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Introduction

Transient signal representation

Transient signal analysis is a complex problem since signals with very short duration are
characterized by a reduced number of samples. Although different representations can be
used to analyze transient signals, it is difficult to decompose them into appropriate basis
functions.

The general aim of this thesis is to propose and investigate alternative analysis meth-
ods that explore the transient signals characteristics of exhibiting sudden changes in their
parameters. Specifically, we consider the general signal representation for a transient signal:

s(t) = A(t)ed®W (1)

where A (t) is the instantaneous amplitude parameter and & (¢) is the instantaneous phase
parameter. Based on how these parameters change, the thesis studies the following three
different types of transient signals that are commonly found in real-life applications.

Transient signals characterized by phase discontinuities of a particular order

When the transient signal in (1) exhibits phase discontinuities, then it can be modeled as:

s (t) _ ZAkejak cos(2kmt) (2)
k

where A, is the instantaneous amplitude parameter of the K™ component and aj is the
amplitude of its instantaneous phase parameter.

In particular, the transient signal has multiple components whose instantaneous phase is
a high-order (infinite) derivable function. The high nonlinearity of this function makes the
signal analysis quite complicated, and new representation methods are then required. Such
signals are encountered in several applications where the micro-Doppler effect is present, such
as radar [STD06, TAR'07]| and acoustics [Jos10].

Transient signals characterized by sudden amplitude changes

Transient signals that are characterized by sudden amplitude changes are usually present in
mechanical, electrical, electromagnetic phenomena. Such signals can be given by:

s(t) = A(t) t € [to, to + D] (3)

1



2 Introduction

where the duration D is assumed much shorter than the signal’s observation time, and tg is
the starting time of the signal. The amplitude function A (¢) of the signal in (3) is assummed
to have high order derivatives.

The methods proposed in our work will contribute to offer a potential interesting solution,
attempting to provide a general analysis framework of such signals.

An example of a transient signal in (3) is the electrocardiogram (ECG) as it is characterized
by typical variations of amplitude. Another widely encountered case, that is a major part of
our study, is a signal that is observed at a given distance from the source and that consists
of not only a transient at the origin (as it is generated by the phenomenon) but also of
propagation and receiver processing effects. Two application examples of such signals are as
follows:

e Electrical transients

\ L,

is equivalent to

A — h(t) e 5 () = A (t) 0

Figure 1: The propagation of an electrical transient through a cable is really complicated
to model due to the diversity of the physical phenomena involved, such as dispersion and
reflections.

Electrical transient analysis is of capital importance for power networks surveillance. Phe-
nomena that generate such transient signals include partial discharge (PD) (Figure 1) and
electrical arches. These phenomena have been extensively studied as they are important
for the health management of the power distribution. Some studies strictly attempted to
model analytically the transients generated by these phenomena. As in any modeling, the
assumptions made are not always valid and this restricts the generalization of these models.
In addition, the analysis can be complex as the sensors are often far from the source.

e Acoustic pressure transients in passive configurations

Another example of capital importance for hydropower production surveillance is the passive
monitoring of hydraulic shocks in penstock pipes (Figure 2). Water hammer is a pressure
surge caused when a fluid in motion is forced to stop or change direction suddenly. Such
pressure surges commonly occur when a valve is closed at an end of a pipeline system, and
a pressure wave propagates in the pipe. Although these surges are inevitable, they can be
really dangerous if the wave does not propagate as designed by the engineer, resulting in
multiple system damages. Some characteristics of the transients are of great interest as they
reflect the propagation of the shock wave and can reveal if the penstock has been damaged.
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water level dam

penstock pipe Power plant

turbine

x(t) = A(t) el?®) <

control valve

_________________

Figure 2: General illustration of a hydraulic power plant. Acoustic pressure transients are
usually recorded before the control valve in order to monitor the hydraulic shocks.

Transient signals characterized by nonlinear variation of the instantaneous
phase
s(t) = A(t) dCmht+e®) ¢ (1) e ¢4 (4)

Tansient signals whose instantaneous phase varies nonlinearly often appear in real-life appli-
cations as typical natural signals. Examples include the signals emitted by bats or mamimals
[HCIS98] which are well adapted to the propagating environment (Figures 3 and 4').

x10° 3000

2500

N

]
N
S
3
S

.
[N

Frequency [Hz]

Frequency [Hz]

o
©

500

0.85

8
2.85 29 295

3.05 31 3.15 3 32 34 3.8 4 4.2

3.6
Time [s]

Timae [s]

Figure 3: Spectrogram of an echolocation bat  Figure 4: Spectrogram of a signal emmitted
signal. by a whale.

Othe examples include the signals obtained during sensing of an environment (Figure 5),in
order to estimate important environment parameters. The transmission and propagation
of acoustic transients in environments characterized by distortions such as multipath and

!Sounds bank www.universal-soundbank.com/bruitages-animaux.htm
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4 Introduction

frequency dependent attenuation, are important to study in order to ensure the efficiency of
acoustic sensing that aims to characterize the environment.

s(t)=A(t) eJ (2m fot+e(t))
Rx

[]

() ect

L]

Tx s(t)=A(t) ed (2 fot+(t))

Figure 5: Depiction of active acoustic sensing.

Transient signal analysis approaches

There are several approaches for analyzing transient signals. Three of such approaches include:
statistical approach, linear projection-based approach, and data-driven analysis. There are
advantages and disadvantages to these different approaches, as discussed in Chapter 1. These
approaches show the importance of transient analysis in many contexts. Although some of
these methods are used for signal detection, other characterizations are also needed to extract
additional knowledge for discrimination or classification purposes.

The approaches proposed in our work are included in the three main types and will con-
tribute over a potential interesting solution, attempting to provide a general analysis frame-
work for transient signals. In further chapters, the improvement provided by the proposed
techniques will be compared with the state of the art.

Thesis organization

The thesis is organized as follows. In Chapter 1, we discuss three approaches commonly used
to analyze transient signals: the statistical approach, linear projection-based approach and
data-driven approach.

Then, Chapter 2 adresses the problem of projective approaches for the representation of
signals having fast-varying time-frequency components, and is divided into two parts. First
part focuses on complex time distributions as a way to produce high concentrated distributions
along the different phase derivatives of a signal. The actual method presents a major drawback
as its utilization is limited to narrow band signals. We propose to expand it to deal with time-
frequency structures with larger bandwidth. The second part aims to recover signals having
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nonlinear modulation phase signals disturbed by nonstationary and other coherent signals.
Generally performed by tracking algorithms, those signals are of great interest as they are well
adapted to dispersive environments. However, if they overlap in time and frequency or if parts
of the signals are missing, tracking algorithms usually fail to provide a good estimation. The
proposed method for separation and extraction combines warping operators and compressive
sensing to successfully achieve this goal. A comparison with a classical approach is also
provided to compare the results.

Chapter 3 then focuses on the study of signals having sudden amplitude changes by data-
driven techniques. We design the concept of multi-lag phase diagram analysis that takes
advantage of the lag diversity in phase diagram to explore similarities between transients.
To do so, parsimonious parameters are extracted from each phase space representations and
their evolution is then compared with respect to the lags. The different parameters and their
extractions are presented and examples are provided.

In Chapter 4, we present some applications that show the potential of the proposed ap-
proaches developed in the previous chapters to some real-life contexts. We first propose a new
framework for ECG time-series segmentation, then work on electrical transient characteriza-
tion, some results in passive acoustic for hydraulic power plant, and finally, we present the
characterization of simulated acoustic transients obtained in an active configuration.

In conclusion, we present a synthesis of our thesis, the main contributions we proposed
and some perspectives for further works.
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The signal types discussed in the previous section were subject of an uncountable number
of works. The description of all the method types is a very difficult and complex task, because
of the multitude and the diversity of the existing approaches. Without pretending to provide
an extensive classification of the existing techniques, we propose to organize the techniques
into three different classes of approaches according to the way how the signal behaviour is
considered.

1.1 Statistical approaches

This very wide analysis domain considers signals as series of samples:

s(t)={s (ti)}izl,...,N (1.1)
and then studies their statiscal properties as if they were random variables. Two well-known
measurements that are usually calculated on them are the mean p and the variance o defined
as follows:

p=Els] (1.2)
ue =E [82] (1.3)

where E denotes the average over the probability distribution.

The same way, high order statistics HOS refers to functions which use the third or higher
order moment of a sample [LAC97]. We defined the n-th order moment u, of signal s as
follows:

i = E[5"] (1.4)

7
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Statistic approaches are mainly based on the supposition that transients do not have a
Gaussian histogram. This is the feature that distinguished them from noise which is supposed
to be Gaussian. As an example, the third moment known as the skewness is a measure of the
asymmetry of the signal probability distribution, while the fourth moment (known as kurtosis)
refers to its peakedness.

Although the statistical approaches allow us making the consideration concerning the
transient nature of signals, being very useful for detection (especially in conjunction with time-
frequency and time-scale representation [RA98, RA01]) the fine characterization of transients
is not guaranteed.

1.2 Linear projection-based approaches

It is in human nature to compare things with what they know. This philosophical statement
finds a equivalent in signal processing, materialized by the decomposition of any signal s ()
in a set of elementary functions belonging to a dictionnary D.

s(t)=>_ Cote (t) (1.5)
o

where g (t) is the elementary function characterized by the set of parameters © and Cg are
the projection coeflicients showing by their amplitude what is the contribution of g (t) in
the structure of s (¢). These coefficients are generally computed by the inner product:

Co = (s (1) Yo (1) (1.6)
- [swvswa (1.7)

t

Among the possible infinite (large number of choices), let us recall few well-known represen-
tation based on the signal projection.

The Fourier transform

The well-known Fourier transform allows to express a signal s(¢) in terms of sinusoids of
different frequencies by using the elementary functions defined as below:

i () = Xk (1.8)
where f, corresponds to the frequency.

Therefore, the Fourier transform S (f) of the signal s (¢) is calculated as follows:

S(f) = / T () ety (1.9)

—0o0
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The major advantage of this central signal analysis tool is that all the frequency content
of the signal can be analyzed with the Fourier transform. However, if the studied signal is
noustationary, the frequency content might change over time and then not be the same at two
different instants of observation. That is, this property limits the study of transient signals;
this is why the Short Time Fourier transform was developed in order to analyze the frequency
content of nonstationary signals over time.

The Short Time Fourier transform (STFT)

The Short-time Fourier transform (STFT) is one of the most famous time-frequency repre-
sentation methods used to study nonstationary signals and is a straightforward extension of
the Fourier transform. The signal is decomposed in a basis of windowed elementary function
defined as:

Y (t) = h(t — KT) 2™ Int (1.10)

where T corresponds to the duration of the window h ().

It enables to evaluate the frequency content of a signal over time. The general formulation
is as follows:

STFT [s(t)] = X (1, f) (1.11)
= /OO s(t)w (t — 1) exp It dt (1.12)

When dealing with the energetic version of the STFT, we speak about the spectrogram:

p(r.f) =X (r. ) (1.13)

Those representations are really famous for non-stationary signal analysis, however, they
still present a drawback materialized by a trade-off between the resolution in frequency and the
resolution in time known as the Heisenberg uncertainty [Coh95|. If someone wants to obtain a
good localization of a phenomenon, he needs to choose a window of small duration that then
leads to a poor resolution in frequency. On the contrary, a good resolution in frequency is
achieved by a larger window that then provides a bad localization in time. To overcome this
limitation, windows can be overlapped to improve the resolutions, but the trade-off would still
exists.

The Wavelet Transform

The wavelet transform [Mal99, MS95, Dau90, Dau92]| is used to decomposed a signal s (¢) in
an orthonormal basis constructed from a family of functions vy, ,, (t) called wavelets:

Ynm (1) = \/;mwo (2; - n> (1.14)
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where v (t) corresponds to the mother wavelet, m is the dilation factor and n is the transla-
tion.

The idea is to propose an orthonormal basis that is elaborated from a mother wavelet
o (t) and its dilated and delayed wavelets. The signal is then projected onto this basis in
order to know with which scale and delay the similarity is the most important.

o
Wos (n.m) = [~ 5007, ()t (1.15)
—o
. @ - O
()]
:% % 05F %
< < ° <
0 0.02 0.04 T:)r?r(;e [S] 0.08 0.1 0.12 0 ZsamPAIeS 6 0 éamplezs 3
Figure 1.1: Studied signals. Figure 1.2: (a) Symlet mother wavelet. (b)

Daubechies 2 mother wavelet.

It is well-known that a good wavelet representation requires the definition of the appro-
priate mother wavelet. In order to illustrate this matter, let consider two signals s1 (¢) and
so (t) that are related by a low pass filtering and the two following mother wavelets: Symlet
and Daubechies (Figure 1.2). As we can see in Figure 1.1, the two signals are really similar
because they have almost the same shape and their frequency content are almost identical.
The two selected mother wavelets are quite different and it seems that the Daubechies wavelet
has the closest shape to the analyzed signals. We perform a time-scale decomposition for both
signals using the two wavelets. Results are displayed in Figure 1.3. As we can expect, results
are quite different. By looking at the maximal values, we can detect where are located the
signals but both decompositions tell us that the waveform does not fit them properly.

As we highlighted with this example, this method requires an a priori knowledge of the
waveform we are interested analyzing which can be quite difficult when dealing with more
complex waveforms.

Compressive sensing (CS)

Compressive sensing [SMF10] has emerged in the work of Candés et al [CRT06, CT06], Donoho
[Don06] and Baraniuk [Bar07] and is a sampling model that allows us to go beyond Shannon
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Figure 1.3: Wavelet decompositions by using the Symlet mother wavelet on the first row, and
the Daubechies mother wavelet on the second row, for the two studied signals: s; (¢) on the
first column and ss (¢) on the second column.

limit by exploiting the sparsity structure of the signal. The theory asserts that certain signals
can be recovered from fewer measurements m than data samples N. It relies on two conditions:

e sparsity: the information contained in the signal can be smaller than its bandwidth
and be easily represented in a dictionnary,

e incoherence between the sensing modality and the dictionnary: while the signal
need to be sparse in the dictionnary, it also needs to be spread out in the domain where
it was acquired. To do so, the sensing vectors need to be as dense as possible in the
dictionnary.

If those two conditions are met, CS shows that it is possible to simultaneously sense and
compress the signal without acquiring N samples.

Distributions

A particular domain of projective based representation approaches is the one of distributions.
Starting from the projections of instantaneous correlation function s (¢t — 7/2) s* (t + 7/2) on
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the {ejwk‘t}k basis, a broad class Cohen’s class [Coh95] of distributions has been defined and
used. One of these well-known distributions is the Wigner-Ville distribution. However, this
distribution has to deal with cross-terms: the apparition of cross-terms when dealing with
multi-components signals, and also inner interferences due to undesired nonlinearity effects of
nonstationnarity. All those terms reduce considerably the interpretation of the distribution in
the time-frequency plane. In order to reduce these effects, the concept of complex arguments
has been introduced [Sta02]. It takes advantage of the complex frequency argument (in the
Laplace domain) and a corresponding complex lag in the time domain to produce almost
completely concentrated representations along the different phase derivative order of a signal.
They are known as Generalized Complex-time Distributions (GCD). Though, the
computation of the distribution involves the analytic extension of the signal in the complex
domain that is performed by the analytic continuation and therefore, restricts the application
to narrow bandwidth signals. Subsequently, in the next Chapter, we propose a method to
extend it to signals having larger frequency variation.

1.3 Data-driven analysis techniques

This group of techniques does not assume any model of analyzing data. They are mainly
focused on the study of sample organisation in time. Among possible approaches, we mention
here the Empirical Mode Decomposition (EMD) and the phase diagram.

Empirical Mode Decomposition

The EMD, also known as the Hilbert-Huang transform [HS05], corresponds to a way of decom-
posing a signal into so-called intrinsic mode functions called IMF: each of them representing
a simple oscillatory mode.

Empirical Mode Decomposition has proved itself efficient for analyzing the different modes
included in a signal without determining set up parameters. However, this data-driven method
presents a major drawback, known as mode mixing problem as the decomposition’s result is
not unique and can be changed from one realisation to another. Even if some elements of
solution has been proposed over the time [HWO08|, we need to keep in mind that this empirical
algorithm has not been proven yet and is still controversial.

Phase diagrams

Another famous data-driven technique is the signal analysis by phase diagrams also represented
by recurrence plot analysis (RPA) which has been introduced by Eckmann et al. [EKR87]
in 1987 in order to visualize recurrences of higher-dimensional phase space trajectories in
nonlinear data time series. By recurrence, we refer to the return of a state of a system to a
previously visited point.
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RPA is based on three major steps: time-delay embedding (1980-1981) [Tak81, PCFS80],
recurrence plots (1987) and recurrence quantification analysis (RQA)(1992-2002) [ZW92, MK02].
More details about the history of RPA can be found in [Mar08] and an international website
gathers all the advances and communications of the community [RPA].

To begin with, the analyzed signal s(n) defined for n € {1,..., N} is first turned into
a trajectory o [s,7,m| by forming vectors from groups of samples. The signal is vectorized
through the spatial-embedding process set up by two parameters: m the embedding
dimension and 7 the time delay which can be seen as an integer decimation factor. Phase
space vectors computed at instant n are defined as follows:

oy [s,m,m) =[s(n),s(n+7),...,s(n+ (m—1)7)] (1.16)

Vector construction is illustrated by Figure 1.4. As an example, at instant ng, we only consider
s (n) samples for n € [ng,ng + (m — 1) 7] and then keep every 7 samples.

(m — 1) intervals of 7 — 1 samples

e

Una [8,7,m] = [s(n0) , s (o +7) 5,8 (ng + (m — 1) 7)]
s(n)
0 no+(m-1)7 "

Figure 1.4: Creation of a phase space vector at instant ng using the parameters 7 and m.

The vector construction is then repeated for each sample of the signal, which creates the
phase space diagram. As an example, Figure 1.5 presents the creation of a phase diagram for
m =3 and 7 = 2 samples.

Classical RPA then computes the distances D between each phase space vectors that are
recorded in a matrix D called distance matrix such as:

Dij =D{%] [s,.m], 0] [s,7,m]} (1.17)

Many distances D can be chosen sush as the classical euclidean metric or the Manhattan
distance, etc... Therefore, Ioana et al.[IDST14| developed several distances that permitted to
highlight different properties of signals depending on the purpose of the analysis.
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Figure 1.5: Creation of a phase diagram for a given signal, m = 3 and 7 = 2.

Then by thresholding the distance matrix, recurrences are enlightened in the recurrence
matrix R also known as recurrence plot (RP).

R’ =0 (6 — Di,j) (118)

(Y]
where © is the Heavyside function and € is the recurrence threshold. A recurrence is en-
lightened if the distance between two vectors is inferior to the recurrence threshold. The
Heavyside function then provides a value of 1. On the contrary, if the distance is superior to
the threshold, then the recurrence matrix provides a value of 0.

The summary of recurrence plot analysis is presented in Figure 1.6.

Finally, the last step is the computation of recurrence quantifications on RP: this is what
is called Recurrence Quantification Analysis (RQA). Several types of measures exist in
literature that either quantify black point density, diagonal lines, or vertical lines [MCTKO07].
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But one of the most famous measure is the recurrence rate RR that corresponds to the density
of recurrence points in a RP:

1 N
=3 Z (1.19)

The idea of building trajectories from successive samples of a signal was supported by
Taken’s theorem, which states that a dynamical system attractor can be reconstructed from
a series of observations of the state of the dynamical system, embedded in a dimension that
is greater than twice the size of the attractor. However, the conditions of this theorem are
not satisfied by real world signals that are not noise-free and do not have infinite resolution.
Nevertheless, we must notice that many informations can be hidden inside the signals about
the global dynamics of the system that produce them. The difficulty in revealing this informa-
tion through time-delay embedding consists in choosing proper values for m and 7. Various
techniques have been proposed in the literature [Sma05| to solve this problem, such as false
nearest neighbours or successive embeddings for the embedding dimension, and autocorrela-
tion or mutual information for the delay. However, there is no universal best choice for
parameters m and 7 as it highly depends on the application.

1.4 Summary

In this Chapter, we have presented a brief overview of the existing methods for transient
analysis. All of them present advantages but also drawbacks that can eventually be improved.
In the further chapters, we propose to focus on two classes of approaches: the linear projections
and the data-driven analysis techniques. Next chapter is therefore dedicated to the study
of signals having fast-varying time-frequency components and is adressed with the class of
projection-based approaches through GC'D and also compressive sensing.
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Figure 1.6: Recurrence plot analysis is computed through 3 steps: the time-delay embedding
process, the distance matrix, and finally the recurrence matrix.
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In this Chapter, we propose to focus on the representation of signals having fast-varying
time-frequency components using projection-based approaches. In a first part, we focus on
the generalized complex-time distribution and propose a method to extend its application to
signals having larger frequency variations as it is limited to narrow bandwidth signals for now.
In a second part, we propose to study the recovery of nonlinear modulation phase signals when
samples are missing from the observation. It takes advantages of time-axis transformations

and compressive sensing.

17
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2.1 Generalized Complex-time Distributions

Time-frequency representations are very helpful to characterize the richness of the information
contained in nonstationary signals. It can help to monitor the appearance of short transient
electrical signals and the beat of an heart, for example. The subject has been largely covered
with the Cohen’s class representation [Coh95|, wavelet transform, etc... Generally, they char-
acterize the frequency content of a signal over the time, with some specific limitations like
inner interferences, cross-terms, artefacts, trade-off between time and frequency resolutions,
etc...

Recently, complex time distribution concept has been introduced in [Sta02| as a way to
produce high concentrated distributions along the different phase derivatives of a signal. The
main idea is to use the high order moments of the signals calculated for complex-time lags.
It has also been shown that it was possible to deal with multi-component signals [GIST08].
This technique has however some drawbacks as it involves the calculation of signal samples
at complex coordinates through analytic continuation [SS96]. This estimation leads to poor
representations as it can produce a divergence. A numerical example proves the efficiency
of the modified analytical continuation technique extending also the capacity of the complex
time distribution to deal with time-frequency structures with larger bandwidth.

In this section, we propose a method to overcome the limitations introduced by the analyt-
ical continuation in the case of signals with a spread time-frequency variation. This method is
based on the compression of the signal spectrum to a bandwidth that ensures the efficiency of
the analytical continuation technique. Then, the application of generalized complex time dis-
tribution will allow an accurate estimation of the different phase derivative law. The spectrum
expanding brings this estimation to the correct time-frequency location.

2.1.1 General presentation of complex time distributions

The complex time distribution concept has been introduced in [SS96| as a way to reduce inner
terms in Wigner-Ville distributions when dealing with nonlinear time-frequency structures.
It takes advantages of complex-time signal arguments that enable to provide distributions
that are concentrated along the K-th derivative of the phase for regular signals [Sta02, Cor06,
CSIt07, GIST08, Got10].
Let consider the signal s (¢) defined as:
s(t) = Ae?®®) (2.1)

with A the signal amplitude that is constant or can slowly vary and & (¢) its phase.

We consider the phase as a real analytic function. Then, by using the Taylor’s series
expansion of the phase, we can write:

t+r)=> ok (t):: (2.2)
- !
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This equation brings forward the different phase derivatives of the signal. Phase integration
in the complex plane using the theory of Cauchy’s integral theorem |[Rud87| then allows to
focus on a particular phase derivative:

W) (1) = K f{ _*E) (2.3)

o 2]7 (Z—t)K+1

where v describes the contour integral of the equation. This equation shows the interest of
the complex time concept as it enables to compute the K order derivate of ® at instant n
as the complex integral over the integration path ~.

Figure 2.1: Integral contour ~ used to compute the Cauchy integral in complex plane.

We here consider 7 the integral contour as the circle of center ¢t and radius 7 taken counter-
clockwise (Figure 2.1). Then by considering z = t + 7¢?, Equation 2.3 becomes:

2T

| 2m . .
) (1) = N / @ (14 7e") eI dg (2.4)
0

We can now consider the discrete form of the equation for the N roots of unity defined for
0 =27p/N and p=0,..., N — 1 which are represented in Figure 2.2. Equation 2.4 becomes:
K' N-1 _ s2mpK

o) = c1>(t+mj2%”)e I 4 (2.5)

where e stands for the discretisation error.

