
HAL Id: tel-01240812
https://theses.hal.science/tel-01240812v1
Submitted on 9 Dec 2015 (v1), last revised 22 May 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Fidelity regression models for uncertainty
quantification of computer codes.

Federico Zertuche

To cite this version:
Federico Zertuche. Multi-Fidelity regression models for uncertainty quantification of computer codes..
Statistics [math.ST]. Université de Grenoble, 2015. English. �NNT : �. �tel-01240812v1�

https://theses.hal.science/tel-01240812v1
https://hal.archives-ouvertes.fr


THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Mathématiques Appliquées

Arrêté ministérial : 7 août 2006

Présentée par

Federico Zertuche

Thèse dirigée par Anestis Antoniadis
et codirigée par Céline Helbert

préparée au sein du Laboratoire Jean Kuntzmann
et de l’Ecole Doctorale ED-MSTII

Utilisation de simulateurs
multi-fidélité pour les études
d’incertitudes dans les codes de
calcul

Thèse soutenue publiquement le ,
devant le jury composé de :

M. Josselin Garnier
Professeur, Université Paris Diderot, Rapporteur

M. Alberto Pasanisi
Project Manager, EDF - European Institute For Energy Reseach (EIFER),
Rapporteur

M. Fabrice Gamboa
Professeur, Institut de Mathématiques de Toulouse, Examinateur

M. Mathieu Couplet
Research engineer, EDF, Chatou, Examinateur

Mme Clementine Prieur
Professeur, Université Joseph Fourier, Examinateur

M. Anestis Antoniadis
Professeur, Université Joseph Fourier, Directeur de thèse

Mme Céline Helbert
Maı̂tre de Conférences, Institut Camille Jordan, Co-Directeur de thèse





Résumé

Les simulations par ordinateur sont un outil de grande importance pour

les mathématiciens appliqués et les ingénieurs. Elles sont devenues plus

précises mais aussi plus compliquées. Tellement compliquées, que le temps

de lancement par calcul est prohibitif. Donc, plusieurs aspects de ces simu-

lations sont mal compris. Par exemple, souvent ces simulations dépendent

des paramètres qu’ont une valeur inconnue.

Un metamodèle est une reconstruction de la simulation. Il produit des

réponses proches à celles de la simulation avec un temps de calcul très

réduit. Avec ce metamodèle il est possible d’étudier certains aspects de

la simulation. Il est construit avec peu de donnèes et son objectif est de

remplacer la simulation originale.

Ce travail est concerné avec la construction des metamodèles dans un

cadre particulier appelé multi-fidélité. En multi-fidélité, le metamodèle est

construit à partir des données produites par une simulation objective et

des données qu’ont une relation avec cette simulation. Ces données ap-

proximées peuvent être générés par des versions dégradées de la simulation

; par des anciennes versions qu’ont été largement étudiées ou par une autre

simulation dans laquelle une partie de la description est simplifiée.

En apprenant la différence entre les données il est possible d’incorporer

l’information approximée et ce ci peut nous conduire vers un metamodèle

amélioré. Deux approches pour atteindre ce but sont décrites dans ce

manuscrit : la première est basée sur des modèles avec des processus

3



gaussiens et la seconde sur une décomposition à base d’ondelettes. La

première montre qu’en estimant la relation il est possible d’incorporer des

données qui n’ont pas de valeur autrement. Dans la seconde, les données

sont ajoutées de façon adaptative pour améliorer le metamodèle.

L’objet de ce travail est d’améliorer notre compréhension sur comment

incorporer des données approximées pour produire des metamodèles plus

précis. Travailler avec un metamodèle multi-fidélité nous aide à compren-

dre en détail ces éléments. A la fin une image globale des parties qui for-

ment ce metamodèle commence à s’esquisser : les relations et différences

entres les données deviennent plus claires.

4



Abstract

A very important tool used by applied mathematicians and engineers to

model the behavior of a system are computer simulations. They have

become increasingly more precise but also more complicated. So much,

that they are very slow to produce an output and thus difficult to sample

so that many aspects of these simulations are not very well understood.

For example, in many cases they depend on parameters whose value is

unknown.

A metamodel is a reconstruction of the simulation. It requires much

less time to produce an output that is close to what the simulation would.

By using it, some aspects of the original simulation can be studied. It is

built with very few samples and its purpose is to replace the simulation.

This thesis is concerned with the construction of a metamodel in a

particular context called multi-fidelity. In multi-fidelity the metamodel is

constructed using the data from the target simulation along other samples

that are related. These approximate samples can come from a degraded

version of the simulation; an old version that has been studied extensively

or a another simulation in which a part of the description is simplified.

By learning the difference between the samples it is possible to incor-

porate the information of the approximate data and this may lead to an

enhanced metamodel. In this manuscript two approaches that do this are

studied: one based on Gaussian process modeling and another based on

a coarse to fine Wavelet decomposition. The fist method shows how by

5



estimating the relationship between two data sets it is possible to incor-

porate data that would be useless otherwise. In the second method an

adaptive procedure to add data systematically to enhance the metamodel

is proposed.

The object of this work is to better our comprehension of how to in-

corporate approximate data to enhance a metamodel. Working with a

multi-fidelity metamodel helps us to understand in detail the data that

nourish it. At the end a global picture of the elements that compose it

is formed: the relationship and the differences between all the data sets

become clearer.

6



Contents

1 Introduction 11

1.1 Computer experiments . . . . . . . . . . . . . . . . . . . . 11

1.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Multi-fidelity . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Outline of the manuscript . . . . . . . . . . . . . . . . . . 15

2 Gaussian processes and Multi-fidelity 16

2.1 Prediction and Gaussian processes . . . . . . . . . . . . . . 17

2.1.1 Modeling with Gaussian processes . . . . . . . . . . 21

2.2 Model fitting via parameter estimation . . . . . . . . . . . 27

2.2.1 Maximum likelihood estimation . . . . . . . . . . . 28

2.2.2 Bayesian model selection . . . . . . . . . . . . . . . 30

2.2.3 Cross validation . . . . . . . . . . . . . . . . . . . . 31

2.2.4 Gaussian process models . . . . . . . . . . . . . . . 34

2.3 Multi-fidelity regression with Gaussian processes . . . . . . 35

7



2.3.1 Gaussian processes for multi-fidelity . . . . . . . . . 35

2.3.2 Building a multi-fidelity model based on G.P.s . . . 43

2.4 EM model selection for the case of disjoint set of observations 47

2.4.1 Expectation maximization . . . . . . . . . . . . . . 48

2.5 Multi-fidelity regression with polynomial relationships . . . 58

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Nonparametric Model 63

3.1 Unknown relationship . . . . . . . . . . . . . . . . . . . . . 64

3.1.1 Nonparametric estimation . . . . . . . . . . . . . . 67

3.1.2 Estimating the bandwidth parameter h . . . . . . . 72

3.1.3 Prediction error . . . . . . . . . . . . . . . . . . . . 75

3.2 Illustrative examples . . . . . . . . . . . . . . . . . . . . . 76

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Case Study 84

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Case Description . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 First approach: fractional factorial design . . . . . . . . . . 90

4.4 Metamodels tested . . . . . . . . . . . . . . . . . . . . . . 92

4.4.1 The inputs . . . . . . . . . . . . . . . . . . . . . . . 93

8



4.4.2 The outputs . . . . . . . . . . . . . . . . . . . . . . 97

4.4.3 Prediction results and estimated parameters . . . . 99

4.4.4 Sensitivity analysis . . . . . . . . . . . . . . . . . . 106

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Adaptive Wavelets and Multi-fidelity 115

5.1 Adaptive wavelet decomposition . . . . . . . . . . . . . . . 116

5.1.1 Number of points in the support . . . . . . . . . . . 117

5.1.2 Selecting the coefficients . . . . . . . . . . . . . . . 122

5.1.3 Some remarks on the adaptive wavelet decomposi-

tion algorithm . . . . . . . . . . . . . . . . . . . . . 124

5.2 Multi-fidelity wavelet adaptive regression . . . . . . . . . . 125

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 Discussion 132

6.1 Summary of the contributions . . . . . . . . . . . . . . . . 132

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3 Open questions . . . . . . . . . . . . . . . . . . . . . . . . 134

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A Gaussian processes and Bayesian estimation 137

A.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9



A.2 Bayesian estimation for Gaussian processes . . . . . . . . . 138

A.2.1 Some prior distributions and their posteriors . . . . 141

B A short introduction to Wavelets 144

B.1 Building wavelets and the refinement equation . . . . . . . 144

B.1.1 Multiresolution Analysis . . . . . . . . . . . . . . . 144

B.1.2 The refinement equation . . . . . . . . . . . . . . . 146

B.2 w(x) for every x . . . . . . . . . . . . . . . . . . . . . . . . 149

B.2.1 Filters or functions? . . . . . . . . . . . . . . . . . 149

B.2.2 Iterative approximations for φ(x) and w(x). . . . . 151

B.3 Filter bank . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.3.1 The filter bank algorithm . . . . . . . . . . . . . . 153

10



Chapter 1

Introduction

1.1 Computer experiments

Computer simulations have become the main tool used by applied math-

ematicians to study many different phenomena. They are used to model

very large and complex systems like the ocean, a flying plane or parts of

nuclear power plant. These models are increasingly more precise but also

more complex to program, to sample and to understand. Here we try to

synthesis data from such simulations.

In our case these simulations take a multidimensional input that con-

tains all the parameters that describe the object of study and produce one

or many responses that are function of the parameters.

More often than not, many aspects of the simulation are not very well

understood. This includes the real value of the parameters and the influ-

ence they have on the output. Researchers and engineers use statistical

techniques like Sensitivity Analysis to try to address these problems. In

practice this means that the model has to be sampled over a very big set

of inputs and this is unfeasible in many cases due to time constraints. For

example, some simulations can take up to several days to produce a single

response and some statistical techniques require thousands of samples.

11



One possible solution is to use very few samples, like a hundred, to build

a fast metamodel that takes in the same input and produces a response

that is ”close” to what the simulation would. Then, use this metamodel to

study the statistical properties we are interested in. This is the alternative

explored in the thesis.

1.2 Prediction

The way this problem is formalized is by thinking about the computer

simulation we try to approximate as a function f of a vector of parameters

x.

If we note y = f(x) the target output, then we sample the function over

a few inputs to get a data set (x1, y1), ..., (xn, yn). The problem is to look

for a function ŷ(x) built using the observed values and that predicts f at

an unobserved input x.

This function ŷ is called a predictor and it is usually chosen from a family

of models Y as the one that produces the outputs that are the closest to

the data. The family of models can be defined by some parameters or not

or it can be a set of functions with some regularity properties. Normally,

we choose the predictor by solving a problem like

minimize
ŷ∈Y

n∑
i=1

(ŷ(xi)− yi)2 .

In this first approach we do not take into account the fact that we are

uncertain about the chosen model. For example, it could happen that the

optimal predictor is very close to the data but when the inputs are altered

by a plausible amount, the predicted value changes a lot. The methods

studied in the manuscript are used in this context.

Two common ways of taking into account this uncertainty are to use a

stochastic model in which we assume that the outputs generated by the

12



simulation are random variables and solve

minimize
Ŷ ∈Y

n∑
i=1

E
(
Ŷ (xi)− Yi

)2

or to consider a worst-case analysis indexed by a set H in which we solve

minimize
ŷ∈Y

sup
h∈H

n∑
i=1

(ŷ(xi;h)− yi)2 .

Two different prediction techniques are studied. Each one uses one of

these two paradigms in a particular context called multi-fidelity. The first

one is based on Gaussian processes models and the second on wavelets.

1.3 Multi-fidelity

Usually more data used to build a predictor translates into a better pre-

diction. Multi-fidelity is about using different data sets that are related to

do such a task.

For example, we can think of simulations in which the precision of the

output can be tuned. This happens when we solve a partial differential

equation numerically. When we do so, we compute an approximate solution

over a grid. This numerical approximation is the computer simulation. The

precision of the output depends on the size of the grid: a finer grid produces

a more precise response. In this case, the key is that the time it takes to

produce the response increases with the precision. It can happen that it is

better to have a small fine grid data set along a large data set of coarser

observations in which we explore the parameter space in detail instead of

only having a slightly bigger fine grid one.

Another example is something that is very usual in research and de-

velopment departments. Here we want to understand a new version of a

simulator. Normally, there are old versions of the same simulator that have

13



been studied in detail and that could be much faster. We could use this

additional data to build an enhanced predictor.

Finally, we can think of using models in which we simplify a part of the

description. In fluid dynamics sometimes two dimensional discretizations

of a three dimensional model are available. Also, removing some physical

properties is a common practice. There are even different ribosomes that

read genes with more or less precision. In any of these cases we could use

all the data sets available.

In all the examples above, there is always a target simulation and the

other data is produced by what we consider as approximations. In partic-

ular, we will always assume that the data sets produced by these approxi-

mations are ordered according to some fidelity parameter.

For the stochastic approach, we follow Kennedy and O’Hagan [30], Peter

Quian [43] and Loic Le Gratiet [33]. They propose a model based on

Gaussian processes in which the relationship between two successive levels

is parametric. Our first objective is to extend this model to more general

situations where the relationship between two successive levels of fidelity

cannot be modeled parametrically.

For the second method, we transpose some results of Daniel Castano

[8] based on a coarse to fine wavelet approximations to our multi-fidelity

problem. Here we do not make any explicit assumption about the rela-

tionship between any of the levels. Instead we will judge how close are the

two functions are by looking at the difference between their decomposition

coefficients. Our second objective is to use this type of decomposition to

allocate observations sequentially. This second method can be considered

as an alternative to the Gaussian processes regression.

14



1.4 Outline of the manuscript

In chapter 2 we introduce formally the prediction problem under the Gaus-

sian process hypothesis. We study the parametric form of the mean and

covariance functions that define the process and some of the techniques

used to estimate them. Then, we define the optimal predictor in this case

and describe the existing methods of multi-fidelity prediction.

The second part of chapter 2 is dedicated to the first extensions of the

usual multi-fidelity method based on Gaussian processes. First, we study

an EM algorithm to estimate the parameters of the model for the case in

which the observations are made over disjoint sets. Then, we extend the

multi-fidelity method for a polynomial relationship.

In chapter 3 we propose a model in which the relationship between two

consecutive levels of fidelity is unknown. We estimate this relationship

using locally linear polynomials. We study how this approach can improve

the prediction and we compare it to existing multi-fidelity models in several

examples.

Chapter 4 is dedicated to the case study that motivated this work. It

is also an occasion to apply the methods described above to a practical

case. The analyzed simulator is related to the study of a thermal shock

inside the cooling system of a nuclear power plant. We also present a new

algorithm to build nested designs for the multi-fidelity regression models.

Chapter 5 is devoted to our second method. We start by describing a

coarse to fine wavelet based algorithm. A multi-fidelity adaptation of this

algorithm in which we use the one data set algorithm to build an adaptive

sampling scheme is proposed.

In the last chapter 6 we make some final remarks and discuss possible

research directions regarding the problems studied.

15



Chapter 2

Gaussian processes and Multi-fidelity

In this chapter we deal with optimal prediction for least squares when

the data we observe are supposed to be the outcomes of Gaussian random

variables. In order to make a formal description of the techniques we define

what a Gaussian process is.

Then, we describe how Gaussian processes are used to model functions

through a parametric form for the mean and covariance of the process. We

briefly describe how to make inference on the parameters.

In the second part of the chapter we introduce the multi-fidelity regres-

sion problem and we describe a model that was proposed first by by Marc

Kennedy and Tony O’Hagan [30], then extended by Peter Quian [43] and

Loic Le Gratiet [35] who proposed a sequential prediction.

We present original proofs regrading the sequential prediction and this

will permit us to propose a first extension of the model using a polynomial

relationship. This model retains the sequential prediction property.

We extend the model in a second direction by relaxing a crucial require-

ment for sequential prediction, that is nested observations. We propose an

EM algorithm to deal with the case of observations made over disjoint sets.

16



2.1 Prediction and Gaussian processes

A general framework of prediction starts with a series of observations of the

form Yx1, ..., Yxn where x ∈ Rd is called the input or explanatory variable

and Yx ∈ R is the output or quantity of interest.

We assume that Yx = m(x) where m is an unknown function and the

problem consists in estimating m by using the observed data to make

predictions of the output at some unobserved values.

If we note X the set of inputs; O the set of all the observable variables

and Y the set of the outputs, then any measurable function of the inputs

t(x;O) built using a subset O ∈ O is called a predictor. For example

t(x;Yx1, ..., Yxn) =
1

n

n∑
j=1

Yxj

is a predictor of m(x) that is equal to the mean of the observed values for

any x.

To choose a predictor we need to measure how effective they are. In

our case we measure the effectiveness of the prediction by computing the

mean squared error E[|Yx− t(x;O)|2] and we define the optimal prediction

as the function that minimizes this quantity.

If y is any predicted value at x, then its mean square error is equal to

EY 2
x − 2yEYx + y2 when EY 2

x < ∞. From this expression we can deduce

that the value that minimizes the mean square error is given by EYx.

If we observe Yn := [Yx1, ..., Yxn]T , then the best possible value we can

produce using the data is the conditional expectation Ỹx := E[Yx|Yn]. A

proof of this fact can be found in for example, [54].

In general Ỹx is difficult to compute if we do not know the joint dis-

tribution of the vector [Yx, Yx1, ..., Yxn]T . One way to avoid this difficulty

17



is to look for the best linear approximation in Yn instead. If we write

l(x, Yn) :=
∑n

j=1 βj,xYxj where βnx = [β1,x, ..., βn,x]
T is a vector of unknown

coefficients that depend on x, then

∂

∂βk,x
E[|Yx − l(x;Yn)|2] = 0⇔ E[(Yx − l(x;Yn))Yxk] = 0 , k = 1, ..., n.

For the time being, lets assume that all the random variables have 0 mean.

Since E[(Yx − Ŷx)Yxk] = 0 we can write

n∑
j=1

βj,xE[YxjYxk] = E(YxkYx)

for every k = 1, ..., n. Using a matrix notation this system of linear equa-

tions is equivalent to Γ(Yn)β
n
x = Γ(Yn, Yx). We note Γ(Yn) the covariance

matrix of the observations; Λ(Yn) its inverse and Γ(Yn, Yx) the vector with

coordinates E(YxkYx). If the covariance matrix is invertible, then we can

compute the optimal set of coefficients β̂nx as Λ(Yn)Γ(Yn, Yx). The opti-

mal linear predictor is Ŷx = Y T
n β̂

n
x . We can compute its prediction error

E[|Yx − Ŷx|2] by noticing that

E[|Yx − Ŷx|2] = EY 2
x − 2EYxŶx + EŶ 2

x

= EY 2
x − EŶ 2

x

= EY 2
x − Γ(Yn, Yx)

TΛ(Yn)Γ(Yn, Yx)

since

EYxŶx = Γ(Yn, Yx)
TΛ(Yn)Γ(Yn, Yx)

= β̂nx
T
Λ(Yn)β̂nx

= EŶ 2
x .

By looking at the prediction and prediction error formulas we can see that

all we need to compute the two is the mean of Y 2
x , the covariance matrix

Γ(Yn), its inverse Λ(Yn) and the vector Γ(Yn, Yx).

In general linear predictors do worse than non-linear ones. This means

18



E[|Yx − Ŷx|2] ≥ E[|Yx− t(x,O)|2]. However, when the joint distribution of

the vector [Yx, Yx1, ..., Yxn]T is Gaussian the optimal linear predictor is the

optimal predictor.

To explain this we need to introduce some concepts and to think about

the problem in a somewhat different way. It is important to recall that we

assumed that

E[Yx] = m(x).

and that we want to estimate the unknown function m.

We argued, but did not show, that when the joint distribution of the

vector [Yx, Yx1, ..., Yxn]T is Gaussian, the linear predictor is optimal. If

we want to make a prediction at another point, say x′ we would need

[Yx′, Yx1, ..., Yxn]T to be Gaussian too. The same is true if we have a different

set of observations. If we want the linear predictor to be optimal we need

any finite vector [Yx, Yx1, ..., Yxn]T to be Gaussian.

To have a coherent predictor we also need that if we have two vectors

with some common coordinates like

[Yx, Yx1, Yx2, Yx3]
T

[Yx, Yx1, Yx2]
T

then, the second vector seen as a subset of the first maintains its distribu-

tion. In this case, the same mean and covariance.

The two conditions above are equivalent to say that we assume a priori

that Yx is a Gaussian process. This is a prior on a space of functions.

Sometimes this type of techniques are called nonparametric Bayesian and

there are some similar ideas for problems of classification where Dirichlet

processes are used.

For the definitions of Gaussian vectors and processes you can look at

19



appendix A. We write

Yx ∼ GP (µ(x),Γ(Yx, Yx′))

to say that Yx is a Gaussian process with mean µ(x) = EYx and covariance

Cov(Yx, Yx′) = Γ(Yx, Yx′).

If we use the formulas we already derived for the optimal linear pre-

dictor, we have that given Yn := [Yx1, ..., Yxn]T the predictor and its error

are

Ŷx := E[Yx|Yn] = µ(x) + Γ(Yn, Yx)Λ(Yn)(Yn − E[Yn]) (2.1)

Γ̂(x, x) := E[|Yx − Ŷx|2|Yn] = Γ(Yx, Yx)− Γ(Yn, Yx)Λ(Yn)Γ(Yx, Yn). (2.2)

In fact by using properties of Gaussian vectors, we have the whole condi-

tional distribution

[Yx|Yn] ∼ N(Ŷx, Γ̂(x, x′)).

The predictor in (2.1) is a function of the index x and the vector of

observations Yn. It is the sum of the mean of the process and a special

weighted sum of the residuals meaning that it adapts to the data in a

specific way. Because it is a linear combination of the observed values Yn

sometimes it is called a linear smoother.

In particular, this predictor interpolates the data and at the interpola-

tion points it has 0 prediction error. This is because

Γ(Yn)Λ(Yn) =

Γ(Yn, Yx1)
TΛ(Yn)

· · ·
Γ(Yn, Yxn)TΛ(Yn)

 = In.

So that, for any j between 1 and n, Γ(Yn, Yxj)
TΛ(Yn) is a vector with zeroes

everywhere except for the jth entry which is 1. Use this in the prediction

formula to get Ŷxj = yxj and 0 on the prediction error.

20



In conclusion, we built an interpolating predictor that is optimal if we

assume a Gaussian prior. This predictor and its prediction error have

explicit formulas and are relatively simple to interpret. On the other hand

we did not give an idea of what is the meaning of this prior assumption

and this is what we discuss in the next section.

2.1.1 Modeling with Gaussian processes

Choosing a Gaussian prior is a very strong statement and at first sight

its meaning seems difficult to understand. The object of this section is to

show how it is possible to express modeling assumptions in an intuitive

way by choosing particular mean and covariance functions.

For this part, we consider 1-dimensional inputs so let X ⊂ R and

Yx ∼ GP (µ(x),Γ(x, x′)).

The mean function

The most simple mean function we can consider is a constant µ. The effect

of changing this constant is to shift the realizations or paths of Yx. Figure

2.1 below shows several realization of two G.P.s with the same covariance

and different constant means.

If we want to model a general trend for the process we can choose a

different function. For example we could write µ(x) = µx for a linear

trend with slope µ. More generally, a popular choice is to define µ(x) as

a linear combination of functions of the inputs like µTf(x) = µ1 + µ2x +

µ2x
3 + µ3 sin(x).

Since we are interested in estimating the mean of the process and we

will derive some complex looking formulas we consider a constant mean

function to simplify the notation. Nonetheless, all the computations can

21



Figure 2.1: The outcomes of two Gaussian processes with the same covariance function
and different constant means.

be generalized without much problem to the µTf(x) case. Also the constant

mean has a very definite interpretation that a complex linear combination

might lack.

The covariance function

The covariance function is the most important component of the process. It

has to be a positive definite function, meaning that any covariance matrix

built with it should be positive definite. Sometimes we call this function a

kernel.

When we introduced Gaussian processes we talked about the fact that

any finite subset of indexes should be coherent. A result due to A.Komogorov,

called the Daniell-Kolmogorov extension theorem, says that this condition

is enough for the process to exist. This theorem does not give any idea of

the regularity of realizations of such a process. A second result by Kol-

mogorov, sometimes called the continuity theorem, says that if for any

x, x′

E[|Y (k)
x − Y (k)

x′ |
2] ≤ ‖x− x‖2(α−k)

22



where k is the order of derivation and α a parameter, then the paths of our

Gaussian process are continuous and γ-Holder for any 0 < γ < α−k. Some

covariance structures imply this condition. For example in [53] two popular

choices, the Matern and Exponential, are studied. They are defined by

ΓM.3/2(x, x
′) :=

(
1 +
√

3|x− x′|
)

exp
(
−
√

3|x− x′|
)

and

ΓEXP (x, x′) = exp (−|x− x′|) .

Figure 2.2 shows the difference between the paths of processes with

Matern and Exponential covariances.

Although the regularity of the process is a very interesting subject there

are some other properties that can be encoded in the form of the covariance.

These other properties are defined by using an algebra of kernels. Recall

that the only condition we required for a covariance function was positive

definiteness. Some properties are

• Scaling the outputs the outputs can be scaled by a positive number

σ2. The resulting function, σ2Γ(x, x′), is a kernel. Because V ar(Yx) =

σ2Γ(x, x), we call σ2 the variance parameter.

