Computing

. It is an effort "to create a cohesive, multi-

Contents

Introduction

The processing power of computers has always been inextricably linked to the characteristics of their memory. From the early 1940's, many different technologies have been designed to store information. Built between 1943 and 1945, the world's first electronic digital computer, the ENIAC, was composed of twenty vacuum tube accumulators, each of them being able to store one 10-digit decimal number. Vacuum tubes had a considerable power consumption and were frequently overheating, leaving the ENIAC non-functional most of the time. Instead of storing data in individual bits, the next generation of computer memory, Delay line memory, was turning electrical pulses into sound waves, sending them through a medium that slowed them down. It significantly increased the storage capacity and the reliability of the computational systems. Delay line memory was sequential-access, as opposed to modern random-access memory, and required power to maintain the information. In the late 1940's, magnetic-core memory was the first non-volatile random-access memory and remained the main form of computer memory from the mid 1950's to the mid 1970's. It has been gradually replaced by semiconductor-based memory, that is still used as primary storage in nowadays computers. The cost of this memory has led computer designers to introduce a secondary storage that is cheaper but slower and not directly accessible by the CPU. Since their introduction in 1956, hard disk drives are usually used as secondary storage in modern computers. With the rise of storage capacity, the memory architecture has become more and more convoluted.

In the mid 1960's, the concept of Virtual Memory was introduced to provide the ability for operating systems to deal with this complex hierarchies of memory. The need to properly manage the memory usage of computation systems increased with the introduction of multiprocessor architectures. The Cray X-MP computer, released in 1982, was one of the first shared-memory parallel vector processors. It housed two CPUs embedded within a single machine that could concurrently access the same sharedmemory, for a peak system performance of 400 millions Floating-point Operations Per Second (400 Megaflops). In the race for performance, the number of processors per machine kept on growing but faced technical issues. Instead of endlessly adding computational units within a single computer, multiprocessor machines were interconnected to form computer clusters. In such systems, the processors hosted on different machines work together following a distributed memory pattern, significantly complicating the memory architecture. In the 1990's, supercomputers with thousands of processors began to appear and ASCI Red was the first system to break through the 1 Teraflops barrier in 1996. Twelve years later, the IBM Roadrunner was the first supercomputer to reach Petascale performance. As of today, the Tianhe-2 supercomputer, released in 2013, is ranked number one in the TOP500 list of supercomputers [START_REF]Top500[END_REF] at the speed of 33.86 Petaflops in HPL Linpack benchmark [START_REF]HPL: A portable implementation of the high-performance linpack benchmark for distributedmemory computers[END_REF]. Pushed by the increasing need of processing power by scientific applications, reaching the Exascale performance mark has become a common goal for computer designers.

INTRODUCTION

(HPC)". Such HPC systems are essential in science, engineering, technology, and industry. They are used in a wide range of computationally intensive tasks, like large data analysis or simulation of complex physical systems. Many scientific applications rely on supercomputers, such as the simulation of seismic activity, evolving climate, brain activity, nuclear fusion, among others. Most of these applications use subroutines to perform basic matrix computations. Developing efficient implementations of these linear algebra subroutines has become a crucial objective since the mid 1970's. In 1979, a specification for these common kernel operations using scalars and vectors was published: the level-1 Basic Linear Algebra Subroutines (BLAS). With the advent of vector processors, BLAS was augmented with level-2 kernel operations that concerned vector-matrix operations, such as vector-matrix multiplication, or linear triangular system resolution. Level-2 BLAS was designed to get the most of vector processors that were operating on one-dimensional arrays of data. In 1987, level-3 BLAS introduced kernel operations that concerned matrix-matrix operations, such as matrix-matrix multiplication, or dense linear system solvers. These level-3 BLAS operations partition the matrices into blocks, keeping data manipulations localized, allowing for a better usage of the cache. Many linear algebra libraries are available. Among them, we can highlight LAPACK [START_REF]LAPACK: Linear algebra package[END_REF], released in 1992, that provides a well-tuned BLAS implementation to exploit the caches on modern cache-based architectures. LAPACK is written in FORTRAN and is the successor of LINPACK that is still used as a benchmark for modern supercomputers. Indeed, linear algebra problems are computationally intensive jobs and represent a good way to compare the processing power of HPC systems. The TOP500 list ranks the supercomputers twice a year based on their performance on solving a dense linear system using an LU factorization with partial pivoting and a 64 bit floating point arithmetic. Optimizing these linear algebra libraries for tomorrow's supercomputers is one of the main concern in the HPC community.

To built the next generation of supercomputers, new scientific breakthroughs are required to cope with extreme scale computing. In February 2014, the Advanced Scientific Computing Advisory Committee (ASCAC) published the top ten Exascale research challenges [START_REF]Ten technical approaches to address the challenges of Exascale computing[END_REF]. This list suggests that a good memory management in those more and more complex architectures is a sine-qua-non condition to achieve the development of an Exascale system. Indeed, there is a growing disparity between the speed of the CPU and the main memory throughput, mainly due to the limited communication bandwidth. From 1986 to 2000, processor speed improved at an average annual rate of 55% while memory speed only improved at 10% [START_REF] Wulf | Hitting the memory wall: Implications of the obvious[END_REF]. One of the main consequences is that the processors may found themselves lacking in work and waiting for data to arrive from memory. To limit the number of memory accesses, processors are connected to an ever-increasing amount of high-speed cache memory. With the increasing size of the applications, multi-processor systems tend to provide a separate dedicated memory for each processor. This is the Non-Uniform Memory Access (NUMA) architecture. On most supercomputers, processors are equipped with accelerators, such as GPUs, FPGAs or the more recent Xeon Phi. The CPU offloads compute-intensive portions of the code to these coprocessors, increasing the general performance of the system. Altogether with the increasing complexity of memory architectures and the general heterogeneity at every level, modern supercomputers offer an intricate challenge for software designers. Such systems are hard to model and lead to numerous algorithmic problems.

In this thesis, we focus on designing memory-aware algorithms and new scheduling techniques suited to modern storage architectures, for various applications. In the different chapters, we take data communications and memory usage into account, while designing new algorithms for HPC systems. We also exploit the heterogeneity of these systems to improve the performance of generic matrix computations. Different approaches can be taken, and we classify them into three main parts in this thesis. In Chapters 1 and 2, we design new linear algebra solvers that squeeze the most out of future HPC architectures. We also improve existing schedulers to better deal with the heterogeneity of modern HPC architectures. In Chapters 3 and 4, we opt for a more general technique by adding memory-awareness iii to generic scheduling techniques. Indeed, the ordering of the computations and the mapping of the tasks onto the computational resources deeply impact the memory usage while computing a workflow application. Finally, in Chapter 5, we target another scientific application that deal with large data files. In this context, the memory is extremely limited and it can be necessary to recompute some tasks whose output has not be stored because of memory constraints. Throughout the thesis, we delve into methods to improve memory management, using numerous techniques and targeting various scientific applications. The main contributions of the different chapters are sketched in the following paragraphs.

Chapter 1: Mixing LU and QR factorization algorithms to design high-performance dense linear algebra solvers

In this first chapter, we exhibit a new numerical algorithm to solve dense linear systems. Finding the solution to a linear system and linear algebra problems in general, are a common issue in the HPC community. The HPL Linpack benchmark takes algebra routines performance to compare the computational power of supercomputers. To solve a linear system, one usually factors the matrix using a LU or a QR factorization. These two methods have both advantages and drawbacks. The generic LU factorization is highly parallel and involves only broadcasts of information that are efficient on modern distributed architectures. At the same time, the accuracy of the computed solution may be subject to deterioration depending upon the condition number of the initial matrix. The QR factorization is twice as costly as the LU factorization and is slightly less parallel. It involves pipelining communications when factorizing the panel. However, the computed solution is more accurate than when using a LU factorization. Here, we design an hybrid LU-QR algorithm that alternates LU and QR factorization steps to take advantage of the best characteristics of each method. The choice of which routine to run at each step is conducted by a stability criteria that will detect, before the actual computation of the step, whether performing an LU factorization step is safe from a stability point of view, or whether we should rather perform a QR step. We propose different stability criteria based on the numerical properties of the panel, and implement them in the PARSEC runtime. The PARSEC runtime is well-suited to exploit the parallelism in large clusters of multiprocessors machines. It deals with task scheduling and communications, allowing us to concentrate only on algorithm design. We run an extensive set of experiments to analyse both performance and stability results compared to state-of-the-art algorithms. The experiments are run on a comprehensive set of random matrices, and ill-conditioned matrices coming from the Higham's Matrix Computation Toolbox. The work presented in this chapter has been done in collaboration with Jack Dongarra and Mathieu Faverge from the University of Tennessee, Knoxville, USA, and Julien Langou and Bradley R. Lowery from the University of Colorado, Denver, USA.

Chapter 2: Bridging the gap between experimental performance and theoretical bounds for the Cholesky factorization on heterogeneous platforms

While the previous chapter was dealing with clusters of multiprocessor machines, in the second chapter of this thesis, we target shared-memory multiprocessors accelerated with GPUs. In this context, specific schedulers has to be designed to exploit the heterogeneity of the platform. The StarPU runtime takes care of mapping tasks efficiently onto the computational resources, using well-known generic dynamic scheduling policies from the literature, while optimizing data transfers using prefetching and overlapping, in particular. Although those purely dynamic schedulers are efficient in practice, they are not guaranteed to perform optimally, mostly due to their local vision of the workflow at any moment. In this chapter, we explore how adding static rules to the purely dynamic schedulers implemented in StarPU can improve their performance. We focus on another classical dense linear algebra routine, namely the INTRODUCTION Cholesky factorization. We introduce theoretical bounds on the best achievable performance on a fully heterogeneous platform made of CPUs and GPUs. We investigate how adding general information of the problem can help bridging the gap between these bounds and the actual performance. This work has been conducted in collaboration with Emmanuel Agullo, Olivier Beaumont, Lionel Eyraud-Dubois, Suraj Kumar, and Samuel Thibault from INRIA Bordeaux, Talence, France.

Chapter 3: Memory-aware list scheduling for hybrid platforms

In this chapter, we study the complexity of scheduling task graph workflows whose tasks require large I/O files. We target a heterogeneous architecture with two resource types, each with a different memory, such as a multicore node equipped with a dedicated accelerator (FPGA or GPU). Each task has an unrelated processing time for either resource and can be processed only if all its input and output files can be stored in the corresponding memory. The amount of used memory of each type at a given execution step strongly depends upon the ordering in which the tasks are executed, and upon when communications between both memories are scheduled. The objective is to determine an efficient schedule taking into account the memory constraints for each type. First, we establish the complexity of minimizing memory usage when scheduling tree-shaped workflows whose tasks are already mapped on the resources. Even for this simplified version of the problem, we provide NP-completness proofs and inapproximability results. Then, we design memory-aware heuristics that provide schedules achieving good completion times, without violating the memory constraints. These heuristics are evaluated on a comprehensive set of graphs, including random graphs as well as graphs arising in the context of matrix factorizations.

Chapter 4: Assessing the cost of redistribution followed by a computational kernel

In linear algebra applications, when dealing with a distributed computational platform, the data layout usually respects the owner-computes distribution. It means that each block of data is updated by the processor that hosts it. This strategy requires that data blocks are distributed onto the computational resources in a workload-balanced manner. If the initial data distribution is not suitable for the computational kernel, a data redistribution may be required before starting the computation. Usually, for a given application, a specific data distribution is known to be optimal, or close to optimal. Most of the time, this data distribution is not unique. In particular, if all the processors are identical, a processor permutation will not change the performance of a given data distribution. In this chapter, we find the optimal data partition among all the optimal (or close to optimal) ones, that minimizes the cost of redistribution, given an initial data distribution. We also show the NP-hardness of the problem to find the optimal data partition and processor permutation that minimize the cost of redistribution followed by a simple computational kernel. Our new redistribution algorithms are experimentally validated using the PARSEC environment on dense linear algebra routines. The work presented in this chapter has been done with the help of Thomas Hérault from the University of Tennessee, Knoxville, USA.

Chapter 5: Optimal multistage algorithms for adjoint computation

In this last chapter, we target another scientific application, namely adjoint computation. In this context, the tasks graphs to schedule deal with large I/O files and provide no parallelism across tasks. To cope with the memory constraints, some output files have to be deleted and recomputed later when needed. The objective of the scheduling algorithm is to determine which output files to store, in order to minimize the total processing time of the task graph. As in chapter 3, we deal with a bi-memory model. But this time, memories are different. One of them has no size constraint, but it takes a significant time to write Part I Linear Algebra

Introduction

Consider a dense linear system Ax = b to solve, where A is a square tiled-matrix, with n tiles per row and column. Each tile is a block of n b -by-n b elements, so that the actual size of A is N = n × n b . Here, n b is a parameter tuned to squeeze the most out of arithmetic units and memory hierarchy. To solve the linear system Ax = b, with A a general matrix, one usually applies a series of transformations, premultiplying A by several elementary matrices. There are two main approaches: LU factorization, where one uses lower unit triangular matrices, and QR factorization, where one uses orthogonal Householder matrices. To the best of our knowledge, this chapter is the first study to propose a mix of both approaches during a single factorization. The LU factorization update is based upon matrix-matrix multiplications, a kernel that can be very efficiently parallelized, and whose library implementations typically achieve close to peak CPU performance. Unfortunately, the efficiency of LU factorization is hindered by the need to perform partial pivoting at each step of the algorithm, to ensure numerical stability. On the contrary, the QR factorization is always stable, but requires twice as many floating-point operations, and a more complicated update step that is not as parallel as a matrix-matrix product. Tiled QR algorithms [START_REF] Buttari | Parallel tiled QR factorization for multicore architectures[END_REF][START_REF]A class of parallel tiled linear algebra algorithms for multicore architectures[END_REF][START_REF] Quintana-Ortí | Programming matrix algorithms-by-blocks for thread-level parallelism[END_REF] greatly improve the parallelism of the update step since they involve no pivoting but are based upon more complicated kernels whose library implementations requires twice as many operations as LU.

The main objective of this chapter is to explore the design of hybrid algorithms that would combine the low cost and high CPU efficiency of the LU factorization, while retaining the numerical stability of the QR approach. In a nutshell, the idea is the following: at each step of the elimination, we perform a robustness test to know if the diagonal tile can be stably used to eliminate the tiles beneath it using an LU step. If the test succeeds, then go for an elimination step based upon LU kernels, without any further pivoting involving sub-diagonal tiles in the panel. Technically, this is very similar to a step during a block LU factorization [START_REF] Demmel | Block lu factorization[END_REF]. Otherwise, if the test fails, then go for a step with QR kernels. On the one extreme, if all tests succeed throughout the algorithm, we implement an LU factorization without pivoting. On the other extreme, if all tests fail, we implement a QR factorization. On the average, some of the tests will fail, some will succeed. If the fraction of the tests that fail remains small enough, we will reach a CPU performance close to that of LU without pivoting. Of course the challenge is to design a test that is accurate enough (and not too costly) so that LU kernels are applied only when it is numerically safe to do so.

Implementing such a hybrid algorithm on a state-of-the-art distributed-memory platform, whose nodes are themselves equipped with multiple cores, is a programming challenge. Within a node, the architecture is a shared-memory machine, running many parallel threads on the cores. But the global architecture is a distributed-memory machine, and requires MPI communication primitives for internode communications. A slight change in the algorithm, or in the matrix layout across the nodes, might call for a time-consuming and error-prone process of code adaptation. For each version, one must identify, and adequately implement, inter-node versus intra-node kernels. This dramatically complicates the task of the programmers if they rely on a manual approach. We solve this problem by relying on the PaRSEC software [START_REF]DAGuE: A generic distributed DAG engine for high performance computing[END_REF][START_REF] Bosilca | DAGuE: A generic distributed DAG engine for high performance computing[END_REF][START_REF] Bosilca | Flexible development of dense linear algebra algorithms on massively parallel architectures with DPLASMA[END_REF], so that we can concentrate on the algorithm and forget about MPI and threads. Once we have specified the algorithm at a task level, the PaRSEC software will recognize which operations are local to a node (and hence correspond to shared-memory accesses), and which are not (and hence must be converted into MPI communications). Previous experiments show that this approach is very powerful, and that the use of a higher-level framework does not prevent our algorithms from achieving the same performance as state-of-the-art library releases [START_REF] Dongarra | Hierarchical QR factorization algorithms for multi-core cluster systems[END_REF].

However, implementing a hybrid algorithm requires the programmer to implement a dynamic task graph of the computation. Indeed, the task graph of the hybrid factorization algorithm is no longer known statically (contrarily to a standard LU or QR factorization). At each step of the elimination, we use either LU-based or QR-based tasks, but not both. This requires the algorithm to dynamically fork upon the outcome of the robustness test, in order to apply the selected kernels. The solution is to prepare a graph that includes both types of tasks, namely LU and QR kernels, to select the adequate tasks on the fly, and to discard the useless ones. We have to join both potential execution flows at the end of each step, symmetrically. Most of this mechanism is transparent to the user. We discuss this extension of PaRSEC in more detail in Section 1. [START_REF]Chameleon, a dense linear algebra software for heterogeneous architectures[END_REF].

The major contributions of this chapter are the following:

• The introduction of new LU-QR hybrid algorithms;

• The design of several robustness criteria, with bounds on the induced growth factor;

• The extension of PaRSEC to deal with dynamic task graphs;

• A comprehensive experimental evaluation of the best trade-offs between performance and numerical stability. The rest of the chapter is organized as follows. First we explain the main principles of LU-QR hybrid algorithms in Section 1.2. Then we describe robustness criteria in Section 1.3. Next we detail the implementation within the PaRSEC framework in Section 1.4. We report experimental results in Section 1.5. We discuss related work in Section 1.6. Finally, we provide concluding remarks and future directions in Section 1.7.

Hybrid LU-QR algorithms

In this section, we describe hybrid algorithms to solve a dense linear system Ax = b, where A = (A i,j) (i,j)∈ 1..n 2 is a square tiled-matrix, with n tiles per row or column. Each tile is a block of n b -by-n b elements, so that A is of order N = n × n b .

The common goal of a classical one-sided factorization (LU or QR) is to triangularize the matrix A through a succession of elementary transformations. Consider the first step of such an algorithm. We Traditional algorithms (LU or QR) perform the same type of transformation at each step. The key observation of this chapter is that any type of transformation (LU or QR) can be used for a given step independently of what was used for the previous steps. The common framework of a step is the following: First, A 11 is factored and transformed in the upper triangular matrix U 11 . Then, the transformation of the factorization of A 11 is applied to C. Then A 11 is used to eliminate B. Finally D is accordingly updated. Recursively factoring D ′ with the same framework will complete the factorization to an upper triangular matrix. For each step, we have a choice for an LU step or a QR step. The operation count for each kernel is given in Table 1 Generally speaking, QR transformations are twice as costly as their LU counterparts. The bulk of the computations take place in the update of the trailing matrix D. This obviously favors LU update kernels. In addition, the LU update kernels are fully parallel and can be applied independently on the Step k of an LU step -var (A1)

Factor: A k,k ← GET RF (A k,k) ; for i = k + 1 to n do Eliminate: A i,k ← T RSM (A k,k , A i,k);
for j = k + 1 to n do Apply: A k,j ← SW P T RSM (A k,k , A k,j);

for i = k + 1 to n do for j = k + 1 to n do Update: A i,j ← GEM M (A i,k , A k,j , A i,j);

(n -1) 2 trailing tiles. Unfortunately, LU updates (using GEMM) are stable only when A -1

11

-1 is larger than B (see Section 1.3). If this is not the case, we have to resort to QR kernels. Not only these are twice as costly, but they also suffer from enforcing more dependencies: all columns can still be processed (apply and update kernels) independently, but inside a column, the kernels must be applied in sequence.

The hybrid LU-QR Algorithm uses the standard 2D block-cyclic distribution of tiles along a virtual p-by-q cluster grid. The 2D block-cyclic distribution nicely balances the load across resources for both LU and QR steps. Thus at step k of the factorization, the panel is split into p domains of approximately n-k+1 p tile rows. Domains will be associated with physical memory regions, typically a domain per node in a distributed memory platform. Thus an important design goal is to minimize the number of communications across domains, because these correspond to nonlocal communications between nodes. At each step k of the factorization, the domain of the node owning the diagonal tile A k,k is called the diagonal domain.

The hybrid LU-QR Algorithm applies LU kernels when it is numerically safe to do so, and QR kernels otherwise. Coming back to the first elimination step, the sequence of operations is described in Algorithm 1.

LU step

We assume that the criterion validates an LU step (see Section 1.3). We describe the variant (A1) of an LU step given in Algorithm 2.

The kernels for the LU step are the following:

Algorithm 3:
Step k of the HQR factorization

for i = k + 1 to n do elim(i, eliminator (i, k), k); • Factor: A k,k ← GET RF (A k,k
) is an LU factorization with partial pivoting:

P k,k A k,k = L k,k U k,k , the output matrices L k,k and U k,k are stored in place of the input A k,k . • Eliminate: A i,k ← T RSM (A k,k , A i,k
) solves in-place, the upper triangular system such that

A i,k ← A i,k U -1 k,k where U k,k is stored in the upper part of A k,k . • Apply: A k,j ← SW P T RSM (A k,k , A i,k) solves the unit lower triangular system such that A k,j ← L -1 k,k P k,k A k,j where L k,k is stored in the (strictly) lower part of A k,k . • Update: A i,j ← GEM M (A i,k , A k,j , A i,j) is a general matrix-matrix multiplication A i,j ← A i,j -A i,k A k,j .
In terms of parallelism, the factorization of the diagonal tile is followed by the TRSM kernels that can be processed in parallel, then every GEMM kernel can be processed concurrently. These highly parallelizable updates constitute one of the two main advantages of the LU step over the QR step. The second main advantage is halving the number of floating-point operations.

During the factor step, one variant is to factor the whole diagonal domain instead of only factoring the diagonal tile. Considering Algorithm 2, the difference lies in the first line: rather than calling GET RF (A k,k), thereby searching for pivots only within the diagonal tile A k,k , we implemented a variant where we extend the search for pivots across the diagonal domain (the Apply step is modified accordingly). Working on the diagonal domain instead of the diagonal tile increases the smallest singular value of the factored region and therefore increases the likelihood of an LU step. Since all tiles in the diagonal domain are local to a single node, extending the search to the diagonal domain is done without any inter-domain communication. The stability analysis of Section 1.3 applies to both scenarios, the one where A k,k is factored in isolation, and the one where it is factored with the help of the diagonal domain. In the experimental section, we will use the variant which factors the diagonal domain.

QR step

If the decision to process a QR step is taken by the criterion, the LU decomposition of the diagonal domain is dropped, and the factorization of the panel starts over. This step of the factorization is then processed using orthogonal transformations. Every tile below the diagonal (matrix B in Equation (1.1)) is zeroed out using a triangular tile, or eliminator tile. In a QR step, the diagonal tile is factored (with a GEQRF kernel) and used to eliminate all the other tiles of the panel (with a TSQRT kernel) The trailing submatrix is updated, respectively, with UNMQR and TSMQR kernels. To further increase the degree of parallelism of the algorithm, it is possible to use several eliminator tiles inside a panel, typically one (or more) per domain. The only condition is that concurrent elimination operations must involve disjoint tile pairs (the unique eliminator of tile A i,k will be referred to as A eliminator (i,k),k). Of course, in the end, there must remain only one non-zero tile on the panel diagonal, so that all eliminators except the diagonal tile must be eliminated later on (with a TTQRT kernel on the panel and TTMQR updates on the trailing submatrix), using a reduction tree of arbitrary shape. This reduction tree will involve inter-domain communications. In our hybrid LU-QR algorithm, the QR step is processed following an instance of the generic hierarchical QR factorization HQR [START_REF] Dongarra | Hierarchical QR factorization algorithms for multi-core cluster systems[END_REF] described in Algorithms 3 and 4.

Each elimination elim(i, eliminator (i, k), k) consists of two sub-steps: first in column k, tile (i, k) is zeroed out (or killed) by tile (eliminator (i, k), k); and in each following column j > k, tiles (i, j)

Algorithm 4: Elimination elim(i, eliminator (i, k), k) (a) With TS kernels A eliminator (i,k),k ← GEQRT (A eliminator (i,k),k); A i,k , A eliminator (i,k),k ← T SQRT (A i,k , A eliminator (i,k),k); for j = k + 1 to n -1 do A eliminator (i,k),j ← U N M QR(A eliminator (i,k),j , A eliminator (i,k),k ; A i,j , A eliminator (i,k),j ← T SM QR(A i,j , A eliminator (i,k),j , A i,k); (b) With TT kernels A eliminator (i,k),k ← GEQRT (A eliminator (i,k),k); A i,k ← GEQRT (A i,k); for j = k + 1 to n -1 do A eliminator (i,k),j ← U N M QR(A eliminator (i,k),j , A eliminator (i,k),k ; A i,j ← U N M QR(A i,j , A i,k ; A i,k , A eliminator (i,k),k ← T T QRT (A i,k , A eliminator (i,k),k); for j = k + 1 to n -1 do A i,j , A eliminator (i,k),j ← T T M QR(A i,j , A eliminator (i,k),j , A i,k);
and (eliminator (i, k), j) are updated; all these updates are independent and can be triggered as soon as the elimination is completed. The algorithm is entirely characterized by its elimination list, which is the ordered list of all the eliminations elim(i, eliminator (i, k), k) that are executed. The orthogonal transformation elim(i, eliminator (i, k), k) uses either a TTQRT kernel or a TSQRT kernel depending upon whether the tile to eliminate is either triangular or square. In our hybrid LU-QR Algorithm, any combination of reduction trees of the HQR algorithm described in [START_REF] Dongarra | Hierarchical QR factorization algorithms for multi-core cluster systems[END_REF] is available. It is then possible to use an intra-domain reduction tree to locally eliminate many tiles without inter-domain communication.

A unique triangular tile is left on each node and then the reductions across domains are performed following a second level of reduction tree.

LU step variants

In the following, we describe several other variants of the LU step.

Variant (A2)

It consists of first performing a QR factorization of the diagonal tile and proceeds pretty much as in (A1) thereafter.

•

Factor: A k,k ← GEQRF (A k,k) is a QR factorization A k,k = Q k,k U k,k
, where Q k,k is never constructed explicitly and we instead store the Householder reflector V k,k . The output matrices

V k,k and U k,k are stored in place of the input A k,k . • Eliminate: A i,k ← T RSM (A k,k , A i,k) solves in-place the upper triangular system such that A i,k ← A i,k U -1 k,k where U k,k is stored in the upper part of A k,k . • Apply: A k,j ← ORM QR(A k,k , A i,k) performs A k,j ← Q T k,k A k,j where Q T k,k is applied using V k,k stored in the (strictly) lower part of A k,k . • Update: A i,j ← GEM M (A i,k , A k,j , A i,j) is a general matrix-matrix multiplication A i,j ← A i,j -A i,k A k,j .
The Eliminate and Update steps are the exact same as in (A1). The (A2) variant has the same data dependencies as (A1) and therefore the same level of parallelism. A benefit of (A2) over (A1) is that if the criterion test decides that the step is a QR step, then the factorization of A k,k is not discarded but rather used to continue the QR step. A drawback of (A2) is that the Factor and Apply steps are twice as expensive as the ones in (A1).

Variants (B1) and (B2)

Another option is to use the so-called block LU factorization [START_REF] Demmel | Block lu factorization[END_REF]. The result of this formulation is a factorization where the U factor is block upper triangular (as opposed to upper triangular), and the diagonal tiles of the L factor are identity tiles. The Factor step can either be done using an LU factorization (variant (B1)) or a QR factorization (variant (B2)). The Eliminate step is

A i,k ← A i,k A -1 k,k . There is no Apply step. And the Update step is A i,j ← A i,j -A i,k A k,j .
The fact that row k is not updated provides two benefits: (i) A k,k does not need to be broadcast to these tiles, simplifying the communication pattern; (ii) The stability of the LU step can be determined by considering only the growth factor in the Schur complement of A k,k . One drawback of (B1) and (B2) is that the final matrix is not upper triangular but only block upper triangular. This complicates the use of these methods to solve a linear system of equations. The stability of (B1) and (B2) has been analyzed in [START_REF] Demmel | Block lu factorization[END_REF].

We note that (A2) and (B2) use a QR factorization during the Factor step. Yet, we still call this an LU step. This is because all four LU variants mentioned use the Schur complement to update the trailing sub-matrix. The mathematical operation is:

A i,j ← A i,j -A i,k A -1 k,k A k,j ,.
In practice, the Update step for all four variants looks like

A i,j ← A i,j -A i,k A k,j , since A -1
k,k is somehow applied to A i,k and A k,j during the preliminary update and eliminate steps. The Schur update dominates the cost of an LU factorization and therefore all variants are more efficient than a QR step. Also, we have the same level of parallelism for the update step: embarrassingly parallel. In terms of stability, all variants would follow closely the analysis of Section 1.5.4. We do not consider further variants (A2), (B1), and (B2) in this chapter, since they are all very similar, and only study Algorithm 2, (A1).

Comments

Solving systems of linear equations

To solve systems of linear equations, we augment A with the right-hand side b to get à = (A, b) and apply all transformations to Ã. Then an N -by-N triangular solve is needed. This is the approach we used in our experiments. We note that, at the end of the factorization, all needed information about the transformations is stored in place of A, so, alternatively, one can apply the transformations on b during a second pass.

No restriction on N

In practice, N does not have to be a multiple of n b . We keep this restriction for the sake of simplicity. The algorithm can accommodate any N and n b with some clean-up codes, which we have written.

Relation with threshold pivoting

The LU-QR Algorithm can be viewed as a tile version of standard threshold pivoting. Standard threshold pivoting works on 1-by-1 tiles (scalars, matrix elements). It checks if the diagonal element passes a certain threshold. If the diagonal element passes the threshold then elimination is done without pivoting using this diagonal element as the pivot. If the diagonal element does not pass the threshold, then standard pivoting is done and elimination is done with largest element in absolute value in the column. Our Hybrid LU algorithm can be seen as a variant with tiles. Our algorithm checks if the diagonal tile passes a certain threshold. If the diagonal tile passes the threshold then elimination is done without pivoting using this diagonal tile as the pivot. If the diagonal tile does not pass the threshold, then a stable elimination is performed. The fact that our algorithm works on tiles as opposed to scalars leads to two major differences. (1) New criteria for declaring a diagonal tile as being safe had to develop. [START_REF]LAPACK: Linear algebra package[END_REF] In the event when a diagonal tile is declared not safe, we need to resort to a tile QR step.

Robustness criteria

The decision to process an LU or a QR step is done dynamically during the factorization, and constitutes the heart of the algorithm. Indeed, the decision criteria has to be able to detect a potentially "large" stability deterioration (according to a threshold) due to an LU step before its actual computation, in order to preventively switch to a QR step. As explained in Section 1.2, in our hybrid LU-QR algorithm, the diagonal tile is factored using an LU decomposition with partial pivoting. At the same time, some data (like the norm of non local tiles belonging to other domains) are collected and exchanged (using a Bruck's all-reduce algorithm [START_REF] Bruck | Efficient algorithms for all-to-all communications in multiport message-passing systems[END_REF]) between all nodes hosting at least one tile of the panel. Based upon this information, all nodes make the decision to continue the LU factorization step or to drop the LU decomposition of the diagonal tile and process a full QR factorization step. The decision is broadcast to the other nodes not involved in the panel factorization within the next data communication. The decision process cost will depend on the choice of the criterion and must not imply a large computational overhead compared to the factorization cost. A good criterion will detect only the "worst" steps and will provide a good stability result with as few QR steps as possible. In this section, we present three criteria, going from the most elaborate (but also most costly) to the simplest ones.

The stability of a step is determined by the growth of the norm of the updated matrix. If a criterion determines the potential for an unacceptable growth due to an LU step, then a QR step is used. A QR step is stable as there is no growth in the norm (2-norm) since it is a unitary transformation. Each criterion depends on a threshold α that allows us to tighten or loosen the stability requirement, and thus influence the amount of LU steps that we can afford during the factorization. In Section 1.5.4, we experiment with different choices of α for each criterion.

Max criterion

LU factorization with partial pivoting chooses the largest element of a column as the pivot element. Partial pivoting is accepted as being numerically stable. However, pivoting across nodes is expensive. To avoid this pivoting, we generalize the criterion to tiles and determine if the diagonal tile is an acceptable pivot. A step is an LU step if

α × (A (k) k,k) -1 -1 1 ≥ max i>k A (k) i,k 1 . (1.2)
For the analysis we do not make an assumption as to how the diagonal tile is factored. We only assume that the diagonal tile is factored in a stable way (LU with partial pivoting or QR are acceptable). Note that, for the variant using pivoting in the diagonal domain (see Section 1.2.1), which is the variant we experiment with in Section 1.5, A

k,k represents the diagonal tile after pivoting among tiles in the diagonal domain.

To assess the growth of the norm of the updated matrix, consider the update of the trailing submatrix. For all i, j > k we have:

A (k+1) i,j 1 = A (k) i,j -A (k) i,k (A (k) k,k) -1 A (k) k,j 1 ≤ A (k) i,j 1 + A (k) i,k 1 (A (k) k,k) -1 1 A (k) k,j 1 ≤ A (k) i,j 1 + α A (k) k,j 1 ≤ (1 + α) max A (k) i,j 1 , A (k) k,j 1 ≤ (1 + α) max i≥k A (k) i,j 1 .
The growth of any tile in the trailing sub-matrix is bounded by 1 + α times the largest tile in the same column. If every step satisfies (1.2), then we have the following bound:

max i,j,k A (k) i,j 1 max i,j A i,j 1 ≤ (1 + α) n-1 .
The expression above is a growth factor on the norm of the tiles. For α = 1, the growth factor of 2 n-1 is an analogous result to an LU factorization with partial pivoting (scalar case) [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]. Finally, note that we can obtain this bound by generalizing the standard example for partial pivoting. The following matrix will match the bound above:

A =     α -1 0 0 1 -1 α -1 0 1 -1 -1 α -1 1 -1 -1 -1 1     .

Sum criterion

A stricter criterion is to compare the diagonal tile to the sum of the off-diagonal tiles:

α × (A (k) k,k) -1 -1 1 ≥ i>k A (k) i,k 1 . (1.3)
Again, for the analysis, we only assume A -1 k,k factored in a stable way. For α ≥ 1, this criterion (and the Max criterion) is satisfied at every step if A is block diagonally dominant [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]. That is, a general matrix A ∈ R n×n is block diagonally dominant by columns with respect to a given partitioning A = (A i,j) and a given norm

• if: ∀j ∈ 1, n , A -1 j,j -1 ≥ i =j A i,j .
Again we need to evaluate the growth of the norm of the updated trailing sub-matrix. For all i, j > k, we have

i>k A (k+1) i,j 1 = i>k A (k) i,j -A (k) i,k (A (k) k,k) -1 A (k) k,j 1 ≤ i>k A (k) i,j 1 + A (k) k,j 1 (A (k) k,k) -1 1 i>k A (k) i,k 1 ≤ i>k A (k) i,j 1 + α A (k) k,j 1 .
Hence, the growth of the updated matrix can be bounded in terms of an entire column rather than just an individual tile. The only growth in the sum is due to the norm of a single tile. For α = 1, the inequality becomes

i>k A (k+1) i,j 1 ≤ i≥k A (k) i,j 1 .
If every step of the algorithm satisfies (1.3) (with α = 1), then by induction we have:

i>k A (k+1) i,j 1 ≤ i≥1 A i,j 1 ,
for all i, j, k. This leads to the following bound:

max i,j,k A (k) i,j 1 max i,j A i,j 1 ≤ n.
From this we see that the criteria eliminates the potential for exponential growth due to the LU steps. Note that for a diagonally dominant matrix, the bound on the growth factor can be reduced to 2 [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF].

MUMPS criterion

In LU decomposition with partial pivoting, the largest element of the column is used as the pivot. This method is stable experimentally, but the seeking of the maximum and the pivoting requires a lot of communications in distributed memory. Thus in an LU step of the LU-QR Algorithm, the LU decomposition with partial pivoting is limited to the local tiles of the panel (i.e., to the diagonal domain). The idea behind the MUMPS criterion is to estimate the quality of the pivot found locally compared to the rest of the column. The MUMPS criterion is one of the strategies available in MUMPS although it is for symmetric indefinite matrices (LDL T) [START_REF] Duff | Strategies for scaling and pivoting for sparse symmetric indefinite problems[END_REF], and Amestoy et al. [12] provided us with their scalar criterion for the LU case. At step k of the LU-QR Algorithm, let L (k) U (k) be the LU decomposition of the diagonal domain and A (k) i,j be the value of the tile A i,j at the beginning of step k. Let local_max k (j) be the largest element of the column j of the panel in the diagonal domain, away_max k (j) be the largest element of the column j of the panel off the diagonal domain, and pivot k be the list of pivots used in the LU decomposition of the diagonal domain:

local_max k (j) = max tiles A i,k on the diagonal domain max l |(A i,k) l,j |, away_max k (j) = max tiles A i,k off the diagonal domain max l |(A i,k) l,j |, pivot k (j) = |U (k) j,j |.
pivot k (j) represents the largest local element of the column j at step j of the LU decomposition with partial pivoting on the diagonal domain. Thus, we can express the growth factor of the largest local element of the column j at step j as: growth_f actor k (j) = pivot k (j)/local_max k (j). The idea behind the MUMPS criterion is to estimate if the largest element outside the local domain would have grown the same way. Thus, we can define a vector estimate_max k initialized to away_max k and updated for each step i of the LU decomposition with partial pivoting like estimate_max k (j) ← estimate_max k (j) × growth_f actor k (i). We consider that the LU decomposition with partial pivoting of the diagonal domain can be used to eliminate the rest of the panel if and only if all pivots are larger than the estimated maximum of the column outside the diagonal domain times a threshold α. Thus, the MUMPS criterion (as we implemented it) decides that step k of the LU-QR Algorithm will be an LU step if and only if:

∀j, α × pivot k (j) ≥ estimate_max k (j). (1.4)

Extending the MUMPS criterion to tiles

In this section, we extend the MUMPS criterion [12,[START_REF] Duff | Strategies for scaling and pivoting for sparse symmetric indefinite problems[END_REF] to tiles. We did not implement this extension in software. We present the main idea here in the context of the max criterion. It is possible to adapt to the sum criterion as well.

The main idea is to maintain a local upper bound on the maximum norm of the tiles below the diagonal. The goal for MUMPS is to spare a search in the pivot column to see if the current pivot is acceptable. Our goal is to spare a search in the tile column to know if we are going to apply an LU step or a QR step. In both cases, if the criterion is satisfied, the search will not happen, hence (1) this avoids the communication necessary for the search, and (2) this avoids to synchronize the processes in the column. In other words, if the initial matrix is such that the criterion is always satisfied at each step of the algorithm, the synchronization of the panel will go away and a pipeline will naturally be instantiated.

