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Introduction

The processing power of computers has always been inextricably linked to the characteristics of their

memory. From the early 1940’s, many different technologies have been designed to store information.

Built between 1943 and 1945, the world’s first electronic digital computer, the ENIAC, was composed of

twenty vacuum tube accumulators, each of them being able to store one 10-digit decimal number. Vac-

uum tubes had a considerable power consumption and were frequently overheating, leaving the ENIAC

non-functional most of the time. Instead of storing data in individual bits, the next generation of com-

puter memory, Delay line memory, was turning electrical pulses into sound waves, sending them through

a medium that slowed them down. It significantly increased the storage capacity and the reliability of the

computational systems. Delay line memory was sequential-access, as opposed to modern random-access

memory, and required power to maintain the information. In the late 1940’s, magnetic-core memory was

the first non-volatile random-access memory and remained the main form of computer memory from

the mid 1950’s to the mid 1970’s. It has been gradually replaced by semiconductor-based memory, that

is still used as primary storage in nowadays computers. The cost of this memory has led computer de-

signers to introduce a secondary storage that is cheaper but slower and not directly accessible by the

CPU. Since their introduction in 1956, hard disk drives are usually used as secondary storage in mod-

ern computers. With the rise of storage capacity, the memory architecture has become more and more

convoluted.

In the mid 1960’s, the concept of Virtual Memory was introduced to provide the ability for operating

systems to deal with this complex hierarchies of memory. The need to properly manage the memory

usage of computation systems increased with the introduction of multiprocessor architectures. The Cray

X-MP computer, released in 1982, was one of the first shared-memory parallel vector processors. It

housed two CPUs embedded within a single machine that could concurrently access the same shared-

memory, for a peak system performance of 400 millions Floating-point Operations Per Second (400

Megaflops). In the race for performance, the number of processors per machine kept on growing but

faced technical issues. Instead of endlessly adding computational units within a single computer, mul-

tiprocessor machines were interconnected to form computer clusters. In such systems, the processors

hosted on different machines work together following a distributed memory pattern, significantly com-

plicating the memory architecture. In the 1990’s, supercomputers with thousands of processors began to

appear and ASCI Red was the first system to break through the 1 Teraflops barrier in 1996. Twelve years

later, the IBM Roadrunner was the first supercomputer to reach Petascale performance. As of today, the

Tianhe-2 supercomputer, released in 2013, is ranked number one in the TOP500 list of supercomput-

ers [1] at the speed of 33.86 Petaflops in HPL Linpack benchmark [3]. Pushed by the increasing need

of processing power by scientific applications, reaching the Exascale performance mark has become a

common goal for computer designers.

Recently, on 29 July 2015, U.S. President Obama, established the National Strategic Computing

Initiative (NSCI) to accelerate the development of an Exascale system [5]. It is an effort "to create a

cohesive, multi-agency strategic vision and federal investment strategy in High Performance Computing

i



ii INTRODUCTION

(HPC)". Such HPC systems are essential in science, engineering, technology, and industry. They are

used in a wide range of computationally intensive tasks, like large data analysis or simulation of complex

physical systems. Many scientific applications rely on supercomputers, such as the simulation of seismic

activity, evolving climate, brain activity, nuclear fusion, among others. Most of these applications use

subroutines to perform basic matrix computations. Developing efficient implementations of these linear

algebra subroutines has become a crucial objective since the mid 1970’s. In 1979, a specification for

these common kernel operations using scalars and vectors was published: the level-1 Basic Linear
Algebra Subroutines (BLAS). With the advent of vector processors, BLAS was augmented with level-

2 kernel operations that concerned vector-matrix operations, such as vector-matrix multiplication, or

linear triangular system resolution. Level-2 BLAS was designed to get the most of vector processors that

were operating on one-dimensional arrays of data. In 1987, level-3 BLAS introduced kernel operations

that concerned matrix-matrix operations, such as matrix-matrix multiplication, or dense linear system

solvers. These level-3 BLAS operations partition the matrices into blocks, keeping data manipulations

localized, allowing for a better usage of the cache. Many linear algebra libraries are available. Among

them, we can highlight LAPACK [2], released in 1992, that provides a well-tuned BLAS implementation

to exploit the caches on modern cache-based architectures. LAPACK is written in FORTRAN and

is the successor of LINPACK that is still used as a benchmark for modern supercomputers. Indeed,

linear algebra problems are computationally intensive jobs and represent a good way to compare the

processing power of HPC systems. The TOP500 list ranks the supercomputers twice a year based on

their performance on solving a dense linear system using an LU factorization with partial pivoting and a

64 bit floating point arithmetic. Optimizing these linear algebra libraries for tomorrow’s supercomputers

is one of the main concern in the HPC community.

To built the next generation of supercomputers, new scientific breakthroughs are required to cope

with extreme scale computing. In February 2014, the Advanced Scientific Computing Advisory Com-

mittee (ASCAC) published the top ten Exascale research challenges [6]. This list suggests that a good

memory management in those more and more complex architectures is a sine-qua-non condition to

achieve the development of an Exascale system. Indeed, there is a growing disparity between the speed

of the CPU and the main memory throughput, mainly due to the limited communication bandwidth.

From 1986 to 2000, processor speed improved at an average annual rate of 55% while memory speed

only improved at 10% [109]. One of the main consequences is that the processors may found them-

selves lacking in work and waiting for data to arrive from memory. To limit the number of memory

accesses, processors are connected to an ever-increasing amount of high-speed cache memory. With the

increasing size of the applications, multi-processor systems tend to provide a separate dedicated memory

for each processor. This is the Non-Uniform Memory Access (NUMA) architecture. On most supercom-

puters, processors are equipped with accelerators, such as GPUs, FPGAs or the more recent Xeon Phi.

The CPU offloads compute-intensive portions of the code to these coprocessors, increasing the general

performance of the system. Altogether with the increasing complexity of memory architectures and the

general heterogeneity at every level, modern supercomputers offer an intricate challenge for software

designers. Such systems are hard to model and lead to numerous algorithmic problems.

In this thesis, we focus on designing memory-aware algorithms and new scheduling techniques

suited to modern storage architectures, for various applications. In the different chapters, we take data

communications and memory usage into account, while designing new algorithms for HPC systems.

We also exploit the heterogeneity of these systems to improve the performance of generic matrix com-

putations. Different approaches can be taken, and we classify them into three main parts in this thesis.

In Chapters 1 and 2, we design new linear algebra solvers that squeeze the most out of future HPC ar-

chitectures. We also improve existing schedulers to better deal with the heterogeneity of modern HPC

architectures. In Chapters 3 and 4, we opt for a more general technique by adding memory-awareness
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to generic scheduling techniques. Indeed, the ordering of the computations and the mapping of the tasks

onto the computational resources deeply impact the memory usage while computing a workflow appli-

cation. Finally, in Chapter 5, we target another scientific application that deal with large data files. In

this context, the memory is extremely limited and it can be necessary to recompute some tasks whose

output has not be stored because of memory constraints. Throughout the thesis, we delve into methods to

improve memory management, using numerous techniques and targeting various scientific applications.

The main contributions of the different chapters are sketched in the following paragraphs.

Chapter 1: Mixing LU and QR factorization algorithms to design high-performance
dense linear algebra solvers

In this first chapter, we exhibit a new numerical algorithm to solve dense linear systems. Finding the

solution to a linear system and linear algebra problems in general, are a common issue in the HPC com-

munity. The HPL Linpack benchmark takes algebra routines performance to compare the computational

power of supercomputers. To solve a linear system, one usually factors the matrix using a LU or a QR

factorization. These two methods have both advantages and drawbacks. The generic LU factorization

is highly parallel and involves only broadcasts of information that are efficient on modern distributed

architectures. At the same time, the accuracy of the computed solution may be subject to deterioration

depending upon the condition number of the initial matrix. The QR factorization is twice as costly as the

LU factorization and is slightly less parallel. It involves pipelining communications when factorizing

the panel. However, the computed solution is more accurate than when using a LU factorization. Here,

we design an hybrid LU-QR algorithm that alternates LU and QR factorization steps to take advantage

of the best characteristics of each method. The choice of which routine to run at each step is conducted

by a stability criteria that will detect, before the actual computation of the step, whether performing an

LU factorization step is safe from a stability point of view, or whether we should rather perform a QR

step. We propose different stability criteria based on the numerical properties of the panel, and imple-

ment them in the PARSEC runtime. The PARSEC runtime is well-suited to exploit the parallelism in

large clusters of multiprocessors machines. It deals with task scheduling and communications, allowing

us to concentrate only on algorithm design. We run an extensive set of experiments to analyse both

performance and stability results compared to state-of-the-art algorithms. The experiments are run on a

comprehensive set of random matrices, and ill-conditioned matrices coming from the Higham’s Matrix

Computation Toolbox. The work presented in this chapter has been done in collaboration with Jack

Dongarra and Mathieu Faverge from the University of Tennessee, Knoxville, USA, and Julien Langou

and Bradley R. Lowery from the University of Colorado, Denver, USA.

Chapter 2: Bridging the gap between experimental performance and theoretical
bounds for the Cholesky factorization on heterogeneous platforms

While the previous chapter was dealing with clusters of multiprocessor machines, in the second chapter

of this thesis, we target shared-memory multiprocessors accelerated with GPUs. In this context, specific

schedulers has to be designed to exploit the heterogeneity of the platform. The StarPU runtime takes

care of mapping tasks efficiently onto the computational resources, using well-known generic dynamic

scheduling policies from the literature, while optimizing data transfers using prefetching and overlap-

ping, in particular. Although those purely dynamic schedulers are efficient in practice, they are not

guaranteed to perform optimally, mostly due to their local vision of the workflow at any moment. In this

chapter, we explore how adding static rules to the purely dynamic schedulers implemented in StarPU

can improve their performance. We focus on another classical dense linear algebra routine, namely the
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Cholesky factorization. We introduce theoretical bounds on the best achievable performance on a fully

heterogeneous platform made of CPUs and GPUs. We investigate how adding general information of

the problem can help bridging the gap between these bounds and the actual performance. This work

has been conducted in collaboration with Emmanuel Agullo, Olivier Beaumont, Lionel Eyraud-Dubois,

Suraj Kumar, and Samuel Thibault from INRIA Bordeaux, Talence, France.

Chapter 3: Memory-aware list scheduling for hybrid platforms

In this chapter, we study the complexity of scheduling task graph workflows whose tasks require large

I/O files. We target a heterogeneous architecture with two resource types, each with a different memory,

such as a multicore node equipped with a dedicated accelerator (FPGA or GPU). Each task has an

unrelated processing time for either resource and can be processed only if all its input and output files can

be stored in the corresponding memory. The amount of used memory of each type at a given execution

step strongly depends upon the ordering in which the tasks are executed, and upon when communications

between both memories are scheduled. The objective is to determine an efficient schedule taking into

account the memory constraints for each type. First, we establish the complexity of minimizing memory

usage when scheduling tree-shaped workflows whose tasks are already mapped on the resources. Even

for this simplified version of the problem, we provide NP-completness proofs and inapproximability

results. Then, we design memory-aware heuristics that provide schedules achieving good completion

times, without violating the memory constraints. These heuristics are evaluated on a comprehensive set

of graphs, including random graphs as well as graphs arising in the context of matrix factorizations.

Chapter 4: Assessing the cost of redistribution followed by a computational
kernel

In linear algebra applications, when dealing with a distributed computational platform, the data layout

usually respects the owner-computes distribution. It means that each block of data is updated by the

processor that hosts it. This strategy requires that data blocks are distributed onto the computational

resources in a workload-balanced manner. If the initial data distribution is not suitable for the compu-

tational kernel, a data redistribution may be required before starting the computation. Usually, for a

given application, a specific data distribution is known to be optimal, or close to optimal. Most of the

time, this data distribution is not unique. In particular, if all the processors are identical, a processor

permutation will not change the performance of a given data distribution. In this chapter, we find the

optimal data partition among all the optimal (or close to optimal) ones, that minimizes the cost of re-

distribution, given an initial data distribution. We also show the NP-hardness of the problem to find the

optimal data partition and processor permutation that minimize the cost of redistribution followed by a

simple computational kernel. Our new redistribution algorithms are experimentally validated using the

PARSEC environment on dense linear algebra routines. The work presented in this chapter has been

done with the help of Thomas Hérault from the University of Tennessee, Knoxville, USA.

Chapter 5: Optimal multistage algorithms for adjoint computation

In this last chapter, we target another scientific application, namely adjoint computation. In this context,

the tasks graphs to schedule deal with large I/O files and provide no parallelism across tasks. To cope

with the memory constraints, some output files have to be deleted and recomputed later when needed.

The objective of the scheduling algorithm is to determine which output files to store, in order to minimize

the total processing time of the task graph. As in chapter 3, we deal with a bi-memory model. But this

time, memories are different. One of them has no size constraint, but it takes a significant time to write
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and read data from it, while the other one is limited in volume but provides a free writing/reading cost.

We design the first optimal algorithm in the literature to solve this problem, and compare its performance

with the state-of-the-art heuristics. This work has been conducted in collaboration with Guillaume Aupy,

another PhD student of my research team, and Paul Hovland from the Argonne National Laboratory,

Illinois, USA.
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Chapter 1

Mixing LU and QR factorization algorithms to

design high-performance dense linear

algebra solvers

As said in the introduction of this thesis, optimizing the linear algebra libraries is a main concern for

the HPC community. Many scientific applications rely on the numerical algorithms provided by these

libraries. It is thus important to design new numerical algorithm that exploit the complex hierarchical

architecture of the next generation of supercomputers. One of the main application of the linear algebra

libraries is to solve a dense linear systems of the form Ax = b. It is indeed the benchmark use to

access the computational power of modern supercomputers. To solve a dense linear system Ax = b,
one usually use either an LU factorization or a QR factorization of the matrix A. LU elimination steps

can be very efficiently parallelized, and are twice as cheap in terms of floating-point operations, as QR

steps. However, LU steps are not necessarily stable, while QR steps are always stable. In this first

chapter, we introduce hybrid LU-QR algorithms for solving dense linear systems. Throughout a matrix

factorization, these algorithms dynamically alternate LU with local pivoting and QR elimination steps

based upon some robustness criterion. The hybrid algorithms execute a QR step when a robustness

criterion detects some risk for instability, and they execute an LU step otherwise. The choice between

LU and QR steps must have a small computational overhead and must provide a satisfactory level of

stability with as few QR steps as possible. In this chapter, we introduce several robustness criteria

and we establish upper bounds on the growth factor of the norm of the updated matrix incurred by

each of these criteria. In addition, we describe the implementation of the hybrid algorithms through an

extension of the PaRSEC software to allow for dynamic choices during execution. Finally, we analyze

both stability and performance results compared to state-of-the-art linear solvers on parallel distributed

multicore platforms. A comprehensive set of experiments shows that hybrid LU-QR algorithms provide

a continuous range of trade-offs between stability and performances.

1.1 Introduction

Consider a dense linear system Ax = b to solve, where A is a square tiled-matrix, with n tiles per row

and column. Each tile is a block of nb-by-nb elements, so that the actual size of A is N = n×nb. Here,

nb is a parameter tuned to squeeze the most out of arithmetic units and memory hierarchy. To solve the

linear system Ax = b, with A a general matrix, one usually applies a series of transformations, pre-

multiplying A by several elementary matrices. There are two main approaches: LU factorization, where

one uses lower unit triangular matrices, and QR factorization, where one uses orthogonal Householder

3
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matrices. To the best of our knowledge, this chapter is the first study to propose a mix of both approaches

during a single factorization. The LU factorization update is based upon matrix-matrix multiplications,

a kernel that can be very efficiently parallelized, and whose library implementations typically achieve

close to peak CPU performance. Unfortunately, the efficiency of LU factorization is hindered by the need

to perform partial pivoting at each step of the algorithm, to ensure numerical stability. On the contrary,

the QR factorization is always stable, but requires twice as many floating-point operations, and a more

complicated update step that is not as parallel as a matrix-matrix product. Tiled QR algorithms [27, 28,

90] greatly improve the parallelism of the update step since they involve no pivoting but are based upon

more complicated kernels whose library implementations requires twice as many operations as LU.

The main objective of this chapter is to explore the design of hybrid algorithms that would combine

the low cost and high CPU efficiency of the LU factorization, while retaining the numerical stability of

the QR approach. In a nutshell, the idea is the following: at each step of the elimination, we perform a

robustness test to know if the diagonal tile can be stably used to eliminate the tiles beneath it using an

LU step. If the test succeeds, then go for an elimination step based upon LU kernels, without any further

pivoting involving sub-diagonal tiles in the panel. Technically, this is very similar to a step during a

block LU factorization [37]. Otherwise, if the test fails, then go for a step with QR kernels. On the

one extreme, if all tests succeed throughout the algorithm, we implement an LU factorization without

pivoting. On the other extreme, if all tests fail, we implement a QR factorization. On the average, some

of the tests will fail, some will succeed. If the fraction of the tests that fail remains small enough, we will

reach a CPU performance close to that of LU without pivoting. Of course the challenge is to design a test

that is accurate enough (and not too costly) so that LU kernels are applied only when it is numerically

safe to do so.

Implementing such a hybrid algorithm on a state-of-the-art distributed-memory platform, whose

nodes are themselves equipped with multiple cores, is a programming challenge. Within a node, the

architecture is a shared-memory machine, running many parallel threads on the cores. But the global

architecture is a distributed-memory machine, and requires MPI communication primitives for inter-

node communications. A slight change in the algorithm, or in the matrix layout across the nodes, might

call for a time-consuming and error-prone process of code adaptation. For each version, one must

identify, and adequately implement, inter-node versus intra-node kernels. This dramatically complicates

the task of the programmers if they rely on a manual approach. We solve this problem by relying on

the PaRSEC software [23, 22, 20], so that we can concentrate on the algorithm and forget about MPI

and threads. Once we have specified the algorithm at a task level, the PaRSEC software will recognize

which operations are local to a node (and hence correspond to shared-memory accesses), and which

are not (and hence must be converted into MPI communications). Previous experiments show that this

approach is very powerful, and that the use of a higher-level framework does not prevent our algorithms

from achieving the same performance as state-of-the-art library releases [42].

However, implementing a hybrid algorithm requires the programmer to implement a dynamic task

graph of the computation. Indeed, the task graph of the hybrid factorization algorithm is no longer

known statically (contrarily to a standard LU or QR factorization). At each step of the elimination, we

use either LU-based or QR-based tasks, but not both. This requires the algorithm to dynamically fork

upon the outcome of the robustness test, in order to apply the selected kernels. The solution is to prepare

a graph that includes both types of tasks, namely LU and QR kernels, to select the adequate tasks on the

fly, and to discard the useless ones. We have to join both potential execution flows at the end of each

step, symmetrically. Most of this mechanism is transparent to the user. We discuss this extension of

PaRSEC in more detail in Section 1.4.

The major contributions of this chapter are the following:

• The introduction of new LU-QR hybrid algorithms;
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• The design of several robustness criteria, with bounds on the induced growth factor;

• The extension of PaRSEC to deal with dynamic task graphs;

• A comprehensive experimental evaluation of the best trade-offs between performance and numer-

ical stability.

The rest of the chapter is organized as follows. First we explain the main principles of LU-QR hybrid

algorithms in Section 1.2. Then we describe robustness criteria in Section 1.3. Next we detail the imple-

mentation within the PaRSEC framework in Section 1.4. We report experimental results in Section 1.5.

We discuss related work in Section 1.6. Finally, we provide concluding remarks and future directions in

Section 1.7.

1.2 Hybrid LU-QR algorithms

In this section, we describe hybrid algorithms to solve a dense linear system Ax = b, where

A = (Ai,j)(i,j)∈J1..nK2 is a square tiled-matrix, with n tiles per row or column. Each tile is a block of

nb-by-nb elements, so that A is of order N = n× nb.

The common goal of a classical one-sided factorization (LU or QR) is to triangularize the matrix A
through a succession of elementary transformations. Consider the first step of such an algorithm. We

partition A by block such that A =

(

A11 C
B D

)

. In terms of tile, A11 is 1-by-1, B is (n− 1)-by-1, C is

1-by-(n − 1), and D is (n − 1)-by-(n − 1). The first block-column

(

A11

B

)

is the panel of the current

step.

Traditional algorithms (LU or QR) perform the same type of transformation at each step. The key

observation of this chapter is that any type of transformation (LU or QR) can be used for a given step

independently of what was used for the previous steps. The common framework of a step is the follow-

ing:
(

A11 C
B D

)

⇔
(

factor apply

eliminate update

)

⇔
(

U11 C′

0 D′

)

. (1.1)

First, A11 is factored and transformed in the upper triangular matrix U11. Then, the transformation of

the factorization of A11 is applied to C. Then A11 is used to eliminate B. Finally D is accordingly

updated. Recursively factoring D′ with the same framework will complete the factorization to an upper

triangular matrix.

For each step, we have a choice for an LU step or a QR step. The operation count for each kernel is

given in Table 1.1.

LU step, var A1 QR step

factor A 2/3 GETRF 4/3 GEQRT

eliminate B (n− 1) TRSM 2(n− 1) TSQRT

apply C (n− 1) TRSM 2(n− 1) TSMQR

update D 2(n− 1)2 GEMM 4(n− 1)2 UNMQR

Table 1.1: Computational cost of each kernel. The unit is n3
b floating-point operations.

Generally speaking, QR transformations are twice as costly as their LU counterparts. The bulk of

the computations take place in the update of the trailing matrix D. This obviously favors LU update

kernels. In addition, the LU update kernels are fully parallel and can be applied independently on the
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Algorithm 1: Hybrid LU-QR algorithm

for k = 1 to n do
Factor: Compute a factorization of the diagonal tile: either with LU partial pivoting or QR;

Check: Compute some robustness criteria (see Section 1.3) involving only tiles Ai,k, where

k ≤ i ≤ n, in the elimination panel;

Apply, Eliminate, Update:
if the criterion succeeds then

Perform an LU step;

else
Perform a QR step;

Algorithm 2: Step k of an LU step - var (A1)

Factor: Ak,k ← GETRF (Ak,k) ;

for i = k + 1 to n do
Eliminate: Ai,k ← TRSM(Ak,k, Ai,k);

for j = k + 1 to n do
Apply: Ak,j ← SWPTRSM(Ak,k, Ak,j);

for i = k + 1 to n do
for j = k + 1 to n do

Update: Ai,j ← GEMM(Ai,k, Ak,j , Ai,j);

(n − 1)2 trailing tiles. Unfortunately, LU updates (using GEMM) are stable only when ‖A−1
11 ‖

−1 is

larger than ‖B‖ (see Section 1.3). If this is not the case, we have to resort to QR kernels. Not only

these are twice as costly, but they also suffer from enforcing more dependencies: all columns can still be

processed (apply and update kernels) independently, but inside a column, the kernels must be applied

in sequence.

The hybrid LU-QR Algorithm uses the standard 2D block-cyclic distribution of tiles along a virtual

p-by-q cluster grid. The 2D block-cyclic distribution nicely balances the load across resources for both

LU and QR steps. Thus at step k of the factorization, the panel is split into p domains of approximately
n−k+1

p tile rows. Domains will be associated with physical memory regions, typically a domain per

node in a distributed memory platform. Thus an important design goal is to minimize the number of

communications across domains, because these correspond to nonlocal communications between nodes.

At each step k of the factorization, the domain of the node owning the diagonal tile Ak,k is called the

diagonal domain.

The hybrid LU-QR Algorithm applies LU kernels when it is numerically safe to do so, and QR

kernels otherwise. Coming back to the first elimination step, the sequence of operations is described in

Algorithm 1.

1.2.1 LU step

We assume that the criterion validates an LU step (see Section 1.3). We describe the variant (A1) of an

LU step given in Algorithm 2.

The kernels for the LU step are the following:
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Algorithm 3: Step k of the HQR factorization

for i = k + 1 to n do
elim(i, eliminator(i, k), k);

• Factor: Ak,k ← GETRF (Ak,k) is an LU factorization with partial pivoting: Pk,kAk,k =
Lk,kUk,k, the output matrices Lk,k and Uk,k are stored in place of the input Ak,k.

• Eliminate: Ai,k ← TRSM(Ak,k, Ai,k) solves in-place, the upper triangular system such that

Ai,k ← Ai,kU
−1
k,k where Uk,k is stored in the upper part of Ak,k.

• Apply: Ak,j ← SWPTRSM(Ak,k, Ai,k) solves the unit lower triangular system such that

Ak,j ← L−1
k,kPk,kAk,j where Lk,k is stored in the (strictly) lower part of Ak,k.

• Update: Ai,j ← GEMM(Ai,k, Ak,j , Ai,j) is a general matrix-matrix multiplication Ai,j ←
Ai,j −Ai,kAk,j .

In terms of parallelism, the factorization of the diagonal tile is followed by the TRSM kernels that

can be processed in parallel, then every GEMM kernel can be processed concurrently. These highly

parallelizable updates constitute one of the two main advantages of the LU step over the QR step. The

second main advantage is halving the number of floating-point operations.

During the factor step, one variant is to factor the whole diagonal domain instead of only factor-

ing the diagonal tile. Considering Algorithm 2, the difference lies in the first line: rather than calling

GETRF (Ak,k), thereby searching for pivots only within the diagonal tile Ak,k, we implemented a

variant where we extend the search for pivots across the diagonal domain (the Apply step is modified ac-

cordingly). Working on the diagonal domain instead of the diagonal tile increases the smallest singular

value of the factored region and therefore increases the likelihood of an LU step. Since all tiles in the

diagonal domain are local to a single node, extending the search to the diagonal domain is done without

any inter-domain communication. The stability analysis of Section 1.3 applies to both scenarios, the one

where Ak,k is factored in isolation, and the one where it is factored with the help of the diagonal domain.

In the experimental section, we will use the variant which factors the diagonal domain.

1.2.2 QR step

If the decision to process a QR step is taken by the criterion, the LU decomposition of the diagonal

domain is dropped, and the factorization of the panel starts over. This step of the factorization is then

processed using orthogonal transformations. Every tile below the diagonal (matrix B in Equation (1.1))

is zeroed out using a triangular tile, or eliminator tile. In a QR step, the diagonal tile is factored (with a

GEQRF kernel) and used to eliminate all the other tiles of the panel (with a TSQRT kernel) The trailing

submatrix is updated, respectively, with UNMQR and TSMQR kernels. To further increase the degree

of parallelism of the algorithm, it is possible to use several eliminator tiles inside a panel, typically

one (or more) per domain. The only condition is that concurrent elimination operations must involve

disjoint tile pairs (the unique eliminator of tile Ai,k will be referred to as Aeliminator(i,k),k). Of course,

in the end, there must remain only one non-zero tile on the panel diagonal, so that all eliminators except

the diagonal tile must be eliminated later on (with a TTQRT kernel on the panel and TTMQR updates

on the trailing submatrix), using a reduction tree of arbitrary shape. This reduction tree will involve

inter-domain communications. In our hybrid LU-QR algorithm, the QR step is processed following an

instance of the generic hierarchical QR factorization HQR [42] described in Algorithms 3 and 4.

Each elimination elim(i, eliminator(i, k), k) consists of two sub-steps: first in column k, tile (i, k)
is zeroed out (or killed) by tile (eliminator(i, k), k); and in each following column j > k, tiles (i, j)
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Algorithm 4: Elimination elim(i, eliminator(i, k), k)

(a) With TS kernels

Aeliminator(i,k),k ← GEQRT (Aeliminator(i,k),k);

Ai,k, Aeliminator(i,k),k ← TSQRT (Ai,k, Aeliminator(i,k),k);

for j = k + 1 to n− 1 do
Aeliminator(i,k),j ← UNMQR(Aeliminator(i,k),j , Aeliminator(i,k),k;

Ai,j , Aeliminator(i,k),j ← TSMQR(Ai,j , Aeliminator(i,k),j , Ai,k);

(b) With TT kernels

Aeliminator(i,k),k ← GEQRT (Aeliminator(i,k),k);

Ai,k ← GEQRT (Ai,k);
for j = k + 1 to n− 1 do

Aeliminator(i,k),j ← UNMQR(Aeliminator(i,k),j , Aeliminator(i,k),k;

Ai,j ← UNMQR(Ai,j , Ai,k;

Ai,k, Aeliminator(i,k),k ← TTQRT (Ai,k, Aeliminator(i,k),k);

for j = k + 1 to n− 1 do
Ai,j , Aeliminator(i,k),j ← TTMQR(Ai,j , Aeliminator(i,k),j , Ai,k);

and (eliminator(i, k), j) are updated; all these updates are independent and can be triggered as soon

as the elimination is completed. The algorithm is entirely characterized by its elimination list, which

is the ordered list of all the eliminations elim(i, eliminator(i, k), k) that are executed. The orthogonal

transformation elim(i, eliminator(i, k), k) uses either a TTQRT kernel or a TSQRT kernel depending

upon whether the tile to eliminate is either triangular or square. In our hybrid LU-QR Algorithm, any

combination of reduction trees of the HQR algorithm described in [42] is available. It is then possible to

use an intra-domain reduction tree to locally eliminate many tiles without inter-domain communication.

A unique triangular tile is left on each node and then the reductions across domains are performed

following a second level of reduction tree.

1.2.3 LU step variants

In the following, we describe several other variants of the LU step.

1.2.3.1 Variant (A2)

It consists of first performing a QR factorization of the diagonal tile and proceeds pretty much as in

(A1) thereafter.

• Factor: Ak,k ← GEQRF (Ak,k) is a QR factorization Ak,k = Qk,kUk,k, where Qk,k is never

constructed explicitly and we instead store the Householder reflector Vk,k. The output matrices

Vk,k and Uk,k are stored in place of the input Ak,k.

• Eliminate: Ai,k ← TRSM(Ak,k, Ai,k) solves in-place the upper triangular system such that

Ai,k ← Ai,kU
−1
k,k where Uk,k is stored in the upper part of Ak,k.

• Apply: Ak,j ← ORMQR(Ak,k, Ai,k) performs Ak,j ← QT
k,kAk,j where QT

k,k is applied using

Vk,k stored in the (strictly) lower part of Ak,k.

• Update: Ai,j ← GEMM(Ai,k, Ak,j , Ai,j) is a general matrix-matrix multiplication Ai,j ←
Ai,j −Ai,kAk,j .
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The Eliminate and Update steps are the exact same as in (A1). The (A2) variant has the same data

dependencies as (A1) and therefore the same level of parallelism. A benefit of (A2) over (A1) is that if

the criterion test decides that the step is a QR step, then the factorization of Ak,k is not discarded but

rather used to continue the QR step. A drawback of (A2) is that the Factor and Apply steps are twice as

expensive as the ones in (A1).

1.2.3.2 Variants (B1) and (B2)

Another option is to use the so-called block LU factorization [37]. The result of this formulation is a

factorization where the U factor is block upper triangular (as opposed to upper triangular), and the diag-

onal tiles of the L factor are identity tiles. The Factor step can either be done using an LU factorization

(variant (B1)) or a QR factorization (variant (B2)). The Eliminate step is Ai,k ← Ai,kA
−1
k,k. There is no

Apply step. And the Update step is Ai,j ← Ai,j −Ai,kAk,j .

The fact that row k is not updated provides two benefits: (i) Ak,k does not need to be broadcast to

these tiles, simplifying the communication pattern; (ii) The stability of the LU step can be determined

by considering only the growth factor in the Schur complement of Ak,k. One drawback of (B1) and (B2)

is that the final matrix is not upper triangular but only block upper triangular. This complicates the use

of these methods to solve a linear system of equations. The stability of (B1) and (B2) has been analyzed

in [37].

We note that (A2) and (B2) use a QR factorization during the Factor step. Yet, we still call this an

LU step. This is because all four LU variants mentioned use the Schur complement to update the trailing

sub-matrix. The mathematical operation is: Ai,j ← Ai,j − Ai,kA
−1
k,kAk,j ,. In practice, the Update step

for all four variants looks like Ai,j ← Ai,j − Ai,kAk,j , since A−1
k,k is somehow applied to Ai,k and

Ak,j during the preliminary update and eliminate steps. The Schur update dominates the cost of an LU

factorization and therefore all variants are more efficient than a QR step. Also, we have the same level of

parallelism for the update step: embarrassingly parallel. In terms of stability, all variants would follow

closely the analysis of Section 1.5.4. We do not consider further variants (A2), (B1), and (B2) in this

chapter, since they are all very similar, and only study Algorithm 2, (A1).

1.2.4 Comments

1.2.4.1 Solving systems of linear equations

To solve systems of linear equations, we augment A with the right-hand side b to get Ã = (A, b) and

apply all transformations to Ã. Then an N -by-N triangular solve is needed. This is the approach we

used in our experiments. We note that, at the end of the factorization, all needed information about the

transformations is stored in place of A, so, alternatively, one can apply the transformations on b during

a second pass.

1.2.4.2 No restriction on N

In practice, N does not have to be a multiple of nb. We keep this restriction for the sake of simplicity.

The algorithm can accommodate any N and nb with some clean-up codes, which we have written.

1.2.4.3 Relation with threshold pivoting

The LU-QR Algorithm can be viewed as a tile version of standard threshold pivoting. Standard threshold

pivoting works on 1-by-1 tiles (scalars, matrix elements). It checks if the diagonal element passes a
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certain threshold. If the diagonal element passes the threshold then elimination is done without pivoting

using this diagonal element as the pivot. If the diagonal element does not pass the threshold, then

standard pivoting is done and elimination is done with largest element in absolute value in the column.

Our Hybrid LU algorithm can be seen as a variant with tiles. Our algorithm checks if the diagonal tile

passes a certain threshold. If the diagonal tile passes the threshold then elimination is done without

pivoting using this diagonal tile as the pivot. If the diagonal tile does not pass the threshold, then a stable

elimination is performed. The fact that our algorithm works on tiles as opposed to scalars leads to two

major differences. (1) New criteria for declaring a diagonal tile as being safe had to develop. (2) In the

event when a diagonal tile is declared not safe, we need to resort to a tile QR step.

1.3 Robustness criteria

The decision to process an LU or a QR step is done dynamically during the factorization, and constitutes

the heart of the algorithm. Indeed, the decision criteria has to be able to detect a potentially “large”

stability deterioration (according to a threshold) due to an LU step before its actual computation, in

order to preventively switch to a QR step. As explained in Section 1.2, in our hybrid LU-QR algorithm,

the diagonal tile is factored using an LU decomposition with partial pivoting. At the same time, some

data (like the norm of non local tiles belonging to other domains) are collected and exchanged (using a

Bruck’s all-reduce algorithm [26]) between all nodes hosting at least one tile of the panel. Based upon

this information, all nodes make the decision to continue the LU factorization step or to drop the LU

decomposition of the diagonal tile and process a full QR factorization step. The decision is broadcast to

the other nodes not involved in the panel factorization within the next data communication. The decision

process cost will depend on the choice of the criterion and must not imply a large computational overhead

compared to the factorization cost. A good criterion will detect only the “worst” steps and will provide

a good stability result with as few QR steps as possible. In this section, we present three criteria, going

from the most elaborate (but also most costly) to the simplest ones.

The stability of a step is determined by the growth of the norm of the updated matrix. If a criterion

determines the potential for an unacceptable growth due to an LU step, then a QR step is used. A QR step

is stable as there is no growth in the norm (2-norm) since it is a unitary transformation. Each criterion

depends on a threshold α that allows us to tighten or loosen the stability requirement, and thus influence

the amount of LU steps that we can afford during the factorization. In Section 1.5.4, we experiment with

different choices of α for each criterion.

1.3.1 Max criterion

LU factorization with partial pivoting chooses the largest element of a column as the pivot element.

Partial pivoting is accepted as being numerically stable. However, pivoting across nodes is expensive. To

avoid this pivoting, we generalize the criterion to tiles and determine if the diagonal tile is an acceptable

pivot. A step is an LU step if

α× ‖(A
(k)
k,k)

−1‖−1
1 ≥ max

i>k
‖A

(k)
i,k ‖1. (1.2)

For the analysis we do not make an assumption as to how the diagonal tile is factored. We only assume

that the diagonal tile is factored in a stable way (LU with partial pivoting or QR are acceptable). Note

that, for the variant using pivoting in the diagonal domain (see Section 1.2.1), which is the variant

we experiment with in Section 1.5, A
(k)
k,k represents the diagonal tile after pivoting among tiles in the

diagonal domain.
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To assess the growth of the norm of the updated matrix, consider the update of the trailing sub-

matrix. For all i, j > k we have:

‖A
(k+1)
i,j ‖1 = ‖A

(k)
i,j −A

(k)
i,k (A

(k)
k,k)

−1A
(k)
k,j‖1

≤ ‖A
(k)
i,j ‖1 + ‖A

(k)
i,k ‖1‖(A

(k)
k,k)

−1‖1‖A
(k)
k,j‖1

≤ ‖A
(k)
i,j ‖1 + α‖A

(k)
k,j‖1

≤ (1 + α)max
(

‖A
(k)
i,j ‖1, ‖A

(k)
k,j‖1

)

≤ (1 + α)max
i≥k

(

‖A
(k)
i,j ‖1

)

.

The growth of any tile in the trailing sub-matrix is bounded by 1 + α times the largest tile in the same

column. If every step satisfies (1.2), then we have the following bound:

maxi,j,k ‖A
(k)
i,j ‖1

maxi,j ‖Ai,j‖1
≤ (1 + α)n−1.

The expression above is a growth factor on the norm of the tiles. For α = 1, the growth factor of 2n−1 is

an analogous result to an LU factorization with partial pivoting (scalar case) [67]. Finally, note that we

can obtain this bound by generalizing the standard example for partial pivoting. The following matrix

will match the bound above:

A =









α−1 0 0 1
−1 α−1 0 1
−1 −1 α−1 1
−1 −1 −1 1









.

1.3.2 Sum criterion

A stricter criterion is to compare the diagonal tile to the sum of the off-diagonal tiles:

α× ‖(A
(k)
k,k)

−1‖−1
1 ≥

∑

i>k

‖A
(k)
i,k ‖1. (1.3)

Again, for the analysis, we only assume A−1
k,k factored in a stable way. For α ≥ 1, this criterion (and the

Max criterion) is satisfied at every step if A is block diagonally dominant [67]. That is, a general matrix

A ∈ R
n×n is block diagonally dominant by columns with respect to a given partitioning A = (Ai,j) and

a given norm ‖ · ‖ if:

∀j ∈ J1, nK, ‖A−1
j,j ‖

−1 ≥
∑

i 6=j

‖Ai,j‖.
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Again we need to evaluate the growth of the norm of the updated trailing sub-matrix. For all i, j > k,

we have

∑

i>k

‖A
(k+1)
i,j ‖1 =

∑

i>k

‖A
(k)
i,j −A

(k)
i,k (A

(k)
k,k)

−1A
(k)
k,j‖1

≤
∑

i>k

‖A
(k)
i,j ‖1

+ ‖A
(k)
k,j‖1‖(A

(k)
k,k)

−1‖1
∑

i>k

‖A
(k)
i,k ‖1

≤
∑

i>k

‖A
(k)
i,j ‖1 + α‖A

(k)
k,j‖1.

Hence, the growth of the updated matrix can be bounded in terms of an entire column rather than just an

individual tile. The only growth in the sum is due to the norm of a single tile. For α = 1, the inequality

becomes
∑

i>k

‖A
(k+1)
i,j ‖1 ≤

∑

i≥k

‖A
(k)
i,j ‖1.

If every step of the algorithm satisfies (1.3) (with α = 1), then by induction we have:

∑

i>k

‖A
(k+1)
i,j ‖1 ≤

∑

i≥1

‖Ai,j‖1,

for all i, j, k. This leads to the following bound:

maxi,j,k ‖A
(k)
i,j ‖1

maxi,j ‖Ai,j‖1
≤ n.

From this we see that the criteria eliminates the potential for exponential growth due to the LU steps.

Note that for a diagonally dominant matrix, the bound on the growth factor can be reduced to 2 [67].

1.3.3 MUMPS criterion

In LU decomposition with partial pivoting, the largest element of the column is used as the pivot. This

method is stable experimentally, but the seeking of the maximum and the pivoting requires a lot of com-

munications in distributed memory. Thus in an LU step of the LU-QR Algorithm, the LU decomposition

with partial pivoting is limited to the local tiles of the panel (i.e., to the diagonal domain). The idea

behind the MUMPS criterion is to estimate the quality of the pivot found locally compared to the rest of

the column. The MUMPS criterion is one of the strategies available in MUMPS although it is for sym-

metric indefinite matrices (LDLT ) [45], and Amestoy et al. [12] provided us with their scalar criterion

for the LU case.

