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Modèle stochastique de la dynamique des trains à grande vitesse pour la
prévision de l’évolution à long terme des défauts de géométrie de la voie.

Thèse préparée au laboratoire de Modélisation et Simulation Multi-Echelle :
MSME UMR 8208 CNRS
5, boulevard Descartes
77 454 Marne-la-Vallée
France

Résumé.

Les voies ferrées sont de plus en plus sollicitées : le nombre de trains à grande vitesse,
leur vitesse et leur charge ne cessent d’augmenter, ce qui contribue à la formation de dé-
fauts de géométrie sur la voie. En retour, ces défauts de géométrie influencent la réponse
dynamique du train et dégradent les conditions de confort. Pour garantir de bonnes
conditions de confort, les entreprises ferroviaires réalisent des opérations de maintenance
de la voie, qui sont très coûteuses. Ces entreprises ont donc intérêt à prévoir l’évolution
temporelle des défauts de géométrie de la voie pour anticiper les opérations de mainte-
nance, et ainsi réduire les coûts de maintenance et améliorer les conditions de transport.

Dans cette thèse, on analyse l’évolution temporelle d’une portion de voie par un indi-
cateur vectoriel sur la dynamique du train. Pour la portion de voie choisie, on construit
un modèle stochastique local des défauts de géométrie de la voie à partir d’un modèle
global des défauts de géométrie et de big data de défauts mesurés par un train de mesure.
Ce modèle stochastique local prend en compte la variabilité des défauts de géométrie de la
voie et permet de générer des réalisations des défauts pour chaque temps de mesure. Après
avoir validé le modèle numérique de la dynamique du train, les réponses dynamiques du
train sur la portion de voie mesurée sont simulées numériquement en utilisant le mod-
èle stochastique local des défauts de géométrie. Un indicateur vectoriel et aléatoire est
introduit pour caractériser la réponse dynamique du train sur la portion de voie. Cet
indicateur est construit de manière à prendre en compte les incertitudes de modèle dans
le modèle numérique de la dynamique du train. Pour identifier le modèle stochastique
des défauts de géométrie et pour caractériser les incertitudes de modèle, des méthodes
stochastiques avancées, comme par exemple la décomposition en chaos polynomial ou le
maximum de vraisemblance multidimensionnel, sont appliquées à des champs aléatoires
non gaussiens et non stationnaires.

Enfin, un modèle stochastique de prévision est proposé pour prévoir les quantités
statistiques de l’indicateur, ce qui permet d’anticiper le besoin en maintenance. Ce mod-
èle est construit en utilisant les résultats de la simulation de la dynamique du train et
consiste à utiliser un modèle non stationnaire de type filtre de Kalman avec une condition
initiale non gaussienne.

Mots clefs : Défauts de géométrie de la voie, dynamique du train, modélisation stochas-
tique, prévision stochastique, problème inverse statistique.
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Stochastic model of high-speed train dynamics for the prediction of long-
term evolution of the track irregularities.

Abstract.

Railway tracks are subjected to more and more constraints, because the number of high-
speed trains, the train speed, and the train load keep increasing. These solicitations go
towards producing track irregularities. In return, track irregularities influence the dy-
namic response of the train, inducing a degradation of the comfort. To guarantee good
conditions of comfort in the trains, railway companies perform maintenance operations
of the track, which are very costly. Consequently, it is of great interest for the railway
companies to predict the long-term evolution of the track irregularities for a given stretch
of track, in order to be able to anticipate the start off of the maintenance operations, and
therefore to reduce the maintenance costs and to improve the running conditions.

In this thesis, the long-term evolution of a given track stretch is analyzed through
a vector-valued indicator on the train dynamics. For this given track portion, a local
stochastic model of the track irregularities is constructed using a global stochastic model
of the track irregularities, as well as big data made of experimental measurements of the
track irregularities performed by a measuring train. This local stochastic model takes into
account the variability of the track irregularities and allows for generating realizations of
the track irregularities at each long time. After validating the computational model of
the train dynamics, the dynamic responses of the train on the measured track portion
are numerically simulated using the local stochastic model of the track irregularities. A
vector-valued random indicator is defined to characterize the dynamic responses of the
train on the given track stretch. This random indicator is constructed such that it takes
into account the model uncertainties in the computational model of the train dynamics.
For the identification of the stochastic model of the track irregularities and the character-
ization of the model uncertainties, advanced stochastic methods such as the polynomial
chaos expansion and the multivariate maximum likelihood are applied to non-Gaussian
and nonstationary random fields.

Finally, a stochastic predictive model is proposed for predicting the statistical quan-
tities of the random indicator, which allows for anticipating the need for track mainte-
nance. This modeling is constructed using the results of the train dynamics simulation
and consists in using a nonstationary Kalman-filter type model with a non-Gaussian ini-
tial condition. The proposed model is validated using experimental data from the French
railways network for high-speed trains.

Key-words : Track irregularities, train dynamics, stochastic modeling, stochastic pre-
diction, statistical inverse problem.
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Résumé de la thèse

Modèle stochastique de la dynamique des trains à

grande vitesse pour la prévision de l’évolution à long

terme des défauts de géométrie de la voie

La réponse dynamique d’un train à grande vitesse sur les voies ferrées est influencée par
les défauts de géométrie de la voie. Ces défauts de géométrie sont des déformations des
rails et sont dus à des défauts dans la structure de la voie, à l’environnement et aux
efforts et vibrations induits par le passage des trains. En retour, la dynamique des trains
provoque des efforts sur la voie qui augmentent les défauts de géométrie. Ce processus
conduit à la dégradation du confort et de la stabilité des trains. Pour garantir le con-
fort et la sécurité des passagers, les entreprises ferroviaires effectuent régulièrement des
travaux de maintenance de la voie, qui visent à corriger les défauts de géométrie.

Pour déclencher les opérations de maintenance, les entreprises ferroviaires s’appuient
sur des mesures de géométrie de la voie qui sont régulièrement effectuées. Si la mesure
d’un défaut de géométrie dépasse un seuil préétabli, une opération de maintenance est
lancée. Ces travaux de maintenance sont très coûteux et compliqués à organiser pour les
entreprises ferroviaires, qui cherchent donc à anticiper les opérations de maintenance pour
optimiser leur politique de maintenance des voies. D’autre part, à cause des non-linéarités
du système véhicule-voie, les défauts de géométrie de la voie ne sont pas représentatifs
des conditions de confort et de sécurité du train. Il serait donc pertinent de déclencher les
opérations de maintenance à partir de critères sur la réponse dynamique du train, et non
à partir des défauts de géométrie de la voie. Dans ce contexte, l’objectif de la thèse est de
développer un modèle capable de prédire l’évolution à long terme (temps d’évolution de
la géométrie de la voie) de la réponse dynamique du train sur une portion de voie donnée.

Après avoir partitionné la voie en portions de longueur égale et de type de courbure
donné (alignement, entrée de courbe, courbe, sortie de courbe), l’évolution des défauts
de géométrie de la voie est observée et analysée, en utilisant les mesures des défauts
de géométrie de la voie réalisées par le train de mesure IRIS 320 sur la ligne à grande
vitesse reliant Paris à Marseille. Cette analyse conduit à étudier l’évolution des défauts de
géométrie de la voie entre deux opérations de maintenance successives, pour une portion
de voie donnée et avec un type de courbure donné. Pour une portion de voie donnée, un
modèle stochastique local des défauts de géométrie est construit en adaptant un modèle
stochastique global de l’ensemble du réseau. Ce modèle local est identifié à partir de
la première mesure des défauts de géométrie de la voie par la méthode du maximum
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de vraisemblance en multidimensionnel. Il préserve les propriétés statistiques globales
des défauts de géométrie et permet d’observer l’évolution à long terme des défauts de
géométrie.

Ensuite, la réponse dynamique d’un train à grande vitesse (TGV Duplex) est simulée
avec le logiciel Vampire pour la portion de voie considérée. Après post-traitement, les
résultats de la simulation sont comparés à des mesures de la réponse dynamique du train
réalisées dans un TGV Duplex commercial. Cette comparaison permet de recaler les
paramètres du modèle numérique du train. Un indicateur vectoriel et aléatoire est défini
pour évaluer la réponse dynamique du train sur la portion de voie donnée. La comparai-
son entre les indicateurs issus de la mesure et ceux issus de la simulation fait apparaître
des incertitudes de modèle, induites par les erreurs de modèle dans le modèle numérique
de la dynamique du train. Pour prendre en compte ces incertitudes de modèle, on intro-
duit un bruit multiplicatif dans le calcul des indicateurs, en sortie du modèle numérique
de la dynamique du train. Ce bruit, qui est un vecteur aléatoire non gaussien, est car-
actérisé par sa représentation stochastique réduite, qui est ensuite développée en chaos
polynomial gaussien. Les coefficients du chaos sont identifiés en résolvant un problème
statistique inverse à partir des réalisations expérimentales de l’indicateur. La prise en
compte des incertitudes de modèle permet d’accroître la robustesse de l’indicateur.

La troisième étape consiste à développer un modèle stochastique prédictif pour prédire
l’évolution à long terme de l’indicateur sur la réponse dynamique du train. L’indicateur
est considéré comme une série chronologique non gaussienne et non stationnaire. De
plus, le choix du modèle prédictif est limité par le manque de données expérimentales
disponibles : puisque la série est non stationnaire, une seule réalisation est disponible
à chaque instant, celle de la mesure. Le modèle stochastique prédictif s’appuie sur un
filtre de Kalman non stationnaire et non gaussien et est construit à partir d’une équation
différentielle stochastique discrétisée. Pour identifier les paramètres du modèle prédictif,
on utilise la méthode des moindres carrés pondérée, dont la fonctionnelle est construite
à partir des équations des moments du modèle prédictif. Les équations des moments
sont estimées en utilisant les réalisations de l’indicateur qui sont générées par le modèle
numérique de la dynamique du train aux instants connus. Pour faciliter la convergence
de l’algorithme, l’identification est faite en deux étapes : d’abord en une dimension, sur
chaque composante de l’indicateur, puis en multidimensionnel sur l’indicateur vectoriel.
Enfin, les paramètres du modèle prédictif qui dépendent du temps sont approximés par
des fonctions affines, afin de pouvoir connaître leur valeur dans le futur et de prédire
l’évolution de l’indicateur à long terme.

L’ensemble des modèles développés est appliqué à l’étude de l’évolution à long terme
de la dynamique du TGV sur une portion de voie donnée de la ligne à grande vitesse
entre Paris et Marseille. Le modèle stochastique local des défauts de géométrie est iden-
tifié à partir des mesures des défauts de géométrie de la portion de voie donnée, et 2000
réalisations de la portions de voie sont générées pour chaque temps de mesure à long
terme. Puis, pour chacun de ces temps de mesure, la réponse dynamique du train est
calculée en propageant la variabilité des défauts de géométrie par la méthode de Monte
Carlo. Simultanément, 2000 réalisations du bruit de sortie sont générées, ce qui permet
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de calculer des réalisations des indicateurs de la réponse dynamique du train pour chaque
temps de mesure à long terme. Ces réalisations sont utilisées pour identifier le modèle
stochastique prédictif de l’évolution de l’indicateur. On peut ensuite estimer la statistique
de l’indicateur dans le long terme pour lequel la mesure des défauts de géométrie de la
voie n’est pas encore connue. La pertinence du modèle prédictif est évaluée en utilisant
comme temps à long terme un temps pour lequel des mesures expérimentales existent, ce
qui permet aussi d’évaluer l’erreur de modèle.

Deux principales avancées scientifiques de la thèse peuvent être soulignées :

• La première est relative au développement de modèles stochastiques avancés, en
grande dimension statistique, et appliqués à un problème industriel. Il s’agit de
l’adaptation du modèle stochastique global de la géométrie de la voie à un mod-
èle stochastique local, et de la prise en compte des incertitudes de modélisation
dans le modèle numérique du train par un bruit multiplicatif en sortie du modèle.
Ces modèles stochastiques sont identifiés en résolvant des problèmes statistiques
inverses à partir de mesures expérimentales. Des méthodes stochastiques adaptées
sont utilisées, comme le maximum de vraisemblance en plusieurs dimensions, et le
développement en chaos polynomial pour des vecteurs aléatoires non gaussiens.

• La seconde avancée scientifique correspond à la construction du modèle stochas-
tique prédictif pour une série chronologique (la série des indicateurs) qui est non
stationnaire et non gaussienne, pour laquelle peu de données expérimentales sont
disponibles. Le modèle de prédiction stochastique est non stationnaire, de type
filtre de Kalman avec une condition initiale non gaussienne.

Sur le plan de l’apport pour les industriels, l’évolution à long terme d’une portion de voie
ferrée a été modélisée par un modèle stochastique validé. La quantité d’intérêt choisie
pour l’évolution est un indicateur aléatoire vectoriel relatif à la réponse dynamique du
train sur la portion de voie. La robustesse de cet indicateur est accrue en prenant en
compte les incertitudes de modélisation dans le modèle numérique du train. En utilisant le
modèle prédictif stochastique, l’évolution de l’indicateur dans le temps peut être prévue,
ce qui permet d’anticiper les opérations de maintenance. Un seuil vectoriel de l’indicateur
a été introduit à partir des politiques de maintenance actuelles, et contribue à une aide
à la décision pour le déclenchement des opérations de maintenance.
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Chapter 1

Introduction and objectives

1.1 Industrial context

Railway transport has considerably changed in the recent years: high-speed trains are
meant to run ever faster, carrying heavier loads and consuming less energy. Due to the
opening to competition, several high-speed trains, such as TGV, ICE, ETR500, etc., for
which mechanical properties and structures are different, are likely to run on the same
tracks, while they may have been originally designed for specific and different railways
networks. At the same time, railway transport has to remain reliable and comfortable.
Those items are mainly guaranteed by the dynamic response of the train to the track
excitation.

Among the various causes that influence the dynamics of the train-track system, track
irregularities are one of the most important factors. The track irregularities are the
variations of the vertical and lateral track profiles, due to the rail deformations. They
are produced by the vibrations induced by the running trains, by the environment (rain,
frost, etc.), or by the track substructure itself (uneven track layers, pipes under the track,
etc.). These variations in the track geometry are made possible by deteriorations in the
infrastucture, such as the settlement of the track, the ballast loosening, the track slip-
ping, etc. Four track irregularities are distinguished and represented in Figure 1.1: the
lateral offset, the vertical offset, the cross level, and the gauge irregularity. In the follow-
ing, the track irregularities will be denoted by x1 (lateral offset), x2 (vertical offset), x3
(cross level), and x4 (gauge irregularity). The track irregularities influence the dynamic
response of the train, inducing vibrations in the vehicle and reducing the passenger com-
fort. In return, the dynamic response of the train produces forces on the track, leading
to further deterioration of the track and to a reduction of the comfort and of the stability.

To guarantee good conditions of comfort and safety in the trains, railway companies
have to monitor the track irregularities, using experimental measurements of the track
which are carried out by recording vehicles. The historical recording vehicle used by
SNCF is called "Mauzin" car and measures the track irregularities thanks to the height
differences between its independent wheelsets. For the high-speed lines, SNCF has de-
veloped a recording high-speed train called "IRIS 320" (see Figure 1.2), which inspects
the track geometry by inserting in the commercial operation of trains. The experimental
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Figure 1.1: Track irregularities: lateral offset x1 (top left), vertical offset x2 (top right),
cross level x3 (bottom left) and gauge irregularity x4 (bottom right).

Figure 1.2: High-speed train IRIS 320 for the tracks inspection.

measurements of the track geometry provided by IRIS 320 constitutes a big data base
that can be exploited for a better knowledge of the track irregularities. The measured
track irregularities are compared to certain limits that depend on the train speed. Three
threshold levels are actually in use in France for the track irregularities monitoring:

• Alert Value, which refers to the value that necessitates monitoring or taking main-
tenance actions as part of regularly-planned maintenance operations,

• Intervention Value, which refers to the value that requires short term maintenance
action,

• Slow-down Value, which refers to the value above which the speed limit for the
trains is lowered to guarantee the comfort and the safety in the trains.

To compare the track measurements with the threshold levels and start off the mainte-
nance operations, the four track irregularities are considered independently (although it
could not be denied that the four track irregularities are dependent).

When a threshold level is reached for a track irregularity, a maintenance operation of
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Figure 1.3: Nonlinearity of the train-track coupling: high amplitudes for track irregular-
ities (left) produce lower lateral acceleration than smaller track irregularities (right).

the track is undertaken by the railway companies in order to correct the track irregulari-
ties. There are various types of maintenance operations, but the tamping is usually used
to correct the track irregularities. The tamping may be carried out on a few meters (it
is thus a localized maintenance) or on hundreds of meters (it is denoted heavy tamping).
For the railway companies, the maintenance operations are very costly: it is considered
that maintenance costs for rail-track subsystem may represent 55% of total maintenance
costs in the case of the high-speed line system [1]. That is why many railway companies
wish to optimize the scheduling of their maintenance operations, planning as well as pos-
sible the track stretches to be maintained and the moments for the maintenance works.
Going further, it would be of great interest to be able to predict when the maintenance
operations would be needed, before reaching the track irregularities threshold levels. The
prediction of the maintenance operations would reduce the maintenance costs and im-
prove the asset management as well as the comfort conditions in the train. In that case
we talk about predictive maintenance.

It has to be noticed that the track geometry is strongly coupled to the dynamic re-
sponse of the train. A better understanding of the train-track interaction would then be
helpful to characterize the evolution of the track irregularities for a stretch of the railway
track. This interaction has been studied in [2] and appears to be nonlinear: several small
irregularities may have a bigger influence on the dynamic response of the train than a
big irregularity. Figure 1.3 illustrates this nonlinearity: the lateral acceleration of a train
bogie is plotted as a function of the curvilinear abscissa of the track, with the correspond-
ing track irregularities, for two different sequences of irregularities. It can be observed
that the amplitude of the lateral acceleration in the train is higher with smaller track
irregularities.
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1.2 Industrial objectives

The anticipation of the maintenance operations requires the ability to predict the long-
term evolution of the train-track system for a given stretch of the railway track. The
considerations presented in the previous section have three main consequences relatively
to the long-term evolution of the train-track system:

• It confirms that the four track irregularities have to be considered altogether and
not independently.

• This leads to look after, not only the track irregularities, but also the dynamic
response of the train, and to start off the maintenance in function of accelerations
in the train or forces applied to the train.

• Finally, it promotes the study of the track irregularities, not on a given point of the
track anymore, but on a whole stretch of the railway track, in order to consider the
succession of track irregularities.

Consequently, the first objective of this thesis is to construct a long-term evolution model
of the dynamic response of the train for a given stretch of the railway track with respect
to the degradation of the track geometry. The four track irregularities will be considered
dependently on the given stretch of the railway track, and the long-term evolution of the
dynamic response of the train will be observed at a given point of this stretch of the
track. Criteria on the dynamic response of the train have to be introduce that allow the
assessment of the train dynamics with respect to the track irregularities. The dynamic
response of the train can be known either through experimental measurements performed
by sensors embedded in the train, or through numerical simulation. For complex systems,
the numerical dynamic simulation has encountered big improvements in recent years, al-
lowing for simulating the behavior of a whole train on a track stretch. However, the
dynamic simulation has to be very representative of the physical behavior of the system.
The models of the trains, of the railway track, and of the wheel-rail contact have to be
validated and the simulations have to be raised on realistic and representative sets of exci-
tations. The use of stochastic processes allows for increasing the representativeness of the
encountered conditions by taking into account the parameters and model uncertainties.
It has also been shown in [3, 4] that the representation of the system uncertainties by
stochastic processes increases the robustness of the modeling.

Thus, the second objective of this thesis is to take into account the track measurements
for identifying the stochastic model of the track irregularities for a given stretch of the
railway track, and for identifying the model uncertainties in the computational model of
the train dynamics induced by modeling errors.

Thanks to the identification of the physical parameters of the computational model of
the train (the French high-speed train TGV Duplex) by Kraft [5] and to the stochastic
modeling of the track irregularities by Perrin (see for instance [6]), we have scientific
and computational tools to construct a stochastic model for the long-term evolution of
the dynamic response of the train with respect to the long-term evolution of the track
irregularities. The proposed stochastic model of the dynamic response of the train has to
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predict the long-term evolution of the dynamic response of the train for a given stretch of
the railway track, allowing railway companies to anticipate the maintenance operations.
In the following, the distinction will be done between the long time (of the order of the
week), which is the time of degradation of the track geometry for a given stretch of the
railway track, and the time of the dynamic response of the train (of the order of the
second).

1.3 Scientific objectives

Modeling the variabilities and the uncertainties of the train-track system implies scientific
challenges that are inherent to the railway context. From a scientific point of view, the
track irregularities can be considered as a random field, which is neither stationary (non-
homogeneous) nor Gaussian. For a given stretch of the railway track, a local stochastic
model of the track irregularities has to be constructed taking into account these proba-
bilistic properties. This local stochastic model is identified by using a statistical inverse
method with experimental measurements of the track irregularities for the given stretch
of the track. The variability of the track irregularities is then propagated in the train
dynamics computational model, giving in output a random field for the dynamic response
of the train. The Monte-Carlo method is used to propagate the variability and the uncer-
tainties into the train dynamics simulation, as it is frequently done in order to compute
the response of dynamic systems to random excitations (see for example [7]). The model
uncertainties in the computational model of the train dynamics are also analyzed and
identified in this work. For identifying the statistical properties of nonstationary and
non-Gaussian random fields from a finite set of experimental data, experimental mea-
surements of the dynamic response of the train and statistical inverse methods have to
be used.

The presence of nonlinearities in the train dynamics computational model (due to con-
tact forces and suspensions) prevents us from directly deducing the long-term evolution
of the dynamic response of the train from the long-term evolution of the track irregu-
larities. A few consequences of nonlinearities and methods to detect them can be found
in [8]. The prediction of the long-term evolution of the dynamic response of the train
requires to construct a stochastic predictive model for the dynamic response of the train,
knowing the past and present time evolution of the dynamic response of the train. The
dynamic response of the train is thus considered as a time series, which is non-Gaussian
and nonstationary. Taking into account these probabilistic properties of the train dy-
namic reponse, methods for its long-term prediction will be analyzed in this work and
a stochastic predictive model will be developed. Finally, since the number of long times
for which measurements are performed is small (between 10 and 15), the choice of a
long-term stochastic prediction model of the dynamic response of the train is relatively
restricted, and consequently, an adapted nonstationary and non-Gaussian Kalman-filter
type model has been chosen.
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1.4 State of the art

The developments and applications presented in this thesis appeal to several fields of
recent scientific advances that are summed up hereinafter. First, signal processing and
data processing classic tools (an overview can be found in [9, 10, 11]) are used for the
post-processing of the experimental measurements of the track irregularities and of the
dynamic responses of the train.

Several track-irregularities modeling methods have been recently developed thanks to the
improvements in computational resources, which allows the development of more com-
plex modelings. An overview of these modeling methods is presented in Section 1.4.1.
The degradation of the track geometry has also been studied using statistical tools, for
which examples are given in Section 1.4.2. Recent advances in inverse problems allows
for assessing the track quality through the dynamic response of the train, taking into
account the nonlinear coupling between the track geometry and the dynamic response of
the train, as presented in Section 1.4.3.

1.4.1 Modeling the track irregularities

The observation of track irregularities drove engineers to construct mathematical models
for the track irregularities. First models are deterministic and use spectral representa-
tions or wavelet transforms of the measured track irregularities. Because these models
are not able to take into account the variability of the track geometry, more advanced
modelings have recently been developed, which consist in stochastic models whose sta-
tistical properties are identified by using statistical inverse methods with experimental
measurements of the track irregularities. In a first approach, Iyengar and Jaiswal [12]
describe the cross level as a stationary Gaussian random field, which is characterized by
its power spectral density function. The same authors propose also a stationary non-
Gaussian model for the track irregularities [13] and show that the non-Gaussian model is
consistently better than the Gaussian one. The proof is given in analyzing the statistics
of the number of crossings and of peaks for the cross level of a railway line. A stochastic
model of the track irregularities, based on the use of the classical spectral representation
for stationary Gaussian random processes and the corresponding random generator of
track irregularities, has been proposed by Lei [14]. This representation allows for gen-
erating track irregularities in order to compute the dynamic response of the train with
respect to the track irregularities. Track stretches of a length of 200 m are generated
with the stochastic model, as recommended by Esveld [15], for an optimal use of the
information and control of maintenance and renewal processes.