Following our general framework, we have a matrix A partitioned in n tiles per row and column. At the start of the algorithm, all processors have a vector r of size n. If the process holds column j, j = 1, . . . , n, then it also holds r j such that r (1)

j = max i=2,...,n A i,j 1 .
If the process does not hold column j, then it does not have (and will not need) a value for r j . If

α × (A (1) 11) -1 -1 1 ≥ max i>1 A (1)
i,1 1 , we know that an LU step will be performed according to the max criterion. (See Equation 1

.2.) This condition is guaranteed if α × (A (1)
11

) -1 -1 1 ≥ r (1) 1 .
We assume that this condition is satisfied and so an LU step is decided, so that our first step is an LU step. The pivot process can decide so without any communication or synchronization. An LU step therefore is initiated. Now, following the MUMPS criterion [12,[START_REF] Duff | Strategies for scaling and pivoting for sparse symmetric indefinite problems[END_REF], we update the vectors r as follows:

r (2) j = r (1) j + r (1) 1 (A (1) 11) -1 1 A (1) 1j 1 , j = 2, . . . , n,
We note that (A

11) -1 -1 1 can be broadcast along with the L and U factors of A

11 and that A

1j is broadcast for the update to all processes holding r j , so all processes holding r j can update without communicating r j . Now we see that r

(2)

j ≥ max i=3,...,n A (2)
i,j 1 , j = 2, . . . , n Indeed, let j = 2, . . . , n. Now, let i = 3, . . . , n, we have

A (2) i,j 1 = A (1) i,j -A (1)
i,1 (A

(1) 1,1) -1 A (1) 1,j 1 ≤ A (1) i,j 1 + A (1) i,1 1 (A (1) 1,1) -1 1 A (1) 1,j 1 ≤ max i=2,...,n A (1) i,j 1 + max i=2,...,n A (1) i,1 1 (A (1) 1,1) -1 1 A (1) 1,j 1 ≤ r (1) j + r (1) 1 (A (1) 1,1) -1 1 A
(1) 1,j 1

Hence, for j = 2, . . . , n, we have

max i=3,...,n A (2)
i,j 1 ≤ r

(1)

j + r (1) 1 (A (1) 1,1) -1 1 c (1) 1 ,
so that, as claimed, max i=3,...,n

A (2) i,j 1 ≤ r (2) j .
Therefore, at step 2, the process holding A 22 can evaluate locally (without communication nor synchronization) the condition α × (A

(2) 2,2) -1 -1 1 ≥ r (2)
2 , and decides whether an LU or a QR step is appropriate.

Complexity

All criteria require the reduction of information of the off-diagonal tiles to the diagonal tile. Criteria (1.2) and (1.3) require the norm of each tile to be calculated locally (our implementation uses the 1-norm) and then reduced to the diagonal tile. Both criteria also require computing A -1 k,k . Since the LU factorization of the diagonal tile is computed, the norm can be approximated using the L and U factors by an iterative method in O(n 2 b) floating-point operations. The overall complexity for both criteria is O(n × n 2 b). Criterion (1.4) requires the maximum of each column be calculated locally and then reduced to the diagonal tile. The complexity of the MUMPS criterion is also O(n × n 2 b) comparisons. The Sum criterion is the strictest of the three criteria. It also provides the best stability with linear growth in the norm of the tiles in the worst case. The other two criteria have similar worst case bounds. The growth factor for both criteria are bound by the growth factor of partial (threshold) pivoting. The Max criterion has a bound for the growth factor on the norm of the tiles that is analogous to partial pivoting. The MUMPS criteria does not operate at the tile level, but rather on scalars. If the estimated growth factor computed by the criteria is a good estimate, then the growth factor is no worse than partial (threshold) pivoting.

Implementation

As discussed in section 1.1, we have implemented the LU-QR Algorithm on top of the PARSEC runtime. There are two major reasons for this choice: (i) it allows for easily targeting distributed architectures while concentrating only on the algorithm and not on implementation details such as data distribution and communications; (ii) previous implementations of the HQR algorithm [START_REF] Dongarra | Hierarchical QR factorization algorithms for multi-core cluster systems[END_REF] can be reused for QR elimination steps, and they include efficient reduction trees to reduce the critical path of these steps. The other advantage of using such a runtime is that it provides an efficient look-ahead algorithm without the burden. This is illustrated by the figure 1.2 that shows the first steps of the factorization with the LU-QR Algorithm. QR STEPS (in green) and LU STEPS (in orange/red) are interleaved automatically by the runtime and panel factorization does not wait for the previous step to be finished before starting.

However, this choice implied major difficulties due to the parameterized task graph representation exploited by the PARSEC runtime. This representation being static, a solution had to be developed to allow for dynamism in the graph traversal. To solve this issue, we decided to fully statically describe both LU and QR algorithms in the parameterized task graph. A layer of selection tasks has then been inserted between each iteration, to collect the data from the previous step, and to propagate it to the correct following step. These tasks, which do no computations, are only executed once they received a control flow after the criterion selection has been made. Thus, they delay the decision to send the data to the next elimination step until a choice has been made, in order to guarantee that data follow the correct path. These are the Propagate tasks on Figure 1.1. It is important to note, that these tasks do not delay the computations since no updates are available as long as the panel is not factorized. Furthermore, these tasks, as well as Backup Panel tasks, can receive the same data from two different paths which could create conflicts. In the PARSEC runtime, tasks are created only when one of their dependencies is solved; then by graph construction they are enabled only when the previous elimination step has already started, hence they will receive their data only from the correct path. It also means that tasks belonging to the neglected path will never be triggered, and so never be created. This implies that only one path will forward the data to the Propagate tasks. BACKUP PANEL This is a set of tasks that collect the tiles of the panel from the previous step. Since an LU factorization will be performed in-place for criterion computation, it is then necessary to backup the modified data in case the criterion fails the test on numerical accuracy. Only tiles from the current panel belonging to the node with the diagonal row are copied, and sent directly to the Propagate tasks in case a QR elimination step is needed. On other nodes, nothing is done. Then, all original tiles belonging to the panel are forwarded to the LU On Panel tasks.

LU ON PANEL

Once the backup is done, the criterion is computed. Two kinds of work are performed in those tasks. On the first node, the U matrix related to this elimination step is computed. This can be done through an LU factorization with or without pivoting. We decided to exploit the multi-threaded recursive-LU kernel from the PLASMA library to enlarge the pivot search space while keeping good efficiency [START_REF] Dongarra | Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting[END_REF]. On all other nodes, the information required for the criterion is computed (see section 1.3). Then, an all-reduce operation is performed to exchange the information, so that everyone can take and store the decision in a local array. This all-reduce operation is directly implemented within the parameterized task graph with Bruck's algorithm [START_REF] Bruck | Efficient algorithms for all-to-all communications in multiport message-passing systems[END_REF] to optimize the cost of this operation. Once the decision is known by the nodes on the panel, it is stored in a global array by each process in order to give access to the information to every worker threads. The information is then broadcast by row to all other nodes such that everyone knows which kind of update to apply, and a control flow per process triggers all the local Propagate task which can now have access to the decision and release the correct path in the dataflow. PROPAGATE These tasks, one per tile, receive the decision from the previous stage through a control flow, and are responsible for forwarding the data to the computational tasks of the selected factorization. The tasks belonging to the panel (assigned to the first nodes) have to restore the data back to their previous state if QR elimination is chosen. In all cases, the backup is destroyed upon exit of these tasks.

We are now ready to complete the description of each step: a) LU STEP If the numerical criterion is met by the panel computation, the update step is performed. On the nodes with the diagonal row, a task per panel is generated to apply the row permutation computed by the factorization, and then, the triangular solve is applied to the diagonal to compute the U part of the matrix. The result is broadcasted per column to all other nodes and a block LU algorithm is used to performed the update. This means that the panel is updated with TRSM tasks, and the trailing sub-matrix is updated with GEMM tasks. This avoids the row pivoting between the nodes usually performed by the classical LU factorization algorithm with partial pivoting, or by tournament pivoting algorithms [START_REF]CALU: a communication optimal LU factorization algorithm[END_REF]. Here this exchange is made within a single node only. b) QR STEP If the numerical criterion is not met, a QR factorization has to be performed. Many solutions could be used for this elimination step. We chose to exploit the HQR method implementation presented in [START_REF] Dongarra | Hierarchical QR factorization algorithms for multi-core cluster systems[END_REF]. This allowed us to experiment with different kinds of reduction trees, so as to find the most adapted solution to our problem. The goal is to reduce the inter-nodes communications to the minimum while keeping the critical path short. In [START_REF] Dongarra | Hierarchical QR factorization algorithms for multi-core cluster systems[END_REF], we have shown that the FLATTREE tree is very efficient for a good pipeline of the operations on square matrices, while FIBONACCI, GREEDY or BINARYTREE are good for tall and skinny matrices because they reduce the length of the critical path. In this algorithm, our default tree (which we use in all of our experiments) is a hierarchical tree made of GREEDY reduction trees inside nodes, and a FIBONACCI reduction tree between the nodes. The goal is to perform as few QR steps as possible, so a FIBONACCI tree between nodes has been chosen for its short critical path and its good pipelining of consecutive trees if multiple QR steps are performed in sequence. Within a node, the GREEDY reduction tree is favored for similar reasons (See [START_REF] Dongarra | Hierarchical QR factorization algorithms for multi-core cluster systems[END_REF] for more details on the reduction trees). A two-level hierarchical approach is natural when considering multicore parallel distributed architectures, and those choices could be reconsidered according to the matrix size and numerical properties.

To implement the LU-QR Algorithm within the PARSEC framework, two extensions had to be implemented within the runtime. The first extension allows the programmer to generate data during the execution with the OUTPUT keywords. This data is then inserted into the tracking system of the runtime to follow its path in the dataflow. This is what has been used to generate the backup on the fly, and to limit the memory peak of the algorithm. A second extension has been made for the end detection of the algorithm. Due to its distributed nature, PARSEC detects the end of an algorithm by counting the remaining tasks to execute. At algorithm submission, PARSEC loops over all the domain space of each type of task of the algorithm and uses a predicate, namely the owner computes rule, to decide if a task is local or not. Local tasks are counted and the end of the algorithm, it is detected when all of them have been executed. As explained previously, to statically describe the dynamism of the LU-QR Algorithm, both LU and QR tasks exist in the parameterized graph. The size of the domain space is then larger than the number of tasks that will actually be executed. Thus, a function to dynamically increase/decrease the number of local tasks has been added, so that the Propagate tasks decrease the local counter of each node by the number of update tasks associated to the non selected algorithm.

The implementation of the LU-QR Algorithm is publicly available in the latest DPLASMA release (1.2.0).

Experiments

The purpose of this section is to present numerical experiments for the hybrid LU-QR Algorithm, and to highlight the trade-offs between stability and performance that can be achieved by tuning the threshold α in the robustness criterion (see Section 1.3).

Experimental framework

We used Dancer, a parallel machine hosted at the Innovative Computing Laboratory (ICL) in Knoxville, to run the experiments. This cluster has 16 multi-core nodes, each equipped with 8 cores, and an Infiniband interconnection network of 10GB/s bandwith (MT25208 cards). The nodes feature two Intel Westmere-EP E5606 CPUs at 2.13GHz. The system is running the Linux 64bit operating system, version 3.7.2-x86_64. The software was compiled with the Intel Compiler Suite 2013.3.163. BLAS kernels were provided by the MKL library and OpenMPI 1.4.3 has been used for the MPI communications by the PARSEC runtime. Each computational thread is bound to a single core using the HwLoc 1.7.1 library. If not mentioned otherwise, we will use all 16 nodes and the data will be distributed according to a 4-by-4 2D-block-cyclic distribution. In all our experiments, this distribution performs better than a 8-by-2 or a 16-by-1 distribution for our hybrid LU-QR Algorithm, as expected, since square grids are known to perform better for LU and QR factorization applied to square matrices [START_REF]A class of parallel tiled linear algebra algorithms for multicore architectures[END_REF]. The theoretical peak performance of the 16 nodes is 1091 GFLOP/sec.

For each experiment, we consider a square tiled-matrix A of size N -by-N , where N = n × n b . The tile size n b has been fixed to 240 for the whole experiment set, because this value was found to achieve good performance for both LU and QR steps. We evaluate the backward stability by computing the threads each is used. The green tasks are the QR STEPS (dark for the panel factorization, and light for the trailing submatrix update); the orange and red tasks are the LU STEPS (red for the panel update and orange for the trailing submatrix update); the blue tasks are the LU panel factorizations performed at every step; and small black tasks, that do not show up on the figure because their duration is too small, are the criterion selections, and the Propagate tasks.

HPL3 accuracy test of the High-Performance Linpack benchmark [START_REF] Dongarra | The LINPACK benchmark: Past, present, and future[END_REF]:

HP L3 = Ax -b ∞ A ∞ x ∞ × ǫ × N ,
where b is the right-hand side of the linear system, x is the computed solution and ǫ is the machine precision. Each test is run with double precision arithmetic. In all our experiments, the right-hand side of the linear system is generated using the DPLASMA_dplrnt routine. It generates a random matrix (or a random vector) with each element uniformly taken in [-0.5, 0.5]. For performance, we point out that the number of floating point operations executed by the hybrid algorithm depends on the number of LU and QR steps performed during the factorization. Thus, for a fair comparison, we assess the efficiency by reporting the normalized GFLOP/sec performance computed as

GFLOP/sec = 2 3 N 3 EXECUTION TIME ,
where 2 3 N 3 is the number of floating-point operations for LU with partial pivoting and EXECUTION TIME is the execution time of the algorithm. With this formula, QR factorization will only achieve half of the performance due to the 4 3 N 3 floating-point operations of the algorithm. Note that in all our experiments, the right-hand side b of the linear system is a vector. Thus, the cost of applying the transformations on b to solve the linear system is negligible, which is not necessarily the case for multiple right-hand sides.

Results for random matrices

We start with the list of the algorithms used for comparison with the LU-QR Algorithm. All these methods are implemented within the PaRSEC framework:

• LU NoPiv, which performs pivoting only inside the diagonal tile but no pivoting across tiles (known to be both efficient and unstable) • LU IncPiv, which performs incremental pairwise pivoting across all tiles in the elimination panel [START_REF]A class of parallel tiled linear algebra algorithms for multicore architectures[END_REF][START_REF] Quintana-Ortí | Programming matrix algorithms-by-blocks for thread-level parallelism[END_REF] (still efficient but not stable either) • Several instances of the hybrid LU-QR Algorithm, for different values of the robustness parameter α. Recall that the algorithm performs pivoting only across the diagonal domain, hence involving no remote communication nor synchronization. • HQR, the Hierarchical QR factorization [START_REF] Dongarra | Hierarchical QR factorization algorithms for multi-core cluster systems[END_REF], with the same configuration as in the QR steps of the LU-QR Algorithm: GREEDY reduction trees inside nodes and FIBONACCI reduction trees between the nodes. For reference, we also include a comparison with PDGEQRF: this is the LUPP algorithm (LU with partial pivoting across all tiles of the elimination panel) from the reference ScaLAPACK implementation [START_REF] Choi | ScaLAPACK: a portable linear algebra library for distributed memory computersdesign issues and performance[END_REF].). We only show the results for the LU-QR Algorithm with the Max criterion. The other criteria have similar performance. In column Fake GFLOP/sec, we assume all algorithms perform 2 3 N 3 floatingpoint operations. In column True GFLOP/sec, we compute the number of floating-point operations to be

(2 3 f LU + 4 3 (1 -f LU))N 3
, where f LU is the fraction of the steps that are LU steps (column 4).

Figure 1.3 summarizes all results for random matrices. The random matrices are generated using the DPLASMA_dplrnt routine. The figure is organized as follows: each of the first three rows corresponds to one criterion. Within a row:

• the first column shows the relative stability (ratio of HPL3 value divided by HPL3 value for LUPP)

• the second column shows the GFLOP/sec performance • the third column shows the percentage of LU steps during execution The fourth row corresponds to a random choice between LU and QR at each step, and is intended to assess the performance obtained for a given ratio of LU vs QR steps. Plotted results are average values obtained on a set of 100 random matrices (we observe a very small standard deviation, less than 2%).

For each criterion, we experimentally chose a set of values of α that provides a representative range of ratios for the number of LU and QR steps. As explained in Section 1.3, for each criterion, the smaller the α is, the tighter the stability requirement. Thus, the numerical criterion is met less frequently and the hybrid algorithm processes fewer LU steps. A current limitation of our approach is that we do not know how to auto-tune the best range of values for α, which seems to depend heavily upon matrix size and available degree of parallelism. In addition, the range of useful α values is quite different for each criterion.

For random matrices, we observe in Figure 1.3 that the stability of LU NoPiv and LU IncPiv is not satisfactory. We also observe that, for each criterion, small values of α result in better stability, to the detriment of performance. For α = 0, LU-QR Algorithm processes only QR steps, which leads to the exact same stability as the HQR Algorithm and almost the same performance results. The difference between the performance of LU-QR Algorithm with α = 0 and HQR comes from the cost of the decision making process steps (saving the panel, computing the LU factorization with partial pivoting on the diagonal domain, computing the choice, and restoring the panel). Figure 1.3 shows that the overhead due to the decision making process is approximately equal to 10% for the three criteria. This overhead, computed when QR eliminations are performed at each step, is primarily due to the backup/restore steps added to the critical path when QR is chosen. Performance impact of the criterion computation itself is negligible, as one can see by comparing performance of the random criterion to the MUMPS and Max criteria.

LU-QR Algorithm with α = ∞ and LU NoPiv both process only LU steps. The only difference between both algorithms in terms of error analysis is that LU NoPiv seeks for a pivot in the diagonal tile, while LU-QR Algorithm with α = ∞ seeks for a pivot in the diagonal domain. This difference has a considerable impact in terms of stability, in particular on random matrices. LU-QR Algorithm with α = ∞ has a stability slightly inferior to that of LUPP and significantly better to that of LU NoPiv. When the matrix size increases, the relative stability results of the LU-QR Algorithm with α = ∞ tends to 1, which means that, on random matrices, processing an LU factorization with partial pivoting on a diagonal domain followed by a direct elimination without pivoting for the rest of the panel is almost as stable as an LU factorization with partial pivoting on the whole panel. A hand-waving explanantion would go as follows. The main instabilities are proportional to the small pivots encountered during a factorization. Using diagonal pivoting, as the factorization of the diagonal tile proceeds, one is left with fewer and fewer choices for a pivot in the tile. Ultimately, for the last entry of the tile in position (n b ,n b), one is left with no choice at all. When working on random matrices, after having performed several successive diagonal factorizations, one is bound to have encountered a few small pivots. These small pivots lead to a bad stability. Using a domain (made of several tiles) for the factorization significantly increases the number of choice for the pivot and it is not any longer likely to encounter a small pivot. Consequently diagonal domain pivoting significantly increases the stability of the LU-QR Algorithm with α = ∞. When the local domain gets large enough (while being significanty less than N), the stability obtained on random matrices is about the same as partial pivoting.

When α = ∞, our criterion is deactivated and our algorithm always performs LU step. We note that, when α is reasonable, (as opposed to α = ∞,) the algorithm is stable whether we use a diagonal domain or a diagonal tile. However using a diagonal domain increases the chance of well-behaved pivot tile for the elimination, therefore using a diagonal domain (as opposed to a diagonal tile) increases the chances of an LU step.

Using random choices leads to results comparable to those obtained with the three criteria. However, since we are using random matrices in this experiment set, we need to be careful before drawing any conclusion on the stability of our algorithms. If an algorithm is not stable on random matrices, this is clearly bad. However we cannot draw any definitive conclusion if an algorithm is stable for random matrices.

Table 1.2 displays detailed performance results for the Max criterion with N = 20, 000. In column Fake GFLOP/sec, we assume all algorithms perform 2 3 N 3 floating-point operations. In column True GFLOP/sec, we compute the number of floating-point operations to be

(2 3 f LU + 4 3 (1 -f LU))N 3
, where f LU is the fraction of the steps that are LU steps (column 4). For this example, we see that the LU-QR Algorithm reaches a peak performance of 677.7 GFLOP/sec (62.1% of the theoretical peak) when

Assessment of the three criteria

With respect to stability, while the three criteria behave similarly on random matrices, we observe different behaviors for special matrices. The MUMPS criterion provides good results for most of the tested matrices but not for all. If stability is the key concern, one may prefer to use the Max criterion (or the Sum criterion), which performs well for all special matrices (which means that the upper bound of (1 + α) n-1 on the growth is quite pessimistic).

With respect to performance, we observe very comparable results, which means that the overhead induced by computing the criterion at each step is of the same order of magnitude for all criteria.

The overall conclusion is that all criteria bring significant improvement over LUPP in terms of stability, and over HQR in terms of performance. Tuning the value of the robustness parameter α enables the exploration of a wide range of stability/performance trade-offs.

Related work

State-of-the-art QR factorizations use multiple eliminators per panel, in order to dramatically reduce the critical path of the algorithm. These algorithms are unconditionally stable, and their parallelization has been fairly well studied on shared memory systems [START_REF] Buttari | Parallel tiled QR factorization for multicore architectures[END_REF][START_REF] Quintana-Ortí | Programming matrix algorithms-by-blocks for thread-level parallelism[END_REF][START_REF] Bouwmeester | Tiled QR factorization algorithms[END_REF] and on parallel distributed systems [START_REF] Dongarra | Hierarchical QR factorization algorithms for multi-core cluster systems[END_REF].

The idea of mixing Gaussian transformations and orthogonal transformations has been considered once before. Irony and Toledo [START_REF] Irony | The snap-back pivoting method for symmetric banded indefinite matrices[END_REF] present an algorithm for reducing a banded symmetric indefinite matrix to diagonal form. The algorithm uses symmetric Gaussian transformations and Givens rotations to maintain the banded symmetric structure and maintain similar stability to partial symmetric pivoting.

The reason for using LU kernels instead of QR kernels is performance: (i) LU performs half the number of floating-point operations of QR; (ii) LU kernels relies on GEMM kernels which are very efficient while QR kernels are more complex and much less tuned, hence not that efficient; and (iii) the LU update is much more parallel than the QR update. So all in all, LU is much faster than QR (as observed in the performance results of Section 1.5). Because of the large number of communications and synchronizations induced by pivoting in the reference LUPP algorithm, communication-avoiding variants of LUPP have been introduced [START_REF] Demmel | Communication-optimal parallel and sequential QR and LU factorizations[END_REF], but they have proven much more challenging to design because of stability issues. In the following, we review several approaches:

LUPP

LU with partial pivoting is not a communication-avoiding scheme and its performance in a parallel distributed environment is low (see Section 1.5). However, the LUPP algorithm is stable in practice, and we use it as a reference for stability.

LU NoPiv

The most basic communication-avoiding LU algorithm is LU NoPiv. This algorithm is stable for block diagonal dominant matrices [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF][START_REF] Demmel | Block lu factorization[END_REF], but breaks down if it encounters a nearly singular diagonal tile, or loses stability if it encounters a diagonal tile whose smallest singular value is too small. Baboulin et al. [START_REF] Baboulin | Accelerating linear system solutions using randomization techniques[END_REF] propose to apply a random transformation to the initial matrix, in order to use LU NoPiv while maintaining stability. This approach gives about the same performance as LU NoPiv, since preprocessing and postprocessing costs are negligible. It is hard to be satisfied with this approach [START_REF] Baboulin | Accelerating linear system solutions using randomization techniques[END_REF] because for any matrix which is rendered stable by this approach (i.e, LU NoPiv is stable), there exists a matrix which is rendered not stable. Nevertheless, in practice, this proves to be a valid approach.

LU IncPiv

LU IncPiv is another communication-avoiding LU algorithm [START_REF]A class of parallel tiled linear algebra algorithms for multicore architectures[END_REF][START_REF] Quintana-Ortí | Programming matrix algorithms-by-blocks for thread-level parallelism[END_REF]. Incremental pivoting is also called pairwise pivoting. The stability of the algorithm [START_REF]A class of parallel tiled linear algebra algorithms for multicore architectures[END_REF] is not sufficient and degrades as the number of tiles in the matrix increases (see our experimental results on random matrices). The method also suffers some of the same performance degradation of QR factorizations with multiple eliminators per panel, namely low-performing kernels, and some dependencies in the update phase.

CALU

CALU [START_REF]CALU: a communication optimal LU factorization algorithm[END_REF] is a communication-avoiding LU. It uses tournament pivoting which has been proven to be stable in practice [START_REF]CALU: a communication optimal LU factorization algorithm[END_REF]. CALU shares the (good) properties of one of our LU steps: (i) low number of floating-point operations; (ii) use of efficient GEMM kernels; and (iii) embarrassingly parallel update. The advantage of CALU over our algorithm is essentially that it performs only LU steps, while our algorithm might need to perform some (more expensive) QR steps. The disadvantage is that, at each step, CALU needs to perform global pivoting on the whole panel, which then needs to be reported during the update phase to the whole trailing submatrix. There is no publicly available implementation of parallel distributed CALU, and it was not possible to compare stability or performance. CALU is known to be stable in practice [START_REF] Grigori | Communication avoiding Gaussian elimination[END_REF][START_REF] Donfack | On algorithmic variants of parallel Gaussian elimination: Comparison of implementations in terms of performance and numerical properties[END_REF]. Performance results of CALU in parallel distributed are presented in [START_REF] Grigori | Communication avoiding Gaussian elimination[END_REF]. Performance results of CALU on a single multicore node are presented in [START_REF] Donfack | On algorithmic variants of parallel Gaussian elimination: Comparison of implementations in terms of performance and numerical properties[END_REF].

Summary

Conclusion

Linear algebra software designers have been struggling for years to improve the parallel efficiency of LUPP (LU with partial pivoting), the de-facto choice method for solving dense systems. The search for good pivots throughout the elimination panel is the key for stability (and indeed both NoPiv and IncPiv fail to provide acceptable stability), but it induces several short-length communications that dramatically decrease the overall performance of the factorization. Communication-avoiding algorithms are a recent alternative which proves very relevant on today's archictectures. For example, in our experiments, our HQR factorization [START_REF] Dongarra | Hierarchical QR factorization algorithms for multi-core cluster systems[END_REF] based of QR kernels ends with similar performance as ScaLAPACK LUPP while performing 2x more floating-point operations, using slower sequential kernels, and a less parallel update phase. In this chapter, stemming from the key observation that LU steps and QR steps can be mixed during a factorization, we present the LU-QR Algorithm whose goal is to accelerate the HQR algorithm by introducing some LU steps whenever these do not compromise stability. The hybrid algorithm represents dramatic progress in a long-standing research problem. By restricting to pivoting inside the diagonal domain, i.e., locally, but by doing so only when the robustness criterion forecasts that it is safe (and going to a QR step otherwise), we improve performance while guaranteeing stability. And we provide a continuous range of trade-offs between LU NoPiv (efficient but only stable for diagonally-dominant matrices) and QR (always stable but twice as costly and with less performance). For some classes of matrices (e.g., tile diagonally dominant), the LU-QR Algorithm will only perform LU steps.

This work opens several research directions. First, as already mentioned, the choice of the robustness parameter α is left to the user, and it would be very interesting to be able to auto-tune a possible range of values as a function of the problem and platform parameters. Second, there are many variants and extensions of the hybrid algorithm that can be envisioned. Several have been mentioned in Section 1.2, and many others could be tried. In particular, the tile extension of the MUMPS criterion looks promising and deserves to be implement in software during future work. Another goal would be to derive LU algorithms with several eliminators per panel (just as for HQR) to decrease the critical path, provided the availability of a reliable robustness test to ensure stability.

Introduction

Linear algebra operations are the basis of many scientific operations. Our objective is to optimize the performance of one of them (namely the Cholesky decomposition) on a hybrid computing platform. The use of GPUs and other accelerators such as Xeon Phi are common ways to increase the computation power of computers at a limited cost. The large computing power available on such accelerators for regular computation makes them unavoidable for linear algebra operations. However, optimizing the performance of a complex computation on such a hybrid platform is very complex, and a manual optimization seems out of reach given the wide variety of hybrid configurations. Thus, several runtime systems have been proposed to dynamically schedule a computation on hybrid platforms, by mapping parts of the computation to each processing elements, either cores or accelerators. Among other successful projects, we may cite StarPU [START_REF] Augonnet | Automatic Calibration of Performance Models on Heterogeneous Multicore Architectures[END_REF] from INRIA Bordeaux (France), Quark [START_REF] Yarkhan | QUARK Users' Guide: QUeueing And Runtime for Kernels[END_REF] and PaRSEC [START_REF] Bosilca | PaRSEC: Exploiting heterogeneity to enhance scalability[END_REF] from ICL, Univ. of Tennessee Knoxville (USA), Supermatrix [START_REF] Chan | SuperMatrix: a multithreaded runtime scheduling system for algorithms-by-blocks[END_REF] from University of Texas (USA), StarSs [START_REF] Planas | Hierarchical task-based programming with StarSs[END_REF] from Barcelona Supercomputing Center (Spain) or KAAPI [START_REF] Gautier | Kaapi: A thread scheduling runtime system for data flow computations on cluster of multi-processors[END_REF] from INRIA Grenoble (France). Usually, the structure of the computation has to be described as a task graph, where vertices represent tasks and edges represent dependencies between them. Most of these tools enable, up to a certain extent, to schedule an application described as a task graph onto a parallel platform, by mapping individual tasks onto computing resources and by performing data movements between memories when needed.

There is an abundant literature on the problem of scheduling task graphs on parallel processors. This problem is known to be NP-complete [START_REF] Garey | Computers and Intractability, a Guide to the Theory of NP-Completeness[END_REF]. Lower-bounds based either on the length of the critical path (the longest path from an entry vertex to an output vertex) or on the overall workload (assuming ideal parallelism) have been proposed, and simple list-scheduling algorithms are known to provide 2 -1/m-approximation on homogeneous platforms, at least when communication times are negligible [START_REF] Graham | Bounds for certain multiprocessing anomalies[END_REF]. Several scheduling heuristics have also been proposed, and among them the best-known certainly is HEFT [START_REF] Topcuoglu | Performance-effective and low-complexity task scheduling for heterogeneous computing[END_REF], which inspired some dynamic scheduling strategies used in the above-mentioned runtimes. However, it remains a large gap between the theoretical lower-bounds and the actual performance of dynamic HEFT-like heuristics. Another way to assess the quality of a scheduling strategy is to compare the actual performance to the machine peak performance of the computing platform computed as the sum of the performance of its individual computational units. Rather than this machine peak performance which is known to be unreachable, one usually considers the GEMM peak obtained by running matrix multiplication kernels (GEMMs). For large matrices, the task-graph of a Cholesky factorization exhibits a sufficient amount of parallelism, and a sufficient number of GEMM calls for this bound to be reasonable. However, on small and medium size matrices, there is still a large gap between GEMM peak performance and the best-achievable Cholesky performance.

In this chapter, we optimize the dynamic scheduling of the Cholesky decomposition of a dense, symmetric, and positive-definite double-precision matrix A, into the product LL T , where L is lower triangular and has positive diagonal elements, using one runtime system, StarPU, and provide better bounds to prove the quality of our schedules. The contributions of the chapter are:

• Better lower bounds on the processing time of a Cholesky factorization on a parallel hybrid platform;

• Better dynamic schedules, based not only on HEFT but also on an hybridization of static and dynamic task assignments;

• A very efficient schedule for a simple hybrid platform model, achieved by constraint programming.

• Numerous experiments and simulations to assess the performance of our schedules using the StarPU runtime.

Note that what is done here using StarPU could have been done with other runtimes, provided that we are able to control their mapping and scheduling policies. Similarly, we could have chosen another dense linear algebra factorization such as the QR or LU decompositions.

Context

Cholesky factorization

The Cholesky factorization (or Cholesky decomposition) is mainly used to solve a system of linear equations Ax = b, where A is a N × N symmetric positive-definite matrix, b is a vector, and x is the

for k = 0 to n -1 do A[k][k] ← POTRF(A[k][k]); for i = k + 1 to n -1 do A[i][k] ← TRSM(A[k][k], A[i][k]); for j = k + 1 to n -1 do A[j][j] ← SYRK(A[j][k], A[j][j]); for i = j + 1 to n -1 do A[i][j] ← GEMM(A[i][k], A[j][k], A[i][j]);
unknown solution vector to be computed. Such systems often arise in physics applications, especially when looking for numerical solutions of partial differential equations, where A is positive-definite due to the nature of the modeled physical phenomenon. One way to solve such a linear system is first to compute the Cholesky factorization A = LL T , where L (referred to as the Cholesky factor) is a N × N real lower triangular matrix with positive diagonal elements. The solution vector x can then be computed by solving the two following triangular systems: Ly = b and L T x = y.

To take advantage of modern highly parallel architectures, state-of-the-art numerical algebra libraries implement tiled Cholesky factorizations. The matrix A = (A ij) 0≤i,j≤n is divided into n × n tiles (or blocks) of n b × n b elements, and the tiled Cholesky algorithm can then be seen as a sequence of tasks that operate on small portions of the matrix. This approach greatly improves the parallelism of the algorithm and mostly involves BLAS3 kernels whose library implementations are really fast on modern architectures. The benefits of such an approach on parallel multicore systems have already been discussed in the past [START_REF] Gustavson | High-performance linear algebra algorithms using new generalized data structures for matrices[END_REF][START_REF]A class of parallel tiled linear algebra algorithms for multicore architectures[END_REF][START_REF] Quintana-Ortí | Programming matrix algorithms-by-blocks for thread-level parallelism[END_REF]. Following the BLAS and LAPACK terminology, the tiled algorithm for Cholesky factorization is based on the following set of kernel subroutines:

• POTRF: This LAPACK subroutine is used to perform the Cholesky factorization of a symmetric positive definite tile A kk of size n b × n b producing a lower triangular tile L kk of size n b × n b .

• TRSM: This BLAS subroutine is used to apply the transformation computed by POTRF to a A ik tile by means of a triangular system solving.

• GEMM: This BLAS subroutine computes a matrix-matrix multiplication of two tiles A ik , A jk and subtract the result to the tile A ij . The old value of A ij is overwritten by the new one.

• SYRK: This BLAS subroutine executes a symmetric rank-k update on a diagonal tile A kk .

Note that no extra memory area is needed to store the L ij tiles since they can overwrite the corresponding A ij tiles from the original matrix. The tiled Cholesky algorithm can be written as in Algorithm 5.

In this sequential pseudocode, we can notice that some kernel subroutines depend on each other, while others can be processed in parallel. Such an algorithm is commonly represented by its task graph (or DAG) that depicts its actual dependencies. In this well established model, each vertex of the graph represents a call to one of the four kernel subroutines presented above. The edges between two task vertices represent a direct data dependency between tasks.

Multiprocessor scheduling

Static Mapping

In such an algorithm, the way the matrix tiles are distributed over the processors and the mapping of the tasks onto the computing resources have a strong impact on its performance and scalability. In the distributed context, the ScaLAPACK library [START_REF] Dhillon | Lapack working note 95 scalapack: A portable linear algebra library for distributed memory computers -design issues and performance[END_REF] uses the standard 2D block-cyclic distribution of tiles along a virtual p-by-q homogeneous grid and the owner compute strategy. In this layout the p-by-q top-left tiles of the matrix are mapped topologically onto the processor grid and the rest of the tiles are distributed onto the processors in a round-robin manner. This layout has been incorporated in the High Performance Fortran standard [START_REF] Koelbel | The High Performance Fortran Handbook[END_REF]. Once the tiles of the matrix are distributed onto the processors, the mapping of the tasks is done following the owner-compute strategy: each subroutine overwriting a tile A ij is executed on the processor hosting A ij . The only freedom during the execution is the scheduling of the tasks inner a processor and the communications between processors. This layout ensures a good load balance for homogeneous computing resources and an equal memory usage between processors [START_REF] Dhillon | Lapack working note 95 scalapack: A portable linear algebra library for distributed memory computers -design issues and performance[END_REF]. However, for heterogeneous resources, this layout is no longer an option, and dynamic scheduling is a widespread practice.

These ideas also make sense in a shared-memory environment in order to take advantage of locality. For instance the Plasma library provides an option for relying on such static schedules on multicore chips.

Dynamic Scheduling

Dynamic strategies have been developed in order to design methods flexible enough to cope with unpredictable performance of resources, especially in the context of real time systems, where on-line and adaptive scheduling strategies are required [START_REF] Chetto | Dynamic scheduling of real-time tasks under precedence constraints[END_REF][START_REF] Manimaran | An efficient dynamic scheduling algorithm for multiprocessor real-time systems[END_REF]. More recently, the design of dynamic schedulers received a lot of attention, since on modern heterogeneous and possibly shared systems, the actual prediction of either execution and communication times is very hard, thus justifying the design of ad-hoc tools that will be described in Section 2.3.

Task graph scheduling heuristics

As presented earlier, many scheduling heuristics have been proposed for DAGs since this problem is NP-complete. Most of these heuristics are list-scheduling heuristics: they sort tasks according to some criterion and then schedule them greedily. This makes them good candidates to be turned into dynamic scheduling heuristics. The best-known list-scheduling heuristic for DAGs on heterogeneous platforms is certainly HEFT [START_REF] Topcuoglu | Performance-effective and low-complexity task scheduling for heterogeneous computing[END_REF]. It consists in sorting tasks by decreasing bottom-level, which is the weight of the longest path from a task to an exit task (a task without successors). In a heterogeneous environment, the weight of a task (or communication) is computed as the average computation (or communication) time over the whole platform. Then, each task is considered and scheduled on the resource on which it will finish the earliest. HEFT turns out to be an efficient heuristic for heterogeneous processors. Other approaches have been proposed to avoid data movement when taking communications into account, such as clustering tasks into larger granularity tasks before scheduling them [START_REF] Sarkar | Partitioning and scheduling parallel programs for multiprocessors[END_REF].

Tools and libraries

For this study, we used the Chameleon [START_REF]Chameleon, a dense linear algebra software for heterogeneous architectures[END_REF] implementation of the Cholesky factorization, running on top of the StarPU runtime system. We performed real executions on the target platform, and we additionally used the Simgrid [START_REF] Casanova | SimGrid: a Generic Framework for Large-Scale Distributed Experiments[END_REF] simulator, in order to reduce the experimentation time, improve reproducibility of the experiments, and also be able to modify the execution platform.

StarPU runtime system

StarPU [START_REF] Augonnet | Automatic Calibration of Performance Models on Heterogeneous Multicore Architectures[END_REF] is a runtime system aiming to allow programmers to exploit the computing power of the available CPUs and GPUs, while relieving them from the need to specifically adapt their programs to the target machine and processing units. The StarPU runtime supports a task-based programming model. Applications submit computational tasks, forming a task graph, with CPU and/or GPU implementations, and StarPU schedules these tasks and associated data transfers on available CPUs and GPUs. The data that a task manipulates is automatically transferred between the local memory of the accelerators and the main memory, so that application programmers are freed from the scheduling issues and technical details associated with these transfers. In particular, StarPU takes care of scheduling tasks efficiently, using well-known generic dynamic and task graphs scheduling policies from the literature (see Section 2.2.2), and optimizing data transfers using prefetching and overlapping, in particular. In addition, it allows scheduling experts, such as compiler or computational library developers, to implement custom scheduling policies in a portable fashion.

In this study, we specialize the StarPU scheduling algorithms to include a mixture of static and dynamic task assignments, based on the knowledge of the Cholesky task graph, to improve performance on small and medium size matrices. In the following, we call "small" a matrix with less than 10 × 10 tiles, "medium" a matrix with tile size between 10 and 20, and "large" a matrix with more than 20 × 20 tiles.

Chameleon dense linear algebra library

To cope with the increased degree of parallelism, a new class of dense linear algebra algorithms has been proposed, often referred as tile algorithms in the literature [START_REF]A class of parallel tiled linear algebra algorithms for multicore architectures[END_REF][START_REF] Quintana-Ortí | Programming matrix algorithms-by-blocks for thread-level parallelism[END_REF]. These algorithms led to the design of new libraries in the past five years such as Plasma [START_REF]A class of parallel tiled linear algebra algorithms for multicore architectures[END_REF], Flame [START_REF] Igual | The FLAME approach: From dense linear algebra algorithms to high-performance multiaccelerator implementations[END_REF] and DPlasma [START_REF] Bosilca | Distributed dense numerical linear algebra algorithms on massively parallel architectures: DPLASMA[END_REF]. Although both static and dynamic versions of the algorithms have been initially implemented, the dynamic codes are now predominant since they proved to provide more flexibility. These dynamic codes rely on runtime systems (Quark [START_REF] Yarkhan | QUARK Users' Guide: QUeueing And Runtime for Kernels[END_REF], Supermatrix [START_REF] Chan | SuperMatrix: a multithreaded runtime scheduling system for algorithms-by-blocks[END_REF], PaRSEC [START_REF] Bosilca | PaRSEC: Exploiting heterogeneity to enhance scalability[END_REF]) that have been specifically designed for the purpose of the numerical software (in the case of Plasma, Flame and DPlasma, respectively).

