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Résumé		

		

Cette	 thèse	 synthétise	 les approches théoriques et expérimentales faites dans le cadre de	

travaux	 récents	 de	 l’auteur	 sur	 l’utilisation	 de	 résonateurs	 mécaniques	 pour	 la	

détermination	 simultanée	 de	 la	 viscosité	 et	 de	 la	 masse	 volumique	 de	 liquides.	 Ces	

travaux	ont	été	réalisés	entre	2010	et	2015	dans	le	cadre	d’une	thèse	en	cotutelle	entre	

l’Institut	 de	Microélectronique	 et	 des	Microcapteurs	 de	 l’Université	 Johannes	Kepler	 à	

Linz	 en	 Autriche	 et	 le	 Laboratoire	 de	 l’Intégration	 du	 Matériau	 au	 Système	 de	

l’Université	de	Bordeaux	en	France.	Dans	des	études	précédentes	effectuées	sur	ce	sujet	

par	 les	 groupes	 des	 deux	 laboratoires,	 le	 concept	 de	 l’utilisation	 de	 résonateurs	

mécaniques	actionnés	et	mesurés	électriquement	pour	la	détermination	de	 la	viscosité	

et	de	la	masse	volumique	de	liquide	avait	été	établi	et	validé.	Ces	travaux	antérieurs	ont	

montré	que	la	fréquence	de	résonance	et	le	facteur	de	qualité	de	résonateurs	immergés	

dépendent	à	la	fois	de	la	viscosité	et	de	la	masse	volumique	du	fluide	environnant.		

La	 viscosité	 et	 la	 masse	 volumique	 sont	 des	 quantités	 importantes	 décrivant	 le	

comportement	physique	d'un	liquide.	Une	fois	déterminées,	ces	quantités	peuvent	être	

utilisées	 pour	 tirer	 des	 conclusions	 sur	 l'état	 et	 la	 qualité	 du	 liquide	 examiné.	 A	 titre	

d‘exemple	voici	quelques	applications	de	ce	type	de	mesures	:	le	contrôle	de	la	capacité	

lubrifiante	 des	 huiles	 et	 leur	 vieillissement,	 le	 contrôle	 de	 la	 qualité	 des	 encres	

d'impression	ou	la	caractérisation	des	solutions	d'ADN	...	L’utilisation	de	capteurs	pour	

mesurer	 la	 viscosité	 et	 la	 masse	 volumique	 de	 liquides	 à	 la	 place	 d'instruments	

conventionnels	de	laboratoire	présente	de	nombreux	avantages.	Sans	avoir	un	caractère	

exhaustif,	les	avantages	peuvent	être	regroupés	en	trois	catégories	:	

1.	Quantité	d'échantillons	faibles	:	Dans	les	applications	biologiques	ou	médicales,	

la	 quantité	de	 liquide	disponible	peut	 être	 très	 faible.	 Pour	 les	 viscosimètres	 et	
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rhéomètres	 classiques,	 quelques	 millilitres	 de	 liquides	 sont	 généralement	

nécessaires.	Dans	la	littérature,	il	a	été	spécifié	qu’il	faut	moins	d’un	nanolitre	de	

liquide	pour	la	mesure	de	la	viscosité	de	liquides	à	l’aide	d’une	micropoutre	telle	

que	celles	utilisées	dans	les	microscopes	à	force	atomique	(AFM).	

2.	 Principe	 de	 mesure	 en	 ligne	 ou	 appareils	 portables	:	 Dans	 de	 nombreux	

procédés	 de	 production	 de	 liquides	 industriels,	 quel	 que	 soit	 le	 domaine	

d’application	 (boisson,	 médical,	 huile,	 peinture,	 produit	 chimique,	 industrie	 de	

l'environnement,	 etc.)	 les	 liquides	 doivent	 généralement	 être	 analysés	 dans	 un	

laboratoire	spécialisé.	Ceci	a	généralement	une	répercussion	à	la	fois	sur	le	coût	

et	sur	la	durée	de	production.	Pour	surmonter	ce	coût	et	surtout	les	inconvénients	

liés	à	la	durée	d’obtention	de	la	mesure,	il	est	important	d’utiliser	des	principes	et	

des	appareils	portables	permettant	des	mesures	en	 ligne.	Dans	certains	cas,	par	

exemple	pour	le	contrôle	d’un	processus	dans	une	chambre	de	réaction,	cela	est	

même	quasiment	indispensable.	

3.	Extension	de	 la	gamme	de	 fréquence	étudiée	:	D'un	point	de	vue	rhéologique,	

ces	 dispositifs	 résonants	 permettent	 d’effectuer	 des	 mesures	 à	 des	 fréquences	

supérieures	 à	 100	 Hz,	 qui	 est	 généralement	 la	 fréquence	 maximale	 de	 mesure	

dans	les	rhéomètres	conventionnels.	

Au	cours	des	deux	dernières	décennies,	de	nombreux	principes	ont	été	rapportés	dans	la	

littérature.	 Les	 différentes	 approches	 peuvent	 se	 distinguer	 par	 exemple	 par	 leur	

structure	mécanique,	par	 la	 technologie	de	 fabrication,	par	 les	matériaux	utilisés	ainsi	

que	par	l’actionnement	et	 les	principes	de	mesure.	Les	structures	mécaniques	utilisées	

peuvent	être	par	exemple	encastrées	à	une	seule	extrémité	(poutre),	à	deux	extrémités	

(ponts),	ou	être	des	structures	de	type	diapasons,	membranes	vibrantes	ou	des	plaques	

rigides	 oscillantes.	 En	 ce	 qui	 concerne	 la	 technologie	 et	 les	 matériaux,	 il	 existe	 des	

dispositifs	 à	 base	 de	 silicium	 ou	 de	 quartz	mais	 aussi	 à	 base	 de	 feuilles	 de	 polymère	

recouvertes	de	cuivre,	ou	en	PZT	sérigraphié	ou	utilisant	des	fils	en	tungstène.		
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Les	dispositifs	 à	 base	de	quartz	 fonctionnant	 en	 cisaillement	 (balance	 à	quartz,	QCM),	

qui	sont	fréquemment	utilisés	en	rhéologie,	fonctionnent	à	des	fréquences	de	l’ordre	du	

MegaHertz.	 Des	 fréquences	 de	 fonctionnement	 inférieures	 pourraient	 devenir	

intéressantes	 pour	 les	 caractérisations	 de	 liquides	 complexes	 tels	 que	 les	 émulsions.	

Ainsi,	 il	 existe	un	besoin	entre	 les	 fréquences	opératives	des	 rhéomètres	 classiques	et	

celles	 des	 dispositifs	 à	 quartz	 et	 donc	 pour	 la	 gamme	 de	 fréquence	 entre	 100	Hz	 et	

100	kHz	environ.	L’objectif	de	cette	thèse	est	de	cibler	cette	gamme	de	fréquence,	ce	qui	

implique	des	dimensions	de	dispositifs	allant	environ	du	millimètre	au	centimètre.	

Dans	 cette	 thèse,	 l'interaction	 des	 résonateurs	 mécaniques,	 actionnés	 et	 mesurés	

électriquement,	 avec	 des	 liquides	 visqueux	 a	 été	 étudiée	 en	 vue	 de	 la	 mesure	 de	 la	

viscosité	 et	 de	 la	 masse	 volumique	 des	 liquides.	 Ces	 capteurs	 peuvent	 en	 outre	 être	

utilisés	pour	des	mesures	en	ligne,	in	situ	et	sont	des	dispositifs	portables	fonctionnant	à	

des	fréquences	allant	d’environ	100	Hz	à	100	kHz.	Cette	gamme	de	fréquence	n’est	pas	

encore	 couverte	 par	 les	 instruments	 standards,	 mais	 représente	 une	 gamme	 de	

fréquences	intéressante	d'un	point	de	vue	rhéologique.	Une	vaste	étude	de	la	littérature	

du	domaine	a	montré	que		de	nombreuses	approches	pour	cette	problématique	ont	déjà	

été	 publiées	 avant	 cette	 thèse.	 A	 l’issu	 de	 cette	 étude	 bibliographique	 il	 a	 semblé	

intéressant	 d’étudier	 la	 possibilité	 de	mesurer	 simultanément	 la	 viscosité	 et	 la	masse	

volumique	 avec	 un	 seul	 appareil,	 d’avoir	 des	 géométries	 et	 des	 matériaux	 optimums	

pour	 une	 précision	 élevée,	 de	 connaitre	 les	 stabilités	 requises	 pour	 la	 fréquence	 de	

résonance	et	le	facteur	de	qualité	pour	une	précision	donnée	pour	la	viscosité	et	pour	la	

masse	 volumique.	 Pour	 répondre	 à	 ces	 exigences,	 les	 réponses	 en	 fréquence	 de	

résonateurs	mécaniques	immergés,	 interagissant	avec	des	échantillons	liquides	ont	été	

étudiées.	

Une	 grande	 partie	 du	 travail	 de	 thèse	 a	 été	 basée	 sur	 une	 approche	 expérimentale.	

Cependant,	une	étude	théorique	approfondie	a	été	menée	impliquant	des	connaissances	

en	mécanique	des	structures,	mécaniques	des	fluides	ainsi	qu’en	électrodynamique.	Ceci	

a	conduit	à	une	modélisation	des	effets	physiques	et	des	résultats	observés.	Un	modèle	
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généralisé	 reliant	 la	 fréquence	 de	 résonance	 et	 le	 facteur	 de	 qualité	 d'un	 résonateur	

mécanique	immergé	à	la	masse	volumique	et	à	la	viscosité	du	liquide	a	pu	être	formulé.	

Ce	 modèle	 a	 permis	 d’estimer	 la	 sensibilité	 parasite	 du	 résonateur	 mécanique	 à	 la	

grandeur	 d’influence	 qu’est	 la	 température.	 Neuf	 résonateurs	 ont	 été	 fabriqués	 et	

successivement	 étudiés,	 permettant	 d’améliorer	 non	 seulement	 les	 aspects	

manipulation,	mais	de	 façon	plus	 importante	 la	précision	des	mesures.	Les	principales	

conclusions	 et	 les	 connaissances	 acquises	 par	 les	 approches	 mentionnées	 ci‐dessus	

sont	:	

1.	 La	 possibilité	 de	 mesurer	 à	 la	 fois	 la	 masse	 volumique	 et	 la	 viscosité	 a	 été	

montrée	 pour	 plusieurs	 types	 de	 résonateurs.	 Si	 la	 matrice	 de	 sensibilité	 est	

inversible,	ou	en	d'autres	termes,	si	les	sensibilités	de	la	fréquence	de	résonance	

et	 du	 facteur	 de	 qualité	 vis‐à‐vis	 de	 la	 viscosité	 et	 de	 la	masse	 volumique	 sont	

différentes,	 la	viscosité	et	 la	masse	volumique	peuvent	être	déterminée	avec	un	

seul	 dispositif.	 En	 général,	 cela	 est	 le	 cas	 pour	 les	 résonateurs	 dont	 les	

interactions	 fluide‐structure	 ne	 donnent	 pas	 uniquement	 des	 ondes	 de	

cisaillement.	

2.	 Un	 enjeu	 important	 pour	 la	 stabilité	 et	 la	 précision	 des	 mesures	 est	

l’encastrement	 de	 la	 structure	 vibrante.	 Il	 a	 été	 montré	 que	 des	 dispositifs	

encastrés	sur	une	seule	zone	donnent	une	stabilité	beaucoup	plus	élevée	de	leur	

fréquence	de	résonance	que	 les	dispositifs	doublement	encastrés.	Cela	peut	être	

illustré	 en	 considérant	 par	 exemple	 la	 différence	 entre	 les	 instruments	 à	 base	

d’une	anche	ou	les	instruments	à	cordes.	Ces	derniers	doivent	être	fréquemment	

réglés,	alors	que	la	fréquence	de	résonance	de	la	première	catégorie	d’instrument	

ne	 change	 pas	 de	 manière	 significative.	 En	 outre,	 les	 dispositifs	 doublement	

encastrés	 sont	 sujets	 à	 diverses	 contraintes	 mécaniques,	 qui	 sont	 induites	 par	

exemple	 par	 des	 variations	 thermiques	 ou	 simplement	 à	 cause	 du	 fait	 que	 l’on	

touche	le	boîtier	du	résonateur	lors	de	la	manipulation	de	celui‐ci.	

3.	 Il	a	été	montré	que	 les	diapasons	sont	des	 types	de	résonateurs	bien	adaptés	

pour	la	mesure	de	la	viscosité	et	de	la	masse	volumique	de	liquides.	En	raison	de	

leur	 conception	 symétrique,	 la	 dépendance	 de	 la	 fréquence	 de	 résonance	 aux	
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conditions	 d’encastrement	 est	 faible.	 Cela	 devient	 particulièrement	 important	

pour	les	appareils	portables.	

4.	L'étude	pour	le	choix	des	matériaux	constituant	les	résonateurs	a	montré	que	le	

tungstène	donne	les	meilleurs	résultats	pour	les	résonateurs	excités	par	la	force	

de	 Lorentz.	 Dans	 le	 cas	 de	 résonateurs	 en	 forme	 de	 ‘U’	 réalisés	 avec	 un	 fil	 de	

tungstène,	 les	 plus	 faibles	 sensibilités	 à	 la	 grandeur	 d’influence	 qu’est	 la	

température	 ont	 été	 obtenues.	 En	 fait,	 dans	 le	 cas	 où	 les	 sensibilités	 aux	

grandeurs	 d’influence	 deviennent	 trop	 importantes,	 les	 résonateurs	 compensés	

en	température	représentent	une	alternative	intéressante.	

5.	 Viser	 une	 précision	 de	 1%	 pour	 la	 viscosité	 et	 1	mg	/	cm3	 pour	 la	 masse	

volumique	implique	des	stabilités	relatives	de	l'ordre	de	10‐5	pour	la	fréquence	de	

résonance	et	10‐3	pour	le	facteur	de	qualité.	

6.	 Le	 fait	 de	 viser	 les	 précisions	 mentionnées	 ci‐dessus	 pour	 la	 viscosité	 et	 la	

masse	 volumique	 nécessite	 une	 précision	 de	 mesure	 de	 la	 température	 d'au	

moins	0,5°C	pour	les	diapasons	en	acier	étudiés.	

7.	 L’utilisation	 de	 diapasons	 en	 acier	 a	 montré	 qu’avec	 des	 résonateurs	

mécaniques	 il	 est	 possible	 d’obtenir	 une	 précision	 de	 1%	 sur	 la	 mesure	 de	 la	

viscosité	 et	 de	 0,01%	 sur	 la	 mesure	 de	 la	 masse	 volumique	 (c’est	 à	 dire	 une	

précision	de	0,1	mg	/	cm3	pour	des	liquides	aqueux).	Ceci	est	du	même	ordre	que	

les	précisions	des	instruments	de	laboratoires	commerciaux.	
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Kurzfassung
Die vorliegende Dissertation fasst die rezenten Forschungsergebnisse des Verfassers im Bereich mecha-
nischer Resonatoren für Viskositäts- und Dichtesensorik zusammen, welche zwischen 2010 und 2015 im
Rahmen eines international joint doctorate programs am Institut für Mikroelektronik und Mikrosen-
sorik der Johannes Kepler Universität Linz, sowie am Laboratoire de l’Intégration du Matériau au
Système der Université de Bordeaux erreicht wurden. In den Vorarbeiten von Arbeitsgruppen beider
Institute wurden bereits Konzepte für elektrisch angeregte und ausgelesene mechanische Resonatoren
zur Bestimmung von Viskosität und Dichte von Flüssigkeiten erarbeitet und umgesetzt. Hierbei kon-
nte gezeigt werden, dass die Resonanzfrequenz und Güte eingetauchter Resonatoren abhängig sind
von Viskosität und Dichte der jeweiligen Flüssigkeiten. Die dabei untersuchten Konzepte beinhalteten
strukturierte Polymerfolien, nass-chemisch geätzte Neusilberbleche, mikromechanisch hergestellte Siliz-
iumstrukturen, sowie siebgedruckte PZT Resonatoren.

Die Motivation zur Untersuchung und Entwicklung solcher miniaturisierter Resonatoren resultiert unter
anderem aus deren Anwendbarkeit für Inline-, Insitu- und Handgeräte für Labor- bzw. industrielle An-
wendungen. Besonders für Letztere sind Robustheit, Langzeitstabilität und Zuverlässigkeit, aber auch
präzise Messergebnisse Grundvoraussetzung. Um den Anforderungen der Ergebnisse und Erkennt-
nisse der zuvor genannten Arbeiten gerecht zu werden, wurden folgende Ziele für diese Dissertation
definiert. Erstens, die Entwicklung robuster, langzeitstabiler Messaufbauten zur Erreichung präziser
Messergebnisse, wodurch eine geringe Temperaturquerempfindichkeit als weitere Bedingung aufgestellt
wurde. Zweitens sollte untersucht werden ob und mit welcher Genauigkeit sowohl Viskosität als auch
Dichte mit einem einzigen Instrument gemessen werden können. Drittens, sollte einerseits das Verhal-
ten verschiedener Viskositäts- und Dichtesensoren modelliert bzw. deren Vergleich ermöglicht werden.
Basierend auf einer vorwiegend experimentellen Herangehensweise und unter Miteinbeziehung der zu-
grundeliegenden Theorien von Strömungs- und Strukturmechanik sowie der Elektrodynamik, konnten
die o.g. Anforderungen erfüllt werden.

Mit der schrittweisen Entwicklung und Untersuchung von insgesamt neun verschiedenen Sensorkon-
zepten konnte gezeigt werden, dass besonders einfach eingespannte Strukturen, wie U-Draht und Stim-
mgabelresonatoren am besten dafür geeignet sind, um Langzeitstabilität, hohe Messgenauigkeit und
geringe Temperaturquerempfindlichkeit zu erzielen. Für Letzteres führte die Verwendung von Wolfram
als Resonatormaterial zu den besten Ergebnissen. Mit Stimmgabelsensoren konnten Genauigkeiten im
Bereich von 1 % für Viskosität und 0.01 % für Dichte erreicht werden. Die Verwendung von speziell
gemischten Flüssigkeiten mit konstanten Dichten, aber verschiedenen Viskositäten und umgekehrt, er-
möglichte getrennte, experimentelle Untersuchungen der Empfindlichkeiten auf Viskosität und Dichte.
Für die Berechnung der im Rahmen dieser Experimente benötigten Flüssigkeitsmengen zur Erreichung
einer gewissen Viskosität und Dichte bei einer bestimmten Temperatur, wurden Modelle sowohl für
Einzelflüssigkeiten als auch für binäre und ternäre Flüssigkeitsmischungen erarbeitet. Diese Modelle
sowie entsprechende Mischungsanleitungen wurden auf der Internetplattform www.rheo-logic.info zur
Verfügung gestellt. Durch Verwendung solcher Flüssigkeitsserien konnte für die untersuchten Sen-
soren gezeigt werden, dass die Empfindlichkeiten der Güte auf Viskosität und Dichte ähnlich sind,
wohingegen die Empfindlichkeit der Resonanzfrequenz auf Dichte mindestens zehn mal höher ist als
auf Viskosität. Diese Erkenntnis belegt, dass beide Größen mit einem einzigen Sensor gemessen werden
können. Des Weiteren wurde ein generalisiertes Modell entwickelt, welches nicht nur die Funktion-
sweise der Sensoren unter Berücksichtigung von deren Temperaturquerempfindlichkeiten vollständig
beschreibt, sondern auch den Vergleich unterschiedlicher Sensordesigns ermöglicht. Dass für die Kalib-
rierung die Ergebnisse von Messungen in nur drei Flüssigkeiten ausreichend sind und dass damit bereits
hohe Modellgenauigkeiten für verschiedene Sensordesigns erreicht wurden, sind weitere Vorteile dieses
generalisierten Modells.
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Abstract
This thesis summarizes the author’s recent work on the topic of mechanical resonators for liquid
viscosity and mass density sensing, which were achieved between 2010 and 2015 in the course of an
international joint doctorate program performed at the Institute for Microelectronics and Microsensors
at the Johannes Kepler University Linz, Austria and the Laboratoire de l’Intégration du Matériau au
Système in Bordeaux, France. In previous studies performed by work groups of both laboratories,
the concept of using electrically actuated and read-out mechanical resonators for the determination of
liquids’ viscosities and mass densities has been established and elaborated. These works showed that the
resonance frequencies and quality factors of immersed resonators are affected by the liquids’ viscosities
and mass densities, respectively. The investigated concepts included devices using structured polymer
or wet-etched new silver sheets as well as micro-machined silicon and screen-printed PZT resonators.

The motivation for investigating and developing such miniaturized resonators was formed, amongst
others, by their capability for in-line, in-situ and handheld-devices for laboratory as well as for in-
dustrial applications. Especially for the latter, physical robustness, long-term stability and reliability,
as well as accurate measurement results are basic requirements. To satisfy these requirements and
considering the results and insights of earlier works, the objectives of this thesis were first, implement-
ing robust measuring setups featuring long-term stability and high measurement accuracy, where the
latter furthermore requires low cross-sensitivity to temperature. Second, investigating the capability
of measuring both, a liquid’s mass density and viscosity with a single device as well as providing an
estimate of achievable measurement accuracies for both quantities. And third, enabling the modeling
of the performance of different viscosity and mass density sensors on the one side and their comparison
on the other side. These three specifications were accomplished by following mainly experimental ap-
proaches and investigations but also by elaborating the underlying theory of hydrodynamics, structural
mechanics, and electrodynamics.

The investigation of nine different, successively developed sensor concepts showed that especially singly
clamped device approaches such as vibrating U-shaped wires or tuning fork sensors are best suited for
obtaining long-term stability, high measurement accuracy, and low cross-sensitivity to temperature.
For the latter, the usage of tungsten as resonator’s material yielded the best results. With tuning
fork sensors, accuracies in the order of 1 % in viscosity and 0.01 % in mass density could be achieved.
Using specially developed liquid mixtures with constant mass densities but varying viscosities and vice
versa, allowed for a separate experimental investigation of the devices’ sensitivities to viscosity and
mass density. To prescribe the necessary amounts of liquids for obtaining a certain viscosity and mass
density at a given temperature, models for single liquids as well as binary and ternary liquid mixtures
were elaborated. These models and associated mixture prescriptions can be accessed via the platform
www.rheo-logic.info. By using such liquid series it was shown for the investigated sensors that the
sensitivities of the quality factor to viscosity and mass density are similar but that the sensitivities
of the resonance frequency are typically at least ten times higher to mass density than to viscosity.
This finding proves that both, viscosity and mass density can be measured while using a single device.
Furthermore, a generalized model was developed which not only describes completely the sensors’
performances considering their cross-sensitivity to temperature but also enables the comparison of
different sensor designs. The circumstances, that the measurement results in only three liquids are
sufficient for the models calibration and that high modeling accuracies for different sensor designs
could therefore be achieved, are further highlights of this generalized model.
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Résumé
Cette thèse synthétise les travaux récents de l’auteur sur l’utilisation de résonateurs mécaniques pour
la détermination simultanée de la viscosité et de la masse volumique de liquides. Ces travaux ont été
réalisés entre 2010 et 2015 dans le cadre d’une thèse en cotutelle entre l’Institut de Microélectronique et
des Microcapteurs de l’Université Johannes Kepler à Linz en Autriche et le Laboratoire de l’Intégration
du Matériau au Système de l’Université de Bordeaux en France. Dans des études précédentes effectuées
sur ce sujet par les groupes des deux laboratoires, le concept de l’utilisation de résonateurs mécaniques
actionnés et mesurés électriquement pour la détermination de la viscosité et de la masse volumique de
liquide avait été établi et validé. Ces travaux antérieurs ont montré que la fréquence de résonance et le
facteur de qualité de résonateurs immergés dépendent à la fois de la viscosité et de la masse volumique
du fluide environnant.

L’intérêt d’utiliser de tels microcapteurs résonants vient du fait qu’il est possible de les utiliser in-situ,
notamment pour des applications industrielles. Pour ce type d’applications, il est important que les
capteurs aient entre autre une bonne résistance physique, une bonne stabilité à long terme, une bonne
fiabilité, ainsi qu’une bonne précision de mesure. Pour satisfaire ces exigences et compte tenu des
résultats des travaux antérieurs, les objectifs principaux de cette thèse étaient (1) la mise en œuvre de
configurations de mesure robustes offrant une bonne stabilité à long terme et une bonne précision de
mesure, ce qui nécessite une faible sensibilité à la température, (2) la mesure simultanée de la viscosité
et de la masse volumique avec un seul capteur et (3) la modélisation et la comparaison des performances
des différents dispositifs mis au point et testés. Ces trois objectifs ont été atteints en combinant des
approches expérimentales et théoriques (hydrodynamique, mécanique du solide et électrodynamique).

Au cours de cette thèse, neuf types de capteurs résonants ont été conçus, fabriqués et étudiés. Cette
étude a permis de montrer que les structures en forme de U et les diapasons sont les mieux adaptés
pour l’obtention d’une bonne stabilité à long terme, d’une précision de mesure élevée et d’une faible
sensibilité parasite à la température. Pour les diapasons, l’utilisation de tungstène comme matériau
a donné les meilleurs résultats : des précisions de l’ordre de 1 % pour la viscosité et de 0,01 % pour
la masse volumique ont été obtenues. Pour étudier séparément l’effet de la viscosité et de la masse
volumique, des séries de liquides ayant différentes viscosités mais une masse volumique constante et
vice-versa sont nécessaires. De telles séries de liquides peuvent être obtenues en utilisant des mélanges
de liquides connus. Afin de déterminer la quantité requise de chaque liquide constituant le mélange
pour obtenir une certaine viscosité et une certaine masse volumique à une température donnée, des
modèles de calcul de la masse volumique et de la viscosité de mélanges binaires ou ternaires de liquides
ont été élaborés. Ces modèles et les proportions pour les mélanges sont accessibles via la plate-forme
www.rheo-logic.info. En utilisant ces mélanges de liquides, il a été montré pour les capteurs testés que
le facteur de qualité avait des sensibilités comparables vis-à-vis de la viscosité et de la masse volumique,
alors que la fréquence de résonance est au moins dix fois plus sensible à la masse volumique qu’à la
viscosité. Néanmoins, les deux quantités dépendent à la fois de la viscosité et de la masse volumique
et permettent la détermination simultanée de la viscosité et de la masse volumique des liquides avec
un seul appareil. En outre, un modèle généralisé a été formulé qui permet de relier les fréquences
de résonance et les facteurs de qualité de tout résonateur mécanique aux masses volumiques et aux
viscosités des liquides. L’avantage de ce modèle est qu’il ne nécessite au préalable que des mesures
dans trois liquides afin de déterminer les caractéristiques du capteur, à savoir ses sensibilités vis-à-vis
de la viscosité et de la masse volumique.
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Chapter 1

Introduction

1.1 Viscosimetry and rheometry

The dynamic viscosity η describes the proportionality between shear stress τ and shear rate ∂γ/∂t
in a fluid where γ is the shear angle and t is the time variable. For so-called Newtonian liquids this
proportionality factor remains constant independently of shear-rate or stress. In general (amongst
others), however, it is temperature (T ) and pressure (p) dependent i.e. [81],

τ = η(T, p, . . .)
∂γ

∂t
. (1.1)

The dots indicate, that the viscosity might also depend on other quantities such as, e.g., time which
considers aging or evaporation of solvents in a liquid mixture. In this thesis, the temperature depen-
dence of viscosity and associated models describing the latter is discussed in Sec. 1.5.2 and the intrinsic
temperature dependence of mechanical resonators used for viscosity and mass density measurements
is described in Sec. 2.10. The pressure dependence however, of both, the liquid and the mechanical
resonator is not considered in this thesis but have to be investigated in future research.

Generally expressed, the mass density is the quotient of an infinitesimal mass dm contained in an
infinitesimal volume dV i.e.,

ρ(T, p, . . .) =
dm

dV
(1.2)

and is also temperature and pressure dependent. The temperature dependence of the mass density is
described in Sec. 1.5.3 and as most liquids might be considered incompressible, the pressure dependence
is neglected.

In this thesis mechanical resonators are used for viscosity and mass density measurements. It will be
shown in Sec. 2.8.1, that these devices are sensitive to both, viscosity and mass density. Thus, in any
case, both quantities, viscosity and mass density have always to be taken into account and determined,
even if only for one of both quantities a measurement result has to be given.

The variety of viscosity measurement principles is relatively large. Extensive overviews are given in
[82–84] and are not discussed in detail here. An overview of sensor principles published in the literature
and principles which were elaborated in the course of this thesis will be given Sec. 4. In general, the
means of measuring a liquid’s viscosity can be divided in four basic categories of viscometers:

1. Falling or rolling objects viscosimeters

2. Capillary viscometers

3. Rotational viscometers

4. Oscillatory viscometers

In the course of this thesis, a feasibility study of a falling ball viscosimeter was performed, where the
position (over time) of a falling steel ball can be precisely measured over the whole falling length using
differential transformers [MHwp8]. Furthermore, a conceptual study for a handheld capillary viscosime-
ter has been conducted using a conventional syringe with which pressure – velocity measurements are
performed [MHwp9]. These studies will be discussed and published elsewhere.
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1 Introduction

The category of viscosity and mass density measurement principles investigated in this thesis, are
mechanical resonators which are fully immersed into the sample liquid. This complete immersion of
the measurement device allows in-line viscosity and mass density measurements. Furthermore, due to
their capability of miniaturized devices designs, such mechanical resonators are applicable for handheld
applications.

1.2 Motivation for using mechanical resonators

Viscosity and mass density are important quantities describing the physical behavior of a liquid. Once
determined, these quantities can be used to draw conclusions about the condition and the quality of
the examined liquid. Examples for the latter are the monitoring of the lubricating capacity of oils and
their aging [85] or the condition of printing inks [86] or the characterization of DNA solutions [87], just
to name a few examples. The need for using viscosity and mass density sensors instead of conventional
laboratory instruments may have many reasons but generally – without claiming completeness – can
be split up in three categories:

1. Low sample quantities: In biological or medical applications the amount of available sample
liquid can be very low. For conventional viscosimeters and rheometers usually, some milliliters
of the sample liquids are required. In [88] the amount necessary for a resonant Atomic Force
Microscope (AFM) cantilever used for viscosity measurement is specified with 1 nL and lower.

2. In-line or handheld devices: In many industrial liquid production processes, regardless of the
field, be beverage, medical, oil, painting, chemical or environmental industry et cetera, the liquids
usually have to be analyzed in a particular laboratory. This is often a necessary process which
manifests not only in production costs but can become rather time consuming. To overcome
this cost and especially time related drawbacks, in-line or handheld devices become beneficial
and become even indispensable if a process e.g. in a reaction chamber has to be monitored.
When aiming at handheld devices, the capability for miniaturized devices becomes especially
advantageous.

3. Extension of investigated frequency range: From a rheological point of view, these res-
onating devices are beneficial to allow measurements for frequencies higher than 100 Hz, which
is usually the limit for conventional rheometers.

During the last two decades, a large amount of different principles was reported [89, 90]. The variety
of different approaches can, for example, be distinguished by their fundamental mechanical structure,
the manufacturing technology, the used materials as well as actuation and read-out principles. The
mechanical structures comprise amongst others, singly clamped beams [91], doubly clamped beams [92],
tuning forks [93], vibrating membranes [94, 95], and oscillating platelets [96], [MHjc2]. Concerning
technology and materials, silicon and quartz crystal [97,98] based devices but also concepts using copper
coated polymer sheets [99], [MHj6], screen printed PZT cantilevers [100] or tungsten wires [101–105]
[MHj5] were also reported, just to name some examples. As for comparison of different sensor concepts
working principle and theory has to be thoroughly explained first, a comprehensive overview of resonant
viscosity and mass density sensors is not performed at this place but will be given in Sec. 4.10.

In comparison with well established shear oscillating quartz crystals which are usually operated in the
Megahertz range, lower operational frequencies might become important when investigating complex
liquids such as emulsions, see [106]. That is, between the frequency range of conventional rheometers
and the mentioned quartz crystal devices is a gap of 100 Hz to 100 kHz, approximately. Thus, this
frequency is the aimed range for this thesis and implies device dimensions in the millimeter to the
centimeter range.
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1 Introduction

calibration effort, such closed form models which were derived for a particular resonator design, hardly
allow comparison with other mechanical resonator designs.

Besides the simplicity of the generalized model given in Fig. 1.1 and its general applicability, a further
big advantage is that measurements in three calibration liquids only are necessary to identify the
model’s coefficients and thus, the sensor’s characteristics at a fixed temperature. This simple procedure
can be done as follows: From the measurements in the (at least) three liquids, fr and Q are evaluated
which then allows evaluating the six coefficients in the equations of the generalized model. For resonant
sensors whose identified model slightly deviates from the measurements, the model still can be used
to approximately describe the sensor’s characteristics and allows comparison with other principles
which were identified with this generalized, reduced order model. For this calibration the liquids can
be randomly chosen and do not have to suit viscosity or mass density series respectively, as it is
depicted in Fig. 1.1. However, if the response to viscosity or to mass density has to be investigated
experimentally, it is a big advantage to have a series of test liquids, where only either η or ρ changes.

1.3.2 Liquid series for experimental characterization of the resonator

In this thesis, liquid series with constant mass densities but varying viscosities are called ‘viscosity
series’, whereas the term ‘mass density series’ is used for liquid series with constant viscosities but
varying mass densities. For the viscosity series, used to get the measurement data depicted in Fig. 1.1,
solutions of acetone and isopropanol have been mixed. The values for η and ρ for the associated
solutions, characterized with an Anton Paar SVM 3000 at 25 ◦C are depicted and listed in Fig. 1.2.
There, it is shown that the obtained soultions yield viscosities from approximately 0.2 mPa·s to 2 mPa·s
for mass densities of roughly 0.78 g/cm3. However a clear trend in the mass densities can be observed.
An interesting result is the fact that the mass densities of the mixed solutions can get lower than both
unmixed mass densities. As these relatively small deviations in mass density can be observed in the
fr and Q measurements, see Sec. 4.9 and [MHj2], more precise viscosity and mass density series might
become necessary to presume constant viscosities or mass densities, respectivley. This task might be
difficult to solve using binary mixtures only as it is even not sufficient that both liquids do have the
same mass density or viscosity, respectively. Ternary liquid mixtures might help to overcome this
imperfection of liquid series. With an appropriate model for ternary liquid mixtures, the mixing ratio
necessary to obtain viscosity and mass density series can be calculated. Such models, also considering
the influence of the temperature dependence of η and ρ, can hardly be found in literature. For this
reason a comparison of existing temperature models [MHwp10], binary mixture models [MHwp11] as
well as ternary mixture models [MHwp12] have been performed and based on the insights obtained

0.5
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Figure 1.2: Acetone-isopropanol solution at 25 ◦C. mA: mass acetone, mI: mass isopropanol. Note the scale of the
density axis: the variation of density is small (≈ 7 · 10−3), however, a clear trend can be observed.
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1.4 Notation of absolute and relative deviations

by this survey new improved models have been elaborated and are briefly discussed in the following
sections.

As not only the modeling of ternary liquid mixtures considering the temperature dependence of η
and ρ but as also experimental results are still not sufficiently reported, two ternary liquid mixtures,
acetone – ethanol – isopropanol [MHwp13] and ethanol – glycerol – water [MHwp14], consisting of 96
liquid mixtures each, were measured at 14 temperatures ranging from 5 ◦C to 45 ◦C in 2.5 ◦C steps,
using an Anton Paar SVM 3000 together with an XSample 361. To provide an easy access for the
temperature dependence of viscosity and mass density of liquids, as well as the viscosities and mass
densities of binary and ternary liquid mixtures in dependence of their mixing ratio and temperature, a
website has been set up where these quantities can be looked up online. This website can be accessed
via www.rheo-logic.info.

1.4 Notation of absolute and relative deviations

In this thesis absolute and relative deviations or changes of a quantity x in respect to the quantity x0

are noted using

∆x = x− x0 and ∆rx =
x− x0

x0
. (1.3)

In the following sections models for the temperature dependence of η and ρ as well as for binary and
ternary liquid mixtures will be discussed. For evaluating and comparing these models among each
other, two quantities are defined serving as figures of merit. These quantities are noted using the
symbols ∆x and ∆̂x and are explained in the following giving the according formulae. In prose, ∆x

is the ‘mean value of mean absolute values of the relative error’ of a quantity x and ∆̂x is the ‘mean
value of maximum absolute value of relative error’ of a quantity x.

The quantities ∆x and ∆̂x are explained for the example, of evaluating the accuracy of a temperature
model for viscsosity: It is assumed that the viscosity of N liquids denoted by j ∈ [1, . . . , N ] was
experimentally determined at M temperatures which are denoted by i ∈ [1, . . . ,M ]. The latter may
vary from liquid to liquid. In a first step, the absolute values of the relative deviations of modeled
values ηmod,j(Ti) from measured values ηj(Ti) at temperatures Ti

|∆rηj(Ti)| =
∣∣∣∣
ηmod,j(Ti)− ηj(Ti)

ηj(Ti)

∣∣∣∣ (1.4)

are evaluated. In a second step the mean and the maximum value of the latter, i.e.

∆rηj,T =
1

M

M∑

i=1

|∆rηj(Ti)| and ∆̂rηj,T = max(|∆rηj(Ti)|) (1.5)

are calculated. Finally, for giving two quantities describing the accuracy of the temperature model for
viscosity, the mean values of the latter are calculated using

∆ηT =
1

N

N∑

j=1

∆rηj,T and ∆̂ηT =
1

N

N∑

j=1

∆̂rηj,T. (1.6)

1.5 Temperature dependence of viscosity and mass density

1.5.1 Normalized illustration

Using data for viscosity and mass density at different temperatures for liquids, collected from [107–139]
the change of viscosity and mass density is illustrated by normalizing η, ρ and T in respect to their
highest values, i.e.,
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Figure 1.3: Illustration of possible temperature dependencies for viscosity and mass density. For both quantities negative
as well as positive deviations from a linear relation are obtained. The three categories plotted there, include viscosity and
mass density standards from Cannon Instruments company consisting of silicone oils, miscellaneous liquids and water.

ηN(T ) =
η(Tmax)− η(T )

η(Tmax)− η(Tmin)
, ρN(T ) =

ρ(Tmax)− ρ(T )

ρ(Tmax)− ρ(Tmin)
and TN(T ) =

Tmax − T
Tmax − Tmin

. (1.7)

In general, η(Tmax) < η(Tmin) and ρ(Tmax) < ρ(Tmin). The collected data comprises 130 independent
measurement series for viscosity and mass density in a certain temperature range for 35 different
liquids in total. The normalized values for these liquids as well as the relative deviations from a linear,
normalized relation

∆rηN =
ηN − xlin

xlin
, and ∆rρN =

ρN − xlin

xlin
where xlin = 1− TN (1.8)

are shown in Fig. 1.3. There, the shaded areas show the range and shape of possible temperature
dependencies for the investigated liquids which are distinguished in three categories: Viscosity and
mass density standards from Cannon Instruments company consisting of silicone oils, miscellaneous
liquids and water. This evaluation for both quantities, clearly shows the non-linear dependence of η
and ρ on T . This nonlinearity becomes more distinctive, the higher the difference Tmax−Tmin. Usually,
the temperature dependency of η is considered using exponential functions whereas for ρ polynomial
functions are used.

1.5.2 Temperature dependence of viscosity

Two constants equations from literature

Most models for the temperature dependence of viscosity are based on Arrhenius’ equation [140]

k = A e
−E
RT (1.9)

which expresses the temperature dependence of a chemical reaction relating the dependence of the
rate constant k to absolute temperature T , where R is the universal gas constant, E is the activation
energy and A is a factor depending on the order of the reaction. In relation to Arrhenius’ equation,
the according models for the temperature dependence of viscosity found in literature read in the order
of the following references [141], [83, 142] and [143]

η = Ae
Ev
RT , η = Ae

B
T , and ln η = A+

B

T
. (1.10)

The second equation is also known as the Andrade equation which is expressed logarithmically in the
third equation. Note that for simplicity and keeping the number of used coefficients short, two equal
letters might not express the same physical quantity and thus, might also have different units.
Further empirical two constant equations in the order of citation [81] (Macosko), [83,144] (Viswanath)
and [141] (Brancker) are
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1.5 Temperature dependence of viscosity and mass density

η = AeB T , η = ATB, and η =
A

1− B
T

(1.11)

where the last equation is also discussed in [145]. A comparison of these two constants temperature
models for viscosity is given in Fig. 1.4(a), which clearly shows, that models deduced from the Arrhenius
equation yield the best results for the liquids investigated here.

Three constants equations from literature

Introducing a third factor for modeling the viscosity’s temperature dependence, significantly improves
the modeling accuracy. Frequently used models are physically or empirically motivated models from
Vogel et al. where

η = A e
B

T−C (1.12)

is known as the Vogel–Tammann–Fulcher (VTF) equation [146] whereas the Vogel–Fulcher–Tammann
(VFT) equation [147] reads:

η = AT 0.5 e
B

T−C . (1.13)

In [83, 144] Viswanath uses a similar equation using 10 as the basis instead of Euler’s number for the
exponential function. The given equation is

log10 η = A+
B

C − T
. (1.14)

A further three constants equation but with and additional quadratic term in the denominator of the
exponential function’s argument is given in [83,148] (Girifalco) and reads:

ln η = A+
B

T
+
C

T 2
. (1.15)

A rational function for the viscosity’s temperature dependence using three coefficients [83,149] (Thorpe)
is:

η =
A

1 +B ϑ+ C ϑ2
(1.16)

where in this case ϑ is the temperature in ◦C.
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Further three constants equations

Except for the rational function, Eq. 1.16, the previously mentioned three constant equations yield all
good modeling accuracies, see Fig. 1.4(b). However, considering the temperature dependence in the
denominator of a rational expression, as it is the case in Eqs. 1.12 to 1.14, may yield singularities.
Furthermore, knowing the coefficients from Eq. 1.15 does not allow an (intuitive) estimation of the
liquid’s viscosity. To overcome these drawbacks a further three constants model was elaborated in the
course of this thesis, reading

η = η0 eb1 (T−Tm)+b2 (T−Tm)2
(1.17)

where η0, b1 and b2 are fitting parameters and Tm is a temperature in the range of investigated
temperature range, e.g. the mean value of investigated temperatures. The knowledge of the parameter
η0 gives intuitive insights of the particular liquid’s viscosity. For comparison reasons, and for examining
if the usage of Tm changes the modeling accuracy,

η = A eB T+C T 2
(1.18)

was also investigated. This comparison showed that no higher modeling accuracy is achieved when
using Tm, however comparing η0 and A substantiated the intuitive character of η0. The minimum
value, median and maximum value for the viscosity of all 236 examined liquids at 25 ◦C were obtained
for acetone [122], 1,4-Dioxane [124] and S30 000 from Cannon Instruments yiedling [0.307 ·10−3, 1.069 ·
10−3, 71 · 103] Pa·s. The according values for η0 are [0.307 · 10−3, 1.17 · 10−3, 6 272.13] Pa·s, whereas
the corresponding values for A are [8.08 · 108, 287.2, 8.02 · 1028] Pa·s, respectively. This example
substantiates, that compared with Eq. 1.18, Eq. 1.17 is advantageous, as η0 gives the order of magnitude
for viscosity which is not the case for the fitted values for A.

Multi constants equations

In the literature, models with more than three constants can be found and read in the order of
citations [150–152]

lnη = A+
B

T
+C T +DT 2, log10η = A+

B

T
+C T +DT 2, and η = A+B ϑ+C ϑ2 +Dϑ3 +E ϑ4

(1.19)
but were not further investigated, as for many reported liquids, η is not given for a sufficient number
of temperatures.

1.5.3 Temperature dependence of mass density

Common models

In [153] (Kell) the temperature dependence of the mass density of water is modeled using a seven
coefficients rational function

ρ =
a0 + a1 ϑ+ a2 ϑ

2 + a3 ϑ
3 + a4 ϑ

4 + a5 ϑ
5

1 + b ϑ
(1.20)

which can also be expressed as

ρ =

N∑
i=0

ai ϑ
i

1 + b ϑ
or ρ =

NA∑

i=0

Ai ϑ
i +

B

1 + C ϑ
. (1.21)

Limiting the amount of constants to three this equation reads

ρ = A+
B

1 + C ϑ
. (1.22)
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1.6 Viscosity and mass density of binary mixtures
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Figure 1.5: Comparison of modeling accuracy for Kell’s model, Eq. 1.21 and a regular polynomial in dependence of the
number of used coefficients. For three constants models, the polynomial function yields better results.

All variants of this model suffer from the same drawbacks of possible singularities and unintuitive
model parameters, as already discussed for viscosity models Eqs. 1.12 to 1.14. Thus second order
polynomials reading

ρ = ρ0 + r1 (T − Tm) + r2 (T − Tm)2 or ρ = ρ0 + ρ1
T − Tm

Tm
+ ρ2

(T − Tm)2

T 2
m

(1.23)

have been investigated, where ρ1 = r1 Tm and ρ2 = r2 T
2
m. Both models yield the same modeling

accuracy, however the second expression might be preferred as all coefficients have the same unit as
ρ. The usage of second order polynomials is also quite common for modeling a liquid’s mass density’s
temperature dependence, see e.g., in [146]. A comparison between the three constants model given
in Eq. 1.22 and the second order polynomial is given in Fig. 1.4(c). For the investigated liquids, the
second order polynomial model yielded more accurate results.

The temperature dependence of the mass density of water is extensively reported and thoroughly in-
vestigated, see e.g. [154, 155]. For the case of water it was possible to study the effect of the used
numbers of model parameters on the modeling accuracy, see Fig. 1.5. There, the evaluation of ob-
tained modeling accuracy versus used number of coefficients is shown for Kell’s model, Eq. 1.21 and
a polynomial function. Again, for three coefficients models, the second order polynomial also yields
better results than Eq. 1.22.

1.6 Viscosity and mass density of binary mixtures

In 1887 Arrhenius proposed the following expression for the viscosity η of a binary mixture [156,157]:

ln η = x1 ln η1 + x2 ln η2 (1.24)

where ηi is the viscositiy of the unmixed liquid i and xi is the molar fraction in the mixture where
x1 = 1− x2.

Assuming no interaction between the mixed components, the ideal relation for the mass density ρ of a
binary liquid mixture can be calculated considering the total mass of the mixture m = m1 + m2 and
assuming that the volume of the mixture is the sum of the single components’ volumes, i.e. V = V1+V2.
Thus, the ideal relation reads

ρ = ϕ1 ρ1 + ϕ2 ρ2 (1.25)

where ϕi is the volume fraction of component i in the mixture.
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Figure 1.6: Examples of liquid mixtures at 25 ◦C: The viscosity and mass density of the mixture can get higher or lower
than the viscosities and mass densities of the unmixed liquids.

These ideal models for η and ρ were applied to 100 binary mixtures reported in [107–139] . For the
associated liquid mixtures it was found that ∆η = 0.17, ∆̂η = 12.32, ∆ρ = 0.0038, and ∆̂ρ = 0.0557.
The evaluation showed that the highest deviation for both ideal models were obtained for aqueous
mixtures. These deviations can have many reasons. For some liquid mixtures the minimum or the
maximum viscosity of the mixture can be lower or higher than both, η1 and η2. Such behavior can also
be obtained for mixture’s mass densities and can not be described by equations such as the ideal models
for η and ρ, Eqs. 1.24 and 1.25. Examples for liquid mixtures which can not be described by these ideal
equations are shown in Fig. 1.6. As furthermore the errors of the ideal equations can get relatively
high, these equations have been tried to be improved in many publications. In the following, a short
overview of such models is given and associated modeling accuracies are provided. This evaluation
shows that these frequently used models are still incommensurate, especially when it comes to the
influence of the temperature T on the liquid mixture’s η and ρ. To overcome these drawbacks new
models for binary and ternary liquid mixtures were elaborated based on the insights of the temperature
models for η and ρ.

Fractions of mixtures

Liquid mixtures are mostly specified by their mole fractions xi, volume fractions ϕi or mass fractions
wi. Their definitions are:

xi =
ni∑
j
nj

ϕi =
Vi∑
j
Vj

and wi =
mi∑
j
mj

(1.26)

where ni is the amount of moles of constituent i, Vi is the volume of constituent i and mi is the mass
of constituent i. For all three quantities, the relation

ξi = 1−
∑

j
j 6=i

ξj

applies, where ξ stands either for x, ϕ or w. For given xi or ϕi, wi can be calculated using

wi = xi
Mi∑

j
xjMj

= ϕi
ρi∑

j
ϕj ρj

, (1.27)

where Mi is the molar Mass of constituent i. For given wi the relation for xi or ϕi reads:

ϕi =
1

ρi

wi∑
j

wj
ρj

and xi =
1

Mi

wi∑
j

wj
Mj

. (1.28)
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1.6 Viscosity and mass density of binary mixtures

Modifications of the ideal equations

The measured values of the mixtures’ η and ρ may significantly deviate from the ideal models Eqs. 1.24
and 1.25 and thus in many papers, the deviations for η and ρ are evaluated for different mixture
concentrations at various temperatures T in tabulated form. To correct the ideal equations, the models
are usually complemented by (empiric) correction functions, i.e. Eqs. 1.24 and 1.25 are extended to
the form

ln η = x1 ln η1 + x2 ln η2 + fη (1.29)

ρ = ϕ1 ρ1 + ϕ2 ρ2 + fρ (1.30)

where fη and fρ are correction functions depending on the mixing ratio.

For the part containing the ideal equation of mass density (which is valid if both components do not
interact) modifications using other mixing fractions can be found: In [158] Cheng uses

ρ = w1 ρ1 + w2 ρ2 (1.31)

to model the density of a glycerol water mixture. Jouyban uses two different versions for the ideal
model for ρ. In [159] he uses

ln ρ = ϕ1 ln ρ1 + ϕ2 ln ρ2 + fρ (1.32)

(fρ will be discussed in Sec. 1.6.1), whereas in [160] the equation reads

ln ρ = x1 ln ρ1 + x2 ln ρ2 + fρ. (1.33)

As these equations deviate from the ideal model for ρ, Eqs. 1.31 to 1.33 have empiric character and
suggest the investigation of all possible variants of Eqs. 1.24 and 1.25 which are given in Fig. 1.7(a).
The variants of the ideal equations were applied to data of 100 liquid mixtures collected from [107–139]
and the evaluation of ∆η and ∆ρ is depicted in Figs. 1.7(b) and 1.7(c). There, it can be observed,
that Eqs. 1.24 and 1.25 yield the best results and thus variants of these equations are not necessary.
Deviations of these ideal equations and measured values however, have to be corrected with appropriate
(empiric) correction functions.

(a) Variants of the ideal equations
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Figure 1.7: Evaluation of modifications of the ideal equations for η and ρ: Eqs. 1.24 and 1.25 yield the best results.
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1.6.1 Existing models for viscosity and mass density of binary liquid mixtures

Viscosity models for binary liquid mixtures

Overviews of different models for η of a binary liquid mixture can be found in [83, 161–163] and are
summarized in the following.

• Grunberg-Nissan equation

In [157] Eq. 1.24 is extended by the term x1 x2 d, i.e., the equation for the logarithm of η reads:

ln η = x1 ln η1 + x2 ln η2 + x1 x2 d (1.34)

where in [157] d is explained as a characteristic constant of the system, whereas in [83] it is
explained as an interaction coefficient which is dependent on temperature but independent of
composition.

• Acree and Jouyban-Acree Model

In [164] Acree gives an expression corresponding to

ln η=x1 ln η1(T ) + x2 ln η2(T ) +A0 x1 x2

+A1 x1 x2 (x1 − x2) +A2 x1 x2 (x1 − x2)2 (1.35)

which is a further expansion of the Grunberg-Nissan equation, Eq. 1.34. In [165] Jouyban devides
the factors Ai by the temperature yielding

ln η=x1 ln η1(T ) + x2 ln η2(T ) +A0
x1 x2

T

+A1
x1 x2 (x1 − x2)

T
+A2

x1 x2 (x1 − x2)2

T
. (1.36)

In [159] Jouyban introduced a similar version of this equation for modeling a binary mixture’s
mass density and in [160] he gave a generalized version of this model, stated to be valid for
viscosity, mass density and molar volume.

Both models, the Acree equation and the Jouyban-Acree equation have been applied to mea-
surement data of 100 liquid mixtures found in [107–139]. For both cases, the model parameters
were fitted using a standard linear least square fitting procedure, see e.g., [166]. According to the
evaluations of ∆η, the Jouyban-Acree model does not give an improvement in modeling accuracy
but even yields worse results. For the evaluated liquids, ∆η = 19.07 ·10−3 for the Acree equation
and ∆η = 19.12 · 10−3 for the Jouyban-Acree equation, respectively.

• Further models

In the literature further models for liquid mixtures’ viscosity can be found. However, as (amongst
others) the influence of the temperature on the mixtures’ viscosities is not sufficiently modeled
in these equations, these models are not further investigated here.

Mass density models for binary liquid mixtures

The models for the mass density of binary liquid mixtures, which consider the influence of temperature,
are empiric equations developed by Jouyban and Acree as well as empiric polynomial functions and
are listed below. In the following equations Ai, Aij , Bi and Ci are modeling coefficients.
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1.6 Viscosity and mass density of binary mixtures

• Jouyban-Acree model

In [159] the logarithmic expression for a binary liquid’s mixture considering the mixture’s tem-
perature is

ln ρ = ϕ1 ln ρ1(T ) + ϕ2 ln ρ2(T ) + ϕ1 ϕ2

2∑

i=0

Ai
(ϕ1 − ϕ2)i

T
(1.37)

wheras in [160] the relation reads

ln ρ = x1 ln ρ1(T ) + x2 ln ρ2(T ) + x1 x2

2∑

j=0

Aj
(x1 − x2)i

T
. (1.38)

Polynomial functions for a binary liquid mixture’s mass density are

• Lee [167]

ρ =
2∑

i=0

Aiw
i
2 +Biw

i
2 T + Ciw

i
2 T

2 (1.39)

• Jiménez [168]

ρ =

3∑

i=1

3∑

j=1

Ai j x
i−1(T − T0)j−1 (1.40)

• Tovar relation [169]

1

ρ
=

5∑

i=1

3∑

j=1

Ai j 101−j xi−1(T − T0)j−1 (1.41)

where the benefit of the usage of the term 101−j is not evident.

1.6.2 New models for viscosity

Representation of polynomial correction functions

The unmixed liquid’s temperature dependencies are accurately modeled using Eq. 1.17, i.e.,

η1(T ) = η0,1 eb1,1 T
∗+b2,1 T ∗2 and η2(T ) = η0,2 eb1,2 T

∗+b2,2 T ∗2 (1.42)

where T ∗ = T − Tm. That is, the temperature dependent viscosity of the mixture η(x1, x2, T ) is
sufficiently modeled for η(x1 = 1, x2 = 0, T ) and η(x1 = 0, x2 = 1, T ), respectively using the above ex-
pressions. For this reason, functions fη(x1, x2) where fη(1, 0) = fη(0, 1) = 0 might be good candidates
for modeling the liquid mixtures in dependence of x1 and x2. Such functions can be implemented using
polynomials. In the Acree model, Eq. 1.35, the term A0 x1 x2 +A1 x1 x2 (x1 − x2)+A2 x1 x2 (x1 − x2)2

is already a polynomial with this behavior. Polynomials of this type were also already used in [170]
and [171] reading

ZN = x1 x2

N∑

j=1

Aj(x1 − x2)j−1 (1.43)

in general form, where x1, x2 ∈ [0 . . . 1] and x1 = 1−x2. Note that compared with the expression used
in Eq. 1.35 the numbering of coefficients Ai starts at 1 instead of 0.

13



1 Introduction

For N = 3 using the relations

Y1 =
1

4
(A1 +A2 +A3) (1.44)

Y2 =
1

3
(A1 −A3) (1.45)

Y3 =
1

4
(A3 +A1 −A2) (1.46)

the previous polynomial representation can be written as

F3 = Y1 x
3
1 x2 + Y2 x

2
1 x

2
2 + Y3 x1 x

3
2 (1.47)

wich is an explizit Bézier polynomial which is a polynomial function expressed in the Bernstein poly-
nomial basis, which in turn using x1 = 1− x2 and

p1 = 4Y1 (1.48)
p2 = −12Y1 + 6Y2 (1.49)
p3 = 12Y1 − 12Y2 + 4Y3 (1.50)
p4 = −4Y1 + 6Y24Y3 (1.51)

can be written as 4-th order polynomial reading

P4 = p4 x
4
2 + p3 x

3
2 + p2 x

2
2 + p1 x2. (1.52)

In Fig. 1.8 the relations between these three types of polynomial functions for N = 2, 3, 5 are given
and the effect of higher N used for approximating experimental data is illustrated. There furthermore,
the control points for the explicit Bézier functions are depicted as well.
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Figure 1.8: Correction functions
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1.6 Viscosity and mass density of binary mixtures

Nine coefficients model

Considering that the viscosities’ temperature dependencies are modeled using three constant equations,
the Acree and the Jouyban-Acree models, Eqs. 1.35 and 1.36 require nine coefficients in total, which
have to be determined by an appropriate fitting procedure. For comparison reason a further nine
coefficient model reading

η = η0 eb11 x1 T+b21 x2
1 T

2
eb21 x2 T+b22 x2

2 T
2

(1.53)

where η0 is calculated using

η0 = η0(1, 0)x1 η0(0, 1)x2 + Y1 x
3
1 x2 + Y2 x

2
1 x

2
2 + Y3 x1 x

3
2 (1.54)

was elaborated. This model yields more accurate results than both, the Acree and the Jouyban-Acree
model, see Fig. 1.9(a) for the data of the 100 liquid mixtures from [107–139].

Fifteen coefficients models

• Acree model with temperature dependent coefficients

Applying the Acree- (and the Jouyban-Acree-) model to the 100 liquid mixtures showed that
the Acree-model yields acceptable accuracies for a single temperature but not, if the temper-
ature behavior of the binary liquid mixture also has to be modeled. For this reason, besides
the modeling of the temperature dependency of the unmixed liquids, the coefficients Ai were
separately determined for the available temperatures. Plotting the three coefficients over tem-
perature showed a clear dependency of the modeling parameters, which suggested to model this
dependence by second order polynomials to keep the number of modeling coefficients low. Thus,
the such obtained model reads:

ln η=x1 ln η1(T ) + x2 ln η2(T ) +A1(T )x1 x2 (1.55)
+A2(T )x1 x2 (x1 − x2) +A3(T )x1 x2 (x1 − x2)2

with
Ai(T ) = Ai0 +Ai1 T +Ai2 T

2. (1.56)

• Temperature model with mixture dependent coefficients

The form as well as the good modeling accuracy of the three constant equation of the viscosity’s
temperature dependence of Eq. 1.17 (η(T ) = ηb1 T

∗+b2 T ∗2

0 , ∆η ≈ 3 · 10−3 and ∆̂η ≈ 6 · 10−3,
suggested to extend this model for liquid mixtures. The approach was to express the parameters
of the temperature model η0, b1 and b2 as a function of the molar fractions x1 and x2, i.e.,

η = η0(x1, x2) eb1(x1, x2)T ∗+b2(x1, x2)T ∗2 (1.57)

where for η0(x1, x2), b1(x1, x2), and b2(x1, x2)

η0(x1, x2) = η0(1, 0)x1 η0(0, 1)x2 + Y1 x
5
1 x2 + Y2 x

4
1 x

2
2 + Y3 x

3
1 x

3
2 + Y4 x

2
1 x

4
2 + Y5 x1 x

5
2 (1.58)

as well as
bi(x1, x2) = bi(1, 0)) + x2 bi(0, 1)) +B1i x

2
1 x2 +B2i x1 x

2
2 (1.59)

was defined. This model yielded the best results for all investigated binary liquid mixtures, see
Fig. 1.9(a).
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Third order polynomial

As the usage of polynomials yielded good results for the previous models, the question of modeling
a binary liquid’s viscosity considering the temperature dependence by using polynomials only arose.
Thus a third order polynomial for the mixture dependence as well as a third order polynomial for the
temperature dependence of the mixture coefficients, i.e.,

η = A0(T ) +A1(T )x2 +A2 x
2
2 +A3 x

3
2 (1.60)

where
Ai(T ) = Ai0 +Ai1 T +Ai2 T

2 +Ai3 T
3 (1.61)

was assumed, yielding a 16 coefficients model. The application of the 100 binary liquid mixtures
showed, that both 15 coefficient model yielded better results than this pure polynomial function, see
Fig. 1.9(a).

1.6.3 New models for mass density

Motivated by the good modeling accuracy by considering mixture dependent coefficients of the tem-
perature model for the viscosity, the same approach was chosen for the mass density of a binary liquid
mixture, i.e.,

ρ = ρ0(ϕ1, ϕ2) + r1(ϕ1, ϕ2)T ∗ + r2(ϕ1, ϕ2)T ∗2 (1.62)

Note, as the volume fractions ϕi themselves are temperature dependent as well, they are calculated
from ρ0,i = r1,i T

∗ + r2,i T
∗2 and wi. Using this modeling approach the usage of different order

polynomials for the temperature coefficients was investigated yielding 9, 12 and 15 coefficients models.
The polynomial functions for the mixture dependent temperature model coefficients are

• Nine coefficients model

ρ0 = ρ0(1, 0) +R1 ϕ
2
1 ϕ2 +R2 ϕ1 ϕ

2
2 + ρ0(0, 1) (1.63)

r1 = r1(1, 0)ϕ1 +B1 ϕ1 ϕ2 + r1(0, 1)ϕ2

r2 = r2(1, 0)ϕ1 + r2(0, 1)ϕ2
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Figure 1.9: Evaluation of the investigated models

16



1.7 Viscosity and mass density of ternary mixtures

• Twelve coefficients model

ρ0 = ρ0(1, 0) +R1 ϕ
3
1 ϕ2 +R2 ϕ

2
1 ϕ

2
2 +R3 ϕ1 ϕ

3
2 + ρ0(0, 1) (1.64)

r1 = r1(1, 0)ϕ1 +B11 ϕ
2
1 ϕ2 +B12 ϕ1 ϕ

2
2 + r1(0, 1)ϕ2

r2 = r2(1, 0)ϕ1 +B2 ϕ1 ϕ2 + r2(0, 1)ϕ2

• Fifteen coefficients model

ρ0 = ρ0(1, 0) +R1 ϕ
4
1 ϕ2 +R2 ϕ

3
1 ϕ

2
2 +R3 ϕ

2
1 ϕ

3
2 +R4 ϕ1 ϕ

4
2 + ρ0(0, 1) (1.65)

r1 = r1(1, 0)ϕ1 +B11 ϕ
3
1 ϕ2 +B12 ϕ

2
1 ϕ

2
2 +B13 ϕ1 ϕ

3
2 + r1(0, 1)ϕ2

r2 = r2(1, 0)ϕ1 +B21 ϕ
2
1 ϕ2 +B22 ϕ1 ϕ

2
2 + r2(0, 1)ϕ2

A comparison of both Jouyban-Acree models Eqs. 1.37 and 1.38, the nine, twelve and fifteen coefficients
model using the approach of mixture dependent temperature model coefficients Eq. 1.62 as well as a
pure 16 coefficients polynomial function in the form of Eq. 1.60 for the mass density i.e.,

ρ = A0(T ) +A1(T )ϕ2 +A2 ϕ
2
2 +A3 ϕ

3
2 (1.66)

where
Ai(T ) = Ai0 +Ai1 T +Ai2 T

2 +Ai3 T
3 (1.67)

is given in Fig. 1.9. Figure 1.10 shows modeled mass density and viscosity in comparison with measured
results, taking the mixture of water and 1-vinyl-2-pyrrolidinone as example. This mixture was already
shown and compared with the ideal models in Fig. 1.6(a) at 25 ◦C.

1.7 Viscosity and mass density of ternary mixtures

Approaches for modeling the viscosity of ternary liquid mixtures are given in [172, 173]. However, in
these models, the temperature dependence of the liquid mixture’s viscosity is not sufficiently considered.

For modeling a ternary liquid’s mixture viscosity and mass density and the influence of temperature on
the latter, two basic approaches – a model with temperature dependent control points and a model with
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Figure 1.10: Water (1) + 1-vinyl-2-pyrrolidinone (2), [112] as function of w2 and ϑ
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mixture dependent temperature coefficients – are investigated. In both cases correcting or interpolating
functions are necessary to complete the ideal equations,

η(x1, x2, x3, T ) = ηx1
1 (T ) ηx2

2 (T ) ηx3
3 (T ) (1.68)

and
ρ(ϕ1, ϕ2, ϕ3, T ) = ϕ1 ρ1(T ) + ϕ2 ρ2(T ) + ϕ3 ρ3(T ) (1.69)

for achieving sufficient modeling accuracy. As three-components mixture fractions satisfy the equation
ξ1 = 1− ξ2 − ξ3, (where ξi is either xi or ϕi) Bézier triangles are a good candidate for such correcting
functions.

1.7.1 Bézier triangle

A Bézier triangle Sn of order n can be expressed as

Sn = (αx1 + β x2 + γ x3)n (1.70)

where x1 = 1 − x2 − x3. Products of α, β and γ (and their powers) form the control points which
will be replaced by Pj in the following. The control points at x1 = 1, x2 = 1 or x3 = 1 are set to
zero for both approaches (temperature dependent control points and mixture dependent temperature
coefficients), i.e., αn = βn = γn = 0 as there, no mixing takes place ant the temperature dependent
viscosities and mass densities are calculated using Eqs. 1.17 and 1.23. In the following, the usage of
Bézier triangles for n = 2, . . . , 5 are investigated. The equations for the first two, i.e., square (n = 2)
and cubic (n = 3) Bézier rectangles, respectively read:

S2 = 2P121 x1 x2 + 2P131 x1 x3 + 2P231 x2 x3 (1.71)
S3 = 3P121 x

2
1 x2 + 3P122 x1 x

2
2 + 3P131 x

2
1 x3

+3P132 x1 x
2
3 + 3P231 x

2
2 x3 + 3P232 x2 x

2
3 + 6P1231 x1 x2 x3

Sn = . . . (1.72)

The usage of the Bézier triangles of different orders is illustrated for the case of the mass density model
with temperature dependent control points in the following section.

1.7.2 Temperature dependent control points

In this modeling approach, the ternary liquid mixtures’ viscosity and mass density are calculated
transferring the ideal equations for binary mixtures Eqs. 1.24 and 1.25 to the case of ternary mixtures
which are completed by additive functions ∆η and ∆ρ, i.e.,

η(x1, x2, x3, T ) = ηx1
1 (T ) ηx2

2 (T ) ηx3
3 (T ) + ∆η(x1, x2, x3, T ) (1.73)

and
ρ(ϕ1, ϕ2, ϕ3, T ) = ϕ1 ρ1(T ) + ϕ2 ρ2(T ) + ϕ3 ρ3(T ) + ∆ρ(ϕ1, ϕ2, ϕ3, T ). (1.74)

Viscosity model

With the knowledge of the temperature coefficients of the unmixed liquids’ viscosities

η1(T ) = η01 eb11 T ∗+b21 T ∗2 , η2(T ) = η02 eb12 T ∗+b22 T ∗2 , and η3(T ) = η03 eb13 T ∗+b23 T ∗2

(1.75)
in a first step, the deviations

∆η(x1d, x2d, x3d, Ti) = η(x1d, x2d, x3d, Ti)− ηc(x1d, x2d, x3d, Ti) (1.76)

from the measured values η(x1d, x2d, x3d, Ti) at discrete, measured mixture fractions x1d, x2d, and x3d

at temperatures Ti, where
ηc(Ti) = η1(Ti)

x1d η2(Ti)
x2d η3(Ti)

x3d (1.77)
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1.7 Viscosity and mass density of ternary mixtures

are calculated. These deviations are fit using Bézier triangles Sηn for every temperature Ti yielding
control points Pj(Ti). The temperature dependence of these coefficients is then fit using a second order
polynomial, i.e.

Pj(T ) = Pj0 + Pj1 T + Pj2 T
2 (1.78)

yielding 3 ( (n+1) (n+2)
2 − 3) coefficients for the correction function and thus, 9 + 3 ( (n+1) (n+2)

2 − 3)
coefficients in total for the temperature dependent mixture coefficients model.

