.1) via the augmented system (3.3) with the following non-PDC 

control law: 

   1

2

3

1

1

1

4

0
,

hv

hv

h

hv h h

h

h v

hh

v

G x
u K K K x

G G x
G



   
    

  
  (3.6) 

where 2u xn n

hv
K

  and 2 2x xn n

hhv
G

  are matrices to be designed. These matrices depend on 

MFs  i
h z ,  1,2, ,

a
ri   and  j

v z ,  1,2, ,
e

rj  . 

Remark 3.1. The control law (3.6) corresponds to a new control structure since classically 

the inverted matrix is the one used for the Lyapunov function (see (3.4)). The regularity of 

hhv
G  will be discussed later on. 

First, consider the stabilization problem without disturbances  0w  . Substituting the 

control law (3.6) into the augmented TS descriptor (3.3) yields: 

  1 1 0.
hv h hv hhv hv h hv hhv

x
B K A B KEx A G x G I

Ex

   
      

 
    (3.7) 

Consider the following Lyapunov function candidate: 

   1 1, 0,T T

hhv hhv hhv

T T
V x x E P x E P P E

       (3.8) 

with 
1

3 4

0
hhv

hhv hhv

P
P

P P

 
  
 

, 
1

1 1

1 1 1

4 3 1 4

0
hhv

hhv hhv hhv

P
P

P P P P




  

 
   

, with 
1 1

T
P P . 1P  is chosen as a 

constant matrix to prevent the time-derivatives of the MFs emerging in the following 

developments (Guerra et al., 2007), i.e., 1 0 T

hhv
E P . Then, the time-derivative of (3.8) reads: 

   1 0.T

hhv hhv

T T T
V x xx xE P P Ex

     (3.9) 

Condition (3.9) can be expressed as  

 
1

0
0.

0

T T

hhv

hhv

x xP

Ex ExP





    
    

    
  (3.10) 

Via Finsler’s lemma, the equality constraint (3.7) and the inequality (3.10) yields: 
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 0,T T     (3.11) 

where 
1

0

0

T

hhv

hhv

P

P





 
  
 

, 1

hv h hv hhv
GA B K I

     , and 2 2x xnn   is a free matrix. By 

selecting 
1

T

hhv

hhv

G

P





 
  
 

, 0  , and multiplying by the full-rank matrix ,T

hhv hhv
dia Gg P    the 

left-hand side and by its transpose , T

hhv hhv
diag PG    the right-hand side of (3.11) gives 

   0
0.

0

T

T hhv

hv h hv hhvhh

h

v

hv

I
A B K P

G
G

GI
             

   
  (3.12) 

The following theorem summarizes this result. 

Theorem 3.1. The TS descriptor model (3.1) with 0w   under control law (3.6) is 

asymptotically stable if, for a given 0  , there exist matrices 
1 2 1i i j

P , 
1 2 1i i j

G , 
2 1i j

K , 

 1 2 1,2,, ,
a

i ri   ,  1 1,2, ,
e

j r  as defined in (3.6) and (3.8), such that: 

 
1 1 2 2 1

1 1 1 1

1 1 11 1 1 2, ;
2

0, 0, ,
1

,
j j j j

i i i i i i i i i

a

i i i
r

j j         


  (3.13) 

hold with  

 
   

   
1 1 1 2 1 2 1

1

1 2

1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1

.
i

i i

j i i j i j

i

i i j i i j i j i i j i i j i i

i i
j

i T

i j i j

A B

A B P P

K

G P

G

G K 

    
  
      

  (3.14) 

Proof. Developing (3.12), we obtain: 

 
   

   : 0,
hv hhv h hv

T

hhv hv hhv h hv hhv hhv

h

h

h

h

v

v

A B K

A BG K P P P

G

G 

    
  

      
   (3.15) 

which by applying the relaxation Lemma B.3 (Appendix B) yields conditions (3.13). The 

regularity of 
hhv

G  is given as follows: if conditions in Theorem 3.1 hold, then (3.15) also 

holds. By means of the Schur complement (3.15) is equivalent to 

         11
0.T

hv hhv h hv hhv hhv hhv hv hhv h hv hhvA B K P P A B K PG G G



            (3.16) 

Suppose that 
hhv

G  is singular. Therefore there exists 0 0x   such that 
0 0

hhv
G x , hence 

(3.16) yields: 
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        1

0 0

1
0,

T T

h hv h hv hhv hhv hhv h hv hhv

T
x B K B K P P P B K P x 


        

 
  (3.17) 

which is equivalent to 

         1

0 0

1
0.T T T

h hv hhv hhv h hv hhv hhv h v

T

hx B K P P B K P P P x


          
 

  (3.18) 

After some algebraic manipulations (3.18) gives 

 

   
   

1

0

1

1

0

1 1
0.

T T T T T T

hv h hv h hh

T T

hhv hhv h hv hhv hhv

T T T

hhv hhv h hv hhv hhv hh

v

hhv vhhv

x PK B K BP B K P P P

P P P B K P P P P x





 

 

  

    


  (3.19) 

Multiplying by 0   and grouping terms results: 

         1

0

1

0 0,T T T

h hv hhv hhv h hv

T
T T T

hhv hhv hhv hhv hhv hhvx B K P P P B K P P P P P x 
 

        (3.20) 

which contradicts (3.15), since   1

0T

hhv hhvP P


   and therefore (3.20) cannot be true; as 

consequence if 0v

hh
   holds, then 

hhv
G  is not singular. ■  

Remark 3.2. The conditions in (3.13) are LMIs up to the selection of  . Prefixing this 

sort of parameter has been a common practice in the LPV community in recent years (de 

Oliveira and Skelton, 2001; Jaadari et al., 2012; Oliveira et al., 2011; Shaked, 2001) since it 

allows searching for a feasible solution in a logarithmically spaced family of values 

 6 5 610 ,10 , ,10   , which avoids an exhaustive linear search. 

Remark 3.3. The control law (3.6) could be implemented as follows: 

  
1

1

1 21 1 1

4 3 1

2

4

1

0
,hv

hh hh hv

hv h

h

v

h

x
xG G G G

xG
u K K x



  

   
     

  
 (3.21) 

with  1 1 1

1 1 2 4 31 1hv hvhv hh hh hv
G G GK G K

      and  2 2

1

4hv hh
GK

 . Knowing that 

 1

v h h
Ax E x B u

  , (3.21) yields 

    
   

1 1

1 2 2

1 1

2 1 2

1
1 1

2 1 2 .

v h v h

v h v h

v h v h

E x E B u

I E B u E

u x A

x

u I E

A

AB E x

 

 

 

 

  

   



 (3.22) 
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The existence of the inverse of 1

2


v h

I E B  can be deduced from the matrix inversion 

lemma:    1
1

2 2 2

1

v v hh hI B EI E B B
    , which means that the regularity of

1

2


v h

I E B  is equivalent to 2v hE B  being regular. In addition, if the LMI conditions 

(3.13) are satisfied, then (3.15) is also satisfied; by congruence with  1,T

hhv hhv
diag PG

    ,  

(3.15) gives: 

 
   

   
1

1 1 1 1 1
0.

hv h hv

T

hv

T T

hhv hhv hhv

hhv hhv hhv hhvh hv hhvhhv

G G G

G

A B K

P P A B K P PG 

  

     

    
 

      
  (3.23) 

Define 

1
11 1

1 1 1
3 44 3 1 4

00


  

   
  

  
  

hv

hhv

hh hh hv hh

X
XG XG

XG

G G
G ; the (1,1) block of (3.23) writes 

  0
hv h hv

T T
X A X B K X     or: 

 
     

       
1

4

3

2 4 21 1 3

0.
h h

TT

T

T

h h v h v h

X B

X B X B B

A

E XA X E

    
 

         
  (3.24) 

Since (3.24) holds, then    4 2 0
h

T

v
X BE      also holds. Suppose 2v hE B  is 

singular; therefore there exist 0 0x    such that   02 0
v h

E B x   which contradicts (3.24). 

Thus if the LMI conditions (3.13) hold, 2v hE B  is regular and the control law (3.22) can be 

computed. 

Example 3.1. Consider the TS descriptor model (3.1) with 0w  , 2a er r  , and 

matrices 1

0.8 0

0.2 0.5
E





 
 

, 2

4.7 0

0.4 0.7
E





 
 

, 1

4.3 4.8

1.7 1
A

 
  

 , 2

4.4 0.5 4.6

3.9 1.9
A

 



  

, 

1

5.6

0.9
B

 
 
 

 , 2

8.1

0.5
B







  
, and the parameter 0  . The maximum value of   for which 

conditions in (Guerra et al., 2007) were found feasible is 0.17  ; the conditions in 

Theorem 3.1 were feasible up to the value 0.47  .  

Note that taking 0.40   there is no solution for Theorem 1 in (Guerra et al., 2007), while 

employing the conditions of Theorem 3.1 with 0.1    the following values were found: 
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    
 

(1) (3) (4)

1 11 21 22

11 21

12 22

0.09 0.14 0.08 0.12 0.22 0.37 0.51

0

0.12
, , , ,

0.14 0.41 0.14 0.40 0.16 0.32 0.

.21 0.32 0.26 0.08 , 0.25 0.08 0.01 0.02 ,

0.19 0.30 0.30 0.12 , 0.1

30 0 9

0

.1

0

K

P G

K

K K

G G
         

        

   

        
 

    



 .03 0.28 0.01 .

  

For simulation proposes, the MFs are chosen as  2

1 11 1h x , 2 11h h  ,  1 2 1 2v x  , 

2 11v v  . Figure 3.1 shows the open-loop   0u t   and the close-loop trajectories for the 

initial conditions    0 1 0.5
T

x   . 

 

Figure 3.1. (a) State trajectories of the open-loop system. (b) State trajectories of the closed-loop system.    

3.1.2.2. H∞ control 

Consider now the disturbance rejection problem  0w  . Substituting the control law 

(3.6) into the augmented TS descriptor (3.3) yields: 

   1 1 0.
hv h hv hhv hv h hvh hhv h

x

B K A B K IEx A G x D w D ExG

w

 

 
        
  

   (3.25) 

Recall that the output is 
h h

C xy J w . The disturbance rejection can be realized by 

minimizing 0   subject to 
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 

 
 

2

2

0
2

sup ,
w t

y t

w t



   (3.26) 

where 
2
 stands for 2l  norm. The following well-known condition (Tanaka and Wang, 

2001): 

   2 2
0, ,xT nT

V y y w wx x      (3.27) 

implies (3.26). Thus, condition (3.27) gives: 

 
1

2

0 0 0.

0

T

h h

T T

h

T T T

h h h

h

hh

h

hv

v

h

P

P

w J J I

x C C C J

w

x

Ex Ex

C J 





    
         
        

  (3.28) 

Taking 

 
1 1

2

a0 0 ,n

0

d

T T

h h

T T

h h

T

h h h

h

hv

hhv hv h hv hhv h

h

P

P A B K I

J J I

C C C J

G D

C J 



 

 
         
  

  

via Finsler’s lemma we have 

  1 1

2

0 0 0,

0

T

h

T T

h h hhv

hv h hv hhv h h

h

T

h

h

T

h h h

v

C C C J

G D

C

P

A B K I

J IJ

P

J 



 

 
         
  

  (3.29) 

where 
 2 x w xn n n  . Condition (3.29) guarantees (3.28) under restriction (3.25). 

Multiplying (3.29) by , ,T

hhv hhv
diag PG I    on the left-hand side and by its transpose on the 

right-hand side and choosing 
1

0

T

hhv

hhv
P

G







 
   
  

, 0   renders 

  
2

0 0 0,

0 0

T T T T

hhv h h hhv hhv hhv

T

hv hhv h hv hhv h hhv

T

h h

T T

h hhh h v h

G C C G G G C J

G D G

I

I A B

C G J

K P

J J I




  
            
      

  

which can be expressed as 
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     
     

2

0 0 0.

T T
hv hhv h hv hhv h

T

hhv hv hhv h hv hhv h

TT T
h

hhv hhv h

h h

hhv

A B K

A B K P

G G C

G G C GP

D ID J

JP 

 

       
                 
      

  

Finally, applying the Schur complement yields 

 

       
       

 2
: 0.

0

hv hhv h hv

T

hhv hv hhv h hv hhv hv

hh
T T

hv hhv

h hh

h h

hv

G

G G

D D

C G

A B K

A B K P P P

I

J I

 

 

      
 

           
  

   (3.30) 

Based on the developments above, the following theorem can be stated: 

Theorem 3.2. The TS descriptor model (3.1) under control law (3.6) is asymptotically 

stable and ensures disturbance attenuation 0   if, for a given 0  , there exist matrices 

1 2 1i i j
P , 

1 2 1i i j
G , 

2 1i j
K ,  1 2, 1,2, ,

a
i i r ,  1 1,2, ,

e
j r  as defined in (3.6) and (3.8), such that 

 
1 1 2 2 1

1 1 1 1

1 1 11 1 1 2, ;
2

0, 0, ,
1

,
j j j j

i i i i i i i i i

a

i i i
r

j j         


  (3.31) 

hold with  

 

       
       

 

1 1 2 1 1 2 1

1 2 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 11

1 2

1 1

1 1 2 1 1

1

2
.

0

j i j j

i i j j i i j j i i j i i j i i

i i i i

T

i i ij

i
T

j

i

i

T

i

i

i

i

j i

GA B

A B P P P

D D

K

G G K

G J IC

I

 

 

      
 
       

   
  

   

  (3.32) 

Proof. Applying the relaxation Lemma B.3 (Appendix B) to (3.30) ends the proof. ■   

Example 3.2. Consider the TS descriptor model (3.1) with 2a er r  , 1

0.8 0

0.2 0.5
E





 
 

, 

2

4.7 0

0.4 0.7
E





 
 

, 1

4.3 4.8

1.7 1
A

 
  

 , 2

3.9 4.6

3.9 1.9
A

 
  

 , 1

5.6

0.9
B

 
 
 

 , 2

8.1

0.5
B

 
 
 

 , 

1

2

1 0

0 1

 


 
 
 

 
 

C

C
, 1

0.5

0
D



 
 
 

, 2

0

0.5
D


 
  

 , 1J   , 2J  , and the parameter 

 2 0   . Figure 3.2 shows the results when the optimal values for   (min  ) are 

computed via Theorem 2 in (Guerra et al., 2007) (represented by black-O) and Theorem 3.2 

(represented by blue-X). As can be seen, Theorem 3.2 obtains betters results. 
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Figure 3.2. Optimal values for γ in Example 3.2.    

3.2. Discrete-time TS descriptor models 

This section provides LMI conditions for the stabilization of discrete-time TS descriptor 

models by following recent advances: 1) using past samples in the MFs of the Lyapunov 

function and the observer gains as in (Guerra et al., 2012b), 2) a generalization via two 

different non-quadratic Lyapunov functions as in (Lendek et al., 2015). 

3.2.1. Problem statement 

Consider the following discrete-time TS model in the descriptor form: 

 
1

.

k k k h k

k h k h

v

k

h hE x A x B u D w

y C x J w

   
 

  (3.33) 

For the controller design purpose, the following nonlinear control law is used: 

 1 ,
k k

u x
   (3.34) 

where u xn n  and xxn n  are the controller gains to be designed. Their structure will 

be defined later on. The TS descriptor model (3.33) together with the control law (3.34) 

yields: 

 
 1

1

.y

v k h h h k

k h k h k

kx A B x w

w

D

x

E

C J


  

 
  (3.35) 
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In order to design the state feedback controller (3.34), a generic Lyapunov function is 

considered: 

   , 0.
k k k

T T
V x x x     (3.36) 

The structure of  depends on the case treated. The variation of the Lyapunov function 

(3.36) reads: 

   1 1 0.T T

k k kk k
V x x x x x       (3.37) 

3.2.2. Results 

3.2.2.1. Stabilization 

The closed-loop system (3.35) with 0kw   can be written as the following equality 

constraint: 

 
1

1 0.
k

h h v

k

x
A B

x
E



  
    

 
   (3.38) 

The variation of the Lyapunov function, i.e., (3.37) can be expressed as: 

  
1 10

0.
0

k

T

k k

k

k

x x
V x

x x 




    
     

    
   (3.39) 

Denote 
1k

k
x

x 

 
  
 

, 1

h h v
A EB

    , and 
0

0 

 
 






; via Finsler’s lemma 

the inequality (3.39) and the equality constraint (3.38) can be combined in the following 

inequality: 

  1
0

0,
0

h h v
A EB





 
       

 


   (3.40) 

where 2 x xn n  is a free matrix. Depending on the selection of x xn n , the controller 

gains u un n  and x xn n , and the matrix  several results can be obtained from 

(3.40). Two classes of Lyapunov functions are employed: 

1) The non-quadratic (NQ) Lyapunov function (Guerra and Vermeiren, 2004). 

2) The delayed non-quadratic (DNQ) Lyapunov function (Guerra et al., 2012b). 
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Non-quadratic approach 

The following result uses the Lyapunov function (3.36) with 1T

h h h
PG G

  , i.e., 

           
1

1 1 1

.
a a a

T
r r r

T

i i i i i i

i i i

k k kV x x h z k G h z k P h z k G x

 

  

    
    
    

      (3.41) 

Theorem 3.3. The TS descriptor model (3.33) with 0kw   is asymptotically stabilized by 

the controller 1

k hv h k
K G xu

  if there exist matrices 
2 2

0T

i i
P P  , 

2 1i j
K , and 

2i
G , 

 1 2, , 1,2, ,
x a

i i i r ,  1 1,2, ,
e

j r  such that:  

 
1 1 2 2 1

1 1 1 1

1 1 11 1 1 2

2
, ; ,0, , 0, ,

1
,

x x x xi i

j j j j

i i x i ii i i i i i x i

a

i i i
r

i j i j         


  (3.42) 

are satisfied with  

 
 

21

1 2

1 2 1 2 1 1 1

.
x

x x x

i

T

i i i

j

i i i T

ji j i i j i

P

G E GA B K G PE

   
 

    



   (3.43) 

Proof. Recall (3.40) and consider the controller gains hv
K  and hG . The Lyapunov 

function is selected as   1T T

k k h h h k
PV x x GG x

  . By using the congruence property with the 

full-rank matrix ,T T

h h
diag G G     and selecting the free matrix as 10

T

h
G 

    , (3.40) 

gives 

 
 

: 0.
T

h h h hv v

hv

Thhh
vh h h

G E G G

P

A B K E P


  


  

 
    

  (3.44) 

Finally, using the Lemma B.3 yields (3.42), thus concluding the proof. ■   

Different conditions can be obtained when the structure of the Lyapunov function changes. 

The following theorem uses another structure of the Lyapunov function (3.36), 1

h
P

 , i.e., 

     
1

1

1

,
a

k k k

r
T T

i i h

i

k kV x x h z k P x x P x







 
 





    (3.45) 

and the controller gains are defined as hv
K  and hvG . Then, (3.40) gives 

  
1

1

1

0
0.

0

h

h h hv hv v

h

P
A B GK

P
E








 
          


   (3.46) 
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From (3.46), two results can be stated depending on the matrix used when the congruence 

property is applied. Theorems 3.4 and 3.5 summarize these results. 

Theorem 3.4. The TS descriptor model (3.33) (when 0w  ) is asymptotically stabilized 

by the control law 1

k hv hv k
u K G x

  if there exist matrices 
2 2

0T

i i
P P  , 

2 1i j
K , and 

2 1i j
G ,  

 1 2, , 1,2, ,
x a

i i i r ,  1 1,2, ,
e

j r  such that: 

 
1 1 2 2 1

1 1 1 1

1 1 11 1 1 2

2
, ; ,0, , 0, , ,

1x x x xi i

j j j j

i i x i ii i i i i i x i

a

i i i
r

i j i j         


  (3.47) 

are satisfied with  

 
 

2 1 2 1 21

1 2

1 2 1 1 2 1 1 1

.
x

x x x

i i

i i i i

T

j i jj

i i i T

j j j i i j i

G

A B K E

G P

G E P P P

 
 



  
 

    
  (3.48) 

Proof. Recall (3.46). By congruence with the matrix ,T

hv h
diag G P     and setting the free 

matrix as 10
T

h
P 

    ,  (3.46) gives 

 
 1

0.:

T

hv h hvv

Thhh
h hv h hv v vh h h

G P

A B K E

G

G E P P P


  

 
     







  (3.49) 

Applying Property A.3 and the Lemma B.3 yields (3.47), thus concluding the proof. ■   

Remark 3.4. Neither equivalence nor inclusion relation can be established between the 

LMI constraints in Theorems 3.3 and 3.4, since they have been derived from different 

Lyapunov structures (Lendek et al., 2012). This means that for one control problem the 

conditions in Theorem 3.3 could be feasible while those of Theorem 3.4 could be unfeasible; 

or vice-versa. 

Example 3.3. Consider the TS descriptor model (3.33) with 2a er r   and  

 

1 2 1

2 1 2

0.9 0.2 0.9 0.2 0.9 1
, , ,

0.4 1.3 0.4 1.3 1.5 0.5

0.9 1 1 1
, , .

1.5 0.5 0 0

a a a
E E A

b b

a b b
A B B

        
                 

        
      


  


  

  

The real valued parameters are defined as 3 3a    and 1.2 1.2b   . The LMI 

conditions in Theorem 3.3 and Theorem 3.4 have been tested in order to illustrate Remark 

3.4. Figure 3.3 shows the feasibility sets for Theorem 3.3    and Theorem 3.4   . 
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Figure 3.3. Feasibility set for Theorem 3.3 (×) and Theorem 3.4 (□) in  Example 3.3.    

A refined result of Theorem 3.4 can be obtained using different matrices for congruence 

and for  in (3.46). 