Let wy,p = ¢I2mP/N he the roots of unity, we also know that:

N-1 .
Z S N if k=0 (modN) (2.6)
= N.p 0 otherwise

By using this property, the Taylor series expansion (Equation 2.2) and the variable change

| . .
K\/T%, the previous expression then becomes:

N-1 K

K . _
d o (t + W p VTN) wi K =M@+ Q(t,7) (2.7)
p=0

T =
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Figure 2.2: Representation of the roots of unity

where Q (¢, 7) corresponds to the spread function which only contains the derivatives of order
NE+K, defined as:

o - (Np K B K1\ ©+
Qt,7) =NY ot >(t>7(Np el <N> (2.8)

p=1

Therefore, we define the generalized complex-time moment (GCM):

. N-1 Nk K]
GOMR[s] (t,7) = J] s“¥» | t+wny ~7 (2.9)

p=0
— JOE)(O)T+iQ(t,T) (2.10)

The Fourier transform of the GCM produces the generalized complex time distribution (GCD):

GCODY|[s] (t,w) = TF, [GOML[s] (t,7)] (2.11)
- (w — ) (t)> 5 TF,[Ae120)] (2.12)

As stated by this definition, the K-th order distribution of the signal, obtained for N
complex-lags, highly concentrates the energy around the K-th order derivate of the phase law.
This concentration is optimal if the ® ’s derivates of orders greater than N-+K are 0. Observing
Equation 2.8, it can be noticed that the first term appearing in the spreading function is the
phase derivative of order K+N, the second one is of order K+2N,... Thus the parameter
N highly affects the spreading function. We can conclude that a high value of N reduces
interferences since @) is reduced and distribution concentration will be less sensitive to higher
order phase derivatives. This theory has been well developed in [Cor06, CSI*T07, Got10].

However, the computation of GCM implies the calculation of signal samples at complex
coordinates (complex lags), this is called the analytic continuation.
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2.1.2 Limitation introduced by the analytical continuation

The analytical continuation of a signal s(t) is performed as defined in [SS96].
o
s (t+jm) = / S(f)e2mmiei?n ity (2.13)
—0o0

where S (f) is the Fourier transform of signal s ().

The calculation involves the multiplication of the spectrum by the exponential e~2™™f

which has different effects on the spectrum. Those are shown in Figure 2.3 for a test signal
s(t) = ei6cos2mt) and different values of m. When the frequencies are positive, they are
strongly attenuated due to the decreasing exponential. In the meantime, negative frequencies
are strongly amplified, which can lead to a divergence in certain cases (Figure 2.3(c)). If we
consider a second test signal s (t) = e/6°05(27/2) that has a bandwidth twice smaller (Figure
2.4), we can notice that the spectrum is less affected by the analytical continuation. Generally
speaking, the use of Fourier base constitutes a problem when we deal with wide-band signals
as their half higher band are strongly impacted by the prolongation.
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Figure 2.3: This Figure represents the spec- Figure 2.4: This Figure represents the spec-
trum S(f) of the signal s (t) = eI6°0s(27t) trum S(f) of the signal s (t) = 76°03(27t/2)
multiplied by an exponential e 2™/ for dif- multiplied by an exponential e =2/ for dif-
ferent value of m: (a) m =0, (b) m = 0.01 ferent value of m: (a) m =0, (b) m =0.01
and (c) m = 0.05. and (c) m = 0.05.

Therefore, it is really important to note that the analytic continuation is strongly
affected by the choice of m and the bandwidth of the studied signal. A strong value of
m induces a very fast decreasing exponential that will completely affect the bandwidth and in
the meantime, a large bandwidth will be more sensitive to the multiplication with a decreasing
exponential. As a consequence, the best scenario would be to study small bandwidth signals
using really small values of m to limit the negative effects of the analytic continuation. This
restricts considerably the capabilities of wide-band signals (such as transients) analysis and
our contribution is aimed to reduce this limitation.

In order to illustrate the limitation in terms of analytical continuation, let consider two
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signals defined as:
51 (t) _ €j(6 cos(7rt)+% cos(27rt)+§ cos(47rt)) (214)

9 (t) — ej(18 cos(mt)+4 cos(5mt)+4 cos(157t)) (215)

Figure 2.5 shows the theoretical instantaneous frequency laws for s; and s, as well as the
results of the generalized complex time distribution using N = 6 and K = 1. We notice that
if the GCD gives good results for s; we can no longer estimate the first phase derivative for
s2. This is due to the computation of the analytical continuation and the large bandwidth of
s which is six times larger than s;’s.
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Figure 2.5: This figure represents the theoretical instantenous frequency laws for (a) s1(t) and
(b) s2(t) and the classical GCD associated for (c) s1(t) and (d) sa(t).

2.1.3 Time-scaled complex time distributions

In this section, we propose a method for the analytical continuation in the case of wideband
signals. It consists in modifying the frequency support of the analyzed signal s, in order to
reduce the attenuation of the analytical continuation term.

Let consider a signal B(t) defined as:
B(t) = s (at) (2.16)

with @ > 1 a dilation coefficient and s (t) a signal defined as Equation 2.1. The dilation of
the temporal signal leads in the frequency domain to a contraction of the bandwidth. This is
actually the concept of the time-scale representation that we use at this point [Mal99].
Considering the complex-time moment of B (t), we have:

N-1
WK K!
GCME[B)(t, 1) = H s“Np (at + awnp K\/ NT) (2.17)

p=0
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We can clearly notice that the main impact directly concerns the analytical continuation. We
then focus on its calculation. According to the Taylor serie expansion (Equation 2.2), we have:

2. s (at)

s(at + jam) = Z i (jam)* (2.18)
k=0 '
Knowing the following Fourier ’s formula:
0@ = [ ) sy (219)
we then obtain: o
O (at) = [~ G2nps(peeray (2.20)

Considering the variable change f — f/«, we obtain:
0o k
st (at) = ]a|k/ <j27rf> S <f> gzt df (2.21)
oo o « @
Taking into account Equations 2.18 and 2.21, we then deduce:

s(at + jam) = 1 /OO S (f) i Meﬂ”ﬁdf (2.22)

a J_ o a) = k!

Finally, we obtain the contracted analytical continuation:
. 1 * f —2rmf j2mft
s(at+ jam) = — S{=|]e el Tt df (2.23)
a J_ o

We can see that this leads to a contraction of the spectrum, and as a matter of fact, its
bandwidth will be less affected by the attenuation term e~2™™/. We defined s,, (t) as the signal

s (t) whose frequency support is contracted by the dilation coefficient «, ie So(f) = S (%)
Thus, we obtain:

1
s(at + jam) = Esa(t + jm) (2.24)

As we can notice, the two signals are still related. The GCM then becomes:

N-1 /g 74 N
GeMf (Bl (t,7) =] (asa <t+wN,,, A N'T>>

p=0

1\ Zro N
= <> GCME[sa](t,7)

(07

(2.25)

Two scenarios then need to be studied:

e When N = K (modulo N), ie when the number of roots of unity is equal to the phase
derivative order, then we have:

GOME[BI(1,7) = 5 GOME[sa](t,7) (2.26)
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Figure 2.6: This Figure represents the procedure used to perform the time-scaled GCD.

e Otherwise:

GCME[B(t,7) = GOME[sa)(t, 7)

(2.27)

In both cases, we can conclude that the GCD provides the same results with a different
intensity when the factor O%N appears. Equation 2.27 shows that it is possible to extract the
K-th phase derivative order distribution of a signal by using its dilated version. We then need
to expand the distribution to obtain the real distribution for signal s. This is performed by
using Equation 2.28, which corresponds to a two dimensionnal warping [PSHBB9S|:

GCDEX[s](t,w) = aGCDX[B](t,w)

(2.28)

The procedure is detailled in Figure 2.6. However, a question still remains: how do we
choose the dilatation coefficient a? For now, this choice is not straightforward due to its high
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dependance on the analyzed signal. A first approach would consist in performing the time-
scaled complex time distribution for multiple value of o and then to choose the distribution
that offers the best concentration in term of phase derivative law (PDL) estimation.

2.1.4 PDL estimation

The traditional procedure used to extract the PDL estimate PDL (¢) from the GCD distri-
bution is actually quite simple. At each instant ¢, the method localizes the maximum of the

distribution as follows:
PDL (t) = argmaz [GCDX[s] (t,w)] (2.29)

However, due to the presence of artefacts on the distribution, this method sometimes fails
to provide a good estimation at every instant t. In order to overcome this limitation, we have
developed a technique that does not select automatically the maximum of the distribution.
The procedure is described below and illustrated in Figure 2.7.
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Figure 2.7: (a) represents the spectrum at a given instant of the distribution. Classical PDL
estimation would choose the higher peak as the PDL estimate. However by counsidering all the
peaks whose values are greater than the attenuation at 3dB Gsgp(b), we have two potential
results. By observing both bandwidth of the peaks (c), we select the greater one as the new
PDL estimation (d).

At every instant ¢, the spectrum of the distribution is observed and we calculate the value
Gsqp corresponding to a 3dB attenuation relative to the highest value of the spectrum. All
the peaks higher than G3gp and their bandwidth (related to Gsgp) are then considered as
possible PDL estimates. We then compare the bandwidths and select the most important
one.
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Why do we have to choose the biggest one? The GCD provides a distribution that is
high-concentrated around the Kth phase derivative which implies that spectrums must have
a minimum bandwidth at each instant ¢. If the selected peak’s bandwidth is too narrow, then
it is possible that it only represents an artefact of calculation.
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Figure 2.8: (a) represents the IFL estimation obtained with classical method. We can see a
lot of artifacts which disappear with the new method (b).

Figure 2.8 shows the improvements obtained with the new procedure compared to those
obtained with the traditional technique. It is quite obvious that the number of false detections
has been reduced.

Next Section is dedicated to the study of an example.
2.1.5 Numerical example
2.1.5.1 Presentation of the example

In order to evaluate the performances of the proposed approach, we choose to work with the
following signal and to represent its first phase derivative (Figure 2.9 (a)):

s (t) _ 6]'(18 cos(mt)+4 cos(10mt)+4 cos(157t)) (230)

As we can see in Figure 2.9(c), the classical GCD fails to represent the first phase derivative
of the signal due to its large bandwidth and the analytic continuation.
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Figure 2.9: (a) and (b) represent the theoretical instantaneous frequency laws of s (¢) and its
dilated version. (c) and (d) are their respective GCD.

In order to test our method, we choose to dilate s (t) with & = 5 and to apply the GCD
algorithm using 6 complex lags (i.e. N = 6 and K = 1). We then study the new signal
Sq (t) = s (at). The dilatation leads to a contraction of the bandwidth with a factor equal to
a which reduces considerably the bandwidth. Figures 2.9 (b) and (d) respectively show the
theoretical instantaneous frequency law and the result of the GCD algorithm applied on s,.
We can notice that the GCD provides really good results.

The frequency law obtained for s, (t) is as stated by Equation 2.27 a contraction of the
one of s (t), to obtain the last one, it is then necessary to dilate the frequency law obtained
with the dilation coefficient a. Figure 2.10 shows the comparison between the theoretical
intantaneous frequency law of s (¢) and the dilated frequency law of s, (t). We can notice that
they match almost perfectly. Figure 2.11 shows the DGTC of s, () after dilation.

We have seen that it was possible to overcome one of the limitation of the analytic con-
tinuation for the GCD method using a dilation coefficient.

2.1.5.2 Comparison with other techniques

As we already know, the first phase derivative of a signal represents its instantaneous frequency,
a subject that has already been well covered by the literature. Many algorithms have been
developed such as: the spectrogram and Wigner-Ville representations [Coh95].

In this section, we propose to compare the performance of two methods: the spectrogram
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Figure 2.10: (a) The continuous curve represents the theoretical instantaneous frequency law
of s (t) meanwhile the dash line represents the instantaneous frequency law of s, (t) obtained
with the GCD algorithm after dilatation. (b) is a zoom of (a)

and classical GCD with the study of an example. Because time-scaled GCD is similar to
classical GCD in the sense that we perform a GCD on a modified signal, we do not compare
this technique. We consider the signal s (t) defined in Equation 2.30. The spectrogram is
performed using a 32-samples Hanning window sliding every sample and the classical GCD
uses 6 complex lags.

In order to compare the results given by the different techniques, we calculate the Mean
Square Error (M SE) for each representations. Given PDL (n) the theoretical PDL, PDL (n)
the estimated IFL, and N the number of samples, the MSFE is calculated as follows:

MSE = ;;V:l\/HPDL (n)—P/D\L(n)H2 (2.31)

This measure has been performed for the two techniques and actually provides the precision
of the estimations. Results are shown in Table 2.1.

At every instant ¢, the —3dB bandwidths of the distributions are evaluated. Figure 2.12
presents the histograms of these values. It can be noticed that the concentrations are almost
constant varying around 16-18 Hz. While the concentration obtained with the GCD algorithm
is quite dispersed compared to the one obtained with the spectrogram, the mean value of the
distribution is smaller than the spectrogram’s and varies around 12 Hz. This particularity
enables the GCD to have a smaller M SFE which guarantees a smaller error estimation. As
a way of conclusion, we can say that the GCD offers a better estimation in the sense of the
MSE.
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Figure 2.11: (a) This Figure represents the GCD of s, (t) after dilation. It also represents
s (t)’s GCD without artefacts

Techniques | Classical GCD | Spectrogram
MSE 0.4902 Hz 1.2694 Hz

Table 2.1: Performances achieved by classical GCD and the spectrogram

2.1.6 Summary

This section proposed a new analytical continuation technique that allows the generalized
complex time distribution to deal with time-frequency structures having larger frequency
variation. This technique is based on the compression of the signal’s bandwidth and, then,
the application of the generalized complex distribution. This transformation allows accurate
estimation of the IFL. This works has been published at the EUSIPCO conference in 2013
and a journal paper is also under review:

C. Bernard and C. Ioana. Generalized complex time distribution using modified analytical
continuation. In 21st European Signal Processing Conference EUSIPCO-2018, September
2013.

C. Bernard, A. Digulescu and C. Toana. Generalized complex time distribution using
time-scale concept and modified analytical continuation. In [EEE Transactions on Signal
Processing, under review.

As we have seen, the choice of the integration path is of great importance for a successful
analysis, and this is why future works should focus on proposing an adaptive approach for
the selection of the optimal scale parameter with respect of the bandwidth variation of the
analyzed signal. Data-driven approaches (presented in Chapter 1) seem to offer a natural
solution to this matter and this is why we orient the work toward the analysis of signals in
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Figure 2.12: At every instant t of the GCD and spectrogram distributions, the —3dB band-
width is evaluated. This Figure represents the histograms of the —3dB bandwidth values
obtained for the GCD (a) and the spectrogram (b). We can observe that the spreading func-
tion of the GCD is more dispersed than the spectrogram’s, but that the mean value is also
smaller which guarantees a smaller error estimation.

phase diagram domain.

2.2 Warping-based analysis of transients with non-linear time-
frequency components

2.2.1 Introduction

This section focuses on the recovery of signals having nonstationary time-frequency content

defined as follows:
N N

s(t) =) si(t) =) A (2.32)
=1

i=1
where N is the number of components, A; their amplitudes and v; (¢) their instantaneous
frequency laws that are nonlinear. The study focuses on two particular class of nonlinear
modulation phase signals (NMPS):

e the logarithm phase law [PHBB93|

1/)1' (t) = 27Tf0it + ¢ In t; t € [tOi, to; + Dz] (233)
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with fo; the central frequency of the modulation, ¢; the logarithm modulation rate, to;
the time instant when the modulation happens and D; its duration.

e the monomial phase law [HPSBB99]
V; (t) = 27 fo;t + Citk; t e [tol‘, to; + Dz] (2.34)

with fo; the central frequency of the modulation, ¢; the modulation rate, tg; the time
instant when the modulation happens, D; its duration and k the monomial modulation
order.

Such signals are of great interest as they are usually met in real world applications: they are
commonly used by animals to communicate in nature due to their robustness to Doppler effect
[IQS06] and are encountered in many real-life application areas such as radar and sonar. As
the signals are recorded in the real world, they are often disturbed by different stationary and
nonstationary interferences that could lead to misinterpretation. We introduce in this Chapter
a method to extract components from highly disturbed observations. The main difficulty is
that the desired and nondesired parts of signal may overlap in both time and frequency. This
is why tracking methods usually do not provide good results.

It is well known that compressive sensing methods allow the reconstruction of signals
having sparse basis representations even when dealing with an incomplete set of samples
[Bar07, CRT06, Don06, FB10, JAS13]. This is the property that will be used in this chapter.
However, as nonlinear modulation phase signals cannot be considered as sparse in the classical
Fourier domain, the signals need to be expressed into another basis. This process is achieved
by the class of unitary transformations developed by Baraniuk et al. at the beginning of the
90’s [BJ93a, BJ93b, BJ95| and permits to turn nonlinear signals into sparse signals using the
appropriate basis.

As the warped signal will be still corrupted by interferences, it should be filtered out from
the noise. To do so, the L-statistics are used to identify and select time-frequency regions
of the spectrogram that should be removed from consideration [SOSA13, SSA14]. A CS
recontruction algorithm is then applied to denoise the spectrogram in order to reconstruct
the signal of interest. Similar work has been conducted on linear frequency modulated signals
(LFM) by Orovic et al. [OSS14].

To summarize, this chapter proposes a method to select and extract nonlinear modulation
phase signals disturbed by nonstationary and other coherent signals. For that purpose, a time
axis transformation (warping transform) is first performed in order to turn nonlinear phase
signals into sparse sinusoid components. Then, the time-frequency regions corresponding to
nonstationary and non sparse signals are identified and removed from consideration using the
L-statistics approach. A CS reconstruction method is then applied on the set of remaining
time-frequency (TF) points allowing a perfect recovery of sparse signal. The last operation is
to perform a second time axis transformation in order to return to the original time domain.

We first introduce time axis transformation and a process that enables to stationnarize
any non-linear component. Then compressive sensing is presented and finally we provide a
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numerical example.

2.2.2 Time axis transformation
2.2.2.1 General formulation of time axis transformation

Generally, a warping operation enables to express a given signal s (¢) into another time domain
(the warped domain) that simplifies the processing of the data.

Let consider a signal s (t) € £ (R) and W the warping operator defined as follows:
W, wit)ec, w (t)>0:5(t) = Ws(t)} (2.35)

where C! corresponds to the class of differentiable functions. The modifications created on
the studied signal are expressed through this formulation:
1/2

dw t) | ) (2.36)

Ws (t) = ‘dt

where w (t) is a smooth one-to-one function called the warping function. The first term

1/2
d“;—it)‘ corresponds to the envelop of the warped signal that enables to conserve the energy
of the original signal. It is also possible to define a non-unitary version of the warping operator

if we do not want to deal with the envelop term. It is defined as follows:

Ws (t) = s (w (t)) (2.37)

In most cases, warping functions are chosen in order to stationnarize the studied signals.
Most popular warping operators used in the literature are the functions w () = exp® [PS95]
and w (z) = |z|"/*
logarithm and monomial phase signals (Equations C.22 and C.23). They turn the signals into

sgn (z) that have shown themselves really usefull for respectively analyzing

stationary pure sinusoids.

If the warping function is analytical and bijective, then it is possible to unwarp the warped
signal and come back in the original basis. However, they are most of the time not inversive
as signals often met in real world applications are usually nonstationary and having time-
frequency contents that cannot be described by analytical functions. Jarrot et al. [JIQOG6]
proposed a technique that extends the class of warping operators to discrete-time sequences
and respects invertibility conditions.

2.2.2.2 Discrete formulation

The proposed concept starts from the straighforward definition for the sampled discrete-time
warping operator:
Ws[n])[m] = sy [m]

= s (wd (%) (N — 1)T) (2.38)
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where wg (u) is the normalized function of w (¢) defined by:

a:[0,1] = [0,1] €

0
wa (0)
(1)
d
(

S g

&&
II“

= o

1 (2.39)
(

=

u > 0
Tu
u) w((N )>T>)

wq (u

~
\

wy

The main difficulty is now to estimate the missing values of the signal by using the general
class of interpolators. The first step is to express the signal into a linear shift-invariant space
Vs [Mei02] defined by the kernel ¢ with Vg = Span ({¢ (t — kT) ,k € Z}) [TBUOO|, as follows:

s(t) =Y cn]¢(t—nT) (2.40)

n

We restrict ourselves to the case of exact interpolation where s (nT') = s[n]. Then, signal
s (t) can be expressed as:

2

Z 5 (n) Gine (t — nT) (2.41)

n=0
where the kernel ¢;,; is:

Pint (t Z plk] ¢ (t — kT) (2.42)

Exact interpolation is possible if and only 1f the following condition is met:

1, if n=0

Gint (nT)—{ 0. if n£0 (2.43)

Note that any interpolation kernel can be used. Jarrot et al. [JIQO06] has found that the
cardinal B-spline is the optimal choice. Then, the warped discrete sequence is defined as:

N-1

swlml =Y s[n] gint (wq (m) — nT) (2.44)

n=0

More details on the algorithm is provided in [JIQO06]. This shows that any discrete time
warping operator could be implemented thanks to a finite set of values of the warping function.
This extends time axis transformations to non analytical warping functions which means that
any kind of signals can be stationnarized.

Let consider an arbitrary instantaneous frequency law v (t) and a finite set of values
{9 (tk)}r—1 - The discrete warping function wq (t) that stationnarizes the signal is defined
such as:

V(i) = wa( (1)
B (243

To solve this equation, the signal is divided into L segments in which a local estimation of
the warping function is computed iteratively. Thus, the segmentation ensures ¢ (¢) monotony
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on each interval. Each interval [Iy, Ix41] is centered around ¢; and we note wy = w (t;). The
algorithm starts by initializing w,(CO) such as:

1
w® = 5 (I + Tis) (2.46)
Then, at each iteration p, the local solution is calculated as follows:
-1 -1 Tir1 — Iy
w,(f) = w](gp ) sqn (1/} (w,(cp )) — tk) —;Z)T (2.47)

where sgn is the sign function. The process stops when the differential value between two
successive iterations becomes insignificant:

‘w,(gpﬂ) — w,(cp)) <€ (2.48)

This process enables the stationnarization of any kind of instantaneous frequency laws
even when non analytical.

In order to illustrate the time axis transformation concept, let consider the example of a
third degree monomial phase signal s(n) for n € {0,...,N — 1} with N = 1024, defined as

follows: .
s(n) = 1 (403.1(n/N)?+27128.3(n/N)) (2.49)

A first approach would be to use the following warping function:
w(n/N) = (n/N)/3 (2.50)

However, due to the central frequency term of the signal 27128.3 (n/N), this function is not
appropriate for the stationnarization. The Short Time Fourier Transforms (STFEFT) of the
signals obtained before and after the warping transformation are respectively shown in Figure
2.13 (a) and (b). It is obvious that the given warping function does not turn the signal into
a pure sinusoid.

Another approach would be to estimate the instantaneous frequency law of the signal in
order to evaluate the associated warping function (Figure 2.14) that stationnarizes the signal
as presented in the previous subsection. As presented in Figure 2.13 (c), the third degree
monomial phase signal has been linearized within the process. Even if the warped signal is
still corrupted by some artifacts at the beginning of the sequence, it still can be considered
sparse in the Fourier domain.

Due to unitary equivalence, it has been shown that it was possible to express a signal into
another basis that simplify the interpretation of the observation. This is the concept used to
extract the signals of interest. Furthermore, it is possible to unwarp the signal, i.e. to turn
the basis of the warped signal into the original representation domain.

At this point of the chapter, we have presented how to linearize any nonlinear frequency
component, but a question remains regarding its extraction. A natural approach would con-
sider a band-pass filtering to extract it. However, when there are too many components at
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Figure 2.13: (a) STFT of the third degree monomial phase signal s(n). Results of time axis
transformations are then shown in (b) and (c¢) using respectively two warping functions: the
first one is given by (2.50) and the second one is computed according to the method presented
in this section.

stakes or if the component of interest is not complete, then the filtering can be compromised.
This is the reason why we would like to combine compressive sensing to warping operators to
perform the extraction.

2.2.3 Warping based Compressive sensing algorithm
2.2.3.1 Problem formulation

Let consider the case of a composite discrete signal s (n) defined as follows:
s(n) = sa(n) + sna (n) (2.51)

where s4 (n) stands for the desired signal that should be extracted and s, (n) the undesired
part to remove.