At step k of the LU-QR Algorithm, let L(k)U (k) be the LU decomposition of the diagonal domain

and A
(k)
i,j be the value of the tile Ai,j at the beginning of step k. Let local_maxk(j) be the largest

element of the column j of the panel in the diagonal domain, away_maxk(j) be the largest element

of the column j of the panel off the diagonal domain, and pivotk be the list of pivots used in the LU
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decomposition of the diagonal domain:

local_maxk(j) = max
tiles Ai,k on the

diagonal domain

max
l
|(Ai,k)l,j |,

away_maxk(j) = max
tiles Ai,k off the

diagonal domain

max
l
|(Ai,k)l,j |,

pivotk(j) = |U
(k)
j,j |.

pivotk(j) represents the largest local element of the column j at step j of the LU decomposition with

partial pivoting on the diagonal domain. Thus, we can express the growth factor of the largest lo-

cal element of the column j at step j as: growth_factork(j) = pivotk(j)/local_maxk(j). The

idea behind the MUMPS criterion is to estimate if the largest element outside the local domain would

have grown the same way. Thus, we can define a vector estimate_maxk initialized to away_maxk
and updated for each step i of the LU decomposition with partial pivoting like estimate_maxk(j) ←
estimate_maxk(j)× growth_factork(i). We consider that the LU decomposition with partial pivot-

ing of the diagonal domain can be used to eliminate the rest of the panel if and only if all pivots are larger

than the estimated maximum of the column outside the diagonal domain times a threshold α. Thus, the

MUMPS criterion (as we implemented it) decides that step k of the LU-QR Algorithm will be an LU

step if and only if:

∀j, α× pivotk(j) ≥ estimate_maxk(j). (1.4)

1.3.4 Extending the MUMPS criterion to tiles

In this section, we extend the MUMPS criterion [12, 45] to tiles. We did not implement this extension

in software. We present the main idea here in the context of the max criterion. It is possible to adapt to

the sum criterion as well.

The main idea is to maintain a local upper bound on the maximum norm of the tiles below the

diagonal. The goal for MUMPS is to spare a search in the pivot column to see if the current pivot is

acceptable. Our goal is to spare a search in the tile column to know if we are going to apply an LU

step or a QR step. In both cases, if the criterion is satisfied, the search will not happen, hence (1) this

avoids the communication necessary for the search, and (2) this avoids to synchronize the processes in

the column. In other words, if the initial matrix is such that the criterion is always satisfied at each step of

the algorithm, the synchronization of the panel will go away and a pipeline will naturally be instantiated.

Following our general framework, we have a matrix A partitioned in n tiles per row and column.

At the start of the algorithm, all processors have a vector r of size n. If the process holds column j,

j = 1, . . . , n, then it also holds rj such that

r
(1)
j = max

i=2,...,n
‖Ai,j‖1.

If the process does not hold column j, then it does not have (and will not need) a value for rj . If

α× ‖(A
(1)
11 )

−1‖−1
1 ≥ max

i>1
‖A

(1)
i,1 ‖1,

we know that an LU step will be performed according to the max criterion. (See Equation 1.2.) This

condition is guaranteed if

α× ‖(A
(1)
11 )

−1‖−1
1 ≥ r

(1)
1 .
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We assume that this condition is satisfied and so an LU step is decided, so that our first step is an LU step.

The pivot process can decide so without any communication or synchronization. An LU step therefore

is initiated. Now, following the MUMPS criterion [12, 45], we update the vectors r as follows:

r
(2)
j = r

(1)
j + r

(1)
1 ‖(A

(1)
11 )

−1‖1‖A
(1)
1j ‖1, j = 2, . . . , n,

We note that ‖(A
(1)
11 )

−1‖−1
1 can be broadcast along with the L and U factors of A

(1)
11 and that A

(1)
1j is

broadcast for the update to all processes holding rj , so all processes holding rj can update without

communicating rj .
Now we see that

r
(2)
j ≥ max

i=3,...,n
‖A

(2)
i,j ‖1, j = 2, . . . , n

Indeed, let j = 2, . . . , n. Now, let i = 3, . . . , n, we have

‖A
(2)
i,j ‖1 = ‖A

(1)
i,j −A

(1)
i,1 (A

(1)
1,1)

−1A
(1)
1,j‖1

≤ ‖A
(1)
i,j ‖1 + ‖A

(1)
i,1 ‖1‖(A

(1)
1,1)

−1‖1‖A
(1)
1,j‖1

≤

(

max
i=2,...,n

‖A
(1)
i,j ‖1

)

+

(

max
i=2,...,n

‖A
(1)
i,1 ‖1

)

‖(A
(1)
1,1)

−1‖1‖A
(1)
1,j‖1

≤ r
(1)
j + r

(1)
1 ‖(A

(1)
1,1)

−1‖1‖A
(1)
1,j‖1

Hence, for j = 2, . . . , n, we have

max
i=3,...,n

‖A
(2)
i,j ‖1 ≤ r

(1)
j + r

(1)
1 ‖(A

(1)
1,1)

−1‖1c
(1)
1 ,

so that, as claimed,

max
i=3,...,n

‖A
(2)
i,j ‖1 ≤ r

(2)
j .

Therefore, at step 2, the process holding A22 can evaluate locally (without communication nor syn-

chronization) the condition

α× ‖(A
(2)
2,2)

−1‖−1
1 ≥ r

(2)
2 ,

and decides whether an LU or a QR step is appropriate.

1.3.5 Complexity

All criteria require the reduction of information of the off-diagonal tiles to the diagonal tile. Criteria (1.2)

and (1.3) require the norm of each tile to be calculated locally (our implementation uses the 1-norm)

and then reduced to the diagonal tile. Both criteria also require computing ‖A−1
k,k‖. Since the LU

factorization of the diagonal tile is computed, the norm can be approximated using the L and U factors

by an iterative method in O(n2
b) floating-point operations. The overall complexity for both criteria is

O(n×n2
b). Criterion (1.4) requires the maximum of each column be calculated locally and then reduced

to the diagonal tile. The complexity of the MUMPS criterion is also O(n× n2
b) comparisons.

The Sum criterion is the strictest of the three criteria. It also provides the best stability with linear

growth in the norm of the tiles in the worst case. The other two criteria have similar worst case bounds.

The growth factor for both criteria are bound by the growth factor of partial (threshold) pivoting. The

Max criterion has a bound for the growth factor on the norm of the tiles that is analogous to partial

pivoting. The MUMPS criteria does not operate at the tile level, but rather on scalars. If the estimated

growth factor computed by the criteria is a good estimate, then the growth factor is no worse than partial

(threshold) pivoting.



1.4. IMPLEMENTATION 15

1.4 Implementation

As discussed in section 1.1, we have implemented the LU-QR Algorithm on top of the PARSEC runtime.

There are two major reasons for this choice: (i) it allows for easily targeting distributed architectures

while concentrating only on the algorithm and not on implementation details such as data distribution

and communications; (ii) previous implementations of the HQR algorithm [42] can be reused for QR

elimination steps, and they include efficient reduction trees to reduce the critical path of these steps. The

other advantage of using such a runtime is that it provides an efficient look-ahead algorithm without

the burden. This is illustrated by the figure 1.2 that shows the first steps of the factorization with the

LU-QR Algorithm. QR STEPS (in green) and LU STEPS (in orange/red) are interleaved automatically

by the runtime and panel factorization does not wait for the previous step to be finished before starting.

However, this choice implied major difficulties due to the parameterized task graph representation

exploited by the PARSEC runtime. This representation being static, a solution had to be developed to

allow for dynamism in the graph traversal. To solve this issue, we decided to fully statically describe

both LU and QR algorithms in the parameterized task graph. A layer of selection tasks has then been

inserted between each iteration, to collect the data from the previous step, and to propagate it to the

correct following step. These tasks, which do no computations, are only executed once they received a

control flow after the criterion selection has been made. Thus, they delay the decision to send the data to

the next elimination step until a choice has been made, in order to guarantee that data follow the correct

path. These are the Propagate tasks on Figure 1.1. It is important to note, that these tasks do not delay

the computations since no updates are available as long as the panel is not factorized. Furthermore,

these tasks, as well as Backup Panel tasks, can receive the same data from two different paths which

could create conflicts. In the PARSEC runtime, tasks are created only when one of their dependencies is

solved; then by graph construction they are enabled only when the previous elimination step has already

started, hence they will receive their data only from the correct path. It also means that tasks belonging

to the neglected path will never be triggered, and so never be created. This implies that only one path

will forward the data to the Propagate tasks.

Figure 1.1: Dataflow of one step of the algorithm.

Figure 1.1 describes the connection between the different stages of one elimination step of the algo-

rithm. These stages are described below:
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BACKUP PANEL This is a set of tasks that collect the tiles of the panel from the previous step. Since

an LU factorization will be performed in-place for criterion computation, it is then necessary to backup

the modified data in case the criterion fails the test on numerical accuracy. Only tiles from the current

panel belonging to the node with the diagonal row are copied, and sent directly to the Propagate tasks in

case a QR elimination step is needed. On other nodes, nothing is done. Then, all original tiles belonging

to the panel are forwarded to the LU On Panel tasks.

LU ON PANEL Once the backup is done, the criterion is computed. Two kinds of work are performed

in those tasks. On the first node, the U matrix related to this elimination step is computed. This can be

done through an LU factorization with or without pivoting. We decided to exploit the multi-threaded

recursive-LU kernel from the PLASMA library to enlarge the pivot search space while keeping good

efficiency [43]. On all other nodes, the information required for the criterion is computed (see sec-

tion 1.3). Then, an all-reduce operation is performed to exchange the information, so that everyone can

take and store the decision in a local array. This all-reduce operation is directly implemented within the

parameterized task graph with Bruck’s algorithm [26] to optimize the cost of this operation. Once the

decision is known by the nodes on the panel, it is stored in a global array by each process in order to give

access to the information to every worker threads. The information is then broadcast by row to all other

nodes such that everyone knows which kind of update to apply, and a control flow per process triggers

all the local Propagate task which can now have access to the decision and release the correct path in

the dataflow.

PROPAGATE These tasks, one per tile, receive the decision from the previous stage through a control

flow, and are responsible for forwarding the data to the computational tasks of the selected factorization.

The tasks belonging to the panel (assigned to the first nodes) have to restore the data back to their

previous state if QR elimination is chosen. In all cases, the backup is destroyed upon exit of these tasks.

We are now ready to complete the description of each step:

a) LU STEP If the numerical criterion is met by the panel computation, the update step is performed.

On the nodes with the diagonal row, a task per panel is generated to apply the row permutation computed

by the factorization, and then, the triangular solve is applied to the diagonal to compute the U part of

the matrix. The result is broadcasted per column to all other nodes and a block LU algorithm is used

to performed the update. This means that the panel is updated with TRSM tasks, and the trailing

sub-matrix is updated with GEMM tasks. This avoids the row pivoting between the nodes usually

performed by the classical LU factorization algorithm with partial pivoting, or by tournament pivoting

algorithms [61]. Here this exchange is made within a single node only.

b) QR STEP If the numerical criterion is not met, a QR factorization has to be performed. Many

solutions could be used for this elimination step. We chose to exploit the HQR method implementation

presented in [42]. This allowed us to experiment with different kinds of reduction trees, so as to find

the most adapted solution to our problem. The goal is to reduce the inter-nodes communications to

the minimum while keeping the critical path short. In [42], we have shown that the FLATTREE tree is

very efficient for a good pipeline of the operations on square matrices, while FIBONACCI, GREEDY or

BINARYTREE are good for tall and skinny matrices because they reduce the length of the critical path.

In this algorithm, our default tree (which we use in all of our experiments) is a hierarchical tree made

of GREEDY reduction trees inside nodes, and a FIBONACCI reduction tree between the nodes. The goal

is to perform as few QR steps as possible, so a FIBONACCI tree between nodes has been chosen for
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its short critical path and its good pipelining of consecutive trees if multiple QR steps are performed in

sequence. Within a node, the GREEDY reduction tree is favored for similar reasons (See [42] for more

details on the reduction trees). A two-level hierarchical approach is natural when considering multicore

parallel distributed architectures, and those choices could be reconsidered according to the matrix size

and numerical properties.

To implement the LU-QR Algorithm within the PARSEC framework, two extensions had to be

implemented within the runtime. The first extension allows the programmer to generate data during

the execution with the OUTPUT keywords. This data is then inserted into the tracking system of the

runtime to follow its path in the dataflow. This is what has been used to generate the backup on the fly,

and to limit the memory peak of the algorithm. A second extension has been made for the end detection

of the algorithm. Due to its distributed nature, PARSEC detects the end of an algorithm by counting the

remaining tasks to execute. At algorithm submission, PARSEC loops over all the domain space of each

type of task of the algorithm and uses a predicate, namely the owner computes rule, to decide if a task is

local or not. Local tasks are counted and the end of the algorithm, it is detected when all of them have

been executed. As explained previously, to statically describe the dynamism of the LU-QR Algorithm,

both LU and QR tasks exist in the parameterized graph. The size of the domain space is then larger than

the number of tasks that will actually be executed. Thus, a function to dynamically increase/decrease

the number of local tasks has been added, so that the Propagate tasks decrease the local counter of each

node by the number of update tasks associated to the non selected algorithm.

The implementation of the LU-QR Algorithm is publicly available in the latest DPLASMA release

(1.2.0).

1.5 Experiments

The purpose of this section is to present numerical experiments for the hybrid LU-QR Algorithm, and to

highlight the trade-offs between stability and performance that can be achieved by tuning the threshold

α in the robustness criterion (see Section 1.3).

1.5.1 Experimental framework

We used Dancer, a parallel machine hosted at the Innovative Computing Laboratory (ICL) in Knoxville,

to run the experiments. This cluster has 16 multi-core nodes, each equipped with 8 cores, and an In-

finiband interconnection network of 10GB/s bandwith (MT25208 cards). The nodes feature two Intel

Westmere-EP E5606 CPUs at 2.13GHz. The system is running the Linux 64bit operating system, ver-

sion 3.7.2-x86_64. The software was compiled with the Intel Compiler Suite 2013.3.163. BLAS kernels

were provided by the MKL library and OpenMPI 1.4.3 has been used for the MPI communications by

the PARSEC runtime. Each computational thread is bound to a single core using the HwLoc 1.7.1 li-

brary. If not mentioned otherwise, we will use all 16 nodes and the data will be distributed according

to a 4-by-4 2D-block-cyclic distribution. In all our experiments, this distribution performs better than

a 8-by-2 or a 16-by-1 distribution for our hybrid LU-QR Algorithm, as expected, since square grids are

known to perform better for LU and QR factorization applied to square matrices [28]. The theoretical

peak performance of the 16 nodes is 1091 GFLOP/sec.

For each experiment, we consider a square tiled-matrix A of size N -by-N , where N = n× nb. The

tile size nb has been fixed to 240 for the whole experiment set, because this value was found to achieve

good performance for both LU and QR steps. We evaluate the backward stability by computing the
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Figure 1.2: Execution trace of the first steps of the LU-QR Algorithm on a matrix of size N = 5000 with

nb = 200, and criterion that alternates between LU and QR steps. A grid of 2− by − 2 process with 4
threads each is used. The green tasks are the QR STEPS (dark for the panel factorization, and light for

the trailing submatrix update); the orange and red tasks are the LU STEPS (red for the panel update and

orange for the trailing submatrix update); the blue tasks are the LU panel factorizations performed at

every step; and small black tasks, that do not show up on the figure because their duration is too small,

are the criterion selections, and the Propagate tasks.

HPL3 accuracy test of the High-Performance Linpack benchmark [44]:

HPL3 =
‖Ax− b‖∞

‖A‖∞‖x‖∞ × ǫ×N
,

where b is the right-hand side of the linear system, x is the computed solution and ǫ is the machine

precision. Each test is run with double precision arithmetic. In all our experiments, the right-hand side

of the linear system is generated using the DPLASMA_dplrnt routine. It generates a random matrix (or

a random vector) with each element uniformly taken in [−0.5, 0.5]. For performance, we point out that

the number of floating point operations executed by the hybrid algorithm depends on the number of LU

and QR steps performed during the factorization. Thus, for a fair comparison, we assess the efficiency

by reporting the normalized GFLOP/sec performance computed as

GFLOP/sec =
2
3N

3

EXECUTION TIME
,

where 2
3N

3 is the number of floating-point operations for LU with partial pivoting and EXECUTION TIME

is the execution time of the algorithm. With this formula, QR factorization will only achieve half of the

performance due to the 4
3N

3 floating-point operations of the algorithm. Note that in all our experiments,

the right-hand side b of the linear system is a vector. Thus, the cost of applying the transformations on b
to solve the linear system is negligible, which is not necessarily the case for multiple right-hand sides.
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Figure 1.3: Stability, performance, and percentage of LU steps obtained by the three criteria and by random choices, for random matrices, on the

Dancer platform (4x4 grid).
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1.5.2 Results for random matrices

We start with the list of the algorithms used for comparison with the LU-QR Algorithm. All these

methods are implemented within the PaRSEC framework:

• LU NoPiv, which performs pivoting only inside the diagonal tile but no pivoting across tiles

(known to be both efficient and unstable)

• LU IncPiv, which performs incremental pairwise pivoting across all tiles in the elimination panel [28,

90] (still efficient but not stable either)

• Several instances of the hybrid LU-QR Algorithm, for different values of the robustness parameter

α. Recall that the algorithm performs pivoting only across the diagonal domain, hence involving

no remote communication nor synchronization.

• HQR, the Hierarchical QR factorization [42], with the same configuration as in the QR steps of the

LU-QR Algorithm: GREEDY reduction trees inside nodes and FIBONACCI reduction trees between

the nodes.

For reference, we also include a comparison with PDGEQRF: this is the LUPP algorithm (LU with

partial pivoting across all tiles of the elimination panel) from the reference ScaLAPACK implementa-

tion [32].

Algorithm α Time % LU steps
Fake

GFLOP/sec

True

GFLOP/sec

Fake %

Peak Perf.

True %

Peak Perf.

LU NoPiv 6.29 100.0 848.6 848.6 77.8 77.8

LU IncPiv 9.25 100.0 576.4 576.4 52.9 52.9

LUQR (MAX) ∞ 7.87 100.0 677.7 677.7 62.1 62.1

LUQR (MAX) 13000 7.99 94.1 667.7 707.4 61.2 64.9

LUQR (MAX) 9000 8.62 83.3 619.0 722.2 56.8 66.2

LUQR (MAX) 6000 10.95 61.9 486.9 672.4 44.6 61.7

LUQR (MAX) 4000 12.43 51.2 429.0 638.4 39.3 58.5

LUQR (MAX) 1400 13.76 35.7 387.6 636.9 35.5 58.4

LUQR (MAX) 900 16.39 11.9 325.4 612.0 29.8 56.1

LUQR (MAX) 0 18.05 0.0 295.5 590.9 27.1 54.2

HQR 16.01 0.0 333.1 666.1 30.5 61.1

LUPP 15.30 100.0 348.6 348.6 32.0 32.0

Table 1.2: Performance obtained by each algorithm, for N = 20, 000, on the Dancer platform (4 × 4
grid). We only show the results for the LU-QR Algorithm with the Max criterion. The other criteria have

similar performance. In column Fake GFLOP/sec, we assume all algorithms perform 2
3N

3 floating-

point operations. In column True GFLOP/sec, we compute the number of floating-point operations to

be (23fLU + 4
3(1− fLU ))N

3, where fLU is the fraction of the steps that are LU steps (column 4).

Figure 1.3 summarizes all results for random matrices. The random matrices are generated using the

DPLASMA_dplrnt routine. The figure is organized as follows: each of the first three rows corresponds

to one criterion. Within a row:

• the first column shows the relative stability (ratio of HPL3 value divided by HPL3 value for LUPP)

• the second column shows the GFLOP/sec performance

• the third column shows the percentage of LU steps during execution

The fourth row corresponds to a random choice between LU and QR at each step, and is intended to

assess the performance obtained for a given ratio of LU vs QR steps. Plotted results are average values

obtained on a set of 100 random matrices (we observe a very small standard deviation, less than 2%).

For each criterion, we experimentally chose a set of values of α that provides a representative range

of ratios for the number of LU and QR steps. As explained in Section 1.3, for each criterion, the smaller

the α is, the tighter the stability requirement. Thus, the numerical criterion is met less frequently and

the hybrid algorithm processes fewer LU steps. A current limitation of our approach is that we do not

know how to auto-tune the best range of values for α, which seems to depend heavily upon matrix size

and available degree of parallelism. In addition, the range of useful α values is quite different for each
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criterion.

For random matrices, we observe in Figure 1.3 that the stability of LU NoPiv and LU IncPiv is

not satisfactory. We also observe that, for each criterion, small values of α result in better stability, to

the detriment of performance. For α = 0, LU-QR Algorithm processes only QR steps, which leads to

the exact same stability as the HQR Algorithm and almost the same performance results. The difference

between the performance of LU-QR Algorithm with α = 0 and HQR comes from the cost of the decision

making process steps (saving the panel, computing the LU factorization with partial pivoting on the

diagonal domain, computing the choice, and restoring the panel). Figure 1.3 shows that the overhead

due to the decision making process is approximately equal to 10% for the three criteria. This overhead,

computed when QR eliminations are performed at each step, is primarily due to the backup/restore steps

added to the critical path when QR is chosen. Performance impact of the criterion computation itself is

negligible, as one can see by comparing performance of the random criterion to the MUMPS and Max

criteria.

LU-QR Algorithm with α = ∞ and LU NoPiv both process only LU steps. The only difference

between both algorithms in terms of error analysis is that LU NoPiv seeks for a pivot in the diagonal

tile, while LU-QR Algorithm with α =∞ seeks for a pivot in the diagonal domain. This difference has

a considerable impact in terms of stability, in particular on random matrices. LU-QR Algorithm with

α = ∞ has a stability slightly inferior to that of LUPP and significantly better to that of LU NoPiv.

When the matrix size increases, the relative stability results of the LU-QR Algorithm with α =∞ tends

to 1, which means that, on random matrices, processing an LU factorization with partial pivoting on a

diagonal domain followed by a direct elimination without pivoting for the rest of the panel is almost

as stable as an LU factorization with partial pivoting on the whole panel. A hand-waving explanantion

would go as follows. The main instabilities are proportional to the small pivots encountered during a

factorization. Using diagonal pivoting, as the factorization of the diagonal tile proceeds, one is left with

fewer and fewer choices for a pivot in the tile. Ultimately, for the last entry of the tile in position (nb,nb),

one is left with no choice at all. When working on random matrices, after having performed several

successive diagonal factorizations, one is bound to have encountered a few small pivots. These small

pivots lead to a bad stability. Using a domain (made of several tiles) for the factorization significantly

increases the number of choice for the pivot and it is not any longer likely to encounter a small pivot.

Consequently diagonal domain pivoting significantly increases the stability of the LU-QR Algorithm
with α = ∞. When the local domain gets large enough (while being significanty less than N ), the

stability obtained on random matrices is about the same as partial pivoting.

When α = ∞, our criterion is deactivated and our algorithm always performs LU step. We note

that, when α is reasonable, (as opposed to α = ∞,) the algorithm is stable whether we use a diagonal

domain or a diagonal tile. However using a diagonal domain increases the chance of well-behaved pivot

tile for the elimination, therefore using a diagonal domain (as opposed to a diagonal tile) increases the

chances of an LU step.

Using random choices leads to results comparable to those obtained with the three criteria. However,

since we are using random matrices in this experiment set, we need to be careful before drawing any

conclusion on the stability of our algorithms. If an algorithm is not stable on random matrices, this is

clearly bad. However we cannot draw any definitive conclusion if an algorithm is stable for random

matrices.

Table 1.2 displays detailed performance results for the Max criterion with N = 20, 000. In column

Fake GFLOP/sec, we assume all algorithms perform 2
3N

3 floating-point operations. In column True

GFLOP/sec, we compute the number of floating-point operations to be (23fLU + 4
3(1− fLU ))N

3, where

fLU is the fraction of the steps that are LU steps (column 4). For this example, we see that the LU-
QR Algorithm reaches a peak performance of 677.7 GFLOP/sec (62.1% of the theoretical peak) when
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No. Matrix Description
Condition Number

with N = 4000

1 house
Householder matrix, A = eye(n)−β ∗ v ∗
vH

1

2 parter

Parter matrix, a Toeplitz matrix with most

of singular values near Π. A(i, j) = 1/(i−
j + 0.5).

4.8

3 ris

Ris matrix, matrix with elements A(i, j) =
0.5/(n − i − j + 1.5). The eigenvalues

cluster around −Π/2 and Π/2.

4.8

4 condex
Counter-example matrix to condition esti-

mators.
1.0× 102

5 circul Circulant matrix 2.2× 104

6 hankel

Hankel matrix, A = hankel(c, r), where

c = randn(n, 1), r = randn(n, 1), and

c(n) = r(1).
3.8× 104

7 compan
Companion matrix (sparse), A =
compan(randn(n+ 1, 1)).

4.1× 106

8 lehmer

Lehmer matrix, a symmetric positive def-

inite matrix such that A(i, j) = i/j for

j ≥ i. Its inverse is tridiagonal.

1.7× 107

9 dorr
Dorr matrix, a diagonally dominant, ill-

conditioned, tridiagonal matrix (sparse).
1.6× 1011

10 demmel
A = D ∗ (eye(n) + 10 − 7 ∗ rand(n)),
where D = diag(1014 ∗ (0 : n− 1)/n).

9.8× 1020

11 chebvand

Chebyshev Vandermonde matrix based on

n equally spaced points on the interval

[0,1].

2.2× 1019

12 invhess Its inverse is an upper Hessenberg matrix. —

13 prolate
Prolate matrix, an ill-conditioned Toeplitz

matrix.
9.4× 1018

14 cauchy Cauchy matrix. 1.9× 1021

15 hilb
Hilbert matrix with elements 1/(i+ j−1).
A = hilb(n).

7.5× 1021

16 lotkin
Lotkin matrix, the Hilbert matrix with its

first row altered to all ones.
2.1× 1023

17 kahan Kahan matrix, an upper trapezoidal matrix. 1.4× 1027

18 orthogo
Symmetric eigenvector matrix: A(i, j) =
sqrt(2/(n+ 1)) ∗ sin(i ∗ j ∗ π/(n+ 1))

1

19 wilkinson
Matrix attaining the upper bound of the

growth factor of GEPP.
9.4× 103

20 foster

Matrix arising from using the quadrature

method to solve a certain Volterra integral

equation.

2.6× 103

21 wright

Matrix with an exponential growth fac-

tor when Gaussian elimination with Partial

Pivoting is used.

6.5

Table 1.3: Special matrices in the experiment set.
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1.5.6 Assessment of the three criteria

With respect to stability, while the three criteria behave similarly on random matrices, we observe dif-

ferent behaviors for special matrices. The MUMPS criterion provides good results for most of the tested

matrices but not for all. If stability is the key concern, one may prefer to use the Max criterion (or

the Sum criterion), which performs well for all special matrices (which means that the upper bound of

(1 + α)n−1 on the growth is quite pessimistic).

With respect to performance, we observe very comparable results, which means that the overhead

induced by computing the criterion at each step is of the same order of magnitude for all criteria.

The overall conclusion is that all criteria bring significant improvement over LUPP in terms of

stability, and over HQR in terms of performance. Tuning the value of the robustness parameter α enables

the exploration of a wide range of stability/performance trade-offs.

1.6 Related work

State-of-the-art QR factorizations use multiple eliminators per panel, in order to dramatically reduce the

critical path of the algorithm. These algorithms are unconditionally stable, and their parallelization has

been fairly well studied on shared memory systems [27, 90, 24] and on parallel distributed systems [42].

The idea of mixing Gaussian transformations and orthogonal transformations has been considered

once before. Irony and Toledo [73] present an algorithm for reducing a banded symmetric indefinite

matrix to diagonal form. The algorithm uses symmetric Gaussian transformations and Givens rotations

to maintain the banded symmetric structure and maintain similar stability to partial symmetric pivoting.

The reason for using LU kernels instead of QR kernels is performance: (i) LU performs half the

number of floating-point operations of QR; (ii) LU kernels relies on GEMM kernels which are very

efficient while QR kernels are more complex and much less tuned, hence not that efficient; and (iii)

the LU update is much more parallel than the QR update. So all in all, LU is much faster than QR (as

observed in the performance results of Section 1.5). Because of the large number of communications

and synchronizations induced by pivoting in the reference LUPP algorithm, communication-avoiding
variants of LUPP have been introduced [36], but they have proven much more challenging to design

because of stability issues. In the following, we review several approaches:

1.6.1 LUPP

LU with partial pivoting is not a communication-avoiding scheme and its performance in a parallel

distributed environment is low (see Section 1.5). However, the LUPP algorithm is stable in practice,

and we use it as a reference for stability.

1.6.2 LU NoPiv

The most basic communication-avoiding LU algorithm is LU NoPiv. This algorithm is stable for block

diagonal dominant matrices [67, 37], but breaks down if it encounters a nearly singular diagonal tile, or

loses stability if it encounters a diagonal tile whose smallest singular value is too small.

Baboulin et al. [16] propose to apply a random transformation to the initial matrix, in order to use

LU NoPiv while maintaining stability. This approach gives about the same performance as LU NoPiv,

since preprocessing and postprocessing costs are negligible. It is hard to be satisfied with this ap-

proach [16] because for any matrix which is rendered stable by this approach (i.e, LU NoPiv is stable),

there exists a matrix which is rendered not stable. Nevertheless, in practice, this proves to be a valid

approach.
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1.6.3 LU IncPiv

LU IncPiv is another communication-avoiding LU algorithm [28, 90]. Incremental pivoting is also called

pairwise pivoting. The stability of the algorithm [28] is not sufficient and degrades as the number of tiles

in the matrix increases (see our experimental results on random matrices). The method also suffers some

of the same performance degradation of QR factorizations with multiple eliminators per panel, namely

low-performing kernels, and some dependencies in the update phase.

1.6.4 CALU

CALU [61] is a communication-avoiding LU. It uses tournament pivoting which has been proven to be

stable in practice [61]. CALU shares the (good) properties of one of our LU steps: (i) low number of

floating-point operations; (ii) use of efficient GEMM kernels; and (iii) embarrassingly parallel update.

The advantage of CALU over our algorithm is essentially that it performs only LU steps, while our

algorithm might need to perform some (more expensive) QR steps. The disadvantage is that, at each step,

CALU needs to perform global pivoting on the whole panel, which then needs to be reported during the

update phase to the whole trailing submatrix. There is no publicly available implementation of parallel

distributed CALU, and it was not possible to compare stability or performance. CALU is known to be

stable in practice [60, 40]. Performance results of CALU in parallel distributed are presented in [60].

Performance results of CALU on a single multicore node are presented in [40].

1.6.5 Summary

Table 1.4 provides a summary of key characteristics of the algorithms discussed in this section.

ALGORITHM CA KERNELS EFF. FOR UPDATE PIPELINE #FLOPS STABLE

LU NoPiV YES GEMM-EFFICIENT YES 1x NOT AT ALL

LU IncPiv YES LESS EFFICIENT YES 1x SOMEWHAT

CALU YES GEMM-EFFICIENT NO 1x PRACTICALLY

LUQR (alpha) LU only YES GEMM-EFFICIENT NO 1x PRACTICALLY

LUQR (alpha) QR only YES LESS EFFICIENT NO 2x UNCONDITIONALLY

HQR YES LESS EFFICIENT YES 2x UNCONDITIONALLY

LUPP NO GEMM-EFFICIENT NO 1x PRACTICALLY

Table 1.4: A summary of key characteristics of each algorithm. CA in column 2 stands for Communica-
tion Avoiding. Other column titles are self-explanatory.

1.7 Conclusion

Linear algebra software designers have been struggling for years to improve the parallel efficiency of

LUPP (LU with partial pivoting), the de-facto choice method for solving dense systems. The search for

good pivots throughout the elimination panel is the key for stability (and indeed both NoPiv and IncPiv

fail to provide acceptable stability), but it induces several short-length communications that dramatically

decrease the overall performance of the factorization.

Communication-avoiding algorithms are a recent alternative which proves very relevant on today’s

archictectures. For example, in our experiments, our HQR factorization [42] based of QR kernels ends

with similar performance as ScaLAPACK LUPP while performing 2x more floating-point operations,

using slower sequential kernels, and a less parallel update phase. In this chapter, stemming from the
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key observation that LU steps and QR steps can be mixed during a factorization, we present the LU-
QR Algorithm whose goal is to accelerate the HQR algorithm by introducing some LU steps whenever

these do not compromise stability. The hybrid algorithm represents dramatic progress in a long-standing

research problem. By restricting to pivoting inside the diagonal domain, i.e., locally, but by doing so only

when the robustness criterion forecasts that it is safe (and going to a QR step otherwise), we improve

performance while guaranteeing stability. And we provide a continuous range of trade-offs between LU

NoPiv (efficient but only stable for diagonally-dominant matrices) and QR (always stable but twice as

costly and with less performance). For some classes of matrices (e.g., tile diagonally dominant), the

LU-QR Algorithm will only perform LU steps.

This work opens several research directions. First, as already mentioned, the choice of the robustness

parameter α is left to the user, and it would be very interesting to be able to auto-tune a possible range

of values as a function of the problem and platform parameters. Second, there are many variants and

extensions of the hybrid algorithm that can be envisioned. Several have been mentioned in Section 1.2,

and many others could be tried. In particular, the tile extension of the MUMPS criterion looks promising

and deserves to be implement in software during future work. Another goal would be to derive LU

algorithms with several eliminators per panel (just as for HQR) to decrease the critical path, provided

the availability of a reliable robustness test to ensure stability.



Chapter 2

Bridging the gap between experimental

performance and theoretical bounds for the

Cholesky factorization on heterogeneous

platforms

Mainly linear algebra libraries rely on runtime systems to deal with resource allocation and low-level

data management, such as MPI communications, shared-memory accesses... These runtimes allows

developers to focus on their algorithms at a task-level. In the previous chapter, we designed a new dense

linear solver relying on the dynamic scheduler provided by PARSEC. In the purpose of increasing the

performance of linear solvers, it is thus important to optimize the resource allocation of these runtime

systems. In this chapter, we consider the problem of allocating and scheduling dense linear application

on fully heterogeneous platform made of CPUs and GPUs. More specifically, we focus on the Cholesky

factorization since it is the simplest factorization algorithm that exhibits the main problems encountered

in heterogeneous scheduling. Indeed, the relative performance of CPU and GPU highly depends on

the sub-routine: GPUs are for instance much more efficient to process regular kernels such as matrix-

matrix multiplication rather than more irregular kernels such as matrix factorization. In this context,

one solution consists in relying on dynamic scheduling and resource allocation mechanisms such as the

ones provided by PaRSEC or StarPU. In this chapter we analyze the performance of dynamic schedulers

based on both actual executions and simulations, and we investigate how adding static rules based on

an offline analysis of the problem to their decision process can indeed improve their performance, up to

reaching some improved theoretical performance bounds which we introduce.

2.1 Introduction

Linear algebra operations are the basis of many scientific operations. Our objective is to optimize the per-

formance of one of them (namely the Cholesky decomposition) on a hybrid computing platform. The use

of GPUs and other accelerators such as Xeon Phi are common ways to increase the computation power

of computers at a limited cost. The large computing power available on such accelerators for regular

computation makes them unavoidable for linear algebra operations. However, optimizing the perfor-

mance of a complex computation on such a hybrid platform is very complex, and a manual optimization

seems out of reach given the wide variety of hybrid configurations. Thus, several runtime systems have

been proposed to dynamically schedule a computation on hybrid platforms, by mapping parts of the

computation to each processing elements, either cores or accelerators. Among other successful projects,

29
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we may cite StarPU [14] from INRIA Bordeaux (France), Quark [110] and PaRSEC [21] from ICL,

Univ. of Tennessee Knoxville (USA), Supermatrix [30] from University of Texas (USA), StarSs [87]

from Barcelona Supercomputing Center (Spain) or KAAPI [50] from INRIA Grenoble (France). Usu-

ally, the structure of the computation has to be described as a task graph, where vertices represent tasks

and edges represent dependencies between them. Most of these tools enable, up to a certain extent, to

schedule an application described as a task graph onto a parallel platform, by mapping individual tasks

onto computing resources and by performing data movements between memories when needed.

There is an abundant literature on the problem of scheduling task graphs on parallel processors.

This problem is known to be NP-complete [49]. Lower-bounds based either on the length of the critical

path (the longest path from an entry vertex to an output vertex) or on the overall workload (assum-

ing ideal parallelism) have been proposed, and simple list-scheduling algorithms are known to provide

2 − 1/m-approximation on homogeneous platforms, at least when communication times are negligi-

ble [56]. Several scheduling heuristics have also been proposed, and among them the best-known cer-

tainly is HEFT [104], which inspired some dynamic scheduling strategies used in the above-mentioned

runtimes. However, it remains a large gap between the theoretical lower-bounds and the actual perfor-

mance of dynamic HEFT-like heuristics. Another way to assess the quality of a scheduling strategy is

to compare the actual performance to the machine peak performance of the computing platform com-

puted as the sum of the performance of its individual computational units. Rather than this machine

peak performance which is known to be unreachable, one usually considers the GEMM peak obtained

by running matrix multiplication kernels (GEMMs). For large matrices, the task-graph of a Cholesky

factorization exhibits a sufficient amount of parallelism, and a sufficient number of GEMM calls for this

bound to be reasonable. However, on small and medium size matrices, there is still a large gap between

GEMM peak performance and the best-achievable Cholesky performance.

In this chapter, we optimize the dynamic scheduling of the Cholesky decomposition of a dense,

symmetric, and positive-definite double-precision matrix A, into the product LLT , where L is lower

triangular and has positive diagonal elements, using one runtime system, StarPU, and provide better

bounds to prove the quality of our schedules. The contributions of the chapter are:

• Better lower bounds on the processing time of a Cholesky factorization on a parallel hybrid plat-

form;

• Better dynamic schedules, based not only on HEFT but also on an hybridization of static and

dynamic task assignments;

• A very efficient schedule for a simple hybrid platform model, achieved by constraint program-

ming.

• Numerous experiments and simulations to assess the performance of our schedules using the

StarPU runtime.

Note that what is done here using StarPU could have been done with other runtimes, provided that

we are able to control their mapping and scheduling policies. Similarly, we could have chosen another

dense linear algebra factorization such as the QR or LU decompositions.

2.2 Context

2.2.1 Cholesky factorization

The Cholesky factorization (or Cholesky decomposition) is mainly used to solve a system of linear

equations Ax = b, where A is a N × N symmetric positive-definite matrix, b is a vector, and x is the
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Algorithm 5: Pseudocode of the tile Cholesky factorization

for k = 0 to n− 1 do
A[k][k]← POTRF(A[k][k]);

for i = k + 1 to n− 1 do
A[i][k]← TRSM(A[k][k], A[i][k]);

for j = k + 1 to n− 1 do
A[j][j]← SYRK(A[j][k], A[j][j]);

for i = j + 1 to n− 1 do
A[i][j]← GEMM(A[i][k], A[j][k], A[i][j]);

unknown solution vector to be computed. Such systems often arise in physics applications, especially

when looking for numerical solutions of partial differential equations, where A is positive-definite due

to the nature of the modeled physical phenomenon. One way to solve such a linear system is first to

compute the Cholesky factorization A = LLT , where L (referred to as the Cholesky factor) is a N ×N
real lower triangular matrix with positive diagonal elements. The solution vector x can then be computed

by solving the two following triangular systems: Ly = b and LTx = y.

To take advantage of modern highly parallel architectures, state-of-the-art numerical algebra libraries

implement tiled Cholesky factorizations. The matrix A = (Aij)0≤i,j≤n is divided into n × n tiles

(or blocks) of nb × nb elements, and the tiled Cholesky algorithm can then be seen as a sequence of

tasks that operate on small portions of the matrix. This approach greatly improves the parallelism of

the algorithm and mostly involves BLAS3 kernels whose library implementations are really fast on

modern architectures. The benefits of such an approach on parallel multicore systems have already been

discussed in the past [63, 28, 89]. Following the BLAS and LAPACK terminology, the tiled algorithm

for Cholesky factorization is based on the following set of kernel subroutines:

• POTRF: This LAPACK subroutine is used to perform the Cholesky factorization of a symmetric

positive definite tile Akk of size nb × nb producing a lower triangular tile Lkk of size nb × nb.

• TRSM: This BLAS subroutine is used to apply the transformation computed by POTRF to a Aik

tile by means of a triangular system solving.

• GEMM: This BLAS subroutine computes a matrix-matrix multiplication of two tiles Aik, Ajk and

subtract the result to the tile Aij . The old value of Aij is overwritten by the new one.

• SYRK: This BLAS subroutine executes a symmetric rank-k update on a diagonal tile Akk.

Note that no extra memory area is needed to store the Lij tiles since they can overwrite the corre-

sponding Aij tiles from the original matrix. The tiled Cholesky algorithm can be written as in Algo-

rithm 5.

In this sequential pseudocode, we can notice that some kernel subroutines depend on each other,

while others can be processed in parallel. Such an algorithm is commonly represented by its task graph

(or DAG) that depicts its actual dependencies. In this well established model, each vertex of the graph

represents a call to one of the four kernel subroutines presented above. The edges between two task

vertices represent a direct data dependency between tasks. Figure 2.1 depicts the task graph for the

Cholesky decomposition of a 5× 5 tiled matrix.
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Figure 2.1: Task graph for the Cholesky decomposition of a 5× 5 tiled matrix.

