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CHAPTER 0

Main results

This Chapter presents the main results of this thesis, and can be read independently.

0.1 Introduction

In various physical and biological systems, one encounters the situation when either an active particle
or a particle subject to an external force travels through a quiescent host medium. A few stray examples
include self-propelled particles in crowded environments, such as molecular motors, motile living cells
or bacteria [83, 31], biased intruders in granular systems [27] or in colloidal suspensions [51]. Deter-
mining the dynamics of such a driven particle – called the tracer particle (TP) in what follows – in a host
medium which hinders its motion is a challenging problem with important applications. For example,
this question is central in the field of active microrheology, in which the properties of a medium are stud-
ied through the response of a probe to an external force [110, 102], and which have become a powerful
experimental tool to study colloidal suspensions [51, 87], complex fluids [30, 29], live cells [10, 74] or
actin networks [48, 122].

From a theoretical point of view, the difficulty lies in the modeling of the environment of the TP,
which is constituted of a large number of interacting bath particles. In most approaches the microscopic
structure of the bath is not taken into account explicitly, and the response functions are determined in-
stead by using some effective bath dynamics [84]. While these approaches are rather efficient, they
cannot account for the detailed correlations between the tracer particle and the fluctuating density pro-
files of the bath particles. In particular, when the tracer is biased, a jam of bath particles forms in front
of it, and the density profiles become strongly asymmetric. This aspect becomes crucial when the probe
and the medium particles have comparable sizes. In this regime, the fluctuations of the probe cannot be
described correctly if the medium is treated as a continuous bath.

In this thesis, we consider the model where the TP is driven in a bath of Brownian hardcore particles
performing symmetric random walks on a lattice (Fig. 1). More precisely, we consider a regular hy-
percubic lattice, which is populated by particles performing nearest-neighbor symmetric random walks,
with a characteristic time τ∗. We also introduce a tracer particle, which performs a biased random walk,
with a characteristic time τ . We assume that all the particles interact via hardcore interactions, which
means that there is at most one particle per site.

In this model, the evolution of the mean position of the TP has been studied previously [15, 14,
13]. However, the behavior of its fluctuations and of the distribution of its position have not been
studied yet. This lattice description is particularly adapted in the context presented above, as it allows
to take into account explicitly the dynamics of the bath, and to study the statistical properties of the TP
position. Moreover, lattice models of interacting particles are paradigmatic in nonequilibrium statistical
mechanics and have received a lot of attention in the past decades [42, 82].
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Figure 1: Biased tracer in a hardcore lattice gas. In this Figure, we represent the particular case of a
two-dimensional lattice.

In the particular case where the bath of particles is very dense, exact results at leading order in
the density of vacancies on the lattice are obtained. The analysis of these solutions reveals anomalous
behaviors of the fluctuations of the position of the TP and of its mean position in confined geometries.
For arbitrary density, one faces a complex N -body problem, for which we obtain approximate values of
the mean, fluctuations and distribution of the position of the TP using a mean-field-type approximation.
This approximation is shown to give exact results in the limits of a very dilute or very dense lattice gas.

0.2 Biased tracer diffusion in a high-density lattice gas

0.2.1 General method

We present here the general model of a biased tracer in a hardcore lattice gas. We consider a hypercubic
lattice of arbitrary dimension. The lattice sites are occupied by hardcore particles performing symmetric
random walks with a mean waiting time τ∗, with the restriction that the occupancy number for each site
is at most equal to one. The fraction of occupied sites is denoted as ρ, whereas the vacancy density is
denoted as ρ0 (with ρ0 = 1 − ρ). A tracer particle (TP) is also present on the lattice, and performs a
nearest-neighbor biased random walk with a mean waiting time τ (in what follows, we will consider
the particular case where τ = τ∗). The probability for the TP to make one step in direction eν will be
denoted by pν (ν ∈ {±1, . . . ,±d}). Although our results will be valid for any choice of the probabilities
pν , it will be convenient to assume that the bias originates from an external force F = Fe1, so that the
jump probability in direction ν is written

pν =
eβσF ·eν/2∑

µ∈{±1,...±d} eβσF ·eµ/2
, (1)

where the lattice spacing σ and the inverse temperature β are taken equal to one. Note that this choice
of the jump probabilities fulfills the detailed balance condition.

In the high-density limit, the motion of the TP is mediated by the diffusion of the vacancies: the TP
can move only if a vacancy visits one of its neighboring sites. In this situation, it is easier to describe
the dynamics of the vacancies rather than the dynamics of the whole bath of particles. We adopt a
discrete-time description, and at each time step, each vacancy moves according to the following rules:
(i) if the TP is not adjacent to the vacancy, one neighbor is randomly selected and exchanges its position
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with the vacancy; (ii) otherwise, if the TP is at position X and the vacancy at position X + eν , the TP
exchanges its position with the vacancy with probability pν = /[1− 1/(2d) + pν ] and with probability
1/(2d− 1 + 2dpν) with any of the 2d− 1 other neighbors. We aim to obtain results at leading order in
the density of vacancies ρ0. Consequently, as the events involving two vacancies at the same site or on
neighboring sites are of order O(ρ0

2), they do not contribute in the limit we consider and are not taken
into account.

In the spirit of [22, 23], where tracer diffusion in the absence of bias was studied, we first consider an
auxiliary problem involving a single vacancy, starting from site Y 0. The TP, initially at site 0, can move
only by exchanging its position with the vacancy. For the sake of simplicity, we first present in detail the
particular case where the applied force is strong enough for the TP motion to be directed, so that p1 = 1

and pν = 0 for ν 6= 1. Results in the general case of an arbitrary force, obtained along the same method,
will be given next. We define the single-vacancy propagator P (1)

t (X|Y 0) as the probability for the TP
to be at site X = ne1 at time t knowing that the vacancy started from site Y 0. An expression for this
quantity can be obtained by summing over the number of steps taken by the TP up to time t, over the
directions of these steps, and over the length of the time intervals elapsed between consecutive steps.
The single-vacancy propagator can then be written as :

P
(1)
t (X|Y 0) = δn,0


1−

t∑

j=0

Fj(Y 0)




+

+∞∑

m1=1

. . .

+∞∑

mn=1

+∞∑

mn+1=0

δm1+...+mn+1,t


1−

mn+1∑

j=0

Fj(−e1)


Fmn(−e1) . . . Fm2(−e1)Fm1(Y 0),

(2)

where Ft(Y 0) is the probability that the vacancy, which starts its random walk at the site Y 0, arrives
at the origin 0 for the first time at the time step t, and where the second sum in (2) is equal to zero if
n ≤ 0. The first term in the right- hand side of (2) represents the event that at time t, the TP has not been
visited by the vacancy, while the second one results from a partition on the waiting times mj between
the successive visits of the TP by the vacancy. The Fourier-Laplace transform of the single-vacancy
propagator is then easily found to be given by :

̂̃
P

(1)

(k|Y 0; ξ) =
1

1− ξ

[
1 +

F̂ (Y 0; ξ)(eik1 − 1)

1− eik1F̂ (e−1; ξ)

]
, (3)

where the discrete Laplace transform (or generating function) of a time-dependent function φ(t) has
been denoted by φ̂(ξ) =

∑∞
t=0 φ(t)ξt and the Fourier transform of a space-dependent function ψ(r) by

ψ̃(k) =
∑
r eik·rψ(r). Note that the single-vacancy propagators are only determined in terms of the

first-passage time densities (FPTD) Ft(Y0).
The second step of the calculation consists in reducing in the dense limit ρ0 → 0 the full problem to

the single-vacancy problem. This is conveniently done by starting from a finite number M of vacancies,
of initial positions Y (1)

0 , · · · ,Y (M)
0 on a finite lattice of N sites. The key point is that, in the limit

ρ0 = M/N → 0, the vacancies contribute independently to the motion of the TP, so that the full
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propagator can be written at leading order in ρ0 in terms of the single vacancy propagator:

Pt(X|Y (1)
0 , · · · ,Y (M)

0 ) ∼
ρ0→0

∑

X
(1)
0

· · ·
∑

X
(M)
0

δ
X,X

(1)
0 +···+X(M)

0

M∏

j=1

P
(1)
t (X

(j)
0 |Y

(j)
0 ). (4)

Averaging next over the initial positions of the vacancies, taking the Fourier transform and finally going
to the thermodynamic limit (M,N →∞ with M/N = ρ0 fixed), the logarithm of the Fourier transform
of the propagator can be written at leading order in ρ0 as ln P̃t(k) ∼ρ0→0 −ρ0Ωt(k), where

Ω̂(k; ξ) =

[
1

1− ξ − eik1 ̂̃P
(1)

(k|e−1; ξ)

] ∑

Y 6=0

F̂ (Y ; ξ). (5)

The function Ω̂(k; ξ) is simply related to the cumulant generating function ln
〈
eik·Xt

〉
, so that the cu-

mulants ofXt are given by the successive derivatives of Ωt:

κ(n)(t) ∼ −ρ0

in

d∑

ν=1

(
∂nΩt

∂kν
n

∣∣∣∣
k=0

)
eν . (6)

Consequently, the determination of the function Ω̂(k; ξ) and therefore of the cumulants of the position
of the TP only relies on the FPTD Ft(Y 0) (probability for a vacancy to visit the origin for the first-time
at time t starting from site Y 0).

When the tracer is no longer directed and undergoes an arbitrary bias, we show that the single-
vacancy propagators and the ultimate expression of Ω̂(k; ξ) only depends on conditional FPTD
F ∗t (0|eµ|Y 0) (probability for a vacancy to visit the origin for the first-time at time t starting from Y 0

and being at site eµ at time t− 1). These conditional FPTD are relative to the random walk of a vacancy
on a lattice in presence of a biased TP that locally modifies the evolution rules of the vacancy. The va-
cancy then performs a symmetric random walk on every sites of the lattice, excepted on the neighboring
sites of the TP, on which the evolution rules of the vacancies are perturbed because of the bias experi-
enced by the TP. The conditional FPTD are computed using standard techniques for random walks on
lattices with defectives site [58], and written in terms of the propagators associated to the simple sym-
metric random walk on the considered structure. These calculations yield explicit expressions for the
conditional FPTD but are very lengthy, so that the help from a computer algebra software is required.

In this framework, we will study the fluctuations of the position of the TP as well as the other
cumulants of its position. The dependence of these quantities on the different parameters of the problem
(time, force, density, lattice dimension) are shown to be non-trivial. We first consider the case of a one-
dimensional lattice, for which we determine the probability distribution of the TP position. We consider
higher-dimensional lattices, and study the fluctuations and mean of the position of the TP. We then study
the higher-order cumulants of the distribution, and show that there exists universal formulae to describe
their behavior in terms of the properties of a simple random walk on the considered structures. Finally,
we provide a simplified description that correctly captures the physical mechanisms at stake.

0.2.2 One-dimensional lattice

We first consider the case of a one-dimensional lattice. The transport properties of a biased TP in a
one-dimensional hardcore lattice gas are related to the well-known problem of single-file diffusion. In
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this paradigmatic model, all the particles are identical and perform symmetric nearest-neighbor random
walks with the hardcore exclusion constraint. In the absence of a bias, it has been shown that the
fluctuations of a tagged particle are anomalous and that they grow subdiffusively as

√
t [54, 4]. The

situation where the tagged particle is biased also raised some attention. In this case, the mean position
itself has a nontrivial behavior, and it was shown that it was growing as

√
t with a prefactor that is a

function of the bias and which was given as the implicit solution of an equation [25, 72].
In the presence of a bias, the fluctuations of the position of the TP and its distribution have not

been studied yet. In the high-density limit, we use the general framework presented in the previous
section. We express the cumulant generating function of the TP position in terms of the first-passage
time densities (FPTD) associated to the random walk of the vacancies. These FPTD are calculated with
standard methods from the theory of random walks on lattices. It is shown that all the odd cumulants on
the one hand, and all the even cumulants on the other hand are identical in the long-time limit, and scale
as
√
t:

lim
ρ0→0

κ(odd)(t)

ρ0
∼

t→∞
(p1 − p−1)

√
2t

π
, (7)

lim
ρ0→0

κ(even)(t)

ρ0
∼

t→∞

√
2t

π
. (8)

In particular, we observe that fluctuations of the TP position grow subdiffusively as
√
t and are inde-

pendent of the bias. Finally, the distribution of the TP position is shown to be given by the Skellam
distribution:

Pt(X) ∼
ρ0→0

exp
(
−κ(even)(t)

)(κ(even)(t) + κ(odd)(t)

κ(even)(t)− κ(odd)(t)

)X/2
IX

(√
κ(even)(t)2 − κ(odd)(t)2

)
, (9)

where In(·) is a modified Bessel function of the first kind. The rescaled variable (Xt−〈Xt〉)/
√

Var(Xt)

is shown to be distributed accordingly to a Gaussian distribution.
The one-dimensional geometry yields an anomalous evolution of the cumulants of the position of the

TP. In particular, the fluctuations of the TP position are shown to grow subdiffusively. Indeed, because
of the exclusion interactions and of the geometry of the lattice, the particles cannot bypass each other,
and the displacement of a given particle on progressively larger distances requires the motion of more
and more particles in the same direction. Then, the motion of the particles becomes strongly correlated,
and the fluctuations of the TP are subdiffusive.

0.2.3 Confinement-induced superdiffusion

We now consider higher-dimensional lattices. As it was emphasized in Section 0.2.1, an important
technical point is that for small values of the density of vacancies ρ0, the dynamics of the TP can be
deduced from analyzing the joint dynamics of the TP and a single isolated vacancy. Exact asymptotic
expressions of the fluctuations of the TP position in the direction of the force, denoted by κ(2)

1 (t), are
obtained for various geometries and for arbitrary values of the jump probabilities pν (probability for the
TP to make a jump in direction ν). These are valid at large times and low vacancy densities, and are
summarized below.
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L 1

2 L

L

1
2

3

Figure 2: Stripe-like (left) and capillary-like (right) geometries. The lattice is infinite in the first direction
(which will be the direction of the external force imposed on the TP), and finite of width L with periodic
boundary conditions in the other directions.

Superdiffusive regime. First, our approach predicts the following large-t behaviour of the variance
κ

(2)
1 (t) in the leading order of ρ0 for different lattices:

lim
ρ0→0

κ
(2)
1 (t)

ρ0
=

t→∞
2a2

0 ×





(4/3
√
πL) t3/2 2D stripe,

(2
√

2/3π/L2) t3/2 3D capillary,

π−1t ln(t) 2D lattice,[
A+ 1

2a0

p1−p−1

p1+p−1

]
t 3D lattice,

(10)

where 2D stripes and 3D capillaries are quasi-one-dimensional geometries, which are infinite in the
direction of e1 and finite of width L in the other directions (Fig. 2). In (10), the coefficient a0 depends
on the bias

a0 =
p1 − p−1

1 + 2dα
2d−α(p1 + p−1)

, (11)

A = P̂ (0|0; 1) + 2(13α− 6)/[(2 + α)(α− 6)], d is the system dimension, α = limξ→1− [P̂ (0|0; ξ)−
P̂ (2e1|0; ξ)] and P̂ (r|r0; ξ) is the generating function (discrete Laplace transform) of the propagator of
a symmetric random walk on the considered lattice. These surprisingly simple exact expressions unveil
the dependence of the variance on time, width L of the stripe or of the capillary, and on the bias. A
number of important conclusions can be drawn from this result:

• Strong superdiffusion with exponent 3/2 takes place in confined, quasi-1D geometries, those
being, infinitely long 3D capillaries and 2D stripes. This result is quite counterintuitive: indeed,
in the absence of driving force it is common to encounter diffusive, or even subdiffusive growth
of the fluctuations of the TP position in such crowded environments, however not superdiffusion.

• The superdiffusion in such systems emerges beyond (and therefore can not be reproduced within)
the linear response-based approaches. If the bias originates from an external force F and if the
jump probabilities of the TP are given by (1), the prefactor in the superdiffusive law is proportional
to F 2 when F → 0. Despite the presence of the superdiffusion, the Einstein relation is nonetheless
valid for systems of arbitrary geometry due to subdominant (in time) terms whose prefactor is
proportional to F .

• In unbounded 3D systems κ(2)
1 (t) grows diffusively and not superdiffusively.
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• Finally, this shows that superdiffusion is geometry-induced and the recurrence of the random walk
performed by a vacancy is a necessary condition in order for superdiffusion to occur. However,
this condition is not sufficient. Indeed, on one-dimensional lattices, although the random walk of
a vacancy is recurrent, the behavior of the TP is not superdiffusive (see Section 0.2.2).

Giant diffusion regime. The exact analytical result in (10) provides explicit criteria for superdiffusion
to occur. Technically, this yields the behavior of the variance when the limit ρ0 → 0 is taken before the
large-t limit. It however does not allow us, due to the nature of the limits involved, to answer the question
whether the superdiffusion is the ultimate regime (or just a transient), which requires the determination
of limt→∞ κ

(2)
1 (t) at fixed ρ0. Importantly, we find that the order in which these limits are taken is crucial

in confined geometries and show that limt→∞ limρ0→0 κ
(2)
1 (t) 6= limρ0→0 limt→∞ κ

(2)
1 (t). In fact, the

effective bias experienced by a vacancy between two consecutive interactions with the TP, originating
from a non zero velocity of the TP, dramatically affects the ultimate long-time behavior of the variance
in confined geometries.

More precisely, we show that the superdiffusive regime is always transient for an experimentally
relevant system with ρ0 fixed, while the long-time behavior obeys

lim
t→∞

κ
(2)
1 (t)

t
=

ρ0→0





B quasi-1D,

4a2
0π
−1ρ0 ln(ρ0

−1) 2D lattice,

2a2
0

[
A+ 1

2a0

p1−p−1

p1−p−1

]
ρ0 3D lattice,

(12)

i.e., is always diffusive. The constant B only depends on the driving force F : this long-time diffusive
behavior is particularly remarkable in quasi-1D systems, in which the variance is independent of ρ0.

Full dynamics: scaling regime and cross-over. Finally, our approach provides the complete time
evolution of the variance in the regime corresponding to ρ0 � 1 and at a sufficiently large time t, that
interpolates between the two limiting regimes of superdiffusion and giant diffusion listed above. In this
regime, it is found that

κ
(2)
1 (t) ∼





tf̃(ρ2
0t)/L

d−1 quasi-1D,

−2a2
0
π ρ0t ln

(
(ρ0a0)2 + 1/t

)
2D lattice,

2a2
0

[
A+ 1

2a0

p1−p−1

p1−p−1

]
ρ0t 3D lattice,

(13)

where the scaling function f̃ is explicitly calculated and satisfies

f̃(x) ∝
{
x1/2 when x� 1,

constant when x� 1.
(14)

On quasi-one-dimensional and two-dimensional lattices, the crossover times between the two regimes
scales as 1/ρ0

2, so that superdiffusion is very long-lived in these systems. On Fig. 3, we present results
from Monte-Carlo numerical simulations performed on a two-dimensional stripe of width L = 3, in the
case where the TP is directed. The fluctuations of the position of the TP divided by time are plotted as
a function of a rescaled time τ = a′0

2ρ0
2t (where a′0 is a function of the bias which will be introduced

explicitly in the next section) for different values of the density of vacancy ρ0. For small values of
the rescaled time (τ � 1), the fluctuations grow superdiffusively as t3/2. At long times (τ � 1), the
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Figure 3: Rescaled variance κ(2)
1 (t)/t as a function of τ = a′0

2ρ0
2t obtained from numerical simulations

of tracer diffusion on a 2D stripe of width L = 3 with different densities. The external force is F =∞,
which implies p1 = 1 and pµ = 0 for µ 6= 1.

fluctuations cross over to a diffusive regime. The scaling function f̃(τ)/L is also plotted (black line).
We verify that it constitutes a good description of both regimes and of the transition between them.

The superdiffusive behavior of the biased TP was also observed in off-lattice systems. The behavior
of a driven TP in an continuous-space bath of Brownian particles was studied by numerical simulations
in two types of system: (i) a colloidal fluid of identical particles interacting via a purely repulsive
potential (simulations performed by A. Law and D. Chakraborty, Universität Stuttgart), (ii) a dissipative
granular fluid (simulations performed by A. Bodrova, Moscow State University). In both algorithms,
a biased intruder is submitted to an external force. In stripe-like geometries, the simulations reveal a
superdiffusive behavior of the position of the TP, with fluctuations growing as t3/2. This suggests that
confinement-induced superdiffusion could be a generic feature of the dynamics of a biased intruder in a
crowded medium.

0.2.4 Velocity anomaly in quasi-one-dimensional geometries

We found that in quasi-one-dimensional and two-dimensional systems there exists a long-lived superdif-
fusive behavior of the fluctuations of the position of the TP, crossing-over to a diffusive behavior after a
time t× ∼ 1/ρ0

2. The complete time behavior of the variance was found to display a scaling behavior
as a function of the rescaled variable ρ0

2t. We show that, actually, the behavior of the mean itself of the
position of the TP displays a striking anomaly in quasi-one-dimensional geometries. This unexpected
behavior, obtained from Monte-Carlo numerical simulations in a quasi-1D stripe, is plotted in Fig. 4
for several vacancy densities ρ0, as a function of the rescaled variable τ = a′0

2ρ0
2t, suggested by the

scaling behavior of the variance. A scaled form of the mean-position is found which, very surprisingly,
after a long-lived plateau drops to a lower ultimate value. The transition from the “high” velocity to
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Figure 4: Rescaled mean position (velocity) 〈Xt〉 /(ρ0t) as a function of τ = a′0
2ρ0

2t obtained from
numerical simulations of tracer diffusion on a 2D stripe of width L = 3 with different densities. The
external force is F =∞, which implies p1 = 1 and pµ = 0 for µ 6= 1.

the ultimate regime of “low” velocity takes place at a time scale of the order of the cross-over time
t× ∼ 1/ρ0

2 involved in the time evolution of the variance, suggesting that the anomaly of the variance
and that of the mean could be linked.

Using again the general formalism valid at leading order in ρ0 presented in Section 0.2.1, we study
analytically the mean position of the TP. One can obtain the expression of the mean position of the TP
in terms of the conditional FPTD associated to the random walks of the vacancies, which have been
computed for the study of the fluctuations of the TP. On quasi-one-dimensional lattices, it is found that

lim
ρ0→0

〈Xt〉
ρ0

∼
t→∞

a0t, (15)

with
a0 ≡

p1 − p−1

1 + 2dα
2d−α(p1 + p−1)

. (16)

The value of a0 corresponds to the long-lived plateau displayed by the velocity of the TP at short times.
In order to describe the ultimate regime corresponding to the “low” velocity we now need to analyze the
regime where the large time limit is taken first and the small density limit next, in contrast to the regime
considered in (15). The formalism described above can actually be extended to analyze this second limit.
The key difference with the previous case is that for a fixed small ρ0 the random walk performed by the
vacancy between two successive visits of the lattice site occupied by the TP is a biased random walk in
the reference frame of the TP, due to the interactions of the TP with the other vacancies. More precisely,
this bias originates from the non zero mean displacement of the TP in the e1 direction. The method
presented above can then be applied, provided that the symmetric propagators describing the random
walk of a given vacancy are replaced by biased propagators. In the dense limit ρ0 → 0, the bias is
proportional to the vacancy density ρ0, and thus vanishes when ρ0 goes to zero. The explicit expression
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of the bias is not needed to determine the velocity at leading order, and is determined self-consistently
afterwards. It is finally found that:

lim
t→∞

〈Xt〉
t

∼
ρ0→0

ρ0a
′
0, (17)

where
a′0 =

p1 − p−1

1 + 2dα
2d−α(p1 + p−1) + 4d2

Ld−1(2d−α)
(p1 − p−1)

. (18)

Several comments are in order. (i) In quasi-1D systems, the transverse width L is finite, so that the
ultimate velocity ρ0a

′
0 is always lower than the first high velocity ρ0a0. The theoretical expressions (15)

and (17) quantitatively account for the velocity anomaly numerically evidenced in Fig. 4 ; (ii) If the bias
originates from an external force F and if the jump probabilities of the TP are given by (1), this velocity
jump ρ0(a0 − a′0) can be shown to scale as F 2 for small applied force F , so that this anomaly emerges
only beyond linear response analysis. In turn, to linear order in F , there is a single velocity which can
be shown to fulfill the Einstein relation; (iii) In systems unbounded in the transverse direction, i.e. such
that L → ∞, a′0 = a0 meaning that no velocity anomaly occurs. In particular, in infinite 2D systems,
superdiffusion takes place but no velocity anomaly is observed.

On quasi-one-dimensional lattices, we also considered the joint limit where ρ0 → 0 and t → ∞
simultaneously with the appropriate scaling t ∼ 1/ρ0

2. We obtain 〈Xt〉 /(ρ0t) as an explicit function of
the rescaled variable τ = a′0

2ρ0
2t, which is plotted on Fig. 4 (black solid line). This approach correctly

describes the velocity anomaly, and the transition from the initial “high” plateau to the ultimate “low”
value.

0.2.5 Universal formula for the cumulants

In the previous Sections, we presented the expressions of the mean and fluctuations of the position
of a biased TP in a hardcore lattice gas, in different geometries. These expressions only involve the
propagators associated to simple random walks on the considered structures. Although the behavior of
the TP is strongly affected by the geometry of the lattice, we can show that there exist general expressions
of the first cumulants of the position of the TP that hold for every geometries. We extend these results
to higher-order cumulants, and we also study the cumulants of the position of the TP in the direction
perpendicular to the bias. These universal expressions are used to predict the behavior of the TP on more
complex structures such as fractal lattices.

0.2.6 Simplified description

In the previous Sections, we showed that the transport properties of a biased TP in a dense hardcore
lattice gas were closely related to the properties of the random walks performed by the vacancies on the
considered structure. In particular, the recurrence (or transience) of these random walks appeared to be
key property controlling the behavior of the fluctuations of the TP. Here we consider a simplified model
that unveils the physical mechanism controlling the statistical properties of the position of the TP.

The TP is assumed to be directed, so that it jumps in the direction of the bias every time it is visited
by a vacancy. Its position at time t is then exactly equal to the the number of time steps during which the
TP location was occupied by at least one vacancy up time to t. Defining the random variable ητ , which
is equal to 1 if there is at least one vacancy at the origin at time t and 0 otherwise, the position of the TP
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is written Xt =
∑t

τ=1 ητ . Using a continuous-time description for simplicity, the second moment of Xt

reads
〈
Xt

2
〉

= 2

∫ t

0
dτ ′
∫ τ ′

0
dτ 〈ητητ ′〉 . (19)

The correlation function 〈ητητ ′〉 is formally the probability to have at least one vacancy at the origin at
time τ and at time τ ′. At leading order in ρ0, it can be written in terms of a single-vacancy propagator:

〈ητητ ′〉 =
ρ0→0

ρ0p(0, τ
′ − τ |0, 0) +O(ρ0

2), (20)

where p(r, t|0, 0) is the propagator associated to the biased random walk of a vacancy which starts
from site 0 and arrives at site r. Indeed, for a fixed value of ρ0, the random walk performed by a given
vacancy between two successive visits to the location of the TP is biased due to the net displacement
of the TP in the direction of the force originating from its interactions with other vacancies. The bias
experienced by the vacancies is in the direction opposite to that of the TP displacement, is taken equal
to V ρ0 (where V is a constant), and then vanishes when ρ0 → 0.

Equations (19) and (20) then give a simple relation between the fluctuations of the TP position and
the properties of the random walk of vacancy. In the particular case of a stripe-like geometry, and using
a continuous-space description for simplicity, the propagators p can be written explicitly, and we finally
obtain the Laplace transform of the second moment:

L
[〈
Xt

2
〉]

(s) =
2ρ0

s2

1

L
√

4sD + ρ0
2V 2

, (21)

where D is the diffusion coefficient of the vacancy far from the TP. In the limit where ρ0 is taken first,
and taking the inverse Laplace transform, we get the following expression for the variance

lim
ρ0→0

〈
Xt

2
〉

ρ0
∼

t→∞

4

3L
√
Dπ

t3/2. (22)

We then retrieve qualitatively the time-dependence of the variance which was obtained with the exact
approach (10). In the limit where t is going to infinity for a fixed value of ρ0, which is equivalent to take
the limit s→ 0 in Laplace space, we obtain after an inverse Laplace transform

lim
t→∞

〈
Xt

2
〉

t
∼

ρ0→0

2

LV
(23)

which is in qualitative agreement with the exact computation (12).
Consequently, with a simplified description of the problem where the TP is directed and where the

properties of the random walk performed by the vacancies are described using propagators in continuous
space and time, we obtain the nontrivial behaviors obtained through the exact analytical treatment of the
problem. This shows that superdiffusion is a single-vacancy effect: in low-dimensional systems, the
return statistics of a vacancy to the location of the TP is anomalous and yields an anomalous behavior
of the TP fluctuations. At large times, the random walk performed by a vacancy between two successive
visits to the location of the TP is biased, due to the net displacement of the TP caused by its interactions
with other vacancies. This biased random walk is not recurrent anymore, and the TP has a diffusive
behavior in the long-time limit.
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This approach can be extended to retrieve the superdiffusive behavior observed on the two-
dimensional lattice, and the anomalous subdiffusion obtained in the case of the one-dimensional lattice.
However, this simplified description does not predict the emergence of the velocity anomaly in quasi-1D
geometries presented in Section 0.2.4. Further work could result in a more accurate description that
would take into account the anticorrelations effects between the TP and a single vacancy, that would
describe more subtle effects.

0.3 Biased tracer diffusion in a hardcore lattice gas of arbitrary density

0.3.1 General formalism

The situation where the density of the bath of particles is no longer close to 1 and is arbitrary is more
complex. In this case, the motion of the TP cannot be simply related to the diffusion of independent
vacancies on the lattice, and we face a highly correlated N -body problem: when the TP moves forward,
it perturbs the repartition of the bath particles, and in turn the reorganization of the bath particles around
the TP controls the evolution of its position.

The resolution method presented below allows us to consider a more general situation than the one
considered so far: we consider the model of a driven tracer in a bath of hardcore Brownian particles on
a lattice (of dimension d and spacing σ) in contact with a reservoir of particles (Fig. 5). We adopt a
continuous-time description, and we assume that the particles in the reservoir may adsorb onto vacant
lattice sites at a fixed rate f/τ∗. The adsorbed particles may move randomly along the lattice by hopping
at a rate 1/(2dτ∗) to any of 2d neighboring lattice sites, which process is constrained by a hard-core
exclusion preventing multiple occupancy. The adsorbed particles may desorb from the lattice back to
the reservoir at rate g/τ∗. This so-called “Langmuir kinetics” has been shown to be relevant in several
experimental contexts, and in particular to model transport in biological media.

The occupancy of lattice sites is described by the time-dependent Boolean variable ηr, which takes
two values: 1, if the site r is occupied by an adsorbed particle, and 0, otherwise. Note that the mean
density of the bath particles, 〈ηr〉, approaches as t→∞ a constant value ρ = f/(f + g) but the number
of particles on the lattice is not explicitly conserved in such a dynamics. The case where the number of
particles on the lattice is conserved can be retrieved by taking the limits f → 0 and g → 0 with a fixed
value of the density ρ = f/(f + g) .

We also introduce a tracer particle (TP), whose position at time t is a time-dependent random
variable denoted as Xt. The TP dynamics is different from that of the adsorbed particles in two
aspects: first, it can not desorb from the lattice and second, it is subject to an external driving force,
which favors its jumps along the direction corresponding to the unit vector e1 of the lattice. The TP
dynamics is defined as follows: we suppose that the tracer, which occupies the site Xt at time t, waits
an exponentially distributed time with mean τ , and then attempts to hop onto one of the 2d neighboring
sites, Xt + eµ, where eµ is one of the 2d unit vectors. The jump direction is chosen according to the
probability pν . It can be convenient to assume that the bias originates from an external force F = Fe1

(see Section 0.2.1). After the direction of the jump has been chosen, the hop is instantaneously fulfilled
if the target site is vacant at this moment of time; otherwise, i.e., if the target site is occupied by any
adsorbed particle, the jump is rejected and the tracer remains at its position. This model was studied
before [14, 13, 15], but the results were limited to the behavior of the mean position of the TP. We aim
to study the fluctuations of the position of the TP, and more generally the distribution of its position.
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Figure 5: Model and notations in the two-dimensional (2D) case.

Defining P (X, η; t) as the joint probability of finding at time t the TP at the siteX and all adsorbed
particles in the configuration η = {ηr}, we write the master equation verified by P (X, η; t):

2dτ∗∂tP (X, η; t) =
d∑

µ=1

∑

r 6=X−eµ,X
[P (X, ηr,µ; t)− P (X, η; t)]

+
2dτ∗

τ

∑

µ

pµ
[
(1− ηX)P (X − eµ, η; t)−

(
1− ηX+eµ

)
P (X, η; t)

]

+ 2dg
∑

r 6=X
[(1− ηr)P (X, η̂r; t)− ηrP (X, η; t)]

+ 2df
∑

r 6=X
[ηrP (X, η̂r; t)− (1− ηr)P (X, η; t)] . (24)

where ηr,ν is a configuration obtained from η by the exchange of the occupation variables of two neigh-
boring sites r and r + eν , and η̂r is a configuration obtained from the original η by the replacement
ηr → 1− ηr.

From this master equation, one obtains the following equation verified by the mean position of the
TP in the direction of the force (Xt = Xt · e1):

d

dt
〈Xt〉 =

σ

τ

[
p1 (1− ke1)− p−1

(
1− ke−1

)]
, (25)

where we define the density profiles in the reference frame of the TP kr ≡ 〈ηXt+r〉. The equations
verified by the density profiles kr are also obtained from the master equation, and are not closed with
respect to kr, as they involve correlation functions of the form

〈
ηXt+rηXt+eµ

〉
. The evolution equations

for such correlation functions involve higher-order correlation functions, so that the master equation
yields an infinite hierarchy of equations that needs to be closed with an approximation. We use a mean-
field-type approximation, which consists in writing the occupation variables as ηR = 〈ηR〉+ δηR, and
discarding the terms of order (δηR)2. This yields the approximation

〈
ηXt+rηXt+eµ

〉
' 〈ηXt+r〉

〈
ηXt+eµ

〉
, (26)
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and we finally obtain a closed set of equations verified by the density profiles kr.
We can extend this method to get the evolution equation of the fluctuations of the TP position from

the master equation (24):

d

dt

(〈
Xt

2
〉
− 〈Xt〉2

)
= −2σ

τ

[
p1g̃e1 − p−1g̃e−1

]
+
σ2

τ

[
p1(1− ke1) + p−1(1− ke−1)

]
, (27)

where we define the cross-correlation functions

g̃r ≡ 〈δXt(ηXt+r − 〈ηXt+r〉)〉 , (28)

with δXt = Xt − 〈Xt〉. The evolution equations for g̃r obtained from the master equation (24) involve
higher-order correlation functions of the form

〈
δXtηXt+rηXt+eµ

〉
. The hierarchy of equations is closed

by extending the mean-field-type decoupling approximation and neglecting again the quadratic terms in
the variations of the occupations variables ηR:

〈
δXtηXt+rηXt+eµ

〉
' krg̃eµ + keµ g̃r. (29)

We finally obtain a closed set of equations whose solutions are the correlation functions g̃r, and the
fluctuations of the TP position can be obtained from (27).

The methods presented for the mean and the fluctuations of the position of the TP can be extended
to compute the behavior of the cumulant generating function associated to the position of the TP Ψ(t) ≡
ln
〈
eiuXt

〉
. Note that the distribution of the position of the TP can easily be deduced from the cumulant

generating function. It is found that

dΨ

dt
=
p1

τ

(
eiuσ − 1

)
(1− w̃e1) +

p−1

τ

(
e−iuσ − 1

) (
1− w̃e−1

)
, (30)

where w̃r ≡
〈
eiuXtηXt+r

〉 /〈
eiuXt

〉
. Once again, we obtain a closed set of equations verified by the

correlation functions w̃r by extending the mean-field-type decoupling approximation.
We then obtain approximated equations verified by the correlation functions kr, g̃r and w̃r, which

are involved in the evolution equations of the mean, the fluctuations and the cumulant generating func-
tion of the position of the TP.

0.3.2 One-dimensional situation

We consider the particular case of a one-dimensional lattice in contact with a reservoir of particles. Note
that the presence of a reservoir of particles strongly affects the dynamics of the TP in this geometry.
The behavior of the cumulants of its position are shown to be qualitatively very different than what was
obtained in the case of a lattice gas with a conserved number of bath particles. In particular we show
that the mean and fluctuations of the TP position are no longer anomalous, and grow linearly with time.
Starting from the general formalism presented in Section 0.3.1, we compute the stationary solutions of
the equations verified by the correlation functions kr, g̃r and w̃r, and we deduce the stationary values
of the velocity, the diffusion coefficient and of the distribution of position.

We first obtain the solutions of the equations verified by the mean density profiles kr = 〈ηr〉, already
presented in [15]. In particular, the quantities ke±1 , involved in the expression of the TP velocity, are the
solutions of an implicit system of equations, that can be solved numerically for a given set of parameters.
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Figure 6: Stationary diffusion coefficient K of the TP as a function of the density for different values of
the desorption rate g obtained from numerical simulations (symbols) and from the decoupling approxi-
mation (lines). The bias is p1 − p−1 = 0.96, the waiting times are τ = τ∗ = 1. The dashed line is the
trivial mean-field solution K = σ2

2τ (1− ρ).

The general solution for the TP velocity is confronted to Monte-Carlo simulations, which exactly sample
the master equation of the problem. The agreement between the numerical simulations and the solution
from the decoupling approximation is very good.

We study the solutions of the equations verified by the cross-correlation functions g̃r =

〈δXt(ηXt+r − 〈ηXt+r〉)〉, and obtain in particular an expression for the quantities g̃e±1 , involved in
the computation of the diffusion coefficient of the TP, in terms of the density profiles kr. It is then
possible to obtain the value of the diffusion coefficient for a given set of parameters. The analysis of
this general solution shows that the diffusion coefficient is a nonmonotonic function of the density as
soon as the bias is strong enough. Indeed, surprisingly, the diffusion coefficient may be increased by the
presence of bath particles on the lattice for a wide range of parameters. This nonmonotonicity is not an
artifact of the decoupling approximation, and we show that its existence is confirmed by Monte-Carlo
simulations, which confirm the accuracy of the approximation (Fig. 6). This effect can be related to
an anomaly in the profiles of the cross-correlations g̃r, which are shown to be nonmonotonic functions
of the distance to the TP for values of the parameters similar to the ones leading to the existence of a
maximum value for the diffusion coefficient. This enhanced diffusion coefficient could be investigated
in experimental realizations, and lead to interesting applications.

We also study the solutions of the equations governing the correlation functions w̃e±1 , involved
in the computation of the cumulant generating function of Xt and therefore in its distribution. We
show that the quantities w̃e±1 are implicit solutions of a system of equations, so that the distribution
of Xt can be determined numerically and confronted to numerical simulations with a good agreement.
Finally, we deduce from that behavior of the cumulant generating function that the rescaled variable
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Figure 7: Velocity V of the TP as a function of the force F for a density of bath particles ρ = 0.05.
τ is taken equal to 1 and τ∗ varies. Results obtained from numerical simulations (symbols) are con-
fronted with the predictions from the decoupling approximation. Numerical simulations performed by
Alessandro Sarracino (postdoc in the group).
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Var(Xt) is expected to be distributed accordingly to a Gaussian distribution in the long-
time limit.

0.3.3 Higher-dimensional lattices

The evolution equations verified by the correlation functions kr and g̃r are also solved on higher-
dimensional lattices. We show that the quantities keν and g̃eν are solutions of closed set of equations that
can be solved numerically. This gives a method to obtain the value of the velocity and of the diffusion
coefficient for a given set of parameters.

The analysis of these solutions yields several interesting results. In particular, we study the depen-
dence of the terminal velocity of the TP on the applied force. If the bath particles are slow enough
(i.e. if their mean waiting time τ∗ is large enough), we show that the velocity can be a nonmonotonic
function of the applied force, and that it may decrease for increasing values of the force. This counterin-
tuitive effect is known in other domains as negative differential mobility (NDM). It can be explained by
the following simple physical arguments: increasing the applied force on the TP reduces its travel time
between successive encounters with the bath particles, but increases the escape time from traps created
by the bath particles when they are slow enough. The competition between these two effects controls
the emergence of NDM. Our approach gives a new microscopic explanation to this phenomenon. The
analytical predictions are confirmed by Monte-Carlo simulations, which also confirm the accuracy of
the decoupling approximation in a wide range of parameters (Fig. 7).

We also show that in the extreme density regimes ρ → 0 and ρ → 1, the equations verified by the
density profiles kr and g̃r are no longer implicit and have explicit solutions. The decoupling approxi-
mation then yields explicit expressions for the velocity and the diffusion coefficient of the TP in these
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limits. The high-density limit, in the case where the lattice is not in contact with a reservoir, was studied
using an exact approach, from which we obtained exact results for the mean position (Section 0.2.4) and
the fluctuations (Section 0.2.3) of the TP at leading order in the density of vacancy ρ0 . We show that the
results from the decoupling approximation perfectly match the results obtained from the exact approach
in the limit ρ → 1. The opposite limit, where ρ → 0, was studied by other authors [77] who obtained
the velocity of the TP at leading order in the density of bath particles ρ. We show that our decoupling
approximation yields the same result. Importantly, this shows that the decoupling approximation is exact
in both limits of very high and very low densities.

0.4 Conclusion

We studied the general model of a biased tracer particle (TP) in a bath of Brownian particles on a lattice.
The bath particles perform symmetric nearest-neigbor random walks, whereas the TP performs a biased
nearest-neighbor random walk, where the bias can originate from an external force applied on the TP.
This model has been studied in the past, but the results were limited to the behavior of the mean position
of the TP and to the determination of the force-velocity relation. The aim of this thesis was to go beyond
the force-velocity relation, and to study the fluctuations of the position of the TP, and more generally its
whole distribution.

We first studied the diffusion of a biased tracer in a very dense lattice gas. In this situation, the
motion of the TP is mediated by the diffusion of the vacancies. At leading order in the density of
vacancies, the propagator associated to the random walk of the TP can be written using the first-passage
time densities associated to the random walk of a vacancy on the considered structure. In the case of a
one-dimensional lattice, we determined the distribution of the position of the TP, and showed that the
mean and the fluctuations of the position of the TP grow sublinearly. On higher-dimensional confined
geometries (quasi-one-dimensional and two-dimensional lattices), we show that the fluctuations of the
TP position are superdiffusive, and cross over to a diffusive behavior after a very long time. In quasi-
one-dimensional lattices, this is associated to an anomaly in the velocity of the TP which saturates to a
“high”-value before crossing over to its ultimate lower value at large times. We give a simple description
of the problem, unveiling the physical origin of these anomalous behaviors.

In the situation of an arbitrary density of bath particles on a lattice in contact with a reservoir of
particles, we face a complex N -body problem described by a master equation. The computation of
the velocity and diffusion coefficient of the TP yields an infinite hierarchy of equations that needs to
be closed in order to be solved. We use a mean-field-type decoupling approximation which gives ap-
proximate equations verified by the velocity and diffusion coefficient of the TP. This approximation is
extended to obtain the equations verified by the distribution of the position of the TP. The accuracy of
this mean-field-type approximation is verified with Monte-Carlo simulations. In the limits of a very
dilute and very dense bath of particles, the equations verified by the first cumulants of the position of the
TP have explicit expressions, which match the exact expressions obtained in these limits.





CHAPTER 1

Introduction

In various physical and biological systems, one encounters the situation when either an active particle
or a particle subject to an external force travels through a quiescent host medium. A few stray examples
include self-propelled particles in crowded environments, such as molecular motors, motile living cells
or bacteria [83, 31], biased intruders in granular systems [27] or in colloidal suspensions [51]. Deter-
mining the dynamics of such a driven particle – called the tracer particle (TP) in what follows – in a host
medium which hinders its motion is a challenging problem with important applications.

From a theoretical point of view, the difficulty lies in the modeling of the environment of the TP,
which is constituted of a large number of interacting bath particles. The resulting stochastic dynamics
of the whole system is a many-body problem which is difficult or even impossible to solve in practice.
Formally, the one-particle distribution function is determined in terms of a two-particle distribution
function and so on. The exact description of the system then yields an infinite hierarchy of equations,
that must be closed in order to be solved. The Boltzmann equation [28] represents a first attempt to
obtain an equation for the one-particle distribution function, assuming that the particles undergo binary
collisions and that their velocities are uncorrelated before each encounter. This equation was extensively
studied to describe classical dilute gases.

The study of Brownian motion – the erratic motion of a heavy particle in a solvent constituted of
much lighter particles – inspired another description of the bath of particles. This phenomenon is usually
described by a Langevin equation [40, 73], which involves a random force modeling the effect of the
bath. In its most simple form, the random force is uncorrelated and memoryless. To provide a more
faithful description of a real bath, the Langevin equation was generalized to more complex random
forces, taking into account memory effects [71].

In most approaches the microscopic structure of the bath is not considered explicitly, and the re-
sponse functions are determined instead by using some effective bath dynamics [84]. While these ap-
proaches are rather efficient, they cannot account for the detailed correlations between the tracer particle
and the fluctuating density profiles of the bath particles. In particular, when the tracer is biased, a jam
of bath particles forms in front of it, and the density profiles become strongly asymmetric. This as-
pect becomes crucial when the probe and the medium particles have comparable sizes. In this regime,
fluctuations of the probe can not be described correctly if the medium is treated as a continuous bath.

These questions have received a growing interest in the previous years, and are central in active
microrheology experiments, in which the properties of a medium are studied through the response of
a probe to an external force [110, 102]. This experimental technique has become a powerful tool for
the analysis of such diverse systems as colloidal suspensions [51, 87], complex fluids [30, 29], live
cells [10, 74] or actin networks [48, 122]. So far, the available theoretical descriptions of such systems
relied on hydrodynamic descriptions of the host fluid [109, 116], or on mode-coupling theories [46, 18,
45]. Recently, the limit of very soft bath particles was investigated and the dynamics of the bath was
considered explicitly, using the Dean equation [36] to describe the bath as a large number of interacting
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Figure 1.1: Biased tracer in a hardcore lattice gas. In this figure, we represent the particular case of a
two-dimensional lattice.

Langevin processes [38, 37].
In this thesis, we consider the model where the TP is driven in a bath of Brownian hardcore particles

performing symmetric random walks on a lattice. In this context, the evolution of the mean position of
the TP has been studied [14, 13, 15]. However, the behavior of its fluctuations and of its position distri-
bution has not been studied yet. This lattice description is particularly adapted in the context presented
above, as it allows to take into account explicitly the dynamics of the bath, and to study the statisti-
cal properties of the TP position. Moreover, lattice models of interacting particles are paradigmatic in
nonequilibrium statistical mechanics and have received a lot of attention in the past decades [42, 82].
Finally, this approach is not perturbative in the external force applied on the TP, and allows the study of
the nonlinear response regime, which has been shown to be prevalent in experimental systems [102].

We consider a regular hypercubic lattice, which is populated by particles performing nearest-
neighbor symmetric random walks, with a characteristic time τ∗ (Fig 1.1). The density of particles
on the lattice is denoted by ρ. We also introduce a tracer particle, which performs a nearest-neighbor
symmetric or biased random walk, with a characteristic time τ . We assume that all the particles interact
via hardcore interactions, which means that there is at most one particle per site. From a probabilistic
point view, the joint process describing the position of the TP and the entire configuration of the bath
particles is a Markov process. However, the motion of the TP only is no longer a Markov process.

This system has motivated a large amount of analytical work, and was also investigated by numerical
simulations in the past [63]. In what follows, we review the results obtained in the two situations where
the TP is symmetric and where it is biased.

We first present the case where a symmetric TP moves in a lattice gas of dimension equal or greater
than two, with the additional assumption that the TP is identical to the untagged particle (τ∗ = τ ). In the
particular case where the density ρ is close to one, the lattice actually contains very few vacant sites, that
we will call vacancies, and whose density ρ0 = 1− ρ is close to zero. Consequently, the TP may move
only when a vacancy visits a site in its vicinity. The fact that the random walk of the TP is correlated
may be understood as follows: after the TP has exchanged its position with a given vacancy, the vacancy
remains in its vicinity, and there is a large probability that the TP exchanges its position with the same
vacancy again. At leading order in the density of vacancies ρ0, the diffusion coefficient of the TP then
writes D = ρ0fD0, where D0 is the TP diffusion coefficient in the absence of interactions, and f is
a correlation factor which was first computed in [75]. Further on, this situation was studied by a large
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number of authors in the past decades [22, 23, 66, 60, 88, 105].
The opposite situation where the density ρ goes to zero has been particularly studied in the case

where the bath particles are fixed (i.e. in the limit τ∗ →∞) and where they are called “obstacles”. This
model, often designated as the lattice Lorentz gas, has been studied by Nieuwenhuizen et al. [95, 96, 41],
who obtained an exact expression of the diffusion coefficient of the TP at leading order in the density of
obstacles ρ. These predictions were verified later on by numerical simulations [44].

The diffusion properties of the TP are less understood when the lattice concentration is not close
to the values 0 and 1 anymore: the problem is then a N -body problem that only admits approximated
solutions. Note that in this situation, the physical reason for the correlation effects used in the limit
ρ → 1 still holds: when the TP jumps to a vacant site, it leaves behind a vacant site, whereas the
other neighboring sites are occupied with probability ρ. It is then more likely to jump back on its
previous position than on any other. In this system, the diffusion coefficient of the TP becomes
D = (1− ρ)f(ρ)D0, and the difficulty lies in the determination of the correlation factor f(ρ) which is
now a function of the gas density. This question was first addressed by numerical simulations, which
allowed several authors to obtain estimations of f(ρ) on different types of lattices [35, 91, 64]. From a
theoretical point of view, the first derivation of f(ρ) was introduced by Sankey and Fedders [103], who
used a complex diagrammatic approach, valid in the situation where τ∗ = τ . A more general approach,
valid for arbitrary values of the characteristic times, was proposed by Nakazato and Kitahara [92] who
obtained an approximate expression of f(ρ), which has been shown to be exact in the limits ρ → 0

and ρ → 1. We also mention the work of Tahir-Kheli and Elliot [112], who used a mean-field-like
approximation to close the infinite hierarchy of master equations in order to compute f(ρ).

Exclusion interactions on lattices in dimension at least equal to two then modify the TP transport
properties in the sense that it cannot wander as far as in free diffusion. However, the mean square dis-
placement (MSD) still grows linearly with time, and the interactions only affect the prefactor and make
the diffusion coefficient concentration-dependent. In one-dimension, exclusion interactions lead to an
anomalous behavior of the TP mean square displacement, which was shown to grow as t1/2. This sub-
diffusive behavior can be understood as follows: in one dimension and with exclusion interactions, the
initial order of the particles is conserved, so that the motion of the TP on progressively larger distances
requires the displacement of more and more particles in the same direction, so that the movement of
individuals particles becomes strongly correlated. If the TP mean waiting time is identical to that of the
bath particles (τ = τ∗), the long-time behavior of the variance of the TP position Xt is given by the
exact expression

Var(Xt) ∼
t→∞

(1− ρ)

ρ

√
2t

τ∗π
(1.1)

which was obtained by several authors who used different methods [54, 78, 3, 4, 80, 7].

The more general case where the TP is biased, which will be considered in this thesis, has received
less attention. In this situation, note that the mean position of the TP itself is a nontrivial quantity and
deserves attention. Technically, the analytical determination of the TP transport properties is difficult
as it is a highly correlated problem: when the TP moves forward, it perturbs the repartition of the bath
particles, and in turn the reorganization of the bath particles around the TP controls the evolution of its
position.
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The first attempt to address this problem was to consider the case of a directed TP in a one-
dimensional symmetric gas [26]. It was shown that the mean position of the TP was growing as t1/2,
whose evolution is considerably slower that the linear growth expected for an isolated biased particle.
Later on, the same authors extended their results to the case of an arbitrary value of the bias [25]. This
result was confirmed by an exact probabilistic treatment of the problem [72].

This problem was extended to the case of a d-dimensional hypercubic lattice, in the general case
where exchanges of particles with a reservoir can also take place. In this model, particles may adsorb
on vacant lattice sites, and the bath particles may desorb back to the reservoir. A biased TP is also intro-
duced on the lattice. The mean position of the TP was computed using a mean-field-type approximation,
used to decouple relevant correlation functions and to close the infinite hierarchy of equations arising
from the exact description of the problem. This resolution was first applied to one-dimensional systems
[15] and generalized to lattices of arbitrary dimension [13, 14]. It was shown that this decoupling ap-
proximation was very accurate in a wide range of parameters. As the Einstein relation was rigorously
shown to hold in this system [67], the diffusion coefficient of the TP in the case where F = 0 was
deduced from the expression of the mean position of the TP experiencing an arbitrary bias in the limit
F → 0. This approach allowed the authors to retrieve the results obtained by Nakazato and Kitahara
[92], known to be exact in the extreme density regimes.

The particular case of a very dense environment deserved a particular treatment [17], relying on
an extension of the framework initially introduced by Brummelhuis and Hilhorst [22, 23]. The mean
position of the TP was computed analytically at leading order in the density of vacancies, in the case of
a two-dimensional lattice.

Although the mean position of a biased TP in a lattice gas has motivated a lot of work, the question of
its fluctuations – and more generally of the distribution of its position – has not been considered. In this
thesis, we address this problem, using two different but complementary analytical resolution schemes.

• The first part of this thesis is devoted to the particular case where the density of particles is high. In
this situation, the TP may only move when a vacancy visits one of its neighboring sites. Its motion
is then mediated by the diffusion of vacancies. At leading order in the density of vacancies ρ0,
each vacancy contributes independently to the motion of the TP. The distribution of position of
the TP in the case where there is only one vacancy on the lattice can be expressed in terms of the
first-passage time densities of a vacancy. When ρ0 is arbitrarily small, the TP position distribution
may be written in terms of the single-vacancy propagators. This method yields exact results at
leading order in ρ0, and is presented in detail in Chapter 2. It is first applied to study the case of
a one-dimensional system, for which the distribution of the TP position is completely determined
(Chapter 3). Then, this formalism is applied to compute the fluctuations of the TP position in
higher dimensions (Chapter 4). They are shown to have many striking features, and a nontrivial
dependence on all the parameters of the problem (time, applied force, density of particles). In
particular, in confined geometries, the fluctuations of the TP display a long-lived superdiffusive
evolution, and an ultimate crossover to a diffusive state. In Chapter 5, we show that the mean
position itself has an anomalous behavior in confined geometries, as it displays a long-lived high
plateau before a drop to its ultimate value. These results are shown to be general, and are recast
in more universal formulae, which also give the expressions of the higher-order cumulants in the
high-density limit (Chapter 6). These general formulae are used to describe the behavior of the



23

TP on fractal lattices. Finally, in Chapter 7, we give a simplified picture of the problem, which
correctly captures the physical mechanisms governing the behavior of the TP.

• In the second part of this thesis, we study the general case where the density of particles on
the lattice is arbitrary, so that the motion of the TP cannot be easily related to the diffusion of
vacancies anymore. Starting from the master equation describing exactly the problem and using
a mean-field-type decoupling approximation of the tracer-bath particles correlation functions, we
derive equations verified by relevant correlation functions involved in the computation of the TP
fluctuations. This decoupling approximation also allows us to obtain an implicit expression of
the cumulant generating function of the TP position, and therefore of its distribution (Chapter
8). In Chapter 9, these equations are solved in the particular case of a one-dimensional lattice in
contact with a reservoir of particles. Surprisingly, the diffusion coefficient of the TP is shown to
be non-monotonous with the density of particles on the lattice. Finally, in Chapter 10, we give
a resolution scheme of the equations derived in Chapter 8 for lattices of higher dimensions. We
show that the velocity of the TP may be a non-monotonic function of the applied force, and provide
a microscopic description of this phenomenon known in other contexts as negative differential
mobility. In the particular limit of a high density of particles, we retrieve the results for the
fluctuations and the mean position of the TP, obtained by the exact approach at leading order in
the density of vacancies. In the low density limit, we retrieve recent exact results [77] obtained
at leading order in the density ρ. This shows that the decoupling approximation is exact in the
low-density limit, and in the high-density limit.
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We present the model of a biased tracer particle (TP) in a hardcore lattice gas, in the
high-density limit, where the density of vacancies ρ0 is small. In this limit, the motion of
the TP is mediated by the diffusion of the vacancies on the lattice, which perform symmetric
nearest-neighbor random walk, perturbed in the vicinity of the TP. We consider the auxiliary
problem where there is only one vacancy on the lattice, and write the propagator associated
to the position of the TP in terms of the first-passage time densities (FPTD) of the vacancy.
At leading order in the density of vacancies, each vacancy contributes independently to the
motion of the TP, so that the propagator associated to the TP position in the limit ρ0 → 0

is written in terms of the single-vacancy propagators. Finally, we deduce the expression of
the cumulants of the distribution of the TP position in terms of the FPTD associated to the
random walk of the vacancies.
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2.1 Introduction

2.1.1 Statement of the problem

We consider a hybercubic lattice of arbitrary dimension, on which particles perform symmetric nearest-
neighbor random walks, with the restriction that there is at most one particle per site. The density of
particles on the lattice is denoted by ρ. We select at random a particle, an study its position Xt. This
particle will be called the tracer particle in what follows. The TP can either be identical to the other
particles, or be submitted to an external force, so that is performs a biased nearest-neighbor random
walk. In this Chapter, we study the limit where the density of particles is close to 1, so that there are
very few vacant sites on the lattice.

We first consider the case where each site of the lattice is occupied by a particle, except one, which
will be called the vacancy. Consequently, the only particles that are likely to move are the one located
in the vicinity of the vacancy. In this situation, it is easier to describe the dynamics of the vacancy rather
than the dynamics of the TP. The vacancy performs a symmetric nearest-neighbor random walk, whereas
the dynamics of the TP is more complicated: it will only change its position when visited by the vacancy.
Moreover, its successive steps are correlated: after it exchanges its position with that of the vacancy, it
is more likely to go back to its initial position than to move to any other neighboring site. The statistical
properties of the tracer position may then display non-trivial and unexpected features. This problem is
known as “vacancy-mediated diffusion” or “slaved diffusion”.

The case where the number of vacant sites is not equal to one, but is very small compared to the
number of lattice sites (i.e. when the vacancy density ρ0 = 1− ρ is close to zero) may be studied from
this approach. At lowest order in ρ0, each vacancy performs a symmetric nearest-neighbor random
walk, as the events where two vacancies are adjacent or have common neighbors only contribute to
order O(ρ0

2). The evolution rules established for the single-vacancy problem are still valid, and the
total TP displacement may be written as the sum of all the displacements ∆Xj due to its interactions
with the j-th vacancy.

In what follows, we give a brief review of the experimental and theoretical results obtained on the
problem of vacancy-mediated diffusion, in the case where the TP is not biased.

2.1.2 Experimental works

Vacancy-mediated diffusion (VMD) was investigated experimentally at the atomic scale. Depositing
atoms of indium on a copper surface, it was observed that the intruders were surprisingly mobile and
could travel as far a five lattice spacings [114, 113]. It was shown that this “jumps” were induced by the
diffusion of surface vacancies.

This mechanism is then highly important in solid-state physics, as it may be the dominant effect
by which atoms or more complex entities can be transported in a medium. VMD is then used to dope
semi-conductors [2]. The study of complex materials, for instance the determination of self-diffusion
constants, is possible by tracking radioactive tracers which diffuse thanks to VMD. This was applied to
quasicrystals [20], amorphous metallic alloys [65], or aluminides [119].
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2.1.3 Theoretical descriptions

In addition to these experimental observations, the question of VMD has motivated many theoretical
approaches. On a three-dimensional lattice and with a single vacancy, the Pólya theorem [101] ensures
that the vacancy will encounter the tracer particle only a finite number of times on average, so that the
equilibrium distribution of the tracer position is reached in a finite time. This equilibrium distribution
was computed by Sholl [105]. The general problem of tracer diffusion in a concentrated lattice gas
adsorbed on a three-dimensional lattice has been first investigated numerically by Kehr and Binder [64]
and confronted with analytical predictions obtained within a mean-field approximation.

The one-dimensional situation has also raised a lot of interest, as it is related to the well-known
problem of single-file diffusion. This case will be presented with more details in the introduction of
Chapter 3.

Brummelhuis and Hilhorst considered the two-dimensional lattice formulation of the problem, and
obtained an exact expression of the TP position probability distribution, both in the case where there
is only one vacancy on the lattice [22], and in the case where there is an asymptotically small vacancy
density [23]. Interestingly, the single-vacancy situation gives rise to non-Gaussian fluctuations of the TP
position.

Finally, continuous-space descriptions of the problem were also studied. We cite in particular the
work of Newman [94], who proposed a coarse-grained description of the VMD problem, and retrieved
the results obtained from the exact lattice formulations.

2.1.4 Objectives

All the approaches presented above focused on situations where the TP is identical to the others particles,
and can be chosen at random among them. As it was emphasized in the introduction of this thesis, the
case where the TP is biased is interesting in different experimental fields.

From a theoretical perspective, the VMD of a biased tracer is a difficult problem: the tracer has
anisotropic hopping probabilities, and depending on the relative position of the vacancy and the TP,
this latter will have a higher (or lower) probability to exchange its positions with that of the vacancy
compared to the surrounding unbiased particles.

This Chapter is an introduction to the first part of this thesis. We first introduce the model rules and
notations. Then, we study the single-vacancy situation, and the case of a very small density of vacancies.
The cumulant generating function of the TP position is expressed in terms of simpler quantities that will
be computed explicitly in the next chapters. This method was first introduced in [17], and is an extension
to the case of a biased TP of the formulation proposed by Brummelhuis and Hilhorst [22, 23].

2.2 Presentation of the model

2.2.1 Model

We consider a hypercubic lattice in dimension d. The lattice sites are occupied by hard-core particles
performing symmetrical random walks, with the restriction that the occupancy number for each site is
at most equal to one. The fraction of occupied sites is denoted as ρ, whereas the vacancy density is
denoted as ρ0 (so that ρ + ρ0 = 1). A tracer particle (denoted as TP in what follows) is also present
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Figure 2.1: Dynamics of the particles on a generic d-dimensional lattice (represented in two dimensions
for clarity). The bath particles (in blue) perform nearest-neighbor symmetric random walks, the tracer
particle (in red) is biased and jumps in direction ν with probability pν .

on the lattice, and performs a biased random walk. The probability for the TP to make one step in
direction eν will be denoted pν (ν ∈ {±1, . . . ,±d}). We assume that the bias experienced by the TP
only affects its jump probabilities in direction 1, so that the probabilities p±2, . . . , p±d are identical and
will be denoted by p2. A normalization condition imposes p1 + p−1 + 2(d − 1)p2 = 1. We then write
p2 = (1− p1 − p−1)/[2(d− 1)], so that the only relevant quantities do describe the TP asymmetry are
p1 and p−1. We represent the evolution rules of the particles on Fig. 2.1.

Although our computations are valid for any choice of p1 and p−1, it will be convenient to assume
that the bias originates from an external force F = Fe1 applied on the TP. In this situation, the proba-
bility for the TP to have its first coordinate equal to x in the stationary state is given by the Boltzmann
distribution:

Pstat(x) =
1

Z e−βFx (2.1)

where Z is a normalization constant, and where β = 1/(kBT ) is the inverse temperature. Denoting by
p(r → r0) the probability for the TP to jump from site r to site r0 in a single step, the detailed balance
condition imposes

Pstat(0)p(0→ e1) = Pstat(1)p(e1 → 0), (2.2)

and, using (2.1), one gets
p1

p−1
= e−βF . (2.3)
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Then, to fulfill the detailed balance condition, the jump probability of the TP in direction ν is given by

pν =
e

1
2
βF ·eν

∑
µ∈{±1,...±d} e

1
2
βF ·eµ

(2.4)

The inverse temperature β will be taken equal to one.
The probability for the TP to be on site X at time step t is denoted by Pt(X). The position of the

TP at time t is a random variable denoted byXt. The first component ofXt (i.e. the position of the TP
in the direction of the bias) is denoted by Xt.

2.2.2 Evolution rules

In the high-density limit, the TP only moves when a vacancy visits one of its neighboring sites. In this
Section, we present the evolution rules of a vacancy on the lattice. At each step of a discrete time t, a
vacancy moves according to the following rules (see Fig. 2.2):

• if the TP is not adjacent to the vacancy, one of the 2d neighboring particles is randomly selected
and exchanges its position with the vacancy.

• otherwise, if the TP is at position X and the vacancy at position X + eν , the vacancy exchanges
its position with the TP with a probability proportional to pν . It exchanges its position with one
of the 2d− 1 neighboring bath particles with a probability proportional to 1/(2d). Consequently,
if we denote by qµ the probability for the vacancy to make a jump in direction µ, we get

qµ =

{
Zνpν if µ = −ν,
Zν/(2d) otherwise.

(2.5)

where Zν is some normalization factor. Using the normalization condition
∑

µ∈{±1,...±d} qµ = 1,
we find

Zν =

(
pν +

2d− 1

2d

)−1

. (2.6)

Finally, the jump probabilities qµ are

qµ =





pν
pν+ 2d−1

2d

if µ = −ν,
1

2d(pν+ 2d−1
2d )

otherwise.
(2.7)

Note that these expressions of qµ are only valid in the specific case where the vacancy performs a
Pólya walk 1 everywhere on the lattice except in the vicinity of the TP. These evolution rules will be
shown to be consistent with a continuous-time description of the system, which will be presented in the
second part of this thesis.

1A Pólya walk is a lattice nearest-neighbor random walk for which there is no directional bias and for which all allowed
steps are equally likely [58].
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Figure 2.2: Dynamics of the vacancies on a generic d-dimensional lattice (represented in two dimensions
for clarity). If the vacancy is not adjacent to the TP, it exchanges its position with any of the neighbors
equiprobably. If the TP is at position X and the vacancy at position X + eν , the jump probabilites are
given by the quantities qν defined in the text.
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2.3 Single-vacancy situation

2.3.1 Single-vacancy propagator

Following the procedure first introduced by Brummelhuis and Hilhorst [22], we consider the problem
where there is only one vacancy on the lattice, whose position is denoted by Y (its initial position is
Y 0). The TP is initially at the origin of the lattice. We introduce the following notations :

• P (1)
t (X|Y 0) is the probability that the TP is at site X at time moment t given that the vacancy

was initially at site Y 0.

• Ft(0|Y 0) is the probability that the vacancy, which started its random walk at site Y 0, arrives at
the origin 0 for the first time at time t.

• F ∗t (0|eν |Y 0) is the conditional probability that the vacancy, which started its random walk at site
Y 0, appears at the origin for the first time at time t, being at site eν at time t− 1.

With these notations, following [22], an expression for P (1)
t (X|Y 0) can be obtained by summing

over the number of steps p of the TP, over the directions ν1, . . . , νp of these p steps, and over the length
of the time intervalsmj elapsed between the (j−1)-th step and the j-th step. We also sum over the time
elapsed since the last step occured mp+1. One obtains:

P
(1)
t (X|Y 0) = δX,0


1−

t∑

j=0

Fj(0|Y 0)




+
∞∑

p=1

∞∑

m1=1

. . .
∞∑

mp=1

∞∑

mp+1=0

δm1+...+mp+1,t

∑

ν1

. . .
∑

νp

δeν1+...+eνp ,X

×


1−

mp+1∑

j=0

Fj(0| − eνp)


F ∗mp(0|eνp | − eνp−1) . . . F ∗m2

(0|eν2 | − eν1)F ∗m1
(0|eν1 |Y 0).

(2.8)

The first term of the sum in the right-hand side of (2.8) corresponds to the event that the TP has not
moved yet at time t. This equation in conveniently analyzed in Fourier-Laplace space. For any time-
dependent function φt, we define the associated generating function (or discrete Laplace transform) by

φ̂(ξ) =

∞∑

t=0

φtξ
t. (2.9)

For any space-dependent function ψ(r), we define its Fourier transform by

ψ̃(k) =
∑

r

ψ(r)eik·r, (2.10)

where the sum over r runs over every lattice sites. We then get

̂̃
P

(1)

(k|Y 0; ξ) =
1

1− ξ

(
1 +D−1(k; ξ)

∑

µ

Uµ(k; ξ)F ∗(0|eµ|Y 0; ξ)

)
. (2.11)
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In (2.11), the function D(k; ξ) stands for the determinant of the following 2d× 2d matrix,

D(k; ξ) ≡ det[1− T (k; ξ)], (2.12)

where 1 is the identity of size 2d and the matrix T (k; ξ) has the entries [T (k; ξ)]µ,ν defined by

[T (k; ξ)]µ,ν = eik·eµF ∗(0|eµ|e−ν ; ξ), (2.13)

= eik·eµ
∞∑

t=0

F ∗t (0|eµ|e−ν)ξt. (2.14)

Lastly, the matrix Uµ(k; ξ) in (2.11) is given by

Uµ(k; ξ) ≡ D(k; ξ)
∑

ν

[
1− e−ik·eν

] {
[1− T (k; ξ)]−1

}
ν,µ

eik·eµ . (2.15)

Consequently, the Fourier-Laplace transform of the single-vacancy propagator ̂̃P
(1)

(k|Y 0; ξ) may
be calculated if the generating functions associated to the conditional first-passage time densities
F ∗t (0|eµ|eν) are known.

2.3.2 Calculation of the conditional first-passage time densities F ∗

The conditional first-passage time densities F ∗ are relative to the random walk of a vacancy on a lattice
populated by bath particles and a tracer particle. The conditional first-passage time densities can be
formally computed as follows: we assume that the site at the origin of the lattice is absorbing, and we
denote by P †t (r|r0) the probability for the vacancy to be at site r at time t knowing that it started from
site r0 at time t = 0. Let p†(r|r0) be the probability to jump from site r0 to site r in one step exactly.
Let the symbols E , A and B define the following three events:

• the event E : the vacancy, which has started its random walk at the site eν , visits the origin 0 for
the first time at the t-th step exactly, being at the site eµ at the previous step t− 1;

• the event A: the vacancy, which started its random walk at the site eν , is at the site eµ at the time
moment t− 1 and the origin 0 has not been visited during the t− 1 first steps of its walk;

• the event B: the vacancy jumps from the neighboring to the origin site eµ to the site 0 at the t-th
step exactly.

Evidently, by definition, the desired first visit probability F ∗t (0|eµ|eν) is just the probability of the
E event

F ∗t (0|eµ|eν) = Prob(E). (2.16)

To calculate Prob(E) we note first that the probabilities of such three events obey:

Prob(E) = Prob(A ∩ B) = Prob(A)Prob(B). (2.17)

On the other hand, we have that
Prob(A) = P †t−1(eµ|eν), (2.18)
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and
Prob(B) = p†(0|eµ). (2.19)

Hence, in virtue of (2.16), (2.17), (2.18) and (2.19), the generating functions associated to the conditional
first-passage time densities F ∗t (0|eµ|eν) are given explicitly by

F̂ ∗(0|eµ|eν ; ξ) = ξp†(0|eµ)P̂ †(eµ|eν ; ξ). (2.20)

Therefore, the calculation of the conditional first-passage time densities F ∗t (0|eµ|eν) amounts to the
evaluation of the probability distribution P †t (r|r0) of the vacancy random walk in the presence of an
absorbing site placed at the lattice origin.