With the knowledge of these coefficients the viscosity of a ternary liquid mixture η(x1, x2, x3, T ) is
calculated as follows, see also Fig. 1.11: First, using Eqs. 1.68 and 1.75 the first term in Eq. 1.73 is cal-
culated. Second, the temperature dependent control points Pj(T ) using Eq. 1.78 are determined. Third,
the second term in Eq. 1.73, i.e. ∆η(x1, x2, x3, T ) using these control points is evaluated. An illus-
trated explanation of this procedure for the case of an ethanol + 2-butanone + 2,2,4-trimethylpentane
mixture [174] is given. For the mixture’s mass density the fitting procedure is identical.

Mass density model

Analogous to the viscosity model, the mass density model for ternary liquid mixtures using temperature
dependent mixtures coefficients, the deviations

∆ρ(Ti) = ρ(Ti)− ρc(Ti) with ρc(Ti) = ρ1(Ti)x1d + ρ2(Ti)x2d + ρ3(Ti)x3d (1.79)

are evaluated which subsequently are used to fit a fit Bézier triangle at all temperatures Ti yielding
again coefficients Pi(Ti) which in turn are used to fit the second order polynomial of the form of
Eq. 1.78.

1.7.3 Mixture dependent temperature coefficients

Viscosity model

For the mixture dependent temperature coefficients model, the coefficients η0, b1 and b2 of Eq. 1.17
are expressed in dependence of the mixing fractions x1, x2 and x3, i.e.,

η(x1, x2, x3, T ) = η0(x1, x2, x3) eb1(x1,x2,x3)T ∗+b2(x1,x2,x3)T ∗2 (1.80)

For every experimentally determined mixture at discrete mixing fractions x1d, x2d and x3d the coeffi-
cients η0, b1 and b2 are determined by a linear, least square algorithm, yielding temperature coefficients
η0d, b1d and b2d at these discrete mixing fractions.

In a first step, parameters

η0c = ηx1
01 η

x2
02 η

x3
03 (1.81)

b1c = b11 x1 + b12 x2 + b13 x3

b2c = b21 x1 + b22 x2 + b23 x3

are defined yielding a first approximate solution for the liquid mixture. With this functions, the
deviations

∆η0d = η0d−η0c(x1d, x2d, x3d), ∆b1d = b1d−b1c(x1d, x2d, x3d), and ∆b2d = b2d−b2c(x1d, x2d, x3d)
(1.82)

are calculated which then are approximated by Bézier triangles Sηn, Sb1n and Sb2n of order n. With
the fitted Bézier triangles, the mixture dependent temperature coefficients from Eq. 1.80 are calculated
as follows:

η0(x1, x2, x3) = η0c + Sηn (1.83)
b1(x1, x2, x3) = b1c + Sb1n

b2(x1, x2, x3) = b2c + Sb2n.
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Figure 1.11: Illustrative explanation for the modeling approach with temperature dependent control points

Mass density model

The structure of the mass density model with mixture dependent temperature coefficients

ρ(ϕ1, ϕ2, ϕ3, T ) = ρ0(ϕ1, ϕ2, ϕ3) + r1(ϕ1, ϕ2, ϕ3)T ∗ + r2(ϕ1, ϕ2, ϕ3)T ∗2 (1.84)

is analogous to the viscosity model, i.e. at all discrete mixing fractions x1d, x2d and x3d, parameters ρ0,
r1 and r2 from the temperature model for a liquid’s mass density Eq. 1.23, are fit. With the knowledge
of the mass densities’ temperature dependences of the unmixed liquids

ρ1(T ) = ρ01 + r11 T
∗+ r21 T

∗2, ρ2(T ) = ρ02 + r12 T
∗+ r22 T

∗2, and ρ3(T ) = ρ03 + r13 T
∗+ r23 T

∗2,
(1.85)
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1.8 Governing equations for oscillating fluid-structure interaction

and the calculable mixture dependent parameters

ρ0c = ρ01 ϕ1 + ρ02 ϕ2 + ρ03 ϕ3 (1.86)
r1c = r11 ϕ1 + r12 ϕ2 + r13 ϕ3

r2c = r21 ϕ1 + r22 ϕ2 + r23 ϕ3

the deviations

∆ρ0d = ρ0d−ρ0c(ϕ1d, ϕ2d, ϕ3d), ∆r1d = r1d−r1c(ϕ1d, ϕ2d, ϕ3d), and ∆r2d = r2d−r2c(ϕ1d, ϕ2d, ϕ3d)
(1.87)

are fit with Bézier triangles Sρn, Sr1n and Sr2n of order n. With the calculable parameters and these
correction functions, the parameters of the mixture dependent temperature model for mass density
read:

ρ0(x1, x2, x3) = ρ0c + Sρn (1.88)
r1(x1, x2, x3) = r1c + Sr1n

r2(x1, x2, x3) = r2c + Sr2n.

For both, the binary as well as the ternary liquid mixture models, the number of measurements has to
be at least as high as the number of modeling coefficients. That is, using a 15 coefficients model for
binary mixtures, at least five liquid mixtures at three different temperatures have to be available. A
fifth order Bézier triangle for the case of the temperature dependent control points model for ternary
mixtures has 63 coefficients, and thus requires at least 21 mixtures measured at three temperatures.
However, more measurements are generally of interest, to ensure that the modeled behavior is valid. In
the literature research performed for this study, mainly measurement results at three temperatures for
binary mixtures and measurement results at two temperatures for ternary mixtures were found. The
latter does not give sufficient temperature points for using the introduced models and thus, a significant
comparison of different modeling approaches or and investigation effect of number of coefficients on
modeling accuracy can not be performed yet. For the measurements performed in [MHwp13] and
[MHwp14] to investigate ternary liquid mixtures, 98 mixtures were prepared which were then measured
between 5 ◦C and 45 ◦C in 2.5 ◦C steps yielding 1666 measurements for one ternary mixture. To allow
an easy fitting procedure of the model parameters, the presented models have been elaborated such,
to allow the applicability of linear least square fitting algorithms.

1.8 Governing equations for oscillating fluid-structure interaction

In Sec. 1.3, the working principle of resonant viscosity and mass density sensors has already been briefly
explained. There, it was explained that a mechanical resonator interacts with the sample liquid. To
describe the fluid mechanical modeling approach for such sensors, in the following, the governing
equations of the fluid motion of oscillating fluid-structure interaction are presented and in Fig. 1.12 a
summary of this derivation is given.

1.8.1 Conservation of mass

The law of conservation of mass [175] reads

∂ρ

∂t
+∇ · (ρv) = 0, (1.89)

where ρ is the medium’s mass density, t is the time variable, v the velocity and nabla· denotes the
divergence operator.
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1.8.2 Equation of motion

The Cauchyian equation of motion which is valid for all continua [176] in Lagrangian (or convective)
form using Eulerian specification [177,178] of the flow field reads

ρ
Dv

Dt
= f +∇ · T or ρ

∂v

∂t
+ ρ (v · ∇)v = f +∇ · T (1.90)

respectively. f is the volumetric force density considering e.g., gravitational or Coriolis forces and T
is the stress tensor. Replacing the substantial derivative D(.)/D = ∂(.)/∂t+ v · ∇(.). Substituting the
velocity vector by the deformation vector using v = ∂u/∂t = u̇, the equation of motion for acoustic
waves in liquids

ρ ü + ρ (u̇ · ∇)u̇ = f +∇ · T and solids [179] ρ ü = f +∇ · T , (1.91)

can be formulated.

1.8.3 Stress tensor for Newtonian, compressible liquids

The stress tensor T for a Newtonian, i.e. linear viscous fluid [175] can be written using the tensor (or
dyadic) product ⊗ as follows [180]:

T = −p I + η(∇⊗ v + [∇⊗ v]T) + λ(∇ · v) · I. (1.92)

1.8.4 Equation of motion in liquids (Navier-Stokes)

Using

∇ · I(.) = ∇(.), ∇ · (∇⊗ (.)) = ∆(.), ∇ · [∇⊗ (.)]T = ∇(∇ · (.)), and ∇ · (∇ · (.)) · I = ∇(∇ · (.))
(1.93)

it follows for the equation of motion of a Newtonian fluid, see also [181]

ρ
∂v

∂t
+ ρ (v · ∇)v = f −∇p+ η∆v + (η + λ)∇(∇ · v). (1.94)

f is usually not relevant for resonant liquid sensors, i.e., f = 0. The pressure in the fluid can be
expressed as [182]

p = p0 −
1

ζ
∇ · u and thus ∇p = −1

ζ
∇(∇ · u) (1.95)

for ∇p0 = 0, where ζ is the adiabatic compressibility coefficient.

Neglecting the convective term

The nonlinear, convective term (v·∇)v can be neglected in case of oscillatory fluid motion [180,183–185]
if 2π

α ûmax � 1, where α is the wave-length of the highest spectral component in the oscillation of the
liquid and ûmax is the maximum amplitude of the oscillation. Strictly speaking, only the deformation
in direction of the propagating wave is relevant. For shear waves, the convective term is negligible
in any case. Through this simplification and the neglect of internal forces, the equation of motion
for liquids obtains the same form as for acoustic waves in solids. Using these simplifications and the
relation for the pressure gradient, the linearized Navier-Stokes equation for Newtonian, compressible
liquids can be formulated [180]

ρü =
1

ζ
∇(∇ · u) + η∆u̇ + (η + λ)∇(∇ · u̇) ⇔ ρ ü = ∇ · T (1.96)
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Incompressible liquids

Incompressibility can be assumed if the maximum fluid velocity vmax is much smaller than its velocity
of sound c, i.e. vmax � c. A further (similar) means of judging the applicability of incompressibility
is Mach’s Number Ma = v

c , where v is the local flow velocity and c is the fluid’s speed of sound. For
Ma < 1 incompressibility can be assumed [186]. Thus the law of mass conservation and the stress
tensor for incompressible viscous fluids simplify to [177,178]

∇ · u = 0 (1.97)

and
T = −p I + η(∇⊗ v + [∇⊗ v]T). (1.98)

Thus considering ∇p0 = 0 the equation of motion for incompressible flow reads:

ρü = η∆u̇ ⇔ ρ ü = ∇ · T . (1.99)

1.8.5 Strain, stress and the differential equation of motion of elastic solids

Strain tensor

Since the strain tensor is symmetric by definition [187], the theoretically nine independent components
reduce to six independent components and thus, the components in the strain tensor can be specified
by one subscript rather than two. Using this abbreviated notation, the strain tensor can also be be
written as a six-element column vector (also known as Voigt notation) rather than a nine-element
symmetric square matrix [179]

S =



εxx εxy εxz

εxy εyy εyz

εxz εyz εzz


 =



S1

1
2S6

1
2S5

1
2S6 S2

1
2S4

1
2S5

1
2S4 S3


 ⇔ S = [S1, . . . , S6]T. (1.100)

This abbreviated notation and the usage of the factors 1
2 allows simple notation for the relation of

strain and displacement
S = ∇s u (1.101)

where in this notation, ∇s is the symmetric gradient operator in matrix notation and reads [179]

∇s =




∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x

∂
∂y

∂
∂x 0




, ∇s =




∂
∂r 0 0

1
r

1
r
∂
∂ϕ 0

0 0 ∂
∂z

0 ∂
∂z

1
r
∂
∂ϕ

∂
∂z 0 ∂

∂r

1
r
∂
∂ϕ

∂
∂r −

1
r 0




, and ∇s =




∂
∂r 0 0

1
r

1
r
∂
∂ϑ 0

1
r

cotϑ
r

1
r sinϑ

∂
∂ϕ

0 1
r sinϑ

∂
∂ϕ

1
r
∂
∂ϑ −

cotϑ
r

1
r sinϑ

∂
∂ϕ 0 ∂

∂r −
1
r

1
r
∂
∂ϑ

∂
∂r −

1
r 0




,

(1.102)
respectively, for cartesian (x, y, z), cylindrical (r, ϕ, z) and spherical (r, ϑ, ϕ) coordinates. Note, that
in Voigt notation the strain-displacement relation could also be written as S = ∇s ·u. However this
could be misleading as ∇· is usually used to express the divergence operator.

Stress tensor

The stress tensor, in general, is unsymmetric when body torques are present which is e.g. the case for
media with permanent electric and magnetic polarization, i.e. ferroelectric or ferromagnetic materials.
However as even for strongly polarized materials the body torques have negligibly small importance
in linear vibration theory, they can be neglected and the stress tensor becomes symmetric [188]. This
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assumption is valid for non-ferroelectric and non-ferromagnetic materials in any case and thus the
symmetric stress tensor in matrix and abbreviated vector notation reads

T =



σxx σxy σxz

σxy σyy σyz

σxz σyz σzz


 =



T1 T6 T5

T6 T2 T4

T5 T4 T3


 ⇔ T = [T1, . . . , T6]T. (1.103)

Using the abbreviated, six-element-vector notation for the divergence-of-stress operator [179] reads

∇· =




∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0


 , ∇· =




∂
∂r + 1

r − 1
r 0 0 ∂

∂z
1
r

∂
∂ϕ

0 1
r

∂
∂ϕ 0 ∂

∂z 0 ∂
∂r + 2

r

0 0 ∂
∂z

1
r

∂
∂ϕ

∂
∂r + 1

r 0


 , (1.104)

and

∇· =




2
r + ∂

∂r − 1
r − 1

r 0 1
rsinϑ

∂
∂ϕ

cotϑ
r + 1

r
∂
∂ϑ

0 cotϑ
r + 1

r
∂
∂ϑ − cotϑ

r
1

rsinϑ
∂
∂ϕ 0 3

r + ∂
∂r

0 0 1
rsinϑ

∂
∂ϕ

2cotϑ
r + 1

r
∂
∂ϑ

3
r + ∂

∂r 0


 , (1.105)

for cartesian, cylindrical and spherical coordinates, respectively

1.8.6 Relation for stress and strain in isotropic elastic materials

Using the abbreviated vector notation for the tensors S and T and using the forth rank elasticity
tensor c, Hooke’s law for an arbitrary linear elastic material can be expresses as [179,189]

T = c : S (1.106)

and using Eq. 1.101 it follows
T = c : ∇s u (1.107)

where the elasticity tensor for an isotropic elastic material can be given by [179]

c =




c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44




where c44 =
1

2
(c11 − c12). (1.108)

Note that in Voigt notation, Eq. 1.106 could also be written using (·), i.e., T = c · S.

1.8.7 Equation of motion for solids and approximated oscillatory fluid motion

Substituting the relation for the stress tensor Eq. 1.106 in the equation of motion for acoustic waves
in solids, Eq. 1.91 yields

ρ ü = ∇· (c : ∇s u) or − ρω2u = ∇· (c : ∇s u), (1.109)

respectively, where · denotes complex notation. These expressions are also valid for oscillatory liquid
motion, if the volumetric force density and the convective term are neglected. For the components in
the stiffness tensor it follows

c11 =
E(1− ν)

(1 + ν)(1− 2ν)
, c12 =

E ν

(1 + ν)(1− 2ν)
, and c44 =

E

2(1 + ν)
(1.110)

for linear elastic solids with Young’s modulus E and Poisson’s ratio ν,

c11 = jω(λ+ 2η) +
1

ζ
, c12 = jωλ+

1

ζ
, and c44 = jωη (1.111)
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Cauchian equation of  motion (EOM), valid for all continua

Stress tensor for Newtonian liquids

Navier-Stokes equation (EOM for a Newtonian liquid)

Linearized Navier-Stokes equation (neglect of the convective term                 )

Relation between stress and strain tensor in Voigt notation

Elasticity tensor for iostropic, elastic materials

Compressible liquids

Substantial derivative
EOM for acoustic waves in solids

pressure in the liquid tensor product

Neglects:

Incompressible liquids (

incompressible fluids: 

EOM for liquids
volumetric force density
(e.g. gravitational forces) 

adiabatic compressibility 
coefficient

volume viscosity

symmetric
gradient operator

Incompressible liquids

Note: Relation for 
viscoelastic materials

):

Figure 1.12: Summary of the governing equations for oscillatory fluid motion

for compressible liquids [84], [MHbcc1] and

c11 = jω2η, c12 = 0, and c44 = jωη (1.112)

for incompressible liquids, respectively.

The derivation of the governing equations for oscillating fluid-structure interaction is summarized in
Fig. 1.12.

1.9 Lumped element approach

A linear, mechanical oscillator with lumped mass m0, damping coefficient c0 and spring constant k0,
being immersed in a liquid and oscillating in the latter as it was depicted in Fig. 1.1 is considered. The
time dependent equation of motion for the displacement u upon forced actuation with an excitation
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force Fex and accounting for the influence of the liquid on the oscillation with a fluid related force FF

is

m0
d2u(t)

dt2
+ c0

du(t)

dt
+ k0 u(t) = Fex(t)− FF(t). (1.113)

A harmonic excitation force with angular frequency ω and time dependence ejω t where j2 = −1 is
furthermore assumed. Thus, the equation of motion using the steady state velocity of the oscillation
in the frequency domain v(ω) = jω u(ω) reads

(
c0 + j

(
ωm0 −

k0

ω

))
v(ω) = F ex(ω)− FF(ω). (1.114)

The force FF induced by the fluid can be represented by a complex valued function of ω in the
frequency domain. As the interaction will have a linear character for small vibration amplitudes it will
be proportional to the velocity such that it can be expressed as

FF(ω) = ZF(ω) v(ω) (1.115)

where the symbol ZF was used for the proportionality factor as it resembles an acoustic impedance.
ZF(ω) can be split in a real and imaginary part, ZF,< and ZF,=, respectively. The interaction with the
fluid leads to an added mass (due to fluid mass moved in unison with the vibration) and to a damping
due to viscous losses and radiated acoustic waves. The latter effect will lead to a real part of ZF(ω)
while the mass entrainment corresponds to the imaginary part. This motivates to write the real part
as

ZF,< = cf (1.116)

and the imaginary part as
ZF,= = ωmf , (1.117)

where cf represents the additional damping and mf represents the added mass. If additional lumped
mass were actually added to the lumped mass m0 of the mechanical oscillator, mf would represent this
added mass. However, as it represents the fluid interaction of a distributed resonator, the terms mf

and cf will, in general, be frequency dependent. Thus the fluid forces in the frequency domain can be
written as

FF(ω) = (cf(ω) + jωmf(ω)) v(ω). (1.118)

Just as the parameters of the lumped mass model (m0, c0, k0), the frequency dependence of mf(ω)
and cf(ω) can be moderate, though, such that, if ω is close to the resonance frequencies, the values can
be approximated by their values at the resonance frequency. Introducing the above relation Eq. 1.118
in Eq. 1.114, the following spectral transfer function is obtained

v

F ex

=
1

c0 + cf(ω) + j

(
ω (m0 +mf(ω))− k0

ω

) . (1.119)

This frequency response can be compared to the standardized response of a second order system

H2(ω) =
A

1 + j Q

(
ω

ω0
− ω0

ω

) (1.120)

where ω0 represents the resonance frequency and Q the quality factor. Neglecting the frequency
dependence of ZF near resonance, the resonance frequency and the Q-factor of our model system can
be readily identified. The resonance frequency is defined as the frequency where the above transfer
function Eq. 1.119 becomes real-valued which yields an implicit equation for ω0:

ω0 (m0 +mf(ω)) =
k0

ω0
. (1.121)
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1.9 Lumped element approach

This equation could, e.g. be solved iteratively using the approximation mf(ω) ≈ mf(ω00) as a starting
value for mf(ω) where ω00 =

√
k0/m0 is the resonance eigenfrequency for the unloaded resonator. For

weak frequency dependence of mf(ω) or small resonance frequency shifts, this first approximation may
already be considered as sufficiently accurate. With this simple approximation it is found that

ω0 ≈ ω01 =

√
k0

m0 +mf(ω00)
(1.122)

which represents the decrease of resonance frequency associated with the added mass as expected. ω01

is the approximated value for ω0 after the first iteration. Similarly, for Q we find

Q ≈ Q1 =
1

ω0
· k0

c0 + cf(ω00)
. (1.123)

The exact values for ω0 and Q are

ω0 =

√
k0

m0 +mf(ω0)
and Q =

1

ω0
· k0

c0 + cf(ω0)
(1.124)

yielding an implicit equation for ω0.
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Chapter 2

Theory and modeling

2.1 Fluid dynamics

2.1.1 Forces on oscillating objects

Using the equation of motion Eq. 1.109 for calculating u and the relation for the stress tensor Eq. 1.106
introduced in Sec. 1.8.2, i.e.,

− ρω2u = ∇· (c : ∇s u) and T = c : ∇s u

the force on an oscillating object

F =

∫

V
fdV =

∫

V
∇ · T dV =

∫

A
T · ndA (2.1)

can be calculated, if a solution for u is known.

2.1.2 In-plane oscillating plate

In the following, an oscillating plate with a given oscillation amplitude is assumed. It is considered
that a translatory in-plane oscillating plate (with lateral extensions much larger than its thickness)
yields only shear displacement in the liquid. Furthermore it is assumed, that the direction of motion of
this plate coincides with the x-Axis of a cartesian coordinate system, i.e., u = (ux, 0, 0)T, c.f. Fig. 2.1.
Thus the only non-vanishing component of the stress tensor (in Voigt-notation) is given by

Txz = T5 = jω η
∂ux
∂z

(2.2)

and the equation of motion of this one-dimensional problem is thus

− ρω2ux = c44
∂2ux
∂z

with c44 = jωη. (2.3)

Solving this equation for ux yields an attenuated shear wave propagating in the surface normal direction
(i.e., z-direction)

ux(z, t) = ûx e
−z
δ e
−j
(z
δ
− ω t

)
, (2.4)

where

δ =

√
2 η

ρω
(2.5)

is the so-called penetration depth [84, 190], or decay length [97]. Resubstitution of ux in the relation
for the stress tensor, Eq. 2.2, substituting z = 0 to account for the liquid solid interface and applying
Eq. 2.1 yields [MHc24]

F p = uxAp (1− j)

√
η ρω3

2
(2.6)

for the fluid force which is induced into the liquid by the oscillating plate and thus acting on the latter.
Ap is the surface of the plate and might be determined by a data fit. Comparison of coefficients of the
latter and Eq. 1.118

FF(ω) = (cf(ω) + jωmf(ω)) v(ω)
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2 Theory and modeling

yields for the additional effective fluid mass and damping parameter in case of the in-plane oscillating
plate

mf,p(ω) =

√
η ρ

2ω
Ap and cf,p(ω) =

√
η ρω

2
Ap. (2.7)

2.1.3 Rotating oscillating cylinders or tubes

Considering harmonically oscillating cylindrical objects in a viscous fluid with their axis coinciding
with the axis of a cylindrical coordinate system and assuming liquid displacement only in ϕ-direction,
i.e. u = (ur, uϕ, uz)

T, where ur = uz = 0, only one component in the stress tensor [179]

T rϕ = c44(
∂uϕ
∂r
−
uϕ
r

) where c44 = jωη (2.8)

remains and using δ, Eq. 2.5, the equation of motion of this rotationally symmetric problem reads

j
2

δ2
uϕ =

∂2uϕ
∂r2

+
1

r

∂uϕ
∂r
−
uϕ
r2
. (2.9)

The solution of this equation is

uϕ(r) = AH1
1

(
(1− j)

r

δ

)
+BH2

1

(
(1− j)

r

δ

)
(2.10)

where Hiν denotes Hankel’s function of order ν and i-th kind. A and B have to be determined consid-
ering the boundary conditions.

Solid cylinder (rod)

For a solid cylinder with radius rc, oscillating in a liquid with rotational displacement amplitude ûϕ it
follows for the displacement profile (outside of the cylinder), considering the boundary conditions for
an outward propagating shear wave uϕ(r = rc) = ûϕ and uϕ(r →∞) = 0

uϕ(r) = ûϕ
H2

1

(
(1− j) rδ

)

H2
1

(
(1− j) rcδ

) . (2.11)

Taking into account that the radius of the cylinder rc is constant, the relation for the force, Eq. 2.1,
can be written as

F r,t = Trϕ(rc)nAc (2.12)

where n = 1 in case of a solid cylinder (rod) and n = −1 for a tube. Note that instead of a torque, the
tangential force acting on the cylinder is expressed here, to allow the comparison of rotational with
transversal motions. Thus, using the Reynolds number

Re =
ρω r2

c

η
(2.13)

and considering Eq. 2.5 for substituting δ it follows for the total tangential force Fc acting on the solid
cylinder

F r = (1− j)Ac

√
ρ η ω3

2

(
−j

H2
2

(√
−j Re

)

H2
1

(√
−j Re

)
)

= F p

(
−j

H2
2

(√
−j Re

)

H2
1

(√
−j Re

)
)

(2.14)

assuming that the effective surface of the cylinder equals the effective surface of the plate, i.e., Ac = Ap

and that the amplitude of deflections of the plate and cylinder are equal, i.e., ûp = ûϕ.
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2.1 Fluid dynamics

Hollow cylinder (tube)

For a rotationally oscillating hollow cylinder (tube) filled with a liquid, the boundary conditions are
uϕ(r = rc) = ûϕ and uϕ(r = 0) = 0 and thus it follows for the displacement profile inside the cylinder:

u(r) = ûϕ
J1

(
(1− j) rδ

)

J1

(
(1− j) rcδ

) , (2.15)

where J1 is the first kind, first order Bessel function. It follows for the force Ft acting on the tube

F t = (1− j)Ac

√
ρηω3

2

(
j
J2

(√
−j Re

)

J1

(√
−j Re

)
)

= F p

(
j
J2

(√
−j Re

)

J1

(√
−j Re

)
)

(2.16)

where again, it was assumed that the effective surfaces of the tube and the plate are identical.

Approximation of torsional shear waves by planar shear waves

A comparison of the relative deviations ∆r
pr and ∆r

pt of the solutions for the forces acting on the plate
or the cylinder and the tube, respectively over Re are depicted in Fig. 2.1. Considering the cylinder’s
and tube’s radii of rc = 5 mm (c.f., [MHj1]) and the penetration depth of aqueous liquids at 1 kHz
δ ≈ 18µm, it follows Re = 157 · 103 and thus ∆r

pr ≈ ∆r
pt = 3.8 · 10−3. As the solutions for the

oscillating cylinders become quite unintuitive, this result suggests and substantiates the applicability
and the validity of using the approximated solution of in-plane plate oscillations rather than the solution
of torsionally oscillating cylinders for the case of millimeter-sized devices.

10-1 100 101 102 103 104 105
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10-1 100 101 102 103 104 105

Re

Oscillating rod

Fluid forces

Oscillating plate

Comparison of forces

Oscillating tube

Plate & Cylinder: Plate & Tube:
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Figure 2.1: Comparison of the solutions for the fluid forces Fr, Ft and Fp acting on an oscillating solid cylinder (rod), a
hollow cylinder (tube) with the liquid inside and an in-plane oscillating plate, respectively. For all three cases, the same
surface interacting with the liquid is considered. In case of the solution for the cylinder and tube, Hankel and Bessel
functions are obtained which make an intuitive interpretation of the obtained equations difficult. For high Reynolds
numbers, i.e. for high ratios of the cylinders radius rc and the penetration depth δ, the difference between both solutions
is negligibly small.
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2.1.4 Oscillating sphere

The fluid forces acting on a rigid sphere with radius rs, oscillating with velocity v(t) in one direction
is [178]

Fτ = 6π η rs

(
1 +

rs

δ

)
v(t) (2.17)

+3π r2
s

√
2 η ρ

ω

(
1 +

2 rs

9 δ

)
∂v(t)

∂t
.

Substituting the penetration depth δ, Eq. 2.5, in Eq. 2.17, transformation to the frequency domain
and comparison of coefficients with Eq. 1.118 yields

mf, s(ω) = 3π r2
s

(√
2 η ρ

ω
+

2 rs

9
ρ

)
and (2.18)

cf, s(ω) = 6π rs

(
η + rs

√
ω η ρ

2

)

for the fluid loading related additional mass and damping parameter in case of an oscillating sphere.

2.1.5 Transversally oscillating cylinder

The fluid force per unit length F ′c on an oscillating cylinder with radius rc, is e.g. given in [191–193]
and reads:

F ′c(ω) = −π ρω2 r2
c Γcyl u(ω) (2.19)

with

Γcyl = 1 +
4 K1

(√
j Re

)
√

j Re K0

(√
j Re

) (2.20)

where the same expression, i.e. Re = ρω r2
c

η as in Eq. 2.13 for the Reynold’s number is used. K0

and K1 are zeroth and first order modified Bessel functions of second kind and Γcyl is the so-called
hydrodynamic function.

To allow evaluating the real and imaginary part of Eq. 2.19, necessary for calculating added mass
mf,c and damping parameter cf,c for the oscillating cylinder, a second order series expansion of Γcyl at
Re→∞ is performed, yielding

Γcyl ≈ Γcyl,T = 1 +
4√
2 Re

− j

(
4√
2 Re

+
2

Re

)
(2.21)

where the subscript ‘T’ denotes the solution obtained by a Taylor series expansion. The relative
deviations of real and imaginary parts ∆r Γcyl,< and ∆r Γcyl,= as well as of the absolute value ∆r

∣∣Γcyl

∣∣of
the approximated hydrodynamic function Eq. 2.21 and the exact solution Eq. 2.20 are depicted in
Fig. 2.2. This comparison shows that for Reynolds numbers larger than 10, the deviation of the Taylor
series approximated solution is less than 1 %.

Substituting the approximated solution of the hydrodynamic function, Eq. 2.21 in Eq. 2.19 and com-
parison of coefficients with the equation of the fluid forces FF, Eq. 1.118, yields

mf,c(ω) ≈ π r2
c

(
ρ+

4√
2 rc

√
η ρ

ω

)
lc and (2.22)

cf,c(ω) ≈
(

2π η +
4π√

2
rc
√
ω η ρ

)
lc

for the added mass and damping parameters in case of the oscillating cylinder, where lc is the length
of the cylinder.
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Figure 2.2: Relative deviations of the real part, the imaginary part and the imaginary value of the approximated hydro-
dynamic function Eq. 2.21 from the exact solution Eq. 2.20.

2.1.6 Transversally oscillating rectangular beam

In [192] Tuck et al. found that the hydrodynamic function for a circular cylinder and an infinitely thin
rectangular beam are similar, i.e., the relative deviation between both functions never exceed 15 · 10−2

for a range of Reynolds numbers from 10−1 to 103. In [193] Sader calculated a correction function
Ω(ω) relating the hydrodynamic functions of a rectangular and circular beam, i.e.,

Γrect(ω) = Ω(ω)Γcirc(ω). (2.23)

Ω(ω) was calculated for the case of incompressible fluids and an infinitely thin beam oscillating in out-
of-plane direction. Figure 2.3 shows a comparison between the hydrodynamic functions of a circular
and a rectangular beam Γcirc(ω) and Γrect(ω), the correction function Ω(ω) versus Reynolds number
Re as well as the relative deviations

|<(∆rΓ)| =
∣∣∣∣
<(Γrect)−<(Γcirc)

<(Γrect)

∣∣∣∣ , |=(∆rΓ)| =
∣∣∣∣
=(Γrect)−=(Γcirc)

=(Γrect)

∣∣∣∣ and |∆rΓ| =
∣∣∣∣
|Γrect| − |Γcirc|
|Γrect|

∣∣∣∣
(2.24)

of real parts, imaginary parts and absolute values between circular and rectangular hydrodynamic
functions.

In Fig. 2.3(a), a difference between both hydrodynamic functions can hardly be observed in the used
display format. Fig. 2.3(b) shows real and imaginary part as well as absolute values of the correction
function Ω(ω) and in Fig. 2.3(c) it can be observed that the relative deviation |∆rΓ| between Γrect and
Γcirc is smaller than 0.15 in the investigated range of Reynolds numbers Re = 10−6 . . . 104. In contrast
to this approach, where incompressible liquids were considered, Weiss et al. investigated in [194] the
influence of the liquid’s compressibility for an infinitely thin beam.

2.2 Mechanical resonators

According to an extended literature review which will be presented in Sec. 4.10, mechanical resonators
used for viscosity and mass density sensing can be categorized in vibrating beams and membranes.
Cantilever, U-shaped cantilever [87,195], [MHj4] and tuning fork [196,197], [MHj2] devices for example,
can be represented by singly clamped beams whereas bridges and suspended plates can be interpreted
as doubly clamped beams. In the following, the governing equations for transversally oscillating beams,
rotationally oscillating resonators and a brief introduction for oscillating membranes is given.

2.2.1 Transverse vibrations of prismatic beams

Figure 2.4 shows the derivation of the Timoshenko and the Euler-Bernoulli beam and is intended to be
self-explanatory. Further information can be found in fundamental textbooks for structural mechanics
such as [198–201]. In this figure, the difference between Euler-Bernoulli and Timoshenko beam theory
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Figure 2.3: Illustration of the difference between the hydrodynamic functions Γcirc and Γrect versus Reynolds number Re:
a) A difference between Γcirc and Γrect can hardly be observed. b) Real part, imaginary part and absolute values of the
correction function Ω(ω). c) Relative deviation of real part, imaginary part and absolute values of Γrect from Γcirc.

is highlighted. The latter considers also displacement due to a finite shear modulus as well as the effect
of the moment of inertia, which are neglected in classical Euler-Bernoulli beam theory. In [202,203] a
study on cantilevers immersed in liquid media using Timoshenko beam theory (i.e., considering shear
deflection and rotatory moment of inertia) is presented. In Fig. 2.4 indices x and z for the deflection
(ux, uz) are used to distinguish between deflection in x- and in z-direction which is necessary for
deriving the governing equations. In the following however u only will be used to express the deflection
in z-direction.

Considering a homogeneous, isotropic prismatic beam as it is depicted in 2.4, the general equation of
motion for the deflection u(x, t) in z-direction reads [204]:

E Iy
∂4u

∂x4
−N ∂2u

∂x2
+ ρA

∂2u

∂t2
+ c′0

∂u

∂t
− ρ Iy

(
1 +

E A

GAs

)
∂4u

∂x2 ∂t2
+ ρ2 Iy A

GAs

∂4u

∂t4
= f (2.25)

E: Young’s modulus, Iy: second moment of area about the y-Axis, N : normal force within the beam,
ρ beam’s mass density, A cross-section of the beam (constant), c′0: damping parameter per unit length,
G: shear modulus, As = κA, where κ is a correction factor, which considers, that the shear stresses
are not constant over the beam’s cross secion (in z-direction), i.e. ∂τ(z)

∂z 6= 0, f : force per unit length
resulting from the distributed load q(x), c.f., Fig. 2.4.

The particular terms in the last equation are forces per unit length (fi) in z-direction and are explained
in the following:

• E Iy
∂4u

∂x4
: fi due to bending stiffness E Iy where Iy =

∫
A z

2 dA and Iy = wh3

12 for a rectangular

beam with width w and thickness h as well as Iy = π r
4

4 for a circular beam with radius r

• −N ∂2u

∂x2
: fi due to normal stresses in the beam

• ρA
∂2u

∂t2
: fi considering the translational inertia of the beam

• c′0
∂u

∂t
: fi considering (internal and external) damping

• −ρ Iy
(

1 +
E A

GAs

)
∂4u

∂x2 t2
+ ρ2 Iy A

GAs

∂4u

∂t4
: fi considering the effect of shear displacement and ro-

tational inertia
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Resulting forces and moments due to positive deformation in x- and z-direction

Deformation due to (distributed) load in z-direction

Equilibrium of forces:

Moment equilibrium:

For a constant cross section, these equations can be express as one single equation which reads:

Timoshenko beam

Euler-Bernoulli beam

Note: The reference coordinate system
, , is not compulsory but is introduced

for easier comprehansion.

3D view of deformed beam undeformed beam deformed beam

yields

Figure 2.4: Derivation of Timoshenko and Euler Bernoulli beam. In the first part internal moments about the y-axis and
shear forces due to the deformation of the beam are derived. With these results, in the second part, a set of two equations
of motion is obtained for a distributed load. In the third part, considering a constant cross-section, the Timoshenko
beam equation is derived and neglecting shear and rotational inertia, in the last part yields the Euler-Bernoulli equation.
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2 Theory and modeling

Dominating bending stiffness (Euler-Bernoulli-Beam)

Considering a time dependence ejω t, with j2 = −1, angular frequency ω and time variable t, the
equation of motion for transverse free vibrations of a beam with dominating bending stiffness E Iy and
its solution using complex notation for the deflection u read

∂4u

∂x4
− ω2 ρA

E Iy
u = 0 (2.26)

and
u(x) = C1 sin

λi
L
x+ C2 cos

λi
L
x+ C3 sinh

λi
L
x+ C4 cosh

λi
L
x. (2.27)

Where L is the length of the beam and λi is the eigenvalue of the i-th vibrational mode. The constants
Cj have to be determined by taking the boundary conditions into account which can be expressed by
considering the amplitude of the deflection u(x), the slope of the amplitude of the deflection ∂u(x)

∂x , the
bending moment about the y-axis My(x), the shear force Fτ (x) and the shear force per unit length
fτ (x) acting on the beam with which the higher order derivatives for u(x) can be expressed as follows,
c.f. Fig. 2.4:

∂2u(x)

∂x2
= −My(x)

E Iy
,

∂3u(x)

∂x3
= −Fτ (x)

E Iy
and

∂4u(x)

∂x4
=
fτ (x)

E Iy
. (2.28)

Most prominent examples of micro-resonators are resonating cantilevers and bridges see Sec. 4.10.2,
which can be described by singly and doubly clamped beams, respectively. For calculating the natural
frequencies and the mode shapes of undamped, free oscillations of these devices the boundary conditions
for the singly clamped beam

u(0) = 0,
∂u(x)

∂x

∣∣∣∣
x=0

= 0,
∂2u(x)

∂x2

∣∣∣∣
x=L

= 0,
∂3u(x)

∂x3

∣∣∣∣
x=L

= 0 (2.29)

and the doubly clamped beam

u(0) = 0,
∂u(x)

∂x

∣∣∣∣
x=0

= 0, u(L) = 0,
∂u(x)

∂x

∣∣∣∣
x=L

= 0 (2.30)

are considered. For both cases, the first two boundary conditions yield C3 = −C1 and C4 = −C2.
Substituting these relations in Eq. 2.27 and calculating the third and fourth boundary conditions with
the obtained equation for u(x) yields two equations which can be written in Matrix notation

A(λ) ·
[
C1

C2

]
= 0. (2.31)

Claiming det(A) = 0 yields transcendental equations for the infinite number of eigenvalues λi, with
which the angular eigenfrequencies w0,i of the i–th mode of undamped, free oscillations can be calcu-
lated. It follows that

ω0,i =
λ2
i

L2

√
E Iy
ρA

. (2.32)

For calculating the mode shape function of the i-th mode for the singly and doubly clamped beam,
considering C3 = −C1 and C4 = −C2 in Eq. 2.27 and dividing the latter by C2 yields

Ũi(ξ) = cosλiξ + coshλiξ + C̃i (sinλiξ + sinhλiξ) with ξ =
x

L
(2.33)

Where .̃ is used to express ta quantity used for the mode shape function. The coefficient C̃i is calculated
solving

A(λi) ·
[
C̃i
1

]
= 0. (2.34)

For both, the singly and the doubly clamped beam, the equations from which λi and C̃i can be
calculated as well as their values for the first modes and evaluated mode shapes are shown in Tab. 2.1.
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2.2 Mechanical resonators

Dominating normal stresses (string)

The equation of motion in the frequency domain for free, transversal oscillations of a beam with
dominant tensile (normal) forces N and its solution read

∂2u(x)

∂x2
+
ω2

a2
u(x) = 0 with a =

√
N

ρA
(2.35)

and
u(x) = C1sin

ω x

a
+ C2cos

ω x

a
. (2.36)

Taking the boundary conditions u(0) = 0 and u(L) = 0 into account,

ω0,i =
i π

L

√
N

ρA
(2.37)

and
Ũi(ξ) = sin i π ξ (2.38)

are found for the natural angular frequencies and the mode shape function. The mode shapes of the
first three modes are depicted in Tab. 2.1.

2.2.2 Torsional vibrations

A common principle of a torsional resonator [205], [MHj1] is depicted in Tab. 2.1. There, a solid mass
is supported by two torsional springs. Due to the device’s symmetry, only one half of the torsional
resonator is considered. The partial differential equation describing the twisting of the flexible bar
reads

∂T

∂x
− ρ Ip

∂2ϕ

∂t2
= 0 with T = GIp

∂ϕ

∂x
(2.39)

where ϕ is the twisting angle, G is the shear modulus, and Ip =
∫
A r

2 dA =
∫
A(y2+z2) dA = Iy+Iz [199]

is the polar moment of area and is Ip = πR
4

2 for a torsional cylinder with radius R. Equation 2.39 is
transformed to the frequency domain

∂2ϕ

∂x2
+
ω2

b2
ϕ = 0 where b =

√
G

ρ
(2.40)

which is the same form as Eq. 2.35 and thus

ϕ(x) = C1sin
ω x

b
+ C2cos

ω x

b
. (2.41)

Considering the twisting angle and the expression for the internal torque in Eq. 2.39 and the torque
resulting from the moment of inertia of the solid mass, the boundary conditions can be expressed as

ϕ(0) = 0 and
∂ϕ

∂x

∣∣∣∣
x=L

=
J

G Ip
ω2 ϕ(L) (2.42)

where J is the moment of inertia of the mass attached at the singly clamped, torsional beam’s end.
By solving the boundary conditions, the transcendental equation

cot(λ) =
1

β
λ with β =

Ip ρ L

J
(2.43)

for the eigenvalues is found. The eigenvalues depend on β and thus can not be given for a general case.
With the solutions for λi the eigenfrequencies of free torsional vibrations

ω0,i =
λi
L

√
G

ρ
(2.44)

and the mode shape functions
Φ̃i(ξ) = sinλi ξ (2.45)

can be calculated.
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Device Mode shape C̃i Eigenvalues Eigenfrequencies
Singly clamped beam

0 1 Ũi(ξ) = cosλiξ + coshλiξ

+ C̃i (sinλiξ + sinhλiξ)

C̃i =
sinλi − sinhλi
cosλi − coshλi

C̃1=−0.734 095 513 759

C̃2=−1.018 467 318 759

C̃3=−0.999 224 496 517

λi = acos
−1i

coshλi
+ (i− 1)π

λ1=1.875 104 068 712

λ2=4.694 091 132 974

λ3=7.854 757 438 237

ω0,i =
λ2
i

L2

√
E I

ρADoubly clamped beam

0 1

C̃i =
cosλi − coshλi
sinλi − sinhλi

C̃1=−0.982 502 214 576

C̃2=−1.000 777 311 907

C̃3=−0.999 966 450 125

λi = acos
−1i

coshλi
+ i π

λ1=4.730 040 744 863

λ2=7.853 204 624 096

λ3=10.995 607 838 002

Streched wire

0 1

Ũi(ξ) = sinλi ξ — λi = i π
ω0,i =

i π

L

√
N

ρA

Torsional resonator

0 1

Φ̃i(ξ) = sinλi ξ — λi = acot
λi
β

+ (i− 1)π
ω0,i =

λi
L

√
G

ρThe eigenvalues λ1,λ2 and λ3 are

depicted over β below.
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Table 2.1: Overview of fundamental resonators

38



2.2 Mechanical resonators

2.2.3 Theory of vibrating plates and membranes

Similar to the beams, plates show resonant modes which can be used for fluid sensing applications.
The differential equation obtained from the Kirchhoff plate theory [206] is given by

ρh
∂2u

∂t2
+D

(
∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4

)
= fA(x, y, t) (2.46)

The quantities D and fA denote the bending stiffness D = Eh3/(12(1−ν2)) and the transverse loading
force per unit area, respectively. Poisson’s ratio is denoted by ν. For a rectangular plate the resonance
frequencies are determined by

fi,j =
λ2
i,j

2πa2

√
D

ρh
, (2.47)

where a denotes the length of the plate and λ2
i,j the dimensionless frequency parameter for a given

(i/j)-mode (i.e., i/j denote the number of antinodes in x/y-direction). This parameter is tabulated
for different boundary conditions (free, pinned, clamped) and length to width ratios of the plate e.g.,
in [207]. The implementation of tensile forces into Eq. 2.46 is complex and is shown e.g, in [208].
However, the influence of moderate tensile forces on the resonance frequency can be approximated by

gi,j =

√(
f2
i,j +

NxBi
4ρha2

+
NyBj
4ρhb2

)
. (2.48)

The dimensionless coefficients Bi and Bj are functions of the boundary conditions applied at the length
a and b and can be found in [207] and [209].

For dominant tensile stresses or negligible bending stiffness, the plate theory can be substituted by the
theory of membranes, which is the two-dimensional analogon of the string. The resonance frequency
for a tensile stress N per unit length at the edges is given by

fi,j =
λi,j
2

√(
N

ρhab

)
(2.49)

with [207]

λi,j =

√
i2
b

a
+ j2

a

b
. (2.50)

2.2.4 Frequency tuning

Higher modes

The operation of resonators at several modes allows measuring at different discrete frequencies without
any modifications of the device. The ratio between the resonance frequencies of higher and fundamental
modes depends on the type of resonator. For singly clamped beams for example, the ratio between
second and first resonance frequency is 6.27 which was also approximately achieved by measurements
with tuning forks [MHj2] and U-shaped wires [MHj4].

The ratio of higher and the fundamental resonance frequency is only dependent of the particular
eigenvalues λi for a given type of resonator. For the examples discussed before, we get

ω0,i

ω0,1

∣∣∣∣
beam

=
λ2
i

λ2
1

,
ω0,i

ω0,1

∣∣∣∣
string

= i, and
ω0,i

ω0,1

∣∣∣∣
tors.

=
λi
λ1

(2.51)

for the singly and doubly clamped beam, the stretched string and the torsional resonator, respectively.
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2 Theory and modeling

Scaling

By changing the dimensions of the resonator, e.g. the length of a stretched string or the thickness
of a singly clamped beam, the resonance frequency can be adjusted. In the following, an overview of
the effect of changing the particular resonator’s length L, its diameter R, height h, width w on its
resonance frequencies (of any but the same resonant mode i) is given where applicable. For this, the
particular dimension is normalized to 1.

The resonance frequency of the torsional resonator strongly depends on β, given in Eq. 2.43, which
influences the solution for λ, which can not be expressed analytically. Assuming that the inertia of
the torsional resonator is mainly affected by the mass which is supported by the torsional springs, the
torsional resonator can be considered as a lumped element resonator with a lumped mass supported
by a lumped torsional spring, see also [MHj1] and thus, the first resonance frequency of the torsional
resonator can be expressed as:

ω0 =

√
Gπ

J L
R2. (2.52)

For beams, strings and torsional resonators it follows:

• Change in length

ω0,i(L)

ω0,i(1)

∣∣∣∣
beam

=
1

L2
,

ω0,i(L)

ω0,i(1)

∣∣∣∣
string

=
1

L
,

ω0(L)

ω0(1)

∣∣∣∣
tors.

=
1√
L

(2.53)

• Change in radius for circular cross-sectioned structures

ω0,i(R)

ω0,i(1)

∣∣∣∣
beam

= R,
ω0,i(R)

ω0,i(1)

∣∣∣∣
string

=
1

R
,

ω0(R)

ω0(1)

∣∣∣∣
tors.

= R2 (2.54)

• Change in height for rectangular cross-sectioned structures

ω0,i(h)

ω0,i(1)

∣∣∣∣
beam

= h,
ω0,i(h)

ω0,i(1)

∣∣∣∣
string

=
1√
h

(2.55)

• Change in width for rectangular cross-sectioned structures

ω0,i(w)

ω0,i(1)

∣∣∣∣
beam

= 1,
ω0,i(w)

ω0,i(1)

∣∣∣∣
string

=
1√
w

(2.56)

Miniaturization – total scaling

To estimate the influence of miniaturizing a resonator, it is assumed that every dimension is miniatur-
ized by the same factor. Thus, it follows for the resonance frequency change, modifying each dimension
by the same scaling factor L̃

ω0,i(L̃)

ω0,i(1)

∣∣∣∣∣
beam

=
1

L̃
,

ω0,i(L̃)

ω0,i(1)

∣∣∣∣∣
string

=
1

L̃2
, and

ω0,i(L̃)

ω0,i(1)

∣∣∣∣∣
tors.

=
1

L̃
. (2.57)

Stress variation

For changing the resonance frequency of a doubly clamped structure without changing its geometry,
the tensile stresses in the structure can be changed. The ratio of the resonance frequency of a doubly
clamped beam with dominant normal stresses, Eq. 2.37, and the resonance frequency of a beam with
no normal stresses, Eq. 2.32, is

ω0(N)

ω0,beam
=
L i π

λ2
i

√
N

ρA
. (2.58)
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2.3 Temperature dependence of the resonance frequency

In [210,211] frequencies from 2000 Hz to 2300 Hz, approximately were achieved for a doubly clamped
titanium beam and in [MHj5] resonance frequencies between 820 Hz to 4040 Hz were obtained for a
3 cm long, 100 µm thick tungsten wire by changing the normal stresses in the wire. Tungsten features
relatively high yield stresses of approximately 600 MPa [212] and a relatively high mass density of
19.25 g/cm3 [213, 214]. With high strength steel alloys an even higher frequency range could be
obtained as they feature yield stresses up to 1.6 GPa [215] and a mass density of 7.8 g/cm3 [216].
However, tuning the resonance frequency by stretching the resonator by a factor higher than 10 is
hardly possible with common materials and aspect ratios applicable for reasonable sensor designs.

2.3 Temperature dependence of the resonance frequency

The equations for the resonance frequency of singly and doubly clamped beams (with dominant bending
stiffness) are identical, c.f., Eq. 2.32. The theory of the resonance frequency’s temperature dependence
discussed in Secs.2.3.1 – 2.3.3 is only valid if free elongation capability is guaranteed. This however,
is usually only the case for singly but not for doubly clamped beams. For the latter, the theory of the
resonance frequency’s temperature dependence of strings discussed in Sec. 2.3.4 can be applied.

2.3.1 Singly clamped beams

The temperature dependent angular eigenfrequency of mode i can be given by

ω0,i(T ) = Ci
D(T )

L(T )2

√
E(T )

ρ(T )
(2.59)

where Ci is a factor of the i-th resonant mode and D can either be the radius R of the circular beam or
the thickness h of a rectangular beam. For small variances, the change of the resonance frequency ∆ω0,i

affected by the thermally induced changes ∆D, ∆L, ∆E and ∆ρ can be approximatively calculated
using the relation

∆ω0,i

ω0,i
≈ ∆E

2E
+

∆D

D
− 2

∆L

L
− ∆ρ

2ρ
. (2.60)

Assuming the applicability of linear thermal expansion ∆L ≈ αL∆T it follows

∆D

D
=

∆L

L
≈ α∆T (2.61)

and with ρ = m/V and ∆V/V = 3α∆T it follows for the relative change of mass density

∆ρ

ρ
≈ −3α∆T (2.62)

Thus, the equation for the thermally induced relative change of the i-th resonance frequency reads

∆ω0,i

ω0,i
≈ ∆E

2E
+

1

2
α∆T. (2.63)

2.3.2 Young’s modulus as a function of the melting point

In [217], the Young’s modulus temperature dependency is given by

E(T ) ≈ E0(1− κ T

TM
), (2.64)

where E0 is the Young’s modulus at T = 0 K and TM is the melting point. For metals κ = 0.5 whereas
it is κ = 0.3 for crystals. From this relation it follows for the relative change of the Young’s modulus
with respect to the change of temperature

∆E

E

∣∣∣∣
T

=
∆T

(T − TM/κ)
(2.65)
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2 Theory and modeling

which is substituted in Eq. 2.63 and thus, it follows that

∆ω0,i

ω0,i
≈ 1

2

(
1

T − TM/κ
+ α

)
∆T (2.66)

For plain carbon steel (AISI-SAE 1020) with ϑM = 1515 ◦C, α = 10.8 · 10−6 [154] and tungsten
ϑM = 3420 ◦C, α = 4.2 · 10−6 [214] it follows

∆f

fr

∣∣∣∣
steel

≈ −147 · 10−6∆T and
∆f

fr

∣∣∣∣
tungsten

≈ −68 · 10−6∆T. (2.67)

2.3.3 Correlation of the thermal expansion and melting point

As a rule of thumb, the linear thermal expansion coefficient α is smaller, the higher the melting point
TM, which seems to be valid for metals with a melting point higher than 1500 ◦C, see Fig. 2.5. There, α
is plotted versus the melting point ϑM in ◦C for pure metals and for alloys given in [154] with melting
points higher than 500 ◦C. The regression curve depicted there reads

α∗(TM) =
0.014

233.756 K + TM
. (2.68)

Substituting this relation in Eq. 2.66 yields an equation giving a rough estimation of the resonance
frequency’s dependence to temperature for metals at 25 ◦C:

∆ω0,i

ω0,i
≈ 1

2

(
1

298.15 K− 2TM
+

0.014

233.756 K + TM

)
∆T. (2.69)

Using the above values for melting points it follows for plain carbon steel and tungsten

∆f

fr

∣∣∣∣
steel

≈ −149 · 10−6∆T and
∆f

fr

∣∣∣∣
tungsten

≈ −69 · 10−6∆T (2.70)

which is in relatively good accordance with measured values obtained for a steel tuning fork (∆fr/∆T =
−118 ·10−6) [MHj2] and a tungsten U-shaped wire (∆fr/∆T = −60 ·10−6) [MHj4]. For both materials,
the effect of the the change of the Young’s modulus on the thermally induced change of the resonance
frequency is approximately 40 times higher than the effect of thermal expansion.

Material data bases for metals can be found in [213,218–220]. In [221] the Young’s modulus of stretched
tungsten wires at high temperatures is studied.
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Figure 2.5: Correlation of linear thermal expansion coefficicent α and melting point TM/K. Here, the thermal expansion
coefficients are plotted over ϑM which is the melting point on the Celsius scale. The data for pure metals and alloys was
taken from [154].
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2.4 Vibrating structures described by second order systems

,

, ResonatorE

E Support

Figure 2.6: A doubly clamped beam with thermal expansion coefficient α1 and Young’s modulus E1, being clamped in
an other material with α2 and E2. Equal elongations as well as balanced forces resulting from the inner thermal tensile
stresses σi are assumed. Ai are the materials effective cross-sections. [MHc19]

2.3.4 Strings

In this section the detuning of doubly clamped resonators due to the change of the ambient temperature
is explained. For this, a prismatic beam being clamped with a different material, see Fig. 2.6, is
considered. Both materials are assumed to be homogeneous and isotropic. The resonance frequency
of a doubly clamped beam (assuming predominant normal stresses σ) is, c.f. Eq. 2.37

ω0,i =
i π

L

√
σ

ρ
. (2.71)

The main effect of thermal detuning results from the change of normal stresses in the vibrating structure
rather than from it’s elongation. Thus, in this approach only thermally induced changes of tensile
stresses are considered. The strain in one of both materials (denoted by i) is expressed as [222]

εi =
σi
Ei

+ αi ∆T. (2.72)

Under the assumption, that both materials are equally elongated and considering balanced forces i.e.
σ1A1 = −σ2A2 (σ is the normal stress and A the effective cross-section), the thermally induced tensile
stress within the resonator is:

σ1 =
α2 − α1

1
E1

+ 1
E2

A1
A2

∆T. (2.73)

From this simple approach it becomes clear that similar temperature coefficients are favorable to effect
low cross-sensitivity to temperature. The resonance frequency’s change due to temperature is geometry
dependent an thus, can not be given in a general form. However, in general, doubly clamped structures
have a significantly higher dependence of their resonance frequency to temperature than singly clamped
structures.

2.4 Vibrating structures described by second order systems

The time-dependent deflection u(x, t) at axial position x at time t of a one-dimensional, vibrating
structure can be composed by superposition of eigenmodes ϕi(x) and time functions qi(t), i.e., [201]

u(x, t) =
∞∑

i=0

ϕi(x)qi(t), (2.74)

where the index i denotes the particular vibrational mode. For simplicity in the following, one-
dimensional models of structures are considered.

The deflection over x and t can also be composed by an infinite sum of solutions of second order
systems with effective mass, stiffness, damping and excitation force mi, ki, ci and Fi, respectively. Due
to orthogonality of the eigenmodes, individual second order systems for each mode can be set up [200]:

miq̈i(t) + ciq̇i(t) + kiqi(t) = Fi(t). (2.75)

The effective (lumped) parameters are derived by equivalence of energy expressions of kinetic and
potential energy and the Rayleigh dissipation function. The approach is shown for beams of density
ρ(x), cross-section A(x) and length L.
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2 Theory and modeling

2.4.1 Effective mass mi

Substituting u(x, t), Eq. 2.74, into the expression for the instantaneous kinetic energy [201]

Wkin(t) =
1

2

L∫

0

u̇2(x, t)ρ(x)A(x)dx, (2.76)

where (˙) denotes the derivative of a variable in respect to t, yields

Wkin(t) =
1

2

L∫

0

( ∞∑

i=0

ϕi(x)q̇i(t)

)2

ρ(x)A(x)dx. (2.77)

For orthogonal eigenmodes with

L∫

0

ϕi(x)ϕj(x)ρ(x)A(x)dx = 0 for i 6= j (2.78)

it follows

Wkin(t) =
1

2

∞∑

i=0

L∫

0

ϕ2
i (x)q̇2

i (t)ρ(x)A(x)dx. (2.79)

Equaling this equation with the expression of the kinetic Energy using a lumped mass mi

Wkin(t) =
1

2

∞∑

i=0

miq̇
2
i (t) (2.80)

yields for the lumped mass of mode i:

mi =

L∫

0

ϕ2
i (x)ρ(x)A(x)dx. (2.81)

2.4.2 Effective stiffness ki

The potential energy of the beam with bending stiffness EI is

Wpot =
1

2

L∫

0

(u′′(x, t))2EI(x)dx, (2.82)

=
1

2

L∫

0

(
∞∑

i=0

ϕ′′i (x)qi(t))
2EI(x)dx, (2.83)

(2.84)

and using again the the orthogonality condition, Eq. 2.78, it follows

Wpot =
1

2

∞∑

i=0

L∫

0

ϕ′′i (x)2q2
i (t)EI(x)dx (2.85)

where (′′) denotes a second order derivative of a variable in respect to x. The potential energy can also
be expressed using a lumped stiffness ki

Wpot =
1

2

∞∑

i=0

kiqi(t)
2 (2.86)
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2.4 Vibrating structures described by second order systems

and the effective stiffness therefore can be expressed as

ki =

L∫

0

ϕ′′i (x)2EI(x)dx. (2.87)

2.4.3 Effective damping ci

The one-dimensional Rayleigh dissipation function [223]

R =
1

2

∞∑

i=0

ciq̇i(t)
2 (2.88)

where ci is a lumped damping parameter, describes the proportionality between velocity and frictional
forces. It can also be expressed as

R =
1

2

L∫

0

(u̇(x, t))2c′0dx (2.89)

where c′0 is a damping parameter per unit length. Substituting u(x, t), Eq. 2.74, into the latter yields

R =
1

2

∞∑

i=0

L∫

0

ϕi(x)2q̇i(t)
2c′0dx (2.90)

and thus it follows for the relation between ci and c′0

ci =

L∫

0

ϕi(x)2c′0dx. (2.91)

2.4.4 Lumped force Fex,i

An external force distribution f(x, t) exerts the work

Wex =

L∫

0

u(x, t)f(x, t)dx =

∞∑

i=0

L∫

0

ϕi(x)qi(t)f(x, t)dx. (2.92)

Using a lumped force Fex it follows

Wex =
∞∑

i=0

Fex,i(t)qi(t) (2.93)

and thus the relation between lumped and distributed forces reads

Fex,i(t) =

L∫

0

ϕi(x)f(x, t)dx. (2.94)

2.4.5 Lumped element oscillator

Introducing an effective deflection ui(t) = qi(t) and using the expressions for the effective, i.e. lumped
parameters mi, ci, ki a second order equation of motion can be stated for each vibrational mode i
by balancing occurring forces. In the following single vibrational modes will be discussed and thus,
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2 Theory and modeling

for simplicity, the subscript i is not used anymore. The second order equation of motion for a linear,
mechanical lumped element resonator as depicted in Fig. 2.7 reads

mü(t) + c u̇(t) + k u(t) = Fex(t). (2.95)

For a torsional resonator, the according equation can be expressed as

J ϕ̈(t) + c∗ ϕ̇(t) + k∗ ϕ(t) = Mex(t). (2.96)

Equivalence to an electrical series resonator

Resonant sensors mostly are operated as electromechanical transducers with an electrical input and
an electrical output. Therefore, modeling the device as a purely electrical device might become ad-
vantageous in some cases. The most prominent example for such electromechanical transducers are
quartz-crystal resonators for which usually, the mechanical oscillation is modeled by an electrical,
RLC series resonator, see Fig. 2.7, the so-called motional branch in the Butterworth Van-Dyke circuit,
c.f. [97]. Using the capacitors voltage vC as state variable, the motional branch (being excited by the
voltage vex) can be described by

Lv̈C(t) +Rv̇C(t) +
1

C
vC(t) =

vex(t)

C
. (2.97)

Here L, R and C are the series resonator’s inductance, resistance and capacity, respectively. For
electrodynamic transducers parallel resonant circuit are also commonly used [MHbcc1].

Eqs. 2.95, 2.96 and 2.97 are mathematically identical, i.e. an ordinary second order differential equation
with constant coefficients. The equivalence of used coefficients is given in the table in Fig. 2.7. For
efficiency and better readability, in the following, only the mechanical case will be discussed. The
mechanical results can be related to the electrical case when necessary.

Sinusoidal excitation

Assuming a sinusoidal excitation force Fex(t) = F̂ex sin (ω t+ ϕex, 0) in Eq. 2.95 and an underdamped
system, i.e.,

c

2m
<

√
k

m
(2.98)

yields for the deflection

u(t) = Cu e
−δt cos(ω0δ t+ ϕ0) + û(ω) sin(ω t+ ϕex, 0 + ϕu(ω)). (2.99)

The first term of this equation is the solution of the homogeneous differential equation and thus de-
scribes transient (free) vibrations. The second term considers steady state (forced) vibrations resulting
from the sinusoidal excitation. In this equation

δ =
c

2m
(2.100)

Electrical Equivalence tableMechanical

Figure 2.7: Equivalence of mechanical and electrical lumped element resonators.
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2.4 Vibrating structures described by second order systems

is the damping constant which can also be related to the time constant τ = 1/δ and furthermore, in
Eq. 2.99

ω0δ =
√
ω2

0 − δ2 where ω0 =

√
k

m
(2.101)

is the angular eigenfrequency of a damped, free oscillation. Cu and ϕ0 are constants and have to be
determined through the initial conditions considering initial deflection u(t = 0) = u0 and velocity
du(t)
dt

∣∣∣
t=0

= v0. û(ω) is the amplitude of the steady state oscillation and ϕu(ω) is the phase angle
between excitation force and steady state deflection of the mechanical oscillation. Both quantities can
be obtained by evaluating absolute value and phase of the steady state deflection u(ω) in the frequency
domain. Using complex notation and assuming a time dependence ej ω t, the transfer function G(ω)
relating the effective deflection to excitation force reads

G(ω) =
u(ω)

F ex(ω)
=

1/m

ω2
0 − ω2 + j 2ω δ

. (2.102)

Most electrical transducers allow the determination of quantities corresponding to the oscillation’s
velocity, e.g., the vibration-induced change of impedance of piezoelectric devices or the motion-induced
voltage in case of inductively read-out mechanisms. The transfer function H(ω) relating steady state
velocity of forced vibrations to excitation forces can be given as

H(ω) =
v(ω)

F ex(ω)
=

1/c

1 + jω0
2 δ

(
ω
ω0
− ω0

ω

) =
1

c+ j
(
mω − k

ω

) . (2.103)

In Sec. 2.5.3 it will be discussed, that in general, evaluating the resonator’s velocity (or velocity related
quantities) is preferred over deflection (or deflection related quantities).

Eigenfrequency, resonance frequency and quality factor

Defining the angular eigenfrequency ω0,x as the angular frequency of free oscillation of a quantity x
(in this case u or v) and the angular resonance frequency ωr,x as the angular frequency for which
the amplitude of x for forced oscillations become largest, it follows for the angular eigenfrequencies of
deflection as well as of velocity oscillation of a damped oscillator

ω0,u = ω0,v = ω0δ =
√
ω2

0 − δ2 (2.104)

and for the resonance frequencies

ωr,u =
√
ω2

0 − 2 δ2 and ωr,v = ω0. (2.105)

For weakly damped oscillations ωr,u ≈ ω0 is often assumed. This assumption yields a relative deviation
lower than 1% for damping ratios δ/ω0 < 0.1 i.e., quality factors Q > 5.

Examples for publications discussing the definition of the quality factor and its history are given, e.g.
in [224–226]. The definition for the quality factor used in this thesis is [227,228]

Q := 2π
Ws

Wd/Tp
= ω0

Ws

Pd
(2.106)

where Ws, Wd and Pd are the energy stored in the vibration, the dissipative energy per cycle Tp and
the average dissipated power. For the lumped element oscillator Ws and Pd can be expressed as

Ws(ω) = k
û2(ω)

2
and Pd(ω) = c

v̂2(ω)

2
(2.107)

and thus, it follows for the quality factor of a second order, lumped element resonator as it is depicted
in Fig. 2.7

Q =

√
km

c
=
ω0

2 δ
. (2.108)
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2 Theory and modeling

With the definitions of the damping constant δ, Eq. 2.100, the eigenfrequency ω0, Eq. 2.101, and the
quality factor Q, Eq. 2.108, and considering Eq. 2.98 , the requirement for an oscillator, can also be
expressed as

δ < ω0 ⇐⇒ Q >
1

2
. (2.109)

Substituting the expression for the quality factor from Eq. 2.108 into Eq. 2.103, the transfer function
of a second order resonator of a velocity related quantity X (e.g., the admittance of a series resonator
or the motion-induced voltage in an inductively read-out resonator) can be expressed as

X2O(ω) =
Xmax

1 + jQ
(
ω
ω0
− ω0

ω

) (2.110)

where Xmax is the maximum amplitude of the transfer function.

2.5 Identification of second order systems

2.5.1 Extraction of the second order system

Usually, the recorded frequency response (containing a characteristic resonance) of an electrically
driven and read-out resonator consists of the resonator’s (intrinsic) spectrum X2O and an additional
background spectrum XBG. The latter comprises additional signals resulting from electrical cross-talk,
impedance related offsets, phase shifts and noise. I.e., the most general form of the recordable signal
is:

X = X2O +XBG (2.111)

and thus, in most cases, the resonance spectrum can not be recorded directly but can be determined
by subtracting the (identified) background spectrum from the measured frequency response. Offset
signals and cross-talk are explained hereafter for two basic cases of Lorentz force driven resonators. A
more detailed description will be given in Sec. 3.1. The algorithm presented in [229] separates X2O and
XBG by fitting a polynomial function into the recorded frequency response X for frequencies where
the signals resulting from the mechanical oscillations are negligible.

Offset signals

Lorentz force excitation proved to be a reliable method for resonant sensors’ actuation and is mainly
used in this work. A resonator consisting of (or carrying) an electrical conductor, is excited by means of
Lorentz forces on AC currents in this conductor, placed in an external magnetic field, see Fig. 2.8. The
associated movement of the conductor in the magnetic field, in turn, yields a motion-induced voltage
on the latter, representing the oscillator’s velocity. The measured voltage on the resonating conductor
consists of this motion-induced voltage and an additional voltage due to the excitation current and the
conductor’s impedance. Examples for sensors using this method are described amongst others in, [104],
[MHj5], and [MHc13].

Characteristic resonant frequency responses are depicted in Fig. 2.8. There, ω0, c.f. Eq. 2.101 is
marked by a circle and the bandwidth using δ, Eq. 2.100 [ω0 − δ, ω0 + δ] corresponding to the −3 dB
bandwidth is highlighted by the bold line.
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Figure 2.8: Examples for signals of second order resonators being subjected to offset signals and cross-talk. a) Lorentz-Force driven resonator using a single conductor for both,
excitation and read-out: Vout: measured voltage, Vmax: maximum amplitude of the motion-induced voltage Vm. Voffs: offset voltage Rc, Lc: conductor’s resistance and inductance,
Iex: excitation current. b) Lorentz-Force driven resonator using two separate conductors for excitation and read-out and a Quartz Crystal Microbalance, which is usually read-out
performing an impedance (or admittance Y ) spectrum analysis. Vct: cross-talk voltage, Yp: parallel admittance. M is the mutual inductance, describing the electric cross-talk

between excitation and read-out coil. The relation for angular resonance frequency and quality factor for the QCM are: ω0 = 1√
LC

and Q = 1
R

√
L
C
.
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2 Theory and modeling

Cross-talk – Coupling

A further possibility to evaluate a Lorentz-force driven resonator’s frequency response is to use a
second conductor following the movement of the resonator, see e.g. [MHj6] and [MHj5]. In this
case one conductor carrying the AC excitation current Iex is used for excitation and a geometrically
separated, second conductor is used for read-out, by measuring the voltage which is induced due to its
motion in an external magnetic field. Assuming electrical currents to be zero in the read-out circuit,
which is valid if the input resistance of the voltmeter is high, a potential impedance related voltage
drop on this conductor is negligible. However, cross-talk has to be considered, if the time variant
magnetic field induced by the excitation current in the excitation circuit significantly couples into the
read-out circuitry. This coupling can be described by using mutual inductances M . For this type of
excitation, i.e., using two separate conductors, the equation for the measurable voltage corresponds
to the equation for the measurable admittance Y of a QCM, c.f. [97], i.e. for both cases the shape of
measured voltage or measured admittance spectrum is the same.