• Scaling the inputs The inputs can be scaled too. We get the kernel

Γ (φ(x), φ(x′)) for any φ. If φ(x) =
x

θ
we call θ the covariance parame-

ter. Figure 2.2 shows the effect of this number on the paths. A bigger

θ means less variation.

Some nonlinear transformations are used too. For example φ(x) = x2

gives paths that vary first slowly and then faster. If we use φ(x) =

sin(x) we get periodic paths.

• Addition The sum of two kernels Γ1 and Γ2 is a kernel. If the kernel

23



Figure 2.2: Each column represents a covariance: Matern 3/2 on the left and exponential
on the right. The rows represent 3 covariance parameters 0.01, 0.1 and 0.5.

24



is thought as a measure of similarity, the sum kernel Γ1 + Γ2 measures

it by either Γ1 or Γ2.

• Features Γ(x, x′) := φ(x)Tφ(x′) is a kernel for any vector of features

φ(x) := [φ1(x), ..., φl(x)]. For example φ(x) = [1, x, x2]. In fact it

is possible to show that a function is kernel if and only if it can be

expressed as an inner product of features. This features can encode a

global form for the function.

Another kernel we can build using a vector of features is Γ(x, x′) :=

φ(x)TΓ′(x, x′)φ(x′) where Γ′ is a kernel.

These are the properties we are going to use, but there are a lot more. For

example [19] proposes an algorithm that uses this algebra to build covari-

ances from descriptions made in English. For details on other properties

you can consult [26], [47] or the webpage [25].

Our kernels usually have a variance and a covariance parameter. If we

want to highlight this parametric form we use the slightly longer notation

Yx ∼ GP (µ, σ2γ(x, x′; θ)).

Multidimensional inputs

If the process is indexed by vectors in RD we have some options.

The first thing we can do is to build a kernel over the D-dimensional

inputs but using a little more structure can be more easy to interpret and

implement.

We can assume that γ is the product of 1-dimensional symmetric and

positive definite functions

γ(x, x′; θ) =
D∏
d=1

γd(x
d, x′d; θd).

25



Then, the correlation function depends on a vector of unknown parameters

θT := [θ1, ..., θD]T .

This is a very popular choice when the dimension of the inputs is small.

Sometimes these models are said to have an automatic relevance determi-

nation. The size of the covariance parameters determine the relevance of

each dimension. Big θds imply small variations of the process along the

input xd. This concept was introduced by Neil Radford in his PHD thesis

[45].

Another nice property of a GP with this kind of covariance is that if we

use an exponential kernel in each dimension, then the paths are dense in

the space of continuous functions. This is only true for particular choices

of kernels like γEXP , see [39] for details. This does not mean that we can

learn any continuous function efficiently, in fact the learning rate can be

very slow as shown in [53].

Another important drawback of this kind of models is that if D is big

so is the number of covariance parameters.

When the dimension of the inputs is large we can consider an additive

model, like in [17], in which the covariance is

γ(x, x′; θ) =
D∑
d=1

γd(x
d, x′d; θd).

This kind of models are useful mainly because of two reasons: they are

computationally less expensive and they can be used to find functional

relationships between the inputs.

A possible generalization for these additive models is to consider a func-

tional ANOVA kernel

γ(x, x′; θ) =
D∑
d=1

γd(x
d, x′d; θd) +

D∑
i=1

D∑
j=1

γij(x
(i,j), x′(i,j); θ(i,j)) + · · ·

26



where we add higher order interaction kernels.

Which kernel?

Using a Gaussian prior looks like a restrictive hypothesis but we can model

many different types of functions in very interesting ways by building a

kernel. In practice deciding what is the appropriate one is still an open

question. Normally, we choose the kernel in advance, this is we choose a

class of models, that depend on a small number of parameters that we need

to fix.

In particular we focus on kernels with variance and covariance parame-

ters. In the next section we describe three methods to fix µ, σ2 and θ.

2.2 Model fitting via parameter estimation

Pick a kernel γ and consider the family of Gaussian processes

Yx ∼ GP (µ, σ2γ(x, x′; θ))

indexed by µ, σ2 and θ. We observe the process at some input points

(x1, Yx1), ..., (xn, Yxn) and we would like like to estimate a set of parameters

using this data to build the optimal linear predictor of the last section.

Here we are going to describe three ways to do this. the maximum

likelihood principle, that selects the parameters that make the data more

likely; a Bayesian model selection, that assumes a prior distribution on

each of the parameters to get a posterior distribution and a cross-validation

technique, that minimizes the training error over several partitions of the

data set.

As before we note Yn the vector of observed values. Using an analogous

notation to the one in previous sections we note Γ(n; θ) = σ2γ(n; θ) the

27



covariance matrix of the observations and Λ(n; θ) =
1

σ2
λ(n; θ) its inverse.

Sometimes, it is useful to put all the parameters into a single vector

that we note ξ.

We use capital letters to represent random variables and vectors of ran-

dom variables. Because we work with several distributions that we need to

evaluate at different points we write fYx(s; ξ) to say that we evaluate the

probability density function or pdf of the random variable Yx defined by

the parameters ξ at s.

2.2.1 Maximum likelihood estimation

The likelihood function for a given vector of observations Yn = yn is defined

as

LYn(µ,σ2, θ; yn) =
1

|2π(σ2)nγ(n; θ)|1/2
exp

(
− 1

2σ2
(yn − µ1)Tλ(n; θ)(yn − µ1)

)
.

where 1 is a vector of n ones. This equation is a function of the parameters

that depends on the data.

The goal of this method is to use the parameters that maximize the

likelihood of the data as an estimate of the true parameters. Then, the

maximum likelihood estimators are the parameters that make the event

{Yn = yn} more likely.

In our case, we work with the logarithm of the likelihood function. It is

logLYn(ξ; yn) = −n
2

log σ2 − 1

2σ2
(yn − µ1)Tλ(n; θ)(yn − µ1)− 1

2
log |2πγ(n; θ)|.

For a given θ, we define the maximum likelihood estimator for the mean

and variance parameters as the unique values for which their corresponding

28



partial derivatives are zero. The estimators are

µ̂MLE(θ) =
(
1Tλ(n; θ)1

)−1 (
1Tλ(n; θ)yn

)
for the mean and

σ̂2
MLE(θ) =

(yn − µ̂MLE(θ)1)Tλ(n; θ)(yn − µ̂MLE(θ)1)

n

for the variance parameter.

The estimator for the covariance parameter is defined as the value that

maximizes the logarithm of the likelihood after pluggin-in the other two

estimators. The resulting function depends only on θ and it is defined as

logLYn(µ̂MLE(θ), σ̂2
MLE(θ), θ, yn) = −n

2
log σ̂MLE(θ)2 − 1

2
log |γ(n; θ)|.

To compute these estimates we start with the covariance parameter es-

timator θ̂MLE. Then, we use this estimate to compute µ̂MLE(θ̂MLE) and

finally σ̂2
MLE(θ̂MLE).

The plug-in prediction is obtained by computing the optimal linear pre-

diction using the estimates defined above. The prediction at a point x

when {Yn = yn} is

Ŷx = µ̂MLE(θ̂MLE) + γ
(
n, x; θ̂MLE

)T
λ
(
n; θ̂MLE

)
(yn − µ̂MLE(θ̂MLE)1)

with prediction error

E[|Yx − Ŷx|2] = σ̂2
MLE(θ̂MLE)(

1− γ
(
n, x; θ̂MLE

)T
λ
(
n; θ̂MLE

)
γ
(
Yn, Yx; θ̂MLE

))
.

Sometimes in practice an additional term is added to the prediction error.

This term comes from the predictive distribution obtained by setting par-

ticular priors on the parameters. The idea is that this new variance takes

into account a particular form of uncertainty we have on the variance and

mean parameters. We describe this method in the next section.

29



2.2.2 Bayesian model selection

For this kind of model selection or inference, we assume that the parameters

are random variables. We fix a prior distribution that reflect our beliefs

before observing the data. Then, we update this prior using the data.

Computing this posterior distribution is the goal of this method.

We note M , Σ2 and Θ the random variables representing the mean,

variance and the vector of covariance parameters. We assume that these

random variables are continuous. Using Bayes’ rule we have that the pos-

terior distribution is

fM,Σ2,Θ|Yn(µ, σ2, θ|yn) =
fYn|M,Σ2,Θ(yn|µ, σ2, θ)fM,Σ2,Θ(µ, σ2, θ)

fYn(yn)
(2.3)

The distribution on the denominator is the normalizing constant needed

to have a pdf. It is called the marginal likelihood. We can compute it by

solving

fYn(yn) =

∫
fYn|M,Σ2,Θ(yn|µ, σ2, θ)fM,Σ2,Θ(µ, σ2, θ) dµ dσ2 dθ.

So, to deduce the posterior distribution we need to define the distribution

of [Yn|M,Σ2,Θ] and the joint distribution of (M,Σ2,Θ).

We assume that

[Yx|M = µ,Σ2 = σ2,Θ = θ] ∼ GP (µ, σ2γ(x, x′; θ))

so [Yn|M,Σ2,Θ] is a Gaussian vector. For the joint distribution we have

two options. Either we set a full joint prior or we give a marginal and some

conditional distributions - for example fM |Σ2,Θ(µ|σ2, θ)fΣ2|Θ(σ2|θ)fΘ(θ).

If we can compute the posterior distribution we can set the parameters

as the values that maximize this distribution. This is called a maximum a

posteriori or MAP estimation. But instead of using only a point estimate

we can use the distribution to compute an average over the parameters.

30



We define the predictive distribution as

fYx|Yn(yx|yn) =

∫
fYx|Yn,M,Σ2,Θ(yx|yn, µ, σ2, θ)fM,Σ2,Θ(µ, σ2, θ) dµ dσ2 dθ.

This distribution can be used to make a prediction at x and to compute

the variance of this prediction.

In principle we can choose any prior and then compute the marginal

likelihood, the posterior and predictive distributions using several methods

like Expectation Propagation, Markov Chain Monte Carlo sampling, or

variational Bayesian ideas. We do not discuss these here although they are

very prominent techniques in Bayesian inference.

In practice usually the covariance parameter is supposed to be known

or its MLE estimator is used and the inference is done on M only or on

(M,Σ2). In these cases, two types of priors are used, non informative and

conjugate. On appendix A we summarize some popular choices.

The posteriors related to the non informative priors involve the maxi-

mum likelihood estimators, see appendix A. The posterior distributions for

the conjugate priors have the same form as the priors with new parameters

- this is the definition of conjugate prior. They can be found in A along

with their corresponding predictive distributions.

2.2.3 Cross validation

As in the methods above, we are given a vector of observations Yn drawn

from a Gaussian process {Yx : x ∈ X}. Here we assume that the mean

parameter is equal to 0, there is no cross validation estimator for the mean

parameter. Then the process is defined by the usual set of parameters

ξ = [0, σ2, θ1, ..., θD]T .

The idea of cross validation is to use different partitions of the set of

observations. A first approach is to split the observations into two separate

31



sets Y−1 := [Yx1, ..., Yxl]
T and Y1 := [Yxl+1

, ..., Yxn]T , a training set and a

validation set. We use the training set to build the optimal linear predictor

formula of the validation set as a function of the unknown parameters ξ.

We note this formula Ŷ−1. We select the parameters as the argument that

minimizes the prediction error over the validation set E[|Ŷ−1 − Y1|2].

If we use only one partition we risk having an estimate that depends too

much on the form of the partition. Cross validation generalizes the idea

of the validation procedure by considering many 2-way partitions of the

observations and defining the risk of choosing a particular ξ as the average

risk over all the partitions.

The way we formalize this idea is by first dividing the set of observations

into V disjoint parts Y1, ..., YV . Then, for all i between 1 and V , we set

Y−i := (Y1 ∪ ... ∪ YV ) \ Yi as the training set and Yi as the validation set.

The average risk is then written as R(ξ, Yn;V ) := 1
V

∑V
i=1E[|Ŷ−i − Yi|2].

Deciding how many partitions V is sometimes difficult, to avoid this

problem usually V is set to n so that the training set contains all the

observations except for one. This is the method we consider. It is usually

called a leave one out cross-validation.

When the vector of observations is equal to some real values yn :=

[yx1, ..., yxn]T , then E[|Ŷ−i − Yi|2] becomes |ŷ−i − yi|2 and the average risk

does not depend on the variance parameter σ2. Then, our estimates for θ

are defined as

θ̂ := arg max
θ
R(ξ, yn;n) = arg max

θ

1

n

n∑
i=1

|ŷ−i − yi|2.

For the variance parameter we do something a little more complex. Min-

imizing the average risk makes sense if it is a good approximation of the

true risk uniformly in ξ. The way we estimate σ2 is by considering the av-

erage of the ratio between the validation risk and the true risk associated

to each of the partitions. The true risk is approximated by the prediction

32



error at Yi of the optimal linear predictor built using Y−i and θ̂. Then, the

ratio for observation Yi being yi is

|ŷ−i − yi|2

E[|Ŷ−i − Yi|2]
=

|ŷ−i − yi|2

σ2
(

1 + γ(−i, i; θ̂)Tλ(−i; θ̂)γ(−i, i; θ̂)
) .

The argument used in [3] is the following: for the true variance parameter

this ratio should be close to 1. Then, the variance parameter selected is

σ̂2 :=
1

n

n∑
i=1

|ŷ−i − yi|2

1 + γ(−i, i; θ̂)Tλ(−i; θ̂)γ(−i, i; θ̂)
.

At first sight this procedure seems slower than maximizing the likelihood

since for every observation we have to compute the inverse of γ(−i; θ) but

in fact by using a blockwise inversion formula for γ(n; θ) it is possible to

write the inverse of the partial matrices as a function of the complete one.

For more details one can consult the PHD of F. Bachoc [3].

For a clear exposition of cross-validation in general one can consult one

of the many articles by S. Arlot, for example [1].

Now, to make a prediction at an unobserved point x, we plug-in the

estimated parameters in a prediction built using the whole set of observa-

tions Yn. The prediction error is the plug-in prediction error of the optimal

linear predictor built with the whole set of observations.

Which method of estimation?

We presented 3 popular estimation methods. The first method produces

point estimates with explicit formulas without making additional assump-

tion on the model. It only uses the data.

The second method adds a lot of structure but at the end we get a

distribution for the parameters. We can use this distribution to analyze

the data and compute a predictive distribution that is different from that

33



of [Yx|Yn] in the other two cases.

The last method produces point estimates. This time they are based on

minimizing the mean squared error.

A common drawback of any of these three methods is the complexity

of the computations. When we work with Gaussian processes we need to

invert the covariance matrix of the observations and this is done in O(n3)

operations. This means that these models are not very well suited for

high dimensional problems. There are some approximate inference proce-

dures, see [44], that address this problems in which the prior distribution

is modified. Another possibility is to use a variational method.

Also, the properties of the parameter estimators are not fully understood

as is described in [3], [29] and [32]. The main concern is the consistency

of the estimators and the predictive performance. Although most of the

results are asymptotic it is important to remember that finite sample prop-

erties can be very different, see [53] for a study of the learning rate and

[29] for simulations regarding the estimation of the covariance parameter.

2.2.4 Gaussian process models

When we assume a Gaussian process prior we end up with a distribution

that models functions that pass through the observed points. We can use

this distribution to do things that we would do with the unknown function

from which we sampled the data.

For example, we can use this distribution to decide where we should add

new observations by looking at the variance of the posterior distribution.

This idea has been used to device criteria to explore the function to find

a global minimum or to determine for which inputs the observed data can

be higher than a threshold. See for example [49] and their references.

Another possible use for this distribution is to determine the effect that

34



varying an input has on the output. This can be used as a method to

classify and select the variables that influence the model the most to study

them or to reduce the dimension of the inputs, see for example [28].

2.3 Multi-fidelity regression with Gaussian processes

Multi-fidelity is a concept related to applications in which the data we ob-

serve is very hard to produce. This data can be the result of an experiment

or of a computer simulation.

Most of the time in this cases a more simple experiment is available

to, for example, have performance estimates or to check individual parts

of the model. The simplifications can be very different in nature, we can

think of omitted parts/physics; coarser meshes; reduced basis models; or

old versions of the code that has been extensively studied and for which

we dispose of a lot of observations.

At any rate there are two types of models: the complicated one, the one

we want to understand and all the available simplifications. This means

that we dispose of two types of data: high and lower fidelity.

Multi-fidelity is about using data obtained from some of the simplified

models and use it along the data that is hard to produce to enhance the

estimation, inference, or predictions related to high-fidelity model.

2.3.1 Gaussian processes for multi-fidelity

We assume that all the data have the same input space and the same

output or target quantity. With this in mind we use an additional index

to distinguish between each data set and write Yj,nj = {Yj,x : x ∈ Xj} to

denote the observations over the set Xj that contains nj indexes obtained

from the experiment j.

35



Before moving on we need to introduce some notation. All the lower

fidelity data is be modeled by Gaussian processes. For each j we assume

the prior

Yj,x ∼ GP (µj, σ
2
jγj(x, x

′; θj))

with a constant mean parameter and a variance and covariance parameters.

As before, when needed, we group all the parameters into a single vector

ξj.

We use one last bit of notation regarding the vector of observations. We

write Yj(nk) to denote the observations of Yj made over the index set of

Yk,nk
.

Additive models

The first model in the context of Gaussian processes was proposed in [30]

by Marc Kennedy and Tony O’Hagan. Suppose we have N data sets, then

they assumed three things. The first is that the models can be ordered

according to their fidelity, this is we are given an order for the processes.

In this sense we use an ascending order on the indexes so that the biggest

index is for the target process.

The second assumption is that the lowest fidelity process is

Y1,x ∼ GP (µ1, σ1γ1(x, x
′)).

The third assumption, that is in fact N − 1 assumptions, is that there is

another Gaussian process

Yd1,x ∼ GP (µd1, σd1γd1(x, x
′)).

that is independent of Y1 and a function g1(x) such that

Y2,x = g1(x)Y1,x + Yd1,x.

36



Because we are working with Gaussian processes, we have that

Y2,x ∼ GP (g1(x)µ1 + µd1, g1(x)g1(x
′)σ2

1γ1(x, x
′) + σ2

d1
γd1(x, x

′)). (2.4)

Now for Y2,x there is a Gaussian process Yd2,x independent of Y2,x and a

function g2(x) such that

Y3,x = g2(x)Y2,x + Yd2,x.

Like so, we define the next level until we get to the N th and final one which

is a Gaussian process too with the form of equation (2.4).

Properties of the model

First we have that

Cov(Yj+1,x, Yj,x′|Yj,x) = g(x)Cov(Yj,x, Yj,x′|Yj,x) + Cov(Ydj ,x, Yj,x′|Yj,x)

= Cov(Ydj ,x, Yj,x′|Yj,x)

and Cov(Ydj ,x, Yj,x′|Yj,x) = 0 because

fYdj,x,Yj,x′ |Yj,x(u, v|w) =
fYdj,x,Yj,x′ ,Yj,x(u, v, w)

fYj,x(w)

=
fYdj,x(u)fYj,x′ ,Yj,x(v, w)

fYj,x(w)

= fYdj,x(u)fYj,x′ |Yj,x(v|w).

So as long as Ydj ,x is independent of Yj,x′ for any x, x′, which is what we

meant by independent processes before, then we have that

Cov(Yj+1,x, Yj,x′|Yj,x) = 0.

37



The other implication is true for Gaussian processes, namely if the condi-

tional expectation is zero, we can write

Cov(Yj+1,x, Yj,x′|Yj,x) = Cov(Yj+1,x, Yj,x′)

− Cov(Yj+1,x, Yj,x)Cov(Yj,x, Yj,x)
−1Cov(Yj,x, Yj,x′)

= 0

and set

gj(x) := Cov(Yj+1,x, Yj,x)Cov(Yj,x, Yj,x)
−1

Ydj ,x := Yj+1,x − g1(x)Yj,x.

so that Ydj ,x is independent of Yj,x by construction.

Kennedy and O’Hagan interpret the fact that the conditional covariance

is 0 as if Yj,x contains all the information about Yj+1,x we can get from Yj.

If you want this condition to hold for Gaussian processes this is equivalent

to assume the model we described above.

In summary, the model we assume for N data sets is built from the

bottom up and is such that for any j there is a Gaussian process Ydj
independent of Yj and a function gj(x) that verify

Yj+1,x = gj(x)Yj,x + Ydj ,x.

For simplicity from now on we work with N = 2. The next property of

the model will be useful to build the regression function with its prediction

error and to perform model selection both sequentially from the bottom

up.

Proposition 1. If we observe Y1(n2) in Y1,n1 and we note fYn1 ,Yn2(yn1, yn2)

the joint density function of the observations at (yn1, yn2). Then,

fY1,n1 ,Y2,n2(yn1, yn2) = fY1,n1(yn1)fYd1(n2)(yd(n2))

where yd1(n2) := yn2 − g1(n2)y1(n2).

38



Proof. We make the change of variables [Y1,n1, Y2,n2] → [Y1,n1, Yd1(n2)] and

write

fY1,n1 ,Y2,n2(yn1, yn2) = fY1,n1 ,Yd1(n2)(yn1, yd1(n2))

∣∣∣∣∂(yn1, yd1(n2))

∂(yn1, yn2)

∣∣∣∣
= fY1,n1(yn1)fYd1(n2)(yd1(n2)).

because the absolute value of the determinant of the Jacobian of the change

of variables, that we note

∣∣∣∣∂(yn1, yd1(n2))

∂(yn1, yn2)

∣∣∣∣, is 1.

This is a very useful property. The first remark is that the property

does not depend on the fact that we are working with Gaussian processes.

A second remark is that we need to have a nested set of observations for

this property to hold, i.e. X2 ⊂ X1. Otherwise we would have yd1(n2) :=

yn2−g1(n2)y1(n2) defined in terms of the unobserved vector y1(n2) and the

joint distribution would be a convolution which is difficult to work with.

In particular this property implies that the likelihood of an appropriate

data set is decomposed when written in terms of Y1 and Yd1. This means

that if we want to infer the parameters of Y2, we can infer those of Y1 and

Yd1 independently and then put them together according to the formulas in

(2.4). This is coherent with the way the model was built: from the bottom

up.

We can use this proposition to write the mean and variance of Y2,x|Yn1, Yn2
in terms of Y1 and Yd1.

Proposition 2. If we observe Y1(n2) in Y1,n1 and if we note

Y1,x|Y1,n1 ∼ GP
(
Ŷ1,x, Γ̂1(x, x

′)
)

Yd1,x|Yd1(n2) ∼ GP
(
Ŷd1,x, Γ̂d1(x, x

′)
)

39



Then,

Y2,x|Y1,n1, Y2,n2 ∼ GP
(
g1(x)Ŷ1,x + Ŷd,x, g1(x)Γ̂1(x, x

′)g1(x
′) + Γ̂d1(x, x

′)
)
.

Proof. We begin with the conditional expectation and write

E[Y2,x|Y1,n1, Y2,n2] = g1(x)E[Y1,x|Y1,n1, Y2,n2] + E[Yd1,x|Y1,n1, Y2,n2].

We focus on the first term and rewrite it using an integral form

E[Y1,x|Y1,n1, Y2,n2] =

∫
s fY1,x|Y1,n1 ,Y2,n2(s|Y1,n1, Y2,n2) ds

=

∫
s
fY1,x,Y1,n1 ,Y2,n2(s, Y1,n1, Y2,n2)

fY1,n1 ,Y2,n2(Y1,n1, Y2,n2)
ds

=

∫
s
fY1,x,Y1,n1(s, Y1,n1)

fY1,n1(Y1,n1)

fYd1(n2)(Y2,n2 − g1(n2)Y1(n2))

fYd1(n2)(Y2,n2 − g1(n2)Y1(n2))
ds.

Since fYd1(n2)(Y2,n2 − g1(n2)Y1(n2)) 6= 0, we have that

E[Y1,x|Y1,n1, Y2,n2] = E[Y1,x|Y1,n1].

We can do the same for the other part of the sum, E[Yd,x|Y1,n1, Y2,n2], and

write the expectation at the beginning as

E[Y2,x|Y1,n1, Y2,n2] = g1(x)E[Y1,x|Y1,n1] + E[Yd1,x|Yd1(n2)]

= g1(x)Ŷ1,x + Ŷd1,x.

For the covariance we write

Cov(Y2,x, Y2,x′|Y1,n1, Y2,n2) = Cov(g1(x)Y1,x + Yd,x, g1(x
′)Y1,x′ + Yd1,x′|Y1,n1, Y2,n2)

= g1(x)g1(x
′)Cov(Y1,x, Y1,x′|Y1,n1, Y2,n2)

+ Cov(Yd1,x, Yd1,x′|Y1,n1, Y2,n2).

We take a look at the first term g1(x)g1(x
′)Cov(Y1,x, Y1,x′|Y1,n1, Y2,n2). It is

equal to

g1(x)g1(x
′)E[(Y1,x − E[Y1,x|Y1,n1, Y2,n2])(Y1,x′ − E[Y1,x′|Y1,n1, Y2,n2])|Y1,n1, Y2,n2].

