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Résumé Français  

Titre:  

Sélection de paramètres caractéristiques des EHG pour la classification des contractions utérines 

Contenu : 

Certaines femmes souffrent de complications de la grossesse qui peuvent aboutir à un 

accouchement prématuré, avant 37 semaines de gestation. Selon l'Organisation mondiale de la 

Santé (WHO), le taux de mortalité périnatale est généralement autour de 7 pour 1000 naissances 

dans la partie la plus développée du monde [1]. Une des causes principales de mortalité et de 

morbidité néonatales est la naissance d’enfants avant terme. Ces enfants nés avant terme 

présentent un risque élevé de mortalité ainsi que des problèmes de santé et de développement [2]. 

Un objectif principal de la surveillance de la grossesse est de maintenir le bien-être de la mère et 

du fœtus et de garder ce dernier in utero aussi longtemps que nécessaire pour la naissance d’un 

enfant en bonne santé. Par conséquent, la détection précoce d'un accouchement prématuré (AP) 

est importante pour sa prévention. A cet effet, de bons indicateurs de travail prématuré sont 

nécessaires. 

Pour maintenir le fœtus in utero aussi longtemps que nécessaire, une surveillance de la 

contractilité utérine est essentielle pour distinguer les contractions normales de la grossesse, qui 

sont inefficaces de celles qui sont efficaces et pourraient entraîner la dilatation du col de l'utérus 

et causer une naissance prématurée.  

Malgré l'augmentation des connaissances et de la compréhension des phénomènes impliqués 

dans le début du travail prématuré, les méthodes actuellement utilisées en obstétrique ne sont pas 

assez précises pour une détection précoce de menaces d’accouchement prématuré. La mesure de 

pression intra-utérine, seule méthode directe précise pour mesurer la force des contractions 

utérines, est invasive et ne peut clairement pas être utilisée pendant la grossesse. La tocographie 

externe, non invasive, est la méthode la plus largement utilisée pour la surveillance des 

contractions utérines pendant la grossesse. Cependant, elle ne permet pas de caractériser 

l’efficacité des contractions. Elle ne permet que de détecter le nombre de contractions pendant un 

intervalle de temps donné. Il a été démontré que ce paramètre n’est pas un bon indicateur pour 
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prédire un accouchement prématuré. Des tests biologiques, tels que la fibronectine, ont été 

cliniquement utilisés pour le pronostic des accouchements prématurés, bien qu’ils possèdent une 

valeur prédictive faible [3]. Même la mesure de la dilatation cervicale n’est pas un indicateur 

fiable d’une menace d’accouchement prématuré.  

Nous avons besoin d'une méthode non-invasive et plus fiable pour la détection précoce et la 

prévention des menaces d’accouchement prématuré, car ce problème est clairement un domaine 

d’intérêt en santé publique. Ce diagnostic précoce permettait une administration plus rapide 

d’agents tocolytiques (inhibiteurs de la contractilité utérine) et un maintien du foetus in utero, ce 

qui réduirait la mortalité et la morbidité périnatales. Une des méthodes prometteuses pour 

surveiller l’efficacité des contractions utérines pendant la grossesse est l’analyse de l’activité 

électrique du muscle utérin, l’électrohystérogramme (EHG), qui a commencé dans les années 

1950 et a été développé dans les années 1980.  L’EHG est le signal recueilli par des électrodes 

positionnées sur l’abdomen des femmes enceintes. Il représente l’activité électrique associée à la 

contraction mécanique de l’utérus [4]. De nombreuses études ont prouvé qu’il est représentatif de 

l’activité électrique utérine recueillie en interne sur l’utérus [5,6]. De multiples travaux menés 

depuis plus de 15 ans, concluent qu’il est possible d’utiliser l’EHG pour détecter une menace 

d’accouchement prématuré. L’efficacité des contractions utérines est liée à une augmentation de 

deux phénomènes physiologiques : l'excitabilité cellulaire et la synchronisation de l’utérus 

(propagation de l'activité électrique) [5,7]. Ces phénomènes peuvent être analysés au moyen de 

l’EHG grâce à des analyses univariée (analyse d’un seul signal à la fois pour l’excitabilité) et 

bivariée (couplage de deux signaux pour la propagation). 

Plusieurs outils de traitement du signal EHG, nouvellement développés, permettent l'analyse de 

l'excitabilité et de la propagation de l'activité électrique utérine (paramètres fréquentiels, analyse 

de complexité, propagation linéaire ou nonlinéaire) pour trouver des informations spécifiques qui 

différencient les contractions de la grossesse de celles du travail. Un grand nombre de paramètres 

ont à ce jour été extraits du signal EHG par de nombreux chercheurs, en utilisant différents 

protocoles d'enregistrement et  différentes populations de femmes enceintes. En ce qui concerne 

la classification des signaux, la complexité des calculs requis pour le diagnostic augmente avec 

le nombre de paramètres mis en jeu. La réduction de la  dimension de paramètres grâce à 

l'élimination des paramètres non pertinents et bruités est très importante en reconnaissance des 



5 
 

formes. De plus, les deux facteurs, excitabilité utérine et propagation de l’activité, sont tous les 

deux importants car ils doivent évoluer tous les deux pour passer d’une contraction inefficace de 

grossesse (faible excitabilité, contraction locale) à une contraction efficace d’accouchement 

(excitabilité forte, propagation à tout l’utérus en un court intervalle de temps). Des études 

antérieures, fondées uniquement sur l'étude de l'excitabilité, ont donné des résultats intéressants, 

mais pas suffisamment fiables pour la détection précoce de l’accouchement prématuré.  

Par conséquent, la première contribution de notre étude sera de combiner les deux types 

d'informations (excitabilité et propagation) par des approches monovariée et bivariée 

simultanées, pour différencier deux types de contractions utérines : les contractions de grossesse 

et celles d’accouchement.  

La seconde contribution sera de tester sur une même population de femmes enceintes (grossesse, 

travail), quels outils de traitement du signal,  récemment développés pour l'analyse monovariée 

et bivariée de l’EHG, donnent la meilleure discrimination entre les contractions de grossesse et 

d’accouchement. A cet effet plusieurs méthodes de sélection de paramètres extraits de l’EHG 

seront analysées. 

Cette sélection de paramètres se fera à partir d’une base de données de signaux recueillis suivant 

une méthode normalisée, sur des femmes enceintes dans différentes situations physiologiques 

(grossesse normale, accouchement), grâce à un système multi-électrodes permettant d’enregistrer 

16 EHG monopolaires simultanés. Ces 16 signaux seront ensuite analysés par les approches 

monovariée et bivariée, pour extraire les paramètres représentatifs de l'excitabilité et la 

propagation de l'activité électrique utérine. Beaucoup d’études ont utilisé seulement des signaux 

issus des électrodes positionnées sur l'axe vertical médian de l'abdomen [8] pour l’analyse 

monovariée (une seule voie). D’autres études ont travaillé sur les caractéristiques liées à la 

propagation de l’EHG grâce au couplage entre toutes les voies (analyse bivariée). Des études 

précédentes ont ainsi tenté d'appliquer une classification multivoie [9-14]. Certaines études se 

sont intéressées à une analyse multivariée, afin d’extraire les informations d'excitabilité et de 

propagation de toutes les voies et combinaisons de voies disponibles, ce qui conduit à une très 

grande dimension de recherche. Par conséquent, une troisième contribution de ce travail portera 

sur la sélection des voies et des combinaisons de voies les plus pertinentes dans une optique de 

classification grossesse/accouchement. 
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En outre, afin d'augmenter le rapport signal/bruit des EHG, toutes les études précédentes ont 

porté sur des signaux bipolaires, obtenus par différence entre deux signaux recueillis par deux 

électrodes plus ou moins proches. Si cette différenciation se justifie pour une approche 

monovariée, le fait de différencier les signaux diminue cependant la résolution spatiale et conduit 

à un biais pour l'étude bivariée de la propagation entre deux voies adjacentes. Des travaux 

récents ont permis de développer une méthode de débruitage des EHG monopolaires, afin 

d’obtenir sans différenciation un rapport signal/bruit suffisant pour envisager le traitement de ces 

signaux [15].  Ces outils s’appuient sur une combinaison de CCA (Combination of Canonical 

component Analysis) et d’EMD (Empirical Mode Decomposition). De ce fait, en plus d’une 

approche classique basée sur l’étude des signaux bipolaires, nous proposerons dans ce travail 

d’appliquer les approches monovariée et bivariée, ainsi que la sélection de paramètres et de 

voies, sur des signaux monopolaires débruités. 

Ce manuscrit est donc organisé comme suit: 

 Chapitre 1: contient toutes les informations essentielles pour la bonne compréhension de 

l’anatomie et de la physiologie de l'activité utérine nécessaires à ce travail. Nous 

définirons l’accouchement prématuré et les problèmes qui y sont reliés, et nous 

présenterons certaines méthodes utilisées en pratique obstétricale courante pour détecter  

l’accouchement prématuré. Ensuite, nous présenterons une bibliographie des différentes 

études d'excitabilité et de la propagation faites à partir de signaux EHG (approches 

monovariée et bivariée). À la fin de ce chapitre, nous décrirons le système multi-

électrodes pour l'enregistrement d'EHG utilisé dans notre travail, ainsi que les bases de 

données utilisées. 

 

 Chapitre 2: présente le travail effectué sur la sélection de paramètres de l’EHG. Nous 

décrirons dans ce chapitre l'ensemble de paramètres choisis dans la littérature pour 

l’analyse monovariée et bivariée de l’EHG [16-26]. Puis nous présentons les différentes 

méthodes de sélection de paramètres, qui sont décomposées en deux types « filter » et 

« wrapper ». Dans la première partie de ce chapitre, nous présenterons un algorithme de 

sélection proposé pour les paramètres calculés sur l’EHG original et sur différentes 

bandes de fréquence, en utilisant la technique de sélection de paramètre, de type filter, 
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nommé Jeffrey Divergence (JD). Cette méthode de sélection, basée sur la mesure de 

similarité ou dissimilarité des histogrammes obtenus, pour un paramètre donné,  pour les 

deux classes (grossesse et travail). 

Dans la deuxième partie, nous testerons plusieurs méthodes de sélection de paramètres 

afin de sélectionner les paramètres les plus pertinents pour discriminer les contractions de 

grossesse de celles d’accouchement. Quatre méthodes de type de « filter » sont utilisées : 

Jeffrey divergence (JD) [27], « F-score » [28], «Relieff » [29], «mutual information based 

on clustering» (MI)[30] et sept méthodes de type « wrapper » : sélection séquentielle 

croissante « sequential Forward Selection» (SFS) [31], sélection séquentielle arrière 

« Sequential backward Selection» (SBS)[32], « Plus-l minus-r selection» (LRS)[33], 

recherche bidirectionnelle «Bidirectional search» (BDS) [33], «Sequential Forward 

Floating sequential» (SFFS) [34], algorithmes génétiques «Genetic Algorithm» (GA) [35] 

et «Binary Particle swarm optimization» (BPSO)[36]. Nous utiliserons le classificateur 

KNN pour les méthodes de type « wrapper », et deux méthodes de répartition de données 

pour l’apprentissage de ce classifieur: « Holdout » et « KFOLD». Après la partie 

sélection de paramètres, nous essayerons de valider chaque sous-ensemble de paramètres 

sélectionné, en calculant pour chacun le pourcentage de classification correcte obtenu sur 

une population d’EHG différente de celle utilisée pour la sélection.  

Dans ce chapitre, la première partie sera appliquée uniquement sur des signaux 

bipolaires. Les autres études seront appliquées sur les signaux bipolaires et monopolaires. 

Les résultats obtenus montrent que l’utilisation des méthodes basées sur la sélection de 

paramètres permet de mettre en évidence un groupe de paramètres, combinant analyse 

monovariée et bivariée, et qui démontre sa capacité à discriminer les contractions de 

grossesses de celles d’accouchement, avec de meilleures performances pour les signaux 

EHG bipolaires. 

 

 Chapitre 3: dans ce chapitre, nous présenterons tout d'abord le travail effectué sur la 

sélection de voies (approche monovariée) en utilisant les paramètres linéaires et non 

linéaires. Nous testerons deux méthodes de type « filter » (F-score et relieff) pour 

sélectionner les voies  appropriées, puis deux méthodes de type « wrapper » (Genetic 

algorithm et binary particle swarm optimization) avec le classifieur KNN et deux 
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méthodes de répartition de données (Holdout et KFOLD) pour sélectionner les meilleurs 

paramètres à partir des voies sélectionnées. En outre, une partie de validation sera 

effectuée en calculant le pourcentage de classification correcte obtenu (en utilisant une 

autre population d’EHG) à partir des sous-ensembles de paramètres sélectionnés par  

sélection de voie suivie de la sélection de paramètres.  

La dernière partie de ce chapitre présentera les résultats de la sélection des combinaisons 

de voies (approche bivariée) en utilisant les paramètres liés à la propagation de l’EHG. 

Nous utilisons ici la même procédure que celle utilisée dans l’approche monovariée, pour 

la sélection de voies, suivie de la sélection de paramètres. 

Les résultats obtenus montrent que, pour l’analyse monovariée, les canaux bipolaires et 

monopolaires qui offrent une meilleure capacité de discrimination entre les contractions 

de grossesse et de travail sont ceux positionnés sur l'axe vertical médian de l'abdomen de 

la femme enceinte. L’utilisation des signaux d’EHG bipolaires pour l’analyse  

monovariée donne de meilleurs résultats que celle des EHG monopolaires, 

particulièrement en utilisant l'ensemble des paramètres linéaires et non linéaires extraits 

des voies Vb7, Vb8 et Vb9. De plus, l’approche bivariée, sélection des combinaisons de 

voies suivie de sélection de paramètre, montre que l'utilisation des EHG monopolaires 

pour l'étude de la propagation améliore les résultats de classification entre les 

contractions de grossesse de celles de travail et permet d’atteindre des résultats similaires 

à ceux obtenus avec les signaux bipolaires.  

Les résultats obtenus dans cette thèse nous ont permis d'écrire 3 articles de revues publiés (2 

revues internationales et 1 nationale), 2 conférences internationales, 4 conférences nationales. 
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General Introduction 

Some women suffer from complications of their pregnancy that may end with a preterm delivery, 

that is before 37 weeks of gestation. According to the World Health Organization (WHO), the 

perinatal mortality rate is typically around 7 per 1,000 births in the most developed part of the 

world [1]. A large part of the causes for mortality and morbidity is that children are born before 

their time. Children born preterm present high risk of mortality, as well as health and 

development problems [2]. A primary aim of pregnancy monitoring is to maintain the wellbeing 

of both mother and fetus and to keep the latter in utero as long as needed for a healthy birth. 

Therefore, the early detection of a preterm labor (PL) is important for its prevention and, for that 

purpose, good indicators of preterm labor are needed.  

To maintain the fetus in utero as long as necessary, monitoring of uterine contractility is essential 

to differentiate the normal contractions of the pregnancy, which are ineffective, from those, 

effective, that could cause premature cervical dilation of uterus and preterm birth. 

Despite increased knowledge and understanding of the phenomena involved in the onset of labor, 

the methods currently used in obstetrics are not precise enough for an early detection of preterm 

birth threats. The measurement of intrauterine pressure, the only direct method that permits 

presently to accurately measure the force of uterine contractions, is invasive and cannot clearly 

be used during pregnancy. Tocographie external, non-invasive, is the most widely used method 

for monitoring of uterine contractions during pregnancy. However, it does not permit to 

characterize the efficiency of contractions. It only permits to detect the number of contractions 

over a given time interval. It has been shown that this parameter is not a good predictor of 

premature labor. Biological tests, such as fibronectin, have been clinically used for the prognosis 

of premature births, although they have a low predictive value [3].  Even the measurement of 

cervical dilatation is not a reliable indicator of preterm labor. Indeed, a high proportion of 

women with cervical dilation during pregnancy will give birth at term, even without 

administration of tocolytic agents (inhibitors of uterine contractility). 

We need a non-invasive and more reliable method for the early detection and prevention of 

preterm birth threats because this problem is clearly a field of interest for public health. This 
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earlier diagnosis would permit an earlier administration of tocolytics agents and therefore a 

longer maintain of the fetus in utero, with associated reduction of perinatal mortality and 

morbidity. One of the most promising methods for monitoring uterine activity began in the 1950s 

and was developed in the 1980s. It is based on the study of the electrical activity of the uterus 

(electrohysterogram, EHG) as recorded on the mother’s abdomen [4]. The EHG is the signal 

recorded on the abdominal surface, which represents the electrical activity triggering the 

mechanical contraction of the myometrium. It has been demonstrated to be representative of the 

uterine electrical activity recorded internally [5, 6]. As the trigger of the mechanical contraction, 

its analysis is a promising method for accurate early recognition of preterm labor risk [4]. The 

contraction efficiency is related to an increase in two physiological phenomena: cellular 

excitability and spread of the electrical activity [5, 7] that could be monitored by means of the 

EHG. 

Several processing tools of the EHG signal, recently developed, permit the analysis of 

excitability and of uterine electrical activity synchronization (frequency parameters, complexity 

analysis, linear and nonlinear propagation) in order to extract specific information that 

differentiates pregnancy and labor contractions. A large number of features have thus been 

extracted from the EHG signal by many different researchers, by using very different population 

and recording protocols. For a classification task, the complexity of calculations required for 

diagnostic purposes increases with the number of features in play. The reduction of feature 

dimensionality through the elimination of irrelevant and noisy features is thus very important in 

pattern recognition. Furthermore, most of previous studies used only a monovariate approach to 

study the excitability (one EHG lead processed at a time). They gave interesting results, but not 

reliable enough for an early detection of premature birth.   

Therefore, the first contribution of our study is to combine the two approaches (monovariate and 

bivariate analyses) for a diagnosis based on the two kinds of information (excitability and 

propagation).  

Then the second step will be to identify, which features developed for monovariate and bivaraite 

analyses of the EHG, permit the best discrimination between the two classes of signals: 

pregnancy and labor. For this purpose several methods for the selection of  features extracted 

from the  EHG will be analyzed and tested.  
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This feature selection will be made on a population from which multiple EHG have been 

recorded in a standardized way during pregnancy and labor. These recordings have been made 

by using a multi-electrode system providing the simultaneous recording of 16 monopolar EHG 

channels. These 16 signals will then be analyzed by processing the monovariate and bivaraite 

features chosen to extract the parameters representing the excitability and the propagation of the 

electrical activity of the uterus. Many studies used only the bipolar EHG signal corresponding to 

electrodes positioned in the median vertical axis of the woman’s abdomen [8] for monovariate 

study. Other studies calculated the features related to EHG propagation by studying the coupling 

between all possible channels (bivariate analysis). Some studies tried to apply multichannel 

classification [9-14]. Using all the possible features extracted to characterize excitability and 

propagation, from all channels and possible combination of channels, lead to a very large 

dimension of search. Therefore, the third contribution of our work will be the selection of the 

most relevant channels and combinations channels for diagnosis purpose. 

Finally, in order to increase the signal/noise ratio (SNR), all previous EHG studies have 

processed only bipolar signals. This bipolarization can be justified for the monovariate approach. 

But, for the bivariate approcah, bipolarization decreases the spatial resolution and leads to a bias 

when studying propagation between adjacent channels. Recently, a study was developed to filter 

Monopolar signals [15]. This method is based on the combination of canonical component 

analysis (CCA) and EMD (Empirical Mode Decomposition). Thus, in addition to the classic use 

of bipolar signals, we will try in our work to apply the monovariate and bivariate approaches on 

these denoised monopolar signals. 

This manuscript is thus organized as follows: 

 Chapter 1: contains all the essential information to understand the anatomical and 

physiological concepts of uterine activity required for this work. We define preterm labor 

and its problems and present some existing methods used in the current obstetrical 

practice to detect preterm labor. Then we will present a bibliography concerning the 

monovariate and bivariate approaches developed to characterize EHG in terms of 

excitability and propagation. And finally, we will describe the multichannel standardized 

recording protocol used in our work, as well as the different Databases. 
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 Chapter 2: presents the work done for the EHG feature selection. We will describe in 

this chapter the set of parameters selected from the literature, for monovariate or bivariate 

analysis of the EHG [16-26]. And then, we will present the different feature selection 

methods developed for data mining, which are decomposed into two types “Filter” and 

“wrapper”.  

In the first part of this chapter we will present a proposed algorithm for the selection of 

parameters computed on the original EHG and on different frequency bands, using the 

feature selection technique, of type filter, named Jeffrey Divergence method (JD). This 

method is based on the measurement of the distance between the 2 histograms computed, 

for a given feature, from the pregnancy and the labor classes. 

In the second part we will test several feature selection methods, in order to select the 

most pertinent features that can discriminate between labor and pregnancy contractions. 

Four methods of type filter are used: Jeffrey divergence (JD) [27], F-score [28], Relieff 

[29], mutual information based on clustering (MI) [30]; and 7 feature selection methods 

of type wrapper: sequential Forward Selection (SFS) [31], Sequential backward Selection 

(SBS)[32], Plus-l minus-r selection (LRS)[33], Bidirectional search (BDS) [33], 

Sequential Forward Floating sequential (SFFS) [34] , Genetic Algorithm (GA) [35], 

Binary particle swarm optimization (BPSO)[36]. We use the classifier KNN for these 

wrapper methods and the two data split: holdout and KFOLD. Following the feature 

selection step, we will try to validate the selected feature subsets by calculating the 

percentages of correct classification on a different EHG population.   

These methods will be applied on bipolar EHGs in the first part of this chapter and on 

bipolar and monopolar EHGs in the second part. 

 

 Chapter 3: We present at the beginning of this chapter the channel selection process 

developed for the monovariate approach (linear and nonlinear features). We will first 

apply two filter methods (F-score and relieff) to select the relevant channels; and then 

from the selected channels, we will use two feature selection methods of type wrapper 

(genetic algorithm and binary particle swarm optimization) using the classifier KNN and 

the two datasplit (Holdout and Kfold) to select the best features. A validation step will 

then be presented by calculating the percentages of correct classification (using another 
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population of EHG) of the subsets of feature obtained after channel selection followed by 

feature selection.  

The final part of this chapter contains the same kind of approach, but applied to the 

bivariate analysis: channel combination selection using the bivariate features, using here 

the same procedure than for channels selection followed by feature selection in the 

monovariate approach. 

A general conclusion and perspectives will finally be presented. 

The results obtained in this thesis have been published in several journal papers and conferences. 

List of author’s publications 

International journal papers 

D. Alamedine, M. Khalil, and C. Marque, “Comparison of Different EHG Feature Selection 

Methods for the Detection of Preterm Labor,” Computational and Mathematical Methods in 

Medicine, vol. 2013, pp. 1-9, 2013. 

D. Alamedine, A. Diab, C. Muszynski, B. Karlsson, M. Khalil, and C. Marque, ''Selection 

algorithm for parameters to characterize uterine EHG signals for the detection of preterm  labor,” 

Signal Image Video Process., pp. 1–10, Jun. 2014. 

National journal paper 

D. Alamedine, M. Khalil, and C. Marque, “Parameters extraction and monitoring in uterine 

EMG signals. Detection of preterm deliveries,” IRBM journal, vol. 34, no. 4–5, pp. 322–325, 

Nov. 2013. 

International conference papers  

D. Alamedine, C. Marque, and M. Khalil, “Binary particle swarm optimization for feature 
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11-13 September 2013. (Oral presenttaion) 
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Chapter 1: Clinical problem: detection of 

Preterm Labor by means of uterine 

electromyography 

1.1 Introduction 

For most pregnant women the period of pregnancy occurs without difficult and the woman gives 

birth at term that is between 37 and 40 weeks of pregnancy. However, for the others, this period 

may end prematurely and induce serious complications, when the woman gives birth before 37 

weeks of pregnancy. This is called premature/preterm labor (or preterm birth). Preterm birth is a 

major cause of neonatal morbidity and mortality. The medical, physiological and socioeconomic 

consequences of these prematurity are important. Indeed some days more in utero can improve 

the maturation of the fetus and hence its viability at birth. The early detection of a preterm labor 

(PL) is important for its prevention and, for that purpose, good indicators of preterm labor are 

needed. 

One of the most promising biophysical markers of PL is the electrical activity of the uterus, the 

electrohysterogram (EHG). It permits to monitor the efficiency of uterine contractions during 

pregnancy. The EHG is the signal recorded on the abdominal surface, which represents the 

electrical activity triggering the mechanical contraction of the myometrium. The Goal of this 

thesis is the early detection of preterm labor from the analysis of EHG during pregnancy.  

The purpose of this chapter is to present an overview of the various aspects to be considered in 

this study. We first give background on the physiologic mechanisms of uterus contractility, 

related to the maintenance of pregnancy and to labor induction. We then describe the mechanical 

and electrical aspects of uterine contraction. Concerning the problem of premature birth (causes, 

consequences…) we summarize the actual knowledge as well as some methods that have been 

used previously for the detection of preterm labor. It is known that uterine contractility depends 

on the excitability of uterine cells and also on the propagation of electrical activity to the whole 

uterus. Therefore, we present here an overview of the different excitability and propagation 

analysis that have been done from EHG signals. At the end of this chapter, we give an 
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introduction on the different multichannel recordings used in previous work and then we 

describe the multichannel system for EHG recording and the experimental protocol used in this 

thesis. We conclude this chapter by presenting the different goals of this work. 

1.2 Anatomy and physiology of the uterus 

1.2.1 Uterus structure 

The uterus is a hollow muscular organ involved in the female reproductive system in which the 

fetus is developing during pregnancy. The anatomy of the uterus includes three portions: the 

fundus, which corresponds to the upper portion, the corpus which is the main part of the uterus 

including uterine cavity, and the narrow, lower section named the cervix.  

The uterus is located above the vagina, midway between the bladder and the rectum. The non-

pregnant uterus weighs 50 to 70 g and measures approximately 7.5 cm in length, 4 to 5 cm in 

width at its upper portion, and 2 to 3 cm in thickness [1] (Figure 1.1).   

The uterine wall, which is thick, is formed of three layers (Figure 1.1): endometrium, 

perimetrium and myometrium [2]. The endometrium is the inner layer that lines the uterus. It 

consists of glandular cells that produce secretions. This membrane thickens to prepare the uterus 

for implantation of a fertilized egg.  The perimetrium is the outer layer enveloping the body of 

the uterus and part of the cervix. The middle layer is the myometrium and forms the larger part 

of the uterine wall. It is composed of three layers of smooth muscles. This layer has an active 

role during pregnancy. It increases both by hypertrophy of the existing cells and by 

multiplication of the cell number. During the last stage of gestation, the smooth cells reach a 

maximum length of 300 μm and a maximum width of 10 μm [3]. The interaction of myosin and 

actin filaments produces the contractions of smooth muscle cells. When delivery occurs, the 

electrical activity generated by the smooth muscle cells in the myometrium, produces rhythmic 

contractions, which lead to birth.  
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Figure 1.1: Female reproductive system [4]. 

1.2.2 Mechanical activity of the uterus 

The gravid uterus includes a phase of relative quiescence during most of the pregnancy, followed 

by a period of activity leading to birth. During the active phase, the Intra Uterine Pressure (IUP) 

permitted to evidence two types of pregnancy contractions:  

- Contractions of low IUP amplitude, which have a very local influence, named Low Amplitude 

High Frequency (LAHF) contractions. They occur during the first trimester of pregnancy and 

appear with a frequency about 1/min. 

- Contractions of higher IUP amplitude but of lower frequency of appearance (from 1/day at the 

beginning to 1/hour) that appear at mid-pregnancy. These contractions are called Braxton Hicks 

contractions. Their influence extends to a larger portion of the uterus. During the last weeks of 

pregnancy, Braxton Hicks contractions become stronger and more frequent.  

Then, when reaching the final term, the cervix starts to soften and dilate and contractions 

progressively evolve in amplitude and frequency. 
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At the beginning of labor, the propagation of electrical activity increases significantly. The 

contractions partially propagated of the end of pregnancy disappear and are replaced by labor 

contractions. These intense and frequent contractions propagate to the entire uterus and induce 

the opening of the cervix and expulsion of the fetus [5]. 

1.2.3 Electrical activity of the uterus 

Each uterine contraction occurs after the generation and propagation of electrical activity in the 

myometrium cells [6, 7, 8]. Several authors have studied the changes in the electrical activity of 

the uterus during pregnancy to understand the changes in the characteristics of the myometrial 

contraction occurring before delivery. It has been shown that the electrical activity depends on 

two parameters related to the contractile process: the excitation and the propagation of the 

electrical activity. The evolution of uterine contractions, from weak and inefficient during 

pregnancy to strong and efficient during labor, is therefore related to an increase in cellular 

excitability as well as to an increase in the synchronization of the entire uterus [6]. Giving birth 

occurs after regular and efficient uterine contractions, which cause dilation of the cervix and 

push the baby out. 

1.2.3.1 Cellular excitability 

The electrical activity can be characterized using two types of potential: the resting potential and 

the action potential. The difference between the negative inside and the positive outside of an 

inactive cell corresponds to the resting potential. When recording the electrical activity of a 

membrane, the resting potential is unstable. It is formed of a slow wave of small amplitude, 

responsible for the electrical base lines. Above a certain threshold of variation of the resting 

potential, the action potentials are generated. The action potential is due to sudden variations in 

the permeability of the cell membrane, and corresponds to a reduction of the positivity of the 

external potential to the inner one. In the uterine contractions, these action potentials are often 

grouped by bursts. During pregnancy, the physiological electrical activity is composed of 

discontinuous bursts of action potentials (figure 1.2). This inconstant electrical activity has the 

consequence of the existence of irregular uterine contractions, of low intensity and localized to 

certain parts of myometrium. On the other hand term and labor uterine electrical activity is 

composed of regular bursts with several peaks of action potential (figure 1.2) and propagated to 
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the entire myometrium in a short time, leading to regular intense contractions [9]. These latter 

contractions induce delivery generating cervical dilation and expulsion of the fetus.  

 

 

 

 

 

Figure 1.2: Electrical activity of rat uterus at different terms of pregnancy [10]. 

1.2.3.2 Uterine synchronization 

The propagation of the electrical activity in the uterine muscle is ensured by a local electric 

potential propagation between active cells to their inactive neighbours, electrically coupled 

through local ionic currents [11]. Therefore, myometrial cell can either be excited by the action 

potentials from a neighboring cell (it’s called "pacefollower") or trigger its own potential (it's 

named "pacemaker"). However, myometrial cells may alternatively be "pacemaker" or 

"pacefollower" cells. Furthermore, there is no fixed pacemaker zone in the uterus. Any cell can 

generate a burst of activity. The "pacemaker" cell can change from one contraction to another.  

In addition, the inter-cell electrical coupling is improved by the presence of gap junctions (GJ). 

These gap junctions are areas where the membranes of two adjacent cells form pores allowing an 

electrical coupling [5, 6]. They are low resistance zones between myometrium cells that permit 

them to communicate. It appears that the gap junctions have a significant role in the development 

of a synchronous electrical activity when approaching delivery. During gestation, the number of 

junctions is much low. The GJ are created in large number few hours before delivery, ensuring 

the development of a synchronized muscle activity (figure 1.3) [12]. The uterine coordination is 

much less efficient during pregnancy than for the labor, permitting the pregnancy to proceed 

smoothly. 
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Figure 1.3: Evolution of GJ surface during Pregnancy, Labor and Post-Partum [12]. 

1.3 Problem of preterm labor  

Preterm birth, that is, birth before the 37
th

 week of pregnancy, remains a major problem in 

obstetrics. In Europe and other developed countries, the incidence of preterm birth is between 5 

and 12% [13]. Preterm birth accounts for 75% of perinatal mortality and about 50% of infant 

long-term mortality [13]. Infants born prematurely are at high risk of mortality as well as health 

and development problems [13, 14]. For the infant, the risks are:  

 neurological development 

 lung problems 

 psychological problems 

 mental retardation 

Despite significant technological advances in the development of intensive care in perinatology, 

these problems persist. Premature births also cause many affective and economic costs, for 

families and Society. Despite increased knowledge and understanding of the phenomena 

involved in the onset of premature labor, and despite improvements in obstetric care to attempt to 

reduce the incidence of premature births, the number of premature births has increased in recent 

years in most industrialized countries [13].  

It has been proved that a week more in utero reduces the risk of neurosensory deficiencies. It is 

crucial to develop efficient methods to predict preterm labor. Once preterm labor is detected, the 

treatment consists on administrating the Mother tocolytic agents (inhibitors of uterine 
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contractility), to relax the uterus delay the delivery. The earlier the administration, the more 

efficient the treatment is. But methods currently used in obstetric are neither precise nor reliable 

enough to detect early the threat of premature birth. We thus need a reliable method for the early 

detection and prevention of premature delivery threat. 

1.4 Methods for monitoring pregnancy 

One of the aims of pregnancy monitoring is to differentiate normal pregnancy contractions, 

which are inefficient to those, efficient, which could cause a dilatation of cervix, thus inducing a 

premature birth. The current methods used in obstetric for pregnancy monitoring, are based on 

different indicators, most of them being inefficient for a reliable detection of preterm labor: 

Intrauterine pressure (IUP), the mechanical effect of uterine contraction, is the only direct 

method providing precise information concerning uterine contractions efficiency. A catheter is 

inserted into the uterine cavity and connected to a pressure sensor, giving information on the 

duration, amplitude and frequency of appearance of the contractions [15]. Despite the accurate 

information provided by IUP, its major drawback is its invasiveness. IUP cannot clearly be used 

during pregnancy as it requires rupture of the membranes in order to insert the catheter into the 

amniotic sac.  Therefore, it can increase the risk of infection or accidental labor induction [9]. 

Tocography being external and non-invasive, is the most widely used method for monitoring 

uterine contractions during pregnancy. This device contains a force sensor placed on the 

mother’s abdomen, usually over the uterine fundus. This sensor measures the deformation of the 

abdomen as a result of a contraction [15, 16]. Opposite to the IUP measurement, external 

tocography is widely used for the non-invasive monitoring of pregnancy. But it does not give an 

accurate information on the mechanical effect of contractions. It only permis to detect the 

number of contractions over a given time interval (usually 10mn). However, it is not possible to 

characterize the efficiency of contractions by means of external tocography. It has been shown 

that this parameter is not a good predictor of preterm delivery. 

Biological tests, such as fibronectin, have been clinically used for the prognosis of premature 

births [17], although they have a low predictive value. 
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Clinicians also monitor several other indicators, like: cervical dilation and effacement, vaginal 

bleeding, or ruptured membranes [18]. But these indicators have had limited success in reducing 

premature birth. For example, the measurement of cervical dilation is not a reliable indicator of 

preterm labor. Indeed, a high proportion of women with cervical dilation during pregnancy, give 

birth to term, even without administration of tocolytic agents. In this context, a test called Bishop 

score, is made from different parameters evaluated by vaginal examination [19] to foresee 

impending birth. However, since these parameters are subjective and have a high variability 

within and between observers, this test has a low predictive value. 

A noninvasive technique named light-induced auto fluorescence (LIF) has been proposed for 

labor monitoring [20]. It attempts to evaluate optically the concentration of collagen in cervical 

tissue. The result shows that this technique has the capability for estimating the cervical status 

(softening, ripening), which could give information for preterm labor prediction. This technique 

is not used in routine practice. 

By using the measurement of cervix length via endovaginal ultrasonography, good predictive 

values were obtained only after the appearance of symptoms of preterm labor [21]. Therefore, a 

limited degree of success is obtained when using this technique to detect preterm labor. 

Additionally, the measurement of the cervical length using this technique is not reliable because 

it is influenced by the varying amount of urine in the bladder [17]. 

Magnetomyography (MMG) measures the magnetic fields associated with the uterine action 

potentials. It is a noninvasive technique.  A device based on 151 magnetic senso array were used 

to MMG recording of spontaneous uterine activity [22]. Due to the high cost of this equipment, 

its use remains limited to research. 

1.5 A new method for Preterm labor detection: Uterine Electromyography 

A contraction of the uterine muscle occurs due to the generation of electrical activity in a given 

uterine cell that spreads to other, neighboring cells. The evolution of uterine contractions, from 

weak and inefficient during pregnancy to strong and efficient during labor, is therefore related to 

an increase in cellular excitability as well as to an increase in the synchronization of the entire 

uterus [6].  
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One of the promising methods to monitor the efficiency of uterine contractions during pregnancy 

is the analysis of the electrical activity of the uterine muscle, the electrohysterogram (EHG) [23], 

recorded on the mother’s abdomen [24]. EHG consists of the summation of the electrical activity 

generated by the active uterine muscle cells, plus the noise related to corrupting electrical and 

mechanical activities.  

EHG, recorded externally, has been demonstrated to be representative of the uterine electrical 

activity when recorded internally [5, 25]. According to these results, we can expect that this non-

invasive recording of the uterine EMG will provide information on the excitability of myometrial 

cells and on the propagation of the electrical activity. Therefore, the EHG analysis has been 

proposed as a new technique to assess the contractile activity of the uterus during pregnancy and 

to give accurate information on the physiology of uterine contraction [5, 26].   

The EHG, recorded by using surface electrodes placed on the abdomen, is characterized by a low 

frequency activity (0.03 to 0.1 Hz), with a superimposed activity of higher frequency (FW, fast 

Wave: 0.3 to 2 Hz). The low-frequency signal is considered as resulting from mechanical 

disturbances induced to the deformation of the abdomen under the effect of contractions [27]. 

Conversely, FW (then parted into two components FWL - Fast Wave Low- and FWH - Fast 

Wave High) is related to uterine contractions. The comparison between contractions during 

pregnancy and labor showed that their energy is mainly in the 0.2 - 3 Hz frequency band [28]. It 

has been shown that there is nevertheless a difference in frequency content between the two 

types of contraction (pregnancy and labor). Indeed, there is a shift towards higher frequencies of 

contractions, as contraction efficiency progresses [28]. 

During the last 15 years, many research teams have worked on the possible detection of preterm 

labor by means of external EHG recording and processing [23, 29]. The most important studies 

based on excitability and propagation parameters are presented below. 
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1.5.1 Parameters extracted from EHG 

As previously presented, uterine contractility depends on the excitability of uterine cells and   on 

the propagation of the electrical activity to the whole uterus [5]. Many teams have tried to extract 

from EHG signals features related to these two physiological phenomena, in order to get 

information relevant to labor detection or preterm labor prediction. The EHG signal has been 

studied mainly after segmentation of the electrical bursts corresponding to the mechanical 

contractions of the uterus [30].  

Several tools of EHG signal processing have been used first to analyze the excitability (linear 

method and nonlinear method) from processing only one EHG lead (monovariate analysis), and 

then the propagation of uterine electrical activity, by using correlation between 2 EHG leads 

(Bivariate analysis). Linear methods, in both time and frequency domains, were the first used to 

extract features from one EHG signal.  Recently, much attention has been paid to the use of 

nonlinear analysis techniques for the EHG characterization. Additionally in the last few years, 

several teams focused on the study of uterine synchronization based on multi-electrode EHG 

recordings. They studied EHG linear and/or non-linear dependencies in order to discriminate 

between labor and pregnancy contractions. 

The paragraph below aims to expose a bibliographic study of the tools of EHG signal processing 

used to present. 

1.5.1.1 Excitability analysis - Linear parameters 

The first parameters used for the characterization of uterine contractility/excitability were 

extracted from the time domain [20, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37]. Then several EHG 

analysis and characteristics extraction were made in other domains.  These include frequency 

representation, through Fourier transform and time-frequency representation or wavelet 

transform.  

In the frequency domain, the power spectral density (PSD) of the electrical activity has been 

used in several studies. By using PSD, several variables were calculated, such as peak frequency, 

[9, 29, 38, 39, 40, 41, 42, 43, 44, 45], mean frequency [46], median frequency [33, 44, 47, 48] 

and the ratios of the energies contained in several frequency bands, or the relative energy, have 

also been used for the characterization of the efficiency of contractions [30]. 
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Among the earliest approaches was that by Marque et al. [28] who computed the relative energy 

in two specific frequency bands, extracted from the power spectrum density (PSD). They noticed 

a shift toward higher frequency when comparing late pregnancy to labor contractions. Then, they 

applied to each selected EHG burst, two temporal features (duration, relative magnitude), 

fourteen frequency features calculated from the PSD (relative energy in 10 bands, peak 

frequency, median frequency, frequency kurtosis and skewness coefficients), and four features 

extracted from the instantaneous frequency IF (minimum value and its time of occurrence, 

maximum value and its time of occurrence) [33, 41]. Using the cross-correlation matrix, they 

chose to retain only the least correlated variables (correlation coefficient <80%) giving thus 12 

features: duration of the contraction, relative magnitude, B2 (0.3–0.6Hz), B3 (0.6–0.9Hz), B4 

(0.9– 1.2Hz), B5 (1.2–1.5Hz), high-frequency bands BHF (1.5– 3Hz), kurtosis coefficient, 

maximum IF value, relative associated time, minimum IF value and relative associated time. 

Vinken et al. indicated that peak frequency in both human and animal studies may be the most 

predictive of true labor [43]. Additionally, a study [29] shows that there are statistically 

significant differences in the mean values of peak frequency and deviations in the EHG 

recordings during long-term work (TL) and non-working time (TN) and also between preterm 

labor (PTL) and non-preterm labor (PTN). 

Maner et al. [39] also used the peak frequency to detect preterm labor computed from EHG 

recorded on 99 women 48h, 24h, 12h, and 8h from term delivery, and 6 days, 4 days, 2 days, and 

1 day from preterm delivery. They noticed that the PSD peak frequency increased as the 

measurement-to-delivery interval decreased. This result is obtained by several studies [38, 39, 

40, 42, 49]. 

Sikora et al. [44] also used one temporal feature, named intensity of the contraction (average 

value of the rectified EHG in 1-min interval) and also 3 features extracted from the PSD (power, 

median frequency and peak maximum) computed from EHG recorded on 27 women in normal 

labor, 21 women with symptoms of threatened preterm labor and 14 women in the first labor 

period. They conclude that power, median frequency and peak frequency permit to discriminate 

labor and pregnancy contractions (using a Lagrangian Support Vector Machines), with a better 

efficiency than when using features extracted from the mechanical effect recorded externally 

(external tocography). 
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Moslem et al [48] used four frequency parameters (mean frequency, peak frequency, median 

frequency and the 95%-limit frequency) extracted from 50 contractions randomly selected from 

each class (labor vs. pregnancy). After comparing their classification performances (pregnancy 

vs. labor) using receiver operating characteristic (ROC) curve analysis, they indicated that 

median frequency is the best frequency parameter that can be used for discrimination between 

pregnancy and labor contractions. 