2.2.2 Multiprocessor scheduling

2.2.2.1 Static Mapping

In such an algorithm, the way the matrix tiles are distributed over the processors and the mapping of

the tasks onto the computing resources have a strong impact on its performance and scalability. In the

distributed context, the ScaLAPACK library [39] uses the standard 2D block-cyclic distribution of tiles

along a virtual p-by-q homogeneous grid and the owner compute strategy. In this layout the p-by-q
top-left tiles of the matrix are mapped topologically onto the processor grid and the rest of the tiles are

distributed onto the processors in a round-robin manner. This layout has been incorporated in the High

Performance Fortran standard [79]. Once the tiles of the matrix are distributed onto the processors, the

mapping of the tasks is done following the owner-compute strategy: each subroutine overwriting a tile

Aij is executed on the processor hosting Aij . The only freedom during the execution is the scheduling of

the tasks inner a processor and the communications between processors. This layout ensures a good load

balance for homogeneous computing resources and an equal memory usage between processors [39].

However, for heterogeneous resources, this layout is no longer an option, and dynamic scheduling is a

widespread practice.

These ideas also make sense in a shared-memory environment in order to take advantage of locality.

For instance the Plasma library provides an option for relying on such static schedules on multicore

chips.

2.2.2.2 Dynamic Scheduling

Dynamic strategies have been developed in order to design methods flexible enough to cope with un-

predictable performance of resources, especially in the context of real time systems, where on-line and

adaptive scheduling strategies are required [31, 82]. More recently, the design of dynamic schedulers
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received a lot of attention, since on modern heterogeneous and possibly shared systems, the actual pre-

diction of either execution and communication times is very hard, thus justifying the design of ad-hoc

tools that will be described in Section 2.3.

2.2.2.3 Task graph scheduling heuristics

As presented earlier, many scheduling heuristics have been proposed for DAGs since this problem is

NP-complete. Most of these heuristics are list-scheduling heuristics: they sort tasks according to some

criterion and then schedule them greedily. This makes them good candidates to be turned into dynamic

scheduling heuristics. The best-known list-scheduling heuristic for DAGs on heterogeneous platforms

is certainly HEFT [104]. It consists in sorting tasks by decreasing bottom-level, which is the weight of

the longest path from a task to an exit task (a task without successors). In a heterogeneous environment,

the weight of a task (or communication) is computed as the average computation (or communication)

time over the whole platform. Then, each task is considered and scheduled on the resource on which it

will finish the earliest. HEFT turns out to be an efficient heuristic for heterogeneous processors. Other

approaches have been proposed to avoid data movement when taking communications into account,

such as clustering tasks into larger granularity tasks before scheduling them [93].

2.3 Tools and libraries

For this study, we used the Chameleon [4] implementation of the Cholesky factorization, running on top

of the StarPU runtime system. We performed real executions on the target platform, and we additionally

used the Simgrid [29] simulator, in order to reduce the experimentation time, improve reproducibility of

the experiments, and also be able to modify the execution platform.

2.3.1 StarPU runtime system

StarPU [14] is a runtime system aiming to allow programmers to exploit the computing power of the

available CPUs and GPUs, while relieving them from the need to specifically adapt their programs to the

target machine and processing units. The StarPU runtime supports a task-based programming model.
Applications submit computational tasks, forming a task graph, with CPU and/or GPU implementations,

and StarPU schedules these tasks and associated data transfers on available CPUs and GPUs. The data

that a task manipulates is automatically transferred between the local memory of the accelerators and

the main memory, so that application programmers are freed from the scheduling issues and technical

details associated with these transfers. In particular, StarPU takes care of scheduling tasks efficiently,

using well-known generic dynamic and task graphs scheduling policies from the literature (see Section

2.2.2), and optimizing data transfers using prefetching and overlapping, in particular. In addition, it

allows scheduling experts, such as compiler or computational library developers, to implement custom

scheduling policies in a portable fashion.

In this study, we specialize the StarPU scheduling algorithms to include a mixture of static and

dynamic task assignments, based on the knowledge of the Cholesky task graph, to improve performance

on small and medium size matrices. In the following, we call “small” a matrix with less than 10 × 10
tiles, “medium” a matrix with tile size between 10 and 20, and “large” a matrix with more than 20× 20
tiles.
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2.3.2 Chameleon dense linear algebra library

To cope with the increased degree of parallelism, a new class of dense linear algebra algorithms has been

proposed, often referred as tile algorithms in the literature [28, 89]. These algorithms led to the design

of new libraries in the past five years such as Plasma [28], Flame [72] and DPlasma [19]. Although both

static and dynamic versions of the algorithms have been initially implemented, the dynamic codes are

now predominant since they proved to provide more flexibility. These dynamic codes rely on runtime

systems (Quark [110], Supermatrix [30], PaRSEC [21]) that have been specifically designed for the

purpose of the numerical software (in the case of Plasma, Flame and DPlasma, respectively).

The advantage of relying on specialized runtime systems is that they can be optimized for both the

numerical algorithm and the target architecture. On the other hand, designing and maintaining a runtime

system is a highly time consuming task, which makes it difficult to design a fully-featured specialized

runtime system. The Chameleon library is based on the Plasma tile algorithms and code but relies on the

StarPU generic runtime system instead of the specialized Quark runtime system. One advantage is that

it allows for handling heterogeneous architectures (whereas Plasma and Quark were initially designed

for multicore chips). Another advantage when aiming at focusing on the impact of scheduling strategies

is that it allows for running in simulation mode with the field-proven combination [99] of StarPU and

Simgrid.

2.3.3 Simgrid simulation engine

Simgrid [29] is a versatile simulation toolkit initially designed to study the behavior of large-scale dis-

tributed systems like grids, clouds, or peer-to-peer systems. It builds on fluid network models that

have been proven as a reasonable alternative to both simple analytic models and expensive, difficult-to-

instantiate packet-level simulations.

The Simgrid version of StarPU [99] uses Simgrid to simulate the execution of an application within

a single machine. The idea is to run the application normally, except that data transfers and computation

kernel calls are replaced by a simple procedure accounting for the time they are expected to take, and

gathered coherently by Simgrid. StarPU models each execution unit (CPUs and GPUs) by defining the

time taken by each execution unit on each possible task/kernel [14]. It also models the PCI buses between

them, using offline bus bandwidth measurements, and relies on Simgrid to compute the interferences on

PCI buses between the different transfers.

The resulting simulated times are very close to actual measurements on the real platforms [99], and

properly reproduce the various behaviors that can be observed for the various schedulers. This allows

one to run experiments with the Simgrid version of StarPU, which provides several advantages:

• The time to simulate execution is reduced, since no actual computation or data transfer is done.

The Simgrid simulator itself is not parallel, so the whole execution gets serialized, but several

simulations can be run in parallel for e.g. various matrix sizes or schedulers, and one then gets all

the results in parallel.

• The experiments do not depend on the availability of the platform, both in terms of quotas, and in

terms of versions of the installed software, thus allowing reproducible experiments. This proved

useful while performing the experimentation for this very article, since the platform became un-

available for a couple of weeks due to Air Conditioning issues.

• The platform can be modified, for instance to change the available PCI bandwidth, the execution

times of the kernels, etc. In Section 2.5.3.2, we use this feature in order to build a virtual "related"

heterogeneous platform.
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2.4 Lower bounds

Performance results for linear algebra computation are often accompanied with an upper bound in terms

of FLOP’S, in order to assess the achieved efficiency. Since the theoretical peak performance is usually

unreachable, particularly with GPUs, the common bound being used is the performance of a simple

matrix multiplication (GEMM) since this is the most efficient dense linear algebra operation, and thus

providing a good hint of some achievable performance. This bound takes into account the heterogeneity

of the platform by summing up the obtained GFLOPS on the various processing elements. It however

does not take into account the heterogeneity of the application, which is particularly important for small

and medium matrices, for which a fair amount of the tasks are not GEMMs but much less efficient tasks

such as POTRFs, especially on accelerators.

We here propose much more accurate bounds that take into account both heterogeneity of the com-

putation resources and of the application kernels, by taking as input the execution time of any kernel on

any type of resource. They also to a certain extent take into account the task graph itself, in terms of task

dependencies.

2.4.1 Linear Programming formulation

The lower bound computation is based on a relaxation of the scheduling problem, in which almost all

precedence constraints are ignored. This formulation focuses on the number of tasks nrt of each type t
(GEMM, SYRK, TRSM, POTRF) which are executed on each resource type r (CPU, GPU, ...). From

the Cholesky task graph, we know the number Nt of tasks of each type t that need to be performed, and

from the platform we know the number Mr of processing elements of each type r available to schedule

the tasks. For each task type t and resource type r, the calibration mechanisms inside StarPU provide

the execution time Trt of these tasks on this resource type. The basic area bound is obtained by solving

the following linear problem:

minimize l such that

∀t,
∑

r

nrt = Nt (all Nt tasks of type t get executed)

∀r,
∑

t

nrtTrt ≤ l ×Mr (resources of type r complete their tasks)

∀r, t nrt ∈ N
+

It is clear that the optimal value l∗ of this linear program is a lower bound on the total execution time

of the task graph, since any execution needs to execute all tasks. Ignoring the task graph precedences

in this bound allows one to handle tasks of the same type with a couple of variables (one per resource

type), instead of having one variable for each task in the graph, thus limiting the number of variables

and reducing symmetries in the solution space. StarPU is able, without any input from the application

beyond the normal task submission, to automatically generate this program and solve it on the fly, right

after the application execution, which thus allows one to print this theoretical bound along the measured

performance in the application output.

Due to the actual timings of the different task types, this linear program always decides that all

POTRF tasks should be executed on CPUs, since all other task types make much more efficient use of

the GPU resources. However, in practice all POTRF tasks are on the critical path of the Cholesky graph,

and hence this implies that the resulting lower bound is too optimistic for small matrix sizes, since it

does not take dependencies into account. This interesting feature of the Cholesky task graph to contain a
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path with all n POTRF tasks can be used to strengthen the bound, without adding other variables in the

linear program. In addition to the n POTRF tasks, this path contains n− 1 of the
n×(n−1)

2 TRSM tasks,

and n − 1 of the
n×(n−1)

2 SYRK tasks. We can thus add the following constraint, which states that the

execution time is necessarily larger than the time to execute all these tasks in sequence:

∑

r

nrPTrP + (n− 1)× T ∗
T + (n− 1)× T ∗

S ≤ l

In this constraint, T ∗
T and T ∗

S denotes the fastest execution time of TRSM and SYRK tasks: we do not

model exactly on which resources these TRSM and SYRK tasks are executed, and thus underestimate

their completion times, ignoring which resource they actually run on1. The resulting lower bound is

called the mixed bound in the rest of the chapter. This linear program has a very small number of

variables and constraints (in particular, they are independent of the matrix size), and it can thus be

solved very quickly.

2.4.2 Constraint Programming formulation

In addition to this lower bound computation, we have used a Constraint Programming formulation of

the scheduling problem, in order to obtain good feasible solutions. These solutions provide both a

comparison point for StarPU schedules and a limit for possible improvements of the lower bound. The

formulation contains one boolean variable bir for each task i and each resource type r (only one can be

true for a given task), and one integer variable si for each task i which represents the starting time of the

task. The constraints are the following:

minimize l such that

∀i, OnlyOne(bi1, . . . , biR) (only one type of resource executes task i)

∀i, si +
∑

r

birTir ≤ l (task i completes)

∀r, ∀t,
∑

r

birTir}| ≤Mr (at time t the Mr resources of type r

are executing at most Mr tasks)

∀i→ j, si +
∑

r

birTir ≤ sj (dependency i→ j is respected)

We have implemented this constraint programming formulation using CP Optimizer v12.4. The first

constraint is expressed using the alternative constraint, and the third constraint uses the concept of

cumulative functions to express the number of tasks which use resources of type r at time t. The other

constraints are simple linear constraints and are easily expressed. The solver explores the solution space

with an exhaustive search and backtracking, using constraint propagation to reduce the search space as

much as possible.

Furthermore, providing the result of a HEFT heuristic as an initial solution allows the solver to

explore good solutions more rapidly. We let the solver optimize for 23 hours and keep the best solution

1It is possible to include additional variables to the linear program to have more precise values, but this does not provide

a better bound unless we take more dependencies into account, which requires adding too many variables and constraints and

makes the linear program intractable.
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found in this duration. The obtained solutions are quite good compared to what is obtained with other

heuristics, but the solver is unable to prove optimality.

Because it would otherwise be extremely costly to solve 2, this formulation does not take into ac-

count data transfers. With the usual platforms and the dense linear algebra operation being studied

(the Cholesky factorization), data transfers are indeed not a concern: computation is dense enough for

transfers to be largely overlapped with kernel computation.

2.4.3 Upper bounds on performance

Lower bounds on execution time also give upper bounds on the performance. Therefore, we have plotted

different theoretical performance upper bounds of the Cholesky factorization in Figure 2.2, based on real

execution timings of different tasks on the Mirage machine (described in section 2.5.2).
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Figure 2.2: Heterogeneous theoretical performance upper bounds

The critical path bound is calculated based on the critical path of the Cholesky task graph. While cal-

culating the critical path, we have taken into consideration the fastest execution time of each task among

the different resources. The area bound and mixed bound calculations are based on the description given

in mixed bound subsection 2.4.1. Since GEMM is the fastest kernel of the Cholesky factorization algo-

rithm, we have also plotted the GEMM Peak. This plot shows that the mixed bound is the tightest upper

bound among all upper bounds, and we will therefore compare the performance of our experiments only

with the mixed bound in the experiment section.

The performance of the constraint programming bound described in section 2.4.2 will be discussed

in section 2.5.3.3.

2 We also have written a version of the constraint programming formulation which takes data transfer times into account

but we could not obtain results at the scale of interest for this chapter.
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2.5 Experiments and Results

2.5.1 Schedulers

We have experimented with a few schedulers of StarPU, which are representative of state-of-the-art

heuristics.

The random scheduler assigns tasks randomly over all the computation resources. It uses an esti-

mation of the relative performance of the resources to balance the randomness, so that GPUs will be

assigned more tasks, according to their average acceleration ratio. This is thus representative of classical

partitioning heuristics, which take into account the heterogeneity of the platform, but do not take into

account the heterogeneity of the tasks.

The dmda (deque model data aware) and dmdas (deque model data aware sorted) schedulers use the

minimum completion time heuristic to assign tasks to computational resources: each task is assigned to

the processing resource which is estimated to complete it first, taking into account both the estimated

computation time on the estimated target resource, and the possible required data transfer time. The

difference between dmda and dmdas is that dmdas schedules tasks in order of their priorities, thus

making it representative of the state-of-the-art HEFT heuristic [104, 14].

The Cholesky factorization is a structured application, so we can estimate some extra information in

advance by analyzing the task graph with the help of different tools. These information could be an exact

schedule, priorities for some specific tasks, scheduling of some tasks on a particular worker/resource

type, etc. In the following section, we inject more or less of these extra information as static knowledge,

to influence the scheduling decisions and get better performance.

2.5.2 Experimental Setup

We have used a machine called Mirage to run and simulate our experiments. It has 2 Hexa-core West-

mere Intel® Xeon® X5650 processors and 3 Nvidia Tesla M2070 GPUs. In the actual execution, we

used only 9 CPU cores of the mirage machine so that the remaining 3 CPU cores can be used to fully

exploit the critical resource (GPUs) of the system. To make the performance comparable we stick to 9

CPU cores in all of our experiments.

2.5.3 Results

We have divided our experiments into two categories based on the types of configuration used. The

first one is Homogeneous category where we have run and simulated the performance behavior with 9

homogeneous CPU cores and the second one is Heterogeneous category, where we used 9 CPU cores

and 3 GPUs to run the tasks.

From the past literature we found that researchers are getting maximum performance in heteroge-

neous case with tile size equal to 960 [7], that is why we also kept the same tile size value throughout

all our experiments.

For actual executions, we provide the average and standard deviation of 10 runs in the plots. In simu-

lation mode, results are deterministic for all schedulers except for the random scheduler which relies on

random allocation choices. The simulated plots therefore provide average and standard deviation values

of 10 simulations with various seeds for the random scheduler.
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2.5.3.1 Homogeneous case

For the homogeneous case, we provide the results of real execution runs of Cholesky factorization with

the three different StarPU schedulers: random, dmda and dmdas.

✥

�✥

✁✥

✂✥

✄✥

☎✥

✆✥

✝✥

✞✥

✟✥

�✥✥

✥ ✄ ✞ �✁ �✆ ✁✥ ✁✄ ✁✞ ✂✁

●
✠
✡
☛
☞
✌

▼✍✎✏✑✒ ✓✑✔✕✖✗✘✙✎✑✚✙✕ ✛✜ ✟✆✥✢

✏✍r✣✛✗

✣✗✣✍

✣✗✣✍❞

❞✎✍r✣✍✏✣ ✣✕s✑✍✎✑✛r

Figure 2.3: Homogeneous actual performance

From Figure 2.3, it is clear that the random scheduler does not perform well. This happens because it

does not take into account the already assigned workload of the workers, and just selects a worker among

all workers with equal probability. This shows that the scheduler needs to take scheduling decisions

in some smart way. The other two schedulers which are based on data aware and early finish time

strategies perform much better than the random scheduler. Figure 2.3 also shows that dmdas slightly

under-performs compared to dmda for smaller number of tiles. This is due to the fact that dmdas is

biased towards the longest path (path with more work) and chooses some tasks in the beginning which

do not generate enough level of parallelism. But as time progresses, dmdas starts choosing tasks which

releases a higher number of tasks, because these tasks would be the critical ones, which improves the

overall performance of the execution.

We are also interested to know what the upper bound of the performance is, in order to determine

how far these results are from that bound with different types of schedulers. Since actual executions

add some runtime overhead and affect the performance, to mitigate this overhead we have compared the

bound with simulated performance.

Figure 2.4 shows that the behavior is very similar to the original execution, with a slight increase in

performance, since the communication cost was removed from the system. It also shows that the gap

between mixed bound and achieved performance is significant for small matrices.

Table 2.1: GPUs relative performance

POTRF TRSM SYRK GEMM

≃2× ≃11× ≃26× ≃29×
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Figure 2.4: Homogeneous simulated performance

2.5.3.2 Heterogeneous Case

In this subsection, we consider all the processing units of the Mirage machine. 9 CPUs and 3 GPUs are

used for the execution of tasks while the remaining 3 CPUs are used as drivers for the 3 GPUs. Table 2.1

shows the GPUs performance for each kernel with respect to CPUs performance, e.g.: GEMM is 29

times faster on GPU compared to CPU.

We divide our work into two parts. In the first part, we consider the impact of heterogeneity of

resources by considering a heterogeneous platform with related performance. More specifically, we

designed a fictitious hardware configuration, where execution time of each kernel on GPU is exactly K
times faster than the CPU execution time, and we call this case the heterogeneous related. The common

accelerator factor K is an average computed as follows :

K =

(

NP ∗ aP +NT ∗ aT +NS ∗ aS +NG ∗ aG
Total Number of Tasks

)

where,

NP : total number of POTRF tasks

aP : acceleration factor of POTRF on GPU

NT : total number of TRSM tasks

aT : acceleration factor of TRSM on GPU

NS : total number of SYRK tasks

aS : acceleration factor of SYRK on GPU

NG: total number of GEMM tasks

aG: acceleration factor of GEMM on GPU

Here, the acceleration factor depends on the number of tasks and the number of tasks depends on the

number of tiles. Therefore, we get different acceleration factors with different number of tiles.

In the second part of our work, we show the achieved performance with the actual hardware with the

help of both actual and simulated executions, and we call this case the heterogeneous unrelated case.
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We are using the mixed bound (as explained in Section 2.4.1) to compare the performance. The

bounds do not take into account the communication constraints. Therefore, to be fair in the comparison

we have used the simulated performance, where communication costs have been removed by modifying

the platform file of our machine (one of the good features of the Simgrid version of the StarPU runtime

system).

Heterogeneous related case Figure 2.5 shows the simulated performance with different sched-

ulers on the fictitious heterogeneous platform. Here, we can see that the random scheduler performs very

poorly because it assigns tasks randomly to the worker without knowing the already assigned workload

of workers, which limits the number of ready tasks in the system, and introduces significant idle time

on our critical resource (GPUs). We have also computed the mixed bound for this fictitious platform.

The difference between simulated performance and mixed bound is once again significant for small and

medium size matrices.
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Figure 2.5: Heterogeneous related simulated performance

Heterogeneous unrelated case First we compare the performance of different schedulers in ac-

tual execution and then between simulated performance and mixed bound.

As shown in Figure 2.6, in actual executions, the random scheduler does not perform well because it

is not taking data movement into account while making scheduling decisions: it assigns worker randomly

for each task, which may select different resource types for data dependent tasks and result in lots of

data movement from CPU memory to GPU memory and vice-versa. In addition, it is also not taking

the affinity of tasks to resource (e.g.: GEMM/SYRK is more suitable to be executed on GPU) into

account, which degrades the overall performance of the system. The other two schedulers perform

comparatively better than the random scheduler because they take into account data transfers when

assessing completion time in the HEFT-like scheduling strategies. Here we can also see that dmda
outperforms dmdas performance for smaller matrices, for the same reason as for the homogeneous case

(choosing the critical task versus tasks which generate high level of parallelism).
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Figure 2.6: Heterogeneous unrelated actual performance

We are now again interested in determining how far we are from the peak performance of the ap-

plication. Thus, we performed the simulation with different numbers of tiles. Figure 2.7 illustrates the

comparison between bounds and achieved performance in simulation. Here we can also see that the

performance difference between the best scheduler and the mixed bound is significant for small and

medium size matrices.
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Figure 2.7: Heterogeneous unrelated simulated performance

Comparison between Heterogeneous related and unrelated case In order to determine the

impact of heterogeneity of speed-up of tasks on performance, we present a comparison between related
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and unrelated heterogeneous simulations. To this end, we scaled the mixed bound of the related case such

that it perfectly matches with the mixed bound of the unrelated case, and also scaled all the performance

values of the related case with the same factor. The obtained results are given in Figure 2.8, which can

now be compared with the unrelated case of Figure 2.7.
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Figure 2.8: Heterogeneous related simulated scaled performance

Here we can see that unrelated speed-ups make the problem harder. That is why the gap between

state-of-the-art schedulers performance and mixed bound is large in Figure 2.7 compared to Figure 2.8.

Here, it is also clear that there is room for improvement in the case of small and medium size matrices

in the heterogeneous case.

2.5.3.3 Scheduling with static knowledge

The significant gap between performances of StarPU schedulers and the theoretical bound (mixed bound)

for small and medium size matrices in Figure 2.7 highlights the following things:

• Either the dynamic schedulers of StarPU return a scheduling that can be improved for small ma-

trices;

• Or the theoretical bound is not tight enough;

• Or both.

Indeed, the dmda and dmdas schedulers take only dynamic decisions to map the ready tasks onto the

processors depending on the state of resources and estimation of execution and communication times

(also priorities among ready tasks in dmdas), without taking into account the overall task graph. These

local choices may lead to bad decisions when the parallelism in the task graph is limited. We did some

experiments to improve the overall performance (in simulation mode) with static information in the

heterogeneous unrelated case.

Since GEMM and SYRK kernels are well suited to execute on GPUs, we enforced these kernels to

be executed on GPUs as static information to the StarPU runtime system. This strategy improves the
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Figure 2.10: Heterogeneous unrelated simulated performance with static knowledge

We also tried to inject the CP schedule in actual execution for small matrices, however we did

not get the good performance improvement compared to what we are getting in simulation. The CP

formulation indeed does not account data transfers, since as described in Section 2.4.2, solving a CP

with data transfers has shown intractable for the purpose at stake. Actual execution with CP schedule

thus adds lots of idle time on resources during data transfer, and consequently does not reproduce the

same performance in actual execution. The simulated execution has however allowed us to show, at least

in the case without data transfers, that some heuristics get relatively close to an achievable CP solution.
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Figure 2.11: Heterogeneous actual performance with static knowledge
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2.6 Discussion

2.6.1 dmda vs dmdas scheduler

We were expecting that dmdas would always perform better than dmda scheduler because it is also

taking the HEFT priority into account while making scheduling decision. Nevertheless, we found a few

cases where dmda outperforms dmdas. We investigated the generated trace files with dmda and dmdas
schedulers in order to determine the reasons of this behavior and we found that dmdas puts emphasis on

critical path rather than parallelism, since it selects some tasks in the beginning which are critical but

are not generating enough level of parallelism. That introduces some idle time on the critical resource

(GPUs) and degrades the overall performance of the system, which is a known defect of the HEFT

scheduler in general. Figure 2.12 and Figure 2.13 show traces with dmda and dmdas schedulers.

P�✁✂✄ ❚✂☎✆ ❙✝✂✞ ●✟✆✆ ■✠✡✟

Figure 2.12: GPU trace for 8 × 8 tiles with dmda scheduler

☛☞✌✍✎ ✏✍✑✒ ✓✔✍✕ ✖✗✒✒ ✘✙✚✗

Figure 2.13: GPU trace for 8 × 8 tiles with dmdas scheduler
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2.6.2 Mapping from Constraint Programming solution

We did some experiments by injecting only the mapping information (i.e. only the CPU/GPU informa-

tion, not the exact task order) of the feasible solution statically obtained by constraint programming, and

let the scheduler decide the precise ordering and worker dynamically. This extra information about re-

source allocation did not improve the performance of the system compared to the performance obtained

by dmda and dmdas schedulers, which indicates that the feasible solution is highly dependent of the

precise ordering chosen by constraint programming. This shows that heuristics required to achieve this

performance are probably very complex, probably even beyond only backfilling.

2.6.3 Constraint Programming schedule in actual execution

We did some experiments by injecting the schedule obtained by constraint programming in actual ex-

ecution for smaller matrices, but the performance improvement was not significant compared to the

state-of-the art schedulers. After looking into traces we found that resources are idle for significant por-

tion of time during data transfers. One of the prominent way to minimize the idle time on resources due

to data transfer is to use prefetching in computational order, but using the prefetching very early also

adds significant idle time on resources. Consider two data dependent tasks (second task is dependent on

data of first task) schedule on two different workers with different memories, after execution of the first

task, second task becomes ready and will initiate the data transfer request but it can be served only when

all the already initiated data transfers (some of these data transfers may correspond to task which will

be executed very late) by second worker are completed. One of the heuristic to minimize idle time on

resource is to use limited prefetching but even this strategy won’t solve the problem completely. Since

performance in CP schedule is highly dependent on task order of whole schedule, therefore adding idle

time on one of the resources may create idle time on other resources as well and degrades the overall

performance dramatically.

2.7 Conclusion

In this work, we have bridged the gap between theoretical performance bounds and actually achieved

performance on the dense Cholesky factorization. On the former side, we have proposed improved

bounds which take into account both resource and task heterogeneity, as well as critical paths. On the

latter side, we have introduced some static information into the dynamic task scheduler of StarPU, which

brought the performance closer to the theoretical bounds, and very close to what a statically-optimized

schedule can achieve. We have also shown that the performance achieved by such statically-optimized

schedule depends on precise non-intuitive task ordering, which thus can not be reached by simple list-

scheduling heuristics, even with backfilling.

We plan to try to verify the results on other hardware platforms, and apply the same methodology to

other dense linear algebra algorithms, but we also plan to try other classes of applications, notably less

irregular applications such as sparse linear algebra or FMM.

More generally, this work opens a bridge to closer interaction between applications and tasks sched-

ulers. We have shown that while generic heuristics such as HEFT achieve very good performance,

application-specific scheduling hints can noticeably improve performance. We aim at generalizing and

formalizing this kind of information, so that scheduling experts can easily analyze achieved performance,

optimize the schedule statically, and try to inject more or less application-specific scheduling hints into

the scheduler, such as "this proportion of TRSM tasks should be run on CPUs", or "these TRSM tasks
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should be run on CPUs", etc. The code produced for the purpose of the study will be reversed in the

StarPU runtime system and Chameleon dense linear algebra library.



Part II

Scheduling Under Memory

Constraints
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Chapter 3

Memory-aware list scheduling for hybrid

platforms

In the first part of this thesis, we took two courses of action to improve the performance of linear solvers.

We first designed a new hybrid LU-QR factorization suited for distributed platforms. This algorithms

was implemented in the PARSEC framework, relying on its dynamic scheduler to take care of the

resources management. We then focused on the dynamic scheduler itself by investigating how adding

static information in the StarPU dynamic scheduler can improve its performance. We saw in Chapter 2

that the StarPU runtime system uses the HEFT strategy by default. Although the classical heuristic

HEFT performs well on heterogeneous resources in term of completion time, it doesn’t take into account

the memory consumption. In this chapter, we dig further into the scheduling module of runtime systems

by designing new memory-aware alternative to the classical heuristic HEFT. It is indeed important

to minimize the maximum memory usage during a computation to avoid out-of-core memory access.

Many works have been done on minimizing the memory consumption while traversing a tree-shaped

or a general task graph workflow whose tasks require large I/O files. We can find many results in the

literature when a single memory is available. But most nowadays machines are heterogeneous, as wee

saw in the previous chapter. Multicores are associated with a dedicated accelerator, such as an FPGA

or a GPU. These computational units work on their dedicated memory. In this chapter, when consider

the problem of scheduling workflows on dual-memory clusters where two independent memories are

available. The amount of used memory of each type at a given execution step strongly depends upon the

ordering in which the tasks are executed, and upon when communications between both memories are

scheduled. At first, we assess the complexity of this problem by focusing, on the simple case where the

task graph is tree-shaped, and the mapping of the tasks onto the resources is already given. We establish

the complexity of this two-memory scheduling problem, and provide inapproximability results. We then

consider the general problem of scheduling an arbitrary workflow where each task can be mapped onto

either resource and has a different processing time for each. The memory-aware heuristics provided in

this chapter outperform the reference heuristics HEFT and MINMIN used in runtime systems on a wide

variety of problem instances.

3.1 Introduction

Modern computing platforms are heterogeneous: a typical node is composed of a multi-core processor

equipped with a dedicated accelerator, such as an FPGA or a GPU. These two computational units

(cores and accelerator) are strongly heterogeneous. To complicates matters, each unit comes with its

dedicated memory. Altogether, such an architecture with two computational resources and two memory

51
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types, which we call a dual memory system hereafter, leads to new challenges when scheduling scientific

workflows on such platforms. The nodes of the workflow correspond to tasks, and the edges correspond

to the dependencies among the tasks. The dependencies are in the form of input and output files: each

node accepts a (potentially large) file as input, and produces a set of files, each of them to be processed

by a different successor. We consider in this chapter that we have two different processing units at our

disposal, such as a CPU and a GPU. For sake of generality, we designate them by a color (namely blue

and red). To execute a task on a given resource, the input file and all the output files of the task must

fit within the corresponding memory. As the workflow is traversed, tasks are processed on different

memories, and capacity constraints on both memory types must be met. In addition, when a task is

executed on a different memory than its predecessor, say for example that a task executed on the blue

memory has a successor executed on the red memory, a communication from the blue memory to the

red memory must be scheduled before the successor can be processed (and again, the input file and all

output files of this successor must fit within the red memory). All these constraints require to carefully

orchestrate the scheduling of the tasks, as well as the communications between memories, in order to

minimize the maximum amount of each memory that is needed throughout the traversal.

In the first part of this chapter (Section 3.4), we consider the restricted problem where the workflow

is tree-shaped and each task in the workflow is best suited to a given resource type (say a core or a

GPU), and is colored accordingly. In this context, the objective is to determine an efficient traversal

that minimizes the maximum amount of memory of each type needed to traverse the whole tree. This

work mainly builds upon the pioneering work of Liu, who has studied tree traversals that minimize the

peak amount of memory used on a homogeneous system, hence with a single memory type. Liu first

restricted to depth-first traversals in [80], before dealing with an optimal algorithm for arbitrary traversals

in [81]. In many situations, the optimal traversal is a depth-first traversal, but this is not always the case.

An assessment of the relative performance of depth-first traversals versus optimal traversals is proposed

by [74]. The main objective of this part is to extend these results to colored trees with two memory types,

and tasks belonging to a given type. Clearly, the traversal, i.e., the order chosen to execute the tasks,

and to perform the communications, plays a key role in determining which amount of each memory is

needed for a successful execution of the whole tree. The interplay between both memories dramatically

complicates the scheduling: it is no surprise that the complexity of the problem, that was polynomial

with a unique memory, now becomes NP-complete.

In this first part, we concentrate on this difficult bi-criteria optimization problem, and derive several

complexity results: NP-completeness of the problem, and inapproximability within a constant (α, β)
factor pair of both absolute minimum memory amounts. Here the absolute minimum memory of a given

type is computed when assuming an infinite amount of memory of the other type. We also provide a

study of depth-first traversals and related variants. We show how to extend Liu’s algorithm to compute

the best depth-first traversal, which simultaneously minimizes both memory usages. However, while

depth-first traversals were natural algorithms with a single memory, they severely constrain the acti-

vation of communication nodes with two memories. We show that the optimization problem is still

NP-complete when relaxing the firing of communication nodes in depth-first traversal, which leads us

to go beyond depth-first traversals and to introduce general heuristics. These heuristics extends Liu’s

optimal algorithm along various (greedy) decision criteria to trade-off the usage of both memory types.

Finally, we assess the performance of all these heuristics using both randomly generated trees, and actual

elimination trees that arise from the multifrontal factorization of sparse linear systems.

In the second part of this chapter (Section 3.5), we study a more realistic model with several compli-

cations: (i) tasks are not pre-assigned but can be dynamically assigned to either resource; (ii) task graphs

are general DAGs rather then trees; and (iii) one aims at optimizing total execution time (or makespan)

while minimizing memory usage. Here, the objective is makespan minimization, while enforcing that
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memory capacities of each type are not exceeded. Given the negative results derived in the first part,

there is little hope to design approximation algorithms. We lower our ambition and aim at designing effi-

cient heuristics for this problem, which we validate through an extensive set of simulations for a variety

of scientific benchmarks. However, one major theory-oriented contribution of this section is the deriva-

tion of an Integer Linear Program (ILP) formulation for the general problem. This linear program turns

out very intricate, due to expressing all constraints related to memory usage, and it has a large number of

variables and constraints. Still, it enables us to determine the optimal solution for small-size problems,

up to 30 tasks, and thereby to assess the optimal performance of our heuristics for small instances.

HEFT [103] is widely used for scheduling scientific workflows on heterogeneous resources. It is an

extension of critical-path list-scheduling that schedules the current ready task on the resource that will

complete its execution as soon as possible (given already taken scheduling decisions). By considering

task completion instead of task initiation, HEFT is able to take CPU speed heterogeneity into account.

However, HEFT has no provision to optimize memory usage, even for a single-memory system, and

a fortiori for a dual-memory one. Another main contribution of this chapter is to introduce a memory-

aware variant of HEFT for dual-memory systems. Similarly, we design a memory-aware variant of

MINMIN [25], another reference heuristic for DAGs where the next task to be executed is selected

dynamically (rather than according to some static criteria as in HEFT): MINMIN picks the ready task

which has the smallest completion time and executes it on the best available processor.

The rest of the chapter is organized as follows. We start with a brief overview of related work in

Section 3.2. Then we detail the model and framework in Section 3.3. Section 3.4 is devoted to the

complexity study of the restricted problem where the workflow is tree-shaped and the task are initially

colored. We also study of depth-first traversals, a first class of (widely-used) heuristics, and introduce

additional heuristics. In Section 3.5, we tackle the general problem, by expressing an optimal schedule in

terms of the solution of a complex ILP. and introducing new heuristics. Finally, we provide concluding

remarks in Section 3.6.

3.2 Related work

3.2.1 Task graph scheduling

Computations with dependencies are naturally modeled through task graphs, where nodes represent

computational tasks and edges represent dependencies. Task graph scheduling has been the subject of a

wide literature, ranging from theoretical studies to practical ones. On the theoretical side, the most used

techniques are list scheduling [33], clustering [86], and task duplication [9]. On the practical side, task

graphs have been widely used to model complex workflows in grid computing [48]. Scheduling task

graphs on grids is the subject of a wide literature, and many tools exist to manage and schedule such

workflows, such as MOTEUR [55]. These tools usually include scheduling heuristics to map workflow

tasks onto available resources. These heuristics were often inherited from the task graph scheduling

literature, and were more or less adapted to cope with the intrinsic heterogeneity of grid environments.

The most famous task graph scheduling algorithm for grids and heterogeneous platforms is HEFT [103],

which we use and adapt to our dual-memory context.

3.2.2 Pebble game and its variants

On the more theoretical side, this work builds upon the many papers that have addressed the pebble game

and its variants. Scheduling a graph on one processor with the minimal amount of memory amounts to

revisiting the I/O pebble game with pebbles of arbitrary sizes that must be loaded into main memory



54 CHAPTER 3. MEMORY-AWARE LIST SCHEDULING FOR HYBRID PLATFORMS

before firing (executing) the task. The pioneering work of Sethi and Ullman [96] deals with a variant

of the pebble game that translates into the simplest instance of the problem with a unique memory

and where all files have weight 1. The concern in [96] was to minimize the number of registers that

are needed to compute an arithmetic expression. The problem of determining whether a general DAG

can be traversed with a given number of pebbles has been shown NP-hard by Sethi [95] if no vertex

is pebbled more than once (the general problem allowing recomputation, that is, re-pebbling a vertex

which have been pebbled before, has been proven PSPACE complete [52]). However, this problem has

a polynomial complexity for tree-shaped graphs [96]. Recently, still in the contact of a single memory

type, an extension of these results to parallel machines base been proposed in [83].

3.2.3 Scheduling with memory constraints

The problem of scheduling a task graph under memory constraints appears in the processing of scientific

workflows whose tasks require large I/O files. Such workflows arise in many scientific fields, such as

image processing, genomics or geophysical simulations. The problem of task graphs handling large data

has been identified in [91] which proposes some simple heuristic solutions. Most existing theoretical

studies are restricted to tree-shaped task graphs, that arise in some application domains such as the

factorization of sparse matrices using the multifrontal method [81, 80]. We refer the interested reader

to our recent paper [65] for an extended bibliography on adding memory constraints to the problem of

scheduling tree-shaped task graphs.

3.2.4 Hybrid computing

Hybrid computing consists in the simultaneous use of CPUs and GPUs to optimize performance for

high performance computing. Since CPUs and GPUs are powerful for specific and different tasks, its is

natural to schedule tasks on their “favorite” resource, that is, the resource where their execution time is

minimal. This has successfully been achieved to increase performance in linear algebra libraries [8, 70].

There also exist software tools that schedule an application composed of tasks with both CPU and GPU

implementations on hybrid platforms: for instance, StarPU [15] optimizes the execution time of an

application by scheduling its tasks on multiple kinds of resources, based on predictions of execution and

data transfer times.

3.3 Model and framework

As stated above, we deal with general task graph traversals on a dual-memory system, where each task

can be executed on either of the two processing units, that is, with its associated data in one of either

memory. Dependencies are in the form of input and output files: each task accepts a set of files as input

from each of its predecessors in the DAG, and produces a set of files to be consumed by each successor

node. We start this section by formally writing all the constraints that need to be satisfied during a

traversal. Finally, we state the target optimization problem in Section 3.3.3.

3.3.1 Flow and resources constraints

We consider, in this chapter, a dual-memory heterogeneous platform with P1 identical processors which

share the first memory and with P2 identical processors which share the second memory. For clarity, in

the rest of the chapter, the first memory will be referred to as the blue memory and the P1 processors
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P1 blue processors P2 red processors

Figure 3.1: Description of the dual-memory platform.

sharing it will be called the blue processors. Similarly, the second memory and its processors will be

associated to the color red as depicted in Figure 3.1.

The application is described by a Directed Acyclic Graph D = (V,E) composed of |V | = n nodes,

or tasks, numbered from 1 to n. We let Succ(i) = {j ∈ V s.t. (i, j) ∈ E} denote the set of successors

of i and Pred(i) = {j ∈ V s.t. (j, i) ∈ E} denotes the set of predecessors of i. Dependencies imply a

topological order, where a node has to be processed before its successors. Here are some definitions:

• Each task i in the DAG requires a processing time of W
(1)
i on one of the blue processors and a

processing time of W
(2)
i on one of the red processors.

• Each communication (i, j) ∈ E is instantaneous if nodes i and j are executed on processors that

belong to the same memory. Otherwise, the file produced by node i and needed as input by node

j has to be sent from one memory to the other. This transfer takes Ci,j time units.

For example, consider the toy example DAG Dex depicted in Figure 3.2. Task T1 can be processed

in W
(1)
1 = 3 time units on a blue processor and in W

(2)
1 = 1 time unit on a red processor. If tasks T1

and T2 are not executed on the same memory, the communication (T1, T2) will take C1,2 = 1 time unit

to be processed. We point out that all communication times are set arbitrarily to 1 in this example (e.g.,

to account for a high start-up cost). Of course, an affine formula (such as Ci,j = α + βFi,j), or even

arbitrary values, can be used in the model.