2.5.2 Evaluation of fr and Q from free oscillations

In the following it is assumed that any signals resulting from the background signals can be ideally
subtracted and thus only signal components related to the resonators movement remain. The transient
term in Eq. 2.99 describes free oscillations of a resonator. The resonator can be excited to free vibration
either by a short force impulse or simply switching off an harmonically excitation force whose excitation
frequency is preferentially close to the resonance frequency. A characteristic transient response for the
deflection

u(t)free = Cu e
−δt cos(ω0δ t+ ϕ0) (2.112)

is depicted in Fig. 2.9 for an initial normalized deflection u(0) = 1 and for the velocity of the oscillation
with an initial velocity v(0) = 1, respectively. The equation for the velocity of free vibration is of the
same kind as Eq. 2.112, however the factors Cu and ϕ0 become Cv and ϕ0,v = ϕ0 + π/2. From both
curves, the parameters ω0δ and δ can be determined in an equal way by evaluating the time T between
two zeros and fitting the envelope function of the free vibration, see Fig. 2.9. δ can also be determined
using

δ =
1

T
ln

x̂i
x̂i+1

(2.113)

where x stands either for u or v in this case. With the knowledge of ω0δ and δ both, ω0, and Q can be
determined using Eqs. 2.100, 2.101 and 2.108.

The method has been applied for resonator characterization applications e.g. in [105, 230, 231] and
is beneficial for high Q resonators, as the entire settling is only recorded once (for one measurement
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Figure 2.9: Normalized, free vibration for deflection and velocity
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2.5 Identification of second order systems

cycle). This keeps the required measurement time low compared to recording the frequency response
upon forced vibration for which it is necessary to wait for the entire settling time (i.e. at least 5 τ ,
where τ is the time constant in seconds) for every single frequency, see also Sec. 2.6. However, as
for liquid loaded resonators, the quality factor is usually low, the settling time may become critically
short for reliably using this method. To give an example: In [88] and [190] liquid loaded resonators
with operational frequencies in the order of 10 kHz yielding quality factors down to 1 and lower were
reported. For such resonators, the settling time 5 τ is approximately 150 µs. On the other side, in
[MHj2] with a rectangular tuning fork quality factors in liquids Q = [206.2 . . . 498.99] at resonance
frequencies fr = [409.07 . . . 409.52] Hz were obtained and consequently, the settling time for these
devices are 5 τ = [0.8 . . . 1.94] s. For such devices, recording the transient response, e.g. ring up or ring
down, might be a considerable alternative.

2.5.3 Evaluation of fr and Q from the frequency response obtained by spectrum
analysis of forced oscillations

The resonant frequency responses of the steady oscillations of displacement and velocity, c.f. Eqs. 2.102
and 2.103, are depicted in Fig. 2.10 for amplitude, phase and locus-plot.

Resonance circle

The velocity’s locus plot describes a circle in the complex plane, a fact which can be easily proven by
splitting the frequency dependent expression for v(ω) up into its real and imaginary part

v(ω) =
v̂max

1 +Q2
(
ω
ω0
− ω0

ω

)2 − j
v̂maxQ

(
ω
ω0
− ω0

ω

)

1 +Q2
(
ω
ω0
− ω0

ω

)2 (2.114)

and comparing it with the parametric expression of a circle [232]

x = xM + r
1− ξ2

1 + ξ2
and y = yM + r

2ξ

1 + ξ2
(2.115)

where xM and yM are the circle’s center point in the x, y-plane and ξ ∈ [−∞,∞] is a parameter.
Comparison of both equations shows that the velocity’s locus plot describes a circle in the complex
plane which is symmetric about the real axis, has its center point at ( v̂max

2 , 0) and a radius of v̂max
2 , i.e.

r =
v̂max

2
, ξ = Q

(
ω

ω0
− ω0

ω

)
, xM =

v̂max

2
, and yM = 0. (2.116)

These circumstances are depicted in Fig. 2.10(b). The circular shape is independent of the damping.
Damping only changes the circle’s diameter (if the excitation force is kept constant). The locus plot
for the deflection however, does not describe the shape of a circle as it can be clearly observed in
Fig. 2.10(a).

Evaluation of characteristic points

In both plots of Fig. 2.10 the bold lines represent the frequency response for a span of angular
frequencies of [ω0 − δ, ω0 + δ]. Furthermore, characteristic points from which ωr,u, ω0 and δ can
be evaluated, are indicated and their according relations are given for the particular case. For the
frequency response of the deflection, see Fig. 2.10(a), ωr,u and ω0 are the angular frequencies for which
the amplitude gets largest and the phase angle’s value is −π/2, respectively. The frequency response
of the oscillator’s velocity offers four possibilities for evaluating ω0 and δ, see Fig. 2.10(b). ω0 is
the angular frequency where the amplitude has its maximum and for which the phase gets zero. By
evaluating the angular frequencies ω±π/4 for which the phase values are ±π/4, δ is obtained by solving
the equation ϕv(ω±π/4) = ±π/4, (i.e, the imaginary term in the denominator of Eq. 2.103 has to
become ∓1). Similar as for the example of the evaluation of free oscillations of the deflection, with
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Figure 2.10: Frequency responses for deflection and velocity

the knowledge of at least two of the aforementioned parameters, the parameters ω0 and Q can be
calculated.

The -3 dB method

This method is called “−3 dB method” because angular frequencies ω+ and ω− satisfying x̂(ω±) =
x̂max/

√
2 are determined. In other words, for this method, frequencies ω± are searched for which the

power of the oscillation is the half of its maximum value i.e., −3 dB.

• Resonance frequency

In a first step, the peak value x̂max and its associated angular frequency ωx̂max are determined.
It is then assumed that ωx̂max ≈ ω0. This assumption is exact in case of the velocity but yields
non negligible deviations in case of the the deflection for small quality factors, see Fig. 2.11(a).

• Bandwidth

With the determined peak values x̂max, frequencies ω+ and ω− satisfying x̂(ω±) = x̂max/
√

2 are
evaluated. The bandwidth is then calculated using

∆ω3dB = ω+ − ω−, where ∆ω3dB,v = 2 δ, and ∆ω3dB,u ≈ 2 δ. (2.117)

In Fig. 2.10 it is clearly observable, that for both cases, analysis of the deflection or velocity
spectra, the evaluated frequencies ω− 6= ω0− δ and ω+ 6= ω0 + δ. However, in case of the velocity
the difference between both frequencies is always ω+,v − ω−,v = 2 δ, independent of Q, whereas
for the case of evaluated deflection spectrum, the difference of both frequencies ω+,u−ω−,u ≈ 2 δ
is only an approximation.

• Quality factor

With the knowledge of x̂max, ω+ and ω− is calculated using

Q ≈ Q3dB =
ωx̂max

ω+ − ω−
. (2.118)

As the determination of ω0 by evaluating ûmax and ω+,v−ω−,v = 2 δ the −3 dB method is exact in
case of evaluating the velocity’s amplitude (independent of the damping) but yields non-negligible
deviations for low Q resonances in case of the deflection, see Fig. 2.11(a). As a rule of thumb,
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Figure 2.11: Restriction of the -3 dB method in case of recorded deflection: a) Relative deviations of resonance frequency
and quality factor determined with the -3 dB method. b) Limits of the - 3 dB Method for recorded deflection: for
Q < 1.31, the solution for ω− gets complex valued and for Q < 0.71 the resonance peak vanishes completely.

for the accuracy of the −3 dB method, quality factors Q < 20 yield relative deviations from the
exact values of Q and ω0 higher than 10−3 for the case of evaluating the deflection amplitude.

• Limits

Two characteristic limiting cases using the deflection spectrum have to be furthermore mentioned,
c.f., Fig. 2.11(b):

1. for Q < 1√
2−
√

2
≈ 1.31 the solution for ω− becomes complex valued, and thus the bandwidth

can not be estimated anymore. Such a case, for which ω− gets complex, is also depicted in
Fig. 2.10(a) (Q = 1.25).

2. for Q < 1√
2
≈ 0.71 the frequency response for the deflection does not show a peak any more

and thus an approximate solution of ω0 is not possible anymore.

Linear least-square fit

With this method, ω0 and Q are determined by performing twice a linear least-square fit with the
complex data in the form of Eq. 2.103 and Eq. 2.110, respectively, which describe the shape of a circle
with radius r and center point on the real axis at r. For better readability, the notation

x = <(X) and y = =(X) (2.119)
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is used in relation to a circle in the x, y-plane. For a given point Xi = xi + jyi on the circle satisfying
(xi − ri)2 + y2

i = r2
i the radius ri can be calculated by

ri =
x2
i + y2

i

2xi
. (2.120)

In case of additive complex measurement noise εi = εR,i + jεI,i, the individual estimates of the radii
vary. It is therefore necessary to implement an averaging procedure taking into account all data points
in X to achieve lower uncertainty of the estimated radius r∗. Simple averaging of individual estimates
of r∗i yields significant deviations from the exact value of r, due to large relative estimation errors at
small values of xi. A much better approach is to use a least squares method. For this, the problem
can be rearranged into a linear equation system given by

b = A · x with b = [x2
i + y2

i ], A = [2xi] and x = r. (2.121)

The equation system is generally overdetermined and an estimate in the least squares sense can be
obtained by [166]

r∗ = x∗ =
(
AT ·A

)−1 ·AT · b . (2.122)

However, the result is not unbiased and yields slightly too high values for r for non-zero measurement
noise. The bias is approximately proportional to the noise variance to radius ratio, and depends on
the particular characteristics of the noise. A least squares fitting procedure of circles and ellipses
overcoming this problem can be found in [233].

With the knowledge of the circle’s radius r, the values of the parameter ξi are calculated from the
parametric equation of the circle

x =
2 r

1 + ξ2
i

and y = − 2 r ξi
1 + ξ2

i

(2.123)

where
ξi = Q

(
ωi
ω0
− ω0

ωi

)
. (2.124)

Using the obtained values for ξi and the associated angular frequencies ωi, ω0 and Q can be determined
by calculating the least-square solution of the system

ξi =

[
ωi, − 1

ωi

]
·



Q

ω0

Qω0


 (2.125)

and subsequent determination of ω0 and Q from the least-square solution for x = [ Qω0
Qω0]T. The

method of a circle fit described here is not unbiased and thus yields errors for signals subjected to
noise. In this case, more precise methods should be used see e.g., [229,233,234].

Non-linear, iterative least-square fit (Gauss-Newton)

A further possibility for determining a second order resonator’s ω0 and Q is the analysis of the phase
spectrum which is fit with non-linear least square algorithms. A common non-linear, iterative least
square method is the Gauss-Newton method, which is briefly described here. Starting with the knowl-
edge of the phase of the measured data ϕM and initial values for ω0 and Q (which have been determined
e.g. with the -3 dB method) the deviation vector

εi = ϕi(ω)−ϕM (2.126)

is calculated. Here, ϕi(ω) is the phase vector of the second order function Eq. 2.103 evaluated for the
measured angular frequency vector ω and reads

ϕi(ω) = − arctan

(
Qi

(
ω

ω0,i
− ω0,i

ω

))
, (2.127)
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where ω0,i and Qi are the iteratively determined values for ω0 and Q. With the Jacobian

Ji =

[
∂ϕi
∂ω0,i

∂ϕi
∂Qi

]
(2.128)

the next values for ω0 and Q are calculated using the expression for the Gauss-Newton method [166]
[
ω0,i+1

Qi+1

]
=

[
ω0,i

Qi

]
−
(
JT
i · Ji

)−1 · JT
i · εi. (2.129)

2.6 Recording the frequency response

Figure 2.12 shows the basic principle of recording a resonator’s frequency response. A harmonic exci-
tation signal forces the resonator to harmonical oscillations at discrete angular frequencies ωi. After
switching to the next frequency, a time span of at least 5 τ has to be waited until the transient part
vanishes and the signal reaches its steady state oscillation. The presence of two frequencies ω0δ and
ωi yields ring-up, ring-down and beat phenomenons, respectively, which nicely can be observed in
Fig. 2.12. Although only discrete frequencies are excited, in the following the term frequency sweep
will be use to express the recording of the frequency response. With the knowledge of steady state
amplitudes and phase delay between excitation and read-out signal at the recorded frequencies, the
Bode and Nyquist plot, respectively can be determined. Unlike depicted in Fig. 2.12 the frequency
sweep preferentially should be performed close to the resonance frequency, to allow accurately inves-
tigating the resonance characteristics. Simply speaking, the frequencies should be selected such, that
the measured points yield a sufficient distribution on the resonance circle in the Nyquist plot.

2.6.1 Investigated bandwidth

Circle fit algorithms as described in Sec. 2.5.3 are well established methods for determining ω0 and
Q of a second order resonator. As already mentioned above, under real conditions in general, the
data points are subjected to additional background signals and noise. For such signals, the accuracy
of the fitted parameters ω0 and Q is dependent on the recorded bandwidth and the distribution of
the frequency points as it will be discussed below. In this section, it is discussed in which frequency
range ωs < ω0 < ωe the frequency response has to be recorded to obtain best fitting results. The
optimum starting and ending frequencies ωs and ωe respectively, are dependent on ω0 and Q. For
real measurements, after each determination of ω0 and Q, new values for ωs and ωe are calculated for
determining the optimum measured bandwidth.

Bode plot

Nyquist plot

t

Read-out signal

Excitation signal

Figure 2.12: Recoding of the frequency response. Left: The resonator is excited to harmonical oscillations at several
discrete frequencies. After each frequency step, a time span of at least 5τ is waited before measuring amplitude and
phase, with which the Bode as well as the Nyquist plot can be plotted.

55



2 Theory and modeling

Frequency vs. angular symmetry

For testing implemented fitting algorithms based on the principles described in Sec. 2.5.3, data points
of a second order resonator in the complex plane using Eq. 2.103 with added noise were generated
for different noise levels. The intention of this study was to investigate how the measured points on
the Nyquist circle have to be distributed and within which bandwidth the resonance curve should
be recorded. For the latter, two quantities have been defined, expressing the bandwidth around the
resonance frequency, see also Fig. 2.13:

1. Covering ratio rc

The covering ratio rc is a purely geometrical parameter and expresses the ratio of the resonant
circle which is covered by the investigated bandwidth. For this, a geometrical symmetry about
ω0 is assumed.

2. Number of bandwidths Nδ

As it was already explained in Sec. 2.5.3 for the −3 dB method, the term “the band width”
expresses the frequency range [ω0 − δ, ω0 + δ]. In relation to that, the parameters

Nδ,l =
ω0 − ωs

δ
and Nδ,l =

ωe − ω0

δ
(2.130)

express the number of δ gone left or right about the resonance frequency for defining the starting
and ending frequencies ωs and ωe.

The fitting algorithms were tested for several angular covering ratios rc of the circle with angular
symmetry about ϕ(ω0) = 0, see Fig. 2.13. This investigation showed that best fitting results are
obtained for rc = 0.2 . . . 0.7. Independent of this study, for the number of bandwidths it was found

0.2

0.5

0.5

1

1 1

1

2

2 2

2

3

3 3

3

4

4 4 4

5

5 5
5

0.4
0.8

0.8 0.8

0.6 0.6

0.4 0.4
0.2 0.2

0.9 0.9

0.6

0.2

0.4
0.8

0.6

a) Angular symmetry

b) Frequency symmetry

0.98 1 1.02

0

1

2

10-1 100 10 1 102

2

3

4

Q

Figure 2.13: Illustration of the covering ratio rc, the number of bandwidth parameters Nδ,l and Nδ,r as well as the
difference between frequency points using angular or frequency symmetry, respectively. The figure on the bottom right
shows the relation between Nδ,l and Nδ,r for a covering ratio of rc = 0.7. The indices ‘l’ and ‘r’ in Nδ,l and Nδ,r stand
for ‘left’ and ‘right’, respectively.
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0.5 1 1.5

2

0 1 2

Figure 2.14: Shifting of the investigated bandwidth for low Q. For Q < 10, the bandwidth [ω0 − Nδ,l, ω0 + Nδ,r] shifts
remarkably counterclockwise on the resonance circle. Thus, the starting frequency ωs = ω0−Nδ,l might become negative.
Caused by this shift, the ending frequency ωe might get high when claiming a certain covering ratio rc.

that best results are obtained for frequency symmetric bandwidths ω0 ± (2 . . . 5)δ, see Fig. 2.13. At
this point, the investigated bandwidth is determined to be 0.7 rc and ω0 ± 2δ, respectively which is
the intersection of both findings.

For high Q the difference between both methods for determining ωs and ωe is negligible, however for
very low Q (i.e. Q < 5) some minor possible problematic cases, see also Fig. 2.14 have to be prohibited:

1. Calculating the starting frequency ωs using the frequency symmetric case i.e., ωs = ω0

(
1− Nδ,l

2Q

)
,

the calculated ωs gets negative for Q < Nδ,l/2.

2. When claiming rc = 0.7 for calculating the ending frequency ωe, the latter can get very high
for low Q. This finding can be explained as for Q < 10 the investigated frequency symmetric
bandwidth shifts remarkably counterclockwise on the resonance circle, see Fig. 2.14.

Equidistant vs. equiangular frequency steps

Once ωs and ωe are appropriately determined, the frequency points can be distributed in constant
frequency steps or in equiangular frequency steps on the circle. It was found in a pilot study that the
latter yields slightly better results.

2.6.2 Frequency sweep speed and prevention from non-linear deflections

When the resonant frequency response is recorded by measuring a quantity representing the resonator’s
deflection or velocity at discrete frequencies, it is necessary to wait at least 5 τ after each frequency
step to ensure that the eigen-oscillation sufficiently decayed. This eigen-oscillation is excited at every
frequency step resulting in an oscillation consisting of the eigenfrequency ω0δ and the frequency of forced
oscillation ωex, c.f. Eq. 2.99. For ωex close to ω0 beat becomes significant resulting in an apparent
oscillation with (beat) frequency |ω0−ωex| [235]. Fig. 2.15(a) shows two examples for recorded frequency
responses with to fast performed frequency steps for increasing and decreasing frequency sweeps. These
results have been obtained with the U-shaped wire sensor [MHj4] which has its fundamental resonant
mode at approximately 950 Hz with Q = 840 in air, see also Sec. 4.5.

For the present approach of resonator investigation, it is assumed, that the resonance can be charac-
terized by a linear second order oscillator. If the excitation forces become to high, nonlinear deflection
resulting in Duffing behavior might occur [236–238]. Figure 2.15(b) shows resonance curves for non
linear deflections for the case of the U-shaped wire. These recorded curves where obtained by succes-
sively increasing the excitation current from 1 mA to 200 mA. Similar behavior, i.e. deformation of the
linear frequency response to lower frequency was also reported in [239]. An example where too high
excitation forces deform the resonance curve in the other direction is given in [240]. A recommendable
way to prevent from nonlinear deflections is to reduce the excitation force such that nonlinear behavior
can not be observed. This can be easily be done by judging the shape in the Nyquist plot. Usually,

57



2 Theory and modeling

940 950 960 940 950 960
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(a) Measuring speed
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1
5

(b) Nonlinear deflections

Figure 2.15: Results of too fast frequency steps and too high excitation forces. a) Flawed frequency responses obtained
for to fast increasing and decreasing frequency sweeps. b) Frequency responses in air obtained with the U-shaped wire
resonator for excitation currents from 1 mA to 200 mA. Note that in this figure the ratio of the amplitudes measured
voltage Vout and offset voltage Voffs (see also Fig. 2.8) are depicted.

if the linear second order fit deviates (repeatably) from the measured spectrum, nonlinear effects (too
high excitation forces) are the cause. In [231] non-linear deflections are accepted and analyzed to
obtain a high signal to noise ratio.

2.7 Liquid loaded resonator (LLR)

2.7.1 Equations for resonance frequency and quality factor

From this point, it is assumed that the resonance is ideally recorded, i.e. any background signals
(including noise) can be perfectly subtracted, each measured point gives the steady state value and
the measured signal is not subjected to non-linear effects.

As it was already mentioned in Sec. 1.9, a common approach for modeling a liquid loaded resonator is
to model the effect of the liquid on the resonance characteristics, i.e. ω0 and Q by taking an additional
fluid related mass mf and damping cf into account. In Sec. 2.1, the equations for mf and cf for the case
of an in-plane oscillating plate Eq. 2.7, a transversally oscillating sphere, Eq. 2.18 and an out-of-plane
transversally oscillating cylinder, Eq. 2.22 were given. These equations can be summarized in the form
[MHj3]

mf(ω, η, ρ) = Cm1 ρ+ Cm2

√
η ρ

ω
and (2.131)

cf(ω, η, ρ) = Cc1 η + Cc2

√
ω η ρ

where the factors Cji are given in Tab. 2.2 for the case of oscillating plate, sphere and cylinder,

Plate Sphere Cylinder

Cm1 0
2π

3
r3

s π r2
c lc

Cm2

Ap√
2

√
2 3π r2

s

√
2 2π rc lc

Cc1 0 6π rs 2π lc

Cc2

Ap√
2

√
2 3π r2

s

√
2 2π rc lc

Table 2.2: Coefficients Cji replacing geometrical dimensions and constants.
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2.7 Liquid loaded resonator (LLR)

respectively. Substituting these equations for ω = ω0 in Eq. 1.124 yields [MHj3]

1

ω2
0

=
m

k
≈ m0k +mρk ρ+mηρk

√
η ρ

ω0
, and (2.132)

1

Q
=

c√
km

≈
c0k + cηk η + cηρk

√
ω0 η ρ√

m0k +mρk ρ+mηρk

√
η ρ
ω0

.

As the implicit character of these equations hampers a straightforward solution, the frequency depen-
dence in Eq. 2.131 can be neglected considering that the investigated bandwidth and thus the change
of ω are negligibly small. However, Eq. 2.132 can be used for calculating η and ρ for evaluated ω0 and
Q with a LLR as it will be described in Sec. 2.7.2.

Substitution of

Cm2 =
√
ω0C

∗
m2

and Cc2 =
C∗c2√
ω0

(2.133)

in Eq. 2.131 and assuming that the investigated frequency range around the resonance is small (as
in case of sufficiently high quality factors) and thus assuming that the influence of ω on mf and cf is
negligible it follows that

mf(η, ρ) ≈ Cm1 ρ+ C∗m2

√
η ρ and (2.134)

cf(η, ρ) ≈ Cc1 η + C∗c2

√
η ρ.

With these frequency independent solutions for mf and cf , ω0 and Q can be expressed as [MHj3]

1

ω2
0

=
m

k
≈ m0k +mρk ρ+m∗ηρk

√
η ρ, and (2.135)

1

Q
=

c√
km

≈
c0k + cηk η + c∗ηρk

√
η ρ

√
m0k +mρk ρ+m∗ηρk

√
η ρ

.

The model parameters m0k, mρk, m
(∗)
ηρk, c0k, cηk and c(∗)

ηρk are determined applying a linear least square
fit procedure using experimentally obtained values for ω0 and Q in at least three different liquids for
known values of η and ρ, see [MHj3].

2.7.2 Inverse model

Eq. 2.132 is used to calculate η and ρ from measured ω0 and Q as it will be explained in the following.
These are implicit equations, however, the simplified and explicit equations 2.135 allow easier analysis
for further calculations and investigations such as e.g. the sensitivities of a particular device to η and
ρ. As possible way to calculate η and ρ with the knowledge of ω0 and Q and the identified model
parameters from Eq. 2.132, i.e., m0k, mρk, mηρk, c0k, cηk and cηρk is

ρ =
1

2
(a0 k1 − b0 + k3)

mηρk

√
ω0mρk

(
1− cηkmρk

cηρkmηρk

) (2.136)

η =
1

2
(b0 k1 − a0 + k3)

√
ω0 c3

c2

(
1− cηkmρk

cηρkmηρk

)
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where

a0 =
1

mηρk ω
3/2
0

−
√
ω0

m1

mηρk
(2.137)

b0 =
1

mηρk ω
3/2
0 Q

− 1
√
ω0

c1
mηρk

k1 = 1− 2
mηkmρk

mηρkmηρk

k2 = 1−
mηkmρk

mηρkmηρk

k2 =

√
(a0 − b0)2 + 4 a0 b0

mηkmρk

mηρkmηρk

For some resonators it was observed, that the fitted parameters became negative. In this case the given
equations for calculating η and ρ can not be used.

The major advantages of such a model are its general applicability to many different resonator princi-
ples, (also principles other than in-plane oscillating plates, oscillating spheres and laterally oscillating
cylinders), the intuitive descriptiveness of liquid loaded resonators and thus the possibility of compar-
ing different types of viscosity and mass density sensors. Showing the characteristics of such sensors by
plotting e.g. Q versus η is not sufficient and might even be misleading as usually not only η but also ρ
differ for different liquids. Giving the values in tabulated form does not allow an insightful description
of the device, as η and ρ both have significant effects on fr and Q. Furthermore, giving a number
representing the sensitivity of the devices is difficult, as the sensitivities to η and ρ are not constant
but strongly η and ρ dependent. With the knowledge of the parameters of this model however, the
sensors characteristics are usually very well described. Once the model parameters are determined, a
list of further revealing analysis possibilities is disclosed, some of which are discussed in Sec. 2.8.

2.8 Application of the generalized equations

2.8.1 Relative sensitivity

For resonant viscosity and mass density sensors, absolute sensitivities as, e.g., the sensitivity of the
resonance frequency to mass density in Hz/(g/cm3) are often not very descriptive. First of all, by
evaluating absolute values, the comparison of sensors operated in a different frequency range is hardly
possible. Second, it is difficult to compare the sensitivities to mass density and viscosity, as usually
the investigable range of viscosities is much larger than the range of mass densities. For common
liquids, the range of mass densities is narrow, hardly exceeding the range between 0.6 to 1.8 g/cm3,
whereas the range of viscosities covers several orders of magnitudes. In [MHj4] for example a viscosity
range of 0.2 to 216 mPa·s with an according range of densities from 0.78 g/cm3 to 1.24 g/cm3 has
been investigated with a single resonant sensor. Due to these reasons, absolute sensitivities are not
evaluated. A difficulty in interpretation which arises for absolute as well as for relative sensitivities is,
that both types of sensitivities depend on η and ρ.

As already mentioned, it follows from Eqs. 2.132 and 2.135 that fr and Q are both dependent on η
and ρ. This finding was also substantiated by experiments, see, e.g. [MHj4] and[MHj2]. Thus, to
completely describe a resonant viscosity and mass density sensor’s sensitivity, four sensitivities have to
be evaluated. For this, we define the relative sensitivity of a read-out value X(yi) to one of its variables
yi as

SX,yi :=

∣∣∣∣
∂X

∂yi
· yi
X

∣∣∣∣ (2.138)

where in this case X stands either for fr or Q and yi for η or ρ. As an example, a comparison of
these sensitivities is given in Fig. 2.16 for five different sensors. There, it can be observed for the
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Figure 2.16: Sensitivities to viscosity and mass density. 1: torsional cylinder [MHj1], 2: circular tuning fork [MHj2],
3: rectangular tuning fork [MHj2], 4: U-wire [MHj4], 5: quartz tuning fork [230]. The sensitivities of fr and Q to η
and ρ are not constant but dependent both on η and ρ. For this reason the sensitivities are depicted as bands, in the
experimentally investigated range of viscosities and mass densities. In the plots for Sfr,η and SQ,η the upper boundary
of the bands are the values for ρ = 1.01 g/cm3, the lower boundary for ρ = 0.79 g/cm3. In the plots for Sfr,ρ and SQ,ρ

the upper and lower boundaries of the bands represent the evaluated values for η = 0.21 mPa·s and η = 2.05 mPa·s,
respectively.

investigated sensors, that in general the resonance frequency is much more sensitive to mass density
than to viscosity. The sensitivity of the quality factor however is similar for both, mass density and
viscosity.

2.8.2 Estimation of required accuracies for fr and Q

Manufacturers of viscosity and mass density meters usually specify the performance of their instru-
ments with absolute accuracy in mass density but relative accuracy in viscosity. For example, the
high precision laboratory instrument Anton Paar SVM 3000 features a reproducibility of 0.35 % in
viscosity and 0.0005 g/cm3 for mass density and a repeatability of 0.1 % and 0.0002 g/cm3, for η and
ρ respectively. The reproducibility of the temperature measurement of the SVM 3000 is 0.02 ◦C and
its repeatability is 0.005 ◦C. To get in the accuracy range of such laboratory instruments, at this
point, we target a relative accuracy in viscosity ∆ η/η = 10−2 and absolute accuracy in mass den-
sity ∆ ρ = 1 mg/cm3 which corresponds to a relative accuracy of ∆ ρ/ρ = 10−3 for aqueous liquids.
Repeated measurements and long-term stability analyses, see e.g., [MHj4] and [MHj2] and evaluation
of fr and Q showed instabilities (noise) yielding a certain spread for both quantities, which yields an
inaccuracy in the η and ρ determination. Using the sensitivities evaluated from Eq. 2.138, the change
of fr and Q upon small changes of η and ρ can be expressed in matrix notation as follows:




∆ fr

fr

∆Q
Q


 =



Sfr, η Sfr, ρ

SQ, η SQ, ρ


 ·




∆ η
η

∆ ρ
ρ


 . (2.139)

With this equation, maximum tolerable variations in the fr and Q evaluation can be estimated for
achieving the desired accuracies in η and ρ. For this estimation it is assumed that η is (exactly) known,
if ρ is evaluated from fr or Q and vice versa, i.e. the estimated allowed variations for fr and Q are
lowest limiting values.

For a rough estimation for the resonance stability it is assumed that ρ is evaluated from fr and η
from Q, respectively. For investigated tuning fork sensors, see [MHj2] and Sec. 4.9, which resonate
at 420 Hz with quality factors of some hundreds in the investigated liquids, variances (noise) smaller
than 10−2 Hz for fr and 1 for Q have to be obtained to achieve the targeted accuracies of ∆ η/η = 1 %
for viscosity and ∆ ρ = 1 mg/cm3 for mass density. The accordingly required relative accuracies are in
the order of 10−5 for the resonance frequency and 10−3 for the quality factor.
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These values are estimates for the resonance frequency and quality factor stability which are absolutely
required. I.e., if the instability is larger than these values, the targeted accuracies can not be achieved
on no account. A further source for measurement inaccuracies is the cross-sensitivity of the resonance
frequency to temperature, which limits the accuracies in η and ρ as the temperature measurement
accuracy is also limited to a certain extent. For instance, a first investigation of the circular tuning fork’s
temperature behavior was presented in [MHc8] and is also discussed in discussed in Sec. 2.10. There, it
was found that the circular tuning fork’s cross-sensitivity to temperature is about −0.049 Hz/◦C. In the
investigated viscosity and mass density range, the sensitivity of the resonance frequency to mass density
is about −0.024 Hz/(mg/cm3). Thus, it follows for the required temperature measurement accuracy to
be about ∆ϑ = 0.5 ◦C to distinguish mass density variations of 1 mg/cm3 from temperature variations.
This requirement is commonly fulfilled by state of the art thermometers.

2.8.3 Error propagation

The sensitivity parameters SX,yi which can be obtained using Eq. 2.138 and the simplified model for
ω0 and Q, i.e., Eq. 2.135, depend on density and viscosity. For proper measurements of the resonance
characteristics processed with the estimation procedure from [229] it was shown in [234] that there is a
relation between the relative standard deviations of fr and Q which is determined by the signal-to-noise
ratio, SNR (which is defined as the ratio of Nyquist circle diameter to standard deviation of noise on
the Nyquist circle diameter) of the acquired frequency spectra and the number of frequency points M :

std {fr}
fr

=
1

2Q

std {Q}
Q

≈
√

2

M

1

Q SNR
(2.140)

It was furthermore shown, that variations of fr and Q due to noise are uncorrelated in case of rea-
sonably sampled resonance curves. If deviations from Eq. 2.140 are observed, this is an indicator
that unmodeled influences such as parameter drifts persist and that there is still potential for setup
improvements. Relative errors on ρ and η for given relative deviations on fr and Q can be determined
by inverting Eq. 2.139, i.e., 


∆η
η

∆ρ
ρ


 =



Sfr,η Sfr,ρ

SQ,η SQ,ρ



−1

·




∆fr
fr

∆Q
Q


 . (2.141)

The error propagation depends on the invertibility of the matrix in Eq. 2.141. E.g., for pure shear
resonators, the matrix gets singular and ρ and η can not be separated. However, this is not the case
for manufactured sensors in general.

Fig. 2.17 shows the error propagation for the round and the rectangular tuning fork for the liquids of
the viscosity and the mass density series [MHj2]. Errors in fr and Q cause much higher relative errors
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Figure 2.17: The error propagation for rectangular and circular tuning forks evaluated for the viscosity and the density
series.
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in viscosity than in density. Therefore, the requirements on the frequency accuracy are much stricter
when low errors on viscosity shall be achieved. With the recently published tuning fork setups [MHj2]
the relative standard deviations in frequency are 10−6 approximately, and thus accuracies around ±1%
(±3 standard deviations) are achievable for η and 0.01% (i.e. 0.1 mg/cm3 for aqueous liquids) for ρ,
approximately. These results meet the requirements from Sec. 2.8.2.

2.9 Higher mode excitation

Resonant viscosity and mass density sensors excited at higher modes were presented in [MHc4]. There,
measurements with the U-shaped wire sensor [MHj4], Sec. 4.5, the tuning fork [MHj2], Sec. 4.9 and
the double membrane sensor [MHj6], Sec. 4.1 were performed in their first and second modes. As
the measurements obtained with the double membrane sensor suffered from not sufficiently stable
values and as furthermore the applicability of the generalized model to the double membrane sensor is
questionable, the discussion of first and second modes for the double membrane sensor is omitted at
this point. However, the double membrane sensor was especially designed to show different sensitivities
at the first and the second modes. This has been shown and proven, e.g. in [MHj6].

To investigate the differences and potential advantages of recording more than one mode with resonant
viscosity and mass density sensors, the frequency responses in four different liquids at the first and the
second resonant modes were recorded. From these recorded frequency responses, resonance frequencies
fr,ij and quality factors Qij were evaluated using a resonance circle based fitting algorithm, [229]. The
indices i and j stand for the examined liquids and modes respectively. The liquids which have been
used for examining the sensors are designated with numbers i in Tab. 2.3. There, their viscosities and
mass densities at 25 ◦C are given.

The evaluated results for the resonance frequencies and quality factors for the first and second modes
i.e. fr,i1, fr,i2 and Qi1 and Qi2 as well as the according mass densities ρi and viscosities ηi were used to
identify the parameters of the generalized model Eq. 2.135. With these results the sensitivities using
Eq. 2.138 were calculated. The sensitivity bands for the first and the second modes are depicted in
Fig. 2.18 for the first and the second modes for the U-shaped wire and the tuning fork sensor. There, it
is clearly visible, that both modes yield similar sensitivities, where the second mode tends to be slightly
less sensitive. A more detailed and thorough investigation of higher mode excitation for liquid viscosity
and mass density sensors however has to be elaborated. Higher mode excitation becomes especially
interesting for (e.g. viscoelastic) liquids, which feature a frequency dependent viscosity η(ω).

2.10 Cross-sensitivity to temperature

An experimental investigation of resonant sensors’ cross-sensitivities to temperature and an empiric
modeling approach has been presented in [MHc8] and [MHc3]. The experiments presented there were
repeated and the investigated temperature range was extended from initially 15 to 35 ◦C to 5 to 45 ◦C.

Measurements in ethanol, isopropanol, DI-water and a mixture of 61 % glycerol in DI-water were first
performed at 25 ◦C with the circular steel tuning fork setup as it was presented in [MHj2] to determine

Liquid η ρ
mPa·s g/cm3

1. Ethanol 1.0371 0.7852
2. Isopropanol 2.0491 0.7803
3. DI-water 0.85492 0.9969
4. 61 % Glyc/ DI-w. 9.723 1.1545 3

Table 2.3: Values for η and ρ at 25 ◦C.
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Figure 2.18: Comparison of sensitivities of the first and the second modes for the U-shaped wire and the tuning fork
sensors. The sensitivities for both modes and both sensors are similar, where the sensitivity of the second mode is slightly
smaller in general.

the parameters from Eq. 2.135, see also Fig. 2.19. To investigate the tuning fork’s intrinsic temperature
cross-sensitivity of fr and Q in a temperature range from 5 to 45 ◦C the failing of the temperature inde-
pendent model Eq. 2.135 at temperatures other than 25 ◦C was evaluated as follows (see also Fig. 2.19):
The viscosities ηi(ϑj) and mass densities ρi(ϑj) of the aforementioned liquids were evaluated with an
Anton Paar SVM 3000 viscometer at temperatures ϑj from 5 to 45 ◦C in 5 ◦C steps. (The subscript
i stands for the liquid, the subscript j for the temperature.) With the knowledge of the temperature
dependent viscosities ηi(ϑj) and mass densities ρi(ϑj), resonance frequencies ω0m,ij and quality factors

Recorded
frequency responses

Resonator, immersed
in different liquids at 25 °C 

1 2 3Evaluated resonance
frequencies & quality factors

5 Evaluated error with 
temperature independent model

Parameter fit for model at 25 °C

Resonator, immersed in different 
liquids at different temperatures

6Resonance frequencies & quality 
factors at different temperatures

Formulate temperature
dependent model

4

at 25 °C

Figure 2.19: Modeling aproach: The frequency responses of a mechanical resonator are recorded upon immersion in
liquids (denoted with the index i) with viscosity ηi and mass density ρi at 25 ◦C. The angular resonance frequencies
ω0,i and quality factors Qi are determined fitting the frequency response of a second order resonator into the recorded
frequency response. ω0,i and Qi from at least three liquids are necessary to identify the parameters of a temperature-
independent model relating ω0 and Q to η and ρ. The evaluation of relative deviations ∆rω0m,i(ϑj) and ∆rQm,i(ϑj)
of the modeled temperature-independent quantities ω0m,i and Qm,i from measured quantities ω0,i(ϑj) and Qi(ϑj) at
temperatures ϑj reveals the failing of the temperature-independent model. With the knowledge of this deviation, a
temperature dependence can be introduced in the existing model.
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Qm,ij were calculated using the previously identified temperature independent model, Eq. 2.135. With
these calculated values for ω0m,ij and Qm,ij (resulting from the temperature-independent model) the
relative deviations ∆rω0,i(ϑj) and ∆rQi(ϑj) from measured resonance frequencies ω0,i(ϑj) and quality
factors Qi(ϑj) were evaluated for every liquid at each temperature.

The evaluation and interpretation of ∆rω0 depicted in the upper plots of Fig. 2.20 suggests that the
influence of ϑ on ∆rω0 is (almost) linear and independent of the liquid’s viscosity or mass density. Thus
an approach such as

∆rω0 =
ω0m − ω0(ϑ)

ω0(ϑ)
= (ϑ− 25 ◦C) kϑ (2.142)

is used, where kϑ is a parameter which is fitted such that the relative deviation ∆rω0 gets minimal. For
the quality factor however not trend following ϑ could be observed so far. The empirically motivated
equation for ω0(ϑ) reads:

ω0(ϑ) =
1

(ϑ− 25 ◦C) kϑ + 1
· 1√

m0k +mρk ρ+m∗ηρk
√
η ρ

. (2.143)

The relative deviations of modeled, temperature dependent results from the measured values i.e.
∆rω0(ϑ) are depicted in the lower plots of Fig. 2.20 showing good accordance of modeled and measured
results.

For the cross-sensitivity of the resonance frequency to temperature it follows

Sfr,ϑ =
∂ω0

∂ϑ

ϑ

ω0
=

−kϑ ϑ
(ϑ− 25 ◦C) kϑ + 1

. (2.144)

For the measurements depicted in Fig. 2.20

kϑ = 12.011 · 10−3/◦C and kϑ = 12.285 · 10−3/◦C

Relative deviations with 
temperature independent model

Relative deviations with temperature dependent model

10 20 30 40

-2

0

2

-2

0

2

10 20 30 40

0

0.02

0.04

Ethanol

50% Glyc
61% Glyc

Isopropanol

(a) 1st Mode

Relative deviations with 
temperature independent model

Relative deviations with temperature dependent model

10 20 30 40

-2

0

2

-2

0

2

10 20 30 40
-0.2

-0.1

0

0.1

(b) 2nd Mode

Figure 2.20: Relative deviation ∆rQ and ∆rω0 between measured and modeled results.
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2 Theory and modeling

are obtained for the first and second modes. This finding shows that for beam based resonators,
fundamental and higher modes show similar cross-sensitivities to temperature. Equation 2.69 also
suggests this statement.

The plots for ∆rQ in Fig. 2.20 do not show a clear trend. Thus a temperature dependence of Q was
not considered so far in the generalized equations. However, more precise measurements are necessary
to further investigate the temperature dependence of fr and Q.

2.11 Theoretical study on the frequency dependence of m(ω) and c(ω)

2.11.1 Examples of liquid loaded resonators

The model for ω0 and Q, Eq. 2.135, was successfully applied to liquid loaded resonators which were
found in a comprehensive literature review if sufficient data (i.e. fr and Q with associated η and ρ
in tabulated form) were provided. The resonators were selected such that operational frequencies in
a range from hunderts of Hertz to the Mega Hertz range and quality factors lower than 1 up to over
500 in liquids can be investigated. With the data found in literature and from our own work, the
model parameters m0k,mρk,mηρk c0k, cηk and cηρk in the model Eq. 2.135 were determined performing
a linear least square fit as it is described in [MHj3]. The selected LLRs are given in Tab. 2.4.

An overview of the characterized LLRs from Tab. 2.4 is shown in Fig. 2.21 on a double logarithmic
scale for fr and Q and associated η and ρ. There, the dots indicate the reported values and the solid
lines are the results from the fitted model.

2.11.2 Estimation of the change of m(ω) and c(ω) in the investigated frequency range

To estimate the change of m(ω) = m0 + mf(ω, η, ρ) and c(ω) = c0 + cf(ω, η, ρ) in the investigated
bandwidth ω0±Nδl,rδ a frequency dependence is re-introduced into the model by substituting m∗ηρk →
m∗ηρk

√
ω0/
√
ω and c∗ηρk → c∗ηρk

√
ω/
√
ω0, respectively yielding

m(ω)

k
≈ m0k +mρk ρ+

√
ω0m

∗
ηρk

√
η ρ

ω
, and (2.145)

c(ω)

k
≈ c0k + cηk η +

c∗ηρk√
ω0

√
ω η ρ.

With this result, the relative change of mf(ω) and cf(ω) can be estimated using

∆rml,r =

m(ω0±Nδl,rδ)
k − m(ω0)

k
m(ω0)
k

and ∆rcl,r =

c(ω0±Nδl,rδ)
k − c(ω0)

k
c(ω0)
k

(2.146)

No. Device Year Reference
1 Si-Cantilever 2002 [88]
2 Si-Platelet 2009 [240]
3 Spiral Spring 2014 [MHc7]
4 Quartz Tuning Fork 2014 [230]
5 AlN Platelet 2014 [230]
6 Circ. Tuning Fork 2015 [MHj2]
7 Rect. Tuning Fork 2015 [MHj2]
8 U-shaped wire 2014 [MHj4]

Table 2.4: Selected liquid loaded resonators. Associated resonance frequencies and quality factors are depicted in Fig. 2.21.
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2.11 Theoretical study on the frequency dependence of m(ω) and c(ω)
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Figure 2.21: Examples of liquid loaded resonators covering a range of hunderts of Hertz to the Mega Hertz range and
quality factors lower than 1 up to over 500 with according viscosities from 0.1 mPa·s to 200 mPa·s and mass densities from
0.64 g/cm3 to 1.6 g/cm3, approximately. The dots are reported experimental results and the solid lines were obtained
using with the fitted model for every reported resonator.

which become dependent on Q only if δ = ω0/(2Q) is substituted in the equations above. The relative
changes of the mass parameter ∆rml,r and the damping parameter ∆rcl,r are depicted for investigated
bandwidths claiming a circle covering ratio rc = 0.7 in Fig. 2.22. As a rule of thumb, for Q > 10 the
relative changes of both parameters are less than 1 %.

2.11.3 Estimation of systematic errors of η and ρ resulting from second order fit

With the frequency dependent parameters m(ω)/k and c(ω)/k in Eq. 2.145, the frequency response of
a LLR can be calculated for given η and ρ using the relation

HLLR(ω) =
1
k

c(ω)
k + j

(
m(ω)
k ω − 1

ω

) . (2.147)
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Figure 2.22: Relative changes of m(ω) and c(ω) in the investigated frequency range claiming rc = 0.7.
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Figure 2.23: Second order fit in LLR data

Through the reintroduction of a frequency dependence, the frequency response HLLR(ω) does not
describe a circle in the complex plane, see Fig. 2.23. This behavior becomes more significant, the
smaller Q. Thus, fitting a second order transfer function into the frequency response of a LLR,
yields systematic errors in ω0 and Q and if deduced from the latter, η and ρ. To investigate this
systematic error, LLR frequency responses were calculated for the eight cases mentioned above within
the reported viscosity and mass density ranges. Then a circle fitting algorithm, c.f. Sec. 2.5.3, is
applied to this generated data. Simply speaking, a circle is searched in data which is not a circle
and subsequently therefrom resulting errors are calculated. From the resonance frequency ω0,2O and
quality factor Q2O obtained with the second order circle fit algorithm, viscosity η2O and mass density
ρ2O are calculated. (The subscript ’2O’ designates the variables obtained through a second order fit.)
To estimate the systematic error which might occur if viscosity and mass density are determined by
fitting and evaluating a second order frequency response, the relative deviations

∆rη =
η2O − η

η
and ∆rρ =

ρ2O − ρ
ρ

(2.148)

are calculated. The result of this investigation is depicted in Fig. 2.24. The interpretation of this
theoretic investigation is that systematic relative errors in η higher than 1 % for Q < 200 and relative
errors in ρ higher than 1 % for Q < 20 result from the linear second order fit. However this result
can not be directly related to viscosity and mass density measurements, as real LLRs are calibrated
and thus systematic errors are decreased. However, the frequency dependence of the transfer function
HLLR(ω) needs further (experimental) investigation in any case.
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Figure 2.24: Systematic relative errors ∆rη and ∆rρ obtained by fitting a linear second order transfer function into the
frequency response of a liquid loaded resonator in dependence of Q. Following from a theoretic investigation, the obtained
errors which depend on Q, will be in the gray shaded area.
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Chapter 3

Device concepts and approaches

3.1 Lorentz force driven resonators (LFDRs)

The Lorentz-force driven sensors discussed here, are mechanical resonators comprising or consisting
of electrical conductors carrying electrical currents in the presence of an external magnetic field. The
resonator design itself, is manifold but usually consists of singly or doubly clamped beams, torsional
bars and membranes. A more detailed overview and explanation of existing resonator designs will
be given in Sec. 4. The total Lorentz force which is called excitation force Fex here, on a conductor
following the path s with length lc used for excitation, carrying the current iin in the magnetic field
with magnetic flux density B is [241,242]:

Fex = iin

∫

lc

ds×B(s). (3.1)

Using a sinusoidal current iin(t) = Îin sin(ω t) excites harmonical oscillations of the resonator at angular
frequency ω.

For read-out, i.e., for monitoring the motion of the resonator, measuring the motion-induced voltage
VM is an elegant way to solve this task. As an electrical conductor is moving in the presence of an
external magnetic field, a voltage is induced on the latter. This voltage can be measured on the same
conductor which is used for excitation, or on a second conductor which (through mechanical coupling)
follows the motion of the oscillating resonator, see Figs. 3.1 and 3.2. From the definition of Lorentz
forces and Faraday’s law for induction, the motion-induced voltage VM on a conductor moving in an
magnetic field is expressed as [241,242]

VM(t) = −
∫

lc

(
∂u(s)

∂t
×B(s)

)
· ds. (3.2)

where u is the (relative) deflection of the conductor from the points at which the voltage is induced
and ds is a vector line element along the conductor. The minus results from the minus in Faraday’s
law of induction ∇×E = −∂B

∂t in Maxwell’s equations.

Wire

(a) One conductor (b) Two conductors

Vout

Vout

One conductor

Two conductors

(c) Torsional resonator: both, one and two
conductor LFDR possible

Figure 3.1: a) One single conductor is used for both, excitation and read-out. b) one conductor (left) is used for excitation,
the other (right), mechanically coupled to the first and thus following the movement of the latter is used for read-out
c) Using a torsional resonator allows a comparison of one and two LFDRs with the same geometry.
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3 Device concepts and approaches

3.2 Principle of one conductor and two conductors LFDRs

In the following, one conductor and two conductor LFDRs are described and discussed for the example
of a transversally vibrating wire [MHj5], an in plane oscillating platelet [MHj5] as well as a torsional
resonator [MHj1], c.f. Fig. 3.1. For the torsional resonator, both excitation methods (one and two
conductor LFDR) are possible for resonators with the same geometry and the same mechanical charac-
teristics. Using such a torsional resonator as example, the difference and potential advantages as well
as drawbacks using one or two conductors will be discussed in Sec. 3.4.3. The mechanical principles
for transversal and torsional LFDRs as well as their equivalent circuits are depicted in Fig. 3.2, both
for one and two conductors LFDRs.

The simplest design of a one conductor LFDR is a straight wire placed in an external magnetic field.
In analogy to the string of a string instrument, the wire is stretched to allow transversal vibrations.
The wire is excited by means of Lorentz forces on sinusoidal currents in the wire in the presence of a
magnetic field, see Fig. 3.1(a). The motion of the vibrating wire in the external magnetic field in turn,
yields a motion-induced voltage VM on the wire which is proportional to the velocity of the resonator,
c.f. Eq. 3.2 and thus, serves as read-out signal. However, this signal can not be measured directly.
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Figure 3.2: a) One conductor LFDR: top: transversal, lumped element oscillator, middle: cross-section of the torsional
resonator, bottom: electrical equivalent circuit of a one conductor LFDR. Iin: input (excitation) current, B: external
magnetic field, Vg: Voltage of the signal generator, 50 Ω: output resistance of the signal generator, Rs: series resistance,
Rc, Lc: conductor’s or coil’s resistance and inductance, VM: motion-induced voltage, 10 MΩ: input resistance. b)
Two conductors LFDR: One conductor (coil) is used for excitation, the other for read-out, Vct: induced voltage due to
inductive cross-talk.
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3.3 Measurable output voltage Vout

The measurable output voltage Vout contains additional contributions resulting from the impedance of
the wire and the excitation currents in it. The impedance of the conductor can be modeled by a serial
connection of a (temperature dependent) resistance Rc and an inductance Lc. The first considers the
finite conductivity of the wire, the second the inductivity resulting from the loop which is formed by
the vibrating wire and the wiring necessary for electrical connection.

For two conductors LFDRs, excitation and read-out circuits are separated using a second conductor
which is galvanically separated from the first. Fig. 3.1(b) shows a two conductors LDFR using two
wires which are mechanically coupled by a small platelet. The first conductor, used for excitation,
carries the excitation (or input current) Iin and the second, used for read-out, follows the movement
of the first yielding a motion-induced voltage on it. This motion-induced voltage however, can not
be measured directly as the time-variant magnetic field induced by the excitation current couples into
the output circuitry which induces a spurious cross-talk voltage Vct. This will be explained in more
detail in Sec. 3.4.2. The output voltage Vout is measured with a Lock-In amplifier which has a high
input resistance of 10 MΩ, suggesting the assumption that the current in the output circuitry is zero
it follows that the impedance of the output circuitry can be neglected.

Similar to a DC-motor, the torsional resonator consists of a winding form carrying an excitation coil.
This winding form is affixed to a thin metal rod serving as torsional spring, which in turn is rigidly
clamped at both ends. Application of sinusoidal excitation currents and an external magnetic field
yields torsional vibrations, see Fig. 3.1(c). As for the case of the transversally oscillating wire, this
motion yields an induced voltage which is proportional to the tangential velocity of the excitation
coil. In analogy to the straight wire, the motion-induced voltage can not be measured directly but
is composed of this motion-induced voltage VM and the impedance related voltage drop. The coil’s
impedance is modeled using a serial connection of the coil’s resistance and its inductance, respectively.

The principle of transversal and torsional one conductor LFDRs is depicted on the left hand side of
Fig. 3.2. There, the complete electrical equivalent circuit of one conductor LFDRs is depicted as well.
In this electrical equivalent circuit the whole setup including excitation and read-out electronics is
considered. For providing the excitation current Iin, a signal generator with a 50Ω output resistance
is used. A series resistance Rs can be used to limit the excitation current and to prevent potential,
non-linear deflections. The signal from the mechanical oscillator is modeled by a series connection of
the conductor’s resistance Rc, its inductance Lc and the motion-induced voltage VM. The effect of the
motion-induced voltage could also be interpreted as an additional part of the impedance as the motion
of the electrical charges in the conductor due to the applied input voltage is also affected by Lorentz
forces if the conductor is set into motion.

The principles of transversal and torsional two conductors LFDRs as well as their electrical equivalent
circuit are depicted on the right hand side of Fig. 3.2. For the torsional case, a second coil is wound
into the winding form yielding a complete coupling from the magnetic field induced in the excitation
coil into the read-out coil.

3.3 Measurable output voltage Vout

The LFDRs used for viscosity and mass density sensing are excited at several discrete angular fre-
quencies ωi to record the resonator’s frequency response containing a characteristic resonant mode.
The measured voltage Vout(ω) is composed by three signal components: First, the motion-induced
voltage VM which is proportional to the resonator’s velocity. The second measured signal component
is an offset voltage Voffs due to the conductor’s impedance or electrical cross-talk. The third signal
component is the influence of the measurement setup’s total phase shift ϕm which results from the
phase response of the measurement instruments and transit times affected by the wiring. Thus, the
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�
�

(a) Motion-induced voltage VM

�
�

(b) VM plus offset voltage Voffs

�
�

(c) (VM + Voffs) phase shifted by ϕm

Figure 3.3: Illustration of split signal components: a) shows the motion-induced voltage which is proportional the
resonator’s velocity. b) illustrates the effect of signals Voffs resulting from electrical cross-talk or impedance related
voltage drops. c) depicts the total measurable signal including phase shifts resulting from the measuring system and
transit times from the wiring [MHj2].

measurable voltage can be written using complex notation as follows

V out(jω) = (V M(jω) + V offs(jω)) ejϕm(ω). (3.3)

The motion-induced voltage response can be modeled as a second order resonator

V M(jω) =
Vmax

1 + jQ
(
ω
ω0
− ω0

ω

) (3.4)

where ω0 and Q are the resonator’s angular resonance frequency and quality factor, respectively.
Remember, for the resonator’s velocity, the angular eigenfrequency (of undamped vibrations) and
the frequency where the amplitude reaches its maximum value are identical. Thus, we may call ω0

resonance frequency. A characteristic resonance curve of the motion-induced voltage and the effect of
an offset voltage as well as the phase shift on the measured signal are qualitatively depicted in Fig. 3.3.
These additional offset signals can significantly deform the resonance curve and yield asymmetries in
the latter. For highly damped resonators, i.e. Q < 100, as it might be the case for resonant viscosity
and mass density sensors when examining high viscous liquids, asymmetries in both, the resonator’s
velocity and deflection frequency response become large. Due to these deformations of the frequency
reponse, searching the maximum peak frequency and the frequencies where the amplitude decreased
to the 1/

√
2 of the peak values or methods based on a Lorentzian fit [243, 244] are not appropriate

methods for evaluating resonance frequency fr and Q. For this thesis, an algorithm presented in [229],
which was especially developed for highly damped resonators is used. This algorithm separates a
second order resonance of the form of Eq. 3.4 from spurious offset signals and determines the resonant
parameters fr and Q by fitting the resonance circle in a Nyquist plot of the response function.

3.4 Offset voltage and cross-talk

3.4.1 One conductor LFDR (U-wire)

The modeling of the impedance related offset voltage

V offs = (Rc + jω Lc)I in (3.5)

i.e. the modeling of Rc and Lc, in the equivalent circuit in Fig. 3.2 (a), of a one conductor LFDR
is explained using the U-shaped wire sensor, see Fig. 3.4, as example. This resonator consists of a
tungsten wire, bent to the shape of a ‘U’ which is placed in an external magnetic field and carrying
sinusoidal excitation currents for excitation. This geometry is similar to a cantilever, i.e. a singly
clamped beam.
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3.4 Offset voltage and cross-talk
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Figure 3.4: U-shaped wire sensor. a) A 400 µm thick tungsten wire carrying a sinusoidal current is placed in an external
magnetic field yielding out of plane oscillations. b) Geometrical dimensions of the U-shaped wire. For clamping, the
wire is brazed to two solid brass blocks.

Resistance Rc

The temperature dependent resistance of the wire can be calculated considering its temperature de-
pendent specific electrical resistance ρt, the conductor’s length lc and its cross-section Ac

Rc(T ) = ρt(T )
lc
Ac
≈ ρt(T )

2 l + w/2π

r2
w π

(3.6)

with

ρt(T ) ≈ ρt(T0) (1 + αt (T − T0)) (3.7)

where T0 is a reference temperature, T is the actual temperature and αt is the linear temperature
coefficient of resistivity.

Inductance Lc

The inductivity L of a loop or a coil consists of the internal inductance Li and the external inductance
Le, [245] i.e.,

L = Li + Le. (3.8)

The internal and external inductances are the inductances due to the magnetic fields that are internal
and external to the conducting loop, respectively. In the following, the calculation of the inductance
of a planar, loop, corresponding to a coil with N = 1 turns and a constant electrical current I is
discussed. For this, the internal and external inductances are calculated using the defining equation
for Le and the energy stored in the magnetic field of the inductance. For both relations, the magnetic
flux density has to be known. In Fig. 3.5 two expressions relating the magnetic flux density with an
constant electrical current I are derived. The derivations are intended to be self-explanatory, more
detailed explanations can be found in textbooks of fundamental electrodynamics, see e.g. [241,242].
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Figure 3.5: Top: Derivation of analytical expresssions relating magnetic flux density and electrical current for the
magnetostatic case. Bottom: vectors, necessary to calculate the magnetic flux density in the x, y-plane for a rectangular
and a circular loop using the Biot-Savart law.
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The first derived relation in Fig. 3.5

Bϕ(r) =
µ0 I(r)

2 r π
where I(r) = I

r2

r2
w

for r < rw and I(r) = I for r ≥ rw (3.9)

is the magnetic flux density of an infinitely extended, straight conductor, with rotational symmetric,
time constant electrical current density. The second derrived term

B(r) = −µ0 I

4π

∫
r − r′

|r − r′|3
× ds′ (3.10)

is the Biot-Savart law and in this notation, it is valid for an infinitely thin, closed, current carrying
conductor of arbitrary shape. In Fig. 3.5 the vectors necessary to calculate the magnetic flux density
in the x, y-plane for a flat rectangular and a circular loops are given as well. For the rectangular loop,
the integral is split up into four integrals I–IV and the solution for B(r) is obtained adding the results
of the single integrals. Note, that this is not a superposition of single (real) magnetic flux densities
rather than just the sum of partial solutions.

Le is defined as the proportionality factor between linked magnetic flux ψe, and electrical current I,
i.e.,

ψe = Le I where ψe = Nφe and φe =

∫

Ae

B · dA. (3.11)

φe is the magnetic flux through the area Ae spanned and confined by the conductive loop, see Fig. 3.6.
That is, for current carrying loops for which an expression for B can be found, for which the integral in
Eq. 3.11 can be solved Le can be expressed analytically. Le can be calculated e.g., using Biot-Savart’s
law, integrating over the external surface Ae and dividing by the current I, i.e.

Le = − µ0

4π

∫

Ae

∫

s′

r − r′

|r − r′|3
× ds′ · dA. (3.12)

For a rectangular loop with length l, width w and wire radius rw, c.f. Fig. 3.5 , it follows

Le,rect ≈
µ0

π

[
l asinh

(
l

rw

)
+ w asinh

(
w

rw

)
(3.13)

−l asinh

(
l

w

)
− w asinh

(w
l

)
+ 2

√
l2 + w2 − 2 (l + w)

]
.

For the internal inductance, the magnetic flux density within the conductor has to be known, which can
not be calculated using this representation of Biot-Savart’s law. In this case the solution of a straight,
infinitely extended conductor can be used, as this solution yields acceptable results close or within
the conductor even if the conductor is nor straight, nor infinitely extended. To calculate the internal

External magnetic flux
& external area

Electrical conductor

Center line

Int. and ext. magnetic flux density Internal and external magnetic flux

Straight, infinitely extended
conductor with constant 
electrical current density

2

Figure 3.6: External and internal magnetic flux
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inductance, the relation between the stored energy in the magnetic field Wmag of an inductance can
be used. The energy stored in the magnetic field of the inductance L = Li + Le is

Wmag =

∫

R3

B ·H
2

dV =
LI2

2
, (3.14)

where R3 denotes the volume of total space. For calculating the internal inductance only, the volume
integral over the conductors volume has to be calculated. Using the above assumption for calculating
B inside the conductor it follows:

W =
µ0 I

2

8 r4
w π

2

∫

Vc

r2dV =
µ0 I

2lc
16π2

=
Li I

2

2
, (3.15)

where lc is the total length of the conductor and thus it follows for the internal inductance

Li =
µ0

8π
lc. (3.16)

Considering lc = 2(l + w) for a rectangular loop, it follows

Lrect ≈
µ0

π

[
l asinh

(
l

rw

)
+ w asinh

(
w

rw

)
(3.17)

−l asinh

(
l

w

)
− w asinh

(w
l

)
+ 2

√
l2 + w2 − 1.75 (l + w)

]
.

Similar results can be found in [246, 247]. For this result it was assumed that the permeability of the
surrounding medium is equal to the permeability of free space. Furthermore, (e.g., thermally induced)
geometrical changes of the conductor are not considered and thus the inductivity is assumed to be
constant.

Comparison of theoretical and experimental results

The values of the specific resistance ρt(T0) and the linear temperature coefficient of tungsten are
ρt(T0 = 20 ◦C) = 5.28 · 10−8Ω·m and αt = 4.1 · 10−3K−1. Thus, for the resistances of the U-shaped
wire (l = 16 mm, w = 6 mm, rw = 200µm) at 25 ◦C and 50 ◦C it follows that:

• Rc,25 ≈ 17.8 mΩ

• Rc,50 ≈ 19.5 mΩ

and using Eq. 3.17 for an estimation of the U’s inductance yields

• Lc ≈ 28.8 nH.

To verify these theoretical results, measurements were made in a frequency range from 100Hz to
100 kHz at 25 ◦C and 50 ◦C. These measurements were performed in air, in isopropanol as well as
in a 90 g DI water and 10 g NaCl solution (which is close to saturation) to investigate potential ef-
fects resulting from differing surrounding physical conditions such as electrical conductivities. The
conductivity of this used salt-water mixture is σl ≈ 14 S/m.

Figure 3.7 shows amplitude and phase spectra obtained with the U-shaped wire sensor. In Fig. 3.7(a)
the first two resonant modes can be observed and in Fig. 3.7(b) the measured voltage Vout of all
measurements (i.e., in all investigated liquids) is shown in a single plot. From there, it is already clearly
visible that only the temperature yields significant changes of the offset voltage which result from the
thermal dependence of the tungsten wire’s resistance, c.f. Eqs. 3.6 and 3.7. The different physical
parameters of air, isopropanol and the closely saturated salt-water mixture however, do not yield
measurable changes. The peaks in the measured frequency responses are due to electrical resonances
which are not further discussed. The model parameters in Eqs. 3.3 – 3.5 were fitted into the measured
frequency response and are:
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Figure 3.7: a) Recorded spectra obtained with the U-shaped wire in air. Two mechanical resonances can be observed.
b) Effect of the conductor’s temperature dependent impedance and experimental verification of theoretical findings.
Only the wire’s thermally dependent resistance affects significant variations of the offset voltage. This comparison of
experimental with theoretical results shows the validity of the used equivalent circuit.

• Rw, 25, fit ≈ 18 mΩ

• Rw, 50, fit ≈ 19.6 mΩ

• Lw, fit ≈ 28.8 nH

These values are in surprisingly good accordance with the values calculated from Eqs. 3.6 and 3.17
(Rw,25 = 17.8 mΩ, Rw,50 = 19.5 mΩ and Lw = 28.8 nH).

Additional impedances

Although the applicability of the equivalent circuit in Fig. 3.2 (a) is already sufficiently demonstrated,
the order of magnitude of potential, additional impedance contributions is investigated for the case
of the U-shaped wire the setup. For clamping, the U-shaped tungsten wire was brazed into two solid
brass blocks. For estimation of additional impedances, the resistance and the capacitance between
these brass blocks is calculated. That is, for this estimation the influence of the wire is neglected.
In fact, the capacitance between both brass blocks is short-circuited by the U-shaped wire and thus
would (ideally) be zero. The block’s dimensions are, c.f. Fig. 3.4(b),: hb = 7 mm, lb = 14 mm and
db = 2 mm. The resistance and capacitance between the brass blocks are:

Rb =
db

σl hb lb
and Cb = ε0εl

hb lb
db

. (3.18)

(σl: electrical conductivity of the liquid, ε0: electric field constant, εl: relative permittivity of the
liquid). To estimate the capacity, a relative permittivity of the liquid εl < 100 is assumed. Inserting
the associated values in Eq. 3.18 gives:

• Rb > 1.28Ω

• Cb < 49 pF.

As the resistance between the blocks is large compared to the wire’s resistance even for the case of the
highly concentrated salt-water solution and as the capacitance for high relative permittivities is small,
it is assumed that additional resistances and capacitances are negligible.
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With these insights, the measured output-voltage can be calculated in the frequency domain assuming
time-dependence ejω tas follows:

V out = V M + (Rc + jω Lc) I in (3.19)

where

I in =
V g − V M

50Ω+Rs +Rc + jω Lc
. (3.20)

Conclusion

The comparison of the model and associated calculated parameters with the experimental results
shows good accordance. Thus it follows, that the electrical equivalent circuit depicted in Fig. 3.2 (a)
sufficiently accounts for the offset voltage. The conductivity of the liquid does not significantly influence
the offset voltage, as the liquid’s resistance is large compared with the wire’s resistance.

3.4.2 Two conductors LFDRs

Two conductors LFDRs consist of two galvanically isolated excitation and read-out circuits. The
sinusoidal excitation current in the excitation path induces a time variant magnetic field which couples
into the read-out circuit which in turn induces a cross-talk voltage

Vct(t) =
dψ12(t)

dt
where ψ12(t) = M iin(t). (3.21)

Here, ψ12 is the linked magnetic flux induced from the input circuit (denoted by the index ‘1’) which
intersects the output circuit (denoted by the index ‘2’). This coupling can be described using the
mutual inductance M and thus, the measurable output voltage in frequency domain for the case of
two conductors LFDRs can be expressed as:

V out = V M + jωM I in (3.22)

In the following, this cross-talk is investigated for the case of the double membrane sensor [MHj6] and
the suspended platelet sensor [MHj5].

Double membrane sensor

The double membrane sensor consists of two vibrating polymer membranes carrying copper paths
for excitation and read-out. The principle design of such a membrane and the magnetic flux density
induced by the excitation currents are depicted in Fig. 3.8.

