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Název práce: Numerická Simulace Propagace Streameru na Dynamicky Adapto-
vaných Śıt́ıch

Anotace

Tato dizertačńı práce se zabývá numerickou simulaćı propagace streameru (elektrický výboj
ve vysokonapět’ovém elektrickém poli). Pro popis streameru je použit minimálńı model, který
se skládá ze soustavy transportńıch rovnic pro elektricky nabité částice spárovaných s Pois-
sonovou rovnićı pro elektrický potenciál. V práci simulujeme obecný pohyb streameru ve
3D. Tento obecný pohyb je prezentován rozvětveńım streameru, kterého se dosáhne pomoćı
lokálńıch poruch v elektrickém poli.
Pro numerickou simulaci streameru jsme vyvinuli metodu založenou na dynamické adaptaci
śıtě, jej́ıž vlastnosti byly otestovány na jednodušš́ıch problé-mech ve 2D (menš́ı časová náročnost).
I když jde o jiný typ problému (rovinný výboj), pro vývoj metody je dostatečný a umožňuje
snadný přechod do 3D.

Kĺıčová slova: numerická simulace, pohyb streameru, rozvětveńı streameru, minimálńı model,
dynamická adaptace śıtě

Title: Numerical Simulation of Streamer Propagation on Unstructured Dynami-
cally Adapted Grids

Abstract

The aim of this thesis is a numerical simulation of a streamer propagation (electric discharge
in a high voltage electric field). The minimal model is used for the streamer description.
The model consists of a system of convection-diffusion-reaction equations for electric particles
coupled with Poisson’s equation for an electric potential. We simulate a general streamer
motion in 3D which is presented by streamer branching. It is caused by local disturbances in
the electric field.
We have developed a method based on a dynamically adaptation of grids for the simulation.
The properties of the method are tested on simpler problems in 2D (less time consuming).
This approach is sufficient for the development of the method even if it is different type
of problem (planar discharge) and it allows a simple transition to 3D.

Key words: numerical simulation, streamer motion, streamer branching, minimal model,
dynamical grid adaptation
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Chapter 1

Introduction

When a neutral gas is exposed to high intensity electric field, non-equilibrium ionization pro-
cesses (discharges) occur. The ionization causes that neutral particles are decomposed to ions
and free electrons. Meanwhile the gas temperature remains close to ambient temperature,
the electron temperature increases to a high level (Te > 10000 K). The discharges can appear
in various forms depending on spatiotemporal conditions such as the intensity of the electric
field, volume and pressure of the medium etc. One can distinguish stationary and unsteady
discharges. The dark, glow or ark discharges belong to the stationary ones. Leaders and
streamers are transient unsteady discharges. We are interested in streamers that are filamen-
tary discharges which dynamics are controlled by highly localized and nonlinear space charge
regions. The streamers can be used in several technical applications, e.g.:
streamers are used for treatment of contaminated media like exhaust gases, polluted water
or bio gas because the streamers emit the reactive radicals . The streamers are also used in
the processing of electronics, especially for etching and deposition of thin films. They can be
applied in surface modification (e.g. hardening, corrosion resistance) too.
The atmospheric pressure plasma jets belong among other utilizations of streamers. They can
be used for biomedical applications because they can produce various biocidal agents such
as UV radiation, reactive species and charged particles. The atmospheric plasma jets can be
easily handled and can treat a target from a distance without thermal damage. Therefore
they have a potential to be used in diverse fields of biomedicine.
Another utilization of the weakly ionized gas is to control a boundary layer in airflow at high
speeds because achievements in aerospace allow to create hypersonic air vehicles at a Mach
number greater than 6. The traditional flow control mechanism is often ineffective at such
high velocities due to significant physical-chemical modification of the airflow.
The streamers can be undesirable too. They can cause e.g. transmission line outgoes at
power system when a streamer appears in a disturbed electric field around an insulator string.
The interest is how to protect the insulator string from the streamer.

The generation of streamer discharges is described by coupling of electrostatic with motion
of charged particles (electrons, positive and negative ions). The electrostatic is represented by
Poisson’s equation for the electric potential and the particles motion is described by a set of
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convection-diffusion-reaction equations. The charged particles are considered as continuum.
It means that we deal with the particles in a form of densities and we can use continuum
mechanics for them. The motion of charged particles causes a local nonlinearity in the electric
field which is an essential element for creation of the streamer discharge. Another important
phenomenon in the streamer motion is photoionization which decompose neutral particles to
charged ones and it also locally changes the electric field. The photoionization effect is very
often described by Helmholtz or Eddington models or it is replaced by background densities
of the electrons and the positive ions in many studies. The charged particles react with
surrounding environment in chemical reaction during the streamer propagation. It produce
chemically active species which are interesting for many applications.
Governing equations
The streamer motion can be describe by different models which differ in a complexity.
The streamer propagation is essentially formulated in a form of fluid models that couple
unsteady transport equations for charged species and Poisson’s equation for the electric po-
tential.
One of these approaches is two-fluid Euler-Poisson system which is considered e.g. in [6].
This approach consist of a continuity equation and a convection-diffusion-reaction equation
for the electrons and the positive ions (one pair for each specie)

(ni)t +∇ · (niui) = 0,
mi [(niui)t +∇ · (niui ⊗ ui)] +∇pi (ni) = qniE,
(ne)t +∇ · (neue) = 0,
me [(neue)t +∇ · (neue ⊗ ue)] +∇pe (ni) = −qneE,

∇2V = −
q

ǫ0
(ni − ne) , ~E = −grad(V ),

where ni,e denotes positive ion (electron) density, ui,e is its velocity. V is the electric potential,
~E is the intensity of the electric field q is the elementary charge and ǫ0 is the dielectric constant.
pi,e denotes particle pressure of ions (electrons).
Another approach, which is considered in many papers, deal with three convection-diffusion-
reaction equations for charged species coupled with Poisson’s equation for the electric potential

∂ne

∂t
+∇ · (ne~ve)−∇ · (De∇ne) = Sph + neα|~ve| − neβatt|~ve| − nenpβep,

∂np

∂t
+∇ · (np~vp) = Sph + neα|~ve| − nenpβep − nnnpβnp,

∂nn

∂t
+∇ · (nn~vn) = neβatt|~ve| − nnnpβnp,

∇2V = −
q

ǫ0
(np − nn − ne) , ~E = −grad(V ),

∇2Sph − (λpO2)
2 Sph = −Ap2O2

I,

where ne, np, nn are electron, positive and negative ion densities, ~ve, ~vp, ~vn are drift veloci-

ties of the particles and De is a diffusion coefficient. V is the electric potential and ~E denote
the intensity of the electric field. The source terms on the right hand side of convection-
diffusion-reaction equations represent ionization (terms multiplied by a constant α), attach-
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ment (terms multiplied by a constant βatt), electron-positive ion recombination (βep) and
negative-positive ion recombination (βnp). The source term Sph denotes the photoionization
and is expressed by a Helmholtz equation (see above). A and λ in the Helmholtz equation are
fitting parameters and we can find them e.g. in [16]. pO2 is a partial pressure of the oxygen
and I represents photon emission which can be described by relation I = A · ne · ~ve · λ. We
can see the precise expression for drift velocities, diffusion coefficient and coefficients in source
terms in relations (B.1) - (B.8).

There is the simplest approach, so-called minimal model, among the approaches. It’s
the simplest model which is able to capture the streamer propagation and consists of a convection-
diffusion-reaction equation for the electron density and an ordinary differential equation for
the positive ion density. These two equations are coupled with the Poisson’s equation for
the electric potential [7], [8]

∂ne

∂t
+∇ · (ne~ve)−∇ · (De∇ne) = neα|~ve|,

∂np

∂t
= neα|~ve|,

∇2V = −
q

ǫ0
(np − ne) , ~E = −grad(V ).

The motion of the positive ions is neglected in the minimal model because the velocity of
the electrons is much higher than the positive ion velocity. Only the ionization is considered
in source term and the photoionization is replaced by background densities for electrons and
positive ions.

All approaches have the same relation between transport equations of charged particles and
the electric field. The electric potential depends on charged particles because their densities
have an influence on the right hand side of Poisson’s equation. On the other hand the material
properties (drift velocities, diffusion coefficient etc.) depend on the intensity of the electric
field (see appendix B) which is a negative gradient of the electric potential. It leads to
the coupled system of equations which can’t be solved separately.
Numerical simulation
Because of the streamer nature which is a filament of a plasma, the first attempts how to
simulate streamer motion were 1D simulations where the 3D nature of the electric potential
(Poisson’s equation) was solved by a disk method. This approach gives sufficient information
about distribution of electric field, electron drift velocity, charge etc. along the streamer axis
but it isn’t able to tells us the distributions in a space. Therefore there is a need to simulate
streamer in more dimensions.

A plane to plane electrode system or a pin to plane electrode system is very often consid-
ered in streamer simulations. The computational domain is very simple when the plane to
plane system is taken into account. It allows to simulate the streamer as a 2D axisymmetric
case. The system of governing equations is then written in a cylindrical coordinates in such
a case. The computational domain is in this case a rectangle and the initial nonlinearity in
the electric field is introduced by distribution of the electron and the positive ion densities.
The cartesian grid is suitable for such simple computation domain (see e.g. [7], [8], [9]) and
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the finite difference method is mainly used. The finite difference method has advantages
that the cell vertex schemes are simple and mostly come from Taylor expansion. To avoid
the high numerical viscosity in these schemes, they can be easily extended to obtain higher
orders of accuracy. The influence of higher orders schemes on streamer motion is studied e.g.
in [13] where the first order upwind scheme, the second order MUSCL scheme family and
QUICKEST scheme family (3rd order and 5th order) are compared.

When we would like to solve streamer motion in more general geometries, it is better to
use unstructured grids. The simplest case of a such geometry is the pin to plane electrode
system where the shape of the pin electrode is necessary to capture. The finite volume
method (FVM) is better choice for computation on unstructured grids but on the other hand
it’s difficult to extend these schemes to higher orders of accuracy (higher than the second
order). Another possibility is to use the finite element method (FEM) on the unstructured
grids. The comparison of FVM and FEM methods is discussed e.g. in [12]. It seems that
the computational cost is higher for the FEM than for the FVM. It’s necessary to skip to 3D if
we want to simulate the streamer motion in more complex geometries (e.g. different shapes of
electrodes) or more general motion which is caused by local disturbances in the electric field.
The streamer propagation in the plane to plane electrode system computed on 3D cartesian
grid is e.g. in [8]. The attempts of general streamer motion (streamer branching), which is
introduced by local seeds of plasma spots, are discussed e.g. in [16] and an unstructured mesh
is considered at this approach.

Mesh adaptation
The difficulty in a numerical simulation of the streamer propagation comes from a very nar-
row region where the variables governing the physics of the motion vary in several orders
of magnitude. Therefore we need a fine grid in this region. A mesh size would be too large
if the mesh will be fine in a whole computational domain and the computational time and
memory cost would be too high for a such mesh. A way how to avoid this disadvantage
in the simulation is a dynamical mesh adaptation. Almost all of streamer simulations use
adapted meshes now. We can see the mesh adaptation on 2D cartesian grids e.g. in [7],[8],
[9]. In [7], they treat independently with refinement procedures for continuity equations and
for Poisson’s equation to capture the streamer head front in a cartesian grid. The 3D mesh
adaptation is used e.g. in [9] where the streamer motions is computed in a plane to plane
electrode system. The streamer motion is also simulated on 2D unstructured grids where
the finite-element method is applied together with using of an adaptive mesh generator [10],
[11]. The adaptation criterion deals several variables, ratio of the gradient of the electron den-
sity and the magnitude of the electron density|gradne|/ne, the magnitude of the net charge
density ρ = e(ni−ne) and the magnitude of the ionization source term. Advantage of the mesh
adaptation on a structured grid is that we can use relatively simple schemes easily extended
to higher orders of accuracy but on the other hand we obtain non-conform grids. The mesh
adaptation on unstructured grids gives conform grids because a conformity step is applied
after cells refinement. The mesh adaptation is especially necessary in the 3D computation
where the mesh size could oversize several millions of cells. That leads to high memory cost
and the computation takes several weeks to obtain results.
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There are still lots of challenges in the streamer simulation regardless of the great progress in
the streamer simulation. Most of the streamer simulations published in the literature take into
account the axisymmetric approach and geometries which aren’t able to capture the structure
observed in practice simulations or in the nature. The full 3D simulation is needed to solve
the streamer branching or the streamer propagation in complex geometries.

1.1 Goals of the Thesis

The main aim of the thesis is to simulate the streamer branching. Therefore we have to develop
fully 3D method with dynamical grid adaptation. The physical model can be simplified to
the minimal model of the streamer. The unstructured grid is a proper choice even with
the disadvantage of lower order schemes to simulate a general motion of the streamer.
3D computation is very time consuming. Numerical method have to be developed and tested
on simplified cases. The proper intermediate step is a 2D case (planar discharge) even if
it’s a different type of problem than the filamentary discharge. We want to test properties of
the scheme (numerical tests of convergence), the adaptation algorithm and proper formulation
of conditions.
Computing code for an unstructured grid needs series of support utilities for description and
manipulation with a grid (e.g. description of connectivity). Mainly the algorithm of the grid
adaptation needs a special care. Modern computer languages (e.g. C++) offer suitable tools
for this purposes. Applicability of such programs exceeds range of the streamer motion
simulation. They can be used in many applications of finite volume method for different
mathematical models (Euler equations, Navier-Stokes equation, flow in porous media, shal-
low water equations etc.) and different type of problems (combustion, flow with shock waves,
multi-face flow etc.) where the dynamical mesh adaptation can increase the quality of results.