The advantage of relying on specialized runtime systems is that they can be optimized for both the numerical algorithm and the target architecture. On the other hand, designing and maintaining a runtime system is a highly time consuming task, which makes it difficult to design a fully-featured specialized runtime system. The Chameleon library is based on the Plasma tile algorithms and code but relies on the StarPU generic runtime system instead of the specialized Quark runtime system. One advantage is that it allows for handling heterogeneous architectures (whereas Plasma and Quark were initially designed for multicore chips). Another advantage when aiming at focusing on the impact of scheduling strategies is that it allows for running in simulation mode with the field-proven combination [START_REF] Stanisic | Modeling and Simulation of a Dynamic Task-Based Runtime System for Heterogeneous Multi-Core Architectures[END_REF] of StarPU and Simgrid.

Simgrid simulation engine

Simgrid [START_REF] Casanova | SimGrid: a Generic Framework for Large-Scale Distributed Experiments[END_REF] is a versatile simulation toolkit initially designed to study the behavior of large-scale distributed systems like grids, clouds, or peer-to-peer systems. It builds on fluid network models that have been proven as a reasonable alternative to both simple analytic models and expensive, difficult-toinstantiate packet-level simulations.

The Simgrid version of StarPU [START_REF] Stanisic | Modeling and Simulation of a Dynamic Task-Based Runtime System for Heterogeneous Multi-Core Architectures[END_REF] uses Simgrid to simulate the execution of an application within a single machine. The idea is to run the application normally, except that data transfers and computation kernel calls are replaced by a simple procedure accounting for the time they are expected to take, and gathered coherently by Simgrid. StarPU models each execution unit (CPUs and GPUs) by defining the time taken by each execution unit on each possible task/kernel [START_REF] Augonnet | Automatic Calibration of Performance Models on Heterogeneous Multicore Architectures[END_REF]. It also models the PCI buses between them, using offline bus bandwidth measurements, and relies on Simgrid to compute the interferences on PCI buses between the different transfers.

The resulting simulated times are very close to actual measurements on the real platforms [START_REF] Stanisic | Modeling and Simulation of a Dynamic Task-Based Runtime System for Heterogeneous Multi-Core Architectures[END_REF], and properly reproduce the various behaviors that can be observed for the various schedulers. This allows one to run experiments with the Simgrid version of StarPU, which provides several advantages:

• The time to simulate execution is reduced, since no actual computation or data transfer is done.

The Simgrid simulator itself is not parallel, so the whole execution gets serialized, but several simulations can be run in parallel for e.g. various matrix sizes or schedulers, and one then gets all the results in parallel.

• The experiments do not depend on the availability of the platform, both in terms of quotas, and in terms of versions of the installed software, thus allowing reproducible experiments. This proved useful while performing the experimentation for this very article, since the platform became unavailable for a couple of weeks due to Air Conditioning issues.

• The platform can be modified, for instance to change the available PCI bandwidth, the execution times of the kernels, etc. In Section 2.5.3.2, we use this feature in order to build a virtual "related" heterogeneous platform.

Lower bounds

Performance results for linear algebra computation are often accompanied with an upper bound in terms of FLOP'S, in order to assess the achieved efficiency. Since the theoretical peak performance is usually unreachable, particularly with GPUs, the common bound being used is the performance of a simple matrix multiplication (GEMM) since this is the most efficient dense linear algebra operation, and thus providing a good hint of some achievable performance. This bound takes into account the heterogeneity of the platform by summing up the obtained GFLOPS on the various processing elements. It however does not take into account the heterogeneity of the application, which is particularly important for small and medium matrices, for which a fair amount of the tasks are not GEMMs but much less efficient tasks such as POTRFs, especially on accelerators.

We here propose much more accurate bounds that take into account both heterogeneity of the computation resources and of the application kernels, by taking as input the execution time of any kernel on any type of resource. They also to a certain extent take into account the task graph itself, in terms of task dependencies.

Linear Programming formulation

The lower bound computation is based on a relaxation of the scheduling problem, in which almost all precedence constraints are ignored. This formulation focuses on the number of tasks n rt of each type t (GEMM, SYRK, TRSM, POTRF) which are executed on each resource type r (CPU, GPU, ...). From the Cholesky task graph, we know the number N t of tasks of each type t that need to be performed, and from the platform we know the number M r of processing elements of each type r available to schedule the tasks. For each task type t and resource type r, the calibration mechanisms inside StarPU provide the execution time T rt of these tasks on this resource type. The basic area bound is obtained by solving the following linear problem:

minimize l such that ∀t, r n rt = N t (all N t tasks of type t get executed) ∀r, t n rt T rt ≤ l × M r (resources of type r complete their tasks) ∀r, t n rt ∈ N +
It is clear that the optimal value l * of this linear program is a lower bound on the total execution time of the task graph, since any execution needs to execute all tasks. Ignoring the task graph precedences in this bound allows one to handle tasks of the same type with a couple of variables (one per resource type), instead of having one variable for each task in the graph, thus limiting the number of variables and reducing symmetries in the solution space. StarPU is able, without any input from the application beyond the normal task submission, to automatically generate this program and solve it on the fly, right after the application execution, which thus allows one to print this theoretical bound along the measured performance in the application output.

Due to the actual timings of the different task types, this linear program always decides that all POTRF tasks should be executed on CPUs, since all other task types make much more efficient use of the GPU resources. However, in practice all POTRF tasks are on the critical path of the Cholesky graph, and hence this implies that the resulting lower bound is too optimistic for small matrix sizes, since it does not take dependencies into account. This interesting feature of the Cholesky task graph to contain a path with all n POTRF tasks can be used to strengthen the bound, without adding other variables in the linear program. In addition to the n POTRF tasks, this path contains n -1 of the n×(n-1)

2

TRSM tasks, and n -1 of the n×(n-1) 2 SYRK tasks. We can thus add the following constraint, which states that the execution time is necessarily larger than the time to execute all these tasks in sequence:

r n rP T rP + (n -1) × T * T + (n -1) × T * S ≤ l
In this constraint, T * T and T * S denotes the fastest execution time of TRSM and SYRK tasks: we do not model exactly on which resources these TRSM and SYRK tasks are executed, and thus underestimate their completion times, ignoring which resource they actually run on 1 . The resulting lower bound is called the mixed bound in the rest of the chapter. This linear program has a very small number of variables and constraints (in particular, they are independent of the matrix size), and it can thus be solved very quickly.

Constraint Programming formulation

In addition to this lower bound computation, we have used a Constraint Programming formulation of the scheduling problem, in order to obtain good feasible solutions. These solutions provide both a comparison point for StarPU schedules and a limit for possible improvements of the lower bound. The formulation contains one boolean variable b ir for each task i and each resource type r (only one can be true for a given task), and one integer variable s i for each task i which represents the starting time of the task. The constraints are the following: minimize l such that ∀i, OnlyOne(b i1 , . . . , b iR) (only one type of resource executes task i)

∀i, s i + r b ir T ir ≤ l (task i completes) ∀r, ∀t, r b ir T ir }| ≤ M r (at time t the M r resources of type r are executing at most M r tasks) ∀i → j, s i + r b ir T ir ≤ s j (dependency i → j is respected)
We have implemented this constraint programming formulation using CP Optimizer v12.4. The first constraint is expressed using the alternative constraint, and the third constraint uses the concept of cumulative functions to express the number of tasks which use resources of type r at time t. The other constraints are simple linear constraints and are easily expressed. The solver explores the solution space with an exhaustive search and backtracking, using constraint propagation to reduce the search space as much as possible.

Furthermore, providing the result of a HEFT heuristic as an initial solution allows the solver to explore good solutions more rapidly. We let the solver optimize for 23 hours and keep the best solution found in this duration. The obtained solutions are quite good compared to what is obtained with other heuristics, but the solver is unable to prove optimality.

Because it would otherwise be extremely costly to solve2 , this formulation does not take into account data transfers. With the usual platforms and the dense linear algebra operation being studied (the Cholesky factorization), data transfers are indeed not a concern: computation is dense enough for transfers to be largely overlapped with kernel computation.

Upper bounds on performance

Lower bounds on execution time also give upper bounds on the performance. Therefore, we have plotted different theoretical performance upper bounds of the Cholesky factorization in Figure 2.2, based on real execution timings of different tasks on the Mirage machine (described in section 2.5.2).

✥ ✥✥ ✁✥✥ ✂✥✥ ✄✥✥ ☎✥✥ ✆✥✥ ✝✥✥ ✞✥✥ ✟✥✥ ✥✥✥ ✥ ✄ ✞ ✁ ✆ ✁✥ ✁✄ ✁✞ ✂✁ • ✠ ✡ ☛ ☞ ✌ ▼✍✎✏✑✒ ✓✑✔✕✖✗✘✙✎✑✚✙✕ ✛✜ ✟✆✥✢ ❈✏✑✎✑✣✍✙ ✤✍✎✦ ❆✏✕✍ ✧✛✘★✩ ▼✑✒✕✩ ✧✛✘★✩ ✪✕✗✗ ✤✕✍✫

Figure 2.2: Heterogeneous theoretical performance upper bounds

The critical path bound is calculated based on the critical path of the Cholesky task graph. While calculating the critical path, we have taken into consideration the fastest execution time of each task among the different resources. The area bound and mixed bound calculations are based on the description given in mixed bound subsection 2.4.1. Since GEMM is the fastest kernel of the Cholesky factorization algorithm, we have also plotted the GEMM Peak. This plot shows that the mixed bound is the tightest upper bound among all upper bounds, and we will therefore compare the performance of our experiments only with the mixed bound in the experiment section.

The performance of the constraint programming bound described in section 2.4.2 will be discussed in section 2.5.3.3.

Experiments and Results

Schedulers

We have experimented with a few schedulers of StarPU, which are representative of state-of-the-art heuristics.

The random scheduler assigns tasks randomly over all the computation resources. It uses an estimation of the relative performance of the resources to balance the randomness, so that GPUs will be assigned more tasks, according to their average acceleration ratio. This is thus representative of classical partitioning heuristics, which take into account the heterogeneity of the platform, but do not take into account the heterogeneity of the tasks.

The dmda (deque model data aware) and dmdas (deque model data aware sorted) schedulers use the minimum completion time heuristic to assign tasks to computational resources: each task is assigned to the processing resource which is estimated to complete it first, taking into account both the estimated computation time on the estimated target resource, and the possible required data transfer time. The difference between dmda and dmdas is that dmdas schedules tasks in order of their priorities, thus making it representative of the state-of-the-art HEFT heuristic [START_REF] Topcuoglu | Performance-effective and low-complexity task scheduling for heterogeneous computing[END_REF][START_REF] Augonnet | Automatic Calibration of Performance Models on Heterogeneous Multicore Architectures[END_REF].

The Cholesky factorization is a structured application, so we can estimate some extra information in advance by analyzing the task graph with the help of different tools. These information could be an exact schedule, priorities for some specific tasks, scheduling of some tasks on a particular worker/resource type, etc. In the following section, we inject more or less of these extra information as static knowledge, to influence the scheduling decisions and get better performance.

Experimental Setup

We have used a machine called Mirage to run and simulate our experiments. It has 2 Hexa-core Westmere Intel® Xeon® X5650 processors and 3 Nvidia Tesla M2070 GPUs. In the actual execution, we used only 9 CPU cores of the mirage machine so that the remaining 3 CPU cores can be used to fully exploit the critical resource (GPUs) of the system. To make the performance comparable we stick to 9 CPU cores in all of our experiments.

Results

We have divided our experiments into two categories based on the types of configuration used. The first one is Homogeneous category where we have run and simulated the performance behavior with 9 homogeneous CPU cores and the second one is Heterogeneous category, where we used 9 CPU cores and 3 GPUs to run the tasks.

From the past literature we found that researchers are getting maximum performance in heterogeneous case with tile size equal to 960 [START_REF] Agullo | Faster, cheaper, better -a hybridization methodology to develop linear algebra software for gpus[END_REF], that is why we also kept the same tile size value throughout all our experiments.

For actual executions, we provide the average and standard deviation of 10 runs in the plots. In simulation mode, results are deterministic for all schedulers except for the random scheduler which relies on random allocation choices. The simulated plots therefore provide average and standard deviation values of 10 simulations with various seeds for the random scheduler.

Homogeneous case

For the homogeneous case, we provide the results of real execution runs of Cholesky factorization with the three different StarPU schedulers: random, dmda and dmdas.

✥ ✥ ✁✥ ✂✥ ✄✥ ☎✥ ✆✥ ✝✥ ✞✥ ✟✥ ✥✥ ✥ ✄ ✞ ✁ ✆ ✁✥ ✁✄ ✁✞ ✂✁ • ✠ ✡ ☛ ☞ ✌ ▼✍✎✏✑✒ ✓✑✔✕✖✗✘✙✎✑✚✙✕ ✛✜ ✟✆✥✢ ✏✍r✣✛✗ ✣✗✣✍ ✣✗✣✍❞ ❞✎✍r✣✍✏✣ ✣✕s✑✍✎✑✛r

Figure 2.3: Homogeneous actual performance

From Figure 2.3, it is clear that the random scheduler does not perform well. This happens because it does not take into account the already assigned workload of the workers, and just selects a worker among all workers with equal probability. This shows that the scheduler needs to take scheduling decisions in some smart way. The other two schedulers which are based on data aware and early finish time strategies perform much better than the random scheduler. Figure 2.3 also shows that dmdas slightly under-performs compared to dmda for smaller number of tiles. This is due to the fact that dmdas is biased towards the longest path (path with more work) and chooses some tasks in the beginning which do not generate enough level of parallelism. But as time progresses, dmdas starts choosing tasks which releases a higher number of tasks, because these tasks would be the critical ones, which improves the overall performance of the execution.

We are also interested to know what the upper bound of the performance is, in order to determine how far these results are from that bound with different types of schedulers. Since actual executions add some runtime overhead and affect the performance, to mitigate this overhead we have compared the bound with simulated performance.

Figure 2.4 shows that the behavior is very similar to the original execution, with a slight increase in performance, since the communication cost was removed from the system. It also shows that the gap between mixed bound and achieved performance is significant for small matrices.

Heterogeneous Case

In this subsection, we consider all the processing units of the Mirage machine. 9 CPUs and 3 GPUs are used for the execution of tasks while the remaining 3 CPUs are used as drivers for the 3 GPUs. Table 2.1 shows the GPUs performance for each kernel with respect to CPUs performance, e.g.: GEMM is 29 times faster on GPU compared to CPU. We divide our work into two parts. In the first part, we consider the impact of heterogeneity of resources by considering a heterogeneous platform with related performance. More specifically, we designed a fictitious hardware configuration, where execution time of each kernel on GPU is exactly K times faster than the CPU execution time, and we call this case the heterogeneous related. The common accelerator factor K is an average computed as follows :

K = N P * a P + N T * a T + N S * a S + N G * a G Total Number of Tasks
where, N P : total number of POTRF tasks a P : acceleration factor of POTRF on GPU N T : total number of TRSM tasks a T : acceleration factor of TRSM on GPU N S : total number of SYRK tasks a S : acceleration factor of SYRK on GPU N G : total number of GEMM tasks a G : acceleration factor of GEMM on GPU Here, the acceleration factor depends on the number of tasks and the number of tasks depends on the number of tiles. Therefore, we get different acceleration factors with different number of tiles.

In the second part of our work, we show the achieved performance with the actual hardware with the help of both actual and simulated executions, and we call this case the heterogeneous unrelated case.

We are using the mixed bound (as explained in Section 2.4.1) to compare the performance. The bounds do not take into account the communication constraints. Therefore, to be fair in the comparison we have used the simulated performance, where communication costs have been removed by modifying the platform file of our machine (one of the good features of the Simgrid version of the StarPU runtime system).

Heterogeneous related case Figure 2.5 shows the simulated performance with different schedulers on the fictitious heterogeneous platform. Here, we can see that the random scheduler performs very poorly because it assigns tasks randomly to the worker without knowing the already assigned workload of workers, which limits the number of ready tasks in the system, and introduces significant idle time on our critical resource (GPUs). We have also computed the mixed bound for this fictitious platform. The difference between simulated performance and mixed bound is once again significant for small and medium size matrices. Heterogeneous unrelated case First we compare the performance of different schedulers in actual execution and then between simulated performance and mixed bound. As shown in Figure 2.6, in actual executions, the random scheduler does not perform well because it is not taking data movement into account while making scheduling decisions: it assigns worker randomly for each task, which may select different resource types for data dependent tasks and result in lots of data movement from CPU memory to GPU memory and vice-versa. In addition, it is also not taking the affinity of tasks to resource (e.g.: GEMM/SYRK is more suitable to be executed on GPU) into account, which degrades the overall performance of the system. The other two schedulers perform comparatively better than the random scheduler because they take into account data transfers when assessing completion time in the HEFT-like scheduling strategies. Here we can also see that dmda outperforms dmdas performance for smaller matrices, for the same reason as for the homogeneous case (choosing the critical task versus tasks which generate high level of parallelism). We are now again interested in determining how far we are from the peak performance of the application. Thus, we performed the simulation with different numbers of tiles. Figure 2.7 illustrates the comparison between bounds and achieved performance in simulation. Here we can also see that the performance difference between the best scheduler and the mixed bound is significant for small and medium size matrices. Comparison between Heterogeneous related and unrelated case In order to determine the impact of heterogeneity of speed-up of tasks on performance, we present a comparison between related and unrelated heterogeneous simulations. To this end, we scaled the mixed bound of the related case such that it perfectly matches with the mixed bound of the unrelated case, and also scaled all the performance values of the related case with the same factor. The obtained results are given in Figure 2.8, which can now be compared with the unrelated case of Figure 2.7. Here we can see that unrelated speed-ups make the problem harder. That is why the gap between state-of-the-art schedulers performance and mixed bound is large in Figure 2.7 compared to Figure 2.8. Here, it is also clear that there is room for improvement in the case of small and medium size matrices in the heterogeneous case.

✥ ✥✥ ✁✥✥ ✂✥✥ ✄✥✥ ☎✥✥ ✆✥✥ ✝✥✥ ✞✥✥ ✟✥✥ ✥✥✥ ✥ ✄ ✞ ✁ ✆ ✁✥ ✁✄ ✁✞ ✂✁ • ✠ ✡ ☛ ☞ ✌ ▼✍✎✏✑✒ ✓✑✔✕✖✗✘✙✎✑✚✙✕ ✛✜ ✟✆✥✢ ✏✍r✣✛✗ ✣✗✣✍ ✣✗✣✍❞ ✗✑✒✕✣ ♠✛✘r✣

Scheduling with static knowledge

The significant gap between performances of StarPU schedulers and the theoretical bound (mixed bound) for small and medium size matrices in Figure 2.7 highlights the following things:

• Either the dynamic schedulers of StarPU return a scheduling that can be improved for small matrices;

• Or the theoretical bound is not tight enough;

• Or both.

Indeed, the dmda and dmdas schedulers take only dynamic decisions to map the ready tasks onto the processors depending on the state of resources and estimation of execution and communication times (also priorities among ready tasks in dmdas), without taking into account the overall task graph. These local choices may lead to bad decisions when the parallelism in the task graph is limited. We did some experiments to improve the overall performance (in simulation mode) with static information in the heterogeneous unrelated case. Since GEMM and SYRK kernels are well suited to execute on GPUs, we enforced these kernels to be executed on GPUs as static information to the StarPU runtime system. This strategy improves the We also tried to inject the CP schedule in actual execution for small matrices, however we did not get the good performance improvement compared to what we are getting in simulation. The CP formulation indeed does not account data transfers, since as described in Section 2.4.2, solving a CP with data transfers has shown intractable for the purpose at stake. Actual execution with CP schedule thus adds lots of idle time on resources during data transfer, and consequently does not reproduce the same performance in actual execution. The simulated execution has however allowed us to show, at least in the case without data transfers, that some heuristics get relatively close to an achievable CP solution.

Discussion

dmda vs dmdas scheduler

We were expecting that dmdas would always perform better than dmda scheduler because it is also taking the HEFT priority into account while making scheduling decision. Nevertheless, we found a few cases where dmda outperforms dmdas. We investigated the generated trace files with dmda and dmdas schedulers in order to determine the reasons of this behavior and we found that dmdas puts emphasis on critical path rather than parallelism, since it selects some tasks in the beginning which are critical but are not generating enough level of parallelism. That introduces some idle time on the critical resource (GPUs) and degrades the overall performance of the system, which is a known defect of the HEFT scheduler in general.

Mapping from Constraint Programming solution

We did some experiments by injecting only the mapping information (i.e. only the CPU/GPU information, not the exact task order) of the feasible solution statically obtained by constraint programming, and let the scheduler decide the precise ordering and worker dynamically. This extra information about resource allocation did not improve the performance of the system compared to the performance obtained by dmda and dmdas schedulers, which indicates that the feasible solution is highly dependent of the precise ordering chosen by constraint programming. This shows that heuristics required to achieve this performance are probably very complex, probably even beyond only backfilling.

Constraint Programming schedule in actual execution

We did some experiments by injecting the schedule obtained by constraint programming in actual execution for smaller matrices, but the performance improvement was not significant compared to the state-of-the art schedulers. After looking into traces we found that resources are idle for significant portion of time during data transfers. One of the prominent way to minimize the idle time on resources due to data transfer is to use prefetching in computational order, but using the prefetching very early also adds significant idle time on resources. Consider two data dependent tasks (second task is dependent on data of first task) schedule on two different workers with different memories, after execution of the first task, second task becomes ready and will initiate the data transfer request but it can be served only when all the already initiated data transfers (some of these data transfers may correspond to task which will be executed very late) by second worker are completed. One of the heuristic to minimize idle time on resource is to use limited prefetching but even this strategy won't solve the problem completely. Since performance in CP schedule is highly dependent on task order of whole schedule, therefore adding idle time on one of the resources may create idle time on other resources as well and degrades the overall performance dramatically.

Conclusion

In this work, we have bridged the gap between theoretical performance bounds and actually achieved performance on the dense Cholesky factorization. On the former side, we have proposed improved bounds which take into account both resource and task heterogeneity, as well as critical paths. On the latter side, we have introduced some static information into the dynamic task scheduler of StarPU, which brought the performance closer to the theoretical bounds, and very close to what a statically-optimized schedule can achieve. We have also shown that the performance achieved by such statically-optimized schedule depends on precise non-intuitive task ordering, which thus can not be reached by simple listscheduling heuristics, even with backfilling. We plan to try to verify the results on other hardware platforms, and apply the same methodology to other dense linear algebra algorithms, but we also plan to try other classes of applications, notably less irregular applications such as sparse linear algebra or FMM.

More generally, this work opens a bridge to closer interaction between applications and tasks schedulers. We have shown that while generic heuristics such as HEFT achieve very good performance, application-specific scheduling hints can noticeably improve performance. We aim at generalizing and formalizing this kind of information, so that scheduling experts can easily analyze achieved performance, optimize the schedule statically, and try to inject more or less application-specific scheduling hints into the scheduler, such as "this proportion of TRSM tasks should be run on CPUs", or "these TRSM tasks should be run on CPUs", etc. The code produced for the purpose of the study will be reversed in the StarPU runtime system and Chameleon dense linear algebra library.

Chapter 3

Memory-aware list scheduling for hybrid platforms

In the first part of this thesis, we took two courses of action to improve the performance of linear solvers. We first designed a new hybrid LU-QR factorization suited for distributed platforms. This algorithms was implemented in the PARSEC framework, relying on its dynamic scheduler to take care of the resources management. We then focused on the dynamic scheduler itself by investigating how adding static information in the StarPU dynamic scheduler can improve its performance. We saw in Chapter 2 that the StarPU runtime system uses the HEFT strategy by default. Although the classical heuristic HEFT performs well on heterogeneous resources in term of completion time, it doesn't take into account the memory consumption. In this chapter, we dig further into the scheduling module of runtime systems by designing new memory-aware alternative to the classical heuristic HEFT. It is indeed important to minimize the maximum memory usage during a computation to avoid out-of-core memory access. Many works have been done on minimizing the memory consumption while traversing a tree-shaped or a general task graph workflow whose tasks require large I/O files. We can find many results in the literature when a single memory is available. But most nowadays machines are heterogeneous, as wee saw in the previous chapter. Multicores are associated with a dedicated accelerator, such as an FPGA or a GPU. These computational units work on their dedicated memory. In this chapter, when consider the problem of scheduling workflows on dual-memory clusters where two independent memories are available. The amount of used memory of each type at a given execution step strongly depends upon the ordering in which the tasks are executed, and upon when communications between both memories are scheduled. At first, we assess the complexity of this problem by focusing, on the simple case where the task graph is tree-shaped, and the mapping of the tasks onto the resources is already given. We establish the complexity of this two-memory scheduling problem, and provide inapproximability results. We then consider the general problem of scheduling an arbitrary workflow where each task can be mapped onto either resource and has a different processing time for each. The memory-aware heuristics provided in this chapter outperform the reference heuristics HEFT and MINMIN used in runtime systems on a wide variety of problem instances.

Introduction

Modern computing platforms are heterogeneous: a typical node is composed of a multi-core processor equipped with a dedicated accelerator, such as an FPGA or a GPU. These two computational units (cores and accelerator) are strongly heterogeneous. To complicates matters, each unit comes with its dedicated memory. Altogether, such an architecture with two computational resources and two memory types, which we call a dual memory system hereafter, leads to new challenges when scheduling scientific workflows on such platforms. The nodes of the workflow correspond to tasks, and the edges correspond to the dependencies among the tasks. The dependencies are in the form of input and output files: each node accepts a (potentially large) file as input, and produces a set of files, each of them to be processed by a different successor. We consider in this chapter that we have two different processing units at our disposal, such as a CPU and a GPU. For sake of generality, we designate them by a color (namely blue and red). To execute a task on a given resource, the input file and all the output files of the task must fit within the corresponding memory. As the workflow is traversed, tasks are processed on different memories, and capacity constraints on both memory types must be met. In addition, when a task is executed on a different memory than its predecessor, say for example that a task executed on the blue memory has a successor executed on the red memory, a communication from the blue memory to the red memory must be scheduled before the successor can be processed (and again, the input file and all output files of this successor must fit within the red memory). All these constraints require to carefully orchestrate the scheduling of the tasks, as well as the communications between memories, in order to minimize the maximum amount of each memory that is needed throughout the traversal.

In the first part of this chapter (Section 3.4), we consider the restricted problem where the workflow is tree-shaped and each task in the workflow is best suited to a given resource type (say a core or a GPU), and is colored accordingly. In this context, the objective is to determine an efficient traversal that minimizes the maximum amount of memory of each type needed to traverse the whole tree. This work mainly builds upon the pioneering work of Liu, who has studied tree traversals that minimize the peak amount of memory used on a homogeneous system, hence with a single memory type. Liu first restricted to depth-first traversals in [START_REF] Liu | On the storage requirement in the out-of-core multifrontal method for sparse factorization[END_REF], before dealing with an optimal algorithm for arbitrary traversals in [START_REF]An application of generalized tree pebbling to sparse matrix factorization[END_REF]. In many situations, the optimal traversal is a depth-first traversal, but this is not always the case. An assessment of the relative performance of depth-first traversals versus optimal traversals is proposed by [START_REF] Jacquelin | On optimal tree traversals for sparse matrix factorization[END_REF]. The main objective of this part is to extend these results to colored trees with two memory types, and tasks belonging to a given type. Clearly, the traversal, i.e., the order chosen to execute the tasks, and to perform the communications, plays a key role in determining which amount of each memory is needed for a successful execution of the whole tree. The interplay between both memories dramatically complicates the scheduling: it is no surprise that the complexity of the problem, that was polynomial with a unique memory, now becomes NP-complete.

In this first part, we concentrate on this difficult bi-criteria optimization problem, and derive several complexity results: NP-completeness of the problem, and inapproximability within a constant (α, β) factor pair of both absolute minimum memory amounts. Here the absolute minimum memory of a given type is computed when assuming an infinite amount of memory of the other type. We also provide a study of depth-first traversals and related variants. We show how to extend Liu's algorithm to compute the best depth-first traversal, which simultaneously minimizes both memory usages. However, while depth-first traversals were natural algorithms with a single memory, they severely constrain the activation of communication nodes with two memories. We show that the optimization problem is still NP-complete when relaxing the firing of communication nodes in depth-first traversal, which leads us to go beyond depth-first traversals and to introduce general heuristics. These heuristics extends Liu's optimal algorithm along various (greedy) decision criteria to trade-off the usage of both memory types. Finally, we assess the performance of all these heuristics using both randomly generated trees, and actual elimination trees that arise from the multifrontal factorization of sparse linear systems.

In the second part of this chapter (Section 3.5), we study a more realistic model with several complications: (i) tasks are not pre-assigned but can be dynamically assigned to either resource; (ii) task graphs are general DAGs rather then trees; and (iii) one aims at optimizing total execution time (or makespan) while minimizing memory usage. Here, the objective is makespan minimization, while enforcing that memory capacities of each type are not exceeded. Given the negative results derived in the first part, there is little hope to design approximation algorithms. We lower our ambition and aim at designing efficient heuristics for this problem, which we validate through an extensive set of simulations for a variety of scientific benchmarks. However, one major theory-oriented contribution of this section is the derivation of an Integer Linear Program (ILP) formulation for the general problem. This linear program turns out very intricate, due to expressing all constraints related to memory usage, and it has a large number of variables and constraints. Still, it enables us to determine the optimal solution for small-size problems, up to 30 tasks, and thereby to assess the optimal performance of our heuristics for small instances.

HEFT [START_REF] Topcuoglu | Performance-effective and low-complexity task scheduling for heterogeneous computing[END_REF] is widely used for scheduling scientific workflows on heterogeneous resources. It is an extension of critical-path list-scheduling that schedules the current ready task on the resource that will complete its execution as soon as possible (given already taken scheduling decisions). By considering task completion instead of task initiation, HEFT is able to take CPU speed heterogeneity into account. However, HEFT has no provision to optimize memory usage, even for a single-memory system, and a fortiori for a dual-memory one. Another main contribution of this chapter is to introduce a memoryaware variant of HEFT for dual-memory systems. Similarly, we design a memory-aware variant of MINMIN [START_REF] Braun | A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems[END_REF], another reference heuristic for DAGs where the next task to be executed is selected dynamically (rather than according to some static criteria as in HEFT): MINMIN picks the ready task which has the smallest completion time and executes it on the best available processor.

The rest of the chapter is organized as follows. We start with a brief overview of related work in Section 3.2. Then we detail the model and framework in Section 3.3. Section 3.4 is devoted to the complexity study of the restricted problem where the workflow is tree-shaped and the task are initially colored. We also study of depth-first traversals, a first class of (widely-used) heuristics, and introduce additional heuristics. In Section 3.5, we tackle the general problem, by expressing an optimal schedule in terms of the solution of a complex ILP. and introducing new heuristics. Finally, we provide concluding remarks in Section 3.6.

Related work

Task graph scheduling

Computations with dependencies are naturally modeled through task graphs, where nodes represent computational tasks and edges represent dependencies. Task graph scheduling has been the subject of a wide literature, ranging from theoretical studies to practical ones. On the theoretical side, the most used techniques are list scheduling [START_REF] Chrétienne | Scheduling Theory and its Applications[END_REF], clustering [START_REF] Palis | Task clustering and scheduling for distributed memory parallel architectures[END_REF], and task duplication [START_REF] Ahmad | On exploiting task duplication in parallel program scheduling[END_REF]. On the practical side, task graphs have been widely used to model complex workflows in grid computing [START_REF] Foster | The Grid 2: Blueprint for a New Computing Infrastructure[END_REF]. Scheduling task graphs on grids is the subject of a wide literature, and many tools exist to manage and schedule such workflows, such as MOTEUR [START_REF] Glatard | Flexible and efficient workflow deployement of data-intensive applications on grids with MOTEUR[END_REF]. These tools usually include scheduling heuristics to map workflow tasks onto available resources. These heuristics were often inherited from the task graph scheduling literature, and were more or less adapted to cope with the intrinsic heterogeneity of grid environments. The most famous task graph scheduling algorithm for grids and heterogeneous platforms is HEFT [START_REF] Topcuoglu | Performance-effective and low-complexity task scheduling for heterogeneous computing[END_REF], which we use and adapt to our dual-memory context.

Pebble game and its variants

On the more theoretical side, this work builds upon the many papers that have addressed the pebble game and its variants. Scheduling a graph on one processor with the minimal amount of memory amounts to revisiting the I/O pebble game with pebbles of arbitrary sizes that must be loaded into main memory before firing (executing) the task. The pioneering work of Sethi and Ullman [START_REF] Sethi | The generation of optimal code for arithmetic expressions[END_REF] deals with a variant of the pebble game that translates into the simplest instance of the problem with a unique memory and where all files have weight 1. The concern in [START_REF] Sethi | The generation of optimal code for arithmetic expressions[END_REF] was to minimize the number of registers that are needed to compute an arithmetic expression. The problem of determining whether a general DAG can be traversed with a given number of pebbles has been shown NP-hard by Sethi [START_REF] Sethi | Complete register allocation problems[END_REF] if no vertex is pebbled more than once (the general problem allowing recomputation, that is, re-pebbling a vertex which have been pebbled before, has been proven PSPACE complete [START_REF] Gilbert | The pebbling problem is complete in polynomial space[END_REF]). However, this problem has a polynomial complexity for tree-shaped graphs [START_REF] Sethi | The generation of optimal code for arithmetic expressions[END_REF]. Recently, still in the contact of a single memory type, an extension of these results to parallel machines base been proposed in [START_REF] Marchal | Scheduling tree-shaped task graphs to minimize memory and makespan[END_REF].

Scheduling with memory constraints

The problem of scheduling a task graph under memory constraints appears in the processing of scientific workflows whose tasks require large I/O files. Such workflows arise in many scientific fields, such as image processing, genomics or geophysical simulations. The problem of task graphs handling large data has been identified in [START_REF] Ramakrishnan | Scheduling data-intensiveworkflows onto storage-constrained distributed resources[END_REF] which proposes some simple heuristic solutions. Most existing theoretical studies are restricted to tree-shaped task graphs, that arise in some application domains such as the factorization of sparse matrices using the multifrontal method [START_REF]An application of generalized tree pebbling to sparse matrix factorization[END_REF][START_REF] Liu | On the storage requirement in the out-of-core multifrontal method for sparse factorization[END_REF]. We refer the interested reader to our recent paper [START_REF] Herrmann | Model and complexity results for tree traversals on hybrid platforms[END_REF] for an extended bibliography on adding memory constraints to the problem of scheduling tree-shaped task graphs.

Hybrid computing

Hybrid computing consists in the simultaneous use of CPUs and GPUs to optimize performance for high performance computing. Since CPUs and GPUs are powerful for specific and different tasks, its is natural to schedule tasks on their "favorite" resource, that is, the resource where their execution time is minimal. This has successfully been achieved to increase performance in linear algebra libraries [START_REF] Agullo | Numerical linear algebra on emerging architectures: The plasma and magma projects[END_REF][START_REF] Horton | A class of hybrid lapack algorithms for multicore and gpu architectures[END_REF]. There also exist software tools that schedule an application composed of tasks with both CPU and GPU implementations on hybrid platforms: for instance, StarPU [START_REF] Augonnet | Starpu: a unified platform for task scheduling on heterogeneous multicore architectures[END_REF] optimizes the execution time of an application by scheduling its tasks on multiple kinds of resources, based on predictions of execution and data transfer times.

Model and framework

As stated above, we deal with general task graph traversals on a dual-memory system, where each task can be executed on either of the two processing units, that is, with its associated data in one of either memory. Dependencies are in the form of input and output files: each task accepts a set of files as input from each of its predecessors in the DAG, and produces a set of files to be consumed by each successor node. We start this section by formally writing all the constraints that need to be satisfied during a traversal. Finally, we state the target optimization problem in Section 3.3.3.

Flow and resources constraints

We consider, in this chapter, a dual-memory heterogeneous platform with P 1 identical processors which share the first memory and with P 2 identical processors which share the second memory. For clarity, in the rest of the chapter, the first memory will be referred to as the blue memory and the P 1 processors sharing it will be called the blue processors. Similarly, the second memory and its processors will be associated to the color red as depicted in Figure 3.1.

BLUE MEMORY

The application is described by a Directed Acyclic Graph D = (V, E) composed of |V | = n nodes, or tasks, numbered from 1 to n. We let Succ(i) = {j ∈ V s.t. (i, j) ∈ E} denote the set of successors of i and Pred(i) = {j ∈ V s.t. (j, i) ∈ E} denotes the set of predecessors of i. Dependencies imply a topological order, where a node has to be processed before its successors. Here are some definitions:

• Each task i in the DAG requires a processing time of W

(1) i on one of the blue processors and a processing time of W (2) i on one of the red processors.

• Each communication (i, j) ∈ E is instantaneous if nodes i and j are executed on processors that belong to the same memory. Otherwise, the file produced by node i and needed as input by node j has to be sent from one memory to the other. This transfer takes C i,j time units. For example, consider the toy example DAG D ex depicted in Figure 3.2. Task T 1 can be processed in W

(1) 1 = 3 time units on a blue processor and in W

(2) 1 = 1 time unit on a red processor. If tasks T 1 and T 2 are not executed on the same memory, the communication (T 1 , T 2) will take C 1,2 = 1 time unit to be processed. We point out that all communication times are set arbitrarily to 1 in this example (e.g., to account for a high start-up cost). Of course, an affine formula (such as C i,j = α + βF i,j), or even arbitrary values, can be used in the model.

T 1 :

T 2 :

:

T 3 T 4 : W (1) 1 = 3 W (2) 1 = 1 W (1) 3 = 6 W (2) 3 = 3 W (1) 2 = 2 W (2) 2 = 2 W (1) 4 = 1 W (2) 4 = 1 F 1,2 = 1 C 1,2 = 1 F 1,3 = 2 C 1,3 = 1 F 2,4 = 1 C 2,4 = 1 F 3,4 = 2 C 3,4 = 1 Figure 3.2: Description of D ex .
Given an application DAG, our goal is to determine where each task should be executed (the alloca-tion) and at what time each task and communication may be started (the starting times). The allocation is described by function proc : V → 1, P 1 + P 2 where ∀i ∈ V , proc(i) represents the index of the processor that processes task i. proc(i) ≤ P 1 represents a blue processor while proc(i) > P 1 represents a red processor. The starting times are expressed as two functions σ : V → R + and τ : E → R + where ∀i ∈ V , σ(i) represents the starting time of task i and ∀(i, j) ∈ E, τ (i) represents the starting time of communication (i, j). Let W i be the actual processing time of task i in the schedule s = (σ, τ, proc):

W i = W (1) i if proc(i) ≤ P 1 W (2) i otherwise
We note COMM i,j the actual time taken by communication (i, j) in the schedule s = (σ, τ, proc):

COMM i,j =    0
if proc(i) ≤ P 1 and proc(j) ≤ P 1 0 if proc(i) > P 1 and proc(j

) > P 1 C i,j otherwise A schedule s = (σ, τ, proc) of D is a valid schedule if it respects: • flow dependencies, ∀(i, j) ∈ E: σ(i) + W i ≤ τ (i, j) τ (i, j) + COM M i,j ≤ σ(j) • resource constraints, ∀(i, j) ∈ V 2 : proc(i) = proc(j) =⇒    σ(i) ≤ σ(j) + W j or σ(j) ≤ σ(i) + W i
The makespan of the schedule is the finish time of the last task:

Makespan = max i∈V (σ(i) + W i)
Back to the example D ex , on a dual-memory platform with one blue processor and one red processor (P 1 = P 2 = 1), consider the following schedule s 1 depicted in Figure 3.3 for :

   σ 1 (T 1) = 0, σ 1 (T 2) = 2, σ 1 (T 3) = 1, σ 1 (T 4) = 5 τ 1 (T 1 , T 2) = 1, τ 1 (T 2 , T 4) = 4 proc 1 (T 1) = 2, proc 1 (T 2) = 2, proc 1 (T 3) = 1, proc 1 (T 4) = 2
Schedule s 1 = (σ 1 , τ 1 , proc 1) is a valid schedule for D ex , with Makespan = 6.