The desired signal is a nonlinear modulation phase signal defined as in (C.22) and (C.23).
The undesired part can be composed of another nonlinear modulation phase signals, as well
as nonstationary or more complex signals. The goal of this section is to extract the desired
signal from the entire observation s (n).

The first step is to change the underlying basis of s (n) in order to turn sg (n) into a single
frequency component using time axis transformation.

Because the unitary equivalence is commutative, (2.51) in the warped domain becomes:
Ws (n) = Wsgq (n) + Wspa (n) (2.52)
where Wsg (n) is a single frequency component:

Wsg (n) = nedn (2.53)
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Figure 2.14: (a) Spectrogram of the studied signal and its IFL estimation. (b) IFL estimate
coordinates used to compute the warping function (c¢) that stationnarizes the signal.

with 1 the amplitude of the sinusoid of frequency A.

According to (2.53), Wsg (n) is assumed to be sparse in the frequency domain. The discrete
Fourier transform (DFT) of Ws (n) is:

WS (k) = WSy (k) + WSha (k) (2.54)

where WS4 (A) # 0 due to the sparsity in the frequency domain of Wsg4 (n). Moreover, it
is possible to consider that some frequency components in WS, (k) can be stronger than
WS4 (A) [SOSA13]:

WSpa (V)] >> [WSa (N)] (2.55)

For illustration purposes, Figure 2.15 presents the Fourier transform of a third degree
monomial phase signal. In the case of additional noise (—15dB in this example), it may be
no longer possible to distinguish the frequency properties of a signal, and thus it is necessary
to employ the time-frequency analysis.

2.2.3.2 L-statistics and TF analysis in warped domain

STFT of Ws (n) using a rectangular window of width M at instant n is:

M—-1
STFT (n,k) = Y _ Ws(n+ p)e/>me/M (2.56)
p=0
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Figure 2.15: (a) Frequency content of a monomial phase signal. (b) Frequency content of the
signal with additional Gaussian noise. (¢) Remaining part after the warping transformation.

Because the undesired and desired frequency components can overlap in time and fre-
quency, it is necessary to separate them. To do so, one possibility is to use the L-statistics
approach [SOSA13, SSA14| to select time-frequency regions of interest.

Indeed, the desired signal is sparse in the Fourier domain, so along a given frequency line,
it is possible to have only undesired components or a mix of desired and undesired compo-
nents. In both cases, the highest values of the spectrogram would correspond to interference
contributions or unwanted components. Another scenario can be considered when WS, 4 (k)
and WSy (k) are of the same order of amplitude, it is known that opposite phases produce
low values at the intersection points. All these informations lead to the assessment that we
need to remove those values from consideration. To do so, data samples are first sorted out
for each frequency. Then, the highest and the smallest values are discarded (i.e. replaced by
a zero value). The procedure is described below.

The L-statistics is applied to STFT (n, k). For each frequency k, the samples are sorted
out:
Ly (p) = sort {STFT (p,k), p=0,1,...M —1} (2.57)

such that |[Ly (0)] < |Lg(1)] < ... < |Lg (M —1)|. The removal operation is then done
by discarding @ highest values and P smallest values of each L. The remaining STFT
values consequently belong to the desired signal and a compressive sensing (CS) reconstruction
algorithm can be used to reconstruct Wsy (n).

2.2.3.3 CS reconstruction algorithm

At instant n, the STFT of signal Ws (n) can also be expressed as follows:

STFT; (n) = Dy Wi (n) (2.58)
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where STFT )/ (n) and Ws (n) are vectors in the form:
STFT), (n) = [STFT (n,0),...,STFT (n, M — 1)]" (2.59)
W; (n) = [Ws (n) ,Ws(n+1),...Ws (n+ M)|" (2.60)
while D,y is the MxM DFT matrix with coefficients:

Dy (’I’)’l, k‘) _ e—j27rmk;/M

As the case of non-overlapping windows is considered, the complete formulation yields to:
STFT = DWjy (2.61)

such that vector STFT is composed of vectors: STFT ), (0), STFT (M), ..., STETy (N — M).
The matrix D is obtained as a Kronecker product:

D =1Iy/m ®Dn

where I/ is the (N/M)x(N/M) identity matrix. The vector W can then be expressed as
the inverse Fourier transform of the DFT vector WS (stands for WS):

W, =D'WS (2.62)
By combining (2.61) and (2.62), a general expression can be obtained:
STFT = Ay WS (2.63)
with Apyrr, = DD

At this point of the study, matrix A pyrr maps the integrality of the TF representation.
By using the L-statitics method [SOSA13]|, it is possible to create a CS mask Acg that will
remove the TF values that do not belong to the desired signal from the spectrogram. We then
dispose of a spectrogram STFTg that has been cleansed of all undesired signals frequency
components. The next step is to reconstruct the desired signal by minimizing the following
problem:

N-1
min || X ||, = min Z | X (k)| subject to (2.64)
k=0

STFTog = Acs X

The reconstructed DFT X is used to obtain Ws (n) which corresponds to Wsg (n) due to
the elimination of all the non desired components. An unwarping process is then applied to
the estimated signal in order to express it in the original temporal domain.

The Warping Based Compressive Sensing algorithm (WBCS) is the result of two contri-
butions: the warping described in the previous section and a compressive sensing method
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introduced by Stankovic et al. [SOSA13|. It permits the detection and extraction of nonlin-
ear modulation phase signals even when they overlap in time and frequency, and also when
parts of them are missing. First, the warping operation enables to express the desired signal
into a pure sinusoid that is sparse in the Fourier domain, then, the CS algorithm removes
all the undesired components. It seems that the desired component could be estimated as
the most important peak in the Fourier transform of the warped signal, but also it can be of
lower energy and hidden among other information. Thus, it is the point where the combined
L-estimation and CS reconstruction provide main contribution.

The complete procedure is finally summarized in Figure 2.16. Next Section is dedicated
to the study of an example.
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Figure 2.16: The steps of the algorithm that performs the nonlinear modulation phase signal
extraction.
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2.2.4 Numerical example
2.2.4.1 Presentation of the example

Let consider a desired signal sq (n) defined for n € {1,..., N}, composed of two nonlinear

modulation phase signals s (n) and sg (n):

sq(n) =s1(n) + s2(n) (2.65)

with:
51 (n) = 2.5 (TO8In(/N+1)2+m50m/N) (2.66)
53 () = 1.9¢9 (900N +27900/) (2.67)

disturbed by nonstationary disturbances composed of short duration modulated signal b (n):

p
bn) =3 Aeivine(nom)’/d: (2.68)
=1

with p the number of corrupting noise components, A; their amplitude, w; their frequency, and
n; and d; their center and variance distributions respectively. A sine modulated component is
also introduced in the desired signal in order to add coherent signal difficult to separate.

Signal-to-noise ratio (SNR) is defined as follows:

N 2
_155(n
SNRyp = 1Olog102§;2d() (2.69)
anl Snd (n)
with s,,4 (n) refering to unwanted signals such as nonstationary disturbances b (n) and coherent
signals that are not nonlinear modulation phase signals.
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ary noise (b). tionary noise (b). The SNR is 1.97 dB.
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Time and frequency domain signals are presented in Figures 2.17 and 2.18. Figure 2.19
presents the spectrogram of the studied signal using a 128 samples length Hamming window
and 127 samples of overlapping. According to Equation 2.69, the signal-to-noise ratio is 1.97
dB. As we can see, the 2 nonlinear modulation phase signals overlap in time and frequency
which makes really difficult the extraction of each component. The goal of this example is to
estimate the 2 signals s1 (n) and sz (n)’s IFL.
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P —— T — e — |
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (s)
Figure 2.19: Spectrogram of the studied signal. The two non-linear modulation phase signals
are mixed with coherent signals and many disturbances.

In this subsection, we propose to compare two techniques to extract the 2 IFLs of interest:
the first one is based on the association of warping operators and band-pass filtering, while
the second approach focuses on the WBCS algorithm.

2.2.4.2 Separation processing based on warping operators and band-pass filtering

One possible and natural approach to perform this task is to estimate the first component,
then remove it from consideration, and again estimate the second component. To estimate
each component, we can stationnarize each components of interest one by one with warping
operators and then extract them with a band-pass filtering.

As it has been stated in Section 2.2.2, to stationnarize a signal, we first need to estimate
correctly some of its IFL’s coordinates. This is performed by an algorithm of phase tracking
developed by [IGSM10] which manages to track the time-frequency component based on their
local continuity. To do so, the signal is divided into intervals in which an estimation of the
local-best matched IFLs is performed. In this example, the algorithm provides a set of 32
coordinates for the IFL which is enough to estimate a warping function that stationnarizes
the component.

Figure 2.20(a) shows the results of the tracking algorithm and the set of IFL coordinates
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Figure 2.20: (a) Spectrogram of the signal and result of the tracking method for the estimation
of the TFL coordinates of the most powerfull signal (b). The associated warping function that
stationnarizes the corresponding component is then estimated in (c).

estimated (b) used to calculate the associated warping function (c). After the warping oper-
ation, the most powerfull component of the signal is expressed as a pure sinusoid mixed with
perturbations in the warped domain. We notice here that even if the IFL traking is subject
to error, it enables to stationarize the component of interest.
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Figure 2.21: (a) Spectrogram of the warped signal. (b) Spectrogram of the filtered warped
signal: the most powerfull component has been removed. (c) Spectrogram of the filtered signal
in the original time domain.

The next step is then to use a band-pass filter to extract the component that has been
stationnarized, perform an inverse time-axis transformation to express the selected component
in the original time domain as §j (n) and finally calculate its IFL. The band-pass filter is a
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300-th order filter that has a bandpass of % centered around the central frequency given
by the maximal peak of frequency of the warped signal’s spectrum. Figure 2.21(a) shows the
spectrogram of the warped signal where the most powerful component is represented by a
sinusoid.
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Figure 2.22: (a) Spetrogram of the filtered signal and result of the tracking method for the
estimation of the IFL coordinates of the second component (b). The associated warping
function that stationnarizes the corresponding component is then estimated in (c).

Afterwards, we still need to estimate the second component. To do so, we perform a notch
filter (with the same parameters used for the band-pass filter) to remove the first component
from the warped signal (Figure 2.21(b)). We can see that the second component is no longer
trackable as the middle part of the time-frequency component is missing from the spectrogram.
At this point of the study, it becomes complicated to estimate the second component of the
signal as a part of it has been removed with the notch filter. The filtered signal is then expressed
in the original time domain with an inverse time-axis transformation: we obtain the original
signal reduced with the first component (Figure 2.21(c)). We then estimate a set of the second
component IFL’s coordinates in order to estimate a warping function that stationnarize it and
perform the associated warping operation (Figure 2.22). The second component is turned into
a single sinusoid with missing values in time-frequency (Figure 2.23). The natural approach is
then to perform a second band-pass filtering to extract the second component, followed by an
inverse time-axis transformation. This is usually where the method becomes limited. Due to
the missing values of the second component, the algorithm fails to extract properly the signal
of interest S (n). This is shown in Figure 2.25 where we can see that the estimated IFL of
S (n) is not the same as the theoretical one.

We have seen in this subsection that the association of warping operators and band-pass
filters was not efficient to separate nonlinear modulation phase signals that overlap in time
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Figure 2.23: Spectrogram of the second component after the warping process.

and frequency. This is the reason why we need to use a compressive sensing approach to
reconstruct the two signals of interest.

2.2.4.3 Separation processing using the WBCS algorithm

In this subsection, we focus on the recovery of the second component after the first component
filtering performed in the previous subsection. Due to its missing values, the signal is a good
candidate to the warped-based compressive sensing algorithm.
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Figure 2.24: (a) STFT of the warped signal, the sorted values for each frequency of the STFT
(b) and the CS STFT remaining after the L-statistics process (c).
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Figure 2.25: IFL estimates of s; (n) and s3 (n) calculated from the original signals, and the
extracted signals obtained with the warping and WBCS algorithms.

We first start from the linearization of the second component presented in the previous
subsection (Figure 2.22). The STFT of the warped signal is then performed using a 32
samples rectangular window with no overlapping (Figure 2.24(a)). For each frequency, the
STFT values are sorted out (Figure 2.24(b)) and according to the L-statistics process, 50%
of the largest values are removed along with 8% of the smallest values. The CS spectrogram
values that remain after the L-statistics removal are shown in Figure 2.24(c). A reconstruction
algorithm is then applied to the CS STFT which permits to reconstruct the sinusoid of interest.
Subsequently, an inverse time-axis transformation is performed to recontruct the nonlinear
modulation phase signal $3 (n) in the original time domain.

Figure 2.25 shows the IFL of §3 (n) obtained with the WBCS algorithm. As we can see,
the result is better than the one obtained with the traditional band-pass filtering and enables
to reconstruct the signal of interest even if a part is missing.

2.2.4.4 Comparative results

Next step is then to compare the results obtained with the two described techniques. We
evaluate the mean square error (MSE) between the estimated IFLs and the theoretical ones.
But first, we define the MSE as follows:

N
1 \2
MSE = gl Yk — Gi) (2.70)

where y;, stands for the known IFL and g, for its estimate.
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s1(n) s2 (n) s2 (n)
with warping | with warping | with WBCS
MSE (Hz) 0.3529 100.2504 3.5276

Table 2.2: MSE results of the IFL estimates obtained with the WBCS algorithm.

Table 2.2 presents the MSE of the 3 reconstructed signals: §1 (n) and $3 (n) obtained with
the warping and the band-pass filtering, and $3 (n) obtained with the WBCS algorithm. We
can see that this last algorithm perfoms much better than the traditional one when it comes
to estimate the second component as it enables to overcome the limitation introduced by the
missing values of the signal.

2.2.5 Summary

This section proposed a new approach for nonlinear frequency extraction that enables to
overcome the limitation when parts of the signals are missing. It takes advantages of a warping
transformation that turns the desired signal into a sinusoid and the L-statistics that permits
to select time-frequency regions of interest. Then, a CS reconstruction algorithm is used to
regenerate the signal in the warped domain. Finally, a second time axis transformation is
performed to express the reconstructed warped signal in the original time domain.

This work has been realised in contribution with University of Montenegro and supported
by the Montenegrin Ministry of Science, project grant "New ICT Compressive sensing based
trends applied to: multimedia, biomedicine and communications"” (ACRONYM: CS-ICT).
During this project, I visited the University of Montenegro in November 2013 for a period of
ten days. Our collaboration led to the publication of a journal paper and a conference paper:

C. Bernard, I. Orovic, C. Ioana. and S. Stankovié¢. Compressive sensing based separation
of nonlinear modulation phase signals. IEEE Transactions on Signal Processing, under review.

C. Bernard, C. Ioana., I. Orovic and S. Stankovi¢. Analysis of underwater signals with
nonlinear time-frequency structures using warping-based compressive sensing algorithm. IEEE
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In Chapter 1, we introduced some general topics where the transient signal characterization
is a challenging task. The phase diagram analysis is a potential class of techniques that can
offer interesting information regarding the signal shapes. However, we have seen that the
parameter setting (i.e. m and 7 chosing) in the RPA is not an easy task. The choice of
this parameter set is actually a current interesting field in RPA domain, this is the reason
why we decided to develop the concept of multi-lag phase diagram analysis (MLPDA) to take
into account all the information that could be extracted from each representation. This new
concept is then successfuly applied to solve the general problem of exploring transient signals.
We mention here that we concentrate on phase diagram that is a more general representation
domain than the RPA.

3.1 Mathematical properties of lag diversity in phase diagram

In this chapter, in order to illustrate the concept of multi-lag PDA, we consider a signal
modeled as a modulated cosine s (n) defined for n € {1,..., N} such as:

s(n) = { cos 2rfon)w (n) if n € [ng,ng+ Al (3.1)

0 otherwise

47
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with w (n) a modulating window (such as a Hanning window), fo the central frequency of the
modulation (we consider fy = 3 in our examples), ng the beginning of the transient and A
the transient duration.

Phase space diagram analysis of signal s (n), using the embedding dimension m and lag 7,
corresponds to a representation 7' that is defined as follows:

T: RVxNxN — My_(m_1)rm (R)

(s,7.m) > Tor (5) (3:2)
where:
s (1) s(I+(—-1)7) s(l+(m—-1)7)
5(2) s@2+(G—-1)7) s(2+(m—-1)7)
Tonir () = 5 (i) s(i+G—1)7) s(i+(m—1)7)
S(N—(’r.n—l)T) oo S(IN=(m-D714+0G-1)71) ... s(N)
(3.3)
which can be summarized by:
T (s) = {tivj}i={1,2...,Nf(mfl)T},jz{l,Q,...,m} (3.4)
with:
ti,j :S(i+(j—1)7) (35)

Each row of the T" matrix corresponds to a phase space vector defined as in Equation 1.16.
Each column corresponds to the coordinates of one axis of the phase space.

Let us now investigate the properties of this representation to the time-shift operator, the
scale operator and amplitudes changes. We define three signals s (n), s2 (n) and s3 (n) such
as:

s2 (n) = s (an)

sz (n) = Bs(n)

with ¢ the time-shift delay, @ € R the dilation coefficient and 3 an amplitude modification
coefficient. We propose to illustrate the different properties with equations and numerical
examples that are shown in Figure 3.1. The numerical examples are computed with the
following parameters: § = 55, « =2 and 8 = 1.5.
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Figure 3.1: Temporal data of: (a) s(n), (b) s1(n), (¢) s2(n) and (d) s3(n)

Investigation of the time-shift invariance property

We can start by considering the phase space vector of s1 (n) at instant n and the relation
given by 3.6. We have:

[si(n),si(n+7),....s1(n+(m—=1)7)] = [s(n+0),s(m+0+7),....,s(n+0+ (m—1)7)]
[s(ng)s(no+7),...,s(ng+ (m—1)7)]

(3.9)
This result states that even if two identical signals are time-shifted, their phase space
diagrams are invariant. Mathematically speaking, it means that the rows of T), - (s1) are
the same as T}, ; (s)’s but they suffered the circular permutation and are shifted compared
to T~ (s). This property is illustrated by Figure 3.2 where we can see that for m = 2 and
7 = 8 the phase space diagrams of the two signals are exactly the same despite the time-ghift
between the signals.

Investigation of the time-scaling property

We now consider s1 (n)’s phase space vector at instant n and the relation given by 3.7. We
have:

[s2(n),so(n+7),....,895(n+(m—1)7)] = [s(an+ng),...,s(a(n+ (m—1)7)+ ng)]

[s(n1),s(n1+ar),...,s(n1+ (m—1)ar)]
= [s(n1),s(ni+70),...,s(n1+ (m—1)70)]

(3.10)

This result states that for a given m there exists many sets of lags [r, ar| that enable

an invariance of phase space diagrams. It means that it is possible to identify two signals
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X(n+1)
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Figure 3.2: (a) T4 (s) and (b) T4 (s1) phase space diagrams. The trajectories are the same
despite the time-shift.

that are related by a dilation. Figure 3.3 presents the phase space diagrams of s (n) and s; (n)
for two differents sets of lags: [4,4] and [4,8]. For the first set, the two diagrams do not
overlap, whereas the second set enables a perfect superposition of the two diagrams.

1 @ 1 (b)

x(n+T1)
x(n+T1)

_T2’4(s)
x T218(sz)

0.5

x(n)

x(n)

Figure 3.3: Phase space diagrams of s(n) and s2 (n) for m = 2 and different sets of lags: (a)

[4,4] and (b) [4,8]. The dilation connection between the two signals can be enlightened by
using the appropriate set of lags.

Investigation of the amplitude coefficient modification

Finally, we consider s3 (n)’s phase space vector at instant n and the relation given by 3.8. We
have:

[s3(n),s3(n+7),....,s3(n+(m—=1)7)] = [Bs(n),Bs(n+7),....085(n+(m—1)7)]
= Bls(n),s(n+7),...,s(n+ (m—1)7)]
(3.11)

which can be summarized by:
T, (53) = BT,z (s) (3.12)

This result shows that the amplitude change is equivalent, in the phase space diagram
representation, with a shape-invariant scale transformation. This is illustrated by
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Figure 3.4.
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Figure 3.4: T5 4 (s3) and Th 4 (s) phase space diagrams. They are related by a shape-invariant
scale transformation.

3.2 Multi-lag phase diagram analysis

The previous section has shown that phase diagram representations can potentially be in-
variant to the main transforms of signals such as: time-shift, time-scale changes, amplitude
modification, etc... The key point of the multi-lag based representation is that the invariance
can be controlled by the lag choice, which makes possible a better exploration of the anayzed
signals.

In this section, we propose different methods to extract parsimonious parameters from
each diagram acquired for a given lag. The evolution of these parameters with respect to the
lags is then explored conducting to new representation tools for transients.

In this section, we restrained ourselves to m = 2 in order to visualize the results but the
work can be extended to higher embedding dimension. We also note y (n) for  (n+ 7) in
order to simplify the notations.

3.2.1 Ellipse modeling

Generally, signals can have various trajectories with different shapes, but in this subsection,
we propose a general model for approximation of trajectories based on ellipse shape
(Figure 3.5). This choice is quite natural since the ellipse model is specific to harmonic
signals. Therefore, the model is simple and enables to extract three parameters per phase
space diagrams:
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y(n)=x(n+r)

z(n)

Figure 3.5: Ellipse modeling: major and minor axis are determined by an SVD on phase space
diagram, and a least square fitting method is used to calculate a and b.

e the polar angle 0 of the ellipse assuming that € is the angle between the first axis and
the major semi-axis

e the major semi-axis a

e the minor semi-axis b

We assume the center of the ellipse being the center of phase space diagrams as transients can
be considered as zero-mean signals.

The first step consists in performing a singular value decomposition (SVD) of the phase
space diagram to calculate its eigenvectors. Those are of great interest as they define a new
basis that reflects the distribution of the data and also correspond to the major and minor
axis of the ellipse model. Then, a least squares fitting method is performed to determine the
ellipse that satisfy the following equation in the new basis defined by the eigenvectors:

Az’ + By =1 (3.13)
where the semi-major and semi-minor axis are given by:

a = 1/VA
E_—

Details on the method are provided in Appendix A.

(3.14)

At this point of the study, each diagram is modeled by an ellipse with these three param-
eters [a, b, 0]. The evolution of € enables to estimate an apparent periodicity of the transient,
while the evolution of @ and b enables to know how the data is distributed in the phase space.
If they are scattered over a large area, it means that the lag used to construct the representa-
tion is not representative of the transient contruction. On the other hand, if they are rather
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Figure 3.6: Temporal signals studied in this section and its wavelet transforms using the
Daubechies mother wavelet.

confined into a smaller area, it means that the lag is representative and is well adapted to the
study of this transient.

In order to illustrate the method, let consider three signals s1 (n), s2 (n) and s3 (n) that are
modulated cosines. s; (n) and s2 (n) are related by a time-scale transformation while s3 (n) is
the result of a 10-th low-pass FIR digital filtering applied on s; (n) with the normalized cutoff
frequency of 0.1. Temporal signals are shown in Figure 3.6. At first look, it is quite difficult to
tell appart s; (n) from s3 (n) and a time-scale analysis would not do better as their frequency
content are really close (Figure 3.6).

For the three signals and 7 € {1,...,30}, we model each phase diagram by an ellipse
and record the variation of a, b and 6 with respect to the lags. As we can see in Figures 3.7
and 3.8, the 3 parameters present an apparent periodicity that are related to the apparent
periodicities of the signals. We call apparent periodicity the number of samples between two
successive zero-crossing. As an example, the number of lags between two successive maxima
of 0 is equal to 13 for s (n), 23 for sy (n) and 12 for s3(n), while the apparent periodicity
is of 12.5 samples for sq (n), 22.25 for s (n) and 11.75 for s3 (n) which is coherent with the
previous values.

The periodicity of a and b corresponds to the half period of the signals (Figure 3.8). Their
maximal values correspond to phase diagrams that can be modeled by circles (same value for
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Figure 3.7: Evolution of # with respect of 7 Figure 3.8: Evolution of a (continuous line)
for the three studied signals. and b (dashed line) with respect of 7 for the
3 studied signals.

both parameters), meaning that the phase diagrams are more scattered in the phase space.
This can be seen in Figure 3.9 where we plotted s; (n)’s phase diagrams for m = 2 and
7 ={3,6}. For 7 = 3 that enables to obtain a maximal value for b, the phase diagram can be
modeled by a circle and is well distributed in the space, while for 7 = 6, the phase diagram is
concentrated into a smaller area.