Theorem 3.5. The TS descriptor model (3.33) with 0kw   is asymptotically stabilized by 

the controller 1

k hv hv k
u K G x

  if there exist matrices 
2 2

0T

i i
P P  , 

2 1i j
K , 

2 1i j
G , and 

1 2 xi i i
F , 

 1 2, , 1,2, ,
x a

i i i r ,  1 1,2, ,
e

j r  such that: 

 1 1

1 1 2 2

1 1

1 1 1 11 1 1 2

2
0, , 0, ; ,, ,

1x x x xi i

j j j j

i i x i i i i ii ii x i

a

i ji i i
r

i j         


  (3.50) 

are satisfied with 

 

   
 

2 1 2 1 2

1

1 2 1 2 1 1 2 1 1 1 2 1 2 1

1 2

.

0

x x x

x x

i

i

T

i j i j

j T T

i i i i j i j i i i i j

i i i

i j i

i

G P

G E

G

A B F F

F

K E

P

  
 

   
 

  

 

 



   (3.51) 

Proof. Recall (3.46). By using the congruence property with the full-rank matrix 

,T T

hv hhh
diag G F     and setting the free matrix as 10

T

hhh
F 

    , (3.46) gives: 

 
 1

1
0.

T

hv h hv

T T T

h hv h hv v vhhh hhh hhh h hhh

G

G E F F F

G P

A K FB E P    





 
    



 
  (3.52) 

Applying the Schur complement on the entry (2,2) gives: 
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   
 

1

:

0

0,

T

hv h hv

v T T

h hv h hv v vhhh hhh hhh

hhh h

G

A B K E

P G

G

P

E F F

F

  

 

 
 


  
  


      (3.53) 

which by means of Property A.3 on entry (1,1) and via Lemma B.3 yields (3.50), thus 

concluding the proof. ■   

Remark 3.5. The conditions given by Theorems 3.3, 3.4, and 3.5 hold if the matrix v
E  is 

nonsingular; this fact can be seen, for instance, from conditions in Theorem 3.3: if Theorem 

3.3 holds then (3.44) holds too, which means 0T

v h h h

T

v
E G G E P      . Assume that v

E  is 

singular; then, there exist 0 0x   such that 0 0vE x  , thus the block (2,2) of  (3.44) becomes 

0
h

P    which cannot be true since 0hP  . Thus, if conditions in Theorem 3.3 hold, then v
E  

is not singular. 

Remark 3.6. Note that in Theorem 3.5 a new matrix 
hhh

F   is introduced, which adds extra 

degrees of freedom without increasing the number of LMI constraints. Moreover, 
hhh

F   is not 

used in the control law, therefore the use of the next sample MFs   1
xi

h z k  , 

 1,2, ,
x a

ri    is valid. Hence, the results in the Theorem 3.5 are more general than those in 

Theorem 3.4. To see this, let 
hhh h

F P  . Applying the Schur complement on (3.53) gives 

(3.49). 

Figure 3.4 illustrates Remarks 3.4 and 3.6. 

 

Figure 3.4. Illustration of Remark 3.4 and Remark 3.6. 
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Example 3.4. Recall Example 3.3. Figure 3.5 illustrates Remark 3.6 when the conditions 

of Theorems 3.4    and 3.5    are tested for parameter values 3 3a    and 

1.2 1.2b   . 

  

Figure 3.5. Solution set for Theorem 3.4 (□) and Theorem 3.5 (×) in Example 3.4.   

Delayed non-quadratic approach 

This section introduces a way to improve the results obtained in the previous one. The 

main idea is to use delays in the MFs of the Lyapunov matrix, thus changing the structure of 

the controller matrices. This idea has been introduced in (Guerra et al., 2012b).  

Recall the non-PDC control law: 

         
1

1 1 1

.
a e a

k i j ij i i

r r r

i j i

ku h z k v z k K h z k G x



  

 
  

 
   (3.54) 

In order to introduce a delay in the MFs of (3.54), the simplest options for the Lyapunov 

function are: 

          
11

1 1

or 2) .1) 1
a a

x x

x

r r
T T

i i i ik k k k k k

i i

V x x h z k P x V x x h z k P x



 

  
  

  
 


   

Since the controller must be causal, i.e., no future information can be implemented, it 

should not contain positive delays. On the one hand, Option 1 implies that the variation of the 

Lyapunov function         1V x k V x k V x k     depends on the advanced MF 
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  1
xi

h z k    1,2, ,
x a

i r  , which cannot be introduced in the control, i.e., 

1

k khh v hh
u K G x 

  cannot be implemented. On the other hand, Option 2 does not introduce 

future MFs but the delayed one   1
xi

h z k  ,  1,2, ,
x a

i r   which can be introduced in the 

controller (3.54), i.e., 
1

k khh v hh v
u K G x 

 . For consistency, it is assumed that    1 0z z  . 

Based on the discussion above, the following results were obtained; since they are a 

‘direct’ extension of Theorems 3.3, 3.4, and 3.5, they are summarized in the following 

corollary. 

Corollary 3.1. Consider the delayed Lyapunov function   1T T

k k kh h h
PV x x G xG  

   and the 

control law 
1

k khh v h
u K G x 

 . We obtain (3.42) with  

 
 

1

1 2

1 1 2 1 1 2 2 1 2

,
x

x

x x

i

T

i i i i i j

j

i i i T

i jj i i
A

P

G E G G PB K E

  
 

  


  
   (3.55) 

 1 2, , 1,2, ,
x a

i i i r ,  1 1,2, ,
e

j r . For the delayed Lyapunov function   1T

k k kh
PV x x x

  

and the control law 
1

k khh v hh v
u K G x 

  we obtain (3.47) with  

 
 

2 1 2 11

1 2

1 2 1 1 2 1 1 2 2 1 2

,x x x

x

x x

T

j i jj

i i i T

j

i i i i

i i i i i i j ij i j i

G

A B K E

G P

G E P P P

  
 

  

 


   
   (3.56) 

 1 2, , 1,2, ,
x a

i i i r ,  1 1,2, ,
e

j r . An improvement leads to (3.50) with 

 

   
 

2 1 2 1

1

1 2 1 2 1 1 2 1 1 1 2 1 2 1

1 2 2

,

0

x x x

x x x x x

x

T

i j i j

j T T

i i i i j i j

i i i

i i i i j i i

i

i i i i j

i i i

G

A B K E

G P

G E F F

PF

  
 

   
   

 

     (3.57) 

 1 2, , 1,2, ,
x a

i i i r  ,  1 1,2, ,
e

j r . 

Proof. The results follow direct from inequality (3.40) using the same lines of proofs as for 

Theorem 3.3, Theorem 3.4, and Theorem 3.5, respectively. Table 3.1 provides a sketch of the 

proof. ■  

Since all the approaches involve three convex sums in  h  and one convex sum in  v

the number of LMI constraints is a a a er rr r    and is the same for Theorems 3.3, 3.4, and 
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3.5, and their respective delayed approaches;. Table 3.2 summarizes the obtained results in 

terms of number of decision variables, where xn  is the number of states, un  is the number of 

inputs, a
r  and e

r  are the number of linear models in the right-hand side and in the left-hand 

side, respectively. 

Remark 3.7. Note that when using past samples in the MFs to achieve relaxations, double 

sum relaxations should be taken into account, i.e., cross products sharing the same sample 

index should appear between the decision variables and the system matrices.  

Table 3.1. Sketch of the proof for Corollary 3.1 (Delayed approaches). 

Approach Step 1 Step 2 Step 3 Result 

Theorem 3.3 

Delayed 

1T

h h h

hh v

h

P

K

GG

G

  





 





 

Congruence with  

,T T

hh
diag G G    

Set 
10

T

hG
     

Lemma B.3 
LMIs (3.42) 

with (3.55) 

Theorem 3.4 

Delayed 
1

h

hh v

hh v

P

K

G













 

Congruence with  

,T

hhh v
diag G P    

Set 
10

T

hP
     

Property A.3 

and Lemma 

B.3 

LMIs (3.47) 

with (3.56) 

Theorem 3.5 

Delayed 

Congruence with  

,T T

hh v hhh
diag G F     

Set 10
T

hhh
F 

     

Property A.3, 

Schur 

complement, 

and Lemma 

B.3 

LMIs (3.50)

with (3.57) 

 

Example 3.5. Recall Example 3.3. Figure 3.7 illustrates Remark 3.7 when the conditions 

in Theorem 3.3 and its delayed approach  1, ,T

h h h hh v h
P GG K G    

     are 

implemented for parameter values 3 3a    and 1.2 1.2b   . As can be seen from Figure 

3.6, in this case, the delayed approach performs worse than Theorem 3.3. This is explained by 

the fact that there is no cross product at the same sample between the system matrix and the 

designed gain, i.e., no double sum relaxation scheme can be implemented on  

     
1 11 1 1

1
a a

x xx
i i

r r

i ii i
h z k h Gz k A

 
  . 
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Figure 3.6. Solution set for conditions in Theorem 3.3 (x) and its delayed approach (+) in Example 3.5.    

Table 3.2. Comparison of Theorems 3.3, 3.4, and 3.5; and their delayed approaches (Corollary 3.1). 

Approach 

Lyapunov 

function 

(3.36) 

Control 

law (3.34) 
Number of decision variables 

Theorem 

3.3 
1T

h h h
P GG

   
hv

h

K

G




     20.5 1
x x a x u e x a

n n r nn r n r      

Theorem 

3.4 
1

h
P

  
hv

hv

K

G




  

   20.5 1
x x a x u x a e

n n r nn n r r      

Theorem 

3.5 
   2 2 30.5 1

x x a x u x a e x a
n n r n n r nn r r       

Theorem 

3.3 

Delayed 

1T

h h h
P GG   

   
hh v

h

K

G








    20.5 1

x x a x u a e x a
n n r n r nn r r     

Theorem 

3.4 

Delayed 
1

h
P 

  
hh v

hh v

K

G








 

   20.5 1
x x x u exa a

n n r nn n r r     

Theorem 

3.5 

Delayed 

   2 2 2 30.5 1
x x a x u x a e x a

n n r n n r n rn r       

 

-2 -1 0 1 2
-1

-0.5

0

0.5

1

a

b
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3.2.2.2. H∞ control  

In this subsection, the problem of disturbance attenuation is addressed. To end, rewrite the 

closed-loop system (3.35) as 

 
1

1 .0,
h h v h k k h k

k

h k

k

x

A B x C x J w

w

E D y


 
      
 





    (3.58) 

Then, consider Lyapunov function  k k

T

k
V x x x , then   2 0T T

k k k k k
xV y y w w     

together with (3.37) writes 

 1

2

1

0

0 0 0.

0

T T

k h h h h k

k k

T T

k h h h

T

h k

C C J

J C J

x C x

x x

w J I w
  

 
 



 
 

  
       
      

  (3.59) 

Take 
1k

k

kx

x

w



 
   
  

, 1

h h v h
EA B D

    , 
2

0

0 0

0

T T

h h h h

T T

h h h h

C C J

J C

C

J IJ 


 
   
   

. 

Using Finsler’s lemma, the equality constraint (3.58) together with the inequality (3.59) gives 

  1

2

0

0 0 0,

0

T T

h h h h

h h v h

T T

h h h h

C C JC

E D

J

A

J J I

B

C 




 
      

  
 


 

  (3.60) 

where 
 2 x w xn n n   is a free matrix. The following results are based on inequality (3.60). 

As in the previous section, the resulting LMI constraints depend on the selection of the 

Lyapunov matrix , controller gains , , and the slack matrix . For the sake of 

simplicity, only the proof of the first result is given. The others can be easily inferred from 

the previous developments. 

Theorem 3.6. The TS descriptor model (3.33) under the control law 1

k hv h k
K G xu

  is 

asymptotically stable and guarantees disturbance attenuation 0   if there exist matrices 

2 2
0T

i i
P P  , 

2i
G , and 

2 1i j
K ,  1 2, , 1,2, ,

x a
i i i r ,  1 1,2, ,

e
j r  such that  

 
1 1 2 2 1

1 1 1 1

1 1 11 1 1 2

2
, ; ,0, , 0, , ,

1x x x xi i

j j j j

i i x i ii i i i i i x i

a

i i i
r

i j i j         


  (3.61) 
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are satisfied with  

 

     
   

 

2

1 2 1 2 1 1 11

1 2

1

1 2 1

2
.

0

0

x x x

x

i

T T

i i i i j j i i j ij

i i i T

i

i i i

P

G B K G G E P

I

A E

D

C J IG



     
 

   
   

  

 
  

  (3.62) 

Proof. Recall (3.60). The Lyapunov matrix is selected as 1T

h h h
PG G

   ; the controller 

gains are selected as hv
K  and hG . By congruence with the full-rank matrix 

, ,T T

h h
diag G G I    and selecting 10 0

T

h
G 

    , (3.60) yields 

 

   
 

2

0,

T T

h h h h h

T T

h h h hv v vh h h

T T T

h h h h h h

G

A E P

J

C C G P

G B K G G E

C JG J ID 
  

  
      

  
  (3.63) 

which can be expressed as 

 

   
   

2

0 0 0.

0

:

T T

h h h

v T T

h h h hv v v h h hhhh h h h

T T

h h

GP C

G B K G G E CA E P

D

G

J

J

I
   


 

   
         
     




  

Finally, applying the Schur complement and Lemma B.3 yields (3.61) . ■   

The following results are based on the Lyapunov function   1T

k k h k
PV x xx

 . 

Theorem 3.7. The TS descriptor model (3.33) under the control law 1

k hv hv k
K G xu

  is 

asymptotically stable and guarantees disturbance attenuation 0   if there exist matrices 

2 2
0T

i i
P P  , 

2 1i j
G , 

2 1i j
K , and 

1 2 xi i i
F ,  1 2, , 1,2, ,

x a
i i i r  ,  1 1,2, ,

e
j r  such that:  

 
1 1 2 2 1

1 1 1 1

1 1 11 1 1 2

2
, ; ,0, , 0, , ,

1x x x xi i

j j j j

i i x i ii i i i i i x i

a

i i i
r

i j i j         


  (3.64) 

are satisfied with 
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       
     

   
 

2 1 2 1 2

1 2 1 1 2 1 1 1 2 1 2 1

1

1 21 2

1

1 2 1 1

2

0 .

0 0

0 0

x x

x xx

T

T

i j i j i

T

i i i i j j i i i i i i j

j

i i i ii i i

T

i

i i

j

j i

G P

A E F

F

G

P

D

G B K F E

I

IGC J



     
 

    
     
  
 
 















  (3.65) 

Remark 3.8. Since One can easily extend the results of Theorems 3.6 and 3.7 using past 

samples in the MFs. For instance, consider (3.60) and set the Lyapunov matrix as 

1T

h h h
P GG   

    and the control law as 
1

k khh v h
Ku G x 

 . Based on Theorem 3.6, the delayed 

approach gives (3.61) with: 

 

     
   

 
1 1 2 1 1 2 2 1 21

1 2

1

1 1

2
.

0

0

x

x x

x

x

i

T T

i i i i j j i i j ij

i i i T

i

i i i

i
G B K G G E

P

A E

D

C J

I

G I

P



     
 

   
    

  

  
   (3.66) 

Example 3.6. Consider the following nonlinear descriptor model: 

        1 , ,
k k k k k k k k k k k

D yE x x A x x Bu x w x x JC w       (3.67) 

with 

 
   

     
       

1

21

2 2

0.9 0.61.1 0.7cos 0.5
, , ,

1 cos 2.50.7cos 1.3 1

0.4 0.5 , 0 0.3 0.5 , and 0.2 ,

k k

k

T

k

x
E x A x B

xx

C x x D x x J 

     
            

    

  

where   is a real-valued parameter. Notice that since    2

11.43 0.49cos 0
k

E x x   , 

 k
E x  is regular 1x  . Via the sector nonlinearity approach, a TS descriptor model 

results with 2
e

r   and 4
a

r   due to the number of nonlinearities in the left-hand side and in 

the right-hand side. Considering the compact set  1 2: , 1x x x   , the MFs are defined 

as follows:   1 1cos 1 2v x  , 12 1v v  , 1 2

1 0 0h   , 
2 0

2

1

1
h   , 

3 1

2

0

1
h   , and 

4 1

2

1

1
h   ; 

their corresponding weighting functions are:   1

0 2cos 1 2x   ,  0 2

2 1 2x  , 

01

1 11   , and 
0

2

1

21   .  The MFs hold the convex sum property in the compact set  . 

Hence, an exact TS representation is: 
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      

   

1

4

1 1

4

1

,

e

j j k i i k i k i k

k i i

i

i

j

k

i

k

r

x B u Dv z k E x h z k A

y h z k C

w

x J w










 

  


  (3.68) 

with local matrices as follows: 

 

1 1 22 3

1

2 4

4

2 4 3

1 3

1.1 0.7 1.1 0.7 0.9 0.6 0.9 0.6
, , , ,

0.7 1.3 0.7 1.3 1 3.5 1 3.05

0.5 0.4 0.4
, , ,

1 0.5 1.5

0 0
,

0.3 0.5 0.3
, d

0.5
an

T T

i

E E A A

B C C C

A A

D D

C

D D J
 

         
                

     
            

   
        

     

 

   0.2 , 1,2, , .i ai r  

  

Figure 3.7 shows the minimal value for   is computed for  2, 0    when employing 

the conditions in Theorems 3.6  O  and its delayed approach    (see Remark 3.8). It can be 

seen that the delayed approach provides better attenuation.  

 

Figure 3.7. Minimal values for γ: Theorem 3.6 (O) and Theorem 3.6 delayed (×) in Example 3.6.    

3.2.3. Generalization 

As it can be inferred from the previous subsections, extending the Lyapunov function 

and/or the control laws can significantly improve the results. Therefore, a natural question 

that arises is the generalization of this approach. The question is: if we add some more past 

-2 -1.5 -1 -0.5 0
0

0.5

1

1.5

2

2.5

3

3.5

4




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samples, does it contribute to the effort of reducing conservativeness? Moreover, is there a 

“good” choice for the structure (in the sense of which and how many past samples) of the 

Lyapunov function and of the control law? The section hereafter answers these questions. To 

that end, the following notation is adopted from (Lendek et al., 2015). 

Definition 3.1. (Multiple sum) A multiple sum with 
h

n terms and delays evaluated at 

sample k  is of the form: 

         1 1 2

1

20

2

2

1 1 1

1 ,
n n

h h
n

h

h

r r r

ni i iH
i i i

i i ih z h z h zk d k d k d
 


  

         

where 
0H
  is the multiset of delays  1 20 , , ,d

h
nH d d


  ,  d   . The definition of 
0

  is 

similar, i.e.,       1

1

0 1

1 1

1 .
n n v

n

h

h

v

r r

j j n j j

j j

k dv kz v dz
 


 

        

Definition 3.2. (Multiset of delays) 
0H
  denotes the multiset containing the delays in the 

multiple sum involving   at sample k . H
  denotes the multiset containing the delays in the 

sum   at sample k  . 

Definition 3.3. (Cardinality) The cardinality of a multiset H , H
H n , is defined as the 

number of elements in H . 

Definition 3.4. (Index set) The index set of a multiple sum H
  is 

 : 1,2, , , 1,2, ,
H j j

i i r j H   , the set of all indices that appear in the sum. An 

element i  is a multiindex. 

Definition 3.5. (Multiplicity) The multiplicity of an element x  in a multiset H ,  H
x1  

denotes the number of times this element appears in the multiset H . 

Definition 3.6. (Union) The union of two multisets A
H  and B

H , denoted C A BH H H  , 

is such that:       : max ,
C A BHC H H

x H x x x  1 1 1 . 

Definition 3.7. (Intersection) The intersection of two multisets A
H  and A

H , denoted 

AC BH H H  , is such that C
x H  :       min ,

C A BH HH
x x x1 1 1 . 
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Definition 3.8. (Sum) The sum of two multisets A
H  and B

H , denoted C A B
H H H  , is 

such that      :
C A BC H HH

x x x xH   1 1 1 . 

Definition 3.9. (Projection of an index) The projection of the index 
AH

i  to the multiset 

of delays B
H , 

BH
pr

i
,  is the part of the index that corresponds to the delays in A B

H H . 

The following example illustrates the previous definitions. 

Example 3.7. Consider the multiple sum: 

               
1 5 1 2 3 4 52 3

1 5

40

2 3 41 1 1 1 1

1 2 3 3 .
a a a a ar r r r r

i i i iH
i i

i i i

i

i i i

i i

k k kh z h z h k kz h z h z

    

      

Then, 
0H
  is given by  0 0, 1, 2, 3, 3H

      , or  , 1, 2, , 33H          .  The 

cardinality of 
0H
  is 

0 5
h

H n


  . The index set of the multiple sum 
0H
  is 

 
0

: 1,2, , , 1,2, ,5
j j aH

i i r j    . The multiplicity of the elements in 
0H
  is  

0

0 1
H

 1 , 

 
0

1 1
H

  1 ,  
0

2 1
H

  1 , and  
0

3 2
H

  1 . Now, let A
H  and B

H  be two multisets defined 

as  0,0, 1, 2, 3
A

H      and  0, 3, 4
B

H    . The union of these multisets is 

 0,0, 1, 2, 3, 4
A B

H H      , the intersection is  0, 3
A B

H H   , and their sum is 

 0,0,0, 1, 2, 3, 3, 4
A B

H H       .  

Considering the previous definitions, the discrete-time TS descriptor model (3.33) can be 

written as  

 
0 0 0 0

0 0

1

,

E A B D

C J

H H H

H H

k k k k

k k k

E x A x B u D w

y x J wC

   

 
   (3.69) 

with  0 0 0 0 0 0 0E A B C D J
H H H H H      , i.e., the system matrices are without delays. 

In what follows, for design purposes, consider the following non-PDC control law: 

 
0 0 0 0

1 ,K K G Gk kH H
u G xK

   (3.70) 

where 
0 0
K K

H
K  and 

0 0
G G

H
G  are matrices to be determined of appropriate dimensions. The 

regularity of 
0 0
G G

H
G  will be discussed further on. Obviously, for causality these matrices 

cannot contain positive delays, otherwise they incorporate future samples (Guerra et al., 
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2012b; Lendek et al., 2015). The delays are given by the multisets 
0

K
H , 

0

G
H , 

0

K , and 
0

G . 