T1 :

T2 : : T3

T4 :

W
(1)
1 = 3

W
(2)
1 = 1

W
(1)
3 = 6

W
(2)
3 = 3

W
(1)
2 = 2

W
(2)
2 = 2

W
(1)
4 = 1

W
(2)
4 = 1

F1,2 = 1

C1,2 = 1

F1,3 = 2

C1,3 = 1

F2,4 = 1

C2,4 = 1

F3,4 = 2

C3,4 = 1

Figure 3.2: Description of Dex.

Given an application DAG, our goal is to determine where each task should be executed (the alloca-
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tion) and at what time each task and communication may be started (the starting times). The allocation

is described by function proc : V → J1, P1 + P2K where ∀i ∈ V , proc(i) represents the index of the

processor that processes task i. proc(i) ≤ P1 represents a blue processor while proc(i) > P1 represents

a red processor. The starting times are expressed as two functions σ : V → R
+ and τ : E → R

+ where

∀i ∈ V , σ(i) represents the starting time of task i and ∀(i, j) ∈ E, τ(i) represents the starting time of

communication (i, j).

Let Wi be the actual processing time of task i in the schedule s = (σ, τ, proc):

Wi =

{

W
(1)
i if proc(i) ≤ P1

W
(2)
i otherwise

We note COMM i,j the actual time taken by communication (i, j) in the schedule s = (σ, τ, proc):

COMM i,j =







0 if proc(i) ≤ P1 and proc(j) ≤ P1

0 if proc(i) > P1 and proc(j) > P1

Ci,j otherwise

A schedule s = (σ, τ, proc) of D is a valid schedule if it respects:

• flow dependencies, ∀(i, j) ∈ E:

{

σ(i) +Wi ≤ τ(i, j)
τ(i, j) + COMMi,j ≤ σ(j)

• resource constraints, ∀(i, j) ∈ V 2:

proc(i) = proc(j) =⇒







σ(i) ≤ σ(j) +Wj

or

σ(j) ≤ σ(i) +Wi

The makespan of the schedule is the finish time of the last task:

Makespan = max
i∈V

(σ(i) +Wi)

Back to the exampleDex , on a dual-memory platform with one blue processor and one red processor

(P1 = P2 = 1), consider the following schedule s1 depicted in Figure 3.3 for :







σ1(T1) = 0, σ1(T2) = 2, σ1(T3) = 1, σ1(T4) = 5
τ1(T1, T2) = 1, τ1(T2, T4) = 4
proc1(T1) = 2, proc1(T2) = 2, proc1(T3) = 1, proc1(T4) = 2

Schedule s1 = (σ1, τ1, proc1) is a valid schedule for Dex, with Makespan = 6.

3.3.2 Memory constraints

As stated above, in our model, the dependencies are in the form of input and output files. Each node i
in the DAG has an input file of size Fj,i for each j ∈ Pred(i). If i is not an input node, its input file is

produced by its predecessors; if i is an input node, then it means that Pred(i) = ∅ and its input files may

be of null size, or it may receive input from the outside world. Each non-terminal node i in the DAG,

when executed, produces a file of size Fi,j for each j ∈ Succ(i). If i is a terminal node, then Succ(i) = ∅
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Figure 3.3: Representation of schedule s1 for Dex.

and i produces a file of null size (we consider that terminal data produced by terminal nodes are directly

sent to the outside world).

During the processing of a task i on one of the processors, the memory on which this processor

operates must contain all the input and output files. The amount of memory MemReq(i) that is needed

for this processing is thus:

MemReq(i) =





∑

j∈Pred(i)

Fj,i



+





∑

j∈Succ(i)

Fi,j





For instance, in Dex, MemReq(T3) = F1,3 + F3,4 = 4. Note that the memory needed for the

execution of the task itself can easily be accounted for, by adding a fictitious predecessor. After task

i has been processed, its input files are discarded, while its output files are kept in memory until the

processing of its successors. Thus, for a schedule s = (σ, τ, proc) of D , if a node i is processed by a

blue processor, the actual amount of blue memory used to process the node i is:

BlueMemUsed(s, i) =





∑

j∈Succ(i)

Fi,j



+
∑

e∈Sblue

Fe

where Sblue denotes the set of files (represented by the edges of D ) stored in the blue memory, when

the scheduler decides to execute task i. Note that Sblue must contain the input files of task i. After the

processing of node i, we have:

Sblue ← (Sblue\{(j, i), j ∈ Pred(i)}) ∪ {(i, j), j ∈ Succ(i)}

Of course, the same holds for RedMemUsed and Sred if i happens to be processed by a red processor.

Initially, the input file of the root is arbitrarily located in Sblue.

Consider the schedule s1 depicted in Figure 3.3. The execution of task T1 uses RedMemUsed(T1) =
F1,2+F1,3 = 3 units of red memory. The execution of task T2 uses BlueMemUsed(T2) = F1,2+F2,4 = 2
units of blue memory. The execution of task T3 uses RedMemUsed(T3) = F1,2 + F1,3 + F3,4 = 5 units

of red memory. And the execution of task T4 uses RedMemUsed(T4) = F2,4 + F3,4 = 3 units of red
memory.
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Each time there is a data dependence between two tasks assigned to different memories, the output

file of the source task has to be loaded from one memory into the other. During the processing of the

communication (i, j), both memories contain the file of size Fi,j being copied. Thus, for instance, if i
has been assigned on a blue processor and j has been assigned on a red processor, the amount of blue
and red memory needed for this processing is Fi,j :

BlueMemReq(i, j) = Fi,j , RedMemReq(i, j) = Fi,j

After the communication has been processed, the input file from the blue memory is discarded, while

the output file is kept in the red memory until the processing of j. Thus, for a schedule s = (σ, τ, proc)
of D , the actual amounts of memory used to process the communication (i, j) are:

BlueMemUsed(s, (i, j)) = Fi,j +
∑

e∈Sblue\{(i,j)}

Fe

RedMemUsed(s, (i, j)) = Fi,j +
∑

e∈Sred

Fe

Note that Sblue must contain the input file of task i. After the processing of the communication (i, j) we

have:

Sblue ← Sblue\{(i, j)}, Sred ← Sred ∪ {(i, j)}

It is important to state that communication (i, j) does not need to be fired right after the execution

of task i. The only constraint is that the processing of communication (i, j) must follow the execution

of i and precede the execution of j. This flexibility in the schedule severely complicates the search for

efficient traversals.

3.3.3 Optimization problem

As stated above, we face an optimization problem under memory constraints. The memory peak is the

maximum usage of each memory over the whole schedule s = (σ, τ, proc) of the DAGD , and is defined

for the blue and the red memory by:

M s
blue(D) = max

i
BlueMemUsed(s, i)

M s
red(D) = max

i
RedMemUsed(s, i)

In practical settings, the amount of memory at disposal is limited. Let note M (blue) and M (red) the

bounds on the blue and the red memories. We aim at finding the optimal schedule sopt(M
(blue),M (red))

of the DAG D , defined as the schedule with minimal makespan among all schedules s that does not

require more memory than available, i.e., that enforce the bounds on memory peaks: M s
blue(T ) ≤

M (blue) and M s
red(T ) ≤M (red).

Back to the schedule s1 described in Figure 3.3, assume a dual-memory platform with one blue
processor and one red processor. We compute that s1 uses M s1

blue(Dex) = 2 units of blue memory and

M s1
red(Dex) = 5 units of red memory. If we set the memory bounds M (blue) = M (red) = 5, it is clear that

s1 is the optimal schedule. But if we set M (blue) = M (red) = 4, s1 is no longer an acceptable schedule.

In this case, the optimal schedule for Dex will be s2, the schedule depicted in Figure 3.4. Schedule s2
has a smaller memory peak than s1 but has a larger Makespan = 7. This small example illustrates the

necessary tradeoff between memory and makespan.
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Figure 3.4: Representation of schedule s2

3.4 Tree traversal with pre-assigned task

In this section, we focus on the restricted problem where the workflow is tree-shaped and each task is

pre-assigned onto a resource. Determining a memory-efficient tree traversal is very important in sparse

numerical linear algebra. The elimination tree is a graph theoretical model that represents the storage

requirements, and computational dependencies and requirements, in the Cholesky and LU factorization

of sparse matrices. Memory minimization is still a concern in modern multifrontal solvers when dealing

with large matrices. In this section, we want to assess the complexity of minimizing the maximum

memory usage when traversing a tree without makespan consideration. Thus, we consider one resource

of each type and the mapping of the tasks onto the resources is already given. For commodity reasons,

we will talk about colored trees where each task has the color of the resource it is assigned to. Thus,

this coloring enforces the mapping proc of the schedule s = (σ, τ, proc). The optimization problem

becomes finding the starting time of every tasks and communications such that the memory peaks are

minimized.

It is interesting to note that there is a complete equivalence between top-down traversals of out-trees

(the problem addressed in this section) and bottom-up traversals of in-trees (as used in sparse matrices

factorization). In a nutshell, one only needs to reverse the direction of the edges, and to execute the

schedule backwards, to move from one variant to another1. In fact, the literature deals with both variants.

The seminal paper of Liu [80] originally deals with post-order bottom-up traversals for in-trees, while

we speak of depth-first top-down traversals for out-trees in this section, but there is no actual difference.

Complexity results for the bi-objective problem are derived in Section 3.4.1. Section 3.4.2 is de-

voted to the study of depth-first traversals, a first class of (widely-used) heuristics. Then we introduce

additional heuristics in Section 3.4.3. The experimental evaluation of all the heuristics is conducted in

Section 3.4.4.

3.4.1 Complexity results on trees

This section presents several important complexity results. We start with the NP-completeness of the

two-memory minimization problem on colored trees in Section 3.4.1.1. Next we show in Section 3.4.1.2

that the problem reduces to traversing uncolored trees when one memory is unbounded. Finally, we

prove in Section 3.4.1.3 that it is impossible to approximate both minimum memories within arbitrary

1This equivalence has been formally proven in [74] for single-memory platforms, and it is straightforward to extend the

proof for two-memory systems.
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constant factors.

3.4.1.1 Hardness of the problem

Our first result assesses the complexity of the problem, as formulated in the following definition.

Definition 3.1 (TWOMEMORYTRAVERSAL). Given a tree T with n nodes, and two fixed memory

amounts Mred and Mblue, does there exist a traversal σ of the tree such that Mσ
blue(T ) ≤ Mblue and

Mσ
red(T ) ≤Mred?

Theorem 3.1. The TWOMEMORYTRAVERSAL problem is NP-complete.

Proof. The problem clearly belongs to NP, and the certificate is the ordered list of tasks (of both colors

and including uncolored communication nodes) executed by the schedule; it is easy to maintain the

amount of each memory required by the schedule, and to check that neither Mred nor Mblue is exceeded.

To establish the completeness, we use a reduction from the 2-Partition problem [49]. Consider an

instance Inst1 of the 2-Partition problem, with n integers {a1, a2, ..., an ‖
∑n

i=1 ai = S}. Consider an

instance Inst2 of the TWOMEMORYTRAVERSAL, consisting in the tree depicted on Figure 3.5. We set

the bounds Mred = 3S for the red memory and Mblue = 2S for the blue memory. The construction of

Inst2 is polynomial in the size of Inst1.

Assume first that Inst2 has a solution. Any traversal must start with the root Broot. After it has

been processed, 2S units of the blue memory are occupied, which means that it is full. Without loss of

generality (by symmetry), assume that C is the next node to be executed. Then, we observe that if C(2)

was the third executed node, we could never process Rroot nor R
(2)
root without violating the Mred bound

for the red memory. Thus, the third executed node has to be Rroot.

• We observe that the red tasks Rbig and Rfree, and each communication task Ci, all have to be

processed before R
(2)
root, otherwise, since the execution of R

(2)
root require 3S units of memory, it

would violate the Mred bound for the red memory. Besides, since we can not execute R
(2)
root before

Rbig, if C(2) were processed before Rbig, there would be at least S units of memory in the red
memory and the execution of Rbig (which requires 5

2S units of the red memory) would violate the

Mred bound. Thus, the node Rbig has to be processed before C(2).

• Besides, let i0 be the index of the first processed task Bi in the traversal. Its execution requires

ai0 +
3
2S units of the blue memory, which implies that it can not be processed before C(2) without

violating the Mblue bound for the blue memory. Thus, the node Rbig has to be processed before

Bi0 .

According to the previous arguments, the only tasks that can be processed right after Rroot and

before Rbig are the communication tasks Ci. Let I be the set of the indices of the tasks Ci executed after

Rroot and before Rbig.

→ After the execution of Rroot, there are 2S units occupied in the red memory and S units in the

blue memory. Thus, to execute Rbig without violating the Mred bound, the amount of red memory

to free is at least S
2 . This means that

∑

i∈I ai ≥
S
2 .

→ Besides, if
∑

i∈I ai >
S
2 , the execution of Bi0 (which requires at least

∑

i∈I ai +
3
2S units of the

blue memory) will violate the Mblue bound.
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Figure 3.5: Tree used in the proof of Theorem 3.1

Thus,
∑

i∈I ai =
S
2 , which implies that Inst1 has a solution.

Suppose now that Inst1 has a solution I . According to the previous reasoning, the sequence of nodes

Broot; C; Rroot; ∀i ∈ I Ci; Rbig and Rfree can be executed without violating the bounds on memories.

After this sequence, there are 3
2S units occupied in the blue memory and the red one is empty. The node

C(2) can be processed to load S units from the blue memory to the red one. Now, one of the blue node

Bi0 with i0 ∈ I can be executed without violating the Mblue bound, followed by B′
i0

. Moreover, we

can process every Bi and B′
i for all i ∈ I to free the blue memory. Then, it is possible to execute every

branch of Ci down to B′
i for all i /∈ I . From this point on, we can process the sub-tree rooted at the node

R
(2)
root using the same pattern, which means that Inst2 has a solution and concludes the proof. �

3.4.1.2 When one memory is unbounded

In this section, we focus on the computation of Mopt
red (T ) (or Mopt

blue(T )) which represents the minimal

peak memory reachable when there is no constraint on the other memory. We show that the computation

of Mopt
red (T ) and Mopt

blue(T ) for a bi-colored tree T reduces to the computation of the minimal peak

memory for an uncolored tree.

Definition 3.2. Given a bi-colored tree T , we construct the corresponding uncolored (or for conve-

nience, single-colored) tree Tblue by turning every communication node and red node into a blue node,

and by turning every red edge of weight fi into a blue edge of weight 0, as depicted in Figure 3.6.

We construct the single-colored tree Tred in a similar way. We let M∞
blue denote the minimal amount of

memory needed to process Tblue (and similarly, M∞
red for Tred).

The following result is straightforward.
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Figure 3.6: A bi-colored tree T and its corresponding single color trees Tblue and Tred in Definition 3.2.

Theorem 3.2. For any bi-colored tree T , we have M∞
red = Mopt

red (T ) and M∞
blue = Mopt

blue(T ).

Proof. Given a bi-colored tree T with n nodes, consider Tblue and M∞
blue as in Definition 3.2. We show

here that M∞
blue = Mopt

blue(T ). The proof for M∞
red = Mopt

red (T ) is similar.

First, T and Tblue have the same shape. The only differences between T and Tblue are some edge

values and the color of some vertices and edges. Thus, to any feasible traversal σ of T , we can associate

the corresponding feasible traversal σblue of Tblue, and reciprocally. For any node i ∈ J1, nK of T , its

corresponding node in Tblue will be referred at as iblue ∈ J1, nK, thus σ(i) = σblue(iblue). Moreover we

show that BlueMemUsed(σ, i) = MemUsed(σblue, iblue) for each node i ∈ J1, nK,:

• If color(i) = blue, node i is not changed in Tblue as described in Definition 3.2. Thus,

BlueMemReq(i) = MemReq(iblue) and the size of the files stored in the memory after iblue has

been processed is the same that the files stored in the blue memory after i has been processed.

• If color(i) = red, then BlueMemReq(i) = 0 and no file is stored in the blue memory after i has

been processed. Besides, for the corresponding node iblue in Tblue, we have fiblue = 0 and fj = 0
for each j ∈ Succ(iblue). Thus MemReq(iblue) = 0 and no file is stored in the memory after iblue

has been processed.

• If i is uncolored (communication node), then BlueMemReq(i) = fi. There are two sub-cases:

- If i is a communication node from a blue node to a red node, its processing will store no file

in the blue memory. According to the Definition 3.2, if jblue denotes the successor of iblue,

we have fiblue = fi and fjblue = 0. Thus, MemReq(iblue) = fi and no file is stored in the

memory after iblue has been processed.
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- If i is a communication node from a red node to a blue node, its processing will store a file

of size fi in the blue memory. According to the Definition 3.2, if jblue denotes the successor

of iblue, we have fiblue = 0 and fjblue = fi. Thus, MemReq(iblue) = fi and a file of size fi is

stored in the memory after iblue has been processed.

During the whole process BlueMemReq(σ, i) = MemReq(σblue, iblue). Besides, the size of the files

stored in the blue memory after i has been processed and the size of the files stored in the memory after

iblue has been processed are equal. Thus BlueMemUsed(σ, i) = MemUsed(σblue, iblue) and Mopt
blue(T ) =

M∞
blue. �

3.4.1.3 Joint minimization of both objectives

Since the traversal problem is NP-complete, it is natural to wonder whether there it is possible to get a

schedule with guaranteed blue and red peak memories, compared to the optimal ones. In this section,

we show that a trade-off must be enforced between these two objectives: indeed, if one wants a strong

guarantee on one memory (blue or red), then the produced schedule may be arbitrarily bad for the

other memory. More specifically, we prove that there does not exist schedules that can simultaneously

approximate both minimum memories Mopt
blue(T ) and Mopt

red (T ) within arbitrary constant factors, for

any bi-colored tree T . Since the (usually unfeasible) point of the Pareto diagram with coordinates

(Mopt
blue(T ),M

opt
red (T )) is sometimes called the Zenith in multi-objective optimization [46], this result

amounts to proving that there exists no Zenith-approximation.

Definition 3.3. Given a bi-colored tree T , we can construct the corresponding uncolored tree Tunco by

turning every colored node of T into an uncolored node, as depicted in Figure 3.7. We let Mopt
unco(Tunco)

be the minimal amount of memory needed to process Tunco.
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Figure 3.7: A bi-colored tree T and its corresponding uncolored tree Tunco in Definition 3.3.

The following lemma is helpful to prove the inapproximability theorem.

Lemma 3.1. Given a bi-colored tree T with n nodes, consider an arbitrary traversal σ of T that requires
an amount of red memory equal to Mσ

red(T ) and an amount of blue memory equal to Mσ
blue(T ). Then

necessarily:

Mσ
red(T ) +Mσ

blue(T ) ≥Mopt
unco(Tunco)
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Proof. Let Tunco be the uncolored tree corresponding to T as described in Definition 3.3. We observe

that T and Tunco have the same tasks, hence to any feasible traversal σ of T , we can associate the corre-

sponding feasible traversal σu of Tunco, and reciprocally. For any node i ∈ J1, nK of T , its corresponding

node in Tunco will be referred to as iu ∈ J1, nK, thus σ(i) = σu(iu).
We will show that

∀i ∈ J1, nK, BlueMemUsed(σ, i) + RedMemUsed(σ, i) = MemUsed(σu, iu)

We proceed along the following case analysis:

• If color(i) = blue, then BlueMemReq(i) = MemReq(iu) and RedMemReq(i) = 0. Besides, no

file is stored in the red memory after i has been processed; also, the size of the files stored in the

blue memory after i has been processed is the same as that of the files stored in the memory after

iu has been processed.

• If color(i) = red, then RedMemReq(i) = MemReq(iu) and BlueMemReq(i) = 0. Besides, no file

is stored in the blue memory after i has been processed; also, the size of the files stored in the red
memory after i has been processed is the same as that the files stored in the memory after iu has

been processed.

• If i is uncolored (communication node), then BlueMemReq(i) + RedMemReq(i) = 2 × fi =
MemReq(iu). Besides, a file of size fi will be stored in one of the two memories after i has been

processed, and a file of size fi will be stored in the memory after iu has been processed.

During the whole traversal, we thus have BlueMemReq(σ, i) + RedMemReq(σ, i) = MemReq(σu, iu).
The sum of the size of the files stored in the blue memory and of the size of the files stored in the red
memory after i has been processed is always equal to the size of the files stored in the memory after iu
has been processed. Thus BlueMemUsed(σ, i) + RedMemUsed(σ, i) = MemUsed(σu, iu). This means

that:

Mopt
unco(Tunco) ≤Mσu

unco(Tunco)

= max
i

MemUsed(σu, i)

= max
i
{BlueMemUsed(σ, i) + RedMemUsed(σ, i)}

≤ max
i
{BlueMemUsed(σ, i)}+max

i
{RedMemUsed(σ, i)}

= Mσ
red(T ) +Mσ

blue(T )

which concludes the proof. �

Theorem 3.3. Given two constants α and β, there exists no algorithm that is both an α-approximation
for blue memory peak minimization and a β-approximation for red memory peak minimization, when
scheduling bi-colored trees.

Proof. To establish this result, we proceed by contradiction. We therefore assume that there is an integer

α, an integer β, and an algorithm A that processes any bi-colored tree T using a blue peak memory that

is not greater than α times the optimal blue peak memory Mopt
blue(T ) and using a red peak memory that

is not greater than β times the optimal red peak memory Mopt
red (T ). To derive the contradiction, we use

the family of tree (Tn)n∈N depicted on Figure 3.8. Tn is defined recursively using Tn−1. To help the

reader to visualize Tn, Figure 3.9 represents T2.
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Figure 3.8: Recursive definition of Tn in the proof of Theorem 3.3

• ∀n ≥ 2,Mopt
blue(Tn) = 3

Consider the traversal σblue that processes Tn as follows:

- If n = 0, σblue processes the node B0

- If n > 0, σblue processes the nodes Bn and Cn. Then T
(left)
n−1 is processed recursively. Nodes

Rn and C ′
n follow. And finally T

(right)
n−1 is processed recursively.

At each step of this process, the traversal σblue does not use more than 3 units of blue memory.

Since BlueMemReq(Bn−1) = 3, this proves that Mopt
blue(Tn) = 3.

• ∀n ≥ 1,Mopt
red(Tn) = 2

Consider the traversal σred that processes Tn as follows. At step k:

- If k = 0, σred processes the node B0

- If k > 0, σred processes the nodes Bk. Then T
(left)
k−1 is processed recursively. Nodes Ck, Rk

and C ′
k follow. And finally T

(right)
k−1 is processed recursively.

At each step of this process, the traversal σred does not use more than 2 units of red memory. Since

RedMemReq(Rn) = 2, this proves that Mopt
red (Tn) = 2.

• Let T unco
n be the uncolored tree corresponding to Tn as describe in Definition 3.3 and Mopt

unco(T unco
n )

the minimum amount of memory required to execute it. T unco
2 is depicted in Figure 3.9. We

now prove by induction that Mopt
unco(T unco

n ) = n + 2 for n ≥ 2. As show in [81], post-order

traversals are optimal for peak memory minimization of uncolored trees with unit costs. Besides,

all post-order traversals of T unco
n require the same amount of memory. Thus Mopt

unco(T unco
n ) =

Mopt
unco(T unco

n−1 ) + 1 for n ≥ 2. Since Mopt
unco(T unco

1 ) = 2, we have the result.

By hypothesis, algorithmA can process any Tn with MA
blue(Tn) ≤ α.Mopt

blue(Tn) = 3α and MA
red(Tn) ≤

β.Mopt
red (Tn) = 2β. Let n0 = ⌈3α+ 2β⌉, we have:

MA
blue(Tn0) +MA

red(Tn0) ≤ 3α+ 2β

< ⌈3α+ 2β⌉+ 2

= Mopt
unco(T

unco
n0

)

This contradicts Lemma 3.1, which means that such an algorithm A cannot exist. �



66 CHAPTER 3. MEMORY-AWARE LIST SCHEDULING FOR HYBRID PLATFORMS

1

1
1

1

1

1

1

1

1

1

1
1

1

1

1

GGGGGA

1

1
1

1

1

1

1

1

1

1

1
1

1

1

1

Figure 3.9: T2 and T unco
2 in the proof of Theorem 3.3.

3.4.2 Depth-first traversals

In this section, we study depth-first traversals, which are the equivalent of post-order traversals for in-

trees. In the context of single-memory trees, depth-first traversals are known to be sub-optimal [81]:

worse, their memory usage can be arbitrarily high as compared to that of the optimal solution [74].

Clearly, these negative results remain true in a two-memory framework (simply assume that one memory

is infinite). Still, depth-first traversals are a natural heuristic for traversing tree graphs, and they enjoy a

simple implementation and memory management. As such, they are the most commonly used traversals

in actual sparse solvers like MUMPS [10, 11].

We show how to compute the optimal depth-first traversal in Section 3.4.2.1. It turns out that this

traversal is optimal for both memory usages (among all depth-first traversals). However, depth-first

traversals give no freedom on scheduling communication nodes. If we allow a communication node to

be processed not immediately before its sub-tree, the ordering of the processing of the sub-trees and of

the communication nodes will create a trade-off between both memory usages and will allow to decrease

them. This leads us to define sloppy depth-first traversals, which we study in Section 3.4.2.2.

3.4.2.1 Strict depth-first traversals

Definition 3.4. A depth-first traversal is a feasible traversal that processes all nodes of a tree T by

processing the root and, then, recursively processing all sub-trees. Hence, in a post-order traversal, after

processing a node i, the whole sub-tree rooted at i is completely processed before any other node that

does not belong to this sub-tree. Formally, a feasible traversal σ of the tree T with n nodes is a depth-

first traversal if and only if for each node r ∈ T , with two successors i ∈ Succ(r) and j ∈ Succ(r), we

have:

σ(i) < σ(j)⇒ (∀u ∈ Ti, σ(u) < σ(j))

where Ti is the sub-tree rooted at the node i.

In the context of single-memory trees, depth-first traversals are known to be sub-optimal [81]: worse,

their memory usage can be arbitrarily high as compared to that of the optimal solution [74]. Clearly,

these negative results remain true in a two-memory framework (simply assume that one memory is

infinite). Still, depth-first traversals are a natural heuristic for traversing tree graphs, and they enjoy a

simple implementation and memory management. As such, they are the most commonly used traversals

in actual sparse solvers. Algorithm 6 computes the optimal depth-first traversal: when it encounters a
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blue node (respectively a red node), it applies the rule for minimizing the blue (resp. red) memory in

depth-first traversals, which does not impact the amount of red (resp. blue) memory. It turns out that

this traversal is optimal among all depth-first traversals for both memory usages.

Theorem 3.4. Algorithm 6 returns the best depth-first traversal σ of T for both the blue and the red

memories and the amount of memory Mblue and M red used by σ.

Algorithm 6: BestDepthFirstTraversal(T )

output: Schedule σ with peak blue memory Mblue and peak red memory M red

root← the root of T ;

CurrentMem ← 0;

(σ,Mblue,M red)← ([root] , 0, 0);
for i ∈ Succ(root) do

(σi, M
blue
i , M red

i )← BestDepthFirstTraversal(Ti);

CurrentMem ← CurrentMem + fi

if color(root) = blue then
for i ∈ Succ(root) in the increasing order of Mblue

i − fi do
σ ← [σ;σi];
CurrentMem ← CurrentMem − fi;
Mblue ← max(Mblue,CurrentMem +Mblue

i );

M red ← maxi∈Succ(root)M
red
i ;

if color(root) = red then
for i ∈ Succ(root) in the increasing order of M red

i − fi do
σ ← [σ;σi];
CurrentMem ← CurrentMem − fi;
M red ← max(M red,CurrentMem +M red

i );

Mblue ← maxi∈Succ(root)M
blue
i ;

if the root node is an uncolored communication node then
i← the unique successor of root; σ ← [σ;σi];
if color(i) = blue then

Mblue ←Mblue
i ;

M red ← max(fi,M
red
i );

if color(i) = red then
M red ←M red

i ;

Mblue ← max(fi,M
blue
i );

return (σ, Mblue, M red);

Proof. Finding the best depth-first traversal of T amounts to find the best ordering to process every

sub-tree. We prove that the order of the recursive processes at each step in Algorithm 6 is the best for

both memories.

• At a given step, if the root of the sub-tree is a communication node, we have no choice, and we

recursively process the sub-tree rooted at its unique successor.
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• At a given step, if the root r of the sub-tree is blue, then, the amount of red memory used to pro-

cess this sub-tree will not depend on the order of the recursive processes to complete the sub-tree.

Indeed, for each i ∈ Succ(r), after the recursive process of Ti, Sblue ← Sblue\{i} and Sred is un-

changed. Then, independently of the order of the recursive processes of every Ti, the amount

of red memory required to process T with a depth-first traversal will be RedMemReq(T ) =
maxi∈Succ(root) RedMemReq(Ti). Thus, at this step, we can only optimize the amount of blue
memory. To do so, we use the optimal post-order traversal for uncolored trees provided by

Liu [80]. This post-order traversal leads the best depth-first traversal for the blue memory at

this step, and, thus, to the best depth-first traversal for both memories.

• At a given step, if the root of the sub-tree is red, the proof is similar.

�

3.4.2.2 Sloppy depth-first traversals

As explained in the previous section, the order of the sub-trees processed in a strict depth-first traversal

does not influence the maximum usage of red memory for a tree rooted at a blue node, and vice versa.

Thus, in a strict depth-first traversal, both memory usages are independent. This comes from the fact

that strict depth-first traversals give no freedom on communications. If we allow a communication node

to be processed not immediately before its sub-tree, the ordering of the processing of the sub-trees and

of the communication nodes will create a trade-off between both memory usages. This leads us to define

sloppy depth-first traversals.

Definition 3.5. A sloppy depth-first traversal is a feasible traversal similar to a depth-first traversal ex-

cept that, after processing a communication node i, the whole sub-tree rooted at i is not necessarily

processed immediately. We define SloppyChildren(i) as being the set of thc red and blue successors

of i, together with the successors of the uncolored successors (these represent the set of the com-

putational successors of i). Formally, a feasible traversal σ of the tree T with n nodes is a sloppy

depth-first traversal if and only if for each node r ∈ T , and for any two nodes i ∈ Succ(r) and

j ∈ SloppyChildren(r) ∪ Succ(r), we have:

σ(i) < σ(j)⇒ (∀u ∈ Ti, σ(u) < σ(j))

where Ti is the sub-tree rooted at the node i.

Definition 3.6 (TWOMEMORYSLOPPYDEPTHFIRSTTRAVERSAL). Given a tree T with n nodes, and

two fixed amount of memory Mred and Mblue, is there a sloppy depth-first traversal of the tree that need

an amount of red memory inferior to Mred and an amount of blue memory inferior to Mblue?

Theorem 3.5. The TWOMEMORYSLOPPYDEPTHFIRSTTRAVERSAL problem is NP-complete.

Proof. The problem clearly belongs to NP, and the certificate is the ordered list of tasks (of both colors,

and including communication nodes) executed by the schedule.

To establish the completeness, we use a reduction to the 2-Partition problem [49]. Consider an

instance Inst1 of the 2-Partition problem, with n integers {a1, a2, ..., an ‖
∑

i ai = S}. Consider an

instance Inst2 of the decision problem, consisting in the tree depicted on Figure 3.10. We set Mred = 2S
for the red tasks and Mblue = 2S for the blue tasks. The construction of Inst2 is polynomial in the size

of Inst1.

Assume first that Inst2 has a solution. Any sloppy depth-first traversal must start with the root Broot.

After it has been processed, 2S units of the blue memory are occupied, which means that this memory
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Figure 3.10: Tree corresponding to Inst2 in the proof of Theorem 3.5

is full. Let i0 be the index of the first red task Ri to be executed. We observe that Bbig and Bfree have

to be processed before Ri0 , otherwise the process of C ′
i0

(which occurs right after the process of Ri0 in

a sloppy depth-first traversal) would violate the Mblue bound on the blue memory. Thus, the only tasks

that can be processed right after Broot and before Bbig are the communication tasks Ci. Let I be the set

of the indices of the tasks Ci executed before Bbig.

• If
∑

i∈I ai <
S
2 , when the scheduler decides to execute Bbig, the blue memory would be filled with

∑

i/∈I ai+S units. Thus the process of Bbig will use BlueMemUsed(Bbig) =
∑

i/∈I ai+S+ 3
2S >

2S units of blue memory, which violates the Mblue bound.

• If
∑

i∈I ai > S
2 , when the scheduler decides to execute Ri0 , the red memory would be filled

with at least
∑

i∈I ai >
S
2 units. Thus the process of Ri0 will use at least RedMemUsed(Ri0) ≥

∑

i∈I ai +
3
2S > 2S units of red memory, which violates the Mred bound.

Thus,
∑

i∈I ai =
S
2 , which implies that Inst1 has a solution.

Suppose now that Inst1 has a solution I . According to the previous reasoning, the sequence of nodes

Broot; ∀i ∈ I, Ci; Bbig and Bfree can be executed without violating the bounds on memories. After this

sequence, there are S
2 units occupied in the blue memory and in the red one. Now, one of the red node

Ri0 with i0 ∈ I can be executed without violating the Mred bound, followed by C ′
i0

and Bi0 . Moreover,

we can process every Ri, C
′
i and Bi ∀i ∈ I . Then, one is able to execute every branch of Ci down to Bi

for all i /∈ I , which means that Inst2 has a sloppy depth-first solution and concludes our proof. �

3.4.3 Heuristics

In addition to depth-first traversals, in this section we present three traversal heuristics which aim at

minimizing both the blue and red memories. All three heuristics are based on the seminal work by

Liu [81] who considers a single memory. We proposed different adaptation for two memories. We start

with the simplest heuristic and then proceed to more elaborate ones.
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Working with the uncolored tree: LIUUNCOLORED We have shown that the problem TWOM-

EMORYTRAVERSAL of finding a tree-traversal that minimizes both memory is NP-complete. However,

when a single memory is considered, the problem becomes polynomial. It is thus natural to adapt the op-

timal algorithm for the single memory problem proposed by Liu [81], to bi-colored trees. The simplest

adaptation amounts to considering the tree as uncolored, that is, as if all tasks were processed on the

same computing unit with a single memory. On this uncolored tree, illustrated on Figure 3.6, we apply

Liu’s optimal algorithm. This heuristic computes an optimal traversal for the sum of the blue and the

red memories. The intuition is that minimizing the sum of both memories will lead to a good memory

usage for each of them. This heuristic is referred to as LIUUNCOLORED in the following.

Refining the sum with weights: LIUWEIGHTEDSUM One problem with the previous heuristic is

that both memories may not be equivalent. For example, it may well be the case that (input and output)

files used by red tasks are much larger that those used by blue tasks. In such a case, minimizing the sum

may lead to a much larger amount of blue memory that would be needed, for example, in an optimal

traversal for the blue memory. This behavior is not desirable, and we can slightly change the heuristic

to (try to) avoid this. We first compute the optimal amount of blue (respectively red) memory that is

needed to traverse the tree, as described in Section 3.4.1.2, and we denote this amount by M∞
blue (resp.

M∞
red). Then, we normalize the memory weight of edges as follows: the memory weight fi of the input

edge of node i becomes fi/M
∞
blue if this edge is blue, and fi/M

∞
red if it is red. Then, the corresponding

uncolored tree is considered and Liu’s optimal algorithm is applied, as in the previous heuristic. This

heuristic is called LIUWEIGHTEDSUM in the following.

LIUWEIGHTEDMAX In the previous heuristics, when applying Liu’s algorithm to modified trees, we

minimize the sum (or the weighted sum) of both memory amounts. However, to get closer to the Zenith

point, we would like to minimize the maximum, or rather the weighted maximum of both memories. It

is possible to modify Liu’s algorithm for this new goal. Of course, the resulting algorithm is not optimal

anymore (which is coherent with the NP-completeness of the TWOMEMORYTRAVERSAL problem), but

it can be used as a heuristic. Liu’s algorithm is a recursive algorithm which, at each node r, combines

optimal traversals for the subtrees rooted at the successors of r into an optimal traversal for the whole

tree rooted in r. The combination relies on the definition of “hill-valley” segments: segments are de-

fined by splitting a subtree schedule at different local minima (the “valley”). These segments are then

sorted by non-increasing “hill” minus “valley” values (hill being the local peak memory of the segment).

Liu [81] proves that such a combination of optimal subtree schedules leads to a global optimal sched-

ule. In this heuristic, we replace the memory criterion used to define of the schedule by the maximum

weighted memory: max(BlueMemUsed(σ,i)

Mopt
blue(T )

, RedMemUsed(σ,i)

Mopt
red (T )

); we keep the same algorithm for combining

subtree schedules. Of course, the proof of optimality does not hold for this new metric. This heuristic is

called LIUWEIGHTEDMAX in the following.

3.4.4 Experiments

In this section, we experimentally compare the memory usage of the heuristics proposed in the previous

sections for TWOMEMORYTRAVERSAL. For each heuristic among BESTDEPTHFIRST, LIUUNCOL-

ORED, LIUWEIGHTEDSUM and LIUWEIGHTEDMAX, we compute the amount of blue and red memory

needed by the traversal. These values are compared to the minimum amount of blue (respectively red)

memory needed when the red (resp. blue) memory is unbounded, as described in Section 3.4.1.2.
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All heuristics have been implemented in C. The optimal value traversal for a single memory is com-

puted using Liu’s algorithm [81] written as a recursive code. Source code for all the algorithms, heuris-

tics and experiments is publicly available at http://perso.ens-lyon.fr/julien.herrmann/.

3.4.4.1 Data Sets

We use four different sets of trees, ranging from actual trees arising in sparse matrix computations to

random trees. We first describe the data set of uncolored trees which serves as a basis for our realistic

colored trees.

Real uncolored trees for Cholesky factorization The UNCOLOREDREALTREES data set con-

tains assembly trees for a set of sparse matrices obtained from the University of Florida Sparse Matrix

Collection (http://www.cise.ufl.edu/research/sparse/matrices/). The chosen matrices satisfy the follow-

ing assertions: not binary, not corresponding to a graph, square, having a symmetric pattern, a number

of rows between 20,000 and 2,000,000, a number of non-zeros per row at least equal to 2.5, and a total

number of non-zeros at most equal to 5,000,000; and each chosen matrix has the largest number of non-

zeros among the matrices in its group satisfying the previous assertions. At the time of testing, there

were 76 matrices satisfying these properties. We first order the matrices using MeTiS [77] (through the

MeshPart toolbox [53]) and amd (available in Matlab), and then build the corresponding elimination

trees using the symbfact routine of Matlab. We also perform a relaxed node amalgamation on these

elimination trees to create assembly trees. We have created a large set of instances by allowing 1, 2,

4, and 16 (if more than 1.6 × 105 nodes) relaxed amalgamations per node. At the end we compute

memory weights and processing times to accurately simulate the matrix factorization: we compute the

memory weight ni of a node as η2 + 2η(µ − 1), where η is the number of nodes amalgamated, and

µ is the number of non-zeros in the column of the Cholesky factor of the matrix which is associated

with the highest node (in the starting elimination tree); the processing cost wi of a node is defined as

2/3η3+η2(µ−1)+η(µ−1)2 (these terms corresponds to one Gaussian elimination, two multiplications

of a triangular η × η matrix with a η × (µ − 1) matrix, and one multiplication of a (µ − 1) × η matrix

with a η × (µ− 1) matrix). Edge weights fi are computed as (µ− 1)2.

The resulting 644 trees contains from 2, 000 to 1, 000, 000 uncolored nodes. Their depth ranges

from 12 to 70, 000, and their maximum degree ranges from 2 to 175, 000.

Real colored trees for Cholesky factorization The REALTREES data set is obtained by coloring

every tree in UNCOLOREDREALTREES in a meaningful way. Every tree node in UNCOLOREDREAL-

TREES represents a step of a (η + µ− 1)× (η + µ− 1) matrix factorization, with a panel of size η. In

practice, at each step of the factorization, we aim at processing the GEMM routine (which corresponds

to the multiplication of the (µ−1)×η matrix with the η× (µ−1) matrix) on the GPU. Indeed, GEMMs

can reach up to 99% of the GPU’s theoretical peak performance. Thus, we split every node into two

tasks: a red one corresponding to the GEMM routine, and a blue one corresponding to the rest of the

factorization.

Real trees with random colors The RANDOMCOLOREDREALTREES data set is obtained by ran-

domly coloring every node of every tree in UNCOLOREDREALTREES with an equiprobable choice in

the set {red, blue}. Then, communication nodes are added between nodes of different colors.
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Real trees with random weights and colors The RANDOMWEIGHTEDREALTREES data set is

obtained by randomly coloring every node of every tree in UNCOLOREDREALTREES with an equiprob-

able choice in the set {red, blue} and by randomly changing the nodes and edges weight. Every ni is

set to a random integer value in J1, N
500K where N is the size of the tree, and every fi is set to a random

integer value in J1, NK. Then, communication nodes are added between nodes of different colors.