The statistical dependencies between the track irregularities are highlighted by Hamid [16],
who intents to sum up the four track irregularities in establishing a track quality index
as a function of the standard deviation of the four track irregularities. El-Sibaie and
Zhang [17] improve the definition of the track quality index by introducing the train
speed in its definition.
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Another approach is proposed in [18] by introducing a representation of the track irregu-
larities based on a discrete Fourier transform. More recently, the Perrin works [19, 6, 20]
consider the four track irregularities as a nonstationary and non-Gaussian vector-valued
random field, whose spatial discretization is a non-Gaussian random vector that is de-
composed by the principal component analysis, and for which the dependent projections
are represented by using a polynomial chaos expansion in high dimension. In addition,
the experimental estimation of the correlation matrix of this random vector is enriched,
by using a new technique related to stationary tools, in order to increase the rank of
the estimated correlation matrix. The polynomial Gaussian chaos can represent non-
Gaussian second-order random variables as the sum of polynomials of Gaussian random
variables [21, 22]. Consequently, the model proposed in [19, 6, 20] enables to generate
track irregularities for any track stretch of the studied high-speed line, while being repre-
sentative of the whole studied high-speed line. This approach allows for propagating the
variability of the track irregularities in the train dynamics computational model in order
to simulate numerically the dynamic response of the train. However, it does not enable to
observe the degradation of the track irregularities of a given local track stretch, because
the specifity of each given track stretch is not preserved in such a global stochastic model.

1.4.2 Modeling the degradation of the track irregularities

In order to improve the track maintenance strategies and to predict the need for mainte-
nance operations, railways engineers are interested in modeling the long-term evolution
of the track irregularities. With the emergence of big data coming from the track mea-
surements, the idea came progressively to use the track history to predict future states
of track irregularities. Most of the existing degradation models are global models used
for the asset management, but some local models for the degradation of a stretch of the
railway track start being proposed.

In the case of global models, Hamid and Gross [16] developed an empirical degradation
model for the track quality index through linear autoregressive techniques. A significant
contribution has been brought by Bing and Gross [23], introducing a degradation model
taking into account the train traffic, the track structure, the type of maintenance and the
quality of ballast. A detailed study has been undertaken by Esveld [24], trying to under-
stand the deterioration mechanism of the track. The results show that the degradation
should be modeled at the scale of a track stretch and that the degradation model param-
eters should be identified using experimental data. Likewise, Zhang et al. [25] observed
the relationship between several components of the tracks (subgrade, ballast, sleepers,
rails), introducing a degradation model of the track quality index as a function of the
track components and of the maintenance parameters.

The following research works focus on optimizing ballast tamping and renewal actions
from a life-cycle cost perspective (see [26]). Other models have been developed by Patra
et al. [27] and by Andrade et al. [28], introducing variability in the degradation model
parameters. The former considers a linear degradation law of the standard deviation of
the lateral offset, of which parameters are functions of the train speed and the tonnage
(the sum of all axle loads of all trains that have run on the considered track stretch). The
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model parameters are random variables whose probability distributions are identified by
using the Bayes method. The model is improved in [29] by taking into account the num-
ber of tamping operations on the studied track stretch, and considering the dependency
between the vertical offset and the lateral offset. The joint probability distribution for
both irregularities gives better results than the independent case.

Another approach consists in modeling indicators on the track irregularities by introduc-
ing stochastic processes indexed by long time. For instance, a bivariate Gamma process
with independent increments has been fitted to experimental data of the track geome-
try degradation and applied to the maintenance scheduling [30] and to the optimization
of the maintenance planning [31]. The parameters of the probability distribution are
identified by the maximum-likelihood method. Here again, it is noticed that considering
the dependency between track irregularities increases the relevance of the model. The
Dagum process has also been applied to fit the degradation of the longitudinal offset
of the Portuguese railway Northern line [32]. Similarly, the standard deviation of the
vertical offset is considered, at each long time, as a random variable following a Weibull
distribution [33]. This work also shows that traffic speed and maintenance history have
an impact on the track irregularities degradation. Then, prediction techniques, such as
neural networks [34], stochastic state space methods [35], and Petri net models [36] have
been applied to the long-term evolution of the track irregularities. The Petri net model
introduces a framework for performing Monte Carlo simulations, in order to compare the
effects of several asset management strategies. Markov models of a stretch of the railway
track were developed and are simpler than the Petri net model. They allow the asset
management of a single stretch of the railway track to be investigated [37, 38]. These
techniques define discrete states of the track irregularities and model the long-term evo-
lution from one state to another one. For instance, [38] distinguishes four states: good
condition, maintenance requested, speed restriction required, and line closure required.
Compared to the linear degradation laws, these approaches take into account the nonlin-
earity of the degradation and the previous states of the track irregularities, even though
they are not directly related to the train behavior and to the train traffic on the consid-
ered track stretch.

After having looked at some asset management models, we will now focus on degra-
dation models of local track stretches, allowing the prediction of maintenance operations
for these track stretches. A first development consists in finding in the past the most
possible similar track irregularity and in applying its long-term evolution to the studied
track irregularity [39]. The same approach leads to a multi-stage linear model for the
evolution of the track irregularities [40, 41], considering each track irregularity as an in-
dependent time series. New opportunities, such as linear autoregressive (AR) models,
Kalman filter and artificial neural networks are explored in [42], considering the track
irregularities of a given stretch of the railway track, represented by a track quality index,
as a time series. Artificial neural networks give the best results because they have better
durability, highly nonlinear and strong self-adapting learning ability.

The interaction between the degradation of the track and the train traffic has been
studied, but mostly by focusing on the ballast degradation and very few on the track

23



irregularities. To this extent, the dynamic response of the track to the train traffic has
been studied, for example in [43, 44]. The computations of the track dynamics rely on
numerical models using finite elements that allow the infrastructure vibrations induced
by the train traffic to be simulated, such as those developed in [45, 46, 47]. The mea-
surement of the track response to the passage of trains (as in [48]) allows the models
to be experimentally validated. Taking into account the variability in the ground vibra-
tion predictions reduces the distance between predicted and measured ground vibrations
(see [49]). A relationship between the track settlements and the number of load cycles due
to the train traffic has been established in [50]. Furthermore, a model for the prediction
of the track settlement has been developed in [51] taking into account the train traffic
thanks to the numerical dynamic simulation of the train behavior. The influence of the
vehicle suspensions on the track settlements has been studied in [52].

The presented overview of prediction techniques for the degradation of the track ir-
regularities shows the recent advances for modeling the long-term evolution of track
irregularities. These advances make use of stochastic processes and of the history of a
track stretch using experimental data. Nevertheless, the relationship between the track
irregularities and the dynamic response of the train has to be deeply explored. Taking
into account the advances presented before, the present work considers a stochastic model
of the track irregularities for a given track stretch (and not only a track quality index
or the track irregularity at a given point) on which the dynamic response of the train is
simulated to take into account the complexity of the track irregularities. The long-term
evolution of the given track stretch is observed through a vector-valued indicator on the
dynamic response of the train.

1.4.3 Assessment of the track irregularities through the dy-

namic response of the train

Taking into account the mechanical coupling between the track irregularities and the
train dynamics, engineers have observed the train behavior as a function of the track
irregularities. Using computational models to predict the dynamic response of the train
on the track, they detected the track stretches that have to be maintained. The nonlinear
character of the train-track coupling is highlighted in [2, 53]. As a basic model for the
train-track coupling, the cross level was first related to a ride comfort indicator via trans-
fer functions [54]. Using a simple inverse method, this approach allows limits on the cross
level to be set as a function of the ride comfort indicator. Then, the correlation between
the derivatives of the track irregularities and the train-track forces has been observed
in [55]. Thanks to the improvements of computational models, the dynamic response of
the train can be precisely and rapidly predicted, which allows the model uncertainties to
be taken into account in the simulation [56].

Other approaches try to determine criteria on the dynamic response of the train, which
correspond to the required limits for the track irregularities. This is more feasible for
vertical track irregularities (vertical offset), which are strongly related to the train ver-
tical acceleration, whereas the relationship between other irregularities and the dynamic
response of the train is more difficult to characterize, because of the small difference
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between the track gauge and the wheels gauge and because of the nonlinearity in the
wheel-rail contact. Thus a limit value on the vertical acceleration has been defined in [57]
that corresponds to the limit value on the vertical offset. The vertical irregularities can
be detected by observing the dynamic response of the train through experimental mea-
surements [58, 59]. Going further, the dynamic response of the train is simulated on
randomly generated track irregularities and the vertical accelerations are analyzed using
the wavelet tranforms, in order to identify the damaged stretches of the track [60]. A
model is then proposed to estimate the track irregularities by using inverse problems and
measurements of the lateral and vertical accelerations of the train [61].

Thanks to the development of numerical tools (data processing and simulation) and
of mathematical tools (statistical inverse problems in high dimension), the dynamic re-
sponse of the train can be connected with the track irregularities. This allows criteria and
threshold levels on the dynamic response of the train to be defined in order to observe
the long-term evolution of the dynamic response of the train.

1.5 Adopted approach in the thesis

1.5.1 Choice of the adopted approach

• The goal of this thesis is to build a model of long-term evolution, that is based on
experimental measurements of the track geometry and of the train dynamics. Thus,
the goal is not to analyze the long-term evolution of some physical parameters of
the track and of its underlying structure, as well as the long-term evolution of some
mechanical and geometric parameters of the train and of the wheel-rail contact.

• This choice is guided by the fact that the railway network is spatially extremely
heterogeneous for a same railway line. Moreover, the long-term evolution of the
track depends on the considered stretch of the track and is related to the weather
conditions and to the various types of trains that run on the line. Thus, a parametric
approach is not feasible.

• This is why a global stochastic model of the track irregularities for the French
railway network has been constructed and adapted for all considered stretches of
the track using measurements of these stretches, which experimentally validate the
constructed stochastic model.

• Furthermore, the train is used as a tool to characterize the impacts of the track
irregularities on the comfort and the security of the train. In these conditions, it is
important to take into account the modeling error in the train computational model,
which is identified using simultaneous experimental measurements of the track ge-
ometry and of the corresponding responses of the train. Such an approach replaces
a parameterized model of the train dynamics and of the vehicle-track interaction,
for which the construction is not feasible.
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Figure 1.4: Evolution of the vertical offset as a function of the vertical force for the track
stretches of the studied high-speed line.

1.5.2 Statistical approach

Given the previous research about the track irregularities modeling, about the degra-
dation of the track irregularities, and about the train-track coupling, the present work
aims at identifying a stochastic predictive model for the long-term degradation of a track
stretch. In this thesis, we consider a track stretch belonging to a given high-speed line
of the French railway network, typically the high-speed line between Paris and Marseille.
The predictive model, which predicts the evolution of a given stretch of the railway track
for future long time, allows for determining the best moment to start off the next main-
tenance operation. The long-term evolution of the track irregularities for the given track
stretch is thus studied between two successive maintenance operations. To be more rep-
resentative of the train safety and of the comfort in the train, maintenance operations
should be scheduled according to criteria on the train dynamic reponse. The track irregu-
larities of the given track stretch are experimentally measured at long times τ1, τ2, . . . , τK
by the measuring train IRIS 320: τ1 is the first discrete long time of a track measurement
after a maintenance operation, and τK is the last measurement time for the track stretch
before the next maintenance operation. The time step between two measurements is not
constant and depends on the considered stretch of the railway track.

As explained in Section 1.4, the long-term evolution of the track irregularities and its
consequences on the dynamic response of the train depend a lot on the studied stretch of
the railway track. For example, Figure 1.4 shows that the vertical force at the wheel-rail
contact is hardly correlated to the evolution of the track vertical offset and thus depends
a lot on the considered stretch of the railway track. It is thus necessary to study locally
the long-term evolution of each stretch of the railway track and to develop a predictive
model adapted to each track stretch. In the following, the high-speed track is divided
into track stretches of constant length S. For a given stretch of the railway track, a local
stochastic model of the track irregularities is constructed using an experimental measure-
ment of the track irregularities and based on the global stochastic modeling developed
in [19, 6, 20]. The global modeling considers track irregularities as a nonstationary and
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non-Gaussian random field, and is able to generate realizations of the track irregularities
for any stretch of the railway track of the studied high-speed line. Such a global stochastic
model has to be adapted to take into account the specificities of the given track stretch,
while preserving the statistical properties defined in the global stochastic model. The
adapted model allows for reducing the statistical fluctuations for the given track stretch,
with respect to the global stochastic model.

A first possible approach would be to characterize and to model the long-term evolu-
tion of the track irregularities. Then, the simulation of the dynamic response of the train
for such predicted track irregularities would allow for predicting the degradation of the
running conditions for the train, and thus for anticipating the maintenance operations.
Unfortunately, two main drawbacks prevent us from using such a possible approach.

• The long-term evolution of the track-irregularities model is difficult to characterize
because of the high dimension of the model. The model developed in [19, 6, 20]
is chosen with 2, 000 components in order to get a small projection error. The
observation of the long-term evolution of these 2, 000 components did not give any
conclusive results.

• Criteria to start off the maintenance operations have to be defined for the dynamic
response of the train. Unfortunately, the nonlinear coupling between the track
irregularities and the dynamic response of the train implies that an evolution in
the track irregularities is not directly related with an evolution of the dynamic
response of the train. Therefore, the parameters of the track-irregularities model
that influence the dynamic response of the train (and whose long-term evolution
could be modeled) are unknown and consequently, their identification is an ill-posed
problem.

Therefore, it has been chosen to characterize and to model the long-term evolution of the
dynamic response of the train on a given track stretch. After validating the computa-
tional model of the train dynamics, the dynamic response of the train on the measured
track stretch is simulated with the Monte-Carlo method, using in input realizations of
the local stochastic model of the track irregularities. The simulation is performed with
a multi-body software. An accurate modeling of the dynamic response of the train im-
plies to take into account the model uncertainties in the train dynamics computational
model. A vector-valued random indicator on the dynamic response of the train, which is
representative of the train comfort, has to be defined, so that its long-term evolution can
be analyzed and modeled. This random indicator, denoted by C(τ1), . . . ,C(τK), will be
computed at each long time τ1, . . . , τK using the numerical stochastic simulation of the
train dynamics. To start off the maintenance operations, threshold levels on the random
indicator have to be defined according to a given maintenance strategy.

Finally, a stochastic predictive model is proposed for predicting the statistical quanti-
ties of the random indicator. Since the long-term evolution of the train-track system
is strongly nonstationary and non-Gaussian, it is assumed that the random indicators
C(τ1), . . . ,C(τK) can be represented by a nonhomogeneous and non-Gaussian discrete
time series. The stochastic predictive model is constructed using the stochastic results
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Figure 1.5: Proposed approach.

of the train dynamics simulation and is based on a nonstationary model of Kalman-filter
type with a non-Gaussian initial condition. The model coefficients depend on the long
time and have to be identified using the known realizations of the vector-valued random
indicators C(τ1), . . . ,C(τK). Using the stochastic predictive model, the realization of
the random indicator C(τK+1) is predicted for future long time τK+1, which allows for
anticipating the need for track maintenance. The proposed model is validated using ex-
perimental data for the French railway network for the high-speed trains.

The adopted approach can be summarized in three steps, as presented by the diagram in
Figure 1.5:

1. Construction of the local stochastic model of the track irregularities for a given
stretch of the railway track.

2. Construction of the vector-valued random indicator for the dynamic response of the
train and construction of the model uncertainties induced by modeling errors in the
computational model of the train dynamics.

3. Construction of the predictive stochastic model for the random indicator.
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1.6 Outline of the thesis

Given the adopted approach explained before, the thesis is organized as follows.

Chapter 2 is devoted to the construction of the local stochastic model of the track irreg-
ularities for a given stretch of the railway track. The modeling developed in [19, 6, 20]
is briefly summarized, and the local stochastic model for a given stretch of the railway
track is identified.

Chapter 3 adresses the computational nonlinear model of the high-speed train in presence
of model uncertainties induced by modeling errors in the train dynamics computational
model. In this chapter, the numerical simulation of the dynamic response of the train
is validated using experimental measurements. The vector-valued random indicator on
the dynamic response of the train is defined and the model uncertainties of the train
dynamics computational model are characterized.

Chapter 4 deals with the construction of the stochastic predictive model for the long-
term evolution of the random indicator.

Chapter 5 is devoted to the application of the model developed in the previous chap-
ters for a given stretch of the railway track of the studied high-speed line. In particular,
it will be shown how the adopted approach would allow for scheduling the track mainte-
nance operations taking into account criteria for the train comfort.

1.7 Main scientific and industrial contributions

1.7.1 Scientific contributions

The main scientific contributions are:

1. The first one consists in developing advanced stochastic models in high stochastic di-
mension adapted to an industrial problem. These stochastic models are identified by
solving statistical inverse problems on the basis of experimental measurements and
by using advanced stochastic methods such as the multivariate maximum likelihood
and the polynomial chaos expansion for the spatial discretization of nonstationary
and non-Gaussian random fields and for non-Gaussian random vectors.

2. The second one consists in developing a stochastic predictive model for a nonsta-
tionary and non-Gaussian discrete time series for which only few data are available,
preventing the use of all the classical Bayesian filterings. The stochastic predic-
tive model is then based on a nonstationary model of Kalman-filter type with a
non-Gaussian initial condition.

1.7.2 Industrial contributions

The adopted approach of the thesis emphasizes several results which are useful for the
railway companies. The modeling of the dynamic response of the high-speed train for
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a measured track stretch gives a better knowledge of the train-track coupling, thanks
to the local stochastic model of the track irregularities and to the introduction of the
model uncertainties in the computational model of the train dynamics. Such a stochas-
tic model actually makes the prediction of the dynamic response of the train more robust.

Using the expertise and the current railway norms, a vector-valued random indicator
on the dynamic response of the train is proposed to monitor the long-term evolution of
the train safety and the comfort in the high-speed trains. A threshold level on this indi-
cator is introduced in order to start off the maintenance operations when the threshold
is exceeded. The threshold level is fixed according to the current maintenance policy but
could be adjusted when changing the maintenance strategy. Thanks to the probabilistic
model of the indicator for the dynamic response of the high-speed train, which is pro-
posed, the maintenance operations can be scheduled in a way that takes into account the
train safety and the comfort conditions in the high-speed train.

Finally, the stochastic predictive model developed in this thesis enables to predict the
long-term evolution of the dynamic response of the train. This will help the railway net-
work managers to anticipate the maintenance works and can lead to introduce a predictive
maintenance.

1.8 Notations

This section aims at summarizing the main notations that are used in this document.

• R is the set of real numbers.

• N denotes the set of positive integers.

• Ω ⊂ R refers to a subset of R.

• (Θ,F ,P) is a probability space.

• For N ∈ N
∗, MN(R) denotes the set of the (N ×N) real matrices.

• a, b correspond to constants in R.

• a, b refer to vectors with values in R
Q, Q ≥ 1.

• aT is the transpose of a.

• ⊗ is the tensorial product such that a⊗ b = abT .

• A, B correspond to random variables with values in R.

• A, B denote random vectors with values in R
Q, Q ≥ 1.

• [A], [B] refer to real matrices.

• det{[A]} is the determinant of real matrix [A].
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• E{·} denotes the mathematical expectation.

• P (Q)([0, S]), where S < +∞, is the space of all the second-order RQ-valued random
fields, indexed by the compact interval [0, S].

• For Q ≥ 1, X = (X1, . . . , XQ) = {(X1(s), . . . , XQ(s)) , s ∈ [0, S]} is in P (Q)([0, S]).

• δmp is the kronecker symbol that is equal to 1 if m = p and 0 otherwise.

• Tr(·) is the trace operator for square matrices.

• ‖·‖F is the Frobenius norm of matrices.

• PA and pA denote respectively the multidimensional probability distribution and
the multidimensional Probability Density Function (PDF) of random vector A.

• If random vector A is of second order, we denote by A and [CA] the mean and the
covariance matrix of A respectively.
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Chapter 2

Stochastic modeling of track

irregularities using experimental

measurements

2.1 Introduction

To observe the long-term evolution of the track irregularities and start off the track
maintenance operations, track irregularities are regularly measured by railway compa-
nies. Planning the maintenance operations forces to consider the track as a succession
of local track stretches which are observed and maintained. Moreover, as it has been
explained in the previous chapter, the characteristics and the long-term evolution of the
track irregularities vary greatly from one stretch of the track to another one. This parti-
tion of the track into track stretches must therefore be conserved for the modeling of the
track irregularities.

In this thesis, it has been chosen to analyze each stretch of the track individually and to
develop a local stochastic model for the track irregularities specific to each track stretch.
To take into account the variability of the track irregularities (and possibly additional
small measurement errors), the track irregularities of the track stretch that is measured
are modeled in a stochastic framework. The construction of a nonstationary and non-
Gaussian local stochastic model is based on the global stochastic model for the track
irregularities that has been proposed in [20]. It is recalled that the global stochastic
model is representative of the track irregularities for the whole high-speed line and has
the capacity to generate the track irregularities for any given track stretch belonging to
the studied high-speed line (this identification has been performed using a large experi-
mental data base obtained by track measurements and is thus very robust with respect
to the variability encountered in the whole railway network). Since the global stochastic
model represents the whole railway network, the dispersion is relatively significant. This
is the reason why a local stochastic model of the track irregularities is constructed and
identified for a given track stretch in order to reduce the dispersion.

For the construction of the local stochastic model of the track irregularities, the mea-
sured track irregularities are first projected on the vector basis of the discretized global

32



stochastic model. This step enables to reduce the dimension of the vector representing the
track irregularities. The next step consists in adding to this projection a random vector
(called "additive noise") whose probability model has to be constructed and identified,
and which has to verify some constraints imposed by the discretized global stochastic
model. The probabilistic model of this additive noise depends on a hyperparameter that
allows for controlling the intensity of the statistical fluctuations, and that is identified
using the first measurement of the given track stretch. Such a local stochastic model
preserves the spatial and statistical properties of the track irregularities.

In this chapter, the track measurements and the discretization of the track irregulari-
ties are introduced in Sections 2.2 and 2.3. Then, in Section 2.4, in order to simplify
the reading, we give a short summary of the global stochastic modeling presented in [20]
whose details can be found in [62, 63, 6, 64, 65]. The local stochastic model is constructed
in Section 2.5.

2.2 Track measurements

The terminology "track geometry" means both the "track design" and the "track irreg-
ularities".

2.2.1 Description of the track geometry

A two-scale description is usually used to characterize the track geometry.

• The track design corresponds to the theoretical track (as it was planned before
the construction) and can be decomposed into the horizontal track design and the
vertical one. The horizontal track design is made up of tangent track, curved track
and track transition curves (between a curved and a tangent track stretch or between
two curved track stretches with different radii), and is described by the horizontal
curvature cH , the cant cL, and the track gauge E. The characteristic length of
the track design (for curved and straight stretches of track) is several hundreds of
meters for a high-speed line. The vertical track design is composed of gradients and
transition zones between two gradients, and is described by the vertical curvature
cV . The track design remains constant over time.

• The track irregularities arise during the track life cycle and are added to the track
design. They are induced by the track degradation when the trains run, by the
environnement (rain, frost), and by the behavior of the track substructure. They
change over long time τ . In this thesis, we consider track irregularities along the
track, for which the wavelengths are between 3 and 150 m, and for which the order
of magnitude of the amplitude is one milimeter to a dozen of milimeters. Thus, the
length scales of the track irregularities are separated from the length scales of the
track design.

For the French high-speed lines, the track design and the track irregularities are defined
as a function of the curvilinear abscissa along the track s.
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Figure 2.1: Experimental protocol.