Some authors have also used time–frequency methods such as wavelet decomposition [50, 51] to 

characterize EHG. They extracted relevant parameters, after the decomposition into details 

coefficients. Diab et al. calculated the variances on five selected detail levels [51]. In this study, 

wavelet decomposition was applied on real and simulated bursts obtained after autoregressive 

modeling of EHG for pregnancy and labor. Arora et al. [50] computed the relative wavelet 

energy of each detail of a 4 level decomposition. These values formed the input of different 

classifiers. Both works indicate that wavelet decomposition provides a pertinent approach for 

discriminating pregnancy and labor EHG bursts. Lu et al. [52] used the wavelet packet 

decomposition to discriminate between preterm signals and term signals. 

Wavelet packet decomposition has also been used to reduce the width of the frequency band 

analysis. A study has decomposed each contraction, selected from EHG recorded during 

pregnancy and labor, on packets of 3 decomposition levels [53]. Then, the authors computed the 

relative energy for each packet. The results showed a decrease in the amount of energy in the 

low-frequency bands associated with an increase in other bands that represent the high 

frequencies throughout pregnancy. Furthermore, they observed a noticeable difference in the 

energy distribution between two studied classes (pregnancy and labor). 

In [54] they calculated the Normalized Wavelet Packets Energies after decomposition of the 

EHG into a 3-level wavelet packet tree. A principal component analysis (PCA) was applied on 

the values of the normalized energies of the 8 packets of the third level in order to reduce 

dimensionality. Then these data were used as inputs to an artificial neural network (ANN) 

classifier with a Gaussian radial basis function (RBF) to classify labor and pregnancy 

contractions. The results of this study show that the high percentage of correctly classified data 

obtained indicates that Normalized Wavelet Packets Energies can be used to classify EHG 

signals into two classes of contractions (pregnancy vs. labor). 
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1.5.1.2 Excitability analysis - NonLinear parameters 

In an attempt to improve the results obtained using linear methods, and as the EHG, like other 

biomedical signals, seems to present some nonlinear characteristics, several measures have been 

proposed for detecting nonlinear characteristics in the EHG.  

Radomski et al. [55] have applied sample entropy to identify regularity in uterine EMG. The 

evaluation of this method was performed on segmenting contractions from signals recorded from 

66 pregnant women divided into several groups (26 term labors, 20 preterm labors and 6 post-

partum periods). This study shows that the analysis of signals using this method is better than the 

approximate entropy used by other and allows discrimination between different dynamic states 

of uterus. 

Vrhovec et al.  [56] show that we can use sample entropy to evaluate the progress of labor.  

Ivancevic et al. [57] have presented a review on the nonlinear parameters used for the prediction 

of preterm birth. One of the studied methods of interest is the Lyapunov exponent that studies the 

stability of the signal and its sensitivity to initial conditions. 

Moslem et al. [58] used detrended fluctuation analysis (DFA) to study the law, which governs 

the evolution of longterm correlations in EMG uterine. DFA was applied to EHG recorded on 11 

women (5 pregnancies and 6 labors). Based on this method, the results indicated that pregnancy 

contractions are less correlated than labor contractions. They stated that this result is important 

for the detection of premature birth threats. 

Diab et al. [59] compared the performances of several nonlinear methods (time reversibility, 

sample entropy, Lyapunov exponent and delay vector variance) on synthetic signals. The aim 

was to test their sensitivity to the change of signal complexity, with or without noise. Then, they 

applied these methods on contractions recorded during pregnancy and labor. Results on synthetic 

signals showed that time reversibility are less sensitive to changes in noise. On real signals, the 

results show a clear superiority of time reversibility in classifying pregnancy and labor EHG. 
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1.5.1.3 Synchronization analysis – propagation/correlation parameters 

Another approach, the bivariate analysis, has been developed to characterize the uterine 

synchronization, by means of the analysis of bipolar EHG propagation. These recently used 

methods can be divided into two types: phase synchronization (mean phase coherence and phase 

entropy) [60]; linear (R
2
) and nonlinear (H

2
) correlations [61]. They used these methods to 

characterize the synchronization between 2 EHGs, recorded at different locations on the 

abdomen, and study either its evolution during normal pregnancy, or its ability to discriminate 

pregnancy and labor contractions. The results indicated that nonlinear correlation between 

contractions during labor is stronger than during pregnancy. Results also show an increase in 

phase synchronization when passing from pregnancy to labor [61]. 

A study [62] compared several coupling methods, two nonlinear methods -nonlinear correlation 

coefficient (H
2
), General synchronization (H) and one linear method, Granger causality (GC). 

They try to test the sensitivity of these methods to some characteristics of signal (nonstationarity, 

frequency band) or signal recording choice (bipolar or monopolar recording) in order to improve 

the performance of the coupling detection methods to improve the classification of contractions 

of pregnancy and labor EHG bursts. They found that using a combination of two preprocessing 

steps (windowing-preprocessing step, filtration step to retain only the low frequency band of the 

EHG (FWL)), leads to an increasing of H
2
 performance. H method performance is highly 

influenced by the nonlinearity of EHG signals and therefore requires further investigation. 

Monopolar recordings are better than bipolar one. 

1.5.1.4 Combination of parameters 

Other authors tested simultaneously different methods on the same population, in order to study 

which feature can separate EHG leading to term and preterm deliveries. Fele-Žorž et al. [47] 

compared four linear methods (root mean square value, peak and median frequency, 

autocorrelation zero crossing) and three nonlinear methods (Lyapunov exponent, correlation 

dimension and sample entropy). For the pretreatment of each signal, they defined three band-

pass Butterworth filters (0.08–4, 0.3–4 and 0.3–3 Hz). Their results indicate that with the 0.3–3 

Hz frequency band, the median frequency and sample entropy gives the best statistical 

differences between term and preterm delivery registered before the 26th week (p = 0.03, p = 
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0.035), among all term and all preterm delivery records (p = 0.012, p = 0.011), and between term 

delivery registered before and after the 26
th

 week (p ≤ 0.001). 

Some studies have also compared linear methods with bivariate propagation methods. Terrien et 

al. [46], on internal uterine EMG recorded on pregnant women, compared the mean frequency, 

the minimal and maximal frequencies and the frequency of the maximal energy obtained either 

from the EHG or from 2 (or 3) ridges extracted from the EHG (representing 3 EHG frequency 

components separately). They also computed the nonlinear correlation coefficient between the 

signals reconstructed from the 3 ridges extracted from two EHG bursts recorded at different 

locations for a given contraction. They found that the mean frequency of the low (FWL)- and 

high-(FWH) frequency components as well as nonlinear correlation coefficient computed from 

the low-frequency component (FWL) gives the best results in terms of labor prediction. 

Lucovnik et al. [45] compared propagation velocity, peak frequency and two clinical methods 

(Bishop score, Transvaginal cervical length) in order to test the accuracy of these methods for the 

diagnosis of preterm labor. The results revealed that the combination of the velocity and the 

maximum frequency gives the best results and permits to predict preterm delivery within 7 days. 

In [63] Fergus et al. focused on the classification of term and preterm labors. An open dataset, 

containing 300 records (38 preterm and 262 term) are used in this study. Four features are 

computed from EHG signal (root mean squares, peak frequency, median frequency and sample 

entropy. To validate the choosing features, the discriminant capabilities of each feature are 

determined using principal component analysis (PCA). The results of PCA indicate that the 

choosing features have discriminant capabilities. Additionally in this study they used additionally 

features (clinical features like: age, parity (number of previous births), abortions, weight, 

hypertension, diabetes, placental position, first and second trimester bleeding, funnelling and 

smoking (new dataset containing 19 preterm records and 150 term records). Several machine-

learning classifiers are used in this study in four approaches (see [63]). The results show that 

oversampled TPEHG dataset (Data in the minority class is generated using oversampling), with 

combined additional features using the POLYC classifier gives the best result.  

Baghamoradi et al. [64] used sample entropy and thirty cepstral coefficients (the first ten cepstral 

coefficients of each channel) as features to classify term and preterm delivery labors. They 
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compare separately the average classification rate of thirty cepstral features and that of subset of 

features selected in several channel through sequential forward selection (fifth and eights cepstral 

coefficients from the first channel (S1) and tenth coefficient from the third channel (S3)) and 

finally that of sample entropy. The result of this study showed that selection of optimum features 

from informative channels using sequential forward selection can improve the average 

classification rates. 

1.5.2 EHG Recording 

In order to record EHG signals, different numbers and locations of electrodes positioned on the 

woman’s abdomen had been used. The influence of the number and position of the recording 

electrodes has been already used.  In several studies, only a limited number of electrodes (2, 3 

and 5) were used. 

1.5.2.1 Electrode number and position 

Marque et al. [23] used bipolar Ag/ AgCl surface electrodes (8 mm diameter, 2.5 cm spacing) for 

recording EHG. A reference electrode was positioned on the women’s hip. They indicate that the 

best electrode position was the median vertical axis of the woman’s abdomen. 

In [65], EHG was recorded with an electrode pair positioned in the middle of the median axis 

near the umbilicus and another one positioned 5cm left of the middle electrodes. They justified 

this choice by indicating that at extremities there are more visceral tissues between the skin and 

the uterus than on the middle of the median axis of woman’s abdomen, impeding thus a correct 

uterine EMG recording. 

In order to identify a suitable electrode configuration, Rabotti et al [66], placed 11 electrodes on 

the woman’s abdomen and then calculate the average SNR in each electrode. The highest 

average SNR was obtained on the lower vertical median line of the abdomen, especially on the 

region immediately below the umbilicus. They describe these results by two physiological 

phenomena. On the one hand, the distance between the electrode on the skin and the signal 

source in the myometrium in the vertical median line on the abdomen is reduced with respect to 

the lateral sides [23]. On the other hand, due to the uterus movement during contraction, the 

position of the uterus relative to the abdominal wall in the region surrounding the umbilicus 

remains constant even during contractions [5]. Therefore, according to these results they used 
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four unipolar Ag/AgCl electrodes placed on the abdomen and a reference electrode was placed 

on the right hip. 

Randomski et al. [55] used a system containing two bipolar electrode pairs, one Tocographic 

probe and a reference electrode attached on the left hip. The distance between the electrodes 

forming the bipolar channels was fixed at 5 cm. The electrodes were attached in the vertical 

median axis of the woman’s abdomen because they indicate that this position provides a suitable 

signal/noise ratio due to a closer contact and during contractions, more invariant position of the 

uterus in relation to the abdominal wall [67]. 

Fele-zorz et al. [47], Baghamoradi et al [64] and [63], used four AgCl electrodes to record EHG. 

These electrodes were placed in two horizontal rows, symmetrically under and above the 

umbilicus, spaced 7 cm apart. Three bipolar EHG were used in these studies. 

Terrien et al. [68] used two electrodes placed on woman’s abdomen (inter-electrode distance: 

2.1cm, on the uterine median axis, midway between the fundus and the symphysis. A reference 

electrode was placed on the hip of the women. 

Lucovnik et al. [45], used four electrodes positioned around the umbilicus in a form of square 

shape, 2.5 cm electrode-electrode vertical and horizontal inter-electrode distances (measured 

from center to center).  For EHG recording they use differential, bipolar electrode pairs. 

Several studies indicated that this small number of electrodes used in several studies was not 

suitable for a proper study of the propagation in this complex environment represented by the 

uterine muscle and abdominal anatomy of a pregnant woman. To this end, Karlsson et al [69] 

said that it is important to investigate the electrical activity concurrently at different locations on 

the woman’s abdomen. For this reason, they study the propagation of the uterine electrical 

activity recorded on women during labor by using a 16 (4 x 4) monopolar electrode grid 

positioned on the woman’s abdomen (interelectrode distance: 2.1 cm). They put the third 

electrode column of the grid on the uterine median axis, and the 10-11h electrodes on the middle 

of the uterus. Two reference electrodes were placed on each hip of the women. In order to 

increase the signal to noise ratio, they used the vertical bipolar signals (BPi), giving thus a 

rectangular matrix of size 3 x 4.  Rabotti et al [70] used a multichannel EHG recording composed 
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of 64 high density electrodes in order to estimate invasively of the conduction velocity of the 

EHG-action potentials. 

1.5.2.2 Channel selection 

A comparison between the classification performances of several channels has been done in [71, 

72, 73, 74, 75, 76] in order to find which channel gives the best signals classification between 

pregnancy and labor EHG. Sixteen electrodes were used in these studies, based on the vertical 

bipolar signals (Vbi). They tried to benefit from this multichannel recording, thus they proposed 

a new classification approach based on multi-channel analysis of uterine EMG signals, by using 

different types of classifier. The aim was to compare the 12 channels in order to evidence if some 

channels could better classify EHG burts. Each channel provided individual classification and 

the 12 decisions were merged to obtain a final decision. A fusion rule based on the weighted sum 

of 12 decisions showed that this approach could be a solution to the problem of classification of 

the EHG by using different classifiers to evaluate the classification performance of each channel 

from 40 contractions chosen from each class (pregnancy vs. labor). They tested Support vector 

Machines (SVM) with a Gaussian Radial Basis Function (RBF) kernel [71], Radial Basis 

Function network (RBF) [72], Competitive Neural Network (CNN) [73]. The results indicated 

different channels giving either the highest (respectively Vb5, Vb4, Vb10) or the lowest 

(respectively Vb7, Vb8, Vb7) weighs.  

In [75] they tried to find the best combination of channels that can provide the highest 

classification accuracy. However, the result indicates that the highest classification can be 

obtained by the use of 4 bipolar channels (Vb10+Vb2+Vb1+Vb4). 

In [76] the multichannel classification is combined with other signal processing techniques, such 

as multiresolution analysis to improve the classification performance. The classifier used in this 

study is Support Vector Machine (SVM). The results indicate that, for the classification of 

pregnancy and labor, Vb3 gave the highest predictive value while Vb7 got the worst. 
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1.5.2.3 Electrode configuration 

All previously conducted studies on the EHG have processed bipolar signals, in order to increase 

the signal/noise ratio (SNR). In this configuration, the signals recorded by two close electrodes 

are subtracted from each other in order to generate a single bipolar signal. The advantage of this 

configuration is to reduce the common mode noise and to obtain a signal having a correct SNR. 

But this configuration introduces a bias for studying the propagation, as two adjacent bipolar 

signals can share a same electrode. Monopolar EHG could be more interesting to get rid of this 

bias and increase the spatial resolution when processing signals. For this reason, Hassan et al 

[77] developed a powerful method to filter monopolar EHG, and thus obtain a correct SNR 

permitting to study the propagation of the electrical uterine activity. These tools are based on 

combination of canonical component analysis (CCA) and on EMD (Empirical Mode 

Decomposition). The SNR obtained by this method CCA-EMD is larger than with bipolar EHG 

and with monopolar EHG filtered by other methods. Therefore, this denoising method allows us 

to obtain usable monopolar signals directly to study the synchronization of uterine activity. 

1.5.3 Multichannel system for standardized EHG recording: the TMSi system 

As indicated above the multichannel EHG recording seems suitable for a proper study of the 

propagation in this complex environment represented by the uterine muscle and abdominal 

anatomy of a pregnant woman [69].  As in a labor room, the placement of a large number of 

electrodes for measuring EHG takes time and is difficult to perform, a project started in Iceland 

in 2009 in order to create a new design that reduces the inconvenient of multiple electrode 

positioning, by defining a standard position of recording electrodes. The new design involves a 

guide with holes, guiding the placement, as well as adhesion of the electrodes by means of a 

double-coated adhesive sheet. A simple frame ensures correct positioning of the guide onto the 

adhesive sheet, while positioning the electrodes. With about 2 cm inter-electrode distance, the 16 

electrodes (8mm in diameter) are arranged in a 4x4 matrix. This system permitted us to 

standardize the acquisition of EHG signals within the framework of a previous european project 

(BioModUE_PTL, http://www.erasysbio.net/index.php?index=268), involving partners from 4 

countries (France, Iceland, the Netherlands, Slovenia). 

The standardization of EHG measurements has been initiated by using a multielectrode system 

composed of a 16 channels device, commonly used for investigating sleep disorders (Embla 

http://www.erasysbio.net/index.php?index=268
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A10). During the BioModUE_PTL, a new multielectrode system has been used (Porti 32, TMSi) 

that offers recording of up to 32 channels (Figure 1.4). Based on this system, we standardized the 

protocol using reusable Ag/AgCl electrodes (8mm diameter), positionned as a 4x4 matrix placed 

on the woman’s abdomen (the third electrode column of the grid being set on the uterine median 

axis, and the 10-11h electrode on the middle of the uterus), with two reference electrodes on each 

of her hips. The collected signals are fed into an amplifier and then to an A/D converter (PORTI 

32). Then, by using an optical fiber and a USB cable, the signals are collected by a PC where 

they can be saved on disk or uploaded to an online database. Another signal called TOCO 

(output of a tocographic probe) is also recorded using the probe placed above the electrode 

matrix (figure 1.4). This signal is further used for EHG bursts segmentation. 

 

Figure 1.4: The new multichannel system: 4x4 electrode matrix placed on the women abdomen 

with two reference electrodes on the hip and the tocographic probe. 

Before the placement of the electrode matrix and of the two reference electrodes, the skin is 

carefully prepared using an abrasive paste and alcoholic solution. After the recording, we 

followed the pregnant women in order to label the signals as either pregnancy or labor. When the 

woman gave birth within 24 hours, the signal was labeled “labor”. If the delivery occurred later, 

the signal was labeled “pregnancy”.  
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The measurements were performed at two hospitals in France and Iceland. In Iceland, the 

measurements were performed at the Landspitali University Hospital, using a protocol approved 

by the relevant ethical committee (VSN02-0006-V2). In France, the measurements were 

performed at the Center for Obstetrics and Gynecology (Amiens), using a protocol approved by 

the relevant ethical committee (ID-RCB 2011-A00500-41)). 

To increase the signal to noise ratio, we calculated the vertical bipolar signals (Vbi), obtaining 

thus 12 bipolar signals (Figure 1.5). The monopolar and bipolar bursts of uterine electrical 

activity that correspond to contractions were manually segmented, based on the TOCO signal 

recorded simultaneously. The tocodynamometer paper trace was digitalized in order to facilitate 

the segmentation of the uterine contractions (Figure 1.5). 

 

 

Figure 1.5: Digitized tocodynamometer paper (Top), monopolar signals (middle), corresponding 

bipolar signals (bottom). The blue lines define the beginning and the end of the contraction 

according to TOCO. 

Recently monopolar burst were denoised by using the powerful EHG filtering methods 

developed by [77] previously presented, permitting thus to compute all parameters from 

monopolar and bipolar EHGs. 
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1.6   Thesis aim and work 

1.6.1 Thesis goal 

The general aim of this thesis is the early detection of Premature Threat of Labor (PTL) from the 

analysis of the excitability and of the propagation of the uterine electrical activity. As presented 

above, several signal-processing tools have been developed by many teams for the analysis of 

the excitability and the propagation of the uterine electrical activity (linear parameters, nonlinear 

parameters and parameters related to the EHG propagation) to find specific information that 

differentiates pregnancy and labor contractions. Therefore, a large number of parameters have 

been extracted from the EHG in numerous studies, based on very different populations and 

recording protocols. These different data make difficult the comparison of their pertinence for 

PTL diagnosis purpose. A large number of parameters increases the computational complexity in 

a diagnostic objective. Reducing the size of the parameter set through the elimination of 

irrelevant and/or noisy parameters is very important for pattern recognition. A multichannel 

system composed of 16 channels is used in our work. Extracted parameters from these channels 

(using monovariate analysis) or combinations channels (using bivariate analysis) provide a large 

dimension of features causes a complex classification. Therefore a channels and combinations 

channels selection is performing in our thesis. Furthermore, the constitution of a statistically 

significant signal database is very important to develop diagnostic tools (pregnancy monitoring, 

detection of Premature Delivery Threats).  

This thesis work is thus based on several parts: 

- Experimental part: Consists in collecting signals from different populations of pregnant women 

(normal pregnancies or at risk), with 16 electrodes (TMSi system) attached to the woman's 

abdomen with the standardized protocol, in order to create a database sufficient for the 

development of diagnostic tools. These recordings are made at the CGO (Gynecologic/Obstetric 

department of the Amiens hospital, the reference center for risk pregnancy); the already available 

database has thus been enriched by recordings made on pregnant women during normal or risk 

pregnancies. 

- Feature selection part: A literature review has been done in our thesis, to define the first set of 

relevant parameters to be tested, for monovariate or bivariate analysis. The reduction of feature 
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dimensionality through the elimination of irrelevant and noisy features is very important. The 

main aim of our work is to compare all the parameters of interest, extracted from the 

bibliography, computed on the same EHG signals corresponding to a standardized recording 

database, in order to select the most pertinent parameters, which can discriminate between 

pregnancy and labor contractions. This will permit a reduction of the parameter number used for 

diagnosis purpose. Therefore a feature selection step is applied in our work, on the set of 

parameters selected after the literature review, and on the whole EHG signals corresponding to 

the standardized recording database. Several methods have been used for feature selection. The 

first one, developed in this work, is based on the measurement of the Jeffrey divergence (JD) 

distance between the histograms of the parameters of the 2 classes, pregnancy and labor. The 

other methods are existing Data Mining methods extracted from the literature. Dimensionality 

reduction classical methods are also used in order to compare these results with those of feature 

selection methods.  

- Channels and combination of channels selection: In continuation of the previous studies [71-

75], we will also try to select the most relevant channels (monovariate analysis) and the best 

combination of channels (bivariate analysis) by applying channel selection methods to the whole 

available channels collected by our matrix.  

We will also test in these two last parts (feature selection, Channels and combination of channels 

selection) the clinical diagnosis potential of different configurations, by comparing the results 

obtained by using either monopolar or bipolar EHG.  

1.6.2 The used databases 

Two databases are used in our work:  

- Database 1, correspond to signals recorded on 22 Icelandic women, during the first step of 

standardization: 11 women during pregnancy (33–39 weeks of gestation) and 11 during labor 

(39–42 weeks of gestation), and signal recorded on 3 French women: 2 women during pregnancy 

(33–39 weeks of gestation) and 1 during labor (39–42 weeks of gestation) (Table 1.1).. After the 

manual segmentation of EHG bursts, we obtained 106 pregnancy bursts and 106 labor bursts 

corresponding to identified contractions (see women information in Appendix A, Table A.1 and 

Table A.2). The sampling frequency is 200 Hz. 
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- Database 2, correspond to signals recorded during and after the BioModUE_PTL project on: 41 

Icelandic women: 27 during pregnancy and 14 during labor; on 3 French women: 2 during 

pregnancy and 1 during labor; on 3 Slovenian women: 3 during pregnancy (Table 1.1). After 

manual segmentation of EHG bursts, we obtained 290 pregnancy contractions and 189 labor 

bursts corresponding to contractions (see women information in Appendix A, Table A.3 and 

Table A.4). 

The monopolar bursts were denoised by using the EHG filtering methods developed by [77]. 

Then, from these denoised monopolar signals we calculated the vertical bipolar EHG signals 

(Vbi), for the whole pregnancy and labor contractions. The signal sampling is different in these 2 

databases. Some contractions were sampled at 200 Hz and the other at 512 Hz, when using the 

TMSi recording system. We thus downsampled by a factor of 2 these latter one, obtaining thus a 

new sampling frequency of  256 Hz. This database is divided in two parts. The first part is used 

for classifier training and testing and the second for the validation (see table 1.2). 

Table 1.1: Number of women and contractions used in database 1 and database 2 

 Database  1 Database 2 

Pregnancy  Labor Pregnancy Labor 

Icelandic women 11 11 27 14 

French women 2 1 2 1 

Slovenian woman   3  

Number of 

contractions 

106 106 290 189 

 

For the feature selection step and the monovariate analysis, we first used only the bipolar 

channels Vb7 and the CH10 monopolar signals that correspond to the classical positions mostly 

used in the literature. For the bivariate analysis we used the mean value of feature on the whole 

combination of available channels. Then, for the channel selection and channel combination 

selection, we used the whole available channels (12 for bipolar and 16 for the monopolar 

configurations) and the whole available channel combination (132 for bipolar and 240 for 

monopolar). 
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Table 1.2: Number of women and contractions used in database 2 (split data for the 

classification into training, testing and validation part) 

 Part 1 Part 2 

Sampling frequency 

(Hz) 

200 512/2=256 Hz 

Type  Pregnancy labor Pregnancy labor 

Number of women 

for training and 

testing part 

19 10 1 1 

Number of women 

for validation part 

 

11 4 1 0 

Number of 

contractions for 

training and testing 

part 

233 131 7 8 Total number of 

contractions: 

240 pregnancy 

139 labor 

Number of 

contractions for 

validation part 

48 50 2 0 Total number of 

contractions: 

50 pregnancy 

50 labor 

 

1.7 Discussion and Conclusion  

Preterm birth remains a major problem in obstetrics. Therefore, it has been a topic of interest for 

many researchers.  In this chapter we have presented an overview of knowledge about premature 

birth, uterine physiology, as well as the two phenomena that control the generation of uterine 

contraction. Different methods for monitoring pregnancy are described. According to this 

chapter, we can conclude that one of the most promising methods for monitoring uterine activity 

is based on the study of the electrical activity of the uterus as recorded on the mother’s 

abdominal surface, the electrohysterogram (EHG).  

We provided an overview on recording mode of EHG and signal processing, allowing analysis of 

excitability (linear method and nonlinear method) and propagation of uterine electrical activity. 

The new multichannel EHG recordings using in our study was described in this chapter.  
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We notice that a large number of parameters have been extracted from the EHG by many 

researches, in order to find pertinent information to detect preterm birth. Additionally, on these 

multiple studies, the parameters being computed from different signal databases, obtained with 

different recording protocols, it is sometimes difficult to compare their results in order to choose 

the “best” parameter for preterm labor detection. Therefore, the selection of pertinent features is 

a very important problem in pattern recognition. We need reliable feature selection methods to 

reduce the number of features, through the elimination of irrelevant and noisy features. For this 

reasons, in chapter 2 we will present several methods of feature selection to select the most 

significant feature subset extracted from multiple studies in order to identify, on a given 

population, the most pertinent ones and to discriminate between pregnancy and labor con-

tractions. 

As the electrode position seems also important for diagnosis purpose, we will also present the 

results of channel selection (for monovariate analysis) and of channel combination selection (for 

bivariate analysis) in chapter 3. 
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Chapter 2: Feature selection for 

classification of Electrohysterograms 

 

2.1 Introduction  

One of the most common ways to detect preterm labor is to extract features from EHG signals in 

order to find information pertinent for this detection. Numerous types of features have been 

extracted from the electrohysterogram (EHG) on different studies. Using temporal, linear and 

nonlinear parameters, the number of available features becomes very large. Additionally, the 

EHG databases are recorded from different populations and with different recording protocols. It 

is sometimes difficult to compare their results and to select the best features, before applying a 

classification between Labor and Pregnancy. The selection of pertinent features is a very 

important problem in pattern recognition. Therefore, we need reliable feature selection methods 

to reduce the number of features through the elimination of irrelevant and noisy features.  For 

this purpose, in this chapter several methods for feature selection are presented, proposed and 

tested. These features are divided into three types: linear, nonlinear features and features related 

to the EHG propagation. We will firstly give a background on feature selection techniques based 

on “Filter” and “Wrapper” methods. Then, two other parts will be presented in this chapter. In 

the first part, we will propose a selection method based on the measurement of histogram 

similarity or dissimilarity, for a given feature, between the two classes (pregnancy and labor) 

using the Jeffrey divergence method. In the second part, several methods for feature selection 

will be implemented to choose the best subsets for the classification of labor and pregnancy 

contractions. The percentage of correct classification for each subset is calculated for result 

comparison. The comparison of the results from all these feature selection methods will be done 

by using monopolar and then bipolar EHG signals, in order to compare the recording 

configuration influence. 
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2.2 Feature selection methods 

2.2.1 Introduction 

As computer databases and technologies are moving fast, we need a high capacity in computers 

and high level programming tools to analyze data [1]. In classification techniques, the huge 

number of features causes problems in pattern recognition. One of the most important and used 

techniques in data preprocessing for data mining is "Feature Selection" [2, 3].  

Feature selection is generally defined as a search process that is used to find a "relevant" subset 

of features 𝐹𝐵𝑒𝑠𝑡 from those of the starting subset of features 𝐹 (Figure 2.1). The notion of 

relevance of a chosen subset of features always depends on the objective function and system 

criteria. The objective function evaluates candidate subsets and returns a measure of their 

“goodness”. This measure is used by the search strategy to select new candidates.  

Assume that 𝐹 = { 𝑓1 , 𝑓2 , … , 𝑓𝑖 , … , 𝑓𝑚 } is a set of features of size m, where m represents the 

total number of original features and 𝑖 = 1…𝑚.  𝐽  is an evaluation function of a chosen subset 

of features. We assume that the greatest value of 𝐽 will be obtained for the best subset of features.  

The aim of the selection is to find a subset 𝐹𝐵𝑒𝑠𝑡 = { 𝑓𝑠1 , 𝑓𝑠2 , … , 𝑓𝑠𝑗 , … , 𝑓𝑠𝑃 }  of size 𝑃 (𝑃 < 𝑚),

𝑠𝑗 ∈ {1…𝑚},  and 𝐹𝐵𝑒𝑠𝑡  ⊆ 𝐹  such as :  

                     𝐽(𝐹𝐵𝑒𝑠𝑡 ) = Max  𝐽 (𝑆𝐶)          (1) 

where 𝑆𝐶 is a candidate subset of features, 𝑆𝐶 ⊆ 𝐹 and the size of 𝑆𝐶 can be a number, either 

already defined by the user, or controlled by one of the generation methods of subsets which will 

be described in the next section. 
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Figure 2.1: Feature Selection technique 

Therefore, feature selection has several advantages. It reduces the number of features, removes 

irrelevant, redundant, or noisy features. Additionally, it can significantly improve the mining 

performances of learning algorithms such as the speed of learning and the predictive accuracy. 

2.2.2 Feature selection process 

A general procedure proposed by [4] for a feature selection method is shown Figure 2.2. In this 

typical feature selection algorithm there are four steps: subset generation, subset evaluation, 

stopping criterion, and result validation. 

Subset generation is a research strategy [5] that is used to select candidate feature subsets for 

evaluation. Then, an evaluation criterion measures the goodness of this candidate subset, and 

then compares it with the previous best one in order to determine whether this subset is suitable 

or not. If the new candidate subset is found to be better, it replaces the previous best subset. 

These two processes are repeated until a given stopping criterion is satisfied. Finally, a validation 

part is used in order to check the validity of the selected best subset [1]. 
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Figure 2.2: Feature Selection Process (adapted from [4]). 

2.2.2.1 Search procedures 

The subset generation step in feature selection process usually falls into three categories [1]: 

 Exhaustive or complete search: examination of all combinations of feature subsets is 

performed to select the "best" subset of features. In this case, the optimum subset is 

selected. This method requires too much computing and time. The major problem with 

this approach is that the number of combinations increases exponentially with the number 

of features. 

 Heuristic search:  selection is directed under certain guidelines. The algorithms that use 

heuristic search are generally iterative algorithms. Features are iteratively added and 

removed using heuristic search. Therefore, search can start with an empty set and 

successively add features (i.e., sequential forward selection), or start with a full set and 

successively remove features (i.e., sequential backward selection), or start with both ends 

and add and remove features simultaneously (i.e., bidirectional selection). Algorithms 

based on heuristic search are simple to implement and fast in producing results but they 

can complete the process with some risks of losing optimal subsets. 

 Random search: The algorithm used in this search starts with a randomly selected subset 

and may generate the next subset by two ways:  one based on sequential search and the 

other based on the generation of a subset in a random manner. The use of random 

research helps to avoid local optima in the search space. 
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2.2.2.2 Evaluation  

Evaluation is an important part in feature selection. It is used to determine which subset gives the 

optimal solution. We can distinguish 3 categories for evaluation: 

 Filter method:  This technique is generally used for the selection of features. It evaluates 

the relevance of features only by examining their intrinsic properties [6,7]. It is 

considered as a preprocessing step (filtering) before the learning process, this means that 

the evaluation of this technique is independent from the classifier [8]. In the majority of 

cases, a feature relevance score is calculated, and low-scoring features are removed [9].  

The best subset of features obtained by this technique is presented as input to the 

classification algorithm [7]. The procedure of the filter model is illustrated Figure 2.3. 

   The most important measures used in the literature as score or evaluation criteria are [1]: 

 Distance measures: for a two-class classification problem, a feature A is more 

scored than another feature B if A leads to a greater difference between the 

conditional probabilities of the two classes than B [1]. Euclidean or other 

distances can be used here. 

 Information measures or entropy: these measurements determine the information 

gain of a given feature. The Feature A is scored more than B if the information 

gain is greater for A than for B [1]. 

 Measures of dependences or correlations: this describes the ability to predict the 

value of a variable from another. In feature selection for classification, we seek to 

know the strength of feature associated with the class [1]. If the correlation 

between the feature A with class C is greater than the correlation of the feature B 

with C, then the feature A is preferable to the feature B [1]. 

 

Figure 2.3: Filter based feature Selection Process 
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 Wrapper method: The main disadvantage of the filter methods is that they ignore the 

influence of the selected feature on the performance of the classifier. In [10], Kohavi and 

John proposed the wrapper method to solve this problem. This technique evaluates a 

subset of features after using the classification performances (learning and testing) [11]. 

It searches for a good subset using a learning algorithm. The procedure of the wrapper 

model is illustrated Figure 2.4. 

 Embedded method: This technique achieves the selection process inside the induction 

algorithm [6]. The search for an optimal subset of features is included in the classifier 

construction and can be regarded as a search in the combined space of feature subsets and 

assumptions [7]. 

 

Figure 2.4: Wrapper based feature Selection Process 

In our work we use several wrapper and filter methods. Table 2.1 presents the advantages and 

disadvantages of these two techniques. 

  2.2.2.3 Stopping Criteria  

Some criteria must be defined to stop the search process.  Some frequently used stopping criteria 

are [1, 12]: 

 The search is completed 

 A threshold is reached, like minimum number of features or maximum number of 

iterations. 

 There is no more precision improvement, in other words, when there is no possibility of 

finding a subset better than the current subset. 
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Some stopping criteria commonly used are based on the order of features. They are classified 

according to some relevance scores. Those having the highest scores will be selected and 

used by a classifier (filter method). 

Table 2.1: Advantage and disadvantage of filter and wrapper methods [11] 

Method Advantage  Disadvantage  

 

Filter   

 Fast execution 

 Lower computational cost 

 

 No interaction with a classifier 

 

Wrapper   

 Interaction with a classifier 

 

 

 High computational cost 

 Slow execution 

 Risk of overfitting 

 

 

2.2.3 Feature selection methods selected from the literature 

The filter and wrapper methods used in our work are presented below:  

Four filter methods:  

 Jeffrey divergence (JD) 

 F-score   

 Relieff 

 Mutual information based on clustering 

Seven wrapper methods: 

 Sequential Forward Selection (SFS) 

 Sequential backward Selection (SBS) 

 Plus-l minus-r selection (LRS) 

 Bidirectional search (BDS) 

 Sequential Forward Floating sequential (SFFS)  

 Genetic Algorithm (GA) 

 Binary particle swarm optimization (BPSO) 

Filter methods are subdivided in two categories (Table 2.2): Univariate filtering methods and 

multivariate filtering methods. The difference between these two categories is the relationship 
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between features. Univariate filtering methods consist of selecting features by adding, deleting or 

comparing one feature at each iteration. Therefore, the selection of each feature is independent 

from the other selected ones. On the other hand, multivariate filtering methods have been 

introduced using the independency between features. Therefore in this method, we consider all 

features simultaneously [7, 11, 13]. 

Wrapper method can be divided into two categories (Table 2.3) according to the search method. 

These two categories are: Deterministic search algorithm and, randomized search algorithms [7]. 

Table 2.2: Filter methods 

Filter method 

 

Univariate filtering methods Multivariate filtering methods 

 

- Jeffrey divergence (JD) 

- F-score   

- Relieff 

- Mutual information based on clustering (MI) 

 

Table 2.3: Wrapper methods 

Wrapper method 

Deterministic Randomized 

  

 - Sequential Forward Selection (SFS) 

 - Sequential backward Selection (SBS) 

 - Plus-l minus-r selection (LRS) 

 - Bidirectional search (BDS) 

 - Sequential Forward Floating sequential   

(SFFS) 

- Genetic Algorithm (GA) 

- Particle swarm optimization (BPSO) 
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2.2.3.1 Filter method 

A- Jeffrey divergence (JD) 

Histogram is an important tool that represents the statistical characteristics of data. The 

histogram is used to represent the distribution of each feature extracted from the signal to be 

classified. To compare two histograms, a well-known technique named “Jeffrey divergence” has 

been developed to compute the similarity for classification [14]. Therefore, we proposed to 

measure similarity or dissimilarity for a given feature between the two histograms of the two 

classes using the Jeffrey divergence method. This method consists of measuring the bin-by-bin 

distances of two corresponding histograms. The Jeffrey divergence is the symmetric form of the 

Kullback–Leibler divergence, one of the classical and efficient tools for histogram distance 

estimation [15]. This Jeffrey divergence method is presented by equation 2 [16]: 

            𝐷𝐽𝑒(𝐻, 𝐺) =∑(ℎ𝑧 log
ℎ𝑧
𝑔𝑧
 + 𝑔𝑧 log

𝑔𝑧
ℎ𝑧
)

𝑧

          (2) 

H and G are the two histograms of a given feature in class 1 and class 2.  If B are the bins (we 

used B=10 in our work, we can define H={hz}  and G={gz} as two histograms with the bin index 

z ∈ {1,2,…,B}. 

Therefore, this distance will be then used to select the discriminant features. A lower distance 

means a larger similarity, and a larger distance means a lower similarity [16]. Indeed, the greater 

the distance between the feature histograms of the two classes, the most discriminant should be 

the given feature.  

Algorithm 2.1 presents the algorithm of the Jeffrey divergence method. The input of this method 

is the histogram for each feature and the different classes. H presents the histograms of m 

features in class 1 and G presents the histograms of m features in class 2. The output of this 

algorithm 𝐹𝑏𝑒𝑠𝑡 is the subset of features that have the greater distances. In our work, we selected 

the features with distance value higher than mean value of all distances (Threshold). 
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Algorithm 2.1:  Jeffrey divergence (JD) 

1. Input: 

𝐹 = { 𝑓1 , 𝑓2 , … , 𝑓𝑖 , … , 𝑓𝑚 }, m: size of features, 𝑓𝑖 is a vector of values for feature i 

of all observation O  

𝐶 = { 𝑦1 , … , 𝑦𝑂 } , C is vector of classes corresponding to each observation 

𝐻 ={ℎ𝑧1, … , ℎ𝑧𝑖, … , ℎ𝑧𝑚} , H :histogram of features of classe 1 

𝐺 ={𝑔𝑧1, … , 𝑔𝑧𝑖, … , 𝑔𝑧𝑚} , G :histogram of features of classe 2 

𝑧 ∈  {1,2, … , 𝐵}, B is the number of bins 

2. Output: 

𝐹𝑏𝑒𝑠𝑡 = {𝑓
𝑠1
, … , 𝑓

𝑠𝑗
, … , 𝑓

𝑠𝑃
}  , P: size of features selected , (𝑃 < 𝑚), 𝑠𝑗 ∈ {1…𝑚} 

3. Initialization : 

Start with an empty set of features 𝐹𝐵𝑒𝑠𝑡  =  ∅ 

4. for i=1 :m 

Compute 𝐷𝐽𝑒𝑖(ℎ𝑧𝑖, 𝑔𝑧𝑖)  according to equation (2) 

end for  

𝐷𝐽𝑒 = {𝐷𝐽𝑒1, … , 𝐷𝐽𝑒𝑖, … , 𝐷𝐽𝑒𝑚}   

for i=1 :m 

      if   𝐷𝐽𝑒𝑖 > Threshold 

      Add features 𝑓𝑖 to 𝐹𝑏𝑒𝑠𝑡  
      end if 

end for  

4. Return 𝐹𝑏𝑒𝑠𝑡 

B - F-score   

F-score is a novel filter method which calculates the discriminative ability of each feature [8, 

17]. The value of F-score 𝐹𝑠𝑐𝑜𝑟𝑒(𝑖) is calculated for each feature using the following equation: 

                     𝐹𝑠𝑐𝑜𝑟𝑒(𝑖) ≡
(𝑓̅𝑖

(+)  − 𝑓�̅�)
2

+ (𝑓̅𝑖
(−)  − 𝑓�̅�)

2

1
𝑛+ − 1

∑ (𝑓𝑙,𝑖
(+)  − 𝑓̅𝑖

(+))
2

+
1

𝑛− − 1
∑ (𝑓𝑙,𝑖

(−)  − 𝑓̅𝑖
(−))

2
𝑛−
𝑙=1

𝑛+
𝑙=1

 

                              

(3) 

where  𝑓�̅� , 𝑓̅𝑖
(+)

 and  𝑓̅𝑖
(−)

 are the average of the i
th

 feature of the whole, positive (class 1) and 

negative (class 2) datasets.  𝑓𝑙,𝑖
(+)

 and  𝑓𝑙,𝑖
(−)  are the i

th
 feature of the lth positive and negative  

instance respectively. Features with higher F-score value are selected. In our work, we selected 

the features with a F-score value higher than the mean value of all F-score values (threshold) [8]. 