Thus, when 0kw  , the model (3.69) under the control law (3.70) gives the closed-loop 

dynamics 

  
0 0 0 0 00 0

1

1 .E A B K K G Gk kH HH H
KE x A B G x


     (3.71) 

Example 3.8. Recall that the multisets for the system matrices are  0 0 0 0E A B
H H    

and by choosing  0 0 0 0 0K G K G
H H     for the controller gains, the closed-loop TS 

descriptor (3.71) renders: 

 

           

     

1 1 1 2 1

1 1 2 1

1 2 2 1 2 1 2 1

2 1

1 1 1

1

1

1

1

1

,

e e

e

r rr r

j j i j

j i i j

rr

i i i i j i

i

k i

j j k

j

v z k E x h z k h z v z

A B K

k

h z v

k

k kz G x

   

 








 
  


 




  

 


  

which is exactly the same as Theorem 3.4 and Corollary 3.1.   

Following the same procedure as in the previous sections, i.e., using the generic Lyapunov 

function (3.36) and its variation (3.37), the closed-loop model (3.71) is  

 
0 0 00 0 0 0

1

1

0;A B EK K G GH

k

H HH
k

x
A EKB G

x





        
  (3.72) 

while the variation of the Lyapunov function (3.37) is: 

  
1 10

0.
0

k

T

k k

k

k

x x
V x

x x 




    
     

    
   (3.73) 

By taking 
1

k

k

x

x 

 
  
 

, 
0 0 0 00 0 0

1
A B K K G G E

HH H H
A B G EK

     ,  
0

0 

 
 






, and using 

Finsler’s lemma, inequality (3.73) under constraint (3.72) yields: 

  
00 0 00 0 0

1
0

0.
0

K GA EKB GH H H H
A B GK E



            


  (3.74) 

From here, as in Section 3.2.2, two main configurations of  are considered: 

Case 1: 
00 00 0 0

1
P PG G G G

T

H HH
G P G

   , thus  
0 0 0 00 0

1 ,P PG G G G

T

H

T

k k kH H
V x x G P G x

   
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Case 2: 
0 0

1
P P

H
P

 , therefore  
0 0

1 ,P P

T

k Hk k
V x x P x

  

where 
0 0 0 0, ,

0P P P P

T
P P 

i ij j
, 

0
P

H
i , 

0
Pj . Considering Case 1, the conditions in Theorem 3.3 

can be generalized as follows: 

Theorem 3.9. The closed-loop TS descriptor model (3.71) is asymptotically stable if there 

exist 
, ,

0P P P P
k k k k

T
P P 

i j i j
, P

k

P

k H
pr ii , P

k

P

k
pr jj , 

,G G
k k

G
i j

, G
k

G

k H
pr ii , G

k

G

k
pr jj , 0,1k  , and 

0 0,K KK
i j

, 
0

0 K

K

H
pr ii , 

0
0 K

K
pr jj , 

H
i , 


j ,  with  0 1 0 0 0 1

P P K G E G

      

   0 1 0 0 0 0 1

P P B K A G G
H H H H H H H H        ,  such that 

 
 

0 0

0 0 0 0 0 0 0 1 1 1 1 0 1 1

0.
P P

A G G B K K E G G G G E P P

H

T T

H H H H H H H

P

A G B K E G E PG

   
  

     
  (3.75) 

Proof. Recall (3.74). Choosing  
0 00 0 0 0

1
PG G GP G

T

H

T

k k kH H
V x x G P G x

  , congruence with matrix 

0 110

,GG G G

T T

H H
diag G G 

   and selecting 
11

10 GG

T

H
G

     gives directly (3.75). ■   

Employing the Lyapunov function in Case 2, the following can be stated. 

Theorem 3.10. The closed-loop TS descriptor model (3.71) is asymptotically stable if 

there exist 
, ,

0P P P P
k k k k

T
P P 

i j i j
, P

k

P

k H
pr ii , P

k

P

k
pr jj , 0,1k  , 

0 0,K KK
i j

, 
0

0 K

K

H
pr ii , 

0
0 K

K
pr jj , 

and 
0 0,G GG

i j
, 

0
0 G

G

H
pr ii , 

0
0 G

G
pr jj , 

H
i , 


j , where 

   0 1 0 0 0 0

P P B K A G
H H H H H H H       , 

0 1 0 0 0

P P K G E

       such that 

 
 

0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 0 1 1

0.
G G G G P P

A G G B K K E P P P P E P P

T

H H H

T

H H H H H H H

G G P

A G B K E P P E P

    
  

     
  (3.76) 

Proof. Consider (3.74) with the Lyapunov function  
0 0

1
P P

T

k k H k
V x x P x

 . Applying the 

congruence property with the full-rank matrix 
0 110

,G PG P

T

H H
diag G P 

   and choosing 

11

10 P P

T

H
P

    , (3.74) gives: 

 
 

0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 0 1 1

1

0.
G G P P G G

A G G B K K E P P P P E P P

T

H H H

T

H H H H H H H

G P G

A G B K E P P E P

  
  

     
  (3.77) 
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At last, by means of Property A.3 on the first block of (3.77) gives (3.76). ■   

The next result provides more relaxed conditions than Theorem 3.10. 

Theorem 3.11. The closed-loop TS descriptor model (3.71) is asymptotically stable if 

there exist 
, ,

0P P P P
k k k k

T
P P 

i j i j
, P

k

P

k H
pr ii , P

k

P

k
pr jj , 0,1k  , 

0 0,K KK
i j

, 
0

0 K

K

H
pr ii , 

0
0 K

K
pr jj , 

0 0,G GG
i j

, 
0

0 G

G

H
pr ii , 

0
0 G

G
pr jj , and 

0 0,F FF
i j

, 
0

0 F

F

H
pr ii , 

0
0 F

F
pr jj , 

H
i , 


j , where: 

   0 1 0 0 0 0 0

P P B K A G F
H H H H H H H H        ,  0 1 0 0 0 0

P P K G E F

        

such that 

 

   
 

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1

0.

0

G G G G P P

A G G B K K E F F F F E

F F P P

T

H H H

T T

H H H H H H

H H

G G P

A G B K E F F E

F P

     
 
     
 
  

  (3.78) 

Proof. Consider (3.74) with the Lyapunov function  
0 0

1
P P

T

k k H k
V x x P x

 . Applying the 

congruence property with the full-rank matrix 
0 110

,G FG F

T T

H H
diag G F 

   and selecting 

11

10 F F

T

H
F

    , (3.74) gives 

 
 

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

1

1
0.

G G P P G G

A G G B K K E F F F F E F F P P F F

T

H H H

T T T

H H H H H H H H H

G P G

A G B K E F F E F P F





  
  

     
  (3.79) 

Applying Property A.3 on the first block of (3.79) yields: 

 
 

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

1
0.

F F

G G G G P P

A G G B K K E F F F F E F F P P F F

T

H H H

T T T

H H H H H H H H H

G G P

A G B K E F E P F


    
  

     
  (3.80) 

Finally, the Schur complement applied on (3.80) gives (3.78), thus ending the proof. ■   

Note that the total number of sums  – for MFs  h  and  v  –  involved in Theorem 3.9, 

Theorem 3.10, and Theorem 3.11 is given by H
n H   . 

Remark 3.9. Note that the standard TS model is a special case of the TS descriptor one 

when 
0
EE I ,   , where   stands for the empty set; therefore Theorem 3.9 and 3.10 

recover their respective theorems in (Lendek et al., 2015). 
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Example 3.9. Consider the closed-loop system (3.71) with  00 0 0A BE
H H   and the 

multisets  0 0 0 0, 1G K F
H HH     ,  0 0 0 0, 1G F K    , and  00 1P P

H    , i.e., 

 

         

               

               

1 1 1 1

1 1

1 1

0 0

1
1

0 0

0 0

1

1 1

1

1 , 1

0, 1 , 0, 1

0, 1 , 0

1 1 1

1 1
,

1
1

1 1

1 1

1 1

,

,

,

a e

x x x x

x x

a a e e

x x

P P

K K
x x

x

G G
x x

x

x

e e

x x

x

r r

jH
i j

r r r r

j j i jH
i i j j

r r

i i j

i i i j

i i i jj i jH j
i j j

P P h z v z P

h z h z v z v z K

k k

K K

G G h z h z z v z G

k k k k

k k k k

 

   

  

 

 

 

 

 



 







 







               
1

10 0 1 1 1

1 1

1

1 1 1 1
0, 1 , 0, 1

1 .1G G
x x

x

a a

a a e e

x x

x

r r

i

r r r r

j j i jH
i j

i

i

i i j

j

F F k k kh z h z v z v Fkz



 
 

 

  





  

Thus, conditions for Theorem 3.9 yield: 

 

           

           
 

2 3 4

2 3 1

2 3

4 4 2

1

1 4 2 3 4

1 4

3 3

1 2 2 1 2 3 2 3 21 2 3 2 3 2 3 2 3 1

1 1 1 1 1 1 1 1

1 1

1

0.

1

a a a e ea e er r r r r r r r

i i i i j j j j

j j

i i i i

i j i j j i j i j

j j

i j

T T

i i j i i j i j i j j i j

h z h z h z h z

v z v z v z v z

P

A G B K E G G E P

k k k k

k k k k

       



  
  

    

 

 




  (3.81) 

Conditions in Theorem 3.10 write: 

 

        

        
 

1

1 2

1

2 2 2 2

1

2

2 1

2

2 2 2 2 22 2 1 2 2 1 21

1 1 1 1 1 1

0

1

1

.

a a a e e

x

x x x x x x

e

x

x

x

x x x x

r r r r r r

i i i j j j

j j j

T

i j i j i j

T

i

i i

i j i

i

i j i j

i j i j j i j i j j i ji j

h z h z h z

v z v z v z

G G P

A G

k k k

k k

B K E P P E P

k

     



    
  

    








  (3.82) 

Finally conditions in Theorem 3.11 are: 

 

        

        
   

 

1

1 2

1

2 2 2 2

1 2 2 1

2

2 1

2

2

2 2 1 2 3 2 2 2 1

2 2 2

1 1 1 1 1 1

1

.

1

0

0

a a a e e

x

x x x x x x

x x x x x x x

x

e

x

x

x

x

i i i

i j i j

r r r r r r

i i i j j j

j j j

T

i j i j i j

T T

i i j i i ji j i j i j i jj i j i j j

i j ii j j

h z h z h z

v z v z v z

G G P

A G B K E F F E

F

k k k

k k k

P

     



     
 

      
 










  (3.83) 
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The number of sums in Theorem 3.9 is 8
H

n H    , while for both Theorems 3.10 

and 3.11 is 6
H

n  . These differences are due to the fact that H  and   depend on the 

chosen multisets for each theorem.   

Selecting multisets 

At this point, it is important to clarify how to select the multisets involved in the control 

law and in the Lyapunov functions. The main idea is that multisets in 
0 0
K K

H
K , 

0 0
G G

H
G , 

0 0
F F

H
F , 

and 
0 0
P P

H
P  should be chosen such that sum relaxations can be used and the number of sums 

and the computational complexity of the resulting LMI should be reduced. Therefore, without 

considering solver limitations, the following reasoning applies: 

Step 1: Since the system under study does not have delays in its matrices, i.e.,

 0 0 0 0E A B
H H   , multisets 

0

K
H , 

0

G
H , 

0

F
H , 

0

K , 
0

G , and 
0

F  should contain  0 . 

Double sum relaxations and the maximum number of variables should be used, but without 

increasing the number of sums. To illustrate the considerations above, consider conditions in 

Theorem 3.11 with  0 0 0 0 0 0 0K G F K G F
H H H      : 

 

           

                         

   

0 0

1 1

0 , 0 0 , 0

0 0 , 0 0 0 , 0 0 0 , 0 0 , 0 0

0 , 0

0,

0

P P

P P

T

H

T T

H

G G P

A G B K E F F E

F P

     
 

     
 

  

  (3.84) 

which after selecting  0 0 1P P
H     gives 

 

               

                         

       

0 , 0 0 , 0 1 , 1

0 0 , 0 0 0 , 0 0 0 , 0 0 , 0 0

0 , 0 0 , 0

0,

0

T

T T

G G P

A G B K E F F E

F P

      
 

     
 

  

  (3.85) 

it consists of three sums involving           
11 2 21 1 1

: 1
a a a

x x

r r r

i i i i i i
h h z h zk k kh z

  
    and 

three sums of           
11 2 21 1 1

: 1
e e e

x x

r r r

j j j j j j
v v z v zk k kv z

  
   . 

Step 2: Due to the structure of (3.85), it is possible to add the delay  1  in each multiple 

sum 
0 0
K K

H
K , 

0 0
G G

H
G , 

0 0
F F

H
F  without increasing the number of sums: 
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               

                         

       

0, 1 , 0, 1 0, 1 , 0, 1 1 , 1

0 0, 1 , 0, 1 0 0, 1 , 0, 1 0 0, 1 , 0, 1 0, 1 , 0, 1 0

0, 1 , 0, 1 0 , 0

0.

0

T

T T

G G P

A G B K E F F E

F P

     

       

 

     
 

     
 

  

  

Step 3: Since the multiple sum 
0 0
F F

H
F  does not multiply 

0
A

H
A  and 

0
B

H
B , one can add  0  in 

0

F
H ; similarly for the multiple sums 

0 0
K K

H
K  and 

0 0
G G

H
G : one can add  0  in 

0

K  and 
0

G , 

respectively. Thus the “good” — more decision variables with less number of convex sums 

— multisets for this problem are: 

 

               

                         

       

0, 1 , 0,0, 1 0, 1 , 0,0, 1 1 , 1

0 0, 1 , 0,0, 1 0 0, 1 , 0,0, 1 0 0,0, 1 , 0, 1 0,0, 1 , 0, 1 0

0,0, 1 , 0, 1 0 , 0

0.

0

T

T T

G G P

A G B K E F F E

F P

     

       

 

     
 

     
 

  

  

Table 3.3 shows how the number of decision variables changes at each step. 

Table 3.3. Number of decision variables at each step for Theorem 3.11. 

Step Number of decision variables Number of sums 

Step 1            20.5 21
x x a e x a e u x a e

n n r nr r nr n r r       
3 sums in  h  

3 sums in  v  

Step 2            2 2 2 2 20.5 21
x x a e a e u x a e

n n r nr r nm rr r       
3 sums in  h  

3 sums in  v  

Step 3 
       

       

2 2 3

2 3 2 2 3

0.5 1x x a e a e

a e u x a e

r r

r

n n r

n

r

n r

n

r n r
















 

3 sums in  h  

3 sums in  v  

 

Remark 3.10. For a fixed combination of multisets, independent of the structure chosen, 

adding  0  or  1  in every possible place will reduce the conservatism. Thus, the more 

delays  0 , 1  are used, the more relaxed the conditions are. Following the procedure 

given above, the maximum number of sums is given by 2 2 2
h vH P P

n n n   . 
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The method for Theorem 3.9 is as follows: 

Step 1: Select multisets  0 0 0 0 0K G K G
H H    , thus conditions in Theorem 3.9 give: 

 
 

                       

0 0

1 1
0 0 , 0 0 0 , 0 0 1 , 1 1 , 1 0

0.
P P

P P

H

T T

H

P

A G B K E G G E P

   
  

     
  (3.86) 

Since there are no double sums in  v  at the current sample k , it is possible to add  0  in 

0

K , i.e.,  0 0 0

K E G  . Then (3.86) yields 

 
 

                       

0 0

1 1
0 0 , 0 0 0 , 0,0 0 1 , 1 1 , 1 0

0,
P P

P P

H

T T

H

P

A G B K E G G E P

   
  

     
  (3.87) 

which ends in three sums for           
11 2 21 1 1

: 1
a a a

x x

r r r

i i i i i i
h h z h zk k kh z

  
     and 

three for             
11 2 21 1 1

: 1
e e e

x x

r r r

j j j j j j
v v z v zk k kv z

  
   . 

Step 2: To keep the same number for sums as for Theorem 3.11, the best solution for the 

Lyapunov multiple sums is  0 0 0P P
H   . Finally, (3.87) renders: 

 
     

                           

0 , 0

0 0 , 0 0 0 , 0,0 0 1 , 1 1 , 1 0 1 , 1

0.
T T

P

A G B K E G G E P

   
  

     
  (3.88) 

Table 3.4 summarizes these results for an arbitrary cardinality of the multisets. 

Example 3.10. Consider the TS descriptor (3.69) when 0kw  ,  with 2a er r  , 

1

1.1 0

0 0.36
E

 
 
 

 , 2

0.95 0

0 1
E

 
 
 

 , 1

1.18 0.2 1.31
,

0.33 0.23
A

  
  

  2

0.69 1.41

1.17 1.43
A

 
  

 , 

1

1
,

1.05
B

 
   

 and 2

1 0.1

0
B

 
  
 

, where 0   is a real-valued parameter.  Applying 

Theorem 3.9 with multisets: 

  0 0 0 0 0P K G K
H H H    , 

0 0

P G   (four sums are involved). The maximum 

value of   for which conditions were found feasible is 0.86  . Using the same 

number of sums the conditions of Theorems 3.10 and 3.11 are not feasible for any  . 
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  0 0 0 0, 1P G K
H H H    ,  0 0K  , 

0 0

P G   (five sums are involved). The 

maximum value of   for which conditions were found feasible is 0.90  . 

  0 0 0 0 0 0P K G P G
H H H      and  0 0,0K  : three sums in  h  and three sums 

in  v , the maximum value was 1.86.     

Table 3.4. How to select multisets for Theorem 3.9 and Theorem 3.11. 

Matrix Multisets in Theorem 3.9 Multisets in Theorem 3.11 

0 0
P P

H
P  

 0 00,0, ,0 ,
h

P P

P
H H n     0 01, 1, , 1 ,

h

P P

P
H H n      

 0 00,0, ,0 ,
v

P P

P
n    0 01, 1, , 1 ,

v

P P

P
n       

0 0
K K

H
K  

0 00,0, ,0, ,

Ph

h

K K

P

n

H H n    0 00,0, ,0, 1, 1, , 1 , 2

P

h

Ph h

K K

P

n n

H H n       

 0 00,0,0, ,0 , 1
v

Pv

K K

P

n

n     0 00,0,0, ,0, 1, 1, , 1 , 1 2
v

Pv Pv

K K

P

n n

n        

0 0
G G

H
G  

0 00,0, ,0, ,

Ph

h

G G

P

n

H H n    0 00,0, ,0, 1, 1, , 1 , 2

P

h

Ph h

G G

P

n n

H H n      

0 00,0, ,0, ,
v

Pv

G G

P

n

n    0 00,0,0, ,0, 1, 1, , 1 , 1 2
v

Pv Pv

G G

P

n n

n        

0 0
F F

H
F  

---------------- 
 0 00,0,0, ,0, 1, 1, , 1 , 1 2

Ph Ph

h

F F

P

n n

H H n       

---------------- 
 0 00,0, ,0, 1, 1, , 1 , 2

v

P Pv v

F F

P

n n

n      

 

H∞ attenuation 

In this part, we consider disturbance attenuation. Recall the TS descriptor model (3.69). 

Using the control law (3.70) gives: 

 
 

0 0 0 00 0 0 0

0 0

1

1

.

K K G GE A B D

C J

H H Hk k kH H

k kH kH

E x A B G x D w

y

K

C x J w


   

 
  (3.89) 
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Since the proofs follow the same lines as for the previous results, they are not stated here. 

For Case 1 the following result is obtained. 

Theorem 3.12. The closed-loop system (3.89) is asymptotically stable and the attenuation 

is   if there exist 0  , 
, ,

0P P P P
k k k k

T
P P 

i j i j
, P

k

P

k H
pr ii , P

k

P

k
pr jj , 

,G G
k k

G
i j

, G
k

G

k H
pr ii , 

G
k

G

k
pr jj , 0,1k  , and 

0 0,K KK
i j

, 
0

0 K

K

H
pr ii , 

0
0 K

K
pr jj , 

H
i , 


j ,  with 

      0 1 0 0 0 0 0 1 0 1 0 0 0 1,P P B K G A C G P P K G E G
H H H H H H H H H                

 

     
   

 

0 0

0 0 0 0 0 0 0 1 1 1 1 0 1 1

0

0 0 0 0

2
0.

0

0

P P

A G G B K K E G G G G E P P

D

C G G J

H

T T

H H H

T

H H H H

H

H H H

D

P

I

C

A G B K E G G E P

G IJ



     
 

      
 

  
 

  

  (3.90) 

For Case 2, the following result can be stated. 

Theorem 3.13. The closed-loop system (3.89) is asymptotically stable and the attenuation 

is   if there exist 0  , 
, ,P P P P

k k k k

T
P P

i j i j
, P

k

P

k H
pr ii , P

k

P

k
pr jj , 0,1k  , 

0 0,K KK
i j

, 
0

0 K

K

H
pr ii , 

0
0 K

K
pr jj , 

0 0,G GG
i j

, 
0

0 G

G

H
pr ii , 

0
0 G

G
pr jj , and 

0 0,F FF
i j

, 
0

0 F

F

H
pr ii , 

0
0 F

F
pr jj , 

H
i , 


j , 

      0 1 0 0 0 0 0 0 0 1 0 0 0 0,P P B K G A C F P P K G E F
H H H H H H H H H              

such that 

 

       
     

   
 

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 1 1

0

0

0 0

0 0 0

2

F

0 F 0.

0 0

0 0

G G G G P P

A G G B E F F F F E

F F P P

D

C G G J

K K

T

H H H

T T

H H H HH

T

H

H H

H

H H H

G G P

A G B E F E

P

I

G

D

C J

K

I



       
 

      
 

    
 

  
   

  (3.91) 

The following numerical example illustrates the performances of Theorems 3.12 and 3.13 

for the options for multisets given in Table 3.5. 