In [MHj6] an estimate for the order of magnitude of the mutual inductance was calculated using
Ampère’s law Eq. 3.9 for calculating the magnetic flux density. The mutual inductance for a single
membrane, c.f. Fig. 3.8(a) and (b) was estimated estimated from

MA.L. ≈
ψ21

I
=
l µ0

π

∫ x2

x1

(
1

x
+

1

b− x

)
dx ≈ 17 nH. (3.23)

Figure 3.8(b) shows a comparison of results for the magnetic flux density using Ampère’s law Eq. 3.9
and Biot-Savart’s law Eq. 3.10. There, the solutions for B(x) are shown for different y-positions. The
further the distance of the conductors tip (conductor in x-direction), the more both solutions coincide.
In Fig. 3.8(c) a three-dimensional illustration of the magnetic flux density is shown. In [189] the mutual
inductance was calculated using the solution obtained using Biot-Savart’s law and the result was

MB.S. ≈ 13.2 nH. (3.24)

78



3.4 Offset voltage and cross-talk

Excitation circuit
Vibrating area

Read-out circuit

l

b

(a) Top view

-2 -1 0 1 2

-0.5
-0.25
0.0
0.25
0.5

A.L.
B.S.

b

x1 x2

(b) Front view (c) 3D-view

Figure 3.8: Double membrane sensor: a) Top view of one of two membranes used for the double membrane sensor: A
polymer membrane carries two copper paths, where one is used for excitation, the other is used for read-out. b) Front
view including several solutions of the magnetic flux density at different y-positions using Biot-Savart’s law (B.S.) and
Ampère law (A.L.). Note that the scale of this figure is given in mT per 1 A excitation current. For this sensor the
excitation currents were in the order of 100 mA. c) Three dimensional illustration of the magnetic flux density calculated
using Biot-Savart’s law and assuming that the conductive path is infinitely extended in y-direction.

Suspended platelet sensor

For the suspended platelet sensor, two mechanically stretched wires are used, where one is used for
excitation, the other is used for read-out. These wires and the wiring for power supply and read-out,
form two loops (single-turn coils) with a certain cross-sectional area. The magnetic flux affected by
the current in the first loop penetrating the second loop induces a voltage in this second loop, see
Fig. 3.9(a). Displacing the wires changes the cross-sectional areas of the loops, resulting in a different
cross-talk voltage Vct, making reliable measuring difficult. To reduce the effect of electrical cross-talk,
rigid conductors and BNC-connectors were used, first, to minimize the effective cross-sectional area of
the single-turn loops and second, to keep this cross-sectional area constant, see Fig. 3.9(b).

Experimental verification

The cross-talk was analyzed for both sensors by recording and investigating the frequency responses of
both sensors, see Fig. 3.10. The amplitude and phase spectra were recorded for a single membrane and
is depicted in Fig. 3.10(a). As the time variant magnetic field from the excitation path directly couples
into the read-out path, the cross-talk signals become dominant. Fitting the model parameters from
Eqs. 3.4 and 3.22 into the recorded frequency response yielded the model parameters as they are given
in Fig. 3.10(a). For the mutual inductance M , the calculated values MA.L. ≈ 17 nH, MB.S. ≈ 13.2 nH
and the fitted value Mfit = 15.10 nH are in good accordance.

(a) Cross-talk (b) Reduced cross-talk

Figure 3.9: Cross-talk for two galvanically isolated circuits: Reducing the area of the output circuitry reduces the effect
of cross-talk signals. To keep the electric cross-talk constant, a rigid connection of the read-out wire and BNC connectors
are advantageous.
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Figure 3.10: Recorded spectra showing dominant, significant and reduced cross-talk using the membrane sensor and the
suspended platelet sensor as example. Forth both cases, the measurements were made in air. In each figure the fitted
values for the model of the output voltage Vout using Eqs. 3.4 and 3.22 are given.

For the suspended plate sensor, the cross-talk is significantly smaller, see Fig. 3.10(b). There, the effect
of both wiring techniques as depicted in Fig. 3.9 are shown. The first case yields significant cross-talk
with a mutual inductance M = 2.75 nH. Compared with the double membrane sensor the effect of the
offset voltage is much smaller and is mainly visible in the phase spectrum. As the signal components of
VM become small for frequencies higher than ≈ 3 kHz the part of the cross-talk voltage V ct = jωM I in

becomes dominant which shifts the phase back to π
2 . Reducing the area formed by the excitation and

read-out circuitry reduced the mutual inductance by a factor of 10, approximately (M = 0.2 nH). In
the recorded frequency band the signals of the reduced cross-talk do not become significant and thus,
the phase remains at −π

2 but will shift back to π
2 at higher frequencies, as the electrical cross-talk can

not be completely eliminated.

Figure 3.11 shows electric equivalent circuits for both cases of LFDRs with which the offset voltages
can be compensated. There a reference voltage obtained by using, e.g., the second channel of the
signal generator and a reference resistance is used to compensate the offset. Instead of the reference
resistance the same setup as it is used for the resonator but without the external magnetic field or
prohibiting movements of the resonator, i.e. ensuring that VM = 0 V for the reference device could be
used as well.
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(b) Compensated circuit for two conductors LFDRs

Figure 3.11: Equivalent circuits for compensating offset voltages.
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3.5 Magnetic circuitry

3.4.3 Single versus double coil setup (torsional resonator)

The benefits and disadvantages of using single or double coil setups were experimentally investigated
for the case of the torsional resonator [MHj1]. Schematic drawings of the rotors’ cross-sections were
already depicted in Fig. 3.2. For the first case of the single conductor LFDR, a single coil with 100
turns is used for both, excitation and read-out and for the second case, two coils with 50 turns each
are separately used for these purposes. The voltage of the signal generator Vg was 0.1 V and the
series resistance Rs was 100Ω. For the manufactured rotor of the single coil setup, Rc = 21.3Ω and
Lc = 215µH and for the rotor of the double coil setup M = 480µH were obtained.

Both types of rotors have been manufactured and mounted on a tungsten rod with 0.58 mm diameter
and 5 cm length for each torsional spring. The recorded frequency responses covering a frequency range
of 100 Hz to 10 kHz as well as detailed plots of the fundamental resonance are shown in Fig. 3.12 for
both cases. The resonance peak is more than twice as high in case of the single coil setup compared
with the double coil setup. (11.6 mV in contrast to 4.5 mV for the double coil setup.) This results from
the fact that for the single coil setup, the number of coil turns is twice as high which yields a higher
effective driving force in the rotor and a proportional to the coil turns higher induced voltage. Due to
the large offset voltage for the single coil (≈ 12 mV) the change of phase at resonance is significantly
smaller as for the double coil (39◦ in comparison to 178◦). The reason of the phase shift of 178◦

instead of supposedly 180◦ is that the output voltage is subjected to a slight cross-talk voltage at these
frequencies. This cross-talk voltage increases proportionally to the excitation frequency as it can be
observed in Fig. 3.12(b) which is also considered in Eq. 3.22.

3.5 Magnetic circuitry

Equations 3.1 and 3.2 indicate that the influence of the magnetic field on the motion-induced voltage
is quadratic. Thus the external magnetic field should preferentially be large to obtain high output
signals. In the following, the dependence of the magnetic field on the motion-induced voltage as well
as permanent magnet assemblies for achieving high magnetic flux densities are presented.

3.5.1 Effect of magnetic flux density on the motion-induced voltage

To investigate the effect of the magnetic flux density on the motion-induced voltage, three different
magnetic circuits using Neodymium (NdFeB) magnets were manufactured. In Fig. 3.13 the influence
of the external magnetic field on the motion-induced voltage for the case of the straight, stretched
wire LFDR, see Fig. 3.1(a) is illustrated, for measured and modeled data, see also [MHc21]. There,
Fig. 3.13(a) shows the magnitude over the excitation current’s frequency and Fig. 3.13(b) shows the
Nyquist plots. Both, amplitude spectrum as well as Nyquist plot were evaluated from the same
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Figure 3.12: Frequency responses measured with the single coil (a) and the double coil (b) setup using the torsional
resonator. The recorded spectra between 100 Hz and 10 kHz as well as detailed plots of the resonance are shown for
both setups.
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Figure 3.13: Response to magnetic flux density.

measurements containing the fundamental harmonic of the wire. In Fig. 3.13(c) the maximum value
of the measured voltage max(Vout) over the magnetic flux density is depicted. There, the quadratic
influence of the external magnetic flux density on the motion-induced voltage is observable. The
measurements were made in air for a 3 cm long, 47µm thick tungsten wire with an excitation current
of 6.25µA and a load of 60.6 g tensioning the wire. For better visibility, in the plot of the magnitude,
the resonance peaks were centered in respect to the resonance peak of the 1.2 T frequency response.
This was necessary due to shifts of the resonance frequency which were in the order of ± 5 Hz for these
measurements.

3.5.2 Halbach array for straight structures

Annular Halbach magnets (also know as circular Halbach arrays) can be used to induce strong and
homogeneous magnetic fields and are easily applicable for straight LFDRs such as the straight vibrating
wire. The benefits of such Halbach arrays are, amongst others, strongest field per magnet mass, high
homogeneity and weak stray-fields [248], just to name some of them. In [249] a Halbach magnet
assembly is presented which yields flux densities exceeding 5 T for an air-gap length of 2 mm. However,
the outer dimensions of the Halbach array presented there were 570x570x490 mm with a total weight
of 900 kg (including the supporting structure). The direction of the magnetic flux density of an ideal
Halbach array is depicted in Fig. 3.14(a).

For implementing a miniaturized Halbach ring with an inner diameter of 4 mm, 36 NdFeB cylindric
magnets with a flattened face, which is necessary for the alignment, see Fee. 3.14(b), were used.
For fabrication, this pattern was CNC-milled into a fibre glass block allowing the alignment of the
magnets. The dimensions of this miniaturized Halbach array were L = 25 mm in length, Do = 29 mm
outer diameter and , Di = 4 mm inner diameter. The total weight was about 80 g and the measured
magnetic flux density initially was 1.4 T and decreased to 1.2 T, supposably due to small realignments
of the discrete magnets. The simulated flux density was 1.6 T, see Fig. 3.14(c).

3.5.3 Magnet assemblies for non-straight structures (U-shaped wire)

For non-straight LFDRs such as the U-shaped wire resonator, Halbach arrays are difficult to be im-
plemented. Thus, other permanent magnet assemblies are used to yield high magnetic flux densities
at the tip of the U-shaped wire. For the latter, the magnetic field, has to be aligned from the front of
the U-shaped structure, see also Fig. 3.4(a). Three possible designs for the magnetic circuits yielding
high magnetic flux densities and the solution of finite elements simulations are depicted in Fig. 3.15.
For the experiments performed for this thesis, all these three types of magnetic circuits were used. In
Fig. 3.15(a) only one cubic NdFeB magnet is used where higher magnetic flux densities can be used
if the ‘U’ is placed to one of the magnet’s side such that the ‘U’ is in parallel with the magnetization
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(a) Ideal Halbach magnet

2ϕ

ϕ

(b) Discretized Halbach mag-
net

1.8

1.6

1.4

0.6

0.2

B
 / T

(c) FE-Simulation

Figure 3.14: In (a) an ideal annular Halbach magnet is depicted. In the air-gap, inside of the Halbach ring, a very
strong homogenous flux density is obtained, whereas outside of the ring the flux density is low. (b) shows a sketch of the
implementation of an discretized annular Halbach magnet. There, the contours and the orientations of magnetization of
the 36 NdFeB magnets with a remanent flux density of 1.42 T are depicted. (L=25 mm, D =3.9 mm; “flattened diameter”:
3.4 mm; the magnetization is in parallel to the flattened face.) For symmetry reasons the magnets for ϕ ≥ 180◦, were
turned upside down. (c) shows the results of an 2D FE-simulation obtained with COMSOL Multiphysics 3.5. The flux
density inside of the ring (airgap diameter of ∼ 4mm) obtained by this 2D FE-anaylsis is 1.6 T. [MHc22]

direction. In Fig. 3.15(b) a second magnet is used yielding higher magnetic flux densities. For this
assembly however high repelling forces of the magnets require solid clamping of the latter. Figure
3.15(c) shows an assembly of two permanent magnets where a cylindrical permanent magnet is placed
inside of a ring magnet. This assembly yielded the highest magnetic flux densities and was used for
the setup presented in [MHj4].

3.6 Reluctance actuation and electromagnetic pickups

As an alternative to LFDRs, reluctance actuation and the use of electromagnetic pickups for read-out
were also investigated using steel tuning forks with circular and rectangular cross-sections as resonators,
see [MHj2] . Figure 3.16 shows a basic sketch of a reluctance acutated tuning fork. The used steel
tuning forks were welded to a solid stainless steel stand. One of the ferromagnetic tuning fork’s
prongs was placed close to an electromagnet, used for excitation. At the end of the opposed prong, an
electrodynamic pick-up is placed, consisting of a permanent magnet in the center of a copper coil. A
sinusoidal Voltage Vin = V̂in sin(ω t) + Vin,offs with a DC offset Vin,offs ≥ V̂in/2 is used as input signal,
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Figure 3.15: Magnet assemblies. The simulated results for the magnetic flux density are obtained for Neodymium
magnets. All three types of magnet circuits were used for the experiments for this thesis.
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Stand

Tuning
Fork

Electromagnet Pick-Up

Figure 3.16: Sensor principle: a) A ferromagnetic steel tuning fork is actuated and read-out with an electromagnet and
an electromagnetic pick-up, respectively.

exciting harmonic oscillations of the tuning fork. These oscillations effect an induced voltage in the
pick-up serving as read-out signal. By sweeping the excitation current’s frequency (containing the
frequency of the fundamental mode), the frequency response of the tuning fork is recorded.
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Chapter 4

Sensors
In chapter 3 the principles of one and two conductor Lorentz force driven resonators (LFDRs) and a
ferromagnetic resonator-concept using reluctance actuation and an electromagnetic pickup were dis-
cussed. The concepts and their types of resonators which were investigated in the course of this thesis
are listed in Tab. 4.1 in chronological order and are briefly explained in the following. In Tab. 4.1 the
according sections, the year of publication as well as the references for first authorships in journals
and conference proceedings are given as well. For further information for a particular device these
publications can be consulted. Devices and according publications which were examined by colleagues
of the Institute of Microelectronics and Microsensors are [94, 250–254], [MHjc4], [MHjc5], [MHcc17],
[MHcc19], [MHcc20], for the double membrane sensor and [255], [MHjc1], [MHjc2], [MHcc1], [MHcc3],
[MHcc4],[MHcc5], [MHcc7], [MHcc9], [MHcc10], [MHcc11], [MHcc12], [MHcc13], [MHcc14], [MHcc16],
[MHcc18] for the single plate sensor, respectively.

The elaborated sensor concepts were designed to show measurable resonances in the range from 100 Hz
to 100 kHz. This frequency range is especially interesting from a rheological point of view as it closes the
examinable frequency gap between commercially available rheometers which cover frequencies below
100 Hz and well established shear oscillating quartz devices which are usually operated in the MHz
range.

Device Type Sec. Year Journal Conference
Double membrane sensor 2CLFDR 4.1 2011 [MHj6] [MHc4], [MHc20], [MHc27],

[MHc29], [MHc30]

Suspended platelet 2CLFDR 4.2 2012 [MHj5] [MHc19], [MHc20], [MHc23],
[MHc24], [MHc25], [MHc26],
[MHc27]

Single plate resonator 1.5CLFDR 4.3 2012 — [MHc12], [MHc19]

Wire viscometer 1CLFDR 4.4 2012 [MHj5] [MHc17], [MHc20], [MHc21],
[MHc22], [MHc23], [MHc25],
[MHc27]

U-shaped wire 1CLFDR 4.5 2014 [MHj4] [MHc4], [MHc11], [MHc12],
[MHc13], [MHc14], [MHc15],
[MHc16], [MHc17], [MHc18],
[MHc20], [MHc26]

U-tube densimeter 1CLFDR 4.6 2013 — [MHc12], [MHc13], [MHc16],
[MHc18]

Spiral spring 1CLFDR 4.7 2014 — [MHc7]

Torsional resonator 1CLFDR 4.8 2015 [MHj1] [MHc5] [MHc10]
Ferromagnetic tuning fork FMDR 4.9 2015 [MHj2] [MHc6], [MHc4], [MHc12]

Table 4.1: Overview of investigated sensors
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4 Sensors

4.1 Double membrane sensor

In previous works by Reichel et al. the idea of the double membrane sensor was already introduced, see
e.g. [250]. This sensor consists of two vibrating polymer membranes between which the sample liquid
is contained. The motivation for such sensors using polymer membranes were low cost fabrication
and the capability of disposable devices e.g., for application in medical analysis, or the monitoring
of crystallization and polymerization processes [84, 251]. In [99] a first prototype and measurement
results were presented. A model of the double membrane sensor was presented in [94] and in [253],
a semi-numerical modeling approach in the spectral domain was performed. The insights obtained
by the experimental results of first prototypes demanded redesigning the sensor assembly to achieve
several improvements. First, there was a need to increase the repeatability and the sensor’s sensitivity.
Second, a design avoiding the formation of air bubbles within the test liquid, which moreover does not
suffer from leakage had to be found. Third, measurement series obtained with the new devices had to
be compared with theoretical findings from, e.g., [253] and confirm the latter. The works performed in
this thesis with the focus to realize these requirements were [MHj6], [MHc29], [MHc30] and [MHjc5].

4.1.1 Sensor principle

Figure 4.1 shows exploded, schematic drawings of the double membrane sensor concepts. Two polymer
membranes are bonded to supporting frames which ensures that only one side of the membrane gets
wetted upon immersion. Depending on the used spacer which separates both membranes, open and
closed setups can be manufactured. In Fig. 4.1(a) the concept of an open, fork-like assembly which can
be immersed into the sample liquid is shown. Compared to closed setups as it is depicted in 4.1(b),
this open, immersion principle reduces the probability of air bubble formation when filling the sensor.
Furthermore, sensor designs based on an immersion principle are better suited for in-line sensing
capabilities. However, a closed design benefits from the advantages that it requires less sample liquid
volume and handling is more convenient if a large amount of different liquids has to be investigated.

Depending on the particular membrane design, see Fig. 4.1(c), the (1,1) and (2,1)-eigenmodes of the
membranes can be excited, see Fig. 4.2(a), by means of Lorentz forces on the sinusoidal excitation
currents in the excitation paths. The membranes are deflected either symmetrically or antisymmetri-
cally depending on opposite or equal direction of the electric current through the excitation paths of
both membranes, see Fig. 4.2(b). Thus, two different deformation fields can be applied, each leading
to different resonance frequencies and responses to viscosity and mass density. Using the excitation

B

(a) Open sensor

1 cm

(b) Closed sensor

Excitation

vibrating
area

Readout

(c) Membrane designs

Figure 4.1: In (a) the exploded view of the double membrane rheometer is illustrated. Two polymer membranes carrying
conductive paths for excitation and read-out are bonded to rigid platelets. The bonding, also acting as sealing, ensures
that the membranes’ sides carrying the conductive paths do not get wetted with the liquid to be examined. I.e., only
the liquid in the space between both membranes will be examined. The distance of both membranes is determined by
the height of the spacer between both sensor parts. The arrows on the left side indicate the direction of the external
magnetic field provided by two NdFeB magnets on each side of the sensor. The characteristic difference of the closed
type (b) is that the spacer seals and encircles the measuring zone from the surrounding and thus requires inlet and outlet
for charging the sensor cell. In (c) single membranes and their excitation paths (red) and read-out paths are illustrated
in detail.
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(1,1)-eigenmode (2,1)-eigenmode

(a) Eigenmodes
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Figure 4.2: In (a) the deflection of single membranes in the (1,1)- and the (2,1)-eigenmode is depicted. (b) Depending on
the direction of the electric current in the particular excitation path, the deflection can either be symmetric (opposite
direction) or antisymmetric (same direction).

and read-out technique as it was described in Sec. 3.2 for two conductors LFDRs, an excitation signal
of about Vin = 1.3 V yields read-out signals on the order of Vout = 0.1µV.

In principle, it would also be possible to use one membrane only to measure both, viscosity and mass
density. However, the key feature of this sensor is the usage of two polymer membranes where the
main advantage of the usage of a second membrane is the possibility of switching between two different
modes of operation which allows changing the device’s sensitivity to viscosity and mass density without
changing the sensor’s geometry.

4.1.2 Fabrication

The membranes carrying the conductive paths are realized by photolithography and wet etching of a
100µm thick polyester based (PET) sheet coated with a 2µm copper layer. The dimensions of the
membranes are 30×11.8 mm2, with a vibrating area of 12×5.6 mm2. As polyester based polymers are
highly solvent-proof, reaction adhesives (e.g., epoxy resin) are normally used for bonding or gluing [256].
However, epoxy resin showed to be hardly suitable for an easy manufacturing process to ensure uniform
and reproducible bonding of the PET sheets. To account for an uniform adherend, pressure sensitive
adhesive (PSA) foils are used to bond the membranes with the rigid top and bottom plate and the
spacer which determines the gap between both membranes. The membranes and the foils are cut
with a digital craft cutter [257] with a mechanical resolution of 50µm. The external magnetic field
was provided by two cubic NdFeB magnets with 2 cm in length yielding a magnetic flux density of
B = 0.6 T, which was measured with a Gauss meter (GM05, Hirst Magnetic Instrument LTD).

4.1.3 Results

In the investigated frequency range (500 Hz to 100 kHz) two dominant mechanical resonance fre-
quencies at 2.5 kHz and 13 kHz approximately, could be observed using the membrane design on
the left hand side of Fig. 4.1(c). The investigation of the double membrane sensors showed that in
the (anti)symmetric mode only one mechanical resonance is excited. According to theoretical findings
in [253], symmetric actuation, which is more sensitive to viscosity, excites the resonances at fr ≈ 2.5kHz,
whereas in antisymmetric mode, which is more sensitive to mass density fr ≈ 13 kHz are observed.
Furthermore, in [253] it was found that the resonance frequencies in symmetric mode shift to higher
and those in antisymmetric excitation to lower frequencies for larger gaps between both membranes.
These findings were experimentally validated in [MHj6] and are shown in Figs. 4.3 and 4.4.

In Fig. 4.3 relative Q-factors and resonance frequencies are depicted with respect to the dynamic
viscosity and mass density respectively, for four test liquids. The values for Qrel and fr,rel are given with
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Figure 4.3: In (a) relative Q-factors and in (b) relative eigenfrequencies are illustrated for symmetric and antisymmetric
excitation for four different viscosity standards (s3, n14, n44, n415, Cannon Instrument Company®) @ 25◦C.

respect to the highest viscosity or mass density value, respectively. Figure 4.3 shows that the symmetric
mode is more sensitive to viscosity while the antisymmetric mode is more sensitive to mass density.
In symmetric mode, there was no more resonant behavior for the highest viscous examined liquid
(viscosity standard N415, 830 mPa s at 25◦C) due to overdamping while in antisymmetric mode the
resonance was hardly damped. The influence of the gap on the resonance frequencies was investigated
by varying the distance between both membranes using a micrometer positioning unit. With this
experiment it was possible to prove the findings presented in [253] and [MHcc17]: Higher gaps yield
a shift to higher frequencies in symmetric and a shift to lower frequencies in antisymmetric mode,
respectively. This behavior could be observed for gaps from 100µm to 400µm, see Fig. 4.4(a).

The concept of the double membrane sensor was theoretically and experimentally monitored and
proven. However, it was not further investigated as aging of the membrane yielded severe instabilities
of measurement result, see [MHjc5] and due to their mechanical structure and clamping, membranes
and plates are highly cross sensitive to temperature variations.
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Figure 4.4: a) Influence of the gap w between both membranes on the resonance frequencies fr. Higher gaps generally
yield a shift to higher frequencies in symmetric and a shift to lower frequencies in antisymmetric mode. b) shows recorded
frequency responses. The associated liquids are indicated on the right hand side.
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4.2 Suspended platelet

4.2 Suspended platelet

In Fig. 4.5(a) a schematic drawing of the suspended platelet viscosity and mass density sensor is
depicted and in Fig. 4.5(b) measurements achieved with this device are shown. The sensor, surrounded
by an experimental well containing the sample liquid, consists of a small platelet and two parallel wires
which are placed in an external magnetic field. In Fig. 4.5(a), the left wire is used for exciting lateral
vibrations by means of Lorentz forces. The second wire on the right, used for pick-up, is mechanically
coupled to the excitation wire with a platelet, thus following the movement of the left wire, which
effects an induced voltage which is used as read-out. By changing the tensile stresses in the wires, the
device’s resonance frequency can be changed. In first experiments a frequency range of about 800Hz
to 4 kHz for 100 µm thick and 3 cm long tungsten wires and a 3x3mm2, 100 µm thick PET platelet
was achieved.

The suspended platelet sensor has two galvanically isolated excitation and read-out paths as it is
the case for the double membrane sensor. However, in this case the inductive cross-talk between
excitation and read-out path is much weaker as it is for the double membrane sensor, see also [MHc26].
Considering the fluid-structure interaction for the modeling, the oscillating platelet sensor requires a
less complex model than the double membrane sensor.

For the measurements obtained with this sensor, unstable and shifting resonance frequencies were
observed. These resonance frequency shifts are not caused by the different liquids’ physical properties
but by detuning of the sensor which results e.g., from thermal stresses, slacking of the entire setup,
etc. As these unstable resonance frequencies did not allow reliable and repeatable measurements, this
concept was not further investigated.

4.3 Single plate resonator

The core of the single plate sensor which was already introduced by Reichel et al. in [96], is a wet-etched
new-silver sheet which consists of a rectangular area (platelet) being supported by four, either straight
or meander-shaped springs, see Fig. 4.6. Besides supporting purposes, these springs furthermore serve
as electrical paths for actuation and read-out. The device is excited to in-plane oscillations due to
Lorentz forces on sinusoidal currents over the structure which is placed in an external magnetic field
as it is depicted in Fig. 4.6(a). The device consists of a single electric conductor, however excitation
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Figure 4.5: Suspended platelet sensor. a) shows the principle of the sensor. b) measured frequency responses including
the fundamental harmonic in four different liquids (Excitation Voltage Vin ≈ 0.5 V). It is clearly visible that higher
viscosities yield higher damping. c) Measured frequency responses showing the detuning of the resonance frequency. In
this experiment, resonance frequencies in a frequency range of about 800Hz to 4 kHz were achieved.
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Figure 4.6: Single plate viscosity and mass density sensor. a) shows a sketch of the sensor, which is manufactured using a
wet etched Niclkel-Brass sheet to obtain the sensor’s geometry consisting of a center platelet which is supported by four
springs also serving for electrical contacts for excitation and read-out. The device is similar to the suspended platelet,
however consists of a homogenous material. b) sketch of the basic difference between straight and S-shaped springs.
c) shows two photographs of the resonator cards with the single plate sensors in their center. In both pictures a detailed
view of the single plate resonator with straight and S-shaped springs is given.

and read-out electrodes are geometrically separated which does not allow assigning the device neither
to ‘1CLFDR’ nor to a ‘2CLFDR’. For this reason the term ‘1.5CLFDR’ was used in Tab. 4.1.

The work performed in the course of this thesis for the single plate sensor concerned the investigation
of possible advantages and disadvantages of straight beams versus S-shaped beams, see Figs. 4.6(b) and
4.6(c) as well as a long-term measurement for investigating fr and Q variations. Further developments
of this device were presented in [MHjc2], [MHcc1] and [MHjc1]. It was found [MHc19], that S-shaped
springs yield lower cross-sensitivities to temperature and more stable resonance frequencies. The
stability of the resonance frequencies was investigated in [MHc12] in respect to the U-shaped wire and
the tuning fork sensors which were already briefly introduced in Chapter 3 and will be explained more
in detail in Secs. 4.5 and 4.9. Figure 4.7 shows the evaluation of this study. All three sensors were filled
with ethanol and put into a Weiss WKL 100 climate chamber controlling the temperature to 25 ◦C for
providing constant physical conditions. The sensors’ frequency responses were continuously recorded
during 39, 90 and 162 hours for the single plate, the U-shaped wire and the round tuning fork sensor,
respectively, yielding 2755, 4193 and 4232 values for fr and Q. Figure 4.7 shows the relative changes
∆rfr and ∆rQ for fr and Q with respect to their starting values fr,0i and Q0i.

Figure 4.7 shows that the variations of the single plate sensor in fr and Q were the highest and that
all three investigated sensors showed clear trends in fr and Q. It was found e.g. in [MHj2] that these
trends resulted from changing viscosities and mass densities of the examined liquids themselves. In
case of the experiments performed for the results shown in Fig. 4.7 ethanol dissolved plastics and
glues in the setup yielding a continuous change in viscosity and mass density. For the experimental
results depicted in Fig. 4.7(c) the viscosity and mass density were determined with an Anton Paar
SVM 3000 before and after the measurements. The relative changes in viscosity and mass density were
∆rη = 53.15 · 10−3 and ∆rρ = 4.97 · 10−3 and the relative changes in resonance frequency and quality
factor were ∆rfr = −0.17 · 10−3 and ∆rQ = −27.91 · 10−3.

The shape of the trend of fr and Q in Fig. 4.7(a) might result from changing and varying tensile stresses
in the resonator, a problem which was already observed and addressed for doubly clamped structures
in [MHj6]. Judging the results shown in Fig. 4.7 suggests a complete revision of all three setups, which
are also stable against solvents such as ethanol. However, as the trends in Fig. 4.7(c) could be assigned
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Figure 4.7: Long-term measurements and evaluated resonance frequencies and quality factors.

to small η and ρ variations, this results shows the great capabilities of resonant viscosity and mass
density sensors. The revision of these setups and more precise long-term measurements will be subject
of future research.

4.4 Wire viscometer

Resonating viscometers using a single wire only, are known as wire viscometers in literature [104,231,
258]. These viscometers were designed to be operated at one fixed resonance frequency only. The
motivation for the wire viscometers investigated within this thesis however, was the investigation of
tuning the resonance frequencies online within a preferentially large frequency range and with focus
on miniaturized devices [MHj5]. Furthermore, the wire viscometer benefits from a very simple design
allowing closed form modeling.

Figure 4.8(a) shows a schematic sketch of the wire viscometer. A tungsten wire is stretched over two
electrical conductive blades. For first (test) setups, these blades, determining the vibrating length and
assuring for electrical contact, were made of PCB (copper coated fiberglass) which were later replaced
by machined metal blades. The series resistor limits the excitation current to avoid non linear deflection
yielding Duffing behavior, see [231]. For measurements in air about 10 kΩ and in liquids, resistors
between 50 Ω and 1 kΩ were used. The external magnetic field was generated with different NdFeB
magnet assemblies yielding magnetic flux densities from 0.3 T up to 1.4 T, see [MHc22].

In figure 4.8(b) recorded frequency responses in four different liquids are shown. There the resonance
frequency obtained for measurements in DI-water shifted to unexpected lower resonance frequencies
compared to those of the solvents. This finding can only be explained by slacking of the tensioned wire
which is a major issue concerning resonance stability and thus measurement accuracy. Due to these
instabilities which only can be overcome with relatively highly sophisticated tensioning mechanisms,
see [MHj5], this concept was not further investigated. Similar to the measurements for the suspended
platelet sensor presented in Sec. 4.2, the bandwidth of achievable resonance frequencies by changing
the tensile stresses in the wire was investigated, see Fig. 4.8(c). There, frequency responses yielding
resonance frequencies in the range of 1000 Hz to 4250 Hz for a 3 cm long and 100 µm thick tungsten
wire are shown.
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Figure 4.8: In (a) a schematic drawing of the wire viscometer is depicted. The experimental well for investigating sample
liquids is not shown in this sketch. A 100 µm thick tungsten wire carrying sinusoidal currents is placed in an external
magnetic field and thus transversally oscillating. A series resistors is used to limit the excitation current. The resonance
frequency can be changed by (mechanically) changing the tensile stresses in the wire. (b) shows recorded frequency
responses in liquids and in (c) the band width of achievable resonance frequencies (in air) using a 3 cm long and 100 µm
thick tungsten wire is illustrated. The obtained resonance frequency range is 1000 Hz to 4250 Hz.

4.5 U-shaped wire sensor

First prototypes of the U-shaped wire sensor were presented in [MHc18]. A similar silicon-based device
for magnetic field measurements was presented in [259] and in [87], a U-shaped cantilever device for
the characterization of DNA solutions was presented. For the setup investigated in this thesis, a
tungsten wire, bent to the shape of a ‘U’, rigidly clamped and immersed in a sample liquid, carries
sinusoidal currents in the presence of an external magnetic field, as depicted in Fig. 4.9(a). Due to
the resulting Lorentz forces, the latter deflects in an out-of-plane oscillation yielding a motion-induced
voltage corresponding to the wire’s tip velocity and thus serves as a quantity for read-out.

The U-shaped wire resonator was designed aiming at operational frequencies in the low kilohertz range,
circular cross-sections of the resonator, electrodynamic actuation and read-out by means of Lorentz
forces and last but not least, low cross-sensitivity of the sensor’s resonance frequency to temperature.
Circular cross-sections are beneficial for closed form modeling of the fluid-structure interaction, as the
well known analytical expressions for a laterally oscillating cylinder [191] can be easily applied. The
modeling of the fluid-structure interaction of resonators with rectangular cross-sections (as it is the
case for the classical micro-cantilever), is e.g. based on considering an infinitely thin structure [260]
or introducing a correction function to the well known equations for the circular case [193]. Both
approaches yield relatively complex expressions for the fluid-structure interaction.

The cross-sensitivities of the resonance frequency to temperature of resonant viscosity and mass den-
sity sensors have to be small, as the temperature measurement is limited to a certain accuracy. In
comparison to doubly clamped structures, for which high cross-sensitivities of the resonance frequency
to temperature have been observed [MHj5], singly clamped approaches yield lower dependencies of the
resonance frequency to temperature in general. The U-shaped design might be interpreted as such a
singly clamped beam, or in other words, two singly clamped beams, which are connected at their ends.
Tungsten was used as resonator material as it features a low thermal expansion coefficient and thus,
keeps the thermal dependence of the resonance frequency low. In [MHj4] it was experimentally shown,
that the U-shaped tungsten wire resonator yielded lower relative cross-sensitivity of the resonance
frequency to temperature than similar devices implemented in silicon.
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Figure 4.9: (a) Schematic sketch of the U-shaped wire viscosity and mass density sensor. (b) Comparison of measured and
modeled results for acetone-isopropanol solutions. (c) Long-term measurements in ethanol yielding a drift of resonance
frequency and quality factor. The black line indicates averaged values of 100 measurements where the gray surface
represents all measured values.

Setup and Measurements

Several prototypes of the U-shaped wire sensor were fabricated. Photographs of the latest and most
reliable setup are shown in Fig. 4.10. To prevent from evaporation and associated thermal changes
of the liquid due to evaporation heat losses, the U-shaped wire was integrated in a sealed aluminum
housing, see Fig. 4.10(a). An assembly of cylindrical and ring permanent magnets, c.f. Fig. 4.10(b),
provides magnetic flux densities of B ≈ 0.5 T [MHc18]. A 400µm thick tungsten wire was bent to the
shape of a ‘U’ with a radius of 3 mm and 12 mm in length. To achieve a stable and reliable clamping,
the wire was brazed into two brass blocks, see Fig. 4.10(c). For clamping, two screws for each block
were used, which furthermore served to provide a stable electrical connection between the U-shaped
wire and a PCB carrying BNC connectors. For measuring and controlling the liquid’s temperature, a
Pt-100 temperature sensor was placed close to the U-shaped wire.

Screws used for 
clamping and electrical
contact of the U-wire.

Upper part

Lower part

(a) Closed aluminium setup

Assembly of a cylinder and
ring magnets

(b) Lower part

U-wire Pt-100

Brass
block

(c) Upper part

Figure 4.10: Photographs of the measurement setup
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The setup has been extensively tested in several measurement series. For these measurements, the setup
was placed in a Weiss WKL 100 climate chamber to provide stable measuring conditions by controlling
the temperature at 25 ◦C. The voltage of the signal generator was Vg = 0.1 V and a series resistance
Rs = 100Ω was used, c.f. electrical equivalent circuit in Fig. 3.2 for a 1CLFDR. In Fig. 4.9(b), a
comparison between recorded and modeled results is shown. The experimental results were obtained
with the 11 acetone-isopropanol solutions depicted in Fig. 1.2 in Chapter 1. For modeling a complete,
closed form model has been devised and was presented in [MHj4]. The setup has furthermore been
tested in liquids recording fr and Q over several days in the climate chamber at 25 ◦C. In comparison to
previously investigated doubly clamped devices [MHj5], the long-term stability improved significantly.
However, in some cases, minor but clear trends of both fr and Q could be observed, see e.g., Fig. 4.9(c).
There, the evaluated results for fr and Q of 4193 measurements which were recored during 90 hours
in ethanol are depicted. In this case, the shift to lower fr and Q is related to the change of the liquid
properties itself. It was found that O-ring seals were slightly dissolved by the ethanol leading to a
slight increase in viscosity and mass density of the liquid which was detected by the sensor.

In other experiments, electrolytical solutions were investigated, which yielded corrosion within the
setup. To overcome this, a complete redesign using other materials, will be necessary. However, the
principle of the U-shaped wire yielded already very promising results. The principle ability for long-
term stability can be explained by its singly clamped approach and by its low cross-sensitivity to
temperature. These circumstances can also be observed in case of string instruments, which have to
be frequently tuned, compared to reed-based instruments (like accordions) and tuning forks which are
based on singly clamped oscillating objects for which re-tuning is not necessary.

4.6 U-tube density sensor

Inspired by the commercially available, vibrating U-tube principle [261, 262] for precise mass den-
sity measurements, a feasibility study for a miniaturized U-tube mass density sensor was elaborated
[MHc18]. Although it is possible to determine both, viscosity and mass density with resonant viscosity
and mass density sensors, the motivation for such a device yielding mass density values only is to
increase the measuring accuracy for both quantities with a second reference measurement. The idea
behind the concept, which is depicted in Fig. 4.11(a), was to have a second device of (approximately)
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Figure 4.11: Sketch of the measuring cell and photographs of the mass density sensor. (a) Principle of the measuring cell
consisting of a density sensor (top) and a viscosity sensor (bottom). The density sensor consists of a stainless steel tube
(0.5 – 0.8 mm) with the sample liquid inside. The viscosity sensor consists of a 0.4 mm thick, bent tungsten wire being
immersed in the sample liquid. (b) shows photographs of the setup used for a first feasibility study.
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Figure 4.12: Mass density measurements and evaluation: (a) shows the amplitude of measured frequency responses in
five different liquids given in the table aside. For every liquid 100 measurements have been performed. (b) shows the
evaluated resonance frequencies of the recorded frequency responses. The solid line is the result from a fitted model.
The dashed lines indicate the margins of maximum negative and positive deviations of recorded values from the fitted
model.

the same size and the same excitation and read-out principles as the U-shaped wire sensor. Pho-
tographs of a first feasibility study are depicted in Fig. 4.11(b). A stainless steel capillary with inner
and outer diameter of 0.5 mm and 0.8 mm, respectively was used as tube. The U-tube was clamped
with two fibre-glass blocks and three screws. For electrical contact, the free ends of the tube were
contacted with electrical clamps and additional soldering. For enabling filling of the tube, the latter
was connected to cannulas with heat shrink tubes, which furthermore acted as stress reliefs.

The experimental results obtained with this prototype at 25 ◦C are shown in Fig. 4.12(a). Five
isopropanol–water mixtures have been used for investigating the sensor’s sensitivity to mass density.
With every mixture, 100 measurements have been performed. After the cleaning of the tube, 100
resonance curves have been recorded in air before filling the sensor with a new sample liquid to certify
the cleaning procedure. For this mass density sensor, the resonance frequency can be directly related
to the liquid’s mass density. The (fitted) solid line in Fig. 4.12(b) for the resonance frequency fr as
function of mass density ρ in g / cm3 is fr(ρ) = 813.70− 31.93 · ρ Hz and the dashed lines indicate the
maximum positive and negative deviations of recorded values from these fitted values. All recorded
measurements for this mass density sensor lie within an (accuracy) margin of -0.0073 to 0.0112 g/cm3.
Note that these values were achieved for a very first, relatively simple prototype which was developed in
the course of a feasibility study. Commercially available mass density measurement hand-held devices
feature an accuracy of ∆ρ = ±0.001 g/cm3. To be able to achieve this accuracy with such a mass
density sensor which features a sensitivity of ∆fr/∆ρ = −31.93 Hz / g/cm3 and assuming an accuracy
of the temperature measurement of ∆T = ±0.1 ◦C, the maximum allowable dependency of the sensor’s
resonance frequency on temperature is given by ∆fr/∆T ≤ ± 0.32 Hz/◦C.

4.7 Spring viscometer

The principle of the spring viscosimeter as well as a photograph of the latter are depicted in Fig. 4.13,
[MHc7]. A spiral spring, placed in an external magnetic field and carrying sinusoidal currents, is
immersed into a sample liquid. Due to Lorentz forces on the AC currents in the spring, the latter
oscillates transversally, which in turn induces a voltage on the spring. For this first prototype, a spiral
spring was mounted and stretched on two brass screws which in turn were fixed with two brass screws
which furthermore allowed for electrically contacting the spring, see Fig. 4.13(b). This clamping method
is sufficient for principle investigations, and a first estimation of side effects such as cross-sensitivity
to temperature. However, when aiming at using the device as an accurate viscosity and mass density
sensor, a more reliable clamping technique has to be developed. As a first attempt, to overcome this
drawback, the spring was braced on small brass cylinders. However, due to the high temperatures,
the spring’s elasticity significantly suffered from the brazing procedure and thus this approach was not
further refined.
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Figure 4.13: (a) An electrical conductive, streched spiral spring, immersed in a sample liquid, carries sinusoidal currents
in the presence of an external magnetic field and thus oscillates transversally. (b) photograph of a first prototype: the
spring was mounted on brass screws and stretched in a machined well.

Recorded frequency responses with the acetone–isopropanol mixtures and evaluated quality factors and
resonance frequencies over viscosity are depicted in Fig. 4.14. Figure 4.14(a) shows a characteristic
frequency response in air with a quality factor Q = 3028.6 and resonance frequency fr = 643.75 Hz as
well as 100 recorded frequency responses for every liquid at 25 ◦C. After the examination of a liquid,
the sensor was cleaned and then a measurement in air was performed. Due to the provisional clamping
method mechanical cleaning might have changed the resonance frequency of the device. The span
of variations of the evaluated resonance frequencies in air (after every measurement in a liquid) was
0.6958 Hz, which is a justifiable stability for a very first feasibility study of the sensor’s principle but
not for an accurate sensor. Contrary to expectations, the resonance frequency in the second liquid
is higher than for the first liquid see Fig. 4.14(b). This effect was also observed for tuning forks and
an oscillating U-shaped wire for the acetone–isopropanol mixtures. This behavior is due to the fact
that the second liquid’s mass density is 0.0034g/cm3 lower than the first, see Fig. 1.2. The generalized
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Figure 4.14: Experimental results obtained with the spring viscometer: (a) Recorded frequency responses in air (right)
and in the acetone-isopropanol mixtures. (b) evaluated quality factors and resonance frequencies. (c) cross-sensitivity of
the resonance frequency to temperature. Note, that the straight line just represents an estimate for the cross-sensitivity
of the resonance. The deviation of measured values might be influences of the non-ideal clamping technique.
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4.8 Torsional resonator

model Eq. 2.132 also considers this behavior. This experimental result very nicely shows that first,
resonant sensors are sensitive to both, viscosity and mass density and second, that due to their high
(but different) sensitiviteis to both quantities, accurate measurements can be achieved.

The purpose of using a spiral spring as resonator for viscosity and mass density sensing was first,
to benefit from the design related advantages of doubly clamped structures but second, to reduce
thermally induced (normal) stresses in such doubly clamped structures. Using a spiral spring instead of
a straight wire drastically reduces the cross-sensitivity to temperature. In first experiments ∆fr/∆T =
−0.983 Hz/K was achieved which divided by the devices resonance frequency of 640 Hz, approximately,
gives a temperature coefficient of ∆rfr/∆T = −145 ·10−6 1/K, see Fig. 4.14(c). Regarding future work,
a more reliable setup has to be designed, the sensitivities to viscosity and mass density as well as the
device’s cross-sensitivity to temperature have to be further investigated.

4.8 Torsional resonator

The motivation for the torsional resonator sensor, which is depicted in Fig. 4.15, was first, to man-
ufacture a resonator, which according to theoretical results from Sec. 2.1.3 yields only shear wave
propagation in the liquid and second, to have a resonator with which single and double conductor
excitation can be compared. The latter was already discussed in Sec. 3.4.3. There, it was shown that
the use of a second coil did not show a major advantage in the obtained signals compared to the setup
where only one coil is used for excitation and read-out. However, using only one coil has a significant
advantage for electrical connection. In this case, the electrical conductive torsional springs can be used
for this task [MHj1].

One hundred turns of a copper wire with a diameter of 80 µm were wound on a 3D-printed bobbin.
Two tungsten rods with a diameter of 0.58 mm serve as torsional springs with a spring length of
14 mm each. Both rods are brazed to brass cylinders with 10 mm diameter and 10 mm height. Each
tungsten rod carries a brazed brass platelet and is put into the bobbin ensuring no contact between
both torsional springs. Each end of the coil is glued with electrical conductive glue to one of these
brass platelets which are furthermore used for a form-fitted connection with epoxy resin poured into
both sides of the bobbin which in turn is put into a POM-C (polyacetal) plastics jacket with an outer
diameter of 10 mm and 25 mm length. It is essential that the tungsten rods do not get in contact in
order not to shortcut the coil. The torsional resonator is put into a milled POM-C plastics frame with
a well for containing the sample liquids. The brass cylinders are clamped with brass screws, which in

Brass cylinder

Brass platelet

Torsional spring

Bobbin

Jacket

(a) Exploded illustration (b) Assembled, clamped illustration

Brass cylinder

Brass platelet

Torsional

Jacket

Permanent Torsional

Well
Brass 

spring

magnet oscillator

screw

(c) Photographs

Figure 4.15: (a) Exploded view of the torsional resonator. (b) Illustration of the assembled, clamped setup. (c) The upper
photograph shows the manufactured torsional oscillator. The lower photograph shows the complete setup including both
permanent magnets and the torsional oscillator placed in the experimental well which was filled with the sample liquids.
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turn are used for further electrical connection for power supply and read-out. Two neodymium magnets
are used for providing a magnetic field necessary for excitation and read-out based on Lorentz-forces.

Measured amplitudes as well as evaluated quality factors and resonance frequencies obtained with the
viscosity and mass density series are depicted in Fig. 4.16. The viscosity series consist of acetone –
isopropanol mixtures which were depicted in Fig. 1.2. The intention of these mixtures was to obtain
a liquid series with varying viscosities but constant mass densities and thus is called viscosity series.
For the mass density series, five solutions using acetone, isopropanol, ethanol, DI-water and glycerol
were prepared. The liquids were mixed to obtain constant viscosities of 1 mPa·s but mass densities
between 0.78 g/cm3 and 1 g/cm3. These liquid series have been mixed to allow separate experimental
investigation of the effect of viscosity and mass density on the resonators’ frequency responses. The
viscosity and mass density values for the viscosity and the mass density series will be given in Tab. 4.3
in Sec. 4.9. Figure 4.16 shows the results of fitted models for fr and Q. The curves depicted there were
obtained by fitting the model parameters aside using all experimentally obtained values for fr and Q
and the values for η and ρ measured with the SVM 3000. With the identified model parameters, fr

and Q were than recalculated using again the same values for η and ρ. Relatively large deviations
of the measured from the modeled values for fr can be observed. The third value for the quality
factor obtained with the viscosity series is considered to be an outlier. These deviations originate
from imperfections in the prototype setup. These imperfections include, first, detuning of the sensor
during cleaning, second, evaporation of the liquid during the measurements, and third, geometrical
imperfections such as, e.g., surface roughnesses and a not perfect alignment of the oscillating cylinder
with the torsional springs. For Q, both models, i.e. the model considering shear waves only and the
generalized model yield similar results. For fr, the generalized model clearly yields better results but
still shows significant deviations. This finding can be explained by surface roughness, which yields
so-called liquid trapping [90, 263] and thus a higher sensitivity to mass density. This effect may even
be beneficial, as the effect of η and ρ on fr and Q can not be separated for devices yielding pure
one-dimensional shear waves without liquid trapping.
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Figure 4.16: Measured amplitudes as well as evaluated resonance frequencies and quality factors for two liquid series. The
one dimensional shear wave model as well as the generalized model are fit to the measured data. The model parameters
are given on the right hand side.
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Figure 4.17: Sensor principle: (a) A ferromagnetic steel tuning fork is actuated and read-out with an electromagnet
and an electromagnetic pick-up, respectively. (b) in the table above, the geometrical dimensions of the circular and
rectangular tuning fork are given. c) photograph of the measurement setup with a gold coated circular cross-sectioned
tuning fork.

4.9 Tuning fork

In contrast to the Lorentz force driven resonators discussed in the previous sections, reluctance actu-
ation and read-out using an electromagnetic pickup has been investigated using ferromagnetic tuning
forks. Figure 4.17(a) shows a basic sketch of the setup for viscosity and mass density measurements
using commercially available steel tuning forks and in Fig. 4.17(b) the geometries of the used tuning
forks with circular and rectangular cross-sections, both resonating at nominally 440 Hz in air in their
fundamental mode, are given [MHj2]. Figure 4.17(c) shows a photograph of the circular tuning fork
setup.

The steel tuning forks were welded to a solid stainless steel stand and put into a glass tube (not
depicted in Fig. 4.17(a)) which was sealed at both sides. To avoid corrosion, the tuning forks were
gold-coated by electro-plating. An electromagnet, used for excitation, is placed (outside of the tube)
close to the end of one of the ferromagnetic tuning fork’s prongs. At the end of the opposed prong,
an electrodynamic pick-up is placed, consisting of a permanent magnet in the center of a copper coil.
A sinusoidal voltage Vin = V̂in sin(ω t) + Vin,offs with a DC offset Vin,offs ≥ V̂in/2 is used as input
signal, exciting harmonic oscillations of the tuning fork. These oscillations effect an induced voltage
in the pick-up serving as read-out signal. By sweeping the excitation current’s frequency (containing
a resonant mode), the frequency response of the fully immersed tuning fork is recorded.

4.9.1 Measurements

To experimentally investigate the effects of viscosity and mass density separately on both tuning forks’
resonant behaviors, both tuning forks have been examined using the ‘viscosity series’ with (almost)
constant mass densities, and the ‘mass density series’ with (almost) constant viscosities. Recorded
frequency responses as well as evaluated resonance frequencies and quality factors obtained with both

m0k/s
2 mρk/

m3·s2

kg mηρk/
m2 s2

kg c0k/s cηk/
m·s2

kg cηρk/
m2 s2

kg

Circular 1.31 · 10−7 1.74 · 10−11 2.71 · 10−8 2.79 · 10−7 7.82 · 10−5 2.41 · 10−8

Rectangular 1.32 · 10−7 2.45 · 10−11 2.50 · 10−8 2.97 · 10−7 7.16 · 10−5 2.24 · 10−8

Table 4.2: Fitted model parameters for the circular and the rectangular tuning fork
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Figure 4.18: Recorded frequency responses and therefrom evaluated resonance frequencies and quality factors for the
circular and rectangular tuning fork.

tuning forks using the viscosity and the mass density series are depicted in Fig. 4.18. These measure-
ment results have been used to fit the parameters of the generalized model Eq. 2.132 in Sec. 2.7 and
are given in Tab. 4.2 for the circular and the rectangular tuning fork, respectively.

The viscosity and mass density values of the used liquids at 25 C◦, determined with an Anton Paar
SVM300 which features a reproducibility of 0.35 % for viscosity and 0.000 5 g/cm3 for mass density
are given in Tabs. 4.3 and 4.4. There, the evaluated resonance frequencies, quality factors and their
single standard deviations as well as calculated viscosity and mass density values and their absolute

Viscosity Series – Circular Tuning Fork – T = 25◦C
η

mPa·s
ρ

g/cm3
fr/Hz Q

ηc

mPa·s
∆ η

mPa·s
∆r η

ρc

g/cm3

∆ ρ

g/cm3
∆r ρ

0.207 0.7841 417.65± 2.9 · 10−3 477.38± 1.88 0.211 0.0045 0.0216 0.7841 -0.000 014 0.018·10−3

0.433 0.7790 417.65± 2.9 · 10−3 371.81± 1.44 0.427 -0.0060 -0.0139 0.7791 0.000 067 0.086·10−3

0.980 0.7793 417.42± 3.5 · 10−3 265.16± 0.34 0.986 -0.0053 -0.0054 0.7792 -0.000 101 -0.130·10−3

1.576 0.7803 417.22± 3.1 · 10−3 214.52± 0.33 1.591 0.015 0.0094 0.7798 -0.000 542 -0.694·10−3

2.054 0.7804 417.08± 7.1 · 10−3 190.83± 0.52 2.048 -0.0065 -0.0032 0.7808 0.000 409 0.523·10−3

Density Series – Circular Tuning Fork – T = 25◦C
η

mPa·s
ρ

g/cm3
fr/Hz Q

ηc

mPa·s
∆ η

mPa·s
∆r η

ρc

g/cm3

∆ ρ

g/cm3
∆r ρ

1.006 0.7849 417.28± 1.5 · 10−3 264.15± 0.26 0.989 -0.016 -0.021 0.7847 -0.000 220 -0.281·10−3

0.994 0.8411 415.85± 8.4 · 10−3 259.70± 1.0 0.979 -0.015 -0.015 0.8413 0.000 179 0.212·10−3

1.010 0.8931 414.52± 0.9 · 10−3 250.03± 0.68 1.023 0.014 0.013 0.8932 0.000 610 0.684·10−3

1.006 0.9870 412.21± 7.2 · 10−3 243.58± 0.88 1.013 0.007 0.007 0.9872 0.000 177 0.179·10−3

0.998 1.0073 411.75± 8.0 · 10−3 244.08± 0.62 0.995 -0.033 -0.003 1.0067 -0.000 597 -0.592·10−3

Table 4.3: Measurement results for the circular tuning fork. The values on the left hand side are viscosity and mass
density values measured with the SMV3000. The plus-minus values for fr and Q are evaluated typical errors (single
standard deviations). xc are the calculated values for viscosity and mass density using the generalized equations and
evaluated mean values for fr and Q. ∆x = xc −x and ∆r x = ∆x/x are absolute and relative deviations from the values
for viscosity and mass density, respectively.
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4.9 Tuning fork

Viscosity Series – Rectangular Tuning Fork – T = 25◦C
η

mPa·s
ρ

g/cm3
fr/Hz Q

ηc

mPa·s
∆ η

mPa·s
∆r η

ρc

g/cm3

∆ ρ

g/cm3
∆r ρ

0.207 0.7841 409.52± 3.8 · 10−3 499.00± 3.03 0.214 0.0069 0.0334 0.7841 -0.000 006 -0.008·10−3

0.433 0.7790 409.58± 6.3 · 10−3 394.58± 1.91 0.427 -0.0060 -0.0139 0.7789 -0.000 055 -0.070·10−3

0.980 0.7793 409.36± 0.9 · 10−3 285.74± 0.29 0.977 -0.0031 -0.0031 0.7794 0.000 054 0.069·10−3

1.576 0.7803 409.17± 1.8 · 10−3 232.25± 0.39 1.582 0.0053 0.0034 0.7803 0.000 039 0.050·10−3

2.054 0.7804 409.07± 3.1 · 10−3 206.20± 0.74 2.059 0.0043 -0.0021 0.7804 -0.000 020 -0.026·10−3

Density Series – Rectangular Tuning Fork – T = 25◦C
η

mPa·s
ρ

g/cm3
fr/Hz Q

ηc

mPa·s
∆ η

mPa·s
∆r η

ρc

g/cm3

∆ ρ

g/cm3
∆r ρ

1.006 0.7849 409.18± 1.8 · 10−3 284.34± 0.31 0.984 -0.021 -0.021 0.7849 0.000 016 0.020·10−3

0.994 0.8411 407.30± 1.0 · 10−3 279.90± 0.29 0.976 -0.017 -0.018 0.8412 0.000 125 0.149·10−3

1.010 0.8931 405.58± 0.9 · 10−3 269.94± 0.65 1.023 0.013 0.012 0.8932 0.000 066 0.074·10−3

1.006 0.9870 402.55± 2.6 · 10−3 262.74± 0.93 1.023 0.018 0.017 0.9868 -0.000 151 -0.152·10−3

0.998 1.0073 401.91± 3.4 · 10−3 264.43± 0.75 0.995 -0.030 -0.003 1.0072 -0.000 076 -0.076·10−3

Table 4.4: Measurement results for the rectangular tuning fork.

and relative deviations from the measured values are listed for both tuning forks.

Measurement accuracy

The evaluation of absolute and relative deviations given in Tabs. 4.3, 4.4 and plotted in Fig. 4.19(a)
gives the range of absolute and relative deviations of values determined with the tuning forks from
the values obtained with the SVM 3000, see also Tab. 4.5. For the investigated viscosities a range
of [|∆ η|min, |∆ η|max] = [0.003, 0.021] mPa·s and [|∆r η|min, |∆r η|max] = [0.003, 0.033] and for the de-
termined mass densities [|∆ ρ|min, |∆ ρ|max] = [0.000 006, 0.000 610] g/cm3 and [|∆r ρ|min, |∆r ρ|max] =[
0.008 · 10−3, 0.694 · 10−3

]
was obtained. In Fig. 4.19(a) the relative deviations between values ob-

tained with the tuning forks and the SVM 3000 are depicted. The evaluation shows that there is a
clear correlation between the relative deviations for viscosity but not for mass density. This suggests
the consideration that the values for viscosity which were determined with the SVM 3000 are sub-
jected to significant errors or in other words that in this viscosity range, achievable accuracies similar
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Figure 4.19: (a) Relative deviations between values determined with the tuning forks and the SVM 3000. (b) Long-term
measurements for dissolving rubber in ethanol. The changes of the liquid properties are 5.3 % in viscosity and 0.5 %
in mass density, respectively. The grey shaded areas indicate the span of recorded resonance frequencies and quality
factors. The black dots indicate the values averaged over 100 measurements.
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∆ηmin
mPa·s

∆ηmax

mPa·s ∆rηmin ∆rηmax
∆ρmin

g/cm3
∆ρmax

g/cm3 ∆rρmin ∆rρmax

Circular 0.0033 0.0162 0.0032 0.0216 0.000 014 0.000 610 0.017 · 10−3 0.694 · 10−3

Rectangular 0.0030 0.0214 0.0021 0.0334 0.000 006 0.000 150 0.008 · 10−3 0.152 · 10−3

Table 4.5: Absolute and relative deviations from viscosity values determined with the SVM 3000 and with the circular
and rectangular tuning fork, respectively.

as with the SVM3000 can be obtained with such tuning fork setups. This assumption is furthermore
supported by the fact that the SVM 3000 yields errors higher than given in its specifications for liquids
with viscosities lower than 0.5 mPa·s and for aqueous liquids. In Fig. 4.19(a) Liquid No. 1 features
a viscosity in the order of 0.2 mPa·s and Liquids No. 6 to 9 contain water. An interesting fact is,
that these liquids yield the highest deviations. Fig. 4.19(a) furthermore shows that relative deviations
for viscosity are similar but are significantly higher for the mass density in case of the circular tuning
fork. This finding can be explained (as it was already shown in Fig. 2.16) that the sensitivities of both
tuning forks to viscosity are similar but is higher to mass density in case of the rectangular tuning
fork.

These insights reveal the high potential of resonant viscosity and mass density sensors. For an esti-
mation of achievable accuracies, with the present tuning fork setups, accuracies in the order of 1 % in
viscosity and and 0.01 % in mass density can be obtained.

To further investigate the accuracy and the resolution of such viscosity and mass density measure-
ment setups experimentally, the dissolving of rubber in ethanol was recorded during 150 hours, see
Fig. 4.19(b). The viscosity and mass density have been determined with a SVM 3000 before and after
the experiment. The change of the liquid’s viscosity and mass density was 0.05 mPa·s (i.e. 5.3 %)
and 0.0039 g/cm3 (i.e. 0.5 %) respectively, which could be clearly detected by the change of fr and
Q. With an appropriate data analysis similar accuracies as they are achieved with high precision
laboratory instruments may be obtainable with such comparatively low-cost tuning fork-based sensors.

4.10 Examples of resonant sensors for fluid properties from literature

So far in this manuscript, only the concepts and the underlying theory investigated during this thesis
have been presented. The large amount of resonant viscosity and mass density sensors from other
research groups is difficult to be summed up or to be described in a general manner. Thus, in the
following, a short overview of resonant viscosity and mass density sensors, which can be found in
literature, is presented, see also [MHbcc1].

The amount of devices reported for fluid property sensing is exceptionally large and thus only some
characteristic examples of their types can be presented and discussed at this point. Selected works are
shown, which are considered to be representative in their field without claiming completeness. From a
mechanical point of view, three major resonator principles are considered: Singly clamped, doubly (or
multiply) clamped, and membrane based devices. These different types may be operated in in-plane,
out-of-plane or torsional modes.

In the following, the discussed sensor concepts for liquid property sensing include conventional can-
tilevers (which seems to be the mostly investigated device), U-shaped cantilevers, tuning forks, doubly
clamped beams, shear vibrating devices, membranes, discs, and other principles. For the actuation
of the vibration, piezoelectric, electromagnetic, thermal, and external vibrational actuation are used.
Concerning the read-out of the sensor’s mechanical oscillation, piezoresistive, capacitive, inductive,
and optical methods are mainly reported.
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4.10 Examples of resonant sensors for fluid properties from literature

4.10.1 Microacoustic devices

These devices emerged from the utilization of piezoelectric media in electronic components where,
by means of the piezoelectric effect, vibrations in the utilized crystal are excited. If these vibrating
structures get in contact with a fluid, the vibration characteristics are affected by the fluid properties
as discussed above. The associated sensor principles can similarly be realized using alternative actu-
ation mechanisms (i.e. other than the piezoelectric effect). Many of the issues and aspects that are
encountered with microacoustic devices hold in a similar manner for MEMS resonators.

A very common technique for sensing viscosity and mass density with microacoustic devices is that
of bringing a shear-vibrating surface in contact with the liquid, e.g., by using a thickness shear mode
(TSM) quartz resonator and related devices [98,264–270] acoustic plate mode devices [271] or Love wave
sensors [272–274]. For resonant sensors in highly viscous liquids, read-out can become difficult since
due to overdaming the sensor can not be used as the frequency-determining element in an oscillator
circuit. To overcome this, dedicated read-out circuits and algorithms for damped resonators have been
investigated recently [229,275–281].

For high frequencies the penetration depth becomes critically short. For instance, at 5 MHz the
penetration depth for water would be in the order of 0.25 microns, which means that only a thin
layer of liquid is examined. For liquids featuring a microstructure with characteristic dimensions above
such penetration depths, the measured viscosity will be different from that obtained by laboratory
instruments, see, e.g., the cases of emulsions, microemulsions and zeolite synthesis solutions discussed,
e.g., in [106,282,283].

The devices discussed above use in-plane motion of the surface being in contact with the liquid. Out-
of-plane vibrations generally lead to radiation of pressure waves which leads to spurious damping.
This is the reason why classical surface acoustic wave (SAW) devices [284] are scarcely used as fluid
sensors. An exception is when the slowness of the guided wave prevents pressure wave radiation into
the adjacent fluid, such as, e.g., in the Lamb wave devices discussed in [285].

Pressure waves can be utilized, however, to sense the so-called longitudinal viscosity (which is associated
with the second coefficient of viscosity or the bulk viscosity) as the latter determines the attenuation
of pressure waves propagating in the fluid. In [286–288] setups utilizing piezoceramic transducers are
discussed for this purpose considering also the acoustic pressure wave impedance as well as the sound
velocity of the liquid.

4.10.2 MEMS devices

In the following, selected MEMS devices for mass density and viscosity sensing are discussed. Pho-
tographs of associated devices are shown in Fig. 4.20 and an overview is given in Tab. 4.6.

Cantilever devices

The micro-cantilever is the most reported resonant device for mass density and viscosity sensing appli-
cations, see, e.g., [291–293] and references cited there. The read-out mechanisms involve piezoresistive,
impedance spectroscopic and optical principles. In general, optical read-out mechanisms are very com-
monly used as they allow very precise amplitude measurements which are moreover convenient and
straight-forward to implement. However, when it comes to measurements in liquids, optical mecha-
nisms might involve serious drawbacks. Optical read-out allows measurements in transparent liquids
only and furthermore, the complete setup has to be mounted on a vibration compensated setup, which
makes the application as a sensor difficult.

Figure 4.20 (a) shows a pair of two identical silicon micro-machined cantilevers. The structure on the
right hand side, completely released from the bulk material acts as cantilever and is operated in an
out-of-plane mode. The other device on the left hand side serves for reference measurements accounting
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for the influence of cross-sensitivities on the measured signal. The device was designed to be actuated
electromagnetically and read-out using piezoresistors. In [91] three different geometries of cantilevers
are investigated, where the released cantilever yields resonance frequencies of about 5 kHz in liquids,
See. Tab. 4.6. There, L, W , T denote the cantilevers’ lengths, widths and thicknesses, respectively.
In [294] and [295] the operation of cantilevers at higher vibration modes is discussed.

U-shaped cantilevers

A special class of cantilevers are so called U-shaped cantilevers, which have been reported e.g., in [195]
and [87]. Fig. 4.20 (b) shows the tip of a U-shaped cantilever carrying a gold path for electromagnetic
actuation. For read-out, optical, piezoresistive and inductive methods by means of a motion-induced
voltage can be implemented. In Tab. 4.6 the overall sizes are given. W and T denote the width and
the thickness of the cross-sectional dimensions.

Tuning forks

Commercially available quartz tuning forks have successfully been applied for viscosity and mass density
sensing in liquids, see e.g., [93, 230, 296]. As it is the case for microacoustic TSM resonators, viscosity
and mass density are measured by evaluating the immersed tuning fork’s impedance spectrum, see
also [263].

Doubly-clamped beam devices

Similar to vibrating cantilevers, straight doubly clamped vibrating beams (also termed clamped-
clamped beams, bridges or wires) are used for viscosity sensing [231, 297, 298]. An example for the
latter is depicted in Fig. 4.20 (c). The bridges can be excited using Lorentz-forces and the read-out
can be performed inductively. The modeling of such devices is presented, e.g., in [193,260,299].

(a) [91] (b) [195] (c) [89]

(d) [240] (e) [289] (f) [290]

Figure 4.20: Examples for resonant MEMS mass density and viscosity sensors
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In-plane resonators

Examples for in-plane oscillating resonators, designed to preferentially excite shear waves in the liq-
uid, are suspended platelets [240, 300], see Fig. 4.20 (d), mid-point suspended plates [301], thermally
actuated [289, 302, 303] and piezoelectric [290] disks see Figs. 4.20 (e) and (f) as well as semicircular
disks [304]. Fig. 4.20 (d) shows a scanning electron microscopy image of the aforementioned suspended
silicon based plate which is actuated by means of Lorentz-forces on AC-currents in an external mag-
netic field and read-out with two piezoresistors implemented in the supporting beams. In the overview
in Tab. 4.6, D denotes the diameter of the disk-based devices.

Membrane devices

The work presented in [237] discusses a Lorentz force actuated silicon membrane.