We have seen that with the ellipse modeling it was posssible to summarize each represen-
tation by only three parameters and estimate the apparent frequency of a transient. We can
also explore the distribution of the diagram in the phase space which is of great interest as it
enables to highlight the lags that provide a great concentration of the data or on the contrary
a dispersal.

3.2.2 Trend modeling

In the previous subsection, we have seen that phase diagrams were more or less concentrated
around a line that tends to rotate around the origin of the phase space (due to the zero-mean
of the modeled signals). This is why, we want to model this line as a third degree polynomial
(Figure 3.10) in order to quantify the rotation and the natural trend of the diagram. The
model is defined as follows:

y=az> + b’ +cr+d (3.15)

To do so, we consider the diagram as a scatterplot and perform a least square fitting estimation
by minimizing the following sum:

Argmin Z (s (i+71)— (633 (i) + bs® (i) + @5 (i) + 3)) (3.16)
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where s (i) corresponds to the analyzed signal for i € {1,...,N}; N being the number of
samples.

Therefore, for each representation, phase diagrams are summarized by four parameters
{EZT, br,Cr, dT} that vary with respect to 7. As studied signals can always be considered as

zeros mean, we can remove from consideration d: this parameter will always be equal to zero.
Thus, three parameters remain: a, band @ They enable to discriminate transients by looking
at their evolutions with respect to 7 and they also permit to highlight similitudes by looking
at one parameter with respect to another. This last representation allows to get rid of the
evolution of 7 and investigate if whether or not the diagrams have similar trends for different
lags: this can reflect a time-scaling operation.

To illustrate the concept of trend modeling, we consider the three signals that were intro-
duced in the previous subsection. For all of them and 7 = {1,...,30}, we model each phase
diagram’s trend by a third degree polynomial and record the variations of the four parameters
with respect to the lag. As we can see in Figure 3.11, it is quite easy to discriminate between
s1(n) and s3(n) by looking at the evolution of the parameters of interest. The apparent
periodicity of the parameters corresponds to the apparent periodicity of the signals. As an
example, the number of lags between two successive maxima of ¢ is equal to 12 for s; (n), 22
for s9 (n) and 11 for s3 (n), while the apparent periodicity is of 12.5 samples for s1 (n), 22.25
for s5 (n) and 11.75 for s3 (n) which is coherent with the theoretical values. We can also notice
that the evolution of d’s is very small (below 0.0001), as well as for the evolution of parameter
b. This is why we remove this last parameter from consideration as well.

Figure 3.12 presents the evolution of ¢ with respect to the evolution of a. This represen-
tation is interesting as we get rid of the evolution of 7. It enables to highlight signals that
would have the same phase diagram’s trends for different values of lags. This is the case for
s1(n) and sy (n) where the evolution of [a,¢] for both signals overlap in the representation.
This is coherent as the two signals are related by a time-scale operator. As s; (n) and s3 (n)
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Figure 3.10: Phase diagram’s trend is modeled by a third degree polynomial.
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Figure 3.11: Evolution of (a) a,(b) 3,(c) ¢ and (d) d with respect of 7.

are related by a low-pass filtering, we can see that even if their representations are similar,
they do not overlap. This shows the complexity introduced by the filtering.

The modeling of phase diagrams’s trend by a third degree polynomial is of great interest
as it enables to detect if transients are related by a time-scale transformation. However, at
this point of the study, there is no method that tells us what couples of lags we should use to
highlight this transformation. This is why we moved torward a matching phase diagram
technique that is presented in the next subsection.
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Figure 3.12: Evolution of ¢ with respect to a for the 3 studied signals.

3.2.3 Extremum points / bounding box

Generally, when we talk about SNR for transient analysis, we only consider signal and noise
over the duration of the transient. When it comes to noise in phase diagram, we can see in
Figure 3.13 that the external contour remains more or less the same depending on the level
of noise considered. This is the reason why we focus on the bounding box of the trajectory
that is delimited by the maximal and minimal values of the studied signal.

We thus define 4 remarkables coordinates defined as follows and illustrated in Figure 3.14:

4 { Vn, x(ni) = maz (z (n))

y (n1) 340

B {xm” (3.18)

vn, y(ng) = max (y(n))

o { Vn, x(n3) = mT%n (x(n)) (3.19)

y (n3)

p. | zna) (3.20)

) Yn y(n) = min (y () -

In order to compare two transient signals analysis, we consider the signals’ phase space

diagrams for different values of lag |11, TZ»i]ie[l,...,Tnm] and we look for their extremum points

[Ak.is B is Chi, Di i
follows:

e1.9° Then, we compute 4 matrices Hy, Hg, Ho and Hp defined as

Hx = {thiJ}i,je[l,...,‘rmaz] (3.21)
={D (XM,XQJ)} (3.22)
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Figure 3.13: Noisy transients and their respective phase diagrams for different level of noise.
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Figure 3.14: Bounding box that confines transient trajectories are delimited by the maximal
and minimal values of transients.

where D describes a given metric and X the extremum point taken into consideration.

Each matrix provides a "map" of the distances between the extremum points of each phase
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space diagrams calculated for different values of lags. Therefore, it enables to discover which
couples of lags [1, 2] need to be used to provide a match between two extremum points.

s,(n)
s,(n)

amplitude
|

. . . . . . . f . o
50 100 150 200 250 300 350 400 450 500
samples

Figure 3.15: Temporal data of the studied signals

In order to illustrate this concept, let consider two transients related by a time-scale
transformation with the dilation coefficient o« = 3. Temporal data presented in Figure 3.15
shows that s2 (n) (in red) is only dilated compared to s; (n) (in black) and does not suffer
amplitude changes. In this part, the purpose is to highlight the time-scale relation between
these signals.

We first calculate the 4 matrices described previously using the Euclidean norm Dy defined
as follows:
Dy () = [| X1 — Xa

» (3.23)

Those 4 matrices are displayed in Figure 3.16 with the same colorbar. In this example, we
can see that the error is always really small for the extremum point B contrary to the other
points. Nevertheless, they all have in common a ’line’ representing the set of lags where the
error is minimum. Those ’lines’ are shown in Figure 3.17 and we can notice that they overlap.
They describe the sets of lags [r1, 73] to use that would guaranty a match of the 4 extremum
points for the two signals. Thus, we can deduce a relationship between the sets of lags by
performing a linear regression. We obtain that:

T9 = 3’7’1 (324)
which is consistent with the dilation coefficient.

To validate this result, we draw s; (n) and s9 (n)’s phase space diagrams by using the set
of lags [11 = 3, = 9] (Figure 3.18). As a matter of fact both phase space diagrams overlap
perfectly.

This technique allows to highlight time-scale transformations. However, even if this tech-
nique enables to match extremum points having the same coordinates for certain couples of
lags, we need to keep in mind that trajectories can still be different as the other coordinates
are not considered. This is why it is interesting to monitor the area covered by the trajectory
in the phase space which is the subject of the next subsection.



60 Chapter 3. Phase diagram-based transient signal analysis

@

(b)

Figure 3.16: The four matrices displaying the distance between extremum points of s; (n) and
s2 (n)’s phase space diagrams for different values of lags 7 and m: (a) Ha, (b) Hp, (¢) Heo

and (d) Hp.
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3.2.4 Area calculation
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Figure 3.18: Phase space diagrams of T5 5 ()
and Ty 4 (s1) respectively in black and red.

Previous subsection has shown that it was possible to define four reference coordinates for each
phase space diagrams that allow to find matching correspondances, however, it is not enough
to guaranty the invariance. The next idea consists in calculating the area of the diagram to
quantify the surface. To do so, the diagram is considered as a curve having at each instant n
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polar coordinates [pr, (n), 6., (n)]. We then calculate the area A[s, 7i| covered by the phase
space diagram calculated for 7 = 7:

0ry, (N) )
Als, 7] = /9 P2 (n) ds, ()]

7 (1)

(3.25)

We also define the matrix A [s1, s2]| defined as follows that enables to calculate the distance
bewteen two signals s; and sa’s phase space diagram areas computed for different sets of lags
[T1, T2

(3.26)
(3.27)

Alsy,s2] = {aiyj}i,je[l,.‘.,’rmaz]
= {[Als1, 7] = Als2, 75][}
It permits to find the sets of lags that offer similar areas for two phase space diagrams.

This analysis can be complementary to the bounding box method to highlight time-scale
transformation for instance.

6 —A[SI,T] F L6

—Als, 1] 1 F H14

1 F di2

Figure 3.19: Evolution of the two signals ’s  Figure 3.20: The matrix A [s1, s2] denables to

area according to the lag used to compute
their phase space trajectories.

calculate the distance bewteen two signals s;
and so’s phase space diagram areas computed

for different sets of lags [, 72].

In order to illustrate this concept, let consider the example presented previously that only
presents a time-scale transformation. We first compute the area for s; (n) and sg (n) using
7=1,...,50. The evolution of the area according to the lag is displayed for both signals in
Figure 3.19. As we can see, A [s1, 7] presents a clear maxima for 7 = 17, while A [sy, 7] does
not have one. A maxima notifies a change on phase space diagrams that can as an example
change its first eigenvector.

The computation of matrix A [s1, s2] provides the sets of lags that offer matching areas.
They are highlighted by a black dashed line in Figure 3.20. For 7 = 1,...,17, we can see
that this line is also a straight line that verifies the following equation:

T9 = 37’1 (328)
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This relationship confirms the dilation coefficient that has been used for the signals simulation.

This method is really usefull when coupled with the bounding box method. They enables
to highlight time-scale transformations between signals. This will be illustrated in more details
in the Chapter devoted to the applications.

3.2.5 Polar coordinates analysis
General presentation

We have shown in Section 3.1 that amplitude changes can be enlightened from phase space
diagrams. Indeed there exists a scale factor between two signals having an amplitude rela-
tionship. To highlight it, phase diagrams are turned into polar coordinates as shown in Figure
3.21. The assessment is that for a given polar angle, radius are directly connected by the
amplitude coefficient.

y(n)
N
0 (n)
5 x (n)

Figure 3.21: Trajectory expressed in polar coordinate system. Each coordinates is represented
by a radius and a polar angle.

Let consider s; (n) defined as in Equation C.26 and sz (n) defined as follows:

s9 (n) = ;51 (an) (3.29)

with a = 2 and 8 = 1.4, as an example. That is, s is derived from s; by a double scale and
amplitude modification.

Figure 3.15 and Figure 3.22 present temporal data and phase diagrams obtained for m = 2
and respectively 7 = 8 and 7 = 16. Using this set of parameters, we know that the phase
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Figure 3.22: Phase space diagrams of T2 (s) and T5 4 (s1) respectively in black and red

diagrams would be superposed if the signals’s amplitudes were identical. However due to this

difference they present a shape-invariant scale transformation.

We turn the cartesian coordinates into polar coordinates and draw the functions p (n)
f(0(n)) for the two signals that are shown in Figure 3.23. As we can see, both curves are
similar and it is easy to imagine a linear relationship between them. However, for a given
polar angle, there is not always a correspondance between the two curves (Figure 3.24). This
is the reason why we propose an algorithm to match corresponding coordinates with respect

to polar angles.
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and Tb 4 (s1) respectively in black and red
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Algorithm description:

For each polar angle 6 (n) of the first curve, the algorithm searches for the corresponding
polar angle on the second curve 03 (n). A match is enlightened if the two conditions are met:

{ Oz (n1) = argminl|6y (ng) — 02 (n)] (3.30)

02(711) < €

where ng is the index of 6; (n) we are looking for, n; is the corresponding index for 6, (n) and
€ a threshold error that enables to discard certain associations that are not consistent.

The algorithm selects M pairs of coordinates and calculates a ratio r (i) defined for i €
{1,..., M} such as:

r(i) =" (ro,) (3.31)

Figure 3.25 presents the pairs of coordinates that have been selected by the algorithm and
the associated ratio. In this example, we can see that the ratio is consistent along the entire
polar angles interval which corroborates the idea of a shape-invariant scale transformation.
Moreover, the ratio is here equal to 1.4 which is the value of 5.
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Figure 3.25: (a) Pairs of coordinates that have been selected by the algorithm to calculate the
amplitude modification known as r (n) (b)

We have seen in this example that it was possible to estimate a shape-invariant scale
transformation. The same work can be done along an interval of polar angles that would
highligh amplitudes changes on this interval.
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Application to linear modification changes

However, amplitude changes are not uniform in real world and are most of the time more
complex. We propose to analyze amplitude changes that can be modeled by a linear function
a(n). To do so, we consider two signals x (n) and y (n) defined as follows:

y(n)=a(n)z(n) (3.32)
We then develop y (n)’s phase space vector at instant n:

[y(n),y(n+7)] = [a(n)z(n),a(n+7)z(n+71)] (3.33)

At this point, no relationship can be extracted from this equation. We need to know more
about the linear function « (n) to continue. This is why we focus on the following linear
function:

a(n)=pn+~y (3.34)
with 3, € R?. Besides, we note:

X(n) = [z(n),z(n+7)
L) = B et (33
We then continue to develop Equation 3.33:
Y (n)=a(n)X (n)+[0,8rx (n+7)] (3.36)

Typically, it means that the relationship is conserved but a linear error depending on the
studied signal x (n), 7 and 8 appears on the second axis. This error evolves between 57 min (x)
and 7 max (x), and is illustrated in Figure 3.26.

x(n+T)
Y (n)
//Iﬁrz (n+7)
/.a (n) X (n)

/,/:\//’ X (n)

e 0 (n)

2% b0y (n

- i () z(n)

-710

Figure 3.26: Linear error created by a linear amplitude change on 2 signals.

It is quite obvious that the last algorithm cannot be carried out for such signals which
leads to the development of another approach. By using the polar coordinates system, the
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relationship can be expressed as follows:

X (n) = po(n)exp(6y(n))
{Y(n) = p(n)exp (6 (n)) (3.37)

with 6y (n) and 6 (n) the two given polar angles, and the two radius: pg(n) and p(n). As
shown in Figure 3.26, the polar angles are different.

To illustrate the scenario with an example, we consider two signals presented in Figure
3.27 linked by the black dashed line shown in the same picture. As we can see, the two signals’
amplitudes are different, but they do not present a time-scale transformation. We compute
their phase diagrams for m = 2 and 7 = 10, and focus on a particular instant ng. Figure
3.28 zooms in this particular instant for both signals and we can see that the polar angles are
different as predicted by Equation 3.37.

amplitude

I I I I I I . I I I
50 100 150 200 250 300 350 400 450 500
samples

Figure 3.27: Temporal signals whose amplitudes are linked by the dashed black line.
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Figure 3.28: Trajectories obtained for m = 2 and 7 = 10 and zoom in on a particular phase
diagram’s coordinates that shows the error created by the linear amplitude modification that
connects the two studied signals.
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Conclusion

We have seen in this subsection that it was easy to highlight shape-invariant scale transfor-
mation by looking at the polar coordinates of phase space diagrams. This result can also be
extended to reveal amplitude relationships between parts of signals, which is of great interest
if the transformation is more complex. However, when dealing with linear amplitude changes,
more work need to be done as phase space diagrams connection are more complicated.

Future work will investigate the effects of linear and nonlinear amplitude transformation
in phase diagrams in order to detect more complicated relationships.

3.3 Summary

In this Chapter, we have shown in a first part that transients that were connected by time-
shifted operator, time-scaling operator and amplitude modification, have invariant (or shape-
scaling invariant) phase diagrams if the lags were chosen wisely. We then proposed different
methods to extract parsimonious parameters from each representation and combine all of them
to highlight the named properties. So far, the methods provided good results for numerical
examples and more details are provided in Chapter 4 in the case of real-life data.

Future axis of research can propose to extend this work to higher embedding dimensions.
One possible idea could be to apply the same methods to the projections of phase diagrams
onto the different planes of the phase space. Extra work also need to be done to explore linear
and nonlinear amplitude modifications.

This work has been published at the EUSIPCO conference in 2014, a report has been
performed for EDF R& D and the writting of a regular paper is also planed before the end of
the PhD.
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Results in applicative contexts
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This chapter presents some applications that show the potential of the proposed approaches
to some real-life contexts. We first consider the context of ECG segmentation based on PDA.
Then, we propose to characterize electrical transient with multi-lag tools developed in Chapter
3. We also extract characteristics from pressure signals in a passive acoustic configuration

and finally, in the last section, we propose to investigate the scenario of active acoustic in

underwater configuration.
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4.1 ECG segmentation

4.1.1 Introduction

Electrocardiography is the recording of the electrical activity of the heart over a period of
time using electrodes placed on a patient chest. These electrodes detect the tiny electrical
changes on the skin that arise from the heart muscle depolarizing during each heartbeat. A
healthy heart has an orderly progression of depolarization that starts with pacemaker cells in
the sinoatrial node, spreads out through the atrium, passes through the atrioventricular node
and then spreads throughout the ventricles. This orderly pattern of depolarization gives rise
to the characteristic electrocardiogram (ECG) tracing that reflects the cardiac cycle.

The cardiac cycle (Figure 4.1') refers to a complete heartbeat from its generation to
the beginning of the next beat, and so includes the diastole, the systole, and the intervening
pause. Each beat of the heart involves five major stages. The first two stages, often considered
together as the "ventricular filling" stage, involve the movement of blood from the atria into
the ventricles. The next three stages involve the movement of blood from the ventricles to
the pulmonary artery (in the case of the right ventricle) and the aorta (in the case of the left
ventricle).
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right atrium
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In the right veniricle

The cardiac cycle

o - T 3-Venous blood is sent
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o the left atrium

Figure 4.1: Description of the cardiac cycle
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The frequency of the cardiac cycle is described by the heart rate, which is typically ex-
pressed as beats per minute. An ECG can be used to measure the rate and rhythm of heart-
beats, the size and position of the heart chambers, the presence of any damage to the heart
muscle cells or conduction system, the effects of cardiac drugs, and the function of implanted
pacemakers.

From one patient to another, heartbeat rhythms and features can be different but are
nevertheless always characterized by three well-known waves: a P-wave (atrial depolarization),
a QRS-complex (ventricular depolarization) and a T-wave (ventricular repolarization) (Figure
4.2). As changes in time-series can reveal heart disease, it is important to identify the different
features and extract time-domain characteristics.
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Figure 4.2: A classical heartbeat is composed of three main waves such as P, QRS-complex
and T-waves. They are of great interest in cardiac diagnosis.

Many methods have been designed over the past two decades to provide an automatic
segmentation of ECG time-series. To identify the different waves, some tried to perform a
waveform analysis [dICR03, dCOR04], essentially based on wavelet transforms [MCOS07| and
hidden Markov models [LBBC01, GB03, AaDB06, AaB07|. Some tried different approaches by
using dynamic time warping [VVV98], the signal decomposition over Hermitian basis functions
[AKSAO7] or a Bayesian approach [SS09]. However, due to the methodological limitations and
the characteristics of nonstationary and nonlinearity of ECG signals, there is no standardized
approach for segmenting ECG signals, although, all those techniques mentioned above are
practical.

In this Section, we propose a new framework to study ECG time-series that provides a
good segmentation and is based on RPA. This work has been conducted during a four-month
stay at Ryerson university (Toronto, Canada) under the supervision of Dr. Sridhar Krishnan
and Dr. Muhammad Hasan.
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4.1.2 Methodology

The proposed segmentation algorithm is divided into three major steps: the pre-processing,
the detection algorithm and finally the post-processing. Those three parts are developed in
the next subsections.

Pre-processing

The pre-processing step consists of a low-pass filtering followed by a median filtering. The
first filtering is applied to remove the fast variations of the signal that are due to noise. The
second filtering is used to estimate and then remove the continuous component of the signal
that corresponds to a possible variation of the signal baseline. An important variation of the
baseline can be a problem as the detection algorithm takes into consideration the extremum
values of the time-series. Figure 4.3 shows an ECG time-series having an important variation
of its baseline. This one is estimated with the median filtering and then removed from the
original signal in order to obtain the filtered signal sz (n).

T
1500 —ECG u
baseline
1000 -
()
E
£ 500( B
g - M‘J\\ A
© ° 2N s M‘ /W' A‘T M\ ,//\’:
.y w*\. o ]"v N \//\, //\'v
500 A 1
L L L L L L L L
1000 2000 3000 4000 5000 6000 7000 8000 9000
samples
filtered ECG
1000
Q
e}
2
S 500F
IS
@
0
| |

, , , , , ,
1000 2000 3000 4000 5000 6000 7000 8000 9000
samples

Figure 4.3: (a) Original ECG time-series having an important variation of its baseline (in
orange). (b) Filtered ECG time-series.

Detection algorithm

The detection algorithm is based on the spatial-embedding process that enables us to express
parts of the signal s (n) defined for n € {1,..., N} as vectors. At instant n, those are defined
as follows:

op s, K,m)=[s(n),s(n+ K),...,s(n+ (m—1)K)] (4.1)

with m the embedding dimension (the vector dimension) and K the integer decimation factor.
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As an example, at instant ng, the algorithm only considers s (n) samples for n € [ng,ng + (m — 1) K|,
and then keeps every K samples.

First, let define the following three parameters:

e A,.. the maximum amplitude of the studied time-series.

e a(n) the maximum amplitude between two successive vectors defined as:

a (n) = mazx (vn11 [s, K, m]) — min (0] [s, K, m)) (4.2)
e r € [0,1] a ratio

The method is designed to detect sudden changes in amplitude in the time-series. By
sudden, we refer to a difference of amplitude between two successive vectors that is bigger than
a data-related threshold rA;,., that can be chosen by the user. Therefore, at each instant n,
a detection is enlightened if the maximum amplitude between two successive vectors a (n) is
bigger than rA,,q.;. The result of the detection is then stored in a binary vector D defined as:

1 if a(n)>rdmne

4.
0 otherwise (4.3)

D@):{

where, 1 stands for a detection and 0 for the opposite.

In the case of ECG time series, the method is not good enough to detect all the different
waves of the heartbeat at once because their shapes and duration are quite different: QRS-
complex are short and very sharp, while P and T-waves have a longer duration and their slope
are more gentle. Thus, the algorithm is used twice, both using K = 1, because, undersampling
is not necessary in this scenario. It is first applied to the filtered signal sz;;; (n) to detect the
sharp and fast QRS-complex peaks by using a small value of m. Figure 4.4 presents the first
results obtained for the QRS complex. As we can see in Figure 4.4(b) and (c), QRS-complex
are not the only peaks that are detected; there are also over and under detections that need
to be taken care of. Therefore, a closing procedure has been elaborated that first merges
detections that are separated by less than Ny; samples, and then removes detections that are
smaller than N.,. Figure 4.4(d) shows the final detection obtained with the closing procedure.
The binary detection result is stored in D;.

Then, because QRS-complex amplitudes are more important than the other P and T-waves
that need to be segmented, they need to be removed from the current time-series. Hence, Dy
is divided into segments corresponding to the continuous detections and for each of them, the
corresponding time-series samples are replaced by a data-related constant value depending on
the minimum and maximum signal values. The new time-serie obtained is sy,0q (n) and is
represented in Figure 4.5.

Afterwards, the algorithm is used a second time on the new time-serie to obtain the binary
vector Ds that detects P and T-waves. Due to their longer durations, the paramater m need
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Figure 4.4: (a) ECG time series, (b) First detection obtained in red with the classical method,
(c) zoom in a part of the time series, (d) Final detection after the closing procedure.

to be larger. Subsequently, a post-processing algorithm has been carried out to surpervise the
final results which is elaborated in the following subsection.

Parameters m and K are chosen by trials and error. More work is needed to automatize
the process, which is one of the perspectives in this domain.

Post-processing

As the first detection D usually provides really good results, the binary vector is considered
as a reference for the post-processing algorithm. Generally, between two QRS-complex, there
are always a single P and T-waves. Therefore, between two successive D; positive detections,
we should only have two intervals of Dy detection corresponding to those waves. Thus, we then
define windows of length L (k) defined as the intervals between two succesive D; detections,
that we divide into two equal parts: the left and right. For each half interval, two criteria are
needed to validate the detection:

— only one interval of detection is allowed (corresponding to a P or a T-wave),

— the absolute maximum value has to be part of the detection segment.
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Figure 4.5: (a)Superposition of the ECG time series and the QRS detection Dy, (b) Superpo-
sition of S04 (n) and the QRS detection D;.