We therefore formulate following goals of the thesis:

• Simulation of streamer branching by introducing temporal disturbances;

• Development of a numerical method for a 3D streamer motion calculation described by
the minimal model and based on dynamic adaptation of unstructured grids.

Intermediate steps:

• Development of 2D method (in a form which allows simple transition to 3D) for numer-
ical experiments to verify the properties of the method;

• To develop a general platform based on object programming in C++ language for
simulation of various physical problems on unstructured grids with a dynamical mesh
adaptation in 2D and 3D.
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Chapter 2

Governing equations

The modeling of streamer propagation mechanism in atmospheric pressure discharges received
a large attention and was the subject of a large research effort during the last two decades.
Until very recently, streamer propagation was essentially described through fluid models that
couple non-stationary transport equations for charged species (electron and ions) with a Pois-
sons (elliptic) equation for the electrical potential. Usually the transport equations of charged
species consist of time-dependent convection-diffusion-reaction equations. In principle, when
using advanced physical model, the source terms in these equations include a non-local com-
ponent induced by the photoionization effect that was often invoked as the main propagation
driver at least for streamer in field-free space. In this case, a radiation transport model has
to be used and a non local radiation transfer equation has to be coupled to the transport
and Poisson’s equations. This results in a very high computational costs and recently an
advanced physical model based on Eddinton’s approximation allowed a very efficient and
physically sound description of the photoionization phenomenon. It remains that very often
a background seed electron field was used to simulate the electrons generated by photoioniza-
tion phenomena and responsible for the avalanches that takes place at the streamer tip and
that are responsible for streamer propagation. The photoionization effect is deeply studied
e.g. in [15] where several approximation is taken into account. There are also more complex
boundary conditions for the Poisson’s equation in [15].

The simplest minimal model of discharge motion [7], [8] is taken into account in our work .
It consists of a convection-diffusion-reaction for the electron density, an ordinary differential
equation for the positive ion density coupled by the Poisson’s equation for the elecric potential

∂ne

∂t
+ div

(
ne~ve −De

~∇ne

)
= Se,

∂ni

∂t
= S+

i , (2.1)

where t is the time, ne denotes the electron density, ni the positive ion density, ~ve the electron
drift velocity, De the diffusion coefficient. Se = S+

i are source terms. The system (2.1)
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is coupled with the Poisson’s equation for the electric potential V

∆V = Q, (2.2)

where Q = −
e

ǫ
(ni − ne) (2D tests were computed with Q = −

e

ǫ

(ni − ne)

104
), ǫ is the dielectric

constant, e the electron charge. The intensity of the electric field is computed as a negative
gradient of the electric potential

~E = −~∇V. (2.3)

The electron drift velocity ~ve is a function of the electric field ~E and depends on the ra-
tio || ~E||/N where N is the neutral gas density (N = 2.5 · 1019 cm−3) [5]

for
‖ ~E‖

N
> 2 · 10−15, ~ve = −

[
7.4 · 1021 ·

‖ ~E‖

N
+ 7.1 · 106

]
·
~E

‖ ~E‖
,

for 10−16 <
‖ ~E‖

N
≤ 2 · 10−15, ~ve = −

[
1.03 · 1022 ·

‖ ~E‖

N
+ 1.3 · 106

]
·
~E

‖ ~E‖
,

for 2.6 · 10−17 <
‖ ~E‖

N
≤ 10−16, ~ve = −

[
7.2973 · 1021 ·

‖ ~E‖

N
+ 1.63 · 106

]
·
~E

‖ ~E‖
,

for
‖ ~E‖

N
≤ 2.6 · 10−17, ~ve = −

[
6.87 · 1022 ·

‖ ~E‖

N
+ 3.38 · 104

]
·
~E

‖ ~E‖
.

(2.4)

The diffusion coefficient De is a function of the electron drift velocity and the electric field [5]

De =


0.3341 · 109 ·

(
‖ ~E‖

N

)0.54069

 ·

‖~ve‖

‖ ~E‖
. (2.5)

The source terms depend on the electron drift velocity and the electron density

Se =
α

N
· ‖~ve‖ · ne ·N, (2.6)

S+
i = Se (2.7)

where the ratio α
N

[cm2] is computed by following formula

if
‖ ~E‖

N
> 1.5 · 10−15,

α

N
= 2 · 10−16 · exp

(
−7.248 · 10−15

‖ ~E‖/N

)
,

else,
α

N
= 6.619 · 10−17 · exp

(
−5.593 · 10−15

‖ ~E‖/N

)
.

(2.8)
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Initial conditions

The electric field is established between two planar electrodes. High voltage 25000 V is ap-
plied at the anode and the cathode is grounded. The disturbance in the electric field between
these two planar electrodes is given by an initial Gaussian pulse. The photo-ionization effect,
which is necessary to run streamer, is substitute by a background density:

2 dimensions

ne (x, y, 0) = 1016 · e−
(x−0.2)2+(y−0.25)2

σ2 + 109 [cm−3], σ = 0.01,
ni (x, y, 0) = ne (x, y, 0) ,

(2.9)

3 dimensions

ne (x, y, z, 0) = 1012 · e−
(x−0.2)2+(y−0.25)2

σ2 + 108 [cm−3], σ = 0.01,
ni (x, y, z, 0) = ne (x, y, 0) .

(2.10)

Boundary conditions

The Neumann’s homogeneous condition is considered at all boundaries for the electron density

∂ne

∂~n
= 0. (2.11)

Following Dirichlet’s conditions are prescribed for the electric potential at the anode and the cath-
ode

V = 25000 [V], for anode,
V = 0 [V], for cathode.

(2.12)

The Neumann’s homogeneous condition is prescribed at the rest of boundaries

∂V

∂~n
= 0. (2.13)
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Chapter 3

Numerical Approximation

The streamer propagation phenomenon is described through the time-space evolution of phys-
ical characteristics such as electron density, ion density, electric field and space charge. All
these characteristics experience a several orders of magnitude variation in a very narrow re-
gion located at the microdischarge tip (the so called streamer region). Further, the transport
equations and the electric field equation are strongly coupled through source-terms, transport
fluxes and space charge. The propagation dynamics intimately depends on the space-time
distribution of the microdischarge characteristics in this tinny region with a characteristics
length of few micrometers. Researchers therefore concentrate on the development of high
order schemes, e.g., FCT, QUICK, (W)ENO, MUSCLE, improved Sharfeter-Gummel, etc.,
for 1D geometries and 2D-axisymmetrical geometries. The use of highly non-symmetrical
electrode system, along with the non-planar nature of the streamer propagation motivated
some groups to adapt some of these numerical schemes to the case of non-structured grids.
Nevertheless the streamer simulation remains costly and time consuming. That’s the reason
why a simple upwind scheme extended by a Van Leer’s type MUSCL algorithm together with
Barth-Jespersen limiter is used in this work. The dynamical mesh adaptation improve the ac-
curacy of the simple scheme. There is possible to use another limiters such as Van Albada
limiter (see section 4.1.2). The Barth-Jespersen limiter is chosen because it’s a quite simple
limiter and doesn’t depend on parameters which should be tuned.
As it was mentioned before, streamer propagation is represented by unsteady convection
diffusion reaction equations for electric particles coupled with Poisson’s equation for electrical
potential. The unsteady equations are solved by an explicit scheme on unstructured grid.
The discretized Poisson’s equation leads to a system of algebraic linear equations which is
solved with a direct solver at each time step.

3.1 Numerical Method

The system of convection-diffusion-reaction equations for the charge particle densities (elec-
trons, positive ions) and the Poisson’s equation for the electric potential are treated by the fi-
nite volume method on unstructured meshes. The algorithm is
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• new values of the electron density ne and the ion density ni are computed by an explicit
scheme;

• the electrical potential is established from the new values ne, ni by numerical solution
of the Poisson’s equation;

• the electric field ~E is computed from the electric potential;

• the electron drift velocity ~ve and the diffusive coefficient De is computed as functions of
the electric field ~E;

• a new time layer is computed => new values of ne, ni;

• a new mesh is made by a dynamical mesh adaptation after several iterations;

• values of unknowns are interpolated form the old mesh to the new one.

3.1.1 Discretization of Electron Density Equation

The finite volume method is used for discretization of the electron density equation. The do-
main Ω is divided in a system of subdomains µi, Ω ≡

⋃
i µi, which do not overlap each other

and have common boundaries. Integration over volume µi gives (the treatment is the same
in 3D and leads to the same general form)

∫∫

µi

dne

dt
dV +

∫∫

µi

div (ne~ve) dV −

∫∫

µi

div
(
De

~∇ne

)
dV =

∫∫

µi

SedV. (3.1)

By using Green’s formula and dividing by the volume, the equation (3.1) leads to

dne

dt
+

1

µi

∮

∂µi

ne~ve~nds−
1

µi

∮

∂µi

De
~∇ne~nds = Se, (3.2)

with the unit normal vector ~n. Now we approximate the curvilinear integral by a summation.
So one obtains for a volume µi

dne

dt
= −

1

µi

m∑

j=1

(
nn
eij
~veij~nij|σij| −Deij

~∇nn
eij~nij|σij|

)
+ SN

ei
, (3.3)

where m is number of faces of volume µi, ~nij is the unit normal vector of the face σij (face
between volumes µi and µj) and |σij| is its length. Other variables denoted by subscript ij
represent variables on the face σij. At the end, the time derivative is approximated by
the three steps Runge - Kutta method

n(0)
ei

= nn
ei
,

n(k)
ei

= nn
e + α(k)Res

(
n(k−1)
ei

)
, (3.4)

nn+1
ei

= n(3)
ei
,
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with k = 1, 2, 3 and the coefficients α(1) = 0.5, α(2) = 0.5, α(3) = 1. The residual in
equation (3.5) is given by

Res(n(k−1)
ei

) = −
△t

µi

m∑

j=1

(
n(k−1)
eij

~veij~nij|σij| −Deij
~∇n

(k−1)
eij ~nij|σij|

)
+△t · S(k−1)

ei
, (3.5)

where △t is a time step.

3.1.1.1 Discretization of Convective Terms

The convective flux in electron density equation is computed by simple upwind scheme

neij =

{
nei if (~veij · ~nij) ≥ 0,
nej in other case,

(3.6)

with assumption that the normal vector ~nij is oriented from the cell Ti to the cell Tj. Com-
putation of the interface drift velocity ~veij will be explained later.

Higher order approximation in space

The upwind scheme has a first order of accuracy. It leads to a high numerical dissipation
which is necessary to compensate by higher order algorithm. The scheme is therefore ex-
tended by a Van Leer’s type MUSCL algorithm together with Barth-Jespersen limiter.

One introduce ñei , ñej in the equation (3.6) instead of nei , nej

ñei = nei + ψi ·
(
~∇nei · ~ri

)
, (3.7)

ñej = nej + ψj ·
(
~∇nej · ~rj

)
,

where ~∇nei ,
~∇nej are gradients of electron density in cells Ti, Tj. We can compute the gra-

dients assuming that the electron density is piecewise linear function and its value nei is
in the center of gravity of the cell Ti. This linear function is computed by the least square
method which include all neighbors of the cell Ti (neighbors with at least one common ver-
tex). ~ri is a vector coming from the center of gravity of the cell Ti to the center of gravity
of a face σij. In the same way, ~rj is a vector coming from the center of gravity of the cell Tj
to the center of gravity of the face σij. ψi and ψj are Barth-Jespersen limiter function.

The gradient ~∇nei = ((ne)x, (ne)y) from equation (3.7) is computed by following formulas in
2D

(ne)x =
Iyy · Jx − Ixy · Jy

D
, (ne)y =

Ixx · Jy − Ixy · Jx
D

, (3.8)
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where Ixx, Iyy, Ixy, Jx, Jy, D are given by equation (A.1).

We obtain a little bit more complicated relations in 3D for components of the gradient ~∇nei =
((ne)x, (ne)y, (ne)z)

(ne)x =

(
IyyIzz − I2yz

)
Jx + (IxzIyz − IxyIzz) Jy + (IxyIyz − IxzIyy) Jz

D
, (3.9)

(ne)y =
(IxzIyz − IxyIzz) Jx + (IxxIzz − I2xz) Jy + (IxyIxz − IyzIxx) Jz

D
, (3.10)

(ne)z =
(IxyIyz − IxzIyy) Jx + (IxyIxz − IyzIxx) Jy +

(
IxxIyy − I2xy

)
Jz

D
, (3.11)

where Ixx, Iyy, Izz, Ixy, Ixz, Iyz, Jx, Jy, Jz, D are defined by equations (A.2)-(A.4).

The Barth-Jespersen limiter is given by following formula

ψi =





min
(
1,

nemax−nei

△2

)
, △2 > 0,

1, △2 = 0,

min
(
1,

nemin
−nei

△2

)
, △2 < 0,

(3.12)

where nemax
is maximum of electron density from values in the cell Ti and all neighboring

cells with common face, nemin
is minimum of electron density from values in the cell Ti and

all neighboring cells with common face. △2 is given by relation △2 = ~∇nei · ~r with ~r which
comes from the cell’s center of gravity to the center of gravity of one of faces of the cell Ti.
Final ψi is the minimum over the faces.