Example 3.11. Consider the TS descriptor model (3.69) with 2
e

r r  , 

1

0.9 0.1

0.4 1.1
E

 
   

, 2

0.9 1.1

0.4 1.1
E

 
   

, 1

0 1.5

0 0.5
A





 
 

, 2

1 1.5

2 0.5
A

  
 
 

 , 1 2

0

1
B B

 
  

 
 ,  

 1 0 1.28C  ,  2 0 0.43C  ,  1 0.23 0
T

D  ,  2 0 0.12
T

D  , 1 0.12J  , and 
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2 0.09J   , where   is a real-valued parameter. Table 3.6  shows the results for several 

parameter values when using the options in Table 3.5. 

Table 3.5. Selection of multisets for Example 3.11 

Approach Option Multisets 
Number of convex 

sums 

Theorem 

3.12 

1 
 0 0 0 0 0P G K K

H H H     

0 0

P G   

3 convex sums in  h   

1 convex sum in  v  

2 
 0 0 0 0 0 0P K G P G

H H H       

 0 0,0K   

3 convex sums in  h   

3 convex sums in  v  

Theorem 

3.13 

3 
 0 0 0 0 0 0P K G K G

H H H    

 0 0,0,1F
H  , 

0 0

P F   

3 convex sums in  h   

1 convex sum in  v  

4 

 0 0 0 0, 1K G F
H H   

 0 0 1P P
H     

 0 0 0 0,0, 1K G F
H     

3 convex sums in  h   

3 convex sums in  v  

Table 3.6. Minimum γ values in Example 3.11 

Parameter α Option 1 Option 2 Option 3 Option 4 

1.5    2.46   2.18   2.76   1.79   

1    1.27   1.21   1.23   1.12   

0.5    0.78   0.72   0.69   0.64   

0   0.56   0.56   0.53   0.50   

0.5   0.77   0.77   0.77   0.77   

 

The obtained results illustrate Remark 3.4, for instance, when 1.5   , Option 1 has 

provided better attenuation than Option 3; while for 0.5    Option 3 has given better result 

than Option 1.    
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Robust control 

Consider a TS descriptor model with uncertainties: 

      
0 0 0

1 ,E A BHk k kH
E E x A A x B B u       (3.92) 

with the uncertainties defined as 
0,e 0,e
D Le

E D L   , 
0,a 0,a
D LaH H

A D L   , 
0,b 0,b
D LbH H

B D L   , and 

classical norm bounds T

e e
I   , T

a a
I   , and T

b b
I   . The uncertain model (3.92) 

under the control law (3.70) gives 

    
0 0 0 0 0 0 0 00 0 0

1 1

1 .K K G G GB K K GE Ak kH H HH H H
E E x A KB G A BK G x

 
       (3.93) 

For Case 1, the following result can be stated: 

Theorem 3.14. The closed-loop system (3.93) is asymptotically stable if there exist 
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e
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0
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with 
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Proof. Using the results in Theorem 3.7 for the uncertain closed-loop model (3.93) gives: 
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where 
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Employ Property A.4 (Appendix A) with  , 
T  , and 
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a a b b e eH H H

diag I I I         
  , 0T  . The uncertain terms can be 

expressed as    1 1
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 
     . Consider T

I  , thus 

    1 1

.T T
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Substituting (3.96) in (3.95) writes: 
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which by means of the Schur complement yields (3.94), thus concluding the proof. ■   

For Case 2, the following result can be established: 

Theorem 3.15. The closed-loop system (3.93) is asymptotically stable if there exist 
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where   and  are defined in Theorem 3.11, 
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0 0

0 F F
H

F    . 

Proof: The proof follows the same lines as the proof of Theorem 3.14 but using the 

Lyapunov function in Case 2. ■   

3.3. Summary and concluding remarks 

In this chapter, state feedback control design methods for TS descriptor models have been 

presented. The improvements are based on the well-known Finsler’s lemma; this lemma 

allows handling the descriptor matrix as well as “cutting” the link between the Lyapunov 

matrix and the controller matrices. Nevertheless, when dealing with continuous-time TS 

descriptors the conditions are not “pure” LMIs since a scalar parameter must be fixed a priori. 

Therefore a logarithmically spaced search is performed. This increases the computational 

cost, but since all the computations are done offline, they are still realizable. 
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Chapter 4.  Observer design 

This chapter presents observer design for both continuous and discrete time nonlinear 

descriptor systems using an exact TS representation. In the case of the continuous-time TS 

descriptor model, strict LMI conditions are obtained by changing the extended estimated state 

vector and using a full observer gain. For discrete-time TS descriptors several LMI conditions 

are stated. These conditions depend on the selection of the Lyapunov function: quadratic, 

non-quadratic, or delayed non-quadratic. All the presented cases consider that the descriptor 

matrix is nonsingular in the considered compact set of the state space. Numerical examples 

are given in order to illustrate the performances of the provided improvements. 

4.1. Continuous-time TS descriptor models 

This section presents a novel observer design for continuous-time nonlinear descriptor 

systems using their Takagi-Sugeno representation, which overcomes BMI conditions existing 

in the literature. The main idea is to change the estimated state vector by using an auxiliary 

variable. This allows changing the structure of the observer and using a full observer gain 

LMI constraints are stated that improve results in the literature. In addition, some relaxations 

are achieved when a non-PDC-like observer is used. Finally, Finsler’s lemma is used to 

enlarge the solution set by adding slack variables and decoupling the Lyapunov function from 

the observer gains.  
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4.1.1. Problem statement 

Conditions in previous works (Guelton et al., 2008; Guerra et al., 2004) are given in BMI 

terms. Sufficient LMI conditions are obtained by fixing some of the decision variables, as 

will be shown in what follows. 

Consider the following TS descriptor model 

 , .
v h h h
x A x B u y C xE      (4.1) 

The following extended state vector is commonly used 
T

T T
x x x    . Then (4.1) can be 

written as (Taniguchi et al., 1999): 

 , ,
hv h h
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h h

C C . 

For the observer design the main task is to make the estimation error ˆe x x   converge to 

zero as t  . To this end, in (Guerra et al., 2004) the following estimated state for the 

extended model (4.2) was proposed: 
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The corresponding observer is: 
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where the observer gain is defined as 20
T

T

hv hvL L    . Defining an extended estimation 

error vector: 
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ˆˆ ,
ˆ

x x
e x x

x x


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 (4.5) 

its dynamic is given as 

   *.
hv hv h

Ee A L eC
     (4.6) 
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The synthesis of the augmented observer (4.4) is done via the quadratic Lyapunov 

function candidate (Guerra et al., 2004): 

   , 0,T TT T
V e e E Pe E EP P

       (4.7) 

with 
1

3 4

0P
P
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 

, 
1 1 0T

P P  . Taking the time-derivative of (4.7) gives

  T T T T
V e e E Pe e EeP

      , which by substituting (4.6) renders 
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Remark 4.1. From inequality (4.8) is not possible to obtain LMI conditions because of the 

terms 3

T

hv h
P L C  and 4

T

hv h
P L C , thus  (4.8) is a BMI problem. In (Guerra et al., 2004), a way to 

obtain LMIs is by fixing 4P  as 4 3P P . In (Guelton et al., 2008), the authors suggest a two-

step algorithm: 1) design the gains ij
L ,  1,2, ,

a
ri  ,  1,2, ,

e
rj   via the pole-

placement technique; and 2) use (4.8) to verify the convergence of the estimation error. 

The next subsection presents a way to overcome the BMI problem in (4.8). 

4.1.2. Results 

The first attempt to overcome the BMI problem in (4.8) is to consider a full observer gain, 

i.e., 1 2

T
T T

hv hv hvL L L    . Thus   0T T

hv hv h
P A P L C     gives: 
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  (4.9) 

From here, a change of variables 
1 1 1 3 2

T

hv hv hv
PN L P L  , 

2 4 2

T

hv hv
PN L  is possible and 

LMI constraints can be obtained. Nevertheless, the observer (4.4) with a full gain 

1 2

T
T T

hv hv hvL L L     reads: 
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  1
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ˆ ˆˆ 0 00
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h v h

x xx
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  (4.10) 

The first row in (4.10) implies  

  1
ˆ ˆ ˆ ,

hv h
Cx x L x x      

which is consistent only if ˆ 0x x   or if 1 0
hv h

L C  . When setting 1 0hvL  , the observer 

(4.4) is recovered. Hence, when using a full observer gain 1 2

T
T T

hv hv hvL L L    , the estimated 

state vector must be changed. Therefore, consider the following new estimated state vector: 

 
ˆˆ .
x

x

 

  
 

  (4.11) 

The definition of   depends on the observer under study and will be discussed later on. 

The main idea is that x   as t  . Based on the previous discussion, the following 

observer is proposed: 

  ˆ ˆ ˆ ˆˆ ,,hv h hv hEx A x B L Cy y xu y       (4.12) 

where ˆ ˆ
T

T T
x x      and 1 2

T
T T

hv hv hvL L L    . The extended estimation error is defined as: 

 
ˆˆ ,

x x
e x x

x 
 

     
  (4.13) 

and its dynamics are 

   .
hv hv h

Ee A L C e     

Consider the following Lyapunov function candidate: 

   0, .T T T T
V e e E e E E     (4.14) 

By considering that T
E  is constant, the time-derivative of the Lyapunov function (4.14) 

is: 

   .TT T T
e e E e EeV e    (4.15) 

The following result can be stated. 



91 

 

Theorem 4.1. Consider the system (4.2) together with the observer (4.12). If there exist 

matrices 
1 1 0T

P P  , 3P , 4P , 
2 11i j

N  and 
2 12i j

N ,  1 2 1,2,, ,
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
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holds with 
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then the estimation error e  is asymptotically stable. The observer gains are recovered by 

i ij j

T
PL N

 ,   1,2, ,
a
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e

j r . Moreover, the final observer structure is 
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Proof. By taking
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h
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together with the change of variables 
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T
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By means of Lemma B.3 (4.18) gives (4.16). The proof of the regularity of 4P  is as 

follows: if the LMIs (4.16) hold, then inequality (4.18) also holds, which ensures  

4 4 0T T

vv
P E E P   . Since v
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   is true, then 4P  is nonsingular. 

The final observer form is obtained as follows: recall (4.12), i.e.,  

  1

2

0 00
,

0
ˆ

0

ˆˆ hv h

h hh v h v

I L CI
u x

A E B L

xx

C
x



          
                      

   

or equivalently 
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 

 
1

2
ˆ .

ˆ

ˆ

ˆ
h h

v h

v

hvh h

x C x

E A x B u x

L x

C xL





 

   
  (4.19) 

From (4.19), the definition of   arises:  

  1
ˆ .ˆ

h hv
xx C xL     (4.20) 

 Finally, substituting the intermediate variable   into (4.19) gives 

     1 2
ˆ ˆˆ ˆ ,

v h h h hhv hv
E x C x A x B u L CL x x x        

or 

    2 1
ˆˆ ,ˆˆ

v h h h h v hv hv
E x A x B u L C x E Cx L xx        (4.21) 

which yields (4.17), thus concluding the proof. ■   

Remark 4.2. If the LMI problem is feasible, it means that  ˆ 0x x   and   0x    as  

time goes to infinity. 

Remark 4.3. Once the BMI problem in (4.8) is overcome, a more general observer 

structure can be achieved, thus relaxing the conditions given in Theorem 4.1. This will be 

shown in what follows. 

Consider a non-PDC like observer of the form: 

 
 ˆ ˆ

ˆ ,

ˆ
ˆ

T

hv h h hv

h

uEx A P yx B L

C x

y

y





   
  (4.22) 

where ˆ ˆ
T

T T
x x      and 1 2

T
T T

hv hv hvL L L    . The structure of hP  is 
1

3 4

0
h

h h

P
P

P P

 
  
 

, 

11 0T
P P  , 4hP  being a regular matrix, note that 1

3

1

1

1 1 1

4 1 4

0
h

hh hP P P

P
P

P



  
  
  
 

. Recall the 

extended estimation error (4.13): 

   ,T

hv h hv h
Ee A L CP e

     

and the following result can be established. 

Theorem 4.2. Consider the system (4.2) together with the observer (4.22). If there exist 

matrices 1 1 0T
P P  , 

23i
P , 

24i
P , 

2 11i j
L  and 

2 12i j
L ,  1 2 1,2,, ,

a
i i r ,  1 1,2, ,

e
j r  such that 
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 1 1 1 1

1 1 1 1 1 2 2 11 1 1 1 2

2
0, , ; 0, ,

1
,

j j j j

i i i i i ii

a

i
j ii

r
j i       


   (4.23) 

hold with 

 
   

2 11

1 2

2 1

1 1 1

1 1 1 1 2 2 1 1 2

3 1

4 2 1 3 4 4

* *
,

T

i i i j ij

i T T T

i i i j i j

i T

j ii i j

P A L C

P A L C P E P PP E E

  
  

     



   

then the estimation error e  is asymptotically stable. Moreover, the final observer structure is 

 
   1

2

ˆ ˆ ˆ

ˆ ˆ.

hv

v

h

T

v h

h

v

h h

L
E x A x B u E I P y y

L

y C x

  
    

 


  (4.24) 

Proof. By setting 
1

3 4

0

h h

h

P
P

P P

 
   

 
, the time-derivative of the Lyapunov function 

(4.15) is      * .T T

h hv h hv

T

h
V P Pe e A L C e

   Thus    0 * 0
hv h h

T

v
eV L CP A     or: 

 
   

4

1

24 41 3

3: 0.v h hv h

hh T

h hv h

T

h

T T T T

h h v hv h v

A L C

A L C P E P P E

P

EP P

    
        

  (4.25) 

By means of Lemma B.3, (4.25) gives (4.23). The proof of regularity of 4hP  follows a 

procedure similar the one in Theorem 4.1. The final observer form is obtained as follows: 

recall (4.22), i.e.,  

  1

2

0 00
.

0 0

ˆˆ ˆhvT

h

h

vv hh

I LI
u

x
P y

A E B L

x
y


          

                      
  (4.26) 

Define 

 
 
 

 11 1
1 1 3 4 21 11 1 3 4

2 24 4 2

.
0

T TT T
hv h h hvhhv hvh h

T T
hv hvh h hv

P L P P LN h LP P P

N h LP P L

P
   

 

      
        

       
  (4.27) 

The subscripts h  and v  stand for the dependence on convex structures, while  h  means 

dependence on non-convex ones, for instance,  2hv
N h  stands for

        1 1 2 2 1 11 1 2
2 4 21 1 1

a e a
T

hv i j i i i

r r

i j j

r

i
N h h z v z h z P L



  
   . Hence, (4.26) can be written as  



94 

 

 
 
   1

2

0 00
,

ˆ
0

ˆ
0

ˆ hhv

h h hh

h

v v

I N h CI
u x

A

xx
x

E B N h C

         
                     

   

or equivalently 

 
   

   
1

2 .

ˆ

ˆ

ˆ

ˆ
hhv

h

h

v h h hv

x N h C x

E A x B u N h C x

x

x





 

   


  (4.28) 

From (4.28),   is obtained as:  

    1
ˆ .ˆ

hhv h
x N h C x x     (4.29) 

Equation (4.28) by eliminating   gives 

         1 2
ˆ ˆˆ ˆ .

v h h hhhv h hv
E x N h C x A x B u N Cx xh x       (4.30) 

Substituting (4.27) and after some algebraic manipulations, (4.30) gives the final 

descriptor observer (4.24), thus concluding the proof. ■   

Example 4.1. Consider a TS descriptor model (4.1) when 0u  , 2a er r   and matrices: 

1

1.1 0.1

0.2 1.5
E

b


 




 
 

, 2

0.9 0.1

0.2 0.2
E

 
 
 

 , 1

0.2 1

0.1 1.9
A

 





  
, 2

1 0.6

1.7 0.3

a
A





  

,  

 1 0 1C   , and  2 0 0.6C  . The real-valued parameters are defined as  0.5 2.5a   

and  1.5 1.5b  . Figure 4.1 shows the feasible regions for conditions (4.9) when 4 3P P  

(see Remark 4.1)  O , for the conditions in Theorem 4.1   , and therein Theorem 4.2   . 

As expected, the results obtained from Theorems 4.1 and 4.2 significantly outperform the 

ones obtained when fixing one of the decision variables. 
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Figure 4.1. Feasible sets in Example 4.1.    

As it has been shown in Chapter 3, Section 3.1, Finsler’s lemma allows decoupling the 

gains from the Lyapunov function. Therefore, a direct extension of the proposed observer in 

descriptor form is given by: 

  ˆ ,ˆ ˆ ˆˆ ,T

hv h hv hhv hu G yEx A x B L y C xy
       (4.31) 

with 
1

3 4

0
hv

hv hv

P
G

G G

 
  
 

 and 
1

2

hvv

hvv

hvv

L

L
L 

 
 
 

. In this case, the dynamics of the error (4.13)  are 

given by: 

   0.T T

hv hv hvv h hv hv hvv h

e
Ee A L C e A L C I

E
G

e
G

 
 

     
 

    (4.32) 

Consider the Lyapunov function (4.14) with 
1

3 4

0
hhv

hhv hhv

P
P

P P

 
   

 
. The time-derivative 

of the Lyapunov function gives   0,T T

hhv hhv

T T
eV P e EPe E e e    which can be expressed 

as: 

   0
0

0

T

hhv

h

T

hv

e e
e

Ee

P
V

P Ee

    
     
    

.  (4.33) 

-0.5 0 0.5 1 1.5 2 2.5
-1.5

-1

-0.5

0

0.5

1

1.5

a

b
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Taking 
0

0

T

hhv

hhv

P

P

 
  
 

 and T

hv hv hvv h
A L C IG

    , via Finsler’s lemma, the 

inequality constraint (4.33) together with the equality constraint (4.32) gives 

   0
0,

0

T

T hhv

hv hv hvv h

hhv

A L C I
P

G
P

  
 

 


 


  (4.34) 

where 2 2x xn n  is a free matrix. Then, the following result can be stated. 

Theorem 4.3. Consider the system (4.2) together with the observer (4.31). The estimation 

error e  is asymptotically stable if there exist matrices 1 1 0T
P P  , 

1 2 23i i j
P , 

1 2 24i i j
P , 

2 23i j
G , 

2 24 ,
i j

G  
2 1 21i j j

L  and 
2 1 22i j j

L ,  1 2 1,2,, ,
a

i i r ,  1 2, 1,2, ,
e

j j r  such that 

 

      

1

1 1

1 1 1 1 1 1

1 1 1 2 2 1

1 1 1 2 2 1

1 1 1 1 1 1

1 1 1 1 1 1 1 2 2 1

1 1 1 2 2 1 1 1 1 1

1 2 1 2

1 2 2 1

1 1

1 1 2

1 1 2

0, , ;

2
0, ,

1

2
0,

,

, ,
1

4 2 2

1 1 1 1

j

i i

j j j j j j

i i i ii

j j j j j j

i i i i i i

j j j j j j j j j j

i i i i i i i i

i

a

e

i

j j j j

i

e a e a

i i i i

i j

i i
r

i j j
r

r r

j

r r

 

      


      


        
   

 



 





 2 1 2 1

1 2 2 1 1 2 1 20, , ,
j j j j

i i i i i i j j     

  (4.35) 

hold with 

 

       
     

     
     

1 2 1 1 1 2 1

1 2 1 1 1 2 1 1 2 2 1 2 1
1 2

1 2

1 2 1 1 1 2 1 1 2 1

3 1

4

4,1 4,2 4,

2 1 3 4

3 1

4

1 3 1

;
2

0

T

i j i i j j i

T T T

i j i i j j i j i j i j j

i T T

i j i i j j i i

j

i

j j

j

G

G P G E

G P G

A L C

E P

A L C E G

A L C  

    
 

      
  

  
 

 



 



 







   

where      
1 2 1 1 1 2 1 1 1 2 2 2 24 2 3 3

4,1 T T

i j i i j j i j i i j i j
G E P GA L C    ,    

1 2 1 1 2 2 2 2

4,2

4 4 4

T T

i j j i i j i j
G E P G     , 

and     
1 2 1 1 1 2

4,4

4 4

T T

i j j j i j
G E E G    . Moreover, the final observer structure is 

    1

2

ˆ ˆ ˆ ˆ ˆ, .
hhv

v

hh

T

v h hv h

v

h

L
E x A x B u E I G y y y C x

L

  
     

 
  (4.36) 

Proof. Recall (4.34). By selecting the free matrix as 
T

hv

T T

hv

G

G 

 
  
 

, congruence of 

(4.34) with a full-rank matrix ,
T

diag I    yields 
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   

     
0,:

T

hv hv hvv hvv

hh T T T

hv hv hvv h hhv hv hv

G

G P G

A L C

A L C G 

   
   

   



   
  (4.37) 

which by setting 
1

1 3

0

T

hv v

v

I P

E

G E
 

  
 

  and applying the Lemma B.4 gives (4.35). The 

regularity of matrix 
hv

G  is guaranteed as follows: recall that 
1

3 4

0
hv

hv hv

P
G

G G

 
  
 

 with 1 0P  . 

If the LMI conditions (4.35) hold, it implies 
44 0T T

v hh v vv
G E E G  . Since v

E  is nonsingular 

 0 00, 0
v

E x x   , let us assume that 4hvG  is singular; then it exists 0 0x   such that 

4 0 0
hv

G x  ; and for that 0 0x   it yields  40 4 0 0
hv v

T T T

v hv
x GG E E x   , which contradicts the 

condition 44 0T T

v hh v vv
G E E G  . Thus, if 0vv

hh
   is true, then 

hv
G  is nonsingular.  

The final form of the observer (4.36) can be obtained via manipulations similar to those in 

Theorem 4.2. ■  

Remark 4.4. The conditions in Theorem 4.3 are LMIs when the scalar parameter 0   is 

fixed. A logarithmically spaced family of values  6 5 610 ,10 , ,10     (Jaadari et al., 2012; 

Oliveira et al., 2011; Shaked, 2001) can be used, see Remark 3.2. 