By definition, the quantitiesP †t (r|r0) are the propagators associated to the random walk of a vacancy
in presence of a TP. As it was specified in Section 2.2.2, if the vacancy is not adjacent to the TP, it
exchanges its position with any of the neighbors equiprobably, which means that its random walk is
actually symmetric. Otherwise, if it is on a site adjacent to the TP, its evolution rules are modified. The
propagators P †t (r|r0) may be obtained starting from the propagators of a simple symmetric random
walk Pt(r|r0) and assuming that there are 2d+ 1 defective sites (the 2d neighbors of the origin and the
origin itself, which is an absorbing site). Technically, the relation between P †t (r|r0) and Pt(r|r0) is
obtained by a usual method [89, 58], which results in a simple matrix relation:

P † = (1−A)−1P , (2.21)

in which 1 is the (2d+1)-dimensional identity matrix, andP ,P † andA stand for the (2d+1)×(2d+1)

matrices with the entries defined by

P i,j = P̂ (si|sj ; ξ) (2.22)

P †i,j = P̂ †(si|sj ; ξ) (2.23)

Ai,j = A(si|sj ; ξ) ≡ ξ
∑

r

P̂ (si|r; ξ)
[
p†(r|sj)− p(r|sj)

]
(2.24)

where the sum over r runs over all lattice sites, and where the 2d+ 1 sites are the defective sites:

(s1, . . . , s2d+1) = (0, e1, e−1, . . . , ed, e−d). (2.25)

We also introduced the quantities p(r|r0), which are the elementary jump probabilities from r0 to r
associated to a simple symmetric random walk on the considered structure.

For a specific lattice, one can then readily express A and P , deduce P † from (2.21), and finally the
conditional first-passage time densities F ∗ from (2.20). The single-vacancy propagator can therefore be
deduced from (2.11).

2.4 Finite low vacancy density

2.4.1 Average over the initial positions of the vacancies

In order to study the situation where there are several vacancies on the lattice, we start from a finite
d-dimensional hypercubic lattice of N sites with a finite number M of vacancies. The vacancy density
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is ρ0 = M/N and is supposed to be very small, ρ0 � 1, so that we will restrain our analysis to
the leading order in ρ0. The TP is initially at the origin and the initial positions of the vacancies are
denoted by Y 1, . . . ,Y M . At each time step, all the vacancies exchange their positions with one of the
neighboring particles, such that each vacancy makes a jump at each time step. We follow here a method
first presented in [23]. The general expression of Pt(X|Y 1, . . . ,Y M ), which denotes the probability
of finding at time step t the TP at positionX as a result of its interactions with all M vacancies is

Pt(X|Y 1, . . . ,Y M ) =
∑

X1

. . .
∑

XM

δX,X1+...+XM
Pt(X1, . . . ,XM |Y 1, . . . ,Y M ) (2.26)

where Pt(X1, . . . ,XM |Y 1, . . . ,Y M ) denotes the conditional probability that within the time interval
t the TP has displaced from a quantityXj due to its interactions with the j-th vacancy.

It may appear that two vacancies are adjacent or on the same site. Implementing the evolution of
such situations would require additional dynamic rules, which are in fact unnecessary as such events
would contribute only to order O(ρ0

2) in the calculation. Consequently, at leading order in ρ0, each
vacancy contributes independently to the TP displacement, and discarding the events involving two or
more vacancies, the quantity Pt(X|Y 1, . . . ,Y M ) can be approximated as a product of two-particle
distribution functions:

Pt(X|Y 1, . . . ,Y M ) '
M∏

j=1

P
(1)
t (Xj |Y j), (2.27)

where the quantities P (1) are the single-vacancy propagators (for a lattice of N sites) calculated in
the previous section. Combining these two equations, and averaging over the initial positions of the
vacancies (this average being denoted by an overline), we get

Pt(X|Y 1, . . . ,Y M ) '
∑

X1

. . .
∑

XM

δX,X1+...+XM

M∏

j=1

P
(1)
t (Xj |Y j). (2.28)

The averages involved in the right-hand side of (2.28) can be expressed as

P
(1)
t (Xj |Y ) =

1

N − 1

∑

Y 6=0

P
(1)
t (Xj |Y ). (2.29)

We then define the following Fourier transforms:

P̃t(k) ≡
∑

X

eik·XPt(X|Y 1, . . . ,Y M ) (2.30)

P̃
(1)
t (k) ≡

∑

X

eik·XP
(1)
t (X|Y ) =

1

N − 1

∑

Y 6=0

P̃
(1)
t (k|Y ). (2.31)

Using these definitions and writing the Fourier transform of (2.28), one gets

P̃t(k) '
[
P̃

(1)
t (k)

]M
. (2.32)

This expression formally gives the relation between the propagator Pt and the single-vacancy propaga-
tors P (1)

t . Before taking the thermodynamic limit of this expression, we obtain a more suitable writing



2.4. Finite low vacancy density 37

of (2.32) by relating the single-vacancy propagators P (1)
t (X|Y ) to the conditional first-passage time

densities F ∗t (0|eν |Y 0). We write the following recurrence relation on the quantities P (1)
t , obtained by

partitioning over the first step of the walk of the vacancy:

P
(1)
t (X|Y ) = δX,0


1−

t∑

j=0

Fj(0|Y )


+

t∑

j=0

∑

ν=±1,...,±d
P

(1)
t−j(X − eν | − eν)F ∗t (0|eν |Y ). (2.33)

Fourier transforming this expression, and averaging over the initial positions, we find

P̃
(1)
t (k) = 1− 1

N − 1

t∑

j=0

∑

ν=±1,...,±d

[
1− P̃ (1)

t−j(k| − eν)eik·eν
] ∑

Y 6=0

F ∗(0|eν |Y ), (2.34)

and finally,

P̃t(k) '



1− 1

N − 1

t∑

j=0

∑

ν=±1,...,±d

[
1− P̃ (1)

t−j(k| − eν)eik·eν
] ∑

Y 6=0

F ∗t (0|eν |Y )





M

(2.35)

The computation of the propagators Pt then relies on the determination of the single-vacancy propa-
gators (see Section 2.3.1), and of the quantities

∑
Y 6=0 F

∗
t (0|eν |Y ). We define the associated generating

functions:
F ′ν(ξ) ≡

∑

Y 6=0

F̂ ∗(0|eν |Y ; ξ), (2.36)

and present a method to compute them in what follows.

2.4.2 Computation of the quantities F ′ν
The quantities F ′ν involve conditional first-passage time densities of the form F̂ ∗(0|eν |Y ; ξ). Extending
the relation (2.20), to an arbitrary starting point, we get

F̂ ∗(0|eν |Y ; ξ) = ξp†(0|eν)P̂ †(eµ|Y ; ξ). (2.37)

Recalling the matrix definition of P † (2.21), we get

F ′ν = ξp†(0|eν)
∑

Y 6=0

P̂ †(eµ|Y ; ξ) (2.38)

= ξp†(0|eν)Bν>(1−A)−1
∑

Y 6=0

B(Y ; ξ) (2.39)

where B is a vector of elements
[B(Y ; ξ)]j = P̂ (sj |Y ; ξ), (2.40)

and the basis vectors Bν are

B0 =




1

0

0
...
0

0




,B1 =




0

1

0
...
0

0




,B−1 =




0

0

1
...
0

0




, . . . ,Bd =




0

0

0
...
1

0




,B−d =




0

0

0
...
0

1




. (2.41)
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The sum over Y may be explicated in the case where lattice is homogeneous2. Indeed, in this case

∑

Y 6=0

B(Y ; ξ)



j

=
∑

Y 6=0

P̂ (sj |Y ; ξ) (2.42)

=
∑

Y 6=0

P̂ (Y |sj ; ξ) (2.43)

=
∑

Y

P̂ (Y |sj ; ξ)− P̂ (0|sj ; ξ) (2.44)

The sum over Y can be computed using the following normalization condition
∑

Y

Pt(Y |sj) = 1, (2.45)

and the associated generating function

∑

Y

P̂ (Y |sj ; ξ) =
1

1− ξ . (2.46)

Finally, we get the simple relation

∑

Y 6=0

B(Y ; ξ)



j

=
1

1− ξ − P̂ (0|sj ; ξ). (2.47)

Consequently, using (2.39), the quantities F ′ν are explicitly given in terms of the generating functions P̂
and of the matrixA.

2.4.3 Thermodynamic limit and expression of the cumulants

Since we consider lattice geometries where the number of sites is infinite, we now turn to the thermody-
namic limit of (2.35) (M,N →∞ with fixed ratio M/N = ρ0), and we get

P̃t(k) ∼
ρ0→0

exp [−ρ0Ωt(k)] (2.48)

where we define

Ωt(k) ≡
t∑

j=0

∑

ν=±1,...,±d

[
1− P̃ (1)

t−j(k| − eν)eik·eν
] ∑

Y 6=0

F ∗t (0|eν |Y ). (2.49)

In order to deduce the cumulants of the random variableXt, we notice that, by definition of the Fourier
transform,

P̃t(k) =
〈

eik·Xt

〉
(2.50)

2A lattice is homogeneous, if for two arbitrary sites r1 and r2, the relation Pt(r1|r2) = Pt(r2−r1|0) stands for any time
t.
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Consequently, the cumulant generating function, defined by Ψt(k) = ln
〈
eik·Xt

〉
, is

Ψt(k) ∼
ρ0→0

−ρ0Ωt(k). (2.51)

The cumulants of Xt are defined as the coefficients of the expansion of Ψt(k) in powers of k, and they
are written:

κ(n)(t) =
1

in

d∑

ν=1

(
∂nΨt

∂kν
n

∣∣∣∣
k=0

)
eν . (2.52)

Using (6.36), one gets

lim
ρ0→0

κ(n)(t)

ρ0
= − 1

in

d∑

ν=1

(
∂nΩt

∂kν
n

∣∣∣∣
k=0

)
eν . (2.53)

It will often be more convenient to compute the generating functions associated to these quantities.
We will then use the expression

lim
ρ0→0

κ̂(n)(ξ)

ρ0
= − 1

in

d∑

ν=1

(
∂nΩ̂

∂kν
n

∣∣∣∣∣
k=0

)
eν , (2.54)

with

Ω̂(k; ξ) =
∑

ν=±1,...,±d

[
1

1− ξ −
̂̃
P

(1)

(k| − eν ; ξ)eik·eν
] ∑

Y 6=0

F̂ ∗(0|eν |Y ; ξ). (2.55)

Finally, the determination of the function Ω̂(k; ξ) and therefore of the cumulants κ(n)(t) only relies on
the determination of the following quantities:

• the sums F ′ν =
∑
Y 6=0 F̂

∗(0|eν |Y ; ξ), with the method given in Section 2.4.2.

• the single-vacancy propagators ̂̃P
(1)

(k| − eν ; ξ). In Section 2.3.1, we wrote these propagators in
terms of the conditional first-passage time densities F ∗t (0|eµ|eν), which can be computed using
the method presented in Section 2.3.2.

2.5 Conclusion

In this Chapter, we presented the model of a biased TP in a d-dimensional hypercubic lattice gas of
symmetric particles, constrained by hardcore interactions. In the limit where the density is high (i.e.
if the vacancy density ρ0 = 1 − ρ goes to zero), it is more convenient to follow the dynamics of the
vacancies than the dynamics of the particles. Indeed, the TP may move only when a vacancy visits one
of its neighboring sites. At leading order in ρ0, the vacancies contribute independently to the motion of
the TP, so that the propagator associated to the TP random walk can be expressed in terms of single-
vacancy propagators. These single-vacancy propagators can be formally written in terms of conditional
first-passage time densities related to the random walk of a vacancy. These quantities can be studied by
noticing that the random walk of a vacancy on the lattice is symmetric on every lattice site except on
the 2d neighboring sites of the TP, on which the evolution rules of the vacancy are anisotropic. Then,
the propagators of a vacancy random walk, and therefore the conditional first-passage time densities,
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can be expressed in terms of the propagators of a simple symmetric random walk using a defective sites
method. Thus, these propagators are the only missing quantities to obtain an explicit expression of the
cumulants of the TP position. In the following Chapters, we will study different geometries:

• the one-dimensional geometry, on which we obtain an explicit expression of the probability den-
sity function of the TP position (Chapter 3).

• infinite lattices and capillary-like geometries in two and three dimensions, on which we study
extensively the behavior of the fluctuations of the TP position (Chapter 4) and of its mean position
(Chapter 5). This analysis yields striking observations: in confined geometries, the fluctuations
of the TP exhibit a long-lived superdiffusive regime, and its mean position displays a surprising
anomaly.

We also study higher-order cumulants and propose a universal formula which correctly accounts for the
behavior of the TP in the different situations we considered (Chapter 6). Finally, we propose in Chapter
7 a simplified continuous description, which allows to retrieve qualitatively all the nontrivial features
obtained through the exact approach.
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One-dimensional geometry
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We study the transport of a biased TP in a one-dimensional hardcore lattice gas, in the
limit where the density is high and where the motion of the TP is mediated by the diffusion
of a small number of vacancies. Following the general method presented in Chapter 2, we
express the cumulant generating function of the TP position in terms of the first-passage
time densities (FPTD) associated to the random walk of the vacancies. These FPTD are
calculated with standard methods from the theory of random walks on lattices. It is shown
that all the odd cumulants on the one hand, and all the even cumulants on the other hand
are identical in the long-time limit, and scale as

√
t. In particular, the fluctuations of the

TP grow subdiffusively, and the classical results on single-file diffusion are retrieved in the
limit of a symmetric TP. Finally, the distribution of the TP position is shown to converge to
a Gaussian distribution.

Results from this Chapter were published in [P3].
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Figure 3.1: Dynamics of a biased TP in a bath of symmetric particles in one dimension

3.1 Introduction

3.1.1 Single-file diffusion

Single-file diffusion refers to strictly one-dimensional random motion of interacting particles in natu-
rally occurring or man-made pores, which are so narrow that particles cannot bypass each other. Clearly,
in such a geometry the initial order of particles remains the same over time, and the movements of in-
dividual particles become strongly correlated: the displacement of any given tracer particle (TP) on
progressively larger distances necessitates the motion of more and more other particles in the same di-
rection. This results in a subdiffusive growth of the TP mean-square displacement in the long-time limit:〈
Xt

2
〉
∝
√
t. This anomalous behavior has been evidenced by passive microrheological experimental

studies of diffusion in molecular sieves [50], zeolites [52], or diffusion of confined colloidal particles
in circular [115] or straight channels [79]. Nowadays, a single-file diffusion, prevalent in many phys-
ical, chemical and biological processes, provides a paradigmatic example of anomalous diffusion in
equilibrium systems, which emerges due to a cooperative many-particle behavior.

From a theoretical point of view, this remarkable result has been first discovered analytically in
1965. Considering Brownian walkers on a line interacting via elastic collisions, Harris provided the
rigorous proof that for a given particle, its position Xt was a random variable such that Xt/(2t/π)1/4

was normally distributed with mean 0 and standard deviation 1 [54]. A discrete approach of this problem
on a one-dimensional lattice allowed Arratia [4] to show that

Var(Xt) ∼
t→∞

1− ρ
ρ

√
2t

π
, (3.1)

where ρ is the fraction of occupied sites on the lattice. This result was reproduced using different
approaches by many other authors [78, 3, 80, 7]. Recently, using macroscopic fluctuation theory, the
cumulant generating function of the tracer position was derived for different initial conditions [69].

3.1.2 Case of a biased TP

Less attention has been paid to the case where the TP is pulled with a constant force F through a single-
file system of unbiased diffusive particles. Such dynamics, represented in Fig. 3.1, provides a minimal
model of active transport in crowded single-file environments, which mimics situations as varied as the
active transport of a vesicle in a crowded axone [81], directed cellular movements in crowded channels
[55], or active microrheology in capillaries [117].

The only available theoretical results concern the time evolution of the mean displacement 〈Xt〉 of
a biased TP in a single-file lattice gas of hard-core particles undergoing symmetric exclusion process.
It was realized that 〈Xt〉 grows sub-linearly with time, 〈Xt〉 ∼ αF (ρ)

√
t, which signifies that in single
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files the frictional force exerted on the TP by the gas particles exhibits an unbounded growth [25]. As a
matter of fact, the biased TP drives the gas to a non-equilibrium state with an asymmetric distribution of
the gas particles around it: the gas particle accumulate in front of the TP increasing the frictional force
and are depleted behind. The characteristic extents of these two perturbed regions both grow as

√
t.

The coefficient αF (ρ) results from an interplay between the bias, formation of non-equilibrium
density profiles and backflow effects of the medium on the TP, and is implicitly defined as the solution
of a certain transcendental equation. Such an equation has been first evaluated in [26] for F = ∞,
(so that the TP performs a directed random walk), in which case the model can be mapped onto the
directional solidification process. Then, αF (ρ) has been defined in [25] for arbitrary F and ρ using
simple physical arguments, which result has been confirmed by a rigorous probabilistic calculation in
[72]. Finally, it was shown that the Einstein relation between the mobility and the diffusivity holds also
in this case.

3.1.3 Objectives of this chapter

We focus on the standard situation where the TP only is subject to a constant force F , which favors its
motion in a preferential direction, while the gas particles perform unbiased diffusions. We will focus
on the high-density limit and use the method presented in Chapter 2. At leading order in the density of
vacancies, we will answer the following questions:

• What is the force and time dependance of the cumulants of the position κ(j)(t) of arbitrary order j?

• What is the probability distribution function Pt(X) of the TP position?

We will show that for such dense systems all even cumulants are equal to each other for any time t,
and so do all odd cumulants. Further on, we will show that all cumulants grow in proportion to

√
t in the

leading order in t, and, curiously enough, this leading large-t behavior of the cumulants is independent
of F when j is even, and does depend on F for odd j. Finally, we prove that the distribution of the
TP displacement converges in the limit t→∞ to a Gaussian distribution centered at the mean position
〈X〉 = αF (ρ)

√
t and with the variance which grows asymptotically as

√
t and is independent of F .

3.2 Resolution

3.2.1 Model

Consider a one-dimensional lattice infinite in both directions, populated by hard-core particles present
at mean density ρ. The mean density of “vacant” sites is thus equal to ρ0 = 1 − ρ. The TP is initially
placed at the origin. Each lattice site is occupied by at most one particle. The jump direction is chosen
with probability 1/2 for the gas particles, while the TP chooses to hop in along the bias with probability
p1, and in the opposite direction - with probability p−1 (see Fig. 3.1).

3.2.2 Cumulant generating function

From now on we focus on the limit ρ0 � 1. In this limit it is more convenient to follow the vacancies,
rather than the particles, and we thus reformulate the dynamics of the systems in terms of vacancies.
As it was proposed in Chapter 2, we start with an auxiliary problem in which the system contains just
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Figure 3.2: Dynamics of the vacancies, far from the tracer and in its vicinity.

a single vacancy initially at position Z. Clearly, in such a system the vacancy will perform a standard
Pólya random walk stepping at each time step on the nearest-neighboring sites with probability 1/2,
except for the case when the vacancy arrives to a site adjacent to the tracer particle. In this case, the
evolution rules are the following:

(i) if the vacancy occupies the site to the right of the TP, it has a probability q1 = 1/(2p1 + 1) to jump
to the right and 1− q1 to jump to the left.

(ii) if the vacancy occupies the site to the left of the TP, it has a probability q−1 = 1/(2p−1 + 1) to
jump to the left and 1− q−1 to jump to the right.

The dynamics of the vacancies is represented on Fig. 3.2. These rules are the discrete counterpart of a
continuous time version of the model, as shown in [17]. In the continuous time model, waiting times of
particles are exponentials with mean 1. In that case, q1 is in fact the probability that the adjacent bath
particle jumps onto the vacancy before the TP.

Further on, for this situation with a single vacancy, let P (1)
t (X|Y ) denote the probability of having

the TP at site X at time moment t, given that the vacancy commenced its random walk at Y . In order to
express this propagator, we use its generic expression (2.8). The one-dimensional geometry introduces
an important simplification for the conditional return probabilities F ∗. Indeed, as the lattice is not
looped1, the last site visited by a vacancy before it reaches the origin will be sgn(Y ), where sgn is the
sign function. Consequently, we have the relations

F ∗t (0|ν|Y ) =

{
Ft(0|Y ) if ν = sgn(Y ) ,

0 otherwise.
(3.2)

For this geometry, (2.8) then simplifies to

P
(1)
t (X|Y ) = δX,0


1−

t∑

j=0

Ft(0|Y )




+

+∞∑

p=1

+∞∑

m1,m2,...,mp=1

+∞∑

mp+1=0

δm1+...+mp+1,nδX, sgn(Z)+(−1)p+1

2

×


1−

mp+1∑

j=0

Fj(0|(−1)p)


× Fmp(0|(−1)p+1) . . . Fm2(0| − 1)Fm1(0|Y ). (3.3)

1A looped lattice is rigorously defined as follows. Let x and y be two distinct sites of the considered lattice. Let us define
the distance d(x,y) as the minimal length of a path connecting x and y. A lattice is looped is there exists two or more distinct
paths of length d(x,y).
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According to (2.49), the computation of the cumulant generating function of Xt relies on the single-
vacancy propagators P̃ (1)

t (k| ± 1). We deduce from (3.3) the generating function associated to these
single-vacancy propagators:

P̂ (1)(X| ± 1; ξ) =
δX,0(1− F̂±1) + δX,±1F̂±1(1− F̂∓1)

(1− F̂1F̂−1)(1− ξ)
(3.4)

where we define for the sake of simplicity:

F̂±1 = F̂ (0| ± 1; ξ). (3.5)

We then deduce the Fourier-Laplace transform:

̂̃
P

(1)

(k| ± 1; ξ) =
1− F̂±1 + e±ikF̂±1(1− F̂∓1)

(1− F̂1F̂−1)(1− ξ)
. (3.6)

Then, using (2.55), we find the auxiliary function

Ω̂(k; ξ) =
∑

ν=±1

[
1

1− ξ −
̂̃
P

(1)

(k| − ν; ξ)eiνk

]∑

Y 6=0

F̂ ∗(0|ν|Y ; ξ) (3.7)

=
∑

ν=±1

[
1

1− ξ −
1− F̂−ν + e−iνkF̂−ν(1− F̂ν)

(1− F̂1F̂−1)(1− ξ)
eiνk

] ∞∑

Y=1

F̂ (0|νY ; ξ). (3.8)

Before expanding this function in powers of k in order to get the expressions of the cumulants,
we give explicit expressions of the first-passage time densities F̂±1 and of the quantity hν(ξ) ≡∑∞

Y=1 F̂ (0|νY ; ξ).

3.2.3 Calculation of F̂±1

We denote by ft(0|x) the first-passage time density at the origin at time t of a symmetric one-
dimensional Pólya random walk starting at time 0 at site x. We get an equation for Ft(0| ± 1) by
partitioning over the first time when the sites adjacent to the origin are reached:

Ft(0| ± 1) = (1− q±1)δt,1 + q±1

t∑

j=1

fj−1(0|1)Ft−j(0| ± 1), (3.9)

Multiplying by ξt and summing for t going from 0 to infinity, we find

F̂ (0| ± 1; ξ) = (1− q±1)ξ + q±1ξf̂(0|1; ξ)F̂ (0| ± 1; ξ). (3.10)

Using the result for one-dimensional Pólya walks [58],

f̂(0|x; ξ) =

(
1−

√
1− ξ2

ξ

)|x|
, (3.11)

we finally get

F̂ (0| ± 1; ξ) = F̂±1 =
(1− q±1)ξ

1− q±1(1−
√

1− ξ2)
. (3.12)
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3.2.4 Calculation of hν(ξ)

Similarly, noticing that

Ft(0|Y ) =

{∑t
j=1 fj(0|Y − 1)Ft−j(0|1) if Y > 0,

∑t
j=1 fj(0| − 1− Y )Ft−j(0| − 1) if Y < 0.

(3.13)

The associated generating functions are

F̂ (0|Y ; ξ) =

{
ξf̂(0|Y − 1; ξ)F̂ (0|1; ξ) if Y > 0,

ξf̂(0| − 1− Y ; ξ)F̂ (0| − 1; ξ) if Y < 0.
(3.14)

Using again (3.11), we finally obtain

∞∑

Y=1

F̂ (0|νY ; ξ) = hν(ξ) =
F̂ν

1− (1−
√

1− ξ2)/ξ
. (3.15)

3.2.5 Expression of the cumulants

Using (3.15) in (3.8), we obtain

Ω̂(k; ξ) =
1

1− ξ
1

1− (1−
√

1− ξ2)/ξ

1

1− F̂1F̂−1

[
F̂1(1− F̂−1)(1− eik) + F̂−1(1− F̂1)(1− e−ik)

]

=
1

1− ξ
1

1− (1−
√

1− ξ2)/ξ

1

1− F̂1F̂−1

∞∑

n=1

(ik)n

n!

[
F̂1(1− F̂−1) + (−1)nF̂−1(1− F̂1)

]

(3.16)

It is then straightforward to obtain the cumulants using (2.54):

κ̂(n)(ξ) ∼
ρ0→0

ρ0
F̂1(1− F̂−1) + (−1)nF̂−1(1− F̂1)

(1− ξ)[1− (1−
√

1− ξ2)/ξ](1− F̂1F̂−1)
. (3.17)

Recalling that the functions F̂±1 are explicitly given in terms of the bias with (3.12), this equation gives
an expression of the cumulants of arbitrary order, which constitute the key result of this Chapter. Note
that this expression is valid for any ξ, i.e. for any time moment. It then gives access to the full statistics
of the TP.

3.3 Results

3.3.1 Cumulants in the long-time limit

The first conclusion we can draw from (3.17) is that for arbitrary F (including F = 0) all odd cumulants
have the same generating function κ̂(odd)(ξ), and all even cumulants have the same generating function
κ̂(even)(ξ). This means that at any moment of time and for any F all cumulants κ(j)(t) with arbitrary
odd j = 2m+ 1 are equal to each other, κ(2m+1)(t) = κ(odd)(t), and so do all cumulants with arbitrary
even j = 2m, κ(2m)(t) = κ(even)(t).

Using (3.17) together with (3.12), we find the following results:
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(i) the expansion in powers of (1 − ξ) (which is equivalent to the large-time limit in Laplace space)
of the odd cumulants is

lim
ρ0→0

κ̂(odd)(ξ)

ρ0
=
ξ→1

p1 − p−1√
2

1

(1− ξ)3/2
− 2p1p−1(p1 − p−1)

(1− ξ) +O
(

1√
1− ξ

)
(3.18)

Using a Tauberian theorem 2, we finally obtain the long-time behavior of the odd cumulants:

lim
ρ0→0

κ(odd)(t)

ρ0
=

t→∞
(p1 − p−1)

√
2t

π
− 2p1p−1(p1 − p−1) + o(1). (3.22)

(ii) similarly, for the even cumulants, we get

lim
ρ0→0

κ̂(even)(ξ)

ρ0
=
ξ→1

√
2

2

1

(1− ξ)3/2
+O

(
1√

1− ξ

)
, (3.23)

and, using a Tauberian theorem,

lim
ρ0→0

κ(even)(t)

ρ0
=

t→∞

√
2t

π
+ o(1). (3.24)

Equations (3.22) and (3.24) signifiy that, remarkably, the leading in time behavior of all even cumu-
lants is independent of the bias, while the leading in time behavior of all odd cumulants does depend on
the bias. The asymptotic expression of κeven(t) reveals in particular that the variance of the TP grows as√
t, which the same time-dependance as in single-file diffusion. This subdiffusive behavior is explained

by the fact that the hardcore interactions force the particles to remain in the same order, so that the dis-
placement of a given particle on large distances – and in particular of the TP – requires the displacement
of many particles in the same direction.

In addition, for the standard choice of the transition probabilities fulfilling the detailed balance con-
dition such that p1 = 1− p−1 and p1/p−1 = exp(βF ), where β is the inverse temperature, and for the
specific case j = 0, we check from (3.22) that

lim
ρ0→0

〈Xt〉
ρ0

= tanh(βF/2)

√
2t

π
+O(1), (3.25)

2In this thesis, we will use several times the following Tauberian theorem (see [43] for a demonstration). We consider a
time-dependent function φ(t), and we define the associated generating function φ̂(ξ) =

∑∞
n=0 φ(t)ξt. If the expansion of

φ̂(ξ) in powers of (1− ξ) has the form

φ̂(ξ) ∼
ξ→1

1

(1− ξ)αΦ

(
1

1− ξ

)
, (3.19)

then the long-time of φ(t) is given by

φ(t) ∼
t→∞

1

Γ(α)
tα−1Φ(t), (3.20)

where Γ is the usual gamma function. This relation holds if α > 0, φ(t) > 0, φ(t) is monotonic and Φ is slowly varying in
the sense that

lim
x→∞

Φ(λx)

Φ(x)
= 1 (3.21)

for any λ > 0.
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Figure 3.3: Reduced cumulants κ̃(even)(t) = κ(even)(t)/
√

2t/π and κ̃(odd)(t) =

κ(odd)(t)/[(p1 − p−1)
√

2t/π − 2p1p−1(p1 − p−1)] vs time t for ρ0 = 0.01 and (a) p1 = 0.6

and (b) p1 = 0.98. Solid lines give the results of the inversion of Eq. 3.17, while symbols are the results
from numerical simulations.

which reproduces the results of [25, 72]. In the particular, in the limit F → 0, (3.25) together with the
expression of the even cumulants (3.24) (and thus of the variance) yield

lim
F→0

(
1

F
lim
ρ0→0

〈Xt〉
ρ0

)
=

1

2β
lim
ρ0→0

Var(Xt)

ρ0
, (3.26)

which constitutes a verification of the validity of the Einstein relation in this system.
Finally, note that (3.24) contains the particular case of the variance of a TP in single-file diffusion in

the limit of ρ→ 1 (3.1).

3.3.2 Numerical simulations

We perform Monte-Carlo simulations of this process. Starting from a lattice of L sites (L will be
taken large enough to consider the lattice as infinite), we place N vacancies on randomly chosen sites
(the origin being excluded). At each simulation time step, each vacancy is moved according to the
evolution rules prescribed in Section 3.2.2. The position of the TP is then averaged for a large number
of relalizations.

In Fig. 3.3, we plot our theoretical predictions for the time evolution of the cumulants obtained
by the inversion of Eq. 3.17, for different values of the force and at a fixed density ρ0. We observe a
perfect agreement between theory and simulations. Note that for small fields, the reduced odd cumulants
approach 1 from above while for strong fields from below.

Finally, the regime of validity of our expressions with respect to the density ρ0 is tested in Fig.
3.4, where we compare our theoretical predictions for the cumulants against the results of numerical
simulations for different values of the density ρ0 of the vacancies, for different forces F and a fixed time
moment t = 100. We observe a very good agreement for very small values of ρ0 and conclude that,
in general, the approach developed here provides a very accurate description of the TP dynamics for
ρ0 . 0.1.
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3.3.3 Case of a symmetric TP

In the particular case where the TP is symmetric (i.e. F = 0), one has q1 = q−1 = 1/2 and

F̂1 = F̂−1 =
ξ

1 +
√

1− ξ2
. (3.27)

As expected, this leads to κ̂(odd)(ξ) = 0 and

lim
ρ0→0

κ̂(even)(ξ)

ρ0
=

ξ

(1− ξ)
√

1− ξ2
. (3.28)

The time-dependance of the even cumulants can be retrieved by expanding κ̂(even)(ξ) in powers of ξ and
using the definition

κ̂(even)(ξ) =
∞∑

t=0

κ(even)(t)ξt. (3.29)

We start from the known expansion

1√
1− 4ξ

=
∞∑

k=0

(
2k

k

)
ξk (3.30)

and deduce

lim
ρ0→0

κ̂(even)(ξ)

ρ0
=

1

1− ξ
∞∑

k=0

2

(
2k

k

)(
ξ

2

)2k+1

. (3.31)

With a Cauchy product, we get

lim
ρ0→0

κ̂(even)(ξ)

ρ0
=
∞∑

t=0



b t−1

2 c∑

k=0

(
2k

k

)
1

22k


 ξt (3.32)

and

lim
ρ0→0

κ(even)(t)

ρ0
=

b t−1
2 c∑

k=0

(
2k

k

)
1

22k
= ρ0

1 +N

21+2N

(
2(1 +N)

1 +N

)
, (3.33)

where we introduced N =
⌊
t−1

2

⌋
. We use the following expression of the central binomial coefficient

and introduce the Gamma function:
(

2m

m

)
=

2m(2m− 1)!!

m!
=

22m

m!
√
π

Γ

(
m+

1

2

)
(3.34)

to finally obtain the simple relation

lim
ρ0→0

κ(even)(t)

ρ0
=

2√
π

Γ
(⌊

t−1
2

⌋
+ 3

2

)
(⌊

t−1
2

⌋)
!

(3.35)

where Γ is the usual Gamma function and b·c the floor function. The time-dependent expression of
κ(even) from (3.35) is represented on Fig 3.5 and compared to numerical simulations. Note that this
expression is not restricted to the limit t → ∞, and gives the expression of the even cumulant for any
time, which was not known up to now.
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3.3.4 Full distribution

We finaly provide an explicit expression of the full distribution function Pt(X) for any t. As a matter
of fact, the equality at leading order in ρ0 of cumulants of the same parity proved above shows that the
distribution associated to these cumulants is of Skellam type [106], so that

Pt(X) ∼
ρ0→0

exp
(
−κ(even)(t)

)(κ(even)(t) + κ(odd)(t)

κ(even)(t)− κ(odd)(t)

)X/2
IX

(√
κ(even)(t)2 − κ(odd)(t)2

)
,

(3.36)
where In(·) is a modified Bessel function of the first kind [1]. Importantly, we find that despite the
known asymmetry of the concentration profil of the bath particles [25], the rescaled variable

Zt =
Xt − κ(odd)(t)√

κ(even)(t)
(3.37)

is asymptotically distributed accordingly to a Gaussian distribution.
The explicit expression of the p.d.f. of Xt can be compared to histograms obtained from the numer-

ical simulations described above, with a very good agreement (see Fig. 3.6).

3.4 Conclusion

In this Chapter, we studied the diffusion of a TP with asymmetric jump probabilities (Fig. 3.1) on a
one-dimensional lattice populated by hardcore particles performing symmetric random walks. This
system constitutes a minimal model of active transport in a crowded single-file environment, relevant
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to describe different experimental situations. In the limit where the density of particles is close to 1,
we applied the general formalism presented in Chapter 2, and we computed the cumulant generating
function associated to the TP position. We showed that the odd cumulants are all identical, and are
given by ρ0(p1− p−1)

√
2t/π in the limit ρ0 → 0 and t→∞. In the same limit, the even cumulants are

also shown to be identical, and are independent of the bias, with the asymptotic expression ρ0

√
2t/π.

In particular, the variance of the TP position grows subdiffusively as
√
t. As all the cumulants of the

same parity are equal, the distribution of the TP position is given by a Skellam distribution, and the
distribution of the rescaled variable (Xt−〈Xt〉)/

√
Var(Xt) converges to a Gaussian distribution in the

long-time limit.

In a future work, we would like to study the case of an arbitrary density of particles, for which the
results are limited to the mean position of the TP, which was computed by an approximated approach
[25] and confirmed by a rigorous treatment [72]. These works could be extended in order to obtain
the higher-order cumulants of the TP distribution, and in particular the variance, whose time and force
dependence is still an open question.
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We study the fluctuations of the position a biased tracer particle (TP) in a dense hardcore
lattice gas. In the limit where the density of vacancies ρ0 goes to zero, following the method
presented in Chapter 2, the fluctuations of the TP position are expressed in terms of the
first-passage time densities associated to the random walk of the vacancies. We find that in
confined geometries, such as quasi-one-dimensional stripe-like and capillary-like lattices
or a two-dimensional lattice, the fluctuations of the TP position grow superdiffusively,
and that this effect emerges beyond the linear response of the system. We show that this
superdiffusive evolution is a transient long-lived regime, which crosses over to a diffusive
regime after a time which scales as 1/ρ0

2. We finally compute the scaling functions
describing both regimes. Off-lattice numerical simulations suggest that superdiffusion
could be a generic feature of driven crowded systems.

Results from this Chapter were published in [P2] and [P4].

4.1 Introduction

4.1.1 Context

As it was emphasized in the general introduction of this thesis, determining the response of a medium to
a perturbation created by a driven particle in a host medium which hinders its motion has become a key
problem in statistical physics. In particular, it constitues a recurrent question of nonequilibrium statistical
mechanics, arising in the quest of fundamental fluctuation-dissipation relations [84, 34]. A considerable
amount of knowledge has been gathered on the forms of the so-called force-velocity relation, i.e. the
dependence of the TP velocity v on the value of the applied force F , both in the linear and the nonlinear
response regimes.

Behavior beyond the force-velocity relation was recently addressed numerically in the pioneering
work [118], which studied via Molecular Dynamics (MD) simulations the dynamics of an externally
driven, or biased TP in a glass-forming liquid (a dense binary Yukawa liquid). It was recognized that
while the TP moves ballistically, i.e. 〈Xt〉 ∼ vt, the variance σ2

x =
〈
(Xt − 〈Xt〉)2

〉
of the TP position

Xt along the bias grows surprisingly in a superdiffusive manner with respect to time t, so that σ2
x ∼ tλ,

where λ is within the range 1.3− 1.5. For such systems, this effect was found only in the close vicinity
of the glass transition while regular diffusion was recovered away from the transition [53], suggesting
that such anomalous behavior could be a distinct feature of being close to the glass transition.

This as of yet unexplained finding of superdiffusion in an active microrheological set-up is counter-
intuitive: indeed, in passive microrheology it is common to encounter diffusive, or even subdiffusive
growth of the fluctuations of the TP position in such crowded molecular environments [56], however not
superdiffusion.
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The very existence of this intriguing superdiffusion remains however a matter of some debate and
the available MD simulations lead to apparently conflicting results. In particular, recent MD simulations
[104] investigating the dynamics of a biased TP in a dense, binary Lennard-Jones liquid, which is another
glass-former, showed that the superdiffusion, if any, is only a transient and that ultimately the asymptotic
behavior is diffusive.

A number of attempts has been made to explain these findings, based either on a random trap model
[118], mode coupling theory [53], or continuous-time random walks (CTRWs) [104] based on previous
studies of kinetically constrained models [19, 61]. All of these approaches rely on the notion of a
complex energy landscape and thereby assume that the system is close to the glass transition. However,
they do not provide a quantitative nor qualitative understanding of the superdiffusive behaviour. In
particular, the question whether superdiffusion is the ultimate regime or only a transient is still open
[118, 104].

4.1.2 Objectives of this Chapter

In this Chapter, we show that superdiffusion in active microrheology settings can appear away from
the glass transition, and even independently of glassy properties. Based on a simple model that does
not involve any complex energy landscape or kinetic constraints, we demonstrate that superdiffusion
emerges generically in confined crowded systems. We fully quantify this superdiffusion, show that it is
long-lived and highlight the key role of the geometry of the system.

In order to achieve this, we will investigate the high-density limit of the lattice gas model presented
in Chapter 2. In particular, we will compute the second cumulant of the position Xt of the TP along the
direction of the bias, defined by

κ
(2)
1 (t) =

〈
Xt

2
〉
− 〈Xt〉2 , (4.1)

and we will investigate the influence of three parameters:

• the time t,

• the density of vacancies ρ0,

• the external force F applied on the TP.

Indeed, our approach correctly captures the dependences on these parameters, which appear to be non-
trivial. Before giving a complete picture of our analytical treatment, we present in the following Section
a summary of the main results.

4.2 Main results of this Chapter

We consider the lattice gas model presented in Chapter 2, where the particles in the medium perform
symmetric random walks on a d-dimensional lattice constrained by hard-core interactions between the
particles, so that there is at most one particle per lattice site. The TP performs a random walk biased by
an external force F = Fe1, so that its probability to jump in direction ν is proportional to e

1
2
F ·eν . All

the particles on the lattice interact via hardcore interactions. We consider several different geometries:
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two-dimensional and three-dimensional infinite lattices, as well as confined quasi-one-dimensional ge-
ometries, which are infinite in the direction of e1 and finite with periodic boundary conditions in the
other directions. The latter will be called “stripes” (in 2D) and “capillaries” (in 3D).

As it was emphasized in Chapter 2, an important technical point is that for small values of the density
of vacancies ρ0, the dynamics of the TP can be deduced from analyzing the joint dynamics of the TP and
a single isolated vacancy. Exact asymptotic expressions of the variance κ(2)

1 (t) are obtained for various
geometries and for arbitrary values of the jump probabilities pν (probability for the TP to make a jump
in direction ν). These are valid at large times and low vacancy densities, and are summarized below.

Superdiffusive regime. First, our approach predicts the following large-t behaviour of the variance
κ

(2)
1 (t) in the leading order of ρ0:

lim
ρ0→0

κ
(2)
1 (t)

ρ0
=

t→∞
2a2

0 ×





(4/3
√
πL) t3/2 2D stripe,

(2
√

2/3π/L2) t3/2 3D capillary,

π−1t ln(t) 2D lattice,[
A+ 1

2a0

p1−p−1

p1+p−1

]
t 3D lattice,

(4.2)

where a0 depends on the bias

a0 =
p1 − p−1

1 + 2dα
2d−α(p1 + p−1)

, (4.3)

A = P̂ (0|0; 1) + 2(13α− 6)/[(2 + α)(α− 6)], d is the system dimension, α = limξ→1− [P̂ (0|0; ξ)−
P̂ (2e1|0; ξ)] and P̂ (r|r0; ξ) is the generating function (discrete Laplace transform) of the propagator of
a symmetric simple random walk. These surprisingly simple exact expressions unveil the dependence
of the variance on time, width L of the stripe or of the capillary, and on the external force F . A number
of important conclusions can be drawn from this result:

• Strong superdiffusion with exponent 3/2 takes place in confined, quasi-1D geometries, those
being, infinitely long 3D capillaries and 2D stripes. This result is quite counterintuitive: indeed,
in the absence of driving force it is common to encounter diffusive, or even subdiffusive growth
of the fluctuations of the TP position but not superdiffusion.

• The superdiffusion in such systems emerges beyond (and therefore can not be reproduced within)
the linear-response-based approaches: the prefactor in the superdiffusive law is proportional to
F 2 when F → 0. Despite the presence of the superdiffusion, the Einstein relation is nonetheless
valid for systems of arbitrary geometry due to subdominant (in time) terms whose prefactor is
proportional to F .

• In unbounded 3D systems, κ(2)
1 (t) grows diffusively and not superdiffusively.

• Finally, this shows that superdiffusion is geometry-induced and the recurrence of the random walk
performed by a vacancy is a necessary condition in order for superdiffusion to occur. However,
this condition is not sufficient. Indeed, on one-dimensional lattices, although the random walk of
a vacancy is recurrent, the behavior of the TP is not superdiffusive (see Chapter 3).
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Giant diffusion regime. The exact analytical result in (4.2) provides explicit criteria for superdiffu-
sion to occur. Technically, this yields the behavior of the variance when the limit ρ0 → 0 is taken before
the large-t limit. It however does not allow us, due to the nature of the limits involved, to answer the
question whether the superdiffusion is the ultimate regime (or just a transient), which requires the deter-
mination of limt→∞ κ

(2)
1 (t) at fixed ρ0. Importantly, we find that the order in which these limits are taken

is crucial in confined geometries and show that limt→∞ limρ0→0 κ
(2)
1 (t) 6= limρ0→0 limt→∞ κ

(2)
1 (t). In

fact, the effective bias experienced by a vacancy between two consecutive interactions with the TP, orig-
inating from a non-zero velocity of the TP, dramatically affects the ultimate long-time behavior of the
variance in confined geometries.

More precisely, we show that the superdiffusive regime is always transient for an experimentally
relevant system with ρ0 fixed, while the long-time behaviour obeys

lim
t→∞

κ
(2)
1 (t)

t
=

ρ0→0





B quasi-1D,

4a2
0π
−1ρ0 ln(ρ−1

0 ) 2D lattice,

2a2
0

[
A+ 1

2a0

p1−p−1

p1−p−1

]
ρ0 3D lattice,

(4.4)

i.e., is always diffusive. The constant B only depends on the driving force F : this long-time diffusive
behaviour is particularly remarkable in quasi-1D systems, in which the variance is independent of ρ0.

Full dynamics: scaling regime and cross-over. Finally, our approach provides the complete time
evolution of the variance in the regime corresponding to ρ0 � 1 and at a sufficiently large time t, that
interpolates between the two limiting regimes of superdiffusion and giant diffusion listed above. In this
regime, it is found that

κ
(2)
1 (t) ∼





tf̃(ρ2
0t)/L

d−1 quasi-1D,

−2a2
0
π ρ0t ln

(
(ρ0a0)2 + 1/t

)
2D lattice,

2a2
0

[
A+ 1

2a0

p1−p−1

p1−p−1

]
ρ0t 3D lattice,

(4.5)

where the scaling function f̃ is explicitly given and satisfies

f̃(x) ∝
{
x1/2 when x� 1,

constant when x� 1.
(4.6)

On quasi-1D geometries an 2D lattice, the crossover time between the two regimes scales as 1/ρ0
2, so

that superdiffusion is therefore very long-lived in such systems. Despite its transient feature, we thus
expect superdiffusion to be a robust characteristic of confined crowded systems.

In what follows, we give a derivation of the results presented in this summary. We first present
with details the case of a two-dimensional stripe-like geometry. The method can be extended to other
geometries, for which we give a less detailed outline of the calculation.

4.3 Stripe-like geometry

We first study the case of a stripe-like lattice, which is two-dimensional, infinite in the direction of
the applied force (chosen to be direction 1) and finite (of size L) with periodic boundary conditions in
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L 1

2

Figure 4.1: Stripe-like geometry. The lattice is infinite in the first direction (which will be the direction
of the external force imposed on the TP), and finite of width L with periodic boundary conditions in the
other direction.

the other direction (see Fig. 4.1). This geometry actually constitutes a minimal quasi-one-dimensional
system. The evolution of the TP is given a priori by four jump probabilities: p±1, p±2. We assume that
the bias only affects direction 1, so that p−2 = p2. Using a normalization condition, we will write p2 as

p2 =
1

2
(1− p1 − p−1). (4.7)

A detailed derivation of the second cumulant in the longitudinal direction is given below for this ge-
ometry, following the method presented in Chapter 2. It will be extended to other geometries afterwards.

4.3.1 Expression of Ω̂(k1; ξ)

We follow the method described in Chapter 2. We first intend to compute the single-vacancy propagators
P

(1)
t (X|Y 0), and we use the notations defined previously. In this Chapter, we focus on the statistical

properties of the TP position in the direction of the forceX · e1 ≡ X . We then take k = (k1, 0), and all
functions of k will actually be functions of k1. The matrix T (k1; ξ), defined by (2.13), can be written

T (k1; ξ) =




eik1F̂ ∗1,−1(ξ) eik1F̂ ∗1,1(ξ) eik1F̂ ∗1,2(ξ) eik1F̂ ∗1,−2(ξ)

e−ik1F̂ ∗−1,−1(ξ) e−ik1F̂ ∗−1,1(ξ) e−ik1F̂ ∗−1,2(ξ) e−ik1F̂ ∗−1,−2(ξ)

F̂ ∗2,−1(ξ) F̂ ∗2,1(ξ) F̂ ∗2,2(ξ) F̂ ∗2,−2(ξ)

F̂ ∗−2,−1(ξ) F̂ ∗−2,1(ξ) F̂ ∗−2,2(ξ) F̂ ∗−2,−2(ξ)


 (4.8)

where we introduced the simplified notations

F̂ ∗µ,ν(ξ) ≡ F̂ ∗(0|eµ|eν ; ξ), (4.9)

and where F̂ ∗(0|eµ|eν ; ξ) are the generating functions associated to the probability for a vacancy to
reach the origin for the first time a time t, being at eµ at time t− 1 and starting from eν . For symmetry
reasons, we have the following relations:

F̂ ∗±1,−2(ξ) = F̂ ∗±1,2(ξ) (4.10)

F̂ ∗−2,±1(ξ) = F̂ ∗2,±1(ξ) (4.11)

F̂ ∗−2,2(ξ) = F̂ ∗2,−2(ξ) (4.12)

F̂ ∗−2,−2(ξ) = F̂ ∗2,2(ξ) (4.13)

Introducing these relations in (4.8), it is straightforward to compute the determinant D(k1; ξ),

D(k1; ξ) = det[1− T (k1; ξ)] (4.14)

= −b−
(
D0 +D1eik1 +D−1e−ik1

)
(4.15)
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where

D0 =
(
F̂ ∗−1,−1F̂

∗
1,1 − F̂ ∗−1,1F̂

∗
1,−1 − 1

)
b+ + 2

(
F̂ ∗2,−1b1 + F̂ ∗2,1b−1

)
(4.16)

D±1 = F̂ ∗±1,∓1b+ − 2F̂ ∗2,∓1F̂
∗
±1,2 (4.17)

and

b± = F̂ ∗2,−2 ± F̂ ∗2,2 − 1 (4.18)

b±1 = F̂ ∗∓1,±1F̂
∗
±1,2 − F̂ ∗±1,±1F̂

∗
∓1,2 (4.19)

Expressing Uµ(k1; ξ) from its definition (2.15), and using the expression of the Fourier-Laplace trans-
form of P (1)

t (X|Y 0) (2.11), we find

̂̃
P

(1)

(k1|Y 0; ξ) =
1

1− ξ
D0 − σ1(Y 0)− σ−1(Y 0) + [D1 + σ1(Y 0)] eik1 + [D−1 + σ−1(Y 0)] e−ik1

D0 +D1eik1 +D−1e−ik1

(4.20)
with

σ±1(Y 0) = F̂ ∗±1,Y 0
[−b+F̂ ∗∓1,∓1b+ − 2F̂ ∗2,∓1F̂

∗
∓1,2] + F̂ ∗∓1,Y 0

[−F̂ ∗±1,∓1b+ + 2F̂ ∗2,∓1F̂
∗
±1,2]

+ (F̂ ∗±1,2 + b∓1)


∑

µ6=±1

F̂ ∗µ,Y 0


 , (4.21)

and
F̂ ∗µ,Y 0

= F̂ ∗(0|eµ|Y 0; ξ). (4.22)

Finally, recalling that the definition of Ω(k1; ξ) (2.55), we get

Ω̂(k1; ξ) =
1

1− ξ
∑

ν


∑

Y 6=0

F̂ ∗(0|eν |Y ; ξ)




×
{

1− eik·eν D0 − σ1(e−ν)− σ−1(e−ν) + [D1 + σ1(e−ν)] eik1 + [D−1 + σ−1(e−ν)] e−ik1

D0 +D1eik1 +D−1e−ik1

}
.

(4.23)

From this expression, and recalling the relation between Ω̂ and the generating functions associated to
the cumulants (2.54), we find

lim
ρ0→0

κ̂
(2)
1 (ξ)

ρ0
=

∂2Ω̂

∂k1
2

∣∣∣∣∣
k=0

(4.24)

=
{
F ′1 [(3D0 +D1 + 5D−1)σ1(e−1) + (−D0 +D1 − 3D−1)σ−1(e−1)]

+F ′−1 [(−D0 − 3D1 +D−1)σ1(e1) + (3D0 + 5D1 +D−1)σ−1(e1)]

+F ′2 [(D0 −D1 + 3D−1)σ1(e−2) + (D0 + 3D1 −D−1)σ−1(e−2)]

+ F ′−2 [(D0 −D1 + 3D−1)σ1(e2) + (D0 + 3D1 −D−1)σ−1(e2)]
}

× 1

[(1− ξ)(D0 +D1 +D−1)2]
+
F ′1 + F ′−1

1− ξ
(4.25)
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where we defined
F ′ν(ξ) =

∑

Y 6=0

F̂ ∗(0|eν |Y ; ξ). (4.26)

Using the symmetry relations

F ′−2 = F ′2 (4.27)

σ1(e−2) = σ1(e2) (4.28)

σ−1(e−2) = σ−1(e2) (4.29)

we obtain the simplified expression

lim
ρ0→0

κ̂
(2)
1 (ξ)

ρ0
=

{
F ′1 [(3D0 +D1 + 5D−1)σ1(e−1) + (−D0 +D1 − 3D−1)σ−1(e−1)]

+F ′−1 [(−D0 − 3D1 +D−1)σ1(e1) + (3D0 + 5D1 +D−1)σ−1(e1)]

+ 2F ′2 [(D0 −D1 + 3D−1)σ1(e−2) + (D0 + 3D1 −D−1)σ−1(e−2)]
}

× 1

[(1− ξ)(D0 +D1 +D−1)2]
+
F ′1 + F ′−1

1− ξ (4.30)

Therefore, recalling the definitions of Dk and σ±1(eµ), one notices that the generating function
associated to the second cumulant is expressed only in terms of

• the conditional first-passage time densities (FPTD) F ∗(0|eµ|eν),

• the sums F ′ν(ξ) =
∑
Y 6=0 F̂

∗(0|eν |Y ; ξ).

In what follows, we give a method to derive these quantities explicitly.

4.3.2 Calculation of the conditional FPTD F ∗

Using the results from Chapter 2, we recall that the condition FPTD F ∗ are obtained using the expression

F̂ ∗(0|eµ|eν ; ξ) = ξp†(0|eµ)P̂ †(eµ|eν ; ξ). (4.31)

where the dagger † is relative to the random walk of a vacancy with an absorbing site at the origin (see
Fig. 2.2 for the definition of the evolution rules of the vacancies). The quantities P̂ † are given by the
matrix relation (2.21), that we recall here:

P † = (1−A)−1P (4.32)

In what follows, we give explicit expressions of the matrices P andA.

4.3.2.1 Expression ofA

The elements ofA were in Section 2.3.2 defined as

Ai,j = A(si|sj ; ξ) = ξ
∑

r

P̂ (si|r; ξ)
[
p†(r|sj)− p(r|sj)

]

︸ ︷︷ ︸
≡p′(r|sj)

. (4.33)

In what follows, we compute A(si|sj ; ξ) in the two cases: sj = 0 and sj 6= 0.
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(i) if sj = 0:

The elementary jump probabilities can be written:

p(r|0) =

{
1/4 if r = eµ ,

0 otherwise.
(4.34)

p†(r|0) =

{
1 if r = 0 ,

0 otherwise.
(4.35)

so that

p′(r|0) =





1 if r = 0 ,

−1/4 if r = eµ,

0 otherwise.

(4.36)

We deduce an expression for A(si|0; ξ):

A(si|0; ξ) = ξ


P̂ (si|0; ξ)− 1

4

∑

µ=±1,±2

P̂ (si|eµ; ξ)


 . (4.37)

In order to simplify this equation, we write the following relation between the propagators P̂ ,
obtained by partitioning over the first step of the walk:

Pt+1(r|r0) =
∑

µ=±1,±2

p(r0 + eµ|r0)Pt(r|r0 + eµ). (4.38)

Writing the associated generating functions (i.e. multiplying by ξt and summing for t going from
0 to infinity), we get:

1

ξ

[
P̂ (r|r0; ξ)− δr,r0

]
=

∑

µ=±1,±2

p(r0 + eµ|r0)P̂ (r|r + eµ; ξ), (4.39)

or, equivalently

P̂ (r|r0; ξ) = δr,r0 +
ξ

4

∑

µ=±1,±2

P̂ (r|r0 + eµ; ξ). (4.40)

Using (4.40) in (4.37), we obtain

A(si|0; ξ) = δi,0 − (1− ξ)P̂ (si|0; ξ). (4.41)

(ii) if sj = eν (ν ∈ {±1,±2})
The elementary jump probabilities write:

p(r|eν) =

{
1/4 if r = eν + eµ ,

0 otherwise.
(4.42)

p†(r|eν) =





pν
pν+3/4 if r = 0 ,

1/4
pν+3/4 if r = eν + eµ, µ 6= −ν,
0 otherwise.

(4.43)
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so that

p′(r|eν) =





pν
pν+3/4 − 1

4 if r = 0 ,
1/4

pν+3/4 − 1
4 if r = eν + eµ, µ 6= −ν,

0 otherwise.

(4.44)

We then obtain an expression for A(si|eν ; ξ):

A(si|eν ; ξ) = ξ



(

pν
pν + 3/4

− 1

4

)
P̂ (si|0; ξ) +

∑

µ6=−ν

(
1/4

pν + 3/4
− 1

4

)
P̂ (si|eν + eµ; ξ)




= ξ


pν − 1/4

pν + 3/4
P̂ (si|0; ξ) +

1

4

(
1

pν + 3/4
− 1

) ∑

µ=±1,±2

P̂ (si|eν + eµ; ξ)




Finally, using again (4.40), we get

A(si|eν ; ξ) =

(
1

pν + 3/4
− 1

)[
P̂ (si|eν ; ξ)− δi,ν − ξP̂ (si|0; ξ)

]
(4.45)

These two cases then lead to the general expression

A(si|sj ; ξ) =




δi,0 − (1− ξ)P̂ (si|0; ξ) if sj = 0 ,(

1
pν+3/4 − 1

) [
P̂ (si|eν ; ξ)− δi,ν − ξP̂ (si|0; ξ)

]
if sj = eν .

(4.46)

Finally, the entries of the matrix A are simply expressed in terms of the propagators P̂ (si|sj), i.e.
the entries of the matrix P . In what follows, we give an expression of the matrix P , and simplify it
using symmetry relations.

4.3.2.2 Expression of P

The elements of P are the propagators P̂ (si|sj ; ξ), relative to the random walk of a vacancy without
perturbation at the origin. Note that this random walk is equivalent to a Pólya walk of a single walker
on a stripe-like lattice. The expression of P is

P =




P̂ (0|0; ξ) P̂ (0|e1; ξ) P̂ (0|e−1; ξ) P̂ (0|e2; ξ) P̂ (0|e−2; ξ)

P̂ (e1|0; ξ) P̂ (e1|e1; ξ) P̂ (e1|e−1; ξ) P̂ (e1|e2; ξ) P̂ (e1|e−2; ξ)

P̂ (e−1|0; ξ) P̂ (e−1|e1; ξ) P̂ (e−1|e−1; ξ) P̂ (e−1|e2; ξ) P̂ (e−1|e−2; ξ)

P̂ (e2|0; ξ) P̂ (e2|e1; ξ) P̂ (e2|e−1; ξ) P̂ (e2|e2; ξ) P̂ (e2|e−2; ξ)

P̂ (e−2|0; ξ) P̂ (e−2|e1; ξ) P̂ (e−2|e−1; ξ) P̂ (e−2|e2; ξ) P̂ (e−2|e−2; ξ)




(4.47)

This matrix involves 25 distinct propagators. The considered lattice has several properties which will be
useful to simplify the expression of P :

• the lattice is translation invariant:

P̂ (r|r0; ξ) = P̂ (r − r0|0; ξ). (4.48)
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• the random walk is symmetric with respect to each coordinate:

P̂ (r1e1 + r2e2|0; ξ) = P̂ (−r1e1 + r2e2|0; ξ), (4.49)

P̂ (r1e1 + r2e2|0; ξ) = P̂ (r1e1 − r2e2|0; ξ), (4.50)

Using these properties, P reduces to

P =




P̂ (0|0; ξ) P̂ (e1|0; ξ) P̂ (e1|0; ξ) P̂ (e2|0; ξ) P̂ (e2|0; ξ)

P̂ (e1|0; ξ) P̂ (0|0; ξ) P̂ (2e1|0; ξ) P̂ (e1 + e2|0; ξ) P̂ (e1 + e2|0; ξ)

P̂ (e1|0; ξ) P̂ (2e1|0; ξ) P̂ (0|0; ξ) P̂ (e1 + e2|0; ξ) P̂ (e1 + e2|0; ξ)

P̂ (e2|0; ξ) P̂ (e1 + e2|0; ξ) P̂ (e1 + e2|0; ξ) P̂ (0|0; ξ) P̂ (2e2|0; ξ)

P̂ (e2|0; ξ) P̂ (e1 + e2|0; ξ) P̂ (e1 + e2|0; ξ) P̂ (2e2|0; ξ) P̂ (0|0; ξ)



.

(4.51)
This matrix only involves six distinct propagators, corresponding to random walks starting from the
origin and arriving at sites 0, e1, e2, 2e1, 2e2 and e1 + e1. A detailed calculation of these propagators,
as well as their expansions in the long-time limit (ξ → 1) is given in Appendix A.

Using the symmetry relations of the propagators P̂ and the expressions of the entries of A (4.46),
we find

A =




1− (1− ξ)P̂0,0 r1(P̂1,0 − ξP̂0,0) r−1(P̂1,0 − ξP̂0,0) r2(P̂0,1 − ξP̂0,0) r2(P̂0,1 − ξP̂0,0)

−(1− ξ)P̂1,0 r1(P̂0,0 − 1− ξP̂1,0) r−1(P̂2,0 − ξP̂1,0) r2(P̂1,1 − ξP̂1,0) r2(P̂1,1 − ξP̂1,0)

−(1− ξ)P̂1,0 r1(P̂2,0 − ξP̂1,0) r−1(P̂0,0 − 1− ξP̂1,0) r2(P̂1,1 − ξP̂1,0) r2(P̂1,1 − ξP̂1,0)

−(1− ξ)P̂0,1 r1(P̂1,1 − ξP̂0,1) r−1(P̂1,1 − ξP̂0,1) r2(P̂0,0 − 1− ξP̂0,1) r2(P̂0,2 − ξP̂0,1)

−(1− ξ)P̂0,1 r1(P̂1,1 − ξP̂0,1) r−1(P̂1,1 − ξP̂0,1) r2(P̂0,2 − ξP̂0,1) r2(P̂0,0 − 1− ξP̂0,1)




(4.52)
where we used the simplified notations rν = 1

pν+3/4 − 1 and P̂r1,r2 = P̂ (r1e1 + r2e2|0; ξ).
Finally, using the matrix relation (2.21) and the definitions ofP (4.51) andA (4.52), the propagators

P̂ †(eµ|eν ; ξ) are readily expressed in terms of the propagators P̂ (eµ|eν ; ξ). One deduces from (2.20)
and from the values of p† (4.43) the expressions of F̂ ∗(0|eµ|eν ; ξ) in terms of the propagators P̂ . These
expressions are straightforward to obtain, but are cumbersome as they rely on the inversions and products
of 5× 5 matrices. In practice, the determination of the conditional FPTD requires the use of a computer
algebra software.

4.3.3 Calculation of the quantities F ′ν
Recalling the method given in Section 2.4.2, the quantities F ′ν may be computed straightforwardly using
a computer algebra software with (2.39) and (2.47), and using the expressions of A (4.52) and the
propagators P̂ (0|sj ; ξ) (Appendix A).

4.3.4 Expression of the second cumulant in the long-time limit

In what follows, we give an explicit derivation of the leading order term of κ̂(2)
1 (ξ) in the ξ → 1 limit.

Using the expansion of the propagators P̂ (see Appendix A and the equations (A.36)-(A.41)), we first
notice that at leading order in (1− ξ), the quantities σ±1(e±ν) involved in the expression of the second
cumulant (4.30) are independent of ν, and can be written

σ±1(eν) ∼
ξ→1
− 1

S p±1(α− 4)(4 + α− 4β), (4.53)
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with

S ≡ 8α(α− 4β + 2)(p1 + p−1)3 − 4(3α− 4)(α− 4β + 2)(p1 + p−1)2

+
[
6α2 − 24αβ + 64β − 32− 8α(α− 4β + 2)(p1 − p−1)2

]
(p1 + p−1)

+2α(3α− 12β + 4)(p1 − p−1)2 − (α− 4)(4 + α− 4β), (4.54)

where we have introduced the useful quantities α and β, defined by

α = lim
ξ→1

[
P̂ (0|0; ξ)− P̂ (2e1|0; ξ)

]
= 8(1− S(2)

L,1 − S
(2)
L,3) (4.55)

β = lim
ξ→1

[
P̂ (0|0; ξ)− P̂ (e1|0; ξ)

]
= 2(1− S(2)

L,1) (4.56)

and the quantities S(2)
L,n

S
(2)
L,n ≡

1

L

L−1∑

k2=1

sinn(πk2/L)√
1 + sin2(πk2/L)

. (4.57)

(see Appendix A for details). Furthermore, one obtains the leading order of the quantities Dj and
D0 +D1 +D−1 involved in the expression of the second cumulant (4.30):

D0 ∼
ξ→1

− 1

S (p1 + p−1)(α− 4)(4 + α− 4β), (4.58)

D±1 ∼
ξ→1

1

S p±1(α− 4)(4 + α− 4β), (4.59)

D0 +D1 +D−1 ∼
ξ→1

1

S (4 + α− 4β)[4− α+ 4α(p1 + p−1)]L
√

1− ξ. (4.60)

With these expansions, we find an intermediate expression of the second cumulant

lim
ρ0→0

κ̂
(2)
1 (ξ)

ρ0
∼
ξ→1

1

1− ξ

[
2(p1 − p−1)2(α− 4)2

L2(1− ξ)(4 + α+ 4α(p1 + p−1))2

∑

ν

F ′ν + (F ′1 + F ′−1)

]
(4.61)

Finally, the expansions of F ′1 + F ′−1 and of the sum
∑

ν F
′
ν are

F ′1 + F ′−1 ∼
ξ→1

1

S
L√

1− ξ [8αp1p−1 − (α− 4)(p1 + p−1)][2(α− 6β + 4)(p1 + p−1)− α+ 8β − 4]

∑

ν

F ′ν(ξ) ∼
ξ→1

L√
1− ξ (4.62)

Combining these results in the expression of the second cumulant from (4.61), we get

lim
ρ0→0

κ̂
(2)
1 (ξ)

ρ0
∼
ξ→1

2

L

[
p1 − p−1

1 + 4α
4−α(p1 + p−1)

]2
1

(1− ξ)5/2
. (4.63)

Finally, using a Tauberian theorem and introducing the quantity

a0 ≡
p1 − p−1

1 + 4α
4−α(p1 + p−1)

, (4.64)

we get the long-time behavior of the second cumulant in the limit of a low vacancy density:

lim
ρ0→0

κ
(2)
1 (t)

ρ0
∼

t→∞

8a0
2

3
√
πL

t3/2 (4.65)
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4.3.5 Comments

• In stripe-like geometries, the fluctuations of the position of the TP are superdiffusive and grow
as t3/2. This anomalous behavior is counterintuitive, as the fluctuations would grow linearly with
time in the absence of driving force.

• Superdiffusion emerges beyond (and therefore can not be reproduced within) the linear-response-
based approaches. Indeed, if the transition probabilities are assumed to be related to some driving
force (pµ ∝ e

1
2
F ·eµ , with an appropriate normalization), it is straightforward to show that

a0
2 =
F→0

O(F 2), (4.66)

so that the prefactor computed above vanishes when F → 0 but proportionally to F 2. However,
it can be shown that the subdominant terms in time cancels as F , and that an Einstein relation is
valid in this system.

• In Chapter 7, we will present a simplified description of the system, unveiling the physical mech-
anism at the origin of this anomalous behavior.

4.3.6 Numerical simulations

To simulate our lattice gas system on a stripe-like geometry, we performed Monte-Carlo simulations of
M vacancies on an N -site lattice (ρ0 = M/N ) of size Lx ×L, including periodic boundary conditions.
For a fixed value of ρ0, Lx is chosen so that the number of vacancies is at least of a few tens. For the
different sets of parameters, we checked that increasing Lx has no impact on the results, so that Lx is
large enough to consider the system as infinite. This remark holds for all the simulation results presented
in this Chapter and in Chapter 5.

At each time step, each of the N vacancies exchanges its position with one of the neighboring
particles according to the rules defined previously. Consequently, the TP may move as a result of the
vacancies displacements. We keep track of the time evolution of its position, compute the first moments
of the distribution of Xt, and deduce the cumulants.

The elementary jump probabilities pµ of the TP are assumed to be controlled by a single parameter,
namely an external force F = Fe1 (F > 0), such that

pµ ∝ e
1
2
F ·eµ . (4.67)

With an appropriate normalization, we get

p1 =
eF/2

2[1 + cosh(F/2)]
(4.68)

p−1 =
e−F/2

2[1 + cosh(F/2)]
(4.69)

p±2 =
1

2[1 + cosh(F/2)]
(4.70)

We present on Fig. 4.2 the results from numerical simulations on a two-dimensional stripe. For differ-
ent values of L and F , the rescaled variance [3

√
πLκ

(2)
1 (t)]/(8a0

2ρ0) is plotted and compared to the
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Figure 4.2: Rescaled variance obtained from numerical simulations of tracer diffusion on a stripe with
different sizes L and external forces F . The vacancy density is ρ0 = 10−5. The black line is t3/2.

analytical prediction. At large times, we observe a good collapse of the simulations results obtained for
different values of the parameters on the prediction from (4.65). Our analytical treatment of the problem
correctly captures the dependence of the TP fluctuations with all the parameters (time, applied force,
width of the stripe).

4.4 Capillary-like geometry

4.4.1 Introduction

A more realistic description of a quasi-one-dimensional system would be the extension of the stripe-
like lattice to three dimensions, that we will call a capillary-like geometry (represented on Fig. 4.3).
This lattice is infinite in the direction of the applied force, and finite of width L with periodic boundary
conditions in the other directions. The evolution of the TP is given a priori by six jump probabilities:
p±1, p±2, p±3. As previously, we will assume that the bias experienced by the TP only affects directions
e±1, so that p−3 = p3 = p−2 = p2. Using a normalization condition, we will write p2 as

p2 =
1

4
(1− p1 − p−1). (4.71)

The calculation presented below closely follows the one presented in the case of stripe-like geome-
tries. We recall the main steps leading to the expression of the fluctuations of the TP position, and give
the main intermediate results.
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3

Figure 4.3: Capillary-like geometry. The lattice is infinite in the first direction (which will be the direc-
tion of the external force imposed on the TP), and finite of width L with periodic boundary conditions
in the other directions.

4.4.2 Expression of Ω̂(k1; ξ)

We follow the same procedure as the one used for the stripe-like geometry in Section 4.3. First of all,
the matrix T becomes

T (k1; ξ) =




eik1 F̂ ∗1,−1 eik1 F̂ ∗1,1 eik1 F̂ ∗1,2 eik1 F̂ ∗1,2 eik1 F̂ ∗1,2 eik1 F̂ ∗1,2
e−ik1 F̂ ∗−1,−1 e−ik1 F̂ ∗−1,1 e−ik1 F̂ ∗−1,2 e−ik1 F̂ ∗−1,2 e−ik1 F̂ ∗−1,2 e−ik1 F̂ ∗−1,2

F̂ ∗2,−1 F̂ ∗2,1 F̂ ∗2,−2 F̂ ∗2,2 F̂ ∗2,3 F̂ ∗2,3
F̂ ∗2,−1 F̂ ∗2,1 F̂ ∗2,2 F̂ ∗2,−2 F̂ ∗2,3 F̂ ∗2,3
F̂ ∗2,−1 F̂ ∗2,1 F̂ ∗2,3 F̂ ∗2,3 F̂ ∗2,−2 F̂ ∗2,2
F̂ ∗2,−1 F̂ ∗2,1 F̂ ∗2,3 F̂ ∗2,3 F̂ ∗2,2 F̂ ∗2,−2



, (4.72)

where we used the symmetry relations (4.10)-(4.13) and the additional relations related to the third
coordinate:

F̂ ∗±2,±3 = F̂ ∗2,3, (4.73)

F̂ ∗±3,±2 = F̂ ∗2,3. (4.74)

(4.75)

We finally obtain an expression for the function Ω̂(k1; ξ) (see Appendix D.1 for details and for the
expressions of the quantities Dj and σ±1(eν))

Ω̂(k1; ξ) =
1

1− ξ
∑

ν


∑

Y 6=0

F ∗(0|eν |Y ; ξ)




×
{

1− eik·eν
D0 − σ1(−eν)− σ−1(−eν) + [D1 + σ1(−eν)] eik1 + [D−1 + σ−1(−eν)] e−ik1

D0 +D1eik1 +D−1e−ik1

}
.

