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Directeur de thèse : M. Freddy Bouchet

Devant la commission d’examen composée de :

M. Freddy Bouchet, CNRS et ENS Lyon, Directeur,
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Introduction

Geophysical flows on large scales are turbulent, and have the striking property to
self-organise into long-lived coherent structures. On Earth’s atmosphere and on
giant gaseous planets, strong east-west parallel currents —called zonal jets— are at
the basis of mid-latitude atmosphere dynamics [110]. Quantifying their dynamics
and statistics is fundamental in order to understand climate dynamics.

One of the motivations of this work is the description of fluctuations and rare
events in zonal jet dynamics. For instance, the atmospheric polar jet stream fluc-
tuates typically on time scales of a few weeks [111]. Larger fluctuations sometimes
lead to a blocking of the Northern polar jet stream, which has major consequences
on the weather in Western Europe and North America [54]. On Jupiter, observa-
tions suggest that one of the Southern jets has been lost in the late 30’s through
an extremely rare hydrodynamic instability [118]. None of the previous theoretical
descriptions of zonal jets took into account typical and large fluctuations.

In mid-latitudes, zonal jets are on one hand slowly dissipated, mainly due to
a large-scale friction mechanism, and on the other hand maintained by small-scale
turbulent perturbations. This phenomenology has been identified for the polar jet
streams on Earth in the 20’s [51], and observed more recently on giant planets like
Jupiter [100].

Because of turbulence, jet dynamics involve many spatial scales, from the scale
of dissipation of turbulent perturbations to the scale of the jets themselves. Non-
equilibrium statistical mechanics is a very natural framework to study the interac-
tions and energy transfers between all these degrees of freedom. In many cases of
interest, zonal jets evolve much slower than the surrounding turbulence [90]. This
allows a quasistatic description of jet dynamics. In this thesis, we will show that
in this regime of time scale separation, classical tools from statistical mechanics
(stochastic averaging, large deviation theory) can be applied to give such effective
description of jet dynamics and statistics. Such a task, an example of turbulent
closure, is usually extremely hard to perfom for turbulent flows.

Using stochastic averaging, we will obtain an effective equation for the slow
dynamics of zonal jets, called the kinetic equation. This equation is a stochastic
differential equation for the zonal velocity field, with multiplicative noise. The
kinetic equation describes the attractors for the dynamics (alternating zonal jets),
the relaxation towards those attractors, and the typical fluctuations around those
attractors. The deterministic part of the kinetic equation was obtained previously
using a quasilinear approximation of the dynamics [104] (S3T in [38] and CE2 in
[106]). An example of numerical simulation of zonal jets, in the stochastic quasi-
geostrophic barotropic model and in the related S3T approximation, in shown in
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figure 1 [33]. In this case, the S3T approximation gives a qualitative description of
the attractor of zonal jet dynamics. This description can be quantitatively accurate
in some regimes, as discussed in chapter 3 of this thesis.

Our kinetic theory explains on a theoretical ground the past successes of quasi-
linear approaches. It also allows to go further, as the stochastic part of the kinetic
equation can explain departures from S3T-CE2 types of approximations, and de-
scribe fluctuations around the attractors of the slow dynamics.

Figure 1: Formation of zonal jets in the stochastic quasi-geostrophic barotropic
model and in the related S3T approximation, from [33]. The zonal velocity profile
U(y, t) is represented as a function of latitude y and of time t (Hovmöller diagram),
for the full model (upper pannel) and for the S3T dynamics (bottom pannel). The
time-averaged velocity profile is also represented in the right pannel, for both the
full (NL) model, and for the S3T simulation, showing good qualitative agreement.
However, the fluctuations of zonal jets visible in the NL simulation are not repro-
duced in the S3T simulation. The kinetic theory presented in this thesis is able to
describe such fluctuations. Courtesy Navid Constantinou.

However, kinetic theory is not able to describe arbitrarily large fluctuations of
zonal jets. Such rare fluctuations can have major consequences on weather and
climate [28, 49, 107, 115], predicting their statistics is a major challenge in current
climate studies.

Approaches through direct numerical simulations are prohibitive, because they
imply that the total duration of the simulation increases as the probability of the
event of interest decreases. As an example, in figure 2 is represented the evolution
of zonal jets in the stochastic quasi-geostrophic barotropic model over very long
time scales (when compared to the typical time scale of formation of jets), showing
rare and abrupt transitions between two-jets and three-jets configurations. Such

7
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Figure 2: Zonal jets in a numerical simulation of the stochastic quasi-geostrophic
barotropic equation. Top pannel: Hovmöller (spatio-temporal) diagram of the zon-
ally averaged vorticity, showing rare and abrupt transitions between two-jets and
three-jets configurations. Bottom pannel: time series of the vorticity Fourier compo-
nents, showing both typical fluctuations and large fluctuations leading to transitions.
Courtesy Eric Simonnet.

observation of a few transitions is not enough to get relevant statistics of those
transitions (average residence time in each attractor, typical transition path from
one attractor to another one). This observation calls for a theoretical approach
instead.

Large deviation theory is a very interesting framework to study the statistical
dynamics of both typical and rare events in complex systems. We will show that
in the limit of time scale separation described above, large deviation theory gives
the whole probability of paths of zonal jets, through the so-called large deviation
principle. The large deviation principle gives access to both the effective dynamics
(attractors, effective energy balance, typical transition path from one attractor to
another one) and statistics (relative probability of two attractors, rate of transition
between attractors).

To our knowledge, it is the first time this kind of approach (large deviation prin-
ciple for slow-fast dynamical systems [39]) is applied in practice, using numerical
simulations, to a complex system such as a turbulent flow. We will present original
methods to implement the large deviation principle in practice, for the problem of
interest (zonal jet dynamics), and that can be easily applied to a much larger class
of non-equilibrium systems. In particular, those methods allow to study arbitrarily
rare events extremely easily, in contrast with approaches through direct numerical
simulations.

Stochastic averaging and the large deviation principle can be applied rigorously
to a large class of systems with time scale separation [39, 84, 86]. However, we will

8
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see that the stochastic quasi-geostrophic model does not fulfill the hypothesis for
those theorems. Understanding under which conditions the results still apply is thus
a crucial theoretical question, it can have very interesting physical consequences and
could lead to new mathematical problems.

From a physical point of vue, the regime of time scale separation between large
scales and small scales turns out to be also the limit of small forces and dissipa-
tion. At leading order, the evolution of turbulent perturbations is described by the
linearized dynamics close to the fixed zonal flow, in the regime of interest this lin-
ear dynamics is stochastically forced but not dissipated. The question of whether
this linear dynamics actually reaches a stationary state or not is thus crucial for
the self-consistency of our theory, answering this question is a central point of this
thesis.

In the case of the stochastic two-dimensional Navier-Stokes equation (i.e. with no
differential rotation), the linearized dynamics actually leads to an inviscid damping
of turbulent perturbations, known as the Orr mechanism [11, 82], even in the absence
of external dissipation. Using the Orr mechanism, we will study the mathematical
properties of the linear stochastic dynamics. In particular, we will study the low-
order statistics (average and covariance) of Reynolds’ stresses, which are the terms
appearing in the kinetic equation for zonal jets.

We will see that the inviscid damping ensures the self-consistency of the kinetic
theory at leading order (deterministic part of the kinetic equation involving the
average Reynolds’ stress). At next order (stochastic part of the kinetic equation
involving the typical fluctuations of Reynolds’ stresses), the issue is more subtle and
we will see that some quantities of interest converge to finite values in the limit
of small dissipation, while some other quantities diverge. More precisely, we will
obtain results of convergence in a weak sense, i.e. in the sense of distributions. An
important physical consequence of those results is that the typical fluctations of
Reynolds’ stresses cannot be neglected in the effective dynamics of zonal jets. All
those theoretical results will also be confronted with numerical computations.

In the limit of no forcing and dissipation, approaches through equilibrium statis-
tical mechanics explain both the self-organization of the flow and why zonal jets are
natural attractors of the dynamics [14]. The formal generalization of these results
to the case with forcing and dissipation can be done using a Langevin equation, a
classical tool in statistical mechanics. Such Langevin model of zonal jet dynamics
is presented in the end of this thesis. The interest of this approach is that we can
construct the stationary distribution of the flow (generalized canonical equilibrium
distribution), and obtain explicit results for the zonal jet evolution and statistics.

We will present a class of equilibrium distributions that leads to a time scale
separation between the evolution of large scales and small scales, and apply the
stochastic averaging procedure to obtain an equivalent of the kinetic equation. The
relation with previous studies [10, 19, 61] will also be discussed.

The basic phenomenology of planetary zonal jets and a brief review of previous
descriptions is first presented in chapter 1.

The effective description of zonal jets presented in this thesis is based on classical
results of statistics: the Law of Large Numbers, the Central Limit Theorem and
the Large Deviation Principle. These theoretical tools are presented in a general
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framework in chapter 2.
In chapter 3, the Law of Large Numbers and the Central Limit Theorem are

applied to the stochastic quasi-geostrophic barotropic model, leading to an effective
equation describing the attractors and typical fluctuations of zonal jets (kinetic
equation).

The practical implementation of the kinetic equation is discussed in chapter 4.
This naturally leads to wonder about the self-consistency of the kinetic theory, in
relation with the behaviour of linearized dynamics in the absence of dissipation.
Those questions are adressed in chapters 4 and 5.

In chapter 6, tools from Large Deviation Theory are applied to the stochas-
tic quasi-geostrophic barotropic model, which allows the description of rare events
statistics in zonal jets dynamics.

Finally in chapter 7, an academic model describing the equilibrium dynamics
of zonal jets is presented, and the effective dynamics of jets within this model is
studied.

A general conclusion is given in page 130, and a list of the main results can be
found in page 182.
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Chapter 1

Zonal jets in mid–latitude

atmospheres

1.1 Observations

Geophysical turbulent flows are characterized by their self-organisation into large-
scale, long-lived structures: cyclones and anti-cyclones, parallel jets, ocean rings...
In particular, atmospheric flows in mid-latitudes have a tendency to self-organise
into robust horizontal currents parallel to the equator, called zonal jets.

This phenomenon is striking on giant planets like Jupiter. The velocity field in
the outer layer can be analysed from observations [43], and the zonal (east-west)
wind averaged over a line of constant latitude can be estimated as a function of
latitude (zonal velocity profile). Measures of the zonal velocity profile separated by
an interval of 20 years shows very few changes [90]. In contrast, the pictures of
Jupiter’s external layer on smaller scales show that the turbulence evolves on time
scales of order of the day [90]. These observations show that zonal jets are much
more coherent than the surrounding turbulence.

On Earth, two intense eastward zonal jets are found in each hemisphere. The
so-called sub-tropical jet streams are located at latitudes around ±30◦, and the so-
called polar jet streams are located between ±40◦ and ±70◦. Figures 1.1(a), 1.1(b)
show the horizontal velocity field in the tropopause (around 10km height) for the
southern hemisphere, at a given day and averaged over a southern hemisphere win-
ter (june-july-august). These figures show that the instantaneous velocity field is
far from the time-averaged one, meaning that these jets undergo strong fluctuations.

This variability is also observed in the northern hemisphere, where the polar jet
stream visits two states: a nearly zonally invariant state, and a “blocked” state
[54]. This phenomenon has very important consequences for weather, indeed the
occurences of blocked states are related with extreme heat waves in Western Europe
and extreme cold waves in North America [49, 115]. This is illustrated in figures
1.2(a), 1.2(b). A simple analogy of this phenomenon has been obtained in a ro-
tating tank experiment [116]. The time series of velocity shows bistability between
these states, with sporadic and abrupt transitions. This phenomenon has also been
reproduced in numerical simulations of simplified models [27, 57, 111].

11



CHAPTER 1. ZONAL JETS IN MID–LATITUDE ATMOSPHERES

(a) Velocity field on day 07/01/14

(b) Velocity field averaged over a southern hemisphere winter (june-july-august)

Figure 1.1: Map of the wind in the southern hemisphere, in the tropopause (pressure
level 300 mb, i.e. around 10 km height), from data reanalysis [52] (image provided
by the NOAA/ESRL Physical Sciences Division, Boulder Colorado from their Web
site at http://www.esrl.noaa.gov/psd/data/composites/day/). The arrows indicate
the direction of the wind and the colours show the intensity of the wind (in m.s−1).
The subtropical and polar jet streams appear on these maps, even though they are
confounded in some locations. The comparison between both maps shows that these
jets undergo strong fluctuations.
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1.2. PHENOMENOLOGY OF MID–LATITUDE ZONAL JETS

(a) Zonal state of the northern polar jet
stream

(b) Blocked state of the northern polar
jet stream

Figure 1.2: Map of the wind in the northern hemisphere, averaged over 10 days (at
pressure level 700 mb, i.e. around 3 km height), from data reanalysis [52] (image
provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado from
their Web site at http://www.esrl.noaa.gov/psd/data/composites/day/). The aver-
aging dates are the same as in [116]. The arrows indicate the direction of the wind
and the colours show the intensity of the wind (in m.s−1). The left panel (a) shows
the nearly zonally invariant state, and the right panel (b) shows the blocked state,
associated with strong meandering over North America and over Central Asia.

It has been suggested that planetary zonal jets may also have a large impact on
abrupt climate changes [28, 107]. Such abrupt change has been observed on Jupiter
in the end of the 40’s [95, 118], and the relevance of such abrupt changes for past
and future Earth climate changes is still an open question.

1.2 Phenomenology of mid–latitude zonal jets

1.2.1 Basic equations of large scale mid–latitude atmospheric

dynamics

Climate dynamics involves many different phenomena, occuring over a wide range
of temporal and spatial scales [88]. For this reason, the theoretical description of the
climate system involves a large set of coupled equations. For practical reasons, and
in order to extract the basic ingredients responsible for the phenomenon of interest,
we have to use simplified equations.

In the study of atmospheric flows, the basic equations are the three-dimensional
Navier-Stokes equations in the rotating frame of reference of the planet. Dimensional
analysis of the different terms involved in these equations allow to perform major
simplification [110]

• If the typical length scale of the horizontal motion L is much larger than the
depth of the atmosphere, then the vertical motion resumes to the hydrostatic
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balance ∂zp = −ρg, where ∂zp is the vertical pressure gradient, ρ is the volu-
metric mass and g is the acceleration of gravity.

• If the horizontal velocity field evolves on time scales much larger than the
period of rotation of the planet, then the horizontal motion resumes to a
balance between the Coriolis acceleration and pressure gradients, as known
as geostrophic balance: ρf × v = −∇p, where f = 2Ω sin θez is the Coriolis
parameter (Ω is the planet rotation rate, θ is the latitude and ez is the vertical
unit vector), v is the horizontal velocity field and ∇p is the horizontal pressure
gradient. Geostrophic balance is expected to be accurate when the so-called
Rossby number, defined as the ratio of the orders of magnitude of advective
and Coriolis accelerations, is small: Ro = U/Lf ≪ 1, where U is the typical
order of magnitude of the horizontal velocity.

The hydrostatic and geostrophic balances describe accurately the winds and air mass
fluxes in mid–latitudes, on time scales up to a week (typical time scale of evolution
of the weather). On larger time scales (i.e. at next order in Ro), advection and
dissipation have to be taken into account. This leads to the class of quasi-geostrophic
models.

Such models are known to produce realistic zonal jets [106], and even reproduce
their variability and transitions [27, 57]. Among quasi-geostrophic models, the sim-
plest model that produces multiple zonal jets is the stochastic barotropic beta-plane
equation

∂ω

∂t
+ v · ∇ω + βv = −κω − νn(−∆)nω +

√
ση, (1.1)

where ω = (∇ × v) · ez is the component of the vorticity that is perpendicular to
the layer of fluid, and v = (u, v) is the incompressible horizontal velocity field. The
coordinates x and y are called respectively the zonal and meridional coordinates,
and the velocity components u and v are called zonal and meridional velocities.
Equation (1.1) essentially describes the two-dimensional motion of a fluid on the
plane that is tangent to the surface of a rotating sphere, at a given latitude. Then,
β is the gradient of the Coriolis parameter f at this latitude.

The first term on the right-hand side is a common way used to describe large-
scale dissipation due to bottom drag [9, 110]. The coefficient κ is usually called
Rayleigh friction or Ekman drag. The last two terms on the right-hand side are
used to parametrize the effects of smaller-scale phenomena, which we do not want
to describe in detail here. Such phenomena are essentially baroclinic and convective
instabilities, which provide stirring of the quasi-2D flow and dissipate energy at the
smallest resolved scales. The hyper-viscous term νn(−∆)n is essentially introduced
for practical reasons in numerical simulations [3, 104]. The force term

√
ση is the curl

of a force (per unit of mass), it is usually taken to be a random noise. The simplest
case —and this is the case we will consider in this thesis— is a gaussian white noise,
with zero mean and correlations E [η(r1, t1)η(r2, t2)] = C(r1, r2)δ(t1 − t2), where
E [·] represents the average over realizations of the noise η. For an introduction to
random processes and stochastic differential equations, see for example [44]. The
parameter σ is a measure of the intensity of the random force in (1.1), it will be
defined more precisely in section 1.2.4.

In this thesis (except in chapter 6), we will consider equation (1.1) in the biperi-
odic domain (x, y) ∈ D = [0, 2πLx) × [0, 2πLy), in order to avoid boundary effects.
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In chapter 6, we will study the dynamics of zonal jets in a spherical geometry, the
equation of motion will be introduced then.

1.2.2 “Eddy–driven” jets

When the flow is dominated by a coherent zonal jet, the velocity field reads v(r) =
(U(y) + u′(r), v′(r)), where U(y) is the zonal velocity profile and v′ = (u′, v′) is the
perturbation velocity. Typically, v′ is a turbulent velocity field, all along this thesis
we will refer to this perturbation as “eddies” or “turbulence”, without distinction.

For the dynamics (1.1), zonal jets are mainly dissipated by the linear friction
(term −κω). This dissipation is balanced by the transfer of energy by the turbulence
v′, from the forcing scale to the jet scale. Such zonal jets are said to be eddy-driven.

The previous statement can be made more precise, using the projected equation
for the zonal jet velocity profile

∂U

∂t
= − ∂

∂y
〈u′v′〉 − κU, (1.2)

where 〈·〉 denotes the average over the zonal direction, and where we have neglected
viscosity and the stochastic force acting directly on U . This equation will be derived
in more detail in chapter 3. On the right-hand side of (1.2), the term 〈u′v′〉 is a
zonally averaged horizontal flux of momentum, and is similar to a Reynolds’ stress
used in the turbulence community [89]. Then, −∂y 〈u′v′〉 is the convergence of
momentum flux, or (minus) the divergence of the Reynolds’ stress. In this thesis,
−∂y 〈u′v′〉 will be called the Reynolds’ force1.

In a steady state,

U ≃ −1

κ

∂

∂y
〈u′v′〉 , (1.3)

expressing the balance between large scale dissipation and forcing through the turbu-
lent field (u′, v′). In the case of eddy-driven jets, we should observe a clear correlation
between the zonal jet velocity profile and the Reynolds’ force −∂y 〈u′v′〉.

This is the case in numerical simulations of mid-latitude jets on Jupiter [102].
On Earth, the polar jet streams are essentially eddy-driven, which was first argued
in [51], and observed more recently [48, 88]. In contrast, the subtropical jet streams
are not associated with convergence of horizontal momentum fluxes. Instead, their
formation is understood in relation with large scale convections cells (Hadley cells),
which are essentially three-dimensional [110].

1.2.3 On the role of rotation in jet dynamics

A purely zonal flow is characterized by v = 0. In the limit of a large value of β, we
readily see from (1.1) that v should be correspondingly small in order to balance the
advection term v ·∇ω. This basic argument (that is essentially equivalent to angular
momentum and energy conservations [110]) explains why differential rotation (evo-
lution of the Coriolis parameter with latitude) leads to predominantly zonal flows.
More elaborated arguments that also involve differential rotation as a fundamental
ingredient will be presented in section 1.3.

1Actually −ρ∂y 〈u′v′〉 with ρ the mass per unit of area has the dimensions of a force. However,
in this incompressible fluid dynamics context, we abusively call −∂y 〈u′v′〉 a force.
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(a) β = 0 (αR =∞, Rβ = 0)
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(b) β 6= 0 (αR = 8.10−5, Rβ = 2.5)

Figure 1.3: Zonal jets formation in simulations of the stochastic barotropic equation
(1.1). Left panels: zonal velocity profile U(y) as a function of time (Hovmöller
diagram), right panels: velocity field at t = 5/α, with (a) β = 0 and (b) β 6= 0.
In both cases, robust zonal jets are formed. This shows that the beta effect is not
necessary for jet formation in general, but that β changes the number and shape of
the jets. The aspect ratio is Lx/Ly = 0.7, and α = 10−3. The parameters α, αR and
Rβ are defined in section 1.2.4. The numerical simulations were performed with a
pseudo-spectral code, at resolution 256×256, with a homogeneous isotropic forcing
peaked around wavenumber kf = 8.

However, it should be noted that zonal flows can also form in the absence of
rotation, i.e. in two-dimensional turbulence. In this case, turbulence leads to the
concentration of the energy in the largest scale [9, 55], so the coherent structure
depends crucially on the geometry [14]. Consider for instance the two-dimensional
Navier-Stokes equation (equation (1.1) with β = 0) in the biperiodic domain (x, y) ∈
D = [0, 2πLx) × [0, 2πLy) with aspect ratio lx = Lx/Ly. If lx < 1, the largest scale
corresponds to the ky = 1 mode, i.e. to a zonal flow. Conversely, if lx > 1 the
coherent structure will be a meridional flow (in the y direction). In the square
case lx = 1, the large-scale flow will be made of a dipole of vortices. This effect is
observed in numerical experiments, as illustrated in figure 1.3, and can even lead to
bistability between the dipole and unidirectional flow attractors when lx ≃ 1 [13].

1.2.4 Dimensional analysis in the beta–plane model

We have seen in section 1.1 that zonal jets in planetary atmospheres can have very
different structures and dynamics. For instance, zonal jets on Jupiter evolve over
time scales of decades [90], while the polar jet stream on Earth has strong fluctua-
tions over time scales of a few weeks (see figure 1.1(a)). These different behaviours
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Figure 1.4: Hovmöller diagram of the zonal velocity profile (left) and velocity field at
t = 5/α (right), with α = 2.10−3 and β such that αR = 8.10−5 (and thus Rβ = 2.5),
as in figure 1.3(b). Strong jets are formed also in this case.

can be understood from a dimensional analysis of the stochastic barotropic equation
(1.1).

The inertial barotropic equation ((1.1) without dissipation and forcing) conserves
the energy2

E [ω] = 1

2

∫

D

v2 = −1

2

∫

D

ωψ, (1.4)

where the last equality follows from an integration by parts and the use of the
incompressibility condition3; and the relative enstrophy

Z[ω] = 1

2

∫

D

ω2. (1.5)

By application of the Itō formula [44] to (1.1), we easily show that the total average
energy injection rate by the stochastic force is σ

2

∫

D
dr (−∆−1C)(r, r), where ∆−1

represents the inverse Laplacian operator applied to either of the arguments of C,
the correlation function of the force in (1.1). Multiplying C by an arbitrary positive
constant amounts at renormalizing σ. Then, we can assume without loss of gener-
ality that

∫

dr (−∆−1)C(r, r) = 2, so σ is the total injection rate of energy per unit
of mass. The energy balance for (1.1) thus reads

dE

dt
= −2κE − 2νnHn + σ (1.6)

where E ≡ E[E [ω]] and Hn = −1
2
E
[∫

D
ψ (−∆)n ω

]

.
For atmospheric flows, viscosity is negligible in the global energy balance: νnHn ≪

κE. This is the regime that we will study in the following. In a stationary state,
we then have Estat ≃ σ/2κ, expressing the balance between forces and dissipation.
Assuming that most of the energy is contained in the zonal jet, we get an estimate
of the order of magnitude of the jet velocity U ∼

√
Estat/L ∼

√

ǫ/2κ, where L is the
typical length scale of the domain and ǫ = σ/L2 is the average energy injection rate
per unit of area. Then the typical time scale of advection and stirring of a turbulent
eddy by the coherent structure is τeddy = L/U .

2Actually, the total kinetic energy of the system is ρE [ω], with ρ the mass per unit of area. As
usual in incompressible fluid dynamics, we call E [ω] the energy for simplicity.

3The incompressibility condition ∂xu + ∂yv = 0 is usually written defining a stream function
ψ(r), such that u = −∂yψ, v = ∂xψ. Then ω = ∆ψ where ∆ = ∂2x + ∂2y is the horizontal Laplacian
operator.
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The regime of formation of large-scale coherent structures is defined comparing
τeddy with the typical time scale of evolution of the coherent structure, given by the
dissipative time scale τjet = 1/κ. The regime of interest can thus be defined by4

α ≡ τeddy
τjet

= L

√

2κ3

ǫ
≪ 1. (1.7)

In this thesis, we will perform a perturbative expansion of (1.1) in powers of α, i.e.
in the regime where the turbulent eddies evolve much faster than the zonal jets. We
will obtain effective descriptions of zonal jets dynamics in this regime, averaging out
the fast turbulence.

Note however that τeddy might not be the most relevant time scale for the evolu-
tion of turbulent perturbation. Indeed, when it comes to eddy-driven jet dynamics,
the most relevant time scale of eddies dynamics is the decorrelation time of the
Reynolds’ stresses. This crucial point will be discussed all along the thesis.

When advective and Coriolis terms in (1.1) are of the same order, another length
scale appears in the system. This length scale is known as the Rhines scale [110],
and can be expressed as

LR =

√

U

β
.

It is often argued that LR represents the typical meridional width of the jets [36,
106, 110]. The time scale of stirring of a turbulent eddy over the distance LR is
τR = LR/U , then the ratio of advective and dissipative time scales is

αR ≡ κτR = LR

√

2κ3

ǫ
.

L/LR is an estimation of the number of jets, so we can consider that the β effect is
relevant when LR ≤ L. Then αR ≤ α, so the regime of interest α ≪ 1 also implies
αR ≪ 1.

We notice that αR ∝ (Rβ)
−5 where Rβ = 2−1/2β1/10ǫ1/20κ−1/4 is the zonostrophy

index introduced in [34, 42]. Direct numerical simulations [106] and data analysis
[43] tend to show that Rβ & 2.5 (which roughly implies αR ≪ 1) is a criterion for
the robustness of zonal jets in beta-plane turbulence. As an example, estimates give
Rβ = 5.2 for Jupiter [43] and Rβ = 1.2 for Earth’s atmosphere [3], which explains
the qualitative difference between zonal jets on Earth and on Jupiter.

This is also illustrated in figure 1.4, where we have used parameters such that
αR is the same as in figure 1.3(b), but with a larger value of α. We also observe
strong jets in this case. Then, the comparison of figures 1.3 and 1.4 shows that a
criterion for zonal jet formation would involve both α and αR (or equivalently Rβ).
This point will be further discussed in section 3.2.1.

1.2.5 Rare events in numerical simulations of zonal jets

As discussed in section 1.1, the Northern polar jet stream visits two states: a nearly
zonally invariant state and a “blocked” state, see figures 1.2(a), 1.2(b). This phe-

4This condition can also be obtained comparing the typical length scale of dissipation by lin-
ear friction and the size of the domain, reasoning analogously to the Kolmogorov theory of 3D
turbulence [14].
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nomenon has also been reproduced in numerical simulations of simplified models
[111], and has been related to a possible bistable property of the polar jet stream
dynamics [27, 54, 57].

Similar bistability phenomena have been reported recently in numerical simu-
lations by Eric Simonnet. As explained in the previous section, the value of β in
the stochastic barotropic model (1.1) roughly determines the number of jets in the
steady state. For example, in the simulation corresponding to the bottom pannel of
figure 1.3 the value of β leads to the formation of two jets, while in figure 1.4 the
value of β is changed and we observe four jets.

When β takes a value that is intermediate between, say, a two-jets situation and
a three-jets situation, rare transitions between those attractors occur on very long
times scales (when compared to the dissipative time scale). This phenomenon is
illustrated in figure 2 (page 8). The time series of q2 and q3, respectively the second
and third components in the Fourier decomposition of the zonally averaged vorticity
q ≡ 〈ω〉, shows the sporadic and abrupt transitions between the two-jets and three-
jets configurations. The parameters here are α = 1.5 .10−3 and αR = 1.1 .10−4

(Rβ = 2.3).

Those transitions occur on time scales of order 100/α. It is then extremely diffi-
cult to get relevant statistics of these rare events using direct numerical simulations.
Using involved numerical methods such as the Adaptive Multilevel Splitting algo-
rithm of [26, 97], one can get access to quantities like the probability of transitions
between different configurations, or the typical path of the transition5. For instance
in figure 1.5 is represented a Hovmöller diagram of the typical transition from a two-
jets to a three-jets configuration, obtained using the Adaptive Multilevel Splitting
algorithm.

An interesting observation to make is that this transition occurs on a time scale
of order 1/α (dissipative time scale in (1.1)), of the order of the the typical time of
evolution of zonal jets (see chapter 3 for more details). In the regime α ≪ 1, there
is thus a clear time scale separation between

• the fast dynamics of turbulent eddies (time scale of order 1),

• the dynamics of zonal jets, including the transitions between attractors (time
scale O(1/α)),

• the typical time of residence in each attractor (here O(100/α)).

1.3 Current understanding of zonal jet dynamics

We now review previous theories describing the formation and dynamics of zonal
jets in the framework of barotropic models. Most of these theories are presented in
geophysical fluid dynamics textbooks [87, 110], see also the introduction of [32].

5The Adaptive Multilevel Splitting method is given here as an example, it will not be further
discussed in the thesis.
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Figure 1.5: Hovmöller diagram of the zonally averaged vorticity, showing the typical
transition from a configuration with two zonal jets to a configuration with three
zonal jets, in a numerical simulation of the stochastic barotropic equation (1.1)
(accessed using the Adaptive Multilevel Splitting algorithm of [26, 97]). Parameters
are α = 6.10−4 and αR = 2.1 .10−5 (Rβ = 3.3). Courtesy Eric Simonnet.

1.3.1 Formation of jets through turbulent energy cascades

As explained in previous sections, the presence of zonal jets in mid-latitude can be
seen in a first approximation as a phenomenon of self-organisation of a turbulent flow
(eddy-driven jets). Then, describing jet dynamics is a genuine turbulence problem,
and some previous approaches rely upon a phenomenological description of energy
cascades in geostrophic turbulence.

Two-dimensional turbulence is characterized by a self-similar cascade of energy
towards the large scales [9, 55], called “inverse cascade” in comparison with the cas-
cade of energy towards small scales observed in three-dimensional turbulence [89].
Consider a two-dimensional fluid initially at rest, with stochastic forces localized
on small scales. The non-linear advective interactions lead to the formation of the
inverse energy cascade. If the typical length scale of dissipation by linear friction is
larger than the size of the domain (which is equivalent to the condition α≪ 1 where
α is defined in (1.7) [14]), then energy piles up at the domain scale. In a domain
streched in the meridional direction, energy stored in the largest scale corresponds
to a single zonal jet, as illustrated in figure 1.3.

An important characteristic of two-dimensional flows (as described by equation
(1.1) with β = 0) is that most zonal flows typically support no linear waves (the
associated linear operator has no eigenmodes [11]). In contrast, barotropic dynamics
(with β 6= 0) is associated with the propagation of waves known as Rossby waves
[98]. Since the beta effect introduces an anisotropy between meridional and zonal di-
rections, Rossby waves are characterized by an anisotropic dispersion relation [110].
Vallis and Maltrud [112] suggested that the competition between Rossby waves and
nearly isotropic turbulence leads to a concentration of energy in the modes asso-
ciated with large scales and invariance in the zonal direction, i.e. into zonal jets.
This phenomenology of jet formation has been observed in numerical simulations of
the inertial barotropic model (equation (1.1) with no forces and dissipation) with
an initial spectrum localized on small scales [112]. A similar phenomenology of jet
formation has also been identified in a weak turbulence approach [76].
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This simple picture is only valid at the early times of the system evolution, indeed
non-inertial effects such as large-scale dissipation have to be taken into account to
describe equilibration of jets [110]. Moreover, when strong zonal jets are formed the
structures of both Rossby waves and smaller-scale turbulence are altered by the jets.
Rossby waves are then observed to coexist with turbulence at all scales [105], lead-
ing to different self-similar energy cascades. This turbulent regime has been called
zonostrophic turbulence, and has been observed in numerical simulations [34, 42]
and observations of Jupiter’s jets [43].

1.3.2 Mixing of potential vorticity

The inertial barotropic equation ((1.1) without forces and dissipation) is equivalent
to the conservation of potential vorticity q(r) = ω(r) + βy [110]. Then, turbulence
leads to the homogenization of q, i.e. to a linear profile of zonal vorticity. Such
linear zonal vorticity corresponds to a parabolic velocity profile satisfying U ′′(y) = β.
However, the presence of Rossby waves inhibiting turbulent mixing leads instead to
a staircase profile of potential vorticity (piece-wise linear), or equivalently to an
asymetric zonal jet velocity profile (piece-wise parabolic) [36].

The prediction of such zonal velocity profile is qualitatively confirmed in obser-
vations of Jupiter’s jets [36], but is far from being quantitative and is probably not
the most general case [7, 8].

The approaches presented in sections 1.3.1 and 1.3.2 are based on a phenomeno-
logical description of geostrophic turbulence (self-similar energy cascades and mix-
ing). These works thus suggest that zonal jet formation is a highly non-linear phe-
nomenon, where local energy transfers through scales are predominant. This picture
is probably correct during jet formation for a fluid initially at rest and when the forc-
ing or initial spectrum is localized on small scales, as shown by numerical simulations
[34, 42, 112]. However, another picture can be drawn looking at the interactions of
large scale zonal jets with turbulent vortices at smaller scales. Evidence of such
non-local energy transfers has been observed in numerical experiments [48] and in
a spectral analysis of atmosphere dynamics [103]. The closure theories presented in
next paragraph, as well as the effective dynamics of jets presented in the rest of this
thesis, give another picture of zonal jet dynamics where the main interactions into
play are non-local in scales.

1.3.3 Quasi–linear and statistical approaches

A very natural and interesting way to study jet dynamics is to try access the statis-
tics of the flow directly, instead of the extremely complex flow field itself. This is
actually a very old idea in the study of complex systems, going back to the founda-
tions of statistical mechanics by Ludwig Boltzmann in the late 19th century.

Reynolds (1894 [92]) was the first to try a direct statistical approach in order to
describe turbulent flows. This led to what is often called Reynlods’ averaging [89],
and to the closure problem, which we explain now. In equation (1.2), the evolution
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of the zonal flow velocity profile U(y, t) depends on the turbulent velocity field v′.
More precisely, taking an ensemble average (for instance an average over realisations
of the noise η in (1.1), here denoted with an overbar) of (1.2), one realizes that the
mean flow Ū is coupled to the velocity two-points correlation function u′v′, the so-
called Reynolds’ stress [89]. This is directly due to the non-linear advection term in
(1.1). For the same reason, the equation for u′v′ involves a three-points correlation
function, and so on, leading to an infinite set of coupled equations for the statistics
of the flow.

Faced with this difficulty one may consider either a phenomenological approach
in order to model Reynolds’ stresses from sensible dynamical considerations, or one
may tackle the problem theoretically. The phenomenological approach was first
attempted by Boussinesq (1877, see [89]), who modeled the Reynolds’ stresses as
proportional to the velocity gradients, advocating the analogy with viscosity in di-
lute gases theory. Nowadays, many modellings in turbulence or climate science are
based on this phenomenological approximation [89, 100, 110].

A more refined approximation consists in computing the Reynolds’ stresses ac-
cording to the linearized dynamics of perturbations to the mean flow, the so-called
quasi-linear approximation. In the hierarchy for cumulants of the velocity, this
amounts at neglecting the three-points correlations in the equation for u′v′, leading
to a closed couple of equation for the statistics of the flow. This is a very natural ap-
proximation, and it is actually very similar to kinetic theories previously developped
in different fields. Examples of such kinetic theories include wave turbulence in the
context of weakly non-linear dispersive waves [75], and classical kinetic theories for
plasmas and self-gravitating systems (Lenard-Balescu equation, Landau equation
[4, 78]).

In the context of two-dimensional and geostrophic turbulence, the first closure
approaches mainly focused on the regime of inverse cascade of energy, with relative
success —for a review of closures in two-dimensional turbulence see [55], for an
application in beta-plane turbulence see [25]. The first closure approach focused on
zonal jet formation instead of the turbulent cascade was proposed in 2003 by Farrell
and Ioannou [38], and named Stochastic Structural Stability Theory (S3T). This
has then led to a wide litterature on extensions and tests of this theory [33, 85],
also called CE2 (closure at second order) in [104, 106]. Related approximations
have been studied before, known as wave-mean flow interaction theory [58] and
modulational instability theory [7, 8, 31]. The S3T-CE2 approximation can be seen
as a generalization of these approaches [2, 32].

A linear stability analysis of the S3T-CE2 system gives a qualitative description
of the bifurcation leading to zonal flow formation [104], and allows to describe the
merging of jets that is observed in many numerical simulations [85]. The analysis of
most unstable wavenumbers also brings out cases of multistability in the barotropic
equation [33]. An important result of S3T-CE2 is that the turbulent cascade of
energy is not necessary to maintain robust zonal jets. Indeed, transfers of energy
in the S3T-CE2 system are only non-local by construction, going directly from the
scale of the eddies to the scale of the jets.

From a practical point of view, the S3T-CE2 closure is a very powerful tool for
studying zonal jet formation and dynamics. However, the approximation leading
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to the S3T-CE2 equations is presented with no theoretical justification. In all pre-
vious studies, the validity of S3T-CE2 has been assessed using a purely empirical
method, comparing explicit results or numerical results of S3T-CE2 equations to
direct numerical simulations of the equations of motion (1.1), for different values of
the control parameters.

A more precise theoretical approach, similar to Boltzmann equation for the ki-
netic theory of dilute gases or Lenard-Balescu equation for plasmas [4], is much
more demanding and has been actually attempted only rarely for turbulent flows.
Obtaining such a kinetic theory for the dynamics of zonal jets is the main motivation
of the work presented in this thesis.

A very strong analogy between two-dimensional flows and quasi-geostrophic dy-
namics on one hand and plasma physics on the other hand has been observed in the
late 40’s. In particular, the linear dynamics close to a mean state display similar
spectral structure [5, 113], inviscid damping mechanism [11, 78, 82] and conserved
quantities [110]. For this reason, it is natural to look for a kinetic description of
two-dimensional and quasi-geostrophic flows that is similar to the one developped
in plasma physics. Such quasi-linear approximation for the relaxation towards equi-
libria of either the 2D Euler equation [29] or the point vortex dynamics [30] have
actually been proposed and studied in the past.

In a work preliminary to this thesis, the classical kinetic theory for long-range
interacting systems (Lenard-Balescu equation) has been extended to the stochasti-
cally forced case [73, 74]. A similar kinetic theory for the stochastic quasi-geostrophic
model (1.1) is the topic of chapters 3–5 of this thesis. One of the main results pre-
sented in these chapters is that a perturbative expansion of the barotropic equation
(1.1) in the regime where the turbulence evolves much faster than the zonal jets
gives the S3T-CE2 equations at leading order. This result gives both an indication
of a relevant regime for zonal jet formation, and a strong theoretical support to the
S3T-CE2 closure.

Finally, we note that some extensions of the S3T-CE2 closure have been pro-
posed, either considering the formation of coherent non-zonal structures, like vor-
tices embedded into the zonal jets [3], or taking into account higher cumulants in the
hierarchy [68, 106]. We also note that approximations similar to the ones that lead
to the S3T-CE2 system have been applied to different systems, such as more com-
plete climate models [1, 80], or in the barotropic equation with deterministic forcing
[67]. Similar ideas have been applied to the case of coherent vortices formation in
two-dimensional turbulence, either with stochastic [60] or deterministic forcing [41],
and to the study of unstable flows in a regime of moderate Reynolds number [65].
To finish, another way to study the statistics of turbulent flows, based on a hierarchy
of equations for the n-points vorticity distribution functions, was also proposed in
the 60’s by Lundgren [63], Monin [70] and Novikov [79]. The applications of these
ideas to the stochastic barotropic equation (1.1) is discussed in chapter 3, section
3.2.2.
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1.3.4 Equilibrium statistical mechanics theory

To finish this short review of theories of zonal jet formation, we present briefly the
equilibrium statistical mechanics theory of two-dimensional and geophysical flows,
first proposed by Onsager in the 40’s [81], and generalized in the 90’s by Robert,
Miller and Sommeria [69, 94] and called RMS theory, see [14] for a review.

Consider the stochastic two-dimensional Navier-Stokes equation ((1.1) with β =
0). The inertial dynamics ∂tω + v · ∇ω = 0 has the particular property to conserve
an infinite number of independent quantities: the energy functional (1.4) and the
casimir functionals

Cf [ω] =
∫

D

f(ω), (1.8)

for any sufficiently smooth function f . This gives a strong constraint on the flow
field. The idea of RMS theory is to look for the most probable large-scale flow
(macroscopic state), given these constraints. This is analogous to the microcanonical
formulation of equilibrium statistical mechanics theory for systems of particles.

Basically, RMS theory predicts that inertial two-dimensional and geostrophic
turbulence leads to a concentration of energy in the largest scale of the domain [14].
Real flows are forced and dissipated, so these results cannot be applied directly.
However, in most physical applications forcing and dissipation are negligible com-
pared to advection. The attractors of non-inertial dynamics are then very close to
the attractors of the inertial dynamics [13]. This is observed for instance in figure
1.3(a), where forcing and dissipation are present and still the flow is very close to
a single jet at the largest scale of the domain, which is the equilibrium state of the
inertial 2D Euler equation in this case [14].

Like in statistical mechanics for systems of particles, the link between equilibrium
theory for inertial (hamiltonian) dynamics and stochastic dynamics can be made
using Langevin equations. Assuming Einstein’s relation, dissipation and forcing in
a Langevin equation balance each other (detailed balance), leading to a canonical
stationary measure [46]. A generalization of these ideas has been considered recently
[10, 61], and will be the topic of chapter 7.

1.4 Kinetic theory and Large Deviation theory

The works briefly presented in sections 1.3.1 and 1.3.2 give a satisfying understand-
ing of jet formation, either through an inverse energy cascade when the forcing or
initial spectrum is localized on small scales [112], or through the turbulent mixing
of potential vorticity [36]. When a beta-effect is present, such non-linear turbulent
phenomena interact with Rossby waves, which gives rise to multiple jet structures.
However, these mechanisms cannot explain the long-time dynamics of jets, where
energy transfers that are non-local in scales can play an important role [48, 103].

Approaches through statistical closures or cumulant expansions such as Stochas-
tic Structural Stability Theory (S3T [38]) and Cumulant Expansion at Second Order
(CE2 [104, 106]) are able to give a more quantitative description of the dynamics of
zonal jets, in particular of their merging [85] and of the long-term attractors [33].
Understanding in which regime such approximations of the dynamics give quantita-
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tive agreement with the original system is a very natural question to ask. However,
previous works only used empirical tests of the theory (comparing results of S3T-
CE2 to direct numerical simulations of the barotropic equation), and mainly did
not agree on the relevant regime for such approximations to be valid, as can be seen
comparing [33, 104, 106].

In contrast, the kinetic theory developped in [18] and presented in chapter 3 of
this thesis is based on a perturbative expasion in powers of a small parameter (the
parameter α defined in section 1.2.4). The result at leading order is equivalent to
S3T-CE2, as will be discussed in section 3.2.1 (page 41).

The interest of our approach is that it is precise and controlled, and it gives a
general picture of zonal jet dynamics in the regime of interest. In contrast, S3T-CE2
phenomenological approaches are useful precisely because they allow to investigate
different regimes where no time scale separation occurs, but do not allow to draw
general conclusions beyond the particular cases studied in numerical simulations.

None of the works presented in section 1.3 tackle the problem of understanding
rare events in jet dynamics. Such rare events are known to exist on Earth [54]
and on Jupiter [95], as discussed in section 1.1. Being able to predict the statistics
of such rare events (as for example the average transition rate between two jet
configurations) is a very important issue in jet dynamics. Large Deviation Theory
is a very natural tool to tackle this problem. We will show in chapters 2 and 6 that
Large Deviation Theory can be applied to the stochastic barotropic model (1.1) in
the limit of time scale separation described in section 1.2.4.
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Chapter 2

Statistics of slow–fast dynamical

systems

As explained in the previous chapter, zonal jets in planetary atmosphere typically
evolve on a time scale that is much longer than the time scale of evolution of the
surrounding turbulence [90]. It is then natural to look for an effective description of
zonal jet dynamics using a quasi-static approximation. Such procedure is analogous
to kinetic theories of dilute gases or plasmas (Bogolyubov hypothesis [4]). Before
deriving the effective dynamics of zonal jets in chapters 3 and 6, it is useful to
present the underlying mathematical results in a more general framework. It is the
goal of this chapter.

In section 3.1 (page 37), we will show that in the time scale separation regime,
the stochastic barotropic equation (1.1) can be put into the form











∂z

∂t
= αf(z, w)

∂wi
∂t

= bi(z, w) + ηi

(2.1)

where, as in (1.1), η is a white gaussian random vector of components ηi, with
zero mean and correlations E [ηi(t1)ηj(t2)] = Cijδ(t1 − t2); and where α ≪ 1 is the
parameter defined in section 1.2.4.

In (2.1), z typically evolves on a time scale of order 1/α, while w typically evolves
on a time scale of order one. In the limit α≪ 1, the evolution of w is thus much faster
than the evolution of z. We call (2.1) a (stochastic) slow-fast system of equations.

In our geophysical fluid dynamics problem, z will be the zonal jet velocity profile
and w will be the vorticity of the smaller-scale turbulence (eddy vorticity). For
simplicity, we will consider in this chapter the case where z is scalar and w is an
m-dimensional vector (i = 1, . . . ,m). The formal generalization to the infinite-
dimensional (field) problem is straigthforward, see chapters 3, 6 and 7.

We are interested in the effective dynamics and statistics of the slow process z in
the time scale separation limit α≪ 1. We will present the following results [39, 86]

• the Law of Large Numbers, that describes the average behaviour of z. This is
explained in section 2.1.1.

• the Central Limit Theorem, that describes the typical fluctuations of z. This
is explained in section 2.1.2.
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• the Large Deviation Principle, that describes the large fluctuations of z. This
is explained in section 2.1.3.

We first present these results from a qualitative point of view in section 2.1, and then
give a more formal derivation in sections 2.2 and 2.3. The validity of these results,
both from qualitative and rigorous points of view, will be discussed in section 2.4.

We note that in most of the mathematical litterature on slow-fast systems [86,
114], the system (2.1) is written







ż = f(z, w)

dw =
1

α
b(z, w)dt+

1√
α
σdWt

(2.2)

where Wt is a vector of m independent Wiener processes and C = σσT is the
covariance matrix with coefficients Cij. As usually done in physics, we abusively
denote η(t) = dWt

dt
, then we recover (2.1) from (2.2) by a rescaling of time.

In the units used in (2.2), the slow process z evolves on a time scale of order 1,
which is more natural in order to study the effective dynamics of z. In our case, we
chose the seemingly unnatural time unit corresponding to (2.1) because, as will be
shown in chapter 3, it leads to an average total energy equal to 1 in the stationary
state of the stochastic barotropic model (1.1).

We also note that the stochastic barotropic model is not exactly of the form
(2.1). Indeed, as will be shown in chapter 3, non-linear terms and dissipative terms
of order

√
α and α are also present in the equation for the fast process w. Such

terms are usually not considered in mathematical studies, but they can be formally
included, as done in section 2.2. Whether such terms influence or not the effective
dynamics of z is actually a very important issue, that will be discussed in details in
chapters 4 and 5.

2.1 Heuristic derivation

2.1.1 Law of Large Numbers and averaging

The Law of Large Numbers is the first result in the mathematical theory of prob-
abilities, going back to the work of Jacques Bernoulli in the 18th century. For the
canonical example of the fair coin tossing1, the Law of Large Numbers states that
as the number of tosses increases, the number of heads and the number of tails get
closer to each other. More precisely, if we denote by xn the result of the n-th coin
tossing (xn = 1 if we get heads and xn = −1 if we get tails), then

SN =
1

N

N
∑

n=1

xn −→
N→∞

E [x] = 0, (2.3)

where E [x] is the average of the random variable x (result of a single tossing). The
Law of Large Numbers is empirically obvious in this simple example, due to the fact

1Pile ou face en français.
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that successive tosses are independent.

In the slow-fast problem (2.1), the fast process w plays the role of the coin.
Indeed, we can consider that w(s + δs) and w(s) are almost indepedent for delays
δs larger than 1, while z has barely changed over the time interval [s, s + δs] if
δs≪ 1/α. It is thus natural to define the virtual fast process

∂w̃z
∂s

= b (z, w̃z) + η, (2.4)

where z is held fixed. The evolution of the slow process z is given by integration of
the first equation in (2.1). In the time scale separation limit α → 0, the evolution
of z between t and ∆t is roughly given by

∂z

∂t
≃ z(t+∆t)− z(t)

∆t
≃ 1

∆t

∫ t+∆t

t

αf(z, w̃z(s)) ds (2.5)

for 1 ≪ ∆t ≪ 1/α, with z = z(t) and where w̃z(s) evolves according to (2.4), i.e.
with z held fixed.

