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Introduction

Transient signal representation Transient signal analysis is a complex problem since signals with very short duration are characterized by a reduced number of samples. Although dierent representations can be used to analyze transient signals, it is dicult to decompose them into appropriate basis functions.

The general aim of this thesis is to propose and investigate alternative analysis methods that explore the transient signals characteristics of exhibiting sudden changes in their parameters. Specically, we consider the general signal representation for a transient signal: (t) (1)

s (t) = A (t) e jΦ
where A (t) is the instantaneous amplitude parameter and Φ (t) is the instantaneous phase parameter. Based on how these parameters change, the thesis studies the following three dierent types of transient signals that are commonly found in real-life applications.

Transient signals characterized by phase discontinuities of a particular order

When the transient signal in (1) exhibits phase discontinuities, then it can be modeled as:

s (t) = k A k e ja k cos(2kπt) (2) 
where A k is the instantaneous amplitude parameter of the K th component and a k is the amplitude of its instantaneous phase parameter.

In particular, the transient signal has multiple components whose instantaneous phase is a high-order (innite) derivable function. The high nonlinearity of this function makes the signal analysis quite complicated, and new representation methods are then required. Such signals are encountered in several applications where the micro-Doppler eect is present, such as radar [STD06, TAR + 07] and acoustics [START_REF] Josso | Caractérisation des milieux sous marins en utilisant des sources mobiles d'opportunité[END_REF].

Transient signals characterized by sudden amplitude changes

Transient signals that are characterized by sudden amplitude changes are usually present in mechanical, electrical, electromagnetic phenomena. Such signals can be given by: where the duration D is assumed much shorter than the signal's observation time, and t 0 is the starting time of the signal. The amplitude function A (t) of the signal in (3) is assummed to have high order derivatives.

The methods proposed in our work will contribute to oer a potential interesting solution, attempting to provide a general analysis framework of such signals.

An example of a transient signal in (3) is the electrocardiogram (ECG) as it is characterized by typical variations of amplitude. Another widely encountered case, that is a major part of our study, is a signal that is observed at a given distance from the source and that consists of not only a transient at the origin (as it is generated by the phenomenon) but also of propagation and receiver processing eects. Two application examples of such signals are as follows:

• Electrical transients × is equivalent to

s (t) = A (t) e jφ(t) h (t)
Figure 1: The propagation of an electrical transient through a cable is really complicated to model due to the diversity of the physical phenomena involved, such as dispersion and reections.

Electrical transient analysis is of capital importance for power networks surveillance. Phenomena that generate such transient signals include partial discharge (PD) (Figure 1) and electrical arches. These phenomena have been extensively studied as they are important for the health management of the power distribution. Some studies strictly attempted to model analytically the transients generated by these phenomena. As in any modeling, the assumptions made are not always valid and this restricts the generalization of these models. In addition, the analysis can be complex as the sensors are often far from the source.

• Acoustic pressure transients in passive congurations Another example of capital importance for hydropower production surveillance is the passive monitoring of hydraulic shocks in penstock pipes (Figure 2). Water hammer is a pressure surge caused when a uid in motion is forced to stop or change direction suddenly. Such pressure surges commonly occur when a valve is closed at an end of a pipeline system, and a pressure wave propagates in the pipe. Although these surges are inevitable, they can be really dangerous if the wave does not propagate as designed by the engineer, resulting in multiple system damages. Some characteristics of the transients are of great interest as they reect the propagation of the shock wave and can reveal if the penstock has been damaged. Transient signals characterized by nonlinear variation of the instantaneous phase

s (t) = A (t) e j(2πf 0 t+Φ(t)) , Φ (t) ∈ C 4 (4) 
Tansient signals whose instantaneous phase varies nonlinearly often appear in real-life applications as typical natural signals. Examples include the signals emitted by bats or mammals [START_REF] Huynh | Classication of underwater mammals using feature extraction based on time-frequency analysis and BCM theory[END_REF] which are well adapted to the propagating environment (Figures 3 and4 1 ).
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Frequency [Hz] 2.85 2.9 2.95 3 3.05 Othe examples include the signals obtained during sensing of an environment (Figure 5),in order to estimate important environment parameters. The transmission and propagation of acoustic transients in environments characterized by distortions such as multipath and Introduction frequency dependent attenuation, are important to study in order to ensure the eciency of acoustic sensing that aims to characterize the environment. Rx s (t) = A (t) e j(2πf 0 t+ϕ(t))

Tx s (t) = A (t) e j(2πf 0 t+ψ(t)) Transient signal analysis approaches

ϕ (t) ∈ C 4
There are several approaches for analyzing transient signals. Three of such approaches include: statistical approach, linear projection-based approach, and data-driven analysis. There are advantages and disadvantages to these dierent approaches, as discussed in Chapter 1. These approaches show the importance of transient analysis in many contexts. Although some of these methods are used for signal detection, other characterizations are also needed to extract additional knowledge for discrimination or classication purposes.

The approaches proposed in our work are included in the three main types and will contribute over a potential interesting solution, attempting to provide a general analysis framework for transient signals. In further chapters, the improvement provided by the proposed techniques will be compared with the state of the art.

Thesis organization

The thesis is organized as follows. In Chapter 1, we discuss three approaches commonly used to analyze transient signals: the statistical approach, linear projection-based approach and data-driven approach.

Then, Chapter 2 adresses the problem of projective approaches for the representation of signals having fast-varying time-frequency components, and is divided into two parts. First part focuses on complex time distributions as a way to produce high concentrated distributions along the dierent phase derivatives of a signal. The actual method presents a major drawback as its utilization is limited to narrow band signals. We propose to expand it to deal with timefrequency structures with larger bandwidth. The second part aims to recover signals having The signal types discussed in the previous section were subject of an uncountable number of works. The description of all the method types is a very dicult and complex task, because of the multitude and the diversity of the existing approaches. Without pretending to provide an extensive classication of the existing techniques, we propose to organize the techniques into three dierent classes of approaches according to the way how the signal behaviour is considered.

Statistical approaches

This very wide analysis domain considers signals as series of samples:

s (t) = {s (t i )} i=1,...,N (1.1) 
and then studies their statiscal properties as if they were random variables. Two well-known measurements that are usually calculated on them are the mean µ and the variance µ 2 dened as follows:

µ = E [s] (1.2) µ 2 = E s 2 (1.3)
where E denotes the average over the probability distribution.

The same way, high order statistics HOS refers to functions which use the third or higher order moment of a sample [START_REF] Lacoume | Statistiques d'ordre supérieur pour le traitement du signal[END_REF]. We dened the n-th order moment µ n of signal s as follows:

µ n = E [s n ] (1.4) 8
Chapter 1. Brief overview of transient analysis methods

Statistic approaches are mainly based on the supposition that transients do not have a Gaussian histogram. This is the feature that distinguished them from noise which is supposed to be Gaussian. As an example, the third moment known as the skewness is a measure of the asymmetry of the signal probability distribution, while the fourth moment (known as kurtosis) refers to its peakedness.

Although the statistical approaches allow us making the consideration concerning the transient nature of signals, being very useful for detection (especially in conjunction with timefrequency and time-scale representation [START_REF] Ravier | Combining an adapted wavelet analysis with fourthorder statistics for transient detection[END_REF][START_REF] Ravier | Wavelet packets and de-noising based on higherorder-statistics for transient detection[END_REF]) the ne characterization of transients is not guaranteed.

Linear pro jection-based approaches

It is in human nature to compare things with what they know. This philosophical statement nds a equivalent in signal processing, materialized by the decomposition of any signal s (t) in a set of elementary functions belonging to a dictionnary D.

s (t) = Θ C Θ ψ Θ (t) (1.5) 
where ψ Θ (t) is the elementary function characterized by the set of parameters Θ and C Θ are the projection coecients showing by their amplitude what is the contribution of ψ Θ (t) in the structure of s (t). These coecients are generally computed by the inner product:

C Θ = s (t) , ψ Θ (t) (1.6) = t s (t) ψ * Θ (t) dt (1.7)
Among the possible innite (large number of choices), let us recall few well-known representation based on the signal projection.

The Fourier transform

The well-known Fourier transform allows to express a signal s (t) in terms of sinusoids of dierent frequencies by using the elementary functions dened as below:

ψ k (t) = e 2jπf k t (1.8)
where f k corresponds to the frequency.

Therefore, the Fourier transform S (f ) of the signal s (t) is calculated as follows:

S (f ) = ∞ -∞
s (t) e -2jπf t dt (1.9)

The major advantage of this central signal analysis tool is that all the frequency content of the signal can be analyzed with the Fourier transform. However, if the studied signal is nonstationary, the frequency content might change over time and then not be the same at two dierent instants of observation. That is, this property limits the study of transient signals; this is why the Short Time Fourier transform was developed in order to analyze the frequency content of nonstationary signals over time.

The Short Time Fourier transform (STFT)

The Short-time Fourier transform (STFT) is one of the most famous time-frequency representation methods used to study nonstationary signals and is a straightforward extension of the Fourier transform. The signal is decomposed in a basis of windowed elementary function dened as:

ψ k,n (t) = h (t -kT ) e 2jπfnt
(1.10)

where T corresponds to the duration of the window h (t).

It enables to evaluate the frequency content of a signal over time. The general formulation is as follows:

ST F T [s (t)] = X (τ, f ) (1.11) = ∞ -∞ s (t) w (t -τ ) exp -j2πf t dt (1.12)
When dealing with the energetic version of the STFT, we speak about the spectrogram:

ρ (τ, f ) = |X (τ, f )| 2 (1.13)
Those representations are really famous for non-stationary signal analysis, however, they still present a drawback materialized by a trade-o between the resolution in frequency and the resolution in time known as the Heisenberg uncertainty [START_REF] Cohen | Time-frequency analysis[END_REF]. If someone wants to obtain a good localization of a phenomenon, he needs to choose a window of small duration that then leads to a poor resolution in frequency. On the contrary, a good resolution in frequency is achieved by a larger window that then provides a bad localization in time. To overcome this limitation, windows can be overlapped to improve the resolutions, but the trade-o would still exists.

The Wavelet Transform

The wavelet transform [START_REF] Mallat | A wavelet tour of signal processing[END_REF]MS95,[START_REF] Daubechies | The wavelet transform, time-frequency localization and signal analysis[END_REF][START_REF] Daubechies | Ten Lectures on Wavelets[END_REF] is used to decomposed a signal s (t) in an orthonormal basis constructed from a family of functions ψ n,m (t) called wavelets:

ψ n,m (t) = 1 √ 2 m ψ 0 t 2m -n (1.14)
where ψ 0 (t) corresponds to the mother wavelet, m is the dilation factor and n is the translation.

The idea is to propose an orthonormal basis that is elaborated from a mother wavelet ψ 0 (t) and its dilated and delayed wavelets. The signal is then projected onto this basis in order to know with which scale and delay the similarity is the most important. It is well-known that a good wavelet representation requires the denition of the appropriate mother wavelet. In order to illustrate this matter, let consider two signals s 1 (t) and s 2 (t) that are related by a low pass ltering and the two following mother wavelets: Symlet and Daubechies (Figure 1.2). As we can see in Figure 1.1, the two signals are really similar because they have almost the same shape and their frequency content are almost identical. The two selected mother wavelets are quite dierent and it seems that the Daubechies wavelet has the closest shape to the analyzed signals. We perform a time-scale decomposition for both signals using the two wavelets. Results are displayed in Figure 1.3. As we can expect, results are quite dierent. By looking at the maximal values, we can detect where are located the signals but both decompositions tell us that the waveform does not t them properly.

W ψ s (n, m) =
As we highlighted with this example, this method requires an a priori knowledge of the waveform we are interested analyzing which can be quite dicult when dealing with more complex waveforms.

Compressive sensing (CS)

Compressive sensing [START_REF] Starck | Sparse image and signal processing: Wavelets, Curvelets, Morphological Diversity[END_REF] has emerged in the work of Candès et al [START_REF] Candes | Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[END_REF][START_REF] Candes | Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies[END_REF], Donoho [START_REF] Donoho | Compressed sensing[END_REF] and Baraniuk [Bar07] and is a sampling model that allows us to go beyond Shannon limit by exploiting the sparsity structure of the signal. The theory asserts that certain signals can be recovered from fewer measurements m than data samples N . It relies on two conditions:

• sparsity: the information contained in the signal can be smaller than its bandwidth and be easily represented in a dictionnary,

• incoherence between the sensing modality and the dictionnary: while the signal need to be sparse in the dictionnary, it also needs to be spread out in the domain where it was acquired. To do so, the sensing vectors need to be as dense as possible in the dictionnary.

If those two conditions are met, CS shows that it is possible to simultaneously sense and compress the signal without acquiring N samples.

Distributions

A particular domain of projective based representation approaches is the one of distributions.

Starting from the projections of instantaneous correlation function s (tτ /2) s * (t + τ /2) on the e jω k t k basis, a broad class Cohen's class [START_REF] Cohen | Time-frequency analysis[END_REF] of distributions has been dened and used. One of these well-known distributions is the Wigner-Ville distribution. However, this distribution has to deal with cross-terms: the apparition of cross-terms when dealing with multi-components signals, and also inner interferences due to undesired nonlinearity eects of nonstationnarity. All those terms reduce considerably the interpretation of the distribution in the time-frequency plane. In order to reduce these eects, the concept of complex arguments has been introduced [START_REF] Stankovi¢ | Time-frequency distributions with complex argument[END_REF]. It takes advantage of the complex frequency argument (in the Laplace domain) and a corresponding complex lag in the time domain to produce almost completely concentrated representations along the dierent phase derivative order of a signal.

They are known as Generalized Complex-time Distributions (GCD). Though, the computation of the distribution involves the analytic extension of the signal in the complex domain that is performed by the analytic continuation and therefore, restricts the application to narrow bandwidth signals. Subsequently, in the next Chapter, we propose a method to extend it to signals having larger frequency variation.

Data-driven analysis techniques

This group of techniques does not assume any model of analyzing data. They are mainly focused on the study of sample organisation in time. Among possible approaches, we mention here the Empirical Mode Decomposition (EMD) and the phase diagram.

Empirical Mode Decomposition

The EMD, also known as the Hilbert-Huang transform [START_REF] Huang | Hilbert-Huang Transform and Its Applications[END_REF], corresponds to a way of decomposing a signal into so-called intrinsic mode functions called IMF: each of them representing a simple oscillatory mode.

Empirical Mode Decomposition has proved itself ecient for analyzing the dierent modes included in a signal without determining set up parameters. However, this data-driven method presents a major drawback, known as mode mixing problem as the decomposition's result is not unique and can be changed from one realisation to another. Even if some elements of solution has been proposed over the time [START_REF] Huang | A review on Hilbert-Huang transform: Method and its applications to geophysical studies[END_REF], we need to keep in mind that this empirical algorithm has not been proven yet and is still controversial.

Phase diagrams

Another famous data-driven technique is the signal analysis by phase diagrams also represented by recurrence plot analysis (RPA) which has been introduced by Eckmann et al. [START_REF] Eckmann | Recurrence Plots of Dynamical Systems[END_REF] in 1987 in order to visualize recurrences of higher-dimensional phase space trajectories in nonlinear data time series. By recurrence, we refer to the return of a state of a system to a previously visited point.

1.3. Data-driven analysis techniques 13 RPA is based on three major steps: time-delay embedding (1980)(1981) [START_REF] Takens | Dynamical Systems and Turbulence[END_REF][START_REF] Packard | Geometry from a Time Series[END_REF], recurrence plots (1987) and recurrence quantication analysis (RQA) (1992)(1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002) [START_REF] Zbilut | Embeddings and delays as derived from quantication of recurrence plots[END_REF][START_REF] Marwan | Nonlinear analysis of bivariate data with cross recurrence plots[END_REF]. More details about the history of RPA can be found in [START_REF] Marwan | A historical review of recurrence plots[END_REF] and an international website gathers all the advances and communications of the community [RPA].

To begin with, the analyzed signal s (n) dened for n ∈ {1, . . . , N } is rst turned into a trajectory -→ v [s, τ, m] by forming vectors from groups of samples. The signal is vectorized through the spatial-embedding process set up by two parameters: m the embedding dimension and τ the time delay which can be seen as an integer decimation factor. Phase space vectors computed at instant n are dened as follows:

-→ v n [s, τ, m] = [s (n) , s (n + τ ) , . . . , s (n + (m -1) τ )] (1.16)
Vector construction is illustrated by Figure 1.4. As an example, at instant n 0 , we only consider s (n) samples for n ∈ [n 0 , n 0 + (m -1) τ ] and then keep every τ samples.

n s (n) • n 0 • • • • n 0 + (m -1) τ (m -1) intervals of τ -1 samples -→ v n0 [s, τ, m] = [s (n 0 ) , s (n 0 + τ ) , . . . , s (n 0 + (m -1) τ )]
Figure 1.4: Creation of a phase space vector at instant n 0 using the parameters τ and m.

The vector construction is then repeated for each sample of the signal, which creates the phase space diagram. As an example, Figure 1.5 presents the creation of a phase diagram for m = 3 and τ = 2 samples. Classical RPA then computes the distances D between each phase space vectors that are recorded in a matrix D called distance matrix such as: x (n) Then by thresholding the distance matrix, recurrences are enlightened in the recurrence matrix R also known as recurrence plot (RP).

D i,j = D { - → v i [s, τ, m] , - → v j [s, τ, m]} (1.
x (n + τ ) • • • x (n + 2τ ) x (n) x (n + τ ) • • • • x (n + 2τ ) x (n) x (n + τ ) • • • • • • • • x (n + 2τ ) x (n) x (n + τ ) • • • • • •
R τ,m, i,j = Θ ( -D i,j ) (1.18)
where Θ is the Heavyside function and is the recurrence threshold. A recurrence is enlightened if the distance between two vectors is inferior to the recurrence threshold. The Heavyside function then provides a value of 1. On the contrary, if the distance is superior to the threshold, then the recurrence matrix provides a value of 0.

The summary of recurrence plot analysis is presented in Figure 1.6.

Finally, the last step is the computation of recurrence quantications on RP: this is what is called Recurrence Quantication Analysis (RQA). Several types of measures exist in literature that either quantify black point density, diagonal lines, or vertical lines [START_REF] Marwan | Recurrence plots for the analysis of complex systems[END_REF].

Summary

But one of the most famous measure is the recurrence rate RR that corresponds to the density of recurrence points in a RP:

RR = 1 N 2 N i,j=1 R i,j (1.19)
The idea of building trajectories from successive samples of a signal was supported by Taken's theorem, which states that a dynamical system attractor can be reconstructed from a series of observations of the state of the dynamical system, embedded in a dimension that is greater than twice the size of the attractor. However, the conditions of this theorem are not satised by real world signals that are not noise-free and do not have innite resolution. Nevertheless, we must notice that many informations can be hidden inside the signals about the global dynamics of the system that produce them. The diculty in revealing this information through time-delay embedding consists in choosing proper values for m and τ . Various techniques have been proposed in the literature [START_REF] Small | Applied nonlinear time series analysis[END_REF] to solve this problem, such as false nearest neighbours or successive embeddings for the embedding dimension, and autocorrelation or mutual information for the delay. However, there is no universal best choice for parameters m and τ as it highly depends on the application.

Chapter 1. Brief overview of transient analysis methods In this Chapter, we propose to focus on the representation of signals having fast-varying time-frequency components using projection-based approaches. In a rst part, we focus on the generalized complex-time distribution and propose a method to extend its application to signals having larger frequency variations as it is limited to narrow bandwidth signals for now. In a second part, we propose to study the recovery of nonlinear modulation phase signals when samples are missing from the observation. It takes advantages of time-axis transformations and compressive sensing. [START_REF] Cohen | Time-frequency analysis[END_REF], wavelet transform, etc... Generally, they characterize the frequency content of a signal over the time, with some specic limitations like inner interferences, cross-terms, artefacts, trade-o between time and frequency resolutions, etc...

Recently, complex time distribution concept has been introduced in [START_REF] Stankovi¢ | Time-frequency distributions with complex argument[END_REF] as a way to produce high concentrated distributions along the dierent phase derivatives of a signal. The main idea is to use the high order moments of the signals calculated for complex-time lags. It has also been shown that it was possible to deal with multi-component signals [GIS + 08]. This technique has however some drawbacks as it involves the calculation of signal samples at complex coordinates through analytic continuation [START_REF] Stankovi¢ | Introducing time-frequency distribution with a `complex-time' argument[END_REF]. This estimation leads to poor representations as it can produce a divergence. A numerical example proves the eciency of the modied analytical continuation technique extending also the capacity of the complex time distribution to deal with time-frequency structures with larger bandwidth.

In this section, we propose a method to overcome the limitations introduced by the analytical continuation in the case of signals with a spread time-frequency variation. This method is based on the compression of the signal spectrum to a bandwidth that ensures the eciency of the analytical continuation technique. Then, the application of generalized complex time distribution will allow an accurate estimation of the dierent phase derivative law. The spectrum expanding brings this estimation to the correct time-frequency location.

General presentation of complex time distributions

The complex time distribution concept has been introduced in [START_REF] Stankovi¢ | Introducing time-frequency distribution with a `complex-time' argument[END_REF] as a way to reduce inner terms in Wigner-Ville distributions when dealing with nonlinear time-frequency structures. It takes advantages of complex-time signal arguments that enable to provide distributions that are concentrated along the K-th derivative of the phase for regular signals [Sta02, Cor06,

CSI + 07, GIS + 08, Got10].
Let consider the signal s (t) dened as:

s(t) = Ae jΦ(t)
(2.1) with A the signal amplitude that is constant or can slowly vary and Φ (t) its phase.

We consider the phase as a real analytic function. Then, by using the Taylor's series expansion of the phase, we can write:

Φ (t + τ ) = k Φ (k) (t) τ k k! (2.2)
This equation brings forward the dierent phase derivatives of the signal. Phase integration in the complex plane using the theory of Cauchy's integral theorem [START_REF] Rudin | Real and Complex Analysis[END_REF] then allows to focus on a particular phase derivative:

Φ (K) (t) = K! 2jπ γ Φ (z) (z -t) K+1 dz (2.3)
where γ describes the contour integral of the equation. This equation shows the interest of the complex time concept as it enables to compute the K th order derivate of Φ at instant n as the complex integral over the integration path γ.