(4.76)

We define again F ′ν =
∑
Y 6=0 F

∗(0|eν |Y ; ξ), and derivating twice Ω̂ and using the symmetry relations

F ′±2 = F ′±3 = F ′2, (4.77)

σ1(e±2) = σ1(e±3) = σ1(e2), (4.78)

σ−1(e±2) = σ−1(e±3) = σ−1(e2), (4.79)
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we obtain the following expression for the generating function associated to the second cumulant:

lim
ρ0→0

κ̂
(2)
1 (ξ)

ρ0
= ρ0

{
F ′1
[
(3D0 +D1 + 5D−1)σ1(e−1) + (−D0 +D1 − 3D−1)σ−1(e−1) + (D0 +D1 +D−1)2

]

+F ′−1

[
(−D0 − 3D1 +D−1)σ1(e1) + (3D0 + 5D1 +D−1)σ−1(e1) + (D0 +D1 +D−1)2

]

+4F ′2 [(D0 −D1 + 3D−1)σ1(e2) + (D0 + 3D1 −D−1)σ−1(e2)]
}
/
[
(1− ξ)(D0 +D1 +D−1)2

]
.

(4.80)

As previously, the quantities Dj and σ±1(eν) only depends on the conditional FPTD F̂ ∗, and the sums
F ′ν .

4.4.3 Conditional FPTD F̂ ∗ and sums F ′ν
The conditional FPTD are computed using (2.20), and the expression of the modified elementary jumps
p†(0|eµ) are:

p†(0|eµ) =
pµ

pµ + 5
6

. (4.81)

The propagators P̂ † are computed through the usual matrix relation (2.21). As there are now 7 defective
sites to take into account (0, e±1, e±2 and e±3,), the matrix P is a 7× 7 matrix which can be simplified
using symmetry relations. The final expression of P is given in Appendix D (Section D.2). Some useful
propagators P̂ (r|0; ξ) and their detailed derivations are given in Appendix B.

Extending the calculation from Section 4.3.2.1, we obtain an analogous expression for the coeffi-
cients ofA :

A(si|0; ξ) = δi,0 − (1− ξ)P̂ (si|0; ξ) (4.82)

A(si|eν ; ξ) =

(
1

pν + 5/6
− 1

)[
P̂ (si|eν ; ξ)− δi,ν − ξP̂ (si|0; ξ)

]
(4.83)

An explicit expression of A where the symmetry properties of the propagators P̂ have been taken into
account is given in Appendix D (Section D.3). Finally, using a computer algebra software, one may de-
duce from the matrix relation (2.21) and expression of the matrix P †, whose entries are the propagators
P̂ †. Finally, with the relation (2.20), one obtains expressions of the conditional FPTD.

Recalling the method given in Section 2.4.2, the quantities F ′ν may be computed straightforwardly
using a computer algebra software with (2.39) and (2.47), and using the expressions of A and the prop-
agators P̂ (0|sj ; ξ).

4.4.4 Expression of the second cumulant in the long time limit

Using the long-time limit expansion of the propagators P̂ (r|0; ξ) (see Appendix B and equations (B.26)-
(B.32)), we expand the quantities σ±1(eν), Dj and F ′±1 (see Appendix F, Section F.1) involved in
the computation of the second cumulant (4.80). This leads to the following expression of the second
cumulant at leading order in ρ0 → 0 and ξ → 1:

lim
ρ0→0

κ̂
(2)
1 (ξ)

ρ0
∼
ξ→1

√
6

L2

[
p1 − p−1

1 + 6α
6−α(p1 + p−1)

]2
1

(1− ξ)5/2
(4.84)
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where we defined as previously

α = lim
ξ→1

[
P̂ (0|0; ξ)− P̂ (2e1|0; ξ)

]
. (4.85)

In the case of a three-dimensional capillary, the quantities α can be written (see Appendix B and relations
(B.26) and (B.29))

α = 18− 16S
(3)
L,0 + 12S

(3)
L,1 − 2S

(3)
L,2 (4.86)

with

S
(3)
L,n =

1

L2

∑

k2,k3=0
(k2,k3)6=(0,0)

[cos(2πk2/L) + cos(2πk3/L)]n√(
1 + 1

3 [cos(2πk2/L) + cos(2πk3/L)]
)2 − 1

9

. (4.87)

Finally, using a Tauberian theorem and defining:

a0 =
p1 − p−1

1 + 6α
6−α(p1 + p−1)

(4.88)

one gets

lim
ρ0→0

κ
(2)
1 (t)

ρ0
∼

t→∞

4a0
2

L2

√
2

3π
t3/2 (4.89)

As in the case of the stripe-like geometry, it appears that the fluctuations of the TP are superdiffusive,
as they grow as t3/2. Once again, it seems that this effect emerges beyond linear response, as the
coefficient a0

2 is equivalent to F 2 when the driving force F goes to zero.

4.4.5 Numerical simulations

We present on Fig. 4.4 results from numerical simulations on a three-dimensional capillary. For different
values of L and F , a rescaled variance is plotted and compared to the analytical prediction. The jump
probabilities of the TP are now

p1 =
eF/2

2[2 + cosh(F/2)]
(4.90)

p−1 =
e−F/2

2[2 + cosh(F/2)]
(4.91)

p±2 = p±3 =
1

2[2 + cosh(F/2)]
(4.92)

For different values of L and F , the rescaled variance [
√

3πL2κ
(2)
1 (t)]/(4

√
2a0

2ρ0) is plotted and
compared to the analytical prediction. At large times, we observe a good collapse of the simulations
results obtained for different values of the parameters on the prediction from (4.65). Our analytical
treatment of the problem correctly captures the dependence of the TP fluctuations with all the parameters
(time, applied force, width of the stripe).
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Figure 4.4: Rescaled variance obtained from numerical simulations of tracer diffusion on a capillary
with different sizes L and external forces F . The vacancy density is ρ0 = 10−5. The black line is t3/2.

4.5 Two-dimensional infinite lattice

4.5.1 Computation of the second cumulant

We now consider the case of a two-dimensional infinite lattice. This situation cannot be obtained starting
from the results obtained on the stripe-like geometry and taking L→∞. In particular, one needs to use
the propagators of a random walk on a two-dimensional lattice, that cannot be obtained as a limit of the
propagators on a stripe-like lattice.

The expression of limρ0→0 κ̂
(2)
1 (ξ)/ρ0 obtained for the two-dimensional stripe (4.30) is still valid,

but the conditional FPTD must be computed for the specific case of a two-dimensional lattice. As the
lattice is now rotation-invariant (i.e. directions 1 and 2 are equivalent), we add the following symmetry
relations on the propagators P̂ :

P̂ (e2|0; ξ) = P̂ (e1|0; ξ) (4.93)

P̂ (2e2|0; ξ) = P̂ (2e1|0; ξ) (4.94)

The matrix P then simplifies to

P =




P̂ (0|0; ξ) P̂ (e1|0; ξ) P̂ (e1|0; ξ) P̂ (e1|0; ξ) P̂ (e1|0; ξ)

P̂ (e1|0; ξ) P̂ (0|0; ξ) P̂ (2e1|0; ξ) P̂ (e1 + e2|0; ξ) P̂ (e1 + e2|0; ξ)

P̂ (e1|0; ξ) P̂ (2e1|0; ξ) P̂ (0|0; ξ) P̂ (e1 + e2|0; ξ) P̂ (e1 + e2|0; ξ)

P̂ (e1|0; ξ) P̂ (e1 + e2|0; ξ) P̂ (e1 + e2|0; ξ) P̂ (0|0; ξ) P̂ (2e1|0; ξ)

P̂ (e1|0; ξ) P̂ (e1 + e2|0; ξ) P̂ (e1 + e2|0; ξ) P̂ (2e1|0; ξ) P̂ (0|0; ξ)



.

(4.95)
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and the matrixA becomes

A =




1− (1− ξ)P̂0,0 r1(P̂1,0 − ξP̂0,0) r−1(P̂1,0 − ξP̂0,0) r2(P̂1,0 − ξP̂0,0) r2(P̂1,0 − ξP̂0,0)

−(1− ξ)P̂1,0 r1(P̂0,0 − 1− ξP̂1,0) r−1(P̂2,0 − ξP̂1,0) r2(P̂1,1 − ξP̂1,0) r2(P̂1,1 − ξP̂1,0)

−(1− ξ)P̂1,0 r1(P̂2,0 − ξP̂1,0) r−1(P̂0,0 − 1− ξP̂1,0) r2(P̂1,1 − ξP̂1,0) r2(P̂1,1 − ξP̂1,0)

−(1− ξ)P̂1,0 r1(P̂1,1 − ξP̂1,0) r−1(P̂1,1 − ξP̂1,0) r2(P̂0,0 − 1− ξP̂1,0) r2(P̂2,0 − ξP̂1,0)

−(1− ξ)P̂1,0 r1(P̂1,1 − ξP̂1,0) r−1(P̂1,1 − ξP̂1,0) r2(P̂2,0 − ξP̂1,0) r2(P̂0,0 − 1− ξP̂1,0)




(4.96)
The expansions of the propagators P̂ (0|0; ξ), P̂ (e1|0; ξ), P̂ (2e1|0; ξ) and P̂ (e1 +e2|0; ξ) are given in
Appendix C (Section C.1). The expansions of the quantities Dj and σ±1(eν), necessary to compute the
expansion of the second cumulant with (4.30), are given in Appendix G (Section G.1).

4.5.2 Long-time expansion

We finally obtain the leading order term of the second cumulant in the limit of ρ0 → 0 and ξ → 1:

lim
ρ0→0

κ̂2(ξ)

ρ0
=
ξ→1

2a0
2

(1− ξ)2

1

π
ln

1

1− ξ +O
(

1

(1− ξ)2

)
(4.97)

where we define
a0 =

p1 − p−1

1 + 4α
4−α(p1 + p−1)

(4.98)

and
α = lim

ξ→1

[
P̂ (0|0; ξ)− P̂ (2e1|0; ξ)

]
. (4.99)

In the case of a two-dimensional lattice, the quantity α is shown to be given by

α = 4− 8

π
(4.100)

(see Appendix C and the relations (C.12) and (C.13)). Then, using a Tauberian theorem, one gets

lim
ρ0→0

κ
(2)
1 (t)

ρ0
=

t→∞

2a0
2

π
t ln t+O(t). (4.101)

As a remark, we show that the value of α obtained for the two-dimensional lattice may be retrieved
from its expression on a stripe-like geometry, which is a function of the width L, by taking the limit
L → ∞. On stripe-like lattices, we had the expression α = 8

[
1− S(2)

L,1 − S
(2)
L,3

]
where S(2)

L,n is defined
in (4.57). This may be rewritten as

8
[
1− S(2)

L,1 − S
(2)
L,3

]
= 8

[
1− 1

L

L−1∑

k=1

sin
πk

L

√
1 + sin2 πk

L

]
(4.102)

= 8

[
1− 1

L

L∑

k=1

sin
πk

L

√
1 + sin2 πk

L

]
(4.103)
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The sum over k may be estimated as a Riemann sum in the limit L→∞. We get

lim
L→∞

[
1− S(2)

L,1 − S
(2)
L,3

]
= 8

[
1−

∫ 1

0
dx sin(πx)

√
1 + sin2(πx)

]
(4.104)

= 8

[
1−

(
1

2
+

1

π

)]
(4.105)

= 4− 8

π
(4.106)

which was the value obtained by evaluating limξ→1

[
P̂ (0|0; ξ)− P̂ (2e1|0; ξ)

]
using (C.12) and (C.13).

However, this remark is not sufficient to obtain the behavior of the TP on a 2D lattice as a limit of the
stripe-like geometry situation. Indeed, the expression of the fluctuations of the TP position (4.97) also
depends on the divergence of the propagators P̂ , which cannot be obtained as a limit of the propagators
of a random walk on as stripe-like lattice.

4.5.3 Subdominant term

From (4.101), we observe that the leading order term (proportional to t ln t) is only logarithmically larger
than the subdominant term (proportional to t). Thus, the subdominant term is not negligible if we aim
to compare this expression to our numerical simulations. Computing the second term in the expansion
of the cumulant, we get

lim
ρ0→0

κ̂
(2)
1 (ξ)

ρ0
=
ξ→1

2a0
2

(1− ξ)2

1

π
ln

1

1− ξ +
1

(1− ξ)2

[
2a0

2

(
ln 8

π
+

2(5α− 4)

α(α− 4)

)
+ a1

]
+ . . . (4.107)

where we define
a1 =

p1 + p−1

1 + 4α
4−α(p1 + p−1)

. (4.108)

We now determine the time-dependence of the second cumulant. Using a Tauberian theorem, the term
proportional to 1/(1 − ξ)2 will give a term proportional to t. The inversion of the term 1

(1−ξ)2 ln 1
1−ξ

requires some attention, as it may give rise to a term growing as t ln t and a subdominant term growing
as t, that we may not discard. We first recall the definition of the harmonic numbers:

Hn =

n∑

k=1

1

k
. (4.109)

A generating function of this sequence is

1

1− ξ ln
1

1− ξ =
∞∑

t=0

Ht ξ
t. (4.110)

Derivating this expression, one gets

1

(1− ξ)2
ln

1

1− ξ =

∞∑

n=0

(t+ 1)Ht+1ξ
t − 1

(1− ξ)2
(4.111)

=

∞∑

n=0

[(t+ 1)(Ht+1 − 1)] ξt (4.112)
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Finally, we use the expansion
Ht =

t→∞
ln t+ γ + . . . (4.113)

where γ = 0.577215... is the Euler-Mascheroni constant, to obtain the time-dependence of the second
cumulant:

lim
ρ0→0

κ
(2)
1 (t)

ρ0
=

t→∞

2a0
2

π
t ln t+

[
2a0

2

(
ln 8 + γ − 1

π
+

2(5α− 4)

α(α− 4)

)
+ a1

]
t+O(1) (4.114)

On a two-dimensional lattice, the fluctuations grow superdiffusively. However, the leading order of
the second cumulant is proportional to t ln t, and is only logarithmically faster than a linear growth. This
superdiffusion is not as strong as in the case of quasi-one-dimensional lattice for which the variance was
growing as t3/2.

As in the case of quasi-one-dimensional systems, the prefactor a0
2 cancels when F → 0 but propor-

tionally to F 2, which again indicates that this superdiffusive behavior emerges beyond linear response
of the system.

4.5.4 Remarks and numerical simulations

We present on Fig. 4.5 results from numerical simulations on a two-dimensional lattice. The lattice is
of size Lx2, and Lx is large enough to make sure that no finite-size effects appear. We define a rescaled
variance:

φ(t) ≡ π

2a0
2

{
κ

(2)
1 (t)

ρ0t
−
[
2a0

2

(
ln 8 + γ − 1

π
+

2(5α− 4)

α(α− 4)

)
+ a1

]}
, (4.115)

which is expected to be equivalent to ln t in the long time limit. We observe a good agreement between
the numerical results and the theoretical prediction, for different values of the driving force F .

4.6 Three-dimensional infinite lattice

In this Section, we study the case of a three-dimensional infinite lattice. The propagators of a random
walk on a three-dimensional lattice cannot be deduced as a limit of the propagators on a capillary when
its width L goes to infinity. We then need to write the matrices A and P with the specific propagators
associated to the three-dimensional lattice. We give in what follows the main steps of the calculation.

The expression of limρ0→0 κ̂
(2)
1 (ξ)/ρ obtained for the three-dimensional capillary (4.80) is still valid.

In order to compute the conditional FPTD F ∗ in the case of a three-dimensional lattice, we use again
their definition (2.20) as well as the matrix relation (2.21). The generic expression of the matrix P in
three dimensions (Appendix D, Section D.2) may be simplified using the following symmetry relations:

P̂ (e2|0; ξ) = P̂ (e1|0; ξ), (4.116)

P̂ (e2 + e3|0; ξ) = P̂ (e1 + e2|0; ξ), (4.117)

P̂ (2e2|0; ξ) = P̂ (2e1|0; ξ), (4.118)



74 Chapter 4. Confinement-induced superdiffusion

4

5

6

7

8

9

10

101 102 103 104

φ
(t
)

t

F = 2
F = 5
F = 100

Figure 4.5: Rescaled variance obtained from numerical simulations of tracer diffusion on a two-
dimensional lattice for different external forces F . The vacancy density is ρ0 = 10−5. The black
line is ln t.

and has the following form:

P =




P̂0,0,0 P̂1,0,0 P̂1,0,0 P̂1,0,0 P̂1,0,0 P̂1,0,0 P̂1,0,0

P̂1,0,0 P̂1,0,0 P̂2,0,0 P̂1,1,0 P̂1,1,0 P̂1,1,0 P̂1,1,0

P̂1,0,0 P̂2,0,0 P̂0,0,0 P̂1,1,0 P̂1,1,0 P̂1,1,0 P̂1,1,0

P̂1,0,0 P̂1,1,0 P̂1,1,0 P̂0,0,0 P̂2,0,0 P̂1,1,0 P̂1,1,0

P̂1,0,0 P̂1,1,0 P̂1,1,0 P̂2,0,0 P̂0,0,0 P̂1,1,0 P̂1,1,0

P̂1,0,0 P̂1,1,0 P̂1,1,0 P̂1,1,0 P̂1,1,0 P̂0,0,0 P̂2,0,0

P̂1,0,0 P̂1,1,0 P̂1,1,0 P̂1,1,0 P̂1,1,0 P̂2,0,0 P̂0,0,0




. (4.119)

It involves four distinct propagators: P̂ (0|0; ξ), P̂ (e1|0; ξ), P̂ (2e1|0; ξ) and P̂ (e1 + e2|0; ξ). The
relation between the propagators P̂ (r|r0; ξ) (4.40) which was established for two-dimensional lattices
can be extended in three dimensions:

P̂ (r|r0; ξ) = δr,r0 +
ξ

6

∑

µ=±1,...,±3

P̂ (r|r0 + eµ; ξ), (4.120)

in order to obtain the following relations:

P̂ (0|0; ξ) = 1 + ξP̂ (e1|0; ξ), (4.121)

P̂ (e1|0; ξ) = ξ
[
P̂ (2e1|0; ξ) + P̂ (0|0; ξ) + 4P̂ (e1 + e2|0; ξ)

]
. (4.122)

We note that we can finally express the results in terms of two propagators only: P̂ (0|0; ξ) and
P̂ (2e1|0; ξ). For a random walker on a d-dimensional lattice, the propagator P̂ (r|0; ξ) is known to
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be given by [58]:

P̂ (r|0; ξ) =

∫ ∞

0
e−t

d∏

j=1

I|rj |

(
tξ

d

)
(4.123)

where In is the modified Bessel function of the first kind of integer order n. At leading order in (1− ξ),
it is found that

P̂ (0|0; ξ = 1) =

√
6

284π3
Γ

(
1

24

)
Γ

(
5

24

)
Γ

(
7

24

)
Γ

(
11

24

)
' 1.516386 (4.124)

P̂ (2e1|0; ξ = 1) ' 0.257335 (4.125)

The entries of the matrix A are expressed using (4.83). Finally, using a computer algebra software,
we deduce the expression of the conditional FPTD F̂ ∗ and deduce the fluctuations of the TP position
with (4.80). We finally obtain:

lim
ρ0→0

κ̂
(2)
1 (ξ)

ρ0
∼
ξ→1

1

(1− ξ)2

[
2a0

2

(
G+

2(13α− 6)

(α+ 2)(α− 6)

)
+ a1

]
(4.126)

where we defined as previously

a0 =
p1 − p−1

1 + 6α
6−α(p1 + p−1)

(4.127)

a1 =
p1 + p−1

p1 − p−1
a0 (4.128)

G0 = lim
ξ→1

P̂ (0|0; ξ) ' 1.516386 (4.129)

α = lim
ξ→1

[
P̂ (0|0; ξ)− P̂ (2e1|0; ξ)

]
' 1.259051. (4.130)

Using a Tauberian theorem, we get

lim
ρ0→0

κ(2)(t)

ρ0
∼

t→∞

[
2a0

2

(
G+

2(13α− 6)

(α+ 2)(α− 6)

)
+ a1

]
t. (4.131)

Consequently, on a three-dimensional lattice, the fluctuations of the TP are diffusive, and not superdif-
fusive as it was obtained for quasi-one-dimensional and two-dimensional lattices. Geometrical confine-
ment then induces the apparition of superdiffusive fluctuations.

We compare these results with numerical simulations performed on a three-dimensional lattice (Fig.
4.6). We plot the quantity κ(2)

1 (t)/D3D where we define

D3D ≡ ρ0

[
2a0

2

(
G+

2(13α− 6)

(α+ 2)(α− 6)

)
+ a1

]
. (4.132)

The agreement between numerical simulations and the theoretical prediction is very good, and confirmed
for different values of the driving force F .

As a remark, we emphasize the fact that the interactions between the TP and in a single-vacancy
are strongly influenced by the dimension of the lattice. On the “confined” geometries (quasi-one-
dimensional and two-dimensional), we give the leading order term of the generating functions P̂ (0|0; ξ)
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Figure 4.6: Rescaled variance obtained from numerical simulations of tracer diffusion on a 3D lattice
with different external forces F . The vacancy density is ρ0 = 10−6. The black line is t.

in the limit where ξ → 1 (i.e. in the long-time limit) which are presented in Appendices A (A.36), B
(B.26) and C (C.12):

P̂ (0|0; ξ) ∼
ξ→1





1

L
√

1− ξ on a 2D stripe,
√

6

2L2
√

1− ξ on a 3D capillary,

1

π
ln

1

1− ξ on a 2D lattice.

(4.133)

These propagators have a common feature: they diverge when ξ → 1. This means [58] that the
random walk of a vacancy on this structure is recurrent, i.e. that a vacancy will interact an infinite number
of times with the TP. However, on the 3D lattice, the propagator P̂ (0|0; ξ) tend to the constant G0 and
does not diverge. This means that the random walk of a vacancy is transient, i.e. the vacancy will only
interact with the TP a finite number of times, before wandering off to infinity. Then, the recurrence of the
random walk of vacancy is a necessary condition to allow the emergence of superdiffusion. However,
this condition is not sufficient: on the one-dimensional lattice, although the random walk of a vacancy
is recurrent, the motion of the TP is not superdiffusive. It is actually subdiffusive, as shown in Chapter
3. In Chapter 7, we will give a simplified description of the problem, explaining the emergence of the
superdiffusive regime with simple physical mechanisms.

Finally, we summarize the results from this section in the following table:
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Geometry limρ0→0 κ
(2)(t)/ρ0 in the long-time limit

2D stripe
8a0

2

3
√
πL

t3/2 + . . .

3D capillary
4a0

2

L2

√
2

3π
t3/2 + . . .

2D infinite lattice
2a0

2

π
t ln t+

[
2a0

2

(
ln 8 + γ − 1

π
+

2(5α− 4)

α(α− 4)

)
+ a1

]
t+ . . .

3D infinite lattice
[
2a0

2

(
G+

2(13α− 6)

(α+ 2)(α− 6)

)
+ a1

]
t+ . . .

4.7 Crossover to diffusion – Stripe-like geometry

4.7.1 Introduction

The exact analytical results from the previous part provide explicit criteria for superdiffusion to occur.
Technically, this yields the behavior of the variance when the limit ρ0 → 0 is taken before the large-time
limit. However, it does not allow us, due to the nature of the limits involved, to answer the question of
whether the superdiffusion is the ultimate regime (or just a transient), which requires the determination
of limt→∞ κ

(2)
1 (t) at fixed ρ0. Importantly, we show in what follows that the order in which these limits

are taken is crucial in confined geometries, in which the limits cannot be inverted:

lim
t→∞

lim
ρ0→0

κ
(2)
1 (t) 6= lim

ρ0→0
lim
t→∞

κ
(2)
1 (t) (4.134)

The key difference with the previous case is that for a fixed small ρ0 the random walk performed
by the vacancy between two successive visits of the lattice site occupied by the TP is a biased random
walk in the reference frame of the TP, due to the interactions of the TP with the other vacancies. More
precisely, this bias ε undergone by a vacancy originates from the non zero mean displacement of the TP
in the e1 direction. This bias is directed towards direction e−1, and its value is equal to the TP velocity.

The method to compute the fluctuations of the TP presented above can then be applied, provided
that the symmetric propagators P describing the symmetric random walk of a vacancy are replaced by
the propagators P describing the biased random walk of a vacancy. These propagators can be explicitly
evaluated, and are formally functions of the bias ε. Note that P and P are related through:

Pt(r|r0) = Pt(r|r0; ε = 0) (4.135)

Quite surprisingly, this effective bias, even if arbitrarily small in the ρ0 → 0 limit, dramatically affects
the ultimate long-time behavior of the variance in confined geometries. In this Section, we present a
detailed method to compute the fluctuations of the TP position in the limit where t → ∞ is taken first,
in the particular case of a stripe-like geometry. We then give a less detailed outline of the calculation for
the other geometries.

4.7.2 Determination of the conditional FPTD

4.7.2.1 Evolution rules of a vacancy

In order to take into account the displacement of the TP due to its interactions with other vacancies, we
modify that evolution rules of each vacancy as presented on Fig. 4.7. The new jump probabilities are
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denoted by p̃µ (probability for a vacancy to jump from r to r+eµ in a single step). The bias is chosen as
follows: p̃−1 is proportional to 1/4+ε, where ε is a positive quantity. With an appropriate normalization
we get

p̃−1 =
1

1 + ε

(
1

4
+ ε

)
(4.136)

p̃1 = p̃±2 =
1

4(1 + ε)
(4.137)

The bias undergone by a vacancy is

p̃−1 − p̃1 =
ε

1 + ε
∼
ε→0

ε. (4.138)

This bias, equal to ε at leading order, is equal to the velocity of the TP. It implies that ε goes to zero
when the vacancy density ρ0 goes to 0. The explicit determination of ε is not necessary to compute
the expression of the mean position of the TP (see Chapter 5). The condition limρ0→0 ε = 0 suffices
to determine the velocity of the TP and then the expression of ε self-consistently. The evolution
rules (4.136) and (4.136) will be shown to be compatible with an alternative approach of the problem
presented in Chapter 10.

The general expression of the variance (4.80) still holds as it was obtained independently of the
evolution rules of the vacancies. The conditional FPTD F̂∗ are now functions of the bias ε and write

F̂∗(0|eµ|eν ; ξ, ε) = ξp̃†(0|eµ)P̂†(eµ|eν ; ξ, ε) (4.139)

The quantity p̃†(0|eµ) must be computed using the appropriate normalization corresponding to the new
transition probabilities:

p̃†(0|eµ) =
pµ

pµ +
∑

η 6=−µ p̃η
. (4.140)

We define the generating functions P̂(r|r0; ξ, ε) associated to the biased random walk of a vacancy
with the rules presented on Fig. 4.7, in the absence of a biased TP. The generating functions P̂† are
obtained starting from the generating functions P̂ and adding five defective sites at {0, e±1, e±2}. The
corresponding matrix relation is still

P† = (1−A)−1P , (4.141)

where

P i,j = P̂(si|sj ; ξ) (4.142)

P†i,j = P̂†(si|sj ; ξ) (4.143)

Ai,j = A(si|sj ; ξ) = ξ
∑

r

P̂(si|r; ξ)
[
p̃†(r|sj)− p̃(r|sj)

]
(4.144)

In what follows, we give explicit expressions of the matrices P and A.
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x1

x2

F (net displacement of the TP)

effective bias e

Figure 4.7: Dynamics of the vacancies on a two-dimensional lattice with the effective bias ε in direc-
tion −1 ( case of a two-dimensional lattice). The jump probabilities p̃µ are defined in the text. The

normalization Z̃ν is defined as Z̃ν =
[
pν +

∑
η 6=−µ p̃η

]−1
.
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4.7.2.2 Expression of P

The matrix P contains a priori 25 elements. In spite of the bias experienced by the vacancies and of
the more complex structure of the associated propagators, it is still possible to simplify P . Indeed, the
lattice is still translation invariant and symmetric with respect to the second coordinate. Finally, P is
expressed in terms of nine distinct propagators:

P =




P̂0,0 P̂−1,0 P̂1,0 P̂0,1 P̂0,1

P̂1,0 P̂0,0 P̂2,0 P̂1,1 P̂1,1

P̂−1,0 P̂−2,0 P̂0,0 P̂−1,1 P̂−1,1

P̂0,1 P̂−1,1 P̂1,1 P̂0,0 P̂0,2

P̂0,1 P̂−1,1 P̂1,1 P̂0,2 P̂0,0




(4.145)

where we introduced the short notations P̂r1,r2 ≡ P̂(r1e1 + r2e2|0; ξ, ε). An explicit derivation of the
propagators P̂ is given in Appendix A.

4.7.2.3 Expression of A

The elements of A are the quantities

A(si|sj ; ξ, ε) = ξ
∑

r

P̂(si|r; ξ)
[
p̃†(r|sj)− p̃(r|sj)

]

︸ ︷︷ ︸
≡p̃′(r|sj)

. (4.146)

The principle of the computation carried out in Section 4.3.2.1 in the case of non-biased vacan-
cies is still valid, and we give here its extension to the case of biased vacancies. In order to compute
A(si|sj ; ξ, ε), we consider two cases separately:

(i) if sj = 0:

The elementary jump probabilities write:

p̃(r|0) =

{
p̃µ if r = eµ ,

0 otherwise.
(4.147)

p̃†(r|0) =

{
1 if r = 0 ,

0 otherwise.
(4.148)

so that

p̃′(r|0) =





1 if r = 0 ,

−p̃µ if r = eµ,

0 otherwise.

(4.149)

We deduce the expression for A(si|0; ξ):

A(si|0; ξ, ε) = ξ


P̂(si|0; ξ, ε)−

∑

µ=±1,±2

p̃µP̂(si|eµ; ξ, ε)


 . (4.150)
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The extension of (4.40) to the case of a non-symmetric random walk is

P̂(r|r0; ξ, ε) = δr,r0 + ξ
∑

µ

p̃µP̂(r|r0 + eµ; ξ, ε) (4.151)

Using (4.151) in (4.150), we obtain

A(si|0; ξ) = δi,0 − (1− ξ)P̂(si|0; ξ) (4.152)

(ii) if sj = eν (ν ∈ {±1,±2})
The elementary jump probabilities write:

p(r|eν) =

{
p̃µ if r = eν + eµ ,

0 otherwise.
(4.153)

p†(r|eν) =





pν
pν+

∑
η 6=−ν p̃η

if r = 0 ,

p̃µ
pν+

∑
η 6=−ν p̃η

if r = eν + eµ, µ 6= −ν,
0 otherwise.

(4.154)

so that

p̃′(r|eν) =





pν
pν+

∑
η 6=−ν p̃η

− p̃−ν if r = 0 ,

p̃µ
pν+

∑
η 6=−ν p̃η

− p̃µ if r = eν + eµ, µ 6= −ν,
0 otherwise.

(4.155)

Using the relation
∑

η 6=−µ p̃η = 1− p̃−ν , we then obtain an expression for A(si|eν ; ξ):

A(si|eν ; ξ, ε) = ξ

[(
pν

pν − p̃−ν + 1
− p̃−ν

)
P̂ (si|0; ξ, ε)

+

(
1

pν − p̃−ν + 1
− 1

) ∑

µ6=−ν
p̃µP̂(si|eν + eµ; ξ, ε)


 (4.156)

= ξ

[(
pν

pν − p̃−ν + 1
− p̃−ν

)
P̂(si|0; ξ, ε)

+

(
1

pν − p̃−ν + 1
− 1

)(∑

µ

p̃µP̂(si|eν + eµ; ξ, ε)− p̃−νP̂(si|0; ξ, ε)

)]

(4.157)

Finally, using again (4.151), we get

A(si|eν ; ξ, ε) =

(
1

pν − p̃−ν + 1
− 1

)[
P̂(si|eν ; ξ, ε)− δi,ν − ξP̂(si|0; ξ, ε)

]
(4.158)
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These two cases then lead to the general equation

A(si|sj ; ξ) =




δi,0 − (1− ξ)P̂(si|0; ξ, ε) if sj = 0 ,(

1
pν−p̃−ν+1 − 1

) [
P̂(si|eν ; ξ, ε)− δi,ν − ξP̂(si|0; ξ, ε)

]
if sj = eν .

(4.159)

Using the definitions of A and P , the matrix P† is deduced from (4.141), and an expression of the
FPTD F̂∗ is deduced in terms of the propagators P̂ .

Similarly, the quantities F ′ν , defined here by

F ′ν = ξP̃ †(0|eν)B>ν (1−A)−1
∑

Y 6=0

B(Y ; ξ), (4.160)

with 
∑

Y 6=0

B(Y ; ξ)



j

=
1

1− ξ − P̂(0|sj ; ξ), (4.161)

are readily expressed in terms of the quantities P̂ .

4.7.3 Propagators

The exact expression of the propagators P̂(r|r0; ξ, ε) is given in Appendix A (Section A.3). These
propagators are functions of the Laplace variable ξ and of the bias ε. We are interested in the limit
where we first take t→∞ (equivalent in Laplace to ξ → 1) and ρ0 → 0. Recalling the ε is equal to the
velocity of the TP and vanishes when ρ0 → 0, we thus need to consider the expansions close to ε → 0

of the propagators P̂(r|r0; ξ, ε) evaluated at ξ = 1. The important point is that this expansion is easily
deduced from the expression of the non-biased propagators P̂ with the relation

P̂(r|0; ξ = 1, ε) =
ε→0

1

Lε
+

1

L
− 2|r1|

L
− S(2)

L,−1 −∆(r) +O(ε), (4.162)

where
∆(r) = lim

ξ→1

[
P̂ (0|0; ξ)− P̂ (r|0; ξ)

]
. (4.163)

The quantities ∆(r) can be computed using the expansions of the propagators P̂ (A.36)-(A.41). Using
a computer algebra software, we then obtain the expansion of the quantities σ±1(eν), D0, D±1 and F ′ν
involved in the expression of κ̂(2)

1 (ξ) (4.30). These expansions are given in Appendix E (Section E.2).

4.7.4 Ultimate expression of the second cumulant

Using (4.30), we finally obtain the following expression of the second cumulant in the limit where we
first take ξ → 1 and ε→ 0. We obtain:

lim
ξ→1

[
(1− ξ)2κ̂

(2)
1 (ξ)

]
∼
ε→0

ρ0
2a′0

2

Lε
, (4.164)

where
a′0 =

p1 − p−1

1 + 4α
4−α(p1 + p−1) + 16

L(4−α)(p1 − p−1)
. (4.165)
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The expression of ε is deduced from the expression of the TP velocity. The Laplace transform of the
first cumulant κ(1)

1 (t) = 〈Xt〉 will be shown in the next Chapter to be given by

lim
ξ→1

[
(1− ξ)2κ̂

(1)
1 (ξ)

]
∼
ε→0

ρ0a
′
0 (4.166)

Using a Tauberian theorem, we then find

lim
t→∞

κ(1)(t)

t
∼

ρ0→0
ρ0a
′
0. (4.167)

The velocity of the TP is then equal to ρ0a
′
0, which leads to the expression of the bias ε = ρ0a

′
0. Finally,

replacing ε in (4.164) and using a Tauberian theorem, we get

lim
t→∞

κ(2)(t)

t
∼

ρ0→0

2a′0
L

(4.168)

A few comments follow from this result:

• first, we observe that in the ultimate regime reached by the TP, its fluctuations grow linearly with
time, which means that its behavior eventually becomes diffusive.

• the crossover time t× between the two regimes (4.65) and (4.168) verifies

8a0
2

3
√
πL

ρ0t×
3/2 ∼ 2a′0

L
t×. (4.169)

Consequently, the scaling between t× and ρ0 is given by

t× ∼
1

ρ0
2
. (4.170)

This crossover time diverges when ρ0 → 0. The superdiffusive regime, even though it is transient,
may then be long-lived if the vacancy density is small enough.

• surprisingly, in this regime, the expression of κ(2)
1 (t) is independent from ρ0. This is not contra-

dictory with the fact the the fluctuations should decrease when there are less and less vacancies on
the lattice: the crossover to the ultimate regime occurs for infinitely long times when ρ0 → 0 as
t× ∼ 1/ρ0

2. We will present in Chapter 7 a simplified description which qualitatively accounts
for this observation.

4.7.5 Scaling function

We showed that the second cumulant had two limiting behaviors, given by:

lim
ρ0→0

κ2(t)

ρ0
∼

t→∞

8a0
2

3
√
πL

t3/2 (4.171)

lim
t→∞

κ(2)(t)

t
∼

ρ0→0

2a′0
L

(4.172)
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Mathematically, the existence of these two regimes rely on the non-interversion of the limits ρ0 → 0

and t → ∞. In this Section, we aim to compute the scaling function where the ρ0 → 0 and t → ∞
limits are taken simultaneously with the appropriate scaling between the variables:

t ∼ 1

ρ0
2
, (4.173)

suggested by the expression of the crossover time t× (4.170).
The method given above to compute the conditional return probabilites F̂∗ and the sums F ′ν for

arbitrary values of ξ and ε are still valid. We then give the expansions of the propagators P̂ in the joint
limit of ξ → 1 and ε→ 0, with the scaling

1− ξ ∼ ε2 (4.174)

With no loss of generality, we choose to eliminate the parameter ε, by introducing a quantity λ = O(1)

such that:
ε =

1

λ

√
1− ξ. (4.175)

In Appendix A (Section A.3.2), we show that in this limit the expansion of the propagators P̂ can still
be expressed in terms if the non-biased propagators with the formula:

P̂(r|0; ξ, ε) =
ε∼
√

1−ξ
ξ→1

λ

L
√

1 + λ2
√

1− ξ
−2r1

L

1√
1 + λ2

+
1

2L
√

1 + λ2

2− λ2

1 + λ2
+S

(2)
L,−1−∆(r)+O(

√
1− ξ)

(4.176)
where the quantities ∆(r) were defined in (4.163), and can be computed using the expansions of the
propagators P̂ given by (A.36)-(A.41). We obtain the expansions of the quantities σ±1(eν), D0, D±1

and F ′ν involved in the expression of κ̂(2)
1 (ξ) (4.80). These expansions are given in Appendix E (Section

E.3). In this joint limit, we finally obtain:

κ̂
(2)
1 (ξ) ∼

ε∼
√

1−ξ
ξ→1

2ρ0Lλ
√

1 + λ2

(1− ξ)5/2

(p1 − p−1)2(α− 4)2

{
16(p1 − p−1) + L

√
1 + λ2 [4− α+ 4α(p1 + p−1)]

}2 (4.177)

Recalling the definitions of a0 (4.64) and a′0 (4.165), replacing λ by
√

1− ξ/ε and relacing ε by ρ0a
′
0,

one gets the expression:

κ̂
(2)
1 (ξ) ∼

ε∼
√

1−ξ
ξ→1

2

(1− ξ)2a′0L

a0
2
√

1 + 1−ξ
ε2√

1 + 1−ξ
ε2

+ 16
L

a0
4−α

. (4.178)

In the long-time limit, the discrete-time description we used so far can be conveniently replaced by
a continuous-time description. Denoting by s the Laplace variable associated to the continuous-time
variable t, we then aim to invert the Laplace transform:

κ̂(2)(s) ∼
ε∼
√
s

s→0

2

s2a′0L

a0
2
√

1 + s
ε2√

1 + s
ε2

+ 16
L

a0
4−α

(4.179)
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Using tabulated inverse Laplace transforms, we obtain the following scaling function for the quantity
κ

(2)
1 (t)/t:

κ
(2)
1 (t)

t
∼ a0

2

La′0τ(b2 − 1)3

{
2e−τ (b2 − 1)(3b2 + 1)

√
τ

π
− 4b3 + (2b4τ + b4 + 6b2 − 2τ + 1)erf(

√
τ)

+4b
[
(−b4τ + b2τ + b2 + 1)e−(1−b2)τerfc(b

√
τ)− 1

]
− 4τb(b2 − 1)

}
(4.180)

where we used the relation ε = ρ0a
′
0, and where we defined the following quantities:

• the rescaled time τ ≡ a′02ρ0
2t,

• the parameter b ≡ a0
a′0
− 1 = 16a0

L(4−α) .

The error functions an complementary error functions are defined in the usual fashion:

erf(x) =
2√
π

∫ x

0
e−t

2
dt, (4.181)

erfc(x) = 1− erf(x). (4.182)

We define the scaling function g(τ) as follows:

g(τ) ≡ a0
2

a′0τ(b2 − 1)3

{
2e−τ (b2 − 1)(3b2 + 1)

√
τ

π
− 4b3 + (2b4τ + b4 + 6b2 − 2τ + 1)erf(

√
τ)

+4b
[
(−b4τ + b2τ + b2 + 1)e−(1−b2)τerfc(b

√
τ)− 1

]}
(4.183)

so that
κ

(2)
1 (t)

t
∼ g(τ)

L
. (4.184)

The limiting behaviors of g(τ) are

g(τ) ∼





8

3

a0
2

a′0

√
τ

π
when τ → 0,

2a′0 when τ →∞.
(4.185)

We now check that the limiting behaviors of (4.180) allow us to retrieve the results from the previous
calculations:

1. when the rescaled time τ goes to 0 (which is equivalent to the limit where ρ0 is going to zero first),
we find

κ
(2)
1 (t)

t
∼ 8

3

a2
0

a′0L

√
τ

π
(4.186)

Replacing τ by ρ0
2a′0

2t, we finally obtain

κ
(2)
1 (t) ∼ 8a0

2

3
√
πL

t3/2, (4.187)

which corresponds to (4.65).
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Figure 4.8: Rescaled variance κ(2)
1 (t)/t as a function of τ = a′0

2ρ0
2t obtained from numerical simula-

tions of tracer diffusion on a 2D stripe of width L = 3 with different densities. The external force is
F =∞, which implies p1 = 1 and pµ = 0 for µ 6= 1. The black line is the function from (4.180).

2. when the rescaled time τ goes to infinity (which is equivalent to the limit where t is going to
infinity first), we find

κ
(2)
1 (t)

t
∼ 2a0

2

La′0

1

(b+ 1)2
(4.188)

Using the definition of b, we finally obtain

κ
(2)
1 (t) ∼ 2a′0

L
t, (4.189)

which corresponds to (4.168).

On Fig. 4.8, we confront the expression of the scaling function (4.180) with the results from numer-
ical simulations. The rescaled variance κ(2)

1 (t) is plotted as a function of the rescaled time τ = a′0
2ρ0

2t,
for different values of the vacancy density and for an infinite external force (which is equivalent to taking
p1 = 1 and pµ = 0 for µ 6= 1). The scaling function, represented in black, is a good description of both
regimes and of the crossover between them.

4.8 Crossover to diffusion – Capillary-like geometry

4.8.1 Introduction

The calculation presented in the case of the stripe-like geometry in the previous section is now extended
to the case a capillary. The elementary jump probabilities of the vacancies away from the TP are given
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by

p̃−1 =
1

1 + ε

(
1

6
+ ε

)
, (4.190)

p̃1 = p̃±2 = p̃±3 =
1

6(1 + ε)
, (4.191)

where the bias ε is equal to the velocity of the TP in the ultimate regime. The method to compute the
FPTD F∗ and the sums F ′ relative to vacancies undergoing an effective bias, which was presented for
the case of a two-dimensional stripe in Section 4.7.2, is extended to the three-dimensional capillary. The
propagators associated to the biased random walk of the vacancies are computed in Appendix B (Section
B.2). They are found to be simply expressed in terms of the non-biased propagators, through the formula

P̂(r|0; ξ = 1, ε) =
ε→0

1

L2ε
+

1

L2
− 3r1

L2
+ S

(3)
L,0 −∆(r) (4.192)

with
∆(r) = lim

ξ→1

[
P̂ (0|0; ξ)− P̂ (r|0; ξ)

]
. (4.193)

The quantities ∆(r) can be computed using the expansions of the propagators P̂ (B.26)-(B.32). We then
obtain the expansion of the quantities σ±1(eν), D0, D±1 and F ′ν involved in the expression of κ̂(2)

1 (ξ)

(4.80). These expansions are presented in the particular case of a directed TP (p1 = 1 and pµ = 0 for
µ 6= 1) in Appendix F (Section F.2). In principle, these expansions can also be computed for an arbitrary
value of the bias. However, the computation is too cumbersome to be handled, even with a computer
algebra software. An alternative approach to the problem (see Chapter 10) will give an expression of the
second cumulant for an arbitrary value of the bias.

4.8.2 Ultimate expression of the second cumulant

We obtain the following limit behavior of the second cumulant in this limit:

lim
ξ→1

[
(1− ξ)2κ̂

(2)
1 (ξ)

]
∼
ε→0

ρ0
2a′0

2

L2ε
(4.194)

with
a′0 =

1

1 + 6α
6−α + 36

L2(6−α)

(4.195)

The expression of ε is deduced from the expression of the TP velocity. The Laplace transform of the
first cumulant κ(1)

1 (t) = 〈Xt〉 will be shown in the next Chapter to be given by

lim
ξ→1

[
(1− ξ)2κ̂

(1)
1 (ξ)

]
∼
ε→0

ρ0a
′
0 (4.196)

Using a Tauberian theorem, we then find

lim
t→∞

κ
(1)
1 (t)

t
∼

ρ0→0
ρ0a
′
0. (4.197)
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The velocity of the TP is then given by ρ0a
′
0, which leads to the expression of the bias ε = ρ0a

′
0. Finally,

replacing ε in (4.194) and using a Tauberian theorem, we get

lim
t→∞

κ
(2)
1 (t)

t
∼

ρ0→0

2a′0
L2

(4.198)

4.8.3 Scaling function

As in the case of the stripe-like geometry, the comparison of the expressions of the fluctuations of the
TP position in the two regimes (4.89) and (4.198) shows that the crossover time t× scales as:

t× ∼
1

ρ0
2
. (4.199)

The calculation presented in this Section is then very similar to the one presented in the case of the
stripe-like geometry. We expand the propagators P̂ in the joint limit ξ → 1 and ε→ 0 with the scaling

1− ξ ∼ ε2. (4.200)

With no loss of generality, we choose to eliminate the parameter ε, by introducing a quantity λ = O(1)

such that:
ε =

1

λ

√
1− ξ (4.201)

In Appendix B (Section B.2.3), we show that in this limit the expansion of the propagators P̂ can still
be expressed in terms if the non-biased propagators with the formula:

P̂(r|0; ε) =
ε→0

λ

L2
√

1 + 2λ2/3
√

1− ξ
−3r1

L2

1√
1 + 2λ2/3

+
1

L2
√

1 + 2λ2/3

3− 2λ2

3 + 2λ2
+S

(3)
L,0−∆(r)+O(

√
1− ξ)

(4.202)
where the quantities ∆(r) were defined in (4.163), and can be computed using the expansions of the
propagators P̂ (B.26)-(B.32). We obtain the expansions of the quantities σ±1(eν), D0, D±1 and F ′ν
involved in the expression of κ̂(2)

1 (ξ) (4.80). These expansions are given in Appendix F (Section F.3). In
this joint limit, and in the particular case of a directed TP, we finally obtain:

κ̂
(2)
1 (ξ) ∼

ε∼
√

1−ξ
ξ→1

2ρ0L
2λ
√

1 + 2λ2/3

(1− ξ)5/2

(6− α)2

[
36 + L2

√
1 + 2λ2/3 (6− α+ 6α)

]2 (4.203)

Recalling the definitions of a0 (4.88) and a′0 (4.195), replacing λ by
√

1− ξ/ε and finally using the
definition of ε = ρ0a

′
0, one gets the expression:

κ̂
(2)
1 (ξ) ∼

ε∼
√

1−ξ
ξ→1

2

(1− ξ)2a′0L
2

a0
2
√

1 + 2
3

1−ξ
ε2√

1 + 2
3

1−ξ
ε2

+ 36
L2

a0
6−α

(4.204)

In the long-time limit, the discrete-time description we used so far can be conveniently replaced by
a continuous-time description. Denoting by s the Laplace variable associated to the continuous-time
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variable t, we then aim to invert the Laplace transform:

κ̂(2)(s) ∼
ε∼
√
s

p→0

2

s2a′0L

a0
2
√

1 + 2
3
s
ε2√

1 + 2
3
s
ε2

+ 36
L2

a0
6−α

(4.205)

The scaling function we are computing is then simply related to the scaling function g already computed
for the stripe-like geometry (4.183):

κ(2)(t)

t
∼ 1

L2
g

(
3

2
τ

)
, (4.206)

where the values of a0 and a′0 used in the expression of g are replaced by the ones computed for the
capillary-like geometry. Using the asymptotic expansions of g (4.185), we show that the limiting behav-
iors of (4.206) allow us to retrieve the results from the previous calculations:

1. when the rescaled time τ goes to 0 (which is equivalent to the limit where ρ0 is going to zero first),
we find

κ(2)(t)

t
∼ 4

√
2

3π

a2
0

a′0L
2

√
τ (4.207)

Replacing τ by ρ0
2a′0

2t, we finally obtain

κ(2)(t) ∼ 4a0
2

L2

√
2

3π
t3/2, (4.208)

which corresponds to (4.89).

2. when the rescaled time τ goes to infinity (which is equivalent to the limit where t is going to
infinity first), we find

κ(2)(t)

t
∼ 2a′0

L2
t (4.209)

which corresponds to (4.198).

4.9 Crossover to diffusion – Two-dimensional lattice

4.9.1 Ultimate expression of the second cumulant

We finally study the ultimate regime reached by the TP in the case of a two-dimensional lattice. To
this purpose, the computation presented in the case of two-dimensional stripe (Section 4.7.2) can be
extended. The evolution rules of the vacancies with the set of biased jump probabilities p̃µ are given by
(4.136) and (4.137). The expression of the entries of the matrix A (4.159), as well as the expression of
P (4.145) are valid as well. Consequently, the FPTD F̂∗ and the sums F ′ν are computed in the usual
way. The propagators P̂ are shown to take the simple expansion (see Appendix C)

P̂(r|0; ξ, ε) =
ε→0

2

π
ln

1

ε
+

ln 8

π
−∆(r) +O(ε ln ε) (4.210)
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where ∆(r) is defined as a function of the non-biased propagators P̂ (4.163), which were computed
for a two-dimensional lattice in Appendix C (Section C.2). The expression of the quantities involved
in the expression of the second cumulant (4.30) are given in Appendix G (Section G.2). Using these
expansions, we obtain:

lim
ξ→1

[
(1− ξ)2κ̂

(2)
1 (ξ)

]
=
ε→0

ρ0

[
a1 + 2a0

2

(
2

π
ln

1

ε
+

ln 8

π
+
π(5− 2π)

2π − 4

)]
(4.211)

The expression of ε is deduced from the expression of the TP velocity. The Laplace transform of the
first cumulant κ(1)

1 (t) = 〈Xt〉 will be shown in the next Chapter to be given by

lim
ξ→1

[
(1− ξ)2κ̂

(1)
1 (ξ)

]
∼
ε→0

ρ0a0 (4.212)

Using a Tauberian theorem, we then find

lim
t→∞

κ
(1)
1 (t)

t
∼

ρ0→0
ρ0a0. (4.213)

The velocity of the TP is then given by ρ0a0, which leads to the expression of the bias ε = ρ0a0. Finally,
replacing ε in (4.211) and using a Tauberian theorem, we get

lim
t→∞

κ
(2)
1 (t)

t
=

ρ0→0
ρ0

[
a1 + 2a0

2

(
2

π
ln

1

ρ0a0
+

ln 8

π
+
π(5− 2π)

2π − 4

)]
(4.214)

We conclude that on a two-dimensional lattice, the TP finally reaches a diffusive regime. Contrary to
the case of quasi-one-dimensional lattices, the diffusion coefficient now depends on the vacancy density
ρ0, and goes to zero as ρ0 ln(1/ρ0). The crossover time between the two regimes may be deduced by
equalizing the leading order terms of (4.114) and (4.214):

4a0
2

π
ρ0t ln ρ0 =

2a0
2

π
ρ0t ln t (4.215)

which leads to the crossover time
t× =

1

ρ0
2
. (4.216)

The crossover time scales as 1/ρ0
2, which the same scaling as the one obtained for quasi-one-

dimensional geometries. This behavior then seems to be independent of the lattice geometry.

4.9.2 Scaling function

As in the case of a two-dimensional stripe, we want to compute the scaling function describing both the
superdiffusive and the diffusive regime. Mathematically, it may be obtained by taking simultaneously
the limits t→∞ (i.e. ξ → 1) and ε→ 0 with the scaling

1− ξ ∼ ε2. (4.217)
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The expansions of the propagators in this joint limit are calculated in Appendix C (Section C.2.4). The
variable ε is taken equal to

√
1− ξ/λ. The propagators are found to be given by

P̂(r|0; ξ, ε) =
ε∼
√

1−ξ
ξ→1

1

π
ln

1

1− ξ + ε2
+

ln 8

π
−∆(r) + . . . , (4.218)

where the quantities ∆(r) are defined by (4.163). In this joint limit, the variance is

κ̂
(2)
1 (ξ) ∼

ε∼
√

1−ξ
ξ→1

ρ0

(1− ξ)2

[
2a0

2

π
ln

(
1

1− ξ
λ2

1 + λ2

)
+ a1 +

2a0
2

π

(
ln 8 +

π(5− 2π)

2π − 4

)
+ . . .

]
.

(4.219)
We now aim to retrieve the time dependence of the cumulant. The term proportional to 1/(1− ξ)2 will
give a term growing linearly with time. Recalling the definition of λ, we get

1

(1− ξ)2
ln

(
1

1− ξ
λ2

1 + λ2

)
=

1

(1− ξ)2
ln

1

ε2
+

1

(1− ξ)2
ln

1

1 + 1−ξ
ε2

. (4.220)

Using a Tauberian theorem, we get the time-dependent term at leading order when t→∞:

t ln
t

1 + ε2t
. (4.221)

Finally, replacing ε with ρ0a0, we obtain the following scaling behavior

κ
(2)
1 (t) ∼ ρ0t

[
2a0

2

π
ln

t

1 + ρ0
2a0

2t
+ a1 +

2a0
2

π

(
ln 8 + γ − 1 +

π(5− 2π)

2π − 4

)]
(4.222)

We then verify that this scaling function allows us to retrieve the two limiting behaviors predicted
above:

1. when we take the limit where ρ0 is going to zero first, we find

κ
(2)
1 (t) ∼ ρ0t

[
2a0

2

π
ln t+ a1 + 2a0

2π(5− 2π)

2π − 4
+

2a0
2

π
(ln 8 + γ − 1)

]
(4.223)

which is equivalent to (4.114).

2. when we take the limit where t is going to∞ first), we find

κ
(2)
1 (t) ∼ ρ0t

[
a1 + 2a0

2π(5− 2π)

2π − 4
+

2a0
2

π

(
ln 8 + γ − 1 + ln

1

ρ0
2a0

2

)]
(4.224)

which is equivalent to (4.214).

In order to confront these analytical predictions with numerical simulations, we study the following
function of the variance:

ψ(t) =
κ(2)(t)

ρ0t
− 2a0

2

π
ln

1

ρ0
2a0

2
. (4.225)
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Figure 4.9: Rescaled function of the variance ψ(t) (see text) as a function of τ = a0
2ρ0

2t obtained from
numerical simulations of tracer diffusion on a 2D lattice with different densities. The external force is
F =∞, which implies p1 = 1 and pµ = 0 for µ 6= 1. The black line is the function g2D(τ) (4.226).

It is then expected to be described by the scaling function

g2D(τ) ≡ 2a0
2

π
ln

τ

1 + τ
+ a1 + 2a0

2π(5− 2π)

2π − 4
+

2a0
2

π
(ln 8 + γ − 1), (4.226)

where τ = ρ0
2a0

2t is a rescaled time variable
On Fig. 4.9, we confront the expression of the scaling function g2D (4.226) with the results from the

value of ψ(t) defined in (4.225) computed from numerical simulations. ψ(t) is plotted as a function of
the rescaled time τ = a0

2ρ0
2t, for different values of the vacancy density and for an infinite external

force (which is equivalent to taking p1 = 1 and pµ = 0 for µ 6= 1). The scaling function, represented in
black, is a good description of both regimes and of the crossover between them.

4.10 Conclusion

In this Chapter, we studied the fluctuations of the position of a driven TP in a lattice gas, in the limit
where the density of bath particles goes to 1. We applied the formalism presented in Chapter 2, which
consists in considering that each vacancy contributes independently to the motion of the TP in the limit
where the density of vacancies ρ0 is very small. In confined geometries, it was shown that the behavior
of the TP was superdiffusive. Indeed, in quasi-one-dimensional geometries (such as 2D stripes and
3D capillaries), the fluctuations of the TP position grow as t3/2, and as t ln t on a two-dimensional
lattice. We also show that this effect appears beyond the linear response of the system, and so it could
not be obtained by a simpler linear-response approach. Finally, this effect is not observed on a three-
dimensional lattice, on which the fluctuations are normal and grow linearly with time.
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In confined geometries, we showed that superdiffusion is actually a long-lived transient regime,
which crosses over to an ultimate diffusive regime after a time t× ∼ 1/ρ0

2 which diverges when the
vacancy density goes to zero. This implies that the initial superdiffusive regime may be long-lived if
the density of vacancies is very small. We will give a more physical insight into this observation with
a simplified description presented in Chapter 7. Technically, the ultimate regime of the system can be
obtained by taking the limit t → ∞ for a fixed value of the vacancy density ρ0. Indeed, we show that
the two limits ρ0 → 0 and t → ∞ cannot be inverted. The physical origin of this phenomenon is
the following: between two successive visits of a vacancy to the TP position, the TP moves due to its
interactions with other vacancies, so that the random walk of a vacancy is actually biased, with a bias
that vanishes when the density of vacancies goes to zero. We finally obtain explicitly the expression of
the diffusion coefficient in the ultimate regime. Surprisingly, this diffusion coefficient is independent
of the vacancy density ρ0 in quasi-one-dimensional lattices. Finally, we obtained the expression of the
scaling functions describing both regimes, by taking simultaneously the limits ρ0 → 0 and t→∞ with
the scaling t ∼ 1/ρ0

2.
The emergence of confinement-induced superdiffusion in a minimal model a driven TP in a hardcore

lattice gas suggests that this effect is not restricted to the glassy systems presented in the introduction of
this Chapter [118, 104], and could be a generic feature of driven dynamics in confined crowded systems.

The robustness of the results we obtained on the lattice description was tested on two types of off-
lattice systems with Molecular Dynamics simulations:

• a colloidal fluid (CF) of identical particles interacting via a purely repulsive potential (collabora-
tion with Adam Law and Dipanjan Chakraborty, Universität Stuttgart).

• a dissipative granular fluid (GF) (collaboration with Anna Bodrova, Moscow State University).

In both algorithms, a biased intruder is submitted to an external force. Its fluctuations as a function
of time are computed for different values of the parameters: applied force f and stripe width L for the
CF; applied force f , stripe width L and restitution parameter e for the GF. For both systems, a value of
the density close to the packing fraction is chosen.

In order to collapse all data, we need to rescale the variance κ(2)
1 (t). It will be shown in Chapter 5

that the velocity of the TP is proportional to the vacancy density and to the coefficient a0, which contains
the force-dependence of the variance. A good function to plot is then Lκ(2)

1 (t)/v2, where the velocity v
is also computed from the simulations. The results are presented on Fig. 4.10.

This validates the time, width, and driving force dependences that feature in our analytical expres-
sion also for off-lattice systems. This suggests that superdiffusion may be a generic property of a driven
TP in a confined environment. With future work and collaborations, we could test the robustness of this
observation in other numerical simulations involving more complex interactions, or in experimental
realizations.

In the next Chapter, we study the behavior of the mean position of the TP. We show that its behavior
also displays an anomaly in confined geometries.
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Figure 4.10: Rescaled variance Lκ(2)
1 (t)/v2 as a function of time obtained from off-lattice simulations

for different widths of stripes L and forces f . CF: molecular dynamics of colloidal fluids in confined
strip-like geometries. GF: simulations of dense monodisperse granular fluid in confined strip-like ge-
ometries; e stands for the restitution parameter. The black line is t3/2.



CHAPTER 5

Velocity anomaly in
quasi-one-dimensional geometries

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Quasi-one-dimensional geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.1 Stripe-like geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.2 Capillary-like geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Two-dimensional lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

We studied in Chapter 4 the fluctuations of the position of a biased TP in a dense lattice
gas. It was found that in 2D and quasi-1D systems such as stripes or capillaries, there
exists a long-lived superdiffusion crossing over to a diffusive behavior after a time scaling
as 1/ρ0

2. We show that in confined geometries not only the variance but already the mean
of the TP displacement displays a striking anomaly. In quasi-1D systems, we find that the
temporal evolution of the TP velocity consists of two distinct, clearly separated regimes:
after a short transient the velocity attains first a long-lived “high” constant value which
persists up to times of order of 1/ρ0

2 and then rather abruptly drops to a terminal “low”
constant value.

Results from this Chapter were published in [P5].

5.1 Introduction

In the previous Chapter a superdiffusive growth of the variance of a biased TP in a crowded environment
was established analytically in a simple discrete model. In this model, the tracer performs a random walk
biased by an external force, in a dense bath of particles performing symmetric random walks constrained
by hard-core interactions. In the high-density limit, the motion of the TP is mediated by successive visits
of vacancies whose density is denoted ρ0 = 1− ρ, where ρ is the density of bath particles. It was found
that in 2D and quasi-1D systems such as stripes or capillaries there exists a long-lived superdiffusion,
crossing-over to a diffusive behavior after a time t× ∼ 1/ρ0

2. The complete time evolution of the
variance was found to display a scaling behavior as a function of the scaled variable ρ0

2t (see Fig. 4.8).
On the basis of such model of a driven tracer in a dense lattice gas, we show here that the behavior

of the mean itself of the TP position displays a striking anomaly in confined geometries, which appar-
ently has been left aside up to now. This unexpected behavior, obtained from Monte-Carlo numerical
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Figure 5.1: Rescaled mean position (velocity) 〈Xt〉 /(ρ0t) as a function of τ = a′0
2ρ0

2t obtained from
numerical simulations of tracer diffusion on a 2D stripe of width L = 3 with different densities. The
external force is F =∞, which implies p1 = 1 and pµ6=1 = 0.

simulations in a quasi-1D stripe, is plotted in Fig. 5.1 for several vacancy densities ρ0, as a function of
the rescaled variable τ = a′0

2ρ0
2t, suggested by the scaling behavior of the variance (Section 4.7.5). A

scaled form of the mean-position is found which, very surprisingly, after a long-lived plateau drops to a
lower ultimate value. The transition from the “high” velocity to the ultimate regime of “low” velocity
takes place at a time scale of the order of the cross-over time t× ∼ 1/ρ0

2 involved in the time evolution
of the variance, suggesting that the anomaly of the variance and that of the mean could be linked. In
this Chapter, we (i) calculate analytically the mean position of the TP in quasi-1D systems like stripes
and capillaries in the dense limit ρ0 → 0, (ii) quantitatively account for the intriguing velocity anomaly
reported above numerically and (iii) show that such velocity anomaly occurs only in quasi-1D systems
in contrast to superdiffusion which is observed in both quasi-1D and 2D systems, revealing that the
velocity anomaly and superdiffusion are not controlled by the same criteria.

5.2 Quasi-one-dimensional geometries

5.2.1 Stripe-like geometry

In order to compute the mean position of the TP (i.e. the first cumulant of its distribution) in the high-
density limit, we start from the general expression of the cumulants (2.54) established in Chapter 2 in
order to obtain

lim
ρ0→0

κ̂
(1)
1 (ξ)

ρ0
= i

∂Ω̂(k1; ξ)

∂k1

∣∣∣∣∣
k1=0

, (5.1)
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where the first cumulant κ(1)
1 (t) is the mean position of the TP in the direction of the bias 〈Xt〉, and

where the function Ω̂(k1; ξ) is defined in (2.55). In the particular case of a two-dimensional stripe-like
geometry, we use the general expression of Ω̂(k1; ξ) (4.23) as well as the symmetry relations (4.27),
(4.28) and (4.29) in order to write the first cumulant as a function of the quantities previously defined:

lim
ρ0→0

κ̂
(1)
1 (ξ)

ρ0
=

1

1− ξ
1

D0 +D1 +D−1

{
(F ′1 − F ′−1)(D0 +D1 +D−1) + F ′1[σ1(e−1)− σ−1(e−1)]

+F ′−1[σ1(e1)− σ−1(e1)] + 2F ′2[σ1(e2)− σ−1(e2)]
}
. (5.2)

We recall that the quantities D0, D±1 and σ±1(eν), which were defined in Section 4.3.1, only depend
on the conditional first-passage time densities (FPTD) F̂ ∗ associated to the random walk of a vacancy,
which are determined using the methods presented in Section 4.3.2. The computation of the conditional
FPTD then allows us to find the expansion of the quantities σ±1(eν), D0 +D1 +D−1 and F ′ν involved
in the expression of the first cumulant (5.2). These expansions are given in Appendix E (Section E.1).
Using these expansions in the expression of the first cumulant (5.2), we finally obtain at leading order

lim
ρ0→0

κ̂
(1)
1 (ξ)

ρ0
∼
ξ→1

1

(1− ξ)2

p1 − p−1

1 + 4α
4−α(p1 + p−1)

. (5.3)

Using a Tauberian theorem, one obtains

lim
ρ0→0

κ
(1)
1 (t)

ρ0
∼

t→∞
a0t, (5.4)

where we defined again

a0 ≡
p1 − p−1

1 + 4α
4−α(p1 + p−1)

, (5.5)

and where α is a function of the width of the stripe only and is defined by (4.55).
In order to describe the ultimate regime corresponding to the low velocity, we now need to analyze

the regime where the large time limit is taken first and the small density limit next, in contrast to the
regime considered in (5.4). The formalism described above can actually be extended to analyze this
second limit. The key difference with the previous case is that for a fixed small ρ0 the random walk
performed by the vacancy between two successive visits of the lattice site occupied by the TP is a
biased random walk in the reference frame of the TP, due to the interactions of the TP with the other
vacancies. The method presented above can then be applied, provided that the FPTD F ∗ computed for
the symmetric walk of a vacancy are replaced by the FPTD F∗ corresponding to the random walk of
a vacancy undergoing a bias in the direction opposite to the TP displacement. This bias, denoted by ε,
vanishes in the limit ρ0 → 0. Its explicit expression is not needed and will be obtained self-consistently.
The method to compute the FPTD F∗ was given in Section 4.7.2. The expansions of the quantities
σ±1(eν), D0 + D1 + D−1 and F ′ν involved in the expression of the first cumulant (5.2) are given in
Appendix E (Section E.2). Using these expansions in the expression of the first cumulant (5.2), we
obtain at leading order

lim
ξ→1

[
(1− ξ)2κ̂

(1)
1 (ξ)

]
∼

ρ0→0
ρ0a
′
0 (5.6)
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where
a′0 =

p1 − p−1

1 + 4α
4−α(p1 + p−1) + 16

L(4−α)(p1 − p−1)
. (5.7)

Finally, using a Tauberian theorem, we get

lim
t→∞

κ
(1)
1 (t)

t
∼

ρ0→0
ρ0a
′
0 (5.8)

A few comments follow from these calculations:

• the mean position of the TP grows linearly with time in both regimes. This is in contrast with the
situation observed in the one-dimensional geometry, in which the mean position of the TP was
found to grow as

√
t, i.e. sublinearly.

• the relation (5.8) indicates that in the ultimate regime reached by the TP, its velocity is ρ0a
′
0. This

gives in a self-consistent way the value of the bias ε = ρ0a
′
0 undergone by a vacancy between two

successive visits to the location of the TP.

• we notice that a′0 < a0. Indeed, it can be checked numerically that α, which is a function of L
only (4.55), is smaller than 4 for any value of L ≥ 2. This implies 16

L(4−α)(p1 − p−1) > 0 and
therefore a′0 < a0. The ultimate velocity ρ0a

′
0 is then always lower than the first velocity ρ0a0.

• we define the velocity jump ∆v as

∆v ≡ ρ0(a0 − a′0) (5.9)

=

16(p1−p−1)2

L(4−α)(
1 + 4α

4−α(p1 + p−1)
)2

+ 64α
L(4−α)2 (p1

2 − p−1
2)

(5.10)

With the usual choice of the jump probabilities p±1 ∝ exp(±F/2), we find in the small-force
limit:

∆v =
F→0

1

L

4− α
(4 + α)2

F 2 +O(F 3). (5.11)

The velocity jump then vanishes when the applied force goes to zero, but proportionally to F 2. It
means that this anomaly emerges beyond the linear response of the system.

Finally, we are interested in the joint limit where ρ0 → 0 and t → ∞ simultaneously. We use
the scaling t ∼ 1/ρ0

2 which was suggested by the study of the variance of the TP (see Section 4.7.5).
The expansions in the joint limit of the quantities σ±1(eν), D0 + D1 + D−1 and F ′ν involved in the
expression of the first cumulant (5.2) are given in Appendix E (Section E.3). Using these expansions in
the expression of the first cumulant (5.2), we obtain at leading order

κ̂
(1)
1 (ξ) ∼

ε∼
√

1−ξ
ξ→1

ρ0

(1− ξ)2

(p1 − p−1)L
√

1 + 1−ξ
ε2

L
√

1 + 1−ξ
ε2

+ 16
4−α(p1 − p−1) + 4α

4−αL
√

1 + 1−ξ
ε2

(p1 + p−1)
. (5.12)
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Recalling the definitions of a0 (5.5) one gets the expression:

κ̂
(1)
1 (ξ) ∼

ε∼
√

1−ξ
ξ→1

ρ0a0

(1− ξ)2

√
1 + 1−ξ

ε2√
1 + 1−ξ

ε2
+ 16

L
a0

4−α

. (5.13)

The time-dependence of the first cumulant can be retrieved by replacing the discrete Laplace variable ξ
by 1 − s, where s is a continuous Laplace variable. With usual inverse Laplace transforms, we obtain
the dependance of the quantity κ(1)

1 (t)/(ρ0t) in terms of a rescaled variable τ = a′0
2ρ0

2t:

〈Xt〉
ρ0t

∼ a0

{ b

b2 − 1

[
erf(
√
τ) +

e−τ√
πτ

]
+

1

τ

(
b

b2 − 1

)2 [
e(b2−1)τ [1− erf(b

√
τ)]− 1

]

+
b

2

b2 + 1

(b2 − 1)2

erf(
√
τ)

τ
− 1

b2 − 1

}
(5.14)

≡ h(τ) (5.15)

where we defined b = a0/a
′
0 − 1. We verify that this scaling function gives the right limit behaviors:

1. in the case where the limit ρ0 → 0 is taken first (i.e. when τ goes to 0), we get

lim
τ→0

h(τ) = a0, (5.16)

which leads to 〈Xt〉 ∼ ρ0a0t and which corresponds to (5.4).