The expression (2.5) of ∂z
∂t

is very close to the expression of SN for the coin tossing
problem: it is a sum of almost independent random variables (∆t is the equivalent
of N and w(s) is the equivalent of xn, the integral over s is the analog of the sum
over n). Then, it is natural to guess that the effective evolution z̄ of z is given by
the average of f(z, w̃z(s)) over the realizations of w̃z(s), computed in the stationary
state of w̃z(s) (with z held fixed),

∂z̄

∂t
=
α→0

αF (z̄) ≡ αEz̄ [f(z̄, w)] . (2.6)

Equation (2.6) is the Law of Large Numbers for (2.1). The precise statement of
the convergence of z towards z̄ with appropriate hypothesis will be given in section
2.4. In practice, we need the stationary probability distribution function Qz̄ of the
virtual fast process (2.4). In general, Qz̄ depends parametrically on z̄. Then, the
average force F in (2.6) is given by F (z̄) ≡

∫

f(z̄, w)Qz̄(w) dw.

2.1.2 Central Limit Theorem and typical fluctuations

The Central Limit Theorem is another early result of the theory of probabilities,
first studied by de Moivre in the 18th century. It describes the moderately small
fluctuations around the mean, described by the Law of Large Numbers. In the
fair coin tossing problem, the Central Limit Theorem states that, for large N , the
empirical average SN is distributed according to a gaussian distribution with mean
E [SN ] ∼ E [x] = 0 and variance var(SN) ∼ var(x)/

√
N = 1/

√
N .

Going back to the slow-fast system (2.1), we define the fluctuation of z around
its mean z̄ as ∆z = z − z̄. Using again the fact that ∂z

∂t
in (2.5) is a sum of almost

independent random variables, the Central Limit Theorem roughly states that ∆z
is of order

√
α and is a gaussian stochastic process. This statement is equivalent to

the following effective equation for z

∂z

∂t
≃
α→0

αF (z) + α2F1(z) +
√
α2 ξ(z) , (2.7)
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where ξ(z) is a gaussian random noise with zero mean and correlation (with a fixed z)
E [ξ(z, t1)ξ(z, t2)] = δ(t1− t2)Ξ(z), and F1(z) is a correction to the drift F . The fact
that ξ(z) is white in time is a consequence of the infinite time scale separation in the
limit α → 0. The factor Ξ(z) represents the correlation of the typical fluctuations
of f(z, w) in the stationary state of the virtual fast process (2.4). Ξ(z) and F1(z)
will be written explicitely in section 2.2 (see equation (2.20)). Again, a more precise
statement of the convergence of z towards (2.7) with appropriate hypothesis will be
given in section 2.4.

2.1.3 Large Deviation Principle and large fluctuations

The Large Deviation Principle is a more recent development in the theory of prob-
abilities, first considered by Cramér in the early 20th century, and formalised by
Varadhan in the 60’s. The basic question is the following one: after a very large
number N of tosses of our coin, what is the probability pN(s) that SN is equal to
a given number s? For s = 0, the Law of Large Numbers says that pN(0) is equal
to one as N → ∞. The Central Limit Theorem gives an estimate of pN(s), that is
valid for s . 1/

√
N . Another simple case is s = 1 (or s = −1), which means that

we have obtained only heads (or only tails) in all of the N tosses. The probability
to observe this phenomenon is pN(±1) = (1/2)N . Cramér’s theorem states that
the probability to have SN = s is always of the form φ(s)N for large N [108]. The
function φ(s) thus characterizes the whole distribution of SN at leading order in
N ≫ 1. The function I(s) = − lnφ(s) is called the large deviation rate function,
then the probability of SN = s is logarithmically equivalent to exp(−NI(s)), which
is usually denoted pN ≍ exp(−NI(s)). We say that SN satisfies a Large Deviation
Principle.

Using again expression (2.5) of ∂z
∂t

as a sum of almost independent random vari-
ables, we understand that z(t) satistifies a Large Deviation Principle in the limit
α→ 0. In practice, the Large Deviation Principle gives a simple formulation for the
probability of any path {z(t)}0≤t≤T , in the limit α→ 0. In particular, this contains
the Law of Large Numbers (2.6) and the Central Limit Theorem (2.7) as special
cases (respectively most probable path and typical fluctuations around it), but it
also gives access to arbitrarily rare fluctuations of z.

The formal derivation of the Large Deviation Principle for (2.1) is presented in
section 2.3. More details about the rigorous theorems and associated hypothesis are
given in section 2.4.

2.2 Stochastic averaging — Formal derivation

We now give a formal derivation of the Law of Large Numbers and Central Limit
Theorem presented in sections 2.1.1, 2.1.2. In the cases studied in this thesis, the
slow-fast system of interest is slightly different from (2.1), and can be written











∂z

∂t
= αf(z, w) +

√
αη0

∂w

∂t
= −Lz · w +

√
αb1(z, w) + η

(2.8)
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In this equation, the evolution of the fast variable w is given at leading order by the
linear operator Lz, and the term b1(z, w) represents corrections to this behaviour.
In the fluid mechanics problem considered in this thesis, the term b1 is related to the
non-linear advection term. We also have added a forcing term η0 in the evolution of
z, to remain as general as possible. We assume that η0 is a white in time gaussian
noise with zero mean and variance C0.

In general, the linear operator Lz depends parametrically on z, so the evolution
of (z, w) through the coupled system (2.8) is non-linear. However, as can be guessed
from the heuristic derivation of the Law of Large Numbers and Central Limit The-
orem, the coefficients in the effective equation for the slow variable z̄ will be given
by the linear virtual fast process

∂w̃z̄
∂s

= −Lz̄ · w̃z̄ + η, (2.9)

where z̄ is fixed. Then, the Law of Large Numbers and Central Limit Theorem will
give a very simple decription of the effective behaviour of z.

The formal derivation presented here follows the lines desribed in [44, 93], and is
the one we used in our publication [18].

2.2.1 Fokker–Planck formalism

The stochastic differential equation (2.8) is equivalent to the Fokker-Planck equation
for the probability density function P (z, w, t),

∂P

∂t
= L0P +

√
αL1P + αLsP, (2.10)

where

L0P ≡ ∇w · (Lz · wP ) +
1

2
∇w∇w : (CP )

=
∑

i

∂

∂wi

[

(Lz · w)i P +
1

2

∑

j

∂

∂wj
CijP

]

(2.11)

is the Fokker-Planck operator that describes the leading order behaviour of w,

L1P ≡ −∇w · (b1(z, w)P ) (2.12)

is the Fokker-Planck operator that describes the non-linear corrections to the evo-
lution of w, and

LsP ≡ −∇z · (f(z, w)P ) +
1

2
∇z∇z : (C0P ) (2.13)

describes the evolution of z. In these expressions, C : C ′ ≡ CijC
′
ij represents the

contraction of matrices C and C ′.
The stochastic averaging procedure, which leads to the Law of Large Numbers

and Central Limit Theorem equations, is a perturbative expansion of the Fokker-
Planck equation (2.10) in powers of α, in the time scale separation regime α ≪ 1.
It is also called adiabatic reduction of the variables, indeed it describes only the
evolution of the slow variable z, with the fast variable w adiabatically relaxed to
its stationary state (with z held fixed). This is in agreement with the time scale
separation, and with the definition of the virtual fast process (2.9).
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2.2.2 Stationary distribution of the fast variable

At leading order, the Fokker-Planck equation (2.10) reads ∂tP = L0P . It describes
only the linear evolution of w. For a fixed slow variable z, i.e. for P (z, w, t) =
δ(z − z0)Qz0(w, t), this is exaCentral Limit Theoremy the Fokker-Planck associated
with the virtual fast process (2.9), where z0 is fixed.

In order to eliminate adiabatically the fast variable w, we need to consider the sta-
tionary distribution of w̃z0 , i.e. the asymptotic expression of Qz0(w, t). For the linear
stochastic process (2.9) (Ornstein-Uhlenbeck process), the stationary distribution is
a gaussian, independently of the initial condition [44]. (2.9) has no constant drift
so w̃z0 has a zero mean, and the correlation matrix (gz0)ij (t) = E [w̃z0,i(t)w̃z0,j(t)] is
the solution of

∂gz0
∂t

+ Lz0gz0 + gz0L
T
z0
= C. (2.14)

Equation (2.14) is called the Lyapunov equation associated with the Ornstein-
Uhlenbeck process (2.9), and can be obtained using the Itō formula [44].

Then, the stationary distribution of w̃z0 is

Gz0(w) =
1

Zz0
exp

(

−1

2
wT
(

g∞z0
)−1

w

)

, (2.15)

where g∞z0 = limt→∞ gz0(t) is the stationary solution of the Lyapunov equation (2.14)

and
(

g∞z0
)−1

is its inverse, and where Zz0 is a normalisation constant.
The average Ez0 introduced in section 2.1.1 is the average over the gaussian

distribution (2.15),

φ̄z0 ≡ Ez0 [φ (w̃z0)] =

∫

φ(w)Gz0(w) dw, (2.16)

for any function φ. The correlation between observables φ (w̃z0(s)) at time s and
ψ (w̃z0(0)) at time 0 in the stationary state of (2.9) reads

Ez0 [φ (w̃z0(s))ψ (w̃z0(0))] =

∫

φ(w)esL0ψ(w)Gz0(w) dw. (2.17)

We also define the covariance of φ (w̃z0(s)) and ψ (w̃z0(0)) as

Ez0 [[φ (w̃z0(s))ψ (w̃z0(0)) ]] ≡ Ez0

[(

φ (w̃z0(s))− φ̄z0
) (

ψ (w̃z0(0))− ψ̄z0
)]

. (2.18)

2.2.3 Effective slow dynamics

The statistics of z are described by the marginal distributionR(z, t) =
∫

P (z, w, t)dw.
At leading order, the complete system (z, w) is described by the distributionGz(w)R(z, t),
which means that at each instant t, the fast variable w is adiabatically relaxed to
its stationary gaussian distribution Gz(w).

More generally, for any distributionQ(z, w), we define the projection (PQ)(z, w) =
Gz(w)

∫

Q(z, w) dw. Then P = GzR+Pf , where Pf = (1−P)P represents the cor-
rections to the leading order behaviour of the system. In other words, Pf is the fastly
evolving part of P . The stochastic averaging procedure is a perturbative expansion
of Pf from the Fokker-Planck equation (2.10), leading to a closed Fokker-Planck
equation for R(z, t). This procedure is described in appendix A (page 132).
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The resulting effective Fokker-Planck equation for R(z, t) is equivalent to the
stochastic differential equation

∂z

∂t
= αF (z) +

√
αη0 + α3/2F1(z) + αξ(z, t), (2.19)

where F (z) = Ez[f(z, w)], ξ(z, t) is a white in time gaussian noise with zero mean
and correlations (for a fixed z) E [ξ(z, t1)ξ(z, t2)] = δ(t1 − t2)Ξ(z) with

2

Ξ(z) = 2

∫ ∞

0

Ez [[ f (z, w̃z(s)) f (z, w̃z(0)) ]] ds, (2.20)

and F1(z) is given in appendix A3. The integrand in (2.20) is usually called in random
processes theory the autocorrelation function of f(z, w̃z(s)) [44, 77]. Then, Ξ(z) will
be called the integrated autocorrelation function.

F represents the average effect of the fast variable w on z, as described at the
level of the Law of Large Numbers. ξ(z, t) represents the effects of the fluctuations
of w on z, this corresponds to the level of the Central Limit Theorem. F1 is a
correction to the drift F that appears at next order in α, due to the term b1 in (2.8)
and to the fact that Gz and F depend on z.

Equation (2.19) describes the effective dynamics of the slow degrees of freedom
z(t). In chapters 3 and 7, we will apply this result to the barotropic equation, and
discuss the physical consequences. Chapter 5 is devoted to the study of the terms
F and Ξ(z) appearing in (2.19).

2.3 Large Deviation Principle — Formal deriva-

tion

In this section we present the Large Deviation Principle for slow-fast systems like
(2.1) or (2.8), both from a theoretical and a practical point of view. We first present
a very general and important result of the theory of large deviations in section 2.3.1:
the Gärtner-Ellis theorem. Then in section 2.3.2 we see how this result applies to the
case of slow-fast systems. Finally in section 2.3.3 we discuss the relations between
the Large Deviation Principle and the results of stochastic averaging (Law of Large
Numbers and Central Limit Theorem).

2.3.1 Gärtner–Ellis theorem

Consider again the fair coin tossing problem, like in section 2.1. We recall that by
definition, pN(s) is the probability that the mean result of N tosses SN = 1

N

∑N
n=1 xn

2If the slow process is a vector (or a field), the covariance matrix of the noise ξ(z) has elements

Ξij(z) =

∫ ∞

0

Ez [[ fi (z, w̃z(s)) fj (z, w̃z(0)) + fj (z, w̃z(s)) fi (z, w̃z(0)) ]] ds,

hence the factor 2 in the scalar case.
3Note that the correction term F1 arising from the perturbative expansion performed in this

section and in appendix A is generically different from the drift given by the Central Limit Theorem
[84]. However, as this term is an order α smaller than F , such difference is not expected to have
practical consequences on the effective dynamics of z.

32



2.3. LARGE DEVIATION PRINCIPLE — FORMAL DERIVATION

is equal to s. For this type of problem, Cramér’s theorem states that SN satisfies a
Large Deviation Principle, i.e. that

ln pN(s) ∼
N→∞

−NI(s) (2.21)

with I(s) the large deviation rate function. The Gärtner-Ellis theorem gives a more
constructive way to state the Large Deviation Principle and to compute explicitely
I(s). Consider the function

λ(k) ≡ lim
N→∞

1

N
lnE

[

eNkSN
]

, (2.22)

where the average is taken over the distribution of the N tossing events (x1, . . . , xn).
The structure in lnE [exp] indicates that λ(k) is a cumulant generating function, a
very classical tool in statistics and probabilities (see also section 2.3.3). With the
large-N limit, λ(k) is called the scaled cumulant generating function of SN .

From (2.22),

E
[

eNkSN
]

≍
N→∞

eNλ(k).

Assuming the Large Deviation Principle (2.21), we also have

E
[

eNkSN
]

≍
N→∞

∫

eNkse−NI(s)ds ≍
N→∞

exp

(

N sup
s
{ks− I(s)}

)

,

where we have used the fact that in the limit N →∞, the integral over s is almost
equal to the largest term of the integrand (saddle-point or Laplace approximation).
Identifying these two expressions of E

[

eNkSN
]

, we get

λ(k) = sup
s
{ks− I(s)}. (2.23)

The scaled cumulant generating function λ(k) is the Legendre-Fenchel transform of
the large deviation rate function I(s). Assuming that λ(k) is everywhere differen-
tiable, this relation can be inverted to give

I(s) = sup
k
{ks− λ(k)}. (2.24)

These simple formal computations show the importance of defining the scaled
cumulant generating function. Now let’s consider a sequence of random processes
XN . The Gärtner-Ellis theorem states that if its scaled cumulant generating function
λ(k) = limN→∞

1
N
lnE

[

eNkXN
]

exists and is differentiable for all k, then XN satifies
a Large Deviation Principle with rate function I(x) = supk{kx− λ(k)}.

When λ(k) has a singularity (a discontinuity in its first derivative), the Legendre-
Fenchel transform x→ supk{kx−λ(k)} only gives the convex enveloppe of the rate
function I(x) [108]. This point is crucial for instance in cases of multistability
(when I(x) has more than one minimum). In the context of equilibrium statistical
mechanics, this phenomenon is related to phase transitions. In non-equilibrium
cases, this is related to rare transitions between attractors of the dynamics.
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2.3.2 Large deviation functions for the slow variable

We now show how the Gärtner-Ellis theorem can be applied to study the large
deviations of the slow process z(t) in the slow-fast system (2.1).

In the heuristic derivation presented in section 2.1, we have seen that when α≪ 1
the instantaneous evolution of z (through ż) is given by the long-term evolution of
the virtual fast process w̃z, with z held fixed —consistently with the time scale
separation. It is thus natural to consider the random process ż ≡ ∂z

∂t
given by (2.5)

and (2.4), where we recall that z is held fixed. We denote the random process
z(t+∆t)−z(t)

∆t
by żz(∆t), by definition it reads4

żz(∆t) ≡
1

∆t

∫ ∆t

0

f(z, w̃z(s)) ds . (2.25)

In order to describe the whole statistics of żz (typical behaviour and rare fluc-
tuations), let’s consider the scaled cumulant generating function for this stochastic
process, denoted5

H(z, θ) ≡ lim
∆t→∞

1

∆t
lnE

[

e∆t θ żz
]

= lim
∆t→∞

1

∆t
lnEz exp

(

θ

∫ ∆t

0

f (z, w̃z(s)) ds

)

.
(2.26)

The Gärtner-Ellis theorem states that if θ → H(z, θ) exists and is differentiable,
then the probability density function p∆t of the random variable żz satisfies the
Large Deviation Principle

p∆t(żz) ≍
∆t→∞

e−∆tL(z,ż) (2.27)

with rate function L(z, ż) = supθ {θż −H(z, θ)}. Because of the clear analogy with
classical mechanics,H(z, θ) is also called the Hamiltonian and L(z, ż) the Lagrangian
of z.

The Large Deviation Principle for the slow variable z in the limit α→ 0 gives the
logarithmic equivalent of the probability density functional of paths {z(t)}, namely6

[16, 39, 114]

P [z] ≍
α→0

exp

(

− 1

α
S[z]

)

, (2.28)

with rate function

S[z] =

∫

L(z(t), ż(t)) dt , (2.29)

also called the action of z. This can be proved applying the Gärtner-Ellis theorem
directly to the process z(t), as explained in appendix B.

4This expression is obtained from (2.5) with a change of time origin in the integral (the origin
of time is not relevant for the fast process w̃z(s)) and with a rescaling with α (which has no
consequence in the final expression of the Large Deviation Principle).

5Here ∆t is the equivalent of N and θ is the equivalent of k. See also appendix B.1.
6The Large Deviation Principle is usually written for the process z in units (2.2), such that the

natural time scale of evolution of z is of order one.
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2.3.3 Link with stochastic averaging

As explained in the heuristic derivation 2.1.3, the Large Deviation Principle contains
the Law of Large Numbers and Central Limit Theorem as approximations for small
deviations from the mean. This can also be recovered directly from the expression
of the scaled cumulant generating function (2.26). Indeed, a Taylor expansion in
powers of θ gives (see appendix B for details)

H(z, θ) ≃ θ F (z) +
1

2
θ2 Ξ(z) +O

(

θ3
)

. (2.30)

We recover the term appearing in the effective equation for z, (2.7): average drift
F (z) at the level of the Law of Large Numbers (first order in θ) and integrated
autocorrelation function Ξ(z) at the level of the Central Limit Theorem (second
order in θ)7. Higher orders in θ give the deviations from Law of Large Numbers and
Central Limit Theorem, i.e. deviations from the effective dynamics (2.7).

2.4 Validity of the results

The convergence of the slow process z in (2.1) to the effective dynamics (2.7) can
be proved under the following hypothesis8 [86]

• The effective slow dynamics (2.7) is well defined, i.e. F (z), F1(z) and Ξ(z) are
finite.

• The virtual fast process (2.4) is ergodic9: for any observable φ(w̃z),

lim
t→∞

1

t

∫ t

0

ds φ(w̃z(s)) = Ez [φ(w̃z)] , (2.31)

where we recall that Ez is the average in the statistically stationary state (over
the invariant measure) of w̃z.

The first hypothesis is very natural, it simply requires that the limiting process is
well defined. The second hypothesis is also easy to understand qualitatively, we used
it implicitely in the heuristic derivation (see equation (2.5)).

Consider the case where the virtual fast process is the linear process (2.9) with a
diagonalizable linear operator Lz with strictly positive eigenvalues. Then the above
hypothesis are satisfied and the convergence in (2.31) is exponential with rate given
by the smallest eigenvalue of Lz. One way to characterize the convergence speed in
practice is to compute the decorrelation time of the process f(z, w̃z) in the stationary
state of w̃z, defined as [77, 84]

τcorr(z) ≡
∫∞

0
Ez [[ f (z, w̃z(s)) f (z, w̃z(0)) ]] ds

Ez

[[

f (z, w̃z)
2 ]] . (2.32)

7At a more formal level, the effective slow dynamics (2.7) can be recovered using the quadratic
approximation of H and using Freidlin-Wentzell theory [16, 39].

8Note that these rigorous results are generally proved in the finite dimensional case. It is easy
to generalize them formally in infinite dimensional cases, like in fluid mechanics problems, and
some rigorous results also exist [21, 37].

9The meaning of the limit in (2.31) will be defined in section 5.3.3, page 78.
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τcorr(z) gives the typical decorrelation time of the term that forces z in (2.8). It is
thus the most relevant time scale related to the fast process when it comes to the
dynamics of the slow process. In the case where the linear operator Lz is diagonaliz-
able with strictly positive eigenvalues, τcorr will typically be related to the smallest
eigenvalue of Lz.

In the fluid mechanics problem we are interested in, this issue is more subtle. In-
deed, in our case the linear operator for the virtual fast process (linearized barotropic
dynamics close to a zonal jet) is an infinite dimensional operator. It turns out that
the linear operator typically has no eigenmodes [11], and that the asymptotic be-
haviour of the linear deterministic dynamics ∂t + Lz is characterized by algebraic
decays (see chapter 4 for details). This will lead to an algebraic convergence in
expressions like (2.31). A qualitative way to characterize the convergence of the
virtual fast process is then given by the condition that the time scale of evolution
of w̃z is much smaller than the time scale of evolution of z,

τcorr(z)≪
1

α
. (2.33)

The computation of τcorr and the validity of the above hypothesis (well-definiteness
of the effective slow process and ergodicity) for the dynamics of zonal jets is the
topic covered in chapter 5.

36



Chapter 3

Kinetic theory of zonal jets

We have seen in chapter 1 that some mid-latitude zonal jets have the property to
evolve much slower than the surrounding turbulence [90]. In section 1.2.4, we have
seen that this behaviour is characterized by a non-dimensional parameter α, defined
in (1.7) as the ratio of the typical time scale of turbulence evolution (advective time
scale) and of the typical time scale of zonal jet evolution (dissipative time scale).
Then, α ≪ 1 is a criterion for the emergence of robust zonal jets in the stochastic
barotropic equation (1.1).

In this chapter, we will prove that (1.1) can be written in the form of a slow-fast
system like (2.8), where the zonal velocity profile U(y, t) is the slow variable, the
eddy vorticity ω′(x, y, t) is the fast variable and α is the small parameter. Using
the results presented in chapter 2, we will obtain equation (3.7) which describes the
effective evolution of U , at the level of the Law of Large Numbers and the Central
Limit Theorem. We call this equation the kinetic equation.

In sections 3.2 and 3.3, we describe the terms appearing in the kinetic equation,
and discuss the physical consequences. In chapters 4 and 5, we will discuss in more
details the applicability of the kinetic equation (3.7).

3.1 Time scale separation in the barotropic equa-

tion

The goal of this section is to write the stochastic barotropic equation (1.1) introduced
in chapter 1 (page 11) in a form that is similar to the generic slow-fast system (2.8)
presented in chapter 2 (page 26). Then, we will be able to apply the results presented
in the previous chapter and to obtain an effective description of zonal jets dynamics.

3.1.1 Non–dimensional equation

We perform a transformation to non-dimensional variables such that in the new
units the domain is D = [0, 2πlx) × [0, 2π) and the approximate average energy is
1. This is done introducing a non-dimensional time t′ = t/τ and a non-dimensional
spatial variable r′ = r/L where τ = τeddy = L

√

2κ/ǫ is the typical time scale of
stirring of the eddies by the zonal jet, defined in section 1.2.4, and where the aspect
ratio is lx = Lx/Ly and L = Ly.
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The non-dimensional physical variables are ω′ = τω, v′ = τv/L, and the non-
dimensional parameters are defined by ν ′n = νnτ/L

2n = νn
√

2λ/σ/L2n−2,

κ′ = κτ = L

√

2κ3

ǫ
= α,

and

β′ = Lτβ =

(

L

LR

)2

,

where we recognize the time scales ratio α and the Rhines scale LR defined in section
1.2.4. We consider a rescaled stochastic gaussian field η′ with E [η′(r′1, t

′
1)η

′(r′2, t
′
2)] =

C ′(r′1 − r′2)δ(t
′
1 − t′2) with C

′(r′) = L4C(r). Performing this non-dimensionalization
procedure, the barotropic equation reads

∂ω

∂t
+ v · ∇ω + βv = −αω − νn (−∆)n ω +

√
2α η, (3.1)

where, for simplicity, we drop here and in the following the primes. We note that α
represents an inverse Reynolds number based on the large scale dissipation of energy
and νn is an inverse Reynolds number based on the viscosity or hyper-viscosity term
that acts predominantly at small scales. Then, the regime of turbulence and of
formation of zonal jets is defined by νn ≪ α ≪ 1, consistently with the scalings
presented in section 1.2.4.

In this regime, we expect the influence of hyper-viscosity to be negligible, both
in the global energy balance and in the dynamics of the large scales. Without loss
of generality, we will consider the case of usual viscosity n = 1, the generalisation
to n 6= 1 being straightforward. For simplicity in the notation, we will use ν ≡ ν1.

3.1.2 Decomposition into zonal and non zonal flows

For simplicity, we consider the case where the zonal symmetry (invariance by trans-
lation along x) is not broken. Then the large scale structure will be a zonal jet
characterized by either a zonal velocity field vz = U(y)ex or its corresponding zonal
relative vorticity ωz(y) = −U ′(y).

Looking at (3.1), we see that the stochastic force produces turbulent eddies with
amplitude

√
α. Then, it is natural to assume that the perturbations to the zonal

velocity field U(y) are of order
√
α. Actually, this assumption is natural if the

dynamics of those perturbations is damped on a time scale of order one. The goal
of chapters 4 and 5 is to wonder about the self-consistency of this assumption.

Defining the zonal projection 〈·〉 as

〈f〉 (y) = 1

2πlx

∫ 2πlx

0

dx f(r),

the zonal part of the vorticity will be denoted by ωz ≡ 〈ω〉; the rescaled non-zonal
part of the flow ωm is then defined through the decomposition

ω(r) = ωz(y) +
√
αωm(r).

The zonal and non-zonal velocities are then defined through U ′(y) = −ωz(y), the
periodicity condition, and

v(r) = U(y)ex +
√
αvm(r).

38



3.1. TIME SCALE SEPARATION IN THE BAROTROPIC EQUATION

We now project the barotropic equation (3.1) into zonal

∂ωz
∂t

= −α ∂

∂y
〈vmωm〉 − αωz + ν

∂2ωz
∂y2

+
√
2α ηz (3.2)

and non-zonal part

∂ωm
∂t

+ LU [ωm] =
√
2 ηm −

√
αvm.∇ωm +

√
α 〈vm.∇ωm〉 , (3.3)

where ηz = 〈η〉 is a Gaussian field with correlation function E [ηz(y1, t1)ηz(y2, t2)] =
Cz(y1−y2)δ(t1− t2) with Cz = 〈C〉, ηm = η−〈η〉 is a Gaussian field with correlation
function E [ηm(r1, t1)ηm(r2, t2)] = Cm(r1−r2)δ(t1− t2) with Cm = C−〈C〉. Observe
that the cross correlation between ηz and ηm is exactly zero, due to the translational
invariance along the zonal direction of C.

The term in the left-hand side of (3.3) reads

LU [ωm] = U(y)
∂ωm
∂x

+ (β − U ′′(y))
∂ψm
∂x

+ αωm − ν∆ωm , ωm = ∆ψm. (3.4)

It is the operator for the linearized evolution of eddies ωm close to the mean flow U .
The equation for the zonal potential vorticity evolution (3.2) can readily be in-

tegrated in order to get an equation for the zonal flow evolution

∂U

∂t
= α 〈vmωm〉 − αU + ν

∂2U

∂y2
+
√
2α ζ, (3.5)

where ζ is a gaussian noise such that ∂
∂y
ζ = −ηz.

We see that the zonal potential vorticity is coupled to the non-zonal one through
the zonal average of the advection term. We also clearly see that the natural time
scale for the evolution of the zonal flow is 1/α. By contrast the natural time scale
for the evolution of the non-zonal perturbation is one. These remarks show that in
the limit α ≪ 1, we have a time scale separation between the slow zonal evolution
and a rapid non-zonal evolution.

3.1.3 Analogy with generic slow–fast systems

The system (3.3),(3.5) is thus a particular case of the slow-fast system (2.8) presented
in chapter 2 (page 26). Indeed, we have the analogy

z ≡ U , w ≡ ωm

f(z, w) ≡ 〈vmωm〉 − U +
ν

α

∂2U

∂y2

η0 ≡ ζ , η ≡ ηm

Lz · w ≡ LU [ωm]

b1(z, w) ≡ −vm.∇ωm + 〈vm.∇ωm〉 .

(3.6)

Using this analogy and equation (2.19), we get the effective evolution of the zonal
jet velocity profile

∂U

∂t
= αF [U ] +

√
2αζ + α3/2F1[U ] + αξ[U ]. (3.7)
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In the following, we will refer to equation (3.7) as the kinetic equation. In the next
sections, we describe each term appearing in this equation, and discuss the physical
consequences. To do this, we first need to define the analog of the virtual fast process
(2.9) for the barotropic equations (3.3, 3.5). Using the analogy (3.6), we see that it
reads

∂ωm
∂t

= −LU [ωm] +
√
2ηm, (3.8)

where we have dropped the tilde for sake of simplicity in the notations. (3.8) de-
scribes the linear stochastic dynamics close to the jet velocity profile U(y), which is
held fixed.

We note that the dynamics (3.8) includes terms of order α and ν (see (3.4)).
These dissipation terms could have equivalently been included in Ls in the Fokker-
Planck equation (2.10) associated with (3.3, 3.5), but we keep them in (3.8) for later
convenience. However, an important part of our work was to prove that in the limit
νn ≪ α ≪ 1, at leading order, the virtual fast process (3.8) with or without these
dissipation terms has the same stationary distribution. This is a crucial point that
will be made clear in chapters 4 and 5.

3.2 Deterministic kinetic equation

The term appearing at first order in (3.7) arises from the Law of Large Numbers
(see section 2.1.1). It is the average of f defined in (3.6), in the stationary state of
the virtual fast process (3.8),

F [U ](y) = F0[U ](y)− U(y) +
ν

α

∂2U

∂y2
(y), (3.9)

with
F0[U ](y) ≡ EU 〈vmωm〉 (y). (3.10)

F0 is the average Reynolds’ force in the stationary state of the linearized eddy
evolution (3.8). F0 is a second-order moment of the gaussian stationary distribution
of (3.8), it can thus be computed as a linear transform of the stationary two-points
correlation function g∞U [ωm](r1, r2) = EU [ωm(r1)ωm(r2)]. As explained in section
2.2, g∞U is the stationary solution of the Lyapunov equation, which we report here
for convenience

∂g

∂t
+
(

L
(1)
U + L

(2)
U

)

g = 2Cm, (3.11)

where L
(i)
U is the linear operator (3.4) applied to the i-th variable ri. Note that

because LU also contains dissipative terms of order α and ν, the definitions of F0

and g∞U implicitely assume that the limit ν ≪ α, α → 0 is taken. Whether F0 and
the stationary solution of (3.11) are finite in this limit or not is the topic of chapters
4 and 5.

At this order of approximation, the dynamics reads

∂U

∂t
= αF0[U ]− αU + ν

∂2U

∂y2
+
√
2αζ, (3.12)

where F0 can be easily computed from the stationary solution of (3.11), where U
is held fixed. An efficient numerical algorithm to compute F0 will be presented in
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section 4.3.2.

In the cases of interest for geophysical applications, the stochastic noise η does
not act at the largest scales of the flow. In particular, ζ = 0. This is why we refer
to (3.12) as the deterministic kinetic equation. When ζ = 0, (3.12) describes the
relaxation of jets towards the attractors of the dynamics.

3.2.1 Link with the quasi–linear approximation and cumu-

lant expansions

We note that in the leading order description (3.12), the non-linear eddy-eddy in-
teraction term b1 does not appear. Neglecting the non-linear eddy-eddy term in the
original equations (3.3,3.5) leads to the so-called quasi-linear barotropic equations:















∂U

∂t
= α 〈vmωm〉 − αU + ν

∂2U

∂y2
+
√
2α ζ

∂ωm
∂t

+ LU [ωm] =
√
2 ηm.

(3.13)

The approximation leading to the quasi-linear dynamics (3.13) amounts at sup-
pressing some of the triad interactions. As a consequence, the inertial quasi-linear
dynamics has the same quadratic invariants as the initial barotropic equations: the
energy and the relative enstrophy (see section 1.2.4). Quasi-linear dynamics has
been studied as a simplified model of anisotropic turbulence, mainly on an empiri-
cal basis [104]. The result of stochastic averaging shows that at leading order, the
quasi-linear barotropic equations (3.13) and the fully non-linear equations (3.3, 3.5)
lead to the same zonal flow dynamics in the regime of time scale separation α≪ 1,
and are given by the system (3.11, 3.12).

An important physical consequence of this result deals with energy transfers
among scales. Indeed, the fully non-linear barotropic dynamics (3.3, 3.5) is charac-
terized by an inverse turbulent cascade of energy towards the largest scales, qualita-
tively similar to the inverse cascade in isotropic two-dimensional turbulence [9, 55],
with quantitative differences due to anisotropy [42]. Then, it is commonly ar-
gued that the formation of large-scale coherent structures (vortices, jets) in two-
dimensional and geophysical turbulent flows is the consequence of this inverse tur-
bulent cascade of energy [14]. In contrast, in the quasi-linear barotropic dynamics
(3.13) the transfers of energy from the eddies ωm to the mean flow U through the
Reynolds’ stresses 〈vmωm〉 are non-local in scales. The result of stochastic averaging
thus shows that in the large time scale separation limit α → 0, the dynamics of
zonal jets on long time scales is actually accurately described by non-local energy
transfers only.

A system very close to (3.11,3.12), known as Stochastic Structural Stability The-
ory (S3T, [3, 33]) or Cumulant Expansion at Second order (CE2, [106]) has been the
subject of various studies over the past few years, from numerical and theoretical
points of view [85, 104]. The S3T-CE2 equations are obtained assuming that the
quasi-linear approximation is valid, and identifying zonal averages with ensemble
averages. In this theory, the zonal flow equation (3.12) and the Lyapunov equation
(3.11) evolve simultaneously, and F0 in (3.12) is computed accordingly. In the limit
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of large time scale separation α ≪ 1, the Lyapunov equation evolves much faster
than the mean flow equation. Then, the S3T-CE2 description is very close to the
deterministic kinetic theory, in the regime α ≪ 1. Moreover, in a statistically sta-
tionary state, neither the jet profile U(y) nor the correlation functions g evolve. As
a consequence, the deterministic kinetic equation (3.12) and the S3T-CE2 system
have exactly the same attractors.

In previous studies, the validity of the S3T-CE2 theory has been assessed com-
paring numerical simulations of the barotropic equation to numerical resolutions of
the S3T-CE2 system. For instance in the work of Tobias and Marston [106], it is
argued that the strength of jet is related to the value of the zonostrophy index Rβ,
introduced in section 1.2.4. It is observed that a large value of Rβ leads to a flow
made of robust jets, while a small value leads to the formation of weak, meandering
jets. Moreover, the comparison between CE2 calculations and direct non-linear sim-
ulations shows a very good agreement for large values of Rβ, and a poor agreement
for smaller values of Rβ.

We now compare these results with the deterministic kinetic theory. First, using
that αR ∝ R−5

β , the regime Rβ ≫ 1, in which robust jets and good accuracy of CE2
are found, coincides with the regime αR ≪ 1. Let’s now look more precisely at the
different parameters considered in [106].

Three simulations are presented in this paper, corresponding to figures 2(a), 2(b)
and 2(c), or 4(a), 4(b) and 4(c) for the comparison with the CE2 simulation. We
find the following results:

• With the parameters of the case (a), we have α = 0.068 and αR = 0.0021,
which are both very small. This is in accordance with the fact that robust jets
are found, and that the quasi-linear approximation is accurate.

• With the parameters of the case (b), we find the values α = 0.068 and αR =
0.0029, which are still very small. Again, this is in accordance with the fact
that strong jets are found, and that the quasi-linear approximation is accurate.

• With the parameters of the case (c), we have α = 1.45 > 1 and αR = 0.030,
which is still quite small. The case (c) corresponds to weak and meandering
jets, and to a very poor agreement between CE2 and non-linear simulation.

To conclude this discussion, we find that small values of αR and α lead to the
formation of strong jets, and to a very good accuracy of the S3T-CE2 equation.
This observation can also be made from the numerical simulations presented in
other papers [3, 33, 104]. However, the last case (c) suggests that α might be more
relevant than αR in order to characterise the robustness of jets and the validity
of the quasi-linear approximation. This can also be seen in figure 6 of the work
of Srinivasan and Young [104], where the ratio of energy contained in the jets is
plotted as a function of an adimensionalized friction µ∗ and of an adimensionalized
gradient of potential vorticity β∗. We find that strong jets, together with a good
accuracy of the quasi-linear approximation, is obtained for small values of µ∗, almost
independently of the value of β∗. Then, it seems that the value of β does not control
the robustness of jets and the validity of the quasi-linear approximation, suggesting
again that α —and not αR that depends on β— is the relevant small parameter for
the kinetic theory of zonal jets.
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Our approach thus justifies the S3T-CE2 theory in the time scale separation
regime α ≪ 1, and indicates that this regime may be the regime where the quasi-
linear approximation is accurate.

3.2.2 Alternative derivation using the vorticity probability

distribution functions

Closed equations that describe the effective relaxation dynamics of zonal jets can be
obtained using stochastic averaging (leading to the deterministic kinetic equation
(3.12)), or using cumulant expansions (leading to the S3T-CE2 systems [3, 33, 106]).

In the stochastic averaging procedure, we consider the probability density func-
tional of the whole vorticity field P [ω], and perform a perturbative expansion at the
level of the Fokker-Planck equation (see chapter 2 and appendix A).

In the cumulant expansion approach, we consider the hierarchy of equations for
the n-points vorticity correlation functions. This is a very classical approach in
turbulence, and is usually referred to as Reynolds’ equations [89].

An alternative approach is to consider the probability distribution of vorticity
at given points in space. Like in the cumulant expansion approach, the non-linear
terms in the barotropic equation lead to an infinite hierarchy of coupled equations
known as the LMN hierarchy, from Lundgren [63], Monin [70] and Novikov [79].
This approach has been applied to different situations such as two-dimensional and
three-dimensional, homogeneous and non-homogeneous, isotropic and anisotropic
turbulence (see [71] and references therein), as a theoretical tool or combined with
numerical simulations [40].

The LMN hierarchy is very similar to the BBGKY hierarchy in the kinetic theory
of gases, plasmas and gravitational systems [4]. In a work anterior to this thesis
[73, 74], the BBGKY hierarchy for systems of long-range interacting particles has
been extended to the stochastically forced case. This can also be done in the fluid
mechanics case, leading to a generalized LMN hierarchy. We sketch this procedure
here, the detailed derivation is given in appendix C. We also assume for simplicity
that β = 0 and ν = 0, the generalization to β 6= 0, ν 6= 0 being straightforward.

We are interested in the evolution of the n-points equal-time vorticity distribution

pn (r1, σ1, . . . , rn, σn, t) = E [δ (ω (r1, t)− σ1) . . . δ (ω (rn, t)− σn)] . (3.14)

By definition, pn (r1, σ1, . . . , rn, σn, t) dσ1 . . . dσn represents the probability that at
time t, the vorticity ω(rk, t) has a value between σk and σk+dσk, for all k = 1 . . . n.
Then, the knowledge of the function pn for a given n gives all the moments of the
vorticity, up to moments of order n. For instance, the average vorticity field is given
by

ω̄(r1, t) ≡ E [ω(r1, t)] =

∫

R

dσ1 σ1p1(r1, σ1, t), (3.15)

the two-points vorticity correlation function is given by

g̃(r1, r2, t) = E [ω(r1, t)ω(r2, t)] =

∫

R2

dσ1dσ2 σ1σ2p2(r1, σ1, r2, σ2, t), (3.16)

and so on.
The equation for the evolution of pn is obtained from the barotropic equation

(3.1) applying the Itō formula. Because of the non-linear terms, the evolution of
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pn involves pn+1. This kind of approach thus relies upon a closure in the hierarchy,
and the results strongly depend on the closure (see the discussion in section 1.3.3,
page 21). In our case, the closure appears naturally as a perturbative expansion in
powers of α≪ 1, like in the finite-dimensional analog [73, 74].

At order zero in α, the barotropic equation is inertial so the equations for pn form
the usual LMN hierarchy. Then, a particular class of solutions is given by Young
measures, defined by

∀n, pn (r1, σ1, . . . , rn, σn) = p (r1, σ1) . . . p (rn, σn) (3.17)

with p ≡ p1. Distributed according to this measure, vorticity values at different
points are statistically independent random variables. This means that Young mea-
sures represent the mean-field behaviour of the system, consistently with the RMS
equilibrium statistical mechanics theory of two-dimensional flows [14, 15].

When α 6= 0, we consider perturbations of the Young measure solution as

p2(1, 2) = p(1)p(2) + αq2(1, 2), (3.18)

p3(1, 2, 3) = p(1)p(2)p(3) + α {q2(1, 2)p(3)}+ α2q3(1, 2, 3), (3.19)

and so on. In these expressions, we have used the usual short-hand notations of
kinetic theory, see appendix C for details. These expressions define the functions
qn, our assumption is thus that qn = O(1) as α → 0. This type of ansatz has been
proposed since the beginning of the study of the LMN hierarchy, using an analogy
with the BBGKY hierarchy of the classical kinetic theory of plasmas [63]. The
functions qn are called the connected parts of the probability distribution functions
pn. They describe the correction to the equilibrium statistical mechanics theory due
to the small forcing and dissipation present in (3.1).

Injecting the expressions of pn in the hierachy and neglecting terms of order
α2, we obtain a closed set of equations for p and q2. Using (3.15) and (3.16), we
obtain the corresponding equations for the average vorticity and for the vorticity
two-points correlation function. Assuming that the mean flow is a parallel flow in
the x direction and that the stochastic forces do not act directly on the zonal degrees
of freedom, we obtain

∂tω̄(y1, t) = αR[gm](y1, t)− αω̄(y1, t) , (3.20)

and
∂tgm +

(

L
0(1)

Ū
+ L

0(2)

Ū

)

gm = 2Cm, (3.21)

where gm is the two-points correlation function of the non-zonal vorticity, and R[gm]
represents the forcing acting on ω̄ due to Reynolds stresses. In these equations, ω̄
and gm evolve simultaneously. The system (3.20),(3.21) is thus exactly the S3T-CE2
system. As pointed out before, when α ≪ 1 the dynamics of ω̄ occurs on a time
scale of order 1/α, while the time scale of evolution of gm is of order 1, so we recover
the deterministic kinetic equation (3.12).

To obtain this result, we have to make the assumption that the stochastic forcing
does not act direcly on the zonal jet. When this is not the case, we can prove that the
assumption q2 = O(1) breaks down (see appendix C). This illustrates the weaknesses
of this approach: there is no control of the assumptions, and the way to truncate the
hierarchy is not unique, probably leading to different effective equations [71]. As an
example, another perturbative expansion in the limit of large time scale separation
is proposed in [109], for the case of 3D isotropic turbulence.
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3.3. STOCHASTIC KINETIC EQUATION

3.3 Stochastic kinetic equation

The terms appearing at second order in (3.7) arise from the Central Limit Theorem
(see section 2.1.2 and equation (2.19)). The expression of the drift term F1[U ]
can be found in appendix A. The stochastic term ξ[U ] is a gaussian random field
that depends on the meridional coordinate y, white in time, with zero mean and
correlations (for a fixed U) E [ξ[U ](y1, t1)ξ[U ](y2, t2)] = δ(t1 − t2)Ξ[U ](y1, y2) where
Ξ[U ] is given by (2.20) in chapter 2 (page 32). Here,

Ξ[U ](y1, y2) =

∫ ∞

0

EU [[ 〈vmωm〉 (y1, s) 〈vmωm〉 (y2, 0)

+ 〈vmωm〉 (y2, s) 〈vmωm〉 (y1, 0) ]] ds,
(3.22)

where we recall that EU [[·]] denotes the covariance in the statistically stationary
state of the virtual fast process (3.8). As discussed in section 2.1.2, Ξ[U ] represents
the typical fluctuations of the Reynolds’ stress 〈vmωm〉 around the mean F0[U ]

1.
ξ[U ] is white in time, consistently with the time scale separation between the dy-
namics of the mean flow U and the dynamics of the eddies ωm.

An important remark to make is that the first order term in F1[U ] (in equation
(3.7)) is exactly zero. Its general expression can be found in appendix A (equation
(A.4)). In the case of the barotropic equation, it reads

F1[U ](y) = −
∫ ∞

0

ds

∫

D[ωm] 〈vmωm〉 (y) esL0

∫

dr
δ

δωm(r)
[b1[ωm]GU [ωm]]+O(

√
α),

(3.23)
where b1[ωm] is the non-linear eddy-eddy interaction term (see (3.6)) and GU [ωm] is
the stationary gaussian distribution of the virtual fast process (3.8). b1 is quadratic
so the functional derivative with respect to ωm will produce terms linear or quartic
in ωm. When multiplied by 〈vmωm〉 and averaged over the centered gaussian GU ,
this gives zero.

The consequence is that corrections to the drift term F0[U ] = EU 〈vmωm〉 only
appear at order α2. These terms lead to corrections of the attractors of the effective
dynamics that are of order α. In the limit α ≪ 1, these terms are negligible in the
effective dynamics of zonal jets.

The stochastic term ξ[U ] also appears at next order in α. However, its effect on
the kinetic equation (3.7) is qualitatively very different from the drift term F1[U ].
Indeed, the deterministic kinetic equation (3.12) is unable to describe the statistics
of the small fluctuations close to an attractor. A very interesting result that can be
derived from (3.7) is the statistics for the Gaussian fluctuations of the jet close to
its most probable value.

The initial purpose of the study of the stochastic kinetic equation (3.7) was to
investigate the statistics of rare event in zonal jets dynamics. Assume for instance
that the deterministic kinetic equation (3.12) has more than one attractor, as in
figure 3.1. Then it is natural to guess that the small noise ξ[U ] can describe the

1The dissipative terms contained in f (see equation (3.6)) do not appear in Ξ[U ] because EU [[·]]
is the covariance of f , and not just the correlation.
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Figure 3.1: Evolution of the zonally averaged velocity profile U(y) as obtained
from non-linear simulations (left) and comparison of the stationary velocity profile
obtained from non-linear simulations and from the deterministic kinetic equation
(3.12), or equivalently S3T [33]. The upper and lower pictures are obtained for the
same values of the physical parameters but with different initial conditions. The fig-
ure shows that for a given set of parameters it can converge towards two attractors
with a different number of jets. Courtesy Navid Constantinou.

relative probability of the two attractors and the probability of transitions between
them. However, as discussed in section 2.1.3, the Central Limit Theorem can only
describe small fluctuations around the attractors. To study large deviations such
as transitions between attractors, we need to go to the level of the Large Deviation
Principle. This is the subject of chapter 6.

3.4 Perspectives

The deterministic kinetic equation (3.12) describes a quasi-linear approximation of
the barotropic equation, previously studied numerically [104]. One of the interests
of the present approach is to give a precise regime of validity of this approximation,
based on theoretical arguments (perturbative expansion). A very natural perspec-
tive of the present work is to apply the stochastic averaging procedure to different
systems in which quasi-linear approximations are known to work in some cases.
This is for instance the case in more complex models of geophysical fluid dynamics,
such as an idealized Global Circulation Model (GCM), see figure 3.2. We see that
the accuracy of the quasi-linear approximation depends on the rotation rate of the
planet. A theoretical study could explain this behaviour, and help determine a ro-
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(c) Non-linear, Ω = 4Ωearth
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Figure 3.2: Zonally averaged zonal velocity (contours, in m.s−1) and zonally aver-
aged momentum flux convergence (colors, in 10−6 m.s−2), as a function of latitude
and sigma level (depth), from numerical simulations of an idealized GCM [1]. Black
(resp. pink) contours represent eastward (resp.westward) winds. In all the simula-
tions, strong eddy-driven eastward zonal jets are formed. The two left (resp. right)
figures are simulations of the non-linear (resp. quasi-linear) equations. Ω is the
planet rotation rate in the simulation and Ωearth is the rotation rate of Earth. The
quasi-linear approximation is not accurate for Ω = Ωearth, but gives a very good
agreement for Ω = 4Ωearth. Courtesy Farid Ait-Chaalal.

bust criterion for the accuracy of the quasi-linear approximation.