Other principles

Other devices which are not assigned to a general principle are a suspended micro-channel [305] which
is a miniaturized version of a commercially available concept for mass density sensing, see [261, 262]
and a vibrating diaphragm with capacitive read-out [306].
A thermally actuated disc, see Fig. 4.20 (e), which is operated in a rotational mode, was presented
in [289] and successfully modeled in [303]. In [307], a sensor utilizing the excitation of a rubber-like
magnetoelastic sheet, embedded in the liquid under test is described, where the sensor features a
resonance frequency in the range of 50 kHz. In [308], a longitudinally vibrating tip is immersed in the
liquid also vibrating in the lower frequency regime around 50 kHz. The vibration is driven by a PZT
element whose impedance can be used to deduce the viscosity (and the density) of the liquid. A pole
mounted on a vibrating membrane, whose tip interacts with the liquid under test is discussed in [95].
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4
Sensors

Device Material(s) Operational fr (air) fr (liquid) Q (air) Q (liquid) Actuation Read-out η Dimensions Year Ref.Mode kHz kHz — — mPas µm

Cantilever

Si/ Metall o-o-p 206.5 93.4 900 17 L-F Stress sensi- 0.9 L 200 2007 [309]
(water) (water) tive PMOS (water) W 50 . . . 186

Transistors T 8.2
Si with o-o-p — 5 (CL 2.) — — L-F Piezores./ 0.9 . . . 20 1.: 2810x100x20 2012 [91]

conductive (water) Optical 2.: 1440x285x20
paths 3.: 500x100x20
Silicon o-o-p 17.31 5.39 55.5 2 Thermal Thermal 0.3 . . . 2.5 397x29x2 2002 [88]

(fundamental) (water) (water) noise
spectrum

Si with 6 Modes — 2 . . . 55 — — Photothermal Optical 1 . . . 20 500x100x4 2013 [294]
Au paths

— 8 Modes 6.23 . . . 988.83 1.08 . . . 283.83 16 . . . 455.2 1.5 . . . 21.4 None Optical 0.9 519.6x47.1x1.17 2005 [295]
(water) (water) (Noise) (water)

Si/Au i-p 50 . . . 2200 — 4200 67 Thermal Piezores. 0.9 L 200 . . . 1000 2010 [310]
(water) W 45 . . . 90

T 12

U-Shaped CL

Si with o-o-p 8 3 — — L-F Optical 05 . . . 400 1500x1100 2005 [195]
Au paths W 100

T 15
Si with o-o-p 20 12.5 — 25 . . . 30 L-F Inductive 1600x1600 2013 [87]
Au paths (water) (Motion ind. 1 . . . 1.3 W 200

Voltage) T 70

Tuning Fork
Quartz Fundamental 32.7 29.8 (Hep.) — 163.76 (Hep.) Piezoel. Impedance 0.38 . . . 55.2 1000 2014 [230]
Crystal (antiphase, 28.25 (N35) 14.75 (N35) Spectroscopy

in-plane)

Bridge

Si with o-o-p 5.8 . . . 68.7 2.5 . . . 57 210 . . . 881 0.4 . . . 10 L-F Inductive, 0.2 . . . 103.9 L 1500 . . . 5000 2007 [297]
Al paths Optical W 30, 50

T 20
Si with o-o-p 96.7 31 (Toluene) — 3.5 (Tol.) L-F Optical 0.57 . . . 7.37 350x50x1.3 2007 [92]
Au paths 24 (Octanol) 1 (Oct.)

Suspended Si with i-p 19.47 13.29 330 3.47 L-F Piezores. 0.89 . . . 81.5 plate: 100x100 2012 [300]
Plate Al paths (water) (water) overall: 1000

T 20
Mid-point AlN i-p 3700 3700 3000 100 (water) Piezoel. Impedance 0.9 . . . 51.15 1000x125x1 2012 [301]
Supported (extensional) 18 (51.15 mPas) Spectroscopy

Plate
Rotational Si i-p 1770 . . . 8410 1770 . . . 8410 600 . . . 11700 50 . . . 304 Thermal Impedance 0.38 D 100 . . . 200 2010 [289]

Disk (rotational) (heptane) Spectroscopy T 5 . . . 20

Semicircular Si i-p 300 . . . 1000 585 1200, 100 Thermal Piezores. 0.9 D 240 . . . 300 2008 [304]
Disks (parylene (rotational) (water) 5000 (water) (water) T 8

coated)
Suspended SiN o-o-p 143 130.4 — 10400 External Optical 0.8 . . . 10 20x200 2013 [305]

Microchannel (ethanol) (piez. act.) cross-sec: 4x3
Vibrating Parylene o-o-p — 1200 — — Electromag. Capacitive (glucose 400x400 2009 [306]
Diaphragm (on Si) solutions)

Table 4.6: Resonant MEMS devices for viscosity and mass density sensing. o-o-p: out-of-plane, L-F: Lorentz force, L: length, W : width, T : thickness, CL: cantilever, i-p: in-plane,
D: diameter
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Chapter 5

Summary, conclusions and outlook
In this thesis, the interaction of electrically actuated and read-out, mechanical resonators with viscous
liquids was investigated with respect to viscosity and mass density measuring applications. Such
mechanical, resonant sensors can furthermore be used for in-line, in-situ and hand-held devices at
operational frequencies from approximately 100 Hz to 100 kHz. This frequency range is not yet covered
by state of the art instruments, but represents an interesting frequency range from a rheological point
of view. An extensive literature review showed that many different device designs and approaches
for such sensors have already been published in literature prior to this work. Questions which arose
from this review included the possibility of measuring viscosity and mass density with a single device,
optimum device designs and materials for high measurement accuracies, required stabilities of the
resonance frequency and quality factor and an estimate for achievable accuracies for viscosity and
mass density measurements. To address these requirements, the frequency responses of immersed,
mechanical resonators interacting with sample liquids were investigated.

The applied examination methods were dominated by experimental approaches. However, a broad
study and elaboration of the underlying theory of structural and fluid mechanics as well as electro-
dynamics was undertaken to consolidate these disciplines in order to allow closed form modeling of
observed effects and findings. A generalized model relating resonance frequency and quality factor of
an immersed mechanical resonator with the liquid’s viscosity and mass density could be formulated.
This model was extended to consider the mechanical resonator’s intrinsic cross-sensitivity to temper-
ature. Nine resonators were manufactured and successively investigated, improving not only handling
but even more important, measurement accuracy. The major conclusions and insights gained by the
above mentioned approaches and investigation methods were:

1. The separability of viscosity and mass density was shown for several resonator designs, see
Sec. 2.8.2. If the sensitivity matrix in Eq. 2.139 is invertible, or in other words, if the sensitivities
of fr and Q to η and ρ are different, both, viscosity and mass density can be determined with a
single device. In general, this is the case for resonators whose fluid-structure interactions do not
yield pure shear waves only.

2. An important issue for measurement stability and accuracy is clamping. It was shown that
singly clamped devices yield much higher stability of their resonance frequency than doubly
clamped devices. This can be exemplified by considering the difference between e.g. reed based
or string instruments. The latter have to be frequently tuned, where the resonance frequency
of the first does not significantly change. Furthermore, doubly clamped devices are prone to
varying mechanical stresses, which are induced, e.g., by thermal changes or strains due to simply
touching the resonator’s housing while handling with the latter.

3. It was shown that tuning forks are well suited types of resonators for viscosity and mass density
sensing. Due to their balanced resonator design, their dependency of resonance characteristics
to (varying) clamping conditions is low. This becomes especially important when aiming for
handheld devices.

4. The investigation of different resonator materials showed that the usage of tungsten yielded the
best results for Lorentz-force driven resonators. In case of U-shaped tungsten wire resonators,
the lowest cross-sensitivities to temperature, see also Tab. 5.1, were obtained. If lower cross-
sensitivities become important, temperature compensated resonators represent an interesting
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and considerable alternative, see e.g., [311,312]. Furthermore, the high mass density of tungsten
(19.3 g/cm3, [214]) is beneficial for distinct resonances in liquids.

5. Aiming for an accuracy of 1 % in viscosity and 1 mg/cm3 for mass density implies required
relative stabilities in the order of 10−5 for resonance frequency and 10−3 for the quality factor,
see Sec. 2.8.2.

6. Claiming the above mentioned accuracies for viscosity and mass density requires an a temper-
ature measurement accuracy of at least 0.5 ◦C for the investigated steel tuning forks.

7. The usage steel tuning forks showed that with mechanical resonators for viscosity and mass
density sensing accuracies in the order of 1 % in viscosity and 0.01 % in mass density (i.e. an
accuracy of 0.1 mg/cm3 for aqueous liquids) can be obtained. This lies within in the accuracy
range of commercially available laboratory instruments.

5.1 Theoretical approach and insights

Assuming that volumetric forces, the hydrostatic pressure gradient as well as the convective term in
the Navier-Stokes equation 1.94 are negligible, i.e., f = 0, ∇p0 = 0, (v · ∇)v = 0, the equation of
motion of liquids obtains the same form as the equation of motion for acoustic waves in solids, i.e.,

− ρω2u = ∇· (c : ∇s u) (1.109)

in complex notation [179]. Using this notation for the equation of motion, the elasticity tensor c can
be formulated for linear elastic solids as well as for liquids. For incompressible liquids which were
considered in this thesis, the elasticity tensor reads c = jω diag(2 η, 2 η, 2 η, η, η, η), where diag(.)
designates a diagonal matrix [MHbcc1].

Describing the immersed resonator’s frequency response of a characteristic resonating mode using
a mechanical, lumped element oscillator and considering the fluid forces on transversally oscillating
plates, spheres and cylinders, generalized equations for the immersed resonators’ resonance frequency
and quality factor could be formulated. These equations read

1

ω2
0

≈ m0k +mρk ρ+mηρk

√
η ρ

ω0
, as well as (2.135)

1

Q
≈

c0k + cηk η + cηρk
√
ω0 η ρ√

m0k +mρk ρ+mηρk

√
η ρ
ω0

and have been successively applied to a variety of different resonator designs. The parameters m0k,
mρk, mηρk, c0k, cηk, cηρk can be determined, evaluating ω0 and Q from measurements in at least three
liquids with known viscosity and mass density values.

This model was extended by a temperature dependence of the resonance frequency, introducing a
temperature parameter kϑ. This temperature dependent equation reads:

ω0(ϑ) =
1

(ϑ− 25 ◦C) kϑ + 1
· 1√

m0k +mρk ρ+mηρk

√
η ρ
ω0

. (2.143)

For the quality factor, a clear temperature dependence could not be shown experimentally so far , and
thus the temperature was not considered in the quality factor equation yet but will be investigated in
future research.

A big advantage of using the generalized equations is that the sensor’s sensitivities
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SX,yi :=

∣∣∣∣
∂X

∂yi
· yi
X

∣∣∣∣ (2.138)

(X stands either for fr or Q and yi for η or ρ) easily can be evaluated allowing a further comparison of
different sensor designs. A comparison of sensitivities of five different sensors given in Fig. 2.16 showed
that the resonance frequency is much more sensitive to mass density than to viscosity whereas the
sensitivity of the quality factor is similar for both, mass density and viscosity.

5.2 Experimental approach and insights

In this thesis, nine different mechanical resonator concepts were manufactured and examined. For
some of these devices, only the basic operation principles were investigated but for more promising
sensor designs, extensive measurement series have been performed. These experimental studies include
the investigation of the resonators’ responses to viscosity and mass density, the determination of their
cross-sensitivities to temperature as well as the determination of the resonator’s long-term stability.

An important achievement yielding revealing insights, was the usage of so-called viscosity and mass
density series, allowing to separately investigate the effect of η and ρ on fr and Q. For the acetone-
isopropanol mixture used in this thesis as viscosity series, the variation of mass densities is to large
(∆ρ = 5.3 mg/cm3), to consider these mixtures as a liquid series with constant mass densities. However,
as such liquid series are highly desirable, a study on modeling the temperature dependent viscosity and
mass density of binary and ternary liquid mixtures was performed. Using theses models, the amount
of each liquid, necessary to obtain a certain viscosity and mass density at a given temperature can be
calculated.

The sensor concepts examined within this thesis were mainly actuated and read-out by means of Lorentz
forces, as with this approach high excitation forces and read-out signals can be achieved. Furthermore,
the performance of this actuation and read-out principle is not affected by the investigated liquid as
it is e.g., the case for optical read-out for which transparent liquids are a fundamental requirement.
Reluctance actuation in combination with electromagnetic pickups for read-out also yielded excellent
results, however this method requires more complex measurement setups.

Experimental results showed that singly clamped devices yielded best results judging measuring accu-
racy and long-term stability. At the present stage of our research, the most promising designs are the
U-shaped wire as well as the tuning fork sensors. These devices yielded good measurement accuracy
and long-term stability as well as low cross-sensitivity to temperature.

Mechanical resonators can show a significant dependence of their resonance frequency to temperature.
This dependence is mainly due to the thermal expansion of the resonator and the temperature depen-
dence of the resonator’s Young’s modulus. For doubly clamped structures such as e.g. bridges [190,297]
and straight wire resonators [6, 104], the cross-sensitivity of the resonance frequency to temperature
becomes large, if significant thermal tensile stresses are induced into the vibrating part. The sensitivity
of mechanical resonators can even become large enough, to be used as accurate temperature sensor,
see e.g. [313] which is not desired for resonant viscosity and mass density sensors. The cross-sensitivity
to temperature directly limits the sensor’s accuracy and thus should be kept as low as possible. In
Tab. 5.1 a comparison of the resonance frequency’s dependence to temperature is given for different
resonators. The first five sensors, i.e the U-shaped tungsten wire sensor, U (W), a U-shaped gold coated
silicon resonator, U(Si, Au), a steel tuning fork, TF (steel), a silicon cantilever, CL (Si) and a gold
coated silicon cantilever, CL (Si, Au) are singly clamped structures and thus show a relatively small
dependence of the resonance frequency to temperature. The last four sensors i.e., the spiral spring
sensor SS, the single plate sensor SP, the torsional resonator, TR, and a straight tungsten wire sensor,
SW (W), are doubly clamped structures and thus, show a much higher dependence of the resonance
frequency to temperature.
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Sensor f0 ∆fr/∆T ∆rfr/∆T Ref.
kHz (Hz/K) (1/K)

U (W) 0.95 -0.048 −60 · 10−6 [MHj4]
U (Si, Au) 5.96 -0.441 −69 · 10−6 [314]
TF (Steel) 0.44 -0.0519 −118 · 10−6 [MHj2]

CL (Si) 43.83 -1.3 −29.7 · 10−6 [315]
CL (Si, Au) 18.33 -1.83 −100 · 10−6 [316]

SS 0.64 -0.093 −145 · 10−6 [MHc7]
SP 5.6 -1.2 −214.29 · 10−6 [MHc19]
TR 0.39 -0.15 −385.58 · 10−6 [MHj1]

SW (W) 2.98 30 0.01 [MHj5]

Table 5.1: Cross sensitivities of the resonance frequency (fundamental mode) to temperature. f0: nominal resonance
frequency, ∆fr = fr(T0) − fr(T1): resonance frequency shift, ∆T = T0 − T1 difference of temperatures T0 and T1,
∆rfr = ∆fr/f0: relative resonance frequency shift.

A literature review showed that the variety of resonant viscosity and mass density sensors is huge.
These devices involve different resonator designs, the usage of different materials as well as different
actuation and read-out methods. These diversities make the comparison of different sensors difficult
and thus the following experimental investigation procedure is suggested:

1. Determination of fr and Q in (at least) three different liquids and subsequent determination
of the parameters of the generalized equations. The values for fr and Q in air as well as the
procedure how fr and Q have been evaluated are also of high interest. The ambient temperature
and associated viscosity and mass density values have to be given in any case. Using viscosity and
mass density series are beneficial to experimentally show the sensors’ dependencies to viscosity
and mass density, respectively.

2. Determination of the resonator’s fr- and Q-cross-sensitivity to temperature.

3. Long-term measurements, i.e. continuous determination of fr and Q under as stable as possible
conditions over a long period of time (e.g., for 24 hours or longer). These measurements show
the spread or noise of obtained values for fr and Q and furthermore reveal the stability of the
device. Especially doubly clamped devices might be subjected to internal stresses, which might
relax over time which detunes the sensor’s resonance frequency and thus limiting its accuracy.

Such a characterization process based on these three (or similar) experimental investigations gives a
good insight of the particular sensor’s characteristics and allows the comparison of different sensors.

The literature review of resonant MEMS devices for viscosity and mass density showed that, in most
cases, the devices’ cross-sensitivities of fr and Q (e.g. to temperature) are not investigated. How-
ever, this investigation is extremely important, particularly if the sensor’s resolution or accuracy is
of interest. This statement is explained by the following example: In [305] a suspended silicon based
microchannel resonator is reported. The device features a mass density resolution of 0.01 kg/cm3

with a sensitivity of 16 Hz/(kg/m3), and operational frequencies of about 130 kHz. Taking the cross-
sensitivity of the resonance frequencies to temperature of a bare silicon cantilever and a gold coated
cantilever into account which are ∆fr/(fr ∆T ) ≈ −30 · 10−6/K [315] and −100 · 10−6/K [316] re-
spectively, allows estimating the devices cross-sensitivity to temperature. In this particular case this
would be ∆fr/∆T = −(3.9 . . . 13) Hz/K. To achieve the aforementioned resolution for mass density,
the accuracy of the temperature would have to be in the order of (0.01 . . . 0.04) K. This example sub-
stantiates the addressed need for precise temperature measurements and the characterization of the
sensor’s temperature dependence.
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5.3 Outlook

5.3.1 Works in progress

The investigations performed in this thesis raised many questions. Some of these problems could
already be answered but were not published yet. In the following, ongoing studies as well as topics
which might be interesting for future research are listed and briefly discussed.

1. Variants of the U-shaped wire

The U-shaped wire sensor presented in [MHj4] features a round tip. Three variants of this U-
shaped wire sensor including a straight tip, a tip carrying a small platelet and a tip carrying a
sphere have been fabricated, see Fig. 5.1. Measurement series in different liquids and tempera-
tures have been performed [MHc2] and a theoretical investigation of these variants was already
presented in [MHc16]. At present, these theoretical and experimental findings are compared and
further investigated [MHwp7].

Figure 5.1: Variants of the U-shaped wire sensor

The tuning fork setups presented in [MHj2], allowed very precise measurements but suffered from
an O-ring sealing that was dissolved by solvents such as ethanol. A possible way to overcome this
drawback would be to replace the used O-ring by a chemically resistive O-ring. Two new measurement
setups containing circular and rectangular tuning forks have been designed. These setups include an
experimental well containing five steel tuning forks with circular cross-sections with the same diameter
but different lengths and thus yielding different resonance frequencies. The setup with the rectangular
tuning forks contains eight tuning forks with different aspect ratios but all resonating at 440 Hz in air at
their fundamental mode. The tuning forks for both setups were already fabricated and Nickel-coated,
see Fig. 5.2. The setups will be used to run, amongst others, measurements in viscosity and mass
density series, temperature measurements in Viscosity standards from Cannon Instruments and long-
term measurements. The results of these measurements and already developed models will provide the
data for the following topics:

2. Modeling of cross-senstivity to temperature [MHwp6]

In Sec. 2.10 the generalized equations have been extended to describe the resonance frequency’s
cross-sensitivity to temperature, see also Eq. 2.143. More precise measurements have to be
performed to substantiate this equation and to investigate the quality factor’s cross-sensitivity
to temperature. The experiments should be performed using a precise temperature-controlled
bath together with an precise thermometer for temperature control. Instruments, available at the
Institut for Microelectronics and Microsensors which can be used for this task are the Julabo F32
temperature controlled bath and the Anton Paar MKT 50 thermometer. The accuracy of these
instruments are ±0.01 ◦C for the water bath and 0.001 ◦C for the thermometer. Furthermore, for
these experiments, viscosity standards from Cannon Instruments should be used to eliminate any
inaccuracies of the viscosity and mass density values which have to be known for investigating
the resonator’s intrinsic cross-sensitivity to temperature.
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Top view

(a) Circular tuning forks (b) Rectangular tuning forks

Front view

Figure 5.2: Circular and rectangular tuning fork setups

3. Higher mode excitation [MHwp5]

In Sec. 2.9 higher mode excitation has already been discussed. Findings, which were already
presented in [MHc4] have to be substantiated and approved. For this, measurements at higher
modes obtained with the circular and rectangular tuning fork setups and the U-shaped wire and
its variants have to be evaluated and compared with elaborated models.

4. Scaling and miniaturization [MHwp4]

Scaling the resonators’ dimensions, changes their sensitivity to viscosity and mass density. Ex-
perimental results for scaling the U-shaped wire sensor have already been presented in [MHc15].
As the new tuning fork setups provide 13 tuning forks with different geometries, the measure-
ments obtained with these devices will give insights concerning the dependence of the sensors’
sensitivities on their aspect ratios and sizes.

5. Aspect ratio of rectangular resonators and error propagation [MHwp3]

Different aspect ratios of the mechanical resonators interacting with the sample liquids yield
different sensitivities to viscosity and mass density. If viscosity and mass density are to be
measured with a single device these sensitivities to viscosity and mass density have to be different
to be able to separate both quantities. For example, for an ideal shear oscillating plate yielding
shear wave propagation in the liquid only, viscosity and mass density can not be separated from
a single measurement. However, as it was already shown for resonators with finite thicknesses,
viscosity and mass density can be separated. The ability of separating these two quantities
and the accuracy of determined viscosities and mass densities will depend on the aspect ratio
of the resonator’s cross-section. Furthermore, the effect of error propagation, i.e. the effect of
inaccurate fr and Q measurements on the accuracy of η and ρ has to be investigated. To study
these problems, the setup containing eight rectangular tuning forks with different aspect ratios
will provide sufficient data.

6. Experimental investigation of the validity of existing models [MHwp2]

In [193] the hydrodynamic function for a transversally oscillating cylinder has been extended by
a correction function to model the hydrodynamic function of a transversally oscillating prism
with rectangular cross-section. It is claimed that the obtained expression is accurate to within
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0.1 % over the range of Reynold’s numbers of Re ∈ [10−6, 104]. Using the setup with the eight
rectangular tuning forks Reynold’s numbers in the range of Re ∈ [106, 108] will be obtained.
These measurement results will give a good basis for comparing theoretical with experimental
results as well as extending the Reynolds number range for the hydrodynamic function.

In the course of this thesis, studies about other principles for mass density and viscosity measurements
have been started. These concepts comprise:

7. Glass-U-tube with evaporated metal for excitation, read-out and temperature mea-
surements [MHwp1]

In [MHc18] a stainless steel U-shaped tube was used as mass density sensor. To reduce the cross-
sensitivity to temperature of such U-shaped tube devices, glass tubes can be used, see Fig. 5.3.
These glass tubes will be coated with conductive layers to be excited and read-out by means of
Lorentz forces which will be an alternative of existing U-tube mass density sensor principles [317].
Analogous to the idea of the measurement cell presented in [MHc18] the advantage of using an
additional mass density sensor to increase the accuracy of viscosity measurements should be
investigated.

Figure 5.3: Glass U-tubes

8. Falling ball viscometer with differential transformers for read-out [MHwp8]

Falling ball viscometers are still frequently used in laboratories. However, handling with these
instruments is time consuming and usually, the time required for the ball to fall a certain length
is measured at two positions along the tube. As an alternative to such instruments, a falling ball
viscometer has been manufactured using differential transformers along the entire falling length
for measuring the ball’s speed. The design of the device is intended for automated use e.g. in a
by-pass of a production line. The ball is lifted automatically after each descent.

Figure 5.4: Falling ball viscometer
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9. Syringe viscometer [MHwp9]

A new concept for hand-held viscosimetry is the syringe viscometer. This viscometer consists of
a syringe whose piston carries a pressure sensor, see Fig. 5.5. During filling or discharging the
syringe, the piston’s velocity and the pressure in the syringe are recorded. These recorded values
are related to the liquid’s viscosity.

Figure 5.5: Syringe viscometer

5.3.2 Future research

The investigation of the above topics are currently in progress. Ideas for theoretical and experimental
studies which could be elaborated in future research are:

1. Spurious negative coefficients in the generalized model

Fitting the model parameters of the generalized model with measurement data of our own work
or data found in literature yielded negative coefficients in some cases. From a physical point of
view, negative modeling coefficients are not possible, c.f. Tab. 2.2. It was found, that negative
coefficients can result from resonators featuring unstable resonance frequencies. However, these
spurious, negative coefficients have to be further investigated.

2. Limits of describing a liquid loaded resonator with a second order system

A short discussion of the limits of describing a liquid loaded resonator’s frequency response using
a linear, second order resonator was given in Sec. 2.11.3. These theoretical findings have to be
further investigated and approved by experimental results.

3. Cross-sensitivity to ambient pressure

Viscosity is not only temperature but also pressure dependent [81]. Compared to conventional
devices, a large benefit of liquid loaded resonators used for viscosity and mass density sensing
might be their relatively good applicability for measurements at elevated pressures. However,
for this task, the cross sensitivities to the ambient pressure of mechanical resonators have to be
analyzed first.
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4. Examination of viscoelastic liquids

One of the many arguments for resonant viscosity and mass density sensors is to extend the
frequency range of conventional rheometers for the characterization of viscoelastic liquids. The
applicability of these devices for the characterization of viscoelasticity should be investigated in
future research.

5. Investigation of mixing laws for gasses

Based on the insights obtained by the research done in the course of this thesis for liquid mixtures,
the accuracy of the mixing laws for gasses can be investigated. As resonant sensors are also used
to measure the mass density and the viscosity of gasses, these devices can be used to investigate
possible limits of the mixing laws for gases.

6. Comparison of steel tuning forks with tuning forks made of tungsten and silicon

The investigation of steel tuning forks for viscosity and mass density measurements showed
very promising results, [MHj2]. However, using tungsten or silicon as material for such tuning
forks would reduce the cross-sensitivity to temperature and thus, such devices would be highly
desirable. Using these materials however, would not allow reluctance actuation and read-out.
Thus appropriate actuation and read-out principles for non-ferromagnetic tuning forks have to
be elaborated.

7. Lorentz-Force driven tungsten tuning fork

Similar to the U-shaped wire resonator, two U-shaped wires could be used to build tuning fork-
similar devices yielding mechanically balanced resonators. The advantage of such balanced res-
onators is that they do not require high counterweights for stable resonance frequencies.

8. Semi exposed tungsten-tuning fork

It was shown that liquid loaded resonators are strongly damped by the sample liquid and thus,
could only be used for liquids with viscosities lower than 100 mPa·s approximately. A possible
approach allowing the investigation of higher viscosities would be the usage of a tuning fork,
of which only one of both prongs is exposed to the sample liquid, e.g. by putting one of both
prongs in a tube. This approach would furthermore allow optical read-out, independent of the
transparency of the sample liquid as one prong is not exposed to the latter.

9. Spiral spring resonator using a Halbach array for the external magnetic field

The spiral spring sensor presented in [MHc7] suffered from unreliable clamping, yielding unstable
resonance frequencies. However such a device is especially interesting as it shows low cross-
sensitivites to temperature. A more reliable setup using a Halbach array yielding high output
signals would be an interesting device.

10. Long-term measurements for single plate resonator, U-shaped wire, and tuning fork
in single measurement cell

The single plate resonator, the U-shaped wire sensor as well as tuning fork setups were the most
investigated sensors during the last years on the Institute for Microelectronics and Microsensors.
However the benefits and disadvantages of each device compared with the others are not exactly
known yet. For this purpose, a measuring cell containing all three types of sensors would be
desirable for investigating these devices under the same physical conditions. Such a setup would
allow reliable comparison of these devices.

11. Droplet on a tuning fork’s tip

The single plate resonator was used not only upon complete immersion but also only putting a
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droplet on the plate, see e.g. [MHcc7]. As tuning fork setups can be used for providing stable
resonators, it might be beneficial to replace the single plate resonator by a tuning fork with a
platelet put at a prong’s end on which the droplet could be placed. A further advantage of using
tuning fork instead of single plate resonators is that the sensitivity easily can be set by using
tuning forks with different cross-sections.

12. Droplet between two tuning forks’ tips

Another very interesting application of single plate resonators is using two platelets placed on top
of each other but with a certain distance between both plates [MHcc3]. A droplet is put between
both plates, such that both plates get wetted. The lower plate is excited to lateral vibrations and
due to the hydrodynamical coupling, these vibrations excite vibration of the upper plate which
is used for read-out. This technique is especially beneficial for high viscous liquids. Similar to
the previous idea, an investigation of replacing the single platelet resonators by tuning forks is
an interesting topic.

116



Bibliography
[1] E. K. Reichel, M. Heinisch, B. Jakoby, Chapter 17, fluid property sensors in, resonant mems:

Principles, modeling, implementation, and applications, Wiley, Editors: O. Brand, I. Dufour, S.
Heinrich, F. Josse, J.G. Korvnik and O. Tabata (2015) 427–446.

[2] M. Heinisch, T. Voglhuber-Brunnmaier, E. Reichel, I. Dufour, B. Jakoby, Electromagnetically
driven torsional resonators for viscosity and mass density sensing applications, Sensors and Ac-
tuators A: Physical.

[3] M. Heinisch, T. Voglhuber-Brunnmaier, E. Reichel, I. Dufour, B. Jakoby, Application of reso-
nant steel tuning forks with circular and rectangular cross sections for precise mass density and
viscosity measurements, Sensors and Actuators A: Physical 226 (2015) 163–174.

[4] M. Heinisch, T. Voglhuber-Brunnmaier, E. K. Reichel, I. Dufour, B. Jakoby, Reduced order
models for resonant viscosity and mass density sensors, Sens. Actuators A: Physical 220 (2014)
76–84.

[5] M. Heinisch, E. K. Reichel, I. Dufour, B. Jakoby, A u-shaped wire for viscosity and mass density
sensing, Sens. Actuators A: Phys. 214 (2014) 245–251.

[6] M. Heinisch, E. K. Reichel, I. Dufour, B. Jakoby, Tunable resonators in the low khz range for
viscosity sensing, Sensors and Actuators A: Physical 186 (2012) 111–117. doi:http://dx.doi.
org/10.1016/j.sna.2012.03.009.

[7] M. Heinisch, E. K. Reichel, I. Dufour, B. Jakoby, A resonating rheometer using two polymer
membranes for measuring liquid viscosity and mass density, Sensors and Actuators A: Physical
172 (1) (2011) 82–87. doi:10.1016/j.sna.2011.02.031.

[8] A. Abdallah, E. K. Reichel, T. Voglhuber-Brunmaier, M. Heinisch, S. Clara, B. Jakoby, Sym-
metric mechanical plate resonators for fluid sensing, Sensors and Actuators A: Physical.

[9] A. Abdallah, M. Heinisch, B. Jakoby, Measurement error estimation and quality factor improve-
ment of an electrodynamic-acoustic resonator sensor for viscosity measurement, Sensors and
Actuators A: Physical 199 (2013) 318–324.

[10] E. Lemaire, M. Heinisch, B. Caillard, B. Jakoby, I. Dufour, Comparison and experimental val-
idation of two potential resonant viscosity sensors in the kilohertz range, Measurement Science
and Technology 24 (8) (2013) 084005.

[11] T. Voglhuber-Brunnmaier, M. Heinisch, E. K. Reichel, B. Weiss, B. Jakoby, Derivation of reduced
order models from complex flow fields determined by semi-numeric spectral domain models,
Sensors and Actuators A: Physical 202 (2013) 44–51.

[12] B. Weiss, M. Heinisch, E. Reichel, B. Jakoby, Driving modes and material stability of a double
membrane rheometer and density sensor, J. Sens. Sens. Syst. 2 (2013) 19–26.

[13] T. Lederer, Thomas, M. Heinisch, W. Hilber, B. Jakoby, Electromagnetically actuated
membrane-based micropumps with integrated magnetic yoke, Journal of microelectronics and
electronic packaging 6 (4) (2009) 205–210.

[14] M. Heinisch, T. Voglhuber-Brunnmaier, E. K. Reichel, I. Dufour, B. Jakoby, Separate experi-
mental investigation of the influence of liquids’ mass densities and viscosities on the frequency
response of resonant sensors using designated liquid series, Proc. IEEE Sensors 2015, Accepted
Manuscript.

117

http://dx.doi.org/http://dx.doi.org/10.1016/j.sna.2012.03.009
http://dx.doi.org/http://dx.doi.org/10.1016/j.sna.2012.03.009
http://dx.doi.org/10.1016/j.sna.2011.02.031


Bibliography

[15] M. Heinisch, T. Voglhuber-Brunnmaier, E. K. Reichel, A. Abdallah, S. Clara, I. Dufour,
B. Jakoby, U-shaped wire based resonators for mass density and viscosity sensing, Proc. IEEE
Sensors 2015, Accepted Manuscript.

[16] M. Heinisch, T. Voglhuber-Brunnmaier, E. Reichel, I. Dufour, B. Jakoby, Introduction of a
general model for the resonance parameters of fluid sensors and validation with recent sensor
setups, in: IEEE Sensors 2014, 2014, pp. 4–pages.

[17] M. Heinisch, E. Reichel, T. Voglhuber-Brunnmaier, I. Dufour, B. Jakoby, Investigation of higher
mode excitation of resonant mass density and viscosity sensors, in: IEEE Sensors 2014, 2014,
pp. 4–pages.

[18] M. Heinisch, A. O. Niedermayer, I. Dufour, B. Jakoby, Concept studies of torsional resonators
for viscosity and mass density sensing applications, Procedia Engineering 87 (2014) 1198–1201.

[19] M. Heinisch, A. Abdallah, I. Dufour, B. Jakoby, Resonant steel tuning forks for precise inline
viscosity and mass density measurements in harsh environments, Procedia Engineering 87 (2014)
1139–1142.

[20] M. Heinisch, S. Clara, I. Dufour, B. Jakoby, A spiral spring resonator for mass density and
viscosity measurements, Procedia Engineering 87 (2014) 1143–1146.

[21] M. Heinisch, E. K. Reichel, I. Dufour, B. Jakoby, Modeling and experimental investigation of
resonant viscosity and mass density sensors considering their cross-sensitivity to temperature,
Procedia Engineering 87 (2014) 472–475.

[22] M. Heinisch, T. Voglhuber-Brunnmaier, I. Dufour, B. Jakoby, Validity of describing resonant
viscosity and mass density sensors by linear 2nd order resonators, Proc. Eurosensors XXVIII
(2014).

[23] M. Heinisch, T. Voglhuber-Brunnmaier, E. K. Reichel, S. Clara, A. Abdallah, B. Jakoby, Concept
study on an electrodynamically driven and read-out torsional oscillator, Proceedings Microelec-
tronic Systems Symposium (2014).

[24] M. Heinisch, T. Voglhuber-Brunnmaier, E. K. Reichel, B. Jakoby, Modeling approaches for elec-
trodynamically driven viscosity and mass density sensors operated in the khz range and experi-
mental verifications, in: SENSORS, 2013 IEEE, IEEE, 2013, pp. 1–4.

[25] M. Heinisch, T. Voglhuber-Brunnmaier, E. K. Reichel, B. Jakoby, Experimental and theoretical
evaluation of the achievable accuracies of resonating viscosity and mass density sensors, in:
SENSORS, 2013 IEEE, IEEE, 2013, pp. 1–4.

[26] M. Heinisch, E. K. Reichel, T. Voglhuber-Brunnmaier, B. Jakoby, Characterization and calibra-
tion of u-shaped mass density and viscosity sensors by an analytical modeling approach, The
17th International Conference on Solid-State Sensors, Actuators and Microsystems (2013) 1448
–1 1451.

[27] M. Heinisch, E. K. Reichel, T. Voglhuber-Brunnmaier, B. Jakoby, U-shaped, wire-based os-
cillators for rheological applications bridging the gap between 100 hz and 100 khz, The 17th
International Conference on Solid-State Sensors, Actuators and Microsystems.

[28] M. Heinisch, E. Reichel, T. Voglhuber-Brunnmaier, W. Hortschitz, M. Stifter, J. Schalko,
E. Lemaire, I. Dufour, B. Jakoby, Wire based and micromachined u-shaped cantilever devices
for viscosity and mass density sensing for measurements in a frequency range of 100 hz to 100
khz, in: 10th International Workshop on Nanomechanical Cantilever Sensors, 2013, pp. 2–pages.

[29] M. Heinisch, E. K. Reichel, B. Jakoby, U-shaped wire based resonators for viscosity and mass
density sensing, Proc. of. SENSOR 2013 OPTO 2013 IRS2 2013.

118



[30] M. Heinisch, E. Lemaire, B. Caillard, I. Dufour, B. Jakoby, A study of wire-based resonators for
viscosity sensing, Proceedings Microfluidics 2012.

[31] M. Heinisch, E. K. Reichel, T. Voglhuber-Brunnmaier, B. Jakoby, Miniaturized viscosity and
mass density sensors combined in a measuring cell for handheld applications, in: Proceedings of
the IEEE Sensors conference 2012, 2012.

[32] M. Heinisch, A. Abdallah, B. Jakoby, The effect of temperature on resonant viscosity sensors,
Procedia Engineering 47 (2012) 786–790.

[33] M. Heinisch, A. Abdallah, E. K. Reichel, B. Weiss, B. Jakoby, Concepts for lorentz force driven
resonators for inline and handheld viscosimetry, Proceedings of the 13th Mechatronics Forum
International Conference (2012) 632 – 638.

[34] M. Heinisch, T. Voglhuber-Brunnmaier, A. Abdallah, B. Jakoby, Application of resonant sensors
for magnetic flux density measurements, Proceedings I2MTC conference.

[35] M. Heinisch, E. K. Reichel, I. Dufour, B. Jakoby, Tunable miniaturized viscosity sensors operating
in the khz-range, in: Proceedings of the IEEE Sensors conference 2011, 2011.

[36] M. Heinisch, E. K. Reichel, I. Dufour, B. Jakoby, Miniaturized resonating viscometers facilitating
measurements at tunable frequencies in the low khz-range, in: Proc. Eurosensors, 2011.

[37] M. Heinisch, E. K. Reichel, B. Jakoby, A suspended plate in-plane resonator for rheological
measurements at tunable frequencies, in: Proc. Sensor + Test, 2011, pp. 61– 66.

[38] M. Heinisch, E. K. Reichel, B. Jakoby, A study on tunable resonators for rheological measure-
ments, in: Proc. SPIE, Vol. 8066, 2011. doi:10.1117/12.887103.

[39] M. Heinisch, E. K. Reichel, B. Jakoby, A feasibility study on tunable resonators for rheological
measurements, in: Proceedings GMe Forum, 2011, pp. 85–89.

[40] M. Heinisch, E. K. Reichel, B. Jakoby, On the modelling of resonant fluid sensors, Springer LNCS
(2011) 25–32.

[41] M. Heinisch, E. K. Reichel, B. Jakoby, A comprehensive study and optimization of nozzle-
diffuser valves for reciprocating micropumps, Proceedings of the 2nd European Conference on
Microfluidics.

[42] M. Heinisch, T. Voglhuber-Brunnmaier, A. Niedermayer, B. Jakoby, E. K. Reichel, Double mem-
brane sensors for liquid viscosity and mass density facilitating measurements in a large frequency
range, in: Sensors, 2010 IEEE, IEEE, 2010, pp. 1750–1753.

[43] M. Heinisch, E. Reichel, T. Voglhuber-Brunnmaier, B. Jakoby, A double membrane sensor for
liquid viscosity facilitating measurements in a large frequency range, Procedia Engineering 5
(2010) 1458–1461.

[44] M. Heinisch, E. K. Reichel, B. Jakoby, Electromagnetically actuated valveless micropump in
polymer-technology, The 12th Mechatronics Forum Biennial International Conference Proceed-
ings Book 2/2 (2010) 360 – 367.

[45] A. Abdallah, E. Reichel, S. Clara, M. Heinisch, B. Jakoby, Tuning fork based electrodynamically
actuated resonating-plate viscosity sensor, in: Proceedings Microelectronics System Symposium,
Vienna, 2014.

[46] A. Abdallah, E. Reichel, M. Heinisch, S. Clara, B. Jakoby, Symmetric plate resonators for vis-
cosity and density measurement, Procedia Engineering 87 (2014) 36–39.

119

http://dx.doi.org/10.1117/12.887103


Bibliography

[47] A. Abdallah, E. K. Reichel, M. Heinisch, B. Jakoby, T. Voglhuber-Brunnmaier, Parallel plates
shear-wave transducers for the characterization of viscous and viscoelastic fluids, SENSORS,
2014 IEEE (2014) 245–248.

[48] E. Reichel, A. Abdallah, T. Voglhuber-Brunnmaier, M. Heinisch, B. Jakoby, Parallel plate
resonators for shear-wave rheometry of viscoelastic fluids, German Rheological Society (Eds.):
AERC.

[49] E. K. Reichel, M. Heinisch, B. Jakoby, T. Voglhuber-Brunnmaier, Efficient numerical modeling
of oscillatory fluid-structure interaction, sensors 9 10.

[50] T. Voglhuber-Brunnmaier, M. Heinisch, A. O. Niedermayer, A. Abdallah, R. Beigelbeck,
B. Jakoby, Optimal parameter estimation method for different types of resonant liquid sensors,
Procedia Engineering 87 (2014) 1581–1584.

[51] E. K. Reichel, M. Heinisch, B. Jakoby, Droplet mixing and liquid property tracking using an
electrodynamic plate resonator, in: SENSORS, 2013 IEEE, IEEE, 2013, pp. 1–4.

[52] E. K. Reichel, M. Heinisch, B. Jakoby, Resonator sensors for rheological properties-theory and
devices.

[53] E. K. Reichel, M. Heinisch, A. Vananroye, J. Vermant, B. Jakoby, Rheometry using shear-wave
resonators, Belgian Group of Rheology (Eds.): AERC 2013, Series Annual European Rheology
Conference (2013) 73.

[54] E. K. Reichel, M. Heinisch, J. Vermant, C. E. A. Kirschhock, B. Jakoby, Acoustic streaming
in sessile droplets driven by in-plane actuation, Proc. of the Nanomechanical Sensing Workshop
(2013) 2.

[55] A. Abdallah, M. Heinisch, B. Jakoby, Viscosity measurement cell utilizing electrodynamic-
acoustic resonator sensors: Design considerations and issues, Procedia Engineering 47 (2012)
160–164.

[56] A. Abdallah, M. Heinisch, F. Lucklum, A. O. Niedermayer, B. Jakoby, A viscosity sensor utilizing
electrodynamic-acoustic resonators, Informationstagung Mikroelektronik12 OVE (64) (2012) 103.

[57] A. Abdallah, M. Heinisch, F. Lucklum, A. O. Niedermayer, B. Jakoby, A viscosity measurement
unit utilizing an electrodynamic-acoustic resonator, The 13th Mechatronics Forum International
Conference Proceedings 2 (2012) 621.

[58] A. Abdallah, F. Lucklum, M. Heinisch, A. Niedermayer, B. Jakoby, Viscosity measurement
cell utilizing electrodynamic-acoustic resonator sensors: Issues and improvements, Proceedings
I2MTC conference 2012.

[59] E. Lemaire, M. Heinisch, B. Caillard, B. Jakoby, I. Dufour, Fluid characterization using a vibrat-
ing microstructure - the future (micro)rheology?, The 13th Mechatronics Forum International
Conference Proceedings.

[60] E. K. Reichel, M. Heinisch, B. Jakoby, J. Vermant, C. Kirschhock, Modeling and data analysis
of a multimode resonator sensor loaded with viscous and viscoelastic fluids, in: Sensors, 2012
IEEE, IEEE, 2012, pp. 1–4.

[61] T. Voglhuber-Brunnmaier, M. Heinisch, E. Reichel, B. Weiss, B. Jakoby, Complete semi-numeric
model of a double membrane liquid sensor for density and viscosity measurements, Procedia
Engineering 47 (2012) 598–602.

[62] E. K. Reichel, M. Heinisch, B. Jakoby, J. Vermant, C. E. Kirschhock, Viscoelasticity sensor with
resonance tuning and low-cost interface, Procedia Engineering 25 (2011) 623–626.

120



[63] B. Weiss, M. Heinisch, B. Jakoby, E. K. Reichel, Density sensitive driving mode of a double
membrane viscometer, in: Sensors, 2011 IEEE, IEEE, 2011, pp. 1538–1541.

[64] B. Weiss, M. Heinisch, E. Reichel, B. Jakoby, Driving modes and material stability of a vibrating
polyethylene membrane viscosity sensor, Procedia Engineering 25 (2011) 176–179.

[65] T. Lederer, M. Heinisch, W. Hilber, B. Jakoby, Electromagnetic membrane-pump with an inte-
grated magnetic yoke, in: Sensors, 2009 IEEE, IEEE, 2009, pp. 532–537.

[66] L. Lederer, M. Heinisch, W. Hilber, B. Jakoby, Electromagnetic membrane-pumps with inte-
grated mangetic yoke, Proc. Internationales Forum für Mechatronik.

[67] M. Heinisch, Lorentz force driven and read out glass tubes for mass density measurements, Work
in Progress.

[68] M. Heinisch, Experimental investigation of the validity of existing models for viscously damped
mechanical resonators with rectangular cross-sections, Work in Progress.

[69] M. Heinisch, Optimal aspect ratios of mechanical resonators with rectangular cross-sections for
precise viscosity and mass density measurements, Work in Progress.

[70] M. Heinisch, Scaling of resonant viscosity and mass density sensors using resonant tuning forks
as example, Work in Progress.

[71] M. Heinisch, Higher mode excitation of resonant viscosity and mass density sensors, Work in
Progress.

[72] M. Heinisch, Cross-sensitivity of resonant viscosity and mass density sensors to temperature,
Work in Progress.

[73] M. Heinisch, Theoretical and experimental investigation of u-shaped wire based resonators for
mass density and viscosity sensing, Work in Progress.

[74] M. Heinisch, A falling ball viscosimeter using differential transformers for precise position mea-
surements, Work in progress.

[75] M. Heinisch, A handheld capillary viscosimeter using pressure – velocity measurements in a
convential syringe, Work in progress.

[76] M. Heinisch, Investigation of temperature models for the viscosity and mass densitity of liquids,
Work in Progress.

[77] M. Heinisch, Modeling of the viscosity and mass densitity of binary liquid mixtures, considering
their temperature dependence, Work in Progress.

[78] M. Heinisch, Modeling of the viscosity and mass densitity of ternary liquid mixtures, considering
their temperature dependence, Work in Progress.

[79] M. Heinisch, Viscosity and mass densitity of the ternary liquid mixture acetone – ethanol –
isopropanol in a temperature range from 5◦C to 45◦C, Work in Progress.

[80] M. Heinisch, Viscosity and mass densitity of the ternary liquid mixture ethanol – glycerol – water
in a temperature range from 5◦C to 45◦C, Work in Progress.

[81] C. W. Macosko, Rheology, Principles, Measurements and Applications, Wiley- VCH, 1994.

[82] S. V. Gupta, Viscometry for Liquids, Calibration of Viscometers, Springer, 2014.

[83] D. S. Viswanath, T. K. Ghosh, D. H. L. Prasad, N. V. K. Dutt, K. Y. Rani, Viscosity of Liquids.
Theory, Estimation, Experiment and Data, Springer, 2007.

121



Bibliography

[84] E. K. Reichel, Dynamic methods for viscosity and mass-density sensing, Trauner, 2012.

[85] A. Agoston, C. Ötsch, B. Jakoby, Viscosity sensors for engine oil condition monitoring – appli-
cation and interpretation of results, Sensors and Actuators A 121 (2005) 327–332.

[86] R. Haskell, J. Taku, J. Steichen, B. Witham, Calibration of in-line acoustic wave viscosity sensors
for measurement of printing inks, Proceedings SENSOR 2013 (2013) 592–597.

[87] P. Rust, D. Cereghetti, J. Dual, A micro-liter viscosity and density sensor for the rheological
characterization of dna solutions in the kilo-hertz range, Lab Chip 13 (24) (2013) 4794–4799.
doi:10.1039/C3LC50857A.

[88] S. Boskovic, J. W. M. Chon, P. Mulvaney, J. E. Sader, Rheological measurements using micro-
cantilevers, Journal of Rheology 46 (4) (2002) 891–899.

[89] B. Jakoby, R. Beigelbeck, F. Keplinger, F. Lucklum, A. Niedermayer, E. K. Reichel, C. Riesch,
T. Voglhuber-Brunnmaier, B. Weiss, Miniaturized sensors for the viscosity and density of liquids
– performance and issues, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
57 (1) (2010) 111–120. doi:10.1109/TUFFC.2010.1386.

[90] B. Jakoby, M. Vellekoop, Physical sensors for liquid properties, IEEE sensors journal 11 (12)
(2011) 3076–3085.

[91] I. Dufour, A. Maali, Y. Amarouchene, et al., The microcantilever: A versatile tool for measuring
the rheological properties of complex fluids, Journal of Sensors 2012. doi:10.1155/2012/719898.

[92] C. Riesch, A. Jachimowicz, F. Keplinger, E. K. Reichel, B. Jakoby, A novel sensor system for
liquid properties based on a micromachined beam and a low-cost optical readout, Proceedings
IEEE Sensors (2007) 872–875.

[93] L. Matsiev, J. Bennett, O. Kolosov, High precision tuning fork sensor for liquid property mea-
surements, IEEE Ultrasonics Symposium (2005) 1492–1495.

[94] E. K. Reichel, C. Riesch, F. Keplinger, B. Jakoby, Modeling of the fluid-structure interaction in
a fluidic sensor cell, Sensors and Actuators A: Physical 156 (1) (2009) 222–228.

[95] P. Peiker, E. Oesterschulze, Impact of the miniaturization on the response of a hybrid diaphragm
resonator considering its finite support, Proc. of the Nanomechanical Sensing Workshop (2013)
pp. 127–128.

[96] E. K. Reichel, C. Riesch, F. Keplinger, C. E. A. Kirschhock, B. Jakoby, Analysis and experimental
verification of a metallic suspended plate resonator for viscosity sensing, Sensors and Actuators
A: Physical 162 (2010) 418–424. doi:10.1016/j.sna.2010.02.017.

[97] S. J. Martin, V. E. Granstaff, G. C. Frye, Characterization of a quartz crystal microbalance with
simultaneous mass and liquid loading, Anal. Chem. 63 (1991) 2272–2281.

[98] R. Thalhammer, S. Braun, B. Devcic-Kuhar, M. Gröschl, F. Trampler, E. Benes, H. Nowotny,
M. Kostal, Viscosity sensor utilizing a piezoelectric thickness shear sandwich resonator, IEEE
Trans. Ultrasonics Ferroel. Frequ. Contr. 45 (5) (1998) 1331–1340.

[99] E. K. Reichel, C. Riesch, B. Weiss, B. Jakoby, A vibrating membrane rheometer utilizing elec-
tromagnetic excitation, Sensors and Actuators A: Physical 145 (2008) 349–353.

[100] C. Castille, I. Dufour, C. Lucat, Longitudinal vibration mode of piezoelectric thick-film cantilever-
based sensors in liquid media, Applied Physics Letters 96 (15) (2010) 154102. doi:10.1063/1.
3387753.

122

http://dx.doi.org/10.1039/C3LC50857A
http://dx.doi.org/10.1109/TUFFC.2010.1386
http://dx.doi.org/10.1155/2012/719898
http://dx.doi.org/10.1016/j.sna.2010.02.017
http://dx.doi.org/10.1063/1.3387753
http://dx.doi.org/10.1063/1.3387753


[101] J. M. Goodwin, A vibrating wire viscometer for measurements at elevated pressures, Journal of
Physics E: Scientific Instruments 6 (5) (1973) 452.

[102] M. J. Assael, C. P. Oliveira, M. Papadaki, W. A. Wakeham, Vibrating-wire viscometer for liquids
at high pressures, International Journal of Thermophysics 13 (4) (1992) 593 –615.

[103] F. J. P. Caetano, J. M. N. A. Fareleira, C. M. B. P. Oliveira, W. A. Wakeham, Validation of a
vibrating-wire viscometer: Measurements in the range of 0.5 to 135 mpa s, Journal of Chemical
& Engineering Data 50 (1) (2005) 201–205.

[104] D. Seibt, Schwingdrahtviskosimeter mit integriertem ein-senkkörper-dichtemessverfahren für un-
tersuchungen an gasen in größeren temperatur- und druckbereichen, Ph.D. thesis, Universität
Rostock (2007).

[105] G. Dehestru, M. Leman, J. Jundt, P. Dryden, M. Sullivan, C. Harrison, A microfluidic vibrat-
ing wire viscometer for operation at high pressure and high temperature, Review of Scientific
Instruments 82 (3) (2011) 035113.

[106] B. Jakoby, M. Vellekoop, Physical sensors for water-in-oil emulsions, Sensors and Actuators A:
Physical 110 (1) (2004) 28–32.

[107] https://www.cannoninstrument.com/.

[108] M. Dizechi, E. Marschall, Viscosity of some binary and ternary liquid mixtures, Journal of
Chemical and Engineering Data 27 (3) (358–363) 1982.

[109] M. Contreras S, Densities and viscosities of binary mixtures of 1, 4-dioxane with 1-propanol and
2-propanol at (25, 30, 35, and 40) c, Journal of Chemical & Engineering Data 46 (5) (2001)
1149–1152.

[110] D. Gómez-Díaz, J. C. Mejuto, J. M. Navaza, Physicochemical properties of liquid mixtures. 1.
viscosity, density, surface tension and refractive index of cyclohexane+ 2, 2, 4-trimethylpentane
binary liquid systems from 25 c to 50 c, Journal of Chemical & Engineering Data 46 (3) (2001)
720–724.

[111] J. George, N. V. Sastry, Densities, dynamic viscosities, speeds of sound, and relative permittivities
for water+ alkanediols (propane-1, 2-and-1, 3-diol and butane-1, 2-,-1, 3-,-1, 4-, and-2, 3-diol) at
different temperatures, Journal of Chemical & Engineering Data 48 (6) (2003) 1529–1539.

[112] J. George, N. V. Sastry, Densities, viscosities, speeds of sound, and relative permittivities for
water+ cyclic amides (2-pyrrolidinone, 1-methyl-2-pyrrolidinone, and 1-vinyl-2-pyrrolidinone) at
different temperatures, Journal of Chemical & Engineering Data 49 (2) (2004) 235–242.

[113] P. S. Nikam, S. J. Kharat, Densities, viscosities, and thermodynamic properties of (n, n-
dimethylformamide+ benzene+ chlorobenzene) ternary mixtures at (298.15, 303.15, 308.15, and
313.15) k, Journal of Chemical & Engineering Data 48 (5) (2003) 1202–1207.

[114] P. S. Nikam, S. J. Kharat, Densities and viscosities of binary mixtures of n, n-dimethylformamide
with benzyl alcohol and acetophenone at (298.15, 303.15, 308.15, and 313.15) k, Journal of
Chemical & Engineering Data 48 (5) (2003) 1291–1295.

[115] V. Rattan, S. Kapoor, K. Tochigi, Viscosities and densities of binary mixtures of toluene with
acetic acid and propionic acid at (293.15, 303.15, 313.15, and 323.15) k, Journal of Chemical &
Engineering Data 47 (5) (2002) 1182–1184.

[116] U. Kapadi, D. Hundiwale, N. Patil, M. Lande, Viscosities, excess molar volume of binary mixtures
of ethanolamine with water at 303.15, 308.15, 313.15 and 318.15 k, Fluid phase equilibria 201 (2)
(2002) 335–341.

123



Bibliography

[117] U. Kapadi, D. Hundiwale, N. Patil, M. Lande, Effect of temperature on excess molar volumes
and viscosities of binary mixtures of ethylenediamine and water, Fluid phase equilibria 205 (2)
(2003) 267–274.

[118] C. Yang, P. Ma, F. Jing, D. Tang, Excess molar volumes, viscosities, and heat capacities for the
mixtures of ethylene glycol+ water from 273.15 k to 353.15 k, Journal of Chemical & Engineering
Data 48 (4) (2003) 836–840.

[119] E. Gómez, B. González, Á. Domínguez, E. Tojo, J. Tojo, Dynamic viscosities of a series of 1-
alkyl-3-methylimidazolium chloride ionic liquids and their binary mixtures with water at several
temperatures, Journal of Chemical & Engineering Data 51 (2) (2006) 696–701.

[120] H.-W. Chen, C.-C. Wen, C.-H. Tu, Excess molar volumes, viscosities, and refractive indexes for
binary mixtures of 1-chlorobutane with four alcohols at t=(288.15, 298.15, and 308.15) k, Journal
of Chemical & Engineering Data 49 (2) (2004) 347–351.

[121] N. Indraswati, Mudjijati, F. Wicaksana, H. Hindarso, S. Ismadji, Density and viscosity for a
binary mixture of ethyl valerate and hexyl acetate with 1-pentanol and 1-hexanol at 293.15 k,
303.15 k, and 313.15 k, Journal of Chemical & Engineering Data 46 (1) (2001) 134–137.

[122] C. M. Kinart, W. J. Kinart, A. Cwiklinska, Density and viscosity at various temperatures for
2-methoxyethanol+ acetone mixtures, Journal of Chemical & Engineering Data 47 (1) (2002)
76–78.

[123] J. N. Nayak, M. I. Aralaguppi, T. M. Aminabhavi, Density, viscosity, refractive index, and speed
of sound for the binary mixtures of ethyl chloroacetate with n-alkanes (c6 to c12) at (298.15,
303.15, and 308.15) k, Journal of Chemical & Engineering Data 46 (4) (2001) 891–896.

[124] J. N. Nayak, M. I. Aralaguppi, T. M. Aminabhavi, Density, viscosity, refractive index, and speed
of sound in the binary mixtures of 1, 4-dioxane+ ethanediol,+ hexane,+ tributylamine, or+
triethylamine at (298.15, 303.15, and 308.15) k, Journal of Chemical & Engineering Data 48 (5)
(2003) 1152–1156.

[125] J. N. Nayak, M. I. Aralaguppi, U. S. Toti, T. M. Aminabhavi, Density, viscosity, refractive index,
and speed of sound in the binary mixtures of tri-n-butylamine+ triethylamine,+ tetrahydrofu-
ran,+ tetradecane,+ tetrachloroethylene,+ pyridine, or+ trichloroethylene at (298.15, 303.15,
and 308.15) k, Journal of Chemical & Engineering Data 48 (6) (2003) 1483–1488.

[126] J. N. Nayak, M. I. Aralaguppi, T. M. Aminabhavi, Density, viscosity, refractive index, and
speed of sound in the binary mixtures of 1, 4-dioxane+ ethyl acetoacetate,+ diethyl oxalate,+
diethyl phthalate, or+ dioctyl phthalate at 298.15, 303.15, and 308.15 k, Journal of Chemical &
Engineering Data 48 (6) (2003) 1489–1494.

[127] P. S. Nikam, T. R. Mahale, M. Hasan, Densities and viscosities for ethyl acetate+ pentan-1-ol,+
hexan-1-ol,+ 3, 5, 5-trimethylhexan-1-ol,+ heptan-1-ol,+ octan-1-ol, and+ decan-1-ol at (298.15,
303.15, and 308.15) k, Journal of Chemical & Engineering Data 43 (3) (1998) 436–440.

[128] A. Pal, R. K. Bhardwaj, Excess molar volumes and viscosities for binary mixtures of 2-
propoxyethanol and of 2-isopropoxyethanol with propylamine and dipropylamine at (298.15,
308.15, and 318.15) k, Journal of Chemical & Engineering Data 46 (4) (2001) 933–938.

[129] U. Kapadi, D. Hundiwale, N. Patil, Thermodynamic interactions of 2, 3-butanediol with water,
Fluid phase equilibria 208 (1) (2003) 91–98.

[130] B. González, A. Domínguez, J. Tojo, Dynamic viscosities, densities, and speed of sound and
derived properties of the binary systems acetic acid with water, methanol, ethanol, ethyl acetate
and methyl acetate at t=(293.15, 298.15, and 303.15) k at atmospheric pressure, Journal of
Chemical & Engineering Data 49 (6) (2004) 1590–1596.

124



[131] B. Gonzalez, A. Domınguez, J. Tojo, Dynamic viscosities of 2-butanol with alkanes (c 8, c 10, and
c 12) at several temperatures, The Journal of Chemical Thermodynamics 36 (4) (2004) 267–275.

[132] R. Rosal, I. Medina, E. Forster, J. MacInnes, Viscosities and densities for binary mixtures of
cresols, Fluid phase equilibria 211 (2) (2003) 143–150.

[133] C.-H. Tu, H.-C. Ku, W.-F. Wang, Y.-T. Chou, Volumetric and viscometric properties of
methanol, ethanol, propan-2-ol, and 2-methylpropan-2-ol with a synthetic c6+ mixture from
298.15 k to 318.15 k, Journal of Chemical & Engineering Data 46 (2) (2001) 317–321.

[134] E. Gómez, B. González, N. Calvar, E. Tojo, Á. Domínguez, Physical properties of pure 1-ethyl-
3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several
temperatures, Journal of Chemical & Engineering Data 51 (6) (2006) 2096–2102.

[135] B. Gonzalez, A. Dominguez, J. Tojo, Viscosities, densities and speeds of sound of the binary
systems: 2-propanol with octane, or decane, or dodecane at t=(293.15, 298.15, and 303.15) k,
The Journal of Chemical Thermodynamics 35 (6) (2003) 939–953.

[136] E. J. González, L. Alonso, Á. Domínguez, Physical properties of binary mixtures of the ionic liq-
uid 1-methyl-3-octylimidazolium chloride with methanol, ethanol, and 1-propanol at t=(298.15,
313.15, and 328.15) k and at p= 0.1 mpa, Journal of Chemical & Engineering Data 51 (4) (2006)
1446–1452.

[137] B. González, N. Calvar, E. Gómez, Á. Domínguez, Density, dynamic viscosity, and derived
properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl
acetate at t=(293.15, 298.15, and 303.15) k, The Journal of Chemical Thermodynamics 39 (12)
(2007) 1578–1588.

[138] E. J. González, B. González, N. Calvar, Á. Domínguez, Physical properties of binary mixtures
of the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate with several alcohols at t=(298.15,
313.15, and 328.15) k and atmospheric pressure, Journal of Chemical & Engineering Data 52 (5)
(2007) 1641–1648.

[139] B. González, N. Calvar, Á. Domínguez, J. Tojo, Dynamic viscosities of binary mixtures of cy-
cloalkanes with primary alcohols at t=(293.15, 298.15, and 303.15) k: New unifac-visco interac-
tion parameters, The Journal of Chemical Thermodynamics 39 (2) (2007) 322–334.

[140] K. J. Laidler, The development of the arrhenius equation, Journal of Chemical Education 61 (6)
(1984) 494.

[141] A. Brancker, Viscosity-temperature dependence., Nature 166 (4230) (1950) 905–906.

[142] J. De Guzman, Relation between fluidity and heat of fusion, Anales Soc. Espan. Fis. Y. Quim
11 (1913) 353–362.

[143] C. Duhne, Viscosity-temperature correlations for liquids, chemical engineering 86 (15) (1979)
83–91.

[144] D. S. Viswanath, G. Natavajan, Data book on the viscosity of liquids.

[145] I. Williamson, Viscosity-temperature dependence, Nature 167 (1951) 316–317.

[146] Z. Wang, L. Fu, H. Xu, Y. Shang, L. Zhang, J. Zhang, Density, viscosity, and conductivity for
the binary systems of water+ dual amino-functionalized ionic liquids, Journal of Chemical &
Engineering Data 57 (4) (2012) 1057–1063.

[147] U. Domańska, M. Zawadzki, A. Lewandrowska, Effect of temperature and composition on
the density, viscosity, surface tension, and thermodynamic properties of binary mixtures of n-
octylisoquinolinium bis {(trifluoromethyl) sulfonyl} imide with alcohols, The Journal of Chemical
Thermodynamics 48 (2012) 101–111.

125



Bibliography

[148] L. Girifalco, Temperature dependence of viscosity and its relation to vapor pressure for associated
liquids, The Journal of Chemical Physics 23 (12) (1955) 2446–2447.

[149] T. E. Thorpe, J. Rodger, R. Barnett, On the relations between the viscosity (internal friction)
of liquids and their chemical nature. part ii, Philosophical Transactions of the Royal Society of
London. Series A, Containing Papers of a Mathematical or Physical Character (1897) 71–107.

[150] R. C. Reid, J. M. Prausnitz, B. E. Poling, The properties of gases and liquids.

[151] C. L. Yaws, X. Lin, L. Bu, Calculate viscosities for 355 liquids, Chemical Engineering (New
York);(United States) 101 (4).

[152] D. J. Kingham, W. Adams, M. McGuire, Viscosity measurements of water in region of its maxi-
mum density, Journal of Chemical and Engineering Data 19 (1) (1974) 1–3.

[153] G. S. Kell, Density, thermal expansivity, and compressibility of liquid water from 0. deg. to 150.
deg.. correlations and tables for atmospheric pressure and saturation reviewed and expressed on
1968 temperature scale, Journal of Chemical and Engineering Data 20 (1) (1975) 97–105.

[154] D. Lide, W. Haynes, CRC handbook of chemistry and physics: a ready-reference book of chemical
and physical data-/editor-in-chief, David R. Lide; ass. ed. WM" Mickey" Haunes, Boca Raton,
Fla: CRC, 2009.

[155] J. Sengers, J. T. R. Watson, Improved international formulations for the viscosity and ther-
mal conductivity of water substance, American Chemical Society and the American Institute of
Physics for the National Bureau of Standards, 1986.

[156] S. Arrhenius, Über die Dissociation der in Wasser gelösten Stoffe, Verlag vonWilhelm Engelmann,
1887.

[157] L. Grunberg, A. H. Nissan, Mixture law for viscosity, Nature 164 (1949) 799–800.

[158] N.-S. Cheng, Formula for the viscosity of a glycerol-water mixture, Industrial & engineering
chemistry research 47 (9) (2008) 3285–3288.

[159] A. Jouyban, A. Fathi-Azarbayjani, M. Khoubnasabjafari, Mathematical representation of the
density of liquid mixtures at various temperatures using jouyban-acree model, INDIAN JOUR-
NAL OF CHEMISTRY SECTION A 44 (8) (2005) 1553.

[160] A. Jouyban, J. Soleymani, F. Jafari, M. Khoubnasabjafari, W. E. Acree, Mathematical repre-
sentation of viscosity of ionic liquid+ molecular solvent mixtures at various temperatures using
the jouyban–acree model, Journal of Chemical & Engineering Data 58 (6) (2013) 1523–1528.

[161] S. Oswal, H. Desai, Studies of viscosity and excess molar volume of binary mixtures.: 1. propy-
lamine+ 1-alkanol mixtures at 303.15 and 313.15 k, Fluid phase equilibria 149 (1) (1998) 359–376.

[162] S. Oswal, H. Desai, Studies of viscosity and excess molar volume of binary mixtures: 2. buty-
lamine+ 1-alkanol mixtures at 303.15 and 313.15 k, Fluid phase equilibria 161 (1) (1999) 191–204.

[163] S. Oswal, H. Desai, Studies of viscosity and excess molar volume of binary mixtures: 3. 1-alkanol+
di-n-propylamine, and+ di-n-butylamine mixtures at 303.15 and 313.15 k, Fluid phase equilibria
186 (1) (2001) 81–102.

[164] W. E. Acree, Mathematical representation of thermodynamic properties: Part 2. derivation of
the combined nearly ideal binary solvent (nibs)/redlich-kister mathematical representation from
a two-body and three-body interactional mixing model, Thermochimica Acta 198 (1) (1992)
71–79.

126



[165] A. Jouyban, M. Khoubnasabjafari, Z. Vaez-Gharamaleki, Z. Fekari, W. E. J. Acree, Calculation
of the viscosity of binary liquids at various temperatures using jouyban-acree model, Chemical
and pharmaceutical bulletin 53 (5) (2005) 519–523.

[166] E. K. Chong, S. H. Zak, An introduction to optimization, 2nd Edition, John Wiley & Sons, 2001.

[167] J.-W. Lee, S.-B. Park, H. Lee, Densities, surface tensions, and refractive indices of the water+
1, 3-propanediol system, Journal of Chemical & Engineering Data 45 (2) (2000) 166–168.

[168] E. Jimenez, M. Cabanas, L. Segade, S. Garcı a Garabal, H. Casas, Excess volume, changes of
refractive index and surface tension of binary 1, 2-ethanediol+ 1-propanol or 1-butanol mixtures
at several temperatures, Fluid phase equilibria 180 (1) (2001) 151–164.

[169] C. Tovar, E. Carballo, C. Cerdeiriña, J. Legido, L. Romaní, Effect of temperature on w-shaped
excess molar heat capacities and volumetric properties: oxaalkane-nonane systems, International
journal of thermophysics 18 (3) (1997) 761–777.

[170] O. Redlich, A. Kister, Algebraic representation of thermodynamic properties and the classifica-
tion of solutions, Industrial & Engineering Chemistry 40 (2) (1948) 345–348.

[171] J. Tomiska, Mathematical conversions of the thermodynamic excess functions represented by the
redlich-kister expansion, and by the chebyshev polynomial series to power series representations
and vice-versa., Calphad 8 (4) (1984) 283–294.

[172] R. Kalidas, G. Laddha, Viscosity of ternary liquid mixtures., Journal of Chemical & Engineering
Data.

[173] J. Pandey, S. Pandey, S. Gupta, A. Shukla, Viscosity of ternary liquid mixtures, Journal of
solution chemistry 23 (9) (1994) 1049–1059.

[174] H.-C. Ku, C.-H. Tu, Densities and viscosities of binary and ternary mixtures of ethanol, 2-
butanone, and 2, 2, 4-trimethylpentane at t=(298.15, 308.15, and 318.15) k, Journal of Chemical
& Engineering Data 50 (2) (2005) 608–615.

[175] F. M. White, I. Corfield, Viscous fluid flow, Vol. 3, McGraw-Hill New York, 2006.

[176] D. J. Acheson, Elementary fluid dynamics, Oxford University Press, 1990.

[177] G. K. Batchelor, An introduction to fluid dynamics, Cambridge university press, 2000.