Memory constraints

As stated above, in our model, the dependencies are in the form of input and output files. Each node i in the DAG has an input file of size F j,i for each j ∈ Pred(i). If i is not an input node, its input file is produced by its predecessors; if i is an input node, then it means that Pred(i) = ∅ and its input files may be of null size, or it may receive input from the outside world. Each non-terminal node i in the DAG, when executed, produces a file of size F i,j for each j ∈ Succ(i). If i is a terminal node, then Succ(i) = ∅ and i produces a file of null size (we consider that terminal data produced by terminal nodes are directly sent to the outside world).

During the processing of a task i on one of the processors, the memory on which this processor operates must contain all the input and output files. The amount of memory MemReq(i) that is needed for this processing is thus:

MemReq(i) =   j∈Pred(i) F j,i   +   j∈Succ(i) F i,j   For instance, in D ex , MemReq(T 3) = F 1,3 + F 3,4 = 4.
Note that the memory needed for the execution of the task itself can easily be accounted for, by adding a fictitious predecessor. After task i has been processed, its input files are discarded, while its output files are kept in memory until the processing of its successors. Thus, for a schedule s = (σ, τ, proc) of D , if a node i is processed by a blue processor, the actual amount of blue memory used to process the node i is:

BlueMemUsed(s, i) =   j∈Succ(i) F i,j   + e∈S blue F e
where S blue denotes the set of files (represented by the edges of D) stored in the blue memory, when the scheduler decides to execute task i. Note that S blue must contain the input files of task i. After the processing of node i, we have:

S blue ← (S blue \{(j, i), j ∈ Pred(i)}) ∪ {(i, j), j ∈ Succ(i)}
Of course, the same holds for RedMemUsed and S red if i happens to be processed by a red processor. Initially, the input file of the root is arbitrarily located in S blue .

Consider the schedule s 1 depicted in Figure 3. Each time there is a data dependence between two tasks assigned to different memories, the output file of the source task has to be loaded from one memory into the other. During the processing of the communication (i, j), both memories contain the file of size F i,j being copied. Thus, for instance, if i has been assigned on a blue processor and j has been assigned on a red processor, the amount of blue and red memory needed for this processing is F i,j :

BlueMemReq(i, j) = F i,j , RedMemReq(i, j) = F i,j
After the communication has been processed, the input file from the blue memory is discarded, while the output file is kept in the red memory until the processing of j. Thus, for a schedule s = (σ, τ, proc) of D , the actual amounts of memory used to process the communication (i, j) are:

BlueMemUsed(s, (i, j)) = F i,j + e∈S blue \{(i,j)} F e RedMemUsed(s, (i, j)) = F i,j + e∈S red F e
Note that S blue must contain the input file of task i. After the processing of the communication (i, j) we have:

S blue ← S blue \{(i, j)}, S red ← S red ∪ {(i, j)}
It is important to state that communication (i, j) does not need to be fired right after the execution of task i. The only constraint is that the processing of communication (i, j) must follow the execution of i and precede the execution of j. This flexibility in the schedule severely complicates the search for efficient traversals.

Optimization problem

As stated above, we face an optimization problem under memory constraints. The memory peak is the maximum usage of each memory over the whole schedule s = (σ, τ, proc) of the DAG D , and is defined for the blue and the red memory by:

M s blue (D) = max i BlueMemUsed(s, i) M s red (D) = max i RedMemUsed(s, i)
In practical settings, the amount of memory at disposal is limited. Let note M (blue) and M (red) the bounds on the blue and the red memories. We aim at finding the optimal schedule s opt (M (blue) , M (red)) of the DAG D , defined as the schedule with minimal makespan among all schedules s that does not require more memory than available, i.e., that enforce the bounds on memory peaks: M s blue (T) ≤ M (blue) and M s red (T) ≤ M (red) . Back to the schedule s 1 described in Figure 3.3, assume a dual-memory platform with one blue processor and one red processor. We compute that s 1 uses M s 1 blue (D ex) = 2 units of blue memory and M s 1 red (D ex) = 5 units of red memory. If we set the memory bounds M (blue) = M (red) = 5, it is clear that s 1 is the optimal schedule. But if we set M (blue) = M (red) = 4, s 1 is no longer an acceptable schedule. In this case, the optimal schedule for D ex will be s 2 , the schedule depicted in Figure 3.4. Schedule s 2 has a smaller memory peak than s 1 but has a larger Makespan = 7. This small example illustrates the necessary tradeoff between memory and makespan.

Tree traversal with pre-assigned task

In this section, we focus on the restricted problem where the workflow is tree-shaped and each task is pre-assigned onto a resource. Determining a memory-efficient tree traversal is very important in sparse numerical linear algebra. The elimination tree is a graph theoretical model that represents the storage requirements, and computational dependencies and requirements, in the Cholesky and LU factorization of sparse matrices. Memory minimization is still a concern in modern multifrontal solvers when dealing with large matrices. In this section, we want to assess the complexity of minimizing the maximum memory usage when traversing a tree without makespan consideration. Thus, we consider one resource of each type and the mapping of the tasks onto the resources is already given. For commodity reasons, we will talk about colored trees where each task has the color of the resource it is assigned to. Thus, this coloring enforces the mapping proc of the schedule s = (σ, τ, proc). The optimization problem becomes finding the starting time of every tasks and communications such that the memory peaks are minimized.

It is interesting to note that there is a complete equivalence between top-down traversals of out-trees (the problem addressed in this section) and bottom-up traversals of in-trees (as used in sparse matrices factorization). In a nutshell, one only needs to reverse the direction of the edges, and to execute the schedule backwards, to move from one variant to another 1 . In fact, the literature deals with both variants. The seminal paper of Liu [START_REF] Liu | On the storage requirement in the out-of-core multifrontal method for sparse factorization[END_REF] originally deals with post-order bottom-up traversals for in-trees, while we speak of depth-first top-down traversals for out-trees in this section, but there is no actual difference.

Complexity results for the bi-objective problem are derived in Section 3.4.1. Section 3.4.2 is devoted to the study of depth-first traversals, a first class of (widely-used) heuristics. Then we introduce additional heuristics in Section 3.4.3. The experimental evaluation of all the heuristics is conducted in Section 3.4.4.

Complexity results on trees

This section presents several important complexity results. We start with the NP-completeness of the two-memory minimization problem on colored trees in Section 3.4.1.1. Next we show in Section 3.4.1.2 that the problem reduces to traversing uncolored trees when one memory is unbounded. Finally, we prove in Section 3.4.1.3 that it is impossible to approximate both minimum memories within arbitrary constant factors.

Hardness of the problem

Our first result assesses the complexity of the problem, as formulated in the following definition. Definition 3.1 (TWOMEMORYTRAVERSAL). Given a tree T with n nodes, and two fixed memory amounts M red and M blue , does there exist a traversal σ of the tree such that M σ blue (T) ≤ M blue and M σ red (T) ≤ M red ?

Theorem 3.1. The TWOMEMORYTRAVERSAL problem is NP-complete.

Proof. The problem clearly belongs to NP, and the certificate is the ordered list of tasks (of both colors and including uncolored communication nodes) executed by the schedule; it is easy to maintain the amount of each memory required by the schedule, and to check that neither M red nor M blue is exceeded.

To establish the completeness, we use a reduction from the 2-Partition problem [START_REF] Garey | Computers and Intractability, a Guide to the Theory of NP-Completeness[END_REF]. Consider an instance Inst 1 of the 2-Partition problem, with n integers {a 1 , a 2 , ..., a n n i=1 a i = S}. Consider an instance Inst 2 of the TWOMEMORYTRAVERSAL, consisting in the tree depicted on Figure 3.5. We set the bounds M red = 3S for the red memory and M blue = 2S for the blue memory. The construction of Inst 2 is polynomial in the size of Inst 1 .

Assume first that Inst 2 has a solution. Any traversal must start with the root B root . After it has been processed, 2S units of the blue memory are occupied, which means that it is full. Without loss of generality (by symmetry), assume that C is the next node to be executed. Then, we observe that if C (2) was the third executed node, we could never process R root nor R

(2) root without violating the M red bound for the red memory. Thus, the third executed node has to be R root .

• We observe that the red tasks R big and R f ree , and each communication task C i , all have to be processed before R

root , otherwise, since the execution of R

root require 3S units of memory, it would violate the M red bound for the red memory. Besides, since we can not execute R

(2) root before R big , if C (2) were processed before R big , there would be at least S units of memory in the red memory and the execution of R big (which requires 5 2 S units of the red memory) would violate the M red bound. Thus, the node R big has to be processed before C (2) .

• Besides, let i 0 be the index of the first processed task B i in the traversal. Its execution requires a i 0 + 3 2 S units of the blue memory, which implies that it can not be processed before C (2) without violating the M blue bound for the blue memory. Thus, the node R big has to be processed before

B i 0 .
According to the previous arguments, the only tasks that can be processed right after R root and before R big are the communication tasks C i . Let I be the set of the indices of the tasks C i executed after R root and before R big .

→ After the execution of R root , there are 2S units occupied in the red memory and S units in the blue memory. Thus, to execute R big without violating the M red bound, the amount of red memory to free is at least S 2 . This means that i∈I a i ≥ S 2 .

→ Besides, if i∈I a i > S 2 , the execution of B i 0 (which requires at least i∈I a i + 3 2 S units of the blue memory) will violate the M blue bound. Thus, i∈I a i = S 2 , which implies that Inst 1 has a solution. Suppose now that Inst 1 has a solution I. According to the previous reasoning, the sequence of nodes B root ; C; R root ; ∀i ∈ I C i ; R big and R f ree can be executed without violating the bounds on memories. After this sequence, there are 3 2 S units occupied in the blue memory and the red one is empty. The node C (2) can be processed to load S units from the blue memory to the red one. Now, one of the blue node B i 0 with i 0 ∈ I can be executed without violating the M blue bound, followed by B ′ i 0 . Moreover, we can process every B i and B ′ i for all i ∈ I to free the blue memory. Then, it is possible to execute every branch of C i down to B ′ i for all i / ∈ I. From this point on, we can process the sub-tree rooted at the node R

C 1 C 2 C n B ′ 1 B ′ 2 B ′ n R root R big R f ree B 1 B 2 B n C (2) 1 C (2) 2 C (2) n B ′(2) 1 B ′(2) 2 B ′(2) n R (2) root R (2) big R (2) f ree B (2) 1 B (2) 2 B (2) n B root C C (2) a 1 a 2 a n 3 2 S 3 2 S 3 2 S 3 2 S a 1 a 2 a n S a 1 a 2 a n 3 2 S 3 2 S 3 2 S 3 2 S a 1 a 2 a n S S S S S • • • • • • ... • • • • • • ...
(2) root using the same pattern, which means that Inst 2 has a solution and concludes the proof.

When one memory is unbounded

In this section, we focus on the computation of M opt red (T) (or M opt blue (T)) which represents the minimal peak memory reachable when there is no constraint on the other memory. We show that the computation of M opt red (T) and M opt blue (T) for a bi-colored tree T reduces to the computation of the minimal peak memory for an uncolored tree. Definition 3.2. Given a bi-colored tree T , we construct the corresponding uncolored (or for convenience, single-colored) tree T blue by turning every communication node and red node into a blue node, and by turning every red edge of weight f i into a blue edge of weight 0, as depicted in Figure 3.6. We construct the single-colored tree T red in a similar way. We let M ∞ blue denote the minimal amount of memory needed to process T blue (and similarly, M ∞ red for T red).

The following result is straightforward. Theorem 3.2. For any bi-colored tree T , we have M ∞ red = M opt red (T) and M ∞ blue = M opt blue (T). Proof. Given a bi-colored tree T with n nodes, consider T blue and M ∞ blue as in Definition 3.2. We show here that M ∞ blue = M opt blue (T). The proof for M ∞ red = M opt red (T) is similar. First, T and T blue have the same shape. The only differences between T and T blue are some edge values and the color of some vertices and edges. Thus, to any feasible traversal σ of T , we can associate the corresponding feasible traversal σ blue of T blue , and reciprocally. For any node i ∈ 1, n of T , its corresponding node in T blue will be referred at as i blue ∈ 1, n , thus σ(i) = σ blue (i blue). Moreover we show that BlueMemUsed(σ, i) = MemUsed(σ blue , i blue) for each node i ∈ 1, n ,:

• If color(i) = blue, node i is not changed in T blue as described in Definition 3.2. Thus, BlueMemReq(i) = MemReq(i blue) and the size of the files stored in the memory after i blue has been processed is the same that the files stored in the blue memory after i has been processed.

• If color(i) = red, then BlueMemReq(i) = 0 and no file is stored in the blue memory after i has been processed. Besides, for the corresponding node i blue in T blue , we have f i blue = 0 and f j = 0 for each j ∈ Succ(i blue). Thus MemReq(i blue) = 0 and no file is stored in the memory after i blue has been processed.

• If i is uncolored (communication node), then BlueMemReq(i) = f i . There are two sub-cases:

-If i is a communication node from a blue node to a red node, its processing will store no file in the blue memory. According to the Definition 3.2, if j blue denotes the successor of i blue , we have f i blue = f i and f j blue = 0. Thus, MemReq(i blue) = f i and no file is stored in the memory after i blue has been processed.

-If i is a communication node from a red node to a blue node, its processing will store a file of size f i in the blue memory. According to the Definition 3.2, if j blue denotes the successor of i blue , we have f i blue = 0 and f j blue = f i . Thus, MemReq(i blue) = f i and a file of size f i is stored in the memory after i blue has been processed.

During the whole process BlueMemReq(σ, i) = MemReq(σ blue , i blue). Besides, the size of the files stored in the blue memory after i has been processed and the size of the files stored in the memory after i blue has been processed are equal. Thus BlueMemUsed(σ, i) = MemUsed(σ blue , i blue) and M opt blue (T) = M ∞ blue .

Joint minimization of both objectives

Since the traversal problem is NP-complete, it is natural to wonder whether there it is possible to get a schedule with guaranteed blue and red peak memories, compared to the optimal ones. In this section, we show that a trade-off must be enforced between these two objectives: indeed, if one wants a strong guarantee on one memory (blue or red), then the produced schedule may be arbitrarily bad for the other memory. More specifically, we prove that there does not exist schedules that can simultaneously approximate both minimum memories M opt blue (T) and M opt red (T) within arbitrary constant factors, for any bi-colored tree T . Since the (usually unfeasible) point of the Pareto diagram with coordinates (M opt blue (T),M opt red (T)) is sometimes called the Zenith in multi-objective optimization [START_REF] Dutot | Multiobjective scheduling[END_REF], this result amounts to proving that there exists no Zenith-approximation. Definition 3.3. Given a bi-colored tree T , we can construct the corresponding uncolored tree T unco by turning every colored node of T into an uncolored node, as depicted in Figure 3.7. We let M opt unco (T unco) be the minimal amount of memory needed to process T unco . The following lemma is helpful to prove the inapproximability theorem.

Lemma 3.1. Given a bi-colored tree T with n nodes, consider an arbitrary traversal σ of T that requires an amount of red memory equal to M σ red (T) and an amount of blue memory equal to M σ blue (T). Then necessarily:

M σ red (T) + M σ blue (T) ≥ M opt unco (T unco)
Proof. Let T unco be the uncolored tree corresponding to T as described in Definition 3.3. We observe that T and T unco have the same tasks, hence to any feasible traversal σ of T , we can associate the corresponding feasible traversal σ u of T unco , and reciprocally. For any node i ∈ 1, n of T , its corresponding node in T unco will be referred to as i u ∈ 1, n , thus σ(i) = σ u (i u).

We will show that

∀i ∈ 1, n , BlueMemUsed(σ, i) + RedMemUsed(σ, i) = MemUsed(σ u , i u)
We proceed along the following case analysis:

• If color(i) = blue, then BlueMemReq(i) = MemReq(i u) and RedMemReq(i) = 0. Besides, no file is stored in the red memory after i has been processed; also, the size of the files stored in the blue memory after i has been processed is the same as that of the files stored in the memory after i u has been processed.

• If color(i) = red, then RedMemReq(i) = MemReq(i u) and BlueMemReq(i) = 0. Besides, no file is stored in the blue memory after i has been processed; also, the size of the files stored in the red memory after i has been processed is the same as that the files stored in the memory after i u has been processed.

• If i is uncolored (communication node), then BlueMemReq(i) + RedMemReq(i) = 2 × f i = MemReq(i u).
Besides, a file of size f i will be stored in one of the two memories after i has been processed, and a file of size f i will be stored in the memory after i u has been processed.

During the whole traversal, we thus have BlueMemReq(σ, i)

+ RedMemReq(σ, i) = MemReq(σ u , i u).
The sum of the size of the files stored in the blue memory and of the size of the files stored in the red memory after i has been processed is always equal to the size of the files stored in the memory after i u has been processed. Thus BlueMemUsed(σ, i) + RedMemUsed(σ, i) = MemUsed(σ u , i u). This means that:

M opt unco (T unco) ≤ M σu unco (T unco) = max i MemUsed(σ u , i) = max i {BlueMemUsed(σ, i) + RedMemUsed(σ, i)} ≤ max i {BlueMemUsed(σ, i)} + max i {RedMemUsed(σ, i)} = M σ red (T) + M σ blue (T)
which concludes the proof.

Theorem 3.3. Given two constants α and β, there exists no algorithm that is both an α-approximation for blue memory peak minimization and a β-approximation for red memory peak minimization, when scheduling bi-colored trees.

Proof. To establish this result, we proceed by contradiction. We therefore assume that there is an integer α, an integer β, and an algorithm A that processes any bi-colored tree T using a blue peak memory that is not greater than α times the optimal blue peak memory M opt blue (T) and using a red peak memory that is not greater than β times the optimal red peak memory M opt red (T). To derive the contradiction, we use the family of tree (T n) n∈N depicted on Figure 3.8. T n is defined recursively using T n-1 . To help the reader to visualize T n , Figure 3.9 represents T 2 .

B1 B (lef t) 0 C1 R1 C ′ 1 B (right) 0 Bn Cn Rn C ′ n 1 1 1 1 1 1 1 1 1 1 T (lef t) n-1 T (right) n-1 T 1 :
T n : is processed recursively.

At each step of this process, the traversal σ blue does not use more than 3 units of blue memory. Since BlueMemReq(B n-1) = 3, this proves that M opt blue (T n) = 3.

• ∀n ≥ 1, M opt red (T n) = 2 Consider the traversal σ red that processes T n as follows. At step k:

-If k = 0, σ red processes the node B 0 -If k > 0, σ red processes the nodes B k . Then T

(lef t) k-1 is processed recursively. Nodes C k , R k and C ′ k follow. And finally T (right) k-1
is processed recursively.

At each step of this process, the traversal σ red does not use more than 2 units of red memory. Since

RedMemReq(R n) = 2, this proves that M opt red (T n) = 2.
• Let T unco n be the uncolored tree corresponding to T n as describe in Definition 3.3 and M opt unco (T unco n) the minimum amount of memory required to execute it. T unco 2 is depicted in Figure 3.9. We now prove by induction that

M opt unco (T unco n) = n + 2 for n ≥ 2.
As show in [START_REF]An application of generalized tree pebbling to sparse matrix factorization[END_REF], post-order traversals are optimal for peak memory minimization of uncolored trees with unit costs. Besides, all post-order traversals of T unco n require the same amount of memory. Thus

M opt unco (T unco n) = M opt unco (T unco n-1) + 1 for n ≥ 2. Since M opt unco (T unco 1
) = 2, we have the result.

By hypothesis, algorithm A can process any

T n with M A blue (T n) ≤ α.M opt blue (T n) = 3α and M A red (T n) ≤ β.M opt red (T n) = 2β. Let n 0 = ⌈3α + 2β⌉, we have: M A blue (T n 0) + M A red (T n 0) ≤ 3α + 2β < ⌈3α + 2β⌉ + 2 = M opt unco (T unco n 0)
This contradicts Lemma 3.1, which means that such an algorithm A cannot exist.

Depth-first traversals

In this section, we study depth-first traversals, which are the equivalent of post-order traversals for intrees. In the context of single-memory trees, depth-first traversals are known to be sub-optimal [START_REF]An application of generalized tree pebbling to sparse matrix factorization[END_REF]: worse, their memory usage can be arbitrarily high as compared to that of the optimal solution [START_REF] Jacquelin | On optimal tree traversals for sparse matrix factorization[END_REF]. Clearly, these negative results remain true in a two-memory framework (simply assume that one memory is infinite). Still, depth-first traversals are a natural heuristic for traversing tree graphs, and they enjoy a simple implementation and memory management. As such, they are the most commonly used traversals in actual sparse solvers like MUMPS [START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF][START_REF] Amestoy | Hybrid scheduling for the parallel solution of linear systems[END_REF].

We show how to compute the optimal depth-first traversal in Section 3.4.2.1. It turns out that this traversal is optimal for both memory usages (among all depth-first traversals). However, depth-first traversals give no freedom on scheduling communication nodes. If we allow a communication node to be processed not immediately before its sub-tree, the ordering of the processing of the sub-trees and of the communication nodes will create a trade-off between both memory usages and will allow to decrease them. This leads us to define sloppy depth-first traversals, which we study in Section 3.4.2.2.

Strict depth-first traversals

Definition 3.4. A depth-first traversal is a feasible traversal that processes all nodes of a tree T by processing the root and, then, recursively processing all sub-trees. Hence, in a post-order traversal, after processing a node i, the whole sub-tree rooted at i is completely processed before any other node that does not belong to this sub-tree. Formally, a feasible traversal σ of the tree T with n nodes is a depthfirst traversal if and only if for each node r ∈ T , with two successors i ∈ Succ(r) and j ∈ Succ(r), we have:

σ(i) < σ(j) ⇒ (∀u ∈ T i , σ(u) < σ(j))
where T i is the sub-tree rooted at the node i.

In the context of single-memory trees, depth-first traversals are known to be sub-optimal [START_REF]An application of generalized tree pebbling to sparse matrix factorization[END_REF]: worse, their memory usage can be arbitrarily high as compared to that of the optimal solution [START_REF] Jacquelin | On optimal tree traversals for sparse matrix factorization[END_REF]. Clearly, these negative results remain true in a two-memory framework (simply assume that one memory is infinite). Still, depth-first traversals are a natural heuristic for traversing tree graphs, and they enjoy a simple implementation and memory management. As such, they are the most commonly used traversals in actual sparse solvers. Algorithm 6 computes the optimal depth-first traversal: when it encounters a blue node (respectively a red node), it applies the rule for minimizing the blue (resp. red) memory in depth-first traversals, which does not impact the amount of red (resp. blue) memory. It turns out that this traversal is optimal among all depth-first traversals for both memory usages. Theorem 3.4. Algorithm 6 returns the best depth-first traversal σ of T for both the blue and the red memories and the amount of memory M blue and M red used by σ.

Algorithm 6: BestDepthFirstTraversal(T) output: Schedule σ with peak blue memory M blue and peak red memory M red root ← the root of T ;

CurrentMem ← 0; (σ, M blue , M red) ← ([root] , 0, 0); for i ∈ Succ(root) do (σ i , M blue i , M red i) ← BestDepthFirstTraversal(T i); CurrentMem ← CurrentMem + f i if color(root) = blue then for i ∈ Succ(root) in the increasing order of M blue i -f i do σ ← [σ; σ i]; CurrentMem ← CurrentMem -f i ; M blue ← max(M blue , CurrentMem + M blue i); M red ← max i∈Succ(root) M red i ; if color(root) = red then for i ∈ Succ(root) in the increasing order of M red i -f i do σ ← [σ; σ i]; CurrentMem ← CurrentMem -f i ; M red ← max(M red , CurrentMem + M red i); M blue ← max i∈Succ(root) M blue i ; if the root node is an uncolored communication node then i ← the unique successor of root; σ ← [σ; σ i]; if color(i) = blue then M blue ← M blue i ; M red ← max(f i , M red i); if color(i) = red then M red ← M red i ; M blue ← max(f i , M blue i); return (σ, M blue , M red);
Proof. Finding the best depth-first traversal of T amounts to find the best ordering to process every sub-tree. We prove that the order of the recursive processes at each step in Algorithm 6 is the best for both memories.

• At a given step, if the root of the sub-tree is a communication node, we have no choice, and we recursively process the sub-tree rooted at its unique successor.

• At a given step, if the root r of the sub-tree is blue, then, the amount of red memory used to process this sub-tree will not depend on the order of the recursive processes to complete the sub-tree. Indeed, for each i ∈ Succ(r), after the recursive process of T i , S blue ← S blue \{i} and S red is unchanged. Then, independently of the order of the recursive processes of every T i , the amount of red memory required to process T with a depth-first traversal will be RedMemReq(T) = max i∈Succ(root) RedMemReq(T i). Thus, at this step, we can only optimize the amount of blue memory. To do so, we use the optimal post-order traversal for uncolored trees provided by Liu [START_REF] Liu | On the storage requirement in the out-of-core multifrontal method for sparse factorization[END_REF]. This post-order traversal leads the best depth-first traversal for the blue memory at this step, and, thus, to the best depth-first traversal for both memories.

• At a given step, if the root of the sub-tree is red, the proof is similar.

Sloppy depth-first traversals

As explained in the previous section, the order of the sub-trees processed in a strict depth-first traversal does not influence the maximum usage of red memory for a tree rooted at a blue node, and vice versa. Thus, in a strict depth-first traversal, both memory usages are independent. This comes from the fact that strict depth-first traversals give no freedom on communications. If we allow a communication node to be processed not immediately before its sub-tree, the ordering of the processing of the sub-trees and of the communication nodes will create a trade-off between both memory usages. This leads us to define sloppy depth-first traversals.

Definition 3.5. A sloppy depth-first traversal is a feasible traversal similar to a depth-first traversal except that, after processing a communication node i, the whole sub-tree rooted at i is not necessarily processed immediately. We define SloppyChildren(i) as being the set of thc red and blue successors of i, together with the successors of the uncolored successors (these represent the set of the computational successors of i). Formally, a feasible traversal σ of the tree T with n nodes is a sloppy depth-first traversal if and only if for each node r ∈ T , and for any two nodes i ∈ Succ(r) and j ∈ SloppyChildren(r) ∪ Succ(r), we have:

σ(i) < σ(j) ⇒ (∀u ∈ T i , σ(u) < σ(j))
where T i is the sub-tree rooted at the node i.

Definition 3.6 (TWOMEMORYSLOPPYDEPTHFIRSTTRAVERSAL). Given a tree T with n nodes, and two fixed amount of memory M red and M blue , is there a sloppy depth-first traversal of the tree that need an amount of red memory inferior to M red and an amount of blue memory inferior to M blue ?

Theorem 3.5. The TWOMEMORYSLOPPYDEPTHFIRSTTRAVERSAL problem is NP-complete.

Proof. The problem clearly belongs to NP, and the certificate is the ordered list of tasks (of both colors, and including communication nodes) executed by the schedule.

To establish the completeness, we use a reduction to the 2-Partition problem [START_REF] Garey | Computers and Intractability, a Guide to the Theory of NP-Completeness[END_REF]. Consider an instance Inst 1 of the 2-Partition problem, with n integers {a 1 , a 2 , ..., a n i a i = S}. Consider an instance Inst 2 of the decision problem, consisting in the tree depicted on Figure 3.10. We set M red = 2S for the red tasks and M blue = 2S for the blue tasks. The construction of Inst 2 is polynomial in the size of Inst 1 .

Assume first that Inst 2 has a solution. Any sloppy depth-first traversal must start with the root B root . After it has been processed, 2S units of the blue memory are occupied, which means that this memory is full. Let i 0 be the index of the first red task R i to be executed. We observe that B big and B f ree have to be processed before R i 0 , otherwise the process of C ′ i 0 (which occurs right after the process of R i 0 in a sloppy depth-first traversal) would violate the M blue bound on the blue memory. Thus, the only tasks that can be processed right after B root and before B big are the communication tasks C i . Let I be the set of the indices of the tasks C i executed before B big .

C 1 C 2 C n C ′ 1 C ′ 2 C ′ n B root B big B f ree B 1 B 2 B n R 1 R 2 R n a 1 a 2 a n 1 2 S 3 2 S 3 2 S 3 2 S 3 2 S 3 2 S 3 2 S a 1 a 2 a n S • • • • • •
• If i∈I a i < S 2 , when the scheduler decides to execute B big , the blue memory would be filled with i / ∈I a i +S units. Thus the process of B big will use BlueMemUsed(B big) = i / ∈I a i +S + 3 2 S > 2S units of blue memory, which violates the M blue bound.

• If i∈I a i > S 2 , when the scheduler decides to execute R i 0 , the red memory would be filled with at least i∈I a i > S 2 units. Thus the process of R i 0 will use at least RedMemUsed(R i 0) ≥ i∈I a i + 3 2 S > 2S units of red memory, which violates the M red bound.

Thus, i∈I a i = S 2 , which implies that Inst 1 has a solution. Suppose now that Inst 1 has a solution I. According to the previous reasoning, the sequence of nodes B root ; ∀i ∈ I, C i ; B big and B f ree can be executed without violating the bounds on memories. After this sequence, there are S 2 units occupied in the blue memory and in the red one. Now, one of the red node R i 0 with i 0 ∈ I can be executed without violating the M red bound, followed by C ′ i 0 and B i 0 . Moreover, we can process every R i , C ′ i and B i ∀i ∈ I. Then, one is able to execute every branch of C i down to B i for all i / ∈ I, which means that Inst 2 has a sloppy depth-first solution and concludes our proof.

Heuristics

In addition to depth-first traversals, in this section we present three traversal heuristics which aim at minimizing both the blue and red memories. All three heuristics are based on the seminal work by Liu [START_REF]An application of generalized tree pebbling to sparse matrix factorization[END_REF] who considers a single memory. We proposed different adaptation for two memories. We start with the simplest heuristic and then proceed to more elaborate ones.

Working with the uncolored tree: LIUUNCOLORED We have shown that the problem TWOM-EMORYTRAVERSAL of finding a tree-traversal that minimizes both memory is NP-complete. However, when a single memory is considered, the problem becomes polynomial. It is thus natural to adapt the optimal algorithm for the single memory problem proposed by Liu [START_REF]An application of generalized tree pebbling to sparse matrix factorization[END_REF], to bi-colored trees. The simplest adaptation amounts to considering the tree as uncolored, that is, as if all tasks were processed on the same computing unit with a single memory. On this uncolored tree, illustrated on Figure 3.6, we apply Liu's optimal algorithm. This heuristic computes an optimal traversal for the sum of the blue and the red memories. The intuition is that minimizing the sum of both memories will lead to a good memory usage for each of them. This heuristic is referred to as LIUUNCOLORED in the following.

Refining the sum with weights: LIUWEIGHTEDSUM One problem with the previous heuristic is that both memories may not be equivalent. For example, it may well be the case that (input and output) files used by red tasks are much larger that those used by blue tasks. In such a case, minimizing the sum may lead to a much larger amount of blue memory that would be needed, for example, in an optimal traversal for the blue memory. This behavior is not desirable, and we can slightly change the heuristic to (try to) avoid this. We first compute the optimal amount of blue (respectively red) memory that is needed to traverse the tree, as described in Section 3.4.1.2, and we denote this amount by M ∞ blue (resp. M ∞ red). Then, we normalize the memory weight of edges as follows: the memory weight f i of the input edge of node i becomes f i /M ∞ blue if this edge is blue, and f i /M ∞ red if it is red. Then, the corresponding uncolored tree is considered and Liu's optimal algorithm is applied, as in the previous heuristic. This heuristic is called LIUWEIGHTEDSUM in the following. LIUWEIGHTEDMAX In the previous heuristics, when applying Liu's algorithm to modified trees, we minimize the sum (or the weighted sum) of both memory amounts. However, to get closer to the Zenith point, we would like to minimize the maximum, or rather the weighted maximum of both memories. It is possible to modify Liu's algorithm for this new goal. Of course, the resulting algorithm is not optimal anymore (which is coherent with the NP-completeness of the TWOMEMORYTRAVERSAL problem), but it can be used as a heuristic. Liu's algorithm is a recursive algorithm which, at each node r, combines optimal traversals for the subtrees rooted at the successors of r into an optimal traversal for the whole tree rooted in r. The combination relies on the definition of "hill-valley" segments: segments are defined by splitting a subtree schedule at different local minima (the "valley"). These segments are then sorted by non-increasing "hill" minus "valley" values (hill being the local peak memory of the segment). Liu [START_REF]An application of generalized tree pebbling to sparse matrix factorization[END_REF] proves that such a combination of optimal subtree schedules leads to a global optimal schedule. In this heuristic, we replace the memory criterion used to define of the schedule by the maximum weighted memory: max(BlueMemUsed(σ,i)

M opt blue (T) , RedMemUsed(σ,i) M opt red (T)
); we keep the same algorithm for combining subtree schedules. Of course, the proof of optimality does not hold for this new metric. This heuristic is called LIUWEIGHTEDMAX in the following.

Experiments

In this section, we experimentally compare the memory usage of the heuristics proposed in the previous sections for TWOMEMORYTRAVERSAL. For each heuristic among BESTDEPTHFIRST, LIUUNCOL-ORED, LIUWEIGHTEDSUM and LIUWEIGHTEDMAX, we compute the amount of blue and red memory needed by the traversal. These values are compared to the minimum amount of blue (respectively red) memory needed when the red (resp. blue) memory is unbounded, as described in Section 3.4.1.2.

All heuristics have been implemented in C. The optimal value traversal for a single memory is computed using Liu's algorithm [START_REF]An application of generalized tree pebbling to sparse matrix factorization[END_REF] written as a recursive code. Source code for all the algorithms, heuristics and experiments is publicly available at http://perso.ens-lyon.fr/julien.herrmann/.

Data Sets

We use four different sets of trees, ranging from actual trees arising in sparse matrix computations to random trees. We first describe the data set of uncolored trees which serves as a basis for our realistic colored trees.

Real uncolored trees for Cholesky factorization

The UNCOLOREDREALTREES data set contains assembly trees for a set of sparse matrices obtained from the University of Florida Sparse Matrix Collection (http://www.cise.ufl.edu/research/sparse/matrices/). The chosen matrices satisfy the following assertions: not binary, not corresponding to a graph, square, having a symmetric pattern, a number of rows between 20,000 and 2,000,000, a number of non-zeros per row at least equal to 2.5, and a total number of non-zeros at most equal to 5,000,000; and each chosen matrix has the largest number of nonzeros among the matrices in its group satisfying the previous assertions. At the time of testing, there were 76 matrices satisfying these properties. We first order the matrices using MeTiS [START_REF] Karypis | MeTiS: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices Version 4[END_REF] (through the MeshPart toolbox [START_REF] Gilbert | Geometric mesh partitioning: Implementation and experiments[END_REF]) and amd (available in Matlab), and then build the corresponding elimination trees using the symbfact routine of Matlab. We also perform a relaxed node amalgamation on these elimination trees to create assembly trees. We have created a large set of instances by allowing 1, 2, 4, and 16 (if more than 1.6 × 105 nodes) relaxed amalgamations per node. At the end we compute memory weights and processing times to accurately simulate the matrix factorization: we compute the memory weight n i of a node as η 2 + 2η(µ -1), where η is the number of nodes amalgamated, and µ is the number of non-zeros in the column of the Cholesky factor of the matrix which is associated with the highest node (in the starting elimination tree); the processing cost w i of a node is defined as 2/3η 3 +η 2 (µ-1)+η(µ-1) 2 (these terms corresponds to one Gaussian elimination, two multiplications of a triangular η × η matrix with a η × (µ -1) matrix, and one multiplication of a (µ -1) × η matrix with a η × (µ -1) matrix). Edge weights f i are computed as (µ -1) 2 .

The resulting 644 trees contains from 2, 000 to 1, 000, 000 uncolored nodes. Their depth ranges from 12 to 70, 000, and their maximum degree ranges from 2 to 175, 000.

Real colored trees for Cholesky factorization

The REALTREES data set is obtained by coloring every tree in UNCOLOREDREALTREES in a meaningful way. Every tree node in UNCOLOREDREAL-TREES represents a step of a (η + µ -1) × (η + µ -1) matrix factorization, with a panel of size η. In practice, at each step of the factorization, we aim at processing the GEMM routine (which corresponds to the multiplication of the (µ -1) × η matrix with the η × (µ -1) matrix) on the GPU. Indeed, GEMMs can reach up to 99% of the GPU's theoretical peak performance. Thus, we split every node into two tasks: a red one corresponding to the GEMM routine, and a blue one corresponding to the rest of the factorization.

Real trees with random colors

The RANDOMCOLOREDREALTREES data set is obtained by randomly coloring every node of every tree in UNCOLOREDREALTREES with an equiprobable choice in the set {red, blue}. Then, communication nodes are added between nodes of different colors.

Real trees with random weights and colors

The RANDOMWEIGHTEDREALTREES data set is obtained by randomly coloring every node of every tree in UNCOLOREDREALTREES with an equiprobable choice in the set {red, blue} and by randomly changing the nodes and edges weight. Every n i is set to a random integer value in 1, N 500 where N is the size of the tree, and every f i is set to a random integer value in 1, N . Then, communication nodes are added between nodes of different colors.

Random trees

The RANDOMTREES data set is a set of 500 trees with random structure, random weights and random colors. Each tree has been generated as follows: the tree size N is randomly chosen in 1, 32767 . Then, for each node i ∈ 1, N , its predecessor is randomly chosen in 1, i -1 . The values of its n i and f i are uniformly chosen in 1, 3276 , and its color is randomly chosen between red and blue. Then, communication nodes are added between nodes of different colors.

Results

In this section, we evaluate the performance of the four heuristics introduced above in terms of memory requirement. For every tree T in the data sets, and for every traversal σ returned by the heuristics, we compute the maximum relative overhead of each memory compared to the optimal value: MaxRelativeOverhead(σ, T) = max(

M σ blue (T)-M opt blue (T) M opt blue (T) , M σ red (T)-M opt red (T) M opt red (T)
).

As explained in Section 3.3, the optimal for both memories (also called Zenith) is a theoretical bound that may be not reachable. Thus, for a tree T , there does not necessarily exist a traversal σ such that MaxRelativeOverhead(σ, T) = 0. Detailed statistics for the four heuristics are given in Table 3.1. We make the following observations:

• For the REALTREES data set, BESTDEPTHFIRST statistically gives the best results, with an average relative overhead equal to 6.3%; it reaches the Zenith for 55.6% of the trees. This comes from the particular structure of the assembly trees. Indeed, most nodes in these assembly trees have an input file smaller than the sum of their output files: f i ≤ j∈Succ(i) f j . This means that when we execute a node, it is more likely to be profitable to execute the whole subtree straightaway. This is why BESTDEPTHFIRST turns out to be the best heuristic for the REALTREES and the RANDOMCOLOREDREALTREES data sets. Besides, LIUUNCOLORED is very close to the BESTDEPTHFIRST performances on the REALTREES data set, with an average relative overhead equal to 6.6%. On the contrary, LIUWEIGHTEDMAX appears to be not well-designed for the structure of the assembly trees in REALTREES, with an average relative overhead equal to 8.4%; it can require up to 2.16 times the optimal memory for some trees.

• The structure of the trees in the RANDOMCOLOREDREALTREES data set is close to the trees in REALTREES, and the results are similar. BESTDEPTHFIRST statistically gives the best results with an average relative overhead equal to 3.8%, and LIUUNCOLORED provides the second best results with relative overhead equal to 5.2%.

• For the RANDOMWEIGHTEDREALTREES data set, file sizes are randomized, and BESTDEPTH-FIRST is no longer adapted to such trees; it provides an average relative overhead equal to 20.9%. Much worse, LIUUNCOLORED can require up to 5.13 times the optimal memory for some trees in RANDOMWEIGHTEDREALTREES. On the contrary, LIUWEIGHTEDMAX appears to be welldesigned for the trees in RANDOMWEIGHTEDREALTREES, with an average relative overhead two times lower than that of BESTDEPTHFIRST.