2. in the case where the limit t→∞ is taken first (i.e. when τ goes to∞), we get

lim
τ→∞

h(τ) =
a0

1 + b
= a′0, (5.17)

which leads to 〈Xt〉 ∼ ρ0a
′
0t and which corresponds to (5.8).

This scaling function is compared to results from numerical simulations, for two different values of
the bias (Figs. 5.2 and 5.3). Note that the theoretical low value is reached only in the limit ρ0 → 0,
which explains the observed discrepancy between the theoretical and numerical values, that decreases
when ρ0 → 0.

5.2.2 Capillary-like geometry

We now extend the calculation presented in the case of stripe-like geometries to the case of capillary-like
geometries. Starting again from the general expression of the first cumulant (5.1), and with the general
expression of Ω̂(k1; ξ) (2.55), we get

lim
ρ0→0

κ̂
(1)
1 (ξ)

ρ0
=

1

1− ξ
1

D0 +D1 +D−1

{
(F ′1 − F ′−1)(D0 +D1 +D−1) + F ′1[σ1(e−1)− σ−1(e−1)]

+F ′−1[σ1(e1)− σ−1(e1)] + 4F ′2[σ1(e2)− σ−1(e2)]
}
, (5.18)

where the quantities σ±1(eν), D0 +D1 +D−1 and F ′ν are defined in Appendix D (Section D.1). These
quantities are expressed in terms of the FPTD F ∗, whose computation in the case of capillary-like
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Figure 5.2: Rescaled mean position (velocity) 〈Xt〉 /(ρ0t) as a function of τ = a′0
2ρ0

2t obtained from
numerical simulations of tracer diffusion on a 2D stripe of width L = 3 with different densities of
vacancies. The external force is F = 4, and the jump probabilities of the TP are pµ ∝ e

1
2
F ·eµ . The

black line is the scaling function from (5.14).
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Figure 5.3: Rescaled mean position (velocity) 〈Xt〉 /(ρ0t) as a function of τ = a′0
2ρ0

2t obtained from
numerical simulations of tracer diffusion on a 2D stripe of width L = 3 with different densities of
vacancies. The external force is F =∞, which implies p1 = 1 and pµ = 0 for µ 6= 1. The black line is
the scaling function from (5.14).
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lattices is presented in Section 4.4.3. Recalling the expansions of the intermediate quantities σ±1(eν),
D0 + D1 + D−1 and F ′ν from Appendix F (Section F.1), we obtain the expression of the first cumulant
in the limit where ρ0 → 0 is taken first:

lim
ρ0→0

κ
(1)
1 (t)

ρ0
∼

t→∞
a0t. (5.19)

where
a0 ≡

p1 − p−1

1 + 6α
6−α(p1 + p−1)

, (5.20)

and where α is a function of the width of the capillary only and is defined by (4.86).
In order to obtain the ultimate regime, the FPTD associated to the random walk of vacancy must be

replaced by the FPTD F∗, introduced in Section 4.8.1. We perform the computation in the particular
case where the TP is directed, i.e. where it can only jump direction in the direction of the bias. Using the
expansions of the intermediate quantities σ±1(eν), D0 + D1 + D−1 and F ′ν involved in the expression
of the first cumulant (5.18), which are given in Appendix F (Section F.2) we obtain the expression of the
second cumulant:

lim
t→∞

κ
(1)
1 (t)

t
∼

ρ0→0
ρ0a
′
0 (5.21)

where
a′0 =

1

1 + 6α
6−α + 36

L2(6−α)

(5.22)

Finally, we extend the calculation presented in the case of a stripe-like geometry to study the joint
limit where ρ0 → 0 and t→∞ simultaneously. We use the scaling t ∼ 1/ρ0

2 which was suggested by
the study of the variance of the TP (see Section 4.8.3). The expansions in the joint limit of the quantities
σ±1(eν), D0 + D1 + D−1 and F ′ν involved in the expression of the first cumulant (5.18) are given in
Appendix F (Section F.3). Using these expansions in the expression of the first cumulant (5.18), we
finally obtain at leading order, and in the particular case of a biased TP,

κ̂
(1)
1 (ξ) ∼

ε∼
√

1−ξ
ξ→1

ρ0

(1− ξ)2

L
√

1 + 1−ξ
ε2

L2
√

1 + 2
3

1−ξ
ε2

+ 36
6−α + 6α

6−αL
2
√

1 + 2
3

1−ξ
ε2

(5.23)

Recalling the definitions of a0 (5.20), one gets the expression:

κ̂
(1)
1 (ξ) ∼

ε∼
√

1−ξ
ξ→1

ρ0a0

(1− ξ)2

√
1 + 2

3
1−ξ
ε2√

1 + 2
3

1−ξ
ε2

+ 36
L2

a0
6−α

(5.24)

The time-dependence of the first cumulant can be retrieved by replacing the discrete Laplace variable ξ
by 1− s, where s is the usual continuous Laplace variable. Using usual inverse Laplace transforms, we
obtain the dependance of the quantity 〈Xt〉 /(ρ0t) in terms of a rescaled variable τ = a′0

2ρ0
2t and of the

function h defined in the case of stripe-like geometry (5.14):

〈Xt〉
ρ0t

∼ h
(

3

2
τ

)
(5.25)
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Figure 5.4: Rescaled mean position (velocity) 〈Xt〉 /(ρ0t) as a function of τ = a′0
2ρ0

2t obtained from
numerical simulations of tracer diffusion on a 3D capillary of width L = 3 with different densities. The
external force is F = ∞, which implies p1 = 1 and pµ6=1 = 0. The black line is the scaling function
from (5.14).

Recalling the limit behaviors of h:

lim
τ→0

h(τ) = a0, (5.26)

lim
τ→∞

h(τ) = a′0, (5.27)

we show that the scaling function h
(

3
2τ
)

allows to retrieve the limiting behaviors of the first cumulant
(5.19) and (5.21).

5.3 Two-dimensional lattice

We finally study the case of a two-dimensional lattice. In the limit where ρ0 → 0 is taken first, the mean
position of the TP may be computed from the expression (5.2). The intermediate quantities σ±1(eν),
D0 + D1 + D−1 and F ′ν involved in the expression of the first cumulant (5.2) are given in Appendix G
(Section G.1). Using these expansions in the expression of the first cumulant (5.2), and using a Tauberian
theorem, we finally obtain

lim
ρ0→0

κ
(1)
1 (t)

ρ0
∼

t→∞
a0t, (5.28)

where
a0 ≡

p1 − p−1

1 + 4α
4−α(p1 + p−1)

, (5.29)
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and
α = 4− 8

π
. (5.30)

The ultimate regime is obtained by considering the new FPTD corresponding to the biased random
walk of a vacancy. Using the expansions of the quantities σ±1(eν), D0 +D1 +D−1 and F ′ν in the limit
where t→∞ is taken first (Appendix G, Section G.2), we obtain

lim
t→∞

κ
(1)
1 (t)

t
∼

ρ0→0
ρ0a0. (5.31)

These results show that the limits ρ0 → 0 and t → ∞ can be inverted in the computation of the
TP mean position on a two-dimensional lattice. This implies that there is no velocity anomaly in 2D,
and that the mean position of the TP scales as ρ0a0t. Results from numerical simulations confirming
the absence of a velocity jump in this geometry are given on Fig. 5.5. Recalling the expression of the
velocity jump on a two-dimensional stripe (5.11), we see explicitly that it vanishes when L→∞, which
is consistent with the results obtained by the exact treatment of the two-dimensional lattice.

This also shows that the emergence of superdiffusive fluctuations and of the velocity anomaly are
not controlled by the same criteria. Mathematically, the criterion for superdiffusion to occur is that the
limits ε→ 0 and ξ → 1 of the biased propagators P̂(r|r0; ξ, ε) do not commute, which is the case in 2D
and quasi-1D systems (see Appendices A, B and C). The condition for velocity anomaly is in contrast
that the limits ε → 0 and ξ → 1 of P̂(0|0; ξ, ε) − P̂(2e1|0; ξ, ε) do not commute, which is in fact
more constraining, and is satisfied in quasi-1D but not in 2D systems. Parenthetically, we note that this
non-commutation of the limits for P̂(0|0; ξ, ε) − P̂(2e1|0; ξ, ε) is a general property which holds for
any biased random-walk in quasi-1D systems, and could potentially have implications in other contexts.

5.4 Conclusion

In conclusion, on the basis of a simple model of a driven diffusive tracer in a crowded environment,
our analysis has revealed the emergence of a striking velocity anomaly in confined geometries. Namely,
we have shown that in quasi-1D systems such as stripes or capillaries, the TP velocity displays a long-
lived plateau before ultimately dropping to a lower value. We have developed an analytical solution that
quantitatively accounts for this intriguing behavior. This anomaly is also shown to emerge beyond the
linear response of the system. A subtle point, quantified by the expression (5.11) is that this velocity
jump is actually strictly equal to zero in infinite 2D systems. In particular, velocity anomaly occurs only
in quasi-1D systems, in contrast with the superdiffusive growth of the variance of the TP position, which
is observed in both quasi-1D and 2D systems.
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Figure 5.5: Rescaled mean position (velocity) 〈Xt〉 /(ρ0t) as a function of τ = a′0
2ρ0

2t obtained from
numerical simulations of tracer diffusion on a 2D lattice with different densities. The external force
is F = ∞, which implies p1 = 1 and pµ = 0 for µ 6= 1. In this situation, with (5.29), we obtain
〈Xt〉 ∼ 4−α

4+3αρ0t, and, with the expression of α in the case of a 2D lattice, we get 〈Xt〉 ∼ ρ0t
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value of 1/(2π − 3) is represented by the black line.
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In the previous Chapters, we obtained the expressions of the mean and fluctuations of the
position of a biased TP in a hardcore lattice gas, in different geometries. These expressions
only involve the propagators associated to simple random walks on the considered struc-
tures. Although the behavior of the TP is strongly affected by the geometry of the lattice,
we show in this Chapter that there exist general expressions of the first cumulants of the
position of the TP that hold for every geometries. We extend these results to higher-order
cumulants, and we also study the cumulants of the position of the TP in the direction per-
pendicular to the bias. Finally, these universal expressions are used to predict the behavior
of the TP on fractal structures.

6.1 Introduction

In the previous Chapters, we studied the position of a biased TP in a hardcore lattice gas, in the limit
where the density is very high. We first studied the fluctuations of the TP position, and showed that they
had the following behaviors, depending on the lattice geometry:

• on a one-dimensional lattice, the fluctuations are shown to be subdiffusive and to grow as
√
t

(Chapter 3).
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• in higher-dimensional confined geometries (quasi-one-dimensional lattices, two-dimensional infi-
nite lattice), there exists a superdiffusive behavior of the TP position. On quasi-one-dimensional
lattices, the fluctuations of the TP position grow as t3/2. On a two-dimensional lattice, they grow
as t ln t. However, this superdiffusive regime is transient, and crosses over to an ultimate diffusive
regime. The crossover time between the two regimes scales as 1/ρ0

2, which indicates that the
initial superdiffusive regime is actually long-lived in the limit where ρ0 → 0 (Chapter 4).

• on a three-dimensional lattice, the fluctuations of the TP are normal and grow linearly with time
(Chapter 4).

We also studied the mean position of the TP. In one dimension, it grows as
√
t, i.e. slower than linearly

(Chapter 3). In higher-dimension lattices, the mean position of the TP always grows linearly with
time, but there exists a velocity anomaly in quasi-one-dimensional lattices such as stripe-like and
capillary-like geometries: before reaching its ultimate value, the velocity of the TP saturates to a higher
long-lived plateau. The crossover to the final value occurs at a time that scales as 1/ρ0

2 (Chapter 5).

The mean of the position of the TP and its fluctuations then display a large variety of behaviors,
depending on the considered geometry. In the high-density limit, the motion of the TP is mediated by
the diffusion of the vacancies on the considered lattice, so that the properties of the random walk of the
TP are closely related to that of the vacancies. In confined geometries (one-dimensional, quasi-one-
dimensional, two-dimensional) the random walk (RW) of a vacancy is recurrent, i.e. the eventual return
to its starting point is certain. On the contrary, on a three-dimensional lattice, the eventual return of a
vacancy to its starting point is not certain, and its RW is transient [58]. In Chapter 4, we showed that
the recurrence of the vacancy RW was a necessary condition to allow the emergence of superdiffusive
fluctuations, but that it was not a sufficient condition. Indeed, on a one-dimensional lattice, the
behavior of the TP is qualitatively different compared to quasi-one-dimensional and two-dimensional
lattices. The main difference between these geometries is the fact that the quasi-one-dimensional
and two-dimensional lattices are looped, which means that there exists several distinct paths linking
two given vertices of the lattice, whereas the one-dimensional lattice is non-looped (or tree-like).
Consequently, the presence of loops on the considered lattice also seems to control the behavior of the
TP.

More precisely, the first step of the general method presented in Chapter 2 is the study of the
situation where there is only one vacancy on the lattice, which depends on the lattice dimension. In
one dimension, because of the tree-like structure of the lattice, the TP can only reach two distinct sites
if it interacts with only one vacancy. In confined geometries (quasi-1D, 2D), the random walk of the
vacancy is recurrent, and it can transport the TP to arbitrarily large distances. In three dimensions, the
vacancy only visits the location of the TP a finite number of times, so that the TP can only travel to
finite distances. The outcome of this single-vacancy problem is then strongly affected by the dimension
of the lattice.

In this Chapter, we show that, in spite of these differences, the first cumulants (mean and fluctuations)
of the TP position are described by universal formulae, which are expressed in terms of the propagators
of symmetric nearest-neighbor RWs on the considered structure. These expressions are remarkably
simple, and account for the variety of behaviors reminded above. These results are extended in several
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other directions: (i) we study the higher-order cumulants of the TP position in the direction of the bias;
(ii) we also study the cumulants of the TP position in the transverse direction; (iii) finally, these universal
properties are used to predict the behavior of the TP on fractal lattices.

6.2 First cumulants of the TP position

6.2.1 Mean position of the TP

In Chapter 5, we obtained the following scaling function for the generating function associated to the
mean position of the TP in the direction of the bias on quasi-one-dimensional lattices:

κ̂
(1)
1 (ξ) ∼ ρ0a0

(1− ξ)2

1

1 + 4d2

Ld−1
a0

2d−α
1√

1+ 1−ξ
ρ20a
′
0
2

(6.1)

where the quantities a0 and a′0 are defined by

a0 =
p1 − p−1

1 + 2dα
2d−α(p1 + p−1)

, (6.2)

a′0 =
p1 − p−1

1 + 2dα
2d−α(p1 + p−1) + 4d2

Ld−1(2d−α)
(p1 − p−1)

, (6.3)

with
α = lim

ξ→1

[
P̂ (0|0; ξ)− P̂ (2e1| 0; ξ)

]
, (6.4)

where is P̂ (r|r0; ξ) is the generating function associated to the propagator of a symmetric nearest-
neighbor random walk starting from r0 and arriving at r. The scaling function (6.1) describes both
the long-lived transient regime and the ultimate regime reached by the mean position of the TP at large
times. Mathematically, the existence of these two regimes rely on a non-interversion of the long-time
(ξ → 1) and low-vacancy-density (ρ0 → 0) limits:

• in the limit where ρ0 → 0 is taken first, we obtain from (6.1):

lim
ρ0→0

κ̂
(1)
1 (ξ)

ρ0
∼ a0

(1− ξ)2
, (6.5)

and, using a Tauberian theorem,

lim
ρ0→0

κ(1)(t)

ρ0
∼ a0t (6.6)

which corresponds to the expression for the stripe-like (5.4) and capillary-like (5.19) geometries.

• the ultimate regime is obtained by taking first the limit ξ → 1 for a given value of the vacancy
density ρ0. We obtain from (6.1):

lim
ξ→1

[
(1− ξ)2κ̂

(1)
1 (ξ)

]
∼

ρ0→0

ρ0a0

1 + 4d2

Ld−1
a0

2d−α
= ρ0a

′
0, (6.7)
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and, using a Tauberian theorem,

lim
t→∞

κ
(1)
1 (t)

t
∼

ρ0→0
ρ0a
′
0 (6.8)

which corresponds to the expression for the stripe-like (5.8) and capillary-like (5.21) geometries.

In what follows, we show that this formula is general and also covers the cases of the two-dimensional,
three-dimensional and one-dimensional lattices on which the behavior of the mean position of the TP is
qualitatively different.

• The general equation (6.1) written in the case of a two-dimensional lattice (with d = 2 and in the
limit L→∞) yields

κ̂(1)(ξ) ∼ ρ0a0

(1− ξ)2
. (6.9)

Consequently, we retrieve the fact that the limits ρ0 → 0 and t → ∞ commute in the case of a
two-dimensional lattice, so that there is no velocity anomaly in two dimensions. With a Tauberian
theorem, we retrieve the expression (5.31) obtained in Section 5.3:

lim
ρ0→0

κ
(1)
1 (t)

ρ0
∼

t→∞
a0t. (6.10)

• Using the properties associated to an infinite three-dimensional lattice presented in Section 4.6 as
well as the general expression for the mean position of the TP in terms of the first-passage time
densities of the vacancies random walk (5.18), one can show that there is no velocity anomaly in
three-dimensions, and that the long-time limit of the first cumulant is also given by (6.10). The
general expression (6.1) also holds for a three-dimensional lattice.

• We finally extend the general expression (6.1) to the case of a biased TP in a one-dimensional
lattice gas. In this situation, the quantity α is not a constant at leading order in (1−ξ). We replace
it by the expansion of P̂ (0|0; ξ)− P̂ (2e1|0; ξ), given by the usual expressions of the propagators
of a symmetric nearest-neighbor random walk on a one-dimensional lattice [58]:

P̂ (0|0; ξ)− P̂ (2e1|0; ξ) =
1√

1− ξ2
− 1√

1− ξ2

(
1−

√
1− ξ2

ξ

)2

(6.11)

=
ξ→1

2− 2
√

2
√

1− ξ +O(1− ξ) (6.12)

The coefficients a0 and a′0, defined through (6.2) and (6.3), then become functions of ξ, and at
leading order in (1− ξ), we get

a0(ξ) ∼
ξ→1

p1 − p−1√
2

√
1− ξ, (6.13)

a′0(ξ) ∼
ξ→1

p1 − p−1

2
√

2p1

√
1− ξ. (6.14)

Finally, (6.1) yields

lim
ρ0→0

κ̂
(1)
1 (ξ)

ρ0
∼
ξ→1

p1 − p−1√
2

1

(1− ξ)3/2
, (6.15)
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and, using a Tauberian theorem,

lim
ρ0→0

κ
(1)
1 (t)

ρ0
∼

t→∞
(p1 − p−1)

√
2t

π
, (6.16)

which is equivalent to the expression (3.22) obtain in Chapter 3.

Finally, we conclude that the behavior of the mean position of the TP, although it is strongly affected
by the lattice dimension, is always given by the general relation (6.1), which is written in terms of the
propagators associated to a symmetric nearest-neighbor random walk on the considered lattice.

6.2.2 Fluctuations of the position of the TP

The fluctuations of the position of the TP were studied in Chapter 4. In the cases of the stripe-
like and capillary-like geometries, the calculation lead to the leading order term of the expansion of
limρ0→0 κ̂

(2)
1 (ξ) in powers of (1−ξ) (see equations (4.63) and (4.84)). In the case of the two-dimensional

geometry, we obtained the leading order term and the first correction, given by (4.107). The calculation
of the subdominant terms can be extended to obtain the first correction in the case of the quasi-one-
dimensional geometries. We obtain the general formula

lim
ρ0→0

κ̂
(2)
1 (ξ)

ρ0
=
ξ→1

2a0
2

(1− ξ)2

[
G0(ξ) +

(
G1 + c+

a1

2a0
2

+ 2c′1

)
+ . . .

]
(6.17)

where we define

a1 =
p1 + p−1

p1 − p−1
a0 (6.18)

α = lim
ξ→1

[
P̂ (0|0; ξ)− P̂ (2e1| 0; ξ)

]
(6.19)

β = lim
ξ→1

[
P̂ (0|0; ξ)− P̂ (e1| 0; ξ)

]
(6.20)

c =
2[(2d2 − 2dβ + β2)α− 2dβ2]

(α− 2d)(α+ 2d− 4β)
+
d+ 1

2

1

L2(d−1)
for stripes and capillaries (6.21)

=
2[(2d2 − 2d+ 1)α− 2d]

(α− 2d)(α+ 2d− 4)
for infinitely extended lattices (6.22)

c′1 =
4(α(α− 4)(p1 − p−1)2 − 32(p1 + p−1))

L2(α− 4)(4α(p1 + p−1)− α+ 4)
for the stripe− like geometry (6.23)

=
3

2L4

5α− 24α− 468

(α− 6)(5α+ 6)
for the capillary − like geometry and p1 = 1 (6.24)

= 0 for infinitely extended lattices (6.25)

and where the coefficients G0(ξ) and G1 are the first terms of the expansion of the propagator P̂ (0|0; ξ)

in the long-time limit (ξ → 1):

P̂ (0|0; ξ) =
ξ→1

G0(ξ) +G1 + o(1). (6.26)

We recall the expressions of G0(ξ) and G1 for the different lattices we considered in the following table
(see Appendices A, B and C):
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Lattice G0(ξ) G1

2D stripe 1
L
√

1−ξ S
(2)
L,−1

3D capillary
√

6
2L2
√

1−ξ S
(3)
L,0

2D infinite 1
π ln 1

1−ξ
ln 8
π

Using the expression ofG0(ξ) in (6.17) and using a Tauberian theorem to obtain the time-dependence of
the fluctuations, we retrieve the fact that they grow superdiffusively in these geometries. The superdif-
fusive behavior of the TP was shown to be a long-lived transient regime which crosses over to regular
diffusion after a time that scales as 1/ρ0

2. Mathematically, this ultimate regime is obtained by taking
first the limit where t → ∞ and ultimately the limit ρ0 → 0. The ultimate regime was shown to be
diffusive, and the leading order term of the second cumulant in this regimes was given in Chapter 4 (see
equations (4.168), (4.198) and (4.214)). These equations can be recast under the form

lim
t→∞

κ
(2)
1 (t)

t
∼

ρ0→0
2ρ0a

′
0

2G(ρ0a
′
0) (6.27)

where G(ε) is such that
P̂(0|0; ξ = 1, ε) ∼

ε→0
G(ε), (6.28)

where we denote by P̂(r|r0; ξ, ε) the generating function of a nearest-neighbor random walk starting
from r0 and arriving at r, with the jump probabilities defined in Section 4.7.2.1. The expression of G(ε)

in the different geometries we considered is given in the table below (see Appendices A, B and C).

Lattice G(ε)

2D stripe 1
Lε

3D capillary 1
L2ε

2D infinite 2
π ln 1

ε

Note that the functions G and G0 are related by

G(ρ0a
′
0) = G0

(
1− (ρ0a

′
0)2
)
. (6.29)

In what follows, we show that the expression (6.17) is also valid to describe the fluctuations of
the TP on the three-dimensional lattice (which was considered in Chapter 4, Section 4.6) and the one-
dimensional lattice (which was considered in Chapter 3).

• On a three-dimensional lattice, the leading order term of the propagator P̂ (0|0; ξ) was shown to
be constant at leading order in (1− ξ) and given by (4.124). The first correction G1 then vanishes
when ξ → 1. The coefficient c′1 is taken equal to zero as the lattice in infinitely extended. Finally,
specifying the general definition of c (6.22) to 3D, we get the expression

lim
ρ0→0

κ̂
(2)
1 (ξ)

ρ0
=
ξ→1

2a0
2

(1− ξ)2

[
G0 +

2(13α− 6)

(α+ 2)(α− 6)
+

a1

2a0
2

+ . . .

]
(6.30)

which corresponds to the expression (4.126). The general expression for the generating function
associated to the second cumulant (6.17) is also valid in the case of a three-dimensional lattice.
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• Extending the calculation presented in Section 4.6, we studied the fluctuations of the TP on higher-
dimensional infinite lattices. Using a computer algebra software, we can show that the formula
(6.17) holds up to d = 6, with c′1 = 0 and c given by (6.22).

• On a one-dimensional lattice, the expansion of the propagator P̂ (0|0; ξ) is given by

P̂ (0|0; ξ) =
1√

1− ξ2
, (6.31)

=
ξ→1

1√
2
√

1− ξ
+

1

25/2

√
1− ξ +O(1− ξ). (6.32)

(6.33)

Thus G0(ξ) = 1/
√

2
√

1− ξ and G1 = 0. Finally, specifying the general definition of c (6.22) to
1D, we get the expression

lim
ρ0→0

κ̂
(2)
1 (ξ)

ρ0
=
ξ→1

2a0
2

(1− ξ)2

[
G0(ξ) +

2

α(ξ)− 2
+

a1

2a0
2

+ . . .

]
, (6.34)

and using (6.11) and (6.13), we obtain at leading order in ξ → 1

lim
ρ0→0

κ̂
(2)
1 (ξ)

ρ0
=
ξ→1

1√
2

1

(1− ξ)3/2
(6.35)

which is equivalent to (3.23). The general expression for the generating function associated to the
second cumulant (6.17) is also valid in the case of a one-dimensional lattice.

Finally, although the geometries we considered yield very different results, the quantity
limρ0→0 κ̂

(2)
1 (ξ)/ρ0 is always given by the general relation (6.17). In the particular case where

the limits ρ0 → 0 and t → ∞ do not commute, the ultimate regime reached by the TP is given by
(6.27).

In what follows, we give several extensions to the results presented in this Section: (i) we obtain the
expression of the higher-order cumulants of the position of the TP in the direction of the bias (called the
longitudinal direction hereafter) in the two situations where the random walk of a vacancy on the consid-
ered structure is recurrent (quasi-one-dimensional and two-dimensional lattices) and in the case where
it is transient (three-dimensional lattice); (ii) we perform the same calculation to obtain the cumulants
of the position of the TP in a direction which is perpendicular to that of the bias (called the transverse
direction hereafter).

6.3 Higher-order cumulants in the longitudinal direction

6.3.1 Method

It was shown in Chapter 2 that the cumulants of the position of the TP can be obtained as the successive
derivatives of the function Ω̂(k; ξ) (2.54), which is the generating function associated to Ωt(k) related
to the cumulant generating function of the position of the TPXt:

Ωt(k) ∼
ρ0→0

− 1

ρ0
ln
〈

eik·Xt

〉
. (6.36)
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In Chapter 2, we showed that Ω̂(k; ξ) could be written in terms of the conditional first-passage time
densities (FPTD) associated to the random walk of a vacancy F ∗t (0|eµ|Y 0) (probability to reach the
origin for the first time at time t, starting from Y 0 and being at site eµ at time t− 1).

The cumulants of the position of the TP in the direction of the bias are obtained by derivating
Ω̂(k; ξ) with respect to k1 and by taking k = 0 afterwards (see (2.54)). It then suffices to determine the
dependence of Ω̂ on the first component of the Fourier variable k1. The explicit expression of Ω̂(k1; ξ)

in terms of the conditional FPTD is given in Appendix H (Section H.1). Starting from this expression,
we study separately the cases of recurrent and transient lattices.

6.3.2 Recurrent lattices

We give here a general presentation of the procedure we followed to compute the higher-order cumu-
lants. The calculation is given explicitly for the case of a stripe-like geometry in Appendix I (Section
I.1.2), and can be extended to the cases of a three-dimensional capillary and of a two-dimensional lattice.

We start from the general expression of Ω̂(k1; ξ) in terms of the conditional FPTD (H.11) (Appendix
H). The latter are computed using the methods presented in Chapter 4 (see Section 4.3.2 for the specific
case of the stripe-like geometry). Using a computer algebra software, we perform a joint expansion of
Ω̂(k1; ξ) in the variables k1 and (1− ξ) with an appropriate scaling between these variables. Using the
relation between the cumulants and the function Ω̂(k1; ξ)

lim
ρ0→0

κ̂
(n)
1 (ξ)

ρ0
= − 1

in
∂nΩ̂(k1; ξ)

∂k1
n

∣∣∣∣∣
k1=0

, (6.37)

we obtain the first two terms of limρ0→0 κ̂
(n)
1 (ξ)/ρ0 in its expansion in powers of (1− ξ). Remarkably,

this expansion takes the same form for the different geometries we consider, and is given by

lim
ρ0→0

κ̂
(n)
1 (ξ)

ρ0
=
ξ→1

an0n!

(1− ξ)2

{
G0(ξ)n−1 + (n− 1)

[
G1 +

a1

2a2
0

+ c+
n

n− 1
c′1

]
G0(ξ)n−2 + · · ·

}
,

(6.38)
where a0, a1, G0, G1, c and c′1 are defined as in Section 6.2. Note that the time-dependence of the
n-th cumulant at leading order when t → ∞ is not trivial. For instance, in quasi-one-dimensional
geometries, as G0(ξ) =ξ→1 O(1/

√
1− ξ), the leading order term in (6.38) is of order 1/(1− ξ)(n+3)/2.

A Tauberian theorem then allows to retrieve the time evolution of the n-th cumulant, which grows as

t(n+1)/2. If we consider the centered and reduced random variable Zt ≡ (Xt−〈Xt〉)/
√〈

Xt
2
〉
− 〈Xt〉2,

we can show that the n-th moment of its distribution scales as t1/2−n/4, so that all the moments of
order greater than 2 vanish in the long-time limit. This shows that the rescaled variable Zt is distributed
accordingly to a Gaussian distribution in the long-time limit. This result cannot be expected a priori,
provided that the biased TP drives the system in a nonequilibrium state.

As it was shown in Chapter 4, in these geometries, the limits t→∞ (i.e. ξ → 1) and ρ0 → 0 cannot
be inverted. Indeed, between two successive visits of a vacancy to the TP location, the TP actually has
a net displacement due to its interactions with other vacancies. The ultimate regime reached by the
cumulants of the TP position (i.e. their long-time limit for a fixed value of ρ0) is obtained by assuming
that the vacancies do not perform symmetric random walks anymore, but undergo an effective bias equal
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to the velocity of the TP, which depends on ρ0 and vanishes when ρ0 → 0 (see Chapter 4, Section 4.7.2.1
for a more precise definition of the evolution rules of the vacancies).

In this situation, the expression of Ω̂(k1; ξ) in terms of the conditional FPTD given in Appendix H
(Section H.1) is still valid, but the conditional FPTD must be replaced by the ones computed with the
new evolution rules of the vacancies. Consequently, Ω̂ is now a function of k1, ξ and ρ0. Using the
following relation between the cumulants and Ω̂(k1; ξ):

lim
ξ→1

[
(1− ξ)2κ̂

(n)
1 (ξ)

]
= − 1

in
∂n

∂k1
n lim
ξ→1

[
(1− ξ)2Ω̂1(k1; ξ, ρ0)

]∣∣∣∣
k1=0

, (6.39)

we can obtain the ultimate behavior of the cumulants with the help of a computer algebra software. The
details of the computation in the case of a stripe-like geometry are given in Appendix I (Section I.1.3).
These can be extended straightforwardly to other geometries. We finally obtain

lim
t→∞

κ
(n)
1 (t)

t
∼

ρ0→0
ρ0n!a′0

nG(ρ0a
′
0)n−1 (6.40)

where G(ε) was defined by (6.28). The relation (6.40) indicate that all the cumulants grow linearly with
time in the ultimate regime.

The relations (6.38) and (6.40) are remarkable as they give universal expressions of the higher-order
cumulants of the position of the TP in the longitudinal direction in terms of the propagators of the simple
random walks (symmetric or biased) on the considered structure.

6.3.3 Transient lattices

We now study the case of the three-dimensional lattice. We start from the expression of Ω̂(k1; ξ) in terms
of the conditional FPTD given in Appendix H (Section H.1). The method to compute the conditional
FPTD associated to the random walk of a vacancy was presented in Section 4.6. Using a computer
algebra software, one can show that at leading order in (1− ξ), Ω̂(k1; ξ) has the expansion

Ω̂(k1; ξ) ∼
ξ→1

ρ0

(1− ξ)2

p1(eik1 − 1) + p−1(e−ik1 − 1)

(G0 + c) [p1(eik1 − 1) + p−1(e−ik1 − 1)]− p1−p−1

a0

(6.41)

where G0 is given by (4.124), c by (6.22) and a0 by (6.2). The expansion of Ω̂(k1; ξ) in powers of k1 is
non-trivial but the coefficient of the series and, consequently, using (6.47), the cumulants, may still be
defined recursively:

κ
(n)
1 (ξ) ∼

ξ→1

ρ0a0

(1− ξ)2

p1 + (−1)np−1

p1 − p−1

[
1 +

(1− ξ)2

ρ0
(G0 + c)

n−1∑

k=0

(
n

k

)
κ

(k)
1 (ξ)

p1 + (−1)n−kp−1

p1 + (−1)np−1

]

(6.42)
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for n ≥ 1 and with κ(0)
1 (ξ) = 0. We can then obtain the expressions for the first cumulants recursively

and, using a Tauberian theorem, one gets the leading order behavior of the first four cumulants:

κ
(1)
1 (t) ∼

t→∞
ρ0a0t (6.43)

κ
(2)
1 (t) ∼

t→∞
ρ0a0

[
p1 + p−1

p1 − p−1
+ 2a0(G0 + c)

]
t (6.44)

κ
(3)
1 (t) ∼

t→∞
ρ0a0

[
1 + 6

p1 + p−1

p1 − p−1
a0(G0 + c) + 6a2

0(G0 + c)2

]
t (6.45)

κ
(4)
1 (t) ∼

t→∞
ρ0a0

[
p1 + p−1

p1 − p−1
+ 2a0(G0 + c)

7p1
2 − 2p1p−1 + 7p−1

2

(p1 − p−1)3

+36a0
2(G0 + c)2 p1 + p−1

p1 − p−1
+ 24a0

3(G0 + c)3

]
t (6.46)

All the cumulants are linear in time in the long-time limit. The prefactors are not trivial and are obtained
recursively.

6.4 Cumulants in the transverse direction

6.4.1 Method

We now study the cumulants of the position of the TP in the other directions. For symmetry reasons, the
cumulants of the position of the TP are identical in all the directions 2, . . . , d. In each of this direction,
for symmetry reasons, all the cumulants of odd order are null. The other ones are obtained by derivating
Ω̂(k; ξ) with respect to k2 and taking k = 0 afterwards (see (2.54)). It then suffices to determine the
dependence of Ω̂ in the first component of the Fourier variable k2. The explicit expression of Ω̂(k2; ξ)

in terms of the conditional FPTD is given in Appendix H (Section H.2). Starting from this expression,
we study separately the cases of recurrent and transient lattices, as they were defined previously.

6.4.2 Recurrent lattices

We give here a general presentation of the procedure we followed to compute the cumulants in the
transverse direction. The calculation is given explicitly for the case of a stripe-like geometry in Appendix
I (Section I.2.1), and can be extended to the case of a two-dimensional lattice.

We start from the general expression of Ω̂(k2; ξ) in terms of the conditional FPTD. The latter are
computed using the methods presented in Chapter 4 (see Section 4.3.2 for the specific case of the stripe-
like geometry). Using a computer algebra software, we perform a joint expansion of Ω̂(k2; ξ) in the
variables k2 and (1− ξ) with an appropriate scaling between these variables. Using the relation between
the cumulants and the function Ω̂(k2; ξ)

lim
ρ0→0

κ̂
(2n)
2 (ξ)

ρ0
= − 1

in
∂nΩ̂(k2; ξ)

∂k2
n

∣∣∣∣∣
k2=0

, (6.47)

we obtain the first two terms of limρ0→0 κ̂
(n)
2 (ξ)/ρ0 in its expansion in powers of (1− ξ). Remarkably,
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this expansion takes the form for the different geometries we consider, and is given by

lim
ρ0→0

κ̂
(2n)
2 (ξ)

ρ0
=
ξ→1

(2n)!

(1− ξ)2

(a2

2

)n{
G0(ξ)n−1 + (n− 1)

[
G1 +

1

6a2
+ c+

n

n− 1
c′2

]
G0(ξ)n−2 + · · ·

}
.

(6.48)
where

a2 =
2p2

1 + 2dα2
2d−α2

2p2

(6.49)

with
α2 = lim

ξ→1

[
P̂ (0|0; ξ)− P̂ (2e2|0; ξ)

]
, (6.50)

and where the coefficient c′2 is given by

c′2 =
4(α2 − 8β2 + 8)(p1 − p−1)2

L2[4(α2 − 8β2 + 8)(p1 + p−1)− α2 + 8β2 − 4]
(6.51)

for a two-dimensional stripe, and vanishes in the case of a two-dimensional lattice. The coefficient β2 is
defined as

β2 = lim
ξ→1

[
P̂ (0|0; ξ)− P̂ (e2|0; ξ)

]
, (6.52)

and G0, G1, c are defined as in Section 6.2. Note that the time-dependence of the (2n)-th cumulant
at leading order when t → ∞ is not trivial. For instance, in quasi-one-dimensional geometries,
as G0(ξ) = O(1/

√
1− ξ), the leading order term in (6.38) is of order 1/(1 − ξ)(n+3)/2. A Taube-

rian theorem then allows to retrieve the time evolution of the (2n)-th cumulant, which grows as t(n+1)/2.

As it was shown in Chapter 4, in these geometries, the limits t→∞ (i.e. ξ → 1) and ρ0 → 0 cannot
be inverted. The ultimate regime, where the limit t → ∞ is taken first, is obtained by considering new
evolution rules of the vacancies, which perform biased random walks (see Chapter 4, Section 4.7.2.1 for
a more precise definition of the evolution rules of the vacancies).

In this situation, the expression of Ω̂(k2; ξ) in terms of the conditional FPTD given in Appendix H
(Section H.1) is still valid, but the conditional FPTD must be replaced by the ones computed with the
new evolution rules of the vacancies. Consequently, Ω̂ is now a function of k1, ξ and ρ0. Using the
following relation between the cumulants and Ω̂(k1; ξ):

lim
ξ→1

[
(1− ξ)2κ̂

(2n)
2 (ξ)

]
= − 1

in
∂n

∂k2
n lim
ξ→1

[
(1− ξ)2Ω̂(k2; ξ, ρ0)

]∣∣∣∣
k1=0

, (6.53)

to obtain the ultimate behavior of the cumulants with the help of a computer algebra software. The
details of the computation in the case of a stripe-like geometry are given in Appendix I (Section I.2.2).
These can be extended straightforwardly to other geometries. We finally obtain

lim
t→∞

κ
(2n)
2 (t)

t
∼

ρ0→0
ρ0(2n)!

(
a′2
2

)n
G(ρ0a

′
0)n−1 (6.54)

where G(ε) is was defined by (6.28). In the ultimate regime, all the cumulants grow linearly with time.
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Note that, in the particular case of quasi-one-dimensional lattices, we study here the cumulative
displacement of the TP in the transverse direction, which is not counted modulo the width of the lattice
in the transverse direction. This is the reason why the cumulants of the TP position in the transverse
direction diverge even for quasi-one-dimensional lattices. Rigorously, these expressions would only be
valid at short times, i.e. as long as the distribution is not affected by the periodic boundary conditions in
the transverse direction.

Finally, we obtained the These relations (6.48) and (6.54) are remarkable as they give the expressions
of the cumulants of the position of the TP in the transverse direction in terms of the propagators of the
simple random walks on the considered structure.

6.4.3 Transient lattices

We now study the case of the three-dimensional lattice. We start from the expression of Ω̂(k2; ξ) in terms
of the conditional FPTD given in Appendix H (Section H.2). The method to compute the conditional
FPTD associated to the random walk of a vacancy was presented in Section 4.6. Using a computer
algebra software, one can show that at leading order in (1− ξ), Ω̂(k2; ξ) has the expansion

Ω̂(k2; ξ) ∼
ξ→1

ρ0

(1− ξ)2

cos k2 − 1

(G0 + c)(cos k2 − 1)− 1
a2

(6.55)

where G0 is given by (4.124), c by (6.22) and a0 by (6.2). The expansion of Ω̂(k2; ξ) in powers of
k2 is non-trivial but the coefficient of the series and, using (6.47), the cumulants, may still be defined
recursively:

κ̂
(2n)
2 (ξ) =

ξ→1

ρ0a2

(1− ξ)2
+ (G0 + c)a2

n−1∑

k=0

(
2n

2k

)
κ̂

(2k)
2 (ξ) (6.56)

for n ≥ 1 and κ(0)
1 (ξ) = 0. In particular, using a Tauberian theorem, we obtain the following expressions

for the first cumulants :

κ
(2)
2 (t) ∼

t→∞
ρ0a2t (6.57)

κ
(4)
2 (t) ∼

t→∞
ρ0a2 [1 + 6(G0 + c)a2] t (6.58)

κ
(6)
2 (t) ∼

t→∞
ρ0a2

[
1 + 30(G0 + c)a2 + 90(G0 + c)2a2

2
]
t. (6.59)

All the cumulants of the TP position in the transverse direction are linear in time, and the their prefactor
can be obtained recursively.

6.5 Extension to fractal lattices

The results we obtained in Sections 6.3 and 6.4 are remarkable: the cumulants of the position of the TP
in the longitudinal and transverse directions have simple expressions, which only depend on the prop-
agators of a simple random walk on the considered structure. These relations have been demonstrated
in the particular case of hypercubic lattices, and we would like to test the universality of these formulae
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p-1 p1

Figure 6.1: Tracer and bath particles on a Sierpinski gasket (represented here after 3 generations for
simplicity).

on more complex structures. Indeed, the propagators of a simple random walk are known explicitly on
many different geometries (triangular, hexagonal, fractals...) [90, 59, 58].

In this Section, we aim to study the case of a fractal lattice, on the example of the Sierpinski gasket.
Fractal lattices are commonly used in statistical physics in order to model diffusion in disordered media
[11]. We will compare results from numerical simulations with the predictions from the expression
(6.38), which gives the generating functions associated to the cumulants of the position of the TP in
terms of the propagators of a simple random walk.

For simplicity, we represent on Fig. 6.1 the Sierpinski gasket obtained after three generations. The
lattice is populated by hardcore bath particles performing nearest-neighbor symmetric random walks.
We assume that TP stays on one external side of the lattice. Mathematically, this condition is equivalent
to taking pµ = 0 if µ 6= ±1. On such a lattice, the generating function P̂ (0|0; ξ) is known to have the
long-time behavior [58]

P̂ (0|0; ξ) ∼
ξ→1

constant× (1− ξ)H/2−1, (6.60)

where H is the harmonic dimension of the Sierpinski gasket,

H =
2 ln 3

ln 5
' 1.365 212 · · · (6.61)

Note that the prefactor in (6.60) is not known, so that we will only give the time dependence of the
cumulants and not their prefactor. The generalization of (6.38) to the Sierpinski gasket reads

lim
ρ0→0

κ̂
(n)
1 (ξ)

ρ0
∝
ξ→1

1

(1− ξ)2
G0(ξ)n−1 (6.62)

∝
ξ→1

1

(1− ξ)2
[(1− ξ)H/2−1]n−1 (6.63)

∝
ξ→1

(1− ξ)(n−1)(H/2−1)−2. (6.64)
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Figure 6.2: Results from simulations on a Sierpinski gasket of generation 15, with vacancy density
ρ0 = 10−5 (symbols). The TP is completely directed (p1 = 1). The dashed lines represent the exponents
predicted by our theory. These simulations were realized by Alessandro Sarracino (postdoc in the group).

Using a Tauberian theorem, we get

lim
ρ0→0

κ
(n)
1 (t)

ρ0
∝

t→∞
t(n−1)(1−H/2)+1. (6.65)

The numerical value of the first exponents of t are given in the table below:

n exponent
1 1
2 1.3174
3 1.6348
4 1.9522

The cumulants then grow with anomalous exponents that were not observed before. Defining again the

rescaled variable Zt ≡ (Xt − 〈Xt〉)/
√〈

Xt
2
〉
− 〈Xt〉2, one can show that its n-th moment scales as

t
H
2 (1−n

2 ), so that all the moments of order greater than two vanish in the long-time limit. This shows
that the rescaled variable Zt in distributed accordingly to a Gaussian distribution.

We compare these analytical predictions with results from numerical simulations (Fig. 6.2), where
the first four cumulants of the position of the TP in the direction of the bias were calculated. The time-
dependence of the cumulants predicted by (6.65) is in correct agreement with the result from numerical
simulations. This suggests that the relation (6.38) correctly predicts the behavior of a biased TP in a
hardcore lattice gas in a structure that would be more complicated than the hypercubic lattice. This
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seems to indicate that the relation (6.65) is a universal description of the cumulants of the TP position,
for different types of lattices.

This universality could be confirmed by studying with numerical simulations the cumulants of the
position of the TP in other complex lattices (triangular, hexagonal, other fractals...).

6.6 Conclusion

In this Chapter, we showed that the expressions obtained in Chapters 4 and 5 for the fluctuations and
mean of the position of the TP could be recast under simple formulae that only involve the properties of a
simple random walk on the considered structures: quasi-one-dimensional geometries, two-dimensional
lattice, three-dimensional lattice. We showed that these expressions were also valid in the case of the
one-dimensional lattice. This result is surprising, as the properties of the random walks performed by
the vacancies are strongly affected by the geometry of the considered structure. In spite of these very
different behaviors, there exist universal formulae describing the behavior of the TP.

We extended the computation to the higher-order cumulants of the position of the TP in the lon-
gitudinal direction, and the cumulants in the transverse direction. Considering separately the case of
recurrent and transient lattices, we obtained again simple expressions that only involve the properties of
simple random walks on the considered structures.

Finally, the general expression for the cumulants of the position of the TP in the longitudinal direc-
tion was used to predict the behavior of a biased tracer in a hardcore lattice gas adsorbed on a Sierpinski
gasket. We extended to this fractal lattice the general expression we obtained from the study of hyper-
cubic lattices, and showed that it correctly predicts the time-dependence of the cumulants obtained from
numerical simulations. This suggests that the expressions we obtained in this Chapter are very general,
and could allow us to study biased tracer diffusion in a hardcore lattice gas on more complex structures.
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Simplified continuous description
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In this Chapter, we give a simplified description of the interactions of the TP with the vacan-
cies present on the lattice, in the particular case where the TP is completely directed. The
fluctuations of the position of the TP are simply related to the propagators associated to the
random walk of the vacancies on the considered structure, and we can retrieve qualitatively
the main features obtained through the exact approach presented in Chapter 4. We finally
adapt our simplified description to the particular case of a one-dimensional lattice, which
was studied exactly in Chapter 3. This simplified approach unveils the physical mechanisms
at stake in the problem.

7.1 Introduction

In this Chapter, we consider a simplified model that unveils the physical mechanisms controlling the
statistical properties of the position of the TP. The relation between the properties of the random walks
performed by the vacancies and the behavior of the position of the TP is made explicit by considering a
simple model where the TP is directed, so that it jumps in the direction of the bias every time it is visited
by a vacancy. The position of the TP at time t is then exactly equal to the number of time steps during
which the TP location was occupied by at least one vacancy up to time t. For the sake of simplicity, the
random walk of the vacancies is described in continuous space and time.

We first present the general formalism of this calculation, and present afterwards the results we
obtain in the cases of a two-dimensional lattice and of a stripe-like lattice. We show that this simpli-
fied approach qualitatively describes the exact results we obtained in Chapter 4, and correctly captures
the physical mechanisms of the problem. This formalism is adapted to the particular case of a one-
dimensional lattice in order to retrieve with a straightforward calculation the results exactly obtained in
Chapter 3.
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7.2 General formalism

We start from the model of a biased tracer in a hardcore lattice gas, in the high-density limit, presented
in Chapter 2 (Section 2.2). We assume that the TP is completely directed (i.e. p1 = 1 and pν = 0 for
ν 6= 1) so that the TP may only jump in the direction of the unitary vector e1. As previously, Xt is the
random variable representing the position of the TP at time t, and Xt its projection on the direction of
the bias. We also assume that when a vacancy is at position Xt + e1 at time t, then the TP instantly
jumps to positionXt + e1, exchanging its position with the vacancy.

We denote as Nt the number of time steps during which the origin of the lattice has been occupied
by at least one vacancy between times 1 and t. Under the previous assumption, we conclude that the
random variables Xt and Nt have the same properties. We can then study the TP position by describing
Nt. We will focus on the leading order in the density of vacancies ρ0, so that the events where two
vacancies are on adjacent sites or at the same site only contribute to orderO(ρ0

2) and will be discarded.
We define the random variable ητ as follows:

• if there is at least one vacancy at the origin of the lattice at time τ , then ητ = 1,

• otherwise ητ = 0.

Then, the quantities Nt and Xt can be represented as

Xt = Nt =
t∑

τ=1

ητ . (7.1)

From this expression we deduce the variance of Xt:

Var(Xt) =
〈
(Xt − 〈Xt〉)2

〉
(7.2)

=
〈
Xt

2
〉
− 〈Xt〉2 (7.3)

=

〈(
t∑

τ=1

ητ

)2〉
−
(

t∑

τ=1

〈ητ 〉
)2

(7.4)

=
t∑

τ=1

〈ητ 〉
(

1− 〈ητ 〉2
)

+ 2
∑

τ ′>τ

[〈ητ ′ητ 〉 − 〈ητ ′〉 〈ητ 〉] (7.5)

where we used the property ητ 2 = ητ . In what follows, we derive the expressions of 〈ητ 〉 and 〈ητ ′ητ 〉
at leading order in ρ0. We assume that the lattice has N sites and is populated by M vacancies, with
ρ0 = M/N . We define the auxiliary random variable δm,τ , which is equal to 1 if the m-th vacancy is at
the origin at time τ and 0 otherwise. At leading order in ρ0 and averaging over the initial position of the
vacancies, one has

〈ητ 〉 =

M∑

m=1

〈δm,τ 〉+O(ρ0
2) (7.6)

= M 〈δ1,τ 〉+O(ρ0
2) (7.7)

=
M

N

∑

Z

p(0, τ |Z, 0) +O(ρ0
2) (7.8)
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where we defined p(r2, t2|r1, t1) as the probability for a vacancy to be at site r2 at time t2 knowing
that it was at site r1 at time t1 (t1 < t2). Using the normalization condition

∑
Z p(0, τ |Z, 0) = 1, and

taking the thermodynamic limit where M and N go to infinity with a fixed ratio M/N , one obtains

〈ητ 〉 = ρ0 +O(ρ0
2). (7.9)

The correlation functions 〈ητ ′ητ 〉 are calculated in a similar way:

〈ητ ′ητ 〉 =

M∑

m=1

M∑

m′=1

〈
δm,τδm′,τ ′

〉
+O(ρ0

2) (7.10)

=

M∑

m=1

〈
δm,τδm,τ ′

〉
+ 2

M−1∑

m=1

M∑

m′=m+1

〈δm,τ 〉
〈
δm′,τ ′

〉
+O(ρ0

2) (7.11)

The first term is evaluated introducing p(r3, t3|r2, t2|r1, t1) (probability for a vacancy to be at r3 at
time t3, being at site r2 at time t2 and at site r1 at time t1, with t1 < t2 < t3). The second term is of
order O(ρ0

2). Averaging over the initial positions, we finally obtain

〈ητ ′ητ 〉 =
M∑

m=1

〈
δm,τδm,τ ′

〉
+O(ρ0

2) (7.12)

= M
〈
δ1,τδ1,τ ′

〉
+O(ρ0

2) (7.13)

=
M

N

∑

Z

p(0, τ |0, τ ′|Z, 0) +O(ρ0
2). (7.14)

Using again a normalization condition, and using the Markovianity of the vacancy random walk, we
obtain in the thermodynamic limit

〈ητ ′ητ 〉 = ρ0p(0, τ
′ − τ |0, 0) +O(ρ0

2) (7.15)

Finally, using Eqs. (7.9) and (7.15) in Eq. (7.5), we find that the variance of Xt is simply expressed in
terms of the single-vacancy propagators:

Var(Xt) = ρ0t+ 2ρ0

∑

τ ′>τ

p(0, τ ′ − τ |0, 0) +O(ρ0
2) (7.16)

For simplicity, we consider the equivalent expression in continuous time:

Var(Xt) = ρ0t+ 2ρ0

∫ t

0
dτ ′
∫ τ ′

0
dτ p(0, τ ′ − τ |0, 0) +O(ρ0

2) (7.17)

Equivalenty, defining the Laplace transform (LT) of a time-dependent function f(t) as

L[f ](s) = f̂(s) =

∫ ∞

0
e−stf(t)dt, (7.18)

we get

L [Var(Xt)] (s) =
ρ0

s2
+

2ρ0

s2

∫ ∞

0
e−sτp(0, τ |0, 0)dτ, (7.19)
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where we used twice the usual property of the LT:

L
[∫ t

0
f(t′)dt′

]
(s) =

1

s
L[f ](s). (7.20)

The simple formula (7.19) explicitly gives the relation between the propagator associated to the random
walk of a vacancy and the fluctuations of the position of the TP. If the random walk performed by the
vacancy is transient, the LT of p(0, τ |0, 0) is a constant at leading order in the long-time limit, and the
inverse LT of (7.19) yields a linear growth of the fluctuations of the TP. On the contrary, if the random
walk performed by the vacancy is recurrent, the LT of p(0, τ |0, 0) is not constant at leading order in the
long-time limit (it diverges when s→ 0), and the behavior of Var(Xt) is superlinear.

This is consistent with the behavior of the TP fluctuations in confined geometries (quasi-one-
dimensional, two-dimensional) that was studied in Chapter 4. On such structures, the random walk
of a vacancy is recurrent, which yields a superdiffusive evolution of the TP fluctuations. At sufficiently
long times, the random walk of a vacancy between two successive visits to the TP location is in fact
biased, because of the net displacement of the TP due to its interactions with the other vacancies. This
bias is in the opposite direction of the TP mean displacement, and equal to the velocity of the TP. Such
a random walk is transient, and the fluctuations of the TP cross over to a diffusive regime.

In what follows, we give an expression for the single-vacancy propagators p in the stripe-like and
two-dimensional geometries, and deduce the expression of the variance. For simplicity, we give the
equations verified by the propagators in a continuous-space description. We include in these equations
a drift term in the direction −1 representing the effective bias experienced by a vacancy, that origi-
nates from the net displacement of the TP in the direction +1. The diffusion equation verified by the
propagators p reads: 




∂

∂t
p(r, t|0, 0) = D∆p+ v

∂

∂x
p(r, t|0, 0)

p(r, 0|0, 0) = δ(r)
(7.21)

where v is positive and vanishes when the vacancy density ρ0 goes to zero. We will write v = V ρ0,
where V is a positive numerical constant. In what follows, we solve the diffusion equation (7.21) on the
two-dimensional and stripe-like lattices, and deduce the expression of Var(Xt) using (7.17).

7.3 Two-dimensional lattice

In two dimensions, the diffusion equation (7.21) writes




∂

∂t
p(x, y, t|0, 0) = D

(
∂2

∂x2
+

∂2

∂y2

)
p(x, y, t|0, 0) + v

∂

∂x
p(x, y, t|0, 0)

p(x, y, 0|0, 0) = δ(x)δ(y)

(7.22)

The Fourier transform of the diffusion equation then writes

∂

∂t
p̃(k, t|0, 0) = (ivk1 −Dk2)p̃(k, t|0, 0). (7.23)

The Fourier transform of the initial condition is p̃(k, 0|0, 0) = 1, so that we get

p̃(k, t|0, 0) = e(ivk1−Dk2)t. (7.24)
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Computing the inverse Fourier transform, we finally get the expression for the propagator p(r, t|0, 0):

p(r, t|0, 0) =
1

(2π)2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e(ivk1−Dk2)teik· r (7.25)

=
1

4πDt
e−

(x+vt)2

4Dt e−
y2t
4D (7.26)

In order to apply (7.19) to the two-dimensional case, we need to compute the integral of e−sτp(0, τ |0, 0)

for t going from 0 to ∞. As this integral is not defined, we introduce a cutoff value ε, compute the
integral, and take the limit ε→ 0 afterwards. This yields

∫ ∞

ε
e−sτ

1

4πDτ
e−

v2τ
4D dτ =

1

4πD

∫ ∞

s+ v2

4D

e−u

u
du (7.27)

= −Ei

[
−
(
s+

v2

4D

)
ε

]
(7.28)

where Ei is the exponential integral function, defined by

Ei(x) = −
∫ ∞

−x

e−t

t
dt (7.29)

and has the equivalent [1]
Ei(x) ∼

x→0
lnx. (7.30)

As we will consider the large time and small density (i.e. small v) limits, we obtain
∫ ∞

ε
e−sτ

1

4πDτ
e−

v2τ
4D dτ ∼ − ln

(
s+

v2

4D

)
, (7.31)

which is independent of the cutoff ε, and finally, using (7.19) and the relation v = V ρ0,

L [Var(Xt)] (s) =
ρ0

s2
− 2ρ0

s2
ln

(
s+

V 2ρ0
2

4D

)
. (7.32)

In the limit where ρ0 is taken first, we get the following expression for the variance

lim
ρ0→0

L [Var(Xt)] (s)

ρ0
=

1− 2 ln s

s2
, (7.33)

whose inverse Laplace transform is

lim
ρ0→0

Var(Xt)

ρ0
=2t ln t+ (2γ − 1)t, (7.34)

∼
t→∞

2t ln t. (7.35)

We then retrieve qualitatively the time-dependence of the variance which was obtained with the exact
approach (see (4.114)). In the limit where t is going to infinity for a fixed value of ρ0, which is equivalent
to take the limit s→ 0 in Laplace space, we get

lim
s→0

{
s2L [Var(Xt)] (s)

}
= ρ0

(
1− 2 ln

V 2ρ0
2

4D

)
, (7.36)
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whose inverse Laplace transform yields, at leading order in ρ0,

lim
t→∞

Var(Xt)

t
∼

ρ0→0
4ρ0 ln

1

ρ0
(7.37)

which is in qualitative agreement with the exact computation (4.214). This simplified continuous-time
random walk approach then allows to retrieve the dependences in t and ρ0 of the variance of the TP
position in the two regimes. We also retrieve with (7.32) the scaling behavior of the variance in the joint
limit of ρ0 → 0 and t → ∞ with the scaling t ∼ 1/ρ0

2, which corresponds to the function obtained
from the exact approach (4.222).

This simplified approach reveals the physical mechanisms at the origin of the superdiffusive behavior
of the TP, and of the crossover towards a diffusive regime:

• on a two-dimensional lattice, the random walk performed by a vacancy on the lattice is recurrent.
The return statistics of a vacancy to the location of the TP is then anomalous and leads to a
superlinear evolution of the fluctuations of the TP.

• at large times, the random walk performed by a vacancy between two visits to the location of the
TP is in fact biased, as the TP has a net displacement due to its interactions with other vacancies.
This random walk is no longer recurrent, and the return statistics of a given vacancy to the TP
location is no longer anomalous. The fluctuations of the TP become diffusive.

7.4 Stripe-like lattice

We now focus on the case of a strip-like lattice of width L, which corresponds to the domain R ×
[−L/2;L/2]. We then solve (7.22) with the periodic boundary condition:

p(x, L/2, t|0, 0) = p(x,−L/2, t|0, 0) (7.38)

for any values of x and t. We try to find solutions under the form

p(x, y, t|0, 0) =
∞∑

n=−∞
qn(x, t)e

2iπny
L . (7.39)

The functions qn(x, t) are then the solution of the equation

∂qn
∂t

= D
∂2qn
∂x2

− v∂qn
∂x
− 4π2n2

L2
qn. (7.40)

Writing the Fourier transform with respect to the coordinate x, one finally obtains

qn(x, t) =
1

L

1√
4πDt

e−
4π2n2

L2 Dte−
(x+vt)2

4Dt . (7.41)

The propagator p then writes

p(x, y, t|0, 0) =
1

L

1√
4πDt

e−
(x+vt)2

4Dt

∞∑

n=−∞
e−

4π2n2

L2 Dt cos
2πny

L
. (7.42)
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The sum over n is equivalent to 1 for large times, we will then focus on the part which depends on x and
approximate the propagator as:

p(x, y, t|0, 0) ' 1

L

1√
4πDt

e−
(x+vt)2

4Dt . (7.43)

(7.19) then becomes

L [Var(Xt)] (s) =
ρ0

s2
+

2ρ0

s2

∫ ∞

0
e−sτp(0, τ |0, 0)dτ (7.44)

=
ρ0

s2
+

2ρ0

s2

∫ ∞

0
e−sτ

1

L

1√
4πDτ

e−
v2τ
4D dτ. (7.45)

Using the usual Laplace transform L[exp(−at)/
√
t](s) =

√
π/
√
s+ a (for a > 0) and the relation

v = ρ0V , we obtain

L [Var(Xt)] (s) =
ρ0

s2
+

2ρ0

s2

1

L
√

4sD + ρ0
2V 2

. (7.46)

In the limit where ρ0 is taken first, we get the following expression for the variance

lim
ρ0→0

L [Var(Xt)] (s)

ρ0
=

1

L
√
Ds5/2

, (7.47)

whose inverse Laplace transform is

lim
ρ0→0

Var(Xt)

ρ0
=

4

3L
√
Dπ

t3/2. (7.48)

We then retrieve qualitatively the time-dependence of the variance which was obtained with the exact
approach (4.65). In the limit where t is going to infinity for a fixed value of ρ0, which is equivalent to
the limit s→ 0 in Laplace space, we get

lim
s→0

{
s2L [Var(Xt)] (s)

}
= ρ0 +

2

LV
, (7.49)

whose inverse Laplace transform yields, at leading order in ρ0,

lim
t→∞

Var(Xt)

t
∼

ρ0→0

2

LV
(7.50)

which is in qualitative agreement with the exact computation (4.168). In particular, we retrieve the fact
that the diffusion coefficient of the TP in the long-time limit is independent of the density of vacancies
on the lattice. We also retrieve with (7.46) the scaling behavior of the variance in the joint limit of
ρ0 → 0 and t → ∞ with the scaling t ∼ 1/ρ0

2, which is the equivalent of the function obtained from
the exact approach (4.179).

Finally, as in the case of a two-dimensional lattice, we showed that the superdiffusive behavior of the
TP iq due to the anomalous return statistics of the vacancies to the location of the TP. In the long-time
limit, the random walks performed by the vacancies are in fact biased due to the net displacement of the
TP. This modifies the return statistics of the vacancies to the TP location, and its fluctuations become
diffusive.
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7.5 One-dimensional lattice

The approach presented in this Chapter allowed us to retrieve the results we obtained on the stripe-
like and two-dimensional geometries. We now extend them to the case of a one-dimensional lattice.
This situation is different from the ones we studied so far. In two dimensions (and higher), the same
vacancy may interact many times with the TP. This is in contrast with the case of a directed TP on a
one-dimensional lattice, in which each vacancy can only interact once with the TP. The number of steps
performed by the TP up to time t is then equal to the number of vacancies which were initially to the
right of the TP and which are to its left at time t. Indeed, as the TP is completely directed, a vacancy
cannot go back to the right of the TP after it arrived to its left. We define a random variable ζi(t), which
is equal to 1 if the i-th vacancy went from right to left before time t, and 0 otherwise. Assuming that
they are M vacancies on a finite lattice of N sites (with ρ0 = M/N ), the position of the TP then writes

Xt =
M∑

i=1

ζi(t). (7.51)

In the particular case where the TP is directed, it was shown in Chapter 3 that all the cumulants were
equal at leading order in ρ0 → 0 and t → ∞ (see equations (3.22) and (3.24)). It is then sufficient to
compute the first one in order to get the leading behaviors of the other cumulants. Averaging over the
initial positions and writing all the quantities in continuous space for simplicity, we get

〈Xt〉 =
M∑

i=1

〈ζi(t)〉 (7.52)

= M 〈ζ1(t)〉 (7.53)

= M
1

L

∫ L

0
dz

∫ t

0
dt′ F (0, t′|z, 0), (7.54)

where F (0, t′|z, 0) is the probability for a vacancy to reach the origin for the first time at time t′ knowing
that it started from site z at time 0. In the thermodynamic limit where M,N → ∞ with a fixed density
ρ0 = M/N , we obtain

〈Xt〉 = ρ0

∫ ∞

0
dz

∫ t

0
dt′ F (0, t′|z, 0). (7.55)

For convenience, we compute the Laplace transform of this quantity, which becomes

L[〈Xt〉](s) =
ρ0

s

∫ ∞

0
dz

∫ ∞

0
dt e−stF (0, t|z, 0) (7.56)

=
ρ0

s

∫ ∞

0
dz F̂ (0, p|z, 0). (7.57)

The next step is to express the first-passage densities F (0, t′|z, 0) characterizing the random walk
of a vacancy on the lattice. We assume that the vacancies undergo an effective bias in direction −1.
By analogy with the cases of the stripe and 2D lattices, this effective bias would be due to the net
displacement of the TP in the direction of the force and could eventually cause the apparition of an
ultimate regime, different from the one we calculated so far. This bias will be denoted v, and we will
assume that it vanishes when ρ0 goes to zero, so that there exists a constant V such that v = V ρ0.
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Denoting by p(x, t|x0, 0) the probability for a vacancy to be at site x at time t starting from x0 at
time 0, this quantity is the solution of the diffusion equation





∂

∂t
p(x, t|x0, 0) = D

∂2

∂x2
p(x, t|x0, 0) + v

∂

∂x
p(x, t|x0, 0)

p(x, 0|x0, 0) = δ(x− x0),

(7.58)

so that we get

p(x, t|x0, 0) =
1√

4πDt
e−

(x−x0+vt)2

4Dt . (7.59)

The first-passage densities are related to the Laplace transforms of the propagators with the renewal
equation [58]

F̂ (0, s|z, 0) =
p̂(0, s|z, 0)

p̂(0, s|0, 0)
, (7.60)

and the expression of L[〈Xt〉](s) then writes

L[〈Xt〉](s) =
ρ0

s

1

p̂(0, s|0, 0)

∫ ∞

0
dz p̂(0, s|z, 0). (7.61)

We first compute p̂(0, s|0, 0):

p̂(0, s|0, 0) =
1√

4πD

∫ ∞

0
dt e−ste−

V 2t
4D (7.62)

=
1√

4sD + ρ0
2V 2

. (7.63)

We finally compute the integral over the initial positions:
∫ ∞

0
dz p̂(0, s|z, 0) =

1√
4πD

∫ ∞

0
dt

e−st√
t

∫ ∞

0
dze−

(z−vt)2
4Dt (7.64)

=
1

2s

(
1 +

ρ0V√
4sD + ρ0

2V 2

)
(7.65)

Finally, the Laplace transform of the mean position writes

L[〈Xt〉](s) =
ρ0

2s2

√
4sD + ρ0

2V 2

(
1 +

ρ0V√
4sD + ρ0

2V 2

)
. (7.66)

In the limit where ρ0 → 0 is taken first, we find the following leading order behavior

L[〈Xt〉](s) ∼
ρ0

√
D

s3/2
, (7.67)

which yields, using a Tauberian theorem,

〈Xt〉 ∼ ρ0
D

π

√
t (7.68)



130 Chapter 7. Simplified continuous description

This is qualitatively equivalent to the expression we obtained from the exact approach (3.22). In the
limit where we first take p→ 0, we get

L[〈Xt〉](s) ∼
D

s
(7.69)

so that 〈Xt〉 tends to a constant when t goes to infinity. This is not compatible with the hypothesis
that the tracer reaches a regime where it has a non-zero velocity. Then, there is only one regime in this
situation. It was computed through the exact approach in Chapter 3, and retrieved by our simplified
approach (7.68).

7.6 Conclusion

In this Chapter, we proposed a simplified description of the vacancy-mediated diffusion of a biased
tracer in a hardcore lattice gas. We focused on the case of a directed TP which can only jump in the
direction of the bias. The TP jumps each time it is visited by a vacancy, and its position at time t is
then exactly equal to the number of time steps during which the location of the TP was occupied by
at least one vacancy up to time t. In a simplified continuous time and space approach, the variance of
the position of the TP is simply expressed in terms of the propagator associated to the random walk of
a vacancy. If the random walk performed by a vacancy is recurrent, we show that the the variance of
the position of the TP is anomalous and superlinear in time. On the contrary, if the vacancy performs a
transient random walk, the variance of the position of the TP grows linearly with time. We retrieve the
superdiffusive effect observed in confined geometries as well as the crossover to a diffusive behavior,
that were demonstrated with a complete analytical treatment in Chapter 4.

This simplified description is extended to the case of directed TP in a one-dimensional hardcore
lattice gas. As this lattice is non-looped, each vacancy can interact with the tracer only once: the number
of steps taken by the TP at time t is equal to the number of vacancies that were initially at the right of
the TP and passed to its left between times 0 and t. The position of the TP is then written in terms of
the first-passage time densities associated to the random walks of the vacancies initially located to the
right of the TP. With a continuous description in time and space, the cumulants of the position of the TP
are computed, and successfully compared to the results from the exact calculation at leading order in ρ0

presented in Chapter 3.
The approach we presented in this Chapter is much simpler than the exact description detailed before,

and correctly accounts for the qualitative features we highlighted. This approach also makes explicit
the relation between the properties of the vacancies random walks and the statistical properties of the
position of the TP. However, this simplified description does not predict the emergence of the velocity
anomaly in quasi-1D geometries presented in Chapter 5. Further work could result in a more accurate
description that would take into account the anticorrelations effects between the TP and a single vacancy,
that would describe more subtle effects.
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We present the model of a biased tracer particle (TP) in a hardcore lattice gas in contact
with a reservoir of particles. The bath particles perform symmetric nearest-neighbor ran-
dom walks, with a mean waiting time τ∗, and may desorb back to the reservoir. Particles
from the reservoir may adsorb onto vacant lattice sites. The TP performs a biased random
walk with a mean waiting time τ . The dynamics is constrained with hardcore interactions.
Starting from the master equation on the joint probability of the TP position and the bath
configuration, and resorting to a mean-field type approximation, we express the mean po-
sition of the TP position and its fluctuations in terms of correlations functions which are
given as solutions of a set of equations. The decoupling approximation is extended to write
the evolution of the cumulant generating function of the TP position in terms of generalized
correlation functions, whose governing equations are determined.

8.1 Introduction

In the first part of this thesis, we studied the transport properties of a biased TP in a hardcore lattice gas,
in the limit where the density of particles is very high. In this limit, the motion of the TP is mediated by
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the diffusion of vacancies on the lattice, and we could obtain exact results at leading order in the density
of vacancies. In the second part of this thesis, we study the more general situation where the density of
particles is arbitrary. We briefly present the model and the objectives of this study.

Our analysis relies on a model of driven tracer diffusion in a hard-core lattice gas, which appears
as a minimal model that explicitly takes into account the dynamics of a bath of discrete particles: a
TP driven by an external force performs a biased random walk in a bath of hardcore particles, which
themselves perform symmetric random walks with the restriction that there it at most one particle per
site. The resolution method introduced in this Chapter allows us to consider a more general situation
than the one considered in the first part of this thesis. We assume that the lattice is in contact with a
reservoir of particles, so that the bath particles present on the lattice may desorb back to the reservoir,
and particles from the reservoir may adsorb onto vacant lattice sites. This so-called Langmuir kinetics
is relevant to describe situations where a gas or a vapor is brought in contact with a solid surface, on
which the gas particles may form an adsorbed layer. The transport properties of the adsorbed particles
have been shown to control many different processes, such as spreading of molecular films on solid
surfaces [24] or dewetting [97, 100]. The particular case where the Langmuir kinetics is coupled to a
Totally Asymmetric Exclusion Process was investigated theoretically [98, 99], and has been show to be
relevant to describe the directional motion of molecular motors on a cytoskeletal filament, with random
attachment and detachment of the motors [57, 70].