3.1.1.2 Discretization of Dissipative Terms

The curvilinear integral of the diffusive term in the equation (3.2) is approximated by numer-
ical integration around a cell boundary, so one can write

∮

∂µi

De
~∇nn

e~nds =
m∑

j=0

Deij
~∇nn

eij~nij|σij|, (3.13)

where ~∇nn
eij represents gradient of the electron density on the face σij, ~nij is a unit normal vec-

tor of the face σij and |σij| is its measure. The constant m indicate the total number of a cell’s
faces. Computation of the diffusion coefficient Deij is described in the equation (3.32).

Gradient Computation in 2D

Approximation of the electron density gradient ~∇neij in 2D is done on the diamond cell (see
Fig. 3.1). The diamond cell is constructed by connection of centers of gravity (L, R) of cells
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Ti, Tj which share the face σij and its endpoints A, B. One obtains the co-volume Dσij
by

this construction.

Figure 3.1: Diamond cell in 2D

One can assume that the electron density gradient is constant on the co-volume Dσij
. Ac-

cording to Green-Gauss theorem the approximation leads to

~∇neij =
1

µ
(
Dσij

)
[
1

2
(ne(A) + ne(R))~nAR|σAR|+

1

2
(ne(R) + ne(B))~nRB|σRB|+

+
1

2
(ne(B) + ne(L))~nBL|σBL|+

1

2
(ne(L) + ne(A))~nLA|σLA|

]
, (3.14)

where ne(A) (ne(B), · · · ) represents value of the electron density in the point A (B, · · · ),
~nAR is a unit normal vector of the co-volume face σAR and |σAR| is its length. The others
co-volume faces and their normal vectors are labeled analogically (see Fig. 3.1).

When we factor one half out of the square bracket and modify the expression inside the square
brackets, we obtain

~∇neij =
1

2µ
(
Dσij

)
[
(~nAR|σAR|+ ~nLA|σLA|)ne(A) + (~nRB|σRB|+ ~nBL|σBL|)ne(B) +

+ (~nAR|σAR|+ ~nRB|σRB|)ne(R) + (~nBL|σBL|+ ~nLA|σLA|)ne(L)
]
. (3.15)

The following equalities are obvious

23



~nLA|σLA|+ ~nAR|σAR| = ~nLR|σLR|,

~nAR|σAR|+ ~nRB|σRB| = ~nij|σij|, (3.16)

~nRB|σRB|+ ~nBL|σBL| = −~nLR|σLR|,

~nBL|σBL|+ ~nLA|σLA| = −~nij|σij|.

If we substitute relations (3.16) in the equation (3.15), it gives

~∇neij =
1

2µ
(
Dσij

)
[
(ne(A)− ne(B))~nLR|σLR|+ (ne(R)− ne(L))~nij|σij|

]
. (3.17)

The electron density values ne(A), ne(B) in the face σij end points are computed by the least
square method

ne(A) =

N(A)∑

p=1

αp(A)nep, ne(B) =

N(B)∑

p=1

αp(B)nep, (3.18)

where nep is value of the electron density in the cell Tp, N(A) (N(B)) is number of cells
including vertex A (B), αp(A) (αp(B)) are weights coming from the least square method.
One can write (for vertex A)

αp(A) =
1 + λx (xp − xA) + λy (yp − yA)

N(A) + λxRx + λyRy

, (3.19)

where the weights parameters are given by formulas (A.5).

Gradient approximation in 3D

The diamond cell Dσij
in 3D is constructed by the centers of gravity L, R of cells Ti, Tj which

contain the common face σij. The rest of vertices of the diamond cell are vertices of the face σij
(see Fig. 3.2). The electron density gradient ~∇neij is approximated by following formula which
coming from the equations (A.6) - (A.9)
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Figure 3.2: Diamond cell in 3D

~∇neij =
1

3µ
(
Dσij

)
[
(ne(A)− ne(C))~nBRDL|σBRDL|+ (3.20)

+ (ne(B)− ne(D))~nALCR|σALCR|+ (ne(R)− ne(L))~nij|σij|
]
.

The electron density values ne(A), ne(B), ne(C), ne(D) are computed by the least square
method

ne(A) =

N(A)∑

p=1

αp(A)nep, ne(B) =

N(B)∑

p=1

αp(B)nep,

ne(C) =

N(C)∑

p=1

αp(C)nep, ne(D) =

N(D)∑

p=1

αp(D)nep.

(3.21)

The weights αp(A) is given by

αp(A) =
1 + λx (xp − xA) + λy (yp − yA) + λz (zp − zA)

D
, (3.22)

where λx, λy, λz, D are expressed in relations (A.10) - (A.12).

3.1.2 Discretization of the Positive ion Density

The equation for ion density is in the minimal model only an ordinary differential equation and
its numerical approximation is represented by three steps Runge - Kutta method (equivalent
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of equation (3.5))

n
(0)
ii

= nn
ii
,

n
(k)
ii

= nn
i + α(k)Res

(
n
(k−1)
ii

)
, (3.23)

nn+1
ii

= n
(3)
ii
,

where the coefficients α(k) are the same as in the equation (3.5) and the residual is expressed
by relation

Res(n
(k−1)
ii

) = △t · S(k−1)
ei

. (3.24)

3.1.3 Discretization of Poisson’s Equation

Discretization of Poisson’s equation leads to a system of linear equations with a sparse matrix.
Such system of equation can be solved by direct methods or by iterative methods. Iterative
methods gives possibilities as Jacobi iterative method, Gauss-Seidel iterative method or super
relaxation method which is improved Gauss-Seidel iterative method. There are also gradients
method such as Biconjugate gradients method or gmrs method (generalized minimum resid-
ual method). The gmrs method together with proper preconditioning is very often used in
numerical simulations (solving of implicit scheme, etc.). Gauss elimination or LU factoriza-
tion belong among direct methods. The LU factorization is more suitable when right hand
side of the system of equation is changed. Because of dynamic mesh adaptation, the ma-
trix of the system of equations is changed after a given number of iterations and the right
hand side is changed each iteration. This leads to “quasi-stationary” matrix of equations and
therefore LU factorization is the proper method in our case. We use MKL library from Intel
to solve the system of liner equations by LU factorization.
The Poisson’s equation is discretized by a central type approximation which leads to a system
of linear equations

A · ~V n+1 = ~bn+1. (3.25)

A is a matrix of coefficients, ~V is a vector of unknowns (its dimension is equaled to the total

number of cells) and ~b is a vector of right hand side. The updated values nn+1
e , nn+1

i are used
for the evaluation of the source term in equation (2.2). A row i in the matrix A corresponds
to the cell Ti. We use a similar finite volume method approximation as for diffusive terms
in the equation for electron density (3.13).

1

µi

Q =
1

µi

∫∫

µi

△V dV =
1

µi

∮

∂µi

~∇V nds ≈
1

µi

m∑

j=1

~∇Vijnij|σij|. (3.26)

An approximation of the gradient ~∇Vij is also made by the diamond cell (see Fig. 3.1, Fig. 3.2).
According to the equation (3.17), one can write for 2D case
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~∇Vij =
1

2µ(σij)
[(VA − VB) · ~nLR|σLR|+ (VR − VL) · ~nij|σij|] . (3.27)

When we substitute the equation (3.27) to a relation

△V =
1

µi

m∑

j=1

~∇Vij~nij|σij|, (3.28)

we obtain the final form of approximation of the Poisson’s equation in 2D

△V =
m∑

j=1

[
1

2µiµ
(
Dσij

) · ~nLR|σLR| · ~nij|σij| · VA −

−
1

2µiµ
(
Dσij

) · ~nLR|σLR| · ~nij|σij| · VB +

+
1

2µiµ
(
Dσij

) · ~nij|σij| · ~nij|σij| · VR −

−
1

2µiµ
(
Dσij

) · ~nij|σij| · ~nij|σij|
]
,

(3.29)

where electrical potential values VA, VB are computed by the least square method (see equa-
tion (3.18)) with weights computed according to equation (3.19).

For 3D case, the electrical potential gradient is approximated according to equation (3.20),
so one can write

~∇Veij =
1

3µ
(
Dσij

)
[
(VA − VC)~nBRDL|σBRDL|+ (3.30)

+ (VB − VD)~nALCR|σALCR|+ (VR − VL)~nij|σij|
]
.

If we substitute the equation (3.30) to the equation (3.28), the numerical approximation of
the electrical potential in 3D leads to
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△V =
m∑

j=1

[
1

3µiµ
(
Dσij

) · ~nBRDL|σBRDL| · ~nij|σij| · VA −

−
1

3µiµ
(
Dσij

) · ~nBRDL|σBRDL| · ~nij|σij| · VC +

+
1

3µiµ
(
Dσij

) · ~nALCR|σALCR| · ~nij|σij| · VB −

−
1

3µiµ
(
Dσij

) · ~nALCR|σALCR| · ~nij|σij| · VD +

+
1

3µiµ
(
Dσij

) · ~nij|σij| · ~nij|σij| · VR −

−
1

3µiµ
(
Dσij

) · ~nij|σij| · ~nij|σij| · VL

]
.

(3.31)

The electrical potential values VA, VB, VC , VD come from the least square method (equa-
tion (3.21)). The least square weights are computed by equation (3.22).

3.1.4 Discretization of Intensity of Electric Field, Electron Drift
Velocity and Diffusion Coefficient

The intensity of electric field is given as a negative gradient of the electrical potential ~En =
−grad (V n). The intensity of electric field is computed on cell faces by diamond scheme (see
equation (3.17) and (3.20)).

The electron drift velocity is a function of the intensity of electric field ~vneij = f
(
~En
ij

)
and

depends on the ratio
‖ ~En

ij‖

N
[V cm2], where N is the neutral gas density (N = 2.5 · 1019cm−3).

The precise formula is expressed in (B.1).

Finally we can compute the diffusion coefficient De as a function of the intensity of electric
field and the electron drift velocity

Dn
eij

=


0.3341 · 109 ·

(
‖ ~En

ij‖

N

)0.54069

 ·

‖~vneij‖

‖ ~En
ij‖
. (3.32)

Values at the cell center of gravity are estimated as average value of the values on the cell
faces.

3.1.5 Discretization of Source Terms

The source terms depends on the electron drift velocity and the electron density, so one can
write for the cell Ti
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Sn
ei
=

α

N
· ‖~vnei‖ · n

n
ei
·N,

Sn
ii
= Sn

ei
, (3.33)

where the ratio α
N

[cm2] is computed by the following formula

if
‖ ~E‖

N
> 1.5 · 10−15,

α

N
= 2 · 10−16 · exp

(
−7.248 · 10−15

‖ ~En
i ‖/N

)
,

else,
α

N
= 6.619 · 10−17 · exp

(
−5.593 · 10−15

‖ ~En
i ‖/N

)
.

(3.34)

3.2 Some Results of Numerical Analysis in 2D

3.2.1 Convergence

The analysis is describe in more details and is taken from [20].
We suppose a case when elements of a mesh satisfied classic hypotheses of regularity:

There are constants α1, α2, β1, β2 > 0 such that for all Tj ∈ Th and for all e ∈ ∂Tj

α1h
2
j ≤ µ(Tj) ≤ α2h

2
j and β1hj ≤ mes(e) ≤ β2hj (3.35)

where hj is a diameter of the triangle Tj and µ(Tj) is its volume.

We consider a elliptic problem

{
−div

(
A~∇u

)
= f in Ω ⊂ R

2

u = g on Γ = ∂Ω
(3.36)

where A(x, y) is a symmetric positive definite matrix with coefficients aij in C
1(Ω), f ∈ C0(Ω)

and g ∈ C2(Γ).

We can construct co-volume Dσij
around the face σij (see Fig. 3.1). We can discretize

∂u

∂x
|σij

by following formula

∂u

∂x
|σij

≈
1

µ(Dσij
)

∑

ε∈Dσij

1

2
(uN1 + uN2)

∫

ε

nxεdσ (3.37)

where ε is a face of the co-volume Dσij
and nxε is an axial component of its unit normal

vector. N1 and N2 are starting and ending points of the face ε and uN1 , uN2 represent values
of the state u in the points N1, N2.
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For a node P of a mesh, we can use use linear approximation v of u in all cells which contain
the node P . We can write

uP =
∑

K∈V (P )

αK(P )uK , (3.38)

where V (P ) are all triangles containing the node P , aK is a state in the center of a triangle K
and αK(P ) are weights of interpolation.

Let’s label uh an approximation of the exact solution u. uj is an approximation of an average
value in a triangle Tj.

We define exact and approached fluxes for a face e of a triangle K

ΦExact(u) =
1

mes(e)

∫

e

A(s)p(s) · ~neds with p = ~∇u,

ΦApp(uh) = (Aepe)~ne,
(3.39)

where Ae is an average value of A on the face e and it can be express in local base directions(
~ne,~te

)
by following way

A =

[
λe µe

µe νe

]
. (3.40)

Approximation of the gradient pe on the face e can be express in the base
(
~ne,~te

)
like (see

Fig. 3.1)

pe =

(
uR − uL
he

− αe

uB − uA
mes(e)

)
~ne +

uB − uA
mes(e)

~te (3.41)

with he =
−→
LR · ~ne and αe = tan

(
~ne,

−→
LR
)
=

−→
LR ·~te
−→
LR · ~ne

. This gives the form of the approached

diffusion flux

ΦApp(uh) = λe
uR − uL
he

+ βe
uB − uA
mes(e)

, (3.42)

where βe = µe − αeλe.
Remark: if A = Id. the flux ΦApp is coherent with the formula (3.17).