Re (z)

Im (z) • t τ θ γ Figure 2
.1: Integral contour γ used to compute the Cauchy integral in complex plane.

We here consider γ the integral contour as the circle of center t and radius τ taken counterclockwise (Figure 2.1). Then by considering z = t + τ e jθ , Equation 2.3 becomes:

Φ (K) (t) = K! 2πτ K 2π 0 Φ t + τ e jθ e -jKθ dθ
(2.4)

We can now consider the discrete form of the equation for the N roots of unity dened for θ = 2πp/N and p = 0, . . . , N -1 which are represented in Figure 2.2. Equation 2.4 becomes:

Φ (K) (t) = K! 2πτ K N -1 p=0 Φ t + τ e j 2πp N e -j 2πpK N + (2.5)
where stands for the discretisation error.

Let ω N,p = e j2πp/N be the roots of unity, we also know that:

N -1 p=0 ω k N,p = N if k = 0 (modN ) 0 otherwise (2.6)
By using this property, the Taylor series expansion (Equation 2.2) and the variable change τ → K τ K! N , the previous expression then becomes:

N -1 p=0 Φ t + ω N,p K τ K! N ω N -K N,p = Φ (K) (t)τ + Q(t, τ ) (2.7)
Chapter 2. Representation of signals having fast-varying time-frequency components Re Im Nk+K, dened as:

• t • p = 0 • p = 2 • p = 1 τ θ • p = N -1
Q(t, τ ) = N ∞ p=1 Φ (N p+K) (t) τ N p K +1 (N p + K)! K! N N p K +1
(2.8) Therefore, we dene the generalized complex-time moment (GCM):

GCM K N [s] (t, τ ) = N -1 p=0 s ω N -K N,p t + ω N,p K K! N τ (2.9) = e jΦ(K)(t)τ +jQ(t,τ ) (2.10)
The Fourier transform of the GCM produces the generalized complex time distribution (GCD):

GCD K N [s] (t, ω) = T F τ GCM K N [s] (t, τ ) (2.11) = δ ω -Φ (K) (t) * ω T F τ [Ae jQ(t,τ ) ] (2.12)
As stated by this denition, the K-th order distribution of the signal, obtained for N complex-lags, highly concentrates the energy around the K-th order derivate of the phase law. This concentration is optimal if the Φ 's derivates of orders greater than N+K are 0. Observing Equation 2.8, it can be noticed that the rst term appearing in the spreading function is the phase derivative of order K+N, the second one is of order K+2N,... Thus the parameter N highly aects the spreading function. We can conclude that a high value of N reduces interferences since Q is reduced and distribution concentration will be less sensitive to higher order phase derivatives. This theory has been well developed in [Cor06, CSI + 07, Got10].

However, the computation of GCM implies the calculation of signal samples at complex coordinates (complex lags), this is called the analytic continuation.

Limitation introduced by the analytical continuation

The analytical continuation of a signal s(t) is performed as dened in [START_REF] Stankovi¢ | Introducing time-frequency distribution with a `complex-time' argument[END_REF].

s (t + jm) = ∞ -∞ S(f )e -2πmf e j2πf t df (2.13)
where S (f ) is the Fourier transform of signal s (t).

The calculation involves the multiplication of the spectrum by the exponential e -2πmf which has dierent eects on the spectrum. Those are shown in Figure 2.3 for a test signal 2πt) and dierent values of m. When the frequencies are positive, they are strongly attenuated due to the decreasing exponential. In the meantime, negative frequencies are strongly amplied, which can lead to a divergence in certain cases (Figure 2.3(c)). If we consider a second test signal s (t) = e j6 cos(2πt/2) that has a bandwidth twice smaller (Figure 2.4), we can notice that the spectrum is less aected by the analytical continuation. Generally speaking, the use of Fourier base constitutes a problem when we deal with wide-band signals as their half higher band are strongly impacted by the prolongation. Therefore, it is really important to note that the analytic continuation is strongly aected by the choice of m and the bandwidth of the studied signal. A strong value of m induces a very fast decreasing exponential that will completely aect the bandwidth and in the meantime, a large bandwidth will be more sensitive to the multiplication with a decreasing exponential. As a consequence, the best scenario would be to study small bandwidth signals using really small values of m to limit the negative eects of the analytic continuation. This restricts considerably the capabilities of wide-band signals (such as transients) analysis and our contribution is aimed to reduce this limitation.

s (t) = e j6 cos(
In order to illustrate the limitation in terms of analytical continuation, let consider two Chapter 2. Representation of signals having fast-varying time-frequency components signals dened as: s 1 (t) = e j(6 cos(πt)+ 4 3 cos(2πt)+ 4 3 cos(4πt))

(2.14) s 2 (t) = e j(18 cos(πt)+4 cos(5πt)+4 cos(15πt))

(2.15)

Figure 2.5 shows the theoretical instantaneous frequency laws for s 1 and s 2 , as well as the results of the generalized complex time distribution using N = 6 and K = 1. We notice that if the GCD gives good results for s 1 we can no longer estimate the rst phase derivative for s 2 . This is due to the computation of the analytical continuation and the large bandwidth of s 2 which is six times larger than s 1 's. 

Time-scaled complex time distributions

In this section, we propose a method for the analytical continuation in the case of wideband signals. It consists in modifying the frequency support of the analyzed signal s, in order to reduce the attenuation of the analytical continuation term.

Let consider a signal B(t) dened as:

B(t) = s (αt)
(2.16) with α > 1 a dilation coecient and s (t) a signal dened as Equation 2.1. The dilation of the temporal signal leads in the frequency domain to a contraction of the bandwidth. This is actually the concept of the time-scale representation that we use at this point [START_REF] Mallat | A wavelet tour of signal processing[END_REF].

Considering the complex-time moment of B (t), we have:

GCM K N [B](t, τ ) = N -1 p=0 s ω N -K N,p αt + αω N,p K K! N τ (2.17)
We can clearly notice that the main impact directly concerns the analytical continuation. We then focus on its calculation. According to the Taylor serie expansion (Equation 2.2), we have:

s (αt + jαm) = ∞ k=0 s (k) (αt) k! (jαm) k (2.18)
Knowing the following Fourier 's formula:

s (k) (t) = ∞ -∞ (j2πf ) k S(f )e j2πf t df (2.19)
we then obtain:

s (k) (αt) = ∞ -∞ (j2πf ) k S(f )e j2παf t df (2.20)
Considering the variable change f → f /α, we obtain:

s (k) (αt) = |a| k ∞ -∞ j2π f α k S f α e j2πf t df α (2.21)
Taking into account Equations 2.18 and 2.21, we then deduce:

s (αt + jαm) = 1 α ∞ -∞ S f α ∞ k=0 (-2πmf ) k k! e j2πf t df (2.22)
Finally, we obtain the contracted analytical continuation:

s (αt + jαm) = 1 α ∞ -∞ S f α e -2πmf e j2πf t df (2.23)
We can see that this leads to a contraction of the spectrum, and as a matter of fact, its bandwidth will be less aected by the attenuation term e -2πmf . We dened s α (t) as the signal s (t) whose frequency support is contracted by the dilation coecient α, ie S α (f ) = S f α . Thus, we obtain:

s (αt + jαm) = 1 α s α (t + jm) (2.24)
As we can notice, the two signals are still related. The GCM then becomes:

GCM K N [B] (t, τ ) = N -1 p=0 1 α s α t + ω N,p K K! N τ ω N -K N,p = 1 α N -1 p=0 ω N -K N,p GCM K N [s α ](t, τ ) (2.25)
Two scenarios then need to be studied:

• When N = K (modulo N ), ie when the number of roots of unity is equal to the phase derivative order, then we have:

GCM K N [B](t, τ ) = 1 α N GCM K N [s α ](t, τ ) (2.26)
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Complex signal s (n) = Ae jφ(n) N 0 samples, S (f ) N lags, K DILATION Oversampling Interpolation αN 0 samples s (αn), S (f /α) Dilated signal GCD φ (K) (αn) Distribution Dilation of the distribution φ (K) (n) Distribution IFL estimation φ (K) (n)
GCM K N [B](t, τ ) = GCM K N [s α ](t, τ ) (2.27)
In both cases, we can conclude that the GCD provides the same results with a dierent intensity when the factor 1 α N appears. Equation 2.27 shows that it is possible to extract the K-th phase derivative order distribution of a signal by using its dilated version. We then need to expand the distribution to obtain the real distribution for signal s. This is performed by using Equation 2.28, which corresponds to a two dimensionnal warping [START_REF] Papandreou-Suppappola | Quadratic Time-Frequency Representations with Scale Covariance and Generalized Time-Shift Covariance: A Unied Framework for the Ane, Hyperbolic, and Power Classes[END_REF]:

GCD K N [s](t, ω) = αGCD K N [B](t, ω) (2.28)
The procedure is detailled in Figure 2.6. However, a question still remains: how do we choose the dilatation coecient α? For now, this choice is not straightforward due to its high dependance on the analyzed signal. A rst approach would consist in performing the timescaled complex time distribution for multiple value of α and then to choose the distribution that oers the best concentration in term of phase derivative law (PDL) estimation.

PDL estimation

The traditional procedure used to extract the PDL estimate P DL (t) from the GCD distribution is actually quite simple. At each instant t, the method localizes the maximum of the distribution as follows:

P DL (t) = argmax ω GCD K N [s] (t, ω) (2.29)
However, due to the presence of artefacts on the distribution, this method sometimes fails to provide a good estimation at every instant t. In order to overcome this limitation, we have developed a technique that does not select automatically the maximum of the distribution. The procedure is described below and illustrated in Figure 2.7. At every instant t, the spectrum of the distribution is observed and we calculate the value G 3dB corresponding to a 3dB attenuation relative to the highest value of the spectrum. All the peaks higher than G 3dB and their bandwidth (related to G 3dB ) are then considered as possible PDL estimates. We then compare the bandwidths and select the most important one. components Why do we have to choose the biggest one? The GCD provides a distribution that is high-concentrated around the Kth phase derivative which implies that spectrums must have a minimum bandwidth at each instant t. If the selected peak's bandwidth is too narrow, then it is possible that it only represents an artefact of calculation. Next Section is dedicated to the study of an example.

Numerical example

Presentation of the example

In order to evaluate the performances of the proposed approach, we choose to work with the following signal and to represent its rst phase derivative (Figure 2.9 (a)): s (t) = e j(18 cos(πt)+4 cos(10πt)+4 cos(15πt))

(2.30)

As we can see in Figure 2.9(c), the classical GCD fails to represent the rst phase derivative of the signal due to its large bandwidth and the analytic continuation. In order to test our method, we choose to dilate s (t) with α = 5 and to apply the GCD algorithm using 6 complex lags (i.e. N = 6 and K = 1). We then study the new signal s α (t) = s (αt). The dilatation leads to a contraction of the bandwidth with a factor equal to α which reduces considerably the bandwidth. Figures 2.9 (b) and (d) respectively show the theoretical instantaneous frequency law and the result of the GCD algorithm applied on s α . We can notice that the GCD provides really good results.

The frequency law obtained for s α (t) is as stated by Equation 2.27 a contraction of the one of s (t), to obtain the last one, it is then necessary to dilate the frequency law obtained with the dilation coecient α. Figure 2.10 shows the comparison between the theoretical intantaneous frequency law of s (t) and the dilated frequency law of s α (t). We can notice that they match almost perfectly. Figure 2.11 shows the DGTC of s α (t) after dilation.

We have seen that it was possible to overcome one of the limitation of the analytic continuation for the GCD method using a dilation coecient.

Comparison with other techniques

As we already know, the rst phase derivative of a signal represents its instantaneous frequency, a subject that has already been well covered by the literature. Many algorithms have been developed such as: the spectrogram and Wigner-Ville representations [START_REF] Cohen | Time-frequency analysis[END_REF].

In this section, we propose to compare the performance of two methods: the spectrogram and classical GCD with the study of an example. Because time-scaled GCD is similar to classical GCD in the sense that we perform a GCD on a modied signal, we do not compare this technique. We consider the signal s (t) dened in Equation 2.30. The spectrogram is performed using a 32-samples Hanning window sliding every sample and the classical GCD uses 6 complex lags.

In order to compare the results given by the dierent techniques, we calculate the Mean Square Error (M SE) for each representations. Given P DL (n) the theoretical PDL, P DL (n) the estimated IFL, and N the number of samples, the M SE is calculated as follows:

M SE = 1 N N n=1 P DL (n) -P DL (n) 2 (2.31)
This measure has been performed for the two techniques and actually provides the precision of the estimations. Results are shown in Table 2.1.

At every instant t, the -3dB bandwidths of the distributions are evaluated. Figure 2.12 presents the histograms of these values. It can be noticed that the concentrations are almost constant varying around 16-18 Hz. While the concentration obtained with the GCD algorithm is quite dispersed compared to the one obtained with the spectrogram, the mean value of the distribution is smaller than the spectrogram's and varies around 12 Hz. This particularity enables the GCD to have a smaller M SE which guarantees a smaller error estimation. As a way of conclusion, we can say that the GCD oers a better estimation in the sense of the M SE. As we have seen, the choice of the integration path is of great importance for a successful analysis, and this is why future works should focus on proposing an adaptive approach for the selection of the optimal scale parameter with respect of the bandwidth variation of the analyzed signal. Data-driven approaches (presented in Chapter 1) seem to oer a natural solution to this matter and this is why we orient the work toward the analysis of signals in We can observe that the spreading function of the GCD is more dispersed than the spectrogram's, but that the mean value is also smaller which guarantees a smaller error estimation. phase diagram domain.

2.2

Warping-based analysis of transients with non-linear timefrequency components

Introduction

This section focuses on the recovery of signals having nonstationary time-frequency content dened as follows:

s (t) = N i=1 s i (t) = N i=1 A i e jψ i (t) (2.32)
where N is the number of components, A i their amplitudes and ψ i (t) their instantaneous frequency laws that are nonlinear. The study focuses on two particular class of nonlinear modulation phase signals (NMPS):

• the logarithm phase law [PHBB93]

ψ i (t) = 2πf 0i t + c i ln t; t ∈ [t 0i , t 0i + D i ] (2.33)
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with f 0i the central frequency of the modulation, c i the logarithm modulation rate, t 0i the time instant when the modulation happens and D i its duration.

• the monomial phase law [HPSBB99]

ψ i (t) = 2πf 0i t + c i t k ; t ∈ [t 0i , t 0i + D i ] (2.34)
with f 0i the central frequency of the modulation, c i the modulation rate, t 0i the time instant when the modulation happens, D i its duration and k the monomial modulation order.

Such signals are of great interest as they are usually met in real world applications: they are commonly used by animals to communicate in nature due to their robustness to Doppler eect [START_REF] Ioana | Feature Extraction from Underwater Signals using Time-Frequency Warping Operators[END_REF] and are encountered in many real-life application areas such as radar and sonar. As the signals are recorded in the real world, they are often disturbed by dierent stationary and nonstationary interferences that could lead to misinterpretation. We introduce in this Chapter a method to extract components from highly disturbed observations. The main diculty is that the desired and nondesired parts of signal may overlap in both time and frequency. This is why tracking methods usually do not provide good results.

It is well known that compressive sensing methods allow the reconstruction of signals having sparse basis representations even when dealing with an incomplete set of samples [START_REF] Baraniuk | Compressive Sensing[END_REF][START_REF] Candes | Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[END_REF][START_REF] Donoho | Compressed sensing[END_REF][START_REF] Flandrin | Time-Frequency Energy Distributions Meet Compressed Sensing[END_REF][START_REF] Jokanovi¢ | Instantaneous frequency and timefrequency signature estimation using compressive sensing[END_REF]. This is the property that will be used in this chapter. However, as nonlinear modulation phase signals cannot be considered as sparse in the classical Fourier domain, the signals need to be expressed into another basis. This process is achieved by the class of unitary transformations developed by Baraniuk et As the warped signal will be still corrupted by interferences, it should be ltered out from the noise. To do so, the L-statistics are used to identify and select time-frequency regions of the spectrogram that should be removed from consideration [START_REF] Stankovi¢ | Compressive Sensing Based Separation of Nonstationary and Stationary Signals Overlapping in Time-Frequency[END_REF][START_REF] Stankovi¢ | Missing samples analysis in signals for applications to L-estimation and compressive sensing[END_REF]. A CS recontruction algorithm is then applied to denoise the spectrogram in order to reconstruct the signal of interest. Similar work has been conducted on linear frequency modulated signals (LFM) by Orovic et al. [START_REF] Orovic | Compressive sensing based separation of LFM signals[END_REF].

To summarize, this chapter proposes a method to select and extract nonlinear modulation phase signals disturbed by nonstationary and other coherent signals. For that purpose, a time axis transformation (warping transform) is rst performed in order to turn nonlinear phase signals into sparse sinusoid components. Then, the time-frequency regions corresponding to nonstationary and non sparse signals are identied and removed from consideration using the L-statistics approach. A CS reconstruction method is then applied on the set of remaining time-frequency (TF) points allowing a perfect recovery of sparse signal. The last operation is to perform a second time axis transformation in order to return to the original time domain.

We rst introduce time axis transformation and a process that enables to stationnarize any non-linear component. Let consider a signal s (t) ∈ L (R) and W the warping operator dened as follows:

{W, w (t) ∈ C 1 , w (t) > 0 : s (t) → Ws (t)} (2.35)
where C 1 corresponds to the class of dierentiable functions. The modications created on the studied signal are expressed through this formulation:

Ws (t) = dw (t) dt 1/2 s (w (t)) (2.36)
where w (t) is a smooth one-to-one function called the warping function. The rst term

dw(t) dt 1/2
corresponds to the envelop of the warped signal that enables to conserve the energy of the original signal. It is also possible to dene a non-unitary version of the warping operator if we do not want to deal with the envelop term. It is dened as follows:

Ws (t) = s (w (t))
(2.37) If the warping function is analytical and bijective, then it is possible to unwarp the warped signal and come back in the original basis. However, they are most of the time not inversive as signals often met in real world applications are usually nonstationary and having timefrequency contents that cannot be described by analytical functions. Jarrot et al. [START_REF] Jarrot | An Extension of the Class Of Unitary TimeWarping Projectors To DiscreteTime Sequences[END_REF] proposed a technique that extends the class of warping operators to discrete-time sequences and respects invertibility conditions.

In

Discrete formulation

The proposed concept starts from the straighforward denition for the sampled discrete-time warping operator:

(Ws [n]) [m] = s w [m] = s w d m M -1 (N -1) T (2.38)
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where w d (u) is the normalized function of w (t) dened by:

             w d : [0, 1] → [0, 1] ∈ C 1 w d (0) = 0 w d (1) = 1 dw d (u) /du ≥ 0 w d (u) = w((N -1)T u) w((N -1)T ) (2.39)
The main diculty is now to estimate the missing values of the signal by using the general class of interpolators. The rst step is to express the signal into a linear shift-invariant space

V φ [Mei02] dened by the kernel φ with V φ = Span ({φ (t -kT ) , k ∈ Z}) [TBU00]
, as follows:

s (t) = n c [n] φ (t -nT ) (2.40)
We restrict ourselves to the case of exact interpolation where s (nT ) = s [n]. Then, signal s (t) can be expressed as:

s (t) = N -1 n=0 s (n) φ int (t -nT ) (2.41)
where the kernel φ int is:

φ int (t) = k p [k] φ (t -kT ) (2.42)
Exact interpolation is possible if and only if the following condition is met:

φ int (nT ) = 1, if n = 0 0, if n = 0 (2.43)
Note that any interpolation kernel can be used. Jarrot et al. [START_REF] Jarrot | An Extension of the Class Of Unitary TimeWarping Projectors To DiscreteTime Sequences[END_REF] has found that the cardinal B-spline is the optimal choice. Then, the warped discrete sequence is dened as:

s w [m] = N -1 n=0 s [n] φ int (w d (m) -nT ) (2.44)
More details on the algorithm is provided in [START_REF] Jarrot | An Extension of the Class Of Unitary TimeWarping Projectors To DiscreteTime Sequences[END_REF]. This shows that any discrete time warping operator could be implemented thanks to a nite set of values of the warping function. This extends time axis transformations to non analytical warping functions which means that any kind of signals can be stationnarized.

Let consider an arbitrary instantaneous frequency law ψ (t) and a nite set of values {ψ (t k )} k=1,...,L . The discrete warping function w d (t) that stationnarizes the signal is dened such as:

ψ (w d (t k )) = w d (ψ (t k )) = t k ; k = 1, . . . , L (2.45) 
To solve this equation, the signal is divided into L segments in which a local estimation of the warping function is computed iteratively. Thus, the segmentation ensures ψ (t) monotony k such as:

w (0) k = 1 2 (I k + I k+1 ) (2.46)
Then, at each iteration p, the local solution is calculated as follows:

w (p) k = w (p-1) k -sgn ψ w (p-1) k -t k I k+1 -I k 2 p+1 (2.47)
where sgn is the sign function. The process stops when the dierential value between two successive iterations becomes insignicant:

w (p+1) k -w (p) k < (2.48)
This process enables the stationnarization of any kind of instantaneous frequency laws even when non analytical.

In order to illustrate the time axis transformation concept, let consider the example of a third degree monomial phase signal s (n) for n ∈ {0, . . . , N -1} with N = 1024, dened as follows:

s (n) = e j(403.1(n/N ) 3 +2π128.3(n/N )) (2.49)
A rst approach would be to use the following warping function:

w (n/N ) = (n/N ) 1/3 (2.50)
However, due to the central frequency term of the signal 2π128.3 (n/N ), this function is not appropriate for the stationnarization. The Short Time Fourier Transforms (STFT) of the signals obtained before and after the warping transformation are respectively shown in Figure 2.13 (a) and (b). It is obvious that the given warping function does not turn the signal into a pure sinusoid.

Another approach would be to estimate the instantaneous frequency law of the signal in order to evaluate the associated warping function (Figure 2.14) that stationnarizes the signal as presented in the previous subsection. As presented in Figure 2.13 (c), the third degree monomial phase signal has been linearized within the process. Even if the warped signal is still corrupted by some artifacts at the beginning of the sequence, it still can be considered sparse in the Fourier domain.