Random trees The RANDOMTREES data set is a set of 500 trees with random structure, random

weights and random colors. Each tree has been generated as follows: the tree size N is randomly chosen

in J1, 32767K. Then, for each node i ∈ J1, NK, its predecessor is randomly chosen in J1, i − 1K. The

values of its ni and fi are uniformly chosen in J1, 3276K, and its color is randomly chosen between red
and blue. Then, communication nodes are added between nodes of different colors.

3.4.4.2 Results

In this section, we evaluate the performance of the four heuristics introduced above in terms of memory

requirement. For every tree T in the data sets, and for every traversal σ returned by the heuristics, we

compute the maximum relative overhead of each memory compared to the optimal value:

MaxRelativeOverhead(σ, T ) = max(
Mσ

blue(T )−Mopt
blue(T )

Mopt
blue(T )

,
Mσ

red(T )−Mopt
red (T )

Mopt
red (T )

).

As explained in Section 3.3, the optimal for both memories (also called Zenith) is a theoretical bound

that may be not reachable. Thus, for a tree T , there does not necessarily exist a traversal σ such that

MaxRelativeOverhead(σ, T ) = 0. Detailed statistics for the four heuristics are given in Table 3.1. We

make the following observations:

• For the REALTREES data set, BESTDEPTHFIRST statistically gives the best results, with an av-

erage relative overhead equal to 6.3%; it reaches the Zenith for 55.6% of the trees. This comes

from the particular structure of the assembly trees. Indeed, most nodes in these assembly trees

have an input file smaller than the sum of their output files: fi ≤
∑

j∈Succ(i) fj . This means that

when we execute a node, it is more likely to be profitable to execute the whole subtree straight-

away. This is why BESTDEPTHFIRST turns out to be the best heuristic for the REALTREES and

the RANDOMCOLOREDREALTREES data sets. Besides, LIUUNCOLORED is very close to the

BESTDEPTHFIRST performances on the REALTREES data set, with an average relative overhead

equal to 6.6%. On the contrary, LIUWEIGHTEDMAX appears to be not well-designed for the

structure of the assembly trees in REALTREES, with an average relative overhead equal to 8.4%;

it can require up to 2.16 times the optimal memory for some trees.

• The structure of the trees in the RANDOMCOLOREDREALTREES data set is close to the trees in

REALTREES, and the results are similar. BESTDEPTHFIRST statistically gives the best results

with an average relative overhead equal to 3.8%, and LIUUNCOLORED provides the second best

results with relative overhead equal to 5.2%.

• For the RANDOMWEIGHTEDREALTREES data set, file sizes are randomized, and BESTDEPTH-

FIRST is no longer adapted to such trees; it provides an average relative overhead equal to 20.9%.

Much worse, LIUUNCOLORED can require up to 5.13 times the optimal memory for some trees

in RANDOMWEIGHTEDREALTREES. On the contrary, LIUWEIGHTEDMAX appears to be well-

designed for the trees in RANDOMWEIGHTEDREALTREES, with an average relative overhead

two times lower than that of BESTDEPTHFIRST.

• The results for the RANDOMTREES data confirm that LIUWEIGHTEDMAX is the best of the four

heuristics when dealing with trees with random structure. It gives the best results with an average
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relative overhead equal to 3.4%, and exhibits a relative overhead inferior to 10% for 92% of the

random trees.

Figures 3.12, 3.13 and 3.14 provide complete results of the simulations. In each figure, a point represents

one scenario (one heuristic executed on one tree of the data set). To better visualize the distribution, we

also plot a "cross" for each heuristic: the center of this cross is the average result, while the branches

represent the scope of each objective between the 10th and 90th percentile of the distribution.

For the REALTREES data set, as explained above, we colored in red the nodes corresponding to the

GEMM routine, and in blue the others nodes. Thus, every red nodes appears to have a communication

node as predecessor, and an unique communication node as successor. With this structure, all of our

heuristics gives the optimal memory usage for the red memory. This specification fits well with practice,

where one aims at not overloading the GPU memory. Figure 3.11 provides the detailed distribution of

the blue memory usage for the heuristics.

These figures exhibit the same trends for average values as observed in Table 3.1. For the RANDOM-

COLOREDREALTREES data set in Figure 3.12, and for the RANDOMTREES data set in Figure 3.14, we

see that many traversals returned by the heuristics are optimal for at least one of the two memories,

whereas for the RANDOMWEIGHTEDREALTREES data set in Figure 3.13, many more of the returned

traversals are non-optimal for either memory. We also observe that LIUUNCOLORED can require around

5 times the optimal red memory in two scenarios. These results show that the performance of the heuris-

tics are strongly related to the structure of the trees. While BESTDEPTHFIRST achieves nice results

for the realistic assembly trees, LIUWEIGHTEDMAX appears to be a better solution when dealing with

more random structures.

Data set Algorithm Avg. Max. Std. Dev. Frac. of Opt. Frac. ≤ 10%

REALTREES

BESTDEPTHFIRST 6.3% 64.4% 8.0% 55.6% 73.7%

LIUWEIGHTEDMAX 8.4% 116.5% 9.9% 49.8% 68.3%

LIUWEIGHTEDSUM 7.5% 76.0% 9.1% 52.8% 70.6%

LIUUNCOLORED 6.6% 60.0% 8.3% 55.0% 73.8%

RANDOMCOLOREDREALTREES

BESTDEPTHFIRST 3.8% 44.0% 5.4% 67.2% 83.9%

LIUWEIGHTEDMAX 6.0% 52.3% 7.2% 51.4% 75.5%

LIUWEIGHTEDSUM 5.9% 52.6% 7.3% 54.1% 75.8%

LIUUNCOLORED 5.2% 52.6% 6.9% 59.7% 78.0%

RANDOMWEIGHTEDREALTREES

BESTDEPTHFIRST 20.9% 90.3% 18.6% 28.3% 44.6%

LIUWEIGHTEDMAX 10.2% 88.2% 13.6% 39.8% 72.7%

LIUWEIGHTEDSUM 13.4% 107.5% 16.3% 37.7% 65.2%

LIUUNCOLORED 15.4% 413.1% 17.0% 26.5% 60.2%

RANDOMTREES

BESTDEPTHFIRST 4.5% 28.2% 4.3% 33.4% 83.4%

LIUWEIGHTEDMAX 3.4% 23.5% 3.2% 26.0% 92.0%

LIUWEIGHTEDSUM 4.4% 21.4% 3.7% 20.6% 86.0%

LIUUNCOLORED 6.8% 32.9% 4.8% 14.6% 72.6%

Table 3.1: Statistics on the maximum relative overhead for each memory required by the four heuristics

(comparison with the Zenith). Frac. of Opt. (respectively Frac ≤ 10%) counts the fractions of cases

when the heuristics achieve the Zenith (resp. has a degradation not larger than 10%).

3.5 General problem

The simplified model used in previous section was useful to assert the intrinsic difficulty of the problem:

it is NP-complete to decide whether there exists a tree traversal that satisfies bounds on each memory

usage: worse, it is impossible to approximate within a constant factor pair both absolute minimum mem-

ory amounts. All theses results, although negative, laid the foundations of scheduling for dual-memory

systems. In this section, we envision the fully general framework introduced in Section 3.2, where tasks
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Figure 3.11: Percentage distribution of the blue memory usage for the REALTREES data set.
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Figure 3.12: Distribution of each memory usage for the RANDOMCOLOREDREALTREES data set.

have different execution-times for each resource type (instead of being tied to a given resource as in

previous section), and where concurrent execution of several tasks on each resource type is possible

(instead of the fully sequential processing of the task graph that is assumed in previous section).

Section 3.5.1 is devoted to expressing an optimal schedule in terms of the solution of a complex ILP.

We introduce the new heuristics in Section 3.5.2, and assess their performance through an extensive set

of simulations in Section 3.5.3.
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Figure 3.13: Distribution of each memory usage for the RANDOMWEIGHTEDREALTREES data set.
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Figure 3.14: Distribution of each memory usage for the RANDOMTREES data set.

3.5.1 ILP formulation

In this section, we describe how to compute an optimal schedule σopt through a computationally expen-

sive ILP (Integer Linear Program). The objective is twofold: (i) to provide an optimal solution for small

instances and (ii) to compare the heuristics presented in the following section with the optimal schedule,

to evaluate their absolute quality.

Our approach is motivated by the successful attempt to derive such an ILP formulation for several

variants of the DAG scheduling problems, such as [105, 35]. However, to the best of our knowledge,
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none of the existing ILP handles the memory usage of the schedule. A major contribution of this chap-

ter is the introduction of additional constraints that enforce memory constraints, as those described in

Section 3.3.2.

The variables used by our linear program are listed in Figure 3.15. The ti’s and τij’s variables

represent the starting time of the tasks and of the communications. M is the makespan value to minimize.

The pi’s and bi’s variables describe the allocation of task i on the resources and are used to compute the

value of the wi’s variables, which represent the actual computing time of task i. The ǫij’s and δij’s
variables are used to enforce resources constraints. Finally, to compute the amount of memory used

by the schedule at any time, we need to know the order in which all tasks and communications are

processed. This is achieved through variables σij , σ
′
kij , mij , m

′
kij , cijk, c′ijkp, dijk and d′ijkp. These

numerous variables are needed to ensure that the schedule is properly defined, and that we precisely

know which tasks are processed and which data are present in a given memory at any time, to ensure

that the memory usage is kept below the prescribed bound.

M makespan of the corresponding schedule

ti starting time of task i

τij starting time of communication (i, j)

pi index of the processor where the task i is to be executed

bi
equal to 0 if task i is executed on the red memory

and 1 if it is executed on the blue memory

wi actual computing time of task i in the corresponding schedule

ǫij
equal to 1 if the processor index of task i is strictly less than

that of task j and 0 otherwise

δij
equal to 1 if task i and task j are executed on the same memory

and 0 otherwise

σij 1 if task i finishes before task j starts and 0 otherwise

σ′
kij

equal to 1 if task k finishes before communication (i,j) starts

and 0 otherwise

mij equal to 1 if task i starts before task j starts and 0 otherwise

m′
kij

equal to 1 if task k starts before communication (i,j) starts

and 0 otherwise

cijk
equal to 1 if communication (i, j) starts before task k starts

and 0 otherwise

c′ijkp
equal to 1 if communication (i, j) starts before

communication (k, p) starts and 0 otherwise

dijk
equal to 1 if communication (i, j) finishes before

task k starts and 0 otherwise

d′ijkp
equal to 1 if communication (i, j) finishes before

communication (k, p) starts and 0 otherwise

Figure 3.15: Variables of the linear program

Due to the numerous variables that describe a schedule, the linear program counts a large number of

constraints to ensure that these variables correspond to their definition given in Figure 3.15. For the sake

of completeness, we give the whole linear program in Figure 3.16, and we detail the most significant

constraints below.

Constraints (1) to (25) describes a schedule of the DAG onto the heterogeneous platform, and have

nothing to do with memory constraints. They also ensure that communication times are respected when
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mint,p,σ,ǫ M
∀i ∈ V, ti + wi ≤M (1)

∀(i, j) ∈ E, ti + wi ≤ τij (2)

∀(i, j) ∈ E, τij + (1− δij)Cij ≤ tj (3)

∀i 6= j ∈ V, tj − ti −mijMmax ≤ 0 (4a)

∀i 6= j ∈ V, tj − ti + (1−mij)Mmax ≥ 0 (4b)

∀k ∈ V, ∀(i, j) ∈ E, τij − tk −m′
kijMmax ≤ 0 (5a)

∀k ∈ V, ∀(i, j) ∈ E, τij − tk + (1−m′
kij)Mmax ≥ 0 (5b)

∀i 6= j ∈ V, tj − ti − wi − σijMmax ≤ 0 (6a)

∀i 6= j ∈ V, tj − ti − wi + (1− σij)Mmax ≥ 0 (6b)

∀k ∈ V, ∀(i, j) ∈ E, τij − tk − wk − σ′
kijMmax ≤ 0 (7a)

∀k ∈ V, ∀(i, j) ∈ E, τij − tk − wk + (1− σ′
kij)Mmax ≥ 0 (7b)

∀k ∈ V, ∀(i, j) ∈ E, tk − τij − cijkMmax ≤ 0 (8a)

∀k ∈ V, ∀(i, j) ∈ E, tk − τij + (1− cijk)Mmax ≥ 0 (8b)

∀(k, p) 6= (i, j) ∈ E, τkp − τij − c′ijkpMmax ≤ 0 (9a)

∀(k, p) 6= (i, j) ∈ E, τkp − τij + (1− c′ijkp)Mmax ≥ 0 (9b)

∀k ∈ V, ∀(i, j) ∈ E, tk − τij − (1− δij)Cij − dijkMmax ≤ 0 (10a)

∀k ∈ V, ∀(i, j) ∈ E, tk − τij − (1− δij)Cij + (1− dijk)Mmax ≥ 0 (10b)

∀(k, p) 6= (i, j) ∈ E, τkp − τij − (1− δij)Cij − d′ijkpMmax ≤ 0 (11a)

∀(k, p) 6= (i, j) ∈ E, τkp − τij − (1− δij)Cij + (1− d′ijkp)Mmax ≥ 0 (11b)

∀i, j ∈ V, pj − pi − ǫij |P | ≤ 0 (12a)

∀i 6= j ∈ V, pj − pi − 1 + (1− ǫij)|P | ≥ 0 (12b)

∀i ∈ V, pi − |P0| − |P |bi ≤ 0 (13a)

∀i ∈ V, pi − |P0| − 1 + (1− bi)(|P |+ 1) ≥ 0 (13b)

∀i, j ∈ V, mij +mji ≥ 1 (14)

∀i, j ∈ V, σij + σji ≤ 1 (15)

∀(i, j) ∈ E, ∀k ∈ V, m′
kij + cijk ≥ 1 (16)

∀(i, j), (k, p) ∈ E, c′ijkp + c′kpij ≥ 1 (17)

∀(i, j), (k, p) ∈ E, d′ijkp + d′kpij ≤ 1 (18)

∀i ∈ V, ∀k ∈ V, mik ≥ σik (19)

∀(i, j) ∈ E, ∀k ∈ V, σik ≥ cijk (20)

∀(i, j) ∈ E, ∀k ∈ V, cijk ≥ dijk (21)

∀(i, j) ∈ E, ∀k ∈ V, dijk ≥ mjk (22)

∀i, j ∈ V, δij ≤ 1 + bi − bj , δij ≤ 1 + bj − bi,
δij ≥ bi + bj − 1 and δij ≥ 1− bi − bj (23)

∀i ∈ V, wi ≥ biW
(2)
i + (1− bi)W

(1)
i (24a)

∀i ∈ V, wi ≤ biW
(2)
i + (1− bi)W

(1)
i (24b)

∀i 6= j ∈ V, σij + σji + ǫij + ǫji ≥ 1 (25)

∀i ∈ V,
∑

(k,p)∈E(δik(mki − dkpi) + δip(ckpi − σpi))Fkp

≤ biMblue + (1− bi)Mred (26)

∀(i, j) ∈ E,
∑

(k,p)∈E(δkj(m
′
kij − d′kpij) + δpj(c

′
kpij − σ′

pij))Fkp

≤ bjM
(blue) + (1− bj)M

(red) + δijMmax (27)

Figure 3.16: Constraints of the ILP.
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a data needs to be moved from one memory to another. Here is a short description of these constraints:

• Constraint (1) ensures that variable M representing the makespan will be larger than or equal to

the completion time of the last task.

• Constraint (2) ensures that communication (i, j) starts after the completion of task i.
• Constraints (3) ensures that task j starts after the completion of every possible communication

(i, j). We can note that, since δij = 1 if and only if task i and j are executed on the same memory,

(1− δij)Cij is the actual processing time of communication (i, j).
• In Constraints (4a) and some of the following ones, we need an upper bound Mmax on the possible

value of M . This bound is set arbitrarily to Mmax =
∑

i∈V W
(1)
i +

∑

i∈V W
(2)
i +

∑

(i,j)∈E Ci,j .

Constraints (4a), (4b) and (14) ensure that mi,j and mj,i are correctly defined: mi,j = 1 if tj > ti,
mi,j = 0 if tj > ti and if tj = ti, at least one between mij and mji is equal to 1. This is important

when computing the amount of memory in Constraint (26).

• Similarly Constraints (5a) to (18) ensure that m′
kij’s, σij’s, σ′

kij’s, cijk’s, c′ijkp’s, dijk’s, d′ijkp’s,

ǫ′ij’s and bi’s variables are well defined.

• Constraint(19) ensures that task ordering is defined consistently, even for tasks with zero process-

ing time (such tasks will appear when pipelining communications in Section 3.5.3).

• Constraint (20) ensures that if communication (i, j) starts before task k starts, task i must finish

before task k starts. Constraints (21) and (22) ensure that the linear program defines a valid

schedule for communications and tasks.

• Constraints (23) ensures that δij’s variables are well defined, i.e., δij = 1 if and only if bi = bj .

• Constraints (24a) and (24b) ensure that wi’s variables are well defined, i.e., wi = W
(1)
i if and only

if bi = 0 and wi = W
(2)
i if and only if bi = 1.

• Constraint (25) represents resource constraints as seen in Section 3.3.1: if two tasks are running

at the same time, they are not on the same processor.

Finally, Constraint (26) deals with memory constraints, and ensures that the model defined in Sec-

tion 3.3.2 is observed at the beginning of each task i. Specifically, biMblue +(1− bi)Mred is the memory

bound on the memory on which task i is executed. When i is started, we ensure that the sum of the

files stored in the corresponding memory when we start task i is smaller than this bound. We claim that

∀(k, p) ∈ E, the file of size Fkp will be in the corresponding memory when task i starts if and only if

either "task i and task k are in the same memory and we started task k but communication (k, p) is not

finished yet" or "task i and task p are in the same memory and we started communication (k, p) but task

p is not finished yet". This explains Constraint (26). Similarly Constraint (27) ensures that the memory

constraint is respected at the beginning of every communication (i, j).

Constraints (26) and (27) are not linear. However, they can be linearized using the technique pre-

sented in [105, 35]. To do so, we introduce the variables αkpi = δik(mki−dkpi), βkpi = δip(ckpi−σpi),
α′
kpi = δkj(m

′
kij − d′kpij) and β′

kpij = δpj(c
′
kpij − σ′

pij). Constraints (26) and (27) are then replaced by

the constraints in Figure 3.17.

For an arbitrary DAGD = (V,E) with |V | = n nodes and |E| = m edges, the ILP has O(m2+mn)
variables and O(m2 +mn) constraints.

3.5.2 Heuristics

Given the complexity of optimizing the makespan under memory constraints, we propose two heuristics

in this section, MEMHEFT and MEMMINMIN. The key idea is to add memory awareness to the design

of traditional scheduling heuristics.
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∀i ∈ V,
∑

(k,p)∈E(αkpi + βkpi)Fkp

≤ biM
(red) + (1− bi)M

(blue) (26)

∀i ∈ V, ∀(k, p) ∈ E, αkpi ≥ δik +mki − dkpi − 1 (26a)

∀i ∈ V, ∀(k, p) ∈ E, 2αkpi ≤ δik +mki − dkpi (26b)

∀i ∈ V, ∀(k, p) ∈ E, βkpi ≥ δip + ckpi − σpi − 1 (26c)

∀i ∈ V, ∀(k, p) ∈ E, 2βkpi ≤ δip + ckpi − σpi (26d)

∀(i, j) ∈ E,
∑

(k,p)∈E(α
′
kpij + β′

kpij)Fkp

≤ biM
(red) + (1− bi)M

(blue) + δijMmax (27)

∀(i, j) ∈ E, ∀(k, p) ∈ E, α′
kpij ≥ δkj +m′

kij − d′kpij − 1 (27a)

∀(i, j) ∈ E, ∀(k, p) ∈ E, 2α′
kpij ≤ δkj +m′

kij − d′kpij (27b)

∀(i, j) ∈ E, ∀(k, p) ∈ E, β′
kpij ≥ δpj + c′kpij − σ′

pij − 1 (27c)

∀(i, j) ∈ E, ∀(k, p) ∈ E, 2β′
kpij ≤ δpj + c′kpij − σ′

pij (27d)

Figure 3.17: Linearization of the last two constraints of the ILP.

3.5.2.1 The MEMHEFT algorithm

MEMHEFT is based on HEFT (Heterogeneous Earliest Finish Time) [103]. The HEFT algorithm is

highly competitive and widely used to schedule static DAGs on heterogeneous platforms with a low time

complexity. HEFT has two major phases: a task prioritizing phase for computing the priorities of all

tasks , and a processor selection phase for allocating each task (in the order of their priorities) to their

best processor, defined as the one which minimizes the task finish time.

The MEMHEFT algorithm follows the same pattern as HEFT. In our model, there are only two pro-

cessor types, hence each selected task will be mapped on one of two candidates, namely the processors

with earliest available time in each type. In other words, the processor selection phase can be renamed

as the memory selection phase. In addition, MEMHEFT checks memory usage, as explained below.
Task prioritizing phase. This phase is the same as in HEFT and requires the priority of each

task to be set with the upward rank value, rank(i), which is based on mean computation and mean
communication costs:

∀i ∈ V, rank(i) =
W

(red)
i +W

(blue)
i

2
+ max

j∈Succ(i)
{rank(j) +

Ci,j

2
}

where Succ(i) denotes the immediate successors of task i. The task list is generated by sorting the tasks

by non-increasing order of rank(i). Tie-breaking is done randomly.

Memory selection phase. For each selected task i and for each memory µ ∈ {red, blue}, we have

to compute EST (µ)(i) the earliest execution start time of task i on memory µ (derived from a given

partial schedule). This earliest execution start time has to take into account (i) resource, (ii) precedence,

and (iii) memory constraints.

From a resource perspective, task i can not be executed on memory µ before one of the processors

operating on memory µ is available. Thus resource_EST (µ)(i), the earliest start time of task i on

memory µ from a resource point of view, can be expressed as:

resource_EST (µ)(i) = min
proc in µ mem

{avail[proc]}

where avail[proc] is the finish time of the last task assigned to proc in the partial schedule.

From a precedence perspective, all immediate predecessors j ∈ Pred(i) of task i must have been

scheduled. Thus precedence_EST (µ)(i) , the earliest start time of task i on memory µ from a prece-
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dence point of view, is expressed as:

precedence_EST (µ)(i) = max
j∈Pred(i)

{AFT (j) + δ
(µ)
j Cj,i}

where δ
(µ)
j = 0 is task j is executed on memory µ, 1 otherwise, and AFT (j) is the actual finish time of

task j in the partial schedule.

From a memory perspective, we have to keep trace of the memory consumption of our schedule to

ensure that it does not violate the memory constraints. Thus, the MEMHEFT algorithm maintains for

each memory µ the function free_mem(µ)(t) that represents the amount of the µ memory available at

time t in the partial schedule. Here free_mem(µ) is a staircase function (the definition space R can be

partitioned in a finite number of intervals where free_mem(µ) is constant) that can be stored as a list of

couples [(x1, val1), .., (xℓ, valℓ)] such that:

∀i ∈ [1, ℓ− 1], ∀t ∈ [xi, xi+1[, free_mem(µ)(t) = vali

and ∀t ≥ xℓ, free_mem(µ)(t) = valℓ. Note that valℓ can be non-zero since the partial schedule may

keep some files Fi,j stored in the memories if task i has been scheduled but task j has not. Thus,

to process task i on memory µ at time t without violating memory constraints, there must be enough

available memory to store all the input files of task i that were not stored on memory µ yet, and all its

output files. Thus, the earliest start time of task i on memory µ from the memory point of view can be

expressed as:

task_mem_EST (µ)(i) = min {t, such that ∀t′ ≥ t,

free_mem(µ)(t′) ≥
∑

j∈Pred(i)

(1− δ
(µ)
j )Fj,i +

∑

j∈Succ(i)

Fi,j}

If free_mem(µ) is stored as a list of size ℓ, task_mem_EST (µ)(i) can be computed in time O(ℓ).

The MEMHEFT algorithm enforces that when a task i is assigned to the memory µ, every commu-

nication (j, i) ∈ E such that δ
(µ)
j = 0 will start as late as possible, and they will all have a processing

time C
(µ)
i = max(j,i)∈E{(1− δ

(µ)
j )Ci,j}. Thus, to process task i on memory µ, the earliest start time of

every communication (j, i) ∈ E from the memory point of view can be expressed as:

comm_mem_EST (µ)(i) = min {t, such that ∀t′ ≥ t, free_mem(µ)(t′) ≥
∑

j∈Pred(i)

(1−δ
(µ)
j )Fj,i}

If free_mem(µ) is stored as a list of size ℓ, comm_mem_EST (µ)(i) can be computed in time O(ℓ).

Finally, the earliest execution start time of task i on memory µ will be expressed as:

EST (µ)(i) = max {resource_EST (µ)(i),

precedence_EST (µ)(i),

task_mem_EST (µ)(i),

comm_mem_EST (µ)(i) + C
(µ)
i }

The selected task i is assigned to the memory µmin that minimizes its earliest finish time EFT (µ)(i) =

EST (µ)(i)+W
(µ)
i and then, to the proc that minimizes the idle time EST (i, µmin)−avail_proc(proc).
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3.5.2.2 The MEMMINMIN algorithm

The MEMMINMIN algorithm does not include a task prioritizing phase but dynamically decides the

order in which tasks are mapped onto resources. It is the memory-aware counterpart of the MINMIN

heuristic [25]. Indeed, at each step, MEMMINMIN maintains the set available_tasks representing the

tasks whose predecessors have already been scheduled. Then it selects the task imin inavailable_tasks

and the memory µmin ∈ {red, blue} that minimizes EFT (µ)(i) as defined in Section 3.5.2.1 (computed

from a partial schedule).

For a DAG D with |V | = n nodes and |E| = m edges, both heuristics have a worst-case complexity

of O(n2(n+m)). Their pseudo-code is available in [66].

3.5.3 Simulation results

In this section, we conduct several simulations to compare the two heuristics MEMHEFT and MEM-

MINMIN proposed in Section 3.5.2, and to assess their absolute performance w.r.t. to the (optimal)

ILP solution (Section 3.5.1). For each heuristic, we compute its makespan for various amounts of the

available blue and red memories. The heuristics have been implemented in Python 2.7. Source code for

all the algorithms, heuristics and simulations is publicly available at http://perso.ens-lyon.fr/

julien.herrmann/. The optimal makespan for small graphs has been computed by solving the ILP

using the IBMr ILOGr CPLEXr Interactive Optimizer 12.5.0.0.

3.5.3.1 Experimental setup

We use four different sets of DAGs: (i) two synthetic sets (randomly generated) of different sizes

,SMALLRANDSET, and LARGERANDSET; and (ii) two applicative sets (from linear algebra bench-

marks), LUSET and CHOLESKYSET.

Random task graphs The first and second sets are random DAGs, generated using the Directed

Acyclic Graph GENerator (DAGGEN)2. DAGGEN uses four popular parameters to define the shape of

the DAG: size, width, density and jumps.

• The size determines the number of node in the DAG. Nodes are organized in levels.

• The width determines the maximum parallelism in the DAG, that is the number of tasks in the

largest level. A small value leads to ”chain” graphs and a large value to ”fork-join” graphs.

• The density denotes the number of edges between two levels of the DAG, with a low value leading

to few edges and a large value to many edges.

• Finally random edges are added that go from level l to levels l + 1 . . . l + jumps .

The first two parameters take values between 0 and 1. This DAG generation procedure is similar to the

one used in [85].

SMALLRANDSET is a set of 50 randomly generated DAGs using values size = 30, width = 0.3,

density = 0.5 and jumps = 5. Then, for each node, the values W
(1)
i and W

(2)
i are randomly chosen

between 1 and 20 and, for each edge, the values Ci,j and Fi,j are randomly chosen between 1 and 10.

One graph of SMALLRANDSET is depicted in Figure 3.18.

LARGERANDSET is a set of 100 randomly generated DAGs using values size = 1000, width = 0.3,

density = 0.5 and jumps = 5. Then, for each node and each edge, the values W
(1)
i , W

(2)
i , Ci,j and Fi,j

are randomly chosen between 1 and 100. One graph of LARGERANDSET is depicted in Figure 3.19.

2The code for the generator is publicly available at https://github.com/frs69wq/daggen.
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both memories by any pair of constant factors. In addition, we have determined the optimal depth-first

traversal, which turns out to minimize both memories simultaneously. This depth-first traversal achieves

nice results for realistic assembly trees. We have also proposed several heuristics, based upon extensions

of Liu’s optimal algorithm for the one-memory problem. These heuristics provide very good solutions

when dealing with arbitrary tree graphs.

Given the NP-hardness of the restricted problem, we have proposed several approaches for the gen-

eral case. We have first provided an exact resolution through the design of an intricate ILP which is able

to compute an optimal schedule for medium-size instances (up to 30 tasks). Then, we have proposed

two memory-aware heuristics for larger instances, which are the counterparts of the classical HEFT

and MINMIN algorithms. We have studied the performance of these new heuristics through extensive

simulations on different task graphs, and compared them to the optimal solution for small instances.

An interesting future work would be to include some of the proposed heuristics in an actual runtime

toolkit for hybrid platform such as StarPU [15]. It would also be of interest to adapt the heuristics to

more complex platforms, such as hybrid platforms with several types of accelerators, and/or including

more than two memories.
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Chapter 4

Assessing the cost of redistribution followed

by a computational kernel

When dealing with a distributed computational platform, the data layout has a strong impact on the

overall performance. As said in the introduction of this thesis, modern linear algebra libraries use level-

3 BLAS kernels that partition the matrices into blocks. We saw in Chapter 1 that, in a distributed

memory context, the blocks are mapped onto the resources using a 2D block-cyclic distribution, which

nicely balances the workload across processors. When factorizing a matrix, we always considered that

the blocks were initially mapped onto the distributed platform with a 2D block-cyclic pattern, allowing a

efficient owner-compute strategy during the factorization. In this chapter, we consider the case where the

matrix may have an arbitrary initial distribution, requiring a redistribution. We do not restrict ourselves

to targeting a 2D block-cyclic distribution, but we rather tackle the general redistribution problem. The

classical redistribution problem aims at optimally scheduling communications when reshuffling from

an initial data distribution to a target data distribution. This target data distribution is usually chosen

to optimize some objective for the algorithmic kernel under study (good computational balance or low

communication volume or cost), and therefore to provide high efficiency for that kernel. However,

the choice of a distribution minimizing the target objective is not unique. This leads to generalizing

the redistribution problem as follows: find a re-mapping of data items onto processors such that the data

redistribution cost is minimal, and the operation remains as efficient. This chapter studies the complexity

of this generalized problem. We compute optimal solutions and evaluate, through simulations, their gain

over classical redistribution. We also show the NP-hardness of the problem to find the optimal data

partition and processor permutation (defined by new subsets) that minimize the cost of redistribution

followed by a simple computational kernel. Finally, experimental validation of the new redistribution

algorithms are conducted on a multicore cluster, for both a 1D-stencil kernel and a more compute-

intensive dense linear algebra routine.

4.1 Introduction

In parallel computing systems, data locality has a strong impact on application performance. To achieve

good locality, a redistribution of the data may be needed between two different phases of the application,

or even at the beginning of the execution, if the initial data layout is not suitable for performance. Data

redistribution algorithms are critical to many applications, and therefore have received considerable

attention. The data redistribution problem can be stated informally as follows: given N data items that

are currently distributed across P processors, redistribute them according to a different target layout.

Consider for instance a dense square matrix A = (aij)0≤i,j<n of size n, whose initial distribution is

89
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random, and that must be redistributed into square blocks across a p × p 2D-grid layout. A scenario

for this problem is that the matrix has been generated by a Monte-Carlo method and is now needed for

some matrix product C ← C + AB. Assume for simplicity that p divides n, and let r = n/p. In this

example, N = n2, P = p2, and the redistribution will gather a block of r × r data elements of A on

each processor, as illustrated on Figure 4.1. More precisely, all the elements of block Ai,j = (ak,ℓ),
where ri ≤ k < (r + 1)i and rj ≤ ℓ < (r + 1)j, must be sent to processor Pi,j . This example

illustrates the classical redistribution problem. Depending upon the cost model for communications,

various optimization objectives have been considered, such as the total volume of data that is moved

from one processor to another, or the total time for the redistribution, if several communications can

take place simultaneously. We detail classical cost models in Section 4.2, which is devoted to related

work.

(c) target data partition(b) intial data distribution(a) processors holding the data (d) final data distribution
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Figure 4.1: Example of matrix redistribution with N = 122 data blocks and P = 32 processors. Each

color in the data distributions corresponds to a processor, e.g., all red data items reside on processor A.

Modern computing platforms are equipped with interconnection switches and routing mechanisms

mapping the most usual interconnection graphs onto the physical network with reduced (or even neg-

ligible) dilation and contention. Continuing with the example, the p × p 2D-grid will be virtual, i.e.,

an overlay topology mapped into the physical topology, forcing the interconnection switch to emulate

a 2D-grid. Notwithstanding, the layout of the processors in the grid remains completely flexible. For

instance, the processors labeled P1,1, P1,2 and P2,1 can be any processors in the platform, and we have

the freedom to choose which three processors will indeed be labeled as the top-left corner processors

of the virtual grid. Now, to describe the matrix product on the 2D-grid, we say that data will be sent

horizontally between P1,1 and P1,2, and vertically between P1,1 and P2,1, but this actually means that

these messages will be routed by the actual network, regardless of the physical position of the three

processors in the platform.

This leads us to revisit the redistribution problem, adding the flexibility to select the best assignment

of data on the processors (according to the cost model). The problem can be formulated as mapping a

partition of the initial data onto the resources: there are P data subsets (the blocks in the example) to be

assembled onto P processors, with a huge (exponential) number, namely P !, of possible mappings. An

intuitive view of the problem is to assign the same color to all data items that initially reside on the same

processor, and to look for a coloring of the virtual grid that will minimize the redistribution cost. For

instance, in Figure 4.1, most data items of the block allocated to the virtual processor P1,1 are initially

colored red (they reside on the red processor A), so we decided to map P1,1 on processor A to avoid

moving these items.

One major goal of this chapter is to assess the complexity of the problem of finding the best processor

mapping for a given initial data distribution and a target data partition. This amounts to determining the

processor assignment that minimizes the cost of redistributing the data according to the partition. There
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are P ! possible redistributions, and we aim at finding the one minimizing a predefined cost-function.

In this chapter, we use the two most widely-used criteria in the literature to compute the cost of a

redistribution:

• Total volume. In this model, the platform is not dedicated, and the objective is to minimize the

total communication volume, i.e., the total amount of data sent from one processor to another.

Minimizing this volume makes it less likely to disrupt the other applications running on the plat-

form, and is expected to decrease network contention, hence redistribution time. Conceptually,

this is equivalent to assuming that the network is a bus, globally shared by all computing resources.

• Number of parallel steps. In this model, the platform is dedicated to the application, and several

communications can take place in parallel, provided that they involve different processor pairs.

This is the one-port bi-directional model used in [68, 71]. The quantity to minimize is the number

of parallel steps, where a step is a collection of unit-size messages that involve different processor

pairs.

One major contribution of this chapter is the design of an algorithm solving this optimization problem

for either criterion. We also provide various experiments to quantify the gain that results from choos-

ing the optimal mapping rather than a canonical mapping where processors are labeled arbitrarily, and

independently of the initial data distribution.

As mentioned earlier, a redistribution is usually motivated by the need to efficiently execute in par-

allel a subsequent computational kernel. In most cases, there may well be several data partitions that are

suitable for the efficient execution of this kernel. The optimal partition also depends upon the initial data

distribution. Coming back to the introductory example, where the redistribution is followed by a matrix

product, we may ask whether a full block partition is absolutely needed? If the original data is distributed

along a suitable, well-balanced distribution, a simple solution is to compute the product in place, using

the owner computes rule, that is, we let the processor holding Ci,j compute all Ai,kBk,j products. This

means that elements of A and B will be communicated during the computation, when needed. On the

contrary, if the original distribution has a severe imbalance, with some processors holding significantly

more data than others, a redistribution is very likely needed. But in this latter case, do we really need

a perfect full block partition? In fact, the optimization problem is the following: given an initial data

distribution, what is the best data partition, and the best mapping of this partition onto the processors, to

minimize total execution time, defined as the sum of the redistribution time and of the execution of the

kernel. Another major contribution of this chapter is to assess the complexity of this intricate problem.

Finding the optimal partition mapping becomes NP-complete when coupling the redistribution with a

simple computational kernel such as an iterative 1D-stencil kernel. Here the optimization objective is

the sum of the redistribution time (computed using either of the two criteria above, with all communica-

tions serialized or with communications organized in parallel steps), and of the parallel execution time

of a few steps of the stencil. Intuitively this confirms that determining the optimal data partition and its

mapping is a difficult task. Stencil computations naturally favor block distributions, in order to commu-

nicate only block frontiers at each iteration. But this has to be traded-off with the cost of moving the

data from the initial distribution, with the number of iterations, and with the possible imbalance of the

final distribution that is chosen (whose own impact depends upon the communication-to-computation

ratio of the machine). Altogether, it is no surprise that all these possibilities lead to a hard combinatorial

problem.

Finally, this chapter provides an experimental validation of the new redistribution algorithms con-

ducted on a multicore cluster. We first experiment with the 1D-stencil algorithm and obtain performance

improvements in total execution time that strongly depend on initial distributions. Different data config-

urations have been tested to assess this gain. For a more compute-intensive dense linear algebra routine,
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such as QR factorization, redistributing the data items can also be necessary. The 2D block-cyclic parti-

tion is known to offer a good trade-off between the amount of communications during the QR factoriza-

tion and the load balancing among processors. Using the algorithms to determine the best distribution

compatible with the 2D block-cyclic partition provides significant improvement in the completion time.

The rest of the chapter is organized as follows. We survey related work in Section 4.2. We detail the

model and formally state the optimization problems in Section 4.3. We deal with the problem of finding

the best redistribution for a given data partition in Section 4.4. Sections 4.4.1 and 4.4.2 provide algo-

rithms computing the optimal solution, while Section 4.4.3 reports simulation results showing the gain

over redistributing to an arbitrary compatible distribution. In Section 4.5, we couple the redistribution

with a stencil kernel, and show that finding the optimal data partition, together with the corresponding re-

distribution, is NP-complete. Experiments conducted on a multicore cluster are reported in Section 4.6.

Section 4.6.1 is devoted to the experimental setup. Section 4.6.2 provides results when redistribution is

followed by a stencil kernel, while Section 4.6.3 deals with QR factorization. We provide final remarks

and directions for future work in Section 4.7.

4.2 Related work

4.2.1 Communication model

The macro-dataflow model has been widely used in the scheduling literature (see the survey papers [84,

97, 33, 47] and the references therein). In this model, the cost to communicate L bytes is α+Lβ, where

α is a start-up cost and β is the inverse of the bandwidth. In this chapter, we consider large, same-sized

data items, so we can safely restrict to unit communications that involve a single data item; we integrate

the start-up cost into the cost of a unit communication.

In the macro-dataflow model, communication delays from one task to its successor are taken into ac-

count, but communication resources are not limited. First, a processor can send (or receive) any number

of messages in parallel, hence an unlimited number of communication ports is assumed (this explains the

name macro-dataflow for the model). Second, the number of messages that can simultaneously circulate

between processors is not bounded, hence an unlimited number of communications can simultaneously

occur on a given link. In other words, the communication network is assumed to be contention-free,

which of course is not realistic as soon as the processor number exceeds a few units.

A much more realistic communication model is the one-port bidirectional model where at a given

time-step, any processor can communicate with at most one other processor in both directions: sending

to and receiving from. Thus, communications can occur in parallel, provided that they involve disjoint

pairs of sending/receiving processors. The one-port model was introduced by Hollermann et al. [68], and

Hsu et al. [71]. It has been widely used since, both for homogeneous and heterogeneous platforms [17,

18].

4.2.2 General data redistribution

The complexity of scheduling data redistribution in distributed architectures strongly depends on the

network model. When the network has a general graph topology, achieving the minimal completion

time for a set of communications is NP-complete, even when the time required to move a data along any

link is constant [92].

In this context, several variants of the one-port bidirectional model have been considered. The first

variant is an unidirectional one-port model, where a processor can participate in only one communication
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at a time (either as a sender or as a receiver); with this variant, the redistribution problem becomes NP-

complete [78]. A second variant consists of assuming that each processor p has a number of ports

v(p) that represents the maximum number of simultaneous transfers that this processor can be involved

in [34]. Finally, in a third variant [13], processors have memory constraints that must be enforced during

the redistribution process.

4.2.3 Array redistribution

A specific class of redistribution problems has received considerable attention, namely the redistribution

of arrays that are already distributed in a block-cyclic fashion over a multidimensional processor grid.