The situation where a TP is biased in a bath of symmetric hardcore particles on a lattice in contact
with a reservoir was first investigated in [14, 13, 15]. Studying the transport properties of the biased
TP is actually a complex N -body problem, that cannot be solved exactly. Using a mean-field-type
approximation consisting in the decoupling of relevant correlation functions, the authors proposed a
method to compute the mean position of the TP in the long-time limit. Using an Einstein relation that
was established rigorously [67], the diffusion coefficient of a symmetric TP was deduced in the limit of
a small bias.

In this Chapter, we present an extension of the decoupling approximation allowing us to determine
the equations verified by the fluctuations of the TP position for an arbitrary value of the bias. We also
show that the approximation can be extended to obtain the distribution of the position of the TP. These
equations will then be solved in the case of a one-dimensional lattice (Chapter 9) and in the case of
higher-dimensional lattices (Chapter 10).

8.2 Model and master equation

8.2.1 Model

We consider a d-dimensional hypercubic lattice of spacing σ in contact with a reservoir of particles (see
Fig. 8.1). We adopt a continuous-time description of the system. We assume that the particles in the
reservoir may adsorb onto vacant lattice sites at a fixed rate f/τ∗. The adsorbed particles may move
randomly along the lattice by hopping at a rate 1/(2dτ∗) to any of 2d neighboring lattice sites, which
process is constrained by a hard-core exclusion preventing multiple occupancy of any of the sites. The
adsorbed particles may desorb from the lattice back to the reservoir at rate g/τ∗. The occupancy of
lattice sites is described by the time-dependent Boolean variable ηr, which takes two values, 1, if the
site r is occupied by an adsorbed particle, and 0, otherwise. Note that the mean density of the bath
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Figure 8.1: Model and notations in the two-dimensional (2D) case.

particles, 〈ηr〉, approaches as t → ∞ a constant value ρ = f/(f + g) but the number of particles on
the lattice is not explicitly conserved in such a dynamics. The case where the number of particles on
the lattice is conserved can be retrieved by taking the limits f → 0 and g → 0 with a fixed value of the
density ρ = f/(f + g) .

We also introduce a tracer particle (TP), whose position at time t is a time-dependent random variable
denoted as Xt. The TP dynamics is different from that of the adsorbed particles in two aspects: first,
it can not desorb from the lattice and second, it is subject to an external driving force, which favors its
jumps along the direction corresponding to the unit vector e1 of the lattice.

The TP dynamics is defined as follows: we suppose that the tracer, which occupies the site Xt at
time t, waits an exponentially distributed time with mean τ , and then attempts to hop onto one of the 2d

neighboring sites, Xt + eµ, where eµ is one of the 2d unit vectors {e±1, · · · , e±d}. For simplicity, we
use the notation e−ν ≡ −eν . The jump direction is chosen according to the probability pν . The model
is valid for any choice of the jump probabilities. It can be convenient to assume that the bias originates
from an external force F = Fe1, so that the jump probability in direction ν writes (see Section 2.2.1)

pν =
e

1
2
βF ·eν

∑
µ∈{±1,...±d} e

1
2
βF ·eµ

(8.1)

where β = 1/(kBT ) is the inverse temperature, and will be taken equal to one. This choice of pν fulfills
the detailed balance condition.

After the direction of the jump has been chosen, it is instantaneously fulfilled if the target site is
vacant at this moment of time; otherwise, i.e., if the target site is occupied by any adsorbed particle, the
jump is rejected and the tracer remains at its position.

8.2.2 Master equation

We begin by introducing some auxiliary definitions. Let η ≡ {ηr} denote the entire set of the occupation
variables, which defines the instantaneous configuration of the adsorbed particles on the lattice at a given
time moment. Next, let P (X, η; t) stand for the joint probability of finding at time t the TP at the site
X and all adsorbed particles in the configuration η. Then, denoting as ηr,ν a configuration obtained
from η by the Kawasaki-type [62] exchange of the occupation variables of two neighboring sites r and
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r+ eν , and as η̂r - a configuration obtained from the original η by the replacement ηr → 1− ηr, which
corresponds to the Glauber-type [49] flip of the occupation variable due to the adsorption/desorption
events, we have that the time evolution of the configuration probability P (X, η; t) obeys the following
master equation :

2dτ∗∂tP (X, η; t) =
d∑

µ=1

∑

r 6=X−eµ,X
[P (X, ηr,µ; t)− P (X, η; t)]

+
2dτ∗

τ

∑

µ

pµ
[
(1− ηX)P (X − eµ, η; t)−

(
1− ηX+eµ

)
P (X, η; t)

]

+ 2dg
∑

r 6=X
[(1− ηr)P (X, η̂r; t)− ηrP (X, η; t)]

+ 2df
∑

r 6=X
[ηrP (X, η̂r; t)− (1− ηr)P (X, η; t)] . (8.2)

The first term of the right-hand-side of (8.2) describes the diffusion of adsorbed particles, the second term
corresponds to the diffusion of the TP, and the third and fourth terms are associated to the desorption
and adsorption events of the bath particles.

If no otherwise specified, the sum over an index µ runs over the 2d elements {±1, · · · ,±d}. In what
follows, the brackets 〈·〉 denote an average over the TP position and bath particles configurations with
weight P (X, η; t), and Xt = Xt · e1 denotes the position of the TP along the direction of the external
force.

8.3 Equations verified by the first cumulants

8.3.1 Mean position

The time evolution of the first moment 〈Xt〉 of the TP can be obtained by multiplying both sides of (8.2)
by (Xt ·e1) and summing over all possible configurations (Xt, η). An alternative way to compute 〈Xt〉
is to write that during an infinitesimal time interval ∆t, the TP position Xt evolves according to

Xt+∆t =





Xt + σ with probability p1(1− ηXt+e1)∆t
τ ,

Xt − σ with probability p−1(1− ηXt+e−1)∆t
τ ,

Xt with probability 1− p1(1− ηXt+e1)∆t
τ − p−1(1− ηXt+e−1)∆t

τ ,

(8.3)

and take the average of this equation. Both methods result in the following exact equation:

d

dt
〈Xt〉 =

σ

τ

[
p1 (1− ke1)− p−1

(
1− ke−1

)]
, (8.4)

where kr ≡ 〈ηXt+r〉 is the probability of having at time t an adsorbed particle at position r, defined
in the frame of reference moving with the TP. In other words, kr can be thought of as being the density
profile in the adsorbed monolayer as seen from the moving TP. The trivial mean-field approximation of
the expression of the derivative of 〈Xt〉 (8.4) is obtained by replacing all the local average densities kr
by the global density ρ. One obtains

d

dt
〈Xt〉 =

σ

τ
(p1 − p−1)(1− ρ). (8.5)
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A more accurate determination of the evolution of the mean position of the TP then relies on the
calculation of the quantities ke±1 , which are the mean density of bath particles at the sites in the vicinity
of the TP. This actually requires the computation of the density profile kr for arbitrary r. The evolution
equations for kr may be obtained by multiplying the master equation (8.2) by ηX+r and summing over
all the configurations of (X, η). We get the following equation :

2dτ∗∂tkr =
∑

µ

(
∇µ − δr,eµ∇−µ

)
kr − 2d(f + g)kr + 2df +

2dτ∗

τ

∑

ν

pν 〈(1− ηXt+eν )∇νηXt+r〉 ,

(8.6)
where we define the operator∇µ acting on any space-dependent function f :

∇µf(r) = f(r + eµ)− f(r). (8.7)

(8.6) is not closed with respect to kr, but involves correlation functions
〈
ηXt+eµηXt+r

〉
. Evolution

equations for such correlation functions actually involve higher-order correlation functions. Conse-
quently, we face the problem of solving an infinite hierarchy of coupled equations for the correlation
functions. We then resort to a decoupling approximation, obtained by writing the occupation variables
as ηR = 〈ηR〉+ δηR, and by discarding the terms of order (δηR)2. We obtain

〈
ηXt+rηXt+eµ

〉
=

〈
(〈ηXt+r〉+ δηXt+r)(

〈
ηXt+eµ

〉
+ δηXt+eµ)

〉
(8.8)

' 〈ηXt+r〉
〈
ηXt+eµ

〉
(8.9)

' krkeµ , (8.10)

which is valid for r 6= eµ. This approximation then relies on the decoupling of the correlation functions〈
ηXt+rηXt+eµ

〉
. It can be seen as a mean-field type approximation, and is the key assumption we use

in our method for evaluating the cumulants of the TP position. This approximation will be shown to be
very accurate in what follows.

Using this approximation in (8.6), we obtain

2dτ∗∂tkr = L̃kr + 2df, (8.11)

if r 6= eν . For the special sites r = eν with ν = {±1,±2, . . . ,±d} we find

2dτ∗∂tkeν = (L̃+Aν)keν + 2df, (8.12)

where L̃ is the operator
L̃ ≡

∑

µ

Aµ∇µ − 2d(f + g), (8.13)

and the coefficients Aµ are the quantities

Aµ ≡ 1 +
2dτ∗

τ
pµ(1− keµ). (8.14)

The occupation number of the origin is taken equal to zero by convention. Note that (8.12) represents,
from the mathematical point of view, the boundary conditions for the general evolution equation (8.11),
imposed on the sites in the immediate vicinity of the TP. (8.11) and (8.12) together with (8.14) thus
constitute a closed system of equations which suffices for computation of all quantities of interest. These
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equations were first obtained by Bénichou and collaborators, and solved in the case of a one-dimensional
lattice [15] and of higher-dimensional lattices [14, 13].

The fluctuations of the TP position have not been studied yet in this context. In what follows, we give
an extension of the decoupling approximation (8.10) which will allow us to find the equations verified
by the fluctuations of the TP position.

8.3.2 Fluctuations of the TP position

The time evolution of the second moment 〈Xt
2〉 is obtained by multiplying the master equation by

(Xt · e1)2, and averaging over the TP position and the bath configuration; or, alternatively, averaging
the balance equation (8.3). The details of this calculation are given in Appendix J (Section J.1). We get

d

dt
〈Xt

2〉 ≡ d

dt

〈
(Xt · e1)2

〉

=
2σ

τ

[
p1 (〈Xt〉 − ge1)− p−1

(
〈Xt〉 − ge−1

)]

+
σ2

τ

[
p1 (1− ke1) + p−1

(
1− ke−1

)]
, (8.15)

where gr ≡ 〈Xt ηXt+r〉. Knowing that

d

dt
〈Xt〉2 = 2〈Xt〉

(
d

dt
〈Xt〉

)
, (8.16)

and using (8.4), we can deduce an expression for the second cumulant of the TP position in the first
direction:

d

dt

(〈
Xt

2
〉
− 〈Xt〉2

)
= −2σ

τ

[
p1g̃e1 − p−1g̃e−1

]
+
σ2

τ

[
p1(1− ke1) + p−1(1− ke−1)

]
, (8.17)

where
g̃r ≡ 〈δXtδηXt+r〉 = 〈δXt(ηXt+r − 〈ηXt+r〉)〉 , (8.18)

and where δXt ≡ Xt − 〈Xt〉. In the simplest mean-field approximation, one has kr = ρ and g̃r = 0 for
any r. (8.17) then reduces to

d

dt

(〈
Xt

2
〉
− 〈Xt〉2

)
=
σ2

τ
(p1 + p−1)(1− ρ). (8.19)

A more accurate determination of the evolution of the second cumulant then relies on the determi-
nation of the functions g̃e±1 . The evolution equations for g̃r may be obtained by multiplying the master
equation (8.2) by δXtηXt+r and summing over all the configurations of (Xt, η). The details of the
calculation are given in Appendix J (Section J.2). We get the following equation

2dτ∗∂tg̃r =
∑

µ

(
∇µ − δr,eµ∇−µ

)
g̃r − 2d(f + g)g̃r

+
2dτ∗

τ

∑

µ

pµ
〈
δXt(1− ηXt+eµ)∇µηXt+r

〉

+
2dτ∗

τ
σ
[
p1 〈(1− ηXt+e1)ηXt+r+e1〉 − p−1

〈
(1− ηXt+e−1)ηXt+r+e−1

〉]

− 2dτ∗

τ
σ
[
p1(1− ke1)− p−1(1− ke−1)

]
kr. (8.20)
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We then notice that this evolution equation involves higher-order correlation functions, of the form〈
δXtηXt+rηXt+eµ

〉
. As previously, their computation leads to an infinite hierarchy of coupled

equations. We then write an extension of the decoupling approximation (8.10), obtained by writing
ηR = 〈ηR〉+ δηR and discarding the terms of order (δηR)2. We find

〈
δXtηXt+rηXt+eµ

〉
' 〈ηXt+r〉

〈
δXtηXt+eµ

〉
+ 〈δXtηXt+r〉

〈
ηXt+eµ

〉
, (8.21)

= krg̃eµ + keµ g̃r, (8.22)

which is valid for r 6= eν . Using this approximation in (8.20), we finally get the equation

2dτ∗∂tg̃r = L̃g̃r +
2dτ∗

τ
σ
{
p1(1− ke1)∇1kr − p−1(1− ke−1)∇−1kr

}
− 2dτ∗

τ

∑

µ

pµg̃eµ∇µkr,

(8.23)
which holds for all r, except for r = {0, e±1, . . . , e±d}. On the other hand, for the special sites r = eν
with ν = {±1, . . . ,±d}, we find

2dτ∗∂tg̃eν =(L̃+Aν)g̃eν +
2dτ∗

τ
σ
{
p1(1− ke1)∇1keν − p−1(1− ke−1)∇−1keν

}

− 2dτ∗

τ
pν g̃eνkeν −

2dτ∗

τ

∑

µ

pµg̃eµ∇µkeν .
(8.24)

(8.23) and (8.24) then form a closed system of equations for the quantities g̃r, provided that the quantities
keν are known. The quantities g̃e±1 can be deduced from these equations, and one can compute the
evolution of the fluctuations of the TP position using (8.17).

8.3.3 Stationary values

We turn to the limit t→∞. We assume that the quantities kr and g̃r have stationary values, so that

lim
t→∞

∂tkr = 0, (8.25)

lim
t→∞

∂tg̃r = 0. (8.26)

We will use the simplified notations:

kr = lim
t→∞

kr(t), (8.27)

g̃r = lim
t→∞

g̃r(t), (8.28)

Aµ = lim
t→∞

Aµ(t). (8.29)

We also define the observables:

V ≡ lim
t→∞

d

dt
〈Xt〉 , (8.30)

K ≡ lim
t→∞

1

2d

d

dt

(〈
Xt

2
〉
− 〈Xt〉2

)
(8.31)

so that V and K represent respectively the velocity and the dispersion coefficient of the TP in the
stationary state. Using (8.4), V can be written in terms of functions kr and g̃r:

V =
σ

τ

{
p1 (1− ke1)− p−1

(
1− ke−1

)}
. (8.32)



140 Chapter 8. General formalism and decoupling approximation

Similarly, using (8.17),

K =
σ2

2dτ

[
p1 (1− ke1) + p−1

(
1− ke−1

)]
− σ

dτ

(
p1g̃e1 − p−1g̃e−1

)
. (8.33)

Consequently, the existence of stationary values for kr and g̃r, that will be demonstrated later on by the
study of the equations they verify, implies that the mean and the fluctuations of the position of the TP
grow linearly with time in the long-time limit.

The quantities kr are determined by the stationary limit of (8.11) and (8.12) :
{
L̃kr + 2df = 0 for r /∈ {0, e±1, . . . , e±d}
(L̃+Aν)keν + 2df = 0 for ν ∈ {±1, . . . ,±d}. (8.34)

Similarly, using (8.23) and (8.24), the quantities g̃r obey the stationary equations

L̃g̃r +
2dτ∗

τ
σ
{
p1(1− ke1)∇1kr − p−1(1− ke−1)∇−1kr

}
− 2dτ∗

τ

∑

µ

pµg̃eµ∇µkr = 0 (8.35)

for r /∈ {0, e±1, . . . , e±d}, and :

(L̃+Aν)g̃eν+
2dτ∗

τ
σ
{
p1(1− ke1)∇1keν − p−1(1− ke−1)∇−1keν

}
(8.36)

− 2dτ∗

τ
pν g̃eνkeν −

2dτ∗

τ

∑

µ

pµg̃eµ∇µkeν = 0 (8.37)

for ν = {±1, . . . ,±d}.
Note that these equations are valid in the stationary limit, for any dimension, and allow to compute

the velocity and dispersion coefficient of the TP under the approximations (8.10) and (8.22) presented
above. Their solutions will be presented in the case of a one-dimensional system (Chapter 9) and in
higher dimensions (Chapter 10).

8.4 Cumulant generating function

8.4.1 Governing equations

In the previous Sections, using a decoupling approximation, we were able to determine the stationary
equations verified by the quantities kr = 〈ηr〉 and g̃r = 〈δXtδηXt+r〉, which are involved in the
expression of the stationary velocity V (8.32) and of the stationary diffusion coefficient K (8.33) of the
TP. We also aim to calculate the higher-order cumulants of Xt, defined by

κ
(n)
1 (t) ≡ 1

in
∂nΨ(t)

∂un

∣∣∣∣
u=0

(8.38)

where the quantity
Ψ(t) ≡ ln

〈
eiuXt

〉
(8.39)
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is known as the second characteristic function (or cumulant generating function) of Xt. The index 1 in
the notation κ(n)

1 (t) indicates that we study the projection of the TP position Xt in the direction of the
bias. Using the balance equation (8.3), we get the relation

〈
eiuXt+∆t

〉
=

〈
eiu(Xt+σ) ∆t

τ
p1(1− ηXt+e1)

〉
+

〈
eiu(Xt−σ) ∆t

τ
p−1(1− ηXt+e−1)

〉

+

〈
eiuXt

[
1− ∆t

τ
(p1(1− ηXt+e1) + p−1(1− ηXt+e−1)

]〉
. (8.40)

Note that this equation involves two different averages: an average over the direction of the step taken
by the TP, and an average the realizations. (8.40) leads to

d

dt

〈
eiuXt

〉
=
p1

τ

(
eiuσ − 1

) 〈
eiuXt(1− ηXt+e1)

〉
+
p−1

τ

(
e−iuσ − 1

) 〈
eiuXt(1− ηXt+e−1)

〉
, (8.41)

and, using the definition of Ψ(t) :

dΨ

dt
=

1

〈eiuXt〉
d

dt

〈
eiuXt

〉
(8.42)

=
p1

τ

(
eiuσ − 1

)
[

1−
〈
eiuXtηXt+e1

〉

〈eiuXt〉

]
+
p−1

τ

(
e−iuσ − 1

)
[

1−
〈
eiuXtηXt+e−1

〉

〈eiuXt〉

]
. (8.43)

We define

wr ≡
〈
eiuXtηXt+r

〉
and w̃r ≡

〈
eiuXtηXt+r

〉

〈eiuXt〉 . (8.44)

Finally,
dΨ

dt
=
p1

τ

(
eiuσ − 1

)
(1− w̃e1) +

p−1

τ

(
e−iuσ − 1

) (
1− w̃e−1

)
. (8.45)

Assuming that the quantities w̃e1 and w̃e−1 reach stationary values when t → ∞ (see 8.4.2 for a pre-
sentation of the evolution equations verified by w̃r), the second characteristic function has the following
asymptotic behavior :

Ψ(t) ∼
t→∞

Φ(u)t (8.46)

with
Φ(u) =

p1

τ

(
eiuσ − 1

)
(1− w̃e1) +

p−1

τ

(
e−iuσ − 1

) (
1− w̃e−1

)
. (8.47)

The relation (8.46) indicates that all the cumulants of Xt are linear with time in the long-time
limit. In particular, this implies that the n-th moment of the rescaled variable Zt = (Xt −
〈Xt〉)/

√〈
Xt

2
〉
− 〈Xt〉2 scales as t1−n/2 in the long-time limit. All the moments of Zt of order greater

than 2 vanish when t→∞, and Zt is distributed accordingly to a Gaussian distribution at large times.
In addition, our calculation allows us to compute the full distribution of Xt in the long-time limit.

Assuming that the u-dependance of w̃e±1 is known (see Section 8.4.2), we can derive from these equa-
tions the probability density function Pt(x) ≡ Prob[Xt = x] as follows. The quantity

〈
eiuXt

〉
= eΨ(t)

is defined by
〈
eiuXt

〉
=

∞∑

x=−∞
Pt(x)eiux. (8.48)
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eΨ(t) is then the Fourier transform of the p.d.f. Pt(x), which can be obtained by the inverse Fourier
transform:

Pt(x) =

∫ π

−π

du

2π
e−iuxeΨ(t), (8.49)

and, using the expression of Ψ(t) of the long-time limit (8.46) and (8.47),

Pt(x) ∼
t→∞

∫ π

−π

du

2π
exp

{
p1t

τ
(eiuσ − 1)(1− w̃e1) +

p−1t

τ
(e−iuσ − 1)(1− w̃e−1)− iux

}
. (8.50)

Consequently, it suffices to determine the u-dependance of w̃±1 to obtain the p.d.f. of the TP position.
In what follows, we establish the evolution equations for the quantities w̃r starting again from the master
equation (8.2).

8.4.2 Evolution equations of the quantities w̃r

The evolution equation of wr (defined by (8.44)) can be obtained by multiplying both sides of the
master equation (8.2) by the quantity ηXt+re

iuXt and averaging with respect to η and Xt. Extending
the method used to derive the evolution equations of the correlation functions g̃r starting from the master
equation (8.2) (see Appendix J, Section J.2), it is found that wr obeys the following exact equation:

2dτ∗∂twr =

(∑

µ

∇µ − δr,eµ∇−µ
)
wr − 2d(f + g)wr + 2df

〈
eiuXt

〉

+
2dτ∗

τ

∑

µ

pµ
〈
eiuXt(1− ηXt+eµ)∇µηXt+r

〉

+
2dτ∗

τ
p1

(
eiuσ − 1

) 〈
eiuXt(1− ηXt+e1)ηXt+r+e1

〉

+
2dτ∗

τ
p−1

(
e−iuσ − 1

) 〈
eiuXt(1− ηXt+e−1)ηXt+r+e1

〉
. (8.51)

We then make the following decoupling hypothesis:
〈(

eiuXt −
〈
eiuXt

〉)
ηXt+rηXt+eµ

〉
'
〈(

eiuXt −
〈
eiuXt

〉)
ηXt+r

〉 〈
ηXt+eµ

〉

+
〈(

eiuXt −
〈
eiuXt

〉)
ηXt+eµ

〉
〈ηXt+r〉 , (8.52)

which is valid for r 6= eν . This is equivalent to
〈
eiuXtηXt+rηXt+r′

〉
' wrkr′ + krwr′ −

〈
eiuXt

〉
krkr′ . (8.53)

This decoupling approximation is an extension of the approximations (8.10) and (8.22): it is obtained
by writing the occupation variables as ηR = 〈ηR〉 + δηR, and discarding the terms of order (δηR)2.
Developing (8.53) at order 0 and 1 in u, one notices that it allows to retrieve the decoupling approxima-
tions made for the correlation functions

〈
ηXt+rηXt+eµ

〉
(8.10) and

〈
δXtηXt+rηXt+eµ

〉
(8.22). Using
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this approximation in equation (8.51), we obtain for r 6= eν ,

2dτ∗∂twr = L̃wr + 2df
〈
eiuXt

〉
+

2dτ∗

τ

∑

µ

pµ
(
keµ

〈
eiuXt

〉
− weµ

)
∇µkr

+
2dτ∗

τ
p1

(
eiuσ − 1

) [
wr+e1(1− ke1) + kr+e1

(〈
eiuXt

〉
ke1 − we1

)]

+
2dτ∗

τ
p−1

(
e−iuσ − 1

) [
wr+e−1(1− ke−1) + kr+e−1

(〈
eiuXt

〉
ke−1 − we−1

)]
.

(8.54)

For r = eν , the evolution equation becomes :

2dτ∗∂tweν = (L̃+Aν)weν + 2df
〈
eiuXt

〉
+

2dτ∗

τ

∑

µ 6=±ν
pµ
(
keµ

〈
eiuXt

〉
− weµ

)
∇µkeν

+
2dτ∗

τ
pν
(
keν

〈
eiuXt

〉
− weν

)
k2eν −

2dτ∗

τ
p−ν

(
keν

〈
eiuXt

〉
− weν

)
keν

+
2dτ∗

τ
p1

(
eiuσ − 1

) [
weν+e1(1− ke1) + keν+e1

(〈
eiuXt

〉
ke1 − we1

)]

+
2dτ∗

τ
p−1

(
e−iuσ − 1

) [
weν+e−1(1− ke−1) + keν+e−1

(〈
eiuXt

〉
ke−1 − we−1

)]
.

(8.55)

In order to write these equations in terms of the variable w̃, we notice that :

∂w̃r
∂t

=
1

〈eiuXt〉
∂wr
∂t
− wr
〈eiuXt〉

1

〈eiuXt〉
∂
〈
eiuXt

〉

∂t

=
1

〈eiuXt〉
∂wr
∂t
− w̃r

∂Ψ

∂t

=
1

〈eiuXt〉
∂wr
∂t
− w̃r

[p1

τ

(
eiuσ − 1

)
(1− w̃e1) +

p−1

τ

(
e−iuσ − 1

)
(1− w̃e1)

]
. (8.56)

Finally, we divide the evolution equations (8.54) and (8.55) by
〈
eiuXt

〉
and obtain the evolution equations

for w̃r, for r 6= eν :

2dτ∗∂tw̃r = L̃w̃r + 2df +
2dτ∗

τ

∑

µ

pµ
(
keµ − w̃eµ

)
∇µkr

+
2dτ∗

τ
p1

(
eiuσ − 1

)
[∇1w̃r − ke1(w̃r+e1 − kr+e1)− w̃e1(kr+e1 − w̃r)]

+
2dτ∗

τ
p1

(
e−iuσ − 1

) [
∇−1w̃r − ke−1(w̃r+e−1 − kr+e−1)− w̃e−1(kr+e−1 − w̃r)

]
,

(8.57)
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and for r = eν :

2dτ∗∂tw̃eν = (L̃+Aν)w̃eν + 2df +
2dτ∗

τ

∑

µ 6=±ν
pµ
(
keµ − w̃eµ

)
∇µkeν

+
2dτ∗

τ
pν (keν − w̃eν ) k2eν −

2dτ∗

τ
p−ν (keν − w̃eν ) keν

+
2dτ∗

τ
p1

(
eiuσ − 1

)
[∇1w̃eν − ke1(w̃eν+e1 − keν+e1)− w̃e1(keν+e1 − w̃eν )]

+
2dτ∗

τ
p1

(
e−iuσ − 1

) [
∇−1w̃eν − ke−1(w̃eν+e−1 − keν+e−1)− w̃e−1(keν+e−1 − w̃eν )

]
.

(8.58)

These equations can in principle be solved in the stationary limit where limt→∞ w̃r, by setting
∂tw̃r = 0 in (8.57) and (8.58) and obtaining the values of w̃r satisfying these equations. In particular,
this allows us to obtain the u-dependance of the functions w̃e±1 and to deduce Pt(x) from (8.50). This
will be made explicit in the case of a one-dimensional lattice in Chapter 9. We also notice that the
computation of the functions w̃r can be used to compute higher-order cumulants. In particular, we give
in the next Section the evolution equation verified by the third cumulant of the position of the TP.

8.4.3 Application: Third-order cumulant

We now use (8.57) and (8.58) describing the evolution of w̃r to calculate the third order cumulant. We
define the coefficient γ by the relation :

γ ≡ lim
t→∞

1

6

d

dt

〈
(Xt − 〈Xt〉)3

〉
. (8.59)

Recalling the definition of Ψ(t) (8.39), we get the following expansion in powers of u:

Ψ(t) =
u→0

iu 〈Xt〉+
(iu)2

2

〈
(Xt − 〈Xt〉)2

〉
+

(iu)3

6

〈
(Xt − 〈Xt〉)3

〉
+ . . . . (8.60)

In the long-time limit, and using the definitions of V (8.30), K (8.33) and γ (8.59), one gets

lim
t→∞

dΨ

dt
= iuV + (iu)2dK + (iu)3γ + . . . (8.61)

We define m̃r by the relation

m̃r ≡
〈
(Xt − 〈Xt〉)2ηXt+r

〉
− kr

[〈
Xt

2
〉
− 〈Xt〉2

]
. (8.62)

so that the expansion of w̃ in powers of u writes

w̃r = kr + iug̃r +
(iu)2

2
m̃r +O

(
u3
)
, (8.63)

where we used the definitions of kr = 〈ηXt+r〉 and g̃r = 〈δXtδηXt+r〉. Developing both sides of
equation (8.45) up to order 3 in u in the limit t→∞ and using (8.61), one gets the following expression
for γ :

γ =
p1σ

τ

[
1

6
σ2(1− ke1)− 1

2
σg̃e1 −

1

2
m̃e1

]
− p−1σ

τ

[
1

6
σ2(1− ke−1) +

1

2
σg̃e−1 −

1

2
m̃e−1

]
(8.64)
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According to (8.63), the general evolution equations for w̃ (8.57) and (8.58) developed at order 2 in
u then give the evolution equations of m̃. We get:

• for r 6= eν :

2dτ∗∂tm̃r = L̃m̃r −
2dτ∗

τ

∑

µ

pµm̃eµ∇µkr

+
2dτ∗

τ
p1σ {2 [(1− ke1)∇1g̃r − g̃e1∇1kr] + σ(1− ke1)∇1kr}

+
2dτ∗

τ
p−1σ

{
−2
[
(1− ke−1)∇−1g̃r − g̃e−1∇−1kr

]
+ σ(1− ke−1)∇−1kr

}
. (8.65)

• for r = eν :

2dτ∗∂tm̃eν = (L̃+Aν)m̃e1 −
2dτ∗

τ

∑

µ6=±ν
pµm̃eµ∇µke1

− 2dτ∗

τ
pνm̃eνk2eν +

2dτ∗

τ
p−νm̃e−νkeν

+
2dτ∗

τ
p1σ {2 [(1− ke1)∇1g̃eν − g̃e1∇1keν ] + σ(1− ke1)∇1keν}

+
2dτ∗

τ
p−1σ

{
−2
[
(1− ke−1)∇−1g̃eν − g̃e−1∇−1keν

]
+ σ(1− ke−1)∇−1keν

}
.(8.66)

These equations can be solved in the stationary limit, in order to obtain an expression of m̃e±1 and
then an expression of γ from (8.64). This will be made explicit in the case of a one-dimensional lattice
in Chapter 9.

8.5 Conclusion

In this Chapter, we studied the model of a biased TP in a lattice gas in contact with a reservoir of particles.
This model has been studied in previous works: an evolution equation for the mean position of the TP
was obtained, involving the mean density profiles kr = 〈ηXt+r〉. The quantities kr could be given as
the solutions of a closed set of equations by resorting to a mean-field-type decoupling approximation.

We generalized this method and obtained an evolution equation for the fluctuations of the TP,
written in terms of the correlation functions g̃r = 〈δXtδηXt+r〉. Extending the decoupling approx-
imation, we obtained a closed set of equations governing the correlations functions g̃r. We finally
extended the decoupling approximation in order to obtain the evolution equations of the quantities
w̃r =

〈
eiuXtηXt+r

〉/ 〈
eiuXt

〉
, involved in the expression of the cumulant generating function. We

deduced from this function an evolution equation for the third cumulant of the position of the TP.
Consequently, with the solutions of the equations verified by kr, g̃r and w̃r, one can compute the

velocity of the TP, its diffusion coefficient, and the distribution of its position. In the next Chapter, we
solve these equations in the particular case of a one-dimensional lattice in contact with a reservoir.
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We show that the equations verified by the correlation functions involved in the calculation
of the first three cumulants of the TP position can be solved in the stationary limit, in the
particular situation where the lattice is one-dimensional. The analysis of these solutions
leads to striking observations. In a wide range of parameters, the diffusion coefficient
of the TP is a nonmonotonic function of the density, and may actually be greater in the
presence of bath particles than at zero density. We also show that the distribution of the TP
can be negatively skewed. Finally, we obtain the implicit equations involving the functions
w̃r, allowing the computation of the distribution of the TP position. All these analytical
predictions are compared with Monte-Carlo simulations.

Some results from this Chapter were published in [P1].



148 Chapter 9. One-dimensional lattice in contact with a reservoir

9.1 Introduction

In the previous Chapter, we studied a general d-dimensional lattice in contact with a reservoir of parti-
cles. Two types of particles were present on the lattice:

• bath particles, contained in a reservoir, which may adsorb on vacant lattice sites with a fixed rate
f/τ∗. They move randomly on the lattice, and jump on each of the 2d neighboring sites at a rate
1/(2dτ∗), with the restriction that each site is occupied by at most one particle. These particles
may desorb and go back to the reservoir with a rate g/τ∗.

• a tracer particle, which waits an exponentially distributed time with mean τ , and which jumps on
the neighboring sites with asymmetric jump probabilities (pν)ν∈{±1,...,±d}.

The position of the tracerXt is a random variable, and we denote by Xt = Xt · e1 its projection in
the direction of the applied force. In the previous Chapter, using a mean-field type approximation, we
obtained the expressions of the first cumulants of the TP:

• the first cumulant of the distribution 〈Xt〉, which is related to the TP velocity V , defined by

V ≡ lim
t→∞

d

dt
〈Xt〉 =

σ

τ

[
p1 (1− ke1)− p−1

(
1− ke−1

)]
, (9.1)

where the quantities kr = 〈ηXt+r〉 are the solutions of (8.11) and (8.12).

• the second cumulant of the distribution
〈
(Xt − 〈Xt〉)2

〉
, which is related to the TP diffusion

coefficient K, defined by

K ≡ lim
t→∞

1

2d

d

dt

(〈
Xt

2
〉
− 〈Xt〉2

)
(9.2)

=
σ2

2dτ

[
p1(1− ke1) + p−1(1− ke−1)

]
− σ

dτ

[
p1g̃e1 − p−1g̃e−1

]
, (9.3)

where we defined the correlation functions g̃r = 〈δXt(ηXt+r − 〈ηXt+r〉)〉, which are the solu-
tions of (8.23) and (8.24).

• the third cumulant
〈
(Xt − 〈Xt〉)3

〉
, from which we may compute the skewness of the distribution,

and for which we define the coefficient γ:

γ = lim
t→∞

1

6

d

dt

〈
(Xt − 〈Xt〉)3

〉
(9.4)

=
p1σ

τ

[
1

6
σ2(1− ke1)− 1

2
σg̃e1 −

1

2
m̃e1

]
− p−1σ

τ

[
1

6
σ2(1− ke−1) +

1

2
σg̃e−1 −

1

2
m̃e−1

]

(9.5)

where the coefficients m̃r are defined by m̃r =
〈
(δXt)

2(ηXt+r − 〈ηXt+r〉)
〉

and are the solu-
tions of (8.65) and (8.66).

We also determined the expression of the TP distribution function Pt(x) = Prob[Xt = x] (8.50), as a
function of the quantities w̃r ≡

〈
eiuXtηXt+r

〉
/
〈
eiuXt

〉
, solutions of (8.57) and (8.58).
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In this Chapter, we focus on the one-dimensional version of this model. In this situation, we solve
the equations verified by the quantities kr, g̃r, m̃r and w̃r. We then obtain the expression of the first
three cumulants of Xt in the long-time limit, as well as an expression of its probability distribution
function. We show that the dependence on the different parameters of the first cumulants is not trivial,
and gives rise to surprising effects. In particular, the diffusion coefficient K is shown to be a nonmono-
tonic function of the density ρ, and reaches a maximum for a nonzero value of ρ. These observations
are confirmed by numerical simulations, which also allow us to discuss the validity of the decoupling
approximation.

9.2 First cumulants of the TP position in one dimension

9.2.1 Solution of the equation on kr in one dimension

The solutions of the equations verified by kr have already been presented [15] and we recall it here for
completeness. In one dimension, we adopt the simplified notation kr = kne1 ≡ kn. The system verified
by kr (8.34) is then a second order recurrence relation on the quantities kn. Its solution has the following
form:

kn =

{
ρ+K+r1

n for n > 0,

ρ+K−r2
n for n < 0.

(9.6)

where

r1 =
A1 +A−1 + 2(f + g)−

√(
A1 +A−1 + 2(f + g)

)2
− 4A1A−1

2A1
, (9.7)

and

r2 =
A1 +A−1 + 2(f + g) +

√(
A1 +A−1 + 2(f + g)

)2
− 4A1A−1

2A1
, (9.8)

while the amplitudes K± are given respectively by

K+ = ρ
A1 −A−1

A−1 −A1r1
, (9.9)

and
K− = ρ

A1 −A−1

A−1/r2 −A1
. (9.10)

Note that r2 > r1, and consequently, the local density past the TP approaches its non-perturbed value ρ
slower than in front of it; this signifies that correlations between the TP position and particle distribution
are stronger past the TP. Next, K+ is always positive, while K− is always negative; this means that the
density profile is characterized by a jammed region in front of the TP, in which the local density is higher
than ρ, and a depleted region past the TP in which the density is lower than ρ.

One obtains a system of two closed-form non-linear equations determing implicitly the unknown
parameters A1 and A−1, which allows to compute the TP terminal velocity, related to A±1 through

V =
σ

2τ∗
(A1 −A−1). (9.11)
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Substituting (9.6) into the definition of Aµ (8.14), we find

A1 = 1 +
2p1τ

∗

τ

[
1− ρ− ρ A1 −A−1

A−1/r1 −A1

]
, (9.12)

A−1 = 1 +
2p−1τ

∗

τ

[
1− ρ− ρ A1 −A−1

A−1 −A1r2

]
. (9.13)

For a given set of parameters (f , g, σ, τ , τ∗ and p1), the numerical resolution of this system leads
to the values of A1 and A−1 and then, using (9.11), to the value of the stationary velocity of the TP.
This approximated value of the stationary velocity will be compared to numerical simulations in Section
9.3.2.

9.2.2 Solution of the equation on g̃r in one dimension

We now go one step further and determine the dispersion coefficient K. This in turn requires the knowl-
edge of the g̃r function. For simplicity, we adopt the notations g̃λ = g̃ne1 = g̃n. Using the expressions
of kn (9.6) , the general equations satisfied by g̃n (8.23) and (8.24) become:

• for n > 1:

A1(g̃n+1 − g̃n) +A−1(g̃n−1 − g̃n)− 2(f + g)g̃n

+
2τ∗

τ
σ

{
p1K+r

n
1

(
1− ρ−K+r1 −

g̃1

σ

)
(r1 − 1)

− p−1K+r
n
1

(
1− ρ−K+r1 +

g̃−1

σ

)
(r−1

1 − 1)

}
= 0, (9.14)

• for n < −1:

A1(g̃n+1 − g̃n) +A−1(g̃n−1 − g̃n)− 2(f + g)g̃n

+
2τ∗

τ
σ

{
p1K−r

n
2

(
1− ρ−K+r1 −

g̃1

σ

)
(r2 − 1)

− p−1K−r
n
2

(
1− ρ−K+r1 +

g̃−1

σ

)
(r−1

2 − 1)

}
= 0, (9.15)

• g̃1 and g̃−1 may be computed using the following boundary conditions:

A1g̃2 − g̃1

(
A−1 + 2(f + g) +

2τ∗

τ
p1(ρ+K+r

2
1)

)
+

2τ∗

τ
p−1(ρ+K+r1)g̃−1

= −2τ∗

τ
σp1(1− ρ−K+r1)(ρ+K+r

2
1)

+
2τ∗

τ
σ(p1(1− ρ−K+r1)− p−1(1− ρ−K−r−1

2 ))(ρ+K+r1), (9.16)

A−1g̃−2 − g̃−1

(
A1 + 2(f + g) +

2τ∗

τ
p−1(ρ+K−r

−2
2 )

)
+

2τ∗

τ
p1(ρ+K−r

−1
2 )g̃1

=
2τ∗

τ
σp−1(1− ρ−K−r−1

2 )(ρ+K−r
−2
2 )

+
2τ∗

τ
σ(p1(1− ρ−K+r1)− p−1(1− ρ−K−r−1

2 ))(ρ+K−r
−1
2 ). (9.17)
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The general solution of (9.14) and (9.15) can be written:

g̃n = αrn1 −
W

A1r1 −A−1r
−1
1

nrn1 for n > 0, (9.18)

and

g̃n = βrn2 −
W ′

A1r2 −A−1r
−1
2

nrn2 for n < 0, (9.19)

where α and β are constants to be determined, and where

W ≡ K+
2τ∗

τ
σ

{
p1

(
1− ρ−K+r1 −

g̃1

σ

)
(r1 − 1)− p−1

(
1− ρ−K+r1 +

g̃−1

σ

)
(r−1

1 − 1)

}

(9.20)

W ′ ≡ K−
2τ∗

τ
σ

{
p1

(
1− ρ−K+r1 −

g̃1

σ

)
(r2 − 1)− p−1

(
1− ρ−K+r1 +

g̃−1

σ

)
(r−1

2 − 1)

}
.

(9.21)

Substituting (9.18) into (9.16), (9.19) into (9.17) on the one hand, and writing (9.18) for n = 1 and
(9.19) for n = −1 on the other hand, leads to a linear system of four equations satisfied by the four
unknowns α, β, g̃1 and g̃−1, which is straightforward to solve. The explicit expressions of g̃1 and g̃−1

are given in Appendix K (Section K.1). Note that they rely on the determination of the quantities K±
and r1, r2, which can be determined numerically for a given set of parameters with the method detailed
in Section 9.2.1. Finally, for a given set of parameter, one can deduce the values of g̃±1 and the value
of the diffusion coefficient using (9.3). Note that this calculation also gives access to the behavior of the
cross-correlations functions g̃r through (9.18) and (9.19).

In Section 9.3.3, we investigate the dependence of K in the different parameters of the problem.
We confront the analytical prediction from the decoupling approximation to results from numerical
simulations.

9.2.3 Solution of the equation on m̃r in one dimension

We finally present a method to compute the correlation functions m̃e±1 (8.62) involved in the compu-
tation of the stationary limit of the coefficient γ, defined in (9.5). Starting from the general equations
verified by m̃r and valid in any dimension (8.65) and (8.66), we study the one-dimensional case. For
simplicity, we write m̃r = m̃ne1 = m̃n. The quantities m̃n are the solutions of the equation presented
below:

• for λ 6= r, i.e. using (8.65) one gets :

A1(m̃n+1 − m̃n) +A−1(m̃n−1 − m̃n)− 2(f + g)m̃n = S(n) (9.22)

where S(n) can be expressed explicitly in terms of the functions kn and g̃n, determined respec-
tively in Sections 9.2.1 and 9.2.2. For n > 0, we write S(n) under the following form :

S(n) = (C+
1 + nC+

2 )rn1 (9.23)
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with

C+
1 =

2τ∗

τ

[
p1m̃1K+(r1 − 1) + p−1m̃−1K+(r−1

1 − 1)
]

− 2τ∗

τ
p1σ

{
2[(1− k1)(αr1 − α′r1 − α)− g̃1K+(r1 − 1)] + σ(1− k1)K+(r1 − 1)

}

− 2τ∗

τ
p−1σ

{
−2[(1− k−1)(αr−1

1 + α′r−1
1 − α)− g̃−1K+(r−1

1 − 1)] + σ(1− k−1)K+(r−1
1 − 1)

}

≡ 2τ∗

τ

[
p1m̃1K+(r1 − 1) + p−1m̃−1K+(r−1

1 − 1)
]

+ ψ+, (9.24)

C+
2 = −4τ∗

τ
σα′[p1(1− k1)(1− r1)− p−1(1− k−1)(1− r−1

1 )]. (9.25)

Consequently, the solution of (9.22) reads:

m̃n = γrn1 + (a+n
2 + b+n)rn1 , (9.26)

with

a+ =
1

2

C+
2

A1r1 −A−1r
−1
1

, (9.27)

b+ =
1

A1r1 −A−1r
−1
1

[C+
1 − a+(A1r1 +A−1r

−1
1 ]. (9.28)

For n < 0, a similar resolution leads to:

m̃n = δrn2 + (a−n
2 + b−n)rn2 , (9.29)

with

a− =
1

2

C−2
A1r2 −A−1r

−1
2

, (9.30)

b− =
1

A1r2 −A−1r
−1
2

[C−1 − a−(A1r2 +A−1r
−1
2 ], (9.31)

and

C−1 =
2τ∗

τ

[
p1m̃1K−(r2 − 1) + p−1m̃−1K−(r−1

2 − 1)
]

− 2τ∗

τ
p1σ

{
2[(1− k1)(βr2 − β′r2 − β)− g̃1K−(r2 − 1)] + σ(1− k1)K−(r2 − 1)

}

− 2τ∗

τ
p−1σ

{
−2[(1− k−1)(βr−1

2 + β′r−1
2 − β)− g̃−1K−(r−1

2 − 1)] + σ(1− k−1)K−(r−1
2 − 1)

}

≡ 2τ∗

τ

[
p1m̃1K−(r2 − 1) + p−1m̃−1K−(r−1

2 − 1)
]

+ ψ−, (9.32)

C−2 = −4τ∗

τ
σβ′[p1(1− k1)(1− r2)− p−1(1− k−1)(1− r−1

2 )]. (9.33)
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• for r = e1 :

0 = A1m̃2 − m̃1

(
A−1 + 2(f + g) +

2τ∗

τ
p1k2

)
+

2τ∗

τ
p−1m̃−1k1 + ϕ1, (9.34)

with

ϕ1 =
2dτ∗

τ
p1

{
2σ [(g̃2 − g̃1)(1− k1)− g̃1(k2 − k1)] + σ2(k2 − k1)(1− k1)

}

+
2dτ∗

τ
p−1

{
−2σ [−g̃1(1− k−1) + g̃−1k1]− σ2k1(1− k−1)

}
. (9.35)

• for r = e−1 :

0 = A−1m̃−2 − m̃−1

(
A1 + 2(f + g) +

2τ∗

τ
p−1k−2

)
+

2τ∗

τ
p1m̃1k−1 + ϕ−1, (9.36)

with

ϕ−1 =
2dτ∗

τ
p−1

{
−2σ [−g̃−1(1− k1) + g̃1k−1]− σ2k−1(1− k1)

}

+
2dτ∗

τ
p−1

{
2σ [(g̃−2 − g̃−1)(1− k−1)− g̃−1(k−2 − k−1)] + σ2(k−2 − k−1)(1− k−1)

}
.

(9.37)

Writing (9.26) for n = 1, (9.29) for n = −1, and considering (9.34) and (9.36) leads to a linear system
of four equations with unknowns m̃1, m̃−1, γ and δ :




r1 0 M13 M14

0 r−1
2 M23 M24

A1r
2
1 0 M33 M34

0 A−1r
−2
2 M43 M44







γ

δ

m̃1

m̃−1


 =




Y1

Y2

Y3

Y4


 (9.38)

where the expressions of the quantities Mij and Yj are given in Appendix K.3. Finally:

m̃1 =
1

detM
[(M44M22 −M42M24)(M11Y3 +M31Y1)

+(M34M11 −M31M14)(M42Y2 +M22Y4)] , (9.39)

m̃−1 =
1

detM
[(M43M22 −M42M23)(M11Y3 +M31Y1)

+(M33M11 −M13M31)(M42Y2 +M22Y4)] . (9.40)

The procedure to compute the coefficient γ for a given set of parameters is the following. With the
method presented in Section 9.2.1, one can compute numerically the quantities K±, r1, r2 and k±1

for a given set of parameters. Using the expressions of g̃±1 given in Appendix K (Section K.1), one
deduces the values cross-correlation functions g̃±1. Finally, with (9.39) and (9.40), we obtain m̃±1. The
coefficient γ is deduced from its definition (9.5).

In the next Section, we use the methods presented above to compute the velocity V , the diffusion
coefficient K and the coefficient γ to study their dependence on the different parameters of the problem.
These results, which were obtained using a mean-field-type approximation, are confronted to numerical
simulations which exactly sample the master equation of the problem (8.2).
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9.3 Results and discussion

9.3.1 Algorithm and numerical methods

In order to verify the accuracy of the approximation involved in the computation of the TP cumulants,
we perform numerical simulations. We use a kinetic Monte-Carlo (or Gillespie) algorithm [120, 47]
in order to get an exact sampling of the master equation (8.2) describing the dynamics of the system.
This method consists in generating a sequence of random numbers (τ, x, µ) with the joint probability
density function p(τ, x, µ) where p(τ, x, µ)dτ is the probability at time t that the next event occurs in
the infinitesimal time interval [t + τ, t + τ + dτ ], at site x, and is of type µ (i.e. a diffusion event, an
absorption event or a desorption event). We write

p(τ, x, µ) = p1(τ)p2(x|τ)p3(µ|, x, τ) (9.41)

where

• p1(τ)dτ is the probability at time t that the next event occurs in the time interval [t+τ, t+τ+dτ ].

• p2(x|τ)dτ is the probability that the next event occurs at site x, knowing that it occurs during the
time interval [t+ τ, t+ τ + dτ ].

• p3(µ|, x, τ)dτ is the probability that the next event is of type µ knowing that it occurs during the
time interval [t+ τ, t+ τ + dτ ] and at site x.

Writing cx,µ the transition rate of event µ at site x, we define

rx ≡
∑

µ

cx,µ, (9.42)

R ≡
∑

x

rx. (9.43)

rx is then the total rate of the events at site x, and R is the total rate of all the events on all lattice sites.
The quantities τ , x and µ are then respectively drawn from the following distributions:

p1(τ) = Re−Rτ , (9.44)

p2(x|τ) =
rx
R
, (9.45)

p3(µ|x, τ) =
cx,µ
rx

. (9.46)

The algorithm is as follows. We build a lattice of length 2L+1 (the spacing of the lattice σ is taken equal
to 1). The boundary conditions are periodic, and L is chosen to be large enough so that we can consider
the lattice as infinite (in the results presented below, L = 250). The initial condition is the following:
the TP is initially at the origin and at each site different from the origin, a particle is set with probability
ρ. We chose a final simulation time tmax. At each step of the simulation, and as long as t < tmax, the
algorithm follows these steps:

1. Set R = 0.

2. For each x ∈ [0, 2L+ 1], compute rx:
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• if the site x is occupied by a bath particle, three events are possible : a jump to the left, a
jump to the right, or a desorption event (respectively labeled by 1, 2 and 3). The associate
rates cx,µ are

cx,1 =
1

2
(1− g)(1− ηx−1) (9.47)

cx,2 =
1

2
(1− g)(1− ηx+1) (9.48)

cx,3 = g (9.49)

so that rx = 1
2(1− g)(1− ηx−1) + 1

2(1− g)(1− ηx+1) + g.

• if the site x is occupied by the TP, two events are possible : a jump to the left, or a jump to
the right. The local rate is then rx = (1− p1)(1− ηx−1) + p1(1− ηx+1).

• if the site is empty, the only possible event is an absorption event, and rx = f .

3. Compute the total rate R =
∑

x rx.

4. Draw τ from the distribution p1(τ) = Re−Rτ .

5. Draw x from the distribution p2(x|τ) = rx/R.

6. Draw the event µ from the distribution p3(µ|x, τ) = cx,µ/rx.

7. Update the lattice occupation after the realization of the event (note that such an algorithm is
rejection-free).

8. Increase the time t← t+ τ .

We finally keep track of the TP position Xt with time. With a large number of realizations, we then
sample the p.d.f. of Xt.

9.3.2 Velocity

For completeness, we present results for the velocity of the TP, which had already been presented in
[15]. We study here the terminal velocity reached by the TP as a function of the density ρ, for different
values of the bias. As ρ is in fact fixed by the values of f and g, we decide to vary f for different values
of g in order to explore the whole range of parameters. Results are presented on Fig. 9.1. As expected,
the velocity of the TP is a decreasing function of the bath density. We also confront the result from our
decoupling approximation to the trivial mean-field solution (dashed line).

The discrepancy between the results from numerical simulations, which correspond to an exact
sampling of the master equation (8.2), and the solution obtained using the decoupling approximation
(8.10) is very small, and the agreement is particularly good close to ρ = 0 and ρ = 1. The decoupling
approximation is then very accurate for the estimation of the velocity of the TP.
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Figure 9.1: Stationary velocity V of the TP as a function of the density for different values of the des-
orption rate g obtained from numerical simulations (symbols) and from the decoupling approximation
(lines). The bias is p1−p−1 = 0.96 (top) and p1−p−1 = 0.6 (bottom), the waiting times are τ = τ∗ = 1.
The dashed line is the trivial mean-field solution V = σ

τ (p1 − p−1)(1− ρ).
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9.3.3 Diffusion coefficient

9.3.3.1 Results

In a similar way, we study the diffusion coefficient as a function of the density ρ, for different values
of p1 and g. We confront the analytical predictions to results from numerical simulations on Fig. 9.2.
These results were first presented in [P1]. In the simulations presented in that publication, the quantity
tmax was not sufficiently large, so that the numerical estimations of the cumulants were not accurate
enough. We present here new simulations results.

The analytical predictions as well as the numerical simulations reveal the existence of a striking
effect: the diffusion coefficient can be a non-monotonic function of the density of bath particles. Con-
terintuitively, increasing the density of particles surrounding the TP may increase the TP dispersion in
some range of parameters. This result is surprising, since one naturally expects that the dispersion will
be maximal when there are no hardcore bath particles (i.e., when ρ = 0). Consequently, this means
that the diffusion of the TP may be enhanced by the presence of bath particles on the lattice. More-
over, we observe that for given values of p1 and g, this extremum of the function K(ρ) may appear if
the bias p1 − p−1 is large enough. This effect could be investigated in experimental situations (e.g. in
microrheology) and could have interesting applications.

The discrepancy between the results from numerical simulations, which correspond to an exact
sampling of the master equation (8.2), and the solution obtained using the decoupling approximations
(8.10), (8.22) is small, except in the domain 0.05 . ρ . 0.15. However, the approximate solution still
gives a good qualitative description of the evolution of K. The agreement is particularly good close to
ρ = 0 and ρ = 1. We conclude that the decoupling approximation is accurate for the estimation of the
diffusion coefficient of the TP.

In what follows, we find a criterion of the parameters g and p1 allowing the emergence of a maximum
for K(ρ). We show that the non-monotonicity of the diffusion coefficient is actually correlated to the
non-monotonicity of the cross-correlation functions g̃n in the domain n < 0 (i.e. behind the TP).

9.3.3.2 Criterion for the existence of a maximum value of K

In this Section, we determine an explicit criterion for the existence of this maximum. This is equivalent
to determine the parameters for which K(ρ) has a positive derivative at the origin. We will then solve
the equation:

dK

dρ

∣∣∣∣
ρ=0

= 0. (9.50)

If g is fixed, as the density ρ is related to f and g through ρ = f/(f+g), this is equivalent to considering
K as a function of f and solving

dK

df

∣∣∣∣
f=0

= 0. (9.51)

In what follows, we obtain the leading order term of K in an expansion in powers of f , the other
parameters being constant. For simplicity, we introduce the quantities τ ′ ≡ τ∗/τ and δ ≡ p1 − p−1.
Assuming that the quantities A±1 have the following expansions

A±1 =
f→0

A
(0)
±1 +A

(1)
±1f +O(f2), (9.52)
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Figure 9.2: Stationary diffusion coefficient K of the TP as a function of the density for different values
of the desorption rate g obtained from numerical simulations (symbols) and from the decoupling ap-
proximation (lines). The bias is p1 − p−1 = 0.96 (top) and p1 − p−1 = 0.6 (bottom), the waiting times
are τ = τ∗ = 1. The dashed line is the trivial mean-field solution K = σ2

2τ (1− ρ).



9.3. Results and discussion 159

and using (9.12) and (9.13), we obtain

A±1 =
f→0

1+(1±δ)τ ′− τ
′

g2

1± δ
1 + τ ′(1± δ)

(
δ2τ ′

2
+ g(1 + τ ′)± δ

√
δ2τ ′2 + g2 + 2g(1 + τ ′)

)
f+O(f2).

(9.53)
We can deduce from the expansions of A±1 the expansions of K±, r1 and r2. We then obtain the
expansions of k±1 and g̃±1, and finally an expansion of K. These general expressions are too lengthy
to be reproduced here, but we give them in the case τ ′ = 1, which is the case we considered in our
simulations:

K =
f→0

σ2

2τ

[
1 +

N(g, δ)

D(g, δ)
f +O(f2)

]
(9.54)

where

N(g, δ) = 2
[
(δ2 − 4)g3 + (3δ4 − 16)g2 + δ2(3δ4 − 5δ2 + 4)g + δ4(δ4 − 3δ2 + 4)

]

−
√
δ2 + g2 + 4g

[
2(δ4 − 4)(δ2 − 3)g2 + δ2(δ4 − δ2 + 4)g + 4δ4(δ2 − 2)

]
,(9.55)

D(g, δ) = 2(δ − 2)2(δ + 2)2(δ2 + g2 + 4g)g3. (9.56)

For any value of δ and g, D(g, δ) > 0. For a given value of the bias δ, the critical value of g (denoted
by gc) allowing K to reach a maximal value is then the solution of the equation:

N(gc, δ) = 0, (9.57)

which can be determined numerically. We present the numerical solutions of (9.57) on Fig. 9.3 (curves
in blue). On this figure, we also give the solutions obtained for other values of τ ′. We conclude that, for
a fixed value of the bias, K is nonmonotonic if the desorption rate g is large enough (or, for a fixed value
of the desorption rate, if the bias is large enough).

9.3.3.3 Influence of the cross-correlations functions on the non-monotonicity

We now aim to give a first insight into a better understanding of the non-monotonicity of the diffusion
coefficient. We first notice that the diffusion coefficient K (9.3) may be separated into three contribu-
tions:

K = KMF +K1 +K2, (9.58)

with

KMF =
σ2

τ
(1− ρ) (9.59)

K1 = −σ
2

τ
[p1(k1 − ρ) + p−1(k−1 − ρ)] (9.60)

K2 = −2σ

τ
(p1g̃1 − p−1g̃−1). (9.61)

The first term is the simplest mean-field approximation of the problem, obtained by taking the average
local densities kr equal to ρ and the cross-correlation functions 〈δXtδηXt+r〉 equal to zero. K1 may
be seen as a contribution from the inhomogeneous density profiles, and K2 a contribution from the
cross-correlations g̃±1. For a given set of parameters which gives rise to a non-monotonic behavior
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Figure 9.3: Critical value of the desorption rate gc as a function of δ, for different values of the ratio
τ ′ = τ∗/τ , with σ = 1 and τ = 1 obtained by the study of the behavior of K at ρ→ 0 (curves in blue).
The region below the curves correspond to the range of parameters where K(ρ) is nonmonotonic. The
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is represented in green. The region below the curves correspond to the range of parameters where
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Figure 9.5: Cross-correlations functions g̃ as a function of the distance to the tracer n for g = 0.2 (left)
and g = 0.6 (right), and for different values of the density ρ. In both cases, we take p1 = 0.98.

(p1 = 0.98 and g = 0.15), we plot on Fig. 9.4 K as well as the three contributions. The origin of the
non-monotonicity of K with respect to the density ρ can then be attributed to K2.

As it was stressed in [16], the cross-correlation functions g̃n have nontrivial behaviors with respect
to the distance n to the TP. In particular, they appear to have non-monotonous behavior in the domain
n < 0, i.e. behind the TP,z for some values of the parameters. On Fig. 9.5, we plot the functions g̃n for
different values of the density ρ, for two sets of parameters: one for which the diffusion K is known to
be a non-monotonic function of the density (p1 = 0.98 and g = 0.2), and one for which it is monotonous
(p1 = 0.98 and g = 0.6). On Fig. 9.6, we plot the functions g̃n for different values of the desorption
parameter g, for ρ = 0.01, for p1 = 0.98. The non-monotonicity of g̃n then seems to be correlated with
that of K, as it occurs for g small enough.

In order to get a more quantitative comparison of these two effects (the non-monotonicity of K with
respect to the density ρ and that of g̃n with respect to the distance to the TP n in the domain n < 0), we
first determine, for a fixed value of the bias p1 − p−1, and at leading order in f , the critical value of g′c
giving a minimal value for g̃n, i.e. for which g̃−1 > g̃−2.

Using the small f expansion ofA±1 (9.53), we easily deduce from the definitions of g̃n in the domain
n < 0 (9.19) an expression for g̃−1− g̃−2 at leading order in f . The general expression is too lengthy to
be given here. We present it in the particular case where τ ′ = 1:

g̃−1 − g̃−2 =
f→0

2σf
N ′(g, δ)

D′(g, δ)
+O(f2) (9.62)

with

N ′(g, δ) = (δ − g)
[
(1 + δ)g2 − 2(δ2 − 2δ − 2)g + δ2(δ − 1)

]

−
√
δ2 + g2 + 4g

[
(1 + δ)g2 − (3δ + 2)(δ − 1)g + δ2(δ − 1)

]
, (9.63)

D′(g, δ) = 2g
√
δ2 + g2 + 4g

{[
2g2 + (2δ + 4)g + δ(δ + 2)

]√
δ2 + g2 + 4g

+2g3 + 2(δ + 4)g2 + 2(δ + 2)(δ + 1)g + δ2(δ + 2)
}
. (9.64)
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Figure 9.6: Cross-correlations functions g̃ as a function of the distance to the tracer n for ρ = 0.01,
p1 = 0.98, and for different values of the desorption parameter g.

Then, for a fixed value of the bias δ, the critical value of g canceling g̃−1 − g̃−2 is the solution of the
equation

N ′(g′c, δ) = 0. (9.65)

The numerical solutions for g′c as a function of δ, for different values of the ratio τ ′ are represented on
Fig. 9.3 and confronted to the values gc obtained by the criterion on K. The two functions gc and g′c are
comparable as long as τ ′ is not too large. We also show that their expansions for δ → 0 are identical at
leading order, and that they go to zero as (

√
17 + 1)δ2/8.

This study indicates that the emergence of a maximal value for K(ρ) for ρ > 0 is correlated to the
observation of a minimal value in the cross-correlation functions g̃n in the domain n < 0.

9.3.3.4 Range of parameters for which K > 1/2

In the previous sections, we determined the critical value of the desorption rate gc allowing the emer-
gence of a nontrivial maximum value for the function K(ρ) for a given value of the bias δ. As a
complementary approach, for a fixed value of the bias, we study the domain of the plane (g, ρ) in which
the diffusion coefficient is greater than 1/2 , which is its value when there is no bath particle.

In the case where the curve K(ρ) displays an extremum value, the value of the diffusion coefficient
is greater than 1/2 in the range [0, ρ̃], where ρ̃ is a function of p1 and g only. From the analytical curves
K(ρ), we can then deduce the values of ρ̃ as a function of g for different values of p1, which are plotted
on Fig. 9.7.

As it was shown on Fig. 9.6, for a given value of p1 and g, there exists a value of ρ below which
the difference g̃−1 − g̃−2 is negative, i.e. below which there is a minimum for g̃n in the range n < 0.
This critical value of ρ will be denoted by ρ̃′. In order to compare the domain of parameters giving
respectively K > 1/2 and g̃−1 − g̃−2 ≥ 0, we also represent on Fig. 9.7 the curves of ρ̃′ as a function
of g for different values of p1.

The domains in the plane (ρ, g) for which K > 1/2 and for which g̃−1 − g̃−2 < 0 then seem to be
correlated.
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Figure 9.7: Critical value of the density ρ̃ below which the diffusion coefficient is greater than 1/2, as
a function of g and for different values of the bias p1 (curves in blue). Critical value of the density ρ̃′

below which g̃−1 − g̃−2 ≥ 0, as a function of g and for different values of the bias p1 (curves in green).

This study shows that the non-monotonicity of the diffusion coefficient with respect to the density
(emergence of a maximum value of K for ρ > 0) and the non-monotonicity of the cross-correlation
function g̃n behind the TP are correlated. A more detailed study of the cross-correlation functions
g̃n, whose behavior affects the fluctuations of the TP position, could allow us to have a more physical
understanding of the phenomenon highlighted in this Section.

9.3.4 Third cumulant

The third cumulant of the distribution of Xt gives information about its asymmetry. We introduced
earlier the coefficient γ, defined by

γ = lim
t→∞

1

6

d

dt

〈
(Xt − 〈Xt〉)3

〉
. (9.66)

With this definition, if γ > 0 (resp. γ < 0), the distribution of Xt is expected to be skewed to the right
(resp. to the left). We take as an example a biased random walker on a lattice in the absence of exclusion
interactions. If the particle is more likely to jump to the right (p1 > p−1), its third cumulant will be
positive, indicating a distribution skewed to the right. Here, we study the influence of the presence of
bath particles and of the different parameters of our model on the sign of the third cumulant of Xt.

We use the solutions for m̃±1 (9.39) and (9.40) obtained from the decoupling approximation in order
to compute the coefficient γ from its definition (9.5). For two values of the bias (p1 = 0.98 and 0.8),
we study the coefficient γ as a function of the density ρ, for different values of the desorption rate g.
The curves are presented on Fig. 9.8. For high values of the desorption rate, γ(ρ) is monotonic and
decreases when the density of bath particles increases. However, for small values of the desorption rate,
the function becomes nonmonotonic, and one observes the emergence of a minimum and a maximum
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value, different from the trivial values ρ = 0 and ρ = 1. Finally, if g is small enough, there exists an
interval of density for which γ becomes negative, which means that the distribution of Xt may actually
be negatively skewed, in opposition with the situation where there is no bath particles on the lattice.

These results are preliminary, and will deserve future work in order to offer a better understanding,
and to confront them with the results from numerical simulations.

9.4 Cumulant generating function and propagator

9.4.1 Calculation

We now turn to the computation of the cumulant generating function Ψ(t), defined as Ψ(t) = ln
〈
eiuXt

〉
.

It was shown in Chapter 8 that its derivative takes the form

dΨ(t)

dt
=
p1

τ

(
eiuσ − 1

)
(1− w̃e1) +

p−1

τ

(
e−iuσ − 1

) (
1− w̃e−1

)
, (9.67)

where we defined the correlation functions w̃r =
〈
eiuXtηXt+r

〉
/
〈
eiuXt

〉
, which are solutions of the

equations (8.57) and (8.58). In the long-time limit, if w̃e1 and w̃e−1 reach stationary value, one has

Ψ(t) ∼
t→∞

[p1

τ

(
eiuσ − 1

)
(1− w̃e1) +

p−1

τ

(
e−iuσ − 1

) (
1− w̃e−1

)]
t. (9.68)

The p.d.f. of Xt can be deduced using the inverse Fourier transform

Pt(x) = Prob[Xt = x] =

∫ π

−π

du

2π
e−iuxeΨ(t), (9.69)

In this Section, we solve the equations on w̃r in the one-dimensional case, and deduce the cumulant
generating function and the distribution Pt(x).

In the one-dimensional case, starting from (8.57) and (8.58) and assuming that there exists non-trivial
stationary solutions, one gets the following equations verified by w̃n ≡ w̃ne1 :

B1w̃n+1 −B2w̃n +B3w̃n−1 = −(B4K+r
n
1 +B5) for n > 1 (9.70)

B1w̃n+1 −B2w̃n +B3w̃n−1 = −(C4K−r
n
2 +B5) for n < −1 (9.71)

D1w̃2 −D2w̃1 +D3w̃−1 +D4 +D5w̃
2
1 +D6w̃1w̃−1 = 0 for n = 1 (9.72)

E1w̃1 − E2w̃−1 + E3w̃−2 + E4 +D6w̃
2
−1 +D5w̃1w̃−1 = 0 for n = −1 (9.73)

where the expressions of the different prefactors are given in Appendix K.2. (9.70) and (9.71) are
associated to the characteristic equation

B1X
2 −B2X +B3 = 0, (9.74)

which has the solutions

q1,2 =
B2 ±

√
B2

2 − 4B1B3

2B1
. (9.75)

A development in powers of u shows that

q1 = r1 +O(u) and q2 = r2 +O(u). (9.76)
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orption rate g obtained from the decoupling approximation. The bias is p1 − p−1 = 0.96 (top) and
p1 − p−1 = 0.6 (bottom). The waiting times are τ = τ∗ = 1.
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At order zero in u, (9.70) and (9.71) are equivalent to (8.11) and (8.12), so that their solutions must
coincide at this order. Consequently, the general solution of (9.70) is of the form

w̃n = α+q
n
1 (9.77)

The particular solution is easily calculated, and for n > 0, we find

w̃n = α+q
n
1 −

B4K+

B1r1 −B2 +B3r
−1
1

rn1 −
B5

B1 −B2 +B3
. (9.78)

With similar arguments, we find for n < 0

w̃n = α−q
n
2 −

C4K−

B1r2 −B2 +B3r
−1
2

rn2 −
B5

B1 −B2 +B3
. (9.79)

Finally, writing (9.78) (resp. (9.79)) for n = 1 (resp. n = −1) and using (9.72) and (9.73), we find the
following nonlinear system of four equations whose unknowns are w̃1, w̃−1, α+ and α− :





w̃1 = α+q1 −
B4K+

B1r1 −B2 +B3r
−1
1

r1 −
B5

B1 −B2 +B3

w̃−1 = α−q
−1
2 −

C4K−

B1r2 −B2 +B3r
−1
2

r−1
2 −

B5

B1 −B2 +B3

D1

[
α+q

2
1 −

B4K+

B1r1 −B2 +B3r
−1
1

r2
1 −

B5

B1 −B2 +B3

]

−D2w̃1 +D3w̃−1 +D4 +D5w̃
2
1 +D6w̃1w̃−1 = 0

E1w̃1 − E2w̃−1 + E3

[
α−q

−2
2 −

C4K−

B1r2 −B2 +B3r
−1
2

r−2
2 −

B5

B1 −B2 +B3

]

+E4 +D6w̃
2
−1 +D5w̃1w̃−1 = 0.

(9.80)

The numerical resolution of this system of equations for specific values of u allows us to calculate w̃1

and w̃−1, and to deduce the expression of Ψ(t) as a function of u. Using (9.69), one can calculate the
probability distribution Pt(x), valid in the asymptotic regime t→∞.

9.4.2 Numerical simulations

We compare the results of this calculation with data obtained from Monte Carlo simulations for a given
set of parameters (see Fig. 9.9).

We observe a good agreement between the analytical prediction obtained from the decoupling ap-
proximation and the results from numerical simulations. We see that the prediction from the decoupling
approximation tends to be shifted to the right for large times: this is expected from the analysis of the
velocity of the TP, which was shown to be overestimated by the approximation (Fig. 9.1).

As emphasized in Section 8.4.1, the rescaled variable Zt = (Xt − 〈Xt〉)/
√

Var(Xt) is expected to
be distributed accordingly to a Gaussian distribution in the long-time limit. A more detailed study of
the distribution of Xt determined in the previous Section and of the results from numerical simulations
could allow us to study and quantify the convergence of the distribution of Zt to a Gaussian distribution.
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9.5 Conclusion

In this Chapter, we studied the one-dimensional version of the general model of a biased tracer in a
hardcore lattice gas in contact with a reservoir of particles. We solved the equations verified by the
different correlation functions introduced in Chapter 8 in order to obtain the long-time behavior of the
first cumulants and of the distribution of the position of the TP.