2.2.2 Measurement of the track irregularities

The track irregularities are measured by a special high-speed train, called IRIS 320,
equipped with measuring instruments, and owned by SNCF company (thus the mea-
surements are performed under load). In order to measure the track irregularities, IRIS
320 measures the distance between a bogie of the train and four particular points of the
rails [66, 67]. The distances are measured using two cameras fixed under the bogie, while
the rails are enlightened by lasers (see Figure 2.1). However, the movements of the bogie
introduce a bias in the measurements of the track geometry. To correct this bias, the
measures of the track irregularities are post-processed. The post-processing consists in
removing the translations and rotations due to the movements of the bogie, which are
measured by accelerometers and a gyroscope. The incorrect measurements due to dys-
functions in the signal-acquisition equipments are removed. The curvilinear abscissa of
the track is measured by an odometric wheel. Due to the variations of the rolling radius of
the odometric wheel between two successive measurements, the curvilinear abscissa can
vary from a track measurement to another one, and has to be rectified (see Appendix A).
The measures from IRIS 320 give, for the curvilinear abscissa s,

• the lateral positions of the left rail eL(s) and of the right rail eR(s)

• the vertical positions of the left rail hL(s) and of the right rail hR(s)

Four track irregularities are computed from the track measurements (see Figure 2.2):

• the lateral offset: x1 = (eL + eR)/2,

• the vertical offset: x2 = (hL + hR)/2,

• the cross level: x3 = (hL − hR)/2,

• the gauge irregularity : x4 = (eL − eR)/2.

The distance between two successive measurements along the track is 0.25 m, which
ensures a correct estimation of the considered track irregularities, since their smallest
observed wavelength is 3 m. The track irregularities have been measured very frequently
since 2007, providing a rich data base. For a stretch of the track, the four track irregu-
larities are displayed in Figure 2.3.
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Figure 2.2: Parametrization of the track irregularities in the reference frame of the track
(for each rail, the initial track design is represented in black, whereas the true position is
in grey).
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Figure 2.3: Track irregularities for a stretch of the railway track.
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Figure 2.4: Comparison of the lateral acceleration in the first bogie of a TGV before a
maintenance operation (left figure) and after the maintenance operation (right figure).

2.2.3 Analysis of the measured track irregularities and influence

of the maintenance operations

The level of track irregularities increases with long time τ . To guarantee a good quality
of running conditions of the train, track irregularities are frequently corrected by main-
tenance operations (tamping) of the track. For instance, the effects of a maintenance
operation on the movements of a bogie can be seen in Figure 2.4, which compares the
lateral acceleration in the first bogie of a high-speed train (TGV) before and after a main-
tenance operation. A maintenance operation may deeply modify the track geometry, and
therefore the track irregularities before and after a maintenance are very different. For ex-
ample, the cross level before and after a maintenance operation is displayed in Figure 2.5:
the maintenance reduces the peaks amplitudes, especially for the small wavelengths (of
the order of magnitude of S/10).

In the following, the long-term evolution of track irregularities is analyzed only between
two successive maintenance operations. For instance, the vertical offset of a track stretch
is represented in Figure 2.6 for the first measurement after a maintenance operation (at
time τ1), and the last measurement before the next maintenance (at time τK). For this
track stretch, the long-term evolution is visible and localized at some peaks of the track
irregularities.

2.3 Spatial sampling of the track for the measure-

ments and for the stochastic modeling

2.3.1 Partitioning the track into track stretches

As explained in Section 2.1, the track has to be partitioned into track stretches in order to
model the track irregularities for a given stretch of the track, because the statistical fluc-
tuations of the track irregularities change from a track stretch to another one. Moreover,
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Figure 2.5: Comparison of the cross level of the track before a maintenance operation
(thin line) and after the maintenance operation (thick line).
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Figure 2.6: Evolution of the vertical offset of a track stretch between two successive
maintenance operations: first measurement after a maintenance operation (solid blue
line), last measurement before the next maintenance operation (dashed red line).
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it can be noticed that the track irregularities strongly depend on the track curvature.
Four types of curvature are considered:

• tangent track, for which the horizontal curvature is zero,

• curve entrance (transition curve approaching to a circular curve), for which the
absolute value of the horizontal curvature is linearly increasing,

• curved track, for which the horizontal curvature is constant and non zero,

• curve exit (transition curve receding from a circular curve), for which the absolute
value of the horizontal curvature is linearly decreasing.

The types of curvature have to be respected when partitioning the track into track
stretches. This implies to localize the positions of the beginnings and the ends of the
four curvature types. Then, for each curvature type, a series of measurements of same
length S is extracted from the experimental data base. The lengths of the curve entrances
and curve exits are generally lower than S.

2.3.2 Spatial sampling for the stochastic modeling of a track

stretch for a given curvature type

For a given track stretch with a given curvature type, the track irregularities are repre-
sented by the centered vector-valued random field {X(s), s ∈ [0, S]}, with values in R

4

which is such that
X(s) = (X1(s), X2(s), X3(s), X4(s)) , (2.1)

in which the real-valued random fields {Xκ(s), s ∈ [0, S]}, for κ = 1, . . . , 4, represent the
lateral offset, the vertical offset, the cross level, and the gauge irregularity. The track is
composed of νp track stretches of length S, indexed by ℓ, for which the track irregularities
are measured by a measuring train. For a given track stretch ℓ, the track irregularities are
sampled at Ns + 1 sampling points s0 < s1 < . . . < sNs

of the curvilinear abscissa of the
track stretch, such that s0 = 0 and sNs

= S. For a given curvature type and for a given
track stretch ℓ, the measurements of the track irregularities are represented by the vector
xmeas,ℓ ∈ R

4(Ns+1) whose components are x1,meas,ℓ(sn), x
2,meas,ℓ(sn), x

3,meas,ℓ(sn), x
4,meas,ℓ(sn),

n = 0, . . . , Ns. The measurements are performed at several discrete long time τk for
k = 1, . . . , K between two successive maintenance operations. Long time τ1 corresponds
to the first measurement after a maintenance operation, and τK is the time of the last
measurement for this track stretch before the next maintenance operation.

For the given track stretch ℓ with a given curvature type, the measured track irregu-
larities at long time τk are then represented by the vector xmeas,ℓ(τk) in R

4(Ns+1).

In all the following of the manuscript, we introduce the random vector X = (X1, X2,
X3, X4) with values in R

4(Ns+1) corresponding to the spatial discretization of the random
field {X(s), s ∈ [0, S]}.
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2.3.3 Construction of an optimal value for the length of the

stretches

The railway track is considered as a concatenation of track stretches of same length S.
The value of S has to be carefully chosen because it plays a key-role in the stochastic
modeling of the track irregularities of a track stretch. Thus, to obtain a robust statistical
description of a track stretch, S has to be chosen in order to obtain good statistical prop-
erties of the stochastic modeling of a track stretch. For instance (but not only), length
S must be longer than the correlation length of the track irregularities.

The optimal value of S is constructed using the three following criteria quantified by
introducing three error functions.

• Random vector X that models the track irregularities for two successive track
stretches must be independent. In practice, this required statistical independence
is replaced by a non-correlation property that is quantified by an error function
(denoted by err2cov(S)), which measures a relative distance between covariance func-
tions.

• A possible artificial periodicity must be avoided in order not to degrade the low-
frequency part of the spectrum of the track irregularities in the stochastic model
of the track stretch. Such a spectral error is quantified by the function denoted by
err2spect(S).

• The number of independent realizations of a random vector X for a given stretch
of the track, which are extracted from the data base of track irregularities, must
be sufficiently large in order to obtain a reasonnable convergence of the statistical
estimators of the probabilistic quantities related to X. This estimation error is
quantified by the function denoted by err2est(S).

The details of the construction of these three error functions can be found in [6]. For
the chosen railway line, errors err2cov(S), err

2
spect(S) and err2est(S) are represented in Fig-

ure 2.7. When S increases, it can be verified that err2cov(S) and err2spect(S) decrease
whereas err2est(S) increases. Length S has thus to be chosen as the right balance between
these three error functions.

For confidentiality reasons, the exact value of S (which is several hundreds of meters)
is however not given in this thesis and, in the following, all the spatial quantities are
normalized with respect to length S.

2.4 Summary of the global stochastic model of track

irregularities

In this section, we give a short summary of the global stochastic model of track irregu-
larities for any track stretch with a same curvature type belonging to the French railway
network of high-speed lines. This global stochastic model has been constructed and iden-
tified in [20], whose details can be found in [62, 6, 63, 64, 65].
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Figure 2.7: Graphs of errors err2cov(S), err
2
spect(S) and err2est(S) for the computation of

the length S (figure extracted from [6], pp 103-104).

The global stochastic model of the track irregularities is constructed for any track stretch
with the same curvature type and is thus independent of long time τ . The vector-valued
random field X = (X1,X2,X3,X4), defined on the probability space (Θ,F ,P), with
values in R

4(Ns+1), models the track irregularities of any track stretch with the same cur-
vature, for which νp independent realizations xmeas,ℓ = (x1,meas,ℓ,x2,meas,ℓ,x3,meas,ℓ,x4,meas,ℓ),
with ℓ = 1, . . . , νp, are known and correspond to measurements of track irregularities for
the νp track stretches with a given curvature type (the independence property is induced
by the identification of the optimal value of S). Random vector X with values in R

4(Ns+1),
which corresponds to the spatial discretization of the random field {X(s), s ∈ [0, S]}, is
non-Gaussian, non-homogeneous (nonstationary), and centered. The construction of a
representation of random vector X and its experimental identification is summarized in
the two next sections.

2.4.1 Statistical reduced representation based on a principal

component analysis

The first step of the construction consists in introducing a scaling related to the four types
of irregularities and then in constructing a statistical reduced representation of random
vector X using a principal component analysis. The scaling consists in replacing random
vector X with values in R

4(Ns+1) by a scaled random vector χ with values in R
4(Ns+1)

such that,
χ = [Diag(O)]X , (2.2)

in which [Diag(O)] is a diagonal matrix introduced for the scaling and detailed in [20].
Using the principal component analysis of random vector χ, the following statistical
reduced representation χ(M) of order M ≪ 4(Ns + 1) is introduced,

χ(M) =
M∑

m=1

√
λm km ηm , (2.3)
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in which k1, . . . ,kM is the orthonormal family of the eigenvectors of the covariance matrix
of random vector χ, associated with the first M largest eigenvalues λ1, . . . , λM . The
coordinates η1, . . . , ηM are M second-order, centered, non-correlated, dependent, and
normalized non-Gaussian random variables such that

ηm =
1√
λm

χTkm , 1 ≤ m ≤M . (2.4)

The corresponding statistical reduced representation X(M) of order M ≪ 4(Ns + 1) is
then written as

X(M) =
M∑

m=1

[Diag(O)]−1 km
√
λm ηm . (2.5)

Introducing the (4(Ns + 1)×M) real matrix [U ] defined by

[U ] =
[
k1 . . .kM

]
, [U ]T [U ] = [IM ] , (2.6)

in which [IM ] is the identity matrix, the diagonal matrix [λ] whose diagonal entries are
λ1, . . . , λM , and the random vector η such that

η = (η1, . . . , ηM) , (2.7)

the random vector X(M) can be rewritten as

X(M) = [Diag(O)]−1 [U ] [λ]1/2 η . (2.8)

Random vector η is such that
E{η ηT} = [IM ] , (2.9)

in which E{·} is the mathematical expectation. Introducing the (M ×M) real matrix
[Q] such as

[Q] = [Diag(O)]−1 [U ] [λ]1/2 , (2.10)

Eq. (2.8) can be rewritten as
X(M) = [Q]η . (2.11)

A convergence analysis has been carried out in order to define the value of M , which is
M = 2, 000 for a relative L2-error of about 1.2%.

2.4.2 Polynomial chaos expansion

The second step consists in constructing a representation of the non-Gaussian second-
order random vector η whose non-correlated components are statistically dependent. The
chosen method is the Gaussian polynomial chaos expansion (PCE) method (see [68, 69,
70]).

The Gaussian PCE is based on a direct projection of the second-order random vector
η on the Hilbertian basis Borth = {ψj(ξ), 0 ≤ j} made up of the normalized multivariate
Hermite polynomials, whose finite truncated representation, at order N , is written as

η ≃ ηchaos(N) =
N∑

j=0

y(j)ψα(j)(ξ) , (2.12)
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in which ξ = (ξ1, . . . , ξNg
) is a normalized Gaussian random vector with dimension

Ng ≤ M . The components ξ1, . . . , ξNg
are independent normalized Gaussian real-valued

random variables, and ψα(0)(ξ), . . . , ψα(N)(ξ) are the multivariate orthonormal normalized
Hermite polynomials (the Gaussian polynomial chaos), and where N , Ng, and the vectors
y(0), . . . ,y(N) in R

M have to be identified. For j = 0, . . . , N , the multi-index α(j) is de-
fined by α(j) = (αj

1, . . . , α
j
Ng
) ∈ N

Ng . If p denotes the maximal degree of the polynomials,

we have 0 ≤ αj
1 + . . .+ αj

Ng
≤ p, and integer N is written as

N =
(Ng + p)!

(Ng! p!)
. (2.13)

The polynomial chaos ψα(j)(ξ) are such that

ψα(j)(ξ) = ψα1
(j)(ξ1)× . . .× ψαNg

(j)(ξNg
) , j = 1, . . . , N , (2.14)

with ψα(0)(ξ) = 1, and satisfy the orthonormal property,

E{ψα(j)(ξ)ψα(k)(ξ)} = δjk . (2.15)

As η is a centered random vector, the first coefficient y(0) = 0. The identification of
the (M ×N) real matrix [y] = [y(1) . . .y(N)] is performed by solving a statistical inverse
problem using the νp independent experimental realizations ηexp,ℓ, ℓ = 1, . . . , νp, of η such
that

ηexp,ℓm =
1√
λm

(xmeas,ℓ)T [Diag(O)]km , 1 ≤ m ≤M , (2.16)

in which xmeas,ℓ, ℓ = 1, . . . , νp are the track irregularities measurements introduced in
Section 2.3.2. The identification of matrix [y] of the coefficients of the PCE is carried out
by the maximum-likelihood method that is summarized hereinafter.

Let h 7→ pη(h; [y]) be the probability density function of random vector η whose repre-
sentation is given by Eq. (2.12) and depending on matrix [y] that belongs to the set MM,N

of all the (M ×N) real matrices that verify the constraints [y] [y]T = [IM ]. Consequently,
[y] must be identified in the admissible set defined by

C[y] =
{
[y] ∈ MM,N such that [y] [y]T = [IM ]

}
. (2.17)

For each fixed [y] and fixed h, pη(h; [y]) is estimated by using samples calculated with
Eq. (2.12) and the Gaussian kernel estimation method. Matrix [y] is identified by the
method described in [65, 6], which is briefly summarized hereinafter.

For integers Ng and p fixed, the optimal value [yopt(Ng, p)] of [y] is calculated by solving
the optimization problem (maximum log-likelihood method),

[yopt(Ng, p)] = arg max
[y]∈C[y]

νp∑

ℓ=1

ln(pη(η
exp,ℓ; [y])) . (2.18)

The optimal values of integers Ng and p are calculated in order to minimize the value
of N defined by Eq. (2.13). Since the constraint [y] [y]T = [IM ] imposes M(M + 1)/2
conditions on [y], the set Q of the admissible values for p and Ng is written as

Q =
{
(p,Ng) ∈ N

2 | Ng ≤M, N = (Ng + p)!/(Ng! p!) ≥ (M + 1)/2
}
. (2.19)
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The truncation error is quantified by the following error function:

err(Ng, p) =
M∑

j=1

∫

BIj

| log10(pηexpj
(hj))− log10(pηj(hj; [y

opt(Ng, p)]))| dhj , (2.20)

in which pηexpj
is the probability density function estimated by using the Gaussian kernel

estimation method and the realizations ηexp,ℓj , ℓ = 1, . . . , νp, and where BIj is the interval
on which the probability density function of ηexpj is higher than 1/νp,

BIj = {hj | pηexpj
(hj) ≥ 1/νp} , j = 1, . . . ,M . (2.21)

The optimal value (Nopt
g , popt) of (Ng, p) are thus calculated as

(Nopt
g , popt) = arg min

(Ng ,p)∈Q
err(Ng, p) . (2.22)

Using Eqs. (2.11) and (2.12), random vector X(M) is written as

X(M) = [Q] [yopt(Nopt, popt)]Ψ(ξ) , (2.23)

in which Ψ(ξ) = (ψα(1)(ξ), . . . , ψα(N)(ξ)) is a R
N -valued random vector.

2.5 Local stochastic modeling

2.5.1 Construction of the local stochastic model

For a given stretch of the track with a given curvature type, the first measurement of the
track irregularities at long time τ1 is denoted by xmeas

τ1
= (x1,meas

τ1
,x2,meas

τ1
,x3,meas

τ1
,x4,meas

τ1
).

As explained in Section 2.1, we are interested in constructing a local stochastic model
adapted to this given track stretch using only the local measurement xmeas

τ1
. As previously

mentionned, the objective of this local stochastic model is to take into account (i) the
local variability of the given track stretch in order to decrease the “statistical distance”
between the global stochastic model and the local measurements and (ii) a possible pres-
ence of measurement noise.

The local stochastic modeling is constructed in adapting the global stochastic model
of the track irregularities recalled in Section 2.3 to the given track stretch. The method
proposed for constructing such a local stochastic model consists in introducing a random
field noise for which the spatial properties are driven by the global stochastic model. The
intensity of the statistical fluctuations of this random field noise has to be identified using
measurement xmeas

τ1
.

For κ = 1, . . . , 4, the statistical reduced representation of the random vector Xκ with
values in R

(Ns+1) (at order M , and which represents a type of track irregularities for a
given stretch of the track), deduced from Eq. (2.11), is written (in removing notation
(M)) as

Xκ = [Qκ]η , (2.24)
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in which [Qκ] is a ((Ns+1)×M) real matrix that is deduced from matrix [Q] introduced
in Eq. (2.10). The proposed local stochastic model is written as

X̃κ(δ) = Xκ +Bκ(δ) , (2.25)

in which Bκ(δ) is a random vector with values in R
(Ns+1), which depends on a vector-

valued hyperparameter δ = (δ1, δ2, δ3, δ4) that allows for controlling the level of statistical
fluctuations, and which has to be identified. In order to preserve the statistical properties
of the track irregularities, random vector Bκ(δ) is written as

Bκ(δ) = δκ [Qκ]Gκ , (2.26)

in which Gκ is a R
M -valued Gaussian second-order centered random vector, defined on

the probability space (Θ′,F ′,P ′), for which the covariance matrix is the identity matrix.
The random vectors G1,G2,G3,G4 are statistically independent. The optimal value δopt

of the vector-valued hyperparameter δ = (δ1, δ2, δ3, δ4) has to be identified for the given
track stretch using local measurement xmeas

τ1
. Combining Eqs. (2.24) and (2.25) yields the

local stochastic model of the track irregularities that is written as,

X̃κ(δ) = [Qκ] (η + δκ Gκ) , κ = 1, 2, 3, 4 . (2.27)

It should be noted that the proposed local stochastic model allows for analyzing the
long-term evolution of each type of irregularities.

2.5.2 Identification of hyperparameter δ

The optimal value δopt = (δ1,opt, δ2,opt, δ3,opt, δ4,opt) of hyperparameter δ is estimated by
using the multivariate maximum log-likelihood method for the random observation vector
W(δ) = (W 1(δ),W 2(δ),W 3(δ),W 4(δ)) such that

W κ(δ) =
‖X̃κ(δ)‖
E{‖Xκ‖} , (2.28)

where Xκ is generated with the global stochastic model (Eq. (2.24)), and where ‖·‖ is the
Euclidean norm. The experimental observation vector wmeas

τ1
= (w1,meas

τ1
, w2,meas

τ1
, w3,meas

τ1
,

w4,meas
τ1

) that corresponds to the experimental measurement of W(δ) at long time τ1 is
such that

wκ,meas =
‖xκ,meas

τ1
‖

E{‖Xκ‖} , 1 ≤ κ ≤ 4 . (2.29)

Let LW(wmeas
τ1

; δ) = ln pW(wmeas
τ1

; δ) be the log-likelihood function in which pW(wmeas
τ1

; δ)
is the value of the probability density function w 7→ pW(w; δ) of random vector W at
w = wmeas

τ1
. The optimal value δopt is then identified solving the following optimization

problem:
δopt = argmax

δ
{LW(wmeas

τ1
; δ)} . (2.30)

The quantity pW(wmeas
τ1

; δ) is estimated using independent realizations of W(δ), and mul-
tivariate Gaussian kernel method (see for instance [71, 72]).
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Figure 2.8: Graphs of the PDF, wκ 7→ pWκ(δκ)(w
κ; δκ), as a function of δκ (the bold line

is obtained for δκ = δκ,opt), for κ = 1, 2, 3, 4.

The admissible set for δ is defined as the domain [0, 2]4 of R
4. Since the dimension

of the admissible set of parameter δ is small, and since each component δκ belongs to a
given finite interval, a deterministic algorithm can be used for solving the optimization
problem defined by Eq. (2.30). The identification of δopt is made in two steps. First, the
admissible set is partitioned in 204 meshes corresponding to a constant step of 0.1 for each
coordinate. For each value of δ corresponding to a node of the mesh, the log-likelihood
is computed with 10, 000 realizations of W(δ). This stage allows the identification of
the node of the mesh corresponding to the maximum of the log-likelihood. This node is
then denoted by δ1 = (δ11, δ

2
1, δ

3
1, δ

4
1). Then, the subdomain Π4

κ=1[δ
κ
1 − 0.25, δκ1 + 0.25] is

explored for δ with a precision of 0.05 for each coordinate (104 nodes for the subdomain).
The log-likelihood is computed with 100, 000 realizations for W(δ). For κ = 1, . . . , 4, the
graphs of the marginal probability density function (PDF) wκ 7→ pWκ(δ)(w

κ; δκ) of ran-
dom variable W κ(δ) are featured in Figure 2.8 as a function of δκ (the other components
of δ being fixed to their optimal values). In 1-D, the maximum likelihood is obtained
when the PDF of W κ(δκ) is maximal at wκ = wκ,meas

τ1
. Here, the bold curve indicates the

PDF corresponding to the optimal value of δκ. It can be noticed that the bold curve is
not always the curve for which the PDF of W κ(δκ) is maximal at wκ = wκ,meas

τ1
, because

the four components are simultaneously taken into account to identify the maximum like-
lihood. The values obtained for each coordinate of δopt can be deduced from Figure 2.9,
which displays the sections (following each coordinate δκ of δ) of the hypersurface defined
by the graph δ 7→ LW(wmeas

τ1
, δ) of the multidimensional log-likelihood function.
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Figure 2.9: Graphs of the sections of the log-likelihood LW(wmeas
τ1

; δ).

2.5.3 Local stochastic modeling for the long-term evolution of

a given stretch of the track with a given curvature type

The local stochastic model of the track irregularities for a given stretch of the track
with a given curvature type at long time τk, k = 1, . . . , K, is constructed as follows.
For fixed long time τk, the measurement of the track stretch is xmeas

τk
= (x1,meas

τk
, x2,meas

τk
,

x3,meas
τk

, x4,meas
τk

). After identifying the optimal value δopt of the hyperparameter δ (see
Section 2.5.2), we have to compute the realization ηmeas

τk
of random vector η on the gener-

alized coordinates of the global stochastic model defined by Eq. (2.11). This realization
ηmeas
τk

is deduced from Eqs. (2.6) to (2.11) as the projection of the measurement xmeas
τk

on
the global stochastic model, which yields

ηmeas
τk

= [λ]−1 [Q]T [Diag(O)]2 xmeas
τk

. (2.31)

For fixed long time τk, the local stochastic model is then defined by

X̃κ
τk
(δopt) = [Qκ]

(
ηmeas
τk

+ δκ,opt Gκ
)

, κ = 1, 2, 3, 4 . (2.32)

As an illustration of the local stochastic model for the track irregularities, the measured
vertical offset, as well as a realization of X̃2

τ1
(δopt) and the confidence region at 90% are

displayed in Figure 2.10. This figure shows that the vertical offset generated with the
local stochastic model keeps the geometrical and statistical properties of the measured
vertical offset, and that the confidence region at 90% is satisfactory, because it is not too
large and it keeps the statistical properties of the track irregularities. In order to validate
the local stochastic model with respect to the amplitude of the track irregularities, the
upcrossings for the four track irregularities are featured in Figure 2.11 (the upcrossings
refers to the number of times for which the observed signal crosses a given amplitude
in ascending direction). It can be seen that the number of upcrossings respects the
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statistical properties of the track irregularities. For different long times, the observation
of the upcrossings displayed in Figure 2.12 shows that the local stochastic model allows
for observing a significant long-term evolution of the track irregularities. In this figure,
it can be seen that the number of upcrossings increases with long time τ , which confirms
the degradation of the track irregularities. The local stochastic model is validated by
Figures 2.10, 2.11, and 2.12, because it preserves the statistical properties of the track
irregularities and is sensitive to their long-term degradation.

