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Abstract

The studies conducted in this thesis focus on the role of colour in visual attention. We tried
to understand the influence of colour information on the eye movements while observing
videos, to incorporate colour information into a model of visual saliency. For this, we analysed
different characteristics of eye movements of observers while freely watching videos in two
conditions:colour and grayscale videos. We also have compared the main regions of regard of
colour videos with those of grayscale. We observed that colour information influences only
moderately, the eye movement characteristics such as the position of gaze and duration of
fixations. However, we found that colour increases the number of the regions of interest in
video stimuli. Moreover, this varies across time. Based on these observations, we proposed a
method to compute colour saliency maps for videos. We have incorporated colour saliency
maps in an existing model of saliency.





Résumé

Les études menées dans cette thèse portent sur le rôle de la couleur dans l’attention visuelle.
Nous avons tenté de comprendre l’influence de l’information couleur dans les vidéos sur les
mouvements oculaires, afin d’intégrer la couleur comme un attribut élémentaire dans un
modèle de saillance visuelle. Pour cela, nous avons analysé différentes caractéristiques des
mouvements oculaires d’observateurs regardant librement des vidéos dans deux conditions:
couleur et niveaux de gris. Nous avons également comparé les régions principalement
regardées dans des vidéos en couleur avec celles en niveaux de gris. Il est apparu que les
informations de couleur modifient légèrement les caractéristiques de mouvement oculaire
comme la position des fixations et la durée des fixations. Cependant, nous avons constaté que
la couleur augmente le nombre de régions regardées. De plus, cette influence de la couleur
s’accroît au cours du temps. En nous appuyant sur ces résultats expérimentaux nous avons
proposé un modèle de saillance visuelle intégrant la couleur comme attribut. Ce modèle
reprend le schéma de base d’un précédent modèle (sans couleur) développé au laboratoire et
intègre des cartes de couleur. Nous avons proposé une méthode de calcul de ces cartes de
couleur permettant de reproduire au mieux nos résultats expérimentaux.
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1
Introduction

1.1 Context

Face to the the huge amount of the visual information that surrounds us, our visual system
has limited biological and sensorial resources. However, human visual system (HVS) performs
a rather efficient visual perception of our environment. Visual perception corresponds to
the faculty of human visual system in interpreting and exploring the raw visual information,
from acquisition of image by retina to the cortical processing. To deal with the huge amount
of visual information, our visual system, is able to select the most pertinent information that
achieves to retina from the whole stimuli located in the visual field. This ability is referred as
visual attention.

Visual attention is correlated to the eye movements. A sequence of saccadic movements
of eye and gazes brings a particular zone of the visual scene to the fovea, where the sensorial
dispositions of eye are concentrated to perform a proper process of the gazed location. The
selection of the location, that is to be gazed, involves two mechanism of selective attention:
an unconscious, exogenous mechanism called also bottom-up attention and a concious
endogenous mechanism also known as top-down attention. Bottom-up attention, which is
stimulated by low-level features of the stimuli, allows the primarily processing of visual
information rapidly and without involving all attentional resources. Top-down selection
attention is concious, controlled, task dependent and involves most of the attentional and
cognitive resources.

Modelling the mechanism of selective visual attention is one of the active research areas in
the field of computer vision as well as cognitive science. Because of the very high complexity
of the visual attention due to the interactions and dependency between bottom-up and
top-down attention, modelling the mechanism of visual attention is less realistic with the
existing technologies. Hence, the researchers are leaded to divide the models of attention
into bottom-up attention models and top-down attention models. At the basis of the models
of attention there are theories such as the Filter Model [Bro58] and the Feature Integration
Theory (FIT) [TG80]. The latter is one of the most cited theories of attention, and divides
the processes of attention into two stages: a pre-attentive and a focused one. According to
the FIT, elementary visual features such as intensity, colour and orientation are processed in
parallel at the pre-attentive stage, and subsequently combined to drive the focus of attention.
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Later in 1985, based on Feature Integration Theory, Koch and Ullman [KU85] have developed
one of the first computational models of attention which was inspired from the biology of
human visual system. For the first time the term of saliency map appeared in this work. A
saliency map has been defined as a representation of the visual scene, in which the most
attractive regions are enhanced.

The Feature Integration Theory and the computational architecture of this theory
proposed by Koch and Ullman [KU85] were the inspiration for many other computational
models of attention, such as the model proposed by Itti and colleagues [IKN98], which is
a reference model in the field of computational models of attention. These models, mostly,
compute a saliency map of the visual stimuli according to their low level features, such as,
colour, intensity, orientation, frequency, motion, etc. The contribution of these features to the
deployment of attention has been examined on the synthetic stimuli [WH04]. colour besides
other features has been found to deploy the attention when performing a visual search, for
example finding a horizontal red bar between green vertical bars. Yet, the guiding power of
colour features when exploring natural scenes is being debated.

1.2 Challenges

We are interested, in this thesis, on the role of colour in the visual attention, from eye
movements to the computational models.

The first challenge is to investigate the guiding power of colour features in the video
stimuli, using eye-tracking experiments and evaluation. The main question is whether
colour influences, in the least, the eye movements and the focus of attention when freely
watching the video stimuli. There are also several questions regarding whether influence of
colour on the visual attention is correlated to the content of the stimuli. Does colour deploy
attention in natural video stimuli for example landscapes? Does the contribution of colour in
guiding attention vary between man-made scenes, such as urban roads and indoor scenes,
and landscapes? What about person-present scenes? Faces were found to guide the visual
attention rapidly and independent from the task. Does differ the allocation of attention on
faces in colour stimuli from in grayscale stimuli?

The second challenge is to incorporate the findings from the experiments and evaluations
into a luminance-based computational model of attention. In this thesis, the bottom-up
model of attention proposed previously by Marat and colleagues [Mar+09] is improved. The
original model computes the visual saliency maps of a video through static and dynamic
pathways for grayscale stimuli. We tend to improve the performance of the model using
colour information.

1.3 Objectives

Regarding the challenges described above, the objective of this thesis is twofold. On the one
hand, we study and compare the behaviour of observers when viewing colour and grayscale
video stimuli. On the other hand, we would like to include colour features to a computational
model of saliency.

The first step is to perform eye-tracking experiments using video stimuli with various
contents. The experiments would allow us to identify various factors related to the impact of
colour features on the visual attention.

The second step involves computational modelling, to incorporate colour features into
a biologically inspired saliency model and modulate these features based on the factors
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identified through eye-tracking experiments. A colour-wise saliency model could be
beneficial for computer and machine vision, cognitive robots, recognition and quality control
devices.

1.4 Main contributions

This thesis focuses on the contribution of colour information into the eye movements from
one side and into the performance of a saliency model from the other side. These two
objectives are accomplished through following main contributions made in this thesis.

q We identify the impact of colour information on eye movements when observing video
stimuli, in terms of position of gaze, observers congruency, number of the regions of
interest, fixation duration and amplitude of saccade in global and as a function of time.

q We incorporate a colour saliency map to an existing luminance-based saliency model.
We evaluate the performance of the model in comparison to the existing models in the
literature

1.5 Thesis organization

Chapters 2 and 3 establish the state of the art in the field of visual attention and provide
background materials related to colour perception and representation systems. Chapter 2
introduces the mechanism of visual attention. First the human visual system is briefly
introduced. Then eye movements and their relation to visual attention are described.
Afterwards the main computational models of attention are described. Chapter 3 presents
main notions related to colour as a psycho-physical phenomena and it follows by presenting
the colour representation systems and colour measurements. Chapter 4 presents two eye-
tracking experiments and analyses the eye-movement of observers regarding the colour
features. Chapter 5 introduces a colour-wise saliency model and its evaluation against the
eye position data obtained from experiments of chapter 4. Finally, in chapter 6 we conclude
and mention several perspectives.





2
Visual attention and its computational models

In this chapter, we present the background of computational models of visual attention,
specifically the models that are inspired by human visual system.

To this goal, first the basic mechanisms involved in processing the visual information
by human visual system are briefly presented. Then we introduce the concept of visual
attention as well as the psychological models of attention. Afterwards, several computational
models of visual attention are presented. At the end we describe the contribution of different
low-level features in deployment of attention and also in the performance of computational
models of visual attention. The latter allows us to introduce the research direction of this
thesis.

2.1 Human visual system

Eye is the foremost neuronal organism of human visual system. The outer parts of eye,
such as pupil, iris and cornea, are visible when eye leads are open 2.1. The pupil is the
black-looking hole located in the center that allows light to enter the eye. The size of pupil is
controlled by the coloured circular muscles of the iris that surround pupil. The cornea is the
transparent external surface that is the first powerful lens of the optical system of eye and
with the crystalline provides the image of visual scene at the back of eye.

Eye performs several functions as an sophisticated moving optical system that follows
moving objects and focusses on the several targets in fractions of a second, and also as a
neural structure that transform luminous signals to electrical or chemical signals and convey
the visual information to the brain through optical nerve, Figure 2.2. The optical nerve has a
limited visual information debit. Therefore, the retina has been developed to optimise the
visual information that are to be transferred to brain.

The retina is a multi-layer neural membrane in the back of eye that resembles to a part
of the brain, but located distant. The outer layer of retina contains the photoreceptor cells,
rods and cones, that capture light. The captured visual information is pre-processed in the
inner subsequent layers of retina, and then sent to the lateral geniculate nucleus (IT). The
IT organises and sends this information to the primary visual cortex (V1), where further
processing of the retinal image is carried out. The visual data is then sent to the next levels
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Figure 2.1: Outer parts of human eye

Figure 2.2: A schema of human visual system. Image from INTECH.

of HVS, through the ventral and dorsal streams. The ventral stream provides data for inferior
temporal cortex (IT) which determines what an object is. The dorsal stream sends information
to the visual association cortex, which determines where an object is.

2.2 Eye movements

Human visual receptor, the eyeball, has the advantage to be mobile. Whether eyes are open
or close, the eyeball is in constant moving. One type of eye movement that happens voluntary
or unconsciously is the tracking movements. The tracking movements could be studied in
two categories: saccades and smooth pursuit. Both these movements are elicited to project
the target on the fovea.

http://www.intechopen.com/books/biomedical-engineering-technical-applications-in-medicine/implantable-biomedical-devices
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a) Saccades: A saccade is a rapid eye movement that changes the point of fixation. Saccades
are the most rapid movements that human is able to execute (900◦/S) with a short duration
ranging from 20 to 200 ms. Saccades are considered as ballistic movements because the
saccade-generating system is not able to modify the trajectory once a saccade is started.
Saccades can be executed voluntary or unconsciously and also reflexively when ever the eyes
are open. In 1967, Yarbus [Yar67] demonstrated that observing a static stimulus, such as an
image, is consisted of a series of saccades and fixations, Figure 2.3. During a fixation the
target is projected on the fovea to be processed in the highest spatial resolution.

Figure 2.3: The eye movements of a subject viewing a picture of Queen Nefertiti. The bust at the
top is what the subject saw; the diagram on the bottom shows the subjects’ eye movements over a
2–minute viewing period. Image from [Yar67].

b) Smooth pursuit This type of eye movements are slow movements that occur when the
eyes jointly fixate the same target while the target is moving relatively to retina. The smooth
pursuit is a voluntary movement that surprisingly can not be executed in the absence of the
relative movement of observer and target.

There are other eye movements such as vergence movements and vestibule-ocular
movements. The first group aligns the fovea of each eye with the targets located at different
distance from the observer, and the latter group stabilizes the eyes relative to the external
world and compensate for head movements. There are also drift and micro-saccades that are
less related to the overt attention [PJ01].

2.3 Visual attention

Although our visual system is intrinsically limited (limited debit of optical nerve), and our
environment contains an infinitive quantity of visual information, we are able to perceive
automatically the important changes in the visual scene. Our visual system has adopted the
strategies to reduce the quantity of the information that must be processed and transported
to the superior visual areas of brain [BB82].

First, the biological and physiological design of HVS allows a passive selection of the
visual information:

– The photoreceptor cells are only sensitive to the light of visible spectrum.
– They perform a non-uniform sampling of visible light; in the center around fovea the

spatial resolution is maximum.
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– The visual cells are sensitive to spatial frequencies and the retina and cortical cells
reduce the redundancy of visual information, and respond to the contrasts.

Second, a mechanism of attention is developed to deal with the unlimited amount of
visual information surrounding us. The visual attention has been described as a "spotlight"
that illuminates a limited zone of visual scene to be processed in details [Nei67]. Two stages
of attention are covered in this example: a pre-attentive stage that is responsible for selecting
the regions of interest, and an attentive stage that is devoted to the further processing of the
selected regions [Nei67].

Mechanism of attention enables us to automatically attend to the regions of interest in
visual scene and explore it by changing the focus of attention. Moving the focus of attention
and the order in which a scene is explored could be performed in two ways: overt and covert.
The overt attention occurs when the focus of attention is moved to a target by eye movements.
The covert attention allows us to perceive something in periphery without involving eye
movements, for instance when we perceive something from the corner of eye.

The overt attention is correlated to saccades that move the attention from one position
to another, and fixations that allow the further processing of selected positions [Riz+87;
HS95]. The overt attention might be quantified via eye movement analysis when viewing
complex stimuli—static natural scenes [SD04; TV08; Bin10; HPGDG12], as well as dynamic
scenes [CI06; DMB10; Mit+11; Cou+12].

Two categories of factors interfere in the mechanism of attention: Bottom-up factors and
Top-down factors.

Bottom-up factors are associated to "feature driven" attention also known as bottom-
up attention. Bottom-up attention refers to a transitory involuntary attention, also called
exogenous, that is driven by the salient visual information.

Top-down factors are associated to "task-dependent" attention also known as top-down
attention. Top-down attention is a voluntary mechanism of attention, also called endogenous,
that is voluntary controlled to attend specific regions of the visual scene, according to the
goal and a priori knowledge of the observer [BI11].

Although bottom-up attention is supposed to be a transitory mechanism that occurs
at the onset of stimuli, several researches [PLN02; Pet+05], have demonstrated that this
mechanism interferes also later in time when top-down mechanism of attention is activated.

2.4 Psychological theories of attention

During years several theories and models of attention were proposed to better understand
how the selective attention happens and how the attentional resources are allocated. Here,
we present theories and models which have been the basis for computational models of
attention. More on psychological theories of attention can be found in the reviews of [Bro58;
Bun90; KU00; Sch04; Fri06].

2.4.1 Filter Model

Broadbent’s filter model of attention is one of the first theories of attention that describes an
early selection of attention [Bro58]. The theory claims that because of the limited processing
capacity of human, kind of selective filter limits the information at the very early stages of
attention.

The selective filter, depending on the physical properties of the stimuli including colour,
loudness, pitch and direction, allows for attended stimuli to pass through the filter for further
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Figure 2.4: Broadbent’s Filter Model. Image from Wikipedia.

processing, while unattended stimuli will be discarded, Figure 2.4. On the other hand to
attend to a stimulus based on the goal or demanded task a voluntary mechanism of attention
must interfere.

2.4.2 Feature Integration Theory FIT

FIT is one of the best known and most cited theories of visual attention that was proposed
after filter model in 1980 [TG80] and was gradually improved to adopt with current findings
[TG80].The theory divides the process of attention into two stages; a pre-attentive and a
focused one. According to FIT "different features are registered early, automatically and in
parallel across the visual field, while objects are identified separately and only at a later stage
which requires the focus of attention" [TG80]. The theory is based on the promise that the
process of attention in brain provides several feature maps according to the physical attributes
of the stimulus. These feature maps are then combined to a master map that enhances the
important regions of the visual scene. Figure 2.5 shows a schema of FIT.