Due to unitary equivalence, it has been shown that it was possible to express a signal into another basis that simplify the interpretation of the observation. This is the concept used to extract the signals of interest. Furthermore, it is possible to unwarp the signal, i.e. to turn the basis of the warped signal into the original representation domain.

At this point of the chapter, we have presented how to linearize any nonlinear frequency component, but a question remains regarding its extraction. A natural approach would consider a band-pass ltering to extract it. However, when there are too many components at stakes or if the component of interest is not complete, then the ltering can be compromised. This is the reason why we would like to combine compressive sensing to warping operators to perform the extraction.

Warping based Compressive sensing algorithm

Problem formulation

Let consider the case of a composite discrete signal s (n) dened as follows:

s (n) = s d (n) + s nd (n) (2.51)
where s d (n) stands for the desired signal that should be extracted and s nd (n) the undesired part to remove.

The desired signal is a nonlinear modulation phase signal dened as in (C.22) and (C.23). The undesired part can be composed of another nonlinear modulation phase signals, as well as nonstationary or more complex signals. The goal of this section is to extract the desired signal from the entire observation s (n).

The rst step is to change the underlying basis of s (n) in order to turn s d (n) into a single frequency component using time axis transformation.

Because the unitary equivalence is commutative, (2.51) in the warped domain becomes:

Ws (n) = Ws d (n) + Ws nd (n) (2.52)
where Ws d (n) is a single frequency component: According to (2.53), Ws d (n) is assumed to be sparse in the frequency domain. The discrete Fourier transform (DFT) of Ws (n) is:

Ws d (n) = ηe jλn (2.
WS (k) = WS d (k) + WS nd (k) (2.54)
where WS d (λ) = 0 due to the sparsity in the frequency domain of Ws d (n). Moreover, it is possible to consider that some frequency components in WS nd (k) can be stronger than

WS d (λ) [SOSA13]: |WS nd (λ)| >> |WS d (λ)| (2.55)
For illustration purposes, Figure 2.15 presents the Fourier transform of a third degree monomial phase signal. In the case of additional noise (-15dB in this example), it may be no longer possible to distinguish the frequency properties of a signal, and thus it is necessary to employ the time-frequency analysis.

L-statistics and TF analysis in warped domain

STFT of Ws (n) using a rectangular window of width M at instant n is:

ST F T (n, k) = M -1 p=0 Ws (n + p) e -j2πkp/M
(2.56) 2.2. Warping-based analysis of transients with non-linear time-frequency components 37 Because the undesired and desired frequency components can overlap in time and frequency, it is necessary to separate them. To do so, one possibility is to use the L-statistics approach [SOSA13, SSA14] to select time-frequency regions of interest. Indeed, the desired signal is sparse in the Fourier domain, so along a given frequency line, it is possible to have only undesired components or a mix of desired and undesired components. In both cases, the highest values of the spectrogram would correspond to interference contributions or unwanted components. Another scenario can be considered when WS nd (k) and WS d (k) are of the same order of amplitude, it is known that opposite phases produce low values at the intersection points. All these informations lead to the assessment that we need to remove those values from consideration. To do so, data samples are rst sorted out for each frequency. Then, the highest and the smallest values are discarded (i.e. replaced by a zero value). The procedure is described below.
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The L-statistics is applied to ST F T (n, k). For each frequency k, the samples are sorted out: 

L k (p) = sort {ST F T (p, k) , p = 0, 1, ..., M -1} (2.57) such that |L k (0)| ≤ |L k (1)| ≤ ... ≤ |L k (M -1)|.

CS reconstruction algorithm

At instant n, the STFT of signal Ws (n) can also be expressed as follows:

STFT M (n) = D M W s (n) (2.58)
Chapter 2. Representation of signals having fast-varying time-frequency components where STFT M (n) and Ws (n) are vectors in the form:

STFT

M (n) = [ST F T (n, 0) , ..., ST F T (n, M -1)] T (2.59) W s (n) = [Ws (n) , Ws (n + 1) , ..., Ws (n + M )] T (2.60) while D M is the M xM DFT matrix with coecients: D M (m, k) = e -j2πmk/M
As the case of non-overlapping windows is considered, the complete formulation yields to:

STFT = DW s (2.61) such that vector STFTiscomposedofvectors: STFT M (0), STFT M (M ), ..., STFT M (N -M ).
The matrix D is obtained as a Kronecker product: D = I N/M ⊗ D M where I N/M is the (N/M )x(N/M ) identity matrix. The vector W s can then be expressed as the inverse Fourier transform of the DFT vector WS (stands for WS):

W s = D -1 N WS (2.62)
By combining (2.61) and (2.62), a general expression can be obtained:

STFT = A F U LL WS (2.63) with A F U LL = DD -1 N .
At this point of the study, matrix A F U LL maps the integrality of the TF representation. By using the L-statitics method [START_REF] Stankovi¢ | Compressive Sensing Based Separation of Nonstationary and Stationary Signals Overlapping in Time-Frequency[END_REF], it is possible to create a CS mask A CS that will remove the TF values that do not belong to the desired signal from the spectrogram. We then dispose of a spectrogram STFT CS that has been cleansed of all undesired signals frequency components. The next step is to reconstruct the desired signal by minimizing the following problem:

min X 1 = min N -1 k=0 |X (k)| subject to (2.64) ST F T CS = A CS X
The reconstructed DFT X is used to obtain Ws (n) which corresponds to Ws d (n) due to the elimination of all the non desired components. An unwarping process is then applied to the estimated signal in order to express it in the original temporal domain.

The Warping Based Compressive Sensing algorithm (WBCS) is the result of two contributions: the warping described in the previous section and a compressive sensing method 2.2. Warping-based analysis of transients with non-linear time-frequency components 39

introduced by Stankovic et al. [START_REF] Stankovi¢ | Compressive Sensing Based Separation of Nonstationary and Stationary Signals Overlapping in Time-Frequency[END_REF]. It permits the detection and extraction of nonlinear modulation phase signals even when they overlap in time and frequency, and also when parts of them are missing. First, the warping operation enables to express the desired signal into a pure sinusoid that is sparse in the Fourier domain, then, the CS algorithm removes all the undesired components. It seems that the desired component could be estimated as the most important peak in the Fourier transform of the warped signal, but also it can be of lower energy and hidden among other information. Thus, it is the point where the combined L-estimation and CS reconstruction provide main contribution.

The complete procedure is nally summarized in Figure 2.16. Next Section is dedicated to the study of an example. 

+ s d (n) s nd (n) Estimation of
s d (n) = s 1 (n) + s 2 (n) (2.65) with: s 1 (n) = 2.5e j(708ln(n/N +1)+2 * π50n/N ) (2.66) s 2 (n) = 1.9e j(90(n/N ) 2 +2π90n/N ) (2.67)
disturbed by nonstationary disturbances composed of short duration modulated signal b (n):

b (n) = p i=1 A i e jw i n e -(n-n i ) 2 /d 2 i (2.68)
with p the number of corrupting noise components, A i their amplitude, w i their frequency, and n i and d i their center and variance distributions respectively. A sine modulated component is also introduced in the desired signal in order to add coherent signal dicult to separate.

Signal-to-noise ratio (SNR) is dened as follows: In this subsection, we propose to compare two techniques to extract the 2 IFLs of interest: the rst one is based on the association of warping operators and band-pass ltering, while the second approach focuses on the WBCS algorithm.

SNR dB = 10log 10 N n=1 s 2 d (n) N n=1 s 2 nd (n) (2.

Separation processing based on warping operators and band-pass ltering

One possible and natural approach to perform this task is to estimate the rst component, then remove it from consideration, and again estimate the second component. To estimate each component, we can stationnarize each components of interest one by one with warping operators and then extract them with a band-pass ltering.

As it has been stated in Section 2.2.2, to stationnarize a signal, we rst need to estimate correctly some of its IFL's coordinates. This is performed by an algorithm of phase tracking developed by [START_REF] Ioana | Analysis of underwater mammal vocalisations using timefrequency-phase tracker[END_REF] which manages to track the time-frequency component based on their local continuity. To do so, the signal is divided into intervals in which an estimation of the local-best matched IFLs is performed. In this example, the algorithm provides a set of 32 coordinates for the IFL which is enough to estimate a warping function that stationnarizes the component. Afterwards, we still need to estimate the second component. To do so, we perform a notch lter (with the same parameters used for the band-pass lter) to remove the rst component from the warped signal (Figure 2.21(b)). We can see that the second component is no longer trackable as the middle part of the time-frequency component is missing from the spectrogram. At this point of the study, it becomes complicated to estimate the second component of the signal as a part of it has been removed with the notch lter. The ltered signal is then expressed in the original time domain with an inverse time-axis transformation: we obtain the original signal reduced with the rst component (Figure 2.21(c)). We then estimate a set of the second component IFL's coordinates in order to estimate a warping function that stationnarize it and perform the associated warping operation (Figure 2.22). The second component is turned into a single sinusoid with missing values in time-frequency (Figure 2.23). The natural approach is then to perform a second band-pass ltering to extract the second component, followed by an inverse time-axis transformation. This is usually where the method becomes limited. Due to the missing values of the second component, the algorithm fails to extract properly the signal of interest s 2 (n). This is shown in Figure 2.25 where we can see that the estimated IFL of s 2 (n) is not the same as the theoretical one.

We have seen in this subsection that the association of warping operators and band-pass lters was not ecient to separate nonlinear modulation phase signals that overlap in time and frequency. This is the reason why we need to use a compressive sensing approach to reconstruct the two signals of interest.

Separation processing using the WBCS algorithm

In this subsection, we focus on the recovery of the second component after the rst component ltering performed in the previous subsection. Due to its missing values, the signal is a good candidate to the warped-based compressive sensing algorithm. We rst start from the linearization of the second component presented in the previous subsection (Figure 2.22). The STFT of the warped signal is then performed using a 32 samples rectangular window with no overlapping (Figure 2.24(a)). For each frequency, the STFT values are sorted out (Figure 2.24(b)) and according to the L-statistics process, 50% of the largest values are removed along with 8% of the smallest values. The CS spectrogram values that remain after the L-statistics removal are shown in Figure 2.24(c). A reconstruction algorithm is then applied to the CS STFT which permits to reconstruct the sinusoid of interest. Subsequently, an inverse time-axis transformation is performed to recontruct the nonlinear modulation phase signal s 2 (n) in the original time domain.

Figure 2.25 shows the IFL of s 2 (n) obtained with the WBCS algorithm. As we can see, the result is better than the one obtained with the traditional band-pass ltering and enables to reconstruct the signal of interest even if a part is missing.

Comparative results

Next step is then to compare the results obtained with the two described techniques. We evaluate the mean square error (MSE) between the estimated IFLs and the theoretical ones. But rst, we dene the MSE as follows:

MSE = 1 N N k=1 (y k -y k ) 2 (2.70)
where y k stands for the known IFL and y k for its estimate.

Chapter 2. Representation of signals having fast-varying time-frequency components Table 2.2 presents the MSE of the 3 reconstructed signals: s 1 (n) and s 2 (n) obtained with the warping and the band-pass ltering, and s 2 (n) obtained with the WBCS algorithm. We can see that this last algorithm perfoms much better than the traditional one when it comes to estimate the second component as it enables to overcome the limitation introduced by the missing values of the signal.

s 1 (n) s 2 (n) s 2 (

Summary

This section proposed a new approach for nonlinear frequency extraction that enables to overcome the limitation when parts of the signals are missing. It takes advantages of a warping transformation that turns the desired signal into a sinusoid and the L-statistics that permits to select time-frequency regions of interest. Then, a CS reconstruction algorithm is used to regenerate the signal in the warped domain. Finally, a second time axis transformation is performed to express the reconstructed warped signal in the original time domain. In Chapter 1, we introduced some general topics where the transient signal characterization is a challenging task. The phase diagram analysis is a potential class of techniques that can oer interesting information regarding the signal shapes. However, we have seen that the parameter setting (i.e. m and τ chosing) in the RPA is not an easy task. The choice of this parameter set is actually a current interesting eld in RPA domain, this is the reason why we decided to develop the concept of multi-lag phase diagram analysis (MLPDA) to take into account all the information that could be extracted from each representation. This new concept is then successfuly applied to solve the general problem of exploring transient signals.

We mention here that we concentrate on phase diagram that is a more general representation domain than the RPA.

Mathematical properties of lag diversity in phase diagram

In this chapter, in order to illustrate the concept of multi-lag PDA, we consider a signal modeled as a modulated cosine s (n) dened for n ∈ {1, . . . , N } such as: Phase space diagram analysis of signal s (n), using the embedding dimension m and lag τ , corresponds to a representation T that is dened as follows:

s (n) = cos (2πf 0 n) w (n) if n ∈ [n 0 , n 0 + ∆] 0 otherwise (3.
T : R N xNxN -→ M N -(m-1)τ,m (R) (s, τ, m) -→ T m,τ (s) (3.2)
where:

T m,τ (s) =           s (1) . . . s (1 + (j -1) τ ) . . . s (1 + (m -1) τ ) s (2) . . . s (2 + (j -1) τ ) . . . s (2 + (m -1) τ ) . . . s (i) . . . s (i + (j -1) τ ) . . . s (i + (m -1) τ ) . . . s (N -(m -1) τ ) . . . s (N -(m -1) τ + (j -1) τ ) . . . s (N )           (3.
3) which can be summarized by: T m,τ (s) = {t i,j } i={1,2...,N -(m-1)τ },j={1,2,...,m} (3.4) with:

t i,j = s (i + (j -1) τ ) (3.5)
Each row of the T matrix corresponds to a phase space vector dened as in Equation 1.16. Each column corresponds to the coordinates of one axis of the phase space.

Let us now investigate the properties of this representation to the time-shift operator, the scale operator and amplitudes changes. We dene three signals s 1 (n), s 2 (n) and s 3 (n) such as: 

s 1 (n) = s (n + δ) (3.6) s 2 (n) = s (αn) (3.7) s 3 (n) = βs (n) (3.

Investigation of the time-shift invariance property

We can start by considering the phase space vector of s 1 (n) at instant n and the relation given by 3.6. We have:

[s 1 (n) , s 1 (n + τ ) , . . . , s 1 (n + (m -1) τ )] = [s (n + δ) , s (n + δ + τ ) , . . . , s (n + δ + (m -1) τ )] = [s (n 0 ) s (n 0 + τ ) , . . . , s (n 0 + (m -1) τ )] (3.9)
This result states that even if two identical signals are time-shifted, their phase space diagrams are invariant. Mathematically speaking, it means that the rows of T m,τ (s 1 ) are the same as T m,τ (s)'s but they suered the circular permutation and are shifted compared to T m,τ (s). This property is illustrated by Figure 3.2 where we can see that for m = 2 and τ = 8 the phase space diagrams of the two signals are exactly the same despite the time-shift between the signals.

Investigation of the time-scaling property

We now consider s 1 (n)'s phase space vector at instant n and the relation given by 3.7. We have:

[s 2 (n) , s 2 (n + τ ) , . . . , s 2 (n + (m -1) τ )] = [s (αn + n 0 ) , . . . , s (α (n + (m -1) τ ) + n 0 )] = [s (n 1 ) , s (n 1 + ατ ) , . . . , s (n 1 + (m -1) ατ )] = [s (n 1 ) , s (n 1 + τ 0 ) , . . . , s (n 1 + (m -1) τ 0 )] (3.10)
This result states that for a given m there exists many sets of lags that are related by a dilation. Figure 3.3 presents the phase space diagrams of s (n) and s 1 (n) for two dierents sets of lags: [4,4] and [4,8]. For the rst set, the two diagrams do not overlap, whereas the second set enables a perfect superposition of the two diagrams. [4,8]. The dilation connection between the two signals can be enlightened by using the appropriate set of lags.

Investigation of the amplitude coecient modication

Finally, we consider s 3 (n)'s phase space vector at instant n and the relation given by 3.8. We have:

[s 3 (n) , s 3 (n + τ ) , . . . , s 3 (n + (m -1) τ )] = [βs (n) , βs (n + τ ) , . . . , βs (n + (m -1) τ )] = β [s (n) , s (n + τ ) , . . . , s (n + (m -1) τ )]
(3.11) which can be summarized by:

T m,τ (s 3 ) = βT m,τ (s) (3.12)
This result shows that the amplitude change is equivalent, in the phase space diagram representation, with a shape-invariant scale transformation. This is illustrated by x(n)

x(n+τ)

T 2,4 (s) 
T 2,4 (s 3 )

Figure 3.4: T 2,4 (s 3 ) and T 2,4 (s) phase space diagrams. They are related by a shape-invariant scale transformation.

Multi-lag phase diagram analysis

The previous section has shown that phase diagram representations can potentially be invariant to the main transforms of signals such as: time-shift, time-scale changes, amplitude modication, etc... The key point of the multi-lag based representation is that the invariance can be controlled by the lag choice, which makes possible a better exploration of the anayzed signals.

In this section, we propose dierent methods to extract parsimonious parameters from each diagram acquired for a given lag. The evolution of these parameters with respect to the lags is then explored conducting to new representation tools for transients.

In this section, we restrained ourselves to m = 2 in order to visualize the results but the work can be extended to higher embedding dimension. We also note y (n) for x (n + τ ) in order to simplify the notations.

Ellipse modeling

Generally, signals can have various trajectories with dierent shapes, but in this subsection, we propose a general model for approximation of trajectories based on ellipse shape (Figure 3.5). This choice is quite natural since the ellipse model is specic to harmonic signals. Therefore, the model is simple and enables to extract three parameters per phase space diagrams: • the polar angle θ of the ellipse assuming that θ is the angle between the rst axis and the major semi-axis

• the major semi-axis a

• the minor semi-axis b

We assume the center of the ellipse being the center of phase space diagrams as transients can be considered as zero-mean signals.

The rst step consists in performing a singular value decomposition (SVD) of the phase space diagram to calculate its eigenvectors. Those are of great interest as they dene a new basis that reects the distribution of the data and also correspond to the major and minor axis of the ellipse model. Then, a least squares tting method is performed to determine the ellipse that satisfy the following equation in the new basis dened by the eigenvectors:

Ax 2 + By 2 = 1 (3.13)
where the semi-major and semi-minor axis are given by: conned into a smaller area, it means that the lag is representative and is well adapted to the study of this transient.

a = 1/ √ A b = 1/ √ B ( 
In order to illustrate the method, let consider three signals s 1 (n), s 2 (n) and s 3 (n) that are modulated cosines. s 1 (n) and s 2 (n) are related by a time-scale transformation while s 3 (n) is the result of a 10-th low-pass FIR digital ltering applied on s 1 (n) with the normalized cuto frequency of 0.1. Temporal signals are shown in Figure 3.6. At rst look, it is quite dicult to tell appart s 1 (n) from s 3 (n) and a time-scale analysis would not do better as their frequency content are really close (Figure 3.6).

For the three signals and τ ∈ {1, . . . , 30}, we model each phase diagram by an ellipse and record the variation of a, b and θ with respect to the lags. As we can see in Figures 3.7 and 3.8, the 3 parameters present an apparent periodicity that are related to the apparent periodicities of the signals. We call apparent periodicity the number of samples between two successive zero-crossing. As an example, the number of lags between two successive maxima of θ is equal to 13 for s 1 (n), 23 for s 2 (n) and 12 for s 3 (n), while the apparent periodicity is of 12.5 samples for s 1 (n), 22.25 for s 2 (n) and 11.75 for s 3 (n) which is coherent with the previous values. both parameters), meaning that the phase diagrams are more scattered in the phase space. This can be seen in Figure 3.9 where we plotted s 1 (n)'s phase diagrams for m = 2 and τ = {3, 6}. For τ = 3 that enables to obtain a maximal value for b, the phase diagram can be modeled by a circle and is well distributed in the space, while for τ = 6, the phase diagram is concentrated into a smaller area.

We have seen that with the ellipse modeling it was posssible to summarize each representation by only three parameters and estimate the apparent frequency of a transient. We can also explore the distribution of the diagram in the phase space which is of great interest as it enables to highlight the lags that provide a great concentration of the data or on the contrary a dispersal.

Trend modeling

In the previous subsection, we have seen that phase diagrams were more or less concentrated around a line that tends to rotate around the origin of the phase space (due to the zero-mean of the modeled signals). This is why, we want to model this line as a third degree polynomial (Figure 3.10) in order to quantify the rotation and the natural trend of the diagram. The model is dened as follows:

y = ax 3 + bx 2 + cx + d (3.15)
To do so, we consider the diagram as a scatterplot and perform a least square tting estimation by minimizing the following sum: where s (i) corresponds to the analyzed signal for i ∈ {1, . . . , N }; N being the number of samples.

Therefore, for each representation, phase diagrams are summarized by four parameters a τ , b τ , c τ , d τ that vary with respect to τ . As studied signals can always be considered as zeros mean, we can remove from consideration d: this parameter will always be equal to zero. Thus, three parameters remain: a, b and c. They enable to discriminate transients by looking at their evolutions with respect to τ and they also permit to highlight similitudes by looking at one parameter with respect to another. This last representation allows to get rid of the evolution of τ and investigate if whether or not the diagrams have similar trends for dierent lags: this can reect a time-scaling operation.

To illustrate the concept of trend modeling, we consider the three signals that were introduced in the previous subsection. For all of them and τ = {1, . . . , 30}, we model each phase diagram's trend by a third degree polynomial and record the variations of the four parameters with respect to the lag. As we can see in Figure 3.11, it is quite easy to discriminate between s 1 (n) and s 3 (n) by looking at the evolution of the parameters of interest. The apparent periodicity of the parameters corresponds to the apparent periodicity of the signals. As an example, the number of lags between two successive maxima of c is equal to 12 for s 1 (n), 22 for s 2 (n) and 11 for s 3 (n), while the apparent periodicity is of 12.5 samples for s 1 (n), 22.25 for s 2 (n) and 11.75 for s 3 (n) which is coherent with the theoretical values. We can also notice that the evolution of d's is very small (below 0.0001), as well as for the evolution of parameter b. This is why we remove this last parameter from consideration as well. are related by a low-pass ltering, we can see that even if their representations are similar, they do not overlap. This shows the complexity introduced by the ltering.