Definition 3.2.1 For u ∈ H2(Ω), we define the consistency error as a difference between the
exact and approached fluxes

Re(u) = ΦExact(u)− ΦApp(πhu) (3.43)

where πhu is a L2 projection of u on the piecewise constant functions on cells Th.
The scheme is called weakly consistant if
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‖Rh(u)‖L2(Ω)
−→
h→0 0 (3.44)

where Rh|µ(Dσij
)(u) = Re(u).

The finite volume discretization of the equation (3.36) can be written in following discrete
form, which depends on the parameter h and tends to the exact problem

Let’s find uh such that Ahuh = fh in Ω and uh = g on Γ = ∂Ω

where fh,i =
1

µ(Ti)

∫

Ti

f(x, y)dxdy.

Ah is a discrete operator defined as

∫

Ti

Ahdxdy =
∑

e∈∂Ti

ǫTiemes(e)Φ
App
e (uh) (3.45)

where ǫTie = ±1 if the normal vector of the face e is interior or exterior in the triangle Ti.

Let’s denote

|uh|1 =

(
∑

e∈Ah

mes(e)
uR − uL

de

) 1
2

(3.46)

where uL and uR are upstream and downstream values of uh in the direction of the normal
of the face e and de = dist(XR, XL),

and let’s denote

〈Ahuh, uh〉 =
∑

Ti∈Th

(Ahuh)i uh,i. (3.47)

Definition 3.2.2 Scheme is said coercive if ∃α > 0 such as

〈Ahuh, uh〉 ≥ α|uh|
2
1. (3.48)

Definition 3.2.3 (Discrete Poincaré inequality)
We say that discrete Poincaré inequality is verified on a regular triangulation Th if ∃β > 0
independent of h such that

‖uh‖
2
L2(Ω) ≤ β|uh|

2
1. (3.49)

Theorem 3.2.4 If the scheme is weakly consistant, coercive and verifies discrete Poincaré
inequality, then it is convergent

‖u− uh‖
2
L2(Ω)

−→
h→0 0. (3.50)

31



The following lemma gives a sufficient condition, based on the interpolation weights, for
the weak consistency.

Lemma 3.2.5 Whether the interpolation weights verify for all nodes P of a mesh

(i) αK(P ) ≥ 0,

(ii)
∑

K∈V (P )

αK(P ) = 1,

(iii)
∑

K∈V (P )

αK(P )
−−→
PK = ~0,

then the scheme (3.37) is weakly consistant.

The least square approximation respects this conditions. More details about the analysis
in [20].

3.2.2 Discrete Maximum Principle for Diamond Type scheme

The algorithm deals with discrete maximum principle based on repair technique for diamond
type scheme for diffusion problem. We consider equation (3.36) and T is a set of all cells in
a domain.

The maximum principle says if f(x) ≤ 0 for all x ∈ Ω than the maximum of u(x) is on
the boundary

u(x) ≤ min
x∈∂Ω

g(x), for all x ∈ Ω, (3.51)

if f(x) ≥ 0 for all x ∈ Ω than the minimum of u(x) is on the boundary

u(x) ≥ max
x∈∂Ω

g(x), for all x ∈ Ω. (3.52)

The discrete maximum principle for all cells K says if fK ≤ 0 for all K ∈ T then

UK ≤ min
J∈∂Ω

gJ for all K ∈ T , (3.53)

if fK ≥ 0 for all K ∈ T then

UK ≥ max
J∈∂Ω

gJ for all K ∈ T , (3.54)

where J is boundary midpoint and the Dirichlet boundary condition is prescribed gJ = g(J).

There are discussed two repair techniques in [21]. The first one is a local repair technique and
the second one is a global repair technique.
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The total energy of of the diffusion equation in a discrete form is defined as

E(U) =
∑

K∈T

UKVK , (3.55)

where VK is a volume of the cellK. It is important to keep the conservation of the total energy
when the discrete solution is modified because of the satisfaction of the maximum principle.
We define Umin = min

J∈∂Ω
gj as the minimum on the boundary. We require the repaired solution

to have the same total energy E(U r) = E(U).

Local Repair Technique

The solution U is repaired cell by cell in this technique. If UK ≤ Umin in the cell K, we have
to add a needed energy EK = −(UK − Umin)VK to the cell K. It leads to U r

K = Umin. S(K)
is a set of all cell which have a common edge with the cell K. The available energy which can
be transfered from a cell L (L ∈ S(k)) to the cell K is

Ea
L = max(0, (UL − Umin)VL). (3.56)

The total available energy coming from all neighboring cells is

Ea =
∑

L∈S(K)

Ea
L. (3.57)

There is enough available energy to correct the solution in the cell K if Ea ≥ EK . In such a
case we set U r

K = Umin and the needed energy EK from neighboring cells by following formula

U r
L = UL −

Ea
L
EK

Ea

VL
. (3.58)

In case that Ea < EK , we enlarged the set S(K) by adding of all neighboring cells with cells
in S(K).

Global Repair Technique

If we divide the set T into subsets Tp = {K;UK ≥ Umin}, Tn = {K;UK < Umin}, we can
define a total available energy in the whole computational domain end a total need energy in
the whole computational domain. The total available energy is

Ep =
∑

K∈Tp

(UK − Umin)VK (3.59)

and the total needed energy is

En =
∑

K∈Tn

−(UK − Umin)VK . (3.60)

We can write for each K ∈ T
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EK =

{
(UK − Umin)VK K ∈ Tp

−(UK − Umin)VK K ∈ Tn
. (3.61)

It is necessary to be satisfied Ep ≥ En in order to we can use the repair technique. In such a
case the total energy is positive and we have enough energy which can be transport from Tp

to Tn. When the needed energy En is compensated, the total energy in Tn is

∑

K∈Tn

U r
KVK =

∑

K∈Tn

UKVK + En =

=
∑

K∈Tn

UKVK +

(
−
∑

K∈Tn

(UK − Umin)VK

)
=

=
∑

K∈Tn

UminVK .

(3.62)

Because the repaired solution has to satisfy U r
K ≥ Umin we can see that

U r
K = Umin for all K ∈ Tn. (3.63)

We prescribe

U r
K = UK −

Ek
En

Ep

VK
for all K ∈ Tp. (3.64)

Because Ep ≥ En, we obtain

U r
K ≥ UK −

EK

VK
= Umin for all K ∈ Tp. (3.65)

More details in [21].

3.3 Dynamic Mesh Adaptation

Because of the increase of the efficiency of the presented scheme, the dynamic mesh adaptation
is performed to construct a mesh which is able to capture the stiff gradient of variables in
areas of streamer head propagation.
There are several possibilities how to adapt a mesh. One can distinguish mesh adaptation for
steady cases and on the other hands for the unsteady cases.
A progressive refinement is often use in steady computations to catch significant phenomenons
such as shock waves in fluid flows. It means that we refine (split cells) a mesh in the direction
of a shock wave for a once time and let the computation run. If its necessary we can refine
the mesh in the same area again. Another possibility is a deformation of cells - moving of
vertices and if it necessary omission of some nodes.
When an unsteady simulation run, the dynamical mesh adaptation can increase the efficiency
of the computation because we need less cells. It leads to decrease of CPU time and used
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memory. A mesh is therefore adapted in each time step if it necessary in such way that cells
are reduced in the significant area and enlarge in areas where it isn’t necessary. It means when
we want to reduce a cell we move its vertices closer to each other, to enlarge a cells we move
its vertices apart or we omit a vertex. We can also use different way how to reduce cells. We
can divide cells into sub-cells which are similar to the original ones and unrefine them when
the significant phenomenon moves from this area.

A quasi-stationary adaptation is also a possibility how to increase the efficiency of the code.
We use a reference grid where we compute a criterion to know which cells should be refined.
Then we refine the cells, satisfy the conformity and the computation run on the refined grid
for given time steps. After that we create new mesh and interpolate values of unknowns from
the last refined grid to the new one.

We choose the last type of mesh refinement because the refined area is sufficient large and
the streamer moves in this area for some time. The mesh is again refined before the streamer
head leaves the refined area.

3.3.1 Criterion

The algorithm starts by computing a criterion on a fixed coarse base mesh. The criterion
consists of several parameters (e.g. gradient of source terms). The criterion is scaled to
an interval 〈0, 1〉. Then the criterion is smoothed by ten iterations of diffusion equation.
After the smoothing the criterion once more scaled to the interval 〈0, 1〉. Next the interval
split on subintervals which say how many times each cell of the reference grid will be divided.
The algorithm satisfies that the level of refinement among neighboring cells cannot be higher
than one. The grid conformity is applied when each triangle is subdivided. Moreover in 2D if
a cell has two neighbors with a common face which should be divided on four sub-triangles,
the cell will be also divided on four triangles. Mores about the adaptation criterion is in
the section 5.3. After a given number of iteration, the new criterion is computed on reference
grid and we create new refined mesh. The values from old refined grid a interpolated to
the new one.

3.3.2 Mesh refinement in 2D

The refinement in 2D is performed for meshes which consist only of triangular cells. First
the reference triangle is subdivided in four new triangles. Then the conformity satisfies that
two neighboring triangles have only one common face.

3.3.2.1 Cell dividing

The faces midpoints are used for the cell dividing. They are used together with the cell
vertices to create four new triangles from the original one. The new triangles have a level of
refinement decreased of one. The algorithm is repeated until all cells have level of refinement
equaled to zero (see Fig. 3.3).
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Figure 3.3: Mechanism of multi-level refinement in 2D

3.3.2.2 Conformity

If the levels of refinement among neighboring cells are different, we have to satisfy the mesh
conformity. For each cell, we check the level of refinement of neighboring cells with common
face. In case that at least two neighboring cells has higher level of refinement, we increase
the level of refinement for given cell and it’s divided by standard algorithm. In case that only
one neighboring cell has higher level of refinement, we split given cell on two triangles (see
Fig. 3.3, part Level 2). This algorithm slightly enlarges the refined area.

3.3.3 Mesh refinement in 3D

The mesh refinement algorithm in 3D is very similar to the algorithm in 2D. The conformity
step is a little bit different and will be explained later. The presented mesh refinement
algorithm works only with tetrahedrons.

3.3.3.1 Cell dividing

The level of refinement for each cell is set according to a criterion as in 2D case. In one step
of refinement a given cell is subdivided into eight new tetrahedrons using edges midpoints
and vertices from the original cell. New tetrahedron is created at each vertex. When we
imaginary cut these tetrahedrons out of the original cell, a double-pyramid remains. This
double-pyramid is subsequently split into four tetrahedrons (see Fig. 3.4).
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Figure 3.4: Mechanism of refinement in 3D

If the original tetrahedron has vertices labeled v1, v2, v3, v4, the new eight tetrahedrons are
labeled

• v1, mp1, mp3, mp6,

• mp1, v2, mp2, mp4,

• mp6, mp4, mp5, v4,

• mp3, mp2, v3, mp5,

• mp1, mp2, mp3, mp6.

• mp1, mp4, mp6, mp2,

• mp3, mp5, mp6, mp2,

• mp2, mp4, mp5, mp6.

3.3.3.2 Conformity

If a given cell shouldn’t be divided, we have to satisfy conformity of mesh. We check all
neighboring cells common at least on edge if there are cells which has been divided. There
are several cases how to split the cell according number of edges which contains divided

37



neighboring cells. We split the given cell into two new tetrahedrons if only one edge contains
divided neighbors (see Fig. 3.5).

Figure 3.5: Conformity when one edge should be split

According to the splitting, we obtain tetrahedrons

• v1, mp1, v3, v4,

• mp1, v2, v3, v4.

If each of six edges of a given cell should be divided, the cell is split as it is regular cell
described in section 3.3.3.1.

In case that more than one but less then six edges should be split, we firstly divide the given
cell into four tetrahedrons using the cell center of gravity C (see Fir. 3.6). It leads to set of
tetrahedrons

• v1, v2, C, v4,

• v1, v2, v3, C,

• v2, v3, C, v4,

• v3, v1, C, v4.
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Figure 3.6: Splitting of tetrahedron using the center of gravity

Next we deal with each new tetrahedron separately. We check how many edges should be split.
This gives three possibilities. We show the possibilities on the tetrahedron v1, v2, C, v4.
If only one edge should be split, we obtain two tetrahedrons (see Fig. 3.7)

• v1, mp1, C, v4,

• mp1, v2, C, v4.

Figure 3.7: One edge to be split

In case that two edges should be split, it leads into three new tetrahedrons (see Fig. 3.8)
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• v1, mp1, C, mp2,

• mp2, mp1, C, v4,

• mp1, v2, C, v4.