2.4.3 Guided Search Model

Besides FIT, Guided Search model proposed by Wolf [WCF89], is one of the well known
psychological models of attention. This model also has been evolved during years and several
versions of its computer simulation are available [Wol94; WG97]. The model, in many aspects,
is similar to FIT, but more detailed to be simulated by computer. Figure 2.6 depicts a schema
of this model.

The main aspect that differentiate this model from FIT, is that instead of feature types
(red, green, etc), the feature dimension (colour, orientation, etc) form each feature map. In
addition the model associates a top-down map to each feature map.

2.5 Computational models of attention

Based on the psychological theories and models, several computational models of attention
have been developed to improve computer vision systems.

Here we introduce, specifically, the models of attention that process the scenes to
determine which regions deploy the attention involuntary in a pre-attentive stage of vision.
Based on whether the model is inspired from human visual system or not, there are two main

https://en.wikipedia.org/wiki/Main_Page
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Figure 2.5: A schema of Feature Integration Theory. Image from [TG80].

Figure 2.6: A schema of Guided Search model. Image from [WCF89].
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categories of computational models of visual attention: biologically plausible and purely
computational. In this work we are concerned with biologically plausible models. However,
there is an overlap between these two category of models, as most of the well-known models
could be considered as biologically plausible models with some pure computational units. We
introduce, here, two of the pioneer biologically plausible computational models of attention
and name several other models. More literature on computational models of visual attention
can be found in following reviews [IK01; Fri05; BI10; Tso11].

2.5.1 Koch and Ullman

The model of selective attention proposed by Koch and Ullman [KU85], is one of the first
biologically plausible models of attention. This model has been designed based on FIT [TG80].
Figure 2.7 depicts the scheme of this model. First a set of the elementary features, such as

Figure 2.7: A Schema of the model proposed by Koch and Ullman. Image from [KU85].

colour, orientation, direction of motion, etc, are extracted from the input image. Then these
features are processed in parallel and form different feature maps, respecting the topology
of the input image. The lateral inhibition within feature maps, that simulate the photocells
of retina, enhances the regions of the image that are different from their surroundings. The
feature maps are fused to a saliency map. The notion of saliency map was first introduced
by Koch and Ullman [KU85], according to whom, a saliency map "gives a biased view of the
visual environment, emphasizing interesting or conspicuous locations in the visual field".
The saliency map represents the salient features in the visual scene, but the order in witch
the salient regions are focused is determined by a winner-takes-all (WTA) approach.

2.5.2 Milanese

The model proposed by Milanese [Mil+94] is one of the earliest models of visual attention,
based on the Koch and Ullman model [KU85]. It uses filter operations to compute the
feature maps. The model considers following features: red-green and blue-yellow colour
opponents, 16 orientations, local curvature and intensity when colour information is absent.
The local value of the feature maps are compared to their surrounds using center-surround
differences. The resulting differences are gathered in conspicuity maps. The term of the
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conspicuity was since used to refer to the feature-dependent saliency map. In another version
of the model, the top-down information is added to the model [Mil+94] using distributed
associative memories DMAs recognition algorithm. The DMAs is executed on the regions of
interest obtained from the bottom-up model and provides a top-down saliency map that
competes with bottom-up conspicuity maps. At the end, the result is a saliency map that
include both bottom-up and top-down cues.

2.5.3 Itti

The model of Koch and Ullman have provided the architectural basis for many models that
were proposed latter, such as the model proposed by Itti, Koch and Niebur in 1998 [IKN98].
This model has been improved during time [Itt02] and is undoubtedly the best known and
most cited computational model of attention. Figure 2.8 shows the general architecture of
the model that we present here briefly.

Figure 2.8: A schema of saliency model proposed by Itti and colleagues. Image from [IKN98]

As shown in the figure 2.8, three processing channels are extracted from the input rgb
image:

– An intensity channel I where I =
r + g + b

3
. I is used to create a Gaussian pyramid of

intensity images I(σ ), where σ ∈ {0...8}.

– A colour channel which includes four colour images: R = r −
g + b

2
for red, G = g − r + b

2

for green, B = b −
r + g

2
for blue and Y =

r + g
2
−
|r − g |

2
− b for yellow.
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– An orientation channel that is extracted from the intensity images. A pyramid of
oriented gabor filters O(σ,θ), where θ ∈ {0,45,90,135} is used to excerpt four orientation
images for each level of pyramid, σ ∈ {0...8}.

Then the feature maps associated to each feature channel are computed using center-
surround differences between a "center" fine scale c and a "surround" coarser scale s as
following:

– Intensity: I(c, s) = |I(c)	 I(s)|
– Colour: RG(c, s) = |(R(c)−G(c))	 (G(s)−R(s))| and BY (c, s) = |(B(c)−Y (c))	 (Y (s)−B(s))|
– Orientation: O(c, s,θ) = |O(c,θ)	O(s,θ)|
In total 24 feature maps are computed: six for intensity, 12 for colour and 24 for

orientation. For each channel the feature maps are normalized and linearly combined
to create one unique saliency map for each channel, N (I),N (C) and N (O). The linear fusion
of these three maps provide a saliency map that enhances the most attractive regions of the
input image. At the end the order in witch the focus of attention (FOA) is moved on the salient
regions of the input image is computed through a WTA approach. The WTA is combined
with a mechanism of inhibition-of-return (IOR) to prevent the
acsFOA from returning immediately to an attended salient position. Figure 2.9 shows an
example of the image sequences and the saliency map which indicates the location of the
focus of attention.

2.6 Other models

There is wide variety of the models in literature. Many are based on similar approaches and
differ only in details, for instance different number of features are considered.

The model of Chauvin [Cha03] is another biologically plausible model of visual attention
that only processes the luminance information. Likewise the model of Itti [IKN98], this
model extracts primary feature channels from 32 Gabor wavelets of 4 frequencies and 8
orientation. But it is different from the model of Itii in several points. Feature channels are
normalized through a divisive inhibition method. Then different channels are filtered using
butterfly filters to enhance aligned and collinear edges. Afterwards, the most important
orientation of each frequency band are selected using iterative difference operations. Finally,
the saliency map is computed by linear combination of different frequency maps.

The model proposed by Le Meur and colleagues [LMLCB07] is another biologically
plausible model that show a high performance. Likewise A. Chauvin, the model uses
Gabor wavelets and butterfly filters to extract feature maps. In addition the chrominance
information are includes in the model. Moreover the model is extended to temporal
dimension to process video stimuli as well.

The model of attention proposed by Courboulay and colleagues [CPDS12] is one of the
real time models of attention. The model proposes a visual attention system that adapts its
processing according to the saliency of each element of the dynamic scene. However, the
model propose an original hierarchical and competitive approach to predict the position of
gaze without the need of neither saliency map nor explicit inhibition of return mechanism,
which are compute intensive.

In this thesis we study the bio-inspired model proposed by Marat and colleagues [Mar10].
The model is based on luminance information and computes the dynamic and static saliency
maps for video stimuli. We present this model in details at section 5.1.
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Figure 2.9: An example of the image sequences and the saliency map which indicates the location
of the focus of attention. Image from iLab, USC University of Southern California.

More literature on computational models of visual attention can be found in [Fri05]. A
comparison of the performance of several models is available in review of Borji and colleagues
[BI10].

2.7 Conclusion

In this chapter, we presented briefly the human visual system and the mechanism of visual
attention. Then we introduced the psychological models of attention before getting into the
computational models of visual attention. The modelling of visual attention is a wide field.
The current technologies do not allow to create a unique model of the whole aspects of the
visual attention. Hence, each of the proposed model emphasizes one aspect of attention. We

http://ilab.usc.edu/bu/theory/index.html
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discussed several of the bio-inspired computational models of bottom-up attention which
join findings from human perception to computer vision systems.

In almost all the bottom-up models of visual attention, low level features like intensity,
colour, spatial frequency are considered to determine the visual saliency of regions in static
images, whereas motion and flicker are also considered in the case of dynamic scenes.
Whereas, classical models of attention use colour as an elementary feature, some studies
suggested that colour has little effect on location of regard [BT06a], [HPGDG12], [FHK08],
which brings to question the necessity of the inclusion of colour features in bottom-up models
of attention [DMB10].

In this thesis, we focus on the role of colour in guiding visual attention as well as in the
computational model of attention. To achieve this goal, it seems essential to understand how
colour is perceived as well as how colour is represented. Therefore, in the following chapter
we describe a trajectory of colour from perception to the digital representation.





3
Colour from psycho-physical phenomena to

numerical representation

Our work is focused on quantifying the contribution of colour information in human visual
attention. We study from one side the influence of colour information on the eye movements
and from the other side we introduce colour information in a computational model of
attention. Before getting to the core of our work, it seems essential to understand how colour
is formed, perceived and represented. In this chapter we describe, briefly, a trajectory of
colour from psycho-physical phenomena to digital representation. First we introduce the
notion of colour as a psycho-physical phenomena. Then, we address the vast topic of colour
representation systems in a non-exhaustive way. Afterwards, the objective methods of colour
measurements are presented followed by a numerical example of colour measurements for
an LCD display. At the end we discuss colour to grayscale conversion methods.

3.1 Colour

Colour is a complex aspect of the appearance of an object that is related to divers fields
such as optical physics, physiology and psychology. The human perception of colour is the
interpretation of the colour signals transmitted from retina, by visual cortex, Figure 3.1. The
colour of an object results from the interaction of three elements:

– Light

– Object/material

– Observer

3.1.1 Light

In 1666 Sir Isaac Newton realized a series of light decomposition experiments using a
prism. He observed that light is decomposed to a multicolour band similar to a rainbow.
This decomposition showed that white light is resulted from the mixture of a high number
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Figure 3.1: Three elements that form the perception of colour of an object by human observer.
Image from [Van00].

of coloured radiations and ended the previous believes considering white light as a non-
decomposable element.

Colour can be defined as a group of electromagnetic waves resulted from the propagation
of the photons. The electromagnetic waves are identified by their wavelength, λ, measured
in m. Human eye perceives only a small band of electromagnetic vibrations spectrum with
wavelengths from 380 nm to 780 nm. This narrow band is called the visible spectrum, Figure
3.2. Visible spectrum includes colours from violet, 380 – 450 nm approximately, to red, 630 –
780 nm.

Light source For colorimetric purposes the light is produced by warming a material to its
incandescent temperature or by exciting the atoms and molecules using an electrical spike or
discharge. In order to identify colour of a light, it is compared to the incident light of a black
body. A black body is an idealized source that absorb all incident electromagnetic radiations.
The colour of a light source can be expressed as a temperature in Kelvin. The temperature
of the colour is the equivalent temperature of the black body that has the most similar visual
aspect to the light source.

The principal source of light is daylight. We observe the natural colour of the objects
under daylight condition. Daylight is constituted of sunlight and the light diffused from
the atmosphere. The solar spectre is extended from 200 to 4000 nm that is the equivalent
of a black body in 5800 Kelvin. According to the influencing factors such as the latitude,
the season, the weather conditions and time, daylight might produce colour temperatures
from 4000 Kelvin to 6000 Kelvin. Hence, the daylight source had to be normalized to
be reproducible and consistent. There exist several normalized daylight sources, called
illuminants. An international organization called Commission International de L‘Eclairage,
(CIE) is the responsible for establishing the characteristics of standard illuminants as well as
other normalisations and recommendations required in the science of colour measurements.
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Figure 3.2: The visible spectrum. Image from [Van00].

An illuminant is characterized by its relative spectral energy S(λ). Most of the illuminants
are normalized to 1 or 100 at λ = 560 nm. Table 3.1 represents the characteristics of some
well-known standard illuminants.

Table 3.1: Example of some standard illuminants that are employed in different applications

Illuminant Equivalent
Temperatur
in Kelvin

A Tingesten lamp 2856
B Sun 4870
C averaged daylight 6770
D different daylights D50 D55 D65
D65 daylight at 6500 kelvin 6500
E Non physical equi-energetic source
F from F1 to F12 for different sources
F2 florescent lamp

3.1.2 Object

Eye perceives the objects and materials according to the way that light is modified and
reflected from the surface of the object. We can see objects that either reflect the radio-
magnetic waves with wavelengths situated in the visible spectrum, called reflective objects,
or emit light, called self-luminous objects. A reflective object absorbs part of incident light
and reflects other part. The reflected part might be captured by eye to form an image of the
object on the retina. Colour of the object is associated to the electromagnetic waves and their
spectral distribution. The selective absorption of certain wavelength by an object determines
its colour. For example a red surface absorbs blue, green and yellow lights and reflects the
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red light. The colour of a reflective object might be represented by its spectral reflectance
curve, which expresses the reflected part of the incident energy. Figure 3.3 shows the spectral
reflectance of different colour objects.

Figure 3.3: Spectral reflectance for yellow, red, blue and gray objects. Image from Stanford
university, Foundations of Vision, Brian A. Wandell

3.1.3 Observer

The visual perception of an object is the result of the brain interpretation of the signals
transmitted from retina. The retina contains photoreceptor cells that capture light and
transform it to the signals which are interpretable by visual cortex. There are two categories
of photoreceptors, cones and rods. The cone contribute in photoptic vision under well-lit
conditions and are sensitive to colour. The rods are responsible for scotopic vision under
low-light conditions and are sensitive to lightness variations, but they are not sensitive to
colour. There are approximately 8 million cones and 120 million rods in retina. The cones
are placed randomly near to fovea, while the rods are grouped and concentrated in the outer
edges of retina resulting a high sensibility for lateral vision, Figure 3.4.

The cones, according to their peak respond to different wavelengths, are divided to
three types. Red cones or long-wavelength(L-cones) respond the most to the light of long
wavelength. They have a maximum sensibility to reddish light. Green cones or middle-
wavelengthM-cones are the photoreceptors that respond the most to the green light of middle
wavelength, and the blue cones or short-wavelength S-cones are the ones with the peak
response to the bluish lights of short wavelength, Figure 3.5.

Information about wavelength and intensity is confounded at the output of each
individual cone. In the retinal ganglion cells, the output signals from different cones are
compared conveyed to the brain through three channels: a luminance channel and two
colour-opponent channels. In luminance channel the signals from L- and M-cones are added
(L+M channel) to reproduce the intensity of an object. In red-green colour-opponent channel
the signals from L- and M-cones are subtracted from each other (L-M channel) to obtain the
red-green component of an object. And in yellow-blue colour-opponent channel the signal

https://foundationsofvision.stanford .edu/chapter-9-color/
https://foundationsofvision.stanford .edu/chapter-9-color/
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Figure 3.4: There are four types of photoreceptor cells in the human retina. Short-wavelength
cones (blue), Medium-wavelength cones (green), Long-wavelength cones (red) and rods.

Figure 3.5: Spectral sensitivity of rods and cones. Note that rod curve is not to scale.

from sum of the signals from L- and M-cones is subtracted from S-cones (L+M-S channel) to
compute the yellow-blue component of an object. These three channels are independent and
are transmitted in physiologically distinct pathways; luminance information stimulates cells
in the magno-cellular layers of LGN, red-green information stimulates cells in parvo-cellular
layers and yellow-blue information stimulates cells in koniocellular layers. Although the
functionality of primary stages of the perception of colour has been studied in details, cortical
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stage of colour perception are less well studied. The V4 area of brain is considered as colour
centre of brain. However, like most of the visual attributes our perception of colour depends
on the activities of several cortical areas [Geg03].