• The results for the RANDOMTREES data confirm that LIUWEIGHTEDMAX is the best of the four heuristics when dealing with trees with random structure. It gives the best results with an average relative overhead equal to 3.4%, and exhibits a relative overhead inferior to 10% for 92% of the random trees.

Figures 3.12, 3.13 and 3.14 provide complete results of the simulations. In each figure, a point represents one scenario (one heuristic executed on one tree of the data set). To better visualize the distribution, we also plot a "cross" for each heuristic: the center of this cross is the average result, while the branches represent the scope of each objective between the 10th and 90th percentile of the distribution. For the REALTREES data set, as explained above, we colored in red the nodes corresponding to the GEMM routine, and in blue the others nodes. Thus, every red nodes appears to have a communication node as predecessor, and an unique communication node as successor. With this structure, all of our heuristics gives the optimal memory usage for the red memory. This specification fits well with practice, where one aims at not overloading the GPU memory. Figure 3.11 provides the detailed distribution of the blue memory usage for the heuristics.

These figures exhibit the same trends for average values as observed in Table 3.1. For the RANDOM-COLOREDREALTREES data set in Figure 3.12, and for the RANDOMTREES data set in Figure 3.14, we see that many traversals returned by the heuristics are optimal for at least one of the two memories, whereas for the RANDOMWEIGHTEDREALTREES data set in Figure 3.13, many more of the returned traversals are non-optimal for either memory. We also observe that LIUUNCOLORED can require around 5 times the optimal red memory in two scenarios. These results show that the performance of the heuristics are strongly related to the structure of the trees. While BESTDEPTHFIRST achieves nice results for the realistic assembly trees, LIUWEIGHTEDMAX appears to be a better solution when dealing with more random structures.

General problem

The simplified model used in previous section was useful to assert the intrinsic difficulty of the problem: it is NP-complete to decide whether there exists a tree traversal that satisfies bounds on each memory usage: worse, it is impossible to approximate within a constant factor pair both absolute minimum memory amounts. All theses results, although negative, laid the foundations of scheduling for dual-memory systems. In this section, we envision the fully general framework introduced in Section 3.2, where tasks have different execution-times for each resource type (instead of being tied to a given resource as in previous section), and where concurrent execution of several tasks on each resource type is possible (instead of the fully sequential processing of the task graph that is assumed in previous section).

✶ ✶ ✶ ✶ ✁ ✶ ✂ ✶ ✄ ✶ ☎ ✶ ✆ ✶ ✝ ✶ ✞ ✶ ✟ ✁ ✁ ✶ ✵ ✶✵
❄ ❅ ❆ ❇ ❈ ❉ ❄ ❊ ❅ ❋ ❄ • ❄ • ❍ ■ ❏ ❋ ❑ ❆ ▲ ❄ ▼ ❍ • ◆ ❆ ■ ❄ ❖ ❇ ❍ ❇ ❄ ❅ ❍ ◗ ❄ ■ ❊ ❍ ❋ ❙ ❖ ❚❯✭✻✰❱✭✾✰✿❲✱✳✻✰ ❚❳✱✺(❂✽✸✮✸✳✭✴ ❚❳✱✺)✭✱✼✿✰✭✴❬✺✷ ❚❳✱✺)✭✱✼✿✰✭✴(✯)
Section 3.5.1 is devoted to expressing an optimal schedule in terms of the solution of a complex ILP. We introduce the new heuristics in Section 3.5.2, and assess their performance through an extensive set of simulations in Section 3.5.3.

✶ ✶ ✶ ✶ ✁ ✶ ✂ ✶ ✄ ✶ ☎ ✶ ✆ ✶ ✝ ✶ ✞ ✶ ✟ ✁ ✂ ✄ ☎ |✠✡☛☞✌✍✠ ✎✠✏ ✑✠✑✒✎✓ ✔✕☛✖✠ ✗✒✑✘☛✎✠✏ ☞✒ ☞✙✠ ✡✒✚✠✎ ✛✒✔✜✏ ✶ ✶ ✶ ✶ ✁ ✶ ✂ ✶ ✄ ✶ ☎ ✶ ✆ ✶ ✝ ✶ ✞ ✢ ✣ ✤ ✥ ✦ ✧ ★ ✣ ✩ ✤ ✪ ✣ ✫ ✣ ✫ ✬ ✭ ✮ ✪ ✯ ✥ ✰ ✣ ✱ ✬ ✫ ✲ ✥ ✭ ✣ ✳ ✦ ✬ ✦ ✴ ✣ ✤ ✬ ✵ ✣ ✭ ✩ ✬ ✪ ✷ ✳ ❭✸✠✕☞✹✠✘☞✙✺✌✎✕☞ ❭✻✌✔✼✜✗✒✡✒✎✠✏ ❭✻✌✔✽✠✌✖✙☞✠✏✾✔✑ ❭✻✌✔✽✠✌✖✙☞✠✏✿☛❀ Figure 3
.13: Distribution of each memory usage for the RANDOMWEIGHTEDREALTREES data set.

❁ ❁❂❁ ❁❂❃ ❁❂❄ ❅❆❇❈❉❊❋❆ •❆❍ ■❆■❏•❑ ▲▼❈◆❆ ❖❏■❈•❆❍ ❉❏ ❉◗❆ ❇❏❙❆• ❚❏▲❯❍ ❁ ❁❂❁ ❁❂❃ ❱ ❲ ❳ () ❬ (❲) ❳ ❴ ❲ ❵ ❲ ❵ ❛ ❜ ❝ ❴ ❞ (❡ ❲ ❢ ❛ ❵ ❣ (❜ ❲ ❤) ❛) ✐ ❲ ❳ ❛ • ❲ ❜) ❛ ❴ ❦ ❤ •♠❆▼❉♥❆❉◗♦❊•▼❉ •♣❊▲q❯❖❏❇❏•❆❍ •♣❊▲r❆❊◆◗❉❆❍s▲■ •♣❊▲r❆❊◆◗❉❆❍t❈✉

ILP formulation

In this section, we describe how to compute an optimal schedule σ opt through a computationally expensive ILP (Integer Linear Program). The objective is twofold: (i) to provide an optimal solution for small instances and (ii) to compare the heuristics presented in the following section with the optimal schedule, to evaluate their absolute quality. Our approach is motivated by the successful attempt to derive such an ILP formulation for several variants of the DAG scheduling problems, such as [START_REF] Venugopalan | Optimal linear programming solutions for multiprocessor scheduling with communication delays[END_REF][START_REF] Davidović | Towards the optimal solution of the multiprocessor scheduling problem with communication delays[END_REF]. However, to the best of our knowledge, none of the existing ILP handles the memory usage of the schedule. A major contribution of this chapter is the introduction of additional constraints that enforce memory constraints, as those described in Section 3.3.2.

The variables used by our linear program are listed in Figure 3.15. The t i 's and τ ij 's variables represent the starting time of the tasks and of the communications. M is the makespan value to minimize. The p i 's and b i 's variables describe the allocation of task i on the resources and are used to compute the value of the w i 's variables, which represent the actual computing time of task i. The ǫ ij 's and δ ij 's variables are used to enforce resources constraints. Finally, to compute the amount of memory used by the schedule at any time, we need to know the order in which all tasks and communications are processed. This is achieved through variables

σ ij , σ ′ kij , m ij , m ′ kij , c ijk , c ′ ijkp , d ijk and d ′ ijkp .
These numerous variables are needed to ensure that the schedule is properly defined, and that we precisely know which tasks are processed and which data are present in a given memory at any time, to ensure that the memory usage is kept below the prescribed bound. Due to the numerous variables that describe a schedule, the linear program counts a large number of constraints to ensure that these variables correspond to their definition given in Figure 3.15. For the sake of completeness, we give the whole linear program in Figure 3.16, and we detail the most significant constraints below.

M

Constraints (1) to (25) describes a schedule of the DAG onto the heterogeneous platform, and have nothing to do with memory constraints. They also ensure that communication times are respected when

min t,p,σ,ǫ M ∀i ∈ V, t i + w i ≤ M (1) ∀(i, j) ∈ E, t i + w i ≤ τ ij (2) ∀(i, j) ∈ E, τ ij + (1 -δ ij)C ij ≤ t j (3) ∀i = j ∈ V, t j -t i -m ij M max ≤ 0 (4a) ∀i = j ∈ V, t j -t i + (1 -m ij)M max ≥ 0 (4b) ∀k ∈ V, ∀(i, j) ∈ E, τ ij -t k -m ′ kij M max ≤ 0 (5a) ∀k ∈ V, ∀(i, j) ∈ E, τ ij -t k + (1 -m ′ kij)M max ≥ 0 (5b) ∀i = j ∈ V, t j -t i -w i -σ ij M max ≤ 0 (6a) ∀i = j ∈ V, t j -t i -w i + (1 -σ ij)M max ≥ 0 (6b) ∀k ∈ V, ∀(i, j) ∈ E, τ ij -t k -w k -σ ′ kij M max ≤ 0 (7a) ∀k ∈ V, ∀(i, j) ∈ E, τ ij -t k -w k + (1 -σ ′ kij)M max ≥ 0 (7b) ∀k ∈ V, ∀(i, j) ∈ E, t k -τ ij -c ijk M max ≤ 0 (8a) ∀k ∈ V, ∀(i, j) ∈ E, t k -τ ij + (1 -c ijk)M max ≥ 0 (8b) ∀(k, p) = (i, j) ∈ E, τ kp -τ ij -c ′ ijkp M max ≤ 0 (9a) ∀(k, p) = (i, j) ∈ E, τ kp -τ ij + (1 -c ′ ijkp)M max ≥ 0 (9b) ∀k ∈ V, ∀(i, j) ∈ E, t k -τ ij -(1 -δ ij)C ij -d ijk M max ≤ 0 (10a) ∀k ∈ V, ∀(i, j) ∈ E, t k -τ ij -(1 -δ ij)C ij + (1 -d ijk)M max ≥ 0 (10b) ∀(k, p) = (i, j) ∈ E, τ kp -τ ij -(1 -δ ij)C ij -d ′ ijkp M max ≤ 0 (11a) ∀(k, p) = (i, j) ∈ E, τ kp -τ ij -(1 -δ ij)C ij + (1 -d ′ ijkp)M max ≥ 0 (11b) ∀i, j ∈ V, p j -p i -ǫ ij |P | ≤ 0 (12a) ∀i = j ∈ V, p j -p i -1 + (1 -ǫ ij)|P | ≥ 0 (12b) ∀i ∈ V, p i -|P 0 | -|P |b i ≤ 0 (13a) ∀i ∈ V, p i -|P 0 | -1 + (1 -b i)(|P | + 1) ≥ 0 (13b) ∀i, j ∈ V, m ij + m ji ≥ 1 (14) ∀i, j ∈ V, σ ij + σ ji ≤ 1 (15) ∀(i, j) ∈ E, ∀k ∈ V, m ′ kij + c ijk ≥ 1 (16) ∀(i, j), (k, p) ∈ E, c ′ ijkp + c ′ kpij ≥ 1 (17) ∀(i, j), (k, p) ∈ E, d ′ ijkp + d ′ kpij ≤ 1 (18) ∀i ∈ V, ∀k ∈ V, m ik ≥ σ ik (19) ∀(i, j) ∈ E, ∀k ∈ V, σ ik ≥ c ijk (20) ∀(i, j) ∈ E, ∀k ∈ V, c ijk ≥ d ijk (21) ∀(i, j) ∈ E, ∀k ∈ V, d ijk ≥ m jk (22) ∀i, j ∈ V, δ ij ≤ 1 + b i -b j , δ ij ≤ 1 + b j -b i , δ ij ≥ b i + b j -1 and δ ij ≥ 1 -b i -b j (23) ∀i ∈ V, w i ≥ b i W (2) i + (1 -b i)W (1) i (24a) ∀i ∈ V, w i ≤ b i W (2) i + (1 -b i)W (1) i (24b) ∀i = j ∈ V, σ ij + σ ji + ǫ ij + ǫ ji ≥ 1 (25) ∀i ∈ V, (k,p)∈E (δ ik (m ki -d kpi) + δ ip (c kpi -σ pi))F kp ≤ b i M blue + (1 -b i)M red (26) ∀(i, j) ∈ E, (k,p)∈E (δ kj (m ′ kij -d ′ kpij) + δ pj (c ′ kpij -σ ′ pij))F kp ≤ b j M (blue) + (1 -b j)M (red) + δ ij M max (27
)
Figure 3.16: Constraints of the ILP.

a data needs to be moved from one memory to another. Here is a short description of these constraints:

• Constraint (1) ensures that variable M representing the makespan will be larger than or equal to the completion time of the last task. • Constraint (2) ensures that communication (i, j) starts after the completion of task i.

• Constraints (3) ensures that task j starts after the completion of every possible communication (i, j). We can note that, since δ ij = 1 if and only if task i and j are executed on the same memory, (1δ ij)C ij is the actual processing time of communication (i, j). • In Constraints (4a) and some of the following ones, we need an upper bound M max on the possible value of M . This bound is set arbitrarily to M max = i∈V W

(1) i 4b) and (14) ensure that m i,j and m j,i are correctly defined: m i,j = 1 if t j > t i , m i,j = 0 if t j > t i and if t j = t i , at least one between m ij and m ji is equal to 1. This is important when computing the amount of memory in Constraint [START_REF] Bruck | Efficient algorithms for all-to-all communications in multiport message-passing systems[END_REF].

+ i∈V W (2) i + (i,j)∈E C i,j . Constraints (4a), (
• Similarly Constraints (5a) to [START_REF] Bhat | Efficient collective communication in distributed heterogeneous systems[END_REF]

ensure that m ′ kij 's, σ ij 's, σ ′ kij 's, c ijk 's, c ′ ijkp 's, d ijk 's, d ′ ijkp 's, ǫ ′ ij '
s and b i 's variables are well defined. • Constraint [START_REF] Bosilca | Distributed dense numerical linear algebra algorithms on massively parallel architectures: DPLASMA[END_REF] ensures that task ordering is defined consistently, even for tasks with zero processing time (such tasks will appear when pipelining communications in Section 3.5.3). • Constraint [START_REF] Bosilca | Flexible development of dense linear algebra algorithms on massively parallel architectures with DPLASMA[END_REF] ensures that if communication (i, j) starts before task k starts, task i must finish before task k starts. Constraints (21) and (22) ensure that the linear program defines a valid schedule for communications and tasks. • Constraints [START_REF]DAGuE: A generic distributed DAG engine for high performance computing[END_REF] ensures that δ ij 's variables are well defined, i.e., δ ij = 1 if and only if b i = b j .

• Constraints (24a) and (24b) ensure that w i 's variables are well defined, i.e.,

w i = W (1) i if and only if b i = 0 and w i = W (2) i if and only if b i = 1.
• Constraint [START_REF] Braun | A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems[END_REF] represents resource constraints as seen in Section 3.3.1: if two tasks are running at the same time, they are not on the same processor. Finally, Constraint (26) deals with memory constraints, and ensures that the model defined in Section 3.3.2 is observed at the beginning of each task i. Specifically, b i M blue + (1b i)M red is the memory bound on the memory on which task i is executed. When i is started, we ensure that the sum of the files stored in the corresponding memory when we start task i is smaller than this bound. We claim that ∀(k, p) ∈ E, the file of size F kp will be in the corresponding memory when task i starts if and only if either "task i and task k are in the same memory and we started task k but communication (k, p) is not finished yet" or "task i and task p are in the same memory and we started communication (k, p) but task p is not finished yet". This explains Constraint [START_REF] Bruck | Efficient algorithms for all-to-all communications in multiport message-passing systems[END_REF]. Similarly Constraint [START_REF] Buttari | Parallel tiled QR factorization for multicore architectures[END_REF] ensures that the memory constraint is respected at the beginning of every communication (i, j).

Constraints (26) and (27) are not linear. However, they can be linearized using the technique presented in [START_REF] Venugopalan | Optimal linear programming solutions for multiprocessor scheduling with communication delays[END_REF][START_REF] Davidović | Towards the optimal solution of the multiprocessor scheduling problem with communication delays[END_REF]. To do so, we introduce the variables 26) and (27) are then replaced by the constraints in Figure 3.17

α kpi = δ ik (m ki -d kpi), β kpi = δ ip (c kpi -σ pi), α ′ kpi = δ kj (m ′ kij -d ′ kpij) and β ′ kpij = δ pj (c ′ kpij -σ ′ pij). Constraints (

Heuristics

Given the complexity of optimizing the makespan under memory constraints, we propose two heuristics in this section, MEMHEFT and MEMMINMIN. The key idea is to add memory awareness to the design of traditional scheduling heuristics.

∀i ∈ V, (k,p)∈E (α kpi + β kpi)F kp ≤ b i M (red) + (1 -b i)M (blue) (26) ∀i ∈ V, ∀(k, p) ∈ E, α kpi ≥ δ ik + m ki -d kpi -1 (26a) ∀i ∈ V, ∀(k, p) ∈ E, 2α kpi ≤ δ ik + m ki -d kpi (26b) ∀i ∈ V, ∀(k, p) ∈ E, β kpi ≥ δ ip + c kpi -σ pi -1 (26c) ∀i ∈ V, ∀(k, p) ∈ E, 2β kpi ≤ δ ip + c kpi -σ pi (26d) ∀(i, j) ∈ E, (k,p)∈E (α ′ kpij + β ′ kpij)F kp ≤ b i M (red) + (1 -b i)M (blue) + δ ij M max (27) ∀(i, j) ∈ E, ∀(k, p) ∈ E, α ′ kpij ≥ δ kj + m ′ kij -d ′ kpij -1 (27a) ∀(i, j) ∈ E, ∀(k, p) ∈ E, 2α ′ kpij ≤ δ kj + m ′ kij -d ′ kpij (27b) ∀(i, j) ∈ E, ∀(k, p) ∈ E, β ′ kpij ≥ δ pj + c ′ kpij -σ ′ pij -1 (27c) ∀(i, j) ∈ E, ∀(k, p) ∈ E, 2β ′ kpij ≤ δ pj + c ′ kpij -σ ′ pij (27d)
Figure 3.17: Linearization of the last two constraints of the ILP.

The MEMHEFT algorithm

MEMHEFT is based on HEFT (Heterogeneous Earliest Finish Time) [START_REF] Topcuoglu | Performance-effective and low-complexity task scheduling for heterogeneous computing[END_REF]. The HEFT algorithm is highly competitive and widely used to schedule static DAGs on heterogeneous platforms with a low time complexity. HEFT has two major phases: a task prioritizing phase for computing the priorities of all tasks , and a processor selection phase for allocating each task (in the order of their priorities) to their best processor, defined as the one which minimizes the task finish time.

The MEMHEFT algorithm follows the same pattern as HEFT. In our model, there are only two processor types, hence each selected task will be mapped on one of two candidates, namely the processors with earliest available time in each type. In other words, the processor selection phase can be renamed as the memory selection phase. In addition, MEMHEFT checks memory usage, as explained below.

Task prioritizing phase. This phase is the same as in HEFT and requires the priority of each task to be set with the upward rank value, rank(i), which is based on mean computation and mean communication costs:

∀i ∈ V, rank(i) = W (red) i + W (blue) i 2 + max j∈Succ(i) {rank(j) + Ci,j 2
}
where Succ(i) denotes the immediate successors of task i. The task list is generated by sorting the tasks by non-increasing order of rank(i). Tie-breaking is done randomly. Memory selection phase. For each selected task i and for each memory µ ∈ {red, blue}, we have to compute EST (µ) (i) the earliest execution start time of task i on memory µ (derived from a given partial schedule). This earliest execution start time has to take into account (i) resource, (ii) precedence, and (iii) memory constraints.

From a resource perspective, task i can not be executed on memory µ before one of the processors operating on memory µ is available. Thus resource_EST (µ) (i), the earliest start time of task i on memory µ from a resource point of view, can be expressed as:

resource_EST (µ) (i) = min proc in µ mem {avail[proc]}
where avail[proc] is the finish time of the last task assigned to proc in the partial schedule. From a precedence perspective, all immediate predecessors j ∈ Pred(i) of task i must have been scheduled. Thus precedence_EST (µ) (i) , the earliest start time of task i on memory µ from a prece-dence point of view, is expressed as:

precedence_EST (µ) (i) = max j∈Pred(i) {AF T (j) + δ (µ) j C j,i }
where δ (µ) j = 0 is task j is executed on memory µ, 1 otherwise, and AF T (j) is the actual finish time of task j in the partial schedule.

From a memory perspective, we have to keep trace of the memory consumption of our schedule to ensure that it does not violate the memory constraints. Thus, the MEMHEFT algorithm maintains for each memory µ the function free_mem (µ) (t) that represents the amount of the µ memory available at time t in the partial schedule. Here free_mem (µ) is a staircase function (the definition space R can be partitioned in a finite number of intervals where free_mem (µ) is constant) that can be stored as a list of couples [(x 1 , val 1), .., (x ℓ , val ℓ)] such that:

∀i ∈ [1, ℓ -1], ∀t ∈ [x i , x i+1 [, free_mem (µ) (t) = val i
and ∀t ≥ x ℓ , free_mem (µ) (t) = val ℓ . Note that val ℓ can be non-zero since the partial schedule may keep some files F i,j stored in the memories if task i has been scheduled but task j has not. Thus, to process task i on memory µ at time t without violating memory constraints, there must be enough available memory to store all the input files of task i that were not stored on memory µ yet, and all its output files. Thus, the earliest start time of task i on memory µ from the memory point of view can be expressed as: (µ) is stored as a list of size ℓ, task_mem_EST (µ) (i) can be computed in time O(ℓ).

task_mem_EST (µ) (i) = min {t, such that ∀t ′ ≥ t, free_mem (µ) (t ′) ≥ j∈Pred(i) (1 -δ (µ) j)F j,i + j∈Succ(i) F i,j } If free_mem
The MEMHEFT algorithm enforces that when a task i is assigned to the memory µ, every communication (j, i) ∈ E such that δ (µ) j = 0 will start as late as possible, and they will all have a processing time

C (µ) i = max (j,i)∈E {(1 -δ (µ)
j)C i,j }. Thus, to process task i on memory µ, the earliest start time of every communication (j, i) ∈ E from the memory point of view can be expressed as:

comm_mem_EST (µ) (i) = min {t, such that ∀t ′ ≥ t, free_mem (µ) (t ′) ≥ j∈Pred(i) (1-δ (µ) j)F j,i } If free_mem (µ) is stored as a list of size ℓ, comm_mem_EST (µ) (i) can be computed in time O(ℓ).
Finally, the earliest execution start time of task i on memory µ will be expressed as:

EST (µ) (i) = max {resource_EST (µ) (i), precedence_EST (µ) (i), task_mem_EST (µ) (i), comm_mem_EST (µ) (i) + C (µ) i }
The selected task i is assigned to the memory µ min that minimizes its earliest finish time EF T (µ

) (i) = EST (µ) (i)+W (µ) i
and then, to the proc that minimizes the idle time EST (i, µ min)-avail_proc(proc).

The MEMMINMIN algorithm

The MEMMINMIN algorithm does not include a task prioritizing phase but dynamically decides the order in which tasks are mapped onto resources. It is the memory-aware counterpart of the MINMIN heuristic [START_REF] Braun | A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems[END_REF]. Indeed, at each step, MEMMINMIN maintains the set available_tasks representing the tasks whose predecessors have already been scheduled. Then it selects the task i min inavailable_tasks and the memory µ min ∈ {red, blue} that minimizes EFT (µ) (i) as defined in Section 3.5.2.1 (computed from a partial schedule).

For a DAG D with |V | = n nodes and |E| = m edges, both heuristics have a worst-case complexity of O(n2 (n + m)). Their pseudo-code is available in [START_REF]Memory-aware list scheduling for hybrid platforms[END_REF].

Simulation results

In this section, we conduct several simulations to compare the two heuristics MEMHEFT and MEM-MINMIN proposed in Section 3.5.2, and to assess their absolute performance w.r.t. to the (optimal) ILP solution (Section 3.5.1). For each heuristic, we compute its makespan for various amounts of the available blue and red memories. The heuristics have been implemented in Python 2.7. Source code for all the algorithms, heuristics and simulations is publicly available at http://perso.ens-lyon.fr/ julien.herrmann/. The optimal makespan for small graphs has been computed by solving the ILP using the IBM ILOG CPLEX Interactive Optimizer 12.5.0.0.

Experimental setup

We use four different sets of DAGs: (i) two synthetic sets (randomly generated) of different sizes ,SMALLRANDSET, and LARGERANDSET; and (ii) two applicative sets (from linear algebra benchmarks), LUSET and CHOLESKYSET.

Random task graphs

The first and second sets are random DAGs, generated using the Directed Acyclic Graph GENerator (DAGGEN) 2 . DAGGEN uses four popular parameters to define the shape of the DAG: size, width, density and jumps.

• The size determines the number of node in the DAG. Nodes are organized in levels.

• The width determines the maximum parallelism in the DAG, that is the number of tasks in the largest level. A small value leads to "chain" graphs and a large value to "fork-join" graphs. • The density denotes the number of edges between two levels of the DAG, with a low value leading to few edges and a large value to many edges. • Finally random edges are added that go from level l to levels l + 1 . . . l + jumps. The first two parameters take values between 0 and 1. This DAG generation procedure is similar to the one used in [START_REF] N'takpé | A comparison of scheduling approaches for mixedparallel applications on heterogeneous platforms[END_REF].

SMALLRANDSET is a set of 50 randomly generated DAGs using values size = 30, width = 0.3, density = 0.5 and jumps = 5. Then, for each node, the values W (1) i and W

(2) i are randomly chosen between 1 and 20 and, for each edge, the values C i,j and F i,j are randomly chosen between 1 and 10. One graph of SMALLRANDSET is depicted in Figure 3.18.

LARGERANDSET is a set of 100 randomly generated DAGs using values size = 1000, width = 0.3, density = 0.5 and jumps = 5. Then, for each node and each edge, the values W

(1) i , W (2)
i , C i,j and F i,j are randomly chosen between 1 and 100. One graph of LARGERANDSET is depicted in Figure 3. 19. both memories by any pair of constant factors. In addition, we have determined the optimal depth-first traversal, which turns out to minimize both memories simultaneously. This depth-first traversal achieves nice results for realistic assembly trees. We have also proposed several heuristics, based upon extensions of Liu's optimal algorithm for the one-memory problem. These heuristics provide very good solutions when dealing with arbitrary tree graphs.

Given the NP-hardness of the restricted problem, we have proposed several approaches for the general case. We have first provided an exact resolution through the design of an intricate ILP which is able to compute an optimal schedule for medium-size instances (up to 30 tasks). Then, we have proposed two memory-aware heuristics for larger instances, which are the counterparts of the classical HEFT and MINMIN algorithms. We have studied the performance of these new heuristics through extensive simulations on different task graphs, and compared them to the optimal solution for small instances.

An interesting future work would be to include some of the proposed heuristics in an actual runtime toolkit for hybrid platform such as StarPU [START_REF] Augonnet | Starpu: a unified platform for task scheduling on heterogeneous multicore architectures[END_REF]. It would also be of interest to adapt the heuristics to more complex platforms, such as hybrid platforms with several types of accelerators, and/or including more than two memories.

Chapter 4

Assessing the cost of redistribution followed by a computational kernel When dealing with a distributed computational platform, the data layout has a strong impact on the overall performance. As said in the introduction of this thesis, modern linear algebra libraries use level-3 BLAS kernels that partition the matrices into blocks. We saw in Chapter 1 that, in a distributed memory context, the blocks are mapped onto the resources using a 2D block-cyclic distribution, which nicely balances the workload across processors. When factorizing a matrix, we always considered that the blocks were initially mapped onto the distributed platform with a 2D block-cyclic pattern, allowing a efficient owner-compute strategy during the factorization. In this chapter, we consider the case where the matrix may have an arbitrary initial distribution, requiring a redistribution. We do not restrict ourselves to targeting a 2D block-cyclic distribution, but we rather tackle the general redistribution problem. The classical redistribution problem aims at optimally scheduling communications when reshuffling from an initial data distribution to a target data distribution. This target data distribution is usually chosen to optimize some objective for the algorithmic kernel under study (good computational balance or low communication volume or cost), and therefore to provide high efficiency for that kernel. However, the choice of a distribution minimizing the target objective is not unique. This leads to generalizing the redistribution problem as follows: find a re-mapping of data items onto processors such that the data redistribution cost is minimal, and the operation remains as efficient. This chapter studies the complexity of this generalized problem. We compute optimal solutions and evaluate, through simulations, their gain over classical redistribution. We also show the NP-hardness of the problem to find the optimal data partition and processor permutation (defined by new subsets) that minimize the cost of redistribution followed by a simple computational kernel. Finally, experimental validation of the new redistribution algorithms are conducted on a multicore cluster, for both a 1D-stencil kernel and a more computeintensive dense linear algebra routine.

Introduction

In parallel computing systems, data locality has a strong impact on application performance. To achieve good locality, a redistribution of the data may be needed between two different phases of the application, or even at the beginning of the execution, if the initial data layout is not suitable for performance. Data redistribution algorithms are critical to many applications, and therefore have received considerable attention. The data redistribution problem can be stated informally as follows: given N data items that are currently distributed across P processors, redistribute them according to a different target layout. Consider for instance a dense square matrix A = (a ij) 0≤i,j<n of size n, whose initial distribution is random, and that must be redistributed into square blocks across a p × p 2D-grid layout. A scenario for this problem is that the matrix has been generated by a Monte-Carlo method and is now needed for some matrix product C ← C + AB. Assume for simplicity that p divides n, and let r = n/p. In this example, N = n 2 , P = p 2 , and the redistribution will gather a block of r × r data elements of A on each processor, as illustrated on Figure 4.1. More precisely, all the elements of block A i,j = (a k,ℓ), where ri ≤ k < (r + 1)i and rj ≤ ℓ < (r + 1)j, must be sent to processor P i,j . This example illustrates the classical redistribution problem. Depending upon the cost model for communications, various optimization objectives have been considered, such as the total volume of data that is moved from one processor to another, or the total time for the redistribution, if several communications can take place simultaneously. We detail classical cost models in Section 4.2, which is devoted to related work. Modern computing platforms are equipped with interconnection switches and routing mechanisms mapping the most usual interconnection graphs onto the physical network with reduced (or even negligible) dilation and contention. Continuing with the example, the p × p 2D-grid will be virtual, i.e., an overlay topology mapped into the physical topology, forcing the interconnection switch to emulate a 2D-grid. Notwithstanding, the layout of the processors in the grid remains completely flexible. For instance, the processors labeled P 1,1 , P 1,2 and P 2,1 can be any processors in the platform, and we have the freedom to choose which three processors will indeed be labeled as the top-left corner processors of the virtual grid. Now, to describe the matrix product on the 2D-grid, we say that data will be sent horizontally between P 1,1 and P 1,2 , and vertically between P 1,1 and P 2,1 , but this actually means that these messages will be routed by the actual network, regardless of the physical position of the three processors in the platform.

This leads us to revisit the redistribution problem, adding the flexibility to select the best assignment of data on the processors (according to the cost model). The problem can be formulated as mapping a partition of the initial data onto the resources: there are P data subsets (the blocks in the example) to be assembled onto P processors, with a huge (exponential) number, namely P !, of possible mappings. An intuitive view of the problem is to assign the same color to all data items that initially reside on the same processor, and to look for a coloring of the virtual grid that will minimize the redistribution cost. For instance, in Figure 4.1, most data items of the block allocated to the virtual processor P 1,1 are initially colored red (they reside on the red processor A), so we decided to map P 1,1 on processor A to avoid moving these items.

One major goal of this chapter is to assess the complexity of the problem of finding the best processor mapping for a given initial data distribution and a target data partition. This amounts to determining the processor assignment that minimizes the cost of redistributing the data according to the partition. There are P ! possible redistributions, and we aim at finding the one minimizing a predefined cost-function. In this chapter, we use the two most widely-used criteria in the literature to compute the cost of a redistribution:

• Total volume. In this model, the platform is not dedicated, and the objective is to minimize the total communication volume, i.e., the total amount of data sent from one processor to another.

Minimizing this volume makes it less likely to disrupt the other applications running on the platform, and is expected to decrease network contention, hence redistribution time. Conceptually, this is equivalent to assuming that the network is a bus, globally shared by all computing resources.

• Number of parallel steps. In this model, the platform is dedicated to the application, and several communications can take place in parallel, provided that they involve different processor pairs. This is the one-port bi-directional model used in [START_REF] Hollermann | Scheduling problems in a practical allocation model[END_REF][START_REF] Hsu | Task allocation on a network of processors[END_REF]. The quantity to minimize is the number of parallel steps, where a step is a collection of unit-size messages that involve different processor pairs.

One major contribution of this chapter is the design of an algorithm solving this optimization problem for either criterion. We also provide various experiments to quantify the gain that results from choosing the optimal mapping rather than a canonical mapping where processors are labeled arbitrarily, and independently of the initial data distribution.

As mentioned earlier, a redistribution is usually motivated by the need to efficiently execute in parallel a subsequent computational kernel. In most cases, there may well be several data partitions that are suitable for the efficient execution of this kernel. The optimal partition also depends upon the initial data distribution. Coming back to the introductory example, where the redistribution is followed by a matrix product, we may ask whether a full block partition is absolutely needed? If the original data is distributed along a suitable, well-balanced distribution, a simple solution is to compute the product in place, using the owner computes rule, that is, we let the processor holding C i,j compute all A i,k B k,j products. This means that elements of A and B will be communicated during the computation, when needed. On the contrary, if the original distribution has a severe imbalance, with some processors holding significantly more data than others, a redistribution is very likely needed. But in this latter case, do we really need a perfect full block partition? In fact, the optimization problem is the following: given an initial data distribution, what is the best data partition, and the best mapping of this partition onto the processors, to minimize total execution time, defined as the sum of the redistribution time and of the execution of the kernel. Another major contribution of this chapter is to assess the complexity of this intricate problem. Finding the optimal partition mapping becomes NP-complete when coupling the redistribution with a simple computational kernel such as an iterative 1D-stencil kernel. Here the optimization objective is the sum of the redistribution time (computed using either of the two criteria above, with all communications serialized or with communications organized in parallel steps), and of the parallel execution time of a few steps of the stencil. Intuitively this confirms that determining the optimal data partition and its mapping is a difficult task. Stencil computations naturally favor block distributions, in order to communicate only block frontiers at each iteration. But this has to be traded-off with the cost of moving the data from the initial distribution, with the number of iterations, and with the possible imbalance of the final distribution that is chosen (whose own impact depends upon the communication-to-computation ratio of the machine). Altogether, it is no surprise that all these possibilities lead to a hard combinatorial problem.

Finally, this chapter provides an experimental validation of the new redistribution algorithms conducted on a multicore cluster. We first experiment with the 1D-stencil algorithm and obtain performance improvements in total execution time that strongly depend on initial distributions. Different data configurations have been tested to assess this gain. For a more compute-intensive dense linear algebra routine, such as QR factorization, redistributing the data items can also be necessary. The 2D block-cyclic partition is known to offer a good trade-off between the amount of communications during the QR factorization and the load balancing among processors. Using the algorithms to determine the best distribution compatible with the 2D block-cyclic partition provides significant improvement in the completion time.

The rest of the chapter is organized as follows. We survey related work in Section 4.2. We detail the model and formally state the optimization problems in Section 4.3. We deal with the problem of finding the best redistribution for a given data partition in Section 4.4. Sections 4.4.1 and 4.4.2 provide algorithms computing the optimal solution, while Section 4.4.3 reports simulation results showing the gain over redistributing to an arbitrary compatible distribution. In Section 4.5, we couple the redistribution with a stencil kernel, and show that finding the optimal data partition, together with the corresponding redistribution, is NP-complete. Experiments conducted on a multicore cluster are reported in Section 4.6. Section 4.6.1 is devoted to the experimental setup. Section 4.6.2 provides results when redistribution is followed by a stencil kernel, while Section 4.6.3 deals with QR factorization. We provide final remarks and directions for future work in Section 4.7.

Related work

Communication model

The macro-dataflow model has been widely used in the scheduling literature (see the survey papers [START_REF] Norman | Models of machines and computation for mapping in multicomputers[END_REF][START_REF] Shirazi | Scheduling and load balancing in parallel and distributed systems[END_REF][START_REF] Chrétienne | Scheduling Theory and its Applications[END_REF][START_REF] El-Rewini | Task scheduling in multiprocessing systems[END_REF] and the references therein). In this model, the cost to communicate L bytes is α + Lβ, where α is a start-up cost and β is the inverse of the bandwidth. In this chapter, we consider large, same-sized data items, so we can safely restrict to unit communications that involve a single data item; we integrate the start-up cost into the cost of a unit communication.

In the macro-dataflow model, communication delays from one task to its successor are taken into account, but communication resources are not limited. First, a processor can send (or receive) any number of messages in parallel, hence an unlimited number of communication ports is assumed (this explains the name macro-dataflow for the model). Second, the number of messages that can simultaneously circulate between processors is not bounded, hence an unlimited number of communications can simultaneously occur on a given link. In other words, the communication network is assumed to be contention-free, which of course is not realistic as soon as the processor number exceeds a few units.

A much more realistic communication model is the one-port bidirectional model where at a given time-step, any processor can communicate with at most one other processor in both directions: sending to and receiving from. Thus, communications can occur in parallel, provided that they involve disjoint pairs of sending/receiving processors. The one-port model was introduced by Hollermann et al. [START_REF] Hollermann | Scheduling problems in a practical allocation model[END_REF], and Hsu et al. [START_REF] Hsu | Task allocation on a network of processors[END_REF]. It has been widely used since, both for homogeneous and heterogeneous platforms [START_REF] Beaumont | A realistic model and an efficient heuristic for scheduling with heterogeneous processors[END_REF][START_REF] Bhat | Efficient collective communication in distributed heterogeneous systems[END_REF].

General data redistribution

The complexity of scheduling data redistribution in distributed architectures strongly depends on the network model. When the network has a general graph topology, achieving the minimal completion time for a set of communications is NP-complete, even when the time required to move a data along any link is constant [START_REF] Rivera-Vega | Scheduling data redistribution in distributed databases[END_REF].

In this context, several variants of the one-port bidirectional model have been considered. The first variant is an unidirectional one-port model, where a processor can participate in only one communication at a time (either as a sender or as a receiver); with this variant, the redistribution problem becomes NPcomplete [START_REF] Kim | Data migration to minimize the total completion time[END_REF]. A second variant consists of assuming that each processor p has a number of ports v(p) that represents the maximum number of simultaneous transfers that this processor can be involved in [START_REF] Coffman | Scheduling file transfers[END_REF]. Finally, in a third variant [START_REF] Anderson | Algorithms for data migration[END_REF], processors have memory constraints that must be enforced during the redistribution process.

Array redistribution

A specific class of redistribution problems has received considerable attention, namely the redistribution of arrays that are already distributed in a block-cyclic fashion over a multidimensional processor grid. This interest was originally motivated by the HPF [START_REF] Koelbel | The High Performance Fortran Handbook[END_REF] programming style, in which scientific applications are decomposed into phases. At each phase, there is an optimal distribution of the data arrays onto the processor grid. Typically, arrays are distributed according to a CYCLIC(r) pattern1 along one or several dimensions of the grid. The best value of the distribution parameter r depends on the characteristics of the algorithmic kernel as well as on the communication-to-computation ratio of the target machine [START_REF] Dongarra | Software libraries for linear algebra computations on high performance computers[END_REF]. Because the optimal value of r changes from phase to phase and from one machine to another (think of a heterogeneous environment), run-time redistribution turns out to be a critical operation, as stated in [START_REF] Kalns | Processor mapping techniques towards efficient data redistribution[END_REF][START_REF] Walker | Redistribution of block-cyclic data distributions using MPI[END_REF][START_REF] Wang | Runtime performance of parallel array assignment: an empirical study[END_REF][START_REF] Thakur | Runtime array redistribution in HPF programs[END_REF] (among others). Communications are scheduled into parallel steps, which involve different processor pairs. The model comes in two variants, synchronous and asynchronous. In the synchronous variant, the cost of a parallel step is the maximal size of a message and the objective is to minimize the sum of the costs of the steps [START_REF] Walker | Redistribution of block-cyclic data distributions using MPI[END_REF][START_REF] Desprez | Scheduling block-cyclic array redistribution[END_REF]. In the asynchronous model, some overlap is allowed between communication steps [START_REF] Guo | Improving communication scheduling for array redistribution[END_REF]. Finally, the ScaLAPACK library provides a set of routines to perform array redistribution [START_REF] Prylli | Efficient block-cyclic data redistribution[END_REF]. A total exchange is organized between processors, which are arranged as a (virtual) caterpillar. The total exchange is implemented as a succession of synchronous steps.