The deterministic kinetic equation (or equivalently S3T-CE2 systems) has been
widely studied from a numerical point of view in the past [3, 33, 85, 104, 106]. An
interesting perpective of this work is to simulate numerically the stochastic kinetic
equation (3.7) in order to study the typical fluctuations of zonal jets. An algorithm
to compute directly the integrated autocorrelation function Ξ[U ] for a given base flow
U will be presented in chapter 4 (section 4.4 page 60). Such simulation would provide
a direct description of zonal jet statistics around the attractors of the deterministic
kinetic equation (3.12).
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Chapter 4

Implementation of the kinetic

theory

In chapter 3, the stochastic averaging procedure was applied to the stochastic
barotropic equation in the limit of small forces and dissipation (inertial limit), which
was assumed to be the regime where zonal jets evolve much slower than turbulent
eddies. This led to an effective description of jet dynamics, summarized by equations
(3.7, 3.8), page 39.

The kinetic equation (3.7) arises from the Law of Large Numbers and the Central
Limit Theorem, as explained in chapter 2. As a consequence, it involves quantities
related to the low-order statistics of the Reynolds’ stress divergence (Reynolds’ force)
〈ωmvm〉. Appart from dissipative terms, the most physically relevant terms in (3.7)
are the average Reynolds’ force F0[U ] given by (3.10) and the integrated autocorrela-
tion function of the Reynolds’ force Ξ[U ] given by (3.22). We discuss in this chapter
the basic properties of these quantities, and explain how to compute them explicitely.

The computation of F0[U ] and Ξ[U ] involves averages in the stationary state
of the linearized equation for eddies (3.8), denoted EU (see equations (3.10) and
(3.22)). It is not obvious that the average EU of any observable of the eddy vorticity
ωm gives a finite value. Indeed, the linear dynamics (3.8) is forced but not dissipated
in the inertial limit ν ≪ α ≪ 1. Thus, in order to have finite large time limits, we
have to rely on an inviscid damping mechanism. In the case of the linearized Euler
equation such a mechanism is known as the Orr mechanism [82]. We will rely on
this mechanism to express F0[U ] and Ξ[U ], and to prove that F0[U ] is finite. This
implies in particular that the deterministic kinetic equation (3.12) is well defined.
The extension of this result to the full stochastic kinetic equation (3.7) (which in-
volves Ξ[U ]) is discussed in next chapter.

In the preliminary sections 4.1 and 4.2, we give some definitions and notations,
and we recall classical results on the Orr mechanism for the two-dimensional Euler
equation (β = 0) [82], and present their generalisation to any jet profile [11], holding
when the base flow has no modes neither unstable nor neutral.

Then in section 4.3, we give a simple expression of the average Reynolds’ force
F0[U ] in terms of a deterministic eddy enstrophy, and we propose a method to
compute it numerically extremely fast in the limit of zero viscosity and small linear
friction.
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4.1. SOME USEFUL DEFINITIONS FOR CHAPTERS 4 AND 5

In section 4.4, we give an expression of the integrated autocorrelation function
of the Reynolds’ force Ξ[U ], and propose a method to compute it numerically in the
limit of zero viscosity and small linear friction.

4.1 Some useful definitions for chapters 4 and 5

4.1.1 Expectations and limits

Because quantities of interest such as F0 and Ξ are defined with large-time and
small-dissipation limits, it is useful to fix some notations, in order to clarify the
following discussion. First of all, we recall the linear dynamics of the eddy vorticity
ωm with linear friction and viscosity

∂ωm
∂t

+ L0
U [ωm] = −αωm + ν∆ωm +

√
2 ηm , (4.1)

where ηm is a gaussian white noise with zero mean and spatial correlations Cm, and
with the inertial linear operator

L0
U [ω] = U(y)

∂ω

∂x
+ (β − U ′′(y))

∂ψ

∂x
, ω = ∆ψ . (4.2)

The average of an observable φ[ωm(r, t)] with respect to realizations of the noise ηm
in (4.1) will be denoted E [φ[ωm(r, t)]].

Formally, the terms appearing in the kinetic equation (3.7) for U(y) are ex-
pectations in the statistically stationary state of the inertial linearized barotropic
dynamics

∂ωm
∂t

+ L0
U [ωm] =

√
2 ηm . (4.3)

Such expectations have been denoted EU [φ[ωm(r)]], formally we can write

EU = lim
t→∞

lim
α→0

lim
ν→0

E . (4.4)

All the results presented in chapters 4 and 5 are derived with ν = 0, and it turns
out that most of these results can be alternatively obtained taking first the limit
t → ∞, and then α → 0. Moreover, in order to interpret those results it will be
useful to consider the stationary state of the dynamics (4.1) with ν = 01, but with
a small, non-zero damping rate α. We thus define the expectation

E
α
U = lim

t→∞
lim
ν→0

E , (4.5)

and abusively denote EU = limα→0 E
α
U . The consequences of the ordering of limits

t→∞ and α→ 0 will be further discussed along chapters 4 and 5.

1We could also study the stationary statistics of (4.1) with α = 0 and ν ≪ 1, or with both α
and ν non-zero. This would lead to different behaviour in the inertial limit, see the discussions in
section 5.4 and in [18] for more details.
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CHAPTER 4. IMPLEMENTATION OF THE KINETIC THEORY

4.1.2 Fourier decomposition

The dynamics of ωm in (4.1) or (4.3) is linear, it is thus useful to study the dynamics
of each Fourier mode independently, the global results will be obtained by simply
adding the contribution from each mode. We treat here the simple case of a flow in
a biperiodic domain D = [0, 2πlx)× [0, 2π), the generalization to different geometries
will be also discussed.

We expand the force correlation function Cm in Fourier series,

Cm(x, y) =
∑

k>0 ,l

ckl cos(kx+ ly), (4.6)

with ckl ≥ 0. We note that because Cm is a correlation, it is a positive definite
function. This explains why sin contribution are zero in this expansion. The expres-
sion ckl cos(kx+ ly)+ ck,−l cos(kx− ly) is the most general positive definite function
involving the Fourier components eikx and eily or their complex conjugates, (4.6)
is thus the most general homogeneous correlation function. The generalization to
the case of an inhomogeneous force, for instance for the case of a channel would be
straightforward.

The noise correlation function Cm corresponds to the noise

ηm(r, t) =
∞
∑

k=−∞

∞
∑

l=−∞

√

ckl
2

eikx+ilyηkl(t) (4.7)

where η∗kl = η−k,−l and E[ηk1,l1(t1)ηk2,l2(t2)] = δk1,−k2δl1,−l2δ(t1−t2), and ck,l is defined
for k < 0 by ck,l = c−k,−l (we recall that ckl are real and positive), and for k = 0 by
c0,l = 0. By linearity of (4.1) and because the linear operator LU = L0

U + α− ν∆ is
invariant under translations in the x direction, the non-zonal vorticity field can be
written as

ωm(r, t) =
∞
∑

k=−∞

∞
∑

l=−∞

√

ckl
2

eikxωkl(y, t). (4.8)

The eddy vorticity ωm evolves according to (4.1), so ωkl evolves according to

∂ωkl
∂t

+ LU,k[ωkl] =
√
2eilyηkl , (4.9)

where
LU,k[ωkl] = ikU(y)ωkl + ik (β − U ′′(y))ψkl + αωkl − ν∆kωkl (4.10)

with ∆k = ∂2y − k2 and ωkl = ∆kψkl.

4.2 Inviscid damping of the deterministic linearized

equation

In this introductory section we show how to compute quantities such as correla-
tion functions for stochastic linear processes from associated deterministic problems.
This will lead us to consider the asymptotic behaviour of the deterministic linear
barotropic dynamics.
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4.2. INVISCID DAMPING OF THE DETERMINISTIC LINEARIZED EQUATION

4.2.1 A finite dimensional example

To give a very simple example, we consider the one-dimensional linear stochastic
equation (1D Ornstein-Uhlenbeck process)

dq

dt
= −λq +

√
ση(t) , (4.11)

where η is a gaussian noise with zero mean and correlations E[η(t)η(t′)] = δ(t− t′),
λ ≥ 0, σ > 0, and with initial condition q(0) = 0. We investigate the large-time
limit of the variance of q. Integrating equation (4.11) as

q(t) =
√
σ

∫ t

0

e−λ(t−t1)η(t1)dt1 , (4.12)

we get

E
[

q(t)2
]

= σ

∫ t

0

e−2λt1dt1 , (4.13)

where E denotes the average with respect to realisation of the noise η.
From this simple analysis, we can conclude that the convergence of the variance

when t→∞ depends on the value of the friction coefficient λ. Indeed, if λ > 0, the
variance converges to the finite value σ/2λ, while for λ = 0, the variance diverges
as σt.

Observe that in equation (4.13), the variance is expressed from the solution
q̃(t1) = e−λt1 of the deterministic equation ∂t1 q̃ = −λq̃ with initial condition q̃(0) =
1. We thus conclude that the convergence of the variance depends on the large-time
behaviour of the associated deterministic linear evolution, and particularly on the
damping mechanisms that occur in this deterministic dynamics.

This discussion is very general, and an expression similar to (4.13) can be ob-
tained for any Ornstein-Uhlenbeck process [44]. The computation of correlation
functions can be discussed similarly to the computation of the variance (see section
4.2.2). We thus understand that in the problem we are interested in, whether the
average Reynolds’ force F0[U ] = EU 〈vmωm〉 and the integrated autocorrelation func-
tion Ξ[U ] are finite or not depend on the small-dissipation and large-time behaviour
of the deterministic linear equation2

∂ω̃m
∂t

+ L0
U [ω̃m] = −αω̃m + ν∆ω̃m , (4.14)

where L0
U the linearized inertial evolution operator close to the zonal flow U , given

in (4.2).
For finite values of α and ν, and for a stable linear operator L0

U , the linear
friction and viscosity are the main damping mechanisms. Then, the vorticity auto-
correlation function, and all the quantities we are interested in will converge to finite
values. However, we are interested in the particular limit where ν ≪ α≪ 1 and, for
the self-consistency of the theory we need a uniform convergence independent of the
values of ν and α. Then we need to rely on another damping mechanism, through

2Note that in this chapter the tilde represents the deterministic version of the fields. This should
not be confused with the tilde used to represent the virtual fast process (4.1) in the previous chapter.

51



CHAPTER 4. IMPLEMENTATION OF THE KINETIC THEORY

the linear operator L0
U . For the linearized Euler equation (β = 0), such inviscid

damping mechanism is known as the Orr mechanism and the depletion of vortic-
ity at the stationary streamlines. These mechanisms are summarised in section 4.2.3.

Moreover, we can see directly from (4.13) that if the linear operator is unstable
(λ > 0), the deterministic evolution diverges exponentially, so the auto-correlation
function also diverges. The same way, if the linear operator has neutral eigenmodes
(λ = 0), then the auto-correlation function diverges linearly in time.

It is thus essential for the self-consistency of the theory to assume that the base
flow U has no modes at all3. This is possible for a non-normal linear operator acting
in an infinite-dimensional space, such as L0

U , and this is actually the generic case.
When β = 0, the only known stable base flows U with neutral modes are cases with
localized vorticity profile [101] or the cosine flow in a square domain [11]. In some
relevant jet situations (with β 6= 0), the dynamics is also known to expel neutral
modes from the spectrum [53].

However this is not the general case, and in particular in the barotropic equation
(β 6= 0), neutral modes such as Rossby waves are known to be of great importance
in the dynamics of zonal jets [110]. Generalisation of the present theory to those
cases is discussed in section 4.5.

In the following paragraph we detail the relation between correlation functions
of the Ornstein-Uhlenbeck process ωm and the deterministic dynamics (4.14). Then
in next paragraph, we present the Orr mechanism and the depletion of the vorticity
at the stationary streamlines for the linearized 2D Euler equation.

4.2.2 Correlation functions from the solution of the deter-

ministic linear equation

In this section, we show how to compute formally the vorticity two-points corre-
lation function gU(r1, r2, t) = E [ωm(r1, t)ωm(r2, t)] where the vorticity ωm is given
by (4.1), using the solution of the deterministic dynamics (4.14) with appropriate
initial conditions. Those computations are very general, so we consider here that
α, ν and t are finite, for simplicity. The expectation E in the above definition of
gU is the average over realisations of the noise ηm in (4.1), it is different from the
expectation EU which implicitely contains the limits ν ≪ α, α → 0, t → ∞ (see
section 4.1.1).

We will denote g ≡ gU in this chapter and in the following one, to simplify the
notation.

Observe that because of (4.7), ωk1,l1 and ω∗
k2,l2

are statistically independent for
(k1, l1) 6= (k2, l2). Then, using (4.8), the vorticity two-points correlation function

3Remark first that because L0
U is invariant under time reversal t → −t, U → −U (recall that

here β = 0), the existence of a stable mode necessarily implies the existence of an unstable mode.
Remark also that the action of L0

U on zonally invariant functions f(y) is trivial: any such function
is a neutral mode of L0

U . We will thus consider the operator L0
U acting on non-zonally invariant

functions only, and assume that L0
U restricted to such functions has no mode at all.
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reads

g(r1, r2, t) =
∞
∑

k=−∞

∞
∑

l=−∞

ckl
2

eik(x1−x2)E [ωkl(y1, t)ω
∗
kl(y2, t)]

=
∑

k>0,l

cklgkl(r1, r2, t)
(4.15)

with gkl(r1, r2, t) =
1
2
eik(x1−x2)E [ωkl(y1, t)ω

∗
kl(y2, t)] + c.c., where c.c. stands for the

complex conjugate. The linear stochastic differential equation (4.9) can be formally
solved using the Itō stochastic integral representation

ωkl(y, t) =
√
2

∫ t

0

e−t1LU,k [el](y)dWkl(t1)

with el(y) = eily. Like in the one-dimensional case studied before, let’s denote
ω̃kl(y, t1) = e−t1LU,k [el] (y) the solution at time t1 of the deterministic linear dynamics
∂t + LU,k with initial condition el. Then,

4

gkl(r1, r2, t) = eik(x1−x2)
∫ t

0

ω̃kl(y1, t1)ω̃
∗
kl(y2, t1) dt1 + c.c.. (4.16)

The vorticity-vorticity correlation function gkl is expressed as a time-integral of a
product of the deterministic vorticity ω̃kl, with appropriate initial condition. Such
expression can be easily generalized to any kind of correlation functions, this will be
extensively used in chapters 4 and 5.

4.2.3 Orr mechanism and depletion of the vorticity at the

stationary streamlines

We have seen in the previous paragraph that stationary correlation functions of the
Ornstein-Uhlenbeck process ωm can be computed from time-integrals like (4.16),
involving solutions of the associated deterministic problem. We consider here the
linear deterministic equation (4.14) with β = 0, and with no viscosity or linear fric-
tion, α = ν = 0.

The phenomenology is the following: while the vorticity shows filaments at finer
and finer scales when time increases, non-local averages of the vorticity (such as the
one leading to the computation of the streamfunction or the velocity) converge to
zero in the long time limit.

As an example, consider the case of the linear Euler equation in a channel (x, y) ∈
D = [0, 2πLx) × [0, Ly], or in an infinite domain (x, y) ∈ D = [0, 2πLx) × R, where
the background flow is U(y) = sy with a constant shear s. Then U ′′(y) = 0 and
LU,k = iksy. This is actually the case first studied by Orr [82]. According to the
discussion of the previous paragraph, we consider the deterministic linear dynamics

∂ω̃k,l
∂t

+ iksy ω̃k,l(y, t) = 0 , ω̃k,l(y, 0) = eily, (4.17)

4A similar formula can easily been deduced for any stochastic force of the form C(r1, r2) =
∑

k e
ik(x1−x2)

∑

l ckl(y1)c
∗
kl(y2) from the explicit solution of the Ornstein-Uhlenbeck process as the

stochastic integral
∫ t

0
e−t1LU,k [ckl] dWkl(t1). Here the key point is that the Fourier basis diagonal-

izes any translationally invariant correlation function.
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st = 0 st = 10

st = 20 st = 30

Figure 4.1: Evolution of the perturbation vorticity, advected by the constant shear
base flow U(y) = sy.

which can be solved as ω̃k,l(y, t) = e−iksyt+ily. This increasing filamentation of the
vorticity field as time goes on can be seen in figure 4.1. The streamfunction is then
computed as

ψ̃kl(y, t) =

∫

dy′Hk(y, y
′)ω̃k,l(y

′, t) , (4.18)

where Hk is the Green function of the Laplacian ∆k = ∂2y − k2, i.e. such that
∆kHk(y, y

′) = δ(y− y′). Such integral is an oscillating integral. In the limit t→∞,
it decays algebraically to zero with a power that depends on the order of differen-
tiability of Hk. In this case, we can prove that

ψ̃kl(y, t) ∼
t→∞

ω̃∞
kl (y)

(iks)2
e−iksyt

t2
. (4.19)

The velocity components can be computed from the stream function, using (4.19) we
can thus show that the perturbation velocity also decays to zero algebraically. This
is the so-called Orr mechanism [82]. The filamentation and the related relaxation
mechanism with no dissipation for the velocity and streamfunction is very general
for advection equations and it has an analog in plasma physics in the context of the
Vlasov equation, where it is called Landau damping [78].

We note that in (4.19), the shear s plays the role of an effective damping rate. The
generalization of the Orr mechanism to the case of any strictly monotonic profile
U(y) —i.e. when the shear is always non-zero— has been first considered [22].
However, zonal jets necessarily have velocity extrema. The generalization of the
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Orr mechanism to non-monotonic background flows U(y) has only been considered
recently, in a work preliminary to this thesis [11]. As explained in paragraph 4.2.1,
it is natural to assume that the linear operator L0

U,k has no modes. With this
hypothesis, it has been shown that [11]

ω̃kl(y, t) ∼
t→∞

ω̃∞
kl (y)e

−ikU(y)t , (4.20)

where the function ω̃∞
kl (y) depends on the whole velocity profile U(y). The Orr

mechanism for U(y) = sy is a particular case of (4.20), where ω̃∞
kl (y) = eily. Us-

ing again results on oscillating integrals and the properties of the Laplacian Green
function H, we have the asymptotic decay of the velocity components and of the
streamfunction [11]

ũkl(y, t) ∼
t→∞

ω̃∞
kl (y)

ikU ′(y)

e−ikU(y)t

t
, (4.21)

ṽkl(y, t) ∼
t→∞

ω̃∞
kl (y)

ik(U ′(y))2
e−ikU(y)t

t2
, (4.22)

and

ψ̃kl(y, t) ∼
t→∞

ω̃∞
kl (y)

(ikU ′(y))2
e−ikU(y)t

t2
. (4.23)

In all the above formulas, higher order corrections are present and decay with higher
powers in 1/t. From these expressions, it is clear that the local shear U ′(y) acts as
an effective damping mechanism.

Mathematical proofs of the asymptotic behaviour (4.20–4.23) have been given
recently, either for the case of a strictly monotic profile U(y) [119, 120] or for the
relaxation of the non-linear 2D Euler equation after a small perturbation of the
constant shear profile U(y) = sy [6], following the analogous theorem for non-linear
Landau damping [72].

At this stage, a natural question is: what happens when the local shear vanishes?
Indeed, a jet profile necessarily presents extrema of the velocity, at points y0 such
that U ′(y0) = 0. Such points are called stationary points of the zonal jet profile. It
can be shown that at the stationary points, the perturbation vorticity also decays for
large times: ω̃∞

kl (y0) = 0 [11]. This phenomenon has been called vorticity depletion
at the stationary streamlines. It has been observed numerically that the extend of
the area for which ω̃∞

kl (y0) ≃ 0 can be very large, up to half of the total domain,
meaning that in a large part of the domain, the shear is not the explanation for
the asymptotic decay. The formula for the vorticity (4.20) is valid for any y. The
formulas for the velocity and stream functions are valid for any y 6= y0. Exactly at
the specific point y = y0, the damping is still algebraic with preliminary explanation
given in [11], but a complete theoretical prediction is not yet available.

Equations (4.20),(4.21),(4.22),(4.23) give the asymptotic behaviour of vorticity,
velocity and stream function in the deterministic linear 2D Euler equation, with
no external damping mechanism. In the following, we will also be interested in the
behaviour of these fields when a small friction or viscosity are present. For simplicity,
we will only treat the case of a small friction (which acts uniformly at all scales):
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ν = 0. Then, the linear friction leads to an exponential damping of all fields, with
rate α. It will be useful to generalize (4.20) as

ω̃αkl(y, t) = ω̃∞
kl (y)e

−(ikU(y)+α)t + ω̃r,αkl (y, t) . (4.24)

The above formula defines ω̃r,αkl . The classical Orr mechanism (4.20) is equivalent
to the statement that for all values of α (even for α = 0), ω̃r,αkl (y, t) is a bounded
function both in y and t, and decays to 0 as t→∞. Actually, a refined formulation
of the Orr mechanism is that ω̃r,αkl (y, t) ∼

t→∞
O(e−αt/tγ), with γ > 0 [11].

We have thus seen that, under the hypothesis that β = 0 and that the linear
operator L0

U has no modes, the deterministic linear dynamics of the eddies leads to
an inviscid damping of the velocity and of the streamfunction. As explained in the
finite dimensional example, this is the key ingredient that can ensure the convergence
of quantities like F0[U ]. We investigate this points in the following section.

4.3 Deterministic kinetic equation

The deterministic kinetic equation (3.12) describes the effective dynamics of zonal
jets at the level of the Law of Large Numbers. It thus involves the average Reynolds’
stress divergence F0[U ] = EU〈ωmvm〉, averaged over the stationary distribution of
the inertial linear process (4.3). Using a pseudomomentum balance, we now show
how to compute F0[U ] in practice, for a given zonal base flow U(y).

4.3.1 Pseudomomentum balance

In this paragraph we present the pseudomomentum balance for the linear dynamics
of non-zonal degrees of freedom close to the zonal jet U (4.1) with ν = 0. This yields
the expression (4.30) of the average Reynolds’ stress divergence F0[U ] as a function
of a deterministic enstrophy density.

Let us first observe that using (4.8), the average Reynolds’ force in the stationary
state and in the inertial limit5 can be decomposed into its contributions coming from
each independent (k, l) forced mode

F0[U ](y) = lim
α→0

∑

k>0,l

cklf
α
kl(y), (4.25)

with fαkl(y) = limt→∞ fkl(y, t) where

fkl(y, t) = πlxE [vkl(y, t)ω
∗
kl(y, t)] + c.c. = ikπlxE [ψkl(y, t)ω

∗
kl(y, t)− c.c.] , (4.26)

with E the average over realisations of the noise ηm in the dynamics of ωm (or equiv-
alently (4.9)) with a finite α (here we already take the limit ν = 0).

5Here we consider first the limit t→∞ and then α→ 0, for simplicity. The opposite could be
done easily and would give the same result (4.30). See also section 5.1 for details on the ordering
of limits.
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We introduce the pseudomomentum density P (y, t) = 1
2(U ′′(y)−β)

E 〈ω2
m〉. It is

the ratio of the zonally averaged eddy enstrophy density and of (minus) the gradi-
ent of the jet vorticity. −P is also called the wave activity density. In linearized
quasi-geostrophic dynamics like the linearized inertial barotropic equation, the total
pseudomomentum

∫

dy P (y, t) is conserved (Eliassen-Palm relation [110]). This is
in contrast with the eddy kinetic energy or the eddy enstrophy, which are exchanged
with the zonal jet through Reynolds’ stresses. Then, this is a very powerful tool to
diagnose the sources and sinks of waves (like Rossby waves for instance) in data of
geophysical flows or numerical simulations [47, 111].

Like for F0, we can write P = limα→0,t→∞

∑

k>0,l cklpkl with pkl(y, t) =
πlx

U ′′(y)−β
E |ωkl(y, t)|2.

The evolution of pkl is obtained applying the Itō formula to (4.9), which gives

fkl(y, t) =
∂pkl
∂t

+ 2αpkl −
2πlx

U ′′(y)− β
. (4.27)

Note that (4.27) is a particular case of the pseudomomentum conservation law,
indeed the integral over y of the l.h.s vanishes6, and the last two terms in the r.h.s
come from the dissipation and forcing in (4.9).

The l.h.s of (4.27) gives the average Reynolds’ force through (4.25), this is why
pseudomomentum conservation is particularly relevant in our problem. If α is non
zero, then pkl(y, t) has a finite limit pαkl(y) as t → ∞, and ∂pkl/∂t → 0 in the large
time limit. (4.27) then becomes

fαkl(y) = 2αpαkl(y)−
2πlx

U ′′(y)− β
. (4.28)

Using (4.16), the first term in the r.h.s of (4.28) can be written

2αpαkl(y) =
4απlx

U ′′(y)− β

∫ ∞

0

|ω̃kl(y, t1)|2 dt1 . (4.29)

Assuming that the Orr mechanism (4.24) applies, we easily get 2αpαkl(y)→ 2πlx
U ′′(y)−β

|ω̃∞
kl (y)|2

in the limit α→ 0. Using this relation and (4.25), we get

F0[U ](y) ≡ lim
α→0

∑

k>0,l

cklf
α
kl(y) = 2πlx

∑

k>0,l

ckl
|ω̃∞
kl (y)|2 − 1

U ′′(y)− β
. (4.30)

In section 4.3.2, we will explain how to compute numerically F0[U ] using (4.30).
In practice, such numerical computation can only be done with a non-zero α. The
convergence in the limit α→ 0 can be checked implementing (4.30) for various small
values of α, as illustrated in figure 4.2.

6By definition of fkl,

∫

dy fkl(y, t) = −kπlxImE

∫

dy ψkl(y, t)ω
∗
kl(y, t) = 0

using ωkl = ∆kψkl and two successive integrations by parts for the last equality.
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Behaviour at the extrema of the zonal vorticity profile

We remark that the expression (4.30) for F0[U ] could diverge at points y0 such that
U ′′(y0) − β = 0 (extrema of the zonal vorticity profile). Actually, looking at the
expression of the inertial linear operator L0

U,k (equation (4.10) with α = ν = 0), we

see that at such points, the non-local term ik(U ′′(y0) − β)ψ̃kl vanishes. Then, the
deterministic dynamics can be solved explicitely and gives the asymptotic vorticity
profile ω̃∞

kl (y0) = ω̃kl(y0, 0) = eily0 . This explains why F0[U ] does not diverge as
y → y0 (see also appendix E.3).

Behaviour at the stationary points of the zonal velocity profile

At the stationary points ys such that U ′(ys) = 0, the so-called depletion of vorticity
[11] leads to ω̃∞

kl (ys) = 0, and to algebraic decays of the velocity components that
are different from (4.21), (4.22). We can prove that the average Reynolds’ force at
such points F0[U ](ys) also converges to a finite value in the inertial limit. This is
presented in details in our publication [18]. Here, we only remark that the average
Reynolds’ force given by (4.30) can be computed also for y = ys and is finite if
U ′′(ys) 6= 0. This is also observed in numerical computations, see figure 4.2.

Expression with a more general type of forcing

As noted in section 4.2.2, the computations in this section can be easily gener-
alized to the case of a forcing with spatial correlations of the form C(r1, r2) =
∑

k e
ik(x1−x2)

∑

l ckl(y1)c
∗
kl(y2). In particular, such forcing can describe cases with no

invariance under translations in the y direction. The resulting average Reynolds’
stress divergence then reads

F0[U ](y) = 2πlx
∑

k>0,l

|ω̃∞
kl (y)|2 − |ckl(y)|2
U ′′(y)− β

, (4.31)

where ω̃∞
kl is the asymptotic vorticity profile defined in the Orr mechanism (4.20),

for the deterministic dynamics ∂t + L0
U,k with initial condition ckl(y).

4.3.2 Numerical computation of the average Reynolds’ stress

divergence

In practice, the study of the effective dynamics of zonal jets reduces to the compu-
tation of the average Reynolds’ force F0. This cannot be done explicitely in general,
except in some very particular cases [18, 23, 24, 104]. The investigation of zonal jets
effective dynamics thus requires an efficient numerical computation of F0.

F0 can be computed as a linear transform of the solution of the Lyapunov equation
(3.11). A natural way to solve the Lyapunov equation is to discretize the linear

operator L
(1)
U + L

(2)
U and to directly solve the approximate dynamics. This is the

traditional way and such a technique has for instance been used in most of previous
works using S3T-CE2 [3, 33, 85, 104, 106].

However, we are here specifically interested in the inertial limit. One could solve
the Lyapunov equation for finite values of α and ν and then study the asymptotic

58



4.3. DETERMINISTIC KINETIC EQUATION

y
0 1 2 3 4 5 6

E
U

 <
 v

m
ω

m
 >

-1

-0.5

0

0.5

1

α = 0.001
α = 0.002
α = 0.004
U

Figure 4.2: The Reynolds’ stress divergence F0[U ](y) = EU 〈vmωm〉 in the case of
a cosine base profile U(y) = cos y, with forcing at wavenumber k = 1.5, l = 2.
F0[U ] was computed using (4.30) and with the algorithm detailed in section 4.3.2
and appendix E, with different values of the friction coefficient α. We observe the
convergence of this calculation when α→ 0, even at the stationary points y = 0 and
y = π. F0[U ] gives the instantaneous evolution of the zonal jet velocity: U will not
change at the jet extrema y = 0 and y = π, and U will weaken around the zeros at
y = π/2 and y = 3π/3. The Reynolds’ stresses thus tend to narrow the jet.

behavior of the results when these parameters go to zero. While feasible, this route
seems extremely difficult, as the numerical discretization would have to be increased
as ν goes to zero. One of the goals of this thesis was to find alternative ways to
compute the average Reynolds’ force. We now briefly present those methods, the
details are summarized in appendix E.

Integral form of the Lyapunov equation

The first idea has been to turn the stationary Lyapunov equation into an integral
equation for fαkl, which is known to be well-behaved in the inertial limit. The integral
equation was then solved iteratively. This is presented in detail in [18] and in
appendix E.1. The main limitation of this method is that the convergence of the
iterative scheme for a given U cannot be predicted.

Integration over frequencies of the resolvant

Another way to proceed is to compute fαkl from the resolvant of the linear operator
L0
U,k, defined as the solution of the ordinary differential equation

(

d2

dy2
− k2

)

φ− U ′′(y)

U(y)− c− iǫ
φ =

eily

ik (U(y)− c− iǫ)
, (4.32)

see appendix D.2 for details. (4.32) can be solved numerically very easily [11]. The
computation of fαkl then reduces to an integration over frequencies c of a function
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of the resolvant. This method is presented in another publication [12], and in ap-
pendix E.2.

Computation using the pseudomomentum balance

The last method relies on the expression of fαkl deduced from the pseudomomentum
balance, (4.30). The computation of fαkl reduces to the computation of ω̃∞

kl , the
asymptotic vorticity profile defined in the Orr mechanism (4.20). This is simple as
ω̃∞
kl is related to the asymptotic solution of a deterministic linear equation. Actually,

a very simple way to compute ω̃∞
kl as a function of the resolvant given by (4.32) is

proposed in [11], see also appendix E.3 of this thesis. In contrast with the second
method, it does not involve an integration over frequencies, but only the computa-
tion of the resolvant at a given frequency for each y. The computation is then much
faster. The result for F0 is shown in figure 4.2.

Note that in all of the three proposed ways to compute F0, the viscosity is exactly
zero, and the limit α → 0 can be achieved very easily, as illustrated in figure 4.2.
Being able to compute the average Reynolds’ force in the stationary state of the
eddy dynamics, in the limit of no dissipation is an important result in itself. In
particular, an interesting perspective is to use these methods to study the effective
evolution of jets through the deterministic kinetic equation (3.12). Another way to
proceed would be to compute directly the attractors of zonal jet dynamics (in the
case where ζ = 0 in (3.12)) as the solutions of

F0[U ] = U − ν

α

∂2U

∂y2
, (4.33)

for instance using an iterative scheme.

4.4 Stochastic kinetic equation

We now consider the effective dynamics of zonal jets at second order in α, equation
(3.7) in page 39. In particular, this equation involves a noise term ξ[U ] that repre-

sents the typical fluctuations of the time averaged Reynolds’ force 1
∆t

∫ ∆t

0
〈vmωm〉(s) ds.

More precisely, ξ[U ] is a gaussian noise with zero mean and correlations (for a fixed
U)

E [ξ[U ](y1, t1)ξ[U ](y2, t2)] = δ(t1 − t2)Ξ[U ](y1, y2) (4.34)

with Ξ[U ] given in (3.22), page 45. The integrand in (3.22) is usually called the
autocorrelation function of f(z, w̃z(s)) [44, 77]. Then, Ξ[U ] is called the integrated
autocorrelation function.

Like F0 in (4.25), Ξ[U ] is defined7 as the limit when α → 0 of an expectation
in the steady state of ωm. For future convenience, we define Ξα as the integrated
autocorrelation function of the Reynolds’ force with a small but non-zero α, such
that

Ξ[U ] = lim
α→0

Ξα[U ] , (4.35)

7Formally, we should first take the limit α → 0 and then t → ∞ to compute Ξ. Inverting the
ordering of limits does not have any consequences here, as will be argued in chapter 5.
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where Ξα is defined as

Ξα[U ](y1, y2) =

∫ ∞

0

{

E
α
U [〈vmωm〉 (y1, s) 〈vmωm〉 (y2, 0)]

− E
α
U [〈vmωm〉 (y1, s)]EαU [〈vmωm〉 (y2, 0)] + (y1 ↔ y2)

}

ds,

(4.36)

where EαU [·] is the average in the stationary state of (4.1) (with ν = 0), and (y1 ↔ y2)
is the symmetric expression with y1 and y2 interchanged.

In this section we give an expression of Ξα[U ] that enables its numerical compu-
tation, and that will be useful in chapter 5 in order to adress the convergence of Ξα

in the limit α → 0. We also present a simple case where Ξα[U ] can be computed
explicitely.

4.4.1 The integrated autocorrelation function in terms of

two–points correlation functions

To state these results more precisely, we need to decompose Ξα[U ] into its contribu-
tions coming from each forcing mode. Using (4.8) and (4.36), we get

Ξα[U ](y1, y2)=
∑

(k,k′,l,l′)∈Z4

ckl
2

ck′l′

2

∫ ∞

0

E
α
U [[ (vklω−k,−l) (y1, s) (vk′l′ω−k′,−l′) (y2, 0)

+(y1 ↔ y2) ]] ds,

where E
α
U [[·]] denotes the covariance. The vorticity ωkl (defined in (4.9) page 50)

and the associated meridional velocity vkl are Ornstein-Uhlenbeck processes with
zero initial condition, so they are gaussian random variables at all times [44]. Then
Isserli-Wick theorem can be applied, and the four-points correlation functions can
be written as products of two-points correlation functions. Using the fact that ωk1,l1
and ω∗

k2,l2
are statistically independent for (k1, l1) 6= (k2, l2), we get

Ξα[U ](y1, y2) =
∑

(k,l)∈Z2

c2kl
{

Ξαkl(y1, y2) + Ξαkl(y2, y1)
}

(4.37)

with Ξαkl(y1, y2) = Cα
kl(y1, y2) +Dα

kl(y1, y2) where

Cα
kl(y1, y2) =

1

4

∫ ∞

0

E
α
U [vkl(y1, s)v−k,−l(y2, 0)]E

α
U [ω−k,−l(y1, s)ωkl(y2, 0)] ds (4.38)

and

Dα
kl(y1, y2) =

1

4

∫ ∞

0

E
α
U [vkl(y1, s)ω−k,−l(y2, 0)]E

α
U [ω−k,−l(y1, s)vkl(y2, 0)] ds. (4.39)

Note that, by definition of the covariance EαU [[·]], the correlations EαU [vkl(y1, s)ω−k,−l(y1, s)]
and E

α
U [vk′l′(y2, 0)ω−k′,−l′(y2, 0)] have been cancelled in the computation of Ξαkl[U ].

Following the procedure described in section 4.2.2, the two-points correlation
functions appearing in (4.38) and (4.39) can be expressed as

T αωω(k, l, y1, y2, s) ≡
1

2
E
α
U [ω−k,−l(y1, s)ωk,l(y2, 0)] =

∫ ∞

0

dt1 ω̃−k,−l(y1, s+t1)ω̃k,l(y2, t1) ,

(4.40)
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T αvv(k, ly1, y2, s) ≡
1

2
E
α
U [vk,l(y1, s)v−k,−l(y2, 0)] =

∫ ∞

0

dt1 ṽk,l(y1, s+ t1)ṽ−k,−l(y2, t1) ,

(4.41)

T αvω(k, l, y1, y2, s) ≡
1

2
E
α
U [vk,l(y1, s)ω−k,−l(y2, 0)] =

∫ ∞

0

dt1 ṽk,l(y1, s+t1)ω̃−k,−l(y2, t1) ,

(4.42)

T αωv(k, l, y1, y2, s) ≡
1

2
E
α
U [ω−k,−l(y1, s)vk,l(y2, 0)] =

∫ ∞

0

dt1 ω̃−k,−l(y1, s+t1)ṽk,l(y2, t1) ,

(4.43)
where ω̃kl is the solution of the deterministic linear dynamics ∂t + LU,k with initial
condition el, and ṽkl is the associated meridional velocity.

The second numerical method explained in section 4.3.2 can be easily generalized
to compute Ξα[U ]. Indeed, the two-points correlation functions defined in equations
(4.40–4.43) can be expressed as integrals over frequency of products of the resolvant
(see appendices D.2 and E.2). Then, the integrals over s in (4.38, 4.39) can also be
expressed as integrals over frequencies, which can be computed numerically. These
computations are very similar to those presented in appendix E.2, so we do not
report them here. Instead, we present a case where Ξαkl can be computed explicitely,
which is easier to interpret qualitatively.

4.4.2 Explicit computation in the case of a constant shear

Consider the case of the linear Euler equation in a channel (x, y) ∈ D = [0, 2πLx)×
[0, Ly], or in an infinite domain (x, y) ∈ D = [0, 2πLx) × R, where the background
flow is U(y) = sy with a constant shear s. Then the linearized deterministic dy-
namics of ω̃k,l reads

∂t1ω̃k,l(y, t1) + (iksy + α) ω̃k,l(y, t1) = 0 , ω̃k,l(y, 0) = eily, (4.44)

which can be solved as ω̃k,l(y, t1) = e−(iksy+α)t1+ily. The associated velocity field is
then obtained as

ṽk,l(y, t1) = ik

∫

dy′Hk(y, y
′) e−(iksy′+α)t1+ily′ , (4.45)

where Hk(y, y
′) is the Green function of the Laplacian ∆k = ∂2y − k2, i.e. such that

∆kHk(y, y
′) = δ(y − y′).

The correlation functions defined in equations (4.40–4.43) can be easily computed
using these explicit expressions of ω̃kl and ṽkl. Then, Ξ

α[U ] is computed using (4.37,
4.38, 4.39). The results are reported in details in section 5.2.1 (page 72).

In figure 4.3 is represented the real part of Ξαkl for k = l = 1, s = 1 and α = 0.01.
We observe that Ξαkl(y, y

′) is dominated by its value on the diagonal y = y′. In
chapter 5, we will actually prove that the value of Ξαkl(y, y

′) at points such that
U(y) = U(y′) (i.e. on the diagonal y = y′ for the constant shear flow U(y) = sy)
is expected to diverges as 1/α in the inviscid limit α → 0, while it is expected to
converge to a finite value elsewhere. This is consistent with the qualitative behaviour
observed in figure 4.3. This behaviour is related to the well-definiteness of the kinetic
equation (3.7), as discussed in more details in next chapter.
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Figure 4.3: Real part of the integrated autocorrelation function Ξαkl(y1, y2) (defined
in (4.37)) as a function of (y1, y2) in the case of a constant shear base flow U(y) = sy,
computed with equations (5.16, 5.18) for given values of the parameters: k = l = 1,
s = 1 and α = 0.01. This quantity is clearly dominated by the values on the diagonal
y1 = y2, where it is expected to diverge as 1/α when α→ 0.
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4.5 Perspectives

In section 4.3, we have given an explicit expression of the average Reynolds’ force
F0 in terms of the asymptotic profile of deterministic vorticity. This led both to a
simple proof of the fact that F0 is finite, and to a very efficent way to compute it
numerically. Those results apply to the linearized Euler equation, i.e. to the case
β = 0. For geophysical applications, it would be very interesting to understand if
these results also apply to the linearized beta-plane equation.

So far, the asymptotic behavior of the linearized barotropic equation has been
mostly studied in the particular case of a parabolic jet profile, such that the gradi-
ent of potential vorticity U ′′(y)− β either exactly vanishes [24], or is small [23]. In
the first case, the deterministic linear dynamics can be solved explicitly, and it can
be shown that an inviscid damping mechanism (very similar to the Orr mechanism
in the constant shear case) leads to an algebraic decay of the stream function as
ψ̃k ∼ t−1/2. This decay is not fast enough to insure the convergence of the average
Reynolds’ force. In this very particular case, the deterministic kinetic theory is not
self-consistent. However, this case might be a very singular one, indeed the case of
a small but strictly negative potential vorticity gradient [23] leads to a decay of the
stream function as ψ̃k ∼ t−3/2. Then the average Reynolds’ force converges, and the
theory is self-consistent at first order.

The other hypothesis made to obtain the previous results is that the linear opera-
tor L0

U has no modes, neither unstable nor neutral. While the assumption that there
is no unstable mode is very natural, it can seem at first restrictive to assume that
no neutral mode exist. However, this is the generic case for the 2D Euler equation.
The only examples of stable flows for the 2D Euler dynamics with neutral modes
we are aware of are cases with localized vorticity profile [101] or the cosine flow in
a square domain [11].

When it comes to the linear barotropic equation, this assumption might be more
restrictive. Indeed, the Rossby waves are very common neutral modes of the lin-
earized barotropic dynamics, and are expected to exist in geophysical situations
[87]. However, we note that a mechanism of expulsion of modes in the presence of
a background zonal jet has been observed in specific cases, and seems to hold in
the atmosphere [53]. In the case where the linear dynamics would still have neutral
modes, the typical time scale of propagation of the wave would be an intermediate
time scale between the evolution of the jet and the evolution of the eddies. This
contribution should thus be extracted from the dynamics of eddies, and the effective
equation of jets dynamics would be modified. Investigating this point would be very
interesting for the kinetic theory.

Another natural perspective of the results of this chapter is the numerical in-
tegration of the kinetic equation (3.7). As discussed in sections 3.2.1 and 4.3.2,
the deterministic part of the kinetic equation is very close to the S3T-CE2 system,
which has been simulated and compared with direct numerical simulations of the
stochastic barotropic model in many cases [3, 33, 85, 104, 106]. In all those studies,
the average Reynolds’ force F0 is computed solving the Lyapunov equation in a stan-
dard way (discretizing the linear operator), with finite viscosity and linear friction.
The use of the expression (4.30) of F0 through the algorithm described in section
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4.3.2 provides a way to investigate stationary zonal jets in the limit of no viscosity
and small dissipation α → 0. Moreover, an efficient implementation of such algo-
rithm could possibly provide an extremely fast simulation of large scale dynamics
in barotropic models, which is part of a very challenging issue in geophysical fluid
dynamics modelling [66].

Besides, the stochastic part of the kinetic equation has never been simulated.
Such simulation could be done using the numerical method proposed in section 4.4.
It would provide a direct description of zonal jet statistics around the attractors of
the deterministic kinetic equation (3.12), which is not possible through simulations
of the deterministic kinetic equation (or equivalently S3T-CE2).
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Chapter 5

Theoretical justification of the

kinetic theory

Using a stochastic averaging approach (equivalent to the Law of Large Numbers
and the Central Limit Theorem), we derived in chapter 3 the following effective
dynamics of zonal jets in the limit of small forces and dissipation1:

∂U

∂t
= αF0[U ]− αU + αξ[U ] , (5.1)

where F0[U ](y) = EU〈ωmvm〉 and ξ[U ] is a gaussian white noise with spatial cor-
relations Ξ[U ], given in (3.22) page 45. F0 and Ξ are averages in the statistically
stationary state of the linear inertial dynamics

∂ωm
∂t

+ L0
U [ωm] =

√
2 ηm , (5.2)

where L0
U is the operator for the linearized barotropic dynamics close to the fixed

base flow U(y) with no dissipation (see (4.2) page 49). The effective dynamics (5.1)
is called the kinetic equation and the linearized dynamics (5.2) is called the virtual
fast process.

We discuss in this chapter the hypothesis for the validity of this effective equation,
as already discussed in a more general setting in section 2.4 (page 35). We first
enumerate those hypothesis, and then present the main results of this chapter.

1. We first need to make sure that (5.2) has a stationary distribution (invariant
measure), so that the expectations EU actually have a meaning.

As already pointed out in the previous chapter, this is not obvious as (5.2)
is forced but not dissipated. The existence of such stationary distribution is the
consequence of an inviscid damping mechanism, known in the case of the 2D Euler
equation as the Orr mechanism (presented in section 4.2 page 50). However, such
damping is not uniform on all observables, and we will see that the expectation EU

of some observables is actually infinite.

1We focus here on the physically most relevant terms, i.e. we assume ζ = 0 and we neglect both
viscosity and the correction drift of order α2 (recall that the term of order α3/2 in (3.7) is exactly
zero, see section 3.3).
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5.1. STATIONARY DISTRIBUTION OF THE EDDY VORTICITY IN THE INERTIAL LIMIT

2. For this reason, we have to make sure that the kinetic equation (5.1) is well-
defined, in the sense that F0 is finite and Ξ is a distribution (generalized
function).

From the qualitative point of view of the averaging procedure (see section 2.4),
we have to make sure that:

3. The fast process (5.2) is ergodic (in a sense that will be precised later on).

4. The time scale separation between slow and fast components is satisfied in the
effective description (5.1, 5.2) (self-consistency).

In the previous chapter, we have already seen that the average Reynolds stress
divergence F0 is finite (see section 4.3.1), using the Orr mechanism (4.20). In this
chapter, we will use the Orr mechanism to prove that

• the stochastic inertial linear dynamics (5.2) has a stationary distribution. This
is done in section 5.1; it proves point 1.

• the integrated autocorrelation function of the Reynolds’ stress divergence Ξ[U ]
is a distribution (generalized function). This is presented in section 5.2. This
result, together with the result of the previous chapter about F0[U ], proves
point 2.

The properties of Ξ[U ] have important consequences for the zonal jet energy bal-
ance, as explained in section 5.3.2. It will also be further discussed in chapter 6.

Then in section 5.3 we discuss points 3. and 4., using the theoretical computa-
tions of section 5.2. We will prove ergodicity of the fast process in a weak sense
that will be precised, and we will prove that a time scale separation exists between
the effective dynamics of U in the kinetic equation (5.1) and the dynamics of ωm in
(5.2), in the sense of (2.33) (page 36).

Some of the technical points studied in this chapter will be illustrated with nu-
merical simulations of the linearized barotropic equation in chapter 6.

5.1 Stationary distribution of the eddy vorticity

in the inertial limit

As discussed in chapter 3, it is essential to make sure that the linear stochastic
process corresponding to the inertial linearized evolution of non-zonal degrees of
freedom (eddies) close a base flow U has a stationary distribution. We discuss this
issue in this section.

We consider the linear dynamics with no dissipation (5.2), this equation describes
a linear stochastic Gaussian process, or Ornstein-Uhlenbeck process. Whatever the
initial condition, its stationary distribution is the gaussian functional [44]

GU [ωm] =
1

ZU
exp

(

−1

2

∫

dr1dr2 ωm(r1) (g
∞)−1 (r1, r2)ωm(r2)

)

, (5.3)
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where (g∞)−1 is the inverse of the stationary vorticity auto-correlation function g∞

(here understood as a linear operator). We recall that g∞ depends parametrically
on U .

We thus have to make sure that g∞ actually exists. By definition, g∞ is the large-
time limit of the vorticity two-points correlation function g(r1, r2, t) = E [ωm(r1, t)ωm(r2, t)].
The evolution of g is given by the Lyapunov equation

∂g

∂t
+
(

L
0(1)
U + L

0(2)
U

)

g = 2Cm, (5.4)

where L
0(i)
U is the operator L0

U acting on the variable ri. We will prove that equation
(5.4) has as asymptotic solution g∞ for large time. This may seem paradoxical
as we deal with a linearized dynamics with a stochastic force and no dissipation
mechanism. We explain in this section that the Orr mechanism presented in section
4.2.3 (page 53) acts as an effective dissipation. However this effect is not uniform on
all observables. We will prove that g has a limit g∞ in the sense of distributions, from
which we will be able to prove that velocity-like observables (like the kinetic energy
contained in the non-zonal degrees of freedom) are finite in the large-time limit.
By contrast, observables involving only vorticity (like the non-zonal enstrophy) will
diverge in the large-time limit.

The statement that “the Gaussian process corresponding to the inertial linearized
evolution close to a base flow U has a stationary distribution” must thus be under-
stood with care: not all observable converge.