3.2 Colour measurement

Colour is an interpretation of signals from retina by cortex. This interpretation is different
from one to another, resulting a subjective definition of colour. But, many applications
need an objective measure of colour of a stimulus. The science of colour measurements,
colorimetry, have been developed to meet these needs.

3.2.1 Trichromacy of colour mixtures

According to the trichromacy of colour mixtures or additive colour synthesis any given colour
can be reproduced by mixing various proportions of the three primary monochrome red, green
and blue lights. The additive colour synthesis is used in colour displays like television receivers
and computer-controlled monitors to reproduce colours. But, in some instruments such as
printers, subtractive colour synthesis method is employed. The subtractive colour synthesis is
based on the absorbing characteristics of materials as the colour of an object is the result of
the parts of the visible spectrum of the light that are not absorbed. In subtractive synthesis the
primary colours are Magenta, Cyan, and Yellow, Figure 3.6.

Figure 3.6: Additive (left) and subtractive (right) colour synthesis.

Colour mixtures were studied by Maxwell. In 1855 he presented the first three colour
projections, a description of which appears in [Mac70]. In 1857 he developed the theory of
additive colour mixtures for the three colour primaries from Young-Helmholtz theory1. He
specified 13 different colours in form of a triangular diagram in witch the three primary
colours (red, green, blue) are located in the three angles of an equilateral triangle and their
mixture in the center produces the white point, Figure 3.7. Maxwell’s studies built the basis
for the colour measurement methods.

1Young-Helmholtz theory has been developed in 1807. Helmholtz established the theory of trichromacy of
colour vision due to three types of photoreceptors in retina. Later in 1860s, he detailed the characteristics of
these photoreceptors, today known as cones.
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Figure 3.7: Maxwell’s triangle. 13 different colours are specified on this triangular diagram. The
three primary colours (red, green, blue) are located in the three angles and their mixture in the
center produces the white point

3.2.2 Grassman’s law

In colorimetry it is supposed that there is a relation between the three primary colour stimuli
and the perceived sensation that arises from them. The characteristics of this relation is
based on Grassman’s law that allow treatment of colour mixtures as a linear system. Two of
the more important laws can be explained as follow:

q Any colour stimulus C can be reproduced by a linear combination of three primary
colours P1, P2 and P3.

C ≡ p1P1 + p2P2 + p3P3 (3.2.1)

Here the ≡ sign indicates a colour matching. The colour in one side appears the same
as the colour on the other side.

q The luminance of a colour mixture is equal to the sum of the luminance of each colour

L = L1 +L2 +L3 (3.2.2)

In a more general way, the properties of the relation between colour stimuli A, B, C and
D respects equivalence properties as follows [TFMB04]:

– Reflexive: A ≡ A
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– Symmetric: if A ≡ B then B ≡ A

– Transitive: A ≡ B and B ≡ C then A ≡ C

– Additive:

- A ≡ B then A+C ≡ B+C

- A ≡ B then ≡

– Multiplicative: A ≡ B then k.A ≡ k.B

– Simplification: A+C ≡ B+C then A ≡ B

These rules have been experimentally tested through colour matching experiments and have
been confirmed for a wide photoptic range, but they are not valid for the weak luminosities
close to mesopic and the very high luminosities [TFMB04].

3.2.3 Colour matching experiments

At the foundation of trichromacy of vision and colour mixtures lies a series of idealized
colour matching experiments. These experiments were set to determine what mixture of
three primary colours would appear like a given spectral colour. Subjects were asked, first,
to match a white point that has equal energy in all parts of visible spectrum. Then they
adjusted the strengths of the three primaries to match each spectral colour, Figure 3.8.

Figure 3.8: Colour matching experiment. Each frequency of target light is projected on the viewing
screen on one side of the black partition. The observer adjusts each of the red, green and blue
lights to reproduce the same colour as the target.

In 1931 CIE defined the colour matching data for a standard observer, based on the data
obtained from two separate colour matching experiments: Wright in 1928 and Guild in 1931.
Figure 3.9 shows the chromaticity coordinates versus wavelength of the spectral colours for
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seven observers in Guild experiment and figure 3.10 shows the standard observer chromaticity
functions of CIE 1931.

In Guild experiment the visual field was rectangular giving 2 degrees of visual angle in
diameter. Guild had obtained data from 7 subjects with spectral primaries at 630 nm, 543
nm, 460 nm and National Physical Laboratory (NPL) reference white , which was most similar
to the new CIE Standard Illuminant B in colour temperature and spectral power distribution
[Sha03]. In Wright experiment the visual field was also rectangular giving 2 degrees of visual
angle. Wright had obtained data on 10 observers and the monochrome primaries were at 650
nm, 530 nm, 460 nm and were normalized at a different white point. In 1965 CIE introduced
chromaticity functions obtained for a 10 degree of visual angle diameter.

Figure 3.9: The chromaticity coordinates versus wavelength of the spectral colours for seven
observers using Guild’s trichromatic colorimeter primaries, and the NPL reference white. Image
from [LRT77].

Figure 3.10: Colour matching functions for standard observer.

A standard relative luminous efficiency function (luminosity function, V (λ)) had also
been adopted by CIE for photopic (normal day-light vision) and scotopic (night-light vision)
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conditions, Figure 3.11. The luminosity function represents the results derived from several
different photometric methods of brightness matching for spectral energy sources and
describes the average spectral sensitivity of human visual perception of brightness.

Figure 3.11: Photopic (black) and scotopic (green) luminosity functions Image from Photometry
(optics), Wikipedia.

3.2.4 Colour transformations

As we saw for Write and Guild colour mixture experiments, the choice of primaries is
not unique. However, a transformation could be found between any two arbitrary sets of
primaries. This problem has been solved by a number of researchers for certain special
cases. Wintringham [Win51] has treated the problem in a very general form in which the
two reference whites are not identical. The result can be expressed in terms of a 3 × 3 matrix
transformation, Equations (3.2.3) to (3.2.5).

R′

G′

B′

 = P ×


R
G
B

 (3.2.3)

P =


p11 p12 p13
p21 p22 p23
p31 p32 p33

 (3.2.4)


R
G
B

 = P −1 ×


R′

G′

B′

 (3.2.5)

On the other words any set of primaries can be obtained from the linear mixture of another
set of primaries.

https://en.wikipedia.org/wiki/Photometry_(optics)
https://en.wikipedia.org/wiki/Photometry_(optics)
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3.3 Colour representation systems

There are numerous models established to represent the colour information and quantify
the colour sensation. These models vary basically according to how sensation of colour
is considered: a physical phenomena, a physiological, a psychological phenomena or a
combination of these phenomena which might provide a more precise model.

Colour matching experiments show that any colour could be reproduced using a
linear combination of three primaries using a colour matching function. Based on this
approach several colour representation systems have been proposed that introduce a three-
dimensional space for colour representation with three primary colours as the three unit
vectors. Theoretically as much as there are primary systems there are colour representation
systems. Any such system can be transformed to another using a transformation matrix P as
it was explained in 3.2.4. Many colour representation systems were also established without
introducing new primaries.

Because of the diversity colour representation systems and their applications, discussing
them in details is beyond of the scope of this section. Therefore, we present briefly the
different categories of colour representation systems and we introduce the primary-based
systems that are essential for proceeding the colorimetric analysis.

3.3.1 Different categories of colour representation systems

The colour representation systems could be classified, according to their characteristics, into
four categories [Van00],[TFMB04].

a) Primary-based system The colour matching experiment leads to one of the most common
categories of colour representation systems. Any colour of visible spectra can be deduced
from linear combination of a set of primary sources , R, G and B. Because of the needs of
colour measurements in this thesis, we discuss this category of colour representation systems
in details at section 3.3.2.

b) Luminance-chrominance systems This category of colour representation systems have
been developed to dissociate the luminance and the chrominance information. In most of
such systems there is a luminance component and two chrominance components such as in
YCbCr . The family of YCbCr systems have been developed to ensure a compatibility between
colour and black and white TV receivers. The YCbCr components could be computed from R
G B coordinates using a linear transformation. Different television standards uses different
coefficients for the transformation which result to several systems of YCbCr type. For example
NTSC standard has employed Y I Q system, while PAL standard used Y U V system.

Another type of systems that could be considered in Luminance-chrominance category is
antagonist systems. This family of colour representation systems have been inspired from
the theory of Young [You02], according to which the perceived colour information by human
visual system are transmitted to brain as three signals, one corresponding to achromatic
information and two signals for two colour opponents red-green and blue-yellow. AC1C2 is
one the systems of this type, proposed by Faugeras [Fau79]. ACr1Cr2 is another such system
proposed by Krauskopf and colleagues [KWH82].
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c) Perceptual systems Human observers usually describe the sensation of colour by the hue
or tonality, the saturation or degree of the purity and the luminosity or brightness. Several
colour representation system have been developed to quantify these features of colour. One
of the main attributes of these colour systems is to be able to describe the perceptible colour
differences of similar colours. The Hue-Saturation-Value (H S V) and L∗a∗b∗ are two example
of the systems of this category.

d) Independent axis systems In most of colour representation systems the three
components are less or more correlated. This correlation prevent to process one component
independent from the other components. To deal with this problem several colour systems
have been proposed in which the components are independent. This type of systems is
usually called X1X2X3. One of the pioneer methods that allow to decorrelate the components
is the model based on Karhunen-Loeve transformation [HW71].

A representation system might belong to more than one of the presented categories.
For example XYZ CIE system is a primary-based system that also dissociate luminance
information, component Y, and chrominance information, component X and Z. A very
complete presentation of colour representation systems could be found in [Van00] and
[TFMB04].

3.3.2 Primary-based systems

As we saw in colour matching experiments, section 3.2.3, any colour C can be reproduced from
a weighted mixture of three primaries R, G and B. Colour C is, therefore, presented by a
point in a three-dimensional space with origin O and three primaries R, G and B as unit
directing vectors. In this space the colour equivalence properties are described by vectorial
equalities. Such colour system respects Grassman colour mixture laws presented in section
3.2.2.

As much as there are R, G and B primaries and the white point there are R G B primary
systems. Any primary system can be transformed to another using transformation matrix
P , Equation (3.2.4). Several systems of primaries has been defined regarding the chosen
primaries and white point and are commonly used in different applications [TFMB04]. Two
of the most common primary systems are: The RGB system of CIE with equal energy white
point (illuminant E), NTSC system with illuminant C. Another primary-based system, which
is the CIE colorimetric reference, is XYZ.

a)RGB system of CIE The RGB system of CIE was first defined in 1931 based on Wright and
Guild colour mixture experiments. The chosen reference white point was equal-energy white
point, illuminant E. In this system the three primaries R, G and B are associated to three
directing normal vectors R, G and B and form a vectorial space, Figure 3.12. Each colour C,
in this space, is presented by a point C and a colour vector OC where O is the origin point
of this vectorial space. According to additive colour synthesis the colour C is obtained from
equation (3.3.1).

C = R.R +G.G +B.B (3.3.1)

The coordinates of vector OC are the tristimulus values R, G and B. The negative
coordinates represent the colour stimuli that could not be reproduced by an additive synthesis.
The colour stimuli with positive tristimulus values form the colour cube, Figure 3.12. The
origin point O represents the black point (R, G and B = 0), while the reference white is
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Figure 3.12: R G B cube, The origin point O represents the black point (R, G and B = 0), while the
reference white is the point with all coordinates equal to one (R, G and B = 1).

the point with all coordinates equal to one (R, G and B = 1). The diagonal axis OW is the
achromatic axis, and the points on this axis represent the shades of gray.

The tristimulus values R, G and B of a colour stimulus depend on its luminosity, therefore
two different colour stimuli might have same tristimulus values . To remove luminosity
information, colorimetrists use the normalized components called chromaticity coordinates
expressed in equation (3.3.2).

r =
R

R+G+B

g =
G

R+G+B

b =
B

R+G+B

(3.3.2)

Equation (3.3.2) can be considered as a projection of the point C to the plan R+G +B = 1
with achromatic axis as normal vector. The intersections of this plan and colour cube form
Maxwell’s triangle also known as colour triangle, with R, G and B points as the vertices. In
figure 3.12 Maxwell’s triangle is specified with dashed gray lines.

In spectral domain the normalization process of equation (3.3.2) provides the spectral
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chromaticity coordinates of CIE, r(λ), g(λ) and b(λ), obtained from equation (3.3.3).

r(λ) =
R(λ)

R(λ) +G(λ) +B(λ)

g(λ) =
G(λ)

R(λ) +G(λ) +B(λ)

b(λ) =
B(λ)

R(λ) +G(λ) +B(λ)

(3.3.3)

The chromaticity coordinates of the spectral colours for the Standard Observer are shown
in figure 3.13. The colour space formed by chromaticity coordinates is called normalized

Figure 3.13: Chromaticity coordinates of spectrum colours for the Standard Observer. Primaries:
700.0 nm, 546.1 nm and 435.8 nm (NPL primaries). Reference white: equal-energy white. Image
from [LRT77].

RGB space or rgb space, where, r + b + g = 1. Only two components are necessary to represent
a given colour stimuli. A graphical representation of this information is obtained from the
chromaticity diagram of r and g chromaticity coordinates, Figure 3.14.

The spectral colour plot on the elongated horseshoe shapes a curve called the spectral
locus. The straight line connecting the two extremities of the spectral locus is called the
line of purples. The spectral locus extends outside Maxwell’s triangle. In section 3.2.3, we
presented the colour matching functions for standard observer, r(λ), g(λ) and b(λ). As shown
in figure 3.10, r(λ) is negative in part of visible spectrum. Consequently one of the primaries
must be added to some of the spectral colours to carry out additive synthesis, which is the
equivalent to moving one of the terms from the right side of equation (3.3.1) to the left.
In addition in R G B the luminance is not presented as an independent component, and is
obtained from the sum of luminosity coefficient of each chromaticity coordinate. To cope
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Figure 3.14: rg chromaticity diagram. Image from [LRT77].

with these drawbacks of R G B systems, among the others a new set of non-physical primaries
called X Y Z were proposed.

b) Other RGB systems We discussed the R G B system of CIE which is based on equal-
energy illuminant E. Several another R G B systems are adopted in different applications.
For example colour televisions were one of the first commercialized products in which the
trichromacy of colour mixtures was exploited. For instance, in Cathode Ray Tube (CRT)
receivers the three lights could be considered as the three primaries. In the United States,
in 1953, the Federal Communications Commission (FCC) adopted the National Television
Standards Committee (NTSC) recommendations for use as a standard in colour televisions.
In Europe, the German standard, (PAL) defined by European Broadcast Union (BEU), and
the French standard (SECAM) are employed. The NTSC considers illuminant C as the white
reference while the EBU has preferred the illuminant D65.

In computer-controlled displays different primary systems are adopted by constructors,
which are different from the CIE standards for CRT televisions.

No matter which illuminant is employed, any primary system can be transformed to
another using a transformation matrix P. As an example to transform the RGB system of
system to the RGB system of NTSC the equation (3.3.4) is used:

RNTSC
GNTSC
BNTSC

 =


0.6752 0.1252 0.0727
−0.1035 1.3237 −0.2004
0.0060 −0.0691 0.8971



RCIE
GCIE
BCIE

 (3.3.4)

c) XYZ system In 1931, the works of Judd [Jud30] led the CIE to propose a colorimetric
reference system with non-physical primaries, X Y Z. The system is obtained from a primary
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transformation matrix P, Equation (3.3.5) and the equal energy white of CIE (illuminant E) is
considered as reference. 