This separation into two equal segments has been done in an empirical manner. Figure
4.6 shows the results of a good segmentation on two successive heartbeats and the intervals
considered for the post-processing program.
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Figure 4.6: An interval between two successive QRS-complex. Two parts are identified and
used independently by the post processing algorithm.

In the case of overdetection, meaning that there are more than one detection in one half
interval, a closing morphological procedure has been elaborated. This procedure allows to
unify two consecutive detections that are separated by a small number of samples and also to
delete detections too small to be significant. However, because sometimes it is not enough,
the algorithm only allows detections that verify the previous mentioned conditions.

In the case of underdetection (meaning that the algorithm only provides one or zero detec-
tions between two consecutives QRS-complex), the segmentation algorithm is used once again
on the considered segment with another value of m (usually smaller).
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Figure 4.7: Proposed segmentation algorithm based on 2-steps segmentation in RPA domain.

The full process of proposed algorithm has been summarized in Figure 4.7.

4.1.3 Real data processing
4.1.3.1 Presentation of the database

The algorithm has been tested on a real database elaborated by Boston’s Beth Israel Hospital
and the MIT. The MIT-BIH Arrhythmia database is composed of 48 half-hour excerpts of
two-channel ambulatory ECG recordings obtained from 47 subjects between 1975 and 1979.

The recordings were digitized at 360 samples per second per channel with 11-bit resolution
over a 10mV range. Two or more cardiologists independently annotated each record. More
details about the database can be found in [Phy| and [GAGT00].
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This database is famous in ECG processing comunity and is used by many researchers
to conduct their works. Nevertheless, there exists one big limitation: there is no ground
truth available to confirm that the proposed segmentation is of good quality. During my
stay in Toronto, we developed a reference document that provides the sample index of each
QRS-complex for this database. It enables us to quantify our results for the QRS-complex
segmentation.

4.1.3.2 Tools to quantify the results

To quantify the results of the *X-wave’ detection by the algorithm, four statistical parameters
are evaluated [BGZFO01]:

S, = TP:T;N (4.4)

+P= T]ffﬂp (4.5)
FL=orp +2§§ +FN (+6)

DER = FP+ PN (4.7)

Total number of X —waves

where TP is the number of true positives (an actual X-wave is detected), FP is the number
of false positives (a wave is detected but does not correspond to a X-wave) and FN is the
number of false negatives (an actual X-wave is not detected by the algorithm). The notation
is explained in Figure 4.8.

~ FN
X=0 False Negative
~ FP TP
X =1 | False Positive | True Positive

Figure 4.8: This Table summarizes the different statistical terms used in this Section. X
refers to the presence of a X-wave, while X refers to the estimation given by the segmentation
algorithm

The sensitivity S, provides the percentage of true X-waves detected over the total number
of detections. The positive predictivity +P refers to the confidence level of the results. The
detection error rate (DER) enables to quantify the precision of the segmentation and the F'1
score is the harmonic mean of precision and sensitivity [Pow1l, Faw06].
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4.1.3.3 Presentation of the results

Pre-processing
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Figure 4.9: Spectrum of an ECG time-series.  Figure 4.10: ECG time-series before (a) and
after (b) the low-pass filtering. The signal
has been smoothen.

Generally, the frequency content of an ECG time-series is comprised between 0 and 50
Hz (Figure 4.9). In order to remove all the tiny fluctuations that correspond to measurement
noise, we choose to use a 6" order low pass filter at the cutoff frequency of 18Hz. As the
low-pass filter is not selective, it will only remove the noise and smooth the signal (Figure
4.10).

The median filtering is composed of 100 samples which is in order with the length of the P
and T-waves duration. It needs to be of the same magnitude in order to estimate the general
baseline and to not remove at the same time the waves of interest. Figure 4.11 shows the
estimation of the baseline of an ECG time-series and its removal. The obtained baseline is
smooth and the waves of interest are still in place.

QRS-complex detection

As mentionned in the previous subsection, the first step of the method is to detect all
the QRS-complex that are in the studied time-series but the main issue is to choose what
parameters are the best suited for this purpose. We know that they are usually composed of
20 samples in average in this database: this is why, we decide to run the algorithm for different
values of embedding dimension: m = {5,10,20} in order to choose which dimension provides
the best results. If the detection intervals are composed of less than 10 samples, then they are
too short to correspond to actual QRS-complex: we set Ngr, = 10. The next criteria to set are
the ratio 71 and Ng;: the experiments are run for several values defined as Ny; = {10, 20,30}
and r; = {5%, 10%,20%}.

The first experiment consists in running the detection algorithm with or without the closing
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Figure 4.11: (a) Zoom in an original ECG time-series having an important variation of its
baseline (in orange). (b) Filtered ECG time-series after the median filtering.

procedure, it provides binary vectors that gives a certain amount of detection intervals. Each
of them is then compared with its corresponding ground truth vector. We here only check if
the QRS-complex maxima samples indexes are included in detection intervals. We then tally
up the total numbers of true detections (TP), false detections (FP) and false negatives (FN)
and calculate the different statistical parameters presented in subsection 4.1.3.2. Appendix B
presents an example of one of these experiments.

For each set of parameters, we then sum up the test results for the entire database, and
compute the sensitivity, the specificity, the F1 score and the detection error rate. Results
are presented in Tables 4.1, 4.2 and 4.3. The results entitled "raw data" correspond to the
algorithm used without the closing procedure.

As we can see, the algorithm without the closing procedure leads to results having detection
error rates over 100% and F1 scores below 50%. Those results reflect a huge number of errors
and a very bad precision that justify the elaboration of the closing procedure. Generally, we
can also notice that for m = {5, 10}, the ratio r; = 0.20 provides poor performances compared
to the other two ratios. However, this result changes for m = 20. Apparently, there is a trade-
off between the embedding dimension and the ratio: the bigger the embedding dimension,
the bigger the ratio that need to be used. Nevertheless, for the three considered embedding
dimensions, we identify three sets of parameters that offer the best performances (highlighted
in the differents tables) and we choose the best of them that provides a F'1 score of 95,98%
and a DER of 7.84%. It is obtained for the following set of parameters:

m = 10
0.1 (4.8)
Nagip = 30

ﬁ
=
I
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Case Beats TP FN FP Se (%) +P (%) F1 (%) DER (%)
(a) 112647 | 59763 | 186072 | 52884 | 24.31 53.05 33.34 212.13
Raw data (b) 112647 | 24827 | 167320 | 87820 | 12.92 22.04 16.29 226.50
(¢) 112647 | 2190 | 104782 | 110457 | 2.05 1.94 1.99 191.07
© (@) 112647]103399 [ 2994 [ 8748 [ 9720 0223 9465 1042
Ngiy =30 (b) 112647 | 75611 558 35160 | 99.27 68.26 80.89 31.71
(¢) 112647 | 26489 | 167320 | 56384 | 99.85 31.96 48.43 50.09
(a) 112647 | 101039 | 4434 11608 | 95.80 89.70 92.65 14.24
Ngiy =20 (b) 112647 | 74930 694 35841 | 99.08 67.64 80.40 32.43
(c) 112647 | 26326 49 54012 | 99.81 32.77 49.34 47.99
(a) 112647 | 95289 7740 17358 | 92.49 84.59 88.36 22.28
Ngiy =10 (b) 112647 | 71602 1481 39169 | 97.97 64.64 77.89 36.09
(¢) 112647 | 25024 43 49477 | 99.83 33.59 50.27 43.96

Table 4.1: Results obtained for the QRS-complex detection for m = 5, the different values of
Ngy and 71 equal to: (a) 5%, (b) 10% and (c¢) 20%

Case Beats TP FN FP | S. (%) +P (%) F1(%) DER (%)
(a) 112647 | 100621 | 132038 | 12026 | 43.25 89.32 58.28 127.89
Raw data  (b) 112647 | 77193 | 86854 | 35454 | 47.06 68.53 55.80 108.58
(c) 112647 | 39224 97903 | 73423 | 28.60 34.82 31.41 152.09
(a) 112647 | 109533 | 12171 3114 90.00 97.24 93.48 13.57
- Na =30 (b) 112647 | 105669 |
(c) 112647 | 76008 %% 99.18 69.96 82.05 29.52
(a) 112647 | 109435 | 14549 3212 88.27 97.15 92.49 15.77
Ngip =20 (b) 112647 | 104485 | 1835 8162 98.27 92.75 95.43 8.87
(¢c) 112647 | 75755 646 32883 | 99.15 69.73 81.88 29.76
(a) 112647 | 108997 | 22196 | 3650 83.08 96.76 89.40 22.94
Ny =10 (b) 112647 | 101581 4467 11066 | 95.79 90.18 92.90 13.79
(c) 112647 | 71790 1318 36848 | 98.20 66.08 79.00 33.88

Table 4.2: Results obtained for the QRS-complex detection for m = 10, the different values
of Ng; and 1 equal to: (a) 5%, (b) 10% and (c) 20%
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Case Beats TP FN FP | Se (%) +P (%) F1 (%) DER (%)
(a) 112647 | 110021 | 177324 | 2626 38.29 97.67 55.01 159.75
Raw data (b) 112647 | 107049 | 48020 | 5598 69.03 95.03 79.97 47.60
(c) 112647 | 87074 | 36557 | 25573 | 70.43 77.30 73.70 95.15
(a) 112647 | 110362 | 35409 | 2285 75.71 97.97 85.41 33.46
Ngiy =30 (b) 112647 | 108945 | 9268 3702 92.16 96.71 94.38 11.51
(¢) 112647 | 94549 | 48020 | 16222 | 96.95 85.36 90.78 17.04
(a) 112647 | 110279 | 46742 | 2368 70.23 97.90 81.79 43.60
Ngiiy =20 (b) 112647 | 108901 | 10039 | 3746 91.56 96.67 94.05 12.24
(c) 112647 | 94208 3213 | 16563 | 96.70 85.05 90.50 17.56
(a) 112647 | 110120 | 77594 | 2527 58.66 97.76 73.33 71.13
Ngiy =10 (b) 112647 | 108470 | 13995 | 4177 88.57 96.29 92.27 16.13
(¢) 112647 | 93004 4774 17767 | 95.12 83.96 89.19 20.01

Table 4.3: Results obtained for the QRS-complex detection for m = 20, the different values
of Ng; and 1 equal to: (a) 5%, (b) 10% and (c) 20%

Detailled results computed with this set of parameters is presented in Appendix B. We
can notice that the sensitivity is really good for most of the signals (around 99 %) except
for 4 of them (108m, 113m, 114m and 201m) that have a sensitivity below 95%. False
negative and false positive detections usually correspond to repeated errors that are due to
the shape specifity of the heartbeat. As an example, for signal 115m, the repeated false
positive error corresponds to the detection of a portion of the T-wave (Figure 4.12). For
signal 201m, the modification of the QRS-complex’s shape leads to a false negative detection
as the corresponding QRS-complex sample index is not included in the detection interval and
is localized 1 or 2 samples before it (Figure 4.13). What we can say about those errors is
that they could easily be taken care of by adjusting the parameters of the algorithin and they
correspond to repeated errors that explain their high numbers when they exist.

QRS detector  Beats TP FN FP S. (%) +P (%)
Our work 112647 105669 1154 6978  98.92 93.81

Ghaffari et al. 110159 109837 120 322 99.91 99.72
Li et al. 104182 104070 112 65 99.89 99.94

Martinez et al. 109428 109208 153 220 99.8 99.86

Table 4.4: QRS-complex segmentation results and comparison with other techniques

We now compare our results with those obtained by [GGGO08], [MAO™04] and [LZT95].
The detection methods used are based on adaptive wavelet transforms. Results are shown in
Table 4.4. Generally, we can notice that their results seem to be better than ours. However,
as we have pointed out previously the errors that were made can be fixed by adjusting the
algorithm parameters and therefore the results could sensibly be improved. Moreover, their
works rely on the choice of a mother wavelet that need to be close to the waves they want to
detect, while our method do not need a reference shape. One possible approach to improve
our results could be to design a data-driven threshold that could adapt itself to the section of
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% T-waves
23.59

% P-waves
54.36

Beats
112647

Ninit Np Nr Npr
121573 61239 26572 87811

Table 4.5: Results obtained for P and T-waves detection for m = 30, Ng; = 20, Negpo = 10
and 79 = 5%.

the signal that is studied just like a window with the short time Fourier transform.
P and T-waves detections

It was difficult to conduct the same experiment for P and T-waves detections due to the
lack of ground truth, nevertheless we ran the algorithm. To quantify the results, we tally
up the number of P and T-waves detected if they verify the two conditions described in the
previous subsection. Therefore, we need to keep in mind that those results do not guaranty
that the proposed segmentation is truthworthy, only that they verify the conditions.

Results are obtained by using m = 30, N, = 10 (detection intervals that are smaller do
not correspond to actual P or T-waves), ro = 5% and Ny; = 30 and displayed in Appendix B.
Summarized results are presented in Table 4.5 and given as follows. After the QRS detection,
the detection algorithm is used with the proposed parameters and we tally up the number
of supposed P and T-waves detected N;n;:. Then, the post processing algorithm is run and
provides the number of P-waves Np and T-waves Np. We note Npr the sum of detected
waves. Typically, we are supposed to obtain more or less as many P and T-waves as QRS
complex.

As we can see in Table 4.5, results are not as good as those obtained for the QRS-complex
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detection as the percentages of P and T-waves detected do not go up to 55%. However, we
need to take a step back and look at the results diplayed in Appendix B.2 that contrast those
results. As we can see, for 8 subjects there are almost no detections, for 50% only one of the
wave is detected, and finally for 4 of them the detections go up to 98%. It only means that
there are still more work to be done to design a data-driven algorithm that can detect P and
T-waves with more accuracy.

4.1.4 Conclusion

In this Section, we have developed a new framework for segmenting ECG time-series using
PDA. Although, it provides really good results for QRS-complex detections, it should be noted
that P and T-waves detections highly depend on the performances of the first detection. The
results were then compared to other works found in the literature and are encourageous.
It then leads to the calculation of other physical parameters (such as QT intervals [HAB12]
[HAB13] for example) that are of great interest to doctors that can then identify heart diseases
and malformations. Nevertheless, more work need to be done to improve the results and design
a data-driven algorithm.

This work led to the writting of a conference paper that will be submitted in September
2015:

C. Bernard, C. Ioana, M. A. Hasan, and S. Krishnan. Spatial-embedding signal processing
for recurrent time series: a case study with ECG signal. In 15" IEEE Symposium on Signal
Processing and Information Technology, December 2015, to be submitted.

4.2 Electrical transient characterization

4.2.1 Introduction

Electrical transients that are produced in electrical equipments traduce different phenomena
that require to be monitored, contributing to ensure the predictive surveillance of systems.
Electrical transients can be normal, created by phenomena such as commuting, parameters
charge changes; but also abnormal, created by the material problems such as dielectric prob-
lems or conductors defaults. The effects such as partial discharges (PD) or electrical arches
generate transient signals that need to be continuously studied (detection and characteriza-
tion) in order to ensure the system safe performing.

PD corresponds to a localised dielectric breakdown of a small portion of a solid or a
fluid electrical insulation system under high voltage stress, which does not bridge the space
between two conductors. They are usually not visible and can occur in gaseous, liquid or solid
insulating medium. They represent one of the most common breakdown in electrical systems
and 30% of them would be caused by insulation problems. Their appearance is unpredictable,
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really sudden and covers a large bandwidth. All these features make them really difficult to
predict, to localize and to characterize. |[Got10| developed in his thesis localization methods
based on RPA and GCD. Next step was to characterize them, knowing that at the receiving
level transients do not only represent the transient at the origin but also the propagation
effect. In this context, we propose to apply multi-lag phase diagrams approaches to signals
recorded after propagation of a generated PD in lab conditions. Therefore, next subsection is
dedicated to the description of the experiment.

4.2.2 Experimental presentation

In order to characterize transient modifications due to its propagation through a medium,
we now conduct an experiment using the facilities existing in our lab. We generate a partial
discharge (PD) on an electric cable whose ends T and T are connected to a data acquisition
system. The PD source is respectively localized at L and Lo distances from the recording
devices. The experimental outline is presented in Figure 4.14 and a photo of the experimental
facility is also presented in Figure 4.15. L; is composed of two cable reels (152 m in length
each) while Lo is composed of five. At the intersection between the two cables, a PD is
generated and we record the signals at both extremities after propagation.

—t 7
3 4 E

Ly = 304m Ly =762 m

Figure 4.14: Experimental outline

We note so (n) the generated PD, s; (n) the signal recorded at T} and sg (n) the signal
recorded at T5.

Figure 4.15: Experimental set up

Time representation of emmitted and recorded signals are presented in Figure 4.16. As we
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can notice, signals recorded after propagation through the cable reels differ from the emitted
one due to the propagation through the medium. They present nonlinear dilation and ampli-
tude changes that are more or less stronger depending on the propagation range. Temporal
changes are shown in Figure 4.17 where studied signals have been superposed and normalized.

—Sy simulated PD _— sc(n)
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Figure 4.16: Time representation of emmit-
ted signal and recorded signals after propa-
gation through the cable reels.

Figure 4.17: Time representation of the su-
perporsition of normalized signals that high-
ligths dilation and amplitude changes.

What is interesting with this kind of signals is that we can easily visualize that a time-scale
analysis would not be enough to characterize the modifications caused by the propagation.
There are dilation and also a modification of the envelop of the signal that would be difficult
to analyze with a single type of mother wavelet function. This is shown by Figure 4.18 where a
time-scale study is performed for the three signals using two different mother wavelets: Symlet
and Coiflet. The results highly depend on the choice of mother wavelet used and for the three
cases, even if it is easy to detect them, it is quite difficult to claim that they come from the
same source.

In this subsection, we have presented the experiment and the acquired data. We have
shown that time-scale analysis would not provide results that enables a good characterization
as waveforms changes with the propagation. This is the reason why it is usefull to move
forward MLPDA which is presented in the next subsection.

4.2.3 Data processing

In this subsection, we use the MLPDA tools to characterize the experiental data. We estimate
a time-scale transformation with the bounding box, and then study the amplitude relationship
that eventually exists between the two signals recording at both extremities.
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Figure 4.18: Time-scale study using the symlet mother wavelet for (a) so (n), (b) s1 (n) and
(c) s2(n). Time scale study using the coiflet mother wavelet for (d) so (n), (e) s1 (n) and (f)
s9 (n).
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Bounding box

In Chapter 3, we have designed the bounding box method that defines four special coordinates
in phase space diagrams computed for m = 2 and different values of lags. It enables to highlight
the existence of time-scale transformation between two signals by trying to superpose parts
of their trajectories. However, when looking to s; (n) and s3 (n), we can note that the task is
more complicated than expected as the time-scale transformation seems to be more complex
and the signal’s amplitudes are different. This is why in this section, we propose to estimate
two different time-scale transformations that affect the positive and negative parts of the
signals. To do so, we first need to normalize the signals by the maximal and minimal values,
then compute their phase diagrams for 7 = 1,...,20, search for the 4 extremum points A, B,
C and D, and finally compute the distance matrices H4, Hp, Ho and Hp for both cases.

Figure 4.19: The four matrices displaying the distance between extremum points of s1 (n) and
s9 (n) phase space diagrams for different values of lags 71 and 79. The studied signals have
been normalized by their maximum values.

Figure 4.19 presents the four distance matrices H4, Hg, Ho and Hp computed for sq (n)
and sg (n) normalized by their maximum values. We can notice that Ho and Hp present
values that are above or around 0.5 in average, therefore, we conclude that distances bewteen
those points are constant and not worth being taken into consideration. This result is coherent
with the fact that the signals have been normalized by their maximum values and C' and D
corresponding to the negative parts of phase space diagrams. However, we do have matches
for A and B. Figure 4.20 displays the evolution of 71 with respect to 7o that provides the
minimum distances bewteen A and B extremum points of phase space diagrams. Five special
coordinates (highlighted by blue dots) point out the cases where we obtain the same sets of
lags for minimizing the distances between the different A and B points, and are then used to
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perform a linear regression. Thus, we deduce a dilation coefficient such as:

9 = 0.557

8 —A =
B 24 01F
7k - - -linear regression

distance
o
3

0.021-

Figure 4.20: Sets of lags [r1,72] that pro-  Figure 4.21: Distances between the ex-

vides the minimum distances between the ex-
tremum points A and B of s1 (n) and sa (n)’s
phase space diagrams. The blue dots corre-
spond to the sets of lags that provide minimal
distances for the same sets of lags.

tremum points A and B of s; (n) and s3 (n)’s
phase space diagrams obtained for the sets of
lags that provide minimal distances regarding
to 7. The dots corresponds to the distances
that are obtained for matched sets of lags.

Nevertheless, even if those couples guaranty smaller distances between the extremum co-
ordinates compared to the other sets for a given 1, it does not mean that all of them are
minimal. Figure 4.21 presents the evolution of the distance between extremum points A and
B regarding to the evolution of 5. Some values have been highlighted by dots; they corre-
spond to the distances obtained for the sets of lags that present matches. As we can see, the
distances between the extremum points A and B of s; (n) and s2 (n)’s phase space diagrams
are not constant and for certains sets of lags, the distances are not always the smaller. To
illustrate this matter, we compute T4 (s1) and T (s2) shown in Figure 4.22, and T55 (s1)
and T5 g (s1) shown in Figure 4.23. The sets of lags used are the ones that were highlighted by
the experiment. We can see that the top right parts of the two trajectories superpose well in
the first case compared to the other one, even if the distances between A; and As, and By and
By are smaller in the second case. This result confirms that the bounding box method cannot
be used alone to determine dilation relationship. It needs to be coupled with a verification of
the trajectories and/or other methods.

Nevertheless, according to Figure 4.22, we can conclude that there is a dilation coefficient
equal to 22 = 3/2 between the positive parts of s1 (n) and sz (n). We can then move forward

the analysis of the negative parts of the signal’s amplitudes.

Figure 4.24 presents the four distance matrices Hya, Hg, Ho and Hp computed for the
signals normalized by their minimum values. We can notice that H4 and Hp present values
that are above or around 2 in average, therefore, we conclude that distances bewteen those
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X(N+1)
X(n+T)
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Figure 4.22: Superposition of T4 (s1) and  Figure 4.23: Superposition of T 5 (s1) and
Ty (s2) phase space diagrams. Even if the T g (s2) phase space diagrams. The distances
distances d (A1, A3) and d(Bi, B) are not  d(Aj, A2) and d (B, Bg) are smaller than in
minimal, the top right parts of the diagrams  the first case but the diagrams do not super-
superpose well. pose well.

points are not worth being taken into consideration. The distance between C7 and Cs is
smaller and never goes above 0.8. The distance between D; and Dy is more contrasted as it
can goes up to 3.

We can procede to the same experiment previously presented, however due to the small
portion of phase diagram that is of interest, it was not possible to determine with certitude
a dilation coefficient for the negative parts of the signals. As we can see in Figure 4.25, the
bottom left parts of the diagrams can be superposed for a very short curve that is not enough
to conclude.

Comparison of the results with another method

In order to quantify the time-scale coefficients obtained with MLPDA tool, we propose to
define an estimated dilation coefficient obtained as follows. For the normalized signal’s parts
of interest, we calculate the number of samples where the signal’s amplitude is higher than
half the maximal value, i.e. 0.5 and then compute the ratio between the two numbers to
obtain the estimated dilation coefficient. For positive part, we obtain a ratio 7 /7 equal to
8/12, i.e. 2/3 which corresponds to the coefficient we previously estimated. For the negative
part, we obtain 55/10, i.e. 5.5 which is a bit different. We can explain this result by the fact
that a very small part of the phase diagrams are concerned by the dilation which makes it
really difficult to estimate.

In this subsection, we have determined that there are two time-scale transformations be-
tween s1 (n) and sg (n) corresponding to a dilation of their positive and negative parts. Even
if the coefficient remains uncertain for the negative part due to its small representation in
phase diagrams, we managed to define a clear coefficient for the positive part. The next step
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Figure 4.24: The four matrices displaying the distance between extremum points of s1 (n) and
s9 (n)’s phase space diagrams for different values of lags 71 and 7o. The studied signals have
been normalized by their minimum values.

is to search for an eventual amplitude relationship.