40



We can rewrite the conditional expectations on the inside as in the first

part of the proof to get

g1(x)g1(x
′)E[(Y1,x − E[Y1,x|Y1,n1])(Y1,x′ − E[Y1,x′|Y1,n1])|Y1,n1].

Which is equal to g1(x)Γ̂1(x, x
′)g1(x

′). The second part of the covariance

can be analyzed in the same way. Finally

Cov(Y2,x, Y2,x′|Y1,n1, Y2,n2) = g1(x)Γ̂1(x, x
′)g1(x

′) + Γ̂d1(x, x
′).

We showed that to make a prediction on Y2,x using this model, we make

two independent predictions first, one for Y1,x and the second for Yd1,x,

and the proposition above tells us how we should put those together. Also

the prediction error can be built by adding the prediction errors of the

constituent processes.

Finally we can use this proposition to build a model where we observe

N vectors drawn from N Gaussian processes such that

Yj+1,x = gj(x)Yj,x + Ydj ,x.

Where gj is known and for each j in {1, ..., N − 1} and all x, x′, Ydj ,x is

independent of Yj,x′.

In the next corollary, we use [u1, ..., un]
T�[w1, ..., wn]

T := [u1w1, ..., unwn]
T .

Corollary 1. If we observe Yj(nj+1) in Ynj for every j between 1 and N−1

and note ydj(nj+1) := ynj+1
− gj(nj+1)� yj(nj+1). Then,

fYN,nN
,YN−1,nN−1 ,...,Y1,n1

(ynN , ynN−1, ..., yn1) = fYn1(yn1)
N−1∏
j=1

fYdj (nj+1)(ydj(nj+1)).

Also, if we note

Y1,x|Y1,n1 ∼ GP
(
Ŷ1,x, Γ̂1(x, x

′)
)

41



and

Ydj ,x|Ydj(nj+1) ∼ GP
(
Ŷdj ,x, Γ̂dj(x, x

′)
)
.

Then, Yk,x conditionally on [Y1,n1, ..., YN,nN
] is a Gaussian process with

mean

G1(x)Ŷ1,x +
N−1∑
j=1

Gj+1(x)Ŷdj ,x

and covariance

G1(x)Γ̂1(x, x
′)G1(x

′) +
N−1∑
j=1

Gj+1(x)Γ̂dj(x, x
′)Gj+1(x

′).

Where we define Gl(x) as the product
∏N−1

j=l gj(x) and GN(x) = 1 for any

x.

Proof. We can prove the first part by induction. For N = 2 the result is

true. We assume that that for k we have

fYk,nk ,Yk−1,nk−1 ,...,Y1,n1(ynk, ynk−1, ..., yn1) = fY1,n1(yn1)
k−1∏
j=1

fYdj (nj+1)(ydj(nj+1)).

For k + 1 we make the following change of variables

[yn1, yn2, ..., ynk+1
]→ [y1(n1), y1(n2), ..., yd1(nN−1)].

The Jacobian is diagonal with determinant equal to g1(x)k−1/(G2(x) · · ·Gk−1(x)).

Now we separate the part corresponding to Yd1(nk) to have

fY1,n1 ,Y1(n2),...,Y1(nk)(yn1, y1(n2), ..., y1(nk))g1(x)k−2/(G2(x)G3(x) · · ·Gk−2(x))

fYd1(nk+1)(ydk(nk+1))(g1(x)/Gk−1(x)).

We change the variables on the first pdf back to the original ones; we obtain

a determinant that cancels with the one of the first change of variables;

use the recursion hypothesis and we change back the last term to obtain

42



the result.

For the second part notice that E[Yk,x|Y1,n1, ..., YN,nN
] can be written as

G1(x)E[Y1,x|Y1,n1, ..., YN,nN
] +

N−1∑
j=1

Gj+1(x)E[Ydj ,x|Y1,n1, ..., YN,nN
].

We can rewrite each of the terms so that we get rid of some conditional

random vectors to get the formula for the mean. For the covariance we can

do an analogue proof.

The idea behind these properties is to decompose the inference of the

parameters and the computation of E[YN,x|Y1,n1, ..., YN,nN
] into a sequence

of steps. This reduces the number of operations needed to compute the

formulas and gives us a series of intermediate predictions that might be

interesting on themselves.

2.3.2 Building a multi-fidelity model based on G.P.s

The propositions above suggest a sequential strategy to infer the param-

eters of the model and to build the prediction and its error. This was

remarked in [33] by Loic Le Gratiet.

The model we considered for N data sets is

Yj+1,x = gj(x)Yj,x + Ydj ,x

where Y1 is a G.P. and each of the Ydj ,x is a G.P. independent of Yj,x′ for

all x, x′.

In this part we make the assumption that each of the functions gj can

be written as βTj hj(x) where βj is a vector of unknown parameters and

hj(x) is a vector of known functions.

Our objective is to describe a sequential strategy to infer the parameters

43



of Y1 and those of all the difference processes Ydj as well as the scaling

functions gj = βTj hj(x). Once we have selected a model we can compute

the regression function and its prediction error using corollary 1.

If the observed input sets are nested XN ⊂ · · · ⊂ X2 ⊂ X1, the density

function of [Yn1, ..., Ynk]
T at [y1,n1, ..., yN,nN

]T can be written as

fY1,n1(yn1)
N−1∏
j=1

fYdj (nj+1)(ydj(nj+1))

where ydj(j + 1, nj+1) := ynj+1
− gj(nj+1) � yj(nj+1). This functions is a

multivariate Gaussian distribution. Choosing the variance and covariance

parameters is essentially the same as when we were working with a single

data set. The most important difference is on the mean parameters of the

Ydj ’s. To see why we follow the new vector of parameters βj.

The vector βj is only involved in the expression of fYdj (nj+1)(ydj(nj+1)).

It appears on the exponent, specifically in(
ydj(nj+1)− µdj(nj+1)

)
If we note 1(nj+1) the vector of nj+1 ones, we can write the expression

above as ynj+1
−

[
1(nj+1)

T

yj(nj+1)� hj(nj+1)
T

]T [
µdj
βj

] .

Here we use � to mean element wise multiplication so that we have[
1(nj+1)

T

yj(nj+1)� hj(nj+1)
T

]
=

[
1 · · · 1

yj(x1)hj(x1) · · · yj(xnj+1
)hj(xnj+1

)

]

If we want to infer µdj and βj we need to infer the two at the same time.

44



Maximum likelihood estimation

Take the gradient of the likelihood with respect to the vector containing

the parameters in µdj and βj. If we set this gradient to zero we have the

vector of estimators[ 1(nj+1)
T

yj(nj+1)� hj(nj+1)
T

]
Λd(nj+1)

[
1(nj+1)

T

yj(nj+1)� hj(nj+1)
T

]T−1

[
1(nj+1)

T

yj(nj+1)� hj(nj+1)
T

]
Λd(nj+1)ynj+1

.

The variance parameter σ2
dj

can be estimated using the usual formula. The

correlation parameters θdj are the argument that maximizes the likelihood

after we plug-in the estimators for the rest of the parameters.

Bayesian model selection

In appendix A we write the prediction error for the case in which the

mean parameter is unknown. We can derive an analogue formula for the

multi-fidelity model above.

We look at the maximum likelihood estimator of µdj and βj as the

random variable [
Mdj

Bj

]

that is equal to[ 1(nj+1)
T

Yj(nj+1)� hj(nj+1)

]
Λd(nj+1)

[
1(nj+1)

T

Yj(nj+1)� hj(nj+1)

]T−1

[
1(nj+1)

T

Yj(nj+1)� hj(nj+1)

]
Λd(nj+1)Yj+1,nj+1

.

45



This expression depends on two consecutive levels through Yj(nj+1) and

Yj+1,nj+1
. If we want to reproduce what is done for a single data set we can

consider the conditional random variable[
Mdj

Bj

] ∣∣∣∣∣{Yj(nj+1) = yj(nj+1)}

and use the usual priors described on appendix A. For the rest of the priors

and a more in depth discussion the reader can consult [35] section 4.3.

Related literature

The model in which Y2,x = g(x)Y1,x + Yd,x has been studied by several

authors. In [30] they use a constant function g.

Later Peter Quian in [43] developed a model where the scaling function

g(x) is a gaussian processes independent of Y1 and Yd. He uses a sequential

Bayesian formulation where he uses MCMC methods.

Then Loic Le Gratiet in [35] gives a Bayesian formulation for all the pa-

rameters with the formulas for the universal kriging predictive distribution

as well other formulas that reduce the complexity of the model.

The main difference between the models in [43] by P.Quian and [35] by

L.Le Gratiet is that in the second he assumes the parametric form for the

scaling functions gj(x) = βTj hj(x). On the other hand in [43] the scaling

function is estimated using a non-parametric Bayesian approach.

The main improvement in [35] is that we can separate the model into

different parts and this allows faster inference and prediction strategies.

This is true provided that the inputs sets of the data are nested.

So the two drawbacks of this method are the fact that we need to assume

that XN ⊂ · · · ⊂ X2 ⊂ X1 and that the scaling functions must be a linear

combination of known functions. The other option is to use a G.P. as

46



a prior for the scaling function and have slower inference and prediction

procedures.

In the next two sections we propose an Expectation Maximization al-

gorithm to relax the nested design hypothesis and we derive a sequential

strategy for a similar model with a scaling function that is a polynomial.

2.4 EM model selection for the case of disjoint set of

observations

Assume that we sample two random processes, Y1,x and Y2,x, indexed by

the same set X . Let Y1,n1 := {Y1,x : x ∈ X1} and Y2,n2 := {Y2,x : x ∈ X2}
be the sets containing all the observed random variables. We suppose that

X1 and X2 are finite and contain n1 and n2 indexes respectively.

We want to build a predictor using all the observed data Y1,n1 and Y2,n2.

If Y2,x is such that it can be written as g(x)Y1,x +Yd,x where {Yd,x : x ∈ X}
and g is a known function. Then, when X2 is a subset of X1 the optimal

predictor is

g(x)E[Y1,x|Yn1] + E[Yd,x|Yd(n2)].

Because Yd(n2) := Yn2 − g(n2)Y1(n2), the equation above makes sense only

when we observe Y1(n2). In the next paragraphs, we apply an Expectation

Maximization type algorithm to make predictions when X1 and X2 are

disjoint. This algorithm keeps the sequential inference and prediction of

the models discussed before.

An alternative solution was proposed in [35]. They begin by estimating

the parameters of Y1 and maximizing the likelihood of yn2−g(n2)E[Y1(n2)|Yn1 =

yn1]. We compare the two on a numerical example.

47



2.4.1 Expectation maximization

If we consider everything we said above, the setup is the following: we are

given Y1,n1 and Y2,n2 and we want to estimate the parameters that define

the distribution of Y1,x and Yd,x. We do not specify the distributions for

the time being.

We can estimate those of Yn1. On the other hand, we do not know

Yd(n2) so any direct data driven estimation is impossible. What is missing

is Y1(n2).

An Expectation Maximization or E.M. algorithm is an iterative proce-

dure whose goal is to estimate the parameters by maximizing the likelihood

when some data is missing.

To state the algorithm we simplify our usual notation and note Yn12 the

vector containing Y1,n1 and Y2,n2 and ξ the vector of the parameters that

define the distributions of Y1 and Y2. Let q(z) be a pdf. Then,

log fYn12(yn12; ξ) = · · ·

· · · =
∫

log
(
fYn12(yn12; ξ)

)
q(z) dz

=

∫
log

(
fYn12(yn12; ξ)

fY1(n2)|Yn12(z|yn12; ξ)
fY1(n2)|Yn12(z|yn12; ξ)

q(z)

q(z)

)
q(z) dz

=

∫
log
(
fYn12 ,Y1(n2)(z, yn12; ξ)

)
q(z) dz

−
∫

log q(z) q(z) dz +

∫
log

(
q(z)

fY1(n2)|Yn12(z|yn12; ξ)

)
q(z) dz

The third term is the relative entropy between q(z) and fY1(n2)|Yn12(z|yn12; ξ12).

It is sometimes noted D(q(z)||fY1(n2)|Yn12(z|yn12; ξ12)). Because it is always

48



positive, we have that

log fYn12(yn12; ξ) ≥
∫

log
(
fY1(n2),Yn12

(z, yn12; ξ)
)
q(z) dz

−
∫

log q(z) q(z) dz

The E.M. algorithm is based on this inequality. We do not know the true

parameters so we start with an arbitrary guess that we note ξ(0). Then, we

set q(z) as the distribution of the unknown data, given the observations,

but computed with the guessed parameters. This is

q(z) = fY1(n2)|Yn12(z|yn12; ξ
(0)).

The inequality becomes

log fYn12(yn12;ξ) ≥ · · ·

· · · ≥
∫
fY1(n2)|Yn12(z|yn12; ξ

(0)) log
(
fY1(n2),Yn12

(z, yn12; ξ)
)
dz

−
∫
fY1(n2)|Yn12(z|yn12; ξ

(0)) log
(
fY1(n2)|Yn12(z|yn12; ξ

(0))
)
dz

=: Q(ξ, ξ(0)) +G(ξ(0)).

In particular, because D(q(z)||q(z)) = 0, we have that when ξ(0) = ξ, the

first inequality above is an equality so that log fYn12(yn12; ξ) = Q(ξ, ξ) +

G(ξ).

The algorithm computes the expectation, Q(ξ, ξ(0)), on the right and

sets our new guess as a value that maximize it. By running the algorithm,

we obtain a sequence of estimates, ξ(0), ξ(1), ... , such that

log fYn12(yn12; ξ
(0)) ≤ log fYn12(yn12; ξ

(1)) ≤ · · ·

49



This is because

log fYn12(yn12; ξ
(t)) = Q(ξ(t), ξ(t)) +G(ξ(t))

≤ max
ξ

(
Q(ξ, ξ(t))

)
+G(ξ(t))

= Q(ξ(t+1), ξ(t)) +G(ξ(t))

≤ log fYn12(yn12; ξ
(t+1)).

This algorithm is only guaranteed to find a local maximum. To summarize

Algorithm 1 EM. algorithm

1: procedure EM
2: Guess the parameters ξ(0).
3: while fYn12(yn12; ξ

(t−1)) < fYn12(yn12; ξ
(t)) do . Increasing Lik.

4: Compute Q(ξ, ξ(t−1)).
5: Set ξ(t) as a value that maximizes Q(ξ, ξ(t−1)).

E-step

So far we have not used any hypothesis about the relationship between the

two observed processes. Consider the model in which

Y2,x = g(x)Y1,x + Yd,x

where Yd,x′ is independent of Y1,x for any x and x′ and g(x) is a known

function.

We also assume that the processes we were working with are Gaussian

and defined by some parameters as follows:

Y1,x ∼ GP (µ1, σ
2
1γ1(x, x

′; θ1))

Yd,x ∼ GP (µd, σ
2
dγd(x, x

′; θd)).

50



By the relationship, the remaining process is

Y2,x ∼ GP
(
g(x)µ1 + µd, g(x)σ2

1γ1(x, x
′; θ1)g(x′) + σ2

dγd(x, x
′; θd)

)
.

We continue with our usual notation and write Γ(x, x′) := σ2γ(x, x′; θ),

λ(n; θ) := γ(n; θ)−1 and Λ(n) := Γ(n)−1.

Let ξ1 and ξd be the vectors containing all the parameters of Y1 and Yd.

Sometimes instead of writing the two vectors we write ξ1d for short. Then,

the expectation we are interested in is

Q(ξ1d, ξ
(t−1)
1d ) =

∫
log
(
fY1(n2),Yn12

(z, yn12; ξ1d)
)
fY1(n2)|Yn12(z|yn12; ξ

(t−1)
1d )dz

=

∫
log
(
fY1(n2),Y1,n1

(z, yn1; ξ1)
)
fY1(n2)|Yn12(z|yn12; ξ

(t−1)
12 )dz

+

∫
log
(
fYd(n2) (yn2 − g(n2)� z; ξd)

)
fY1(n2)|Yn12(z|yn12; ξ

(t−1)
1d )dz

= EY1(n2)

[
log
(
fY1(n2),Y1,n1

(Y1(n2), Y1,n1; ξ1)
)
|Yn12; ξ

(t−1)
12

]
+ EY1(n2)

[
log
(
fYd(n2)(Y2,n2 − g(n2)� Y1(n2); ξd)

)
|Yn12; ξ

(t−1)
1d

]
=: Q(ξ1, ξ

(t−1)
1d ) +Q(ξd, ξ

(t−1)
1d ).

Before moving onto the E − step computations notice the following. We

could have argued that the missing values were Yd(n2) instead of Y1(n2).

Then, we would have had

Q(ξ1d,ξ
(t−1)
1d ) = · · ·

· · · = EYd(n2)

[
log

(
fY1(n2),Y1,n1

(
1

g(n2)
� (Y2,n2 − Yd(n2)), Y1,n1; ξ1

))
|Yn12; ξ

(t−1)
1d

]
+ EYd(n2)

[
log
(
fYd(n2)(Yd(n2); ξd)

)
|Y2,n2; ξ

(t−1)
1d

]
.

We work with the expectations with respect to Y1(n2). Using the formula

for the expectation of a quadratic form we have that

Q(ξ1,ξ
(t−1)
1d ) = −n12

2
log 2π − 1

2
log |Γ1(n12)| −

1

2
tr
(

Λ1(n2, n2)Γ1|12(n2; ξ
(t−1)
1 )

)
− 1

2

[
Y1,n1 − µ11(n1)

µ1|12(n2; ξ
(t−1)
1d )− µ11(n2)

]T
Λ1(n12)

[
Y1,n1 − µ11(n1)

µ1|12(n2; ξ
(t−1)
1d )− µ11(n2)

]

51



where

Λ1(n2, n2) := (Γ1(n2)− Γ1(n2, n1)Λ1(n1)Γ1(n1, n2))
−1

Γ1|12(n2; ξ
(t−1)
1d ) := Cov(Y1(n2), Y1(n2)|Yn12; ξ

(t−1)
1d )

µ1|12(n2; ξ
(t−1)
1d ) := E[Y1(n2)|Yn12; ξ

(t−1)
1d ]

The second term is

Q(ξd, ξ
(t−1)
1d ) = · · ·

· · · − 1

2
log 2π − 1

2
log |Γd(n2)| −

1

2
tr
(

Λd(n2)
(
g(n2)g(n2)

T � Γ1|12(n2; ξ
(t−1)
1d )

))
− 1

2
(Yn2 − g(n2)� µ1|12(n2; ξ

(t−1)
1d )− µd1(n2))

TΛd(n2) · · ·

· · · (Y2,n2 − g(n2)� µ1|12(n2; ξ
(t−1)
1d )− µd1(n2)).

M-step

Now we maximize Q(ξ1, ξ
(t−1)
1d ) and Q(ξd, ξ

(t−1)
1d ) over ξ1 and ξd.

Since the objective functions look almost the same as the likelihood of

the observed vectors, we do as with the maximum likelihood estimation of

the parameters. The parameter that maximizes the functions are

µ̂1 :=
(
1(n12)

Tλ1(n12; θ1)1(n12)
)−1

(
1(n12)

Tλ1(n12; θ1)

[
Yn1

µ1|12(n2; ξ
(t−1)
1d )

])

and

µ̂d :=
(
1(n2)

Tλd(n2; θd)1(n2)
)−1
(
1(n2)

Tλd(n2; θd)(Yn2 − g(n2)� µ1|12(n2; ξ
(t−1)
1d ))

)
.

The estimators for the variance parameters are

σ̂1
2 :=

1

n12

[
Yn1 − µ̂11(n1)

µ1|12(n2; ξ
(t−1)
1d )− µ̂11(n2)

]T
λ1(n12; θ1)

[
Yn1 − µ̂11(n1)

µ1|12(n2; ξ
(t−1)
1d )− µ̂11(n2)

]
+

1

n12
tr
(
λ1(n2, n2; θ1)Γ1|12(n2; ξ

(t−1)
1 )

)
52



and

σ̂d
2 :=

1

n2
(Yn2 − g(n2)� µ1|12(n2; ξ

(t−1)
1d )− µ̂d(θd)1(n2))

Tλd(n2; θd) · · ·

· · · (Yn2 − g(n2)� µ1|12(n2; ξ
(t−1)
1d )− µ̂d1(n2))

+
1

n2
tr
(
λd(n2; θd)

(
g(n2)g(n2)

T � Γ1|12(n2; ξ
(t−1)
1d )

))
.

We plug all the estimators above in the objective functions to obtain two

expressions that only depend on the θ’s. The estimator for these parame-

ters are defined as solutions to

maximize
θ1

− n12

2
log σ̂1

2(θ1)−
1

2
log |γ1(n12; θ1)|

and

maximize
θd

− n2

2
log σ̂d

2(θd)−
1

2
log |γd(n2; θd)|.

Finally we update our parameters by using the rules below.

θ(t) := θ̂,

µ(t) := µ̂(θ(t)),

σ2(t)
:= σ̂2(θ(t)).

The algorithm above can be extended to the case in which X1∩X2 = X1∩2.

The function Q(ξ1, ξ
(t−1)
1d ) and the estimators for the parameters of Y1 are

the same. The part corresponding to the difference process now has an

extra term.

Q(ξd,ξ
(t−1)
1d ) = −1

2
log 2π − 1

2
log |Γd(n2)|

− 1

2

(
Ŷd(n2)− µd1(n2)

)T
Λ1(n2)

(
Ŷd(n2)− µd1(n2)

)
− 1

2
tr
(
λd(n2\1∩2; θd)

(
g(n2\1∩2)g(n2\1∩2)

T � Γ1|12(n2\1∩2; ξ
(t−1)
1d )

))

53



where

Ŷd(n2) :=

[
Yd(n1∩2)

Y2(n2\1∩2)− g(n2\1∩2)µ1|12(n2\1∩2; ξ
(t−1)
1d )

]
.

For the estimators we replace Yn2 − g(n2)µ1|12(n1∩2; ξ
(t−1)
1d ) with Ŷd(n2) in

the formulas above.

Numerical example

We test the method on a simulated example. For some fixed parameters

we sample

Y1,x ∼ GP (µ1, σ
2
1γ1(x, x

′; θ1))

Yd,x ∼ GP (µd, σ
2
dγd(x, x

′; θd)).

independently over two disjoint input sets X1 and X2, to get yd(n2), y1(n2)

and y1,n1. We fix a constant β and using the formula

Y2,x = βY1,x + Yd,x

we compute the sample y2,n2 := βy1(n2) + yd(n2). We do the same to build

a test set y2,ntest.

The objective is to predict Y2 at the test set and to recover the param-

eters of Y1 and Yd along β, by using the simulated data, or training sets,

(X1, y1,n1) and (X2, y2,n2).

The inputs x are in [0, 4] and the two correlation functions are Matern

3/2. The true parameters are fixed to

µ1 = 0.0 σ1 = 0.01 θ1 = 1 µd = 0.0 σd =0.04 θd = 0.8 β =2

Table 2.1: True parameters.

The paths of Y1 do not vary as much as those of Yd. Most of the variation

54



of Y2 is due to the difference process as shown on the plot 2.3.

Figure 2.3: Three simulated paths using the parameters on table 2.1.

We use a decreasing size training sets and test sets, see 2.4. For each

size we simulate 100 different training sets and for each training set we

compute the RMSE of the prediction at the test set.

Figure 2.4: Each row represents the combination of input set used in the example. For the
bottom row we have (n1, n2, ntest) = (11, 10, 19). The middle and top rows have (9, 8, 15)
and (7, 6, 11).

We compare the EM algorithm to a procedure we note K. For K

we learn the parameters of Y1 and Y2 using their corresponding training

sets. Then, we predict y1(n2) with ŷ1(n2) := E[Y1(n2)|Yn1 = yn1] and use

yd(n2) := yn2 − βtrue ŷ1(n2) to estimate the parameters of the difference

process.

The predicted values for K we consider are ŷ1(ntest) for the first process

55



Y1; ŷd(ntest) := E[Yd(ntest)|Yd(n2) = yd(n2)] for the difference process. For

the target process we use ŷ2(ntest) := E[Y2(ntest)|Y2,n2 = y2,n2].

In the boxplots below show the results of the simulations. In each

column the boxplot of the RMSE over 100 simulations is shown. They

are ordered from left to right for decreasing number of training points.

The predictions for y1(ntest) in 2.5a are equivalent although the param-

eters are estimated using different formulas. This is despite the fact that

in EM we estimates the scaling parameter β too, whereas for K it is fixed

to the true value.

The estimation is visibly better when it comes to the predictions of the

difference process Yd as shown in 2.5b. This means that we expect to be

able to use the observations of Y1 to help us in the prediction of the target

process. Figure 2.5c confirms this: the error is significantly smaller than

the one we obtain by using (X2, y2,n2) only.

So although the difference between the processes is big, we can incor-

porate the data of Y1 to decrease the prediction error.

The results concerning the predicted parameters are shown on figure

2.6. The mean and variance parameters are accurately estimated by both

methods.

Because the predictions of the first process are accurate, the data yd(n2) :=

yn2 − βtrue ŷ1(n2) used to train the difference process is close to the true

too and so the estimation of the covariance parameter of the Yd for K is

better than for EM .

The predicted scaling parameter β has a very big variance as shown

in figure 2.6. It seems that the EM estimation attributes the variability

of the data to the scaling parameter instead of the variance or covariance

parameters.