X
Y
Z

 = P ×


R
G
B

 (3.3.5)

P =


2.7690 1.7518 1.1300
1.0000 4.5907 0.0601
0.0000 0.0565 5.5942

 (3.3.6)

In general, the transformation matrix that converts any RGB system to XYZ is a linear
transformation that considers chromaticity coordinates of both primaries and white points.
That means: for any RGB system there is a transformation matrix P converting the RGB
system to XYZ system, equation (3.3.6), and there is an inverse transformation matrix P −1,
equation (3.3.8), to perform the inverse operation.

R
G
B

 = P −1 ×


X
Y
Z

 (3.3.7)

P −1 =


2.7690 1.7518 1.1300
1.0000 4.5907 0.0601
0.0000 0.0565 5.5942

 (3.3.8)

X, Y and Z primaries were chosen in the way that the triangle made by them contains the
spectral locus 3.14, implying that all spectral colours can be matched in an additive synthesis
with positive weights of primaries. In spectral domain colour matching functions, x(λ), y(λ)
and z(λ), do not take negative values in any part of visible spectrum, Figure 3.15. The y(λ) is
identical to the luminosity function, V(λ), for the standard observer presented in figure 3.11.
The chromaticity diagram of xy is presented in figure 3.16.

Figure 3.15: Tristimulus values, x,y,z. Image from [LRT77].

An additive colour synthesis can be easily performed using the xy diagram. All the colour
mixture properties of the rg diagram are also valid for the xy diagram. The chromaticity of a
colour mixture is the linear combination of the chromaticity of the mixed colours and the
luminosity of the mixture is equal to the sum of the luminosity of each components.

Suppose that we wish to compute the primaries X, Y and Z, that are required to identify
subjectively the colour of a stimulus. The colour of a stimulus is the result of the interaction
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Figure 3.16: CIE xy diagram. Image from [LRT77].

between the spectral illuminant, I(λ), which is composed of an infinite series of spectral
colours, and the spectral reflectance of the stimulus, R(λ). X, Y and Z primaries are expressed
by relation (3.3.9).

X = k
λmax∑
λmin

S(λ).x(λ).∆λ

Y = k
λmax∑
λmin

S(λ).y(λ).∆λ

Z = k
λmax∑
λmin

S(λ).z(λ).∆λ

(3.3.9)

where
– k is a normalisation coefficient. In absolute colorimetry k is a constant expressed in
terms of maximum efficiency of radiant power, equal to 683.002 lum.W −1. In relative
colorimetry, k is chosen to result an Y value equal to 100 for a chosen reference white point:
k = 100∑λmax

λmin
S(λ).y(λ).∆λ

.

– S(λ) is the spectral radiance. For an illuminant the spectral radiance S(λ) is the indecent
illumination I(λ) and for a reflective stimulus is the product of the incident illumination,
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I(λ) and spectral reflectance R(λ): S(λ) = I(λ).R(λ).
– x(λ), y(λ) and z(λ), are the tristimulus values of standard observer

In other words each of the tristimulus values at each step of wavelength, ∆λ, are obtained
from the product of their colour matching functions, x(λ), y(λ) and z(λ), and the spectral
radiance S(λ). The tristimulus values X, Y and Z are equal to the sum of the products. The
luminosity information is obtained from tristimulus value of Y, while the luminosity of the
other two components is zero.

3.4 Colorimetry of a computer-controlled colour display, an LCD
display particularly

In this section we express the measurements necessary to obtain the characteristics of a
display. The characteristics are the rgb curves of the display which is considered as an
illuminant, and the relation between digital value and the gain of R,G and B channels.

3.4.1 Instrument

The colorimetric instruments are similar to those used for spectrophotometry purposes. In
general two types of instruments are used in colorimetric measurements: spectral colour
measurement instruments such as spectrodiameter/spectrophotometer and filter-based
instruments like tristimulus colorimeter [Sha03].

– Spectrodiameter: A spectrodiameter analyses the spectral distribution of an optical
radiation as a function of the wavelength. In the colorimetric applications only the visible
spectrum is examined. Spectrometers can measure the photometric characteristics of both
self luminous and reflective stimuli. The measurements are performed by sampling the
spectral distribution of the stimulus. The spectral distribution of unknown samples is
compared to the spectral distribution of known illuminants, such as D65, and also to the
chromaticity functions of the standard observer. These comparative measurements allow
computing the tristimulus values of the unknown samples.

– tristimulus colorimeter: A tristimulus colorimeter measures only colour tristimuli.
They provide the numerical data that represent the difference of colour between a reference
sample and the unknown samples. The principal advantages of the tristimulus colorimeter,
to be widely used in applications such quality control, are the simplicity, low measurement
time as well as low cost. However, the new technologies used in spectrodiameters and their
price drop made them more competitive.

3.4.2 A numerical example

A numerical example of the colorimetric measurements, that we carried out to determine the
characteristics of an LCD display, is presented in this section.

First the light emitted from the computer-controlled display was measured for a series
of monochrome step wedges, R, G and B. Step wedges were displayed in video format to
have exactly the same configuration as the stimuli of the experiment to be carried out. Each
series of step wedges was consisted of 18 levels of digital values from 0 to 255, Table 3.2. We
measured the light from our computer-controlled LCD display using a Photo Research PR650
colorimeter.
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Table 3.2: Measured gain for R, G and B channels for 18 levels of digital values

red green blue

dv dv_255 gain luminance gain luminance gain luminance
0.00 0 0.00 0.20 0.00 0.20 0.00 0.20
0.06 15 0.00 0.29 0.00 0.46 0.00 0.23
0.12 30 0.01 0.54 0.01 1.20 0.01 0.30
0.18 45 0.02 1.04 0.02 2.70 0.02 0.42
0.24 60 0.04 2.00 0.04 5.18 0.04 0.63
0.29 75 0.07 3.22 0.07 8.81 0.07 0.93
0.35 90 0.11 4.75 0.11 13.01 0.11 1.30
0.41 105 0.16 6.60 0.15 17.73 0.16 1.77
0.47 120 0.20 8.56 0.20 23.07 0.20 2.28
0.53 135 0.26 10.86 0.25 29.35 0.26 2.81
0.59 150 0.32 13.37 0.32 36.73 0.31 3.43
0.65 165 0.40 16.53 0.39 45.01 0.39 4.24
0.71 180 0.48 19.93 0.47 54.72 0.47 5.11
0.76 195 0.58 23.89 0.57 65.98 0.56 6.13
0.82 210 0.69 28.37 0.65 76.19 0.68 7.44
0.88 225 0.78 32.17 0.76 88.53 0.78 8.58
0.94 240 0.88 36.12 0.87 101.70 0.87 9.65
1.00 255 1.00 41.04 1.00 116.70 1.00 11.20

We obtained the data of the light emitted for each channel for the visible spectrum from
350 to 750 nm and a sampling step of ∆λ = 4. Figure 3.17 shows the radiance as a function
of the wavelength for each channel and for the 18 series of step wedges.

For each one of the monochrome stimulus we computed the stimulus value Y, Equation
(3.4.1).

YR = k
λmax∑
λmin

SR(λ).V (λ).∆λ

YG = k
λmax∑
λmin

SG(λ).V (λ).∆λ

YB = k
λmax∑
λmin

SB(λ).V (λ).∆λ

(3.4.1)

Where S(λ) is equal to the emitted radiance I(λ) for each channel.

In LCD displays a non-linear function relates input digital values to output luminance.
For the calibration purposes this relation must be determined. Figure ?? shows the measured
output gain as a function of digital value for each channel for the LCD display of our
experiments.

We used a very common model-based data fitting approach to determine the relation
between digital input values and output luminance. The model parameters were fitted to the
measurements via a linear least square regressions. Figure 3.18 shows the resulting curves.
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Figure 3.17: Spectral radiance for 18 levels of digital values for R, G and B channels. The data
were obtained from the colorimetric measurements that we carried out on the LCD monitor which
is used in our eye-tracking experiments.

3.5 Colour to grayscale conversion

Colour to grayscale conversion of videos and images is necessary in certain applications. A
common example is rendering colour videos to a monochrome device. Another example is
the colour documents printed in grayscale. In such applications the perceptual properties
are needed to be preserved. Grayscale conversion might also be a pre-processing step in the
context of vision algorithms, for example in stero-matching algorithms.

Colour to grayscale conversion is considered as a dimensionality reduction problem from
3-D information to 1-D representation. The conversion is, therefore, lossy. Different grayscale
conversion methods have been proposed to reduce the loss of information according to the
needs of applications.

According to [Ben+10] grayscale conversions could be divided in two groups: functional
and optimizing.

Functional methods are pixel-wise methods that process image locally and compute for
each pixel a grayscale value from the chromatic values using a given function. A simple
functional method is to take the value of one of the channels as the grayscale representation
of image and omit the other channels. For instance, the value HSV method uses the V value
of HSV representation of image as its grayscale representation. On the other words the
grayscale value for each pixel is the maximum of its colour values. This method is highly
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Figure 3.18: Output gain as a function of input digital value. The data were obtained from the
colorimetric measurements that we carried out on the LCD monitor which is used in our eye-
tracking experiments.

lossy. To consider values of the three channels, the grayscale value could be obtained from
the mean of the three colour channels, which is called naive mean method. This method can
be simply improved by using the weighted sum of colour channels according to the power
distribution of channels as well as the perceptual characteristics of human observers. The
(ITU)2 recommends to compute the luminance information of a video signal by a relation
that takes into account the luminosity function of standard observer, Figure 3.11, as well
as the spectral distribution of the primaries of the display. ITU in recommendation 601
recommendation 601 proposes the weighted sum of relation (3.5.1) to compute the luminance
of non-linear colours i.e gamma corrected colours such as in CRT displays.

Y = 0.299×R+ 0.587×V + 0.114×B (3.5.1)

This relation was adopted by NTSC3.

In recommendation 709 for real and natural colours (HD receivers) the luminance is
computed from relation (3.5.2).

Y = 0.2126×R+ 0.7152×V + 0.0722×B (3.5.2)

Optimizing methods are more advanced models that consider the whole image properties
and global characteristics to compute the grayscale image that preserve the most the features

2 ITU), International Telecommunication Union (ITU) is a specialized agency of the United Nations (UN) that
is responsible for issues that concern information and communication technologies.

3NTSC, National Television System Committee was first developed in 1941 for grayscale broadcasting. In
1953 this standard was adopted to meet needs of colour television broadcasting. In this standard, instead of
three colour signals, one luminance and two colour opponents signals are used. The considered luminance was
compatible with the existing black and white receivers

https://www.itu.int/rec/R-REC-BT.601
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of original image. For instance Bala and colleagues [BE04] uses a spatially adaptive algorithm
to locally preserve distinction between adjacent colours. Gooch and colleagues [Goo05] have
proposed a salience-preserving method. In this method the source image is processed in a
perceptually uniform CIE L*a*b* colour space. The chrominance and luminance differences
of nearby pixels are used to obtain a grayscale representation of the original image. Then,
the grayscale representation is modulated as function of the chroma information of source
image.

At section 4.1.1.2 we present a display-dependent grayscale conversion method to find
the best fit of the three colour channels to the luminosity function of standard observer. The
goal of this approach is to ensure the luminosity matching between colour and grayscale
video stimuli that we needed to display to perform the eye-tracking experiments related to
this thesis.

3.6 Conclusion

In this chapter we introduced the mechanism of colour vision. We presented colour as
a physical phenomena that is interpreted by human brain. Then we introduced, briefly,
colour representation systems. Then, the colorimetric measurements which are necessary
to quantify the characteristics of an LCD display, were expressed in detail. At the end we
presented the grayscale conversion methods which are lossy operation.



4
How colour information influences eye

movements in videos

Guiding faculty of colour features when exploring natural scenes is being debated. Several
studies have been conducted to determine the contribution of different features to the
deployment of attention. Wolfe and Horowitz [WH04] classified the visual attributes
when performing a visual search from undoubtedly guiding attributes—colour, motion
and orientation—to otherwise non-guiding attributes, such as intersection and light sources.
According to the latter study, colour is one of the most guiding attributes.

Some eye-tracking studies suggest that colour has very little effect [BT06a] or no
effect on eye position, but an effect on fixation duration with shorter fixations for colour
images [HPGDG12]. Another study shows that the effect depends on the category of
images [FHK08]. They investigated the saliency of different colour features (saturation,
red–green and yellow–blue contrasts) within seven semantic categories of images: face,
flower and animal, forest, fractal, landscape, man-made, and rainforest. They report that
the contribution of colour features to visual attention depends on the category of the images.
colour information increases the congruency of fixation position between participants in
rainforest, while in fractal colour decreases the congruency.

All these studies consider static scenes, whereas natural scenes are mostly dynamic. In
fact, motion is found to be one of the most crucial features in guiding eye movements [IB09;
Mit+11; Mar+09]. Therefore, the present study aims at evaluating the contribution of colour
to guiding eye movements for dynamic scenes.

The purpose of the current chapter is to evaluate the influence of colour information on
the eye movements during free-viewing of videos. One of the main concerns in the set-up
of eye tracking experiments is the content of the video stimuli and its variety. We studied
two different dataset of video stimuli through experiments A and B. In experiment A to be
presented at section 4.1, a dataset of videos with various contents from man-made indoor
scenes to landscapes is studied, while in experiment B to be presented at section 4.2 we
focus on the video stimuli containing human faces to study the influence of colour on eye
movements in presence of the faces, because faces are considered as particularly salient
regions of a visual scene [MMP05; CFK09].
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For both experiments, we analyse the evolution of eye movements across time. We
hypothesized that presence of colour information in the visual scene influences the eye
movements’ attributes as well as the location of gaze. The study, to be reported, examines
the possible influence of colour in global, across the time and as a function of category
of stimulus. We test the hypothesis using several evaluation measures and eye movement
attributes, such as, eye positions’ dispersion among participants, regions of regard, fixation
duration and saccade amplitude. The findings from this work could provide the influence
factors of colour information in a saliency model, and possible tuning weights of colour
feature maps.

4.1 Eyetracking experiment A, General stimuli

Experiment A aims to record eye movements of participants when looking freely at video
stimuli with various contents in two conditions: colour and grayscale. The recorded data
would be compared to identify whether colour influence eye-movements.

4.1.1 Stimuli

Two points were took into consideration when creating the video stimuli of experiment A:
first the variety of the contents of the video stimuli and second the conversion from colour to
grayscale of original colour videos.

4.1.1.1 Content

Our dataset consisted of 20 video clips, each for about 20 seconds. These clips were created
by concatenating 134 short video extracts of from one to three seconds, called video snippets.
We concatenated the snippets to increase the heterogeneity of the visual stimuli and to
reduce possible top–down processes [CI06; Mar+09]. The snippets were extracted from
various colour video sources, including professional videos, such as films, TV series, and
documentaries, and also amateur videos of urban roads. The stimuli had a spatial resolution
of 640× 480 pixels (25× 19 degrees of visual angle) and a temporal resolution of 25 frames
per second.