The pseudo code of this method is given in algorithm 2.2. 
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Algorithm 2.2:  F-score  

1. Input: 

𝐹 = { 𝑓1 , 𝑓2 , … , 𝑓𝑖 , … , 𝑓𝑚 }, m: size of features, 𝑓𝑖 is a vector of values for feature i 

of all observation O  

𝐶 = { 𝑦1 , … , 𝑦𝑂 } , C is vector of classes corresponding to each observation 

2. Output: 

𝐹𝑏𝑒𝑠𝑡 = {𝑓
𝑠1
, … , 𝑓

𝑠𝑗
, … , 𝑓

𝑠𝑃
}  , P: size of features selected , (𝑃 < 𝑚), 𝑠𝑗 ∈ {1…𝑚} 

3. Initialization: 

Start with an empty set of features 𝐹𝐵𝑒𝑠𝑡  =  ∅ 

4. for i=1 :m 

Compute 𝐹𝑠𝑐𝑜𝑟𝑒(𝑖) using equation (3) 

end for  

𝐹𝑠𝑐𝑜𝑟𝑒 = {𝐹𝑠𝑐𝑜𝑟𝑒(1), … ,𝐹𝑠𝑐𝑜𝑟𝑒(𝑖), … ,𝐹𝑠𝑐𝑜𝑟𝑒(𝑚)}   

for i=1 :m 

      if  𝐹𝑠𝑐𝑜𝑟𝑒(𝑖) > Threshold 

         Add features 𝑓𝑖 to 𝐹𝑏𝑒𝑠𝑡  
      end if  

end for  

5. Return 𝐹𝑏𝑒𝑠𝑡 

C - Relief 

Kira et al [18] developed an algorithm named Relief method. This method can estimate the 

quality of features through a type of nearest neighbor algorithm that selects neighbors (instances) 

from the same class and from the different classes. From the whole instances, a random sample 

(NS) is firstly chosen. An instance 𝑙𝑗 is selected randomly. "Near Hit" and "Near Miss” of the 

instance 𝑙𝑗 are calculated using the measure of euclidean distance. "Near Hit (H)" is the nearest 

instance that belongs to the same class of the selected instance (having the minimum Euclidean 

distance with this instance). "Near Miss (M)" is the nearest instance that belongs to a different 

class of the selected instance. Therefore, weights (W) for each feature (fi) are estimated based on 

these Near Hits, and the Near Misses according to the following equation: 

                           𝑊𝑖 =  𝑊𝑖 −
𝑑𝑖𝑓𝑓(𝑓𝑙,𝑖, 𝑓𝐻,𝑖)

2

𝑁𝑆
+
𝑑𝑖𝑓𝑓(𝑓𝑙,𝑖, 𝑓𝑀,𝑖)

2

𝑁𝑆
 (4) 

Where: 

 𝑓𝑙,𝑖 is the value of the feature 𝑓𝑖 for the instance 𝑙 

 𝑓𝐻,𝑖, 𝑓𝑀,𝑖  are the neighborhoods 𝐻 and 𝑀 for the feature fi 
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 𝐼𝑓 𝑓𝑖  is ∶ 

o nominal, 𝑑𝑖𝑓𝑓(𝑓𝑙,𝑖 , 𝐼𝑖,𝑡) = { 
0 𝑖𝑓 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓𝑙,𝑖 𝑎𝑛𝑑 𝐼𝑖,𝑡 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙  

1 𝑖𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡      
 

o Numerical, 𝑑𝑖𝑓𝑓(𝑓𝑙,𝑖 , 𝐼𝑖,𝑡) =  
𝑉𝑎𝑙𝑒𝑢𝑟(𝑓𝑙,𝑖)−𝑉𝑎𝑙𝑒𝑢𝑟(𝐼𝑖,𝑡)

𝑚𝑎𝑥  (𝑓𝑖)−𝑚𝑖𝑛  (𝑓𝑖)
 , 

                           𝑚𝑎𝑥  (𝑓𝑖) is the maximum value of the feature 𝑓𝑖  

                           𝑉𝑎𝑙𝑒𝑢𝑟(𝑓𝑙,𝑖) is the value of the feature 𝑓𝑖 for the instance 𝑙. 

This adjustment process of weights is repeated for NS instances. The Relief algorithm produces 

weights for each feature, and selected only the features having weights greater than or equal to a 

threshold. The Relief pseudo code is presented below in algorithm 2.3.  

Algorithm 2.3:  Relief 

1. Input: 

𝐹 = { 𝑓1 , 𝑓2 , … , 𝑓𝑖 , … , 𝑓𝑚 }, m: size of features, 𝑓𝑖 is a vector of values for feature i of all 

observation O  

𝐶 = { 𝑦1 , … , 𝑦𝑂 } , C is vector of classes corresponding to each observation 

NS =Number of sample by default equal to O 

2. Output: 

𝐹𝑏𝑒𝑠𝑡 = {𝑓
𝑠1
, … , 𝑓

𝑠𝑗
, … , 𝑓

𝑠𝑃
}  , P: size of features selected , (𝑃 < 𝑚), 𝑠𝑗 ∈ {1…𝑚} 

3. Initialization : 

Start with an empty set of features 𝐹𝐵𝑒𝑠𝑡  =  ∅ 
Initialize all weights 𝑊𝑖 =0 

4. for j=1 :NS   

Randomly selecting an instance (observation) 𝑙𝑗 of the set of observations 

Find their Near Hit (H) and Near Miss (M) 

     for i= 1 :m 

Compute 𝑊𝑖using equation (4) 

     end for  

end for  

𝑊 = {𝑊1, … ,𝑊𝑖 , … ,𝑊𝑚} 

for i= 1 : m 

      if  𝑊𝑖 > Threshold 
         Add features 𝑓𝑖 to 𝐹𝑏𝑒𝑠𝑡  
      end if 

end for  

5. Return 𝐹𝑏𝑒𝑠𝑡 
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An improved Relief method has been proposed by Kononenko [19], which consists of choosing 

K nearest neighbors instead of one. This new algorithm named “Relieff” has been shown to be 

more robust to noisy features [19, 20, 21]. The pseudo code of this method is presented in 

Algorithm 2.4. When obtained the weight for each feature, we select in our work the features 

with weight value larger than the average value of all weights. 

Algorithm 2.4:  Relieff 

1. Input 

𝐹 = { 𝑓1 , 𝑓2 , … , 𝑓𝑖 , … , 𝑓𝑚 }, m: size of features, 𝑓𝑖 is a vector of values for feature i of all 

observation O  

𝐶 = { 𝑦1 , … , 𝑦𝑂 } , C is vector of classes corresponding to each observation 

NS =Number of sample by default equal to O 

2. Output: 

𝐹𝑏𝑒𝑠𝑡 = {𝑓𝑠1, … , 𝑓𝑠𝑗 , … , 𝑓𝑠𝑃}  , P: size of features selected , (𝑃 < 𝑚), 𝑠𝑗  ∈ {1…𝑚} 

3. Initialization: 

Start with an empty set of features 𝐹𝐵𝑒𝑠𝑡  =  ∅ 
Initialize all weights 𝑊𝑖 =0 

4. for j=1 :NS   

Randomly selecting an instance 𝑙𝑗 of the set of observations 

Find their 𝑞 Near Hit 𝐻 = { 𝐻1 , 𝐻2 , … , 𝐻𝑡 , … , 𝐻𝑞} 

and  their 𝑞 Near Miss 𝑀 = { 𝑀1 ,𝑀2 , … ,𝑀𝑡 , … ,𝑀𝑞 } 

     for i= 1 :m 

      𝑊𝑖 = 𝑊𝑖 −∑
𝑑𝑖𝑓𝑓(𝑓𝑙,𝑖, 𝑓𝐻𝑡,𝑖)

2

𝑁𝑆 ∗ 𝑞

𝑞

𝑡=1

+ ∑

𝑃(𝐶)

1 − 𝑃 (𝐶𝑙𝑎𝑠𝑠(𝑙𝑗))
 ∑

𝑑𝑖𝑓𝑓(𝑓𝑙,𝑖 , 𝑓𝑀𝑡,𝑖)
2

𝑁𝑆
𝑞
𝑡=1

𝑁𝑆 ∗ 𝑞
𝐶≠𝑐𝑙𝑎𝑠𝑠(𝑙𝑗)

 

    % 𝑃(𝐶)  is the probability of the class 𝐶  which belongs to the “near miss”𝑓𝑀𝑡,𝑖   

     end for 

end for 

𝑊 = {𝑊1, … ,𝑊𝑖, … ,𝑊𝑚} 

for i= 1 : m 

      if  𝑊𝑖 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

         Add features 𝑓𝑖 to 𝐹𝑏𝑒𝑠𝑡  
       end if  

end for  

5. Return 𝐹𝑏𝑒𝑠𝑡 
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D – Mutual information based on clustering  

Mutual information gives us an idea about the amount of information 

between two variables. The mutual information of two variables 𝑋and 𝑌 is given by: 

𝐼(𝑋; 𝑌) =∑ ∑ 𝑝(𝑥, 𝑦)
𝑦∈𝑌𝑥∈𝑋

𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
 

 

          (5) 

Mutual information is used in feature selection methods. It is a filter method that permits to 

know the quantity of information contained in the features that is related to classes. Let 𝐹 be the 

initial set consisting of 𝑚 features and 𝐶 represents the classes. The goal is to find a subset 

𝐹𝑏𝑒𝑠𝑡 containing 𝑃 features that maximizes the mutual information 𝐼 (𝐹𝑏𝑒𝑠𝑡, 𝐶). 

In [22] Lui et al. proposed a new method of feature selection based on clustering. They used the 

mutual information 𝐼 (𝑓; 𝐶𝑢) as a distance measurement between a candidate cluster 𝑓 and the 

class cluster 𝐶𝑢. Therefore, the distance  𝑆𝑏  between the selected cluster 𝑌 and class cluster 𝐶𝑢  is 

represented as: 

                                      𝑆𝑏 (𝐶𝑢, 𝑌) = ∑ 𝐼 (𝑦; 𝐶𝑢)     ,  𝑦 ∈ 𝑌                   (6) 

A maximum value of 𝑆𝑏  gives only the best features that represent the classes. It is important to 

take into account the redundancy between the set of selected features 𝑌 and the candidate 

features 𝑓 . Therefore the distance between  𝑓 and 𝑌 ( 𝑆(𝑓))  is the sum of distance between 𝑓 

and all 𝑦 ∈ 𝑌 : 

                𝑆(𝑓) =∑ 𝐶𝑅 (𝑦, 𝑓)
𝑦 ∈𝑌

 
        (7) 

Where 𝐶𝑅 (𝑦, 𝑓) is the coefficient of relevance. 

𝐶𝑅 (𝑦, 𝑓) =
𝐼(𝑦;𝑓)

𝐻(𝑦)
 ;   𝐻(𝑦) is the entropy     

𝐶𝑅 (𝑦, 𝑓) = {
0 𝑚𝑒𝑎𝑛𝑠 𝑡ℎ𝑎𝑡 𝑦 𝑎𝑛𝑑 𝑓 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡
1 𝑚𝑒𝑎𝑛𝑠 𝑎 𝑤𝑖𝑑𝑒 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦                    

 

Likewise, the within cluster distance 𝑆𝑤 (𝑌) 𝑜𝑓 𝑌 can be obtained accumulatively: 

𝑆𝑤 (𝑌 ∪ 𝑓) = 𝑆𝑤(𝑌) + 𝑆 (𝑓) 
 

             (8) 
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The size of 𝑌 is an important aspect in features selection. According to the explanation above, 

the evaluation function  𝐽 for the candidate feature  𝑓  is: 

𝐽(𝑓) =
𝑆𝑏(𝐶𝑢, 𝑌) + 𝐼(𝑓; 𝐶𝑢)

|𝑌| + 𝑆𝑊(𝑌) + 𝑆(𝑓)
 

 

               (9) 

Where |𝑌| is the number of features in 𝑌. 

The pseudo code of features selection based on clustering [22] is presented in algorithm 2.5.  

Algorithm 2.5: Mutual information with clustering 

1. Input 

𝐹 = { 𝑓1 , 𝑓2 , … , 𝑓𝑖 , … , 𝑓𝑚 }, m: size of features, 𝑓𝑖 is a vector of values for feature i of all 

observation O  

𝐶 = { 𝑦1 , … , 𝑦𝑂 } , C is vector of classes corresponding to each observation 

2. Output: 

𝐹𝑏𝑒𝑠𝑡 = {𝑓𝑠1, … , 𝑓𝑠𝑗 , … , 𝑓𝑠𝑃}  , P: size of features selected , (𝑃 < 𝑚), 𝑠𝑗  ∈ {1…𝑚} 
3. Initialization:  

Start with an empty set of features ,𝑌 = ∅ , 𝐹𝐵 𝑒𝑠𝑡 =  ∅ , 𝐶𝑢 = 𝐶  

4.for i= 1 :m 

𝑆𝑏,𝑖 (𝐶𝑢, 𝑓𝑖) = 𝐼(𝑓𝑖; 𝐶) 

end for  

choose 𝑓  that have max  (𝐼(𝑓; 𝐶)) ;  𝐹 = 𝐹\{𝑓}  ; 𝑌 = { 𝑓 }  ; 𝑆𝑤 = 0 ; 𝐽 = ∅ 

While  |𝑌| ≤ 𝑚 

     for each candidate feature 𝑓𝜖 𝐹 

     Calculate 𝐽(𝑓) 

    end for  

choose 𝑓 that have max (𝐽(𝑓))  

  𝐽 = 𝐽 ∪ {𝐽(𝑓)} 

𝑌 = 𝑌 ∪ {𝑓} ; 𝐹 = 𝐹\{𝑓} 
𝑆𝑤  = 𝑆𝑤 + 𝑆 (𝑓)  
𝑆𝑏  = 𝑆𝑏 + 𝐼(𝑓; 𝐶𝑢))  
end while 

Compute variances of J 

𝐹𝑏𝑒𝑠𝑡 is the subset corresponds to the first value of variance J < mean of all values of 

variance J between parameter additions operations  

5. Return 𝐹𝑏𝑒𝑠𝑡 

The best subset of features selected by this method corresponds to a negligible velocity of J, 

where the velocity stabilizes close to a constant velocity between parameter additions operations 

i.e. between subsets. We use as threshold the mean of all values of variance J. The best subsets 
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corresponds thus to the first value of variance J < mean of all values of variance J between 

parameter additions operations. 

2.2.3.2 Wrapper Method 

A- Sequential Forward Selection (SFS)  

Sequential forward selection (SFS) was proposed by [23].  It is a sequential search algorithm for 

feature selection [24] developed for data mining and classification. The pseudo code of this 

method is presented in algorithm 2.6 [25].  

Algorithm 2.6:  SFS 

1.Input: 

𝐹 = { 𝑓1 , 𝑓2 , … , 𝑓𝑖 , … , 𝑓𝑚 }, m: size of features, 𝑓𝑖 is a vector of values for feature i of all 

observation O  

𝐶 = { 𝑦1 , … , 𝑦𝑂 } , C is vector of classes corresponding to each observation 

2. Output: 

𝐹𝑏𝑒𝑠𝑡 = {𝑓
𝑠1
, … , 𝑓

𝑠𝑗
, … , 𝑓

𝑠𝑃
}  , P: size of features selected , (𝑃 < 𝑚), 𝑠𝑗 ∈ {1…𝑚} 

3.Initialization: 
Start with an empty set of features  𝐹𝐵𝑒𝑠𝑡  =  ∅ , 𝑌 =  ∅ , 𝐸 = ∅ 

4. While  |𝑌| ≤ 𝑚   
𝑓𝑎𝑑𝑑 = argmax

𝑓 ∉ 𝑌
 𝐽(𝑌 ∪ 𝑓) 

𝐸 = 𝐸 ∪ {𝐽(𝑌 ∪ 𝑓𝑎𝑑𝑑)}   
𝑌 = 𝑌 ∪ 𝑓𝑎𝑑𝑑  

End while  

𝐹𝐵𝑒𝑠𝑡   is the subset corresponding to min (𝐸) 

5. Return  𝐹𝑏𝑒𝑠t 

SFS begins with an empty subset. The value of the criterion function (J) is calculated for each 

feature by using a classifier. The feature presenting the best classification performance is 

selected (𝑓𝑎𝑑𝑑 ) and then added to the subset (𝑌). The next step consists of adding sequentially 

the feature 𝑓𝑎𝑑𝑑 
 
that has the highest criterion function 𝐽(𝑌 ∪ 𝑓𝑎𝑑𝑑 ) when combined with the set 

of features Y  that have already been selected. To avoid to precise a number of features as 

threshold, in our work this method is implemented starting from a single parameter subset, all the 

way to the full parameter set in order to plot and analyze the classification error along the 

complete procedure. Then we choose the combination of features that have the minimum 

classification error. 
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B- Sequential backward Selection (SBS)  

Sequential backward Selection was a method proposed by [26]. SBS works in a way opposite to 

SFS. Starting from the full set of features (all features), at each iteration, the worst feature will be 

sequentially removed. The SBS algorithm is presented in the pseudo code 2.7. To avoid to 

precise a number of features as threshold, in our work this method is implemented using all 

combination (from one parameter to all parameters) subsets and then plot and analyze the 

classification error along the complete procedure. At the end, we choose the combination of 

features that have the minimum classification error. 

Algorithm 2.7:  SBS 

1.Input: 

𝐹 = { 𝑓1 , 𝑓2 , … , 𝑓𝑖 , … , 𝑓𝑚 }, m: size of features ,𝑓𝑖 is a vector of values for feature i of 

all observation O  

𝐶 = { 𝑦1 , … , 𝑦𝑂 } , C is vector of classes corresponding to each observation 

2. Output: 

𝐹𝑏𝑒𝑠𝑡 = {𝑓𝑠1, … , 𝑓𝑠𝑗 , … , 𝑓𝑠𝑃}  , P: size of features selected , (𝑃 < 𝑚), 𝑠𝑗  ∈ {1…𝑚} 

3.Initialization: 

Start with an empty set of features  𝐹𝐵𝑒𝑠𝑡 =  ∅ , 𝑌 = 𝐹 , 𝐸 = ∅ 

4.While  |𝑌| ≤ 1 

𝑓𝑟𝑒𝑚𝑜𝑣𝑒 = argmax
𝑓 ∈ 𝑌

 𝐽(𝑌\𝑓) 

𝐸 = 𝐸 ∪ {𝐽(𝑌\ 𝑓𝑟𝑒𝑚𝑜𝑣𝑒)}   
𝑌 = 𝑌\ 𝑓𝑟𝑒𝑚𝑜𝑣𝑒     
End while  

𝐹𝐵𝑒𝑠𝑡   is the subset which corresponds to min (𝐸) 

5.Return  𝐹𝑏𝑒𝑠t 

C- Plus-l minus-r selection (LRS) 

Plus-L minus-R search (LRS) [27] is a generalization and a combination of two methods SFS 

and SBS. LRS attempts to compensate the weaknesses of the SFS and SBS with some 

backtracking capabilities [28].  In this algorithm we use two values L and R respectively 

corresponding to the number of parameters to add (L) and remove (R).  

If L>R, LRS starts with an empty set and adds L features. Then it moves towards the next step, 

where it removes R features. This procedure (Add L features and remove R features) is repeated 

to attain the maximum possible number of parameters and then plot and analyze the 

classification error of the full procedure instead of fixing a number of features as threshold.  
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If R>L, LRS starts with a full set and removes R features. Then it moves towards the next step, 

where it adds L features. This procedure (Removing R features and adding L features) is 

repeated to attain the minimum possible number of parameters and then plot and analyze the 

classification error of the full procedure instead of fixing a number of features as threshold. 

Algorithm 2.8 presents the pseudo code of LRS.  

Algorithm 2.8:  LRS 

1.Input: 

𝐹 = { 𝑓1 , 𝑓2 , … , 𝑓𝑖 , … , 𝑓𝑚 }, m: size of feature,𝑓𝑖 is a vector of values for feature i of all 

observation O  

𝐶 = { 𝑦1 , … , 𝑦𝑂 } , C is vector of classes corresponding to each observation 

2. Output: 

𝐹𝑏𝑒𝑠𝑡 = {𝑓
𝑠1
, … , 𝑓

𝑠𝑗
, … , 𝑓

𝑠𝑃
}  , P: size of features selected , (𝑃 < 𝑚), 𝑠𝑗 ∈ {1…𝑚} 

3.Initialization: 

Start with an empty set of features  𝐹𝐵𝑒𝑠𝑡  =  ∅ , 𝐸 = ∅ 

Initialize the two Numbers 𝐿 and 𝑅 

 if 𝐿 >R then  

     Start with an empty set Y={Φ} and go to step 4.1 

 else 

      Start with the full set  𝑌 = 𝐹  and go to step 4.2 

4. While  |𝑌| ≤ 𝑚  
   1. Repeat 𝐿 times 
        𝑓𝑎𝑑𝑑 = argmax

𝑓 ∉ 𝑌
 𝐽(𝑌 ∪ 𝑓) 

         𝑌 = 𝑌 ∪ 𝑓𝑎𝑑𝑑  

       𝐸 = 𝐸 ∪ {𝐽(𝑌 ∪ 𝑓𝑎𝑑𝑑}   
   2. Repeat 𝑅 times  

       𝑓𝑟𝑒𝑚𝑜𝑣𝑒 = argmax
𝑓 ∈ 𝑌

 𝐽(𝑌\𝑓) 

        𝑌 = 𝑌\ 𝑓𝑟𝑒𝑚𝑜𝑣𝑒 

       𝐸 = 𝐸 ∪ {𝐽(𝑌\ 𝑓𝑟𝑒𝑚𝑜𝑣𝑒)}   
End while  

𝐹𝐵𝑒𝑠𝑡   is the subset which correspond to min (𝐸) 

5. Return  𝐹𝑏𝑒𝑠t 

In our work we apply LRS method starting from an empty set and repeatedly adding three (L=3) 

and removing 2 features (R=2) [28]. Then we choose the best subset of selected features that 

corresponds to the minimum classification error based on the plot analysis. 
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D- Bidirectional search (BDS) 

Bidirectional search BDS [27] is a parallel implementation of SFS and SBS. To guarantee that 

SFS and SBS converge to the same solution, BDS respects the two conditions:  

 Features already selected by SFS are not removed by SBS 

 Features already removed by SBS are not selected by SFS 

The number of selected features must be fixed because BDS uses the two directions for 

searching [28]. In our work the number of selected features is equal to the half of the number of 

full set of features. This will allow plotting the classification error along the full possible number 

of operations for better visualization and analysis. The obtained plots are used to select the best 

SFS and SBS subsets with minimum classification error. The algorithm of BDS is outlined in the 

pseudo code 2.9. 

Algorithm 2.9:  BDS 

1.Input: 

𝐹 = { 𝑓1 , 𝑓2 , … , 𝑓𝑖 , … , 𝑓𝑚 }, m: size of features, 𝑓𝑖 is a vector of values for feature i of 

all observation O  

𝐶 = { 𝑦1 , … , 𝑦𝑂 } , C is vector of classes corresponding to each observation 

2. Output: 

𝐹𝑏𝑒𝑠𝑡𝑓 = {𝑓𝑠1, … , 𝑓𝑠𝑗 , … , 𝑓𝑠𝑃}  , P: size of features selected , (𝑃 < 𝑚), 𝑠𝑗  ∈ {1…𝑚} 

𝐹𝑏𝑒𝑠𝑡𝑏 = {𝑓𝑠1, … , 𝑓𝑠𝑗 , … , 𝑓𝑠𝑟}  , r: size of features selected , (𝑟 < 𝑚), 𝑠𝑗 ∈ {1…𝑚} 

3.Initialization: 

 Start with an empty set of features  𝐹𝐵𝑒𝑠𝑡 =  ∅ , 𝐸𝑓 = ∅ , 𝐸𝑏 = ∅ 

 Start SFS with 𝑌𝐹 = ∅ 

 Start SBS with 𝑌𝐵 = 𝐹      
4. While  |𝑌𝐹| 𝑎𝑛𝑑 |𝑌𝐵| ≤ 𝑚/2        
        1. 𝑓

𝑎𝑑𝑑
= argmax

𝑓 ∉ 𝑌𝐹
𝑓∈𝑌𝐵

 𝐽(𝑌𝐹 ∪ 𝑓) 

         𝑌𝐹 = 𝑌𝐹 ∪ 𝑓𝑎𝑑𝑑  

         𝐸𝑓  = 𝐸𝑓 ∪ {𝐽(𝑌 ∪ 𝑓𝑎𝑑𝑑)}   

       2. 𝑓𝑟𝑒𝑚𝑜𝑣𝑒 = argmax
𝑓 ∉ 𝑌𝐹
𝑓∈𝑌𝐵

 𝐽(𝑌𝐵\𝑓) 

        𝑌𝐵 = 𝑌𝐵\ 𝑓𝑟𝑒𝑚𝑜𝑣𝑒 

        𝐸𝑏 = 𝐸𝑏 ∪ {𝐽(𝑌\ 𝑓𝑟𝑒𝑚𝑜𝑣𝑒)} 
End while  

𝐹𝐵𝑒𝑠𝑡𝑓  is the subset which corresponds to min (𝐸𝑓) 

𝐹𝐵𝑒𝑠𝑡𝑏  is the subset which corresponds to min (𝐸𝑏) 

5. Return  𝐹𝐵𝑒𝑠𝑡𝑓 , 𝐹𝐵𝑒𝑠𝑡𝑏   



82 
 

E- Sequential Forward Floating sequential (SFFS) 

The SFFS method is introduced by Pudil et al. [29]. It is an extension to Plus-L minus-R 

selection (LRS) with flexible backtracking abilities.  This method begins by an empty set, and 

then a subset is generated by adding a feature. After this forward step, a conditional deletion step 

is examined. Therefore, SFFS performs backward step, and conditionally permanently removes 

the least significant feature from the current subset if and only if the deletion of this feature 

improves the objective function. We will repeat this step as long as an improvement occurs, 

otherwise it puts back the last removed feature and loop back to the forward step [30, 31]. The 

method requires a desired number of features used as threshold in the input of the algorithm. In 

our work we specified the maximum number of features that corresponds to the full features set 

size. This will allow plotting the classification error along the full possible number of operations 

for better visualization and analysis. The resulting plots are used to select the best subset with 

minimum classification error. The pseudo code of SFFS is presented in Algorithm 2.10. 

Algorithm 2.10:  SFFS 

1.Input: 

𝐹 = { 𝑓1 , 𝑓2 , … , 𝑓𝑖 , … , 𝑓𝑚 }, m: size of features, 𝑓𝑖 is a vector of values for feature i of all 

observation O  

𝐶 = { 𝑦1 , … , 𝑦𝑂 } , C is vector of classes corresponding to each observation 

2. Output: 

𝐹𝑏𝑒𝑠𝑡 = {𝑓𝑠1, … , 𝑓𝑠𝑗, … , 𝑓𝑠𝑃}  , P: size of features selected , (𝑃 < 𝑚), 𝑠𝑗 ∈ {1…𝑚} 

3.Initialization: 

 Start with an empty set of features  𝐹𝐵𝑒𝑠𝑡  =  ∅ , 𝑌 =  ∅ , 𝐸 =  ∅ 

4. While |𝑌| ≤ 𝑚       
       𝟏.  𝑓𝑎𝑑𝑑

= argmax
𝑓 ∉𝑌
𝑓 ∈ 𝐹

 𝐽(𝑌𝐹 ∪ 𝑓) 

              𝑌 = 𝑌 ∪ 𝑓𝑎𝑑𝑑 

            𝐸 = 𝐸 ∪ {𝐽(𝑌 ∪ 𝑓𝑎𝑑𝑑)}   
      𝟐.  𝑓𝑟𝑒𝑚𝑜𝑣𝑒 = argmax

𝑓 ∈ 𝑌
 𝐽(𝑌\𝑓) 

          If  𝐽(𝑌\ 𝑓𝑟𝑒𝑚𝑜𝑣𝑒  
) >  𝐽( 𝑌) then  

                     𝑌 = (𝑌\ 𝑓𝑟𝑒𝑚𝑜𝑣𝑒)  

                    𝐸 = 𝐸 ∪ {𝐽(𝑌\ 𝑓𝑟𝑒𝑚𝑜𝑣𝑒)}   
                  𝐹 = 𝐹\𝑓𝑟𝑒𝑚𝑜𝑣𝑒         

                   Go to step 2  

          else  

                   Go to step 1 

End while  

𝐹𝐵𝑒𝑠𝑡   is the subset which corresponds to min (𝐸) 
5. Return  𝐹𝑏𝑒𝑠t 
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F- Genetic Algorithm 

Genetic Algorithms (GA) can be specified as population-based and algorithmic search heuristic 

methods that mimic the natural biological evolution [28, 32]. GA is an iterative algorithm based 

on the reproduction and the evolution of natural individuals. Individuals (“chromosomes “) 

representing a better solution to the target problem are given more chances to "reproduce" than 

the chromosomes associated to a poorer solution [33]. Therefore, with GA we try to optimize a 

given function (objective function) in a search space of individuals. For that, we define an 

evaluation function (fitness) related to the objective function and applied to each individual, or 

chromosome. 

GA is based on several steps. First, an initial population (N chromosomes) is created randomly 

and evaluated using the fitness function. At each generation, the algorithm selects a group of 

individuals in the current population, called parents. Therefore, the new population of 

chromosomes (solution candidates) is created by the process of selecting individuals according to 

their level of fitness combined with genetic functional, such as crossover and mutation. GA stops 

when the condition of the problem is satisfied (Algorithm 2.11).  

GA creates three types of children for the next generation (population): 

 Elite children:  are the chromosomes in the current generation with the best fitness 

values. These chromosomes automatically survive to the next generation. 

 Crossover children: are created by combining the vectors of a pair of parents. Crossing 

can build an individual (or a solution) which is the mixing of several solutions. In cross 

over, the chromosomes exchange gene sequences between them. 

 Mutation children: are created by introducing random changes, or mutations, of the value 

of a gene in a single parent.  

GA has been used in the field of feature selection [28, 34]. Chromosomes are the bit strings 

(defined below) and a gene is the feature. The length of each chromosome is determined by 

the total number of features. A gene value “1” means that the feature is selected. If it is ’0’, 

the feature is not selected. Table 2.4 presents the value of each parameter used for GA in our 

work. 
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Algorithm 2.11:  GA 

1. Input: 

𝐹 = { 𝑓1 , 𝑓2 , … , 𝑓𝑖 , … , 𝑓𝑚 }, m: size of features, 𝑓𝑖 is a vector of values for feature i of all 

observation O  

𝐶 = { 𝑦1 , … , 𝑦𝑂 } , C is vector of classes corresponding to each observation 

Output: 

𝐹𝑏𝑒𝑠𝑡 = {𝑓
𝑠1
, … , 𝑓

𝑠𝑗
, … , 𝑓

𝑠𝑃
}  , P: size of features selected , (𝑃 < 𝑚), 𝑠𝑗 ∈ {1…𝑚} 

3.Initialization : 

Number of chromosome N  

Length of each chromosome  equal to total number of features m 

Initialize bit strings of all chromosome randomly 

Set the number of generation K and other GA parameters 

4.While number of generation is less than K 

1. Compute the fitness value of each chromosome  

Compute mean fitness of all fitness value in the generation 

Select best fitness in the generation  

     Select best chromosome in the generation  

2. Create new population by applying genetic operators : 

a-Performs the selection process of chromosome (based on their fitness) 

   -Use the cross over operator 

   -Use the Mutation operator  

b- Select Elite children  

           c-Replaces the current population with the children to form the next generation 

3. Number of generation =Number of generation+1 

End while  

5. When the limit number of generation K is reached, we obtain an optimal solution, the 

best chromosome  𝐹𝑏𝑒𝑠𝑡 (best subset of feature selection) 
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Table 2.4: Parameters used in GA [34] 

GA parameters  Value 

Population size  100 

Length of chromosome total number of features 

Population type Bitstrings 

Number of generations 100 

Crossover  Arithmetic Crossover 

Crossover Probability 0.8 

Mutation  Uniform Mutation 

Mutation Probability  0.1 

Selection process Tournament of size 2 

EliteCount  2 

Fitness Function KNN (Percentages of correct classification) 

 

G- Binary particle swarm optimization  

Particle Swarm Optimization (PSO) was developed by Eberhart and Kennedy in 1995. It is a 

population-based stochastic optimization technique that was inspired by the social behavior of 

bird flocking or fish schooling [35]. PSO uses a number of particles (the swarm) moving around 

in the search space in order to achieve the best solution. At each iteration, each particle tries to 

search for the best position in a multidimensional space and adjust its position according to its 

own experience and the experiences of its particles neighbors. We assume that our search space 

is n-dimensional and that each particle is a point in this space. The position of the i
th

 particle of 

the swarm is represented as Xi = (xi1,…xid,… xin). Each particle has a best previous position 

pbesti=(pi1,…,pid,… pi,n), which corresponds of the best fitness value (in our case best 

classification given by a classifier fed with the selected features).  The global best particle among 

all the particles in the population is represented by gbest = (pg1,…,pgd,…,pgn). The velocity (the 

rate of the position change) of the i
th

 particle is denoted by Vi= (vi1,…vid,…,vin). The particles 

velocity and position are manipulated according to the following two equations: 

𝑣𝑖𝑑
𝑘+1 = 𝑤 𝑣𝑖𝑑

𝑘 + 𝑐1𝑟1
𝑘(𝑝𝑖𝑑

𝑘 − 𝑥𝑖𝑑
𝑘 ) + 𝑐2𝑟2

𝑘(𝑝𝑔𝑑
𝑘 − 𝑥𝑖𝑑

𝑘 )   (10) 

 

                    𝑥𝑖𝑑
𝑘+1 = 𝑥𝑖𝑑

𝑘 + 𝑣𝑖𝑑
𝑘+1             (11)                                 

where: 



86 
 

 w is the inertia weight 

 𝑐1and 𝑐2 are positive constants 

 𝑟1and 𝑟2 are two random values in the range [0, 1] 

 𝑣𝑖𝑑
𝑘  the current velocity in iteration k of i

th 
particle in a d -dimensional space   

 𝑣𝑖𝑑
𝑘+1 the new velocity in iteration k+1 of i

th 
particle in a d -dimensional space  

 𝑝𝑖𝑑
𝑘   the best previous position in iteration k of i

th 
particle in a d -dimensional space  

 𝑝𝑔𝑑
𝑘  the global best particle among all the particles in the population space in iteration k 

 𝑥𝑖𝑑
𝑘  the current position in iteration k of i

th 
particle in a d -dimensional space  

 𝑥𝑖𝑑
𝑘+1  the new position in iteration k+1 of i

th 
particle in a d -dimensional space  

Kennedy and Eberhart also proposed a binary particle swarm optimization (BPSO) in order to 

solve optimization problems with discrete valued parameters [36]. In BPSO, the position of each 

particle is represented as binary strings. By comparing PSO and BPSO we found that they have a 

common velocity equation, and a different particle position equation computed as follows: 

        𝑆(𝑣𝑖𝑑
𝑘+1) =

1

1 + 𝑒−𝑣𝑖𝑑
𝑘+1          (12) 

                                      

                   𝑥𝑖𝑑
𝑘+1 = {

 1 𝑖𝑓 𝑟3 < 𝑆(𝑣𝑖𝑑
𝑘+1)

   0         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
                                          (13)     

where S(𝑣𝑖𝑑
𝑘+1) is the sigmoid function and 𝑟3 is a random number in the range [0, 1]. 

BPSO has been widely used recently in the literature for feature subset selection [37]. In this 

case, the length of a binary string of each particle is equal to the length of the total number of 

features, and each particle presents a candidate for subset selection. If the bit included in the 

binary strings has a value of “1” thus the feature is selected, otherwise the feature is not selected. 

The following steps of BPSO are presented in algorithm 2.12. 
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Algorithm 2.12:  BPSO 

1.Input: 

𝐹 = { 𝑓1 , 𝑓2 , … , 𝑓𝑖 , … , 𝑓𝑚 }, m: size of features, 𝑓𝑖 is a vector of values for feature i of all 

observation O  

𝐶 = { 𝑦1 , … , 𝑦𝑂 } , C is vector of classes corresponding to each observation 

2. Output: 

𝐹𝑏𝑒𝑠𝑡 = {𝑓
𝑠1
, … , 𝑓

𝑠𝑗
, … , 𝑓

𝑠𝑃
}  , P: size of features selected , (𝑃 < 𝑚), 𝑠𝑗 ∈ {1…𝑚} 

3. Initialization: 

Length of particle equal to total number of features (n=m) 

Initialize all particles positions and velocities randomly 

Set the number of iterations K and other BPSO parameters 

4.For k=1:K 

A- Calculate the fitness value 𝐹(𝑋𝑖) of each particle. Fitness represents the 

percentages of correct classification. 

B- Compare the fitness of each particle to its best fitness so far (𝑝𝑏𝑒𝑠𝑡𝑖
𝑘of last 

iteration k):   

    𝑖𝑓  𝐹(𝑋𝑖
𝑘+1 ) > 𝐹(𝑝𝑏𝑒𝑠𝑡𝑖

𝑘) 𝑡ℎ𝑒𝑛 𝐹(𝑝𝑏𝑒𝑠𝑡𝑖
𝑘+1) = 𝐹(𝑋𝑖

𝑘+1) 𝑎𝑛𝑑 𝑝𝑏𝑒𝑠𝑡𝑖
𝑘+1 = 𝑋𝑖

𝑘+1 

𝐸𝑙𝑠𝑒 𝐹(𝑝𝑏𝑒𝑠𝑡𝑖
𝑘+1) = 𝐹(𝑝𝑏𝑒𝑠𝑡𝑖

𝑘) 𝑎𝑛𝑑 𝑝𝑏𝑒𝑠𝑡𝑖
𝑘+1 = 𝑝𝑏𝑒𝑠𝑡𝑖

𝑘 

C- Determine the global best position 𝑔𝑏𝑒𝑠𝑡𝑘+1 from all 𝑝𝑏𝑒𝑠𝑡𝑖
𝑘+1. Then compare 

𝑔𝑏𝑒𝑠𝑡𝑘+1 with  𝑔𝑏𝑒𝑠𝑡𝑘: 

𝑖𝑓  𝐹(𝑔𝑏𝑒𝑠𝑡𝑘+1) > 𝐹(  𝑔𝑏𝑒𝑠𝑡𝑘) 𝑡ℎ𝑒𝑛  𝑔𝑏𝑒𝑠𝑡 = 𝑔𝑏𝑒𝑠𝑡𝑘+1 

𝐸𝑙𝑠𝑒 𝑔𝑏𝑒𝑠𝑡 = 𝑔𝑏𝑒𝑠𝑡𝑘  

D- Update the position and the velocity of each particle according to equation (10) 

and (13). 

End for  

5. When the limit number of iterations K is reached, we obtain an optimal solution 𝐹𝑏𝑒𝑠𝑡 

(best subset of feature selection) 

 

In our work, the parameters for the BPSO were chosen classically as: number of particles is 30 

particles; length of each particle is equal to the maximum number of features; K=100 iterations 

[37]. The acceleration constant 𝑐1and 𝑐2 were set to 2 [37]. We also used a linear descending 

inertia weight [37].  

To compute the fitness (percentage of correct classification), the classical classifier KNN is used 

in our work because it is simple and efficient. The best feature subset chosen by the BPSO 

algorithm is defined as the one giving the maximum percentages of correct classification after 

100 iterations (1 run). 
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2.3 Signal characterization and feature extraction  

Following the literature studies done on the EHG signal in chapter 1, several pertinent features 

have been used in our work.  

2.3.1 Monovariate analysis: Linear features 

For this monovariate analysis, we computed the selected features on the EHG of the bipolar 

channel Vb7 and on the EHG of the related monopolar channel CH10. These channels indeed 

correspond to our reference position (located on the median vertical axis of the uterus). 

   2.3.1.1 Features related to power spectral density 

Several frequency parameters have been extracted from the power spectral density 

(PSD),  𝑆𝑥 (𝑓). In our work, we use the Welch Periodogram method to calculate the power 

spectral density of each burst [42]. Eleven frequency features are extracted from this PSD:  

mean frequency MPF [38], Peak Frequency PF [39, 40, 41], deciles D1…D9 [42], which 

contain the median frequency D5 [40, 42, 43]. Deciles correspond to the frequencies D1…D9 

that divide the power spectral density into 10 parts, each part contains 10% of the total energy. 

                 ∫ 𝑆𝑥 (𝑓)𝑑𝑓 = 0.1∫ 𝑆𝑥 (𝑓)
𝑓𝑚𝑎𝑥

0

𝐷𝑃

𝐷𝑃−1

𝑑𝑓 (14) 

2.3.1.2 Features extracted from wavelet packet decomposition 

The decomposition of signals into orthonormal bases (discrete wavelet transform), is based on 

the theory of multi-resolution analysis (AMR). The basic principles of multi-resolution analysis 

were laid in 1989 by Mallat [44]. This theory proves that we can analyze a signal by 

decomposing it into approximation and detail coefficients  [45]. The approximations correspond 

to smoothed versions of the low pass filtered signal, in which changes are gradually rubberized 

or attenuated. The details contain only the information of high frequencies or discontinuities.  

The multiresolution analysis involves projecting the signal x in a series of orthogonal 

approximation subspace Vj and details subspaces Wi. Changing the resolution of a signal is used 

to process only the most interesting details for a given task. 

The information lost between two approximations is collected into detail signals, which then 

reflect the behavior of signals at different resolutions. The signal projections subspaces are 

wholly characterized by the two filters used (high pass and low pass). These filters allow the 
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rapid calculation of the coefficients of the discrete wavelet transform using an iterative 

algorithm. 

The approximation of a function f at resolution 2
-j
 is defined as its orthonormal projection on Vj. 

To calculate this projection, we need an orthonormal basis of Vj. An orthonormal basis is 

constructed by dilating and translating a single function called scaling function. The function 

allows passing from one approximation space to another [46], that is to say, from one scale to 

another. The approximation subspace V0 is defined by using the scale of 𝜙0,0(𝑡) and its 

translates. The subspace Vj are generated by dilating this function by a factor of 2
j
 and their 

translated [46]: 

 

{𝜙𝑗,𝑘(𝑡) = 2
−𝑗/2𝜙0,0(2

−𝑗𝑡 − 𝑘)} 𝑘𝜖ℤ  (15) 

The approximation coefficients for signal x are defined by: 

𝑎𝑥(𝑗, 𝑘) = ∫ 𝑥(𝑡)
+∞

−∞

𝜙𝑗,𝑘(𝑡)𝑑𝑡 
 (16) 

We define {Wj}, the ensembles such as: 

W𝑗⊕ V𝑗 = V𝑗−1 

 

 (17) 

𝑊𝑗 represents the details spaces. These spaces are orthogonal complementary of the 

approximations spaces Vj. One of the major evidence of this approach is the existence of 

𝜓(𝑡), called the mother wavelet and denoted 𝜓0,0(𝑡), constructed from the scaling function and 

such as: 

{𝜓𝑗,𝑘(𝑡) = 2
−𝑗/2𝜓0,0(2

−𝑗𝑡 − 𝑘)} 𝑘𝜖ℤ   (18) 

We define the detail coefficients at level j by: 

𝑑𝑥(𝑗, 𝑘) = ∫ 𝑥(𝑡)
+∞

−∞

𝜓𝑗,𝑘(𝑡)𝑑𝑡 
  (19) 

The approximation of the signal x to the resolution 2
-j
, corresponding to its projection in Vj, and 

the associated detail signal, corresponding to its projection in Wj, are presented by the two 

equations: 
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𝐴𝑗𝑥(𝑡) =∑𝑎𝑥
𝑘

(𝑗, 𝑘) 𝜙𝑗,𝑘(𝑡) 
(20) 

𝐷𝑗𝑥(𝑡) =∑𝑑𝑥
𝑘

(𝑗, 𝑘) 𝜓𝑗,𝑘(𝑡) 
(21) 

Authors have used wavelet decomposition to characterize the non-stationary characteristics of 

the EHG. Relevant features are extracted from the detail coefficients, after the decomposition. In 

[48], Diab et al. calculated the variances on five selected detail levels: 2, 3, 4, 5 and 6 (named 

W1, W2, W3, W4 and W5). In our work, we used the wavelet symlet 5, a choice based on the 

study referenced in [47]. This study compared several types of wavelets. The results have shown 

that the symlet 5 appears to be the most appropriate wavelet for the analysis of EHG signals for 

detection and classification purposes. After decomposition of each EHG burst into detail 

coefficients, we calculate the variances on same detail levels as previously proposed in [48]. The 

choice of the details depends on the sampling frequency of the signal [48]. The sampling 

frequency used in our work is 200 Hz, down-sampled by a factor of 12 to obtain a new frequency 

of 16.67 Hz. Therefore the detail coefficients bandwidth are: Detail 2 [2.08- 4.17 Hz], Detail 3 

[1.04-2.08 Hz], Detail 4 [0.52-1.04 Hz], Detail 5 [0.26-0.52 Hz], and Detail 6 [0.13-0.26 Hz] 

(Figure 2.5). These selected details contain more than 96% of the signal energy and cover the 

frequency band of interest. Other sampling frequency used in our work is 256 Hz, down-sampled 

by a factor of 12 and then decompose each EHG into detail coefficients, the 5 detail bandwidths 

obtained are very close of the ones obtained above. 