Corollary 4.1. The results given by Theorem 4.2 are always included in those of Theorem 

4.3 under the same relaxation scheme. 

Proof. Suppose conditions of Theorem 4.2 hold; thus 

 
   3

4 4 4

4.2 1

2 1 3

: .Th h hv h

hhv T

h h

T

v h v h

h

T T T T

h h vv h

A L C

A L C P E P P

P

P PE E

    
        

 

Choose for Theorem 4.3: 4.2Th

hhv hv h
PP G   and 4.2Th

hvv hv
L L . The conditions in Theorem 

4.3 become 

 

 4.2

1

4 4

2 0 0,

0

Th

hhv

hhv T T

h v v h

P

P E E P
 

  
 

        
  (4.38) 
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with 3 1 1 3

4 2 4

T T

h h hv h h v

hhv T T

h h hv h h v

A L C P E

A L

P

P PC E

P  
   




. Since the conditions in Theorem 4.2 hold, 

1

4 4

2 0
0

0 T T

h v v h

P

E PP E

 
 

 
 also holds, thus via Schur complement (4.38) is equivalent to 

 
14.2

4 4

1
2 0

0.
0

Th

hhv hhv hhvT T

h v

T

v hE E P

P

P



 

     
 

  (4.39) 

If Theorem 4.2 holds, it always exists a sufficiently small 0   such that (4.39) is true, 

(4.38) is also true and Theorem 4.3 holds. ■   

Example 4.2. Recall Example 4.1. Corollary 4.1 is illustrated when the LMI conditions in 

Theorem 4.2  O  and Theorem 4.3    are implemented. From Figure 4.2 it can be seen that 

conditions in Theorem 4.3 are more relaxed (a larger solution set is obtained) than those in 

Theorem 4.2. 

 

Figure 4.2. Feasible sets for Theorem 4.2 (O) and Theorem 4.3 (×).    

4.1.3. Unknown input observers 

In (Guelton et al., 2008), the observer (4.4) has been extended to estimate unknown inputs; 

however it provides BMI conditions (see Remark 4.1). This section proposes to give LMI 

conditions via a simple extension of the previous work. 

Consider the TS descriptor model: 

-0.5 0 0.5 1 1.5 2 2.5
-1.5
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0.5

1

1.5
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,

v h h h

h h

x A x B x M d

G dy x

E

C

 



  (4.40) 

where   dn
d t   stands for the unknown input vector and  

1

a x d
r

i

n n

h i i
M h z M




  . The 

goal is to design an observer capable to estimate both the state  x t  and the unknown input 

 d t . To this end, assume that the unknown inputs are given by an exo-system d Sd , 

where d dn n
S

  is a known matrix. Using an extended vector x d
T

e T T n n
x x d

    , the 

TS descriptor model is expressed as:  

 , ,e e e e e e

v h

e

h h
E A x B y xx u C     (4.41) 

with 
   0

0
x d x d

d

e v n n n

v

n

n

E
E

I

   
  
 

 , 
 

0
x d une

h

n nhB
B

  
  
 

 , 
   

0
x d x dn n n nh he

h

A M
A

S

   
  
 

 , 

and     y x dn n n

h

e

h h
C C G

  . A classical approach is to use an extended descriptor 

redundancy on (4.41) by defining    2 2 2 2x d x d

e
n n n n

e

x
x

x

   
  
 

  the model writes directly: 

 , ,
v hhh

BEx A x y Cu x     (4.42) 

where 
0

0 0

x d

x d

n n

n n

I
E





 
  
  

, 
0

x d

hv e e

h v

n nI
A

A E

 
  

 
, 

0
h e

h

B
B

 
  
 

, and 0e

h h
C C    . Then, 

consider the following nonlinear observer in TS descriptor form: 

  ˆ ˆ ˆˆ ,ˆ ,T

hv h hv hP yEx A x B u L Cy y x
     (4.43) 

with a full observer gain 
1 2

T
T T

hv hv hvL LL     , 
 

1 2, x d yn n n

hv hv
L L

  . The matrix P  will be 

defined later on. Define the estimated state as: 

    2 2 2 2ˆˆ .x d x d

e
n n n n

e

x
x


   

  
 

  (4.44) 

and the estimation error ˆe e
e xx  . As previously, 

e  plays a role equivalent to ˆe
x , 

therefore: 
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1

2

ˆ
ˆˆˆ ,

e e

e e e

e

x x

d dx x
e x x

x x

d

 



 
 

  
          

  

  (4.45) 

whose dynamics are given by 

   .T

hv hv h
CPEe A L e

     

Consider the following Lyapunov function: 

   , 0,TT T T
V e e E Pe E P P E    (4.46) 

with    2 21

4

2 2

3

0
x d x dn n n nP

P
P P

  
 

  
 

, 11 0T
P P  , 4P  being a full-rank matrix. The 

following result can be stated: 

Theorem 4.4. Consider the model (4.42) together with the observer (4.43). If there exist 

matrices 1 1 0T
P P  ,  3P , 4P , 

2 11i j
L , and 

2 12i j
L ,  2 1,2, ,

a
ri   ,  1 1,2, ,

e
j r  such that  

 1 1 1 1

1 1 1 1 1 2 2 11 1 1 1 2

2
0, , ; 0, ,

1
,

j j j j

i i i i i ii

a

i
j ii

r
j i       


   (4.47) 

hold with  

 
   

   
1 2 1 1

1

1 2

1 2 1 1 1 1

3 1

4 2 1 3 4

* *
,

*

T e e

i i i
j

Ti
T e e e T e

i i i j j

j

i

j

P A L C

P A L C P E P P E

  
 
      

    

then the estimation error e  is asymptotically stable and, the observer structure is  

 
 1

2

ˆ ˆ ˆ

ˆ ˆ .

e e e e e e

v h h v

hvT

h

e

v

e

h

L
E x A x B u E I P y y

L

y C x

  
      

 


  (4.48) 

Proof. The time-derivative of the Lyapunov function (4.46) produces

     *
hv

T

h

T

v

T

h
V e e A L C eP P

   ; hence    0 0*
hv h h

T

v
eV L CP A      or  

 
   
   

1

2 1

3

4 3 4

: 0,
hv

hv

T e e

h h
v

Thh T

v

e e e T e

h h v

A L C

A L P

P

C E PP P E

    
   
       

  (4.49) 
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which leads to conditions (4.47) via Lemma B.3. The final observer form (4.48) is computed 

as follows: define  

 
 1

1 1 3 4 21

2 4 2

.

T T

hv hvhv T

hv
T

hv hv

P LN
P

N P

P P L
L

L

 




  
   

   




   (4.50) 

The augmented observer (4.43) produces 

  1

2

0 0 0
,

0 0

ˆˆ ˆx d x d

x d

ee e

e ehv

e

n n n n h

e ee e
hn n hh v

e

hv

I I N C
x

B N

x
x

A
u

CE

x


 



      
   

 

  
                

   

which is equivalent to: 

 
 

 
1

2

ˆ

.

ˆ

ˆ ˆ

e

h

e e e e

v h h h

e e e e

hv

e e e e

hv

N Cx x

x uA B x x

x

E N C





  

  
  (4.51) 

Using  1
ˆ ˆe e e e

h

e

h
N C xx x    , (4.51) gives:  

     1 2 .ˆ ˆ ˆ ˆe ee e

hv hv v

e

h h
E N y A B N yx y x u y       (4.52) 

Rearranging the terms, we have: 

 

  

 

1 2

1

2

ˆ ˆ ˆ

ˆ ˆ ,

e e e e

v h h v

e e e

h

e e

hv hv

hv

hv

h v

e

E A B E N N y

N
A B E I y

N

x x u y

x u y

   

 
    

 



  
  (4.53) 

substituting (4.50)  into (4.53) leads to (4.48), thus and concludes the proof. ■   

As it can be inferred, more relaxed results can be obtained by introducing MFs in the 

matrices 3P  and 4P ; therefore  3 31

a

h i i

r

i
P h z P


  and  4 41

a

h i i

r

i
P h z P


  can be introduced 

without altering the number of LMIs to be verified. Effectively, the PDC-like observer (4.43) 

becomes: 

  ˆ ,ˆ ˆ ˆˆ ,T

hv h h hv hEx A x B u L y Cy y xP
     (4.54) 

with    

3 4

2 21 2 20
x d x d

h

n n n n

h

h

P
P

P P

   
  





. Observer (4.54) is a non-PDC-like observer.  

Corollary 4.2. Consider the model (4.42) together with the observer (4.54). If there exists 

matrices 1 1 0T
P P  , 

23i
P , 

24i
P , 

2 11i j
L , and 

2 12i j
L ,  2 1,2, ,

a
ri   ,  1 1,2, ,

e
j r  such that  
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 1 1 1 1

1 1 1 1 1 2 2 11 1 1 1 2

2
0, , ; 0, ,

1
,

j j j j

i i i i i ii

a

i
j ii

r
j i       


   (4.55) 

hold with  

 
   

   
2 1 2 1 1

1

1 2

2 1 2 1 1 1 2 2 1

3 1

4 2 1 3 4

* *
,

*

T e e

i i i i
j

T

j

i
T e e e T e

i i i i j i i

i

j j

P A L C

P A L C P E P P E

  
 
   


  

   

then the estimation error e  is asymptotically stable. 

Proof. It follows a similar procedure as in Theorem 4.4. ■   

Remark 4.5. The results given in Theorem 4.4 and Corollary 4.2 can be extended directly 

to the Proportional Integral (PI) or to Proportional Multi-Integral (PMI) observer. For a PI 

observer, set 0S  ; while for the PMI observer consider 
 

0
m

d   , where 
 m

d  is the  mth-

derivative of the unknown input.  

Example 4.3. Consider the following nonlinear descriptor model: 

        , ,x u M dE x A x x B x y C x x Gd     (4.56) 

with    
 

0.87 0.33 0.5 1 2

0.53 1 2 0.95
E x


 

  
    

,    10.81 0.8 c3

0.74 0.

os

57

x
xA

  
   

, 

0

1
B

 
  
 

,    12 1

1 0.5

cos
x

x
M

  
   

,    11.5 0 c.5 0

0 0.

os

1

x
C x

  
  
 

, and 

   1

1 0.5

0.2 0.5cos 0.4
G x

x

 
    

,  2

11 1 x   , 0   a real-valued parameter known a 

priori. Note that   det 0E x   for all 1x . Using the sector nonlinearity a TS descriptor model 

can be constructed with 2
a

r   due to the terms  1cos x ; 2
e

r   due to  2

11 1 x   . In total 

4 vertices are needed to exactly represent the original nonlinear system in  2

x
x   :  

        
1

2 2

1 1

2

, ,k k i i i i i

k i

i

i

v z E h z A x B yx u M d x G dh z C
 

        (4.57) 

with 1

0.87 0.17

0.53 0.95
E







  
, 2

0.87 0.83

0.53 0.95
E







  
, 1

0.81 0.83

0.74 0.57
A

  
  

 , 

2

0.81 0.83

0.74 0.57
A

  
  

 , 
0

1
B

 
  
 

, 1

2 1

1 0.5
M

 
   

, 2

2 1

1 0.5
M

 
   

, 1

2 0

0 0.1
C

 
   

, 
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2

1 0

0 0.1
C

 
   

, 1

1 0.5

0.7 0.4
G

 
   

, and 2
0.3

1 0.5

0.4
G

 
    

. Consider that 1x  is available. 

The MFs are  2

1 11 1v x ,  2 11v v  ,   1 10.5 cos 1h x  , and 2 11h h  . The dynamics 

of the unknown input are given by the exo-system 
0 0.5

0.5 0
d d

 
   

. Note that in (Guelton 

et al., 2008; Ichalal et al., 2009), 0d   or 
 

0
m

d   is considered.  The exo-system in this 

example  generates sinusoidal signals. In order to show the effectiveness of Theorem 4.4 and 

Corollary 4.2, two comparisons are done: 

1. Comparing the conditions in Theorem 4.4 and  Corollary 4.2 to those in (Ichalal et al., 

2009): In order to use the methodology given in (Ichalal et al., 2009), a standard TS 

representation is needed. After the inversion of the matrix  E x , a TS model with 8 

vertices is obtained. By choosing common matrices as follows: 1C C , 1G G , and 

0S   ( 0d  ), the following results were obtained: Theorem 4.4 and Corollary 4.2 were 

feasible up to the value 0.91  ; conditions in Theorem 1 in (Ichalal et al., 2009) were 

feasible until 0.53   (the larger   is the more relaxed the approach is). 

2. Comparing the conditions given in Theorem 2 (Guelton et al., 2008), Theorem 4.4 and 

Corollary 4.2. The aim is to design an UI observer for the TS descriptor model (4.57), 

considering the exo-system. For the conditions of Theorem 2 (Guelton et al., 2008), the 

maximum value of   for which feasible solutions were found is 1.16  . In case of 

Theorem 4.4, the maximum value of   for which the conditions were found feasible is 

1.66  ; while for Corollary 4.2 the maximum is 1.84  . 

When setting 1.55   and d Sd , conditions in Theorem 4.4 were found feasible. 

Figures 4.3 and 4.4 illustrate the trajectories with initial conditions

   0 0.4 0.5 0.1 0.1e
x    . Some matrices of the solution are: 

 1 4

0.14 0.01 1.54 0.33 0.15 0.02 0.07 0.06

0.01 0.02 0.21 0.29 0.04 0.09 0.02 0.02
, ,

1.54 0.21 20.96 2.79 0.08 0.05 0.78 0.00

0.33 0.29 2.79 22.44 0.01 0.01 0.05 0.62

P P

   
        
       
        

   
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11 12

0.39 6.49 0.43 5.99

0.62 4.04 0.64 3.89

2.17 4.17 1.93 3.74

1.92 2.21 1.88 2.06
,

0.08 1.18 0.17 0.18

0.11 0.81 0.16 0.34

0.09 0.26 0.06 0.13

0.33 0.93 0.40 0.59

L L

    
        
   
       
  
  
   
   
  
       





 21 22

0.92 1.71 0.90 2.33

0.25 2.36 0.26 2.40

1.62 2.66 1.56 2.77

0.79 0.01 0.85 0.00
, ,

0.32 0.55 0.27 0.25

0.45 0.46 0.31 0.16

0.01 0.74 0.03 0.55

0.81 0.59 0.81 0.45

L L

   
      

      
      
   
  

    
  
  

      





 .






 
 
 
 
 
 
 
 

   

 

Figure 4.3. States in (black lines) and their estimates (blue-dashed lines) for Example 4.3 for δ=1.55. 

 

Figure 4.4. Unknown inputs (black lines) and their estimates (blue-dashed lines) for Example 4.3 for δ=1.55.    

0 2 4 6 8 10
-0.5

0

0.5

Time (s)

x 1
 a

n
d

 it
s
 e

s
tim

a
te

0 2 4 6 8 10
-1

-0.5

0

0.5

Time (s)

x 2
 a

n
d

 it
s
 e

s
tim

a
te

0 5 10 15
-0.2

0

0.2

Time (s)

d
1
 a

n
d

 it
s
 e

s
tim

a
te

0 5 10 15
-0.2

0

0.2

Time (s)

d
2
 a

n
d

 it
s
 e

s
tim

a
te



105 

 

4.2. Discrete-time TS descriptor models 

This section is dedicated to observer design for discrete-time nonlinear descriptor models 

using Lyapunov functions: quadratic, non-quadratic, and delayed-non-quadratic.. Throughout 

the section, the achieved improvements are illustrated on numerical examples. 

4.2.1. Problem statement 

Consider the following discrete-time TS descriptor model: 

 1 , .
v k h h hk k k k

E x A x B u y xC      (4.58) 

Recall that   
1

e

v jj j

r
E v z k E


  is regular in the considered compact set of the state 

space  .  Recall that, to the best of our knowledge, there are no results in the literature for 

systems of the form (4.58). The aim is to make the estimation error ˆe x x   converge to 

zero as t  . To this end the following generic observer is proposed: 

 
 1

ˆ ˆ

,

ˆ
ˆ

v k h k k

k

h

h k

E A B ux x y

C x

y

y

    


  (4.59) 

where the observer gain x yn n  may change according to the approach under study. 

Consider the error dynamics as follows: 

    1

1

0.
k

v k h h k h h v

k

E C e C
e

e A A
e

E


 
     

 
   (4.60) 

4.2.2. Results 

In order to investigate the stability of the estimation error (4.60)consider the following 

Lyapunov function 

   0, 0,T

k k k

T
V e e e      (4.61) 

where  may be constant (quadratic approach) or depend on MFs (non-quadratic approach). 

The variation of the Lyapunov function (4.61) gives 

 

  1 1

1 1

0
0.

0

T T

k k k k k

T

k k

k k

V e

e e

e e

e

e e

e

  

 

 

    
     

   





  (4.62) 
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Denote 
1

k

k

e

e 

 
  
 

, 
0

0 

 
  
 

, and  h h v
CA E   ; via Finsler’s lemma the 

inequality (4.62) together with the equality (4.60) yields 

    
0

0,
0

h h v
A C E



    
 

 
 

  (4.63) 

where 2 x xn n  is a free matrix to be defined later on. From (4.63) many results can be 

derived, e.g., selecting hv
L  and P  gives a PDC-like observer designed via a 

quadratic Lyapunov function; setting 
1

hvh
G L

  and hP  yields a non-PDC-like observer 

designed under a non-quadratic Lyapunov function. In what follows three approaches are 

considered: the quadratic (Q) approach, the non-quadratic (NQ) approach, and the delayed 

non-quadratic (DNQ) approach. 

4.2.2.1. Quadratic Lyapunov function 

If a common quadratic Lyapunov function is used, the following result can be stated. 

Theorem 4.5. The estimation error dynamics in (4.60) with hv
L  is asymptotically 

stable if there exist matrices 0T
P P   and  

2 1i j
N , for  1 2 1,2,, ,

a
i i r ,  1 1,2, ,

e
j r  

such that: 

 
1 1 2

1 1 1 1

1 11 1 21 1 1 2;
2

0, , 0, , ,
1

j j j j

i i i i i i i i i

a

i i i
r

j j         


  (4.64) 

hold with 

 
 

1

1 2

1 2 1 1 1 1

.
T

i i i

j

i i

j jjPA E P P

P

N C PE

 
  





 




  (4.65) 

The observer gains are recovered with 
1

ij ij
L P N

 ,  1,2, ,
a

i r ,  1,2, ,
e

j r . The 

final observer structure is 

 
 ˆ ˆ ˆ

.ˆ ˆ
k k k k

k k

v k h h hv

h

E Lx A x B u y

y

y

C x

 



  
  (4.66) 

Proof. Recall (4.63). Selecting the Lyapunov function as   T

k k k
V e e Pe , the observer gain 

as hv
L ,  0

T
P , and defining  hv hv

N PL  gives: 
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 

: 0,
T

h hv h v v

v

hh

P

N C PPA EE P P

  
    


 


  (4.67) 

which by applying Lemma B.3 yields (4.64), thus concluding the proof. ■   

By using a different but still quadratic Lyapunov function   1TT

k k k
V e e F P Fe

 , a more 

relaxed result can be obtained; this is summarized in the following theorem. 

Theorem 4.6. The estimation error dynamics in (4.60) with hv
L  are asymptotically 

stable if there exist matrices 0T
P P  , F , and  

2 1i j
N  for  1 2 1,2,, ,

a
i i r , 

 1 1,2, ,
e

j r  such that:  

 
1 1 2

1 1 1 1

1 11 1 21 1 1 2;
2

0, , 0, , ,
1

j j j j

i i i i i i i i i

a

i i i
r

j j         


  (4.68) 

hold with 

 

   
 1

1 2 1 2 1 1 1 1
.

0

T

i i i

T

j

i i j j j
PA E

F F P

N PC PE

F P

  
   


  
   

 

  (4.69) 

The observer gains are recovered as 
1

ij ij
L P N

 ,  1,2, ,
a

i r ,  1,2, ,
e

j r . The 

final observer structure is (4.66). 

Proof. Recall (4.63). By choosing the Lyapunov function as   1TT

k k k
V e e F P Fe

 , the 

observer gain as hv
L ,  0

T
P , Finsler’s lemma gives: 

 
 1

1
0.

T

T T

h h vh v v

F P F

N CPA P E PE F P F








 
   

  (4.70) 

By applying Property A.3 and the Schur complement, (4.70) renders 

 

   
 : 0

0

,

T

v T

hhh vh hv v
PA P

F F P

N C E

F

E P

P

   
      









 


  (4.71) 

which by Lemma B.3 gives (4.68), thus concluding the proof. ■   

Proposition 4.1. Under the same relaxation scheme, the conditions of Theorem 4.6 

include those of Theorem 4.5. The reverse does not hold. 
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Proof: Consider (4.71), using F P  gives: 

 

   
  ,: 0

0

h v

v T

hh h hv v
PA P E P

P

P

N C E

P

 


 
      
 



 
 

which by means of the Schur complement it is equivalent to (4.67). For the reverse, even if 

any positive matrix 0T
P P   can be decomposed in T

F XF  with 0T
X X   and F  full-

rank, (4.67) produces: 

 
 

   
0,

T

h hv h v

T

T
T T T

v

T T

F

F F L C FE

F X

F X A F X F X E F X F XF F

 
  
   



 
   

which does not lead to the conditions in Theorem 4.6.■   

In order to illustrate this proposition, the following example is given. 

Example 4.4. Consider the TS descriptor (4.58) with 0ku  , 2a er r  ,  and matrices:

1

0.9 0.1

0.4 1.1

a
E

b


 
   

, 2

0.9 0.1

0.4 1.1

a
E

b


 
   

, 1

1 1

1.5 0.5

a
A

 





 
 

, 2

1 1

1.5 0.5

a
A

 





 
 

, 

1

0

1

T

C
b





  
 

, and 2

0

1

T

C
b





  
 

. The real-valued parameters are defined as  0.7 0.7a   

and  1 1b  . Figure 4.5 shows the results when conditions in Theorem 4.5  O  are 

compared to those in Theorem 4.6   . Theorem 4.6 performs better than Theorem 4.5. 