This interest was originally motivated by the HPF [79] programming style, in which scientific appli-

cations are decomposed into phases. At each phase, there is an optimal distribution of the data arrays

onto the processor grid. Typically, arrays are distributed according to a CYCLIC(r) pattern1 along

one or several dimensions of the grid. The best value of the distribution parameter r depends on the

characteristics of the algorithmic kernel as well as on the communication-to-computation ratio of the

target machine [41]. Because the optimal value of r changes from phase to phase and from one machine

to another (think of a heterogeneous environment), run-time redistribution turns out to be a critical op-

eration, as stated in [76, 106, 108, 102] (among others). Communications are scheduled into parallel

steps, which involve different processor pairs. The model comes in two variants, synchronous and asyn-

chronous. In the synchronous variant, the cost of a parallel step is the maximal size of a message and the

objective is to minimize the sum of the costs of the steps [106, 38]. In the asynchronous model, some

overlap is allowed between communication steps [62]. Finally, the ScaLAPACK library provides a set of

routines to perform array redistribution [88]. A total exchange is organized between processors, which

are arranged as a (virtual) caterpillar. The total exchange is implemented as a succession of synchronous

steps.

We point out that all the works referenced in Section 4.2.2 and in this one deal with a fixed target

distribution. To the best of our knowledge, this work is the first to consider target data partitions rather

than target data distributions, thereby allowing to choose the best data redistribution among P ! candi-

dates, where P is the number of enrolled processors. Also, this work is the first to study the cost of

coupling a redistribution with a computational kernel, which is a very important problem in practice.

4.3 Model and framework

This section details the framework and formally states the optimization problems. We start with a few

definitions.

4.3.1 Definitions

Consider a set of N data items (numbered from 0 to N − 1) distributed onto P processors (numbered

from 0 to P − 1).

Definition 4.1 (Data distribution). A data distribution D defines the mapping of the elements onto the

processors: for each data item x, D(x) is the processor holding it.

1The definition is the following: let an array X[0...M − 1] be distributed according to a block-cyclic distribution

CYCLIC(r) onto a linear grid of P processors. Then element X[i] is mapped onto processor p = ⌊i/r⌋ mod P ,

0 ≤ p ≤ P − 1.
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Definition 4.2 (Data partition). A data partition P associates to each data item x an index P(x) (0 ≤
P(x) ≤ P − 1) so that two data items with the same index reside on the same processor (not necessarily

processor P(x)). The jth component of the data partition P is the subset of the data items x such that

P(x) = j.

It is straightforward to see that a data distribution D defines a single corresponding data partition

P = D. However, a given data partition does not define a unique data distribution. On the contrary, any

of the P ! permutations of {0, . . . , P − 1} can be used to map a data partition onto the processors.

Definition 4.3 (Compatible distribution). A data distribution D is compatible with a data partition P if

and only if there exists a permutation of processors σ of {0, . . . , P − 1} such that for each data item x,

D(x) = σ(P(x)).

4.3.2 Cost of a redistribution

In this section, we formally state the two metrics for the cost of a redistribution, namely the total volume

and the number of parallel steps. Both metrics assume that the communication of one data item from

one processor to another takes the same amount of time, regardless of the item and of the location of

the source and target processors. Indeed, data items can be anything from single elements to matrix

tiles, columns or rows, so that our approach is agnostic of the granularity of the redistribution. As

already mentioned, many modern interconnection networks are fully-connected switches, and they can

implement any (same-length) communication in the same amount of time. Note that with asymmetric

networks, it is always possible to use the worst-case communication time between any processor pair as

the unit time for a communication.

4.3.2.1 Total volume

For this metric, we simply count the number of data items that are sent from one processor to another.

This metric may be pessimistic if some parallelism is possible, but it provides an interesting measure of

the overhead of the redistribution, especially if the platform is not dedicated.

Given an initial data distribution Dini and a target distribution Dtar , for 0 ≤ i, j ≤ P − 1, let qi,j
be the number of data items that processor i must send to processor j: qi,j is the number of data items

x such that Dini(x) = i and Dtar (x) = j. For a given processor i, let si (respectively ri) be the total

number of data items that processor i must send (respectively receive) during the redistribution. We have

si =
∑

j 6=i qi,j and ri =
∑

j 6=i qj,i. The total communication volume of the redistribution is defined as

RedistVol(Dini → Dtar ) =
∑

i

si =
∑

i

ri.

4.3.2.2 Number of parallel steps

With this metric, some communications can take place in parallel, provided that each of them involves a

different processor pair (sender and receiver). This communication model is the bidirectional one-port

model introduced in [68, 71] and accounts for contention when communications take place simultane-

ously.

We define a parallel step as a set of unit-size communications (one data item each) such that all

senders are different, and all receivers are different (the set of senders of the set of receivers are not

necessary disjoint). With this definition, a processor can send and receive a data item at the same time

but can not send (respectively receive) a data item to (respectively from) more than one processor during
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the same communication step. Given an initial data distribution Dini and a target distribution Dtar , we

define RedistSteps(Dini → Dtar ) as the minimal number of parallel steps that are needed to perform

the redistribution.

4.3.3 Optimization problems

Here, we formally introduce the optimization problems that we study in Sections 4.4 and 4.5 below.

4.3.3.1 Best redistribution compatible with a given partition

In the optimization problems of Section 4.4, the data partition is given, and we aim at finding the best

compatible target distribution (among P ! ones). More precisely, given an initial data distribution Dini

and a target data partition Ptar , we aim at finding a data distribution Dtar that is compatible with Ptar
and such that the redistribution cost from Dini to Dtar is minimal. Since we have two cost metrics, we

define two problems:

Definition 4.4 (VOLUMEREDISTRIB). Given Dini and Ptar , find Dtar compatible with Ptar such that

RedistVol(Dini → Dtar ) is minimized.

Definition 4.5 (STEPREDISTRIB). Given Dini and Ptar , find Dtar compatible with Ptar such that

RedistSteps(Dini → Dtar ) is minimized.

We show in Section 4.4 that both problems have polynomial complexity.

4.3.3.2 Best partition and best compatible redistribution

In the optimization problems of Section 4.5, the data partition is no longer fixed. Given an initial data

distribution Dini , we aim at executing some computational kernel whose cost Tcomp(Ptar ) depends

upon the data partition Ptar that will be selected. Note that this computational kernel will have the same

execution cost for any distribution Dtar compatible with Ptar , because of the symmetry of the target

platform. However, the redistribution cost from Dini to Dtar will itself depend upon Dtar . We model

the total cost as the sum of the time of the redistribution and of the computation. Letting τcomm denote

the time to perform a communication, the time to execute the redistribution is either RedistVol(Dini →
Dtar )×τcomm or RedistSteps(Dini → Dtar )×τcomm , depending upon the communication model. This

leads to the following two problems:

Definition 4.6 (VOLPART&REDISTRIB). Given Dini , find Ptar , and Dtar compatible with Ptar , such

that Ttotal = RedistVol(Dini → Dtar )× τcomm + Tcomp(Ptar ) is minimized.

Definition 4.7 (STEPPART&REDISTRIB). Given Dini , find Ptar , and Dtar compatible with Ptar , such

that Ttotal = RedistSteps(Dini → Dtar )× τcomm + Tcomp(Ptar ) is minimized.

Note that both problems require that we are able to compute Tcomp(Ptar ) for any target data partition

Ptar . This is realistic only for very simple computational kernels. In Section 4.5, we consider such a

kernel, namely the 1D-stencil. We show the NP-completeness of both VOLPART&REDISTRIB and

STEPPART&REDISTRIB for this kernel, thereby assessing the difficulty to couple redistribution and

computations.
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4.4 Redistribution

This section deals with the VOLUMEREDISTRIB and STEPREDISTRIB problems: given a data partition

Ptar and an initial data distribution Dini, find one target distribution Dtar among all possible P ! com-

patible target distributions that minimizes the cost of the redistribution, either expressed in total volume

or number of parallel steps. We show that both problems have polynomial complexity. As a side note,

we point out that these results directly extend to the case where we have different numbers of processors

for the source and target distributions.

4.4.1 Total communication volume

Theorem 4.1. Given an initial data distribution Dini and target data partition Ptar , Algorithm 7 com-
putes a data distribution Dtar compatible with Ptar such that RedistVol(Dini → Dtar ) is minimized,
and its complexity is O(NP 2 + P 3).

Proof. Using the definition of si and ri from Section 4.3.2.1, the total volume of communications during

the redistribution phase from the initial distribution to the target distribution is

RedistVol(Dini → Dtar) =
∑

0≤i≤P−1

si =
∑

0≤i≤P−1

ri.

Solving VOLUMEREDISTRIB amounts to finding a one-to-one perfect matching between each com-

ponent of the target data partition and the processors, so that the total volume of communications is

minimized. Algorithm 7 builds the complete bipartite graph where the two sets of vertices represents

the P processors and the P components of the target data partition. Each edge (i, j) of this graph is

weighted with the amount of data that processor Pi would have to receive if matched to component j of

the data partition.

Computing the weight of the edges can be done with complexity O(NP 2). The complexity of find-

ing a minimum-weight perfect matching in a bipartite graph with n vertices and m edges is O(n(m +
n log n)) (see Corollary 17.4a in [94]). Here n=P and m=P 2, hence the overall complexity of Algo-

rithm 7 is O(NP 2 + P 3). �

Note that, in Algorithm 7, the complexity of computing egde weights may easily be reduced to

O(NP + P 2): (i) we first initialize all weights to 0 (in O(P 2)), (ii) then, for each data item x and each

i 6= Dini(x), the weight of edge (i,Ptar (x)) is incremented (in O(NP )). With this optimization, the

complexity of Algorithm 7 can be reduced to O(NP + P 3).

4.4.2 Number of parallel communication steps

The second metric is the number of parallel communications steps in the bidirectional one-port model.

Note that this objective is quite different from the total communication volume: consider for instance

a processor which has to send and/or receive much more data than the others; all the communications

involving this processor will have to be performed sequentially, creating a bottleneck.

Theorem 4.2. Given an initial data distribution Dini and target data partition Ptar , Algorithm 8 com-
putes a data distribution Dtar compatible with Ptar such that RedistSteps(Dini → Dtar ) is minimized,

and its complexity is O(NP 2 + P
9
2 ).
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Algorithm 7: BESTDISTRIBFORVOLUME

Data: Initial data distribution Dini and target data partition Ptar
Result: a data distribution Dtar compatible with the given data partition, such that

RedistVol(Dini → Dtar ) is minimized

A← {0, . . . , P − 1} (set of processors)

B ← {0, . . . , P − 1} (set of data partition indices)

G← complete bipartite graph (V,E) where V = A ∪B
for edge (i, j) in E do

weight(i, j)← |{x s.t. Ptar (x) = j and Dini(x) 6= i}|

M ← minimum-weight perfect matching of G
for (i, j) ∈M do

for x s.t. Ptar (x) = j do Dtar (x)← i

return Dtar

Proof. First, given an initial data distribution Dini and a target distribution Dtar , we can compute

RedistSteps(Dini → Dtar ) as

RedistSteps(Dini → Dtar ) = max
0≤i≤P−1

max(si, ri).

This well-known result [38] is a direct consequence of König’s theorem (see Theorem 20.1 in [94])

stating that the edge-coloring number of a bipartite multigraph is equal to its maximum degree.

Algorithm 8 builds the complete bipartite graph G where the two sets of vertices represent the P
processors and the P components of Ptar . Each edge (i, j) of the complete bipartite graph is weighted

with the maximum between the amount ri,j of data that processor i would have to receive if matched to

component j of the data partition, and the amount of data that it would have to send in the same sce-

nario. A one-to-one matching between the two sets of vertices whose maximal edge weight is minimal

represents an optimal solution to STEPREDISTRIB. We denote byMopt such a matching and mopt its

maximal edge weight. Since there are P processors and P components in Ptar , the one-to-one matching

Mopt is a matching of size P .

Algorithm 8 prunes an edge with maximum weight from G until it is not possible to find a matching

of size P , and it returns the last matching of size P . We denote by Mret this matching and mret

its maximum edge weight. Using a proof by contradiction, we first assume that mret > mopt. Then

matchingMopt only contains edges with weight strictly smaller than mret. Since Algorithm 8 prunes

edges starting from the heaviest ones, these edges are still in G when Algorithm 8 returnsMret. Thus

we can remove the edges with maximal weight mret inMret and still have a matching of size P . This

contradicts the stopping condition of Algorithm 8. Thus mret = mopt and the matching returned by

Algorithm 8 is a solution to STEPREDISTRIB.

Again, computing edge weights can be done with complexity O(NP 2 + P 2). Algorithm 8 uses

the Hopcroft–Karp Algorithm [69] to find the maximum cardinality matching of a bipartite graph

G = (V,E) in time O(|E|
√

|V |). There are no more than P 2 iterations in the while loop, and Al-

gorithm 8 has a worst-case complexity of O(NP 2 + P
9
2 ). �

Note that, like in previous section, the complexity of Algorithm 8 can easily be reduced to

O(NP + P
9
2 ) with an optimized weight computation.
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Algorithm 8: BESTDISTRIBFORSTEPS

Data: Initial data distribution Dini and target data partition Ptar
Result: A data distribution Dtar compatible with the given data partition so that

RedistSteps(Dini → Dtar ) is minimized

A← {0, . . . , P − 1} (set of processors)

B ← {0, . . . , P − 1} (set of data partition indices)

G← complete bipartite graph (V,E) where V = A ∪B
for edge (i, j) in E do

ri,j ← |{x s.t. Ptar (x) = j and Dini(x) 6= i}|
si,j ← |{x s.t. Ptar (x) 6= j and Dini(x) = i}|
weight(i, j)← max(ri,j , si,j)

M← maximum cardinality matching of G (using the Hopcroft–Karp Algorithm)

while |M| = P do
Msave ←M
Suppress all edges of G with maximum weight

M← maximum cardinality matching of G (using the Hopcroft–Karp Algorithm)

returnMsave

4.4.3 Evaluation of optimal vs. arbitrary redistributions

In this section, we conduct several simulations to illustrate the interest of the two algorithms intro-

duced above. In particular, we show that in many cases, it is important to optimize the mapping rather

than resorting to an arbitrary mapping which could induce many more communications. Source code

for the algorithms and simulations is publicly available at http://perso.ens-lyon.fr/julien.

herrmann/.

4.4.3.1 Random balanced initial data distribution

First we consider a random balanced initial data distributionDini , where each processor initially hosts D
data items, and each data item has the same probability to reside on any processor. Most parallel appli-

cations require perfect load balancing to achieve good performance, and thus a balanced data partition.

Therefore, we consider here a balanced target data partition Ptar (each of its P components includes D
data items). We denote by Dcan the canonical data distribution (compatible with partition Ptar ) which

maps its jth component onto processor j.

As seen in Section 4.3, the volume of communication involved during the redistribution from Dini

to Dcan is RedistVol(Dini → Dcan) =
∑

0≤j≤P−1 |{x s.t. Ptar (x) = j and Dini(x) 6= j}|. Since each

component of Ptar has cardinal D and Dini(x) is equal to j with a probability 1
P for any processor j

and any data item x, we can compute the expected volume of communication: E(RedistVol(Dini →
Dcan)) = D(P − 1). Thus, picking an arbitrary target distribution leads to an average volume of

communications linear in P .

Each processor hosts D data items at the beginning and at the end of the redistribution phase. Thus,

according to Section 4.4.2, the number of steps required to schedule the redistribution phase is equal to

D if and only if one of the P processors has to send its complete initial data set during the redistribution
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model before establishing the NP-completeness of minimizing the cost of a redistribution followed by

the execution of the kernel.

4.5.1 Application model

We consider here a three-point stencil with circular arrangement of the data. More precisely, to compute

the value x(i, t) of the data at position i at step t, we need its value and those of its left and right neighbors

at the previous step, namely x(i, t − 1), x(i − 1 mod N, t − 1), and x(i + 1 mod N, t − 1). If the

neighbors are not stored on the same processor, their value has to be received from the processors hosting

them. Thus, each iteration of the stencil algorithm consists in two phases, the communication phase
when the value of each data item is sent to the processors hosting its neighbors, and the computation
phase, when each data item is updated according to a given kernel using these values (see Algorithm 9).

The update kernel depends on the application.

Algorithm 9: One iteration of the unidimensional stencil algorithm

Result: N data items numbered from 0 to N − 1 and their distribution D on P processors

for 0 ≤ x ≤ N − 1 in parallel do
ℓx ← (x− 1) mod N ;

rx ← (x+ 1) mod N ;

if D(ℓx) 6= D(x) then
Processor D(x) receives data item ℓx from processor D(ℓx);

if D(rx) 6= D(x) then
Processor D(x) receives data item rx from processor D(rx);

for 0 ≤ x ≤ N − 1 in parallel do
Processor D(x) updates data item x using ℓx and rx;

Given a data partition Ptar , let Nij be the number of data items sent by the processor hosting the ith

component of Ptar to the processor hosting the jth component during one communication phase of the

stencil algorithm: Nij is the number of left or right neighbors in the ith component of data items in the

jth component. Formally:

Nij = |{0 ≤ x ≤ N−1 s.t. Ptar (x) = i and (Ptar (x−1 mod N) = j or Ptar (x+1 mod N) = j)}|.

The workload ℓi of the processor i hosting the ith component of Ptar is:

ℓi = |{0 ≤ x ≤ N − 1 s.t. Ptar (x) = i}|.

Given a data partition Ptar , the running time of the stencil algorithm depends on the communication

model, but not on the actual data distribution, provided that it is compatible with Ptar . Let τcomm be

the time needed to perform one communication (see Section 4.3.3), and let τcalc be the time needed to

perform one data update for the considered stencil application. The processing time for K iterations of

the stencil with the two communication models is the following (using the notations of Section 4.3.3):

• Total volume: For problem VOLPART&REDISTRIB, Tcomp(Ptar ) = K × T iter
vol (Ptar ), where

T iter
vol (Ptar ) = τcomm ×





∑

0≤i≤P−1

∑

j 6=i

Nij





+τcalc × max
0≤i≤P−1

ℓi

.
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The first term corresponds to the serialization of all communications, and the second one to the

parallel processing of the updates.

• Number of parallel steps: For problem STEPPART&REDISTRIB, Tcomp(Ptar ) = K×T iter
steps(Ptar ),

where

T iter
steps(Ptar ) = τcomm × max

0≤i≤P−1





∑

j 6=i

Nij ,
∑

j 6=i

Nji





+τcalc × max
0≤i≤P−1

ℓi

.

Here the first term corresponds to the time needed to perform the required number of communi-

cation steps, and the second term is unchanged.

4.5.2 Complexity

Assume without loss of generality that N is a multiple of P . There is a well-known optimal data partition

for the 1D-stencil kernel, namely the full block partition (data item i is assigned to component ⌊iP/N⌋).
This canonical partition Pcan minimizes the duration of the communication phase (only two items are

sent/received per component of the partition) and the computation phase is perfectly balanced.

Starting from an initial data distribution Dini , we can use either Algorithm 7 or 8 to find a target

distribution Dtar which is compatible with the full-block partition Pcan and whose redistribution cost is

minimal. However, redistributing from Dini to Dtar may induce a large overhead on the total execution

time, which is fully justified only when the number of iterations K is large enough. It may be useful

to avoid a costly redistribution for small values of K, and to find a target redistribution which is a

trade-off between minimizing redistribution time and processing time. Actually, finding such a trade-off

distribution is an NP-complete problem for both communication models. We define the two decision

problems associated to VOLPART&REDISTRIB and STEPPART&REDISTRIB:

Definition 4.8 (DECISIONVOLPART&REDISTRIB). Given a number of processors P , elementary com-

munication and computation times τcomm and τcalc , a number of steps K, an initial data distribution

Dini and a bound TMAX , are there a partition Ptar , and a distribution Dtar compatible with Ptar , such

that:

Ttotal (Dini ,Dtar ) = RedistVol(Dini → Dtar )× τcomm + Tcomp(Ptar ) ≤ TMAX ?

Definition 4.9 (DECISIONSTEPPART&REDISTRIB). Given a number of processors P , elementary com-

munication and computation times τcomm and τcalc , a number of steps K, an initial data distributionDini

and a bound TMAX , are there a partition Ptar , and a distribution Dtar compatible with Ptar , such that:

Ttotal (Dini ,Dtar ) = RedistSteps(Dini → Dtar )× τcomm + Tcomp(Ptar ) ≤ TMAX ?

Theorem 4.3. The DECISIONVOLPART&REDISTRIB problem with the 1D-stencil kernel is strongly
NP-complete.

Proof. We first prove that DECISIONVOLPART&REDISTRIB belongs to NP. Given Dtar , it is possible

to compute in polynomial time the redistribution time RedistVol(Dini → Dtar )× τcomm and the cost of

the K iterations of the stencil algorithm Tcomp(Ptar ), and thus to check whether Ttotal is smaller than

TMAX or not. Thus, DECISIONVOLPART&REDISTRIB is in NP.

To establish the completeness, we use a reduction from the 3-Partition problem, which is known to be

NP-complete in the strong sense [49]. We consider the following instance Inst0 of the 3-Partition prob-

lem: let a0i , 1 ≤ i ≤ 3m, be 3m integers and B0 an integer such that
∑

a0i = mB0. We enforce the additional (usual) constraint that ∀i, B0/4 < a0i < B0/2 [49]. To solve

Inst0, we need to solve the following question: is there a partition of the a0i ’s in m subsets S1, ..., Sm
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such that, ∀Sk,
∑

i∈Sk
a0i = B0. Note that if there is a solution, then each subset will contain exactly 3

elements, due to the additional constraint.

We then transform (in polynomial time) Inst0 into another instance Inst1 of the 3-Partition problem

as follows: let ai = 385m× a0i for 1 ≤ i ≤ 3m and B = 385m×B0. Obviously, Inst1 has a solution

if and only if Inst0 has a solution. This new instance of the 3-Partition problem has the following

properties:

• ∀i,B/4 < ai < B/2, since ∀i, B0/4 < a0i < B0/2
• B2 > 5m×B+ 96m since 1

m(B2 − 5m × B) = 385mB0(385B0 − 5) > 96 because m ≥ 1
and B0 ≥ 1.

• B > 384m since B0 ≥ 1.

Given Inst1, we build the following instance Inst2 of the DECISIONVOLPART&REDISTRIB prob-

lem, illustrated in Figure 4.4. In Inst2, we set the number of processors to P = 12m, the number of

1D-stencil steps to K = 1, elementary communication and computing times τcomm = 1 and τcalc = B2.

We also set the time bound to TMAX = 96m + 5mB + 8B3. Finally, Figure 4.4 represents the initial

data distribution Dini of 96mB elements on the 12m different processors. To clarify the proof, we split

the 12m processors into 4 different groups. There are 3m processors in group 1, m processors in group

2, 4m processors in group 3 and 4m processors in group 4. Processors in group k are denoted by P
(k)
i .

Figure 4.4 depicts the initial data distribution Dini . For example, the 2B first consecutive elements are

stored on P
(1)
1 , the first processor in group 1. The next 2B elements are stored on P

(4)
1 , the first pro-

cessor in group 4. Note that in the fifth set of 3m block values (a1, 2B, a2, 2B, . . . , a3m, 2B), the 3m
blocks of size 2B are distributed on the m group-4 processors P3m+1, . . . , P4m in a round robin way

(the first block goes to P3m+1, the second one to P3m+2, . . . , the m-th block goes to P4m, the m+ 1-th

goes ot P3m+1, etc.

The construction of Inst2 is polynomial in the size of Inst1, and thus, in the size of Inst0. We show

that Inst2 has a solution if and only if Inst1 has a solution.

We first assume that Inst2 has a solution and we let Dtar denote be the final distribution of data.

A connected component of processor p is defined as a set of consecutive items hosted on processor

p. A maximal connected component of processor p is a connected component of processor p which

is not strictly included in another connected component of processor p. For instance, in Dini depicted

in Figure 4.4, each group-1 processor has 5 maximal connected components in Dini . Let Cp be the

number of maximal connected components on processor p for the distribution Dtar . At each stencil

step, each processor has to send only the two items at each border of each of its maximal connected

components. Thus, with lp = |{x s.t. Dtar (x) = p}| being the workload of processor p as introduced in

Section 4.5.1, T iter
vol (Ptar ) = 2×

∑

pCp +B2 ×maxp lp, and Ttotal (Dini ,Dtar ) = RedistVol(Dini →

Dtar ) + 2×
∑

pCp +B2 ×maxp lp. Since, Dtar is a solution to Inst2, we know that:

RedistVol(Dini → Dtar ) + 2×
∑

p

Cp +B2 ×max
p

lp ≤ 96m+ 5mB + 8B3. (4.1)

Let us first show that ∀p, lp = 8B:

• maxp lp ≤ 8B because otherwise, we would have:

T stencil
vol (Dini ,Dtar ) ≥ B2 ×max

p
lp ≥ B2 × (8B + 1) > TMAX,

since B2 > 5m×B + 96m.

• There are a total of 96mB elements of data and 12m processors, thus ∀p, lp = 8B.
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Figure 4.4: Dini and Dsol in the proof of Theorems 4.3 and 4.4.
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Thus maxp lp = 8B and Equation 4.1 becomes:

RedistVol(Dini → Dtar ) + 2×
∑

p

Cp ≤ 96m+ 5mB. (4.2)

For each processor P
(k)
i , let S

(k)
i (respectively R

(k)
i ) be the number of elements sent (respectively

received) by processor P
(k)
i during the redistribution phase. We naturally have

∑

k,i

S
(k)
i =

∑

k,i

R
(k)
i = RedistVol(Dini → Dtar ).

Let us show that
∑

pCp ≥ 48m. Initially, in Dini , there are 52m maximal connected components

among all the processors. There are only two different ways to decrease the global number of maximal

connected components: merging two existing connected components by receiving all the data between

them, or sending one entire maximal connected component to one of the processors that host a maximal

connected component next to it. We first consider the first option. In Dini , two maximal connected

components hosted by the same processor are separated by more than 6mB elements. Thus, to merge

two existing maximal connected components in Dini , a processor would have to receive more than

6mB elements during the redistribution phase, which is not possible according to Equation 4.2, since

B > 384m. We now consider the second option (sending one entire maximal connected component).

• Let assume that a processor P
(1)
i sends one of its entire maximal connected components to one

of its neighbors. The only neighbors of P
(1)
i are processors of group-4. This means that a pro-

cessor P
(4)
j will receive at least B/4 elements from P

(1)
i during the redistribution phase, since

∀i, B/4 < ai. However, at the end of the redistribution phase, P
(4)
j can only host 8B elements,

thus it will have to send at least 5
4B elements during the redistribution phase:

RedistVol(Dini → Dtar ) =
∑

(k,p)s.t.(k,p) 6=(4,j)

S(k)
p + S

(4)
j ≥ 5mB +B/4,

which is not possible according to Equation 4.2 and since B > 384m.

• Let assume that a processor P
(2)
i sends one of its entire maximal connected components to one of

its neighbors. This means that processor P
(2)
i will send at least 7B elements during the redistri-

bution phase and thus, we will have

RedistVol(Dini → Dtar ) =
∑

(k,p)s.t.(k,p) 6=(2,i)

S(k)
p + S

(2)
i ≥ 5mB + 7B,

which again, is not possible according to Equation 4.2 and since B > 384m.

• Let assume that a processor P
(3)
i sends one of its entire maximal connected components to one of

its neighbors. This means that P
(3)
i will send at least B elements during the redistributing phase

and thus, we will have

RedistVol(Dini → Dtar ) =
∑

(k,p)s.t.(k,p) 6=(3,i)

S(k)
p + S

(3)
i ≥ 5mB +B,

which, again, is not possible.
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Thus, the only remaining option to decrease the number of maximal connected component is that some

processor P
(4)
i sends at least one entire connected component to one of its neighbors. Assume that it

sends at least two of its entire maximal connected components to one of its neighbors. This means that

P
(4)
i will send at least 3B elements during the redistributing phase and thus, we will have

RedistVol(Dini → Dtar ) =
∑

(k,p)s.t.(k,p) 6=(3,i)

S(k)
p + S

(4)
i ≥ 5mB + 2B,

which, again, is not possible according to Equation 4.2 and since B > 384m.

Thus each processor P
(4)
i can send only one of its entire maximal connected components to one of

its neighbors. There are 4m processors in group-4, so we can reduce the number of maximal connected

components by only 4m. Since there are 52m maximal connected components inDini , we have inDtar :

∑

p

Cp ≥ 48m. (4.3)

Then, we show that RedistVol(Dini → Dtar ) = 5mB.

• Equation 4.2 and Equation 4.3 lead to: RedistVol(Dini → Dtar ) =
∑

k,iR
(k)
i ≤ 5mB

• Initially, in Dini , each processor in group-2 or group-3 hosts 7B elements of data and since

∀p, lp = 8B in Dtar , the group-2 and group-3 processors each have to receive at least B ele-

ments of data during the redistribution phase (∀i, R
(2)
i ≥ B and R

(3)
i ≥ B). Thus at least 5mB

elements of data have to be communicated during the redistribution phase:

RedistVol(Dini → Dtar ) =
∑

k,i

R
(k)
i ≥ 5mB.

Thus RedistVol(Dini → Dtar ) = 5mB and Equation 4.2 becomes:

∑

p

Cp = 48m. (4.4)

We now bound the number of elements sent and received by processors in group 2, 3 and 4.

• Each group-2 processor P
(2)
i and each group-3 processor P

(3)
i hosts 7B elements in the initial

distribution Dini , and 8B elements in the final distribution Dtar . Thus, they each have to receive

at least B elements of data. There are 5m of them, so they can receive only B elements of

data each, and no other processor can receive any data. More formally, we have ∀i: R
(1)
i = 0,

R
(2)
i = B, R

(3)
i = B and R

(4)
i = 0.

• Each group-1 processor P
(1)
i hosts 8B + ai elements in Dini , and 8B elements in Dtar . Each

group-4 processor P
(4)
i hosts 9B elements in Dini , and 8B elements in Dtar . Again, this means

that each group-1 processor P
(1)
i can send only ai elements of data, each group-4 processor P

(4)
i

can send only B elements of data and no other processors can send any data. That is, ∀i: S
(1)
i = ai,

S
(2)
i = 0, S

(3)
i = 0 and S

(4)
i = B.
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Since
∑

pCp = 48m, each group-4 processor has to send one and only one of its entire maximal

connected components to one of its neighbor (as we have seen earlier, there is no other way to decrease

the global number of maximal connected components). Since ∀i: S
(4)
i = B, group-4 processors can only

send their maximal connected component of size B. The only neighbors of these maximal connected

components are some group-3 processors. Thus, each group-4 processor will send its entire maximal

connected component of size B to a group-3 processor, and group-3 processors can not receive anything

else from any other processor.

Gathering all the results shown above, we can state that group-1 processors can only send their ai
elements to group-2 processors during the redistribution phase. If a processor P

(1)
i splits its ai consec-

utive elements and send them to two different group-2 processors, this would create an extra maximal

connected component on the group-2 processors. Thus, each group-1 processor has to send its ai
elements to the same group-2 processor.

Let Ak be the set of the sizes of the maximal connected components received by P
(2)
k during the

redistribution phase. The Ak sets represent a partition of the ai’s and ∀k,
∑

ai∈Ak
ai = R

(2)
k = B.

Hence the Ak sets are a solution of Inst1.

Suppose now that Inst1 has a solution. Let Ak be the 3-Partition of the integers ai and con-

sider the distribution Dsol described in Figure 4.4. To perform the redistribution from Dini to Dsol,

each group-2 and group-3 processors has to send or receive B elements of data, which means that

RedistVol(Dini → Dsol) = 5mB. In addition, in Dsol, there are 48m maximal connected components.

Thus, Ttotal (Dini ,Dsol) = 96m+ 5mB + 8B3 ≤ TMAX , which means that Inst2 has a solution. This

concludes the proof. �

Theorem 4.4. STEPPART&REDISTRIB problem with the 1D-stencil kernel is strongly NP-complete.

Proof. The proof of Theorem 4.4 is similar to that of Theorem 4.3. We consider the same instances

Inst0 and Inst1 of the 3-Partition problem [49]. We build the instance Inst2 depicted in Figure 4.4

for the DECISIONSTEPPART&REDISTRIB problem, as in the previous proof, except that we now set

TMAX = 8 +B + 8B3. We want to show that Inst2 has a solution if and only if Inst1 has a solution.

Assume first that Inst2 has a solution and use the same notations as above. We have the inequality:

Ttotal (Dini ,Dtar ) = RedistSteps(Dini → Dtar ) + 2×max
p

Cp +B2 ×max
p

lp

≤ 8 +B + 8B3. (4.5)

As in the previous proof, we can easily show that ∀p, lp = 8B. Thus, Equation 4.5 becomes:

RedistSteps(Dini → Dtar ) + 2×max
p

Cp ≤ 8 +B. (4.6)

Then we show that RedistSteps(Dini → Dtar ) = max(p,k)max(S
(k)
p , R

(k)
p ) = B:

• Initially, in Dini , the processor P
(4)
1 hosts 9B elements of data; since maxp lp = 8B in Dtar ,

the processor P
(4)
1 has to send at least B elements of data during the redistribution phase. Thus,

S
(4)
1 ≥ B and RedistSteps(Dini → Dtar ) ≥ B.

• If one processor sends B + 1 elements of data during the redistribution phase, we would have

RedistSteps(Dini → Dtar ) ≥ B + 1 and 2 × maxpCp ≤ 7, so maxpCp ≤ 3. Initially, in

Dini , processor P
(1)
1 hosts 5 maximal connected components and could have at most 3 maximal
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connected components in Dtar . There are only two different ways to decrease the number of

maximal connected components in a processor: sending one entire maximal connected component

to another processor or merging two existing connected components by receiving all the data

between them. Both options are impossible in this case, because processor P
(1)
1 would have

to send or receive more than 2B elements during the redistribution phase, which is impossible

according to Equation 4.5.

Thus RedistSteps(Dini → Dtar ) = B and Equation 4.6 becomes:

max
p

Cp ≤ 4. (4.7)

We now bound the number of elements sent and received by processors in group 2, 3 and 4. We

naturally have

∀P
(k)
i , max(S

(k)
i , R

(k)
i ) ≤ RedistSteps(Dini → Dtar ) = B.

• Each group-2 processor P
(2)
i hosts 7B elements in the initial distribution Dini , and 8B elements

in the final distribution Dtar . This means that R
(2)
i − S

(2)
i = B. Since max(S

(2)
i , R

(2)
i ) ≤ B, we

have: R
(2)
i = B and S

(2)
i = 0.

• Each group-3 processor P
(3)
i hosts 7B elements in Dini , and 8B elements in Dtar . Again, this

means that R
(3)
i − S

(3)
i = B and since max(S

(3)
i , R

(3)
i ) ≤ B, we necessarily have: R

(3)
i = B

and S
(3)
i = 0.

• Each group-4 processor P
(4)
i hosts 9B elements in Dini , and 8B elements in Dtar . Again,

S
(4)
i −R

(4)
i = B and we have R

(4)
i = 0 and S

(4)
i = B.

From these results, using the same reasoning as in the previous proof, we can show that:

• group-1 and group-2 processors do not send or receive any data to or from a group-3 or group-4

processor.

• Each group-1 processor does not keep any data received during the redistribution phase.

• Each group-1 processor has to send its ai elements to the same group-2 processor.

Let Ak be the set of the sizes of the maximal connected components received by P
(2)
k during the

redistribution phase: we have shown that the Ak sets are a solution of Inst1.

Suppose now that Inst1 has a solution. As in the previous proof, we can show that the distribution

Dsol described in Figure 4.4 is a solution for Inst2, which concludes the proof.

�

4.6 Experiments

The algorithms designed in Section 4.4 find the optimal target distribution according to different models

for the redistribution time. These algorithms may be sub-optimal for minimizing the total processing

time when it takes the processing of an arbitrary application into account. Section 4.5 proved that there

is no polynomial-time optimal algorithm to minimize this total processing time (unless P=NP) even
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for a simple application like the 1D-Stencil algorithm, which motivates the use of low-complexity sub-

optimal heuristics. In this section, we show that the redistribution algorithms introduced in Section 4.4

are good enough to provide performance improvements in real-life applications. The experiments are

conducted on a multicore cluster for the 1D-Stencil kernel and, then, for a more compute-intensive dense

linear algebra routine, namely the QR factorization.

4.6.1 Setup

We have implemented the 1D-stencil kernel of Section 4.5 on top of the PARSEC runtime [23, 22].

In addition, we have also implemented a QR factorization algorithm on top of PARSEC, in order to

experiment with a widely used computation-intensive numerical linear algebra routine.

The PARSEC runtime deals with computational threads and MPI communications. It allows the

user to define the initial distribution of the data onto the platform, as well as the target distribution

for the computations. Data items are first moved from their initial data distribution to the target data

distribution. Then computations take place, and finally data items are moved back to their initial position.

It is important to stress that the PARSEC runtime will overlap the initial communications due to the

redistribution with the processing of the computational kernel (either 1D-stencil or QR), so that the

total execution time does not strictly obey the simplified model of the previous sections. However,

choosing a good data partition (leading to an efficient implementation of the computational kernel), and

an efficient compatible data distribution (leading to fewer communications during the redistribution) is

still important to achieve high performance.

Experiments have been conducted on Dancer, a small cluster hosted at the Innovative Computing

Laboratory (ICL) in Knoxville, TN. This cluster has 16 multi-core nodes, each equipped with 8 cores,

and an InfiniBand 10G interconnection network. Each node features two Intel Westmere-EP E5606

CPUs at 2.13GHz. The system is running the Linux 64bit operating system, version 3.7.2-x86_64. The

software was compiled with the Intel Compiler Suite 2013.3.163. BLAS kernels were provided by the

MKL library, and OpenMPI 1.4.3 was used for MPI communications by the PARSEC runtime version

1.1. Each computational thread is bound to a single core using the HWLOC 1.7.1 library. We use all 16
nodes, whose aggregated theoretical peak performance is 1, 091 GFLOP/sec.

4.6.2 Stencil

The stencil algorithm described in Algorithm 9 can use diverse patterns to update the data, depending

upon the target application. In our experiments, data items operated upon are blocks of 1.6 × 106

double-precision floats. Experimentally, we observe that the average communication time of such blocks

between two nodes of Dancer is 100 milliseconds. The data items are initially distributed on the 16
processors according to a random balanced distribution as described in Section 4.4.3. We used a set of

30 randomly generated initial data distributions.

Figure 4.5 depicts the performance of the 1D-stencil algorithm when the update kernel takes on

average 100 milliseconds to compute the new value of one data item, so that the communication-to-

computation ratio is τcomm/τcalc = 1. Each sub-figure represents a different number of stencil iterations

(K = 0 to 9). In each sub-figure, we have executed K stencil iterations with 4 different strategies.

In the owner computes strategy, the data items are not moved and the stencil algorithm is applied on

the initial distribution. In the other strategies, we redistribute the data items towards three target dis-

tributions, each compatible with the canonical data partition Pcan described in Section 4.5.2: (i) the

distribution Dcan = Pcan with the original (arbitrary) labeling of the processors; (ii) the distribution

that minimizes the volume of communicationsDvol ; and (iii) the distribution that minimizes the number
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of redistribution steps Dsteps . We compute the processing time of the redistribution followed by the K
stencil iterations. The time needed to compute the target distributions depends on the number of pro-

cessors and data items but does not depend on the size of the data items. Usually the size of the data

items is large enough for the computation time of the algorithm presented in Section 4.4 to be negligible,

therefore it is not included in the figures. Each cross shows the performance for one of the 30 initial data

distributions, and the plain lines shows the average performance on the 30 initial data distributions. The

first observation is that the standard deviation of the processing time for all the initial data distribution is

very small. Moreover, in all sub-figures, we observe that the performances for target distributions Dvol

and Dsteps are indistinguishable. This is in accordance with the results in Section 4.4.3 showing that,

on random balanced initial distributions, Algorithm 7 and Algorithm 8 provide similar performances for

both metrics. We observe that the processing time of the three redistribution strategies slightly increases

with the number of stencil iterations, i.e., one stencil iteration is very fast (roughly 400 milliseconds for

16 data items per processor) when processed on the optimal data partition described in Section 4.5.2.

However, the owner computes strategy is less efficient as soon as we have to process more than one

stencil iteration. In the top-left sub-figure, K = 0 so that no iteration is executed. Data items are moved

from their initial processor to their target processor and then moved back onto their initial position. It

thus depicts the performance of two consecutive redistributions. The owner computes strategy has a

processing time close to zero which corresponds to the overhead of the PARSEC runtime. Both redis-

tribution strategies computed by Algorithm 7 and Algorithm 8 provide a 20% improvement over Dcan .

This improvement decreases when the number of iterations increases. Indeed, the only difference be-

tween the performances of Dcan , Dvol and Dsteps comes from the redistribution phase: the heavier the

computation, the less significant the redistribution phase.