The modeling of phase diagrams's trend by a third degree polynomial is of great interest as it enables to detect if transients are related by a time-scale transformation. However, at this point of the study, there is no method that tells us what couples of lags we should use to highlight this transformation. This is why we moved torward a matching phase diagram technique that is presented in the next subsection. 

Extremum points / bounding box

Generally, when we talk about SNR for transient analysis, we only consider signal and noise over the duration of the transient. When it comes to noise in phase diagram, we can see in Figure 3.13 that the external contour remains more or less the same depending on the level of noise considered. This is the reason why we focus on the bounding box of the trajectory that is delimited by the maximal and minimal values of the studied signal.

We thus dene 4 remarkables coordinates dened as follows and illustrated in Figure 3.14:

A : ∀n, x (n 1 ) = max n (x (n)) y (n 1 ) (3.17) B : x (n 2 ) ∀n, y (n 2 ) = max n (y (n)) (3.18) C : ∀n, x (n 3 ) = min n (x (n)) y (n 3 ) (3.19) D : x (n 4 ) ∀n, y (n 4 ) = min n (y (n)) (3.20)
In order to compare two transient signals analysis, we consider the signals' phase space diagrams for dierent values of lag [τ 1,i , τ 2,i ] i∈[1,...,τmax] and we look for their extremum points

[A k,i , B k,i , C k,i , D k,i ] k=1,2
. Then, we compute 4 matrices H A , H B , H C and H D dened as follows: 

H X = {h X,i,j } i,j∈[1,...,τmax] (3.21) = {D (X 1,i , X 2,j )} (3.22)

O

x (n) where D describes a given metric and X the extremum point taken into consideration.

y (n) = x (n + τ ) A • • C • B • D max(sig) min(sig) max(sig) min(sig)
Each matrix provides a "map" of the distances between the extremum points of each phase 3.2. Multi-lag phase diagram analysis 59 space diagrams calculated for dierent values of lags. Therefore, it enables to discover which couples of lags [τ 1 , τ 2 ] need to be used to provide a match between two extremum points. In order to illustrate this concept, let consider two transients related by a time-scale transformation with the dilation coecient α = 3. Temporal data presented in Figure 3.15 shows that s 2 (n) (in red) is only dilated compared to s 1 (n) (in black) and does not suer amplitude changes. In this part, the purpose is to highlight the time-scale relation between these signals.

We rst calculate the 4 matrices described previously using the Euclidean norm D 2 dened as follows:

D 2 (x) = X 1,i -X 2,j 2 (3.23)
Those 4 matrices are displayed in Figure 3.16 with the same colorbar. In this example, we can see that the error is always really small for the extremum point B contrary to the other points. Nevertheless, they all have in common a 'line' representing the set of lags where the error is minimum. Those 'lines' are shown in Figure 3.17 and we can notice that they overlap. They describe the sets of lags [τ 1 , τ 2 ] to use that would guaranty a match of the 4 extremum points for the two signals. Thus, we can deduce a relationship between the sets of lags by performing a linear regression. We obtain that:

τ 2 = 3τ 1 (3.24)
which is consistent with the dilation coecient.

To validate this result, we draw s 1 (n) and s 2 (n)'s phase space diagrams by using the set of lags [τ 1 = 3, τ 2 = 9] (Figure 3.18). As a matter of fact both phase space diagrams overlap perfectly. This technique allows to highlight time-scale transformations. However, even if this technique enables to match extremum points having the same coordinates for certain couples of lags, we need to keep in mind that trajectories can still be dierent as the other coordinates are not considered. This is why it is interesting to monitor the area covered by the trajectory in the phase space which is the subject of the next subsection. 

Area calculation

Previous subsection has shown that it was possible to dene four reference coordinates for each phase space diagrams that allow to nd matching correspondances, however, it is not enough to guaranty the invariance. The next idea consists in calculating the area of the diagram to quantify the surface. To do so, the diagram is considered as a curve having at each instant n 3.2. Multi-lag phase diagram analysis

61 polar coordinates [ρ τ k (n) , θ τ k (n)].
We then calculate the area A [s, τ k ] covered by the phase space diagram calculated for τ = τ k :

A [s, τ k ] = θτ k (N ) θτ k (1) ρ 2 τ k (n) |dθ τ k (n)| (3.25)
We also dene the matrix A [s 1 , s 2 ] dened as follows that enables to calculate the distance bewteen two signals s 1 and s 2 's phase space diagram areas computed for dierent sets of lags [τ 1 , τ 2 ]:

A [s 1 , s 2 ] = {a i,j } i,j∈[1,...,τmax] (3.26) = {|A [s 1 , τ i ] -A [s 2 , τ j ]|} (3.27)
It permits to nd the sets of lags that oer similar areas for two phase space diagrams. This analysis can be complementary to the bounding box method to highlight time-scale transformation for instance. In order to illustrate this concept, let consider the example presented previously that only presents a time-scale transformation. We rst compute the area for s 1 (n) and s 2 (n) using τ = 1, . . . , 50. The evolution of the area according to the lag is displayed for both signals in Figure 3.19. As we can see, A [s 1 , τ ] presents a clear maxima for τ = 17, while A [s 2 , τ ] does not have one. A maxima noties a change on phase space diagrams that can as an example change its rst eigenvector.

The computation of matrix A [s 1 , s 2 ] provides the sets of lags that oer matching areas. They are highlighted by a black dashed line in Figure 3.20. For τ 1 = 1, . . . , 17, we can see that this line is also a straight line that veries the following equation: This method is really usefull when coupled with the bounding box method. They enables to highlight time-scale transformations between signals. This will be illustrated in more details in the Chapter devoted to the applications.

τ 2 = 3τ 1 (3.

Polar coordinates analysis

General presentation

We have shown in Section 3.1 that amplitude changes can be enlightened from phase space diagrams. Indeed there exists a scale factor between two signals having an amplitude relationship. To highlight it, phase diagrams are turned into polar coordinates as shown in Figure 3.21. The assessment is that for a given polar angle, radius are directly connected by the amplitude coecient.

O

x (n) Let consider s 1 (n) dened as in Equation C.26 and s 2 (n) dened as follows:

y (n) r ( n ) θ (n)
s 2 (n) = 1 β s 1 (αn) (3.29)
with α = 2 and β = 1.4, as an example. That is, s 2 is derived from s 1 by a double scale and amplitude modication. We turn the cartesian coordinates into polar coordinates and draw the functions ρ (n) = f (θ (n)) for the two signals that are shown in Figure 3.23. As we can see, both curves are similar and it is easy to imagine a linear relationship between them. However, for a given polar angle, there is not always a correspondance between the two curves (Figure 3.24). This is the reason why we propose an algorithm to match corresponding coordinates with respect to polar angles.

-3 -2 -1 0 1 2 3 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 θ(n) [rad] rho(n) s 1 (n) s 2 (n) Figure 3.23: ρ (n) = f (θ (n)) for T 2,2 (s)
and T 2,4 (s 1 ) respectively in black and red For each polar angle θ 1 (n) of the rst curve, the algorithm searches for the corresponding polar angle on the second curve θ 2 (n). A match is enlightened if the two conditions are met:

θ 2 (n 1 ) = argmin |θ 1 (n 0 ) -θ 2 (n)| θ 2 (n 1 ) < (3.30)
where n 0 is the index of θ 1 (n) we are looking for, n 1 is the corresponding index for θ 2 (n) and a threshold error that enables to discard certain associations that are not consistent.

The algorithm selects M pairs of coordinates and calculates a ratio r (i) dened for i ∈ {1, . . . , M } such as:

r (i) = ρ 1 (n 0 i ) ρ 2 (n 1 i ) (3.31)
Figure 3.25 presents the pairs of coordinates that have been selected by the algorithm and the associated ratio. In this example, we can see that the ratio is consistent along the entire polar angles interval which corroborates the idea of a shape-invariant scale transformation. Moreover, the ratio is here equal to 1.4 which is the value of β. We have seen in this example that it was possible to estimate a shape-invariant scale transformation. The same work can be done along an interval of polar angles that would highligh amplitudes changes on this interval. Application to linear modication changes However, amplitude changes are not uniform in real world and are most of the time more complex. We propose to analyze amplitude changes that can be modeled by a linear function α (n). To do so, we consider two signals x (n) and y (n) dened as follows:

y (n) = α (n) x (n) (3.32)
We then develop y (n)'s phase space vector at instant n:

[y (n) , y (n + τ )] = [α (n) x (n) , α (n + τ ) x (n + τ )] (3.33)
At this point, no relationship can be extracted from this equation. We need to know more about the linear function α (n) to continue. This is why we focus on the following linear function:

α (n) = βn + γ (3.34)
with β, γ ∈ R 2 . Besides, we note:

X (n) = [x (n) , x (n + τ )] Y (n) = [y (n) , y (n + τ )] (3.35) 
We then continue to develop Equation 3.33:

Y (n) = α (n) X (n) + [0, βτ x (n + τ )] (3.36)
Typically, it means that the relationship is conserved but a linear error depending on the studied signal x (n), τ and β appears on the second axis. This error evolves between βτ min (x) and βτ max (x), and is illustrated in Figure 3.26.

O

x (n) It is quite obvious that the last algorithm cannot be carried out for such signals which leads to the development of another approach. By using the polar coordinates system, the 66 Chapter 3. Phase diagram-based transient signal analysis relationship can be expressed as follows:

x (n + τ ) X (n) • α (n) X (n) • Y (n) • βτ x (n + τ ) θ 0 (n) θ (n)
X (n) = ρ 0 (n) exp (θ 0 (n)) Y (n) = ρ (n) exp (θ (n))
(3.37) with θ 0 (n) and θ (n) the two given polar angles, and the two radius: ρ 0 (n) and ρ (n). As shown in Figure 3.26, the polar angles are dierent.

To illustrate the scenario with an example, we consider two signals presented in Figure 3.27 linked by the black dashed line shown in the same picture. As we can see, the two signals' amplitudes are dierent, but they do not present a time-scale transformation. We compute their phase diagrams for m = 2 and τ = 10, and focus on a particular instant n 0 . Figure 3.28 zooms in this particular instant for both signals and we can see that the polar angles are dierent as predicted by Equation 3.37. 

Summary 67 Conclusion

We have seen in this subsection that it was easy to highlight shape-invariant scale transformation by looking at the polar coordinates of phase space diagrams. This result can also be extended to reveal amplitude relationships between parts of signals, which is of great interest if the transformation is more complex. However, when dealing with linear amplitude changes, more work need to be done as phase space diagrams connection are more complicated. Future work will investigate the eects of linear and nonlinear amplitude transformation in phase diagrams in order to detect more complicated relationships.

Summary

In this Chapter, we have shown in a rst part that transients that were connected by timeshifted operator, time-scaling operator and amplitude modication, have invariant (or shapescaling invariant) phase diagrams if the lags were chosen wisely. We then proposed dierent methods to extract parsimonious parameters from each representation and combine all of them to highlight the named properties. So far, the methods provided good results for numerical examples and more details are provided in Chapter 4 in the case of real-life data.

Future axis of research can propose to extend this work to higher embedding dimensions. One possible idea could be to apply the same methods to the projections of phase diagrams onto the dierent planes of the phase space. Extra work also need to be done to explore linear and nonlinear amplitude modications. This work has been published at the EUSIPCO conference in 2014, a report has been performed for EDF R& D and the writting of a regular paper is also planed before the end of the PhD. This chapter presents some applications that show the potential of the proposed approaches to some real-life contexts. We rst consider the context of ECG segmentation based on PDA. Then, we propose to characterize electrical transient with multi-lag tools developed in Chapter 3. We also extract characteristics from pressure signals in a passive acoustic conguration and nally, in the last section, we propose to investigate the scenario of active acoustic in underwater conguration. 

Introduction

Electrocardiography is the recording of the electrical activity of the heart over a period of time using electrodes placed on a patient chest. These electrodes detect the tiny electrical changes on the skin that arise from the heart muscle depolarizing during each heartbeat. A healthy heart has an orderly progression of depolarization that starts with pacemaker cells in the sinoatrial node, spreads out through the atrium, passes through the atrioventricular node and then spreads throughout the ventricles. This orderly pattern of depolarization gives rise to the characteristic electrocardiogram (ECG) tracing that reects the cardiac cycle.

The cardiac cycle (Figure 4.1 1 ) refers to a complete heartbeat from its generation to the beginning of the next beat, and so includes the diastole, the systole, and the intervening pause. Each beat of the heart involves ve major stages. The rst two stages, often considered together as the "ventricular lling" stage, involve the movement of blood from the atria into the ventricles. The next three stages involve the movement of blood from the ventricles to the pulmonary artery (in the case of the right ventricle) and the aorta (in the case of the left ventricle). The frequency of the cardiac cycle is described by the heart rate, which is typically expressed as beats per minute. An ECG can be used to measure the rate and rhythm of heartbeats, the size and position of the heart chambers, the presence of any damage to the heart muscle cells or conduction system, the eects of cardiac drugs, and the function of implanted pacemakers.

From one patient to another, heartbeat rhythms and features can be dierent but are nevertheless always characterized by three well-known waves: a P-wave (atrial depolarization), a QRS-complex (ventricular depolarization) and a T-wave (ventricular repolarization) (Figure 4.2). As changes in time-series can reveal heart disease, it is important to identify the dierent features and extract time-domain characteristics. Many methods have been designed over the past two decades to provide an automatic segmentation of ECG time-series. To identify the dierent waves, some tried to perform a waveform analysis [START_REF] Reilly | Automatic classication of ECG beats using waveform shape and heart beat interval features[END_REF][START_REF] De Chazal | Automatic classication of heartbeats using ECG morphology and heartbeat interval features[END_REF], essentially based on wavelet transforms [START_REF] Madeiro | A new approach to QRS segmentation based on wavelet bases and adaptive threshold technique[END_REF] and hidden Markov models [LBBC01, GB03, AaDB06, AaB07]. Some tried dierent approaches by using dynamic time warping [START_REF] Vullings | Automated ECG segmentation with dynamic time warping[END_REF], the signal decomposition over Hermitian basis functions [START_REF] Ahmadian | An ecient piecewise modeling of ECG signals based on Hermitian basis functions[END_REF] or a Bayesian approach [START_REF] Sayadi | A model-based Bayesian framework for ECG beat segmentation[END_REF]. However, due to the methodological limitations and the characteristics of nonstationary and nonlinearity of ECG signals, there is no standardized approach for segmenting ECG signals, although, all those techniques mentioned above are practical.

In this Section, we propose a new framework to study ECG time-series that provides a good segmentation and is based on RPA. This work has been conducted during a four-month stay at Ryerson university (Toronto, Canada) under the supervision of Dr. Sridhar Krishnan and Dr. Muhammad Hasan.

Pre-processing

The pre-processing step consists of a low-pass ltering followed by a median ltering. The rst ltering is applied to remove the fast variations of the signal that are due to noise. The second ltering is used to estimate and then remove the continuous component of the signal that corresponds to a possible variation of the signal baseline. An important variation of the baseline can be a problem as the detection algorithm takes into consideration the extremum values of the time-series. Figure 4.3 shows an ECG time-series having an important variation of its baseline. This one is estimated with the median ltering and then removed from the original signal in order to obtain the ltered signal s f ilt (n). 

Detection algorithm

The detection algorithm is based on the spatial-embedding process that enables us to express parts of the signal s (n) dened for n ∈ {1, . . . , N } as vectors. At instant n, those are dened as follows:

-→ v n [s, K, m] = [s (n) , s (n + K) , . . . , s (n + (m -1) K)] (4.1)
with m the embedding dimension (the vector dimension) and K the integer decimation factor.

As an example, at instant n 0 , the algorithm only considers s (n) samples for n ∈ [n 0 , n 0 + (m -1) K], and then keeps every K samples.

First, let dene the following three parameters:

• A max the maximum amplitude of the studied time-series.

• a (n) the maximum amplitude between two successive vectors dened as:

a (n) = max ( --→ v n+1 [s, K, m]) -min ( -→ v n [s, K, m]) (4.2) • r ∈ [0, 1] a ratio
The method is designed to detect sudden changes in amplitude in the time-series. By sudden, we refer to a dierence of amplitude between two successive vectors that is bigger than a data-related threshold rA max that can be chosen by the user. Therefore, at each instant n, a detection is enlightened if the maximum amplitude between two successive vectors a (n) is bigger than rA max . The result of the detection is then stored in a binary vector D dened as:

D (n) = 1 if a (n) > rA max 0 otherwise (4.3)
where, 1 stands for a detection and 0 for the opposite.

In the case of ECG time series, the method is not good enough to detect all the dierent waves of the heartbeat at once because their shapes and duration are quite dierent: QRScomplex are short and very sharp, while P and T-waves have a longer duration and their slope are more gentle. Thus, the algorithm is used twice, both using K = 1, because, undersampling is not necessary in this scenario. It is rst applied to the ltered signal s f ilt (n) to detect the sharp and fast QRS-complex peaks by using a small value of m. Figure 4.4 presents the rst results obtained for the QRS complex. As we can see in Figure 4.4(b) and (c), QRS-complex are not the only peaks that are detected; there are also over and under detections that need to be taken care of. Therefore, a closing procedure has been elaborated that rst merges detections that are separated by less than N dil samples, and then removes detections that are smaller than N ero . Then, because QRS-complex amplitudes are more important than the other P and T-waves that need to be segmented, they need to be removed from the current time-series. Hence, D 1 is divided into segments corresponding to the continuous detections and for each of them, the corresponding time-series samples are replaced by a data-related constant value depending on the minimum and maximum signal values. The new time-serie obtained is s mod (n) and is represented in Figure 4.5.

Afterwards, the algorithm is used a second time on the new time-serie to obtain the binary vector D 2 that detects P and T-waves. Due to their longer durations, the paramater m need to be larger. Subsequently, a post-processing algorithm has been carried out to surpervise the nal results which is elaborated in the following subsection.

Parameters m and K are chosen by trials and error. More work is needed to automatize the process, which is one of the perspectives in this domain.

Post-processing

As the rst detection D 1 usually provides really good results, the binary vector is considered as a reference for the post-processing algorithm. Generally, between two QRS-complex, there are always a single P and T-waves. Therefore, between two successive D 1 positive detections, we should only have two intervals of D 2 detection corresponding to those waves. Thus, we then dene windows of length L (k) dened as the intervals between two succesive D 1 detections, that we divide into two equal parts: the left and right. For each half interval, two criteria are needed to validate the detection: only one interval of detection is allowed (corresponding to a P or a T-wave), the absolute maximum value has to be part of the detection segment. This separation into two equal segments has been done in an empirical manner. Figure 4.6 shows the results of a good segmentation on two successive heartbeats and the intervals considered for the post-processing program. In the case of overdetection, meaning that there are more than one detection in one half interval, a closing morphological procedure has been elaborated. This procedure allows to unify two consecutive detections that are separated by a small number of samples and also to delete detections too small to be signicant. However, because sometimes it is not enough, the algorithm only allows detections that verify the previous mentioned conditions.

In the case of underdetection (meaning that the algorithm only provides one or zero detections between two consecutives QRS-complex), the segmentation algorithm is used once again on the considered segment with another value of m (usually smaller).

Pre-processing

Segmentation algorithm

Filtering Segmentation algorithm

Post-processing ECG time series s (n)

s f ilt (n) D 1 s f ilt (n) s mod (n) D 2 Final detection m 1 K = 1 r 1 A max m 2 K = 1 r 2 A max
Low-pass filtering Median filtering The recordings were digitized at 360 samples per second per channel with 11-bit resolution over a 10mV range. Two or more cardiologists independently annotated each record. More details about the database can be found in [Phy] and [GAG + 00]. This database is famous in ECG processing comunity and is used by many researchers to conduct their works. Nevertheless, there exists one big limitation: there is no ground truth available to conrm that the proposed segmentation is of good quality. During my stay in Toronto, we developed a reference document that provides the sample index of each QRS-complex for this database. It enables us to quantify our results for the QRS-complex segmentation.

Tools to quantify the results

To quantify the results of the 'X-wave' detection by the algorithm, four statistical parameters are evaluated [START_REF] Benitez | The use of the Hilbert transform in ECG signal analysis[END_REF]:

S e =
T P T P + F N (4.4)

+ P = T P T P + F P (4.5)

F 1 = 2T P 2T P + F P + F N (4.6) DER = F P + F N T otal number of X -waves (4.7)
where TP is the number of true positives (an actual X-wave is detected), FP is the number of false positives (a wave is detected but does not correspond to a X-wave) and FN is the number of false negatives (an actual X-wave is not detected by the algorithm). The notation is explained in Figure 4.8. summarizes the dierent statistical terms used in this Section. X refers to the presence of a X-wave, while X refers to the estimation given by the segmentation algorithm

X = 0 X = 1 X = 0 X = 1 FN False Negative TP True Positive FP False Positive
The sensitivity S e provides the percentage of true X-waves detected over the total number of detections. The positive predictivity +P refers to the condence level of the results. The detection error rate (DER) enables to quantify the precision of the segmentation and the F 1 score is the harmonic mean of precision and sensitivity [START_REF] Powers | Evaluation: from Precision, Recall and F-measure to ROC, Informedness, Markedness and Correlation[END_REF][START_REF] Fawcett | An introduction to ROC analysis[END_REF]. Generally, the frequency content of an ECG time-series is comprised between 0 and 50 Hz (Figure 4.9). In order to remove all the tiny uctuations that correspond to measurement noise, we choose to use a 6 th order low pass lter at the cuto frequency of 18Hz. As the low-pass lter is not selective, it will only remove the noise and smooth the signal (Figure 4.10).

The median ltering is composed of 100 samples which is in order with the length of the P and T-waves duration. It needs to be of the same magnitude in order to estimate the general baseline and to not remove at the same time the waves of interest. Figure 4.11 shows the estimation of the baseline of an ECG time-series and its removal. The obtained baseline is smooth and the waves of interest are still in place.