First, we recalled the solutions of the equations verified by the mean density profiles kr = 〈ηr〉,
already presented in [15], and obtained using a decoupling approximation. In particular, the quantities
ke±1 , involved in the expression of the TP velocity, are the solution of an implicit system of equations,
that can be solved numerically for a given set of parameters. The general solution for the TP velocity
was confronted to Monte-Carlo simulations, which exactly sample the master equation of the problem.
The agreement between the numerical simulations and the solution from the decoupling approximation
was very good, in particular in the limits where ρ→ 0 and ρ→ 1.

We studied the solutions of the equations verified by the cross-correlation functions g̃r =

〈δXt(ηXt+r − 〈ηXt+r〉)〉, and obtained in particular an expression for the quantities g̃1 and g̃−1, in-
volved in the computation of the diffusion coefficient of the TP, in terms of the density profiles kr. It is
then possible to obtain numerically the value of the diffusion coefficient for a given set of parameters.
The analysis of this general solution shows that the diffusion coefficient may be a nonmonotonic func-
tion of the density. Indeed, surprisingly, the diffusion coefficient may be increased by the presence of
bath particles on the lattice for a wide range of parameters. This nonmonotonicity is not an artifact of
the decoupling approximation, and we show that its existence is confirmed by Monte Carlo simulations,
which confirm the accuracy of the approximation. This effect is shown to be related to an anomaly in
the profiles of the cross-correlations g̃r, which are nonmonotonic functions of the distance to the TP for
values of the parameters similar to the ones leading to the existence of a maximum value for the diffusion
coefficient. A further study could allow us to get a better physical understanding of this phenomenon.

We also studied the solutions of the equations governing the correlation functions m̃r =〈
(δXt)

2(ηXt+r − 〈ηXt+r〉)
〉
, involved in the computation of the coefficient γ, which describes the

skewness of the distribution. In the case of a one-dimensional lattice, we write the quantities m̃±1 in
terms of the correlation functions g̃r and kr. Consequently, one can determine numerically the values of
the coefficients m̃e±1 . Surprisingly, we observe that the coefficient γ is a nonmonotonic function of the
density and that it may take negative values, so that the distribution of the TP position may be negatively
skewed for some values of the parameters.

Finally, we studied the solutions of the equations governing the correlation functions w̃r ≡〈
eiuXtηXt+r

〉
/
〈
eiuXt

〉
, involved in the computation of the cumulant generating function of Xt and

therefore in its distribution. In the case of the one-dimensional lattice, we showed that the quanti-
ties w̃±1 were implicit solutions of a system of equations, so that the distribution of Xt could be
determined and confronted to numerical simulations with a good agreement. The rescaled variable
(Xt − 〈Xt〉)/

√
Var(Xt) is distributed accordingly to a Gaussian distribution in the long-time limit.
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In this Chapter, we consider lattices of dimension two and higher and solve the equations
verified by the mean density profiles kr and the cross-correlation functions g̃r, which were
established using a decoupling approximation in Chapter 8. We then deduce the velocity
and diffusion coefficient of the TP. Surprisingly, the analysis of the velocity of the TP shows
that it may decrease for increasing values of the applied force. We study quantitatively this
phenomenon, known as negative differential mobility in other contexts. We also show that
in the limits of a very dilute or very dense bath of particles, the expressions of the velocity
and of the diffusion coefficient become explicit. In the high-density limit, they correspond
to the results obtained from the exact approach presented in the first part of this thesis.
In the low-density limit, they correspond to exact results obtained by other authors. The
decoupling approximation is then exact in the limits of very high and very low densities.
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10.1 Introduction

In Chapter 8, we introduced a model of hardcore lattice gas in contact with a reservoir of particles. Bath
particles perform symmetric nearest-neighbor random walks with a mean waiting time τ∗, and may
desorb to the reservoir with a given rate. Particles from the reservoir may adsorb on vacant lattice sites.
A tracer particle (TP) performing a biased random walk of mean waiting time τ is also introduced. All
the particles interact via hardcore interactions. Using a decoupling approximation, the velocity V and
the diffusion coefficient K of the TP, defined by

V = lim
t→∞

d

dt
〈Xt〉 , (10.1)

K =
1

2d
lim
t→∞

d

dt

(〈
Xt

2
〉
− 〈Xt〉2

)
, (10.2)

were given as functions of the mean density at site r (kr = 〈ηr〉) and of the correlation functions
g̃r = 〈δXt(ηXt+r − 〈ηXt+r〉)〉. In turn, these quantities are the solutions of general equations given
in Chapter 8 (see (8.11) and (8.12), (8.23) and (8.24)). The solutions of these equations were presented
and studied in the particular of a one-dimensional lattice in Chapter 9.

In this Chapter, we present a method to compute the velocity and the diffusion coefficient of the
tracer particle, in the case of a lattice of arbitrary dimension. We study the equations verified by kr and
g̃r, and show that these quantities evaluated at r = {e±1, . . . , e±d} are solutions of nonlinear equations
that can be solved numerically for a given set of parameters. We then obtain an implicit expression of
V and K for an arbitrary set of parameters. In the particular limits where ρ → 0 (resp. ρ → 1), these
equations become explicit and can be solved in order to obtain the expressions of V and K at leading
order in ρ (resp. 1− ρ).

The computation of the velocity of the TP leads to several interesting results:

• in the limit where ρ → 0, and in the particular situation where the bath particles are frozen (i.e.
τ∗ → ∞), we retrieve the expression of the velocity at leading order in ρ obtained exactly by
Leitmann and Franosch [77].

• in the limit where ρ → 1, the expression of the velocity correctly matches the expression we
obtained with the exact approach at leading order in the density of vacancies (Chapter 5). This
result together with the previous one actually show that the approximation used compute V is
exact in the limits of low and high densities.

• for intermediate densities, we study the behavior of the TP velocity as a function of the force F
applied on the TP, for different values of the relative time scales of the bath and the TP τ∗/τ . We
show that for a certain range of parameters, the velocity is non-monotonous when F varies, i.e. it
may be a decreasing function of the applied force. In other contexts, this phenomenon is known
as negative differential mobility. We will investigate it quantitatively, and give a physical insight
into these observations.

Finally, the study of the expression of the diffusion coefficient K in the limit ρ → 1 allows us
to retrieve the expressions obtained for the second cumulant of the position of the TP with the exact
approach (Chapter 4). This shows that the decoupling approximation used to compute K is exact in the
limit of high densities.
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10.2 Mean position of the TP

In this Section, we aim to compute the velocity of the TP, defined as

V = lim
t→∞

d

dt
〈Xt〉 . (10.3)

In Chapter 8, we obtained the following expression for the derivative of the mean position:

d

dt
〈Xt〉 =

σ

τ

[
p1 (1− ke1)− p−1

(
1− ke−1

)]
, (10.4)

were kr = 〈ηr〉 is the average density at site r, and is the solution of the equations (8.11) and (8.12). In
this Section, we solve these equations for lattices of arbitrary dimension, and obtain an implicit expres-
sion for V . This method was first introduced in [13, 14]. The implicit expression of V was obtained in
the case of a two-dimensional lattice. We extend this method to study the case of d-dimensional lattices
and d-dimensional generalized capillaries (lattices which are infinite in one direction and finite with pe-
riodic boundary conditions in the other directions). We also study the limits ρ → 0 and ρ → 1 of this
implicit solution, which becomes explicit, and which coincides with the expressions obtained with exact
approaches.

10.2.1 Basic equations

It was shown in Chapter 8 that the density profiles kr were the solutions of the equations (8.11) and
(8.12) that we recall here:

• for r /∈ {0,±e1, . . . ,±ed}
2dτ∗∂tkr = L̃kr, (10.5)

• for r ∈ {±e1, . . . ,±ed}
2dτ∗∂tkeν = (L̃+Aν)keν , (10.6)

where we defined the operator L̃:

L̃ ≡
∑

µ

Aµ∇µ − 2d(f + g), (10.7)

and the quantities

Aµ ≡ 1 +
2dτ∗

τ
pµ(1− keµ). (10.8)

Note that for symmetry reasons, the quantities A±2, . . . , A±d are identical, and will be denoted by A2.
For simplicity, in this Chapter, we will use the following notational convention: for any space-dependent
function fr, we will write fν ≡ feν . Noticing that, far from the TP, lim|r|→∞ kr = ρ, we introduce the
function

hr = kr − ρ. (10.9)

This definition holds for r 6= 0, and we choose h0 = 0. Using the relation

∇µkeν =

{ ∇µheν if µ 6= −ν
∇µheν − ρ if µ = −ν, (10.10)

we finally get the following evolution equations :
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• r /∈ {0,±e1, . . . ,±ed}
2dτ∗∂thr = L̃hr, (10.11)

• r ∈ {±e1, . . . ,±ed}

2dτ∗∂theν = (L̃+Aν)heν + ρ(Aν −A−ν). (10.12)

According to (10.4), the velocity of the TP in the stationary state is

V = lim
t→∞

d

dt
〈Xt〉 =

σ

τ
[p1 (1− ke1)− p−1

(
1− ke−1

)
]. (10.13)

In order to compute the velocity of the TP in the stationary state and to apply the definition of V , we
will first solve (10.11) and (10.12) to calculate he1 and he−1 . In what follows, we will consider two
geometries:

• generalized d-dimensional capillaries, infinite in direction 1 and finite of width L with periodic
boundary conditions in directions 2, . . . , d.

• infinitely extended lattices of dimension d.

We introduce the auxiliary variable w = (w1, . . . , wd), and define the generating function H(w; t) as

H(w; t) =





∞∑

r1=−∞

L−1∑

r2,...,rd=0

hr(t)

d∏

j=1

wj
rj for a generalized capillary,

∞∑

r1,...,rd=−∞
hr(t)

d∏

j=1

wj
rj for an infinitely extended lattice.

(10.14)

From (10.11) and (10.12) we can show thatH(w; t) is the solution of the following differential equation

2dτ∗∂tH(w; t) =


A1(t)

w1
+A−1(t)w1 +A2(t)

d∑

j=2

(
1

wj
+ wj

)
−A(t)


H(w; t) +K(w; t),

(10.15)
with A(t) = A1(t) +A−1(t) + 2(d− 1)A2(t) + 2d(f + g) and

K(w; t) ≡ A1(t)(w1 − 1)h1(t) +A−1(t)

(
1

w1
− 1

)
h−1(t)

+ A2(t)

d∑

j=2

[
(wj − 1)hj(t) +

(
1

wj
− 1

)
h−j(t)

]
+ ρ[A1(t)−A−1(t)]

(
w1 −

1

w1

)
.

(10.16)

The solution of (10.15) is formally represented as:

H(w; t) =
1

2dτ∗

∫ t

0
dt′K(w; t′)e

1
2dτ∗

∫ t
t′ dt

′′
[
A1(t′′)
w1

+A−1(t′′)w1+A2(t′′)
∑d
j=2

(
1
wj

+wj

)
−A(t′′)

]
. (10.17)



10.2. Mean position of the TP 173

This integral equation can in principle be solved in order to get the full time-dependence of the density
profiles hr and then the expression of the first cumulant 〈Xt〉 at any time. This will deserve a further
study. Here, we focus on the stationary solution of (10.15), in which we take limt→∞ ∂tH(w; t) and in
which we drop the time-dependence of the other quantities, assuming that the profiles hr reach stationary
values. We get

H(w) =
K(w)

A
1

1−
[
A1
A

1
w1

+ A−1

A w1 + A2
A
∑d

j=2

(
1
wj

+ wj

)] . (10.18)

In what follows, the last step of the computation is made explicit on the two types of considered lattices.

10.2.2 Infinite lattices

We specialize the auxiliary variables as wj = eiqj , and introduce the function

Fr =
1

(2π)d

∫

[−π,π]d
dq1 . . . dqd

∏d
j=1 e−irjqj

1− λ(q1, . . . , qd)
(10.19)

with

λ(q1, . . . , qd) =
A1

A e−iq1 +
A−1

A eiq1 +
2A2

A
d∑

j=2

cos qj , (10.20)

so that H(w) becomes a function of q1, . . . , qd:

H(q1, . . . , qd) =
K(q1, . . . , qd)

A
1

1− λ(q1, . . . , qd)
. (10.21)

Note that λ is the structure function of the random walk of a particle going in direction −1 with proba-
bility A1/A, in direction 1 with probability A−1/A and in any other direction with probability A2/A.
Consequently, Fr is the long-time limit of the generating function associated to the propagator of a bi-
ased random walker starting from 0 and arriving at site r on a d-dimensional infinite lattice, with the
evolution rules specified by the structure function λ [58]. Using the definition of Fr from (10.19), and
taking the inverse Fourier transforms, we get

1

1− λ(q1, . . . , qd)
=

∞∑

r1,...,rd=−∞




d∏

j=1

eiπrjqj


Fr. (10.22)

Using (10.21),

H(q1, . . . , qd) =
1

A
∞∑

r1,...,rd=−∞
K(q1, . . . , qd)Fr

d∏

j=1

eirjqj . (10.23)

Finally, using the definition of K in (10.16), writing H(q1, . . . , qd) using (10.14) and identifying the
terms from both sides of (10.23), one shows that hr is given by the following equation:

Ahr =
∑

ν

Aνhν∇−νFr − ρ(A1 −A−1)(∇1 −∇−1)Fr, (10.24)
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The right-hand side of this equation involves the quantities hν = heν . Noticing that h±2 = · · · = h±d
for symmetry reasons, one actually needs to determine the expressions of h1, h−1 and h2 in order to
deduce hr for any r. This can be done by evaluating (10.24) for r = e1, e−1 and e2, which yields a
system of three equations on h1, h−1 and h2. The functions Fr are expressed in terms of the quantities
Aµ, which are in turn expressed in terms of h1, h−1 and h2. The system of three equations is then highly
nonlinear in the quantities hν , but can be solved numerically (see Section 10.2.4 for details). One can
then deduce the value of the velocity using (10.13).

Note that the density profiles hr for any value of r may also be deduced from (10.24), and would
deserve a complete analysis.

10.2.3 Generalized capillaries

We now study the case where the considered d-dimensional lattice is infinite in direction 1 and finite of
size L with periodic boundary conditions in the (d−1) other directions. The calculation is similar to the
case of infinite lattices. We specialize the auxiliary variables as w1 = eiq and wj = e2iπkj/L (for j 6= 1),
and introduce the function

Fr =
1

Ld−1

L−1∑

k2,...,kd=0

1

2π

∫ π

−π
dq

e−ir1q
∏d
j=2 e−2iπrjkj/L

1− λ(q, k2, . . . , kd)
, (10.25)

with

λ(q, k2, . . . , kd) =
A1

A e−iq +
A−1

A eiq +
2A2

A
d∑

j=2

cos

(
2πkj
L

)
, (10.26)

so that H(w) becomes

H(q, k2, . . . , kd) =
K(q, k2, . . . , kd)

A
1

1− λ(q, k2, . . . , kd)
. (10.27)

Note that λ is the structure function of the random walk of a particle going in direction −1 with proba-
bility A1/A, in direction 1 with probability A−1/A and in any other direction with probability A2/A.
Consequently, Fr is the long-time limit of the generating function associated to the propagator of a
biased random walker starting from 0 and arriving at site r on a d-dimensional capillary, with the evolu-
tion rules specified by the structure function λ. Using the definition of Fr from (10.25), and taking the
inverse Fourier transforms, we get

1

1− λ(q, k2, . . . , kd)
=

∞∑

n1=−∞

L−1∑

n2,...,nd=0

ein1q
d∏

j=2

e2iπrjkj/LFr. (10.28)

Using Eq. (10.75),

H(q, k2, . . . , kd) =
1

α

∞∑

r1=−∞

L−1∑

r2,...,rd=0

K(q, k2, . . . , kd)Freir1q
d∏

j=2

e2iπrjkj/L. (10.29)

Finally, as in the case of infinite lattices, the definition of K in (10.16) allows us to show that hr is given
by the equation

Ahr =
∑

ν

Aνhν∇−νFr − ρ(A1 −A−1)(∇1 −∇−1)Fr, (10.30)

which may be solved with the method described in Section 10.2.2.



10.2. Mean position of the TP 175

10.2.4 General solution

Finally, the quantities he1 , he−1 and he2 are always given by the system of three equations obtained by
evaluating

Ahr =
∑

ν

Aνhν∇−νFr − ρ(A1 −A−1)(∇1 −∇−1)Fr, (10.31)

at r = e1, e−1, and e2. The functions Fr are given by

Fr =





1

Ld−1

L−1∑

k2,...,kd=0

1

2π

∫ π

−π
dq

e−ir1q
∏d
j=2 e−2iπrjkj/L

1− λ(q, k2, . . . , kd)
for a generalized capillary,

1

(2π)d

∫

[−π,π]d
dq1 . . . dqd

∏d
j=1 e−irjqj

1− λ(q1, . . . , qd)
for an infinitely extended lattice.

(10.32)
Explicitely, this system is

Ah1 =
∑

ν

Aνhν∇−νFe1 − ρ(A1 −A−1)(∇1 −∇−1)Fe1 , (10.33)

Ah−1 =
∑

ν

Aνhν∇−νFe−1 − ρ(A1 −A−1)(∇1 −∇−1)Fe−1 , (10.34)

Ah2 =
∑

ν

Aνhν∇−νFe2 − ρ(A1 −A−1)(∇1 −∇−1)Fe2 . (10.35)

This may be rewritten under a matricial form

C̃h̃ = ρ(A1 −A−1)F̃ (10.36)

with

h̃ =



h1

h−1

h2


 , F̃ =




(∇1 −∇−1)Fe1

(∇1 −∇−1)Fe−1

(∇1 −∇−1)Fe2


 , (10.37)

and

C̃ =



A1∇−1Fe1 −A A−1∇1Fe1 A2∇−2Fe1

A1∇−1Fe−1 A−1∇1Fe−1 −A A2∇−2Fe−1

A1∇−1Fe2 A−1∇1Fe2 A2∇−2Fe2 −A


 . (10.38)

The solutions of this system are then

hν = ρ(A1 −A−1)
detC̃ν

detC̃
(10.39)

where C̃ν stands for the matrix obtained from C̃ by replacing the ν-th column by F̃ . Expressing the
quantities Aν (10.8) in terms of hν , we get

Aν = 1 +
2dτ∗

τ
pν(1− ρ− hν) (10.40)

= 1 +
2dτ∗

τ
pν

[
1− ρ− ρ(A1 −A−1)

detC̃ν

detC̃

]
. (10.41)
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Writing this last equation for ν = 1,−1, 2, we obtain a set of equations containing implicitly A1, A−1

and A2. It can be solved numerically for a given set of the parameters ρ, τ , τ∗ and σ. Recalling the
definition of V (10.3) and (10.4), the velocity is deduced from the relation

V =
σ

τ
[p1 (1− ρ− h1)− p−1 (1− ρ− h−1)] (10.42)

=
1

2dτ∗
(A1 −A−1). (10.43)

In what follows, we study the limits ρ → 0 and ρ → 1, in which the expression of the velocity V
becomes explicit.

10.2.5 High-density limit

In this Section, we focus on the high-density limit, in which the density of particles ρ goes to 1. We
introduce the notation ρ0 = 1 − ρ, which denotes the density of vacancies on the lattice. We consider
the case where the lattice is not in contact with a reservoir anymore, so that f and g are taken equal to
zero with a fixed value of the density ρ. We intend to compute the expression of the velocity at leading
order in ρ0, and compare it with the exact approach at high density presented in Chapter 5.

10.2.5.1 Stationary regime

In the limit where ρ→ 1, the mean occupation number of each site tends to 1, and the quantity hr is of
order O(ρ0). Recalling the expression of Aµ

Aµ = 1 +
2dτ∗

τ
pµ(ρ0 − hµ)

︸ ︷︷ ︸
=O(ρ0)

, (10.44)

we obtain the following useful expansions:

A =
ρ0→0

2d+O(ρ0), (10.45)

A1 −A−1 =
ρ0→0

2dτ∗

τ
[p1(ρ0 − h1)− p−1(ρ0 − h−1)] +O(ρ0

2). (10.46)

Expanded at order O(ρ0), the general equation for hr (10.31) evaluated at r = eµ becomes

2dhµ =
∑

ν

hν∇−νFeµ −
2dτ∗

τ
(1− ρ0)[p1(ρ0 − h1)− p−1(ρ0 − h−1)](∇1 −∇−1)Feµ . (10.47)

As it was emphasized above, the functions Fr actually correspond to the long-time limit of the gener-
ating function of the propagators of a biased random walk starting from 0 and arriving at site r, which
jumps in direction −1 with probability A1/A, in direction 1 with probability A−1/A and in any other
direction with probability A2/A. We can then use the following symmetry relations:

• ∇νFe1 = ∇2Fe1 for all ν 6= ±1,

• ∇νFe2 = ∇3Fe1 for all ν 6= ±1,±2,
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and write the resulting equations obtained for µ = 1,−1, 2:

2dh1 = h1∇−1Fe1 + h−1∇1Fe1 + 2(d− 1)h2∇2Fe1

−2dτ∗

τ
[p1(ρ0 − h1)− p−1(ρ0 − h−1)] [∇1Fe1 −∇−1Fe1 ] (10.48)

2dh−1 = h1∇−1Fe−1 + h−1∇1Fe−1 + 2(d− 1)h2∇2Fe−1

−2dτ∗

τ
[p1(ρ0 − h1)− p−1(ρ0 − h−1)]

[
∇1Fe−1 −∇−1Fe−1

]
(10.49)

2dh2 = h1∇−1Fe2 + h−1∇1Fe2 + h2 [∇−2Fe2 +∇2Fe2 ] + 2(d− 2)h2∇3Fe2

− 2dτ∗

τ
[p1(ρ0 − h1)− p−1(ρ0 − h−1)] [∇1Fe2 −∇−1Fe2 ] . (10.50)

We then need to compute the behavior of the functions Fr when ρ0 → 0. This is made explicit in
Appendix M. The main result is the following: defining P̂ (r|0; ξ) as the generating function associated
to the the propagator of a symmetric nearest-neighbor random walk of a particle starting from 0 and
arriving at r, the differences of functions Fr may be simply expressed in terms of the differences of the
generating functions P̂ :

lim
ρ0→0

∇νFr = lim
ξ→1

[
P̂ (r + eν |0; ξ)− P̂ (r|0; ξ)

]
+ δν , (10.51)

with

δν =





− d

Ld−1
if ν = 1,

d

Ld−1
if ν = −1,

0 otherwise.

(10.52)

Note that for infinitely extended lattices, the quantities δν vanish. Using (10.51), in the limit where
ρ0 → 0, we rewrite (10.48), (10.49) and (10.50) in terms of the propagators P̂ (r|r0; ξ). In order
to reduce the number of propagators involved in this system, we use the symmetry relations for the
quantities P̂ (4.48), (4.49) and (4.50) (see Appendix L for expressions of the differences ∇µFr that
include the symmetry properties of P̂ ). We also use the relation

P̂ (r|r0; ξ) = δr,r0 +
ξ

2d

∑

µ

P̂ (r|r0 + eµ; ξ). (10.53)

which was demonstrated and used in Chapter 4 (4.40). For r0 = 0, and r = 0, e1, e2, we obtain

P̂ (0|0, ξ) = 1 +
1

d

[
P̂ (e1|0, ξ) + (d− 1)P̂ (e2|0, ξ)

]
(10.54)

P̂ (e1|0, ξ) =
1

2d

[
P̂ (0|0, ξ) + P̂ (2e1|0, ξ) + 2(d− 1)P̂ (e1 + e2|0, ξ)

]
(10.55)

P̂ (e2|0, ξ) =
1

2d

[
P̂ (0|0, ξ) + P̂ (2e2|0, ξ) + P̂ (2e1|0, ξ) + 2(d− 2)P̂ (e2 + e3|0, ξ)

]

(10.56)
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We can then rewrite the relations (10.48)-(10.49) in terms of the propagators P̂ (0|0; ξ), P̂ (2e1|0; ξ) and
P̂ (e1|0; ξ) only. Introducing finally the usual quantities

β = lim
ξ→1

[
P̂ (0|0; ξ)− P̂ (e1|0; ξ)

]
, (10.57)

α = lim
ξ→1

[
P̂ (0|0; ξ)− P̂ (2e1|0; ξ)

]
, (10.58)

the system of linear equations (10.48)-(10.50) takes the simplified form:

M̃(δ)



h1

h−1

h2


 = 2d

τ∗

τ
ρ0(p1 − p−1)



−α− 2δ

α− 2δ

−2δ


 (10.59)

with δ = d/Ld−1, and where M̃(δ) is the following matrix:

M̃(δ) =


−
[
2dp1

τ∗

τ
(α+ 2δ) + 2d− β − δ

]
2dp−1

τ∗

τ
(α+ 2δ)− α+ β − δ α− 2β

2dp1
τ∗

τ
(α− 2δ)− α+ β + δ −

[
2dp−1

τ∗

τ
(α− 2δ) + 2d− β + δ

]
α− 2β

1
2(d−1)

[
−8δp1

τ∗

τ
(d− 1)− 2β(d+ 1) 1

2(d−1)

[
−8δp1

τ∗

τ
(d− 1)− 2β(d+ 1) 1

d−1

[
2β(d+ 1)− 2d2 − α

]
+2δ(d− 1) + α− 2β + 2d

]
−2δ(d− 1) + α− 2β + 2d

]

 .

(10.60)

The linear system (10.86) has the following solutions:

h1 = ρ0

2dτ∗

τ (α+ 2d
Ld−1 )(p1 − p−1)

2dτ∗

τ α(p1 + p−1) + 4d2

Ld−1
τ∗

τ (p1 − p−1) + 2d− α
(10.61)

h−1 = −ρ0

2dτ∗

τ (α+ 2d
Ld−1 )(p1 − p−1)

2dτ∗

τ α(p1 + p−1) + 4d2

Ld−1
τ∗

τ (p1 − p−1) + 2d− α
(10.62)

h2 = ρ0

4d2

Ld−1
τ∗

τ (p1 − p−1)
2dτ∗

τ α(p1 + p−1) + 4d2

Ld−1
τ∗

τ (p1 − p−1) + 2d− α
(10.63)

Finally, using again the definition of the velocity (10.13), we obtain

lim
t→∞

d

dt
〈Xt〉 ∼

ρ0→0
ρ0
σ

τ

p1 − p−1

1 + 2dα
2d−α

τ∗

τ (p1 + p−1) + 4d2

Ld−1(2d−α)
τ∗

τ (p1 − p−1)
. (10.64)

With the values τ∗ = τ = σ = 1, this expression matches the expression of the first cumulant obtained
with the exact approach of the high-density limit (see Chapter 5 for the expressions of limt→∞ κ

(1)
1 (t)/t

in the limit of ρ0 → 0, and in particular (5.7) and (5.22)). This expression was obtained in the case of
generalized capillaries, but may be extended to infinite lattices. Indeed, taking the limit where L goes to
infinity, one obtains

lim
t→∞

d

dt
〈Xt〉 ∼

ρ0→0
ρ0
σ

τ

p1 − p−1

1 + 2dα
2d−α(p1 + p−1)

. (10.65)

With d = 2, this corresponds to the result obtained for the two-dimensional lattice (5.29). With d = 3,
one retrieves the result obtained for the three-dimensional lattice (6.43).
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To conclude, the velocity is explicitly given by the decoupling approximation in the limit ρ → 1.
Moreover, we showed that the expression of the velocity at leading order in the vacancy density ρ0

correctly matches the expression obtained by the exact approach presented in Chapter 5. This suggests
that the decoupling approximation of the correlation functions

〈
ηXt+rηXt+eµ

〉
(8.10) is exact in the

high-density limit.

10.2.5.2 Transient regime

The calculation presented in the previous section yields the ultimate regime of the system in the long-
time limit. It relied on the study of the stationary limit of the differential equation (10.15). By taking
the limit where ρ0 is going to zero first, it was shown in the exact approach (Chapters 4 and 5) that
the stationary regime appears after a long-lived anomalous regime. We want to retrieve this observation
with the formalism presented in this Chapter, and show explicitly that the limits ρ0 → and t → ∞ do
not commute.

Technically, this is possible by starting again from the general differential equation (10.15), and
taking first the limit where ρ0 → 0. Using again the expansions ofA (10.45), Aµ (10.44) and A1−A−1

(10.46), we obtain the following expression of (10.15) at leading order in ρ0:

2dτ∗∂tH(w; t) =




d∑

j=1

(
1

wj
+ wj

)
− 2d


H(w; t) +K(w; t), (10.66)

where H(w; t) is of order ρ0, and where K(w; t), defined by (10.16), has the expansion

K(w; t) =
ρ0→0

d∑

j=1

[
(wj − 1)hj(t) +

(
1

wj
− 1

)
h−j(t)

]

+
2dτ∗

τ

(
w1 −

1

w1

)
{p1[ρ0 − h1(t)] + p−1[ρ0 − h−1(t)]}+O(ρ0

2). (10.67)

We then write the Laplace transform of (10.66):

2dτ∗[sĤ(w; s)−H(w; t = 0)] =




d∑

j=1

(
1

wj
+ wj

)
−A


 Ĥ(w; s) + K̂(w; s), (10.68)

where we introduced the Laplace transform

f̂(s) =

∫ ∞

0
dt e−stf(t), (10.69)

so that

Ĥ(w; s) =





∞∑

r1=−∞

L−1∑

r2,...,rd=0

ĥr(s)

d∏

j=1

wj
rj for a generalized capillary,

∞∑

r1,...,rd=−∞
ĥr(s)

d∏

j=1

wj
rj for an infinitely extended lattice,

(10.70)
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and

K̂(w; s) =
ρ0→0

d∑

j=1

[
(wj − 1)ĥj(s) +

(
1

wj
− 1

)
ĥ−j(s)

]

+
2dτ∗

τ

(
w1 −

1

w1

){
p1

[ρ0

s
− ĥ1(s)

]
+ p−1

[ρ0

s
− ĥ−1(s)

]}
+O(ρ0

2). (10.71)

The system being initially at equilibrium, the mean density kr is equal to ρ on every site at time t = 0,
so that hr = 0 and H(w; t = 0) = 0. We finally get from (10.67)

Ĥ(w; s) =
K̂(w; s)

2d(1 + τ∗s)

1

1− 1
1+τ∗s

1
2d

∑d
j=1

(
1
wj

+ wj

) . (10.72)

This equation is the equivalent of (10.18), which was obtained in the stationary limit. We can then
follow the procedures presented for infinite lattices (Section 10.2.2) and generalized capillaries (Section
10.2.3). We present here the case of generalized capillaries. We specialize the auxiliary variables as
w1 = eiq and wj = e2iπkj/L (for j 6= 1), and introduce the function

Er =
1

Ld−1

L−1∑

k2,...,kd=0

1

2π

∫ π

−π
dq

e−ir1q
∏d
j=2 e

−2iπrjkj/L

1− 1
1+τ∗sΛ(q, k2, . . . , kd)

, (10.73)

with

Λ(q, k2, . . . , kd) =
1

2d
e−iq +

1

2d
eiq +

1

d

d∑

j=2

cos

(
2πkj
L

)
, (10.74)

so that Ĥ(w; s) becomes

Ĥ(q, k2, . . . , kd; s) =
K̂(q, k2, . . . , kd; s)

2d(1 + τ∗s)

1

1− 1
1+τ∗sΛ(q, k2, . . . , kd)

. (10.75)

Note that Er may be easily related to the generating functions of the propagators P̂ of a symmetric
random walk on a generalized capillaries, which write

P̂ (r|0; ξ) =
1

Ld−1

L−1∑

k2,...,kd=0

1

2π

∫ π

−π
dq
e−ir1q

∏d
j=2 e

−2iπrjkj/L

1− ξΛ(q, k2, . . . , kd)
, (10.76)

so that

Er = P̂

(
r|0;

1

1 + τ∗s

)
. (10.77)

Using the definition of Er from (10.73), and taking its inverse Fourier transform, we get

1

1− 1
1+τ∗sΛ(q, k2, . . . , kd)

=

∞∑

r1=−∞

L−1∑

r2,...,rd=0

eir1q
d∏

j=2

e2iπrjkj/LEr. (10.78)
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Using (10.72), we then obtain

Ĥ(q, k2, . . . , kd; p) =
1

2d(1 + τ∗s)

∞∑

r1=−∞

L−1∑

r2,...,rd=0

K̂(q, k2, . . . , kd; p)Ereir1q
d∏

j=2

e2iπrjkj/L.

(10.79)
Finally, using the definition of K̂ (10.71), recalling the definition of Ĥ (10.70) and identifying the terms
on both sides of the previous equation, we get

2d(1+τ∗s)ĥr(s) =
∑

ν

ĥν(s)∇−νEr−
2dτ∗

τ

{
p1

[ρ0

s
− ĥ1(s)

]
+ p−1

[ρ0

s
− ĥ−1(s)

]}
(∇1−∇−1)Er.

(10.80)
Note that reasoning on infinite lattices yields the same equation, with another definition of the functions
Er:

Er =
1

(2π)d

∫

[−π,π]d
dq1 . . . dqd

∏d
j=1 e

−iqiri

1− 1
1+τ∗sΛ(q1, . . . , qd)

, (10.81)

Evaluating (10.80) for r = e1, e−1 and e2, one obtains a closed system of three linear equations whose
solutions are ĥ1, ĥ−1 and ĥ2. We are interested in the long-time limit of these solutions. In terms of
the Laplace variable s, this is equivalent to taking the limit s→ 0. Using (10.77), we find that the limit
s → 0 of the quantities Er is identical to the limit ξ → 1 of the propagators P̂ . Consequently, we find
the following system at leading order in s:

2dĥ1(s) = ĥ1(s)∇−1P̂e1 + ĥ−1(s)∇1P̂e1 + 2(d− 1)ĥ2(s)∇2P̂e1

−2dτ∗

τ

{
p1

[ρ0

s
− ĥ1(s)

]
− p−1

[ρ0

s
− ĥ−1(s)

]} [
∇1P̂e1 −∇−1P̂e1

]
(10.82)

2dĥ−1(s) = ĥ1(s)∇−1P̂e−1 + ĥ−1(s)∇1P̂e−1 + 2(d− 1)ĥ2(s)∇2P̂e−1

−2dτ∗

τ

{
p1

[ρ0

s
− ĥ1(s)

]
− p−1

[ρ0

s
− ĥ−1(s)

]} [
∇1P̂e−1 −∇−1P̂e−1

]
(10.83)

2dĥ2(s) = ĥ1(s)∇−1P̂e2 + ĥ−1(s)∇1P̂e2 + ĥ2(s)
[
∇−2P̂e2 +∇2P̂e2

]
+ 2(d− 2)ĥ2(s)∇3P̂e2

− 2dτ∗

τ

{
p1

[ρ0

s
− ĥ1(s)

]
− p−1

[ρ0

s
− ĥ−1(s)

]} [
∇1P̂e2 −∇−1P̂e2

]
(10.84)

where we wrote for convenience
∇νP̂r = lim

ξ→1
∇νP̂ (r|0; ξ). (10.85)

Using the symmetry properties of the propagators P̂ (4.48), (4.49) and (4.50) as well as the relations
(10.54), (10.55) and (10.56), we rewrite the system of equations (10.82)-(10.84) in terms of the propa-
gators P̂ (0|0; ξ), P̂ (2e1|0; ξ) and P̂ (e1|0; ξ) only. Defining α and β as previously, we show that the
system of equations (10.82)-(10.84) is equivalent to the linear sytem

M̃(δ = 0)



sĥ1(s)

sĥ−1(s)

sĥ2(s)


 = 2d

τ∗

τ
ρ0(p1 − p−1)



−α
α

0


 , (10.86)
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where M̃(δ) is defined as previously (10.60). We obtain the following solutions

lim
ρ0→0

ĥ1(s)

ρ0
=
s→0

1

s

2dατ∗

τ (p1 − p−1)
2dατ∗

τ (p1 + p−1) + 2d− α
(10.87)

lim
ρ0→0

ĥ−1(s)

ρ0
=
s→0

−1

s

2dατ∗

τ (p1 − p−1)
2dατ∗

τ (p1 + p−1) + 2d− α
(10.88)

lim
ρ0→0

ĥ2(s)

ρ0
=
s→0

0. (10.89)

Recalling the expression of the velocity (10.13) and computing the inverse Laplace transforms of (10.87)
and (10.88), we obtain

lim
ρ0→0

1

ρ0

d

dt
〈Xt〉 =

t→∞

σ

τ

p1 − p−1

1 + 2dα
2d−α

τ∗

τ (p1 + p−1)
. (10.90)

With the values τ∗ = τ = σ = 1, this expression matches the computation of the first cumulant with
the exact description of the high-density limit (see Chapter 5 for the expressions of limρ0→0 κ

(1)
1 (t)/ρ0

in the long-time limit, and in particular the equations (5.4), (5.19) and (5.28)). The equation (10.15),
obtained from the decoupling approximation, then yields the two limiting behaviors obtained from the
exact calculation presented in Chapter 5, resulting of the non-interversion of the limits t → ∞ and
ρ0 → 0. We showed in Chapter 5 that these two regimes were described by a scaling function (5.14) in
the case of quasi-one-dimensional lattices. A further study of (10.15) in the joint limit of t → ∞ and
ρ0 → 0 with the scaling t ∼ 1/ρ0

2 may yield the same scaling function.

The opposite limit, where the density of bath particles tends to zero, is also of interest as it was
studied through exact approaches. In the next Section, we show that the decoupling approximation is
exact in the limit where ρ→ 0 and where the bath particles are static.

10.2.6 Low-density limit and fixed obstacles

In a recent publication [77], Leitmann and Franosch studied the response of a tracer to an external
force, on a two-dimensional lattice, with randomly distributed and fixed obstacles. The tracer waits an
exponentially distributed time with mean 1, jumps in direction ±1 with a probability e±F/2/Z, and in
direction ±2 with a probability 1/Z, where Z = 2(1 + cosh(F/2) is a normalization constant. Note
that this corresponds to the evolution rules prescribed in our model in the particular situation where the
TP is submitted to some external force F = Fe1 (8.1). The authors obtained an exact expression for
the long-time limit of the tracer velocity at leading order in the density of obstacles ρ:

lim
t→∞

V =
ρ→0

V0 − ρV0





Z
4 (π − 2E)

E−
[
1−

(
4
Z

)2]
K
−

(
1− Z

4

)
(π − 2E)

2π
Z − E +

(
1− 4

Z

)
K

+ 1



 (10.91)
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where V0 = p1 − p−1 = 2 sinh(F/2)/Z is the velocity of the tracer in the absence of obstacles, and
where K and E are defined by the integrals

K =
π

2

∫ ∞

0
dt e−tI0

(
2t

Z

)2

, (10.92)

E =

∫ ∞

0
dt e−t

[(
π

2
− 4π

Z2

)
I0

(
2t

Z

)2

− 4π

Z2
I1

(
2t

Z

)2
]
, (10.93)

and where In is the modified Bessel function of the first kind. In this Section, we show that the equations
(10.31) verified by hr under the decoupling approximation have explicit solutions, and that the resulting
expression of the TP velocity corresponds to the the exact expression (10.91) in the limit where ρ → 0

and τ∗ →∞. We start from (10.31):

Ahr =
∑

ν

Aνhν∇−νFr − ρ(A1 −A−1)(∇1 −∇−1)Fr, (10.94)

and study its limit when ρ→ 0. We study the expansions of the quantities hr, Aν and A in this limit:

• Recalling the definition of hr:
hr = kr − ρ, (10.95)

and noticing that the density profiles kr are of order ρ when ρ→ 0, we define the quantities vr as

hr ∼
ρ→0

vrρ. (10.96)

Starting from its expression (10.13), the velocity V can then be expressed in terms of the quantities
v±1:

lim
t→∞

V =
σ

τ
[p1(1− k1)− p−1(1− k−1)] (10.97)

=
σ

τ
[(p1 − p−1)− ρ(p1 − p−1)− (p1h1 − p−1h−1)] (10.98)

=
ρ→0

σ

τ
[V0 − ρV0 − ρ(p1v1 − p−1v−1)] . (10.99)

Consequently, it suffices to compute v1 and v−1 in order to obtain limt→∞ V .

• The quantities Aν are constant at leading order when ρ→ 0:

Aν ∼
ρ→0

1 +
2dτ∗

τ
pν . (10.100)

• From this expansion, one deduces the expansions of A and A1 −A−1:

A =
∑

µ

Aµ ∼
ρ→0

2d

(
1 +

τ∗

τ

)
, (10.101)

A1 −A−1 ∼
ρ→0

2dτ∗

τ
(p1 − p−1). (10.102)



184 Chapter 10. Resolution on higher-dimensional lattices

Finally, at leading order in ρ, (10.94) becomes

2d

(
1 +

τ∗

τ

)
vr =

∑

ν

(
1 +

2dτ∗

τ
pν

)
vν∇−νFr −

2dτ∗

τ
(p1 − p−1)(∇1 −∇−1)Fr. (10.103)

In the limit where the bath particles are fixed, i.e. when their mean waiting time τ∗ goes to∞, we find
at leading order the following equation for the quantities vr:

vr =
∑

ν

pνvν∇−νFr − (p1 − p−1)(∇1 −∇−1)Fr. (10.104)

We now aim to evaluate the functions Fr in the limit τ∗ → ∞. In order to retrieve the result obtained
by Leitmann and Franosch, we specialize our computation to the case of a two-dimensional lattice, in
which these functions write

Fr =
1

(2π)2

∫ π

−π
dq1

∫ π

−π
dq2

e−i(r1q1+r2q2)

1− λ(q1, q2)
(10.105)

with
λ(q1, q2) =

A1

A e−iq1 +
A−1

A eiq1 +
2A2

A cos q2. (10.106)

Equivalently, the functions Fr may be written

Fr =
1

(2π)2

∫ ∞

0
dt e−t

∫ π

−π
dq1

∫ π

−π
dq2 e

t
(
A1
A e−iq1+

A−1
A eiq1+

2A2
A cos q2

)
e−i(r1q1+r2q2). (10.107)

We use the generating function associated to the modified Bessel function of the first kind [1]:

e
z
2(t+ 1

t ) =

∞∑

n=−∞
tnIn(z). (10.108)

From this formula, it is straightforward to write the following expansion

e
t
(
A1
A e−iq1+

A−1
A eiq1

)
= e

t

√
A1A−1
A

(√
A1
A−1

e−iq1+

√
A−1
A1

eiq1

)
(10.109)

=
∞∑

n=−∞

(
A−1

A1

)n/2
In

(
2
√
A1A−1

A t

)
e−inq1 . (10.110)

Finally, the functions Fr can be written

Fr =

(
A−1

A1

)r1/2 ∫ ∞

0
dt e−tIr1

(
2
√
A1A−1

A t

)
Ir2

(
2A2

A t

)
. (10.111)

We are interested in the limit ρ→ 0 and τ∗ →∞ of these quantities. Recalling the expansions (10.100)
and (10.101), we get at leading order in ρ→ 0 and τ∗ →∞,

A−1

A1
∼p−1

p1
= e−F , (10.112)

2
√
A1A−1

A ∼2
√
p1p−1 =

2

Z
, (10.113)

2A2

A ∼ 2

Z
. (10.114)
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Finally, in this limit, we get:

Fr ∼ e−
Fr1

2

∫ ∞

0
dt e−tIr1

(
2t

Z

)
Ir2

(
2t

Z

)
. (10.115)

Interestingly, denoting by P̂ (r|0; ξ) the generating function associated to the propagator of a symmetric
random walk starting from 0 and arriving at r on a two-dimensional lattice, and recalling its integral
representation [58]:

P̂ (r|0; ξ) =

∫ ∞

0
dt e−tIr1

(
tξ

2

)
Ir2

(
tξ

2

)
, (10.116)

we show that the functions Fr can be expressed straightforwardly in terms of these propagators:

Fr ∼ e−
Fr1

2 P̂ (r|0; 4/Z). (10.117)

We now go back to the equation on the quantities vr (10.104), and obtain a closed system of equations
for v1, v−1 and v2:

D̃ṽ = (p1 − p−1)F̃ , (10.118)

with

ṽ =



v1

v−1

v2


 , F̃ =




(∇1 −∇−1)Fe1

(∇1 −∇−1)Fe−1

(∇1 −∇−1)Fe2


 , (10.119)

and

D̃ =



p1∇−1Fe1 − 1 p−1∇1Fe1 2p2∇2Fe1

p1∇−1Fe−1 p−1∇1Fe−1 − 1 2p2∇2Fe−1

p1∇−1Fe2 p−1∇1Fe2 p2(∇2 +∇−2)Fe2 − 1


 . (10.120)

Note that the quantities E (10.93) and K (10.92) are expressed in terms of the integrals∫∞
0 dt e−tI0 (2t/Z)2 = P̂ (0|0; 4/Z) and

∫∞
0 dt e−tI1 (2t/Z)2 = P̂ (e1 + e2|0; 4/Z). Using the def-

initions of Fr (10.117) and P̂ (10.116), as well as the usual symmetry properties of the propagators
P̂ (4.49),(4.50), (4.93) and (4.94), one can express the gradients involved in F̃ and D̃ in terms of the
propagators P̂ (r|0; ξ) evaluated at r = 0, e2, 2e2 and e1 + e2:

D̃ = Z




eF/2(P0 − e−F/2Pe1)− 1 e−F/2(e−FP2e1 − e−F/2Pe1) 2e−F/2(Pe1+e2 − Pe1)

eF/2(eFP2e1 − eF/2Pe1) e−F/2(P0 − eF/2Pe1)− 1 2eF/2(Pe1+e2 − Pe1)

eF/2(eF/2Pe1+e2 − Pe1)− 1 e−F/2(e−F/2Pe1+e2 − Pe1) P2e1 + P0 − 2Pe1 − 1


 ,

(10.121)

F̃ =




e−FP2e1 − P0

P0 − eFP2e1

e−F/2Pe1+e2 − eF/2Pe1+e2


 , (10.122)

where we defined
Pr = P̂ (r|0; 4/Z). (10.123)

The usual relation on the propagators P̂

P̂ (r|r0; ξ) = δr,r0 +
ξ

4

∑

µ=±1,±2

P̂ (r|r0 + eµ; ξ) (10.124)
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yields the following relations

P0 = 1 +
4

Z
Pe1 , (10.125)

Pe1 =
1

Z
(P0 + P2e1 + 2Pe1+e2), (10.126)

which allow us to express Pe1 and P2e1 in terms of P0 and Pe1+e2 . Finally, we obtain an expression of
v1 and v−1 in terms of F and of the propagators P0 and Pe1+e2 , and then, using (10.99) with τ = σ = 1,
an expression of limt→∞ V in terms of the same quantities:

lim
t→∞

V =V0 − ρV0

{
1 +

(
1− P0 +

8

Z2
P0 +

8

Z2
Pe1+e2

)
(10.127)

×
[

Z
4

8
Z2P0 − 4

Z2 (P0 + Pe1+e2)
− 1− Z

4
2
Z (1− P0) + 4

Z2 (P0 + Pe1+e2)

]}
. (10.128)

Finally, rewriting K and E,

K =
π

2
P0 (10.129)

E =

(
π

2
− 4π

Z2

)
P0 −

4π

Z2
Pe1+e2 , (10.130)

one can show that the expression obtained from the decoupling approximation (10.127) coincides with
the exact expression obtained by Leitmann and Franosch (10.91).

From this calculation, we conclude that the decoupling approximation yields exact results in the
limit of very dilute and fixed obstacles at leading order in the density ρ.

The situation where there is a small density of mobile obstacles (i.e. τ∗ < ∞) would also deserve
attention. The exact calculation presented by Leitmann and Franosch may be extended in this situation,
in order to obtain the exact expression of the velocity at leading order in ρ with finite τ∗. We expect the
decoupling approximation to be exact in this situation too: indeed, this mean-field-type approximation
is expected to more and more accurate as the mobility of the environment increases.

10.3 Negative differential mobility

The results from this Section were published in [P6].

10.3.1 Introduction

In the previous section, we obtained an approximated expression for the velocity of the TP in any di-
mension, defined by

V = lim
t→∞

d 〈Xt〉
dt

. (10.131)

It was shown (Section 10.2.4) that its value could be determined numerically for a given set of the
parameters ρ, σ, τ , τ∗ and p±1. In what follows, we will take the lattice spacing σ is taken equal to 1.
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We consider the case where the number of particles on the lattice is conserved (f = g = 0). The jump
probability of the TP in direction ν will be

pν =
e

1
2
F ·eν

∑
µ e

1
2
F ·eµ

, (10.132)

where F = Fe1 is an external force applied on the TP.
In this section, we will study the behavior of the TP velocity as a function of the applied force V (F ),

for different values of the characteristic times τ (mean waiting time between two jumps of the TP) and
τ∗ (mean waiting time between two jumps of a bath particle). We will show that for a given value of ρ,
if the ratio τ∗/τ is small enough, V might be a non-monotonic function of the applied force. In other
contexts, this phenomenon is known as negative differential mobility (NDM): the terminal drift velocity
first grows as expected from linear response, reaches a peak value and eventually decreases. This means
that the differential mobility of the driven particle becomes negative for F exceeding a certain threshold
value. Such a counter-intuitive “getting more from pushing less” [121] behavior of the differential
mobility (or of the differential conductivity) has been observed for a variety of physical systems and
processes, e.g. for electron transfer in semiconductors at low temperatures [32, 93, 111, 76], hopping
processes in disordered media [21], far-from-equilibrium quantum spin chains [12], some models of
Brownian motors [107, 68], soft matter colloidal particles [39], different nonequilibrium systems [121],
and also for the kinetically constrained models of glass formers [61].

Apart of these examples, negative differential mobility (NDM) has been shown to emerge in some
particular limits of the minimal model of a driven lattice gas. In the case of immobile bath particles
(τ∗ → ∞), it has been argued that for a tracer subject to an external force and diffusing on an infinite
percolation cluster, the drift velocity vanishes for large enough values of the force, and therefore NDM
occurs [8]. More recently, NDM was also observed via numerical simulations for low density [77, 5] and
analytically accounted for [77], but to the first order in ρ only. Surprisingly enough, it appears that NDM
is not a specific feature of a frozen distribution of obstacles but also emerges in dynamical environments
undergoing continuous reshuffling due to obstacles random motion (τ∗ < ∞). Indeed, very recently,
numerical analysis performed in [9] at a specific value of the density revealed that NDM could occur in
a 2D driven lattice gas for bath particles diffusing slow enough.

In general, the origin of the NDM has been attributed to the nonequilibrium (called “frenetic”)
contributions appearing in the fluctuation-dissipation relation [33, 6]. As shown earlier in [14, 13], due to
its interactions with the environment, the TP drives such a crowded system to a nonequilibrium steady-
state with a nonhomogeneous obstacles density profile. However, the “nonequilibrium” condition is
clearly not the only necessary condition for the NDM to emerge - in simulations in [9] this phenomenon
is apparent for some range of parameters but it definitely should be absent when the obstacles move
sufficiently fast so that the TP sees the environment as a fluid.

Finally, NDM seems to be controlled by both the density ρ and the diffusion time scale τ∗ of the
bath particles. However, a microscopic theoretical analysis of this effect is still lacking. The only
available analysis is restricted to the case of immobile obstacles in the low-density regime [77] where,
by definition, the bath particles are not perturbed by the TP. In this Section, we reveal the complete
scenario of this coupled dynamics providing:

• a scaling argument in the dilute regime that unveils the physical mechanism of NDM,
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Figure 10.1: Expression of V (F ) from (10.133). The density is ρ = 0.1, the parameter τ is taken equal
to 1. When τ∗ is large enough, V (F ) is non-monotonic and is a decreasing function of F at large forces.

• an analytic analysis of the TP velocity for arbitrary values of system parameters,

• a criterion for the NDM effect to be observed, which shows in particular that for any ρ NDM
exists if τ∗ is large enough.

10.3.2 Simple physical mechanism

In this Section, we first obtain an approximate expression for V (F ) with simple physical arguments, and
we show that it may be non-monotonic in some range of parameters.

Assuming a strong external force, one has p1 ' 1 − ε, p−1 = O(ε2), with ε = exp(−F/2), so
that the mean velocity in the absence of obstacles may be written (1 − ε)/τ . The stationary velocity
in the presence of obstacles is then given by the mean distance 1/ρ traveled by the TP between two
obstacles divided by the mean duration of this excursion, which is the sum of the mean time of free
motion τ/[ρ(1 − ε)] and of the mean trapping time τtrap per obstacle. The escape from a trap results
from two alternative independent events: the TP steps in the transverse direction (with rate ε/τ ) or the
obstacle steps away (with rate 3/(4τ∗) in two dimensions). This leads to τtrap = 3/(4τ∗) + ε/τ , and
finally

V (F ) =
1− ε

τ + 4ρ(1− ε) τ∗

3+4ετ∗/τ

=
1− e−F/2

τ + 4ρ(1− e−F/2) τ∗

3+4e−F/2τ∗/τ

(10.133)

From this formula, it can be seen that V is decreasing with F at large F (i.e. small ε) and therefore
is nonmonotonic with F , as soon as τ∗ &

√
ρ. On Fig. 10.1, we plot the expression of V (F ) from

(10.133). We see that this function becomes non-monotonic when τ∗ becomes large enough.
This unveils the physical origin of NDM in the dilute regime, where two effects compete. On the

one hand, a large force reduces the travel time between two consecutive encounters with bath particles;
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on the other hand it increases the escape time from traps created by surrounding particles. Eventually,
for τ∗ large enough, such traps are sufficiently long lived to slow down the TP when F is increased.

10.3.3 Method and results

In order to get a more quantitative picture, we calculate V (F ) for different values of the parameters.
Using the decoupling approximation, it was shown in Section 10.2.4 that the velocity is the solution
of an implicit equation that can be solved numerically. This solution is compared with results from
numerical simulations. Our simulations exactly sample the master equation (8.2) using a Gillespie (or
kinetic Monte-Carlo) algorithm, which is simply an extension of the algorithm presented in the case of
a one-dimensional lattice in contact with a reservoir (Section 9.3.1). In all the simulations, we fix the
TP mean waiting time τ to 1. We first study V as a function of F for a fixed value of the density and for
increasing values of the parameter τ∗ (on Fig. 10.2, we give the results obtained for three values of the
density: ρ = 0.05, 0.5, 0.999).

We recall that the decoupling approximation is expected to be exact in the extreme density regimes
ρ ' 0 and ρ ' 1. This is confirmed by the results from numerical simulations, which display an
excellent agreement with the results obtained from the decoupling approximation (see Fig. 10.2(a) for
ρ = 0.05 and Fig. 10.2(c) for ρ = 0.999). At intermediate values of the density, the quantitative
agreement between the decoupling approximation and the simulations is still good and allows a good
qualitative prediction of the behavior of the velocity.

We notice that the curve V (F ) becomes nonmonotonic when the parameter τ∗ is large enough, and
that the threshold value of τ∗ yielding a negative mobility of the TP depends on the density of particles
on the lattice: for ρ = 0.05, we observe that there exists a threshold value of τ∗, comprised between
3 and 5, above which NDM occurs. For ρ = 0.5, this value is close to 5, whereas for ρ = 0.999

it is greater than 30. Then, by using our analytical value of V (F ), the region for NDM in the plane
(ρ, τ∗/τ) can be determined (Fig. 10.3). This shows that for every density there exists a value of τ∗/τ
above which NDM can be observed. This is consistent with the simple physical mechanism proposed in
Section 10.3.2. This threshold value of the value diverges for both limits ρ → 0 and ρ → 1, in which
NDM cannot be observed. In turn, for any value of τ∗/τ & 1, there exists a range of density for which
NDM occurs.

10.3.4 Summary

Consequently, with our minimal model of a driven TP in a hardcore lattice gas, we presented an analytic
theory for NDM in a general driven lattice gas. We used the implicit equation verified by the TP ve-
locity and obtained using a decoupling approximation. For values of τ∗ large enough, a nonmonotonic
behavior of the TP velocity as a function of the external force is indeed observed. Our study extends
analytical results obtained in [77] and sheds light on recent numerical observations [5, 9].

Our solution reveals and quantifies a minimal physical mechanism responsible for NDM, which is
based on the coupling between the density of obstacles and the diffusion time scales of the TP and obsta-
cles. Our minimal model, which takes into account the repulsive part of the particle-particle interactions
only, suggests that the phenomenon of the negative differential mobility could be a generic feature of
biased transport in crowded environments.
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Figure 10.2: Velocity V of the TP on a 2D lattice as a function of the force F : (a) ρ = 0.05; (b) ρ = 0.5;
(c) ρ = 0.999. For the three situations τ = 1 and τ∗ varies, results obtained from numerical simu-
lations (symbols) are confronted with the predictions from the decoupling approximation. Numerical
simulations performed by Alessandro Sarracino (postdoc in the group).
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Figure 10.3: Region of negative differential mobility (above the curve) in the plane (ρ, τ∗/τ) on a two-
dimensional lattice, obtained by the decoupling approximation.

10.4 Fluctuations of the TP

In this Section, we aim to compute the fluctuations of the TP position
〈
Xt

2
〉
− 〈Xt〉2. In Chapter 8, we

obtained the following expression for the derivative of the fluctuations:

d

dt

(〈
Xt

2
〉
− 〈Xt〉2

)
= −2σ

τ

[
p1g̃e1 − p−1g̃e−1

]
+
σ2

τ

[
p1(1− ke1) + p−1(1− ke−1)

]
, (10.134)

were kr = 〈ηr〉 is the average density at site r (a method to compute them was presented in Section
10.2), and where the cross-correlation functions g̃r = 〈δXtδηXt+r〉 are the solutions of the equations
(8.23) and (8.24). We also recall the definition of the diffusion coefficient of the TP in the stationary
limit:

K =
1

2
lim
t→∞

d

dt

(〈
Xt

2
〉
− 〈Xt〉2

)
. (10.135)

In this Section, we obtain an equation verified by the quantities g̃r, and involving the quantities hν , that
can be determined numerically as shown in the previous Section. We also study the limit ρ → 1 of this
solution, which coincides with the expressions obtained with the exact approach presented in the first
part of this thesis.

10.4.1 General equations

In what follows, we extend the method presented in Section 10.2 in order to solve the equations verified
by the cross-correlation functions g̃r. In Chapter 8 the functions g̃r were shown to be the solutions of
(8.23) and (8.24). It then appears that g̃r will be determined in terms of the quantities kr. In Section
10.2, we solved the equation verified by the quantities hr = kr − ρ. For consistency, we first give the
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evolution equations of g̃r in terms of the functions hr. Starting from (8.23) and (8.24), and using the
definition of hr (10.9), we get:

• for r /∈ {0, e±1, . . . , e±d}:

2dτ∗∂tg̃r =L̃g̃r +
2dτ∗

τ
σ {p1(1− ρ− h1)∇1hr − p−1(1− ρ− h−1)∇−1hr}

− 2dτ∗

τ

∑

µ

pµg̃µ∇µhr, (10.136)

• for r = eν with ν 6= ±1:

2dτ∗∂tg̃ν =(L̃+Aν)g̃ν +
2dτ∗

τ
σ {p1(1− ρ− h1)∇1hν − p−1(1− ρ− h−1)∇−1hν}

− 2dτ∗

τ

∑

µ

pµg̃eµ∇µheν −
2dτ∗

τ
[pν(ρ+ hν)g̃ν − p−νρg̃−ν ] , (10.137)

• for r = e1 :

2dτ∗∂tg̃1 =(L̃+A1)g̃ν +
2dτ∗

τ
σ {p1(1− ρ− h1)∇1h1 − p−1(1− ρ− h−1)(∇−1h1 − ρ)}

− 2dτ∗

τ

∑

µ

pµg̃eµ∇µh1 −
2dτ∗

τ
[p1(ρ+ h1)g̃1 − p−1ρg̃−1] , (10.138)

• for r = e−1 :

2dτ∗∂tg̃−1 =(L̃+A−1)g̃−1 +
2dτ∗

τ
σ {p1(1− ρ− h1)(∇1h−1 − ρ)− p−1(1− ρ− h−1)∇−1h−1}

− 2dτ∗

τ

∑

µ

pµg̃eµ∇µh−1 −
2dτ∗

τ
[p−1(ρ+ h−1)g̃−1 − p1ρg̃1] . (10.139)

We then define the operators L and L′ by

2dτ∗∂tg̃r ≡ L(r), (10.140)

2dτ∗∂tg̃ν ≡ L′(ν). (10.141)

We also introduce the generating function G, defined by

G(w; t) =





∞∑

r1=−∞

L−1∑

r2,...,rd=0

g̃r

d∏

j=1

wj
rj for a generalized capillary,

∞∑

r1,...,rd=−∞
g̃r

d∏

j=1

wj
rj for an infinitely extended lattice.

(10.142)
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Multiplying (10.136) by
∏d
j=1wj

rj and summing on every lattice sites, we find

2dτ∗∂tG(w; t) =


A1

w1
+A−1w1 +A2

∑

µ 6=±1

w
sgn(µ)
|µ| −A


G(w; t)

+
2dτ∗

τ
σ

[
p1(1− ρ− h1)

(
1

w1
− 1

)
− p−1(1− ρ− h−1)(w1 − 1)

]
H(w; t)

− 2dτ∗

τ


∑

µ

pµg̃µ


 1

w
sgn(µ)
|µ|

− 1




H(w; t)− L0 +

∑

µ 6=±1

w
sgn(µ)
|µ|

[
L′(µ)− L(µ)

]

(10.143)

where we used the symmetry relation A±2 = . . . A±d = A2 and where we defined

L0 =
∑

µ

Aµg̃µ +
2dτ∗

τ
σ [p1(1− ρ− h1)h1 − p−1(1− ρ− h−1)h−1]− 2dτ∗

τ

∑

µ

pµg̃µhµ. (10.144)

Replacing L′(µ) and L′(µ) by their expressions, we show that G is the solution of the following differ-
ential equation:

2dτ∗∂tG(w; t) =


A1

w1
+A−1w1 +A2

∑

µ6=±1

w
sgn(µ)
|µ| −A


G(w; t) + J1(w; t)H(w; t) + J0(w; t)

(10.145)
where we defined

J0(w; t) ≡
∑

µ

(
w

sgn(µ)
|µ| − 1

)(
Aµ −

2dτ∗

τ
pµhµ

)
g̃µ −

2dτ∗

τ
ρ

(
w1 −

1

w1

)
(p1g̃1 − p−1g̃−1)

+
2dτ∗

τ
σ

[
p−1(1− ρ− h−1) (ρw1 + h−1)− p1(1− ρ− h1)(

ρ

w1
+ h1)

]
, (10.146)

J1(w; t) ≡2dτ∗

τ

{
σ

[
p1(1− ρ− h1)

(
1

w1
− 1

)
− p−1(1− ρ− h−1)(w1 − 1)

]

−
∑

µ

pµg̃µ


 1

w
sgn(µ)
|µ|

− 1





 . (10.147)

The stationary solution of (10.145) is given by

G(w) =
J1(w)K(w)

A2[1− λ(w)]2
+

J0(w)

A[1− λ(w)]
(10.148)

where we defined λ as previously:

λ(w) =
A1

A
1

w1
+
A−1

A w1 +
A2

A
d∑

j=2

(
1

wj
+ wj

)
, (10.149)

and where we used the relation

H(w) =
K(w)

A
1

1− λ(w)
(10.150)
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from Section 10.2. Finally, we express the generating function variables w1, . . . , wd in terms of the
Fourier variables:

• w1 = eiq1 and wj = e
2iπkj
L (j ≥ 2) for a generalized capillary,

• wj = eiqj (0 ≤ j ≤ d) for an infinitely extended lattice.

Then, we can compute the inverse Fourier transform of (10.148) in order to retrieve the functions g̃r:

g̃r =
1

A

{∑

µ

(
Aµ −

2dτ∗

τ
pµhµ

)
g̃µ∇−µ

+
2dτ∗

τ
ρ(p1g̃1 − p−1g̃−1)(∇1 −∇−1)

− 2dτ∗

τ
σ {p1(1− ρ− h1)[ρ(∇1 + 1) + h1]− p−1(1− ρ− h−1)[ρ(∇−1 + 1) + h−1]}

}
Fr

− 2dτ∗

τ

1

A2

{∑

µ

Aµhµ∇−µ − ρ(A1 −A−1)(∇1 −∇−1)

}

×
{∑

µ

pµg̃µ∇µ − σ [p1(1− ρ− h1)∇1 − p−1(1− ρ− h−1)∇−1]

}
Gr, (10.151)

where we define

Gr =





1

Ld−1

L−1∑

k2,...,kd=0

1

2π

∫ π

−π
dq1

e−ir1q1
∏d
j=2 e

−2iπrjkj/L

[1− λ(q1, k2, . . . , kd)]2
for a generalized capillary,

1

(2π)d

∫

[−π,π]d
dq1 . . . dqd

∏d
j=1 e−irjqj

[1− λ(q1, . . . , qd)]2
for an infinitely extended lattice.

(10.152)
The right-hand side of (10.151) involves the quantities g̃ν = g̃eν . Noticing that g̃±2 = · · · = g̃±d for
symmetry reasons, one actually needs to determine the expressions of g̃1, g̃−1 and g̃2 in order to deduce
g̃r for any r. This can be done by evaluating (10.151) for r = e1, e−1 and e2, which yields a system of
three equations on g̃1, g̃−1 and g̃2. The functions Fr and Gr are expressed in terms of the quantities Aµ,
which are in turn expressed in terms of h1, h−1 and h2. They can be obtained numerically from (10.24).
Finally, the system of three equations on the quantities g̃1, g̃−1 and g̃2 may be solved numerically for a
given set of parameters. The value of the diffusion coefficient K in the stationary limit can be deduced
from the relations (10.134) and (10.135).

The equation (10.151) is important, as it allows the calculation of g̃±1, and therefore of the diffusion
coefficient of the biased TP, for any set of parameters. A further study of the solutions of (10.151)
would unveil the influence of the different parameters (bias, time scales τ∗ and τ , density) on this
diffusion coefficient. We could then check the robustness of the effects observed in the case of the
one-dimensional lattice (Chapter 9) on higher-dimensional lattices. In particular, the dependence of the
diffusion coefficient of the TP on ρ could be investigated, in order to see if there exists a non-zero value
of the density that enhances the diffusion properties of the TP even on lattices of dimension greater
than 1.
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10.4.2 High-density limit

10.4.2.1 Stationary state

In this Section, we study the high-density limit of (10.151) and show that we retrieve the results obtained
from the exact approach (Chapter 4). We assume that the lattice is not in contact with a reservoir
of particles anymore, which corresponds to the limit where f and g go to zero with a fixed density
ρ = f/(f + g). When ρ → 1, one has the following behaviors for the different quantities involved in
(10.151):

Aµ =
ρ0→0

1 +O(ρ0), (10.153)

A =
ρ0→0

2d+O(ρ0), (10.154)

A1 −A−1 =
ρ0→0

2dτ∗

τ
[p1(ρ0 − h1)− p−1(ρ0 − h−1)] +O(rho0), (10.155)

hµ =
ρ0→0

O(ρ0), (10.156)

g̃µ =
ρ0→0

O(ρ0). (10.157)

Using these expansions, we find the expansion of (10.151) at leading order in ρ0:

2dg̃r =

{∑

µ

g̃µ∇−µ +
2dτ∗

τ
(p1g̃1 − p−1g̃−1)(∇1 −∇−1)

−2dτ∗

τ
σ {p1(ρ0 − h1)(∇1 + 1)− p−1(ρ0 − h−1)(∇−1 + 1)]}

}
Fr.

(10.158)

In this limit, g̃1, g̃−1 and g̃2 are then the solutions of the linear system

2dg̃1 = g̃1∇−1Fe1 + g̃−1∇1Fe1 + 2(d− 1)g̃2∇2Fe1

+
2dτ∗

τ
(p1g̃1 − p−1g̃−1) [∇1Fe1 −∇−1Fe1 ]

−2dτ∗

τ
σ[p1(ρ0 − h1)F2e1 − p−1(ρ0 − h−1)F0] (10.159)

2dg̃−1 = g̃1∇−1Fe−1 + g̃−1∇1Fe−1 + 2(d− 1)g̃2∇2Fe−1

+
2dτ∗

τ
(p1g̃1 − p−1g̃−1)

[
∇1Fe−1 −∇−1Fe−1

]

−2dτ∗

τ
σ[p1(ρ0 − h1)F0 − p−1(ρ0 − h−1)F2e−1 ] (10.160)

2dg̃2 = g̃1∇−1Fe2 + g̃−1∇1Fe2 + g̃2 [∇−2Fe2 +∇2Fe2 ] + 2(d− 2)g̃2∇3Fe2

+
2dτ∗

τ
(p1g̃1 − p−1g̃−1) [∇1Fe2 −∇−1Fe2 ]

−2dτ∗

τ
σ[p1(ρ0 − h1)Fe2+e1 − p−1(ρ0 − h−1)Fe2+e−1 ]. (10.161)

In what follows, we study the ρ0 → 0 limit of these equations in the two situations where the lattice is a
generalized capillary, and where it is a two-dimensional lattice.
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Generalized capillaries We are interested in the limit where ρ0 → 0 of the equations (10.159)-
(10.161). We will use again the relation (10.51), which was demonstrated in Appendix M:

lim
ρ0→0

∇νFr = lim
ξ→1

[
P̂ (r + eν |0; ξ)− P̂ (r|0; ξ)

]
+ δν . (10.162)

Contrary to the system (10.48)-(10.50) verified by the quantities (h1, h−1, h2) which only involved
differences of the functions Fr, the system (10.159)-(10.161) also involves functions Fr alone, which
are known to diverge when ρ0 → 0. In the case of generalized capillaries, we showed in Appendix M
that

Fr ∼
ρ0→0

1

Ld−1V
≡ G(V ), (10.163)

where G is defined as in the first part of this thesis (Chapter 6), and where V is actually equal to the
velocity of the TP:

V ∼
ρ0→0

σ

τ
[p1(ρ0 − h1)− p−1(ρ0 − h−1)] (10.164)

and then vanishes when ρ0 → 0. Using (10.163) and (10.162), we simplify the system (10.159)-
(10.161). Finally, with the usual symmetry properties on the quantities P̂ (4.48)-(4.50) as well as the
relations (10.54)-(10.56), we rewrite the system (10.159)-(10.161) in terms of the propagators P̂ (0|0; ξ),
P̂ (2e1|0; ξ) and P̂ (e1|0; ξ) only. Introducing the quantities α and β as previously and using the defi-
nition of the velocity V (10.164), we show that, at leading order in ρ0, the equations (10.159)-(10.161)
can be rewritten as

M̃(δ)



g̃1

g̃−1

g̃2


 = 2dτ∗V ρ0(p1 − p−1)G(V )




1

1

1


 , (10.165)

where M̃(δ) is defined as previously (10.60). We obtain the following solutions at leading order in
ρ0 → 0:

g̃±1 ∼
ρ0→0

τ∗

Ld−1

α− 2d− 4dατ∗

τ p∓1[
2d− α+ 2dατ∗

τ (p1 + p−1) + 4d2

Ld−1
τ∗

τ (p1 − p−1)
]2 , (10.166)

g̃2 ∼
ρ0→0

τ∗

Ld−1

α− 2d− 2dατ∗

τ (p1 + p−1)
[
2d− α+ 2dατ∗

τ (p1 + p−1) + 4d2

Ld−1
τ∗

τ (p1 − p−1)
]2 . (10.167)

The expression of the second cumulant is deduced from the definition

lim
t→∞

d

dt

(〈
Xt

2
〉
− 〈Xt〉2

)
= −2σ

τ
{p1g̃1 − p−1g̃−1}+

σ2

τ
{p1(ρ0 − h1) + p−1(ρ0 − h−1)} ,

(10.168)
and recalling the expression of V (10.64), we finally obtain

lim
t→∞

d

dt

(〈
Xt

2
〉
− 〈Xt〉2

)
∼

ρ0→0

2σ

Ld−1

τ∗

τ

p1 − p−1

1 + 2dα
2d−α

τ∗

τ (p1 + p−1) + 4d2

Ld−1(2d−α)
τ∗

τ (p1 − p−1)
.