5.1.1 The stationary vorticity correlation function is a dis-

tribution

We study here the behaviour for large times of gkl(r1, r2, t) ≡ 1
2
eik(x1−x2)E [ωkl(y1, t)ω

∗
kl(y2, t)]+

c.c. where E is the average over realizations of the gaussian white noise ηkl in the
linear dynamics

∂ωkl
∂t

+ L0
U,k[ωkl] =

√
2eily ηkl (5.5)

with L0
U,k = ikU + ik (β − U ′′)∆−1

k (see section 4.1.2 in page 50 for details of the
Fourier decomposition).

From (4.16) and the Orr mechanism (4.20), we get

gkl(r1, r2, t) = eik(x1−x2)
∫ t

0

ω̃kl(y1, t1)ω̃
∗
kl(y2, t1) dt1 + c.c.

= eik(x1−x2)ω̃∞
kl (y1)ω̃

∞∗
kl (y2)

∫ t

0

e−ik[U(y1)−U(y2)]t1 dt1 + grkl(r1, r2, t) + c.c. ,

(5.6)
where grkl contains the corrections due to the decaying part of ω̃kl. We readily see
that if U(y1) 6= U(y2), then gkl(y1, y2, t) has a finite limit when t→∞. By constrast,
if U(y1) = U(y2) then the first term in (5.6) diverges linearly with t. In section 5.1.2,
we will argue that grkl(r1, r2, t) is subdominant with respect to this divergence, so
the leading order divergence of gkl at points such that U(y1) = U(y2) is given by the
first term in (5.6).
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5.1. STATIONARY DISTRIBUTION OF THE EDDY VORTICITY IN THE INERTIAL LIMIT

Using Plemelj formula (D.2) in appendix D.1, we get gkl → g∞kl in the limit
t→∞, with

g∞kl (r1, r2) = eik(x1−x2)
{

π |ω̃∞
kl (y1)|2

|kU ′(y1)|
δ(y1 − y2)− iPV

(

ω̃∞
kl (y1)ω̃

∞∗
kl (y2)

k (U(y1)− U(y2))

)}

+ grkl(r1, r2,∞) + c.c. ,
(5.7)

where PV denotes the Cauchy Principal Value distribution.
To write this formula, we have assumed that U is a monotonic profile. Then each

frequency kU(y) in the asymptotic oscillations of the deterministic vorticity (4.20)
corresponds to a single streamline y =cte. If U is non-monotonic, two streamlines
may have the same frequency, and resonances between streamlines should be con-
sidered. The formula would then be more intricate, but the result can be easily
obtained from (4.20) and the conclusion that gkl converges to a distribution is still
true. We note that the difficult theoretical result related to those resonances is to
establish (4.20) [11].

We recall that g is the weighted sum of gkl over (k, l), see equation (4.15). We
conclude that the Lyapunov equation (5.4) has a stationary solution understood as
a distribution.

Equation (5.7) also implies that at all points such that y1 = y2, g diverges in the
stationary state. This means that the enstrophy contained in the non-zonal degrees
of freedom 1

2
g∞(r, r) = 1

2
EU [ωm(r)

2] is infinite. In paragraph 5.1.2, we will see how
this divergence is regularized by a small linear friction. By contrast, any observable
that can be computed as an integral of g∞ multiplied by a continuous function is
finite.

As an example, consider the velocity auto-correlation function and the kinetic
energy density. The velocity two-points correlation function is a quadratic quantity,
that can be obtained directly as a linear transform from the vorticity auto-correlation
function g, or from the deterministic solution to the linearized operator. From (4.15),
we see that the contributions from each forcing mode add up:

EU [vm(r1, t) · vm(r2, t)] =
∑

k>0,l

cklEkl(r1, r2),

with

Ekl(r1, r2) = eik(x1−x2)
∫ ∞

0

ṽkl(y1, t1).ṽ
∗
kl(y2, t1) dt1 + c.c., (5.8)

where ṽkl is the velocity of the deterministic solution to the linearized equation
∂tω̃kl + L0

U,k [ω̃kl] = 0, with initial condition el. Alternatively, Ekl = V(1)V(2)∗g∞kl ,
where V = −∇ [∆−1(.)] × ez is the linear operator giving the velocity from the
vorticity and V(1), resp. V(2) are the operator V acting on the first, or second
variable respectively. From (4.21, 4.22), it is clear that Ekl and thus the velocity
two-points correlation functions are finite, even if no dissipation is present in the
dynamics of vm.

We note that αEU [v2
m(r1, t)] is the eddy kinetic energy density (the kinetic energy

contained in the non-zonal degrees of freedom). We thus conclude that in the limit
of very small α, the non-zonal kinetic energy is proportional to α, and that its
value can be estimated from the Lyapunov equation with α = 0. Those results are
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extremely important, as they prove that the assumption that velocity perturbations
close to the zonal flow are of order

√
α is self-consistent.

5.1.2 Regularization of the eddy enstrophy due to a small

linear friction

We have proved in the previous paragraph that the average eddy kinetic energy
density and the velocity two-points correlation functions have limit values indepen-
dent on α or the viscosity in the inertial limit. This behaviour is similar to the
behaviour of the average Reynolds’ force F0, as explained in chapter 4. By contrast,
the vorticity two-points correlation function g∞(r1, r2) diverges point-wise for any
two points such that U(y1) = U(y2), and is well defined as a distribution, as shown
in equation (5.7). This also implies that the enstrophy contained in non-zonal de-
grees of freedom for α = 0, 1

2
g∞(r, r) = 1

2
EU [ωm(r)

2], is infinite. We now address
how this is regularized for small values of α.

We will prove that in the vicinity of y1 = y2, the singular behavior of g∞kl is
regularized in a universal way (with shape functions independent on U) over a scale
α/|kU ′(y1)|. Moreover we can prove that EαU [ω2

m(r)] diverges proportionally to 1/α,
such that the actual non-zonal enstrophy density 1

2
αEαU [ω2

m(r)] has a finite limit
when α → 0 (see section 4.1.1 page 49 for the definition of the expectations). This
behaviour could have been expected in order to balance the finite enstrophy input
rate provided by the stochastic force.

We now consider the dynamics of the eddy vorticity ωm with a small but non-zero
friction α. We then denote gαkl ≡ 1

2
eik(x1−x2)EαU [ωkl(y1, t)ω

∗
kl(y2, t)] + c.c. where E

α
U is

the average in the stationary state of the linear dynamics

∂ωkl
∂t

+ LαU,k[ωkl] =
√
2eily ηkl (5.9)

with LαU,k = ikU + ik (β − U ′′)∆−1
k + α (see section 4.1.2 in page 50 for details of

the Fourier decomposition).

Using (4.16) and the Orr mechanism (4.24), we get

gαkl(r1, r2) = eik(x1−x2)
ω̃∞
kl (y1)ω̃

∞∗
kl (y2)

ik (U(y1)− U(y2)) + 2α
+ gr,αkl (r1, r2) + c.c. , (5.10)

where, gr,αkl contains the corrections due to the correction term ω̃r,αkl in (4.24). We
readily see in (5.10) that if U(y1) 6= U(y1) then g

α
kl(r1, r2) is finite when α→ 0. By

contrast, if U(y1) = U(y1) then the first term in (5.10) diverges as 1/α when α→ 0.
In appendix D, we prove that gr,αkl (r1, r2) = o(1/α) when α → 0, so the leading
order divergence of gαkl at points such that U(y1) = U(y2) is given by the first term
in (5.10).

When y1 ∼ y2, the first term in (5.10) can be written

ω̃∞
kl (y1)ω̃

∞∗
kl (y2)

ik (U(y1)− U(y2)) + 2α
∼

y1∼y2

ω̃∞
kl (y1)ω̃

∞∗
kl (y2)

ikU ′(y1)

−i
(y1 − y2)− 2iα

kU ′(y1)

.
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Figure 5.1: Real and imaginary parts of the k-th Fourier component of the stationary
vorticity two-points correlation function gαkl(x, y, x, 0) in the case of a parabolic base
profile in a channel geometry (with no stationary points), with k = l = 1 and
different values of the friction coefficient α. The plots clearly show the expected
divergence at y = 0. A closer look at the divergence is shown in figure 5.2. These
numerical results were obtained using an integral representation of the Lyapunov
equation, see section 4.3.2 and [18] for details.

Using the results of appendix D.1, we get in the small α limit

gαkl(r1, r2) ∼
λα≪1, y1∼y2

2

{

cos k(x1 − x2)
|ω̃∞
k (y1)|2
|kU ′(y1)|

Re [Fλα(y1 − y2)]

+
Im
[

ω̃∞
k (y1)ω̃

∞∗
k (y2)e

ik(x1−x2)
]

kU ′(y1)
Im [Fλα(y1 − y2)]

}

+ 2Re gr,αkl (r1, r2),

(5.11)
with λα = 2α/|kU ′(y1)| and Fλ(y) = −i

y−iλ
. Comparing (5.7) with (5.11), we conclude

that the vorticity two-points correlation function is regularized in a universal way
close to y1 = y2 when α is small but non-zero, through the function Fλ(y).

In figure 5.1 are represented the real and imaginary parts of gαkl for different values
of α, for a parabolic base velocity in a channel (with no extrema). The expected
divergence at y1 = y2 clearly appears in this figure. In figure 5.2, the comparison of
this divergence and of the theoretical prediction (5.11) shows a very good agreement.

In particular, (5.10) implies

E
α
U |ωkl(y, t)|2 = gαkl(r, r) ∼

α→0

|ω̃∞
kl (y)|2
α

, (5.12)

so the eddy enstrophy density 1
2
αEαU [ω

2
m] remains finite as α → 0. This is also the

relation we have used in order to prove that the average Reynolds’ force F0 is finite
in section 4.3 (page 56).

5.2 Typical fluctuations of Reynolds’ stresses in

the inertial limit

In section 4.3, we have proved that the average Reynolds’ force F0, computed in the
stationary state of ωm without dissipation, is finite. In this section we adress the
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Figure 5.2: Divergence of the stationary vorticity two-points correlation function
gαkl(x, y, x, 0) near y = 0 in semi-log scale, in the case of a parabolic base profile in
a channel geometry (with no stationary points), with k = l = 1 and α = 0.005.
As expected, the comparison between the numerical result and the universal shape
(5.11) is very good in the range 1≫ y ≫ 2α

ks0
≃ 0.006 (the area between the vertical

lines). These numerical results were obtained using an integral representation of the
Lyapunov equation, see section 4.3.2 and [18] for details.

similar question for the integrated autocorrelation function of the Reynolds’ force
Ξ[U ], defined in (3.22) (page 45).

More precisely, we study the behaviour for small α of Ξα[U ], defined in (4.36)
(page 61), and that satisfies Ξ[U ] = limα→0 Ξ

α[U ]. Formally, we should first take the
limit α→ 0, and then t→∞, like we did in section 5.1.1. Like it is the case for the
average Reynolds’ force F0 (see section 4.3.1) and for the vorticity auto-correlation
function g∞ (see section 5.1), the result for Ξ is independent of the ordering of
limits. For simplicity, we will only present the derivation corresponding to taking
first t→∞ and then α→ 0. Moreover, the behaviour of Ξα for small α will be very
important in the following discussion, in section 5.3.

5.2.1 The integrated autocorrelation function is a distribu-

tion

The formal computations of section 4.4 led to the following expression of Ξα[U ]:

Ξα[U ](y1, y2) =
∑

(k,l)∈Z2

c2kl
{

Ξαkl(y1, y2) + Ξαkl(y2, y1)
}

(5.13)

where

Ξαkl(y1, y2) =
1

4

∫ ∞

0

[T αωω · T αvv + T αvω · T αωv] (k, l, y1, y2, s) ds , (5.14)

where T αωω, T
α
vv, T

α
vω and T αωv are two-points time-correlation functions, defined in

(4.40–4.43).

Using the Orr mechanism (4.20–4.24) to estimate the large-s behaviour of T αωω,
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T αvv, T
α
vω and T αωv, we will prove that

Ξαkl(y1, y2) ∼
α→0

Akl(y1, y2)

ik(U(y1)− U(y2)) + 2α
, (5.15)

where Akl is a regular function. At points such that y1 = y2, we readily see that
Ξαkl(y1, y2) behaves like 1/α, as explained before. Using Plemelj formula (D.2), we
also see that Ξαkl(y1, y2) converges in the sense of distributions as α→ 0.

In the following, we first prove (5.15) in a simple, explicitely solvable case. Then
we consider the generalisation of this result to any background flow U(y).

Explicit computation in the case of a constant shear

Like in section 4.4.2, consider the case of the linear Euler equation in a channel
(x, y) ∈ D = [0, 2πLx)× [0, Ly], or in an infinite domain (x, y) ∈ D = [0, 2πLx)×R,
where the background flow is U(y) = sy with a constant shear s.

In this case, the deterministic linear equation can be solved explicitely, and all
the quantities of interest can be expressed in terms of spatial integrals involving Hk,
the Green function of the Laplacian ∆k = ∂2y−k2. In the following, we will not need
the explicit expression of Hk, but only the fact that Hk is a continuous function of
its two variables, and that the first derivative ∂yHk(y, y

′) is discontinous at y = y′

[11].

The correlation functions T αvv and T αωω can be easily computed injecting the ex-
pressions of ω̃kl and ṽkl into (4.40) and (4.41), leading to

Cα
kl(y1, y2) ≡

1

4

∫ ∞

0

[T αωω · T αvv] (k, l, y1, y2, s) ds

= − i

ks3
e−il(y1−y2)

y1 − y2 +
2α
ks
i

∫

dy′1

∫

dy′2
Hk(y1, y

′
1)H−k(y2, y

′
2)e

il(y′1−y
′

2)

(

y′2 − y′1 +
2α
ks
i
) (

y1 − y′1 +
2α
ks
i
) .

(5.16)
Hk is a continuous function, so the spatial integrals appearing in the above expression
converge to a finite quantity in the limit α→ 0:

∫

dy′1

∫

dy′2
Hk(y1, y

′
1)H−k(y2, y

′
2)e

il(y′1−y
′

2)

(

y′2 − y′1 +
2α
ks
i
) (

y1 − y′1 +
2α
ks
i
) −→

α→0
A(k, l, y1, y2) (5.17)

where A is a regular function independent of α, that can be written explicitely using
Plemelj formula (D.2). Then, we clearly see that, due to the pre-factor in (5.16),
Cα
kl(y1, y2) is finite for y1 6= y2 and diverges as 1/α for y1 = y2.

Similarly, we can compute

Dα
kl(y1, y2) ≡

1

4

∫ ∞

0

[T αvω · T αωv] (k, l, y1, y2, s) ds

= − i

ks3

(

∫

dy′1
Hk(y1, y

′
1)e

−il(y′1−y2)

(

y2 − y′1 +
2α
ks
i
) (

y1 − y′1 +
2α
ks
i
)

)

×
(
∫

dy′2
Hk(y2, y

′
2)e

−il(y′2−y1)

y1 − y′2 +
2α
ks
i

)

.

(5.18)
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We observe that this expression is the product of two integrals. The second one
converges to a finite quantity when α → 0, for any y1 and y2. Moreover, if y1 6= y2
the first integral also has a finite limit, using again that the Green function Hk is
continuous. However, when y1 = y2, the integral over y′1 becomes

∫

dy′1
Hk(y1, y

′
1)e

−il(y′1−y1)

(

y1 − y′1 +
2α
ks
i
)2 =

∫

dy′1

∂
∂y′1

(

Hk(y1, y
′
1)e

−il(y′1−y1)
)

y1 − y′1 +
2α
ks
i

, (5.19)

where we used an integration by parts. We now see that this integral diverges when
α→ 0 because the quantity at the numerator is not continuous exactly at y1 = y′1.
This implies that Dα

kl(y, y) diverges as lnα when α→ 02.

Using (5.16) and the fact that Dα
kl(y, y) ∼ lnα, we deduce3 the asymptotic be-

haviour of the integrated autocorrelation function Ξαkl(y1, y2) (defined in (4.37))

Ξαkl(y1, y2) ∼
α→0

Akl(y1, y2)

iks(y1 − y2) + 2α
(5.20)

where Akl(y1, y2) is a finite function independent of α. We have thus proved the
result (5.15) in this simple case.

Generalization to any background flow

We now generalize the result of the previous paragraph to the case of a generic base
flow U(y). We will prove that the main contribution to Ξαkl in the limit α→ 0 comes
from Cα

kl, and that it is of the form (5.15).
To do this, it is enough to observe that the most divergent part of Ξαkl comes from

the vorticity-vorticity correlations T αωω. Indeed, it is the integral of a function that
oscillates without decaying in the limit α→ 0, see (4.40) and (4.20). In comparison,
all the other correlation functions involve integrals of the velocity field, that decays
algebraically for large time, see (4.22). The computation of T αωω is very similar to
the computation of the equal-time two-points vorticity correlation function gα,∞kl in
section 5.1.2. For that reason, the limits t→∞ and α→ 0 could be taken in either
order, leading to the same result for Ξ.

Using (4.40) and (4.24), we get

T αωω(k, l, y1, y2, s) =
ω̃∞
−k,−l(y1)ω̃

∞
kl (y2)

ik (U(y1)− U(y2)) + 2α
eikU(y1)s−αs+T r,αωω (k, l, y2, y2, s) , (5.21)

where T r,αωω is subdominant with respect to the first term in the limit α → 0 when
U(y1) = U(y2) (see appendix F). We recover the divergent part of (5.15) for U(y1) =
U(y2).

To finish the proof, we need to find bounds on T αvv, T
α
vω and T αωv. This is done in

appendix F. In particular, it is shown that in the limit α→ 0 and at points such that
U(y1) = U(y2), |Dα

kl(y1, y2)| . C| lnα| with some positive constant C, like in the
constant shear case studied in the previous paragraph. Then, the same conclusion
holds, and (5.15) is proved in the general case.

2To understand the rate of this divergence with α, it is enough to observe that the divergence
arises from the neighbourhood y′1 ∈ [y1 − ǫ, y1 + ǫ]. Then, as y′1 → ∂

∂y′

1

Hk(y1, y
′
1) is analytic in

both the neighbouroods y′1 ∈ [y1− ǫ, y1[ and y′1 ∈]y1, y1 + ǫ], we can expand it in Taylor series. By
direct computation, one finally obtains that the integral in (5.19) diverges as lnα.

3See section F.2 in appendix F for details.
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5.2.2 The covariance is a distribution

The typical fluctuations of Reynolds’ stresses are also characterized by the covariance
of the Reynolds’ stress divergence at points y1 and y2, defined as

C[U ](y1, y2) ≡ EU [[〈vmωm〉 (y1) 〈vmωm〉 (y2)]] . (5.22)

This quantity enters for instance into the expression of the correlation time τcorr
(denominator of (2.32), page 35, see also section 5.3.4).

The computation of C[U ](y1, y2) can be done the same way as the computation of
Ξ[U ] in section 4.4: decomposition into contributions from each forcing mode, use of
Isserli-Wick theorem and expression using the two-points correlation functions T αωω,
T αvv, T

α
vω and T αωv (defined in equations (4.40–4.43) in page 61). This procedure leads

to C = limα→0C
α where

Cα[U ](y1, y2) ≡
∑

(k,l)∈Z2

c2kl [T
α
vv(k, l, y1, y2, 0)T

α
ωω(k, l, y1, y2, 0)

+T αvω(k, l, y1, y2, 0)T
α
ωv(k, l, y1, y2, 0)] .

(5.23)

Using the computations of previous section and of appendix F, we understand from
(5.23) that the covariance Cα and is of the form

Cα[U ](y1, y2) ∼
α→0

∑

(k,l)∈Z2

c2klA
′
kl(y1, y2)

ik(U(y1)− U(y2)) + 2α
, (5.24)

where A′
kl is a regular function, independent of α. The consequences of this result

are discussed in section 5.3.

5.2.3 Influence of the forcing spectrum

The results of previous sections (5.15, 5.24) essentially show that the typical fluc-
tuations of the Reynolds’ force 〈ωmvm〉(y) diverge point-wise in the large time and
inertial limit t → ∞, α → 0. The consequences of this result for the ergodicity of
the stochastic linear barotropic equation (5.2) will be discussed in section 5.3.

So far, we have essentially considered the case where one or a few modes (k, l) are
stochastically forced. When a large number, say K ≫ 1, of modes is forced, another
type of averaging occurs, and the divergences (5.15, 5.24) can be regularized. Here
we only give qualitative arguments, a more rigorous study would be necessary to
make those arguments more precise.

Using the Fourier decomposition defined in section 4.2.2 (page 52), we can write
the average and integrated autocorrelation function of the Reynolds’ force, computed
in the stationary state of ωm with a small non-zero α, as

F α =
∑

(k,l)∈Z2

cklf
α
kl , Ξα =

∑

(k,l)∈Z2

c2kl Ξ
α
kl , (5.25)

where fαkl is defined in section 4.3.1 (page 56), and Ξαkl is defined in section 4.4 (page
60). The results of sections 4.3 and 5.2 imply that Ξα(y, y)/F α(y) ∼ 1/α as α→ 0,
when one or a few Fourier modes are forced.
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The Fourier coefficients of the noise correlation function ckl are constrained by the
total energy balance. Namely, we have assumed that the average energy injection
rate by the noise η in the original stochastic barotropic equation (1.1) (page 14) is
equal to σ, i.e.

∑

k,l ekl = 1 where ekl ≡ ckl
2(k2+l2)

is the average energy injection rate

in mode (k, l). A natural choice of forcing spectrum is ekl = e = cte on a set of K
modes. Then, the energy constraint imposes e = 1/K.

Using (5.25), this roughly implies that Ξα(y, y)/F α(y) ∼ 1/αK. The strong
fluctuations of 〈ωmvm〉(y) could then be weakened in an asymptotic regime where
α → 0, K → ∞ in a specific manner. This is another form of the Law of Large
Numbers, where now averaging arises from the addition of K ≫ 1 independent
Fourier modes.

This simple argument is far from being accurate at this point. Indeed, we have
neglected the (k, l) dependency of fαkl and Ξαkl, which are most likely to be relevant
in this computation.

Understanding such averaging when the number of forced modes K is large thus
requires describing how fαkl and Ξαkl depend on (k, l), and considering different forcing
spectra ckl. This is a very promising perspective of this work.

5.3 Consequences for the kinetic theory

5.3.1 Summary of the technical results

In this paragraph we shortly summarize the technical results derived in chapter 4
and section 5.2. We will then discuss the practical consequences for the validity of
the effective zonal jet dynamics (5.1).

In section 5.2, we have seen that the typical fluctuations of Reynolds’ stresses, as
quantified by the variance and integrated autocorrelation function of the Reynolds’
force 〈ωmvm〉(y), diverge point-wise in the absence of external damping mechanism.
It is thus useful to study the stationary statistics of Reynolds’ stresses when a small
but non-zero friction α is present, and to consider the limit α→ 0 then.

We have defined the expectation E
α
U as the average in the statistically stationary

state of the linear dynamics (4.1) with a non-zero damping rate α, and the associated
average Reynolds’ force F α[U ] ≡ E

α
U〈ωmvm〉, Reynolds’ force covariance

Cα[U ](y1, y2) ≡ E
α
U [〈ωmvm〉(y1)〈ωmvm〉(y2)] , (5.26)

and integrated autocorrelation function

Ξα[U ](y1, y2) ≡
∫ ∞

0

E
α
U [[〈vmωm〉 (y1, s) 〈vmωm〉 (y2, 0) + (y1 ↔ y2)]] ds. (5.27)

We have proved the following:

• In section 4.3, we have seen that F α converges to a finite function as α→ 0.

• In section 5.2, we have seen that Ξα[U ](y1, y2) converges to a distribution. In
particular, Ξα[U ](y1, y2) converges to a finite quantity if U(y1) 6= U(y2) while
it diverges as 1/α if U(y1) = U(y2).
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• In section 5.2.2, we have seen that Cα has the same behaviour as Ξα, with the
same point-wise divergence.

We recall that those results were derived assuming the Orr mechanism (4.20) and
(4.24). In the case of the two-dimensional Euler equation (i.e. with β = 0), the Orr
mechanism is known to occur under the assumption that the linearized operator close
to the base flow U has no modes (which is the generic case for the linearized Euler
dynamics [11]). However, the results obtained in chapters 4 and 5 remain correct as
long as a similar inviscid damping occurs in the deterministic linear dynamics, which
is sometimes the case even if the above hypothesis are not fulfilled, in particular for
β 6= 0 (see section 4.5 for details).

5.3.2 Consequences for the zonal energy balance

The kinetic energy associated with the zonal jet is Ez ≡ πlx
∫

U2(y) dy. Applying
the Itō formula to the kinetic equation (5.1), we get the average zonal energy balance

dEz
dt

= 2απlx

∫

E [F0[U ](y)U(y)] dy − 2αEz + α2πlx

∫

E [Ξ[U ](y, y)] dy , (5.28)

with Ez = E[Ez] where E is the average with respect to realizations of the noise ξ
in (5.1).

In (5.28), the last term on the right-hand side represents the energy injection rate
in the zonal mean flow by the fluctuations of Reynolds’ stresses. Using the results
of section 5.2, we see that this term is actually infinite, so the energy balance (5.28)
and the kinetic equation (5.1) are formally ill-defined.

This problem is very similar to the infinite value of the eddy enstropy density
1
2
EU [ω

2
m] obtained in section 5.1. In fact, we have seen that considering the effect of

a small friction α in the dynamics of ωm, this divergence is regularized so that the
actual eddy enstrophy density 1

2
αEαU [ω

2
m] remains finite in the limit α→ 0.

The same argument can be applied here. Indeed, it is natural from a physical
point of view to consider the dynamics of U through the kinetic equation (5.1) and
of ωm through the linear equation (4.1) with the same friction coefficient α ≪ 1.
Then, the results of section 5.2 imply that the last term in the r.h.s of (5.28) is
actually of order α.

From a formal point of view, this indicates that the perturbative expansion
(stochastic averaging) is not well-posed when it comes to observables such as the
energy in zonal degrees of freedom.

From a physical point of view, this result indicates that we should expect the
fluctuations of Reynolds’ stresses to be relevant in the zonal jet energy balance, even
in the limit of very small α. This effect was not considered in previous quasi-linear
approaches like S3T-CE2 [3, 33, 85, 104, 106], where only the average Reynolds’
stress divergence was taken into account. Our theoretical results suggest that a
careful analysis of the zonal energy budget in the inertial limit ν ≪ α≪ 1 in S3T-
CE2 approaches should give a quantitative disagreement with the original stochastic
barotropic equations. Such analysis will be done in chapter 6, using numerical sim-
ulations of both the linearized barotropic equation and of a modified Lyapunov
equation, that takes into account those fluctuations of Reynolds’ stresses.

77



CHAPTER 5. THEORETICAL JUSTIFICATION OF THE KINETIC THEORY

Finally, note that the inconsistency of the perturbative expansion can be com-
pensated by the averaging effect due to a very large number K of forcing modes
(see section 5.2.3). If such averaging occurs, the last term in the r.h.s of the energy
balance (5.28) will be of order 1/K ≪ 1 with respect the the first term. This means
that in a regime α→ 0, K →∞, the fluctuations of Reynolds’ stresses are negligible
with respect to the mean, even at the level of the zonal energy balance.

5.3.3 Consequences for the ergodicity of the linearized dy-

namics

The fast process ωm(s) is said to be ergodic if for any observable φ [ωm], the time
average and the average over the stationary distribution (5.3) are identical [86]

lim
t→∞

1

t

∫ t

0

φ [ωm(s)] ds = EU [φ [ωm]] . (5.29)

This equality must be understood in a probabilistic sense, indeed the left-hand side
is a random variable while the right-hand side is an averaged quantity. In the sense of
a mean-square limit [44] (or limit in L2 norm [86]), the condition (5.29) is equivalent
to limt→∞ ||φ ||2(t) = 0 with

||φ ||2(t) ≡ EU

[

(

1

t

∫ t

0

φ [ωm(s)] ds− EU [φ [ωm]]

)2
]

. (5.30)

Such definition of ergodicity is a classical one [83], but it is not the only possible
one (mean-square convergence implies convergence in probability and in law, but we
could consider almost-sure convergence).

In order to anticipate the divergences due to the singular fluctuations of Reynolds’
stresses studied in section 5.2, we define the related quantity

||φ ||2α(t) ≡ E
α
U

[

(

1

t

∫ t

0

φ [ωm(s)] ds− E
α
U [φ [ωm]]

)2
]

, (5.31)

where now the dynamics of ωm is dissipated by a non-zero friction α, and EU is the
expectation in the stationary state of ωm. Obviously limt→∞ ||φ ||2α(t) = 0 when-
ever α > 0, we will thus consider either the regime α ≪ 1, t ≫ 1 or the limit
α = 0, t→∞.

Using computations very similar to those reported in appendix B.2 (page 138),
we get

||φ ||2α(t) ∼
t→∞

2

t

∫ ∞

0

E
α
U

[[

φ [ωm(τ)]φ [ωm(0)]
]]

dτ . (5.32)

A particularly interesting case is when φ [ωm] is the Reynolds’ stress divergence
〈ωmvm〉. Indeed, in this case the ergodicity condition (5.29) is directly the Law
of Large Numbers for 〈ωmvm〉, as stated in section 2.1.1, and which led to the
deterministic part of the kinetic equation (5.1). In this case, we recognize in the
left-hand side of (5.32) the definition of the integrated autocorrelation function
Ξα[U ], defined in (5.27).
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If we simply consider the ergodicity of 〈ωmvm〉 point-wise, using the results of
section 5.2 (in particular (5.15)), we get

|| 〈ωmvm〉(y) ||2α(t) ∼
t→∞

Ξα[U ](y, y)

t
∼
α→0

A

αt
, (5.33)

with A a constant independent of α and t. Taking first the limit α → 0, the above
quantity diverges and ergodicity is clearly broken. From a qualitative point of view,
the relevant range of values of t (time variable for the fast process) is t≪ 1/α, and
we still deduce from (5.33) that the ergodicity condition (5.29) for the Reynolds’
force 〈ωmvm〉(y) is not satisfied.

However, ergodicity can be understood in a weaker sense. Indeed, we have seen
in section 5.2 that Ξα[U ] converges to a distribution in the inertial limit. We thus
expect to observe convergence of quantities integrated over y when multiplied by
a smooth test function. Let f(y) be such test function, consider the observable
φf [ωm] ≡

∫

dy f(y)〈ωmvm〉(y). In this case, (5.32) becomes

||φf ||2α(t) ∼
t→∞

2

t

∫

dy1dy2 f(y1)f(y2) Ξ
α[U ](y1, y2) ∼

α→0

Af
t
, (5.34)

with Af a constant independent of α and t. Then, ergodicity for φf is satisfied. As
an example, f(y) = eily is of particular interest as it leads to consider ergodicity
for the l-th Fourier coefficient of the Reynolds’ stress divergence. We conclude that
ergodicity of the stochastic linearized equation (4.1) for the Fourier coefficients of
the Reynolds’ stress divergence is satisfied.

Again, the breaking of point-wise ergodicity can be regularized by the averaging
effect due to a large number K of forced modes (see section 5.2.3). If such averaging
occurs, then (5.33) becomes

|| 〈ωmvm〉(y) ||2α(t) ∼
A

αKt
(5.35)

in the regime t ≫ 1, K ≫ 1, α ≪ 1. In a regime where α → 0 with the constraint
αK = cte, ergodicity is thus satisfied in a strong sense (point-wise).

We also stress that proving ergodicity in a general sense (i.e. the condition (5.32)
for any observable φ[ωm]) is far from reach at this point. It would involve studying
any moment of the time-averaged vorticity ωm, and like for the Reynolds’ stress
divergence considerd here, ergodicity will be satisfied in a weak sense that would
have to be determined precisely.

5.3.4 Self–consistency of the time scale separation hypoth-

esis

To perform the stochastic averaging procedure, we have assumed that the zonal jet
velocity profile U(y) evolves much slower than the turbulent eddy vorticity ωm. This
led to the effective description, summarized by equations (5.1, 4.1).

A very interesting and natural question to ask is whether time scale separation
indeed exists in the effective description. In other words: is the time scale separation
hypothesis self-consistent?
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Formally, we need to check the condition |ταcorr| ≪ 1/α, where the decorrelation
time of the Reynolds’ force at points y1 and y2 is defined as [77, 84]

ταcorr(y1, y2) =
1

2

Ξα[U ](y1, y2)

Cα[U ](y1, y2)
. (5.36)

In section 5.2, we have seen that both Ξα[U ](y1, y2) and C
α[U ](y1, y2) diverge point-

wise if U(y1) = U(y2), as α→ 0. More precisely, we have seen that at those points,
both quantities diverge exactly as 1/α. As a consequence, those divergences cancel
out in the computation of (5.36), and ταcorr(y1, y2) has a finite value in the limit
α→ 0, at any points (y1, y2).

We have thus proved that the time scale separation hypothesis is self-consistent,
under the assumptions of the Orr mechanism: β = 0 and the base flow has no
modes. In chapter 6, we will study the validity of this result when β 6= 0 using
numerical simulations of the linearized barotropic equation.

5.4 Perspectives

The main conclusion of this chapter is that the kinetic approach (stochastic aver-
aging) in the limit α → 0 leads to divergences, related to strong fluctuations of
Reynolds’ stresses. The consequences of those divergences are inconsistent energy
injections in the mean flow and breaking of ergodicity of the virtual fast process.

However, we have also seen that in the case where a very large number K of
Fourier modes are forced, another Law of Large Numbers can possibly apply and
those divergences can be regularized. In other words, in the regime α ≪ 1, K ≫ 1
with αK = cte, the small value of α implies a time scale separation between mean
flow and perturbations while the large value of K ensures the validity of the Law of
Large Numbers, leading to a kinetic theory without divergences.

Similar behaviour can be expected in the cases with β 6= 0 or ν 6= 0. Indeed,
numerical simlations of zonal jets typically show more fluctuations in the Navier-
Stokes case (β = 0) than in the beta-plane case, see for instance figure 1.3 in page
16. It indicates that the stochastic part of the kinetic equation (related to the
fluctuations of Reynolds’ stresses) could be negligible in a regime of large β.

All the theoretical results of chapters 4 and 5 were obtained with zero viscosity.
This is in contrast with every previous empirical approaches, where viscosity (or
hyper-viscosity) is necessary for numerical stability and is kept constant [3, 33, 85,
104, 106]. Proving that the kinetic description is valid even in the limit of zero
viscosity is a great achievement of our theoretical approach. However, we also note
that a different inertial regime ν ≪ α≪ 1, where ν and α would be related to each
other, could lead to a different asymptotic behaviour for F0 and Ξ. Preliminary
results in the case of the constant shear base flow are reported in our publication
[18], but a general picture is still missing.

All those possible regimes have to be stated more precisely. They could lead to
different conclusions when it comes to the zonal energy balance (see section 5.3.2)
or to the ergodicity of the linearized equation (see section 5.3.3). A more precise
study of the effective dynamics of zonal jets in those regimes is a very interesting
perpective of this work.
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From a physical point of view, the main consequence of the asymptotic form
of the integrated autocorrelation function Ξα[U ] in the inertial limit (see equation
(5.15)) is that the average energy injection rate by the stochastic forcing αξ[U ] in the
effective equation of zonal jets at second order (stochastic kinetic equation (5.1)) is
of order α, like the energy injection by the drift αF0 (see section 5.3.2). This means
that in the limit α → 0, we do not expect the relative fluctuations of the mean
flow to become negligible (in the energy norm). More precisely, consider the energy
of the mean zonal flow EU =

∫

dy U(y)2 and the mean energy of the zonal flow

E =
∫

dy U2(y), where the overbar denotes for instance a time average, in a direct
numerical simulation of the stochastic 2D Navier-Stokes equation. The theoretical
results of section 5.2 suggest that ∆E = E − EU should converge to a constant as
α → 0, which is counter-intuitive. A very interesting ongoing project is to study
empirically the validity of this result in direct numerical simulations. Related results
are presented in next chapter.

81



Chapter 6

Large deviations of zonal jets

In chapters 3–5, we have studied an effective equation for the dynamics of zonal jets
in the regime where they evolve much slower than the surrounding turbulence. This
effective equation (kinetic equation) can only describe the typical dynamics of zonal
jets: attractors, relaxation towards the attractors and typical fluctuations around
the attractors. In particular, the kinetic equation is not able to describe accurately
rare events in zonal jet dynamics, such as extreme fluctuations that can lead to the
transition from an attractor to another one.

Such rare transitions were for instance observed in numerical simulations of the
stochastic barotropic model, see figure 2 (page 8) and section 1.2.5 (page 18). De-
scribing the statistics of such rare events is a major challenge in the understanding
of zonal jet dynamics, and yet this problem was never studied previously from a
theoretical point of view.

In this chapter, we use tools from Large Deviation Theory to compute the prob-
ability of rare events in zonal jet dynamics, in the regime of time scale separation
between the evolution of the jet and of the turbulent perturbations. We will present
original methods to compute numerically or explicitely such probabilities, and apply
these methods to the stochastic barotropic model.

Large Deviation Theory allows to study extremely rare events as well as typical
events, as explained for instance in chapter 2. In our case, this means that the
terms involved in the kinetic equation can be computed from the large deviations
functions. As a consequence, the numerical methods presented in this chapter will
also be used to quantify the relative influence of the terms in the kinetic equation
for zonal jets, and to illustrate some of the theoretical results of chapters 4 and 5.

In the first two sections, we will present original methods to implement the Large
Deviation Principle described in chapter 2. Those methods can be applied to any
kind of slow-fast dynamical systems, or under some hypothesis that will be precised.
In section 6.1 we explain how to compute the relevant large deviation functions from
time series analysis, for instance coming from numerical simulations. In section 6.2
we show how to compute these large deviation functions from a simplified closed
equation, for a specific class of systems. Those two first sections are rather technical,
and can be skipped by the reader interested in geophysical applications.

All the numerical simulations presented in this chapter correspond to the stochas-
tic quasi-geostrophic barotropic model on a rotating sphere. This model is presented
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in section 6.3.
In section 6.4, we use the methods presented in sections 6.1 and 6.2 to study

numerically the effective slow dynamics of zonal jets (kinetic equation).
Finally in section 6.5, we implement the Large Deviations Principle for zonal

jets, and compute numerically the probabilities of rare events using the methods of
sections 6.1 and 6.2.
The work presented in this chapters will be the subject of two publications [17, 16].

6.1 Estimation of the large deviation function from

time series analysis

In this section we consider the stochastic process (z, w) given by the slow-fast system
(2.1) (page 26), that we report here for convenience











∂z

∂t
= αf(z, w)

∂w

∂t
= b(z, w) + η ,

(6.1)

where η is a vector of independent gaussian white noises with covariance matrix C.
As described in section 2.3 (page 32), the slow process z satisfies a large deviation
principle in the limit α → 0, that provides a simple way to compute rare events in
the dynamics of z when α≪ 1.

In practice, the most interesting quantity to compute is the scaled cumulant
generating function (2.26)

H(z, θ) = lim
∆t→∞

1

∆t
lnEz exp

(

θ

∫ ∆t

0

f (z, w̃z(s)) ds

)

, (6.2)

where Ez is the average in the stationary state of the virtual fast process

∂w̃z
∂s

= b(z, w̃z) + η , (6.3)

where z is a fixed parameter. As explained in section 2.3, the infinite-time limit in
(6.2) is consistent with the time scale separation between z and w, and θ → H(z, θ)
can be seen as the scaled cumulant generating function for the random process ż at
a given z.

In this section we present a way to compute the scaled cumulant generating
function (6.2) from a time series of the virtual fast process (6.3), for instance obtained
from a direct numerical simulation.

Consider a time series {w̃z(s)}0≤s≤T of the virtual fast process (6.3), with a
given total time window s ∈ [0, T ]. We use this continuous time series notation for
simplicity, the generalization of the following formulas to the case of discrete time
series is straightforward. We also denote for simplicity R(s) ≡ f (z, w̃z(s)).

The basic idea to estimate the scaled cumulant generating function (6.2) is
to divide the full data set {w̃z (s)}0≤s≤T into blocks of length ∆t, to compute

the integrals
∫ t0+∆t

t0
R(s) ds over those blocks, and then to average the quantity
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exp
(

θ ·
∫ t0+∆t

t0
R(s) ds

)

. For a small block length ∆t, the large-time regime defined

by the limit ∆t→∞ in the theoretical expression of H (6.2) is not attained. On the
other hand, too large values of ∆t—typically of the order of the total time T— lead
to a low number of blocks, and thus to a very poor estimation of the empirical mean.
Estimating H thus requires finding an intermediate regime for ∆t. More precisely,
we expect this regime to be attained for ∆t equal to a few times the decorrelation
time of the process R(s), defined by [77, 84]

τ ≡ lim
∆t→∞

∫ ∆t

0

∫ ∆t

0
Ez [[R(s1)R(s2) ]] ds1ds2

2∆tEz [[R2 ]]
=

∫∞

0
Ez [[R(s)R(0) ]] ds

Ez [[R2 ]]
, (6.4)

where Ez[[R(s1)R(s2)]] is the covariance of R at time s1 and at time s2. The second
equality is easily obtained using computations very similar to those reported in
appendix B.2. Because of the infinite-time limit in (6.4), the estimation of τ suffers
from the same finite sampling problem as the estimation of H.

The interesting values of the block length ∆t are given by the value of τ , which
itself depends on ∆t. Finding a block length ∆t such that the estimation of H and
τ is accurate is thus a tricky problem. In the following, we propose a method to
find the optimal ∆t and estimate the quantities we are interested in. The proposed
method is close to the “data bunching” method used to estimate errors in Monte
Carlo simulations [56].

6.1.1 Estimation of the decorrelation time

We will first consider the problem of the estimation of τ in a simple solvable case,
so the numerical results can be compared directly to explicit formulas. Consider the
stochastic process R(s) = w(s)2 where w is the one-dimensional Ornstein-Uhlenbeck
process

dw

ds
= −w(s) + η(s), (6.5)

where η is a gaussian white noise with correlation E (η(s)η(s′)) = δ(s− s′). A direct
calculation gives the decorrelation time of R, τ = 1/2. The scaled cumulant gener-
ating function can also be computed explicitely, as will be explained in section 6.2.

For a time series {R(s)}0≤s≤T , we denote R̄T = 1
T

∫ T

0
R(s) ds and varT (R) =

1
T

∫ T

0

(

R(s)− R̄T

)2
ds respectively the empirical mean and variance of R over the

full time series. We then estimate the decorrelation time τ defined in (6.4) using an
average over blocks of length ∆t,

τ∆t =
1

2∆t varT (R)
E T

∆t

[

(
∫ t0+∆t

t0

(

R(s)− R̄T

)

ds

)2
]

, (6.6)

where E T
∆t

[ht0 ] is the empirical average over realisations of the quantity ht0 inside

the brackets1.

1Explicitely,

E T
∆t





(

∫ t0+∆t

t0

(

R(s)− R̄T

)

ds

)2


 =
∆t

2T

2T
∆t

−2
∑

k=0

(

∫ k∆t/2+∆t

k∆t/2

(

R(s)− R̄T

)

ds

)2

, (6.7)
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Figure 6.1: Plot of the estimated decorrelation time τ∆t (black line) and error bars
(grey shading) as functions of ∆t. For small values of ∆t, the large-time limit in
(6.4) is not achieved, which explains the low values of τ∆t. For too large values of
∆t, the empirical average E T

∆t
in (6.6) is not accurate due to the small value of T

∆t
,

which explains the increasing fluctuations in τ∆t as ∆t increases. The optimal value
∆t⋆ is the one in between these artificial behaviour. Here, one can read ∆t⋆ ≃ 20
and τ∆t⋆ ≃ 0.5, in agreement with the exact value τ = 1/2 (dashed line). The
Ornstein-Uhlenbeck process (6.5) has been integrated over T = 5.104 using the
method proposed in [45], with time step 10−3.

To find the optimal value of ∆t, we plot τ∆t as a function of ∆t, see figure 6.1.
For small values of ∆t, the large-time limit in (6.4) is not achieved, which explains
the low values of τ∆t. For too large values of ∆t, the empirical average E T

∆t
in

(6.6) is not accurate due to the small value of T
∆t

(small number of blocks), which
explains the increasing fluctuations in τ∆t as ∆t increases. The optimal value of ∆t
—denoted ∆t⋆ in the following— is the one in between these artificial behaviours.
It should satisfy T ≫ ∆t⋆ ≫ τ∆t⋆ . Here, one can read ∆t⋆ ≃ 10 and τ∆t⋆ ≃ 0.5, so
this optimal ∆t⋆ satifies the aforementioned condition. The estimated value τ∆t⋆ is
in agreement with the theoretical value τ = 1/2.

The error bars for τ∆t are given by ∆τ∆t =
√

var (τ∆t) /Nterms, where var (τ∆t) is
the empirical variance associated with the average E T

∆t
defined in (6.7), and Nterms

is the number of terms in this sum (roughly Nterms ≃ 2T/∆t).

6.1.2 Estimation of the scaled cumulant generating function

The self-consistent estimation of the decorrelation time τ presented in the previous
section gives the optimal value ∆t⋆ of the block length. Then, the scaled cumulant
generating function is computed for a given value of θ as

assuming for simplicity that T/∆t is an integer. Generalisations to any T,∆t is straightforward,
replacing 2T/∆t by its floor value. The 50% overlap is suggested by Welch’s estimator of the power
spectrum of a random process [117].
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HT (θ) ≡
1

∆t⋆
lnE T

∆t⋆

[

exp

(

θ

∫ t0+∆t⋆

t0

R(s) ds

)]

, (6.8)

where E T
∆t

is the empirical average over the blocks, as defined in (6.7). However, as

explained in chapter 2, the knowledge of H (z, θ) for an arbitrarily large value of |θ|
leads to the probability of an arbitrarily rare event for ż. This is in contradiction
with the fact that the available time series {R(s)}0≤s≤T is finite. In other words,
the range of values of θ for which the scaled cumulant generating function HT (θ)
can be computed with accuracy depends on T .

Indeed, for large positive values of θ, the sum E T
∆t⋆

in (6.8) is dominated by the

largest term exp (θImax) where Imax = maxt0

{

∫ t0+∆t

t0
R(s) ds

}

is the largest value

of
∫ t0+∆t

t0
R(s) ds over the finite sample {R(s)}0≤s≤T . Then HT (θ) ∼ 1

∆t⋆
Imaxθ for

θ ≫ 1. This phenomenon is known as linearization [96], and is clearly an artifact
of the finite sample size. We denote θmax the value of θ such that linearization
occurs for θ > θmax . Typically, we expect θmax to be a positive increasing function
of T . The same way, HT (θ) ∼ − 1

∆t⋆
Iminθ for θ < 0 and |θ| ≫ 1, with Imin =

mint0

{

∫ t0+∆t

t0
R(s) ds

}

. We thus define similarly θmin such that linearization occurs

for θ < θmin. Typically, we expect θmin to be a negative decreasing function of T .

The convergence of estimators like (6.8) is studied in [96], in particular it is shown
that error bars can be computed in the range [θmin/2, θmax/2] for a given time series
{R(s)}0≤s≤T . An example of computation of HT (θ) is shown in figure 6.2 for the
one-dimensional Ornstein-Uhlenbeck process, and compared to the explicit solution.
The full error bars in figure 6.2 are given by the error from the estimation of τ and
the statistical error described in [96]. The method shows excellent agreement with
theory, and allows to observe non-gaussian behaviours.

In sections 6.4 and 6.5, we will apply those tools (estimation of the decorrelation
time and of the scaled cumulant generating function) to the study of Reynolds’
stresses statistics in zonal jet dynamics.

In next section, we present a class of systems for which the computation of the
large deviation functions can be done much easier. These theoretical tools will then
be applied to the quasi-linear approximation of the barotropic model.

6.2 Large deviations of quadratic forms of gaus-

sian processes

In the previous section we have explained how to compute naively the scaled cu-
mulant generating function H(z, θ) from a time series of the virtual fast process
w̃z. This allows to estimate precisely (with statistical error bars) the probability
of typical and moderately rare events in the statistics of the time averaged process
R(s) ≡ f(z, w̃z(s)), for any kind of slow-fast system (6.1). However, studying the
statistics of arbitrarily rare events with this method is still extremely difficult, as it
implies that the length of the time series increases as the probability of the event of
interest decreases.
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Figure 6.2: Computation of the scaled cumulant generating function from (6.8) for
the one-dimensional Ornstein-Uhlenbeck process (6.5). Upper pannel: illustration of
the linearization effect for large values of |θ|. The solid curve is the estimated scaled
cumulant generating function HT , and the dashed lines are the expected linear tails,
which are artifacts of the finite sample size [96]. The thin vertical lines show the
range θ ∈ [θmin, θmax] for which we consider that linearization does not take place.
Bottom pannel: the converged scaled cumulant generating function estimator HT

on θ ∈ [θmin/2, θmax/2] (thick black curve, with error bars in grey shading). The
yellow curve is the exact scaled cumulant generating function (see section 6.2), it
fits the estimated one within statistical errors. The purple curve is the quadratic
fit, that corresponds to a gaussian process R(s) (see section 2.3.3 page 35). This
quadratic fit is computed using the exact mean, variance and decorrelation time of
R. The Ornstein-Uhlenbeck process (6.5) has been integrated over T = 5.104 using
the method proposed in [45], with time step 10−3.
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In this section we consider a specific class of system, for which the scaled cumu-
lant generating function can be computed through a closed equation. This equation
depends parametrically on θ, and we will see that in cases of interest the duration
of the numerical resolution of this equation does not depend on θ. This means that
solving this equation allows to study arbitrarily rare events extremely easily, and to
compute very low probabilities in a given time.