 

Figure 4.5. Feasible sets for theorems 4.5 and 4.6 in Example 4.4.   
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The following developments use a non-PDC-like observer with 1

h hv
G L

  under the 

quadratic framework.  

Theorem 4.7. The estimation error dynamics in (4.60) with 1

h hv
G L

  is asymptotically 

stable if there exist matrices 0T
P P  , 

2 1i j
L , and 

2i
G  for  2 1,2, ,

a
i r ,  1 1,2, ,

e
j r  

such that: 

 1 1 1 1

1 1 11 1 2 2 11 1 1 2

2
0, , 0, ,

1
;

j j j j

i i i i i i i i i

a

i i i
r

j j         


  (4.72) 

hold with 

 
 

1

1 2

2 1 2 1 1 2 1 1 2

.
T

i i

j

i i T

i j i ii j j

P

L C EG A G E G P

  
  


 




  (4.73) 

The final observer structure is 

  1

1
ˆˆ ˆ ˆ .ˆ,

v k h h hk hk k kv k kh
x A x B u G y yE L Cy x


       (4.74) 

Proof. Recall (4.63). Selecting the Lyapunov function as   T

k k k
V e e Pe , the observer gain 

as 
1

h hv
G L

 , and 0 T
T

hG     we have: 

 
 

0: ,v

hh T

h h

T

h hv h v v hG A E

P

L C G G PE

  
    


 


  (4.75) 

which by Lemma B.3 yields (4.72). ■  

 

Figure 4.6. Feasible regions for Theorems 4.6 (×) and 4.7 (□) in Example 4.4.    
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Example 4.5. Consider the local matrices of Example 4.4. Figure 4.6 shows the 

improvements brought via the non-PDC-like observer designed using Theorem 4.7. 

Theorem 4.6 can be directly extended using the Lyapunov function   1 .TT

k k k
PV e e F Fe

  

However, the extension is equivalent to conditions in Theorem 4.7. Effectively, following the 

same path as Theorem 4.6 gives directly: 

 

   
 : 0

0

.

T

v T T

hh h h hv h v hh v
G A G

F F P

L C E G

F

E

P

   
      

 


  

   (4.76) 

By selecting F P  as previously, (4.75) implies (4.76). Now, recall Proposition 4.1 where 

1T
P FF P

 ; substituting it in (4.75) produces: 

 
 1

1
0.

h

T

T T T

h h hv h v hvG A G E G

F P F

L C E F P F








 
   

  (4.77) 

Therefore if (4.76) holds, by means of Property A.3 and using Schur complement, it ends 

in (4.76) implying (4.75). Therefore there is no improvement in using   1TT

k k k
V e e F P Fe

   

over   T

k k k
V e e Pe  when non-PDC-like observers are being designed. 

4.2.2.2. Non-quadratic Lyapunov functions 

The use of non-quadratic Lyapunov functions has been introduced in (Guerra and 

Vermeiren, 2004), where the benefits of this approach over its quadratic counterpart have 

been shown. In this part, results for the state estimation problem via a non-quadratic 

Lyapunov function and a non-PDC-like observer are presented. These results are summarized 

in the following theorem. 

Theorem 4.8. The estimation error dynamics in (4.60) with 
1

h hv
G L

  is asymptotically 

stable if there exist matrices 
2 2

0T

i i
P P  , 

2 1i j
L , and 

2i
G  for  1 2, , 1,2, ,

x a
i i i r , 

 1 1,2, ,
e

j r  such that: 

 
1 1 2 2 1

1 1 1 1

1 1 11 1 1 2

2
0, , , 0, , , ,

1
;

x x x xi i

j j j j

i i x i ii i i i i i x i

a

i i i i i
r

j j         


  (4.78) 

hold with 



111 

 

 
 

21

1 2

2 1 2 1 1 2 1 1 2

.
x

x

i T

i i i j j

ij

i i T

i j i i i

P

L C EG A G E G P

  
 




 

    
   

The final observer structure is (4.74). 

Proof. Recall inequality (4.63). Choose the observer gain as 1

h hv
G L

 , and 

0 T
T

hG    . Using Lemma B.3 on (4.63) gives (4.78). ■   

Example 4.6. Recall  the nonlinear descriptor model in Example 2.5 (Chapter 2, Section 

2.2.5), i.e.,  

      1 ,,
k k k k k k k k

x x A x x xE yBu C x      (4.79)

where  
2

1
k

E x



 

  
 

,    1cos 1

0.7 1.1
k

x
A x

  
   

, 
0

1
B

 
  
 

, and    1 1sin /

0.2

T

k

x x
C x

 
  
 

; 

with  2

11 1 x   . Employing the sector nonlinearity approach, an exact TS descriptor 

representation (4.58) in  2
x   , with 2

e
r  , 4

a
r  , matrices as follows 1

2 1

1 1
E

 
 
 

 , 

2

2 0

0 1
E 

 
 
 

, 1 2

1 1

0.7 1.1
AA








 
 

, 3 4

1 1

0.7 1.1
AA

 


 


 
 

, 
0

1
B

 
  
 

,  1 3 1 0.2CC  , 

and  2 4 0.2167 0.2C C   . The MFs are defined as  2

1 21 1v x  , 2 11v v  , 1 0

2

0

1
h   , 

2 0

2

1

1
h   , 3 1

2

0

1
h   , 4 1

2

1

1
h   , with   0 1

1 0.5 cos 1x   , 0

1 1

1 1   , 

  0 1 1

2 sin / 0.2167 1.2167x x   , and 0

2 2

1 1   . Applying conditions in Theorem 4.8 

the following values have been obtained: 

 

11

32 41 1 2

1 2 4

0.60 0.36 0.66 0.32 0.75 0.18

0.36 0.46 0.32 0.45 0.18 0.41

0.38 0.13 0.32 0.07
and

0.08 0.38 0.

0.06
, , , ,

0.12

0.44 0.57
, , ,

0 13 0..04 0.1 36 7

P P L

L L G

P

G

        
             

 

     
    

         






    

.


 


   

Simulation results are shown in Figure 4.7 for initial conditions    0 1 1
T

x    and 

   ˆ 0 0 0
T

x  ; the input is    0.5sinu t t . 
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Figure 4.7. Simulation results for Example 4.6: States (black-solid-lie) and their estimates (blue-dashed-line).  

Recall that by means of the approaches given in (Guerra and Vermeiren, 2004; Guerra et 

al., 2012b), no solution was found for a standard TS representation of (4.79). In addition via 

Theorem 4.8 only 132 LMI constraints are needed instead of 4112 for (Guerra and 

Vermeiren, 2004; Guerra et al., 2012b).   

Example 4.7. Consider a TS descriptor with 0u  , 4
a

r  , 2
e

r  ,  and matrices: 

1

0.9 1.8

0.1 1.1
E

 
  

 , 2

0.9 0.3

1.4 0.8
E

 
  

 , 1

1 1.8

1.5 0.5
A

 
  

 , 2

1.8 0.86

1.5 0.5
A





  

, 

3

1 0.2

1.5 0.5
A

 
  

 , 4

0.2 1.14

1.5 0.5
A





  

, 1 3

0

1

T

C C


 
   

 , 2

0

2

T

C
 
 
 

 , and 4

0

1

T

C
 
 
 

 , where 

0   is real-valued parameter. Conditions in Theorems 4.5 and 4.6 are not feasible for any 

0  ; conditions in Theorem 4.7 provide solutions up to 0.16  ; conditions in Theorem 

4.8 are feasible up to 0.40  .   

4.2.2.3. Delayed non-quadratic Lyapunov function 

As it has been stated in Chapter 3, Section 3.2, the use of past samples in the MFs of the 

Lyapunov function allows adding extra degrees of freedom while keeping the same number 

of convex sums, thus relaxing the results from the NQ approach. In this section the observer 

to be designed is: 

  1

1
ˆ,ˆ .ˆ ˆ ˆ

v k h h hhh hh vk k k k k k
E L y C xx A x B u G y y 


       (4.80) 
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The following result is a delayed version of Theorem 4.8. 

Theorem 4.9. The estimation error dynamics in (4.60) with 1

hh hh v
G L 

  is asymptotically 

stable if there exist matrices 
2 2

0T

i i
P P  , 

2 1xi i j
L , and 

2 xi i
G  for  1 2, , 1,2, ,

x a
i i i r , 

 1 1,2, ,
e

j r  such that: 

 
1 1 2 2 1

1 1 1 1

1 1 11 1 1 2

2
0, , , 0, , , ,

1
;

x x x xi i

j j j j

i i x i ii i i i i i x i

a

i i i i i
r

j j         


  (4.81) 

hold with  

 
 

1

1 2

2 1 2 1 1 2 1 1 2 2

.
x

x

x x x x

i T

i i i i i i j j i

ij

i i T

i j i i i
G A GL C E G P

P

E

  
 

 


 

   
  (4.82) 

Proof. Recall inequality (4.63). Choose the observer gain as 1

hh hh v
G L 

 , and 

0 T
T

hh
G     , by means of Lemma B.3, (4.63) gives (4.81).■   

Example 4.7 (continued). Employing conditions in Theorem 4.9 on Example 4.7 

increases the feasible solution set from 0.40   up to 0.76  . Hence, the delayed 

approach provides a larger solution set than the classical approaches.   

4.2.3. Generalization 

It has been shown in the previous subsection that more relaxed results can be achieved by 

incorporating delayed samples both in the Lyapunov function and in the observer gains. In 

order to generalize this approach, recall Definitions 3.1~3.9. Hence, the TS descriptor model 

(4.58) is rewritten as  

 
0 0 0 0

1 , ,E A B Ck k k k kH H H
E x A x B xu y C      (4.83) 

with  0 0 0 0 0E A B C
H H H    , i.e., without delays in the system matrices. The observer to 

be designed is:  

 
 

0 0 0 0 0 0 0

0

1

1ˆ

,ˆ

ˆ ˆ

ˆ
E A B G G L L

C

k k k k k

k k

H H H H

H

E x A x B u G L y y

y xC


   


  (4.84) 



114 

 

where 
0 0
G G

H
G  and 

0 0
L L

H
L  are the observer gains to be determined. They include delays given 

by multisets 0

G
H , 0

L
H , 0

G
, and 0

L
; these multisets must not contain positive delays, since a 

positive delay refers to future state variables, which are not available for computation. 

The estimation error is ˆ
k k kxe x   and its dynamics are 

   
0 0 0 0 0 0 0

1

1 ,E A G G L L CH H Hk kH
E e A G L C e


    

which can be expressed as 

 
0 0 0 0 0 0 0

1

1

0.A G G L L C EH H H
k

H

k
e

A G L C E
e





        
  (4.85) 

Employing the Lyapunov function candidate 

  
0 0 0 0 0 0 0 0, ,

, 0, , ,P P P P P P P P

T T

H Hk k k
V e e P e P P   

i j i j
i j   (4.86) 

its variation is 

   0 0

1 1
1 1

0
0.

0

P P

P P

H

H

T

k k

k

k k

e e
V

e

P
e

P e 

    
      
     

  (4.87) 

By defining 
1

k

k

e

e 

 
  
 

, 
0 0 0 0 0 0 0

1
A G G L L C EH H H H

A G L C E
     , 

0 0

1 1

0

0

P P

P P

H

H

P

P

 
 
  

, and 

employing Finsler’s lemma, inequality (4.87) under the equality constraint (4.85) results in: 

   0 0

0 0 0 0 0 0 0

1 1

1
0

0
0

.
P P

A G G L L C E

P P

H

H H H H

H

P
A G L C E

P

 
 
          

  (4.88) 

Therefore, the following result can be stated: 

Theorem 4.10. The estimation error dynamics in (4.85) is asymptotically stable if there 

exist 
, ,

0P P P P
k k k k

T
P P 

i j i j
, P

k

P

k H
pr ii , P

k

P

k
pr jj , 

0 0,L LL
i j

, 
0

0 L

L

H
pr ii , 

0
0 L

L
pr jj , and 

0 0,G GG
i j

, 

0
0 G

G

H
pr ii , 

0
0 G

G
pr jj , H

i , 


j , 0,1k  , where  0 1 0 0 0

P P L G E

      ,

   0 1 0 0 0 0

P P L C G A
H H H H H H H         such that 

 
 

0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1

0.
P P

G G A L L C G G E E G G P P

H

T T

H H H H H H H

P

G A L C G E E G P

   
  

     
  (4.89) 
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The total number of sums involved in (4.89) is 
H

n H   . 

Proof. Consider (4.88). Selecting 
0 0

0 G G

T

H

T

G     gives directly (4.89). ■    

Remark 4.6. Considering that the system matrices do not contain delays, the maximum 

number of sums involved in (4.89) is given by 2 2 2
h v h v h vH P L LP G G

n n n n n n n       . 

Corollary 4.3. The result for standard TS models stated in (Guerra et al., 2012b) is a 

special case of Theorem 4.10. 

Proof. For (4.89), consider 
0
EE I . Since 0 0 0

E G L   , we have: 

 
 

0

0 0 0 0 0 0 1

0.
P

G A L C G G P

H

T

H H H H H H H

P

G A L C G G P

   
  

     
  (4.90) 

By defining the multisets as  0 0 0, 1G L
H H    and  0 1P

H   expression (4.90) directly 

yields the conditions in (Guerra et al., 2012b). ■   

Selecting multisets 

This part formalizes the delayed approach for the observer design. The main idea is that 

the multisets used in the design should be selected such that sums relaxations can be 

employed (double sums at the same instant). To this end, constructive steps are given. 

Step 1: Recall that the system (4.83) does not contain delays in its matrices, i.e.,  

 0 0 00 0E BA C
H H H    ; thus the multisets 0

G
H , 0

L
H , 0

G
, and 0

L
 should, at least, 

contain  0 . Thanks to the terms 
0 0 0
G G A

H H
G A  and  

0 0 0
L L C

H H
L C , a smart selection is 

0 0 0

G L G
H H  . Hence (4.89) gives 

 
 

                       

0 0

1 1
0 , 0 0 0 , 0 0 0 , 0 0 0 0 , 0

0,
P P

P P

H

T T

H

P

G A L C G E E G P

   
  

     
   

which by selecting the multisets for the Lyapunov matrix as  0 0 1P P
H     (Guerra et al., 

2012b) writes: 

 
     

                           

1 , 1

0 , 0 0 0 , 0 0 0 , 0 0 0 0 , 0 0 , 0

0.
T T

P

G A L C G E E G P

    
  

     
  (4.91) 
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Step 2: Note that the convex inequality (4.91) contains three sums of 

          
1 21 21 1 1

: 1
a a a

xx

r r r

i i i i i i
h h z k h z k h z k

  
    and three sums of the form  

          
1 21 21 1 1

: 1
e e e

xx

r r r

j j jj j j
v v z k v z k v z k

  
   . Thus, it is possible to include the 

delay  1  in each multiple sum of 
0 0
G G

H
G  and 

0 0
L L

H
L  without altering the total number of 

sums: 

 
     

                           

1 , 1

0, 1 , 0, 1 0 0, 1 , 0, 1 0 0, 1 , 0, 1 0 0 0, 1 , 0, 1 0 , 0

0.
T T

P

G A L C G E E G P

 

       

   
  

     
  (4.92) 

Step 3: Since there is no product involving 
0 0
L L

H
L  and 

0
EE , the MFs  v  of 

0 0
L L

H
L  should 

be chosen as 0 0 0

L G E  , thus (4.92) gives 

 
     

                           

1 , 1

0, 1 , 0, 1 0 0, 1 , 0,0, 1 0 0, 1 , 0, 1 0 0 0, 1 , 0, 1 0 , 0

0.
T T

P

G A L C G E E G P

 

       

   
  

     
   

Table 4.1 provides the generalization based on the previous steps (similar to Chapter 3, 

Section 3.2.3). 

Table 4.1 How to select multisets for Theorem 4.10. 

Matrix Multisets in Theorem 4.10 

0 0
P P

H
P  

 0 01, 1, , 1 ,
h

P P

P
H H n      

 0 01, 1, , 1 ,
v

P P

P
n     ,  

0 0
L L

H
L  

 0 00,0, ,0, 1, 1, , 1 , 2

P

h

Ph h

L L

P

n n

H H n       

 0 00,0,0, ,0, 1, 1, , 1 , 1 2
v

Pv Pv

L L

P

n n

n        

0 0
G G

H
G  

 0 00,0, ,0, 1, 1, , 1 , 2

P

h

Ph h

G G

P

n n

H H n      

 0 00,0, ,0, 1, 1, , 1 , 2
v

P Pv v

G G

P

n n

n       
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Example 4.8. We turn back to the TS descriptor model in Example 4.4. Figure 4.8 shows 

the feasible regions for the proposed approach when  1.5,1.5a   and  1.5,1.5b  . Two 

configurations for Theorem 4.10 are tested:  

 Configuration 1: Multisets 0 0 0 0 {0}P G L L
H H H     and 0 0

P G  , leading to 

the conditions in Theorem 4.8 The results are represented by    in Figure 4.8. 

 Configuration 2: Multisets 0 0 0 {0, 1}G L G
H H    ,  0 0,0, 1L   , and 

 0 0 1P P
H    . The results are represented by    in Figure 4.8. 

 

Figure 4.8. Feasible sets for different configurations for Theorem 4.10 in Example 4.8 .    

By selecting    , 1,0.3a b   Configuration 1 does not provide a solution, while 

Configuration 2 is feasible; some of the obtained gains are: 
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Figure 4.9. Simulation results for Example 4.8: States (black-solid-line) and their estimates (blue-dashed-line).  

Simulation results are shown in Figure 4.9 for initial conditions    0 0.5 0.5
T

x    and 

   ˆ 0 0 0
T

x   . The MFs used for simulation are 
2

1 2 4h x , 2 11h h  ,  1 2 2 4v x  , and 

2 11v v  . 

The α-sample variation 

More relaxed conditions using the α-sample variation presented in (Kruszewski et al., 

2008) are given in what follows. The main idea is to replace the classical one-sample 

variation of the Lyapunov function by its variation overall several samples, thus allowing the 

Lyapunov function to decrease at each α sample and not at each sample. This can be 

summarized in the following theorem. 

Theorem 4.11. The estimation error dynamics in (4.85) is asymptotically stable if there 

exist 
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     

    
 

     
   

         

(4.93) 

Proof. Consider the Lyapunov function (4.86) and its α-sample variation as follows 

(Guerra et al., 2012b; Kruszewski et al., 2008; Lendek et al., 2015): 

 

     
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         

  (4.94) 

The error dynamics (4.85) during α samples can be summarized as the following equality 

constraint: 
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0

2

1

0

1

1

0 0

0 1
0,

0

0 0

E

E

E

S E
e k

S e k

E

e kS E












                      

  (4.95) 

with 1
A G G L L C
l l l l l l

l H H H H
S A G L C

  ,  0,1, , 1l   . Applying Finsler’s lemma, inequality 

(4.94) under constraint (4.95) is equivalent to 

  

0

2

0 0

1

0

1

1

0 0 0 0

0 0 0 0
0,

0

0 00 0

E P P

E

P PE

H

H

S E P

S

E

PS E



 







   
   
            
      

   

where 
 1x xn n   . In order to obtain strict LMI conditions a natural choice (Kruszewski 

et al., 2008) of matrix  is: 
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0 0

1 10 0 1 1

1 1

0 0 0

0 0

0 0 ,

0 0

G G

G GG G G G

G G

H

HH H

H

G

GM

G

 

 

 

 

 
 
 
   
 
 
  

   

leading to (4.93) and concluding the proof. ■   

Remark 4.7. Using 1   in Theorem 4.11, Theorem 4.10 is recovered. 

Example 4.9. Consider a discrete-time TS descriptor model as (4.58) with 0ku  , 

2a er r  , 1

1 0.2

1.5 0.5

a
A 

   
  

, 2

1 2.2

1.5 0.5
A

 
  

 , 1

0

1.2

T

b
C

 
   

, 2

0

1.2

T

b
C

 
   

, 

1

0.9 1.1

0.2 1.1
E





  

, and 2

0.9 1.3

0.6 1.1
E

 
  

 . The parameters are defined as  0.5,1a   and 

 0.5,0.5b  . Choose the multisets of Lyapunov matrix and of the observer gains as 

0 0 0 {0, 1}G L G
H H    ,  0 0,0, 1L   , and  0 0 1P P

H    . Two sets of conditions have 

been tested: 

 Conditions in Theorem 4.11 for 1  , i.e., the conditions in Theorem 4.10. The 

resulting feasible solutions are represented by ( ) in Figure 4.10. 

 Conditions in Theorem 4.11 for 2  , the resulting feasible solutions are represented 

by ( ) in Figure 4.10. 

 

Figure 4.10. Feasible solution set for Theorem 4.11 for α=1 (□) and for α=2 (×) in Example 4.9.   
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4.3. Summary and concluding remarks 

In this chapter, recent results for observer design for TS descriptor models have been 

presented. In the continuous time case, the observer design is carried out efficiently by 

avoiding BMI conditions in the literature. The improvement is obtained by changing the 

estimated state vector. More, relaxed results can be achieved with different observer 

configurations. In the discrete-time case, several approaches have been provided; relaxed 

results are achieved via the delayed approach. An arbitrary number of past samples can be 

added into the MFs of both the Lyapunov function and the observer gains, and a systematic 

procedure is given to do this, thus providing the generalization of the delayed approach. 

Several numerical examples have been used to illustrate the performances of the given 

conditions.
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Chapter 5. Static output feedback controller 

design 

This chapter presents conditions for output feedback control design for both continuous 

and discrete time TS descriptor models under the assumption that the descriptor matrix is 

non-singular. In the continuous-time case, a quadratic Lyapunov function is used together 

with slack variables. In the discrete-time case, a delayed Lyapunov function is proposed 

together with delayed non-PDC controllers. In both cases, the design conditions are given in 

terms of LMIs up to the selection of a slack variable; naturally, different choices of this 

variable may lead to different degrees of conservatism, as illustrated via numerical examples.  