The chosen snippets were classified according to their contents into the following
categories: daylight outdoor scenes (42 snippets), night light outdoor scenes (26 snippets),
indoor scenes (37 snippets) and urban road scenes (29 snippets). The main difference between
urban road and daylight outdoor categories was the presence of traffic signs in the former.
Because traffic signs are considered as particularly salient objects in a scene [Itt05] and their
significance is related to their colour, the videos including them were considered as a separate
category. Figure 4.1 shows some frames from each category.

Initially, the videos were in different compressed formats. We converted all videos to no
compressed AVI format.

4.1.1.2 Grayscale conversion

To compare colour and grayscale stimuli, the original colour videos must be converted to
grayscale. In chapter 3.5, we presented common grayscale conversion methods. We pointed
out that colour to grayscale conversion is obviously a lossy operation. But, when comparing a
colour video stimulus with its grayscale version, no matter the grayscale conversion method,
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Figure 4.1: Example frames in colour. The columns from left to right correspond to the categories
daylight outdoor, night light outdoor, indoor, and urban road.

in addition to chrominance features some other features like intensity are modified. For
instance, in NTSC grayscale conversion the weights of channels do not correspond to the
LCD displays’ characteristics and red channel is weighted too high. Therefore, using this
method, the red pixels are brighter in grayscale image than colour image, Figure 4.2. To avoid
such systematic errors and to be able to study the influence of presence of colour features on
the eye-movements, the grayscale conversion must at least preserve the brightness features
of the original stimuli (i.e the luminosity of grayscale pixels must be identical to the initial
colour video). We use a weighted sum of colour channels to compute the grayscale version
of the stimuli. But, instead of using the conventional weights of the colour channels, we
measure the characteristics of our experimental display and we compute the weights of R, G
and B channels for our experiment design.

(a) (b)

(c) (d)

Figure 4.2: Example frame for different method of grayscale conversion. (a) Original image, (b)
grayscale image computed using naive mean of three colour channels, (c) grayscale image
computed using NTSC grayscale conversion method, (d) grayscale image computed by the
weighted sum of equation (4.1.3).
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The colour to grayscale conversion that we propose is a weighted sum of R, G and B
channels, equation (4.1.1), in which the weights are computed according to the spectral
distribution of the R, G and B channels of the LCD display used for eye-tracking experiments.
To ensure the luminance matching between colour and grayscale stimuli the right side of
relation (4.1.1) must be fitted to the standard observer luminosity function.

Y = wr ×R+wg ×G+wb ×B (4.1.1)

We compute the wr , wg , wb according to the radiance of colour channels, such that the
weighted sum in equation (4.1.1) be equal to the luminosity function of the standard observer.
Figure 4.3 shows the relative power of each channel maximum output measured for the LCD
display as well as the luminosity function, V (λ), of standard observer.

Figure 4.3: The relative power of each channel maximum output measured for the LCD display as
well as the luminosity function, V (λ), of standard observer.

A matrix operation is performed to compute the weights, Equation (4.1.2).

[
wr wg wb

]
=

Ym×1∑
Ym×1

×


Rm×1
Gm×1
Bm×1


−1

(4.1.2)

By solving the equation for the measured data, presented at section 3.4.2, we obtain the
following grayscale conversion, Equation (4.1.3):

Y = 0.5010×R+ 0.4911×G+ 0.0079×B (4.1.3)

The weights are normalized to sum to result an Y = 1 when R, G and B are equal to 1.
Figure 4.4 shows the grayscale version of some example frames.

4.1.2 Participants

Thirty-seven volunteers, (17 women and 20 men, aged from 18 to 47 years, mean = 29 ±
5.5) took part in the experiment. All reported normal or corrected to normal visual acuity,
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Figure 4.4: Example frames in colour (first and third rows) and grayscale (second and fourth rows).
The columns from left to right correspond to the categories daylight outdoor, night light outdoor,
indoor, and urban road.

while their normal colour vision was tested using Ishihira colour plates, presented on the
experimental display. All participants gave their consent to take part in the experiments.

4.1.3 Apparatus

The LCD colour monitor of 21 inches, for which the weights of equation (4.1.3) were
computed, at a refresh rate of 85 Hz was used to display the video clips. The participants
were at a distance of 57 cm from the display, resulting in a visual stimulus over 25 × 19
degrees of visual angle. The eye movements were recorded with an SR research Eyelink 1000
eye tracker. The eye tracker was used in a pupil-tracking mode at a frequency of 1000 Hz.
The stimulus presentation, synchronization, and recording were carried out by software
developed in our laboratory [IGGD09]. Only the dominant eye of each participant was
tracked.

4.1.4 Experimental design

Each experiment session was divided into two parts. During the first part, the participants
watched one-half of the video clips in one stimulus condition (colour/grayscale), while during
the second part, the participants watched the other half of the videos in the other condition
(grayscale/colour). Each part started with a 9-point eye-tracker calibration. Moreover, each
video clip started with a drift correction. A new calibration was run if the drift error was
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above 0.5 degrees. Each video was followed by a gray background displayed for 2 s. Both
parts took place on the same day in a darkened room in the presence of the experimenter.
The participants were asked to carefully watch the video clips while keeping their head
immobile on a chin rest.

4.1.5 Data

During the experiment, the eye movements of the participants were recorded. The eyelink
software reported, in a data file at each millisecond, the raw eye positions and some detected
events, such as saccades, fixations, and blinks. We extracted the eye positions of the
participants on the video frames, the durations of the fixations, and the amplitudes of
the saccades for each participant.

Eye Positions. For each participant, 40 raw eye positions per frame were recorded. These 40
positions were summarized into a median position with median x and median y coordinates,
referred to as the eye position of one participant per frame. To simplify the notation, the
eye positions recorded under the colour stimulus condition are called colour positions (C),
whereas eye positions under the grayscale stimulus condition are called grayscale positions
(GS).

Saccade Amplitudes and Fixation Durations. The EyeLink 1000 tracker parser detects
saccades according to three thresholds: motion (degrees), velocity (degrees/sec), and
acceleration (degrees/s2). Here, the acceleration, velocity, and motion thresholds were
set to 30 degrees/s, 8000 degrees/s2 and 0.15 degrees, respectively. We analysed both the
amplitude of the saccades and the durations of the fixations.

4.1.6 Method

In this study we test a dataset of eye positions to identify whether colour information
influences the eye movements when freely viewing video stimuli. In this section first we
present the metrics that allow us to analyse the eye positions.

4.1.7 Metrics to study the position of regard

Dispersion. To evaluate the variability of the eye positions between the participants, we
used a metric called the dispersion [Mar+09; SG00]. This metric was computed using the
leave one out method [Tor+06]. First, the Euclidean distances between the eye position of
one participant and the eye positions of the other participants were calculated. Then the final
dispersion for each frame was obtained by averaging the dispersion over all participants,

D =

√
1
N2

∑
i,j<i

di,j
2 (4.1.4)

where N is the number of eye positions for a frame and di,j is the Euclidean distance between
the eye positions of participants i and j.

The dispersion was calculated for each frame separately, for C positions of each frame
(DC) and GS positions (DGS ). It measures the variability between the eye positions of the
participants for each stimulus condition. Lower values of the dispersion are observed when
the eye positions are located in similar positions: this is interpreted as a high level of
inter-participant consistency.
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Clustering. The salient objects of a visual scene correspond to the regions of interest of a
scene fixated by a group of participants at the same time. These regions can be estimated for
each frame by clustering the recorded eye positions. Here, we clustered the eye positions to
compare the number of regions of interest between the colour and grayscale conditions.

Clustering methods use distance metrics between the eye positions to find the regions
of interest. K-means is one of the clustering methods previously used to cluster eye
positions [FLMB11; PS00; Lat88]. This method has one main drawback: the number of
clusters must be determined a priori. Another clustering method, which leads to consistent
results, is the mean-shift method. Santella and DeCarlo [SD04] employed this method on eye
fixations to quantify visual areas of interest. The mean-shift algorithm is a non-parametric
clustering technique which does not require prior knowledge of the number of clusters, and
does not constrain the shape of the clusters. In this study, we employed this method to cluster
the eye positions per frame. In this clustering method, a distance parameter is required.
Since all video clips have the same size, we set empirically this distance to 100 pixels, equal
to approximately four degrees of visual angle.

4.1.8 Results

The aim of this eye-tracking is to determine how colour influences eye movements during free
viewing of videos. The main question is whether colour influences the location of the gaze.
The design of the experiment provide the needed data to compare the eye positions recorded
while viewing colour and grayscale stimuli. The influence of colour on the variability between
the eye positions of the different participants is evaluated using the dispersion metric. The
number of regions of interest under colour and grayscale conditions is studied using the
mean-shift clustering method. These two metrics were computed for each frame. Moreover,
we compared the duration of the fixations and the amplitudes of the saccades under both
conditions. Finally, we compared the eye positions under the two stimulus conditions to the
computational saliency maps.

Here, we analyse the effect of the stimulus category (daylight outdoors, night light
outdoor, indoor, or urban roads) and the effect of the stimulus condition (colour or grayscale)
on the different metrics obtained from the eye-tracking experiment: Dispersion, number of
clusters, duration of fixations, amplitude of saccades, and NSS.

We also studied the temporal evolution of these metrics frame-by-frame. We limited the
temporal analysis to the first 65 frames of each snippet, because most of the snippets have at
least 65 frames and the influence of a top–down procedure of attention on the participants
would be minimal this way. We defined three periods of observation: early (frames 1 to 15,
600 ms), middle (frames 16 to 40, one second) and late (frames 41 to 65, one second). The
terminology is similar to that used by Follet et al. [FLMB11] for static images. These metrics
were computed frame-by-frame and were averaged over all frames for each video snippet.

To measure the influence of colour on the eye positions we compute an ANOVA test for all
134 snippets. This is done for all evaluation metrics. Likewise, to determine the temporal
evolution of metrics over 65 frames. To measure the influence of colour on the eye positions
according to stimulus category we run Bonferoni multiple comparison.

4.1.9 Dispersion of eye positions

First the dispersion was analysed on average over the whole snippet. Figure 4.5 shows the
mean dispersion under colour and grayscale stimuli according to the stimulus category.
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Repeated measures ANOVA were run with the Stimulus Category as a between-item factor and
the Stimulus Condition (colour, grayscale) as a within-item factor.

We observed a principal effect for the Stimulus Category (F(3,130) = 4.09, p < 0.01). But,
no effect of the Stimulus Condition (F(1,130) = 2.06, p = 0.15), or interaction of the Stimulus
Condition × Stimulus Category (F(1,130) = 1.28, p = 0.29) was observed.

We ran Bonferroni multiple comparison tests to compare the mean dispersions obtained
for the different categories. The mean dispersion for night light outdoor category was
significantly lower than those for the categories daylight outdoor and indoor (p < 0.01). This
was expected, because in this category only a limited region has been illuminated.

Figure 4.5: Mean dispersion according to stimulus category for colour stimuli (red columns) and
for grayscale stimuli (blue columns)

We also studied the temporal evolution of the dispersion. Figure 4.6 shows the
evolution of the mean dispersion for the colour and grayscale stimuli as a function of
the viewing time (frame rank). The two curves followed the same pattern for both stimulus
conditions. In the early period of observation, the mean dispersion reached its minimum
value (colour,3.2 , grayscale,3.1) and increased during the middle and the late periods.
Because we did not observe any principal effect of the Stimulus Condition for the global
analysis we did not further analyse the effect of the Period of Observation.

4.1.10 Number of clusters in eye positions.

Clustering the eye positions determined the principal fixated regions of a scene. Figure 4.7
shows the mean number of clusters for colour and grayscale stimuli according to stimulus
category. As for dispersion, a repeated measures ANOVA was run with the Stimulus Category
as a between-item factor and the Stimulus Condition (colour, grayscale) as a within-item factor.
A principal effect was observed for the Stimulus Category, F(3,130) = 4,4;p < 0.005), as well
as for the Stimulus Condition, F(1,130) = 4,9;p < 0.03). However, no effect of the interaction
of Stimulus Condition × Stimulus Category was observed, (F(3,130) = 0,374;ns).
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Figure 4.6: Mean dispersion according to the stimulus condition (colour and grayscale) in degrees
of visual angle across time (frame rank)

Bonferroni multiple comparison tests showed that the mean number of clusters for the
night light outdoor category was significantly lower than that for the daylight outdoor and
indoor categories (p < 0.01).

Figure 4.7: Mean number of clusters according to stimulus category
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The mean number of clusters for colour stimuli was significantly higher than for grayscale
(1.62 versus 1.58). Even the effect of colour was small regarding the mean number of clusters:
this is an interesting result, which reveals that colour increases the number of fixated regions
and hence the number of salient regions. Figure 4.8 shows an example frame with the regions
of interest for colour (red ellipses) and those for grayscale ( green ellipses).

Figure 4.8: An example scene depicting the different clusters. Red ellipses represent the clusters
extracted from C positions and green ellipses represent the clusters extracted from GS positions.

Finally, we analysed the temporal evolution of the mean number of clusters, Figure 4.9.
We ran repeated measures ANOVA with the Stimulus Category as a between-item factor and
the Stimulus Condition (colour, grayscale) and Period of Observation (early, middle and late)
as within-item factors. We observed a principal effect of the Stimulus Condition (F(1,112) =
9.7;p < 0.001), a principal effect of the Period of Observation (F(2,224) = 2.46;p < 0.001),
and a principal effect of the Stimulus Category (F(3,112) = 2.9;p < 0.05). A significant
effect of the interaction of the Stimulus Condition × Period of Observation was also observed,
(F(2,224) = 14.5;p < 0.0001). Finally no effect of the triple interactions was observed. These
results, showing the interesting effect of the interaction of the Stimulus Condition × Period of
Observation, are interesting. As shown in Figure 4.9, in the early period of observation there
is no significant difference between the mean number of clusters for colour and grayscale
stimuli. But, in the middle period of observation, the mean number of clusters for colour
stimuli is higher than that for grayscale, and this effect decreases in the late period of
observation.
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Figure 4.9: Mean number of clusters according to the stimulus condition over time (frame rank)

4.1.11 Duration of fixations and amplitude of saccades

To assess the influence of colour information on eye movements, we also studied the durations
of the fixations and the amplitudes of the saccades. Two separate repeated measures ANOVA

were run with the Stimulus Category as a between-item factor and the Stimulus Condition
(colour, grayscale) as a within-item factor.

For the mean duration of the fixations, a principal effect of Stimulus Category (F(3,130) =
11.71, p < 0.001) was observed. But, we observed no effect of Stimulus Condition (colour, 318
ms versus grayscale, 324 ms, F(1,130) = 0.36, p = 0.55), or of the interaction of Stimulus
Condition × Stimulus Category (F(1,130) = 0.52, p = 0.68). Bonferroni multiple comparisons
were run to determine which categories were different from the other categories. The mean
duration of the fixations for the night light outdoor category was significantly higher than for
the other three categories (night light outdoor: 373 ms versus daylight outdoor: 307, indoor:
290 and urban roads: 314 ms, p < 0.01).

We also observed a principal effect of Stimulus Category on the amplitudes of the saccades,
(F(3,130) = 11.71, p < 0.001). But, no effect of Stimulus Condition (colour, 4.35 degrees versus
grayscale, 4.41 degrees F(1,130) = 0.36, p = 0.55), or of the interaction of Stimulus Condition
× Stimulus Category (F(1,130) = 0.52, p = 0.68) was observed.