Amplitude changes:

In this part, we work with the original signals s; (n) and s (n) and are only concerned by
the amplitude relationship that eventually exists between the positive parts of the signals. To
begin with, we compute the two phase diagrams shown in Figure 4.26 for the set of lags [4, 6]
highlighted in the previous part of the study. This set of lags enables to superpose the two
phase diagrams and identify the time-scale transformation that links the positive parts of the
signals.

The next step of the method is then to turn the cartesian coordinates [z (n),y (n)] of phase
diagrams into polar coordinates [p (n),6 (n)]. We then look for the couples [p1 (n1), p2 (n2)]
such that |01 (n1) — 02 (n2)| < 0.05 rad (Figure 4.27). Afterwards, we compute the ratio p1/po
for each of them and display the results.

A linear relationship is highlighted if there exists an interval I where the ratio is constant
along this segment. This is exactly what we have for § € [0.5, 1.4radians] where the ratio is
constant and equal to 2.88. If we consider the ratio between the maximum of the two signals,
we have a ratio equal to 2.84 which is quite close to the experimental result.
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Figure 4.25: (a) Superposition of Th5 (s1) and T5 (s2) phase space diagrams. (b) Zoom in
the bottom left parts of the diagrams.

! ! ! ! !
v x
_TZ,A(Sl) x s L
ol T o«s, x
=
4
= <=

L L
0 0.5 1 15 2

X(n+T)

o
= x
x x
©
=
*
x
x '

x

I L

, .
-1 -0.5 0 0.5 1 15 2
selected 6(n)

IS
EY
@
w
!
~n
»
~
N
@«

‘
b
]
-
,

X(Zn)
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4.2.4 Conclusion

As a conclusion, we can say that multi-lag tools have been used on partial discharge in order
to characterize two signals received at two ends of cable reels. We have highlighted two
distinct time-scale transformation of the positive and negative parts of the recorded data after
propagation and we were able to estimate a dilation coefficient and an amplitude relationship
for the positive parts of the signals. The negative parts of the signals present a bigger dilation,
but it was difficult to extract an accurate coefficient. Nevertheless, MLPDA tools have shown
that they are promising to extract information from signals that suffer nonlinear modification.
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4.3 Passive acoustic application

4.3.1 Introduction

Another example of capital importance for power networks surveillance is the passive moni-
toring of hydraulic shocks in penstock pipes (Figure 2). Water hammer is a pressure surge
caused when a fluid in motion is forced to stop or change direction suddenly. They commonly
occur when a valve is closed at an end of a pipeline system, and a pressure wave propagates
in the pipe. Although they are inevitable, they can be really dangerous if the wave does not
propagate as wanted by the engineer and then cause a lot of damages in the system. Some
characteristics of the transients are of great interest as they reflect the propagation of the
shock wave and can reveal if the penstock has been damaged. In this section, we propose to
extract one of them, namely the time rise, which provides an indication regarding the wave
propagation.

4.3.2 Experimental presentation

To begin with, let recall some information regarding the pressure profil we can observe at
the level of a valve in a penstock. The pressure at the bottom of a pipe is called hydrostatic
pressure Py and is equal to:

Pstat = ng + Datm (4'10)

where p is the fluid density, ¢ is gravitational acceleration, put,, is the atmospheric pressure
and H is the total height of the liquid column between the altitude of the sensor and the
surface of the water at the dam level. In static functionning, this pressure is supposed to
remain constant over the time, and its variation is only due to the variation of the level of
water in the reservoir.

When a valve closes, the system leave its stationnary functionning and starts a transient
phase. A pressure surge arises that leads to an oscillation of the pressure in the pipe that is
quickly attenuated. This oscillation is well known as it depends on the pipe’s characteristics.
The periodicity Tperiodicity 1 calculated as follows:

4L
Tperiodicity = (411)

a
where L corresponds to the length of the pipe and a the velocity of the sound in water. During
this phase a lot of things can happen that can damage the pipeline, this is why it is of great
interest to monitor this kind of phenomena.

One of the most dangerous event happens when the wave’s propagation is too fast. As
expected the mechanical load is more important at the bottom of the pipe than at the top,
this is why, a mechanical profil has been designed by engineers to take into account this
information. If the water hammer propagates too fast in the pipe, then it is possible that a
part of the pipe will have to endure a mechanical load that was not supposed to and then
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Figure 4.28: [llustration of a pressure signal and the corresponding rising time
suffers damages. This information is contained in the rising time T} (Figure 4.28): if its
value is inferior to %, then the wave has propagated too fast and may have caused trouble.

In this section, we propose a method based on PDA tools to calculate automatically this
parameter and is presented in the next subsection.

4.3.3 Data processing

As for the ECG segmentation, the detection algorithm is based on the vector samples pro-
cessing for which we define 4 parameters:

Apaz the maximum amplitude of the signal

a (n) the maximum amplitude between two successive phase space vectors defined as:

a (n) = maz (oo [s, K, m]) — min (v, [s, K, m)]) (4.12)

r € [0,1] a ratio

e b(n) the difference between the left and right parts of the phase space vector vy, [s, K, m]:

b(n) = mean <(v_>n [s, K, %D m> — mean <(v_n> [s, K,m]);_m m) (4.13)

i=1,...,2 20

At each instant n, the method detects a sudden amplitude rise if the maximal amplitude
between the two successive phase space vectors a(n) is superior to 1A, and if b(n) > 0
(denotes a rise and not a decrease). The algorithm then detects all the rising parts of the

oscillations but the final result only provides the first detection interval.

In Figure 4.29, we can see the detection result for a given transient signal. The choice of
parameters was set by trials and error: we choose m = 11 and 7 = 1. As we can see result is
good.
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Figure 4.29: Rise time detection result for a given pressure signal
4.3.4 Conclusion

The algorithm has been tested on a large database provided by the EDF-DTG company that
contained 1114 pressure signals coming from different powerplants with different configura-
tions. A good estimation was obtained for 81.9% of them. This is why the algorihtm has also
been integrated into their processing algorithm.

4.4 Application to transients propagated in an underwater en-
vironment

4.4.1 Introduction

Active acoustic sensing adresses the problem of environment characterization. When a wave
s (t) transmitted by a transducer T, propagates through a dispersive medium such as a het-
erogeneous water environment, it suffers a lot of modifications that involve dilations and
amplitude changes. Generally, a receiver R, then records a signal x (¢) that is the convolution
between the interrogating signal and the transfer function h (¢) of the medium:

x(t) =h(t)*s(t) (4.14)

This transfer function not only characterizes the medium but also everything that is in the
path of the interrogating wave. As a matter of consequence, if we consider two different
receivers located at different loactions but sensing the same environment, the received signals
will be different even if coming from the same origin.

The goal of this study is to compare two simulated signals that propagated through two dif-
ferent mediums whose transfer functions are related. The main idea is to estimate parameters
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hy (t) —— x1(t) = h1 (t) x5 (1)

hg (f) > T2 (f) = h,g (T) * S (f)

Figure 4.30: Simulation outline

that link the two of them.

4.4.2 Simulation presentation

Let consider the case of two simulated dispersive channels whose transfer functions h (t) and
ho (t) are modeled by two low-pass filtering respectively of order 128 and 512 and the normal-
ized cut-off frequencies equal to 0.3 and 0.15. The simulated interrogating pulse corresponds
to a period of sinusoid with a duration of 2 samples and an amplitude of 1. We also add gaus-
sian noise to the signals (SINR = 10dB) to make the study more realistic. While Figure 4.30
presents the outline of the experiment, Figures 4.31 and 4.32 respectively show the simulated
received signals and its normalized versions. As we can see, both signals obviously do not
arrive at the same time instant and suffer dilation and amplitude attenuation that are due to
the propagation.
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Figure 4.31: Simulated received signal Figure 4.32: Normalized simulated received
signal

We know that difference of times of arrival are of great importance to localize any obsta-
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cle existing in an environment by taking into account all the echos. The time of arrival of
the direct path also provides information regarding the filters’ orders. The wave’s filterings
introduce delays that are directly proportionnal to the filter’s orders. As hg (t)’s order is four
times greater than hj (t)’s, we can then deduce that the time of arrival of x5 (¢) is also four
times greater than x; (¢)’s. In our simulation, we can find out this result by considering the
time of arrival of the signal’s maximal values which are respectively of 32 and 127 samples.
However, even if we were able to estimate this parameter, the time of arrival do not provide
any information regarding the modification of amplitude and an eventual time-scale transfor-
mation. In order to investigate those parameters, we propose to use MLPDA tools on the
normalized signals.

4.4.3 Data processing

of | | | | | ;A[Xll I
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Figure 4.33: Evolution of @ with respect to 7 Figure 4.34: Evolution of the area with re-
spect to the evolution of 7

To begin with, we first propose to estimate the apparent periodicity of each signals with
the trend modeling method. To do so, we compute phase diagrams for 7 = 1,...,30, model
each of them by a third degree polynomial and record the evolution of @ with respect to 7
for z1 (t) and 2 (t). Figure 4.33 presents the associated evolution. We can then estimate
the apparent periodicity Tperiodicity for both signals and we respectively obtain 3.5 and 7.33
samples for z; (t) and x2 (t), which indicate a possible dilation coefficient equal to 2.09.

At this point of the study, we highlighted a possible time-scale transformation but we did
not take into account proper phase diagrams as they maybe even not overlap in phase space.
To complete this study, we propose to study the evolution of the area with respect to the lag.
As we can see in Figure 4.34 the areas covered by the two signals are distinct as they do not
evolves in the same order of magnitude. This is due to the length of x5 (n) that is longer than
x1 (n) and also because it presents more oscillations.

In order to verify the coefficient found with the trend modeling, we propose to superpose
phase diagrams for the two following sets of lags: [2,4] and [4,8]. As we can see in Figures
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4.35 and 4.36, both phase diagrams overlap but not perfectly. The difference is due to the
amplitude modifications that are not constant (see Chapter 3). Nevertheless, these examples
have shown that it was possible to estimate an accurate time-scale transformation that is
conclusive with the ratio of the two cut-off frequencies.
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Figure 4.35: Superposition of the 2 following  Figure 4.36: Superposition of the 2 following
phase diagrams: T5 4 (1) and Th g (x2) phase diagrams: Tho (1) and T4 (22)

4.4.4 Conclusion

In this section, we have shown that it was possible to estimate a time-scale transformation
even if the current MLPDA tools require improvements to deal with nonlinear amplitude
modifications. The information extracted with MLPDA tools would not have been found with
the classical technique of time of arrival.

4.5 Summary

In this Chapter, we proposed four contexts of real-life applications where RPA and MLRPA
tools provided really good results. The main advantage of those methods is that they do not
require any a priori information regarding the data to detect, and they can also be adapted
to any other application.






Conclusion & Perspectives

This thesis addresses the problem of transient signal analysis. Due to their wide characteristics,
we proposed to define three different classes of transients that are either characterized by
sudden amplitude changes or by phase discontinuities of a particular order, or by nonlinear
variation of the instantaneous phase. The general aim is therefore to propose and
investigate alternative analysis methods that will explore those characteristics.

Chapter 1 presented a brief overview of the existing techniques to perform transient
analysis. We determined three different classes of approaches that are the statistics, the
linear projection-based approach and the data-driven analysis. All those methods enable
a good detection of transient phenomena, however, when it comes to characterization for
discrimination or classification purposes, we have seen that the statistical approach was very
limited. The projection-based approaches permit a better characterization for signals having
nonlinear variation of the instantaneous phase but remains also limited when it comes to
analyze sudden amplitude changes. Moreover, all those methods usually need an a priori
on the waveform to detect which is not always accessible. On the other hand, data-driven
analysis techniques does not need any prior information regarding the studied data, and seem
promising to investigate transients having sudden amplitude changes.

In Chapter 2, we decided to focus on signals having fast-varying time-frequency
representations as their high nonlinearity is widely met in real world applications. We
first focused on the generalized complex-time distribution that has the particularity to pro-
vide highly concentrated distributions around the different phase order derivatives of a signal.
This technique is however limited to narrow band signals as its computation involves the cal-
culation of signal’s samples at complex coordinates. This is performed through the analytical
continuation that is directly related to the signal’s bandwidth. When the bandwidth is too
important, the computation of the continuation usually leads to a divergence. In order to
extend the application to signals having larger frequency variations, we proposed
to take advantage of time-scale operators to compress the bandwidth of the signal and
then compute the generalized complex-time distributions. This transformation allows accurate
estimations of the different phase order derivatives. Moreover, the choice of the integration
path is also a big deal that should be investigated more deeply. This is why future works
should focus on proposing an adaptive approach for the selection of the optimal scale param-
eter with respect to the bandwidth variation of the analyzed signal. This could be performed
through a data-driven approach like the multi-lag phase diagram analysis.

In a second part, we concentrate on the recovery of nonlinear modulation phase
signals when parts of the signals were missing from the observation. We proposed to
combine warping operators with compressive sensing to reconstruct the signal of
interest. To do so, a time axis transformation is first performed to turn the desired signal into
a sinusoid and the L-statistics enable to select the time-frequency regions of importance. Then
a CS reconstruction algorithm is used to reconstruct the signal in the warped domain. Finally,
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the reconstructed warped signal is expressed in the original time domain with an inverse time
axis transformation. Generally, this technique performs better than a classical warping/band-
pass filtering method that is hence disturbed by the missing values. Indeed, the sparsity in the
warped domain enables to use compressive sensing reconstruction algorithm that only needs
a few observations of the signal to reconstruct it. Nevertheless, we still need to note that
this technique bets on the correct estimation of the warping function that stationnarize the
desired component. If this task is not done properly, we will obtain poor results. This work
has been performed in collaboration with the university of Montenegro and led to the writting
of a regular paper for the IEFE Transactions on Signal processing and a conference paper at
IEEE Oceans Conference 2015 that are currently under review.

Chapter 3 then addresses the problem of characterization of transients having
sudden amplitude changes. To do so, we focused on a well-known data-driven technique
that is recurrence plot analysis. One of the major current research topic is the selection of the
optimal set of parameters that are m the embedding dimension and 7 the time delay. Generally,
everyone agrees that there is no best choice as it highly depends on the application. Therefore,
we decided to explore the lag diversity in phase diagrams as some properties as
time-shift and time-scale operators, and amplitude coefficient modifications can
be enlighthened with invariant and shape-invariant phase diagrams obtained with
different lags. We proposed several modelings to extract parsimonious parameters from each
phase diagram representations such as: ellipse modeling, third degree polynomial modeling,
bounding box, area covered by the phase diagram, and a polar coordinates analysis. Their
evolutions are then studied with respect to the lags or between each other to hightlight the
previous properties. So far, those methods have proven themselves efficient on simulated
data, and the results on applicative context are discussed in Chapter 4. Future works should
therefore focus to extend this work performed for m = 2 to higher embedding dimensions.
This could be done by applying the same methods to the projections of phase diagrams onto
the different planes of the phase space. Another axis of research should also explore linear
and nonlinear amplitude modifications.

Real-life context applications are then explored in Chapter 4. This Chapter is therefore
divided into four applications that are then detailled. The first one has been developed in
collaboration with Ryerson University, Toronto, Canada, where I stayed for four months. The
idea was to develop a data-driven segmentation method that provides an automatic
segmentation of the three main waves of ECG time-series known as: QRS-complex,
P and T-waves. This was performed with the vector samples processing (VeSP) concept
that is designed to detect sudden changes of amplitudes in time-series, and a post-processing
algorithm was also proposed to enhance the results by taking care of under and over detections.
However, the results of this work have been compared with annotation files that only provide
the locations of every waves’s maximum. More work should be carried out to find out if the
proposed segmentation technique provides appropriate segmentations. Another axis of work
would be to improve the obtained results with the P and T-waves segmentation by exploring
for example the different parameters of the algorithm such as the lag).

Another application then focused on the characterization of partial discharges gener-
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ated in cable reels at the lab of Grenoble-INP. Signals were recorded at both ends of the cables
after different propagation ranges. They obviously suffered different nonlinear amplitude mod-
ifications that make them difficult to characterize. We took advantage of the MLPDA tools
to explore some of their characteristics.

Next application is an example of a passive acoustic configuration for water hammer
monitoring. Transients associated with water hammer are recorded and parameters are
extracted from each time-series. The one we developed is the time rise that provides an
information regarding the speed of the wave. If the duration is inferior to a certain value
that depends on the facility, then the system can have suffered damages which is important
to know. We proposed to use the vector samples processing concept to detect the first sudden
amplitude change that corresponds to the time rise. So far, we obtained satisfying results even
if the algorithm needs to be tested in more twisted configurations. The algorithm has been
tested on a real database provided by EDF - DTG and it provided 82% of good detections.
These satisfying results led to the algorithm’s implementation in the data procesing algorithm
of the company.

Finally, the fourth applicative context was the propagation of transients in an underwater
environment. Due to experimental difficulties, we could not procede to a data acquisition in
the lab so this experiment was replaced by a numerical simulation. To do so, we computed two
dispersive channels modeled by two low-pass filtering whose parameters where connected. We
simulated the propagation of an acoustic wave into these channels and studied the obtained
signals. The different times of arrival provided information regarding the filters’ orders, but
we had to use MLPDA tools to find out a relationship between the filters’s cut-off frequencies.
It could be interesting to procede to an experimental acquisition in future work to verify the
MLPDA tools efficiency.
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Ellipse modeling

In analytic geometry, an ellipse is defined as the set of points (z,y) of the Cartesian plane
that satisfy the following equation:

A2z® 4+ Bxy+Cy* + Dz + Ey+F =0 (A1)

provided B2 — 4AC < 0.

If it is centered around the origine (0,0) and if its major and minor axes are respectively
parallels to z and y axis, then Equation A.1 becomes:

A? +Cy* +F =0 (A.2)

Figure A.1: Ellipse modeling

Let consider N cartesian coordinates (z;, yi)ie[l N that belong to an ellipse that satisfy
Equation A.2. In order to find the general equation from the coordinates, we need to minimize
the following equation using the least square fitting:

N
S= F(xiy) (A.3)
i=1
with:
F(x,y) = A2®> + Cy* + F (A4)
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The development of S leads to:

N
§=3"(Ae? + Oy + F)° (A.5)
=1
= ((A:cg +C2)° +2 (422 + Cy) F+F2) (A.6)
i=1
N
= (A%} +2ACa}y} + C2y} + 2AFx} + 2CFy} + F?) (A7)
=1
S = Zz]\il (Aacz2 + Cy? + F)2
= 3V (422 + Cy2)* + 2 (Ae? + Cy2) F + F?) (A8)

= sz\il (14295;L + 2AC2?y? + C?y} + 2AF2? + 20Fy? + F2)

We then look for {A,C, F'} that minimizes S. To do so, we have to solve the following
system of equations:

a5 —
49
s —
dF
which becomes:
ds N N N
I =24 2l +20) alyl +2F > x} (A.10)
=1 =1 =1
ds N N N
%:2A2x$y3+202yf+2FZyi2 (A.11)
=1 =1 =1
ds N N N
d—F:2AZx?+2CZy§+2F21 (A12)
=1 i=1 =1

To solve the system of equations A.9 we need to solve the following equation:

DX =0 (A.13)
such as: N N N
z]:Vi:l i Zi:]\} z?y? Ziﬁl x? A 0
Dim1 37?%2 D1 y;‘l D i1 yiz ¢ |1=10 (A.14)
Zé\il ? Zz]\il y? N F 0

Two things are then possible:

e det D = 0 then D is not inversive and there exists an infinity of solutions to this system
of equation.

e det D # 0 then D is inversive and only one solution is possible : X = 0.
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The second scenario is not be taken into consideration and we develop the first one that
consider an infinity of equations. To solve it, it is necessary to fix one degree of liberty of the
system, for example we can choose F' = —1. The ellipse equation then becomes:

Az +C0y* =1 (A.15)

The system of equations then becomes:
N N N
P AR T DARE C s Ui

DX =Q (A.17)

le. :

The solution is finally obtained by solving:
X=D'Q (A.18)
when det D # 0.

The semi-major a and semi-minor b axis are then obtained as follows:

{a = 1/VA

A (A.19)
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ECG time-series results

This appendix presents the detailled results obtained for QRS-complex, P and T-waves seg-
mentations that have been selected in Section 4.1.

Subject  Beats TP FN | FP Se +P F1 DER
100m 2274 2271 0 3 100.00 99.87 99.93 0.13
101m 1874 1866 2 8 99.89 99.57 99.73 0.53
102m 2192 2178 8 14 99.63 99.36 99.50 1.00
103m 2091 2083 1 8 99.95 99.62 99.78 0.43
104m 2311 2229 36 82 98.41 96.45 97.42 5.11
105m 2691 2561 53 130 | 97.97 95.17 96.55 6.80
106m 2098 1977 16 121 | 99.20 94.23 96.65 6.53
107m 2140 2132 2 8 99.91 99.63 99.77 0.47
108m 1824 781 85 | 1043 | 90.18 42.82 58.07 61.84
109m 2535 2514 10 21 99.60 99.17 99.39 1.22
111m 2133 2016 38 117 | 98.15 94.51 96.30 7.27
112m 2550 2538 5 12 99.80 99.53 99.67 0.67
113m 1796 1794 412 2 81.32 99.89 89.66 23.05
114m 1890 1705 57 185 | 96.77 90.21 93.37 12.80
115m 1962 1953 0 9 100.00 99.54 99.77  0.46
116m 2421 2384 4 37 99.83 9847 99.15 1.69
117m 1539 1534 2 5 99.87 99.68 99.77 0.45
118m 2301 2276 12 25 99.48 9891 99.19 1.61
119m 2094 1987 5 107 | 99.75 94.89 97.26 5.35
121m 1876 1251 0 625 | 100.00 66.68 80.01 33.32
122m 2479 2477 0 2 100.00 99.92 99.96 0.08
123m 1519 1517 1 2 99.93 99.87 99.90 0.20
124m 1634 1601 12 33 99.26 97.98 98.61 2.75
200m 2792 2591 35 201 | 98.67 92.80 95.64 8.45
201m 2039 1801 132 | 238 | 93.17 88.33 90.68 18.15
202m 2146 2111 1 35 99.95 9837 99.15 1.68
203m 3108 2387 48 721 | 98.03 76.80 86.13 24.74
205m 2672 2652 0 20 | 100.00 99.25 99.62 0.75
207m 2385 1490 15 895 | 99.00 62.47 76.61 38.16
208m 3040 2750 5 290 | 99.82 9046 9491 9.70
209m 3052 3011 30 41 99.01 98.66 98.83 2.33
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Subject  Beats TP FN | FP Se +P F1 DER
210m 2685 2501 11 184 | 99.56 93.15 96.25 7.26
212m 2763 2747 12 16 99.57 9942 9949 1.01
213m 3294 3249 4 45 99.88 98.63 99.25 149
214m 2297 2248 9 49 99.60 9787 98.73 253
215m 3400 3362 4 38 99.88 98.88 99.38 124
217m 2280 2185 1 95 99.95 9583 97.85 421
219m 2312 2152 1 160 | 99.95 93.08 96.39 6.96
220m 2069 2047 1 22 99.95 9894 9944 1.11
221m 2462 2421 3 41 99.88 9833 99.10 1.79
222m 2634 2480 8 154 | 99.68 94.15 96.84 6.15
223m 2643 2534 2 109 | 99.92 9588 97.86 4.20
228m 2141 1899 41 242 | 97.89 88.70 93.07 13.22
230m 2466 2256 2 210 | 9991 9148 9551 8.60
231m 2011 1570 0 441 | 100.00 78.07 87.69 21.93
232m 1816 1779 21 37 98.83 9796 9840 3.19
233m 3152 3070 7 82 99.77 9740 98.57 282
234m 2764 2751 0 13 | 100.00 99.53 99.76  0.47
Total 112647 | 105669 | 1154 | 6978 | 98.92 93.81 96.29 7.22

Table B.1: Results obtained for QRS-complex detection using m = 10, N¢po = 10, Ng;; = 30
and ro = 10%.