2.6 Conclusion

In this chapter, the track irregularities for a given stretch of the track with a given cur-
vature type and their long-term evolution have been observed and processed to construct
a local stochastic model for the track irregularities, which has been identified. This local
stochastic model is adapted to the given track stretch, it preserves the statistical proper-
ties of the track irregularities and allows the observation of their long-term evolution.
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Chapter 3

Computational nonlinear model of

the high-speed train dynamics in

presence of model uncertainties

3.1 Introduction

This chapter is devoted to the numerical simulation of dynamic response of the high-speed
train (TGV) on a given track stretch, and to the identification of the model uncertainties
induced by the modeling errors in the computational model of the train dynamics. The
dynamic model of the train is performed in the framework of multibody dynamics. The
computational model is the one identified in [5] using experimental identification of the
model parameters, and updating of these parameters using the experimental dynamic
response of the train. We will validate this computational model for a TGV Duplex (the
double-decker french high-speed train), using experimental measurements of the dynamic
response of the train on a high-speed line.

An indicator related to the dynamic responses of the train is defined, in order to as-
sess the train safety and the comfort in the train. The maintenance operations will be
scheduled by observing this indicator that is computed from dynamic quantities (accel-
erations and forces) in the train. The comparison between the indicator computed by
the numerical simulation and the corresponding one that is experimentally measured,
highlights modeling errors. The distinction has to be done between the model-parameter
uncertainties (parameters of the computational model) and the model uncertainties in-
duced by modeling errors in the computational model of the train dynamics. The model
uncertainties may be induced, for example, by the model of the nonlinearities in the train
suspensions and by the nonlinear model of the wheel-rail contact. In order to increase
the robustness of the prediction of the proposed indicator, the model uncertainties in
the computational model of the train dynamics are taken into account by introducing a
multiplicative random vector in the output of the computational model. Hence, this ran-
dom vector will take into account both the model-parameter uncertainties and the model
uncertainties in the computational model of the train dynamics. This multiplicative ran-
dom vector is constructed by using a reduced statistical representation coupled with a
polynomial chaos expansion, whose coefficients are identified by comparing the experi-
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Pitch

Figure 3.1: Degrees of freedom of a rigid body.

mental measurements and the predictions with the computational model for the indicator.

The computational model of the TGV dynamics is presented in Section 3.2. In Sec-
tion 3.3, numerical results of the dynamic responses of the train (accelerations and con-
tact forces) are compared with experimental measurements, which allow for checking the
accuracy of the computational model predictions. Section 3.4 deals with the definition of
the vector-valued indicator and with the comparison between experimentally measured
indicators and those predicted by the computational model. The multiplicative random
vector in the output is introduced and is characterized in Section 3.5.

3.2 Computational model of the TGV

The computational model of the train dynamics is classically constructed using a rigid
body modeling of the train and has been developed with the commercial software Vam-
pire. It should be noted that Vampire is a blackbox that does not allow for implementing
modeling errors but only model-parameter uncertainties. In the considered computa-
tional model of the train dynamics, the track and the subgrade are modeled by damping
elastic media.

The coaches, the bogies, and the wheelsets of the train are considered as rigid bod-
ies, which are linked by suspensions. Each rigid body is characterized by the position of
its center of mass, its mass, and its tensor of inertia. Each suspension is characterized by
a rheological model composed of linear and nonlinear springs and dampers. Each rigid
body has three degrees of freedom in translation (longitudinal, lateral and vertical) and
three degrees of freedom in rotation (roll around the longitudinal axis, pitch around the
lateral axis, and yaw around the vertical axis (see Figure 3.1)). In the computational
model, the pitch and yaw angles are assumed to be small. The mechanical model of the
track is composed of springs and dampers positioned under each wheel of the train, for
which the stiffness and the damping are assumed to be constant along the track.

In the computational model, the values of some vehicle parameters are given by the
train manufacturer and the values of the other parameters have been identified using
experimental measurements achieved on the French high-speed lines (see [5]). In this
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Figure 3.2: Description of a multibody model of a TGV.

work, the high-speed train ("TGV Duplex") is made up of two locomotives, eight coaches,
13 bogies, and 26 wheelsets. Figure 3.2 displays a schematic representation of the TGV
Duplex model. The number of degrees of freedom of the vehicle is denoted byNDoF = 294.

The vehicle speed on the railway track is given and can be non constant. The excitation
of the train is induced by the track geometry (track design and track irregularities), which
is detailed in Chapter 2, through the wheel-rail contact forces.

The wheel-rail contact model is pre-processed using the geometrical description of the
wheel and the rail profiles. A Hertzian contact model is used in the vertical direction.
The wheel and rail profiles allow for computing the wheel-rail contact forces using the
Kalker theory [73, 74] in the lateral and longitudinal directions. In this work, the wheel
and the rail profiles are assumed to be perfect (the wear effect is analyzed in [75]).

It should be noted that there are strong nonlinearities in the computational model due
to the wheel-rail contact forces, to the nonlinear suspensions in the train (for example
the airsprings between the bogies and the coaches), and to the bumpstops in the train.
The nonlinear dynamic matrix equations are solved with an explicit scheme. The spatial
sampling of the track is 0.25 m and is transformed in terms of time. The time step is
chosen small enough with respect to the time sampling of the track, in order to obtain
a stability of the numerical scheme and a required accuracy for the predicted time re-
sponses. A convergence analysis has been performed for identifying an optimal value of
this time step that has been found equal to 5.10−4s for the largest speed of the train
(300 km/h).

The time observations of the computational model are the accelerations, speeds, and dis-
placements of the rigid bodies (coaches, bogies, and wheelsets), and the wheel-rail contact
forces (taking into account both quasi-static and dynamic loads). Since the coaches and
locomotives are modeled by rigid bodies (the elasticity is not taken into account), the
frequency domain of analysis is restricted to the frequency band [0, 20] Hz for the reasons
explained hereinafter.
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Figure 3.3: Frequency analysis of the lateral acceleration of the first bogie of a TGV. See
Figure 3.8 for a zoom of the useful low-frequency band.

As the elastic modes of the coaches, the bogies, and the wheelsets cannot be predicted
with the computational model due to the use of a multibody dynamic modeling, the
responses, which are experimentally measured and which are used for the comparisons
with the computational model predictions, must be filtered to remove the contributions
in the frequency band that contains the elastic modes. The corresponding cut-off fre-
quency, which has to be defined, will also be used for filtering the responses predicted
with the computational model (the contributions predicted by the computational model
above this cut-off frequency are not due to the elastic modes, which do not exist in the
computational model, but are due to the transport of the vibrational energy induced by
the nonlinearities). In order to find this cut-off frequency, a spectral function is intro-
duced as explained in Appendix B. The comparison between these spectral functions for
the measured accelerations and for the simulated accelerations gives the cut-off frequency,
as shown in Figure 3.3, which compares the spectral functions of the measured and sim-
ulated lateral accelerations of the first bogie. Frequencies under 0.4 Hz also have to be
filtered in order to remove the quasi-static rigid body movements (movements induced
by the spatial evolution of the track design). For the accelerations, a band-pass filter
(with a gradient of −24 dB per octave) is thus applied to the measurements and to the
responses predicted with the computational model. For the forces, a low-pass filter with a
cut-off frequency of 20 Hz is applied to the measurements and to the responses predicted
with the computational model. It is verified that the frequency range [0.4, 20] Hz for the
dynamic response of the train is excited by the considered track irregularities (with a
wavelength between 3 and 150 m) when the TGV runs between 220 and 300 km/h.
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3.3 Experimental measurements and updating of the

computational model

3.3.1 Experimental measurements used for the updating

In order to update the deterministic computational model of the dynamic response of
the train, the outputs of the numerical simulation are compared with experimental mea-
surements. Five measurement campaigns have been performed by SNCF for the TGV
Duplex running on a French high-speed line. The quantities that have been simultane-
ously measured are:

• accelerations in the bogies and in the coaches of the train;

• wheel-rail contact forces that are deduced from the strain gauges attached on the
wheels; the lateral forces are denoted by Y L

i and Y R
i and the vertical forces are

denoted by QL
i and QR

i , where i = 1, . . . , 26 denotes the indices for wheelsets, index
L stands for "left wheel" and index R for "right wheel";

• the train speed (which is not constant)is between 280 and 300 km/h.

The longitudinal direction is the (Ox)-axis and corresponds to the track axis. The lat-
eral direction is the (Oy)-axis and corresponds to the direction that is horizontal and
perpendicular to (Ox). The vertical direction is the (Oz)-axis and is oriented upwards.
The measurements are performed with a sampling frequency fs = 400 Hz, which is also
used in the computational model. The total number νp of track stretches of length S
that are measured during the five measurement campaigns is νp = 937. For the updating
procedure, the dynamic responses of the train are computed for these νp track stretches
in order to construct the five updated computational models corresponding to the five
experimental campaigns.

3.3.2 Updating the computational model

For the updating of the computational model of the TGV, the dynamic response of the
train is simulated for the configurations that are as close as possible to the experimental
conditions. The track irregularities have been measured by the recording train IRIS 320
at a long time, which is very close (a few days) to the moment for which the experimental
campaigns are carried out. These measurements of the track irregularities are used in
input of the computational model of the train dynamics. The train speed that has been
measured during the experimental campaigns is used for the numerical simulation.

For the experimental campaigns, the mass of the second coach of the TGV Duplex that is
used is different and unkown for each measurement campaign, and consequently, is slightly
different from the computational model described in Section 3.2, which has therefore to
be updated. A quick optimization loop has then been implemented to find the appro-
priate mass m2 for the second coach. The computational observation is the total static
vertical force Qsim

obs applied to the first bogie of the second coach (the fifth bogie of the
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Figure 3.4: For one of the five experimental campaigns, comparison of the experimental
static force Qexp

obs (solid blue line) with the simulated static force Qsim
obs (dashed red line),

before the updating (up figure) and after the updating (down figure).

train). The corresponding experimental observation is denoted by Qexp
obs . The updated

value mup
2 of m2 is obtained by solving the following optimization problem:

mup
2 = arg min

m2∈R+
{m2 , |Qexp

obs −Qsim
obs| ≤ εm} , (3.1)

in which εm is a given tolerance. This updating procedure leads us to construct five
computational models that are updated with respect to the five experimental campaigns.
For one of the five experimental campaigns, Figure 3.4 shows the comparison of the
experimental static force Qexp

obs with the simulated static force Qsim
obs, before and after the

updating.

3.3.3 Evaluation of the accuracy of the updated computational

model

The validation of the computational model is performed in the time and the frequency
domains for most of the available measured forces and accelerations. Because of the
lack of precision in the localization of the measuring train with respect to the track
design (the localization is performed with an odometric wheel), the curvilinear abscissa
of the measured quantities has to be corrected by introducing a spatial shift before the
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post-processing, as explained in Appendix C. Figure 3.5 represents the measured and
simulated vertical forces on the first wheelset for the measured track. It can be noticed
that the measured vertical forces are well reproduced by the simulation concerning their
amplitude. .

The vertical and lateral accelerations are displayed in Figure 3.6. The accelerations in the
bogies are very similar in the simulation and in the measurements. The acceleration in
the second coach is different in the simulation and in the measurements (probably because
of the nonlinear suspensions between bogies and coaches), but the appearance is globally
reproduced, which is enough to start off the maintenance operations. The vertical accel-
erations and forces are better modeled than the lateral ones, because the nonlinearities
are more important in the lateral direction than in the vertical one. The spectral function
defined in Appendix B of the vertical forces in the first wheelset is featured in Figure 3.7.
The spectral functions of the lateral acceleration in the first and in the fifth bogie, of the
lateral acceleration in the second coach, and of the vertical acceleration in the first bogie
are displayed in Figure 3.8. These figures allow for comparing the measurements with
the simulations concerning their frequency spectra, and show a good similarity between
both. It is deduced from these observations that the updated computational model of
the train dynamics is satisfactory for the observed criteria (forces and accelerations in
output of the simulation): the wheel-rail contact, the suspensions, the masses and the
inertia tensors of the rigid bodies are sufficiently well modeled.

3.4 Introduction of a vector-valued indicator for quan-

tifying the dynamic response of the train

3.4.1 Definition of the vector-valued indicator

The dynamic response of the high-speed train is usually assessed by comfort and safety
criteria. Safety criteria are based on the analysis on wheel-rail contact forces and are
described in the UIC (International Union of Railways) Leaflet 518 [76] for the vehicles
certification. One often-used safety criteria is the Nadal criteria which gives a threshold
value for the quotient between lateral and vertical wheel-rail contact forces: Y/Q ≤ 0.8.
Figure 3.9 provides an illustration of these forces. The UIC Leaflet 518 [76] also gives
comfort criteria, which are based on accelerations in the wheelsets or in the coaches. Due
to the coupling between the track and the dynamic response of the train, safety and com-
fort criteria characterize not only the vehicle state, but also the track stretch on which
the train runs. Actually, criteria on the dynamic response of the train can be used to
characterize the long-term evolution of the track irregularities for a given stretch of the
railway track. These criteria are usually defined by taking the maximum of the quantities
of interest related to the dynamic response of the train for a given stretch of the railway
track. To assess the track irregularities and start off the maintenance, some threshold
values, which are phenomenologically defined (see [59] for example), can be assigned to
those criteria.
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Figure 3.7: Validation for the vertical forces of the first wheelset in the frequency domain.
Comparison of the measured forces (solid blue line) with the simulated forces (dashed
red line).
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Figure 3.8: Validation for acceleration responses in the frequency domain. Comparison
of the measured accelerations (solid blue line) with the simulated accelerations (dashed
red line).
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Figure 3.9: Lateral and vertical forces at the wheel-rail contact.

In this thesis, a vector-valued indicator on the dynamic response of the train is intro-
duced in order to observe the long-term evolution of the track irregularities for a given
stretch of the railway track. This indicator is constructed from Nc quantities of inter-
est related to the dynamic response of the high-speed train, and which are described in
UIC Leaflet 518 [76]. The components of the indicator are also chosen depending on
the dynamic quantities measured by the measuring TGV Duplex, in order to compare
measured and simulated indicators. Those quantities of interest are defined as a function
of forces and accelerations at different locations in the train, for a given stretch of the
railway track, and for which measurements are available. Some experimental and numer-
ical results for the quantities of interest are featured in Figures 3.6 (for the accelerations)
and 3.10 (for the forces), and allow for selecting the Nc = 9 most sensitive components
for the vector-valued indicator.

For s belonging to [0, S], the nine quantities of interest are the following:

• the lateral acceleration of the first bogie of the train, denoted by Z1(s),

• the vertical acceleration of the first bogie of the train, denoted by Z2(s),

• the lateral acceleration of the third bogie of the train, denoted by Z3(s),

• the lateral acceleration of the second coach of the train, denoted by Z4(s).

• the sum of lateral forces on the ninth wheelset, defined by Z5(s) = Y R
9 (s) + Y L

9 (s),

• the sum of vertical forces on the first wheelset, defined by Z6(s) = QR
1 (s) +QL

1 (s),

• the sum of vertical forces on the second wheelset, defined by Z7(s) = QR
2 (s) +QL

2 (s),

• the sum of vertical forces on the tenth wheelset, defined by Z8(s) = QR
10(s) +QL

10(s),

• the difference between right-wheel and left-wheel vertical forces on the tenth wheelset,
defined by Z9(s) = QR

10(s)−QL
10(s).

As explained before, the dynamic quantities of interest are filtered as follows. For the
accelerations Z1, Z2, Z3 and Z4, the fourth-order band-pass linear filter defined in Sec-
tion 3.2 is used. For the forces Z5, Z6, Z7, Z8 and Z9, the filter is a fourth-order low-pass

59



curvilinear abscissa

Y
1R
+

Y
1L

curvilinear abscissa

Y
9R
+

Y
9L

curvilinear abscissa

m
ax

((
Y

/Q
) 9)

curvilinear abscissa

Q
1R
+

Q
1L

00

00

20S

20S20S

S/5

curvilinear abscissa

Q
2R
+

Q
2L

curvilinear abscissa

Q
10R

+
Q

10L

curvilinear abscissa

Q
10R

−
Q

10L

0

00

20S

S/5S/5
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parison of the measured forces (solid blue line) with the simulated forces (dashed red
line).
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linear filter with cut-off frequency at 20 Hz. The components of the indicator vector
c = (c1, . . . , cNc

) are defined by

cj = max
s∈[0,S]

|Zj(s)| , j = 1, . . . , Nc . (3.2)

3.4.2 Calculation of the indicators for the experimental mea-

surements and for the numerical simulation

In order to characterize the model uncertainties in the computational model of the
train dynamics, we need to compare, for each stretch of the track, the indicator vec-
tor csim = (csim1 , . . . , csimNc

) obtained by simulation with the experimental indicator vector
cexp = (cexp1 , . . . , cexpNc

).

The experimental indicator vector cexp is calculated using the measurements of the
dynamic response of the train described in Section 3.3. The measurements of the ac-
celerations and forces are performed for νp track stretches of length S (taking into ac-
count the five measurement campaigns) and post-processed to obtain the indicators cexp,ℓ,
ℓ ∈ {1, . . . , νp}. It is assumed that cexp,1, . . . , cexp,νp are νp independent realizations of a
vector-valued random indicator denoted by Cexp. For a given measurement campaign,
the dynamic responses of the train for two different stretches of the track are considered
as independent. The five measurement campaigns are also considered as independent
(due, in particular, to the change of the train speed between two campaigns).

For each stretch of the railway track, the dynamic response of the train on the track
is then numerically simulated using the computational model. The track geometry used
in input of the simulation is the deterministic track geometry xexp,1, . . . ,xexp,νp measured
during the measurement campaigns (without using the adapted stochastic model of Chap-
ter 2). The speed depending on time is recorded by the measuring TGV Duplex and is
used as a parameter of the computational model, which is the one identified in [5], and
for which the mass of the second coach has been updated in Section 3.3.2.

The quantities of interest related to the accelerations, which can be estimated with
the experimental measurements, cannot directly be calculated with the computational
model, and consequently, have to be constructed as described hereinafter. The computed
accelerations have to take into account the momentum due to the off-centering of the
accelerometers. For the lateral accelerations, the quantities of interest Zsim

1 (s), Zsim
3 (s),

and Zsim
4 (s) for the components of the indicator are constructed such as

Zsim
j (s) = ÿj(s) + ẅz

j (s) l
x
j − ẅx

j (s) l
z
j , s ∈ [0, S] , j = 1, 3, 4 , (3.3)

where ÿj(s) is the lateral acceleration of the considered bodies, lxj and lzj are the distances
between the center of mass of the bodies and the sensor in the longitudinal and vertical
directions respectively, and where ẅx

j and ẅz
j , are the angular accelerations about the

longitudinal and vertical axes respectively. For the vertical acceleration, the quantity of
interest Zsim

2 (s) is constructed such that

Zsim
2 (s) = z̈2(s) + ẅx

2(s) l
y
2 − ẅy

2(s) l
x
2 , s ∈ [0, S] , (3.4)
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in which z̈2(s) is the vertical acceleration of the first bogie, ly2 is the distance between the
center of mass of the bogie and the accelerometer in the lateral direction, and where ẅy

2 is
the angular acceleration about the lateral axis. Quantities Zsim(s) = (Zsim

1 (s), . . . , Zsim
Nc

(s))
are then filtered and the indicator vectors csim,1, . . . , csim,νp are computed as defined in
Eq (3.2).

It is assumed that csim,1, . . . , csim,νp are νp independent realizations of a random indicator
vector denoted by Csim. Due to the local stochastic model introduced in Section 2.5,
Csim is a second-order random vector defined on the probability space (Θ′,F ′,P ′) with
values in (R+)Nc . Any realization of random vector Csim is denoted by Csim(θ′) for θ′ ∈ Θ′.

For a selection of 64 stretches among the νp = 898 stretches of the track, the realizations
of the Nc = 9 components of the vector-valued indicators Cexp and Csim are featured in
Figure 3.11. It can be noticed that the experimental realizations of the indicator are not
exactly the same as the simulated realizations, which underlines the presence of modeling
errors in the computational model of the train. Moreover, it should be noted that the
modeling errors in the computational model of the train dynamics depend on the track
curvature, because the train suspensions, which are modeled in the computational model
of the train, are not solicited in the same way depending on the track curvature. Conse-
quently, the modeling uncertainties induced by modeling errors have to be identified for
each curvature type defined in Section 2.3.1. We have νA = 341 straight stretches of the
track, νC = 311 curved stretches, νEC = 114 stretches in curve entrance, and νSC = 132
stretches in curve exit.

3.5 Model uncertainties induced by modeling errors

3.5.1 Stochastic modeling of model uncertainties

As explained in the previous section, the comparison of simulated and measured values
of the indicator shows that there are modeling errors in the computational model of the
train, which are taken into account by introducing model uncertainties. The model uncer-
tainties induced by modeling errors have to be distinguished from the model-parameter
uncertainties (as explained in [70]). One way to take into account the model uncertainties
is the use of the nonparametric probabilistic approach (see [70] and some examples of
application in [77, 78]). Nevertheless, since the Vampire software is a blackbox, such
a nonparametric probabilistic approach of uncertainties cannot be implemented. We
then propose to use the output-prediction-error method, which consists in introducing
an additive or a multiplicative noise in the output of the computational model. Such a
method allows for taking into account all the uncertainties in the computational model
of the train dynamics: uncertainties due to the rigid bodies modeling, uncertainties in
the parameters of the train model (due to the identification of the parameters or to the
degradation of the train), uncertainties in the track and subgrade modeling, and numer-
ical uncertainties. The stochastic computational model constructed hereinafter to take
into account modeling errors is based on the introduction of a multiplicative output noise.
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Figure 3.11: Comparison of the experimental indicator vector Cexp (solid blue line) with
the simulated indicator vector Csim (dashed red line) for 64 track stretches.
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To characterize this multiplicative output noise, a random vector Bout is introduced,
which is statistically independent of the simulated indicator Csim, and consequently has
been defined on another probability space denoted by (Θ′′,F ′′,P ′′). The random indi-
cator vector that includes model uncertainties is denoted by Cmod = (Cmod

1 , . . . , Cmod
Nc

),
and is constructed as a function of the simulated indicator vector Csim and of the ran-
dom vector Bout. Random vector Bout = (Bout

1 , . . . , Bout
Nc

) is defined as a non-Gaussian
second-order R

Nc-valued random vector, which has to be identified using measurements.
By construction, the vector-valued indicator Csim is a non-Gaussian second-order ran-
dom vector with values in (R+)Nc . Consequently, the random vector Cmod is defined on
the product of the probability space (Θ′,F ′,P ′) and (Θ′′,F ′′,P ′′), and is a non-Gaussian
second-order (R+)Nc-valued random vector, which is written as

Cmod
j (θ′, θ′′) = Csim

j (θ′) exp(Bout
j (θ′′)) , j = 1, . . . , Nc , θ

′ ∈ Θ′ , θ′′ ∈ Θ′′ . (3.5)

Random vector Bout has to be identified in comparing the random indicator vector Cmod

with the corresponding experimental random indicator vector Cexp for which measure-
ments have been carried out for the νp track stretches previously used. Since random
vector Bout is non-Gaussian, its representation on the Gaussian polynomial chaos is used.
For that, a principal component analysis of Bout is performed, and the non-Gaussian
centered and non-correlated coordinates are developed using the Gaussian polynomial
chaos expansion. Consequently, random vector Bout is written as

Bout = b+
Nc∑

j=1

√
λj ηj ϕ

j , (3.6)

in which b = E{Bout} is the mean value, and where λ1, . . . , λNc
and ϕ1, . . . ,ϕNc are the

positive eigenvalues and the orthonormal eigenvectors of the covariance matrix [CBout ] =
E{(Bout − b)(Bout − b)T} that has to be estimated with the measurements. The non-
Gaussian random vector η = (η1, . . . , ηNc

), for which the components are such that
ηj = λ

−1/2
j (Bout − b)T (ϕj), is such that E{η} = 0 and E{ηηT} = [INc

] (the identity
matrix). In order to represent a family of parameterized probability distributions of the
non-Gaussian random vector η, the following finite polynomial chaos expansion (PCE)
(see for instance [68, 69, 70]) is introduced,

η =
N∑

i=0

y(i)ψα(i)(ξ) , (3.7)

in which ξ = (ξ1, . . . , ξNg
) is a normalized Gaussian random vector of dimension Ng ≤ Nc,

ψα(0)(ξ), . . . , ψα(N)(ξ) are the multivariate orthonormal normalized Hermite polynomials
(the polynomial chaos), and where N , Ng, and the vectors y(0), . . . ,y(N) in R

Nc have to
be identified. For i = 0, . . . , N , the multi-index α(i) is the vector of integers defined by
α(i) = (αi

1, . . . , α
i
Ng
) ∈ N

Ng . Since η is centered, and since ψα(0)(ξ) = 1, y(0) = 0.