QRS-complex detection

As mentionned in the previous subsection, the rst step of the method is to detect all the QRS-complex that are in the studied time-series but the main issue is to choose what parameters are the best suited for this purpose. We know that they are usually composed of 20 samples in average in this database: this is why, we decide to run the algorithm for dierent values of embedding dimension: m = {5, 10, 20} in order to choose which dimension provides the best results. If the detection intervals are composed of less than 10 samples, then they are too short to correspond to actual QRS-complex: we set N ero = 10. The next criteria to set are the ratio r 1 and N dil : the experiments are run for several values dened as N dil = {10, 20, 30} and r 1 = {5%, 10%, 20%}.

The rst experiment consists in running the detection algorithm with or without the closing procedure, it provides binary vectors that gives a certain amount of detection intervals. Each of them is then compared with its corresponding ground truth vector. We here only check if the QRS-complex maxima samples indexes are included in detection intervals. We then tally up the total numbers of true detections (TP), false detections (FP) and false negatives (FN) and calculate the dierent statistical parameters presented in subsection 4.1.3.2. Appendix B presents an example of one of these experiments.

For each set of parameters, we then sum up the test results for the entire database, and compute the sensitivity, the specicity, the F1 score and the detection error rate. Results are presented in Tables 4.1, 4.2 and 4.3. The results entitled "raw data" correspond to the algorithm used without the closing procedure.

As we can see, the algorithm without the closing procedure leads to results having detection error rates over 100% and F1 scores below 50%. Those results reect a huge number of errors and a very bad precision that justify the elaboration of the closing procedure. Generally, we can also notice that for m = {5, 10}, the ratio r 1 = 0.20 provides poor performances compared to the other two ratios. However, this result changes for m = 20. Apparently, there is a tradeo between the embedding dimension and the ratio: the bigger the embedding dimension, the bigger the ratio that need to be used. Nevertheless, for the three considered embedding dimensions, we identify three sets of parameters that oer the best performances (highlighted in the dierents tables) and we choose the best of them that provides a F 1 score of 95,98% and a DER of 7.84%. It is obtained for the following set of parameters: Detailled results computed with this set of parameters is presented in Appendix B. We can notice that the sensitivity is really good for most of the signals (around 99 %) except for 4 of them (108m, 113m, 114m and 201m) that have a sensitivity below 95%. False negative and false positive detections usually correspond to repeated errors that are due to the shape specity of the heartbeat. As an example, for signal 113m, the repeated false positive error corresponds to the detection of a portion of the T-wave (Figure 4.12). For signal 201m, the modication of the QRS-complex's shape leads to a false negative detection as the corresponding QRS-complex sample index is not included in the detection interval and is localized 1 or 2 samples before it (Figure 4.13). What we can say about those errors is that they could easily be taken care of by adjusting the parameters of the algorithm and they correspond to repeated errors that explain their high numbers when they exist. 4.4. Generally, we can notice that their results seem to be better than ours. However, as we have pointed out previously the errors that were made can be xed by adjusting the algorithm parameters and therefore the results could sensibly be improved. Moreover, their works rely on the choice of a mother wavelet that need to be close to the waves they want to detect, while our method do not need a reference shape. One possible approach to improve our results could be to design a data-driven threshold that could adapt itself to the section of the signal that is studied just like a window with the short time Fourier transform.

   m = 10 r 1 = 0.1 N dil =

QRS detector

P and T-waves detections

It was dicult to conduct the same experiment for P and T-waves detections due to the lack of ground truth, nevertheless we ran the algorithm. To quantify the results, we tally up the number of P and T-waves detected if they verify the two conditions described in the previous subsection. Therefore, we need to keep in mind that those results do not guaranty that the proposed segmentation is truthworthy, only that they verify the conditions.

Results are obtained by using m = 30, N ero = 10 (detection intervals that are smaller do not correspond to actual P or T-waves), r 2 = 5% and N dil = 30 and displayed in Appendix B. Summarized results are presented in Table 4.5 and given as follows. After the QRS detection, the detection algorithm is used with the proposed parameters and we tally up the number of supposed P and T-waves detected N init . Then, the post processing algorithm is run and provides the number of P-waves N P and T-waves N T . We note N P T the sum of detected waves. Typically, we are supposed to obtain more or less as many P and T-waves as QRS complex.

As we can see in Table 4.5, results are not as good as those obtained for the QRS-complex 4.2. Electrical transient characterization 83 detection as the percentages of P and T-waves detected do not go up to 55%. However, we need to take a step back and look at the results diplayed in Appendix B.2 that contrast those results. As we can see, for 8 subjects there are almost no detections, for 50% only one of the wave is detected, and nally for 4 of them the detections go up to 98%. It only means that there are still more work to be done to design a data-driven algorithm that can detect P and T-waves with more accuracy.

Conclusion

In this Section, we have developed a new framework for segmenting ECG time-series using PDA. Although, it provides really good results for QRS-complex detections, it should be noted that P and T-waves detections highly depend on the performances of the rst detection. The results were then compared to other works found in the literature and are encourageous. It then leads to the calculation of other physical parameters (such as QT intervals [HAB12] [HAB13] for example) that are of great interest to doctors that can then identify heart diseases and malformations. Nevertheless, more work need to be done to improve the results and design a data-driven algorithm. This work led to the writting of a conference paper that will be submitted in September 2015: C. Bernard, C. Ioana, M. A. Hasan, and S. Krishnan. Spatial-embedding signal processing for recurrent time series: a case study with ECG signal. In 15 th IEEE Symposium on Signal Processing and Information Technology, December 2015, to be submitted.

4.2

Electrical transient characterization

Introduction

Electrical transients that are produced in electrical equipments traduce dierent phenomena that require to be monitored, contributing to ensure the predictive surveillance of systems. Electrical transients can be normal, created by phenomena such as commuting, parameters charge changes; but also abnormal, created by the material problems such as dielectric problems or conductors defaults. The eects such as partial discharges (PD) or electrical arches generate transient signals that need to be continuously studied (detection and characterization) in order to ensure the system safe performing.

PD corresponds to a localised dielectric breakdown of a small portion of a solid or a uid electrical insulation system under high voltage stress, which does not bridge the space between two conductors. They are usually not visible and can occur in gaseous, liquid or solid insulating medium. They represent one of the most common breakdown in electrical systems and 30% of them would be caused by insulation problems. Their appearance is unpredictable, Chapter 4. Results in applicative contexts really sudden and covers a large bandwidth. All these features make them really dicult to predict, to localize and to characterize. [START_REF] Gottin | Analyse multi-capteurs de signaux transitoires issus de systèmes électriques[END_REF] developed in his thesis localization methods based on RPA and GCD. Next step was to characterize them, knowing that at the receiving level transients do not only represent the transient at the origin but also the propagation eect. In this context, we propose to apply multi-lag phase diagrams approaches to signals recorded after propagation of a generated PD in lab conditions. Therefore, next subsection is dedicated to the description of the experiment.

Experimental presentation

In order to characterize transient modications due to its propagation through a medium, we now conduct an experiment using the facilities existing in our lab. We generate a partial discharge (PD) on an electric cable whose ends T 1 and T 2 are connected to a data acquisition system. The PD source is respectively localized at L 1 and L 2 distances from the recording devices. The experimental outline is presented in Figure 4.14 and a photo of the experimental facility is also presented in Figure 4.15. L 1 is composed of two cable reels (152 m in length each) while L 2 is composed of ve. At the intersection between the two cables, a PD is generated and we record the signals at both extremities after propagation. Normalized Amplitude What is interesting with this kind of signals is that we can easily visualize that a time-scale analysis would not be enough to characterize the modications caused by the propagation. There are dilation and also a modication of the envelop of the signal that would be dicult to analyze with a single type of mother wavelet function. This is shown by Figure 4.18 where a time-scale study is performed for the three signals using two dierent mother wavelets: Symlet and Coiet. The results highly depend on the choice of mother wavelet used and for the three cases, even if it is easy to detect them, it is quite dicult to claim that they come from the same source.

× T 1 T 2 L 1 = 304m L 2 = 762 m
s 0 (n) s 1 (n) s 2 (n)
In this subsection, we have presented the experiment and the acquired data. We have shown that time-scale analysis would not provide results that enables a good characterization as waveforms changes with the propagation. This is the reason why it is usefull to move forward MLPDA which is presented in the next subsection.

Data processing

In this subsection, we use the MLPDA tools to characterize the experiental data. We estimate a time-scale transformation with the bounding box, and then study the amplitude relationship that eventually exists between the two signals recording at both extremities. ] that provides the minimum distances between the extremum points A and B of s 1 (n) and s 2 (n)'s phase space diagrams. The blue dots correspond to the sets of lags that provide minimal distances for the same sets of lags. Nevertheless, even if those couples guaranty smaller distances between the extremum coordinates compared to the other sets for a given τ 2 , it does not mean that all of them are minimal. Figure 4.21 presents the evolution of the distance between extremum points A and B regarding to the evolution of τ 2 . Some values have been highlighted by dots; they correspond to the distances obtained for the sets of lags that present matches. As we can see, the distances between the extremum points A and B of s 1 (n) and s 2 (n)'s phase space diagrams are not constant and for certains sets of lags, the distances are not always the smaller. To illustrate this matter, we compute T 2,4 (s 1 ) and T 2,6 (s 2 ) shown in Figure 4.22, and T 2,5 (s 1 ) and T 2,8 (s 1 ) shown in Figure 4.23. The sets of lags used are the ones that were highlighted by the experiment. We can see that the top right parts of the two trajectories superpose well in the rst case compared to the other one, even if the distances between A 1 and A 2 , and B 1 and B 2 are smaller in the second case. This result conrms that the bounding box method cannot be used alone to determine dilation relationship. It needs to be coupled with a verication of the trajectories and/or other methods.

Nevertheless, according to Figure 4.22, we can conclude that there is a dilation coecient equal to τ 2 τ 1 = 3/2 between the positive parts of s 1 (n) and s 2 (n). We can then move forward the analysis of the negative parts of the signal's amplitudes. points are not worth being taken into consideration. The distance between C 1 and C 2 is smaller and never goes above 0.8. The distance between D 1 and D 2 is more contrasted as it can goes up to 3.

We can procede to the same experiment previously presented, however due to the small portion of phase diagram that is of interest, it was not possible to determine with certitude a dilation coecient for the negative parts of the signals. As we can see in Figure 4.25, the bottom left parts of the diagrams can be superposed for a very short curve that is not enough to conclude.

Comparison of the results with another method

In order to quantify the time-scale coecients obtained with MLPDA tool, we propose to dene an estimated dilation coecient obtained as follows. For the normalized signal's parts of interest, we calculate the number of samples where the signal's amplitude is higher than half the maximal value, i.e. 0.5 and then compute the ratio between the two numbers to obtain the estimated dilation coecient. For positive part, we obtain a ratio τ 1 /τ 2 equal to 8/12, i.e. 2/3 which corresponds to the coecient we previously estimated. For the negative part, we obtain 55/10, i.e. 5.5 which is a bit dierent. We can explain this result by the fact that a very small part of the phase diagrams are concerned by the dilation which makes it really dicult to estimate.

In this subsection, we have determined that there are two time-scale transformations between s 1 (n) and s 2 (n) corresponding to a dilation of their positive and negative parts. Even if the coecient remains uncertain for the negative part due to its small representation in phase diagrams, we managed to dene a clear coecient for the positive part. The next step is to search for an eventual amplitude relationship.

Amplitude changes:

In this part, we work with the original signals s 1 (n) and s 2 (n) and are only concerned by the amplitude relationship that eventually exists between the positive parts of the signals. To begin with, we compute the two phase diagrams shown in Figure 4.26 for the set of lags [4,6] highlighted in the previous part of the study. This set of lags enables to superpose the two phase diagrams and identify the time-scale transformation that links the positive parts of the signals.

The next step of the method is then to turn the cartesian coordinates [x (n) , y (n)] of phase diagrams into polar coordinates [ρ (n) , θ (n)]. We then look for the couples [ρ 1 (n 1 ) , ρ 2 (n 2 )] such that |θ 1 (n 1 )θ 2 (n 2 )| < 0.05 rad (Figure 4.27). Afterwards, we compute the ratio ρ 1 /ρ 2 for each of them and display the results.

A linear relationship is highlighted if there exists an interval I where the ratio is constant along this segment. This is exactly what we have for θ ∈ [0.5, 1.4radians] where the ratio is constant and equal to 2.88. If we consider the ratio between the maximum of the two signals, we have a ratio equal to 2.84 which is quite close to the experimental result. 
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Conclusion

As a conclusion, we can say that multi-lag tools have been used on partial discharge in order to characterize two signals received at two ends of cable reels. We have highlighted two distinct time-scale transformation of the positive and negative parts of the recorded data after propagation and we were able to estimate a dilation coecient and an amplitude relationship for the positive parts of the signals. The negative parts of the signals present a bigger dilation, but it was dicult to extract an accurate coecient. Nevertheless, MLPDA tools have shown that they are promising to extract information from signals that suer nonlinear modication.

4.3

Passive acoustic application

Introduction

Another example of capital importance for power networks surveillance is the passive monitoring of hydraulic shocks in penstock pipes (Figure 2). Water hammer is a pressure surge caused when a uid in motion is forced to stop or change direction suddenly. They commonly occur when a valve is closed at an end of a pipeline system, and a pressure wave propagates in the pipe. Although they are inevitable, they can be really dangerous if the wave does not propagate as wanted by the engineer and then cause a lot of damages in the system. Some characteristics of the transients are of great interest as they reect the propagation of the shock wave and can reveal if the penstock has been damaged. In this section, we propose to extract one of them, namely the time rise, which provides an indication regarding the wave propagation.

Experimental presentation

To begin with, let recall some information regarding the pressure prol we can observe at the level of a valve in a penstock. The pressure at the bottom of a pipe is called hydrostatic pressure P stat and is equal to:

P stat = ρgH + p atm (4.10)
where ρ is the uid density, g is gravitational acceleration, p atm is the atmospheric pressure and H is the total height of the liquid column between the altitude of the sensor and the surface of the water at the dam level. In static functionning, this pressure is supposed to remain constant over the time, and its variation is only due to the variation of the level of water in the reservoir.

When a valve closes, the system leave its stationnary functionning and starts a transient phase. A pressure surge arises that leads to an oscillation of the pressure in the pipe that is quickly attenuated. This oscillation is well known as it depends on the pipe's characteristics. The periodicity T periodicity is calculated as follows:

T periodicity = 4L a (4.11)
where L corresponds to the length of the pipe and a the velocity of the sound in water. During this phase a lot of things can happen that can damage the pipeline, this is why it is of great interest to monitor this kind of phenomena.

One of the most dangerous event happens when the wave's propagation is too fast. As expected the mechanical load is more important at the bottom of the pipe than at the top, this is why, a mechanical prol has been designed by engineers to take into account this information. If the water hammer propagates too fast in the pipe, then it is possible that a part of the pipe will have to endure a mechanical load that was not supposed to and then In this section, we propose a method based on PDA tools to calculate automatically this parameter and is presented in the next subsection.

Data processing

As for the ECG segmentation, the detection algorithm is based on the vector samples processing for which we dene 4 parameters:

• A max the maximum amplitude of the signal • a (n) the maximum amplitude between two successive phase space vectors dened as:

a (n) = max ( --→ v n+1 [s, K, m]) -min ( -→ v n [s, K, m]) (4.12) • r ∈ [0, 1] a ratio
• b (n) the dierence between the left and right parts of the phase space vector

-→ v n [s, K, m]: b (n) = mean -→ v n s, K, m 2 i=1,..., m 2 -mean ( -→ v n [s, K, m]) i= m 2 ,...,m (4.13) 
At each instant n, the method detects a sudden amplitude rise if the maximal amplitude between the two successive phase space vectors a (n) is superior to rA max and if b (n) > 0 (denotes a rise and not a decrease). The algorithm then detects all the rising parts of the oscillations but the nal result only provides the rst detection interval.

In 

Conclusion

The algorithm has been tested on a large database provided by the EDF-DTG company that contained 1114 pressure signals coming from dierent powerplants with dierent congurations. A good estimation was obtained for 81.9% of them. This is why the algorihtm has also been integrated into their processing algorithm. Active acoustic sensing adresses the problem of environment characterization. When a wave s (t) transmitted by a transducer T x propagates through a dispersive medium such as a heterogeneous water environment, it suers a lot of modications that involve dilations and amplitude changes. Generally, a receiver R x then records a signal x (t) that is the convolution between the interrogating signal and the transfer function h (t) of the medium:

x (t) = h (t) * s (t) (4.14)
This transfer function not only characterizes the medium but also everything that is in the path of the interrogating wave. As a matter of consequence, if we consider two dierent receivers located at dierent loactions but sensing the same environment, the received signals will be dierent even if coming from the same origin.

The goal of this study is to compare two simulated signals that propagated through two different mediums whose transfer functions are related. The main idea is to estimate parameters 4.4. Application to transients propagated in an underwater environment 95 

s (t) h 1 (t) h 2 (t) x 1 (t) = h 1 (t) * s (t) x 2 (t) = h 2 (t) * s (t)

Simulation presentation

Let consider the case of two simulated dispersive channels whose transfer functions h 1 (t) and h 2 (t) are modeled by two low-pass ltering respectively of order 128 and 512 and the normalized cut-o frequencies equal to 0.3 and 0.15. The simulated interrogating pulse corresponds to a period of sinusoid with a duration of 2 samples and an amplitude of 1. We also add gaussian noise to the signals (SN R = 10dB) to make the study more realistic. While Figure 4.30 presents the outline of the experiment, Figures 4.31 We know that dierence of times of arrival are of great importance to localize any obsta-96 Chapter 4. Results in applicative contexts cle existing in an environment by taking into account all the echos. The time of arrival of the direct path also provides information regarding the lters' orders. The wave's lterings introduce delays that are directly proportionnal to the lter's orders. As h 2 (t)'s order is four times greater than h 1 (t)'s, we can then deduce that the time of arrival of x 2 (t) is also four times greater than x 1 (t)'s. In our simulation, we can nd out this result by considering the time of arrival of the signal's maximal values which are respectively of 32 and 127 samples. However, even if we were able to estimate this parameter, the time of arrival do not provide any information regarding the modication of amplitude and an eventual time-scale transformation. In order to investigate those parameters, we propose to use MLPDA tools on the normalized signals. To begin with, we rst propose to estimate the apparent periodicity of each signals with the trend modeling method. To do so, we compute phase diagrams for τ = 1, . . . , 30, model each of them by a third degree polynomial and record the evolution of a with respect to τ for x 1 (t) and x 2 (t). Figure 4.33 presents the associated evolution. We can then estimate the apparent periodicity T periodicity for both signals and we respectively obtain 3.5 and 7.33 samples for x 1 (t) and x 2 (t), which indicate a possible dilation coecient equal to 2.09.

At this point of the study, we highlighted a possible time-scale transformation but we did not take into account proper phase diagrams as they maybe even not overlap in phase space.

To complete this study, we propose to study the evolution of the area with respect to the lag. As we can see in Figure 4.34 the areas covered by the two signals are distinct as they do not evolves in the same order of magnitude. This is due to the length of x 2 (n) that is longer than x 1 (n) and also because it presents more oscillations.

In order to verify the coecient found with the trend modeling, we propose to superpose phase diagrams for the two following sets of lags: [2, 4] and [4,8]. As we can see in 

Conclusion

In this section, we have shown that it was possible to estimate a time-scale transformation even if the current MLPDA tools require improvements to deal with nonlinear amplitude modications. The information extracted with MLPDA tools would not have been found with the classical technique of time of arrival.

Summary

In this Chapter, we proposed four contexts of real-life applications where RPA and MLRPA tools provided really good results. The main advantage of those methods is that they do not require any a priori information regarding the data to detect, and they can also be adapted to any other application.

Conclusion & Perspectives

This thesis addresses the problem of transient signal analysis. Due to their wide characteristics, we proposed to dene three dierent classes of transients that are either characterized by sudden amplitude changes or by phase discontinuities of a particular order, or by nonlinear variation of the instantaneous phase. The general aim is therefore to propose and investigate alternative analysis methods that will explore those characteristics.

Chapter 1 presented a brief overview of the existing techniques to perform transient analysis. We determined three dierent classes of approaches that are the statistics, the linear projection-based approach and the data-driven analysis. All those methods enable a good detection of transient phenomena, however, when it comes to characterization for discrimination or classication purposes, we have seen that the statistical approach was very limited. The projection-based approaches permit a better characterization for signals having nonlinear variation of the instantaneous phase but remains also limited when it comes to analyze sudden amplitude changes. Moreover, all those methods usually need an a priori on the waveform to detect which is not always accessible. On the other hand, data-driven analysis techniques does not need any prior information regarding the studied data, and seem promising to investigate transients having sudden amplitude changes.

In Chapter 2, we decided to focus on signals having fast-varying time-frequency representations as their high nonlinearity is widely met in real world applications. We rst focused on the generalized complex-time distribution that has the particularity to provide highly concentrated distributions around the dierent phase order derivatives of a signal. This technique is however limited to narrow band signals as its computation involves the calculation of signal's samples at complex coordinates. This is performed through the analytical continuation that is directly related to the signal's bandwidth. When the bandwidth is too important, the computation of the continuation usually leads to a divergence. In order to extend the application to signals having larger frequency variations, we proposed to take advantage of time-scale operators to compress the bandwidth of the signal and then compute the generalized complex-time distributions. This transformation allows accurate estimations of the dierent phase order derivatives. Moreover, the choice of the integration path is also a big deal that should be investigated more deeply. This is why future works should focus on proposing an adaptive approach for the selection of the optimal scale parameter with respect to the bandwidth variation of the analyzed signal. This could be performed through a data-driven approach like the multi-lag phase diagram analysis.

In a second part, we concentrate on the recovery of nonlinear modulation phase signals when parts of the signals were missing from the observation. We proposed to combine warping operators with compressive sensing to reconstruct the signal of interest. To do so, a time axis transformation is rst performed to turn the desired signal into a sinusoid and the L-statistics enable to select the time-frequency regions of importance. Then a CS reconstruction algorithm is used to reconstruct the signal in the warped domain. Finally, 100 Conclusion the reconstructed warped signal is expressed in the original time domain with an inverse time axis transformation. Generally, this technique performs better than a classical warping/bandpass ltering method that is hence disturbed by the missing values. Indeed, the sparsity in the warped domain enables to use compressive sensing reconstruction algorithm that only needs a few observations of the signal to reconstruct it. Nevertheless, we still need to note that this technique bets on the correct estimation of the warping function that stationnarize the desired component. If this task is not done properly, we will obtain poor results. This work has been performed in collaboration with the university of Montenegro and led to the writting of a regular paper for the IEEE Transactions on Signal processing and a conference paper at IEEE Oceans Conference 2015 that are currently under review.