Bonferroni multiple comparisons determined that the mean amplitude of the saccades
for night light outdoor category is significantly higher than for daylight outdoor (night light
outdoor: 3.9 degrees, daylight outdoor: 4.52 degrees, p < 0.05).

Eye movements and position of gaze is highly influenced by the presence of faces in visual
stimuli, such that there are evidences of a center of face perception in human cortex [KY06].
A number of studies have shown an impact of faces on eye movements when viewing static
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images [Tor+06; MLH02], and also using dynamic stimuli [RPH14]. In experiment B we
try to study weather the impact of colour information on the eye movements is different in
person-present stimuli.

4.2 Eye-tracking experiment B, Face stimuli

Experiment B aims to record eye movements of participants when looking freely at video
stimuli containing faces in two conditions: colour and grayscale. The recorded data would be
compared to identify whether presence of faces in visual stimuli can modify the impact of
colour on eye-movements.

4.2.1 Participants

45 volunteers (25 women and 20 men, aged from 25 to 39 years old, M= 26, SD=4,9) took
part in the experiment. All reported normal or corrected to normal visual acuity, while their
normal colour vision was tested using the Ishihira test on the experimental display.

4.2.2 Stimuli

Our dataset consists of 65 short video extracts of 5 to 7 seconds, called video snippets.
The snippets are extracted from various open source colour videos. Stimuli had a spatial
resolution of 640× 480 pixels, subtending a visual angle of 25× 19 degrees, and a temporal
of 25 frames per second. Chosen snippets can be classified into following categories: One
person (19 snippets), two persons (15 snippets), more than two persons (11 snippets) and
person – absent (19 snippets). Initially the videos were in mp4 compressed format. We
converted all videos to no compressed AVI format. Figure 4.10 shows example frames from
each category in colour and grayscale.

Figure 4.10: Example frames in colour and grayscale. The five columns from left to right
correspond to categories: One person, Two persons, More than two persons and person-absent.

4.2.3 Method

In experiment B, we follow the same methodology as experiment A which was presented at
section 4.1.6. The major differences between experiments A and B are the content of video
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Content Display form: Duration Onset
Clip/snippet

Experiment A Various Clips of 10 snippets Clips of 20 seconds long each contains Fixation cross at the
about 5 snippets of 2 to 3 seconds beginning of each clip

Fixation cross at the
Experiment B Faces Snippets 5 to 7 seconds

beginning of each snippet

Table 4.1: The major differences between Experiments A and B.

stimuli , the duration of video snippets, the onset point. In experiments A, video snippets
were concatenated and formed 20 video clips that each clip was displayed after a fixation
cross at the middle of display. While in experiment B, video snippets are not concatenated;
each snippets is display after a fixation cross at the middle of display. Table 4.1 illustrates
major differences between experiments A and B.

4.2.4 Results

Dispersion. As shown in Figure 4.11, the dispersion of colour eye positions is significantly
higher than grayscale (t(63) = 2,5804,p < 0.01). This raw result shows that there is more
variability between the eye positions of observers when viewing colour videos. Yet, a large
dispersion might be observed in two different situations: (i) when all observers look at
different areas, or (ii) when there are several distant clusters of eye positions. We later
measured the number of clusters in eye position data.

Figure 4.11: Mean dispersion in degree of visual angle over all video snippets according to the
stimulus condition with standard errors.

We analysed eye positions as a function of time. Since the snippets were at least 3 seconds
long, we limited the temporal analysis to the first 3 seconds—76 frames— of each snippet.
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We defined three periods of viewing time: early (frames 1 to 25, one second), middle (frames
26 to 51, one second) and late (frames 52 to 76, one second). The terminology is similar to
the one used by Follet and colleagues [FLMB11] for static images.

Figure 4.12 shows the evolution of the dispersion metric for C and GS eye positions,
DC and DGS as a function of viewing time (frame rank). The dispersion curves follow the
same pattern in both stimulus conditions. In early period of viewing, the dispersion is lower
than middle and late periods and increases with time (Early :DC = 2.7, DGS = 2.6, middle :
DC = 5.2, DGS = 5.1, Late :DC = 5.9, DGS = 5.6, ). The difference between DC and DGS is not
significant in the early period of vision, but it increases over time such that the difference
between mean of DC and DGS is more prominent in the late period of observation than in the
middle period (middle : t(63) = 1, p < 0.2, late : t(63) = 2.37, p < 0.01).

Figure 4.12: (a) Mean dispersion according to the stimulus condition in degree of visual angle
across time (frame rank).

Clusters. We clustered the eye positions using mean-shift algorithm on each frame. As
shown in Figure 4.14b, the mean number of clusters on colour snippets was significantly
higher than grayscale (t(63) = 2.6,p < 0.01). The result is consistent with high dispersion
values for C positions. In addition the higher number of clusters for C positions indicates
that the high dispersion value of C positions is not due to high variability of the eye positions,
but it is related to the higher number of regions of interest in colour stimuli.

We further analysed the number of clusters across time by accumulating the eye positions
over frames of each period of viewing time. The difference between the mean number of
clusters between colour and grayscale stimulus is not significant in the early and middle
period of vision (early: t(63) = 0.47,p < 0.4, middle: t(63) = 0.7,p < 0.3), but in late period
of observation the number of clusters in colour is significantly higher than grayscale (late:
t(63) = 1.9,p < 0.03), Figure 4.14b. As illustrated in the qualitative example of Figure 4.15, at
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(a)

(b)

Figure 4.13: (a) An example scene depicting eye positions’ clusters, red ellipses represent the
clusters extracted from C positions and green ellipses represent the clusters extracted from GS
positions, (b) averaged number of clusters according to the stimulus condition with standard
errors.

the beginning of viewing, the main regions of interest are similar in both conditions—colour
and grayscale. However, more regions of interest appear later in colour snippets.

Gaze position regarding face location To study the influence of colour on the exploration
of scenes including human faces, first we studied the eye positions located on the faces
(on-face eye positions). Table 4.2 shows the percentage of the eye positions that were located
on the face for different categories according to the stimuli condition. The On-face eye
positions are more frequent when viewing grayscale stimuli which is in accordance with the
low dispersion of GS positions.
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(a)

(b)

Figure 4.14: (a) Mean number of clusters per period, (b) Clusters per period for eye positions
accumulated over each period.

Duration of fixation and amplitude of saccades We studied saccade amplitudes and
fixation durations of the subjects while viewing videos in the two stimulus conditions (C and
GS). We calculated the mean value of saccade amplitudes, as well as the mean value of fixation
durations for each of the 39 subjects and ran a paired t-test. The mean value of saccade
amplitude per subject in colour is significantly higher than grayscale (t(44) = 1.7,p < 0.03)
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Figure 4.15: Example of the clusters obtained by accumulating the eye positions over three
periods of viewing time for one snippet. The first row shows example frames of each period, the
second and third rows show the clusters for colour and grayscale conditions, respectively. First
column: the early period, second column the middle period, and third column the late period.

One Face Two Faces More Faces
C positions 87 73 47

GS positions 90 79 47

Table 4.2: The percentage of the eye positions that were located on the face for different
categories according to the stimuli condition.

while the mean value of fixation durations is slightly lower (t(44) = 0.3,p < 0.5), as shown in
Figure 4.16.

(a) (b)

Figure 4.16: (a) Fixation duration as a function of fixation rank in ms and (b) Saccade amplitude
as a function of fixation rank in degree of visual angle, according to the stimulus condition.
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4.3 Discussion

In experiment A, we measured the influence of colour information on the eye movements
recorded during the free exploration of videos. We compared the eye positions for colour
and grayscale stimuli. We used a display-dependent grayscale conversion method to ensure
the luminance matching between colour and grayscale stimuli. The grayscale version of
stimuli were obtained from the weighted sum of colour channels to fit V (λ). However, this
conversion method is still lossy and the V (λ) corresponds to the average standard observer
while the response of photo-cells varies from one observer to another and the random cone
mosaic of human eye might affect equiluminance thresholds [AM12].

colour and grayscale eye positions were compared using various metrics: the dispersion
and the mean number of clusters to directly compare the eye positions, the mean amplitude
of the saccades, the mean duration of the fixations, and finally, the similarity of the eye
positions to the predictions of a saliency model. All the comparisons were also done taking
into account the semantic category of the dynamic scene. We studied different categories
: daylight outdoor, night light outdoor, indoor, and urban roads. Evidences from research of
Frey and colleagues [FHK08] show that the influence of colour on eye positions depends on
the semantic category of the image. The latter study introduced two extreme categories of
static images: fractal and rainforest. In fractal, colour information renders the participants’
fixation patterns more dissimilar, whereas in the rainforest category, colour increases the
participants’ consistency significantly. Based on the conclusions of that study, we had
anticipated that the influence of colour on eye positions would be related to the category of
the video snippet. Here, we instead found that the influence of colour remains insignificant
across different categories of videos. Concerning the influence of category, independent
from the stimulus condition, we found that for videos belonging to the night light outdoor
category eye movements are different from the ones for the other categories.

Concerning the effect of stimulus condition, we found that colour does not influence
the dispersion metric, i.e., the variability of the eye positions among participants. Yet, the
number of clusters of the eye positions showed that there are slightly more clusters for
colour eye positions than for grayscale eye positions. These results might suggest that colour
information increases to certain extend the number of salient regions in the dynamic scenes.
Moreover this effect was not constant across the periods of viewing time being larger in the
middle period (frame 16 to 40).

The temporal analysis of eye positions showed a typical shape for the evolution of the
mean dispersion and the mean number of clusters according to the frame rank. Note that
this evolution is independent of the stimulus condition. In the early period of observation,
eye positions are influenced by the central bias [Tat07; Bin10; Mar+13]. This could be
observed on the two curves of figures 4.6 and 4.9. Due to this bias, a high consistency of the
eye positions of participants is observed about 400 ms (the 10th frame) after the onset of
a stimulus, which is in accordance with the low dispersion, as well as the small number of
clusters for colour and grayscale eye positions. Then both metrics increase to reach a plateau.

In addition, for dynamic scenes, we found that colour information does not influence the
duration of fixations neither the amplitude of saccades; this result differs from a previous
study on static images [HPGDG12]. This difference between static and dynamic scenes,
concerning the influence of colour on eye movements, could be due to the temporal changes
and dynamic nature of the video stimuli. Moreover, the viewing time in the present
experiment is shorter than those for the mentioned experiments with static images (Ho-
Phuoc 5 sec, Frey 6 sec, present study 2 to 3 sec depending on the duration of the stimulus).
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4.4 Conclusion

In this study, we compared the eye movements of different participants when viewing colour
videos and the same videos in grayscale, to determine whether colour information influences
eye movements. Because differences were found in static images as a function of their
semantic category [FHK08], we chose videos with various contents and videos that can
be classified into different categories, where colour might be more or less important. We
examined the effect of colour, both globally and as a function of the category, on different
parameters extracted from recorded eye movements: the eye position, the duration of the
fixations, and the amplitude of the saccades. The comparison was made both on average over
the whole video and frame-by-frame taking into account the course over time of the video.
Such a methodology was already used in a previous study analysing the influence of sound
on eye movements [Cou+12].

Whereas eye-tracking experiments do not reveal a significant influence of colour
information on the eye movements when exploring videos, we showed an effect of colour
on the mean number of clusters (i.e. gazed locations); with a significant effect in the middle
period of viewing time. These result suggest that in some cases, colour information should
be taken into account in a model of visual saliency.





5
A colour-wise saliency model

Eye movements, when exploring a visual scene, are not made randomly. They are guided
by several factors such as, visual features of the stimuli, a priori knowledge of the observer,
the given task to the observer, etc. Numerous models of visual attention try to predict
eye movements by simulating the mechanism of visual attention. This mechanism allows
selecting the relevant parts of a visual scene at the very beginning of exploration. The
selection is driven by the properties of visual stimuli through bottom-up processes, as well
as by the goal of observer through top-down processes [CEY04; Itt05; BK09; BI11; MK11].
Visual attention models tend to predict the parts of the scene that are likely to deploy the
attention [IKN98; Fri06; LMLCB07; Mar+09; Kan+09]. Most of the models are bottom-up
models based on the Feature Integration and Guided Search theories [TG80], [WCF89],
which were presented at section 2.4. These theories stipulate that some elementary salient
visual features such as intensity, colour, depth and motion, are processed in parallel at a
pre-attentive stage, subsequently combined to drive the focus of attention. This approach is
in accordance with the physiology of the visual system. Hence, in almost all the models of
visual attention, low level features like intensity, colour and spatial frequency are took into
consideration to determine the visual saliency of regions in static images, whereas motion
and flicker are also considered in the case of dynamic scenes [IKN98], [LMLCB07], [Mar+09].
More recently, the contribution of different features like colour in guiding eye movements
when viewing natural scenes has been debated. Some studies suggested that colour has little
effect on fixation locations [BT06a], [HPGDG12], [FHK08]. In chapter 4, we studied the
influence of colour information on the eye movements. We observed a moderate contribution
of colour information in guiding eye movements for different categories of video stimuli,
which brings to question the necessity of the incorporation of colour features in the saliency
models [DMB10]. Here, we tend to study the contribution of colour information in the
saliency models.

In this chapter, we propose a colour saliency model, which is based on the saliency model
of Ho-phuoc and colleagues [HPGGD10] for static images. We incorporate, the proposed
colour saliency model, into the luminance-based saliency model of Marat and colleagues
[Mar+09]. First, we introduce different steps of the luminance-based model. Then, we
describe the proposed colour saliency model. Afterwards, we evaluate the contribution of
colour information in predictive power of the model. Finally, we compare the results to the
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model of Itti and colleagues [IKN98], which is one of the reference models of the visual
attention.

5.1 Luminance-based saliency model

The saliency model of Marat and colleagues [Mar+09], [Rah13] is a biologically plausible
model that imitates the human visual system from retina to cortex. The initial version
of the model [Mar+09] is consisted of two pathways, static and dynamic. The model has
been improved latter by adding a face pathway [Rah13]. Figure 5.1 illustrates different
steps of this model. Both initial and improved versions of the model are only based on the
luminance-visual information.

Mls and Mcs are luminance-static and chrominance-static maps respectively
As shown in figure 5.1, in a pre–processing step, the luminance-visual information is

elaborated by retina-like filters, and then is decomposed using cortical-like filters. Static
pathway processes the luminance-static information, that provides luminance-static saliency
map (Mls), and dynamic pathway processes motion information that provides luminance-
dynamic saliency map (Mld). Different processing steps of the model are presented bellow.

5.1.1 Retina-like filters

Retina model, which has been described in detail in [Mar+09], roughly simulates the
functioning of photoreceptors, horizontal, bipolar, and ganglion cells without taking into
account the spatially variant resolution of the retinal photoreceptors.

Photoreceptors are modelled as a low-pass Gaussian filter with a high cut-off frequency,
that removes the high frequency noises from the initial grayscale image (5.1.1).

y =
255 + x0

x+ x0
.x (5.1.1)

where, x0 = 0.1 + 410g
g+105

The output image of photoreceptor P is then processed by horizontal cells that are also
modelled as a low-pass Gaussian filter with a lower cut-off frequency than photoreceptor.
The response from these cells is twice than the previous retinal low-pass filter.

Next in order are the bipolar cells modelled as a band-pass filter, which simply calculates
the difference between outputs from photoreceptor cells P and horizontal cells, H . The
bipolar cells model might be in ON or OFF position as the bipolar cells (5.1.2). In ‘ON ′

position only the positive part of the difference is kept otherwise, in ‘OFF′ position the
absolute value.