[178] L. D. Landau, E. M. Lifshitz, Fluid Mechanics, Butterworth-Heinemann, 1987.

[179] B. A. Auld, Acoustic fields and waves in solids, Vol. I, Wiley, 1973.

[180] R. Beigelbeck, B. Jakoby, A two-dimensional analysis of spurious compressional wave excitation
by thickness-shear-mode resonators, Journal of applied physics 95 (9) (2004) 4989–4995.

[181] J. N. Reddy, An introduction to continuum mechanics, Cambridge University Press, 2013.

[182] P. C. Y. Lee, R. Huang, Effects of a liquid layer on thickness-shear vibrations of rectangular
at-cut quartz plates, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on
49 (5) (2002) 604–611.

[183] T. Lindenbauer, Seminumerische analyse von piezoelektrischen tsm quarz resonatoren in viskosen
flüssigkeiten, Master’s thesis, Vienna University of Technology (2005).

[184] T. Lindenbauer, B. Jakoby, Fully three-dimensional analysis of tsm quartz sensors immersed in
viscous liquids, in: Sensors, 2005 IEEE, IEEE, 2005, pp. 1249–1252.

127



Bibliography

[185] B. Weiss, Modellierung eines in einem kompressiblen fluid vibrierenden biegebalkens zur
viskositäts– und dichtemessung, Master’s thesis, Johannes Kepler University Linz, Austria
(2006).

[186] J. D. Anderson, J. Wendt, Computational fluid dynamics, Vol. 206, Springer, 1995.

[187] L. D. Landau, E. Lifshitz, Theory of elasticity, vol. 7, Course of Theoretical Physics 3 (1986)
109.

[188] W. M. Lai, D. H. Rubin, D. Rubin, E. Krempl, Introduction to continuum mechanics,
Butterworth-Heinemann, 2009.

[189] T. Voglhuber-Brunnmaier, The modeling of acoustic fluidic sensors using spectral methods,
Trauner, 2013.

[190] C. Riesch, Micromachined Viscosity Sensors, Shaker Verlag, 2009.

[191] L. Rosenhead, Laminar Boundary Layers: Fluid Motion Memoirs, Clarendon, Oxford, 1963.

[192] E. O. Tuck, Calculation of unsteady flows due to small motions of cylinders in a viscous fluid,
Journal of Engineering Mathematics 3 (1) (1969) 29–44.

[193] J. E. Sader, Frequency response of cantilever beams immersed in viscous fluids with applications
to the atomic force microscope, Journal of Applied Physics 84 (1998) 64–76.

[194] B. Weiss, E. K. Reichel, B. Jakoby, Modeling of a clamped–clamped beam vibrating in a fluid
for viscosity and density sensing regarding compressibility, Sensors and Actuators A: Physical
143 (2) (2008) 293–301.

[195] A. Agoston, F. Keplinger, B. Jakoby, Evaluation of a vibrating micromachined cantilever sensor
for measuring the viscosity of complex organic liquids, Sensors and Actuators: A (2005) 82–86.

[196] T. D. Rossing, D. A. Russell, D. E. Brown, On the acoustics of tuning forks, Am. J. Phys 60 (7)
(1992) 620–626.

[197] R. Blaauwgeers, M. Blazkova, M. Človečko, V. Eltsov, R. De Graaf, J. Hosio, M. Krusius,
D. Schmoranzer, W. Schoepe, L. Skrbek, Quartz tuning fork: thermometer, pressure-and vis-
cometer for helium liquids, Journal of Low Temperature Physics 146 (5-6) (2007) 537–562.

[198] D. Gross, W. Hauger, J. Schröder, W. Wall, Technische Mechanik 1, Springer-Verlag, 2013.

[199] D. Gross, W. Hauger, J. Schröder, W. Wall, Technische Mechanik 2: Elastostatik, Springer-
Verlag, 2014.

[200] D. Gross, W. Hauger, J. Schröder, W. Wall, Technische Mechanik 3: Kinetik, Springer-Verlag,
2012.

[201] D. Gross, W. Hauger, P. Wriggers, Technische Mechanik 4 Hydromechanik, Elemente Der Ho-
heren Mechanik, Numerische Methoden, Springer-Verlag, 2014.

[202] J. A. Schultz, Lateral-mode vibration of microcantilever-based sensors in viscous fluids using
timoshenko beam theory, Ph.D. thesis, Marquette University (2012).

[203] J. A. Schultz, S. M. Heinrich, F. Josse, I. Dufour, N. J. Nigro, L. A. Beardslee, O. Brand,
Lateral-mode vibration of microcantilever-based sensors in viscous fluids using timoshenko beam
theory.

[204] W. W. Weaver, S. P. Timoshenko, D. H. Young, Vibration Problems in Engineering, 5th Edition,
Wiley, 1990.

128



[205] X. Zhang, E. Myers, J. Sader, M. Roukes, Nanomechanical torsional resonators for frequency-
shift infrared thermal sensing, Nano letters 13 (4) (2013) 1528–1534.

[206] S. Timoshenko, S. Woinowsky-Krieger, S. Woinowsky, Theory of plates and shells, Vol. 2,
McGraw-hill New York, 1959.

[207] R. D. Belvins, Formulas for natural frequency and mode shape, Krieger Publishing Company,
2001.

[208] A. F. Bower, Applied mechanics of solids, CRC, 2009.

[209] S. M. Dickinson, The buckling and frequency of flexural vibration of rectangular isotropic and
orthotropic plates using rayleigh’s method, Journal of Sound and Vibration 61 (1) (1978) 1–8.

[210] M. Baù, V. Ferrari, D. Marioli, E. Sardini, M. Serpelloni, A. Taroni, Contactless excitation and
readout of passive sensing elements made by miniaturized mechanical resonators, Sensors, 2007
IEEE (2007) 36–39.

[211] M. Baù, V. Ferrari, D. Marioli, E. Sardini, M. Serpelloni, A. Taroni, Contactless electromagnetic
excitation of resonant sensors made of conductive miniaturized structures, Sensors and Actuators
A: Physical 148 (1) (2008) 44–50.

[212] A. M. Howatson, J. D. Todd, P. G. Lund, Engineering tables and data.

[213] E. Lassner, W.-D. Schubert, Tungsten: properties, chemistry, technology of the elements, alloys,
and chemical compounds, Springer Science & Business Media, 1999.

[214] Plansee, Tungsten, material properties and applications, www.plansee.com.

[215] A. International, J. R. Davis, A. I. H. Committee, et al., Properties and selection: irons, steels
and high-performance alloys, ASM International, 2005.

[216] G. F. Vander Voort, Atlas of time-temperature diagrams for irons and steels, ASM international,
1991.

[217] J. Rösler, H. Harders, M. Bäker, Mechanisches verhalten der werkstoffe, Springer-Verlag, 2006.

[218] W. Martienssen, H. Warlimont, Springer handbook of condensed matter and materials data,
Springer Science & Business Media, 2006.

[219] J. Pelleg, Mechanical properties of materials, Vol. 190, Springer Science & Business Media, 2012.

[220] C. Rollins, The chemistry of chromium, molybdenum, and tungsten (1973).

[221] G. P. Skoro, J. R. J. Bennett, T. R. Edgecock, S. A. Gray, A. J. McFarland, C. N. Booth, K. J.
Rodgers, J. J. Back, Dynamic young’s moduli of tungsten and tantalum at high temperature and
stress, Journal of Nuclear Materials (2011) 40 – 46.

[222] J. F. Nye, Physical Properties of Crystals. Their Representation by Tensors and Matrices, Oxford
Science Publications, 1985.

[223] H. Goldstein, Classical mechanics, Pearson Education India, 1965.

[224] L. J. Chu, Physical limitations of omni-directional antennas, Journal of applied physics 19 (12)
(1948) 1163–1175.

[225] E. I. Green, The story of q, American Scientist (1955) 584–594.

[226] A. D. Yaghjian, S. R. Best, Impedance, bandwidth, and q of antennas, Antennas and Propaga-
tion, IEEE Transactions on 53 (4) (2005) 1298–1324.

129



Bibliography

[227] M. Elwenspoek, R. Wiegerink, Mechanical Microsensors, Springer-Verlag, 2001.

[228] K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, D. Ru-
gar, Quality factors in micron-and submicron-thick cantilevers, Microelectromechanical Systems,
Journal of 9 (1) (2000) 117–125.

[229] A. O. Niedermayer, T. Voglhuber-Brunnmaier, J. Sell, B. Jakoby, Methods for the robust mea-
surement of the resonant frequency and quality factor of significantly damped resonating devices,
Measurement Science and Technology 23 (8) (2012) 085107.

[230] J. Toledo, T. Manzaneque, J. Hernando-García, J. Vázquez, A. Ababneh, H. Seidel, M. Lapuerta,
J. Sánchez-Rojas, Application of quartz tuning forks and extensional microresonators for viscosity
and density measurements in oil/fuel mixtures, Microsystem Technologies (2014) 1–9.

[231] M. Sullivan, C. Harrison, A. R. H. Goodwin, K. Hsu, S. Godefroy, On the nonlinear interpretation
of a vibrating wire viscometer operated at large amplitude, Fluid Phase Equilibria 276 (2009)
99—107. doi:10.1016/j.fluid.2008.10.017.

[232] H.-J. Bartsch, Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler,
Carl Hanser Verlag GmbH Co KG, 2014.

[233] K. Kanatani, P. Rangarajan, Hyper least squares fitting of circles and ellipses, Computational
Statistics & Data Analysis 55 (6) (2011) 2197–2208.

[234] T. Voglhuber-Brunnmaier, A. Niedermayer, R. Beigelbeck, B. Jakoby, Resonance parameter
estimation from spectral data: Cramér–rao lower bound and stable algorithms with application
to liquid sensors, Measurement Science and Technology 25 (10) (2014) 105303–105313.

[235] C. Gerthsen, D. Meschede, Gerthsen Physik, Springer-Verlag, 2013.

[236] H. A. C. Tilmans, M. Elwenspoek, J. H. J. Fluitman, Micro resonant force gauges, Sensors and
Actuators A: Physical 30 (1) (1992) 35–53.

[237] S. J. Martin, M. A. Butler, J. J. Spates, M. A. Mitchell, W. K. Schubert, Flexural plate wave
resonator excited with lorentz forces, Journal of Applied Physics 83 (9) (1998) 4589–4601.

[238] L. Villanueva, R. Karabalin, M. Matheny, D. Chi, J. Sader, M. Roukes, Nonlinearity in nanome-
chanical cantilevers, Physical Review B 87 (2) (2013) 024304.

[239] M. Baù, V. Ferrari, D. Marioli, A. Taroni, Cost-effective system for the characterization of
microstructures vibrating in out-of-plane modes, Sensors and Actuators A: Physical 142 (1)
(2008) 270–275.

[240] C. Riesch, E. K. Reichel, A. Jachimowicz, J. Schalko, P. Hudek, B. Jakoby, F. Keplinger, A
suspended plate viscosity sensor featuring in-plane vibration and piezoresistive readout, J. Mi-
cromech. Microeng. 19 (2009) 075010. doi:10.1088/0960-1317/19/7/075010.

[241] D. J. Griffiths, Introduction to Electrodynamics, Pearson, 2013.

[242] J. D. Jackson, R. F. Fox, Classical electrodynamics, 3rd Edition, American Association of Physics
Teachers, 1999.

[243] P. J. Petersan, S. M. Anlage, Measurement of resonant frequency and quality factor of microwave
resonators: Comparison of methods, J. Appl. Phys.

[244] M. C. Sanchez, E. Martin, J. M. Zamarro, Unified and simplified treatment of techniques for
characterising transmission, reflection or absorption resonators, Microwaves, Antennas and Prop-
agation, IEE Proceedings H 137 (1990) 209 – 212.

130

http://dx.doi.org/10.1016/j.fluid.2008.10.017
http://dx.doi.org/10.1088/0960-1317/19/7/075010


[245] C. R. Paul, Inductance: loop and partial, John Wiley & Sons, 2011.

[246] E. B. Rosa, The self and mutual inductances of linear conductors, US Department of Commerce
and Labor, Bureau of Standards, 1908.

[247] F. W. Grover, Inductance Calculations, Dover, 2009.

[248] H. Soltner, P. Blümler, Dipolar halbach magnet stacks made from identically shaped permanent
magnets for magnetic resonance, Concepts in Magnetic Resonance Part A 36 (4) (2010) 211–222.

[249] M. Kumada, E. I. Antokhin, Y. Iwashita, M. Aoki, E. Sugiyama, Super strong permanent dipole
magnet, Applied Superconductivity, IEEE Transactions on 14 (2) (2004) 1287–1289.

[250] E. K. Reichel, B. Jakoby, C. Riesch, A novel combined rheometer and density meter suitable for
integration in microfluidic systems, in: Sensors, 2007 IEEE, IEEE, 2007, pp. 908–911.

[251] E. Reichel, C. Riesch, F. Keplinger, B. Jakoby, Resonant measurement of liquid properties in a
fluidic sensor cell, Proc. Eurosensor XXII (2008) 540–543.

[252] E. K. Reichel, B. Jakoby, Microsensors based on mechanically vibrating structures, in: Advanced
Dynamics and Model-Based Control of Structures and Machines, Springer, 2012, pp. 183–193.

[253] T. Voglhuber-Brunnmaier, E. K. Reichel, B. Jakoby, Characterization of a novel membrane-
rheometer utilizing a semi-numerical modelling approach in the spectral domain, Sens. Actuators
A: Phys. 162-2 (2010) 310–315.

[254] T. Voglhuber-Brunnmaier, E. K. Reichel, B. Jakoby, A1. 4-semi-numerical simulation of a minia-
turized vibrating membrane-rheometer, Proceedings SENSOR 2009, Volume I (2009) 41–46.

[255] E. K. Reichel, C. Riesch, F. Keplinger, B. Jakoby, A novel oscillating shear viscosity sensor for
complex liquids, Procedia Chemistry 1 (1) (2009) 895–898.

[256] G. Habenicht, Kleben, Grundlagen and Technologien, Anwendungen, Springer-Verlag Berlin Hei-
delberg, 2009.

[257] P. K. Yuen, V. N. Goral, Low-cost rapid prototyping of flexible microfluidic devices using a
desktop digital craft cutter, Lab on a Chip 10 (3) (2010) 384–387.

[258] T. Retsina, S. M. Richardson, W. A. Wakeham, The theory of a vibrating-rod viscometer, Applied
Scientific Research 4 (1986) 325–346. doi:10.1007/BF00540567.

[259] F. Keplinger, R. Beigelbeck, F. Kohl, S. Kvasnica, A. Jachimowicz, B. Jakoby, Frequency and
transient analysis of micromachined u-shaped cantilever devices for magnetic field measurement,
Solid-State Sensors, Actuators and Microsystems 1 (2005) 630 – 635.

[260] B. Weiss, E. K. Reichel, B. Jakoby, Modeling of a clamped–clamped beam vibrating in a fluid
for viscosity and density sensing regarding compressibility, Sensors and Actuators A: Physical
143 (2) (2008) 293–301.

[261] O. Kratky, H. Leopold, H. H. Stabinger, Dichtemessungen an flüssigkeiten und gasen auf 10−6

g/cm3 bei 0.6 cm3 präparatvolumen, Zeitschrift für angewandte Physik 27 (4) (1969) 273–277.

[262] O. Kratky, H. Leopold, H. Stabinger, Apparatus for density determination, uS Patent 4,170,128
(Oct. 9 1979).

[263] S. J. Martin, R. W. Cernosek, J. J. Spates, Sensing liquid properties with shear-mode resonator
sensors, Transducers, Eurosensors IX (1995) 712–715.

[264] S. Martin, G. Frye, K. Wessendorf, Sensing liquid properties with thickness-shear mode res-
onators, Sensors and Actuators A: Physical 44 (3) (1994) 209–218.

131

http://dx.doi.org/10.1007/BF00540567


Bibliography

[265] C. E. Reed, K. K. Kanazawa, J. H. Kaufman, Physical description of a viscoelastically loaded
at-cut quartz resonator, Journal of Applied Physics 68 (5) (1990) 1993–2001.

[266] F. Josse, Z. A. Shana, D. E. Radtke, D. T. Haworth, Analysis of piezoelectric bulk-acoustic-wave
resonators as detectors in viscous conductive liquids, Ultrasonics, Ferroelectrics, and Frequency
Control, IEEE Transactions on 37 (5) (1990) 359–368.

[267] R. Lucklum, C. Behling, R. W. Cernosek, S. J. Martin, Determination of complex shear modulus
with thickness shear mode resonators, Journal of Physics D: Applied Physics 30 (3) (1997) 346.

[268] D. Johannsmann, K. Mathauer, G. Wegner, W. Knoll, Viscoelastic properties of thin films probed
with a quartz-crystal resonator, Physical Review B 46 (12) (1992) 7808.

[269] Y. Hu, J. LA French, K. Radecsky, M. Pereira da Cunha, P. Millard, J. F. Vetelino, A lateral
field excited liquid acoustic wave sensor, Ultrasonics, Ferroelectrics, and Frequency Control,
IEEE Transactions on 51 (11) (2004) 1373–1380.

[270] B. Jakoby, F. P. Klinger, P. Svasek, A novel microacoustic viscosity sensor providing integrated
sample temperature control, Sensors and Actuators A: Physical 123 (2005) 274–280.

[271] A. J. Ricco, S. J. Martin, Acoustic wave viscosity sensor, Applied physics letters 50 (21) (1987)
1474–1476.

[272] B. Jakoby, M. J. Vellekoop, Viscosity sensing using a love-wave device, Sensors and Actuators
A: Physical 68 (1) (1998) 275–281.

[273] F. Herrmann, D. Hahn, S. Büttgenbach, Separate determination of liquid density and viscosity
with sagittally corrugated love-mode sensors, Sensors and Actuators A: Physical 78 (2) (1999)
99–107.

[274] A. Turton, D. Bhattacharyya, D. Wood, High sensitivity love-mode liquid density sensors, Sensors
and Actuators A: Physical 123 (2005) 267–273.

[275] F. Eichelbaum, R. Borngräber, J. Schröder, R. Lucklum, P. Hauptmann, Interface circuits for
quartz-crystal-microbalance sensors, Review of scientific instruments 70 (5) (1999) 2537–2545.

[276] J. Schröder, R. Borngräber, R. Lucklum, P. Hauptmann, Network analysis based interface elec-
tronics for quartz crystal microbalance, Review of Scientific Instruments 72 (6) (2001) 2750–2755.

[277] C. Riesch, B. Jakoby, Novel readout electronics for thickness shear-mode liquid sensors compen-
sating for spurious conductivity and capacitances, Sensors Journal, IEEE 7 (3) (2007) 464–469.

[278] M. Ferrari, V. Ferrari, K. Kanazawa, Dual-harmonic oscillator for quartz crystal resonator sen-
sors, Sensors and Actuators A: Physical 145 (2008) 131–138.

[279] R. Schnitzer, C. Reiter, K.-C. Harms, E. Benes, M. Groschl, A general-purpose online measure-
ment system for resonant baw sensors, Sensors Journal, IEEE 6 (5) (2006) 1314–1322.

[280] A. O. Niedermayer, E. K. Reichel, B. Jakoby, Yet another precision impedance analyzer (yapia)
readout electronics for resonating sensors, Sensors and Actuators A: Physical 156 (1) (2009)
245–250.

[281] B. Jakoby, G. Art, J. Bastemeijer, Novel analog readout electronics for microacoustic thickness
shear-mode sensors, Sensors Journal, IEEE 5 (5) (2005) 1106–1111.

[282] B. Jakoby, A. Ecker, M. J. Vellekoop, Monitoring macro-and microemulsions using physical
chemosensors, Sensors and Actuators A: Physical 115 (2) (2004) 209–214.

132



[283] L. R. A. Follens, E. K. Reichel, C. Riesch, J. Vermant, J. A. Martens, C. E. A. Kirschhock,
B. Jakoby, Viscosity sensing in heated alkaline zeolite synthesis media, Physical Chemistry Chem-
ical Physics 11 (16) (2009) 2854–2857.

[284] A. D’amico, E. Verona, Saw sensors, Sensors and Actuators 17 (1) (1989) 55–66.

[285] M. Vellekoop, G. Lubking, P. Sarro, A. Venema, Evaluation of liquid properties using a silicon
lamb wave sensor, Sensors and Actuators A: Physical 43 (1) (1994) 175–180.

[286] H. Antlinger, S. Clara, R. Beigelbeck, S. Cerimovic, F. Keplinger, B. Jakoby, Sensing the char-
acteristic acoustic impedance of a fluid utilizing acoustic pressure waves, Sensors and Actuators
A: Physical 186 (2012) 94–99.

[287] H. Antlinger, S. Clara, R. Beigelbeck, S. Cerimovic, F. Keplinger, B. Jakoby, An acoustic trans-
mission sensor for the characterization of fluids in terms of their longitudinal viscosity, Procedia
Engineering 47 (2012) 248–252.

[288] R. Beigelbeck, H. Antlinger, S. Cerimovic, S. Clara, F. Keplinger, B. Jakoby, Resonant pres-
sure wave setup for simultaneous sensing of longitudinal viscosity and sound velocity of liquids,
Measurement Science and Technology 24 (12) (2013) 125101.

[289] A. Rahafrooz, S. Pourkamali, Rotational mode disk resonators for high-q operation in liquid, in:
Sensors, 2010 IEEE, IEEE, 2010, pp. 1071–1074.

[290] E. Mehdizadeh, J. Gonzales, A. Rahafrooz, R. Abdolvand, S. Pourkamali, Piezoelectric rotational
mode disk resonators for liquid viscosity monitoring, in: Tech. Dig. Hilton Head Workshop,
Vol. 35, 2012, pp. 359–362.

[291] M. Youssry, N. Belmiloud, B. Caillard, C. Ayela, C. Pellet, I. Dufour, A straightforward determi-
nation of fluid viscosity and density using microcantilevers: from experimental data to analytical
expressions, Sensors and Actuators A: Physical 172 (1) (2011) 40–46.

[292] M. Youssry, E. Lemaire, B. Caillard, A. Colin, I. Dufour, On-chip characterization of the
viscoelasticity of complex fluids using microcantilevers, Measurement Science and Technology
23 (12) (2012) 125306.

[293] E. Lemaire, B. Caillard, M. Youssry, I. Dufour, High-frequency viscoelastic measurements of
fluids based on microcantilever sensing: New modeling and experimental issues, Sensors and
Actuators A: Physical 201 (2013) 230–240.

[294] B. A. Bircher, L. Duempelmann, K. Renggli, H. P. Lang, C. Gerber, N. Bruns, T. Braun, Real-
time viscosity and mass density sensors requiring microliter sample volume based on nanome-
chanical resonators, Analytical chemistry 85 (18) (2013) 8676–8683.

[295] A. Maali, C. Hurth, R. Boisgard, C. Jai, T. Cohen-Bouhacina, J. P. Aimé, Hydrodynamics of
oscillating atomic force microscopy cantilevers in viscous fluids, Journal of Applied Physics 97 (7)
(2005) 074907–074907.

[296] J. Zhang, C. Dai, X. Su, S. J. O’Shea, Determination of liquid density with a low frequency
mechanical sensor based on quartz tuning fork, Sensors and Actuators B: Chemical 84 (2) (2002)
123–128.

[297] I. Etchart, H. Chen, P. Dryden, J. Jundt, C. Harrison, K. Hsu, F. Marty, B. Mercier, Mems sen-
sors for density–viscosity sensing in a low-flow microfluidic environment, Sensors and Actuators
A: Physical 141 (2) (2008) 266–275.

[298] C. Riesch, E. K. Reichel, F. Keplinger, B. Jakoby, Characterizing vibrating cantilevers for liquid
viscosity and density sensing, Journal of Sensors 2008 (Article ID 697062) (2008) 9 pages.

133



Bibliography

[299] E. K. Reichel, C. Riesch, B. Weiss, B. Jakoby, A vibrating membrane rheometer utilizing elec-
tromagnetic excitation, Sensors and Actuators A: Physical 145 (2008) 349–353.

[300] S. Cerimovic, R. Beigelbeck, H. Antlinger, J. Schalko, B. Jakoby, F. Keplinger, Sensing viscosity
and density of glycerol–water mixtures utilizing a suspended plate mems resonator, Microsystem
technologies 18 (7-8) (2012) 1045–1056.

[301] T. Manzaneque, V. Ruiz, J. Hernando-García, A. Ababneh, H. Seidel, J. Sánchez-Rojas, Char-
acterization and simulation of the first extensional mode of rectangular micro-plates in liquid
media, Applied Physics Letters 101 (15) (2012) 151904.

[302] A. Rahafrooz, S. Pourkamali, Characterization of rotational mode disk resonator quality factors
in liquid, Frequency Control and the European Frequency and Time Forum (FCS), 2011 Joint
Conference of the IEEE International (2011) 5 pages.

[303] M. S. Sotoudegan, S. M. Heinrich, F. Josse, N. J. Nigro, I. Dufour, O. Brand, Analytical modeling
of a novel high-disk resonator for liquid-phase applications, Microelectromechanical Systems,
Journal of 24 (1) (2015) 38–49.

[304] J. H. Seo, O. Brand, High q-factor in-plane-mode resonant microsensor platform for
gaseous/liquid environment, Journal of Microelectromechanical Systems 17 (2) (2008) 483–493.

[305] M. F. Khan, S. Schmid, P. E. Larsen, Z. J. Davis, W. Yan, E. H. Stenby, A. Boisen, Online
measurement of mass density and viscosity of pl fluid samples with suspended microchannel
resonator, Sensors and Actuators B: Chemical 185 (2013) 456–461.

[306] X. Huang, S. Li, J. Schultz, Q. Wang, Q. Lin, A capacitive mems viscometric sensor for affinity
detection of glucose, Journal of Microelectromechanical Systems 18 (6) (2009) 1246–1254.

[307] K. T. Loiselle, C. A. Grimes, Viscosity measurements of viscous liquids using magnetoelastic
thick-film sensors, Review of scientific instruments 71 (3) (2000) 1441–1446.

[308] G. Leveque, J. Ferrandis, J. Van Est, B. Cros, An acoustic sensor for simultaneous density and
viscosity measurements in liquids, Review of Scientific Instruments 71 (3) (2000) 1433–1440.

[309] C. Vančura, I. Dufour, S. M. Heinrich, F. Josse, A. Hierlemann, Analysis of resonating micro-
cantilevers operating in a viscous liquid environment, Sensors and Actuators A: Physical 141 (1)
(2008) 43–51.

[310] L. A. Beardslee, A. M. Addous, S. Heinrich, F. Josse, I. Dufour, O. Brand, Thermal excitation and
piezoresistive detection of cantilever in-plane resonance modes for sensing applications, Journal
of Microelectromechanical Systems 19 (4) (2010) 1015–1017.

[311] H. Jianqiang, Z. Changchun, L. Junhua, L. Peng, A novel temperature-compensating structure
for micromechanical bridge resonator, Journal of Micromechanics and Microengineering 15 (4)
(2005) 702.

[312] A. K. Samarao, F. Ayazi, Temperature compensation of silicon micromechanical resonators via
degenerate doping, in: Electron Devices Meeting (IEDM), 2009 IEEE International, IEEE, 2009,
pp. 789–792.

[313] T. Larsen, S. Schmid, L. Grönberg, A. O. Niskanen, J. Hassel, S. Dohn, A. Boisen, Ultrasensitive
string-based temperature sensors, Applied Physics Letters 98 (12) (2011) 121901.

[314] M. Stifter, T. Sauter, W. Hortschitz, F. Keplinger, H. Steiner, Mems heterodyne amf detection
with capacitive sensing, Proceedings IEEE Sensors 2012 (2012) 1–4doi:10.1109/ICSENS.2012.
6411171.

134

http://dx.doi.org/10.1109/ICSENS.2012.6411171
http://dx.doi.org/10.1109/ICSENS.2012.6411171


[315] H. S. Wasisto, S. Merzsch, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Airborne engineered
nanoparticle mass sensor based on a silicon resonant cantilever, Sensors and Actuators B: Chem-
ical 180 (2013) 77–89.

[316] R. Sandberg, W. Svendsen, K. Mølhave, A. Boisen, Temperature and pressure dependence of
resonance in multi-layer microcantilevers, Journal of Micromechanics and Microengineering 15 (8)
(2005) 1454.

[317] A. Goodwin, K. Marsh, W. Wakeham, Measurement of the thermodynamic properties of single
phases, Elsevier, 2003.

135





Journal Publications

137



Sensors and Actuators A 172 (2011) 82– 87

Contents lists available at ScienceDirect

Sensors  and  Actuators  A:  Physical

j ourna l h o me pa ge: www.elsev ier .com/ locate /sna

A  resonating  rheometer  using  two  polymer  membranes  for  measuring  liquid
viscosity  and  mass  density

M.  Heinischa,∗, E.K.  Reichelb,  I.  Dufourc,  B.  Jakobya

a Institute for Microelectronics and Microsensors, Johannes Kepler University, Linz, Austria
b Center for Surface Science and Catalysis, Katholieke Universiteit Leuven, Belgium
c Universitéde Bordeaux, Laboratoire de l’Intégration du Matériau au Systéme, France

a  r  t  i  c  l  e  i n  f  o

Article history:
Available online 26 February 2011

Keywords:
Viscosity
Mass
Density
Sensor
Frequency
Vibrating membrane
Lorentz forces
Cross talk

a  b  s  t  r  a  c  t

A  resonating  sensor  for  mechanical  liquid  properties  facilitating  measurements  at  two  different  modes  of
operation  is  presented.  One  mode  is  more  sensitive  to liquid  viscosity  the  other  to mass  density.  A sample
liquid  is  subjected  to  time-harmonic  shear  stress  induced  by  two  opposed  vibrating  polymer  membranes.
These  membranes,  placed  in  an  external  static  magnetic  field,  carry  two  conductive  paths  each.  The  first
path  is used  to  actuate  the  membranes  by  means  of  Lorentz  forces  while  the  second  acts  as  a pick-
up  coil  providing  an induced  voltage  representing  the  movement  of  the  membrane.  From  the  resulting
frequency  response  the  liquid’s  viscosity  and  mass  density  can  be  deduced.  This  double  membrane  based
setup  allows  examining  the  test  liquid  at adjustable  frequencies  in  the  low  kilohertz  range  from  500  Hz
to  20  kHz  by  varying  the  gap  between  both  membranes.  The  sensor  is  suitable,  e.g.,  for  low  cost  handheld
devices  with  inline  capabilities  and  disposable  sensor  elements  for  measuring  Newtonian  liquids  such
as,  e.g.,  oils  and  aqueous  solutions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

As it is an extremely important property for many technological
and scientific applications, viscosity has been subject of an enor-
mous effort of measurement, correlation, and interpretation. The
viscosity of a fluid is a measure of its tendency to dissipate energy
when it is disturbed from equilibrium by a velocity field. In most
cases the term viscosity is associated to shear viscosity only and vol-
ume  viscosity is not taken into account or expected to be zero which
is valid for incompressible liquids. In theory, the analysis of any fluid
motion could be suitable to determine the viscosity of the exam-
ined fluid. However, only relatively simple designs of viscometers
yielding fluid motion for which analytical closed form models can
be defined have been preferably considered for viscosity sensing.

Methods for which working equations relating the viscosity to
measured parameters are available but where the values of some
of these parameters must be obtained by an independent calibra-
tion with known standards, are called quasi-primary [1].  (So far,
no primary method requiring no calibration of the sensor could
be found). Nieto de Castro [1] consider as quasi primary: oscillat-
ing body (disk, cup, cylinder or sphere), vibrating wire, torsionally

∗ Corresponding author. Tel.: +43 73224686266.
E-mail address: martin.heinisch@jku.at (M.  Heinisch).

oscillating quartz crystal and surface light scattering spectroscopy.
However, based on the definition above the list of quasi primary
methods can be extended by: capillary flow, falling body [2],  acous-
tic methods [3] (e.g., thickness shear mode (TSM)), microacoustic
quartz resonator [4] and vibration tubes [5].

In previous works the idea of a double membrane based rheome-
ter was  introduced [6].  The main advantages of this sensor concept
are that it allows inline sensing and second, due to low cost fab-
rication, these sensors can be used as disposable elements for
application in medical analysis, or the monitoring of crystalliza-
tion or polymerization processes [7]. In an earlier work [8] a first
prototype and measurement results were presented. The modeling
of the sensor utilizing a semi-numerical modeling approach in the
spectral domain was  presented in [9].  The insights obtained by the
experimental results of first prototypes demanded redesigning the
sensor assembly to achieve several improvements enabling accu-
rate as well as reliable sensing, which moreover is a prerequisite
to get proper data for a meaningful comparison with theoretical
considerations and results. First, there was a need to increase the
repeatability and the sensor’s sensitivity. Second, a design avoiding
the formation of air bubbles within the test liquid, which moreover
does not suffer from leakage had to be found. Third, measurement
series obtained with the new devices had to be compared with
theoretical findings from, e.g., [9] and confirm the latter. Addi-
tionally, the focus was set on an appropriate closed-form model

0924-4247/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.sna.2011.02.031
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representing the sensor’s frequency behavior and thus relating to
the liquid’s viscosity and mass density.

For all liquids, viscosity decreases with increasing temperature
[10]. Thus, it has to be pointed out that it is always necessary to
indicate the temperature prevailing during the measurement of vis-
cosity. E.g., a change in temperature of the standard N415 (which
was used for measurements in this contribution) from 10 ◦C to 20 ◦C
leads to a decrease in viscosity from 2385.3 mPa  s to 1157.5 mPa  s
which corresponds to a change of more than 50%. For this liquid,
a measurement error in temperature of about ±0.16 ◦C results in
an error in viscosity of ±1%. An overview of models describing the
temperature depending decrease in viscosity is given in [11]. At the
same time the intrinsic temperature dependence of the device char-
acteristics may  become relevant and need to be calibrated (which
goes beyond the scope of this contribution, see, e.g., related discus-
sion [12]).

2. Sensor principle

In Fig. 1(a) a schematic of the redesigned sensor is depicted.
The major change compared to first prototypes is the open, fork-
like assembly which is immersed into the test liquid. Due to this
principle of immersion the formation of air bubbles is not a sub-
ject anymore when filling the sensor. The sensor is well suited
for inline sensing which can be useful, e.g., to observe a lubri-
cant’s conditions and aging. However, a closed design benefits from
the advantages that it requires less of the test liquid and han-
dling is more convenient if a variety of different liquids has to be
investigated.

The sensor width was reduced thus resulting in a smaller air gap
within the magnetic circuit. This smaller gap and a complete revi-
sion of the magnetic circuit yield an enhancement of the magnetic
flux density from 150 mT  to approximately 0.6 T which was  mea-
sured with a Gauss meter (GM05, Hirst Magnetic Instrument Ltd.).
A higher magnetic flux density quadratically improves the sensor’s
sensitivity [13].

A sinusoidal electrical current through the membranes’ excita-
tion paths being placed in an external static magnetic field provided
by a neodymium permanent magnet assembly is used as input i.e.,
excitation signal driving the sensor. By means of Lorentz forces,
the (2,1)-eigenmode of the membranes is excited, see Fig. 1(c).
The membranes are deflected either symmetrically or antisym-
metrically depending on opposite or equal direction of the electric
current through the membranes’ excitation loops. In both cases
the excitation loops (and also the pick-up loops) are electrically

connected in series. Thus, two different deformation fields can
be applied, each leading to different resonance frequencies and
response to viscosity and mass density. This viscosity- and mass-
density-dependent oscillation of the membranes is represented via
the induced voltage in a second conductive path (pick-up coil) close
to the excitation loop. This induced voltage is measured with a
lock-in amplifier setup allowing the analysis of both amplitude and
phase relation between the excitation and readout signals. An exci-
tation signal of about 1.3 V (corresponding to about 250 mA  for an
excitation loop with about 5 !)  yields read out signals in the order
of 0.1 V. The frequency response is recorded by sweeping the fre-
quency of the excitation signal in the range of interest, in this case
500–20 kHz. The measured frequency response is used to identify
the parameters of a closed-form model with which the resonance
frequency ωr and the Q-factor Q are determined. With the knowl-
edge of these parameters the liquid’s properties viscosity and mass
density can be determined. Before every single measurement it has
to be ensured that the sensor is clean (e.g., with a reference mea-
surement) as for all resonant sensors contaminations or coatings,
e.g., resulting from fouling of the surface result in a tremendous
measuring error.

The key feature of this sensor is the usage of two polymer
membranes instead of using only one. The main advantage of the
second membrane is the possibility of switching between two  dif-
ferent modes of operation which allows determining the liquid’s
viscosity and mass density with a single device. The frequency
response of a device with only one vibrating membrane is depicted
in Fig. 2(a) for DI-water as sample liquid. In the investigated fre-
quency range (500–20 MHz) of the single membrane device two
dominant mechanical resonance frequencies (≈2.5 kHz and 13 kHz)
could be observed. The investigation of the double membrane sen-
sors showed that in the (anti)symmetric mode only one mechanical
resonance is excited. According to theoretical findings in [9],  sym-
metric actuation, which is more sensitive to viscosity, excites
resonances at the lower frequencies (≈2.5 kHz), whereas in anti-
symmetric mode, which is more sensitive to mass density, only the
resonances at higher frequencies (≈13 kHz) are observed. Another
advantage is that using two  membranes instead of one increases
the sensitivity of the sensor.

Furthermore, Voglhuber-Brunnmaier et al. [9] found that the
resonance frequencies in symmetric mode shift to higher and
those in antisymmetric excitation to lower frequencies for larger
gaps between both membranes. This shows that the resonance
frequencies can be adjusted by varying the gap between both
membranes.

Fig. 1. In (a) the exploded view of the double membrane rheometer is illustrated. Two  polymer membranes carrying conductive paths for excitation and readout are bonded
to  rigid platelets. The bonding, also acting as sealing, ensures that the membranes’ sides carrying the conductive paths do not get wetted with the liquid to be examined.
I.e.,  only the liquid in the space between both membranes will be examined. The distance of both membranes is determined by the height of the spacer between both senor
parts.  The arrows on the left side indicate the direction of the external magnetic field provided by two NdFeB magnets on each side of the sensor. In (b) one membrane is
illustrated in detail. In (c) the deflection of the membranes in the (2,1)-eigenmode is depicted. Depending on the direction of the electric current in the particular excitation
path,  the deflection can either be symmetric (opposite direction) or antisymmetric (same direction).
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Fig. 2. In (a) the frequency response of one membrane being excited (the other remaining unactivated) is depicted for the case of DI water. Both membranes yield virtually
the  same response. When both membranes are activated, lower resonance frequencies (2.2 kHz) remain in the case of symmetric mode, where higher frequencies (13 kHz)
remain  for antisymmetric mode. In (b) a comparison of the measured data with the identified model Eq. (1) for the viscosity standard S3 (3.3 mPa  s® @ 25 ◦C) in the symmetric
mode  is depicted.

3. Fabrication

The membranes carrying the conductive paths are realized by
photolithography and wet etching of a 100 m thick polyester based
(PET) sheet coated with a 2 m copper layer. The dimensions of
the membranes are 30 mm × 11.8 mm,  with a vibrating area of
12 mm  × 5.6 mm.  As polyester based plastics are highly solvent-
proof, reaction adhesives (e.g., epoxy resin) are normally used for
bonding or gluing [14]. However, epoxy resin showed to be hardly
suitable for an easy manufacturing process to ensure uniform and
reproducible bonding of the PET sheets. To account for an uniform
adherend, pressure sensitive adhesive (PSA) foils are used to bond
the membranes with the rigid top and bottom plate and the spacer
which determines the gap between both membranes. The mem-
branes and the foils are cut with a digital craft cutter [15] with a
mechanical resolution of 50 m.  To replace the PSA foils by a more
reliable means of bonding, a special process for reaction adhesive
bonding or ultrasonic welding has to be developed.

4. Modeling

A purely numerical approach to model the fluid structure
interaction, using finite element analysis, turned out to be inap-
propriate as the vibration amplitudes of the membranes (several
micrometers [7]) and thus the penetration depth of shear waves
emerging from the vibrating membranes is much smaller than the
membrane’s planar dimensions. Thus, a very fine discretization is
required resulting in a tremendous number of finite elements for
discretizing the vibrating area. A modeling approach based on the
Fourier method which greatly improves the numerical efficiency
was presented in [16]. There, the two different modes of operation
(symmetrical and antisymmetrical) and the response to viscosity
and mass density are outlined. A drawback of the application of
the Fourier method is that it causes problems to correctly incorpo-
rate the required clamped boundary conditions for the diaphragm
[7].  As an alternative, an empirical closed-form model was  found
describing the sensor’s frequency response in terms of the ratio
of output voltage Vout to input voltage Vin at either symmetric or
antisymmetric excitation, see Fig. 2(b):

G(s) = Vout

Vin
= A

s2/ω2
2 + 2d2(s/ω2) + 1

s2/ω2
1 + 2d1(s/ω1) + 1

sea s, (1)

where s denotes the complex frequency (s = jω for time-harmonic
excitation with angular frequency ω). A, ω1, d1, ω2, d2 and a are the
identified parameters. A is an amplification factor. The denominator
of the fraction implements the resonance peak, while the numer-
ator models the dip right after the peak. The multiplication by s
yields an additional +20dB/dec slope. The last term considers spuri-
ous phase shifts and delays. This model is in good agreement with
the result of measurement. However, it does not relate physical
effects to the measured data.

For this purpose, a different approach was devised by decompos-
ing the measured voltage into two parts: A motion-induced voltage
in the readout path due to the movement of the membrane, which,
in term, is modeled by a lumped mechanical oscillator, and another
induced voltage due to electrical cross talk from the excitation path
to the readout path. The simplified electrical equivalent circuit and
the mechanical model of the double membrane sensor are depicted
in Fig. 3. The resonant movement of the membrane is approxi-
mated by a linear (mass–spring–dashpot) oscillator described by
the transfer function (which is the quotient of deflection uz and
Lorentz forces FL = IinB l*)

Gm(s) = uz(s)
FL(s)

= G0

s2/ω2
0 + 2d(s/ω0) + 1

, (2)

where Iin is the electrical current in the excitation path, B is the
magnetic flux density, l* the effective length of the excitation loop
effecting the membrane’s deflection. In the following it is assumed
that l∗ ≈ l∗in ≈ l∗out , where the latter are the effective lengths of the
excitation and readout path respectively. G0 is the mechanical
amplification, d = dM + dL is the total damping accounting for intrin-
sic damping of the membrane, dM, and damping due to the liquid
loading, dL. Furthermore, d is related to the quantities used in the
equivalent circuit by d = r/2

√
mk.

ω0 =

√
k
m

and ωr = ω0

√
1 − 2d2 (3)

is the mechanical eigenfrequency and resonance frequency respec-
tively, where k is the spring constant of the oscillator (represents
stiffness of the membrane) and m = mM + mL is the total effective
mass considering the intrinsic effective mass of the membrane, mZ
and the inertial component of the liquid loading, mL. The Q-factor
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Fig. 3. Electrical equivalent circuit and mechanical model of the double membrane sensor.

was calculated with the relation

Q = ω0

ω+ − ω−

=

√
1 − 2d2

√
1 − 2d2 + 2d

√
1 − d2 −

√
1 − 2d2 − 2d

√
1 − d2

(4)

where ω− and ω+ are the angular frequencies at −3 dB of the max-
imum amplitude.

The induced voltage in the readout path effected by the move-
ment of the latter in an external magnetic field (assuming that the
occurring terms are in perpendicular) can be written as:

VM = NvzBl∗ (5)

where N is the number of turns and l* the effective length of the
readout paths and

vz = s uz = s Gm FL (6)

is the mean velocity of the vibrating readout paths. Substituting FL
in Eq. (6),  replacing Iin by the quotient of input voltage Vin and input
resistance R1 and some further manipulations lead to the transfer
function of the motion induced voltage

GM = VM

Vin
= s

NB2l∗2

R1
Gm. (7)

To account for the electrical cross talk, the sensor can be mod-
eled as a transformer consisting of the electrical resistance R1 and
the inductance L1 of the excitation path, the electrical resistance R2
and the inductance L2 of the excitation path as well as the mutual
inductance

M = kc

√
L1L2 (8)

representing the inductive coupling between excitation and read-
out path, where kc = 0 . . . 1 is the coupling factor.

Under the assumptions that
{
ωL1, ωL2, ωM

}
'

{
R1, R2

}
and

Iin ( Iout ≈ 0 the excitation path can be modeled by its electrical
resistance R1 only. The readout path can be modeled as a voltage
source Vct = s M Iin and its electrical resistance R2, where Iin = Vin/R1.
Thus, the transfer function relating the cross talk induced voltage
in the readout path to the input voltage is

Gct = Vct

Vin
= s  M

R1
(9)

The complete transfer function of the double membrane sen-
sor which is the quotient of output and input voltage (note that
Vout ≈ VM + Vct) is the sum of GM and Gct:

G(s)=Vout

Vin
=GM + Gct=s

NB2l∗2

R1

G0

s2/ω2
0+2d(s/ω0) + 1

+ sM
R1

. (10)

This transfer functions can be transformed into Eq. (1) (and vice
versa) except for the empirical term eas which does not have an
influence on the quantities to be measured. The viscosity and mass
density of the analyzed liquid are only related to the parameters
ω0 and d (corresponding to ω1 and d1 in Eq. (1)) in these modeling
approaches.

To check the feasibility of our model, an estimate for the order
of magnitude of the mutual inductance, which can be compared to
the value for M obtained from fitting the model to the measurement
data, is calculated as follows. The mutual inductance for a single
membrane (Fig. 1(b)) can be estimated from

Ms = #21

Iin
= l$0

%

∫ x2

x1

(1
x

+ 1
b − x

)
dx ≈ 17 nH. (11)

Here, #21 denotes the flux linkage of output and input circuit
and $0 is the permeability in air. For the total mutual inductance,
as a very rude approximation M ≈ 2Ms can be assumed, however,
the wiring (antisymmetric or symmetric) has a significant influence
since the magnetic flux from our membrane partially intersects the
other (which is not considered in Eq. (11)). The inductances of the
excitation and readout path of a single membrane were measured
with an impedance analyzer, where L1 ≈ 47 nH and L2 ≈ 96 nH.
Thus, the coupling factor could be calculated with Eq. (8),  yield-
ing kc ≈ 0.25 which is a realistic value. The cross talk was  analyzed
by investigating the frequency response of the sensor without and
external magnetic field. The insights gained by this method showed
that the simplified model Eq. (9) is a good approximation of the
electrical cross talk. In case of the evaluation of the cross talk in a
single membrane, the order of magnitudes of the calculated value
Ms ≈ 17 nH and the identified parameter M = 8.5 nH are in good
agreement.

5. Results

The model described in Eq. (10) was used to fit the data of exper-
imental measurement results and Q-factors and Eigenfrequencies
were evaluated. With the results obtained by this measurements,
it was  shown that a frequency response with two mechanical res-
onances is obtained if only one of both membranes is actuated
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Fig. 4. In (a) relative Q-factors and in (b) relative eigenfrequencies are illustrated for symmetric and antisymmetric excitation for four different viscosity standards (s3, n14,
n44,  n415, Cannon Instrument Company®) @ 25 ◦C.
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Fig. 5. Influence of the gap w between both membranes on the resonance frequen-
cies fr . Higher gaps generally yield a shift to higher frequencies in symmetric and a
shift to lower frequencies in antisymmetric mode.

(Fig. 2(a)) and if both membranes being excited, one of these res-
onances remains and the other vanishes. Symmetric excitation
maintains the lower, antisymmetric excitation the higher reso-
nance frequencies. The influence of the gap on the resonance
frequencies was investigated by varying the distance between two
membranes using a micrometer positioning unit. With this experi-
ment it was possible to prove the findings presented in [9].  Higher
gaps yield a shift to higher frequencies in symmetric and a shift
to lower frequencies in antisymmetric mode. This behavior could
be observed for gaps from 100 m to 400 m,  see Fig. 5. In Fig. 4 Q-
factors and Eigenfrequencies are depicted in respect to the dynamic
viscosity and mass density respectively for four test liquids. There,
it can be observed that the symmetric mode is more sensitive to
viscosity while the antisymmetric mode is more sensitive to mass
density. In symmetric mode, there was no more resonant behavior
for the highest viscous examined liquid (viscosity standard N415,
830 mPa  s at 25 ◦C) while in antisymmetric mode the resonance was
hardly damped.

The detailed character of the relation between the parame-
ters viscosity/density and Q-factor/resonance frequency is crucially
determined by the oscillating flow-field excited by the membranes.
This analysis has yet to be performed, such that at this moment we
can not provide a simple relation between these parameters. Of
course it would also be possible to fit generic mathematical mod-
els to the measurement data but the amount of existing data is not
sufficient to ensure the establishment of a reliable model.

6.  Conclusion

By redesigning the first prototype of the double membrane
based rheometer presented in [8] to an open fork-like assembly,
the formation of air bubbles is avoided. The sensor’s sensitivity is
increased by a magnetic circuit yielding an air gap flux density of
0.6 T. The open fork-like assembly is well suited for inline sensing,
whereas closed types facilitate more convenient handling when
examining different liquids. The results of new measurement series
were compared with theoretical findings and affirm the latter. A
linear second order closed-form model representing the sensor’s
frequency behavior is used to relate to the liquid’s properties vis-
cosity and mass density. Regarding future work, it is desirable to
find an appropriate bonding technique for fabricating accurate sen-
sors with high repeatability. Furthermore, extensive measurement
series using a large amount of different test liquids (e.g., viscosity
standards) characterizing the sensor’s properties have to be done.
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1. Introduction

Miniaturized viscosity sensors are attractive devices for condi-
tion monitoring applications involving fluid media. Most recently
introduced devices utilize vibrating resonant mechanical struc-
tures interacting with the fluid where the resonant behavior i.e.,
resonance frequency and quality factor, is affected by the fluid’s
mass density and viscosity [1,2]. So far, the ability of tuning the res-
onance frequency of such devices in a larger frequency range has
hardly been reported. However, such a feature is highly desirable
particularly when investigating complex liquids showing viscoelas-
tic behavior. We  devised two different types of resonating viscosity
sensors with tunable resonance frequencies in a range of over two
octaves for a fixed geometry. Analytical models relating measured
data to the viscosity of the examined liquid have been presented
earlier together with first measurement data where we  briefly
discussed the benefits of different geometries in terms of high tun-
ability and their sensitivity to viscosity [3–5].

Complex fluids often show viscoelastic behavior which means
that they exhibit a significant frequency dependence in their shear
modulus (whose imaginary part is related to the shear viscosity)
when using oscillatory rheometers. Laboratory rheometers work
in a limited frequency range not exceeding typically 100 Hz and
commonly, they are not suitable for online monitoring applica-
tions as they are expensive and maintenance intensive e.g., due to
macroscopically moving parts involving bearings etc. Miniaturized
devices sensing viscosity in the MHz  range have been discussed
extensively in the past, e.g. thickness shear mode resonators [6].
Between these devices, providing a “high-frequency viscosity” and

the aforementioned laboratory viscometers is a gap, which we are
aiming to bridge with devices as presented in this contribution.
Recently, we  proposed a design for a tunable in-plane resonating
sensor for viscosity [3].  As an alternative, a single wire device has
been investigated [4].  Both types of these resonating sensors pro-
vide a large range of achievable resonance frequencies of over two
octaves up to ∼4 kHz for our first devices with a fixed vibrating
length of ∼3 cm.  The tuning of the resonance frequency is achieved
by the variation of tensile stresses in the wires by an appropriate
tensioning mechanism.

These and previously reported sensors (e.g., [7])  underlie the
same principles of actuation and read out, namely actuation by
means of Lorentz forces FL and read out via the motion induced
voltage VM, where

dFL = Iin B dla (1)

(A preceeding d indicates the differential of a quantity, Iin: sinu-
soidal input (driving) current, B: magnetic flux density provided by
a permanent magnet (assembly), la: length of the electrical conduc-
tive path used for actuation) and

dVM = v B dlro (2)

(v: velocity of the electrical conductive path used for read out, lro:
length of the readout path). Here, orthogonality of the direction of
the current flow, B and v was assumed.

The motion induced voltage is the quantity representing the res-
onator’s movement in the fluid-structure interaction which is thus
related to the fluid’s dynamic viscosity for a known mass density
(and vice versa).

0924-4247/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.sna.2012.03.009
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This contribution explains the principles and the physical rela-
tions by means of closed form models of the suspended plate
and the wire viscometer in Sections 2 and 3, respectively. Section
4 briefly shows experimental results revealing both sensors’
response and sensitivity to viscosity. The following section focuses
on the tunability of the resonance frequencies of both resonators,
see Section 5. Based on these first feasibility concepts discussed
in the aforementioned sections, this work is extended by several
(indispensable) improvement strategies effecting higher readout
signals and more reliable setups allowing for more accurate sens-
ing, see Section 6.

2. Suspended plate viscometer

2.1. Setup

The principle of the suspended plate viscometer which is fully
surrounded by the sample liquid is depicted in Fig. 1(a). A small
platelet which is suspended by two wires is forced to lateral vibra-
tions by means of Lorentz forces on AC-currents in the excitation
wire. This in-plane fluid-structure interaction of the platelet with
the surrounding liquid is recorded via the motion induced voltage
in the second wire which follows the movement of the platelet
(and the excitation wire). Note that there are a lot of other modes
of vibrations featuring out of plane displacements. As the magnetic
field is not perfectly aligned and not perfectly uniform, these spuri-
ous modes will also be excited to a certain extent. The minor ripple
at around 1.6 kHz in Fig. 1(c) is supposedly related to such a spurious
out of plane vibration.

Varying the tensile stresses within both wires by tensioning
with micrometer screws, see Section 5 allows for setting the desired
resonance frequency.

In first setups, 3 cm long and 100 !m thick wires were used.
The used material was tungsten which features a high ultimate
strength exceeding 1.5 GPa. For the 3 × 3 mm  platelets, glass or PET
was used which yielded both good results and mainly differed in
the fabrication technique, see [3].  The results shown in Section 4
were obtained with the aforementioned dimensions using PET for
the platelet.

Regarding large scale production and easy manufacturing, sim-
ilar designs have also been fabricated using 100 !m thick nickel
brass metal sheets and wet etching. Their tunability was  briefly
investigated but has not been published yet. Types of these res-
onating platelets are reported e.g., in [8,9].

2.2. Semi lumped element model

As the platelet’s lateral dimensions are much larger than its
thickness and as its surface A is much larger than the wire’s sur-
faces, boundary effects emerging from displacement of the liquid
at the platelets front sides as well as the flow around the wires
are not taken into account here. The equation of motion for the
mechanical oscillator as it is depicted in Fig. 1(b) is

m
d2 ux(t)

d t2 = FL − FF − r0
d ux(t)

d t
− k0 ux(t) (3)

which then is transformed to the frequency domain.
The fluid forces FF acting on the platelet which can be given in

terms of the shear stress T

FF = −2 T(z = 0) A (4)

are modeled by one-dimensional shear wave propagation, where
the shear stress is (using complex notation assuming time depen-
dence ejωt) [3,6]

T(z = 0) = ux(ω) (1 − j)

√
" # ω3

2
(5)

With this, the transfer function of the mechanical oscillator, which
is the quotient of displacement in x-direction ux and Lorentz forces
can be written as (see also Fig. 1(b) and Eq. 1)

Gm(ω) = ux(ω)
FL(ω)

(6)

= 1

−ω2
(

m + A
√

" #
2 ω

)
+ j ω

(
r0 + A

√
" # ω

2

)
+ k0

(6)

Finally, the motion-induced voltage (see Eq. 2) in the pickup
wire can be written as follows

VM = j ω Gm
B2 l∗al∗ro

R1
Vin (7)

here l∗a and l∗ro are the wire’s effective lengths (which depend on the
mode shape but are in the order of the actual length).

It may  be necessary to consider the effect of electrical cross-talk
in the measured voltage as well, see [10], which can be easily taken
into account with

Vct = j  ω M
R1

Vin (8)

where M is the mutual inductance describing the inductive
coupling between excitation and read-out circuit. As the input
resistance of the lock-in amplifier is 10 M$, it is assumed that
Iout ≈ 0 and thus the total amount of output voltage is given by

Vout = VM + Vct (9)

A comparison between this simple (fitted) model and measured
data for isopropanol is shown in Fig. 1(c). In this fit procedure, the
reference values of the liquid’s # and " have been used and the
model-parameters r0, k0 and m have been fitted.

3. Wire viscometer

Resonating viscometers using a single wire only, are known
as wire viscometers in literature [11–13].  These viscometers were
designed to be operated at one fixed resonance frequency only. In
our work, we focus on the investigation of tuning the resonance
frequencies of the vibrating sensors within a preferentially large
range and focus on miniaturized devices.

3.1. Setup

Fig. 2(a) shows a schematic sketch of the wire viscometer. A
tungsten wire is stretched over two  electrical conductive blades.
For first (test) setups, these blades, determining the vibrating length
and assuring for electrical contact, were made of PCB (copper coated
fiberglass) which were later replaced by machined metal blades,
see Section 6. The series resistor limits the excitation current to
avoid non linear effects such as e.g., Duffing behavior, see [13]. For
measurements in air about 10 k$ and in liquids, resistors between
50 $ and 1 k$ were used. The external magnetic field was  gen-
erated with different NdFeB magnet assemblies yielding magnetic
flux densities from 0.3 T up to 1.4 T, see [14].

3.2. Modeling

For the modeling of the wire viscometer, the transversal move-
ments w(x, t) of the wire subjected to an axial force N, driving
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Fig. 1. In (a) a schematic drawing of the suspended plate rheometer is depicted. The sensor, surrounded by an experimental well, consists of two parallel wires (placed in
external field B) and a small platelet. In this figure, the left wire is used for exciting lateral vibrations by means of Lorentz forces. The second wire on the right used for pick-up,
is  coupled to the excitation wire with a rigid plate, thus following the movement of the left wire which effects an induced voltage which is used as read-out. By changing the
tensile  stresses in the wires, the resonance frequency can be changed. In (b) the scheme of the modeling approach is depicted. The upper figure shows the electrical equivalent
circuit  consisting of two  galvanically isolated circuits representing the excitation and read-out circuits. (Vg: voltage of the function generator, 50 $: Internal resistance of
the  function generator, R1: resistance of the excitation wire, R2: resistance of the pick-up wire, VM: motion induced voltage, Vct: induced voltage trough electrical cross-talk,
10  M$:  input resistance of the lock-in amplifier, Iin, Iout, Vin,  Vout: input and output currents/voltages). The lower figure shows the mechanical lumped-element model. (k0:
intrinsic spring constant, r0: intrinsic damping parameter, FF: fluid forces, FL: Lorentz forces, ux: displacement in x-direction, B: external magnetic field). In (c) a comparison
between measured data (in this case for isopropanol) and the model obtained by fitting the parameters from Eq. 7 is shown. (a) Suspended plate viscometer. (b) Semi lumped
element model. (c) Frequency response.

Fig. 2. In (a) the schematic drawing of the wire viscometer is depicted. The experimental well for investigating sample liquids is not shown in this sketch. A 100 !m thick
tungsten wire carrying sinusoidal currents is placed in an external magnetic field and thus oscillating due to Lorentz forces. For excitation, a function generator is used for
the  input signal. A series resistors is used to limit the excitation current. The motion induced voltage (i.e., the read-out signal) is measured with a lock-in amplifier. The
resonance frequency can be changed by (mechanically) changing the tensile stresses in the wire. In (b) the electrical equivalent circuit of the wire viscometer is illustrated.
(Rs: series resistor to limit the excitation current, Rtw: resistance of the tungsten wire). In (c) a comparison between measured data (in this case for isopropanol) and the
model  obtained by fitting the parameters from Eq. 14 is shown. (a) Wire viscometer. (b) Model. (c) Frequency response.

Lorentz forces FL and the loading of the fluid forces FF can be
described by the following linear, inhomogenous, partial differen-
tial equation in time domain [15,16]:

E I
∂4

w(x, t)
∂x4

− N
∂2

w(x, t)
∂x2

+ m′ ∂
2
w(x, t)
∂t2

(10)

= F ′
L(x, t) + F ′

F(x, t) (10)

(E: Young’s modulus, I: second moment of area, m:  wire’s mass, ′:
quantity in respect of unit length)

Eq. 10 is transformed to the frequency domain again assum-
ing a time dependence ejωt and the forces per unit length on the
right hand side of Eq. 10 acting on the wire are substituted by the
following expressions

F ′
L = Iin(ω) B (11)

(Iin: input current, B: flux density of the external magnetic field
which is provided by a permanent magnet)

From [17–19] the fluid forces acting on a circular cylinder are
calculated as follows:

F ′
F (x, ω) = (12)

& #f ω2 r2


1 −

4 j K1

(
j
√

−j Re
)

√
−j Re K0

(
j
√

−j Re
)


w(x, ω) (12)

where Re = # ω r2

"
(13)

(r: wire radius, K0, K1: modified Bessel functions, ": dynamic vis-
cosity)

After the analytical calculation of the deflection of the wire
w(x, ω), the induced voltage is calculated as follows:

Vout = j ω B

∫ l

0
w(x, ω) dx + Rtw Iin(ω) (14)
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Fig. 3. In both figures the sensors measured and theoretical frequency responses including the fundamental harmonic in four different liquids are illustrated (Excitation
voltage Vg=0.5 V). For both sensors, clearly, it is visible that higher viscosities yield higher damping. The effect of the viscosity and the mass density on the resonance frequency
shift  can be observed in the according theoretical frequency responses. The deviation in the resonance frequencies between model and experiment are mainly caused by
undesired de-tuning of the sensor. (a) Suspended plate: 3 cm × 100 !m tungsten wires, 3 × 3 mm PET platelet. (b) Wire viscometer: 3 cm × 100 !m tungsten wire.

(l: wire length, Rtw: wire ohmic resistance). The first term cor-
responds to the motion induced voltage Eq. 7. Fig. 2(c) shows a
comparison of measurement data and a fit of this model.

4. Response to viscosity

From the resonant behavior which is monitored by the motion
induced voltage in the wire the viscosity of a sample liquid is deter-
mined (knowing the liquid’s mass density).

The effect of different viscosities on the resonant behavior was
examined by recording the frequency response including the fun-
damental mode in four different liquids. The selected liquids have
only small differences in their viscosity, ranging from 0.21 mPa s
to 2.1 mPa  s to investigate the sensitivity to viscosity. The used liq-
uids were acetone, methanol, isopropanol and DI-water, see Fig. 3.
The indicated reference values for viscosity and mass-density were
measured with a Stabinger Viscometer (SVM 3000) at 25 ◦ C.

For the measurements in this study, we observed shifts in the
resonance frequencies, see Fig. 3, which are mainly not caused by
the different physical properties of the liquids but by de-tuning of
the sensor (e.g., from thermal stresses, slacking of the entire setup,
etc.). However the liquid’s physical properties (theoretically) have a

significant effect on the shift of the resonance frequency which can
nicely be observed in the theoretical frequency responses in Fig. 3.
From these theoretical frequency responses it can also be seen, that
the wire viscometer is more sensitive to mass density than the sus-
pended plate sensor. (Compare the theoretical frequency responses
of water, which has a higher mass density than the examined sol-
vents.)

For obtaining these theoretical frequency responses, the models
described in Sections 2.2 and 3.2 were compared to the four mea-
sured frequency responses. In the theoretical evaluation of the wire
viscometer and the suspended plate sensor the normal stresses and
the intrinsic spring constant, respectively, were kept constant to
show the effect of the physical properties on the frequency shift.

Based on the insights gained with these measurements, we aim
at setups yielding stable resonance frequencies, see discussion in
Section 6, for accurate and reliable sensing.

4.1. Discussion and comparison

For a rough estimate, to compare the sensors’ sensitivity to vis-
cosity, we  evaluated the Q-factors detecting the maximum (at f = fr)
and −3 dB values (at f = f− and f = f+, respectively) in the magnitude
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Fig. 4. Comparison of the Q-factor. For both sensors, the relative and the absolute values are indicated. The relative values are in respect to the highest value of the according
measurement. In the investigated range, both sensors show a similar sensitivity to viscosity.
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Fig. 5. In both figures the band width of achievable resonance frequencies (in air) using 3 cm long and 100 !m thick tungsten wires are illustrated. In each case a detailed
view  of one characteristic resonance is depicted as well. In case (b) (wire viscometer) higher quality factors are obtained. (Note that the bandwidths in the detailed views
are  40 Hz for the wire viscometer and 200 Hz for the suspended plate rheometer.) The obtained resonances in first measurements go from 1000 Hz to 4250 Hz in case of the
wire  viscometer and from 820 Hz to 4040 Hz for the suspended plate rheometer. In both cases, for changing the resonance frequencies for these measurements, the normal
stresses in the wires were varied by tensioning the wires with micro-stages with micrometer screws. These figures serve to illustrate the basic mechanism. The detailed
characteristic resonance frequency versus tensile stresses are shown in Fig. 6(b). (a) Suspended Plate. (b) Wire viscometer.

of the frequency response when the sensors were immersed in the
different sample liquids yielding Q = fr/(f+ − f−). Both sensors show a
similar sensitivity to viscosity when evaluating their quality factors
in the examined range of viscosity, see Fig. 4. We  note that with the
wire viscometer, in principle, it is possible to measure both, mass
density and viscosity with a single measurement only, however,
with restricted accuracy [12]. The sensitivity of the wire viscome-
ter to mass density can be observed in the theoretical frequency
response in Fig. 3(b). There, the shift of the resonance frequency
is mainly affected by the mass density which is nicely visible for
the case of water which has a higher mass density than the other
examined liquids.

5. Tunability of the resonance frequency

To show the capability of the tuning of the resonance frequency
the normal stresses in the wires were changed by tensioning
the wires with micro-stages with micrometer screws. With this
method it is difficult to set a prescribed tension. We  instead applied
a certain tension by adjusting the micrometer screw and deter-
mined the resulting resonance frequency in the measurement. Like
stringed instruments, the setup is subject to detunig effects. This
disadvantage can be overcome by presetting a mechanical tension,
see below for the case of the vibrating wire. In first experiments
in air resonances between 1000 Hz and 4250 Hz in case of the wire
viscometer and 820 Hz and 4040 Hz in case of the suspended plate
rheometer were achieved, see Fig. 5, [4].  The intention of these
experiments was to monitor the frequency range of measurable
resonances. The integration of the tensioning mechanism in the
microsensor as well as the investigation of the applicability to char-
acterize frequency dependent liquid behavior will be subject of our
future research.

With a second experiment, see Fig. 6(a), we wanted to fur-
ther investigate the achievable tunable range with known normal
stresses for the case of an oscillating wire. For presetting the nor-
mal  stresses in the wire we attached several weights to the wire,
see e.g., Fig. 6(a). Fig. 6(b) shows the results of experiments for a
47 !m thick tungsten wire with a constant length l = 30 mm for dif-
ferent normal stresses in the wire. There, the results of two different

types of wire clamping are compared. ‘Pinned’ corresponds to the
setup as it is depicted in Figs. 6(a) and 7(b), where ‘clamped’ corre-
sponds to Fig. 7(c). The solid black line in Fig. 6(b) was obtained by
the equation for the resonance frequency of a string with radius r,
length l, preset normal stresses TN and mass density # [15]

fr = 1
2 l

√
TN

#
. (15)

Note that for obtaining good accordance of the measured reso-
nance frequencies with the theoretical values, the wire’s nominal
diameter of 47 !m was changed to 49 !m in our calculations.

These results show the same range of resonance frequencies
as in the first experiment, c.f., Fig. 5(b). Fig. 6(c) shows the (the-
oretically) total achievable range of resonance frequencies when
changing the normal stresses as well as the wire’s vibrating
length for a 100 !m thick tungsten wire with the limiting factors
L = 10 . . . 30 mm and TN = 0 . . . 1.4 GPa. This range has been verified
experimentally and good accordance was observed.

6. Improved setups using the wire viscometer as example

6.1. Reducing cross sensitivities

The previous sections showed a proof of concept of both types
of sensors. They are well applicable for viscosity sensing and can
be detuned in a range of over one decade. However, from the first
experiments, it became clear that several improvements have to
be achieved, which we want to discuss for the example of the
wire viscometer. In this contribution we  focus on the discussion
on improving the stability of the resonance frequency (once it is
set to a desired value). In [14] a discrete permanent magnet assem-
bly is presented yielding a flux density of 1.2 T in a 4 mm airgap,
which drastically improves the magnitude of the read-out signal.