56



(a) RMSE of the predictor for y1(ntest). The two models have equivalent results. Both give
very good results.

(b) EM predicts yd(ntest) more accurately.

(c) RMSE of the predictor for y2(ntest).

Figure 2.5: Boxplots of the RMSE of prediction. Decreasing number of training points
from left to right as shown in figure 2.4.

57



Figure 2.6: Boxplots of estimated parameters for decreasing number of training points as
in 2.4.

2.5 Multi-fidelity regression with polynomial relation-

ships

Here we extend the sequential multi-fidelity model of the previous sec-

tions to the case in which the scaling function is a polynomial P (y) =∑N
j=1 y

jaj(x). The way we showed how to decompose the predictive mean

and variance as well as the likelihood of the data is going to be useful here.

For simplicity we consider only two data sets (X1, Y1,n1) and (X2, Y2,n2)

drawn from two random processes {Y1,x : x ∈ X} and {Y2,x : x ∈ X}.

We assume that there is a third process {Yd,x : x ∈ X} independent of

Y1 such that we can write

Y2,x = P (Y1,x) + Yd,x.

Where P (y) =
∑N

j=1 ajy
j is a polynomial with real fixed coefficients. For

the time being we do not assume any particular distribution for the pro-

cesses involved.

58



Proposition 3. If we observe Y1(n2) in Y1,n1, then the distribution of the

observations at yn1, yn2 is

fY1,n1 ,Y2,n2(yn1, yn2) = fY1,n1(yn1)fYd(n2)(yd(n2))

where yd(n2) := yn2 − P (y1(n2)). Also, the optimal predictor Ŷ2,x at an

observed index x for Y2,x given the observations is

E[Y2,x|Y1,n1, Y2,n2] = E[P (Y1,x)|Y1,n1] + E[Yd,x|Yd(n2)].

with prediction error

E[(Y2,x − Ŷ2,x)
2|Y1,n1, Y2,n2] = V ar(P (Y1,x)|Y1,n1) + V ar(Yd,x|Yd(n2)).

Proof. We can get the decomposition of the density by making the change

of variables

fY1,n1 ,Y2,n2(yn1, yn2) = fY1,n1 ,Yd(n2)(yn1, yd(n2))

∣∣∣∣∂(yn1, yd(n2))

∂(yn1, yn2)

∣∣∣∣ .
Where the absolute value of the determinant of the Jacobian is 1. Then,

we use the independence between Y1 and Yd.

For the conditional expectation we first write

E[Y2,x|Yn1, Yn2] = E[P (Y1,x)|Yn1, Yn2] + E[Yd,x|Yn1, Yn2].

The second term is already familiar to us and it is equal to E[Yd,x|Yd(n2)].

For the first term we use the Law of the Unconscious Statistician or LOTUS

and write

E[P (Y1,x)|Y1,n1, Y2,n2] =

∫
P (s)fY1,x|Y1,n1 ,Y2,n2(s|yn1, yn2)ds

=

∫
P (s)fY1,x|Y1,n1(s|yn1)ds

= E[P (Y1,x)|Y1,n1].

For the prediction error, we can expand E[(Y2,x − Ŷ2,x)
2|Y1,n1, Y2,n2] to get

59



the sum of three terms

E[(P (Y1,x)− P̂ (Y1,x))
2|Y1,n1, Y2,n2] + E[(Yd,x − Ŷd,x)2|Y1,n1, Y2,n2]

+ 2E[(P (Y1,x)− P̂ (Y1,x))(Yd,x − Ŷd,x)|Y1,n1, Y2,n2].

Where E[P (Y1,x)|Y1,n1] and E[Yd,x|Yd(n2)] are noted as P̂ (Y1,x) and Ŷd,x.

Then, P̂ (Y1,x) is a function of Y1,n1 and Ŷd,x is a function of Yd(n2).

Take a look at the first expectation. Given Y1,n1, (P (Y1,x)− P̂ (Y1,x))
2 is

a function of Y1,x. Then,

E[(P (Y1,x)− P̂ (Y1,x))
2|Y1,n1, Y2,n2] = E[(P (Y1,x)− P̂ (Y1,x))

2|Y1,n1]

= V ar(P (Y1,x)|Yn1).

Using a similar argument, we have that the second expectation is the con-

ditional variance V ar(Yd,x|Yd(n2)).

The crossed term is the conditional covariance so it is equal to

E[P (Y1,x)Yd,x|Y1,n1, Y2,n2]− P̂ (Y1,x)Ŷd,x.

Using LOTUS on the first term we get

E[P (Y1,x)Yd,x|Y1,n1, Y2,n2] =

∫ ∫
P (s)tfY1,x,Yd,x|Y1,n1 ,Y2,n2(s, t|yn1, yn2)dsdt

=

(∫
P (s)fY1,x|Y1,n1(s|yn1)ds

)
(∫

tfYd,x|Yd(n2)(t|yd(n2))dt

)
= P̂ (Y1,x)Ŷd,x.

It turns out that the two processes at x, conditionally on the observations,

are uncorrelated too. The prediction error is

V ar(P (Y1,x)|Y1,n1) + V ar(Yd,x|Yd(n2)).

60



In the proposition above we considered a polynomial with constant co-

efficients but we can replace any coefficient by a function of the input x. In

this sense, this model is a generalization of the additive model we described

above.

Gaussian processes case

Because P is a polynomial, the prediction and prediction error depend on

the moments of Y1,x|Y1,n1 and Yd,x|Yd(n2). If we assume that

Y1,x ∼ GP (µ1,Γ1(x, x
′))

Yd,x ∼ GP (µd,Γd(x, x
′))

then, we know the conditional distributions and also all of its moments.

Proposition 3 also shows how the density function of the observations

factors. We can learn the parameters of Y1 and Yd independently by using

the maximum likelihood estimators.

As before, we can estimate the parameters that define P . If we note

P (y) =
∑N

j=1 y
jaj as p(y)Ta, the maximum likelihood estimation for the

vector containing µd and a, given the observations, is[ 1(n2)
T

p(y1(n2))
T

]
Γ(Yd(n2))

−1

[
1(n2)

T

p(y1(n2))
T

]T−1 [
1(n2)

T

p(y1(n2))
T

]
Λd(n2)yn2.

where p(y1(n2)) is the vector with entries p(y1,xj) for all the indexes xj of

Y1(n2).

For the Bayesian inference we can use the same priors as with the linear

model. This is we assume a prior distribution on µd and a, given p(y1(n2)).

Inference regarding the parameters of Y1 is exactly the same as for the

linear model. For the details on the a priori distributions see [35].

This opens the door door to more complex parametric models.

61



2.6 Conclusion

Gaussian processes regression. In this chapter, we described a way to

use Gaussian processes to model unknown functions. We made an a priori

assumption that involves a parametric form for the mean and covariance

of the process. We inferred these parameters and built a predictive distri-

bution.

Multi-fidelity with Gaussian processes. This method can be ex-

tended to the case in which we dispose of several data sets that are related

to the target unknown function. We suppose we are given an order of fi-

delity for these data sets and in this case, the key idea is to assume that

for each data set there is a difference processes that is independent of the

observed process. By using this independence structure we can make a

sequential prediction in which we learn the parameters of all the observed

and difference processes except for those of the target process.

Disjoint input sets. This procedure depends on the fact that the

observations are made over nested input sets. We proposed an EM type

algorithm to estimate the parameters and compute the prediction function

for the case of disjoint sets.

Polynomial relationship between successive fidelity levels. We

showed that the independence structure of the linear multi-fidelity model

can be extended to almost any parametric relationship. In particular we

wrote the formulas for a polynomial relationship and argued that in the

case of Gaussian processes these formulas can be computed analytically.

The inference in these models is analogous to the linear case but more

complex.

We end the chapter with a very flexible model that is also very complex

as an a priori assumption. In the next chapter we infer the relationship

between the processes using a nonparametric technique.

62



Chapter 3

Nonparametric Model

In the previous chapter we described the problem of multi-fidelity regres-

sion. We want to model data that is difficult to observe. This data can be

the result of an experiment or a computer simulation.

In multi-fidelity we assume that we dispose of simplified experiments or

simulations for which we can obtain data more easily and the goal is to use

this simplified data, along the one that is hard to obtain to enhance our

understanding of the complex experiment.

We model this setup by assuming that we have N data sets, that we

note (X1, y1,n1), ..., (XN , yN,nN
), generated from N different random pro-

cesses Y1, ..., YN .

Following the articles [30, 43, 35], we assume that we are given an order

of fidelity. More precisely, we have that for each process Yj there is an

independent difference process Ydj and a function gj such that

Yj+1,x = gj(x)Yj,x + Ydj ,x. (3.1)

This equation models the relationship between the data sets. We extended

this model to one in which the independence structure is identical, but the

63



relationship between two successive levels is

Yj+1,x = P (Yj,x) + Ydj ,x (3.2)

where P (y) :=
∑K

j=1 aj(x)yj. Because of the independence structure we

showed that it is possible to make inference and predictions sequentially

as done in [35].

But we never really questioned the form in which the processes are

related. Although the models built using equations (3.1) and (3.2) can be

very flexible it is not clear why should we assume any particular parametric

form for the relationship.

In this chapter we will explore the effect that assuming a particular

relationship has on prediction and propose a model in which we estimate

this relationship nonparametrically.

We start with some examples for which the relationship between the

data is nonlinear. Then, we introduce a multi-fidelity model based on

Gaussian processes where the relationship is unknown. We propose a pre-

dictor with its predictor error and we return to the study of two numerical

examples.

3.1 Unknown relationship

In this section we present a multi-fidelity model based on Gaussian pro-

cesses. As before we assume that we know the order in which the processes

are related but instead of assuming a parametric form for the relationship

we will consider that

Yj+1,x = ϕ(Yj,x) + Ydj ,x

where ϕ is an unknown function. Before describing the model in detail we

introduce an example that motivates this type of model.

64



A numerical example

Lets consider the following example taken from page 240 of the book by

Selvadurai [48]. We solve

a2∇2p(x, t) =
∂p

∂t
(x, t) (3.3)

in a rectangular domain Ω. We will extract the fluid through the top of

the domain at a constant rate and consider that the walls and floor are

impermeable.

This is a diffusion type partial differential equation that describes the

variation of pressure of a liquid in a porous fabric. It takes into account

the compressibility of the fluid and the fabric through the expression of a2

given by

a2 :=
K

γ (n∗Cf + Cs)
.

We will solve for the pressure p and consider (K,n∗), two of the parameters

that define a2, as our inputs. The first parameter, K, is the hydraulic con-

ductivity and n∗ is the porosity of the porous fabric. The other parameters

are: γ, the unit weight of the fluid; and Cs and Cf the compressibility of

the fabric and the fluid.

For a fixed (K,n∗) and a given mesh size N , we solve for p numerically

over all of the domain using freefem++ [36]. We will consider the maximum

pressure of the numerical solution after a fixed time on the domain as the

output. We note it p(K,n∗;N).

We assume that the inputs vary in closed intervals continuously. The

limits were taken from an online database [20]. The other parameters are

65



fixed as shown on the list below.

K ∈ [1e− 12, 1], n∗ ∈ [0.10, 0.85],

γ = 6.67, Cf = 1.06, Cs = 2e− 10.

Figure 3.1: Plots of pairs of the form (p(K,n∗;N), p(K,n∗, 80)). The solid line is the
identity function y = x. Each color represents a class of pairs (K,n∗).

The fidelity of the outputs will be indexed by N : a bigger N defines a

more complex numerical model and a more precise response.

66



Figure 3.1 shows the relationship between p(K,n∗;N) and p(K,n∗; 80)

for different values ofN . In the last panel we plotted the output forN = 40.

We see that the numerical model converged. We will assume that N = 40

is the highest fidelity level.

The other panels show relationships that are very hard to describe using

a parametric form. In the next section we address the problem of estimat-

ing a relationship like the one on the first column of figure 3.1 by using

locally linear polynomials.

3.1.1 Nonparametric estimation

In this section, for ease of notation, we study the case of two data sets,

(X1, y1,n1) and (X2, y2,n2), generated by two processes Y1 and Y2. We assume

that X2 ⊂ X1 and that there is function ϕ and a difference process Yd such

that

Y2,x = ϕ(Y1,x) + Yd,x.

Our first objective is to estimate ϕ, the relationship between Y1 and Y2, by

using the training set (y1(n2), y2,n2) where y1(n2) are the observations of Y1

on X2.

Then, we discuss the problem of building a predictor with its prediction

error for Y2,x at an unobserved input x by using the estimated relationship

ϕ̂.

By using this model, we do not make any additional assumptions about

ϕ and we avoid adding any new parameters. This is specially convenient

for inputs whose dimension D is bigger than 1. The usual alternative - see

[30, 43, 35] - is to set ϕ(y) = (β0 + βT1 x)y which means D + 1 parameters

when x ∈ RD. Estimating the relationship will be a 1 dimensional problem

independently of x. We do not need additional data to estimate β0 and β1

as D grows.

67



We will be able to describe relationships similar to the ones in the first

column of figure 3.1.

Locally linear polynomials

We are given data in the form of pairs (y1(n2), y2,n2) and we want to predict

Y2,x at Y1,x where

Y2,x = ϕ(Y1,x) + Yd,x.

As before, we will assume that Yd,x is independent of Y1,x. We will also

assume that E[Yd,x] = 0.

The idea of locally linear polynomial regression is to approximate E[Y2,x|Y1,x =

y] = ϕ(y) with a linear function by using weighted data in which we give

more importance to the observations made near y.

Since Y1,x and Yd,x are independent, conditioning by Y1,x does not change

the distribution of Yd,x. We might as well consider that the Y1,x are fixed

to simplify the notation. Instead of conditioning we will estimate E[Y2,x] =

ϕ(y1,x). In the next section we will deal with the fact that Y1,x is unknown.

We measure the importance of a data point by determining how close

to y1,x it was observed. This distance will be defined by a kernel K that

has some particular properties that may change depending on what type

of behavior we are looking for. Two popular choices for K are

KGaussian(y) :=
1√
2π
e−y

2/2

KEpanechnikov(y) := 0.75(1− y2)1{−1≤y≤1}(y).

This distance between where we want to predict y1,x and where we observed

a data point y1,x′ will be measured by

Kh(y1,x′ − y1,x) :=
1

h
K

(
y1,x′ − y1,x

h

)
.

68



We choose a Kh that attains its maximum at 0 and then decays, sym-

metrically, giving higher weight to data that is observed near the point of

prediction y1,x.

With all of this in mind, for a given h, we solve

minimize
a0,a1

∑
xi∈X2

(a0 + a1 (y1,xi − y1,x)− y2,xi)
2Kh (y1,xi − y1,x) (3.4)

and estimate ϕ(y1,x) by comparing terms of the linear function on the

objective above with the terms of the first order approximation of ϕ(y1,x)

around y1,x. This is, the estimates for a0 and a1 are our approximations of

ϕ(y1,x) and ϕ′(y1,x).

Problem (3.4) has an explicit solution that in matrix form can be written

as [
â0

â1

]
:=

([
1(n2) y1(n2 − x)

]T
Kh(n2;x)

[
1(n2) y1(n2 − x)

])−1

[
1(n2) y1(n2 − x)

]T
Kh(n2;x)y2,n2. (3.5)

In the expression above, Kh(n2;x) is the diagonal matrix with entries

Kh (y1,xi − y1,x) for xi ∈ X2. The vector y1(n2− x) contains all the (y1,xi −
y1,x) differences. With this notation the locally linear estimate for ϕ(y1,x)

is

ϕ̂(y1,x) := â0.

The estimate depends on y1,x. If we want to compute ϕ̂ at a different y1,x′

we will have to compute a new â0. This might seem costly but the matrix

we have to invert each time we need to make new predictions is always

2× 2.

This is how we are going to estimate the relationship between 2 succes-

sive fidelity levels.

69



Multi-fidelity regression with an estimated relationship

Now we go back to our prediction problem. This is, given an input x, we

want to predict Y2,x using (X1, y1,n1) and (X2, y2,n2).

The model we use for the data is an extension of the multi-fidelity

regression model based on Gaussian processes. We assumed that

Y2,x = ϕ(Y1,x) + Yd,x

where ϕ is unknown function. Now we will assume that

Y1,x ∼ GP (µ1, σ
2
1γ1(x, x

′; θ1))

Yd,x ∼ GP (0, σ2
dγd(x, x

′; θd))

are independent Gaussian processes.

We still have the same independence structure as in the last chapter.

So, like before, we can write

fY1,n1 ,Yn2(y1,n1, yn2) = fYn1(yn1)fYd(n2)(yd(n2))

where yd(n2) := y2,n2 − ϕ(y1(n2)). Using this result we can derive the

conditional mean

E[Y2,x|Yn1, Yn2] = E[ϕ(Y1,x)|Y1,n1, Y2,n2] + E[Yd,x|Yd(n2)]. (3.6)

We are going to estimate ϕ(Y1,x) and ϕ(y2,n2) to compute these formulas.

In the last section we built an estimator for ϕ(y) = E[Y2,x|Y1,x = y] by

solving a weighted least squares problem, (3.4). The solution, written in

equation (3.5), is a function of Y1(n2) and Y2,n2. We will estimate ϕ(Y1,x)

with ϕ̂(ŷ1,x) where

ŷ1,x = E[Y1,x|Y1,n1]

ϕ̂(y) = â0.

70



We use an approximation for Y1,x that we plug in our approximation for

E[Y2,x|Y1,x = y]. The first term of equation (3.6) is approximated by

E[ϕ̂(ŷ1,x)|Y1,n1, Y2,n2] = ϕ̂(ŷ1,x).

For the second term, we evaluate the conditional expectation at ỹd(n2) :=

y2,n2 − ϕ̂(y1(n2)). Our prediction for Y2,x given the data is

ϕ̂(ŷ1,x) + E[Yd,x0|Yd(n2) = ỹd,x]. (3.7)

If we replace all these estimations on the conditional mean we have

ỹ2,x := ϕ̂(ŷ1,x) + ỹd,x.

To summarize, in order to make a prediction at an input x, we use the

following algorithm:

Algorithm 2 Multi-fidelity regression with estimated relationship.

1: procedure npCK

2: Compute ŷ1,x := E[Y1,x|Y1,n1 = y1,n1].
3: Compute ϕ̂(ŷ1,x) and ỹd(n2) := y2,n2 − ϕ̂(y1(n2)).
4: Predict y2,x with ϕ̂(ŷ1,x) + E[Yd,x|Yd(n2) = ỹd(n2)].

The prediction of this algorithm is a mixture of Gaussian process linear

regression and nonparametric estimation.

A first remark is that the prediction mean interpolates the data regard-

less of the estimated relationship. This is because if we take xj ∈ X2,

then

ϕ̂(ŷ1,xj) + E[Yd,xj |Yd(n2) = ỹd,x] = ϕ̂(y1,xj) + y2,xj − ϕ̂(y1,xj)

= y2,xj .

A second remark is that we use (X1, y1,n1) to estimate the parameters of Y1

and (X2, ỹd(n2)) to estimate those of Yd.

Finally, this is not the usual model used in the theory of locally linear

71



polynomials. There are two main differences: the inputs and the measure-

ment errors, modeled by Y1,x and Yd,x, are correlated random variables.

There is some research for the case of correlated errors but the correla-

tion structure we consider is different. For example in [40] by Jean Opsomer

and in the PHD thesis of Xiao-Hu Liu [37] they assume that the correlation

of the errors depends on Y1. In our configuration their hypothesis would

be written

Cov(Yd,x, Yd,x′|Y1,x, Y1,x′) = ρ(Y1,x − Y1,x′).

Instead we have that

Cov(Yd,x, Yd,x′|Y1,x, Y1,x′) = Cov(Yd,x, Yd,x′)

= σ2
dγd(x, x

′; θd).

This is an original nonparametric regression problem motivated by its ap-

plication to multi-fidelity regression.

3.1.2 Estimating the bandwidth parameter h

The bandwidth, h, is a tuning parameter that controls the bias and the

variance of the estimator.

A very big h produces an estimate that takes into account all the data

points. This estimate is equivalent to the best linear fit over the whole

domain. So a big h, makes predictions with low variance that are probably

far from the true. The estimate for a very small h will change a lot from

one point to the next.

The bandwidth parameter is unknown and we have to fix it. To estimate

it we minimize an approximation of the test error. There are two popular

possibilities, using a penalty on the training error or cross validation.

For the penalty approach we approximate the test error on a set observed

72



on the same inputs as the training set. This is, the test set is (y1(n2), Y
′

2,n2
)

where Y2,n2 and Y ′2,n2 are i.i.d. For ease of notation we assume that the

inputs are fixed, otherwise we would write everything conditionally on

Y1(n2). The error on the test set is

1

n2
E‖Y ′2,n2−ϕ̂(y1(n2))‖2

2 = · · ·

· · · = 1

n2
E‖Y ′2,n2 − ϕ(y1(n2))‖2

2 +
1

n2
E‖ϕ(y1(n2))− ϕ̂(y1(n2))‖2

2

+
2

n2
E(Y ′2,n2 − ϕ(y1(n2)))

T (ϕ(y1(n2))− ϕ̂(y1(n2)))

The first term is σ2
d and the cross term is zero: the test and training samples

are independent. We have that

1

n2
E‖Y ′2,n2−ϕ̂(y1(n2))‖2

2 = · · ·

· · · = σ2
d +

1

n2
E‖ϕ(y1(n2))− Y2,n2‖2

2 +
1

n2
E‖Y2,n2 − ϕ̂(y1(n2))‖2

2

+
2

n2
E(ϕ(y1(n2))− Y2,n2)

T (Y2,n2 − ϕ̂(y1(n2)))

= 2σ2
d +

1

n2
E‖Y2,n2 − ϕ̂(y1(n2))‖2

2

+
2

n2
E(ϕ(y1(n2))− Y2,n2)

T (Y2,n2 − ϕ̂(y1(n2))).

We expand the cross term by distributing the right parenthesis to get

two terms. Since E(ϕ(y1(n2)) − Y2,n2) = EYd(n2) = 0 we can add some

additional constants to each one of the terms to have

2

n2
E(ϕ(y1(n2))− Y2,n2)

T (Eϕ̂(y1(n2))− ϕ̂(y1(n2))) =
2

n2
tr (Cov(Y2,n2, ϕ̂(y1(n2))) ,

2

n2
E(ϕ(y1(n2))− Y2,n2)

T (Y2,n2 − ϕ(y1(n2))) = −2σ2
d.

Finally, we have that the error on the test set can be written in function

of the training error as

1

n2
E‖Y ′2,n2−ϕ̂(y1(n2))‖2

2 =
1

n2
E‖Y2,n2 − ϕ̂(y1(n2))‖2

2 +
2

n2
tr (Cov(Y2,n2, ϕ̂(y1(n2))) .

73



We can write ϕ̂(y1(n2)) = S(h)Y2,n2, where S(h) is a matrix that depends

on h and y1(n2). Then, Cov(Y2,n2, ϕ̂(y1(n2))) = S(h)Γ2(n2). We select h

by solving

minimize
h

1

n2
‖Y2,n2 − ϕ̂(y1(n2);h)‖2

2 +
2

n2
tr (S(h)Γ2(n2)) . (3.8)

The objective in (3.8) is an unbiased estimator of the expected test error.

The second method is cross validation. As before we separate the data

into V disjoint sets with indexes F1∪· · ·∪FV = X2. We note ϕ̂(−j)(y1,xj ;h)

the local linear estimator built using the data indexed by X2 \ Fj and

compute its test error on Fj

CVj(h) :=
1

|Fj|
∑
k∈Fj

(
Y2,xk − ϕ̂(−j)(y1,xj ;h)

)2

.

The cross validation error is the average of the test errors

CV (h) :=
1

V

V∑
j=1

CVj(h).

Because ϕ̂(y1(n2)) = S(h)Y2,n2, we are working with a linear smoother and

there is a convenient formula for the case V = n2 for which we do not need

to compute ϕ̂(−j)(y1,xj ;h):

CVn2(h) :=
1

n2

n2∑
k=1

(
Y2,xk − ϕ̂(y1,xk;h)

1− S(h)(k,k)

)2

.

All of these approximations make sense if we work with independent data.

In [37] Liu proposes the corrected formula

CV c
n2

(h) :=
1

n2

n2∑
k=1

(
Y2,xk − ϕ̂(y1,xk;h)

1− (S(h)Γ2(n2))(k,k)

)2

in which we take into account the correlation of the data. A second option

74



is to select h by solving (3.9) below.

minimize
h

CV c
n2

(h). (3.9)

In practice we are going to look for the optimal h on a grid [1/n2, C] where

C is proportional to the range of the data.

3.1.3 Prediction error

To build our prediction at a new input x we began by showing that the

likelihood of the data can be decomposed. Using this fact we concluded

that

E[Y2,x|Y1,n1, Y2,n2] = E[ϕ(Y1,x)|Y1,n1, Y2,n2] + E[Yd,x|Yd(n2)]

and in Algorithm 2 we estimated the different parts of this conditional

expectation. The final prediction was

ϕ̂(ŷ1,x) + E[Yd,x0|Yd(n2) = ỹd,x].

For the conditional variance we have a similar formula

V ar(Y2,x|Y1,n1, Y2,n2) = V ar(ϕ(Y1,x)|Y1,n1) + V ar(Yd,x|Yd(n2)).