5.1. Continuous-time TS descriptor models 

This section deals with static output feedback controller design for continuous-time 

Takagi-Sugeno descriptor models. Via the well-known Finsler’s lemma and the descriptor-

redundancy approach a set of linear matrix inequalities are derived to solve this design 

problem. 

5.1.1. Problem statement 

Consider the following TS descriptor model (Taniguchi et al., 1999): 

 , .
v h h h
x x B Cu xE A y    (5.1) 
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In the case of static output feedback control (SOFC) design for standard TS models, an 

iterated LMI (ILMI) approach has been presented in (Huang and Nguang, 2007), while 

sufficient LMI conditions have been developed in (Kau et al., 2007). In particular, (Kau et al., 

2007) designed a SOFC PDC-like control law of the form: 

 .
h h h

K y Ku C x  (5.2) 

Their analysis relied on the closed-loop system  h h h h
x A B K xC  . Stabilization 

conditions have been given in terms of LMIs together with equalities: 

 
  0,

, 0.

0,h h h h h h

T

h h

P B N C C P

K M P

C

N P

A M  

 
 


  (5.3) 

Conditions (5.3) are similar to those in (Crusius and Trofino, 1999). Effectively, in case of 

standard linear systems 

  , .  x Ax Bu y Cx   

Crusius and Trofino, (1999) gave sufficient conditions for the output feedback control 

problem. Two different approaches have been stated: 

The W-Problem: given matrices A , B , and C  with C  full row rank, a controller 

1
u N yM

  can be designed if there exist W , N , M  so that the following conditions hold: 

   0, 0, 0.T
AW BNC MC CW W W         (5.4) 

The P-Problem: given matrices A , B , and C  with B  full column rank, a controller 

1
u yM N

  can be designed if the exist P , N , M  so that following conditions hold: 

   0, .0, 0T
PA BNC PM PBB P       (5.5) 

Thus the conditions in (Kau et al., 2007) are a “direct” extension of the W-Problem. The 

result in (Bouarar et al., 2009) has established LMI conditions for stabilization of a standard 

TS model via the descriptor-redundancy approach together with a non-PDC control law 

 1

1

h h
u yPK

 . Matrix 
1hP  is in the Lyapunov matrix, thus the conditions involve the time-

derivative of the MFs. 

Our aim is to control the TS descriptor model (5.1) via SOFC of the form 

    1 1
,

hhv hv hhv hv h
u G GK y K xC

    (5.6) 
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where u un n

hhv
G

  and u yn n

hv
K

 . Substituting the control law (5.6) in the system 

dynamics (5.1), it produces the closed-loop  

   1
,v h h hhv hv hx A B K xE G C

    (5.7) 

which is difficult to deal with. 

5.1.2. Results 

Using Finsler’s lemma, it is possible to avoid the equality conditions in (Kau et al., 2007) 

and the ILMI conditions in (Huang and Nguang, 2007). The TS descriptor model together 

with the control law are written as the following equality constraint: 

 
  1

0.
0

u x u

h v h

hhv hv h n n n

x
A E B

G C
x

K
u

I




            

  (5.8) 

The expression (5.8) avoids the explicit appearance of the classical closed-loop 

  1

v h h hhv hv hx A B K xE G C
  , and it also decouples the nonlinear matrix 

v
E . 

Consider the following quadratic Lyapunov function candidate: 

   , 0.T T
P PV x x Px     (5.9) 

Its time-derivate, adding the null-term 0
u

T

n
u u  produces: 

 

  0

0 0

0 0 0.

0 0 0
u

T T T

T

n

V x x x u u

P

x P

Px x

u

x

u

P

x

x

 

    
         
       





  (5.10) 

Taking x

u

x 
   
  

, 
  1

0

h v h

hhv hv hK

A E B

G C I


 
 
  

, and 

0 0

0 0

0 0 0

P

P

 
   
  

. Via Finsler’s 

lemma the inequality constraint (5.10) together the equality constraint (5.8) yields 

 
 

 
1

0 0

0 0 0,
0

0 0 0

h v h

hhv hv h

P
A E B

P
G CK I



               

  (5.11) 
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where 
   2 x u x un n n n     is a free matrix. Therefore, the following result can be stated. 

Theorem 5.1. Consider x un n   a constant matrix, the TS descriptor model (5.1) under 

the control law (5.6) is asymptotically stable if there exist matrices 0T
P P  , 

21i
M , 

23i
M , 

25i
M , 

21 2i i j
G , 

2 1i j
K ,  1 2, 1,2, ,i i r ,  1 1,2, ,

e
j r  such that: 

 1 1 1 1

1 1 1 1 1 2 2 11 1 1 1 2

2
0, , ; 0, ,

1
,

j j j j

i i i i i ii

a

i
j ii

r
j i       


   (5.12) 

hold with  

 

     

   

 
 

 

2 1 2 1 1

1

2 11 2 2 1 2 1 1 2 1 1 2

2 1

2 1 1 2 12 1 2 1 1 2 1 1 2 1

2 1 1 2 1

1

13 3 3

5

15 5

3

.

i j

T

i i i

j
ji i i i j j

j

i i ii i i i i i

i

T T
ii i j i i

iT

i ji j i jT

i i i j

A K C

EA K C E E M

E
B GA K C B

M

P MM M

M
M

M B
M M G

G








    
 
    
 

 
   
 



  

 
  
 
  

  

Proof. Going on from (5.11) we choose:  

 

1

3

5

.

h hhv

h hhv

h hhv

M G

M G

M G




 
   
  

  (5.13) 

Then, inequality (5.11) renders  

 

     
   
     

1

3 3

2,1

3,1 3,2

5

: 0,

h h hv h

T T

h v v h

v

hh

h h hhv

A K C

E E M

B

M

M

M G

     
 

  



   
     

  (5.14) 

where 
   3

2,1

1

T

h h hv h h v
A K CM P M E    , 

   5

3,1

1

T

h h hv h h h hhv
A K C B GM M    , 

and 
   5

3,2

3

T

h v h h hhv
M ME B G    . Finally, applying Lemma B.3, (5.14) yields (5.12), 

thus concluding the proof. ■   

Remark 5.1. The goal is to obtain an LMI problem. Since the slack matrices in  can be 

chosen, several options are available. The structure in (5.13) has been chosen following the 

idea from (Chadli and Guerra, 2012). 
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Remark 5.2. Several results can be obtained from Theorem 5.1, for instance, setting 

0
x un n

   or 
hB   or 

5 0
u xn n

M  . Different configurations may lead to different results 

(Chadli and Guerra, 2012). 

Remark 5.3. In this particular case (SOFC design), when using the extended vector  

T
T T T

x ux   , equivalent conditions are obtained employing Finsler’s lemma and 

descriptor-redundancy, as follows. 

Consider 
T

T
T T

x x x u    ; thus the system (5.1) together with the control law (5.6) 

writes: 

 
  1

0

0
,

h h v

hhv hv h

x B u E x

u K

x A
x

C u
x

G x


 

  

   


  (5.15) 

with 

0 0

0 0 0

0 0 0

x

x

u

n

n

n

I 
 

  
 
  

 and 

  1

0 0

0

x x u

u

n n n

h v h

hhv hv h n

I

A E

K

B

G C I




 
 

 
 

  

. The Lyapunov function 

under consideration is   T T
x PV x x , where 0T T

P P   and 

1

2 3 4

5 6 7

0 0P

P P P

P P

P

P

 
   
  

 with 

1 1 0T
P P  . Therefore   0V x   is equivalent to 0T T

P P  , or extending 

 

     
   
     

1

2 5

1

3 6 3 31 2

1

4 7 4 4 72 5 3 6

0,

T T

h hhv hv h

TT T T TT
h hhv hv h v vv

T TT T T T TT T T
h hhv hv h v hh h

P G K C

A P G K C E E PP E

A P G K C E B PB P B P

P A

P PP

P P PP P









  

 

    
 

   
 

     

  

which by setting 
1P P , 

2 1

T

h
P M , 

33

T

h
P M , 

4 5

T

h
P M , 

5 6

T T

hhv
P P G  , and 

7

T

hhv
P G  

gives exactly (5.14). 

Corollary 5.1. The P-Problem conditions (5.5) given in (Crusius and Trofino, 1999) are 

included in those of Theorem 5.1. 

Proof. By choosing 
vE I , 

1M P , 
2 h hh

M B G , 
3M P , 

4 h hh
M B G , 

5 0M  , and 

6 hh
M G , (5.11) gives: 
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     
 

     
2 0

0.
1

h h h h

h h h

T T T

h h h h hh h h hh hh hh

PA K C

PA K C

K C B B

B

P

P B G GP B G G

 

  


    
   
    




 



 

  (5.16) 

Set 
hh

G G . If the equality 0
h h

P BB G   holds, then 

 

   
0,2 0

0

h h h h

h h h

T

h h

PA K C

PA

B

P

G

K C

K GC
 

    
             



   (5.17) 

which by means of the Schur complement produces 

    
1

2 0
0.

0

h h h

Th h h h

h h

P
B

G

PA K C
PA K C

K CG



  

         


   (5.18) 

Considering a sufficiently small 0  , conditions similar to those of the P-Problem 

appear: 

    0, 0 0., T

h h h h h h
PA K C B PP B G PB        (5.19) 

Conditions (5.19) can be seen as the P-Problem for nonlinear systems in standard TS 

form. Moreover, when a standard linear system is under study, conditions (5.19) yield exactly 

the P-Problem conditions in (5.5). Note that in this case,   has been set as 
hB  . ■   

The following example illustrates the performance of Theorem 5.1 when different options 

for   are tested. 

Example 5.1. Consider a TS descriptor model of the form (5.1) with 2ear r    and 

1

1.05 0.7 0.7

0.1 1.1 0.2

0.1 0.5 0.9 a

E

 
    
  

, 
2

0.8 0.8 0.7

0.9 1.1 0.2

0.4 0.5 0.6

E

b 
    
  

, 
1

1.15 0.1 1.8

0.3 1.3 0.5

0.1 0.8 0.8

b

A

  
  
 

 
 

, 

2

1.2 0.3 0.1

0.4 0.6 0.3

0.2 0.2 0.2

A

a

   
   
     

, 
1

0.6 1.2

0.3 1.5

0.6 1.3

aB

 
   
  

, 
2

1.3 2.1

2.7 0.5

1.5 1.6

B

 
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  

, 1

0.4

1

0

T

C

 
   
  

, and 

 2 0.8 1 0C  , where  0 1a ,  0.5,1b   are real-valued parameters. Three 

configurations for Theorem 5.1 have been tested:  
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 1 2 3Conf : , Con
0 0 0 1 1 1

and
0 0 0 1 1 1

f : , Conf : .

T T

hB  
   

     
   

  

Figure 5.1 shows the feasible solution set for each of the configurations: Configuration 1 

 O , Configuration 2   , and Configuration 3   . In addition, Figure 5.1 illustrates 

Remark 5.2, since different solution sets have been obtained for different selections of the 

free matrix x un n  , i.e., they do not include each other. 

 

Figure 5.1. Feasible solution set in Example 5.1. 

Observe that when Configuration 3 is implemented, another sum must be taken into 

account, turning the problem from three sums –      
1 2 11 2 11 1 1

a a er r r

ji ii i j
h vh

      – to four 

sums –        
1 2 3 11 2 3 11 1 1 1

a a a er r r r

i i ji i i ij
h h vh

       .   

5.2. Discrete-time TS descriptor models 

This section presents a static output feedback controller design for discrete-time TS 

descriptor models. The proposed method exploits the discrete-time nature of the TS model by 

the use of delayed Lyapunov functions, similarly to the previous chapters. 
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5.2.1. Problem statement 

Consider the following discrete-time TS descriptor model  (Taniguchi et al., 1999): 

 
1 , .

v k k k k hh h k
A x B y CE x u x      (5.20) 

Recall that 
v

E  is full rank, thus a standard TS model can be constructed. For standard TS 

models, in (Chadli and Guerra, 2012; Kau et al., 2007; Lo and Lin, 2003), the following PDC 

control law is used 

 .
k h k h h k

u K y K C x    (5.21) 

In case of the TS descriptor model (5.20), the following control law is used: 

   1

.
hhh v h v khku G K y 


   (5.22) 

The control law contains past samples incorporated via the MFs similar to Chapter 3.  

5.2.2. Results 

Controller design 

The TS descriptor model (5.20) and the control law (5.22) can be expressed as: 

 
  1 1 0.

0
u x u

k

h n

h v h

k

nhhh v hh v
k

n

xA E B
x

G K I
u

C 

 


            

  (5.23) 

Consider the following delayed Lyapunov function (Guerra et al., 2012b): 

     
1 1

1 1

0,1
a

k i i

r
T T

k k h k

i

kV x x h z k P x P xx 



 
 

 
    (5.24) 

where 
1 1

0T

i i
P P  ,  1 1,2, ,

a
i r . The variation of the Lyapunov function (5.24) gives 

  1 1

T T

k hk kk h k
x P xV x Px x    , which by adding the null-term 0T

k k
u u  can be rewritten as  

   1 1

0 0

0 0 0.

0 0 0
u

T

k k

k k

k

h

k

n

h

k

x x

V x P x

u u

P

x



 

    
          
        


  (5.25) 
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Taking 
1

k

k

kx

x

u



 
   
  

, 
  1

0

h v h

hhhh v hh v

A E B

G K IC 



 
 

  
, and 

0 0

0 0

0 0 0

h

h

P

P

 
   
  


. Via 

Finsler’s lemma equality (5.23) together with inequality (5.25) yield 

    1

0 0

0 0 0,
0

0 0 0

h
h h

h

h

v

hhh v hh v

A E B P

P
CG K I



 



               


  (5.26) 

where    2 x u x un n n n   is a free matrix. Therefore, the following result can be stated. 

Theorem 5.2. Consider x un n   a constant matrix. The TS descriptor model (5.20) 

under the control law (5.22) is asymptotically stable if there exist matrices 
2 2

0T

i i
P P  , 

23 xi i
M  

1 2 1xi i i j
G , and 

2 1xi i j
K ,  1 2, , 1,2, ,

x a
i i i r ,  1 1,2, ,

e
j r  such that  

 
1 1 2 2 1

1 1 1 1

1 1 11 1 1 2

2
0, , , 0, , , ,

1
;

x x x xi i

j j j j

i i x i ii i i i i i x i

a

i i i i i
r

j j         


  (5.27) 

hold with 

 

   
 

 
1

1

1 2 2 2 1 2 1 1 2

2 1 2 1 2 1 1 2 1 1 2

1 2
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3 3 3
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x x x x x

x x x x x

i

j

i i i i j i i j j i i

T

i

T T

i i i i i i

T

j i i i i i j i i j i i ji i i i i

P

M M E PA K C E M

C B GK M G G





    
       




    

  (5.28) 

Proof. Recall (5.26), and select the free matrix as: 

 
3

0 0

,

0

x x u

u x

n n n

n n

hh hhh v

hhh v
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







 
 

  
 
 

  (5.29) 

where 
3

x xn n

hh
M 

  and u un n

hhh v
G 

  are decision variables. As previously, x un n   is 

not a decision variable (Remark 5.2). Hence, (5.26) produces  

 

   
 

 
3 3 3
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0,:
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h h hhhh hh hh v

T T

vhh hh

T

h hhh v hh hhh v hhh v hh

v

T

h v

P

M M E P

K

A

M G G

K C E M

C B G









  

   



    
        
 

  

  (5.30) 

which by means of Lemma B.3 yields (5.27). ■   
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Example 5.2. Consider the following nonlinear TS descriptor: 

      1 , ,
k k k k k k k k

A Bu yE x x x x xC x      (5.31) 

with   2

2

0.9 0.1 0.1

0.4 0.15 1.1
k

x
E x

x

 
    

,  
2

20.5 0.8 0.1

1.2 0.5
k

x
A x

  
   

, 
1

1
B

 
  
 

, and

  2

20 1.3 0.15
k

C x x    . Consider the compact set  1 2: , 2x x x   : inside this 

compact set  E x  is nonsingular:   det 0E x  , x  .  

The TS descriptor model for (5.31) has 2
e

r   due to 
2x  (left-hand side) and 2

a
r   due to 

2

2x  (right-hand side). The matrices are 1

0.9 0.3

0.7 1.1
E

 
   

, 2

0.9 0.1

0.1 1.1
E

 
   

, 

1

0.5 1.2

1.2 0.5
A

 
   

, 2

0.5 0.8

1.2 0.5
A

 
   

, 
1

1
i

B
 

  
 

, 1,2i  ,  1 0 0.7C   , and  2 0 1.3C  . 

On the right-hand side, the MFs are 2

1 2 4h x   and 
2 11h h  . On the left-hand side the MFs 

are  1 2 2 4v x   and 
12 1v v  . These sets of MFs hold the convex sum property in  . 

Three configurations have been tested using the conditions in Theorem 5.2: 

 1 2 3Conf : , Conf :
0 1

0 1
, Conf : .

h
B  

   
     
   

  

Configuration 1 provides no feasible solution. In this case, Configurations 2 and 3 are 

exactly the same since  1 1
h

T
B  . Theorem 5.2 with Configuration 2 provides the 

following matrices: 

  

2

111

1

222 121 122

2222 1122 1221 1111

0

0

.48 0.08 0

.10,

.60 0.14
, ,

0.08 0

0.23, 0.27,

0.30, 0.28, 0.45

.25 0.14 0.28

0.25,

0.27, .

K K

P P

K

HH H H

K  

   

 


      

 





 

 

  

Figure 5.2 shows simulation results for initial conditions    0 1 1
T

x    . 



133 

 

 

Figure 5.2.  (a) State trajectories of the open-loop systems, (b) State trajectories of the closed-loop system in Example 5.2. 

In order to apply the SOFC conditions in (Chadli and Guerra, 2012), it is necessary to 

write (5.31) in the standard form:     1

1k k k k k
x E x A x x Bu


    with

    
2

2

1
1.1 0.1 0.11

0.4 0.15 0.9det
k

k

x
E x

xE x

   
   

; this leads to 3 82r    linear models. 

Note that the input matrix B  is no longer constant. Now, by employing conditions in (Chadli 

and Guerra, 2012), Configurations 1 and 2 yield 3 520r r   LMIs, while Configuration 3 

leads 4 4104rr   . Configurations 1 and 2 were not feasible; Configuration 3 gave 

numerical problems.  

Robust control 

Consider the following uncertain TS descriptor model: 

 
     

 
1
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h h k h h k

k h
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h k

v kE x A x B uE
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B

xC

A

C

    

 

  
  (5.32) 

where  a a

hh a h
D FA t  ,  b b

hh hb
D FB t  ,   c c

hh hc
D FC t  , and  e e

vv ve
D FE t   

with    T

a a
t t I   ,    b

T

b
t t I   ,    c

T

c
t t I   , and    e

T

e
t t I   . The TS 

descriptor model (5.32) together with the control law (5.6) can be expressed as 
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   

1 1 0.
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




  (5.33) 

Consider the delayed Lyapunov function (5.24). Through Finsler’s lemma, its variation 

(5.25) under constraint (5.33) produces 

 0,Tv

hhh

T
A A        (5.34) 

with 
v

hhh
   as in (5.30),  as in (5.29), and 
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0 0
u x u
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can be written as A    where  
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 Then, expression (5.34) produces 

 0.v T T

h

T T

hh        (5.35) 

By employing Property A.4 with   ,  , and 

, , ,a b c e

hh v hh v hh v hhh
diag I I I I           , 0T  , (5.35) can be written as 

1 0T T Tv T

hhh
     .  Recall that T

I   , and thus:  

 
1 0.T Tv T

hhh
      (5.36) 

Therefore, the following result can be stated. 

Theorem 5.3. Consider x un n   a constant matrix. The uncertain TS descriptor system 

(5.32) together with the control law (5.22) is robustly asymptotically stable if there exist 

matrices 
2 2

0T

i i
P P  , 

23 xi i
M  

1 2 1xi i i j
G , 

2 1xi i j
K , and scalars 
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e
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x a
i i i r ,  1 1,2, ,

e
j r , such that  
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a

i i i i i
r

j j        


  (5.37) 

hold with 
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where 1

1 2 xii i

j  has been defined in (5.28) and  
1 2 1 2 1 2 1 2 1 1 2

, , ,
x x x x xi i i j i j i j

a b c e

i i i i ii j i
diag I I I I     . 

Proof. Note that inequality (5.36) can be rewritten as  
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v
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
  
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  (5.38) 

 which by means of the Schur complement gives 

  
   

: 0 0.

v
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v
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T
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



 
 

     
    

  (5.39) 

By employing Lemma B.3 the proof is concluded. ■   

To show the potential of the proposed approach and in order to compare it with other 

works, we propose the following corollary that applies the methodology to standard TS 

models, i.e. with, 
xv n

E I , 
1k k kh h

x A x B u   . 