Figure 4.6 depicts the performance of the 1D-stencil algorithm when the update kernel is less ex-

pensive, so that τcomm/τcalc = 10. Hence, in this experiment, the cost of communicating a data element

is greater than the computation time and we have to take special care to the redistribution. With a faster

computing kernel, the overall computation time is inferior to the one in Figure 4.5 but the owner com-
putes strategy is still less efficient than the redistributing strategies as soon as we have to do more than

one iteration. The difference between the performances ofDcan ,Dvol andDsteps is smaller in percentage

than in Figure 4.5.

Altogether, the experiments show that (i) redistributing towards a better data distribution is more

suitable than performing the algorithm in place with the random initial distribution, as soon as the

computational cost in non-negligible; and (ii) redistributing towards a data distribution that minimizes

the cost of the redistribution phase rather than towards an arbitrary one does improve the performance,

especially when the time to communicate a data item is significant.

4.6.3 QR factorization

In this section, we deal with a more compute-intensive kernel, namely the QR factorization, which

consists of decomposing a square matrix A into the product of two matrices Q × R such that Q is an

orthogonal matrix and R is an upper triangular matrix. QR factorization is a widely used linear algebra

algorithm for solving linear systems and linear least squares problems.

4.6.3.1 Framework

To optimize performance, the matrix is usually stored in tiled form: A has n tiles per row or column

and each tile is a block of nb × nb floating point numbers. The matrix is then factored with a tiled QR

factorization algorithm using orthogonal Householder matrices, as in [28, 90]. The N = n2 matrix
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tiles are the data items of the application. Initially, the tiles are arbitrarily distributed, and this initial

distribution may not be suitable for the QR factorization. We aim to redistribute the N data items

towards a better data partition. However, as opposed to the 1D-stencil algorithm, the QR factorization

algorithm has a complex workflow, and it is impossible to predict its processing time accurately: given

a data partition P , we cannot easily compute Tcomp(P).
However, even though there is no explicit model for the cost of a QR factorization performed on

a specific data partition, some distributions are known to be well-suited. A widely-used data partition

consists of mapping the tiles onto the processors following a 2D block cyclic partition [32]. The P
processors (numbered from 0 to P − 1) are arranged in a p× q grid where p× q = P . Matrix tile Ai,j is

then mapped onto processor (i mod p) × p + (j mod q). In the following, this data partition will be

referred to as Ptar , and the objective is to redistribute the N data items towards a distribution compatible

with Ptar .

Similarly to Section 4.6.2, we compare 4 redistribution strategies. In the owner computes strat-

egy, data items are not moved and the QR factorization is performed in place. In the other strategies,

we redistribute data items towards three target distributions compatible with Ptar : (i) the distribution

Dcan = Ptar with the original (arbitrary) labeling of the processors; (ii) the distribution that minimizes

the volume of communications Dvol ; and (iii) the distribution that minimizes the number of redistribu-

tion steps Dsteps .

4.6.3.2 Setup

A highly optimized version of the QR factorization implemented on top of the PARSEC runtime is

available in the DPLASMA library [20]. We have modified this implementation to deal with different

data distributions. We use a wide range of matrix sizes, with tiles of size nb = 200 × 200 double-

precision floating point numbers. Our objective is to highlight the impact of the target data distribution

on the performance of the QR algorithm, but a tile size of 200 × 200 is reasonable as it ensures near

peak performance on the execution platform.

As already mentioned, real-life distributions are not random. We conduct experiments on 2 different

sets of initial distributions for the matrix tiles, one artificially generated and one modeling an Earth

Science application [100]:

• SkewedSet : Matrix tiles are first distributed following an arbitrary 2D block cyclic distribution

(used as reference) and, then, half of the tiles are randomly moved onto another processor. The

processor with index i ∈ J0, P − 1K has a probability 2i
P (P−1) to receive each tile. Thus, the

workload among processors is likely to be imbalanced. The redistribution strategies toward Dvol

and Dsteps should find the 2D block cyclic distribution used as reference and move only half of

the tiles, while the redistribution towards the arbitrary distribution Dcan can potentially move all

of them.

• ChunkSet : This distribution set comes from an Earth Science application [100]. Astronomy

telescopes collect data over days of observations and process them into a 2D or 3D coordinate

system, which is usually best modeled as a matrix. Then, linear algebra routines such as QR

factorization must be applied to the resulting matrix. The collected data are stored on a set of

processors in a round-robin manner, ensuring spacial locality of data that are sampled at close

time-steps. If a certain region of Earth is observed twice, the latest data overwrites the previous

one. We generated a set of initial distributions fitting the telescope behavior. Figure 4.7 depicts

the data distribution of a matrix in ChunkSet where matrix tiles of the same color are initially

stored on the same processor.
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Figure 4.7: The initial distribution of a tiled matrix in ChunkSet .

4.6.3.3 Results

Table 4.1 presents the results of the experiments for initial distributions in SkewedSet . Each line cor-

responds to the average results on 50 matrices with n × n tiles. Columns 1 to 4 give the volume of

tiles communicated during the redistribution phase for the four strategies. As expected, redistributing

towards the arbitrary distribution Dcan requires moving almost every tile while redistributing towards

Dvol or Dsteps involves almost half as many communications. Columns 5 to 8 present the number of

redistribution steps required to schedule the redistribution for the four strategies. We observe that Dvol

or Dsteps are identical, since Algorithm 7 and Algorithm 8 manage to find the 2D block-cyclic distri-

bution used as reference when building SkewedSet . Columns 9 and 10 present the total volume of tiles

communicated during the QR factorization. It appears that redistributing towards a 2D block-cyclic

partition divides by more than 3 the amount of communications involved in the QR factorization. The

gain obtained by redistributing the data according to a suitable partition is significant, and can be seen

in the total completion times shown in columns 11 to 14. Columns 15 to 17 present the percentage of

improvement provided by the redistribution strategies over the owner computes strategy.

Table 4.2 presents the results of the experiments for initial distributions in ChunkSet . Each line

corresponds to the average results on 50 matrices, as before. The three redistribution strategies perform

similarly, with around 90% of the tiles moved during the redistribution phase. Contrary to the previous

case, it appears that redistributing towards a 2D block-cyclic partitioning does not lead to a reduction

of the volume of communication involved during the QR factorization. Indeed, the owner computes
strategy requires fewer communications than the other strategies for larger matrices in ChunkSet , due

to the chunk distribution of the tiles. However, it does not lead to better performance results. Indeed,

the three redistribution strategies require more communications to ensure a better load balancing, which

leads to a 10-15% improvement on the total completion times compared to the owner computes strategy

on large matrices.

In summary, we conclude that redistributing towards a suitable data partition for the QR factorization

leads to significant improvement, compared to not redistributing the data as with the owner computes
strategy. Initial distributions in SkewedSet are a good example where redistributing data is essential.

Sometimes, like in ChunkSet , redistribution strategies involve a bigger amount of communications

during the QR factorization but lead to a better load balancing across processors, which is enough to be

profitable in the end.
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Vol. of comm. in the redist. phase Nb. of steps in the redist. phase Vol. of comm. in QR fact. Total completion time

n owner can vol step owner can vol step owner can-vol-step owner can vol step

16 0 249 119 119 0 37 32 32 1, 973 831 3.34 1.94 2.02 1.89

34 0 1, 119 538 538 0 157 149 149 15, 118 5, 720 25.22 9.06 8.14 8.48

52 0 2, 616 1, 257 1, 257 0 378 353 353 49, 707 16, 669 78.11 26.75 23.07 22.51

70 0 4, 739 2, 286 2, 286 0 680 638 638 114, 127 37, 942 182.96 53.44 50.11 52.32

88 0 7, 492 3, 615 3, 615 0 1, 092 1, 019 1, 019 219, 757 69, 951 344.92 100.87 94.61 95.14

Table 4.1: Results for the different initial distributions in SkewedSet .

Vol. of comm. in the redist. phase Nb. of steps in the redist. phase Vol. of comm. in QR fact. Completion time

n owner can vol step owner can vol step owner can-vol-step owner can vol step

16 0 240 205 233 0 34 31 31 1140 831 2.63 1.92 1.89 1.89

34 0 1, 087 1, 004 1, 072 0 153 142 142 6, 380 5, 720 11.05 8.77 8.23 8.61

52 0 2, 526 2, 425 2, 518 0 349 338 338 19, 295 16, 669 30.22 26.12 22.41 22.31

70 0 4, 598 4, 459 4, 575 0 681 660 659 29, 606 37, 942 61.16 53.41 52.29 58.21

88 0 7, 271 7, 129 7, 242 0 963 951 951 45, 311 69, 951 114.69 100.88 96.70 99.36

Table 4.2: Results for the different initial distributions in ChunkSet .
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4.7 Conclusion

In this chapter, we have studied the problem of finding the best data redistribution, given a target data

partition. We have used two cost metrics, the total volume of communications and the number of parallel

redistribution steps. We have provided algorithms computing the optimal solution for both metrics, and

shown through simulations that they achieve significant gain over redistributing to an arbitrary fixed

distribution. We have also proved that finding the optimal data partition that minimizes the completion

time of the redistribution followed by a 1D-stencil kernel is NP-complete. Altogether, these results lay

the theoretical foundations of the data partition problem on modern computers.

Admittedly, the platform model used in this chapter will only be a coarse approximation of actual

parallel performance, because state-of-the-art runtimes use intensive prefetching and overlap communi-

cations with computations. Therefore, experimental validation of the algorithms on a multicore cluster

have been presented for a 1D-stencil kernel and a dense linear algebra routine. The new redistribu-

tion strategies presented in this chapter lead to better performance in all cases, and the improvement is

significant when the initial data distribution is not well-suited for the computational kernel.

Future work will be devoted to further investigating the Earth Science application. We have restricted

to redistributing data towards the canonical 2D block-cyclic partition, but more experiments are needed

to determine the best partition, given the initial distributions that typically arise for this application.
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Auto-adjoint computations
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Chapter 5

Optimal multistage algorithms for adjoint

computation

When scheduling task graph workflows with large I/O files, we saw in Chapter 3 that the ordering in

which the tasks are executed strongly impacts the memory consumption. We designed new memory-

aware scheduling techniques for such workflows. But other techniques exist to deal with memory lim-

itations. In some context, when the memory constraints are really tight, it may be necessary to delete

some output files during the processing and recompute them later when needed. In this chapter, we

target a scientific application, namely the adjoint computation, that provides no parallelism across tasks

and where the recomputation technique is necessary to handle the memory usage. The goal is to decide

which output files to store in the memory to process the workflows in a minimal time, while respecting

the memory constraints. Stumm and Walther provided an optimal algorithm for adjoint computation

when the output files can be stored on a single limited memory. Here, we reexamine their work and

provide an optimal algorithm for this problem when there are two levels of checkpoints, in memory and

on disk. Previously, optimal algorithms for adjoint computations were known only for a single level of

checkpoints with no writing and reading costs; a well-known example is the binomial checkpointing al-

gorithm of Griewank and Walther [58]. Stumm and Walther [101] extended that binomial checkpointing

algorithm to the case of two levels of checkpoints, but they did not provide any optimality results. We

bridge the gap by designing the first optimal algorithm in this context. We experimentally compare our

optimal algorithm with that of Stumm and Walther to assess the difference in performance.

5.1 Introduction

The need to efficiently compute the derivatives of a function arises frequently in many areas of scien-

tific computing, including mathematical optimization, uncertainty quantification, and nonlinear systems

of equations. When the first derivatives of a scalar-valued function are desired, so-called adjoint com-

putations can compute the gradient at a cost equal to a small constant times the cost of the function

itself, without regard to the number of independent variables. This adjoint computation can arise from

discretizing the continuous adjoint of a partial differential equation [75, 54] or from applying the so-

called reverse or adjoint mode of algorithmic (also called automatic) differentiation to a program for

computing the function [59]. In either case, the derivative computation applies the chain rule of differ-

ential calculus starting with the dependent variables and propagating back to the independent variables.

Thus, it reverses the flow of the original function evaluation. In general, intermediate function values

are not available at the time they are needed for partial derivative computation and must be stored or

recomputed [51].
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A popular storage or recomputation strategy for functions that have some sort of natural “time step”

is to save (checkpoint) the state at each time step during the function computation (forward sweep) and

use this saved state in the derivative computation (reverse sweep). If the storage is inadequate for all

states, one can checkpoint only some states and recompute the unsaved states as needed. Griewank

and Walther prove that given a fixed number of checkpoints, the schedule that minimizes the amount

of recomputation is a binomial checkpointing strategy [57, 58]. The problem formulation they used

implicitly assumes that reading and writing checkpoints are essentially free, but the number of available

checkpoints is limited (see Problem 1 below). In [101], Stumm and Walter consider the case where

checkpoints can be written to either memory or disk. The number of checkpoints to disk is effectively

unlimited but the time to read or write a checkpoint can no longer be ignored (see Problem 2). We

consider the same situation. In contrast to Stumm and Walther, however, we do not restrict ourselves to

a single binomial schedule but instead prove that there exists a time-optimal schedule possessing certain

key properties (including no checkpoints written to disk after the first checkpoint to memory has been

written), and we provide a polynomial time algorithm for determining an optimal schedule.

The rest of this chapter is organized as follows. Section 5.2 introduces terminology and the general

problem framework. Section 5.3 establishes several properties that must hold true for some optimal

schedule and provides an algorithm for identifying this schedule. Section 5.4 compares our checkpoint-

ing schedule with that of Stumm and Walther. We conclude with some thoughts on future research

directions.

5.2 Framework

5.2.1 The AC problem

F0 F1 · · · Fl−2 Fl−1

F̄0 F̄1 F̄2 · · · F̄l−1 F̄l

x0 x1 x2 xl−2 xl−1 xl

x̄l+1x̄lx̄l−1x̄3x̄2x̄1x̄0

x0 x1 x2 xl−1 xl

Figure 5.1: The AC dependence graph.

Definition 5.1 (Adjoint Computation (AC) [58, 101]). An adjoint computation (AC) with l time steps

can be described by the following set of equations:

Fi(xi) = xi+1 for 1 ≤ i < l (5.1)

F̄i(xi, x̄i+1) = x̄i for 1 ≤ i ≤ l (5.2)

The dependencies between these operations1 are represented by the graph G = (V,E) depicted in

Figure 5.1.

The F computations are called forward steps. The F̄ computations are called backward steps. If x̄l is

initialized appropriately, then at the conclusion of the adjoint computation, x̄1 will contain the gradient

with respect to the initial state (x1).

1In the original approach by Griewank [57], an extra Fl operation was included. It is not difficult to take this extra operation

into account.
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Definition 5.2 (Platform). We consider a platform with three storage locations:

• Buffers: there are two buffers, the top buffer and the bottom buffer. The top buffer is used to

store a value xi for some i, while the bottom buffer is used to store a value x̄j for some j. For

a computation (F or F̄) to be executed, its input values have to be stored in the buffers. Let B⊤

and B⊥ denote the content of the top and bottom buffers. In order to start the execution of the

graph, x0 must be stored in the top buffer and x̄l+1 in the bottom buffer. Hence, without loss of

generality, we assume that at the beginning of the execution, B⊤ = {x0} and B⊥ = {x̄l+1}.

• Memory: there are cm slots of memory where the content of a buffer can be stored. The time to

write from buffer to memory is wm. The time to read from memory to buffer is rm. LetM be

the set of xi and x̄i values stored in the memory. The memory is empty at the beginning of the

execution (M = ∅).

• Disks: there are cd slots of disks where the content of a buffer can be stored.. The time to write

from buffer to disk is wd. The time to read from disk to buffer is rd. Let D be the set of xi and x̄i
values stored in the disk. The disk is empty at the beginning of the execution (D = ∅).

Memory and disk are generic terms for a two-level storage system, modeling any platform with a

dual memory system, including (i) a cheap-to-access first-level memory, of limited size; and (ii) and a

costly-to-access second-level memory, whose size is very large in comparison with the first-level mem-

ory. The pair (memory, disk) can be replaced by (cache, memory) or (disk, tape) or any relevant hardware

combination.

Intuitively, the core of the AC problem is the following. After the execution of a forward step, its

output is kept in the top buffer only. If it is not saved in memory or disk before the next forward step,

it is lost and will have to be recomputed when needed for the corresponding backward step. When no

disk storage is available, the problem is to minimize the number of recomputations in the presence of

limited (but cheap-to-access) memory slots. When disk storage is added, the problem becomes even

more challenging: saving data on disk can save some recompilation, and a trade-off must be found

between the cost of disk accesses and that of recomputations.

The problem with only memory and no disk (Problem 1: PROB(l, cm) below) has been solved by

Griewank and Walther [58], using a binomial checkpointing algorithm called REVOLVE. In accordance

to the scheduling literature, we use the term makespan for the total execution time.

Problem 1 (PROB(l, cm)). We want to minimize the makespan of the AC problem with the following
parameters:

Initial state:
AC graph: size l

Steps: uf , ub
Memory: cm, wm = rm = 0, Mini = ∅

Disks: cd = 0
Buffers: B⊤, B⊥ B⊤ini = {x0}, B

⊥
ini = {x̄l+1}

In this chapter we consider the problem with limited memory and infinite disk

(Problem PROB∞(l, cm, wd, rd) below). The main goal of this chapter is to provide the first optimal

algorithm for PROB∞(l, cm, wd, rd).

Problem 2 (PROB∞(l, cm, wd, rd)). We want to minimize the makespan of the AC problem with the
following parameters:
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Initial state:
AC graph: size l

Steps: uf , ub
Memory: cm, wm = rm = 0, Mini = ∅

Disks: cd = +∞, wd, rd, Dini = ∅
Buffers: B⊤, B⊥ B⊤ini = {x0}, B

⊥
ini = {x̄l+1}

5.2.2 Algorithm model

We next detail the elementary operations that an algorithm can perform.

Fi Execute one forward computation Fi (for i ∈ {0, . . . , l − 1}). Note that by definition, for Fi to

occur, xi should be in the top buffer before (i.e., B⊤ = {xi}) and xi+1 will be in the top buffer

after (i.e., B⊤ ← {xi+1}). This operation takes a time time(Fi) = uf .

F̄i Execute the backward computation F̄i (i ∈ {0, . . . , l}). Note that by definition, for F̄i to occur, xi
should be in the top buffer and x̄i+1 in the bottom buffer (i.e., B⊤ = {xi} andB⊥ = {x̄i+1}) and

x̄i will be in the bottom buffer after (i.e., B⊥ ← {x̄i}). This operation takes a time time(F̄i) = ub.

Wm
i Write the value xi of the top buffer into the memory. Note that by definition, for Wm

i to occur,

xi should be in the top buffer (i.e., B⊤ = {xi}) and there should be enough space for xi in the

memory (i.e., |M| < cm); xi will be in the memory after (i.e.,M ← M∪{xi}). This operation

takes time time(Wm
i ) = wm.

Dm
i Discard the value xi of the memory (i.e., M ← M\{xi}). This operation takes a time

time(Dm
i ) = 0. This operation is introduced only to clarify the proofs, since a Dm

i operation

is always immediately followed by a Wm
i operation. In other words, all write operations over-

write the content of some memory slot, and we simply decompose an overwrite operation into a

discard operation followed by a write operation.

Rm
i Read the value xi in the memory, and put it into the top buffer. Note that by definition, for Rm

i

to occur, xi should be in the memory (i.e., xi ∈ M) and xi will be in the top buffer after (i.e.,

B⊤ = {xi}). This operation takes a time time(Rm
i ) = rm.

W d
i Write the value xi of the top buffer into the disk. Note that by definition, for W d

i to occur, xi should

be in the top buffer (i.e., B⊤ = {xi}) and xi will be in the disk after (i.e., D ← D∪{xi}). This

operation takes a time time(W d
i ) = wd.

Rd
i Read the value xi in the disk and puts it into the top buffer. Note that by definition, for Rd

i to

occur, then xi should be in the disk (i.e., xi ∈ D) and xi will be in the top buffer after (i.e.,

B⊤ = {xi}). This operation takes a time time(Rd
i ) = rd.

Dd
i Discard the value xi of the disk (i.e., D ← D\{xi}). This operation takes a time time(Dd

i ) = 0.

The same comment as for Dm
i operations holds: all disk writes, just as memory writes, are over-

write operations, which we decompose as indicated above. Both discard operations are introduced

for the clarity of the proofs.

For conciseness, we let Fi→i′ denote the sequence Fi · Fi+1 · . . . · Fi′ .

Because of the shape of the AC dependence graph (see Figure 5.1), any algorithm solving Problem 2

will have the following unique structure,

Sl · F̄l ·Sl−1 · F̄l−1 · . . . ·S0 · F̄0, (5.3)
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where for all i, Si is a sequence of operations that does not contain F̄i (hence the F̄i following Si is the

first occurrence of F̄i).

Definition 5.3 (iteration i). Given an algorithm that solves the AC problem, we let iteration i (for

i = l . . . 0) be the sequence of operations Si · F̄i. Let li be the execution time of iteration i.

With this definition, the makespan of an algorithm is
∑l

i=1 li.

5.3 Solution of PROB∞(l, cm, wd, rd)

In this section we show that we can compute in polynomial time the solution to PROB∞(l, cm, wd, rd).
To do so, we start by showing some properties on an optimal algorithm.

• We show that iteration l starts by writing some values xi on disk checkpoints before doing any

memory checkpoints (Lemma 5.6).

• Once this is done, we show that we can partition the initial AC graph into connected subgraphs by

considering the different subgraphs between consecutive disk checkpoints (Proposition 5.1). Each

of these subgraphs can be looked at (and solved) independently.

• We give some details on how to solve the problem on all subgraphs. In particular we show that

(i) we do not write any additional values to disks in order to solve them (Lemma 5.2); and (ii) we

show that similarly to the first iteration, the algorithm writes some values to memory checkpoints

and we can partition these subgraphs by considering the different subgraphs between memory

checkpoints (Lemma 5.3).

• To solve these subgraphs, we introduce new problems (Problems 3 and 4) that inherit the proper-

ties of the general problem.

• We show how to compute the size of the different connected subgraphs through a dynamic pro-

gramming algorithm (§ 5.3.2).

5.3.1 Properties of an optimal algorithm

We show here some dominance properties. That is, there exist optimal algorithms that obey these prop-

erties, even though not all optimal algorithms do.

Lemma 5.1. There exists an optimal solution that has the following structure, Sl · F̄l ·Sl−1 · F̄l−1 · . . . ·
S0 · F̄0, and that satisfies
(P0):

(i) There are no Dd-type operations (we do not discard from disks).

(ii) Each Dm-type operation is immediately followed by a Wm-type operation (we discard a value

from memory only to overwrite it).

(iii) Each R-type operation is not immediately followed by another R-type operation.

(iv) Each Wm-type operation (resp. W d-type operation) is not immediately followed by another Wm-
type operation (resp. W d-type operation).

(v) Each Wm-type operation is not immediately followed by another Dm-type operation.
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· · · Fji · · · Fi−1 Fi · · ·

· · · F̄i F̄i+1 · · ·

xji xji+1 xi−1 xi xi+1

x̄i x̄i+1 x̄i+2

xi xi+1

Figure 5.2: After executing F̄i+1, xi+1 (blue) is in the top buffer, and x̄i+1 (red) is in the bottom buffer.

For the remainder of the execution, the algorithm will not need the grey area anymore; hence it will need

to fetch xji (green) from a checkpoint slot.

(vi) There are no F̄-type operations in any Si sequence (backward steps are not recomputed);

(vii) During Si (i < l), there are no Fi to Fl−1 operations (nor actions involving xi+1 to xl);

(viii) In particular, for all i < l, the first operation of sequence Si is a R-type operation; in other words,
there exist ji and s ∈ {m, d} such that Si = Rs

ji
S̃i;

(ix) ∀i, there is at least one Rm
i operation between a Wm

i and a Dm
i operations.

(x) If l > 0, the first operation of the algorithm is a W -type operation.

Proof. Some of the intuitions of this lemma can be grasped from Figure 5.2. Note that removing an

operation from the optimal solution cannot increase the makespan.

(i) We have an infinite number of disk slots available: there is no need to discard any value from it.

(ii) Discard a value from the memory is useless if the memory is not full and if we do not need to write

a new value in it.

(iii) If we had two consecutive reads in the sequence, then the only action of the first read would be to

put some value xi in the top buffer. However, the second read would immediately overwrite this

value, making the first read unnecessary. Thus, the first read can be removed.

(iv) It is useless to write the same value in the same storage twice in a row.

(v) Similar to the previous point, from (ii) a Dm operation is immediately followed by a Wm opera-

tion; hence this would be writing twice in the same storage in a row.

(vi) The reason there are no F̄-type operations in all Si is that we have a dedicated buffer for the x̄i
values. The only operations that use the x̄i values are F̄-type operations. Also, to execute F̄i,

we need only the value of x̄i+1 that is already stored in the bottom buffer at the beginning of Si.

Hence, removing the additional F̄-type operations from Si can only improve the execution time.

(vii) Operations involving Fi to Fl−1 (or their output values) during Si would be useless; see Figure 5.2.

(viii) After the execution of F̄i, the content of the top buffer is xi. The value xi is useless for F̄i−1 (see

the previous point). Hence, at the begining of Si−1, we need to read the content of a storage slot

before executing any F-type, F̄-type, or W -type operation. Furthermore, because of property (ii),

doing a D-type operation will not permit an R-type operation before the next W -type operation.

Hence, the first operation of sequence Si is necessarily an R-type operation.



5.3. SOLUTION OF PROB∞(l, cm, wd, rd) 125

(ix) Assume that there exists i such that there are no Rm
i operations between a Wm

i and a Dm
i opera-

tions. It is useless to write the value xi in the memory and discard it without reading it in between.

Thus the Wm
i and Dm

i operations can be removed at no additional time delay.

(x) The first operation of the solution cannot be an R-type or a D-type operation since at the beginning

of the execution the memory and the disk are empty. If l > 0, the forward step F0 has to be executed

before the backward step F̄l. Thus the first operation cannot be an F̄-type operation. Now assume

that the first operation is an F-type operation. It then has to be F0. After the execution of F0, the

value x1 is in the top buffer, and the value x0 is not stored anywhere. There is no way to recompute

the value x0, thus to execute F̄0, which would then prevent computing x̄0 (absurd). Thus, at the

beginning of the execution, we have to store the value x0 either in the memory or in the disk, and

the first operation of the algorithm is a W -type operation.

�

Lemma 5.2. There exists an optimal solution to Problem 2 that satisfies (P0) and
(P1):

(i) All disk checkpoints are executed during the first iteration Sl.

(ii) For all i, 1 ≤ i ≤ l − 1, W d
i operations are executed before Wm

i operations.

Proof. Suppose S is an optimal solution that satisfies (P0). We will show that we can transform it into

a solution that satisfies (P0) and (P1):

(i) Iteration l passes through all forward computations. If a value xi is saved on disk later on during

the algorithm, we could as well save it after the first execution of Fi−1 (in Sl) with no additional

time delay, since we have an infinite number of slots on disk.

(ii) Let assume that there exists i, 0 ≤ i ≤ l − 1, such that Wm
i is executed before W d

i in S . By

definition, when Wm
i is executed, the value xi is stored in the top buffer. Thus we can execute W d

i

right before Wm
i , instead of later, at no additional time delay, since the amount of available disk

slots is infinite. This new solution still satisfies (P0).

�

The following lemma and its proof are inspired by Lemma 3.1 by Walther [107].

Lemma 5.3 (Memory Checkpoint Persistence). There exists an optimal solution to Problem 2 that sat-
isfies (P0), (P1), and
(P2):

(i) Let i < l; if Wm
i is executed, then there are no Dm

i operations until after the execution of F̄i (that
is, until the beginning of iteration i− 1).

(ii) Moreover, until that time, no operation involving F0 to Fi−1 or values x0 to xi−1 is taken.

The intuition behind this result is that if we were to discard the value xi before executing F̄i+1, then

a better solution would have stored xi+1 in the first place. Furthermore, because rm = 0, we can show

that until F̄i, all actions involving computations F0 to Fi−1 or values x0 to xi−1 do not impact the actions

that lead to an F̄j operation, j ≥ i, and thus can be moved to a later time at no additional time delay

(and potentially reducing the makespan of the algorithm).
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Proof. Let S be an optimal solution that satisfies (P0) and (P1) but not (P2). We can transform it into a

solution that satisfies (P0), (P1), and (P2). We iteratively transform S to increase the number of i values

respecting (P2), without increasing the makespan of the schedule. This transformation can be applied as

many times as necessary to reach a schedule that satisfies (P2).

Assume, first, that S does not satisfy (P2(i)). Let xi be the first value such that at some point during

S , xi is stored in the memory and discarded before executing F̄i. Thus we can write

S = S0 ·W
m
i · S1 ·D

m
i · S2 · F̄i · S3,

where S0, S1, S2, and S3 are sequences of operations that do not include F̄i. Since S satisfies (P0(ix)),

there is at least one Rm
i operation in S1. Let us prove that all these Rm

i operations are immediately

followed by an Fi operation.

• The Rm
i operations cannot be immediately followed by an F̄-type operation, because the only F̄-

type operation allowed after an Rm
i operation is F̄i (since the value xi would be in the top buffer)

and there are no F̄i in S1.

• According to (P0(ix)), the Rm
i operations cannot be immediately followed by another R-type

operation.

• The Rm
i operations cannot be immediately followed by a Dm-type operation because, according

to (P0(ii)), the next operation would be a Wm-type operation. However, since the value xi would

be in the top buffer, the only Wm-type operation allowed would be Wm
i , which is useless since

the value xi is already in the memory.

• The Rm
i operations cannot be immediately followed by a Dd-type operation because, according

to (P0(i)), there are no Dd-type operations in S .

• The Rm
i operations cannot be immediately followed by a Wm-type operation, because the only

Wm-type operation allowed after an Rm
i operation is Wm

i (since the value xi would be in the top

buffer), which is useless since the value xi is already in the memory.

• The Rm
i operations cannot be immediately followed by a W d-type operation, because the only

W d-type operation allowed after an Rm
i operation is W d

i (since the value xi would be in the top

buffer), which is impossible according to (P1(ii)) since a Wm
i has already been executed before

S1.

So, all these Rm
i operations are immediately followed by an F-type operation; since the value xi is in

the top buffer, this operation is Fi. Thus, any Rm
i in S1 is followed by Fi.

Let us now focus on the first operation in S1. It cannot be a F̄-type (the only possible F̄-type is F̄i),

Wm-type ((P0(iv))), W d-type ((P1(ii))), or D-type ((P0(v))). Hence, the first operation in S1 is either a

R-type operation or a F -type operation (in which case, it is Fi since B⊤ = {xi} at the beginning of S1).

• Assume that S1 = Fi · S
′
1. Let S ′′1 be the sequence S ′1 where every occurrence of Rm

i ·Fi has been

replaced by Rm
i+1. We know that the schedule S ′ = S0 ·Fi ·R

m
i+1 · S

′′
1 ·D

m
i+1 · S2 · F̄i · S3 is correct

and has a makespan at least as good as S (since there is at least one occurrence of Rm
i · Fi in S ′1).

• Assume that there exist j and s (either equal to m or d) such that S1 = Rs
j · S

′
1. Let S ′′1 be the

sequence S ′1 where every occurrence of Rm
i · Fi has been replaced by Rm

i+1. We know that the

schedule S ′ = S0 · Fi · R
m
i+1 · R

s
j · S

′′
1 ·D

m
i+1 · S2 · F̄i · S3 is correct and has a makespan at least

as good as S (since there is at least one occurrence of Rm
i · Fi in S ′1).
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· · · F∗ · · · Fi−1 · · · F∗ · · ·

· · · F̄i · · · F̄∗ · · ·

x∗ x∗ xi−1 xi x∗ x∗

x̄∗x̄∗x̄i+1x̄i

xi x∗

Figure 5.3: Consider a subsequence of S1 comprised between two consecutive R-type operations: Rs
j

and Rs′

j′ . If j ≥ i, then by definition the subsequence will activate only parts of the right area (and not

overwrite any checkpoint from the left area). If j < i, then we have shown that the subsequence will

activate only parts of the left area (no forward sweep through Fi−1).

Hence we were able to transform S into S’ without increasing the makespan, so that the number of

values i, 0 ≤ i < l, that does not respect (P2(i)) decreases. We repeat this transformation until the new

schedule satisfies (P2(i)).

Let us now consider (P2(ii)). Let S be an optimal solution that satisfies (P0), (P1), and (P2(i)). Let

i, 0 ≤ i < l, such that there exists Wm
i in S . We can write

S = S0 ·W
m
i · S1 · F̄i · S2 ·D

m
i · S3,

where S1 is a sequence of operations that do not include Dm
i . There are no Fi−1 in S1 because their

only impact on the memory is to put the value xi in the top buffer which could be done with Rm
i for no

time delay.

Consider now two consecutive R-type operations of S1. Because there are no Fi−1 operations in S1,

we know that between these two R-type operations, and with the definitions of A and B in Figure 5.3,

either only elements of A are activated (and no element of B) or only elements of B are activated (and

no element of A).

Consider now the last R-type operation Rs
j of S1 such that j < i (s being equal to m or d). All

Wm-type operations written after this operation and before the next R-type operation of S1 involve

some values in A. Hence by (P2(i)), they are not discarded until after F̄i. Furthermore, because Rs
j is

the last such operation, we know that they are not used in S1 either. Hence we can move this sequence of

operations (the sequence between Rs
j and the next R-type operation) right after F̄i at no additional time

delay. This operation can be repeated until there are no more such operations in S1. We then proceed

with these operations recursively in the appearance order of the Wm
i . This shows that we can construct

an optimal schedule that satisfies (P2(ii)). �

Lemma 5.4. There exists an optimal algorithm for Problem 2 that satisfies (P0), (P1), (P2), and
(P3): There is only one R-type operation (the first one) in every iteration Si, where i < l.

Proof. Let S be an optimal schedule that satisfies (P0), (P1), and (P2). We show that we can transform

it into an optimal schedule that satisfies (P0–3).

To show this result, for any i ≥ 0, we inductively show that if we have a solution such that the

property is true in iterations l to i+ 1, then we can transform it into a solution such that this property in

true in iterations l to i.
Assume that S does not satisfies (P3). Let Si be the first iteration of S that includes more than one

R-type operation.

If i = 0, then all R-type operations are R_
0 by (P2). Hence we can remove any of them until there is

only one.
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S̃
(2) = Rs

0F1W
m
1 F2F3F4F5W

m
5 F6W

m
6

S̃
(3) = Rs′

3 F4F5 F6W
m
6 F7F8F9W

m
9

S̃
(4) = Rs

0F1W
m
1 F2F3F4F5W

m
5 F6W

m
6 F7F8F9W

m
9

Figure 5.4: Example of the merging operation.

Otherwise assume that i ≥ 1. Let Rs1
j1

and Rs2
j2

(where s1, s2 ∈ {m, d}) be the last two R-type

operations in Si. According to (P0(iv)), we know that step i does not involve xi+1 to xl, so j1 ≤ i and

j2 ≤ i. We can write

Si = S
(1) ·Rs1

j1
·S(2) ·Rs2

j2
·S(3),

where S
(2) and S

(3) are sequences of operations that do not include any R-type operation. According

to (P0(vi)), there are no F̄-type operations in S
(2) and S

(3) either. Since the value xj2 is in the top buffer

at the beginning of S(3), we know that the first F-type operation of S(3) has to be Fj2 . We know that the

first operation after Si is F̄i. Thus the last F -type operation of S(3) is Fi−1. Since there are no R-type

operations in S
(3), we know that the sequence S

(3) includes all F -type operations from Fj2 to Fi−1.

Similarly, the sequence S
(2) includes all F -type operations from Fj1 to Fjmax operations with

jmax ≤ i− 1.

• If jmax ≥ j2, we note jmin = min(j1, j2) and smin the corresponding value of s1 or s2. Iteration

Si includes each F-type operations from Fjmin
to Fi (possibly twice). Let us build the sequence

of operations S
(4) from the sequence Fjmin→i where each operation Fk if immediately followed

by Wm
k if Wm

k is present in either S(2) or S(3) (see Figure 5.4 for this transformation). Thus we

know that the sequence S
′
i = S

(1) · Rsmin

jmin
·S(4) will have the exact same impact on the memory

as Si without increasing the makespan. Transforming iteration Si into sequence S
′
i reduces by

one the number of readings in iteration i.

• If jmax < j2, sequences of operations S
(2) and S

(3) are disjoint. Thus S
(2) has no impact on

iteration i and can be moved to the beginning of the next operation. Thus transforming iteration

Si into S
′
i = S

(1) ·Rs2
j2
·S(3) and moving Rs1

j1
·S(2) to the beginning of iteration Si+1 will not

increase the makespan of S and will reduce by one the number of readings in iteration i.

Hence we have shown that until there is only one R-type operation in iteration i, we can reduce by one

the number of R-type operations in iteration i (and leave as they were iterations l to i+ 1). Thus, if the

property is true in iteration l to i + 1, then we can transform it into a solution such that this property in

true in iteration l to i. This concludes the proof. �

Corollary 5.1 (Description of iteration i < l). Given an optimal algorithm for Problem 2 that satis-
fies (P0–3), each iteration i < l can be written as

Si = Rsi
ji
S̃i (5.4)

for some ji and for some si ∈ {m, d}, where S̃i is composed only of F-type, Wm-type, and Dm-type
operations (possibly empty). Furthermore, it goes through all operations Fj for j from ji to i− 1.

Lemma 5.5 (Description of iteration l). There exists an optimal algorithm for Problem 2 that satis-
fies (P0–3) and
(P4): There are no R-type operations in iteration Sl. Hence, every F -type operation is executed once

and only once in iteration Sl.
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Proof. Let S be an optimal schedule that satisfies (P0–3). We can write

S = Sl · F̄l ·Sl−1 · F̄l−1 · . . . ·S0 · F̄0.

We know that at the end of the execution of Sl, the top buffer contains the value xl and the bottom

buffer contains the value x̄l+1. LetMl and Dl be the state of the memory and the disk at the end of the

execution of Sl.

Let S′
l be the sequence of operations F0→l−1 where every operation Fi is immediately followed by

(i)W d
i W

m
i if xi ∈ Ml ∩ Dl; (ii) else, Wm

i if xi ∈ Ml; (iii) else W d
i if xi ∈ Dl. At the end of the

execution of S′
l, the memory and the disk will be in the statesMl and Dl. Furthermore, if xi ∈ Ml

(resp. if xi ∈ Dl), the sequence Sl contains the operation Wm
i (resp. W d

i ). Thus all W -type operations

of S′
l are in Sl. Moreover, Sl has to contain all the forward steps from F0 to Fl−1. Thus, every operation

in S
′
l is included in Sl. Hence, the sequence S ′ = S

′
l · F̄l ·Sl−1 · F̄l−1 · . . . ·S0 · F̄0 is valid and has a

makespan not larger than S . S ′ is then optimal and satisfies (P0–4). �

Lemma 5.6. There exists an optimal algorithm for Problem 2 that satisfies (P0–4) and
(P5): Given i, j, 0 ≤ i, j ≤ l − 1, all W d

i operations are executed before any Wm
j operation.

Hence, during the first iteration Sl, we first assign the disk checkpoints before assigning the memory

checkpoints. The idea is that the farther away in the graph a checkpoint is set, the more times it is going

to be read during the execution.

Proof. Let S be an optimal algorithm that satisfies (P0–4), but not (P5). We show that we can transform

it into an optimal algorithm that also satisfies (P5) without increasing the makespan.

By contradiction, assume that there exist i and j such that Wm
i is executed before W d

j . According

to (P1(i)), every write on the disk occurs during the first iteration Sl. Thus Wm
i also occurs in iteration

Sl. According to (P4), the F -type operations are not re-executed in iteration Sl. Thus, necessarily,

i < j.

According to (P0(ix)), since the algorithm wrote the value xi in the memory and the value xj in the

disk, they are read later in the schedule. Let Sim be a step when Rm
i occurs and Sid a step when Rd

j

occurs. Then we have: i ≤ im by (P0(iv)) and j ≤ id by (P0(iv)). Finally, there is only one R-type

operation per step (Corollary 5.1); thus im 6= id.

Assume first that im > id. From Corollary 5.1, the first operation of Sim is Rm
i . Thus the value

xi is in the top buffer at the beginning of Sim . Furthermore, by definition of the steps, the value

xim has to be in the top buffer at the end of Sim . Since there are no other R-type operations in

Sim , all forward steps from Fi to Fim are executed in Sim . In particular Fj−1 is executed in Sim .

Let n be the number of consecutive F -type operations right before Fj−1. Thus Sim has the shape:

Sim = Rm
i · S

1 · F(j−n)→(j−1) · S
2 where the last operation of S1 is not a F -type operation. Recall

that the time for a disk read is rd and for a forward step is uf .

• Assume that (n+ 1)uf > rd. Then the sequence Rm
i ·S

1 ·Rd
j ·S

2 has a smaller execution time

than Sim contradicting the optimality.