From this equation we can get the difference process prediction error by

using the fact that it is Gaussian. The first term is more complicated

because we do not know the distribution of ϕ(Y1,x).

For the first term we use the Taylor approximation of ϕ(Y1,x) around

the conditional mean ŷ1,x and we take the variance, conditionally on Y1,n1,

to get

V ar(ϕ(Y1,x)|Y1,n1) ≈ (ϕ′(ŷ1,x))
2
V ar(Y1,x|Y1,n1)

We have two terms: the first depends on an unknown derivative and for the

75



second we have an analytic expression. Fortunately, we have an estimate

for this derivative, it is â1 given by equation (3.5). Our prediction error

will be

(â1)
2 V ar(Y1,x|Y1,n1) + V ar(Yd,x|Yd(n2)). (3.10)

This prediction error is 0 at the inputs of the data.

3.2 Illustrative examples

Simulated data

The first test consist in simulating data from two independent Gaussian

processes with Matern 5/2 correlation functions

Y1,x ∼ GP (0, σ2
1γ1(x, x

′; θ1))

Yd,x ∼ GP (0, σ2
dγd(x, x

′; θd))

and building the objective function by using three different relationships

Lin(y) := 2.5y

Sig(y) := 3/2(1 + e25y−2)− 3/4

Sin(y) := sin(6y).

shown in the plots in figure (3.3). The relationships are increasingly non-

linear.

We compare our method that we note npCK with three alternatives: a

1 data set model K and two multi-fidelity Gaussian process models CK

and CK(x). They are implemented in the R packages DiceKriging and

MuFiCokriging.

The main difference between all these models is the form of the rela-

76



Figure 3.2: Simulated paths of the Gaussian processes Y1,x ∼ GP (0, 0.42γ1(x, x
′; 0.5))

and Yd ∼ GP (0, 0.22γ1(x, x
′; 0.8)). The target process Y2,x is built using one of the three

relationships in each panel.

tionship assumed. The models for the target process Y2 are

(K) : Y2,x,

(CK) : Y2,x = βY1,x + Yd,x,

(CK(x)) : Y2,x = (β0 + β1x)Y1,x + Yd,x,

(npCK) : Y2,x = ϕ(Y1,x) + Yd,x

We simulate 100 paths and we sample them to get two training sets with

n1 = 8 and n2 = 16 points and a test set with ntest = 36 points sampled

on a regular grid. Some sample paths are shown in figure 3.2.

The boxplots of the RMSE over the test set are shown on figure 3.4. For

77



all the relationships the RMSE for npCK is considerably smaller although

we are in a difficult configuration for multi-fidelity: the test error for CK

and CK(x) are bigger than that for K.

By estimating the relationship between two successive levels we can

adapt to a wide range of data sets without making a lot of additional

assumptions on the model.

Figure 3.3: Relationship between the simulated data y1(n2) and y2,n2 sampled from the
paths on figure 3.2. The pink points represent the training data over X2 and the blue
lines are the real relationship. From the top left they are Lin(y) := 2.5y, Sig(y) :=
3/2(1 + e25y−2)− 3/4 and Sin(y) := sin(6y).

78



Figure 3.4: RMSE on xtest for the models studied. Each panel represents one of the three
relationships used to build Y2.

Numerical solution of the Darcy equation

We go back to the example at the beginning of the chapter. For a given

mesh size N and a given combination of parameters (K,n∗), we solve the

differential equation (3.3) numerically over the whole domain and consider

its maximum value p(K,n∗;N) as the output.

The target data is p(K,n∗;N = 40) and we are interested on the rela-

tionship shown on the first panel figure 3.1.

Figure 3.5 shows the contour plots of target function N = 40 and its

approximation N = 5. They share a similar structure, the picture is di-

vided into 4 quadrants and the pattern repeats from left to right. They

have some important differences too. Most notably, the values on the top

of the plots are almost 0 for the target function and very high for the ap-

proximation and there is a valley on the bottom part of the target function

that is not present on the other.

We sample the two functions to get two training sets that have n1 = 34

and n2 = 17 points. They are shown as dots in figure 3.5. The test set is

79



Figure 3.5: Contour plots of the maximum pressure for N = 40 and N = 5. The dots
represent the locations of the training set data.

fine grid on the whole domain.

We use these training sets to build the 4 models we introduced in the

last section. This is K, CK, CK(x) and our method npCK.

The predictions are shown on figure 3.6. The first model K shows

what can be achieved by using (Xn2, y2,n2) only. We have some idea of the

structure but the valley on the first quadrant is missing.

The models on the left column of figure 3.6, CK and CK(x), assume

a parametric form for the relationship between the two outputs. The first

model uses a constant and the second an affine function of the inputs

(K,n∗). The prediction seems to be mislead by the approximate data: the

height of the prediction on the top half coincides with that of p(K,n∗;N =

5). The resulting picture is far away from the true function. In this case

it seems preferable to use model K.

The last panel shows the npCK prediction. We use the estimated rela-

tionship in figure 3.7 to incorporate the approximate data.

The top half of the last panel corresponds to the last part of the functions

on 3.7. Because we predicted that those high values of p(K,n∗;N = 5)

correspond to a very low pressure p(K,n∗;N = 40), we make an accurate

80



Figure 3.6: Contour plots of the predictions made by CK, CK(x), K and npCK on the
test set, a fine grid of points on the whole domain.

prediction.

The predicted relationship also helps the model to discover the valley

on the bottom left part.

81



Figure 3.7: The left pannel is the true relationship between the data sets. Each color cor-
responds to a quadrant on the domain of (K,n∗). The right panel shows the relationship
estimated using (y1(n2), y2,n2).

Figure 3.8: The left pannel shows the estiamted relatiosnhip for CK, βy1,x. The right
panel shows the relationship estimated for CK(x), (β0 + β1x)y1,x. We add the estimated
mean of the difference process to the relationship. We see that the slope is correct but
the estimated mean of the difference is off.

82



3.3 Conclusion

Unknown relationship. In this chapter we extend the multi-fidelity

model based on Gaussian processes with parametric relationship. We as-

sume the same dependence structure and that we are given an order of

fidelity. The difference is that the relationship between two successive lev-

els, ϕ, is now unknown. We use locally linear polynomials to estimate ϕ.

When the input sets of the data are nested we can build a predictor with

its prediction error sequentially.

By estimating the relationship we are able to incorporate data that

would be useless otherwise and we show that in two numerical examples.

The estimated relationship adds useful information about the data.

New nonparametric regression problems. The hypothesis we use

in our model are very different from those of the usual setting for non-

parametric regression. We have not fully explored the properties of this

locally linear estimator but the multi-fidelity model motivates a new class

of nonparametric estimators that are worth studying.

The model proposed in this chapter simplifies the Bayesian structure of

the parametric multi-fidelity model. Its main drawback is that the prop-

erties of the locally linear estimator are not fully described. The main

difficulty is the fact that we are working with Gaussian processes with a

complex covariance structure. In the next chapter we will apply this model

to a case study of a diphasic air-water flow in rectangular domain.

83



Chapter 4

Case Study

In this chapter we present a case study related to an air-water flow on a

rectangular pipe that approximates a part of the emergency core cooling

system of a nuclear power plant. This flow is modeled by a numerical

computer code that depends on a series of parameters. The users of this

numerical simulator are uncertain about the precise values of the parame-

ters and they would like to know what is their influence on some particular

outputs. Because of time constraints we cannot use the simulator directly.

We replace it with a Gaussian process based model.

The objectives of this chapter are first to compare the different models

described in the previous chapter and second to measure the advantages of

using multi-fidelity models when performing a Sensitivity Analysis on the

parameters.

We start the chapter by explaining the motivation behind this computer

simulation code. Then, we describe the problem formally by defining the

parameters and the outputs we are interested in. We perform a first ex-

ploratory analysis to determine the influence of the parameters by using a

fractional factorial design. Then, we compare the prediction accuracy of

two multi-fidelity models to finally use these models to perform a Sensitiv-

ity Analysis on the parameters.

84



4.1 Motivation

The case study motivation is to have a better understanding of the lifetime

of a nuclear power plant. The aging of a nuclear power plant is defined

by the International Atomic Energy Agency (IAEA) as a continuous time-

dependent loss of quality of materials, caused by the operating conditions.1

Aging processes are difficult to detect because changes happen in a

microscopic level in the materials inside the power plant.

One of the possible consequences of this changes is the break of a pipe

caused by a leak in the Emergency Core Cooling system of the power

plant. The cold water flowing from the leak mixes with the very hot water

contained in the cold leg. This mixture flows through the cold leg to what

is called the downcomer causing high thermal gradients in the surrounding

materials. This change in temperature could lead to a thermal shock on the

reactor pressure vessel (RPV) wall. Such a scenario may lead to extreme

thermal gradients in the structural components and consequently to very

high stresses. Therefore, the loads upon the RPV must reliably be assessed.

Precise knowledge of flow in the cold leg and downcomer is necessary to

predict these thermal gradients in the structural components of the wall.

A schematic representation of the accident is described by figure 4.1.

We study a two-phase, air-water, stratified flow that is a simplified rep-

resentation of the flow in the cold leg. To validate this approximation it

is essential to model the heat and mass transfer on the free surface and

thus the flow precisely. The outputs we consider are some of the defining

quantities of this flow on the interphase. They are the mean speed of the

air and the water and the water level.

The model is implemented in the NEPTUNE CFD platform. The test

case used is called Air-Water STratified (AWST) where stratified means

1Safety Aspects of Nuclear Power Plant Aging; TECDOC-540, International Atomic Energy Agency,
Vienna, 1990

85



Figure 4.1: Water injection to the cold leg.

that the two fluids mix only near the interphase. It is based on the Fabre

et al. experiment described in [21].

More specifically, we focus on the influence of some parameters on the

outputs produced by the AWST test case. Some of these parameters come

from the modeling of the mono-phasic flows; some are used to define the

free surface and some have a numerical nature. We are uncertain on the

value of these parameters and we only dispose of some reference values.

For example, we are uncertain about the value of the parameter Res that

defines the limit between a rough and a smooth interphase. We dispose of

two reference values taken from an experiment in which a fluid is modeled

as spheres or sand grains and this parameter could take any other value in

between.

Our objective is to perform a sensitivity analysis on the parameters

based on the Sobol indexes. In order to do this we need to run the AWST

test several times. Since it takes around 10 minutes to produce a single

output, performing the sensitivity analysis using the NEPTUNE CFD sim-

ulations directly is unfeasible. We would like to build a reliable and fast

meta-model on a few runs to perform the sensitivity analysis on it instead.

Even though we are studying an approximate model of the real flow, we

can already see the importance of a metamodel.

86



A particularity of this case study is the fact that we dispose of different

meshes with which we can compute the outputs of the AWST test. The

time it takes to generate an output and its quality are dependent on the

number of grid-cells used to build the mesh on the domain. We study a

regression model that incorporates the outputs computed using different

meshes to enhance the prediction quality.

4.2 Case Description

The physical model is based on the experiment by Fabre et al. [21] where

they consider a channel 12 m long, with a rectangular cross section of 0.2

m wide and 0.1 m high. The domain is shown in figure 4.2.

Air 

Water 
Inlet 

Outlet 

10 cm 

20 cm 

12 m 

Rectangular Channel 

Figure 4.2: The domain in which we solve the flow equations. It has a 0.1 percent slope.

The channel is supplied with air and water coming from one of the sides.

There is a 0.1 percent bottom slope and the superficial water velocity at

the inlet is 0.15 m/s which corresponds to a flow rate of 3 l/s.

There are two flow regimes. They depend on the air flow rate on the

inlet. When the flow rate is 45.4 l/s the interface is smooth and when it

is 75.4 l/s it becomes wavy. We consider the wavy regime.

The measurements are made at 9.1 m from the inlet. Since we are

interested in the mass and heat transfer on the free surface we extract the

simulations computed at the air-water interphase shown on figure 4.3. We

87



consider the mean over 30 seconds of several quantities: the gas and water

speeds G and W and the water level L as done in [12].

Figure 4.3: The cross section of the domain is divided into three different parts, air, water
and a middle section where the two fluids meet. We focus on the middle interphase.

Finally, the turbulence in the air and water is a k − epsilon model [4].

We study the influence of 9 parameters, defined in [11], on the outputs.

They are

• 3 constants related to the turbulence model of the mono-phasic flow:

CE1, CE2, CEMU ;

• 2 Reynolds coefficients: Res = su∗/ν and Rer = ru∗/ν, that define the

limit between two types of flow regimes - rough and smooth. Where

s and r are the mean height of the waves in the surface or roughness;

u∗ is a dimensionless speed and ν is the viscosity;

• a correction factor ∆µ that represents the difference between the liquid

and interphase velocities, defined by (1+∆µ)u′32 where u′32 is the limit

velocity between different flow regimes;

• a coefficient β1 defining roughness due to the gas friction as r = β1
u∗G
g

.

Where u∗G is the gas speed, g is gravity and r the roughness;

• a mono-pahsic coefficient used to compute the friction on the walls

Cdupdyp;

88



• a coefficient q that acts a the limit between two regimes defined

vaguely by the turbulence velocity of the blobs.

We are uncertain about the real value of the parameters. We assume

that these parameters can vary over closed intervals uniformly. Most of

the bounds of the intervals can be found in [11]. Those of CE1, CE2 and

CEMU were fixed by an expert research engineer in thermohydraulics

simulation at the CEA.

• The intervals CE1 ∈ [1.3, 1.6], CE2 ∈ [1.7, 2.2] and CEMU ∈ [0.07, 0.1]

are defined by an expert;

• Res ∈ [2.25, 15] and Rer ∈ [55, 90] are taken from a reference in [11].

The limits depend on two different shapes of the roughness - sand

grains or spheres - and they are recommended values used in practice.

We do not know what model to use or if we should use something in

between;

• ∆µ ∈ [0.1, 0.9] takes values between almost 0 and almost 1. There is

always a difference between the liquid and interphase velocities but

we are uncertain of how big it is;

• β1 ∈ [0.05, 0.1] where the lower limit comes from oceanography litera-

ture and the upper bound from fully developed models of steady state

stratified flows in pipes. We do not know which model is closer to our

case;

• Cdupdyp ∈ [0.7, 1.3] is fixed by an expert;

• q ∈ [
√

1/3, 1] the uncertainty comes from trying to relate the turbu-

lence velocity of the blobs to a velocity produced by the turbulence

model. This parameter q is the key unknown quantity. The limits can

be found in [11].

The equations governing the flow are solved by using the finite volume

method. For a given set of parameters we compute the finite volumes over

89



3 different domain discretizations. We write the number of grid-cells in the

(x, y, z) directions of figure 4.2 as X × Y × Z. Meaning X cells in the x

directions Y in the y and Z in the z. We set Z = 1 because the results

correspond to the physical manipulation of [21] and it is faster than a full

3D model.

The first mesh has 50×20×1 cells; the second 50×40×1 and the third

100× 40× 1. From now on we use the subscripts 1, 2 and 3 to distinguish

the outputs computed using each of the 3 discretizations listed above. This

is our fidelity parameter and mesh 3 is our target output. The other two

are considered as approximations.

The average time to produce an output on a high performance computer

using a single combination of parameters is

• 2 minutes using mesh 1, (50× 20× 1);

• 3 minutes using mesh 2, (50× 40× 1);

• 10 minutes using mesh 3, (100× 40× 1).

Because of the time it takes to produce an output, it is convenient

to make a first exploratory study before building the multi-fidelity model

on all the 9 parameters. The objective of this approach is to reduce the

number parameters.

4.3 First approach: fractional factorial design

We use the letter x to denote the input vector of parameters. The quantities

of interest y are the target solutions computed using the third mesh (100×
40× 1).

We consider the interactions of up to 2 parameters under the hypothesis

90



that the output is a combination of the parameters written as:

y =
9∑

k=0

βkxk +
∑
l<k

β(l,k)xlxk + ε, βk, β(l,k) ∈ R. (4.1)

where ε ∼ N(0, σ2).

On the first experiment to determine the influence of the parameters,

we sample the simulator over a 128 points fractional factorial design with

resolution V . This design is a subset of all the possible inputs in equation

4.1 where (x1, ..., x9) take their values at the vertexes of the hyper cube of all

possible parameters and the interactions of order two are built computing

their corresponding products. Resolution V means that some order two

interactions are confounded with order three interactions. They can be

computed from x8 = x2x3x4 and x9 = x1x2x5x6.

We estimate the parameters on equation 4.1 and select the inputs ac-

cording to t-statistic test like the one on the last column of table 4.1.

The results of fitting the model for the gas speed G3 are shown on table

4.1.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 2.720757 0.017100 159.106 < 2e-16 ***
Rer -0.034102 0.012927 -2.638 0.009500 **
β1 0.004958 0.015832 0.313 0.754736
q -0.034102 0.012927 -2.638 0.009500 **
CE1 -0.664057 0.015832 -41.945 < 2e-16 ***
CE2 0.025754 0.015832 1.627 0.106560
CMU 0.056227 0.015832 3.552 0.000558 ***
Cdupdyp -0.038907 0.015832 -2.458 0.015496 *
Rer : q 0.068205 0.018281 3.731 0.000299 ***
β1 : CMU -0.077884 0.018281 -4.260 4.22e-05 ***
β1 : Cdupdyp 0.045358 0.018281 2.481 0.014554 *
CE1 : CE2 0.667875 0.018281 36.534 < 2e-16 ***
CE1 : CMU 0.050561 0.018281 2.766 0.006626 **
CE2 : Cdupdyp 0.091212 0.018281 4.989 2.19e-06 ***

Table 4.1: Parameters estimated using the fractional factorial design for the gas speed
G3.

91



The conclusion we draw from table 4.1 above is that all the param-

eters have an important linear influence except for one of the Reynolds

coefficients, Res and the turbulent speed of the liquid ∆µ. Their corre-

sponding coefficients are not significant. They do not even appear through

interactions.

We have similar results for the other outputs. For the lower fidelity

levels, we have that less parameters are influential but neither Res or ∆µ

appear as in the results for G2 shown on table 4.2.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 2.69069 0.02150 125.126 < 2e-16 ***
β1 -0.05937 0.02483 -2.391 0.018373 *
CE1 -0.70233 0.02027 -34.642 < 2e-16 ***
CE2 0.04705 0.02027 2.321 0.022000 *
CMU 0.15402 0.02027 7.597 7.61e-12 ***
Cdupdyp -0.08092 0.02027 -3.991 0.000114 ***
β1 : CMU -0.13595 0.02867 -4.742 5.94e-06 ***
β1 : Cdupdyp 0.16902 0.02867 5.895 3.58e-08 ***
CE1 : CE2 0.74610 0.02867 26.022 < 2e-16 ***

Table 4.2: Parameters estimated using the fractional factorial design for the gas speed
G2.

From this preliminary study we can see that degrading the mesh affects

the influence of the parameters on the output. Also, it seems that less

parameters are influential on the the liquid outputs. Table 4.3 below shows

only 5 influential parameters on the water speed W3.

In conclusion, we keep the remaining seven parameters to build the

metamodels of the next section.

4.4 Metamodels tested

We reduced the number of parameters from 9 to 7 by using the sample over

a fractional factorial design to fit the model of equation 4.1. To perform

a Sensitivity Analysis we need to have a reliable metamodel adjusted to

samples from all over the input domain.

92



Coefficients: Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.506247 0.002613 193.710 < 2e-16 ***
β1 -0.012157 0.002613 -4.652 8.79e-06 ***
CE1 0.096519 0.003018 31.984 < 2e-16 ***
CE2 0.005795 0.002613 2.218 0.028535 *
CMU -0.014267 0.003374 -4.229 4.71e-05 ***
Cdupdyp -0.008027 0.002134 -3.762 0.000266 ***
β1 : CE1 0.010575 0.003018 3.504 0.000651 ***
β1 : CMU 0.006663 0.003018 2.208 0.029218 *
CE1 : CE2 -0.123280 0.003018 -40.852 < 2e-16 ***
CE1 : CMU -0.017550 0.003018 -5.815 5.44e-08 ***
CE2 : CMU 0.021158 0.003018 7.011 1.68e-10 ***
CMU : Cdupdyp 0.014695 0.003018 4.870 3.57e-06 ***

Table 4.3: Parameters estimated using the fractional factorial design for the water speed
W3.

In particular we are going to use the outputs produced by the different

meshes to build multi-fidelity metamodels. In the next section we introduce

a new algorithm to build space filling designs based on maximizing the

entropy of the outputs.

4.4.1 The inputs

In this case study we dispose of three different discretizations of the rectan-

gular pipe that we sample to build several multi-fidelity regression model

based on Gaussian processes. We use nested input sets to have a sequential

construction of the models as discussed in chapter 2.

We note X1, X2 and X3 the input designs for the three meshes. They

are nested as X3 ⊂ X2 ⊂ X1. Besides the training inputs we build a test

set to compare the different meta-models we study.

In the method we propose, to build X1, X2 and X3 we start with a space

filling design X0. From X0 we extract the subset X1 that maximizes the

entropy of the output. The output is supposed to be a Gaussian process.

To maximize its entropy it is sufficient to define the covariance function.

93



Here we consider a spherical covariance

γS(x, x′; θ) :=

(
1− 3

2

‖x− x′‖1

θ
− 1

2

(
‖x− x′‖1

θ

)3
)

1{‖x−x′‖1≤θ}(x, x
′).

as suggested in [24] section 2.3.8. In practice the covariance parameters

are fixed to values that are big with respect to the domain. When working

in [0, 1]D, we use θ =
√
D.

We extract X2 from X1 by using the same strategy and finally we ex-

tract X3 from X2. The test set is the difference between X0 and X1.

Schematically we have

X0 → X1 → X2 → X3

Xtest := X0 \X1.

For an initial design with good space filling properties, this strategy can

produce well spread nested designs as can be seen on figure 4.4 below.

Selecting the maximum entropy designs can be a nice alternative to

selecting the nested sets at random. We use the NestedDesign function

implemented in the MuFiCokriging R package to produce nested designs

selected at random. The sets are selected in the same order as in our

method.

To test the two methods to build nested designs, we use the criteria

described in the article by G. Damblin [13]. This is the mean and variance

of the distances of the edges of the Minimum Spanning Tree and the dis-

crepancy between the distribution of the points and a uniform distribution.

The Minimum Spanning Tree (MST) is a graph that joins all the points

in the design such that the sum of the size of its edges is minimal. In-

tuitively, a good space filling design has a MST with big edges that have

more or less the same size. This can be interpreted as a big mean and

small variance on the size of the edges.

94



Figure 4.4: A two dimensional example of two Dmax nested designs built from the
maximin LHS X1.

A small discrepancy is a hint of uniformly distributed points. We use a

C2 discrepancy, the formula is given in [13].

The mean and variance of the MST and the discrepancy functions are

implemented in the DiceDesign R package.

The initial design X0 is a space filling lhs with 300 points, X1 has 210,

and X2 and X3, 140 and 70 respectively. The test set Xtest contains 90

points.

We draw 100 initial designs X0, build the other 3 subsets from it and

compute the criteria described above.

95



We use Dmax(Determinant to be maximized) to denote the designs

built by our method and Nd(Nested designs) those built by selecting the

points at random.

Figure 4.5a shows the boxplots of the mean size of the edges of the MST.

The edges are bigger on the first two nested designs X1 and X2. In the last

design X3 the edges are significantly bigger for the Dmax one.

(a) Boxplots of the mean size of the edges of the
MST for the different nested designs.

(b) Boxplots of the variance of the size of the
edges of the MST for the each of the nested de-
signs.

(c) Discrepancy between the distribution of the
points of the design and uniform distribution.

Figure 4.5: Analysis results of Nd on black and Dmax on red.

All the boxplots in figure 4.5b for variances of the size of the edges are

smaller for the Dmax designs. Once again the most notable difference is

between the two last designs.

The discrepancies in figure 4.5c are similar except, once again, for the

96



last level. We can conclude that the Dmax design on the highest fidelity

level is better. In the other two levels the two methods are very similar.

Since the highest fidelity data is the hardest to obtain we prioritize a

good sampling design X3. We use the Dmax designs to sample the the

mean gas speed and mean water level using the three discretizations.

4.4.2 The outputs

The outputs are the mean over a period of 30 seconds of several quantities

measured at 9.1 m from the inlet as done in [12, 21]. These quantities are

the mean

• gas and water speed Gj and Wj;

• water level Lj.

We use index j to denote an output produced using the jth mesh. We

sample

• G1, W1 and L1 over X1 and Xtest;

• G2, W2 and L2 over X2 and Xtest;

• and G3, W3 and L3 over X3 and Xtest;

so that we have a training and a test set for each level and output. We

want to predict the outputs of mesh 3 on the test set. The other two levels

are considered approximations ordered by the mesh level.

The boxplots of the outputs for the third mesh are shown in figure 4.6.

97



Figure 4.6: Boxplots of the outputs of level 3 sampled over X0.

We consider three types of models, based on Gaussian processes, for the

data. The first model uses data produced only by level 3.

(K) : Y3,x ∼ GP (m(x), σ2
3γ(x, x′; θ3)).