Corollary 5.2. Consider the SOFC 
1

k khhh hh
u G yK 

  and x un n   a constant matrix. The 

standard TS model is globally asymptotically stable if there exist matrices 
2 2

0T

i i
P P  , 

23 xi i
M , 

1 2 xi i i
G , and 

2 xi i
K ,  1 2, , 1,2, ,

x a
i i i r , such that: 
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  (5.40) 

hold with  
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3 3 3

3

.

x

x x x x x

x x x x x

T

i i i i i i

T

i

i

i i i i i i i i

T

i i i i i i i i i ii i ii

P

M A K C M

C

M P

K B GM G G





    
       
  



 

  

Similar reasoning applies for the uncertain model (5.32): if 
xv n

E I  and 0
v

E   then: 

      1 , .
h h h h h hk k k k k

A B C xx A x B u y C          (5.41) 

Thus (5.41) together the control law 
1

k khhh hh
u G yK 

  is robustly asymptotically stable if 

there exist matrices 
2 2

0T

i i
P P  , 

23 xi i
M  

1 2 xi i i
G , 

2 xi i
K , and scalars 

2
0

xi i

a  , 
2

0
xi i

b  , 
2

0
xi i

c  , 

 1 2, , 1,2, ,
x a

i i i r , such that: 

 
1 1 2 2 11 1 11 2

2
0, , 0 ,; ,

1x x x xi i x i i i i i i x ii i i i

a

i i i i i
r

        


  (5.42) 

hold with 

  

   

1

1 2 2 1 2 1 2 1 1 1 2

12 1

1 1 2

1 2

1

3 3

0 0

0 0

0 0

0 0 0

0 0

0 .

x x x x x

x

x x

x

T
a

i

a b c b

i i i i i i i i i i i i i i i

cc

ii i i

i

i

i i i i

i i

i

i

M

F

D D K D F T

FK D

T

T

M 

  
  
   
  
   
 
 
 

   

 
 

 
 
 
 
 
 



 

  
 





 







  

Proof. The proofs are straightforward from Theorems 5.2 and 5.3. ■   

When 
vE I , the following numerical example compares the performance of Corollary 

5.2 and Theorem 2 in (Chadli and Guerra, 2012). The example is adapted from (Chadli and 
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Guerra, 2012), by including a real-valued parameter in the uncertain terms. Also for this 

example different values for the arbitrary matrix   are tested (see Remark 5.2). 

Example 5.3. Consider a TS model as in (5.41) with 2
a

r   and local matrices as follows 

(Chadli and Guerra, 2012): 

 

1 12

2

0.55 0.12 0.27 0.23 0.62 0.29 0.31 0.28

0.37 0.51 0.39 0.36 0.24 0.59 0.23 0.19
, ,

0.14 0.25 0.65 0.47 0.19 0.37 0.43 0.15

0.53 0.15 0.22 0.46 0.16 0.3

0.4

0.4
,

1 0.22 0.5

.

5

1 5

1.2

A A B

B

    
        
    

 
  
 
 
 


       

   

1 2

0.25 0.2 0 0.41 0.5 0.1 0.1

0.20 0 0 0 0 0.2 0 0.1
, , , , , ,

0.35 0.2 1 0 0.7 0 0.1 0.1

0.20 0 0 0 0 0 0

0.1 0.1 0 0.01 , 0.1 0.1 0 0.12 ,

T T T

a a c

i i i

Tc b

i i

C C D F D

F D F



 

         
                                      
         
         

    0.3, 1,2.b

i i 

  

The parameter introduced is 0  . The goal is to design a SOFC for as large values of   

as possible. Table 5.1 summarizes the obtained results. 

Table 5.1. Results for Example 5.3. 

Approach Variable 
Maximum 

parameter value 

Theorem 2 in  

(Chadli and Guerra, 2012) 

hB   0.1   

0
x un n

   0.3   

Corollary 5.2 
hB   1.0   

0
x un n

   1.5   

 

Table 5.1 shows that a larger value of   is obtained when Corollary 5.2 is applied, i.e., the 

new approach allows stabilizing the system for a larger size of the uncertainty than the one in 

(Chadli and Guerra, 2012). Furthermore, since there are different output matrices, the 

conditions in (Kau et al., 2007) are difficult to fulfill. Moreover, in both examples the output 

is nonlinear.   
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5.3. Summary and concluding remarks 

An LMI approach has been presented to deal with the static output feedback controller 

design for both continuous and discrete time TS descriptor models. These conditions 

circumvent those in the literature in the sense that no equality and/or rank constraints, which 

for TS models are considered an important drawback, are needed in the design procedure. 

The obtained conditions are LMIs up to fixing the matrix x un n  .  
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Chapter 6. Concluding remarks and future 

research directions 

This section summarizes the results presented in the thesis and discusses future research 

directions within the TS-LMI framework. 

Throughout the thesis the following family of nonlinear descriptor models has been 

considered: 

 
       

       1

Continuous-time:

Discrete-tim

,

.: ,e

.

k k k k k k k k k

E x x x B x u x x

E x x x B x u

x A y C

x A y C x x

 

 




  (6.1) 

The developed results are based on the assumption that the matrix descriptor matrix  E x  

is regular at least in a compact set of the state-space   including the origin 

   1

E x x


   . Several examples have shown the importance of keeping the original 

descriptor structure instead of computing a standard state-space model – this is possible since 

 E x  is regular. 

Three problems have been addressed: 1) State feedback control design, 2) Observer 

design, and 3) Output feedback control design. 

To develop the conditions, both for the continuous and discrete-time case, a TS 

representation of the nonlinear models (6.1) has been used. The conditions are given in LMI 

terms.  
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For the continuous-time case, the state feedback control design has been carried out by 

means of the descriptor redundancy approach together with Finsler’s lemma. By enlarging 

the set of feasible solutions, we have improved previous results in the literature. For the 

discrete-time case, a systematic methodology has been presented, which allows including 

past samples in the MFs used in the Lyapunov function as well as in the controller gains. 

For the observer design, since no “pure” LMI conditions were available in the literature, 

we proposed a new observer structure in order to solve the problem. This new structure does 

not fix any decision variable a priori and the feasibility sets in comparison to previous 

methods are significantly enlarged. In the discrete-time case, LMI conditions have been 

developed for the design of state estimators, thus filling this gap in the literature. 

The output feedback controller design has led to LMI conditions up to the selection of an 

auxiliary matrix. Depending on the selection of this slack matrix, different results may be 

obtained. Table 6.1 summarizes the contributions of this thesis. 

Table 13.1. Contributions of the thesis, where CT stands for continuous-time and DT means discrete-time. 

 Contributions Tools Publications 

State 

Feedback 

CT: Enlarge the solution 

set via parameter-

dependent LMI conditions. 

 

DT: Provide strict LMI 

constraints /  

Generalization to an 

arbitrarily delayed MFs. 

CT: Finsler’s 
Lemma / 

Descriptor 

redundancy. 

 

DT: Finsler’s 
Lemma / Delayed 

Lyapunov 

functions. 

CT: FUZZ-IEEE 2013 

 

DT: FUZZ-IEEE 2014 

/ LFA 2014 /  

IEEE Trans. on Fuzzy 

Systems 2015. 

Observer 

Design 

CT: Overcome a BMI 

problem by providing 

strict LMI constraints / 

Application to unknown 

input observers. 

 

DT: Provide strict LMI 

constraints / 

Generalization to an 

arbitrarily delayed MFs. 

CT: Auxiliary 

variable in the 

extended 

estimation error. 

 

DT: Finsler’s 
Lemma / Delayed 

Lyapunov 

functions. 

CT: AQTR 2014 / 

CDC 2015 / book 

chapter 2016 / 

Automatica 2015. 

 

DT: IFAC World 

Congress 2014 / 

CESCIT 2014.  

Output 

Feedback 

CT/DT: Provide LMI 

constraints up to fixing a 

variable. 

CT/DT: Finsler’s 
Lemma / Extended 

vector with the 

input. 

CT: FUZZ-IEEE 2015  

 

DT: CDC 2014  



141 

 

 

Within the TS-LMI framework for descriptor models, beside direct extensions such as 

including more performance criteria in the conditions, reducing the complexity of the LMI 

problems and so on, we can enumerate some future research directions. 

6.1. Use of NQ Lyapunov functions 

For the continuous-time case, only quadratic Lyapunov functions have been employed in 

this work. A future research direction could be the investigation of recent NQ Lyapunov 

functions used for standard TS models. Several possibilities can come at hand: 

 The most interesting would be to extend the line-integral Lyapunov function (Rhee 

and Won, 2006) from TS to TS descriptors, therefore obtaining to global conditions. The 

Lyapunov function    
 0,

2
x

V x f d 


  , with  0, x  being any path from the origin to 

the current state xn
x , xn   is a dummy vector for the integral, and xn

d   an 

infinitesimal displacement vector. Nevertheless, the condition for line-integral, i.e., 

   ji

j i

f xf x

x x




 
,  1,2, ,,

x
i j n   seems a huge problem. This problem has been solved in 

an efficient manner only for second-order TS descriptor systems with certain specific 

structure in (Marquez et al., 2014). 

 A second possible NQ approach is to extend the local approach given in (Bernal and 

Guerra, 2010). By introducing Lyapunov functions such as: 

    
1 2 1 2

1 21 1 1
q q

q

r r r
T

i i i i i i

i i i

V x x h h h z P x
  

 
   

 
    

together with given a priori bounds 0

k

k k

k

w
z

z





, its ensured that the future trajectories do 

not to escape from the prescribed region (Pan et al., 2012). 

 A third approach can be the extension of TS models to sum-of-squares (SOS) tools 

(Prajna et al., 2004). Without entering into details, the idea of the SOS approach is that with 

an even integer d , any polynomial  p x  can be written as:      T
p x x x    where 

 x  is a vector of monomials and   is a matrix directly obtained from the coefficients of 
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 p x . It represents a “natural” extension of the LMI tools; moreover, it has already been 

used in the TS framework (Bernal et al., 2011; Sala, 2009; Tanaka et al., 2009). 

Nevertheless, for the moment, the two last ideas present the drawback of huge increase of 

the computational cost. Only reduced order models could be considered.  

6.2. Unmeasurable premise variables 

In general MFs may depend on unmeasurable variables. Considering that the MFs depend 

on state variables that are not measurable is a more challenging problem for the observer 

design. Effectively, in this case, within the quadratic framework, a continuous-time TS 

descriptor observer will write: 

        1

1 1 1 2

0 ˆ 00 ˆ ˆˆ ˆ ˆ .
0 0

a e a
T

r r r
ij

i j i i

i j ii j iji

I LI xx
h z v z u h z P y y

A E LB



  

          
                        
    

or in shorthand:  ˆˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ

v v

T

h h h h
Ex A x B u P L y y

    . Therefore, similar procedure as in Chapter 

4, the extended estimation error writes 

        ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ .T T

hv h hhv hv hv h hv h hv hv h
Ee A L C e A A x B B u CP CP L x

          

Thus, it introduces terms as ˆv vE E , ˆh h
A A , ˆh h

B B , etc. First ideas that can be 

exploited are the use of Lipchitz conditions as in (Bergsten et al., 2002; Bergsten, P. and 

Driankov, D., 2001; Lendek et al., 2010); but a more promising way is the use of the 

differential mean value theorem as for standard TS models in (Ichalal et al., 2011). For 

example, consider the case where the premise vector is the state, i.e.,    z t x t , then 

    ˆ 1 1
ˆa ar r

h i i ih i j
A A h x h x A

 
    ; it exists a constant  ˆ,c x x  such that: 

       ˆ ˆi
i i

h
h x h x c x x

x


  


. In this case it is possible to turn back to the estimation error 

ˆe x x  , and the computation of the bounds  i i
h x x     can be done a priori as they 

only depend on the shape of the MFs  i
h x  and not on their time-derivative. Of course, the 

convergence of the estimation error will only be ensured in a ball around the origin 

depending of the bounds i . 
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6.3. Extending the results to singular systems: singular  E x   

Naturally, one of the next steps is to extend the results to nonlinear descriptor models with 

rank deficient descriptor matrix  E x . This could be addressed by exploring a reduced state-

space representation as in (Feng and Yagoubi, 2013). For example, in the discrete case, 

consider the following decomposition with   k x
rank E x q n   and   xn

I k

q
E x

 , 

   x xn n q

D k
E x

  : 

        
   

 
 

1 1

1

2 2

1 2 1

3 4 21

.
k k kk k

k k k

k k kk k

I D

A x A x B xx x
E x E x u

A x A x B xx x





      
          

      
 (6.2) 

If it is possible to find a change of variable 
2 2

1 1

0
x

q

n q

k k

k k

Ix

Ix x





    
     

    
, the descriptor (6.2) 

can be rewritten as: 

        
     

 
 

1 2 1 1

2
3 4 3 2

1 1

1

2

1

0 .
k k k kk k

k k

k k k kk

I

k

A x A x A x B x
E x u

A x A x A x B xx x

 



       
                  

 

This is a first track in the sense that for the change of variables   is not state dependent. 

Then in a sense for the vector 1 q

k
  , we are turning back to a descriptor with 

  I k
rank E x q . Naturally, the control has to be re-designed in order to avoid the feedback 

of future states. Moreover, a TS form should be expressed only after the transformation in 

order to keep a lower number of vertices. 

6.4. Fault diagnosis 

Extension to fault diagnosis and/or fault tolerant control seems also natural. For instance, 

in (Koenig, 2005; Marx et al., 2003), an asymptotic estimation of both states and failures are 

obtained via proportional-integral (PI) observers. This approach has been developed for linear 

singular systems. In (Marx et al., 2007), the fault diagnosis of TS descriptor models (with a 

constant and singular descriptor matrix) has been addressed via an observer whose structure 

is not in the descriptor form: 

    2

1

ˆ, ,
ar

i i

i

i i
h N M u L y xz T y  



      (6.3) 



144 

 

where xn    is an auxiliary variable, ˆ xn
x   is the estimated vector, i

N , iM , iL , and 2T , 

 1,2, ,
a

ri   are matrices of appropriate dimensions to be designed. Since this procedure 

has been stated for singular TS models, by using descriptor-redundancy (see Chapter 2), we 

can induce a singular TS system and therefore investigate the design conditions for an 

observer with a structure similar to (6.3).  

6.5. Real-time applications 

The work presented is also a preliminary theoretical study to cope with real-time 

problems. Effectively, applications at LAMIH UMR CNRS 8201 include the use of parallel 

robot manipulators and other mechanical systems that could be subject to the descriptor TS 

modeling. For parallel robots, preliminary results have been obtained on 2-DOF planar 

parallel robot so-called biglide (Vermeiren et al., 2012). Now, a very challenging problem to 

be faced concerns the step-crossing feasibility of a two-wheeled transporter (Allouche et al., 

2014). 

Another challenging problem concerns disabled people in wheelchair. The problem is the 

estimation of the forces in the shoulder during the push with electrical assistance; this 

problem is decomposed into two phases. The first one consists in an observer that from the 

measured speed of the wheels is able to compute the torque applied on the wheel by the 

person (Mohammad and Guerra, 2015). Once this estimated torque and the model of an arm 

are available, the goal is to find the efforts in the shoulder. The final aim is to produce an 

electrical assistance system that adapts to the estimated efforts as well as detects possible 

dissymmetry between the sides and compensates in real time. This activity is currently 

ongoing as a nonlinear descriptor has been designed in (Dequidt, 2015). 
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Appendix A. Matrix inequalities 

A.1. Some matrix properties  

Lemma A.1. (Finsler’s lemma) (de Oliveira and Skelton, 2001). Let ,n  

T n n  , and 
m n  such that  rank n ; the following expressions are 

equivalent: 
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 , with 11M  and 22M  

square matrices of appropriate dimensions. Then: 
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Property A.2 (Congruence transformation). Consider 
n nT   and a nonsingular 

matrix
n n . The following expression holds: 
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 (A.1) 

Property A.3. Let 0T   and  be matrices of appropriate sizes. The following 

expression holds: 
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    1 10 .
T T T         (A.2) 

Property A.4. Let 0T  ,  and  be matrices of appropriate sizes. The 

following expression holds: 

 
1T T T T   

 (A.3) 

A.2. Linear matrix inequalities 

A short introduction to linear matrix inequalities (LMIs) is given in this section. An LMI 

is a set of mathematical expressions whose variables are linearly-related matrices. A formal 

definition is (Boyd et al., 1994; Duan and Yu, 2013; Scherer and Weiland, 2005): 
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where 
d

x  is the vector of decision variables and 
T

j j
F F ,  0,1, ,j d   are known 

constant matrices. The symbol   stands for negative definitiveness, while   means positive 

definitiveness. In addition, non-strict LMIs can appear as   0F x   (negative semi-

definitiveness).  

The feasibility set or the set of solutions of the LMI (A.4), denoted by 

  : 0d
F xS x  , is a convex subset of d . Finding a solution of the LMI (A.4) is a 

convex optimization problem (Boyd et al., 1994). Basically, there are three well-known 

problems that often appear in control problems: 

 The Feasibility Problem (FP) consist of determining if there exist elements x X  

such that   0F x  . The LMI   0F x   is called feasible if such an x  exists, otherwise it is 

said to be infeasible. 

 The Eigenvalue Problem (EVP) is the minimization of a linear combination of the 

decision variables 
T

c x  under some LMI constraints: 

 
 subjet to

min

0,

T
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F x 
  (A.5) 

where c  is a vector of appropriate dimensions. 



157 

 

 The Generalized Eigenvalue Problem (GEVP) consists of minimizing the eigenvalues 

of a pair of matrices which depend affinely on a variable, subject to a set of LMI constraints: 

        subject 

min

to 0, 0, 0,B x A x B x C x





   
  (A.6) 

where   is scalar, the matrices  A x ,  B x , and  C x  are symmetric and affine in x . 

Often, matrices appear as decision variables. For instance, consider the Lyapunov 

inequality: 

 0A ,T
P PA    (A.7) 

where matrix 
n n

A
  is known and T n n

P P
  is the Lyapunov matrix to be found, i.e., 

P  is a decision variable. Inequality (A.7) can be written in the form (A.4), as shown in 

Example A.1. 

Example A.1. For sake of clarity, let us consider 2 2
A

 , then 2n  . The decision 

variable P  with 3d   unknown entries can be rewritten as 
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thus, the inequality A 0T
P PA   can be represented as  
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with 
T

i i i
A EF E A  ,  1,2,3i .   

A bilinear matrix inequality (BMI) has the general form (Van Antwerp and Braatz, 2000): 
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where  0 0

T
F F ,  i i

T
F F ,  j j

T

G G , and  ij i

T

jH H ,  11,2, ,i d  ,  21,2, ,j d   

are given constant matrices of appropriate dimensions; 1d
x  and 2d

y  are vectors of 

decision variables. Inequality (A.10) is not convex in x  and y . A way to obtain an LMI from 

(A.4) is by fixing beforehand one of the decision variables: 1) the BMI (A.10) is an LMI in x  

for a fixed y , or 2) the BMI (A.10) is an LMI in y  for a fixed x . 
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Appendix B. Sum relaxations 

In the TS-LMI framework, it is natural to obtain inequality conditions involving convex 

sums; the weights in the convex combinations are nonlinear functions called membership 

functions (MFs). In order to obtain LMI conditions, the MFs must be removed. To this end, 

sum relaxations are employed. In what follows, some relaxation schemes that are employed 

throughout the thesis are presented. 

First, consider the following problem with one convex sum 

   
1

0: ,
a

h i

r

i

i

th z
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     (B.1) 

where T

i i
   ,  1,2, ,

a
i r   are symmetric matrices of appropriate dimensions. The 

following lemma gives sufficient conditions for (B.1) to hold: 

Lemma B.1. (Wang et al., 1996). The convex-sum (B.1) is negative if the following set of 

LMIs holds 

  1,20, , , .
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i r      (B.2)  

When dealing with controller/observer design within the quadratic framework, a double 

sum problem may appear: 
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where 
1 2 1 2

T

i i i i
   ,  1 2, 1,2, ,

a
i i r   are matrices of appropriate dimensions. The following 

lemmas give sufficient conditions for (B.3) to hold. 

Lemma B.2. (Wang et al., 1996). The double convex-sum (B.3) is negative if the 

following set of LMIs holds 

 
 

 
1 1

1 2 2 1

1

1 2 1 2

0, 1,2, , ,

0, , 1,2, , , .i

i i a

i i i a

i r

i i r i i

   





    
 (B.4)  

Lemma B.3. (Tuan et al., 2001). The double convex-sum (B.3) is negative if the following 

set of LMIs holds 
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 (B.5)  

In this thesis unless otherwise specified, the sum relaxation scheme given by Lemma B.3 

is adopted, especially since it does not involve extra slack matrices and therefore has a 

“reasonable” complexity. Other sum relaxations that include slack variables exist in the 

literature but they are beyond the scope of this thesis (Liu and Zhang, 2003; Sala and Ariño, 

2007). 

Usually, when dealing with stability/design of discrete-time TS or TS descriptor models, 

the co-negativity problem may involve more than 2 convex sums of matrices, for example: 
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where  1 1

1 2 1 2

T
j j

ii ii   ,  1 2 1, 1,, 2, ,
a

i i j r  , or 
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where  1 1

1 2 1 2

T
j j

ii ii   ,  1 2, 1,2, ,
a

i i r  ,  1 1,2, ,
e

j r   are matrices of appropriate 

dimensions. The following co-negativity problem also commonly appears: 
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where  1 1

1 2 1 2x x

T

i i

j j

i i i i   ,  1 2, , 1,2, ,
x a

i i i r  ,  1 1,2, ,
e

j r   are matrices of appropriate 

dimensions. In addition, inequalities involving two different pairs of convex sums may 

appear: 
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1 2 1 2 1 2 1 2
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where  1 2 1 2

1 2 1 2

T

i i

j j j j

i i   ,  21, 1,2, ,
a

i i r ,  1 2, 1,2, ,
e

j j r . 

Remark B.1. Note that the co-negativity problems (B.6), (B.7), (B.8), and (B.9) share two 

sums of the same nature. In these cases, Lemma B.3 can be applied on the two common 

convex sums. For instance, sufficient LMI conditions for (B.8) to hold are 
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 (B.10) 

Since (B.9) has two different pairs of convex sums, Lemma B.3 can be extended as 

follows: 

Lemma B.4. Sufficient conditions for (B.9) to hold are: 
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Proof. Applying Lemma B.3 on the double convex sum    h z h z  in (B.9) yields 

  
1 1 1 1 1 2 2 11 1 2 1 2

2
0, , 0, 1,2, , , .

1
,vv vv vv vv

i i i i ii i i a

a

i i i r i i
r

          


   (B.11) 

Using Lemma B.3 for the first inequality in (B.11) on the double sum of    v z v z  it 

renders 
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Following a similar procedure with the second inequality in (B.11), we obtain: 
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This concludes the proof. ■  
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