In [49], wavelet packet decomposition has also been used to reduce the width of the frequency 

band analysis. Therefore, they decomposed each contraction, selected from EHG recorded during 

pregnancy and labor, on packets of 3 decomposition levels. In that case, the details as well as the 

approximations can be split [49]. To minimize the number of decompositions, the signals are 

first down-sampled by 32 (initial sampling frequency 200 Hz) because the main EHG 

frequencies lie between 0.1 and 3Hz [49]. After this decomposition, they computed the relative 

energy for each packet.  

 



91 
 

 

Figure 2.5: Wavelet decomposition 

2.3.2 Monovariate analysis: Nonlinear features 

   2.3.2.1 Time reversibility 

A time series is reversible if the probabilistic properties are unchanging with respect to time 

reversal. The time irreversibility is a good indication of nonlinearity. To calculate the Time 

Reversibility (Tr) characteristic of the signal x we have used the equation 22 described in [50]: 

 

                         𝑇𝑟(𝜏) =
1

𝑁 − 𝜏
∑ (𝑥(𝑑) − 𝑥(𝑑 − 𝜏))

3
𝑁

𝑑=𝜏+1

 (22) 

Where x is the time series or signal, N is the signal length and τ is the time delay. 

   2.3.2.2 Lyapunov exponent 

The Lyapunov exponent (LE) studies the stability and the sensitivity to initial conditions of the 

system. It measures the rate of trajectory separation between adjacent tracks in the phase space 

explained below [50] [51]. In our study we used the equation of LE described in [50] and 

represented by:  
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𝜆 =  lim
𝑡→∞

lim
∥𝛥𝑑0∥→0

(
1

𝑡
) log (∥ 𝛥𝑑𝑡 ∥/ ∥ 𝛥𝑑0 ∥) 

(23) 

where ∥ 𝛥𝑑0 ∥ represents the Euclidean distance between two states of the system at an arbitrary 

time  𝑡0, and ∥ 𝛥𝑑𝑡 ∥ corresponds to the Euclidean distance between the two states of the system 

at a later time t. 

Phase space: 

The phase space is an abstract mathematical space that is considered in the system dynamic. It’s 

constructed using a time delay and an embedding dimension. In order to attain the success of 

reconstructing the attractor from finite data [52] the choice of the appropriate time delay τ and 

embedding dimension m, is very important. 

The reconstructed trajectory, X, can be expressed as a matrix where each row is a phase-space 

vector [53]: 

𝑋 = [𝑋1𝑋2… . 𝑋𝑀]𝑇     (24) 

where Xi is the state of the system at discrete time i.  

For an N-point time series {x1, x2,...,xN}, each Xi is given by: 

𝑋𝑖 = [𝑥𝑖, 𝑥𝑖+𝜏, … , 𝑥𝑖+(𝑚−1)𝜏] 

 

     (25) 

where τ and m represent respectively, the time lag or reconstruction delay and the embedding 

dimension. Therefore, X is an M×m matrix, and the constants m, M, τ, and N are linked by: 

𝑀 = 𝑁 − (𝑚 − 1)𝜏        (26) 

As indicated above, the good reconstruction of the phase space depends on the choice of the two 

parameters, τ and m. We have therefore chosen an optimal value for each of these parameters. 

For the time delay, τ, we use the first local minimum of the average mutual information between 

the set of measurements X(i) and X(i + τ). Mutual information measures the general dependence 

of two variables [54].  

For estimated the minimum embedding dimension, m, we used an algorithm proposed by Kennel 

et al. [55].  The algorithm is based on the idea that, when passing from dimension m to 
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dimension m+1, one can differentiate points on the orbit that are true neighbors from those that 

are false ones. A false neighbor is a point in the data set that is identified as a neighbor solely 

because the attractor is viewed in a too small embedding space. When the embedding dimension 

is large enough, all neighbors of every attractor point in the multivariate phase space will be true 

neighbors [52]. 

2.3.2.3 Sample entropy 

To identify the regularity of EHG signals, the sample entropy (SE) is used. In our work, we have 

used the sample entropy described in [43]. They indicated that a least predictable time series 

have a higher sample entropy. Consider a time series x which represents EHG signal of length N 

and patterns aj (0, …,m-1) of length m, with 𝑚 < 𝑁, and aj(i)=x(i+j); i=0, …, m-1; j=0, …,N-m. 

The time series 𝑥 in a time t =ts, x (ts, ..., ts + m-1) is a match for a given pattern aj, if | x(ts + i) 

– aj(i) | <= r for each 0<=i<m. Sample entropy is then computed as follows using equation 27: 

 

𝑆𝐸𝑚,𝑟 (𝑥) =

{
 
 

 
 − log (

𝐶𝑚
𝐶(𝑚−1)

)   ∶ 𝐶𝑚 ≠ 0 ∧ 𝐶𝑚−1 ≠ 0

− log (
𝑁 −𝑚

𝑁 −𝑚 − 1
) : 𝐶𝑚 = 0 ∨ 𝐶𝑚−1 = 0

 

 

       (27) 

where the four parameters N, m, r and Cm represent respectively the length of the time series, the 

length of sequences to be compared, the tolerance for accepting, and the number of matching 

pattern (within a margin for r) that is constructed for each m.  

The value of m is chosen equal to 2; this value is determined by the method of the False Nearest 

Neighbors (FNN). The value of r equals 0.2 according to the literature [43]. 

   2.3.2.4 Detrended fluctuation analysis 

In [56], Moslem et al. studied the fluctuation of a time series 𝑥, EHG signal of length 𝑁. This 

method consists of computing a new integrated series 𝑋(𝑘) from the original series 𝑥 by using 

equation 28: 

𝑋(𝑘) =∑[ 𝑥(𝑖) − 𝑥 ̅]

𝑘

𝑖=1

 (28) 

where �̅� is the average of 𝑥(𝑖) over the whole points.  �̅� is calculated by using equation 29 : 
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�̅� =
1

𝑁
∑𝑥(𝑖)

𝑁

𝑖=1

 (29) 

In the next step, we divide the data into boxes of same length n. In each box, a polynomial 

function of degree a, is then used to interpolate the sequence (Figure 2.6). 

 

Figure 2.6: (A) Time series. (B) Integrated series 𝑋(𝑘).Vertical dotted lines represent windows 

of length n. Solid lines are the trends estimated for each window by the least square method [56] 

A linear fit is normally used, although quadratic, cubic, or higher order polynomials can be used 

in the fitting procedure. The fluctuation function 𝐹(𝑛) is then computed according to equation 

30: 

             𝐹(𝑛) = √
1

𝑁
∑[𝑋(𝑘) − 𝑋𝑛(𝑘)]2
𝑁

𝑘=1

 

 

   (30) 

Characteristically, 𝐹(𝑛) increases with the box size n. Under these conditions, if the time series 

is self-similar, a relationship indicates the presence of power law scaling 𝐹(𝑛) ∼  𝑛𝛼. The 

scaling exponent alpha α can be estimated by using a linear fit on the log–log plot of 𝐹(𝑛) versus 

n. The value of α is the correlation properties of the time series. 

Finally, we note that α can have different values: for uncorrelated data (ie, white noise), α = 0.5. 
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If the value of α is lower than 0.5, this indicates that the correlations in the signal are anti-

persistent. These correlations become persistent when α is greater than 0.5. 

   2.3.2.5 Variance entropy 

Recent studies [57] used the variance entropy (VarEn) to characterize signals but it has never 

concerned the EHG. We are interested in our work to use variance entropy, because this 

parameter combines the variance with sample entropy via inverse-variance weighting. For a time 

series x, VarEn is defined as equation 31: 

                  𝑉𝑎𝑟𝐸𝑛(𝑥,𝑚, 𝑟) =
∑ 𝑆𝐸𝑚,𝑟 (𝑥𝑙) . 𝑤𝑙
𝑝
𝑙=1

∑ 𝑤𝑙
𝑝
𝑙=1

              (31) 

where xl is the l-th segment of x, wl is inverse variance of xl, r is the tolerance for accepting and p 

is the number of sliding windows. p is not fixed because the length of the signals in our data base 

depends on  EHG burst durations. 

The sliding window, of size equal to 50, slides over time with a step of 45 (step size), leading to 

an overlap between the sliding windows equal to 5. The choice of window size and step size 

were made empirically after several trials. p therefore depends on window size. 

Because variance entropy combines the variance with sample entropy via inverse-variance 

weighting, the number of windows is very important and can significantly affect the results. p 

must be neither too high nor too small. A too large p value induces large computation time and 

does not give a precise result. A too small p value limits detection of variability. 

2.3.3 Bivariate analysis: Features related to EHG propagation 

To analyze the synchronization between two EHGs, we choose several methods. For this 

bivariate analysis, we computed features over all combination of available channels. 

  2.3.3.1 Correlation coefficient 

A- Linear correlation (R
2
)  

Linear correlation coefficient is calculated for two time series x(t)and y(t) in the time domain as: 

                          𝑅2 = 𝑚𝑎𝑥
𝜏

𝑐𝑜𝑣2(𝑥(𝑡), 𝑦(𝑡 + 𝜏))

𝑣𝑎𝑟(𝑥(𝑡))𝑣𝑎𝑟(𝑦(𝑡 + 𝜏))
          (32) 
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where var, cov, and 𝜏 denote, respectively, variance, covariance, and time shift between the two 

time series [58].  

B- Nonlinear correlation (H
2
)  

To calculate H
2
, a scatter plot of y (Vb8) versus x (Vb7) is studied. All values of x are divided 

into bins. We calculate for each bin the x value of the midpoint pu and the average of y, qu 

calculated from the same bin interval. The regression curve is approximated by linking the 

obtained points (pu, qu) by straight-line segments. Then, H
2
 between the two signals x and y is 

computed as [59]: 

 

                         𝐻𝑌 𝑋⁄
2 =

∑ 𝑥(𝑘)2 − ∑ (𝑦(𝑘) − 𝑓(𝑥𝑢))
2𝑁

𝑘=1
𝑁
𝑘=1

∑ 𝑦(𝑘)2𝑁
𝑘=1

          (33) 

where 𝑓(xu) is the linear piecewise approximation of the nonlinear regression curve, the index u 

is the number of bins and the index k is a sample of the signal. The nonlinear correlation is an 

asymmetric measure, in the sense that 𝐻2(𝑥|𝑦) ≠ 𝐻2(𝑦|𝑥). 

C- General synchronization (H) 

Let us reconstruct delay vectors 𝑥𝑛 and 𝑦𝑛 from the time series measured in two systems 𝑥 and 𝑦. 

𝑥𝑛 = (𝑥𝑛 , … , 𝑥𝑛−(𝑚−1)𝜏 ),   𝑦𝑛 = (𝑦𝑛 , … , 𝑦𝑛−(𝑚−1)𝜏 ) where  𝑛 = 1,… .𝑁 ; m is the embedding 

dimension and 𝜏 is the delay time. The time indices of the 𝑘 nearest neighbors of 𝑥𝑛 and 𝑦𝑛 are 

respectively 𝑟𝑛,𝑗 and 𝑠𝑛,𝑗 , 𝑗 = 1,… . 𝑘. 

The squared mean Euclidean distance for each 𝑥𝑛 to its 𝑘 neighbors is: 

                                           𝑅𝑛
(𝑘)(𝑥) =  

1

𝑘
 ∑(𝑥𝑛 − 𝑥𝑟𝑛,𝑗 )

𝑘

𝑗=1

 
          (34) 

The y-conditioned squared mean Euclidean distance is: 

                                         𝑅𝑛
(𝑘)(𝑥|𝑦) =  

1

𝑘
 ∑(𝑥𝑛 − 𝑥𝑠𝑛,𝑗 )

2
𝑘

𝑗=1

              (35) 

Consequently, a measure of nonlinear interdependence can be identified according to [60]: 

                            𝐻(𝑘) =
1

𝑁
∑ log

𝑅𝑛(𝑥)

𝑅𝑛
(𝑘)(𝑥|𝑦)

𝑁

𝑛=1

              (36) 
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where 𝑅𝑛(𝑥) is the average distance of a vector  𝑥𝑛  to all the other vectors. 

If x and y are independent, this measure is close to zero, while it is positive if nearness in y also 

implies nearness in x for equal time partners. The nonlinear interdependence is an asymmetric 

measure, in the sense that 𝐻(𝑥|𝑦) ≠ 𝐻(𝑦|𝑥)𝑠𝑜 𝐻(𝑥|𝑦) > 𝐻(𝑦|𝑥), 𝑖𝑓 𝑥 → 𝑦. 

D- Bivariate piecewise stationary signal pre-segmentation (bPSP) and filtration: 

In [61], Diab tried to improve the performance of the methods 𝐻2 and 𝐻 in order to improve the 

classification of contractions between pregnancy and labor, after testing the sensitivity of these 

methods to some characteristics of signal (nonstationarity, frequency band) or signal recording 

(bipolar or monopolar recording). Therefore, he applied H
2
 and H on real EHGs segmented by 

using the bPSP algorithm. After this segmentation, he found that the performance of these 

methods is improved slightly but the difference obtained between pregnancy and labor remains 

non-significant. Therefore, he decided to retain only the low frequency band of the EHG (FWL), 

which is supposed to be more related to the propagation of EHG, with keeping the windowing-

preprocessing step. The combination of these two preprocessing steps (Filtered-Windowed-

𝐻2(𝐹𝑊_𝐻2) and Filtered-Windowed-𝐻 (𝐹𝑊_𝐻) gave the best results, with a clear increase 

from pregnancy to labor. 

  2.3.3.2 Phase synchronization 

The phase synchronization principle (𝜑𝑒,𝑓) consists in a phase locking between two systems 

described as [62]: 

                                 φe,f(t) = |𝑒Φ𝑥(t) − 𝑓Φ𝑦 (t)| ≤ C         (37) 

where e and f are integers indicating the ratios of possible frequency locking. In this work and 

according to the literature [63], we assume e=f=1 for simplicity. Φx(t) and Φy(t) are the 

unwrapped phases of the signals x and y, and C is a constant. In our study we apply a phase 

synchronization called "mean phase coherence" (𝛾𝑒,𝑓) used in [59], represented by equation 38: 

                                    𝛾𝑒,𝑓 = √〈cos𝜑𝑒,𝑓(𝑡)〉2 + 〈sin𝜑𝑒,𝑓(𝑡)〉2          (38) 

where <> indicates average over time. 
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2.4 Preliminary study: proposition of an algorithm for the selection of 

parameters using the Jeffrey Divergence Distance 

Our proposed method is divided into two parts. The first part consists of implementing and 

computing all the features already extracted from the EHG that have been published in the 

literature (presented above). These features were computed, for each existing contraction in the 

selected database, both on the original EHG and on different frequency bands obtained using 

wavelet packet decomposition. After obtaining the two matrices of histograms for the two classes 

(Pregnancy and labor), we proposed to measure histogram similarity or dissimilarity for a given 

feature between the two classes by using the Jeffrey Divergence method. Therefore, the 

discriminant and pertinent features have the greater distance between the feature histograms of 

the pregnancy and labor classes. 

2.4.1 Calculated Features and their histograms 

As this study took place at the beginning of the thesis, as a preliminary step, we used only here 

the database1 (described chapter 1 section 1.6.2), only available at this time, composed of 106 

pregnancy (Class1) and 106 labor contractions (Class2). We use only the two bipolar signals 

Vb7 and Vb8, because Vb7 is a reference recording position that has been used for a long time in 

our research. It is located on the median vertical axis of the uterus. The signal energy in this area 

remains high throughout the pregnancy as well as during labor. At the time of this study, the 

algorithm permitting to denoise the monopolar signals was not available yet. We thus used here 

for monovariate analysis the bipolar Vb7 and for bivariate analysis the two bipolar Vb7 and Vb8. 

For each contraction of each group, we apply the following steps: 

Step 1: Normalize, filter between 0.1 and 3Hz and down-sample (the original sampling 

frequency is 200 Hz, down-sampled by a factor of 32, we obtain a new sampling frequency = 

6.25 Hz) the two signals (Vb7 and Vb8) that correspond to this contraction.  

Step 2: Decompose the EHG bipolar channels (Vb7 and Vb8) using wavelet packet transform 

into three levels. We obtain 15 packets as shown in Figure 2.7. Then we process the packets that 

contain more than 1% of the total energy. In this case, we obtain 9 signals: 8 subsignals from the 

selected packets and the original signal (Vb7 or Vb8). In our study, the chosen packets 

correspond to the following frequency bands [0–3.125 Hz], [0–1.56 Hz], [0–0.78 Hz], [0.78–1.56 

Hz], [0–0.39 Hz], [0.39–0.78 Hz], [0.78–1.17 Hz], [1.17–1.56 Hz].  
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Normalize, filter between 0.1 and 3Hz and down-sample the original signal (the original 

sampling frequency is 200 Hz, down-sampled by a factor of 12 to obtain a new sampling 

frequency = 16.67Hz) [64].  As we must calculate in this part the variance of the obtained details 

after decomposition of each EHG burst, so we did this pretreatment, because the choice of the 

details depend on the sampling frequency of the signal (as was described in the section 2.3.1.2), 

in order to correspond to the same frequency bands as the one selected in [48].  

 

Figure 2.7: Tree of the wavelet packet transform [49]. The underlined packets are the ones 

selected in this study. 

Step 3: Calculate the propagation features between the 8 packets of Vb7 and Vb8 and between 

the original EHG. Recall that these parameters are: Linear (R
2
), nonlinear correlation coefficient 

(H
2
), and the Phase synchronization (γ). 

Step 4: For each subsignal and for the original signal, calculate the nonlinear features on the 

eight packets of the decomposition of Vb7 and on the original EHG. These methods are: Time 

reversibility (Tr), Lyapunov exponent (LE), sample entropy (SE), Detrended Fluctuation 

Analysis (DFA), and Variance entropy (VarEn). 

Step 5: Calculate the variances on the following details levels after wavelet decomposition 

2,3,4,5 and 6 (W1, W2, W3, W4 and W5) of each packet and on the original EHG. 
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Step 6: For each signal, compute the frequency features: deciles (D1, D2, D3, D4, D5, D6, D7, 

D8 and D9), mean frequency (MPF), Peak Frequency (PF), from the PSD of each packets and 

from the original EHG. 

Steps 7: Group in a matrix these values calculated on the eight packets and the original EHG. 

Thus we obtain for a given contraction, a matrix with dimensions 9x25. The 25 columns 

correspond to the 25 features and the 9 rows these values computed from the eight packets and 

the original EHG. 
 

Step 8: As the Database contains 106 contractions in each class, we obtain 106 matrices of 

dimensions 9x25 by class. We then compute from these 106 matrices (and for each class) the 

histogram for each feature.  We will obtain 2 matrices of 9x25 histograms (9 signals, 25 features, 

2 classes).   

2.4.2 Features selection method based on Jeffrey divergence  

After obtaining the two matrices of histograms for labor and pregnancy classes, we measure the 

distance between the two histograms of the 2 classes for a given feature. To measure this 

distance, we use the Jeffrey Divergence method explained in section 2.2.3.1-A. After calculating 

these distances, we obtain finally a distance matrix of dimension 9x25. Figure 2.8 presents the 

distance matrix in the form of a color matrix array, the red color representing the maximum 

distance value of the distribution and the blue color its minimum. Columns of this matrix present 

the features and the rows are the eight packets plus the original EHG.  

 

Figure 2.8: Matrix colors presenting the distances between histograms of features, on different 

packets and on original EHG 
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The goal of our study is to select the most discriminant features; therefore we apply two 

thresholds on the matrix of distance in order to select the parameters associated to the larger 

distances. We calculate the mean and standard deviation of the distance distribution. The first 

threshold (threshold1) is equal to the mean+1*standard deviation of the distance distribution; the 

second threshold (threshold2) is the mean+2*standard deviations of the same distribution. We 

use the second threshold to select the most discriminant parameters. We therefore made no 

assumption about the number of features that should be selected but kept only the most 

discriminant ones, in a statistical point of view. 

2.4.3 Results on the selection using the Jeffrey Divergence method 

2.4.3.1 Features computed on the original EHG 

As most of previous works have been done on the whole signal characterization, in order to 

compare our results to those presented in the literature, we first present the results obtained from 

the original EHG. 

Table 2.5 presents the features selected by applying the two thresholds on the matrix of distance: 

threshold1= mean + std and threshold2 = mean+ 2*std.  

By applying threshold1, we obtained four selected parameters (H
2
, SE, VarEn and D1), while 

when applying threshold2, we selected only one most discriminant parameter, VarEn. 

Table 2.5: Features selected for the best discrimination between pregnancy and labor 

contractions, for the original signal 

Features Selected 

(Threshold1) 

Features Selected 

(Threshold2) 

Histogram 

distance 

Evolution from 

pregnancy to labor 

Nonlinear correlation  

coefficient (H
2
) 

  

0.3306 

 

Decrease 

Sample entropy (SE)   

0.3530 

 

Increase 

Variance entropy 

(VarEn) 

Variance  

entropy (VarEn) 

 

0.4989 

 

Increase 

Decile 1 (D1)   

0.3654 

 

Decrease 
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2.4.3.2 Features computed on the packets after wavelet decomposition and on the 

EHG 

This analysis permits us to see which packet (that is which frequency band) has the most 

influence in discriminating classes. Figure 2.9 shows the selection matrix obtained when 

processing the selected packets (Packets (0,0)-Packet (3,3)) as well as the original EHG. The 

results are presented as a black and white matrix of dimensions 9x25, the rows present the 

selected packets plus the original EHG, and the columns present the features. A white color 

indicates that the feature has been selected to discriminate between pregnancy and labor. These 

results are obtained by applying Threshold1 on the distance matrix. For example, the first 

feature, linear correlation coefficient R
2
, can discriminate between pregnancy and labor when 

applied to the two packets (2, 0) and (3, 0). 

Figure 2.10 and Table 2.6 presents the best features on packets and original EHG for 

discrimination between pregnancy and labor when applying Threshold2 on the distance matrix. 

These selected features are more discriminant than the ones selected with Threshold1 because 

Threshold2 selects the features that give a larger distance between pregnancy and labor classes. 

Indeed, the larger the distance, the more discriminant is the related feature. This table also 

presents the evolution of these feature values from pregnancy to labor. 

 

Figure 2.9: Selection matrix, presenting the best features on packets and original EHG for the 

discrimination between pregnancy and labor. These features are selected by applying threshold1. 
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Figure 2.10: Selection matrix, presenting the best features on packets and original EHG for the 

discrimination between pregnancy and labor. These features are selected by applying threshold2. 

 

Table 2.6: Features selected for the best discrimination between pregnancy and labor 

contractions, for packets and original signal. These features are selected by applying threshold2. 

Features Selected 

    (Threshold2) 

Packets and 

Original 

Histogram distance Evolution from 

pregnancy to labor 

Linear correlation 

coefficient (R
2
) 

[0-0.39Hz]  0.5325    Decrease 

Nonlinear correlation  

coefficient (H
2
) 

[0.78-1.56Hz] 0.4051 Decrease 

Variance entropy 

(VarEn) 

Original 0.4989 Increase 

Variances on the 

details levels 2 (W1) 

[0-0.78Hz] 

 

0.4160 Decrease 

Decile 5(D5)  

 

[0.78-1.56Hz] 

[0-0.39Hz] 

0.4417 

0.4165 

Decrease 

Decrease 

Decile 7(D7) [0.78-1.17Hz] 0.4096 Decrease 

Decile 8(D8) [0-3.125Hz] 0.4494 Increase 

  

2.4.5 Discussions 

This part is the preliminary work of our thesis, where we set up all signal processing tools after 

adjustments (linear parameters, nonlinear parameters and parameters related to the EHG 
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propagation). Then, a selection method has been applied to choose the best parameters to classify 

contractions in the uterine electrohysterography (EHG) signal for the detection of preterm labor. 

Additionally, a Frequency band enhancement EHG characterization has also been extensively 

studied. 

According to the literature, our results indicate that nonlinear correlation coefficient (H
2
), sample 

entropy (SE), variance entropy (VarEn), and decile 1 (D1) are the most discriminating when 

applied to the original EHG. 

The frequency features (deciles D1…D8 and MPF), also permit the discrimination between 

pregnancy and labor on several packets (Figure 2.9). The evolution of frequency features values 

from pregnancy to labor indicates an increase in the high frequency bands, for example D8 in the 

packet [0-3.125Hz] increases from 0.3852 to 0.5085, as well as a small decrease in the low 

frequency bands, for example D1 in the packet [0.78-1.56Hz] decreases from 1.0575 to 1.0146. 

This is in agreement with the works done on the whole signal by different teams, who evidenced 

a shift of the original EHG content towards higher frequency when going from pregnancy to 

labor [65].  

The propagation features, H
2
 and R

2
, provide discrimination between pregnancy and labor on 

several packets and/or on the original EHG (Figure 2.9). Both features decrease on passing from 

pregnancy to labor contractions. This is in disagreement with previous work done by our team 

[66] [67]. The explanation is that, in this work, we do not correct H
2
 and R

2
 by using surrogates, 

in order to get free from the evolution of the frequency content (proved by the shift of the 

frequency content towards higher frequency, evidenced by the increase in MPF) that induces a 

bias in R
2
 and H

2
 values [66] [67]. We did this in order to test H

2
 on a wider database than 

previously used, and because the correction of this feature takes a lot of computing time. Indeed, 

the main objective of our work is to find the best way to discriminate easily between pregnancy 

and labor. A recent study [61] found that the use of two simpler preprocessing steps (windowing-

preprocessing step, filtration step to retain only the low frequency band of the EHG (FWL)), 

leads to an increasing of H
2
 performance. H requires further investigation because the 

performance of this method is also influenced by the nonlinearity of EHG signals. The two 

propagation parameters H
2
 and H with two preprocessing steps will be computed in the 

following study. 
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The nonlinear features Tr, SE and VarEn, permit to discriminate between pregnancy and labor on 

several packets and/or on the original EHG (Figure 2.9). The parameters SE and VarEn increase 

from pregnancy to labor, demonstrating an increase in EHG non-linearity in agreement with the 

bibliography, with the exception of VarEn that decreases in the packet [0.78-1.17Hz]. This could 

be explained by the fact that VarEn is sensitive to the number of points. SE is very sensitive to 

sampling frequency [68] as well as Tr. When decreasing the number of points used to compute 

Tr, Tr decreases. Here Tr is discriminating for the packet (3,1) where the number of points is 

small, explaining thus why Tr decreases. Four features extracted from variance of the wavelet 

decomposition (W1, W2, W3 and W4) give discrimination between labor and pregnancy on 

several packets when using Thereshold1 (Figure 2.9). After analysis of their frequency content, it 

can be noticed that theses wavelet variances all correspond to the [0.39-1.56Hz] frequency band, 

where most changes seem to appear between pregnancy and labor contractions. Only W1 is 

selected when applying Threshold2. These variance features may be retained if we want to get a 

better discrimination between pregnancy and labor classes.  

2.5 Feature selection from bipolar and monopolar EHG signals  

2.5.1 Calculating Features  

In this part, 26 features are calculated for each existing contraction in the selected database 2 

(explained in chapter1 section 1.6.2). This database is composed of 290 pregnancy contractions 

and 189 labor contractions from which we processed either bipolar or monopolar signals. 

For the monovariate approach, linear and nonlinear features are calculated only from the bipolar 

signal Vb7 (our reference position and from the monopolar channel CH10 (channel 

corresponding to one of the electrodes used to compute the bipolar signal Vb7). Features related 

to the EHG propagation are computed over all combinations of bipolar and monopolar channels. 

 To compute features, for each contraction of each group, we apply the following steps: 

Step 1: Calculate the nonlinear features on bipolar signal Vb7. These features are: Time 

reversibility (Tr), Lyapunov exponent (LE), sample entropy (SE), Detrended Fluctuation 

Analysis (DFA), and Variance entropy (VarEn). 

Step 2: Compute the frequency features: deciles (D1, D2, D3, D4, D5, D6, D7, D8 and D9), 

mean frequency (MPF), Peak Frequency (PF), from the PSD of bipolar signal Vb7. 
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Step 3: Normalize, filter between 0.1 and 3Hz and down-sample the bipolar signal Vb7 that 

correspond to this contraction (sampling frequency for most contractions equal 200 and for other 

256, both down-sampled by a factor of 12 to obtain a new sampling frequency equal 16.67Hz 

and 21.33 respectively). Decompose this signal using wavelet decomposition. Then, calculate the 

variances on the following details levels after wavelet decomposition 2,3,4,5 and 6 (W1, W2, W3, 

W4 and W5). 

Step 4: To compute the features related to the EHG propagation, between two bipolar channels 

Vbi and Vbj each feature takes both bipolar channels as input. We took all possible combinations 

of two bipolar channels among all the available bipolar channels n. Therefore we obtain n
2 

values 

of coupling for each feature. As the coupling between the same bipolar channels is forced to 

zero, we obtain (n
2
-n) values of coupling of each feature (here n=12, so 132 coupling values of 

each feature are obtained). These features are: Linear (R
2
), nonlinear correlation coefficient (H

2
), 

and the Phase synchronization (γ), Filtered-Windowed-𝐻2(𝐹𝑊_𝐻2) and Filtered-Windowed-

𝐻 (𝐹𝑊_𝐻). The features R
2
, H

2
 and γ are calculated without pretreatment while 𝐹𝑊_𝐻2 and 

𝐹𝑊_𝐻 are calculated after segmentation and filtering the EHG to take the lower frequency 

bands. All calculations described above are done after segmentation. Finally, we take the mean 

of each feature over all segments to obtain one value for each feature corresponding to one 

contraction.  

Step 5: For a given contraction, we obtain 26 values. As we have 479 contractions (189 bipolar 

labor contractions and 290 bipolar pregnancy contractions), we obtain a matrix with dimension 

479x26. The 26 columns correspond to the 26 features, and the 479 rows correspond to bipolar 

signals. 

For monopolar database to compute the monovariate and bivariate features, we apply the same 

five steps presented above but using CH10 (instead of Vb7) and n=16 monopolar channels 

(instead of the 12 bipolar channels). Therefore we obtain a matrix with dimension 479 x 26. The 

26 columns correspond to the 26 features, and the 479 rows correspond to monopolar channels. 

2.5.2 Feature selection methods 

In this study, we tested several methods for feature subset selection to choose the best subsets for 

classifying labor and pregnancy contractions. These methods are applied to monopolar as well as 

bipolar EHG signals.  
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The tested methods are first four features selection methods of type filter (Jeffrey divergence, F-

score, relieff and mutual information with clustering). These methods rank features in terms of 

their importance. Then, the selected features by each method correspond to features that have a 

rank larger than a specific threshold. 

Then the other methods are seven features selection methods of type wrapper: sequential forward 

selection (SFS), sequential backward selection (SBS), Plus-l minus-r selection (LRS), 

Bidirectional search (BDS), Sequential Forward Floating sequential (SFFS), Genetic Algorithm 

(GA) and Binary particle swarm optimization (BPSO). These methods evaluate a subset of 

features by its classification performance, using a learning algorithm. We used in our work the 

classical classifier KNN.  For the learning step, the data are split by using two cross validation 

algorithms:   

 Holdout method: is the simplest kind of cross validation. The data is randomly split into 

two sets, called the training set and the testing set (in our work 70% of the data set are 

used for classifier training and the remaining 30% for testing).  

 KFOLD cross validation: the data set is divided into k subsets, and the holdout method is 

repeated k times. Each time, one of the k subsets is used as the test set and the other k-1 

subsets are used as the training set. Then the average error in all k trials is calculated. In 

our work we use k=10. 

The best features subset chosen by sequential methods is defined as the one giving the minimum 

classification error after trying all sequential combinations. We thus used 50 iterations for each 

sequential method, and then we choose the subset that has the minimal error between all 50 

iterations. For each iteration, data is randomly split using either Holdout or KFOLD method. 

The best feature subset obtained by using genetic algorithm is an optimal solution obtained when 

the limit number of generations K=100 is reached. 

The best feature subset chosen by the BPSO algorithm is defined as the one giving the maximum 

percentages of correct classification after 100 iterations (1 run). Then, to evaluate the 

performances and variability of BPSO, we performed multiple runs (200 runs). Then we choose 

the subset of the run that has the maximum percentage of correct classification between all the 

200 runs. In each run, dataset is randomly split using either Holdout or KFOLD method. 
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2.5.3 Results 

2.5.3.1 Results of Features selection 

For the whole tested methods,  we used a dataset of dimensions 379 x 26 (139 labor contractions 

and 240 pregnancy contractions), except for the Jeffrey Divergence methods that requires an 

equal number of contractions in each class when measuring the bin-by-bin distances of 

corresponding histogram bins. We thus used in that case 139 labor contractions and 139 

pregnancy contractions extracted from the 240 available. 

A- Features Selection using JD Distance 

After calculating the distances between every two corresponding feature histograms for the 26 

features using bipolar contractions, we obtain a distance vector of dimension 26, as presented 

Figure 2.11-A. The red color represents the maximum distance value of the distribution and the 

blue color its minimum. Each point of the horizontal axis represents a different feature. The 

distance values for each feature is presented in Appendix B.1 (Table B.1.1). Figure 2.11-B shows 

the selection vector obtained after applying the threshold = mean (all values of distance) on the 

distance vector. Features having value of distances higher than the mean value of all distances 

are selected. A white color indicates that these features have been selected as being discriminants 

between pregnancy and labor.  

 

 

 

 

Figure 2.11: (A) Color vector representing the distribution of distances between features from 

bipolar EHGs. (B) Selection vector representing the most discriminating features for the 

discrimination between bipolar pregnancy and labor EHG bursts. 

Figure 2.12 presents the same processing described above but by using monopolar pregnancy 

and labor EHGs. The distance value of each feature is presented in Appendix B.1 (Table B.1.1). 

The two subsets of features obtained after applying Jeffrey Divergence on bipolar and monopolar 

data set are presented table 2.7. 
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Figure 2.12: (A) Color vector representing the distribution of distances between features from 

monopolar EHGs. (B) Selection vector representing the most discriminating features for the 

discrimination between monopolar pregnancy and labor EHG bursts. 

B- Features Selection using F-score 

After calculating F-score for each feature, we obtain 26 F-score-values. The F-score values of 

each feature are presented Appendix B.1 (Table B.1.2). Figure 2.13-A and Figure 2.14-A present 

the distribution of F-score values from bipolar and monopolar EHGs respectively. Features 

having values of F-score higher than threshold = mean (all values of F-score) are selected. 

Therefore, 6 features are selected from bipolar (Figure 2.13-B) and monopolar datasets (Figure 

2.14-B). These two subsets of features are presented table 2.7. 

 

 

 

 

Figure 2.13: (A) Color vector representing the distribution of F-score values for bipolar dataset. 

(B) Selection vector representing the best features for the discrimination between pregnancy and 

labor contractions using bipolar EHGs. 

 

 

 

 

 

 

Figure 2.14: (A) Color vector representing the distribution of F-score values for monopolar 

dataset. (B) Selection vector representing the best features for the discrimination between 

pregnancy and labor contractions using monopolar EHGs. 

C- Feature Selection using Relieff 

Relieff method calculates the weight of each feature. 26 weights are obtained corresponding to 

the 26 features. The values of feature weights are presented Appendix B.1 (Table B.1.3). The 
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distribution of weights is presented in Figure 2.15-A and Figure 2.16-A for respectively bipolar 

and monopolar datasets. After applying a threshold = mean (all values of weights), 8 features 

(Figure 2.15-B) and 9 features (Figure 2.16-B) are selected from bipolar and monopolar dataset 

respectively. The two obtained subsets are presented table 2.7. 

 

 

 

 

 

 

Figure 2.15: (A) Color vector representing the distribution of weight values for bipolar dataset. 

(B) Selection vector representing the best features for the discrimination between pregnancy and 

labor contractions using bipolar EHGs. 

 

 

 

 

 

Figure 2.16: (A) Color vector representing the distribution of weight values for monopolar 

dataset. (B) Selection vector representing the best features for the discrimination between 

pregnancy and labor contractions using monopolar EHGs. 

D- Feature Selection using mutual information with clustering 

The best subset of features selected using mutual information with clustering is found when the 

variation of J is approximatively negligible. Figure 2.17-A and Figure 2.17-B present the 

variation of J using bipolar and monopolar datasets respectively. In figure 2.17-A, we notice that 

the variation of J (J velocity) calculated between the two subset of features S6 and S7 (S6: subset 

corresponds to the six added features and S7: subset corresponds to the seven added features) is 

the first which is lower than the mean value of all variances. Therefore the best subset selected 

corresponds to the subset S6. In figure 2.17-B the best subset selected is the subset S7. The two 

obtained subsets are presented table 2.7. 
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Figure 2.17: (A) J velocity using bipolar contraction. (B) J velocity using monopolar 

contractions. 

 

Table 2.7: Subsets of features selected using several filter methods, for the best discrimination 

between pregnancy and labor contractions, as well as their related computation time. 

Methods Selected feature Subset Time (s) 

Bipolar Monopolar Bipolar Monopolar 

Jeffrey 

divergence 

(JD) 

[DFA, VarEn, FW_H, 

MPF,W2, R
2
, SE, H

2
, 

FW_H
2
] 

 [DFA, VarEn, FW_H, 

SE, MPF, D9,W5, W2, 

R
2
] 

0.09  0.08 

F-Score  [DFA, FW_H, FW_H
2
, 

VarEn, MPF, W2] 

 [DFA,  FW_H,  FW_H
2
 

, VarEn, W2, SE] 

0.005 0.009 

Relieff  [DFA, VarEn, FW_H, 

MPF, D9, D8, PF, y] 

 [DFA, VarEn, FW_H, 

D9, MPF, D8, D7, W1, 

D6] 

0.35 0.36 

Mutual 

information 

with 

clustering 

 [DFA, MPF, FW_H, SE, 

VarEn, FW_H
2
] 

 

[DFA, VarEn, FW_H,  

SE, W5, MPF, FW_H
2
] 

0.08 0.08 

 

E- Feature Selection using sequential methods 

Figure 2.18 presents the evolution of the procedure for each sequential method applied on the 

monopolar dataset and using KFOLD data split. In this figure each evolution is followed by 
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means of three curves. The first curve is the variation of the criterion (classification error) 

corresponding to each combination of features sequentially generated (third curve). The 

operation direction for each method is represented in the second curve by a value of either “-1” 

for feature removal or “+1” for feature addition. The red circle in the first and second curves 

corresponds to the lowest classification error obtained for each features subset. We choose the 

feature subset with the smallest number of features corresponding to this lowest classification 

error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18:  Evolutions of the procedures for the sequential methods using KNN-KFOLD with 

the monopolar dataset. (A) SFS-KNN-KFOLD. (B) SBS-KNN-KFOLD. (C) BDS-SFS-KNN-

KFOLD. (D) BDS-SBS-KNN-KFOLD.  (E) LRS-KNN-KFOLD. (F) SFFS-KNN-KFOLD. 
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The other sequential methods evolutions on bipolar using KNN-KFOLD, monopolar using 

KNN-Holdout and bipolar using KNN-Holdout are presented Appendix B.2. 

Table 2.8 presents the selected feature subsets obtained from these sequential methods using the 

classifier KNN and the two data splits KFOLD and Holdout when applied to the bipolar and 

monopolar EHGs. Each selected feature subset corresponds to the one that gives the maximum 

percentage of correct classification calculated from the classification error. 

Table 2.8: Selected feature subsets using sequential methods on bipolar and monopolar datasets 

as well as their related computation time. 

Method Selected parameter Subset Percentage of 

correct 

classification 

Time (s)  

Bipolar Monopolar Bipolar Monop

olar 

Bipolar Monopola

r 

SFS-

KNN-

KFOLD 

 

[SE, DFA, W4, 

MPF, H
2
] 

[Tr, SE, DFA, 

VarEn, W1, W2, 

W3, D1, D2, D3, 

D4, D5, D6, 

MPF, PF, FW_H] 

88.13 88.65 6.41 6.23 

SBS-

KNN-

KFOLD 

 

[SE, DFA, W4, 

D8, MPF, H
2
, y] 

[DFA, W3, W4, 

D5, D6, MPF, 

PF, H
2
, y, 

FW_H
2
, FW_H] 

87.86 88.39 6.33 6 

BDS-

SFS-

KNN-

KFOLD 

[DFA, W2, W3, 

D2, D4, D6, 

MPF, H
2
] 

[SE, DFA, D1, 

D5, MPF, PF] 

88.13 88.13 6.64 6.67 

BDS-

SBS-

KNN-

KFOLD 

 

[Tr, SE, DFA, 

VarEn, W1, W2, 

W4, D3, D4, D6, 

D8, D9, MPF, 

H
2
, y] 

[Tr, DFA, VarEn, 

W1, W2, W4, 

D1, D3, D5, D6, 

D7, D8, MPF, 

PF, R
2
, y, 

FW_H
2
, FW_H] 

87.07 88.39 6.68 6.66 

LRS-

KNN-

KFOLD 

 

[DFA, W1, W3, 

D2, D3, MPF, 

H
2
] 

 

[Tr, SE, DFA, 

VarEn, W1, W2, 

W3, D3, D4, D5, 

PF, R
2
, FW_H

2
] 

88.13 88.92 30.01 30.08 

SFFS-

KNN-

[SE, DFA, D2, 

D3, MPF, R
2
] 

[Tr, SE, DFA, 

D2, D4, D5, 

MPF, PF, 

88.13 88.13 14.91 14.99 
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KFOLD FW_H
2
] 

SFS-

KNN-

Holdout 

 

[Tr, DFA, W1, 

W2, W3, D1, D4, 

D8, MPF, R
2
, 

FW_H] 

[Tr, DFA, VarEn, 

W1, W2, W4, 

D1, D2, D4, D5, 

D8, R
2
] 

93.81 95.58 1.20 1.20 

SBS-

KNN- 

Holdout 

 

[DFA, W5, MPF, 

FW_H
2
] 

[SE, DFA, 

VarEn, W4, W5, 

D7, D8, PF, R
2
, 

FW_H
2
] 

95.58 93.81 1.23 1.26 

BDS-

SFS-

KNN- 

Holdout 

[DFA, D3, D8, 

H
2
] 

[SE, DFA, 

VarEn, W4, D5, 

D8, MPF, R
2
] 

93.81 94.69 1.31 1.34 

BDS-

SBS-

KNN- 

Holdout 

[DFA, VarEn, 

W1, W3, D1, D2, 

D7, D8, D9, 

MPF, PF, H
2
, y] 

[SE, DFA, 

VarEn, W4, D5, 

D6, D7, D8, 

MPF, R
2
, H

2
, y, 

FW_H
2
] 

92.92 94.69 1.32 1.34 

LRS-

KNN- 

Holdout 

 

[Tr, DFA, W1, 

W2, D1, D2, D3, 

D4, D5, D6, D7, 

D8, PF, R
2
, H

2
] 

[DFA, VarEn, 

W1, W2, D1, D2, 

D4, D8, MPF, 

R
2
, y, FW_H] 

93.81 95.58 5.79 5.90 

SFFS-

KNN- 

Holdout 

 

[Tr, SE, DFA, 

W1, W2, W3, 

MPF, R
2
, H

2
, 

FW_H
2
] 

[Tr, DFA, W2, 

D4, R
2
, H

2
] 

94.69 93.81 3.07 2.67 

 

F- Features Selection using Genetic Algorithm 

Figure 2.19 presents the evolution of the GA-KNN-KFOLD selection algorithm for the bipolar 

dataset. This figure shows the best and mean classification error percentage for the population at 

every generation step. The best subset obtained by GA is an optimal solution obtained when the 

limit number of generation K (K=100) is reached. The other figures corresponding to the 

procedure for GA-KNN-Holdout-bipolar, GA-KNN-KFOLD-monopolar and GA-KNN-Holdout-

monopolar are presented Appendix B.3. 