The second is a multi-fidelity model defined recursively as

(CK) : Yk+1,x = b0 Yk,x + Ydk,x, k ∈ {1, 2},

Ydk,x ∼ GP (m(x), σ2
dk
γ(x, x′; θdk)),

Y1,x ∼ GP (m(x), σ2
1γ(x, x′; θ1))

where Ydl,x is independent of Yl,x and the relationship between two succes-

sive model is linear. Finally, the third model we consider is

(npCK) : Yk+1,x = ϕ(Yk,x) + Ydk,x, k ∈ {1, 2},

Ydk,x ∼ GP (m(x), σ2
dk
γ(x, x′; θdk)),

Y1,x ∼ GP (m(x), σ2
1γ(x, x′; θ1)).

In this model the relationship between two successive levels is unknown

and we estimate it using locally linear polynomials.

For the multi-fidelity models we consider two additional combinations of

data sets besides the one with observations sampled from X3 ⊂ X2 ⊂ X1.

One in which we use the training sets X3 ⊂ X1 and another in which we

98



use X3 ⊂ X2. The target is always the third level. The fidelity of the

others is ordered by the mesh number.

For all the Gaussian processes, we use the same covariance structure:

a product of 1-dimensional correlation functions with a single variance

parameter and a different covariance parameter for each one of the inputs.

Since we have 7 parameters the covariance is written as

γ(x, x′; θ) =
7∏
d=1

γd(x
d, x′d; θd)

The one dimensional correlations γd(x
d, x′d; θd) are Matern 3/2 functions.

We use them since we are uncertain about the regularity of the outputs.

4.4.3 Prediction results and estimated parameters

Prediction error and relationship between levels

Table 4.4 shows the RMSE :=

√
1

n

∑n
i=1(ŷ(xi)− yi)2, on the test set for

each model. There is no RMSE for K on the columns with more than one

data set and no RMSE for the multi-fidelity models on the single data set

column. Using multiple data sets is impossible for K and using a single

data set to train a multi-fidelity model would produce the same result as

K.

For the gas speed G we can see that the first column of table 4.4 contains

the biggest RMSEs for the npCK multi-fidelity model. Conversely, the

CK has its lowest RMSE on this combination. It seems that the data

generated by the mesh 1 can be incorporated by the CK model but not

by the npCK.

Figure 4.7a show the plots of the gas speed of two successive levels.

We can see that the relationship G1 − G3 is not very well defined. On

99



Model G1, G3 G2, G3 G1, G2, G3 G3

K - - - 0.09958
CK 0.09871 0.09904 0.09905 -
npCK 0.1246 0.08994 0.1137 -

Model W1, W3 W2, W3 W1, W2, W3 W3

K - - - 0.0157
CK 0.01541 0.01567 0.01555 -
npCK 0.01394 0.01476 0.01558 -

Model L1, L3 L2, L3 L1, L2, L3 L3

K - - - 0.7595
CK 0.8883 0.7873 0.7873 -
npCK 0.8289 0.7573 0.7787 -

Table 4.4: RMSE on the test set. Each row correspond to a model and each colunm to
the training sets used to make the prediction. We used a Matern 3/2 covariance function.

the other hand, the plots involving levels 2 and 3 are less spread. We

can see a linear trend on first part of gas speed. This is reflected on the

RMSE too: the npCK multi-fidelity model has a lower RMSE for this

combination. Although the relationships seems linear, the RMSE of the

parametric relationship model CK is similar to that of K.

Something similar can be said about the water speed W . The only

difference is that the npCK model can use the data of level 1 to reduce

the RMSE. We can see in figure 4.7b that the relationship between the

outputs is nonlinear.

It seems that for the water level L, the best option is the one data set

model K or npCK. By looking at figure 4.7c we can conclude that there is

not a clear relationship between the data of different levels. Nonetheless,

both multi-fidelity models have a comparable performance when trained

with data from levels 2 and 3.

More generally, the RMSE of the predictions built using all three levels

is not better that the ones made by only using levels 2 and 3. In fact, it

deteriorates the prediction of the npCK model for the three outputs. This

100



(a) Gas speed. (b) Water speed.

(c) Water level.

Figure 4.7: Observations of two successive levels with a relationship estimated by locally
linear polynomials.

is coherent with the other results. In any case, the npCK model represents

an improvement on the gas and water speeds predictions and gives results

for the water level that are comparable with the other two models.

An important conclusion of this part is that considering the approxima-

tions 1 and 2 to study the influence of the parameters on the water level

does not represents a real improvement. The target output seems to have a

101



more complex relationship with its approximations than the ones modeled

by Ck and npCK.

Using level 2 does improves the prediction error for the gas and water

speeds made by npCK.

We should remark that the different meshes were obtained by refining

different dimensions. From 50× 20× 1 to 50× 40× 1 we doubled the cells

in the y direction whereas for the 50 × 20 × 1 to 100 × 40 × 1 we refined

the x. After the analysis we did above, we could suspect that refining on

the y dimension is more important.

Finally, by looking back, we can think of each output as an example of

three different multi-fidelity settings. For G the linear relationship gives

good results; for W it is not sufficient to assume a linear relationship and

estimating the relationship improves the error and finally for L it is difficult

to use the approximate data.

Estimated parameters

We briefly described the form of the relationship between two successive

levels of fidelity. Here we discuss the choice of parameters in more detail.

First we make a remark related to the CK model. Using the more

complex relationship

(CK(x)) : Yk+1,x = (b0 + bT1 x)Yk,x + Ydk,x

yields very similar results. We keep CK since it is a more simple model in

terms of parameters.

For the mean of all the Yl,x and the all difference processes Ydl,x we use

a linear combination of the inputs like α0 + αT1 x. So for example, for level

one E[Y1,x] = α0 + α1,1x1 + · · ·+ α1,7x7 has 8 mean parameters.

102



(a) Mean gas speed G3. (b) Mean gas speed G2.

(c) Mean gas speed G1.

Figure 4.8: Projections of the mean gas speed on the outputs on each dimension of the
inputs.

We have one covariance parameter for each one of the inputs. As we

discussed on chapter 2, we can interpret each one of the parameters as

a measure of relevance of each dimension. A big covariance parameter

implies small variations along the input it represents.

103



We focus on the multi-fidelity models using levels 2 and 3. They are

(CK) : Y3,x = β0Y2,x + Yd2,x,

Yd2,x ∼ GP (α0 + αT1 x, σ
2
d2
γ(x, x′; θd2)),

Y2,x ∼ GP (α0 + αT1 x, σ
2
2γ(x, x′; θ2))

and

(npCK) : Y3,x = ϕ(Y2,x) + Yd2,x,

Yd2,x ∼ GP (α0 + αT1 x, σ
2
d2
γ(x, x′; θd2)),

Y2,x ∼ GP (α0 + αT1 x, σ
2
2γ(x, x′; θ2)).

Table 4.5 shows the estimated parameters for G for all the three models.

Model Param. Rer β1 q CE1 CE2 CMU Cdudy

K θ3 69.10 0.1940 0.8240 0.1400 0.1610 0.0598 0.7840
CK θ2 53.30 0.0103 0.0394 0.5940 0.2220 0.0598 0.0244
npCK θ2 69.10 0.0673 0.8240 0.0450 0.1240 0.0598 1.1600

Rer β1 Ceq32 CE1 CE2 CMU Cdudy

CK θd2 67.4000 0.1900 0.4620 0.4010 0.0721 0.0575 1.1600
npCK θd2 53.5 10e−10 0.705 0.233 10e−10 0.0165 0.639

Interval size 35 0.05 0.4 0.3 0.5 0.03 0.6

Table 4.5: Estimated covariance parameters for the gas speedG. The multi-fidelity models
use levels 2 and 3. The last row contains the size of the intervals of the parameters.

For the gas speed, the parameters estimated by the npCK model rep-

resent the variation of the outputs along each input dimension shown in

figure 4.8b. All are big parameters with respect to their corresponding

ranges, shown on the last row of table 4.5, except for CE1 and CE2. This

is not the case for CK: β1, q and Cdudy are small.

On the other hand npCK sets to zero the covariance parameters of β1

and CE2 of the difference process. The variations along Rer, q and Cdudy

are small. For CE2 we expect to have a difference process that varies a lot

for the two models.

104



Model Param. Rer β1 q CE1 CE2 CMU Cdudy

K θ3 67.40 0.1900 0.8180 0.0838 0.1060 0.0575 1.1600
CK θ2 0.751 0.1940 0.8240 0.3900 0.9880 0.00836 1.1600
npCK θ2 54.90 0.1940 0.8240 0.0692 0.1250 0.0598 0.9940

Rer β1 Ceq32 CE1 CE2 CMU Cdudy

CK θd2 59.90 0.1900 0.4620 0.4010 0.0721 0.0575 1.1600
npCK θd2 28.9 10e−10 0.809 0.456 0.478 1e− 10 0.491

Interval size 35 0.05 0.4 0.3 0.5 0.03 0.6

Table 4.6: Estimated covariance parameters for W . The multi-fidelity models use levels
2 and 3. The last row contains the size of the intervals of the parameters.

The estimated parameters for the water speed are shown in table 4.6

and the projection plots in 4.9. This is the case in which the relationship

between levels 2 and 3 is nonlinear. Once again it can be seen in figure

4.9b that CE1 and CE2 are the parameters for which the outputs vary

the most. This is reflected on the estimated coefficients of npCK.

Finally, for the water level we have table 4.7 and figure 4.10. In the

figure we can see that the influence of CE1 and CE2 is not as clear as for

the other two outputs. The multi-fidelity models argue that the difference

process between levels 2 and 3 has a high variability in the CE1 and CE2

directions.

In the next section we compute the Sobol indexes on the metamodels

we studied here.

105



(a) Mean water speed W3. (b) Mean water speed W2.

(c) Mean water speed W1.

Figure 4.9: Projections of the mean water speed W on the outputs on each dimension of
the inputs.

4.4.4 Sensitivity analysis

We already argued that the actual value of the parameters we used as

inputs are uncertain. Here we explore the sensitivity of the output to

variations of the parameters. The objective is to classify the parameters

in function of their influence on the outputs. Our main reference for this

section is the PHD thesis of Alexandre Janon [28].

106



Model Param. Rer β1 q CE1 CE2 CMU Cdudy

K θ3 67.4 0.1540 0.8180 0.0661 0.0697 0.0575 1.160
CK θ2 25.1 1e− 10 1e− 10 0.594 0.221 1e− 10 0.153
npCK θ2 69.1 0.0730 0.8240 0.0392 0.1240 0.0205 0.994

Rer β1 Ceq32 CE1 CE2 CMU Cdudy

CK θd2 67.40 0.1540 0.8180 0.0661 0.0698 0.0575 1.160
npCK θd2 66.90 0.0863 0.8180 0.0731 0.0582 0.0136 1.160

Interval size 35 0.05 0.4 0.3 0.5 0.03 0.6

Table 4.7: Estimated covariance parameters for L. The multi-fidelity models use levels 2
and 3. The last row contains the size of the intervals of the parameters.

The method we use models the parameters by using a probability law.

This law together with the model or meta-model of the air-water flow

determines the distribution of the outputs.

To classify the parameters we work with the Sobol indexes. The idea

is to determine which parameters produce most of the uncertainty on the

output so that we can focus only on them by setting the others to a nominal

value.

Before defining the Sobol indexes we assume that the parameters, that

we note XP
1 , ..., X

P
7 , are independent and that the outputs are such that

E[G2
k] < +∞, E[W 2

k ] < +∞ and E[L2
k] < +∞ for k ∈ {1, 2, 3}.

The Sobol index forXi is defined by considering the variance of E[Gk|XP
i ].

Recall that E[Gk|XP
i ] is the best approximation of Gk among all functions

of Xi. The bigger this variance is, the more influential on the output Xi

is. The index is

Si =
V ar(E[Gk|XP

i ])

V ar(Gk)
.

It represents the fraction of the total variation attributed to Xi. For a

107



(a) Mean water level L3. (b) Mean water level L2.

(c) Mean water level L1.

Figure 4.10: Projections of the mean water level L on the outputs on each dimension of
the inputs.

subset of u ⊂ {1, ..., 7}

Sclu =
V ar(E[Gk|XP

i , i ∈ u])

V ar(Gk)
.

quantifies the influence of all the parameters indexed by u. The total

108



indexes are

STi = 1− Scl{1,...,7}\{i}.

They represent the effect of the ith variable and its interactions with all

the other variables.

The indexes are computed using Monte-Carlo integrations. In our case,

we cannot compute enough samples and thus we cannot compute the in-

dexes directly. We estimate the Sobol indexes on the output of the meta-

models we considered before.

More precisely, we compute the indexes on the four meta-models. Two

multi-fidelity models CK and npCK that use levels 2 and 3 of responses.

A single level regression model K(X1) that we train using 210 observations

of gas speed and water level over X1 produced by the simulator 3 and the

last one is K(X3), a one data set model sampled over X3.

The model with the lowest RMSE is K(X1) for each one of the outputs.

It is 0.08982 for G3; 0.01382 for W3 and 0.6694 for L3. The other RMSEs

are shown in table 4.4. This model is our reference.

Figures 4.11, 4.12 and 4.13 show the Sobol indexes computed using the

four meta-models.

The most influential parameters for the three outputs are CE1 and

CE2. In the gas speed the influence is due mainly to main effects with

some interactions while in the water speed and level the interactions have

a more important role.

For the gas speed, the predictions of the two multi-fidelity models give

the same general picture as K(X1). They both attribute the influence of

CE1 and CE2 to main effects and some interactions. In the two multi-

fidelity models we can see that the first variable Rer has a main effect on

the output that is not present on the K(X1) model.

109



Figure 4.11: Sobol indexes for the gas speed G3 computed using FAST. The Xi variables
are Rer, β1, q, CE1, CE2, CMU and Cdudy.

For the water level, the index corresponding to β1 and Cdudy have a

main effect for CK and npCK that is not present on the reference. Besides

these indexes, npCK captures the form of the other indexes.

Finally, in the water level, the K(X3) model produces a result similar

to that of K(X1) for the two most influential variables. For the other

variables the estimation of npCK is closer to that of K(X1). Specially for

the last two indexes.

110



Figure 4.12: Sobol indexes for the water speed W3 computed using FAST. The Xi variables
are Rer, β1, q, CE1, CE2, CMU and Cdudy.

Figure 4.10 show the projections of the water level into each one of

the dimensions. There is not a clear tendency in any of the plots. This

along the sensitivity analysis results suggests that most of the explained

variability is due to the interactions.

111



Figure 4.13: Sobol indexes for the water level L3 computed using FAST. The Xi variables
are Rer, β1, q, CE1, CE2, CMU and Cdudy.

4.5 Conclusion

A practical multi-fidelity case study. In this chapter we presented

a diphasic air-water flow case study motivated by the study of the aging

of nuclear power plants. In this case study we dispose of three different

configurations that defined three levels of fidelity with an order.

The case is described in detail with references and the parameters are

selected by an expert engineer.

112



We study three different outputs G, W and L. Each one represents a

case of multi-fidelity data. On the first a linear relationship gives good

results. For the water speed W , estimating the relationship is useful. Fi-

nally, L is an example in which it is difficult to use the approximate data

to improve the prediction.

Nested designs. In order to build the multi-fidelity models we intro-

duce an algorithm to build nested designs. The algorithm selects subsets

that maximize the entropy of the outputs.

Testing multi-fidelity models. By using the multi-fidelity models we

were able to see that approximation 1 was not useful to study the influence

of the parameters on the target outputs produced by the mesh 3.

We see that for the gas and water speed, estimating the relationship

reduced the test error.

The predictions regarding the water level are difficult. In this case it

seems preferable to use the target level directly. The CK model produced

results similar to those of the one data set model K.

According to the Sobol indices, the most influential parameters were

CE1 and CE2. This means that the most important part of the model is

related to the turbulence models of each one of the fluids.

In the gas speed, the influence of these parameters is due to the main

effects. For the water speed, the influence of CE1 is due to main effect

while that of CE2 is due to interactions. For the water level it is due

principally to interactions.

It seems that to improve the predictions of the water level we need

to change the covariance structure. Instead of using a product of one

dimensional it would be advisable to try an ANOVA like kernel to look for

higher order interactions - see [17, 18].

113



In the next chapter we present a different regression model that is based

on an adaptive wavelet decomposition.

114



Chapter 5

Adaptive Wavelets and Multi-fidelity

In this chapter we study an alternative method to make a prediction over

an unobserved input in the multi-fidelity context. Instead, of using Gaus-

sian processes, we consider a wavelet decomposition to study the different

unknown functions. We explore these functions by constructing a hierarchy

of approximations with increasing level of detail, proceeding from coarsest

to finest resolution. This allows for an efficient selection of the degrees of

freedom of the problem. Additionally, while building these approximations

we explore the zones in which the function varies the most with the idea

of eventually adding observations at precise locations when needed.

More precisely, the idea of the method we present here is to come up

with an approximation of a function of the form

f :=
∑
i∈I

di wi

where the wi are wavelets; di are unknown coefficients and I is a set of

indexes selected by using all the data

First, we start by introducing the algorithm we use to select the index

set I and to compute the coefficients dj for one data set. It is an iter-

ative procedure with two main steps: counting the number of points in

the domain of each basis function to avoid over fitting, and selecting the

115



estimated coefficients to explore the data locally and avoid redundancy.

Then, we present its multi-fidelity counterpart in which we apply the

the iterative procedure sequentially to each data set and the difference be-

tween two successive fidelity levels. We apply this algorithm to a numerical

example at the end of the chapter.

5.1 Adaptive wavelet decomposition

In this section we introduce the algorithm proposed by Daniel Castaño in

his PHD thesis [8]. This is the one data set version of our multi-fidelity

algorithm.

Here we are given data set (x1, yx1), ..., (xn, yxn). We assume that this

data was sampled from an unknown function f : [0, 1] → R that can be

written as

f(x) = c φ(x) +
∞∑
j=0

2j−1∑
k=0

dj,k w(2jx− k)

=: c φ(x) +
∞∑
j=0

2j−1∑
k=0

dj,k wj,k(x).

for any x ∈ [0, 1]. Where φ represents the mean or low frequency behavior

of f and the wj,k’s account for the local variations - or local high frequency

behavior - of the unknown function. The function φ is called the scaling

function and w is called a wavelet. The wavelets we study are compactly

supported wiggles. The resolutions index j is a measure of how local the

wiggle is and k represents its location.

The algorithm is a coarse to fine approximation. At each step we analyze

the decomposition up to a resolution j and add the wavelets at resolution

j + 1 that contain enough data points and that represent a significant

contribution. If we note Kj the set of wavelets at resolution j used in the

116



decomposition, we want to build an approximation of the form

f(x) ≈ ĉ φ(x) +
J∑
j=0

∑
k∈Kj

d̂j,k wj,k(x).

where ĉ and d̂j,k are estimated coefficients. This decomposition should

not overfit the data and each wavelet should add a significant amount of

information.

Usually, a wavelet decomposition is built by using a fine to coarse algo-

rithm described in section 3 of appendix B. This is a very efficient algorithm

that works in a particular configuration that requires observations over a

dyadic grid and the number of observations determines the maximal reso-

lution. Here we use irregularly sampled observations and we do not know

what the highest resolution is, we keep adding wavelets until the algorithm

stops.

The algorithm consists in two main steps. Each step has a parameter

that controls the selection process. We follow [8] and introduce the first

parameter of the algorithm, the number of points q in the support of a

wavelet used in the decomposition.

5.1.1 Number of points in the support

The algorithm starts with an initial decomposition that uses all the wavelets

up to a resolution j0

c φ(x) +

j0∑
j=0

2j−1∑
k=0

dj,k wj,k(x).

117



The idea is to add, to the initial decomposition, some wavelets at resolution

j0 + 1 to obtain an expression with an extra term like

c φ(x) +

j0∑
j=0

2j−1∑
k=0

dj,k wj,k(x) +
∑

k∈Kj0+1

dj0+1,k wj0+1,k(x)

where we note Kj0+1 the set that contains the locations of the selected

wavelets. The functions we add, at resolution j0 + 1, are the children of

the wavelets that contain at least q points in their support. We call wj+1,k

and wj+1,k+1 the children of wj,k. All the wavelets at resolution j + 1 are

the children of wavelets at resolution j so adding all the children amounts

to adding a full resolution to the decomposition - see figure 5.1.

Figure 5.1: On the top row we have the children of the wavelets of the bottom row. Each
one has two children and the four children form a complete resoltion. This are Daubechies
wavelets.

We repeat this step until there are no more wavelets left with at least q

points is their support. To illustrate this, we apply the selection procedure

to the example shown in figure 5.2. We use Haar’s wavelets defined in

appendix B. Higher resolution wavelets are selected in zones where the

observations are more dense. We see how q is a parameter that might

118



control the bias-variance trade off.

Figure 5.2: The two figures on top represent the selected wavelets. The resolution increases
from the bottom to the top. The last figure shows the distribution of the inputs used to
select the wavelets. The second part of the domain contains twice as many inputs as the
first.

Before moving to the second example, we define the algorithm as:

119



Algorithm 3 q points in the support.

1: procedure q Points
2: Fix j0 and q.
3: Build the first decomposition up to resolution jmax ← j0.
4: while Kjmax

6= ∅ do
5: Build Kjmax+1 by choosing the children of Kjmax

with q points in
6: their support.
7: jmax ← jmax + 1.

8: return Kj0+1, ... , Kjmax
.

The second example shows the effect of q in the prediction. We sample

points from a line. We select the indexes used in the decomposition by

using algorithm 3. Then, we estimate the coefficients of the decomposition

with the ones that minimize mean square error in the sample and compute

the prediction on [0, 1].

Figure 5.3: The two predictions have 0 error in the sample. On the left the prediction
overfits the simple structure of the data. Chossing a bigger q corrects this on the right.
We use Daubechies wavelets with 4 degrees of freedom to build the decomposition.

By choosing a correct number of points q, we avoid adding high os-

cillations where no data is available. This gives a decomposition that is

coherent with the spatial distribution of the observations. However, this

criterion does not take into account the local regularity of the data. We

120



can select very high resolution wavelets in places where there are plenty of

observations that do not vary much locally. This may lead to a decomposi-

tion in which the contribution of many of the selected wavelets is small. In

the example above the most important coefficients are those of the scaling

function, and the wavelets up to resolution 2. The other coefficients are

almost zero as shown in figure 5.4. It seems that the wavelets at higher

resolution do not contribute much in the decomposition, they add redun-

dant information. This makes sense, the structure of the data does not

present any of the local variations of the wavelets at higher resolution, it

is very regular.

Figure 5.4: Value of the estimated coefficients on the example above with q = 6. Each
box contains the coefficients of a particualr resolution.

The coefficients in the decomposition represent the influence of its corre-

sponding wavelet. A small coefficient can be interpreted a sign of smooth-

ness at a certain scale and location. On the other hand, a big coefficient

121



can be interpret as an indicator of potential need for further local refine-

ment. This refinement, can mean adding higher resolution wavelets or new

observations at a precise location.

In the second part of the algorithm, by following [8], we introduce the

new threshold parameter t0, to keep the wavelets whose coefficients are big.

This parameter is a complement to the number of points q. By using t0, we

take into account the local regularity of the function in the decomposition.

This leads to a more efficient and simple representation by wavelets.

5.1.2 Selecting the coefficients

Here we modify algorithm 3. At each step after we select the children in

Kj+1, we estimate the coefficients of the decomposition by minimizing the

mean square error on the data. We make a second selection and keep the

children in Kj+1 whose estimated coefficients are higher in absolute value

than a threshold t0. By doing this we identify zones of regularity where

we avoid adding high frequency wavelets and we also recognize other zones

with potential need of further local refinement.

The final algorithm is

Algorithm 4 q points in the support and selected coefficients > t0.

1: procedure q Points and t0
2: Fix j0 and q.
3: Build the first decomposition up to resolution jmax ← j0.
4: while Kjmax

6= ∅ do
5: Build Kjmax+1 by choosing the children of Kjmax

with q points in
6: their support.
7: Build K̂jmax+1 by computing d̂j+1,k and

8: keeping the wavelets with |d̂j+1,k| ≥ t0.

9: Kjmax+1 ← K̂jmax+1 and jmax ← jmax + 1.

10: return Kj0+1, ... , Kjmax
.

122



In the following example we consider a function with two very regular

parts and a jump in the middle as shown on the left panel of figure 5.5. We

use Daubechies wavelets on the decomposition. The function is sampled

evenly throughout the domain. The middle panel of figure 5.5 shows the

representation built using the q parameter only. For this representation, we

have very high osculations throughout the domain: high resolution wavelets

contain more than enough points in their support. Their contribution is

specially important on the discontinuity and the borders of the domain.

Figure 5.5: On the left, the true function. On the middle we have the prediction built
using only the q parameter. On the right, the decomposition built using the wavelets
selected by using the same q and t0 as in algorithm 4 is shown.

By using the threshold on the coefficients along the same q, we obtain the

plot on the right panel of figure 5.5. All of the high frequency oscillations

on the borders disappeared improving the reconstruction.

We can see the wavelets selected for both decomposition on figure 5.6.

There are 66 q-selected wavelets. They form a complete set up to resolution

5. This explains the high frequency oscillations throughout the domain

mentioned above.