Chapter 3 then addresses the problem of characterization of transients having sudden amplitude changes. To do so, we focused on a well-known data-driven technique that is recurrence plot analysis. One of the major current research topic is the selection of the optimal set of parameters that are m the embedding dimension and τ the time delay. Generally, everyone agrees that there is no best choice as it highly depends on the application. Therefore, we decided to explore the lag diversity in phase diagrams as some properties as time-shift and time-scale operators, and amplitude coecient modications can be enlighthened with invariant and shape-invariant phase diagrams obtained with dierent lags. We proposed several modelings to extract parsimonious parameters from each phase diagram representations such as: ellipse modeling, third degree polynomial modeling, bounding box, area covered by the phase diagram, and a polar coordinates analysis. Their evolutions are then studied with respect to the lags or between each other to hightlight the previous properties. So far, those methods have proven themselves ecient on simulated data, and the results on applicative context are discussed in Chapter 4. Future works should therefore focus to extend this work performed for m = 2 to higher embedding dimensions. This could be done by applying the same methods to the projections of phase diagrams onto the dierent planes of the phase space. Another axis of research should also explore linear and nonlinear amplitude modications.

Real-life context applications are then explored in Chapter 4. This Chapter is therefore divided into four applications that are then detailled. The rst one has been developed in collaboration with Ryerson University, Toronto, Canada, where I stayed for four months. The idea was to develop a data-driven segmentation method that provides an automatic segmentation of the three main waves of ECG time-series known as: QRS-complex, P and T-waves. This was performed with the vector samples processing (VeSP) concept that is designed to detect sudden changes of amplitudes in time-series, and a post-processing algorithm was also proposed to enhance the results by taking care of under and over detections. However, the results of this work have been compared with annotation les that only provide the locations of every waves's maximum. More work should be carried out to nd out if the proposed segmentation technique provides appropriate segmentations. Another axis of work would be to improve the obtained results with the P and T-waves segmentation by exploring for example the dierent parameters of the algorithm such as the lag).

Another application then focused on the characterization of partial discharges gener-Conclusion 101 ated in cable reels at the lab of Grenoble-INP. Signals were recorded at both ends of the cables after dierent propagation ranges. They obviously suered dierent nonlinear amplitude modications that make them dicult to characterize. We took advantage of the MLPDA tools to explore some of their characteristics. Next application is an example of a passive acoustic conguration for water hammer monitoring. Transients associated with water hammer are recorded and parameters are extracted from each time-series. The one we developed is the time rise that provides an information regarding the speed of the wave. If the duration is inferior to a certain value that depends on the facility, then the system can have suered damages which is important to know. We proposed to use the vector samples processing concept to detect the rst sudden amplitude change that corresponds to the time rise. So far, we obtained satisfying results even if the algorithm needs to be tested in more twisted congurations. The algorithm has been tested on a real database provided by EDF -DTG and it provided 82% of good detections. These satisfying results led to the algorithm's implementation in the data procesing algorithm of the company.

Finally, the fourth applicative context was the propagation of transients in an underwater environment. Due to experimental diculties, we could not procede to a data acquisition in the lab so this experiment was replaced by a numerical simulation. To do so, we computed two dispersive channels modeled by two low-pass ltering whose parameters where connected. We simulated the propagation of an acoustic wave into these channels and studied the obtained signals. The dierent times of arrival provided information regarding the lters' orders, but we had to use MLPDA tools to nd out a relationship between the lters's cut-o frequencies. It could be interesting to procede to an experimental acquisition in future work to verify the MLPDA tools eciency. Les signaux sont caractérisés par des discontinuités de phase d'un ordre particulier :

Subject

Ces signaux sont modélisables de la façon suivante : Les signaux ECG, de par ses variations typiques d'amplitude, sont une belle illustration de cette classe de signaux, mais nous pouvons également noter qu'une partie importante de notre étude concerne les signaux observés à une certaine distance de leur source d'émission. En eet, les signaux enregistrés contiennent des informatives relatives au signal émis à l'origine, mais aussi tous les eets introduits par la propagation et le traitement des capteurs d'enregistrement. Deux exemples de haute importance sont le cas des transitoires électriques et des signaux acoustiques de pression acquis dans des congurations passives.

s (t) = k A k e ja k cos(2kπt) (C.
Les signaux sont caractérisés par des variations non-linéaires de la phase instantanée :

s (t) = A (t) e j(2πf 0 t+Φ(t)) ; Φ (t) ∈ C 4 (C.4)
On retrouve ce genre de signaux dans de très nombreux contextes applicatifs. Nous pouvons en eet noter les signaux naturels tels que les vocalises de baleine ou les signaux de chauves-souris, dont la non-linéarité de leur phase instantanée est en eet très adaptée à leur propagation empêchant ainsi une trop grande perte d'information pour les autres spécimens. Un autre contexte applicatif très répandu concerne la transmission et propagation d'ondes acoustiques dans un milieu à des ns de caractérisation.

Tout au long du siècle dernier, de nombreuses méthodes de traitement ont été développées et sans prétendre faire un inventaire exhaustif de ces méthodes, nous proposons de les classer selon trois approches diérentes qui seront développées un peu plus en détail dans le premier chapitre.

Dans cette thèse, nous proposons de développer de nouvelles techniques d'analyse pour les trois classes de signaux citées précédemment. 

Les approches projectives

Il est dans la nature humaine de comparer les choses avec des référentiels connus. Cette philosophie a un équivalent en traitement du signal matérialisé par la décomposition de n'importe quel signal s (t) sur des bases de fonctions élémentaires appartenant à un dictionnaire D .

s (t) = Θ C Θ ψ Θ (t) (C.5)
où ψ Θ (t) est une fonction élémentaire caractérisée par la liste de paramètres Θ et C Θ sont les coecients de projection montrant par leur amplitude quelle est la contribution de ψ Θ (t) dans la structure de s (t). Ces coecients sont généralement calculés à l'aide du produit scalaire :

C Θ = s (t) , ψ Θ (t) (C.6) = t s (t) ψ * Θ (t) dt (C.7)
Il existe un nombre important de représentations basées sur les approches projectives et nous n'en citerons que quelques unes.

La Transformée de Fourier

Cette approche permet d'exprimer un signal en termes de sinusoïdes de diérentes fréquences en projetant le signal sur les fonctions élémentaires suivantes:

ψ k (t) = e 2jπf k t (C.8) où f k correspond à la fréquence.
Le principal avantage de cette méthode est qu'elle permet de décrire parfaitement le contenu fréquentiel d'un signal. En revanche, si celui-ci varie au court du temps, elle ne permet pas d'en connaître l'évolution.

La Transformée de Fourier à court terme

La transformée de Fourier à court terme permet justement d'analyser le contenu fréquentiel d'un signal en fonction du temps. Pour cela, on utilise des fonctions élémentaires fenêtrées dénies comme suit: ψ k,n (t) = h (t -kT ) e 2jπfnt (C.9) où T correspond à la durée de la fenêtre h (t).

Cette représentation est très utilisée en traitement du signal pour l'étude de signaux nonstationnaires, cependant, il est à noter qu'elle possède une sérieuse limitation quant à la résolution temps-fréquence. En eet, une bonne localisation temporelle ne pourra être obtenue qu'avec une perte d'information relative au contenu fréquentiel du signal, et inversement. Ce compromis est connu sous le nom du principe d'incertitude de Heisenberg. An d'améliorer un peu ce compromis, on peut toutefois utiliser des fenêtres de recouvrement.

La transformée en ondelette

Le signal est décomposé dans une base orthonormée construite à partir d'une famille de fonctions ψ n,m (t) appelées ondelettes: 

ψ n,m (t) = 1 √ 2 m ψ 0 t 2m -n ( 

Les distributions

Les distributions quadratiques proposent de projeter la fonction d'auto-corrélation des signaux sur la base de fonctions élémentaires de la transformée de Fourier. Nous pouvons citer entre autres la célèbre transformée de Wigner-Ville. Cependant, ce genre de représentation est mal adaptée aux signaux multi-composantes due à la création d'intraférences entre ces 

Les approches guidées par les données

Les approches guidées par les données permettent d'étudier des signaux sans les comparer à des choses existantes. En autre, nous pouvons citer la Décomposition en Modes Empiriques (EMD) qui permet de décomposer un signal en une série de modes intrinsèques, ainsi que l'analyse par récurrence de phase (RPA). Cette dernière permet d'obtenir une nouvelle représentation d'un signal dans un espace m-dimensionnel permettant ainsi de mettre en évidence les récurrences (retour à des états précédemment visités) dans des séries temporelles. Elle repose notamment sur le choix de 2 paramètres essentiels : la dimension m de l'espace des phases et le retard τ (ou lag). Bien que de nombreuses études aient été menées dans le but de proposer un choix optimal pour ces deux paramètres, la communauté s'accorde à dire qu'il n'en existe pas, puisqu'il dépend beaucoup du contexte d'application. Comme on peut le constater la fonction d'étalement ne prend en compte que les dérivées de la phase d'ordre K + N , K + 2N , etc... On peut donc en conclure que plus on utilisera de racine de l'unité pour calculer la distribution et plus la concentration autour de la dérivée de la phase d'ordre K sera optimale.

Cependant, pour calculer cette distribution, il est nécessaire de calculer des échantillons du signal à des temps complexes. Ceci est eectué à l'aide de la prolongation analytique calculée comme suit:

s (t + jm) = ∞ -∞
S(f )e -2πmf e j2πf t df (C.18) où S (f ) est la transformée de Fourier du signal s (t).

Ce calcul implique donc la multiplication du spectre du signal avec l'exponentiel e -2πmf qui va avoir diérents eets sur le spectre. En eet, les fréquence positives vont être très fortement atténuées, tandis que les fréquences négatives seront très fortement ampliées. Lorsque la bande de fréquence du signal est trop importante, ce calcul pourra même diverger. C'est cette prolongation qui limite l'utilisation de la distribution généralisée à temps complexe aux signaux à bande étroite. An d'étendre son utilisation aux signaux à plus large bande, on propose de modier le support fréquentiel du signal étudié en utilisant une dilatation du signal.

Considérons le signal dilaté s α (t) suivant: C.2.2 Analyse des signaux à modulation de phase non-linéaire basée sur les opérateurs de warping Dans cette section, on s'intéresse à la reconstruction de signaux ayant un contenu tempsfréquentiel non stationnaire dénis tels que:

s (t) = N i=1 s i (t) = N i=1
A i e jψ i (t) (C.21) où N correspond au nombre de composantes, A i leurs amplitudes et ψ i (t) leurs lois de phase instantanée non linéaire. L'étude se concentrera surtout sur deux classes particulières de signaux à modulation de phase non linéaire:

• La loi de phase logarithmique :

ψ i (t) = 2πf 0i t + c i ln t; t ∈ [t 0i , t 0i + D i ] (C.22) où f 0i est la fréquence centrale de la modulation, c i le taux de modulation logarithmique, t 0i l'instant temporel où apparait la modulation et D i sa durée.

• La loi de phase monomiale :

ψ i (t) = 2πf 0i t + c i t k ; t ∈ [t 0i , t 0i + D i ] (C.23)
avec f 0i la fréquence centrale de la modulation, c i le taux de modulation, t 0i l'instant temporel où apparait la modulation, D i sa durée et k l'ordre de la modulation.

On rencontre fréquemment ces signaux dans le monde de tous les jours, puisqu'ils sont utilisés notamment par les animaux pour communiquer, ou encore dans les domaines des radars et des sonars. En eet, de par leur nature, ils sont très robustes à l'eet Doppler et permettent ainsi d'être propagés sur de très longues distances sans pertes signicatives. Cependant, puisque acquis dans des domaines naturels, les enregistrements sont très souvent pollués par des interférences stationnaires et non-stationnaires qui peuvent perturber leurs interprétations. Dans cette section, nous proposons de développer une technique permettant d'extraire ces composantes à partir d'observations très perturbées. La principale diculté est que les diérentes parties des signaux peuvent se superposer aussi bien en temps qu'en fréquence, ce qui rend les traditionnelles méthodes de tracking inecaces.

Il est bien connu que les méthodes d'acquisition comprimée permettent de reconstruire des signaux à représentation parcimonieuse à partir d'un set incomplet d'échantillons. C'est cette propriété qui sera utilisée dans cette section. Cependant, comme les signaux à modulation de phase non-linéaires ne possèdent pas une représentation parcimonieuse dans le domaine de Fourier, ces signaux doivent être exprimés dans un autre domaine de représentation. Ceci est eectué à l'aide des opérateurs de warping qui permettent de modier l'axe temporel de n'importe quel signal. Ainsi, si on considère un signal s (t) ∈ L (R) et l'opérateur de warping W déni tel que: {W, w (t) ∈ C 1 , w (t) > 0 : s (t) → Ws (t)} (C.24) où C 1 correspond à la classe des fonctions dérivables. Alors les modications engendrées sur le signal étudié sont exprimées tel que:

Ws (t) = s (w (t)) (C.25)
où w (t) est la fonction de warping.

En choisissant de manière appropriée cette fonction de warping, il est également possible de linéariser n'importe quel signal uniquement à partir de la donnée de quelques points de sa loi de phase instantanée. Ceci permet d'estimer cette fonction de warping même si des parties du signal sont manquantes dans le signal d'observation. diérence maximale d'amplitude entre deux vecteurs successifs de l'espace des phases au ratio rA max où A max correspond à l'amplitude maximale de la série temporelle. Le résultat de la détection est ensuite enregistré dans le vecteur binaire D.

Les détections obtenues doivent ensuite être traitées avec une morphologie mathématique an de regrouper des détections consécutives (qui correspondent à la même onde) et de supprimer certaines détections (qui ne correspondent à rien). Pour ce faire, on commence par regrouper les détections qui sont séparées de moins de N dil échantillons, puis on supprime les détections qui sont constituées de moins de N ero échantillons. Cette morphologie mathématique correspond à une fermeture morphologique.

Dans les faits, la diérence d'amplitude entre l'onde QRS et les ondes P et T est tellement grande qu'il n'est pas possible de détecter en même temps les ondes P et T et les ondes QRS. Nous commencerons donc par détecter les ondes QRS, puis nous les ltrerons de la série temporelle et enn on relancera l'algorithme pour détecter les autres ondes.

Un algorithme de post-processing a également été développé an de vérier qu'il n'existe que deux détections entre deux ondes QRS consécutives (correspondant à une onde P et une onde T). Les conditions sont présentées dans la gure C.5. On montre rapidement que la transformée en ondelette n'est pas adaptée à la caractérisation de ces signaux puisque leurs formes sont modiées. On utilise donc le méthode de la boite de connement sur les signaux normalisés par leur valeur maximale puis minimale pour mettre en évidence deux relations temps-échelle pour les parties positives et négatives des signaux. Un facteur de dilatation est également mis en évidence pour la partie positive. Il ne fut pas possible de déterminer avec certitude la facteur de dilatation de la partie négative. Une analyse en coordonnées polaires a ensuite permis de déterminer un facteur de modication

s (t) h 1 (t) h 2 (t)
x 1 (t) = h 1 (t) * s (t)

x 2 (t) = h 2 (t) * s (t) Cette fonction de transfert caractérise non seulement le milieu dispersif mais également tout ce qui se trouve sur le chemin de l'onde transmise. Ainsi, si on considère deux capteurs de réception situés à diérents endroits, les formes des ondes reçues (même si provenant de la même origine) seront diérentes. L'idée de cette exemple est de comparer deux signaux simulés après propagation dans deux canaux dispersifs diérents dont les fonctions de transfert sont connectées.
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 2 Figure2: General illustration of a hydraulic power plant. Acoustic pressure transients are usually recorded before the control valve in order to monitor the hydraulic shocks.
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 13 Figure 1.3: Wavelet decompositions by using the Symlet mother wavelet on the rst row, and the Daubechies mother wavelet on the second row, for the two studied signals: s 1 (t) on the rst column and s 2 (t) on the second column.

  17) Many distances D can be chosen sush as the classical euclidean metric or the Manhattan distance, etc... Therefore, Ioana et al.[IDS + 14] developed several distances that permitted to highlight dierent properties of signals depending on the purpose of the analysis. Chapter 1. Brief overview of transient analysis methods
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 15 Figure 1.5: Creation of a phase diagram for a given signal, m = 3 and τ = 2.
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 16 Figure 1.6: Recurrence plot analysis is computed through 3 steps: the time-delay embedding process, the distance matrix, and nally the recurrence matrix.
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 224 Figure 2.3: This Figure represents the spectrum S(f ) of the signal s (t) = e j6 cos(2πt) multiplied by an exponential e -2πmf for different value of m: (a) m = 0, (b) m = 0.01 and (c) m = 0.05.
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 2 Figure 2.5: This gure represents the theoretical instantenous frequency laws for (a) s 1 (t) and (b) s 2 (t) and the classical GCD associated for (c) s 1 (t) and (d) s 2 (t).
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 2 Figure 2.6: This Figure represents the procedure used to perform the time-scaled GCD.
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 2 Figure 2.7: (a) represents the spectrum at a given instant of the distribution. Classical PDL estimation would choose the higher peak as the PDL estimate. However by considering all the peaks whose values are greater than the attenuation at 3dB G 3dB (b), we have two potential results. By observing both bandwidth of the peaks (c), we select the greater one as the new PDL estimation (d).
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 2 Figure 2.8: (a) represents the IFL estimation obtained with classical method. We can see a lot of artifacts which disappear with the new method (b).
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 2 Figure2.8 shows the improvements obtained with the new procedure compared to those obtained with the traditional technique. It is quite obvious that the number of false detections has been reduced.
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 2 Figure 2.9: (a) and (b) represent the theoretical instantaneous frequency laws of s (t) and its dilated version. (c) and (d) are their respective GCD.
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 22 Figure 2.10: (a) The continuous curve represents the theoretical instantaneous frequency law of s (t) meanwhile the dash line represents the instantaneous frequency law of s α (t) obtained with the GCD algorithm after dilatation. (b) is a zoom of (a)
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 2 Figure 2.11: (a) This Figure represents the GCD of s α (t) after dilation. It also represents s (t)'s GCD without artefacts
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 2 Representation of signals having fast-varying time-frequency components
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 2 Figure2.12: At every instant t of the GCD and spectrogram distributions, the -3dB bandwidth is evaluated. This Figure represents the histograms of the -3dB bandwidth values obtained for the GCD (a) and the spectrogram (b). We can observe that the spreading function of the GCD is more dispersed than the spectrogram's, but that the mean value is also smaller which guarantees a smaller error estimation.

  most cases, warping functions are chosen in order to stationnarize the studied signals. Most popular warping operators used in the literature are the functions w (x) = exp x [PS95] and w (x) = |x| 1/k sgn (x) that have shown themselves really usefull for respectively analyzing logarithm and monomial phase signals (Equations C.22 and C.23). They turn the signals into stationary pure sinusoids.
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 2 Representation of signals having fast-varying time-frequency components on each interval. Each interval [I k , I k+1 ] is centered around t k and we note w k = w (t k ). The algorithm starts by initializing w (0)
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 2 Figure2.13: (a) STFT of the third degree monomial phase signal s (n). Results of time axis transformations are then shown in (b) and (c) using respectively two warping functions: the rst one is given by (2.50) and the second one is computed according to the method presented in this section.

Figure 2

 2 Figure 2.14: (a) Spectrogram of the studied signal and its IFL estimation. (b) IFL estimate coordinates used to compute the warping function (c) that stationnarizes the signal.
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 2 Figure 2.15: (a) Frequency content of a monomial phase signal. (b) Frequency content of the signal with additional Gaussian noise. (c) Remaining part after the warping transformation.
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 2 Figure 2.16: The steps of the algorithm that performs the nonlinear modulation phase signal extraction.
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 2 Figure 2.17: Temporal data of noise free signal (a) and with additional nonstationary noise (b).
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 2 Figure 2.18: Fourier transform of the noisefree signal (a) and with additional nonstationary noise (b). The SNR is 1.97 dB.

Figure 2

 2 Figure 2.19: Spectrogram of the studied signal. The two non-linear modulation phase signals are mixed with coherent signals and many disturbances.
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 22 Figure 2.20(a) shows the results of the tracking algorithm and the set of IFL coordinates
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 2 Figure 2.21: (a) Spectrogram of the warped signal. (b) Spectrogram of the ltered warped signal: the most powerfull component has been removed. (c) Spectrogram of the ltered signal in the original time domain.
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 2 Figure 2.22: (a) Spetrogram of the ltered signal and result of the tracking method for the estimation of the IFL coordinates of the second component (b). The associated warping function that stationnarizes the corresponding component is then estimated in (c).
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 22 Figure 2.23: Spectrogram of the second component after the warping process.
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 2 Figure 2.24: (a) STFT of the warped signal, the sorted values for each frequency of the STFT (b) and the CS STFT remaining after the L-statistics process (c).

  This work has been realised in contribution with University of Montenegro and supported by the Montenegrin Ministry of Science, project grant "New ICT Compressive sensing based trends applied to: multimedia, biomedicine and communications" (ACRONYM: CS-ICT). During this project, I visited the University of Montenegro in November 2013 for a period of ten days. Our collaboration led to the publication of a journal paper and a conference paper: C. Bernard, I. Orovic, C. Ioana. and S. Stankovi¢. Compressive sensing based separation of nonlinear modulation phase signals. IEEE Transactions on Signal Processing, under review. C. Bernard, C. Ioana., I. Orovic and S. Stankovi¢. Analysis of underwater signals with nonlinear time-frequency structures using warping-based compressive sensing algorithm. IEEE Oceans Conference, October 2015.