3.5.2 Identification of the output noise Bout

The output noise Bout is identified by solving a statistical inverse problem using exper-
imental measurements cexp, which are considered as independent realizations of Cmod,
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and using realizations of Csim. As previously, we consider νp track stretches of index ℓ.
Let cexp,ℓ be the indicator of the response measured in the train excited by the track
irregularities of the track stretch of index ℓ. Let csim,ℓ be the indicator of the response
calculated with the computational model of the train excited by the same track irreg-
ularities of the track stretch of index ℓ. Taking into account the hypothesis concerning
the statistical independence, for all j = 1, . . . , Nc, the independent realizations bexp,ℓj for
ℓ = 1, . . . , νp of the component Bout

j of random vector Bout are written (see Eq. (3.5)) as

bexp,ℓj = ln

(
cexp,ℓj

csim,ℓ
j

)
, j = 1, . . . , Nc , ℓ = 1, . . . , νp . (3.8)

For numerical conditioning reasons, for fixed ℓ, each component bexp,ℓj of vector bexp,ℓ =

(bexp,ℓ1 , . . . , bexp,ℓNc
) is normalized by maxℓ=1,...,νp |bexp,ℓj |. The following estimations of mean

value b and covariance matrix [CBout ] (defined in Section 3.5.1) are written as

b ≃ b̂ =
1

νp

νp∑

ℓ=1

bexp,ℓ , [CBout ] ≃ [ĈBout ] =
1

νp − 1

νp∑

ℓ=1

(bexp,ℓ − bexp)(bexp,ℓ − bexp)T .

(3.9)
For ℓ = 1, . . . , νp, the independent realizations ηexp,ℓ = (ηexp,ℓ1 , . . . , ηexp,ℓNc

) of random vec-

tor η are then calculated by ηexp,ℓj = λ
−1/2
j (bexp,ℓ − b̂

exp
)T (ϕj).

Let h 7→ pη(h; [y]) be the probability density function of random vector η defined by
Eq. (3.7), which depends on the matrix [y] = [y0, . . . ,yN ] that belongs to the set MNc,N

of all the real (Nc × N) matrices, and which must verify the constraint [y] [y]T = [INc
].

Consequently, [y] has to be identified in the admissible set defined by

C[y] =
{
[y] ∈ MNc,N such that [y] [y]T = [INc

]
}
. (3.10)

For each fixed [y] and fixed h, pη(h; [y]) is estimated by using samples calculated with
Eq. (3.7) and the Gaussian kernel estimation method. Matrix [y] is identified by the
method described in [6, 65], which has briefly been summarized in Section 2.4.2.

3.5.3 Results

Because the dynamic response of the train depends on the track curvature, the noise
Bout is identified for each class of curvature: tangent track, curve entrance, curved track
and curve exit. For instance, for the identification of Bout for the tangent track, we
have νp = νA = 341 track stretches. The estimations of the marginal probability density
functions (PDF) of the components of Bout for the tangent track are computed with the
Gaussian kernel method. Figure 3.12 displays (i) the Gaussian PDFs centered on b ≈ b̂

and with the standard deviation [CBout ]ii ≈ [ĈBout ]ii, i = 1, . . . , 9 computed on the same
closed domain, (ii) the estimated marginal PDFs of Bout for a straight stretch of the
track, and (iii) for a curved stretch of the track. This figure confirms that the output
noise Bout is non-Gaussian and depends on the curvature class.

65



 

 

P
D

F

P
D

F

P
D

F

P
D

F

values of bexp1 values of bexp2

values of bexp3 values of bexp4

P
D

F

P
D

F

P
D

F

P
D

F

values of bexp5 values of bexp6

values of bexp7 values of bexp8

P
D

F

values of bexp9

Figure 3.12: For each component Bout
j of random vector Bout, comparison of the marginal
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j for an alignment (solid blue line), for a curve (bold green line), and for the

Gaussian model (dashed red line), computed from the experimental realizations bexp,ℓ, ℓ =
1, . . . , νp.
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For each admissible couple (Ng, p), the optimal value [yopt(Ng, p)] of matrix [y] is com-
puted with the maximum log-likelihood method (see Eq. (2.18)) using 100, 000 realiza-
tions. Then, the error function (Ng, p) 7→ err(Ng, p) is computed according to Eq. (2.20).
For example, for the straight stretches of the track, error function (Ng, p) 7→ err(Ng, p) is
featured in Figure 3.13 as a function of Ng and p. It can be noticed that the minimum
of the function is obtained for (Nopt

g , popt) = (7, 2). The same result is obtained for the

 

 

PSfrag

er
r(
N

g
,p

)

p

Ng = 7
Ng = 9

Ng = 2
Ng = 3

1 2 3 4 5 6 70

10

20

30

40

Figure 3.13: Error function err(Ng, p) as function of Ng and p.

other classes of track stretches. For a given curvature class, once the polynomial chaos
of Bout has been identified, matrix [yopt(Nopt

g , popt)] is used to construct the output noise
Bout such as

Bout = b+
Nc∑

j=1

√
λj (

N∑

i=0

y
opt,(i)
j (Nopt

g , popt)ψα(i)(ξ))ϕj . (3.11)

For the components of Bout, Figures 3.14 and 3.15 show the comparisons (in linear and log
scales) between the marginal PDFs of the experimental values estimated by the nonpara-
metric statistics with the marginal PDFs estimated using the stochastic representation
defined by Eq. (3.11). For the track stretch ℓ = 1, the joint probability density function
of the random variables Cmod,1

1 and Cmod,1
2 (the first two components of Cmod,1) is plotted

in Figure 3.16. In this figure, the two points corresponding to the experimental value
cexp,11,2 = (cexp,11 , cexp,12 ) and to the simulated value csim,1

1,2 = (csim,1
1 , csim,1

2 ) are displayed. This
figure shows that the random indicators vector Cmod,1 (that takes into account the train
dynamics modeling errors for a given track geometry) yields a better modeling of the
experimental dynamic response of the train than csim,1.

3.6 Conclusion

In this chapter, the dynamic response of the train has been numerically simulated on a
measured track for the French TGV Duplex. The simulation results have been compared
with experimental measurements of the dynamic response of the train, which allows for
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updating the computational model of the train and for validating the numerical results. A
vector-valued random indicator has been defined in order to assess the dynamic response
of the train on a given stretch of the track. The components of this indicator have been
chosen according to the expertise and are constructed by post-processing the dynamic
response of the train on the given track stretch. In order to take into account the model
uncertainties of the computational model of the train dynamics, a multiplicative output
noise has been introduced in the construction of the indicator. This output noise is a
non-Gaussian random vector which has been identified by solving an inverse statistical
problem using experimental realizations of the vector-valued indicator. Taking into ac-
count the model uncertainties increases the robustness of the indicator, and expands the
possible running conditions which are taken into account in the simulation of the train
dynamics.
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Chapter 4

Modeling the long-time evolution of

the train dynamic response

4.1 Introduction

In the previous chapter, a vector-valued random indicator has been introduced in order
to characterize the dynamic response of the train on a given stretch of the railway track.
The long-term evolution of this indicator allows for describing the long-term evolution of
the dynamic response of the train on the given track stretch, giving information about
the long-term evolution of the track irregularities. The track maintenance operations
can then be started off using the observation of the vector-valued random indicator. In
order to be able to plan in advance the track maintenance operations, we are interested
in the prediction of the long-term evolution of the vector-valued random indicator. Sev-
eral approaches have been proposed in [42, 30, 32, 36, 38] for predicting the long-term
evolution of a given stretch of the track. But the proposed models were restrained to
criteria on the track irregularities and took into account nor the dependence between
the track irregularities neither the dynamic response of the train. The case described
in this work focuses on the non-Gaussian 9-dimensional vector-valued random indicator,
which characterizes the dynamic response of the train. Moreover the long-term evolution
of the proposed indicator is nonstationary. The vector-valued random indicator is thus
considered as a non-Gaussian and nonstationary time series whose long-term evolution
has to be characterized.

Consequently, the goal of this chapter is to build and to identify a stochastic predictive
model of long-term evolution of the vector-valued random indicator. The identification is
performed using the known values of the random indicator that are generated at discrete
long time {τ1, τ2, . . . , τK}. Their generation is performed by the numerical simulation of
the dynamic response of the train using the stochastic computational model presented
in the previous chapters for a given stretch of the track corresponding to a given curva-
ture class. Such a stochastic predictive model must be able to predict the statistics of
the vector-valued random indicator at following long time τK+1, providing information
to start off the maintenance operation. The methodology proposed is presented in Sec-
tion 4.2. Section 4.3 explains the construction of the stochastic predictive model, whose
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parameters are identified in Section 4.4. Section 4.5 is devoted to the statistical pre-
diction of the random indicator at long time τK+1.

4.2 Strategy of the methodology proposed

We present hereinafter a stochastic predictive model of the vector-valued random indi-
cator to long-term evolution of track irregularities. For such a prediction, the following
hypotheses are used:

• The prediction is performed for a given track stretch of length S, as defined in
Section 2.3.3.

• Measurements of the track geometry of this stretch are carried out at discrete long
time {τ1, τ2, . . . , τK}.

• The stochastic computational model of the high-speed train dynamics is used for
estimating the statistics of random quantities of interest that are the vector-valued
indicator represented by a R

Nc-valued time series Cmod(τ1), . . . ,C
mod(τK). For the

proposed construction of the stochastic computational model, the main steps are
explained in Chapters 2 and 3 and are summarized hereinafter:

– A local stochastic modeling of the track irregularities for the given track stretch
is constructed using the experimental measurements of the track geometry
(Chapter 2) and a global stochastic model of the track irregularities represen-
tative of the whole line.

– A stochastic modeling of model uncertainties in the computational model of
the train dynamics is constructed using simultaneously experimental measure-
ments of the track geometry and experimental measurements of the train dy-
namics (Chapter 3).

• Using the statistics of the vector-valued random indicator Cmod(τ1), . . . ,
Cmod(τK), which have been calculated for long times τ1, . . . , τK , a stochastic predic-
tive model of the vector-valued indicator to long-term evolution of track irregulari-
ties is constructed and then identified. The vector-valued random indicator that is
predicted by the stochastic predictive model is represented by the R

Nc-valued time
series Ck (or by C(τk)). If the stochastic predictive model were perfect (no error),
we would have C(τk) = Cmod(τk) for k = 1, . . . , K (which is not the case).

• Using the stochastic predictive model identified with Cmod(τ1), . . . , C
mod(τK), the

statistics of the vector-valued random indicator CK+1 are calculated for discrete
long time τK+1. Such a prediction is obtained using the identified stochastic pre-
dictive model starting at initial condition CK = Cmod(τK).

– The probability distribution of the vector-valued random indicator CK+1 is
estimated.

– An estimation of the error induced by the stochastic predictive model is given.

72



The construction and the identification of the stochastic predictive model of the vector-
valued random indicator are relatively difficult for the following reasons:

• The long-term evolution is strongly nonstationary (and consequently statistics can-
not be enriched by using time averaging estimators).

• The nonstationarity of the problem implies that only one experimental realization
of the track irregularities of the given track stretch is available at each discrete time
τk, which induces that the amount of experimental data is very limited.

• The number of discrete long times K used for predicting the statistics of the vector-
valued random indicator at discrete long time τK+1 is very low (typically K is of
order 10).

• The vector-valued random indicator is a non-Gaussian random vector, in partic-
ular the initial value Cmod(τ1) is non-Gaussian, which means that the time series
Cmod(τ1), . . . ,C

mod(τK) is non-Gaussian.

Two steps are required for predicting the statistics of thevector-valued random indicator
at long time. The first one is related to the choice and the construction of a stochastic
predictive model, and the second one consists in identifying it by solving a statistical
inverse problem.

4.3 Stochastic modeling of the long-term evolution

for the vector-valued random indicator

4.3.1 Representing the random indicator by a time series

Since it is a discrete time stochastic process with values in (R+)Nc , the sequence of
vector-valued random indicators {C(τk), k ∈ N

∗} is a time series. Time series have exten-
sively been treated in the literature (see for instance [79, 80, 81, 82, 83, 84, 85]) and are
used in many applications, such as astronomy [86], wheather forecast [87], biology [88],
economy [89], and more generally in all the engineering sciences. In the following, the
vector-valued random indicator will also be denoted by {Ck, k ≥ 1}.

The time series {Ck, k ≥ 1} is non-Gaussian and nonstationary, with a non-Gaussian
initial value C1 = Cmod(τ1). For k ≥ 1, the relationship between Ck and Ck+1 is, a
priori, nonlinear because of the nonlinear train-track coupling. Consequently the iden-
tification of a discrete time-evolution stochastic model for the time series C(τ1), . . . ,
C(τK) requires to solve a nonstationary statistical inverse problem using the time series
Cmod(τ1), . . . ,C

mod(τK). Several methods have been tested for constructing and iden-
tifying the nonstationary stochastic predictive model. Below, we will present several
approaches based on Bayesian filtering [90, 91] of Markov chain models.

• In Section 4.3.2, we consider the discrete time-evolution stochastic model as a non-
homogeneous (nonstationary) Markov chain, whose transition probability has to
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be identified. The method would consist in a direct identification of the transi-
tion probabilities family. Due to the nonstationarity properties and due to data
limitation (small value of K), such an approach is not efficient and will not be used.

• In Section 4.3.3, we shortly summarize fundamental elements useful for constructing
discrete time-evolution stochastic models, which can be viewed as an introduction
of the proposed method that will be presented in Section 4.3.4.

4.3.2 Direct estimation of a transition probabilities family of a

nonstationary one-order Markov chain

Since the long-term evolution of the track irregularities depends on the track history, it
could be assumed that the vector-valued random indicator {Ck, k ≥ 1} has the Markov
property, as long as the train traffic remains the same. Such a hypothesis is supported
by the fact that the track history contains the information allowing the prediction of the
track irregularities. The proposed model does not directly take into account the number
of running trains either infrastructure data, although they have an influence on the long-
term evolution of the track irregularities.

Let B be the state space on which the Markov chain {Ck, k ≥ 1} is defined. State
space B is supposed to be finished, countable, and composed of n states B1, . . . , Bn such
that B =

⋃n
i=1Bi and

⋂n
i=1Bi = ∅. For k ≥ 1, B and B′ in B, let P(k,B; k + 1, B′) =

P{Ck+1 ∈ B′ |Ck ∈ B} be the conditionnal probability of the event {Ck+1 ∈ B′} given
Ck ∈ B. For any finite k ≥ 2, any collection of times 1, 2, . . . , k − 1, k, k + 1 and for all
B1, . . . , Bk−1, B,B

′ in B, the Markov property for the random indicator can be written
as

P{Ck+1 ∈ B′ |C1 ∈ B1, . . . ,C
k−1 ∈ Bk−1,C

k ∈ B} = P{Ck+1 ∈ B′ |Ck ∈ B}
= P(k,B; k + 1, B′) .

(4.1)

Since the Markov chain is assumed to be nonstationary, the conditional probability de-
pends on k. Then, for all 1 ≤ k < k′′ < k′, for all B and B′ in B , the conditional
probability B′ 7→ P(k,B; k′, B) verifies the Chapman-Kolmogorov equation,

P(k,B; k′, B′) =
n∑

i=1

P(k,B; k′′, Bi)P(k
′′, Bi; k

′, B′) . (4.2)

For all k ≥ 1, B′ 7→ P(k,B; k+1, B′) is a system of transition probabilities from state B
to state B′. Thus, the probability that Ck+1 is in state B′ at time k + 1 is

P (Ck+1 ∈ B′) =
n∑

i=1

P(k,Bi; k + 1, B′)P (Ck ∈ Bi) . (4.3)

Hence, for all k ≥ 1, the knowledge of the Mn(R)-valued transition matrix [P(k, k + 1)]
defined by [P(k, k + 1)]ij = [P(k,Bi; k + 1, Bj)], with i and j in {1, . . . , n}, determines
the complete Markov chain with

∑n
j=1[P(k, k + 1)]ij = 1. Markov chain {Ck, k ≥ 1}

being nonstationary, its transition matrix depends on k. Moreover, since Markov chain

74



{Ck, k ≥ 1} is known only by its realizations Cmod(τ1), . . . ,C
mod(τK), its transition ma-

trix can only be estimated. The construction of the estimator [P̂(k, k+1)] of the transition
matrix [P(k, k + 1)] is performed as follows.

For i 6= j, let Mij(k, k + 1) represent the number of Bi to Bj transitions from time
k to k + 1 for N independent realizations of the Markov chains {Ck, k ≥ 1}. Let Ni(k)
represent the number of observed chains in state Bi at time k. Finally, Ri(k) denotes
1/Ni(k) if Ni(k) > 0, and 0 otherwise. For k ≥ 1, the classical estimator [P̂(k, k+1)]ij is
given by

[P̂(k, k + 1)]ij =Mij(k, k + 1)Ri(k) if i 6= j ,

[P̂(k, k + 1)]ii = 1−
∑

j 6=i

Mij(k, k + 1)Ri(k) .
(4.4)

Fleming et al. have proven [92] that this estimator is the maximum-likelihood estimator
for nonstationary Markov chains. Unfortunately, in our case, the identification of the
coefficients of the transition matrix is limited by the lack of data. This would not be
the case if the system were stationary. Therefore, the transition matrices are not used to
model the long-term evolution of the vector-valued random indicator. In order to bypass
this problem, we chose to linearize the long-term evolution of the vector-valued random
indicator and to use linear filtering for the prediction (see below).

4.3.3 Summarizing fundamental elements useful for construct-

ing discrete time-evolution stochastic models

In order to prepare the construction of the stochastic predictive model, which will be
presented in Section 4.3.4, we briefly present below some fundamental elements concerning
linear filtering.

ARMA models for time series

ARMA models with time-independent coefficients were first introduced by Whittle [79, 93]
and popularized by Box and Jenkins [80], Priestley [82], and Hamilton [94]. Such ARMA
models allow for describing a Gaussian stationary centered time series as a linear filtering
of a discrete Gaussian white noise. Modeling a centered time series {Ck, k ∈ Z} by an
ARMA process of order (p, q) (with p ∈ N

∗ and q ∈ N
∗) means that {Ck, k ∈ Z} is

represented as the stationary solution of the stochastic recurrence equation:

Ck+[A1]C
k−1+. . .+[Ap]C

k−p = ε(k)+[B1]ε(k−1)+. . .+[Bq]ε(k−q) , k ∈ Z , (4.5)

in which the time series {ε(k), k ∈ Z} is a discrete Gaussian white noise, and the
(Nc×Nc) real matrices [A0], [A1], . . . , [Ap] and [B0], [B1], . . . , [Bq], with [A0] = [B0] = [INc

]
(the identity matrix), are such that all the zeros of det{∑p

k=0[Ak]Z
−k} = 0 and of

det{∑q
k=0[Bk]Z

−k} = 0, with |Z| > 0, are located inside the unit circle centered at the
origin of the complex Z plane. The identification of the model parameters [A1], . . . , [Ap]
and [B1], . . . , [Bq] is performed with the Yule-Walker equations, which are obtained by
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multiplying the two sides of Eq. (4.5) by (Ck−m)T , for all m in {1, . . . , k − 1} , and by
taking the mathematical expectation, which yields to

E{Ck(Ck−m)T}+ [A1]E{Ck−1(Ck−m)T}+ . . .+ [Ap]E{Ck−p(Ck−m)T}
= E{ε(k)(Ck−m)T}+ [B1]E{ε(k − 1)(Ck−m)T}+ . . .+ [Bq]E{ε(k − q)(Ck−m)T} .

(4.6)

Since ε(k) is centered and independent of Ck−1, . . . ,Ck−m, Eq. (4.6) yields

E{Ck(Ck−m)T}+ [A1]E{Ck−1(Ck−m)T}+ . . .+ [Ap]E{Ck−p(Ck−m)T} = [0] . (4.7)

For all k ∈ Z and m < k, the quantities E{Ck(Ck−m)T}, . . . , E{Ck−p(Ck−m)T} can be
estimated using the classical statistical estimators.

Such a stationary ARMA model cannot be used in the present case, because the vector-
valued random indicator is nonstationary. Instead, a nonstationary ARMA model for
k ≥ 1 could be used, for which the matrices [A1], . . . , [Ap] and [B1], . . . , [Bq] would de-
pend on discrete time k, and with a given random initial condition C1 (for the ARMA
modeling of nonstationary stochastic processes, one can refer to [83, 95, 96]). If we would
consider such a nonstationary ARMA model with a minimum of parameters, we would
choose p = q = 1, and consequently we would have to identify the sequence of matrices
[A1] and [B1], which depend on discrete time k. As we have explained, due to the lack
of experimental data, such an identification could not be performed. Consequently, this
type of nonstationary ARMA models cannot be used.

Kalman filters

Another popular representation in linear filtering is the Kalman filter [97, 98, 99] (which
can be viewed as a non-centered and nonstationary ARMA model) which, for the time
series {Ck, k ≥ 1}, can be written as

Ck+1 = [Ak]C
k + [Bk]uk + [Gk]wk , k ≥ 1 , (4.8)

for which the initial condition C1 is a given random vector, where {uk, k ≥ 1} is a given
deterministic sequence in R

Nc (which yields a non-centered time series
{Ck, k ≥ 1}), and where {wk, k ≥ 1} is a Gaussian R

Nc-valued white noise. The
(Nc × Nc) real matrices [Ak], [Bk], and [Gk] depend on discrete time k. In our case,
uk, [Ak], [Bk], and [Gk] can be viewed as parameters, which have to be identified from re-
alizations of {Ck, k ≥ 1}. Moreover the vector-valued indicator is non-Gaussian. In such
a case, an extended Kalman filter [90, 100, 101] should be used for reproducing the non-
Gausian property of the vector-valued random indicator. Again, the nonstationary and
non-Gaussian properties of the vector-valued indicator do not allow for using a general
Kalman or extended Kalman filters due to the lack of data. Nevertheless, the representa-
tion of the vector-valued indicator presented in Section 4.3.4 will be a Kalman-filter type
model.
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Stochastic differential equation

The most general representation of a nonstationary and non-Gaussian vector-valued
stochastic process indexed by an interval of R, is given by nonlinear Itô stochastic dif-
ferential equations (ARMA models and Kalman filters correspond to discrete version of
particular cases of such a general representation). In this section, we briefly summarize
some elements for a particular Itô stochastic differential equation, from which is derived
the predictive model proposed in Section 4.3.4.

We consider the R
Nc-valued stochastic process {C(τ), τ ≥ τ1} indexed by [τ1,+∞[⊂ R,

with τ1 ≥ 0, which is the solution of the Itô stochastic differential equation (see [102, 103,
104, 105]),

dC(τ) + [A]C(τ)dτ = g(τ)dτ + [h(τ)]dW(τ) , τ ≥ τ1 , (4.9)

with the given non-Gaussian initial condition

C(τ1) = Cmod(τ1) a.s , (4.10)

in which τ 7→ g(τ) is a given function defined on [τ1,+∞[ with values in R
Nc , τ 7→ [h(τ)] is

a given function defined on [τ1,+∞[ with values in MNc
(R), where [A] is a given (Nc×Nc)

real matrix independent of time, and where W(τ) is the R
Nc-valued Wiener process on

R
+, such that

• W is a stochastic process with independent increments,

• W(0) = 0 almost surely,

• for all 0 ≤ s < t < +∞, increment ∆Wst = W(t) −W(s) is a second-order R
Nc-

valued random variable which is Gaussian, centered and with a covariance matrix
[Cst] in MNc

(R) such that

[Cst] = E{∆Wst∆WT
st} = (t− s)[INc

] . (4.11)

We assume that functions g, [h] and matrix [A] are such that the problem defined by
Eqs. (4.9) and (4.10) has a unique solution which is a non-Gaussian, nonstationary,
second-order, non-centered, Markov, diffusion stochastic process.