Y =ON −OFF (5.1.2)

where, ON = |P −H | and OFF = |H − P |

The parvo-cellular output is the difference between the responses of ON and OFF bipolar
cells. As for the magno-cellular output a low-pass Gaussian filter is added down the line,
which models the amacrine cells. The magno-cellular output is equivalent to a band-pass
filter to the photoreceptors’ output, which keeps less high frequencies than parvo-cellular
output.
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Figure 5.1: The luminance-based spatio-temporal saliency model. Image from GIPSA-lab, AGPIG
team, Perception project .

In summary, retina model (retina-like filters) decomposes the input image into two main
outputs: a parvocellular-like output that enforces the high spatial frequencies to enhance the
contrasts, and a magnocellular-like output that conveys lower spatial frequencies. The first
output is used to compute the luminance-static saliency maps and the latter to compute the
luminance-dynamic saliency maps.

5.1.2 Cortical-like filters

The frequency and orientation selectivity of visual cortex is modelled by a bank of Gabor
filters. Gabor filters are oriented band-pass filters. These filters are characterized by their

http://www.gipsa-lab.fr/projet/perception/
http://www.gipsa-lab.fr/projet/perception/
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frequency selectivity and orientation. Each Gabor filter Gij , (5.1.3), is defined by its central

radial frequency fj and its standard deviations σθij and σ fij in orientation θj and its orthogonal

orientation, respectively, i = 1, ...,Nθ, j = 1, ...,Nf ,
fj
fj−1

= 2 and fNf = 0.25.

Gij(u,v) = exp
{
−
( (u′−fj )2

2(σ
f
ij )2

+ v′

2(σθij )2

)}
(5.1.3)

where, u′ = u cosθ + v sinθ and v′ = v cosθ −u sinθ.

For luminance information the initial model, proposed by Marat and colleagues [Mar+09],
uses six orientations and four frequencies. Hence, Nθ = 6 and Nf = 4, Figure 5.2.

Figure 5.2: Half-value plot of the Gabor filters in the frequency plane tuned to 4 frequencies and 6
orientations (f4 = 0.25, f3 = 0.125, f2 = 0.0625, f1 = 0.0313).

5.1.3 Luminance-static saliency map

Two operations are carried out to create one luminance-static saliency map from the output
of cortical-like filters, Mu,v intermediate maps: the interactions and the normalization. The
interactions between neighbouring pixels of the intermediate maps, models the lateral neural
connections of visual cortex. They are modelled as linear combination of neighbouring pixels.
The interactions, depending on the orientation or the frequency, may be excitatory when in
the same direction, or inhibitory otherwise.

Mu,v =Mu,v .w (5.1.4)
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where,

w =


0 −0.5 0

0.5 1 0.5
0.0 −0.5 0

 (5.1.5)

Then the intermediate maps are normalized using the method proposed by Itti et al [IKN98].
First, each intermediate map is normalized to [0 1], then it is multiplied by (max(Mu,v) −
Mu,v)2. Then all values lower than 0.2 are set to zero. The normalization enforces the saliency
of the regions that are different from their surrounding, by unifying the dynamic range of
the intermediate maps. Then a luminance-static saliency map, Mls is obtained by summing
up all the normalized maps, Figure ??.

5.1.4 Luminance-dynamic saliency map

Dynamic saliency is related to the moving objects of the scene. The magno-cellular output is
used to detect the objects that are moving against to the background. A differential approach
is used for motion estimation by solving a system of optical flow equations [BP02]. For
every frame a motion vector is defined per pixel. Only the modulus of the vector is used to
define the dynamic saliency of a region, assuming that the motion saliency map of a region is
proportional to its speed against the background. Then a temporal median filter is applied to
five successive frames to remove the possible noisy detected motions. The output of temporal
filtering is considered as luminance-dynamic saliency map, Mld , Figure ??.

5.2 Chrominance-based saliency map

In this section we present different processing steps for chrominance information. Colour
information are processed in two streams: one red-green colour opponent stream and one
yellow-blue stream. There are several colour spaces proposing different combination of
cone responses to define the principal components of luminance and opponent colours,
red-green (RG) and blue-yellow (BY ) [TFMB04]. The colour space proposed by Krauskopf et
al. [KWH82] is one of the validated representations to encode visual information where the
orthogonal directions, A, Cr1 and Cr2, represent luminance, chromatic opponent red-green
and chromatic opponent yellow-blue, respectively. Equation (5.2.1) is used to compute
A, Cr1 and Cr2. In our model we use Cr1 and Cr2, as input images, to compute the
chrominance-static saliency maps.

A
Cr1
Cr2

 =


1 1 0
1 −1 0
−0.5 −0.5 1



L
M
S

 (5.2.1)

L, M and S values in equation (5.2.1) correspond to the response of the three types of cones
of the human eye; their name was chosen because of their maximum sensitivity at long,
medium and short wavelengths of the light. Here, L, M and S values are calculated from
tristimulus values of 1931 CIE XYZ colour space as follows:

L
M
S

 =


0.4002 0.7076 −0.0808
−0.2263 1.1653 0.0457

0 0 0.9182



X
Y
Z

 (5.2.2)

Figure 5.3 illustrates a given frame and its corresponding luminance (A) and chrominance
components Cr1 and Cr2.
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(a) (b)

(c) (d)

Figure 5.3: An example frame, (a) original coloured image, (b) luminance component A, (c) red-
green chrominance component Cr1 and (d) yellow-blue chrominance component Cr2. Note that
luminance component A and yellow-blue component Cr2 are highly correlated.

The different steps of the saliency model for colour opponent red-green image, Cr1, and
colour opponent yellow-blue image,Cr2, are presented as follows.

5.2.1 Retina-like filters

The function of retina, especially cone photoreceptors, is modelled using the contrast
sensitivity function (CSF) of standard observer. Figure 5.4 shows the (CSF’s), for chrominance
information (cone cells) and for luminance information (rods cells) . Note that the CSF for
chrominance information is different from the CSF for luminance information.

The retina models for Cr1 and Cr2 are simple low-pass filters that their transfer function
reproduces the CSF curves depicted in figure 5.4. Cut-off frequency for red-green (Cr1) image
is slightly higher than for yellow-blue (Cr2) image, 5.1 and 4.1 cycle per degree, respectively.
Figure 5.5 shows the retina output images for two colour opponent images Cr1 and Cr2.

5.2.2 Cortical-like filters

Like luminance information, the cortical processing of chrominance information is modelled
by a bank of Gabor filters. But, since the amplitude spectra of the two colour-opponent
Cr1 and Cr2 images do not have as many specific orientations as the amplitude spectra of
the luminance image [BM05], for both Cr1 and Cr2 images, only Gabor filters with four
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(a)

(b)

Figure 5.4: The normalized contrast sensibility functions, (a) for luminance component and (b) for
colour components red-green and blue-yellow. Image from [LM05].

orientations are used (0, 45, 90 and 135 degrees). In addition, because human visual system
is less sensitive to the high spatial frequencies of chrominance information [Geg03], only
two lowest frequencies are used (0.0313 and 0.0625 cycle per degree). Figure 5.6 shows
intermediate cortical images for red-green Cr1 component.
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(a)

(b) (c)

Figure 5.5: An example of retina-like filters output for (a) the original input image, (b) red-green
chrominance component, Cr1, input image and (c) yellow-blue chrominance component, Cr2, input
image.

5.2.3 Chrominance-based static saliency map

Likewise luminance-static saliency map, the intermediate maps of the output of cortical like
filters are normalized. To compute the chrominance-static saliency map, first the red-green
and blue-yellow intermediate maps are normalized to [0 1], then are summed up to obtain a
chrominance-saliency Mcs, Figure 5.7.

5.3 Fusion

Chrominance-static saliency map Mcs, luminance-static saliency map Mls and luminance-
dynamic saliency map, Mld , after normalizing to [0 1], are combined, according to equation
(5.3.1), to obtain a master spatio-temporal saliency map per video frame. This map predicts
the salient regions i.e. the regions that stand out in a visual scene.

Saliency map = αMls + βMld +Mcs +αβ(Mls ·Mld) (5.3.1)

where, α and β are the max of Mls and skewness of Mld respectively, and Mls ·Mld is a pixel
to pixel multiplication.

The weights of maps in equation (5.3.1) were found to result a good fusion regarding
the fact that the saliency maps from both the static and dynamic pathways exhibit different
characteristics i.e. static saliency map has larger salient regions based on textures, whereas
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Figure 5.6: An example of output images of cortical-like filters for Cr1 input image of figure 5.5a,
from left to right f1 = 0.0313 and f2 = 0.0625, from top to down θ1 = 0, θ2 = 45, θ3 = 90, θ4 = 135.

dynamic saliency map has smaller salient regions depending on the moving objects [Mar+09;
Rah13]. Static and dynamic maps are modulated using maximum and skewness respectively.
The reinforcement parameter αβ is used to include the regions that have low motion, but
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(a)

(b) (c)

(d)

Figure 5.7: (a) Input frame in colour (b) saliency map for red-green chrominance component Cr1
, (c) saliency map for yellow-blue chrominance component Cr2 , and (d) final chrominance-based
saliency map Mcs.

contain large salient regions in static saliency map. Figure 5.8 depicts the schema of our
colour-wise saliency model.

5.4 GPU implementation

The saliency model presented above with static (luminance-based), dynamic (luminance-
based) and chrominance pathways is compute-intensive. Rahman and colleagues [RHP11]
have proposed a parallel adaptation of luminance-based pathways onto GIPSA-lab. They
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Figure 5.8: The spatio-temporal saliency model. Mld is luminance-dynamic map, Mls and Mcs are
luminance-static and chrominance-static maps respectively.

applied several optimizations subtending to a real-time solution on multi-GIPSA-lab. We
include the parallel adaptation of chrominance pathway to this GIPSA-lab implementation
maintaining the real time solution.

The NVIDIA CUDA fast Fourier transform library (cuFFT) is used to perform the complex
Fourier transformations. The reductions are carried out using Thrust library, an interface to
many GIPSA-lab algorithms and data structures. Such as the implementation of luminance-
static and luminance-dynamic pathways, chrominance pathway is tested on a 2.67 GHz

quad-core system with 10 GB of main memory, and Windows 7 running on it. CUDA v3.0
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programming environment on NVIDIA Geforce GTX 480 is used. The model is available at
GIPSA-lab, real-time visual perception project.

5.5 Evaluation

A model of visual attention provides saliency maps of a visual scene. These maps enhance
the regions of the scene that are more likely to be gazed. To evaluate the performance of a
saliency model, the regions enhanced by model must be compared to the zones fixated by
observers. Several metrics have been proposed based on this method. These metrics measure
the correspondence between salient regions of a stimulus identified by a saliency model and
regions fixated by observers when exploring the stimulus. This comparison could be made
directly between a set of eye positions and saliency map or between fixation map, created
from eye positions [Vel+96; BT06b], and a saliency map. For instance, TC (Percentage of correct
predictions) [Tor+06; PI08], Roc! (Receiver Operation Characteristic [TBG05], NSS (Normalized
Scanpath Saliency [IKN98],), KL divergence, and AUC (area under the curve) are some of the best
known metrics. More readings on the metrics for evaluating the performance of a saliency
map might be found in reviews of [LeMeur2012; BI10].

The NSS is one of the most used metrics that we introduce here. We employ this metric to
evaluate the contribution of colour information in the proposed model of saliency. We use
NSS metric to compare the performance of colour-wise saliency model to the luminance-based
saliency model for two conditions of stimuli: colour and grayscale.

5.5.1 NSS metric

A common metric to compare experimental data to computational saliency maps is the
Normalized Scanpath Saliency (NSS) [Itt05]. We use this metric to compare colour (C) and
grayscale (GS) eye positions to their equivalent saliency maps. To compute NSS, first the
saliency maps were normalized to zero mean and unit standard deviation. The NSS value
of frame k corresponds to averaged saliency values at the locations of eye positions on the
normalized saliency map M as shown in equation (5.5.1):

NSS(k) =
1
N

N∑
i=1

1
σk

(M(Xi)−µk) (5.5.1)

where N is the number of the eye positions, M(Xi) is the saliency value of the eye position
(Xi), µk and σk are the mean and standard deviation of the initial saliency map of frame k. A
high positive value of NSS indicates that the eye positions are located on the salient regions of
the computational saliency map. A NSS value close to zero represents no relation between
eye position and computational saliency map, while a high negative value of NSS means that
eye positions were not located on the salient regions of computational saliency map.

We use data of eye positions from experiments A and B to evaluate the performance of
the saliency model and to compare luminance-based and luminance-chrominance saliency
models. The performance of the model is also compared with one of the reference saliency
models, Itti and Koch saliency model [Kla], [IKN98].

http://www.gipsa-lab.fr/projet/perception/
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Table 5.1: NSS results for Marat et al. model and Itti and Koch saliency model with and without
colour features.

Marat Itti
luminance luminance luminance luminance

+chrominance + chrominance
NSS C positions 0.59 1.18 0.91 0.95

GS positions 0.60 1.17 0.93 0.97

Table 5.2: Timings of sequential (C and MATLAB) and parallel (GIPSA-lab) implementations in ms.

Mls Mcs Mdl

MATLAB 34.01 22.67 237.03
C 10.73 7.15 31.24

CUDA 0.04 0.03 0.12

5.6 Results

In chapter 4, we presented two eye-tracking experiments, A and B, that were run to evaluate
the influence of colour information in guiding eye movements when exploring video stimuli
of different categories. Here, we use the eye position data obtained from both experiments A
and B to evaluate the contribution of colour information in a saliency model.

Evaluation of the model using data of Experiment A First, we studied whether Marat’s
luminance-based saliency model [Mar+09] predicts the eye positions for the two stimulus
conditions conditions with equal efficiency. NSS score for colour eye positions is
lower than the one for grayscale eye positions(0.88 vs. 0.91, t(147) = 1.5,p = 0.07).
We also compared the C and GS positions to the luminance-chrominance saliency
model. In global the model performance in predicting C positions is slightly improved
(0.90 vs. 0.88, t(147) = 1.5, p = 0.076). This slight improvement was expected due to the
slight differences that were observed when comparing the two datasets of eye positions.

luminance– colour–
based model wise model

C 0.88 0.90
GS 0.91 0.89

Evaluation of the model using data of Experiment B Second, we studied whether
luminance-based saliency model [Mar+09] predicts the eye positions in both conditions
with equal efficiency. Then we performed NSS analysis, but using the model of
saliency with chrominance. As shown in table 5.1 colour information improves
significantly the performance of presented model for both C and GS positions
(GS : t(63) = 4.5,p < 0.01,C : t(63) = 4.86,p < 0.01), while it improves slightly the
performance of the model of Itti and Koch [IKN98].

In addition , as presented in table 5.2, GPU implementation of chrominance-static pathway
results in a significant speed-up over MATLAB and C implementations.
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(a)

(b)

Figure 5.9: mean NSS value per category for stimuli of experiment A, (a) mean NSS values for
luminance-based saliency model, (b) mean NSS values for colour-wise saliency model.
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(a)

(b)

Figure 5.10: mean NSS value per category for stimuli of experiment B, (a) mean NSS values for
luminance-based saliency model, (b) mean NSS values for colour-wise saliency model..
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5.7 Conclusion

In the present chapter we have presented luminance-based saliency model of Marat and
colleagues [Mar+09]. We have incorporated a chrominance pathway to the model. We have
used eye tracking data of experiments A and B 4; these data allows us to validate the proposed
saliency model and more specifically to quantify the contribution of colour in the saliency
model to predict eye fixations.