We consider the class of stochastic processes of the form2











∂z

∂t
= α

(

rz + wT ·Mz ·w
)

∂w

∂t
= −Lz ·w + η .

(6.9)

For simplicity in the notations, we will assume that z is a scalar variable and that
w is m-dimensional (the generalization to different settings is straighforward, see
section 6.5). Then, rz is a scalar, Mz is a m×m quadratic form and Lz is a m×m
linear operator, that can depend parametrically on the slow variable z, and η is a
gaussian random vector with zero mean and covariance matrix C.

The virtual fast process (6.3) here reads

∂w̃z
∂s

= −Lz · w̃z + η . (6.10)

This is a linear gaussian process (Ornstein-Uhlenbeck process). In this simple case,
the scaled cumulant generating function (6.2) can be computed extremely easily, as
we now explain.

6.2.1 The Ricatti equation

In appendix G.1, we show that the scaled cumulant generating function for the
system (6.9) reads [16]

H(z, θ) = θrz + tr (CN∞(z, θ)) . (6.11)

where N∞(z, θ) is the stationary solution of the matrix Ricatti equation

∂N

∂t
+ LTzN(t, z, θ) +N(t, z, θ)Lz = 2N(t, z, θ)CN(t, z, θ) + θMz . (6.12)

Note that equation (6.12) may have more than one solution: we should take the one
such that N∞(z, 0) = 0, so that H(z, 0) = 0.

In section 6.5, we will present a numerical resolution of (6.12) for the case of the
quasi-linear barotropic equation on the sphere, and then compute directly the scaled
cumulant generating function using (6.11). We will see that (6.12) can be very eas-
ily solved for a given value of θ. This means that the result (6.11) allows to study
arbitrarily rare events in zonal jet dynamics extremely easily, through the Large

2In the equation for ż, a linear term in w could be added. This is the case considered in our
publication [16], and in appendix G. This slight generalization is not necessary for the application
to the barotropic model, considered in section 6.5.
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Deviation Principle. Such result is in clear contrast with approaches through direct
numerical simulations, which require that the total time of integration increases as
the probability of the event of interest decreases.

We now describe some basic properties of the Ricatti equation (6.12).

6.2.2 Link with the Lyapunov equation

As explained in section 2.3.3, the scaled cumulant generating function H(z, θ) for
small θ contains the information about the Law of Large Numbers and the Central
Limit Theorem. More precisely, from (2.30) (page 35) we expect to have

H(z, θ) = θ F (z) +O
(

θ2
)

, (6.13)

where we recall that in the Law of Large Numbers, the average drift is F (z) ≡
Ez[f(z, w̃z)]. At first order in θ, equations (6.11) and (6.12) then give F (z) =

rz + tr
(

CN
(1)
∞ (z)

)

where N
(1)
∞ (z) is the stationary solution of the Ricatti equation

at lowest non trivial order

∂N (1)

∂t
+ LTzN

(1)(t, z) +N (1)(t, z)Lz =Mz . (6.14)

This equation can be solved as

N (1)(t, z) =

∫ t

0

e−t1L
T
z Mze

−t1Lz dt1 , (6.15)

so

F (z) = rz +

∫ ∞

0

tr
(

Ce−t1L
T
z Mze

−t1Lz

)

dt1 . (6.16)

Using the properties of the trace, we can write F (z) = rz + tr (Mzgz) with gz =
∫∞

0
e−t1LzCe−t1L

T
z dt1. We recognize in gz the stationary solution of the Lyapunov

equation associated with the virtual fast process w̃z, which means that gz is the sta-
tionary two-points correlation function of w̃z

3. We have thus recovered the definition
F (z) = Ez[f(z, w̃z)] from the Ricatti equation.

The same procedure could be applied to recover the definition of the forcing
covariance Ξ(z) from (2.30) and from the system (6.11), (6.12). The computations
are straighforward, so we don’t report them here.

6.2.3 An explicit solution

As we have seen in the previous paragraph, a natural way to tackle the Ricatti
equation (6.12) is to solve it perturbatively in θ. This is done in appendix G.2, and
the result is the following:

If MzLz = LTzMz and Lz commutes with CMz, then

H(θ) = θrz +
1

2
tr
[

Lz −
√

L2
z − 2θCMz

]

, (6.17)

3Actually this last expression of gz is exactly the equivalent of the formula (4.16) (in page 53)
used in chapters 4 and 5.
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whenever the square root
√

L2
z − 2θCMz exits [16]. Note that in this expression,

the square root should be chosen such that H(0) = 0.

Under those hypothesis, we are able to compute explicitely the probability of any
deviation from the mean for the process ż. This is for instance the case when the
fast process w̃z is one-dimensional. Indeed, in this case the commutation conditions
are automatically satisfied, and the explicit solution (6.17) takes a very simple form.
This is the case considered in figure 6.2.

In the case of the barotropic model, it can be checked directly that the condition
MLU = LTUM , where LU is the linearized equation close to the base flow U and M
is the quadratic form that defines the Reynolds’ stress divergence, is not fulfilled.
As a consequence, the explicit solution (6.17) cannot be used in this context.

6.3 Barotropic dynamics on a rotating sphere

In sections 6.4 and 6.5, we will apply the tools of chapter 2 and previous sections
(estimation of the scaled cumulant generating function and computation from the
Ricatti equation) to the study of zonal jet statistics.

For practical reasons, we consider here the case of a barotropic flow on the sur-
face of a rotating sphere. This system is first presented in this section. As we will
see, this model is similar to the biperiodic barotropic model studied in chapters 1,
3–5. In particular, we will find a similar regime of time scale separation between the
evolution of zonal jets and of turbulent eddies, and we will focus on a quasi-linear
approximation of the dynamics, like the one defined in section 3.2.1 (page 41) for
the biperiodic case.

We study the dynamics of zonal jets in the quasi-geostrophic one-layer barotropic
model on a sphere of radius a, rotating at rate Ω,















∂ω

∂t
+ J(ψ, ω) +

2Ω

a2
∂ψ

∂λ
= −κω − νn (−∆)n ω +

√
ση,

u = −1

a

∂ψ

∂φ
, v =

1

a cosφ

∂ψ

∂λ
, ω = ∆ψ

(6.18)

where ω is the relative vorticity, v = (u, v) is the horizontal velocity field, ψ is the
stream function and J(ψ, ω) = 1

a2 cosφ
(∂λψ · ∂φω − ∂λω · ∂φψ) is the jacobian oper-

ator. The coordinates are denoted (λ, φ) ∈ [0, 2π]× [−π/2, π/2], λ is the longitude
and φ is the latitude. All fields ω, u, v and ψ can be decomposed onto the basis of
spherical harmonics, for example

ψ (λ, φ) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

ψm,ℓY
m
ℓ (φ)eimλ. (6.19)

All fields ω, u, v and ψ are 2π-periodic in the zonal (λ) direction, so we can also
define the Fourier coefficients in the zonal direction,

ψm(φ) ≡
1

2π

∫ 2π

0

ψ(λ, φ)e−imλ dλ =
∞
∑

ℓ=0

ψm,ℓY
m
ℓ (φ). (6.20)
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In (6.18), κ is a linear friction coefficient, also known as Ekman drag or Rayleigh
friction, that models the dissipation of energy at the large scales of the flow [110].
Hyper-viscosity νn (−∆)n accounts for the dissipation of enstrophy at small scales
and is used mainly for numerical reasons. As we will discuss along the chapter most
of the dynamical quantities are independent of the value of νn, for small enough νn.
η is a gaussian noise with zero mean and correlations E [η (λ1, φ1, t1) η (λ2, φ2, t2)] =
C (λ1 − λ2, φ1, φ2) δ (t1 − t2), where C is a positive-definite function. C is assumed
to be normalized such that σ is the average injection of energy per unit of time and
per unit of mass by the stochastic force

√
ση.

6.3.1 Energy balance and non–dimensional equations

The inertial barotropic model (eq. (6.18) with κ = νn = σ = 0) conserves the
energy E [ω] = −1

2

∫

ωψ dr (we denote dr = a2 cosφ dφdλ), the moments of potential
vorticity Cm [ω] =

∫

(ω + f)m dr with the Coriolis parameter f(φ) = 2Ω sinφ, and
the linear momentum L[ω] =

∫

ω cosφ dr.
The average energy balance for the dissipated and stochastically forced barotropic

equation is obtained applying the Ito formula to (6.18) [44], it reads

dE

dt
= −2κE − 2νnZn + σ, (6.21)

where E = E [E [ω]] is the total average energy and Zn = E
[

−1
2

∫

ψ(−∆)nω dr
]

.
The term −2νnZn in (6.21) represents the dissipation of energy at the small scales
of the flow. In the regime we are interested in, most of the energy is concentrated
in the large-scale zonal jet, so the main mechanism of energy dissipation is the
linear friction (first term in the right-hand side of (6.21)). In this turbulent regime,
the energy dissipation by hyper-viscosity can be neglected. Then, in a statistically
stationary state, Estat ≃ σ

2κ
, expressing the balance between stochastic forces and

linear friction in (6.18).
This average total energy estimate yields the typical jet velocity U ∼

√

σ
2κ
. The

order of magnitude of the time scale of advection and stirring of turbulent eddies
by this jet is τeddy ∼ a

U
. We perform a non-dimensionalization of the stochastic

barotropic equation (6.18) using τeddy as unit time and a as unit length. This
amounts at setting a = 1 and at using the adimensionalized variables t′ = t/τeddy,
ω′ = ωτeddy, ψ

′ = ψτeddy, Ω
′ = Ωτeddy,

α = κτeddy =

√

2κ3

σ
, (6.22)

ν ′n = νnτeddy, σ
′ = στ 3eddy = 2α, and a rescaled force η′ = η

√
τeddy such that

E [η′ (λ1, φ1, t
′
1) η

′ (λ2, φ2, t
′
2)] = C (λ1 − λ2, φ1, φ2) δ (t

′
1 − t′2). In these new units,

and dropping the primes for easiness in the notation, the stochastic barotropic equa-
tion (6.18) reads

∂ω

∂t
+ J(ψ, ω) + 2Ω

∂ψ

∂λ
= −αω − νn (−∆)n ω +

√
2αη. (6.23)

In (6.23), α is an inverse Reynolds’ number based on the linear friction and νn
is an inverse Reynolds’ number based on hyper-viscosity. The turbulent regime
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mentionned before corresponds to νn ≪ α ≪ 1. In such regime and in the units of
(6.23), the total average energy in a statistically stationary state is Estat = 1.

We are interested in the dynamics of zonal jets in the regime of small forces and
dissipation, defined as α≪ 1. As we will see now, it corresponds to a regime where
the zonal jet evolves much slower than the surrounding turbulent eddies.

6.3.2 Decomposition into zonal and non–zonal components

In order to decompose (6.23) into a zonally averaged flow and perturbations around
it, we define the zonal projection of a field

〈ψ〉 (φ) ≡ ψ0(φ) =
1

2π

∫ 2π

0

ψ(λ, φ) dλ.

The zonal jet velocity profile is then defined by U(φ) ≡ 〈u〉 (φ). In most situations of
interest, the stochastic force in (6.23) does not act direcly on the zonal flow: 〈η〉 = 0.
Then the perturbations to the zonal jet will be proportional to the amplitude of the
stochastic force in (6.23). We thus decompose the velocity field as v = Uex+

√
αδv

and the relative vorticity field as ω = U +
√
αδω with ωz ≡ 〈ω〉, and where α is

the non-dimensional parameter defined in (6.22). The perturbation velocity δv and
vorticity δω will be called eddy velocity and eddy vorticity, respectively.

This ansatz is very similar to the one done in chapter 3 in the biperiodic case.
The self-consistency of this assumption has then been discussed in details in chap-
ters 4 and 5, from a theoretical point of view. In this chapter, we will adress this
issue using direct numerical simulations, and we will recover some theoretical results
of chapters 4 and 5.

With this decomposition of the vorticity field, the barotropic equation (6.23)
reads











∂ωz
∂t

= αR− αωz − νn (−∆)n ωz

∂δω

∂t
= −LU [δω]−

√
αNL [δω] +

√
2η,

(6.24)

with R(φ) ≡ −〈J (δψ, δω)〉 the zonally averaged advection term, where the linear
operator LU reads

LU [δω] =
1

cosφ
(U(φ)∂λδω + γ(φ)∂λδψ) + αδω + νn (−∆)n δω, (6.25)

with γ (φ) = ∂φωz(φ) + 2Ω cosφ, and where

NL [δω] = J(δψ, δω)− 〈J(δψ, δω)〉

is the non-linear eddy-eddy interaction term.

6.3.3 Quasi–linear and linear dynamics

In the limit of small forces and dissipation α≪ 1, the perturbation flow is expected
to be of small amplitude. Then the non-linear term NL[δω] in (6.24) is negligible
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compared to the linear term LU [δω]. Neglecting these non-linear eddy-eddy interac-
tion terms, we then obtain the so-called quasi-linear approximation of the barotropic
equation [104],











∂ωz
∂t

= αR− αωz − νn (−∆)n ωz

∂δω

∂t
= −LU [δω] +

√
2η.

(6.26)

The approximation leading to the quasi-linear dynamics (6.26) amounts at sup-
pressing some of the triad interactions. As a consequence, the inertial quasi-linear
dynamics has the same quadratic invariants as the initial barotropic equations. The
average energy balance for the quasi-linear barotropic dynamics (6.26) is thus the
same as the one for the full barotropic dynamics (6.24).

Using ωz (φ) = − 1
cosφ

∂φ (U (φ) cosφ) and the first equation of (6.26), we get the

evolution equation for the zonal flow velocity U (φ)

∂U

∂t
= αf − αU − νn (−∆)n U , (6.27)

where f (φ) is such that R (φ) = − 1
cosφ

∂φ (f (φ) cosφ). f is minus the divergence of
the Reynolds’ stress, also called Reynolds’ force.

In many situations of interest, as for example in the case of Jovian jets, the
turbulent eddies δω evolve much faster than the zonal jet velocity profile U (see
chapter 1 and [90]). In (6.24) and (6.26), the natural time scale of evolution of the
zonal jet is of order 1/α, while the typical time scale of evolution of the perturbation
vorticity δω is of order 1. In the regime α≪ 1, we thus expect to observe a separation
of time scales between the evolution of ωz and δω. This is consistent with the
definition of α as the ratio of the inertial time scale τeddy and of the dissipative time
scale 1/κ, see (6.22).

The quasi-linear barotropic equation can be put under the form of the slow-fast
dynamical system (6.9), with the analogy

z ≡ ωz , w ≡ δω

rz ≡ −ωz −
νn
α
(−∆)nωz

wT ·Mz · w ≡ −〈J(δψ, δω)〉
η ≡

√
2η

Lz · w ≡ LU [δω] .

(6.28)

The associated virtual fast process in the limit α→ 0 reads

∂δω

∂t
= −LU [δω] +

√
2η , (6.29)

where U is held fixed. This equation describes the barotropic dynamics linearized
close to the fixed base flow U(φ), through the linear operator (6.25). Like in the
biperiodic case of chapters 3–5, equation (6.29) still contains terms of order α and
νn in LU . Using numerical simulations of (6.29), we will study the dependency in α
and νn of (6.29) in the regime νn ≪ α ≪ 1, and discuss the physical consequences
for the slow dynamics of zonal jets.
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Figure 6.3: Top pannel: the zonal flow velocity profile U (φ) used in numerical
simulations of the linearized barotropic equation (6.29). Bottom pannel: zonally
averaged energy injection rate by the stochastic force η in (6.23), (6.26) and (6.29).

6.3.4 Numerical implementation

Direct numerical simulations (DNS) of the barotropic equation (6.24), the quasi-
linear barotropic equation (6.26) and the linear equation (6.29) are performed using
a purely spectral code with a fourth-order-accurate Runge-Kutta algorithm with an
adaptive time step4. The spectral cutoffs defined by ℓ ≤ L, |m| ≤ min {ℓ,M} in the
spherical harmonics decomposition of the fields are taken to be L = 80 andM = 20.
In all the simulations, the rotation rate of the sphere is Ω = 3.7 in the units defined
previously.

The stochastic noise is implemented using the method proposed in [62], with a
non-zero renewal time scale τr larger than the time step of integration. For τr much
smaller than the typical eddy turnover time scale, the noise can be considered as
white in time.

The force only acts on the mode |m| = 10, ℓ = 10, which is concentrated around
the equator (see figure 6.3). With such forcing spectrum and with α = 0.073, the
integration of the quasi-linear barotropic equation (6.26) leads to a stationary state
characterized by a strong zonal jet with velocity U (φ), represented in figure 6.3. We
use a truncation of this jet (first 25 spherical harmonics) as the mean flow in the
simulation of the linear barotropic equation (6.29).

We use hyper-viscosity of order 4 with coefficient ν4 such that the damping rate of
the smallest mode is 4. To assess that hyper-viscosity is negligible in the large scale
statistics, simulations of the linear equation with ν4 = 4 and ν4 = 2 are compared
in sections 6.4 and 6.5.

4A program that implements spectral DNS, real-space DNS for the non-linear and quasi-linear
equations, and includes all the graphical tools needed to visualize statistics, is freely available.
The Objective-C++ and Swift programming languages are employed. C blocks and Grand Central
Dispatch enable the efficient use of multiple CPU cores. The application “GCM” is available for
OS X 10.9 and higher on the Apple Mac App Store at URL http://appstore.com/mac/gcm
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6.4 Zonal energy balance in the inertial limit

In previous section was presented the stochastic quasi-geostrophic barotropic model
on the surface of a rotating sphere, in particular we have seen that this model is very
similar to the stochastic barotropic model in a biperiodic domain: in the limit of
weak forces and dissipation, there is a time scale separation between the evolution
of the zonal velocity profile U(φ) and of the turbulent perturbations (eddy) vorticity
δω(λ, φ).

In this regime, an effective dynamics for the zonal velocity profile U(φ), where the
turbulent eddies are averaged out, can be derived. This was explained in chapter 2
in a general framework, here we apply those results to zonal jet dynamics in the
spherical barotropic model. In particular, we will study the average energy balance
for the zonal flow, in the regime νn ≪ α≪ 1.

The effective equation and effective energy balance for U(φ) are very similar to
those studied theoretically in chapters 3–5. In particular, the effective equation for
U(φ) is close to a second order closure of the dynamics [66, 68], the main difference
being that our effective equation takes into account both the average and typical
fluctuations of Reynolds’ stresses in the evolution of zonal jets, while second order
closures only keep the average Reynolds’ stresses.

Here we will adopt an empirical point of view, and study those equations using
numerical simulations. One of the goals of such approach is to quantify the influence
of the fluctuations of Reynolds’ stresses in zonal jet dynamics. We will also comment
the numerical results in relation with the theoretical predictions of chapters 4 and 5.

6.4.1 Effective slow dynamics and effective zonal energy bal-

ance

The effective slow evolution of ωz (or equivalently of U) is obtained using the analogy
(6.28) and the results of stochastic averaging presented in chapter 2 (see equation
(2.19) in page 32). Here we consider the quasi-linear dynamics, but we would obtain
the same effective equation starting from the full non-linear dynamics (6.24). In both
cases, the effective evolution of U(φ) is given by

∂U

∂t
= αF α[U ]− αU + αξα[U ] (6.30)

with F α[U ] (φ) = E
α
U [f (φ)], where ξα[U ] is a gaussian noise with zero mean and

correlations (for a fixed U)

E [ξα[U ](φ1, t1)ξ
α[U ](φ2, t2)] = δ(t1 − t2)Ξ

α[U ](φ1, φ2), (6.31)

with Ξα[U ] given by (2.20) (we will not need the expression of Ξα[U ] here), and
where we have neglected viscosity and drift terms of higher order in α. In these
expressions, EαU is the average in the statistically stationary state of (6.29) with U
held fixed.

The hyperviscous terms in (6.27) essentially dissipate energy at the smallest scales
of the flow. In the turbulent regime we are interested in, such small-scale dissipation
is negligible in the global energy balance. For this reason, we have neglected those
viscous terms in (6.30). Note however that some hyper-viscosity is still present
in the numerical simulations of (6.29), in order to ensure numerical stability. For

95



CHAPTER 6. LARGE DEVIATIONS OF ZONAL JETS

consistency, we will make sure that those hyper-viscous terms have no influence on
the numerical results (see figures 6.4, 6.8).

Note that in contrast with chapters 3–5, we consider here the effective dynamics
(6.30) where the terms F α[U ] and Ξα[U ] are computed from (6.29) with α 6= 0. We
will then study the regime α≪ 1 using numerical simulations of (6.29) with different
values of α. This corresponds to take first the limit t→∞ and then α→ 0 in (6.29).

As explained in chapter 2, (6.30) can be seen as the Law of Large Numbers and
the Central Limit Theorem for (6.26). Equation (6.30) describes the effective slow
dynamics of zonal jets in the regime νn ≪ α≪ 1, it is the analogous of the kinetic
equation studied in chapter 3. In particular, the attractors of (6.30) are the same as
the attractors of a second order closure of the barotropic dynamics (CE2 in [66, 68]).
The noise term in (6.30) allows to describe the influence of fluctuations of Reynolds’
stresses on zonal jet dynamics, while classical closures only take into account the
average Reynolds’ stresses. Quantifying the influence of these fluctuations is one of
the goals of this study. This will be done at the level of the effective zonal energy
balance, that we now derive.

The kinetic energy contained in zonal degrees of freedom reads Ez =
∫

dφE (φ)
with E (φ) = π cosφU2 (φ). Applying the Itō formula5 to (6.30), we get the equation
for the effective evolution of E (φ),

1

α

dE

dt
= pmean(φ)− 2E + αpfluct(φ) , (6.32)

with the instantaneous energy injection rates into the zonal mean flow, respectively
by the average Reynolds’ stresses pmean (φ) ≡ 2π cosφF α[U ] (φ)U (φ) and by the
fluctuations of Reynolds’ stresses αpfluct (φ) ≡ απ cosφΞα[U ] (φ, φ). Integrating
(6.32) over latitudes, we obtain the total zonal energy balance

1

α

dEz
dt

= Pmean − 2Ez + αPfluct, (6.33)

with Pmean ≡
∫

dφ pmean(φ) and αPfluct ≡
∫

dφαpfluct(φ).
All the terms appearing in (6.32) and (6.33) can be easily estimated using data

from a direct numerical simulation of the linearized barotropic equation (6.29). In-
deed, F α[U ](φ) can be computed as the empirical average of f(φ) in the stationary
state of (6.29), and Ξα[U ] can be computed using the method described in section
6.1.1 to estimate correlation times6.

Besides, F α[U ] and Ξα[U ] can be computed directly from the scaled cumulant
generating function H, using (2.30) (page 35). Computing H using the Ricatti
equation (6.11, 6.12) and then using (2.30), we have a very easy way to compute

5Formally, the Itō formula leads to an energy balance involving the expectations of pmean and
pfluct over realizations of the noise ξ

α, i.e. over realizations of U itself. Such average energy balance
is not relevant physically, indeed we are interested here in the instantaneous energy balance, for a
given base flow U . Relations like (6.32) can be derived formally, see for instance [17].

6The statistical error bars for pfluct are computed from the error in the estimation of Ξα[U ],
which is similar to the estimation of the correlation time τ described in section 6.1.1. The statistical
error bars for pmean are computed from the error in the estimation of the average Fα, given by

(δFα)2 = 1+2τ/∆t
N var(Fα) where τ is the autocorrelation time of Fα, ∆t the time step between

measurements of the Reynolds’ stress and N the total number of data points [77].
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the terms appearing in the effective slow dynamics (6.30) or in the zonal energy
balance equations (6.32) and (6.33), without having to simulate directly the fast
process (6.29).

The energy injection rates Pmean and αPfluct, computed using both of the meth-
ods explained above, with different values of the non-dimensional damping rate α
are represented in figure 6.4. The first term Pmean (solid curve) is roughly of the
order of magnitude of the dissipation term in (6.33) (recall we use units such that
Ez ≃ 1). The second term αPfluct is about an order of magnitude smaller than
Pmean. In this case, the energy balance (6.33) implies that the zonal velocity is
actually slowly decelerating.

In this case, neglecting αPfluct in (6.33) leads to an error in the zonal energy
budget of about 5–10%. This confirms the fact that fluctuations of Reynolds’ stresses
are only negligible in a first approximation, but that they should be taken into
account in order to have a quantitative description of zonal jet evolution. We futher
discuss this result in section 6.4.3.

We also observe that Pmean increases up to a finite value as α≪ 1, while αPfluct
is nearly constant over the range of values of α considered. We will further comment
on those behaviours below.

The spatial distribution of the energy injection rates pmean(φ) and pfluct(φ) are
represented in figures 6.5 and 6.6(a), 6.6(b). Both pmean(φ) and pfluct(φ) are concen-
trated in the jet region φ ∈ [−π/4, π/4], which is also the region where the stochastic
forces act (see figure 6.3). We also observe in figure 6.6(a) that pmean is always pos-
itive, meaning that the turbulent perturbations δω are everywhere injecting energy
into the zonal degrees of freedom, i.e. the average Reynolds’ stresses are intensifying
the zonal flow U(φ) at each latitude. This effect is predominant at the jet maximum
and around the jet minima (around φ = ±π/8).

By definition, pfluct(φ) is always positive. However, we clearly see that this quan-
tity is relatively small in the region of jet maximum φ ≃ 0. This means that the
fluctuations of Reynolds’ stresses tend to force the mean zonal flow U(φ) predomi-
nantly away from the jet extrema, near φ = ±π/16.

We now comment in details these numerical results, in relation with the theoreti-
cal results obtained in chapters 4 and 5. We first recall that those theoretical results
were derived in the case of the biperiodic barotropic model, with the hypothesis
that the deterministic linear dynamics ∂t + LU leads to an inviscid damping of the
eddy velocity (see section 4.2 page 50). In the case of the linearized Euler equation
in a periodic domain, such inviscid damping is known as the Orr mechanism [82],
and applies whenever the operator LU has no modes [11]. In the present case of
the barotropic dynamics on a sphere, no theoretical results are known, and yet we
will see that the behaviour of pmean and pfluct obtained from numerical simulations
of (6.29) is similar to the behaviour predicted for the biperiodic case by the theory
developped in chapters 4 and 5.

6.4.2 Average Reynolds’ stresses in the inertial limit

In chapter 4, and under the hypothesis detailed previously, we have shown that
F α[U ](φ) converges to a finite function of φ as α → 0 with νn ≪ α. As a conse-
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Figure 6.4: Total energy injection rate into the zonal flow by the mean Reynolds’
stresses Pmean (first term in the r.h.s of (6.33), in solid line) and by the fluctua-
tions of Reynolds’ stresses αPfluct (last term in the r.h.s of (6.33), in dashed line
with statistical error bars in grey shading) as a function of 1/α. Those quantities
are estimated from direct numerical simulations (DNS) of the linearized barotropic
equation (6.39) with parameters given in section 6.3.4, and Pmean is also computed
directly using the Ricatti equation (6.12) (yellow curve). This allows to use finer
resolution and smaller viscosity very easily, here the spectral cutoff in the Ricatti
calculation is L = 120 (compared to L = 80 for the DNS), and the hyper-viscosity
coefficient is such that the smallest scale has a damping rate of 4 (i.e. it is half
of the hyperviscosity coefficient in the case L = 80). The comparison of the solid
black and yellow curves indicates that numerical resolution and hyper-viscosity are
negligible in the computation of Pmean. We observe that Pmean is of the same order
as the zonal energy dissipation rate due to linear friction (second term in the r.h.s of
(6.33)), and that αPfluct is about an order of magnitude smaller. Neglecting αPfluct
in (6.33) leads to an error in the zonal energy budget of about 5–10%. Besides, Pmean
increases up to a finite value as α→ 0, in agreement with theoretical predictions.
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Figure 6.5: From top to bottom: zonal velocity profile U(φ), energy injection rate
by the average Reynolds’ stresses pmean(φ) and energy injection rate by the fluctu-
ations of Reynolds’ stresses αpfluct(φ), as functions of latitude φ restricted to the
Northern hemisphere. The values in the Southern hemisphere are symetric with
respect to those represented here, see figures 6.3, 6.6(a) and 6.6(b). pmean and pfluct
are estimated from numerical simulations of (6.39) with parameters given in section
6.3.4, and α = 0.073. pmean is always positive, meaning that the average Reynolds’
stresses are intensifying the zonal flow U(φ) at each latitude. We see that fluctua-
tions of Reynolds’ stresses are lower at the jet extrema (pfluct is relatively small), in
particular close to the equator φ = 0. This can be understood as a consequence of
the depletion of vorticity at the stationary streamline [11]. Error bars are not shown
here, see figures 6.6(a) and 6.6(b).
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Figure 6.6: Energy injection rate into the zonal flow (a) by the mean Reynolds’
stresses pmean (first term in the r.h.s of (6.32)) and (b) by the fluctuations of
Reynolds’ stresses pfluct (last term in the r.h.s of (6.32)), as functions of latitude
φ, estimated from direct numerical simulations of the linearized barotropic equa-
tion (6.39) with parameters given in section 6.3.4, and with different values of the
damping rate α. Shaded areas represent the statistical error bars. In figure (a), we
observe the convergence of pmean to a finite function of φ as α → 0, in agreement
with the theoretical predictions. In figure (b), we observe that the values of pfluct are
relatively weak close the jet maximum φ = 0, while they keep increasing as α → 0
in other locations, as expected from theory.
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quence, we expect that pmean = 2π cosφF α[U ](φ)U(φ) and Pmean =
∫

dφ pmean(φ)
also converge to finite values as α → 0. This is what is observed in figures 6.4 and
6.6(a).

This observation implies that the effective dynamics of U given by (6.30) is well
defined at leading order in α. This behaviour is very similar to the behaviour of the
kinetic equation in the biperiodic case discussed in chapter 4.

6.4.3 Fluctuations of Reynolds’ stresses in the inertial limit

In chapter 5, and under the hypothesis detailed previously, we have shown that
Ξα[U ](φ, φ) behaves as 1/α in the regime νn ≪ α ≪ 1. It implies that αPfluct
should converge to a finite value as α decrases. In figure 6.4, we see that αPfluct
first increases slightly between α = 0.73 and α = 0.29, and then decreases between
α = 0.29 and α = 0.073. Moreover, this evolution is of very weak amplitude
compared to the statistical error bars. This indicates that we should have better
statistics and go to smaller values of α in order to state precisely whether the
theoretical prediction for αPfluct is satisfied or not.

In figure 6.6(b), we see that pfluct(φ) keeps increasing as α decreases in the region
away from the jet maximum (roughly for |φ| ∈ [π/16, π/4]), while its value remains
relatively small close to the equator φ = 0. This can actually be understood qual-
itatively using the results of chapters 4 and 5. Indeed, we have seen in section 5.2
that Ξα[U ](φ, φ) diverges as 1/α, mainly because of the vorticity-vorticity correla-
tions, and of the asymptotic behaviour of the deterministic vorticity given by the
Orr mechanism (see (5.21) page 74). More precisely, we have proved such behaviour
at every point where the local shear by the zonal jet U(φ) is non-zero, i.e. at every
point where the Orr mechanism applies. This explains why pfluct(φ) increases as α
decreases away from the jet maximum. At the shear-less points (for instance φ = 0),
no precise theoretical prediction is available for Ξα[U ](φ, φ). At such points, the de-
terministic vorticity actually decays for large times (depletion of vorticity at the
stationary streamline, see section 4.2 page 50 and [11]). In this stochastic context,
we can expect the fluctuations of δω to be weaker in this region φ ≃ 0, and this is
indeed what is observed in figure 6.6(b). We stress that no precise theoretical result
applies here, but the phenomenology of the deterministic linear dynamics associated
with (6.29) is in agreement with the numerical observations.

An important remark to make is that we have considered here the case where
only one mode is stochastically forced (see section 6.3.4 for details). In chapter 5, we
have discussed the influence of the forcing spectrum on the behaviour of Ξα[U ], in
particular we have seen that Ξα[U ](φ, φ) should behave as 1/αK in the regime α≪ 1,
K ≫ 1, where K is the number of forced modes. This implies that pfluct(φ) ∼ 1/αK
and αPfluct ∼ 1/K. Here K = 1, so we are basically considering the case where
fluctuations of Reynolds’ stresses are the most important in the zonal energy balance.
In other words, this is the worst case test for CE2 types of closures. In most previous
studies of second order closures like CE2, a large number of modes is forced [66, 68],
so in these cases pfluct(φ) and αPfluct are most likely to be negligible in the zonal
energy balance.
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6.4.4 Empirical validation of the time scale separation hy-

pothesis

Considering the linearized dynamics of the eddy vorticity δω close to a fixed zonal
flow U(φ) only makes sense if δω effectively evolves much faster than U(φ). An
indication of whether this hypothesis is self-consistent or not is given by the max-
imal decorrelation time of the Reynolds’ force f(φ) for the linear barotropic equa-
tion (6.39), defined as7

ταmax ≡ max
φ

lim
t→∞

1

t

∫ t

0

∫ t

0

E
α
U [[f (φ, s1) f (φ, s2)]]

2EαU [[f 2 (φ)]]
ds1ds2, (6.34)

In chapter 5 and under the hypothesis that the Orr mechanism applies (see previous
section), we have proved that ταmax has a finite value independent of α when α≪ 1.
Using the method described in section 6.1.1, the maximal decorrelation time (6.34)
can be estimated from simulations of the linearized barotropic equation (6.39), with
different values of α.

The results are summarized in figure 6.7. We observe the convergence of ταmax to
a finite value as α decreases, and this value is smaller than the inertial time scale
estimate (equal to one by definition of the time units). This means that the typical
time scale of evolution of the Reynolds’ stress divergence is much smaller than the
dissipative time scale 1/α. As the jet typically evolves over this dissipative time
scale, this result constitutes an empirically indication that the hypothesis of a time
scale separation between the evolution of the zonal jet and of the eddies as α → 0
is satisfied.

6.5 Large deviations of Reynolds’ stresses

In section 6.4, we have studied the effective energy balance for the zonal flow U(φ)
using numerical simulations of the linearized barotropic dynamics (6.29). This effec-
tive description of zonal jet dynamics corresponds to the Law of Large Numbers and
the Central Limit Theorem applied to the quasi-linear barotropic equations (6.26)
in the regime α ≪ 1. In other words, this effective description takes into account
the low-order statistics of Reynolds’ stresses: average and covariance.

In order to study arbitrarily rare events in zonal jet dynamics, we have to go to
the level of the Large Deviation Principle. We first formulate the Large Deviation
Principle for the quasi-linear barotropic equations (6.26) and discuss qualitatively
its implications for zonal jet statistics, and then give the numerical results.

The Large Deviation Principle presented in section 6.5.1 is exactly equivalent to
the one presented in a more general setting in chapter 2, we just recall it here for
convenience.

7In this spherical geometry the maximum is taken over the inner jet region φ ∈ [−π/7, π/7].
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Figure 6.7: Solid line: decorrelation time of the Reynolds’ stress divergence (6.34)
as a function of the damping rate α. We clearly see the convergence of ταmax to a
finite value as α → 0. The decorrelation time is of the order of the inertial time
scale (equal to one by definition of the units, here represented by the dashed line),
and much smaller than the dissipative time 1/α (not represented here), showing the
time scale separation between dissipative and inertial processes in the quasi-linear
barotropic dynamics. The parameters are the ones given in section 6.3.4.

6.5.1 Large Deviation Principle for the time-averaged Reynolds’

stresses

Consider the evolution of ωz from the first equation of (6.26). Over a time scale ∆t
much smaller than 1/α but much larger than the decorrelation time τ we can write

∆ωz
∆t

≡ 1

α

ωz(t+∆t)− ωz(t)

∆t
≃ 1

∆t

∫ t+∆t

t

R(s) ds− ωz(t) , (6.35)

where we have considered that ωz has almost not evolved between t and t + ∆t
(because ∆t ≪ 1/α), while R(s) has evolved according to (6.29) with a fixed ωz
(or equivalently a fixed U). We have also neglected hyper-viscosity in the evolution
of ωz, which is natural in the turbulent regime we are interested in. Note however
that some hyper-viscosity is still present in the numerical simulations of (6.29), in
order to ensure numerical stability. For consistency, we will make sure that those
hyper-viscous terms have no influence on the numerical results (see figure 6.8).

The approximation (6.35) is exactly the one we have done in chapter 2 in order
to obtain heuristically the Large Deviation Principle (see section 2.1).

We denote by P∆t

[

∆ωz

∆t

]

the probability distribution function of ∆ωz

∆t
, with a fixed

t (and thus a fixed ωz(t)), but with an increasing ∆t. Considering this regime is
consistent with the limit of time scale separation α → 0, where ωz is nearly frozen
while δω keeps evolving. From (6.35), P∆t

[

∆ωz

∆t

]

is also the probability density

function of the time-averaged advection term 1
∆t

∫ t+∆t

t
R(s) ds.
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In the limit ∆t→∞, the time-integral in (6.35) converges to a given value8, i.e.
P∆t

[

∆ωz

∆t

]

approaches a δ distribution centered on this value (Law of Large Num-
bers). The Large Deviation Principle gives the speed of convergence of P∆t

[

∆ωz

∆t

]

towards this δ distribution, and provides the probability of fluctuations around the
most probable value in the regime ∆t≫ 1. Namely,

P∆t

[

∆ωz
∆t

]

≍
∆t→∞

exp

(

−∆tL
[

∆ωz
∆t

])

, (6.36)

where ≍ stands for the equivalence in logarithmic scale. The function L is called
the large deviation rate function. It characterizes the whole distribution of ∆ωz

∆t
in

the regime ∆t≫ 1, including the most probable value and the typical fluctuations.

Our goal in the following is to compute numerically L
[

∆ωz

∆t

]

. To do this, we will
use the Gärtner-Ellis theorem presented in chapter 2, and that we briefly recall here.

Using (6.35), the definition of the scaled cumulant generating function (6.2) can
be reformulated as

H[θ] = lim
∆t→∞

1

∆t
ln

∫

dω̇z P∆t [ω̇z] exp (θ ·∆t ω̇z) (6.37)

Because ωz is a field, here θ is also a field depending on the latitude φ, and H is a
functional. For simplicity, we stop denoting the dependency in ωz in H. In (6.37),
we also have used the notation θ1 ·θ2 ≡

∫

dφ cosφ θ1(φ)θ2(φ) for the canonical scalar
product on the basis of spherical harmonics.

Using (6.36) in (6.37) and using a saddle-point approximation to evaluate the
integral in the limit ∆t → ∞, we get H[θ] = supω̇z

{θ · ω̇z − L [ω̇z]}, i.e. H is the
Legendre-Fenschel transform of L. Assuming that H is everywhere differentiable,
we can invert this relation as

L
[

∆ωz
∆t

]

= sup
θ

{

θ · ∆ωz
∆t

−H[θ]

}

. (6.38)

The scaled cumulant generating function H[θ] can be computed either from a time
series of δω (see section 6.1) or solving the Ricatti equation (see section 6.2). Then
the large deviation rate function L can be computed using (6.38), and this gives the
whole probability distribution of ∆ωz

∆t
(or equivalently of the time-averaged Reynolds’

stresses) through the Large Deviation Principle (6.36).

In the following, we implement this program and discuss the physical conse-
quences for zonal jet statistics. We first give a simpler expression of H[θ], that
makes its numerical computation easier.

8As discussed in chapter 5, ergodicity for the Reynolds’ stress divergence is not satisfied point-

wise, here it means that the large-∆t limit of 1
∆t

∫ t+∆t

t
R(s) ds might not be the average over the

invariant measure of (6.29). This observation has no consequence here, we only have to make sure

that 1
∆t

∫ t+∆t

t
R(s) ds has a finite limit for ∆t → ∞, and this is what we observe for instance in

figure 6.6(a).
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6.5.2 Decomposition of the scaled cumulant generating func-

tion

Using the Fourier decomposition (6.20), we can decompose the perturbation vorticity
as δω(λ, φ) =

∑

m ωm(φ)e
imλ, where ωm satisfies

∂ωm
∂u

= −LU,m [ωm] +
√
2ηm, (6.39)

where the Fourier transform of the linear operator (6.25) reads

LU,m [ωm] (φ) = −
im

cosφ
(U(φ)ωm(φ) + γ(φ)ψm(φ))− αωm(φ)− νn (−∆m)

n ωm(φ).

(6.40)
In (6.39), ηm (φ, t) is a gaussian white noise such that η−m = η∗m, with zero mean
and with correlations

E [ηm (φ1, t1) η
∗
m (φ2, t2)] = cm (φ1, φ2) δ(t1 − t2),

E [ηm (φ1, t1) ηm (φ2, t2)] = 0,

where cm is the m-th coefficient in the Fourier decomposition of C in the zonal
direction.

Using the Fourier decomposition, the zonally averaged advection term can be
written R(φ) =

∑

mRm(φ) with Rm(φ) = − im
cosφ

∂φ (ψm · ω−m). Using this expression
and the fact that ωm1 and ω

∗
m2

are statistically independent for m1 6= m2, the scaled
cumulant generating function (6.37) can be decomposed as9

H[θ] ≡ lim
∆t→∞

1

∆t
lnEαU

[

exp

(

θ ·
∫ ∆t

0

(R(s)− ωz(0)) ds

)]

= −θ · ωz +
∑

m

Hm [θ] ,
(6.41)

with

Hm [θ] = lim
∆t→∞

1

∆t
logEαU exp

[
∫

dφ cosφ θ (φ)

∫ ∆t

0

Rm (φ, s) ds

]

. (6.42)

We recall that EαU is the average in the statistically stationary state of (6.39).
In the following, we will consider the case where only one Fourier mode m is

forced, for simplicity. If several modes are forced, their contibutions to the scaled
cumulant generating function add up, according to (6.41).

Finally, consider the decomposition of the zonally averaged advection term into
spherical harmonics (6.19), Rm(φ) =

∑

ℓRm,ℓY
0
ℓ (φ). Using θ(φ) = θℓY

0
ℓ (φ) in (6.42),

we investigate the statistics of the ℓ-th coefficient Rm,ℓ. The associated scaled cu-
mulant generating function (6.42) is denoted Hm,ℓ (θ) ≡ Hm [θY 0

ℓ (φ)], and the large
deviation rate function is denoted

Lm,ℓ (ω̇ℓ) = sup
θℓ

{θℓ ω̇ℓ −Hm,ℓ(θℓ)} . (6.43)

9The time t in the upper and lower bounds of the integral in (6.41) are not relevant here, as we
are considering the statistically stationary state of (6.39).
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6.5.3 Numerical results

The function Hm,ℓ can be computed either from a time series of ωm(φ, s) using the
method described in section 6.1, or solving the Ricatti equation as described in
section 6.2. Then, the large deviation rate funtion is computed using (6.43). We
now show the results of these computations.

Scaled cumulant generating function

An example of computation of Hm,ℓ (θ) is shown in figure 6.8, with m = 10, ℓ = 3
and α = 0.073. The linearized barotropic equation (6.39) is integrated over a time
Tmax = 54, 500, with fixed mean flow given in figure 6.3, and the value of Rm,ℓ is
recorded every 0.03 time units (the units are defined in section 6.3.1).

The scaled cumulant generating function (6.42) is then estimated following the
procedure described in section 6.1.2 (thick black curve in figure 6.8). Because the
time series of Rm,ℓ is finite, Hm,ℓ(θ) can only be computed with accuracy on a re-
stricted range of values of θ (see section 6.1.2 for details), here θ ∈ [θmin/2, θmax/2] =
[−0.6, 1.1].

The scaled cumulant generating function (6.42) is also computed solving numer-
ically the Ricatti equation (6.12) and using (6.11) (yellow curve in figure 6.8). The
numerical integration of the Ricatti equation is very fast, this allows to use finer
resolution and lower hyper-viscosity very easily.

We observe a perfect agreement between the direct estimation of Hm,ℓ (black
curve in figure 6.8) and the computation of Hm,ℓ using the Ricatti equation (yellow
curve). The integration of the Ricatti equation was done with a finer resolution
and a lower hyper-viscosity than in the simulation of the linearized barotropic equa-
tion (6.39), the agreement between both results in figure 6.8 thus shows that the
resolution used in the simulation of (6.39) is high enough, and that the effect of
hyper-viscosity is negligible.

We stress that the computation of Hm,ℓ(θ) using the Ricatti equation (6.12) does
not require the numerical integration of the linear dynamics (6.39). Typically, the
integration of (6.39) over a time Tmax = 54, 500 takes about one week, while the
resolution of the Ricatti equation (6.12) for a given value of θ is a matter of a few
seconds. This allows to investigate the statistics of rare events (large values of |θ|
in figure 6.8) extremely easily, as we now explain in more details.

Rate function and departure from the Central Limit Theorem

The main goal of this study is to investigate the statistics of rare events in zonal jet
dynamics, that cannot be described by the kinetic equation studied for instance in
section 6.4. Using the previous numerical results, we will now show how to quantify
the departure from the kinetic description.

We stress that the typical behaviour of zonal jets in the regime α ≪ 1 is fully
described by the kinetic equation (6.30). As a consequence, the numerical results
shown in section 6.4 summarize how the low-order statistics of the time-averaged
advection term depend on the physical parameters α and νn (see for instance figure
6.4). For this reason, we will focus here on the probabilities of very rare events, as
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Figure 6.8: Thick black line: scaled cumulant generating functionH10,3 (θ) estimated
from the numerical simulation of the linearized barotropic dynamics (6.39), with
parameters defined in section 6.3.4 and α = 0.073. Statistical error bars are smaller
than the width of this curve. Yellow curve: scaled cumulant generating function
H10,3 (θ) computed from numerical integration of the Ricatti equation (6.12), using
(6.11). The spectral cutoff in the Ricatti calculation is L = 120 (compared to
L = 80 for the simulation of (6.39)), and the hyper-viscosity coefficient is such
that the smallest scale has a damping rate of 4 (i.e. it is half of the hyperviscosity
coefficient in the case L = 80). The estimated scaled cumulant generating function
is in agreement with the one computed from the Ricatti equation, showing that the
finite spectral cutoff and hyperviscosity are negligible in the calculation of H10,3 (θ).
The numerical integration of the Ricatti equation allows to investigate larger values
of |θ| (rarer events) extremely easily, see also figure 6.9.
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described by the Large Deviation Principle (6.36).

The large deviation rate function Lm,ℓ entering in the Large Deviation Principle
(6.36) can be computed from Hm,ℓ using (6.43). The result of this calculation is
shown in figure 6.9 (yellow curve10).

Because of the relation (6.35), Lm,ℓ can also be interpreted as the large de-
viation rate function for the time-averaged advection term, denoted R̄m,ℓ,∆t ≡
1
∆t

∫ ∆t

0
Rm,ℓ(s) ds. In other words, the probability distribution function of R̄m,ℓ,∆t in

the regime ∆t≫ 1 is roughly

Pm,ℓ,∆t
(

R̄
)

≍
∆t≫1

exp
(

−∆tLm,ℓ
(

R̄
))

. (6.44)

The Central Limit Theorem states that for large but finite ∆t, the statistics of
R̄m,ℓ,∆t around its mean Fm,ℓ ≡ E

α
U

[

R̄m,ℓ,∆t

]

= E
α
U [Rm,ℓ] are nearly gaussian. A

classical result in Large Deviation Theory is that the Central Limit Theorem can
be recovered from the Large Deviation Principle. Indeed, using an expansion of
Hm,ℓ in powers of θ (like the one done in section 2.3.3 page 35) and computing the
Legendre-Fenschel transform (6.38), we get

Lm,ℓ
(

R̄
)

=
1

2Ξm,ℓ

(

R̄− Fm,ℓ
)2

+O
(

(

R̄− Fm,ℓ
)3
)

(6.45)

with Ξm,ℓ ≡ 2
∫∞

0
E
α
U [[Rm,ℓ(s)Rm,ℓ(0)]] ds. Using the Large Deviation Principle

(6.44), this means that the statistics of R̄m,ℓ,∆t for small fluctuations around Fm,ℓ
are gaussian with variance Ξm,ℓ/∆t, which is exactly the result of the Central Limit
Theorem. Then, the difference between the actual rate function Lm,ℓ

(

R̄
)

and its
quadratic approximation (right-hand side of (6.45)) gives the departure from the
gaussian behaviour of R̄m,ℓ,∆t.