Subject  Beats Nipnit Np Nr Npr | % P-waves % T-waves
100m 2274 4319 2027 2057 4084 89.14 90.46
101m 1874 1717 1665 20 1685 88.85 1.07
102m 2192 2904 1666 596 2262 76.00 27.19
103m 2091 2098 2067 18 2085 98.85 0.86
104m 2311 3361 831 765 1596 35.96 33.10
105m 2691 907 565 114 679 21.00 4.24
106m 2098 2110 1370 92 1462 65.30 4.39
107m 2140 3662 1418 1044 2462 66.26 48.79
108m 1824 1440 169 161 330 9.27 8.83
109m 2535 4962 2400 2377 | 4777 94.67 93.77
111m 2133 2168 1981 75 2056 92.87 3.52
112m 2550 4677 2325 2065 4390 91.18 80.98
113m 1796 2321 1721 511 2232 95.82 28.45
114m 1890 2073 1591 133 1724 84.18 7.04
115m 1962 2774 1773 795 2568 90.37 40.52
116m 2421 1300 1175 65 1240 48.53 2.68
117m 1539 1998 1528 461 1989 99.29 29.95
118m 2301 4190 2016 1938 3954 87.61 84.22
119m 2094 2299 1529 310 1839 73.02 14.80
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Subject Beats Nt Np Nt Npr | % P-waves % T-waves
121m 1876 641 113 115 228 6.02 6.13
122m 2479 3383 1913 1398 3311 77.17 56.39
123m 1519 2791 1503 1265 2768 98.95 83.28
124m 1634 1851 1555 155 1710 95.17 9.49
200m 2792 2252 903 688 1591 32.34 24.64
201m 2039 1291 804 104 908 39.43 5.10
202m 2146 1298 1080 30 1110 50.33 1.40
203m 3108 1476 489 246 735 15.73 7.92
205m 2672 2200 807 22 829 30.20 0.82
207m 2385 946 328 78 406 13.75 3.27
208m 3040 2935 1108 240 1348 36.45 7.89
209m 3052 4115 1762 1247 | 3009 57.73 40.86
210m 2685 368 134 74 208 4.99 2.76
212m 2763 3956 1772 1151 2923 64.13 41.66
213m 3294 3247 69 0 69 2.09 0.00
214m 2297 2308 1960 54 2014 85.33 2.35
215m 3400 3407 65 62 127 1.91 1.82
217Tm 2280 3319 1555 917 2472 68.20 40.22
219m 2312 2879 1529 649 2178 66.13 28.07
220m 2069 2081 1906 9 1915 92.12 0.43
221m 2462 2364 1285 62 1347 52.19 2.52
222m 2634 2813 1043 323 1366 39.60 12.26
223m 2643 2834 2045 247 2292 77.37 9.35
228m 2141 3387 1119 839 1958 52.27 39.19
230m 2466 3413 1689 1502 3191 68.49 60.91
231m 2011 2658 1413 725 2138 70.26 36.05
232m 1816 2551 536 373 909 29.52 20.54
233m 3152 3456 897 383 1280 28.46 12.15
234m 2764 73 40 17 57 1.45 0.62
Total 112647 | 121573 | 61239 | 26572 | 87811 54.36 23.59

Table B.2: Results obtained for P and T-waves detection using m = 30, Nepo, = 10, Ng;; = 30

and ry = 5%.






APPENDIX C

Résumé étendu

Caractérisation des phénoménes physiques
par analyse parcimonieuse des signaux
transitoires

Introduction

Les signaux transitoires de par leur nature non-stationnaire sont trés difficiles a caractériser.
Ils ont souvent des formes différentes qui se ressemblent plus ou moins, une durée d’observation
trés courte, ainsi qu’'un contenu spectral trés large, qui rend leur étude trés compliquée. De
maniére générale, le but de cette thése est de proposer et d’étudier de nouvelles
méthodes d’analyse qui exploreront les caractéristiques de ces transitoires qui
seront définis par de soudains changements dans les paramétres du signal observé. Ainsi,
si nous considérons la formule analytique générale de n’importe quel signal, un transitoire
sera donné par la formule suivante:

s(t)=A(t)ed®W (C.1)

avec A (t) son amplitude instantanée et ® (¢) sa phase instantanée. En fonction des change-
ments de paramétres, nous considérerons trois différentes classes de signaux transitoires large-
ment rencontrées dans des applications réelles.

Les signaux sont caractérisés par des discontinuités de phase d’un ordre particulier

Ces signaux sont modélisables de la facon suivante :

(t) — ZAkejak cos(2kmt) (CQ)
k

Ces signaux sont composés de nombreuses composantes dont la phase instantanée est une fonc-
tion dérivable d’ordre supérieur. La trés grande non-linéarité de cette fonction rend I’analyse
tres compliquée et de nouveaux domaines de représentation sont alors nécessaires. On retrouve
ces signaux dans de nombreuses applications telles que le radar et ’acoustique.

111
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Les signaux sont caractérisés par des changements d’amplitude soudains :

Ils traduisent généralement des phénoménes mécanique, électrique ou encore électromagné-
tique. De maniére générale, nous considérerons ces signaux de la maniére suivante:

s(t)y=A(t); t € [to,to + D] (C.3)

avec D la durée du signal qui est beaucoup plus petite que la durée d’observation, et g sa date
d’apparition. On peut aussi noter que A (t) est également une fonction hautement dérivable.

Les signaux ECG, de par ses variations typiques d’amplitude, sont une belle illustra-
tion de cette classe de signaux, mais nous pouvons également noter qu’une partie impor-
tante de notre étude concerne les signaux observés & une certaine distance de leur source
d’émission. En effet, les signaux enregistrés contiennent des informatives relatives au signal
émis & D'origine, mais aussi tous les effets introduits par la propagation et le traitement des
capteurs d’enregistrement. Deux exemples de haute importance sont le cas des transitoires
électriques et des signaux acoustiques de pression acquis dans des configurations passives.

Les signaux sont caractérisés par des variations non-linéaires de la phase instan-
tanée :

s(t) = A(t) edCrhott®®). ¢ (1) ¢ c* (C.4)

On retrouve ce genre de signaux dans de trés nombreux contextes applicatifs. Nous pouvons en
effet noter les signaux naturels tels que les vocalises de baleine ou les signaux de chauves-souris,
dont la non-linéarité de leur phase instantanée est en effet trés adaptée a leur propagation
empéchant ainsi une trop grande perte d’information pour les autres spécimens. Un autre
contexte applicatif trés répandu concerne la transmission et propagation d’ondes acoustiques
dans un milieu & des fins de caractérisation.

Tout au long du siécle dernier, de nombreuses méthodes de traitement ont été développées
et sans prétendre faire un inventaire exhaustif de ces méthodes, nous proposons de les classer
selon trois approches différentes qui seront développées un peu plus en détail dans le premier
chapitre.

Dans cette thése, nous proposons de développer de nouvelles techniques d’analyse pour les
trois classes de signaux citées précédemment.

C.1 Rappel des méthodes existantes de traitement des signaux
transitoires

Les méthodes développées pour traiter les transitoires peuvent étre classées en trois grandes
approches:
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Les approches statistiques

Les signaux sont ici considérés uniquement comme des séries d’échantillons et on étudie leur
propriétés statistiques tels que leur moyenne, leur variance et les différentes statistiques d’ordre
supérieur. On part du principe que les transitoires n’ont pas un histogramme gaussien et
qu’on peut donc facilement les dissocier d’'un bruit blanc gaussien. Bien que ces approches
permettent de faire des suppositions quant & la nature des transitoires et de bien les détecter,
leur bonne caractérisation n’est pas pour autant garantie.

Les approches projectives

Il est dans la nature humaine de comparer les choses avec des référentiels connus. Cette philoso-
phie a un équivalent en traitement du signal matérialisé par la décomposition de n’importe
quel signal s (t) sur des bases de fonctions élémentaires appartenant & un dictionnaire D .

s(t) =) Cete (t) (C.5)
o

ol Yo (t) est une fonction élémentaire caractérisée par la liste de paramétres O et Cg sont les
coefficients de projection montrant par leur amplitude quelle est la contribution de ¥g (t) dans
la structure de s (¢). Ces coefficients sont généralement calculés a I'aide du produit scalaire :

Co = (s (1), o (1) (.6)
- [svswa (©7)

¢
Il existe un nombre important de représentations basées sur les approches projectives et nous
n’en citerons que quelques unes.

La Transformée de Fourier

Cette approche permet d’exprimer un signal en termes de sinusoides de différentes fréquences
en projetant le signal sur les fonctions élémentaires suivantes:

Y () = XTI (C.8)

ou fr correspond & la fréquence.

Le principal avantage de cette méthode est qu’elle permet de décrire parfaitement le con-
tenu fréquentiel d’un signal. En revanche, si celui-ci varie au court du temps, elle ne permet
pas d’en connaitre I’évolution.

La Transformée de Fourier & court terme

La transformée de Fourier a court terme permet justement d’analyser le contenu fréquentiel
d’un signal en fonction du temps. Pour cela, on utilise des fonctions élémentaires fenétrées
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définies comme suit:

U (t) = b (t — KT) eImInt (C.9)
ou T correspond a la durée de la fenétre h (¢).

Cette représentation est tres utilisée en traitement du signal pour I’étude de signaux non-
stationnaires, cependant, il est a noter qu’elle posséde une sérieuse limitation quant & la
résolution temps-fréquence. En effet, une bonne localisation temporelle ne pourra étre obtenue
qu’avec une perte d’information relative au contenu fréquentiel du signal, et inversement. Ce
compromis est connu sous le nom du principe d’incertitude de Heisenberg. Afin d’améliorer
un peu ce compromis, on peut toutefois utiliser des fenétres de recouvrement.

La transformée en ondelette

Le signal est décomposé dans une base orthonormée construite a partir d’une famille de fonc-
tions ¥y, m (t) appelées ondelettes:

1 t
o g (t) correspond & Pondelette mére, m est le facteur d’échelle et n est le déplacement
temporel.

La base orthonormale est construite & partir des ondelettes dilatées et retardées. Ainsi,
dans le plan temps-échelle, la transformée est maximale quand on obtient la meilleur corre-
spondance entre I’ondelette dilatée et le signal étudié. Ceci pose un probléme majeur puisqu’il
est nécessaire d’utiliser une ondelette ressemblant au signal que ’on veut détecter pour obtenir
de bons résultats et ainsi connaitre des informations & priori sur le signal recherché.

L’acquisition comprimée (compression numérique)

L’acquisition comprimée est un modéle d’échantillonnage qui nous permet de dépasser la limite
de Shannon en utilisant la structure parcimonieuse d’un signal. Elle propose ainsi d’acquérir
directement la version compressée du signal afin d’éviter de traiter des échantillons inutiles
et permet également de reconstruire un signal avec des parties manquantes (sous certaines
conditions).

Les distributions

Les distributions quadratiques proposent de projeter la fonction d’auto-corrélation des sig-
naux sur la base de fonctions élémentaires de la transformée de Fourier. Nous pouvons citer
entre autres la célébre transformée de Wigner-Ville. Cependant, ce genre de représentation
est mal adaptée aux signaux multi-composantes due & la création d’intraférences entre ces
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composantes et aussi a des termes d’interférences causés par des non-linéarités. Afin de ré-
duire ces effets, la distribution & temps complexe a été créée. Elle permet de produire des
distributions concentrées autour des dérivées d’ordre K de la phase d’un signal, par contre,
elle nécessite de prolonger le signal sur des contours non-réels qui limitent leur application aux
signaux a bande étroite. Cette transformée sera I'objet d’un des prochains chapitres ot nous
proposerons d’étendre son application & des signaux plus large bande.

Les approches guidées par les données

Les approches guidées par les données permettent d’étudier des signaux sans les comparer a des
choses existantes. En autre, nous pouvons citer la Décomposition en Modes Empiriques (EMD)
qui permet de décomposer un signal en une série de modes intrinséques, ainsi que ’analyse par
récurrence de phase (RPA). Cette derniére permet d’obtenir une nouvelle représentation d’'un
signal dans un espace m-dimensionnel permettant ainsi de mettre en évidence les récurrences
(retour a des états précédemment visités) dans des séries temporelles. Elle repose notamment
sur le choix de 2 paramétres essentiels : la dimension m de l'espace des phases et le retard
7 (ou lag). Bien que de nombreuses études aient été menées dans le but de proposer un
choix optimal pour ces deux paramétres, la communauté s’accorde a dire qu’il n’en existe pas,
puisqu’il dépend beaucoup du contexte d’application. Figure C.1 présente la construction
d’'un diagramme de phase pour un signal donné et m = 3.

C.2 Représentation des signaux ayant des composantes temps-
fréquence variant rapidement

Dans ce chapitre, on propose de se concentrer sur les signaux ayant des composantes temps-
fréquence variant rapidement. Dans une premiére partie, nous nous intéressons plus partic-
uliérement aux distributions & temps complexe dont nous proposons d’étendre ’application &
des signaux plus large bande en tirant profit d'une transformée temps-échelle. Dans une sec-
onde partie, nous nous intéressons a la reconstruction de signaux & modulation de phase non
linéaires dans le cadre de partie(s) manquante(s) dans le signal d’observation. Ceci sera effec-
tué a 'aide d’opérateurs de warping et d’algorithmes de reconstruction basés sur ’acquisition
comprimeée.

C.2.1 Distributions a temps complexe

Les distributions & temps complexes fournissent des distributions concentrées autour des
différentes dérivées de phase d’un signal. Pour ce faire, elle utilisent les moments d’ordre
supérieurs du signal calculés & des temps complexes.
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Figure C.1: Création d'un diagramme de phase pour un signal donné, m =3 et 7 = 2.

Considérons un signal s (t) défini tel que:

s(t) = Ae?®® (C.11)

avec A 'amplitude du signal qui est supposée constante ou variant trés lentement et ® (¢) sa

loi de phase instantanée.

On définit alors la distribution généralisée & temps complexe GCD comime suit:

GCDX[s] (t,w) = TF, [GCMf[s] (¢, 7)] (C.12)
= (w — ) (t)) * TF,[Ae120)] (C.13)
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avec le moment généralisé & temps complexe GCM:

N-1 - '
GOMR[s] (t,7) =[] SN <t—|—wN7p i\ §T> (C.14)
p=0
— JOE)(O)T+iQ(t,T) (C.15)
et la fonction d’étalement:
0 Ne 41 e+
KI\E
NS eWNpHK) T (B 1

p=1
avec N étant le nombre de racine complexe de I'unité N-iéme, K V'ordre de la dérivée de la
phase et wy, étant la racine de l'unité d’ordre p définie telle que:

WNp = 72PN (C.17)

Comme on peut le constater la fonction d’étalement ne prend en compte que les dérivées
de la phase d’ordre K + N, K 4+ 2N, etc... On peut donc en conclure que plus on utilisera de
racine de 'unité pour calculer la distribution et plus la concentration autour de la dérivée de
la phase d’ordre K sera optimale.

Cependant, pour calculer cette distribution, il est nécessaire de calculer des échantillons du
signal & des temps complexes. Ceci est effectué a ’aide de la prolongation analytique calculée
comme suit:

s(t+jm) = / S(f)e 2 ei?mitqf (C.18)
ou S (f) est la transformée de Fourier du signal s ().

Ce calcul implique donc la multiplication du spectre du signal avec I'exponentiel e~2™f qui
va, avoir différents effets sur le spectre. En effet, les fréquence positives vont étre trés fortement
atténuées, tandis que les fréquences négatives seront trés fortement amplifiées. Lorsque la
bande de fréquence du signal est trop importante, ce calcul pourra méme diverger. C’est
cette prolongation qui limite 1'utilisation de la distribution généralisée a temps complexe aux
signaux a bande étroite. Afin d’étendre son utilisation aux signaux & plus large bande, on
propose de modifier le support fréquentiel du signal étudié en utilisant une dilatation du signal.

Considérons le signal dilaté s, (t) suivant:
Sq (1) = s(at) (C.19)

avec @ > 1 un facteur de dilatation et s () le signal défini précédemment dans 1’équation C.11.
On a alors la correspondance suivante:

GCDE[s)(t,w) = aGCDE[s,](t, w) (C.20)

Il suffit donc d’effectuer une distribution généralisée a temps complexe sur le signal dilaté,
puis de la multiplier par a pour obtenir la distribution généralisée a temps complexe d'un
signal & plus large bande.
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Complex signal s (n) = Ae/®(™)
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Figure C.2: Cette figure présente la procédure & suivre pour calculer la distribution temps-
échelle a temps complexe.

Figure C.2 présente le schéma de fonctionnement de I'algorithme. Un exemple numérique
est ensuite utilisé pour illustrer la distribution généralisée & temps complexe temps-échelle et
les résultats obtenus sont comparés avec ceux obtenus avec le spectrogramme.

Le contour d’intégration choisi pour calculer la distribution complexe est d'une grande im-
portance pour réaliser une bonne analyse, c’est pourquoi les travaux futurs devraient proposer
une approche adaptative permettant de choisir un facteur d’échelle optimal en accord avec les
variations de la bande passante du signal.

Ce travail a donné lieu a la rédaction d’un papier journal qui est actuellement en révision
et un article conférence:

C. Bernard and C. Ioana. Generalized complex time distribution using modified analytical
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continuation. In 21st European Signal Processing Conference EUSIPCO-2018, September
2013.

C. Bernard, A. Digulescu and C. loana. Generalized complex time distribution using
time-scale concept and modified analytical continuation. In IEFE Transactions on Signal
Processing, en révision.

N

C.2.2 Analyse des signaux & modulation de phase non-linéaire basée sur
les opérateurs de warping

Dans cette section, on s’intéresse a la reconstruction de signaux ayant un contenu temps-
fréquentiel non stationnaire définis tels que:

N N
s) =) _si(t)=) Al (C.21)
=1 i=1

ou N correspond au nombre de composantes, A; leurs amplitudes et 1; (¢) leurs lois de phase
instantanée non linéaire. L’étude se concentrera surtout sur deux classes particuliéres de
signaux a modulation de phase non linéaire:

e La loi de phase logarithmique :
Vi (t) = 2w foit + ¢; Int; t € [toi, toi + Di] (C.22)

ou fo; est la fréquence centrale de la modulation, ¢; le taux de modulation logarithmique,
to; I'instant temporel ot apparait la modulation et D; sa durée.

e La loi de phase monomiale :
P (t) = 27 foit + cit®; t € [toi, toi + Di] (C.23)

avec fo; la fréquence centrale de la modulation, ¢; le taux de modulation, tg; I'instant
temporel ol apparait la modulation, D; sa durée et k 'ordre de la modulation.

On rencontre fréquemment ces signaux dans le monde de tous les jours, puisqu’ils sont
utilisés notamment par les animaux pour communiquer, ou encore dans les domaines des
radars et des sonars. En effet, de par leur nature, ils sont trés robustes & l'effet Doppler
et permettent ainsi d’étre propagés sur de trés longues distances sans pertes significatives.
Cependant, puisque acquis dans des domaines naturels, les enregistrements sont trés souvent
pollués par des interférences stationnaires et non-stationnaires qui peuvent perturber leurs
interprétations. Dans cette section, nous proposons de développer une technique permettant
d’extraire ces composantes a partir d’observations trés perturbées. La principale difficulté
est que les différentes parties des signaux peuvent se superposer aussi bien en temps qu’en
fréquence, ce qui rend les traditionnelles méthodes de tracking inefficaces.
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Il est bien connu que les méthodes d’acquisition comprimée permettent de reconstruire des
signaux a représentation parcimonieuse 3 partir d’un set incomplet d’échantillons. C’est cette
propriété qui sera utilisée dans cette section. Cependant, comme les signaux & modulation
de phase non-linéaires ne possédent pas une représentation parcimonieuse dans le domaine
de Fourier, ces signaux doivent étre exprimés dans un autre domaine de représentation. Ceci
est effectué a l'aide des opérateurs de warping qui permettent de modifier I’axe temporel de
n’importe quel signal. Ainsi, si on considére un signal s(¢) € £ (R) et l'opérateur de warping
W défini tel que:

W, wit)ec', w (t)>0:s(t) = Ws(t)} (C.24)

ot C! correspond & la classe des fonctions dérivables. Alors les modifications engendrées sur
le signal étudié sont exprimées tel que:

Ws (t) = s (w(t)) (C.25)
ou w (t) est la fonction de warping.

En choisissant de maniére appropriée cette fonction de warping, il est également possible
de linéariser n’importe quel signal uniquement & partir de la donnée de quelques points de sa
loi de phase instantanée. Ceci permet d’estimer cette fonction de warping méme si des parties
du signal sont manquantes dans le signal d’observation.

Ainsi, aprés la transformation de warping, on obtient un signal warpé dont la composante
d’intérét est une sinusoide dans le domaine de Fourier mélangé a d’autres signaux station-
naires et non-stationnaires. L’étape suivante consiste ensuite & nettoyer le spectrogramme
du signal warpé en enlevant les zones contenant uniquement du bruit, mais aussi les régions
contenant les autres signaux. Ceci est effectué a I'aide des L-statistiques en rangeant par or-
dre de grandeur croissant les valeurs du spectrogramme pour chaque fréquence et en enlevant
certaines valeurs. En effet, pour une fréquence donnée, il est possible d’avoir uniquement des
composantes non désirées ou un mélange entre la composante recherchée et les autres com-
posantes. En partant du principe que les plus fortes valeurs correspondent systématiquement
a des termes d’interférence, on peut négliger ces valeurs. De plus, si les composantes des deux
parties du signal (composantes désirées et non désirées) ont une amplitude du méme ordre
de grandeur, alors leur opposition de phase produit une faible amplitude & leur intersection.
C’est pourquoi il est également nécessaire d’enlever les plus faibles valeurs du spectrogramme.
Ainsi, pour chaque fréquence, on enléve du spectrogramme les @ plus faibles valeurs et les P
plus grandes valeurs. Puis on reconstruit le spectrogramme sans ces valeurs. On obtient ainsi
un spectrogramme nettoyé qui est censé ne contenir que des portions de la composante voulue.
Celui ci permet ensuite de reconstruire le signal en utilisant un algorithme de reconstruction
basé sur l'acquisition comprimée. Une transformation de warping inverse est ensuite néces-
saire pour exprimer le signal extrait dans le domaine temporel original. Un schéma descriptif
de la méthode est présenté dans la figure C.3.

Un exemple numérique est ensuite présenté oli 'on montre 'intérét de la méthode par
rapport & une technique plus classique associant le warping & un filtrage passe-bande pour
récupérer la fréquence d’intérét.
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Figure C.3: Ce schéma décrit les différentes étapes permettant d’extraire un signal a modula-
tion de phase non linéaire.

Ce travail a été réalisée en collaboration avec l'université du Monténégro et supporté
financiérement par le Ministére monténégrin des sciences. (bourse de projet : "New ICT
Compressive sensing based trends applied to: Multimedia, biomedicine and communications"
(CS-ICT)). Un papier journal et un papier de conférence ont été rédigés lors de cette these.

C. Bernard, 1. Orovic, C. Ioana. and S. Stankovi¢. Compressive sensing based separation
of nonlinear modulation phase signals. IEEE Transactions on Signal Processing, en révision.

C. Bernard, C. Ioana., I. Orovic and S. Stankovi¢. Analysis of underwater signals with
nounlinear time-frequency structures using warping-based compressive sensing algorithm. IFEE
Oceans Conference, October 2015.
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C.3 Analyse des transitoires par diagrammes de phase

Dans ce chapitre, nous nous intéresserons aux signaux de la deuxiéme classe qui seront mod-
élisés par des cosinus modulés tels que:

s(n) = { cos 2mfon)w (n) if n € [ng,no + Al (C.26)

0 otherwise

ol w (n) est une fenétre modulante, fy la fréquence centrale de la modulation, ng ’échantillon
d’arrivée du signal et A sa durée.

Comme nous l'avons vu dans le premier chapitre, l’analyse par récurrence de phase s’effectue
en choisissant une dimension de travail m et un lag 7, mais bien souvent ces parameétres sont
fixés manuellement aprés quelques essais sur les données applicatives. Cependant, on peut
observer que de nombreuses informations différentes pourraient étre extraites de chaque dia-
gramme de phase en faisant varier les représentations en fonction du lag.