Table 2.9 presents the results of the selected feature subsets obtained after applying GA-KNN-

KFOLD and GA-KNN-Holdout to the bipolar and monopolar EHGs. These subsets correspond 
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to the ones that gives the maximum correct classification percentage (calculated form the 

classification error percentage). 

 

Figure 2.19: Evolution of the procedure of GA-KNN-KFOLD on bipolar dataset 

 

Table 2.9: Selected features subset using Genetic algorithm (GA) on bipolar and monopolar 

datasets, as well as their related computation time. 

Methods Selected parameter Subset Percentage of correct 

classification 

Time (s)  

Bipolar Monopolar Bipolar Monopolar Bipolar  Monopolar 

GA-

KNN- 

KFOLD 

 

 

[Tr, SE, DFA, 

W1, W4, D1, 

D3, D4, D5, 

D8, MPF, R
2
, 

H
2
, y] 

[DFA, W1, W2, 

W3, W4, D5, 

D6, MPF, R
2
, 

FW_H] 

88.12 88.14 145.56 161.52 

GA-

KNN- 

Holdout 

 

[SE, DFA, 

VarEn, W1, 

W2, W4, W5, 

D1, D5, MPF, 

R
2
, H

2
, 

FW_H
2
, 

FW_H] 

[DFA, VarEn, 

D3, D4, D7, 

D8, PF, R
2
, 

FW_H] 

93.81 94.69 21.24 25.67 
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G- Features Selection using binary particle swarm optimization 

Table 2.10 presents the selected feature subsets obtained after applying BPSO-KNN-KFOLD 

and BPSO-KNN-Holdout to the bipolar and monopolar EHGs. Each selected feature subset 

corresponds to the one that give the maximum percentage of correct classification after 200 runs. 

Table 2.10: Selected features subset using binary particle swarm optimization (BPSO) on 

bipolar and monopolar datasets, as well as their related computation time. 

Methods Selected feature Subset Percentage of 

correct classification 

Time (s)  

Bipolar Monopolar Bipolar Monopolar Bipolar  Monopolar 

BPSO-

KNN-

KFOLD 

[Tr, SE, 

DFA, W1, 

W2, W4, D3, 

D4, D5, D6, 

D8, MPF, R
2
, 

H
2
, y] 

[SE, DFA, 

VarEn, W1, 

D1, D2, D3, 

D4, D5, D6, 

MPF, PF, H
2
, 

y, FW_H] 

88.16 88.42 44.19 

 

43.72  

 

BPSO-

KNN-

Holdout 

 

[Tr, DFA, 

W4, D4, D5, 

D6, D8, D9] 

[Tr, DFA, 

VarEn, W3, 

W4, D1, D2, 

D5, D6, MPF, 

H
2
, y, FW_H] 

95.58 96.46 6.06  

 

6.04 

 

 

2.5.3.2 Validation Part 

A validation part was applied on the remaining contractions (50 labor and 50 pregnancy 

contractions) not used during features selection and training steps, in order to evaluate the 

performances of the selected subsets presented above. Therefore, two datasets are used of 

dimension 100*26 for monopolar dataset and 100*26 for bipolar dataset. From the results 

presented above, the features selection methods applied on bipolar and monopolar EHGs give: 

 8 subsets of features selected by filter methods  

 32 subsets of features selected by wrapper methods (using the classifier KNN and the 

data split KFOLD or Holdout)  

We evaluated the performances of these 40 selected subsets by calculating for each of them the 

mean ± standard deviation of the percentages of correct classification using 500 repetitions. We 

used for this validation the same classifiers and data split already used in the selection step. For 

the wrapper methods, the evaluation will use the data split used for feature selection part. For the 
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filter methods we will evaluate the subsets performance by using KNN-KFOLD and KNN-

Holdout.  

The results of this validation step, presented Appendix B.4 table B.4.1 contain the mean ± 

standard deviation of the percentages of correct classification after 500 repetitions for each 

subset. Table 2.11 presents the feature subsets with the highest mean of the percentage of correct 

classification for bipolar and monopolar EHGs. For bipolar signals, we retained the 2 subsets 

selected by GA-KNN-KFOLD and BPSO-KNN- KFOLD, because they present very close mean 

correct classification percentages (85.06 ± 1.63 and 85.05 ± 1.69). For monopolar signals, we 

retained only the subset selected by BDS-SBS-KNN- Holdout that presents the highest mean of 

correct classification (74.88 ± 7.10). 

Table 2.11: Subsets of features selected for bipolar and monopolar dataset with highest Mean ± 

STD (over 500 repetitions) for the percentage of correct classification using KNN 

Datasets Methods Selected feature Subset Mean ± standard 

deviation 

of percentage of 

correct classification 

(500 repetitions) 

Bipolar GA-KNN-KFOLD 

 

[Tr, SE, DFA, W1, W4, 

D1, D3, D4, D5, D8, MPF, 

R
2
, H

2
, y] 

85.06 ± 1.63 

BPSO-KNN- KFOLD 

 

[Tr, SE, DFA, W1, W2, 

W4, D3, D4, D5, D6, D8, 

MPF, R
2
, H

2
, y] 

85.05  ± 1.69 

Monopolar BDS-SBS-KNN- 

Holdout 

[DFA, VarEn, W1, W3, 

D1, D2, D7, D8, D9, MPF, 

PF, H
2
, y] 

74.88 ± 7.10 

 

In order to compare the results of classification with and without selection, table 2.12 presents 

the mean of the percentage of correct classification for bipolar and monopolar EHGs using all 

features combinations without selection.  
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Comparing tables 2.11 and 2.12, we can notice that the results (percentages of correct 

classification) obtained when using the selected feature subsets are always higher than those 

obtained when using the whole features, regardless the data splits methods or the datasets 

(monopolar and bipolar EHGs). 

Table 2.12: Mean ± STD of the percentage of correct classification using KNN of 500 

repetitions using the feature set on bipolar and monopolar EHG 

  Datasets Subset Mean ± standard 

deviation 
of percentage of 

correct classification 
(500 repetitions) 

Kfold  Bipolar [MPF, PF, D1, D2... D9, W1, 

W2, W3, W4, W5, Tr, LE, 

SE, DFA, VarEn, R
2
, H

2
, y, 

FW_H
2
, FW_H] 

71.89  ±  2.01 

Monopolar 68.94 ± 1.86 

Holdout Bipolar 71.9 ± 7.26 

Monopolar 67.87± 7.48 
 

In order to evaluate the performance of classification for the three retained subsets, 

corresponding to the the highest mean of the percentage of correct classification for bipolar and 

monopolar EHGs, we use the three classical statistical measures: 

 Sensitivity (true positive ratio) = 
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  

 Specificity (true negative ratio) = 
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 Accuracy =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+ 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Table 2.13 presents the results of Mean ± standard deviation of sensitivity, specificity and 

accuracy of the 3 selected subsets using, for each subset, KNN classifier and the data split similar 

to the one used in the selection step.  
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Table 2.13: Performance of the retained feature subsets for bipolar and monopolar datasets. 

Dataset Method Feature Subset Performance of classification 

(Mean± std deviation over 500 repetitions) 

Sensitivity Specificity Accuracy 

Bipolar GA-KNN-

KFOLD 

 

[Tr, SE, DFA, 

W1, W4, D1, D3, 

D4, D5, D8, 

MPF, R
2
, H

2
, y] 

92.22 ± 2.38 78.8 ± 3 

 

84.99±1.73 

BPSO-

KNN- 

KFOLD 

 

[Tr, SE, DFA, 

W1, W2, W4, 

D3, D4, D5, D6, 

D8, MPF, R
2
, H

2
, 

y] 

91.89 ± 2.51 

 

78.9 ± 2.71 84.92 ± 1.77 

Monopolar BDS-SBS-

KNN- 

Holdout 

[DFA, VarEn, 

W1, W3, D1, D2, 

D7, D8, D9, 

MPF, PF, H
2
, y] 

80.84 ±9.35 

  

68.64±11.7 74.35 ± 6.94 

 

2.5.4 Discussion 

- Selection method: 

We can notice from the results (Tables 2.7, 2.8, 2.9 and 2.10) that the different feature selection 

methods give different feature subsets. Therefore, 20 selected feature subsets are obtained from 

bipolar EHGs and 20 other from monopolar EHGs, with different number of features from one 

subset to another (Table B.5.1, Appendix B.5).  

We can notice also from this Table, that the wrapper methods take more computation time than 

the filter methods, due to the use of a classifier.  

When comparing the subsets selected by wrapper methods from bipolar EHGs to the ones 

selected from monopolar EHGs, we notice that the highest percentage of correct classification 

(96.46 %) is obtained from the monopolar signals.  

- Selected features: 

Due to the variability of the features selected in the different subsets by the different methods, it 

is very important to highlight the most repetitive selected features. Indeed, these features are 

expected to be the most pertinent. Table B.5.2 (Appendix B.5) presents the number of 
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appearance of each feature over the 20 selected feature subsets for monopolar and bipolar EHGs. 

We can see from this table that only one feature (DFA) is always selected on monopolar and 

bipolar case, whatever the method. This monovariate nonlinear feature is thus confirmed to be of 

great interest for pregnancy/labor comparison. This confirms the observation made by different 

teams concerning the interest of taking into account the nonlinear characteristics of EHG for 

diagnostic purposes [45, 50]. DFA increases from pregnancy to labor on monopolar as well as on 

bipolar EHGs (see appendix B.6 table B.6.1), demonstrating an increase in EHG non-linearity. 

Contrary to the DFA, the LE is not selected on monopolar and bipolar case, whatever the applied 

method. This feature should not be used for diagnosis purpose. Some other features, selected 

several times are also of possible great interest for diagnosis. For example the MPF is selected 

17 over 20 times on bipolar EHG. MPF increases when passing from pregnancy to labor on 

monopolar as well as bipolar EHGs (see appendix B.6 table B.6.1). This is in agreement with 

different studies, which evidenced a shift of the EHG content toward higher frequency when 

going from pregnancy to labor [65]. 

Concerning the bivariate parameters, H
2
 presents the highest rank of this feature family for 

bipolar signals and FW_H the highest for monopolar signals. This demonstrates a discriminating 

power of these features. But when we look at their pregnancy/labor evolutions, they both 

decrease when going from pregnancy to labor, which is an unexpected result. Some further work 

needs to be done to explain the results. 

- Validation step: 

According to the validation studies developed in order to test the performance of the selected 

subsets (Appendix B.4, Table B.4.1), we noticed that, the most feature subsets selected by 

wrapper methods gave best performance than features subsets selected by filter methods. We 

thus conclude that wrapper methods take more time in the selection than filter methods, but they 

improve the performance of classification of pregnancy and labor contractions. 

Additionally, according to these validation studies, we notice that the results of classification 

with selection is better than without selection on bipolar and monopolar signal. From the results 

of classification with selection, we noticed that the best performance obtained for bipolar EHGs 

is about 85 % of correct classification (Table 2.11). The best result obtained for monopolar 

EHGs is about 75% (Table 2.11). The results presented in table 2.13 indicate that the sensitivity 

is higher than the specificity for the 3 selected features subsets whatever the bipolar or 
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monopolar EHGs. This may be due to the fact that, in study we use a different number of labor 

and pregnancy contractions for the feature selection part, from which the classifiers can learn.  

Furthermore, when comparing the results obtained with these 3 subsets we can notice that the 

two subsets selected from bipolar EHGs give better results also in terms of sensitivity, specificity 

and accuracy than the subset selected from monopolar EHGs. We can thus conclude from this 

study that bipolar EHGs should be used rather than monopolar EHGs because they give higher 

classification performance. A more complete comparison of monopolar vs bipolar EHGs use will 

be presented chapter 3. 
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Chapter 3: Channel and channel 

combination selection for monovariate 

and bivariate analysis on EHG  

3.1 Introduction 

A multichannel system was used in order to record simultaneous EHG at different locations. In 

our study, we used a 4x4 electrode matrix positioned on the woman’s abdomen to record 16 

monopolar EHGs. However, using simultaneously multiple sensors entails a complex processing 

of the recorded signal, through the large number of features obtained in this situation. 

Multichannel classification has been already applied to EHG [1-6]. A comparison between 

channels showed that some channels give better classification than others. Therefore, it is 

interesting to select the best channels to evidence the differences between pregnancy and labor 

contractions. 

In our work we used monovariate (processing only one EHG channel at a time) and bivariate 

(measuring the coupling between 2 EHG channels) analysis. Using all channels, for the 

monovariate, or all combinations of channels, for the bivariate analysis, leads to a large dimension 

of features for one contraction. The aim of this chapter is, 1) the selection of the best channels, for 

the monovariate, 2) the selection of best channel combinations, for the bivariate analysis, that 

provide the most useful information to discriminate between pregnancy and labor classes. For this 

purpose, Relieff [7] and F-score method [8] (a filter type feature selection methods), are applied in 

order to select the best channels or the best channel combinations for discriminating these two 

classes. After channel selection, wrapper type feature selection methods, named Binary particle 

swarm optimization [9,10] and Genetic algorithm (GA) [11], are used in order to select the best 

features (monovariate linear and nonlinear features) from the selected channels, and to select the 

best features related to the EHG propagation (bivariate analysis) from the selected channel 

combinations. This step is very important to ease classification problem. After the selection part, 

we validated the performance of the selection process on a population of EHG bursts different 

from the ones used for the selection process. Furthermore, in this chapter the channels and 
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channel combinations selection followed by feature selection are applied to monopolar and then 

bipolar EHG signals, for both monovariate and bivariate analysis.  

3.2 Channel selection for EHG monovariate analysis 

3.2.1 Calculated Features 

In this part of work, we use only linear and nonlinear features that are the suitable features for 

monovariate analysis. The chosen linear features are: mean frequency (MPF) [12], Peak 

Frequency (PF) [13], deciles (D1…D9) [14] which contain the median frequency D5 [14, 15], 

features extracted from wavelet decomposition (W1…W5) [16].  The nonlinear features are: Time 

reversibility (Tr) [17], Lyapunov exponent (LE) [17], Sample Entropy (SE) [15], Variance 

entropy (VarEn) [18] and Detrended fluctuation analysis (DFA) [19]. Therefore, 21 features 

(Linear and nonlinear) have been extracted from each EHG burst. See section 2.5.1 for more 

details about the features calculation. 

EHG signals are recorded using the multichannel system permitting the simultaneous recording 

of 16 channels of EHG or 12 bipolar EHG described in section 1.5.3. We compute these 21 

features from each burst corresponding to either the 16 monopolar or the 12 bipolar channels, for 

the 290 pregnancy and the 189 labor contractions of Database 2 (section 1.6.2). Therefore, we 

obtain 2 three dimensional matrices: the first one corresponds to the values of features extracted 

for all pregnancy and labor contractions (479 contractions) for the whole monopolar channels 

CHi (479*16*21). The second one corresponds to the features extracted for all pregnancy and 

labor contractions corresponding to each bipolar channel Vbi (479*12*21).  

A part of this dataset is used for the selection part (379 over the 479 contractions: 240 for 

pregnancy class, 139 for Labor class). The other part is used for validation (50 pregnancy and 50 

labor contractions). 

3.2.2 Channel selection followed by feature selection  

Computing features for the whole channels leads to a large searching dimension (number of 

channels*number of features) and induces classification problems due to the large number of 

inputs. Therefore, in this part, we aimed to select the channels with the best discrimination ability 

between the two classes, according to each given feature. For this purpose, the feature selection 

methods F-score and Relieff, described in section 2.2.3.1-B and 2.2.3.1-C respectively, are 
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adapted for monopolar (CHi) or bipolar (Vbi) channel selection. Due to the huge number of 

channels and parameters, we choose to use a filter type feature selection method of two different 

categories (Fscore (univariate), Relieff (multivariate)) due to their fast execution time. 

After this channel selection step, two feature selection methods, Binary Particle Swarm 

Optimization (BPSO) and Genetic algorithm are used in order to select the best features from the 

selected channels. The choice of these methods relied to the results obtained in chapter 2 (BPSO 

and GA were from the best methods obtained in chapter 2). 

3.2.3 Results  

3.2.3.1 Channel selection using Relieff and F-score 

Two datasets are used: the first one is the monopolar dataset (dimension 379*16*21) and the 

second is the bipolar dataset (dimension 379*12*21).  For the F-score and Relieff methods, used 

for channel selection, the selection is done by computing the best discrimination ability between 

the two classes (labor and pregnancy) using a given feature. As in our work we extracted 21 

features from the EHG, 21 subsets of channels selection are obtained for each method. The 

channels will finally be selected according to their frequency of selection over the 21 possible 

features. 

All the results for the bipolar and monopolar channels selection are presented Appendix C-1. The 

results of bipolar channels selection using the F-score and Relieff method applied to each feature 

are summarized Table 3.1-A and 3.1-B respectively (see the details of selection in Appendix C.1, 

table C.1.1).  

We can notice from Table 3.1-A that the bipolar channel Vb8 (selected 17 over 21 times), and 

Vb7 (selected 15 over 21 times) are the most repetitive channels. From Table 3.1-B the bipolar 

channel Vb7 (selected 17 over 21 times), Vb8 and Vb9 (selected 14 over 21 times) are the most 

repetitive channels. Figure 3.1-(B, C) presents the location of these selected bipolar channels. 
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Table 3.1: Bipolar channels appearance after channel selection using F-score (A) and Relieff (B) 

(A) F-score  (B) Relieff 

Bipolar Channel 

(sorted) 

Number  of appearance Bipolar Channel 

(sorted) 

Number  of 

appearance 

Vb8 17 Vb7 17 

Vb7 15 Vb9 14 

Vb5 14 Vb8 14 

Vb9 11 Vb2 12 

Vb4 10 Vb5 11 

Vb1 10 Vb11 9 

Vb2 8 Vb10 7 

Vb11 6 Vb4 7 

Vb3 6 Vb3 7 

Vb12 5 Vb12 6 

Vb10 5 Vb6 4 

Vb6 3 Vb1 3 

The same channel selection process is applied in order to select the monopolar channels 

(CHi).The results summarized Table 3.2-A show that the CH2 and CH10 (selected 14 over 21 

times) are the most repetitive channels, while in Table 3.2-B the most repetitive channels are 

CH9 and CH10 (selected 18 over 21 times). Figure 3.1-(B, C) presents the location of these 

selected monopolar channels. For more information of the selection see Appendix C.1, table 

C.1.2.  

Table 3.2: Monopolar channels appearance after channel selection using F-score (A) and Relieff 

(B). 

(A) F-score (B) Relieff 

Monopolar 

Channel (sorted) 

Number  of 

appearance 

Monopolar Channel 

(sorted) 

Number  of 

appearance 

CH 10 14 CH10 18 

CH 2 14 CH9 18 

CH 9 12 CH12 13 

CH 5 12 CH5 13 

CH 16 11 CH1 12 

CH 12 11 CH16 11 

CH 11 11 CH
2
 11 

CH 15 10 CH15 9 

CH 1 8 CH14 9 

CH 14 7 CH11 8 

CH 3 7 CH8 6 

CH 13 6 CH4 6 

CH 6 5 CH13 4 
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CH 8 4 CH7 2 

CH 4 4 CH6 2 

CH 7 3 CH3 2 

 

 

 

Figure 3.1: (A) Position of the 16 monopolar electrodes. (B) Blue circles: Monopolar and 

Bipolar channels selected by F-score. (C) Blue circle: Monopolar and Bipolar channels selected 

by Relieff. 

3.2.3.2 Feature selection using BPSO and GA on the selected channels 

Binary Particle Swarm Optimization and genetic algorithm are applied to the features of the 

selected channels, in order to reduce the dimension of features. They both use a fitness function, 

here the percentage of correct classification obtained by the K-nearest neighbors classifier 

(KNN). The data set is split in two for the learning phase: Holdout (70% of the data set for 

classifier training and the remaining 30% for testing) and KFOLD cross validation (K=10). The 

results will be presented as the percentages of correct classification using the classifier KNN and 

the data split KFOLD or Holdout. 

BPSO and GA using KNN-KFOLD and KNN-Holdout are applied to our four obtained datasets 

(see Table 3.3). The dataset obtained after bipolar channel selection using F-score (DL1) 

contains the features extracted from the contractions, for the 2 bipolar channels selected. In this 

case the particle length of BPSO and length of chromosome of GA are equal to 42 (2 bipolar 

(A) (B) (C) 
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channels*21 features). The second dataset corresponds to the bipolar channel selection using 

Relieff (DL2) that contains the features extracted from the contractions for the 3 bipolar channels 

selected. In this case the particle length of BPSO and length of chromosome of GA are equal to 

63 (3 bipolar channels *21 features). The two other datasets contain the features extracted from 

the 2 monopolar channels CH2, CH10 selected by F-score (DL3=379*42) and the 2 monopolar 

channels CH9 and CH10 selected by relieff (DL4=379*42). In this case the particle length of 

BPSO and the length of chromosome of GA are equal to 42. 

Table 3.3: Dataset obtained after bipolar and monopolar channel selection using F-score and 

Relieff 

Channel selection 

method 

Bipolar Monopolar 

Channels Dataset Channels Dataset 

F-score Vb7, Vb8 DL1= 379*42 CH2, CH10 DL3= 379*42 

Relieff Vb7, Vb8, Vb9 DL2= 379*63 CH9, CH10 DL4= 379*42 

 

Table C.2.1 in Appendix C.2 presents the selected features subsets obtained from BPSO and GA 

by using the classifier KNN and the two data splits KFOLD and Holdout when applied to our 4 

bipolar and monopolar channels selection datasets (DL1, DL2, DL3 and DL4). The number of 

selected features varies from one method to another as indicated in table C.2.2 (Appendix C). 

Table 3.4 presents an extract of the 3 results (subsets S8, S12 and S16 - see appendix C.2, Table 

C.2.1) that gave the maximum percentage of correct classification on bipolar (DL2) and 

monopolar channels selection datasets (DL3, DL4). These percentages are 97.35% and 96.46% 

respectively.  
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Table 3.4: Subsets of features selected from the bipolar and monopolar channels with the highest 

percentage of correct classification using KNN 

Datasets Methods Dataset Selected 

feature 

subset 

Number 

of 

features 

Percentage 

of correct 

classification 

Time (s) 

Bipolar Bipolar, Relieff, 

BPSO-KNN-

Holdout 

DL2 S8 23 97.35 7.01 

Monopolar Monopolar, F-

score , BPSO-

KNN-Holdout 

DL3 S12 20 96.46 6.13 

Monopolar, 

Relieff, BPSO-

KNN-Holdout 

DL4 S16 21 96.46 6.11 

 

3.2.3.3 Validation  

The results presented above gave 16 subsets of features selected using BPSO and GA with the 

classifier KNN and the two data split KFOLD and Holdout, when applied to our 4 bipolar and 

monopolar channel selection datasets. We try in this part to test the performance of each selected 

feature subset on the part of the data base that was kept apart for validation (50 labor and 50 

pregnancy contractions). These contractions were not used during the feature selection step 

which results are presented above.  

Appendix C.3 (Table C.3.1) presents the mean ± standard deviation of the percentages of correct 

classification of 500 repetitions for each subset.  Table 3.5 presents only the subsets of features 

selected on bipolar and monopolar EHG with the highest mean ± standard deviation of the 

percentage of correct classification. Additionally in order to evaluate the classification 

performance of these two selected feature subsets, we calculate the Mean ± standard deviation of 

sensitivity, specificity and accuracy of these subsets using KNN classifier and the data split 

corresponding to each subset (Table 3.6). 
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Table 3.5: Selected feature subset from the bipolar and monopolar channel selection with the 

highest Mean± STD (over 500 repetitions) of the percentage of correct classification using KNN. 

Dataset Method Selected feature 

subset 

Number of 

features  

Percentage of 

correct 

classification 

Bipolar Bipolar, Relieff, 

GA-KNN-KFOLD 

S5 36 78.07 ±  1.13 

Monopolar Monopolar, Relieff, 

BPSO-KNN-

Holdout 

S16 21 72.33 ± 6.88 

 

Table 3.6: Performance of the selected feature subset from the bipolar and monopolar selected 

channels giving the highest Mean ± STD (over 500 repetitions) of the percentage of correct 

classification using KNN. 

Datasets Methods Performance of classifier 

(Mean + std dev. over 500 repetitions) 

Sensitivity Specificity Accurancy 

Bipolar Bipolar, Relieff , GA-

KNN-KFOLD 

84.89 ±2.19 71.65±2.79 77.97 ± 1.11 

Monopolar Monopolar, Relieff, 

BPSO-KNN-Holdout 

 

67.05 ±12.57 76.75 ± 10.71 71.45 ± 6.77 

 

3.2.4 Discussion 

In this first part of this chapter, we presented the results of bipolar and monopolar channels 

selection followed by feature selection, permitting to evidence at best the differences between 

pregnancy and labor contractions. A comparison between the results of bipolar and monopolar 

channels selection using two different methods (F-score and Relieff) followed by a feature 

selection step, on these selected channels, using two methods (binary particle swarm optimization 

and genetic algorithm) has been performed to choose the methods and the subsets allowing the 

best discrimination between labor and pregnancy contractions. Finally, as the final validation step, 

we compared the performance of the obtained subsets, by using labor and pregnancy contractions 

not used in the selection steps. 

After channels selection, we notice that the bipolar channels Vb7, Vb8 and Vb9 are the most 

repetitive channels using the relieff method (respectively Vb7 and Vb8 for F-score). For 
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monopolar channels the result indicates that the most repetitive channels are CH9, CH10 using 

relieff method (respectively CH2, CH10 for F-score). The position of these selected monopolar 

and bipolar channels are in the median vertical axis of the abdomen (except for CH2). This is in 

agreement with the literature that indicates that the best electrode position was the median vertical 

axis of the woman’s abdomen [20]. This best result could be explained by the fact that this 

position corresponds to the location where the electrodes are closer to the uterus (due to the 

specific morphology of pregnant woman’s abdomen) [21]. Furthermore, during contraction, the 

uterus tends to become more circular in its transversal section, and to tip over the abdominal wall. 

This effect gets the electrodes closer to the median vertical axis. This electrode location is 

therefore confirmed as the best position to obtain good results in a monovariate approach.   

It is clear from Table 3.4 that the percentage of correct classification obtained using BPSO-

KNN-Holdout algorithm is higher using bipolar channels (97.35%) rather than the monopolar 

ones (96.46%).  

Additionally, from the validation study, we notice from Table 3.5 that the feature subset selected, 

S5 (see the subsets in appendix C.2 Table C.2.1), by using the bipolar channels (3 bipolar 

channels selected Vb7, Vb8, Vb9) has given a higher percentage of correct classification than the 

monopolar one. Finally, the classification performances expressed in terms of Sensitivity, 

Specificity and Accuracy (Table 3.6) are better for bipolar signals rather than for monopolar. 

We can conclude from these results that for Monovariate analysis, the best results are obtained 

by using bipolar signals recorded on the median vertical axis of the abdomen.  

3.3 Channel combination selection for EHG bivariate analysis 

3.3.1 Calculated Features 

Five features related to EHG propagation are used for the bivariate analysis. These features are: 

Linear (R
2
) [22], nonlinear correlation coefficient (H

2
) [23], Phase synchronization (γ) [24], 

Filtered-Windowed-𝐻2(𝐹𝑊_𝐻2) [25], and Filtered-Windowed-𝐻 (𝐹𝑊_𝐻) [25]. The details of 

calculation of these features have already been described in chapter 2 section 2.5.1. 

Each feature related to EHG propagation is computed between a combination of two different 

channels (bipolar or monopolar). Our multichannel system being composed of 16 monopolar 
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channels or 12 bipolar channels, we thus have 132 possible bipolar channel combinations 

(number of combinations=number of channels
2
-number of channels) and 240 possible monopolar 

channel combinations. Two data matrices of three dimensional are thus obtained when 

computing the 5 features for the whole combinations:  the first one corresponds to the values of 

the features extracted for all pregnancy and labor contractions (479 contractions) for the 

monopolar combinations (479*240*5); the second one corresponds to the features extracted for 

all pregnancy and labor contractions corresponding to bipolar combinations (479*132*5).  

As during the previous study, these datasets are parted in two: 379 contractions for the selection 

steps, 100 contractions for the validation. 

3.3.2 Channel Combination selection followed by feature selection  

Due to this huge number of channel combinations, available to compute propagation/coherence 

features, select channel combinations with the best discrimination ability between pregnancy and 

labor contractions, should be very important in order to reduce the large number of inputs of the 

classifier.  

We used here the same methodology as the one described in section 3.2.2 in order to select the 

best channel combinations (for bipolar Vb(i,j) and monopolar CH(i,j) signals) followed by 

feature selection, once the channel combinations selected. 

3.3.3 Results  

3.3.3.1 Results of channel combinations using Relieff and F-score 

Monopolar and bipolar datasets are used in this section. The first monopolar dataset is a matrix 

of dimension 379*240*5 and the other bipolar dataset is of dimension 379*132*5 (as explained 

in section 3.3.1).   

F-score and Relieff methods are used for channel combinations selection (bipolar or monopolar) 

by calculating the best discrimination ability between labor and pregnancy contractions using a 

specific feature. In our work 5 features related to EHG propagation are extracted from our EHG, 

thus 5 subsets of selected channel combinations are obtained for each method using each dataset 

(bipolar or monopolar). All the results of channel combination selection are presented in 

Appendix C.4. 
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Figure 3.2 (A-B-C-D-E) presents the results of bipolar channel combinations selection using F-

score for the 5 features. The results are presented as a black and white matrix of dimensions 

12x12. A white color indicates that the bipolar channel combination has been selected as 

discriminant between pregnancy and labor. Figure3.2-F presents the number of appearance over 

the 5 features for each bipolar channel combination. This figure is in the form of a color matrix 

of dimension 12x12. The red color in this figure represents the maximum number of appearance 

over the 5 features of bipolar channel combination and the blue color its minimum number (0= 

blue, 5= red). The results for bipolar channel combinations selection using Relieff, as well as the 

results of monopolar channel combinations selection using F-score and Relieff are presented in 

appendix C.4 (Figure C.4.2, Figure C.4.1, and Figure C.4.3 respectively). The number of 

appearance over the five features for each of them are presented appendix C.4 Table C.4.1 

(Bipolar signals) and Table C.4.2 (Monopolar signals).  

The channel combinations will finally be retained according to their number of appearance over 

the five features for each selection method. We first sorted the selected channel combinations 

following their appearance number (for bipolar and for monopolar signals separately). We then 

retained the first 10% of the number of combinations (13 for bipolar and 24 for monopolar 

combinations) corresponding to the higher appearance number over the 5 features. When the 

appearance number of the last selected channel combination is equal to the number of 

appearance of the following ones, we take into account all following channel combinations 

having the same appearance number (for example the number of selected bipolar channel 

combinations using F-score is equal to 17 instead of 13, as presented in Appendix C.4 table 

C.4.1). Figure 3.3 (A, B) presents the most repetitive bipolar channel combinations retained for 

F-score and relieff respectively (A white color indicates that the bipolar channel combination has 

been retained). The most repetitive monopolar channel combinations retained for F-score and 

relieff are presented in figure 3.4 (A, B).  
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Figure 3.2: Bipolar channel combinations selection by F-score using five features related to 

EHG propagation: R
2
(A), H

2
 (B), y (C), FW_H

2
 (D) and FW_H (E). Each axis (vertical and 

horizontal) represents the channel numbers. A white square indicates that the related 

combination is selected for the given feature. (F) Number of appearance of the bipolar channel 

combinations over the 5 features. 

 

 

 

 

        

 

 

 

 

Figure 3.3:  Most repetitive bipolar channel combinations retained for F-score (A) and relieff 

(B) in the 5 features related to EHG bivariate analysis. 
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Figure 3.4:  Most repetitive monopolar channel combinations retained for F-score (A) and relieff 

(B) in the 5 features related to EHG bivariate analysis 

Table 3.7 contains the name of the retained bipolar and monopolar channel combinations over 

the 5 features for F-score and Relieff (presented in Figure 3.3 and figure 3.4).  

We then computed, for each channel (Bipolar, Vbi, or Monopolar, CHi) the number of times it 

appears in the channel combinations retained. Figure 3.5 presents two color matrices of 

dimension 12x12 representing the topologic distribution of the number of bipolar channels 

associated to each retained bipolar channel combination for F-score (figure 3.5-A) and relieff 

(Figure 3.5-B). The two 16x16 color matrices corresponding to the retained monopolar channel 

combinations for F-score and relieff are presented in Figure 3.6-A and Figure 3.6-B respectively. 
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Table 3.7: Name of the retained bipolar and monopolar channel combinations over the 5 features 

related to EHG bivariate analysis for F-score and Relieff 

Methods  Bipolar Channel combinatons Monopolar Channel combinatons 

F-score ['Vb(2,1)', 'Vb(1,2)','Vb(12,7)', 

'Vb(10,6)','Vb(10,3)','Vb(9,8)', 

'Vb(9,5)','Vb(8,9)','Vb(7,12)','Vb(6,10

)','Vb(6,2)','Vb(5,9)','Vb(5,2)','Vb(4,5)

','Vb(3,10)','Vb(2,6)','Vb(2,5)'] 

['Ch(10,2)','Ch(8,1)','Ch(2,10)','Ch(1,8)', 

'Ch(16,10)','Ch(16,9)','Ch(16,6)','Ch(15,10)', 

'Ch(15,9)','Ch(15,5)','Ch(14,12)','Ch(12,14)', 

'Ch(11,8)','Ch(11,1)','Ch(10,15)','Ch(10,9)', 

'Ch(10,1)','Ch(9,16)','Ch(9,15)','Ch(9,10)', 

'Ch(9,5)','Ch(9,4)','Ch(9,2)','Ch(8,11)', 

'Ch(8,5)','Ch(7,5)',‘Ch(6,16)','Ch(5,15)', 

'Ch(5,9)','Ch(5,8)','Ch(5,7)','Ch(5,3)', 

'Ch(4,9)','Ch(4,1)','Ch(3,5)','Ch(1,4)'] 

Relieff ['Vb(11,10)','Vb(11,4)','Vb(11,3)', 

'Vb(10,11)','Vb(10,6)','Vb(10,4)', 

'Vb(10,1)','Vb(9,7)','Vb(7,9)', 

'Vb(7,3)','Vb(6,10)','Vb(6,1)', 

'Vb(4,11)','Vb(3,11)','Vb(3,7)', 

'Vb(1,10)', 'Vb(1,6)']  

 

['Ch(15,14)','Ch(14,12)','Ch(14,11)', 

'Ch(14,5)','Ch(14,2)','Ch(14,1)', 'Ch(13,10), 

'Ch(12,14)','Ch(12,6)','Ch(11,14)','Ch(11,10)

','Ch(10,13)','Ch(10,11)','Ch(9,13)','Ch(9,1)', 

'Ch(8,7)','Ch(7,8)','Ch(6,12)','Ch(5,14)', 

'Ch(4,7)'Ch(3,16)','Ch(2,7)','Ch(1,14)', 

'Ch(1,9)'] 

 

 

 

 

 

 

Figure 3.5: Color matrix of dimension 12x12 representing the distribution of the number of 

retained bipolar channels combinations using F-score (A) and relieff (B) 
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Figure 3.6: Color matrix of dimension 16x16 representing the distribution of the number of 

retained monopolar  channel combinations for F-score (A) and relieff (B) 

3.3.3.2 Results of feature selection using BPSO and GA  

The same procedure as used in section 3.2.3.2 is used here in order to select the best subset of 

features from the selected channel combinations, by means of the two feature selection methods 

BPSO and GA. As we have obtained four subsets of channel combinations, we used four datasets 

in this part (Table 3.8). The datasets DC1 and DC2 contain the 5 features extracted, for the 379 

EHG bursts, from the 17 retained bipolar channel combinations for F-score (379*85) and the 17 

retained for Relieff (379*85) respectively. Therefore, the particle length of BPSO and length of 

chromosome of GA are equal to 85 (17 bipolar channel combinations*5 features). The 

monopolar datasets DC3 and DC4 correspond to the features extracted, for the 379 EHG bursts, 

from the 36 retained monopolar channel combinations for F-score (379*180) and the 24 retained 

monopolar channel combinations for Relieff (379*120). The particle length for BPSO and length 

of chromosome of GA for these two last datasets are equal to 180 and 120 respectively. The 

selected feature subsets obtained after applying BPSO and GA (using the classifier KNN and the 

two data split KFOLD and Holdout) to these 4 bipolar and monopolar datasets (DC1, DC2, DC3 

and DC4) are presented in appendix C.5 (table C.5.1). Table C.5.2, appendix C.5, presents the 

number of features selected for each subset obtained and the time of calculation of each method. 
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Table 3.8: Datasets obtained for the retained bipolar and monopolar channel combinations, for 

F-score and Relieff 

Methods for 

channel selection  

Bipolar Monopolar 

Number of 

Bipolar channel 

combinations  

Dataset Number of 

monopolar  

channel 

combinations 

Dataset 

F-score 17 DC1= 379*85 36 DC3= 379*180 

Relieff 17 DC2= 379*85 24 DC4= 379*120 

 

Table 3.9 presents the two feature subsets giving the maximum percentage of correct 

classification from bipolar and monopolar channel combination (Appendix C.5, Table C.5.1). 

Table 3.9: Subsets of features selected from the bipolar and monopolar selected channel 

combinations with highest percentage of correct classification using KNN 

Datasets Methods Dataset Selected 

feature 

subset 

Number 

of 

features 

Percentage of 

correct 

classification 

Time 

(s) 

Bipolar 
Bipolar, F-score, 

BPSO-KNN-

Holdout 

DC1 SC4 45 95.58 7.68 

Monopolar Monopolar, 

Relieff , GA-

KNN-Holdout 

DC4 SC14 35 94.69 27.17 

 

3.3.3.3 Validation  

We try in this part to evaluate the performances of these 16 selected subsets (Appendix C.5, 

Table C.5.1) on the remaining contractions (50 labor contractions and 50 pregnancy 

contractions), not used during the feature selection steps. We use the classifier KNN and the data 

split KFOLD or holdout (depending to the data split used in feature selection for each obtained 

subset). We computed for each subset the mean ± standard deviation of the percentages of 

correct classification (over 500 repetitions). The results obtained in this validation step are 

presented in Appendix C.6 (Table C.6.1). The two subsets of feature selected on monopolar and 

bipolar EHG giving the higher mean ± standard deviation of the percentages of correct 
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classification are presented table 3.10.  Table 3.11 presents the results of Mean ± standard 

deviation of sensitivity, specificity and accuracy for these 2 subsets. 

Table 3.10: Selected feature subset from the bipolar and monopolar selected channel 

combinations with highest Mean ± STD of the percentage of correct classification using KNN of 

500 repetitions 

Datasets Methods Selected 

feature 

subset 

Number of 

features 

Mean ± standard 

deviation 

 of percentage of 

correct classification 

(500 repetitions) 

Bipolar Bipolar, F-score, GA-

KNN-KFOLD 

SC1 25 76.01 ±1.33 

Monopolar Monopolar, F-score, 

GA-KNN-KFOLD 

SC9 55 74.85±2.26  

 

Table 3.11: Performance of the selected feature subset from the bipolar and monopolar selected 

channel combinations with highest Mean ± STD of the percentage of correct classification using 

KNN of 500 repetitions 

Datasets Methods Performance of classifier  

Sensitivity Specificity Accurancy 

Bipolar Bipolar, F-score, GA-

KNN-KFOLD 

76.76±2.72 76.21±02,87 76.02±1.34 

Monopolar Monopolar, F-score, 

GA-KNN-KFOLD 

85.18±3.06 

 

65.84 ±4.11 74.56 ±2.42 

 

3.3.4 Discussion 

In the second part of this study, we presented two methods (F-score and Relieff) to select the best 

bipolar and monopolar channel combinations permitting to discriminate at best pregnancy and 

labor classes, for a bivariate approach. After this combination selection, two feature selection 

methods were used to select the best features related to EHG bivariate analysis from the selected 

channel combinations. Additionally, we applied these selection steps on bipolar and monopolar 

EHG signals in order to see which is the best to use for the bivariate analysis. 

It is clear from Figure 3.3 and table 3.7, for bipolar channels, from Figure 3.4 and table 3.7, for 

monopolar channels, as well as from figure 3.5 and 3.6, that the number and location of bipolar 
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and monopolar channels selected in the obtained subsets vary from one method to the other. The 

reason is that these two filter methods originate from different categories. Relieff selects the 

most discriminant channel combinations with some degree of integration of channel 

combinations dependency. Therefore this method considers all channel combinations 

simultaneously. While F-score method does not take into account the dependency between 

channel combinations. It selects channel combinations by adding, deleting or comparing one 

channel combination at a time. 

It is clear from the results obtained either for the feature selection (Table 3.9) of for the 

validation (Tables 3.10 and 3.11) steps, that the results obtained from Bipolar or Monopolar 

datasets present similar performances in terms of percentage of correct classification and 

accuracy. The sensitivity is slightly higher for the monopolar signals and the specificity slightly 

higher for the bipolar ones. These results differ from the monovariate analysis where the best 

results were always obtained from bipolar signals. Monopolar signal use seems thus to be more 

pertinent for bivariate analysis. 