We point out that all the works referenced in Section 4.2.2 and in this one deal with a fixed target distribution. To the best of our knowledge, this work is the first to consider target data partitions rather than target data distributions, thereby allowing to choose the best data redistribution among P ! candidates, where P is the number of enrolled processors. Also, this work is the first to study the cost of coupling a redistribution with a computational kernel, which is a very important problem in practice.

Model and framework

This section details the framework and formally states the optimization problems. We start with a few definitions.

Definitions

Consider a set of N data items (numbered from 0 to N -1) distributed onto P processors (numbered from 0 to P -1). Definition 4.1 (Data distribution). A data distribution D defines the mapping of the elements onto the processors: for each data item x, D(x) is the processor holding it. Definition 4.2 (Data partition). A data partition P associates to each data item x an index P(x) (0 ≤ P(x) ≤ P -1) so that two data items with the same index reside on the same processor (not necessarily processor P(x)). The j th component of the data partition P is the subset of the data items x such that P(x) = j.

It is straightforward to see that a data distribution D defines a single corresponding data partition P = D. However, a given data partition does not define a unique data distribution. On the contrary, any of the P ! permutations of {0, . . . , P -1} can be used to map a data partition onto the processors.

Definition 4.3 (Compatible distribution).

A data distribution D is compatible with a data partition P if and only if there exists a permutation of processors σ of {0, . . . , P -1} such that for each data item x, D(x) = σ(P(x)).

Cost of a redistribution

In this section, we formally state the two metrics for the cost of a redistribution, namely the total volume and the number of parallel steps. Both metrics assume that the communication of one data item from one processor to another takes the same amount of time, regardless of the item and of the location of the source and target processors. Indeed, data items can be anything from single elements to matrix tiles, columns or rows, so that our approach is agnostic of the granularity of the redistribution. As already mentioned, many modern interconnection networks are fully-connected switches, and they can implement any (same-length) communication in the same amount of time. Note that with asymmetric networks, it is always possible to use the worst-case communication time between any processor pair as the unit time for a communication.

Total volume

For this metric, we simply count the number of data items that are sent from one processor to another. This metric may be pessimistic if some parallelism is possible, but it provides an interesting measure of the overhead of the redistribution, especially if the platform is not dedicated.

Given an initial data distribution D ini and a target distribution D tar , for 0 ≤ i, j ≤ P -1, let q i,j be the number of data items that processor i must send to processor j: q i,j is the number of data items x such that D ini (x) = i and D tar (x) = j. For a given processor i, let s i (respectively r i) be the total number of data items that processor i must send (respectively receive) during the redistribution. We have s i = j =i q i,j and r i = j =i q j,i . The total communication volume of the redistribution is defined as

RedistVol (D ini → D tar) = i s i = i r i .

Number of parallel steps

With this metric, some communications can take place in parallel, provided that each of them involves a different processor pair (sender and receiver). This communication model is the bidirectional one-port model introduced in [START_REF] Hollermann | Scheduling problems in a practical allocation model[END_REF][START_REF] Hsu | Task allocation on a network of processors[END_REF] and accounts for contention when communications take place simultaneously.

We define a parallel step as a set of unit-size communications (one data item each) such that all senders are different, and all receivers are different (the set of senders of the set of receivers are not necessary disjoint). With this definition, a processor can send and receive a data item at the same time but can not send (respectively receive) a data item to (respectively from) more than one processor during the same communication step. Given an initial data distribution D ini and a target distribution D tar , we define RedistSteps(D ini → D tar) as the minimal number of parallel steps that are needed to perform the redistribution.

Optimization problems

Here, we formally introduce the optimization problems that we study in Sections 4.4 and 4.5 below.

Best redistribution compatible with a given partition

In the optimization problems of Section 4.4, the data partition is given, and we aim at finding the best compatible target distribution (among P ! ones). More precisely, given an initial data distribution D ini and a target data partition P tar , we aim at finding a data distribution D tar that is compatible with P tar and such that the redistribution cost from D ini to D tar is minimal. Since we have two cost metrics, we define two problems: Definition 4.4 (VOLUMEREDISTRIB). Given D ini and P tar , find D tar compatible with P tar such that RedistVol (D ini → D tar) is minimized. Definition 4.5 (STEPREDISTRIB). Given D ini and P tar , find D tar compatible with P tar such that RedistSteps(D ini → D tar) is minimized.

We show in Section 4.4 that both problems have polynomial complexity.

Best partition and best compatible redistribution

In the optimization problems of Section 4.5, the data partition is no longer fixed. Given an initial data distribution D ini , we aim at executing some computational kernel whose cost T comp (P tar) depends upon the data partition P tar that will be selected. Note that this computational kernel will have the same execution cost for any distribution D tar compatible with P tar , because of the symmetry of the target platform. However, the redistribution cost from D ini to D tar will itself depend upon D tar . We model the total cost as the sum of the time of the redistribution and of the computation. Letting τ comm denote the time to perform a communication, the time to execute the redistribution is either RedistVol (D ini → D tar)×τ comm or RedistSteps(D ini → D tar)×τ comm , depending upon the communication model. This leads to the following two problems: Definition 4.6 (VOLPART&REDISTRIB). Given D ini , find P tar , and D tar compatible with P tar , such that T total = RedistVol (D ini → D tar) × τ comm + T comp (P tar) is minimized. Definition 4.7 (STEPPART&REDISTRIB). Given D ini , find P tar , and D tar compatible with P tar , such that T total = RedistSteps(D ini → D tar) × τ comm + T comp (P tar) is minimized.

Note that both problems require that we are able to compute T comp (P tar) for any target data partition P tar . This is realistic only for very simple computational kernels. In Section 4.5, we consider such a kernel, namely the 1D-stencil. We show the NP-completeness of both VOLPART&REDISTRIB and STEPPART&REDISTRIB for this kernel, thereby assessing the difficulty to couple redistribution and computations.

Redistribution

This section deals with the VOLUMEREDISTRIB and STEPREDISTRIB problems: given a data partition P tar and an initial data distribution D ini , find one target distribution D tar among all possible P ! compatible target distributions that minimizes the cost of the redistribution, either expressed in total volume or number of parallel steps. We show that both problems have polynomial complexity. As a side note, we point out that these results directly extend to the case where we have different numbers of processors for the source and target distributions.

Total communication volume

Theorem 4.1. Given an initial data distribution D ini and target data partition P tar , Algorithm 7 computes a data distribution D tar compatible with P tar such that RedistVol (D ini → D tar) is minimized, and its complexity is O(N P2 + P 3).

Proof. Using the definition of s i and r i from Section 4.3.2.1, the total volume of communications during the redistribution phase from the initial distribution to the target distribution is

RedistVol (D ini → D tar) = 0≤i≤P -1 s i = 0≤i≤P -1 r i .
Solving VOLUMEREDISTRIB amounts to finding a one-to-one perfect matching between each component of the target data partition and the processors, so that the total volume of communications is minimized. Algorithm 7 builds the complete bipartite graph where the two sets of vertices represents the P processors and the P components of the target data partition. Each edge (i, j) of this graph is weighted with the amount of data that processor P i would have to receive if matched to component j of the data partition.

Computing the weight of the edges can be done with complexity O(N P 2). The complexity of finding a minimum-weight perfect matching in a bipartite graph with n vertices and m edges is O(n(m + n log n)) (see Corollary 17.4a in [START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Efficiency, ser. Algorithms and Combinatorics[END_REF]). Here n=P and m=P 2 , hence the overall complexity of Algorithm 7 is O(N P 2 + P 3).

Note that, in Algorithm 7, the complexity of computing egde weights may easily be reduced to O(N P + P 2): (i) we first initialize all weights to 0 (in O(P 2)), (ii) then, for each data item x and each i = D ini (x), the weight of edge (i, P tar (x)) is incremented (in O(N P)). With this optimization, the complexity of Algorithm 7 can be reduced to O(N P + P 3).

Number of parallel communication steps

The second metric is the number of parallel communications steps in the bidirectional one-port model. Note that this objective is quite different from the total communication volume: consider for instance a processor which has to send and/or receive much more data than the others; all the communications involving this processor will have to be performed sequentially, creating a bottleneck.

RedistSteps(D ini → D tar) = max 0≤i≤P -1 max(s i , r i).
This well-known result [START_REF] Desprez | Scheduling block-cyclic array redistribution[END_REF] is a direct consequence of König's theorem (see Theorem 20.1 in [START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Efficiency, ser. Algorithms and Combinatorics[END_REF]) stating that the edge-coloring number of a bipartite multigraph is equal to its maximum degree.

Algorithm 8 builds the complete bipartite graph G where the two sets of vertices represent the P processors and the P components of P tar . Each edge (i, j) of the complete bipartite graph is weighted with the maximum between the amount r i,j of data that processor i would have to receive if matched to component j of the data partition, and the amount of data that it would have to send in the same scenario. A one-to-one matching between the two sets of vertices whose maximal edge weight is minimal represents an optimal solution to STEPREDISTRIB. We denote by M opt such a matching and m opt its maximal edge weight. Since there are P processors and P components in P tar , the one-to-one matching M opt is a matching of size P .

Algorithm 8 prunes an edge with maximum weight from G until it is not possible to find a matching of size P , and it returns the last matching of size P . We denote by M ret this matching and m ret its maximum edge weight. Using a proof by contradiction, we first assume that m ret > m opt . Then matching M opt only contains edges with weight strictly smaller than m ret . Since Algorithm 8 prunes edges starting from the heaviest ones, these edges are still in G when Algorithm 8 returns M ret . Thus we can remove the edges with maximal weight m ret in M ret and still have a matching of size P . This contradicts the stopping condition of Algorithm 8. Thus m ret = m opt and the matching returned by Algorithm 8 is a solution to STEPREDISTRIB.

Again, computing edge weights can be done with complexity O(N P 2 + P 2). Algorithm 8 uses the Hopcroft-Karp Algorithm [START_REF] Hopcroft | An nˆ5/2 algorithm for maximum matchings in bipartite graphs[END_REF] to find the maximum cardinality matching of a bipartite graph G = (V, E) in time O(|E| |V |). There are no more than P 2 iterations in the while loop, and Algorithm 8 has a worst-case complexity of O(N P 2 + P 9 2).

Note that, like in previous section, the complexity of Algorithm 8 can easily be reduced to O(N P + P Algorithm 8: BESTDISTRIBFORSTEPS Data: Initial data distribution D ini and target data partition P tar Result: A data distribution D tar compatible with the given data partition so that RedistSteps(D ini → D tar) is minimized A ← {0, . . . , P -1} (set of processors) B ← {0, . . . , P -1} (set of data partition indices) G ← complete bipartite graph (V, E) where V = A ∪ B for edge (i, j) in E do r i,j ← |{x s.t. P tar (x) = j and D ini (x) = i}| s i,j ← |{x s.t. P tar (x) = j and D ini (x) = i}| weight(i, j) ← max(r i,j , s i,j) M ← maximum cardinality matching of G (using the Hopcroft-Karp Algorithm) while |M| = P do M save ← M Suppress all edges of G with maximum weight M ← maximum cardinality matching of G (using the Hopcroft-Karp Algorithm) return M save

Evaluation of optimal vs. arbitrary redistributions

In this section, we conduct several simulations to illustrate the interest of the two algorithms introduced above. In particular, we show that in many cases, it is important to optimize the mapping rather than resorting to an arbitrary mapping which could induce many more communications. Source code for the algorithms and simulations is publicly available at http://perso.ens-lyon.fr/julien. herrmann/.

Random balanced initial data distribution

First we consider a random balanced initial data distribution D ini , where each processor initially hosts D data items, and each data item has the same probability to reside on any processor. Most parallel applications require perfect load balancing to achieve good performance, and thus a balanced data partition. Therefore, we consider here a balanced target data partition P tar (each of its P components includes D data items). We denote by D can the canonical data distribution (compatible with partition P tar) which maps its j th component onto processor j.

As seen in Section 4.3, the volume of communication involved during the redistribution from D ini to D can is RedistVol (D ini → D can) = 0≤j≤P -1 |{x s.t. P tar (x) = j and D ini (x) = j}|. Since each component of P tar has cardinal D and D ini (x) is equal to j with a probability 1 P for any processor j and any data item x, we can compute the expected volume of communication: E(RedistVol (D ini → D can)) = D(P -1). Thus, picking an arbitrary target distribution leads to an average volume of communications linear in P .

Each processor hosts D data items at the beginning and at the end of the redistribution phase. Thus, according to Section 4.4.2, the number of steps required to schedule the redistribution phase is equal to D if and only if one of the P processors has to send its complete initial data set during the redistribution model before establishing the NP-completeness of minimizing the cost of a redistribution followed by the execution of the kernel.

Application model

We consider here a three-point stencil with circular arrangement of the data. More precisely, to compute the value x(i, t) of the data at position i at step t, we need its value and those of its left and right neighbors at the previous step, namely x(i, t -1), x(i -1 mod N, t -1), and x(i + 1 mod N, t -1). If the neighbors are not stored on the same processor, their value has to be received from the processors hosting them. Thus, each iteration of the stencil algorithm consists in two phases, the communication phase when the value of each data item is sent to the processors hosting its neighbors, and the computation phase, when each data item is updated according to a given kernel using these values (see Algorithm 9). The update kernel depends on the application.

Algorithm 9: One iteration of the unidimensional stencil algorithm

Result: N data items numbered from 0 to N -1 and their distribution D on P processors

for 0 ≤ x ≤ N -1 in parallel do ℓ x ← (x -1) mod N ; r x ← (x + 1) mod N ; if D(ℓ x) = D(x) then Processor D(x) receives data item ℓ x from processor D(ℓ x); if D(r x) = D(x) then
Processor D(x) receives data item r x from processor D(r x);

for 0 ≤ x ≤ N -1 in parallel do Processor D(x) updates data item x using ℓ x and r x ;

Given a data partition P tar , let N ij be the number of data items sent by the processor hosting the i th component of P tar to the processor hosting the j th component during one communication phase of the stencil algorithm: N ij is the number of left or right neighbors in the i th component of data items in the j th component. Formally:

N ij = |{0 ≤ x ≤ N -1 s.t. P tar (x) = i and (P tar (x-1 mod N) = j or P tar (x+1 mod N) = j)}|.
The workload ℓ i of the processor i hosting the i th component of P tar is:

ℓ i = |{0 ≤ x ≤ N -1 s.t. P tar (x) = i}|.
Given a data partition P tar , the running time of the stencil algorithm depends on the communication model, but not on the actual data distribution, provided that it is compatible with P tar . Let τ comm be the time needed to perform one communication (see Section 4.3.3), and let τ calc be the time needed to perform one data update for the considered stencil application. The processing time for K iterations of the stencil with the two communication models is the following (using the notations of Section 4.3.3):

• Total volume: For problem VOLPART&REDISTRIB, T comp (P tar) = K × T iter vol (P tar), where

T iter vol (P tar) = τ comm ×   0≤i≤P -1 j =i N ij   +τ calc × max 0≤i≤P -1 ℓ i .
The first term corresponds to the serialization of all communications, and the second one to the parallel processing of the updates.

• Number of parallel steps: For problem STEPPART&REDISTRIB, T comp (P tar) = K×T iter steps (P tar), where

T iter steps (P tar) = τ comm × max 0≤i≤P -1   j =i N ij , j =i N ji   +τ calc × max 0≤i≤P -1 ℓ i .
Here the first term corresponds to the time needed to perform the required number of communication steps, and the second term is unchanged.

Complexity

Assume without loss of generality that N is a multiple of P . There is a well-known optimal data partition for the 1D-stencil kernel, namely the full block partition (data item i is assigned to component ⌊iP/N ⌋). This canonical partition P can minimizes the duration of the communication phase (only two items are sent/received per component of the partition) and the computation phase is perfectly balanced.

Starting from an initial data distribution D ini , we can use either Algorithm 7 or 8 to find a target distribution D tar which is compatible with the full-block partition P can and whose redistribution cost is minimal. However, redistributing from D ini to D tar may induce a large overhead on the total execution time, which is fully justified only when the number of iterations K is large enough. It may be useful to avoid a costly redistribution for small values of K, and to find a target redistribution which is a trade-off between minimizing redistribution time and processing time. Actually, finding such a trade-off distribution is an NP-complete problem for both communication models. We define the two decision problems associated to VOLPART&REDISTRIB and STEPPART&REDISTRIB: Definition 4.8 (DECISIONVOLPART&REDISTRIB). Given a number of processors P , elementary communication and computation times τ comm and τ calc , a number of steps K, an initial data distribution D ini and a bound T M AX , are there a partition P tar , and a distribution D tar compatible with P tar , such that:

T total (D ini , D tar) = RedistVol (D ini → D tar) × τ comm + T comp (P tar) ≤ T M AX ?
Definition 4.9 (DECISIONSTEPPART&REDISTRIB). Given a number of processors P , elementary communication and computation times τ comm and τ calc , a number of steps K, an initial data distribution D ini and a bound T M AX , are there a partition P tar , and a distribution D tar compatible with P tar , such that:

T total (D ini , D tar) = RedistSteps(D ini → D tar) × τ comm + T comp (P tar) ≤ T M AX ?
Theorem 4.3. The DECISIONVOLPART&REDISTRIB problem with the 1D-stencil kernel is strongly NP-complete.

Proof. We first prove that DECISIONVOLPART&REDISTRIB belongs to NP. Given D tar , it is possible to compute in polynomial time the redistribution time RedistVol (D ini → D tar) × τ comm and the cost of the K iterations of the stencil algorithm T comp (P tar), and thus to check whether T total is smaller than T M AX or not. Thus, DECISIONVOLPART&REDISTRIB is in NP.

To establish the completeness, we use a reduction from the 3-Partition problem, which is known to be NP-complete in the strong sense [START_REF] Garey | Computers and Intractability, a Guide to the Theory of NP-Completeness[END_REF]. We consider the following instance Inst 0 of the 3-Partition problem: let a 0 i , 1 ≤ i ≤ 3m, be 3m integers and B 0 an integer such that a 0 i = mB 0 . We enforce the additional (usual) constraint that ∀i, B 0 /4 < a 0 i < B 0 /2 [START_REF] Garey | Computers and Intractability, a Guide to the Theory of NP-Completeness[END_REF]. To solve Inst 0 , we need to solve the following question: is there a partition of the a 0 i 's in m subsets S 1 , ..., S m such that, ∀S k , i∈S k a 0 i = B 0 . Note that if there is a solution, then each subset will contain exactly 3 elements, due to the additional constraint.

We then transform (in polynomial time) Inst 0 into another instance Inst 1 of the 3-Partition problem as follows: let a i = 385m × a 0 i for 1 ≤ i ≤ 3m and B = 385m × B 0 . Obviously, Inst 1 has a solution if and only if Inst 0 has a solution. This new instance of the 3-Partition problem has the following properties:

• ∀i, B/4

< a i < B/2, since ∀i, B 0 /4 < a 0 i < B 0 /2 • B 2 > 5m × B + 96m since 1 m (B 2 -5m × B) = 385mB 0 (385B 0 -5) > 96 because m ≥ 1 and B 0 ≥ 1. • B > 384m since B 0 ≥ 1.
Given Inst 1 , we build the following instance Inst 2 of the DECISIONVOLPART&REDISTRIB problem, illustrated in Figure 4.4. In Inst 2 , we set the number of processors to P = 12m, the number of 1D-stencil steps to K = 1, elementary communication and computing times τ comm = 1 and τ calc = B 2 . We also set the time bound to T MAX = 96m + 5mB + 8B 3 . Finally, Figure 4.4 represents the initial data distribution D ini of 96mB elements on the 12m different processors. To clarify the proof, we split the 12m processors into 4 different groups. There are 3m processors in group 1, m processors in group 2, 4m processors in group 3 and 4m processors in group 4. Processors in group k are denoted by P (k) i . Figure 4.4 depicts the initial data distribution D ini . For example, the 2B first consecutive elements are stored on P 1 , the first processor in group 4. Note that in the fifth set of 3m block values (a 1 , 2B, a 2 , 2B, . . . , a 3m , 2B), the 3m blocks of size 2B are distributed on the m group-4 processors P 3m+1 , . . . , P 4m in a round robin way (the first block goes to P 3m+1 , the second one to P 3m+2 , . . . , the m-th block goes to P 4m , the m + 1-th goes ot P 3m+1 , etc.

The construction of Inst 2 is polynomial in the size of Inst 1 , and thus, in the size of Inst 0 . We show that Inst 2 has a solution if and only if Inst 1 has a solution.

We first assume that Inst 2 has a solution and we let D tar denote be the final distribution of data. A connected component of processor p is defined as a set of consecutive items hosted on processor p. A maximal connected component of processor p is a connected component of processor p which is not strictly included in another connected component of processor p. For instance, in D ini depicted in Figure 4.4, each group-1 processor has 5 maximal connected components in D ini . Let C p be the number of maximal connected components on processor p for the distribution D tar . At each stencil step, each processor has to send only the two items at each border of each of its maximal connected components. Thus, with l p = |{x s.t. D tar (x) = p}| being the workload of processor p as introduced in Section 4.5.1, T iter vol (P tar) = 2 × p C p + B 2 × max p l p , and T total (D ini , D tar) = RedistVol (D ini → D tar) + 2 × p C p + B 2 × max p l p . Since, D tar is a solution to Inst 2 , we know that:

RedistVol (D ini → D tar) + 2 × p C p + B 2 × max p l p ≤ 96m + 5mB + 8B 3 . (4.1)
Let us first show that ∀p, l p = 8B:

• max p l p ≤ 8B because otherwise, we would have:

T stencil vol (D ini , D tar) ≥ B 2 × max p l p ≥ B 2 × (8B + 1) > T MAX , since B 2 > 5m × B + 96m.
• There are a total of 96mB elements of data and 12m processors, thus ∀p, l p = 8B. P (1) 1 P (4) 1 P (1) 3m P (4) 3m P (1) 1 P (4) 1 P (1) 3m P (4) 3m P (1) 1 P (4) 1 P (1) 3m P (4) 3m P (1) 1 P (4) 1 P (1) 3m P (4) 3m P (1) 1 P (4) 3m + 1 P (1) 2 P (4) 3m + 2 P (1) 3m P (4) 4m P (2) 1 P (2) 2 P (2) m P (3) 1 P (4) 1 P (3) 2 P (4) 2 P (3) 4m P (4) 4m P (3) 1 P (3) 4m P (3) 1 P (3) 4m P (3) 1 P (3) 4m P (4) 3m + 1 P (P (1) 1 P (1) 3m P (2) 1 P (2) m P (3) 1 P (3) 4m P (4) 1 P (4) P (1) 3m P (4) 3m P (1) 1 P (4) 1 P (1) 3m P (4) 3m P (1) 1 P (4) 1 P (1) 3m P (4) 3m P (1) 1 P (4) 1 P (1) 3m P (4) 3m P (2) P (4) 3m + 1 P (2) P (4) 3m + 2 P (2) P (4) 4m S(a1) S(a2) S(For each processor

P (k) i , let S (k) i (respectively R (k)
i) be the number of elements sent (respectively received) by processor P (k) i during the redistribution phase. We naturally have

k,i S (k) i = k,i R (k) i = RedistVol (D ini → D tar).
Let us show that p C p ≥ 48m. Initially, in D ini , there are 52m maximal connected components among all the processors. There are only two different ways to decrease the global number of maximal connected components: merging two existing connected components by receiving all the data between them, or sending one entire maximal connected component to one of the processors that host a maximal connected component next to it. We first consider the first option. In D ini , two maximal connected components hosted by the same processor are separated by more than 6mB elements. Thus, to merge two existing maximal connected components in D ini , a processor would have to receive more than 6mB elements during the redistribution phase, which is not possible according to Equation 4.2, since B > 384m. We now consider the second option (sending one entire maximal connected component).

• Let assume that a processor P (1) i sends one of its entire maximal connected components to one of its neighbors. The only neighbors of P • Let assume that a processor P

(2) i sends one of its entire maximal connected components to one of its neighbors. This means that processor P (2) i will send at least 7B elements during the redistribution phase and thus, we will have

RedistVol (D ini → D tar) = (k,p)s.t.(k,p) =(2,i) S (k) p + S (2) i ≥ 5mB + 7B,
which again, is not possible according to Equation 4.2 and since B > 384m.

• Let assume that a processor P

(3) i sends one of its entire maximal connected components to one of its neighbors. This means that P (3) i will send at least B elements during the redistributing phase and thus, we will have

RedistVol (D ini → D tar) = (k,p)s.t.(k,p) =(3,i) S (k) p + S (3) i ≥ 5mB + B,
which, again, is not possible.

Thus, the only remaining option to decrease the number of maximal connected component is that some processor P (4) i sends at least one entire connected component to one of its neighbors. Assume that it sends at least two of its entire maximal connected components to one of its neighbors. This means that P (4) i will send at least 3B elements during the redistributing phase and thus, we will have

RedistVol (D ini → D tar) = (k,p)s.t.(k,p) =(3,i) S (k) p + S (4) i ≥ 5mB + 2B,
which, again, is not possible according to Equation 4.2 and since B > 384m.

Thus each processor P (4) i can send only one of its entire maximal connected components to one of its neighbors. There are 4m processors in group-4, so we can reduce the number of maximal connected components by only 4m. Since there are 52m maximal connected components in D ini , we have in D tar :

p C p ≥ 48m. (4.3)
Then, we show that RedistVol (D ini → D tar) = 5mB.

• Equation 4.2 and Equation 4.3 lead to:

RedistVol (D ini → D tar) = k,i R (k) i ≤ 5mB
• Initially, in D ini , each processor in group-2 or group-3 hosts 7B elements of data and since ∀p, l p = 8B in D tar , the group-2 and group-3 processors each have to receive at least B elements of data during the redistribution phase (∀i, R

≥ B and R

(3) i ≥ B). Thus at least 5mB elements of data have to be communicated during the redistribution phase:

RedistVol (D ini → D tar) = k,i R (k) i ≥ 5mB.
Thus RedistVol (D ini → D tar) = 5mB and Equation 4.2 becomes:

p C p = 48m. (4.4)
We now bound the number of elements sent and received by processors in group 2, 3 and 4.

• Each group-2 processor P

(2) i and each group-3 processor P

(3) i hosts 7B elements in the initial distribution D ini , and 8B elements in the final distribution D tar . Thus, they each have to receive at least B elements of data. There are 5m of them, so they can receive only B elements of data each, and no other processor can receive any data. More formally, we have ∀i: R Since p C p = 48m, each group-4 processor has to send one and only one of its entire maximal connected components to one of its neighbor (as we have seen earlier, there is no other way to decrease the global number of maximal connected components). Since ∀i: S (4) i = B, group-4 processors can only send their maximal connected component of size B. The only neighbors of these maximal connected components are some group-3 processors. Thus, each group-4 processor will send its entire maximal connected component of size B to a group-3 processor, and group-3 processors can not receive anything else from any other processor.

(1) i = 0, R (2) i = B, R (3)
Gathering all the results shown above, we can state that group-1 processors can only send their a i elements to group-2 processors during the redistribution phase. If a processor P (1) i splits its a i consecutive elements and send them to two different group-2 processors, this would create an extra maximal connected component on the group-2 processors. Thus, each group-1 processor has to send its a i elements to the same group-2 processor.

Let A k be the set of the sizes of the maximal connected components received by P

(2) k during the redistribution phase. The A k sets represent a partition of the a i 's and ∀k, a i ∈A k a i = R Suppose now that Inst 1 has a solution. Let A k be the 3-Partition of the integers a i and consider the distribution D sol described in Figure 4.4. To perform the redistribution from D ini to D sol , each group-2 and group-3 processors has to send or receive B elements of data, which means that RedistVol (D ini → D sol) = 5mB. In addition, in D sol , there are 48m maximal connected components. Thus, T total (D ini , D sol) = 96m + 5mB + 8B 3 ≤ T M AX , which means that Inst 2 has a solution. This concludes the proof. Proof. The proof of Theorem 4.4 is similar to that of Theorem 4.3. We consider the same instances Inst 0 and Inst 1 of the 3-Partition problem [START_REF] Garey | Computers and Intractability, a Guide to the Theory of NP-Completeness[END_REF]. We build the instance Inst 2 depicted in Figure 4.4 for the DECISIONSTEPPART&REDISTRIB problem, as in the previous proof, except that we now set T MAX = 8 + B + 8B 3 . We want to show that Inst 2 has a solution if and only if Inst 1 has a solution.

Assume first that Inst 2 has a solution and use the same notations as above. We have the inequality:

T total (D ini , D tar) = RedistSteps(D ini → D tar) + 2 × max p C p + B 2 × max p l p ≤ 8 + B + 8B 3 . (4.5)
As in the previous proof, we can easily show that ∀p, l p = 8B. Thus, Equation 4.5 becomes:

RedistSteps(D ini → D tar) + 2 × max p C p ≤ 8 + B. (4.6)
Then we show that RedistSteps(D ini → D tar) = max (p,k) max(S

(k) p , R (k)
p) = B:

• Initially, in D ini , the processor P (4) 1

hosts 9B elements of data; since max p l p = 8B in D tar , the processor P We now bound the number of elements sent and received by processors in group 2, 3 and 4. We naturally have ∀P

(k) i , max(S (k) i , R (k) i) ≤ RedistSteps(D ini → D tar) = B.
• Each group-2 processor P

(2) i hosts 7B elements in the initial distribution D ini , and 8B elements in the final distribution D tar . This means that R

(2) i -S (2) i = B. Since max(S (2) i , R (2)
i) ≤ B, we have: R

i) ≤ B, we necessarily have: R From these results, using the same reasoning as in the previous proof, we can show that:

• group-1 and group-2 processors do not send or receive any data to or from a group-3 or group-4 processor.

• Each group-1 processor does not keep any data received during the redistribution phase.

• Each group-1 processor has to send its a i elements to the same group-2 processor.

Let A k be the set of the sizes of the maximal connected components received by P

(2) k during the redistribution phase: we have shown that the A k sets are a solution of Inst 1 .

Suppose now that Inst 1 has a solution. As in the previous proof, we can show that the distribution D sol described in Figure 4.4 is a solution for Inst 2 , which concludes the proof.

Experiments

The algorithms designed in Section 4.4 find the optimal target distribution according to different models for the redistribution time. These algorithms may be sub-optimal for minimizing the total processing time when it takes the processing of an arbitrary application into account. Section 4.5 proved that there is no polynomial-time optimal algorithm to minimize this total processing time (unless P=NP) even for a simple application like the 1D-Stencil algorithm, which motivates the use of low-complexity suboptimal heuristics. In this section, we show that the redistribution algorithms introduced in Section 4.4 are good enough to provide performance improvements in real-life applications. The experiments are conducted on a multicore cluster for the 1D-Stencil kernel and, then, for a more compute-intensive dense linear algebra routine, namely the QR factorization.

Setup

We have implemented the 1D-stencil kernel of Section 4.5 on top of the PARSEC runtime [START_REF]DAGuE: A generic distributed DAG engine for high performance computing[END_REF][START_REF] Bosilca | DAGuE: A generic distributed DAG engine for high performance computing[END_REF]. In addition, we have also implemented a QR factorization algorithm on top of PARSEC, in order to experiment with a widely used computation-intensive numerical linear algebra routine.

The PARSEC runtime deals with computational threads and MPI communications. It allows the user to define the initial distribution of the data onto the platform, as well as the target distribution for the computations. Data items are first moved from their initial data distribution to the target data distribution. Then computations take place, and finally data items are moved back to their initial position. It is important to stress that the PARSEC runtime will overlap the initial communications due to the redistribution with the processing of the computational kernel (either 1D-stencil or QR), so that the total execution time does not strictly obey the simplified model of the previous sections. However, choosing a good data partition (leading to an efficient implementation of the computational kernel), and an efficient compatible data distribution (leading to fewer communications during the redistribution) is still important to achieve high performance.

Experiments have been conducted on Dancer, a small cluster hosted at the Innovative Computing Laboratory (ICL) in Knoxville, TN. This cluster has 16 multi-core nodes, each equipped with 8 cores, and an InfiniBand 10G interconnection network. Each node features two Intel Westmere-EP E5606 CPUs at 2.13GHz. The system is running the Linux 64bit operating system, version 3.7.2-x86_64. The software was compiled with the Intel Compiler Suite 2013.3.163. BLAS kernels were provided by the MKL library, and OpenMPI 1.4.3 was used for MPI communications by the PARSEC runtime version 1.1. Each computational thread is bound to a single core using the HWLOC 1.7.1 library. We use all 16 nodes, whose aggregated theoretical peak performance is 1, 091 GFLOP/sec.

Stencil

The stencil algorithm described in Algorithm 9 can use diverse patterns to update the data, depending upon the target application. In our experiments, data items operated upon are blocks of 1.6 × 10 6 double-precision floats. Experimentally, we observe that the average communication time of such blocks between two nodes of Dancer is 100 milliseconds. The data items are initially distributed on the 16 processors according to a random balanced distribution as described in Section 4.4.3. We used a set of 30 randomly generated initial data distributions.

Figure 4.5 depicts the performance of the 1D-stencil algorithm when the update kernel takes on average 100 milliseconds to compute the new value of one data item, so that the communication-tocomputation ratio is τ comm /τ calc = 1. Each sub-figure represents a different number of stencil iterations (K = 0 to 9). In each sub-figure, we have executed K stencil iterations with 4 different strategies. In the owner computes strategy, the data items are not moved and the stencil algorithm is applied on the initial distribution. In the other strategies, we redistribute the data items towards three target distributions, each compatible with the canonical data partition P can described in Section 4.5.2: (i) the distribution D can = P can with the original (arbitrary) labeling of the processors; (ii) the distribution that minimizes the volume of communications D vol ; and (iii) the distribution that minimizes the number of redistribution steps D steps . We compute the processing time of the redistribution followed by the K stencil iterations. The time needed to compute the target distributions depends on the number of processors and data items but does not depend on the size of the data items. Usually the size of the data items is large enough for the computation time of the algorithm presented in Section 4.4 to be negligible, therefore it is not included in the figures. Each cross shows the performance for one of the 30 initial data distributions, and the plain lines shows the average performance on the 30 initial data distributions. The first observation is that the standard deviation of the processing time for all the initial data distribution is very small. Moreover, in all sub-figures, we observe that the performances for target distributions D vol and D steps are indistinguishable. This is in accordance with the results in Section 4.4.3 showing that, on random balanced initial distributions, Algorithm 7 and Algorithm 8 provide similar performances for both metrics. We observe that the processing time of the three redistribution strategies slightly increases with the number of stencil iterations, i.e., one stencil iteration is very fast (roughly 400 milliseconds for 16 data items per processor) when processed on the optimal data partition described in Section 4.5.2. However, the owner computes strategy is less efficient as soon as we have to process more than one stencil iteration. In the top-left sub-figure, K = 0 so that no iteration is executed. Data items are moved from their initial processor to their target processor and then moved back onto their initial position. It thus depicts the performance of two consecutive redistributions. The owner computes strategy has a processing time close to zero which corresponds to the overhead of the PARSEC runtime. Both redistribution strategies computed by Algorithm 7 and Algorithm 8 provide a 20% improvement over D can . This improvement decreases when the number of iterations increases. Indeed, the only difference between the performances of D can , D vol and D steps comes from the redistribution phase: the heavier the computation, the less significant the redistribution phase.

Figure 4.6 depicts the performance of the 1D-stencil algorithm when the update kernel is less expensive, so that τ comm /τ calc = 10. Hence, in this experiment, the cost of communicating a data element is greater than the computation time and we have to take special care to the redistribution. With a faster computing kernel, the overall computation time is inferior to the one in Figure 4.5 but the owner computes strategy is still less efficient than the redistributing strategies as soon as we have to do more than one iteration. The difference between the performances of D can , D vol and D steps is smaller in percentage than in Figure 4.5.

Altogether, the experiments show that (i) redistributing towards a better data distribution is more suitable than performing the algorithm in place with the random initial distribution, as soon as the computational cost in non-negligible; and (ii) redistributing towards a data distribution that minimizes the cost of the redistribution phase rather than towards an arbitrary one does improve the performance, especially when the time to communicate a data item is significant.

QR factorization

In this section, we deal with a more compute-intensive kernel, namely the QR factorization, which consists of decomposing a square matrix A into the product of two matrices Q × R such that Q is an orthogonal matrix and R is an upper triangular matrix. QR factorization is a widely used linear algebra algorithm for solving linear systems and linear least squares problems.

Framework

To optimize performance, the matrix is usually stored in tiled form: A has n tiles per row or column and each tile is a block of n b × n b floating point numbers. The matrix is then factored with a tiled QR factorization algorithm using orthogonal Householder matrices, as in [START_REF]A class of parallel tiled linear algebra algorithms for multicore architectures[END_REF][START_REF] Quintana-Ortí | Programming matrix algorithms-by-blocks for thread-level parallelism[END_REF]. The N = n 2 matrix tiles are the data items of the application. Initially, the tiles are arbitrarily distributed, and this initial distribution may not be suitable for the QR factorization. We aim to redistribute the N data items towards a better data partition. However, as opposed to the 1D-stencil algorithm, the QR factorization algorithm has a complex workflow, and it is impossible to predict its processing time accurately: given a data partition P, we cannot easily compute T comp (P).

However, even though there is no explicit model for the cost of a QR factorization performed on a specific data partition, some distributions are known to be well-suited. A widely-used data partition consists of mapping the tiles onto the processors following a 2D block cyclic partition [START_REF] Choi | ScaLAPACK: a portable linear algebra library for distributed memory computersdesign issues and performance[END_REF]. The P processors (numbered from 0 to P -1) are arranged in a p × q grid where p × q = P . Matrix tile A i,j is then mapped onto processor (i mod p) × p + (j mod q). In the following, this data partition will be referred to as P tar , and the objective is to redistribute the N data items towards a distribution compatible with P tar .

Similarly to Section 4.6.2, we compare 4 redistribution strategies. In the owner computes strategy, data items are not moved and the QR factorization is performed in place. In the other strategies, we redistribute data items towards three target distributions compatible with P tar : (i) the distribution D can = P tar with the original (arbitrary) labeling of the processors; (ii) the distribution that minimizes the volume of communications D vol ; and (iii) the distribution that minimizes the number of redistribution steps D steps .

Setup

A highly optimized version of the QR factorization implemented on top of the PARSEC runtime is available in the DPLASMA library [START_REF] Bosilca | Flexible development of dense linear algebra algorithms on massively parallel architectures with DPLASMA[END_REF]. We have modified this implementation to deal with different data distributions. We use a wide range of matrix sizes, with tiles of size n b = 200 × 200 doubleprecision floating point numbers. Our objective is to highlight the impact of the target data distribution on the performance of the QR algorithm, but a tile size of 200 × 200 is reasonable as it ensures near peak performance on the execution platform.

As already mentioned, real-life distributions are not random. We conduct experiments on 2 different sets of initial distributions for the matrix tiles, one artificially generated and one modeling an Earth Science application [START_REF] Stonebraker | SciDB DBMS research at M.I.T[END_REF]:

• SkewedSet: Matrix tiles are first distributed following an arbitrary 2D block cyclic distribution (used as reference) and, then, half of the tiles are randomly moved onto another processor. The processor with index i ∈ 0, P -1 has a probability 2i P (P -1) to receive each tile. Thus, the workload among processors is likely to be imbalanced. The redistribution strategies toward D vol and D steps should find the 2D block cyclic distribution used as reference and move only half of the tiles, while the redistribution towards the arbitrary distribution D can can potentially move all of them.