From (6.45), the gaussian behaviour is expected to apply roughly for
∣

∣R̄− Fm,ℓ
∣

∣ ≤
σm,ℓ,∆t with σm,ℓ,∆t ≡

√

Ξm,ℓ/∆t. The values of Fm,ℓ ± σm,ℓ,∆t are represented by
the black vertical lines in figure 6.911. The quadratic approximation of the rate
function is also shown in figure 6.9 (purple curve). As expected, both curves are
indistinguishable between the vertical lines (typical fluctuations), and departures
from the gaussian behaviour are observed away from the vertical lines (rare fluctu-
ations). Namely, the probability of a large negative fluctuation is much larger than
the probability of the same fluctuation for a gaussian process with same mean and
variance as R̄m,ℓ,∆t. On the contrary, the probability of a large positive fluctuation is
much smaller than the the probability of the same fluctuation for a gaussian process
with same mean and variance as R̄m,ℓ,∆t.

The kinetic description basically amounts at replacing R̄m,ℓ,∆t by a gaussian pro-
cess with same mean and variance. From the results summarized in figure 6.9, we
see that such approximation leads to a very inaccurate description of rare events
statistics. Understanding the influence of those non-gaussian behaviour of R̄m,ℓ,∆t

on zonal jet dynamics is naturally a very interesting perspective of this work.

10Here the Legendre-Fenschel transform (6.38) is estimated as Lm,ℓ(ω̇z) = θ⋆ · ω̇z − Hm,ℓ (θ
⋆)

where θ⋆ is the solution of ω̇z = H ′
m,ℓ (θ

⋆). Other estimators could be considered [96].
11The value of ∆t used in this estimation is the optimal one ∆t⋆, defined in section 6.1.
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Figure 6.9: Yellow curve: large deviation rate function L10,3(R̄) computed from
numerical integration of the Ricatti equation (6.12), using (6.11) and (6.38), with
parameters defined in section 6.3.4 and α = 0.073. Purple curve: quadratic fit (6.45)
that corresponds to a gaussian process with same mean and variance as R̄10,3,∆t, the
time-averaged advection term. Black vertical lines: standard deviation of R̄10,3,∆t

around its mean. Outside those vertical lines, we observe non-gaussian behaviour
of R̄10,3,∆t, in particular negative fluctuations are much more probable than positive
ones.

6.6 Perspectives

We have seen in this chapter how to compute the large deviation function associ-
ated with the Reynolds’ stress divergence H(z, θ) as a function of θ, either from a
set of data or using the Ricatti equation (6.12). However, the problem of the well-
definiteness of H in the inertial limit α → 0 has not been discussed. This problem
is similar to the subject of chapter 5, where we have studied the convergence of the
terms appearing in the Law of Large Numbers and Central Limit Theorem in the
inertial limit, using the asymptotic behaviour of the linearized 2D Euler equation.
Such approach could be generalized to study the self-consistency of the Large Devia-
tion Principle. Another interesting way to proceed would be to study the properties
of the Ricatti equation in the limit α→ 0. Moreover, as the Large Deviation Prin-
ciple contains the Law of Large Numbers and Central Limit Theorem (see section
2.3.3 in page 35), we would recover the results of chapter 5.

The most interesting application of the Large Deviation Principle is the study of
rare events, such as transitions between attractors of the barotropic model is cases
of bistability, as illustrated for example in figures 2 and 3.1. We have shown how to
compute the probability of very rare events, but we have not applied those tools to
cases of bistability.

In the framework presented in this chapter, bistability would be related to sin-
gularities of the scaled cumulant generating function Hm,ℓ(θ) (discontinuity of the
derivative with respect to θ). Then, interesting quantities such as transition proba-
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bility and most probable transition path (instanton) could be investigated, possibly
directly from the Ricatti equation.
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Chapter 7

Equilibrium dynamics of zonal jets

In this chapter we present the kinetic theory for a model related to the stochastic
barotropic equation. The difference here is that we impose a constraint on the spec-
trum of the forcing, which leads to detailed balance between forcing and dissipation,
in analogy with the Langevin equation in statistical mechanics for systems of parti-
cles. In general, those specific dissipation and forcing terms do not correspond to a
realistic modelling of a geophysical flow, the Langevin model studied in this chapter
should be considered as an academic theoretical tool.

In particular, one of the the motivations of this study is to find cases where quan-
tities of interest for the kinetic theory (average Reynolds’ stress divergence F0[U ],
integrated autocorrelation function of the Reynolds’ stress divergence Ξ[U ], see chap-
ter 3) can be computed explicitely. The average Reynolds’ stress divergence F0[U ] is
basically given by the stationary solution of a Lyapunov equation (eq. (3.11) page
40). Here we will construct a model where the stationary Lyapunov equation can be
solved explicitely, and compute F0[U ]. Then we will derive a relation between F0[U ]
and Ξ[U ], which reflects the detailed balance property at the level of the kinetic
equation.

The approach is actually very general, and some of the main results will be proved
in an abstract framework before being applied to the turbulence problem.

7.1 The generalized Langevin equation

7.1.1 Motivation

The original Langevin equation [59] describes the motion of a particle subjected
to random forces and friction from the surrounding particles (brownian motion).
If a particular relation holds between friction and random forces (Einstein’s rela-
tion), then the stationary probability distribution function of the particle’s velocity
is exactly the canonical Gibbs distribution. This is in agreement with the fact that
the particle is at statistical equilibrium with the surrounding environment (ther-
mal bath). This procedure thus enables the description of statistical equilibrium
by stochastic equations of motion. It is described in any textbook of statistical
mechanics, see for example [46] or [93], and it is generalizable to any Hamiltonian
system in contact with a thermal bath.
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In contrast with the previous simple system, turbulence is a non-equilibrium
phenomenon. Indeed, it is generally characterized by fluxes of energy among scales,
either through self-similar cascades [9, 89], or through non-local transfers of energy as
described in the kinetic theory presented in chapter 3. However, equilibrium statis-
tical mechanics (RMS theory) provides a very precise description of the large scales
of two-dimensional and geophysical turbulent flows in the inertial limit, as briefly
described in section 1.3.4 (page 24, see [14] for a review). The goal of this chap-
ter is to propose a description of the statistical equilibrium dynamics of zonal jets,
through a generalization of the Langevin equation to the stochastic two-dimensional
Navier-Stokes equation. We will thus recover at leading order the results from RMS
theory, and describe the corrections due to forcing and dissipation.

The basic ingredient of RMS theory is the conservation of an infinite number of
independent quantities by the inertial dynamics (see section 1.3.4). The equilibrium
states are then given by the maximization of an entropy functional, constrained
to the values of those conserved quantities [14] (microcanonical ensemble). In the
Langevin approach presented here (canonical ensemble), the stationary distribution
will be parametrized by those conserved quantities. In practice, this means that we
can construct the model such that it admits one stationary distribution among the
many possible equilibrium ones. This procedure is explained in details now.

7.1.2 Stationary distribution

We focus in this chapter on the Langevin dynamics associated with the 2D Eu-
ler equation, but all these results can be easily generalized to different dynamics:
barotropic dynamics over a doubly-periodic topography, or in a channel.

Consider the stochastic equation

∂ω

∂t
+ v · ∇ω = −κ

∫

dr′C(r− r′)
δG

δω(r′)
+
√

2κγ η(r, t) (7.1)

with κ, γ > 0, with η(r, t) a gaussian white noise with zero mean and correlations

E [η(r, t)η(r′, t′)] = δ(t− t′)C(r− r′), (7.2)

and where G[ω] is a conserved quantity of the inertial dynamics (Euler dynamics).
The dissipation term (first term in the r.h.s of (7.1)) involves the correlation function
of the stochastic forcing C, this naturally comes from the fact that dissipation
and forcing should balance each other at each scale in order to achieve statistical
equilibrium. This property will be stated more precisely in the next paragraphs.

Fokker-Planck equation

The evolution of the probability density functional for a finite dimensional stochastic
process is given by a Fokker-Planck equation [44, 93]. In this infinite-dimensional
(field) problem, the formal generalization of the Fokker-Planck equation reads

∂P

∂t
= LinP + LκP (7.3)
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for the probability density functional P [ω], where

LinP =

∫

dr
δ

δω(r)
[v · ∇ω(r)P [ω]] (7.4)

is the inertial part of the Fokker-Planck operator, and

LκP = κ

∫

dr
δ

δω(r)

[
∫

dr′C(r− r′)

(

δG
δω(r′)

P [ω] + γ
δP

δω(r′)

)]

(7.5)

is the operator associated with forcing and dissipation in (7.1).
Like in the construction of the original Langevin equation, the stationary prob-

ability distribution function (PDF) P [ω] of equation (7.1) is known explicitely, it is
the equilibrium distribution associated with the conserved quantity G[ω] (also called
the potential),

Peq[ω] =
1

Z
exp

(

−1

γ
G[ω]

)

, (7.6)

where Z is a normalisation constant.
More precisely, the inertial and forced-dissipated parts of the Fokker-Planck equa-

tion (7.3) applied at Peq vanish independently: LinPeq = 0 and LκPeq = 0. The
latter is obvious from (7.5) and (7.6). The former can be proved using the following
properties:

• the Liouville theorem
∫

dr
δ

δω(r)
[v · ∇ω(r)] =

∫

dr∇ · δ

δω(r)
[vω] = 0. (7.7)

• the conservation of G[ω] by the inertial dynamics

∫

dr (v · ∇ω) (r) δG
δω(r)

= 0. (7.8)

The fact that the inertial and forced-dissipated parts of the stationary Fokker-Planck
equation vanish independently is the precise statement of detailed balance at the
level of the stochastic dynamics (7.1).

The interest of the Langevin model (7.1) is that the potential in the stationary
distribution (7.6) can be chosen among the conserved quantities G of the inertial
dynamics. This is particularly useful in the case of the 2D Euler dynamics, which
conserves an infinite number of conserved quantities, as explained in section 7.1.4.

In particular, we will build in section 7.3 a potential Gγ which depends paramet-
rically on γ, such that the associated Langevin dynamics (7.1) leads to a time scale
separation between the evolution of a zonal jet and the evolution of perturbations
close to this jet in the regime γ ≪ 1. We will then apply the Law of Large Numbers
and the Central Limit Theorem (stochastic averaging) presented in chapter 2 in
order to obtain an effective equation for jet dynamics (kinetic equation).

Since we know that the stationary distribution of the full Langevin equation is the
equilibrium distribution (7.6), it is natural to wonder if the stationary distribution of
the kinetic equation can be computed directly from (7.6). It is indeed the case, and
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this leads to particular constraints on the slow Fokker-Planck equation associated to
the kinetic equation. Those constraints are called fluctuation-dissipation relations
for a reason that will be made clear in the following. We now derive those relations
in an abstract framework, they will be applied to the turbulence Langevin model
(7.1) in section 7.3.

7.1.3 Stochastic averaging and fluctuation–dissipation rela-

tions

The general stochastic averaging procedure is described in details in chapter 2 and
appendix A. To understand the derivation of the fluctuation-dissipation relations, it
is useful to recall the main steps of this procedure.

Consider the slow-fast stochastic dynamical system (2.1), that we recall here for
convenience,











∂z

∂t
= αf(z, w)

∂w

∂t
= b(z, w) + η

(7.9)

where η is a (vector) white gaussian noise. The joint probability distribution function
P (z, w, t) is the solution of the Fokker-Planck equation

∂P

∂t
= L0P + αLsP, (7.10)

where the Fokker-Planck operators Li describe the evolution of P at each order in α
(see section 2.2 for the expression of Li). We treat here the simple case (7.9), the
generalization to the more complex system of equations considered in section 7.3 is
straightforward.

Consider the virtual fast process w̃z, defined as the second equation of (7.9) with
a fixed z. Assume w̃z has a stationary distribution Gz, solution of L0Gz = 0. We
denote by P the projection onto the subspace of PDFs with the fast variable w
relaxed to its stationary distribution Gz,

PP (z, w, t) ≡ Gz(w)

∫

dwP (z, w, t). (7.11)

We then denote by Ps ≡ PP the slowly evolving part of the PDF and by Pf ≡
(1− P)P the fastly evolving part of the PDF. Defining the marginal distribution
of the slow process z as

R(z, t) ≡
∫

dwP (z, w, t), (7.12)

we have Ps = Gz.R.

To obtain the equation for the evolution of Ps, we apply the projector P on the
full Fokker-Planck equation (7.10). Using that L0 is a derivative with respect to the
fast variable w (for details see section 2.2 page 29), we have PL0 = 0, so

∂tPs = αPLs (Ps + Pf) . (7.13)
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Again, we see in this equation that the typical time scale of evolution Ps is of order
1/α≫ 1.

The stochastic averaging technique is a perturbative expansion in powers of α of
the correction PDF Pf, leading to a closed equation for Ps. Namely, we can write
Pf = LnPs + O(αn), where LnPs is the perturbative expansion of Pf up to terms of
order αn−1. Then, the effective equation for Ps reads

∂tPs = αPLs (1 + Ln)Ps +O(αn). (7.14)

This closed equation describes the effective statistics of z in the small-α limit, i.e.
in the limit of a large time scale separation between slow and fast variables. We
stress that the operator Ln depends on α, with terms up to order αn−1. The main
technical difficulty of the stochastic averaging procedure is actually to compute ex-
plicitely the operator Ln, this is done for instance in appendix A.

Now assume that the system (7.9) has a Langevin structure, like (7.1). This
means that the drift terms f and b in (7.9) can be decomposed into inertial and
dissipation parts, and that this decomposition satisfies a Liouville theorem and a
conservation law, as explained above for (7.1).

We do not need to write these conditions explicitely here, all we need is to
observe that there exists an equilibrium distribution Peq which is a stationary solu-
tion of the Fokker-Planck equation (7.10), more precisely that the inertial and the
forced-dissipated parts of the Fokker-Planck operator L0+αLs applied at Peq vanish
independently:

(

Lin
0 + αLin

s

)

Peq = 0, (7.15)

(Lκ0 + αLκs )Peq = 0, (7.16)

where the exponent ‘in’ (resp. κ) refers to the inertial (resp. forced and dissipated)
part of the dynamics.

Applying the projector P on (7.15) and (7.16) and using again the fact that L0

is a derivative with respect to w, we get

PLin
s (Ps,eq + Pf,eq) = 0 (7.17)

and
PLκs (Ps,eq + Pf,eq) = 0, (7.18)

where Ps,eq = PPeq and Pf,eq = (1−P)Peq. Now using the result of the perturbative
expansion Pf = LnPs +O(αn), (7.17) and (7.18) become

PLin
s (1 + Ln)Ps,eq = O(αn) (7.19)

and
PLκs (1 + Ln)Ps,eq = O(αn). (7.20)

We stress that (7.19), (7.20) are obtained from a perturbative expansion in pow-
ers α, so they hold up to terms of order αn−1. Indeed, in the general case Ps,eq

depends on α. Then, equations (7.19) and (7.20) insure that the stationary solution
of the effective Fokker-Planck equation (7.14) is given by the marginal equilibrium
distribution Ps,eq, expanded at order αn−1.
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More precisely, equations (7.19) and (7.20) relate the different terms appearing
in the effective Fokker-Planck equation (7.14). On one hand, (7.19) is a relation
between the terms coming from the inertial part of the dynamics, and on the other
hand, (7.20) is a relation between the terms coming from forcing and dissipation.

At the level of approximation corresponding to n = 3, the effective Fokker-Planck
equation (7.14) contains terms corresponding to a deterministic drift (in particular
dissipation) of the slow process z, and other terms corresponding to a stochastic
forcing of z (fluctuations). For this reason, the relations (7.19), (7.20) relating those
terms are called fluctuation-dissipation relations.

In section 7.3 will be given an explicit example of such fluctuation-dissipation
relations, for a class of Langevin models of the form (7.1) with a specific potential G.

7.1.4 Conserved quantities of the two–dimensional Euler

equation

In (7.1), the functional G[ω] is a conserved quantity of the inertial 2D Euler equation
∂tω + v.∇ω = 0. In a doubly-periodic domain, the inertial 2D Euler equation
conserves an infinite number of independent quantities: the energy

E [ω] = −1

2

∫

drωψ , (7.21)

and the so-called Casimir functionals

Cf [ω] =
∫

dr f(ω(r)) , (7.22)

for any sufficiently smooth function f . The conservation of the Casimir function-
als is related, through Noether’s theorem, to the particle relabelling symmetry of
fluid mechanics [99]. It can also be understood by the fact that the inertial 2D
Euler equation is an advection equation for the vorticity field ω, so the vorticity is
conserved at a point moving with the fluid (Lagrangian point of view) [55].

This particular property is fundamental in the construction of RMS theory [14],
and it will also be crucial in this chapter. Indeed, the choice of the potential
G[ω] = E [ω] + Cf [ω] among the infinite number of conserved quantities (energy-
Casimir functionals) leads to specific statistics of the flow in the statistically sta-
tionary state. This means that we can construct by hand the stationary state of
(7.1): most probable flow, typical fluctuations, energy contained at each scale... In
all the cases treated in this chapter, the most probable flow is a coherent zonal jet
on the largest scale, and small-scale fluctuations are of smaller amplitude. This is
consistent with the phenomenology of 2D and quasi-geostrophic turbulence in the
regime we are interested in.

The simplest examples of energy-Casimir functionals we will consider are the
quadratic ones, i.e. linear combinations of energy, enstrophy, and linear momentum
or total circulation depending on the boundary conditions. In section 7.2, we will
see that this case is singular for various reasons: the average total kinetic energy is
infinite, while the average Reynolds’ force acting on the zonal flow vanishes. More-
over, we will see that in the cases where the most probable flow is a zonal jet, the
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most probable amplitude of this jet is not determined by the distribution Peq[ω].

In order to be closer to a realistic situation, we will have to go to next order
in the choice of the potential G[ω], including non-quadratic terms in ω in (7.22).
This is done in section 7.3. We will first construct the energy-Casimir functional
in order to have a time scale separation between the large-scale zonal flow and the
small-scale eddies. Using stochastic averaging, we will then obtain the effective
equations for the slow evolution of the large-scale jet (eqs. (7.59),(7.60)). The terms
appearing in these effective equations are related to each other through fluctuation-
dissipation relations, as described in an abstract framework in section 7.1.3. These
fluctuation-dissipation relations will be written explicitely.

7.2 Energy–enstrophy distribution

The simplest case of energy-Casimir functional are the quadratic ones, that lead to
gaussian statistics of the flow through (7.6).

As will be shown in section 7.2.2, such distributions are the stationary distri-
bution of the original stochastic barotropic model (1.1) with specific values of the
friction and viscosity coefficients. For this reason, these distributions have been stud-
ied before, either in the context of the truncated two-dimensional Euler equation
[55], or in relation with the equilibrium statistical mechanics theory of geophysical
fluid dynamics models [64].

7.2.1 Construction and properties of the energy–enstrophy

distribution

Let’s consider the case of the biperiodic barotopic equation on the domain D =
[0, 2πlx) × [0, 2π) with aspect ratio lx < 1. Periodicity of the stream function and
vorticity fields leads to a zero value of total circulation and linear momentum, so we
will consider potentials only made of linear combinations of energy and enstrophy,
G2 = βE + Z where the enstrophy Z is the Casimir functional (7.22) defined by
f(ω) = 1

2
ω2, and β is the generalized inverse temperature (in this chapter we will

not consider the beta-effect like in previous chapters, so we hope no confusion will
be made).

In the doubly periodic domain D, we can decompose the fields in Fourier modes,
ω(r) =

∑

k
ωke

ik·r. Periodicity of the velocity field implies that ω0 = 1
(2π)2lx

∫

ω = 0,

so the equilibrium distribution (7.6) reads

Peq[ω] ∝ exp

(

− 1

2γ

∑

k 6=0

(

1 +
β

k2

)

|ωk|2
)

. (7.23)

Then, a necessary and sufficient condition for the normalizability of Peq is

∀k 6= 0,
1

γ

(

1 +
β

k2

)

> 0 (7.24)

For large k2, this implies that γ > 0. Then, β > −k2 for all k 6= 0, or equivalently,
β > −k2

0, where k0 = (0, 1) is the first non-zero Fourier mode.
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Concentration of energy in the largest scale

Can this distribution lead to a concentration of the energy in the largest scale
(mode k0)? The mean energy in the mode k is easily computed as a moment of the
multivariate gaussian distribution Peq (7.23),

Ek ≡
1

2k2
E|ωk|2 =

1

2

γ

k2 + β
, (7.25)

where E is the average over the stationary distribution Peq. Then, the ratio of the
energy contained in a mode k and of the energy in the smallest mode is

Ek

Ek0

=
k2
0 + β

k2 + β
. (7.26)

We have a concentration of the energy in the largest scale if this quantity is of the
form ǫg(k) with 0 < ǫ ≪ 1 for all k 6= k0. g is defined up to a multiplicative
constant, for instance given by g(k1) = 1. Then,

k2
0 + β = ǫ

(

k2
1 + β

)

⇒ β = −k2
0 + ǫ

(

k2
1 − k2

0

)

+O
(

ǫ2
)

. (7.27)

We will then have a concentration of the energy in the smallest mode k0 in the limit
β → −k2

0 = −1. Such negative temperatures are not surprising, they arise often in
the equilibrium statistical mechanics theory of such models [14, 55].

Most probable flow

The equilibrium distribution (7.23) is a centered gaussian, so the most probable
flow is the zero mean flow. Now consider the case β = −k2

0 +O(ǫ) with k2
0 = 1 and

0 < ǫ≪ 1. From (7.25), the average energy in the mode k0 diverges as 1/ǫ, while for
ǫ = 0 the distribution does not depend any more on ωk0 (see (7.23)). To conclude,
the typical flow according to the energy-enstrophy distribution (7.23) with ǫ≪ 1 is
a zonal jet on the largest scale k0 = (0, 1) that contains most of the energy of the
flow, with a smaller amplitude flow on the smaller scales. This is in agreement with
the general phenomenology of planetary zonal jets.

The average total energy is infinite

The total average energy is given by (7.25),

E =
∑

k

Ek =
∑

k

1

2

γ

k2 + β
, (7.28)

This sum can be approximated by the following integral

E ≃ Ek6K0 +
γ

2

∫ ∞

K0

2πk dk

k2 + β
(7.29)

with K0 ≫ 1 and where Ek6K0 is the energy of the first modes, such that k 6 K0.
This integral is obviously divergent, so E is infinite. This singular property of
energy-enstrophy ensembles was already discussed by Kraichnan and Montgomery
in the context of truncated approximations of the Euler equation [55].

In section 7.3, we will present another equilibrium ensemble (with a non-quadratic
potential G[q]), associated with a finite total average energy.
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Average Reynolds’ force

In analogy with the kinetic theory of chapter 3, let’s consider the average Reynolds’
force acting on a fixed zonal flow U(y) due to the perturbations δω to this zonal
flow. By definition,

F0(y) ≡ EU 〈δωδv〉 =
∑

k 6=0,l1,l2

ik

k2 + l21
gk,l1,l2 e

i(l1+l2)y, (7.30)

with gk,l1,l2 = EU [ωk,l1ω−k,l2 ], where EU is the average over the equilibrium distri-
bution (7.23) conditionned on the fact that the zonal flow is U(y). Because all
Fourier modes are independent of each other according to the distribution (7.23),
the two-points correlation function gk,l1,l2 can be computed explicitely:

gk,l1,l2 =
γ

1 + β/(k2 + l21)
δl1,−l2 . (7.31)

Then,

F0(y) =
∑

k,l

ikγ

k2 + l2 + β
= 0, (7.32)

which is zero because it changes sign under the transformation k → −k.
This result is not surprising in this simple case, indeed the equilibrium distribu-

tion (7.23) is invariant under translations in the y direction, and because all Fourier
modes are independent of each other, this property remains true for the distribution
conditionned on a fixed zonal flow. Then F0(y) is a constant, and this constant is
zero by conservation of total momentum.

However, the fact that F0 = 0 remains true even if the invariance under transla-
tions in the y direction is explicitely broken, for instance in the beta-plane equation
or the barotropic equation over a doubly-periodic topography, or taking into account
linear momentum in a channel geometry. To our knowledge, it is the first time this
property is observed.

Summary

The typical flow distributed according to the energy-enstrophy measure (7.23), in the
regime β = −k2

0 +O(ǫ) with k0 = (0, 1) and 0 < ǫ≪ 1, is a strong zonal jet on the
largest scale, with smaller-scale and smaller-amplitude fluctuations. However, the
total average energy contained in these fluctuations is infinite. Moreover, when ǫ = 0
(β = −1), the probability of the jet amplitude is no more defined. These singularities
can be avoided including higher-order Casimir functionals in the potential G[ω] that
defines the equilibrium distribution (7.6). It will also allow to obtain a finite average
total energy. This is the case we study in section 7.3.

7.2.2 An explicit stationary solution of the Lyapunov equa-

tion

In analogy with the kinetic theory of chapter 3 or with closure theories (S3T-CE2
for instance [2, 104, 106]), consider the linearized dynamics of perturbations close to
a fixed zonal flow U(y). According to the results of previous section, we consider the
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case where this zonal flow is on the largest scale of the domain, U(y) = U0 cos(y+φ)
with U0 and φ some constants. Then, the linearized 2D Navier-Stokes equation
reads

∂δω

∂t
+ U(y)

∂

∂x
(δω + δψ) = −κδω + ν∆δω +

√
2η, (7.33)

with the perturbation vorticity δω and the perturbation streamfunction δψ. Because
this equation is linear and invariant under translations in the x direction, we can
consider without loss of generality the case where a single zonal mode k is forced,

∂ωk
∂t

+ ikU(y) (ωk + ψk) = −κωk + ν∆kωk +
√
2ηk, (7.34)

where ωk(y, t) is the coefficient in the Fourier decomposition in the x direction of δω,
ψk = ∆−1

k ωk is the associated stream function with ∆k = ∂2y−k2 the k-th coefficient
of the Laplacian, and ηk(y, t) is a gaussian noise with zero mean and correlations

E [ηk(y1, t1)ηk(y2, t2)] = 0, (7.35)

E [ηk(y1, t1)η
∗
k(y2, t2)] = δ(t1 − t2)ck(y1 − y2). (7.36)

Equation (7.34) is a linear stochastic process, called Ornstein-Uhlenbeck pro-
cess. It is fully characterized by its two-points correlation function gk(y1, y2, t) =
E [ωk(y1, t)ω

∗
k(y2, t)], given by the Lyapunov equation

∂gk
∂t

+
(

L
(1)
in + L

(2)∗
in

)

gk +
(

L(1)
κ + L(2)∗

κ

)

gk = 2ck , (7.37)

where Lin = ikU(1 + ∆−1
k ), Lκ = κ− ν∆k, and the exponent (i) indicates that the

operator acts on the variable yi. From (7.31), we look for a stationary solution g∞k
of (7.37) that satisfies1

(

1 + ∆−1
k

)

g∞k (y1, y2) = g0δ(y1 − y2), (7.38)

with g0 a constant to be determined. A direct calculation shows that
(

L
(1)
in + L

(2)∗
in

)

g∞k =

0. Then, the Lyapunov equation (7.37) is solved in the stationary state for the par-
ticular forcing

ck =
1

2

(

L(1)
κ + L(2)∗

κ

)

g∞k . (7.39)

The fact that the inertial and forced-dissipated parts of the Lyapunov equation van-
ish independently is a direct consequence of the Langevin structure of this system.
From (7.39), the constant g0 can be given by the normalization of the energy injec-
tion2.

1Note that this condition can be solved explicitely as g∞k (y1, y2) =
g0
(

δ(y1 − y2)−H√
k2−1(y1 − y2)

)

where HK is the Green function of the Laplacian ∆K .
2The condition (7.39) leads to gk = O(1/κ, 1/ν), which seems to be in contradiction with

the results of section 5.1 (in page 67), in particular with the statement that gk should converge
point-wise in the limit ν ≪ κ ≪ 1 at any point such that U(y1) 6= U(y2). This is because the
condition (7.39) also means that ck is a distribution, and not a smooth function. The fact that
the results of section 5.1 do not apply when the forcing is a distribution can be understood easily

in the case of the constant shear base flow U(y) = sy, in which case gk(y1, y2) =
2ck(y1−y2)

iks(y1−y2)+2κ . If

ck(y1 − y2) ∝ δ(y1 − y2) then gk = O(1/κ), in contradiction with the results of section 5.1.
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The solution given by (7.38),(7.39) could be used to study the linear stability
of the cosine mean flow in the framework of the kinetic theory (or equivalently
S3T, CE2 systems), in the spirit of [2, 104]. Note that this solution can be easily
generalized to the beta-plane equation or to the barotropic equation over a periodic
topography.

7.3 Kinetic theory of Langevin models

As we have seen in the previous section, the energy-enstrophy distribution for the
biperiodic 2D Euler equation suffers from two singularities: the total average energy
is infinite, and in the limit of a concentration of energy in the large-scale zonal jet,
the probability distribution function does not depend on the zonal jet amplitude.
In this section, we will include higher-order (non-quadratic) Casimir functionals in
the definition of the stationary distribution (7.6) in order to avoid these singularities.

In paragraph 7.3.1, we will see how the higher-order Casimir functionals select
the amplitude of the large-scale zonal jet and the typical perturbations of this jet.

In paragraph 7.3.2, we will investigate the Langevin dynamics associated with
this energy-Casimir functional. In particular, we will see that a regime of time scale
separation between the evolution of zonal jets and the evolution of the surrounding
turbulence exists.

Using stochastic averaging (Law of Large Numbers and Central Limit Theorem),
we can derive a closed effective dynamics for the zonal jet, where the perturba-
tions are averaged out. This effective dynamics (kinetic equation) is presented in
paragraph 7.3.3.

As explained in a general setting in section 7.1.3, the terms appearing in the
kinetic equation are related to each other through so-called fluctuation-dissipation
relations. Those relations are written explicitely in section 7.3.4, for the Langevin
model considered in this section.

7.3.1 Construction of the equilibrium distribution

As in the previous section 7.2, we consider the 2D Euler Langevin dynamics in the
domainD = [0, 2πlx)×[0, 2π) with aspect ratio lx < 1. We have seen that the energy-
enstrophy distribution Peq ∝ exp(−G/γ) with potential G[ω] = G2[ω] = (−1+ǫ)E+Z
where 0 < ǫ≪ 1 and with γ > 0 describes a concentration of the energy in a large-
scale zonal jet. We now consider the more general class of potentials

G[ω] = (−1 + ǫ)E [ω] + Z[ω] + ǫCf [ω] =
∫

dr

(

1− ǫ

2
ωψ +

1

2
ω2 + ǫf(ω)

)

, (7.40)

where f is a smooth function of the form f(ω) =
∑

n>2 anω
n, where the coefficients

an are such that the distribution Peq ∝ exp(−G/γ) is normalizable.

Average total energy

An easy way to insure a finite average total energy is to impose that f(ω) is defined

on a bounded set of values of ω, for instance f(ω) = f0

[

(

1− (ω/ωmax)
4)−1/2 − 1

]

.
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It means that, distributed according to the equilibrium PDF with potential given
by (7.40), the absolute value of the vorticity at any point cannot exceed ωmax (more
precisely, the event ω(r) > ωmax at a given r has probability zero, in particular
this has to be fulfilled by the initial condition). Then, the average total energy is
bounded by (2π)4ω2

max||H||∞, where ||H||∞ is the maximum of the Green function
of the Laplacian H over the domain D.

Most probable flow

At leading order in ǫ, the potential reads

G0[ω] =
1

2

∫

dr
(

ω∆−1ω + ω2
)

. (7.41)

By construction, any large-scale jet with vorticity3 ω0(r) = −A cos y − B sin y is a
minimizer of G0. For ǫ 6= 0, the minimizer of the full potential G reads ω⋆(r) =
−A⋆ cos y − B⋆ sin y + O(ǫ), where the values of A⋆ and B⋆ are selected by the
higher-order Casimir functional Cf in (7.40). This is shown in appendix H.

Typical fluctuations

Let’s now look at the gaussian fluctuations around the most probable state: for
ω = ω⋆ + δω, we have

G[ω] ≃ G [ω⋆] +
1

2

∫

drdr′ δω(r)
δ2G

δω(r)δω(r′)
[ω⋆]δω(r′). (7.42)

Using (7.6), this means that the distribution of the fluctuations δω is approximately
gaussian,

P [δω] = exp

(

− 1

2γ

∫

drdr′ δω(r)M(r, r′)δω(r′)

)

(

1 +O
(

δω3
))

(7.43)

where, using (7.40),

M(r, r′) ≡ δ2G
δω(r)δω(r′)

[ω⋆] = H(r− r′) + δ(r− r′) +O(ǫ), (7.44)

where H is the Green function of the Laplacian.

Consider first perturbations on the largest scale, with vorticity δω = δω0 =
−δA cos y − δB sin y. The terms of order ǫ0 in the exponential in (7.43) vanish,
so the argument of the exponential in (7.43) is of order ǫ/γ. This means that the
typical amplitude of those large-scale fluctuations δω0 is of order |γ/ǫ|1/2.

Consider now perturbations δω on the smaller scales, the terms of order ǫ0 in the
exponential in (7.43) do not vanish, so |δω| ∼ |γ|1/2.

3We use this notation in agreement with the reference papers [10, 19, 61].
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Summary

To summarize, for the equilibrium PDF (7.6) with potential (7.40), the typical
vorticity field is of the form

ω(r) = − (A⋆ + δA) cos y − (B⋆ + δB) sin y +
√
γωp(r) +O(ǫ), (7.45)

with ωp a perturbation field on the small scales, and where δA, δB ∼ |γ/ǫ|1/2.
In the case γ ≪ |ǫ|, the flow is strongly concentrated around the most probable

flow ω⋆, as expected from the general form of the equilibrium distribution Peq (7.6).
On the other hand, for γ ∼ |ǫ| ≪ 1 the large-scale jet undergoes strong fluctuations
while the smaller-scale flow is still of smaller amplitude, and undergoes fluctuations
of amplitude

√
γ. In this regime, the distribution Peq has a variance of order 1 in

the subspace spanned by (cos y, sin y), and has a variance of order γ ≪ 1 in the
orthogonal subspace.

Assuming γ ∼ |ǫ| ≪ 1, we can write the potential vorticity field as

ω(r) = −A cos y − B sin y +
√
γωp(r) (7.46)

where A and B are fluctuating variables, and ωp represent the small-scale turbulent
surrounding flow. This is in good agreement with the general phenomenology of
planetary zonal jets, and with the ansatz used in the non-equilibrium kinetic theory
in chapter 3 [18]. The main difference in this case is that we have built this typical
flow by hand, by tuning the different parameters in the potential G. The typical flow
has been obtained from the a priori built in stationary distribution, and not from
the one reached by the natural equations of motion. We thus now have to study the
dynamics of A,B, and ωp. This is done in the next sections.

We will see that the time scale of evolution of (A,B) is of order 1/γ, while the
time scale of evolution of the perturbation ωp is of order 1. We will thus similarly
perform a perturbative expansion in powers of γ following the stochastic averaging
procedure (Law of Large Numbers and Central Limit Theorem, see chapter 2), and
obtain an effective equation for the evolution of (A,B) in the limit γ → 0.

7.3.2 Time scale separation in the Langevin equation

Consider the projections on the large-scale modes defined by

〈ω, cos〉 ≡
∫

dr

2π2lx
ω(r) cos y , 〈ω, sin〉 ≡

∫

dr

2π2lx
ω(r) sin y. (7.47)

Then, the decomposition of the vorticity field (7.46) is defined by A = −〈ω, cos〉,
B = −〈ω, sin〉 and √γωp(r) = ω(r) + (A cos y +B sin y).

We project the Langevin equation (7.1) with potential G given by (7.40) using
these definitions. This is done in appendix I. The resulting equations read

∂tA = γ 〈vp · ∇ωp, cos〉+ κγC0
∂G̃
∂A

+
√

2κγηc, (7.48)

∂tB = γ 〈vp · ∇ωp, sin〉+ κγC0
∂G̃
∂B

+
√

2κγηs, (7.49)
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∂tωp + LU [ωp] +
√
γNLU [ωp] + γκDU [ωp] =

√
2κηp, (7.50)

with ∂G̃
∂A

and ∂G̃
∂B

given in (I.7),(I.8); where ηc, ηs and ηp are independent gaussian
noises, with zero means and correlations E[ηc(t1)ηc(t2)] = E[ηs(t1)ηs(t2)] = C0δ(t1−
t2) and E[ηp(r1, t1)ηp(r2, t2)] = Cp(r1− r2)δ(t1− t2) with C0 and Cp defined by (I.4);
where the operators NLU and DU are given in (I.15), (I.16) and the linear operator
reads

LU [ωp] = L0
U [ωp] + κ

∫

dr′Cp(r− r′) (ωp + ψp) , (7.51)

where

L0
U [ωp] = U∂x (ωp + ψp) , (7.52)

with the large-scale zonal jet velocity profile U(y) = A sin y − B cos y.

Note that the most probable vorticity ω⋆ corresponds to a zonal flow at leading or-
der in γ, but it can have non-zonal corrections of order γ. This means that in general,
the average perturbation ωp in the statistically stationary state of (7.48),(7.49),(7.50)
is non-zero, and is of order γ. This non-zero average value is related to the non-linear
terms in (7.50).

In equations (7.48),(7.49),(7.50), we readily see that the typical time scale of
evolution of the large-scale flow coefficients A(t) and B(t) is of order 1/γ ≫ 1, while
the typical time scale of evolution of the perturbation flow ωp(r, t) is of order 1.

In contrast with the non-equilibrium case studied in chapter 3, here the time scale
separation regime γ ≪ 1 is not the regime of small dissipation κ≪ 1. Instead, time
scale separation between large scales and small scales is due to the very particular
structure of the dissipation term, related to the choice of potential (7.40). Such
artificial time scale separation is somehow similar to the asymmetric damping used
for instance in [33], where the evolution of the jet is artificially slowed down using a
smaller linear friction rate in the equation for the zonal vorticity than in the equation
for the non-zonal perturbations. Asymmetric damping in a barotropic model can
be regarded as a simplified model for a baroclinic flow, where the upper zonal jet is
less damped than the baroclinic eddies [33].

In particular, because here the small parameter γ is not the parameter controlling
the rate of energy dissipation, we will not encounter theoretical difficulties similar
to those discussed in chapters 3, 4 and 5 in the limit of time scale separation γ → 0.

In the following, we will apply the stochastic averaging tools desribed in chapter
2, like we did for the stochastic barotropic equation in chapter 3.

In the case of equations (7.48),(7.49),(7.50), the analogy with the generic slow-
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fast system (2.8) reads4

α ≡ γ , z ≡ (A,B) , w ≡ ωp

f(z, w) ≡
(

〈vp · ∇ωp, cos〉+ κC0
∂G̃
∂A

, 〈vp · ∇ωp, sin〉+ κC0
∂G̃
∂B

)

η0 ≡ (
√
κηc,

√
κηs) , η ≡

√
κηp

Lz · w ≡ LU [ωp]

b1(z, w) ≡ −NLU [ωp]−
√
γκDU [ωp].

(7.53)

The resulting effective equation for the evolution of (A,B) will be given in sec-
tion 7.3.3.

Stationary distribution of the fast variable

Using the analogy (7.53), the virtual fast process (2.9) reads in this case

∂tωp + LU [ωp] =
√
2κηp, (7.54)

where U(y) is the fixed zonal jet velocity profile. Explicitely,

∂tωp + L0
U [ωp] = −κ

∫

dr′Cp(r− r′)
δG2

δωp(r′)
+
√
2κηp, (7.55)

with the inertial linear operator L0
U [ωp] = U∂x (ωp + ψp), with the potential

G2[ωp] =
1

2

∫

dr
(

ω2
p + ωpψp

)

, (7.56)

and where ηp has correlations E[ηp(r1, t1)ηp(r2, t2)] = Cp(r1 − r2)δ(t1 − t2). The
potential (7.56) is conserved by the inertial part of the linearized dynamics:

∫

drL0
U [ωp]

δG2
δωp(r)

=

∫

drU(y)∂x (ωp + ψp) · (ωp + ψp) = 0, (7.57)

where the last equality can be found performing an integration by parts with respect
to x.

As a consequence, the linearized dynamics (7.54) is a Langevin dynamics with
potential G2. We thus know its stationary distribution, it is the gaussian distribution

G[ωp] ≡
1

Z
exp (−G2[ωp]) . (7.58)

Note that G does not depend on the large-scale flow U . We will thus denote by
E∞[O] the average of an observable O[ωp] over the distribution G.

4The term of order
√
γ in the expression of b1(z, w) could be easily included in the formal

derivation of stochastic averaging, chapter 2 and appendix A.
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7.3.3 Effective dynamics of the zonal jet

Using the results of section 2.2 (equation (2.19) in page 32) and the analogy (7.53),
we get

∂tA = κC0γE∞

[

∂G̃
∂A

]

+
√

2κγηc + γFc + γ3/2F1,c + γξc, (7.59)

∂tB = κC0γE∞

[

∂G̃
∂B

]

+
√

2κγηs + γFs + γ3/2F1,s + γξs, (7.60)

where ηc and ηs are the same noises as in (7.48),(7.49), and where ξc and ξs
are gaussian random noises with zero means and correlations (for fixed (A,B))
E [ξc(t1)ξc(t2)] = Ξc(A,B)δ(t1−t2), E [ξc(t1)ξs(t2)] = Ξcs(A,B)δ(t1−t2) and E [ξs(t1)ξs(t2)] =
Ξs(A,B)δ(t1− t2). These correlation functions are given by the Central Limit The-
orem (2.20), here5

Ξc(A,B) = 2

∫ ∞

0

dsEU [[〈vp · ∇ωp, cos〉 (s) 〈vp · ∇ωp, cos〉 (0)]] , (7.61)

Ξs(A,B) = 2

∫ ∞

0

dsEU [[〈vp · ∇ωp, sin〉 (s) 〈vp · ∇ωp, sin〉 (0)]] , (7.62)

Ξcs(A,B) =

∫ ∞

0

dsEU [[〈vp · ∇ωp, cos〉 (s) 〈vp · ∇ωp, sin〉 (0)

+ 〈vp · ∇ωp, sin〉 (s) 〈vp · ∇ωp, cos〉 (0)]] .
(7.63)

The drift terms in (7.59),(7.60) are given by the Law of Large Numbers,

Fc = E∞ [〈vp · ∇ωp, cos〉] , Fs = E∞ [〈vp · ∇ωp, sin〉] , (7.64)

and F1,c, F1,s are given in appendix A.

In the above expressions, we recall that E∞[·] and EU [[·]] denote respectively
the average and the covariance over the stationary distribution of the fast variable
(7.58). In particular, we know from the results of section 7.2 that Fc = Fs = 0. This
means that in this class of Langevin models, the drift in the effective evolution of
the large scale jet is given at leading order by the dissipation terms only. At next
order, the drift terms F1,c, F1,s describe the corrections due to the non-linear terms
in (7.50).

7.3.4 Fluctuation-dissipation relations

The Langevin structure of the system (7.48),(7.49),(7.50) implies constraints on the
effective dynamics (7.59),(7.60), called fluctuation-dissipation relations. These re-
lations were derived in a very abstract and general setting in section 7.1.3. Here
we give the explicit expression of those relations for the dynamics (7.59),(7.60), and
discuss some consequences.

5The dissipative drift terms ∂G̃
∂A and ∂G̃

∂B (given in (I.7),(I.8)) do not depend on ωp at leading
order. Then, their covariance is of order

√
γ, and is negligible here.
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The first fluctuation-dissipation relation (7.17) relates the inertial terms in the
effective equations (7.59),(7.60) at equilibrium, namely,

∂

∂A

{

−F1,cReq +
√
γ
∂

∂A
(ΞcReq)

}

+
∂

∂B

{

−F1,sReq +
√
γ
∂

∂B
(ΞsReq)

}

+ 2
√
γ

∂2

∂A∂B
(ΞcsReq) = O(γ),

(7.65)

with Req = G−1PPeq the equilibrium distribution of the jet amplitudes. Here we
have used Fc = Fs = 0.

We stress again on the fact that (7.65) is an equality up to terms of order γ.
Thus, if we expand Req as

Req = R0
eq +

√
γR1

eq +O(γ) (7.66)

and the drift terms F1,c, F1,s as

F1,c/s = F 0
1,c/s +

√
γF 1

1,c/s +O(γ), (7.67)

then at order γ0 equation (7.65) becomes

∂

∂A

{

F 0
1,cR

0
eq

}

+
∂

∂B

{

F 0
1,sR

0
eq

}

= 0, (7.68)

and at order
√
γ we get

∂

∂A

{

−F 0
1,cR

1
eq − F 1

1,cR
0
eq +

∂

∂A

(

ΞcR
0
eq

)

}

+
∂

∂B

{

−F 0
1,sR

1
eq − F 1

1,sR
0
eq +

∂

∂B

(

ΞsR
0
eq

)

}

+ 2
∂2

∂A∂B

(

ΞcsR
0
eq

)

= 0.

(7.69)
Those relations are very difficult to obtain from the explicit expressions of F1,c/s,
Ξc/s/cs and Req given in appendix A. Despite the simplicity of the proof given in
section 7.1.3, such fluctuation-dissipation are not trivial in general. In particular,
they can lead to cases where the stochastic term Ξ could be expressed simply as
a function of the drift term F0. It turns out that in all the cases studied during
this thesis, the physically relevant drift term (average Reynolds’ stress divergence)
is zero (see section 7.2). This is why no simple numerical application of this study
is possible at that point. Generalizations are discussed in section 7.4.

The second fluctuation-dissipation relation (7.18) relates the terms in (7.59),(7.60)
coming from forcing and dissipation, namely,

∂

∂A

{

−E∞

[

∂G̃
∂A

]

Req +
∂Req

∂A

}

+
∂

∂B

{

−E∞

[

∂G̃
∂B

]

Req +
∂Req

∂B

}

= O(γ3/2).

(7.70)
The relation (7.70) can actually be guessed from the approximate expression

of Req. Using (I.6) in appendix I, we have

Peq[ω] =
1

Z
exp

(

−G̃[A,B, ωp]
)

=
1

Z
exp (−g(A,B)− G2[ωp] +O(

√
γ))

(7.71)

127



CHAPTER 7. EQUILIBRIUM DYNAMICS OF ZONAL JETS

with

g(A,B) =
ǫ

γ
2π2lx

(

A2 +B2
)

+
ǫ

γ

∫

dr f(−A cos y − B sin y), (7.72)

and G2 given by (7.56) (remember that |ǫ| ∼ γ).
In equation (7.71), we recognize both the general expression Peq = G.Req +

O(
√
γ), and the fact that at leading order, the fast variable ωp is distributed accord-

ing to the equilibrium distribution (7.58) with potential G2.
From (7.71), the equilibrium distribution of the jet amplitudes is

Req(A,B) =
1

Z ′
exp (−g(A,B)) +O(

√
γ). (7.73)

By construction (see eq. (7.71)), we have ∂g
∂A

= ∂G̃
∂A

+O(
√
γ) and ∂g

∂B
= ∂G̃

∂B
+O(

√
γ).

Note also that at leading order, ∂G̃
∂A

and ∂G̃
∂B

do not depend on ωp (see appendix I),

so they are equal to their average values E∞

[

∂G̃
∂A

]

and E∞

[

∂G̃
∂B

]

, plus corrections of

order
√
γ.

As a consequence, the equality (7.70) at order γ0 (i.e. with O(
√
γ) on the r.h.s)

can be obtained directly from the expansion of Peq (7.71).

7.4 Perspectives

We have studied in this chapter the effective dynamics for a particular class of 2D
stochastic Euler equations, where some quantities of interest can be computed explic-
titely. In particular, we have proposed a method to compute the average Reynolds’
stress divergence, averaged over the stationary distribution of the linearized dynam-
ics close to a fixed base flow. It turns out that in all the cases studied here, this
quantity is exactly zero, so the effective jet dynamics is driven at leading order
by dissipation and non-linear corrections, in contrast with what is observed in the
non-equilibrium case (see chapter 3).

An interesting perspective of this work is the generalization to Langevin models
where the detailed balance assumption involves the inertial advection terms of the
fluid mechanics equation:

∂ω

∂t
= −v · ∇ω − κω + ν∆ω +

√

2γ η

= F [ω]−
∫

dr′C(r− r′)
δG

δω(r′)
+
√

2γ η (7.74)

where F and G satisfy a Liouville property
∫

dr δF
δω(r)

= 0 and an orthogonality con-

dition
∫

drF [ω](r) δG
δω(r)

= 0. Then, like for the Langevin model (7.1), the stationary

state is given by the equilibrium distribution Peq[ω] ∝ exp(−G[ω]/γ).
In a regime of parameters where a time scale separation exists between a large-

scale flow and small-scales turbulent perturbations, a stochastic averaging procedure
could be applied to (7.74), and it is easy to show that fluctuation-dissipation rela-
tions would hold. The interest of such a study would be to construct realistic —with
a realistic dissipation— explicitely solvable models, where the average Reynolds’

128



7.4. PERSPECTIVES

stress divergence would be non-zero and would probably depend on the zonal jet
characteristics.