  1) 48 Chapter 3. Phase diagram-based transient signal analysis with w (n) a modulating window (such as a Hanning window), f 0 the central frequency of the modulation (we consider f 0 = 3 in our examples), n 0 the beginning of the transient and ∆ the transient duration.

  8) with δ the time-shift delay, α ∈ R + the dilation coecient and β an amplitude modication coecient. We propose to illustrate the dierent properties with equations and numerical examples that are shown in Figure 3.1. The numerical examples are computed with the following parameters: δ = 55, α = 2 and β = 1.5.
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 1 Figure 3.1: Temporal data of: (a) s (n), (b) s 1 (n), (c) s 2 (n) and (d) s 3 (n)
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 3 Figure 3.2: (a) T 2,4 (s) and (b) T 2,4 (s 1 ) phase space diagrams. The trajectories are the same despite the time-shift.
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 3 Figure3.3: Phase space diagrams of s (n) and s 2 (n) for m = 2 and dierent sets of lags: (a)[4, 4] and (b)[4, 8]. The dilation connection between the two signals can be enlightened by using the appropriate set of lags.
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 3 Figure 3.5: Ellipse modeling: major and minor axis are determined by an SVD on phase space diagram, and a least square tting method is used to calculate a and b.
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 36 Figure 3.6: Temporal signals studied in this section and its wavelet transforms using the Daubechies mother wavelet.

Figure 3

 3 Figure 3.7: Evolution of θ with respect of τ for the three studied signals.

Figure 3

 3 Figure 3.8: Evolution of a (continuous line) and b (dashed line) with respect of τ for the 3 studied signals.

Figure 3

 3 Figure 3.9: (a) T 2,3 (s 1 ) phase space diagram and its associated ellipse model. (b) T 2,6 (s 1 ) phase space diagram and its associated ellipse model.

Figure 3 .Figure 3

 33 Figure3.12 presents the evolution of c with respect to the evolution of a. This representation is interesting as we get rid of the evolution of τ . It enables to highlight signals that would have the same phase diagram's trends for dierent values of lags. This is the case for s 1 (n) and s 2 (n) where the evolution of [ a, c] for both signals overlap in the representation. This is coherent as the two signals are related by a time-scale operator. As s 1 (n) and s 3 (n)

Figure 3 .

 3 Figure 3.11: Evolution of (a) a,(b) b,(c) c and (d) d with respect of τ .

Figure 3

 3 Figure3.12: Evolution of c with respect to a for the 3 studied signals.

Figure 3

 3 Figure 3.13: Noisy transients and their respective phase diagrams for dierent level of noise.

Figure 3 .

 3 Figure 3.14: Bounding box that connes transient trajectories are delimited by the maximal and minimal values of transients.

Figure 3

 3 Figure 3.15: Temporal data of the studied signals

Chapter 3 .Figure 3 Figure 3 Figure 3

 3333 Figure 3.16: The four matrices displaying the distance between extremum points of s 1 (n) and s 2 (n)'s phase space diagrams for dierent values of lags τ 1 and τ 2 : (a) H A , (b) H B , (c) H C and (d) H D .

Figure 3

 3 Figure 3.19: Evolution of the two signals 's area according to the lag used to compute their phase space trajectories.

Figure 3

 3 Figure 3.20: The matrix A [s 1 , s 2 ] denables to calculate the distance bewteen two signals s 1 and s 2 's phase space diagram areas computed for dierent sets of lags [τ 1 , τ 2 ].

  28) Chapter 3. Phase diagram-based transient signal analysis This relationship conrms the dilation coecient that has been used for the signals simulation.

Figure 3 .

 3 Figure 3.21: Trajectory expressed in polar coordinate system. Each coordinates is represented by a radius and a polar angle.

Figure 3 .-Figure 3

 33 Figure 3.15 and Figure 3.22 present temporal data and phase diagrams obtained for m = 2 and respectively τ = 8 and τ = 16. Using this set of parameters, we know that the phase

  Figure 3.24: Zoom in of Figure 3.23

Figure 3

 3 Figure 3.25: (a) Pairs of coordinates that have been selected by the algorithm to calculate the amplitude modication known as r (n) (b)

Figure 3 .

 3 Figure 3.26: Linear error created by a linear amplitude change on 2 signals.

Figure 3

 3 Figure 3.27: Temporal signals whose amplitudes are linked by the dashed black line.

Figure 3

 3 Figure 3.28: Trajectories obtained for m = 2 and τ = 10 and zoom in on a particular phase diagram's coordinates that shows the error created by the linear amplitude modication that connects the two studied signals.

Figure 4 .

 4 Figure 4.1: Description of the cardiac cycle 1 The Cardiac Cycle. www.glogster.com

Figure 4 .

 4 Figure 4.2: A classical heartbeat is composed of three main waves such as P, QRS-complex and T-waves. They are of great interest in cardiac diagnosis.

Figure 4 .

 4 Figure 4.3: (a) Original ECG time-series having an important variation of its baseline (in orange). (b) Filtered ECG time-series.

Figure 4 .

 4 4(d) shows the nal detection obtained with the closing procedure. The binary detection result is stored in D 1 .

Figure 4 . 4 :

 44 Figure 4.4: (a) ECG time series, (b) First detection obtained in red with the classical method, (c) zoom in a part of the time series, (d) Final detection after the closing procedure.

Figure 4 .

 4 Figure 4.5: (a)Superposition of the ECG time series and the QRS detection D 1 , (b) Superposition of s mod (n) and the QRS detection D 1 .

Figure 4 . 6 :

 46 Figure 4.6: An interval between two successive QRS-complex. Two parts are identied and used independently by the post processing algorithm.

Figure 4 . 7 :

 47 Figure 4.7: Proposed segmentation algorithm based on 2-steps segmentation in RPA domain.

Figure 4 .

 4 Figure 4.8: This Tablesummarizesthe dierent statistical terms used in this Section. X refers to the presence of a X-wave, while X refers to the estimation given by the segmentation algorithm
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 4494 Figure 4.9: Spectrum of an ECG time-series.

Figure 4 .

 4 Figure 4.11: (a) Zoom in an original ECG time-series having an important variation of its baseline (in orange). (b) Filtered ECG time-series after the median ltering.

Figure 4 .

 4 Figure 4.14: Experimental outline

Figure 4 .Figure 4 .

 44 Figure 4.15: Experimental set up

Figure 4 .

 4 Figure 4.17: Time representation of the superporsition of normalized signals that highligths dilation and amplitude changes.

Figure 4 .

 4 Figure 4.18: Time-scale study using the symlet mother wavelet for (a) s 0 (n), (b) s 1 (n) and (c) s 2 (n). Time scale study using the coiet mother wavelet for (d) s 0 (n), (e) s 1 (n) and (f) s 2 (n).

Figure 4 .

 4 Figure 4.19: The four matrices displaying the distance between extremum points of s 1 (n) and s 2 (n) phase space diagrams for dierent values of lags τ 1 and τ 2 . The studied signals have been normalized by their maximum values.

Figure 4 .

 4 Figure 4.19 presents the four distance matrices H A , H B , H C and H D computed for s 1 (n) and s 2 (n) normalized by their maximum values. We can notice that H C and H D present values that are above or around 0.5 in average, therefore, we conclude that distances bewteen those points are constant and not worth being taken into consideration. This result is coherent with the fact that the signals have been normalized by their maximum values and C and D corresponding to the negative parts of phase space diagrams. However, we do have matches for A and B.Figure 4.20 displays the evolution of τ 1 with respect to τ 2 that provides the minimum distances bewteen A and B extremum points of phase space diagrams. Five special coordinates (highlighted by blue dots) point out the cases where we obtain the same sets of lags for minimizing the distances between the dierent A and B points, and are then used to
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 44 Figure 4.19 presents the four distance matrices H A , H B , H C and H D computed for s 1 (n) and s 2 (n) normalized by their maximum values. We can notice that H C and H D present values that are above or around 0.5 in average, therefore, we conclude that distances bewteen those points are constant and not worth being taken into consideration. This result is coherent with the fact that the signals have been normalized by their maximum values and C and D corresponding to the negative parts of phase space diagrams. However, we do have matches for A and B.Figure 4.20 displays the evolution of τ 1 with respect to τ 2 that provides the minimum distances bewteen A and B extremum points of phase space diagrams. Five special coordinates (highlighted by blue dots) point out the cases where we obtain the same sets of lags for minimizing the distances between the dierent A and B points, and are then used to

Figure 4 .

 4 Figure 4.20: Sets of lags [τ 1 , τ 2 ] that provides the minimum distances between the extremum points A and B of s 1 (n) and s 2 (n)'s phase space diagrams. The blue dots correspond to the sets of lags that provide minimal distances for the same sets of lags.

Figure 4 .

 4 Figure 4.21: Distances between the extremum points A and B of s 1 (n) and s 2 (n)'s phase space diagrams obtained for the sets of lags that provide minimal distances regarding to τ 1 . The dots corresponds to the distances that are obtained for matched sets of lags.
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 444 Figure 4.24 presents the four distance matrices H A , H B , H C and H D computed for the signals normalized by their minimum values. We can notice that H A and H B present values that are above or around 2 in average, therefore, we conclude that distances bewteen those

Figure 4 .

 4 Figure 4.24: The four matrices displaying the distance between extremum points of s 1 (n) and s 2 (n)'s phase space diagrams for dierent values of lags τ 1 and τ 2 . The studied signals have been normalized by their minimum values.

Figure 4 .

 4 Figure 4.25: (a) Superposition of T 2,5 (s 1 ) and T 2,1 (s 2 ) phase space diagrams. (b) Zoom in the bottom left parts of the diagrams.

Figure 4 .

 4 Figure 4.26: Superposition of T 2,4 (s 1 ) and T 2,6 (s 2 ) phase space diagrams.

Figure 4 .

 4 Figure 4.27: (a) ρ = f (θ (n)). (b) amplitude relationship between selected coordinates.

Figure 4 .

 4 Figure 4.28: Illustration of a pressure signal and the corresponding rising time

Figure 4 .

 4 29, we can see the detection result for a given transient signal. The choice of parameters was set by trials and error: we choose m = 11 and τ = 1. As we can see result is good.

Figure 4 .

 4 Figure 4.29: Rise time detection result for a given pressure signal

Figure 4 .

 4 Figure 4.30: Simulation outline

  and 4.32 respectively show the simulated received signals and its normalized versions. As we can see, both signals obviously do not arrive at the same time instant and suer dilation and amplitude attenuation that are due to the propagation.

Figure 4 .

 4 Figure 4.31: Simulated received signal

Figure 4 .Figure 4 .

 44 Figure 4.33: Evolution of a with respect to τ

Figures

  

  and 4.36, both phase diagrams overlap but not perfectly. The dierence is due to the amplitude modications that are not constant (see Chapter 3). Nevertheless, these examples have shown that it was possible to estimate an accurate time-scale transformation that is conclusive with the ratio of the two cut-o frequencies.

Figure 4 .Figure 4 .

 44 Figure 4.35: Superposition of the 2 following phase diagrams: T 2,4 (x 1 ) and T 2,8 (x 2 )

  C.10) où ψ 0 (t) correspond à l'ondelette mère, m est le facteur d'échelle et n est le déplacement temporel.La base orthonormale est construite à partir des ondelettes dilatées et retardées. Ainsi, dans le plan temps-échelle, la transformée est maximale quand on obtient la meilleur correspondance entre l'ondelette dilatée et le signal étudié. Ceci pose un problème majeur puisqu'il est nécessaire d'utiliser une ondelette ressemblant au signal que l'on veut détecter pour obtenir de bons résultats et ainsi connaitre des informations à priori sur le signal recherché.L'acquisition comprimée (compression numérique)L'acquisition comprimée est un modèle d'échantillonnage qui nous permet de dépasser la limite de Shannon en utilisant la structure parcimonieuse d'un signal. Elle propose ainsi d'acquérir directement la version compressée du signal an d'éviter de traiter des échantillons inutiles et permet également de reconstruire un signal avec des parties manquantes (sous certaines conditions).

  Figure C.1 présente la construction d'un diagramme de phase pour un signal donné et m = 3. C.2 Représentation des signaux ayant des composantes tempsfréquence variant rapidement Dans ce chapitre, on propose de se concentrer sur les signaux ayant des composantes tempsfréquence variant rapidement. Dans une première partie, nous nous intéressons plus particulièrement aux distributions à temps complexe dont nous proposons d'étendre l'application à des signaux plus large bande en tirant prot d'une transformée temps-échelle. Dans une seconde partie, nous nous intéressons à la reconstruction de signaux à modulation de phase non linéaires dans le cadre de partie(s) manquante(s) dans le signal d'observation. Ceci sera eectué à l'aide d'opérateurs de warping et d'algorithmes de reconstruction basés sur l'acquisition comprimée.C.2.1 Distributions à temps complexeLes distributions à temps complexes fournissent des distributions concentrées autour des diérentes dérivées de phase d'un signal. Pour ce faire, elle utilisent les moments d'ordre supérieurs du signal calculés à des temps complexes.

Figure

  Figure C.1: Création d'un diagramme de phase pour un signal donné, m = 3 et τ = 2.

  Figure C.2: Cette gure présente la procédure à suivre pour calculer la distribution tempséchelle à temps complexe.

Figure C. 2

 2 Figure C.2 présente le schéma de fonctionnement de l'algorithme. Un exemple numérique est ensuite utilisé pour illustrer la distribution généralisée à temps complexe temps-échelle et les résultats obtenus sont comparés avec ceux obtenus avec le spectrogramme. Le contour d'intégration choisi pour calculer la distribution complexe est d'une grande importance pour réaliser une bonne analyse, c'est pourquoi les travaux futurs devraient proposer une approche adaptative permettant de choisir un facteur d'échelle optimal en accord avec les variations de la bande passante du signal. Ce travail a donné lieu à la rédaction d'un papier journal qui est actuellement en révision et un article conférence: C. Bernard and C. Ioana. Generalized complex time distribution using modied analytical

C. 2 .Figure

 2 Figure C.3: Ce schéma décrit les diérentes étapes permettant d'extraire un signal à modulation de phase non linéaire.

Figure C. 5 :

 5 Figure C.5: Intervalle compris entre deux ondes QRS consécutives. On identie deux parties distinctes ne contenant chacune qu'une seule onde (P ou T).

Figure C. 8 :

 8 Figure C.8: Schéma de la simulation
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	.1: Performances achieved by classical GCD and the spectrogram
	2.1.6 Summary
	This section proposed a new analytical continuation technique that allows the generalized
	complex time distribution to deal with time-frequency structures having larger frequency
	variation. This technique is based on the compression of the signal's bandwidth and, then,
	the application of the generalized complex distribution. This transformation allows accurate
	estimation of the IFL. This works has been published at the EUSIPCO conference in 2013
	and a journal paper is also under review:
	C. Bernard and C. Ioana. Generalized complex time distribution using modied analytical continuation. In 21st European Signal Processing Conference EUSIPCO-2013, September
	2013.
	C. Bernard, A. Digulescu and C. Ioana. Generalized complex time distribution using time-scale concept and modied analytical continuation. In IEEE Transactions on Signal Processing, under review.

  Then compressive sensing is presented and nally we provide a

	Chapter 2. Representation of signals having fast-varying time-frequency components
	numerical example.
	2.2.2 Time axis transformation
	2.2.2.1 General formulation of time axis transformation
	Generally, a warping operation enables to express a given signal s (t) into another time domain
	(the warped domain) that simplies the processing of the data.

  IFL estimates of s 1 (n) and s 2 (n) calculated from the original signals, and the extracted signals obtained with the warping and WBCS algorithms.

	2.2. Warping-based analysis of transients with non-linear time-frequency components	45
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	Figure 2.25:											

  Table 2.2: MSE results of the IFL estimates obtained with the WBCS algorithm.

				n)
		with warping with warping with WBCS
	MSE (Hz)	0.3529	100.2504	3.5276
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	30

1: Results obtained for the QRS-complex detection for m = 5, the dierent values of N dil and r 1 equal to: (a) 5%, (b) 10% and (c) 20% e (%) +P (%) F 1 (%) DER (%)
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3: Results obtained for the QRS-complex detection for m = 20, the dierent values of N dil and r 1 equal to: (a) 5%, (b) 10% and (c) 20%

Table 4 .

 4 4: QRS-complex segmentation results and comparison with other techniquesWe now compare our results with those obtained by[START_REF] Ghaari | A new mathematical based QRS detector using continuous wavelet transform[END_REF], [MAO + 04] and[START_REF] Li | Detection of ECG characteristic points using wavelet transforms[END_REF]. The detection methods used are based on adaptive wavelet transforms. Results are shown in Table

		Beats	TP	FN	FP S e (%) +P (%)
	Our work	112647 105669 1154 6978 98.92	93.81
	Ghaari et al. 110159 109837 120	322	99.91	99.72
	Li et al.	104182 104070 112	65	99.89	99.94
	Martínez et al. 109428 109208 153	220	99.8	99.86
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	82							Chapter 4. Results in applicative contexts
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	Figure 4.12: The algorithm detects a part of	Figure 4.13: The modication of the QRS-
	a T-wave: this is a false positive error that	complex's shape leads to a detection by the
	can be removed by adjusting the parameters	algorithm that does not include the corre-
	of the algorithm.						sponding QRS-complex sample index (local-
									ized 1 or 2 samples before it): it is detected
									as a false negative.				
			Beats	N init		N P	N T	N P T % P-waves % T-waves
			112647 121573 61239 26572 87811	54.36			23.59	

5: Results obtained for P and T-waves detection for m = 30, N dil = 20, N ero = 10 and r 2 = 5%.
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	108				Appendix B. ECG time-series results 109
	Subject Beats Subject Beats	TP N init	FN N P	FP N T	S e N P T	+P % P-waves % T-waves F 1 DER
	210m 121m	2685 1876	2501 641	11 113	184 115	99.56 93.15 96.25 7.26 228 6.02 6.13
	212m 122m	2763 2479	2747 3383	12 1913	16 1398	99.57 99.42 99.49 1.01 3311 77.17 56.39
	213m 123m	3294 1519	3249 2791	4 1503	45 1265	99.88 98.63 99.25 1.49 2768 98.95 83.28
	214m 124m	2297 1634	2248 1851	9 1555	49 155	99.60 97.87 98.73 2.53 1710 95.17 9.49
	215m 200m	3400 2792	3362 2252	4 903	38 688	99.88 98.88 99.38 1.24 1591 32.34 24.64
	217m 201m	2280 2039	2185 1291	1 804	95 104	99.95 95.83 97.85 4.21 908 39.43 5.10
	219m 202m	2312 2146	2152 1298	1 1080	160 30	99.95 93.08 96.39 6.96 1110 50.33 1.40
	220m 203m	2069 3108	2047 1476	1 489	22 246	99.95 98.94 99.44 1.11 735 15.73 7.92
	221m 205m	2462 2672	2421 2200	3 807	41 22	99.88 98.33 99.10 1.79 829 30.20 0.82
	222m 207m	2634 2385	2480 946	8 328	154 78	99.68 94.15 96.84 6.15 406 13.75 3.27
	223m 208m	2643 3040	2534 2935	2 1108	109 240	99.92 95.88 97.86 4.20 1348 36.45 7.89
	228m 209m	2141 3052	1899 4115	41 1762	242 1247	97.89 88.70 93.07 13.22 3009 57.73 40.86
	Beats 2466 2685 2274 2011 2763 1874 1816 3294 2192 3152 2297 2091 2764 3400 2311 112647 105669 1154 6978 98.92 93.81 96.29 7.22 TP FN FP S e +P F 1 2256 2 210 99.91 91.48 95.51 8.60 368 134 74 208 4.99 2.76 DER 2271 0 3 1570 0 441 100.00 78.07 87.69 21.93 3956 1772 1151 2923 64.13 41.66 100.00 99.87 99.93 0.13 1866 2 8 1779 21 37 98.83 97.96 98.40 3.19 3247 69 0 69 2.09 0.00 99.89 99.57 99.73 0.53 2178 8 14 3070 7 82 99.77 97.40 98.57 2.82 2308 1960 54 2014 85.33 2.35 99.63 99.36 99.50 1.00 2083 1 8 2751 0 13 100.00 99.53 99.76 0.47 3407 65 62 127 1.91 1.82 99.95 99.62 99.78 0.43 2229 36 82 2280 3319 1555 917 2472 68.20 40.22 98.41 96.45 97.42 5.11 2691 2561 53 130 2312 2879 1529 649 2178 66.13 28.07 97.97 95.17 96.55 6.80 2098 1977 16 121 2069 2081 1906 9 1915 92.12 0.43 99.20 94.23 96.65 6.53 2140 2132 2 8 2462 2364 1285 62 1347 52.19 2.52 99.91 99.63 99.77 0.47 1824 781 85 2634 2813 1043 323 1366 39.60 12.26 1043 90.18 42.82 58.07 61.84 2535 2514 10 21 2643 2834 2045 247 2292 77.37 9.35 99.60 99.17 99.39 1.22 2133 2016 38 117 98.15 94.51 96.30 7.27 2550 2538 5 12 99.80 99.53 99.67 0.67 1796 1794 412 2 81.32 99.89 89.66 23.05 1890 1705 57 185 96.77 90.21 93.37 12.80 1962 1953 0 9 100.00 99.54 99.77 0.46 2421 2384 4 37 99.83 98.47 99.15 1.69 1539 1534 2 5 99.87 99.68 99.77 0.45 Subject Beats 230m 210m 100m 231m 212m 101m 232m 213m 102m 233m 214m 103m 234m 215m 104m Total 217m 105m 219m 106m 220m 107m 221m 108m 222m 109m 223m 111m 112m 113m 114m 115m 116m 117m N init N P N T N P T 228m 2141 3387 1119 839 1958 52.27 39.19 % P-waves % T-waves 100m 2274 4319 2027 2057 4084 89.14 230m 2466 3413 1689 1502 3191 68.49 60.91 90.46 101m 1874 1717 1665 20 1685 88.85 231m 2011 2658 1413 725 2138 70.26 36.05 1.07 102m 2192 2904 1666 596 2262 76.00 232m 1816 2551 536 373 909 29.52 20.54 27.19 103m 2091 2098 2067 18 2085 98.85 233m 3152 3456 897 383 1280 28.46 12.15 0.86 104m 2311 3361 831 765 1596 35.96 234m 2764 73 40 17 57 1.45 0.62 33.10 105m 2691 907 565 114 679 21.00 4.24 Total 112647 121573 61239 26572 87811 54.36 23.59
	118m 106m	2301 2098	2276 2110	12 1370	25 92	99.48 98.91 99.19 1.61 1462 65.30 4.39
	119m 107m	2094 2140	1987 3662	5 1418	107 1044	99.75 94.89 97.26 5.35 2462 66.26 48.79
	121m 108m	1876 1824	1251 1440	0 169	625 100.00 66.68 80.01 33.32 161 330 9.27 8.83
	122m 109m	2479 2535	2477 4962	0 2400	2 2377	100.00 99.92 99.96 0.08 4777 94.67 93.77
	123m 111m	1519 2133	1517 2168	1 1981	2 75	99.93 99.87 99.90 0.20 2056 92.87 3.52
	124m 112m	1634 2550	1601 4677	12 2325	33 2065	99.26 97.98 98.61 2.75 4390 91.18 80.98
	200m 113m	2792 1796	2591 2321	35 1721	201 511	98.67 92.80 95.64 8.45 2232 95.82 28.45
	201m 114m	2039 1890	1801 2073	132 1591	238 133	93.17 88.33 90.68 18.15 1724 84.18 7.04
	202m 115m	2146 1962	2111 2774	1 1773	35 795	99.95 98.37 99.15 1.68 2568 90.37 40.52
	203m 116m	3108 2421	2387 1300	48 1175	721 65	98.03 76.80 86.13 24.74 1240 48.53 2.68
	205m 117m	2672 1539	2652 1998	0 1528	20 461	100.00 99.25 99.62 0.75 1989 99.29 29.95
	207m 118m	2385 2301	1490 4190	15 2016	895 1938	99.00 62.47 76.61 38.16 3954 87.61 84.22
	208m 119m	3040 2094	2750 2299	5 1529	290 310	99.82 90.46 94.91 9.70 1839 73.02 14.80
	209m	3052	3011	30	41	99.01 98.66 98.83 2.33

.1: Results obtained for QRS-complex detection using m = 10, N ero = 10, N dil = 30 and r 2 = 10%.
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 B 2: Results obtained for P and T-waves detection using m = 30, N ero = 10, N dil = 30 and r 2 = 5%.