The algebraic form of Eq. (4.9) highlights the role played by functions g and [h] with
respect to the long-term evolution of stochastic process {C(τ), τ ≥ τ1}:

• function g aims at controlling the mean value of {C(τ), τ ≥ τ1} and at contributing
to model the nonstationary property,

• function [h] aims at controlling the tensor-valued correlation function of
{C(τ), τ ≥ τ1}.
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4.3.4 Constructing the stochastic predictive model as a Kalman-

filter type model

Since long time τ takes only discrete values τ1, . . . , τK , the proposed stochastic predictive
model is constructed in discretizing the problem defined by Eqs. (4.9) and (4.10), which
yields

Ck −Ck−1 +∆τk [A]C
k−1 = ∆τk g

k + [hk] ∆Wk , k = 2, . . . , K , (4.12)

with the given non-Gaussian initial condition

C1 = Cmod(τ1) , (4.13)

in which

• [A] is a matrix in MNc
(R), which has to be identified.

• ∆τk = τk − τk−1 are given time steps that depend on k.

• ∆Wk =
√
∆τk N

k, in which N 2, . . . ,NK are independent Gaussian normalized
random vectors defined on a new probability space (Θ∗,F∗,P∗), with values in R

Nc

(E{N k} = 0, E{N k (N k)T} = [INc
]). Therefore, E{∆Wk ⊗ ∆Wk} = ∆τk [INc

].
The family of random vectors {N k, k ≥ 2} is statistically independent of random
vectors G = (G1,G2,G3,G4) defined in Section 2.5.1 and Bout defined in Sec-
tion 3.5, and consequently, is independent of Cmod(τ1).

• {g} = {g2, . . . ,gK} is a family of K − 1 vectors in R
Nc , which has to be identified.

• {[h]} = {[h2], . . . , [hK ]} is a family of (K − 1) real matrices in MNc
(R), which has

to be identified. For all k, since [hk] controls the diffusion term of Ck, [hk] is chosen
with positive diagonal entries.

• in the initial condition, Cmod(τ1) is a non-Gaussian second-order RNc-valued random
variable whose probability distribution is known (estimated using the stochastic
computational model of the high-speed train dynamics described in Chapters 2
and 3).

Eq. (4.12) can be rewritten as

Ck = ([INc
]−∆τk [A])C

k−1 +∆τk g
k + [hk] ∆Wk , k = 2, . . . , K . (4.14)

It can be noticed that the model proposed for the prediction of Ck, k = 1, . . . , K is a
Kalman-filter type model, and that the non-Gaussian character of the stochastic process
Ck, k = 1, . . . , K, is induced by the non-Gaussian initial condition Cmod(τ1). In this
model:

• The nonstationary property is induced by the coefficients gk and [hk], which depend
on discrete time τk, represented by index k.

• The matrix [A] does not depend on discrete time k. It should be noted that, if
matrix [A] had been chosen as a function of k, the time series [Ak], gk, and [hk]
could not be identified by the lack of data.
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• The matrix [A] could be considered as a random matrix, whose distribution could
be identified by Bayesian inference. Nevertheless, if matrix [A] were random, [A],
gk, and [hk] could not be identified by the lack of data.

• The convergence condition on the spectral radius of [INc
]−∆τk [A] is not necessary

because of the nonbounded property of the time series {Ck, k ≥ 1} (any trajectory
of the time series can increase).

• If the initial condition C1 = Cmod(τ1) were a deterministic vector or a Gaussian
random vector, then the nonstationary time series C(τk) would be Gaussian. Nev-
ertheless, since random vector Cmod(τ1) is not Gaussian, the time series C(τk)
generated by the predictive model above is a non-Gaussian time series.

In the proposed stochastic predictive model, the prediction of the vector-valued random
indicator C at long time τK+1 must not depend on the measurement time scale. For
this reason the discrete long times τ1, . . . , τK+1 are transformed in dimensionless discrete
long times (named as dimensionless long time τ) as follows. A reference time-increment
denoted by ∆τref is introduced such as

∆τref = ∆τK+1 = τK+1 − τK , (4.15)

and the dimensionless long times are written as τk/∆τref for k = 1, . . . , K +1. In the fol-
lowing, long time τ will be supposed to be dimensionless in order to lighten the notations.

4.4 Identification of the parameters of the stochastic

model for the long-term evolution

For the identification of the model parameters [A], {g} and {[h]} of the stochastic
model defined by Eq. (4.14), the classical least-squares method with weights is used.
In analogy with the construction of the Yule-Walker equations Eq. (4.7), the identi-
fication is performed using the first- and second-order moments equations associated
with Eq. (4.14). Due to the large number of parameters, three moments equations are
needed, for which the first-order vector moment E{Ck}, k = 2, . . . , K, the second-order
tensor moment E{Ck ⊗ Ck}, k = 2, . . . , K, and the second-order cross-tensor moment
E{Ck⊗Ck−µ}, k = 2, . . . , K and µ = 1, . . . , k−1, are estimated using the random indica-
tors Cmod(τ1), . . . ,C

mod(τK) of the high-speed train dynamics constructed in Chapter 3,
for which the joint probability distribution is known (estimated). The cost function
for the least-squares method is then constructed using the first-order vector moment
equation, the second-order tensor moment equation, and the second-order cross-tensor
moment equations.
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4.4.1 First-order vector moment equation with weights used for

constructing the cost function

Taking the mathematical expectation of Eq. (4.14) yields the following K − 1 first-order
vector moment equations,

fk([A], {g}) = 0Nc
, k = 2, . . . , K , (4.16)

in which, for all k fixed in {2, . . . , K}, the R
Nc-valued function fk is defined by

fk([A], {g}) = [Nk
f ]
(
E{Ck} − ([INc

]−∆τk[A])E{Ck−1} −∆τk g
k
)
, (4.17)

in which, for all i and j in {1, . . . , Nc}, the weights [Nk
f ]ij are introduced for normalization

reasons inside the cost function. The cost function must not be influenced by the values
taken by the components of Ck, but by its more or less strong long-term evolution: we
should be able to give a more important weight αj to certain components Ck

j of the
vector-valued indicator Ck in the cost function. A more important weight is given to the
components which have the most significant long-term evolution and whose long-term
evolution has therefore to be better modeled. The matrix [Nk

f ] of these weights is thus
defined by

[Nk
f ]ij =

αi

E{Ck
i }
δij , (4.18)

in which δij is the Kronecker symbol, where Ck
1 , . . . , C

k
Nc

are the components of the random
vector Ck, and where {α1, . . . , αNc

} is the family of weight coefficients that have to be
arbitrarily chosen and that belong to the admissible set C1 defined by

C1 = {α1 ≥ 0, . . . , αNc
≥ 0 ,

Nc∑

j=1

αj = 1 } . (4.19)

4.4.2 Second-order tensor moment equation with weights used

for constructing the cost function

For each k = 2, . . . , K , Eq. (4.14) is right-tensorized by Ck and the mathematical
expectation is applied, which yields the following second-order tensor moment equation,

E{Ck ⊗Ck} = ([INc
]−∆τk[A])E

{
Ck−1 ⊗Ck

}
+∆τk g

k ⊗ E{Ck}
+ [hk]E{∆Wk ⊗Ck} . (4.20)

As ∆Wk and Ck−1 are statistically independent, and as ∆Wk is centered, the term
E{∆Wk ⊗Ck} can be expressed as

E{∆Wk ⊗Ck} = E{∆Wk ⊗ (([INc
]−∆τk [A])C

k−1 +∆τk g
k + [hk] ∆Wk)}

= E{∆Wk ⊗∆Wk} [hk]T

= [hk]T∆τk .

(4.21)

For all k in {2, . . . , K}, Eq. (4.20) can be rewritten as

E{Ck ⊗ Ck} = ([INc
] − ∆τk[A])E{Ck−1 ⊗ Ck} + ∆τk g

k ⊗ E{Ck} + [hk] [hk]T∆τk .
(4.22)
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From Eq. (4.22), it can then be deduced that, for all k in {2, . . . , K}, the second-order
tensor moment equation with weights is written as

[F k([A], {g}, {[h]})] = [0Nc,Nc
] , (4.23)

in which the function [F k] with values in MNc
(R) is defined by

[F k([A], {g}, {[h]})] = T
k :
(
E{Ck ⊗Ck} − ([INc

]−∆τk[A])E{Ck−1 ⊗Ck}
−∆τk g

k ⊗ E{Ck} − [hk] [hk]T∆τk
)
, (4.24)

in which the symbol ” : ” denotes the double contraction tensor operation. For all i, j, i′, j′

in {1, . . . , Nc}, the weights {Tk}iji′j′ are introduced for the same reasons as those given
for Eq. (4.18). The fourth-order tensor T

k of these weights is thus defined by

{Tk}iji′j′ =
√
αiαj

E{Ck
i C

k
j }
δii′δjj′ , (4.25)

in which {α1, . . . , αNc
} are the weights defined in Section 4.4.1 and where Ck

1 , . . . , C
k
Nc

are the components of the random vector Ck.

4.4.3 Second-order cross-tensor moment equation with weights

used for constructing the cost function

For each k = 2, . . . , K and for µ = 1, . . . , k − 1, Eq. (4.14) is right-tensorized by Ck−µ

and taking the mathematical expectation yield

E{Ck ⊗Ck−µ} = ([INc
]−∆τk[A])E{Ck−1 ⊗Ck−µ}+∆τk g

k ⊗ E{Ck−µ}
+ [hk]E{∆Wk ⊗Ck−µ} . (4.26)

As ∆Wk and Ck−µ are statistically independent for all k in {2, . . . , K} and µ in
{1, . . . , k − 1}, and as ∆Wk is centered, it can be deduced that

E{∆Wk ⊗Ck−µ} = 0 , (4.27)

E{Ck ⊗Ck−µ} = ([INc
]−∆τk[A])E{Ck−1 ⊗Ck−µ}+∆τk g

k ⊗ E{Ck−µ} . (4.28)

From Eq. (4.28), it can then be deduced that, for all k in {2, . . . , K} and for all µ in
{1, . . . , k−1}, the second-order cross-tensor moment equation with weights can be written
as

[Hk,k−µ([A], {g})] = [0Nc,Nc
] , (4.29)

in which the function [Hk,k−µ] with values in MNc
(R) is defined by

[Hk,k−µ([A], {g})] = T
k :
(
E{Ck ⊗Ck−µ}

−([INc
]−∆τk[A])E{Ck−1 ⊗Ck−µ} −∆τk g

k ⊗ E{Ck−µ}
)
, (4.30)

in which the components of fourth-order tensor T
k are defined by Eq. (4.25).
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4.4.4 Formulation of the least-squares optimization problem for

the identification of the parameters

(i) Definition of the admissible sets for the optimization problem. In the framework of the
long-term evolution of the track irregularities, one or several components of the vector-
valued indicator are not bounded functions when k is increasing. Consequently, for any
fixed value of K, it is not necessary to introduce a convergence condition on maxk ∆τk
as a function of the spectral radius of [A]. Therefore, no constraints are introduced for
matrix-valued parameter [A] in the optimization problem, and the admissible set for [A]
is then defined by

CA = { [A] ∈ MNc
(R) } . (4.31)

For all k in {1, . . . , K}, the discrete time-dependent diffusion matrix of the Markov chain
defined by Eq. (4.14) is written as [σk] = [hk][hk]T and is a positive-definite matrix, taking
into account the hypothesis on [hk] introduced in Section 4.3.4. The moment equations
defined by Eqs. (4.16), (4.23) and (4.29) only give access to the symetric positive-definite
matrix [σk]. Then, using the Cholesky decomposition (see [106]), identifying the positive-
definite matrix [hk] in MNc

(R) is equivalent to identifying the lower triangular positive-
definite matrix [hk] in MNc

(R). Consequently, the family {[h]} = {[hk], k = 2, . . . , K}
must belong to the following admissible set

Ch = { [hk] ∈ M
L
Nc

for k = 2, . . . , K } , (4.32)

in which M
L
Nc

is the set of all the lower triangular (Nc ×Nc) real matrices with positive
diagonal entries. No constraints are needed for the family of RNc-values vectors {g} =
{gk, k = 2, . . . , K}. The admissible set for {g} is thus

Cg = {gk ∈ R
Nc for k = 2, . . . , K } . (4.33)

(ii) Definition of the target quantities for the optimization problem. The target quantities
introduced in Eqs. (4.16), (4.23), and (4.29) are, for k = 2, . . . , K, the vectors E{Ck}
and E{Ck−1}, and, for µ = 0, . . . , k − 1, the tensors E{Ck ⊗ Ck−µ} and E{Ck−1 ⊗
Ck−µ}. For computing the cost function in the least-squares problem, these target quan-
tities are approximated by E{Cmod(τk)}, E{Cmod(τk−1)}, E{Cmod(τk) ⊗ Cmod(τk−µ)}
and E{Cmod(τk−1)⊗Cmod(τk−µ)}, that are estimated using the stochastic computational
model of the high-speed train dynamics introduced in Chapter 3 such as

E{Ck} = E{Cmod(τk)} , (4.34)

E{Ck ⊗Ck} = E{Cmod(τk)⊗Cmod(τk)} , (4.35)

E{Ck ⊗Ck−µ} = E{Cmod(τk)⊗Cmod(τk−µ)} . (4.36)

(iii) Formulation of the optimization problem for the identification of the parameters.
Using Eqs. (4.16), (4.23), and (4.29), the optimal values [Aopt], {gopt}, and {[hopt]} for
parameters [A], {g}, and {[h]} of the stochastic predictive model described by Eq. (4.14)
are estimated using the least-squares method with constraints, for which the cost function
is defined by
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J([A], {g}, {[h]}) =
K∑

k=2

(‖fk([A], {g})‖2 + ‖[F k([A], {g}, {[h]})]‖2F

+
k−1∑

µ=1

‖[Hk,k−µ([A], {g})]‖2F ) , (4.37)

in which ‖·‖ is the Euclidean norm in R
Nc and ‖·‖F is the Frobenius norm in MNc

(R) (for
all matrix M in MNc

(R), the Frobenius norm is defined by ‖M‖2F = Tr(MMT ).) The
optimal values [Aopt], {gopt}, and {[hopt]} are constructed as the solution of the following
optimization problem.

{[Aopt], {gopt}, {[hopt]}} = arg min
[A]∈CA, {g}∈Cg , {[h]}∈Ch

J([A], {g}, {[h]}) . (4.38)

This optimization problem is solved with the trust-region-reflective algorithm with con-
straints (see [107] for details on the trust-region-reflective algorithm), for which the initial
values, denoted by [A0], {g0}, and {[h0]}, are computed by solving the simplified opti-
mization problem described in the next section.

For this optimization problem, the number of variables is Nvar = N2
c + Nc(K − 1) +

(K − 1)Nc(Nc + 1)/2 (and will be 675, in the application presented after). The number
of scalar equations is Nc(K − 1) in Eq. (4.16), Nc(Nc + 1)(K − 1)/2 in Eq. (4.23), and
N2

cK(K − 1)/2 in Eq. (4.29), which makes a total of Neq = Nc(K − 1) + Nc(Nc + 1)
(K − 1)/2 +N2

cK(K − 1)/2 scalar equations. The problem is well-posed for Neq ≥ Nvar,
which yields, for Nc = 9,

K ≥ 2 . (4.39)

The problem is well posed for K ≥ 2, as it will be the case for the application presented
in Chapter 5, for which K = 12.

4.4.5 Simplified optimization problem for computing the initial

values

The simplified formulation consists in using Eqs. (4.17), (4.24), and (4.30), in which the
full matrix [A] is replaced by a diagonal matrix with real diagonal entries A1, . . . , ANc

,
and for k = 2, . . . , K, the lower triangular matrix [hk] is replaced by a diagonal matrix
with positive diagonal entries hk1, . . . , h

k
Nc

. These hypotheses imply that the Nc stochastic
equations in Eq. (4.14) are not coupled. For fixed j in {1, . . . , Nc} and k in {2, . . . , K} ,
Eqs. (4.17), (4.24), and (4.30) become

fk
j (Aj, {gj}) = [Nk

f ]jj
(
E{Ck

j } − (1−∆τkAj)E{Ck−1
j } −∆τk g

k
j

)
, (4.40)

F k
j (Aj, {gj}, {hj}) = {Tk}jjjj

(
E{(Ck

j )
2} − (1−∆τk Aj)E{Ck−1

j Ck
j }

−∆τk g
k
jE{Ck

j } − (hkj )
2∆τk

)
, (4.41)
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and, for µ = 1, . . . , k − 1,

Hk,k−µ
j (Aj, {gj}) = {Tk}jjjj

(
E{Ck

j C
k−µ
j } − (1−∆τk Aj)E{Ck−1

j Ck−µ
j }

−∆τk g
k
j E{Ck−µ

j }
)
, (4.42)

in which [Nk
f ] and T

k are defined by Eqs. (4.18) and (4.25). Let Cgj and Chj
be the

admissible sets for {gj} and {hj} defined by

Cgj = {gkj ∈ R , for k = 2, . . . , K} , (4.43)

Chj
= {hkj > 0 , for k = 2, . . . , K} . (4.44)

For all j fixed in {1, . . . , Nc}, the cost function Jj is introduced such that

Jj(Aj, {gj}, {hj}) =
K∑

k=2

(|fk
j (Aj, {gj})|2 + |F k

j (Aj, {gj}, {hj})|2

+
k−1∑

µ=1

|Hk,k−µ
j (Aj, {gj})|2) , (4.45)

in which, for k = 2, . . . , K and for µ = 0, . . . , k − 1, the quantities E{Ck
j }, E{Ck−1

j },
E{Ck

j C
k−µ
j }, and E{Ck−1

j Ck−µ
j } are replaced by the corresponding quantities

E{Cmod
j (τk)}, E{Cmod

j (τk−1)}, E{Cmod
j (τk)C

mod
j (τk−µ)} and E{Cmod

j (τk−1)C
mod
j (τk−µ)}.

The optimal values A0
j , {g0j}, and {h0j} of parameters Aj, {gj}, and {hj} are the solution

of the following optimization problem,

{A0
j , {g0j}, {h0j}} = arg min

Aj∈R, {gj}∈Cgj , {hj}∈Chj

Jj(Aj, {gj}, {hj}) . (4.46)

This optimization problem is solved using the gradients method with the trust-region-
reflective algorithm with constraints, for which the initial values are Aini

j = 0, ginij = 0,
and hinij = 10−12. The solution {[A0], {g0}, {[h0]}} of the simplified problem is used as
initial value to solve the optimization problem defined by Eq. (4.38).

4.5 Prediction of the long-term evolution with the

stochastic model

4.5.1 Methodology used for the prediction

For k = 1, . . . , K, the unknowns [A], gk, and [hk] introduced in Eq. (4.14) are identified
in two steps. First, the simplified optimization problem defined by Eq. (4.46) is solved
yielding the optimal values {[A0], {g0}, {[h0]}}. These optimal values are then used as
initial values for the multidimensional optimization problem defined by Eq. (4.38), which
yields the optimal values {[Aopt], {gopt}, {[hopt]}} for {[A], {g}, {[h]}}.
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Once the stochastic predictive model is identified, this model aims at being used for
predicting the statistics of the non-Gaussian random vector CK+1. However, the values
of gK+1 and [hK+1] are unknown. We then propose to represent gk and [hk] as the
values gaff(τk) and [haff(τk)] at τk of affine functions gaff and [haff ] (a more higher-degree
representations could be introduced, but it has been seen that no gain can be obtained
with respect to the one-degree (affine) representation). For the identification of the
parameters of such affine representations gaff and [haff ], two approaches can a priori be
used. The first one consists in introducing the affine reprensentations in Eq. (4.14) before
the identification (as proposed, for instance, in [83]), and then to identify [A] and the
parameters involved in the affine representations gaff(τk) and [haff(τk)] of gk and [hk]. The
second one consists in identifying the coefficients gk and [hk] (as explained before) and
then approximating gk and [hk] resulting from this identification by the values gaff(τk)
and [haff(τk)] of these affine functions using the least-squares method with constraints.
These two approaches have been analyzed and it has been concluded that the second one
is more robust than the first one. Using the second approach, the prediction CK+1 of
Cmod(τK+1) will be denoted by Caff,K+1.

4.5.2 Identification of affine representations for g and [h]

The stochastic model identified in Section 4.4 has to be adapted in order to be able to
predict the long-term evolution CK+1 = C(τK+1) of the random indicator of the train
dynamics at discrete long time τK+1. In this section, the families {g} and {[h]} are
considered as the values of the functions τ 7→ g(τ) and τ 7→ [h(τ)] at discrete long times
τk, k = 2, . . . , K, such that g(τk) = gk and [h(τk)] = [hk]. Functions g and [h] are then
approximated by

gaff(τk) = ag τk + bg , [haff(τk)] = [ah] τk + [bh] , (4.47)

in which ag and bg are vectors in R
Nc , where [bh] is a matrix in M

L
Nc

, and where [ah]
is a lower triangular (Nc × Nc) real matrix such that [ah] τk + [bh] is in M

L
Nc

for all k in
{2, . . . , K}. These conditions define the admissible set for [ah] and [bh] denoted by Cahbh
and ensure that the values of [haff ] are in Ch.

• For i = 1, . . . , Nc, the optimal value (a opt
gi
, b optgi

) of (agi , bgi) is given as the solution
of the following optimization problem,

(aoptgi
, boptgi

) = arg min
(agi ,bgi )∈R

2

K∑

k=2

∆τk |gopt,ki − (agi τk + bgi)|2 . (4.48)

This unconstrained linear least-squares problem is solved with the trust-region-
reflective algorithm without constraints.

• The optimal value ([a opt
h ], [b opth ]) of ([ah], [bh]) is given as the solution of the following

optimization problem,

([aopth ], [bopth ]) = arg min
([ah],[bh])∈Cahbh

K∑

k=2

∆τk |[hopt,k] − ([ah] τk + [bh])|2 . (4.49)
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Figure 4.1: Comparison between the optimal values gopt,26 , . . . , gopt,K6 identified for g6 and
its affine representation gaff6 (τk), k = 1, . . . , K + 1.

This constrained linear least-squares problem is solved using the trust-region-reflective
algorithm with constraints.

The values gaff(τK+1) and [haff(τK+1)] are then calculated by

gaff(τK+1) = aopt
g τK+1 + bopt

g , [haff(τK+1)] = [aopth ] τK+1 + [bopth ] . (4.50)

As an illustration, the sixth component of gopt and its affine approximation gaff are
displayed in Figure 4.1. It should be noticed that, for some values of k, gopt,k6 and gaff6 (τk)
are quite distant and the approximation of gopt by an affine function is bad. Nevertheless,
representing gopt by an affine function allows to compute gopt,k for k ≥ K +1. The sixth
component of the diagonal of [hopt] and its affine approximation [haff ] are displayed in
Figure 4.2. The observations are the same as for the comparison between gopt6 and gaff6 . It
is verified that the values of [hopt,k]6,6, k = 2, . . . , K, and of [haff(τk)]6,6, k = 1, . . . , K + 1
are positive.

The prediction Caff,K+1 of the vector-valued random indicator CK+1 = C(τK+1) at long
time τK+1 , given Cmod(τK), is then estimated using Eq. (4.14) that yields

Caff,K+1 = ([INc
]−∆τK+1 [A

opt])Cmod(τK)+∆τK+1 g
aff(τK+1)+ [haff(τK+1)]∆WK+1 .

(4.51)

Remark. As explained before, Eq. (4.51) correponds to Eqs. (4.14) and (4.13) for which
the initial condition is given at time τK :

Caff,k = ([INc
] − ∆τk [A

opt])Caff,k−1 + ∆τk g
aff(τk) + [h(τk)

aff ] ∆Wk , k = K + 1 ,
(4.52)

with the initial condition
Caff,K = Cmod(τK) , (4.53)

in which ∆τK+1 = τK+1 − τK .
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[h]6,6 and its affine representation [haff(τk)]6,6, k = 1, . . . , K + 1.