Another motivation of this work is to make explicit predictions for the rare tran-
sitions between attractors, using large deviation theory. For instance, in [10, 61] is
presented the computation of the probability of transition between two attractors
of the stochastic barotropic equation upon a topography, corresponding to two dif-
ferent zonal jet configurations. In the results presented in [61], the transition occurs
through zonally invariant states only. The results of this chapter enable to take into
account the non-zonal degrees of freedom (eddies) in such transitions (inertial terms
in the effective equations (7.59),(7.60), and inertial fluctuation-dissipation relation
(7.65)). Again, a case with a non-zero leading order drift term (average Reynolds’
stress divergence) would be more interesting from a physical point of view.
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Conclusion

We have studied in this thesis the dynamics of zonal jets in stochastic barotropic
models, in the regime of weak forces and dissipation. This framework is expected
to give a qualitative description of the dynamics of the polar jet stream in the at-
mosphere, or of the zonal jet structure observed in the outer layer of giant gaseous
planets.

We have seen that in the regime of weak forces and dissipation (characterized
by a small parameter α ≪ 1), most of the kinetic energy concentrates into the
zonal jet, which evolves much slower than the surrounding turbulent perturbations.
This allows a quasi-static description of zonal jet dynamics and statistics, where
small-scale turbulence is averaged out. Our approach is similar to the kinetic theory
for systems of particles, which provides an effective description of the macroscopic
behaviour of the system. We also go beyond the classical kinetic approach in order
to describe fluctuations of zonal jets, at higher orders in α. These fluctuations are
of great importance in the dynamics of the polar jet stream, and can lead in some
cases to a brutal change in the configuration of the jets.

Using kinetic theory, we have obtained an equation that describes the effective
slow evolution of zonal jets. At leading order in α ≪ 1, this equation is equivalent
to a closure at second order in the hierarchy of cumulants of the vorticity, already
studied in the past on a phenomenological ground (S3T in [2], CE2 in [104, 106]).
With our perturbative expansion, we thus justify theoretically those previous ap-
proaches, and explain why the regime α ≪ 1 and K ≫ 1 where K is the number
of forced modes, is the most natural regime to apply such closure. An important
physical consequence is that in this regime, the main energy transfer mechanism
from the forcing scale to the scale of the jet is a non-local one, through Reynolds’
stresses. This is in contrast with the common picture of jet formation through an
upscale turbulent energy cascade.

Our approach also allows to go beyond classical closures in order to describe
zonal jet fluctuations. This is a very original point of view in the study of zonal jet
dynamics. In particular, we have proved that in the general case, the small fluctua-
tions of Reynolds’ stresses are actually not negligible in the zonal jet energy balance.

From a theoretical point of view, we have adressed the validity of the kinetic
theory in the regime α ≪ 1. In the simplest case with no differential rotation, no
viscosity, and when the stochastic forcing spectrum is localized, we have proved that
the perturbative expansion actually leads to divergences, also interpreted as a lack of
ergodicity for the dynamics of fast turbulent perturbations. We have also discussed
how those divergences could be regularized by considering a forcing acting on a very
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large number of modes K ≫ 1 (with a constant energy input). This is actually the
case considered in previous numerical studies [2, 104, 106], this explains why those
divergences were never observed before.

It would be very interesting to study more precisely different regimes, such as
K ≫ 1 or with non-zero viscosity, and investigate from a theoretical point of view
the effect of differential rotation (beta-effect). This would be very interesting for
geophysical applications, and it would bridge the gap with previous numerical stud-
ies [2, 104, 106].

Another important part of this thesis deals with the study of rare events in zonal
jet dynamics, such as transitions between different configurations of jets. Such rare
events are extremely difficult to study using direct numerical simulations, and yet
no theoretical approach was ever attempted to describe these events in this system.
We have also explained why kinetic theory is not able to describe rare events either.

Instead, we have chosen to use Large Deviation Theory. In the regime of time
scale separation α ≪ 1, the large deviation principle gives the probability of arbi-
trarily large fluctuations of the zonal jet acceleration. We have developped original
methods in order to implement the large deviation principle, and to compute ex-
plicitely or numerically such probabilities. We have applied those methods to the
stochastic barotropic model, and we have observed significant differences between
the actual probability of rare events and the probability predicted by kinetic theory,
as expected.

This work is the first step towards a Large Deviation Theory of zonal jet statis-
tical dynamics. Computing the probability of fluctuations leading to a transition
between attractors of the dynamics and the most probable path of such transition is
the most interesting perspective of this work, both from a theoretical point of view
and for geophysical applications.

In a last chapter, we have presented an academic model of barotropic dynamics,
analogous to the Langevin model for Brownian motion. The interest of this model
is that the stationary distribution of the flow is known explicitely. We have studied
the effective slow dynamics of zonal jets within this model, and derived fluctuation-
dissipation relations which give the stationary distribution of the jet amplitude.

The tools developped in this thesis could be generalized to more complex climate
models, and in order to study the dynamics of other large scale coherent structures
such as giant vortices, ocean rings and currents. In particular, the possible brutal
climate changes (related to changes in the thermohaline circulation for instance [91])
are very difficult to study through direct climate modelling [50], this calls for ex-
tended theoretical investigation.
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Appendix A

Stochastic averaging — Formal

derivation

A.1 Perturbative expansion of the Fokker–Planck

equation

We consider the slow-fast system (z, w) evolving according to (2.8) (page 29), de-
scribed by the Fokker-Planck equation (2.10). We recall the definition of the slow
part of the PDF Ps(z, w, t) = PP (z, w, t) = Gz(w)R(z, t) and of the fast part
Pf = (1−P)P , where P· = Gz

∫

dw· is the projector onto the space of PDF’s with
the fast variable w relaxed to its stationary distribution Gz. As explained in section
2.2, in the case of interest Gz is a gaussian distribution, given by (2.15).

The stochastic averaging is a perturbative expansion of Pf as a function of Ps, in
powers of α≪ 1. To obtain this expansion, we project the Fokker-Planck equation
(2.10) using P and 1− P :

∂Ps
∂t

= αPLs (Ps + Pf ) (A.1)

∂Pf
∂t

= L0Pf +
√
αL1 (Ps + Pf ) + α (1− P)Ls (Ps + Pf ) , (A.2)

where we have used PL0 = PL1 = 0 (this is because L0 and L1 are divergences
with respect to w) and L0P = 0 (this is because by definition, L0Gz = 0). To solve
formally (A.1),(A.2), we consider the Laplace transform, defined for any function of
time φ(t) by

φ̂(s) = LT [φ](s) =

∫ ∞

0

φ(t)e−ts dt.

By integration by parts, we have LT [∂tφ](s) = −φ(0) + sφ̂(s), so (A.2) becomes

(

s− L0 −
√
αL1 − α(1− P)Ls

)

P̂f (s) =
(√

αL1 − α (1− P)Ls
)

P̂s(s) + Pf (0).

As Pf evolves very fast, the initial condition Pf (0) is not important and can be
taken to be zero without loss of generality. Then,

P̂f (s) =
√
α
(

s− L0 −
√
αL1 − α(1− P)Ls

)−1 (L1 −
√
α (1− P)Ls

)

P̂s(s). (A.3)
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This is still exact. We can now perform a perturbative expansion of (A.3) in powers
of α,

P̂f (s) =
√
α
[

(s− L0)
−1 + (s− L0)

−1 (√αL1

)

(s− L0)
−1]

(

L1 −
√
α (1− P)Ls

)

P̂s(s) +O
(

α3/2
)

.

Now using the fact that (s− L)−1 is the Laplace transform of etL, and the fact that
the inverse Laplace transform of a product is a convolution product, we get

Pf (t) =
√
α

∫ ∞

0

et
′L0
(

L1 −
√
α (1− P)Ls

)

Ps(t− t′) dt′

+ α

∫ ∞

0

et
′L0L1

∫ ∞

0

et
′′L0L1Ps(t− t′ − t′′) dt′dt′′ +O

(

α3/2
)

.

We observe now that the evolution equation for Ps contains memory terms. However,
from (A.1) we have ∂Ps∂t = O(α), so we can replace Ps(t − t′) by Ps(t) + O(α).
This approximation is the equivalent of Bogolyubov’s hypothesis in kinetic theory
[4]. The evolution equation for Ps is then

∂Ps(t)

∂t
=α

[

PLs +
√
αPLs

∫ ∞

0

dt′ et
′L0
(

L1 −
√
α (1− P)Ls

)

+αPLs
∫ ∞

0

dt′ et
′L0L1

∫ ∞

0

dt′′ et
′′L0L1

]

Ps(t) +O
(

α5/2
)

.

A.2 Explicit computation of the operators

The next step is to evaluate explicitely each term appearing in this equation.

• The first term gives the Large Deviation Principle,

PLsPs(w, z) = −Gz(w)∇z [F (z)R(z)] .

• The second term reads

PLs
∫ ∞

0

dt′ et
′L0L1Gz(w)R(z) = −Gz(w)∇z

[

F̃1(z)R(z)
]

−Gz(w)∇z∇z

[
∫ ∞

0

dt′
∫

dw et
′L0 ∇w (b1(z, w)Gz(w))R(z)

]

with

F̃1(z) = −
∫ ∞

0

dt′ Ez
[

f (z, w̃z(t
′))∇w [b1 (z, w̃z(0))Gz (w̃z(0))]G

−1
z (w̃z(0))

]

(A.4)
In the second term, the integral over w can be rewritten as an average over
Gz of a function of (z, w̃z(t

′)). This is an average in the stationary state of the
process w̃z, so it does not depend on time t′. Then, it is just the integral over
w of a divergence with respect to w, so it vanishes. The first term is non-zero
in general.
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• For the third term, we have

(1− P)LsPs(z, w) = −∇z [f(z, w)Gz(w)R(z)] +Gz(w)∇z [F (z)R(z)]

PLset
′L0(1− P)LsPs(z, w)

= −Gz(w)∇z

∫

dw f(z, w)et
′L0 {−∇z [f(z, w)Gz(w)R(z)] +Gz(w)∇z [F (z)R(z)]}

= Gz(w)∇z∇z

∫

dw f(z, w)et
′L0f(z, w)GzR−Gz∇z

∫

dw∇z

[

f(z, w)et
′L0

]

f(z, w)GzR

−Gz∇z∇z

∫

dw f(z, w)et
′L0GzFR +Gz∇z

∫

dw∇z

[

f(z, w)et
′L0Gz

]

FR

= Gz∇z∇z {Ez [f(t′) (f(0)− F )]R} −Gz∇z

{

Ez

[

∇z

[

f(z, w)et
′L0

]

(f(z, w)− F )
]

R
}

−Gz∇z

{

Ez

[

f(t′)

(

1

Gz

(∇zGz)F

)

(0)

]

R

}

where we use the notation φ(t′) = φ (z, w̃z(t
′)), with w̃z the solution of the

virtual fast process (2.9). Now, defining

Ξ(z) ≡ 2

∫ ∞

0

Ez [f(t
′) (f(0)− F )] dt′ = 2

∫ ∞

0

Ez [(f(t
′)− F ) (f(0)− F )] dt′

and

F̃2(z) =

∫ ∞

0

{

Ez

[

∇z

[

f(z, w)et
′L0

]

(f(z, w)− F )
]

+ Ez

[

f(t′)

(

1

Gz

(∇zGz)F

)

(0)

]}

dt′ ,

we get

PLs
∫ ∞

0

et
′L0(1−P)LsPs(z, w) = Gz(w)∇z

{

−F̃2(z)R(z) +
1

2
∇z (Ξ(z)R(z))

}

.

• For the last term, we write

et
′L0L1e

t′′L0L1Gz(w) =M(z, w)(t′, t′′)Gz(w).

The function M could be written explicitely using the expression of Gz(w),
but this is not necessary here. Then,

PLset
′L0L1e

t′′L0L1Ps = Gz∇z [Ez [f(z, w)M(z, w)(t′, t′′)]R +∇z [Ez [M(z, w)(t′, t′′)]R]] .

We first consider the average value of M . As Ez is an average over the sta-
tionary distribution Gz, we have

Ez [M(z, w)(t′, t′′)] = Ez [M1(z, w)(t
′ − t′′)]

with M1 defined by

L1e
(t′−t′′)L0L1Gz(w) =M1(z, w)(t

′ − t′′)Gz(w).

Using the expression of L1 as a divergence with respect to w, we then have
Ez [M(z, w)(t′, t′′)] = 0, so that

PLs
∫ ∞

0

et
′L0L1

∫ ∞

0

et
′′L0L1 dt

′dt′′ Ps(z, w, t) = −Gz(w)∇z

[

F̃3(z)R(z, t)
]

with F̃3(z) = −
∫∞

0

∫∞

0
Ez [f(z, w)M(z, w)(t′, t′′)] dt′dt′′.
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The slow Fokker-Planck equation thus reads

∂R

∂t
= −α∇z

[(

F +
√
αF1

)

R
]

+
1

2
α2∇z∇z [ΞR] (A.5)

with F1 = F̃1 +
√
α(F̃2 + F̃3).
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Appendix B

Large Deviation Principle —

Formal derivation

B.1 The Gärtner–Ellis theorem applied to the slow

process

The formal computations presented in this appendix are directly inspired by the
work of Eric Vanden-Eijnden, that will be published soon [16]. The corresponding
theorem was first published by Freidlin and Wentzell [39], see also [114] and refer-
ences therein.

Consider the slow-fast system (2.1) (in page 26). For simplicity, we perform the
change of time variable t→ αt, so the relevant time scale for the slow process is of
order one:















∂z

∂t
= f(z, w)

∂wi
∂t

=
1

α
bi(z, w) +

1√
α
ηi

(B.1)

We will consider the paths {z(t), w(t)}t∈[0,T ] where T is fixed and with a given initial
state (z0, w0) ≡ (z(0), w(0)).

In order to apply the Gärtner-Ellis theorem, consider the scaled cumulant gen-
erating functional

λ[k] ≡ lim
α→0

α lnE

[

exp

(

1

α

∫ T

0

k(t)z(t) dt

)]

, (B.2)

where the average is taken over the distribution of {z(t), w(t)}t∈[0,T ] with initial
condition (z(0), w(0)) = (z0, w0). This is a direct generalization of the SCGF λ(k)
defined in section 2.3.1 (page 32) for infinite dimensional random variables (random
processes). Assuming that λ[k] is well-defined (finite and functionally differentiable
with respect to k), the Gärtner-Ellis theorem implies that the process {z(t)}t∈[0,T ]
satisfies a Large Deviation Principle for α→ 0 with rate function

I[z] = sup
{k(t)}t∈[0,T ]

{
∫ T

0

k(t)z(t) dt− λ[k]

}

. (B.3)
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We will prove that

λ[k] = θ(0)z0 +

∫ T

0

H(z(t), θ(t)) dt (B.4)

for θ(t) such that θ̇(t) = −k(t) and θ(T ) = 0, and where H is the SCGF defined in
equation (2.26) (page 34). Then, the condition that λ[k] is functionally differentiable
with respect to k resumes to the condition that H(z, ·) is differentiable.

Performing an integration by parts in (B.3) and using (B.4), we get

I[z] = sup
{θ(t)}t∈[0,T ]

{
∫ T

0

(θ(t)ż(t)−H(z(t), θ(t))) dt

}

=

∫ T

0

sup
θ(t)

{θ(t)ż(t)−H(z(t), θ(t))} dt ,

which is exactly the action functional S[z] defined in section 2.3.2.

We now have to prove (B.4) to finish the proof of the Large Deviation Principle
for z. Performing an integration by parts in (B.2) and using (B.1), we get

λ[k] = lim
α→0

α lnE

[

e
1
α
θ(0)z0 exp

(

1

α

∫ T

0

θ(t)f(z(t), w(t)) dt

)]

= θ(0)z0 + lim
α→0

α ln u(T, z0, w0)

with

u(T, z, w) ≡ E

[

exp

(

1

α

∫ T

0

θ(t)f(z(t), w(t)) dt

)
∣

∣

∣

∣

z(0) = z, w(0) = w

]

. (B.5)

In the following, θ (or k) will be fixed so we don’t denote its dependency in u. In
contrast, the initial conditions (z(0), w(0)) = (z, w) are important in the definition
of u. Indeed, the evolution equation of u is given by [16]

∂u

∂T
=

(

f(z, w)∇z +
1

α
b(z, w)∇w +

1

2α
C :∇w∇w +

1

α
θf(z, w)

)

u (B.6)

with θ = θ(0). We look for a solution of this equation under the form u(T, z, w) =
v(T, z, w) exp( 1

α
φ(T, αz, w)), where v and φ are assumed to be of order one with

respect to α. Injecting this ansatz in (B.6) and collecting terms of leading order, we
get ∇wφ = 0. Then at order 1/α,

(

b(z, w)∇w +
1

2
C :∇w∇w + θf(z, w)−K

)

v = 0 (B.7)

with K = ∂Tφ(T, 0)
1. The first two terms in the parenthesis are related to the

evolution of the virtual fast process w̃z defined in (2.4) (page 28), while z, T and θ

1A more precise definition of K goes through the Hamilton-Jacobi equation [16]
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are simple parameters. Then, v is the stationary solution of an equation similar to
(B.6), so (B.7) can be solved as

v(T, z, w) = lim
∆t→∞

E

[

exp

(

θ

∫ ∆t

0

f(z, w̃z(s)) ds−∆tK

)]

= lim
∆t→∞

e−∆tK
Ez

[

exp

(

θ

∫ ∆t

0

f(z, w̃z(s)) ds

)]

where Ez is the average over the stationary distribution of the virtual fast process
w̃z with z held fixed. A sufficient condition for v to be finite is that

K = lim
∆t→∞

1

∆t
lnEz

[

exp

(

θ

∫ ∆t

0

f(z, w̃z(s)) ds

)]

<∞ .

We then recognize K = H(z, θ). Using this relation and the definitions of K and φ,
we get

lim
α→0

α ln u(T, z(T ), w(T )) = φ(T ) =

∫ T

0

H(z(t), θ(t)) dt

and (B.4) is proved.

B.2 Expansion of the SCGF in powers of θ

In this section we prove (2.30). This relation is a direct consequence of the property
of cumulant generating functions,

lnE [ex] ≃ E [x] +
1

2
E
[

x2 − E [x]2
]

+O(x3),

which can be found expanding exp(x) and ln(1 + x) around x = 0. Applied to the
definition of the SCGF for the slow process z (2.26), this gives

H(z, θ) ≃ lim
∆t→∞

1

∆t

{

θEz

[
∫ ∆t

0

f (z, w̃z(s)) ds

]

1

2
θ2 Ez

[

(
∫ ∆t

0

f (z, w̃z(s)) ds

)2

− Ez

[
∫ ∆t

0

f (z, w̃z(s)) ds

]2
]

+O
(

θ3
)

}

.

At first order in θ, we have

lim
∆t→∞

1

∆t
Ez

[
∫ ∆t

0

f (z, w̃z(s)) ds

]

= lim
∆t→∞

1

∆t

∫ ∆t

0

Ez [f (z, w̃z(s))] ds

= lim
∆t→∞

1

∆t

∫ ∆t

0

F (z) ds

= F (z).
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At second order in θ, we have

H2 ≡ Ez

[

(
∫ ∆t

0

f (z, w̃z(s)) ds

)2

− Ez

[
∫ ∆t

0

f (z, w̃z(s)) ds

]2
]

= Ez

[

∫ ∆t

0

f (z, w̃z(s)) ds

∫ ∆t

0

f (z, w̃z(s
′)) ds′ −

(
∫ ∆t

0

Ez [f (z, w̃z(s))] ds

)2
]

=

∫ ∆t

0

ds

∫ ∆t

0

ds′ Ez
[

f (z, w̃z(s)) f (z, w̃z(s
′))− F (z)2

]

= 2

∫ ∆t

0

ds

∫ s

0

ds′ Ez
[

f (z, w̃z(s)) f (z, w̃z(s
′))− F (z)2

]

,

where we have used that the integrand is invariant under (s, s′)→ (s′, s). With the
change of variable (s, s′)→ (t+ τ, t),

H2 = 2

∫ ∆t

0

dt

∫ t

0

dτ Ez
[

f (z, w̃z(t+ τ)) f (z, w̃z(t))− F (z)2
]

.

Now using the fact that Ez is an average over the stationary state of w̃z, we have

Ez

[

f (z, w̃z(t+ τ)) f (z, w̃z(t))− F (z)2
]

= Ez [[f (z, w̃z(τ)) f (z, w̃z(0))]] .

Assuming that the following limit exists

Ξ(z) = 2 lim
t→∞

∫ t

0

dτ Ez [[ f (z, w̃z(τ)) f (z, w̃z(0)) ]] ,

we get H2 ∼
∆t→∞

∆tΞ(z) so finally

lim
∆t→∞

1

∆t
Ez

[

(
∫ ∆t

0

f (z, w̃z(s)) ds

)2

− Ez

[
∫ ∆t

0

f (z, w̃z(s)) ds

]2
]

= Ξ(z).
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Appendix C

Kinetic equation from the

generalized LMN hierarchy

C.1 The LMN hierarchy for the 2D stochastic Eu-

ler equation

Consider the 2D stochastic Euler equation

∂ω

∂t
+ v · ∇ω = −αω +

√
2αη, (C.1)

with η a Gaussian noise with zero mean and correlation

E [η (r1, t1) η (r2, t2)] = C (r1 − r2) δ(t1 − t2). (C.2)

The generalization to the barotropic equation (β 6= 0) and to the Navier-Stokes
equation (ν 6= 0) would be straightforward, we do not present these generalizations
here.

We are interested in the evolution of the n-points equal-time vorticity distribu-
tion, that we will denote for simplicity

pn(1, . . . , n) ≡ pn (r1, σ1, . . . , rn, σn, t) = E [δ (ω (r1, t)− σ1) . . . δ (ω (rn, t)− σn)] .
(C.3)

In the inertial limit α = 0, the derivation of the evolution equation of pn is easy [40],
it reads

∂pn
∂t

+NLn [pn+1] = 0 , (C.4)

where the local average of the advection term is given by

NLn [pn+1] (1, . . . , n) =
n
∑

k=1

∇rk
·
[
∫

drG(rk − r)

∫

R

dσ σpn+1(1, . . . , n, r, σ)

]

,

(C.5)
with G the Green function of the velocity, i.e. such that v = G∗ω. Note that in this
case, the average E [·] is made over a set of different initial conditions. When α 6= 0,
the evolution equation for pn is obtained applying Itō’s formula to the function

φn (ω1, σ1, . . . , ωn, σn) = δ(ω1 − σ1) . . . δ(ωn − σn), (C.6)
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where ωk = ω(rk, t), and averaging. Using ∂φn
∂ωk

= −∂φn
∂σk

and ω(rk, t)φn = σkφn, we
get

∂pn
∂t

+NLn [pn+1] = α

n
∑

k=1

∂

∂σk

[

σkpn +
n
∑

l=1

C(rk − rl)
∂pn
∂σl

]

. (C.7)

In section C.2, we discuss a special class of solutions of equation (C.4), and the
link with the equilibrium statistical mechanics theory of the 2D Euler equation.
Then in section C.3, we perform a closure of the hierarchy defined by (C.7) based
on the assumption that α≪ 1.

C.2 Young measure solution in the inertial limit

We prove here that Young measures form a special class of solutions of (C.4). Young
measures are defined by

∀n, pn (1, . . . , n) = p (1) . . . p (n) (C.8)

with p ≡ p1. Distributed according to this measure, vorticity values at different
points are statistically independent random variables. This means that Young mea-
sures represent the mean-field behaviour of the system.
An important consequence is that velocity and vorticity, distributed according to
(C.8), are independent random fields. Indeed, using that the velocity Green function
G is continuous, the velocity field v = G ∗ ω can be seen as a (weighted) sum of
independent random variables. By the Law of Large Numbers, we thus conclude
that the distribution of v(r1) is a delta function centered on the average velocity

v̄(r1) ≡ (G ∗ ω̄) (r1) =
∫

drG(r1 − r)

∫

R

dσ σp(r, σ, t) , (C.9)

see [15] for a more detailed derivation. This result can be extended to investigate the
joint probability distribution of velocity and vorticity, and the result is that velocity
and vorticity are independent random fields [15]. As a consequence, the evolution
of p reads

∂tp+ v̄ · ∇p = 0 , (C.10)

and equation (C.4) is fulfilled for n = 1. It is now easy to prove that the Young
measure (C.8) is a solution of the whole hierarchy of equations (C.4), using (C.10),

∂tpn(1, . . . , n) =
n
∑

k=1

∂tp (k)
∏

l 6=k

p (l)

= −
n
∑

k=1

∇rk
·
[
∫

drG(rk − r)

∫

R

dσ σp (k) p (r, σ, t)

]

∏

l 6=k

p (l)

= −
n
∑

k=1

∇rk
·
[
∫

drG(rk − r)

∫

R

dσ σpn+1(1, . . . , n, r, σ, t)

]

.

(C.11)
Young measures are of particular importance in the equilibrium statistical me-

chanics theory of the 2D Euler equation, indeed the microcanonical measure is a
Young measure defined by

p(r, σ) =
1

Z(r)
eβ̃σψ̄(r)−λ(σ) (C.12)
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HIERARCHY

where β̃ and λ are the Lagrange parameters associated with the conservation of
energy and vorticity levels distribution, ψ̄ is the average stream function, and Z
is a normalisation constant. More generally, it can be shown that the mean-field
approximation is exact for the 2D Euler equation [15], so Young measures are a
natural type of measure to describe the statistical mechanics of this system.

C.3 Comparison with stochastic averaging

In this section we will use brackets to denote the (non-normalized) symmetric part
of an expression, for example {f(1, 2)} = f(1, 2) + f(2, 1).

C.3.1 Perturbative expansion in powers of α

We have seen in the previous section that when forcing and dissipation vanish, a
natural solution of (C.7) is a Young measure (C.8). When forcing and dissipation
are small but non-zero (0 < α≪ 1 in (C.1)), we thus consider perturbations of the
Young measure solution as

p2(1, 2) = p(1)p(2) + αq2(1, 2), (C.13)

p3(1, 2, 3) = p(1)p(2)p(3) + α {q2(1, 2)p(3)}+ α2q3(1, 2, 3), (C.14)

and so on. These expressions define the functions qn, our assumption in the following
is thus that qn = O(1) as α → 0. This type of ansatz has been proposed since the
beginning of the study of the LMN hierarchy, using an analogy with the BBGKY
hierarchy of the classical kinetic theory of plasmas [63].
The functions qn are called the connected parts of the probability distribution func-
tions pn. They describe the correction to the equilibrium statistical mechanics theory
due to the small forcing and dissipation present in (C.1).

To get the time evolution of q2, we will compare ∂tp2 computed from (C.13) using
(C.7) (for n = 1) on one hand and from (C.7) (for n = 2) using (C.14) on the other
hand. We analyse this computation for each order in α:

• At order zero in α, this amounts at checking that the leading order expres-
sions of p2 and p3 solve the first two equations of the inertial hierarchy. This
is obviously true, as we have seen in section C.2 that Young measures are
particular solutions of the inertial LMN hierarchy, which motivated the ansatz
(C.13),(C.14).

• The terms of order α in the time derivative of (C.13) come from two parts,
first

{p(2).∂tp(1)} = O(1)+α

{

−p(2)NL1[q2](1) + p(2)
∂

∂σ1

[

σ1p(1) + C(0)
∂p(1)

∂σ1

]}

,
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and α∂tq2(1, 2). The terms of order α in (C.7) (for n = 2) read

NL2 [{q2 (1, 2) p (3)}] (1, 2) =
2
∑

k=1

∇rk
·
[
∫

drG(rk − r)

∫

dσ σ {q2 (1, 2) p (r, σ)}
]

=

{

v̄(1) · ∇1q2(1, 2) + p(2)NL1[q2](1)

+

∫

drG(r1 − r)

∫

dσ σq2 (2, r, σ) · ∇1p (1)

}

for the advection part and

2
∑

k=1

∂

∂σk

[

σkp(1)p(2) +
2
∑

l=1

C(rk − rl)
∂

∂σl
p(1)p(2)

]

=

{

p(2)
∂

∂σ1

[

σ1p(1) + C(0)
∂p(1)

∂σ1

]}

+ 2C(1, 2)
∂p(1)

∂σ1

∂p(2)

∂σ2

for the dissipation and forcing part.

• The terms of order α2 in (C.7) (for n = 2) are NL2[q3] and the dissipation and
forcing term

2
∑

k=1

∂

∂σk

[

σkq2 +
2
∑

l=1

C(rk − rl)
∂q2
∂σl

]

.

Finally, the evolution equation of q2 reads

∂tq2 =−
{

v̄(1) · ∇1q2(1, 2) +

∫

drG(r1 − r)

∫

dσ σq2 (2, r) · ∇1p(1)

}

+ 2C(1, 2)
∂p(1)

∂σ1

∂p(2)

∂σ2
− αNL2 [q3] + α

2
∑

k=1

∂

∂σk

[

σkq2 +
2
∑

l=1

C(rk − rl)
∂q2
∂σl

]

.

(C.15)
This equation still involves q3. Our closure in the hierarchy consists in neglecting
terms of order α in (C.15). The truncated hierarchy is thus made of equation (C.7)
for n = 1,

∂tp+ v̄.∇p+ αNL1 [q2] = α
∂

∂σ

[

σp+ C(0)
∂p

∂σ

]

. (C.16)

and of

∂tq2 =−
{

v̄(1) · ∇1q2(1, 2) +

∫

drG(r1 − r)

∫

dσ σq2 (2, r) · ∇1p(1)

}

+ 2C(1, 2)
∂p(1)

∂σ1

∂p(2)

∂σ2

(C.17)

The system (C.17),(C.16) is a closed set of equations. It describes the leading order
correction to the equilibrium statistical mechanics theory of the inertial 2D Euler
equation (Young measure). In this sense, it should be equivalent to the leading order
result we obtained using stochastic averaging. To observe this equivalence, we derive
the evolution equations for the average and the two-points correlation function.

ω̄(r1, t) = E [ω(r1, t)] =

∫

dσ1 σ1p(r1, σ1, t), (C.18)
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g̃(r1, r2, t) ≡ E [ω(r1, t)ω(r2, t)] =

∫

dσ1dσ2 σ1σ2p2(1, 2) = ω̄(r1, t)ω̄(r2, t)+αg(r1, r2, t),

(C.19)
with g(r1, r2, t) ≡

∫

dσ1dσ2 σ1σ2q2(1, 2). For ω̄, we get

∂tω̄ + v̄ · ∇ω̄ + α

∫

drG(r1 − r) · ∇r1g(r1, r, t) = −αω̄. (C.20)

For g, we get

∂tg +
(

L
0(1)
ω̄ + L

0(2)
ω̄

)

g = 2C (C.21)

with

L0
ω̄ [f ] (r1) ≡ v̄(r1) · ∇r1f (r1) +

∫

drG(r1 − r)f (r) · ∇r1ω̄(r1), (C.22)

and where L
0(k)
ω̄ is the operator L0

ω̄ acting on the variable rk. We recognize in (C.21)
the Lyapunov equation associated with the Ornstein-Uhlenbeck process

∂tω + L0
ω̄[ω] =

√
2η , (C.23)

with the same noise η as in the original equation (C.1). Moreover, the last term
in the left-hand side of (C.20) is exactly the Reynolds forcing associated with the
two-points correlation function g, acting on the mean flow ω̄. The leading order
correction to the mean-field behaviour is thus described by a quasi-linear approx-
imation of the dynamics, like in the stochastic averaging approach. If we assume
that the mean flow is a steady state of the Euler equation, the non-linear term v̄ ·∇ω̄
in (C.20) vanishes. Then the dynamics of ω̄ occurs on a time scale of order 1/α,
while the time scale of evolution of g is of order 1, consistently with the time scale
separation used for the stochastic averaging procedure.

C.3.2 The case of a zonal jet

To understand more precisely the analogy between the two approaches, let’s now
consider the case where the mean flow is a parallel flow in the x direction, v̄(r) =
Ū(y)ex. Then the advection term v̄ ·∇ω̄ in (C.20) vanishes, and the linear operator
L0
ω̄ in the Lyapunov equation (C.21) reads

L0
Ū [f ] (r1) = Ū(y1) · ∂x1f (r1)− Ū ′′(y1) · ∂x1∆−1f(r1), (C.24)

where we have used the incompressibility of the flow under the form Gy = ∂xH with
H the Green function of the Laplacian.

We now have to prove (i) that only the non-zonal degrees of freedom contribute
to the Reynolds forcing in (C.20) and (ii) that the zonal jet solution is consistent
in time evolution, i.e. if ω̄(r, t = 0) = ω̄(y, 0) then ω̄(r, t) = ω̄(y, t) for all t ≥ 0.
We decompose the forcing and the two-points correlation function into zonal and
non-zonal parts, C = Cz + Cm and g = gz + gm with the zonal projection operator

hz(y1, y2) ≡ 〈h(r1, r2)〉 ≡
∫

dx1
2πlx

dx2
2πlx

h(r1, r2). (C.25)
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Using that L0
Ū
[f ] (r1) in (C.24) is the derivative with respect to x1 of a periodic

function, we have
〈

L0
Ū
[f ]
〉

= 0, so the projected Lyapunov equations read

∂tgz = 2Cz , (C.26)

∂tgm +
(

L
0(1)

Ū
+ L

0(2)

Ū

)

gm = 2Cm. (C.27)

The contribution of gz in the mean flow equation is zero:

∫

drG(r1 − r) · ∇r1gz(y1, y) = −
∫

dr ∂x [H(r1 − r)] ∂y1gz(y1, y) = 0, (C.28)

so the zonal part of the forcing Cz doesn’t contribute to the evoution of the mean
flow ω̄. Note that if the forcing is invariant under translations in the zonal direction,
then the two-points correlation function gm is also invariant under zonal translations.
Then, the Reynolds forcing in (C.20) reads

∫

drG(r1− r) · [∇r1gm] (x1−x, y1, y) =
∫

drG(r) · [∇r1gm] (x, y1, y1− y) , (C.29)

which does not depend on the zonal coordinate x1. This means that an initially
parallel mean flow remains parallel as time goes on. We have thus proved (i) and
(ii).

The resulting equations

∂tω̄(y1, t) + α

∫

drG(r) · [∇r1gm] (x, y1, y1 − y) = −αω̄(y1, t) , (C.30)

together with (C.27) thus form a closed system of equations that describe the evolu-
tion of the jet at leading order in α. As explained in the end of the previous section,
when α ≪ 1 the time scale of evolution of ω̄ is much larger than the time scale of
evolution of gm. Then, one can consider that gm in (C.30) can be replaced by its
stationary value, given by (C.27) with ω̄ held fixed.

C.3.3 Discussion

When Cz = 0, the system (C.27), (C.30) describes the evolution of the average zonal
jet Ū(y, t) where the perturbation flow evolves according to the linearized equation
close to the fixed background flow Ū . On the other hand, when Cz = 0, the kinetic
equation obtained through stochastic averaging describes the quasi-linear evolution
of a non-fluctuating zonal jet U . Then U = Ū , we can say that the stochastic
averaging and the perturbative expansion of the LMN hierarchy are equivalent at
first order in α.

When Cz 6= 0, the stochastic noise directly affects the evolution of the zonal de-
grees of freedom. Then, the zonal jet U described by the kinetic equation fluctuates,
and these fluctuations lead to fluctuations of the two-points correlation function of
the non-zonal fields. This effect is not reproduced by the truncated LMN hierarchy
approach. This is due to the fact that the n-points vorticity distribution functions
contain the information of moments up to order n, while the functional PDF used
in stochastic averaging contains all the information about the fluctuations of the
fields. Moreover, equation (C.26) does not admit a stationary solution for Cz 6= 0,
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which means that the connected part of the two-points vorticity distribution q2 is
not well-defined.

This case illustrates one of the weaknesses of this approach: we have made the
assumption that the connected parts qn remain of order 1 as α → 0, but there is
no proof of the self-consistency of this assumption. To prevent the blowing out of
gz, one could find a way to keep some dissipation in the equation for q2, like in the
stochastic averaging procedure. This would require another ansatz for the pertur-
bative expansion of the hierarchy, and another way to truncate it. The arbitrariness
of the truncation is the other main weakness of this approach. Indeed, there exist
many ways to truncate the hierarchy [71], probably leading to different effective
equations.
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Appendix D

Convergence of the vorticity

auto–correlation function to a

distribution

In this appendix we study the convergence properties in the limit α → 0 of the
vorticity stationary auto-correlation function

gαkl(r1, r2) =
1

2
eik(x1−x2)EαU [ωkl(y1)ω

∗
kl(y2)] + c.c.

where ωkl is the Ornstein-Uhlenbeck process

∂ωkl
∂t

+ L0
U,k [ωkl] = −αωkl +

√
2eilyηkl,

with the inertial linear operator L0
U,k [ω] = ikUω− ikU ′′∆−1

k ω. For simplicity in the
notations we will drop the indices k, l, and denote g = gα.

We will use an expression of g that is slightly different from (4.16) given in section
4.2.2. The stochastic equation for ω can be solved as

ω(y, t) =
√
2

∫ t

0

ω̃(y, t1)e
−αt1 dW (t1),

where ω̃ is the solution of the deterministic equation ∂tω̃ + L0
U,k [ω̃] = 0 with initial

condition ω̃(y, 0) = eily. Then,

g(r1, r2) = eik(x1−x2)g̃(y1, y2) + c.c.

with

g̃(y1, y2) =

∫ ∞

0

ω̃(y1, t1)ω̃
∗(y2, t1)e

−2αt1 dt1. (D.1)

In section D.1 we present the Sokhotskyi–Plemelj formula, that will be useful
in the following. In section D.2 we present a more complete version of the Orr
mechanism for ω̃. Then in section D.3 we prove that (D.1) converges to a distribution
in the limit α→ 0.
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D.1 Sokhotskyi–Plemelj formula

The Sokhotskyi–Plemelj formula (Plemelj formula in the following) adapted to our
notations is

∫ ∞

0

e−ity dt = lim
λ→0+

−i
y − iλ

= πδ (y)− iPV

(

1

y

)

, (D.2)

where PV is the Cauchy Principal Value distribution.

D.1.1 Regularization due to a small linear friction

We consider the following function for some λ > 0

Fλ(y) =
−i

y − iλ
=

λ

y2 + λ2
− i

y

y2 + λ2

where the real part of Fλ is even while the imaginary part is odd. From (D.2), the
real part of Fλ is a regularization of πδ(y),

lim
λ→0+

Re [Fλ(y)] = lim
λ→0+

λ

y2 + λ2
= πδ(y),

and the imaginary part of Fλ is a regularization of −PV (1/y),

lim
λ→0+

Im [Fλ(y)] = − lim
α→0

y

y2 + λ2
= −PV

(

1

y

)

.

We note that for a fixed y > 0, limλ→0+ Re [Fλ(y)] = 0, and limλ→0+ Im [Fλ(y)] =
1/y.

D.1.2 Expressions of the Cauchy Principal Value distribu-

tion

By definition,
∫ ∗ f(y)

y
dy ≡

∫

PV

(

1

y

)

f(y) dy ≡ lim
ǫ→0+

[
∫ −ǫ

−∞

+

∫ +∞

ǫ

]

f(y)

y
dy .

Using
∫ ∗

dy/y = 0, we get
∫ ∗ f(y)

y
dy =

∫

f(y)− f(0)

y
dy , (D.3)

where the integral on the right-hand side is now a usual Riemann integral if f is
continuous at y = 0. All these formulas are easily generalizable to the case of a
singularity around y0 6= 0 by a change of variable.

D.2 Resolvant of the linearized Euler operator

The Laplace transform of the vorticity is defined by1

ω̂(y, c+ iǫ) =

∫ ∞

0

dt ω̃(y, t)eik(c+iǫ)t. (D.4)

1This definition of the Laplace transform differs from the one used in appendix A by a change
of variable.
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The inverse Laplace transform is then given by

ω̃(y, t) =
|k|
2π

lim
ǫ→0+

∫ ∞

−∞

dc ω̂(y, c+ iǫ)e−ikct. (D.5)

It is also useful to define the Laplace transform of the stream function φ ≡ ψ̂; this
quantity is usually referred in literature as the resolvent of the operator LU,k. It is

related to ω̂ through ω̂(y, c+ iǫ) =
(

d2

dy2
− k2

)

φ(y, c+ iǫ) and is the solution of the

linear ordinary differential equation

(

d2

dy2
− k2

)

φ− U ′′(y)

U(y)− c− iǫ
φ =

eily

ik (U(y)− c− iǫ)
. (D.6)

The homogeneous part of this equation (with zero right-hand side) is known as the
Rayleigh equation [35]. For all ǫ > 0, this equation is a regular ODE. When ǫ→ 0+,
this equation becomes singular at the critical layer c = U(y). It can be shown that
φ(y, c + iǫ) → φ+(y, c) as ǫ → 0+, where φ+ is continuous over c ∈ R, with either
a logarithmic singularity in its first derivative with respect to c if U ′(y) 6= 0, or
a logarithmic singularity in its second derivative if U ′(y) = 0 [11]. We will first
consider the case U ′(y) 6= 0. Then we can write, for all c,

φ+(y, c) = φ2(y, c).(U(y)− c) ln |U(y)− c|+ φ1(y, c), (D.7)

where φ1, φ2 are analytic functions of c [11].

Using (D.5), (D.6) and Plemelj formula (D.2) to evaluate the limit ǫ → 0+, we
get

ω̃(y, t1) = ω̃∞(y)e−ikU(y)t1 +

∫ ∗ dc

2πi

ikU ′′(y)φ+(y, c) + eily

U(y)− c
e−ikct, (D.8)

where
ω̃∞(y) = ikU ′′(y)φ+(y, U(y)) + eily, (D.9)

and where we recall that
∫ ∗

denotes the Cauchy Principal Value of the integral.
The first term is the classical Orr mechanism (4.20), the second term decays for

large t1 as 1/t
γ
1 , where γ > 0 depends on the order of differentiability of c→ φ+(y, c).

Then, as c → φ+(y, c) is smoother at points y such that U ′(y) = 0 than at points
such that U ′(y) 6= 0, we can focus on the latter case.

D.3 Proof of the convergence

D.3.1 Points such that U(y1) = U(y2)

The Orr mechanism (D.8) can be written ω̃(y, t1) = ω̃∞(y)e−ikU(y)t1+ω̃r(y, t1) where
ω̃r(y, t1) = O(t−γ1 ) as t1 →∞, with γ > 0. Using this expression of the deterministic
vorticity and (D.1), we get

g̃(y1, y2) =
ω̃∞(y1)ω̃

∞∗(y2)

ik(U(y1)− U(y2)) + 2α
+ g̃r(y1, y2) ,
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where g̃r contains the corrections involving ω̃r. From Plemelj formula (D.2), the
first term converges to a distribution in the limit α → 0+, as described in section
5.1.1. In particular, it diverges point-wise as 1/α at points such that U(y1) = U(y2).
We now prove that the remainder g̃r is negligible compared to this 1/α divergence
at such points.

The most divergent part of g̃r is of the form Gα =
∫∞

0
f(t) dt where f is bounded

and f(t) = O(e−2αtt−γ) as t→∞. The behaviour for small α of Gα depends on the
value of γ.

• if γ < 1, there exists some K > 0 such that

|Gα| ≤ K

∫ ∞

0

e−2αt

tγ
dt,

which is finite for all α > 0 because the integrand is integrable close to t =
0. With the change of variable u = αt, we get |Gα| ≤ K ′αγ−1 with K ′ =
K
∫∞

0
e−2uu−γ du.

• if γ = 1, taking the derivative with respect to α and with the change of variable
u = αt we get

∂Gα

∂α
=

1

α

∫ ∞

0

e−2ug
(u

α

)

du

with a bounded function g such that g(t) = O(1) as t →∞. By the theorem
of dominated convergence,

∫ ∞

0

e−2ug
(u

α

)

du −→
α→0

K ′′ ≡
∫ ∞

0

e−2u lim
∞
g du ,

so by integration Gα ∼ −K ′′ lnα.

• if γ > 1 we directly have Gα → G0 <∞ as α→ 0 by the theorem of dominated
convergence.

In all three cases, Gα is negligible with respect to 1/α as α→ 0. We conclude that
g̃r(y1, y2) is negligible with respect to the 1/α divergence of g̃(y1, y2) at points such
that U(y1) = U(y2).

At points such that U(y1) 6= U(y2), the first term in the expression of g̃(y1, y2)
converges to a finite value, so we need to prove that g̃r(y1, y2) also converges. This
is done in next paragraph.

D.3.2 Points such that U(y1) 6= U(y2)

Using (D.1), (D.5) and (D.6) we get

g̃(y1, y2) = lim
ǫ1,ǫ2→0+

∫

dc1
2π

dc2
2π

ω̂(y1, c1 + iǫ1) (ω̂(y2, c2 + iǫ2))
∗ 1

ik(c1 − c2) + 2α
(D.10)

with ω̂(y, c + iǫ) = ikU ′′(y)φ(y,c+iǫ)+eily
U(y)−c−iǫ

. We easily realize that the infinite bounds
of this double integral are not sources of divergence. The only possible sources of
divergence come from the critical layers c = U(y) when α → 0+. When U(y1) =
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U(y2), we know that g̃ is equivalent to 1/α as α → 0. We now consider the case
U(y1) 6= U(y2).

Consider a fixed α > 0, g̃ is of the form

Iα = lim
ǫ1→0+

∫

dx1
f1(x1)

x1 − a1 − iǫ1
lim
ǫ2→0+

∫

dx2
f2(x2)

x2 − a2 − iǫ2

1

x1 − x2 − iα
,

where the functions x→ fk(x) are continuous with a logarithmic singularity in their
first derivative at x = ak. We also assume that a1 6= a2. Using Plemelj formula
(D.2) to estimate successively the limits ǫ2 → 0+ and ǫ1 → 0+, we get

Iα =
π2f1(a1)f2(a2)

a1 − a2 − iα
− iπf2(a2)

∫ ∗

dx1
f1(x1)

x1 − a1

1

x1 − a2 − iα

− iπf1(a1)

∫ ∗

dx2
f2(x2)

x2 − a2

1

a1 − x2 − iα

−
∫ ∗

dx1
f1(x1)

x1 − a1

∫ ∗

dx2
f2(x2)

x2 − a2

1

x1 − x2 − iα
,

(D.11)

where all the principal value integrals are finite because f1 and f2 are continuous,
and because α > 0. We now study the convergence of each term as α→ 0+.

• The first term π2f1(a1)f2(a2)
a1−a2−iα

converges to π2f1(a1)f2(a2)
a1−a2

, which is finite for a1 6=
a2. This term corresponds to the most divergent part when a1 = a2 (or
U(y1) = U(y2) in g̃). It also means that the convergence of the remaining
terms in (D.11) depends directly on the value of γ in the Orr mechanism, or
equivalently on the regularity of the resolvant c→ φ+(y, c).

• For the second term, Plemelj formula (D.2) can be applied to estimate the limit
α→ 0+ because the singularities at x1 = a1 and x1 = a2 are not confounded:

∫ ∗

dx1
f1(x1)

x1 − a1

1

x1 − a2 − iα
−→
α→0+

π
f1(a2)

a2 − a1
− i

∫ ∗

dx1
f1(x1)

(x1 − a1)(x1 − a2)

The same result applies to the third term.

• For the last term, let’s consider the function

J(x1) = lim
α→0+

∫ ∗

dx2
f2(x2)

x2 − a2

1

x1 − x2 − iα
.

At any point such that x1 6= a2, this can be estimated using Plemelj formula
(D.2),

J(x1) =
πf2(x1)

x1 − a2
− i

∫ ∗

dx2
f2(x2)

(x2 − a2)(x1 − x2)
,

where both terms are finite because x1 6= a2. To estimate the limit at the
point x1 = a2, we first use (D.3),

J(a2) = lim
α→0+

∫

dx2
1

x2 − a2

(

f2(x2)

a2 − x2 − iα
− f2(a2)

−iα

)
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AUTO–CORRELATION FUNCTION TO A DISTRIBUTION

and the expression of the resolvant (D.7), here f2(x2) = g(x2)(x2−a2) ln |x2 − a2|+
h(x2), where g and h are analytic functions,

J(a2) = − lim
α→0+

[
∫

dx2
g(x2) ln |x2 − a2|
x2 − a2 + iα

+

∫ ∗

dx2
h(x2)

x2 − a2

1

x2 − a2 + iα

]

,

(D.12)
where we have used again (D.3) in order to express the second integral as a
Principal Value. The first term in the brackets finite for all α > 0 because
x→ ln x is integrable around x = 0. This term converges in the limit α→ 0:

∫

dx2
g(x2) ln |x2 − a2|
x2 − a2 + iα

∼
α→0+

∫

dx2
g(x2) ln |x2 − a2 + iα|

x2 − a2 + iα

=

∫

dx2 g(x2)
1

2

d

dx2
ln2 |x2 − a2 + iα|

= −1

2

∫

dx2 g
′(x2) ln

2 |x2 − a2 + iα|

→
α→0+

−1

2

∫

dx2 g
′(x2) ln

2 |x2 − a2| ,

where the first and last equivalents follow from continuity of z → ln |z|. This
expression is finite because g is analytic and x → ln2(x) is integrable around
x = 0. In the second term in (D.12), we use that h can be expanded in its
Taylor series, h(x2) = h0 + h1(x2 − a2) + o(x2 − a2), so

∫ ∗

dx2
h(x2)

x2 − a2

1

x2 − a2 + iα
=

∫ ∗

dx2
h0

x2 − a2

1

x2 − a2 + iα
+

∫

dx2
h1 + o(1)

x2 − a2 + iα
,

where the last integral is now a usual Riemann integral because the divergence
has been cancelled. The term involving h0 can be computed explicitely for any
α > 0,

∫ ∗

dx2
1

x2 − a2

1

x2 − a2 + iα
=

1

iα
lim
ǫ→0+

[ln |x2 − a2 + iα| − ln |x2 − a2|]a2−ǫa2+ǫ
= 0.