Introduction

Les signaux transitoires de par leur nature non-stationnaire sont très diciles à caractériser. Ils ont souvent des formes diérentes qui se ressemblent plus ou moins, une durée d'observation très courte, ainsi qu'un contenu spectral très large, qui rend leur étude très compliquée. De manière générale, le but de cette thèse est de proposer et d'étudier de nouvelles méthodes d'analyse qui exploreront les caractéristiques de ces transitoires qui seront dénis par de soudains changements dans les paramètres du signal observé. Ainsi, si nous considérons la formule analytique générale de n'importe quel signal, un transitoire sera donné par la formule suivante:

s (t) = A (t) e jΦ(t) (C.1)

avec A (t) son amplitude instantanée et Φ (t) sa phase instantanée. En fonction des changements de paramètres, nous considèrerons trois diérentes classes de signaux transitoires largement rencontrées dans des applications réelles.

  2)Ces signaux sont composés de nombreuses composantes dont la phase instantanée est une fonction dérivable d'ordre supérieur. La très grande non-linéarité de cette fonction rend l'analyse très compliquée et de nouveaux domaines de représentation sont alors nécessaires. On retrouve ces signaux dans de nombreuses applications telles que le radar et l'acoustique.112Appendix C. Résumé étendu Les signaux sont caractérisés par des changements d'amplitude soudains : Ils traduisent généralement des phénomènes mécanique, électrique ou encore électromagnétique. De manière générale, nous considèrerons ces signaux de la manière suivante: la durée du signal qui est beaucoup plus petite que la durée d'observation, et t 0 sa date d'apparition. On peut aussi noter que A (t) est également une fonction hautement dérivable.

	s (t) = A (t) ; t ∈ [t 0 , t 0 + D]	(C.3)
	avec D	

  Les signaux sont ici considérés uniquement comme des séries d'échantillons et on étudie leur propriétés statistiques tels que leur moyenne, leur variance et les diérentes statistiques d'ordre supérieur. On part du principe que les transitoires n'ont pas un histogramme gaussien et qu'on peut donc facilement les dissocier d'un bruit blanc gaussien. Bien que ces approches permettent de faire des suppositions quant à la nature des transitoires et de bien les détecter, leur bonne caractérisation n'est pas pour autant garantie.

	C.1. Rappel des méthodes existantes de traitement des signaux transitoires 113
	Les approches statistiques
	C.1	Rappel des méthodes existantes de traitement des signaux
		transitoires
	Les méthodes développées pour traiter les transitoires peuvent être classées en trois grandes
	approches:

  C.2. Représentation des signaux ayant des composantes temps-fréquence variant rapidement 115 composantes et aussi à des termes d'interférences causés par des non-linéarités. An de réduire ces eets, la distribution à temps complexe a été créée. Elle permet de produire des distributions concentrées autour des dérivées d'ordre K de la phase d'un signal, par contre, elle nécessite de prolonger le signal sur des contours non-réels qui limitent leur application aux signaux à bande étroite. Cette transformée sera l'objet d'un des prochains chapitres où nous proposerons d'étendre son application à des signaux plus large bande.
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1.4 SummaryIn this Chapter, we have presented a brief overview of the existing methods for transient analysis. All of them present advantages but also drawbacks that can eventually be improved.In the further chapters, we propose to focus on two classes of approaches: the linear projections and the data-driven analysis techniques. Next chapter is therefore dedicated to the study of signals having fast-varying time-frequency components and is adressed with the class of projection-based approaches through GCD and also compressive sensing.

Chapter 2. Representation of signals having fast-varying time-frequency

Ainsi, après la transformation de warping, on obtient un signal warpé dont la composante d'intérêt est une sinusoïde dans le domaine de Fourier mélangé à d'autres signaux stationnaires et non-stationnaires. L'étape suivante consiste ensuite à nettoyer le spectrogramme du signal warpé en enlevant les zones contenant uniquement du bruit, mais aussi les régions contenant les autres signaux. Ceci est eectué à l'aide des L-statistiques en rangeant par ordre de grandeur croissant les valeurs du spectrogramme pour chaque fréquence et en enlevant certaines valeurs. En eet, pour une fréquence donnée, il est possible d'avoir uniquement des composantes non désirées ou un mélange entre la composante recherchée et les autres composantes. En partant du principe que les plus fortes valeurs correspondent systématiquement à des termes d'interférence, on peut négliger ces valeurs. De plus, si les composantes des deux parties du signal (composantes désirées et non désirées) ont une amplitude du même ordre de grandeur, alors leur opposition de phase produit une faible amplitude à leur intersection. C'est pourquoi il est également nécessaire d'enlever les plus faibles valeurs du spectrogramme. Ainsi, pour chaque fréquence, on enlève du spectrogramme les Q plus faibles valeurs et les P plus grandes valeurs. Puis on reconstruit le spectrogramme sans ces valeurs. On obtient ainsi un spectrogramme nettoyé qui est censé ne contenir que des portions de la composante voulue. Celui ci permet ensuite de reconstruire le signal en utilisant un algorithme de reconstruction basé sur l'acquisition comprimée. Une transformation de warping inverse est ensuite nécessaire pour exprimer le signal extrait dans le domaine temporel original. Un schéma descriptif de la méthode est présenté dans la gure C.3. Un exemple numérique est ensuite présenté où l'on montre l'intérêt de la méthode par rapport à une technique plus classique associant le warping à un ltrage passe-bande pour récupérer la fréquence d'intérêt.

Comme nous l'avons vu dans le premier chapitre, l'analyse par récurrence de phase s'eectue en choisissant une dimension de travail m et un lag τ , mais bien souvent ces paramètres sont xés manuellement après quelques essais sur les données applicatives. Cependant, on peut observer que de nombreuses informations diérentes pourraient être extraites de chaque diagramme de phase en faisant varier les représentations en fonction du lag.En eet, on montre dans ce chapitre, qu'il est possible d'identier des opérateurs de déplacement temporel, d'échelles temporelles et également de modication d'amplitude en choisissant de manière intelligente les lags. Par exemple, deux signaux identiques n'apparaissant pas au même instant auront des diagrammes identiques dans l'espace des phases si les lags utilisés pour leur représentation sont les mêmes. On obtient ce même résultat pour deux signaux reliés par une dilatation d'ordre α si les lags choisis sont également multiple de α. En revanche, la modication d'amplitude est mise en évidence non pas par des représentations superposables, mais par un facteur d'échelle de ces représentations.Nous proposons ensuite diérentes méthodes permettant d'extraire des données réduites de chaque diagramme de phase. Nous explorons ensuite leur évolution par rapport à τ permettant ainsi de dénir de nouvelles représentations des transitoires.Modélisation des diagrammes de phase par des ellipsesLa modélisation elliptique des signaux est assez naturelle puisqu'elle est spécique aux signaux harmoniques. Elle nous permet d'extraire trois paramètres de chaque représentation: l'angle polaire de rotation θ (déni entre le premier axe du repère et l'axe principal de l'ellipse), le demi grand axe a et le demi petit axe b. L'évolution de l'angle polaire permet de mettre en lumière la périodicité apparente du signal, tandis que les deux autres paramètres permettent de connaitre la distribution des coordonnées de la trajectoire dans l'espace des phases. Une ellipse très ne fera état d'une distribution très concentrée, tandis qu'une ellipse large fera état d'une distribution très éparse des données.

tation d'ECG, la caractérisation de décharge partielle, un cas d'acoustique passive et un autre cas d'acoustique active. Les méthodes d'analyse par diagramme de phase sont utilisées et permettent d'extraire de nombreuses informations des signaux étudiés.
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C.4.2 Caractérisation de décharges partielles

Les transitoires électriques générés dans les équipements électriques traduisent diérent phénomènes qui ont besoin d'être monitorés pour assurer la surveillance prédictive des systèmes. Leur nature peut tout aussi bien être normale (créée par un interrupteur, des changements de paramètres de charge, etc...) qu'anormale (créée par des problèmes de matériaux par exemple). Dans tous les cas, les eets tels que les arcs électriques et les décharges partielles doivent être surveillés continuellement (détection et caractérisation) pour assurer le bon fonctionnement du système.

Les décharges partielles correspondent à des défauts électriques localisés sur des systèmes isolants soumis à de forts voltages. Elles ne sont généralement pas visibles et représentent une des causes les plus courantes de panne dans les systèmes électriques. Leurs apparitions sont imprévisibles, soudaines et couvrent une large bande passante. Toutes ces propriétés rendent donc très dicile la tâche de les prévoir, les localiser et les caractériser. Dans cet exemple, on s'intéressera uniquement à leur caractérisation sachant qu'au niveau de l'enregistrement, les transitoires contiennent non seulement la forme du défaut à l'origine, mais également tous les eets induits par la propagation et l'enregistrement des capteurs. On utilisera ainsi les outils développés dans le cadre de l'analyse par diagramme de phase pour caractériser On considère ainsi les fonctions de transfert h 1 (t) et h 2 (t) modélisées par deux ltres passebas d'ordre respectifs 128 et 512 et de fréquences de coupure égales à 0, 3 et 0, 15. Le signal transmis s (t) correspond à une période de sinusoïde ayant une durée de deux échantillons et une amplitude de 1. On ajoute également du bruit gaussien aux signaux reçus.

Le calcul de diérence des temps d'arrivée nous permet facilement de retrouver le rapport entre les ordres des ltres, par contre il est dicile d'évaluer un rapport entre les fréquences des signaux. Nous utilisons donc le modélisation de la tendance des diagrammes de phase par des polynômes d'ordre 3 pour déterminer la périodicité apparente des deux signaux et le calcul de l'aire des diagrammes. Nous en concluons qu'il existe un rapport temps-échelle entre les deux signaux même si la modication d'amplitude ne nous permet pas de superposer complètement les diagrammes de phase. Ce rapport est également le même que celui existant entre les fréquences de coupure des deux ltres.

Ellipse modeling

In analytic geometry, an ellipse is dened as the set of points (x, y) of the Cartesian plane that satisfy the following equation:

If it is centered around the origine (0, 0) and if its major and minor axes are respectively parallels to x and y axis, then Equation A.1 becomes: Let consider N cartesian coordinates (x i , y i ) i∈[1,...,N ] that belong to an ellipse that satisfy Equation A.2. In order to nd the general equation from the coordinates, we need to minimize the following equation using the least square tting:

(A.3) with:

Appendix A. Ellipse modeling

The development of S leads to:

We then look for {A, C, F } that minimizes S. To do so, we have to solve the following system of equations:

which becomes:

x 2 i (A.10)

To solve the system of equations A.9 we need to solve the following equation:

Two things are then possible:

• det D = 0 then D is not inversive and there exists an innity of solutions to this system of equation.

• det D = 0 then D is inversive and only one solution is possible : X = 0.
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The second scenario is not be taken into consideration and we develop the rst one that consider an innity of equations. To solve it, it is necessary to x one degree of liberty of the system, for example we can choose F = -1. The ellipse equation then becomes:

The system of equations then becomes:

The solution is nally obtained by solving:

when det D = 0.

The semi-major a and semi-minor b axis are then obtained as follows:

ECG time-series results

This appendix presents the detailled results obtained for QRS-complex, P and T-waves segmentations that have been selected in Section 4.1.

Appendix C

Résumé étendu

Caractérisation des phénomènes physiques par analyse parcimonieuse des signaux transitoires C.3 Analyse des transitoires par diagrammes de phase Dans ce chapitre, nous nous intéresserons aux signaux de la deuxième classe qui seront modélisés par des cosinus modulés tels que:

où w (n) est une fenêtre modulante, f 0 la fréquence centrale de la modulation, n 0 l'échantillon d'arrivée du signal et ∆ sa durée.

Ces matrices permettent de repérer les sets de lags pour lesquels les coordonnées des points extrêmes sont très proches entre les diagrammes de phase et ainsi mettre en évidence des rapports d'échelle entre signaux.

Modélisation par l'aire sous la trajectoire Bien que la méthode précédente permette de repérer les diagrammes de phase où les points extrêmes correspondent, cela ne garantit pas que les diagrammes se superposent pour autant. C'est pour cette raison que nous proposons de calculer l'aire sous la courbe des trajectoires, an de rajouter un paramètre de contrôle. Pour ce faire, le diagramme de phase est considérée en coordonnées polaires [ρ (n) , θ (n)] et l'aire est calculée comme suit:

On peut ensuite surveiller l'évolution de ce paramètre et comparer avec l'aire d'autres diagrammes de phase.

Analyse par coordonnées polaires

La dernière analyse présentée permet de mettre en évidence les relations d'échelles pouvant exister entre deux diagrammes de phase dont les signaux sont connectés par une modication d'amplitude constante. De même que précédemment, on considère les coordonnées polaires des diagrammes et plus particulièrement les graphes ρ = f (θ). L'idée revient à dire que pour un angle polaire donné, s'il existe une relation d'amplitude alors celle-ci se retrouve dans le ratio des deux radius correspondants. Cette méthode se révèle ecace pour repérer des modications d'échelle constantes sur des portions de signal, cependant, l'étude demeure plus complexe dans le cas de modication d'amplitude non constante.

Dans ce chapitre, nous avons montré qu'il était possible de mettre en évidence des relations temps-échelle et des modications d'amplitude existant entre des signaux grâce à l'analyse par diagramme de phase. Nous avons également proposé quelques méthodes d'analyse qui se sont révélées ecaces dans le cas de simulations numériques. Elles seront d'ailleurs testées dans le prochain chapitre dans le cadre de contextes applicatifs réels. Un autre exemple capital de monitoring est la surveillance continue des coups de bélier dans les conduites forcées des centrales hydrauliques (Figure C.7). Ils apparaissent toujours à la fermeture d'une vanne puisqu'une onde de pression est générée et remonte tout le long de la conduite. Si celle ci se propage trop rapidement, elle peut mettre en péril l'installation et occasionner de nombreux dégâts matériels. Leur surveillance est d'un grand intérêt puisque leurs caractéristiques normales de fonctionnement sont bien connues et qu'il est ainsi facile de détecter une mise en danger du système. Dans cet exemple, nous proposons de mettre en évidence le temps de montée des transitoires de pression qui est un indicateur de la vitesse de propagation du coup de bélier.

Pour commencer, on présente quelques caractéristiques générales du prol de pression généré par un coup de bélier. Quand la valve se ferme, l'onde de pression se met à osciller et s'atténue rapidement. La périodicité T est bien connue puisqu'elle dépend des paramètres de la conduite:

avec L la longueur de la conduite et a la célérité de l'onde de pression dans l'eau. Si le temps de montée de l'onde de pression est inférieur à T /2, on peut en conclure que l'onde se propage trop rapidement dans la conduite forcée et que des dégâts plus ou moins importants seront occasionnés.

L'algorithme mis en place pour détecter ces temps de montée est le même que celui utilisé pour détecter les changements brusques d'amplitudes pour les ECG sauf qu'ici on ne s'intéresse qu'à la première montée positive de la détection. Les résultats obtenus ont été jugés satisfaisants et l'algorithme a été mis en place au sein de EDF DTG pour le traitement industriel des signaux de pression du parc hydraulique de EDF.

Conclusions et perspectives

Cette thèse pose le problème de l'analyse des signaux transitoires, qui de par leur nature sont très diérents et possèdent de nombreuses caractéristiques. L'idée principale était donc de proposer et examiner des méthodes alternatives d'analyse pour explorer les diérentes caractéristiques de ces signaux.

Dans un premier temps, trois diérentes classes de signaux transitoires ont été mises en évidence et en fonction des caractéristiques recherchées, diérentes pistes d'étude ont été explorées. Les traditionnelles méthodes d'analyse ont également été classées en trois approches: l'analyse statistique, les techniques projectives et les méthodes guidées par les données, et ont été développées dans le premier chapitre. Le deuxième chapitre s'intéresse aux signaux ayant des représentations temps-fréquence variant rapidement car ils se rencontrent fréquemment dans les applications réelles tels que le radar, les signaux de mammifères marins, etc... Dans un premier temps, on s'est concentré sur les distributions généralisées à temps complexe qui permettent de caractériser les diérents ordres de dérivée de la phase instantanée d'un signal. Nous avons proposé une méthode pour étendre son application aux signaux à plus large bande en tirant prot d'une transformation temps-échelle. Cette méthode donne des résultats satisfaisants, mais il serait bon de proposer une approche guidée par les données pour déterminer le choix optimal du facteur d'échelle. Ceci pourrait éventuellement être proposé à l'aide d'une approche par analyse par diagramme de phase. Dans un second temps, on s'est intéressé à la reconstruction de signaux à modulation de phase non linéaires dans le cas de données manquantes dans le signal d'observation. On tire prot d'une opération de warping visant à linéariser la composante d'intérêt et des L-statistiques pour nettoyer le spectrogramme. On utilise ensuite un algorithme de reconstruction basée sur l'acquisition comprimée pour reconstruire la sinusoïde. Puis une opération inverse de warping permet de récupérer la composante d'intérêt dans le domaine temporel original. Cette méthode a montré son ecacité dans un exemple et sa supériorité vis-à-vis d'une approche plus classique associant un warping avec un ltrage passe-bande.

Le troisième chapitre pose le problème de la caractérisation des signaux ayant de soudains changements d'amplitudes par le biais de l'analyse par diagramme de phase. Comme les opérations de déplacement temporel, d'échelle temporelle et également de modication d'amplitude peuvent être mis en évidence en choisissant de manière intelligente le lag dans les diagrammes de phase, on propose diérentes méthodes permettant de révéler les invariances dans les diagrammes de phase. Pour ce faire, on propose diérentes approches permettant d'extraire un nombre de paramètres réduit de chaque diagramme calculé pour diérent lag. Ces paramètres sont ensuite comparés permettant ainsi la mise évidence des propriétés précédemment citées. Les futurs axes de recherche pourront proposer d'étendre ces travaux à des dimensions d'ordre supérieur. Une solution possible est d'utiliser les mêmes méthodes développées aux projections des diagrammes de phase sur les diérents plans de l'espace des phases. On pourra également continuer l'étude des modications d'amplitude linéaires et non-linéaires.

Le quatrième chapitre propose d'explorer quatre contextes applicatifs qui sont la segmen-Mots clés : Transitoire, Caractérisation, Analyse de signaux, Non-stationnarité Abstract For their uniqueness, transient are really dicult to characterize. They are met everywhere and are generally the result of very complex physical phenomena that contain a lot of information such as the transient at its origin, the eect of the propagation through the medium and the eects induced by the transducers. They can correspond to communication between mammals as well as being the reection of a fault in electrical or hydraulic networks for instance. Hence their study is of great importance even though it is quite complicated. Numerous signal processing methods have been developed in the last decades: they often rely on statistical approaches, linear projections of the signal onto dictionaries and data-driven techniques. All those methods have pros and cons since they often provide good detections, nevertheless their characterization for classication and discrimination purposes remains complicated. In this spirit, this thesis proposes new approaches to study transients. After a brief overview of the existing methods, this work rst focuses on the representation of signals having fast-varying time-frequency components. Generally, general complex-time distributions present a proper framework to study them but remain limited to narrow band signals. In a rst part, we propose to overcome this limitation in the case of signals with a spread time-frequency variation. This method is based on the compression of the signal's spectrum to a bandwidth that ensures the eciency of the technique. A second part then focuses on the extraction of nonlinear modulation phase signals in the context of nonstationary noise and other coherent signals. This is performed with warping operators and compressive sensing reconstruction techniques. The third chapter then focuses on data-driven methods based on the representation of the signal in phase space. The main contribution takes advantage of the lag diversity that enables to highlight time scale transformations as well as amplitude modications between transients. Hence, we develop dierent techniques enabling to highlight those properties. Finally, works presented in the rst chapters are developed in applicative contexts such as: ECG segmentation, electrical transient characterization, a passive acoustic conguration and the study of acoustic signals in an immerse environment. We then end up by some conclusions and perspectives for future works.