4.6 Conclusion

In this chapter, a stochastic predictive model has been developed in order to predict, for a
given stretch of the track, the long-term evolution of the vector-valued random indicator
C for the dynamic response of the train. The choice of the stochastic predictive model
is relatively restrained by the fact that only a few long time τ1, . . . , τK are known for
which the measurements have been performed. Since the vector-valued random indicator
is a nonstationary and non-Gaussian time series, a one-order nonstationary vector-valued
Markov chain with a non-Gaussian initial condition has been constructed. The stochastic
predictive model is identified in two steps. For the first one, the model parameters
are identified with a least-squares method with weights using realizations Cmod of the
random indicator, which have been simulated at each long time by using the stochastic
computational model of the train dynamics. For the second step, the time-dependent
parameters of the stochastic predictive model are fitted by affine functions of long time
τ , in order to be able to predict the long-term evolution of the random indicator with
the stochastic predictive model.
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Chapter 5

Application to a high-speed line of

the French railway network

5.1 Introduction

This chapter is devoted to the application of the models and methodologies developed in
the previous chapters for a given stretch of the railway track of a French high-speed line.
The given track stretch is chosen straight with a significant long-term evolution of the
dynamic response of the train. For this track stretch, the measurements performed at the
discrete long times show that all the track irregularities present a significant long-term
evolution and that the vertical offset reaches a peak value. It is observed that the long-
term evolution of the components of the vector-valued indicator, which are related to
the vertical direction, is significant, and that the long-term evolution of the components
related to the horizontal direction is not.

For the given track stretch, the local stochastic model of the track irregularities is con-
structed, the dynamic response of the train is numerically simulated, and the vector-
valued random indicator is calculated. In the perspective of improving the maintenance
strategy, a vector-valued threshold level is defined for the vector-valued random indicator.
Then, the stochastic predictive model is identified using the realizations of the random
indicator at long times τ1, . . . , τK . The predictive model allows for predicting the long-
term evolution of the vector-valued random indicator. The relevance of the stochastic
predictive model is then analyzed.

Section 5.2 is devoted to the identification of the local stochastic model for the track
irregularities of the given track stretch. In Section 5.3, the vector-valued random indica-
tor of the dynamic response of the train is constructed and the vector-valued threshold
is defined. The parameters of the stochastic model of the long-term evolution of the
indicator are identified in Section 5.4, which allows for predicting the long-term evolution
presented in Section 5.5.

All the numerical results presented in the figures diplayed in this chapter are dimension-
less concerning the components of the indicator (named as "dimensionless indicator")
and the discrete long times. The discrete long times τ1, . . . , τK+1 are transformed in di-
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Figure 5.1: long-term evolution of the track irregularities for the given track stretch. In
each figure, each curve represents the track irregularities at a given τk.

mensionless discrete long times (named as dimensionless long time τ) that are written as
τk/∆τref as introduced in Section 4.3.4.

5.2 Identification of the local stochastic model for

the track irregularities

5.2.1 Measurements of the track irregularities

For the given track stretch, the track irregularities are measured by the recording train
IRIS 320 at discrete long times τ1, . . . , τK . For long time τk, k = 1, . . . , K, the measured
track irregularities vector of the track stretch is denoted by xmeas

τk
= (x1,meas

τk
,x2,meas

τk
,x3,meas

τk
,

x4,meas
τk

) (K = 12 measurements are available for this track stretch). Figure 5.1 displays
the long-term evolution of the four track irregularities. All the track irregularities present
a significant evolution, and this evolution is heterogeneous along the track stretch. Mean-
while, it appears clearly that the vertical offset reaches a peak value.
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5.2.2 Local stochastic model for the track stretch

The construction of the local stochastic model for the track irregularities is carried out
as explained in Section 2.5. The local stochastic model for the track irregularities of the
given track stretch is constructed using Eq. (2.32), such that, for k = 1, . . . , K ,

X̃κ
τk
(δopt) = [Qκ]

(
ηmeas
τk

+ δκ,opt Gκ
)

, κ = 1, 2, 3, 4 , (5.1)

in which, from Eq. (2.31), the projection of the measurement xmeas
τk

on matrix [Q], which
represents the spatial basis of the global stochastic model, is written as

ηmeas
τk

= [λ]−1 [Q]T [Diag(O)]2xmeas
τk

. (5.2)

The optimal value δopt = (δ1,opt, δ2,opt, δ3,opt, δ4,opt) of hyperparameter δ for this track
stretch is computed using the method that is described in Section 2.5.2. The obtained
value is δopt = (0.05, 0.35, 0.65, 0.65). For the four track irregularities (κ = 1, 2, 3, 4) and
at τ = τ1, a realization X̃κ

τ1
(θ′), for θ′ in Θ′, of the local stochastic model, the measured

irregularity xκ,meas
τ1

, and the confidence region at 90% of X̃κ
τ1
(δopt) are displayed in Fig-

ure 5.2, which confirms that the local stochastic model of the track irregularities preserves
the statistical properties of the track geometry for each type of track irregularities.
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(θ′), for θ′ in Θ′, and confidence region at 90% of X̃κ

τ1
(δopt) for the given track stretch.
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The long-term evolution of the track stretch can also be observed during several cycles
of degradation/maintenance operations. In this case, the optimal value for the hyper-
parameter δ has to be identified after each maintenance operation because the track
irregularities are deeply modified by the maintenance operations. The values of the com-
ponents of δopt are displayed in Figure 5.3 for six maintenance cycles. A little modification
of δopt is generally observed after a maintenance operation.
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Figure 5.3: Evolution of the optimal value δopt = (δ1,opt, δ2,opt, δ3,opt, δ4,opt) for a given
track stretch after 5 maintenance operations.

5.3 Constructing the vector-valued random indica-

tor Cmod

The dynamic response of the train on the given track stretch is assessed by the vector-
valued random indicator Cmod with values in R

Nc , which has been constructed in Sec-
tion 3.5.1. The number of components of the indicator is Nc = 9. The first four com-
ponents are based on usual comfort criteria for the high-speed trains, whereas the other
five components are based on safety criteria such as (see Section 3.4.1)

• C1 assesses the lateral acceleration of the first bogie in the train.

• C2 assesses the vertical acceleration of the first bogie in the train.

• C3 assesses the lateral acceleration of the third bogie in the train.

• C4 assesses the lateral acceleration of the second coach in the train.

• C5 assesses the sum of lateral forces on the ninth wheelset in the train.

• C6 assesses the sum of vertical forces on the first wheelset in the train.
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• C7 assesses the sum of vertical forces of the second wheelset in the train.

• C8 assesses the sum of vertical forces of the tenth wheelset in the train.

• C9 assesses the difference between right-wheel and left-wheel vertical forces of the
tenth wheelset in the train.

5.3.1 Adopted approach

Once the local stochastic model for the track irregularities has been identified, we are
able to generate realizations of the track irregularities for the given track stretch and
to compute the dynamic response of the train for these realizations. The Monte-Carlo
method is performed with ν = 2, 000 independent realizations of the local stochastic
model, and is summarized hereinafter.

• ν = 2, 000 independent realizations G(θ′1), . . . ,G(θ′ν) of G = (G1,G2, G3,G4) are
generated on the probability space (Θ′,F ′,P ′) (see Section 2.5.1).

• These ν independent realizations of G are used for constructing, for each k =
1, . . . , K, the ν independent realizations of random vector X̃τk(δ

opt) = (X̃1
τk
(δopt),

X̃2
τk
(δopt), X̃3

τk
(δopt), X̃4

τk
(δopt)) by using Eq. (5.1). In order to have realistic initial

conditions for the dynamic response of the train, and to avoid a side-effect when
filtering the dynamic response of the train, a realistic deterministic track section
is added before and after the given track stretch for the simulation. The junction
between the added track sections and the given track stretch has to be of C2-class
(the second derivative is continuous). A spline of order 3 is thus chosen to smooth
the junction on a few meters.

• For each realization of the track irregularities X̃τk(δ
opt), the deterministic dynamic

response of the train induced by this realization of the track irregularities is com-
puted with the computational model (using Vampire code), with a train speed of
300 km/h. Using parallel computing, 50 realizations of the dynamic response of
the train are computed simultaneously, which gives a computation time between
5 and 6 hours for the train dynamics for each long time τk. The ν corresponding
independent realizations of the dynamic criteria Z1(s, τk), . . . , Z9(s, τk) introduced
in Section 3.4.1 are computed. As an illustration, the mean and the confidence
region at 90% of the vertical acceleration of the first bogie of the TGV Z2(s, τK)
are featured in Figure 5.4 as a function of the curvilinear abscissa for τ = τK .

• From the realizations of the criteria Z1(s, τk), . . . , Z9(s, τk), the ν corresponding
independent realizations Csim(τk; θ

′
1), . . . ,C

sim(τk; θ
′
ν) of the vector-valued random

indicator Csim(τk) are computed (see Eq. (3.2)).

• Then, ν independent realizations of the R
Nc-valued non-Gaussian second-order

random vector Bout are generated on the probability space (Θ′′,F ′′,P ′′) using
Eq. (3.11).

• The ν corresponding independent realizations of the family Cmod, constituted of
the vector-valued random indicators {Cmod(τ1), . . . ,C

mod(τK)} for all long times
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the numerical simulation.

τ1, . . . , τK , are Cmod(θ′1, θ
′′
1), . . . ,C

mod(θ′ν , θ
′′
ν), that are computed using Eq. (3.5),

which is rewritten as C mod
j (τk; θ

′
ℓ, θ

′′
ℓ ) = C sim

j (τk; θ
′
ℓ) exp(B

out
j (θ′′ℓ )), with j = 1, . . . ,

Nc, k = 1, . . . , K, and ℓ = 1, . . . , ν. In order to analyze the results, the probability
density functions of the components of Cmod(τk) and Csim(τk) are estimated using
the Gaussian kernel estimation method. For the given track stretch, Figure 5.5 dis-
plays the probability density functions of the nine components Csim

j (τ1), Cmod
j (τ1),

Csim
j (τK), and Cmod

j (τK). The figure shows that the components of Cmod are more
dispersed than the components of Csim for these two times τ1 and τK , due to the
presence of model uncertainties represented by Bout in the computational model.
For each indicator, the long-term evolution between τ1 and τK can be observed.

• As explained in Section 4.4.4-(ii), we need to estimate the target quantities in order
to perform the identification of the parameters of the stochastic predictive model
(see Section 5.4). Consequently, for k = 2, . . . , K and for µ = 0, . . . , k− 1, the vec-
tors E{Cmod(τk)} and E{Cmod(τk−1)}, and the tensors E{Cmod(τk)⊗Cmod(τk−µ)}
and E{Cmod(τk−1) ⊗ Cmod(τk−µ)}, are estimated by using the classical statisti-
cal estimator of the mathematical expectation with the independent realizations
Cmod(θ′1, θ

′′
1), . . . ,C

mod(θ′ν , θ
′′
ν).

5.3.2 Definition of the threshold level for the random indicator

In order to start off the maintenance operations, the values of the random indicator have
to be compared to a vector-valued threshold level denoted by c∗, which has to be defined
according to the maintenance strategy that is required by the railway operators.
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In order to identify a threshold value for each criteria, since the maintenance operations
are currently undertaken depending on a type of irregularities, it has been chosen to
associate each criteria Z1, . . . , Z9 with a type of irregularities. Criteria Z1, Z3, Z4 (lateral
accelerations), and Z5 (sum of lateral forces) are associated with the lateral offset, Z2

(vertical acceleration), Z6, Z7, and Z8 (sum of vertical forces) are associated with the
vertical offset, and Z9 (difference of vertical forces) is associated with the cross level.
In the same way, the maintenance operations can be associated with the lateral offset,
with the vertical offset, or with the cross level. For all the measurements of the track
irregularities, the dynamic response of the train is numerically simulated and the criteria
Z1, . . . , Z9 are computed. The numbers of upcrossings of the criteria are displayed in
Figure 5.6 as function of their values. To limit the number of figures, the graphs are only
plotted for Z5 and Z9. For the criteria Z1, . . . , Z9, their threshold values c∗1, . . . , c

∗
9 are

defined by a corresponding number of upcrossings, equal to the number of maintenance
operations, which is denoted by NM .

5.3.3 Observation of the long-term evolution of the random in-

dicator

In order to analyze the long-term evolution of the vector-valued random indicator Cmod,
the mean function and the confidence region (at 90%) of its components Cmod

j (τk) are
calculated as a function of discrete long time τk. The mean function and the confidence
region, which depend on τk, are compared to the threshold level c∗j that has been de-
fined in the previous section, and are displayed in Figure 5.7. The uncertainties in the
computational model of the train dynamics are taken into account, which increases the
robustness of the computational predictions of the statistics for the train indicators. For
j = 2, 6, 7, 8 (components related to the vertical direction), a long-term evolution of the
mean value and of the confidence region of the component Cmod

j can be observed. For
the other values of j, there is no significant long-term evolution. In particular, the lat-
eral acceleration in the second carbody represented by C4 remains almost constant. This
implies that the lateral comfort in the train is not deteriorated by the track irregularities
for this track stretch. This result cannot be deduced only in looking at the long-term
evolution of the track irregularities (Figure 5.1). It can be concluded that the deterio-
ration of the track irregularities does not have the same influence on all the indicators.
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For the given track stretch, it is also possible to observe the long-term evolution of the
random indicator taking into account several maintenance operations. Such an obser-
vation enables to assess the influence of a maintenance operation on each component of
the random indicator. It can be noticed that some maintenance operations cause an im-
provement on some components, although they have no influence on other components.
Figure 5.8 displays the long-term evolution of component Cmod

6 with six maintenance cy-
cles. It appears that the fourth and fifth maintenance operations did not have any effect
on this component (although they may have improved other components).

5.4 Stochastic model for the long-term evolution of

the random indicator

The stochastic predictive model defined by Eqs. (4.14) with (4.13) is used to model the
long-term evolution of the random indicator:

Ck = ([INc
]−∆τk [A])C

k−1 +∆τk g
k + [hk] ∆Wk , k = 2, . . . , K , (5.3)

with the initial condition
C1 = Cmod(τ1) , (5.4)

in which matrix [A], vectors family {g} = {g2, . . . ,gK}, and matrix family {[h]} =
{[h2], . . . , [hK ]} are identified using the methodology presented in Section 4.4.

5.4.1 Choice of the family of weight coefficients

The family {α1, α2, . . . , αN} of weight coefficients introduced in Section 4.4 is chosen
in order to favor the components j = 2, 6, 7, 8 of the vector-valued indicator, which
present a significant long-term evolution, while the condition appearing in Eq. (4.19) is
fullfilled. The chosen values for α are α1 = α3 = α4 = α5 = α9 = 0.01, α2 = 0.35, and
α6 = α7 = α8 = 0.2.

5.4.2 Solving the optimization problem related to the simplified

formulation

The first step of computation consists in solving the simplified formulation of the opti-
mization problem as explained in Section 4.4.5.

For k = 1, . . . , K, the ν realizations of Cmod(τk) that are computed with the Monte-
Carlo method, are used to estimate the target quantities introduced in the cost func-
tions Jj(Aj, {gj}, {hj}), with j = 1, . . . , Nc, defined by Eq. (4.45). As explained in
Section 4.4.5, for j = 1, . . . , Nc, the optimal values A0

j , {g0j}, and {h0j} of parameters Aj,
{gj}, and {hj} are identified by solving the optimization problem defined by Eq. (4.46)
using the trust-region-reflective algorithm. The algorithm stops when the cost function is
changing by less than 10−11 . For instance, the convergence information of the optimizer
related to component C2 is given in Figure 5.9.
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Figure 5.7: Dimensionless long-term evolution of the components of the dimensionless
random indicator Cmod. Confidence region with probability 90% (grey region), threshold
(horizontal solid line), mean value (solid line).
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Figure 5.8: Dimensionless long-term evolution of random indicator Cmod
6 taking into

account six maintenance cycles (maintenance times are represented by dashed vertical
lines). Confidence region with probability 90% (grey region), mean value (solid line).
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Figure 5.9: Simplified formulation. Convergence of the optimizer related to component C2

using lsqnonlin of Matlab (the four figures plot measures of progress while the algorithm
executes).

98



 

 

dimensionless long time τ
0 5 10 14

0.5

0.7

0.9

1.1

M
ea

n
va

lu
e

of
C

2

 

 

dimensionless long time τ
0 5 10 14

0.16

0.21

0.26

0.31

St
an

da
rd

de
vi

at
io

n
of
C

2

Figure 5.10: Simplified formulation. Second-order moments of the dimensionless long-
term evolution for the dimensionless indicator D(τk) = Cmod

2 (τk) (solid line) and D(τk) =
Ck

2 (dashed line): mean value (left) and standard deviation (right).

For k = 2, . . . , K and for each j = 1, . . . , Nc, the values of Ck
j are predicted with A0

j ,
{g0j}, and {h0j}, and the simplified modeling is assessed by comparing Cmod

j (τk) with Ck
j .

For each quantity, Cmod
j (τk) and Ck

j , denoted hereinafter asD(τk), the long-term evolution
of the mean value E{D(τk)} and of the standard deviation E{(D(τk) − E{D(τk)})2}1/2
are estimated using the classical statistical estimator and are displayed in Figure 5.10.
The long-term evolution of the probability density function pD(τk) is estimated by the
Gaussian kernel density method and is shown in Figure 5.11. Figure 5.12 displays the
graph k 7→ di(τk) in which di(τk) is such that P{D(τk) ≤ di(τk)} ≥ qi, and where qi is
the quantile varying in the interval [0.4, 0.98]. This representation allows the value of
the indicator to be compared with the threshold c∗2. These figures show that the sim-
plified evolution model is a good approximation to represent the random indicator and
consequently is well adapted as initial condition for the global optimization.
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Figure 5.13: Convergence of the optimizer related to C using lsqnonlin of Matlab (the
four figures plot measures of progress while the algorithm executes).

5.4.3 Identification of the parameters of the stochastic model

for the long-term evolution

The optimal values {[Aopt], {gopt}, {[hopt]}} of the parameters {[A], {g}, {[h]}} in Eq. (5.3)
are computed by using the methodology presented in Section 4.4. The initial values for
the optimization are [A0],{g0}, and {[h0]}, that have been identified in the previous sec-
tion. For k = 1, . . . , K, the ν realizations of Cmod(τk), which have been computed with
the Monte-Carlo method in Section 5.3.1, are used to estimate the target quantities intro-
duced in the cost function J([A], {g}, {[h]}) defined by Eq. (4.37). For the identification
of the optimal values of the N2

c + (K − 1)Nc + (K − 1)Nc(Nc + 1)/2 = 675 parameters,
the trust-region-reflective algorithm is used and stops when the number of iterations is
greater than 200 times the number of variables, which yields 135, 000 (this number has
been chosen as a compromise between the computational cost and the norm of the resid-
uals). The corresponding norm of the residuals is equal to 2.7 × 10−5. The convergence
information of the optimizer is given in Figure 5.13.

For k = 2, . . . , K, we present a comparison of the vector-valued random indicator Cmod(τk)
computed in Section 5.3.1 with the random indicator Ck estimated with Eq. (5.3) and
with Eq. (5.4) using the optimal parameters {[Aopt], {gopt}, {[hopt]}} that have been iden-
tified. For each quantity, Cmod(τk) and Ck, whose components are denoted hereinafter as
D(τk) again, the long-term evolutions of the mean values E{D(τk)} are estimated using
the classical statistical estimator and are displayed in Figure 5.14. The long-term evolu-
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tions of the standard deviations E{(D(τk)−E{D(τk)})2}1/2 are also estimated using the
classical statistical estimator and are displayed in Figure 5.15. The long-term evolutions
of the probability density functions pD(τk) are estimated by the Gaussian kernel density
method and are shown in Figure 5.16. Figure 5.17 displays the graph k 7→ di(τk), in
which di(τk) is such that P{D(τk) ≤ di(τk)} ≥ qi, where qi is the quantile varying in the
interval [0.4, 0.98].

Figures 5.14, 5.15, 5.16 and 5.17 show that the stochastic model of the long-term evolution
defined by Eqs. (4.14) and (4.13) is a very good approximation for representing the long-
term evolution of the vector-valued random indicator, in particular for the long-term
evolution of the PDF (Figure 5.16) and the long-term evolution of the quantiles (Fig-
ure 5.17). Comparing with the results of the previous section for the second component
of the indicator, it is noticed that the multidimensional approach is a little better than
the simplified approach, thanks to the dependence between the components. In order to
limit the number of figures, we restrict the presentation to the components j = 1, 2, 6 of
the vector-valued random indicator. For the given track stretch, the long-term evolution
of components C3, C4, C5 and C9 is similar to the long-term evolution of C1, and the
long-term evolution of C7, C8 is similar to that of C6.

5.5 Prediction of the long-term evolution of the ran-

dom indicator

5.5.1 Stochastic predictive modeling of random vector C

• For k = K + 1, the prediction of the vector-valued random indicator Ck is es-
timated by Caff,K+1, constructed with Eq. (4.51), for which the parameters are
[Aopt], gaff(τK+1) = aopt

g τK+1 + bopt
g , and [haff(τK+1)] = [aopth ] τK+1 + [bopth ], as

explained in Section 4.5 (see Eq. (4.50)). The vector-valued random indicator
Caff,K+1 = Caff(τK+1) at long time τK+1 is then estimated using Eq. (4.51):

Caff,K+1 = ([INc
]−∆τK+1 [A])C

aff,K +∆τK+1 g
aff(τK+1) + [haff(τK+1)]∆WK+1 ,

(5.5)
with the initial condition Caff,K = Cmod(τK).

• For k ≤ K, we consider Caff(τk) = Cmod(τk). The prediction for the mean and
for the confidence region at 90% of Caff,K+1 is displayed in Figure 5.18 for the
components Caff

1 ,Caff
2 , and Caff

6 .
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Figure 5.14: Mean values of the long-term evolution for the dimensionless indicator
D(τk) = Cmod

j (τk) (solid line) and D(τk) = Ck
j (dashed line), for j = 1 (up), j = 2

(middle), and j = 6 (down).
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Figure 5.15: Standard deviations of the long-term evolution for the dimensionless indi-
cator D(τk) = Cmod

j (τk) (solid line) and D(τk) = Ck
j (dashed line), for j = 1 (up), j = 2

(middle), and j = 6 (down).
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Figure 5.17: Quantiles of the dimensionless long-term evolution for the dimensionless
indicator D(τk) = Cmod

j (τk) (solid line) and D(τk) = Ck
j (dashed line): j = 1 (up),

j = 2 (middle) and j = 6 (down). Graphs k 7→ di(τk), in which di(τk) is such that
P{D(τk) ≤ di(τk)} ≥ qi for different values in percent of the quantile qi belonging to the
interval [40%, 98%]. The horizontal line corresponds to the threshold level c∗j .
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Figure 5.18: Dimensionless long-term evolution and prediction of dimensionless random
indicator Cmod

1 (up), Cmod
2 (middle), Cmod

6 (down). Confidence region with probability 90%
(grey region), mean value (solid line), prediction (dashed line).
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5.5.2 Relevance of the stochastic predictive model

Two criteria are used in order to assess the relevance of the stochastic predictive model
that has been identified.

• For the quality assessment, the predictions Caff,K−1 and Caff,K are performed given
the known random vector Cmod(τK−2). This prediction is carried out using Eq. (4.50)
and Eq. (4.51),

Caff,k = ([IN ]−∆τk [A
opt])Caff,k−1+∆τk g

aff(τk)+[haff(τk)]∆Wk , k = K−1, K ,
(5.6)

with the initial condition

Caff,K−2 = Cmod(τK−2) . (5.7)

The quality assessment is then evaluated in comparing firstly Caff,K−1 with
Cmod(τK−1), and secondly in comparing Caff,K with Cmod(τK).

For the probability density function, the quality assessment of the stochastic pre-
dictive model is displayed in Figure 5.19, in which the probability density function
of Caff,k

6 is compared with the probability density function of Cmod
6 (τk) for k = K−1

and for k = K. For each long times τK−1 and τK , the probability density functions
of Caff

6 and Cmod
6 are very close. Therefore it should be noted that the stochastic

predictive model is good enough.

For the quantiles of the dimensionless indicator D(τk) = Cmod
6 (τk) and D(τk) =

Caff,k
6 for k = K − 1 and for k = K, the quality assessment can be viewed in

Figure 5.20, which displays the graphs k 7→ di(τk), in which di(τk) is such that
P{D(τk) ≤ di(τk)} ≥ qi for different values in percent of the quantile qi belonging
to the interval [40%, 98%]. Again this result shows that the stochastic predictive
model is good, because the quantiles of Caff,k

6 are very close to those of Cmod,k
6 for

k = K − 1 and for k = K.