Then,

∫ ∗

dx2
h(x2)

x2 − a2

1

x2 − a2 + iα
=

∫

dx2
h(x2)− h(a2)

x2 − a2 + iα
−→
α→0+

∫

dx2
h(x2)− h(a2)

x2 − a2
,

which is finite. We conclude that J(x1) is a finite quantity for all x1, and is
continuous at x1 = a1 6= a2. Then,

lim
α→0+

∫ ∗

dx1
f1(x1)

x1 − a1

∫ ∗

dx2
f2(x2)

x2 − a2

1

x1 − x2 − iα
=

∫ ∗

dx1
f1(x1)

x1 − a1
J(x1),

which is finite.

We conclude that Iα has a finite limit for α→ 0+, so g̃(y1, y2) is finite for all points
such that U(y1) 6= U(y2).
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Appendix E

Algorithms to compute the

average Reynolds’ forcing

E.1 Integral Lyapunov equation

By definition, the stationary vorticity autocorrelation function g̃∞kl (y1, y2) ≡ E
α
U [ωkl(y1)ω

∗
kl(y2)]

is the solution of the stationary Lyapunov equation (here with friction and no vis-
cosity)

(

L
(1)
U,k + L

(2)
U,−k

)

g̃αkl = eil(y1−y2) (E.1)

where
LU,k = ikU − ik (U ′′ − β)∆−1

k + α,

and where L
(j)
U,k is the operator applied to the variable yj. We define hαkl(y1, y2) ≡

E
α
U [ωkl(y1)ψ

∗
kl(y2)], such that g̃αkl = ∆

(2)
k hαkl, where ∆

(2)
k is the Laplacian operator

with respect to the second variable. Using (4.25), the average Reynolds’ forcing can
be directly computed from hαkl, with

fαkl(y) = 2kπlxIm [hαkl(y, y)] .

In terms of hαkl, the stationary Lyapunov equation (E.1) becomes

∆
(2)
k hαkl(y1, y2) =

ik (U ′′(y1)− β) (hαkl)
∗(y2, y1)− ik (U ′′(y2)− β)hαkl(y1, y2) + eil(y1−y2)

ik(U(y1)− U(y2)) + 2α
.

(E.2)
We note that this equation is not a differential equation for hαkl(y1, y2) for each y1
fixed, as it involves (hαkl)

∗(y2, y1).

In section 5.1, we have shown that g̃αkl = ∆
(2)
k hαkl diverge point-wise for U(y1) =

U(y2) in the limit α → 0. This is related to the vanishing of the denominator
for α = 0 and U(y1) = U(y2) in equation (E.2). On the other hand, it can be
proved, with a very similar reasoning to the one used in section 5.1.1 for the velocity
auto-correlation function Ekl, that h

α
kl is well-defined as a function, even in the limit

α→ 0. Thus, we chose to turn (E.2) to an integral equation. Inverting the Laplacian
operator using the Green function Hk, we obtain

hαkl(y1, y2) = −
i

k

∫

Hk(y2, y
′
2)e

il(y1−y′2)

U(y1)− U(y′2)− 2iα
k

dy′2 (E.3)

+

∫

Hk(y2, y
′
2)

U(y1)− U(y′2)− 2iα
k

[(U ′′(y1)− β) (hαkl)
∗(y′2, y1)− (U ′′(y′2)− β)hαkl(y1, y

′
2)] dy

′
2.
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FORCING

The generalization to the 2D barotropic equation upon a topography h(y) is
straightforward, replacing β by h′(y) in (E.3). The main advantage of this equation
is that it involves only well-behaved functions, even in the limit of no dissipation
α→ 0. Indeed, in this limit, the integrals converge to their Cauchy principal values.
Moreover, the fact that it doesn’t involve any space derivative will make it easy to
solve numerically, as discussed in next section.

Numerical implementation

In order to numerically compute solutions of Eq. (E.3), we chose an iterative scheme.
We compute the sequence {hN}N≥0 with

hN+1 = S + T [hN ],

where S is the first term in the right hand side of Eq. (E.3) and T is the integral
operator of the second term. If this sequence converges, then hαkl = limN→∞ hN .

We note that we have not been able to establish conditions for which T is con-
tracting. As a consequence, the convergence of the algorithm is not guaranteed, and
we establish the convergence empirically on a case by case basis. More precisely, the
convergence of the iterative algorithm is checked by plotting log ‖ hN − hN−1 ‖ as a
function of the number of iterations N , where ‖.‖ is the L2 norm.

The computation of integrals of the form
∫ fk(y,y

′)
U(y)−U(y′)−2iα/k

dy′ requires a partic-
ular attention. Indeed, the singularity of the denominator at the points such that
U(y′) = U(y) can be the source of important numerical errors, and we find that the
result strongly depends on the resolution if it is not precise enough. The resolution
required to get robust results is easily understood: in order to avoid numerical errors,
the denominator must satisfy |U(y)−U(y±∆y)| ≪ 2α

k
for a discretization step ∆y.

More precisely, for sufficiently small ∆y, we have U(y) − U(y ±∆y) ≃ ±U ′(y)∆y,
so that the condition becomes ∆y ≪ 2α

k|U ′|
. The numerical results confirm this scal-

ing, for base flows with no stationary points. This is an important remark, because
the iterative algorithm may converge and yet give a wrong result if the condition
∆y ≪ 2α

k|U ′|
is not respected. For base flows with stationary points, the iterative

algorithm often gives problems of convergence in the small α limit.

Results in the case of a parabolic base flow

We consider the case of the 2D Euler equations (β = h = 0) in the channel (x, y) ∈
[0, 2π) × [−1, 1] with rigid boundary conditions ψm(x,±1) = 0, vm(x + 2π, y) =
vm(x, y), and with a parabolic base flow U(y) = A(y+2)2−U0, where the constants
A and U0 are chosen so that the total energy is 1 and the total momentum is 0.
This flow has no inflection point, whence its linear stability by direct application
of Rayleigh’s inflection point theorem [35]. Moreover, this flow has no stationary
points (y0 such that U ′(y0) = 0). We chose here, for sake of simplicity, to force
only one mode k = l = 1. This corresponds to the forcing correlation function
C(r) = c11 cos(x+ y), with c11 = 4.72.

We have numerically computed the solution of (E.3) with the iterative scheme
previously explained. As mentioned above, the necessary resolution to use depends
on the value of α; in the present case, it ranges from ∆y = 1/60 for the largest
value α = 0.1 to ∆y = 1/300 for the smallest one, α = 0.005. Figure E.1 shows the
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E.2. INTEGRATION OF THE RESOLVANT OVER FREQUENCIES
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Figure E.1: The Reynolds stress divergence F α(y) = E
α
U 〈vmωm〉 =

2kπckl Im [hαkl(y, y)] in the case of a parabolic base profile in a channel geometry,
with k = l = 1 and different values of the friction coefficient α. We check the con-
vergence of F α to a smooth function in the inertial limit, as theoretically predicted
in section 4.3.

Reynolds stress divergence F α(y) = 2kπckl Im [hαkl(y, y)] and it clearly illustrates the
convergence of F α for α→ 0, as theoretically described in section 4.3. We also note
that the Reynolds’ forcing and the base flow profile U have the same sign, except in
a small region near y = 0. This implies that the Reynolds stress is actually forcing
the zonal flow.

E.2 Integration of the resolvant over frequencies

The analog of (4.16) for the vorticity-stream function correlation is

hαk,l(y1, y2) =

∫ ∞

−∞

dt ω̃k,l(y1, t)ψ̃
∗
k,l(y2, t), (E.4)

where ω̃k,l(y, t) is the vorticity field obeying the deterministic initial value problem

∀t > 0, ∂tω̃k,l(y, t) + LU,k [ω̃k,l] (y, t) = 0,

ω̃k,l(y, 0) = eily,

∀t < 0, ω̃k,l(y, t) = 0,

and ψ̃k,l(y, t) is the associated stream function.
We move now to the frequency domain. The Laplace transform of the vorticity

is defined by

ω̂k,l(y, c) =

∫ ∞

0

dt ω̃k,l(y, t)e
ikct =

∫ ∞

−∞

dt ω̃k,l(y, t)e
ikct. (E.5)
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For all α > 0, the deterministic vorticity field ω̃k,l decays to 0 for t→∞. Then, the
Laplace transform defined by (E.5) for real values of c coincides with the Fourier
transform with respect to t. As a consequence, it can be simply inverted as

ω̃k,l(y, t) =
|k|
2π

∫ ∞

−∞

dc ω̂k,l(y, c)e
−ikct. (E.6)

We stress that this property is valid only for decaying fields ω̃k,l, and thus only when
α 6= 0.

The Laplace transform of the associated stream function is the resolvant φkl,
defined in appendix D.2. Using (E.6) and (D.6) in (E.4), and performing the inte-
gration over t, we get

hαk,l(y, y) =
|k|
2π

∫ ∞

−∞

dc
(U ′′(y)− β)φk,l(y, c) + eily/ik

U(y)− c− iα
k

φ∗
k,l(y, c). (E.7)

The numerical computation of the resolvant φk,l is a very easy task, an algorithm is
detailed in [11]1. Then, the computation of the integral (E.7) is a matter of a few
minutes, with a very good accuracy (of the order of 10−3). The computation can
take up to 15 minutes for the smallest values of α. An example of application of
this method is given in figure E.2.

Results in the case of a cosine base flow Consider the zonal base flow U(y) =
cos y in the domain (x, y) = [0, 2πlx) × [−π, π) with periodic boundary conditions,
which is usually referred to as the Kolmogorov flow [11]. This flow is stable and
the linearized operator associated to this flow has no normal modes for aspect ratio
lx < 1 [11]. We choose the parameters lx = 0.5, k = 2, l = 0, corresponding to
the forcing correlation function C(r) = c20 cos(2x), with c20 = 1.29. The Reynolds
stress divergence F α is plotted in figure E.2. It converges to a smooth function in
the inertial limit. For all points such that U ′(y) 6= 0, this was expected from the
theoretical results of section 4.3. We note that we have also a convergence of F α(y)
to a finite limit at the stationary points y = 0, π, as discussed at the end of section
4.3.1. We observe that the Reynolds stress is forcing the flow except in some regions
around the zeros of U , like in the case of the parabolic zonal flow.

E.3 Using the pseudomomentum balance

Using (4.30) and (D.9), we get

lim
α→0

fαkl(y) = kπlx
(

kU ′′(y) |φ+(y, U(y))|2 − 2Im
(

φ+(y, U(y))e
ily
))

.

We see explicitely that this quantity does not diverge at the inflexion points of the
base flow U ′′(y) = 0. Using the numerical method described in [11] to compute the
resolvant φ+, we directly get the average Reynolds’ forcing with the above expression.
This method is much simpler than the previous one because we need to compute
φ+(y, c) only for some values of c, depending on the desired spatial resolution for
F0(y). Computing the average Reynolds’ forcing with this method is a matter

1This method is based on the classical theory of linear ODEs of second order in order to solve
(D.6).
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Figure E.2: The Reynolds stress divergence F α(y) = E
α
U 〈vmωm〉 =

2kπlxckl Im [hαkl(y, y)] in the case of a cosine base profile U(y) = cos y in a peri-
odic geometry, with k = 2, l = 0 and different values of the friction coefficient α.
Again, we observe the convergence of F α towards a smooth function when α → 0,
even at the stationary points y = 0 and y = π where we do not have full theoretical
predictions.

of a fraction of seconds, and almost does not depend on α. An example of such
computation is shown in figure 4.2, page 59.

Note that the two methods based on the computation of the resolvant φ+ are
expected to be accurate only in the inertial regime α → 0, because in this limit
we can identify the limit ǫ → 0 in (D.5) and the limit α → 0. In contrast, the
integral equation (E.3) is rigorously equivalent to the original Lyapunov equation,
so it gives an accurate estimation of F0 even for relatively large values of α. However
in practice, we observe that the two methods based on the resolvant are much more
stable when small values of α are considered (typically smaller than 10−2), and this
is the regime we are ultimately interested in.
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Appendix F

Fluctuations of the Reynolds’

forcing for any background flow

In this appendix we study the behaviour for small α of the integrated autocorrelation
function Ξα[U ] defined in (4.36) (page 61). More precisely, we prove (5.15) (page
73). We recall the following definitions:

Ξα[U ](y1, y2) =
∑

(k,l)∈Z2

c2kl
{

Ξαkl(y1, y2) + Ξαkl(y2, y1)
}

(F.1)

with Ξαkl(y1, y2) = Cα
kl(y1, y2, T0 = 0) +Dα

kl(y1, y2, T0 = 0) where

Cα
kl(y1, y2, T0) =

1

4

∫ ∞

T0

E
α
U [vkl(y1, s)v−k,−l(y2, 0)]E

α
U [ω−k,−l(y1, s)ωkl(y2, 0)] ds

(F.2)
and

Dα
kl(y1, y2, T0) =

1

4

∫ ∞

T0

E
α
U [vkl(y1, s)ω−k,−l(y2, 0)]E

α
U [ω−k,−l(y1, s)vkl(y2, 0)] ds.

(F.3)
For future simplicity, we have introduced the variable T0. Indeed, we are only
interested in the large s behavior of the integrands above because there are no con-
vergence problems around s = 0. In the following, T0 will be fixed and assumed to
be very large.

In section F.1 we study the large-s behaviour of the two-points correlation func-
tions T αωω, T

α
vv, T

α
vω and T αωv given by (4.40–4.43), using the Orr mechanism (4.24).

Then, we will be able to study the small-α behaviour of Cα
kl and D

α
kl given by (F.2,

F.3). This is done in section F.2.

F.1 Two–points correlation functions

Large time behavior of T αωω

We report (4.40) for convenience,

T αωω(k, l, y1, y2, s) ≡
1

2
E
α
U [ω−k,−l(y1, s)ωk,l(y2, 0)] =

∫ ∞

0

dt1 ω̃−k,−l(y1, s+t1)ω̃k,l(y2, t1) .

(F.4)
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The computations presented in appendix D for the convergence of gαkl can be gener-
alized to the computation of T αωω, leading to a similar conclusion:

T αωω(k, l, y1, y2, s) =
ω̃∞
−k,−l(y1)ω̃

∞
kl (y2)

ik (U(y1)− U(y2)) + 2α
eikU(y1)s−αs + T r,αωω (k, l, y2, y2, s) , (F.5)

where T r,αωω (k, l, y2, y2, s) is finite for all (k, l, y2, y2, s) such that U(y1) 6= U(y2), and is
negligible with respect to 1/α if U(y1) = U(y2). Also, T

r,α
ωω (k, l, y2, y2, s) is a bounded

function of s.

Large time behavior of T αvv

We report (4.41) for convenience,

T αvv(k, ly1, y2, s) ≡
1

2
E
α
U [vk,l(y1, s)v−k,−l(y2, 0)] =

∫ ∞

0

dt1 ṽk,l(y1, s+ t1)ṽ−k,−l(y2, t1) .

(F.6)
We show here that T αvv decays as or faster than 1/s2.
We have

|T αvv(k, l, y1, y2, s)| ≤
∫ ∞

0

dt1 |ṽk,l(y1, t1 + s)| |ṽ−k,−l(y2, t1)| . (F.7)

Because T0 ≫ 1, we can chose in the above formula s≫ 1. We thus have

|T αvv(k, l, y1, y2, s)| ≤
∣

∣

∣

∣

ω̃∞
k,l(y)

ik(U ′(y))2

∣

∣

∣

∣

∫ ∞

0

dt1 |ṽ−k,−l(y2, t1)|
{

1

(t1 + s)2
+ o

(

1

(t1 + s)2

)}

.

(F.8)
Using the results in section F.3, we have

|T αvv(k, l, y1, y2, s)| .
t→∞

Rvv(k, l, y1, y2)

s2
+ o

(

1

s2

)

, (F.9)

where Rvv is a positive, bounded function of (y1, y2). It is important to note that
Rvv does not depend on α.

Large time behavior of T αvω

We report (4.42) for convenience,

T αvω(k, l, y1, y2, s) ≡
1

2
E
α
U [vk,l(y1, s)ω−k,−l(y2, 0)] =

∫ ∞

0

dt1 ṽk,l(y1, s+t1)ω̃−k,−l(y2, t1) .

(F.10)
The large-s behavior of T αvω(k, l, y1, y2, s) is different if U(y1) = U(y2) or if U(y1) 6=
U(y2). Indeed, in the first case, the asymptotic oscillations of the integral cancel out
and the large-s decay is slower: it decays as 1/s in the α → 0 limit. In the second
one, the oscillations do not cancel out and the decay is as 1/smin{1+γ,2}, where γ > 0
is the exponent of the decay of ω̃rkl.

We have

T αvω(k, l, y1, y2, s) ∼
t→∞

ω̃∞
k,l(y1)

ik(U ′(y1))2
e−ikU(y1)s−αs

{

ω̃∞
−k,−l(y2)

∫ ∞

0

dt1
e−i[kU(y1)−kU(y2)]t1−2αt1

(t1 + s)2

+

∫ ∞

0

dt1
e−ikU(y1)t1−2αt1

(t1 + s)2
ω̃r−k,−l(y2, t1)

}

.

(F.11)
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BACKGROUND FLOW

We now see that the decay in s of the expression in parenthesis is different if U(y1) =
U(y2) or U(y1) 6= U(y2).

If U(y1) = U(y2), the first integral dominates. We have

∫ ∞

0

dt1
e−i[kU(y1)−kU(y2)]t1−2αt1

(t1 + s)2
=

∫ ∞

0

dt1
e−2αt1

(t1 + s)2
≤ 1

s
. (F.12)

Observe that the equality holds in the α → 0 limit. We conclude that, if U(y1) =
U(y2),

|T αvω(k, l, y1, y2, s)| .
s→∞

Rslow
vω (k, l, y1, y2)

s
e−αs , (F.13)

where

Rslow
vω (k, l, y1, y2) =

ω̃∞
k,l(y1)ω̃

∞
−k,−l(y2)

ik(U ′(y1))2
(F.14)

is a regular function which does not depend on α.
If U(y1) 6= U(y2), the asymptotic oscillations on the first term in the parenthesis

of Eq. (F.11) do not cancel out. Using the results of section F.3, we conclude that

∣

∣

∣

∣

∫ ∞

0

dt1
e−i[kU(y1)−kU(y2)]t1−2αt1

(t1 + s)2

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ ∞

0

dt1
e−i[kU(y1)−kU(y2)]t1

(t1 + s)2

∣

∣

∣

∣

∼ 1

s2
. (F.15)

For what concerns the second term in the parenthesis of Eq. (F.11), we have

∣

∣

∣

∣

∫ ∞

0

dt1
e−ikU(y1)t1−2αt1

(t1 + s)2
ω̃r−k,−l(y2, t1)

∣

∣

∣

∣

≤
∫ ∞

0

dt1

∣

∣ω̃r−k,−l(y2, t1)
∣

∣

(t1 + s)2
∼

s→∞

A(k, l, y2)

s1+γ
,

(F.16)
where A is a positive function which does not depend on α. The formula given above
is valid for 0 < γ < 1 or γ > 1 but not for γ = 1, in which there is a logarithmic
correction, see sections F.3. The logarithmic correction is not important for the
following, so we do not consider it here.

We thus conclude that, for U(y1) 6= U(y2)

|T αvω(k, l, y1, y2, s)| .
s→∞

Rfast
vω (k, l, y1, y2)

smin{1+γ,2}
e−αs (F.17)

where

Rfast
vω (k, l, y1, y2) =

ω̃∞
k,l(y1)

ik(U ′(y1))2
A(k, l, y2) . (F.18)

Large time behaviour of T αωv

We report (4.43) for convenience,

T αωv(k, l, y1, y2, s) ≡
1

2
E
α
U [ω−k,−l(y1, s)vk,l(y2, 0)] =

∫ ∞

0

dt1 ω̃−k,−l(y1, s+t1)ṽk,l(y2, t1) .

(F.19)
We show here that T αωv defined in Eq. (4.43) is bounded by a function of (k, l, y1, y2),
independent of α.

We have

|T αωv(k, l, y1, y2, s)| ≤ e−αs||ω̃||∞(y1)

∫ ∞

0

dt1 |ṽk,l(y2, t1)| , (F.20)
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where ||ω̃||∞ = maxt1 ω̃−k,−l(y1, t1) is finite thanks to the Orr mechanism. Using
that |ṽk,l(y2, t1)| is a bounded function of both y2 and t1, and that it decays as 1/t21
for t1 →∞, we conclude that

|T αωv(k, l, y1, y2, s)| ≤ Rωv(k, l, y1, y2)e
−αs . (F.21)

where Rωv(k, l, y1, y2) is a positive, bounded function of (y1, y2) which does not
depend on α.

F.2 Four–points correlation functions

Behavior of Cα
kl in the limit α→ 0

Using (F.9) and (5.21) in the definition (F.2),

Cα
kl(y1, y2, T0) .

ω̃∞
−k,−l(y1)ω̃

∞
k,l(y2)Rvv(k, l, y1, y2)

ik [U(y1)− U(y2)] + 2α

∫ ∞

T0

ds

(

1

s2
+ o

(

1

s2

))

e−αs

+Rvv(k, l, y1, y2)

∫ ∞

T0

ds T r,αωω (k, l, y1, y2, s) e
−αs

(

1

s2
+ o

(

1

s2

))

.

From the properties of T r,αωω , we conclude that

• if U(y1) = U(y2),

Cα
kl(y1, y2, T0) =

α→0

A1(k, l, y1, y2)

2α
+ o

(

1

α

)

=
α→0

A1(k, l, y1, y2) + o(1)

2α

where

A1(k, l, y1, y2) = ω̃∞
−k,−l(y1)ω̃

∞
k,l(y2)

∫ ∞

T0

ds T αvv(k, l, y1, y2, s)

∣

∣

∣

∣

α=0

,

which is finite.

• if U(y1) 6= U(y2),

Cα
kl(y1, y2, T0) =

α→0

A1(k, l, y1, y2)

ik [U(y1)− U(y2)]
+ A2(k, l, y1, y2)

where

A2(k, l, y1, y2) =

∫ ∞

T0

ds T αvv(k, l, y1, y2, s)T
r,α
ωω (k, l, y1, y2, s)

∣

∣

∣

∣

α=0

,

which is finite.

Behavior of Dα
kl in the limit α→ 0

Using (F.13), (F.17) and (F.21) in the definition (F.3), we have:
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• if U(y1) = U(y2),

|Dα
kl(y1, y2, T0)| . Rslow

vω (k, l, y1, y2)Rωv(k, l, y1, y2)

∫ ∞

T0

ds
e−2αs

s
.

We can now observe that
∫ ∞

T0

ds
e−2αs

s
∼
α→0

logαT0

so Dα
kl(y1, y2, T0) = lnαB1(k, l, y1, y2) where B1 is finite and doesn’t depend

on α.

• if U(y1) 6= U(y2),

|Dα
kl(y1, y2, T0)| . Rfast

vω (k, l, y1, y2)Rωv(k, l, y1, y2)

∫ ∞

T0

ds
e−2αs

smin 1+γ,2
. (F.22)

We can now observe that
∫ ∞

T0

ds
e−2αs

smin 1+γ,2
<∞ ∀α ≥ 0 (F.23)

so Dα
kl(y1, y2, T0) = B2(k, l, y1, y2) where B2 is finite and doesn’t depend on α.

Conclusion for Ξαkl

Collecting the previous results and using Ξαkl = Cα
kl +Dα

kl, we have

• if U(y1) = U(y2),

Ξαkl(y1, y2) =
α→0

A1(k, l, y1, y2) + o(1) + 2α lnαB1(k, l, y1, y2)

2α
=
α→0

A1(k, l, y1, y2)

2α
.

• if U(y1) 6= U(y2),

Ξαkl(y1, y2) =
α→0

A1(k, l, y1, y2) + ik [U(y1)− U(y2)] [A2(k, l, y1, y2) + B2(k, l, y1, y2)]

ik [U(y1)− U(y2)]
.

We conclude that for all (y1, y2),

Ξαkl(y1, y2) ∼
α→0

Akl(y1, y2)

ik [U(y1)− U(y2)] + 2α
,

withAkl(y1, y2) = A1(k, l, y1, y2)+ik [U(y1)− U(y2)] [A2(k, l, y1, y2) + B2(k, l, y1, y2)].

F.3 Temporal decay of some integrals

Some oscillating integrals

Consider integrals of the form

F (t) =

∫ ∞

0

du e−iguf(t+ u) f(u) ∼
u→∞

1

uN
g 6= 0 , (F.24)
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where f is a smooth real function and N > 0. We prove here that

F (t) ∼
t→∞

1

tN
. (F.25)

Let us perform the change of variable w = 1 + u/t:

F (t) = t e−igt
∫ ∞

1

dw e−igtwf(tw) = t e−igt
∫ ∞

1

dw e−igtwht(w) , (F.26)

where we have introduced the function ht(w) = f(tw); clearly, ht(w) ∼
t,w→∞

1
tNwN .

We also have h
(n)
t (1) ∼

t→∞

1
tN

for all n, where h
(n)
t indicates the n-th derivative.

Now perform part integration iteratively on the last expression, for example after
two parts integrations:

F (t) ∼
t≫1

e−igt
{−i
g
ht(1) +

1

g2t
h
(1)
t (1)− 1

g2t

∫ ∞

1

dw e−igtwh
(2)
t (w)

}

. (F.27)

Each successive term converges faster to zero than the previous one in the limit
t ≪ 1, thanks to the relation h

(n)
t (1) ∼

t→∞

1
tN

for all n. We thus have the desired

result.

Non oscillating integrals

Consider integrals of the form

G(t) =

∫ ∞

0

du
g(u)

(u+ t)2

∫ ∞

0

du g(u) <∞ ; (F.28)

where g(u) ≥ 0 everywhere in [0,∞). We prove here that

G(t) ∼
t→∞

A

t2
0 <

∫ ∞

0

du
g(u)

(1 + u)2
< A <

∫ ∞

0

du g(u) . (F.29)

We have

G(t) =
1

t2

∫ ∞

0

du
g(u)

(1 + u
t
)2
; (F.30)

let us observe that
1

(1 + u)2
<
t>1

1

(1 + u
t
)2
< 1 (F.31)

where in the first passage we assumed t > 1 as we are interested in the t→∞ limit
of G. Then,

1

t2

∫ ∞

0

du
g(u)

(1 + u)2
<
t>1

G(t) <
1

t2

∫ ∞

0

du g(u) . (F.32)

We have then proved the desired result in Eq. (F.29).
These results can be easily extended to the case of integrals of the form

G(t) =

∫ ∞

0

du
g(u)

(u+ t)N

∫ ∞

0

du g(u) <∞ N > 0 (F.33)

and one would obtain the result

G(t) ∼
t→∞

A

tN
0 <

∫ ∞

0

du
g(u)

(1 + u)N
< A <

∫ ∞

0

du g(u) . (F.34)
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Non oscillating integrals where the previous estimation does not work

Consider integrals of the form

G(t) =

∫ ∞

0

du
g(u)

(u+ t)2
g(u) ∼

u→∞

1

uγ
0 < γ ≤ 1, (F.35)

where g(u) ≥ 0 everywhere in [0,∞). In this case, the hypothesis of the previous
section do not work because

∫∞

0
du g(u) =∞.

We prove in this subsection that

G(t) .
t→∞

A1

t1+γ
0 < γ < 1 (F.36)

and

G(t) .
t→∞

A2

t2
log t γ=1 (F.37)

where A1 and A2 are suitable positive constants. As usual the symbol .
t→∞

means

that there is a function G1(t) which dominates G(t) and behaves as described for
t→∞.

The proof of Eq. (F.36) and (F.37) is easily done by observing that g can be
majorated for every u by

g(u) ≤ a1
uγ

if 0 < γ < 1 (F.38)

and
g(u) ≤ a2

u+ a3
if γ = 1 . (F.39)

where a1, a2 and a3 are positive constants. The case 0 < γ < 1 is easily completed
by observing that

G(t) < G1(t) ≡
∫ ∞

0

du
1

(u+ t)2
a1
uγ

= a1π

(

1

t

)1+γ

γCsc[πγ] ∼
t→∞

A1

t1+γ
. (F.40)

where Csc is the cosecant1

The case γ = 1 is also easily accomplished by observing that

G(t) < G2(t) ≡
∫ ∞

0

du
1

(u+ t)2
a2

u+ a3
=
a2(a3 − t− t ln a3 + t ln t)

(a3 − t)2t
∼
t→∞

A2

t2
ln t.

(F.41)

1Csc(x) <∞ if x 6= nπ with n integer.

164



Appendix G

Large deviations of quadratic

forms of gaussian processes

G.1 Derivation of the Ricatti equation

Like for the derivation of the Large Deviation Principle for z (see appendix B.1 in
page 136), consider the function

u(t, z, w, θ) ≡ Ez exp

(

θ

∫ t

0

f (z, w̃z(s)) ds

)

, (G.1)

such that H(z, θ) = limt→∞
1
t
ln u(t, z, w, θ), where w = w̃z(0) is the fixed initial

condition (which is naturally lost in the limit t→∞ when computing H). We recall
that we consider here the class of systems such that f (z, w) = rz +wT sz +wTMzw,
and that w̃z is the virtual fast process (6.10) with z held fixed.

The evolution equation for u is given by [16]

∂u

∂t
=

(

−Lz ·w∇w +
1

2
C :∇w∇w + θf(z, w)

)

u . (G.2)

We look for a solution under the form of a gaussian in w,

u(t, z, w, θ) = K(t, z, θ) exp
(

wTm(t, z, θ) + wTN(t, z, θ)w
)

, (G.3)

for some unknowns m(t, z, θ) and N(t, z, θ). Then (dropping the dependencies in z
for simplicity of notations), (G.2) leads to

1

K

∂K

∂t
=

1

2
C :
(

2N(t, θ) +m(t, θ)m(t, θ)T
)

+ θr (G.4)

∂m

∂t
= −LTm(t, θ) + 2N(t, θ)Cm(t, θ) + θs (G.5)

∂N

∂t
= −LTN(t, θ)−N(t, θ)L+ 2N(t, θ)CN(t, θ) + θM (G.6)

where we have collected terms of order 0, 1 and 2 in w. Assume that (G.6) has a
stationary solution N∞(θ), then (G.5) has the stationary solution

m∞(θ) = θ
(

LT − 2N∞(θ)C
)−1

s , (G.7)
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and K(t, θ) satisfies

lnK(t, θ) ∼
t→∞

t

(

θr + tr (CN∞(θ)) +
1

2
m∞(θ)TCm∞(θ)

)

, (G.8)

where we have used C :N = tr (CN) and C :mmT = mTCm. Injecting (G.8) in
(G.3), we get for the Hamiltonian

H(θ) = θr + tr (CN∞(θ)) +
1

2
m∞(θ)TCm∞(θ). (G.9)

Using (G.7), it means that the Hamiltonian can be computed directly from the
stationary solution of the matricial Ricatti equation (G.6). Note that this equation
may have more than one solution: we should take the one such that N∞(0) = 0, so
that H(0) = 0.

G.2 Explicit solution of the Ricatti equation

Consider first the stationary Lyapunov equation (we drop the dependency in z for
simplicity of notations)

gL+ LTg = 2C.

It can be solved as

g = 2

∫ ∞

0

dt e−tL
T

Ce−tL.

In the case where CL = LTC, we then have the simple solution G = L−TC with
L−T = (L−1)T .

We now try to extend this result to the Ricatti equation (G.6). Expand N∞ as

N∞ (θ) = N
(1)
∞ θ +N

(2)
∞ θ2 + . . . , so that H(θ = 0) = 0. The equation for N

(1)
∞ is

N (1)
∞ L+ LTN (1)

∞ =M

from which N
(1)
∞ =

∫∞

0
dt e−tL

T

Me−tL. With the assumption ML = LTM , we then

have N
(1)
∞ = 1

2
L−TM .

At higher orders, the equation for N
(k)
∞ reads

N (k)
∞ L+ LTN (k)

∞ = 2
k−1
∑

i=1

N (i)
∞ CN (k−i)

∞

from which N
(k)
∞ = 2

∫∞

0
dt e−tL

T ∑k−1
i=1 N

(i)
∞ aN

(k−i)
∞ e−tL. With the assumption that

LT commutes withMC, we can prove by mathematical induction that for all k ≥ 1,

N (k)
∞ = φk

(

L−T
)2k−1

(MC)k−1M,

where φk is a numerical sequence given by the recursion relation

φk =
k−1
∑

i=1

φiφk−i , φ1 = 1/2. (G.10)
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Defining φ(θ) =
∑

k≥1 φkθ
k and using the recursion relation on φk we have φ2(θ) =

φ(θ)− φ1θ, from which

φ(θ) =
1−

√
1− 2θ

2
.

Thus,

N∞(θ)C =
1

2

[

L−
√
L2 − 2θCM

]T

whenever the square root
√
L2 − 2θCM exits. We can then compute the hamiltonian

using (G.9),

tr(CN∞) =
1

2
tr
[

L−
√
L2 − 2θCM

]

and

m∞(θ)TCm∞(θ) = θ2sT
(

L2T − 2θMC
)−T/2

C
(

L2T − 2θMC
)−1/2

s

= θ2sT
(

L2 − 2θCM
)

Cs ,

so

H(θ) = θr +
1

2
tr
[

L−
√
L2 − 2θCM

]

+
1

2
θ2sT

(

L2 − 2θCM
)−1

Cs .
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Appendix H

Most probable state of the

equilibrium distribution

In this appendix we characterize the most probable state of the equilibrium energy-

casimir distribution Peq =
1
Z
exp

(

− 1
γ
G
)

, with

G[ω] =
∫

dr

(

1− ǫ

2
ω∆−1ω +

1

2
ω2 + ǫf(ω)

)

≡ G0[ω] + ǫH[ω] + cte (H.1)

where G0[ω] = 1
2

∫

dr (ω∆−1ω + ω2) and H contains all higher-order terms. Any
large-scale jet ω0(r) = −A cos y − B sin y1 is a minimizer (and a zero) of G0.

For ǫ = 0, we recover the energy-enstrophy potential studied in section 7.2. We
know that the most probable state of this distribution is a large-scale jet ω0.

For ǫ 6= 0, we can write the minimizer of the full potential as ω⋆ = ω⋆0+ǫδω
⋆, with

ω⋆0(y) = −A⋆ cos y−B⋆ sin y. Let’s now see how the values (A⋆, B⋆) are selected. A
Taylor expansion gives

G [ω0 + ǫδω] = G [ω0] + ǫ

∫

dr
δG
δω(r)

[ω0] δω(r) +O(ǫ2). (H.2)

The first term in the right-hand side reads

G [ω0] = G0 [ω0] + ǫH [ω0] = ǫH [ω0] . (H.3)

Using G = G0 + ǫH, the second term in the right-hand side of (H.2) involves

δG
δω(r)

[ω0] =
δG0
δω(r)

[ω0] +O(ǫ) = 0 +O(ǫ) (H.4)

where we have used that ω0 is the minimizer of G0.
Then, (H.2) reads

G [ω0 + ǫδq] = ǫH [ω0] +O(ǫ2). (H.5)

The values of (A⋆, B⋆) in ω⋆0 are thus given at leading order in ǫ by minimizing
the functional ω0 → H [ω0]. Equivalently, we can write H [ω0] = θ(A,B) where
ω0(y) = −A cos y − B sin y. Then, A⋆ and B⋆ are given by

∂θ

∂A
(A⋆, B⋆) =

∂θ

∂B
(A⋆, B⋆) = 0. (H.6)

1We use this notation in agreement with the one used in section 7.3, and in the reference papers
[10, 19, 61].

168



We now make sure that the expansion ω⋆ = ω⋆0 + ǫδω⋆ is self-consistent. By
definition, δG

δω(r)
[ω⋆] = 0. Using the fact that G0 is a quadratic functional, we get

δG0
δω(r)

[ω⋆0] + ǫ
δG0
δω(r)

[δω⋆] + ǫ
δH
δω(r)

[ω⋆] = 0. (H.7)

By definition of ω0, the first term is exactly zero. Using a Taylor expasion in the
last term and using the explicit expression of G0, we get

δψ⋆ + δω⋆ = − δH
δω(r)

[ω⋆0] +O(ǫ). (H.8)

This equation gives δω⋆ at leading order in ǫ. It has a stationary solution if and only
if the forcing term on the right hand side has no resonant harmonics (cos y, sin y).
The amplitude of these harmonics are given by

A = −
∫

dr
δH
δω(r)

[ω⋆0] cos y , B = −
∫

dr
δH
δω(r)

[ω⋆0] sin y. (H.9)

We then have δω⋆ = O(1) if and only if A = B = 0. Differentiating the change of
variable H [ω0] = θ (A,B), we have

δH =

∫

dr
δH
δω(r)

[ω0] δω0 =
∂θ

∂A
δA+

∂θ

∂B
δB (H.10)

for an infinitesimal variation δω0(r) = δA cos y + δB sin y. Using (H.6), equation
(H.10) evaluated at (A⋆, B⋆) gives δH = 0. Then, A = B = 0. The expansion
ω⋆ = ω⋆0 + ǫδq⋆ is thus self-consistent.
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Appendix I

Decomposition of the Langevin

equation

In this appendix we describe the decomposition of the Langevin equation (7.1), that
we report here for convenience,

∂tω + v · ∇ω = −α
∫

dr′C(r− r′)
δG

δω(r′)
+
√

2αγη, (I.1)

into its large-scale and small-scales components. We recall the definition of the large-
scale component of the potential vorticity fieldA = −〈ω, cos〉 = − 1

2π2lx

∫

drω(r) cos y,

B = −〈ω, sin〉 = − 1
2π2lx

∫

drω(r) sin y and of the small-scale component
√
γωp(r) =

ω(r) + (A cos y +B sin y).

I.1 Advection term

The large-scale velocity field V0(r) = U(y)ex with U(y) = A sin y − B cos y is a
purely shear flow, as a consequence V0 · ∇ω0 = 0, where ω0 = −A cos y − B sin y
is the large-scale potential vorticity. The linearized operator close to V0 reads
L0
U [ω] = U∂xω − U ′′∂xψ = U∂x (ω + ψ). It satisfies 〈L0

U [ω], cos〉 = 〈L0
U [ω], sin〉 = 0,

so that the decomposition of the advection term reads

v · ∇ω =
√
γL0

U [ω] + γvp · ∇ωp
= γ [〈vp · ∇ωp, cos〉 cos y + 〈vp · ∇ωp, sin〉 sin y] +

√
γ
[

L0
A[ωp] +

√
γNL0[ωp]

]

.
(I.2)

with NL0[ωp] = vp · ∇ωp − [〈vp · ∇ωp, cos〉 cos y + 〈vp · ∇ωp, sin〉 sin y].

I.2 Dissipation term

We perform the change of variable G[−A cos y − B sin y +
√
γωp] = γG̃[A,B, ωp].

Differentiating this change of variable gives

δG =

∫

dr
δG
δω(r)

δq(r) = −γδA∂G̃
∂A

− γδB
∂G̃
∂B

+ γ

∫

dr
δG̃

δωp(r)
δωp(r), (I.3)

with δA = −〈δω, cos〉, δB = −〈δω, sin〉 and √γδωp = δω + (δA cos y +B sin y).

This formula plus the prescription
〈

δG̃
δωp(r)

, cos
〉

=
〈

δG̃
δωp(r)

, sin
〉

= 0 defines unam-

biguously δG̃
δωp(r)

.
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I.3. DECOMPOSED EQUATIONS

We write the noise correlation function as

C(r− r′) = C0 cos(y − y′) + Cp(r− r′) (I.4)

with Cp(r) =
∑

k 6=(0,1) ck cosk · r. Applying (I.3) to δω(r′) = C(r− r′) for a fixed r

gives

∫

dr′
δG

δω(r′)
C(r− r′) = γC0 cos y

∂G̃
∂A

+ γC0 sin y
∂G̃
∂B

+
√
γ

∫

dr′
δG̃

δωp(r)
Cp(r− r′),

(I.5)
where we have used

∫

dy′ cos(y − y′) cos y′ = π cos y and
∫

dy′ cos(y − y′) sin y′ =
π sin y.

Let’s now compute explicitely the gradients of G̃. Using the expression of G (7.40)
and the fact that 〈ωp, cos〉 = 〈ωp, sin〉 = 0, we have

G̃[A,B, ωp] =
ǫ

γ
2π2lx

(

A2 +B2
)

+
1

2

∫

dr
(

(1− ǫ)ωpψp + ω2
p

)

+
ǫ

γ

∫

dr f(ω). (I.6)

First consider the function A→ G̃[A,B, ωp] and derive it for fixed (B, ωp). It gives

∂G̃
∂A

=
ǫ

γ
2π2lx [2A− 〈f ′(ω), cos〉] , (I.7)

where f ′ denotes the derivative of f with respect to its argument. Similarly,

∂G̃
∂B

=
ǫ

γ
2π2lx [2B − 〈f ′(ω), sin〉] , (I.8)

Now consider the functional ωp → G̃[A,B, ωp] and derive it for fixed (A,B). Recall-

ing that we impose
〈

δG̃
δωp(r)

, cos
〉

=
〈

δG̃
δωp(r)

, sin
〉

= 0, we get

δG̃
δωp

= (1− ǫ)ψp + ωp +
ǫ√
γ
[f ′(ω)− (〈f ′(ω), cos〉 cos y + 〈f ′(ω), sin〉 sin y)] . (I.9)

Note that, due to the factor 1/γ in the definition of G̃ and to the fact that γ ∼ |ǫ| ≪
1, the gradients of G̃ are all of order one.

We will need to decompose δG̃
δωp

in powers of γ. Using ω = ω0 +
√
γωp, we can

write f ′(ω) = f ′(ω0) +
√
γωpf

′′(ω0) +O(γ). This will be useful in the following.

I.3 Decomposed equations

The equations for A and B are obtained applying the projections 〈·, cos〉 and 〈·, sin〉
onto (I.1). Using (I.2) and (I.5), we have

∂tA = γ 〈vp · ∇ωp, cos〉+ αγC0
∂G̃
∂A

+
√

2αγηc, (I.10)

∂tB = γ 〈vp · ∇ωp, sin〉+ αγC0
∂G̃
∂B

+
√

2αγηs, (I.11)
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APPENDIX I. DECOMPOSITION OF THE LANGEVIN EQUATION

with ∂G̃
∂A

and ∂G̃
∂B

given in (I.7),(I.8) and where ηc = 〈η, cos〉 and ηs = 〈η, sin〉. The
remaining terms in (I.2) and (I.5) give the equation for the perturbation ωp,

∂tωp + L0
U [ωp] +

√
γNL0[ωp] = −α

∫

dr′Cp(r− r′)
δG̃

δωp(r′)
+
√
2αηp, (I.12)

where ηp(r, t) = η(r, t)−ηc(t) cos y−ηs(t) sin y. Using the structure (I.4) of the noise
correlation function, it can be shown that ηc, ηs and ηp are independent gaussian
noises, with zero mean and correlations E[ηc(t1)ηc(t2)] = E[ηs(t1)ηs(t2)] = C0δ(t1 −
t2) and E[ηp(r1, t1)ηp(r2, t2)] = Cp(r1 − r2)δ(t1 − t2).

Using the explicit computations (I.7),(I.8),(I.9), we can decompose the equation
on ωp in powers of γ,

∂tωp + LU [ωp] +
√
γNLU [ωp] + γDU [ωp] =

√
2αηp (I.13)

with

LU [ωp] = L0
U [ωp] + α

∫

dr′Cp(r− r′) (ωp + ψp) , (I.14)

NLU [ωp] = NL0[ωp]+
αǫ

γ

∫

dr′Cp(r−r′) [f ′(ω0)− (〈f ′(ω0), cos〉 cos y + 〈f ′(ω0), sin〉 sin y)] ,
(I.15)

and

DU [ωp] =
αǫ

γ

∫

dr′Cp(r−r′) {ψp − ωp [f
′′(ω0)− (〈f ′′(ω0), cos〉 cos y + 〈f ′′(ω0), sin〉 sin y)]}+O(

√
γ

(I.16)
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Main results

In chapter 3

• Derivation of an effective equation for the evolution of zonal jets in the time
scale separation regime (kinetic equation), using stochastic averaging (equa-
tion (3.7) in page 39).

• Alternative derivation of the leading order part of the kinetic equation using a
generalization of the Lundgren-Monin-Novikov hierarchy (section 3.2.2 in page
43).

In chapter 4

• Simple expression of the average Reynolds’ stress divergence (drift term in
the kinetic equation) for the linearized stochastic barotropic equation in the
inviscid limit (equation (4.30) in page 57).

• Development of an efficient method to compute numerically the average Reynolds’
stress divergence in the inviscid limit (section 4.3.2 in page 58).

In chapter 5

• Estimation of the typical fluctuations of the Reynolds’ stress divergence for
the linearized stochastic barotropic equation in the inviscid limit (equation
(5.15) in page 73 and section 5.3.2 in page 77).

• Proof that ergodicity for the Reynolds’ stress divergence is not fulfilled point-
wise in the case of a localized forcing spectrum and in the absence of rotation
and viscosity (section 5.3.3 in page 78).

In chapter 6

• Estimation of the large deviation rate function for the time-averaged Reynolds’
stress divergence, from direct numerical simulations of the linearized stochastic
barotropic equation (sections 6.1 in page 83 and 6.5.3 in page 106).

• Direct computation of probabilities of rare events for the time-averaged Reynolds’
stress divergence, through a matrix Ricatti equation (equation (6.12) in page
88 and section 6.5.3 in page 106).

• Explicit computation of the large deviation function for a class of quasi-linear
slow-fast systems (equation (6.17) in page 89).
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In chapter 7

• Derivation of the effective slow dynamics of zonal jets in a class of Langevin
models for the barotropic equation (equations (7.59),(7.60) in page 126).

• Derivation of fluctuation-dissipation relations for the effective Langevin dy-
namics in a very general setting (equation (7.65) in page 127).

• Derivation of an explicit solution of the Lyapunov equation (section 7.2.2 in
page 119).
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Résumé

Cette thèse porte sur la dynamique des grandes échelles des écoulements géophysiques
turbulents, en particulier sur les écoulements parallèles orientés dans la direction est-
ouest (jets zonaux). Ces structures ont la particularité d’évoluer sur des périodes
beaucoup plus longues que la turbulence qui les entoure. D’autre part, on observe
dans certains cas, sur ces échelles de temps longues, des transitions brutales entre
différentes configurations des jets zonaux (multistabilité).

L’approche proposée dans cette thèse consiste à moyenner l’effet des degrés de
liberté turbulents rapides de manière à obtenir une description effective des grandes
échelles spatiales de l’écoulement, en utilisant les outils de moyennisation stochas-
tique et la théorie des grandes déviations. Ces outils permettent d’étudier à la fois
les attracteurs, les fluctuations typiques et les fluctuations extrêmes de la dynamique
des jets. Cela permet d’aller au-delà des approches antérieures, qui ne décrivent que
le comportement moyen des jets.

Le premier résultat est une équation effective pour la dynamique lente des jets, la
validité de cette équation est étudiée d’un point de vue théorique, et les conséquences
physiques sont discutées. De manière à décrire la statistique des événements rares
tels que les transitions brutales entre différentes configurations des jets, des outils
issus de la théorie des grandes déviations sont employés. Des méthodes originales
sont développées pour mettre en œuvre cette théorie, ces méthodes peuvent par
exemple être appliquées à des situations de multistabilité.

Abstract

This thesis deals with the dynamics of geophysical turbulent flows at large scales,
more particularly their organization into east-west parallel flows (zonal jets). These
structures have the particularity to evolve much slower than the surrounding tur-
bulence. Besides, over long time scales, abrupt transitions between different config-
urations of zonal jets are observed in some cases (multistability).

Our approach consists in averaging the effect of fast turbulent degrees of freedom
in order to obtain an effective description of the large scales of the flow, using
stochastic averaging and the theory of large deviations. These tools provide the
attractors, the typical fluctuations and the large fluctuations of jet dynamics. This
allows to go beyond previous studies, which only describe the average jet dynamics.

Our first result is an effective equation for the slow dynamics of jets, the validity
of this equation is studied from a theoretical point of view, and the physical con-
sequences are discussed. In order to describe the statistics of rare events such as
abrupt transitions between different jet configurations, tools from large deviation
theory are employed. Original methods are developped in order to implement this
theory, those methods can be applied for instance in situations of multistability.
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