With the same q and a threshold t0 we selected 37 wavelets. Most of

the selected wavelets are located at the discontinuity, at its right or at the

123



Figure 5.6: The q selected wavelets are shown in the top panel and the q− t0 ones in the
bottom. We use Haar wavelets to represent the wavelets used in the actual decomposition.

borders. This is reflected on the prediction: there is an oscillation right

after the jump. The selected wavelets reflect the fact that there are two

regular parts and a jump.

5.1.3 Some remarks on the adaptive wavelet decomposition al-

gorithm

The first is that wavelets are usually used in a different configuration. The

data should be observed over a dyadic grid and the wavelet coefficients are

obtained by fixing a highest resolution and filtering them until we reach

the 0th resolution - see appendix B for details.

Also, most wavelets do not have an analytic formula. To evaluate them

124



at an arbitrary input we use an approximation scheme described in part 2

of appendix B.

In the next section we introduce the multi-fidelity version of this algo-

rithm. We apply the adaptive wavelet decomposition to every data set and

their corresponding differences.

5.2 Multi-fidelity wavelet adaptive regression

We are given two data sets (X1, y1,n1) and (X2, y2,n2) generated by two

unknown functions f1 and f2. We assume that f1 is an approximation of

f2 that is easier to evaluate.

The goal of the multi-fidelity algorithm is to add observations sequen-

tially by using the information given by the selection procedure of algo-

rithm 4. To do this we focus on two aspects of multi-fidelity regression:

1. gain extra information about f2 by looking at the approximate data

(X1, y1,n1);

2. learn the difference between the two unknown functions.

We propose a procedure that looks at the q − t0 selected coefficients of

the decomposition of f1 and f2 and those of their difference. We note d
(l)
j,k

the coefficients of the w
(l)
j,k wavelet in the decomposition of fl for l = 1, 2.

Let fd = f2 − f1 the difference between the two unknown functions. We

note d
(d)
j,k its corresponding decomposition coefficients.

We use algorithm 4 to select the wavelets on the decompositions of f1

125



and fd and write

f1(x) ≈ ĉ(1) φ(x) +
J∑
j=0

2j−1∑
k=0

d̂
(1)
j,k wj,k(x)

fd(x) ≈ ĉ(d) φ(x) +
J∑
j=0

2j−1∑
k=0

d̂
(d)
j,k wj,k(x).

Then, the decomposition of the target function is

f2(x) ≈ (ĉ(1) + ĉ(d)) φ(x) +
J∑
j=0

2j−1∑
k=0

(d̂
(1)
j,k + d̂

(d)
j,k) wj,k(x).

If d̂
(d)
j,k = 0, then d̂

(2)
j,k ≈ d̂

(1)
j,k. We can interpret a zero difference coefficient as

the sign of a location where f1 and f2 are similar. Conversely, when d̂
(d)
j,k 6= 0

we have the coefficient of a wavelet that makes a significant contribution

on the decomposition that we can interpret as the sign of a location where

the two functions are different.

By being able to distinguish the locations where the target function and

the approximation are similar we can decide when to look at f1 to have

some information about f2. This is specially convenient since we are able

to evaluate f1 more easily.

The algorithm starts with a q − t0 decomposition of f1, f2 and fd, ini-

tiated at resolution j0. It is a coarse to fine procedure that starts at j0

and looks for wavelets with locations k such that d̂
(1)
j0,k
6= 0, d̂

(d)
j0,k

= 0 and

d̂
(2)
j0,k

= 0. If there is such a combination of resolution and location we

add p observations of f2 on the support of w
(2)
j0,k

and erase the children of

w
(1)
j0,k

from the search. The selection process is repeated for the next res-

olutions j0 + 1, j0 + 2, ... Once we have looked in all the resolution of the

first decomposition, we make a new one and start again. This is algorithm

5 below.

So, to add additional observations we run algorithm 4 on f1, f2 and

126



fd and allocate them at the zones in which we haven’t explored f2; the

difference is small and f1 has q − t0 selected wavelets. This is d̂
(2)
j0,k

= 0,

d̂
(d)
j0,k

= 0 and d̂
(1)
j0,k
6= 0 that is noted Kj := K

(1)
j ∩

(
K

(d)
j

)c
∩
(
K

(2)
j

)c
.

Algorithm 5 Multi-fidelity adaptive wavelets sequential design.

1: procedure
2: Fix j0 and q.
3: while Evaluation budget lasts do
4: Apply algorithm 4 to (X1, y1,n1), (X2, yd,n2) and (X2, y2,n2).
5: Set j ← j0.

6: Build Kj := K
(1)
j ∩

(
K

(d)
j

)c
∩
(
K

(2)
j

)c
.

7: while Kj 6= ∅ do
8: For all k ∈ Kj

9: add p points to the support of w
(2)
j,k and

10: erase the children of w
(1)
j,k from K

(1)
j+1.

11: Set j ← j + 1.

12: Build Kj := K
(1)
j ∩

(
K

(d)
j

)c
∩
(
K

(2)
j

)c
.

13: Form the new data sets (X2, yd,n2) and (X2, y2,n2) adding the new
14: evaluations.
15: return K

(1)
j , K

(d)
j and K

(2)
j .

The following example shows how the algorithm works. We consider

two functions f1 and f2 made up of three parts. They are identical on the

first third. On the middle, the approximation f1 is a shifted version of the

target f2. Finally, on the right f1 represents a coarse approximation. The

two functions are shown on figure 5.7.

We sample the two functions on the same input set on the left. On the

middle, where the difference is small,we sample f2 at 1 every 10 inputs at

which we sample f2. On the third part there we sample f1 three times

more than f2. We use Daubechies wavelets.

Figure 5.9 shows the q− t0 selected wavelets of three steps of algorithm

5. We can see in panel 5.9a that the maximal resolution is 7. The first

127



Figure 5.7: The two functions f1 and f2, are sampled at the dots shown in the plot. On the
middle f1 is a shifted up version of f2. The right part of f1 represents an approximation
of f2.

resolution at which we add points is 5. With this in mind we see that the

selected wavelets on the decomposition of f1 are the first 20 out of the 32

at resolution 5. For f2, we select the first 11, that corresponds to the first

third, and some at the end of the second third, 19 through 24. We see

that the difference in these locations is zero. We add the points,and after

a new q − t0 selection figure 5.9b is obtained. We see that some wavelets

at resolution 5 were chosen.

The next search is mainly focused on the resolution 6. We see that some

wavelets at this resolution were added in step 3 in 5.9c. The reconstruction

using these wavelets is shown in figure 5.8 below.

By using this type of decomposition we obtain detailed information

about the data at different scales and locations. At each step, we can

identify zones with potential need of further local refinement and use this

information to add observations. The selected wavelets give a picture of

the relationship between the three functions.

A drawback of this method is that it requires a large number of obser-

128



Figure 5.8: Final data set for f2 and the predicted function on [0, 1].

vations and this situation deteriorates for high dimensional inputs where

wavelets are built as tensor products. When the budget for observations is

small, choosing a more simple wavelet, like Haar’s, can be an alternative

to explore the functions.

5.3 Conclusion

Adaptive Wavelet decomposition. In this chapter we introduce an

algorithm based on a very particular decomposition that adds wavelets at

higher resolutions sequentially.

The algorithm uses the number of points q and the size of the estimated

wavelet coefficients. The number of points tells us where the functions are

unexplored and the size of the coefficients the local smoothness.

Sequential design. In the multi-fidelity part we consider two data sets

generated by two unknown functions f1 and f2. By using the information

of the adaptive wavelet decomposition we learn the difference between the

two functions fd. We use f1 to explore zones where we have not explored

129



f2 and where the difference is small. Then, we add observations in the

support of the selected wavelets at a precise scale and location.

The algorithms presented in this chapter give a picture of the zones, of

an unknown function, of local regularity and the zones that could be inter-

esting to explore. By applying this ideas to multi-fidelity it is possible to

localize the differences between the data sets. This tools are an alternative

to the Gaussian models that needs a lot of observations and that is difficult

to apply in dimensions bigger than 2. They could be used to explore and

understand complicated data sets, their differences and relationship.

130



(a) Step 1. (b) Step 2.

(c) Step 3.

Figure 5.9: Selected wavelets for the three functions f1, fd and f2. Each panel represents
a step of algorithm 5.

131



Chapter 6

Discussion

In this chapter we summarize the contributions of this thesis. Then, the

limitations of this study are mentioned and we rise some questions related

to the models studied.

6.1 Summary of the contributions

The main contribution of this thesis is to propose two new multi-fidelity

regression models.

Gaussian processes model. The first one is based on modeling each

data set and their differences by using Gaussian processes. We focused

on studying the relationship between two successive levels of fidelity. In

chapter 2 we extend the models of [30, 35] to the case of a polynomial

relationship. Then, in chapter 3 we consider a model in which the relation-

ship is unknown and estimated using locally linear polynomials. We show

that by estimating the relationship we can incorporate data that would be

useless otherwise.

Nested designs and EM. All of these extensions kept the sequential

prediction property under the condition of nested input sets. In chapter 4

we propose an algorithm to build this nested sets by using the entropy of the

132



outputs and in chapter 2 we proposed an EM type algorithm to extend all

of the models above to the case of disjoint input sets. Finally, we provided

simple proofs that showed that the sequential prediction property is due

to the independence structure of the processes involved and not the fact

that we are working with Gaussian processes.

Adaptive wavelets. The second model is an adaptive multi-fidelity

regression technique based on a particular wavelet decomposition proposed

in [8]. In chapter 5 we propose a sequential algorithm that uses the different

data sets to explore an unknown function in the zones where it varies

the most. An adaptive design algorithm based on this concepts allocates

observations at specific locations.

We describe and analyze a multi-fidelity case study motivated by a

practical problem of importance in France: the aging of nuclear power

plants. Each one of the three outputs we study is a different multi-fidelity

example: for G there is a linear relationship between levels; for W the

relationship is nonlinear and L is an example in which it is difficult to use

the approximate data to improve the prediction.

6.2 Limitations

Estimating the relationship. The theoretical properties of the locally

linear estimator of chapter 3 are not studied. It is not clear what types of

relationship are possible to estimate efficiently. This is an important step

that needs to be taken to find out about the possible limits of this method.

Nested designs. A more in detail study of the performance of the

Dmax design strategy has to be done. In some preliminary studies it gives

better results in lower dimensions.

Case study. The conclusions about the influence of the parameters and

their interactions should be explored further in the simulator to possibly

133



find a satisfactory physical explanation of the results.

The fact that the mesh size affected the influence of the parameters

was not explored. This could be crucial to accelerate the study of these

complex simulators.

Adaptive wavelets. This method has to be studied more extensively.

We have only shown one dimensional examples in which the data is sampled

from known functions. This method should also be tested in examples

where the objective is not prediction but to explore complicated data sets

and their relationships. This could be applied to classification.

6.3 Open questions

New locally linear estimator. The locally linear regression problem

presented in chapter 3 is different from the ones found in the literature: the

inputs - in this case the coarsest fidelity level - and the observation errors

- this is the difference process - have a complicated covariance structure.

A first step to understand this nonparametric regression problem would

be to compute the asymptotic bias and variance of the estimator. It turns

out that the asymptotic bias is the same as the one of the usual locally

linear estimator built using iid observations. Computing the variance is

the difficult part mainly because of the covariance structure of the inputs.

Relationship between two fidelity levels. Sometimes the relation-

ship between the outputs of two successive fidelity levels is not a func-

tion. Figure 6.1 shows the relationship between the maximum pressures

p(K,n∗; 20) and p(K,n∗, 40) of chapter 3. A possible extension of the

method would be to estimate the relationship using other non parametric

techniques like the nonparametric modal regression described in [10] or

functional data analysis like in [46].

Order of fidelity. Throughout the thesis we assumed that we were

134



Figure 6.1: Pairs (p(K,n∗; 20), p(K,n∗, 40)) of the numerical example in chapter 3.

given a series of data sets ordered by their fidelity. This order can arise

naturally in for example the numerical solution of a differential equation,

but in general it is not clear how to choose it. For the Gaussian process

case, we showed that the recursive prediction formulation is a consequence

of the independence structure of the model. The problem of learning the

dependence structure of a model is one of the main subjects of the Prob-

abilistic Graphical models literature - see [31]. A Probabilistic Graphical

model is a way of encoding a dependency structure by using a graph. We

can choose the graph that maximizes a score. The most simple way of

computing a score is to compute the log-likelihood of the data for a given

graph. In our case, since we work with few data sets and we know what

type of dependency we are looking for, we can search on the whole space

of possible models and choose the best.

Finding the dependency structure and thus the order of fidelity can be

a goal in itself. Determining which data sets are the closest can have dif-

ferent applications. Finally, these methods can be used to find dependency

structures that are more complex than the ones we studied in this thesis.

135



Study of the adaptive wavelet decomposition algorithm. The

original adaptive wavelet regression algorithm was proposed for B-Spline

wavelets. These are a very particular type of multi-resolution analysis in

which the scaling and wavelet functions are piecewise polynomials with an

explicit formula. The question of whether the minimization problem to find

the coefficients of the decomposition has a solution has only been answered

for B-Splines. The solution depends on the fact that the observations

should be well distributed and this can be easily defined for piecewise

polynomials.

Also how to choose the parameters of this particular algorithm is also

an open problem even for the one data set case. For the number of points

q we could use a cross validation approach in which we consider a risk

function with a penalty term on the number of points in the support of the

wavelets - something similar is done to prune a tree grown by methods like

CART or MARS [27]. This is something we cannot do to fix the coefficient

size parameter t0. For this parameters we can try several different values

and choose the best result.

6.4 Conclusion

Using approximate information about an output to improve its prediction

is an interesting and fairly unexplored subject. Multi-fidelity regression

should be expanded and applied to more practical cases. However, deter-

mining which kind of data can be incorporated to enhance the prediction of

an objective remains an open problem. I hope that the techniques explored

in this work will help in the understanding of this question.

136



Appendix A

Gaussian processes and Bayesian es-

timation

A.1 Definitions

We define Gaussian vector as follows.

Definition 1. A Gaussian vector is a vector of random variables such that

any linear combination of its coordinates has a Gaussian distribution.

When we work with a Gaussian vector Yn := [Yx1, ..., Yxn]T , we note

EYn the vector with means in each coordinate [EYx1, ..., EYxn]T and Γ(n)

its covariance matrix. If |Γ(n)| := det(Γ(n)) 6= 0, we note Λ(n) the inverse

Γ(n)−1. The density function of the vector at yn is

fYn(yn) =

1

(2π)n/2|Γ(n)|1/2
exp

(
−1

2
(yn − EYn)TΛ(n)(yn − EYn)

)
.

A Gaussian process is defined using Gaussian vectors as follows.

Definition 2. A Guassian process is a random process {Yx : x ∈ X} such

that for any finite n and any set of indexes {x1, ..., xn} in X , the vector

[Yx1, ..., Yxn]T is a Gaussian vector.

137



A Gaussian process is entirely defined by the mean function x 7−→ EYx

and the covariance function (x, x′) 7−→ Cov(Yx, Yx′).

In the manuscript we consider covariances that depend only on the in-

dexes so we write Cov(Yx, Yx′) = Γ(x, x′). Given a vector Yn := (Yx1, ..., Yxn)T

we note Γ(n, x) the vector of covariances with entries Γ(xi, x), i ∈ {1, ..., n}.

A.2 Bayesian estimation for Gaussian processes

Here we assume a parametric form for the mean and covariance functions

of a Gaussian process. We give the formula for the prediction error for the

case in which the mean parameters are unknown.

Before writing the explicit formula for the prediction error we are look-

ing for we prove a very useful proposition taken from the book Pattern

Recognition and Machine Learning by Christopher Bishop [5].

Proposition 4. We consider two Gaussian random vectors defined as

X ∼ N(µ0,Γ0)

Y |{X = x} ∼ N(Ax+ b,Γ).

Then,

Y ∼ N(Aµ0 + b,Γ + AΓ0A
T ).

Proof. We note Λ0 and Λ the matrices Γ−1
0 and Γ−1.

The way you prove this is by first figuring out what is the joint distri-

bution of X and Y . We note Z := [X, Y ]T , z := [x, y]T and write

fZ(z) = fY |X(y|x)fX(x).

You can check that the product of the density functions of two Gaussian

random variables is Gaussian. Then, Z has a Gaussian distribution.

138



With this in mind we take the logarithm of fZ(z) to get

log fZ(z) = log fY |X(y|x) + log fX(x)

= −1

2
(y − (Ax+ b))TΛ(y − (Ax+ b))

− 1

2
(x− µ0)

TΛ0(x− µ0) + rest.

We are only interested in the first two terms. To identify the covariance

matrix of Z we look at the quadratic terms in x and y. They are

−1

2
(yTΛy − yTΛAx− xTATΛy − xTATΛAx)− 1

2
(xTΛ0x).

We rewrite them using a matrix notation to get

−1

2

[
x

y

]T [
ATΛA+ Λ0 −ΛA

−ATΛ Λ

]
︸ ︷︷ ︸

R

[
x

y

]
.

The covariance matrix of Z is R−1. By using the block wise inversion

formula we can write R−1 as[
Λ−1

0 Λ−1
0 AT

AΛ−1
0 Λ−1 + AΛ−1

0 AT

]
.

To get the formula for the mean of Z we look at terms that look like
1

2
ZTRE[Z], this is linear forms with x or y on the left. They are

1

2
(yTΛb− xTATΛb) +

1

2
(xTΛ0µ0).

In matrix form

1

2

[
x

y

]T [
−ATΛb+ Λ0µ0

Γb

]
.

139



From this expression you can figure out that

EZ = R−1

[
−ATΛb+ Λ0µ0

Λb

]

=

[
µ0

Aµ0 + b

]
.

Finally, we have the whole distribution for Z. It is[
X

Y

]
∼ N

([
µ0

Aµ0 + b

]
,

[
Λ−1

0 Λ−1
0 AT

AΛ−1
0 Λ−1 + AΛ−1

0 AT

])
.

This gives in particular the distribution of Y .

We consider a Gaussian process {Yx : x ∈ X}. We assume that its mean

function can be written as f(x)Tµ where f(x) is a vector of known functions

and µ is a vector of unknown parameters. The covariance Cov(Yx, Yx′)

or Γ(x, x′) is defined as σ2γ(x, x′; θ) for a vector of parameters θ and a

parameter σ2.

To have a more simple notation we assume that σ2 and θ are known.

We know the distribution of Yx|{Yn = yn,M = µ} and we want to compute

that of Yx|{Yn = yn}.

To do this we first assign a prior normal distribution to M and we

compute the posterior distribution of M |{Yn = yn}. Since

fM |Yn(µ|yn) ∝ fYn|M(yn|µ)fM(µ)

we are interested in the following distributions

M ∼ N(µ0,Γ0)

Yn|{M = µ} ∼ N(F (n)Tµ,Γ(n)).

Where we set the distribution of M to be Gaussian and F (n) is a matrix

with columns f(xj) for j between 1 and n. Now we can expand the product

140



of distributions fYn|M(yn|µ)fM(µ). We look at the exponents

−1

2
(yn − F (n)Tµ)TΛ(n)(yn − F (n)Tµ)− 1

2
(µ− µ0)

TΛ0(µ− µ0)

In the quadratic terms we identify the covariance matrix

ΓM |Yn := (F (n)Λ(n)F (n)T + Λ0)
−1

and we look at the linear terms to find the mean

µM |Yn := ΓM |Yn(F (n)Γ(n)yn + Λ0µ0).

To find the predictive distribution of Yx given {Yn = yn} we begin by

working with

Yx|{Yn = yn,M = µ} ∼ N(Ŷx, Γ̂(x, x)).

First we rewrite the mean to match the distributions in the proposition.

Ŷx = f(x)Tµ+ Γ(n, x)TΛ(n)(yn − F (n)Tµ)

=
(
f(x)T − Γ(n, x)TΛ(n)−1F (n)T

)
µ+ Γ(n, x)TΛ(n)yn

= Aµ+ b.

Then, Yx given {Yn = yn} is

N(AµM |Yn + b, Γ̂(x, x′) + AΓM |YnA
T ).

This is a Bayesian description of the distribution when the mean parameter

is unknown and we use a Gaussian prior.

A.2.1 Some prior distributions and their posteriors

Below we list some popular choices for the prior distributions for GP regres-

sion. We write a non informative and a conjugate prior for the inference

on M and (M,Σ2).

141



For the mean parameter

M ∼ 1

M ∼ N(µ0, σ
2
0)

For the joint distribution of the mean and variance parameters the non

informative prior is

(M,Σ2) ∼ 1/Σ

and the conjugate priors are

[M |Σ2 = σ2] ∼ N(µ0, σ
2)

[1/Σ2] ∼ Gamma(a = v0/2, λ = S0/2).

In this case the non informative priors are not pdfs because they do not

integrate to 1.

Posterior distributions

The posterior distributions for the mean are

[M |Yn] ∼ N(µ̂MLE(θ), σ2(1Tλ(n; θ)1)−1)

[M |Yn] ∼ N(µM |Yn,ΓM |Yn).

Where µM |Yn and ΓM |Yn were computed in the section above and we replace

F with 1.

The variance for the mean posterior is the variance of µMLE(θ). The

mean of the Gamma posterior is 1/σ̂2
MLE and variance

For the non informative priors on the mean and variance parameters we

142



have

[M,Σ2|Yn] ∼ N(µ̂MLE(θ), σ2(1Tλ(n; θ)1)−1)

[1/Σ2|Yn] ∼ Gamma

(
n− 1

2
,

2

(n− 1)σ̂2
MLE(θ)

)
.

and for the conjugate priors

[M |Σ2 = σ2, Yn] ∼ N

(
µ0 + nȲn
n+ 1

, (n+ 1)σ2

)
[1/Σ2|Yn] ∼ Gamma

(
v0 + n

2
,
S0 + S + n(µ0 − Ȳn)2

n+ 1

)
.

Predictive distributions

For the inference on the mean we use the proposition at the beginning of

the appendix. We get

[Ŷx|Yn] ∼ N
(
AµMLE(θ) + b, Γ̂(x, x′) + σ2A(1Tλ(n; θ)1)−1AT

)
(A.1)

for the non informative prior. We already derived the distribution for the

conjugate prior. It is

[Ŷx|Yn] ∼ N(AµM |Yn + b, Γ̂(x, x′) + AΓM |YnA
T ).

The other two predictive distribution that can be derived are the one re-

lated to the priors on (M,Σ2). They are a multivariate Stundent-t distri-

bution whose mean is the same as first the one in A.2.1 but with a different

variances.

143



Appendix B

A short introduction to Wavelets

B.1 Building wavelets and the refinement equation

Here we use filters to understand how wavelets are built. The main ref-

ferences for this part are the courses of Linear Algebra and Computa-

tional Science and Engineering I by Gilbert Strang [51], [52] as well as the

article Orthonormal Bases of Compactly Supported Wavelets by Ingrid

Daubechies [14].

B.1.1 Multiresolution Analysis

We define a way of looking at a function f in L2(R). The idea is to write

f as the limit of successive approximations. Each approximation defines a

resolution and hence the name.

Multiresolution starts with a family of nested spaces of functions.

V0︸︷︷︸
Coarse

⊂ V1︸︷︷︸
finer

⊂ V2︸︷︷︸
even finer

⊂ · · ·

This succession is such that
⋃
j Vj is dense in L2(R). To build them we

start with V0. It is defined as the space spanned by all the translates k ∈ Z

144



of a unique function φ(x − k) called the scaling function. In particular

we require that for any φ ∈ L2(R) such that φ ∈ V0, then for all k ∈ Z,

φ(·−k) ∈ V0. The projection of f into V0 represents a coarse approximation

or, in other words, V0 represents the coarsest resolution.

The next space contains all the linear combinations of φ(2x − k) for

k ∈ Z and j-space Vj is spanned by all the φj,k(x) := φ(2jx− k). For this

to make sense we need that φj,k ∈ Vj if and only if φj+1,k ∈ Vj+1.

A multiresolution analysis is the succession of subspaces Vj that satisfy

the properties above. Namely,

(1)
⋃
j Vj is dense in L2(R).

(2) Any φ ∈ L2(R) that is also in V0 is such that for all k ∈ Z, φ0,k ∈ V0.

(3) φj,k ∈ Vj if and only if φj+1,k ∈ Vj+1.

(4) There exists a function φ such that its translates are a basis for V0.

For the first example, we build the succession of spaces Vj by defining

φ(x) as equal to 1 in [0, 1] and 0 elsewhere. Then, V0 is the set of piece-wise

constant functions on unit intervals and V1 has piece-wise constant func-

tions on half intervals. In this example the idea of resolution becomes clear:

As j increases we get a better idea of f up to resolution 2−j, the size of

the support of φj,k(x) = φ(2jx− k). Figure B.1.1 shows the reconstruction

of a function in Vj on top and one in Vj+1 at the bottom.

This construction has several good properties that we would like to keep

like the fact that all the translates of the scaling function are orthogonal

and compactly supported. But one big drawback is that this decomposition

is very poor at approximating smooth functions.

145



Figure B.1: Top: reconstruction of the red curve using constant piece wise functions on
intervals twice as big as the ones used on the bottom figure.

B.1.2 The refinement equation

We need different multiresolution spaces when f is smooth. The key idea

to understand how to build a new multiresolution succession is given by

the fact that V1 contains V0. This means that in particular we can write

that

φ(x) = 2
∞∑

k=−∞

h0(k)φ(2x− k)

for some coefficients h0(k). This relationship is called the scaling equation.