• The relevance of the stochastic predictive model can be obtained in computing the
modeling error induced by both the stochastic predictive model itself (as described
in Eq. (4.14)) and the approximations of functions g and [h] by the affine functions
gaff and [haff ]. For each k = 2, . . . , K, Caff,k is computed with Eq. (4.52), using
Cmod(τk−1) as initial value, that is to say by using the following equation

Caff,k = ([IN ]−∆τk [A
opt])Cmod(τk−1) + ∆τk g

aff(τk) + [haff(τk)]∆Wk . (5.8)

The initial condition is given by

Caff,1 = Cmod(τ1) . (5.9)

For k = 1, . . . , K, for the j-th component of the vector-valued random indicator at
time τk, the random modeling error denoted by εkj is defined by

εkj =
Cmod

j (τk)− Caff,k
j

Cmod
j (τk)

. (5.10)
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Figure 5.21: Mean value (solid line) and confidence region at 90% (grey region) of the
random modeling error εk6.

For the component j = 6, the mean value of εkj and its confidence region at 90% are
featured in Figure 5.21 for k = 1, . . . , K. It sould be noted that the dispersion is 0
for k = 1 corresponding to initial time τ1 = 0 for which Caff,1

j = Cmod
j (τ1). Then,

the dispersion slightly increases with long time τ (that is coherent) but stays very
small (smaller than 5%).

5.6 Conclusion

In this chapter, the methodology and the models developed in the previous chapters have
been applied to the long-term evolution of the dynamic response of the train for a given
track stretch. The identified local stochastic model allows us to generate ν realizations of
the track irregularities for the given track stretch. Then, for each long time τ1, . . . , τK , the
dynamic response of the train is numerically simulated by the Monte-Carlo method. After
generating ν independent realizations of the multiplicative output noise for the dynamic
response of the train, the realizations of the random indicator are computed. These
realizations are used to identify the parameters of the stochastic predictive model for the
long-term evolution of the random indicator. The prediction of the statistical quantities
of the vector-valued random indicator is performed for long time τK+1, for which no
track measurements have been carried out yet. The relevance of the stochastic predictive
model is assessed with the quality assessment and with the modeling error induced by
the approximations in the stochastic predictive modeling. The obtained results show that
the stochastic predictive model is good for the prediction at long time τK+1.

110



Chapter 6

Conclusions and prospects

6.1 Summary of the industrial context

For the companies in charge of the maintenance of railway networks, it is of great interest
to predict the long-term evolution of the track irregularities of a given stretch of the rail-
way track, in order to be able to anticipate the start off of the maintenance operations.
The criteria used for the maintenance of railway tracks have been based, for decades,
on the amplitude of chords of the track geometry. Nevertheless, these criteria are not
directly linked to safety, ride comfort, or damages of the infrastructure and can be im-
proved using numerical tools. The railway dynamics simulation, achieving the nonlinear
link between the track geometry and the dynamic response of the train, offers good op-
portunities to build criteria that are more representative of safety, comfort, and damages.
The numerical simulation actually allows for calculating the accelerations in the vehicles
as well as the loads that are applied to the tracks and that lead to the degradation of the
track irregularities.

However, concerning the global degradation of the track, the numerical simulation is
not sufficient for the identification of degradation laws. The constitutive elements of the
track, the substructure, the climatic conditions, and so on, actually are very heteroge-
neous on the network, such that the construction of a generic degradation law would be
very complex and would imply a large number of parameters.

For the French high-speed lines, the track irregularities are regularly measured by the
recording train IRIS 320. These measurements provide a large data base that allows for
developing a local stochastic modeling of the track irregularities. Combining this local
model of the track irregularities with the computational model of the train dynamics, the
stochastic dynamic response of the train can be predicted for a given stretch of the track.

To finish with, the construction of a stochastic predictive model for the long-term evolu-
tion of the track irregularities allows the anticipation of the maintenance operations in
order to optimize the maintenance scheduling.
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6.2 Summary of the work achieved

In this thesis, a stochastic predictive model has been developed to predict the long-term
evolution of the dynamic response of the train on a given stretch of the track with re-
spect to the long-term evolution of the track irregularities. For the given track stretch,
the long-term evolution of the track irregularities is thus characterized by a vector-valued
random indicator of the dynamic response of the train.

The track irregularities of the given track stretch have been modeled by introducing
a local stochastic model. This local model takes into account the variability of the track
irregularities and is specific to each stretch of the track. It has been identified using the
measurements of the track irregularities for the given track stretch and using the global
stochastic modeling of the track irregularities that has been developed in [19, 6, 20] and
which is representative of the track irregularities for the whole track.

A vector-valued random indicator has been defined to assess the dynamic response of
the train on the given track stretch, and is estimated by propagating the variability of
the track irregularities in a computational model of the train dynamics. Model uncer-
tainties have also been taken into account by introducing a multiplicative output noise in
the computation of the vector-valued indicator. This output noise has been characterized
by comparing vector-valued indicators computed from the simulated dynamic response
of the train with vector-valued indicators calculated from measurements of the dynamic
response of the train for a French TGV Duplex. For the given track stretch, the analysis
of the long-term evolution of the vector-valued random indicator allows for assessing the
criticality of the track stretch. The efficiency of the performed maintenance operation
can also be evaluated.

Finally, a stochastic predictive model has been proposed in order to predict the long-term
evolution of the vector-valued random indicator for future long times. A Kalman-filter
type model with a non-Gaussian initial condition has been identified. The relevance of
this stochastic predictive model is analyzed and gives good results. The predictive model
allows for anticipating the maintenance operations by comparing the values of the random
indicator with a threshold value.

6.3 Scientific and industrial contributions

The originality of this work lays in the application of advanced stochastic techniques on
a complex industrial problem. The computational model of the train dynamics is used
with a stochastic input and a stochastic output which allow for taking into account the
variability of the track irregularities and the model uncertainties in the computational
model of the train dynamics.

First, the description of the track irregularities for a given stretch of the track requires to
develop a local stochastic model that is specific to each stretch of the track and that pre-
serves the statistical properties identified through the global stochastic model of the track
irregularities of the whole railway network. This local stochastic model is constructed in
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adding a Gaussian random vector to the global stochastic model, the probability distri-
bution of which is identified by minimizing the statistical distance between the measured
track irregularities (for the given track stretch) and the global stochastic model. In addi-
tion, the model uncertainties in the computational model of the train dynamics are taken
into account by introducing a non-Gaussian multiplicative random vector in output of the
computational model. This non-Gaussian random vector has been identified by solving
a statistical inverse problem using experimental measurements.

A stochastic predictive model has been proposed in order to model the long-term evo-
lution of the vector-valued random indicator that is represented by a non-Gaussian and
nonstationary time series. The stochastic predictive model is a nonstationary Kalman-
filter type model for which a non-Gaussian initial condition is given. The identification of
this stochastic predictive model depending on a large number of parameters is performed
using the known realizations of the vector-valued indicator.

From an industrial point of view, this work, combining mechanics and statistics, gives
some tools for performing a local analysis of the track irregularities and for analyzing
their long-term evolution. The enrichment of geometrical maintenance criteria with sys-
temic criteria, which are based on the dynamic response of the trains, allows a better
understanding of the degradation process as well as a more appropriate maintenance.
The developed predictive model will drastically change the maintenance process, which
is until now only based on curative operations, allowing predictive maintenance. This
model can also give interesting results to set maintenance policies adapted to new trains
or new running conditions (for instance higher speeds).

6.4 Prospects

Detection of the causes of the track irregularities. To complete the work achieved
in this thesis, the developed tools could be combined with an analysis comparing measured
dynamic responses of the train with the shapes and wavelengths of the track irregularities.
This could help to determine the origin of the track irregularities. Indeed, some of the
track irregularities are caused by rail defects that induce high frequencies accelerations.
Others are due to the sliding of soil layers, generating large wavelength evolutions of
the geometry. Recurrent track irregularities are moreover often caused by the track
substructure: for example uneven track layers or pipes under the ballast. These defects
must thus be corrected differently: grinding, drainage, tamping, etc. The knowledge of
these origins could therefore drastically improve the maintenance process.

Link between track degradation and track equipment. The intensive use of the
developed models on all the available measurements could help to identify a statistical
relationship between the track equipment and the long-term evolution of the track irreg-
ularities. Furthermore, this analysis would identify construction methods for the track
which reduce the degradation of the track irregularities.
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Introduction of the traffic in the stochastic predictive model. One of the main
drawbacks of the developed model concerns the fact that the long-term evolution of the
vector-valued indicator depends only on the measurements carried out at long times and
on the simulated realizations of the vector-valued indicator constructed with a stochastic
computational model of the train. Any change in the traffic or in the type of trains, which
have been used for the identification of the stochastic predictive model, could deteriorate
the relevance of the prediction. Instead of the multiplication by a time parameter in the
stochastic predictive model, it would thus be relevant to introduce a cumulative rule of
the loads induced by the different trains.

6.5 Scientific production

The work achieved in this thesis has brought forward a series of publications and com-
munications, which are listed hereinafter.
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munications, submitted.

Conferences with proceedings
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International Symposium on Dynamics of Vehicles on Roads and Tracks, August
2015, Graz, Austria. Proceedings of IAVSD 2015.

• N. Lestoille, C. Soize, C. Funfschilling. Stochastic modeling of train dynamics
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International Conference on Uncertainty in Structural Dynamics, September 2014,
Leuven, Belgium. Proceedings of ISMA2014-USD2014.

• N. Lestoille, C. Soize, G. Perrin, C. Funfschilling. Long time evolution of train dy-
namics with respect to track irregularities. Railways 2014, 2nd International Con-
ference on Railway Technology: Research, Development and Maintenance, April
2014, Ajaccio, France. Proceedings of Railways 2014.
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Appendix

A Post-processing of the measured track irregulari-

ties

Measurement of the track geometry. The French high-speed lines are regularly
measured by the recording high-speed train IRIS 320, which provides big data used for
characterizing and modeling the track irregularities. Before being used for the stochastic
modeling of the track irregularities and for the computation of the dynamic response of
the train, the measurements of the track irregularities have to be post-processed. This
post-processing is necessary in order to remove the measurement errors and to put the
experimental data into the format required for the stochastic modeling of the track irreg-
ularities and the numerical simulation of the dynamic response of the train.

In this work, we focus on the high-speed line between Paris and Marseille which is com-
posed of two tracks, denoted by V1 and V2. V1 is used by the trains running from
Paris to Marseille, and V2 is used by the trains running from Marseille to Paris. The
high-speed trains have two locomotives, one at each end of the train, denoted by M1 and
M2. Usually, M1 is at the front of the train when the train runs on V1, and M2 is at
the front when the train runs on V2. The total length of the measured track is denoted
by Stot and its discrete curvilinear abscissa s0 = 0, s1, . . . , sL = Stot is introduced to
locate the position of the train on the track. The spatial step of the curvilinear abscissa
h = sn−sn−1, for n = 1, . . . , L, is constant. For the measurements of the track irregulari-
ties, the curvilinear abscissa is measured by an odometric wheel and is given in output of
the measurement system. Each time the recording train passes over a localization sensor
on the track, the measured curvilinear asbcissa is rectified. The zero of the measured
curvilinear abscissa is situated manually, wich creates a lag with the real curvilinear ab-
scissa. Moreover, since the measurement system with the odometric wheel is not perfect,
an error is introduced in the measured data. For each discrete curvilinear abscissa along
the track sn, the following quantities are measured by IRIS 320, and are represented by
discrete functions of sn:

• the curvilinear abscissa s,

• the speed of the train v,

• the horizontal curvature of the track cH ,

• the lateral positions of the left rail eL and of the right rail eR,
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• the lateral positions of the left rail hL and of the right rail hR,

The positions of the rail are measured using two cameras that are fixed under a bogie of
the train. At last, it has to be noticed that the measurement is not correctly processed
when the train speed is less than 80km/h. Such measurements have then to be removed.

For the modeling of the track irregularities and for the computational model of the train
dynamics, the following conventions are used:

• the curvilinear abscissa increases on V1 and decreases on V2.

• the horizontal curvature is positive when the track turns to the right, and negative
when the track turns to the left.

• the measured track sections are at least 5 km long.

The track design is known, which allows for comparing the theoretical horizontal curva-
ture with the measured one.

Re-sampling the curvilinear abscissa. The curvilinear abscissa given in output of
the measurement system is piecewise constant, with groups of 4 samples with a jump of 4h
between each group of 4 samples, which yields 0, 0, 0, 0, 4h, 4h, 4h, 4h, 8h, 8h, 8h, 8h,
. . . , sL−1, sL−1, sL−1, sL−1, sL. It is thus re-sampled with a linear interpolation in order to
have a linear increasing and continuous curvilinear abscissa.

Removing measurement errors. It happens that the track irregularities are not
properly measured by IRIS 320. These measurement errors have to be detected and
removed, such that they do not disturb the stochastic modeling of the track irregularities.
Three types of measurement errors are identified.

• Sometimes the cameras stop measuring and the value of the position of the rail
remains constant during several decades of meters. For this work, the first derivative
of the position of the rail is computed. When the value of this derivative stays zero
during at least 20 m, the corresponding measurement is removed.

• Some values measured for the rail position are irrelevant because they are too
high. A threshold value is chosen, above which the values of the rail position are
considered irrelevant. The quantile q0 at 99.9% of the rail position Y is defined by
PY (Y ≤ q0) = 0.999. The threshold value for irrelevant measured data is chosen as
3 q0 for the rail position at each curvilinear abscissa. Using a quantile prevents us
from having to chose an arbitrary threshold, which would not be adapted to all the
measurements. The irrelevant values, provided that they represent no more than
3 meters of the track, are removed and substituted by substitution values. The
substitution values have to be realistic and to ensure a continuity of the second
derivative (C2-continuity) with existing values. A cubic spline is chosen to compute
the substitution values.
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Figure 6.1: Detection of a change of running track by comparing the measured horizontal
curvature (blue line) with the theoretical one (red line).

• At last, some jumps in the measurements of the rail position exist. These jumps
are detected using the second derivative of the measured rail positions. A threshold
value for the values of the second derivative is introduced as 1.5 q2, where q2 is the
quantile at 99.999% of the rail position. The irrelevant values of the rail position
are substituted by substitution values computed with a cubic spline, ensuring the
continuity of the second derivative for the track irregularities.

Verification of the running direction. When the locomotive M2 is in front of the
train on track V1 or the locomotive M1 is in front of the train on track V2, it means
that the train runs in the unusual direction on the track. In order to compare these
measured data with the usual ones, the measurements for the right and left rails have to
be interchanged, so that they correspond to the right and left rails measured in the usual
running direction. The sign of the measured horizontal curvature also has to be inverted.

Comparison of the measured horizontal curvature with the theoretical one.

It happens that IRIS 320 changes briefly of running track (for example to double another
train) or takes a service track. This implies that IRIS 320 briefly measures a track
that does not correspond to the principal measured track: this measurement is then
removed. Such cases are detected in comparing the measured horizontal curvature with
the theoretical one, as displayed in Figure 6.1.
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Figure 6.2: Correction of the curvilinear abscissa by comparing the measured horizontal
curvature with the theoretical one, yielding the corrected measured curvature.

The curvilinear abscissa given in output of the measurement system does not exactly cor-
respond to the theoretical curvilinear abscissa, because the zero of the measured curvilin-
ear abscissa is given manually. Sometimes the difference between both can be of several
decades of meters. The measured curvilinear abscissa has therefore to be rectified in
order to correct this difference. The difference is computed by comparing the measured
horizontal curvature cH with the theoretical one cthH . The measured horizontal curvature,
the theoretical curvature, and the measured horizontal curvature taking into account the
rectification, are displayed in Figure 6.2.

Smoothing of the rectification done by the localization sensors of the track.

The rectification of the curvilinear abscissa by the sensors on the track creates jumps in
the measurements. To remove these jumps, the curvilinear abscissa is linearly interpolated
in these rectification zones over 3 m. The rail positions for these zones are substituted
with cubic splines over three meters, in order to guarantee the continuity of the second
derivative of the track irregularities.

Rectification of the curvilinear abscissa for a track stretch. Once the measure-
ment errors are corrected and the curvilinear abscissa is rectified for the whole measured
track, the track is partitioned into stretches of length S used for the stochastic modeling
of the track irregularities. For a given stretch of the railway track, the measured curvi-
linear abscissa of the track irregularities sn, for n = 0, . . . , Ns, can change between two
consecutive measurement times τk−1, τk, k = 2, . . . , K. The shift between two consecutive
measurement times is corrected by comparing the sum of the track irregularities at τk
with this sum at τk−1.
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B Construction of the spectral function allowing the

cut-off frequency to be defined

Let Z be a time signal, which represents either an experimental measurement or a response
predicted with the computational model. This time signal is deduced from the spatial
signal using the speed of the train (which is not constant with the time). Let Zℓ, ℓ =
1, . . . , νp be the corresponding time signals for νp stretches of the track. Let Fs be the
sampling frequency that is given. The corresponding time step is δt = 1/Fs. Let Nℓ be
the given number of time steps for the track stretch ℓ. Consequently, for the track stretch
ℓ, the time duration is Tℓ = Nℓ δt. The associated frequency resolution is thus 1/Tℓ. For
each ℓ, the discrete Fourier transform {Ẑℓ(m),m ∈ {0, . . . , Nℓ − 1}} of the time series

{Z̃ℓ(n), n ∈ {0, . . . , Nℓ − 1}} is computed by

Ẑℓ(m) =

Nℓ−1∑

n=0

Z̃ℓ(n) exp(
−2 i π nm

Nℓ

) , m = 0, . . . ,max
ℓ
Nℓ − 1 , (6.1)

in which Z̃ℓ is written as

Z̃ℓ(n) =
1

Fs

WT (n)Z
ℓ(n) exp(iπn) , n = 0, . . . , Nℓ − 1 , (6.2)

where WT (n) is the Hamming time window which is written as

Wℓ(n) =
1√
Tℓ

1.5863 (0.54− 0.46 cos(
2πn

Tℓ
)) , n = 0, . . . , Nℓ − 1 . (6.3)

We then define the spectral function by the formula

DZ(m) =
1

2πνp

νp∑

ℓ=1

|Ẑℓ(m)|2 , m = 0, . . . ,max
ℓ
Nℓ . (6.4)
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C Correction of the measurements of the train dy-

namic response

The localization of the measuring TGV Duplex with respect to the track design is per-
formed with an odometric wheel, which is not sufficiently precise, and which introduces
a shift between the measured and the real curvilinear abscissa. This shift is corrected as
follows.

First, the measured lateral acceleration in the second coach of the train is filtered with
a low-pass filter and double-integrated, in order to compute the lateral displacement of
the second coach at low frequencies. Because of the rigid bodies movements in the curves
of the track, the inverse of the lateral displacement should vary as the track horizontal
curvature does. The shift in the measured curvilinear abscissa is computed by comparing
the inverse of the lateral displacement with the theoretical track horizontal curvature.
This first step provides a large estimation of the shift of the curvilinear abscissa which is
refined in a second step.

Then, the dynamic response of the train on the measured track is numerically simulated.
The simulated vertical acceleration in the first bogie is compared with the measured one.
Since the simulated vertical acceleration is very close to the measured one (because of
little modeling errors and little nonlinearities), the comparison of both allows for calcu-
lating the shift in the measured curvilinear abscissa.
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Modèle stochastique de la dynamique des trains à grande vitesse pour la
prévision de l’évolution à long terme des défauts de géométrie de la voie.
Thèse préparée au laboratoire de Modélisation et Simulation Multi-Echelle :
MSME UMR 8208 CNRS
5, boulevard Descartes
77 454 Marne-la-Vallée
France

Résumé. Les voies ferrées sont de plus en plus sollicitées : le nombre de trains à grande vitesse, leur
vitesse et leur charge ne cessent d’augmenter, ce qui contribue à la formation de défauts de géométrie sur
la voie. En retour, ces défauts de géométrie influencent la réponse dynamique du train et dégradent les
conditions de confort. Pour garantir de bonnes conditions de confort, les entreprises ferroviaires réalisent
des opérations de maintenance de la voie, qui sont très coûteuses. Ces entreprises ont donc intérêt à
prévoir l’évolution temporelle des défauts de géométrie de la voie pour anticiper les opérations de main-
tenance, et ainsi réduire les coûts de maintenance et améliorer les conditions de transport.
Dans cette thèse, on analyse l’évolution temporelle d’une portion de voie par un indicateur vectoriel sur
la dynamique du train. Pour la portion de voie choisie, on construit un modèle stochastique local des
défauts de géométrie de la voie à partir d’un modèle global des défauts de géométrie et de big data de
défauts mesurés par un train de mesure. Ce modèle stochastique local prend en compte la variabilité
des défauts de géométrie de la voie et permet de générer des réalisations des défauts pour chaque temps
de mesure. Après avoir validé le modèle numérique de la dynamique du train, les réponses dynamiques
du train sur la portion de voie mesurée sont simulées numériquement en utilisant le modèle stochastique
local des défauts de géométrie. Un indicateur vectoriel et aléatoire est introduit pour caractériser la
réponse dynamique du train sur la portion de voie. Cet indicateur est construit de manière à prendre
en compte les incertitudes de modèle dans le modèle numérique de la dynamique du train. Pour iden-
tifier le modèle stochastique des défauts de géométrie et pour caractériser les incertitudes de modèle,
des méthodes stochastiques avancées, comme par exemple la décomposition en chaos polynomial ou le
maximum de vraisemblance multidimensionnel, sont appliquées à des champs aléatoires non gaussiens et
non stationnaires.
Enfin, un modèle stochastique de prévision est proposé pour prévoir les quantités statistiques de l’indica-
teur, ce qui permet d’anticiper le besoin en maintenance. Ce modèle est construit en utilisant les résultats
de la simulation de la dynamique du train et consiste à utiliser un modèle non stationnaire de type filtre
de Kalman avec une condition initiale non gaussienne.

Mots clefs : Défauts de géométrie de la voie, dynamique du train, modélisation stochastique, prévision
stochastique, problème inverse statistique.

Stochastic model of high-speed train dynamics for the prediction of long-
term evolution of the track irregularities.
Abstract. Railway tracks are subjected to more and more constraints, because the number of
high-speed trains, the train speed, and the train load keep increasing. These solicitations go towards
producing track irregularities. In return, track irregularities influence the dynamic response of the train,
inducing a degradation of the comfort. To guarantee good conditions of comfort in the trains, railway
companies perform maintenance operations of the track, which are very costly. Consequently, it is of
great interest for the railway companies to predict the long-term evolution of the track irregularities for
a given stretch of track, in order to be able to anticipate the start off of the maintenance operations, and
therefore to reduce the maintenance costs and to improve the running conditions.
In this thesis, the long-term evolution of a given track stretch is analyzed through a vector-valued indica-
tor on the train dynamics. For this given track portion, a local stochastic model of the track irregularities
is constructed using a global stochastic model of the track irregularities, as well as big data made of ex-
perimental measurements of the track irregularities performed by a measuring train. This local stochastic
model takes into account the variability of the track irregularities and allows for generating realizations
of the track irregularities at each long time. After validating the computational model of the train dy-
namics, the dynamic responses of the train on the measured track portion are numerically simulated
using the local stochastic model of the track irregularities. A vector-valued random indicator is defined
to characterize the dynamic responses of the train on the given track stretch. This random indicator is
constructed such that it takes into account the model uncertainties in the computational model of the
train dynamics. For the identification of the stochastic model of the track irregularities and the character-
ization of the model uncertainties, advanced stochastic methods such as the polynomial chaos expansion
and the multivariate maximum likelihood are applied to non-Gaussian and nonstationary random fields.
Finally, a stochastic predictive model is proposed for predicting the statistical quantities of the random
indicator, which allows for anticipating the need for track maintenance. This modeling is constructed
using the results of the train dynamics simulation and consists in using a nonstationary Kalman-filter
type model with a non-Gaussian initial condition. The proposed model is validated using experimental
data from the French railways network for high-speed trains.

Key-words : Track irregularities, train dynamics, stochastic modeling, stochastic prediction, statis-
tical inverse problem.
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