• ChunkSet: This distribution set comes from an Earth Science application [START_REF] Stonebraker | SciDB DBMS research at M.I.T[END_REF]. Astronomy telescopes collect data over days of observations and process them into a 2D or 3D coordinate system, which is usually best modeled as a matrix. Then, linear algebra routines such as QR factorization must be applied to the resulting matrix. The collected data are stored on a set of processors in a round-robin manner, ensuring spacial locality of data that are sampled at close time-steps. If a certain region of Earth is observed twice, the latest data overwrites the previous one. We generated a set of initial distributions fitting the telescope behavior. 4.2 presents the results of the experiments for initial distributions in ChunkSet. Each line corresponds to the average results on 50 matrices, as before. The three redistribution strategies perform similarly, with around 90% of the tiles moved during the redistribution phase. Contrary to the previous case, it appears that redistributing towards a 2D block-cyclic partitioning does not lead to a reduction of the volume of communication involved during the QR factorization. Indeed, the owner computes strategy requires fewer communications than the other strategies for larger matrices in ChunkSet, due to the chunk distribution of the tiles. However, it does not lead to better performance results. Indeed, the three redistribution strategies require more communications to ensure a better load balancing, which leads to a 10-15% improvement on the total completion times compared to the owner computes strategy on large matrices.

In summary, we conclude that redistributing towards a suitable data partition for the QR factorization leads to significant improvement, compared to not redistributing the data as with the owner computes strategy. Initial distributions in SkewedSet are a good example where redistributing data is essential. Sometimes, like in ChunkSet, redistribution strategies involve a bigger amount of communications during the QR factorization but lead to a better load balancing across processors, which is enough to be profitable in the end.

Conclusion

In this chapter, we have studied the problem of finding the best data redistribution, given a target data partition. We have used two cost metrics, the total volume of communications and the number of parallel redistribution steps. We have provided algorithms computing the optimal solution for both metrics, and shown through simulations that they achieve significant gain over redistributing to an arbitrary fixed distribution. We have also proved that finding the optimal data partition that minimizes the completion time of the redistribution followed by a 1D-stencil kernel is NP-complete. Altogether, these results lay the theoretical foundations of the data partition problem on modern computers.

Admittedly, the platform model used in this chapter will only be a coarse approximation of actual parallel performance, because state-of-the-art runtimes use intensive prefetching and overlap communications with computations. Therefore, experimental validation of the algorithms on a multicore cluster have been presented for a 1D-stencil kernel and a dense linear algebra routine. The new redistribution strategies presented in this chapter lead to better performance in all cases, and the improvement is significant when the initial data distribution is not well-suited for the computational kernel.

Future work will be devoted to further investigating the Earth Science application. We have restricted to redistributing data towards the canonical 2D block-cyclic partition, but more experiments are needed to determine the best partition, given the initial distributions that typically arise for this application.

Part III

Auto-adjoint computations

Introduction

The need to efficiently compute the derivatives of a function arises frequently in many areas of scientific computing, including mathematical optimization, uncertainty quantification, and nonlinear systems of equations. When the first derivatives of a scalar-valued function are desired, so-called adjoint computations can compute the gradient at a cost equal to a small constant times the cost of the function itself, without regard to the number of independent variables. This adjoint computation can arise from discretizing the continuous adjoint of a partial differential equation [START_REF] Jameson | Aerodynamic shape optimization using the adjoint method[END_REF][START_REF] Giles | An introduction to the adjoint approach to design[END_REF] or from applying the socalled reverse or adjoint mode of algorithmic (also called automatic) differentiation to a program for computing the function [START_REF]Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation[END_REF]. In either case, the derivative computation applies the chain rule of differential calculus starting with the dependent variables and propagating back to the independent variables. Thus, it reverses the flow of the original function evaluation. In general, intermediate function values are not available at the time they are needed for partial derivative computation and must be stored or recomputed [START_REF] Giering | Recomputations in reverse mode AD[END_REF].

A popular storage or recomputation strategy for functions that have some sort of natural "time step" is to save (checkpoint) the state at each time step during the function computation (forward sweep) and use this saved state in the derivative computation (reverse sweep). If the storage is inadequate for all states, one can checkpoint only some states and recompute the unsaved states as needed. Griewank and Walther prove that given a fixed number of checkpoints, the schedule that minimizes the amount of recomputation is a binomial checkpointing strategy [START_REF] Griewank | Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation[END_REF][START_REF] Griewank | Algorithm 799: Revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation[END_REF]. The problem formulation they used implicitly assumes that reading and writing checkpoints are essentially free, but the number of available checkpoints is limited (see Problem 1 below). In [START_REF] Stumm | Multistage approaches for optimal offline checkpointing[END_REF], Stumm and Walter consider the case where checkpoints can be written to either memory or disk. The number of checkpoints to disk is effectively unlimited but the time to read or write a checkpoint can no longer be ignored (see Problem 2). We consider the same situation. In contrast to Stumm and Walther, however, we do not restrict ourselves to a single binomial schedule but instead prove that there exists a time-optimal schedule possessing certain key properties (including no checkpoints written to disk after the first checkpoint to memory has been written), and we provide a polynomial time algorithm for determining an optimal schedule.

The rest of this chapter is organized as follows. Section 5.2 introduces terminology and the general problem framework. Section 5.3 establishes several properties that must hold true for some optimal schedule and provides an algorithm for identifying this schedule. Section 5.4 compares our checkpointing schedule with that of Stumm and Walther. We conclude with some thoughts on future research directions.

Framework

The AC problem

F 0 F 1 • • • F l-2 F l-1 F0 F1 F2 • • • Fl-1 Fl x 0 x 1 x 2 x l-2 x l-1 x l xl+1 xl xl-1 x3 x2 x1 x0 x 0 x 1 x 2 x l-1 x l Figure 5.1:
The AC dependence graph.

Definition 5.1 (Adjoint Computation (AC) [START_REF] Griewank | Algorithm 799: Revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation[END_REF][START_REF] Stumm | Multistage approaches for optimal offline checkpointing[END_REF]). An adjoint computation (AC) with l time steps can be described by the following set of equations:

F i (x i) = x i+1 for 1 ≤ i < l (5.1) Fi (x i , xi+1) = xi for 1 ≤ i ≤ l (5.2)
The dependencies between these operations1 are represented by the graph G = (V, E) depicted in Figure 5.1.

The F computations are called forward steps. The F computations are called backward steps. If xl is initialized appropriately, then at the conclusion of the adjoint computation, x1 will contain the gradient with respect to the initial state (x 1).

Initial state: AC graph: size l

Steps:

u f , u b Memory: c m , w m = r m = 0, M ini = ∅ Disks: c d = +∞, w d , r d , D ini = ∅ Buffers: B ⊤ , B ⊥ B ⊤ ini = {x 0 }, B ⊥ ini = {x l+1 }

Algorithm model

We next detail the elementary operations that an algorithm can perform.

F i Execute one forward computation F i (for i ∈ {0, . . . , l -1}). Note that by definition, for F i to occur, x i should be in the top buffer before (i.e., B ⊤ = {x i }) and x i+1 will be in the top buffer after (i.e., B ⊤ ← {x i+1 }). This operation takes a time time(F i) = u f .

Fi Execute the backward computation Fi (i ∈ {0, . . . , l}). Note that by definition, for Fi to occur, x i should be in the top buffer and xi+1 in the bottom buffer (i.e., B ⊤ = {x i } and B ⊥ = {x i+1 }) and xi will be in the bottom buffer after (i.e., B ⊥ ← {x i }). This operation takes a time time(Fi) = u b .

W m i Write the value x i of the top buffer into the memory. Note that by definition, for W m i to occur, x i should be in the top buffer (i.e., B ⊤ = {x i }) and there should be enough space for x i in the memory (i.e., |M| < c m); x i will be in the memory after (i.e., M ← M ∪ {x i }). This operation takes time time(W m i) = w m . D m i Discard the value x i of the memory (i.e., M ← M\{x i }). This operation takes a time time(D m i) = 0. This operation is introduced only to clarify the proofs, since a D m i operation is always immediately followed by a W m i operation. In other words, all write operations overwrite the content of some memory slot, and we simply decompose an overwrite operation into a discard operation followed by a write operation. R m i Read the value x i in the memory, and put it into the top buffer. Note that by definition, for R m i to occur, x i should be in the memory (i.e., x i ∈ M) and x i will be in the top buffer after (i.e., B ⊤ = {x i }). This operation takes a time time(R m i) = r m . W d i Write the value x i of the top buffer into the disk. Note that by definition, for W d i to occur, x i should be in the top buffer (i.e., B ⊤ = {x i }) and x i will be in the disk after (i.e., D ← D ∪ {x i }). This operation takes a time time(W d i) = w d . R d i Read the value x i in the disk and puts it into the top buffer. Note that by definition, for R d i to occur, then x i should be in the disk (i.e., x i ∈ D) and x i will be in the top buffer after (i.e., B ⊤ = {x i }). This operation takes a time time(R d i) = r d . D d i Discard the value x i of the disk (i.e., D ← D\{x i }). This operation takes a time time(D d i) = 0. The same comment as for D m i operations holds: all disk writes, just as memory writes, are overwrite operations, which we decompose as indicated above. Both discard operations are introduced for the clarity of the proofs.

For conciseness, we let F i→i ′ denote the sequence

F i • F i+1 • . . . • F i ′ .
Because of the shape of the AC dependence graph (see Figure 5.1), any algorithm solving Problem 2 will have the following unique structure,

S l • Fl • S l-1 • Fl-1 • . . . • S 0 • F0 , (5.3)
where for all i, S i is a sequence of operations that does not contain Fi (hence the Fi following S i is the first occurrence of Fi).

Definition 5.3 (iteration i). Given an algorithm that solves the AC problem, we let iteration i (for i = l . . . 0) be the sequence of operations S i • Fi . Let l i be the execution time of iteration i.

With this definition, the makespan of an algorithm is l i=1 l i .

Solution of PROB

∞ (l, c m , w d , r d)
In this section we show that we can compute in polynomial time the solution to PROB ∞ (l, c m , w d , r d).

To do so, we start by showing some properties on an optimal algorithm.

• We show that iteration l starts by writing some values x i on disk checkpoints before doing any memory checkpoints (Lemma 5.6).

• Once this is done, we show that we can partition the initial AC graph into connected subgraphs by considering the different subgraphs between consecutive disk checkpoints (Proposition 5.1). Each of these subgraphs can be looked at (and solved) independently.

• We give some details on how to solve the problem on all subgraphs. In particular we show that (i) we do not write any additional values to disks in order to solve them (Lemma 5.2); and (ii) we show that similarly to the first iteration, the algorithm writes some values to memory checkpoints and we can partition these subgraphs by considering the different subgraphs between memory checkpoints (Lemma 5.3).

• To solve these subgraphs, we introduce new problems (Problems 3 and 4) that inherit the properties of the general problem.

• We show how to compute the size of the different connected subgraphs through a dynamic programming algorithm (§ 5.3.2).

Properties of an optimal algorithm

We show here some dominance properties. That is, there exist optimal algorithms that obey these properties, even though not all optimal algorithms do.

Lemma 5.1. There exists an optimal solution that has the following structure,

S l • Fl • S l-1 • Fl-1 • . . . • S 0 • F0 ,

and that satisfies (P0):

(i) There are no D d -type operations (we do not discard from disks).

(ii) Each D m -type operation is immediately followed by a W m -type operation (we discard a value from memory only to overwrite it).

(iii) Each R-type operation is not immediately followed by another R-type operation.

(iv) Each W m -type operation (resp. W d -type operation) is not immediately followed by another W mtype operation (resp. W d -type operation).

(v) Each W m -type operation is not immediately followed by another D m -type operation. For the remainder of the execution, the algorithm will not need the grey area anymore; hence it will need to fetch x j i (green) from a checkpoint slot.

• • •

F j i • • • F i-1 F i • • • • • • Fi Fi+1 • • • x j i x j i +1 x i-1 x i x i+1 xi xi+1 xi+2 x i x i+1
(vi) There are no F-type operations in any S i sequence (backward steps are not recomputed);

(vii) During S i (i < l), there are no F i to F l-1 operations (nor actions involving x i+1 to x l);

(viii) In particular, for all i < l, the first operation of sequence S i is a R-type operation; in other words, there exist j i and s ∈ {m, d} such that S i = R s j i Si ; (ix) ∀i, there is at least one R m i operation between a W m i and a D m i operations. (x) If l > 0, the first operation of the algorithm is a W -type operation.

Proof. Some of the intuitions of this lemma can be grasped from Figure 5.2. Note that removing an operation from the optimal solution cannot increase the makespan.

(i) We have an infinite number of disk slots available: there is no need to discard any value from it.

(ii) Discard a value from the memory is useless if the memory is not full and if we do not need to write a new value in it.

(iii) If we had two consecutive reads in the sequence, then the only action of the first read would be to put some value x i in the top buffer. However, the second read would immediately overwrite this value, making the first read unnecessary. Thus, the first read can be removed.

(iv) It is useless to write the same value in the same storage twice in a row.

(v) Similar to the previous point, from (ii) a D m operation is immediately followed by a W m operation; hence this would be writing twice in the same storage in a row.

(vi) The reason there are no F-type operations in all S i is that we have a dedicated buffer for the xi values. The only operations that use the xi values are F-type operations. Also, to execute Fi , we need only the value of xi+1 that is already stored in the bottom buffer at the beginning of S i . Hence, removing the additional F-type operations from S i can only improve the execution time.

(vii) Operations involving F i to F l-1 (or their output values) during S i would be useless; see Figure 5.2.

(viii) After the execution of Fi , the content of the top buffer is x i . The value x i is useless for Fi-1 (see the previous point). Hence, at the begining of S i-1 , we need to read the content of a storage slot before executing any F-type, F-type, or W -type operation. Furthermore, because of property (ii), doing a D-type operation will not permit an R-type operation before the next W -type operation. Hence, the first operation of sequence S i is necessarily an R-type operation.

(ix) Assume that there exists i such that there are no R m i operations between a W m i and a D m i operations. It is useless to write the value x i in the memory and discard it without reading it in between. Thus the W m i and D m i operations can be removed at no additional time delay.

(x) The first operation of the solution cannot be an R-type or a D-type operation since at the beginning of the execution the memory and the disk are empty. If l > 0, the forward step F 0 has to be executed before the backward step Fl . Thus the first operation cannot be an F-type operation. Now assume that the first operation is an F-type operation. It then has to be F 0 . After the execution of F 0 , the value x 1 is in the top buffer, and the value x 0 is not stored anywhere. There is no way to recompute the value x 0 , thus to execute F0 , which would then prevent computing x0 (absurd). Thus, at the beginning of the execution, we have to store the value x 0 either in the memory or in the disk, and the first operation of the algorithm is a W -type operation.

Lemma 5.2. There exists an optimal solution to Problem 2 that satisfies (P0) and (P1):

(i) All disk checkpoints are executed during the first iteration S l .

(ii) For all i, 1 ≤ i ≤ l -1, W d i operations are executed before W m i operations. Proof. Suppose S is an optimal solution that satisfies (P0). We will show that we can transform it into a solution that satisfies (P0) and (P1):

(i) Iteration l passes through all forward computations. If a value x i is saved on disk later on during the algorithm, we could as well save it after the first execution of F i-1 (in S l) with no additional time delay, since we have an infinite number of slots on disk.

(ii) Let assume that there exists i, 0 ≤ i ≤ l -1, such that W m i is executed before W d i in S. By definition, when W m i is executed, the value x i is stored in the top buffer. Thus we can execute W d i right before W m i , instead of later, at no additional time delay, since the amount of available disk slots is infinite. This new solution still satisfies (P0).

The following lemma and its proof are inspired by Lemma 3.1 by Walther [START_REF] Walther | Program reversal schedules for single-and multi-processor machines[END_REF].

Lemma 5.3 (Memory Checkpoint Persistence).

There exists an optimal solution to Problem 2 that satisfies (P0), (P1), and (P2):

(i) Let i < l; if W m
i is executed, then there are no D m i operations until after the execution of Fi (that is, until the beginning of iteration i -1).

(ii) Moreover, until that time, no operation involving F 0 to F i-1 or values x 0 to x i-1 is taken.

The intuition behind this result is that if we were to discard the value x i before executing Fi+1 , then a better solution would have stored x i+1 in the first place. Furthermore, because r m = 0, we can show that until Fi , all actions involving computations F 0 to F i-1 or values x 0 to x i-1 do not impact the actions that lead to an Fj operation, j ≥ i, and thus can be moved to a later time at no additional time delay (and potentially reducing the makespan of the algorithm).

Proof. Let S be an optimal solution that satisfies (P0) and (P1) but not (P2). We can transform it into a solution that satisfies (P0), (P1), and (P2). We iteratively transform S to increase the number of i values respecting (P2), without increasing the makespan of the schedule. This transformation can be applied as many times as necessary to reach a schedule that satisfies (P2).

Assume, first, that S does not satisfy (P2(i)). Let x i be the first value such that at some point during S, x i is stored in the memory and discarded before executing Fi . Thus we can write

S = S 0 • W m i • S 1 • D m i • S 2 • Fi • S 3 ,
where S 0 , S 1 , S 2 , and S 3 are sequences of operations that do not include Fi . Since S satisfies (P0(ix)), there is at least one R m i operation in S 1 . Let us prove that all these R m i operations are immediately followed by an F i operation.

• The R m i operations cannot be immediately followed by an F-type operation, because the only Ftype operation allowed after an R m i operation is Fi (since the value x i would be in the top buffer) and there are no Fi in S 1 .

• According to (P0(ix)), the R m i operations cannot be immediately followed by another R-type operation.

• The R m i operations cannot be immediately followed by a D m -type operation because, according to (P0(ii)), the next operation would be a W m -type operation. However, since the value x i would be in the top buffer, the only W m -type operation allowed would be W m i , which is useless since the value x i is already in the memory.

• The R m i operations cannot be immediately followed by a D d -type operation because, according to (P0(i)), there are no D d -type operations in S.

• The R m i operations cannot be immediately followed by a W m -type operation, because the only W m -type operation allowed after an R m i operation is W m i (since the value x i would be in the top buffer), which is useless since the value x i is already in the memory.

• The R m i operations cannot be immediately followed by a W d -type operation, because the only W d -type operation allowed after an R m i operation is W d i (since the value x i would be in the top buffer), which is impossible according to (P1(ii)) since a W m i has already been executed before S 1 .

So, all these R m i operations are immediately followed by an F-type operation; since the value x i is in the top buffer, this operation is F i . Thus, any R m i in S 1 is followed by F i . Let us now focus on the first operation in S 1 . It cannot be a F-type (the only possible F-type is Fi), W m -type ((P0(iv))), W d -type ((P1(ii))), or D-type ((P0(v))). Hence, the first operation in S 1 is either a R-type operation or a F -type operation (in which case, it is F i since B ⊤ = {x i } at the beginning of S 1).

• Assume that S 1 = F i • S ′ 1 . Let S ′′ 1 be the sequence S ′ 1 where every occurrence of R m i • F i has been replaced by R m i+1 . We know that the schedule

S ′ = S 0 • F i • R m i+1 • S ′′ 1 • D m i+1 • S 2 • Fi • S 3
is correct and has a makespan at least as good as S (since there is at least one occurrence of R m i • F i in S ′ 1).

• Assume that there exist j and s (either equal to m or d) such that S 1 = R s j • S ′ 1 . Let S ′′ 1 be the sequence S ′ 1 where every occurrence of R m i • F i has been replaced by R m i+1 . We know that the schedule

S ′ = S 0 • F i • R m i+1 • R s j • S ′′ 1 • D m i+1 • S 2 • Fi • S 3
is correct and has a makespan at least as good as S (since there is at least one occurrence of

R m i • F i in S ′ 1). • • • F * • • • F i-1 • • • F * • • • • • • Fi • • • F * • • • x * x * x i-1 x i x * x * x * x * xi+1 xi x i x * Figure 5
.3: Consider a subsequence of S 1 comprised between two consecutive R-type operations: R s j and R s ′ j ′ . If j ≥ i, then by definition the subsequence will activate only parts of the right area (and not overwrite any checkpoint from the left area). If j < i, then we have shown that the subsequence will activate only parts of the left area (no forward sweep through F i-1).

Hence we were able to transform S into S' without increasing the makespan, so that the number of values i, 0 ≤ i < l, that does not respect (P2(i)) decreases. We repeat this transformation until the new schedule satisfies (P2(i)).

Let us now consider (P2(ii)). Let S be an optimal solution that satisfies (P0), (P1), and (P2(i)). Let i, 0 ≤ i < l, such that there exists W m i in S. We can write

S = S 0 • W m i • S 1 • Fi • S 2 • D m i • S 3 ,
where S 1 is a sequence of operations that do not include D m i . There are no F i-1 in S 1 because their only impact on the memory is to put the value x i in the top buffer which could be done with R m i for no time delay.

Consider now two consecutive R-type operations of S 1 . Because there are no F i-1 operations in S 1 , we know that between these two R-type operations, and with the definitions of A and B in Figure 5.3, either only elements of A are activated (and no element of B) or only elements of B are activated (and no element of A).

Consider now the last R-type operation R s j of S 1 such that j < i (s being equal to m or d). All W m -type operations written after this operation and before the next R-type operation of S 1 involve some values in A. Hence by (P2(i)), they are not discarded until after Fi . Furthermore, because R s j is the last such operation, we know that they are not used in S 1 either. Hence we can move this sequence of operations (the sequence between R s j and the next R-type operation) right after Fi at no additional time delay. This operation can be repeated until there are no more such operations in S 1 . We then proceed with these operations recursively in the appearance order of the W m i . This shows that we can construct an optimal schedule that satisfies (P2(ii)).

Lemma 5.4. There exists an optimal algorithm for Problem 2 that satisfies (P0), (P1), (P2), and (P3): There is only one R-type operation (the first one) in every iteration S i , where i < l.

Proof. Let S be an optimal schedule that satisfies (P0), (P1), and (P2). We show that we can transform it into an optimal schedule that satisfies (P0-3).

To show this result, for any i ≥ 0, we inductively show that if we have a solution such that the property is true in iterations l to i + 1, then we can transform it into a solution such that this property in true in iterations l to i.

Assume that S does not satisfies (P3). Let S i be the first iteration of S that includes more than one R-type operation.

If i = 0, then all R-type operations are R _ 0 by (P2). Hence we can remove any of them until there is only one.

Proof. Let S be an optimal schedule that satisfies (P0-3). We can write

S = S l • Fl • S l-1 • Fl-1 • . . . • S 0 • F0 .
We know that at the end of the execution of S l , the top buffer contains the value x l and the bottom buffer contains the value xl+1 . Let M l and D l be the state of the memory and the disk at the end of the execution of S l .

Let S ′ l be the sequence of operations F 0→l-1 where every operation F i is immediately followed by

(i)W d i W m i if x i ∈ M l ∩ D l ; (ii) else, W m i if x i ∈ M l ; (iii) else W d i if x i ∈ D l .
At the end of the execution of S ′ l , the memory and the disk will be in the states M l and D l . Furthermore, if x i ∈ M l (resp. if x i ∈ D l), the sequence S l contains the operation W m i (resp. W d i). Thus all W -type operations of S ′ l are in S l . Moreover, S l has to contain all the forward steps from F 0 to F l-1 . Thus, every operation in S ′ l is included in S l . Hence, the sequence

S ′ = S ′ l • Fl • S l-1 • Fl-1 • . . . • S 0 • F0
is valid and has a makespan not larger than S. S ′ is then optimal and satisfies (P0-4).

Lemma 5.6. There exists an optimal algorithm for Problem 2 that satisfies (P0-4) and (P5): Given i, j, 0 ≤ i, j ≤ l -1, all W d i operations are executed before any W m j operation.

Hence, during the first iteration S l , we first assign the disk checkpoints before assigning the memory checkpoints. The idea is that the farther away in the graph a checkpoint is set, the more times it is going to be read during the execution.

Proof. Let S be an optimal algorithm that satisfies (P0-4), but not (P5). We show that we can transform it into an optimal algorithm that also satisfies (P5) without increasing the makespan.

By contradiction, assume that there exist i and j such that W m i is executed before W d j . According to (P1(i)), every write on the disk occurs during the first iteration S l . Thus W m i also occurs in iteration S l . According to (P4), the F -type operations are not re-executed in iteration S l . Thus, necessarily, i < j.

According to (P0(ix)), since the algorithm wrote the value x i in the memory and the value x j in the disk, they are read later in the schedule. Let S im be a step when R m i occurs and S i d a step when R d j occurs. Then we have: i ≤ i m by (P0(iv)) and j ≤ i d by (P0(iv)). Finally, there is only one R-type operation per step (Corollary 5.1); thus i m = i d . Assume first that i m > i d . From Corollary 5.1, the first operation of S im is R m i . Thus the value x i is in the top buffer at the beginning of S im . Furthermore, by definition of the steps, the value x im has to be in the top buffer at the end of S im . Since there are no other R-type operations in S im , all forward steps from F i to F im are executed in S im . In particular F j-1 is executed in S im . Let n be the number of consecutive F -type operations right before F j-1 . Thus S im has the shape:

S im = R m i • S 1 • F (j-n)→(j-1)
• S 2 where the last operation of S 1 is not a F -type operation. Recall that the time for a disk read is r d and for a forward step is u f .

• Assume that (n + 1)u f > r d . Then the sequence R m i • S 1 • R d j • S 2 has a smaller execution time than S im contradicting the optimality.

• Assume that (n+1)u f ≤ r d . According to Corollary 5.1, if S 1 is not empty, then its last operation is W m j-n-1 (if it is empty, then i = jn -1). (P2) ensures that x j-n-1 will not be discarded until after x j has become useless (after Fj). Since (n + 1)u f ≤ r d , we could replace all future instances of R d j by R m j-n-1 • F (j-n)→j . Hence W d j would be useless, which would contradict the optimality of the schedule. Hence, i m < i d . In particular, this is true for any i m and i d . Then we can show with similar arguments that this is true until Fi . Hence, there are not any R d j until after Fi . Since j > i, this means that there will not be anymore R d j operations at all. Finally, this shows that the execution of W d j is useless and can be removed. Proposition 5.1 (Disk Checkpoint Persistence). Given an optimal algorithm for Problem 2 that satisfies (P0-5), then after any operation W d i , there are no F j operations for 0 ≤ j ≤ i -1 (nor actions involving the values x j for 0 ≤ j ≤ i -1) until after the execution of Fi .

Proof. Let S be an optimal algorithm that satisfies (P0-5). Assume by contradiction that S includes W d i and there exists j ≥ i and i ′ < i such that iteration S j involves F i ′ . In particular, according to Corollary 5.1, it involves F i-1 . According to Corollary 5.1, there exist k, s ∈ {m, d}, and n maximum such that S j = R s k S 1 • F (i-1-n)→(i-1) • S 2 . We can first show that r d > n. Indeed, otherwise, S 1 •R d i ′ •S 2 has a smaller execution time than does S j for the same result, contradicting the optimality. Let us now show that we can remove all appearances of R d i in the schedule, hence decreasing the execution time, which would contradict the optimality of the algorithm.

• Consider the occurrence of R d i after S j . By maximality of n, if S 1 is not empty, then the last operation of S 1 is W m i-1-n (Corollary 5.1). If S 1 is empty, then k = i -1n and s = m (otherwise we could replace R d k F (i-1-n)→(i-1) by R d i which would contradict the optimality of the algorithm). Thus, in both cases the value x i-1-n is stored in the memory during S j , and (P2) ensures that it will not be discarded until after x i-1-n has become useless (after Fi). Because r d > n, we can replace all later appearances of R d i by R m i-1-n F (i-1-n)→(i-1) at no additional time delay.

• Let us now consider the eventual occurrences of R d i anterior to iteration j. Necessarily, all R d i anterior to S j are followed by F i (otherwise one of them is followed by W m i and it is not permitted by the memory checkpoint persistence property (P2)). Hence, we can store the value x i+1 in the disk instead of the value x i during S l (S l goes through all forward operation according to (P4)). Then, it is possible to replace all R d i F i operations by R d i+1 reducing the execution time.

Hence, we can decrease the execution time by removing all appearances of R d i in the schedule, which shows the contradiction.

Optimal algorithm

We construct here a dynamic program that solves Problem 2 optimally. To do so we introduce two auxiliary dynamic programs during the construction. The time complexity of our optimal algorithm is O(l 2). ∞ . Since the only value in one of the storage is x 0 (in the disk), the only possible R-type operation before W s j would be R d 0 . The only reason to execute R d 0 would be to perform F 0 . However, F 0 can be executed at the beginning of S (d) ∞ at no cost, since the value x 0 is already in the top buffer. Thus, there are only F-type operations before W s j in S

∞ (P6(i)). ⋆ According to (P6(iii)), after W s j , there are no operations involving values x 0 to x j-1 until after the operation Fj . ⋆ According to (P6(ii)), there are no operations involving values x j to x l after the operation Fj . ⋆ Since after the operation Fj the content of the top buffer is useless, the first operation after Fj has to be an R-type operation. ⋆ Moreover, since the only value from x 0 to x j-1 in one of the storage after Fj is x 0 (in the disk), it has to be R d 0 . Thus, based on all these considerations, S

∞ has the following shape:

S (d) ∞ = F 0→j • W s j • S 1 • R d 0 • S 2
where (i) no operations involve values x 0 to x j-1 in S 1 and (ii) no operations involve values x j to x l in S 2 .

Let S ′ 1 be the sequence W s j • S 1 , where every index of the operations is decreased by j (F i becomes F i-j , W m i becomes W m i-j ,. . .). Then S ′ 1 is a solution to PROB ∞ (lj, c m , w d , r d), whose makespan is necessarily not smaller than Opt ∞ (lj, c m , w d , r d).

On the other hand, the sequence S 2 executes all the F-type operations from Fj-1 down to F0 with no operations involving values x j to x l . Furthermore, S 2 does not use disk slots, except the one already used by value x 0 . Since S (d) ∞ satisfies (P0(5)), S 2 satisfies (P6). Hence S 2 is a solution to PROB in particular it is smaller than B.

We note that if there is no W -type operation, because we do not use any additional disk slot, S

∞ is also a solution to PROB Proof. For l = 0, the result is immediate. Let us prove the result for l ≥ 1.

A succession of small increases and decreases.

3. A slow but steady decrease until all steps are stored (remember that the horizontal axis has a logarithmic scale for better readability).

In all our experiments, the minimum for SWA is reached either at the end of step 1 with a very low number of disk checkpoints (c d = r d = 5 in Figure 5.5) or at the end of step 3 with a very high number of disk checkpoints (c d = r d = 2 in Figure 5.5), depending on the disk access costs and the number of memory slots. Eventually, given the general shape of the SWA performances, we assume that when the size of the graph increases enough, the minimum value is always reached at the end of step 3, when every output of the AC graph is stored in one of the storage slots.

Note that Stumm and Walther observed a fourth phase [START_REF] Stumm | Multistage approaches for optimal offline checkpointing[END_REF] where the computational time increases again when the number of disk checkpoints gets closer to the total number of steps. They explained it by saying that when the volume of data stored on the disk reaches a threshold, the cost of a disk access increases, which in turn increases the computational time. We do not observe such a fourth step because we plot the computational time obtained when giving the model parameters as input to SWA (and the cost of disk access remains constant).

In the following, the time complexity of SWA ⋆ does not allow us to run large instances of l. To be able to plot SWA ⋆ for large AC graphs, we plot a faster version of SWA ⋆ that takes the previous remarks into account, namely, that assume that the minimum is either reached at the end of phase 1 (for small values of c d) or at the end of phase 3. More precisely, we consider that the end of phase 1 is reached before a number of disk size equal to 200 (for the problem sizes considered in this chapter), and we plot a faster version of SWA ⋆ (l, c m , w d , r d): This assumption allows us to compute SWA ⋆ for large values of l and to compare it with the optimal computational time for an infinite number of disk slots. among the solutions returned by SWA, and this solution is always greater than Opt ∞ (l, c m , w d , r d). We observe that the ratio increases until the size of the graph reaches a threshold where the ratio becomes constant. This is particularly visible in Figure 5.6a where we can see that the value of this threshold increases with the number of memory slots c m . In practice, the threshold delimits the moment when the number of disk slots used by SWA ⋆ goes from a relatively small number (when the minimum for SWA(l, c m , c d , w d , r d) is reached at the end of phase 1) to c d = lc m (when the minimum for SWA(l, c m , c d , w d , r d) is reached when all forward steps are checkpointed, at the end of phase 3). We are interested in the limit ratio reached after the threshold because we are considering the problem for very large graphs. In Figures 5.6a and 5.7 we can see that this ratio increases when c m or w d and r d increase. When r d = w d = 1, the ratio limit for c m = 2 is approximately 1.14, which means that SWA ⋆ is 14% slower than the optimal algorithm we designed in §5.3.2. For a memory of size c m = 10, this overhead increases to 20% for large AC graphs. When r d = w d = 5, the ratio limit is not reached for AC graphs of size inferior to 20,000. But since the ratio for c m = 2 will be higher than 1.6, we can state that SWA ⋆ will perform at least 60% slower than the optimal algorithm on large AC graphs for any memory sizes.

Conclusion and future work

In this chapter we have provided optimal algorithms for the adjoint checkpointing problem with two storage locations: a bounded number of memory slots with zero access cost and an infinite number of disk slots with a given write and read costs. We have compared our optimal solution with existing work, showing that our solution gives significantly better execution time.

We have identified applications in computational fluid dynamics and earth systems modeling that could benefit from our approach. We will examine whether the theoretical benefits of the optimal mul-tistage schedule can be realized in practice. Future theoretical directions include the solution to the online AC problem (where the size l of the AC graph is not known before execution), within the same framework. Another possible extension could be to solve the same problem as in this chapter but with a limited number of disk checkpoints. Large-scale platforms are failure-prone, and checkpointing for resilience in addition to checkpointing for performance will lead to challenging algorithmic problems. As an intermediate step, we will examine the problem of maximizing progress during a fixed time period. This situation arises in practice when the job scheduler limits the maximum duration of jobs (limits such as 12 hours are common).

Conclusion

Throughout this thesis, we have designed memory-aware algorithms and scheduling techniques suited for modern memory architectures. We have shown special interest in improving the performance of matrix computations on multiple levels. At a high level, we have introduced new numerical algorithms for solving linear systems on large distributed platforms. Most of the time, these linear solvers rely on runtime systems to handle resources allocation and data management. We also focused on improving the dynamic schedulers embedded in these runtime systems by adding static information to their decision process. We proposed new memory-aware dynamic heuristics to schedule workflows, that could be implemented in such runtime systems.

Altogether, we have dealt with multiple state-of-the-art factorization algorithms used to solve linear systems, like the LU, QR and Cholesky factorizations. We targeted different platforms ranging from multicore processors to distributed memory clusters, and worked with several reference runtime systems tailored for these architectures, such as PARSEC and StarPU. On a theoretical side, we took special care of modelling convoluted hierarchical memory architectures. We have classified the problems that are arising when dealing with these storage platforms. We have designed many efficient polynomial-time heuristics on general problems that had been shown NP-complete beforehand. Our main contributions are stated in the following paragraphs.

Chapter 1: Mixing LU and QR factorization algorithms to design high-performance dense linear algebra solvers

The first contribution of this thesis is the introduction of a new linear solver that offers an alternative to state-of-the-art solvers on distributed platforms. We pointed out the fact that LU steps and QR steps can be mixed during a factorization. The resulting hybrid LU-QR factorization accelerates the classical QR algorithm by introducing some LU steps whenever these do not compromise stability. We decided to implement the hybrid LU-QR algorithm using the HQR algorithm for the QR steps and the LUPP algorithm for the LU steps. The HQR algorithm offers a higher degree of parallelism than the classical QR factorization by introducing several eliminator tiles inside a panel. All tiles hosted on the same processor are eliminated by the same tile. These elimination tiles are then zeroed out by the diagonal tile using a reduction tree across processors. The LUPP algorithm is the classical LU factorization with partial pivoting, that finds the largest element of each column of the panel and uses it as pivot. Theoretically, the hybrid factorization concept can be expanded, and any variant of the LU and QR factorizations could be used. We could even alternate two different variants of the LU algorithm such as the LU factorization without pivoting that offers a high level of parallelism and the LU factorization with partial pivoting that provides better stability results in practice. This chapter opens the way to new factorization methods with high potential.

The choice to perform an LU step or a QR step is handled by a robustness criterion. In this chapter, we introduced three robustness criteria, all of them being motivated by a numerical study. The criteria rely on a threshold α that allows one to tighten or loosen the stability requirement. Moreover, we have compared the effective performance of all criteria on actual distributed clusters, by conducting an extensive set of experiments. We have discussed how the size of these platforms impacts performance and stability. We saw that the three criteria provide a wide range of stability/performance trade-offs on random matrices, thanks to the tunable threshold α. They also manage to detect stability deterioration on most tested ill-conditioned matrices on which LUPP fails because of large growth factors. The Max criterion appeared to be the best choice since it did not fail on any pathological matrix of the Higham's Matrix Computation Toolbox [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF].

Chapter 2: Bridging the gap between experimental performance and theoretical bounds for the Cholesky factorization on heterogeneous platforms

In this chapter, we have investigated to what extent the performance of the dynamic schedulers for the Cholesky factorization on heterogeneous platforms can be improved. Runtime systems usually use generic dynamic heuristics to allocate tasks onto available resources. The HEFT heuristic has the quality to be simple to implement, and to provide good performance in practice. We investigated how its local vision of the task graph workflow to schedule, may result in bad local decisions that can have consequences on the overall performance. We studied how adding static information to dynamic schedulers can prevent this phenomenon. We analytically computed a set of TRSM tasks that could be forced to execute on CPUs, even if their processing time would have been shorter on the GPUs. We selected these tasks based on their distance to the critical path of the application. Forcing the dynamic scheduler of the StarPU runtime system to make these non-intuitive decisions led to performance improvements for both simulations and actual experiments.

To quantify the room for improvement between these results and the best feasible solution, we derived upper bounds for the best achievable performance. We proposed to consider three bounds: one involving the critical path of the Cholesky factorization, one based of the maximum workload that resources can process, and a third one computed by a linear program using both notions. Experiments showed that we managed to raise the StarPU scheduler performance close to its best achievable result.

Chapter 3: Memory-aware list scheduling for hybrid platforms

This chapter has addressed the problem of scheduling general workflows on a heterogeneous architecture with two memories. We provided an extensive complexity study for the restricted problem where the workflow is tree-shaped and the tasks are already mapped on the resources. We showed the NPhardness of determining if there exists a traversal of the tree that does not violate the memory constraints when both memories are limited. Worse, given two constants α and β, it is impossible in the general case to find a traversal that is both an α-approximation for one memory peak minimization and a βapproximation for the other memory peak minimization. However, we provided the optimal depth-first traversal for an arbitrary tree, which turns out to minimize both memories simultaneously.

In addition, we considered the general problem of scheduling an arbitrary workflow where each task can be mapped onto either resource, and has a different processing time for each type. We designed two dynamic memory-aware algorithms, MEMHEFT and MEMMINMIN, based on the reference heuristics HEFT and MINMIN. MEMHEFT (respectively MEMMINMIN) behaves like HEFT (respectively MEMMINMIN) when the memory constraints are not critical, and provide valid schedules with a reasonable makespan overhead when reference heuristics fail to respect memory constraints. These memory-aware heuristics could be implemented in runtime systems like PARSEC or StarPU when one wants to enforce a memory usage bound to avoid out-of-core memory access, for instance.