3.4 Discussion and Conclusion 

According to the results obtained in the monovariate analysis, we notice that the bipolar and 

monopolar selected channels are positioned on the vertical axis of the women’s abdomen (except 

for one channel, CH2). The percentage of correct classification for bipolar channel selection 

followed by features selection is higher than monopolar one in the selection as well as on the 

validation steps. The two subsets corresponding to this higher percentage  (S8 and S5) are 

obtained from the dataset D2 that contain the features selected from the 3 bipolar channels Vb7, 

Vb8 and Vb9 by using Relieff.  

For the Bivariate analysis, channel combination selection, the bipolar and monopolar 

combinations selected correspond to different channels for the 2 methods (F-score, Relieff). No 

specific channels or channel configuration appear to give always the best results. Additionally, 

the classification performances obtained for this bivariate analysis with bipolar signals are 

similar to the ones obtained with monopolar signals even if the highest percentage of correct 

classification is obtained from the bipolar channel combinations, selected here by F-score. 

Relieff performing better for monovariate analysis, and F-score for the bivariate one, concerning 

the selection methods, no one of the two methods, appear to give always the best results for all 
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the selection steps.  

Concerning channel location: 

We can conclude that, for the monovariate analysis, the bipolar as well as the monopolar 

channels offer better discrimination ability between labor and pregnancy when positioned in the 

median vertical axis of the woman’s abdomen. This is fortunately the standard position defined 

in our standardized recording protocol. Nevertheless, no conclusion can be given concerning the 

best channels or the best combination of channels to use for this bivariate analysis, no trend 

appearing for the channels (Bipolar or monopolar) selected for the bivariate analysis. 

Concerning recording configuration: 

From the monovariate analysis, the higher percentage of correct classification obtained in the 

selection part and validation part with the bipolar channels, permits us to conclude that using 

bipolar EHG for monovariate study gives better results than using monopolar EHG. The 

differentiation induced by the bipolarization removes indeed the common low frequency noise 

and enhances thus the high frequency content of the signal. As an increase in the excitability of 

uterine cells is associated to a shift of FWh (higher frequency content of the EHG) towards 

higher frequencies [26], using bipolar signal permits to focus on this FWh content of the signal, 

increasing thus the excitability part of the EHG. 

From bivariate analysis, the hypothesis was that using monopolar signals permit to get free from 

the bias induced by using a common monopolar electrode to create two adjacent bipolar 

channels. We expected thus better results for bivariate analysis when using monopolar channels. 

We can conclude from this bivariate study that the use of monopolar EHG gives similar results 

than the ones obtained from bipolar signals. As the Monopolar signals induce no bias, we can go 

on using monopolar signals for bivariate analysis.  

No conclusion can be given at this time concerning the best method to use for channel selection 

whatever the situation: monovariate/bivariate, bipolar/monopolar. Further studies should be 

developed to conclude on this aspect. 
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General conclusion and perspectives  

We have presented in this thesis several approaches in order to improve the early prediction of 

term or preterm labor by analysis of EHG signals. Our main aim is the selection of the best 

features obtained from both monovariate and bivariate analyses of the uterine electrical activity 

to classify uterine contractions, in order to improve the performance of previously tools used for 

the clinical diagnosis of preterm labor. Our secondary aim is the selection of the best recording 

condition, addressed in terms of recording derivation (bipolar/monopolar) and channel location 

(electrode position). 

Using abdominal electrodes to detect electrohysterogram EHG is not new, and the analysis of the 

uterine excitability and the propagation of activity processing a large number of EHGs with 

different tools (temporal representation, frequency, time-frequency, non-linear characteristics) 

have been the goal of many studies during the last 20 years. These studies used very different 

populations and various recording protocols.  Additionally, using this large number of signal 

processing tools increases the computational complexity in a diagnostic objective. In addition, all 

previously conducted studies on EHG have used only bipolar derivation (in order to increase the 

SNR). The recording of EHG began using a small number of electrodes (giving usually 1 or 2 

bipolar derivations). But due to recent hardware developments, a large number of electrodes are 

now used. Therefore extract information from these channels makes complexity for a diagnostic 

purpose even greater.  This thesis has thus mainly addressed the following points: 

 Enrich the already available database by new recordings made on pregnant women to test 

our work on a larger standardized database. 

 Extract from a bibliographic review, the most representative features to study, from the 

EHG, uterine excitability (monovariate analysis) and propagation (bivariate analysis).  

 Using several feature selection methods to select, from the previously define set of 

features, the most relevant features computed on our EHG database. Comparing the 

classification results with and without feature selection to quantify the gain provided by 

this selection. 
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 Selecting the most discriminating channels using linear and nonlinear features 

(monovariate analysis). 

 Selecting the most discriminating channel combinations using features related to EHG 

propagation (bivariate analysis). 

 Testing if discrimination is more efficient using the two types of information 

(excitability, propagation). 

 Testing our work using monopolar signals instead of bipolar signals currently used to see 

if the use of monopolar signals (specially for the bivariate analysis) improves the results. 

The results of our work are presented in the second and third chapter that investigated 

respectively the selection of relevant features (excitability and propagation) and then the channel 

and channel combination selection for monovariate and bivariate analysis on uterine electrical 

activity. 

Chapter 2 presents the study done for the selection of relevant feature subsets, combining 

monovariate and bivariate features. For this purpose, several features selection methods were 

applied in this work. First, an algorithm for the selection of parameters using the feature selection 

method named Jeffrey Divergence was developed in order to select the best parameters 

computed both on the original EHG and on different frequency bands obtained using wavelet 

packet decomposition. Our results indicate that, 13 linear parameters (W1, W2, W3, W4, D1… 

D8 and MPF), 3 nonlinear parameters (Tr, SE, VarEn) and 2 propagation parameters (R
2
, H

2
) 

demonstrate ability to discriminate pregnancy and labor contractions. Some of them are more 

efficient when extracted from the original EHG; others are more efficient when computed from 

different frequency bands.  

Due to complexity of the calculation presented in the part above, we decided to use only the 

original EHG in the second part of this work. We thus tested several feature selection methods to 

choose the best subsets for classifying labor and pregnancy contractions. Two types of feature 

selection were used in this part (filter and wrapper). For wrapper method, we used the classifier 

KNN and two classical datasplit (KFOLD and Holdout). The results of each subset were 

compared using the percentage of correct classification. Additionally, we compared the results of 

feature selection in this part by using bipolar and then monopolar EHG signals.  
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After extraction of the most pertinent features from bipolar then monopolar EHGs, the result 

showed that the monovariate nonlinear feature (DFA) is always selected, whatever the derivation 

(monopolar/bipolar), and the feature selection method. DFA increases passing form pregnancy to 

labor on monopolar as well as on bipolar EHG. These results are in agreement with different 

studies concerning the interest of the nonlinear characteristics of EHG for pretem labor detection. 

Opposite to DFA, the feature LE was not selected neither on bipolar nor on monopolar EHGs, 

which makes it a very bad candidate for discrimination between pregnancy and labor. 

Additionally, the results showed that some other features, selected several times among the 

whole methods, are also of considerable potential interest for the diagnosis. For example on 

Bipolar EHG, MPF was selected 17 over 20 times. The pregnancy/labor evolutions of this 

parameter, showed an increasing when going from pregnancy to labor, which is in agreement 

with different studies that evidenced a shift of the EHG spectral content towards higher 

frequencies when going from pregnancy to labor. 

For the bivaraiate features, the results show that H
2
 was the most pertinent bivariate feature, on 

bipolar signals, and FW_H, on monopolar signals. The results showed a decrease in both H
2
 and 

FW_H when passing from pregnancy to labor, which is one of the unexpected results. Some 

additional work must be done to explain these results. One possible hypothesis is that the 

synchronization of the uterine muscle, occurring during labor, is not solely related to an electrical 

phenomenon. The electrical propagation through the diffusion process could be mainly local, as 

evidenced by the recent work of Rabotti et al. [1]. But the main global synchronization of the 

whole uterine muscle should be due to the hydrodynamic-stretch activation mechanism, recently 

proposed by Young [2]. This new hypothesis is presently under investigation in our lab.  

From the validation part and after calculating the percentage of correct classification on all 

obtained feature subsets, using bipolar and monopolar EHG, the results show that the most 

feature subsets selected by wrapper methods give better results for the classification between 

pregnancy and labor contractions, due to use of a classifier within the method. Additionally, the 

result show that using bipolar EHG gives a better classification than using monopolar. Therefore, 

we can conclude that, when mixing monovariate and bivariate approach, using bipolar is better 

than monopolar. Furthermore, we compared the results of classification with and without feature 
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selection. The obtained results demonstrated that the classification with selection is better than 

without selection specially when using bipolar signal.  

Finally, we presented the results concerning the selection, from the multichannel system, of the 

most relevant channels (monovariate analysis) and the best combination of channels (bivariate 

analysis) for classification of pregnancy/labor contractions. The same procedure was used for 

channel selection for the monovariate analysis, and channel combination selection for the 

bivariate analysis. Two methods of feature selection of type filter (Relieff and F-score method) 

have been adapted to select channels and combination channels. We then applied two feature 

selection methods of type wrapper (Binary particle swarm optimization and Genetic algorithm 

(GA)) in order to select the best monovariate features from the selected channels, and the best 

bivariate features from the selected channel combinations. We then tested the performance of our 

obtained results in a validation step.  

For the monovariate analysis, results show that the most pertinent selected bipolar and monopolar 

channels are positioned on the vertical axis of women’s abdomen. Additionally, the percentages 

of correct classification obtained after bipolar channel and feature selections were higher, for 

selection and validation as well, than the ones obtained for monopolar channel and feature 

selections. 

For the bivariate analysis, from the results obtained for channel combination selection, we were 

not able to evidence any specific channel location giving the best results. Additionally, the 

percentage of correct classification obtained in selections and validation part were similar for 

bipolar or monopolar channel combinations selection followed by feature selection, proving that 

for bivariate analysis, monopolar signals behave better than for monovariate analysis. 

We can conclude from these results that using bipolar and monopolar channels positioned in the 

median vertical axis of women’s abdomen gives good discrimination ability between the two 

classes of contractions (pregnancy and labor). Luckily, this position is in agreement with our 

recording protocol. While for bivariate analysis, we did not found any specific best channels 

location to be used for the channel combinations. 

For the monovariate analysis, we can conclude from this work that using bipolar EHG gives 

better results than using monopolar ones, for the discrimination between pregnancy and labor. 



155 
 

These results are linked to the bipolarization, which removes the common low frequency noise 

and improves the high-frequency content of the signal.  An increase in the excitability of uterine 

cells is associated to a shift of FWh (higher frequency content of the EHG) towards higher 

frequencies. Therefore, using bipolar signal allows focusing on this FWh content of the signal, 

increasing thus the excitability part of the EHG.  Use of bipolar signals makes thus easier to 

evidence this increase. 

For the bivariate analysis, we can conclude from this work that using bipolar EHG gives similar 

results than using monopolar ones, for the discrimination between pregnancy and labor 

contractions. As the monopolar signals induce no bias (opposite to the bipolar signals that use a 

common monopolar electrode to create two adjacent bipolar signals), we can advice to use 

monopolar signals for bivariate analysis.  

Another way to process (that we did not have time to test in our work) should be to use bipolar 

signals to compute the monovariate features (thanks to an increase in SNR) and monopolar 

signals to compute the bivariate features (thanks to a decrease bias and an increased spatial 

resolution). These tests should be done soon in our lab. 

No definite conclusion can be given at the moment regarding the best method to use for channel 

selection regardless of the experimental situation: monovariate/bivariate, bipolar/monopolar. Our 

results only permitted us to evidence that our reference position (Vb7, CH9, CH10) corresponds 

to one of the best identified for monovariate analysis. Therefore, other studies shoul be done for 

the bivariate analysis. 

The results presented in this thesis can be improved by further works: 

 Combine several types of methods for feature selection in order to increase the selection 

performance.  

 Increase the actual database of EHG signals by recordings made on pregnant women 

during different physiological and pathological situations (normal and risk pregnancies, 

term and preterm labor) in order to test our results on a larger database. 

 Use the linear and nonlinear features extracted from the selected channel and the features 

related to EHG propagation selected from channels combinations as input for a classifier 

in order to increase the percentage of classification between labor and pregnancy classes. 
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 Apply for the validation step of these selections, other classification methods on the 

selected features to classify pregnancy and labor contractions. 

 Develop tools to test the new hypothesis of uterine synchronization. This could be done 

through a graph theory approach, combined twith a multiscale multiphysic 

(electrical/mechanical) biophysical model of the uterine contractile activity. 

Our final aim should be to be able to integrate all these knowledge in reliable detection tools of 

the early signs of preterm labor. 
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Appendix A: Database 

Table A.1: Information for women in pregnancy (database 1) 

Woman Record 

Place 

of 

Record 

Weight Height 
Term 

(*) 

Placenta 

(**) 

Number of 

contractions 

Term at 

delivery 

W1 

 

 

R1 Island 71 1.75 32+5 Post 6 41+2 

 R2 Island 71 1.75 35+5 Post 6 

R3 Island 71 1.75 37+5 Post 4 

W2 

 

 

R1 Island 61 1.75 35+5 Ant 6 40+2 

 R2 Island 61 1.75 39+2 Ant 5 

R3 Island 61 1.75 40+1 Ant 5 

W3 R1 Island 62 1.65 33+1 Post 3 39 

W4 

 

R1 Island 48 - 50 1.6 29+5 Post 2 41+4 

R2 Island 48 - 50 1.6 31+5 Post 2 

W5 

 

R1 Island 75 1.72 36 Ant 2 40+1 

R2 Island 75 1.72 38 Ant 3 

W6 

 

 

 

R1 Island 70 - 75 1.76 33 Post 4 40+6 

 R2 Island 70 - 75 1.76 35 Post 2 

R3 Island 70 - 75 1.76 37 Post 1 

R4 Island 70 - 75 1.76 38 Post 2 

W7 R1 Island 56 1.63 40+2 Fundus 9 41+1 

W8 R1 Island 100 1.78 32+4 Post 6 40+5 

W9 

 

 

 

R1 Island 92.4 1.8 35 Ant 1 39+5 

 R2 Island 92.4 1.8 37 Ant 3 

R3 Island 92.4 1.8 38 Ant 1 

R4 Island 92.4 1.8 39 Ant 2 

W10 

 

 

R1 Island 67 1.64 34+1 Post 4 38 

 R2 Island 67 1.64 36+1 Post 5 

R3 

 

Island 67 1.64 37+1 Post 3 
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W11 R1 Island 76.2 1.7 33+6 xxx 3 xxx 

R2 Island 76.2 1.7 35+6 xxx 4 xxx 

R3 Island 76.2 1.7 36+6 xxx 3 xxx 

W12 R1 France 52 1.5 34 Post 4 39 

W13 R1 France 57 1.5 36+1 Ant 4 41+3 

*: Week + Day  

**: Post: posterior, Ant: anterior, Sup: Superior 

 

 Table A.2: Information for women in labor (database 1) 

Woman Record 

Place 

of 

Record 

Weight Height 
Term 

(*) 

Placenta 

(**) 

Number of 

contractions 

Term at 

delivery 

W14 R1 Island xxx xxx 37 xxx 28 37 

W15 R1 Island xxx xxx 39+1 Ant 17 39+1 

W16 R1 Island 62 1.63 39+3 Fundus 4 39+3 

W17 R1 Island 63.4 1.63 39+3 Ant 7 39+3 

W18 R1 Island 57.5 1.66 41+5 Post - 

lat/left 

4 41+5 

W19 R1 Island 89 1.7 42+2 Ant 1 xxx 

W11 R1 Island 76.2 1.7 37 post/sup 4 xxx 

W5 R1 Island 75 1.72 40+1 Ant 1 40+1 

W20 R1 Island 109 xxx 39+6 Post 1 39+6 

W21 R1 Island xxx xxx 40+3 Post 20 40+3 

W22 R1 Island xxx xxx 42+1 Post 16 42+1 

W23 R1 France 62 1.6 41+4 xxx 3 xxx 

*: Week + Day  

**: Post: posterior, Ant: anterior, Sup: Superior 
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Table A.3: Information for women in pregnancy (database 2) 

Woman Record 
Place of 

Record 
Weight Height 

Term 

(*) 

Placenta 

(**) 

 

Number of 

contraction 

Term at 

delivery 

W1 

 

R1 Iceland 71 1.75 32+5 Post 7 
41+2 

 
R2 Iceland 71 1.75 35+5 Post 8 

R3 Iceland 71 1.75 37+5 Post 3 

W2 

 

R1 Iceland 61 1.75 35+5 Ant 7 
40+2 

 
R2 Iceland 61 1.75 39+2 Ant 5 

R3 Iceland 61 1.75 40+1 Ant 6 

W3 R1 Iceland 62 1.65 33+1 Post 4 39 

 

W4 

 

 

R1 Iceland 48 - 50 1.6 29+5 Post 2 

41+4 

 
R2 Iceland 48 - 50 1.6 31+5 Post 2 

R3 Iceland 48 - 50 1.6 34+5 Post 1 

W5 

 

R1 Iceland 75 1.72 36 Ant 2 
40+1 

R2 Iceland 75 1.72 38 Ant 3 

 

W6 

 

R1 Iceland 70 - 75 1.76 33 Post 4 
 

40+6 
R2 Iceland 70 - 75 1.76 35 Post 2 

R3 Iceland 70 - 75 1.76 38 Post 4 

W7 R1 Iceland 56 1.63 40+2 Fundus 8 41+1 

W8 R1 Iceland 100 1.78 32+4 Post 7 40+5 

W9 

R1 Iceland 92.4 1.8 35 Ant 5 

 

39+5 

 

R2 Iceland 92.4 1.8 37 Ant 5 

R3 Iceland 92.4 1.8 38 Ant 6 

R4 Iceland 92.4 1.8 39 Ant 2 

W24 

R1 Iceland 105 1.72 33+3 ant 1 
38+1 

 
R2 Iceland 105 1.72 35+5 ant 5 

R3 Iceland 105 1.72 37+5 ant 3 

W10 

R1 Iceland 67 1.64 34+1 Post 6 
38 

 
R2 Iceland 67 1.64 36+1 Post 7 

R3 Iceland 67 1.64 37+1 Post 9 
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W25    R2 Iceland 76.2 1.64 34+5 ant/sup 5 xxx 

W11 

R1 Iceland 76.2 1.7 33+6 xxx 6 xxx 

 

 

R2 Iceland 76.2 1.7 35+6 xxx 4 

R3 Iceland 76.2 1.7 36+6 xxx 3 

W26 R1 Iceland 60 1.69 38+0 Ant 13 xxx 

W27 

 

R1 Iceland 82.9 1.7 34 Post 1 

40+1 

 

R2 Iceland 85.1 1.7 36 Post 2 

R3 Iceland 86 1.7 37+2 Post 4 

R4 Iceland 87 1.7 40 Post 4 

W28 R1 Iceland 68 1.68 33+2 Ant 9 39+1 

W29 

R1 Iceland 69.5 1.67 30+3 Ant, high 3 38+5 

R2 Iceland 71.7 1.67 35+3 Ant, high 4 38+5 

W30 R1 Iceland 95.8 1.62 34 Ant, high 1 39 

W31 

R1 Iceland 109.9 1.76 37+3 Ant, high 1 

41+1 

 

R2 Iceland 110.9 1.76 38+3 Ant, high 1 

R3 Iceland 110.9 1.76 39+3 Ant, high 2 

R4 Iceland 111 1.76 40+2 Ant, high 9 

W32 R1 Iceland 92 1.68 36+5 Post, high 1 38+5 

W33 

R1 Iceland 85.5 1.68 31+4 Ant, high 10 
40 

 
R2 Iceland 86 1.68 37+2 Ant, high 9 

R3 Iceland 86.5 1.68 38+2 Ant, high 2 

W34 R1 Iceland 78 1.63 38+5 Post, high 1 41+6 

W35 R1 Iceland 113.3 1.73 36 

Ant, 

more on 

right 

3 38+5 

W36 R1 Iceland 65.5 1.69 38+2 Ant, high 6 40+3 

W37 R1 Iceland 76 1.68 36+4 Ant 4 40+5 

W38 

 

 

R1 Iceland 88 1.76 36+3 Ant, high 1 

40+6 

 
R2 Iceland 89 1.76 38+5 Ant, high 1 

    R3 Iceland 90 1.76 40+5 Ant, high 1 
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W39 

 

R1 Iceland 82 1.67 33+2 Ant, high 11 

40 

 

R2 Iceland 83 1.67 35+6 Ant, high 9 

R3 Iceland 84 1.67 37+3 Ant, high 9 

R4 Iceland 85 1.67 39+4 Ant, high 9 

W40 R1 Slovenia 69 1.60 41+2 Ant 4 xxx 

W41 R2 Slovenia 74 1.66 38+2 xxx 1 xxx 

W42 R1 Slovenia 99 164 36+6 Ant 3 xxx 

W43 R1 France xxx xxx 37+6 xxx 2 xxx 

W44 R1 France 55 160 32+3 Ant 7 xxx 

*: Week + Day  

**: Post: posterior, Ant: anterior, Sup: Superior 
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Table A.4: Information for women in labor (database 2) 

Woman Record 
Place of 

Record 
Weight Height 

Term 

(*) 

Placenta 

(**) 

Number  

of 

contraction 

Term 

 at 

delivery 

W16 R1 Iceland 62 1.63 39+3 Fundus 4 39+3 

W17 R1 Iceland 63.4 1.63 39+3 Ant 7 39+3 

W19 R1 Iceland 89 1.7 42+2 Ant 22 xxx 

W24 R1 Iceland 105 1.72 38+1 Ant 10 38+1 

W11 R1 Iceland 76.2 1.7 37 Post/Sup 5 xxx 

W5 R1 Iceland 75 1.72 40+1 Ant 1 40+1 

W20 R1 Iceland 109 xxx 39+6 Post 3 39+6 

W21 R1 Iceland xxx xxx 40+3 Post 26 40+3 

W22 R1 Iceland xxx xxx 42+1 Post 11 42+1 

W45 R1 Iceland xxx xxx 40+2 Ant 37 40+2 

W46 R1 Iceland xxx xxx 39+1 Post 25 39+1 

W47 R1 Iceland xxx xxx xxx xxx 25 xxx 

W48 R1 Iceland 95 1.63 39 Ant 1 39 

W29 R1 Iceland 72 1.67 38+5 Ant,high 4 38+5 

W49 R1 France xxx 1.62 37+6 Fundus 8 xxx 

*: Week + Day  

**: Post: posterior, Ant: anterior, Sup: Superior 
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Appendix B: Feature selection results 

B.1- Feature selection results using filter method 

Table B.1.1: Distance value for each feature obtained using Jeffrey Divergence method on 

bipolar and monopolar dataset. Selected features are indicated. in bold font. 

Bipolar dataset Monopolar dataset 

Feature names Distance (Sorted) Feature names Distance (Sorted) 

    'DFA'     1.6427     'DFA'     1.3859 

    'VarEn'     1.2384     'VarEn'     0.9086 

    'FW_H'     0.8810     'FW_H'     0.7100 

    'MPF'     0.6930     'SE'     0.5310 

    'W2'     0.5357     'MPF'     0.4541 

    'R
2
'     0.5043     'D9'     0.4179 

    'SE'     0.4722     'W5'     0.4070 

    'H
2
'     0.3705     'W2'     0.4045 

    'FW_H
2
'     0.3495     'R

2
'     0.3991 

    'D9'     0.3224     'D8'     0.3005 

    'W5'     0.2822     'y'     0.2688 

    'D7'     0.2319     'H
2
'     0.2675 

    'D8'     0.2121     'W1'     0.2608 

    'W3'     0.1912     'D6'     0.2571 

    'LE'     0.1813     'D7'     0.2004 

    'W1'     0.1561     'FW_H
2
'     0.1967 

    'y'     0.1365     'W3'     0.1564 

    'PF'     0.1298     'LE'     0.1146 

    'D1'     0.1246     'D2'     0.0654 

    'W4'     0.0907     'W4'     0.0537 

    'D2'     0.0722     'PF'     0.0521 

    'D4'     0.0689     'D1'     0.0474 

    'D3'     0.0617     'D3'     0.0383 

    'D6'     0.0324     'D4'     0.0074 

    'D5'     0.0172     'D5'     0.0065 

    'Tr'     0.0001     'Tr'     0.0001 
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Table B.1.2: F-score value for each feature obtained using F-score method on bipolar and 

monopolar dataset. Selected features are indicated.in bold font. 

Bipolar contractions Monopolar contractions 

Feature names F-score (Sorted) Feature names F-score (Sorted) 

    'DFA'     0.6728     'DFA'     0.6750 

    'FW_H'     0.3226     'FW_H'     0.3369 

    'FW_H
2
'     0.1907     'FW_H

2
'     0.1481 

    'VarEn'     0.1359     'VarEn'     0.1045 

    'MPF'     0.1163     'W2'     0.0893 

    'W2'     0.0932     'SE'     0.0802 

    'SE'     0.0753     'R
2
'     0.0771 

    'W1'     0.0703     'W1'     0.0706 

    'D6'     0.0496     'W5'     0.0684 

    'D7'     0.0467     'W3'     0.0634 

    'R
2
'     0.0461     'MPF'     0.0602 

    'D8'     0.0434     'H
2
'     0.0413 

    'D9'     0.0433     'D6'     0.0314 

    'D5'     0.0398     'D5'     0.0310 

    'D4'     0.0364     'D4'     0.0288 

    'D1'     0.0353     'D7'     0.0260 

    'W3'     0.0345     'D2'     0.0238 

    'W5'     0.0286     'D3'     0.0231 

    'D3'     0.0268     'D9'     0.0163 

    'LE'     0.0236     'LE'     0.0139 

    'H
2
'     0.0194     'D8'     0.0138 

    'D2'     0.0160     'PF'     0.0112 

    'PF'     0.0095     'y'     0.0086 

    'Tr'     0.0039     'D1'     0.0085 

    'W4'     0.0017     'W4'     0.0061 

    'y'     0.0015     'Tr'     0.0038 
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Table B.1.3: Weight value of each feature obtained using Relieff method on bipolar and 

monopolar dataset. Selected features are indicated in bold font. 

Bipolar contractions Monopolar contractions 

Feature names Weight  (Sorted) Feature names Weight (Sorted) 

    'DFA'     0.0450     'DFA'     0.0498 

    'VarEn'     0.0340     'VarEn'     0.0309 

    'FW_H'     0.0228     'FW_H'     0.0221 

    'MPF'     0.0193     'D9'     0.0220 

    'D9'     0.0152     'MPF'     0.0206 

    'D8'     0.0107     'D8'     0.0154 

    'PF'     0.0103     'D7'     0.0136 

    'y'     0.0098     'W1'     0.0127 

    'FW_H
2
'     0.0086     'D6'     0.0112 

    'D2'     0.0079     'W5'     0.0102 

    'R
2
'     0.0071     'W2'     0.0096 

    'SE'     0.0069     'PF'     0.0082 

    'W3'     0.0065     'D5'     0.0079 

    'H
2
'     0.0059     'FW_H

2
'     0.0076 

    'W5'     0.0057     'W3'     0.0075 

    'W1'     0.0055     'D2'     0.0060 

    'D3'     0.0055     'D4'     0.0056 

    'D7'     0.0050     'D3'     0.0053 

    'W2'     0.0045     'D1'     0.0049 

    'D1'     0.0040     'y'     0.0048 

    'LE'     0.0034     'H
2
'     0.0034 

    'D4'     0.0023     'SE'     0.0034 

    'Tr'     0.0022     'W4'     0.0033 

    'D6'     0.0004     'R
2
'     0.0027 

    'D5'     0.0003     'Tr'     0.0023 

    'W4'    -0.0016     'LE'     0.0005 
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B.2- Feature selection using Sequential methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.2.1: Procedure of sequential methods using KNN-KFOLD with the bipolar dataset. (A) 

SFS-KNN-KFOLD. (B) SBS-KNN-KFOLD. (C) BDS-SFS-KNN-KFOLD. (D) BDS-SBS-

KNN-KFOLD.  (E) LRS-KNN-KFOLD. (F) SFFS-KNN-KFOLD. 
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Figure B.2.2: Procedure of sequential methods using KNN-Holdout with the bipolar dataset. (A) 

SFS-KNN-Holdout. (B) SBS-KNN- Holdout. (C) BDS-SFS-KNN- Holdout. (D) BDS-SBS-

KNN- Holdout.  (E) LRS-KNN- Holdout. (F) SFFS-KNN- Holdout. 
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Figure B.2.3: Procedure of sequential methods using KNN-Holdout with the monopolar dataset. 

(A) SFS-KNN-Holdout. (B) SBS-KNN- Holdout. (C) BDS-SFS-KNN- Holdout. (D) BDS-SBS-

KNN- Holdout.  (E) LRS-KNN- Holdout. (F) SFFS-KNN- Holdout. 
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B.3- Process of Feature Selection Using genetic algorithm 

 

Figure B.3.1: Procedure of GA-KNN-Holdout for the  bipolar dataset 

 

 

Figure B.3.2: Procedure of GA-KNN-Holdout for the  monopolar dataset 
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Figure B.3.3: Procedure of GA-KNN-KFOLD for the  monopolar dataset 
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B.4- Validation of the selected feature subsets 

Table B.4.1: Mean ± STD of the percentage of correct classification using KNN of 500 

repetitions for the selected features subset. 

Methods Selected feature Subset 

Mean ± standard 

deviation 

 of percentage of correct 

classification 

(500 repetitions)  

Bipolar Monopolar Bipolar Monopolar 

Kl-divergence 

seuil – 

KFOLD 

[DFA, VarEn, FW_H, 

MPF, W2, R
2
, SE, H

2
, 

FW_H
2
] 

[DFA, VarEn, FW_H, 

SE, MPF, D9, W5, W2, 

R
2
] 

73.76± 2.39 65.39±1.83 

F-Score-

KFOLD 

[DFA, VarEn, W2, 

MPF, FW_H
2
,FW_H] 

[SE, DFA, VarEn, W2, 

FW_H
2
, FW_H] 

68.39 ± 2.16 61.29 ± 1.97 

Relieff –

KFOLD 

[DFA, VarEn, D8, D9, 

MPF, PF, y, FW_H] 

[DFA, VarEn, W1, D6, 

D7, D8, D9, MPF, 

FW_H] 

66.90 ± 2.16 62.22± 2 

Mutual 

information 

with 

clustering -

KFOLD 

[SE, DFA, VarEn, 

MPF, FW_H, FW_H
2
] 

[SE, DFA, VarEn, W5, 

MPF, FW_H, FW_H
2
] 

71.41 ±1.93 63.99 ± 2.27 

Kl-divergence 

seuil -Holdout 

[DFA, VarEn, FW_H, 

MPF, W2, R
2
, SE, H

2
, 

FW_H
2
] 

[DFA, VarEn, FW_H, 

SE, MPF, D9, W5, W2, 

R
2
] 

72.66±7.61 63.66 ± 7.29 

F-Score-

Holdout 

[DFA, VarEn, W2, 

MPF, FW_H
2
,FW_H] 

[SE, DFA, VarEn, W2, 

FW_H
2
, FW_H] 

68.72±7.48 62.79±7.06 

Relieff-

Holdout 

[DFA, VarEn, D8, D9, 

MPF, PF, y, FW_H] 

[DFA, VarEn, W1, D6, 

D7, D8, D9, MPF, 

FW_H] 

65.26±7.73 61.93±6.81 

Mutual 

information 

with 

clustering -

Holdout 

[SE, DFA, VarEn, 

MPF, FW_H, FW_H
2
] 

[SE, DFA, VarEn, W5, 

MPF, FW_H, FW_H
2
] 

70.91 ±7.64 63.91± 7.28  

SFS-KNN-

KFOLD 

[SE, DFA, W4, MPF, 

H
2
] 

[Tr, SE, DFA, VarEn, 

W1, W2, W3, D1, D2, 

D3, D4, D5, D6, MPF, 

PF, FW_H] 

82.33 ± 1.54 

 

65± 2.20 
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SBS-KNN-

KFOLD 

 

[SE, DFA, W4, D8, 

MPF, H
2
, y] 

 

 

[DFA, W3, W4, D5, 

D6, MPF, PF, H
2
, y, 

FW_H
2
, FW_H] 

84.13±1.76 68.35±1.84 

BDS-SFS-

KNN-KFOLD 

[DFA, W2, W3, D2, 

D4, D6, MPF, H
2
] 

[SE, DFA, D1, D5, 

MPF, PF] 

78.44 ± 1.70 66.40±1.87 

BDS-SBS-

KNN-KFOLD 

 

[Tr, SE, DFA, VarEn, 

W1, W2, W4, D3, D4, 

D6, D8, D9, MPF, H
2
, 

y] 

[Tr, DFA, VarEn, W1, 

W2, W4, D1, D3, D5, 

D6, D7, D8, MPF, PF, 

R
2
, y, FW_H

2
, FW_H] 

74.99 ± 2.12 67.74±1.65 

LRS-KNN-

KFOLD 

 

[DFA, W1, W3, D2, 

D3, MPF, H
2
] 

 

[Tr, SE, DFA, VarEn, 

W1, W2, W3, D3, D4, 

D5, PF, R
2
, FW_H

2
] 

81.11 ± 1.65 72.21±1.33 

SFFS-KNN-

KFOLD 

[SE, DFA, D2, D3, 

MPF, R
2
] 

[Tr, SE, DFA, D2, D4, 

D5, MPF, PF, FW_H
2
] 

81.35 ± 1.34 70.15±1.82 

GA-KNN-

KFOLD 

 

[Tr, SE, DFA, W1, W4, 

D1, D3, D4, D5, D8, 

MPF, R
2
, H

2
, y] 

[DFA, W1, W2, W3, 

W4, D5, D6, MPF, R
2
, 

FW_H] 

85.06 ± 1.63 66.69±2 

BPSO-KNN- 

KFOLD 

 

[Tr, SE, DFA, W1, W2, 

W4, D3, D4, D5, D6, 

D8, MPF, R
2
, H

2
, y] 

 

[SE, DFA, VarEn, W1, 

D1, D2, D3, D4, D5, 

D6, MPF, PF, H
2
, y, 

FW_H] 

85.05 ± 1.69 68.12±1.73 

SFS-KNN-

Holdout 

 

[Tr, DFA, W1, W2, 

W3, D1, D4, D8, MPF, 

R
2
, FW_H] 

[Tr, DFA, VarEn, W1, 

W2, W4, D1, D2, D4, 

D5, D8, R
2
] 

68.52±8.04 70.23±7.13 

SBS-KNN- 

Holdout 

 

[DFA, W5, MPF, 

FW_H
2
] 

[SE, DFA, VarEn, W4, 

W5, D7, D8, PF, R
2
, 

FW_H
2
] 

72.29±6.88 70.11±7.72 

BDS-SFS-

KNN- 

Holdout 

[DFA, D3, D8, H
2
] [SE, DFA, VarEn, W4, 

D5, D8, MPF, R
2
] 

74.03±7.05 72.27±7.79 

BDS-SBS-

KNN- 

Holdout 

 

[DFA, VarEn, W1, W3, 

D1, D2, D7, D8, D9, 

MPF, PF, H
2
, y] 

[SE, DFA, VarEn, W4, 

D5, D6, D7, D8, MPF, 

R
2
, H

2
, y, FW_H

2
] 

71.94±7.94 74.88 ±7.10 

LRS-KNN- 

Holdout 

 

[Tr, DFA, W1, W2, D1, 

D2, D3, D4, D5, D6, 

D7, D8, PF, R
2
, H

2
] 

[DFA, VarEn, W1, W2, 

D1, D2, D4, D8, MPF, 

R
2
, y, FW_H] 

72.88±7.51 68.45±7.33 
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SFFS-KNN- 

Holdout 

 

[Tr, SE, DFA, W1, W2, 

W3, MPF, R
2
, H

2
, 

FW_H
2
] 

 

[Tr, DFA, W2, D4, R
2
, 

H
2
] 

81±6.53 68.57±7.08 

GA-KNN- 

Holdout 

 

[SE, DFA, VarEn, W1, 

W2, W4, W5, D1, D5, 

MPF, R
2
, H

2
, FW_H

2
, 

FW_H] 

[DFA, VarEn, D3, D4, 

D7, D8, PF, R
2
, FW_H] 

73.81±7.58 66.84±6.95 

BPSO-KNN- 

Holdout 

 

[Tr, DFA, W4, D4, D5, 

D6, D8, D9] 

[Tr, DFA, VarEn, W3, 

W4, D1, D2, D5, D6, 

MPF, H
2
, y, FW_H] 

67.29±8.26 68.19±7.22 
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B.5- Number of features contained in the selected subsets and appearance of 

each feature in all selected subsets 

Table B.5.1: Number of features contained in each selected subset and time of calculation of 

each method of feature selection 

Methods Number of Selected features 

 

Time (s) 

Bipolar 

 

Monopolar Bipolar Monopolar 

Jeffrey divergence 9 9 0.09 0.08 

F-Score 6 6 0.005 0.01 

Relieff 8 9 0.35 0.36 

Mutual information with 

clustering 

6 7 0.08 0.08 

SFS-KNN-KFOLD 5 16 6.41 6.23 

SBS-KNN-KFOLD 7 11 6.33 6 

BDS-SFS-KNN-KFOLD 8 6 6.64 6.67 

BDS-SBS-KNN-KFOLD 15 18 6.68 6.66 

LRS-KNN-KFOLD 7 13 30.01 30.08 

SFFS-KNN-KFOLD 6 9 14.91 14.99 

SFS-KNN-Holdout 11 12 1.20 1.20 

SBS-KNN- Holdout 4 10 1.23 1.26 

BDS-SFS-KNN- Holdout 4 8 1.31 1.34 

BDS-SBS-KNN- Holdout 13 13 1.32 1.34 

LRS-KNN- Holdout 15 12 5.79 5.90 

SFFS-KNN- Holdout 10 6 3.07 2.67 

GA-KNN- KFOLD 14 10 145.56 161.52 

BPSO-KNN-KFOLD 15 15 44.19 43.72  

GA-KNN- Holdout 14 9 21.24 25.67 

BPSO-KNN-Holdout 8 13 6.06  6.04 
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Table B.5.2: Feature appearance in the 20 selected feature subsets for bipolar and monopolar 

EHGS. 

Feature appearance_ bipolar Feature appearance _monopolar 

Feature  Number of Appearance Feature  Number of Appearance 

'DFA' 20 'DFA' 20 

'MPF' 17 'VarEn' 15 

'H
2
' 13 'MPF' 14 

'D8' 10 'FW_H' 12 

'SE' 10 'D5' 12 

'W2' 9 'R
2
' 11 

'W1' 9 'SE' 11 

'R
2
' 8 'PF' 9 

'D4' 7 'W2' 9 

'D3' 7 'D8' 8 

'W4' 7 'D6' 8 

'VarEn' 7 'D4' 8 

'Tr' 7 'W4' 8 

'FW_H' 6 'W1' 8 

'y' 6 'FW_H
2
' 8 

'FW_H
2
' 6 'D1' 7 

'D6' 5 'Tr' 7 

'D5' 5 'y' 6 

'D2' 5 'D2' 6 

'D1' 5 'H
2
' 5 

'W3' 5 'D7' 5 

'D9' 4 'D3' 5 

'PF' 3 'W3' 5 

'D7' 2 'W5' 3 

'W5' 2 'D9' 2 

'LE' 0 'LE' 0 
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B.6- Mean ± standard deviation (STD) of features values 

Table B.6.1: Mean ± standard deviation (STD) of features on monopolar and bipolar EHGs  

Feature 

name 

Bipolar EHG  Monopolar EHG  

Mean ± STD 

(Pregnancy) 

Mean ± STD 

(Labor) 

Mean ± STD 

(Pregnancy) 

Mean ± STD 

(Labor) 

Tr -6.10*10
-6 

± 0.0001     0.03 ± 0.37 -2.23*10
-6±1.85*10

-5
    - 0.02 ± 0.19 

LE 5.82  ±  0.73     5.77 ±  0.56     5.76 ±  0.73     5.72 ± 0.62 

SE 0.98 ±  0.15     1.06 ±  0.11     0.99 ±  0.14     1.06 ±  0.12 

DFA 1 ±  0.19     1.24 ± 0.15     1.03 ±  0.19     1.27 ±  0.15 

VarEn 0.08 ±  0.12     0.16 ± 0.11     0.08 ±  0.15     0.15 ±  0.13 

W1 0.01 ±  0.01     0.02 ±  0.03     0.01 ± 0.02     0.02 ±  0.02 

W2 0.03 ± 0.03     0.05 ±  0.04     0.03 ±  0.04     0.05 ± 0.04 

W3 0.09 ± 0.05     0.11 ± 0.07     0.08 ±  0.05     0.11 ±  0.08 

W4 0.30 ±  0.11     0.27 ±  0.09     0.27 ± 0.11     0.24 ±  0.09 

W5 0.45 ±  0.13     0.42 ±  0.15     0.46 ±  0.11     0.40 ±  0.14 

D1 0.14 ±  0.02     0.14 ± 0.02  0.13 ± 0.02     0.13 ±  0.03 

D2 0.16 ±  0.04     0.17 ±  0.04     0.15 ± 0.03     0.15 ±  0.05 

D3 0.18 ±  0.05     0.19 ± 0.05     0.17 ± 0.04     0.18 ±  0.07 

D4 0.21 ± 0.05     0.22 ± 0.08     0.19 ±  0.05     0.21 ±   0.10 

D5 0.23 ± 0.06     0.26 ±  0.13     0.22 ±  0.07     0.24 ± 0.13 

D6 0.27 ± 0.07     0.32 ±  0.19     0.26 ±  0.11     0.29 ± 0.17 

D7 0.33 ± 0.16     0.40 ± 0.25     0.32 ± 0.20     0.37 ± 0.27 

D8 0.44 ± 0.39     0.57 ± 0.43     0.48 ±  0.61     0.55 ±  0.55 

D9 0.78 ±  1.02     1.07 ± 0.89     0.91 ±  1.45     1.05 ±  1.13 

MPF 0.39 ±  0.25     0.54 ± 0.26     0.41 ± 0.36     0.52 ±  0.35 

PF 0.18 ±  0.07     0.19 ± 0.10     0.16 ±  0.05     0.17 ±  0.10 

R
2
 0.16 ±  0.09     0.12 ±  0.06     0.19 ±  0.12     0.14 ±   0.09 

H
2
 0.20 ±  0.1     0.17 ±  0.08     0.24 ±  0.12     0.19 ±  0.10 

y 0.27 ±  0.08     0.26 ± 0.07     0.29 ±  0.09     0.27 ±  0.08 

FW_H
2
 0.48 ±  0.10     0.54 ± 0.09     0.50 ± 0.11     0.56 ±  0.08 

FW_H 3.77 ±  0.57     3.24 ± 0.63     3.78 ±  0.58     3.23 ±  0.63 
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Appendix C: channel selection followed 

by feature selection  

C.1- Channel selection 

Table C.1.1: (A) Bipolar channels selection by F-score. (B) bipolar channels selection by 

Relieff. The first line in these Tables corresponds to the feature names. Each column corresponds 

to the subset of bipolar channels selected for each feature (gray color). 