En effet, on montre dans ce chapitre, qu’il est possible d’identifier des opérateurs de dé-
placement temporel, d’échelles temporelles et également de modification d’amplitude en choi-
sissant de maniére intelligente les lags. Par exemple, deux signaux identiques n’apparaissant
pas au méme instant auront des diagrammes identiques dans ’espace des phases si les lags
utilisés pour leur représentation sont les mémes. On obtient ce méme résultat pour deux
signaux reliés par une dilatation d’ordre « si les lags choisis sont également multiple de a. En
revanche, la modification d’amplitude est mise en évidence non pas par des représentations
superposables, mais par un facteur d’échelle de ces représentations.

Nous proposons ensuite différentes méthodes permettant d’extraire des données réduites de
chaque diagramme de phase. Nous explorons ensuite leur évolution par rapport & 7 permettant
ainsi de définir de nouvelles représentations des transitoires.

Modélisation des diagrammes de phase par des ellipses

La modélisation elliptique des signaux est assez naturelle puisqu’elle est spécifique aux signaux
harmoniques. Elle nous permet d’extraire trois paramétres de chaque représentation: 'angle
polaire de rotation 6 (défini entre le premier axe du repére et ’axe principal de lellipse), le
demi grand axe a et le demi petit axe b. L’évolution de I’angle polaire permet de mettre en
lumiére la périodicité apparente du signal, tandis que les deux autres paramétres permettent
de connaitre la distribution des coordonnées de la trajectoire dans ’espace des phases. Une
ellipse trés fine fera état d’une distribution trés concentrée, tandis qu’une ellipse large fera
état d’une distribution trés éparse des données.
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Modélisation de la tendance des diagrammes de phase par un polyn6éme
d’ordre 3

La modélisation par ellipse nous a fait prendre conscience que les données étaient plus ou
moins concentrées autour d’une ligne dans l’espace des phases, c’est pour cette raison que
nous proposons de modéliser cette tendance par un polynéme d’ordre 3 défini tel que:

y=ar®+b’+cx+d (C.27)

On extrait alors pour chaque représentation quatre paramétres: a, B, Cet d. Comme tous
les signaux transitoires peuvent étre défini comme ayant une moyenne nulle, on peut dés lors
mettre de coté d correspondant & 'ordonnée pour z = 0 qui sera nul sous cette hypotheése.
Il nous reste ainsi trois paramétres qui nous permettent de mettre en évidence 'existence de
modification d’échelle entre signaux en regardant leur évolution les uns par rapport aux autres
(en faisant abstraction de la variation selon 7). En effet, s’ils présentent la méme tendance
pour plusieurs lags alors la relation est assurée.

Modélisation des diagrammes de phase par leur boite de confinement

Jusqu’ici les méthodes proposées ne nous ont pas permis d’assurer que les diagrammes étudiés
étaient identiques et comme 'ajout de bruit léger a tendance & ne pas trop modifier le contour
externe des diagrammes, nous proposons de définir quatre coordonnées spéciales déterminées
par Uintersection entre la "boite confinement" du diagramme de phase et ce dernier tels que:

A { Vn, x(ni) = mazx (z (n)) (C.28)
y (n)
x (ng)
B { Wi,y (na) = maa (y (n)) (€29
- { Vn, x(n3) = mgn (x(n)) (C.30)
y (na)
' x (n4)
b { Vi, y (na) = min (y (n) (©31

L’idée ensuite est de récupérer ces coordonnées pour tous les diagrammes de phase de
plusieurs signaux et pour plusieurs valeurs de 7, puis de calculer les matrices de distance H 4,
Hy,Hc et Hp définies telles que:

HX = {hX7i7j}’l-,je[lp--ﬂ—rnaw} (0.32)
={D (X1, X2;)} (C.33)

ou D décrit une métrique et X la coordonnée de référence (A, B, C ou D).
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Ces matrices permettent de repérer les sets de lags pour lesquels les coordonnées des
points extrémes sont trés proches entre les diagrammes de phase et ainsi mettre en évidence
des rapports d’échelle entre signaux.

Modélisation par 1’aire sous la trajectoire

Bien que la méthode précédente permette de repérer les diagrammes de phase ot les points
extrémes correspondent, cela ne garantit pas que les diagrammes se superposent pour autant.
C’est pour cette raison que nous proposons de calculer I'aire sous la courbe des trajectoires,
afin de rajouter un paramétre de controle. Pour ce faire, le diagramme de phase est considérée
en coordonnées polaires [p (n),0 (n)] et I'aire est calculée comme suit:

O(N)
Als)= [ 6 ) o ) (C.34)
0(1)

On peut ensuite surveiller ’évolution de ce paramétre et comparer avec 'aire d’autres dia-
grammes de phase.

Analyse par coordonnées polaires

La derniére analyse présentée permet de mettre en évidence les relations d’échelles pouvant
exister entre deux diagrammes de phase dont les signaux sont connectés par une modification
d’amplitude constante. De méme que précédemment, on considére les coordonnées polaires
des diagrammes et plus particuliérement les graphes p = f(#). L’idée revient a dire que
pour un angle polaire donné, s’il existe une relation d’amplitude alors celle-ci se retrouve dans
le ratio des deux radius correspondants. Cette méthode se révéle efficace pour repérer des
modifications d’échelle constantes sur des portions de signal, cependant, I’étude demeure plus
complexe dans le cas de modification d’amplitude non constante.

Dans ce chapitre, nous avons montré qu’il était possible de mettre en évidence des relations
temps-échelle et des modifications d’amplitude existant entre des signaux grace a ’analyse par
diagramme de phase. Nous avons également proposé quelques méthodes d’analyse qui se sont
révélées efficaces dans le cas de simulations numeériques. Elles seront d’ailleurs testées dans le
prochain chapitre dans le cadre de contextes applicatifs réels.

Ces travaux ont donné lieu & la rédaction d’un rapport pour EDF R&D et un papier
conférence. De plus, la rédaction d’un chapitre de livre est également prévue d’ici la fin de la
these.

C. Bernard, T. Petrut, G. Vasile, and C. loana. Multi-lag Phase Space Representa-
tions for Transient Signals Characterization. In 22nd European Signal Processing Conference
EUSIPCO-2014, September 2014.

C. Bernard, A. Digulescu, and C. Ioana, Multi-lag recurrence plot analysis for transient
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6th

signal characterization. To appear in RPA Symposium Proceedings, Springer (Physics

section), 2015.

C.4 Reésultats applicatifs

Dans ce chapitre, on s’intéresse & quatre contextes applicatifs que l’on retrouve dans la vie
courante. On utilise les travaux développés dans cette thése pour mettre en évidence certaines
caractéristiques des signaux.

C.4.1 Segmentation ’ECG

Dans un premier temps, on s’intéresse a la segmentation d’ECG. En effet, chaque battement
de coeur donne lieu & trois ondes: P, QRS et T (Figure C.4) qui sont d’'un grand intérét pour le
diagnostique de maladies cardiaques. C’est pour cette raison que la communauté scientifique
s'intéresse énormément & la segmentation de ces données et notamment au monitoring de
I’évolution des intervalles de temps entre ces différentes ondes.
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Figure C.4: Un battement de coeur classique est composé de trois ondes principales: P, QRS
et T. Elles sont d’un grand intérét pour le diagnostique cardiaque.

Pour réaliser la segmentation, on propose d’utiliser la représentation en diagramme de
phase pour détecter tous les changements brusques d’amplitude. Pour ce faire l'algorithme
est composée de trois étapes:

Dans un premier temps, on commence par effectuer un filtrage passe bas de la série tem-
porelle afin d’enlever les variations rapides du signal qui sont dues aux bruits de mesure. On
effectue ensuite un filtrage médian afin d’enlever une éventuelle variation de la moyenne du
signal.

La deuxiéme étape correspond & la détection des ondes. Pour ce faire, on compare la
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différence maximale d’amplitude entre deux vecteurs successifs de ’espace des phases au ratio
rAmaz O Apge correspond a 'amplitude maximale de la série temporelle. Le résultat de la
détection est ensuite enregistré dans le vecteur binaire D.

Les détections obtenues doivent ensuite étre traitées avec une morphologie mathématique
afin de regrouper des détections consécutives (qui correspondent a la méme onde) et de sup-
primer certaines détections (qui ne correspondent & rien). Pour ce faire, on commence par
regrouper les détections qui sont séparées de moins de Ny; échantillons, puis on supprime les
détections qui sont constituées de moins de N, échantillons. Cette morphologie mathéma-
tique correspond a une fermeture morphologique.

Dans les faits, la différence d’amplitude entre I’'onde QRS et les ondes P et T est tellement
grande qu’il n’est pas possible de détecter en méme temps les ondes P et T et les ondes
QRS. Nous commencerons donc par détecter les ondes QRS, puis nous les filtrerons de la série
temporelle et enfin on relancera ’algorithme pour détecter les autres ondes.

Un algorithme de post-processing a également été développé afin de vérifier qu’il n’existe
que deux détections entre deux ondes QRS consécutives (correspondant & une onde P et une
onde T). Les conditions sont présentées dans la figure C.5.

amplitude
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Figure C.5: Intervalle compris entre deux ondes QRS consécutives. On identifie deux parties
distinctes ne contenant chacune qu’une seule onde (P ou T).

L’algorithme est ensuite testé sur une base de données ECG trés connue dans la commu-
nauté scientifique: MIT-BIH. Les résultats sont évalués & partir de plusieurs critéres statis-
tiques: la sensibilité S., la valeur prédictive positive +P, le taux d’erreur de détection DER
et le score F'1. Les résultats obtenus pour la détection des QRS sont satisfaisants, par contre
les résultats obtenus pour les deux autres ondes pourraient étre améliorés.

Ce travail fera I'objet d’une soumission & la conférence ISSPIT en septembre 2015:

C. Bernard, C. Ioana, M. A. Hasan, and S. Krishnan. Spatial-embedding signal processing
for recurrent time series: a case study with ECG signal. In 15" IEEE Symposium on Signal
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Processing and Information Technology, Décembre 2015, & soumettre.

C.4.2 Caractérisation de décharges partielles

Les transitoires électriques générés dans les équipements électriques traduisent différent phénomeénes
qui ont besoin d’étre monitorés pour assurer la surveillance prédictive des systémes. Leur
nature peut tout aussi bien étre normale (créée par un interrupteur, des changements de
parameétres de charge, etc...) qu’anormale (créée par des problémes de matériaux par ex-
emple). Dans tous les cas, les effets tels que les arcs électriques et les décharges partielles
doivent étre surveillés continuellement (détection et caractérisation) pour assurer le bon fonc-
tionnement du systéme.

Les décharges partielles correspondent & des défauts électriques localisés sur des systémes
isolants soumis a de forts voltages. Elles ne sont généralement pas visibles et représentent une
des causes les plus courantes de panne dans les systémes électriques. Leurs apparitions sont
imprévisibles, soudaines et couvrent une large bande passante. Toutes ces propriétés rendent
donc trés difficile la tache de les prévoir, les localiser et les caractériser. Dans cet exemple,
on s’intéressera uniquement a leur caractérisation sachant qu’au niveau de ’enregistrement,
les transitoires contiennent non seulement la forme du défaut & l'origine, mais également
tous les effets induits par la propagation et ’enregistrement des capteurs. On utilisera ainsi
les outils développés dans le cadre de ’analyse par diagramme de phase pour caractériser
les signaux regus aprés propagation d'une décharge partielle simulée en laboratoire dans des
cables électriques.

—t F

o] I

L, = 304m Lo, =762 m
Figure C.6: Schéma expérimental de I’expérience

Pour ce faire, on enregistre les signaux électriques recus aux deux extrémités d’un cable
électrique apres simulation d’une décharge partielle (Figure C.6). La distance parcourue par
les signaux est différente si bien que les signaux enregistrés présentent une dilatation non-
linéaire et des modifications d’amplitude plus ou moins importantes en fonction de la distance
de propagation.

On montre rapidement que la transformée en ondelette n’est pas adaptée a la caractéri-
sation de ces signaux puisque leurs formes sont modifiées. On utilise donc le méthode de la
boite de confinement sur les signaux normalisés par leur valeur maximale puis minimale pour
mettre en évidence deux relations temps-échelle pour les parties positives et négatives des sig-
naux. Un facteur de dilatation est également mis en évidence pour la partie positive. Il ne fut
pas possible de déterminer avec certitude la facteur de dilatation de la partie négative. Une
analyse en coordonnées polaires a ensuite permis de déterminer un facteur de modification
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d’amplitude constante pour la partie positive.

C.4.3 Cas d’application en acoustique passive

water level

penstock pipe Power plant

x(t) = A(t) el?®) < \ I

Figure C.7: Schéma général d’une centrale hydraulique.

Un autre exemple capital de monitoring est la surveillance continue des coups de bélier
dans les conduites forcées des centrales hydrauliques (Figure C.7). Ils apparaissent toujours a
la fermeture d’une vanne puisqu’une onde de pression est générée et remonte tout le long de
la conduite. Si celle ci se propage trop rapidement, elle peut mettre en péril I'installation et
occasionner de nombreux dégats matériels. Leur surveillance est d’un grand intérét puisque
leurs caractéristiques normales de fonctionnement sont bien connues et qu’il est ainsi facile
de détecter une mise en danger du systéme. Dans cet exemple, nous proposons de mettre en
évidence le temps de montée des transitoires de pression qui est un indicateur de la vitesse de
propagation du coup de bélier.

Pour commencer, on présente quelques caractéristiques générales du profil de pression
généré par un coup de bélier. Quand la valve se ferme, 'onde de pression se met & osciller et
s’atténue rapidement. La périodicité T est bien connue puisqu’elle dépend des parameétres de

la conduite:

T = % (C.35)

avec L la longueur de la conduite et a la célérité de 'onde de pression dans 1'eau. Si le temps
de montée de I'onde de pression est inférieur & 7'/2, on peut en conclure que I'onde se propage
trop rapidement dans la conduite forcée et que des dégits plus ou moins importants seront
occasionnés.

L’algorithme mis en place pour détecter ces temps de montée est le méme que celui utilisé
pour détecter les changements brusques d’amplitudes pour les ECG sauf qu’ici on ne s’intéresse
qu’a la premiére montée positive de la détection. Les résultats obtenus ont été jugés satis-
faisants et ’algorithme a été mis en place au sein de EDF DTG pour le traitement industriel
des signaux de pression du parc hydraulique de EDF.
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h1 (t) — I1 (t) = hl (t) * S (t)

hg (f) > T2 (f) = h,g (T) * S (f)

Figure C.8: Schéma de la simulation

C.4.4 Cas d’application de propagation d’onde acoustique dans un milieu
immergé

La propagation active d’ondes acoustiques pose le probléme de la caractérisation d’un milieu.
En effet, lors de la propagation de s(t) transmis par un émetteur 7T, & travers un milieu
dispersif comme un environnement sous-marin, I’onde subit de nombreuses modifications telles
que des dilatations (ou contractions) et des modifications d’amplitude. De maniére générale,
un capteur R, enregistrera un signal x (¢) qui correspondra & la convolution entre le signal
transmis s (¢) et la réponse impulsionnelle du milieu A () :

2 (t) = h(t) s (1) (C.36)

Cette fonction de transfert caractérise non seulement le milieu dispersif mais également
tout ce qui se trouve sur le chemin de ’onde transmise. Ainsi, si on considére deux capteurs
de réception situés a différents endroits, les formes des ondes recues (méme si provenant de la
méme origine) seront différentes.

L’idée de cette exemple est de comparer deux signaux simulés aprés propagation dans deux
canaux dispersifs différents dont les fonctions de transfert sont connectées.

On consideére ainsi les fonctions de transfert hy (t) et ha (t) modélisées par deux filtres passe-
bas d’ordre respectifs 128 et 512 et de fréquences de coupure égales a 0,3 et 0,15. Le signal
transmis s (¢) correspond & une période de sinusoide ayant une durée de deux échantillons et
une amplitude de 1. On ajoute également du bruit gaussien aux signaux regus.

Le calcul de différence des temps d’arrivée nous permet facilement de retrouver le rapport
entre les ordres des filtres, par contre il est difficile d’évaluer un rapport entre les fréquences
des signaux. Nous utilisons donc le modélisation de la tendance des diagrammes de phase
par des polynémes d’ordre 3 pour déterminer la périodicité apparente des deux signaux et
le calcul de Vaire des diagrammes. Nous en concluons qu’il existe un rapport temps-échelle
entre les deux signaux méme si la modification d’amplitude ne nous permet pas de superposer
complétement les diagrammes de phase. Ce rapport est également le méme que celui existant
entre les fréquences de coupure des deux filtres.
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Conclusions et perspectives

Cette thése pose le probléme de I’analyse des signaux transitoires, qui de par leur nature
sont trés différents et possédent de nombreuses caractéristiques. L’idée principale était donc
de proposer et examiner des méthodes alternatives d’analyse pour explorer les différentes
caractéristiques de ces signaux.

Dans un premier temps, trois différentes classes de signaux transitoires ont été mises en
évidence et en fonction des caractéristiques recherchées, différentes pistes d’étude ont été ex-
plorées. Les traditionnelles méthodes d’analyse ont également été classées en trois approches:
I’analyse statistique, les techniques projectives et les méthodes guidées par les données, et ont
été développées dans le premier chapitre.

Le deuxiéme chapitre s’intéresse aux signaux ayant des représentations temps-fréquence
variant rapidement car ils se rencontrent fréquemment dans les applications réelles tels que le
radar, les signaux de mammiféres marins, etc... Dans un premier temps, on s’est concentré sur
les distributions généralisées & temps complexe qui permettent de caractériser les différents
ordres de dérivée de la phase instantanée d’un signal. Nous avons proposé une méthode pour
étendre son application aux signaux & plus large bande en tirant profit d’une transformation
temps-échelle. Cette méthode donne des résultats satisfaisants, mais il serait bon de proposer
une approche guidée par les données pour déterminer le choix optimal du facteur d’échelle.
Ceci pourrait éventuellement étre proposé a I’aide d’une approche par analyse par diagramme
de phase. Dans un second temps, on s’est intéressé a la reconstruction de signaux & modula-
tion de phase non linéaires dans le cas de données manquantes dans le signal d’observation.
On tire profit d’une opération de warping visant a linéariser la composante d’intérét et des
L-statistiques pour nettoyer le spectrogramme. On utilise ensuite un algorithme de recon-
struction basée sur I'acquisition comprimée pour reconstruire la sinusoide. Puis une opération
inverse de warping permet de récupérer la composante d’intérét dans le domaine temporel
original. Cette méthode a montré son efficacité dans un exemple et sa supériorité vis-a-vis
d’une approche plus classique associant un warping avec un filtrage passe-bande.

Le troisiéme chapitre pose le probléme de la caractérisation des signaux ayant de soudains
changements d’amplitudes par le biais de I’analyse par diagramme de phase. Comme les opéra-
tions de déplacement temporel, d’échelle temporelle et également de modification d’amplitude
peuvent étre mis en évidence en choisissant de maniére intelligente le lag dans les diagrammes
de phase, on propose différentes méthodes permettant de révéler les invariances dans les dia-
grammes de phase. Pour ce faire, on propose différentes approches permettant d’extraire un
nombre de paramétres réduit de chaque diagramme calculé pour différent lag. Ces paramétres
sont ensuite comparés permettant ainsi la mise évidence des propriétés précédemment citées.
Les futurs axes de recherche pourront proposer d’étendre ces travaux a des dimensions d’ordre
supérieur. Une solution possible est d’utiliser les mémes méthodes développées aux projections
des diagrammes de phase sur les différents plans de I'espace des phases. On pourra également
continuer I’étude des modifications d’amplitude linéaires et non-linéaires.

Le quatriéme chapitre propose d’explorer quatre contextes applicatifs qui sont la segmen-
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tation d’ECG, la caractérisation de décharge partielle, un cas d’acoustique passive et un autre
cas d’acoustique active. Les méthodes d’analyse par diagramme de phase sont utilisées et
permettent d’extraire de nombreuses informations des signaux étudiés.
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Résumé — Les signaux transitoires, de par leur unicité, sont trés difficiles a caractériser. Ils se rencontrent
partout et sont généralement le reflet d’'un phénoméne physique trés complexe traduisant de nombreuses
informations telles que le signal & ’origine, les effets de la propagation dans le milieu considéré et aussi les effets
induits par les capteurs. Ils peuvent aussi bien correspondre a un phénoméne de communication entre animaux,
qu’étre le reflet d’'un défaut dans un systéme électrique ou hydraulique par exemple. Tout ceci rend leur étude
trés difficile, mais aussi primordiale. De nombreuses techniques en traitement du signal ont été développées
ces derniéres années pour les étudier: elles reposent souvent sur des approches statistiques, des approches
projectives sur différents dictionnaires et des techniques auto-adaptatives. Toutes ces méthodes présentent
des avantages et des inconvénients, puisqu’elles permettent souvent de les détecter correctement, néanmoins
leur caractérisation a des fins de classification et de discrimination reste compliquée. Cette thése s’inscrit
dans cette optique et propose de nouvelles approches d’étude des transitoires. Aprés un rapide descriptif des
techniques d’étude des signaux transitoires, ce travail s’intéressera dans un premier temps a la représentation
des signaux ayant des composantes fréquentielles variant trés rapidement. De maniére générale 'utilisation des
distributions généralisées & temps complexe présente un cadre d’analyse adéquat, mais il est limité aux signaux
possédant une bande passante étroite, nous proposons dans une premiére partie d’étendre cette utilisation a
des signaux possédant une bande passante plus large en appliquant un changement d’échelle des signaux. Une
deuxiéme partie s’intéressera davantage a ’extraction de signaux a modulation de phase dans le contexte d’'un
mélange de bruit non-stationnaire et d’autres signaux cohérents. Ceci sera effectué par des opérateurs de
warping couplé & des techniques de débruitage basée sur la compression de données. Le troisiéme chapitre
s’intéressera aux techniques guidées par les données basées sur la représentation des signaux en diagrammes
de phase. La contribution principale porte sur la diversité des lags qui permet en effet de mettre en évidence
les effets des opérateurs de temps-échelles, mais aussi de modification d’amplitude entre des signaux. Nous
développerons donc des méthodes permettant de mettre en évidence ces propriétés. Finalement, les travaux
présentés dans les premiers chapitres seront développés dans le cadre de quatre domaines applicatifs qui sont :
la segmentation d’ECG, la caractérisation de transitoires électriques, un cas d’acoustique passive et ’étude de
signaux acoustiques en milieu immergé. Nous terminerons enfin par une conclusion et quelques perspectives
de travail.

Mots clés : Transitoire, Caractérisation, Analyse de signaux, Non-stationnarité

Abstract — For their uniqueness, transient are really difficult to characterize. They are met everywhere
and are generally the result of very complex physical phenomena that contain a lot of information such as
the transient at its origin, the effect of the propagation through the medium and the effects induced by the
transducers. They can correspond to communication between mammals as well as being the reflection of a
fault in electrical or hydraulic networks for instance. Hence their study is of great importance even though it
is quite complicated. Numerous signal processing methods have been developed in the last decades: they often
rely on statistical approaches, linear projections of the signal onto dictionaries and data-driven techniques. All
those methods have pros and cons since they often provide good detections, nevertheless their characterization
for classification and discrimination purposes remains complicated. In this spirit, this thesis proposes new
approaches to study transients. After a brief overview of the existing methods, this work first focuses on
the representation of signals having fast-varying time-frequency components. Generally, general complex-time
distributions present a proper framework to study them but remain limited to narrow band signals. In a first
part, we propose to overcome this limitation in the case of signals with a spread time-frequency variation. This
method is based on the compression of the signal’s spectrum to a bandwidth that ensures the efficiency of the
technique. A second part then focuses on the extraction of nonlinear modulation phase signals in the context
of nonstationary noise and other coherent signals. This is performed with warping operators and compressive
sensing reconstruction techniques. The third chapter then focuses on data-driven methods based on the
representation of the signal in phase space. The main contribution takes advantage of the lag diversity that
enables to highlight time scale transformations as well as amplitude modifications between transients. Hence,
we develop different techniques enabling to highlight those properties. Finally, works presented in the first
chapters are developed in applicative contexts such as: ECG segmentation, electrical transient characterization,
a passive acoustic configuration and the study of acoustic signals in an immerse environment. We then end up
by some conclusions and perspectives for future works.
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