Chapter 4: Assessing the cost of redistribution followed by a computational kernel

In this chapter, we took into consideration the fact that sometimes, in the context of distributed computing, the initial data distribution is not suited for the computational kernel that we want to process. In such situations, the data elements have to be redistributed across the resources. We assumed that an optimal (or close to optimal) data partition for the computational kernel is known. We provided polynomial algorithms to compute the best data distribution, given the target data partition, for two metrics: minimizing the total volume of communications during the redistribution, and minimizing the number of parallel redistribution steps. However we showed that, when the redistribution is followed by a computation kernel, redistributing the data elements toward this targed data distribution is not always the best option in term of overall completion time. Actually, finding the optimal data partition that minimizes the completion time of the redistribution followed by a computational kernel is NP-complete, even for a simple computational kernel like the 1D-stencil algorithm.

We considered four strategies to tackle this problem and tried them in the PARSEC framework, for both the 1D-stencil kernel and the QR factorization algorithm. Our experiments showed that the new redistribution strategies presented in this chapter lead to better performance in all cases, for arbitrary initial data distributions, as well as for data distributions arising from Earth Science applications.

Chapter 5: Optimal multistage algorithm for adjoint computation

The last contribution of this thesis concerns a different scientific application, namely adjoint computation. The workflow arising in adjoint computation provides no parallelism across tasks and, in order to meet the memory usage constraints, we need to use a different strategy than in the rest of this thesis. Indeed, since there is not enough space in the memory to store every output file of the workflow, we need to decide which files will be saved, and which files will be deleted and recomputed later when needed. The case where only one limited memory is available has already been solved in the literature. In this chapter we considered the case where two different storages are available: the memory and the disk. Reading and writing checkpoints in memory are supposed to be free in terms of time, but the number of available slots is limited. On the contrary, the number of slots in the disk is unlimited but the time to read or write a file can no longer be ignored. We provided the first polynomial time algorithm that computes the best schedule for adjoint computation in this dual-storage context. Our algorithm relies on a convoluted dynamic program, and we proved the optimality of the computed solution. We also assess the performance of existing heuristics for this problem, compared to our optimal solution, through a full set of simulations.

Perspectives

Throughout this thesis, we mentioned at the end of each chapter some future work and research directions that could be investigated. Here, we outline multiple possible extensions to our work, along with more general, long-term oriented, research directions.

Linear algebra

In this thesis we have laid the foundation for hybrid linear solvers that alternate steps of different factorization algorithms. The main quality of our hybrid LU-QR algorithm is that it restricts the search of pivots inside the diagonal domain when doing so is numerically safe, thereby avoiding unnecessary communications across processors. But many variants of the hybrid LU-QR algorithm introduced in this thesis could be implemented. An interesting application could be to derive LU algorithms with several eliminators per panel. Such "multi-killer" algorithms are well suited to modern distributed architectures. Indeed, at each step of the factorization, every tile of the panel except one per domains is zeroed out using a local tile hosted on the same processor. These operations do not involve communications across processors. Then, the remaining tiles are zeroed out using a reduction tree across domains. This approach has been proven effective for the QR factorization [START_REF] Dongarra | Hierarchical QR factorization algorithms for multi-core cluster systems[END_REF]. However, multi-killer LU factorizations have always turned out to be unstable so far. A hybrid algorithm coupling a multi-killer LU factorization with another more stable LU algorithm, like the LU factorization with partial pivoting, could be a pioneering method to develop a stable and effective LU algorithm with several eliminators per panel. Another course of study could be to focus on designing new factorization algorithms that are intrinsically communication-avoiding. This approach has shown to be effective and the communicationavoiding LU (CALU [START_REF]CALU: a communication optimal LU factorization algorithm[END_REF]) is known to be stable and efficient on both parallel distributed platforms and single multicore nodes.

Scheduling under memory constraints

All the memory-aware scheduling techniques introduced in this thesis could not be implemented in actual runtime systems, due to a lack of time. We designed memory-aware alternatives to the classical dynamic schedulers HEFT and MINMIN that would deserve to be tried in real-world conditions. These workflow schedulers ensure that the memory peak usage is smaller that a given bound and can prove useful in runtime systems like StarPU, that operate on shared-memory parallel platforms. They can help avoiding out-of-core memory access and better handling convoluted hierarchical memory layouts. Many other phenomena can be taken into account to model data communications. In this thesis, we only considered platforms with the bidirectional one-port model (where every communication can be processed in parallel as long as all senders and all receivers are different), or the bus model (where every communication has to processed sequentially). These assumptions correspond to a model with no contention between communications, and to a model with infinite contention, respectively. We could consider alternative cases where communications can be processed in parallel but their processing time depends on the number of communication taking place at the same time. This communication model can be considered more realistic and would lead to new interesting algorithmic problems.

Long-term perspectives

In this thesis, we devoted our efforts to improve resource and memory management on modern architectures, one necessary step to reach the Exascale performance mark. But many other challenges need to be faced to this end. Among them, with the increasing number of components, the reliability of the entire computational system is becoming an issue. Even if each component is quite reliable individually, the mean time between failures in next generation supercomputers is expected to drop drastically. Large scientific applications on these platforms will have to deal with a higher frequency of failures and errors, in the future. There are many possible approaches to remedy this problem. In matrix computations, we can mention algorithm-based fault tolerance techniques, using checksums that allow one to detect at each operation if a soft error occurred during the computation. It can be interesting to develop other low-overhead methods to detect soft errors. It could also be interesting to investigate how to efficiently schedule a workflow knowing that resources are more likely to fail at some point. New models of memory subject to failures can be introduced. It can be interesting, in auto-adjoint computations for instance, to consider the fact that one memory may be likely to lose every stored output file at some point, and to see how the probability of failures impacts the optimal algorithm introduced in this thesis.

 and QR factorization algorithms 1.1 Introduction . 1.2 Hybrid LU-QR algorithms . 1.2.1 LU step . 1.2.2 QR step . 1.2.3 LU step variants . 1.2.4 Comments . 1.3 Robustness criteria . 1.3.1 Max criterion . 1.3.2 Sum criterion . 1.3.3 MUMPS criterion . 1.3.4 Extending the MUMPS criterion to tiles . 1.3.5 Complexity . 1.4 Implementation . 1.5 Experiments . 1.5.1 Experimental framework . 1.5.2 Results for random matrices . 1.5.3 Results for different processor grid sizes . 1.5.4 Results for special matrices . 1.5.5 Results for varying the condition number . 1.5.6 Assessment of the three criteria . 1.6 Related work . 1.6.1 LUPP . 1.6.2 LU NoPiv . 1.6.3 LU IncPiv . 1.6.4 CALU . 1.6.5 Summary . 1.7 Conclusion . iii

 partition A by block such thatA = A 11 C B D . In terms of tile, A 11 is 1-by-1, B is (n -1)-by-1, C is 1-by-(n -1), and D is (n -1)-by-(n -1). The first block-column A 11 Bis the panel of the current step.

Figure 1 . 1 :

 11 Figure 1.1: Dataflow of one step of the algorithm.

Figure 1 .

 1 Figure 1.1 describes the connection between the different stages of one elimination step of the algorithm. These stages are described below:

Figure 1 . 2 :

 12 Figure 1.2: Execution trace of the first steps of the LU-QR Algorithm on a matrix of size N = 5000 with n b = 200, and criterion that alternates between LU and QR steps. A grid of 2by -2 process with 4 threads each is used. The green tasks are the QR STEPS (dark for the panel factorization, and light for the trailing submatrix update); the orange and red tasks are the LU STEPS (red for the panel update and orange for the trailing submatrix update); the blue tasks are the LU panel factorizations performed at every step; and small black tasks, that do not show up on the figure because their duration is too small, are the criterion selections, and the Propagate tasks.

Figure 1 . 3 :

 13 Figure 1.3: Stability, performance, and percentage of LU steps obtained by the three criteria and by random choices, for random matrices, on the Dancer platform (4x4 grid).

Algorithm 5 :

 5 Pseudocode of the tile Cholesky factorization

Figure 2 .Figure 2 . 1 :

 221 Figure 2.1: Task graph for the Cholesky decomposition of a 5 × 5 tiled matrix.

Figure 2 . 4 :

 24 Figure 2.4: Homogeneous simulated performance

Figure 2 . 5 :

 25 Figure 2.5: Heterogeneous related simulated performance

Figure 2 . 6 :

 26 Figure 2.6: Heterogeneous unrelated actual performance

Figure 2 . 7 :

 27 Figure 2.7: Heterogeneous unrelated simulated performance

Figure 2 . 8 :

 28 Figure 2.8: Heterogeneous related simulated scaled performance

Figure 2 . 10 :

 210 Figure 2.10: Heterogeneous unrelated simulated performance with static knowledge

Figure 2 . 11 :

 211 Figure 2.11: Heterogeneous actual performance with static knowledge

Figure 2 .

 2 12 and Figure 2.13 show traces with dmda and dmdas schedulers.

Figure 2 . 12 :

 212 Figure 2.12: GPU trace for 8 × 8 tiles with dmda scheduler

Figure 3 . 1 :

 31 Figure 3.1: Description of the dual-memory platform.

Figure 3 . 3 :

 33 Figure 3.3: Representation of schedule s 1 for D ex .

3 .

 3 The execution of task T 1 uses RedMemUsed(T 1) = F 1,2 +F 1,3 = 3 units of red memory. The execution of task T 2 uses BlueMemUsed(T 2) = F 1,2 +F 2,4 = 2 units of blue memory. The execution of task T 3 uses RedMemUsed(T 3) = F 1,2 + F 1,3 + F 3,4 = 5 units of red memory. And the execution of task T 4 uses RedMemUsed(T 4) = F 2,4 + F 3,4 = 3 units of red memory.

Figure 3 . 4 :

 34 Figure 3.4: Representation of schedule s 2

Figure 3 . 5 :

 35 Figure 3.5: Tree used in the proof of Theorem 3.1

Figure 3 . 6 :

 36 Figure 3.6: A bi-colored tree T and its corresponding single color trees T blue and T red in Definition 3.2.

Figure 3 . 7 :

 37 Figure 3.7: A bi-colored tree T and its corresponding uncolored tree T unco in Definition 3.3.

Figure 3 . 8 : 3 •

 383 Figure 3.8: Recursive definition of T n in the proof of Theorem 3.3

Figure 3 . 9 :

 39 Figure 3.9: T 2 and T unco 2

Figure 3 . 10 :

 310 Figure 3.10: Tree corresponding to Inst 2 in the proof of Theorem 3.5

Figure 3 . 11 :

 311 Figure 3.11: Percentage distribution of the blue memory usage for the REALTREES data set.

Figure 3 . 12 :

 312 Figure 3.12: Distribution of each memory usage for the RANDOMCOLOREDREALTREES data set.

Figure 3 . 14 :

 314 Figure 3.14: Distribution of each memory usage for the RANDOMTREES data set.

Figure 3 . 15 :

 315 Figure 3.15: Variables of the linear program

 . For an arbitrary DAG D = (V, E) with |V | = n nodes and |E| = m edges, the ILP has O(m 2 +mn) variables and O(m 2 + mn) constraints.

P 1 , 1 P 1 , 2 P 1 , 3 P 2 , 1 P 2 , 2 P 2 , 3 P 3 , 1 P 3 , 2 P 3 Figure 4 . 1 :

 1112132122233132341 Figure 4.1: Example of matrix redistribution with N = 12 2 data blocks and P = 3 2 processors. Each color in the data distributions corresponds to a processor, e.g., all red data items reside on processor A.

Theorem 4 . 2 .

 42 Given an initial data distribution D ini and target data partition P tar , Algorithm 8 computes a data distribution D tar compatible with P tar such that RedistSteps(D ini → D tar) is minimized, and its complexity is O(N P 2 + P Algorithm 7: BESTDISTRIBFORVOLUME Data: Initial data distribution D ini and target data partition P tar Result: a data distribution D tar compatible with the given data partition, such that RedistVol (D ini → D tar) is minimized A ← {0, . . . , P -1} (set of processors) B ← {0, . . . , P -1} (set of data partition indices) G ← complete bipartite graph (V, E) where V = A ∪ B for edge (i, j) in E do weight(i, j) ← |{x s.t. P tar (x) = j and D ini (x) = i}| M ← minimum-weight perfect matching of G for (i, j) ∈ M do for x s.t. P tar (x) = j do D tar (x) ← i return D tar Proof. First, given an initial data distribution D ini and a target distribution D tar , we can compute RedistSteps(D ini → D tar) as

1 ,

 1 the first processor in group 1. The next 2B elements are stored on P (4)

Figure 4 . 4 :

 44 Figure 4.4: D ini and D sol in the proof of Theorems 4.3 and 4.4.

 group-4. This means that a processor P (4) j will receive at least B/4 elements from P (1) i during the redistribution phase, since ∀i, B/4 < a i . However, at the end of the redistribution phase, P (4) j can only host 8B elements, thus it will have to send at least 5 4 B elements during the redistribution phase: RedistVol (D ini → D tar) = (k,p)s.t.(k,p) =(4,j) S (k) p + S (4) j ≥ 5mB + B/4, which is not possible according to Equation 4.2 and since B > 384m.

 can send only B elements of data and no other processors can send any data. That is, ∀i: S (1) i = a i , S

 Hence the A k sets are a solution of Inst 1 .

Theorem 4 . 4 .

 44 STEPPART&REDISTRIB problem with the 1D-stencil kernel is strongly NP-complete.

4) 1 ≥

 41 send at least B elements of data during the redistribution phase. Thus, S (B and RedistSteps(D ini → D tar) ≥ B. • If one processor sends B + 1 elements of data during the redistribution phase, we would have RedistSteps(D ini → D tar) ≥ B + 1 and 2 × max p C p ≤ 7, so max p C p ≤ 3. Initially, in D ini , processor P(1)1 hosts 5 maximal connected components and could have at most 3 maximal connected components in D tar . There are only two different ways to decrease the number of maximal connected components in a processor: sending one entire maximal connected component to another processor or merging two existing connected components by receiving all the data between them. Both options are impossible in this case, because processor P send or receive more than 2B elements during the redistribution phase, which is impossible according to Equation 4.5.Thus RedistSteps(D ini → D tar) = B and Equation 4.6 becomes:

 hosts 7B elements in D ini , and 8B elements in D tar . Again, this means that R

 hosts 9B elements in D ini , and 8B elements in D tar . Again, S

Figure 4 . 7

 47 depicts the data distribution of a matrix in ChunkSet where matrix tiles of the same color are initially stored on the same processor.

Figure 4 . 7 :

 47 Figure 4.7: The initial distribution of a tiled matrix in ChunkSet.

Figure 5 . 2 :

 52 Figure 5.2: After executing Fi+1 , x i+1 (blue) is in the top buffer, and xi+1 (red) is in the bottom buffer.For the remainder of the execution, the algorithm will not need the grey area anymore; hence it will need to fetch x j i (green) from a checkpoint slot.

Definition 5 . 4 (

 54 Opt 0 (l, c m)). Let l ∈ N and c m ∈ N, Opt 0 (l, c m) is the execution time of an optimal solution to PROB(l, c m).Note that Opt 0 (l, c m) is the execution time of the routine REVOLVE(l, c m), from Griewank and Walther[START_REF] Griewank | Algorithm 799: Revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation[END_REF].Definition 5.5 (Opt ∞ (l, c m , w d , r d)). Let l ∈ N, c m ∈ N, w d ∈ R and r d ∈ R, Opt ∞ (l, c m , w d , r d)is the execution time of an optimal solution to PROB ∞ (l, c m , w d , r d).⋆ We proved that there are no F-type operations before W s j in S(d)∞ . By definition, there are no W -type operations before W s j in S(d)∞ . Since before W s j the memory is empty, there are no D-type operations in S (d)

∞

 (j -1, c m , w d , r d), and its makespan is greater than Opt

∞

 (j -1, c m , w d , r d). Finally, we have Opt (d) ∞ (l, c m , w d , r d) ≥ ju f + Opt ∞ (lj, c m , w d , r d) + r d + Opt

 -1, c m , w d , r d);

 , c m , w d , r d) and Opt

∞

 (l, c m , w d , r d) ≥ Opt

 , c m , w d , r d). This shows that A ≥ B and concludes the proof.Theorem 5.3 (Optimal solution to PROB

 , c m , w d , r d)). Let l ∈ N, c m ∈ N, w d ∈ R and r d ∈ R: If l = 0, then Opt (d) 1 (0, c m , w d , r d) = u b else Opt (d) 1 (l, c m , w d , r d) = min 1≤j≤l-1 Opt 0 (l, c m) ju f + Opt 0 (lj, c m) + r d + Opt

 -1, c m , w d , r d)

 SWA ⋆ (l, c m , w d , r d) = min min c d =0...200 SWA(l, c m , c d , w d , r d), SWA(l, c m , l-c m , w d , r d) .

 w d = r d = 5

Figure 5 . 6 :

 56 Figure 5.6: Ratio SWA ⋆ (l, c m , w d , r d)/Opt ∞ (l, c m , w d , r d) as a function of l.

Figures 5 .Figure 5 . 7 :

 557 Figures 5.6 and 5.7 depict the overhead of using SWA ⋆ compared with the optimal solution Opt ∞ (l, c m , w d , r d) that we designed in § 5.3.2. For unlimited disk slots, SWA ⋆ returns the best solution

Table 1 .

 1 .1. 1: Computational cost of each kernel. The unit is n 3 b floating-point operations.

		LU step, var A1	QR step
	factor A	2/3	GETRF 4/3	GEQRT
	eliminate B (n -1)	TRSM	2(n -1)	TSQRT
	apply C	(n -1)	TRSM	2(n -1)	TSMQR
	update D	2(n -1) 2 GEMM 4(n -1) 2 UNMQR

Algorithm 1 :

 1 Hybrid LU-QR algorithm for k = 1 to n do Factor: Compute a factorization of the diagonal tile: either with LU partial pivoting or QR; Check: Compute some robustness criteria (see Section 1.3) involving only tiles A i,k , where k ≤ i ≤ n, in the elimination panel;

	Apply, Eliminate, Update:
	if the criterion succeeds then
	Perform an LU step;
	else
	Perform a QR step;
	Algorithm 2:

Table 1 .

 1 3: Special matrices in the experiment set.

	No. Matrix	Description		Condition Number with N = 4000
	house	Householder matrix, A = eye(n) -β * v * v H	1
		Parter matrix, a Toeplitz matrix with most	
	parter	of singular values near Π. A(i, j) = 1/(i-	4.8
		j + 0.5).		
		Ris matrix, matrix with elements A(i, j) =	
	ris	0.5/(n -i -j + 1.5). The eigenvalues	4.8
		cluster around -Π/2 and Π/2.		
	condex	Counter-example matrix to condition esti-mators.	1.0 × 10 2
	circul	Circulant matrix		2.2 × 10 4
		Hankel matrix, A = hankel(c, r), where	
	hankel	c = randn(n, 1), r = randn(n, 1), and	3.8 × 10 4
		c(n) = r(1).		
	compan	Companion matrix (sparse), A compan(randn(n + 1, 1)).	=	4.1 × 10 6
		Lehmer matrix, a symmetric positive def-	
	lehmer	inite matrix such that A(i, j) = i/j for	1.7 × 10 7
		j ≥ i. Its inverse is tridiagonal.		
	dorr	Dorr matrix, a diagonally dominant, ill-conditioned, tridiagonal matrix (sparse).	1.6 × 10 11
	demmel	A = D * (eye(n) + 10 -7 * rand(n)), where D = diag(1014 * (0 : n -1)/n).	9.8 × 10 20
		Chebyshev Vandermonde matrix based on	
	chebvand	n equally spaced points on the interval	2.2 × 10 19
		[0,1].		
	invhess	Its inverse is an upper Hessenberg matrix.	-
	prolate	Prolate matrix, an ill-conditioned Toeplitz matrix.	9.4 × 10 18
	cauchy	Cauchy matrix.		1.9 × 10 21
	hilb	Hilbert matrix with elements 1/(i + j -1). A = hilb(n).	7.5 × 10 21
	lotkin	Lotkin matrix, the Hilbert matrix with its first row altered to all ones.	2.1 × 10 23
	kahan	Kahan matrix, an upper trapezoidal matrix.	1.4 × 10 27
	orthogo	Symmetric eigenvector matrix: A(i, j) = sqrt(2/(n + 1)) * sin(i * j * π/(n + 1))	1
	wilkinson	Matrix attaining the upper bound of the growth factor of GEPP.	9.4 × 10 3
		Matrix arising from using the quadrature	
	foster	method to solve a certain Volterra integral	2.6 × 10 3
		equation.		
		Matrix with an exponential growth fac-	
	wright	tor when Gaussian elimination with Partial	6.5
		Pivoting is used.		

Table 1 .

 1 4 provides a summary of key characteristics of the algorithms discussed in this section.

	ALGORITHM	CA	KERNELS EFF. FOR UPDATE PIPELINE #FLOPS STABLE
	LU NoPiV	YES GEMM-EFFICIENT	YES	1x	NOT AT ALL
	LU IncPiv	YES LESS EFFICIENT	YES	1x	SOMEWHAT
	CALU	YES GEMM-EFFICIENT	NO	1x	PRACTICALLY
	LUQR (alpha) LU only YES GEMM-EFFICIENT	NO	1x	PRACTICALLY
	LUQR (alpha) QR only YES LESS EFFICIENT	NO	2x	UNCONDITIONALLY
	HQR	YES LESS EFFICIENT	YES	2x	UNCONDITIONALLY
	LUPP	NO	GEMM-EFFICIENT	NO	1x	PRACTICALLY
	Table 1.4: A summary of key characteristics of each algorithm. CA in column 2 stands for Communica-
	tion Avoiding. Other column titles are self-explanatory.			

Table 2 .

 2

		1: GPUs relative performance
	POTRF TRSM SYRK GEMM
	≃2×	≃11× ≃26× ≃29×

Table 3 .

 3 1: Statistics on the maximum relative overhead for each memory required by the four heuristics (comparison with the Zenith). Frac. of Opt. (respectively Frac ≤ 10%) counts the fractions of cases when the heuristics achieve the Zenith (resp. has a degradation not larger than 10%).

Table 4 .

 4 1: Results for the different initial distributions in SkewedSet.Vol. of comm. in the redist. phase Nb. of steps in the redist. phase Vol. of comm. in QR fact.

		Vol. of comm. in the redist. phase	Nb. of steps in the redist. phase	Vol. of comm. in QR fact.	Total completion time	
	n	owner	can	vol	step	owner	can	vol	step	owner	can-vol-step	owner	can	vol	step
	16	0	249	119	119	0	37	32	32	1, 973	831	3.34	1.94	2.02	1.89
	34	0	1, 119	538	538	0	157	149	149	15, 118	5, 720	25.22	9.06	8.14	8.48
	52	0	2, 616 1, 257 1, 257	0	378	353	353	49, 707	16, 669	78.11	26.75 23.07 22.51
	70	0	4, 739 2, 286 2, 286	0	680	638	638	114, 127	37, 942	182.96 53.44 50.11 52.32
	88	0	7, 492 3, 615 3, 615	0	1, 092 1, 019 1, 019 219, 757	69, 951	344.92 100.87 94.61 95.14
													Completion time	
	n	owner	can	vol	step	owner can vol	step	owner	can-vol-step	owner	can	vol	step
		0	240	205	233	0	34	31	31	1140	831	2.63	1.92	1.89	1.89
		0	1, 087 1, 004 1, 072	0	153 142	142	6, 380	5, 720	11.05	8.77	8.23	8.61
		0	2, 526 2, 425 2, 518	0	349 338	338	19, 295	16, 669	30.22	26.12 22.41 22.31
		0	4, 598 4, 459 4, 575	0	681 660	659	29, 606	37, 942	61.16	53.41 52.29 58.21
		0	7, 271 7, 129 7, 242	0	963 951	951	45, 311	69, 951	114.69 100.88 96.70 99.36

Table 4 .

 4 2: Results for the different initial distributions in ChunkSet.

It is possible to include additional variables to the linear program to have more precise values, but this does not provide a better bound unless we take more dependencies into account, which requires adding too many variables and constraints and makes the linear program intractable.

We also have written a version of the constraint programming formulation which takes data transfer times into account but we could not obtain results at the scale of interest for this chapter.

This equivalence has been formally proven in[START_REF] Jacquelin | On optimal tree traversals for sparse matrix factorization[END_REF] for single-memory platforms, and it is straightforward to extend the proof for two-memory systems.

The code for the generator is publicly available at https://github.com/frs69wq/daggen.

The definition is the following: let an array X[0...M -1] be distributed according to a block-cyclic distribution CYCLIC(r) onto a linear grid of P processors. Then element X[i] is mapped onto processor p = ⌊i/r⌋ mod P , 0 ≤ p ≤ P -1.

).

2) with an optimized weight computation.

In the original approach by Griewank[START_REF] Griewank | Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation[END_REF], an extra F l operation was included. It is not difficult to take this extra operation into account.

agency strategic vision and federal investment strategy in High Performance

Part II

Scheduling Under Memory Constraints

Chapter 5

Optimal multistage algorithms for adjoint computation

When scheduling task graph workflows with large I/O files, we saw in Chapter 3 that the ordering in which the tasks are executed strongly impacts the memory consumption. We designed new memoryaware scheduling techniques for such workflows. But other techniques exist to deal with memory limitations. In some context, when the memory constraints are really tight, it may be necessary to delete some output files during the processing and recompute them later when needed. In this chapter, we target a scientific application, namely the adjoint computation, that provides no parallelism across tasks and where the recomputation technique is necessary to handle the memory usage. The goal is to decide which output files to store in the memory to process the workflows in a minimal time, while respecting the memory constraints. Stumm and Walther provided an optimal algorithm for adjoint computation when the output files can be stored on a single limited memory. Here, we reexamine their work and provide an optimal algorithm for this problem when there are two levels of checkpoints, in memory and on disk. Previously, optimal algorithms for adjoint computations were known only for a single level of checkpoints with no writing and reading costs; a well-known example is the binomial checkpointing algorithm of Griewank and Walther [START_REF] Griewank | Algorithm 799: Revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation[END_REF]. Stumm and Walther [START_REF] Stumm | Multistage approaches for optimal offline checkpointing[END_REF] extended that binomial checkpointing algorithm to the case of two levels of checkpoints, but they did not provide any optimality results. We bridge the gap by designing the first optimal algorithm in this context. We experimentally compare our optimal algorithm with that of Stumm and Walther to assess the difference in performance.

Definition 5.2 (Platform). We consider a platform with three storage locations:

• Buffers: there are two buffers, the top buffer and the bottom buffer. The top buffer is used to store a value x i for some i, while the bottom buffer is used to store a value xj for some j. For a computation (F or F) to be executed, its input values have to be stored in the buffers. Let B ⊤ and B ⊥ denote the content of the top and bottom buffers. In order to start the execution of the graph, x 0 must be stored in the top buffer and xl+1 in the bottom buffer. Hence, without loss of generality, we assume that at the beginning of the execution, B ⊤ = {x 0 } and B ⊥ = {x l+1 }.

• Memory: there are c m slots of memory where the content of a buffer can be stored. The time to write from buffer to memory is w m . The time to read from memory to buffer is r m . Let M be the set of x i and xi values stored in the memory. The memory is empty at the beginning of the execution (M = ∅).

• Disks: there are c d slots of disks where the content of a buffer can be stored.. The time to write from buffer to disk is w d . The time to read from disk to buffer is r d . Let D be the set of x i and xi values stored in the disk. The disk is empty at the beginning of the execution (D = ∅).

Memory and disk are generic terms for a two-level storage system, modeling any platform with a dual memory system, including (i) a cheap-to-access first-level memory, of limited size; and (ii) and a costly-to-access second-level memory, whose size is very large in comparison with the first-level memory. The pair (memory, disk) can be replaced by (cache, memory) or (disk, tape) or any relevant hardware combination.

Intuitively, the core of the AC problem is the following. After the execution of a forward step, its output is kept in the top buffer only. If it is not saved in memory or disk before the next forward step, it is lost and will have to be recomputed when needed for the corresponding backward step. When no disk storage is available, the problem is to minimize the number of recomputations in the presence of limited (but cheap-to-access) memory slots. When disk storage is added, the problem becomes even more challenging: saving data on disk can save some recompilation, and a trade-off must be found between the cost of disk accesses and that of recomputations.

The problem with only memory and no disk (Problem 1: PROB(l, c m) below) has been solved by Griewank and Walther [START_REF] Griewank | Algorithm 799: Revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation[END_REF], using a binomial checkpointing algorithm called REVOLVE. In accordance to the scheduling literature, we use the term makespan for the total execution time.

Problem 1 (PROB(l, c m)). We want to minimize the makespan of the AC problem with the following parameters:

In this chapter we consider the problem with limited memory and infinite disk (Problem PROB ∞ (l, c m , w d , r d) below). The main goal of this chapter is to provide the first optimal algorithm for PROB ∞ (l, c m , w d , r d).

Problem 2 (PROB ∞ (l, c m , w d , r d)). We want to minimize the makespan of the AC problem with the following parameters: Otherwise assume that i ≥ 1. Let R s 1 j 1 and R s 2 j 2 (where s 1 , s 2 ∈ {m, d}) be the last two R-type operations in S i . According to (P0(iv)), we know that step i does not involve x i+1 to x l , so j 1 ≤ i and j 2 ≤ i. We can write 3) , where S (2) and S (3) are sequences of operations that do not include any R-type operation. According to (P0(vi)), there are no F-type operations in S (2) and S (3) either. Since the value x j 2 is in the top buffer at the beginning of S (3) , we know that the first F-type operation of S (3) has to be F j 2 . We know that the first operation after S i is Fi . Thus the last F -type operation of S (3) is F i-1 . Since there are no R-type operations in S (3) , we know that the sequence S (3) includes all F -type operations from F j 2 to F i-1 .

Similarly, the sequence S (2) includes all F -type operations from F j 1 to F jmax operations with j max ≤ i -1.

• If j max ≥ j 2 , we note j min = min(j 1 , j 2) and s min the corresponding value of s 1 or s 2 . Iteration S i includes each F-type operations from F j min to F i (possibly twice). Let us build the sequence of operations S (4) from the sequence F j min →i where each operation 2) or S (3) (see Figure 5.4 for this transformation). Thus we know that the sequence S ′ i = S (1) • R s min j min • S (4) will have the exact same impact on the memory as S i without increasing the makespan. Transforming iteration S i into sequence S ′ i reduces by one the number of readings in iteration i.

• If j max < j 2 , sequences of operations S (2) and S (3) are disjoint. Thus S (2) has no impact on iteration i and can be moved to the beginning of the next operation. Thus transforming iteration 2) to the beginning of iteration S i+1 will not increase the makespan of S and will reduce by one the number of readings in iteration i.

Hence we have shown that until there is only one R-type operation in iteration i, we can reduce by one the number of R-type operations in iteration i (and leave as they were iterations l to i + 1). Thus, if the property is true in iteration l to i + 1, then we can transform it into a solution such that this property in true in iteration l to i. This concludes the proof.

Corollary 5.1 (Description of iteration i < l). Given an optimal algorithm for Problem 2 that satisfies (P0-3), each iteration i < l can be written as

for some j i and for some s i ∈ {m, d}, where Si is composed only of F-type, W m -type, and D m -type operations (possibly empty). Furthermore, it goes through all operations F j for j from j i to i -1.

Lemma 5.5 (Description of iteration l).

There exists an optimal algorithm for Problem 2 that satisfies (P0-3) and (P4): There are no R-type operations in iteration S l . Hence, every F -type operation is executed once and only once in iteration S l .

To compute Opt ∞ (l, c m , w d , r d), we first focus on the variant of Problem 2 where the input value x 0 is initially in both the top buffer and the disk:

. We want to minimize the makespan of the AC problem with the following parameters:

where the space of solution is restricted to the schedules that satisfy the following properties: (P6):

(i) (P0(i)), (P0(ii)), (P0(iii)), (P0(iv)), and (P0(v)) are matched.

(ii) Given i, there are no operations F j for i ≤ j ≤ l -1 after the execution of Fi .

(iii) (Memory and disk checkpoint persistence) Let s ∈ {m, d} and i < l, if W s i is executed, then there are no D s i until after the execution of Fi . Moreover no operations involving F 0 to F i-1 or values x 0 to x i-1 are taken until after the execution of Fi .

(iv) Let 0 ≤ i, j ≤ l -1. All W d i operations are executed before any W m j operation. Moreover, all W d i operations are executed during iteration l.

Note that (P6) is a subset of (P0-5). Let Opt

According to § 5.3.1, there exists at least an optimal algorithm S ∞ to solve PROB ∞ (l, c m , w d , r d) that satisfies (P0-5). According to (P0(x)), the first operation of S ∞ is a W -type operation.

• If it is a W m -type operation, according to (P5), there are no W d -type operations is S ∞ . Hence the disk is not used at all in S ∞ , and S ∞ is also a solution to PROB(l, c m). Thus

Since S ∞ satisfies (P0), (P1), (P2), (P3), (P4), and (P5), S ′ ∞ satisfies (P6). Hence S ′ ∞ is a solution to PROB

We get that Opt ∞ (l, c m , w d , r d) ≥ min{Opt 0 (l, c m);

∞ (l, c m , w d , r d)}, which concludes the proof.

To compute Opt

where the space of solution is restricted to the schedules that satisfy (P6) and that do not contain any W d -type operation (and, therefore, the value x 0 is never discarded from the disk).

Let Opt

Proof. For l = 0, the result is immediate. Let us prove the result for l ≥ 1. Let

1 be an optimal solution to PROB

Let S ∞ be an optimal solution to PROB ∞ (lj, c m , w d , r d) that satisfies (P0-5). Let S ′ ∞ be the sequence S ∞ where every index of the operations are increased by j

S ′ ∞ is still valid and has the same makespan as S ∞ . Then, the sequence

By construction this sequence also satisfies (P6). Its execution time is

Thus, for all 1 ≤ j ≤ l -1:

In particular it is smaller than the minimum over all j, hence the result.

Let us show that

∞ be an optimal solution to PROB

∞ satisfies (P6) and its makespan is Opt

Assume first that there is at least one W -type operation in S (d) ∞ . Consider the first one. We can prove that it occurs before the first F-type operation.

• If it is a W d -type, then it occurs before the first F-type according to (P6(iv))

• If it is a W m -type, then obviously c m > 0. If no W m -operation occured during iteration l, then at the beginning of iteration l -1, R d 0 is executed. Hence a better solution would be better to start with W m 0 and D m 0 at the beginning of iteration l -1, which contradicts the optimality of

Hence, the first W -type operation in S

∞ occurs before the first F-type operation. Then two possibilities exist.

• The first operation in

∞ satisfies (P6(iv)), there are no

∞ . Thus no other value than x 0 will be stored in the disk during the execution. Furthermore, because x 0 is stored in memory, it will not be read from the disk (otherwise S (d)

∞ is also a solution to PROB

• Otherwise, the first operation in S

Given j, 1 ≤ j ≤ l -1, let S 2 be an optimal solution to PROB

Let S 1 be an optimal solution to PROB(lj, c m). Let S ′ 1 be the sequence S 1 where every index of the operations are increased by j

1 is still valid and has the same makespan as S 1 . Then, the sequence

By construction this sequence does not contain any W d -type operation since neither S ′ 1 nor S 2 do. Its execution time is

Thus, for all 1 ≤ j ≤ l -1:

In particular it is smaller than the minimum over all j, hence the result.

Let us show that A ≥ B. Let S

1 be an optimal solution to PROB

1 satisfies (P6) and does not contain any W d -type operations. Its makespan is Opt

First, note that if c m > 0, then there is a W m -type operation in iteration l of S (d) 1 . Otherwise, if no W m -operation occured during iteration l, then at the beginning of iteration l -1, R d 0 is executed. Hence a better solution would be better to start with W m 0 and D m 0 at the beginning of iteration l -1, which contradicts the optimality of S 1 is W m 0 . Because x 0 is stored in memory, it will not be read from the disk (otherwise S (d) ∞ will not be optimal). Thus S

(d)

∞ is also a solution to PROB

• Otherwise, the first operation in S 1 . Since the only value in one of the storage slots is x 0 (in the disk), the only possible R-type operation before W s j would be R d 0 . The only reason to execute R d 0 would be to perform F 0 . However, F 0 can be executed at the beginning of S (d)

1 at no cost, since the value x 0 is already in the top buffer. Thus, there are only F-type operations before W m j in S (d) ∞ (P6(i)). ⋆ According to (P6(iii)), after W m j , there are no operations involving values x 0 to x j-1 until after the operation Fj . ⋆ According to (P6(ii)), there are no operations involving values x j to x l after the operation Fj . ⋆ Since after the operation Fj , the content of the top buffer is useless, the first operation after Fj has to be an R-type operation. ⋆ Moreover, since the only value from x 0 to x j-1 in one of the storage slots after Fj is x 0 (in the disk), it has to be R d 0 . Thus, based on all this considerations, S

1 has the following shape:

where (i) no operations involve values x 0 to x j-1 in S 1 and (ii) no operations involve values x j to x l in S 2 .

Let S ′ 1 br the sequence W m j •S 1 , where every index of the operations is decreased by j (F i becomes F i-j , W m i becomes W m i-j ,. . .). Then S ′ 1 is a solution to PROB(lj, c m), whose makespan is necessarily not smaller than Opt 0 (lj, c m , w d , r d).

On the other hand, the sequence S 2 executes all the F-type operations from Fj-1 down to F0 with no operations involving values x j to x l . Furthermore, S 2 does not use disk slots, except the one already used by value x 0 . Thus S 2 is a solution to PROB

in particular it is smaller than B.

Note that if there is no W -type operation, because we do not use any additional disk slot, S

∞ is also a solution to PROB

Simulations

In this section we compare our optimal algorithm with the only (to the best of our knowledge) algorithm for multilevel checkpointing, introduced by Stumm and Walther [START_REF] Stumm | Multistage approaches for optimal offline checkpointing[END_REF].

Stumm and Walther's algorithm (SWA

Stumm and Walther [START_REF] Stumm | Multistage approaches for optimal offline checkpointing[END_REF] solve Problem 2 using a variant of REVOLVE [START_REF] Walther | Program reversal schedules for single-and multi-processor machines[END_REF]. REVOLVE takes l the size of the AC graph and s the number of storage slots as argument and returns an optimal solution for Problem 1. Stumm and Walther show that in REVOLVE(l, s), some storage slots are less used than others. They design the SWA algorithm that takes l the size of the AC graph, c m the number of memory slots, and c d the number of disk slots as argument and returns the solution REVOLVE(l, c d + c m) where the c d storage slots that are the least used are considered as disk slots and all the others are considered as memory slots.

To solve Problem 2, SWA ⋆ returns the best solution among the solutions returned by SWA(l, c m , c d , w d , r d), that is,

(having more than l storage slots is useless).

Simulation setup

For the simulations we have tested our algorithm and Stumm and Walther's algorithm on AC graphs of size up to 20,000 with different numbers of memory checkpoints. In global ocean circulation modeling [START_REF] Heimbach | An efficient exact adjoint of the parallel MIT general circulation model, generated via automatic differentiation[END_REF], a graph of size 8,640 represents one year of results with an hourly timestep.

In the experiments, we normalize all time values by setting u f to 1. We take u b = 2.5 as a representative value [START_REF] Heimbach | An efficient exact adjoint of the parallel MIT general circulation model, generated via automatic differentiation[END_REF]. Here we present results for c m ∈ {2, 5, 10, 25} and w d = r d ∈ {1, 2, 5, 10}.

In Figure 5.5 we reproduce Stumm and Walther's results in order to study the behavior of SWA. We plot the execution time of SWA as a function of c d for a fixed graph size (note that we used a logarithmic scale for the horizontal axis for better readability). We compare it with the optimal solution Opt ∞ (l, c m , w d , r d).

In Figures 5.6 First we observe the behavior of SWA given the amount of available disk slots for different disk access costs. The two plots in Figure 5.5 are representative of the two behaviors we observed for SWA during our experiments. We can see that the makespan of SWA(l, c m , c d , w d , r d) is always strictly higher than the optimal one for an infinite number of disk slots Opt ∞ (l, c m , w d , r d) (see the dotted line). For all values studied, the evolution of the execution time of SWA when the amount of storage increases follows a specific pattern that can be divided into three phases.

1. A very fast decrease with the first additional disk slots.

Research reports