6.2. Reducing instabilities in the resonance frequency

We investigated three different types of wire clamping, see
Fig. 7, in the laboratory during 25 h recording the ambient
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Fig. 6. In (a) a setup of the wire viscometer allowing for changing both, the normal stresses in the wire as well as its length is depicted. A tungsten wire is placed in an external
magnetic field (not depicted; perpendicular to the wire). The conductive blades allow for electrical contact and for changing the wire’s vibrating length. One end of the wire
is  rigidly affixed. The other is attached to a weight, which is varied for changing the normal stresses in the wire but keeping the normal stresses constant when changing
the  vibrating length. (b) Comparison of measured and theoretic resonance frequencies for different normal stresses N. The solid line shows the theoretic results obtained by
using  the given material parameters. In (c) the results from a theoretical estimation of achievable resonance frequencies, when changing the normal stresses as well as the
wire’s  vibrating length for a 100 !m thick tungsten wire with L = 10 . . . 30 mm and TN = 0 . . . 1.4 GPa is depicted. (Tungsten has a yield stress of 1.5 GPa, approximately.) (a)
Setup.  (b) Resonance frequencies. (c) Theoretic achievable range.

Fig. 7. Effect of three different types of wire clamping on the resonance frequency. For each case the resonance frequency over temperature as well as resonance frequency
and  temperature over time is plotted. (a) Doubly clamped. (b) Doubly pinned. (c) Doubly clamped but constant normal forces.

temperature to study the range of resonance frequency changes
under (randomly) varying conditions in a non-air-conditioned
room.

For the first case (Fig. 7(a)) in which the wire was rigidly and
doubly clamped, we expected high shifts of the resonance fre-
quency due to thermal stresses resulting from the different thermal
expansion coefficients of the used materials. The problematic char-
acteristic of setup (a) is not only this high temperature dependency
but that for a given temperature there is a spurious variation of
resonance frequencies of about 20 Hz for one and the same device.
Thus, the idea was to keep the normal stresses constant by pinning
the wire instead of clamping, see Fig. 7(b). However, in this case,
there is still a relatively large temperature dependency which can
only be explained with friction forces between the blades and the
wire, c.f. discussion in Section 5. Here, also a significant hysteresis

can be observed within a temperature cycle. In the third setup, see
Fig. 7(c) an almost frictionless linear stage was used to keep the
normal stresses in the clamped wire as constant as possible. With
this setup the variation of the resonance frequency is less than 3 Hz
and mainly not dependent on the ambient temperature.

7. Conclusion

This work shows the feasibility of measuring viscosity with
both presented sensors at tunable resonance frequencies. For the
case of the wire viscometer an improved setup has been found
allowing for stable resonance frequencies. Furthermore, first
closed-form models have been developed which can be fitted into
the measured data with high accuracy. Regarding future work, the
stability of both sensors has to be investigated and most likely,
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improved with more sophisticated setups. For this investigation
large measurement series with multiple test liquids over a long
period of time have to be carried out.
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1. Introduction

During the last two decades, there has been a remarkable inter-
est in resonant viscosity and mass density sensors. As a matter
of fact, this interest is still increasing which is substantiated by
the large amount of publications associated with this field. Some
of the incentives for resonant viscosity and mass density sensors
are, amongst others, their reduced size compared to conven-
tional instruments (down to the micrometer range), their relatively
straightforward integrability in a process line or potentially low
manufacturing costs [1]. Furthermore, from a rheological point
of view, these devices allow measurements in a frequency range
higher than conventional rheometers (about 100 Hz) up to the MHz
range, which becomes especially interesting when investigating
linear viscoelastic liquids for which measurements in the men-
tioned frequency range are scarcely available yet. Finally, for many
resonant principles, miniaturized devices can be fabricated, and
thus these sensors allow characterizing liquid samples for which
only very few amounts (lower than 1 nL) are available [2].

The variety of reported designs and fabrication technologies
is extremely diverse. Common principles include thickness shear
mode oscillating quartz crystals, [3,4], quartz tuning forks [5] and

∗ Corresponding author. Tel.: +43 73224686266.
E-mail address: martin.heinisch@jku.at (M.  Heinisch).

singly [6] or doubly clamped beams [7] in silicon technology. Sim-
ilar devices were also fabricated using wet-etched copper coated
polymer sheets [8] or longitudinally vibrating PZT screen-printed
cantilevers [9]. For frequencies between 100 Hz and 100 kHz and
similar to doubly clamped beams, wire based sensors [10,11] were
reported. Other principles also operating in the aforementioned
frequency range include U-shaped cantilevers [12,13], membrane
based devices [14,15] and in-plane oscillating platelets [16–18].

Concerning excitation and readout, the previously reported con-
cepts cover most established principles used in MEMS  technology.
Recording the frequency responses of piezoelectric or piezore-
sistive devices [6,9,19], is a very common technique. In [20] a
capacitive readout principle was reported. Electromagnetic prin-
ciples allow high driving forces and large deflections [21] as well as
measuring the frequency response by recording a motion induced
voltage [14] at the same time. In [22–24] thermally actuated devices
are discussed which allow an in-plane oscillation of the particular
device. Optical readout using e.g. a laser vibrometer [25] is a fur-
ther very common technique, though hardly suitable for integration
in a sensor device used in the industrial field and only applica-
ble for transparent liquids. Due to their high accuracy in deflection
measurements, laser vibrometers are often used for the readout
of miniaturized cantilever based setups e.g. in biosensing applica-
tions [26] in a laboratory environment. In [7] an optical readout
using a DVD-pickup was implemented and in [27] a setup with a
closed fluid cell using optical readout is presented. For all types of

http://dx.doi.org/10.1016/j.sna.2014.09.006
0924-4247/© 2014 Elsevier B.V. All rights reserved.



M. Heinisch et al. / Sensors and Actuators A 220 (2014) 76–84 77

Fig. 1. Mechanical, lumped elements oscillator, immersed into a liquid. m0: lumped
mass, c0: damping coefficient, k0: spring constant, u(t): displacement, Fex(t): exci-
tation force, FF(t): fluid force, fr: resonance frequency, Q: Quality factor, !: fluid’s
dynamic viscosity, ": fluid’s mass density.

liquid sensors, closed setups are a basic requirement when aim-
ing at accurate measurement results. Open setups usually involve
evaporation of the liquid, which in turn is one of the sources for
non-stable measuring conditions as the liquid’s temperature varies
due to evaporative cooling. This variation of temperature during
the measurement involves mostly unknown changes of the res-
onator’s mechanical parameters but also changes of the liquid’s
mass density and viscosity.

The principles which were discussed in the previous paragraphs
have in common, that the devices’ frequency responses, including a
characteristic resonant mode, are recorded from which the sample
liquid’s mass density " and viscosity ! are deduced. In many cases,
resonance frequency fr and quality factor Q are first evaluated,
which are then related to the liquid’s viscosity and mass density by
an appropriate model, see Fig. 1. Depending on the particular res-
onator design, closed form models considering structural and fluid
mechanics may  become relatively complex demanding high mod-
eling effort and computational power. Furthermore, the parameters
in these models have to be identified with an appropriate param-
eter fit or the model might have to be completed by calibration
functions which require additional calibration measurements, see
e.g. [12]. In addition to this high modeling and calibration effort,
there is a lack of a generalized model for resonant mass density and
viscosity sensors which can be used as figure of merit and allowing
for comparison of different sensor principles.

In this paper, a generalized reduced order model is presented,
relating resonance frequency fr and quality factor Q to mass density
" and viscosity !. The equations for the latter have the form

fr ≈ 1/(2 #)√
m0k + m"k " + m∗

!"k
√

! "
and

Q ≈

√
m0k + m"k " + m∗

!"k
√

! "

c0k + c!k ! + c∗
!"k

√
! "

which will be derived in the following. (m0k, m"k, m∗
!"k, c0k, c!k,

c∗
!"k are coefficients which can be determined with a parameter

fit.) These generic equations can be derived for resonators where
an infinitely thin, in-plane oscillating plate, an oscillating sphere
or a laterally oscillating cylinder interact with the fluid. However,
as it will be shown for measurements obtained with sensors e.g.
with rectangular cross-section, this reduced order model can also
be applied for geometries other than the aforementioned, for which
analytical expression are not available or hardly accessible.

Assuming linearity for the mechanical oscillation, and thus
small deflection amplitudes of the resonator [28], the investigated
resonant mode is represented by a mechanical, lumped element
oscillator, assuming validity of eigenmode decomposition. In the
presented model, the fluid structure interactions are described
in a reduced generalized expression, considering the well known
equations for an in-plane oscillating plate, an oscillating sphere
and a laterally oscillating cylinder. In this generalized model,
any material or geometrical related parameters as well as any
other factors are not explicitly considered but contained in single

factors. Thereby, only the dependencies to mass density and
viscosity remain in the derived expressions for the resonance
frequency and the quality or damping factor. This basically allows
the applicability of the model for any convexly shaped resonator,
regardless of the implemented designs, materials or fabrication
technologies as well as actuation and readout mechanisms.

Besides the simplicity of the model and its general applicability,
a further big advantage is that only measurements in three cali-
bration liquids are necessary to identify the model’s coefficients.
From every measurement fr and Q are evaluated which then allows
evaluating the six coefficients in the equations above. For resonant
sensors whose identified model slightly deviates from the mea-
surements, the model still can be used to approximately describe
the sensor’s characteristics and allows comparison with other prin-
ciples which were identified with this generalized, reduced order
model.

2. Lumped element approach

We consider a linear, mechanical oscillator, see Fig. 1, with
lumped mass m0, damping coefficient c0 and spring constant k0,
being immersed in a liquid. The time dependent equation of motion
with time variable t for the displacement u upon forced actuation
with an excitation force Fex and accounting for the influence of the
liquid on the oscillation with a fluid related force FF is

m0
d2u(t)

dt2 + c0
du(t)

dt
+ k0 u(t) = Fex(t) − FF(t). (1)

A harmonic excitation force with angular frequency ω and time
dependence ej ω t where j =

√
−1 is furthermore assumed. Thus, the

equation of motion using the steady state velocity of the oscillation
in the frequency domain v(ω) = j ω u(ω) reads
(

c0 + j
(

ω m0 − k0

ω

))
v(ω) = Fex(ω) − FF(ω). (2)

The force FF induced by the fluid can be represented by a
complex valued function of ω in the frequency domain. As the inter-
action will have a linear character for small vibration amplitudes it
will be proportional to the velocity such that we can write

FF(ω) = ZF(ω) v(ω) (3)

where we  used the symbol ZF for the proportionality factor as it
resembles an acoustic impedance. ZF(ω) can be split in a real and
imaginary part, ZF,R and ZF,I, respectively. Intuitively, the interac-
tion with the fluid will lead to an added mass (due to fluid mass
moved in unison with the vibration) and to a damping due to vis-
cous losses and radiated acoustic waves. The latter effect will lead
to a real part of ZF(ω) while the mass entrainment corresponds to
the imaginary part. This motivates to write the real part as

ZF,R = cf (4)

and the imaginary part as

ZF,I = ω mf, (5)

where cf represents the additional damping and mf represents the
added mass. If additional lumped mass were actually added to the
lumped mass m0 of the mechanical oscillator, mf would represent
this added mass. However, as it represents the fluid interaction
of a distributed resonator, the terms mf and cf will, in general, be
frequency dependent. Thus the fluid forces in the frequency domain
can be written as

FF(ω) = (cf(ω) + j ω mf(ω)) v(ω). (6)

Just as the parameters of the lumped mass model (m0, c0, k0), the
frequency dependence of mf(ω) and cf(ω) can be moderate, though,
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such that, if ω is close to the resonance frequencies, the values can
be approximated by their values at the resonance frequency.

Introducing the above relation Eq. (6) in Eq. (2) we  obtain the
following spectral transfer function

v
Fex

= 1
c0 + cf(ω) + j(ω(m0 + mf(ω)) − (k0/ω))

. (7)

This frequency response can be compared to the standardized
response of a second order system

H2(ω) = A
1 + j Q ((ω/ω0) − (ω0/ω))

(8)

where ω0 represents the resonance frequency and Q the quality
factor. Neglecting the frequency dependence of ZF near resonance,
the resonance frequency and the Q-factor of our model system
can be readily identified. The resonance frequency is defined as
the frequency where the above transfer function Eq. (7) becomes
real-valued which yields an implicit equation for ω0:

ω0(m0 + mf(ω)) = k0

ω0
. (9)

This equation could, e.g. be solved iteratively using the approx-
imation mf(ω) ≈ mf(ω00) as a starting value for mf(ω) where
ω00 =

√
k0/m0 is the resonance eigenfrequency for the unloaded

resonator. For weak frequency dependence of mf(ω) or small res-
onance frequency shifts, this first approximation may  already be
considered as sufficiently accurate (see also the discussion below
for specific cases). With this simple approximation we find

ω0 ≈ ω01 =

√
k0

m0 + mf(ω00)
(10)

which represents the decrease of resonance frequency associated
with the added mass as expected. ω01 is the approximated value
for ω0 after the first iteration. Similarly, for Q we find

Q ≈ Q1 = 1
ω0

· k0

c0 + cf(ω00)
. (11)

The exact values for ω0 and Q are

ω0 =

√
k0

m0 + mf(ω0)
and Q = 1

ω0
· k0

c0 + cf(ω0)
(12)

yielding an implicit equation for ω0.

3. Fluid forces

3.1. In-plane oscillating plate

The shear stress Tp resulting from the in-plane oscillation of an
infinitely extended plate in a viscous liquid with dynamic viscosity
! and mass density " at the liquid–solid interface in the frequency
domain reads [3,29]

Tp = −(1 + j)
√

!"ω
2

v. (13)

The fluid forces acting on the plate with effective surface Ap are
FF = −Tp Ap. We  call Ap effective surface, as this coefficient which
might be determined by a data fit, considers not only the surface
of wetted parts of a plane plate, but it might also consider geomet-
rical imperfections such as slight surface roughnesses and plates
with a finite thickness. Comparison of coefficients of the latter and
Eq. (6) yields for the additional effective fluid mass and damping
parameter in case of the in-plane oscillating plate

mf,p(ω) =
√

! "
2 ω

Ap and cf,p(ω) =
√

! " ω
2

Ap (14)

Introducing coefficients m!",p = c!",p = Ap/
√

2 used in the expres-
sions for the added mass and damping parameters in case of the
plate, Eq. (14) gives

mf,p(ω) = m!",p

√
! "
ω

and cf,p(ω) = c!",p
√

ω ! " (15)

3.2. Oscillating sphere

The fluid forces acting on a sphere with radius rs, oscillating with
velocity v(t) is [30]

FF, s = 6 # ! rs

(
1 + rs

ı

)
v(t) + 3 # r2

s

√
2 ! "

ω

(
1 + 2 rs

9 ı

) ∂v(t)
∂t

(16)

where

ı =

√
2 !
ω "

(17)

is the so-called penetration depth.
Substituting Eq. (17) in Eq. (16), transformation to the frequency

domain and comparison of coefficients with Eq. (6) yields

mf, s(ω) = 3 # r2
s

(√
2 ! "

ω
+ 2 rs

9
"

)
and

cf, s(ω) = 6 # rs

(
! + rs

√
ω ! "

2

)
. (18)

Considering all coefficients and rs in factors mx,s and cx,s used
in the expressions for the fluid loading related additive mass and
damping parameter in case of the sphere, Eq. (18) can be brought
into the form

mf, s(ω) = m",s " + m!",s

√
! "
ω

and

cf, s(ω) = c!,s ! + c!",s
√

ω ! ". (19)

3.3. Oscillating cylinder

The fluid force per unit length F ′
F,c on an oscillating cylinder with

radius rc, also given in [31–33], reads:

F ′
F,c(ω)  = −# " ω2 r2

c &cyl u(ω) (20)

with

&cyl = 1 +
4 K1

(√
j Re
)

√
j Re K0

(√
j Re
) (21)

where

Re = " ω r2
c

!
(22)

is the Reynold’s number, K0 and K1 are modified Bessel functions
of second kind and &cyl is the so-called hydrodynamic function.
To allow evaluating the real and imaginary part of Eq. (20), neces-
sary for calculating added mass mf,c and damping parameter cf,c for
the oscillating cylinder, a second order series expansion of &cyl at
j Re→ ∞ is performed, yielding

&cyl ≈ &cyl,T = 1 + 4
√

2 Re
− j
( 4

√
2 Re

+ 2
Re

)
(23)

where the subscript T denotes the Taylor series developed expres-
sion. The relative deviations of real and imaginary parts ı&cyl,R and
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Fig. 2. Relative deviations of the real and imaginary parts of the approximated
hydrodynamic function Eq. (23) from the exact solution Eq. (21).

ı&cyl,I of the approximated hydrodynamic function Eq. (23) and
the exact solution Eq. (21) is depicted in Fig. 2. This comparison
shows that for Reynolds numbers larger than 10, the deviation of
the Taylor series approximated solution is less than 1 %.

Substituting the approximated solution of the hydrodynamic
function in Eq. (20) and comparison of coefficients with Eq. (6)
yields

mf,c(ω) ≈ # r2
c

(
" + 4

√
2 rc

√
! "
ω

)
lc and

cf,c(ω) ≈
(

2 # ! + 4 #
√

2
rc

√
ω ! "

)
lc (24)

for the added mass and damping parameters in case of the oscil-
lating cylinder, where lc is the effective length of the cylinder. By
reducing all coefficients and rc in factors mx,c and cx,c,

mf, c(ω)  = m",c " + m!",c

√
! "
ω

and

cf, c(ω) = c!,c ! + c!",c
√

ω ! " (25)

is obtained for the oscillating cylinder which is the same form
as Eq. (19) for the oscillating sphere.

3.4. Generalized equations for added mass and damping

Comparison of the Eqs. (15), (19) and (25) shows that the fre-
quency dependent expressions for the fluid related added mass and
damping can be given in a generalized form as follows

mf(ω) = m" " + m!"

√
! "
ω

and cf(ω) = c! ! + c!"
√

ω ! " (26)

where the factors for mx and cx are given in Tab. 1 for the case of
an in-plane oscillating plate, an oscillating sphere and a laterally
oscillating cylinder.

Table 1
Coefficients.

Plate Sphere Cylinder

m" 0 2 #
3 r3

s # r2
c lc

m!"
Ap√

2

√
2 3 # r2

s

√
2 2 # rc lc

c! 0 6 # rs 2 # lc
c!"

Ap√
2

√
2 3 # r2

s

√
2 2 # rc lc

4. Generalized equations for resonance frequency and
damping factor for a liquid loaded oscillator

4.1. Resonance frequency

Considering the three solutions for the fluid-loading related
mass parameter, a generalized expression for the angular reso-
nance frequency

ω0 = 1√
m0k + m"k " + m!"k

√
! "/ω0

(27)

is obtained by substituting the mass parameter from Eq. (26)
in Eq. (12) and dividing the such obtained equation by k0. mxk
are coefficients which can be determined by a parameter fit for
measurement results for fr = ω0/(2 #) obtained with at least three
different liquids with known mass densities and viscosities. In case
of one-dimensional plane shear waves, the factor m"k is zero.

4.2. Quality factor

Similar to the generalized equation for the resonance frequency,
the quality factor is calculated by substituting the damping coeffi-
cient from Eq. (26) in Eq. (12). It follows

Q = 1
ω0

· 1
c0k + c!k ! + c!"k

√
ω0 ! "

, (28)

where cxk are coefficients and c!k is zero in case of one-dimensional
shear waves.

5. Simplified equation for the resonance frequency and
damping factor

5.1. Resonance frequency

The implicit nature of Eq. (27) might be troublesome in some
cases, e.g. when an estimation for ω0 for given ! and " has to be
calculated. For this purpose, the equation is simplified by neglecting
the frequency dependence of the added mass mf(ω) in Eq. (26).
Thus, it follows for the angular resonance frequency

ω0 = 1√
m0k + m"k " + m∗

!"k
√

! "
. (29)

5.2. Quality factor

Similar to the simplification of ω0, the expression for Q can be
simplified by neglecting the frequency dependence of the damp-
ing parameter cf(ω) in Eq. (26). Using Eq. (29) for ω0 in Eq. (28), it
follows

Q =

√
m0k + m"k " + m∗

!"k
√

! "

c0k + c!k ! + c∗
!"k

√
! "

. (30)

As already mentioned above, the simplification of the equations
for ω0 and Q by neglecting the frequency dependence of the param-
eters mf(ω) and cf(ω) is valid for small investigated bandwidths and
high quality factors. In a first theoretical investigation which will
be published elsewhere it was found, that for an investigated band-
width of [ω0 − ω0/Q . . . ω0 + ω0/Q] the relative changes of mf(ω) and
cf(ω) are less than 1 % for quality factors higher than 5 in case of
mf and 50 in case of cf, respectively. A comparison of the general-
ized model and simplified model for fitted parameters is given in
Section 6 and in Appendix B.

The procedure how to fit the model parameters in Eqs. (27)–(30)
using a linear least squares fit, is explained in Appendix A.
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Fig. 3. Measuring principle and geometries of the circular and rectangular cross-
sectioned tuning fork. The frequency response of a fully immersed, ferromagnetic
tuning fork is recorded by electromagnetic excitation and readout. From these fre-
quency responses, resonance frequencies and quality factor are evaluated.

6. Model verification

For investigating its validity, the model has been applied to
experimental results obtained with steel tuning forks and to
data of recently published sensors. The deviations of measured
and modeled results for each sensor are depicted in Fig. B1 in
Appendix B.

The intention of the experiments performed for this work was
to experimentally examine the effect of mass density and viscosity

to resonance frequency and quality factor separately. This was
achieved by investigating the resonance characteristics of tuning
forks in liquid mixture series with varying viscosities but constant
mass densities and vice versa. This procedure is explained in detail
in the following subsection.

6.1. Experimental investigation using steel tuning forks

The validity and applicability of the equations for resonance
frequency and quality factor discussed in Sections 4 and 5 is demon-
strated by an experimental investigation using conventional steel
tuning forks with circular and rectangular cross sections but with
the same nominal resonance frequency (440 Hz) in air. The usage
of tuning forks was  motivated by their simple and well defined
geometry as well as their stability of resonance frequency and
low cross-sensitivity to temperature. Due to these conditions, the
results obtained with the tuning forks are expected to yield good
accordance with the model. The circular tuning fork was  chosen
to meet the requirements for the oscillating cylinder, Section 3.3
whereas the rectangular tuning fork was  selected to demonstrate
the applicability of the model for oscillating structures other than
plates, cylinders and spheres. The model has furthermore been
tested for other sensor types (not only from our own  work)
described in Section 6.2.

The measuring principle as well as the dimensions of the used
steel tuning forks are shown in Fig. 3. Each tuning fork was  put in
a glass tube (not depicted) which was sealed at both sides of the
tube after filling it with the sample liquid. For excitation, an elec-
tromagnet was  placed (outside of the tube) at the end of one of
the ferromagnetic tuning fork’s prongs. For measuring the oscil-
lation of the tuning fork, an electrodynamic pick-up consisting
of a coil carrying a permanent magnet in its center was placed
at the other prong’s end. By sweeping the excitation current’s
frequency, the tuning forks’ frequency responses containing the
tuning forks’ fundamental mode were recorded upon immersion
in various sample liquids at controlled temperatures of 25 ± 0.1 ◦C.
From these frequency responses, resonance frequencies and qual-
ity factors were evaluated with a fitting procedure presented in
[34].

Fig. 4. Modeled and measured values for resonance frequency and quality factor. The shaded surfaces for fr and Q were obtained by evaluating Eqs. (29) and (30) for fr and
Q  for identified parameters for the circular tuning fork. The intersection lines on the shaded surfaces with the planes entitled density and viscosity series indicate the values
which  would be obtained for fr and Q for constant " and !, respectively. In this case, the viscosity series consist of five acetone–isopropanol solutions with mass densities of
roughly  0.78 mg/cm3 and covering a viscosity range of 0.2 to 2 mPa  s. The density series consist of five solutions with a viscosity of 1 mPa s and mass densities of 0.78 to 1
mg/cm3. The measured points are indicated by the black dots on the shaded surfaces. A more detailed illustration of measured values for fr and D obtained with the viscosity
and  mass density series is given in Fig. 5. Note that here, 1/Q  (instead of Q) is plotted for better visibility of the surface plot.
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Fig. 5. Measured, averaged damping and resonance frequency for a circular and a
rectangular tuning fork versus viscosity and mass density.

The dependence of the resonance frequency as well as the
quality factor on both, the liquid’s viscosity and mass density
was already shown in the equations for the models discussed in
Sections 4 and 5 (generalized and simplified model). To easier dis-
tinguish the tuning forks’ responses to mass density and viscosity
and to allow plotting fr(!), Q(!), fr(") and Q(") in a two dimensional
plot, two series of liquids have been prepared. The mass density
series with a nominal viscosity of 1 mPa  s and the viscosity series
with a nominal mass density of 0.78 mg/cm3. An illustration of fr(!,
") and 1/Q(!, ") in the investigated range of viscosities and mass
densities is shown Fig. 4.

The response to viscosity was investigated by evaluating both
tuning forks’ quality factors and resonance frequencies in five
acetone–isopropanol solutions covering a viscosity range from 0.2
to 2 mPa  s for mass densities of roughly 0.78 mg/cm3 at 25 ◦C. After
mixing, the viscosity and mass density of these solutions were mea-
sured with an Anton Paar SVM 3000 viscometer.

For investigating the response to mass density, five solutions
using acetone, isopropanol, ethanol, DI-water and glycerol were
prepared. The liquids were mixed to obtain almost constant vis-
cosities of 1 mPa  s but mass densities between 0.78 and 1 mg/cm3

at 25 ◦C. The values for viscosity and mass density of these solutions
were again determined with the SVM 3000 viscometer.

The values for the inverse of the quality factor 1/Q̄ and the reso-
nance frequency f̄r, averaged over 100 repeated measurements for
every liquid from the viscosity and mass density series are depicted
in Fig. 5 for the circular and rectangular tuning fork, respectively.
This illustration of fr(!), 1/Q(!), fr(") and Q(") correspond to the
measurements in the viscosity series and mass density series planes
in Fig. 4.

6.2. Application to results from literature

To investigate the applicability of the model not only for tuning
forks but furthermore to the work of other groups, the model was
tested for other sensors where sufficient data for fr, Q, ! and ",
was provided in tabulated form. There, the liquids’ viscosities and
mass densities were not split up in viscosity and mass density
series as for the investigation of the tuning forks in this work. In
[2] a single-crystal silicon cantilever operated at 5 kHz approxi-
mately, with a length of 397 !m,  a width of 29 !m,  and a thickness
of 2 !m was investigated in gaseous and liquid environments. An

in-plane vibrating silicon platelet [16] supported by four silicon
beams, featuring an overall size of 1.3 mm in length, 100 !m in
width and 20 !m in height was  examined in 9 different liquids
at operational frequencies of roughly 10 kHz. In [35] a millimeter-
sized quartz tuning fork resonating at 30 kHz  as well as a 1 mm
long, 250 !m wide AlN platelet actuated in an extensional mode
at roughly 4 MHz  was presented.

From our own  work, we  further investigated the applicability
of the model to a U-shaped wire sensor and a spiral spring sensor.
The U-shaped wire sensor [36], consisting of a tungsten wire with
a diameter of 400 !m which is bent to the shape of a ‘U’, features
an overall size of 12 mm in length and 6 mm in width and is oper-
ated at 930 Hz in liquids. The frequency responses were recorded
in eleven DI–water–glycerol mixtures. The spiral spring sensor, see
[37], with a length of 35 mm was tested in 17 liquids at operational
frequencies of 630 Hz in liquids.

6.3. Comparison of modeled and experimental results

The relative deviations ıfr and ıQ of the modeled values for fr
and Q with respect to the measured values f M

r and QM are used to
show the deviation of the modeled result from the measured value.
In case of the circular and rectangular tuning fork, as well as for the
U-shaped wire and the spiral spring sensor, which are all from our
own work, the mean values for 100 repeated measurements for f M

r
and QM have been used. For the other sensors, the reported values
have been taken. The relative root mean square (rms) deviations
ıfr, rms and ıQrms are used as a figure of merit to judge the applica-
bility of the particular model for resonance frequency and quality
factor. The relative deviations and the relative rms  deviations were
evaluated as follows:

ıX = X − XM

XM and ıXrms =

√√√√ 1
N

N∑

i=1

(
Xi − XM

i

XM
i

)2

, (31)

where X stands either for fr or Q and N is the number of investigated
liquids. The such evaluated results are depicted in Appendix B in
Fig. B1 for eight different sensors.

In total, 77 values for the relative deviations for fr and Q
for both models were evaluated, for the eight investigated sen-
sors. By this investigation, ranges of ! = 0.21 . . . 215.7 mPa  s,
" = 0.68 . . . 1.6 g/cm3, fr ≈ 400 . . . 3.85 × 106 Hz and Q = 1.02 . . .
498.99 in liquids, have been covered.

The comparison of the relative rms deviations of the mod-
els for the resonance frequency Eq. (27) (generalized model)
and Eq. (29) (simplified model) shows, that the generalized
model in general yields slightly better results than the simpli-
fied model. The total rms  deviation (for the 77 values) for the
resonance frequency is 1.01 × 10−3 for the generalized model
and 1.66 × 10−3 for the simplified model. In some cases, (circular
tuning fork, rectangular tuning fork, U-shaped wire) the simpli-
fied model yields negligibly better results. The best fitting results
and the highest deviations were obtained in case of the rectan-
gular tuning fork (8.94 × 10−6 and 8.91 × 10−6) and the U-shaped
wire (2.05 × 10−3) as well as the silicon cantilever (4.65 × 10−3),
respectively.

Concerning the relative deviations of the values of modeled and
measured results for the quality factor, the simplified model Eq.
(30) yields in general better results than the generalized model
Eq. (28). The total relative rms  deviations for the quality factors
are 32.44 × 10−3 for the generalized model and 31.45 × 10−3 for
the simplified model, respectively. The lowest relative deviations
are obtained with the silicon platelet (2.50 × 10−3 and 4.08 × 10−3)
whereas the AlN platelet yields the highest relative deviations in
case of both models (79.20 × 10−3 and 78.93 × 10−3).
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7. Conclusion

Based on the representation of a mass density and viscosity
sensor’s characteristic resonant mode by a lumped element oscil-
lator and considering the fluid forces of oscillating plates, spheres

and cylinders on the mechanical resonator, generalized reduced
order equations for resonance frequency and damping factor were
obtained. As the generalized model yielded implicit equations,
which might be troublesome in some cases, a simplified model
has been formulated, neglecting the frequency dependence of the

Fig. B1. Relative deviations of modeled from measured results. ! designates the generalized model whereas ◦ represents the simplified model. In some cases, only one of
both  markers is visible, as both models yield similar results.
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fluid forces acting on the resonator. For the resonance frequency the
difference between both approaches is negligible, whereas in case
of the quality factor, the simplified model in general yielded bet-
ter results. This finding, which needs further investigation, might
have different reasons. Measurement errors, resulting e.g., from
varying temperatures, not perfectly cleaned sensors, unstable mea-
surement setups and outliers as well as errors resulting from the
evaluation of fr and Q from the frequency response are just a few
examples for potential reasons. A first investigation of the applica-
bility of the model using the experimental results of conventional
steel tuning forks with circular and rectangular cross-sections and
six further recently published sensors showed first, that the model
can be also applied for resonant sensors not exactly meeting the
geometrical requirements (plate, sphere, cylinder) considered in
the presented model. Second, the experimental results showed
good accordance with the fitted model. The achieved values for
the relative rms  deviations over 77 investigated measurements are
better than 1.7 × 10−3 for ıfr,rms and 3.3 × 10−2 for ıQrms.

Thus, the presented equations appear suitable for a general
description of a resonant mass density and viscosity sensor’s per-
formance even if slight deviations of experimental results might be
observed. This furthermore allows comparison of sensors of differ-
ent types, geometries, fabrication technologies as well as actuation
and readout principles.
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Appendix A. Parameter fit

Assuming that resonance frequencies fr,i and quality factors Qi
from at least three measurements in liquids with viscosities !i and
"i are available, all parameters in Eqs. (27)–(30) can be determined
by a linear least squares fit as follows. All four equations can be
brought into the form

b = A · x (A.1)

where x is a vector with the unknown parameters for which the
least squares solution reads [38]:

x = (AT · A)
−1

· AT · b (A.2)

A.1. Generalized model

The vectors of unknowns [m0k, m"k, m!"k]T and [c0k, c!k, c!"k]T

of the generalized model can be determined independently with
known values for ω0,i = 2 # fr,i, Qi, !i and "i. The equations for ω0
and Q are rearranged to allow formulating matrix equations of the
form of Eq. (A.1) as follows:

• Eq. (27) is rearranged to

1
ω2

0

= m0k + m"k " + m!"k

√
! "
ω0

(A.3)

and thus, the least squares solutions for the parameters in
x = [m0k, m"k, m!"k]T can be found using Eq. (A.2) with

b =
[

1
ω2

0,i

]
, A =

[
1, "i,

√
!i "i

ω0,i

]
(A.4)

• Eq. (28) brought into the form

1
Q

= ω0 · (c0k + c!k ! + c!"k
√

ω0 ! ") (A.5)

shows that the least squares solutions for the parameters of the
vector of unknowns x = [c0k, c!k, c!"k]T can be found using

b =
[ 1

Qi

]
, A = [ω0,i, ω0,i!i, ω0,i

√
ω0,i !i "i] (A.6)

and Eq. (A.2)

A.2. Simplified model

Similar to the procedure above, the parameters of the simpli-
fied model can be determined by a linear least squares fit, whereas
in this case, for calculating [c0k, c!k, c∗

!"k]T, the parameters for

the resonance frequency [m0k, m"k, m∗
!"k]T have to be known, i.e.,

determined first.

• The parameters of Eq. (29) are fitted using Eq. (A.2), where x =
[m0k, m"k, m∗

!"k]T and

b =
[

1
ω2

0,i

]
, A = [1,  "i,

√
!i "i]. (A.7)

• To determine the least squares values of x = [c0k, c!k, c∗
!"k]T

b =
[ 1

Qi

]
, A = [ω0f,i, ω0f,i !i, ω0f,i

√
!i "i] (A.8)

with

ω0f,i = 1√
m0k + m"k "i + m∗

!"k
√

!i "i
. (A.9)

are used and substituted in Eq. (A.2).

Appendix B. Model evaluation using experimental results

Fig. B1 shows the relative deviations ıfr and ıQ of modeled from
measured values for resonance frequency and quality factor for
eight different sensors versus ! and ". The references are given
in each plot. The marker ! indicates the values for the generalized
model whereas the marker ◦ designates the values for the simplified
model. Furthermore, the relative rms  deviations ıfr,rms and ıQrms
are given for each sensor for the generalized and the simplified
model.

References

[1] B. Jakoby, R. Beigelbeck, F. Keplinger, F. Lucklum, A. Niedermayer, E.K.
Reichel, C. Riesch, T. Voglhuber-Brunnmaier, B. Weiss, Miniaturized sensors
for  the viscosity and density of liquids – performance and issues, IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 57 (1) (2010) 111–120, http://dx.doi.org/
10.1109/TUFFC.2010.1386.

[2] S. Boskovic, J.W.M. Chon, P. Mulvaney, J.E. Sader, Rheological measurements
using microcantilevers, J. Rheol. 46 (4) (2002) 891–899.

[3] S.J. Martin, V.E. Granstaff, G.C. Frye, Characterization of a quartz crystal
microbalance with simultaneous mass and liquid loading, Anal. Chem. 63
(1991) 2272–2281.

[4] R. Thalhammer, S. Braun, B. Devcic-Kuhar, M.  Gröschl, F. Trampler, E. Benes,
H.  Nowotny, M.  Kostal, Viscosity sensor utilizing a piezoelectric thickness
shear sandwich resonator, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45
(5)  (1998) 1331–1340.

[5] L. Matsiev, J. Bennett, O. Kolosov, High precision tuning fork sensor for
liquid property measurements, in: IEEE Ultrasonics Symposium, 2005, pp.
1492–1495.

[6] I. Dufour, A. Maali, Y. Amarouchene, et al., The microcantilever: a versatile
tool for measuring the rheological properties of complex fluids, J. Sens. (2012),
http://dx.doi.org/10.1155/2012/719898.

[7] C. Riesch, A. Jachimowicz, F. Keplinger, E.K. Reichel, B. Jakoby, A novel sensor
system for liquid properties based on a micromachined beam and a low-cost
optical readout, in: Proceedings IEEE Sensors, 2007, pp. 872–875.



84 M. Heinisch et al. / Sensors and Actuators A 220 (2014) 76–84

[8] E.K. Reichel, C. Riesch, B. Weiss, B. Jakoby, A vibrating membrane rheome-
ter  utilizing electromagnetic excitation, Sens. Actuators A: Phys. 145 (2008)
349–353.

[9] C. Castille, I. Dufour, C. Lucat, Longitudinal vibration mode of piezoelectric
thick-film cantilever-based sensors in liquid media, Appl. Phys. Lett. 96 (15)
(2010) 154102, http://dx.doi.org/10.1063/1.3387753.

[10] F.J.P. Caetano, J.M.N.A. Fareleira, C.M.B.P. Oliveira, W.A. Wakeham, Validation
of a vibrating-wire viscometer: measurements in the range of 0.5 to 135 mPa  s,
J.  Chem. Eng. Data 50 (1) (2005) 201–205.

[11] M.  Heinisch, E.K. Reichel, I. Dufour, B. Jakoby, Tunable resonators in the low
kHz  range for viscosity sensing, Sens. Actuators A: Phys. 186 (2012) 111–117,
http://dx.doi.org/10.1016/j.sna.2012.03.009.

[12] P. Rust, D. Cereghetti, J. Dual, A micro-liter viscosity and density sensor for the
rheological characterization of DNA solutions in the kilo-hertz range, Lab Chip
13  (24) (2013) 4794–4799, 10.1039/C3LC50857A.

[13] M.  Heinisch, E.K. Reichel, B. Jakoby, U-shaped wire based resonators for viscos-
ity and mass density sensing, in: Proceedings of the SENSOR 2013, OPTO 2013,
IRS2, 2013.

[14] M.  Heinisch, E.K. Reichel, I. Dufour, B. Jakoby, A resonating rheometer using
two  polymer membranes for measuring liquid viscosity and mass density,
Sens. Actuators A: Phys. 172 (1) (2011) 82–87, http://dx.doi.org/10.1016/
j.sna.2011.02.031.

[15] P. Peiker, E. Oesterschulze, Impact of the miniaturization on the response of a
hybrid diaphragm resonator considering its finite support, Proceedings of the
Nanomechanical Sensing Workshop (2013) 127–128.

[16] C. Riesch, E.K. Reichel, A. Jachimowicz, J. Schalko, P. Hudek, B. Jakoby,
F.  Keplinger, A suspended plate viscosity sensor featuring in-plane vibra-
tion and piezoresistive readout, J. Micromech. Microeng. 19 (2009) 075010,
http://dx.doi.org/10.1088/0960-1317/19/7/075010.

[17] E.K. Reichel, C. Riesch, F. Keplinger, C.E.A. Kirschhock, B. Jakoby, Analysis and
experimental verification of a metallic suspended plate resonator for viscos-
ity sensing, Sens. Actuators A: Phys. 162 (2010) 418–424, http://dx.doi.org/
10.1016/j.sna.2010.02.017.

[18] A. Abdallah, M. Heinisch, B. Jakoby, Measurement error estimation and qual-
ity  factor improvement of an electrodynamic-acoustic resonator sensor for
viscosity measurement, Sens. Actuators A: Phys. 199 (2013) 318–324.

[19] G. Wingqvist, J. Bjurstrom, L. Liljeholm, I. Katardjiev, A.L. Spetz, Shear mode ALN
thin film electroacoustic resonator for biosensor applications, in: Proceedings
IEEE Sensors, 2005, pp. 492–495.

[20] X. Huang, S. Li, J. Schultz, Q. Wang, Q. Lin, A capacitive MEMS  viscometric sen-
sor  for affinity detection of glucose, J. Microelectromech. Syst. 18 (6) (2009)
1246–1254.
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A  resonant  sensor  for a fluid’s  viscosity  and mass  density,  employing  an  out-of-plane  vibrating  U-shaped
tungsten  wire  is  presented.  The  motivation  for  such  a design  is  based  on  four  major  aspects,  which  are:
operation  in the  low  kilohertz  range,  circular  cross-section  of  the resonator,  electrodynamic  actuation
and read-out  by  means  of  Lorentz  forces  and  low  cross-sensitivity  of  the  device’s  resonance  frequency  to
temperature.  The  setup  is  described  in  detail,  an  analytical  model  is  presented  and  results  from  exper-
iments  using  acetone–isopropanol  and  DI-water–glycerol  solutions  are discussed  to  show  the  sensor’s
performance.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Viscosity and mass density are important quantities describing
the physical behavior of a liquid. Once determined, these quanti-
ties can be used to draw conclusions about the condition of the
examined liquid. Examples for the latter are the monitoring of a
lubricant’s quality and aging [1], the condition of printing inks [2]
or the characterization of DNA solutions [3]. The need for using vis-
cosity and mass density sensors instead of conventional laboratory
instruments may  have many reasons. For example, they are applied
if only very low amounts of the sample liquid are available [4], or
the measurement has to be performed inline in a closed reservoir
or a production line. When aiming at handheld devices, the capa-
bility for miniaturized devices becomes especially advantageous.
Furthermore, from a rheological point of view, these resonating
devices have been introduced to allow measurements for frequen-
cies higher than 100 Hz, which is usually the limit for conventional
rheometers.

During the last two decades, a large amount of different princi-
ples was reported [5,6]. The variety of different approaches can, for
example, be distinguished by their fundamental mechanical struc-
ture, the manufacturing technology, the used materials as well as
actuation and read-out principles. The mechanical structures com-
prise amongst others, singly clamped beams [7], doubly clamped
beams [8], tuning forks [9], vibrating membranes [10,11], and

∗ Corresponding author. Tel.: +43 73224686266.
E-mail address: martin.heinisch@jku.at (M.  Heinisch).

oscillating platelets [12,13]. Concerning technology and materials,
silicon and quartz crystal [14,15] based devices but also concepts
using copper coated polymer sheets [16], screen printed PZT can-
tilevers [17] or tungsten wires [18] were also reported, just to name
some examples.

Some of the concepts discussed above feature high operational
frequencies in case of shear oscillating quartz crystals, complex
fluid-structure interactions, which might be difficult to describe in a
closed form model and high cross-sensitivities, e.g., to temperature
in the case of doubly clamped resonators, in general.

In contrast to such devices, the U-shaped wire resonator was
designed aiming at operational frequencies in the low kilohertz
range, circular cross-sections of the resonator, electrodynamic
actuation and read-out by means of Lorentz forces and last but not
least, low cross-sensitivity of the sensor’s resonance frequency to
temperature. In comparison with well established shear oscillat-
ing quartz crystals which are usually operated in the megahertz
range, lower operational frequencies might become important
when investigating complex liquids such as emulsions, see Ref.
[19]. Circular cross-sections are beneficial for closed form model-
ing of the fluid-structure interaction, as the well known analytical
expressions for a laterally oscillating cylinder can be easily applied.
The modeling of the fluid–structure interaction of resonators with
rectangular cross-sections (as it is the case for the classical micro-
cantilever), is e.g. based on considering an infinitely thin structure
[20] or introducing a correction function to the well known equa-
tions for the circular case [21]. Both approaches yield relatively
complex expressions for the fluid-structure interaction. The afore-
mentioned frequency range implies device dimensions in the

http://dx.doi.org/10.1016/j.sna.2014.04.020
0924-4247/© 2014 Elsevier B.V. All rights reserved.
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Fig. 1. Principle of the U-shaped viscosity and mass density sensor: the frequency
response containing the fundamental (out-of-plane) mode is inductively recorded.
The  effect of the liquid’s viscosity and mass density on the resonance curve is qual-
itatively shown for the amplitudes of calculated frequency responses of the wire’s
tip  velocity.

millimeter range. For such structures, electrodynamic actuation
and read-out by means of Lorentz forces is a good choice, as high
excitation forces and read-out signals can be achieved. Further-
more, the performance of this actuation and read-out principle is
not affected by the investigated liquid as it is e.g., the case for opti-
cal read-out [8] for which transparent liquids are a fundamental
requirement. Basically, the working principle of resonant viscosity
and mass density sensors is based on determining the change of the
frequency response of a specific resonant mode upon immersion in
a test liquid. Thus, cross-sensitivities of the resonance frequency
to temperature have to be preferentially small, as the tempera-
ture measurement (which is necessary for reliably measuring a
fluid’s viscosity and mass density in any case) is limited to a certain
accuracy. In comparison to doubly clamped structures, for which
high cross-sensitivities of the resonance frequency to temperature
have been observed [16], singly clamped approaches yield lower
dependencies of the resonance frequency to temperature in gen-
eral. The U-shaped design might be interpreted as such a singly
clamped beam, or in other words, two singly clamped beams, which
are connected at their ends. In this contribution, tungsten was used
as resonator material as it features a low thermal expansion coef-
ficient and thus, keeps the thermal dependence of the resonance
frequency additionally low. As it will be shown in this contribu-
tion experimentally, the U-shaped tungsten wire resonator yielded
lower relative cross-sensitivity of the resonance frequency to tem-
perature than a similar device implemented in silicon.

First prototypes of the U-shaped wire sensor were presented
e.g., in Ref. [22]. A similar silicon-based device for magnetic filed
measurements was presented in [23]. In this paper an overall
revised sensor setup, a complete analytical model, as well as
measurement series demonstrating the sensor’s performance and
allowing a validation of the devised model are presented and dis-
cussed.

2. Sensor principle

A tungsten wire, bent to the shape of a U, clamped to a rigid
wall and immersed in a sample liquid, carries sinusoidal currents
in the presence of an external magnetic field, as depicted in Fig. 1.
Due to the resulting Lorentz forces on the round tip of the wire, the
latter deflects in an out-of-plane oscillation. This oscillation in turn
yields a motion-induced voltage corresponding to the wire’s tip
velocity and thus serves as a quantity for read-out. By sweeping the
excitation current’s frequency in a range containing the structure’s
(fundamental) resonance, the frequency response of the resonator

Top view

Side view

Straight par t Round part

Fig. 2. Geometry used for modeling.

is recorded. In general, higher viscosities of the surrounding liquid
yield higher damping, i.e., lower quality factors, and higher mass
densities yield lower resonance frequencies.

3. Mechanical model

3.1. Oscillating beam

The U-shaped wire viscosity and mass density sensor is sym-
metric with respect to its x-axis, see Fig. 2. Therefore, the U-shaped
structure can be approximately modeled as a single, straight, cir-
cular and singly clamped beam. As the external magnetic field is
assumed to primarily have components in (negative) x-direction,
only excitation forces along the round end become significant in z-
direction. Due to these circumstances it is possible to describe the
U’s deflection uz(x, t) in z-direction by the homogeneous differential
equation for a single, elastic, singly clamped beam, subjected to dis-
sipative and inertial forces, see [24]. The effect of the round end on
the oscillation is considered in the boundary conditions. Assuming a
sinusoidal excitation force and furthermore a time dependence ejωt,
the steady state, time harmonic deflection in the frequency domain
Uz(x, ω) can be expressed considering Euler–Bernoulli beam theory
[24] by the following harmonic differential equation:

E I
∂4

Uz(x, ω)
∂x4

+ (−ω2 m′ + j ω d′) Uz(x, ω) = 0. (1)

Here E is the Young’s modulus, I = r4
w �/4 is the second moment of

area in respect to the y-axis, rw is the wire’s radius, m′ and d′ are
the effective mass and damping parameter per unit length and are
both split up into intrinsic and fluid loading related components

m′ = m′
0 + m′

f and d′ = d′
0 + d′

f. (2)

For �w being the wire’s mass density, it follows for the wire’s
intrinsic mass per unit length m′

0 = �w r2�. The intrinsic damping
parameter d′

0 has to be determined in a parameter fit. The param-
eters m′

f and d′
f resulting from the liquid loading are calculated in

Section 3.2.
The general solution of Eq. (1) is

Uz(x, ω) = C1 e� x + C2 e−� x + C3 ej � x + C4 e−j � x (3)

with

� =
(

ω2 m′ − j ω d′

E I

) 1
4

(4)
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and Ci being determined by imposing the boundary conditions

Uz(0,  ω) = 0
∂Uz(0,  ω)

∂x
= 0

∂2
Uz(L, ω)
∂x2

= −
My(L)

E I

∂3
Uz(L, ω)
∂x3

= −Fz(L)
E I

(5)

where Fz(L) are all forces in z-direction and My(L) are all mechanical
moments in y-direction acting on the beam at its tip i.e, at x = L.

3.2. Fluid forces

To be able to consider for the fluid–structure interaction by addi-
tive terms in the inertial and dissipative coefficients as in Eq. (2), a
solution for the fluid forces F ′

f per unit length in the form

F ′
f (x, ω) = (−ω2 m′

f(ω) + j ω d′
f(ω)) Uz(x, ω) (6)

has to be found. Considering a circular cylinder oscillating in a liquid
with dynamic viscosity �f and mass density �f it follows [25,26,21]:

F ′
f (x, ω) = (7)

� �f ω2 r2
w

(
1 −

4 j K1(j
√

−j Re)√
−j Re K0(j

√
−j Re)

)
Uz(x, ω)

with Re = �f ω r2
w

�f
(8)

where Re is the Reynold’s number, and K0 and K1 are modified
Bessel functions.With this, the terms m′

f and d′
f in Eq. (2) can be

expressed in closed form by means of a Taylor series expansion of
Eq. (7) which yields

m′
f ≈ � �f r2

w

(
1 + 4

√
2 Re

)
and

d′
f ≈ � �f ω r2

w

(
4

√
2 Re

+ 2
Re

)
. (9)

3.3. Third and fourth boundary condition

The round end of the U is considered to be stiff and thus deflec-
tions of the latter i.e., deflection of the U for L < x ≤ L + R can be
expressed as follows using a coordinate system with position vector
�, see Fig. 2

Uz(L + �) = Uz(L) + ∂Uz(x)
∂x

∣∣∣∣
x=L

�. (10)

The moment My(L) and the force Fz(L) in Eq. (5) are expressed
as

My(L) = −Mex + Mi,f and Fz(L) = Fex − Fi,f (11)

where the subscripts ‘ex’ and ‘i, f’ denote excitation as well as intrin-
sic and fluid moments and forces. For the Lorentz forces on the
excitation current Iex along the space variable s in the magnetic
field with magnetic flux density B it follows (bold variables denote
vectors and ex is a unity vector in x-direction)

Fex = Iex

∫ �=(R,�/2,0)

�=(R,0,0)

ds(r, ϕ, 
) × B(r, ϕ, 
) = Iex R B ez (12)

assuming B(r, ϕ, 
) = − B e� being constant at the U’s tip. Note, that
only half of the excitation force is calculated here, due to the struc-
ture’s symmetry. I.e., the U is interpreted as two singly clamped
beams connected in parallel which allows considering only one half
of the latter to calculate it’s deflection.

The moment resulting from the excitation at x = L is

Mex = Fex �c (13)

where �c e� is the center of excitation forces which can be calcu-
lated assuming ∂Uz(x = L)/∂x to be negligibly small and solving the
integral equation∫ �c

0

fex(�) d� =
∫ R

�c

fex(�) d� (14)

for �c with

fex(�) = Iex B
�√

R2 − �2
(15)

being the excitation force per unit length transformed to the �-
axis. Substituting Eq. (15) in (14) and solving the obtained equation
yields �c =

√
3/2 R and thus

Mex =
√

3
2

Iex R2 B. (16)

The intrinsic and fluid forces for the U’s round end are

Fi,f =
∫ R

0

fi,f(�) d� (17)

with

fi,f(�) = (−ω2 m′ + j ω d′
f)

R√
R2 − �2

Uz(�). (18)

Note as the round end is considered to be stiff, the intrinsic damping
parameter d0 is not taken into account here. Assuming ∂Uz(x = L)/∂x
to be negligibly small again, it follows for the moment

Mi,f = Fi,f�c,fi (19)

with the center of intrinsic and fluid forces �c,fi = R/
√

2 in this case.

3.4. Correction functions

In the calculation of the fluid forces above, ideal conditions are
assumed. However as in practice, the setup suffers e.g., from mate-
rial and production related geometrical imperfections, the real fluid
forces may  deviate from the calculated values. For this reason, the
terms in Eq. (9) have to be corrected. As both quantities, mass den-
sity and viscosity affect both, inertial and dissipative terms, four
additional terms are introduced into the model.

In this case, the inertial and dissipative terms in Eq. (9) are
extended by four correction functions Ci,j as follows

m′
f(�f, �f) → m′

f(C�,m(�) · �f, C�,m(�) · �f)

d′
f(�f, �f) → d′

f(C�,d(�) · �f, C�,d(�) · �f).
(20)

In this work, for the correction functions, constants as well as
linear and quadratic Bézier functions were used.

3.5. Cross-sensitivity to temperature

The effect of temperature T on the oscillation of the oscillating
U-shaped wire is considered in the mechanical model by taking
thermal expansion and the change of the Young’s modulus into
account. As in this work, the sensor’s operating temperature range
is around room temperature (25 ◦C), linear relations sufficiently
describe the cross-sensitivity to temperature. It follows that

L(T) = LT0 (1 + ˛w (T − T0)) and E(T) = E(T0) + CE T (21)

where T0 is a reference Temperature, ˛w is the linear thermal
expansion coefficient and CE is the linear coefficient for the Young’s
modulus.
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Lock-in
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Fig. 3. Electrical equivalent model: the U-shaped wire viscosity and mass density
sensor is modeled by its electrical impedance and a motion induced voltage. Vg:
voltage of the signal generator, 50 � output resistance of the signal generator, Rs:
series resistance (100 �),  Rw: resistance of the tungsten wire, Lw: inductance of the
U-shaped tungsten wire, VM: motion induced voltage.

4. Read-out

The voltage Vout on the oscillating U-shaped wire consists of a
motion induced voltage VM which is proportional to the oscilla-
tor’s velocity and an additional offset voltage Voffs due to the wire’s
impedance, i.e.,

Vout(ω) = VM(ω) + Voffs(ω) (22)

as it is depicted in the equivalent circuit in Fig. 3.
From the definition of Lorentz forces and Faraday’s law for

induction, the motion induced voltage vM in a conductor of length
lc moving in an magnetic field is expressed as

vM(t) = −
∫ lc

0

(
∂u
∂t

× B

)
· ds. (23)

where u is the (relative) deflection of the conductor with respect
to the points at which the voltage is induced and ds is a vector line
element along the conductor. In this case, assuming the magnetic
field to be constant at the U’s tip, it follows for the motion induced
voltage in the frequency domain

VM(ω) = 2 B R j ω Uz(L) + �

2
R2 B j ω

∂Uz(x)
∂x

∣∣∣∣
x=L

. (24)

As depicted in Fig. 3, a signal generator (with 50 � output resis-
tance) serves as voltage source and a lock-in amplifier (with a 10
M� input resistance) as voltmeter. A series resistance Rs is used to
limit the excitation current to prevent significant non-linear oscil-
lations. Furthermore, the U-shaped wire shows a non-negligible
resistance Rw and inductance Lw which are calculated as follows:

Rw = �r
l

A
≈ �r

2L + R �

r2
w �

.  (25)

To find an approximate value for the inductance of the U-shaped
wire, the equation for the inductance of a rectangular loop is used
[27]:

Lw ≈ �

�

[
L ln
(

2L

rw

)
+ 2R ln

(
4R

rw

)
+ 2
√

L2 + (2R)2 − 1.75 (L + 2R)

−L a sin h
(

L

2R

)
− 2R a sin h

(
2R

L

)]
(26)

where � is the permeability of the surrounding medium. With this,
it follows for the measured voltage

Vout(ω) = VM + Iex (Rw + j ω Lw) (27)

where

Iex =
Vg − VM

50� + Rs + Rw + j ω Lw
. (28)

5. Sensor setup

Several prototypes of the U-shaped wire sensor were fabricated.
For the prototype presented in this paper, photographs are shown
in Fig. 4. To prevent from evaporation and associated thermal
changes of the liquid due to evaporation heat losses, the U-shaped
wire was  integrated in a sealed aluminum housing. An assembly
of cylindrical and ring permanent magnets provides magnetic flux
densities of B ≈ 0.5 T [22]. A tungsten wire (�w = 19.3 · 103 kg/m3,
E ≈ 410 GPa) with rw = 200 �m,  R = 3 mm and L = 12 mm,  c.f. Fig. 2,
was used. To achieve a stable and reliable clamping, the wire was
brazed into two  brass blocks. For rigidly clamping these blocks to
the housing, two screws for each block were used, which further-
more serve to provide a stable electrical connection between the
U-shaped wire and a PCB carrying BNC connectors. For measur-
ing and controlling the liquid’s temperature, a Pt-100 temperature
sensor was placed close to the U-shaped wire.

For the measurements shown in Section 6, the setup was  placed
in a climate chamber to provide stable measuring conditions by
controlling the temperature at 25 ◦C. The voltage of the signal gen-
erator was Vg = 0.1 V and the series resistance Rs = 100 �.

6. Measurements

6.1. Response to viscosity

For evaluating the sensor’s response to viscosity, 11
acetone–isopropanol solutions were prepared and then character-
ized with a high precision viscosity and mass density laboratory
instrument (SVM 3000) featuring an accuracy of 0.35% for viscosity
and 500 �g/cm3 for density. The ratios of each liquid were chosen
to obtain almost constant viscosity steps between each solution.
The obtained viscosity values ranged from 0.21 mPa  s to 2.05 mPa  s
at 25 ◦C for hardly varying densities in a range from 0.7789 g/cm3

to 0.7848 g/cm3 which however do not correlate with the change
of viscosity. The relatively small range of investigated viscosities
in this experiment was  chosen to examine the resolution of the
viscosity sensor. A further experiment in liquids covering a higher
viscosity and mass density range will be discussed in Section 6.2.
The resonance frequency and quality factor in air for the fun-
damental mode were 951.5 Hz and 840, respectively. Using the
same excitation and read-out principle and for the same direction
of the magnetic field, a higher mode was  observed at 6234.3 Hz
with a quality factor of 759 in air. However, this higher mode
was not further investigated in this contribution. Fig. 5(a) shows
the recorded frequency responses with respect to the modeled
results. In Fig. 5(a) the dots indicate the measured points and the
solid lines are results obtained with the fitted model. For every
liquid, 100 frequency responses have been recorded during 30 min
approximately. Between the examination of two  samples, the
sensor was cleaned and a measurement in air was performed
for evaluating the properly cleaned condition of the sensor. In
Figs. 5(b) and (c), the evaluated Q and fr are plotted versus �f. The
range of quality factors of the recorded frequency responses is
Q ≈ 170 . . . 72 for low to high viscous samples.

For the fitting procedure in this work, first the length L and the
intrinsic damping d0 have been adjusted to fit the model for Vout to
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Fig. 4. Photographs of the measurement setup.

the measured data in air considering the mass density and viscosity
of air at 25 ◦C, see right hand side of Fig. 5(a) (the fitted value for L
was 12.04 mm for nominally 12 mm and d0 = 16.5 · 10−3 kg/(m s)).
To improve the accordance between model and measurements in
liquids, empiric corrections functions have been introduced into
the model as described in Section 3.4. A comparison of corrected
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Fig. 5. Comparison of measured and modeled results for acetone–isopropanol solu-
tions. In (a) amplitude and phase of the frequency responses are depicted. (b) and
(c)  show a comparison of evaluated quality factors and resonance frequencies for
measured frequency responses (dots), and modeled frequency responses, Eq. (27),
considering the non-corrected model (dashed lines) and the model using correction
functions (solid lines) introduced in Section 3.4.

Table 1
Sensitivities.

�f (mPa s) �f (g/cm3) Sfr,� (10−3) Sfr,� (10−3) SQ,� (10−3) SQ,� (10−3)

0.21 0.7841 3.80 682.07 422.00 427.72
215.73 1.2359 33.65 106.43 673.16 318.18

and non-corrected modeling results for liquids is illustrated in
Fig. 5(b) and (c).

6.2. Measured range and sensitivity

In contrast to the measurements depicted in Fig. 5 for which liq-
uids of almost constant mass densities but varying viscosities were
used, 11 DI-water–glycerol mixtures were prepared yielding a vis-
cosity range of 0.93 mPa  s to 215.73 mPa  s and mass densities in a
range from 0.9966 g/cm3 to 1.2359 g/cm3 at 25 ◦C. The highest vis-
cous liquid (�f = 215.73 mPa  s, �f = 1.2359 g/cm3) yielded a quality
factor of 4.31 and a resonance frequency of 871.09 Hz, see Table 2.
As fr and Q depend on both, �f and �f, plotting the measurement
results as in Fig. 5(b) and (c) would be misleading as in this case,
not only the liquid’s viscosity but also it is mass density change
significantly. Thus the obtained values are given in Table 2.

It is also to this �f and �f dependency of fr and Q, that a general
sensitivity value cannot be given. Furthermore the change of fr and
Q in respect to �f and �f depends on the geometrical dimensions
of the particular resonator. However, to give an idea of the order of
magnitude of sensitivities SX,yi

of the presented device, with

SX,yi
=
∣∣∣∣ ∂X

∂yi

· yi

X

∣∣∣∣ (29)

where X stands either for fr or Q and yi for �f or �f, these sensitivities
are evaluated for the lowest and highest viscous liquids and listed
in Table 1. Note, when aiming at a characterization of high viscous
liquids, the sensitivity of the particular resonant devices has to be
even low, as otherwise the considered resonant mode would be
completely damped preventing accurate readout.

6.3. Cross-sensitivity to temperature

For previously introduced setups, high cross-sensitivities of
the resonance frequency to temperature were observed cf., [28].
To overcome this drawback, the U-shaped wire was  devised. The
advantage of this structure compared to straight doubly clamped
setups is the approach similar to singly clamped structures such as
cantilevers. The singly clamped approach eliminates temperature
related variations of normal stresses in the structure and thus
significantly reduces the thermally induced change of resonance
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Table  2
Measurement results for DI-water–glycerol mixtures. The values for �f and �f were
determined with a SVM 3000 viscometer.

�f (mPa s) �f (g/cm3) fr (Hz) Q

1 0.93 0.9966 926.67 95.77
2  9.78 1.1545 915.79 27.83
3  17.65 1.1770 910.54 19.92
4  25.46 1.1880 906.07 16.15
5  33.37 1.1966 902.87 13.88
6  41.16 1.2025 900.00 12.25
7 48.46 1.2062 897.00 11.35
8  56.13 1.2098 893.49 9.68
9  63.71 1.2126 892.72 9.89

10  110.62 1.2242 879.03 6.41
11  215.73 1.2359 871.09 4.31

frequency. Furthermore, the choice of tungsten as resonator mate-
rial, which features a low thermal expansion coefficient, keeps this
cross-sensitivity additionally low. The resonance frequencies of
the U-shaped tungsten wire sensor were evaluated in a temper-
ature range from 25 ◦C to 50 ◦C in air. The resonance frequencies
for a 400 �m thick tungsten wire, R = 3 mm and L = 12 mm at
25 ◦C was fr = 952.96 Hz. The evaluated dependencies of reso-
nance frequencies on temperature were 
fr/
T = −0.0479 Hz/K.
This temperature dependence was modeled using Eq. (21) with
˛w = 5.25 · 10−6 1/K, E(T0) = 409.08 GPa and CE ≈ 0.03 GPa/K. These
values for ˛w and CE, necessary for accurately accounting for the
dependence of resonance frequency to temperature are higher
than values given in the literature, cf., [29,30]. There, e.g. the ther-
mal  expansion coefficient for tungsten usually is ˛w = 4.5 · 10−6 1/K.
This deviation is one of the reasons revealing the need for further
investigation of resonators’ temperature dependencies in general.

The dependence of the U-shaped tungsten wire’s fundamental
resonance frequency to temperature was compared to other singly
clamped resonators, see Table 3. There, the U-shaped tungsten wire
sensor (U(W)) is compared to the following devices: A U-shaped
silicon cantilever (U (Si, Au)) carrying a gold path on a thin silicon
nitride layer, see [31], a steel tuning fork (TF (Steel)), a bare silicon
cantilever (CL (Si)) [32] and a gold-coated cantilever (CL (Si, Au))
[33]. The comparison of the relative resonance frequency shifts in
respect to temperature shows, that only the bare silicon cantilever
features a lower cross-sensitivity to temperature. However, bare
silicon is not adaptable in this case to meet the requirements for
the sensor discussed in Section 1.

6.4. Long-term measurements

The setup as it is depicted in Fig. 4 has been tested in several
liquids recording fr and Q over several days in a climate chamber
at 25 ◦C. In comparison to previously investigated doubly clamped
devices [18], the long-term stability improved significantly. How-
ever, in some cases, minor but clear trends of both fr and Q could be
observed, see e.g., Fig. 6. There, the evaluated results for fr and Q of
4193 measurements which were recorded during 90 h in ethanol
are depicted. In this case, the shift to lower fr and Q is related to the

Table 3
Cross-sensitivities of the resonance frequency (fundamental mode) to temperature.
f0: nominal frequency, 
fr = fr(T0) − fr(T1): resonance frequency shift, 
T = T0 − T1

difference of temperatures T0 and T1, 
fr,rel = 
fr/f0: relative resonance frequency
shift, ‘t.w.’ designates this work.

Sensor f0 (kHz) 
fr/
T (Hz/K) 
fr,rel/
T (1/K) Refs.

U (W)  0.95 −0.048 −60 · 10−6 t.w.
U  (Si, Au) 5.96 −0.441 −69 · 10−6 t.w., [31]
TF (Steel) 0.44 −0.0519 −118 · 10−6 t.w.
CL  (Si) 43.83 −1.3 −29.7 · 10−6 [32]
CL (Si, Au) 18.33 −1.83 −100 · 10−6 [33]

Fig. 6. Long-term measurements in ethanol, yielding a drift of resonance frequency
and quality factor. The black line indicates averaged values of 100 measurements
where the gray surface represents all measured values.

change of the liquid properties itself. It was  found that O-ring seals
were slightly dissolved by the ethanol leading to a slight increase
in viscosity and mass density of the liquid which was detected by
the sensor.

In another experiment, electrolytical solutions were investi-
gated, which yielded corrosion within the setup. It is due to such
instabilities of the setup itself that the long-term stability cannot
be reliably quantified at the present stage of our research. For this,
a complete redesign aiming at a more stable setup using other
materials, will be necessary.

However, the principle of the U-shaped wire yielded already
acceptable and promising results for the long-term stability. The
principle ability for long-term stability can be explained by its
singly clamped approach and by its low cross-sensitivity to tem-
perature. These circumstances can also be observed in case of string
instruments, which have to be frequently tuned, compared to reed-
based instruments (like accordions) and tuning forks which are
based on singly clamped oscillating objects.

7. Conclusion and outlook

The U-shaped wire mass density and viscosity sensor is a can-
didate promising improvements in terms of low cross-sensitivity
to temperature and stability of resonance frequency compared
to previously introduced principles. A closed form model was
developed relating the driving voltage to the measured sen-
sor’s output voltage. This model was experimentally verified for
acetone–isopropanol and DI-water–glycerol solutions, showing
good accordance of measured and theoretical values. However,
when aiming at high accuracies, this comparison revealed the need
for an appropriate calibration process.