 
Tr LE SE DFA 

Var-

En 
W1 W2 W3 W4 W5 D1 D2 D3 D4 D5 D6 D7 D8 D9 MPF PF 

 

Vb1 
 

 

Vb1 

 

Vb1 

 

Vb1 

 

Vb1 

 

Vb1 

 

Vb1 

 

Vb1 

 

Vb1 

 

Vb1 

 

Vb1 

 

Vb1 

 

Vb1 

 

Vb1 

 

Vb1 

 

Vb1 

 

Vb1 

 

Vb1 

 

Vb1 

 

Vb1 

 

Vb1 

 

Vb2 

 

 

Vb2 
Vb2 

 

Vb2 

 

Vb2 

 

Vb2 

 

Vb2 

 

Vb2 

 

Vb2 

 

Vb2 

 

Vb2 

 

Vb2 

 

Vb2 

 

Vb2 

 

Vb2 

 

Vb2 

 

Vb2 

 

Vb2 

 

Vb2 

 

Vb2 

 

Vb2 

Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 

Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 

Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 

Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 

Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 

Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 

Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 

Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 

Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 

Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 

 

 
Tr LE SE DFA 

Var-

En 
W1 W2 W3 W4 W5 D1 D2 D3 D4 D5 D6 D7 D8 D9 MPF PF 

  

Vb1 

  

Vb1  Vb1  Vb1  Vb1  Vb1  Vb1  Vb1  Vb1  Vb1  Vb1  Vb1  Vb1  Vb1  Vb1  Vb1  Vb1  Vb1  Vb1  Vb1  Vb1 

  

Vb2 

  

Vb2  Vb2  Vb2  Vb2  Vb2  Vb2  Vb2  Vb2  Vb2  Vb2  Vb2  Vb2  Vb2  Vb2  Vb2  Vb2  Vb2  Vb2  Vb2  Vb2 

Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 Vb3 

Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 Vb4 

Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 Vb5 

Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 Vb6 

Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 Vb7 

Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 Vb8 

Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 Vb9 

Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 Vb10 

Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 Vb11 

Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 Vb12 

 
(B) 

(A) 



178 
 

Table C.1.2: (A) Monopolar channels selection by F-score. (B) Monopolar channels selection by 

Relieff. The first line in these tables corresponds to the feature names. Each column corresponds 

to the subset of monopolar channels selected for each feature (gray color). 

Tr LE SE DFA 
Var-

En 
W1 W2 W3 W4 W5 D1 D2 D3 D4 D5 D6 D7 D8 D9 MPF PF 

CH1  CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 

CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 

CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 

CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 

CH5  CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 

CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 

CH7  CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 

CH8  CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 

CH9  CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 

CH10  CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 

CH11  CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 

CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 

CH13  CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 

CH14  CH14  CH14  CH14  CH14 CH14  CH14 CH14 CH14  CH14 CH14  CH14  CH14 CH14 CH14  CH14 CH14 CH14 CH14  CH14  CH14  

CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 

CH16  CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 

 

Tr LE SE DFA 
Var-

En 
W1 W2 W3 W4 W5 D1 D2 D3 D4 D5 D6 D7 D8 D9 MPF PF 

CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1 

CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 

CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 

CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 

CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 

CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH6 

CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 CH7 

CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 CH8 

CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 

CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 CH10 

CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH11 

CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 CH12 

CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 CH13 

CH14 CH14 CH14 CH14 CH14 CH14 CH14 CH14 CH14 CH14 CH14 CH14 CH14 CH14 CH14 CH14 CH14 CH14 CH14 CH14 CH14 

CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 CH15 

CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 CH16 

 
(B) 

(A) 
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C.2- Feature selection after channel selection  

Table C.2.1: Subsets of features obtained from BPSO and GA using monopolar and bipolar 

channels selection 

Methods
(1)

 Dataset
(2)

 Selected feature Subset Name of 

Selected 

feature 

Subset 

Percentage 

of correct 

classification 

Bipolar , F-score , 

GA-KNN-KFOLD 

DL1 ['SE-Vb7', 'DFA-Vb7', 'DFA-

Vb8', 'VarEn-Vb7', 'W1-Vb7', 

'W1-Vb8', 'W2-Vb7', 'W3-Vb8', 

'W4-Vb7', 'W4-Vb8', 'W5-Vb8', 

'D1-Vb8', 'D2-Vb7', 'D2-Vb8', 

'D4-Vb8', 'D5-Vb7','D6-Vb8', 

'MPF-Vb7'] 

S1 89.20 

Bipolar , F-score  , 

GA-KNN-Holdout 

DL1 ['SE-Vb7', 'SE-Vb8', 'DFA-

Vb7','DFA-Vb8', 'W1-Vb7', 'W3-

Vb8', 'W4-Vb7', 'W4-Vb8' , 'W5-

Vb7', 'D2-Vb7', 'D3-Vb7', 'D5-

Vb8', 'PF-Vb7'] 

S2 94.69 

Bipolar , F-score  , 

BPSO-KNN-

KFOLD 

DL1 ['Tr-Vb7', 'Tr-Vb8', 'DFA-Vb7', 

'DFA-Vb8', 'VarEn-Vb7', 'W1-

Vb8', 'W3-Vb7', 'W3-Vb8', 'W4-

Vb8','D1-Vb7', 'D5-Vb8', 'D7-

Vb7', 'MPF-Vb7', 'PF-Vb8'] 

S3 87.89 

Bipolar, F-score, 

BPSO-KNN-

Holdout 

DL1 ['LE-Vb8', 'SE-Vb7', 'DFA-Vb7', 

'DFA-Vb8', 'VarEn-Vb7', 'VarEn-

Vb8', 'W1-Vb7', 'W4-Vb7', 'W4-

Vb8','W5-Vb7', 'D1-Vb7', 'D1-

Vb8', 'D2-Vb7', 'D4-Vb8', 'D6-

Vb8', 'D8-Vb7', 'D9-Vb8'] 

S4 95.58 

Bipolar, Relieff, 

GA-KNN-KFOLD 

DL2 ['Tr-Vb7', 'LE-Vb7', 'LE-Vb8', 

'LE-Vb9', 'SE-Vb7', 'SE-Vb8', 

'SE-Vb9', 'DFA-Vb7', 'DFA-

Vb8', 'DFA-Vb9', 'VarEn-Vb7', 

'VarEn-Vb9', 'W1-Vb7', 'W2-

Vb7', 'W2-Vb8', 'W2-Vb9', 'W3-

Vb8', 'W3-Vb9', 'W4-Vb7', 'W4-

Vb8', 'W4-Vb9', 'W5-Vb8', 'D1-

Vb9', 'D2-Vb7', 'D2-Vb8', 'D3-

Vb8', 'D5-Vb7', 'D5-Vb8', 'D5-

Vb9', 'D6-Vb7', 'D6-Vb9', 'D7-

Vb8', 'D7-Vb9', 'MPF-Vb7', 

'MPF-Vb8', 'PF-Vb9'] 

S5 89.45 
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Bipolar, Relieff, 

GA-KNN-Holdout 

 

DL2 ['Tr-Vb7', 'Tr-Vb9', 'SE-Vb7', 

'SE-Vb8', 'SE-Vb9', 'DFA-Vb8', 

'VarEn-Vb7', 'VarEn-Vb9', 'W2-

Vb7', 'W2-Vb9', 'W3-Vb7', 'W3-

Vb8', 'W4-Vb9', 'W5-Vb7', 'W5-

Vb8', 'D1-Vb7', 'D2-Vb9', 'D3-

Vb9', 'D4-Vb9', 'D5-Vb8', 'D5-

Vb9', 'D6-Vb9', 'D8-Vb8','D9-

Vb7', 'MPF-Vb7'] 

S6 94.69 

Bipolar, Relieff,  

BPSO-KNN-

KFOLD 

DL2 ['LE-Vb8', 'LE-Vb9', 'SE-

Vb7','DFA-Vb7', 'DFA-Vb8', 

'DFA-Vb9', 'VarEn-Vb7', 'VarEn-

Vb8', 'VarEn-Vb9', 'W1-Vb7', 

'W1-Vb8', 'W1-Vb9', 'W2-Vb7', 

'W2-Vb8','W3-Vb8','W3-Vb9', 

'W4-Vb7', 'W4-Vb8', 'W5-Vb8', 

'D1-Vb7', 'D1-Vb9', 'D2-Vb7', 

'D2-Vb8', 'D2-Vb9', 'D3-Vb7', 

'D5-Vb9', 'D6-Vb7', 'D6-Vb8', 

'D7-Vb7','D7-Vb8', 'D9-Vb7', 

'MPF-Vb7'] 

S7 89.47 

Bipolar, Relieff,  

BPSO-KNN-

Holdout 

DL2 ['Tr-Vb9', 'LE-Vb7', 'LE-

Vb8','SE-Vb7', 'SE-Vb8', 'DFA-

Vb9', 'VarEn-Vb7', 'VarEn-Vb8', 

'W1-Vb8', 'W2-Vb7', 'W3-Vb7', 

'W3-Vb8', 'W3-Vb9', 'W4-Vb7', 

'W5-Vb8', 'D1-Vb9', 'D3-Vb9', 

'D4-Vb8', 'D4-Vb9', 'D5-Vb8',' 

D6-Vb8', 'D6-Vb9', 'D8-Vb8'] 

S8 97.35 

Monopolar,F-

score, GA-KNN-

KFOLD 

DL3 ['SE-CH2', 'SE-CH10', 'DFA-

CH2', 'DFA-CH10', 'W3-CH2', 

'W4-CH10', 'D1-CH10', 'D2-

CH10', 'D3-CH2', 'D3-CH10', 

'D4-CH2', 'D4-CH10', 'D5-

CH10', 'D6-CH2', 'D6-CH10', 

'D7-CH2', 'MPF-CH10', 'PF-

CH10'] 

S9 89.16 

Monopolar, F-

score, GA-KNN-

Holdout 

DL3 ['Tr-CH10', 'LE-CH2', 'LE-

CH10', 'SE-CH10', 'DFA-CH
2
', 

'DFA-CH10', 'W1-CH2', 'W1-

CH10', 'W3-CH2', 'W4-CH2', 

'D1-CH10', 'D2-CH
2
', 'D2-CH10', 

'D3-CH2' , 'D3-CH10', 'D4-

CH2', 'D4-CH10', 'D5-CH2', 'D6-

CH10', 'D7-CH2', 'D7-CH10', 

'D8-CH2', 'D9-CH10', 'MPF-

S10 94.69 
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CH2', 'PF-CH2'] 

Monopolar, F-

score,  BPSO-

KNN-KFOLD 

 

DL3 ['Tr-CH2', 'SE-CH2', 'SE-CH10', 

'DFA-CH2', 'DFA-CH10', 'W1-

CH2', 'W3-CH2', 'W3-CH10', 

'W4-CH2', 'W4-CH10', 'D1-CH2', 

'D1-CH10', 'D4-CH2', 'D4-

CH10', 'D5-CH2', 'D6-CH2', 

'MPF-CH10'] 

S11 88.68 

Monopolar, F-

score, BPSO-

KNN-Holdout 

 

DL3 ['Tr-CH2', 'LE-CH10', 'SE-

CH10', 'DFA-CH2', 'VarEn-

CH10', 'W1-CH2', 'W1-CH10', 

'W2-CH2', 'W2-CH10', 'W3-

CH10', 'W4-CH2', 'W5-CH10', 

'D1-CH2', 'D3-CH2','D4-CH10', 

'D6-CH2', 'D6-CH10', 'D7-

CH10', 'PF-CH2', 'PF-CH10'] 

S12 96.46 

Monopolar, 

Relieff,  GA-KNN-

KFOLD 

 

DL4 ['Tr-CH9', 'Tr-CH10', 'LE-CH10', 

'SE-CH10', 'DFA-CH9', 'DFA-

CH10', 'VarEn-CH9', 'W1-CH9', 

'W3-CH9', 'D1-CH10', 'D6-

CH10', 'D8-CH9', 'D8-CH10'] 

S13 89.73 

Monopolar, 

Relieff, GA-KNN-

Holdout 

 

DL4 ['LE-CH10', 'SE-CH9', 'DFA-

CH9', 'W3-CH9', 'W5-CH9', 'D1-

CH9', 'D1-CH10', 'D3-CH10', 

'D4-CH9', 'D6-CH10', 'D7-CH9', 

'D8-CH9', 'D9-CH9', 'D9-CH10', 

'PF-CH9', 'PF-CH10'] 

S14 94.69 

Monopolar, 

Relieff, BPSO-

KNN-KFOLD 

 

 

DL4 ['Tr-CH9', 'Tr-CH10', 'SE-

CH9','SE-CH10', 'DFA-CH10', 

'VarEn-CH9', 'W2-CH9', 'W2-

CH10', 'W4-CH9', 'W4-CH10', 

'D1-CH10', 'D2-CH10', 'D3-

CH10', 'D4-CH10', 'D5-CH9', 

'D5-CH10', 'D6-CH10', 'D7-

CH10', 'MPF-CH9', 'PF-CH10'] 

S15 89.74 

Monopolar, 

Relieff,  BPSO-

KNN-Holdout 

 

DL4 ['Tr-CH9', 'SE-CH9', 'SE-CH10', 

'DFA-CH10', 'VarEn-CH9', 'W1-

CH10', 'W2-CH10', 'W3-CH9', 

'W3-CH10', 'D1-CH9', 'D1-

CH10', 'D2-CH9', 'D3-CH10', 

'D4-CH10', 'D6-CH9', 'D6-

CH10', 'D7-CH9', 'D8-CH9', 'D9-

CH9', 'PF-CH9', 'PF-CH10'] 

S16 96.46 

 

(1)
Method names:  

- Recording configuration: Bipolar/Monopolar 
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- Channel selection : F-score/Relieff 

- Feature selection: GA-KNN-KFOLD, GA-KNN-Holdout, BPSO-KNN-KFOLD, BPSO-

KNN-Holdout 

(2)
Dataset: 

- DL1: Dataset contain the 21 features extracted from the contractions (number contractions 

equal to 379), for the 2 bipolar channels Vb7 and Vb8 (selected using F-score). DL1= 

379*42. 

- DL2: Dataset contain the 21 features extracted from the contractions (number contractions 

equal to 379), for the 3  bipolar channels selected Vb7, Vb8 and Vb9 (selected using Relieff). 

DL2= 379*63. 

- DL3: Dataset contain the 21 features extracted from the contractions (number contractions 

equal to 379), for the 2 monopolar channels CH2 and CH10 (selected using F-score) DL3= 

379*42. 

- DL4: Dataset contain the 21 features extracted from the contractions (number contractions 

equal to 379), for the 2 monopolar channels CH9 and CH10 (selected using Relieff). DL4= 

379*42. 
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Table C.2.2: Number of features contained in the selected subsets after feature selection for the 

selected channels and time of calculation of each method of feature selection 

Methods
(1)

 Selected feature 

Subset
(2) 

Number of 

features 

 

Percentage of 

correct 

classification 

Time 

(s) 

Bipolar, F-score, 

GA-KNN-KFOLD 

S1 18 89.20 148.48 

Bipolar, F-score, 

GA-KNN-Holdout 

S2 13 94.69 20.74 

Bipolar, F-score, 

BPSO-KNN-

KFOLD 

S3 14 87.89 43.81 

Bipolar, F-score, 

BPSO-KNN-

Holdout 

S4 17 95.58 6.14 

Bipolar, Relieff 

,GA-KNN-

KFOLD 

S5 36 89.45 173.52 

Bipolar, Relieff 

,GA-KNN-

Holdout 

S6 25 94.69 25.27 

Bipolar, Relieff 

,BPSO-KNN-

KFOLD 

S7 32 89.47 48.5 

Bipolar, Relieff 

,BPSO-KNN-

Holdout 

S8 23 97.35 7.01 

Monopolar ,F-

score , GA-KNN-

KFOLD 

S9 18 89.16 147.60 

Monopolar,F-

score,  GA-KNN-

Holdout 

S10 25 94.69 24.67 

Monopolar,F-

score,  BPSO-

KNN-KFOLD 

S11 17 88.68 43.30 

Monopolar,F-

score,  BPSO-

KNN-Holdout 

S12 20 96.46 6.13 
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Monopolar,Relieff,  

GA-KNN-KFOLD 

S13 13 89.73 150.77 

Monopolar,Relieff,   

GA-KNN-Holdout 

S14 16 94.69 23.25 

Monopolar,Relieff,  

BPSO-KNN-

KFOLD 

S15 20 89.74 42.77 

Monopolar, 

Relieff, BPSO-

KNN-Holdout 

S16 21 96.46 6.11 

(1)
Method names:  

-  Recording configuration: Bipolar/Monopolar 

-  Channel selection : F-score/Relieff 

- Feature selection: GA-KNN-KFOLD, GA-KNN-Holdout, BPSO-KNN-KFOLD, BPSO-

KNN-Holdout 

 

(2)
Selected feature subset: correspond to the subset obtained in table C.2.1 
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C.3- Validation of the selected features subset after channel selection  

Table C.3.1:  Mean ± STD of the percentage of correct classification using KNN of 500 

repetitions for the selected features subset from the bipolar and monopolar selected channels  

 

Methods
(1) 

Selected feature subset
(2) 

Mean ± standard 

deviation 

 of percentage of correct 

classification 

(500 repetitions) 

Bipolar, F-score , GA-KNN-

KFOLD 

S1 75.8980 ±1.9440 

Bipolar, F-score ,GA-KNN-

Holdout 

S2 73.9000 ±7.0158 

Bipolar, F-score , BPSO-KNN-

KFOLD 

S3 74.9180 ±  1.5073 

Bipolar, F-score , BPSO-KNN-

Holdout 

S4 69.3133 ±7.7964 

Bipolar, Relieff , GA-KNN-

KFOLD 

S5 78.0740 ±  1.1345 

Bipolar,  Relieff , GA-KNN-

Holdout 

S6 69.9733 ±7.9606 

Bipolar, Relieff , BPSO-KNN-

KFOLD 

S7 74.0420± 2.1102 

Bipolar, Relieff , BPSO-KNN-

Holdout 

S8 72.1133 ± 7.2614 

Monopolar, F-score , GA-KNN-

KFOLD 

S9 69.6260 ± 1.3964 

Monopolar, F-score , GA-KNN-

Holdout 

S10 66.6533 ± 7.8138 

Monopolar, F-score ,BPSO-

KNN-KFOLD 

S11 70.2200 ±1.6737 

Monopolar, F-score , BPSO-

KNN-Holdout 

S12 68.7867 ±7.3342 

Monopolar, Relieff , GA-KNN-

KFOLD 

S13 69.3360 ± 1.9968 

Monopolar , Relieff , GA-KNN-

Holdout 

S14 67.0133 ±7.8997  
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Monopolar, Relieff , BPSO-

KNN-KFOLD 

S15 70.8720 ± 1.8511 

Monopolar, Relieff, BPSO-

KNN-Holdout 

S16 72.3333 ±6.8820 

(1)
Method names:  

-  Recording configuration: Bipolar/Monopolar 

-  Channel selection : F-score/Relieff 

- Feature selection: GA-KNN-KFOLD, GA-KNN-Holdout, BPSO-KNN-KFOLD, BPSO-

KNN-Holdout 

 

(2)
Selected feature subset: correspond to the subset obtained in table C.2.1 
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C.4- Channel combinations selection 

Table C.4.1: Bipolar channels combination selection using F-score and Relieff 

 

F-score 

 

Relieff 

Bipolar combinations 

Name 

 

Number  of 

appearance 

Bipolar combinations 

Name 

 

Number  of 

appearance 

'Vb(2,1)' 5 'Vb(11,10)' 5 

'Vb(1,2)' 5 'Vb(11,4)' 5 

'Vb(12,7)' 4 'Vb(11,3)' 5 

'Vb(10,6)' 4 'Vb(10,11)' 5 

'Vb(10,3)' 4 'Vb(10,6)' 5 

'Vb(9,8)' 4 'Vb(10,4)' 5 

'Vb(9,5)' 4 'Vb(10,1)' 5 

'Vb(8,9)' 4 'Vb(9,7)' 5 

'Vb(7,12)' 4 'Vb(7,9)' 5 

'Vb(6,10)' 4 'Vb(7,3)' 5 

'Vb(6,2)' 4 'Vb(6,10)' 5 

'Vb(5,9)' 4 'Vb(6,1)' 5 

'Vb(5,2)' 4 'Vb(4,11)' 5 

'Vb(4,5)' 4 'Vb(3,11)' 5 

'Vb(3,10)' 4 'Vb(3,7)' 5 

'Vb(2,6)' 4 'Vb(1,10)' 5 

'Vb(2,5)' 4 'Vb(1,6)' 5 

'Vb(12,11)' 3 'Vb(12,10)' 4 

'Vb(11,12)' 3 'Vb(11,2)' 4 

'Vb(11,10)' 3 'Vb(11,1)' 4 

'Vb(11,5)' 3 'Vb(10,12)' 4 

'Vb(10,11)' 3 'Vb(10,3)' 4 

'Vb(10,7)' 3 'Vb(10,2)' 4 

'Vb(10,2)' 3 'Vb(9,10)' 4 

'Vb(8,5)' 3 'Vb(9,8)' 4 

'Vb(7,10)' 3 'Vb(9,1)' 4 

'Vb(7,5)' 3 'Vb(8,9)' 4 

'Vb(7,4)' 3 'Vb(7,6)' 4 
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'Vb(6,3)' 3 'Vb(4,2)' 4 

'Vb(6,1)' 3 'Vb(3,12)' 4 

'Vb(5,11)' 3 'Vb(3,10)' 4 

'Vb(5,8)' 3 'Vb(3,2)' 4 

'Vb(5,7)' 3 'Vb(2,11)' 4 

'Vb(5,4)' 3 'Vb(2,10)' 4 

'Vb(5,3)' 3 'Vb(2,3)' 4 

'Vb(4,7)' 3 'Vb(2,1)' 4 

'Vb(4,1)' 3 'Vb(1,11)' 4 

'Vb(3,5)' 3 'Vb(1,9)' 4 

'Vb(2,10)' 3 'Vb(1,2)' 4 

'Vb(1,6)' 3 'Vb(12,11)' 3 

'Vb(1,4)' 3 'Vb(12,3)' 3 

'Vb(12,9)' 2 'Vb(11,12)' 3 

'Vb(12,8)' 2 'Vb(10,9)' 3 

'Vb(12,5)' 2 'Vb(9,6)' 3 

'Vb(12,3)' 2 'Vb(9,2)' 3 

'Vb(11,8)' 2 'Vb(7,2)' 3 

'Vb(11,4)' 2 'Vb(6,11)' 3 

'Vb(11,3)' 2 'Vb(6,9)' 3 

'Vb(11,2)' 2 'Vb(6,7)' 3 

'Vb(11,1)' 2 'Vb(5,4)' 3 

'Vb(10,9)' 2 'Vb(4,10)' 3 

'Vb(10,5)' 2 'Vb(4,5)' 3 

'Vb(10,4)' 2 'Vb(2,9)' 3 

'Vb(10,1)' 2 'Vb(2,7)' 3 

'Vb(9,12)' 2 'Vb(2,4)' 3 

'Vb(9,10)' 2 'Vb(12,4)' 2 

'Vb(9,6)' 2 'Vb(11,6)' 2 

'Vb(9,4)' 2 'Vb(10,5)' 2 

'Vb(9,1)' 2 'Vb(9,12)' 2 

'Vb(8,12)' 2 'Vb(9,11)' 2 

'Vb(8,11)' 2 'Vb(8,6)' 2 

'Vb(8,6)' 2 'Vb(8,5)' 2 

'Vb(8,2)' 2 'Vb(8,4)' 2 
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'Vb(7,2)' 2 'Vb(6,8)' 2 

'Vb(7,1)' 2 'Vb(6,5)' 2 

'Vb(6,9)' 2 'Vb(5,10)' 2 

'Vb(6,8)' 2 'Vb(5,6)' 2 

'Vb(5,12)' 2 'Vb(5,1)' 2 

'Vb(5,10)' 2 'Vb(4,3)' 2 

'Vb(5,1)' 2 'Vb(3,9)' 2 

'Vb(4,11)' 2 'Vb(3,6)' 2 

'Vb(4,10)' 2 'Vb(3,4)' 2 

'Vb(4,9)' 2 'Vb(3,1)' 2 

'Vb(3,12)' 2 'Vb(1,5)' 2 

'Vb(3,11)' 2 'Vb(1,3)' 2 

'Vb(3,8)' 2 'Vb(12,9)' 1 

'Vb(3,6)' 2 'Vb(12,8)' 1 

'Vb(3,2)' 2 'Vb(12,6)' 1 

'Vb(2,12)' 2 'Vb(12,5)' 1 

'Vb(2,11)' 2 'Vb(12,2)' 1 

'Vb(2,8)' 2 'Vb(12,1)' 1 

'Vb(2,7)' 2 'Vb(11,9)' 1 

'Vb(2,3)' 2 'Vb(11,8)' 1 

'Vb(1,11)' 2 'Vb(11,7)' 1 

'Vb(1,10)' 2 'Vb(11,5)' 1 

'Vb(1,9)' 2 'Vb(9,4)' 1 

'Vb(1,7)' 2 'Vb(9,3)' 1 

'Vb(1,5)' 2 'Vb(8,12)' 1 

'Vb(12,10)' 1 'Vb(8,11)' 1 

'Vb(12,4)' 1 'Vb(8,7)' 1 

'Vb(12,2)' 1 'Vb(8,3)' 1 

'Vb(11,6)' 1 'Vb(8,2)' 1 

'Vb(10,12)' 1 'Vb(7,11)' 1 

'Vb(8,7)' 1 'Vb(7,8)' 1 

'Vb(8,3)' 1 'Vb(7,4)' 1 

'Vb(8,1)' 1 'Vb(6,12)' 1 

'Vb(7,8)' 1 'Vb(6,4)' 1 

'Vb(7,6)' 1 'Vb(5,12)' 1 
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'Vb(7,3)' 1 'Vb(5,11)' 1 

'Vb(6,12)' 1 'Vb(5,8)' 1 

'Vb(6,11)' 1 'Vb(5,3)' 1 

'Vb(6,7)' 1 'Vb(4,12)' 1 

'Vb(6,4)' 1 'Vb(4,8)' 1 

'Vb(4,12)' 1 'Vb(4,7)' 1 

'Vb(4,6)' 1 'Vb(4,6)' 1 

'Vb(4,2)' 1 'Vb(3,5)' 1 

'Vb(3,7)' 1 'Vb(2,12)' 1 

'Vb(3,1)' 1 'Vb(2,8)' 1 

'Vb(2,4)' 1 'Vb(1,12)' 1 

'Vb(1,8)' 1 'Vb(12,7)' 0 

'Vb(1,3)' 1 'Vb(10,8)' 0 

'Vb(12,6)' 0 'Vb(10,7)' 0 

'Vb(12,1)' 0 'Vb(9,5)' 0 

'Vb(11,9)' 0 'Vb(8,10)' 0 

'Vb(11,7)' 0 'Vb(8,1)' 0 

'Vb(10,8)' 0 'Vb(7,12)' 0 

'Vb(9,11)' 0 'Vb(7,10)' 0 

'Vb(9,7)' 0 'Vb(7,5)' 0 

'Vb(9,3)' 0 'Vb(7,1)' 0 

'Vb(9,2)' 0 'Vb(6,3)' 0 

'Vb(8,10)' 0 'Vb(6,2)' 0 

'Vb(8,4)' 0 'Vb(5,9)' 0 

'Vb(7,11)' 0 'Vb(5,7)' 0 

'Vb(7,9)' 0 'Vb(5,2)' 0 

'Vb(6,5)' 0 'Vb(4,9)' 0 

'Vb(5,6)' 0 'Vb(4,1)' 0 

'Vb(4,8)' 0 'Vb(3,8)' 0 

'Vb(4,3)' 0 'Vb(2,6)' 0 

'Vb(3,9)' 0 'Vb(2,5)' 0 

'Vb(3,4)' 0 'Vb(1,8)' 0 

'Vb(2,9)' 0 'Vb(1,7)' 0 

'Vb(1,12)' 0 'Vb(1,4)' 0 
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Table C.4.2: Monopolar channels combination selection using F-score and Relieff 

 

F-score 

 

Relieff 

Channel combinations 

Name  

 

Number  of 

appearance 

Channel combinations 

Name  

Number  of 

appearance 

'Ch(10,2)' 5 'Ch(15,14)' 5 

'Ch(8,1)' 5 'Ch(14,12)' 5 

'Ch(2,10)' 5 'Ch(14,11)' 5 

'Ch(1,8)' 5 'Ch(14,5)' 5 

'Ch(16,10)' 4 'Ch(14,2)' 5 

'Ch(16,9)' 4 'Ch(14,1)' 5 

'Ch(16,6)' 4 'Ch(13,10)' 5 

'Ch(15,10)' 4 'Ch(12,14)' 5 

'Ch(15,9)' 4 'Ch(12,6)' 5 

'Ch(15,5)' 4 'Ch(11,14)' 5 

'Ch(14,12)' 4 'Ch(11,10)' 5 

'Ch(12,14)' 4 'Ch(10,13)' 5 

'Ch(11,8)' 4 'Ch(10,11)' 5 

'Ch(11,1)' 4 'Ch(9,13)' 5 

'Ch(10,15)' 4 'Ch(9,1)' 5 

'Ch(10,9)' 4 'Ch(8,7)' 5 

'Ch(10,1)' 4 'Ch(7,8)' 5 

'Ch(9,16)' 4 'Ch(6,12)' 5 

'Ch(9,15)' 4 'Ch(5,14)' 5 

'Ch(9,10)' 4 'Ch(4,7)' 5 

'Ch(9,5)' 4 'Ch(3,16)' 5 

'Ch(9,4)' 4 'Ch(2,7)' 5 

'Ch(9,2)' 4 'Ch(1,14)' 5 

'Ch(8,11)' 4 'Ch(1,9)' 5 

'Ch(8,5)' 4 'Ch(16,14)' 4 

'Ch(7,5)' 4 'Ch(16,13)' 4 

'Ch(6,16)' 4 'Ch(16,9)' 4 

'Ch(5,15)' 4 'Ch(16,7)' 4 

'Ch(5,9)' 4 'Ch(16,5)' 4 

'Ch(5,8)' 4 'Ch(16,3)' 4 
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'Ch(5,7)' 4 'Ch(15,7)' 4 

'Ch(5,3)' 4 'Ch(15,2)' 4 

'Ch(4,9)' 4 'Ch(15,1)' 4 

'Ch(4,1)' 4 'Ch(14,16)' 4 

'Ch(3,5)' 4 'Ch(14,15)' 4 

'Ch(1,4)' 4 'Ch(14,13)' 4 

'Ch(16,15)' 3 'Ch(14,9)' 4 

'Ch(16,12)' 3 'Ch(14,8)' 4 

'Ch(15,16)' 3 'Ch(13,14)' 4 

'Ch(15,14)' 3 'Ch(13,12)' 4 

'Ch(14,15)' 3 'Ch(13,9)' 4 

'Ch(14,13)' 3 'Ch(13,5)' 4 

'Ch(13,14)' 3 'Ch(13,4)' 4 

'Ch(12,16)' 3 'Ch(13,1)' 4 

'Ch(12,9)' 3 'Ch(12,13)' 4 

'Ch(12,4)' 3 'Ch(9,14)' 4 

'Ch(11,2)' 3 'Ch(9,8)' 4 

'Ch(10,16)' 3 'Ch(9,6)' 4 

'Ch(10,6)' 3 'Ch(8,14)' 4 

'Ch(9,12)' 3 'Ch(8,9)' 4 

'Ch(9,11)' 3 'Ch(7,16)' 4 

'Ch(9,8)' 3 'Ch(7,4)' 4 

'Ch(9,7)' 3 'Ch(7,2)' 4 

'Ch(9,3)' 3 'Ch(6,9)' 4 

'Ch(8,9)' 3 'Ch(6,7)' 4 

'Ch(8,4)' 3 'Ch(6,3)' 4 

'Ch(7,9)' 3 'Ch(5,16)' 4 

'Ch(6,10)' 3 'Ch(5,13)' 4 

'Ch(4,12)' 3 'Ch(5,8)' 4 

'Ch(4,8)' 3 'Ch(5,4)' 4 

'Ch(3,9)' 3 'Ch(4,13)' 4 

'Ch(3,1)' 3 'Ch(3,2)' 4 

'Ch(2,11)' 3 'Ch(2,15)' 4 

'Ch(2,1)' 3 'Ch(2,14)' 4 

'Ch(1,15)' 3 'Ch(2,13)' 4 
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'Ch(1,11)' 3 'Ch(2,12)' 4 

'Ch(1,10)' 3 'Ch(2,3)' 4 

'Ch(1,3)' 3 'Ch(1,13)' 4 

'Ch(1,2)' 3 'Ch(16,12)' 3 

'Ch(16,14)' 2 'Ch(16,2)' 3 

'Ch(16,13)' 2 'Ch(16,1)' 3 

'Ch(16,7)' 2 'Ch(15,13)' 3 

'Ch(16,5)' 2 'Ch(13,16)' 3 

'Ch(16,2)' 2 'Ch(13,15)' 3 

'Ch(16,1)' 2 'Ch(13,3)' 3 

'Ch(15,12)' 2 'Ch(12,16)' 3 

'Ch(15,11)' 2 'Ch(12,8)' 3 

'Ch(15,8)' 2 'Ch(12,7)' 3 

'Ch(15,7)' 2 'Ch(12,3)' 3 

'Ch(15,3)' 2 'Ch(12,2)' 3 

'Ch(15,1)' 2 'Ch(11,12)' 3 

'Ch(14,16)' 2 'Ch(11,4)' 3 

'Ch(14,9)' 2 'Ch(11,2)' 3 

'Ch(14,4)' 2 'Ch(11,1)' 3 

'Ch(14,1)' 2 'Ch(10,7)' 3 

'Ch(13,16)' 2 'Ch(10,6)' 3 

'Ch(13,12)' 2 'Ch(10,2)' 3 

'Ch(13,11)' 2 'Ch(9,16)' 3 

'Ch(13,10)' 2 'Ch(9,5)' 3 

'Ch(13,8)' 2 'Ch(9,2)' 3 

'Ch(13,7)' 2 'Ch(8,12)' 3 

'Ch(13,4)' 2 'Ch(8,6)' 3 

'Ch(13,3)' 2 'Ch(8,5)' 3 

'Ch(12,15)' 2 'Ch(7,15)' 3 

'Ch(12,13)' 2 'Ch(7,12)' 3 

'Ch(12,11)' 2 'Ch(7,10)' 3 

'Ch(12,10)' 2 'Ch(6,10)' 3 

'Ch(12,8)' 2 'Ch(6,8)' 3 

'Ch(12,7)' 2 'Ch(6,5)' 3 

'Ch(12,2)' 2 'Ch(5,9)' 3 
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'Ch(12,1)' 2 'Ch(5,6)' 3 

'Ch(11,15)' 2 'Ch(5,2)' 3 

'Ch(11,13)' 2 'Ch(4,14)' 3 

'Ch(11,12)' 2 'Ch(4,11)' 3 

'Ch(11,10)' 2 'Ch(4,5)' 3 

'Ch(11,9)' 2 'Ch(4,2)' 3 

'Ch(11,7)' 2 'Ch(4,1)' 3 

'Ch(11,4)' 2 'Ch(3,14)' 3 

'Ch(11,3)' 2 'Ch(3,13)' 3 

'Ch(10,13)' 2 'Ch(3,12)' 3 

'Ch(10,12)' 2 'Ch(3,9)' 3 

'Ch(10,11)' 2 'Ch(3,6)' 3 

'Ch(10,8)' 2 'Ch(2,16)' 3 

'Ch(9,14)' 2 'Ch(2,11)' 3 

'Ch(9,6)' 2 'Ch(2,10)' 3 

'Ch(9,1)' 2 'Ch(2,9)' 3 

'Ch(8,15)' 2 'Ch(2,5)' 3 

'Ch(8,13)' 2 'Ch(2,4)' 3 

'Ch(8,12)' 2 'Ch(1,15)' 3 

'Ch(8,10)' 2 'Ch(1,11)' 3 

'Ch(8,7)' 2 'Ch(1,4)' 3 

'Ch(8,6)' 2 'Ch(16,11)' 2 

'Ch(7,15)' 2 'Ch(16,10)' 2 

'Ch(7,13)' 2 'Ch(16,4)' 2 

'Ch(7,12)' 2 'Ch(15,11)' 2 

'Ch(7,11)' 2 'Ch(15,8)' 2 

'Ch(7,8)' 2 'Ch(15,6)' 2 

'Ch(7,6)' 2 'Ch(15,4)' 2 

'Ch(7,4)' 2 'Ch(14,10)' 2 

'Ch(7,3)' 2 'Ch(14,4)' 2 

'Ch(6,9)' 2 'Ch(13,11)' 2 

'Ch(6,8)' 2 'Ch(13,6)' 2 

'Ch(6,7)' 2 'Ch(13,2)' 2 

'Ch(6,4)' 2 'Ch(12,11)' 2 

'Ch(6,3)' 2 'Ch(12,10)' 2 
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'Ch(6,2)' 2 'Ch(12,9)' 2 

'Ch(5,16)' 2 'Ch(12,5)' 2 

'Ch(5,11)' 2 'Ch(11,16)' 2 

'Ch(5,10)' 2 'Ch(11,13)' 2 

'Ch(5,4)' 2 'Ch(11,9)' 2 

'Ch(5,2)' 2 'Ch(10,14)' 2 

'Ch(4,14)' 2 'Ch(10,12)' 2 

'Ch(4,13)' 2 'Ch(10,3)' 2 

'Ch(4,11)' 2 'Ch(9,12)' 2 

'Ch(4,7)' 2 'Ch(9,3)' 2 

'Ch(4,6)' 2 'Ch(8,15)' 2 

'Ch(4,5)' 2 'Ch(8,4)' 2 

'Ch(4,2)' 2 'Ch(8,3)' 2 

'Ch(3,15)' 2 'Ch(8,2)' 2 

'Ch(3,13)' 2 'Ch(7,6)' 2 

'Ch(3,11)' 2 'Ch(7,3)' 2 

'Ch(3,7)' 2 'Ch(5,12)' 2 

'Ch(3,6)' 2 'Ch(5,1)' 2 

'Ch(2,16)' 2 'Ch(4,15)' 2 

'Ch(2,12)' 2 'Ch(4,10)' 2 

'Ch(2,9)' 2 'Ch(4,8)' 2 

'Ch(2,5)' 2 'Ch(4,6)' 2 

'Ch(2,4)' 2 'Ch(3,10)' 2 

'Ch(1,16)' 2 'Ch(3,8)' 2 

'Ch(1,14)' 2 'Ch(3,7)' 2 

'Ch(1,12)' 2 'Ch(2,8)' 2 

'Ch(1,9)' 2 'Ch(2,1)' 2 

'Ch(16,11)' 1 'Ch(1,16)' 2 

'Ch(16,8)' 1 'Ch(1,5)' 2 

'Ch(15,13)' 1 'Ch(1,2)' 2 

'Ch(15,2)' 1 'Ch(16,15)' 1 

'Ch(14,8)' 1 'Ch(16,6)' 1 

'Ch(14,7)' 1 'Ch(15,16)' 1 

'Ch(14,3)' 1 'Ch(15,9)' 1 

'Ch(14,2)' 1 'Ch(15,5)' 1 
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'Ch(13,2)' 1 'Ch(15,3)' 1 

'Ch(13,1)' 1 'Ch(14,3)' 1 

'Ch(11,16)' 1 'Ch(13,7)' 1 

'Ch(11,5)' 1 'Ch(12,15)' 1 

'Ch(10,7)' 1 'Ch(12,1)' 1 

'Ch(10,5)' 1 'Ch(11,15)' 1 

'Ch(8,16)' 1 'Ch(11,8)' 1 

'Ch(8,14)' 1 'Ch(11,7)' 1 

'Ch(7,16)' 1 'Ch(10,16)' 1 

'Ch(7,14)' 1 'Ch(10,5)' 1 

'Ch(7,10)' 1 'Ch(10,4)' 1 

'Ch(7,2)' 1 'Ch(10,1)' 1 

'Ch(7,1)' 1 'Ch(9,11)' 1 

'Ch(6,1)' 1 'Ch(8,11)' 1 

'Ch(5,14)' 1 'Ch(7,13)' 1 

'Ch(5,1)' 1 'Ch(7,11)' 1 

'Ch(3,14)' 1 'Ch(7,5)' 1 

'Ch(3,8)' 1 'Ch(6,16)' 1 

'Ch(3,4)' 1 'Ch(6,15)' 1 

'Ch(3,2)' 1 'Ch(6,14)' 1 

'Ch(2,15)' 1 'Ch(6,13)' 1 

'Ch(2,14)' 1 'Ch(6,4)' 1 

'Ch(2,13)' 1 'Ch(6,1)' 1 

'Ch(2,7)' 1 'Ch(5,15)' 1 

'Ch(2,6)' 1 'Ch(5,10)' 1 

'Ch(2,3)' 1 'Ch(5,7)' 1 

'Ch(1,13)' 1 'Ch(5,3)' 1 

'Ch(1,7)' 1 'Ch(4,16)' 1 

'Ch(1,6)' 1 'Ch(4,3)' 1 

'Ch(1,5)' 1 'Ch(3,15)' 1 

'Ch(16,4)' 0 'Ch(3,11)' 1 

'Ch(16,3)' 0 'Ch(3,5)' 1 

'Ch(15,6)' 0 'Ch(3,4)' 1 

'Ch(15,4)' 0 'Ch(3,1)' 1 

'Ch(14,11)' 0 'Ch(2,6)' 1 
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'Ch(14,10)' 0 'Ch(1,12)' 1 