It is the discrete convolution of h0 with φ(2x). We are filtering when we pass

from one resolution to next. In order to understand what we would like to

filter lets go back to φ equal to 1 on [0, 1] and zero everywhere else. For this

example you can see that φ(x) = φ(2x) +φ(2x−1) so that h0(0) and h0(1)

146



are 0.5 and the rest of the entries are 0. This h0 = (...0, 0.5, 0.5, 0, ...) defines

a low pass filter. From now on we will only write the nonzero coefficients of

the filter for short. With this notation h0 = (...0, 0.5, 0.5, 0, ...) =: (0.5, 0.5).

What type of filter is h0? If h0 is a low pass filter then it should leave

unchanged low frequency oscillating signals like the constant signal xk = 1

for all k ∈ Z. This is true: the resulting signal is y = (x ∗ h0) where

yk =
∑∞

l=−∞ h0(l)xk−l = 0.5 · xk + 0.5 · xk−1 = 1. This filter also sets to 0

fast oscillating signals like xk = (−1)k since yk = 0.5 · xk + 0.5 · xk−1 where

two successive terms of xk have alternating signs.

To test all the remaining frequencies we compute the convolution with

xk = eisk where s, the frequency, is between −π and π. The resulting signal

has entries yk = 0.5·eisk+0.5·eis(k−1) that we can write as 0.5·eisk(1+e−is).

We note H0(s) = 0.5 · (1 + e−is). When we input a pure frequency eisk we

get H0(s)e
isk. We plot the magnitude of this function in figure B.2.

|H0(s)|

−π

1

π
s

-t0 t0

Low(s)

Figure B.2: The magnitude |H0(s)| is plotted in red. The black function is an ideal low
pass filter that cuts the signal at ±t0.

So in order to build the succession of Vj’s we use a low pass filter suc-

cessively. Notice that this low pass filter is far from ideal. We would like

to have a plot shaped as a box like Low(s).

When we pass from one resolution to another we filter the high frequen-

cies. Wavelets will capture the high frequencies. They are define by a high

pass filter that we note h1. For our running example the low pass filter

was defined by the averaging yk = 0.5 · xk + 0.5 · xk−1, the high pass filter

is given by the difference yk = 0.5 · xk − 0.5 · xk−1. The coefficients are

h1(0) = 0.5, h1(1) = −0.5 and 0 elsewhere. H1(s) is equal to 0.5 · (1− e−is)
and looks like the red curve below.

147



|H1(s)|

−π

1

π
s

-t0 t0

High(s)

Figure B.3: The magnitude |H1(s)| is plotted in red. The black function is an ideal high
pass filter that cuts the signal inside [−t0, t0].

We build wavelets w by using the following scaling equation

w(x) = 2
∞∑

k=−∞

h1(k)φ(2x− k).

We have w(x) = 2(0.5 · φ(2x) − 0.5 · φ(2x − 1)) for φ equal to the box

function. In this case, w is a function that is 1 on the first half interval

and −1 on the second. It looks like a local wiggle as shown on figure B.4.

In general we choose h1(k) as (−1)kh0(k). This is sufficient to assure that

0 1

φ(x)

x 0
1

w(x)

x

Figure B.4: Haar’s scaling and wavelet functions, φ and w.

the translates of the resulting wavelets constitute a basis of the orthogonal

space of V0 in V1, see [14]. This is Haar’s multiresolution analysis. Finally,

if we note W0 the space of wavelets, we have that V1 = V0 ⊕W0. And if

we push this idea to the limit, we have L2(R) = V0⊕W0⊕W1⊕ · · · . The

function f can be written as a linear combination of the basis of V0 plus

linear combination of the bases of the Wj’s like

f(x) =
∞∑

k=−∞

ck φ(x− k) +
∞∑
j=0

∞∑
k=−∞

dj,k w(2jx− k).

In the general case we use the same decomposition as the one above

but we use a different h0 and a different h1. As we discussed before we

can decide the form of the filter by looking at the Fourier transforms of

148



h0 and h1. Once they are fixed we try to determine whether the scaling

equation has a solution. If it does, we look at the properties of the spaces

we obtain. In the next section we will see that in order to understand a

multiresolution analysis succession we only need to look at the filters h0

and h1.

B.2 w(x) for every x

To define a scaling function and a wavelet, we need to select two filters,

h0 and h1. We argued that picking h0 = (0.5, 0.5) and h1 = (0.5,−0.5)

was not suited to represent smooth functions. In this section we will look

at other filters and we will explain why is it difficult to compute φ(x) and

w(x) at any given point.

B.2.1 Filters or functions?

An interesting example begins with the sequence h0 = (0.25, 0.5, 0.25).

Applying this type of filter is the same as averaging. If you look closely to

h0 you can see that this filter is a centered average: 0.25(xk+1 +2xk+xk−1).

As expected this gives rise to a more regular scaling function, the hat

function ∧.

∧(x)

0 1 2

1

x

Figure B.5: Convolution of two Haar scaling functions.

The function ∧ and h0 are related in many ways. First, the regularity.

Then, it is also interesting that the two have the same support length,

3. Furthermore, the convolution (h0 ∗ h0) = (1, 4, 6, 4, 1)/16 gives (∧ ∗ ∧)

which are cubic splines, as a scaling function. It is fair to ask whether it is

149



necessary to define φ and w explicitly or if having h0 and h1 is enough to

make a multiresolution analysis.

It turns out that many properties of a multiresolution analysis depend

on the filters and the most important examples of wavelets are not defined

explicitly as it is easier to work with h0 and h1 directly. For example one

of the Daubechies filters has non zero entries proportional to 1 +
√

3, 3 +√
3, 3 −

√
3, 1 −

√
3. Computing w(x) for any x requires some additional

work. We look a the conditions needed to solve the scaling equation.

In [15] I. Daubechies studies the conditions on h0 under which the scaling

equation has a solution. To understand the conditions we compute the

Fourier transform of the scaling equation:

F(φ)(s) = 2
∞∑

k=−∞

h0(k)

∫
φ(2x− k)e−ixsdx

=

(
1

2

∞∑
k=−∞

2h0(k)e−ik
s
2

)(∫
φ(u)e−iu

s
2du

)
= P

(s
2

)
F(φ)

(s
2

)
By repeatedly using the scaling equation on ϕ we have that

F(φ)(s) = P
(s

2

)
P
( s

22

)
· · ·P

( s
2j

)
F(φ)

( s
2j

)
.

The conditions for the existence of a solution of the scaling equation

depends on the limits

lim
j→∞

P
( s

2j

)
= P (0) =

∞∑
k=−∞

h0(k)

lim
j→∞
F(φ)

( s
2j

)
= F(φ)(0) =

∫
φ(x)dx

Theorem 2.1 of [15] states that if P (0) = 1 then, there is a non-trivial

150



solution to the scaling equation. Furthermore, F(φ)(0) 6= 0 and φ has a

compact support (in fact it has the same support as h0 see lecture 6 of [2]).

We can see that in order to build a multiresolution analysis framework

we can work directly with h0 and h1.

A more precise description of the relationship between h0 and φ can

be found in the course Time-Frequency and Wavelet Analysis by Selin

Aviyente [2] and Two-Scale Difference Equations I and II by Ingrid Daubechies

and Jeffrey Lagarias [15] and [16].

B.2.2 Iterative approximations for φ(x) and w(x).

We need to evaluate φ(x) and w(x) at any x. All the results below can be

found in [15] and [16] and in a report by Brani Vidakovic [7].

Here we consider that we are given a scaling equation that can be solved

and whose solution φ is compactly supported. If the values of φ(n) are

known for all n ∈ Z, then it is possible to compute the values of φ(n/2j)

for any j ∈ N, by using a recursive procedure.

We use the scaling equation to define the linear functional V φ described

bellow.

V ϕ(x) =
∞∑

k=−∞

h0(k)φ(2x− k).

We note ϕj+1 = V ϕj where the initial function ϕ0 is fixed in advance. The

choice of ϕ0 will link this equation to spline theory.

If you set φ0 as an interpolating linear spline with knots n ∈ Z, φj is a

linear spline with knots on points of the form n/2j. The values of φj(n/2
j)

are the values of φ at the same points. Finally, φj converges to φ. If φ0 is

a spline with m continuous differentials then the differentials, up to order

m, of φj converge to those of φ. This results are given in theorems 4.1 and

151



4.2 of [15].

To evaluate φ at any point we look at the functional V and use theorem

2.2 of [16]. Here we do not need to know the values of φ at any point: We

apply V successively but the initial entry is given by the scaling equation

directly.

The initial entry for the recursive approximation is given by a matrix

M . For a filter with N non zero entries it is defined as the (N−1)×(N−1)

matrix with entries h0(2i− j).

M =


h0(1) h0(0) 0 0 · · · 0

h0(3) h0(2) h0(1) h0(0) · · · 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · h0(N) h0(N − 1)

 .

The initial entry in the recursive approximation is defined by the eigen-

vector a with eigenvalue 1 of M . It is the N − 1-vector with coordinates

an−1(1−x) +anx for n = 1, ..., N − 1. We define v0 by adding a0 = aN = 0

to this eigenvector.

We apply V to v0 successively. This can be encoded in a convenient

way by using two matrices T0 and T1 and the dyadic expansion of x. The

two matrices have one more row and column than M . In fact, it contains

M . The entries of T0 are h0(2i− j − 1) and those of T1 are h0(2i− j) with

i, j ∈ {1, ..., N}.

If we note d1(x), d2(x), ... the coefficients of the dyadic expansion of x,

theorem 2.2 of [16] implies that the infinite product of matrices satisfies

Td1 · Td2 · · ·Tdn · · · =


φ(x) · · · φ(x)

φ(x+ 1) · · · φ(x+ 1)

· · · · · · · · ·
φ(x+N − 1) · · · φ(x+N − 1)

 .
152



if maxdj=0,1 j=0,...,m ‖Td1 · Td2 · · ·Tdm|E1
‖ ≤ Cλm for some λ < 1. Where E1

is the orthogonal space to the left eigenvalue (1, ..., 1) of T0. Also if we note

ϕj(x) the jth iteration of V , then we have that it converges to the solution

of the scaling equation and ‖φj − φ‖ ≤ C2−j| lnλ
m|/ ln 2.

B.3 Filter bank

We can build a multiresolution succession from two filters. Now, we com-

pute the multiresolution decomposition of a function f provided we know

the values of f over some discrete grid of inputs.

In the next section we explain the filter bank algorithm introduced by

Stéphane Mallat in A Theory for Multiresolution Signal Decomposition:

The Wavelet Representation [38].

B.3.1 The filter bank algorithm

Given a function f we want to compute the coefficients of its multiresolu-

tion decomposition. The filter bank algorithm consist in taking a series of

averages and differences by using the filters used to build the multiresolu-

tion analysis.

We suppose that we know f over a dyadic grid of 2J points. For ex-

ample consider that f is equal to y = (9, 7, 4, 8). Then, J = 2 repre-

sents the maximal resolution. Suppose that we use h0 = (0.5, 0.5) and

h1 = (0.5,−0.5). Then, to compute the resolution 1 representation of y we

write (0.5 · 9 + 0.5 · 7, 0.5 · 4 + 0.5 · 8) which is (8, 6). The difference is given

by applying h1 to y. At resolution 1 we have that the difference is (1,−2).

We continue to take averages and differences until we reach resolution

0. In the example, we have that at resolution 0 we get 7 for the average

and 1 for the difference. Finally, since V2 = V0 ⊕W0 ⊕W1 we can write

153



that y = (7, 1, 1,−2).

How is it that the outcome of the algorithm in the last paragraph is

a signal when we were looking for the coefficients of the decomposition?

What we actually do is we assume that the data we are given comes from a

function at some maximal resolution J . Then, we take averages according

to the filter we choose. To compute the difference between two successive

resolutions we use h1. This means that we are applying the filter directly

to the coefficients.

More precisely, let f be a function in VJ . Then, since VJ = VJ−1 ⊕
WJ−1 we can write f as the sum of the projections into each of the two

spaces. We note PJ−1 and QJ−1 the projections into VJ−1 and WJ−1. Then

f = PJ−1f + QJ−1f . We can write each of the projections using their

corresponding basis expansion

PJ−1f =
∑
k

cJ−1,k φJ−1,k

QJ−1f =
∑
k

dJ−1,k wJ−1,k.

where φj,k(x) = φ(2jx− k) and similarly for wj,k.

Now we focus on PJ−1f . If the ϕJ−1,k’s are orthonormal, then cJ−1,k =<

φJ−1,k, PJ−1f >L2. This expression is the same as
∑

l cJ,l < φJ−1,k, φJ,l >L2

since PJ−1f is in VJ−1. Finally we have that

< ϕJ−1,k, φJ,l >L2 =

∫
φJ,k(0.5 · x− k)ϕJ,l(x− l)dx

=

∫
φJ,k(0.5 · u)φJ,l(u− (l − 2k))dx

= h0(l − 2k).

In conclusion, we can write the coefficients at resolution J−1 by using the

154



formula

cJ−1,k =
∑
l

cJ,l h0(l − 2k).

A similar argument can be applied to the wavelets coefficients. This is how

we computed the coefficients above.

By going back to example we notice that we can go from the multires-

olution analysis representation to the original vector by doing the inverse

operations. The differences between two successive resolutions are smaller

than the original entries of y. Removing one difference entry introduces

small errors on the reconstruction of y.

This algorithm does not contain any complicated or costly operation,

we only average and take differences: it is fast. On the other hand, we

need to know the function over a dyadic grid, and the size of the grid

determines the maximal resolution of the decomposition. Since we start at

this maximal resolution and we average or difference our way back to the

resolution 0 sometimes this is called a Fine to Coarse algorithm.

For a very good overview of the filter bank and wavelets the reader can

consult Wavelets for Computer Graphics by Eric Stollnitz, Tony Derose

and David Salesin [50].

155



Bibliography

[1] Arlot, S. and Celisse, A. A survey of cross-validation procedures for

model selection Statist. Surv. Volume 4, pg. 1-274, 2010.

[2] Aviyente S., ECE 802-603, Time-Frequency and Wavelet Analysis,

Spring 2010, http://www.egr.msu.edu/ aviyente/ece802-10

[3] Bachoc, F. Estimation paramétrique de la fonction de covariance dans

le modèle de Krigeage par processus Gaussiens. Application à la quan-

tification des incertitudes en simulation numérique Université Paris-

Diderot - Paris VII, 2013.

[4] Bardina, J.E., Huang, P.G., Coakley, T.J., Turbulence Modeling Val-

idation, Testing, and Development, NASA Technical Memorandum

110446., 1997.

[5] Bishop, C. Pattern Recognition and Machine Learning (Information

Science and Statistics) Springer-Verlag New York, Inc. Secaucus, NJ,

USA 2006.

[6] Bowman, A. W. and Azzalini A. Applied Smoothing Techniques for

Data Analysis Published by Oxford University Press, USA, 1997.

[7] Brani, Vidakovic, Daubechies-Lagarias Algorithm in Matlab,

http://gtwavelet.bme.gatech.edu/

[8] Daniel, Castaño. Adaptive Scattered Data Fitting with Tensor Prod-

uct Spline–Wavelets PhD DissertationUniversität Bonn; 2005.

156



[9] Castaño, D. and Kunoth, A. Robust regression of scattered data with

adaptive spline-wavelets.IEEE transactions on image processing Jun,

6, p. 1621–32, 2006.

[10] Chen Y.-C., Genovese C., Tibshirani R., and Wasserman L. Nonpara-

metric Modal Regression. 2014.

[11] Coste, P. A Large Interface Model for two-phase CFD Nuclear Engi-

neering and Design Vol. 255, pg. 38–50, 2013.

[12] Coste P., Pouvreau, J., Lavieville, J. and Boucker, M. Status of a two-

phase CFD approach to the PTS issue. In XCFD4NRS Workshop,

Grenoble, France. 2008.

[13] Damblin G., Couplet M., and Iooss B. Numerical studies of space

filling designs : optimization algorithms and subprojection properties,

Journal of Simulation. 2013

[14] Daubechies, I. Orthonormal bases of compactly supported wavelets,

Comm. Pure and Appl. Math., 41 (7), pg. 909-996, 1988.

[15] Daubechies, I. and Lagarias J.C. Two-scale difference equations. I.

Existence and global regularity of solutions, SIAM J. Math. Anal., 22

(5), pg. 1388-1410, 1991.

[16] Daubechies, I. and Lagarias J.C. Two-scale difference equations. II.

Local regularity, infinite products of matrices, and fractals, SIAM J.

Math. Anal., 23 (4), pg. 1031-1079, 1992.

[17] Durrande, N., Ginsbourger, D., Roustant O., Carraro, L., ANOVA

kernels and RKHS of zero mean functions for model-based sensitivity

analysis, Journal of Multivariate Analysis, Vol 155, pg. 57-67, 2013,

[18] Duvenaud, D., Nickisch, H., Rasmussen, C. Additive Gaussian Pro-

cesses Neural Information Processing Systems, 2011.

[19] Duvenaud, D. PhD Thesis: Automatic Model Construction with

Gaussian Processes. http://mlg.eng.cam.ac.uk/duvenaud/; 2014.

157



[20] http://www.engineeringtoolbox.com/

[21] Fabre J. and Masbernat L. and Suzanne C., Experimental data set

no. 7: Stratified flow, part I: Local Structure, Multipahse Science and

Technology, Vol. 3, Issue 1-4, pg. 285–301, 1987.

[22] Fan, J. and Gijbels, I. Local Polynomial Modelling and Its Applica-

tions. Chapman and Hall, 1996.

[23] Francisco-Fernández, M. and Opsomer, J. D. Smoothing parameter se-

lection methods for nonparametric regression with spatially correlated

errors. Canadian Journal of Statistics, 33, pg. 279-295, 2005.

[24] Franco, J. Planification d’expériences numériques en phase ex-

ploratoire pour la simulation des phénomènes complexes, PHD thesis,

EMSE, 2008.

[25] http://www.kernel-machines.org/

[26] Ginsbourger D., Nicolas D. and Olivier R. Kernels and designs for

modelling invariant functions: From group invariance to additivity.

mODa 10 - Advances in Model-Oriented Design and Analysis. Contri-

butions to Statistics , pg. 107-115, 2013.

[27] Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statisti-

cal Learning Data Mining, Inference, and Prediction, Second Edition

Series: Springer Series in Statistics 2nd ed., 2009.

[28] Janon, A. Analyse de sensibilité et réduction de dimension. Appli-

cation à l’océanographie. Analysis of PDEs. Université de Grenoble,

2012.

[29] Kaufman, C.G. and Shaby, B.A. The role of the range parameter

for estimation and prediction in geostatistics. Biometrika 100(2), pg.

473–484, 2013.

[30] Kennedy, M and O’Hagan, A. Predicting the output from a complex

computer code when fast approximations are available. Biometrika.

87(1): pg.1-13; 2000.

158



[31] Koller, D. and Friedman N. Probabilistic Graphical Models: Principles

and Techniques (Adaptive Computation and Machine Learning series)

Hardcover – July 31, 2009.

[32] Lam, T-K. and Loh, W-L. Estimating structured correlation matrices

in smooth Gaussian random field models Ann. Statist. Volume 28,

Number 3, pg. 657-960, 2000.

[33] Le Gratiet, L. Recursive co-kriging model for Design of Computer

experiments with multiple levels of fidelity with an application to hy-

drodynamic, International Journal for Uncertainty Quantification, 4

(5), pg. 365–386, 2014.

[34] Le Gratiet, L. Bayesian analysis of hierarchical multifidelity codes.

SIAM/ASA J. Uncertainty Quantification, 1(1), pg. 244– 69; 2013.

[35] Le Gratiet, L. Multi-fidelity Gaussian process regression for computer

experiments. Université Paris-Diderot - Paris VII, 2013.

[36] Hecht, F. New development in FreeFem++ J. Numer. Math., Journal

of Numerical Mathematics, vol. 20, n. 3-4, pg. 251-265, 2012.

[37] Liu, X.-H. Kernel smoothing for spatially correlated data, 2001.

[38] Mallat, S. G. A Theory for Multiresolution Signal Decomposition: The

Wavelet Representation. IEEE Trans. Pattern Anal. Mach. Intell. 11,

7, pg. 674-693, 1989.

[39] Micchelli, C. Xu Y., and Zhang, H. Universal kernels. Journal of Ma-

chine Learning Research, 7, pg. 2651–2667, 2006.

[40] Opsomer, J., Wang, Y. and Yang, Y. Nonparametric regression with

correlated errors. Statistical Science, pg. 134-153. 2001.

[41] Osgood B. G., EE261 The Fourier Transform and its Applications, Fall

2007. http://see.stanford.edu/see/courseInfo.aspx?coll=84d174c2-

d74f-493d-92ae-c3f45c0ee091

159



[42] Qian Z., Seepersad C. C. , Joseph V. R., Allen J. K. and Wu. J. Build-

ing surrogate models based on detailed and approximate simulations.

AMSE, Vol.128, 2006.

[43] Qian, Z and Wu, J. Bayesian hierarchical modeling for integrating low-

accuracy and high-accuracy experiments. Technometrics, 2, Vol.50,

2008.

[44] Quiñonero-Candela, J. and Rasmussen, C.E. A unifying view of sparse

approximate Gaussian process regression. Journal of Machine Learning

Research, 6, pg. 1939–1959, 2005.

[45] Radford, N. Bayesian learning for neural networks. PhD thesis, Uni-

versity of Toronto, 1995.

[46] Ramsay, J. and Silverman, B. Applied Functional Data Analysis:

Methods and Case Studies New York: Springer-Verlag, 2002.

[47] Rasmussen, C E and Williams, C K I. Gaussian processes for machine

learning. The MIT press, 2006.

[48] Selvadurai, A.P.S. Partial Differential Equations in Mechanics 1.

Springer, 2000.

[49] Snoek J., Larochelle H., Adams R. P. Practical Bayesian Optimization

of Machine Learning Algorithms. Advances in Neural Information Pro-

cessing Systems 25, 2012.

[50] Eric J. Stollnitz, Tony D. Derose, and David H. Salesin. Wavelets

for Computer Graphics: Theory and Applications. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1996.

[51] Strang, G. 18.06 Linear Algebra, Spring 2010. (MIT

OpenCourseWare: Massachusetts Institute of Technology),

http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-

spring-2010 (Accessed 22 Jul, 2014). License: Creative Commons

BY-NC-SA

160



[52] Strang, G. 18.085 Computational Science and Engineering I, Fall 2008.

(MIT OpenCourseWare: Massachusetts Institute of Technology),

http://ocw.mit.edu/courses/mathematics/18-085-computational-

science-and-engineering-i-fall-2008 (Accessed 22 Jul, 2014). License:

Creative Commons BY-NC-SA

[53] Van Der Vaart, A., Van Zanten, H. Information rates of nonpara-

metric Gaussian process methods. The Journal of Machine Learning

Research, 12, pg. 2095-2119, 2011.

[54] Wasserman L. All of statistics: a concise course in statistical inference.

Springer, New York, 2004.

[55] Ying, Z. Maximum Likelihood Estimation of Parameters under a Spa-

tial Sampling Scheme Ann. Statist. Volume 21, Number 3, pg. 1119-

1662, 1993.

[56] Zhang, H. Inconsistent Estimation and Asymptotically Equal Interpo-

lations in Model-Based Geostatistics Journal of the American Statis-

tical Association, Vol. 99, No. 465, pg. 250-261, 2004.

161


	Introduction
	Computer experiments
	Prediction
	Multi-fidelity
	Outline of the manuscript

	Gaussian processes and Multi-fidelity
	Prediction and Gaussian processes
	Modeling with Gaussian processes

	Model fitting via parameter estimation
	Maximum likelihood estimation
	Bayesian model selection
	Cross validation
	Gaussian process models

	Multi-fidelity regression with Gaussian processes
	Gaussian processes for multi-fidelity
	Building a multi-fidelity model based on G.P.s

	EM model selection for the case of disjoint set of observations
	Expectation maximization

	Multi-fidelity regression with polynomial relationships
	Conclusion

	Nonparametric Model
	Unknown relationship
	Nonparametric estimation
	Estimating the bandwidth parameter h
	Prediction error

	Illustrative examples
	Conclusion

	Case Study
	Motivation
	Case Description
	First approach: fractional factorial design
	Metamodels tested
	The inputs
	The outputs
	Prediction results and estimated parameters
	Sensitivity analysis

	Conclusion

	Adaptive Wavelets and Multi-fidelity
	Adaptive wavelet decomposition
	Number of points in the support
	Selecting the coefficients
	Some remarks on the adaptive wavelet decomposition algorithm

	Multi-fidelity wavelet adaptive regression
	Conclusion

	Discussion
	Summary of the contributions
	Limitations
	Open questions
	Conclusion

	Gaussian processes and Bayesian estimation
	Definitions
	Bayesian estimation for Gaussian processes
	Some prior distributions and their posteriors


	A short introduction to Wavelets
	Building wavelets and the refinement equation
	Multiresolution Analysis
	The refinement equation

	w(x) for every x
	Filters or functions?
	Iterative approximations for (x) and w(x).

	Filter bank
	The filter bank algorithm