Figure 3.8: Two edge to be split

Last there is possibility that three edges of the tetrahedron v1, v2, C, v4 should be split.
This gives four new tetrahedrons (see Fig. 3.9)

• v1, m1, C, mp2,

• mp2, mp1, C, mp3,

• mp1, v2, C, mp3,

• mp2, mp3, C, v4.
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Figure 3.9: Three edge to be split

This way of satisfying of conformity doesn’t expand the area of refinement. On the other
hand, we obtain worse shape of cells. The conformity could be improved by the proposal
in [18] and [19].
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Chapter 4

Simple Tests of Grid Adaptation
Algorithm

4.1 Linear Advection Equation, Grid Adaptation

These section deals with testing of the advection together with the mesh adaptation on
a simple scalar equation

ut + ~a · ∇u = 0, (4.1)

in one, two and three dimensions. The velocity vector ~a is ~a = 1 in an one dimensional case,
~a = (1, 0) in a two dimensional case and ~a = (1, 0, 0) in a three dimensional case.
The numerical test are as for 1st order of accuracy as for 2nd order of accuracy scheme.
The simple upwind scheme (see eq. (3.6)) is used in the 1st order scheme. The extension
of the upwind scheme on the second order in space is made by Van Leer’s type MUSCL algo-
rithm together with Barth-Jespersen limiter (see eq. (3.7)), more in [17]. The limiter is also
used e.g. in [14]. The second order of accuracy in time is due to three steps Runge-Kutta
method.

The testing domains are

• an interval x ∈ 〈0, 1〉 for 1D case,

• a rectangle 〈0, 1〉 × 〈0, 0.5〉 for 2D case,

• a brick 〈0, 1〉 × 〈0, 0.5〉 × 〈0, 0.5〉 for 3D case.

Initial condition

The initial condition is represented by Gaussian pulse with maximum magnitude of 10

u(x, y, z, 0) = 10 · e−
(x−0.2)2+(y−0.25)2+(z−0.25)2

0.052 . (4.2)
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The initial condition 4.2 is written for 3D case where the initial Gaussian pulse is a sphere.
The initial condition for 2D and 1D cases are derived from 3D initial condition by omitting
z variable in 2D (y, z variables in 1D). The 3D case is also tested for cylindrical initial Gaus-
sian pulse and in such case the initial condition is same as for 2D case.

Boundary conditions

For all test cases, the homogeneous Neumann’s conditions are used at all boundaries.

4.1.1 Test Results

All presented results are at physical time t = 0.6 s. We can see results obtained by 1D com-
putation in Figs. 4.1-4.2. Fig. 4.1 shows results computed by 1st order scheme and 2nd order
scheme with CFL number equaled to 0.4. There is more numerical diffusion in the 1st or-
der scheme which leads to decrease of maximum value of the initial Gaussian pulse and its
spreading during transportation. When the 2nd order scheme is used, the maximum value
almost doesn’t decrease and the initial pulse doesn’t spread.

Figure 4.1: 1D computation: 1st order scheme (left), 2nd order scheme (right), CFL = 0.4
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Figure 4.2: 1D computation: 1st order in time, 2nd order in space, CFL = 0.4 (left), CFL =
0.1 (right)

Fig. 4.2 gives results obtained by scheme which is 1st order of accuracy in time and 2nd order
of accuracy in space. The left figure shows results gained with CFL = 0.4. We can see that
the maximum value almost doesn’t decrease but the quality of the pulse is very bad. Decreas-
ing of time step (CFL = 0.1, right figure) gives better quality of the transported Gaussian
pulse but not as good as 2nd order scheme with bigger time step.

Results coming from 2D computation on structured mesh with approximately 300000 cells are
in Figs. 4.3-4.5. The results represent transportation of a circle of the Gaussian pulse. Fig. 4.3
shows comparison of 1st order scheme and 2nd order scheme along the axis of computational
domain y = 0.25. We can again see that the first order scheme is more dissipative than
the second order scheme. Fig. 4.4 presents isolines of the same results.

Figure 4.3: 2D computation: 1st order scheme (left), 2nd order scheme (right), CFL = 0.4
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Figure 4.4: 2D computation: 1st order scheme (left), 2nd order scheme (right) isolines, CFL =
0.4

Fig. 4.5 shows results when the first order of accuracy in time and the second order of accuracy
space is used. Together with smaller time step it gives relatively good results but not good
as fully 2nd order scheme.

Figure 4.5: 2D computation: 1st order in time, 2nd order in space, CFL = 0.1

Fig. 4.6 presents comparison of results form 3D computation obtained on fine cartesian grid
with approximately 1.2 million cells and on unstructured grid with approximately 60 thou-
sands cells. The results (transportation of cylinder) shows magnitude of variable along the line
y = 0.25, z = 0.25 computed by 2nd order scheme. We can see that the dense of a grid is also
very important.
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Figure 4.6: 3D computation: 2nd order scheme CFL = 0.4, structured grid 1200000 cells
(left), unstructured grid 60000 cells (right)

The Figs. 4.7-4.8 shows results (transportation of sphere) obtained on unstructured grid
with 3 levels of mesh adaptation. It leads to mesh with approximately 240000 cells. If the im-
portant area is refined, we obtained good results with smaller grid and shorter CPU time.
Fig. 4.7 presents isolines and mesh at slice y = 0.25. The magnitude of variable along the axis
y = 0.25, z = 0.25, we can see in Fig. 4.8.

Figure 4.7: 3D computation: 2nd order scheme CFL = 0.4, dynamical mesh adaptation,
transportation of a sphere, isolines (left), mesh (right)
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Figure 4.8: 3D computation: 2nd order scheme CFL = 0.4, dynamical mesh adaptation,
transportation of a sphere

max min
1st order 8.8106 0
2nd order 9.9664 0

1/2 order CFL = 0.1 9.9968 0
1/2 order CFL = 0.4 9.999 0

Table 4.1: 1D computation, 1000 cells

max min
1st order 8.176 0
2nd order 9.9433 −3e− 8

1/2 order CFL = 0.1 10.021 −4e− 8

Table 4.2: 2D computation, 775x387 cells

max min
2nd order, grid 775x387x4 9.970 −1e− 5

2nd order, unstructured grid 60000 cells, 5.1348 −0.19
2nd order, unstructured grid 60000 cells, sphere 3 levels 9.7774 −0.002

Table 4.3: 3D computation

Tables 4.1-4.3 present maximum and minimum values of the results at time t = 0.6 s. 1/2 order
in tables means 1st order in time and 2nd order in space.
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Figure 4.9: Comparison of results from different dimensions

The comparison of results obtained from computation in different dimensions is in Fig. 4.9.
The results from 3D computation in the figure are from transportation of a cylinder on
cartesian grid.

4.1.2 Comparison of limiters

This section compare results obtained by 2D computations where Barth-Jespersen and Van Al-
bada limiters are used. The initial condition (4.2) is slightly modified

u(x, y, z, 0) = 1016 · e−
(x−0.2)2+(y−0.25)2+(z−0.25)2

0.052 (4.3)

to verify that we can use such orders of magnitude.

Figure 4.10: Comparison of limiters

Fig. 4.10 shows comparison of results of 2D computation on a structured grid with approx-
imately 300000 cells. We can see that both Barth-Jespersen and Van Albada limiters gives
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almost the same results. The Barth-Jespersen limiter is unlike the Van Albada limiter inde-
pendent on chosen parameters. The Bart-Jespersen limiter is therefore more suitable to use
because we don’t have to “tune” any parameter if a computation condition is changed.
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Chapter 5

Numerical Results for 2D Planar
Discharge

5.1 Description of Test Cases

We consider the propagation of 2D problem of discharge in homogeneous electric field de-
scribed by equations (2.1)-(2.2). The first domain is a simple rectangle 1× 0.5cm, the second
domain has a left boundary partly replaced by a parabola. The parabola goes through points
[0, 0.15] , [0.2, 0.25] and [0, 0.35] (see Fig. 5.1).

Figure 5.1: 2D computational domains

Initial Conditions

We consider the following initial conditions for the rectangular domain

ne (x, y, 0) = 1016 · e−
(x−0.2)2+(y−0.25)2

σ2 + 109 [cm−3], σ = 0.01,
ni (x, y, 0) = ne (x, y, 0) .

(5.1)

The initial Gaussian pulse for the electron and ion densities creates disturbance in the elec-
tric field which is necessary for initialization of ionization process in the wave propagation.
The background electron and ion densities 109 cm−3 substitute the photoionization effect
which is neglected in this simple streamer model. The computation is stopped at prescribed
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time when the head of electron avalanche is still inside the computational domain. In fur-
ther computation, the discharge goes out through the right boundaries and the source terms
increase to infinity but this effect doesn’t represents physical behavior of the electric discharge.

The second domain (domain with parabolic left boundary) has different initial conditions

ne (x, y, 0) = 109 [cm−3],
ni (x, y, 0) = ne (x, y, 0) .

(5.2)

The disturbance in the electric field is created by the shape of the left boundary so we don’t
need any initial Gaussian pulse.

Boundary Conditions

The left boundaries of the domains are anode, the right boundaries are plane cathodes. There
are prescribed homogeneous Neumann conditions for all unknowns for upper and lower bound-
aries. Following boundary conditions are prescribed for the anode and the cathode

∂ne

∂~n
= 0, for anode and cathode,

V = 25000 [V], for anode,
V = 0 [V], for cathode.

(5.3)

5.2 Discharge in Rectangular Domain

Figs. 5.3 and 5.2 present results obtained with the second upwind scheme on dynamically
adaptive grid in rectangular domain. The shape and magnitude of velocity vectors agrees with
physical mechanism of the electric discharge propagation. The results in front of the scale
in Fig. 5.3 are rotated about 90◦ in positive sense.
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Figure 5.2: 2nd order computation: Evolution of electron density (left) and source terms
(right) magnitudes, 2nd order scheme, adapted grid

Figure 5.3: 2nd order computation: Electron density (contour levels) at times t = 3.859·10−8s,
t = 4.435 ·10−8s, t = 4.847 ·10−8s, t = 5.25 ·10−8s and t = 5.659 ·10−8s (end of computation),
2nd order scheme, adapted grid; electron velocity vectors at a head of a discharge (right)

5.3 Grid Adaptation Test

The properties of the grid adaptation algorithm are the subject of the tests. It is important to
have sufficiently high density grid in critical areas of the computational domain. These areas
are the streamer (planar wave in 2D) path and the head of the discharge. The grid adaptation
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up to level 4 is therefore used. We need on the other hand to avoid too large extension of
region with high level of adaptation because of almost explosive increase of number of cells.

Test Description

All computations are done on the same reference grid with 4700 cells (see Fig. 5.4). The first
order scheme is used in the tests. As the initial condition we use the temporal result achieved
on adapted grid at physical time tin = 3.14 · 10−8 s (see Table 5.1) calculated from initial
conditions (5.3).

We can see ( Fig.5.4), that in this time the locally modified electric field is developed. It
further initiated the growth and motion of electron avalanche. The computation starts with
grid adaptation step and next the time evaluation is calculated. It means, that the new grid
is created according to prescribed specific version of grid adaptation algorithm and initial
solution is conservatively interpolated into finite volumes of new grid. After that we start to
compute the time evaluation of solution. We use the same criterion for calculation of time
step, the same CFL number, fixed number of computed time steps between grid adaptation.
The computed cases differs only in grid adaptation algorithm or its parameters. We compare
results achieved at the same physical time T = 5.25 · 10−8 s. The number of triangles and
nodes in Table 5.2 means the numbers on adapted grid at time t = T . The CPU time is
the relative CPU time necessary for computation of solution in time interval 〈tin, T 〉.

cells nodes
reference mesh 4700 2424
mesh at tin = 3.14 · 10−8 9154 4651

Table 5.1: Number of cells, nodes of reference mesh and mesh at tin = 3.14 · 10−8

adaptation criterion cells nodes CPU time
source terms 11760 5954 1
electron density gradient 16714 8431 0.447
both, algorithm V1 18520 9334 0.716
both, algorithm V2 22422 11285 1.522
new distribution, alg. V2 46304 23226 2.551

Table 5.2: Number of cells, nodes, time steps and CPU time at t = 5.25 · 10−8s
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Figure 5.4: Reference mesh, mesh, electron density, electric field at tin = 3.14 · 10−8

Results Presentation

Each result is presented in a one row. The computational domain is rotated 90◦ anti-clockwise.
The horizontal coordinate 〈0, 0.5〉 is then oriented from right to left, the vertical coordinate
〈0, 1〉 is oriented from bottom to up. The discharge propagates from bottom.
The first and second column shows the isolines of the electron density ne and the source
term Se at time T in zoom 〈0.15, 0.35〉 horizontally and 〈0.16, 1〉 vertically. The adapted
grid at time T is plotted in third column. The relation of adapted grid density and isolines
of the electron density ne is shown in fourth (zoom 〈0.18, 0.32〉 x 〈0.15, 0.4〉) and fifth columns
(zoom 〈0.18, 0.32〉 x 〈0.4, 0.68〉). The zoom of adapted grid around planar wave head is plot-
ted together with isolines of the sorce term Se in the last sixth column.

Criterion Variables

The first row in Fig. 5.5 shows results, when the magnitude of the source term is chosen as
criterion function crit = Se (case 1). The second row shows results of case 2, when the criterion
is based on gradient of the electron density ne, crit = |gradne|. Finally we present results of
case 3 , when both previous criterion are used simultaneously crit = max (|grad ne|, Se). We
use this expression in two different algorithms V1 and V2.
In the version V1 (row 3 in Fig. 5.5), both criteria are scaled to one (dividing by the maxi-
mum value respectively). Then for each cell is chosen maximum of these two scaled criteria.
The new criterion is smoothed using diffusion equation and scaled once more to one and it
gives the final new criterion.
In the version V2 (see Fig. 5.6), each criterion is smoothed and scaled to one separately and
the new criterion is maximum of these two values.