'Ch(14,6)' 0 'Ch(1,10)' 1 

'Ch(14,5)' 0 'Ch(1,6)' 1 

'Ch(13,15)' 0 'Ch(1,3)' 1 

'Ch(13,9)' 0 'Ch(16,8)' 0 

'Ch(13,6)' 0 'Ch(15,12)' 0 

'Ch(13,5)' 0 'Ch(15,10)' 0 

'Ch(12,6)' 0 'Ch(14,7)' 0 

'Ch(12,5)' 0 'Ch(14,6)' 0 

'Ch(12,3)' 0 'Ch(13,8)' 0 

'Ch(11,14)' 0 'Ch(12,4)' 0 

'Ch(11,6)' 0 'Ch(11,6)' 0 

'Ch(10,14)' 0 'Ch(11,5)' 0 

'Ch(10,4)' 0 'Ch(11,3)' 0 

'Ch(10,3)' 0 'Ch(10,15)' 0 

'Ch(9,13)' 0 'Ch(10,9)' 0 

'Ch(8,3)' 0 'Ch(10,8)' 0 

'Ch(8,2)' 0 'Ch(9,15)' 0 

'Ch(6,15)' 0 'Ch(9,10)' 0 

'Ch(6,14)' 0 'Ch(9,7)' 0 

'Ch(6,13)' 0 'Ch(9,4)' 0 

'Ch(6,12)' 0 'Ch(8,16)' 0 

'Ch(6,11)' 0 'Ch(8,13)' 0 

'Ch(6,5)' 0 'Ch(8,10)' 0 

'Ch(5,13)' 0 'Ch(8,1)' 0 

'Ch(5,12)' 0 'Ch(7,14)' 0 

'Ch(5,6)' 0 'Ch(7,9)' 0 

'Ch(4,16)' 0 'Ch(7,1)' 0 

'Ch(4,15)' 0 'Ch(6,11)' 0 

'Ch(4,10)' 0 'Ch(6,2)' 0 

'Ch(4,3)' 0 'Ch(5,11)' 0 

'Ch(3,16)' 0 'Ch(4,12)' 0 

'Ch(3,12)' 0 'Ch(4,9)' 0 

'Ch(3,10)' 0 'Ch(1,8)' 0 

'Ch(2,8)' 0 'Ch(1,7)' 0 
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Figure C.4.1: Monopolar channel combinations selection by F-score using five features related 

to EHG bivariate analysis: R
2
(A), H

2
(B), y (C), FW_H

2
(D) and FW_H (E). (F) Number of 

appearance of monopolar channel combinations for all the features. 
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Figure C.4.2: Bipolar channel combinations selection by relieff using five features related to 

EHG bivariate analysis: R
2 

(A), H
2
(B), y (C), FW_H

2
(D) and FW_H (E). (F) Number of 

appearance of bipolar channel combinations for all the features. 
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Figure C.4.3: Monopolar channel combinations selection by relieff using five features related to 

EHG bivariate analysis: R
2 

(A), H
2
(B), y (C), FW_H

2
(D) and FW_H (E). (F) Number of 

appearance of monopolar channel combinations for all the features. 
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C.5- Feature selection after Channel combinations selection 

Table C.5.1: Subsets of features obtained from BPSO and GA using monopolar and bipolar 

channel combinations selection 

Methods
(1)

  Dataset
(2) 

Selected feature subset Name of 

Selected 

feature 

Subset 

Correct 

classification 

percentage 

Bipolar, F-

score, GA-

KNN-

KFOLD 

DC1  ['R
2
-Vb(10,3)','R

2
-Vb(9,5)','R

2
-Vb(7,12)', 

'R
2
-Vb(6,2)','R

2
-Vb(5,9)','R

2
-Vb(5,2)','R

2
-

Vb(4,5)', 'H
2
-Vb(2,1)','H

2
-Vb(10,6)','H

2
-

Vb(10,3) , 'H
2
-Vb(9,8)','H

2
-Vb(6,2)','H

2
-

Vb(5,9)', 'H
2
-Vb(2,6)' ,'H

2
-Vb(2,5)','y-

Vb(10,3)','y-Vb(9,5)','y-Vb(5,2)' ,'y-

Vb(3,10)','FW_H
2
-Vb(10,6)','FW_H

2
-

Vb(9,8)', 'FW_H
2
-Vb(6,2)','FW_H-

Vb(6,2)', 'FW_H-Vb(5,2)', 'FW_H-

Vb(2,6)'] 

SC1 88.39 

Bipolar, F-

score, GA-

KNN-

Holdout 

DC1 ['R
2
-Vb(2,1)','R

2
-Vb(1,2)','R

2
-Vb(12,7)' 

,'R
2
-Vb(10,6)','R

2
-Vb(10,3)','R

2
-

Vb(9,5)','R
2
-Vb(8,9)', 'R

2
-Vb(7,12)','R

2
-

Vb(6,10)','R
2
-Vb(5,2)' ,'R

2
-Vb(3,10)','R

2
-

Vb(2,5)' ,'H
2
-Vb(2,1) ','H

2
-Vb(12,7)', 'H

2
-

Vb(10,6)','H
2
-Vb(9,8)','H

2
-Vb(8,9)' ,'H

2
-

Vb(7,12)','H
2
-Vb(5,9)' ,'H

2
-Vb(3,10)','H

2
-

Vb(2,6)' ,'H
2
-Vb(2,5)','y-Vb(12,7)', 'y-

Vb(10,6)','y-Vb(9,8) ','y-Vb(9,5)','y-

Vb(8,9)','y-Vb(7,12)','y-Vb(6,2)','y-

Vb(5,2)','y-Vb(4,5)', 'FW_H
2
-

Vb(9,8)','FW_H
2
-Vb(7,12)', 'FW_H

2
-

Vb(6,10)','FW_H
2
-Vb(6,2)' ,'FW_H

2
-

Vb(5,9)', 'FW_H
2
 Vb(2,5)', 'FW_H-

Vb(2,1)','FW_H-Vb(1,2)','FW_H-

Vb(9,5)','FW_H-Vb(8,9)'] 

SC2 94.69 

Bipolar, F-

score, 

BPSO-

KNN-

KFOLD 

DC1 ['R
2
-Vb(2,1)','R

2
-Vb(10,6)','R

2
-

Vb(10,3)','R
2
-Vb(9,8)','R

2
-Vb(9,5)','R

2
-

Vb(6,2)' ,'R
2
-Vb(5,2)' ,'R

2
-Vb(4,5)','R

2
-

Vb(2,6)','R
2
-Vb(2,5)','H

2
-Vb(10,3)','H

2
-

Vb(9,5)','H
2
-Vb(8,9) ','H

2
-Vb(7,12)' ,'H

2
-

Vb(6,10)','H
2
-Vb(5,2)','H

2
-Vb(4,5)','H

2
-

Vb(2,6)','y-Vb(2,1)','y-Vb(12,7)','y-

Vb(10,3)','y-Vb(6,2)','y-Vb(5,9)','y-

Vb(5,2)','y-Vb(4,5)','y-

SC3 86.84 
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Vb(3,10)','yVb(2,5)','FW_H
2
-Vb(12,7)' 

,'FW_H
2
-Vb(10,6)', 'FW_H

2
-Vb(9,5)', 

'FW_H
2
-Vb(6,10)' ,'FW_H

2
-

Vb(6,2)','FW_H
2
-Vb(2,5)', 'FW_H-

Vb(9,5)','FW_H-Vb(8,9)'] 

Bipolar, F-

score, 

BPSO-

KNN-

Holdout 

 

 

DC1 ['R
2
-Vb(2,1)','R

2
-Vb(10,6)', 'R

2
-Vb(9,5)', 

'R
2
-Vb(7,12)', 'R

2
-Vb(6,10)','R

2
-Vb(6,2)', 

'R
2
-Vb(5,9)','R

2
-Vb(5,2)', 'R

2
-Vb(4,5)','R

2
-

Vb(3,10)', 'R
2
-Vb(2,5)','H

2
-Vb(12,7)', 'H

2
-

Vb(10,6)','H
2
-Vb(10,3)', 'H

2
-Vb(9,8)','H

2
-

Vb(9,5)',' H
2
-Vb(7,12)','H

2
-Vb(6,10)', 'H

2
-

Vb(5,9)','H
2
-Vb(5,2)', 'H

2
-Vb(4,5)','y-

Vb(1,2)','y-Vb(12,7)','y-Vb(10,6)','y-

Vb(10,3)','y-Vb(9,8)','y-Vb(7,12)','y-

Vb(6,10)','y-Vb(3,10)','FW_H
2
-Vb(2,1)', 

'FW_H
2
-Vb(1,2)','FW_H

2
-

Vb(10,6)','FW_H
2
-Vb(9,8)', 'FW_H

2
-

Vb(7,12)','FW_H
2
-Vb(6,10)','FW_H

2
-

Vb(6,2)', 'FW_H
2
-Vb(5,9)','FW_H

2
-

Vb(2,6)', 'FW_H
2
-Vb(2,5)', 'FW_H-

Vb(9,5)','FW_H-Vb(8,9)','FW_H-

Vb(6,10)', 'FW_H-Vb(6,2)', 'FW_H-

Vb(5,9)','FW_H-Vb(3,10)'] 

SC4 95.58 

Bipolar, 

Relieff, GA-

KNN-

KFOLD 

DC2 ['R
2
-Vb(11,3)','R

2
-Vb(10,4)','R

2
-Vb(6,10)', 

'H
2
-Vb(11,4)','H

2
-Vb(6,1)','y-

Vb(11,10)','y-Vb(11,3)', 'y-Vb(10,11)','y-

Vb(10,6)','y-Vb(6,1)', 'FW_H
2
-Vb(11,10)', 

'FW_H
2
-Vb(11,4)','FW_H

2
-Vb(10,6)', 

'FW_H
2
-Vb(10,1)', 'FW_H

2
-Vb(4,11)', 

'FW_H-Vb(10,11)','FW_H-Vb(10,4)', 

'FW_H-Vb(10,1)'] 

SC5 82.86 

Bipolar, 

Relieff, GA-

KNN-

Holdout 

 

DC2 ['R
2
-Vb(11,4)','R

2
-Vb(10,6)', 'R

2
-

Vb(10,1)','R
2
-Vb(7,3)','R

2
-Vb(6,10)','R

2
-

Vb(6,1)', 'R
2
-Vb(4,11)','R

2
-Vb(3,11)','R

2
-

Vb(3,7)','H
2
-Vb(11,4)','H

2
-Vb(10,1)','H

2
-

Vb(9,7)','H
2
-Vb(6,1)' ,'H

2
-Vb(4,11)','H

2
-

Vb(3,7)','H
2
-Vb(1,6)' ,'y-Vb(11,4)','y-

Vb(10,6)','y-Vb(9,7)','y-Vb(6,1)','y-

Vb(4,11)', 'FW_H
2
-Vb(10,11)', 'FW_H

2
-

Vb(10,6)', 'FW_H
2
-Vb(10,4)', 'FW_H

2
-

Vb(10,1)', 'FW_H
2
-Vb(9,7)', 'FW_H

2
-

Vb(7,9)','FW_H
2
-Vb(6,10)', 'FW_H

2
-

Vb(6,1)','FW_H
2
-Vb(3,11)','FW_H

2
-

Vb(3,7)', 'FW_H-Vb(10,4)','FW_H-

Vb(10,1)', 'FW_H-Vb(7,3)', 'FW_H-

SC6 92.04 
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Vb(3,7)','FW_H-Vb(1,10)' , 'FW_H-

Vb(1,6)'] 

Bipolar, 

Relieff, 

BPSO-

KNN-

KFOLD 

DC2  ['R
2
-Vb(11,4)','R

2
-Vb(11,3)','R

2
-

Vb(10,4)', 'R
2
-Vb(10,1)','R

2
-Vb(9,7)','R

2
-

Vb(7,9)' ,'R
2
-Vb(6,1)','R

2
-Vb(4,11)','R

2
-

Vb(3,11)' ,'R
2
-Vb(1,10)' , 'R

2
-Vb(1,6)','H

2
-

Vb(11,10)','H
2
-Vb(11,4)', 'H

2
-

Vb(11,3)','H
2
-Vb(10,6)', 'H

2
-

Vb(10,4)','H
2
-Vb(7,9)', 'H

2
-Vb(7,3)','H

2
-

Vb(6,1)', 'H
2
-Vb(4,11)','H

2
-Vb(3,11)', 'H

2
-

Vb(3,7)','H
2
-Vb(1,10)', 'y-Vb(11,4)','y-

Vb(11,3)','y-Vb(10,6)', 'y-Vb(10,1)','y-

Vb(6,1)','y-Vb(4,11)','y-Vb(3,11)', 'y-

Vb(1,6)', 'FW_H
2
-Vb(11,10)','FW_H

2
-

Vb(11,4)' ,'FW_H
2
-Vb(11,3)', 'FW_H

2
-

Vb(10,6)', 'FW_H
2
-Vb(7,3)','FW_H

2
-

Vb(4,11)', 'FW_H
2
-Vb(3,7)', 'FW_H

2
-

Vb(1,10)','FW_H-Vb(10,4)', 'FW_H-

Vb(10,1)','FW_H-Vb(7,3)','FW_H-

Vb(3,7)', 'FW_H-Vb(1,10)'] 

SC7 80.79 

Bipolar, 

Relieff, 

BPSO-

KNN-

Holdou

  

DC2  ['R
2
-Vb(11,3)','R

2
-Vb(10,1)', 'R

2
-Vb(9,7)', 

'R
2
-Vb(6,10)', 'R

2
-Vb(6,1)','R

2
-Vb(4,11)', 

'R
2
-Vb(1,10)','R

2
-Vb(1,6)',' H

2
-

Vb(11,10)','H
2
-Vb(10,6)' ,'H

2
-

Vb(10,4)','H
2
-Vb(10,1)' ,'H

2
-Vb(9,7)','H

2
-

Vb(6,1)', 'H
2
-Vb(4,11)','H

2
-Vb(1,10)', 'y-

Vb(11,10)','y-Vb(11,4)','y-Vb(10,4)' ,'y-

Vb(10,1)','y-Vb(9,7)','y-Vb(4,11)','y-

Vb(3,11)', 'y-Vb(3,7)','y-Vb(1,10)','y-

Vb(1,6)', 'FW_H
2
-Vb(10,11)', 'FW_H

2
-

Vb(9,7)','FW_H
2
-Vb(7,9)', 'FW_H

2
-

Vb(7,3)',' FW_H
2
-Vb(3,11)','FW_H-

Vb(10,6)','FW_H-Vb(10,4)', 'FW_H-

Vb(9,7)', 'FW_H-Vb(6,1)','FW_H-

Vb(3,7)'] 

SC8 88.50 

Monopolar, 

F-score, 

GA-KNN-

KFOLD 

DC3  ['R
2
-Ch(8,1)','R

2
-Ch(16,9)','R

2
-Ch(15,9)', 

'R
2
-Ch(14,12)','R

2
-Ch(12,14)', 'R

2
-

Ch(11,1)','R
2
-Ch(10,1)', 'R

2
-Ch(9,16)','R

2
-

Ch(9,15)', 'R
2
-Ch(9,2)', 'R

2
-Ch(6,16)', 'R

2
-

Ch(5,8)','R
2
-Ch(4,9)', 'H

2
-Ch(10,2)','H

2
-

Ch(2,10)', 'H
2
-Ch(16,9)','H

2
-Ch(15,10)' , 

'H
2
-Ch(15,9)', H

2
-Ch(14,12)','H

2
-

Ch(12,14)','H
2
-Ch(11,8)', 'H

2
-

Ch(9,10)','H
2
-Ch(9,2)', 'H

2
-Ch(7,5)','H

2
-

Ch(5,15)', 'H
2
-Ch(5,9)' ,'H

2
-Ch(5,8)', 'H

2
-

SC9 91.02 
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Ch(3,5)','y-Ch(8,1)','y-Ch(16,9) ', 'y-

Ch(15,10)','y-Ch(15,5)','y-Ch(14,12)','y-

Ch(10,15)','y-Ch(9,16)','y-Ch(9,5)','y-

Ch(9,4)','y-Ch(7,5)','y-Ch(5,9)','FW_H
2
-

Ch(10,2)','FW_H
2
-Ch(8,1)', 'FW_H

2
-

Ch(2,10)','FW_H
2
-Ch(14,12)', 'FW_H

2
-

Ch(11,8)' , 'FW_H
2
-Ch(10,9)','FW_H

2
-

Ch(9,15)','FW_H
2
-Ch(5,15)', 'FW_H

2
-

Ch(5,7)', 'FW_H
2
-Ch(5,3)','FW_H

2
-

Ch(4,1)', 'FW_H
2
-Ch(3,5)','FW_H

2
-

Ch(1,4)','FW_H-Ch(15,5)', 'FW_H-

Ch(10,15)','FW_H-Ch(3,5)'] 

Monopolar, 

F-score, 

GA-KNN-

Holdout 

DC3 

 

 

 

 

 

 

 

 

['R
2
-Ch(10,2)','R

2
-Ch(8,1)','R

2
-

Ch(1,8)','R
2
-Ch(16,9)','R

2
-Ch(15,10)', 'R

2
-

Ch(15,9)','R
2
-Ch(14,12)','R

2
-Ch(11,1)', 

'R
2
-Ch(9,15)','R

2
-Ch(9,4)', 'R

2
-

Ch(8,5)','R
2
-Ch(7,5)', 'R

2
-Ch(6,16)', 'R

2
-

Ch(5,15)', 'R
2
-Ch(3,5)','R

2
-Ch(1,4)', 'H

2
-

Ch(10,2)','H
2
-Ch(8,1)', 'H

2
-Ch(2,10)','H

2
-

Ch(1,8)' , 'H
2
-Ch(16,10)','H

2
Ch(16,9)','H

2
-

Ch(16,6)','H
2
-Ch(15,10)','H

2
-Ch(14,12)', 

'H
2
-Ch(11,8)','H

2
-Ch(11,1)',' H

2
-

Ch(10,9)','H
2
-Ch(10,1)', 'H

2
-Ch(9,15)','H

2
-

Ch(9,10)', 'H
2
-Ch(9,5)','H

2
-Ch(9,2)' ,  'H

2
-

Ch(7,5)','H
2
-Ch(6,16)', 'H

2
-Ch(5,9)' ,  'H

2
-

Ch(5,7)', 'H
2
-Ch(5,3)','H

2
-Ch(4,9)', 'H

2
-

Ch(4,1)' ,'H
2
-Ch(3,5)','y-Ch(1,8)','y-

Ch(16,9)', 'y-Ch(16,6)' ,'y-Ch(15,5)','y-

Ch(14,12)','y-Ch(11,1)' ,'y-Ch(10,15)','y-

Ch(9,10)','y-Ch(9,4)','y-Ch(8,5)' ,'y-

Ch(5,9)','y-Ch(3,5)','FW_H
2
-Ch(16,6)' 

,'FW_H
2
-Ch(11,8)', 'FW_H

2
-

Ch(11,1)','FW_H
2
-Ch(8,11)', 'FW_H

2
-

Ch(8,5)', 'FW_H
2
-Ch(7,5)','FW_H

2
-

Ch(5,15)','FW_H
2
-Ch(5,8)', 'FW_H-

Ch(8,1)', 'FW_H-Ch(1,8)', 'FW_H-

Ch(16,6)', 'FW_H-Ch(15,5)' ,'FW_H-

Ch(11,8)', 'FW_H-Ch(11,1)', 'FW_H-

Ch(9,4)', 'FW_H-Ch(8,11)','FW_H-

Ch(6,16)', 'FW_H-Ch(5,3)'] 

SC10 93.81 

Monopolar, 

F-score, 

BPSO-

KNN-

KFOLD 

DC3 ['R
2
-Ch(10,2)','R

2
-Ch(16,9)','R

2
-

Ch(15,9)','R
2
-Ch(14,12)','R

2
-Ch(11,1)', 

'R
2
-Ch(10,9)','R

2
-Ch(10,1)', 'R

2
-

Ch(9,16)','R
2
-Ch(9,15)', 'R

2
-Ch(9,10)','R

2
-

Ch(9,2)', 'R
2
-Ch(8,11)' ,'R

2
-Ch(5,9)', 'R

2
-

SC11 85.79 
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Ch(5,8)','R
2
-Ch(5,3)', 'R

2
-Ch(4,9)','R

2
-

Ch(4,1)', 'R
2
-Ch(3,5)','R

2
-Ch(1,4)', 'H

2
-

Ch(10,2)', 'H
2
-Ch(16,9)', 'H

2
-

Ch(16,6)','H
2
-Ch(14,12)' ,'H

2
-Ch(11,8)', 

'H
2
-Ch(10,15)','H

2
-Ch(9,16)', 'H

2
-

Ch(9,15)','H
2
-Ch(5,15)','H

2
-Ch(5,7)','H

2
-

Ch(5,3)', 'H
2
-Ch(4,9)','H

2
-Ch(4,1)','y-

Ch(2,10)','y Ch(16,10)','y-Ch(16,9)','y-

Ch(16,6)','y-Ch(15,10)' ,'y-Ch(15,9)', 'y-

Ch(14,12)','y-Ch(11,1)','y-Ch(10,1)','y-

Ch(9,16)' ,'y-Ch(9,15)','y-Ch(8,11)','y-

Ch(8,5)','y-Ch(7,5)','y-Ch(6,16)','y-

Ch(5,15)','y-Ch(5,9)','y-Ch(4,9)','y-

Ch(1,4)','FW_H
2
-Ch(10,2)' ,'FW_H

2
-

Ch(8,1)', 'FW_H
2
-Ch(16,10)','FW_H

2
-

Ch(16,9)','FW_H
2
-Ch(15,9)', 'FW_H

2
-

Ch(15,5)', 'FW_H
2
-Ch(14,12)', 'FW_H

2
-

Ch(11,8)' , 'FW_H
2
-Ch(10,9)','FW_H

2
-

Ch(10,1)','FW_H
2
-Ch(9,10)', 'FW_H

2
-

Ch(9,4)', 'FW_H
2
-Ch(9,2)', 'FW_H

2
-

Ch(8,5)', 'FW_H
2
-Ch(5,15)','FW_H

2
-

Ch(5,3)', 'FW_H
2
-Ch(4,1)', 'FW_H

2
-

Ch(1,4)','FW_H-Ch(1,8)', 'FW_H-

Ch(16,10)' ,'FW_H-Ch(15,10)', 'FW_H-

Ch(15,5)', 'FW_H-Ch(10,15)' ,'FW_H-

Ch(7,5)'] 

Monopolar, 

F-score, 

BPSO-

KNN-

Holdout 

 

DC3 ['R
2
-Ch(2,10)','R

2
-Ch(1,8)', 'R

2
-Ch(16,9)', 

'R
2
-Ch(16,6)' ,'R

2
-Ch(12,14)','R

2
-

Ch(11,8)','R
2
-Ch(11,1)','R

2
-Ch(10,9)','R

2
-

Ch(9,15)','R
2
-Ch(9,10)','R

2
-Ch(9,5)','R

2
-

Ch(9,2)','R
2
-Ch(8,5)', 'R

2
-Ch(7,5)','R

2
-

Ch(5,9)','R
2
-Ch(5,8)','R

2
-Ch(5,7)','R

2
-

Ch(4,1)','R
2
-Ch(3,5)','R

2
-Ch(1,4)', 'H

2
-

Ch(16,10)','H
2
-Ch(16,9)','H

2
-

Ch(15,9)','H
2
-Ch(15,5)','H

2
-Ch(12,14)' 

,'H
2
-Ch(10,15)','H

2
-Ch(10,1)' ,'H

2
-

Ch(9,15)','H
2
-Ch(9,5)','H

2
-Ch(8,11)','H

2
-

Ch(7,5)','H
2
-Ch(6,16)','H

2
-Ch(5,15)','H

2
-

Ch(5,7)','H
2
-Ch(5,3)','H

2
-Ch(4,9)', 'H

2
-

Ch(4,1)','H
2
-Ch(3,5)','y-Ch(10,2)','y-

Ch(8,1)' ,'y-Ch(1,8)','y-Ch(16,9)','y-

Ch(16,6)','y-Ch(15,10)', 'y-Ch(15,5)','y-

Ch(12,14)','y-Ch(10,15)','y-Ch(9,10)' ,'y-

Ch(9,5)','y-Ch(9,4)','y-Ch(8,5)','y-

Ch(6,16)','y-Ch(5,9)','y-Ch(4,1)','FW_H
2
-

Ch(15,10)'  , 'FW_H
2
-Ch(15,5)','FW_H

2
-

SC12 91.15 
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Ch(12,14)'  ,'FW_H
2
-Ch(11,8)', 'FW_H

2
-

Ch(11,1)' ,'FW_H
2
-Ch(10,15)','FW_H

2
-

Ch(10,9)',  'FW_H
2
-Ch(10,1)' , 'FW_H

2
-

Ch(9,16)', 'FW_H
2
-Ch(9,15)', 'FW_H

2
-

Ch(8,5)','FW_H
2
-Ch(5,9)', 'FW_H

2
-

Ch(5,8)', 'FW_H
2
-Ch(5,3)','FW_H-

Ch(10,2)', 'FW_H-Ch(1,8)','FW_H-

Ch(15,10)','FW_H-Ch(15,5)', 'FW_H-

Ch(14,12)','FW_H-Ch(12,14)', 'FW_H-

Ch(11,8)', 'FW_H-Ch(10,9)','FW_H-

Ch(10,1)','FW_H-Ch(9,16)', 'FW_H-

Ch(9,5)' ,'FW_H-Ch(8,11)', 'FW_H-

Ch(7,5)', 'FW_H-Ch(5,9)', 'FW_H-

Ch(5,8)','FW_H-Ch(4,1)', 'FW_H-

Ch(3,5)','FW_H-Ch(1,4)'] 

Monopolar, 

Relieff, GA-

KNN-

KFOLD 

DC4  ['R
2
-Ch(15,14)','R

2
-Ch(14,12)','R

2
-

Ch(14,11)', 'R
2
-Ch(14,5)','R

2
-Ch(14,2)', 

'R
2
-Ch(12,14)','R

2
-Ch(12,6)' ,'R

2
-

Ch(11,14)','R
2
-Ch(10,13)','R

2
-Ch(9,13)', 

'R
2
-Ch(7,8)','R

2
-Ch(6,12)', 'R

2
-

Ch(3,16)','R
2
-Ch(2,7)', 'H

2
-Ch(15,14)', 

'H
2
-Ch(14,12)','H

2
-Ch(14,11)', 'H

2
-

Ch(14,5)','H
2
-Ch(13,10)' ,'H

2
-

Ch(12,14)','H
2
-Ch(12,6)', 'H

2
-Ch(11,10)' 

,'H
2
-Ch(10,13)','H

2
-Ch(10,11)','H

2
-

Ch(9,13)' ,'H
2
-Ch(9,1)','H

2
-Ch(7,8)',' H

2
-

Ch(6,12)','H
2
-Ch(5,14)', 'H

2
-Ch(4,7)','H

2
-

Ch(3,16)', 'H
2
-Ch(2,7)','H

2
-Ch(1,14)' , 'y-

Ch(15,14)','y-Ch(14,5)','y-Ch(13,10)', 'y-

Ch(12,6)','y-Ch(11,14)','y-Ch(10,13)','y-

Ch(9,13)', 'y-Ch(9,1)','y-Ch(8,7)','y-

Ch(7,8)','y-Ch(5,14)','y-Ch(4,7)','y-

Ch(3,16)','y-Ch(2,7)','y-Ch(1,9)', 'FW_H
2
-

Ch(15,14)', 'FW_H
2
-Ch(14,11)', 'FW_H

2
-

Ch(14,5)','FW_H
2
-Ch(13,10)','FW_H

2
-

Ch(12,6)' , 'FW_H
2
-Ch(11,14)',' FW_H

2
-

Ch(10,13)','FW_H
2
-Ch(9,1)', 'FW_H

2
-

Ch(7,8)', 'FW_H
2
-Ch(3,16)', 'FW_H

2
-

Ch(2,7)', 'FW_H-Ch(14,11)', 'FW_H-

Ch(11,14)','FW_H-Ch(5,14)', 'FW_H-

Ch(4,7)'] 

SC13   86.58 

Monopolar,

Relieff, GA-

KNN-

Holdout 

DC4 

 

 

 

['R
2
-Ch(15,14)','R

2
-Ch(14,12)', 'R

2
-

Ch(14,11)', 'R
2
-Ch(14,5)','R

2
-Ch(13,10) 

','R
2
-Ch(12,14)','R

2
-Ch(12,6)','R

2
-

Ch(11,14)' ,'R
2
-Ch(11,10)','R

2
-

SC14 94.69 
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Ch(10,11)','R
2
-Ch(9,13)',' R

2
-Ch(9,1)','R

2
-

Ch(3,16)', 'R
2
-Ch(2,7)','R

2
-Ch(1,14)', 'H

2
-

Ch(14,11)','H
2
-Ch(14,2)', 'H

2
-

Ch(14,1)','H
2
-Ch(13,10)','H

2
-Ch(12,14)', 

'H
2
-Ch(11,14)','H

2
-Ch(11,10)', 'H

2
-

Ch(10,11)', 'H
2
-Ch(9,13)','y-Ch(14,11)', 

'y-Ch(14,1)','y-Ch(12,6)' ,'FW_H
2
-

Ch(14,1)','FW_H
2
-Ch(12,6)','FW_H

2
-

Ch(10,13)' , 'FW_H
2
-Ch(6,12)','FW_H

2
-

Ch(4,7)', 'FW_H
2
-Ch(2,7)', 'FW_H

2
-

Ch(1,14)','FW_H-Ch(14,11)'] 

Monopolar,

Relieff, 

BPSO-

KNN-

KFOLD 

 

DC4 ['R
2
-Ch(15,14)','R

2
-Ch(14,11)','R

2
-

Ch(14,5)',' R
2
-Ch(14,1)','R

2
-Ch(12,14)' 

,'R
2
-Ch(11,14)','R

2
-Ch(11,10)' ,'R

2
-

Ch(9,13)',' R
2
-Ch(9,1)','R

2
-Ch(8,7)', 'R

2
-

Ch(6,12)','R
2
-Ch(3,16)',' R

2
-Ch(2,7)','R

2
-

Ch(1,9)', 'H
2
-Ch(14,12)','H

2
-

Ch(14,11)','H
2
-Ch(14,5)', 'H

2
-

Ch(14,2)','H
2
-Ch(14,1)' ,'H

2
-Ch(12,6)','H

2
-

Ch(11,14)','H
2
-Ch(11,10)', 'H

2
-Ch(10,11)', 

'H
2
-Ch(8,7)','H

2
-Ch(4,7)','H

2
-Ch(2,7)','y-

Ch(15,14)','y-Ch(14,12)', 'y-Ch(13,10)','y-

Ch(12,6)','y-Ch(11,10)','y-Ch(10,13)','y-

Ch(9,13)','y-Ch(9,1)','y-Ch(6,12)','y-

Ch(4,7)','y-Ch(1,9)', 'FW_H
2
-

Ch(14,11)','FW_H
2
-Ch(14,5)', 'FW_H

2
-

Ch(14,2)', 'FW_H
2
-Ch(14,1)','FW_H

2
-

Ch(12,6)', 'FW_H
2
-Ch(4,7)', 'FW_H

2
-

Ch(3,16)','FW_H-Ch(11,14)', 'FW_H-

Ch(6,12)', 'FW_H-Ch(2,7)'] 

SC15 83.42 

Monopolar,

Relieff, 

BPSO-

KNN-

Holdout 

 

DC4 ['R
2
-Ch(15,14)','R

2
-Ch(14,11)','R

2
-

Ch(14,5)', 'R
2
-Ch(12,14)','R

2
-

Ch(12,6),'R
2
-Ch(11,10)','R

2
-

Ch(10,13)','R
2
-Ch(9,1)','R

2
-Ch(8,7)','R

2
-

Ch(6,12)','R
2
-Ch(5,14)','R

2
-Ch(4,7)','R

2
-

Ch(2,7)','H
2
-Ch(15,14)','H

2
-

Ch(14,11)','H
2
-Ch(14,5)''H

2
-Ch(14,2)','H

2
-

Ch(14,1)','H
2
-Ch(13,10)','H

2
-Ch(12,14), 

'H
2
-Ch(12,6)','H

2
-Ch(10,13)' ,'H

2
-

Ch(9,13)','H
2
-Ch(8,7)' ,'H

2
-Ch(7,8)','H

2
-

Ch(6,12)', 'H
2
-Ch(5,14)','H

2
-Ch(3,16)' 

,'H
2
-Ch(2,7)','H

2
-Ch(1,14)', 'y-

Ch(14,5)','y-Ch(12,6)','y-Ch(8,7)','y-

Ch(7,8)','y-Ch(6,12)','y-Ch(3,16)', 

'FW_H
2
-Ch(15,14)', 'FW_H

2
-

SC16 91.15 
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Ch(14,12)','FW_H
2
-Ch(13,10)' , 'FW_H

2
-

Ch(12,14)', 'FW_H
2
-Ch(9,13)', 'FW_H

2
-

Ch(9,1)', 'FW_H
2
-Ch(7,8)', 'FW_H

2
-

Ch(3,16)', 'FW_H
2
-Ch(2,7)',' FW_H-

Ch(14,1)','FW_H-Ch(7,8)','FW_H-

Ch(3,16)'] 

 

 

(1)
Method names:  

-  Recording configuration: Bipolar/Monopolar 

-  Channel selection : F-score/Relieff 

- Feature selection: GA-KNN-KFOLD, GA-KNN-Holdout, BPSO-KNN-KFOLD, BPSO-

KNN-Holdout 

(2)
Dataset: 

- DC1: The datasets DC1 contain the 5 features extracted, for the 379 EHG bursts, from the 17 

retained bipolar channel combinations for F-score (379*85). 

- DC2: The datasets DC2 contain the 5 features extracted, for the 379 EHG bursts, from the 17 

retained bipolar channel combinations for Relieff (379*85). 

- DC3: The monopolar datasets DC3 correspond to the features extracted, for the 379 EHG 

bursts, from the 36 retained monopolar channel combinations for F-score (379*180)  

- DC4: The monopolar datasets DC4 correspond to the features extracted, for the 379 EHG 

bursts, from the 24 retained monopolar channel combinations for Relieff (379*120). 
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Table C.5.2: Number of features contain in the selected subsets after feature selection for the 

selected channel combinations and time of calculation of each method of feature selection 

Methods
(1) 

Selected 

feature 

Subset
(2)

 

Number  Correct 

classification 

percentage 

Time (s) 

Bipolar, F-score, GA-

KNN-KFOLD 

SC1 25 88.39 161.62 

Bipolar, F-score, GA-

KNN-Holdout 

SC2 41 94.69 27.83 

Bipolar, F-score, BPSO-

KNN-KFOLD 

SC3 35 86.84 50 

Bipolar, F-score, BPSO-

KNN-Holdout 

SC4 45 95.58 7.68 

Bipolar, Relieff, GA-

KNN-KFOLD 

SC5 18 82.86 155.43 

Bipolar, Relieff, GA-

KNN-Holdout 

SC6 37 92.04 27.47 

Bipolar, Relieff, BPSO-

KNN-KFOLD 

SC7 44 80.79 49.93 

Bipolar, Relieff, BPSO-

KNN-Holdout 

SC8 36 88.50 7.64 

Monopolar, F-score, 

GA-KNN-KFOLD 

SC9 55 91.02 208.50 

Monopolar, F-score, 

GA-KNN-Holdout 

SC10 71 93.81 36.34 

Monopolar, F-score, 

BPSO-KNN-KFOLD 

SC11 75 85.79 67.09 

Monopolar, F-score, on 

BPSO-KNN-Holdout 

SC12 86 91.15 13 

Monopolar, Relieff, GA-

KNN-KFOLD 

SC13 63 86.58 215.87 

Monopolar, Relieff, GA-

KNN-Holdout 

SC14 35 94.69 27.17 

Monopolar, Relieff,  

BPSO-KNN-KFOLD 

SC15 47 83.42 59.03 

Monopolar, Relieff, 

BPSO-KNN-Holdout 

SC16 48 91.15 8.75 
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 (1)
Method names:  

-  Recording configuration: Bipolar/Monopolar 

-  Channel selection : F-score/Relieff 

- Feature selection: GA-KNN-KFOLD, GA-KNN-Holdout, BPSO-KNN-KFOLD, BPSO-

KNN-Holdout 

(2)
Selected feature subset: correspond to the subset obtained in table C.5.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



211 
 

C.6- Validation of the selected features subset after channel combinations 

selection 

Table C.6.1: Mean ± STD of the percentage of correct classification using KNN of 500 

repetitions for the selected features subset from the bipolar and monopolar selected channel 

combinations 

Methods
(1) 

Selected 

feature 

subset
(2) 

Mean ± standard deviation 

 of percentage of correct 

classification 

(500 repetitions) 

Bipolar, F-score, GA-KNN-KFOLD SC1 76.01 ± 1.33 

Bipolar, F-score, GA-KNN-Holdout SC2 75.69 ± 7.31 

Bipolar, F-score, BPSO-KNN-KFOLD SC3 75.37 ± 1.62 

Bipolar, F-score, BPSO-KNN-Holdout SC4 73.30 ± 7.27 

Bipolar, Relieff, GA-KNN-KFOLD SC5 64.56 ±  2.03 

Bipolar, Relieff, GA-KNN-Holdout SC6 64.03 ±  6.93 

Bipolar, Relieff, BPSO-KNN-KFOLD SC7 66.62 ± 1.62 

Bipolar, Relieff, BPSO-KNN-Holdout SC8 65.93 ± 7.85 

Monopolar, F-score, GA-KNN-KFOLD SC9 74.85± 2.26 

Monopolar, F-score, GA-KNN-Holdout SC10 70.41±  8.02 

Monopolar, F-score, BPSO-KNN-KFOLD SC11 70.90 ±  1.96 

Monopolar, F-score, on BPSO-KNN-Holdout SC12 67.49 ± 8.16 

Monopolar, Relieff, GA-KNN-KFOLD SC13 60.06 ±  2.10 

Monopolar, Relieff, GA-KNN-Holdout SC14 61.45 ± 9.22 

Monopolar, Relieff,  BPSO-KNN-KFOLD SC15 64.18 ± 2.37 

Monopolar, Relieff, BPSO-KNN-Holdout SC16 60.88 ±  7.58 

(1)
Method names:  

-  Recording configuration: Bipolar/Monopolar 

-  Channel selection : F-score/Relieff 

- Feature selection: GA-KNN-KFOLD, GA-KNN-Holdout, BPSO-KNN-KFOLD, BPSO-

KNN-Holdout 

(2)
Selected feature subset: correspond to the subset obtained in table C.5.1 
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Summary: 

One of the most promising biophysical markers of preterm labor is the electrical activity of the 

uterus, picked up on woman’s abdomen, the electrohysterogram (EHG). Several processing tools 

of the EHG signal (linear, nonlinear), allow the analysis of both excitability and propagation of 

the uterine electrical activity in order to differentiate between pregnancy contractions, which are 

ineffective, from labor effective contractions that might cause preterm birth. Therefore, on these 

multiple studies, the parameters being computed from different signal databases, obtained with 

different recording protocols, it is sometimes difficult to compare their results in order to choose 

the “best” parameter for preterm labor detection. Additionally, this large number of parameters 

increases the computational complexity for diagnostic purpose. Therefore, the main objective of 

this thesis is to select, among all the features of interest extracted from multiple studies, the most 

pertinent feature subsets in order to discriminate, on a given population, pregnancy and labor 

contractions. For this purpose, several methods for feature selection are tested. The first one, 

developed in this work, is based on the measurement of the Jeffrey divergence (JD) distance 

between the histograms of the parameters of the 2 classes, pregnancy and labor. The other are 

“Filter” and “Wrapper” Data Mining methods, extracted from the literature. In our work 

monovariate (in one given EHG channel) and bivariate analysis (propagation of EHG by 

measuring the coupling between channels) are used. The EHG signals are recorded using a 

multichannel system positioned on the woman’s abdomen for the simultaneous recording of 16 

channels of EHG. Using all channels, for the monovariate, or all combinations of channels for 

the bivariate analysis, leads to a large dimension of parameters for each contraction. Therefore, 

another objective of our thesis is the selection of the best channels, for the monovariate, or best 

channel combinations, for the bivariate analysis, that provide the most useful information to 

discriminate between pregnancy and labor classes. This channel selection step is then followed 

by the feature selection for the channels or channel combinations selected. Additionally, we 

tested all our work using monopolar and bipolar signals. 

The results of this thesis permits us to evidence, when processing the EHG, which channels and 

features can be used with the best chance of success as inputs of a diagnosis system for 

discrimination between pregnancy and labor contractions. This could be further used for preterm 

labor diagnosis. 

 

Keyword: 

EHG; Preterm labor; Parameters extraction; Feature selection; Channel selection. 
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Résumé: 

Un des marqueurs biophysique le plus prometteur pour la détection des accouchements 

prématurés (AP) est l'activité électrique de l'utérus, enregistrée sur l’abdomen des femmes 

enceintes, l’électrohystérogramme (EHG). Plusieurs outils de traitement du signal (linéaires, non 

linéaires) ont déjà été utilisés pour l'analyse de l'excitabilité et de la propagation de l’EHG, afin 

de différencier les contractions de grossesse, qui sont inefficaces, des contractions efficaces 

d’accouchement, qui pourraient provoquer un AP. Dans ces études nombreuses, les paramètres 

sont calculés sur des bases de données de signaux différentes, obtenus avec des protocoles 

d'enregistrement différents. Il est donc difficile de comparer les résultats afin de choisir les 

«meilleurs» paramètres pour la détection de l’AP. En outre, ce grand nombre de paramètres 

augmente la complexité de calcul dans un but de diagnostic. Par conséquent,  l'objectif principal 

de cette thèse est de tester, sur une population de femmes donnée, quels outils de traitement du 

signal EHG permettent une discrimination entre les deux types de contractions 

(grossesse/accouchement). Dans ce but plusieurs méthodes de sélection de paramètres sont 

testées afin de sélectionner les paramètres les plus discriminants. La première méthode, 

développée dans cette thèse, est basée sur la mesure de la distance entre les histogrammes des 

paramètres pour les différentes classes (grossesse et accouchement) en utilisant la méthode 

« Jeffrey divergence (JD)». Les autres sont des méthodes de fouille de données existantes issues 

de la littérature. Les EHG ont été enregistrés en utilisant un système multivoies posé sur 

l'abdomen de la femme enceinte, pour l'enregistrement simultané de 16 voies d'EHG. Une 

approche monovariée (caractérisation d’une seule voie) et bivariée (couplage entre deux voies) 

sont utilisées dans notre travail. Utiliser toutes les voies, analyse monovariée, ou toutes les 

combinaisons de voies, analyse bivariée, conduit à une grande dimension des paramètres. Par 

conséquent, un autre objectif de notre thèse est la sélection des voies, ou des combinaisons de 

voies, qui fournissent l'information la plus utile pour distinguer entre les contractions de 

grossesse et d’accouchement. Cette étape de sélection de voie est suivie par la sélection des 

paramètres, sur les voies ou les combinaisons de voies sélectionnées. De plus, nous avons 

développé cette approche en utilisant des signaux monopolaires et bipolaires. 

Les résultats de ce travail nous permettent de mettre en évidence, lors du traitement de l’EHG, 

les paramètres et les voies qui donnent la meilleure discrimination entre les contractions de 

grossesse et celles d’accouchement. Ces résultats pourront ensuite être utilisés pour la détection 

des menaces d’accouchement prématuré. 

 

Mot clés : 

EHG ; Accouchements prématurés ; Extraction des paramètres ; Sélection de paramètres ; 

Sélection des voies. 
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