Results show that indeed colour information improves significantly the performance
of the model in predicting eye positions for both grayscale and colour stimuli only for the
stimuli of experiment B 4.2. However, a better prediction power was expected for colour
stimuli. This might be due to the fact that the major regions of interest are common in both
stimuli conditions, but are better enhanced when employing colour processing steps. But,
for the stimuli of experiment A 4.1 we do not observe such improvement.

The incorporation of colour information into the model is not optimized. Because
the regions of interest are not always located on coloured zones, but their neighbouring
[LMLCB07]. Whether reinforcement of luminance saliency according to the colour
information of neighbouring zones can improve the predictive power of saliency model
remains to be determined.
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Conclusions and perspectives

Studies conducted in this thesis focus on colour information and visual attention. We are
interested to better understand the influence of colour information on the visual attention,
to propose a visual saliency model that optimizes the use of colour information. Throughout
the thesis, we concentrate on the question, "How people explore dynamic visual scenes,
how the different visual features are modelled to mimic the eye movements of people, in
particular, what is the influence of colour information?". To answer these questions we set up
eye-tracking experiments to analyse the eye movements of observers.

In this thesis we have used the results of these analysis to determine the factors that
must be considered to propose a saliency model that predicts eye movements, and finally,
regarding these factors, we have integrated colour information to a luminance-based saliency
model.

6.1 Key contributions

In chapter 4, we have evaluated the influence of colour information on the eye movements
when free-viewing videos. We have compared the gaze patterns of participants who explored
freely colour video stimuli with those who explored grayscale video stimuli.

q Colour influences gaze positions to some extents. We found that eye positions of
observers across videos follow the same patterns for both colour and grayscale stimuli.
If a snippet starts with a fixation cross, fixation dispersion among observers is very
low and increases as the scene progress. If a snippet starts immediately after another
snippet the fixations on the scene onset correspond to regions of interest in the previous
scene, resulting in higher fixation dispersion. Dispersion for colour stimuli is slightly
higher that grayscale stimuli, specially in the middle period of observation about one
second after scene onset.

q Colour increases the number of the region of interest, especially in the middle period
of observation. We identified the region of interest using a clustering method on eye
positions. We found that, in colour stimuli, the number of the regions of interest is
higher than in grayscale stimuli.
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q Number of the regions of interest increase by time. The clustering of eye position
shows that for both colour and grayscale stimuli the number of clusters (regions of
interest) increases as the scene progress, which is coherent with higher dispersion
among observers.

q Impact of colour on the eye positions is independent from the category of videos. We
studied eye movements according to the category of the video stimuli. The evaluation
using different comparison criteria, such as dispersion and number of clusters, shows
that eye positions are independent from the categories of video stimuli, no matter the
stimulus condition, except for night-light category. This is essentially related to the size
of the illuminated region of the scene is smaller than other categories.

q Fixations are shorter in colour face videos. We observe that fixations are longer on
videos with faces, but fixations in colour videos are shorter than grayscale videos for face
category. However, the durations are shorter for other categories, no matter stimulus
condition, when several regions of interest are competing for limited attentional
resources.

In chapter 5, we used the observations about the influence of colour information in videos
to integrate chrominance saliency to the saliency model of Marat and colleagues [Mar+09].

q We have proposed a colour-wise bottom-up visual saliency model that predicts eye
positions using two pathways based on different types of visual features: static and
dynamic. It is an extension of the saliency model proposed previously by [Mar+09].
The model is inspired by the biology of human visual system and proposes a simulation
of first steps of the visual processing in human using retina-like filters and cortical-like
filters. The original version of the model is based on the luminance information. The
static pathway results in a static saliency map that extracts the texture information. The
static pathway is improved by adding colour saliency maps to the luminance saliency
maps. The dynamic pathway results in a dynamic saliency map that detects the moving
objects in the scene. These two saliency maps are combined to provide a saliency map
that enhances the regions of visual scene that attract attention in videos.

q We have evaluated the contribution of colour saliency map in the performance of the
model against eye movement data from the psycho-visual experiments. We show that
the inclusion of colour features improves the prediction power of the visual saliency
model, specially for person-present scenes.

In conclusion, the eye-tracking experiments show a modest influence of colour
information on the eye movements. However, incorporation of colour processing steps
into a saliency model leads to higher efficiency.

6.2 Perspectives and future works

In view of cited contributions, we can say that the original objectives of this research have
been met. We could evaluate the impact of colour information on the eye movements when
freely viewing various video stimuli. We have incorporated a colour saliency pathway to the
luminance-based model and we have obtained a higher performance. The following presents
potential plans for future works, regarding colour videos and saliency model:
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Eye tracking experiments

q We used video databases comprising short video exerts of various lengths to evaluate
the influence of colour information on eye movements across time. We observed that
the impact of colour information is higher in the middle period of observation. But,
our experimental design did not allow us to identify, more precisely, when colour
information interferes in guiding eye movements. It is important to set-up psycho-
visual experiments to achieve this goal.

q We have studied the influence of colour information on the eye movements using
short length video stimuli, when bottom-up attention is more involved in guiding
eye movements. It is important to use longer videos to study how colour information
intervene when top-down attention guides eye movements rather than bottom-up
attention.

q Studies have investigated the contribution of colour in visual attention for static images
[HPGDG12; FHK08] or dynamic scenes [Ham+15b]. It is interesting to conduct a study
to analyse the influence of colour on eye movements for static and dynamic stimuli of
the same visual scene.

q The main objective of the eye-tracking experiments conducted in this thesis was to
compare the eye movement data of colour stimuli and grayscale stimuli. We proposed
a display-dependent grayscale conversion method to minimize the intensity changes
between colour and grayscale stimuli. A perspective is to study different grayscale
conversion methods and evaluate the influence of these methods on the eye movements.

Saliency model

q We have incorporated colour features into a luminance-based saliency model. There are
several criteria in literature that measure colourfulness of an image [Fai98; Fai10]. A
colour-wise saliency model, requires an efficient method to estimate the colourfulness
of input image regarding saliency features. Employing such criteria might simplify a
model saliency by discarding input images with low colourful features.

q Saliency models of attention are compute-intensive. Incorporation of red-green and
yellow-blue colour saliency maps increases the computation time. The application
needs might elicit a preference to the luminance-based saliency model. A perspective
is to improve saliency-preserving grayscale conversion methods. Such grayscale
conversion methods might replace colour saliency steps to simplify the model while
preserving its performance.

q One of the main objectives in this thesis was to propose a biologically plausible model
of colour saliency. We used a simplified model of retina. A perspective is to approach
the model to human visual system by simulating the random mosaic of photoreceptors
and spatially variant structure of retina.

q We integrated a GPU implementation of colour saliency model to the existent GPU-
based visual saliency model. The next generation of graphics cards extends the
computational capabilities of the hardware. The implemented saliency model could be
ported on to the rapidly improving GPU technology.
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Résumé en français

A.1 Contexte

Face à la l’énorme quantité de l’information visuelle qui nous entoure, notre système visuel
a les ressources biologiques et sensorielles limités. Cependant, le système visuel humain
(SVH) effectue une perception visuelle plutôt efficace de notre environnement. La perception
visuelle correspond à la faculté de système visuel humain dans l’interprétation et l’exploration
de l’information visuelle brute, de l’acquisition de l’image par rétine au traitement cortical.
Pour faire face à l’énorme quantité d’informations visuelles, notre système visuel est capable
de sélectionner l’information la plus pertinente qui parvient à la rétine de l’ensemble des
stimuli situé dans le champ visuel. Cette capacité est appelée l’attention visuelle. L’attention
visuelle est en corrélation avec les mouvements oculaires. Une séquence des saccades et des
fixations apporte une zone particulière de la scène visuelle à la fovéa, où les dispositions
sensorielles de l’œil sont concentrées à fin d’effectuer un traitement adéquat de l’emplacement
de focus de regarde. Le choix de l’emplacement, qui doit être regardé, implique deux
mécanisme de l’attention sélective: un mécanisme inconscient et exogène appelé également
l’attention ascendant (bottom-up) et un mécanisme endogène et conscient aussi connu
comme l’attention descendant (top-down). L’attention ascendant, qui est stimulée par des
caractéristiques de bas niveau des stimuli, permet le traitement de l’information visuelle
rapidement et sans impliquant toutes les ressources attentionnelles. L’attention de top-down
est consciente, contrôlée, dépendante de La tache de l’observateur et implique la plupart
des ressources sensoriels et cognitifs. Modélisation du mécanisme de l’attention visuelle
sélective est l’un des domaines de recherche actifs de la vision par ordinateur ainsi que des
sciences cognitives. En raison de la très grande complexité de l’attention visuelle due à des
interactions et dépendances entre l’attention ascendante et descendant, la modélisation du
mécanisme de l’attention visuelle dans son intégralité est peu réalisable avec les technologies
existantes. Ainsi, les chercheurs ont tendance à diviser les modèles de l’attention en en deux
catégories : les modèles de l’attention ascendante et des modèles de l’attention descendant. À
la base des modèles de l’attention il y a des théories comme le "filter model" [Bro58] et la "
feature integration th Feature Integration Theory " (FIT) [de TG80]. Cette dernière est l’une
des théories les plus cités de l’attention, et divise les processus d’attention en deux étapes: un
pré-attentive et une autre ciblée. Selon la FIT, caractéristiques visuelles élémentaires tels que
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l’intensité, la couleur et l’orientation sont traitées en parallèle à une phase de pré-attentif, et
ensuite combinés pour conduire le centre d’attention. Plus tard en 1985, basée sur la Feature
Integration Theory , Koch et Ullman [KU85] ont développé l’un des premiers modèles de
calcul de l’attention qui a été inspiré de la biologie du système visuel humain. Pour la
première fois le terme de carte de saillance est apparu dans ce travail. Une carte de saillance
a été définie comme une représentation visuelle de la scène, dans laquelle les régions les plus
intéressants sont améliorées. La FIT et l’architecture de calcul de cette théorie proposée par
Koch et Ullman [KU85] ont été la source d’inspiration pour de nombreux autres modèles
de calcul de l’attention, tels que le modèle proposé par Itti et ses collègues [IKN98], qui
est un modèle de référence dans le domaine des modèles de calcul de l’attention. Plupart
de ces modèles, calculent une carte de saillance des stimuli visuels en fonction de leurs
caractéristiques de bas niveau, tels que, la couleur, l’intensité, l’orientation, la fréquence, le
mouvement, etc. La contribution de ces fonctionnalités pour le déploiement de l’attention
a été examinée sur les stimuli synthétiques [WH04]. La couleur en plus d’autres fonctions
sont identifié comme les attributs qui guide l’attention lorsque vous effectuez une recherche
visuelle, par exemple trouver une barre rouge horizontale entre les barres verticales vertes.
Pourtant, la faculté de guidance des caractéristiques de couleur lors de l’exploration des
scènes naturelles est questionnée.

A.2 Des défis

Dans cette thèse, nous nous intéressons au rôle de la couleur dans l’attention visuelle, des
mouvements oculaires ainsi que dans les modèles. Le premier défi est d’enquêter sur la
faculté’ de guidance des caractéristiques de couleur dans les stimuli vidéo, en utilisant des
expériences oculométrie. La question principale est de savoir si la couleur influences, dans
le moins, les mouvements des yeux et la position de focus d’attention lorsque on regarde
librement les stimuli vidéos. Il y a aussi plusieurs questions quant à savoir si l’influence de
la couleur sur l’attention visuelle est corrélée à la catégorie des stimuli. Est-ce que la couleur
guide l’attention Lors d’observation des stimuli vidéo naturels par exemple des paysages?
Est-ce que la contribution de la couleur dans l’orientation de l’attention varie entre les scènes
artificielles, telles que les routes urbaines et des scènes d’intérieur, et des paysages? Qu’en
est-il des scènes sur présentant les visages? IL est montré que les visages dans une scène
guident l’attention visuelle rapidement et indépendant de la tâche. Ne diffère l’attribution de
l’attention sur les visages sur des stimuli de couleur qu’en niveaux de gris? Le deuxième défi
est d’intégrer les résultats des expériences et des évaluations dans un modèle de calcul de
l’attention basé sur luminance. Dans cette thèse, le modèle ascendant de l’attention proposée
précédemment par Marat et ses collègues [Mar + 09] est amélioré. Le modèle original calcule
les cartes de saillance visuelles d’une vidéo par des voies statiques et dynamiques pour des
stimuli en niveaux de gris. Nous essayons d’améliorer la performance du modèle à l’aide des
informations de couleur.

A.3 Des objectifs

En ce qui concerne les défis décrits ci-dessus, l’objectif de cette thèse est double. D’une part,
nous étudions et comparons le comportement des observateurs lors de l’affichage des stimuli
vidés couleurs et niveaux de gris. D’autre part, nous aimerions inclure des caractéristiques
de couleur à un modèle de calcul de saillance. La première étape consiste à réaliser des
expériences oculométrie utilisant stimuli vidéo avec divers contenus. Les expériences nous
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permettraient d’identifier divers facteurs liés à l’impact des caractéristiques de couleur
sur l’attention visuelle. La deuxième étape consiste à la modélisation informatique et à
l’incorporation des caractéristiques de couleur dans un modèle de saillance biologiquement
inspiré et moduler ces fonctionnalités selon ces facteurs. Un modèle de saillance sensible
à la couleur pourrait être bénéfique pour les applications de vision par ordinateur, robots
cognitifs, la reconnaissance d’objet et les dispositifs de contrôle de la qualité.

A.4 Principales contributions

Cette thèse porte sur la contribution de l’information de la couleur dans les mouvements
oculaires d’un côté et dans la performance d’un modèle de saillance de l’autre côté. Ces
deux objectifs sont atteints grâce à les principales contributions apportées dans cette thèse
: Nous identifions l’impact de l’information couleur sur les mouvements des yeux lors de
l’observation des stimuli vidéo, en termes de la congruence des positions du regard des
observateurs, nombre de régions d’intérêt, la durée de fixation et l’amplitude de saccade en
global et aussi en fonction du temps. Nous incorporons une carte couleur de saillance à un
modèle existant de saillance basée luminance. Nous évaluons la performance du modèle par
rapport aux modèles existants dans la littérature.





Acronyms

ANOVA analysis of variance

AUC area under the curve

AVI audio video interleave

CIE commission international d’éclairage

CSF contrast sensibility function

CRT cathod ray tube

CUDA compute unified device
architecture

cuFFT NVIDIA CUDA fast Fourier
transform library

DMAs distributed associated memories

FCC federal communication
commission

FIT feature integration theory

FOA focus of attention

GHz gigahertz

GIPSA-lab Grenoble Images Parole Signal
Automatique laboratory

GPU graphics processing unit

HVS human visual system

HSV hue saturation value

IOR inhibition-of-return

IT inferotemporal cortex

KL Kullback Leibler

MATLAB matrix laboratory

mp4 MPEG-4 Part 14

NPL national physical laboratory

NSS normalized saliency scanpath

NTSC national television standard
committee

PAL phase alternating line

SECAM séquentiel couleur à mémoire

TC Torralba’s percentile criterion

V1 primary visual cortex

WTA winner-takes-all
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