Discussion of Results

We can observe a significant influence of choice of criterion variable on position of head
of the planar wave in fixed time T and consequently on discharge propagation velocity. The
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lower level of grid adaptation in region of high values of source term Se brings smearing of
source term and higher propagation speed - typically case 2, partly case 3 version V1. On the
other hand the criterion based only on the magnitude of source term - case 1 - produces too
low values of electron density ne in discharge path (initial part). The results of case 1 and
2 confirm, that the critical regions are well and efficiently ( without significant enlargement)
covered by highly refined (level 4 or 3) triangles.
We can also observe, that only simultaneous use of both variables (case 3) in grid adaptation
criterion produce acceptable results. The position of planar wave head and shape of source
term as in case 1 is similar only in version V2.
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Figure 5.5: Criterion based on source terms (first row), criterion based on gradient of electron
density (second row), criterion based on source terms and gradient of electron density -
algorithm V1 (third row)

The table 5.2 shows, that the highest number of grid cells is also in case 3, version V2.
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Comparing to case 1 it uses twice more cells, the number of time steps is almost the same
and CPU time is 50% increasing. The maximum of grid points (about 22 000) confirms high
efficiency of dynamic grid adaptation algorithm for solved problem. When all triangles of
reference grid will be adapted up to fourth level, the number of volumes overcomes 1 200 000.

Figure 5.6: Criterion based on source terms and gradient of electron density - algorithm
V2, basic distribution of level of adaptation(first row), enlarged interval of higher level of
adaptation (second row)

Distribution of Subintervals of Adaptation Levels

The results in first row in Fig. 5.6 as well as all results presented in Fig. 5.5 were computed
by the same basic definition of subintervals of 〈0, 1〉 of different levels of adaptation - level
4 for crit ∈ 〈0.64, 1〉, level 3 for crit ∈ 〈0.36, 0.64), level 2 for crit ∈ 〈0.16, 0.36), level 1
for crit ∈ 〈0.04, 0.16). The results presented in the second row in Fig. 5.6 were achieved
by the same algorithm, but with enlarged interval of highest level of adaptation - level 4
for crit ∈ 〈0.36, 1〉, level 3 for crit ∈ 〈0.16, 0.36), level 2 for crit ∈ 〈0.08, 0.16), level 1 for
crit ∈ 〈0.04, 0.08).
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Discussion of Results

We can observe higher density of grid in plotted regions, but also very similar distribution of
ne as well as position and shape of source term. The number of grid volumes is two times
higher as for basic distribution, number of time steps is almost the same and CPU is 1.7 time
higher.We can conclude, that the quality of achieved result is not too sensitive on choice of
subinterval of highest level of adaptation.

5.4 Grid Density and Numerical Convergence Test

The influence of the grid density is studied for both 1st and 2nd order of approximation in
space variables. The test cases are constructed with the same way as in previous subsection.

Test Description

The solution at time tin = 3.14 ·10−8 s (see Fig. 5.4) is once more chosen as initial approxima-
tion. The computational grid is obtained as uniformly refined reference grid, i.e. all triangles
of reference grid are split into the same number of 4lr triangles in dependence on level of
refinement lr = 2, · · · , 5. The computation starts with generation of grid and conservative
interpolation of unknowns at starting time into volumes of grid. Then the time evolution is
calculated up to the prescribed time. We use the same CFL number for all cases.

Uniformly Refined Grid

Fig. 5.7 shows the isolines of net charge density ρ = e (ni − ne) obtained by first order scheme.
The isolines of net charge density computed by second order scheme are plotted in Fig. 5.8.
1D plots of the electron density ne and the net charge density ρ along the axis of discharge
(y = 0.25) document the influence of the grid density (see Fig. 5.9 and Fig. 5.10). Presented
results approve that the first order scheme over predicts the electric discharge propagation
speed. This property is in accordance with the conclusion in [15]. We can observe in both
Fig. 5.7, and Fig. 5.9 that the position of the discharge head as well as the magnitude of
the electron density decreases with higher grid density. The magnitude of net charge density
is increasing. The distribution of net charge also shows, that the difference between results
on neighboring coarse and fine grid slowly decreases with increasing of gird density (position
and magnitude of maximum).
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Figure 5.7: 1storder, comparison of net charge density computed on different uniformly refined
meshes at time t = 5.25 · 10−8s. From left to right: 2 levels, 3 levels, 4 levels, adaptation (4
levels)

Figure 5.8: 2ndorder, comparison of net charge density computed on different uniformly
refined meshes at time t = 5.25 · 10−8s. From left to right: 2 levels, 3 levels, 4 levels,
adaptation (4 levels)
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Figure 5.9: 1storder, comparison of electron density (left) and net charge density (right)
computed on different coarse meshes at time t = 5.25 · 10−8st: 2 levels, 3 levels, 4 levels, 5
levels

The method with second order scheme in space variables has different behavior. The position
of the discharge head and magnitude of electron density increases and magnitude of net charge
decreases when the grid density is increasing. We can also observe much smaller difference
between results (net charge distribution in Fig.5.10) on neighboring coarse and fine grid as in
case of first order scheme. This property also in some sense document higher accuracy and
convergence of second order scheme.
We can see that the first order scheme is still too dissipative and inaccurate even if very fine
mesh is used. The Fig. 5.10 shows that 4 levels of mesh refinement is sufficient to obtain
satisfactory accurate results with second order scheme.

Figure 5.10: 2ndorder, comparison of electron density (left) and net charge density (right)
computed on different coarse meshes at time t = 5.25 · 10−8s.t: 2 levels, 3 levels, 4 levels

Although the difference between the first and the second order schemes decrease with increas-
ing mesh density, it is still important. We can see the difference plotted in Fig. 5.11 for grid
with 4 levels of refinement.
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cells nodes CPU time
2 levels uniformly refined grid 75200 37893 1
3 levels uniformly refined grid 300800 150985 8.158
4 levels uniformly refined grid 1203200 602769 58.663
Adapted grid, algorithm V2 18636 9392 1.084

Table 5.3: 2ndorder: number of cells, nodes and CPU time at time t = 5.25 · 10−8s

Figure 5.11: Comparison of electron density (left) and net charge density (right) for first and
second order schemes, grid with 4 levels of refinement

Comparison of Uniformly and Dynamically Adapted Grid

Finally the accuracy and efficiency of proposed dynamic mesh adaptation algorithm is tested.
The results are compared with the numerical results obtained on uniformly refined grid with
4 levels of refinement. These comparisons are plotted for both the fist and the second order
scheme in form of the electron density ne and the net charge density ρ along the axis (Fig. 5.12
and Fig. 5.13). The comparison is also shown in form of isolines for the net charge density in
Fig. 5.7 and Fig. 5.8 where the third column is uniformly refined grid and the fourth column
is dynamically refined grid. We can see that the results are almost identical. It confirms that
the accuracy of uniformly refined grid is conserved. The table 5.3 shows the high efficiency
of the dynamic mesh adaptation algorithm.
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Figure 5.12: 1storder, comparison of electron density (left) and net charge density (right)
computed on fine mesh and mesh with dynamic adaptation

Figure 5.13: 2ndorder, comparison of electron density (left) and net charge density (right)
computed on fine mesh and mesh with dynamic adaptation

5.5 Planar Wave in Domain with Parabolic Anode

Figs. 5.14-5.18 present time evolution planar wave in 2D domain where the anode has a parabolic
shape. The disturbance in the electric field is given by the shape of the anode and there is
no initial Gaussian pulse. We can see in the figures evolution of the electron density, the net
charge density and the source terms.
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Figure 5.14: Electron density (left), net charge density (middle) and source term (right) at
time t = 1.155 · 10−8 s.

Figure 5.15: Electron density (left), net charge density (middle) and source term (right) at
time t = 1.47 · 10−8 s.
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Figure 5.16: Electron density (left), net charge density (middle) and source term (right) at
time t = 1.89 · 10−8 s.

Figure 5.17: Electron density (left), net charge density (middle) and source term (right) at
time t = 2.1 · 10−8 s.
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Figure 5.18: Electron density (left), net charge density (middle) and source term (right) at
time t = 2.31 · 10−8 s.

Figs. 5.19-5.20 show the time evolution of the electron density, the net charge density and
the source terms along the axis of the computational domain (y = 0.25).

Figure 5.19: Evolution of electron density (left) and net charge density (left).
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Figure 5.20: Evolution of source term.
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Chapter 6

Numerical Results for 3D Streamer

6.1 Description of Test Cases

The best method from 2D simulations is adopted to the 3D experiments. It means treatment
with the choice of parameters for the adaptation criterion, smoothing of criterion, using of
the second order scheme. The algorithm V2 (see section 5.3) is used in adaptation criterion
with 3 levels of refinement - level 3 fro crit ∈ 〈0.5625, 1〉, level 2 for crit ∈ 〈0.25, 0.5625),
level 1 for 〈0.0625, 0.25). The lower level of refinement is because of the CPU time and
also the computer memory. The 3D simulations take almost 3 weeks to obtain results even
with the dynamcal mesh adaptation. There are two different domains for experiments in3D.
The first of them is a simple brick 1× 0.5× 0.5 cm (see Fig. 6.1).

Figure 6.1: 3D computational domain

The second domain is a cube with edge’s length 0.5 cm where the right boundary is deformed
in such way that we obtain a pyramid with angle α = 161.82◦ at the top of the pyramid (see
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Fig. 6.2).

Figure 6.2: 3D computational domain - pyramid

Initial Conditions

We use the same initial conditions for all three computational domains

ne (x, y, z, 0) = 1012 · e−
(x−0.2)2+(y−0.25)2

σ2 + 108 [cm−3], σ = 0.01,
ni (x, y, z, 0) = ne (x, y, 0) .

(6.1)

The meaning of initial Gaussian pulse and the background electron and ion densities is same
as in 2D. The increase of background electron and ion densities comes from axisymmetrical
simulations [22] where a low magnitude of the densities have made blow up of the solution.

Boundary Conditions

The left boundary is an anode with high voltage, right boundary is a cathode. The ho-
mogeneous boundary conditions are prescribed for all unknowns on upper, lower front and
back boundaries. Boundary conditions for the anode and the cathode are given by following
formulas

∂ne

∂~n
= 0, for anode and cathode,

V = 25000 [V], for anode,
V = 0 [V], for cathode.

(6.2)

The second domain (“pyramid”) has half voltage on the anode

V = 12500 [V], for the anode. (6.3)
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6.2 Streamer Propagation

Figures in this section shows results coming from computation in the domain where the ini-
tial disturbance of the electric field is due to the initial Gaussian pulse. The results are
similar to the 2D computations. It demonstrate that we can trust to the method also in 3D
simulations.

The mesh has been generated by GMSH mesh generator. The generator produced a mesh
where the ratio between the smallest and the biggest cells is 1 : 10. The total number of
cells in used mesh is around 150000. During the tuning of the code, it has been found out
that the streamer simulation is sensitive on a bad quality of an used mesh. The old version
of the GMSH generator produces grids where the ratio between the smallest and the biggest
cells is 1 : 104. When such grid is used, the method diverges.

The computation takes three weeks of CPU time. The number of iterations needed to obtain
the results at the time t = 2.52 · 10−8 s is around 20500. The dynamical mesh adaptation
leads to a mesh with around 450000 cells at the final time t = 2.52 · 10−8 s.

We can see a time evolution of the electron density in Figs. 6.3-6.5. The figures present
isolines of the electron density in a cut plane y = 0.25 (left part of the figures) and full 3D
view (right part of the figures).

A time evolution of the net charge density is shown in Figs. 6.6-6.8. As in previous set
of figures, the left part of the figures presents isolines in the cut plane y = 0.5 and the right
part of the figures shows full 3D view.

The results seem to be a little bit more oscillatory in the electron density ne. 2D test presents
that the numerical method has such behavior on coarse grids. The oscillatory can be also
caused by a slightly different refinement algorithm in 3D and there is also different conformity
step in the 3D. The cell dividing is different in 2D and 3D from the nature of the geometrical
shapes of cells. A triangle is divided on the four same sub-triangles similar to the original
one. The tetrahedron is divided on eight sub-tetrahedrons where four of them (tetrahedrons
at vertices) are similar to the original one but the rest of the sub-tetrahedrons have differ-
ent shape. This property together with the conformity step can deform the mesh. These
properties will be tested in the future.
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Figure 6.3: Electron density at time t = 1.155 · 10−8 s

Figure 6.4: Electron density at time t = 1.995 · 10−8 s

Figure 6.5: Electron density at time t = 2.52 · 10−8 s
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Figure 6.6: Net charge density at time t = 1.155 · 10−8 s

Figure 6.7: Net charge density at time t = 1.995 · 10−8 s

Figure 6.8: Net charge density at time t = 2.52 · 10−8 s
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6.3 Streamer Propagation in the “Pyramid” Domain

Figures in this section are obtained by a computation in the “pyramid” domain (the cathode
has a shape of a pyramid). Figs. 6.9-6.11 present a time evolution of the electron density
and Figs. 6.12-6.14 show a time evolution of the net charge density. Results obtained by
2D computations in a domain with cathode which has a shape of “V” where the motivation
for the test. This cathode caused ramification of discharge in 2D. Unfortunately the cath-
ode shape doesn’t have any influence on the ramification of the streamer in 3D simulations.
The streamer discharge propagates without any signs of ramification toward the cathode.
The domain with the “pyramid” cathode is next used for simulations of the streamer branch-
ing where a plasma spot is added to disturb the electric field (see section 6.4). The 2D results
aren’t included to the thesis.