(10.169)
Taking τ∗ = τ = 1, this corresponds to the result obtained through the exact approach in Chapter 4 for
the asymptotic behavior of the second cumulant on stripes (4.168) and capillaries (4.198). In particular,
we retrieve the fact that TP fluctuations in the ultimate regime grow linearly with time, and do not depend
on the vacancy density.
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Two-dimensional lattice Extending the relation (10.51) to an infinite two-dimensional lattice by tak-
ing d = 2 and L→∞, we get:

lim
ρ0→0

∇νFr = lim
ξ→1

[
P̂ (r + eν |0; ξ)− P̂ (r|0; ξ)

]
. (10.170)

We can extend the study presented in Appendix M to the case of a two dimensional lattice, and show
that

Fr ∼
ρ0→0

2

π
ln

1

V
, (10.171)

where V is actually equal to the velocity of the TP (10.164), and vanishes when ρ0 → 0. The use
of (10.163) and (10.162) then allows us to simplify the system (10.159)-(10.161). Once again, using
the relations between the different propagators P̂ , we express all the differences ∇νFr in terms of the
quantities α and β. Finally, using the definition of the velocity V (10.164), we show that g̃1, g̃−1 and
g̃2 are the solutions of the system (10.165), where we take G(V ) = 2

π ln 1
V . We obtain the following

solutions of the system at leading order in ρ0 → 0:

g̃±1 ∼
ρ0→0

ρ0
τ∗

τ
σ

(α− 4)(p1 − p−1)
(
8αp∓1

τ∗

τ + 4− α
)

[
4− α+ 4α τ

∗

τ (p1 + p−1)
]2

2

π
ln

1

V
(10.172)

g̃2 ∼
ρ0→0

ρ0
τ∗

τ
σ

p1 − p−1

1 + 4α
4−α

τ∗

τ (p1 + p−1)

2

π
ln

1

V
(10.173)

The expression of the second cumulant is deduced from the definition

lim
t→∞

d

dt

(〈
Xt

2
〉
− 〈Xt〉2

)
= −2σ

τ
{p1g̃1 − p−1g̃−1}+

σ2

τ
{p1(ρ0 − h1) + p−1(ρ0 − h−1)} .

(10.174)
Taking τ∗ = τ = σ = 1, and using the expression of V (10.64) with L → ∞, we finally obtain at
leading order in ρ0

lim
t→∞

d

dt

(〈
Xt

2
〉
− 〈Xt〉2

)
∼

ρ0→0
ρ0

4a0
2

π
ln

1

ρ0
, (10.175)

where we introduced in the usual fashion the coefficient

a0 =
p1 − p−1

1 + 4α
4−α(p1 − p−1)

. (10.176)

This corresponds to the result obtained through the exact approach in Chapter 4 (4.214) for the
asymptotic behavior of the second cumulant on a two-dimensional lattice (4.168). In particular, we
retrieve the nontrivial behavior of the cumulant in the vacancy density ρ0 ln(1/ρ0).

In the limit ρ → 1, the decoupling approximation then allows us to retrieve the results obtained
in the high-density limit, in the cases of generalized capillaries and of a two-dimensional lattice. The
decoupling approximations (8.10) and (8.22), on which rely the determinations of h±1 and g̃±1 and
therefore of the fluctuations of the TP position, are then exact in the high-density limit.
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10.4.2.2 Transient regime

We now study the limit where ρ0 → 0 is taken first, and t→∞ ultimately, which allows us to calculate
the transient regime preceding the ultimate diffusive regime. We start again from the differential equation
(10.145):

2dτ∗∂tG(w; t) =

[
A1

w1
+A−1w1 +A2

∑

µ

w
sgn(µ)
|µ| −A

]
G(w; t) + J1(w; t)H(w; t) + J0(w; t).

(10.177)
In the limit where ρ0 → 0, one notices from (10.147) that J1(w; t) is of order O(ρ0), so that the term
J1(w; t)H(w; t) is of order O(ρ0

2) and should be discarded at leading order. Then, the differential
equation becomes

2dτ∗∂tG(w; t) =

[
1

w1
+ w1 +

∑

µ

w
sgn(µ)
|µ| − 2d

]
G(w; t) + J0(w; t) (10.178)

where J0(w; t) has the expansion:

J0(w; t) =
ρ0→0

∑

µ

(
w

sgn(µ)
|µ| − 1

)
Aµg̃µ −

2dτ∗

τ
ρ

(
w1 −

1

w1

)
(p1g̃1 − p−1g̃−1)

− 2dτ∗

τ
σ

[
p1(ρ0 − h1)w1)− p−1(ρ0 − h−1)

1

w1

]
. (10.179)

We rewrite the auxiliary variables as w1 = eiq and wj = e2iπkj/L (for j 6= 1), and introduce again the
functions Er (10.73) and Λ(q, k2, . . . , kd) (10.74). We then get

2dτ∗∂tG(w; t) = 2d [Λ(q, k2, . . . , kd)− 1]G(w; t) + J0(w; t). (10.180)

The Laplace transform of this equation allows us to compute Ĝ(w; s):

Ĝ(q, k2, . . . , kd; s) =
1

2d(1 + τ∗s)

Ĵ0(q, k2, . . . , kd; s)

1− 1
1+τ∗sΛ(q, k2, . . . , kd)

. (10.181)

With the definition of Er, this is equivalent to

Ĝ(q, k2, . . . , kd; s) =
1

2d(1 + τ∗s)

∞∑

r1=−∞

L−1∑

r2,...,rd=0

Ĵ0(q, k2, . . . , kd; p)Ereir1q
d∏

j=2

e2iπrjkj/L.

(10.182)
Recalling the definitions ofG and J0, and identifying the terms of the sums on both sides of the previous
equation, one gets

̂̃gr(s) =
∑

ν

̂̃gν(s)∇−νEr +
2dτ∗

τ
[p1
̂̃g1(s)− p−1

̂̃g−1(s)](∇1 −∇−1)Er

− 2dτ∗

τ

{
p1

[ρ0

s
− ĥ1(s)

]
(∇1 + 1)− p−1

[ρ0

s
− ĥ−1(s)

]
(∇−1 + 1)

}
Er. (10.183)
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Evaluating this equation for r = e1, e−1 and e2, one gets a system of three equations that can be solved
in order to get g̃1, g̃−1 and g̃2. As in Section 10.2.5.2, we find that the limit s → 0 of the quantities Er
are identical to the limit ξ → 1 of the propagators P̂ . Consequently, we find the following sytem:

2d̂̃g1(s) = ̂̃g1(s)∇−1P̂e1 + ̂̃g−1(s)∇1P̂e1 + 2(d− 1)̂̃g2(s)∇2P̂e1

+
2dτ∗

τ
[p1
̂̃g1(s)− p−1

̂̃g−1(s)]
[
∇1P̂e1 −∇−1P̂e1

]

−2dτ∗

τ
σ
{
p1

[ρ0

s
− ĥ1(s)

]
P̂2e1 − p−1

[ρ0

s
− ĥ−1(s)

]
P̂0

}
(10.184)

2d̂̃g−1(s) = ̂̃g1(s)∇−1P̂e−1 + ̂̃g−1(s)∇1P̂e−1 + 2(d− 1)̂̃g2(s)∇2P̂e−1

+
2dτ∗

τ
[p1
̂̃g1(s)− p−1

̂̃g−1(s)]
[
∇1P̂e−1 −∇−1P̂e−1

]

−2dτ∗

τ
σ
{
p1

[ρ0

s
− ĥ1(s)

]
P̂0 − p−1

[ρ0

s
− ĥ−1(s)

]
P̂2e1

}
(10.185)

2d̂̃g2(s) = ̂̃g1(s)∇−1P̂e2 + ̂̃g−1(s)∇1P̂e2 + ̂̃g2(s)
[
∇−2P̂e2 +∇2P̂e2

]
+ 2(d− 2)̂̃g2(s)∇3P̂e2

+
2dτ∗

τ
(p1
̂̃g1(s)− p−1

̂̃g−1(s))
[
∇1P̂e2 −∇−1P̂e2

]

−2dτ∗

τ
σ
{
p1

[ρ0

s
− ĥ1(s)

]
P̂e2+e1 − p−1

[ρ0

s
− ĥ−1(s)

]
P̂e2+e−1

}
. (10.186)

where we wrote for convenience

∇νP̂r = lim
ξ→1
∇νP̂ (r|0; ξ) (10.187)

With the usual symmetry properties on the quantities P̂ (4.48)-(4.50) as well as the relations (10.54)-
(10.56), we rewrite the system (10.159)-(10.161) in terms of the propagators P̂ (0|0; ξ), P̂ (2e1|0; ξ) and
P̂ (e1|0; ξ) only. We introduce the quantities α and β as previously. At leading order when s → 0, one
can replace the propagators P̂r by G0(1 − s), where the function G0 is defined as in Chapter 6 as the
leading order term of the expansion of the propagators P̂ (r|r0; ξ) when ξ → 1:

P̂ (r|r0; ξ) =
ξ→1

G0(ξ) +O(1). (10.188)

We write the Laplace transform of the TP velocity and use the main result of Section 10.2.5.2:

L
[

d 〈Xt〉
dt

]
(s) =

σ

τ

[
p1

(ρ0

s
− ĥ1(s)

)
− p−1

(ρ0

s
− ĥ−1(s)

)]
, (10.189)

∼
s→0

ρ0

s

σ

τ

p1 − p−1

1 + 2dα
2d−α

τ∗

τ (p1 + p−1)
. (10.190)

We deduce that at leading order when s→ 0, the system (10.184)-(10.186) may be written as

M̃(δ = 0)



̂̃g1(s)
̂̃g−1(s)
̂̃g2(s)


 = 2dτ∗ρ0

p1 − p−1

1 + 2dα
2d−α

τ∗

τ (p1 + p−1)

G0(1− s)
s




1

1

1


 , (10.191)
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where M̃(δ) is defined as previously (10.60). We finally obtain the expressions of ̂̃g1(s), ̂̃g−1(s) and
̂̃g2(s) in the limit s→ 0:

̂̃g±1(s) ∼
s→0

ρ0
στ∗

τ

(p1 − p−1)(2d− α)
(
α− 2d− 4dατ∗

τ p∓1

)
[
2d− α+ 2dατ∗

τ (p1 + p−1)
]2

G0(1− s)
s

(10.192)

̂̃g2(s) ∼
s→0

−ρ0
στ∗

τ

p1 − p−1

1 + 2dα
2d−α

τ∗

τ (p1 + p−1)

G0(1− s)
s

. (10.193)

Recalling the expression of the second cumulant

dκ
(2)
1 (t)

dt
= −2σ

τ
{p1g̃1 − p−1g̃−1}+

σ2

τ
{p1(ρ0 − h1) + p−1(ρ0 − h−1)} , (10.194)

we write its Laplace transform

L
[

dκ
(2)
1 (t)

dt

]
(s) = −2σ

τ
[p1
̂̃g1(s)− p−1

̂̃g−1(s)] +
σ2

τ

{
p1

[ρ0

s
− ĥ1(s)

]
+ p−1

[ρ0

s
− ĥ−1(s)

]}
.

(10.195)

Finally, using the solutions (10.192) as well as the Laplace transforms (10.87) and (10.88):

lim
ρ0→0

ĥ1(s)

ρ0
∼
s→0

ρ0

s

2dατ∗

τ (p1 − p−1)
2dατ∗

τ (p1 + p−1) + 2d− α
(10.196)

lim
ρ0→0

ĥ−1(s)

ρ0
∼
s→0

−ρ0

s

2dατ∗

τ (p1 − p−1)
2dατ∗

τ (p1 + p−1) + 2d− α
(10.197)

we get

L
[

dκ
(2)
1 (t)

dt

]
(s) ∼

s→0
2ρ0

τ∗σ2

τ

[
p1 − p−1

1 + 2dα
2d−α(p1 + p−1)

]2
G0(1− s)

s
. (10.198)

Generalized capillaries For the stripe-like and capillary-like geometries, it was shown that

G0(ξ) ∼
ξ→1

√
d/2

Ld−1
√

1− ξ , (10.199)

so that (10.198) yields

L
[

dκ
(2)
1 (t)

dt

]
(s) ∼

s→0
2ρ0

τ∗σ2

τ
a0

2

√
d/2

Ld−1s3/2
, (10.200)

where we introduced the usual definition of a0:

a0 =
p1 − p−1

1 + 2dα
2d−α(p1 + p−1)

. (10.201)

An inverse Laplace transform yields the expression of the derivative of κ(2)
1 (t)

dκ
(2)
1 (t)

dt
∼

t→∞

4ρ0a0
2
√
d/2√

πLd−1

τ∗σ2

τ

√
t, (10.202)
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and finally

κ
(2)
1 (t) ∼

t→∞

8ρ0a0
2

3Ld−1

√
d

2π

τ∗σ2

τ
t3/2. (10.203)

Taking τ = τ∗ = σ = 1, this result matches the expressions of limρ0→0 κ
(2)
1 (t)/ρ0 in the long-time

limit obtained on stripes (4.65) and capillaries (4.89).

Two-dimensional lattice In the case of the two-dimensional lattice, it was shown that

G0(ξ) ∼
ξ→1

1

π
ln

1

1− ξ , (10.204)

so that (10.198) yields

L
[

dκ
(2)
1 (t)

dt

]
(s) ∼

s→0
2ρ0

τ∗σ2

τ

a0
2

π

1

s
ln

1

s
, (10.205)

where we introduced the usual definition of a0. An inverse Laplace transform yields the expression of
the derivative of κ(2)

1 (t)

dκ
(2)
1 (t)

dt
∼

t→∞

2ρ0a0
2

π

τ∗σ2

τ
ln t, (10.206)

and finally

κ
(2)
1 (t) ∼

t→∞

2ρ0a0
2

π

τ∗σ2

τ
t ln t. (10.207)

Taking τ = τ∗ = σ = 1, this result matches the expressions of limρ0→0 κ
(2)
1 (t)/ρ0 in the long-time

limit obtained on the two-dimensional lattice (4.101).

These results show that the decoupling approximation for the functions g̃r allows us to retrieve the
long-time transient regime computed exactly at leading order in ρ0 in Chapter 4.

The equation (10.145), obtained from the decoupling approximation, then yields the two limiting
behaviors of the fluctuations of the TP position, obtained from the exact calculation presented in Chapter
4, resulting of the non-interversion of the limits t→∞ and ρ0 → 0. This confirms that the decoupling
approximation is exact in the high-density limit. With a more detailed study of the general differential
equation (10.145), we would like to obtain a scaling function in the joint limit t → ∞ and ρ0 → 0

with the scaling t ∼ 1/ρ0
2 and confront it to the scaling functions obtained in Chapter 4 in the cases of

quasi-one-dimensional lattices (4.183) and of the two-dimensional lattice (4.222).

10.5 Conclusion

In this Chapter, we considered the evolution of the velocity and of the diffusion coefficient of a biased
TP in a hardcore lattice gas of arbitrary dimension. It was shown in Chapter 8 that these quantities can
be expressed in terms of the density profiles hr = 〈ηr〉−ρ and in terms of the correlation functions g̃r =

〈δXt(ηXt+r − 〈ηXt+r〉)〉. Under a mean-field-type approximation, hr and g̃r are given as solutions of
equations which were established in Chapter 8. In this Chapter, we solve these equations, which yield
implicit determinations of the velocity and diffusion coefficient of the TP.
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The analysis of these solutions yields several interesting results. In particular, we studied the depen-
dence of the terminal velocity of the TP with the applied force. If the bath particles are slow enough
(i.e. if their mean waiting time τ∗ is large enough), we show that the velocity can be a nonmonotonic
function of the applied force, and that it may decrease for increasing values of the force. This counter-
intuitive effect is known in other domains as negative differential mobility (NDM). It can be explained
by the following simple physical arguments: increasing the applied force on the TP reduces its travel
time between successive encounters with the bath particles, but increases the escape time from traps
created by the bath particles when they are slow enough. The competition between these two effects
controls the emergence of NDM. Our approach gives a new microscopic insight into this phenomenon.
The analytical predictions are confirmed by Monte-Carlo simulations, which also confirm the accuracy
of the decoupling approximation in a wide range of parameters.

We also show that in the extreme density regimes ρ→ 0 and ρ→ 1, the decoupling approximation
yields explicit expressions for the velocity and the diffusion coefficient of the TP. The high-density
limit, in the case where the lattice is not in contact with a reservoir, has been studied in the first part of
this thesis, in which we obtained exact results for the mean position (Chapter 5) and the fluctuations
(Chapter 4) of the TP at leading order in the density of vacancy ρ0 . We show that the results from the
decoupling approximation perfectly match the results obtained from the exact approach in the limit
ρ → 1. The opposite limit of a very dilute bath of immobile particles, was studied by Leitmann and
Franosch [77] who obtained the velocity of the TP at leading order in the density of bath particles ρ.
We show that our decoupling approximation yields the same result. This shows that the decoupling
approximation is exact in these limits.

Our study shows that, in spite of the complexity of the initial problem, the decoupling approximation
presented in Chapter 8 yields a very accurate estimation of the velocity and diffusion coefficient of the
TP for a wide range of parameters, and is exact in the high and low density limits. In a future work,
we would like to study the dependence of the diffusion coefficient on the different parameters of the
problem, and in particular on the density, in order to see if it can be non-monotonic, and to test the
robustness of the effect observed in one dimension. Finally, we could extend the methods presented
in this Chapter in order to solve the evolution equations verified by w̃r, in order to get the probability
distribution of the TP position on lattices of arbitrary dimension.
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Conclusion

In this thesis, we studied the general model of a biased tracer particle (TP) in a bath of Brownian
particles on a lattice. The bath particles perform symmetric nearest-neigbor random walks, whereas
the TP performs a biased nearest-neighbor random walk, where the bias can originate from an external
force applied on the TP. All the particles interact via hardcore interactions. This model has been studied
in the past, but the results were limited to the behavior of the mean position of the TP and to the
determination of the force-velocity relation. The aim of this work was to go beyond this force-velocity
relation, and to study the fluctuations of the position of the TP, and more generally its whole distribution.

We first focused on the limit where the bath of particles is very dense. In this limit, there is only
a small number of vacancies on the lattice. It is then more convenient to describe the dynamics of the
vacancies rather than the dynamics of the whole bath of particles. The results at leading order in the
density of vacancies ρ0 can be obtained by assuming that each vacancy contributes independently to the
motion of the TP, as the events involving two vacancies on the same site or on neighboring sites con-
tribute only to order O(ρ0

2). We first considered the auxiliary problem where there is only one vacancy
interacting with the TP. The propagator associated to the position of the TP was expressed in terms of
conditional first-passage time densities (FPTD) associated to the random walk of a vacancy. Noticing
that the vacancy performs a nearest-neighbor symmetric random walk on each site of the lattice except
in the vicinity of the TP where it is perturbed by the bias undergone by the TP, the conditional FPTD
can be expressed in terms of the propagators of a single symmetric random walker on the considered
structure. The general propagator associated to a TP interacting with a small number of vacancies is
finally expressed in terms of the single-vacancy propagators at leading order in ρ0.

This general formalism was then used to study the fluctuations of the position of the TP, and to study
the dependence of this quantity on the different parameters of the problem (time, force, vacancy density,
lattice dimension). We first considered the one-dimensional situation. It was shown that the fluctuations
of the TP grow subdiffusively and proportionally to

√
t, with a prefactor that is independent of the bias.

Moreover, we showed that all the odd cumulants on the one hand and all the even cumulants on the other
hand are equal to each other, and that they all grow as

√
t.

We considered higher-dimensional lattices (quasi-one-dimensional capillaries and two-dimensional
lattice), on which the fluctuations of the TP were shown to grow superdiffusively. This anomalous
regime is transient, and crosses over to a diffusive regime. In this ultimate regime, surprisingly, the
diffusion coefficient of the TP is independent on the vacancy density in quasi-1D geometries. The
crossover time to the diffusive regime was shown to scale as 1/ρ0

2. This indicates that the transient
regime may actually be long-lived and that it may be the only one accessible in numerical simulations
or in experimental realizations. We also showed that for quasi-one-dimensional geometries, the mean
position of the TP itself may display an anomaly, as the velocity of the TP saturates to a high value
before dropping to its ultimate value for the same crossover time that scales as 1/ρ0

2.
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All these results were recast under a general formula that describes both regimes for the different
geometries we considered. We also studied the higher-order cumulants of the position of the TP, both
in the direction of the bias and in the transverse direction, which can be written under simple generic
formulae. These expressions seem to be universal as they correctly predict the behavior of the TP in
a hardcore lattice gas on a fractal lattice. Finally, the underlying physical mechanism was determined
by considering a simplified model that correctly captures the results obtained through the exact approach.

In the second part of this thesis, we studied the general situation of a biased TP in a hardcore lattice
gas of arbitrary density. The resolution method introduced in this part allows us to consider a more
general situation than the one considered in the first part. We assume that the lattice is in contact with
a reservoir of particles, which constitutes an experimentally relevant situation. We adopt a continuous-
time description of the problem. The TP performs a biased random walk with a mean waiting time
τ . The bath particles perform symmetric nearest-neighbor random walks with a mean waiting time τ∗,
and may desorb back to the reservoir with a given rate. Particles from the reservoir may adsorb on
vacant lattice sites. This problem is a many-body problem, for which we can write a master equation
whose solution is the joint probability distribution of the position of the TP and of the configuration
of the bath particles {ηr} (where ηr is an occupation variable equal to 1 if site r is occupied and 0
otherwise). From this master equation, one can obtain an expression of the mean position of the TP in
terms of the mean density profiles kr = 〈ηr〉. These density profiles are given in terms of the correlation
functions 〈ηrηr′〉, which in turn involve higher-order correlation functions, so that the initial master
equation yields an infinite hierarchy of equations that cannot be solved unless it is closed by some
approximation. We used a mean-field-type decoupling approximation which consists in discarding the
quadratic corrections to the mean occupation numbers 〈ηr〉. We then obtained an expression of the
velocity of the TP in terms of the mean density profiles kr = 〈ηr〉, which are given as the solutions
of an implicit set of equations. Extending the decoupling approximation, the evolution equation for the
fluctuations of the TP position is given in terms of the correlation functions g̃r = 〈δXtδηXt+r〉, and the
evolution equations for the cumulant generating function of the TP position are given in terms of other
correlation functions w̃r =

〈
eiuXtηXt+r

〉
/
〈
eiuXt

〉
, where the functions g̃r and w̃r are the solutions of

an closed set of equations.
We then studied the particular case of the one-dimensional geometry. We obtained the solutions of

the equations verified by the functions kr, g̃r and w̃r in the stationary limit, and deduced the velocity,
the fluctuations and the distribution of the position of the TP. Theses solutions were compared to Monte
Carlo numerical simulations, which indicates that the mean-field-type approximation we used is accurate
in a wide range of parameters. The fluctuations of the TP position display a striking behavior: for a
given value of the bias, if the desorption rate is small enough, the diffusion coefficient of the TP is a
nonmonotonic function of the density, so that its maximum is reached for nonzero value of the density
of bath particles. This surprising effect is shown to be related to a nonmonotonic behavior of the cross-
correlation functions g̃r past the TP. We showed that the third cumulant also has an anomalous behavior:
in a large range of parameters, it is a nonmonotonic function of the density of bath particles, and it may
have negative values. Finally, we solved the equations verified by the functions w̃r and obtained the
distribution of the position of the TP.

We finally adapted the methods used in the one-dimensional case to obtain the solutions of the
equations satisfied by kr and g̃r on higher-dimensional lattices. We particularly studied the dependence
of the velocity on the force applied on the TP. It was shown that it can be non-monotonic for some
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values of the parameters: the velocity may be a decreasing function of the force for large forces if
the displacement of the bath particles is slow enough (i.e. τ∗ large enough). This phenomenon is an
example of negative differential mobility (NDM), which was observed in other contexts. The decoupling
approximation framework allowed us to give a microscopic description of NDM and to predict the range
of parameters in which it occurs. Finally, in the limits where the bath of particles is very dilute or
very dense (ρ → 0 or 1), we showed that the equations verified by the correlation functions kr and
g̃r become explicit in the different parameters, so that we obtained explicit expressions of the mean
and of the fluctuations of the TP position in these limits. In the high-density limit, these expressions
are identical to the one we obtained with the exact approach at leading order in ρ0. In the low-density
limit, we retrieve the exact results at order ρ obtained by other authors. This shows that the decoupling
approximation is exact in the low and high-density limits.

Our study shows that the initial very complex many-body problem can be studied by resorting to a
mean-field-type decoupling approximation, which is very accurate in a wide range of parameters and
exact in the low and high density limits. This approximation then constitues an appropriate approach to
the study of the transport properties of a biased TP in a hardcore lattice gas.

The theoretical framework developed in this thesis could be extended to address several open ques-
tions.

• The evolution of the mean position of the TP is closely related to the densities of bath particles
at the sites in the neighborhood of the TP, and it could be interesting to study in details these
observables. The behavior of the density profiles at large distances away from the TP could also
lead to interesting observations. On a one-dimensional lattice, when the number of particles on the
lattice is conserved, there is no stationary density profile, and size of the perturbed domain grows
as
√
t. On a two-dimensional lattice, the density profiles reach an inhomogeneous stationary

state, and decrease algebraically with the distance to the TP [14, 13]. It would be interesting to
investigate the long-distance behavior of the density profiles on confined quasi-one-dimensional
lattices. This will be possible starting from the equations established in Chapter 10.

• The study of the behavior of a bath particle entrained in the wake of the biased TP could also give
an interesting insight into the way the TP modifies its environment.

• The situation where two biased tracers are placed on the lattice was studied previously with nu-
merical simulations [86], and it was shown that the biased tracers could interact and attract each
other. This effect could be investigated analytically, and generalized to the case where several
tracers interact.

• The response of the TP to time-dependent forces could be of interest in relation with experimental
realizations. In particular, the case where the TP is submitted to an oscillatory force has been
studied experimentally [102], and our model could possibly be extended to study such a situation.

• Finally, our lattice gas model could be the starting point to study more complex dynamics. The
situation where identical hardcore particles perform persistent random walks on a lattice was
considered recently with numerical simulations [108]. It was found that cooperative affects arise,
and that the system forms clusters of particles. Extensions of our lattice gas model could give a
theoretical approach to this observation.
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Beyond these theoretical questions, the relevance of our lattice gas model to describe real systems
could be investigated. Preliminary off-lattice simulations presented in the conclusion of Chapter 4 indi-
cate that confinement-superdiffusion emerges in off-lattice systems of systems of hard particles. These
numerical simulations could be extended to include more realistic interactions (soft colloidal repulsion,
hydrodynamic interactions...). Such simulations could test the robustness of some effects described
by our analytical framework: (i) the velocity anomaly in confined geometries and in the high-density
limit; (ii) negative differential mobility; (iii) the non-monotonic behavior of the diffusion coefficient as
a function of the density for a lattice in contact with a reservoir of particles.

Experimental realizations of biased tracer diffusion in granular media or colloidal suspensions could
also be proposed to confront our theoretical predictions to real systems, and to investigate their impact
on practical situations.
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APPENDIX A

Propagators of a random walk on a
stripe-like lattice

In this Appendix, we consider a stripe-like lattice, which is infinite in a direction and finite of width L with periodic boundary
conditions in the other direction (Fig. A.1). We compute the propagators associated to a symmetric nearest-neighbor random
walk, and consider their long-time limit. We compute the propagators associated to a biased random walk (where the bias only
affects the infinitely extended direction of the stripe), in the long-time limit and in the limit of a small bias. Finally, we study
the biased propagators in a joint limit of long time and small bias.

L 1

2

Figure A.1: Stripe-like geometry. The lattice is infinite in the a direction (which will be the direction of
the external force imposed on the TP), and finite of width L with periodic boundary conditions in the
other direction.

A.1 General expression of the propagators in terms of the structure func-
tion

Let Pt(r|r0) be the probability to find a walker at site r at time t knowing that it started from site r0 at time 0. Let p(r|r′) the
probability for the walker to jump from r′ to site r in a single step. On the considered lattice, the random walk is translation
invariant, so that

Pt(r|r0) = Pt(r − r0|0), (A.1)

p(r|r′) = p(r − r′|0). (A.2)

Therefore, we will only calculate Pt(r|0). Partitioning over the last step of the walk, we get

Pt+1(r|0) =
∑
r′

p(r|r′)Pt(r′|0) =
∑
r′

p(r − r′|0)Pt(r
′|0), (A.3)

where the sum over r′ runs over all lattice sites. Multiplying by ξt and summing for t going from 0 to infinity, we obtain the
associated generating functions:

1

ξ

∞∑
t=1

ξtPt(r|0) =
∑
r′

p(r − r′|0)P̂ (r′|0; ξ). (A.4)

Using P0(r|0) = δr,0 and therefore 1
ξ

∑∞
t=1 ξ

tPt(r|0) = P̂ (r|0; ξ)− δr,0, we obtain

P̂ (r|0; ξ) = δr,0 + ξ
∑
r′

p(r − r′|0)P̂ (r′|0; ξ). (A.5)
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We introduce the Fourier transform of the propagators

̂̃
P (k|0; ξ) =

∞∑
r1=−∞

eik1r1

L−1∑
r1=0

e
2iπk2r2

L P̂ (r|0; ξ) (A.6)

so that (A.5) becomes ̂̃
P (k|0; ξ) = 1 + ξ

(∑
r

eik1r1e
2iπk2r2

L p(r|0)

) ̂̃
P (k|0; ξ). (A.7)

Finally, ̂̃
P (k|0; ξ) =

1

1− ξλ(k)
(A.8)

where the structure function λ(k) is defined as

λ(k) ≡
∑
r

eik1r1e
2iπk2r2

L p(r|0). (A.9)

Finally, writing the inverse Fourier transform, we retrieve the generating function:

P̂ (r|0; ξ) =
1

L

L−1∑
k2=0

1

2π

∫ π

−π
dk1

e−ik1r1e−
2iπk2r2

L

1− ξλ(k)
(A.10)

A.2 Propagators of a symmetric random walk
The case where the random walk is symmetric has already been studied in [22], and we recall the results for completeness. In
this situation, the structure function becomes

λ(k) =
1

4
eik1 +

1

4
e−ik1 +

1

4
e

2iπk2
L + +

1

4
e−

2iπk2
L (A.11)

=
1

2

(
cos k1 + cos

2πk2

L

)
, (A.12)

and the propagators are

P̂ (r|0; ξ) =
1

L

L−1∑
k2=0

1

2π

∫ π

−π
dk1

e−ik1r1e−
2iπk2r2

L

1− ξ
(
cos k1 + cos 2πk2

L

) . (A.13)

This propagator can be computed explicitly. For a given site r = (r1, r2), we write

P̂ (r|0; ξ) =
1

L

L−1∑
k2=0

1

2π
e−

2iπk2r2
L f(r1) (A.14)

with

f(r1) =

∫ π

−π
dk1

e−ik1r1

1− ξ
2

(
cos k1 + cos 2πk2

L

) (A.15)

With the change of variable u = e−ik1 , and denoting by C the unit circle, we get

f(r1) = −
∮
C

du

−iu

ur1

1− ξ
2

[
1
2

(
u+ 1

u

)
+ cos 2πk2

L

] (A.16)

=
4i

ξ

∮
C

du
ur1

(u− U1)(u− U2)
(A.17)

where we defined

U1
2

=
2

ξ
− cos

2πk2

L
±

√(
2

ξ
− cos

2πk2

L

)2

− 1 (A.18)

For 0 < ξ < 1 and 0 ≤ k2 ≤ L − 1, one shows that U2 is in the contour C and U1 is outside. Depending on the value of r1,
we determine the singularities of f contained in C, and we apply the residue theorem:
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• if r1 ≥ 0, U2 is the only singularity of the integrand contained in C, so that

f(r1) =
4i

ξ
2iπRes

[
ur1

(u− U1)(u− U2)
, u = U2

]
(A.19)

=
8π

ξ

Ur12

U1 − U2
. (A.20)

• if r1 < 0, U2 and 0 are the singularities of the integrand contained in C, so that

f(r1) =
4i

ξ
2iπ

{
Res

[
ur1

(u− U1)(u− U2)
, u = U2

]
+ Res

[
ur1

(u− U1)(u− U2)
, u = 0

]}
=

8π

ξ

1

U
|r1|
1 (U1 − U2)

. (A.21)

Finally, the propagators write

P̂ (r|0; ξ) =
1

L

L−1∑
k=0

e−
2iπkr2
L f(r1), (A.22)

where we have the following new definition of f :

f(r1) =

 4
ξ

U
r1
2

U1−U2
if r1 ≥ 0,

4
ξ

1

U
|r1|
1 (U1−U2)

if r1 < 0.
(A.23)

The propagators needed for the calculation of the entries of the matrices A and P (Section 4.3.2) then write

P̂ (0|0; ξ) = CL,0(ξ), (A.24)

P̂ (e1|0; ξ) =
2

ξ
[CL,0(ξ)− 1]− CL,1(ξ), (A.25)

P̂ (e2|0; ξ) = CL,1(ξ), (A.26)

P̂ (2e1|0; ξ) = − 8

ξ2
+

(
8

ξ2
− 1

)
CL,0(ξ)− 8

ξ
CL,1(ξ) + 2CL,2(ξ), (A.27)

P̂ (2e2|0; ξ) = 2CL,2(ξ)− CL,0(ξ), (A.28)

P̂ (e1 + e2|0; ξ) =
2

ξ
CL,1(ξ)− CL,2(ξ), (A.29)

where we introduced the quantity

CL,n(ξ) =
1

L

L−1∑
k=0

cosn(2πk2/L)√[
1− ξ

2
cos(2πk2/L)

]2 − ξ2

4

. (A.30)

In order to determine the ξ → 1 expansions of the quantities CL,n(ξ), we write

CL,n(ξ) =
1

L

1√
1− ξ

+
1

L

L−1∑
k=1

cosn(2πk2/L)√[
1− ξ

2
cos(2πk2/L)

]2 − ξ2

4

. (A.31)

The first term of this expression diverges when ξ → 1, whereas the second one is constant in this limit. For 0 ≤ k2 ≤ L− 1,
the argument of the sum over k2 may be written:

cosn(2πk2/L)√[
1− ξ

2
cos(2πk2/L)

]2 − ξ2

4

=
ξ→1

2 cosn(2πk2/L)√
cos2(2πk2/L)− 4 cos(2πk2/L) + 3

+O(1− ξ) (A.32)

We then study the quantities CL,0(ξ), CL,1(ξ) and CL,2(ξ) needed for the computation of the propagators. Using elementary
trigonometry relations, we find

CL,0(ξ) =
1

L
√

1− ξ
+ S

(2)
L,−1 +O(1− ξ) (A.33)

CL,1(ξ) =
1

L
√

1− ξ
+ S

(2)
L,−1 − 2S

(2)
L,1 +O(1− ξ) (A.34)

CL,2(ξ) =
1

L
√

1− ξ
+ S

(2)
L,−1 − 4S

(2)
L,1 + 4S

(2)
L,3 +O(1− ξ) (A.35)
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Finally, in the limit where ξ → 1 (which corresponds to the long-time limit), one gets

P̂ (0|0; ξ) =
ξ→1

1

L
√

1− ξ
+ S

(2)
L,−1 +O(1− ξ) (A.36)

P̂ (e1|0; ξ) =
ξ→1

1

L
√

1− ξ
+ S

(2)
L,−1 + 2S

(2)
L,1 − 2 +

2

L

√
1− ξ +O(1− ξ) (A.37)

P̂ (e2|0; ξ) =
ξ→1

1

L
√

1− ξ
+ S

(2)
L,−1 − 2S

(2)
L,1 +O(1− ξ) (A.38)

P̂ (2e1|0; ξ) =
ξ→1

1

L
√

1− ξ
+ S

(2)
L,−1 + 8S

(2)
L,1 + 8S

(2)
L,3 − 8 +

8

L

√
1− ξ +O(1− ξ) (A.39)

P̂ (2e2|0; ξ) =
ξ→1

1

L
√

1− ξ
+ S

(2)
L,−1 − 8S

(2)
L,1 + 8S

(2)
L,3 +O(1− ξ) (A.40)

P̂ (e1 + e2|0; ξ) =
ξ→1

1

L
√

1− ξ
+ S

(2)
L,−1 − 4S

(2)
L,3 +

2

L

√
1− ξ +O(1− ξ) (A.41)

where we defined the sums

S
(2)
L,n ≡

1

L

L−1∑
k2=1

sinn(πk2/L)√
1 + sin2(πk2/L)

. (A.42)

A.3 Propagators of a biased random walk

A.3.1 General formulation
When the vacancies are assumed to undergo a biased proportional to ε in the −1 direction (Fig. 4.7), the structure function of
the walk writes:

λ(k) = p̃1eik1 + p̃−1e−ik1 + 2p̃2 cos
2πk2

L
, (A.43)

where the jump probabilities p̃ν are given by

p̃−1 =
1

1 + ε

(
1

4
+ ε

)
, (A.44)

p̃1 = p̃±2 =
1

4(1 + ε)
. (A.45)

The associated propagators are

P̂(r|0; ξ, ε) =
1

L

L−1∑
k2=0

1

2π
e−

2iπk2r2
L

∫ π

−π
dk1

e−ik1r1

1− ξ
(
p̃1eik1 + p̃−1e−ik1 + 2p̃2 cos 2πk2

L

) . (A.46)

The explicit computation of the integral over k1 is similar as the one performed in the case of non-biased propagators. With
the change of variable u = e−ik1 and applying the residue theorem, one gets

P̂(r|0; ξ, ε) =
1

L

L−1∑
k2=0

e−
2iπk2r2

L f(r1, k2). (A.47)

with

f(r1, k2; ξ, ε) =

{
1

ξp̃−1

U2(ξ,ε)r1

U1(ξ,ε)−U2(ξ,ε)
if r1 ≥ 0

1
ξp̃−1

1

U1(ξ,ε)|r1|[U1(ξ,ε)−U2(ξ,ε)]
if r1 < 0.

(A.48)

and

U1
2
(ξ, ε) =

1

2ξp̃−1

(
1− 2ξp̃2 cos

2πk2

L

)
± 1

2

√
1

(ξp̃−1)2

(
1− 2ξp̃2 cos

2πk2

L

)2

− 4
p̃1

p̃−1
(A.49)

We are interested in the limiting behavior of the propagators P̂ when ε goes to 0 and ξ goes to one. In what follows, we show
that these two limits do not commute. The case where the limit ε→ 0 is taken first actually corresponds with the study of the
unbiased propagators P̂ in the long-time limit (see Section A.2).
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A.3.2 Small bias expansion of the propagators in the long-time limit
The divergence of the propagators P̂ and P̂ is due to the cancellation of the denominator U1 − U2. For any value of ξ and ε,
we find that

U1(ξ, ε)− U2(ξ, ε) =
1√

1
4

+ ε

√
1

1
4

+ ε

(
1 + ε

ξ
− 1

2
cos

2πk2

L

)2

− 1. (A.50)

Taking ξ = 1 and ε = 0 in this expression, one gets:

U1(1, 0)− U2(1, 0) = 4

√(
1− 1

2
cos

2πk2

L

)2

− 1

4
. (A.51)

This quantity is equal to zero when k2 = 0 and nonzero when 1 ≥ k2 ≥ L − 1. In order to study the divergence of the
propagators, we then write

P̂(r|0; ξ, ε) =
1

L
f(r1, k2 = 0; ξ, ε) + φ(r; ξ, ε) (A.52)

where the function φ is defined as

φ(r; ξ, ε) ≡ 1

L

L−1∑
k2=1

e−
2iπk2r2

L f(r1, k2), (A.53)

and has the following property:

lim
ξ→1

[
lim
ε→0

φ(r; ξ, ε)
]

= lim
ε→0

[
lim
ξ→1

φ(r; ξ, ε)

]
≡ Φ(r) (A.54)

Using these notations, and the definition of f (A.48), we obtain the following expansions, where we carefully consider the two
possible orders for the limits:

1. if we first take ε→ 0 and ultimately ξ → 1, one obtains

P̂(r|0; ξ, ε = 0) = P̂ (r|0; ξ) =
ξ→1

1

L
√

1− ξ
− 2|r1|

L
+ Φ(r) +O(

√
1− ξ) (A.55)

Note that this corresponds to the random walk of an unbiased vacancy on the lattice, and that the following result is
simply a rewriting of the results from Section A.2.

2. if we first take ξ → 1 and ultimately ε→ 0, one obtains

P̂(r|0; ξ = 1, ε) =
ε→0


1

Lε
+

1− 4r1

L
+ Φ(r) +O(ε) if r1 ≥ 0 ,

1

Lε
+

1

L
+ Φ(r) +O(ε) if r1 < 0 .

(A.56)

Then, the expansions of P̂(r|0; ξ = 1, ε) in the ε → 0 limit are known as soon as the quantities Φ(r) are known. They can
be computed from the expansions of P̂ (A.36)-(A.41): introducing the quantity

∆(r) = lim
ξ→1

[
P̂ (0|0; ξ)− P̂ (r|0; ξ)

]
, (A.57)

one gets

Φ(r) =
2|r1|
L

+ S
(2)
L,−1 −∆(r). (A.58)

Combining with (B.52), we finally write:

P̂(r|0; ξ = 1, ε) =
ε→0

1

Lε
+

1

L
− 2r1

L
+ S

(2)
L,−1 −∆(r) +O(ε). (A.59)



214 Appendix A. Propagators of a random walk on a stripe-like lattice

A.3.3 Joint expansion of the propagators
As it is suggested in Section 4.7.5, we study the propagators P̂ in the limit where ξ → 1 and ε → 0 simultaneously, with the
scaling

1− ξ ∼ ε2. (A.60)

We eliminate the variable ε by introducing a parameter λ such that

ε =
1

λ

√
1− ξ (A.61)

We then study the behavior of the propagators P̂ in the ξ → 1 limit assuming that λ is constant when ξ → 1. We get

P̂(r|0; ξ, ε) =
ξ→1


λ

L
√

1 + λ2
√

1− ξ
− 2r1

L

(
1 +

1

L
√

1 + λ2

)
+

1

2L
√

1 + λ2

2− λ2

1 + λ2
+ Φ(r) +O(

√
1− ξ) if r1 ≥ 0 ,

λ

L
√

1 + λ2
√

1− ξ
+

2r1

L

(
1− 1

L
√

1 + λ2

)
+

1

2L
√

1 + λ2

2− λ2

1 + λ2
+ Φ(r) +O(

√
1− ξ) if r1 < 0 .

(A.62)
Recalling the expression of Φ(r) (A.59), we finally obtain

P̂(r|0; ξ, ε) =
ξ→1

λ

L
√

1 + λ2
√

1− ξ
− 2r1

L

1√
1 + λ2

+
1

2L
√

1 + λ2

2− λ2

1 + λ2
+ S

(2)
L,−1 −∆(r) +O(

√
1− ξ) (A.63)

where ∆(r) is given by (A.57).



APPENDIX B

Propagators of a random walk on a
capillary-like lattice

In this Appendix, we consider a capillary-like lattice, which is infinite in a direction and finite of width L with periodic
boundary conditions in the other directions (Fig. B.1). We compute the propagators associated to a symmetric nearest-neighbor
random walk, and consider their long-time limit. We compute the propagators associated to a biased random walk (where the
bias only affects the infinitely extended direction of the stripe), in the long-time limit and in the limit of a small bias. Finally,
we study the biased propagators in a joint limit of long time and small bias.

L

L

1
2

3

Figure B.1: Capillary-like geometry. The lattice is infinite in the first direction (which will be the direc-
tion of the external force imposed on the TP), and finite of width L with periodic boundary conditions
in the other directions.

B.1 Propagators of a symmetric random walk
Adapting to the case of the three-dimensional capillaries the expressions used in the case of the stripe-like capillary (A.10), we
write the general expression of the propagators:

P̂ (r|0; ξ) =
1

L2

L−1∑
k2,k3=0

1

2π

∫ π

−π
dk1

e−ik1r1e−
2iπk2r2

L e−
2iπk3r3

L

1− ξλ(k)
, (B.1)

where

λ(k) =
1

3

(
cos k1 + cos

2πk2

L
+ cos

2πk3

L

)
. (B.2)

This propagator can be computed explicitly. For a given site r = (r1, r2, r3), we write

P̂ (r|0; ξ) =
1

L2

L−1∑
k2,k3=0

1

2π
e−

2iπk2r2
L e−

2iπk3r3
L f(r1), (B.3)

with

f(r1) =

∫ π

−π
dk1

e−ik1r1

1− ξ
3

(
cos k1 + cos 2πk2

L
cos 2πk3

L

) . (B.4)
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With the change of variable u = e−ik1 , and denoting by C the unit circle, we get

f(r1) = −
∮
C

du

−iu

ur1

1− ξ
3

[
1
2

(
u+ 1

u

)
+ cos 2πk2

L
+ cos 2πk3

L

] , (B.5)

=
6i

ξ

∮
C

du
ur1

(u− U1)(u− U2)
, (B.6)

where we defined

U1
2

=
3

ξ
−
(

cos
2πk2

L
+ cos

2πk3

L

)
±

√(
3

ξ
− cos

2πk2

L
− cos

2πk3

L

)2

− 1. (B.7)

For 0 < ξ < 1 and 0 ≤ k2 ≤ L − 1, one shows that U2 is in the contour C and U1 is outside. Depending on the value of r1,
we determine the singularities of f contained in C, and we apply the residue theorem. Finally, the propagators write:

• if r1 ≥ 0:

P̂ (r1, r2, r3|0; ξ) =
1

L2

L−1∑
k2,k3=0

e−
2iπ(k2r2+k3r3)

L
U2

r1√[
1− ξ

3

(
cos 2πk2

L
+ cos 2πk3

L

)]2 − ξ2

9

(B.8)

• if r1 < 0:

P̂ (r1, r2, r3|0; ξ) =
1

L2

L−1∑
k2,k3=0

e−
2iπ(k2r2+k3r3)

L
1

U1
|r1|

1√[
1− ξ

3

(
cos 2πk2

L
+ cos 2πk3

L

)]2 − ξ2

9

(B.9)

The propagators needed in Section 4.4.3 to compute the matrices A and P then write

P̂ (0|0; ξ) = CL,0(ξ), (B.10)

P̂ (e1|0; ξ) =
3

ξ
[CL,0(ξ)− 1]− CL,1(ξ), (B.11)

P̂ (e2|0; ξ) =
1

2
CL,1(ξ), (B.12)

P̂ (2e1|0; ξ) = −18

ξ2
+

(
18

ξ2
− 1

)
CL,0(ξ)− 12

ξ
CL,1(ξ) + 2CL,2(ξ), (B.13)

P̂ (2e2|0; ξ) = CL,2(ξ)− 2DL(ξ)− CL,0(ξ), (B.14)

P̂ (e1 + e2|0; ξ) =
3

2ξ
CL,1(ξ)− 1

2
CL,2(ξ), (B.15)

P̂ (e2 + e3|0; ξ) = DL(ξ), (B.16)

where we introduced the quantities

CL,n(ξ) =
1

L2

L−1∑
k2,k3=0

(
cos 2πk2

L
+ 2πk3

L

)n√[
1− ξ

3

(
cos 2πk2

L
+ 2πk3

L

)]2 − ξ2

9

, (B.17)

DL(ξ) =
1

L2

L−1∑
k2,k3=0

cos 2πk2
L

cos 2πk3
L√[

1− ξ
3

(
cos 2πk2

L
+ 2πk3

L

)]2 − ξ2

9

. (B.18)

In the quantities CL,n(ξ), the term of the sum obtained for (k2, k3) = (0, 0) diverges when ξ → 1, whereas the other ones
tend to finite values. We then write:

CL,n(ξ) =
1

L2

2n√(
1− 2ξ

3

)2 − ξ2

9

+
1

L2

L−1∑
k2,k3=0

(k2,k3)6=(0,0)

(
cos 2πk2

L
+ cos 2πk3

L

)n√[
1− ξ

3

(
cos 2πk2

L
+ 2πk3

L

)2]2 − ξ2

9

. (B.19)

We write separately the expansions of these two terms:

frac1L2 2n√(
1− 2ξ

3

)2 − ξ2

9

=
2n−1

√
6

L2
√

1− ξ
− 2n−3

√
6

L2

√
1− ξ +O[(1− ξ)3/2], (B.20)
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1

L2

L−1∑
k2,k3=0

(k2,k3)6=(0,0)

(
cos 2πk2

L
+ cos 2πk3

L

)n√[
1− ξ

3

(
cos 2πk2

L
+ 2πk3

L

)2]2 − ξ2

9

= S
(3)
L,n +O(1− ξ), (B.21)

where we defined

S
(3)
L,n ≡

1

L2

L−1∑
k2,k3=0

(k2,k3)6=(0,0)

(
cos 2πk2

L
+ cos 2πk3

L

)n√[
1− 1

3

(
cos 2πk2

L
+ 2πk3

L

)2]2 − 1
9

. (B.22)

Finally, we write the expansion of CL,n(ξ):

CL,n(ξ) =
2n−1

√
6

L2
√

1− ξ
+ S

(3)
L,n −

2n−3
√

6

L2

√
1− ξ +O(1− ξ). (B.23)

Similarly, we show that

DL(ξ) =

√
6

2L2
√

1− ξ
+ TL −

√
6

8L2

√
1− ξ +O(1− ξ), (B.24)

where

TL ≡
1

L2

L−1∑
k2,k3=0

(k2,k3) 6=(0,0)

cos 2πk2
L

cos 2πk3
L√[

1− 1
3

(
cos 2πk2

L
+ 2πk3

L

)2]2 − 1
9

. (B.25)

Finally, the expansions of the propagators in the ξ → 1 limit are found to be given by

P̂ (0|0; ξ) =

√
6

2L2
√

1− ξ
+ S

(3)
L,0 −

√
6

8L2

√
1− ξ +O(1− ξ), (B.26)

P̂ (e1|0; ξ) =

√
6

2L2
√

1− ξ
+ 3S

(3)
L,0 − 3− S(3)

L,1 +
11
√

6

8L2

√
1− ξ +O(1− ξ), (B.27)

P̂ (e2|0; ξ) =

√
6

2L2
√

1− ξ
+

1

2
S

(3)
L,1

√
6

8L2

√
1− ξ +O(1− ξ), (B.28)

P̂ (2e1|0; ξ) =

√
6

2L2
√

1− ξ
− 18 + 17S

(3)
L,0 − 12S

(3)
L,1 + 2S

(3)
L,2 +

47
√

6

8L2

√
1− ξ +O(1− ξ), (B.29)

P̂ (2e2|0; ξ) =

√
6

2L2
√

1− ξ
+ S

(3)
L,2 − 2TL − S(3)

L,0 −
√

6

8L2

√
1− ξ +O(1− ξ), (B.30)

P̂ (e1 + e2|0; ξ) =

√
6

2L2
√

1− ξ
+

3

2
S

(3)
L,1 −

1

2
S

(3)
L,2 +

11
√

6

8L2

√
1− ξ +O(1− ξ), (B.31)

P̂ (e2 + e3|0; ξ) =

√
6

2L2
√

1− ξ
+ TL −

√
6

8L2

√
1− ξ +O(1− ξ). (B.32)

B.2 Propagators of a biased random walk

B.2.1 General formulation
When the vacancies are assumed to undergo a biased proportional to ε in the −1 direction (Fig. 4.7), the structure function of
the walk writes:

λ(k) = p̃1eik1 + p̃−1e−ik1 + 2p̃2

(
cos

2πk2

L
+ cos

2πk3

L

)
. (B.33)

where the jump probabilities p̃ν are given by

p̃−1 =
1

1 + ε

(
1

6
+ ε

)
(B.34)

p̃1 = p̃±2 = p̃±3 =
1

6(1 + ε)
(B.35)

The associated propagators are

P̂(r|0; ξ, ε) =
1

L

L−1∑
k2,k3=0

1

2π
e−

2iπk2r2
L e−

2iπk3r3
L

∫ π

−π
dk1

e−ik1r1

1− ξ
[
p̃1eik1 + p̃−1e−ik1 + 2p̃2

(
cos 2πk2

L
+ cos 2πk3

L

)] .
(B.36)
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The explicit computation of the integral over k1 is similar as the one performed in the case of non-biased propagators. With
the change of variable u = e−ik1 and applying the residue theorem, one gets

P̂(r|0; ξ, ε) =
1

L2

L−1∑
k2,k3=0

e−
2iπk2r2

L e−
2iπk3r3

L f(r1, k2, k3). (B.37)

with

f(r1, k2, k3; ξ, ε) =

{
1

ξp̃−1

U2(ξ,ε)r1

U1(ξ,ε)−U2(ξ,ε)
if r1 ≥ 0

1
ξp̃−1

1

U1(ξ,ε)|r1|[U1(ξ,ε)−U2(ξ,ε)]
if r1 < 0.

(B.38)

and

U1
2
(ξ, ε) =

1

2ξp̃−1

[
1− 2ξp̃2

(
cos

2πk2

L
+ cos

2πk3

L

)]

±1

2

√
1

(ξp̃−1)2

[
1− 2ξp̃2

(
cos

2πk2

L
+ cos

2πk3

L

)]2

− 4
p̃1

p̃−1
(B.39)

We are interested in the limiting behavior of the propagators P̂ when ε goes to 0 and ξ goes to one. In what follows, we show
that these two limits do not commute. The case where the limit ε→ 0 is taken first actually corresponds with the study of the
unbiased propagators P̂ in the long-time limit (see Section B.1).

B.2.2 Small bias expansion of the propagators in the long-time limit
The divergence of the propagators P̂ and P̂ is due to the cancellation of the denominator U1 − U2. For any value of ξ and ε,
we find that

U1(ξ, ε)− U2(ξ, ε) =
2√

1 + 6ε

√
9

1 + 6ε

[
1 + ε

ξ
− 1

3

(
cos

2πk2

L
+ cos

2πk3

L

)]2

− 1. (B.40)

Taking ξ = 1 and ε = 0 in this expression, one gets:

U1(1, 0)− U2(1, 0) = 6

√[
1− 1

3

(
cos

2πk2

L
+ cos

2πk3

L

)]2

− 1

9
. (B.41)

This quantity is equal to zero when (k2, k3) = (0, 0) and nonzero otherwise (as long as 0 ≤ k2, k3 ≤ L − 1). In order to
study the divergence of the propagators, we then write

P̂(r|0; ξ, ε) =
1

L
f(r1, k2 = 0, k3 = 0; ξ, ε) + φ(r; ξ, ε) (B.42)

where the function φ is defined as

φ(r; ξ, ε) ≡ 1

L2

L−1∑
k2,k3=0

(k2,k3)6=(0,0)

e−
2iπk2r2

L e−
2iπk3r3

L f(r1, k2, k3), (B.43)

and has the following property:

lim
ξ→1

[
lim
ε→0

φ(r; ξ, ε)
]

= lim
ε→0

[
lim
ξ→1

φ(r; ξ, ε)

]
≡ Φ(r) (B.44)

Using these notations, and the definition of f (B.38), we obtain the following expansions, where we carefully consider the two
possible orders for the limits:

1. if we first take ε→ 0 and ultimately ξ → 1, one obtains

P̂(r|0; ξ, ε = 0) = P̂ (r|0; ξ) =
ξ→1

√
6

2L2
√

1− ξ
− 3|r1|

L2
+ Φ(r) +O(

√
1− ξ) (B.45)

Note that this corresponds to the random walk of an unbiased vacancy on the lattice, and that the following result is
simply a rewriting of the results from Section B.1.
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2. if we first take ξ → 1 and ultimately ε→ 0, one obtains

P̂(r|0; ξ = 1, ε) =
ε→0


1

L2ε
+

1− 6r1

L
+ Φ(r) +O(ε) if r1 ≥ 0 ,

1

L2ε
+

1

L2
+ Φ(r) +O(ε) if r1 < 0 .

(B.46)

Then, the expansions of P̂(r|0; ξ = 1, ε) in the ε → 0 limit are known as soon as the quantities Φ(r) are knwon. They can
be computed from the expansions of P̂ (B.26)-(B.32): introducing the quantity

∆(r) = lim
ξ→1

[
P̂ (0|0; ξ)− P̂ (r|0; ξ)

]
, (B.47)

one gets

Φ(r) =
3|r1|
L2

+ S
(3)
L,0 −∆(r). (B.48)

Combining with (B.46), we finally write:

P̂(r|0; ξ = 1, ε) =
ε→0

1

L2ε
+

1

L2
− 3r1

L2
+ S

(3)
L,0 −∆(r) (B.49)

B.2.3 Joint expansion of the propagators
As it is suggested in Section 4.8.3, we study the propagators P̂ in the limit where ξ → 1 and ε → 0 simultaneously, with the
scaling

1− ξ ∼ ε2. (B.50)

We eliminate the variable ε by introducing a parameter λ such that

ε =
1

λ

√
1− ξ. (B.51)

We then study the behavior of the propagators P̂ in the ξ → 1 limit assuming that λ is constant when ξ → 1. We get

P̂(r|0; ε) =
ε→0



λ

L2
√

1 + 2λ2/3
√

1− ξ
− 3r1

L2

(
1 +

1√
1 + 2λ2/3

)
+

1

L2
√

1 + 2λ2/3

3− 2λ2

3 + 2λ2
+ Φ(r) +O(

√
1− ξ) if r1 ≥ 0 ,

λ

L2
√

1 + 2λ2/3
√

1− ξ
+

3r1

L2

(
1− 1√

1 + 2λ2/3

)
+

1

L2
√

1 + 2λ2/3

3− 2λ2

3 + 2λ2
+ Φ(r) +O(

√
1− ξ) if r1 < 0 .

(B.52)

Recalling the expression of Φ(r) (B.48), we finally obtain

P̂(r|0; ε) =
ε→0

λ

L2
√

1 + 2λ2/3
√

1− ξ
− 3r1

L2

1√
1 + 2λ2/3

+
1

L2
√

1 + 2λ2/3

3− 2λ2

3 + 2λ2
+ S

(3)
L,0 −∆(r) +O(

√
1− ξ),

(B.53)

where ∆(r) is given by (B.47).





APPENDIX C

Propagators of a random walk on a
two-dimensional lattice

C.1 Propagators of a symmetric random walk
Using the same definitions as in Section A.1, we have the following expression of the Fourier-Laplace transform of the propa-
gator: ˜̂

P (k|0; ξ) =
1

1− ξλ(k)
(C.1)

where the Fourier transform is defined as

˜̂
P (k|0; ξ) =

∞∑
r1,r2=−∞

eir1k1eir2k2 P̂ (r|0; ξ) (C.2)

and the structure function of symmetric random walk is

λ(k) =
1

2
(cos k1 + cos k2). (C.3)

The general expression of a given propagator P̂ (r|0; ξ) is then

P̂ (r|0; ξ) =
1

(2π)2

∫ π

−π
dk1

∫ π

−π
dk2

e−ik1r1e−ik2r2

1− ξ
2
(cos k1 + cos k2)

(C.4)

As it was shown in Section 4.5.1, four propagators (with r = 0, e1, 2e1, e1 + e2) are needed in order to perform the
computation of the matrices A and P. Using the general relation between propagators (4.40) for r0 = 0 and r = 0, e1, we
obtain the relations

P̂ (0|0; ξ) = 1 + ξP̂ (e1|0; ξ), (C.5)

P̂ (e1|0; ξ) =
ξ

4

[
P̂ (2e1|0; ξ) + P̂ (0|0; ξ) + 2P̂ (e1 + e2|0; ξ)

]
. (C.6)

We then express P̂ (e1|0; ξ) and P̂ (e1 + e2|0; ξ) in terms of P̂ (0|0; ξ) and P̂ (2e1|0; ξ):

P̂ (e1|0; ξ) =
P̂ (0|0; ξ)− 1

ξ
, (C.7)

P̂ (e1 + e2|0; ξ) =

(
2

ξ2
− 1

2

)
P̂ (0|0; ξ)− 1

2
P̂ (2e1|0; ξ)− 2

ξ2
. (C.8)

The propagator P̂ (0|0; ξ) has been shown to be simply expressed as a special function [58]:

P̂ (0|0; ξ) =
2

π
K(ξ) (C.9)

where K is the complete elliptic integral of the first kind, defined by

K(x) =

∫ π/2

0

dψ√
1− x2 sin2 ψ

. (C.10)

Its expansion in powers of (1− x) is known [1] to be

K(x) =
x→1

1

2
ln

1

1− x +
1

2
ln 8 +

1

4
(1− x) ln

1

1− x +O(1− x). (C.11)
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We then get the expansion

P̂ (0|0; ξ) =
ξ→1

1

π
ln

1

1− ξ +
ln 8

π
+

1

2π
(1− ξ) ln

1

1− ξ +O(1− ξ). (C.12)

The evaluation of P̂ (2e1|0; ξ) near ξ = 1 has been given in [85, 22]:

P̂ (2e1|0; ξ) =
ξ→1

1

π
ln

1

1− ξ +
ln 8

π
− 4 +

8

π
+

9

2π
(1− ξ) ln

1

1− ξ +O(1− ξ) (C.13)

C.2 Propagators of a biased random walk

C.2.1 Method
When the vacancies are assumed to undergo a biased proportional to ε in the −1 direction (Fig. 4.7), the structure function of
the walk writes:

λ(k) = p̃1eik1 + p̃−1e−ik1 + 2p̃2 cos k2, (C.14)

where the jump probabilities p̃ν are given by

p̃−1 =
1

1 + ε

(
1

4
+ ε

)
, (C.15)

p̃1 = p̃±2 =
1

4(1 + ε)
, (C.16)

and the generating function associated to a propagator Pt(r|0; ξ, ε) is

P̂(r|0; ξ, ε) =
1

(2π)2

∫ π

−π
dk1

∫ π

−π
dk2

e−ik1r1e−ik2r2

1− ξ(p̃1eik1 + p̃−1e−ik1+ + 2p̃2 cos k2)
. (C.17)

In the limit where ξ is taken equal to 1 and ε → 0, the method to compute the propagators is as follows. We will first write
them in terms of the propagators P̂(0|0; ξ, ε):

P̂(r|0; ξ = 1, ε) = P̂(0|0; ξ = 1, ε)−
[
P̂(0|0; ξ = 1, ε)− P̂(r|0; ξ = 1, ε)

]
(C.18)

It will then be shown that the quantity P̂(0|0; ξ, ε) diverges when ε→ 0, and we will compute its expansion up to orderO(1).

Then, we will show that the differences ∆̃(r, ξ, ε) ≡
[
P̂(0|0; ξ, ε)− P̂(r|0; ξ, ε)

]
are of order 1 when ξ is taken equal to 1

and when ε→ 0. Moreover, in Section C.2.3, we will show the relation

lim
ε→0

[
P̂(0|0; ξ = 1, ε)− P̂(r|0; ξ = 1, ε)

]
= lim

ξ→1

[
P̂(0|0; ξ, ε = 0)− P̂(r|0; ξ, ε = 0)

]
(C.19)

= lim
ξ→1

[
P̂ (0|0; ξ)− P̂ (r|0; ξ)

]
(C.20)

= ∆(r) (C.21)

Then, (C.18) will give an expansion of P̂(r|0; ξ = 1, ε) up to order O(1).

C.2.2 Calculation of P̂(0|0; ξ = 1, ε)

Starting from the expression

P̂(0|0; ξ = 1, ε) =
1

(2π)2

∫ π

−π
dk1

∫ π

−π
dk2

1

1− (p̃1eik1 + p̃−1e−ik1+ + 2p̃2 cos k2)
, (C.22)

we first compute the integral over k1. With the change of variable u = e−ik1 , we get∫ π

−π
dk1

1

1− (p̃1eik1 + p̃−1e−ik1+ + 2p̃2 cos k2)
=

i

p̃−1

∮
C

du

u2 − u
p̃−1

(1− 2p̃2 cos k2) + p̃1
p̃−1

, (C.23)
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where C is the unit circle. The roots of the denominator are

U1
2

=
1

2

[
1− 2p̃2 cos k2

p̃−1
±

√
(1− 2p̃2 cos k2)2

p̃2
−1

− 4p̃1

p̃−1

]
. (C.24)

Noticing that U2 is in C and applying the residue theorem, we get∫ π

−π
dk1

1

1− (p̃1eik1 + p̃−1e−ik1+ + 2p̃2 cos k2)
=

2π√
(1− 2p̃2 cos k2)2 − 4p̃1p̃−1

, (C.25)

and finally, with the parity of this quantity,

P̂(0|0; ξ = 1, ε) =
1

π

∫ π

0

dk2
1√

(1− 2p̃2 cos k2)2 − 4p̃1p̃−1

. (C.26)

With the change of variable t = cos k2, we find

P̂(0|0; ξ = 1, ε) =
1

π

∫ 1

−1

dt√
1− t2

1√
(1− 2p̃2t)2 − 4p̃1p̃−1

, (C.27)

=
1

2πp̃2

∫ 1

−1

dt√
1− t

√
1 + t

√
a+ − t

√
a− − t

, (C.28)

with

a± =
1± 2

√
p̃1p̃−1

2p̃2
. (C.29)

This integral can be expressed in terms of the complete elliptic integral of the first kind (Eq. C.10):

P̂(0|0; ξ = 1, ε) =
1

2πp̃2

2√
a− + 1

√
a+ − 1

K

(√
2(a+ − a−)

(a− + 1)(a+ − 1)

)
. (C.30)

Recalling the definitions of p̃ and the expansion of K (C.11), we finally get

P̂(0|0; ξ = 1, ε) =
ε→0

2

π
ln

1

ε
+

ln 8

π
+O(ε2 ln ε) (C.31)

C.2.3 Calculation of the differences ∆̃(r, ε)

In this Section, we demonstrate the relation (C.19). We compute the difference between the propagators P̂(0|0; ξ, ε) and
P̂(r|0; ξ, ε):

∆̃(r, ξ, ε) ≡
[
P̂(0|0; ξ, ε)− P̂(r|0; ξ, ε)

]
(C.32)

=
1

(2π)2

∫ π

−π
dk2

∫ π

−π
dk1

e−in1k1e−in2k2 − 1

1− ξ(p̃1eik1 + p̃−1e−ik1 + 2p̃2 cos k2)
(C.33)

The integral over k1 is evaluated by introducing the change of variable u = e−ik1 . Denoting by C the unit circle, we get∫ π

−π
dk1

e−in1k1e−in2k2 − 1

1− ξ(p̃1eik1 + p̃−1e−ik1 + 2p̃2 cos k2)
= i

∮
C

du

ξp̃−1

un1e−in2k2 − 1

(u− U1)(u− U2)
, (C.34)

with

U1
2

=
1

2

[
1− 2ξp̃2 cos k2

ξp̃−1
±

√
(1− 2p̃2 cos k2)2

ξ2p̃2
−1

− 4p̃1

p̃−1

]
. (C.35)

Finally, noticing that U2 is the only singularity in C and applying the residue theorem, we get

∆̃(r, ξ, ε) =
1

2π

∫ π

−π

dk2

ξp̃−1

1− U2
n1e−in2k2

U2 − U1
(C.36)

=
1

π

∫ π

0

dk2

ξp̃−1

1− U2
n1 cos(n2k2)

U2 − U1
. (C.37)



224 Appendix C. Propagators of a random walk on a two-dimensional lattice

Taking ξ = 1 and ε = 0 (i.e. pν = 1/4 for all ν), ∆̃(r, ξ, ε) becomes

∆̃(r, ξ = 1, ε = 0) =
1

π

∫ π

0

dk2

2n1 cos(n2k2)

[
1− 1

2
cos k2 −

√(
1− 1

2
cos k2

)2 − 1
4

]n1

− 1√(
1− 1

2
cos k2

)2 − 1
4

. (C.38)

This integral is defined, so that ∆̃(r, ξ = 1, ε = 0) takes a finite value and the limits ξ → 1 and ε → 0 commute. We finally
obtain (C.19):

lim
ε→0

[
P̂(0|0; ξ = 1, ε)− P̂(r|0; ξ = 1, ε)

]
= lim
ξ→1

[
P̂(0|0; ξ, ε = 0)− P̂(r|0; ξ, ε = 0)

]
(C.39)

C.2.4 Joint limit of ξ → 1 and ε→ 0

We finally obtain the expansion of P̂(0|0; ξ, ε) in the limit where ξ → 1 and ε→ 0 with the scaling

1− ξ ∼ ε2. (C.40)

In the this limit, we will apply the same method as previously, and write

P̂(r|0; ξ, ε) = P̂(0|0; ξ, ε)−
[
P̂(0|0; ξ, ε)− P̂(r|0; ξ, ε)

]
. (C.41)

The expansion of P̂(0|0; ξ, ε) in the joint limit will be computed. The quantity between the square brackets will be equal to
∆(r) at leading order in this joint limit. We will finally obtain an expansion of P̂(0|0; ξ, ε) in the joint limit up to orderO(1).
In order to compute an expansion for P̂(0|0; ξ, ε), we start from its expression

P̂(0|0; ξ, ε) =
1

(2π)2

∫ π

−π
dk1

∫ π

−π
dk2

1

1− ξ(p̃1eik1 + p̃−1e−ik1+ + 2p̃2 cos k2)
, (C.42)

The calculation of P̂(0|0; ξ = 1, ε) may then be simply extended, in order to obtain

P̂(0|0; ξ = 1, ε) =
1

2πp̃2

2√
a′− + 1

√
a′+ − 1

K

(√
2(a′+ − a′−)

(a′− + 1)(a′+ − 1)

)
(C.43)

with

a′± =
1± 2ξ

√
p̃1p̃−1

2ξp̃2
(C.44)

The joint expansion is obtained as follows: we replace ε by
√

1− ξ/λ where λ is a constant. After a cumbersome but
straightforward computation, we get

P̂(0|0; ξ, ε) =
ξ→1

1

π
ln

(
1

1− ξ
λ2

λ2 + 1

)
+

ln 8

π
+ . . . (C.45)

We finally retrieve the ε-dependence:

P̂(0|0; ξ, ε) =
ε∼
√

1−ξ
ξ→1

1

π
ln

1

1− ξ + ε2
+

ln 8

π
+ . . . (C.46)

Finally, using (C.41), we obtain the expansion of any propagator P̂(r|0; ξ, ε) in the joint limit with the formula

P̂(r|0; ξ, ε) =
ε∼
√

1−ξ
ξ→1

1

π
ln

1

1− ξ + ε2
+

ln 8

π
−∆(r) + . . . (C.47)

where ∆(r) was defined in (C.21).