• Assume that (n+1)uf ≤ rd. According to Corollary 5.1, if S1 is not empty, then its last operation

is Wm
j−n−1 (if it is empty, then i = j − n − 1). (P2) ensures that xj−n−1 will not be discarded

until after xj has become useless (after F̄j). Since (n + 1)uf ≤ rd, we could replace all future

instances of Rd
j by Rm

j−n−1 · F(j−n)→j . Hence W d
j would be useless, which would contradict the

optimality of the schedule.
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Hence, im < id. In particular, this is true for any im and id. Then we can show with similar

arguments that this is true until F̄i. Hence, there are not any Rd
j until after F̄i. Since j > i, this means

that there will not be anymore Rd
j operations at all. Finally, this shows that the execution of W d

j is

useless and can be removed. �

Proposition 5.1 (Disk Checkpoint Persistence). Given an optimal algorithm for Problem 2 that satis-
fies (P0–5), then after any operation W d

i , there are no Fj operations for 0 ≤ j ≤ i − 1 (nor actions
involving the values xj for 0 ≤ j ≤ i− 1) until after the execution of F̄i.

Proof. Let S be an optimal algorithm that satisfies (P0–5). Assume by contradiction that S includes

W d
i and there exists j ≥ i and i′ < i such that iteration Sj involves Fi′ . In particular, according to

Corollary 5.1, it involves Fi−1. According to Corollary 5.1, there exist k, s ∈ {m, d}, and n maximum

such that

Sj = Rs
kS

1 · F(i−1−n)→(i−1) ·S
2.

We can first show that rd > n. Indeed, otherwise, S1 ·Rd
i′ ·S

2 has a smaller execution time than does Sj

for the same result, contradicting the optimality. Let us now show that we can remove all appearances of

Rd
i in the schedule, hence decreasing the execution time, which would contradict the optimality of the

algorithm.

• Consider the occurrence of Rd
i after Sj . By maximality of n, if S1 is not empty, then the last

operation of S1 is Wm
i−1−n (Corollary 5.1). If S1 is empty, then k = i − 1 − n and s = m

(otherwise we could replace Rd
kF(i−1−n)→(i−1) by Rd

i which would contradict the optimality of

the algorithm). Thus, in both cases the value xi−1−n is stored in the memory during Sj , and (P2)

ensures that it will not be discarded until after xi−1−n has become useless (after F̄i). Because

rd > n, we can replace all later appearances of Rd
i by Rm

i−1−nF(i−1−n)→(i−1) at no additional

time delay.

• Let us now consider the eventual occurrences of Rd
i anterior to iteration j. Necessarily, all Rd

i

anterior to Sj are followed by Fi (otherwise one of them is followed by Wm
i and it is not permitted

by the memory checkpoint persistence property (P2)). Hence, we can store the value xi+1 in the

disk instead of the value xi during Sl (Sl goes through all forward operation according to (P4)).

Then, it is possible to replace all Rd
iFi operations by Rd

i+1 reducing the execution time.

Hence, we can decrease the execution time by removing all appearances of Rd
i in the schedule, which

shows the contradiction. �

5.3.2 Optimal algorithm

We construct here a dynamic program that solves Problem 2 optimally. To do so we introduce two

auxiliary dynamic programs during the construction. The time complexity of our optimal algorithm is

O(l2).

Definition 5.4 (Opt0(l, cm)). Let l ∈ N and cm ∈ N, Opt0(l, cm) is the execution time of an optimal

solution to PROB(l, cm).

Note that Opt0(l, cm) is the execution time of the routine REVOLVE(l, cm), from Griewank and

Walther [58].

Definition 5.5 (Opt∞(l, cm, wd, rd)). Let l ∈ N, cm ∈ N, wd ∈ R and rd ∈ R, Opt∞(l, cm, wd, rd) is

the execution time of an optimal solution to PROB∞(l, cm, wd, rd).
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To compute Opt∞(l, cm, wd, rd), we first focus on the variant of Problem 2 where the input value x0
is initially in both the top buffer and the disk:

Problem 3 (PROB
(d)
∞ (l, cm, wd, rd)). We want to minimize the makespan of the AC problem with the

following parameters:

Initial state:
AC graph: size l

Steps: uf , ub
Memory: cm, wm = rm = 0, Mini = ∅

Disks: cd = +∞, wd, rd, Dini = {x0}
Buffers: B⊤, B⊥ B⊤ini = {x0}, B

⊥
ini = {x̄l+1}

Definition 5.6 (PROB
(d)
∞ (l, cm, wd, rd)). Let l ∈ N, cm ∈ N, wd ∈ R and rd ∈ R, PROB

(d)
∞ (l, cm, wd, rd)

is the subproblem of PROB
(d)
∞ (l, cm, wd, rd) where the space of solution is restricted to the schedules that

satisfy the following properties:

(P6):

(i) (P0(i)), (P0(ii)), (P0(iii)), (P0(iv)), and (P0(v)) are matched.

(ii) Given i, there are no operations Fj for i ≤ j ≤ l − 1 after the execution of F̄i.

(iii) (Memory and disk checkpoint persistence) Let s ∈ {m, d} and i < l, if W s
i is executed, then there

are no Ds
i until after the execution of F̄i. Moreover no operations involving F0 to Fi−1 or values

x0 to xi−1 are taken until after the execution of F̄i.

(iv) Let 0 ≤ i, j ≤ l − 1. All W d
i operations are executed before any Wm

j operation. Moreover, all

W d
i operations are executed during iteration l.

Note that (P6) is a subset of (P0–5). Let Opt
(d)
∞ (l, cm, wd, rd) be the execution time of an optimal

solution to PROB
(d)
∞ (l, cm, wd, rd).

Theorem 5.1 (Optimal solution to PROB∞(l, cm, wd, rd)). Let l ∈ N, cm ∈ N, wd ∈ R, and rd ∈ R.

Opt∞(l, cm, wd, rd) = min

{

Opt0(l, cm)

wd + Opt(d)∞ (l, cm, wd, rd)

Proof. Let

A = Opt∞(l, cm, wd, rd)

B = min

{

Opt0(l, cm)

wd + Opt
(d)
∞ (l, cm, wd, rd)

Let us show that A ≤ B. Every solution to PROB(l, cm) is also a solution to PROB∞(l, cm, wd, rd).
Hence,

Opt∞(l, cm, wd, rd) ≤ Opt0(l, cm).

Let S̄
(d)
∞ be a solution to PROB

(d)
∞ (l, cm, wd, rd). Then the sequence W d

0 ·S̄
(d)
∞ is a solution to PROB∞(l, cm, wd, rd).

Indeed, the only difference between PROB
(d)
∞ (l, cm, wd, rd) and PROB∞(l, cm, wd, rd) is that in PROB

(d)
∞ (l, cm, wd, rd),

the value x0 is stored in the disk initially. Thus

Opt∞(l, cm, wd, rd) ≤ wd + Opt(d)∞ (l, cm, wd, rd)



132 CHAPTER 5. OPTIMAL MULTISTAGE ALGORITHMS FOR ADJOINT COMPUTATION

and Opt∞(l, cm, wd, rd) ≤ min{Opt0(l, cm); wd + Opt
(d)
∞ (l, cm, wd, rd)}.

Let us show that A ≥ B. According to § 5.3.1, there exists at least an optimal algorithm S∞ to solve

PROB∞(l, cm, wd, rd) that satisfies (P0–5). According to (P0(x)), the first operation of S∞ is a W -type

operation.

• If it is a Wm-type operation, according to (P5), there are no W d-type operations is S∞. Hence

the disk is not used at all in S∞, and S∞ is also a solution to PROB(l, cm). Thus

Opt∞(l, cm, wd, rd) ≥ Opt0(l, cm).

• If it is a W d-type operation, S∞ has the shape S∞ = W d
0 · S

′
∞, where S ′∞ is a solution to

PROB
(d)
∞ (l, cm, wd, rd). Since S∞ satisfies (P0), (P1), (P2), (P3), (P4), and (P5), S ′∞ satisfies (P6).

Hence S ′∞ is a solution to PROB
(d)
∞ (l, cm, wd, rd). Thus

Opt∞(l, cm, wd, rd) ≥ wd + Opt(d)∞ (l, cm, wd, rd).

We get that Opt∞(l, cm, wd, rd) ≥ min{Opt0(l, cm); wd + Opt
(d)
∞ (l, cm, wd, rd)}, which concludes the

proof. �

To compute Opt
(d)
∞ (l, cm, wd, rd), we need to consider the problem with only one disk slot containing

x0 at the beginning of the execution:

Problem 4 (PROB
(d)
1 (l, cm, wd, rd)). We want to minimize the makespan of the AC problem with the

following parameters.

Initial state:
AC graph: size l

Steps: uf , ub
Memory: cm, wm = rm = 0, Mini = ∅

Disks: cd = 1, wd, rd, Dini = {x0}
Buffers: B⊤, B⊥ B⊤ini = {x0}, B

⊥
ini = {x̄l+1}

Definition 5.7 (PROB
(d)
1 (l, cm, wd, rd)). Let l ∈ N, cm ∈ N, wd ∈ R and rd ∈ R, PROB

(d)
1 (l, cm, wd, rd)

is the subproblem of PROB
(d)
1 (l, cm, wd, rd), where the space of solution is restricted to the schedules

that satisfy (P6) and that do not contain any W d-type operation (and, therefore, the value x0 is never

discarded from the disk).

Let Opt
(d)
1 (l, cm, wd, rd) be the execution time of an optimal solution to PROB

(d)
1 (l, cm, wd, rd).

Theorem 5.2 (Optimal solution to PROB
(d)
∞ (l, cm, wd, rd)). Given l ∈ N, cm ∈ N, wd ∈ R and rd ∈ R:

If l = 0, then
Opt(d)∞ (0, cm, wd, rd) = ub

else

Opt(d)∞ (l, cm, wd, rd) = min
1≤j≤l−1

{

Opt(d)1 (l, cm, wd, rd)

juf+Opt∞(l − j, cm, wd, rd)+rd+Opt(d)1 (j − 1, cm, wd, rd)
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Proof. For l = 0, the result is immediate. Let us prove the result for l ≥ 1. Let

A = Opt(d)∞ (l, cm, wd, rd)

B = min
1≤j≤l−1

{

Opt
(d)
1 (l, cm, wd, rd)

juf + Opt∞(l − j, cm, wd, rd) + rd + Opt
(d)
1 (j − 1, cm, wd, rd)

Let us show that A ≤ B. Every solution to PROB
(d)
1 (l, cm, wd, rd) is also a solution to PROB

(d)
∞ (l, cm, wd, rd).

Hence,

Opt(d)∞ (l, cm, wd, rd) ≤ Opt
(d)
1 (l, cm, wd, rd).

Given j, 1 ≤ j ≤ l − 1, let S
(d)
1 be an optimal solution to PROB

(d)
1 (j − 1, cm, wd, rd). Let S∞

be an optimal solution to PROB∞(l − j, cm, wd, rd) that satisfies (P0–5). Let S ′∞ be the sequence S∞
where every index of the operations are increased by j (Fi becomes Fi+j , W

(m)
i becomes W

(m)
i+j . . . ).

S ′∞ is still valid and has the same makespan as S∞. Then, the sequence F0→j · S
′
∞ · R

d
0 · S

(d)
1 is a

solution to PROB
(d)
∞ (l, cm, wd, rd). By construction this sequence also satisfies (P6). Its execution time

is juf + Opt∞(l − j, cm, wd, rd) + rd + Opt
(d)
1 (j − 1, cm, wd, rd). Thus, for all 1 ≤ j ≤ l − 1:

Opt(d)∞ (l, cm, wd, rd) ≤ juf + Opt∞(l − j, cm, wd, rd) + rd + Opt
(d)
1 (j − 1, cm, wd, rd).

In particular it is smaller than the minimum over all j, hence the result.

Let us show that A ≥ B. Let S
(d)
∞ be an optimal solution to PROB

(d)
∞ (l, cm, wd, rd). S

(d)
∞ satis-

fies (P6) and its makespan is Opt
(d)
∞ (l, cm, wd, rd).

Assume first that there is at least one W -type operation in S
(d)
∞ . Consider the first one. We can prove

that it occurs before the first F̄-type operation.

• If it is a W d-type, then it occurs before the first F̄-type according to (P6(iv))

• If it is a Wm-type, then obviously cm > 0. If no Wm-operation occured during iteration l, then

at the beginning of iteration l− 1, Rd
0 is executed. Hence a better solution would be better to start

with Wm
0 and Dm

0 at the beginning of iteration l − 1, which contradicts the optimality of S
(d)
∞ .

Hence, the first W -type operation in S
(d)
∞ occurs before the first F̄-type operation. Then two possi-

bilities exist.

• The first operation in S
(d)
∞ is Wm

0 . Since S
(d)
∞ satisfies (P6(iv)), there are no W d-type operations

in S
(d)
∞ . Thus no other value than x0 will be stored in the disk during the execution. Furthermore,

because x0 is stored in memory, it will not be read from the disk (otherwise S
(d)
∞ will not be

optimal). Thus S
(d)
∞ is also a solution to PROB

(d)
1 (l, cm, wd, rd) and

Opt(d)∞ (l, cm, wd, rd) ≥ Opt
(d)
1 (l, cm, wd, rd).

• Otherwise, the first operation in S
(d)
∞ is not Wm

0 . Consider the first W -type operation. Because it

occurs before the first F̄-type operation, it cannot be Wm
0 (otherwise it would be the first operation

in S
(d)
∞ ), nor W d

0 (x0 is already stored on disk). Let W s
j (s ∈ {m, d}) be the first W -type operation

in S
(d)
∞ , then j > 0.
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⋆ We proved that there are no F̄-type operations before W s
j in S

(d)
∞ . By definition, there are no

W -type operations before W s
j in S

(d)
∞ . Since before W s

j the memory is empty, there are no D-type

operations in S
(d)
∞ . Since the only value in one of the storage is x0 (in the disk), the only possible

R-type operation before W s
j would be Rd

0. The only reason to execute Rd
0 would be to perform

F0. However, F0 can be executed at the beginning of S
(d)
∞ at no cost, since the value x0 is already

in the top buffer. Thus, there are only F-type operations before W s
j in S

(d)
∞ (P6(i)).

⋆ According to (P6(iii)), after W s
j , there are no operations involving values x0 to xj−1 until after

the operation F̄j .

⋆ According to (P6(ii)), there are no operations involving values xj to xl after the operation F̄j .

⋆ Since after the operation F̄j the content of the top buffer is useless, the first operation after F̄j

has to be an R-type operation.

⋆ Moreover, since the only value from x0 to xj−1 in one of the storage after F̄j is x0 (in the disk),

it has to be Rd
0. Thus, based on all these considerations, S

(d)
∞ has the following shape:

S(d)∞ = F0→j ·W
s
j · S1 ·R

d
0 · S2

where (i) no operations involve values x0 to xj−1 in S1 and (ii) no operations involve values xj to

xl in S2.

Let S ′1 be the sequence W s
j · S1, where every index of the operations is decreased by j (Fi be-

comes Fi−j , W
m
i becomes Wm

i−j ,. . . ). Then S ′1 is a solution to PROB∞(l − j, cm, wd, rd), whose

makespan is necessarily not smaller than Opt∞(l − j, cm, wd, rd).

On the other hand, the sequence S2 executes all the F̄-type operations from F̄j−1 down to F̄0 with

no operations involving values xj to xl. Furthermore, S2 does not use disk slots, except the one

already used by value x0. Since S
(d)
∞ satisfies (P0(5)), S2 satisfies (P6). Hence S2 is a solution to

PROB
(d)
∞ (j − 1, cm, wd, rd), and its makespan is greater than Opt

(d)
∞ (j − 1, cm, wd, rd). Finally,

we have

Opt(d)∞ (l, cm, wd, rd) ≥ juf + Opt∞(l − j, cm, wd, rd) + rd + Opt
(d)
1 (j − 1, cm, wd, rd);

in particular it is smaller than B.

We note that if there is no W -type operation, because we do not use any additional disk slot, S
(d)
∞ is also

a solution to PROB
(d)
1 (l, cm, wd, rd) and Opt

(d)
∞ (l, cm, wd, rd) ≥ Opt

(d)
1 (l, cm, wd, rd). This shows that

A ≥ B and concludes the proof. �

Theorem 5.3 (Optimal solution to PROB
(d)
1 (l, cm, wd, rd)). Let l ∈ N, cm ∈ N, wd ∈ R and rd ∈ R:

If l = 0, then

Opt(d)1 (0, cm, wd, rd) = ub

else

Opt(d)1 (l, cm, wd, rd) = min
1≤j≤l−1

{

Opt0(l, cm)

juf + Opt0(l − j, cm) + rd + Opt(d)1 (j − 1, cm, wd, rd)

Proof. For l = 0, the result is immediate. Let us prove the result for l ≥ 1.
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Let

A = Opt
(d)
1 (l, cm, wd, rd)

B = min
1≤j≤l−1

{

Opt0(l, cm)

juf + Opt0(l − j, cm) + rd + Opt
(d)
1 (j − 1, cm, wd, rd)

Let us show that A ≤ B. Every solution to PROB(l, cm) is also a solution to PROB
(d)
1 (l, cm, wd, rd).

Hence,

Opt
(d)
1 (l, cm, wd, rd) ≤ Opt0(l, cm).

Given j, 1 ≤ j ≤ l − 1, let S2 be an optimal solution to PROB
(d)
1 (j − 1, cm, wd, rd). Let S1 be an

optimal solution to PROB(l− j, cm). Let S ′1 be the sequence S1 where every index of the operations are

increased by j (Fi becomes Fi+j , W
(m)
i becomes W

(m)
i+j . . . ). S ′1 is still valid and has the same makespan

as S1. Then, the sequence F0→j · S
′
1 · R

d
0 · S2 is a solution to PROB

(d)
1 (l, cm, wd, rd). By construction

this sequence does not contain any W d-type operation since neither S ′1 nor S2 do. Its execution time is

juf + Opt0(l − j, cm) + rd + Opt
(d)
1 (j − 1, cm, wd, rd). Thus, for all 1 ≤ j ≤ l − 1:

Opt
(d)
1 (l, cm, wd, rd) ≤ juf + Opt0(l − j, cm) + rd + Opt

(d)
1 (j − 1, cm, wd, rd)}.

In particular it is smaller than the minimum over all j, hence the result.

Let us show that A ≥ B. Let S
(d)
1 be an optimal solution to PROB

(d)
1 (l, cm, wd, rd). S

(d)
1 satis-

fies (P6) and does not contain any W d-type operations. Its makespan is Opt
(d)
1 (l, cm, wd, rd).

First, note that if cm > 0, then there is a Wm-type operation in iteration l of S
(d)
1 . Otherwise, if no

Wm-operation occured during iteration l, then at the beginning of iteration l− 1, Rd
0 is executed. Hence

a better solution would be better to start with Wm
0 and Dm

0 at the beginning of iteration l − 1, which

contradicts the optimality of S
(d)
1 .

Hence, the first W -type operation in S
(d)
1 occurs before the first F̄-type operation. Then there are

two possibilities.

• The first operation in S
(d)
1 is Wm

0 . Because x0 is stored in memory, it will not be read from the

disk (otherwise S
(d)
∞ will not be optimal). Thus S

(d)
∞ is also a solution to PROB

(d)
1 (l, cm, wd, rd)

and

Opt
(d)
1 (l, cm, wd, rd) ≥ Opt0(l, cm).

• Otherwise, the first operation in S
(d)
1 is not Wm

0 . Consider the first W -type operation. It occurs

before the first F̄-type operation and hence cannot be Wm
0 (otherwise it would be the first operation

in S
(d)
1 ). Let Wm

j (there are no W d-type operations) be the first W -type operation in S
(d)
1 , j > 0.

⋆ We proved that there are no F̄-type operations before Wm
j in S

(d)
∞ . By definition, there are no

W -type operations before Wm
j in S

(d)
1 . Since the only value in one of the storage slots is x0 (in

the disk), the only possible R-type operation before W s
j would be Rd

0. The only reason to execute

Rd
0 would be to perform F0. However, F0 can be executed at the beginning of S

(d)
1 at no cost,

since the value x0 is already in the top buffer. Thus, there are only F-type operations before Wm
j

in S
(d)
∞ (P6(i)).

⋆ According to (P6(iii)), after Wm
j , there are no operations involving values x0 to xj−1 until after
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the operation F̄j .

⋆ According to (P6(ii)), there are no operations involving values xj to xl after the operation F̄j .

⋆ Since after the operation F̄j , the content of the top buffer is useless, the first operation after F̄j

has to be an R-type operation.

⋆ Moreover, since the only value from x0 to xj−1 in one of the storage slots after F̄j is x0 (in the

disk), it has to be Rd
0. Thus, based on all this considerations, S

(d)
1 has the following shape:

S
(d)
1 = F0→j ·W

m
j · S1 ·R

d
0 · S2

where (i) no operations involve values x0 to xj−1 in S1 and (ii) no operations involve values xj to

xl in S2.

Let S ′1 br the sequence Wm
j ·S1, where every index of the operations is decreased by j (Fi becomes

Fi−j , W
m
i becomes Wm

i−j ,. . . ). Then S ′1 is a solution to PROB(l − j, cm), whose makespan is

necessarily not smaller than Opt0(l − j, cm, wd, rd).

On the other hand, the sequence S2 executes all the F̄-type operations from F̄j−1 down to F̄0 with

no operations involving values xj to xl. Furthermore, S2 does not use disk slots, except the one

already used by value x0. Thus S2 is a solution to PROB
(d)
1 (j − 1, cm, wd, rd), and its makespan

is greater than Opt
(d)
∞ (j − 1, cm, wd, rd). Finally, we have

Opt(d)∞ (l, cm, wd, rd) ≥ juf + Opt∞(l − j, cm, wd, rd) + rd + Opt
(d)
1 (j − 1, cm, wd, rd);

in particular it is smaller than B.

Note that if there is no W -type operation, because we do not use any additional disk slot, S
(d)
∞ is also

a solution to PROB
(d)
1 (l, cm, wd, rd) and Opt

(d)
∞ (l, cm, wd, rd) ≥ Opt

(d)
1 (l, cm, wd, rd). This shows that

A ≥ B and concludes the proof. �

5.4 Simulations

In this section we compare our optimal algorithm with the only (to the best of our knowledge) algorithm

for multilevel checkpointing, introduced by Stumm and Walther [101].

5.4.1 Stumm and Walther’s algorithm (SWA⋆(l, cm, wd, rd))

Stumm and Walther [101] solve Problem 2 using a variant of REVOLVE [107]. REVOLVE takes l the

size of the AC graph and s the number of storage slots as argument and returns an optimal solution

for Problem 1. Stumm and Walther show that in REVOLVE(l, s), some storage slots are less used than

others. They design the SWA algorithm that takes l the size of the AC graph, cm the number of memory

slots, and cd the number of disk slots as argument and returns the solution REVOLVE(l, cd + cm) where

the cd storage slots that are the least used are considered as disk slots and all the others are considered

as memory slots.

To solve Problem 2, SWA⋆ returns the best solution among the solutions returned by

SWA(l, cm, cd, wd, rd), that is,

SWA⋆(l, cm, wd, rd) = min
cd=0...l−cm

SWA(l, cm, cd, wd, rd)

(having more than l storage slots is useless).
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5.4.2 Simulation setup

For the simulations we have tested our algorithm and Stumm and Walther’s algorithm on AC graphs of

size up to 20,000 with different numbers of memory checkpoints. In global ocean circulation model-

ing [64], a graph of size 8,640 represents one year of results with an hourly timestep.

In the experiments, we normalize all time values by setting uf to 1. We take ub = 2.5 as a represen-

tative value [64]. Here we present results for cm ∈ {2, 5, 10, 25} and wd = rd ∈ {1, 2, 5, 10}.
In Figure 5.5 we reproduce Stumm and Walther’s results in order to study the behavior of SWA.

We plot the execution time of SWA as a function of cd for a fixed graph size (note that we used a

logarithmic scale for the horizontal axis for better readability). We compare it with the optimal solution

Opt∞(l, cm, wd, rd).
In Figures 5.6 and 5.7 we plot the ratio between SWA⋆ and Opt∞(l, cm, wd, rd) as a function of the

size of the AC graph with different values of cm, wd and rd.

5.4.3 Simulation results

SWA(l, cm, cd, wd, rd) SWA⋆(l, cm, wd, rd) Opt∞(l, cm, wd, rd)

wd = rd = 2 wd = rd = 5

1 10 100 1000 10000
Number of disk slots : cd

40

60

80

100

120

140

160

Co
m
pu

ta
tio

na
l t
im

e 
(x
10

00
)

Figure 5.5: Makespan of SWA on an AC graph of size 10,000 as a function of cd for cm = 5. SWA⋆ and

Opt∞(l, cm, wd, rd) are also plotted for comparison.

First we observe the behavior of SWA given the amount of available disk slots for different disk

access costs. The two plots in Figure 5.5 are representative of the two behaviors we observed for SWA

during our experiments. We can see that the makespan of SWA(l, cm, cd, wd, rd) is always strictly higher

than the optimal one for an infinite number of disk slots Opt∞(l, cm, wd, rd) (see the dotted line). For

all values studied, the evolution of the execution time of SWA when the amount of storage increases

follows a specific pattern that can be divided into three phases.

1. A very fast decrease with the first additional disk slots.
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2. A succession of small increases and decreases.

3. A slow but steady decrease until all steps are stored (remember that the horizontal axis has a

logarithmic scale for better readability).

In all our experiments, the minimum for SWA is reached either at the end of step 1 with a very low

number of disk checkpoints (cd = rd = 5 in Figure 5.5) or at the end of step 3 with a very high number

of disk checkpoints (cd = rd = 2 in Figure 5.5), depending on the disk access costs and the number

of memory slots. Eventually, given the general shape of the SWA performances, we assume that when

the size of the graph increases enough, the minimum value is always reached at the end of step 3, when

every output of the AC graph is stored in one of the storage slots.

Note that Stumm and Walther observed a fourth phase [101] where the computational time increases

again when the number of disk checkpoints gets closer to the total number of steps. They explained it

by saying that when the volume of data stored on the disk reaches a threshold, the cost of a disk access

increases, which in turn increases the computational time. We do not observe such a fourth step because

we plot the computational time obtained when giving the model parameters as input to SWA (and the

cost of disk access remains constant).

In the following, the time complexity of SWA⋆ does not allow us to run large instances of l. To be

able to plot SWA⋆ for large AC graphs, we plot a faster version of SWA⋆ that takes the previous remarks

into account, namely, that assume that the minimum is either reached at the end of phase 1 (for small

values of cd) or at the end of phase 3. More precisely, we consider that the end of phase 1 is reached

before a number of disk size equal to 200 (for the problem sizes considered in this chapter), and we plot

a faster version of SWA⋆(l, cm, wd, rd):

SWA⋆(l, cm, wd, rd)=min

(

min
cd=0...200

SWA(l, cm, cd, wd, rd), SWA(l, cm, l−cm, wd, rd)

)

.

This assumption allows us to compute SWA⋆ for large values of l and to compare it with the optimal

computational time for an infinite number of disk slots.
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Figure 5.6: Ratio SWA⋆(l, cm, wd, rd)/Opt∞(l, cm, wd, rd) as a function of l.

Figures 5.6 and 5.7 depict the overhead of using SWA⋆ compared with the optimal solution

Opt∞(l, cm, wd, rd) that we designed in § 5.3.2. For unlimited disk slots, SWA⋆ returns the best solution
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Figure 5.7: Ratio SWA⋆(l, cm, wd, rd)/Opt∞(l, cm, wd, rd) as a function of l, for cm = 5.

among the solutions returned by SWA, and this solution is always greater than Opt∞(l, cm, wd, rd). We

observe that the ratio increases until the size of the graph reaches a threshold where the ratio becomes

constant. This is particularly visible in Figure 5.6a where we can see that the value of this thresh-

old increases with the number of memory slots cm. In practice, the threshold delimits the moment

when the number of disk slots used by SWA⋆ goes from a relatively small number (when the minimum

for SWA(l, cm, cd, wd, rd) is reached at the end of phase 1) to cd = l − cm (when the minimum for

SWA(l, cm, cd, wd, rd) is reached when all forward steps are checkpointed, at the end of phase 3).

We are interested in the limit ratio reached after the threshold because we are considering the prob-

lem for very large graphs. In Figures 5.6a and 5.7 we can see that this ratio increases when cm or wd

and rd increase. When rd = wd = 1, the ratio limit for cm = 2 is approximately 1.14, which means that

SWA⋆ is 14% slower than the optimal algorithm we designed in §5.3.2. For a memory of size cm = 10,

this overhead increases to 20% for large AC graphs. When rd = wd = 5, the ratio limit is not reached

for AC graphs of size inferior to 20,000. But since the ratio for cm = 2 will be higher than 1.6, we can

state that SWA⋆ will perform at least 60% slower than the optimal algorithm on large AC graphs for any

memory sizes.

5.5 Conclusion and future work

In this chapter we have provided optimal algorithms for the adjoint checkpointing problem with two

storage locations: a bounded number of memory slots with zero access cost and an infinite number of

disk slots with a given write and read costs. We have compared our optimal solution with existing work,

showing that our solution gives significantly better execution time.

We have identified applications in computational fluid dynamics and earth systems modeling that

could benefit from our approach. We will examine whether the theoretical benefits of the optimal mul-
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tistage schedule can be realized in practice. Future theoretical directions include the solution to the

online AC problem (where the size l of the AC graph is not known before execution), within the same

framework. Another possible extension could be to solve the same problem as in this chapter but with a

limited number of disk checkpoints. Large-scale platforms are failure-prone, and checkpointing for re-

silience in addition to checkpointing for performance will lead to challenging algorithmic problems. As

an intermediate step, we will examine the problem of maximizing progress during a fixed time period.

This situation arises in practice when the job scheduler limits the maximum duration of jobs (limits such

as 12 hours are common).



Conclusion

Throughout this thesis, we have designed memory-aware algorithms and scheduling techniques suited

for modern memory architectures. We have shown special interest in improving the performance of

matrix computations on multiple levels. At a high level, we have introduced new numerical algorithms

for solving linear systems on large distributed platforms. Most of the time, these linear solvers rely on

runtime systems to handle resources allocation and data management. We also focused on improving the

dynamic schedulers embedded in these runtime systems by adding static information to their decision

process. We proposed new memory-aware dynamic heuristics to schedule workflows, that could be

implemented in such runtime systems.

Altogether, we have dealt with multiple state-of-the-art factorization algorithms used to solve linear

systems, like the LU, QR and Cholesky factorizations. We targeted different platforms ranging from

multicore processors to distributed memory clusters, and worked with several reference runtime systems

tailored for these architectures, such as PARSEC and StarPU. On a theoretical side, we took special

care of modelling convoluted hierarchical memory architectures. We have classified the problems that

are arising when dealing with these storage platforms. We have designed many efficient polynomial-time

heuristics on general problems that had been shown NP-complete beforehand. Our main contributions

are stated in the following paragraphs.

Chapter 1: Mixing LU and QR factorization algorithms to design high-performance
dense linear algebra solvers

The first contribution of this thesis is the introduction of a new linear solver that offers an alternative

to state-of-the-art solvers on distributed platforms. We pointed out the fact that LU steps and QR steps

can be mixed during a factorization. The resulting hybrid LU-QR factorization accelerates the classical

QR algorithm by introducing some LU steps whenever these do not compromise stability. We decided

to implement the hybrid LU-QR algorithm using the HQR algorithm for the QR steps and the LUPP

algorithm for the LU steps. The HQR algorithm offers a higher degree of parallelism than the classical

QR factorization by introducing several eliminator tiles inside a panel. All tiles hosted on the same

processor are eliminated by the same tile. These elimination tiles are then zeroed out by the diagonal

tile using a reduction tree across processors. The LUPP algorithm is the classical LU factorization

with partial pivoting, that finds the largest element of each column of the panel and uses it as pivot.

Theoretically, the hybrid factorization concept can be expanded, and any variant of the LU and QR

factorizations could be used. We could even alternate two different variants of the LU algorithm such

as the LU factorization without pivoting that offers a high level of parallelism and the LU factorization

with partial pivoting that provides better stability results in practice. This chapter opens the way to new

factorization methods with high potential.

The choice to perform an LU step or a QR step is handled by a robustness criterion. In this chapter,

we introduced three robustness criteria, all of them being motivated by a numerical study. The criteria

rely on a threshold α that allows one to tighten or loosen the stability requirement. Moreover, we
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have compared the effective performance of all criteria on actual distributed clusters, by conducting an

extensive set of experiments. We have discussed how the size of these platforms impacts performance

and stability. We saw that the three criteria provide a wide range of stability/performance trade-offs on

random matrices, thanks to the tunable threshold α. They also manage to detect stability deterioration

on most tested ill-conditioned matrices on which LUPP fails because of large growth factors. The Max

criterion appeared to be the best choice since it did not fail on any pathological matrix of the Higham’s

Matrix Computation Toolbox [67].

Chapter 2: Bridging the gap between experimental performance and theoretical
bounds for the Cholesky factorization on heterogeneous platforms

In this chapter, we have investigated to what extent the performance of the dynamic schedulers for

the Cholesky factorization on heterogeneous platforms can be improved. Runtime systems usually use

generic dynamic heuristics to allocate tasks onto available resources. The HEFT heuristic has the qual-

ity to be simple to implement, and to provide good performance in practice. We investigated how its

local vision of the task graph workflow to schedule, may result in bad local decisions that can have con-

sequences on the overall performance. We studied how adding static information to dynamic schedulers

can prevent this phenomenon. We analytically computed a set of TRSM tasks that could be forced to

execute on CPUs, even if their processing time would have been shorter on the GPUs. We selected these

tasks based on their distance to the critical path of the application. Forcing the dynamic scheduler of the

StarPU runtime system to make these non-intuitive decisions led to performance improvements for both

simulations and actual experiments.

To quantify the room for improvement between these results and the best feasible solution, we

derived upper bounds for the best achievable performance. We proposed to consider three bounds:

one involving the critical path of the Cholesky factorization, one based of the maximum workload that

resources can process, and a third one computed by a linear program using both notions. Experiments

showed that we managed to raise the StarPU scheduler performance close to its best achievable result.

Chapter 3: Memory-aware list scheduling for hybrid platforms

This chapter has addressed the problem of scheduling general workflows on a heterogeneous architec-

ture with two memories. We provided an extensive complexity study for the restricted problem where

the workflow is tree-shaped and the tasks are already mapped on the resources. We showed the NP-

hardness of determining if there exists a traversal of the tree that does not violate the memory constraints

when both memories are limited. Worse, given two constants α and β, it is impossible in the general

case to find a traversal that is both an α-approximation for one memory peak minimization and a β-

approximation for the other memory peak minimization. However, we provided the optimal depth-first

traversal for an arbitrary tree, which turns out to minimize both memories simultaneously.

In addition, we considered the general problem of scheduling an arbitrary workflow where each

task can be mapped onto either resource, and has a different processing time for each type. We de-

signed two dynamic memory-aware algorithms, MEMHEFT and MEMMINMIN, based on the reference

heuristics HEFT and MINMIN. MEMHEFT (respectively MEMMINMIN) behaves like HEFT (respec-

tively MEMMINMIN) when the memory constraints are not critical, and provide valid schedules with

a reasonable makespan overhead when reference heuristics fail to respect memory constraints. These

memory-aware heuristics could be implemented in runtime systems like PARSEC or StarPU when one

wants to enforce a memory usage bound to avoid out-of-core memory access, for instance.
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Chapter 4: Assessing the cost of redistribution followed by a computational
kernel

In this chapter, we took into consideration the fact that sometimes, in the context of distributed com-

puting, the initial data distribution is not suited for the computational kernel that we want to process.

In such situations, the data elements have to be redistributed across the resources. We assumed that an

optimal (or close to optimal) data partition for the computational kernel is known. We provided poly-

nomial algorithms to compute the best data distribution, given the target data partition, for two metrics:

minimizing the total volume of communications during the redistribution, and minimizing the number of

parallel redistribution steps. However we showed that, when the redistribution is followed by a compu-

tation kernel, redistributing the data elements toward this targed data distribution is not always the best

option in term of overall completion time. Actually, finding the optimal data partition that minimizes

the completion time of the redistribution followed by a computational kernel is NP-complete, even for a

simple computational kernel like the 1D-stencil algorithm.

We considered four strategies to tackle this problem and tried them in the PARSEC framework, for

both the 1D-stencil kernel and the QR factorization algorithm. Our experiments showed that the new

redistribution strategies presented in this chapter lead to better performance in all cases, for arbitrary

initial data distributions, as well as for data distributions arising from Earth Science applications.

Chapter 5: Optimal multistage algorithm for adjoint computation

The last contribution of this thesis concerns a different scientific application, namely adjoint computa-

tion. The workflow arising in adjoint computation provides no parallelism across tasks and, in order to

meet the memory usage constraints, we need to use a different strategy than in the rest of this thesis.

Indeed, since there is not enough space in the memory to store every output file of the workflow, we need

to decide which files will be saved, and which files will be deleted and recomputed later when needed.

The case where only one limited memory is available has already been solved in the literature. In this

chapter we considered the case where two different storages are available: the memory and the disk.

Reading and writing checkpoints in memory are supposed to be free in terms of time, but the number

of available slots is limited. On the contrary, the number of slots in the disk is unlimited but the time

to read or write a file can no longer be ignored. We provided the first polynomial time algorithm that

computes the best schedule for adjoint computation in this dual-storage context. Our algorithm relies on

a convoluted dynamic program, and we proved the optimality of the computed solution. We also assess

the performance of existing heuristics for this problem, compared to our optimal solution, through a full

set of simulations.

Perspectives

Throughout this thesis, we mentioned at the end of each chapter some future work and research direc-

tions that could be investigated. Here, we outline multiple possible extensions to our work, along with

more general, long-term oriented, research directions.

Linear algebra

In this thesis we have laid the foundation for hybrid linear solvers that alternate steps of different fac-

torization algorithms. The main quality of our hybrid LU-QR algorithm is that it restricts the search

of pivots inside the diagonal domain when doing so is numerically safe, thereby avoiding unnecessary

communications across processors. But many variants of the hybrid LU-QR algorithm introduced in
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this thesis could be implemented. An interesting application could be to derive LU algorithms with

several eliminators per panel. Such "multi-killer" algorithms are well suited to modern distributed ar-

chitectures. Indeed, at each step of the factorization, every tile of the panel except one per domains is

zeroed out using a local tile hosted on the same processor. These operations do not involve communica-

tions across processors. Then, the remaining tiles are zeroed out using a reduction tree across domains.

This approach has been proven effective for the QR factorization [42]. However, multi-killer LU fac-

torizations have always turned out to be unstable so far. A hybrid algorithm coupling a multi-killer LU

factorization with another more stable LU algorithm, like the LU factorization with partial pivoting,

could be a pioneering method to develop a stable and effective LU algorithm with several eliminators

per panel. Another course of study could be to focus on designing new factorization algorithms that are

intrinsically communication-avoiding. This approach has shown to be effective and the communication-

avoiding LU (CALU [61]) is known to be stable and efficient on both parallel distributed platforms and

single multicore nodes.

Scheduling under memory constraints

All the memory-aware scheduling techniques introduced in this thesis could not be implemented in

actual runtime systems, due to a lack of time. We designed memory-aware alternatives to the classical

dynamic schedulers HEFT and MINMIN that would deserve to be tried in real-world conditions. These

workflow schedulers ensure that the memory peak usage is smaller that a given bound and can prove

useful in runtime systems like StarPU, that operate on shared-memory parallel platforms. They can

help avoiding out-of-core memory access and better handling convoluted hierarchical memory layouts.

Many other phenomena can be taken into account to model data communications. In this thesis, we

only considered platforms with the bidirectional one-port model (where every communication can be

processed in parallel as long as all senders and all receivers are different), or the bus model (where

every communication has to processed sequentially). These assumptions correspond to a model with no

contention between communications, and to a model with infinite contention, respectively. We could

consider alternative cases where communications can be processed in parallel but their processing time

depends on the number of communication taking place at the same time. This communication model

can be considered more realistic and would lead to new interesting algorithmic problems.

Long-term perspectives

In this thesis, we devoted our efforts to improve resource and memory management on modern archi-

tectures, one necessary step to reach the Exascale performance mark. But many other challenges need

to be faced to this end. Among them, with the increasing number of components, the reliability of the

entire computational system is becoming an issue. Even if each component is quite reliable individually,

the mean time between failures in next generation supercomputers is expected to drop drastically. Large

scientific applications on these platforms will have to deal with a higher frequency of failures and errors,

in the future. There are many possible approaches to remedy this problem. In matrix computations,

we can mention algorithm-based fault tolerance techniques, using checksums that allow one to detect

at each operation if a soft error occurred during the computation. It can be interesting to develop other

low-overhead methods to detect soft errors. It could also be interesting to investigate how to efficiently

schedule a workflow knowing that resources are more likely to fail at some point. New models of mem-

ory subject to failures can be introduced. It can be interesting, in auto-adjoint computations for instance,

to consider the fact that one memory may be likely to lose every stored output file at some point, and to

see how the probability of failures impacts the optimal algorithm introduced in this thesis.
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