Figure 6.9: Electron density at time t = 0.945 · 10−8 s

Figure 6.10: Electron density at time t = 1.47 · 10−8 s
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Figure 6.11: Electron density at time t = 1.89 · 10−8 s

Figure 6.12: Net charge density at time t = 0.945 · 10−8 s

Figure 6.13: Net charge density at time t = 1.47 · 10−8 s
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Figure 6.14: Net charge density at time t = 1.89 · 10−8 s

There is a comparison of the streamer motion in different domains in Fig. 6.15. The figure
shows the electron density in different domains. We can see that the shape of a domain
doesn’t have significant influence on the physical phenomenon. The shape of the cathode
has an influence on the velocity of the motion. The results aren’t compared with laboratory
experiments.

Figure 6.15: Electron density at time t = 1.995 · 10−8 s (left), electron density at time
t = 1.89 · 10−8 s in “pyramid” domain(right)

6.4 Streamer Branching

The tested streamer branching is caused by an instability in the electric field. The effect of
plasma spot [16] is applied near the head of the streamer in this work. We add neutral plasma
spot which is introduced into the model as another source term into the continuity equations
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for the electron and the positive ions densities. The plasma spot is canceled after short time
(less than nanosecond).

Figs. 6.16-6.107 show results of four test versions when one or two plasma spots were added.
Tests are computed in the “pyramid” domain. The figures are zoomed around the streamer
paths.

The plasma spot is added at time t = 1.26 · 10−8 s and canceled after the “duration time”. In
Version 3 and Version 4 , the second plasma spot is added when the first one is canceled.

Version 1

Plasma spot: Se = 1021 · e
(x−0.3)2+(y−0.25)2+(z−0.265)2

0.0052

Position: X0 = [0.3, 0.25, 0.265]
Duration: t = 0.5 · 10−9 s

Figs. 6.16-6.35 present an evolution of the electron density and the net charge density where
the neutral plasma spot is introduced too close the streamer head. Figs. 6.16-6.20 and 6.26-
6.30 show isolines in a cut plane y = 0.25, Figs. 6.21-6.25 and 6.31-6.35 show full 3D view.
Figs. 6.16, 6.21, 6.26 and 6.31 show the state when the plasma spot is added to the elec-
tric field. Figs. 6.17, 6.22, 6.27 and 6.32 captures a moment when the plasma spot is can-
celed. We can observe that the electron from the streamer head are attached to the area
of the plasma spot. Figs. 6.18, 6.23, 6.28 and 6.33 show that the streamer motion is deflected
to the area of the plasma spot. Figs. 6.19, 6.20, 6.24, 6.25, 6.29, 6.30, 6.34 and 6.35 dis-
play that the streamer avalanche next moves through the the area of the plasma spot toward
the cathode. We can see that introducing of the plasma spot too close the streamer head
causes only a deflection of the streamer motion. Fig. 6.36 shows an adapted mesh around
the streamer path in the cut plane y = 0.25 at the time t = 1.89 ·10−8 s. The mesh has around
440000 cells at the final time and it’s been needed 28500 time steps to obtain the results.

Figure 6.16: Electron density at times t1 = 1.26 · 10−8 s, isolines in a cut plane y = 0.25
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Figure 6.17: Electron density at times t1 = 1.31 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.18: Electron density at times t1 = 1.47 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.19: Electron density at times t1 = 1.68 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.20: Electron density at times t1 = 1.89 · 10−8 s, isolines in a cut plane y = 0.25
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Figure 6.21: Electron density at times t1 = 1.26 · 10−8 s, 3D view

Figure 6.22: Electron density at times t1 = 1.31 · 10−8 s, 3D view

Figure 6.23: Electron density at times t1 = 1.47 · 10−8 s, 3D view

Figure 6.24: Electron density at times t1 = 1.68 · 10−8 s, 3D view
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Figure 6.25: Electron density at times t1 = 1.89 · 10−8 s, 3D view

Figure 6.26: Net charge density at times t1 = 1.26 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.27: Net charge density at times t1 = 1.31 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.28: Net charge density at times t1 = 1.47 · 10−8 s, isolines in a cut plane y = 0.25
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Figure 6.29: Net charge density at times t1 = 1.68 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.30: Net charge density at times t1 = 1.89 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.31: Net charge density at times t1 = 1.26 · 10−8 s, 3D view

Figure 6.32: Net charge density at times t1 = 1.31 · 10−8 s, 3D view
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Figure 6.33: Net charge density at times t1 = 1.47 · 10−8 s, 3D view

Figure 6.34: Net charge density at times t1 = 1.68 · 10−8 s, 3D view

Figure 6.35: Net charge density at times t1 = 1.89 · 10−8 s, 3D view

Figure 6.36: Mesh at time t = 1.89 · 10−8 s in a cut plane y = 0.25
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Version 2

Plasma spot: Se = 1021 · e
(x−0.3)2+(y−0.25)2+(z−0.28)2

0.0052

Position: X0 = [0.3, 0.25, 0.28]
Duration: t = 0.5 · 10−9 s

An evolution of the streamer branching, where the plasma spot is introduced in a double
distance from the streamer filament axis, is presented in Figs. 6.37 and 6.56. The evolution
of the electron avalanche is in Figs. 6.37-6.46. Figs. 6.47-6.56 show the evolution of the net
charge density. As in the previous case, the first row in the figures show the streamer just
in the moment when the plasma spot is applied to the electric field. The moment when
the plasma spot is abolished is presented in the second row. The electrons from the streamer
filament are attached to the plasma spot area and we can see that the electrons also continue
in the straight direction. We can observe a branch coming from the main filament in the third
row. The fourth and fifth rows show that the main streamer discharge still propagates toward
the cathode while the propagation in the branch almost stops. An adapted mesh in the planar
cut at the time t = 1.89 · 10−8 s is plotted in Fig. 6.57. The mesh size is 660000 cells and
the computation has made 31000 time steps.

Figure 6.37: Electron density at times t1 = 1.26 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.38: Electron density at times t1 = 1.31 · 10−8 s, isolines in a cut plane y = 0.25
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Figure 6.39: Electron density at times t1 = 1.47 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.40: Electron density at times t1 = 1.68 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.41: Electron density at times t1 = 1.89 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.42: Electron density at times t1 = 1.26 · 10−8 s, 3D view
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Figure 6.43: Electron density at times t1 = 1.31 · 10−8 s, 3D view

Figure 6.44: Electron density at times t1 = 1.47 · 10−8 s, 3D view

Figure 6.45: Electron density at times t1 = 1.68 · 10−8 s, 3D view

Figure 6.46: Electron density at times t1 = 1.89 · 10−8 s, 3D view
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Figure 6.47: Net charge density at times t1 = 1.26 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.48: Net charge density at times t1 = 1.31 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.49: Net charge density at times t1 = 1.47 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.50: Net charge density at times t1 = 1.68 · 10−8 s, isolines in a cut plane y = 0.25
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Figure 6.51: Net charge density at times t1 = 1.89 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.52: Net charge density at times t1 = 1.26 · 10−8 s, 3D view

Figure 6.53: Net charge density at times t1 = 1.31 · 10−8 s, 3D view

Figure 6.54: Net charge density at times t1 = 1.47 · 10−8 s, 3D view
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Figure 6.55: Net charge density at times t1 = 1.68 · 10−8 s, 3D view

Figure 6.56: Net charge density at times t1 = 1.89 · 10−8 s, 3D view

Figure 6.57: Mesh at time t = 1.89 · 10−8 s in a cut plane y = 0.25

Version 3

1st plasma spot: Se = 1021 · e
(x−0.3)2+(y−0.25)2+(z−0.28)2

0.0052

Position: X01 = [0.3, 0.25, 0.28]
Duration: t1 = 0.5 · 10−9 s

2nd plasma spot: Se = 1021 · e
(x−0.315)2+(y−0.25)2+(z−0.295)2

0.0052

Position: X02 = [0.315, 0.25, 0.295]
Duration: t2 = 0.5 · 10−9 s

The results, where two plasma spots are sequentially added, are plotted in Fig. 6.58- 6.81.
Both plasma spots lie above the streamer filament. The electron avalanche evolution is pre-
sented in Figs. 6.58-6.69 and the net charge evolution is in Figs. 6.70-6.81. The introducing of
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the first plasma spot is shown in Figs. 6.58, 6.64, 6.70 and 6.76. Figs. 6.59, 6.65, 6.71 and 6.77
present a moment when the first plasma spot is voided and the second plasma spot is added
to the electric field. Figs. 6.60, 6.66, 6.72 and 6.78 display a moment when the second plasma
spot is abolished. We can see the electron motion toward to the first plasma spot place.
We observe the progression toward the second spot and the main filament slightly deflects
from the straight direction. The last figures in the sets show following the streamer evolution.
Two plasma spots on the same side from the main streamer filament produce a longer branch
than the case where only one plasma spot is added. On the other hand the propagation
velocity of the main filament is slower than in the case with one plasma spot. The adapted
mesh around the branched streamer at the time t = 1.89 ·10−8 s is plotted in Fig. 6.82. There
is 570000 cells in the mesh. There has been needed 28900 time steps to obtain the results at
the time t = 1.89 · 10−8 s.

Figure 6.58: Electron density at times t1 = 1.26 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.59: Electron density at times t1 = 1.31 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.60: Electron density at times t1 = 1.36 · 10−8 s, isolines in a cut plane y = 0.25
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Figure 6.61: Electron density at times t1 = 1.47 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.62: Electron density at times t1 = 1.68 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.63: Electron density at times t1 = 1.89 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.64: Electron density at times t1 = 1.26 · 10−8 s, 3D view
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Figure 6.65: Electron density at times t1 = 1.31 · 10−8 s, 3D view

Figure 6.66: Electron density at times t1 = 1.36 · 10−8 s, 3D view

Figure 6.67: Electron density at times t1 = 1.47 · 10−8 s, 3D view

Figure 6.68: Electron density at times t1 = 1.68 · 10−8 s, 3D view
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Figure 6.69: Electron density at times t1 = 1.89 · 10−8 s, 3D view

Figure 6.70: Net charge density at times t1 = 1.26 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.71: Net charge density at times t1 = 1.31 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.72: Net charge density at times t1 = 1.36 · 10−8 s, isolines in a cut plane y = 0.25
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Figure 6.73: Net charge density at times t1 = 1.47 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.74: Net charge density at times t1 = 1.68 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.75: Net charge density at times t1 = 1.89 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.76: Net charge density at times t1 = 1.26 · 10−8 s, 3D view
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Figure 6.77: Net charge density at times t1 = 1.31 · 10−8 s, 3D view

Figure 6.78: Net charge density at times t1 = 1.36 · 10−8 s, 3D view

Figure 6.79: Net charge density at times t1 = 1.47 · 10−8 s, 3D view

Figure 6.80: Net charge density at times t1 = 1.68 · 10−8 s, 3D view
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Figure 6.81: Net charge density at times t1 = 1.89 · 10−8 s, 3D view

Figure 6.82: Mesh at time t = 1.89 · 10−8 s in a cut plane y = 0.25

Version 4

1st plasma spot: Se = 1021 · e
(x−0.3)2+(y−0.25)2+(z−0.28)2

0.0052

Position: X01 = [0.3, 0.25, 0.28]
Duration: t1 = 0.5 · 10−9 s

2nd plasma spot: Se = 1021 · e
(x−0.31)2+(y−0.25)2+(z−0.22)2

0.0052

Position: X02 = [0.31, 0.25, 0.22]
Duration: t2 = 0.5 · 10−9 s

The last test simulate conditions when two independent plasma spots are added to the electric
field in two different times. The first spot is placed above the main streamer filament and
the second plasma spot is placed under the streamer filament. Results of the test are plotted
in Figs. 6.83- 6.106. Figs. 6.83, 6.89, 6.95 and 6.101 have the same meaning as in previous
cases. Figs. 6.84, 6.90, 6.96 and 6.102 show the streamer when the first spot is canceled
and the second spot is introduced. There is a state when the second plasma spot is abolished
in Figs. 6.85, 6.91, 6.97 and 6.103. We see that the first branch begins here. The beginning
of the second branch is plotted in Figs. 6.86, 6.92, 6.98 and 6.104. The last figures in the sets
present the progression of the main streamer filament and the branches. Fig. 6.107 shows
the adapted mesh at the time t = 1.89 · 10−8 s. The mesh contains around 540000 cells. We
have needed 28300 time steps to obtain the results at the final time.
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Figure 6.83: Electron density at times t1 = 1.26 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.84: Electron density at times t1 = 1.31 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.85: Electron density at times t1 = 1.36 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.86: Electron density at times t1 = 1.47 · 10−8 s, isolines in a cut plane y = 0.25
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Figure 6.87: Electron density at times t1 = 1.68 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.88: Electron density at times t1 = 1.89 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.89: Electron density at times t1 = 1.26 · 10−8 s, 3D view

Figure 6.90: Electron density at times t1 = 1.31 · 10−8 s, 3D view
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Figure 6.91: Electron density at times t1 = 1.36 · 10−8 s, 3D view