For the setup used in this work, aluminum and chromium
get wetted by the sample liquid which causes corrosion of the
latter when investigating electrolytic solutions. Regarding future
work, a new setup has to be designed avoiding corrosion. Further-
more, comprehensive measurement series have to be performed
allowing for evaluating the device’s accuracy, repeatability and
long-term stability. As for the modeling of the cross-sensitivity to
temperature, material parameters deviating from values reported
in literature were used, a thorough study on the dependence of
oscillators’ resonance frequencies on temperature has to be elabo-
rated.
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a  b  s  t  r  a  c  t

The  feasibility  of  using  commercially  available  steel  tuning  forks  for viscosity  and  mass  density  sensing
is  investigated.  For  this  task,  the  tuning  forks  are  electromagnetically  driven  and  read  out to record their
frequency  responses  containing  the  fundamental  resonant  mode  upon  immersion  in  a sample  liquid.
Evaluated  resonance  frequencies  and  quality  factors  are  then  related  to the  liquids’  mass  density  and  vis-
cosity.  The  used  electromagnetic  actuation  and  readout  principle  allows  that  only the  tuning  fork  which
is  placed  in  the  center  of  a glass  tube  gets  wetted  with  the  liquid  to  be  examined.  All  excitation  and  read
out  related  structures  and electronics  are  placed  outside  the  glass  tube  and  thus,  are  not  affected  or  influ-
enced by  the  liquid.  A generalized  model  relating  evaluated  quality  factors  and  resonance  frequencies  to
viscosity  and  mass  density  is  used  to describe  the tuning  forks’  sensitivities  and  furthermore  to  estimate
required  stabilities  of apparent  quality  factors  and  resonance  frequencies  to achieve  measurement  accu-
racies  similar  to those  of laboratory  instruments.  It is shown  that  relative  accuracies  in the  order  of  1%  in
viscosity  and  0.1  mg/cm3 in  mass  density  are  achievable.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Lately, we examined the applicability of mechanical resonators
for sensing a liquid’s (complex) viscosity and mass density, see [1].
A very promising approach for this task is the use of electrodynam-
ically driven and read out mechanical oscillators. The investigated
principles featuring fundamental resonance frequencies in the
range from some hundreds of hertz to several kilohertz include,
amongst others, oscillating membranes [2,3], in-plane oscillating
platelets [4,5], straight wires [6] and U-shaped wires [7,8]. Similar
miniaturized devices are silicon cantilevers [9,10], quartz crystal
tuning forks [11], doubly clamped silicon beams [12] and vibrating
diaphragms [13] just to name a few examples of the relatively large
variety of principles reported in literature.

The resonant principles mentioned above are all potential can-
didates for mass density and viscosity sensors. In some cases

� Selected papers presented at EUROSENSORS 2014, the XXVIII edition of the
conference series, Brescia, Italy, September 7–10, 2014.

∗ Corresponding author. Tel.: +43 73224686266.
E-mail address: martin.heinisch@jku.at (M.  Heinisch).

they were especially designed for specific applications, such as,
e.g., the use of miniaturized devices for liquids where only tiny
amounts of sample volumes are available [14]. As an alternative
to these devices usually aiming at low viscosity measurements
and furthermore serving as reference devices, conventional steel
tuning forks showing a fundamental resonance frequency at nom-
inally 440 Hz have been investigated in this contribution. A first
investigation of such tuning fork based setups has already been
presented in [15]. The motivation for such steel tuning fork
setups is based on several arguments. First, due to the momen-
tum balanced motion in the fundamental mode, the resonant
behavior of tuning forks is less sensitive to clamping issues
as it is the case e.g. for singly or doubly clamped beams and
membranes. Second, the relatively large and solid structure is
less prone to deteriorations, such as not perfectly cleaned sur-
faces, air bubbles, etc. Third, in comparison to doubly clamped
structures in general, the cross sensitivity of their resonance fre-
quency to temperature is small. Such cross sensitivities of the
resonance frequency to temperature can be characterized, deter-
mined and modeled on the one hand but on the other hand, they
limit the sensor’s accuracy and thus, should be kept as low as
possible.

http://dx.doi.org/10.1016/j.sna.2015.02.007
0924-4247/© 2015 Elsevier B.V. All rights reserved.
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(a)

(b)

Fig. 1. Sensor principle: (a) A ferromagnetic steel tuning fork is actuated and read out with an electromagnet and an electromagnetic pick-up, respectively. Frequency
responses are recorded for the completely immersed tuning fork and evaluated resonance frequencies and quality factors are related to the sample liquid’s viscosity and
mass  density. (b) In the table above, the geometrical dimensions of the circular and rectangular tuning fork are given.

In this contribution, the basic setup for ferromagnetic tuning
forks used for viscosity and mass density sensing is explained. Fur-
thermore, measurements showing the response to viscosity and
mass density for circular and rectangular cross-sectioned tuning
forks are presented. The sensitivities of both tuning forks are dis-
cussed in detail and required stabilities for the resonance frequency
and quality factor to achieve measurement accuracies of 1% for
viscosity and 1 mg/cm3 for mass density are estimated. It is fur-
thermore shown, that with the investigated steel tuning forks
accuracies in the order of 1% in viscosity and 0.1 mg/cm3 in mass
density are achievable.

2. Measurement setup

Fig. 1 shows a basic sketch of the setup for viscosity and mass
density measurements using commercially available tuning forks
with circular and rectangular cross sections. The measurement pro-
cedure is depicted in Fig. 1(a) and the geometries of the used steel
tuning forks, both resonating at nominally 440 Hz in air in their
fundamental mode are given in Fig. 1(b). Fig. 2 shows a photograph
of the circular tuning fork setup.

The steel tuning forks were welded to a solid stainless steel
stand and put into a glass tube (not depicted in Fig. 1(a)) which
was sealed at both sides. To avoid corrosion, the tuning forks were
gold-coated by electro-plating. An electromagnet, used for exci-
tation, is placed (outside of the tube) close to the end of one of
the ferromagnetic tuning fork’s prongs. At the end of the opposed
prong, an electrodynamic pick-up is placed, consisting of a perma-
nent magnet in the center of a copper coil. A sinusoidal Voltage
Vin = V̂in sin(ω t) + Vin,offs with a DC offset Vin,offs ≥ V̂in/2 is used as
input signal, exciting harmonic oscillations of the tuning fork (ω is
the angular frequency and t is the time). These oscillations effect

an induced voltage in the pick-up serving as the read out signal. By
sweeping the excitation current’s frequency (containing the fre-
quency of a resonant mode), the frequency response of the tuning
fork is recorded.

The measured frequency response Vout(ω) is composed of three
effects. First, a motion-induced voltage VM in the pick-up coil result-
ing from the movement of the tuning fork’s ferromagnetic prong.
This voltage is proportional to the prong’s velocity. The second
measured signal component is an induced offset voltage Voffs due

Fig. 2. Photograph of the measurement setup with a gold coated circular cross-
sectioned tuning fork.
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(a) (b)

(c)

Fig. 3. Illustration of split signal components: (a) shows the motion induced voltage which is proportional the resonator’s velocity. (b) illustrates the effect of signals Voffs

resulting from electrical cross talk. (c) depicts the total measurable signal including phase shifts resulting from the measuring system and transit times from the wiring.

to electrical cross talk from the excitation into the read out coil.
And third, the influence of the measurement setup’s total phase
shift ϕm which results from the phase response of the measure-
ment instruments and transit times affected by the wiring. Thus,
the measurable voltage can be written using complex notation as
follows

Vout(j ω) = (VM(j ω) + Voffs(j ω)) ej ϕm(ω) (1)

where the motion induced voltage response can be described as a
second order resonator

VM(j ω) = Vmax

1 + jQ
(

ω
ω0

− ω0
ω

) (2)

where ω0 and Q are the resonator’s angular resonance frequency
and quality factor, respectively. For the resonator’s velocity, the
angular eigenfrequency (of undamped vibrations) and the fre-
quency where the amplitude reaches its maximum value are
identical. Thus, we may  call ω0 resonance frequency. For the res-
onator’s deflection, the frequency of the peak is smaller than the
eigenfrequency. A characteristic resonance curve of the motion

induced voltage and the effect of an offset voltage as well as the
phase shift on the measured signal are qualitatively depicted in
Fig. 3. These additional offset signals can significantly deform the
resonance curve and yield asymmetries in the latter. For highly
damped resonators, i.e. Q < 100, as it might be the case for res-
onant viscosity and mass density sensors when examining high
viscous liquids, asymmetries in both, the resonator’s velocity and
deflection frequency response become large. Due to these deforma-
tions, searching the maximum peak frequency and the frequencies
where the amplitude decreased to the 1/

√
2 of the peak values

or methods based on a Lorentzian fit [16,17] are not appropriate
methods for evaluating resonance frequency fr and Q. In this work,
an algorithm presented in [18], which was  especially developed
for highly damped resonators is used. This algorithm separates a
second order resonance of the form of Eq. (2) from spurious offset
signals and determines the resonant parameters fr and Q by fitting
the resonance circle in a Nyquist plot of the response function.

Fig. 4 shows the circular tuning fork’s frequency response in air
from 100 Hz to 3.5 kHz. There, amplitude and phase responses as
well as the Nyquist plots are illustrated. In the recorded frequency
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Fig. 4. Frequency response of the circular tuning fork in air containing the first and
the  second mode.

range the first and second mode at 441 Hz and 2775 Hz, respec-
tively, are measurable and depicted in detail. For both resonances,
the effect of electrical cross talk and phase shifts from the measure-
ment system is significant. The parameters necessary for reproduc-
ing the measured resonances using Eqs. (1) and (2) are given on the
bottom of Fig. 4. In this case, the offset and phase shift spectra, i.e.,
Voffs(j ω) and ϕ(ω) are approximated by their mean values.

For investigating the effect of the liquid’s viscosity and mass
density on the resonant behavior, i.e., resonance frequency and
quality factor, the tuning fork is completely immersed into the
sample liquid. As a rule of thumb, higher viscosities yield higher
damping and higher mass densities yield lower resonance frequen-
cies. However, as it will be experimentally shown in Section 3 and
discussed in Section 4.1, viscosity and mass density affect both
quantities, resonance frequency and quality factor. In this contri-
bution, the examination of the first resonant mode and achievable
accuracies using the latter are discussed for a circular and rectangu-
lar cross-sectioned steel tuning fork. In [19] the second mode was

investigated in liquids for the circular tuning fork. Similar sensitivi-
ties of the first and second mode were achieved and thus examining
the second mode instead of the first or recording both modes at
once for � and � measurements did not show a significant advan-
tage. As spurious offset signals and the motion induced voltage are
significantly lower and larger respectively, for the first mode, higher
measurement accuracies can be obtained examining and evaluating
the latter.

3. Measurements in liquids

3.1. Viscosity measurements

The response to viscosity was  investigated by recording both
tuning forks’ frequency responses in five acetone–isopropanol solu-
tions covering a viscosity range of 0.2 mPa  s to 2 mPa  s for mass
densities of roughly 0.78 g/cm3 at 25 ◦C. After mixing, the viscos-
ity and mass density of these solutions were measured with an
Anton Paar SVM 3000 for reference purposes. In every liquid, 100
frequency responses have been recorded for both tuning forks in a
Weiss WKL  100 climate chamber at temperatures of 25 ± 0.1 ◦C. 100
measurements appeared to be a reasonable number of measure-
ment points particularly when considering the measuring time.
For determining the liquids’s temperature more accurately than
it is possible with the climate chamber’s internal thermometer, a
Dostmann electronic GmbH P795 thermometer with an accuracy of
0.01 ◦C was  used. The probe head was  put inside of the glass tube
and is visible in Fig. 2.

The upper parts in Fig. 5(a) and (b) show the recorded frequency
responses of measurements in the viscosity series as well as the
evaluated resonance frequencies and quality factors for the circu-
lar and rectangular tuning fork, respectively. Resonance frequency
and quality factor have been evaluated using the fitting algorithm
presented in [18]. In Table 4, the measured values for viscosity
and mass density, as well as evaluated resonance frequencies and
quality factors are given.

3.2. Mass density measurements

For investigating the response to mass density, five solutions
using acetone, isopropanol, ethanol, DI-water and glycerol were
prepared. The liquids were mixed to obtain constant viscosities of
1 mPa  s but mass densities between 0.78 g/cm3 and 1 g/cm3. The
values for viscosity and mass density of these solutions measured
with a SVM 3000 at 25 ◦C are given in Table 5.

The recorded frequency responses as well as evaluated quality
factors and resonance frequencies versus mass density are shown in
the lower parts of Fig. 5(a) and (b). The values for viscosity and mass
density measured with a SVM 3000 as well as evaluated resonance
frequencies and quality factors are given in Table 5.

4. Data interpretation

For both, the circular and the rectangular cross-sectioned tuning
fork, clearly, higher viscosities yield higher damping and lower
resonance frequencies. The evaluation of the resonance frequency
versus viscosity, see Fig. 5, shows an (almost) equal resonance fre-
quency for the first and second liquid in case of the round tuning
fork and an even higher resonance frequency in case of the rectan-
gular tuning fork. This behavior can be explained by the fact that the
mass density of the second liquid is about 5.1 mg/cm3 lower than
of the first liquid, which shifts the resonance frequency upwards.
The quality factor, however, significantly decreases for both tuning
forks, as the viscosity of the second liquid is more than twice as
high as the viscosity of the first liquid (The first liquid is acetone
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(a)

(b)

Fig. 5. Recorded frequency responses and therefrom evaluated resonance frequencies and quality factors for the circular and rectangular tuning fork.

and the second is a solution of 51% mass isopropanol in acetone.).
This behavior is more distinct for the rectangular tuning fork, as the
latter shows a higher sensitivity to mass density than the circular
cross-sectioned tuning fork. This finding is also substantiated by
the results obtained with the mass density measurements.

4.1. Generalized model

In [20], Sauerbrey introduced an equation for the resonance fre-
quency shift of a thickness shear mode quartz resonator which is
induced by the rigid attachment of a film of mass on the quartz’s
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Table 1
Fitted model parameters for the generalized model, Eqs. (3) and (4) for the circular and the rectangular tuning fork.

m0k(s2) m�k(m3 s2/kg) m��k((m2/kg) s2) c0k(s) c�k(m s2/kg) c��k((m2/kg) s2)

Circular 1.31 · 10−7 1.74 · 10−11 2.71 · 10−8 2.79 · 10−7 7.82 · 10−5 2.41 · 10−8

Rectangular 1.32 · 10−7 2.45 · 10−11 2.50 · 10−8 2.97 · 10−7 7.16 · 10−5 2.24 · 10−8

Table 2
Fitted model parameters for the simplified model Eqs. (5) and (6) for the circular and the rectangular tuning fork.

m0k(s2) m�k(m3 s2/kg) m∗
��k

((m2/kg) s5/2) c0k(s) c�k(m s2/kg) c∗
��k

((m2/kg) s3/2)

Circular 1.31 · 10−7 1.74 · 10−11 5.31 · 10−10 2.92 · 10−7 9.38 · 10−5 1.20 · 10−6

Rectangular 1.31 · 10−7 2.45 · 10−11 4.94 · 10−10 3.13 · 10−7 9.09 · 10−5 1.10 · 10−6

surface. This equation was further developed in [21] by Kanazawa
and Gordon for such a quartz crystal microbalance (QCM) interac-
ting with a liquid, considering its mass density and viscosity. In [22],
Martin et al. extended the Butterworth–Van Dyke equivalent cir-
cuit, see also [23,24], to describe the impedance of a liquid loaded
QCM. This equivalent circuit enabled evaluating not only the reso-
nance frequency but also the quality factor of a liquid loaded QCM.
However, these models consider only one-dimensional shear-wave
propagation in the fluid, which is valid for an infinitely extended
in-plane oscillating plate. The obtained equations (which consider
one-dimensional shear waves only) do not allow separating the
effect of � and � on the resonator’s fr and Q. On the one hand, due
to non-uniform shear displacement of the QCM, spurious compres-
sional waves are also excited, see [25]. Such spurious effects which
are not considered in the models mentioned above, however, allow
separating the effect of � and � on the resonator’s fr and Q.

For this purpose and furthermore to provide simple equations
for fr and Q, a recently developed model was introduced in [26]
which is generally applicable to resonant viscosity and mass density
sensors relating � and � to fr = ω0/(2 �) and Q. The model reads

ω0 = 1√
m0k + m�k � + m��k

√
� �
ω0

(3)

and

Q = 1
ω0

· 1
c0k + c�k � + c��k

√
ω0 � �

, (4)

where mxk and cxk are coefficients and m�k as well as c�k are zero
in case of pure one-dimensional shear waves. Similar approaches
and expressions have been found in [27–29].

4.1.1. Simplified generalized equations
Eq. (3) is an implicit equation for ω0, which makes an exact eval-

uation of ω0 for given � and � difficult. Therefore, the equations are
simplified by considering that the frequency dependence of certain
parameters occurring in the analysis is negligible as they are virtu-
ally constant within the bandwidth of the resonant system. Doing
so, we obtain the following expressions for the angular resonance
frequency

ω0 = 1√
m0k + m�k � + m∗

� �k
√

� �
(5)

and the quality factor

Q =

√
m0k + m�k � + m∗

��k
√

� �

c0k + c�k � + c∗
��k

√
� �

. (6)

Thus, if ω0 and Q for given � and � using Eqs. (3) and (4) have to
be calculated, numerical (e.g., iterative) methods can be used. Alter-
natively, the above simplified expressions give remedy. Conversely,

if � and � have to be determined from measured fr = ω0/(2 �)  and
Q, Eqs. (3) and (4) can be used directly.

The parameters m0k, m�k, m��k, m∗
��k, c0k, c�k, c��k and c∗

��k are
determined by a parameter fit using the values for �, �, fr and Q
given in Tables 4 and 5. The fitted model parameters for the cir-
cular and rectangular tuning fork are given in Tables 1 and 2. The
derivation of the equations for the generalized and the simplified
model is based on the equations for resonance frequency and qual-
ity factor of a lumped element mechanical oscillator, considering
the interaction with in-plane oscillating platelets [22,30], oscillat-
ing spheres [31] and laterally oscillating cylinders [32,33]. If only
one-dimensional shear wave propagation should be considered,
Eqs. (3)–(6) can be simplified by neglecting the terms multiplied
by � and �, i.e. substituting m�k = 0 and c�k = 0.

The complete derivation of Eqs. (3)–(6) is presented in [26].
There, the model has been applied to the measurements obtained
by eight different sensor setups showing good performance for all
investigated sensors including tuning forks, silicon cantilevers [34],
silicon platelets [35], U-shaped wires [36], and spiral spring sensors
[37]. The investigation of the applicability of the model evaluating
the relative root mean square deviations of modeled and measured
resonance frequencies and quality factors yielded results better
than 1.7 · 10−3 for the resonance frequency and 3.3 · 10−2 for the
quality factor, respectively.

With the identified model for fr and Q it is now possible to
evaluate the sensors’ sensitivities to viscosity and mass density.
Furthermore, different sensors (in this case a circular and rectangu-
lar cross-sectioned tuning fork) can be compared and an estimation
for required accuracies and stabilities of resonance frequency and
quality factor to achieve a certain accuracy for viscosity and mass
density measurements can be made.

4.2. Measurement accuracy

Eqs. (3) and (4) can be used to calculate � and � for evaluated fr
and Q. The fitted model parameters using a linear fitting procedure
described in [26,38] are given in Table 1. The mean values for fr
and Q given in Tables 4 and 5 are used to calculate the values for
viscosity and mass density for both liquid series. The evaluation of
absolute and relative errors given in Tables 4 and 5 shows that with
the present setup, absolute and relative accuracies for viscosity and
mass density as given in Table 3 can be achieved.

Table 3
Achieved accuracies with the circular and rectangular tuning fork.

Circular Rectangular

[|� �|min, |� �|max] (�Pa s) [3.34, 16.22] [3.02, 21.44]
[|� �rel|min, |� �rel|max] (10−3) [3.16, 21.57] [2.10, 33.44]

[|� �|min, |� �|max] (mg/(cm3)) [14.06, 610.50] [6.08, 150.51]
[|� �rel|min, |� �rel|max] (10−6) [17.93, 694.43] [7.76, 152.49]
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Table  4
Results for viscosity measurements. The plus–minus values are evaluated typical errors (single standard deviations). x̂ are the calculated values for viscosity and mass density
using  Eqs. (3) and (4) and evaluated mean values for fr and Q. � x = x̂  − x and � xrel = � x/x are absolute and relative deviations from the values for viscosity and mass density,
respectively.

Viscosity Series T = 25 ◦C

� (mPa s) � (g/cm3) fr (Hz) Q �̂ (mPa s) �� (�Pa s) ��rel (10−3) �̂ (g/cm3) �� (mg/cm3) ��rel (10−6)

Circular tuning fork
0.207 0.7841 417.653 ± 2.89 · 10−3 477.4 ± 1.88 0.211 4.46 21.57 0.7841 0.014 17.93
0.433  0.7790 417.650 ± 2.92 · 10−3 371.8 ± 1.44 0.427 −6.02 −13.90 0.7791 0.067 86.41
0.980  0.7793 417.418 ± 3.47 · 10−3 265.2 ± 0.34 0.986 5.31 5.41 0.7792 −0.101 −129.90
1.576  0.7803 417.224 ± 3.08 · 10−3 214.5 ± 0.33 1.591 14.76 9.36 0.7798 −0.541 −694.43
2.054 0.7804 417.083 ± 7.08 · 10−3 190.8 ± 0.52 2.048 −6.50 −3.16 0.7808 0.409 523.50

Rectangular tuning fork
0.207 0.7841 409.517 ± 3.82 · 10−3 499.0 ± 3.03 0.214 6.92 33.44 0.7841 −0.006 −7.76
0.433  0.7790 409.576 ± 6.27 · 10−3 394.6 ± 1.91 0.427 −6.05 −13.95 0.7789 −0.055 −70.32
0.980  0.7793 409.365 ± 0.93 · 10−3 285.7 ± 0.29 0.977 −3.08 −3.14 0.7794 0.054 69.26
1.576  0.7803 409.173 ± 1.80 · 10−3 232.2 ± 0.39 1.582 5.30 3.36 0.7803 0.039 49.68
2.054  0.7804 409.067 ± 3.09 · 10−3 206.2 ± 0.74 2.059 4.32 2.10 0.7804 −0.020 −25.79

4.3. Relative sensitivity

For resonant viscosity and mass density sensors, absolute sen-
sitivities as, e.g., the sensitivity of the resonance frequency to mass
density in Hz/(g/cm3) are in general not very descriptive. First of
all, by evaluating absolute values, the comparison of sensors oper-
ated in a different frequency range is hardly possible. Second, it is
difficult to compare the sensitivities to mass density and viscosity,
as usually the investigable range of viscosities is much larger than
the range of mass densities. For common liquids, the range of mass
densities is narrow, hardly exceeding the range between 0.6 and
1.8 g/cm3, whereas the range of viscosities covers several orders of
magnitudes, e.g., in [36] a viscosity range of 0.2–216 mPa  s has been
investigated with a single resonant sensor. Due to these reasons we
refrain from evaluating absolute rather than relative sensitivities.
A difficulty in interpretation which arises for absolute as well as for
relative sensitivities is, that both types of sensitivities depend on �
and �.

As it can be observed in the measured results as well as in Eqs.
(3)–(6), fr and Q are both dependent on � and �. Thus, to completely
describe a resonant viscosity and mass density sensor’s sensitiv-
ity, four sensitivities have to be evaluated. For this, we  define the
relative sensitivity of a quantity X(yi) to one of its variables yi as

SX,yi
=

∣∣∣∣
∂X

∂yi
· yi

X

∣∣∣∣ (7)

where in this case X stands either for fr or Q and yi for � and �.
The evaluation of relative sensitivities, Eq. (7) (i.e. relative

change of fr or Q versus relative change of � or �) is shown in

Fig. 6 for the circular and rectangular case for the experimentally
investigated viscosity and mass density range. Both, sensitivity to
viscosity and mass density increase for higher viscosities and mass
densities, respectively. The relative sensitivity of the quality factor
to viscosity is only slightly higher than that to mass density. In
case of the sensitivity of the resonance frequency, the dependence
on viscosity is significantly smaller than the sensitivity to mass
density. The comparison of both tuning forks (i.e. the comparison
of Fig. 6(a) and (b)) shows, that they show similar sensitivities
except for the relative sensitivity of the resonance frequency to
mass density. In this case, the sensitivity of the rectangular tuning
fork is higher. In other words, both tuning forks show similar
sensitivities to viscosity, in case of sensitivity to mass density, the
rectangular tuning fork is more sensitive.

4.4. Estimation of required accuracies for fr and Q

Manufacturers of viscosity and mass density meters usually
specify the performance of their instruments with absolute accu-
racy in mass density and relative accuracy in viscosity. For example,
the high precision laboratory instrument Anton Paar SVM 3000 fea-
tures a reproducibility of 0.35% in viscosity and 0.0005 g/cm3 for
mass density and a repeatability of 0.1% and 0.0002 g/cm3, for �
and � respectively. The reproducibility in temperature of the SVM
3000 is 0.02 ◦C and its repeatability is 0.005 ◦C. To get in the accu-
racy range of such laboratory instruments, at this point, we target a
relative accuracy in viscosity � �/� = 10−2 and absolute accuracy in
mass density � � = 1 mg/cm3 which corresponds to a relative accu-
racy of � �/� = 10−3 for aqueous liquids. Repeated measurements
and evaluation of fr and Q showed instabilities yielding a certain

Table 5
Results for mass density measurements. The same notation as in Table 4 is used.

Density Series T = 25 ◦C

� (mPa s) � (g/cm3) fr (Hz) Q �̂ (mPa s) �� (�Pa s) ��rel (10−3) �̂ (g/cm3) �� (mg/cm3) ��rel (10−6)

Circular tuning fork
1.006 0.7849 417.278 ± 1.53 · 10−3 264.1 ± 0.26 0.989 −16.22 −16.13 0.7847 −0.220 −280.53
0.994  0.8411 415.851 ± 8.36 · 10−3 259.7 ± 1.00 0.979 −14.79 −14.88 0.8413 0.179 212.31
1.010  0.8931 414.523 ± 0.92 · 10−3 250.0 ± 0.68 1.023 13.51 13.38 0.8937 0.611 683.57
1.006  0.9870 412.220 ± 7.24 · 10−3 243.6 ± 0.88 1.013 7.40 7.36 0.9872 0.177 179.33
0.998  1.0073 411.750 ± 8.03 · 10−3 244.1 ± 0.62 0.995 −3.34 −3.34 1.0067 −0.597 −592.31

Rectangular tuning fork
1.006 0.7849 409.176 ± 1.78 · 10−3 284.3 ± 0.31 0.984 −21.44 −21.32 0.7849 0.016 20.41
0.994  0.8411 407.301 ± 1.04 · 10−3 279.9 ± 0.29 0.976 −17.46 −17.57 0.8412 0.125 148.90
1.010  0.8931 405.578 ± 0.87 · 10−3 269.9 ± 0.65 1.023 13.39 13.26 0.8932 0.067 74.42
1.006  0.9870 402.551 ± 2.62 · 10−3 262.7 ± 0.93 1.023 17.58 17.48 0.9868 −0.151 −152.49
0.998  1.0073 401.911 ± 3.41 · 10−3 264.4 ± 0.75 0.995 −3.02 −3.03 1.0072 −0.761 −75.51
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(a)

(b)

Fig. 6. Sensitivities to viscosity and mass density: the sensitivities of fr and Q to � and � are not constant but both dependent on � and �. For this reason the sensitivities are
depicted as bands, where the given values at each band indicate the boundary of evaluated values.

spread for both quantities, which yields an inaccuracy in the � and
� determination.

Using the sensitivities evaluated from Eq. (7), the change of fr
and Q upon change of � and � can be expressed in matrix notation
as follows:

⎡
⎢⎣

� fr
fr

� Q
Q

⎤
⎥⎦ =

[
Sfr, � Sfr, �

SQ, � SQ, �

]
·

⎡
⎢⎣

� �
�

� �
�

⎤
⎥⎦ . (8)

With this equation, maximum tolerable variations in the fr and Q
evaluation can be estimated for achieving the desired accuracies in
� and �. For this estimation it is assumed that � is (exactly) known,

if � is evaluated from fr or Q and vice versa. The evaluated relative
and absolute changes for fr and Q are depicted in Fig. 7.

For a rough estimation for the resonance stability it is assumed
that � is evaluated from fr and � from Q, respectively. It follows
for the case of the presented tuning forks that variances smaller
than 10−2 Hz and 1 for fr and Q have to be obtained to achieve the
claimed accuracies of � �/� = 1% for viscosity and � � = 1 mg/cm3

for mass density. The accordingly required relative accuracies are
in the order of 10−5 for the resonance frequency and 10−3 for the
quality factor.

These values are estimations for the resonance frequency and
quality factor stability which are required in any case, i.e., if the
instability is larger than these values, the addressed accuracies can-
not be achieved on no account. A further source for measurement
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(a)

(b)

Fig. 7. Required accuracies for fr and Q to achieve a relative accuracy of ��/� = 10−2 and an absolute accuracy �� = 1 mg/cm3.

inaccuracies is the cross-sensitivity of the resonance frequency
to temperature, which limits the accuracies in � and � as the
temperature measurement accuracy is also limited to a certain
extent. For measurements presented in this contribution, the flu-
ids’ temperatures were controlled at 25 ◦C and thus, the tuning
forks’ cross-sensitivities were not considered for these accuracy
estimations. The validity of this approximation is substantiated by
a first investigation of the circular tuning fork’s temperature behav-
ior presented in [39]. There, it was found that the circular tuning
fork’s cross sensitivity to temperature is about −0.049 Hz/◦C. In the
investigated viscosity and mass density range, the sensitivity of the
resonance frequency to mass density is about −0.024 Hz/(mg/cm3).
Thus, it follows for the required temperature measurement accu-
racy to be about �T  = 0.5 ◦C to distinguish mass density variations
of 1 mg/cm3 from temperature variations. This guideline is fulfilled
by the used climate chamber and the thermometer which directly
measures the liquid’s temperature.

4.5. Error propagation

As it was already mentioned and as it can be observed in Fig. 6,
the sensitivity parameters SX,yi

(which have been calculated using
Eq. (7) and the simplified model for fr and Q, i.e., Eqs. (5) and (6))
depend on density and viscosity. For proper measurements of the
resonance characteristics processed with the estimation procedure
from [18] it was shown in [40] that there is a relation between the
relative standard deviations of fr and Q which is determined by the
signal-to-noise ratio1 (SNR) of the acquired frequency spectra and
the number of frequency points M:

1 It is defined as the ratio of Nyquist circle diameter to standard deviation of noise
on  the Nyquist circle diameter.
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std
{

fr
}

fr
= 1

2Q

std
{

Q
}

Q
≈

√
2
M

1
Q SNR

(9)

It was furthermore shown, that fr and Q are uncorrelated in case
of reasonably sampled resonance curves e.g., as shown in Fig. 5. If
deviations from Eq. 9 are observed, this is an indicator that unmod-
eled influences such as parameter drifts persist and that there is
still potential for setup improvements. Relative errors on � and
� for given relative deviations on fr and Q can be determined by
inverting Eq. (8), i.e.,
⎡
⎢⎣

��
�

��
�

⎤
⎥⎦ =

[
Sfr,� Sfr,�

SQ,� SQ,�

]−1

·

⎡
⎢⎣

�fr
fr

�Q
Q

⎤
⎥⎦ . (10)

The error propagation depends on the invertibility of the matrix
in Eq. 10, e.g., for pure shear resonators, the matrix is singular and
� and � can not be separated. However, this is not the case for the
presented tuning fork sensors.

Fig. 8 shows the error propagation for the round and rectangu-
lar tuning fork for the liquids of the viscosity and the density series.
Errors in fr and Q cause much higher relative deviations in viscos-
ity than in density. Therefore, the requirements on the frequency
accuracy are much stricter when low errors on viscosity shall be
achieved. With the current setups the relative standard deviations
in frequency are 10−6 approximately, and thus accuracies around
±1% (±3 standard deviations) are achievable for � and 0.01% (i.e.
0.1 mg/cm3 for aqueous liquids) for �, approximately. These results
meet the requirements from Section 4.4.

4.6. Experimental estimation of achievable accuracies with the
present setup

To furthermore investigate experimentally the accuracy and the
resolution of this viscosity and mass density measurement setup,
the dissolving of rubber in ethanol was recorded during 150 h,
see Fig. 9. The viscosity and mass density have been determined
with a SVM 3000 before and after the experiment. The change of

Fig. 8. The error propagation for rectangular and circular tuning forks evaluated for
the viscosity and the density series.

the liquid’s viscosity and mass density was 0.05 mPa  s (i.e. 5.3%)
and 0.0039 g/cm3 (i.e. 0.5%) respectively, which can be clearly
detected. With an appropriate data analysis similar accuracies
as they are achieved with high precision laboratory instruments
might be obtainable with such comparatively tuning fork-based
sensors.

5. Conclusion

Viscosity and mass density show a clear and significant influence
on the frequency responses of electromagnetically driven and read
out steel tuning forks with circular and rectangular cross-sections.
The application and the discussion of a fitted model for fr and Q
revealed that both tuning forks have a similar sensitivity to viscos-
ity. However, in case of sensitivity to mass density, the rectangular

Fig. 9. Long term measurements for dissolving rubber in ethanol. The changes of the liquid properties are 5.3% in viscosity and 0.5% in mass density, respectively. The gray
shaded areas indicate the span of recorded resonance frequencies and quality factors. The black dots indicate the values averaged over 100 measurements.
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cross-sectioned tuning fork shows a higher sensitivity. An estima-
tion of the required stabilities of the sensors’ resonance frequencies
and quality factors to achieve accuracies for viscosity and mass
density in the order of commercially available measurement instru-
ments showed that the accuracy of the resonance frequency has to
be in the order of 10−2 Hz (i.e. 10−5 relative stability) and for the
quality factor roughly 1 (i.e. 10−3 relative stability).

With the present setups, accuracies in the order of 1% in viscosity
and 0.01% in mass density are achievable.
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a  b  s  t  r  a  c  t

In  this  contribution  a conceptual  study  for torsional  oscillators,  which  are electromagnetically  driven  and
read out,  is  presented.  The  aim  is to experimentally  investigate  the  basic  feasibility  of  a  torsional  resonator
with  application  to  viscosity  and  mass  density  sensing  in  liquids.  Such  a device  is particularly  interesting
as  cylindrical,  torsional  resonators  for fluid  sensing  applications  are  hardly  reported  but  unlike  many  other
devices,  yield  pure  shear  wave  excitation  in  the  liquid.  The  design  of  first  conceptual  demonstrators  for
measurements  in  air as well  as in liquids  and  their  benefits  and  disadvantages  is  discussed  in detail.  A
closed  form  as  well  as  a reduced  order  model  and  measurement  results  obtained  with  first  demonstrators
are  presented.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Recently, we investigated various resonant sensors for liquid
viscosity and mass density, see e.g., [1], which were particularly
designed to be operated in the low kilohertz range. Amongst these
devices, in-plane oscillating platelets, emitting mainly shear waves
into the sample liquids, were investigated e.g., in [2,3] where
millimeter sized metal platelets were used. In [4,5] similar minia-
turized devices have been implemented in silicon technology.
Generally used shear oscillating resonators, such as shear oscillat-
ing quartz crystals [6] and the aforementioned in-plane oscillating
platelets, have in common that, besides the desired shear waves,
compressional waves are also radiated into the liquid. These pres-
sure waves result e.g., from non-uniform shear displacement [7,8],
the resonators’ finite thicknesses, and spurious out-of-plane modes
e.g. from the plate itself or of supporting beams. Potential can-
didates for resonators which only emit shear waves into the test
fluid are cylindrical torsional oscillators. First, such pure shear wave
emitting devices are of special interest from a rheological point
of view, when it comes to the analysis of complex liquids such as

� Selected papers presented at EUROSENSORS 2014, the XXVIII edition of the
conference series, Brescia, Italy, September 7–10, 2014.
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E-mail address: martin.heinisch@jku.at (M.  Heinisch).

viscoelastic liquids. For pure shear wave deformation, the liquid
can be described by a complex-valued shear modulus or a complex
valued viscosity, which, in general, are frequency dependent quan-
tities [9]. With oscillatory measurements, the values obtained at a
number of discrete frequencies can be used to obtain a rheologi-
cal spectrum. A second merit for cylindrical, torsional resonators
is that, due to their geometry, they resemble concentric cylinder
rheometers. Thus, they yield comparable measurements but extend
the measurable frequency range of conventional rheometers which
is usually limited at approximately 100 Hz. Third, cylindrical, tor-
sional oscillators allow experimental comparison of measurement
results obtained with the above mentioned in-plane oscillating
resonators, which excite spurious compressional waves. Thus, by
means of such a comparison the impact of these compressional
waves could be experimentally estimated.

In-plane oscillating devices, oscillating rotational disks [10] and
other resonators for viscosity and mass density sensors such as
cantilevers [11,12], quartz tuning forks [13] and vibrating bridges
[14,15] are based on a similar operational principle. Usually, the
devices’ frequency responses, containing a characteristic resonant
mode, are recorded upon immersion in a sample liquid. The change
of evaluated resonance frequencies and quality factors are then
related to the liquid’s mass density and viscosity.

In this work a feasibility study for electromagnetically driven
and read out torsional oscillators for operation in liquids is
presented. Two concepts for actuation and readout discussed in

http://dx.doi.org/10.1016/j.sna.2015.03.033
0924-4247/© 2015 Elsevier B.V. All rights reserved.
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Fig. 1. (a) Principle and photographs of first demonstrators allowing to record frequency responses in air, (b) cross section and electrical equivalent circuit of the demonstrator
with a rotor carrying a single coil for excitation and readout by means of Lorentz-forces. Iin: input (excitation) current, B: external magnetic field, Vg: voltage of the signal
generator, 50 �:  output resistance of the signal generator, Rs: series resistance, Rc, Lc: coil’s resistance and inductance, VM: motion induced voltage, 10 M�:  input resistance,
(c)  cross section and electrical equivalent circuit of the rotor carrying two  coils. One coil is used for excitation, the other for read out, Vct: induced voltage due to inductive
crosstalk.

Section 2 were manufactured and the experimental analysis in
air allowed investigating the benefits and disadvantages of both
approaches. The analysis of measurements obtained with three
different torsional spring diameters and various spring lengths
allowed designing a demonstrator for measurements in liquids,
which is explained in detail in Section 3. A closed form model for
the resonator, relating the input to the output voltage, is derived in
Section 4. In Section 5 evaluated results of measurements obtained
with the cylindrical torsional resonator in ten different liquids are
shown. Furthermore, the sensor’s sensitivity and cross sensitivity to
temperature are evaluated and compared to other sensor concepts.

2. Torsional resonator

2.1. Concept

The basic idea of the torsional resonator is to excite a cylinder
to torsional vibrations by means of Lorentz forces acting on sinu-
soidal currents in a constant external magnetic field. For recording
the device’s frequency response, the excitation current’s frequency
is swept over a frequency range containing the resonant funda-
mental mode and simultaneously measuring the motion induced
voltage on an electrical conductor, following the torsional oscil-
lation. To implement this idea, a rotor (bobbin) is mounted on
torsional springs, where two different principles were realized and
compared. In the first approach, the bobbin carries one single coil
which is used for both, excitation and read out, where in the second
approach, two separate coils are used for these tasks.

2.2. Conceptual investigation in air

To investigate the functional principle of the electromagnetic
torsional oscillator and to estimate the achievable range of reso-
nance frequencies and signal strengths, a single coil type bobbin
has been mounted and investigated on three torsional springs at
various spring lengths. For this, a setup as depicted in Fig. 1(a)
and (b) has been used. There, one hundred turns of a 80 �m thick

copper wire were wound on a 3D printed bobbin with 8 mm in
diameter and 22 mm in length, which was attached to tungsten
rods with diameters of 0.58 mm,  1.6 mm and 2 mm  serving as tor-
sional springs. For each torsional spring, the same rotor was used so
that only the effect of different torsional spring lengths and diam-
eters could be examined. For attaching, the rotor was affixed with
screws to the torsional springs, which were rigidly clamped at their
ends with fiber-glass blocks through which the torsional spring
lengths could be adjusted. The bobbin was placed in a magnetic field
(denoted with B) provided by neodymium permanent magnets and
set to torsional oscillations by means of Lorentz forces on sinusoidal
currents (Iin) in the coil which was connected to a signal generator
(Vg and 50 � output resistance) and a series resistance Rs = 100 �
which was used to limit the excitation current, to prevent from
non-linear deflections. By sweeping the excitation current’s fre-
quency, the oscillator’s frequency response can be recorded. In this
case, for the sake of straight forward manufacturing, the coil’s ends
of the 80 �m thick copper wire were kept long enough for direct
connection with the excitation and readout electronics. However,
for a stable resonator, this wiring approach is not adequate. In the
demonstrator used for measurements in liquids which will be pre-
sented in Section 3 this drawback has been overcome by connecting
the coil’s ends to the torsional springs for electrical connection of
the resonator.

Fig. 2 shows the results of recorded frequency responses and
evaluated resonance frequencies in air for tungsten rods with
diameters of 0.58 mm  and 1.6 mm for various spring lengths in
comparison with theoretical results also presented in [16]. These
results proved the basic feasibility of the concept and allowed
designing a torsional resonator in the desired frequency range.

2.3. Single versus double coil setup

The benefits and disadvantages of using single or double coil
setups were experimentally investigated. The cross sections of the
rotors as well as the electrical equivalent circuits for both cases are
depicted in Fig. 1(c) and (d). For the first case, a single coil with
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Fig. 2. Examples for recorded frequency responses in air using a single coil for excitation and read-out. These experiments were performed to estimate achievable signal
strengths and resonance frequencies for different spring diameters and spring lengths.

100 turns, a length of 20 mm and a width of 8 mm is used for both,
excitation and read out and for the second case, two  coils with 50
turns each are used separately for these purposes. The voltage of
the signal generator Vg was 0.1 V and the series resistance Rs was
100 �.

For the single coil setup, the rotor is excited to torsional vibra-
tions by means of Lorentz forces on sinusoidal currents Iin. The
oscillation of the coil in the presence of the external magnetic field
causes a motion induced voltage VM on the excitation coil itself. This
motion induced voltage is proportional to the velocity of the oscilla-
tion and thus an appropriate quantity for measuring the oscillation.
However, the measurable output voltage Vout consists of an addi-
tional voltage resulting from the coil’s impedance related voltage
drop. The coil’s impedance is modeled as a serial connection of
a resistance Rc and an inductance Lc. For the manufactured rotor
Rc = 21.3 � and Lc = 215 �H were obtained by fitting the parame-
ters in the recorded frequency response from 100 Hz to 100 kHz.
The output voltage was measured with a lock-in amplifier (with an
input resistance of 10 M�)  and reads

Vout(ω) = VM(ω) + (Rc + j ω Lc)Iin (1)

in complex notation where j =
√

−1, ω is the angular frequency and
the time dependence ej ω t is suppressed.

To reduce this impedance-related offset voltage, a second coil is
used in the double coil setup for readout. This second coil follows
the motion of the oscillating cylinder and thus, as in the single coil
setup, a voltage is induced. However, in this case due to electrical
crosstalk resulting from the current Iin in the excitation coil, an
additional voltage Vct is induced in the measuring coil. Assuming
that the output current Iout is negligible, the output voltage reads

Vout(ω) = VM(ω) + j ω M Iin (2)

where M is the mutual inductance describing the inductive cou-
pling from the excitation to the readout coil. For the rotor used in
this experiment M = 480 �H was obtained.

Both types of rotors have been manufactured and mounted on
a tungsten rod with 0.58 mm diameter and 5 cm length for each
torsional spring. The recorded frequency responses covering a fre-
quency range of 100 Hz to 10 kHz as well as detailed plots of the
fundamental resonance are shown in Fig. 3 for both cases. The res-
onance peak is more than twice as high in case of the single coil
setup compared with the double coil setup (12.4 mV  in contrast to
5.5 mV  for the double coil setup.) This results from the fact that for
the single coil setup, the number of coil turns is twice as high which
yields a higher effective driving force in the rotor and a proportional
to the coil turns higher induced voltage. Thus, assuming the same
mechanical conditions for both setups, the voltage peak of the sin-
gle coil setup should be four times as high as the double coil setup.
However, in the performed experiments, this is not the case, as the
quality factor of the single coil setup (Q = 148.77) is significantly
smaller than in case of the double coil setup (Q = 221.4). Due to the
large offset voltage for the single coil (≈12 mV)  the change of phase
at resonance is significantly smaller as for the double coil (38.98◦

in comparison to 178.43◦). The reason of the phase shift of 178.43◦

instead of supposedly 180◦ is that the output voltage is subjected
to a slight crosstalk voltage at these frequencies. This crosstalk
voltage increases proportionally to the excitation frequency as it
can be observed in Fig. 3(b) which is also considered in Eq. (2).

3. Demonstrator for measurements in liquids

The use of a second coil did not show a major advantage in
the obtained signals compared to the setup where only one coil is
used for excitation and readout. However, using only one coil has a

Fig. 3. Frequency responses measured with the single coil (a) and the double coil (b) setup. The recorded spectra between 100 Hz and 10 kHz as well as detailed plots of the
resonance are shown for both setups.
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Fig. 4. (a) Exploded view of the torsional resonator used for measurements in liquids. The coil is electrically connected via the torsional springs and the brazed brass cylinders,
which are clamped with brass screws to which connecting wires are soldered. (b) shows an illustration of the assembled, clamped setup, the direction of the external magnetic
field  as well as the torsional oscillation. (c) The upper photograph shows the manufactured torsional oscillator. The lower photograph shows the complete setup including
both  permanent magnets and the torsional oscillator placed in the experimental well which was  filled with the sample liquids.

significant advantage for electrical connection. In this case, the elec-
trical conductive torsional springs can be used for this task. For the
double coil setup which requires the connection of four wires, the
usage of tubes would be necessary (serving as torsional springs)
through which the coils’ wires have to be threaded which might be
a rather tedious manufacturing process. Fig. 4 shows drawings and
photographs of the torsional resonator with which first measure-
ments in ten different liquids were obtained.

As for the single coil type rotor, which was investigated in air,
one hundred turns of a copper wire with a diameter of 80 �m were
wound on a 3D printed bobbin. Two tungsten rods with a diameter
of 0.58 mm serve as torsional springs with a spring length of 14 mm
each. Each rod is brazed to a brass cylinder with 10 mm diameter
and 10 mm height. Both tungsten rods carry a brazed brass platelet
and are put into the bobbin on both sides ensuring no contact of
both torsional springs. Each end of the coil is glued with electrical
conductive glue to one of these brass platelets which are further-
more used for a form-fitted connection with epoxy resin poured
into both sides of the bobbin which in turn is put into a POM-C
(polyacetal) plastics jacket with an outer diameter of 10 mm and
25 mm length. As mentioned before, it is essential that the tung-
sten rods do not get in contact in order not to shortcut the coil. The
torsional resonator is put into a milled POM-C plastics frame with
a well for containing the sample liquids. The brass cylinders are
clamped with brass screws, which in turn are used for further elec-
trical connection for power supply and read-out. Two  neodymium
magnets are used for providing a magnetic field necessary for exci-
tation and read-out based on Lorentz-forces.

4. Modeling

4.1. Mechanical model

4.1.1. Structural mechanics
Considering the rotor’s moment of inertia J0, the torque result-

ing from the tungsten rods’ torsional stiffnesses MT, the excitation
torque Mex, a torque Mc, representing the intrinsic dissipative losses
of the resonator and a torque MF accounting for the torque due to
the liquid loading, the principle of momentum equilibrium yields,
cf. Fig. 5

J0
d2ϕ(t)

dt2
+ 2 MT + Mc + MF = Mex (3)

where ϕ is the twisting angle of the rotor.

For a cylindrical rod with shear modulus G, radius rs, length ls
and twisting angle ϕ the torsional torque reads [17]

MT = k∗
T ϕ. (4)

where

k∗
T = G

�

2
r4
s
ls

. (5)

is the torsional spring constant of one torsional spring and kT = 2 k∗
T

is the spring constant of both torsional springs in our case.
Dissipative losses are considered by a loss coefficient c0 and the

associated loss torque is

Mc = c0
dϕ

dt
. (6)

4.1.2. Fluid dynamics
As we  are facing a rotational problem, the solution of the fluid

forces acting on the oscillating cylinder contains Hankel functions
which make the obtained equations difficult to interpret. For this
reason, the fluid forces acting on the cylinder are approximated by
one dimensional shear waves of an in-plane oscillating plate which
yields a negligible error if the cylinder’s radius rc is significantly
larger than the penetration depth [18], also termed decay length
[6]

ı =

√
2�

� ω
(7)

where � and � are the liquid’s viscosity and mass density, respec-
tively and ω is the angular frequency of the oscillation.

A comparison of the relative deviations ε of the solutions for the
cylindrical and the planar case over the ratio rc/ı are depicted in
Fig. 6. The complete derivation for the fluid forces is only given for
the planar case in this contribution. For aqueous liquids at 1 kHz the
penetration depth is 18 �m approximately. Considering the cylin-
der’s radius of the manufactured demonstrator rc = 5 mm it follows

Fig. 5. Torques considered in the principle of moment equilibrium. A double arrow
illustrates an acting torque.
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Fig. 6. Comparison of the solutions for the fluid forces Fc and Fp acting on an oscil-
lating cylinder and an in-plane oscillating plate, respectively. For both cases, the
same surface interacting with the liquid is considered. In case of the solution for the
cylinder, Hankel functions are obtained which make an intuitive interpretation of
the obtained equations difficult. For high ratios of the cylinder’s radius rc and the
penetration depth ı, the difference between both solutions is negligibly small.

rc/ı = 280 and thus ε = 3.8 · 10−3 which substantiates the applicabil-
ity and the validity of the approximated solution.

Under the assumptions of an infinitely extended plate oscillating
only in x-direction (thus imposing only shear stress in x-direction),
that gravitational forces are negligible, and that the liquid is incom-
pressible, the equation of motion and the shear stress Txz in liquids
can be expressed as a one dimensional problem and reads [6,19]:

�
∂2

ux

∂t2
= ∂Txz

∂z
with Txz = �

∂2
ux

∂z ∂t
. (8)

Here, � is the mass density of the liquid, ux is the displacement of
the liquid in x-direction, t is the time variable.

Substituting Txz in the equation of motion, transforming the
problem to the frequency domain assuming a time dependence ej ω t

and solving the linear differential equation of second order yields
the solution for the x-displacement propagating in z-direction

ux(z, t) = u0 e− z
ı e

−j
(

z
ı
−ω t

)
(9)

where u0 is the amplitude of the oscillation. With this solution for
ux, the shear stress at the liquid–solid interface (i.e., z = 0) in the
frequency domain reads

Txz(z = 0) = ux (1 − j)

√
� � ω3

2
. (10)

Expressing the planar deflection in rotational form, i.e. ux → ϕ rc

and assuming MF = − rc T Ac, where Ac is the cylinder’s surface, the
torque acting on the oscillating cylinder can be expressed as

MF =
[
−ω2

√
� �

2 ω
r2
c Ac + jω

√
� � ω

2
r2
c Ac

]
ϕ(ω). (11)

Eqs. (4) and (6) are substituted in Eq. (3) and after transformation
of the obtained expression to the frequency domain, Eq. (11) can
be considered in the equation of the moment equilibrium
[
−ω2 J + kT + jω c

]
ϕ(ω) = Mex (12)

where J and c have been introduced and read

J = J0 +
√

� �

2 ω
r2
c Ac and c = c0 +

√
� � ω

2
r2
c Ac. (13)

As the torsional resonator is operated close to its (fundamental)
angular resonance frequency ω0, these expressions can be approx-
imated by

J ≈ J0 +
√

� �

2 ω0
r2
c Ac and c ≈ c0 +

√
� � ω0

2
r2
c Ac. (14)

Substituting these relations into Eq. (12) yields a closed form
model of the oscillating cylinder in liquids and is beneficial for
design purposes. However, as the model consists of a relatively
large amount of variables, which are usually not exactly known,
constants and variables are combined in single factors where possi-
ble to reduce the amount of variables which have to be determined
in a parameter fit.

4.2. Reduced order models

4.2.1. One dimensional shear waves
Combining factors and variables in Eq. (14) in single factors and

neglecting the ω0 dependence allows writing J and c in reduced
form as follows

J ≈ J0 + J∗��
√

� � and c ≈ c0 + c∗
��

√
� �.  (15)

With this, the angular speed �(ω) = jωϕ(ω) can be expressed
as

�(ω) =
Mex/c

1 + j Q
(

ω
ω0

− ω0
ω

) (16)

with angular resonance frequency

ω0 =

√
kT

J
= 1√

J0k + J∗
��k

√
� �

(17)

and quality factor

Q =

√
J kT

c
= 1

ω0

kT

c
=

√
J0k + J∗

��k
√

� �

c0k + c∗
��k

√
� �

.  (18)

where the subscript k denotes that the factors in Eq. (15) have been
divided by kT to obtain these solutions for ω0 and Q.

For resonators, which are readout via a motion induced voltage
(which is proportional to the oscillator’s velocity, see Section 4.3.2)
the maximum peak frequency and the frequency of free, undamped
oscillations (usually termed ω0) are identical. For this reason, we
may  call ω0 resonance frequency. For read-out principles evaluat-
ing the resonator’s deflection using e.g. optical methods [20], the
frequency of free, undamped oscillations and the maximum peak
frequency of deflection amplitude are not identical.

4.2.2. Generalized model
In [21] a similar reduced order model was presented which con-

siders not only one dimensional shear waves but convexly shaped,
oscillating objects in general and reads

ω0 = 1√
m0k + m�k � + m��k

√
� �
ω0

(19)
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Fig. 7. Rotor cross section.

and

Q = 1
ω0

· 1
c0k + c�k � + c��k

√
ω0 � �

, (20)

where mxk and cxk are coefficients and m�k as well as c�k are zero
in case of pure one-dimensional shear waves.

4.2.3. Simplified generalized equations
Eq. (19) is an implicit equation for ω0, which makes an exact

evaluation of ω0 for given � and � difficult. Therefore, the equa-
tions are simplified by considering that the frequency dependence
of certain parameters occurring in the analysis is negligible as they
are virtually constant within the bandwidth of the resonant sys-
tem. Doing so, we obtain the following expressions for the angular
resonance frequency

ω0 = 1√
m0k + m�k � + m∗

��k
√

� �
(21)

and the quality factor

Q =

√
m0k + m�k � + m∗

��k
√

� �

c0k + c�k � + c∗
��k

√
� �

. (22)

Thus if ω0 and Q for given � and � using Eqs. (19) and (20) have
to be calculated, numerical (e.g., iterative) methods can be used.
Alternatively, the above simplified expressions give remedy. Con-
versely, if � and � have to be determined from measured fr = ω0/(2�)
and Q, Eqs. (19) and (20) can be used directly.

The advantage of such reduced order models is that in compari-
son with completely closed form models, only a few variables have
to be determined by means of a parameter fit.

In Section 5 these models are fit to experimental results. By
means of a comparison of the fitted models it will be shown that
the generalized models fit the measured data better than the model
considering shear waves only. This supposedly is due to the fact that
in addition to one dimensional shear waves, spurious effects such
as liquid trapping [22,23] may  be present.

4.3. Electrical model

4.3.1. Excitation torque
The Lorentz force on a charge q moving with velocity v in the

presence of a magnetic field with magnetic flux density B and an
electric field E is (bold variables denote vectors) [24]

FL = q (v × B + E). (23)

Assuming perpendicular conditions between the excitation cur-
rent Iex, i.e. the charges moving in a wire of length lr, and the
external magnetic field, it follows that the force acting on the wire
is given by

Fex = B lr Iex. (24)

With this, the excitation torque can be expressed as

Mex ≈ 2 N B rr lr Iex (25)

where N is the number of turns of the excitation coil and rr is the
radius of the coil, see Fig. 7.

4.3.2. Motion induced voltage
Using Faraday’s law of induction and the equation for Lorentz

forces, the motion induced voltage on the coil can be expressed as:

VM(t) = −
∫

coil

(v × B) · ds. (26)

Assuming the magnetic flux density to be symmetric in the air
gap, constant along the coil’s length and aligned in parallel with the
coil for ϕ = 0, see Fig. 7, it follows

VM(t) = 2 N rr cos ϕ
dϕ

dt
B lr. (27)

For small twisting angles, the motion induced voltage in the
frequency domain using the angular speed Eq. (16) reads

VM(ω) ≈ 2 N rr B lr �(ω). (28)

This equation for the motion induced voltage is used for model-
ing the measurable output voltage Vout for the single as well as for
the double coil setup in Eqs. (1) and (2).

5. Experimental investigation

5.1. Measurements in liquids

The demonstrator discussed in Section 3 has been used to exper-
imentally test the principle operation of such a torsional resonator
in liquids and to investigate the effect of different mass densi-
ties and viscosities on recorded frequency responses. Amplitudes
as well as evaluated quality factors and resonance frequencies for
two different sets of liquid series are depicted in Fig. 8. There, the
results of the fitted models performing a linear fitting procedure,
see [25], for fr = ω0/(2�) and Q using Eqs. (17), (18), (21) and (22) are
depicted as well. The values for the examined liquids’ viscosities �
and mass densities � (which were determined with an Anton Paar
SVM 3000) as well as the mean values of the associated, evaluated
resonance frequencies fr and quality factors Q are given in Table 1.
The SVM 3000 features a reproducibility of 0.35% for viscosity and
0.0005 g/cm3 for mass density. The measurements were performed
at 25 ◦C. The values for fr and Q were evaluated from the recorded
frequency responses using a fitting algorithm described in [26]. The
used liquid series are the so-called viscosity series and mass den-
sity series in the following. The first is a mixture of isopropanol
and acetone covering a viscosity range of 0.21 mPa s to 2.05 mPa  s
for mass densities of roughly 0.78 g/cm3. The percentage of mass
isopropanol mI and mass acetone mA is given in the left column of
Table 1. The mass density series cover a range of mass densities of
0.79 g/cm3 to 1.01 g/cm3 for viscosities of roughly 1 mPa  s and were
prepared using acetone, isopropanol, ethanol, DI-water and glyc-
erol. After mixing, the liquids were investigated with the SVM 3000.
These two liquid series are used to separately investigate experi-
mentally the effect of varying viscosities or mass densities on fr and
Q.

The results obtained with both liquid series clearly show the
effect of mass density and viscosity on the experimentally obtained
values for fr and Q. Deviations of the measured from the modeled
values as well as slight variations in fr and Q can be observed. These
supposedly originate from imperfections in the prototype setup.
These imperfections are associated with the fact that first, during
cleaning and refilling of the sensor, the resonator may  have been
detuned due to an insufficiently stable clamping, second, the open
experimental well, which allows evaporation of the liquid during
the measurements, and third, geometrical imperfections such as
e.g., surface roughnesses and a not perfect alignment of the oscil-
lating cylinder with the torsional springs. For Q, both models yield
approximately the same results, where for fr, the generalized model
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Fig. 8. Measured amplitudes as well as evaluated resonance frequencies and quality factors for two  liquid series. The one dimensional shear wave model as well as the
generalized model are fit to the measured data. The model parameters are given on the right hand side.

clearly yields better results. This finding can be explained by sur-
face roughness, which yields so-called liquid trapping [22,23] and
thus a higher sensitivity to mass density. This effect might be ben-
eficial, as the effect of � and � on fr and Q cannot be separated with
devices yielding pure one-dimensional shear waves without liquid
trapping.

Despite the discussed drawbacks in the presented setup, a rough
estimation of the device’s sensitivity can be made. We  define the
relative sensitivity of a quantity X(yi) to an independent variable yi
as

SX,yi
=

∣∣∣∣
∂X

∂yi

· yi

X

∣∣∣∣ (29)

where X either stands for fr or Q and yi for � and �, yielding four
different sensitivities which are evaluated from the fitted general-
ized model Eqs. (21) and (22). The four sensitivities Sfr,�, Sfr,� , SQ,�
and SQ,� are not constant but depend on � as well as on � and thus
are depicted as bands in Fig. 9 for the experimentally evaluated

range of viscosities and mass densities. The upper boundary of the
bands in the plots on the left hand side (i.e., Sfr,� and SQ,�) are the
values for � = 1.01 g/cm3, the lower boundary for � = 0.79 g/cm3. On
the right hand side (i.e., Sfr,� and SQ,�) the upper and lower bound-
aries of the bands represent the evaluated values for � = 0.21 mPa  s
and � = 2.05 mPa  s, respectively. In Fig. 9 the sensitivities obtained
with the torsional resonator are depicted in comparison with the
sensitivities achieved with circular and rectangular cross sectioned
steel tuning forks oscillating at 400 Hz in liquids approximately, a
U-shaped wire sensor (fr ≈ 930 Hz) [27], and a quartz tuning fork
(fr ≈ 32.7 kHz) [13].

5.2. Measurement accuracy

Equations (19) and (20) were used to calculate � and � for
evaluated fr and Q. The fitted model parameters using a lin-
ear fitting procedure described in [21,25] are given in Table 2.
Despite their limited accuracy, the mean values for fr and Q

Table 1
Upper part: acetone–isopropanol solutions for viscosity measurements. Lower part: solutions for mass density measurements. The plus–minus values are evaluated typical
errors  (single standard deviations). x̂ are the calculated values for viscosity and mass density using Eqs. (19) and (20) and evaluated mean values for fr and Q. � x = x̂ − x and
�  xrel = � x/x are absolute and relative deviations from the values for viscosity and mass density, respectively.

Viscosity series T = 25 ◦C
mI

mA+mI
/% �/(mPa s) �/(g/cm3) fr/Hz Q �̂/(mPa s) � �/(mPa s) � �rel �̂/(g/cm3) � �/(g/cm3) � �rel

0 0.207 0.7841 396.710 ± 1.4 · 10−3 129.0 ± 0.44 0.173 −0.034 −0.164 0.7394 −0.0447 −0.057
51  0.433 0.7790 396.103 ± 3.3 · 10−3 104.4 ± 0.04 0.399 −0.034 −0.079 0.7985 0.0195 0.025
83  0.980 0.7793 395.599 ± 0.3 · 10−3 70.3 ± 0.16 1.464 0.484 0.493 0.7730 −0.0063 −0.008
95  1.576 0.7803 395.605 ± 3.5 · 10−3 67.8 ± 0.03 1.636 0.059 0.038 0.7602 −0.0201 −0.026

100  2.054 0.7804 395.56 ± 4.8 · 10−3 63.3 ± 0.36 2.006 −0.049 −0.024 0.7444 −0.0360 −0.046

Density series T = 25◦C
�/(mPa s) �/(g/cm3) fr/Hz Q �̂/(mPa s) � �/(mPa s) � �rel �̂/(g/cm3) � �/(g/cm3) � �rel

1.006 0.7849 395.729 ± 0.8 · 10−3 79.4 ± 0.15 1.009 0.003 0.003 0.7894 0.0045 0.006
0.994  0.8411 395.177 ± 1.4 · 10−3 81.2 ± 0.31 0.850 −0.144 −0.145 0.8918 0.0507 0.060
1.010  0.8931 394.706 ± 10.5 · 10−3 76 ± 2.2 0.999 −0.011 −0.011 0.9513 0.0582 0.065
1.006  0.9870 394.574 ± 8.6 · 10−3 77 ± 2.4 0.925 −0.080 −0.080 0.9798 −0.0072 −0.007
0.998  1.0073 394.500 ± 5.5 · 10−3 76 ± 1.3 0.937 −0.061 −0.061 0.9904 −0.0169 −0.017
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Fig. 9. Sensitivities to viscosity and mass density: the sensitivities of fr and Q to � and
�  are not constant but dependent both on � and �. For this reason the sensitivities
are  depicted as bands, in the experimentally investigated range of viscosities and
mass densities. In the plots for Sfr,� and SQ,� the upper boundary of the bands are
the values for � = 1.01 g/cm3, the lower boundary for � = 0.79 g/cm3. In the plots for
Sfr,� and SQ,� the upper and lower boundaries of the bands represent the evaluated
values for � = 0.21 mPa s and � = 2.05 mPa  s, respectively.

Table 2
Fitted model parameters using Eqs. (19) and (20).

m0k/s2 m�k/ m3 · s2

kg m��k/ m2

kg · s2

1.57 · 10−7 4.64 · 10−12 5.29 · 10−8

c0k/s c�k/ m · s2

kg c��k/ m2

kg · s2

1.88 · 10−6 1.93 · 10−4 6.73 · 0−8

given in Table 1 are used to calculate the values for viscos-
ity and mass density for both liquid series. The evaluation of
absolute and relative errors given in Table 1 shows that with
the present setup, absolute and relative accuracies for viscos-
ity in the range of [|� �|min, |� �|max] = [0.003, 0.484] mPa s
and [|� �rel|min, |� �rel|max] = [0.003, 0.493], respectively are
obtained. For the calculated mass densities the obtained
accuracies are [|� �|min, |� �|max] = [0.0045, 0.0058] g/cm3 and
[|� �rel|min, |� �rel|max] = [0.005, 0.065]. This evaluation substan-
tiates the need for setup improvement, especially to obtain more
accurate measurement results for viscosity. However, the purpose
of this work was a feasibility study of torsional, resonant viscos-
ity and mass density sensors, their modeling and first designs of
promising demonstrators. In [28] the advantages and capability
of resonant viscosity and mass density sensors using conventional
steel tuning forks with circular and rectangular cross sections was
demonstrated.

5.3. Cross sensitivity to temperature

Mechanical resonators can show a significant dependence of
their resonance frequency to temperature. This dependence is
mainly due to the thermal expansion of the resonator and the
temperature dependence of the resonator’s Young’s modulus. For
doubly clamped structures such e.g. bridges [15,29] and straight
wire resonators [30,31], the cross sensitivity of the resonance
frequency to temperature becomes large if significant thermal pre-
stresses are induced. The dependence of the resonance frequency
to temperature can be positive as well as negative. In [32], micro-
machined vibrating strings are used as ultrasensitive temperature
sensors. For the case of resonant viscosity sensors, this cross sensi-
tivity directly limits the sensor’s accuracy and thus should be kept
as low as possible. The dependence of the torsional resonator’s res-
onance frequency has been evaluated in a temperature range from

Fig. 10. Cross sensitivity of the resonance frequency to temperature. The upper
figure shows the magnitudes of recorded frequency responses, the lower figure
evaluated resonance frequencies versus temperature.

Table 3
Cross sensitivities of the resonance frequency (fundamental mode) to temperature.
f0: nominal resonance frequency, �fr = fr(T0) − fr(T1): resonance frequency shift,
�T  = T0 − T1 difference of temperatures T0 and T1, �fr,rel = �fr/f0: relative resonance
frequency shift, ‘t.w.’ designates this work.

Sensor f0 �fr/�T �fr,rel/�T Ref.
kHz (Hz/K) (1/K)

U (W)  0.95 −0.048 −60 · 10−6 [27]
U (Si, Au) 5.96 −0.441 −69 · 10−6 [33]
TF (Steel) 0.44 −0.0519 −118 · 10−6 t.w.
CL  (Si) 43.83 -1.3 −29.7 · 10−6 [34]
CL (Si, Au) 18.33 -1.83 −100 · 10−6 [35]

TR 0.4 −0.15 −385.58 · 10−6 t.w.
SW  (W)  2.98 30 0.01 [31]

5 ◦C to 60 ◦C in 5 ◦C temperature steps. Fig. 10 shows the magnitude
of measured frequency responses as well as evaluated resonance
frequencies at these temperatures. In Table 3 a comparison of the
resonance frequency’s dependence to temperature is given for dif-
ferent resonators. The first five sensors, i.e. a U-shaped tungsten
wire sensor, U (W), [27], a U-shaped gold coated silicon resonator,
U(Si, Au), [33], a steel tuning fork, TF (steel), a silicon cantilever,
CL (Si), [34] and a gold coated silicon cantilever, CL (Si, Au), [35]
are singly clamped structures and thus show a relatively small
dependence of the resonance frequency to temperature. The last
two sensors i.e., the torsional resonator, TR, and a straight tung-
sten wire sensor, SW (W), [31] are doubly clamped structures and
thus, show a much higher dependence of the resonance frequency
to temperature. However, this dependence is much lower for the
torsional resonator compared to the straight wire sensor. To reduce
this cross sensitivity, using only one torsional spring instead of two
may  be a possible approach.

6. Conclusion and outlook

A first study of the electromagnetically driven and read out tor-
sional oscillator in air showed the advantages of using one single
coil for both, excitation and readout. The advantages are mainly
based on the manufactural benefit that in case of using one coil
(instead of two) only two wires have to be electrically connected
for power supply and readout which in this case is implemented by
contacting the torsional springs. The feasibility of such a torsional
resonator for viscosity and mass density sensing applications has
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been shown by measurements in ten different liquids. For design
purposes, a complete analytical model comprising the structural
and fluid mechanics and relating output to input signals has been
elaborated. Therefrom, reduced order models have been derived
which relate resonance frequency and quality factor to viscosity
and mass density, respectively. The advantage of such models is
that only four to six factors have to be determined to describe
the sensors characteristics. The comparison of both fitted model
results shows that the generalized model yields significantly bet-
ter results for fr which can be explained by liquid trapping due to
surface roughnesses of the cylinder shell. A first estimation of the
device’s sensitivity and its cross sensitivity of its resonance fre-
quency has been made and compared to other resonant viscosity
and mass density sensors.

Regarding future work, a more reliable clamping and housing
has to be designed and manufactured aiming to obtain more stable
and accurate results. By means of further experiments, the maxi-
mum  measurable viscosities and resolution have to be investigated.
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