APPENDIX D

Capillary geometry: expression of Ω̂(k1; ξ)

and of the conditional FPTD F̂ ∗

D.1 Expression of Ω̂(k1; ξ)

Using this expression of T (4.72), we can express the determinant D(k; ξ),

D(k1; ξ) = −b2−c+(D0 +D1eik1 +D−1e−ik1) (D.1)

where

D0 = (F ∗−1,−1F
∗
1,1 − F ∗−1,1F

∗
1,−1 − 1)(b+ + 2F ∗2,3) + 4(F ∗2,−1b1 + F ∗2,1b−1) (D.2)

D±1 = F ∗±1,∓1b+ − 4F ∗2,∓1F
∗
±1,2 + 2F ∗±1,∓1F

∗
2,3 (D.3)

and

b± = F ∗2,−2 ± F ∗2,2 − 1 (D.4)

b±1 = F ∗∓1,±1F
∗
±1,2 − F ∗±1,±1F

∗
∓1,2 (D.5)

c+ = b+ − 2F ∗2,3. (D.6)

Expressing Uµ(k1; ξ) using (2.15), we can express the single-vacancy propagator

̂̃
P

(1)

(k1|Y0; ξ) =
1

1− ξ
D0 − σ1(Y0)− σ−1(Y0) + [D1 + σ1(Y0)] eik1 + [D−1 + σ−1(Y0)] e−ik1

D0 +D1eik1 +D−1e−ik1
(D.7)

with

σ±1(Y0) = F ∗±1,Y0
[−b+ − 2F ∗2,3 + F ∗∓1,∓1b+ − 4F ∗2,∓1F

∗
∓1,2 + 2F ∗∓1,∓1F

∗
2,3]

+ F ∗∓1,Y0
[−F ∗±1,∓1b+ + 4F ∗2,∓1F

∗
±1,2 − 2F ∗±1,∓1F

∗
2,3]

+

∑
µ6=±1

F ∗µ,Y0

 (F ∗±1,2 + b∓1). (D.8)

and
F ∗µ,Y0

= F ∗(0|eµ|Y0; ξ). (D.9)

We finally obtain

Ω̂(k1; ξ) =
1

1− ξ
∑
ν

∑
Y 6=0

F ∗(0|eν |Y; ξ)


×
{

1− eik·eν
D0 − σ1(−eν)− σ−1(−eν) + [D1 + σ1(−eν)] eik1 + [D−1 + σ−1(−eν)] e−ik1

D0 +D1eik1 +D−1e−ik1

}
. (D.10)
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D.2 Expression of P
Using appropriate symmetry relations, the matrix P writes

P =



P̂0,0,0 P̂1,0,0 P̂1,0,0 P̂0,1,0 P̂0,1,0 P̂0,1,0 P̂0,1,0

P̂0,1,0 P̂1,0,0 P̂2,0,0 P̂1,1,0 P̂1,1,0 P̂1,1,0 P̂1,1,0

P̂1,0,0 P̂2,0,0 P̂0,0,0 P̂1,1,0 P̂1,1,0 P̂1,1,0 P̂1,1,0

P̂0,1,0 P̂1,1,0 P̂1,1,0 P̂0,0,0 P̂0,2,0 P̂0,1,1 P̂0,1,1

P̂0,1,0 P̂1,1,0 P̂1,1,0 P̂0,2,0 P̂0,0,0 P̂0,1,1 P̂0,1,1

P̂0,1,0 P̂1,1,0 P̂1,1,0 P̂0,1,1 P̂0,1,1 P̂0,0,0 P̂0,2,0

P̂0,1,0 P̂1,1,0 P̂1,1,0 P̂0,1,1 P̂0,1,1 P̂0,2,0 P̂0,0,0


(D.11)

where we used the short notation P̂r1,r2,r3 ≡ P̂ (r1e1 + r2e2 + r3e3|0; ξ). A computation of these propagators is given in
Appendix B.

D.3 Expression ofA
Extending the calculation from Section 4.3.2.1, we obtain an expression for the coefficients of A :

A(si|0; ξ) = δi,0 − (1− ξ)P̂ (si|0; ξ), (D.12)

A(si|eν ; ξ) =

(
1

pν + 5/6
− 1

)[
P̂ (si|eν ; ξ)− δi,ν − ξP̂ (si|0; ξ)

]
, (D.13)

so that A is the following 7× 7 matrix:

A =



1− (1− ξ)P̂0,0,0 r1(ξP̂0,0,0 − P̂1,0,0) r−1(ξP̂0,0,0 − P̂1,0,0) r2(ξP̂0,0,0 − P̂0,1,0) . . .

−(1− ξ)P̂1,0,0 r1(ξP̂1,0,0 − P̂0,0,0 + 1) r−1(ξP̂1,0,0 − P̂2,0,0) r2(ξP̂1,0,0 − P̂1,1,0) . . .

−(1− ξ)P̂1,0,0 r1(ξP̂1,0,0 − P̂2,0,0) r−1(ξP̂1,0,0 − P̂0,0,0 + 1) r2(ξP̂1,0,0 − P̂1,1,0) . . .

−(1− ξ)P̂0,1,0 r1(ξP̂0,1,0 − P̂1,1,0) r−1(ξP̂0,1,0 − P̂1,1,0) r2(ξP̂0,1,0 − P̂0,0,0 + 1) . . .

−(1− ξ)P̂0,1,0 r1(ξP̂0,1,0 − P̂1,1,0) r−1(ξP̂0,1,0 − P̂1,1,0) r2(ξP̂0,1,0 − P̂0,2,0) . . .

−(1− ξ)P̂0,1,0 r1(ξP̂0,1,0 − P̂1,1,0) r−1(ξP̂0,1,0 − P̂1,1,0) r2(ξP̂0,1,0 − P̂0,1,0) . . .

−(1− ξ)P̂0,1,0 r1(ξP̂0,1,0 − P̂1,1,0) r−1(ξP̂0,1,0 − P̂1,1,0) r2(ξP̂0,1,0 − P̂0,1,0) . . .

. . . r2(ξP̂0,0,0 − P̂0,1,0) r2(ξP̂0,0,0 − P̂0,1,0) r2(ξP̂0,0,0 − P̂0,1,0)

. . . r2(ξP̂1,0,0 − P̂1,1,0) r2(ξP̂1,0,0 − P̂1,1,0) r2(ξP̂1,0,0 − P̂1,1,0)

. . . r2(ξP̂1,0,0 − P̂1,1,0) r2(ξP̂1,0,0 − P̂1,1,0) r2(ξP̂1,0,0 − P̂1,1,0)

. . . r2(ξP̂0,1,0 − P̂0,2,0) r2(ξP̂0,1,0 − P̂0,1,0) r2(ξP̂0,1,0 − P̂0,1,0)

. . . r2(ξP̂0,1,0 − P̂0,0,0 + 1) r2(ξP̂0,1,0 − P̂0,1,0) r2(ξP̂0,1,0 − P̂0,1,0)

. . . r2(ξP̂0,1,0 − P̂0,1,0) r2(ξP̂0,1,0 − P̂0,0,0 + 1) r2(ξP̂0,1,0 − P̂0,2,0)

. . . r2(ξP̂0,1,0 − P̂0,1,0) r2(ξP̂0,1,0 − P̂0,2,0) r2(ξP̂0,1,0 − P̂0,0,0 + 1)


,

(D.14)

where we defined rν = 1
pν+5/6

− 1.



APPENDIX E

Stripe-like geometry: intermediate
quantities

In this Appendix, we give the expansions of the quantities σ±1(eν), D0, D±1 and σ±1(eν) involved in the calculation of the
fluctuations (4.30) and mean (5.2) of the position of the TP in the case of a stripe-like lattice.

E.1 First limit
σ±1(eν) − 1

S p±1(α− 4)(4 + α− 4β) + . . .

D0 − 1
S (p1 + p−1)(α− 4)(4 + α− 4β) + . . .

D±1
1
S p±1(α− 4)(4 + α− 4β) + . . .

D0 +D1 +D−1
1
S (4 + α− 4β)[4− α+ 4α(p1 + p−1)]L

√
1− ξ + . . .

F ′1 + F ′−1
1
S

L√
1−ξ [8αp1p−1 − (α− 4)(p1 + p−1)][2(α− 6β + 4)(p1 + p−1)− α+ 8β − 4] + . . .

F ′1 − F ′−1 − L
S
√

1−ξ (α− 4)(p1 − p−1)[2(α− 6β + 4)(p1 + p−1)− α+ 8β − 4]∑
ν F
′
ν(ξ) L√

1−ξ + . . .

S = 8α(α− 4β + 2)(p1 + p−1)3 − 4(3α− 4)(α− 4β + 2)(p1 + p−1)2

+
[
6α2 − 24αβ + 64β − 32− 8α(α− 4β + 2)(p1 − p−1)2] (p1 + p−1)

+2α(3α− 12β + 4)(p1 − p−1)2 − (α− 4)(4 + α− 4β), (E.1)

E.2 Second limit
σ±1(eν) − 1

S p±1(α− 4)(4 + α− 4β) + . . .

D0 − 1
S (p1 + p−1)(α− 4)(4 + α− 4β) + . . .

D±1
1
S p±1(α− 4)(4 + α− 4β) + . . .

D0 +D1 +D−1
1
S ε(4 + α− 4β)[L(4− α) + 4Lα(p1 + p−1) + 16(p1 − p−1)] + . . .

F ′1 + F ′−1 O
(

ε
1−ξ

)
F ′1 − F ′−1 O

(
ε

1−ξ

)
∑
ν F
′
ν(ξ) εL

1−ξ + . . .

E.3 Joint limit
σ±1(eν) − 1

S p±1(α− 4)(4 + α− 4β) + . . .

D0 − 1
S (p1 + p−1)(α− 4)(4 + α− 4β) + . . .

D±1
1
S p±1(α− 4)(4 + α− 4β) + . . .

D0 +D1 +D−1

√
1−ξ

Sλ
√

1+λ2
(4 + α− 4β)[L(4− α)(1 + λ2) + 4Lα(1 + λ2)(p1 + p−1)

+16(p1 − p−1)
√

1 + λ2] + . . .

F ′1 + F ′−1 O
(

1√
1−ξ

)
F ′1 − F ′−1 O

(
1√
1−ξ

)
∑
ν F
′
ν(ξ)

L
√

1+λ2

λ
√

1−ξ + . . .





APPENDIX F

Capillary-like geometry: intermediate
quantities

In this Appendix, we give the expansions of the quantities σ±1(eν), D0, D±1 and σ±1(eν) involved in the calculation of the
fluctuations (4.80) and mean (5.18) of the position of the TP in the case of a capillary-like lattice.

F.1 First limit
σ±1(eν) − 2

S p±1(α− 6)(6 + α− 6β) + . . .

D0 − 2
S (p1 + p−1)(α− 6)(6 + α− 4β) + . . .

D±1
2
S p±1(α− 6)(6 + α− 4β) + . . .

D0 +D1 +D−1
2
√

6L2

3S
√

1− ξ(6 + α− 4β)[6− α+ 6α(p1 + p−1)] + . . .

F ′1 + F ′−1

√
6L2

3S
√

1−ξ [12αp1p−1 + (6− α)(p1 + p−1)][3(α− 8β + 6)(p1 + p−1)− α+ 12β − 6] + . . .

F ′1 − F ′−1

√
6L2

3S
√

1−ξ (α− 6)(p1 − p−1)[3(α− 8β + 6)(p1 + p−1)− α+ 12β − 6] + . . .∑
ν F
′
ν(ξ)

√
6

3
L2
√

1−ξ + . . .

S = 27α(α− 4β + 2)(p1 + p−1)3 − 18(2α− 3)(α− 4β + 2)(p1 + p−1)2

+3
[
5α2 − 20αβ + 72β − 36− 9α(α− 4β + 2)(p1 − p−1)2] (p1 + p−1)

+3α(7α− 28β + 6)(p1 − p−1)2 − (α− 6)(6 + α− 6β), (F.1)

F.2 Second limit (for p1 = 1)
σ1(eν) − 2

S p±1(α− 6)(6 + α− 6β) + . . .

σ−1(eν) 0

D0 − 2
S (α− 6)(6 + α− 4β) + . . .

D1
2
S (α− 6)(6 + α− 4β) + . . .

D−1 0

D0 +D1 +D−1
2ε
S (6 + α− 4β)[L2(6− α) + 6L2α+ 36] + . . .

F ′1 + F ′−1 O
(

ε
1−ξ

)
F ′1 − F ′−1 O

(
ε

1−ξ

)
∑
ν F
′
ν(ξ) L2ε

1−ξ + . . .



230 Appendix F. Capillary-like geometry: intermediate quantities

F.3 Joint limit (for p1 = 1)
σ1(eν) − 2

S (α− 6)(6 + α− 6β) + . . .

σ−1(eν) 0

D0 − 2
S (α− 6)(6 + α− 4β) + . . .

D1
2
S (α− 6)(6 + α− 4β) + . . .

D−1 0

D0 +D1 +D−1
2
√

1−ξ
Sλ
√

1+2λ2/3
(6 + α− 4β)[L2(6− α)(1 + 2λ2/3) + 6L2α(1 + 2λ2/3) + 36

√
1 + 2λ2/3] + . . .

F ′1 + F ′−1 O
(

1√
1−ξ

)
F ′1 − F ′−1 O

(
1√
1−ξ

)
∑
ν F
′
ν(ξ)

L2
√

1+2λ2/3

λ
√

1−ξ + . . .



APPENDIX G

Two-dimensional geometry: intermediate
quantities

In this Appendix, we give the expansions of the quantities σ±1(eν), D0, D±1 and σ±1(eν) involved in the calculation of
the fluctuations (4.30) and mean (5.2) of the position of the TP in the case of a two-dimensional lattice. We only give the
leading order terms. Note that it is necessary to compute the subdominant terms of the intermediate quantities in order to get
the subdominant term of the second cumulant.

G.1 First limit
σ±1(eν) − 1

S p±1α(α− 4) + . . .

D0 − 1
S (p1 + p−1)α(α− 4) + . . .

D±1
1
S p±1α(α− 4) + . . .

D0 +D1 +D−1
π

ln 1
1−ξ

1
Sα[4− α+ 4α(p1 + p−1)] + . . .

F ′1 + F ′−1 O
(

1

(1−ξ) ln 1
1−ξ

)
F ′1 − F ′−1 O

(
1

(1−ξ) ln 1
1−ξ

)
∑
ν F
′
ν(ξ) 1

1−ξ
π

ln 1
1−ξ

+ . . .

S = 8α(α− 2)(p1 + p−1)3 − 4(3α− 4)(α−−2)(p1 + p−1)2

−2
[
4α(α− 2)(p1 − p−1)2 − 3α+ 12α− 16

]
(p1 + p−1)

+2α(3α− 8)(p1 − p−1)2 − α(α− 4), (G.1)

G.2 Second limit
σ±1(eν) − 1

S p±1α(α− 4) + . . .

D0 − 1
S (p1 + p−1)α(α− 4) + . . .

D±1
1
S p±1α(α− 4) + . . .

D0 +D1 +D−1
π

2 ln 1
ε

1
Sα[4− α+ 4α(p1 + p−1)] + . . .

F ′1 + F ′−1 O
(

1

(1−ξ) ln 1
ε

)
F ′1 − F ′−1 O

(
1

(1−ξ) ln 1
ε

)
∑
ν F
′
ν(ξ) π

2(1−ξ) ln 1
ε

+ . . .

G.3 Joint limit
The quantity λ only appears in the subdominant terms.
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σ±1(eν) − 1
S p±1α(α− 4) + . . .

D0 − 1
S (p1 + p−1)α(α− 4) + . . .

D±1
1
S p±1α(α− 4) + . . .

D0 +D1 +D−1
π

ln 1
1−ξ

1
Sα[4− α+ 4α(p1 + p−1)] + . . .

F ′1 + F ′−1 O
(

1

(1−ξ) ln 1
1−ξ

)
F ′1 − F ′−1 O

(
1

(1−ξ) ln 1
1−ξ

)
∑
ν F
′
ν(ξ) 1

1−ξ
π

ln 1
1−ξ

+ . . .



APPENDIX H

Cumulant generating function: general
expressions

In this Appendix, we give the general expression of Ω̂(k; ξ), defined by (2.55). This expression involves of the generating
functions associated to the conditional first-passage time densities (FPTD) F ∗t (0|eµY 0) (probability to reach the origin for
the first time at time t, starting from Y 0 and being at site eµ at time t − 1). This expression also involves the single-vacancy
propagators defined by (2.11). The aim of this Appendix is to provide an explicit expression of Ω̂(k; ξ) in terms of the
conditional FPTD.

H.1 Expression of Ω̂(k; ξ) in the longitudinal direction
The determination of the single-vacancy propagators (2.11) and therefore of Ω̂(k; ξ) requires the study of the matrix T (k; ξ)

defined by (2.13). If we first study the behavior of the TP in the longitudinal direction, it suffices to take the Fourier variable re-
duced to its first component: k = (k1, 0, . . . , 0). Taking advantage of the problem symmetries (the directions±2,±3, . . . ,±d
are equivalent), we find that the matrix T takes the simplified block form

T (k1; ξ) =



Q1 Q1,2 Q1,2 Q1,2 · · · Q1,2

Q2,1 Q2,2 Q2,3 Q2,3 · · · Q2,3

Q2,1 Q2,3 Q2,2 Q2,3 · · · Q2,3

Q2,1 Q2,3 Q2,3 Q2,2 · · · Q2,3

...
...

...
...

. . .
...

Q2,1 Q2,3 Q2,3 Q2,3 · · · Q2,2


(H.1)

where the matrices Q are the following 2× 2 matrices :

Q1 =

(
eik1F ∗1,−1 eik1F ∗1,1

e−ik1F ∗−1,−1 e−ik1F ∗−1,1

)
, Q1,2 =

(
eik1F ∗1,2 eik1F ∗1,2

e−ik1F ∗−1,2 e−ik1F ∗−1,2

)
, Q2,1 =

(
F ∗2,−1 F ∗2,1
F ∗2,−1 F ∗2,1

)

Q2,2 =

(
F ∗2,−2 F ∗2,2
F ∗2,2 F ∗2,−2

)
, Q2,3 = F ∗2,3

(
1 1

1 1

)
Using this expression of T, we can express the determinant D(k; ξ) defined by (2.12),

D(k1; ξ) = −bd−1
− cd−2

+ (D0 +D1eik1 +D−1e−ik1) (H.2)

where

D0 = (F ∗−1,−1F
∗
1,1 − F ∗−1,1F

∗
1,−1 − 1)(b+ + 2(d− 2)F ∗2,3) + 2(d− 1)(F ∗2,−1b1 + F ∗2,1b−1) (H.3)

D±1 = F ∗±1,∓1b+ − 2(d− 1)F ∗2,∓1F
∗
±1,2 + 2(d− 2)F ∗±1,∓1F

∗
2,3 (H.4)

and

b± = F ∗2,−2 ± F ∗2,2 − 1 (H.5)

b±1 = F ∗∓1,±1F
∗
±1,2 − F ∗±1,±1F

∗
∓1,2 (H.6)

c+ = b+ − 2F ∗2,3. (H.7)
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Expressing Uµ(k1; ξ) using (2.15), we can express the single-vacancy propagator with its expression (2.11), which takes the
form ̂̃

P
(1)

(k1|Y0; ξ) =
1

1− ξ
D0 − σ1(Y0)− σ−1(Y0) + [D1 + σ1(Y0)] eik1 + [D−1 + σ−1(Y0)] e−ik1

D0 +D1eik1 +D−1e−ik1
(H.8)

with

σ±1(Y0) = F ∗±1,Y0
[−b+ − 2(d− 2)F ∗2,3 + F ∗∓1,∓1b+ − 2(d− 1)F ∗2,∓1F

∗
∓1,2 + 2(d− 2)F ∗∓1,∓1F

∗
2,3]

+ F ∗∓1,Y0
[−F ∗±1,∓1b+ + 2(d− 1)F ∗2,∓1F

∗
±1,2 − 2(d− 2)F ∗±1,∓1F

∗
2,3]

+

∑
µ6=±1

F ∗µ,Y0

 (F ∗±1,2 + b∓1). (H.9)

and
F ∗µ,Y0

= F ∗(0|eµ|Y0; ξ). (H.10)

We finally obtain an expression for Ω(k1; ξ) from (2.55)

Ω̂(k1; ξ) =
1

1− ξ
∑
ν

∑
Y 6=0

F ∗(0|eν |Y; ξ)


×
{

1− eik·eν
D0 − σ1(−eν)− σ−1(−eν) + [D1 + σ1(−eν)] eik1 + [D−1 + σ−1(−eν)] e−ik1

D0 +D1eik1 +D−1e−ik1

}
. (H.11)

H.2 Expression of Ω̂(k; ξ) in the transverse direction
To study the behavior of the position of the TP in a transverse direction, it suffices to take k = (0, k2, 0, . . . , 0). Using a
block-type description of the matrix T (k2; ξ) as in the previous section, we obtain the following expression of Ω(k2; ξ) :

Ω(k2; ξ) =
1

1− ξ
∑
ν

∑
Y 6=0

F ∗(0|eν |Y; ξ)


×
{

1− eik·eν
D0 + 2D1 cos k2 − σ2(−eν)− σ−2(−eν) + σ2(−eν)eik2 + σ−2(−eν)e−ik2

D0 + 2D1 cos k2

}
. (H.12)

The different quantities are defined as follows :

• d ≥ 3

D0 = 2B
[
(d− 1)(F ∗2,−2

2 − F ∗2,2
2
)− (2(d− 1)F ∗2,3 + 1)(F ∗2,−2 − F ∗2,2) + d− 2

]
+ A1

[
F ∗2,−2

3 − F ∗2,2
3

+ (F ∗2,−2
2 − F ∗2,2

2
+ 1)(2(d− 3)F ∗2,3 − 1)

+ (F ∗2,2F
∗
2,−2 + 4(d− 2)F ∗2,3

2
)(F ∗2,−2 − F ∗2,2) + F ∗2,−2 + F ∗2,2

]
(H.13)

D1 = −B
[
(2d− 3)F ∗2,−2 + F ∗2,2 − 2(d− 1)F ∗2,3 − 1

]
− A1

[
F ∗2,−2

2
+ (2(d− 3)F ∗2,3 − 1)F ∗2,−2 + F ∗2,−2F

∗
2,2 − 2(d− 2)F ∗2,3

2
]

(H.14)

σ2(Y0) = F ∗1,Y0
c+(F ∗2,−1 − β−1)(F ∗2,2 − F ∗2,−2 − 1)

+ F ∗−1,Y0
c+(F ∗2,1 − β1)(F ∗2,2 − F ∗2,−2 − 1)

+ F ∗2,Y0

[
D′1 −A1(2(d− 3)F ∗2,3 + F ∗2,2 + F ∗2,−2 − 1)− 2B(d− 2)

]
− F ∗−2,Y0

D1

+

 ∑
µ 6=±1,±2

F ∗µ,Y0

 (B +A1F
∗
2,3)(F ∗2,2 − F ∗2,−2 − 1) (H.15)
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σ−2(Y0) = F ∗1,Y0
c+(F ∗2,−1 − β−1)(F ∗2,2 − F ∗2,−2 − 1)

+ F ∗−1,Y0
c+(F ∗2,1 − β1)(F ∗2,2 − F ∗2,−2 − 1)

− F ∗2,Y0
D1

+ F ∗−2,Y0

[
D′1 −A1(2(d− 3)F ∗2,3 + F ∗2,2 + F ∗2,−2 − 1)− 2B(d− 2)

]
+

 ∑
µ 6=±1,±2

F ∗µ,Y0

 (B +A1F
∗
2,3)(F ∗2,2 − F ∗2,−2 − 1) (H.16)

where we defined

A1 = F ∗1,1F
∗
−1,−1 − (F ∗1,−1 − 1)(F ∗−1,1 − 1) (H.17)

B = (b−1 − F ∗−1,2)F ∗2,1 + (b1 − F ∗1,2)F ∗2,−1 (H.18)

β1 = F ∗1,−1F
∗
2,1 − F ∗1,1F ∗2,−1 (H.19)

β−1 = F ∗−1,1F
∗
2,−1 − F ∗−1,−1F

∗
2,1 (H.20)

D′1 = −B
[
(2d− 3)F ∗2,2 + F ∗2,−2 − 2(d− 1)F ∗2,3 − 1

]
− A1

[
F ∗2,2

2
+ (2(d− 3)F ∗2,3 − 1)F ∗2,2 + F ∗2,−2F

∗
2,2 − 2(d− 2)F ∗2,3

2
]

(H.21)

• d = 2

D0 = 2B(F ∗2,−2 − F ∗2,2) +A1(F ∗2,−2
2 − F ∗2,2

2
+ 1) (H.22)

D1 = −B −A1F
∗
2,−2 (H.23)

σ2(Y0) = F ∗1,Y0
(F ∗2,−1 − β−1)(F ∗2,2 − F ∗2,−2 − 1)

+ F ∗−1,Y0
(F ∗2,1 − β1)(F ∗2,2 − F ∗2,−2 − 1)

+ F ∗2,Y0
(D′1 +A1)− F ∗−2,Y0

D1 (H.24)

σ−2(Y0) = F ∗1,Y0
(F ∗2,−1 − β−1)(F ∗2,2 − F ∗2,−2 − 1)

+ F ∗−1,Y0
(F ∗2,1 − β1)(F ∗2,2 − F ∗2,−2 − 1)

− F ∗2,Y0
D1 + F ∗−2,Y0

(D′1 +A1) (H.25)

where we defined
D′1 = −B −A1F

∗
2,2. (H.26)





APPENDIX I

Higher-order cumulants: case of the
stripe-like geometry

In this Appendix, we present the calculation of the higher-order cumulants in the longitudinal and transverse direction in the
particular case of a stripe-like geometry. General results are presented in Chapter 6 (Sections 6.3 and 6.4).

I.1 Higher-order cumulants in the longitudinal direction

I.1.1 A remark on the large-time expansion
We start from the general expression of Ω̂(k1; ξ) (H.11) in terms of the generating functions associated to the conditional first-
passage time densities (FPTD). In order to obtain the time dependance of Ωt (and of the cumulants), we will have to calculate
the inverse Laplace transform of Ω̂, given by

Ωt(k1) =
1

2iπ

∮
γ

dξ

ξt+1
Ω̂(k1; ξ). (I.1)

where γ is a simple closed contour encircling ξ = 0 once, which lies within the circle of convergence of Ω̂(k1; ξ) and which
is traversed anti-clockwise. From the structure of Ω̂(k1; ξ) (H.11), we see that the behavior of this integral is controlled by the
zeros of D(k1; ξ) nearest to ξ = 0, which cannot be computed explicitly. We then focus on the long-time expansion, that is
the behavior of D(k1; ξ) around its singular point nearest to ξ = 0.

In what follows, we show that this is the point (k1, ξ) = (0, 1). For recurrent lattices, one has the relation∑
ν

F̂ ∗(0|eν |Y0; ξ = 1) = 1. (I.2)

This relation means that the vacancy is certain to reach the origin in the long-time limit. Using the symmetry properties of the
problem (directions ±2, . . . ,±d are equivalent), we obtain the three following equations:

F−1,1(ξ = 1) + F1,1(ξ = 1) + 2(d− 1)F2,1(ξ = 1) = 1 (I.3)

F−1,−1(ξ = 1) + F1,−1(ξ = 1) + 2(d− 1)F2,−1(ξ = 1) = 1 (I.4)

F−1,2(ξ = 1) + F1,2(ξ = 1) + F2,2(ξ = 1) + F2,−2(ξ = 1) + 2(d− 2)F2,3(ξ = 1) = 1. (I.5)

Using these relations in the definitions of D0, D1 and D−1 (H.3) and (H.4), we get

lim
ξ→1

[D0 +D1 +D−1] = 0 (I.6)

which implies D(k1 = 0; ξ = 1) = 0. The point (k1, ξ) = (0, 1) is singular and must be approached by a joint limit of
k1 → 0 and ξ → 1 with an appropriate scaling to be determined.

I.1.2 First limit
We use the expression of Ω̂(k1; ξ) in terms of the conditional FPTD (H.11). These quantities are computed using the method
presented in Chapter 4 (Section 4.3.2). With a computer algebra software, we expand Ω̂(k1; ξ) in powers of both (1− ξ) and
k1, and we find

Ω̂(k1; ξ) =
1

(1− ξ)2

[
L
√

1− ξ − p1 − p−1

1 + 4α
4−α (p1 + p−1)

ik1 + . . .

]
(I.7)



238 Appendix I. Higher-order cumulants: case of the stripe-like geometry

where the dots indicate terms of higher order in k1 or
√

1− ξ. Consequently, these two terms are of comparable magnitude
when

k1 ∼
√

1− ξ. (I.8)

This relation gives the appropriate scaling to expand Ω̂(k1; ξ) in the joint limit of k1 → 0 and ξ → 1. Expanding Ω̂(k1; ξ)

with this scaling gives

Ω̂(k1; ξ) =
1

(1− ξ)2

{
−ia0k1

1− ia0k1
L
√

1−ξ

(I.9)

+
1

2
k1

1(
1− ia0k1

L
√

1−ξ

)2

[
(2S

(2)
L,−1a0

2 + 2a0
2c+ a1)k1 − i2L

√
1− ξa0c

′
1

]
+O(k1

3)

 , (I.10)

where

c′1 =
4(α(α− 4)(p1 − p−1)2 − 32(p1 + p−1))

L2(α− 4)(4α(p1 + p−1)− α+ 4)
. (I.11)

Using the notation κ̂(n)
1 (ξ) to denote the generating function associated to the n-th cumulant of Xt, and recalling (2.54), we

know that

lim
ρ0→0

κ̂
(n)
1 (ξ)

ρ0
= − 1

in
∂nΩ̂(k1; ξ)

∂kn1

∣∣∣∣∣
k1=0

. (I.12)

Expanding Ω̂(k1; ξ) in powers of k1 (with fixed ξ), we obtain the coefficients ωn(ξ) defined by:

Ω̂(k1; ξ) =

∞∑
n=0

ωn(ξ)k1
n. (I.13)

Using (I.12), it is straightforward to show that

lim
ρ0→0

κ̂
(n)
1 (ξ)

ρ0
= −n!

in
ωn(ξ). (I.14)

Using the following usual series expansion (valid for |ax| < 1),

1

1− ax =

∞∑
n=0

anxn, (I.15)

1

(1− ax)2
=

1

a

∞∑
n=0

(n+ 1)an+1xn, (I.16)

we finally obtain

lim
ρ0→0

κ̂
(n)
1 (ξ)

ρ0
=
ξ→1

an0n!

(1− ξ)2

{(
1

L
√

1− ξ

)n−1

+(n− 1)

(
1

L
√

1− ξ

)n−2 [
S

(2)
L,−1 +

a1

2a2
0

+ c+
n

n− 1
c′1

]
+ · · ·

}
. (I.17)

This expression can be generalized in other geometries (capillary-like geometry, two-dimensional lattice). The general relation
is given in the main text (6.38).

I.1.3 Second limit
As it was shown in Chapter 4, in these geometries, the limits t→∞ (i.e. ξ → 1) and ρ0 → 0 cannot be inverted. The ultimate
regime reached by the cumulants of the TP position (i.e. their long-time limit for a fixed value of ρ0) is obtained by assuming
that the vacancies do not perform symmetric random walks anymore, but undergo an effective bias ε equal to the velocity of
the TP, which depends on ρ0 and vanishes when ρ0 → 0 (see Chapter 4, Section 4.7.2.1 for a more precise definition of the
evolution rules of the vacancies).
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In this situation, the expression of Ω̂(k2; ξ) in terms of the conditional FPTD given in Appendix H (Section H.1) is still
valid, but the conditional FPTD must be replaced by the ones computed with the new evolution rules of the vacancies (see
Chapter 4, Section 4.7.2). Consequently, Ω̂ is now a function of k1, ξ and ε. Expanding limξ→1

[
(1− ξ)2Ω(k1; ξ, ε)

]
in

powers of both k1 and ε, one gets

lim
ξ→1

[
(1− ξ)2Ω(k1; ξ, ε)

]
= Lε− p1 − p−1

1 + 4α
4−α (p1 + p−1) + 16

L(4−α)
(p1 − p−1)

ik1 + . . . (I.18)

In the limit k1 → 0 and ε→ 0 and with the scaling k1 ∼ ε, we find the leading order term of Ω(k1; ε) in this limit:

lim
ξ→1

[
(1− ξ)2Ω(k1; ξ, ε)

]
=

1

(1− ξ)2

−ia′0k1

1− ia′0k1
Lε

+O(k1
2) (I.19)

with
a′0 =

p1 − p−1

1 + 4α
4−α (p1 + p−1) + 16

L(4−α)
(p1 − p−1)

. (I.20)

We can deduce the cumulants:

lim
ξ→1

[
(1− ξ)2κ̂

(n)
1 (ξ)

]
= ρ0n!a′0

n
(

1

Lε

)n−1

= ρ0n!a′0
nG(ε)n−1, (I.21)

where G was defined by (6.28). ε is equal to the velocity of the TP in the ultimate regime, which can be computed from the
expressions demonstrated in Chapter 5,

lim
ξ→1

[
(1− ξ)2〈̂Xt〉(ξ)

]
= lim
ξ→1

[
(1− ξ)2κ̂

(1)
1 (ξ)

]
= ρ0a

′
0 (I.22)

so that 〈Xt〉 = ρ0a
′
0t and ε = ρ0a

′
0. We can deduce the cumulants κ̂(n)

1 (ξ) in this limit:

lim
ξ→1

[
(1− ξ)2κ̂

(n)
1 (ξ)

]
= ρ0n!a′0

nG(ρ0a
′
0)n−1, (I.23)

and, using a Tauberian theorem,

lim
t→∞

κ
(n)
1 (t)

t
∼

ρ0→0
ρ0n!a′0

nG(ρ0a
′
0)n−1. (I.24)

This expression can be shown to hold for other geometries (three-dimensional capillary, two-dimensional lattice). Its general
form is given in the main text (6.40).

I.2 Cumulants in the transverse direction

I.2.1 First limit
We use the expression of Ω̂(k2; ξ) in terms of the conditional FPTD (H.12). These quantities are computed using the method

presented in Chapter 4 (Section 4.3.2). With a computer algebra software, we expand limξ→1

[
(1− ξ)2Ω̂(k2; ξ)

]
in powers

of k2 and 1− ξ simultaneously, we find

Ω̂(k2; ξ) =
1

(1− ξ)2

[
L
√

1− ξ +
2p2

1 + 4α
4−α2p2

k2
2

2
+ . . .

]
(I.25)

Consequently, the appropriate scaling to expand Ω̂(k2; ξ) in the joint limit of k2 → 0 and ξ → 1 is

k2 ∼ (1− ξ)1/4. (I.26)

We get

Ω̂(k2; ξ) =
1

(1− ξ)2

{
1
2
a2k2

2

1 + a2k22

2L
√

1−ξ

− k2
2(

1 + a2k22

2L
√

1−ξ

)2

[(
SL,−1a2

2 + ca2
2 +

a2

6

) k2
2

4
− 1

2
a2c
′
2L
√

1− ξ
]

+O(k2
6)

 . (I.27)
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where we defined

c′2 =
4(α2 − 8β2 + 8)(p1 − p−1)2

L2[4(α2 − 8β2 + 8)(p1 + p−1)− α2 + 8β2 − 4]
(I.28)

Since Ω̂(k2; ξ) is an even function of k2, all the cumulants of odd order are equal to zero. Expanding Ω̂(k2; ξ) in powers of k2

using (I.27), and using the following relation, deduced from (2.54),

lim
ρ0→0

κ̂
(n)
2 (ξ)

ρ0
= − 1

in
∂nΩ̂(k2; ξ)

∂k2
n

∣∣∣∣∣
k2=0

, (I.29)

we find that the even cumulants are given by

lim
ρ0→0

κ̂
(2n)
2 (ξ)

ρ0
=

(2n)!

(1− ξ)2

(a2

2

)n [( 1

L
√

1− ξ

)n−1

+ (n− 1)

(
1

L
√

1− ξ

)n−2(
SL,−1 + c+

1

6a2
+

n

n− 1
c′2

)]
.

(I.30)
This expression can be generalized to the case of a two-dimensional lattice. The general expression is given in the main text
(6.48).

I.2.2 Second limit
As it was shown in Chapter 4, in these geometries, the limits t→∞ (i.e. ξ → 1) and ρ0 → 0 cannot be inverted. The ultimate
regime reached by the cumulants of the TP position (i.e. their long-time limit for a fixed value of ρ0) is obtained by assuming
that the vacancies do not perform symmetric random walks anymore, but undergo an effective bias ε equal to the velocity of
the TP, which depends on ρ0 and vanishes when ρ0 → 0 (see Chapter 4, Section 4.7.2.1 for a more precise definition of the
evolution rules of the vacancies).

In this situation, the expression of Ω̂(k2; ξ) in terms of the conditional FPTD given in Appendix H (Section H.2) is still
valid, but the conditional FPTD must be replaced by the ones computed with the new evolution rules of the vacancies (see
Chapter 4, Section 4.7.2). Consequently, Ω̂ is now a function of k2, ξ and ε. Expanding limξ→1

[
(1− ξ)2Ω(k2; ξ, ε)

]
in

powers of both k1 and ε, one gets

lim
ξ→1

[
(1− ξ)2Ω̂(k2; ξ, ε)

]
= Lε+

1

2
a′2k2

2 + . . . (I.31)

with

a′2 = a2

[
1 +

16(p1 − p−1)

L[4(p1 + p−1)(α− 8β + 8)− α+ 8β − 4]

]−1

(I.32)

In the limit k2 → 0 and ε→ 0 and with the scaling k2 ∼
√
ε, we find the leading order term of limξ→1

[
(1− ξ)2Ω̂(k2; ξ, ε)

]
in this limit:

lim
ξ→1

[
(1− ξ)2Ω̂(k2; ξ, ε)

]
=

1
2
a′2k2

2

1 +
a′2k2

2

2Lε

+O(k4
2) (I.33)

Using again the relation ε = ρ0a
′
0, we obtain

lim
ξ→1

[
(1− ξ)2Ω̂(k2; ξ, ε)

]
=

1

(1− ξ)2

1
2
a′2k2

2

1 +
a′2k2

2

2Lρ0a
′
0

+O(k4
2). (I.34)

We can deduce the cumulants in this limit using the general relation between the derivatives of Ω̂ and the cumulants (I.29):

lim
ξ→1

[
(1− ξ)2κ̂

(2n)
2 (ξ)

]
∼

ρ0→0

(2n)!a′2
n

2nLn−1ρn−2
0 a′0

n−1 . (I.35)

Using a Tauberian theorem, this is equivalent to

lim
t→∞

κ
(2n)
2 (t)

t
∼

ρ0→0

(2n)!a′2
n

2nLn−1ρn−2
0 a′0

n−1 . (I.36)

This expression can be generalized to the case of a two-dimensional lattice. Its general form is given in the main text (6.54).



APPENDIX J

Evolution equations of
〈
Xt

2
〉

and of the
correlation functions g̃r

In this Appendix, we give the details of the derivation of the evolution equations of the second moment of the position of the
TP
〈
Xt

2
〉

(8.15) and of the correlation functions g̃r (8.20).

J.1 Evolution equation of
〈
Xt

2
〉

In this Section, we start from the master equation (8.2) in order to derive the evolution equation verified by
〈
Xt

2
〉

=〈
(X · e1)2

〉
. We multiply the master equation (8.2) by (Xt · e1)2 and average over all the bath configurations η and all

the positions of the TP X . We consider separately each term of the master equation:

• the left-hand-side term of (8.2) gives the contribution:

CL =
∑
X,η

(X · e1)22dτ∗∂tP (X, η; t) (J.1)

= 2dτ∗∂t

(∑
X,η

(X · e1)2P (X, η; t)

)
(J.2)

= 2dτ∗
d
〈
Xt

2
〉

dt
(J.3)

• the first term of the right-hand-side yields

C1 =
∑
X,η

(X · e1)2
d∑

µ=1

∑
r 6=X−eµ,X

[P (X, ηr,µ; t)− P (X, η; t)] (J.4)

=
∑
X

(X · e1)2
d∑

µ=1

∑
r 6=X−eµ,X

∑
η

[P (X, ηr,µ; t)− P (X, η; t)] . (J.5)

Recalling that ηr,µ a configuration obtained from η by exchanging the occupation variables of two neighboring sites r
and r + eµ, we obtain ∑

η

P (X, ηr,µ; t) =
∑
η

P (X, η; t), (J.6)

and we conclude that C1 = 0.

• the second term of the right-hand-side of (8.2) gives the contribution:

C2 =
2dτ∗

τ

∑
µ

pµ

[∑
X,η

(X · e1)2 (1− ηX)P (X − eµ, η; t)−
∑
X,η

(X · e1)2 (1− ηX+eµ

)
P (X, η; t)

]
. (J.7)

We consider for instance the term corresponding to µ = 1, and consider the first sum over X and η, in which we make
the change of variable X ←X + e1:∑
X,η

(X · e1)2 (1− ηX)P (X − e1, η; t) =
∑
X,η

(X · e1 + σ)2 (1− ηX+e1)P (X, η; t) (J.8)

=
∑
X,η

[(X · e1)2 + σ2 + 2σ(X · e1)]2 (1− ηX+e1)P (X, η; t).

(J.9)



242 Appendix J. Evolution equations of
〈
Xt

2
〉

and of the correlation functions g̃r

Finally, we get ∑
X,η

(X · e1)2 (1− ηX)P (X − eµ, η; t)−
∑
X,η

(X · e1)2 (1− ηX+eµ

)
P (X, η; t)

= σ2
∑
X,η

(1− ηX+e1)P (X, η; t) + 2σ
∑
X,η

(X · e1)(1− ηX+e1)P (X, η; t). (J.10)

Following the same procedure for the term µ = 1 and noticing that the terms obtained for µ = ±2, . . . ,±d in (J.7)
cancel, we finally get

C2 =
2dτ∗

τ

{
p1[σ2(1− ke1) + 2σ(〈Xt〉 − ge1)] + p−1[σ2(1− ke−1)− 2σ(〈Xt〉 − ge−1)]

}
, (J.11)

where we define
gr = 〈XtηXt+r〉 . (J.12)

• the third term of the right-hand-side of (8.2) will give

C3 = 2dg
∑
X,η

(X · e1)2
∑
r 6=X

[(1− ηr)P (X, η̂r; t)− ηrP (X, η; t)] (J.13)

= 2dg
∑
X

(X · e1)2
∑
r 6=X

∑
η

[(1− ηr)P (X, η̂r; t)− ηrP (X, η; t)] . (J.14)

Recalling that η̂r is the configuration obtained from η with the change ηr ← 1− ηr , we have the following equality∑
η

(1− ηr)P (X, η̂r; t) =
∑
η

ηrP (X, η; t), (J.15)

which yields C3 = 0.

• for the same reason, the fourth term will have a zero contribution after multiplying by (X ·e1)2 and averaging over X
and η.

Finally, bringing together the different contributions originating from the different terms of (8.2), we obtain

2dτ∗
d

dt
〈Xt2〉 =

2dτ∗

τ

{
p1[σ2(1− ke1) + 2σ(〈Xt〉 − ge1)] + p−1[σ2(1− ke−1)− 2σ(〈Xt〉 − ge−1)]

}
, (J.16)

which is equivalent to (8.15):

d

dt
〈Xt2〉 =

2σ

τ

[
p1 (〈Xt〉 − ge1)− p−1

(
〈Xt〉 − ge−1

)]
+
σ2

τ

[
p1 (1− ke1) + p−1

(
1− ke−1

)]
. (J.17)

J.2 Evolution equation of g̃r
In this Section, we start from the master equation (8.2) in order to derive the evolution equation verified by g̃r =

〈(Xt − 〈Xt〉)ηXt+r〉. We multiply the master equation (8.2) by (X − 〈Xt〉)ηX+r and average over all the bath configu-
rations η and all the positions of the TP X . We consider separately each term of the master equation:

• the left-hand-side term of (8.2) gives the contribution:

CL =
∑
X,η

(X − 〈Xt〉)ηXt+r2dτ∗∂tP (X, η; t) (J.18)

= 2dτ∗
∑
X,η

(X − 〈Xt〉)ηXt+r∂tP (X, η; t) (J.19)

=
∑
X,η

ηXt+r [∂t ((X − 〈Xt〉)P (X, η; t))− P (X, η; t)∂t(X − 〈Xt〉)] (J.20)

= 2dτ∗∂t

[∑
X,η

ηXt+r(X − 〈Xt〉)P (X, η; t) +
d 〈Xt〉

dt

∑
X,η

ηXt+rP (X, η; t)

]
(J.21)

= 2dτ∗
(
∂tg̃r + kr

d 〈Xt〉
dt

)
, (J.22)

where we defined g̃r as in the main text (8.18).
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• the first term of the right-hand-side of the master equation becomes

C1 =
∑
X

(X − 〈Xt〉)
d∑

µ=1

∑
r′ 6=X−eµ,X

∑
η

ηX+r

[
P (X, ηr

′,µ; t)− P (X, η; t)
]

(J.23)

With an appropriate change of variable in the sum over η, we obtain∑
η

ηX+rP (X, ηr
′,µ; t) =

∑
η

(
ηr
′,µ
)
X+r

P (X, η; t), (J.24)

so that C1 is written

C1 =
∑
X

(X − 〈Xt〉)
d∑

µ=1

∑
r′ 6=X−eµ,X

∑
η

[(
ηr
′,µ
)
X+r

− ηX+r

]
P (X, η; t) (J.25)

We consider the sum over r′∑
r′ 6=X−eµ,X

[(
ηr
′,µ
)
X+r

− ηX+r

]

=
∑
r′

[(
ηr
′,µ
)
X+r

− ηX+r

]
−
[(
ηX−eµ,µ

)
X+r

− ηX+r

]
−
[(
ηX,µ

)
X+r

− ηX+r

]
. (J.26)

Recalling that ηr,µ a configuration obtained from η by exchanging the occupation variables of two neighboring sites r
and r + eµ, we obtain the general relation

(ηr
′,µ)x =


ηx if r′ 6= x,x− eµ ,

ηx−eµ if r′ = x− eµ ,

ηx+eµ if r′ = x .

(J.27)

We then consider separately the two cases:

– if r = eν (ν ∈ {±1, . . . ,±d}), using (J.26) and (J.27), we obtain∑
r′ 6=X−eµ,X

[(
ηr
′,µ
)
X+r

− ηX+r

]
= ∇µηX+r +∇−µηX+r (J.28)

where the operator∇µ was defined in the main text (8.7). We finally obtain

C1 =
∑
X,η

(X − 〈Xt〉)
d∑

µ=1

(∇µηX+r +∇−µηX+r)P (X, η; t) (J.29)

=
∑
µ

〈(X − 〈Xt〉)∇µηX+r〉 (J.30)

=
∑
µ

∇µg̃r, (J.31)

where the sum over µ runs over {±1, . . . ,±d}.
– if r = eν , using again (J.26) and (J.27), we obtain

d∑
µ=1

∑
r′ 6=X−eµ,X

[(
ηr
′,µ
)
X+eν

− ηX+eν

]
=
∑
µ

∇µηX+eν −∇−νηX+eν . (J.32)

Then, C1 becomes

C1 =

〈
(Xt − 〈Xt〉)

(∑
µ

∇µ −∇−ν

)
ηX+eν

〉
(J.33)

=
∑
µ

∇µg̃eν −∇−ν g̃eν (J.34)
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Finally, for any value of r, (J.31) and (J.34) are recast under the equation

C1 =

(∑
µ

∇µ − δr,eµ∇−µ

)
g̃r. (J.35)

• we then study the second term of the right-hand-side of the master equation (8.2), which yields the contribution

C2 =
2dτ∗

τ

∑
X,η

∑
µ

pµ(X − 〈Xt〉)ηX+r

[
(1− ηX)P (X − eµ, η; t)−

(
1− ηX+eµ

)
P (X, η; t)

]
(J.36)

=
2dτ∗

τ

{∑
X,η

∑
µ

pµ(X − 〈Xt〉)ηX+r (1− ηX)P (X − eµ, η; t)

−
∑
X,η

∑
µ

pµ(X − 〈Xt〉)ηX+r

(
1− ηX+eµ

)
P (X, η; t)

}
(J.37)

With the change of variable X ←X + eµ in the first sum, and recalling that X = X + e1, we obtain

C2 =
2dτ∗

τ

{∑
X,η

∑
µ

pµ[X + σ(eµ · e1)− 〈Xt〉]ηX+r+eµ

(
1− ηX+eµ

)
P (X, η; t)

−
∑
X,η

∑
µ

pµ(X − 〈Xt〉)ηX+r

(
1− ηX+eµ

)
P (X, η; t)

}
(J.38)

=
2dτ∗

τ

{∑
X,η

∑
µ

pµ(X − 〈Xt〉)∇ηX+r

(
1− ηX+eµ

)
P (X, η; t)

+σ
∑
X,η

∑
µ

pµ(eµ · e1)ηX+r+eµ

(
1− ηX+eµ

)
P (X, η; t)

}
(J.39)

As eµ · e1 is equal to ±1 for µ = ±1 and 0 otherwise, we finally obtain

C2 =
2dτ∗

τ

∑
µ

pµ
〈
(Xt − 〈Xt〉)(1− ηX−t+eµ)∇Xt+r

〉
+

2dτ∗

τ
σ
[
p1 〈(1− ηXt+e1)ηXt+r+e1〉 − p−1

〈
(1− ηXt+e−1)ηXt+r+e−1

〉]
(J.40)

• the third term yields the contribution C3:

C3 = 2dg
∑
X,η

(X − 〈Xt〉)ηXt+r
∑
r′ 6=X

[
(1− ηr′)P (X, η̂r

′
; t)− ηr′P (X, η; t)

]
(J.41)

= 2dg
∑
X

∑
r′ 6=X

(X − 〈Xt〉)
∑
η

ηr′

[(
η̂r
′)
X+r

− ηX+r

]
P (X, η; t), (J.42)

(J.43)

where we used again (J.24). By the definition of η̂r
′

(configuration obtained from η with the change ηr′ ← 1− ηr′ ),
we write (

η̂r
′)
x

{
ηx if x 6= r′,

1− ηx if x 6= r′.
(J.44)

The expression of C3 becomes

C3 = 2dg
∑
X

(X − 〈Xt〉)
∑
η

ηX+r(1− 2ηX+r)P (X, η; t). (J.45)

As ηX+r ∈ {0, 1}, then (ηX+r)2 = ηX+r , and we finally obtain

C3 = −2dgg̃r (J.46)
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• the computation of the contribution C4 of the fourth term of the master equation is similar to that of C3, and we obtain

C4 = 2df
∑
X

(X − 〈Xt〉)
∑
η

(1− ηX+r)(1− 2ηX+r)P (X, η; t). (J.47)

Using again (ηX+r)2 = ηX+r , we obtain

(1− ηX+r)(1− 2ηX+r) = 1− ηX+r, (J.48)

and, finally,
C4 = −2dfg̃r. (J.49)

Finally, writing from the master equation (8.2) the relation

CL = C1 + C2 + C3 + C4, (J.50)

and using (J.35), (J.40), (J.46) and (J.49), we get

2dτ∗∂tg̃r =
∑
µ

(
∇µ − δr,eµ∇−µ

)
g̃r − 2d(f + g)g̃r

+
2dτ∗

τ

∑
µ

pµ
〈
δXt(1− ηXt+eµ)∇µηXt+r

〉
+

2dτ∗

τ
σ
[
p1 〈(1− ηXt+e1)ηXt+r+e1〉 − p−1

〈
(1− ηXt+e−1)ηXt+r+e−1

〉]
− 2dτ∗

τ
σ
[
p1(1− ke1)− p−1(1− ke−1)

]
kr. (J.51)

which is equivalent to the relation (8.20) presented in the main text.
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K.1 Explicit expressions of g̃1 and g̃−1 in one dimension
It is finally found that:

g̃1 =
CE −BF
AE −BD and g̃−1 =

AF − CD
AE −BD, (K.1)

where

A ≡ 2τ∗

τ
σp1K+(r1 − 1)

A1r
2
1

A1r1 −A−1r
−1
1

+A1r1 −
(
A−1 + 2(f + g) +

2τ∗

τ
p1(ρ+K+r

2
1)

)
, (K.2)

B ≡ 2τ∗

τ
σp−1K+(r−1

1 − 1)
A1r

2
1

A1r1 −A−1r
−1
1

+
2τ∗

τ
p−1(ρ+K+r1), (K.3)

C ≡ 2τ∗

τ
σ(p1(1− ρ−K+r1)− p−1(1− ρ−K−r−1

2 ))(ρ+K+r1)− 2τ∗

τ
σp1(1− ρ−K+r1)(ρ+K+r

2
1)

+
2τ∗

τ
σ

(
p1(1− ρ−K+r1)K+r1 − p−1

(
1− ρ− K−

r2

)
K+

r1

)
A1r

2
1

A1r1 −A−1r
−1
1

, (K.4)

D ≡ −2τ∗

τ
σp1K−(r2 − 1)

A−1r
−2
2

A1r2 −A−1r
−1
2

+
2τ∗

τ
p1(ρ+K−r

−1
2 ), (K.5)

E ≡ −2τ∗

τ
σp−1K−(r−1

2 − 1)
A−1r

−2
2

A1r2 −A−1r
−1
2

+A−1r
−1
2 −

(
A1 + 2(f + g) +

2τ∗

τ
p−1(ρ+K−r

−2
2 )

)
(K.6)

and

F ≡ 2τ∗

τ
σ(p1(1− ρ−K+r1)− p−1(1− ρ−K−r−1

2 ))(ρ+K−r
−1
2 ) +

2τ∗

τ
σp−1(1− ρ−K−r−1

2 )(ρ+K−r
−2
2 )

− 2τ∗

τ
σ

(
p1(1− ρ−K+r1)K−r2 − p−1

(
1− ρ− K−

r2

)
K−
r2

)
A−1r

−2
2

A1r2 −A−1r
−1
2

, (K.7)

K+, K−, A1 and A−1 have been determined in Section 9.2.1. Using their expressions, we compute g̃1 and g̃−1, and finally
compute K with the formula:

K =
σ2

2τ

(
p1(1− ρ−K+r1) + p−1

(
1− ρ−K−r−1

2

))
− σ

τ
(p1g̃1 − p−1g̃−1) . (K.8)
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K.2 Detailed expressions of (9.70) to (9.73)

B1 = A1 +
2τ∗

τ
p1(eiuσ − 1)(1− k1) (K.9)

B2 = A1 +A−1 + 2(f + g) +
2τ∗

τ
p1(eiuσ − 1)(1− w̃1) +

2τ∗

τ
p−1(e−iuσ − 1)(1− w̃−1) (K.10)

B3 = A−1 +
2τ∗

τ
p−1(e−iuσ − 1)(1− k−1) (K.11)

B4 =
2τ∗

τ

[
p1(k1 − w̃1)(r1eiuσ − 1) + p−1(k−1 − w̃−1)(r−1

1 e−iuσ − 1)
]

(K.12)

B5 = 2f +
2τ∗

τ
ρ
[
p1(k1 − w̃1)(eiuσ − 1) + p−1(k−1 − w̃−1)(e−iuσ − 1)

]
(K.13)

C4 =
2τ∗

τ

[
p1(k1 − w̃1)(r2eiuσ − 1) + p−1(k−1 − w̃−1)(r−1

2 e−iuσ − 1)
]

(K.14)

D1 = A1 +
2τ∗

τ
p1(eiuσ − 1)(1− k1) (K.15)

D2 = A−1 + 2(f + g) +
2τ∗

τ
p1eiuσk2 +

2τ∗

τ

[
p1(eiuσ − 1) + p−1(e−iuσ − 1)

]
(K.16)

D3 =
2τ∗

τ
p−1k1 (K.17)

D4 = 2f +
2τ∗

τ

[
p1eiuσk1k2 − p−1k1k−1

]
(K.18)

D5 =
2τ∗

τ
p1(eiuσ − 1) (K.19)

D6 =
2τ∗

τ
p−1(e−iuσ − 1) (K.20)

E1 =
2τ∗

τ
p1k−1 (K.21)

E2 = A1 + 2(f + g) +
2τ∗

τ
p−1e−iuσk−2 +

2τ∗

τ

[
p1(eiuσ − 1) + p−1(e−iuσ − 1)

]
(K.22)

E3 = A−1 +
2τ∗

τ
p−1(e−iuσ − 1)(1− k−1) (K.23)

E4 = 2f +
2τ∗

τ

[
p−1e−iuσk−1k−2 − p1k1k−1

]
(K.24)

K.3 Detailed expression of (9.38)

M13 =
2τ∗

τ

r1

A1r1 −A−1r
−1
1

[p1K+(r1 − 1)− 1] (K.25)

M14 =
2τ∗

τ

r1

A1r1 −A−1r
−1
1

p1K+(r−1
1 − 1) (K.26)

M23 = −2τ∗

τ

1

r2

1

A1r2 −A−1r
−1
2

p1K−(r2 − 1) (K.27)

M24 = −2τ∗

τ

1

r2

1

A1r2 −A−1r
−1
2

[p−1K−(r−1
2 − 1) + 1] (K.28)

M33 = −
(
A−1 + 2(f + g) +

2τ∗

τ
p1k2

)
+

2τ∗

τ

2A1

A1r1 −A−1r
−1
1

p1K+(r1 − 1) (K.29)

M34 =
2τ∗

τ
p−1k1 +

2τ∗

τ

2A1

A1r1 −A−1r
−1
1

p−1K+(r−1
1 − 1) (K.30)

M43 =
2τ∗

τ
p−1k1 −

2τ∗

τ

2A−1

A1r2 −A−1r
−1
2

p1K−(r2 − 1) (K.31)
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M44 = −
(
A1 + 2(f + g) +

2τ∗

τ
p−1k−2

)
− 2τ∗

τ

2A−1

A1r2 −A−1r
−1
2

p−1K−(r−1
2 − 1) (K.32)

Y1 =
2a+A−1 − ψ+r1

A1r1 −A−1r
−1
1

(K.33)

Y2 = −2a−A1 − ψ−r−1
2

A1r2 −A−1r
−1
2

(K.34)

Y3 = −ϕ1 − 2A1
a+(A1r1 − 3A−1r

−1
1 ) + ψ−

A1r1 −A−1r
−1
1

(K.35)

Y4 = −ϕ−1 − 2A−1
a−(3A1r2 −A−1r

−1
2 ) + ψ−

A1r2 −A−1r
−1
2

(K.36)





APPENDIX L

Simplified expressions of the quantities
∇νFr

∇−1Fe1 = F0 −Fe1 = lim
ξ→1

[
P̂ (0|0; ξ)− P̂ (e1|0; ξ)

]
(L.1)

∇1Fe1 = F2e1 −Fe1 = lim
ξ→1

[
P̂ (2e1|0; ξ)− P̂ (e1|0; ξ)

]
(L.2)

∇2Fe1 = Fe1+e2 −Fe1 = lim
ξ→1

[
P̂ (e1 + e2|0; ξ)− P̂ (e1|0; ξ)

]
(L.3)

∇−1Fe−1 = F2e−1 −Fe−1 = lim
ξ→1

[
P̂ (2e1|0; ξ)− P̂ (e1|0; ξ)

]
(L.4)

∇1Fe−1 = F0 −Fe−1 = lim
ξ→1

[
P̂ (0|0; ξ)− P̂ (e1|0; ξ)

]
(L.5)

∇2Fe−1 = Fe−1+e2 −Fe−1 = lim
ξ→1

[
P̂ (e1 + e2|0; ξ)− P̂ (e1|0; ξ)

]
(L.6)

∇−1Fe2 = Fe−1+e2 −Fe2 = lim
ξ→1

[
P̂ (e1 + e2|0; ξ)− P̂ (e2|0; ξ)

]
(L.7)

∇1Fe2 = Fe1+e2 −Fe2 = lim
ξ→1

[
P̂ (e1 + e2|0; ξ)− P̂ (e2|0; ξ)

]
(L.8)

∇2Fe2 = F2e2 −Fe2 = lim
ξ→1

[
P̂ (2e2|0; ξ)− P̂ (e2|0; ξ)

]
(L.9)

∇−2Fe2 = F0 −Fe2 = lim
ξ→1

[
P̂ (0|0; ξ)− P̂ (e2|0; ξ)

]
(L.10)

∇3Fe2 = Fe2+e3 −Fe2 = lim
ξ→1

[
P̂ (e2 + e3|0; ξ)− P̂ (e2|0; ξ)

]
(L.11)
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High-density expansion of the functions
Fr

In this Appendix, we study the quantities

Fr =
1

Ld−1

L−1∑
k2,...,kd=0

1

2π

∫ π

−π
dq
e−ir1q

∏d
j=2 e

−2iπrjkj/L

1− λ(q, k2, . . . , kd)
(M.1)

where

λ(q, k2, . . . , kd) =
A1

α
e−iq +

A−1

α
eiq +

2A2

α

d∑
j=2

cos

(
2πkj
L

)
, (M.2)

and

Aµ ≡ 1 +
2dτ∗

τ
pµ(ρ0 − hµ) (M.3)

A = A1 +A−1 + 2(d− 1)A2 (M.4)

For clarity, we specify here that the quantities Fr actually depends on ρ0. Defining p̃−1 ≡ A1/A, p̃1 ≡ A−1/A and
p̃2 ≡ A2/A, the functions Fr write

Fr(ρ0) =
1

Ld−1

L−1∑
k2,...,kd=0

1

2π

∫ π

−π
dq

e−in1q
∏d
j=2 e

−2iπnjkj/L

1−
(
p̃1eiq + p̃−1e−iq + 2p̃2

∑d
j=2 cos

2πkj
L

) (M.5)

As it was emphasized in Section 10.2.5, they in fact correspond to the long-time limit of the generating function of the
propagators of a biased random walk starting from 0 and arriving at site r, which jumps in direction 1 with probability p̃1,
in direction −1 with probability p̃−1 and in any other direction with probability p̃2. We introduce the functions F ′r(ρ0, ξ),
defined by

F ′r(ρ0, ξ) =
1

Ld−1

L−1∑
k2,...,kd=0

1

2π

∫ π

−π
dq

e−in1q
∏d
j=2 e

−2iπnjkj/L

1− ξ
(
p̃1eiq + p̃−1e−iq + 2p̃2

∑d
j=2 cos

2πkj
L

) (M.6)

so that Fr = F ′r(1). Note that this quantity diverges when ξ → 1 and p̃µ → 1/(2d) for all µ (the denominator of the
integrand then cancels for (q, k2, . . . , kd) = (0, 0, . . . , 0)).

The integral over q may be computed with the change of variable u = e−iq and using the residue theorem. Extending the
methods used in Appendices A and B for the computations of the biased propagators on the stripe and capillary geometry, we
find the following expression of F ′r(ρ0, ξ):

F ′r(ρ0, ξ) =
1

Ld−1

L−1∑
k2,...,kd=0

f(r1, k2, . . . , kd; ρ0, ξ)

d∏
j=2

e−
2iπkjrj

L . (M.7)

with

f(r1, k2, . . . , kd; ρ0, ξ) =

{
1
p̃−1

U2
r1

U1−U2
if r1 ≥ 0

1
p̃−1

1

U1
|r1|[U1−U2]

if r1 < 0.
(M.8)

and

U1
2

=
1

2ξp̃−1

(
1− 2ξp̃2

d∑
j=2

cos
2πkj
L

)
± 1

2

√√√√ 1

(ξp̃−1)2

(
1− 2p̃2ξ

d∑
j=2

cos
2πkj
L

)2

− 4
p̃1

p̃−1
(M.9)
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We recall that the quantities Aν/A write

Aν
A =

1 + 2dτ∗

τ
pν(ρ0 − hν)

2d+ 2dτ∗
τ

∑
µ pµ(ρ0 − hµ)

(M.10)

so that the quantities p̃µ all tend to 1/(2d) when ρ0 → 0. In order to compute the expansions ofFr(ρ0), we are then interested
in the behavior of F ′r(ρ0, ξ) when ξ goes to 1 and p̃µ → 1/(2d) (or ρ0 → 0) for all µ. These two limits do not commute,
and in the case where the limit p̃µ → 1/(2d) (or ρ0 → 0) is taken first the quantities F ′r(ρ0, ξ) are actually equal to the
propagators P̂ (r|0; ξ) computed for the stripe and capillary like geometries.

The divergence of F ′r(ρ0, ξ) is due to the cancellation of the quantities U1−U2, which occurs at the point (k2, . . . , kd) =

(0, . . . , 0) in the limits ξ → 1 and ρ0 → 0. We then write

Fr(ρ0) =
1

Ld−1
f(r1, 0, . . . , 0; ρ0, ξ) + φ(r) (M.11)

where the function φ is defined as

φ(r; ρ0, ξ) ≡
1

Ld−1

′∑
k2,...,kd

f(r1, k2, . . . , kd; ρ0, ξ)

d∏
j=2

e−
2iπkjrj

L (M.12)

where the prime denotes a sum for k2, . . . , kd going from 0 to L− 1 with the point (k2, . . . , kd) = (0, . . . , 0) excluded. The
function φ has the property

lim
ξ→1

[
lim
ρ0→0

φ(r; ρ0, ξ)

]
= lim
ρ0→0

[
lim
ξ→1

φ(r; ρ0, ξ)

]
≡ Φ(r) (M.13)

Using these notations, and the definition of f , we obtain the following expansions, where we carefully consider the two possible
orders for the limits:

1. if we first take ρ0 → 0 and ultimately ξ → 1, one obtains

F ′r(ξ, ρ0 = 0) = P̂ (r|0; ξ) =
ξ→1

√
d/2

Ld−1
√

1− ξ
− (d+ 1)|r1|

Ld−1
+ Φ(r) +O(

√
1− ξ) (M.14)

2. the case where we first take ξ → 1 and ultimately ρ0 → 0 must be considered with attention. Indeed, taking ρ0 → 0 in
fact implies that p̃1, p̃−1 and p̃2 tend to 1/(2d) simultaneously. We can eliminate p̃2 using the normalization condition
p̃1 + p̃−1 + 2(d− 1)p̃2 = 1. We then define v ≡ p̃−1 − p̃1 so that we replace p̃1 by p̃−1 − v. Setting ξ = 1, we get

U1
2
(k2 = 0, . . . , kd) = 1− v

2p̃−1
± v

2p̃−1
(M.15)

and

f(r1, 0, . . . , 0)=


1

v

(
1− v

p̃−1

)r1
if r1 ≥ 0 ,

1

v
if r1 < 0 .

(M.16)

When ρ0 → 0, v → 0 and p̃−1 → 1/(2d), so that we get

Fr=


1

Ld−1v
− 2dr1

Ld−1
+ Φ(r) + . . . if r1 ≥ 0 ,

1

Ld−1v
+ Φ(r) + . . . if r1 < 0 .

(M.17)

Then, the expansions of P̂(r|0; ξ = 1, ε) in the ε→ 0 limit are known as soon as the quantities Φ(r1, r2), which can be
easily deduced from the expansions of P̂ (see Appendices A and B ). We introduce the quantity

∆(r) = lim
ξ→1

[
P̂ (0|0; ξ)− P̂ (r|0; ξ)

]
. (M.18)

One gets

Φ(r) =
2d|r1|
Ld−1

+ Φ0 −∆(r), (M.19)
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where Φ0 is such that

P̂ (0|0; ξ) =
ξ→1

√
d/2

Ld−1
√

1− ξ
+ Φ0 +O(

√
1− ξ) (M.20)

Combining with Eq. M.17, we finally write:

Fr =
ρ0→0

1

Ld−1v
− (d+ 1)r1

Ld
+ S

(d)
L,0 −∆(r) (M.21)

where v is simply related to the velocity of the TP, and goes to zero as ρ0 → 0:

v = p̃−1 − p̃1 (M.22)

=
A1 −A−1

A (M.23)

=
ρ0→0

τ∗

τ
[p1(ρ0 − h1)− p−1(ρ0 − h−1)] (M.24)

=
τ∗

σ
V (M.25)

Finally, the main interesting result is about the gradients of Fr , which are simply expressed in terms of the gradients of
the known propagators P̂ :

∇νFr = lim
ξ→1

[
P̂ (r + eν |0; ξ)− P̂ (r|0; ξ)

]
+ δν , (M.26)

with

δν =


− d

Ld−1
if ν = 1,

d

Ld−1
if ν = −1,

0 otherwise.

(M.27)
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Fluctuations et corrélations d’un traceur biaisé dans un gaz de coeurs durs

Résumé:
Nous étudions la dynamique d’un traceur soumis à une force extérieure dans un bain de particules. Nous proposons un

modèle qui prend en compte explicitement la dynamique du bain, et qui décrit les corrélations entre la dynamique du traceur
et la réponse du bain. Nous considérons un traceur biaisé dans un gaz de coeurs durs sur réseau : le traceur réalise une
marche aléatoire biaisée tandis que les particules du bain réalisent des marches aléatoires symétriques. Nous étudions plus
particulièrement les fluctuations de la position du traceur.

Dans la limite de haute densité, nous obtenons des résultats exacts à l’ordre dominant en la densité de lacunes. En
géométrie confinée, un calcul analytique des fluctuations de la position du traceur prévoit un long régime superdiffusif, et
une transition vers un régime diffusif final. Nous proposons une description simplifiée du système qui révèle le mécanisme
physique à l’origine de ce comportement anormal. Nous montrons l’existence d’une anomalie de la vitesse du traceur dans les
systèmes quasi-1D.

Nous étudions également le cas général d’une densité arbitraire de particules sur un réseau en contact avec un réservoir.
Cette situation constitue un problème à N corps décrit par une équation maîtresse, qui ne peut être résolue qu’en recourant à
une approximation de type champ moyen consistant en le découplage de certaines fonctions de corrélation. Il est alors possible
de déterminer des valeurs approchées de la vitesse, de coefficient de diffusion du traceur ainsi que de la distribution de posi-
tion du traceur. Nous montrons enfin que l’approximation de découplage est exacte dans les limites de basse et de haute densité.

Mots-clés :
gaz sur réseau, diffusion de traceur, fluctuations, diffusion anormale, processus stochastiques, marches aléatoires

Fluctuations and correlations of a driven tracer in a hardcore lattice gas

Abstract:
We study the dynamics of a tracer submitted to an external force in a bath of particles. We propose a model which takes

explicitly into account the dynamics of the bath, and which describes the correlations between the dynamics of the tracer and
the response of the bath. We consider a biased tracer in a lattice gas of hardcore particles: the tracer performs a biased random
walk whereas the bath particles perform symmetric random walks. We study in particular the fluctuations of the position of the
tracer.

In the high-density limit, we obtain exact results at leading order in the density of vacancies. In confined geometries, an
analytical calculation of the fluctuations of tracer position predicts a long superdiffusive regime, and a crossover to an ultimate
diffusive regime. We give a simplified description of the system that unveils the physical mechanism explaining this anomalous
behavior. We show the existence of a velocity anomaly in quasi-1D systems.

We also study the general case of an arbitrary density of particles on a lattice in contact with a reservoir. This situation is
a N -body problem described by a master equation, that can be solved by resorting to a mean-field-type approximation, which
consists in the decoupling of relevant correlation functions. It is then possible to determine approximate values of the velocity,
the diffusion coefficient and the distribution of the position of the tracer. We finally show that the decoupling approximation is
exact in the high-density and low-density limits.

Keywords:
lattice gas, tracer diffusion, fluctuations, anomalous diffusion, stochastic processes, random walks