Figure 6.92: Electron density at times t1 = 1.47 · 10−8 s, 3D view

Figure 6.93: Electron density at times t1 = 1.68 · 10−8 s, 3D view

Figure 6.94: Electron density at times t1 = 1.89 · 10−8 s, 3D view
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Figure 6.95: Net charge density at times t1 = 1.26 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.96: Net charge density at times t1 = 1.31 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.97: Net charge density at times t1 = 1.36 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.98: Net charge density at times t1 = 1.47 · 10−8 s, isolines in a cut plane y = 0.25
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Figure 6.99: Net charge density at times t1 = 1.68 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.100: Net charge density at times t1 = 1.89 · 10−8 s, isolines in a cut plane y = 0.25

Figure 6.101: Net charge density at times t1 = 1.26 · 10−8 s, 3D view

Figure 6.102: Net charge density at times t1 = 1.31 · 10−8 s, 3D view
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Figure 6.103: Net charge density at times t1 = 1.36 · 10−8 s, 3D view

Figure 6.104: Net charge density at times t1 = 1.47 · 10−8 s, 3D view

Figure 6.105: Net charge density at times t1 = 1.68 · 10−8 s, 3D view

Figure 6.106: Net charge density at times t1 = 1.89 · 10−8 s, 3D view
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Figure 6.107: Mesh at time t = 1.89 · 10−8 s in a cut plane y = 0.25
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Chapter 7

Conclusions

The goals of the thesis have been fulfilled. The work deals with the streamer propagation
which is an electric discharge in a high voltage electric field. The streamer branching has been
successfully simulated by introducing of temporal disturbances in the electric field. We have
simulated a change of streamer direction, a singular branching and a multiple branching, see
the section 6.4. The shape and position of streamer branches depend on position of plasma
seeds (local disturbances) and also on the time in which the disturbances influence the electric
field. We have referred about the streamer branching in [3] and we haven’t seen successful
simulation of the streamer branching in full 3D coordinates yet.
Results in chapter 6 demonstrate the applicability of the developed method. The results
present a streamer propagation in a simple 3D domain. Computation of a one 3D test takes
around three weeks and the computer memory costs are also very high even if the dynamical
mesh adaptation is used. That’s the reason why only three levels of refinement are taken
into account in the calculations although 2D tests show that at least four levels of the mesh
refinement should be considered.
The properties of the method have been tested on 2D problems (see chapter 5). The tests of
the adaptation criterion in the section 5.3 reveal that the grid density around the streamer
(planar discharge) head and the streamer path has influence on the velocity of the propagation.
Therefor we need a fine mesh in the computational domain at these places. We also found
an optimal adaptation level (as compromise of the grid size and quality of results) and confirm,
that results achieved on the adapted grid are the same as results of a static fine grid in
the whole domain (see Figs. 5.12, 5.13). The dynamical mesh adaptation decreases the CPU
time almost 60 times. We have released findings about the influence of the dynamical mesh
adaptation and the proper choice of the refinement criterion in [1], [2] and [4]. We don’t deem
that the development of the method is finished. The parallelization should be improved and
maybe more effective algorithm for solving of a liner systems should be included.
A general platform based on C++ programing have been used and successfully tested. It can
solve different physical problems. The streamer motion has been solved by the platform in
this thesis. It’s been used for a shallow water system at University Paris 13 in thesis [23].
The platform is also utilized at Czech Technical University for fluid mechanics computation
where an implicit method has been included.
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Future Work

Despite the achieved results, there is still lots of work to do. It’s necessary to improve
the dynamical mesh adaptation algorithm in three dimension. Especially the mesh conformity
step needs changes to produce better quality of a mesh. One of the possibilities is described
e.g. in papers [18], [19].
It is also important to implement massive parallelization to the developed code because the 3D
computation is very time consuming.
The simple minimal model of streamer motion needs to be extended to more complex model
(adding equation for other charged species, more realistic time depending boundary condi-
tions, chemical reactions etc.).
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Appendix A

A.1 Relations Used in Reconstruction

Relations coming from the least square method which are used in 2D reconstruction

Ixx =
n∑

j=1

(xj − xi)
2 , Iyy =

n∑

j=1

(yj − yi)
2 ,

Ixy =
n∑

j=1

(xj − xi) (yj − yi) , Jx =
n∑

j=1

(nej − nei) (xj − xi) ,

Jy =
n∑

j=1

(nej − nei) (yj − yi) , D = Ixx · Iyy − I2xy.

(A.1)

Relations coming for the least square method which are used in 3D reconstruction

Ixx =
n∑

j=1

(xj − xi)
2 , Ixy =

n∑

j=1

(xj − xi) (yj − yi) ,

Iyy =
n∑

j=1

(yj − yi)
2 , Ixz =

n∑

j=1

(xj − xi) (zj − zi) ,

Izz =
n∑

j=1

(zj − zi)
2 , Iyz =

n∑

j=1

(yj − yi) (zj − zi) ,

(A.2)

D = IxxIyyIzz + 2IxyIxzIyz − IxxI
2
yz − IyyI

2
xz − IzzI

2
xy, (A.3)

Jx =
n∑

j=1

(nej − nei) (xj − xi) , Jy =
n∑

j=1

(nej − nei) (yj − yi) ,

Jz =
n∑

j=1

(nej − nei) (zj − zi) ,

(A.4)
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A.2 Relations for Dissipative Terms

Weights parameters for the 2D gradient computation in diffusion terms:

Rx =

N(A)∑

p=1

(xp − xA) , Ry =

N(A)∑

p=1

(yp − yA) ,

Ixx =

N(A)∑

p=1

(xp − xA)
2 , Iyy =

N(A)∑

p=1

(yp − yA)
2 , Ixy =

N(A)∑

p=1

(xp − xA) (yp − yA) ,

λx =
IxyRy − IyyRx

D
, λy =

IxyRx − IxxRy

D
, D = IxxIyy − I2xy.

(A.5)

3D computation of the gradient in the diffusion terms is given by following relation

~∇neij =
1

µ
(
Dσij

)
[
1

3
(ne(A) + ne(B) + ne(R))~nABR|σABR|+

+
1

3
(ne(B) + ne(C) + ne(R))~nBCR|σBCR|+

+
1

3
(ne(C) + ne(D) + ne(R))~nCDR|σCDR|+

+
1

3
(ne(D) + ne(A) + ne(R))~nDAR|σDAR|+

+
1

3
(ne(A) + ne(B) + ne(L))~nBAL|σBAL|+ (A.6)

+
1

3
(ne(B) + ne(C) + ne(L))~nCBL|σCBL|+

+
1

3
(ne(C) + ne(D) + ne(L))~nDCL|σDCL|+

+
1

3
(ne(D) + ne(A) + ne(L))~nADL|σADL|

]
,

where ne(A) (ne(B), · · · ) is the electron density value in the pointA (B, · · · ), ~nABR (~nBCR, · · · )
is an unit outward vector of the face σABR (σBCR, · · · ) and |σABR| (|σBCR|, · · · ) is its measure.
When we factor one third out of the square bracket and modify expressions inside the bracket,
we obtain
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~∇neij =
1

3µ
(
Dσij

)
[
(~nABR|σABR|+ ~nDAR|σDAR|+ ~nBAL|σBAL|+ ~nADL|σADL|)ne(A) +

+ (~nABR|σABR|+ ~nBCR|σBCR|+ ~nBAL|σBAL|+ ~nCBL|σCBL|)ne(B) +

+ (~nBCR|σBCR|+ ~nCDR|σCDR|+ ~nCBL|σCBL|+ ~nDCL|σDCL|)ne(C) + (A.7)

+ (~nCDR|σCDR|+ ~nDAR|σDAR|+ ~nDCL|σDCL|+ ~nADL|σADL|)ne(D) +

+ (~nABR|σABR|+ ~nBCR|σBCR|+ ~nCDR|σCDR|+ ~nDAR|σDAR|)ne(R) +

+ (~nBAL|σBAL|+ ~nCBL|σCBL|+ ~nDCL|σDCL|+ ~nADL|σADL|)ne(L)
]
.

The vector equilibrium implies

~nABR|σABR|+ ~nDAR|σDAR|+ ~nBAL|σBAL|+ ~nADL|σADL| = ~nBRDL|σBRDL|,

~nABR|σABR|+ ~nBCR|σBCR|+ ~nBAL|σBAL|+ ~nCBL|σCBL| = ~nALCR|σALCR|,

~nBCR|σBCR|+ ~nCDR|σCDR|+ ~nCBL|σCBL|+ ~nDCL|σDCL| = −~nRBDL|σRBDL|,

~nCDR|σCDR|+ ~nDAR|σDAR|+ ~nDCL|σDCL|+ ~nADL|σADL| = −~nALCR|σALCR|,

~nABR|σABR|+ ~nBCR|σBCR|+ ~nCDR|σCDR|+ ~nDAR|σDAR| = ~nij|σij|, (A.8)

~nBAL|σBAL|+ ~nCBL|σCBL|+ ~nDCL|σDCL|+ ~nADL|σADL| = −~nij|σij|.

When we substitute the equations (A.8) in the equation (A.7), we can write for the electron

density gradient ~∇neij

~∇neij =
1

3µ
(
Dσij

)
[
(ne(A)− ne(C))~nBRDL|σBRDL|+ (A.9)

+ (ne(B)− ne(D))~nALCR|σALCR|+ (ne(R)− ne(L))~nij|σij|
]
.

Parameters in the weights for gradient computation are given by following relations

Ixx =

N(A)∑

p=1

(xp − xA)
2 , Ixy =

N(A)∑

p=1

(xp − xA) (yp − yA) , Rx =

N(A)∑

p=1

(xp − xA) ,

Iyy =

N(A)∑

p=1

(yp − yA)
2 , Ixz =

N(A)∑

p=1

(xp − xA) (zp − zA) , Ry =

N(A)∑

p=1

(yp − yA) ,

Izz =

n(A)∑

p=1

(zp − zA)
2 , Iyz =

N(A)∑

p=1

(yp − yA) (zj − zv) , Rz =

N(A)∑

p=1

(zp − zA) ,

(A.10)

D = IxxIyyIzz + 2IxyIxzIyz − IxxI
2
yz − IyyI

2
xz − IzzI

2
xy, (A.11)
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λx =

(
I2yz − IyyIzz

)
Rx + (IxyIzz − IxzIyz)Ry + (IxzIyy − IxyIyz)Rz

D
,

λy =
(IxyIzz − IxzIyz)Rx + (I2xz − IxxIzz)Ry + (IyzIxx − IxzIxy)Rz

D
,

λz =
(IxzIyy − IxyIyz)Rx + (IyzIxx − IxzIxy)Ry +

(
I2xy − IxxIyy

)
Rz

D
.

(A.12)
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Appendix B

B.1 Material Functions for the Air

The relations for the material functions are taken from [5].

Electron drift velocity ~ve:

for
‖ ~E‖

N
> 2 · 10−15, ~ve = −

[
7.4 · 1021 ·

‖ ~E‖

N
+ 7.1 · 106

]
·
~E

‖ ~E‖
[cm· s−1]

for 10−16 <
‖ ~E‖

N
≤ 2 · 10−15, ~ve = −

[
1.03 · 1022 ·

‖ ~E‖

N
+ 1.3 · 106

]
·
~E

‖ ~E‖
[cm· s−1]

for 2.6 · 10−17 <
‖ ~E‖

N
≤ 10−16, ~ve = −

[
7.2973 · 1021 ·

‖ ~E‖

N
+ 1.63 · 106

]
·
~E

‖ ~E‖
[cm· s−1]

for
‖ ~E‖

N
≤ 2.6 · 10−17, ~ve = −

[
6.87 · 1022 ·

‖ ~E‖

N
+ 3.38 · 104

]
·
~E

‖ ~E‖
[cm· s−1]

(B.1)
Positive ion drift velocity ~vp:

~vp = 2.34 · ~E ·
p0
p

[cm· s−1] (B.2)

Negative ion drift velocity ~vn:

for
‖ ~E‖

N
> 5 · 10−16, ~vn = −2.7 · ~E ·

p0
p

[cm· s−1]

for
‖ ~E‖

N
< 5 · 10−15, ~vn = −1.86 · ~E ·

p0
p

[cm· s−1]

(B.3)

p0
p

is a ratio of the atmospheric pressure to a gas pressure.

Diffusion coefficient De:

De =


0.3341 · 109 ·

(
‖ ~E‖

N

)0.54069

 ·

‖~ve‖

‖ ~E‖
[cm2· s−1] (B.4)
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Ionization coefficient α:

if
‖ ~E‖

N
> 1.5 · 10−15,

α

N
= 2 · 10−16 · exp

(
−7.248 · 10−15

‖ ~E‖/N

)
[cm2]

else,
α

N
= 6.619 · 10−17 · exp

(
−5.593 · 10−15

‖ ~E‖/N

)
[cm2]

(B.5)

Attachment coefficient βatt, (labeled η in [5]):

if
‖ ~E‖

N
> 1.05 · 10−15,

η2
N

= 8.889 · 10−5 ·
‖ ~E‖

N
+ 2.567 · 10−19 [cm2]

else,
η2
N

= 6.089 · 10−4 ·
‖ ~E‖

N
− 2.893 · 10−19 [cm2]

(B.6)

η3
N2

= 4.7778 · 10−59 ·

(
‖ ~E‖

N

)−1.2749

[cm5] (B.7)

η2 is two-body attachment coefficient, η3 is three-body attachment coefficient.

Recombination coefficients βep, βnp (there is only β in [5]):

β = 2 · 10−7 [cm3· s−1] (B.8)

The neutral gas density N = 2.5 · 1019 [cm−3] is use in relations (B.1), (B.3) - (B.7).
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